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Preface

Many universities offer problem-solving courses for students majoring in

mathematics and mathematics teaching. However, I have noticed over the years

that many graduates are afraid of solving complex problems and try to escape

solving challenging math problems if they can. Why should we be afraid? Our fight

or flight response either leads us to take up the struggle with the problems or to

avoid mathematics with a passion.

It is not a secret that we tend to like things that we are naturally good at. We love

something if we have visible, continuous success. Such success comes only with

hard work. When I was young, I myself had difficulties in geometry class, which I

described in my book Methods of Solving Complex Geometry Problems (Springer,
2013). I later went on to win various Math Olympiads and graduate from

Lomonosov Moscow State University (MGU) summa cum laude, defend a Ph.D.

in Mathematical and Physical Sciences, and publish over 60 papers in the fields of

differential equations, game theory, economics, and optimal control theory. Some

initial success in mathematics can lead to greater successes over time.

At Moscow State, at the end of each semester the students had to pass four oral

exams given by renowned professors. The professors could ask any tricky question

on the topic of the examination ticket. When I was preparing for such exams and in

order to get an “A,” I did not try to memorize all the definitions and proofs,

but rather I tried to develop a “global” understanding of the subject. I thought of

possible questions that an examiner could ask me and tried to predict the type of

problem that I could be asked to solve. I developed my own way of learning and I

want to share it with you.

For over 30 years, whenever I spotted an especially interesting or tricky prob-

lem, I added it to my notebooks along with my original solutions. I’ve accumulated

thousands of these problems. I use them every day in my teaching and include many

of them in this book. Before accepting an academic position at a university, I

worked as a teacher at Ursuline Academy of Dallas and used my problem-solving

techniques in my students’ college preparation. I was pleased to receive apprecia-

tion letters from MIT and Harvard where some of my students were admitted.
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If you are struggling with math, this book is for you. Most math books start from

theoretical facts, give one or two examples, and then a set of problems. In this book,

almost every statement is followed by problems. You are not just memorizing a

theorem—you apply the knowledge immediately. Upon seeing a similar problem in

the homework section, you will be able to recognize and solve it.

Although each section of the book can be studied independently, the book is

constructed to reinforce patterns developed at stages throughout the book. This

helps you see how math topics are connected. The book can be helpful for self-

education, for people who want to do well in math classes, or for those preparing for

competitions. The book is also meant for math teachers and college professors who

would like to use it as an extra resource in their classroom.

What Is This Book About?

This book will teach you about functions and how properties of functions can be

used to solve nonstandard equations, systems of equations, and inequalities. When

we say “nonstandard,” one can think of a variety of problems that appear unusual,

intractable, or complex. However, we can also say that nonstandard can indicate

a method that is opposite to a standard or common way of thinking. For example,

most of the times we need to find the maximal or minimal value of a function, the

standard method would be to use the derivative of a function. However, under

certain conditions, maximum and minimum problems can be solved through

knowledge of some properties, such as boundedness of functions, and perhaps

with the application of known inequalities. Another example of a nonstandard

problem would be a word problem whose solution is restricted to the integers or

that may be reduced to a nonlinear system with more variables than the number of

the equations. A nonstandard problem is one that does not yield easily to direct

solution. The nonstandard method of problem solving is the process of synthesizing

connections between seemingly disassociated areas of mathematics and selecting

appropriate generalizations, so that known constraints coincide to yield the solu-

tion. They are the Sudoku puzzles of mathematics.

Standard methods and relevant formulas make up the context for the problem

sets and are presented in each chapter together with simple problems for illustra-

tion. Basic knowledge of secondary school mathematics is assumed. For example,

if a problem is to solve a quadratic equation x2 � 7xþ 2 ¼ 0, then its roots,

x1,2 ¼ 7� ffiffiffiffi
41

p
2

, can be found using the well-known quadratic formula. What if I

change the problem a little bit and ask you now to prove that for a new quadratic

equation, x2 þ axþ 1� b ¼ 0 with natural roots, the quantity a2 þ b2 cannot be a
prime number? Would standard methods and the quadratic formula help to solve

this problem?
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The problem has two parameters a and b, and is restricted to the set of natural

numbers. Hence, in order to solve this problem, we need to know more than just a

quadratic formula; we need to have a method that will provide another constraint of

the solution. In this case, for example, Vieta’s formula and the knowledge of

elementary number theory might be helpful.

Let me give you now the following problem:

Solve the inequality x2 þ 2xþ 2ð Þx � 1.

In this problem, we do not have any parameters, but the problem is no less

difficult than the previous one. The expression inside parentheses is a quadratic

raised to the power of x. Would knowledge of solving standard quadratic or

exponential inequalities help here? Do we need to do anything with the unit on

the right-hand side? Did you hear anything about monotonic functions in the past

that might be helpful?

Let’s consider the solution of cubic equations. Many of my students know that

the Rational Zero Theorem or the Fundamental Theorem of Algebra might be of

help. Some who took a course on the history of mathematics have heard about the

Cardano formula. These formulas may be applicable, but they may not be adequate

to solve the question.

Many interesting Olympiad problems can be solved by using nonstandard and

otherwise nonobvious approaches. For example, what would you do if I ask you to

find the value of a parameter a for which the cubic function f xð Þ ¼ x3 � 3x� a has
precisely two x-intercepts? What condition on awould be necessary so that it would
have one or three x-intercepts? Playing with a graphing calculator might give you a

hint, but no calculators are allowed in the Mathematics Olympiad.

Knowledge of nonstandard methods of problem solving is important because we

develop a deeper understanding of mathematics from these odd questions. Mathe-

matics is not a disjointed collection of topics but rather a unified whole. The

connections between fields are what tie them together. The structures of these

mathematical fields can be learned in a more powerful way by understanding these

connections gained by the exploration of these nonstandard problems.

There is a method for developing solutions to nonstandard problems. After

solving some especially interesting problem, look for a generalization and try to

see an application of that method in the solution of other problems. Usually, a

nonstandard problem requires knowledge of several aspects of mathematics and can

be solved only with the knowledge of some particular fact from a seemingly

disassociated field.

If students see an elegant solution but do not apply the approach to other

problems, they will not remember it, just as nobody remembers phone numbers

these days. However, if a teacher uses and reuses the same approach throughout the

entire curriculum, students will remember it and learn to value the beauty of the

method. This is what I practice in my teaching and share with you in this book.
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Let us look at the following problem.

Solve the equation x2 þ x� 1ð Þ x2 þ xþ 1ð Þ ¼ 2.

If you multiply the two quantities on the left and subtract two from each side,

then you would obtain a polynomial equation of the fourth degree x4 þ 2x3 þ x2

�3 ¼ 0 that cannot be solved by using the Rational Zero Theorem because it does

not have integer roots. However, it has two real irrational roots. The substitution

t ¼ x2 þ x can simplify the equation and make it solvable.

We might quickly forget this fact if we don’t consider a generalization:

Find real solutions of xþ 1ð Þ xþ 2ð Þ xþ 3ð Þ xþ 4ð Þ � 4 ¼ 0.

There may seem to be nothing in common between the two problems. However,

with some experience, you will see that they are similar if instead of multiplying all

terms together, we multiply the middle two and outer two pairwise to obtain the

equation x2 þ 5xþ 4ð Þ x2 þ 5xþ 6ð Þ � 4 ¼ 0. Then, using the substitution

y ¼ x2 þ 5xþ 4, we rewrite the original equation into a quadratic in a new variable:

y yþ 2ð Þ ¼ 0. The solutions are the irrational roots, x1,2 ¼ �5�
ffiffiffiffiffiffiffiffiffiffiffi
5þ4

ffiffi
5

pp
2

.

Further, for any natural n, the expression n nþ 1ð Þ nþ 2ð Þ nþ 3ð Þ þ 1 is a perfect

square since multiplying the two middle terms and two outer terms pairwise we get

n2 þ 3nþ 2ð Þ n2 þ 3nð Þ þ 1, so n2 þ 3nð Þ2 þ 2 n2 þ 3nð Þ þ 12 ¼ n2 þ 3nþ 1ð Þ2
¼ m2.

This book covers very important topics in algebra and analysis with applications.

For example, knowledge of bounded functions will allow you to solve many

interesting problems like this:

Find all real solutions of the equation 21� xj j ¼ 1þ x2 þ 1
1þx2.

This book also explains how to use the boundedness of functions to solve

complex problems concerning maxima and minima without using a derivative.

The book covers many theoretical aspects, such as the inequalities of Cauchy-

Bunyakovsky and Bernoulli as well as other parameterized relations. You will be

able to decide whether 200! or 100200 is greater and to analytically solve the

following problem:

Find all values of a parameter a, for which the equation aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6x� x2 � 8

p

¼ 3þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ax� a2 � x2

p
has precisely one solution.
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The techniques used in this book are not new, but they are basic to understanding

functions. For example, the Babylonians created tables of cubes and squares of the

natural numbers and even wrote the solution for any cubic equation of the form of

n3 þ n2 ¼ m on clay tablets. Versions of problems solved by the ancients often

reappear in modern math contests. Their importance to modern mathematics is

fundamental and unavoidable.

This book is not a textbook. Some knowledge of algebra and trigonometry such

as what is introduced in secondary school is necessary to make full use of the

material. However, a mastery of these subjects is not a prerequisite. You will

use your knowledge of secondary school mathematics in order to better delve into

the analysis of functions and their properties as you develop problem-solving skills

and your overall mathematical abilities.

The book is divided into four chapters: Solving Problems using Properties of

Functions, Polynomials, Problems from Trigonometry, and Unusual and Nonstan-

dard Problems. Each chapter has its own homework. However, there are overlaps in

knowledge and concepts between chapters. These overlaps are unavoidable since

the threads of deduction we follow from the central ideas of the chapters are

intertwined well within our scope of interest. For example, trigonometric functions

are the topic of Chapter 3, at which point we also like to discuss the properties

of some parameterized trigonometric functions. However, a full exposition of

parameterized functions is not taken up until Chapter 4. For the same reason, we

will on occasion use the results of a particular lemma or theorem in a solution but

wait to prove that lemma or theorem until it becomes essential to the thread at hand.

If you know that property, you can follow along right away and, if not, then you

may find it in the following sections or in the suggested references.

Many figures are prepared with MAPLE and Geometer’s Sketchpad. Addition-

ally, Chapter 4 has a number of screenshots produced by a popular graphing

calculator by Texas Instruments. These graphs are shown especially for the benefit

of students accustomed to using calculators in order to introduce them to analytical

methods. Sometimes by comparing solutions obtained numerically and analyti-

cally, we can more readily see the advantages of analytical methods while referring

to the numerically calculated graphs to give us confidence in our results. Following

the new rules of the US Mathematics Olympiad, I suggest that you prepare all

sketches by hand and urge you not to rely on a calculator or computer to solve the

homework problems.

Do I Need This Book?

You can decide how necessary this book is for you by taking the following quiz.

I give problems like these in order to see how deeply students understand functions

and their properties. Here they are, just three simple problems.
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Find all real solutions of the following equations and inequality:

1.
1

x
þ x ¼

ffiffiffi
2

p

2. sin 3x� 1ð Þ ¼ 3

3. 2x þ 2�x <
ffiffiffi
55

p

Did you get the solutions? Are you still working? Is it hard?

Hint

Do not try to solve them—think about the properties of functions and use common

sense.

Answer

None of the three problems has a solution. Mathematicians say that their solutions

are the empty set.

Solution

Now, look at each problem again as if you are solving it from the end. Can you

explain why, for example, the first equation does not have a solution? Because the

right side of the equation is positive, it can have a solution only if x > 0. Apply to

the left side of the equation the relationship between the arithmetic and geometric

means of two positive numbers a and b, aþ b � 2
ffiffiffiffiffi
ab

p
and observe that equality

appears if and only if a ¼ b. So, we see that xþ 1

x
� 2

ffiffiffiffiffiffiffiffi
x � 1

x

r
¼ 2. The left side is

always greater than or equal to two, but the right side is a constant,
ffiffiffi
2

p
. Because

2 >
ffiffiffi
2

p
, the first equation has no solutions for all positive x. Let us summarize our

ideas:

Consider an equation of type, xþ 1

x
¼ c.

1. c > 0 ) x > 0, where the logical symbol “)” means “implies.”

Because xþ 1

x
� 2, the equation will have a solution if and only if c 2 2;1½ Þ.

2. c < 0 ) x < 0

Because xþ 1

x
� �2, the equation will have solution if and only if

c 2 �1, � 2ð �.
3. c ¼ 0, then the equation has no real solutions.

We can see this analysis illustrated by example.

Example 1

xþ 1

x
¼ 3, 3 > 2 > 0

x2 � 3xþ 1 ¼ 0

x1,2 ¼ 3� ffiffiffi
5

p

2

so that a real solution exists and both roots are positive.
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Example 2

xþ 1

x
¼ �4, � 4 < �2 < 0

x2 þ 4xþ 1 ¼ 0

x1,2 ¼ �2� ffiffiffi
3

p

so that a real solution exists and both roots are negative.

I hope that after solving this problem, the second equation will be easy to

understand. We want to compare the ranges of the functions on the left and on

the right. If you have completely forgotten trigonometry, let us recall the definitions

of sine and cosine.

Sine is the y-coordinate of a point on the unit circle (of radius 1) and cosine is

the x-coordinate. Note that any point on the unit circle can have coordinates only

within the interval �1, 1½ �.
Let us assume that the point (say A in Figure P.1.1) corresponds to the angle t,

∠BOA. Sine and cosine have the same range, �1, 1½ �, so �1 � sin t � 1 and

�1 � cos t � 1.

Now, can you explain why the second problem has no solution for real x?

sin 3x� 1ð Þ ¼ 3

The left side is always less or equal to one, but the right side is three. This equation

has no solutions.

1

0.5

-0.5

-1

-2 -1 1 2 3 4

A(x,y)

O B

Figure P.1.1 Point on the unit circle
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Remark
Our equation, sin t ¼ 3, will have a solution for t over the set of complex numbers.

What do you think about the third equation? It has no solutions as well. Can

we prove it? The left side is positive and the right is positive. Recalling properties

of exponents, we notice that 2x and 2�x are reciprocals of each other. Now we

can rewrite the left side as 2x þ 1
2x

so that 2x þ 1
2x
� 2

ffiffiffiffiffiffiffiffiffiffiffi
2x � 1

2x

q
¼ 2. Because

2 ¼ ffiffiffiffiffi
325

p
>

ffiffiffi
55

p
, the third equation has no solutions.

Notice that all of these three equations have clear graphical interpretations.

Functions on the left side of the equation have no points of intersection with

functions on the right.

The purpose of this book is to teach you how to apply properties of functions to

solving some nonstandard problems and problems with parameters. For demonstra-

tion, I selected only problems that had no solutions. However, many problems have

solutions and you need to learn how to recognize that fact and solve them. Those of

you who solved all three problems without my help will find many new ideas and

approaches you might enjoy.

How Should This Book Be Used?

Here are my suggestions about how to use the book. Read the corresponding section

and try to solve the problem without looking at my solution. If a problem is not

easy, then sometimes it is important to find an auxiliary condition that is not a part

of the problem but that will help you to find a solution to the problem in a couple

steps. In this book, I will show simple and challenging problems and will point out

ideas we used in the auxiliary constructions so that you can develop your own

experience and hopefully become an expert soon. If you find any question or section

too difficult, skip it and go to another one. Later, you may come back and try to

understand it. Different people respond differently to the same question. Return to

difficult sections later and then solve all the problems. Read my solution when you

have found your own solution or when you think you are just absolutely stuck.

Think about similar problems that you would solve using the same or similar

approach. Find a similar problem from the homework section. Create your own

problem and write it down along with your original solution. Now it is your

powerful method. You will use it when it is needed.

I promise that this book will make you successful in problem solving. If you do

not understand how a problem was solved or if you feel that you do not understand

my approach, please remember that there are always other ways to do the same

problem. Maybe your method is better than one proposed in this book. If a problem

requires knowledge of trigonometry or number theory or another field of mathe-

matics that you have not learned yet, then skip it and do other problems that you are
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able to understand and solve. This will give you a positive record of success in

problem solving and will help you to attack the harder problem later. Do not ever

give up! The great American inventor Thomas Edison once said, “Genius is one

percent inspiration, ninety-nine percent perspiration.” Accordingly, a “genius” is

often merely a talented person who has done all of his or her homework. Remember

that it is never late to become an expert in any field. Archimedes himself became a

mathematician only at the age of 54.

I hope that upon finishing this book you will love math and its language as

I do. Good luck and my best wishes to you!

Denton, TX, USA Ellina Grigorieva
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Chapter 1

Solving Problems Using Properties
of Functions

Many students struggle to understand functions and their behavior, especially such

concepts as the domain and range of a function. We very often start manipulations

with an equation without thinking first about the properties of the functions. For

example, the solution to the equation,
ffiffiffi
x

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ 16

p ¼ 8, can be found immedi-

ately as x¼ 9 if, instead of the standard squaring of both sides technique, we notice

that the left side of the equation is the sum of two monotonically increasing

functions. This means that if a solution exists, it must be unique. We can see that

x¼ 9 makes the equation true; therefore, it is the only solution.

There are many different “tricks” and properties that you will learn in this

chapter, but the chapter is mainly focused on recognizing boundedness of functions

and using this property in the solution of equations. Likewise, the solutions of the

transcendental equation sin 2 πxð Þ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 3xþ 2

p ¼ 0 can be found if we notice

that the left side is the sum of two nonnegative functions while the right side is zero.

In this chapter you will learn that the solution exists only if each function on the left

is zero. The purpose of this chapter is to help you understand these topics at the

introductory level and demonstrate how knowledge of the properties of functions

allows us to solve nonstandard problems of elementary mathematics.

1.1 Continuous Functions and Discontinuities

Let us start from the definition of a function. A function is a correspondence

between two sets such that each element from the first set, called the domain,

associates with only one element from the second set, called the range.
Functions can be given by verbal description, by a table, by ordered pairs, by a

graph, by formulas, or by several formulas on different intervals for so-called

piecewise functions. If you remember the definition of a function given above,
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then you can easily check if dependence between two sets is functional or not, no

matter how that dependence is given.

Consider the relations between the sets of Figure 1.1. The first two (Figure 1.1a, b)

are functions. However, the relation of Figure 1.1c is not a function because one

element of the domain, X, corresponds to two elements of the range Y. The relation in
Figure 1.1b is a function, X! Y (the single arrow “!” means that there is a

Xa b

c d

e

X

X

X

XY

Y

Y

Y

Y

Figure 1.1 (a) Each passenger takes one seat. (b) Mother and baby take one seat. (c) One

passenger takes two seats. (d) One-to-one function. (e) Onto
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functional relation between the sets), because each element of X associates with only

one element of Y. It is allowed that more than one element of the domain, X,
corresponds to same element of Y. In order to help you to remember these cases,

I would like to offer you the following verbal memorable example.

Assume that you are flying from DFW to Costa Rica by American Airlines

during the rainy season. What would you expect? Probably some seats will not be

occupied. Suppose that the set X is the set of all passengers of the plane and set Y is

the set of all seats. If each passenger takes only one seat then such a relationship is a

function even though some seats are not occupied. This is the case of Figure 1.1a.

Next, consider that some passengers have babies and hold their babies on their laps,

not on a separate seat. Then the relation is still a function because the baby has only

one seat just as the parent does. This is the case of Figure 1.1b. Finally, if there were

empty seats and some passengers decided to take two or three seats, then such

relationship is not a function (Figure 1.1c). Moreover, if all seats are taken and each

passenger occupies only one seat then the relation between the two sets is a one-to-

one function (Figure 1.1d). In the case when the flight is full and all seats are

occupied but babies sit on the laps of their parents, then such a relationship is not

one to one but onto (Figure 1.1e).

If you have this story in mind, you will be able to find out if a given relation

between two variables is a function or not. For example, assume that three relations

are given by their graphs in the plane (Figure 1.2). Note that a function may be

given by the formula, “all seats are always occupied,” so we can talk about relations

through graphs. To check if a relation is a function, you can use the vertical line

test. Mentally draw several vertical lines that go through the graph. If a line

intersects the graph at most at one point, then it is a function. Further if each

horizontal line crosses each function at most at one point, then such a function is

one to one.

4

2

-2

-4

-6

C

-10 -5 5 10

Case 3

Case 2

Case 1q(x)  = x-5

h(x)  = x 2-4

P

B

N

A

M L

F

Figure 1.2 Relation vs. function
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Case 1 We have a one-to-one function (any linear function is always one to one)

and the relation is one element of the range for each element of the domain (i.e.,

passenger L takes only one seat F and vice versa).

Case 2 A parabola is not a one-to-one function. It is like the case when the mother

keeps her baby on her lap (here “mother” M and “baby” N take the same seat C).

Case 3 A circle is not a function! One value of X associates with two different

values of Y (passenger P takes both seats A and B).

Usually we deal with functions given by formulas in the form of y¼ f (x). Denote
the domain of a function by D( f ) and the range by R( f ). A function f assigns a
numeric value f (x) to each point X in the domain Df¼D( f ) on which f is defined.
The range of f is the set R f ¼ R fð Þ ¼ f xð Þ xj 2 D fð Þf g. For example,

1. y ¼ f xð Þ ¼ x3 � 3x2 � 7,

2. y ¼ f xð Þ ¼ 3 sin xþ 4 cos x,

3. y ¼ f xð Þ ¼ 1
x�2

þ 1
xþ2

, or

4. y ¼ f xð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffi
x� 3

p
are examples of functions.

In order to find the domain, you need to ask a question, “Are there any

restrictions on the independent variable, x?” That is, “Can I replace x by any

number?”

The first function is polynomial and all polynomial functions are defined on the

entire real number line so that you can replace x by any real number, i.e., D( f ) : x2
(�1,1) where the symbol “2” is set notation for “is an element of.” The second

function is a combination of sine and cosine functions and so it also is defined on the

entire number line. The third function consists of two rational functions (fractions)

and we know that division by zero is not allowed. Therefore, for any function that

has the form f xð Þ ¼ M xð Þ
N xð Þ we would exclude all values of the independent variable

that make the denominator zero.

If a function is defined for all real numbers such that the dependent variable of the

function varies smoothly (if at all) with changes in the independent variable, then we

say that the function is everywhere continuous. If a function has a restriction on x,
then it has a discontinuity at those values of x. For example, while the first and the

second functions are defined and continuous for all real x, the third function has a

discontinuity at x¼ 2 and at x¼�2. The graph of y ¼ f xð Þ ¼ 1
x�2

þ 1
xþ2

will have

interruptions at the discontinuity points. If you want to sketch a graph of a discon-

tinuous function, you cannot do it without lifting a pencil from the piece of paper on

which you do your sketch. For the third function, you would need to lift it at both

discontinuity points.

The domain is the union of three intervals on which our function is continuous,

D( f ) : x2 (�1,�2)[(�2,2)[(2,1). Readers who can find the domain analytically

would not be surprised by the look of the function produced by many graphing

calculators. For example, they would know that the vertical lines x¼ 2 and x¼�2

shown in Figure 1.3 are the vertical asymptotes and not a part of the graph.

4 1 Solving Problems Using Properties of Functions



The last function, y ¼ f xð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffi
x� 3

p
(Figure 1.4), is a radical of even degree so

that the domain of the function is restricted to the nonnegative radicand values that

can be written as the inequality x� 3� 0 or x� 3. There will be no graph for any

value of the independent variable less than three, i.e., D( f ) : x2 [3,1).

Each component of a more complicated function must be examined to determine

the restrictions on the domain of the composite function. The domain of the

composite function will be the intersections of the restrictions of the domains of

the components. Let us do the following problem:

Problem 1 Find the domains of f xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
x� 1

p

x� 4
and g xð Þ ¼ x� 4ffiffiffiffiffiffiffiffiffiffiffi

x� 1
p .

Solution The functions are reciprocals of each other and have some similarities in

the restrictions but they have absolutely different domains. The first function looks

like a fraction and so we need to exclude all values of x that make its denominator

zero, i.e., x 6¼ 4. Furthermore, the numerator is a square root function and so it must

be defined only for nonnegative radicand values, i.e., x� 1� 0. Solve all restric-

tions as a system of equations:
x� 4 6¼ 0

x� 1 � 0

�
, D fð Þ : x 2 1; 4½ Þ [ 4;1ð Þwhere the

symbol “,” means “if and only if” or “equivalently.” Then x¼ 4 is a vertical

asymptote where the function f xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
x� 1

p

x� 4
has a discontinuity in its graph.
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Figure 1.3 A function with

two vertical asymptotes
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The second function has restrictions coming from the denominator only: its denom-

inator cannot be zero and the radicand must be nonnegative. This can be written as

x� 1 6¼ 0

x� 1 � 0
, D gð Þ

�
: x 2 1;1ð Þ. The second function has no vertical asymptote.

The two functions are shown together in Figure 1.5.

Next, we will show how to find the range of a function. Usually, it is not as easy

as finding the domain, but it is important in certain cases. Right now, I will give you

some ideas on how to find the range of some functions analytically if a function is

given as a formula. You will learn much more about the subject in the section

focusing on bounded and unbounded functions.

Let us again consider the four functions given at the beginning of this section.

Polynomial functions of odd degree can take any values for x and hence they can

take any values for y¼ f(x) from negative infinity to positive infinity. Therefore, the

range of f can be written as R( f ) : y2 (�1,1). Polynomial functions of even

degree are bounded from either above or below and cannot take any possible value.

Using an auxiliary argument, the second function can be written as y ¼ f xð Þ ¼
3 sin xþ 4 cos x ¼ 5 sin φþ xð Þ where φ ¼ arccos 3

5
. The range of f(x) is y2 [�5,5]

because sine is a bounded function. We can write this as R( f ) : y2 [�5,5]. For a

better understanding of this topic and the formula’s derivation, please see Chapter 3.
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-2

-2 0 2
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4

5
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x
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Figure 1.4 f xð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffi
x� 3

p
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If we look at the graph of function y ¼ f xð Þ ¼ 1
x�2

þ 1
xþ2

, then we can state

that the variable y takes on all possible values from minus infinity to plus

infinity including zero. So its range is the same as for the first polynomial function,

R( f ) : y2 (�1,1). However, this is not typical for a rational function and each

case must be investigated separately. For example, if we instead take a function

y ¼ f xð Þ ¼ 1
x�2

, the numerator is one and never becomes zero, so the function itself

can never have zero as its value—zero is not in its range. The range is R( f ) : y2
(�1,0)[(0,1).

The square root function, y ¼ f xð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffi
x� 3

p
, is never negative, so R( f ) : y2

[0,1) and takes the value y¼ 0 at x¼ 3.

We say that a function y¼ f (x) is continuous on [a,b] if it is continuous at every
point of this interval. If it is continuous, it takes on all values between f(a) and f(b) over
the segment, [a,b]. This is an important result, which is commonly stated as a theorem:

Intermediate Value Theorem (IVT) If f(x) is a continuous function on
[a,b], then for every d between f(a) and f(b), there exists at least one
value c in between a and b such that f(c)¼ d.

Corollary If f(x) is a continuous function on [a,b] such that f(a) and f(b) are
opposite in sign, then there exists at least one zero of the function between
a and b such that f(c)¼ 0.

0-2

-4
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-6
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y
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x

Figure 1.5 Sketch for

Problem 1
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Let us solve the following problem:

Problem 2 Give an example of a function that satisfies the IVT and takes a

value of 4 at x¼ 1, x¼ 2, and x¼ 3.

Solution This problem does not have a unique solution.

For example, a polynomial function f(x)¼ (x� 1)(x� 2)(x� 3) + 4, shown in Fig-

ure 1.6, is continuous everywhere on the real number line including the segment

[0,4] where f(0)¼�2 and f(4)¼ 10. By the IVT for each d2 [�2,10] there must be

at least one number c2 [0,4], such that f(c)¼ d. If we choose d¼ 4, then there are

exactly three values, c1¼ 1, c2¼ 2, and c3¼ 3 such that f(1)¼ f(2)¼ f(3)¼ 4. The

graph of g(x)¼ 4 intersects f(x) at three points. You can see that for other values of

d2 [�2,10], for example, d2 {2,6}, there exists only one point c. Also notice that

the lines tangent at local minimum or maximum of the function intersect the graph

at two points. Finally, the function can be written as f xð Þ ¼ x3 � 6x2 þ 11x� 2.

Also, there is the non-polynomial function, h xð Þ ¼ x�1ð Þ x�2ð Þ x�3ð Þffiffiffiffiffiffiffiffiffi
25�x2

p þ 4. This

function is defined for all x2D(h)¼ (�5,5). Therefore it is defined on [0,4]

where h(0)¼ 2.8 and h(4)¼ 6. Thus d¼ 4 and the graph of g(x)¼ 4 intersects

h(x) at three requested points.

Answer f xð Þ ¼ x3 � 6x2 þ 11x� 2 or h xð Þ ¼ x�1ð Þ x�2ð Þ x�3ð Þffiffiffiffiffiffiffiffiffi
25�x2

p þ 4.

Let y¼ f(x) be a function defined on [a,b] and let x1 and x2 be any two points in

[a,b]. Then we can say the following:

a. f(x) increases on [a,b] if for any x2> x1, where x1, x22 [a,b], then f(x2)> f(x1).
b. f(x) decreases on [a,b] if for any x2> x1, where x1, x22 [a,b], then f(x2)< f(x1).

12

10

8

6

4

2

-2

-4

-10 -5 5 10 15

f(x)=(x-1)(x-2)(x-3)+4

g(x) = 4

Figure 1.6 Sketch for Problem 2
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A function ismonotonic function if its first derivative is continuous and does not

change sign. Monotonic function is a function which is either entirely

nonincreasing or nondecreasing.

If f(x) is continuous on [a,b] and f(a) is opposite in sign of f(b), then there is at

least one point c between a and b such that f(c)¼ 0. It follows that a continuously

increasing or decreasing function has at most one real zero on [a, b]. We can

rephrase it as follows:

Theorem 1 If the function y¼ f(x) is continuously increasing or decreasing
in set I, then the equation f(x)¼ 0 has at most one solution in I.

This is a very important statement and it means that if f(x) satisfies Theorem 1

and f(x)¼ 0 has a solution, then this is the only solution of the equation.

Theorem 2 If the function y¼ f (x) is increasing (decreasing) over interval I,
then the function y¼�f(x) is decreasing (increasing) on I.

Theorem 3 The sum of two increasing functions is an increasing function
and the sum of two decreasing functions is a decreasing function.

Please prove this statement as homework problem 9 after this chapter.

Corollary If one of the two functions f and g is increasing and the other is a
decreasing function of real variable x, then the equation f(x)¼ g(x) has at
most one real zero.

Proof Rewrite the equation as h xð Þ ¼ f xð Þ � g xð Þ ¼ f xð Þ þ �g xð Þð Þ ¼ 0.

Without loss of generality, we can assume that f(x) is monotonically increasing

and g(x) is decreasing. Then the function �g(x) is monotonically increasing. Next,

the function h(x) is the sum of two monotonically increasing functions and therefore

can have at most one zero.

Note that the sum of increasing and decreasing functions is sometimes not even

monotonic.

Problem 3 Solve the equation
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2x� 3

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
4xþ 1

p ¼ 4.

1.1 Continuous Functions and Discontinuities 9



Solution By guessing and checking we find that x¼ 2 is a solution of the equation.

Let us prove that there are no other solutions. Regarding Theorem 3, the function

f xð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2x� 3

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
4xþ 1

p � 4 is increasing as it is the sum of two increasing

functions over the entire domain x� 1.5. If it has a zero at x¼ 2, then by Theorem 1,

there are no other roots.

Answer x¼ 2.

Note: You can also solve this problem the long way by squaring both sides,

simplifying, and then selecting roots satisfying the domains of both square root

functions.

Theorem 4 The product of increasing (decreasing) positive functions is also
an increasing (decreasing) function.

Proof If f xð Þ > 0, g xð Þ > 0 and both are increasing functions, then 8x2> x1,
f x2ð Þg x2ð Þ � f x1ð Þg x1ð Þ ¼ f x2ð Þ � f x1ð Þ½ �g x2ð Þ þ g x2ð Þ � g x1ð Þ½ � f x1ð Þ > 0.

Because each expression inside brackets is positive, then the inequality will also

be true if one of the given functions is positive and the other is nonnegative.

Theorem 5 The composition of two increasing or both decreasing functions
is an increasing function.

Proof Assume that h xð Þ ¼ f∘gð Þ xð Þ ¼ f g xð Þð Þ and let x1, x22D(h) and x2> x1.
There are two possible cases:

Case 1 If f(x) and g(x) are both increasing functions, then g(x2)> g(x1) and

f(g(x2))> f(g(x1)). Hence, the function h(x) is an increasing function.

Case 2 If f(x) and g(x) are both decreasing functions, then g(x1)> g(x2). Because
f(x) is a decreasing function and g(x1)> g(x2), then f(g(x1))< f(g(x2)), and then

h(x2)> h(x1). Therefore h xð Þ ¼ f∘gð Þ xð Þ is again an increasing function.

Hence, the function h(x) is an increasing function.

Example Assume that we want to discuss whether the function

h xð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x3 þ 2x� 3

p
is increasing or decreasing on the domain. We can look at

this function as the composition of two other functions as h xð Þ ¼ f∘gð Þ xð Þ, where
f xð Þ ¼ ffiffiffi

x
p

and g xð Þ ¼ x3 þ 2x� 3. Because both functions are monotonically

increasing, their composition, h(x), is also monotonically increasing.

On the other hand, if f(x)¼�2x+ 1 and g(x)¼�x3 (both decreasing functions),

both compositions h xð Þ ¼ f∘gð Þ xð Þ ¼ 2x3 þ 1 and w xð Þ ¼ g∘ fð Þ xð Þ ¼ 8x3 � 12x2

þ 6x� 1 are increasing functions.

10 1 Solving Problems Using Properties of Functions



Theorem 6 The composition of a decreasing and an increasing function or
an increasing and a decreasing function is a decreasing function.

The proof of this statement is given as a Homework problem 14 (after this

chapter).

Theorem 7 If the function f(x) is monotonic on the set, X, and keeps the same

sign over X, then the function g xð Þ ¼ 1
f xð Þ has opposite monotonic behavior

on X.

Proof Let x2> x1 where {x1, x2}2X, and consider the difference g(x2)� g(x1) and
transform it as

g x2ð Þ � g x1ð Þ ¼ 1

f x2ð Þ �
1

f x1ð Þ

¼ f x1ð Þ � f x2ð Þ
f x2ð Þ � f x1ð Þ

1. Because the function f(x) keeps the same sign in X, then the product inside the

fraction’s denominator is always positive.

2. The difference in the numerator is either positive if f(x) is monotonically

decreasing or negative if f(x) is increasing on X.

Therefore g(x) is decreasing if f(x) is increasing and vice versa. The statement is

proven.

Problem 4 Investigate if the function f xð Þ ¼ 1
x�2

þ 1
xþ2

is increasing or

decreasing and give its intervals of monotonic behavior.

Solution The function is the sum of two decreasing functions, so it must decrease

over the entire domain, D( f ) : x2 (�1,�2)[(�2,2)[(2,1).

Problem 5 Solve the equation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� ffiffiffi

3
pp� �x

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ffiffiffi

3
pp� �x

¼ 2x.

Solution Let us solve this problem by applying properties of monotonically

decreasing functions. Both sides are positive. Dividing both sides by 2x, we obtain

1.1 Continuous Functions and Discontinuities 11



ffiffiffiffiffiffiffiffiffi
2� ffiffi

3
pp

2

� �x

þ
ffiffiffiffiffiffiffiffiffi
2þ ffiffi

3
pp

2

� �x

¼ 1. It is not hard to see that the left side of the equation

is the sum of two decreasing exponential functions because their bases are

ffiffiffiffiffiffiffiffiffi
2� ffiffi

3
pp

2

< 1 and

ffiffiffiffiffiffiffiffiffi
2þ ffiffi

3
pp

2
<

ffiffiffiffiffiffiffiffiffi
2þ ffiffi

4
pp

2
¼ 2

2
¼ 1which is less than one. Then the function on the

left is decreasing and takes each value once, and the equation has only one solution.

We can see that x¼ 2 satisfies the equation because 2� ffiffi
3

p
4

þ 2þ ffiffi
3

p
4

¼ 1.

Answer x¼ 2 and it is unique.

Problem 6 How many X-intercepts does the function f xð Þ ¼ x5 þ x3 þ 1

have?

Solution We can look at this function as the sum of two monotonically increasing

functions, x5 and x3 + 1, so that f(x) can have only one x-intercept that is the real root
of the equation f(x)¼ 0. Because f(�1)¼�1< 0, f 0ð Þ ¼ 1 > 0 then the root

belongs to the interval x02 (�1,0). Additionally, if you want to use a derivative,

then you can find that f
0
xð Þ ¼ 5x4 þ 3x2 > 0 and this proves that the function is

monotonically increasing and will take each value only once, including the value

of zero.

1.2 Bounded and Unbounded Functions

A function f(x) is bounded below if for any x2D( f ), f(x)� a where a is some real

number. For example, f xð Þ ¼ ffiffiffi
x

p � 2 is bounded below and lies everywhere above

the line y¼�2. The function is monotonically increasing on its domain x2D( f )¼
[0,1). A function f(x) is bounded above if for any x2D( f ), f(x)� b, where b is

some real number. For example, f xð Þ ¼ 5� x2 is bounded above, and 5 is its

maximum value, so for every x, f(x)� 5.

A function f(x) is called a bounded function if there exist two real numbers

a and b such that if for any x2D( f ), a� f(x)� b. For example, the sine and

cosine functions are bounded since�1� sin x� 1 and�1� cos x� 1. The function

f xð Þ ¼ 5
2þ3 sin 2x is also bounded such that 1� f(x)� 2.5. Also, the function

g xð Þ ¼ 2þ 3 sin 2x, such that 2� g(x)� 5 (both are shown in Figure 1.7).

The function f xð Þ ¼ 5
2þ3x2 is also bounded such that 0< f(x)� 2.5. Obviously,

because the numerator is five the function never becomes zero but only approaches

the x-axis as x goes to plus or minus infinity (Figure 1.8).

Let us practice solving problems.
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Figure 1.7 Two bounded functions
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Figure 1.8 f xð Þ ¼ 5
2þ3x2
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Problem 7 Is the function f xð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
4� xj jp

a bounded or unbounded

function?

Solution Let b be a possible value of the function f(x). Let us find the solution to

the equation
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4� xj jp ¼ b where b� 0. Squaring both sides, we obtain 4� xj j

¼ b2 or xj j ¼ 4� b2. Since xj j � 0, the right side must also be greater than or equal

to zero, i.e., 4� b2 � 0. Solving this, we obtain possible values of b:

bj j � 2

b � 0

�
, 0 � b � 2:

Therefore the function is bounded, 0 � f xð Þ � 2.

Answer R fð Þ : y 2 0; 2½ �:

Problem 8 Is the function f xð Þ ¼ 5
2þ3 sin x bounded?

Solution Let us find the domain of this function first. Because we cannot divide by

zero, the domain of this function is restricted such that sin x 6¼ �2
3
. D fð Þ : x 6¼

�1ð Þnarcsin �2
3

� 	þ nπ where n ¼ 0, � 1, � 2, . . .. The vertical lines in the graph

of Figure 1.9 are the vertical asymptotes. In order to answer the question about

boundedness, we could again consider 5
2þ3 sin x ¼ b, but instead, we will consider

only the denominator of this fraction: g xð Þ ¼ 2þ 3 sin x where �1 � sin x � 1, so

�1 � g xð Þ � 5.

With f xð Þ ¼ 5
g xð Þ we have f xð Þ � �5 and f xð Þ � 1, so R fð Þ ¼ �1, � 5ð �

[ 1;1½ Þ as shown in Figure 1.9.

Answer The function is unbounded, but does not take values between �5 and 1.

Problem 9 Solve the equation x3 þ xþ 10 ¼ 0 over the set of real numbers.

Solution It is easy to find that x¼�2 is the root of the equation. Let us prove that it

is the only root. Consider two functions: f 1 xð Þ ¼ x3 and f 2 xð Þ ¼ xþ 10. Both

functions are strictly increasing on the entire real number line, so f xð Þ ¼ f 1 xð Þ
þ f 2 xð Þ is also strictly increasing on R. Therefore, f(x) is one to one. In particular,

f(x)¼ 0 only at x¼�2.

Answer x¼�2.
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1.3 Maximum and Minimum of a Function

A function has a relative minimum at x¼ c if the function evaluated at x¼ c is less
than at any other point in the neighborhood of x¼ c. A relative minimum is the

lowest point in an open interval, but not necessarily over the entire domain. The

interval of the neighborhood can be infinitesimally small. If there is no lesser valued

point on the domain of the function, then the relative minimum would also be a

global minimum, or simply, minimum of the function.

A function has a relative maximum at x¼ c if the function evaluated at x¼ c is
greater than at any other point in the neighborhood of c no matter how small that

neighborhood may be. A relative maximum is the greatest valued point of a

function in an open interval, but not necessarily over the entire domain. Likewise,

if there is no point throughout the entirety of the domain for which the function

takes a greater value, then that point would be a global maximum, or simply, the

maximum of the function.

Usually if a function is differentiable, then its local extrema can be found using

the first derivative test. For a differentiable function, f(x), its local maximum

and minimum satisfy the zero of its first derivative. The function is increasing on

x 2 a; bð Þ if its first derivative keeps a positive sign on the entire interval. Likewise,

0

5y

x

10

5 10

-10

-10

-5

-5

Figure 1.9 Sketch for Problem 8
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the function f(x) is decreasing on x 2 a; bð Þ if its first derivative is negative along the
entire interval. If a function f is monotonically increasing (decreasing) on (a, b) and
is defined on [a, b], then f(a) is the global minimum (maximum) and f(b) is the

global maximum (minimum).

There are many theorems in a calculus or mathematical analysis course

that pertain to functions. Two of the most important are Rolle’s Theorem and

Lagrange’s Mean Value Theorem.

Theorem 8 (Rolle’s Theorem) Let f be a function that is continuous on [a,b]
and differentiable on (a,b) and for which f(a)¼ f(b)¼ 0. There exists at least

one point c 2 a; bð Þ for which f
0
cð Þ ¼ 0.

Theorem 9 (Lagrange’s Mean Value Theorem) Let f be a function that is
continuous on [a,b] and differentiable on (a,b). There exists at least one point

c 2 a; bð Þ for which f
0
cð Þ ¼ f bð Þ� f að Þ

b�a .

Let us demonstrate the importance of Rolle’s Theorem. If we did not see the

graph or even the formula of the function f(x), but did know that it is continuous and

differentiable for all real numbers and that f �1ð Þ ¼ f 1ð Þ ¼ f 3ð Þ ¼ 0, then we

could state using Rolle’s Theorem that there must be at least one local extremum on

x 2 �1, 1ð Þ and additionally at least one on x 2 1; 3ð Þ. For example, the function

f xð Þ ¼ x� 1ð Þ xþ 1ð Þ x� 3ð Þ ¼ x3 � 3x2 � xþ 3 is defined for all real numbers

and it is unbounded. However, we can see that it has the two special points:

A (relative maximum) and B (relative minimum) (Figure 1.10).

We can find its extrema and intervals of increasing and decreasing by the first

derivative test and its inflection point using the second derivative:

2

-2

-5 5

f (x) = (x-1)·(x+1)·(x-3)

C

A

B

Figure 1.10 Illustration of Rolle’s Theorem
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f
0
xð Þ ¼ 3x2 � 6x� 1 ¼ 0

x ¼ 3þ 2
ffiffiffi
3

p

3
local min, Bð Þ

x ¼ 3� 2
ffiffiffi
3

p

3
local max, Að Þ

f
00
xð Þ ¼ 6x� 6 ¼ 0

Even without the formula, we could predict at least two extrema for the functions

that both fit the condition of the problem. Of course, f xð Þ ¼ x� 1ð Þ xþ 1ð Þ x� 3ð Þ
is just one of such possible functions.

Problem 10 Check the validity of Rolle’s Theorem for the function

f xð Þ ¼ x3 þ 3x2 � x� 3.

Solution Function f(x) is continuous and differentiable for all values of x. More-

over, f xð Þ ¼ xþ 3ð Þ xþ 1ð Þ x� 1ð Þ. Since f(x) is continuous on �3, 1½ � and

f �3ð Þ ¼ f �1ð Þ ¼ 0, then by Rolle’s Theorem,1 ∃ξ1 2 �3, � 1ð Þ s.t. f 0 ξ1ð Þ ¼ 0.

Since f(x) is continuous on [�1,1] and f �1ð Þ ¼ f 1ð Þ ¼ 0, then ∃ξ2 2 �1, 1ð Þ s.t.
f
0
ξ2ð Þ ¼ 0. The zeroes of the derivative of f are found

f
0
xð Þ ¼ 3x2 þ 6x� 1 ¼ 0

ξ1,2 ¼
�3� 2

ffiffiffi
3

p

3

where �3 < ξ1 < �1 and �1 < ξ2 < 1.

Problem 11 The function f xð Þ ¼ 1�
ffiffiffiffiffi
x23

p
has zeroes at x¼�1 and x¼ 1.

However, f
0
xð Þ 6¼ 0 8x 2 �1, 1ð Þ. Explain what seems to be a contradiction

with Rolle’s Theorem.

Solution Given that f xð Þ ¼ 1�
ffiffiffiffiffi
x23

p
, then f

0
xð Þ ¼ �2

3
ffiffi
x3

p . However, f 0(x) is

undefined on (�1,1), i.e., at x¼ 0. Therefore, there is no contradiction. Rolle’s

Theorem does not apply because f is not differentiable at zero, so it does not meet

the condition of being differentiable on the entire open interval (�1,1).

The importance of Lagrange’s Theorem also cannot be overlooked: this theorem

is very important in the study of functions’ properties and their graphs. Many of you

remember from calculus that if on a given closed interval the sign of the first

1When written as part of a mathematical predicate, “there exists” is often abbreviated as, ∃ and

“for all” is written as 8. Likewise, we will often abbreviate “such that” as “s.t.”. The purpose of

these abbreviations is to make the mathematical ideas structurally compact as we extend these

concepts out to become building blocks for more complicated mental structures.
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derivative of a function is positive, then the function is increasing on this interval,

and if the sign of the derivative is negative on some closed interval then the function

is decreasing on that interval. Obviously the function must be defined on the

corresponding closed intervals. The proof of this fact can be done with the use of

Lagrange’s Theorem as follows. Assume that the function f(x) is defined on [a,b]
and has a positive derivative at each point of this interval, other than possibly at the

ends of the interval; then the function is increasing on [a,b].
More precisely, consider two values of the independent variable, a2 > a1, a1,

a2 2 a; b½ � ; then for an increasing function, the following must be true:

f a2ð Þ > f a1ð Þ:
Thus, it follows from Lagrange’s Theorem that

f a2ð Þ � f a2ð Þ ¼ f
0
cð Þ a2 � a1ð Þ

where c is an internal point of the interval, c 2 a1; a2½ �; hence c is also an internal

point of the interval [a,b]. If the derivative is positive, then the right-hand side of the
equation above is positive and our statement is proven.

As a real-life application of Lagrange’s Theorem, I can tell you a story about a

speeding ticket. Suppose that you travel from home to school and usually accelerate

from time to time because you do not want to be late for class. Unfortunately, you

get a ticket this time; a policeman stopped you and the ticket states that you were

going 5 mi over the speed limit. You are not happy because you really slowed down

when you saw a police car . . . to 50 mi/h, within the speed limit of 60 mi/h.

Lagrange’s Theorem can explain why it is useless to argue with any policeman

on the subject of speeding. Imagine your travel distance as a function of time, so

that for any selected time, the instantaneous velocity (speed) is the value of the

slope of the tangent line at that point. If you do not change your speed, then the

distance curve is a piece of a straight line and the average speed equals your actual

speed. If your speed is changing over time, for example, as a curve similar to one

shown in Figure 1.4, then at each point a velocity is different. If you mentally

connect the end points (at x¼ 3 and x¼ 10) then the slope of the secant line
ffiffi
7

p
7
is the

average speed. You can notice that a tangent line near the starting point of the curve

will have a large value for the slope (your “speed” is higher there than the average),

and at the points close to the end of the given interval, the slope is smaller than the

“average” (you started to slow down). You also can see that there is a point on the

curve at which the slope of the tangent line equals to the slope of the secant line.

The policeman calculated your average speed between point A and point B of the

actual road by dividing the total distance between the two points by the total

traveling time and obtained 65 mi/h, that is, 5 mi more than the speed limit, 60.

If your average speed on segment AB was 65, then by Lagrange’s Theorem, there

was at least one moment of time t at which your instantaneous velocity was 65 mi/h,

and even though at the last moment you slowed down to 50 mi/h, it is fair to give

you a speeding ticket . . ..
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1.4 Even and Odd Functions

In order to solve nonstandard problems we need to recognize functions with special

properties. Let us consider the following problem:

Find all solutions of the equation: x6 þ 2x4 þ 3x2 ¼ 6.

Properties of polynomial functions and different methods of solving them are

well explained in Chapter 2. However, by guessing and checking we can see that

x¼ 1 is the solution. Because on the left we have only even powers of x then if x¼ a
is the solution to this equation then�a is also a solution. You can check that x¼�1

is also a solution. There are many functions with similar properties such as

f xð Þ ¼ x6 þ 2x4 þ 3x2. They are called even functions. The function f(x) is an

even function if for any x 2 D fð Þ, f �xð Þ ¼ f xð Þ. What can we additionally say

about all even functions?

1. a 2 D fð Þ ) �a 2 D fð Þ where the symbol “)” means “implies.”

2. The graph of an even function is symmetric with respect to the y-axis.

For example, f xð Þ ¼ 5
2þ3x2 is an even function, as is f xð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

4� xj jp
. If you ever

doubt if a function is even or not, then evaluate f(�x) and compare it with f(x); they
must be the same.

The next class of special functions is odd functions. The function f(x) is an odd

function if for any x 2 D fð Þ, f(�x)¼�f(x). What can we additionally say about all

odd functions?

1. a 2 D fð Þ ) �a 2 D fð Þ:
2. The graph of odd function is symmetric with respect to the origin; that is, it has

central symmetry.

3. The graph of any odd polynomial function must go through the origin. This is

because if both a and �a must belong to the domain, then so must zero.

When a function is odd, sometimes it is not that obvious, so make sure that you

do check that f(�x)¼�f(x) holds. Otherwise, the function is not odd. Let us

consider a function f xð Þ ¼ 1
x�2

þ 1
xþ2

that was mentioned in the previous section,

and let us demonstrate that it is odd:

f �xð Þ ¼ 1

�x� 2
þ 1

�xþ 2
¼ � 1

xþ 2
� 1

x� 2
¼ � 1

x� 2
þ 1

xþ 2

� �
¼ � f xð Þ

We can also see that its graph is symmetric to the origin (Figure 1.3).

Next, here is a problem for you to try.
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Problem 12 It is known that the function f(x) is an odd function defined on

the entire real number line and that x¼ 4 is the only positive root of the

equation f(x)¼ 0. Find other roots of the equation.

Solution If a function is odd, then f(�x)¼�f(x) and then f(�4)¼�f(4). However,
f 4ð Þ ¼ 0 ) f �4ð Þ ¼ 0. Moreover, each odd function defined on the entire real

number line passes the origin. Therefore there are three real zeroes: �4, 0, and 4.

Answer �4, 0, and 4.

Remark Can you give an example of such an odd function? Yes, we can. Assum-

ing that the function is a polynomial of the minimal degree, then, for example, it can

be f xð Þ ¼ a x� 4ð Þ xþ 4ð Þx ¼ ax3 � 16ax.
In general, a polynomial function that satisfies the problem’s condition can be

written as g xð Þ ¼ a x� 4ð Þ xþ 4ð Þxn where a 2 R and n ¼ 2k � 1, k 2 N, i.e., the
natural numbers. Please check this yourself by evaluating g(�x).

1.5 Periodic Functions

Function y¼ f(x) is called a periodic function if there exists a number T> 0 that is

called the period of the function, such that for all x 2 D fð Þ the following is true:

xþ T 2 D fð Þ, x� T 2 D fð Þ and f x� Tð Þ ¼ f xð Þ ¼ f xþ Tð Þ.
Note that a periodic function is necessarily cyclic on its domain, which can be

either infinite or finite. Thus all trigonometric functions are periodic. For example,

sin xþ 2πnð Þ ¼ sin x, n 2 Z. Yes, the simple sine function has infinitely many

periods—all multiples of 2π so that the minimal period of the sine function is 2π.
This can be proven by contradiction.

Assume that there exists a positive number l < 2π, such that

sin xþ lð Þ ¼ sin x, 8x 2 R. Then at x ¼ 0, sin xþ lð Þ ¼ 0 so sin lð Þ ¼ 0. The

number l must be a zero of the function sin x. There is only one zero of the sine

function on the interval (0, 2π), i.e., π. However, sin xþ πð Þ 6¼ sin x, e.g., if x ¼ π
2
,

then sin π
2

� 	 ¼ 1, but sin π
2
þ π

� 	 ¼ �1, which contradicts the presumption, so π is

not a period of the sine function.

You can read more about trigonometric functions in Chapter 3 of the book.

Many functions are not periodic, such as polynomial functions or exponential

functions. However, there exist functions that are not trigonometric but also

periodic. For example, consider the floor function bxc which is defined as the

greatest integer not exceeding x. For example, �3:4b c ¼ �4, �4:1b c ¼ �5,

�4b c ¼ �4, and 3:4b c ¼ 3. Consider a function y ¼ f xð Þ ¼ xf g. By this notation,

we will represent a fractional part of number x that is the difference between the

number x and its floor bxc. Thus, xf g ¼ x� xb c.
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Next, we can look at some values of this function, 3f g ¼ 3� 3b c ¼ 0;
3:1f g ¼ 3:1� 3:1b c ¼ 0:1; �3:4f g ¼ �3:4� �3:4b c ¼ �3:4þ 4 ¼ 0:6. It fol-

lows from the definition of y ¼ f xð Þ ¼ xf g that its domain is all real numbers

and that its range is y 2 0; 1½ Þ. This function is greater than or equal to zero and

also defined by Graham et al. in his book “Concrete Mathematics: A Foundation

for Computer Science.”

The period of this function is any natural number T ¼ n, n 2 N.

Proof xþ nf g ¼ xþ nð Þ � xþ nb c ¼ xþ n� xb c � n ¼ x� xb c ¼ xf g. The

minimal period for this function is T ¼ 1. This function y ¼ f xð Þ ¼ xf g is

frequently known as the sawtooth function because of its look (see Figure 1.11).

In general we can create a sawtooth function with period T ¼ a, where b is a

parameter and y xð Þ ¼ b x
a � 1

2
þ x

a


 �� 	
. Both functions are shown below (the latter

function is shown in Figure 1.12 by the dashed line for b ¼ 1, a ¼ 3).

Another periodic function with period one y ¼ g xð Þ ¼ x� round xð Þ is sketched
in Figure 1.13.

Let us list the basic properties of periodic functions.

Property 1 If the function f(x) is periodic with period T, then function f(kx)

is also periodic with period T1 ¼ T
k.

-1

0-1-2-3-4 1

1

2
x
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x– floor(x) – Sawtooth _ Periodic

3 4

Figure 1.11 Sawtooth function
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Example Function cos x has period, T ¼ 2π. Similarly, the function cos 3x has

period T1 ¼ 2π
3
.

Property 2 If a function is the sum or the product of two periodic functions

of the same period T, then this function is also periodic with period T.
However this number T may not be its minimal period.

-1

-0.5

0

0.5

y

x

1

1.5

2 4 6-2-4-6

Sawtooth _ Periodic

Figure 1.12 Sawtooth functions with periods T ¼ 1 and T ¼ 3

f(x) = x-round(x)
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Figure 1.13 Periodic function
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Example Both functions cos x and sin x are periodic functions with periods

T ¼ 2π. Their product, the function f xð Þ ¼ cos x sin x, is also periodic but its

minimal period is T ¼ π.

Property 3 If a function is the sum of periodic functions with different

periods, then the function is not necessarily a periodic function.

Problem 13 Find the minimal period of f xð Þ ¼ cos xþ cos 3x.

Solution Because 2π is the period for both functions of the sum then 2π is the

period of the function. Let us show that 2π is also the minimal period. In order to

prove this it is enough to prove that 2π is the distance between two neighboring

maximums of the functions. If both cosine terms equal one, the function will obtain

a maximum at that x value. To determine if this occurs, we attempt to solve the

system:

cos x ¼ 1

cos 3x ¼ 1

(
,

x ¼ 2πn, n 2 Z

x ¼ 2πm

3
,m 2 Z

8<
: ) x ¼ 2πn, n 2 Z:

So the distance between two neighboring maxima is 2π.

Answer The minimal period is 2π.

Problem 14 Let f(x) be a periodic function with periodT ¼ 1
3
. Evaluate f(1) if

f 2 2ð Þ � 5 f 0ð Þ þ 21
4
¼ 0 and 4 f 2 �1ð Þ � 4 f 10

3

� 	 ¼ 35.

Solution This is an unusual problem and in order to solve it we need to apply

the properties of periodic functions. Since f(x) is periodic, f xð Þ ¼ f xþ nTð Þ, where
n 2 N and T ¼ 1

3
. Replacing n by 1, +1, �1, +2, �2, +3, �3, +4, �4, etc. we obtain

f 1ð Þ ¼ f 1þ 1

3

� �
¼ f 1þ 2

3

� �
¼ f 1þ 3

3

� �
¼ f 2ð Þ ¼ f 1þ 7

3

� �
¼ f

10

3

� �

¼ f 1� 3

3

� �
¼ f 0ð Þ ¼ f 1� 6

3

� �
¼ f �1ð Þ

1.5 Periodic Functions 23



From which we can see that f 1ð Þ ¼ f 2ð Þ ¼ f 0ð Þ ¼ f �1ð Þ ¼ f 10
3

� 	
. Next, our

equations can be written as a system for unknown f(1):

f 2 1ð Þ � 5 f 1ð Þ þ 21

4
¼ 0

4 f 2 1ð Þ � 4 f 1ð Þ ¼ 35

8<
: , �4 f 2 1ð Þ þ 20 f 1ð Þ � 21 ¼ 0

4 f 2 1ð Þ � 4 f 1ð Þ ¼ 35

(
)

16 f 1ð Þ ¼ 56 ) f 1ð Þ ¼ 7

2

We can check that this value also satisfies the second equation of the system.

Answer f 1ð Þ ¼ 7
2
.

Remark To solve this problem we did not need to know the function itself but we

were able to find its value at x ¼ 1.

Problem 15 The function f(x) is defined for all real numbers. It is an odd

periodic function with period, T ¼ 4, and it is defined by the formula f xð Þ
¼ 1� x� 1j j on x 2 0; 2½ �. Solve 2 f xð Þ � f x� 8ð Þ þ 5 f xþ 12ð Þ þ 2 ¼ 0.

Solution Because the function has period of four, it is suitable to consider

this function on any segment of length four, e.g., �2, 2½ �. Because our function is

odd and we already know its behavior on [0, 2], we can extend it onto �2, 0½ Þ by
f �xð Þ ¼ � f xð Þ equivalently, so f xð Þ ¼ � f �xð Þ ¼ � 1� �x� 1j jð Þ ¼ �1þ xþ 1j j,
x 2 �2, 0½ � where there is equality at x ¼ 0 for the system of equations:

f xð Þ ¼ �1þ xþ 1j j, x 2 �2, 0½ �
1� x� 1j j, x 2 0; 2½ �

(
:

Together with the periodic condition, f xð Þ ¼ f xþ 4nð Þwhere n 2 Z it immediately

follows that f xð Þ ¼ f xþ 12ð Þ ¼ f x� 8ð Þ. Then the equation that we need to solve
will be written as 2 f xð Þ2 þ 5 f xð Þ þ 2 ¼ 0.

This quadratic equation has the solutions:

f xð Þ ¼ �2

f xð Þ ¼ �1

2

Case 1 x 2 �2, 0½ �

�1þ xþ 1j j ¼ �2

�1þ xþ 1j j ¼ �1

2

,
xþ 1j j ¼ �1

xþ 1j j ¼ 1

2

2
4

2
4 )

x ¼ �1

2

x ¼ �3

2

2
664
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Case 2 x 2 0; 2½ �

1� x� 1j j ¼ �2

1þ x� 1j j ¼ �1

2

,
x� 1j j ¼ 3

x� 1j j ¼ 3

2

""
)

x 2 �2, 4f g
x 2 �1

2
,
5

2

� �2
4

We can see that only Case 1 gives us solutions satisfying the restricted segment. We

rewrite them in terms of the periodicity of the function

x ¼ �1
2
þ 4n, x ¼ �3

2
þ 4m where n,m 2 Z.

Answer x ¼ �1
2
þ 4n, x ¼ �3

2
þ 4m where n,m 2 Z.

Problem 16 The function f xð Þ ¼ xf g ¼ x� xb c is defined for all real

numbers. Solve the equation xþ 1ð Þ3
n o

¼ x3.

Solution It follows from the definition of the fractional function that

0 � x3 < 1 ) 0 � x < 1:

Expanding the left side of the equation, we can rewrite it as

x3 þ 3x2 þ 3xþ 1

 � ¼ x3 or as zþ Tf g ¼ zf g, z ¼ x3.

Because 0 � z ¼ x3 < 1 then the given equation will be true if and only if

p xð Þ ¼ 3x2 þ 3x ¼ n, n 2 Zþ n ¼ 0, 1, 2, 3, . . .ð Þ.
Note that p(x) is increasing since x is increasing on [0, 1). Thus p 0ð Þ ¼ 0 and

p 1ð Þ ¼ 6.

Then n can take any values between 0 and 6, excluding 6:

3x2 þ 3x� n ¼ 0

x ¼ �3� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 12n

p

6
, n ¼ 0, 1, 2, 3, 4, 5:

1.6 Summary of Useful Properties and Their Applications

It is useful to remember the following:

Property 4
aþ 1

a
� 2 if a > 0

aþ 1

a
� �2 if a < 0

Let us prove Property 4 for a > 0. Using the inequality between the arithmetic

and geometric means, i.e., aþb
2

� ffiffiffiffiffi
ab

p
, we have aþ 1

a � 2
ffiffiffiffiffiffiffiffi
a � 1a

q
¼ 2.
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Now we will prove the second part of this statement. If a < 0, then we can

rewrite the left side as aþ 1
a ¼ � �aþ 1

�a

� 	
and apply the now familiar formula to

the expression within parentheses. For all x < 0, �x� 1
x � 2 so that xþ 1

x � �2.

Problem 17 Solve 21� xj j ¼ 1þ x2 þ 1
1þx2.

Solution You can notice that the left side of the equation is always positive and

decreasing for any x. It is less than or equal to two for any real x. The expression on
the right-hand side is positive as well and its lower bound can be estimated as

1þ x2 þ 1

1þ x2
� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2ð Þ 1

1þ x2

r
¼ 2

where we used the inequality between the geometric and arithmetic means. The

solution exists only when the left-hand side equals two. Thus x ¼ 0.

Answer x ¼ 0.

Property 5 sin xj j � 1 and cos xj j � 1, x 2 R:

Let us apply this property for the following problem.

Problem 18 Solve cos 7=5xþ sin 5=3x ¼ ffiffiffi
2

p
.

Solution Since the right side of the given equation is positive, we should consider

only such situations when both cos x > 0 and sin x > 0. Then cos 7=5x < cos x and

sin 5=3x < sin x. Adding the left and the right sides of two inequalities, we obtain

that cos 7=5xþ sin 5=3x < cos xþ sin x ¼ ffiffiffi
2

p
sin xþ π

4

� 	 � ffiffiffi
2

p
. The left side is

always less than the right side, so the equation has no solutions.

Answer No solutions.

Remark In the problem above we used the Method of the Auxiliary Argument

that allows the user to rewrite cos xþ sin x as
ffiffiffi
2

p
sin xþ π

4

� 	
. You can read more

about how to employ this method in Chapter 3.

Property 6 A quadratic function with a 6¼ 0, f xð Þ ¼ ax2 þ bxþ c has a

lower bound at f � b
2a

� 	
if a > 0 and an upper bound at f � b

2a

� 	
if a < 0.
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Let us illustrate this statement with an example. After completing the square, the

function f xð Þ ¼ x2 � 4xþ 9 can be rewritten as f xð Þ ¼ x� 2ð Þ2 þ 5. We can see

that f 2ð Þ ¼ 5 is minimum of f(x). For any other value of x, f xð Þ > 5.

From the properties of quadratic functions we know that the value x ¼ � b
2a is the

x coordinate of the vertex of a parabola. If the leading coefficient is positive, a > 0,

the parabola opens upward, and the quadratic function has a minimum at its vertex,

and it will be the lower bound. On the other hand, if a < 0, then the parabola opens

downward, the quadratic function has a maximum at its vertex, and it will be the

upper bound.

Property 7 If f xð Þ � 0 and g xð Þ � 0, then

f xð Þ þ g xð Þ ¼ 0 , if and only ifð Þ f xð Þ ¼ 0

g xð Þ ¼ 0:

�

The problem below shows how this property can be applied.

Problem 19 Solve the equation: sin 2 π xð Þ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 3xþ 2

p ¼ 0.

Solution Notice that the left side of the equation is the sum of two nonnegative

functions, but the right side equals 0. This can happen if and only if sin 2 π xð Þ ¼ 0

and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 3xþ 2

p ¼ 0 simultaneously. The first equation yields

πx ¼ πn
x ¼ n, n ¼ 0, � 1, � 2, � 3, ::

The second gives us two roots, x ¼ �1 and x ¼ �2.

By finding the intersection of the first and the second solutions, we obtain the

answer x¼�1 and x¼�2.

Answer x¼�1 and x¼�2.

Property 8 If f xð Þ � a, but g xð Þ � a, then

f xð Þ ¼ g xð Þ , f xð Þ ¼ a

g xð Þ ¼ a:

(

The following problem will help you to understand this rule.

Problem 20 Solve the equation 1þ x2 ¼ cos 3x.
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Solution By Property 6 above, the left side of the equation is greater than or equal

to 1, while the right side (cos3x) by Property 5 is less than or equal to 1. This fits

property 8, and therefore yields the system:

1þ x2 ¼ 1

cos 3x ¼ 1

(
, x ¼ 0

3x ¼ 2πn

(
,

x ¼ 0

x ¼ 2π

3
� n, n ¼ 0, � 1, � 2, . . .

8<
: , x ¼ 0

Answer x ¼ 0.

Property 9 f xð Þj j � a, but g xð Þj j � b for a > 0, b > 0 and f(x) and g(x)

have the same sign, then f xð Þ � g xð Þ ¼ ab , f xð Þj j ¼ a
g xð Þj j ¼ b

�
.

Let us show how Property 9 can be used.

Problem 21 Does the equation x� 2ð Þ2 þ 4
h i

� xþ 1
x

� � ¼ 8 have any real

solutions?

Solution Instead of trying to simplify the equation, we will look closely at the

functions within the brackets. Notice that x� 2ð Þ2 þ 4
h i

� 4, and xþ 1
x

� � � 2. On

the other hand, 8 ¼ 4 � 2.
By Property 9 the given equation can have solutions if and only if

x� 2ð Þ2 þ 4 ¼ 4

xþ 1

x
¼ 2

8<
: , x ¼ 2

x ¼ 1

�

This system has no solutions! Our two functions cannot approach their lower

bounds 4 and 2, respectively, at the same value of x.

Answer There are no solutions.

Remark Of course, any equation of the form x� 2ð Þ2 þ 4
h i

� xþ 1
x

� � ¼ a, where

a< 8 will have no solutions.

Let us change the previous problem just a little bit and look what will happen if

a > 8.

Problem 22 Find all real solutions of the equation

x� 2ð Þ2 þ 4
h i

� xþ 1
x

� � ¼ 10.
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Solution Though the left side stays the same, the right side, 10, is greater than the

product of lower bounds of two functions (8), so Property 9 cannot be applied.

However, the given equation can be written as

x2 � 4xþ 8ð Þ x2 þ 1ð Þ ¼ 10x, x 6¼ 0

x4 � 4x3 þ 9x2 � 14xþ 8 ¼ 0

This polynomial equation has two real solutions x¼ 1 and x¼ 2.

Answer x¼ 1 and x¼ 2.

Note: Read more about polynomial equations in Chapter 2 of the book.

Problem 23 Can you change the previous equation so that it will fit

Property 9? Solve that equation.

Solution Yes, we can. For example, the equation x� 1ð Þ2 þ 4
h i

� xþ 1
x

� � ¼ 8

perfectly fits Property 9 because the functions approach their lower bounds at the

same x¼ 1:

x� 1ð Þ2 þ 4 ¼ 4

xþ 1

x
¼ 2

8<
: , x ¼ 1

x ¼ 1

�

Answer x¼ 1.

Property 10 If f xð Þj j � a, and g xð Þj j � b, a > 0, b > 0 and f(x) and g(x)

have the same sign, then
f xð Þ
g xð Þ ¼ a

b , f xð Þj j ¼ a
g xð Þj j ¼ b

�
.

Problem 24 Solve the equation x2�2xþ5

sin πx
2ð Þ ¼ 4:

Solution Let us complete the square in the numerator of the fraction and obtain

x� 1ð Þ2 þ 4

sin πx
2

� 	 ¼ 4:

Now by Property 10 we have

x� 1ð Þ2 þ 4 � 4

sin
πx

2

� ���� ��� � 1

8<
: )

x� 1ð Þ2 þ 4 ¼ 4

sin
πx

2

� �
¼ 1

8<
: ,

x ¼ 1
πx

2
¼ π

2
þ 2πn

(
, x ¼ 1:

Answer x¼ 1.
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Next, in the problems below, you have to try to recognize a pattern and apply an

appropriate rule.

Problem 25 Solve the equation 2 1þ sin 2 x� 1ð Þð Þ ¼ 22x�x2

Solution This is an example of a transcendental equation. Using the boundedness

of the functions we can solve it in two steps.

Step 1: Consider the given equation as g xð Þ ¼ f xð Þ. We are looking for common

points of the left and right sides.

Next, g xð Þ ¼ 2 1þ sin 2 x� 1ð Þð Þ is continuous for all real x and has the lower
bound g xð Þ ¼ 2 and the upper bound g xð Þ ¼ 4 because 0 � sin 2 x� 1ð Þ � 1, so

2 � g xð Þ � 4.

On the other hand, f xð Þ ¼ 22x�x2 is bounded above (has the upper bound)

because 2x� x2 ¼ � x� 1ð Þ2 þ 1 has its maximum at x ¼ 1, and then

0 < f xð Þ � 2.

Step 2: Putting the equation and the two inequalities together, we can solve the

following system:

2 � g xð Þ � 4

0 < f xð Þ � 2

g xð Þ ¼ f xð Þ

8><
>:

Therefore the system has a solution if and only ifg xð Þ ¼ f xð Þ ¼ 2. This occurs at

x ¼ 1.

Answer x ¼ 1.

I hope you developed a “taste” for such problems and can recognize them now.

So I offer you the following problem.

Problem 26 Solve the equation log0:5 tan πxþ cot πxð Þ ¼ 8 2x2 þ 3xþ 1ð Þ.

Solution A transcendental equation again? Well, it can be written as

g xð Þ ¼ f xð Þ

The argument of the logarithmic function is the bounded function can be analyzed

using the inequality between the geometric and arithmetic means:
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tan πxþ cot πx � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan πx � cot πxp ¼ 2

Because log0.5u is decreasing over the entire domain for all u > 0, it will decrease

for u ¼ tan πxþ cot πx and g xð Þ ¼ log0:5 tan πxþ cot πxð Þ � log0:52 ¼ �1. We

obtained that g xð Þ � �1. On the other hand, by completing the square on the right-

hand side of the given equation, we have

8 2x2 þ 3xþ 1ð Þ ¼ 8 2 x2 þ 2 � 3
4
xþ 9

16

� �
� 1

8

� �
f xð Þ ¼ 16 xþ 3

4

� 	2 � 1

We can see that f(x) has the minimum value �1 or the lower bound at x¼�3/4

(Property 6). Thus f xð Þ � �1.

These can also be combined into the system:

g xð Þ � �1

f xð Þ � �1

g xð Þ ¼ f xð Þ

8><
>:

This system has a solution iff (if and only if) g xð Þ ¼ f xð Þ ¼ �1 and

x ¼ �3=4 ¼ �0:75.

Answer x ¼ �0:75.

Problem 27 Does the equation2 sin 2x þ 2cos 2x ¼ 1:5 tan xþ cot xð Þhave any
solutions?

Solution Let us rewrite the equation in the form f xð Þ ¼ g xð Þ. Applying

the formula aþ b � 2
ffiffiffiffiffi
ab

p
to the left and right sides of the equation and replacing

cos 2x ¼ 1� sin 2x in the exponent, we obtain the lower bounds for both sides of

the equation

f xð Þ ¼ 2sin 2x þ 2cos 2x ¼ 2 sin 2x þ 2

2sin 2x
� 2

ffiffiffi
2

p

g xð Þ ¼ 1:5 tan xþ cot xð Þ � 3

On the other hand, f(x) has an upper bound as well. Since 0 � sin 2x � 1, then

f xð Þ � 3. We can unite these into the system:

2
ffiffiffi
2

p � f xð Þ � 3

g xð Þ � 3

f xð Þ ¼ g xð Þ

8<
: , g xð Þ ¼ f xð Þ ¼ 3
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Are we getting closer? Can g(x) and f(x) approach the value of 3 simultaneously?

We should mention that f(x) approaches its upper bound, 3, when sin 2x ¼ 1 or

sin 2x ¼ 0. The latter conditions take place if x ¼ π
2
þ πn or x ¼ πk, n, k 2 Z,

respectively.

However, our function g(x) is undefined for all these values of x.

Answer This equation has no solutions.

Problem 28 Solve the equationffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3x2 þ 6xþ 7

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 x2 þ 2xþ 1ð Þ þ 9

p ¼ 4� 2x� x2.

Solution Noticing a trinomial square within the second radicand, let us complete

the squares under the first root and on the right-hand side. This yieldsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 xþ 1ð Þ2 þ 4

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 xþ 1ð Þ2 þ 9

q
¼ 5� xþ 1ð Þ2

� 2 þ � 3 ¼ � 5

Because xþ 1ð Þ2 � 0 then

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 xþ 1ð Þ2 þ 4

q
� ffiffiffi

4
p ¼ 2,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 xþ 1ð Þ2 þ 9

q
� ffiffiffi

9
p ¼ 3,

and 5� xþ 1ð Þ2 � 5. Thus, the left side is greater than or equal to 5 but the right

side is less than or equal to 5. Now, using property 5 we conclude that such an

equation has a solution only when both sides equal 5. This happens when xþ 1 ¼ 0

or x ¼ �1.

Answer x ¼ �1.

In order to solve the following and many other problems we need to recall

properties of exponential functions.

Property 11 Property of exponential functions:

Consider an exponential function f xð Þ ¼ ax. Depending on the values of the

base and the power, the following is true:

ab > 1 if a > 1 and b > 0

0 < ab < 1 if a > 1 and b < 0

Problem 29 Solve the inequality x2 þ 2xþ 2ð Þx � 1.
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Solution Completing the square on the left-hand side, we obtain

xþ 1ð Þ2 þ 1
� �x

� 1

a. If x ¼ �1, then 1�1 � 1 is true.

b. If x 6¼ �1, then xþ 1ð Þ2 þ 1 > 1 for any x > 0.

The function on the left can be written as ax, where a ¼ xþ 1ð Þ2 þ 1 > 1.

Therefore, ax is increasing over the entire domain. Moreover, ax > 1 if x > 0.

Combining both cases we get the answer below.

Answer x ¼ �1 or x > 0.

Problem 30 For what real values of p does the equation 4x þ 2xþ2 þ 7 ¼
p� 4�x � 2 � 21�x have a solution?

Solution Let us rewrite the equation in a different form by moving all terms except

p to the left-hand side and using the properties of exponents:

4x þ 4�x þ 4 � 2x þ 4 � 2�x þ 7 ¼ p

And then combining the first two and the next two terms

4x þ 4�xð Þ þ 4 � 2x þ 2�xð Þ þ 7 ¼ p:

Because ax > 0 and applying Property 4 to the expressions within parentheses, we

notice that the left side of this equation is greater than or equal to

2þ 4 � 2þ 7 ¼ 17.

Now we can conclude that because f xð Þ ¼ 4x þ 4�x þ 4 � 2x þ 4 � 2�x þ 7 � 17

then the equation f xð Þ ¼ p has solutions only if p � 17.

Answer The equation will have solutions for any values of p � 17 or p 2 17;1½ Þ.
Remark In Problem 30 we did not find the solution of the equation but just

described the values of the parameter p for which such a solution exists. Please

look in Section 2.4 for the complete solution to this problem (Problem 75).

Problem 31 Solve the inequality 2x þ 3 � 2�xð Þ2log2x�log2 xþ6ð Þ > 1.

Solution At first glance, this problem seems very difficult.

Applying the inequality between arithmetic and geometric mean (see Prop-

erty 1), for the base of the exponent on the left side of the inequality we obtain

that 2x þ 3 � 2�x � 2
ffiffiffiffiffiffi
2x�3
2x

q
¼ 2

ffiffiffi
3

p
> 1. On the right-hand side, we have 1.
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Because the base of the exponential function on the left 2x þ 3 � 2�xð Þ is greater
than 1, it is enough to require that the power 2log2x� log2 xþ 6ð Þð Þ be greater than
0, and the given inequality will be always true. Because logarithmic functions have

a restricted domains (x > 0 and xþ 6 > 0), we will also add a second inequality to

our system:

2log2x� log2 xþ 6ð Þ > 0

Domain : x > 0

(
, log2

x2

xþ 6

� �
> 0

x > 0

8><
>: ,

x2

xþ 6
> 1

x > 0

8<
:

We can solve the first inequality by moving 1 to the left side and then putting two

fractions over the common denominator:

x2 � x� 6

xþ 6
> 0

x > 0

8<
: ,

xþ 2ð Þ x� 3ð Þ
xþ 6ð Þ > 0

x > 0

8<
: , x > 3

x > 0

(
, x > 3

Remark In order to solve the first inequality, we put zeros of the numerator and

the denominator on the number line in increasing order, and then find the signs of

the function f xð Þ ¼ xþ2ð Þ x�3ð Þ
xþ6ð Þ on each interval, x<�6, �6 < x < �2,

�2 < x < 3, and x> 3.

We chose those intervals where f(x) is positive (�6 < x < �2 and x> 3). This

method is often called the Interval Method: The intersection of these intervals and

x> 0 is x > 3.

Answer x > 3.

Problem 32 Solve the equation sin 6xþ cos 20x ¼ 1þ cos 2x.

Solution Because a function at is decreasing over all real t if 0< a< 1, then sin 6

� sin 2x and cos 20x � cos 2x. Next, sin6xþ cos20x � sin2xþ cos2x ¼ 1. We have

determined that the left side of the equation is less than or equal to 1. On the other

hand, the right side of the equation is greater than or equal to 1: 1þ cos 2x � 1.

Next, by Property 8, in order to have solutions, both sides of the equation must be

equal to 1. The right-hand side equals 1 when cos x ¼ 0, x ¼ π
2
þ πn, n 2 Z. The

same values of x make the left side equal to 1. Here set Z is the set of all integers,

i.e., Z ¼ 0, � 1, � 2, � 3, . . ..

Answer x ¼ π
2
þ πn, n 2 Z.
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Problem 33 Solve the equation log2 3� sin xð Þ ¼ sin x.

Solution Because sin xj j � 1 for any real x, then 3� sin x � 2 8x 2 R, and
log2 3� sin xð Þ � log22 ¼ 1.

From this we can see that the left side is always greater or equal to 1. Simulta-

neously, the right side of the given equation is less than or equal to one. sin x � 1ð Þ
The equation will have solutions if and only if both sides are equal to 1. This yields

x ¼ π
2
þ 2πn, n 2 Z.

Answer x ¼ π
2
þ 2πn, n 2 Z:

Problem 34 Solve the equation sin 3xj j cot 2x ¼ 1

Solution To solve this equation we need to consider two cases:

a. If sin 3x 6¼ 0, then cot 2x ¼ 0

2x ¼ π
2
þ πn, and x ¼ π

4
þ π

2
� n, n ¼ 0, � 1, � 2, . . ..

b. If sin 3x ¼ �1, then

3x ¼ π
2
þ πk, and x ¼ π

6
þ π

3
� k, k ¼ 0, � 1, � 2, . . ..

Answer x ¼ π
4
þ π

2
� n, n ¼ 0, � 1, � 2, . . .

or x ¼ π
6
þ π

3
� k, k ¼ 0, � 1, � 2, . . ..

Remark See more about solving trigonometric equations in Chapter 3 of the book.

Problem 35 f(x) satisfies the equation x� 1ð Þ f xþ1
x�1

� 	� f xð Þ ¼ x, 8x 6¼ 1:

Find all such functions.

Solution If the given equation works for 8x 6¼ 1, then it will work for x ! xþ1
x�1

. We

have the following:

xþ 1

x� 1
� 1

� �
f

xþ 1

x� 1
þ 1

xþ 1

x� 1
� 1

0
B@

1
CA� f

xþ 1

x� 1

� �0
B@

1
CA ¼ xþ 1

x� 1
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Simplifying expressions inside the parentheses we obtain that

xþ 1� xþ 1

x� 1
� f xþ 1þ x� 1

xþ 1� xþ 1

� �
� f

xþ 1

x� 1

� �
¼ xþ 1

x� 1

2

x� 1
f xð Þ � f

xþ 1

x� 1

� �
¼ xþ 1

x� 1

Solving this equation together with the original equation, we can find the function

from the system:

2

x� 1
f xð Þ � f

xþ 1

x� 1

� �
¼ xþ 1

x� 1

x� 1ð Þ f xþ 1

x� 1

� �
� f xð Þ ¼ x

8>>><
>>>:

From the first equation, we obtain that f
xþ 1

x� 1

� �
¼ 2 f xð Þ

x� 1
� xþ 1

x� 1
.

Substituting this value into the second equation, we have

x� 1ð Þ 2 f xð Þ
x� 1

� xþ 1

x� 1

� �
� f xð Þ ¼ x, from which we finally have f xð Þ ¼ 1þ 2x:

Answer f xð Þ ¼ 1þ 2x.

1.7 Homework on Chapter 1

1. Prove that the function f xð Þ ¼ ffiffiffi
x

p
is increasing over its entire domain,

D fð Þ ¼ 0, þ1½ Þ.
Proof: Let x2 > x1, and x1,x2 2D fð Þð Þ, and consider the difference f x2ð Þ� f x1ð Þ
and transform it by multiplying the numerator and denominator by the positive

factor
ffiffiffiffiffi
x2

p þ ffiffiffiffiffi
x1

p� 	
:

f x2ð Þ � f x1ð Þ ¼ ffiffiffiffiffi
x2

p � ffiffiffiffiffi
x1

p ¼
ffiffiffiffiffi
x2

p þ ffiffiffiffiffi
x1

p� 	 ffiffiffiffiffi
x2

p � ffiffiffiffiffi
x1

p� 	ffiffiffiffiffi
x2

p þ ffiffiffiffiffi
x1

p� 	
¼ x2 � x1ffiffiffiffiffi

x2
p þ ffiffiffiffiffi

x1
p > 0 ) f x2ð Þ > f x1ð Þ

The proof is completed.

2. Is the function f xð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffi
xþ 1

p � ffiffiffiffiffiffiffiffiffiffiffi
x� 1

p
increasing or decreasing?

Answer: The function is decreasing on its domain: x � 1 because it can be

written as f xð Þ ¼ 2ffiffiffiffiffiffi
xþ1

p þ ffiffiffiffiffiffi
x�1

p that is always less than another monotonically

decreasing function g(x):
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f xð Þ ¼ 2ffiffiffiffiffiffiffiffiffiffiffi
xþ 1

p þ ffiffiffiffiffiffiffiffiffiffiffi
x� 1

p <
2

2
ffiffiffiffiffiffiffiffiffiffiffi
xþ 1

p ¼ g xð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
xþ 1

p

f xð Þ < g xð Þ

3. Prove for all nonnegative values a and b that the following inequality is true:

aþ 1ð Þ bþ 1ð Þ abþ 1ð Þ � 8ab.
Proof: Using the inequality between arithmetic and geometric means we have

the following correct inequalities:

aþ 1ð Þ � 2
ffiffiffi
a

p

bþ 1ð Þ � 2
ffiffiffi
b

p

abþ 1ð Þ � 2
ffiffiffiffiffi
ab

p

Multiplying positive left and right sides, we get the required inequality:

aþ 1ð Þ � bþ 1ð Þ � abþ 1ð Þ � 2
ffiffiffi
a

p � 2
ffiffiffi
b

p
� 2

ffiffiffiffiffi
ab

p
¼ 8ab:

4. How many times does the line y ¼ 12 intersect the graph of function f xð Þ
¼ ffiffiffiffiffiffiffiffiffiffiffi

xþ 3
p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

xþ 10
p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

xþ 19
p

? Find coordinates for all the points of

intersection.

Solution: Function f(x) is the sum of three monotonically increasing functions,

so it takes each y value only one time. Therefore, it can have only one

intersection with the line y ¼ 12 (see Figure 1.14). We can find that x ¼ 6 is

the solution of
ffiffiffiffiffiffiffiffiffiffiffi
xþ 3

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ 10

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ 19

p ¼ 12, so x ¼ 6 is the only

solution to this equation.

Answer: (6, 12).

5. It is known that the function f(x) is an odd function defined on the entire real

number line. It is also known that 0 2 D fð Þ and x ¼ 5, x ¼ �2 are zeros of the

function. Find other possible zeros of the function.

Hint: See Problem 12.

Answer: x 2 �5, � 2, 0, 2, 5f g.
6. If f xð Þ ¼ x8 þ px4 þ 1 and f 2ð Þ ¼ 305, find f �2ð Þ and the value of p.

Solution: The function is even, so f �2ð Þ ¼ f 2ð Þ ¼ 305. Next, with a ¼ 2

we get

f xð Þ ¼ x8 þ px4 þ 1

p ¼ f að Þ � 1� a8

a4
¼ 305� 1� 256

16
¼ 3

Answer: p ¼ 3, f �2ð Þ ¼ 305:
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7. Solve the equation
ffiffiffiffiffiffiffiffiffiffiffi
xþ 18

p þ ffiffiffiffiffiffiffiffiffiffiffi
x� 18

p ¼ ffiffiffi
28

p
Solution: Because the function on the left is monotonically increasing, this

equation can have only one solution.

Answer: x ¼ 1.

8. Solve the equation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ xþ x2

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2 � x

p ¼ 2.

Solution: Completing the square inside each root we obtainffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ 1

2

� �2

þ 3

4

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� 1

2

� �2

þ 3

4

s
¼ 2

Answer: x ¼ 0.

9. Prove that the sum of two increasing functions is increasing and the sum of two

decreasing functions is a decreasing function.

Proof: Let φ xð Þ ¼ f xð Þ þ g xð Þwhere D φð Þ ¼ D fð Þ \ D gð Þ and let both x1 and
x2 belong to the domain of the function φ(x) and also satisfy x2 > x1.

Consider the difference

φ x2ð Þ � φ x1ð Þ ¼ f x2ð Þ þ g x2ð Þ � f x1ð Þ þ g x1ð Þð Þ
¼ f x2ð Þ � f x1ð Þð Þ þ g x2ð Þ � g x1ð Þð Þ

0 2

5

10y

x

15

20

4 6 8 10-2

-5

-4-6-8

Figure 1.14 HW Problem 4 (Chapter 1)
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If both f(x) and g(x) are increasing functions, then f x2ð Þ > f x1ð Þ and

g x2ð Þ > g x1ð Þ. Hence f x2ð Þ � f x1ð Þ > 0 and g x2ð Þ � g x1ð Þ > 0. Therefore φ x2ð Þ
�φ x1ð Þ > 0 and φ(x) is an increasing function.

If both f(x) and g(x) are decreasing functions, then f x2ð Þ < f x1ð Þ and

g x2ð Þ < g x1ð Þ. Hence f x2ð Þ � f x1ð Þ < 0 and g x2ð Þ � g x1ð Þ < 0. Therefore

φ x2ð Þ � φ x1ð Þ < 0 and φ(x) is a decreasing function.

The proof is completed.

10. Give an example of a function that is continuous on �5, 5½ � and takes the value
of 5 exactly 5 times (see Figure 1.15).

Answer: f xð Þ ¼ xþ2ð Þ xþ1ð Þx x�1ð Þ x�2ð Þffiffiffiffiffiffiffiffiffi
36�x2

p þ 5.

11. Solve the equation
ffiffiffi
x

p þ x3 � 2
x ¼ 0.

Solution: Consider the function of the left-hand side f xð Þ ¼ ffiffiffi
x

p þ x3 � 2
x. It is

defined for all positive values of x. Also it consists of three monotonically

increasing functions,
ffiffiffi
x

p
, x3, and � 2

x. (The last one is increasing because it is

a reciprocal of the monotonically decreasing function y ¼ �x
2
.) Because any

monotonically increasing function has at most one zero and x ¼ 1 satisfies the

equation, then it is the only solution to the equation.

Answer: x ¼ 1.

0-2-4 2

x

y

2

4

4

6

8

10

Figure 1.15 Sketch for HW Problem 10 (Chapter 1)
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12. Prove that these functions are decreasing functions and find their domains:

a. f xð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffi
4� x

p
b. g xð Þ ¼ 1ffiffiffiffiffiffi

4þx
p

Proof:

a. Because the first function is the composition of an increasing, φ xð Þ ¼ ffiffiffi
x

p
,

and decreasing function, ψ xð Þ ¼ 4� x, then by Theorem 6 it is a decreasing

function.

b. By Theorem 7, the given function is a decreasing function as a reciprocal of

an increasing function, φ ¼ ffiffiffiffiffiffiffiffiffiffiffi
4þ x

p
.

13. Prove that the functions are increasing functions:

a. f xð Þ ¼ ffiffiffiffiffi
3x

p � 5ffiffiffiffi
3x

p

b. g xð Þ ¼ 5xþ3
3�x , x 2 3;1ð Þ

Hint:

a. Apply Theorems 2, 7, and 3. The first function is an increasing function as

the sum of two increasing functions.

b. Apply Theorem 4: g xð Þ ¼ 5xþ 3ð Þ � 1
3�x is an increasing function on the

interval x > 3 as a product of two positive increasing functions.

14. Prove Theorem 6 that if f(x) is a decreasing function and g(x) is an increasing

function, then their composition function h xð Þ ¼ f∘gð Þ xð Þ is a decreasing

function.

Hint: The proof is similar to that of Theorem 5.

Proof: If g(x) is increasing, then 8x2 > x1, and g x2ð Þ > g x1ð Þ. Next, because
f(x) is decreasing, then f g x1ð Þð Þ > f g x2ð Þð Þ. Hence h x1ð Þ > h x2ð Þ. Therefore
h xð Þ ¼ f∘gð Þ xð Þ ¼ f g xð Þð Þ is a decreasing function.

15. Solve the equation x2 þ xj j þ ffiffiffi
x

p þ 2x ¼ 111.

Solution: First, because of the square root, the solution must belong to x � 0

and the function f xð Þ ¼ x2 þ xj j þ ffiffiffi
x

p þ 2x� 111 is monotonically increasing.

Hence, the given equation will have only one solution. We can see that x ¼ 9

satisfies the equation.

Answer: x ¼ 9.

16. Find the type of monotonic behavior of the functions.

a. y ¼ 1
xþ3

� ffiffiffiffiffiffiffiffiffiffiffi
xþ 1

p

b. y ¼ 1ffiffiffiffiffiffi
xþ3

p þ 1ffiffiffiffiffiffi
x�3

p

Hint: Apply Theorem 3 and then Theorem 7.

Answer: Both functions are decreasing functions.
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17. Solve the system of equations:
ffiffiffiffiffiffiffiffiffiffiffi
x� y

p þ x� yð Þ3 ¼ 2

x2 � 6yþ 1 ¼ 0

�
Hint: Use properties of monotonic functions.

Solution: On the one hand, the quantity under the square root must be nonneg-

ative, so that x� y � 0 ) x � y: On the other hand, the function on the left-

hand side of the first equation of the system is increasing, so that x� y ¼ 1 is

the only solution to the first equation. Substituting x ¼ yþ 1 into the second

equation of the system and after simplification we obtain a quadratic equation

in y: y2 � 4yþ 2 ¼ 0: Selecting the only root that is less than 1, we obtain our

answer.

Answer: x; yð Þ ¼ 3� ffiffiffi
2

p
; 2� ffiffiffi

2
p� 	

.

18. Solve the equation x2 þ 2xþ ffiffiffiffiffiffiffiffiffiffiffi
xþ 1

p � 12
xþ1

¼ 14.

Solution: We can rewrite this equation as

x2 þ 2xþ 1þ ffiffiffiffiffiffiffiffiffiffiffi
xþ 1

p � 12

xþ 1
¼ 14þ 1

f xð Þ ¼ xþ 1ð Þ2 þ ffiffiffiffiffiffiffiffiffiffiffi
xþ 1

p � 12

xþ 1
¼ 15

f xð Þ ¼ 15

Because the function f(x) is increasing, then it takes each value only once. We

notice that f 3ð Þ ¼ 15, then x ¼ 3 is the only solution to this equation.

Answer: x ¼ 3.

19. Prove that if ψ(x) with the domain symmetric with respect to zero, then

a. f xð Þ ¼ ψ xð Þþψ �xð Þ
2

is an even function.

b. f xð Þ ¼ ψ xð Þ�ψ �xð Þ
2

is an odd function.

20. Using properties of monotonic functions solve x4þ5x�12
x ¼ 7.

Solution: Because x¼ 0 is not in the domain of the function on the left, then we

will divide the numerator by x obtaining x4þ5x�12
x ¼ x3 þ 5� 12

x ¼ 7 which is

equivalent to x3 � 12
x ¼ 2. The function on the left is the sum of two increasing

functions, so it will be monotonically increasing on the domain and it will take

each value once. Therefore x ¼ 2 is the only positive solution to this equation.

Answer: x ¼ 2.

21. Solve the equation
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x7 þ 1

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x5

p
¼ 3.

Solution: Let us find the interval for all possible values of x as restricted by the

domains of the square root functions.Weobtain xj j � 1. Then the following is true:

0 � ffiffiffiffiffiffiffiffiffiffiffiffiffi
x7 þ 1

p � ffiffiffi
2

p

0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x5

p
� ffiffiffi

2
p
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and the left side of the equation is bounded, f xð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
x7 þ 1

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x5

p

� 2
ffiffiffi
2

p ¼ ffiffiffi
8

p
. Because

ffiffiffi
8

p
<

ffiffiffi
9

p ¼ 3 (the right side of the equation), then

there are no solutions.

Answer: No solutions.

22. Solve the equation
ffiffiffiffiffiffiffiffiffiffiffi
4� x

p þ ffiffiffiffiffiffiffiffiffiffiffi
x� 2

p ¼ x2 � 6xþ 11.

Solution: After completing the square on the right-hand side we obtain

x� 3ð Þ2 þ 2 � 2, so the function on the right has the lower boundary of 2.

Let us show that the function on the left is less than or equal to 2:ffiffiffiffiffiffiffiffiffiffiffi
4� x

p þ ffiffiffiffiffiffiffiffiffiffiffi
x� 2

p ¼ f xð Þ > 0

4� xþ x� 2þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� xð Þ x� 2ð Þp ¼ f 2 xð Þ

2þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� xð Þ x� 2ð Þp ¼ f 2 xð Þ

f 2 xð Þ ¼ 2þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� x� 3ð Þ2 þ 1

q
� 4 ) f xð Þ � 2

f 3ð Þ ¼ 2

Answer: x ¼ 3.

23. Find the maximum and minimum of the function y ¼ 2x2

x4þ1
.

Hint: Divide the numerator and denominator by x2: y ¼ 2
x2þ 1

x2
. Because

x2 þ 1
x2 � 2 ) y � 1:

Answer: max 2x2

x4þ1

� �
¼ 1, min 2x2

x4þ1

� �
¼ 0.

24. Find the maximum and minimum of y ¼ x2þ1
x2þxþ1

.

Solution: The function can be rewritten as

y ¼ x2 þ xþ 1

x2 þ xþ 1
� x

x2 þ xþ 1
¼ 1� 1

xþ 1
x þ 1

:

Therefore, we need to consider two cases:

Case 1 If x > 0 ) xþ 1
x � 2 ) xþ 1

x þ 1 � 3 ) 1
xþ1

xþ1
� 1

3
, then y � 1�

1
3
¼ 2

3
, ymin ¼ 2

3
:

Case 2 If x < 0 ) xþ 1
x � �2 ) xþ 1

x þ 1 � �1 ) 1
xþ1

xþ1
� �1, then

y � 1� �1ð Þ ¼ 2 ) ymax ¼ 2:

Answer: ymin ¼ 2
3
; ymax ¼ 2:

25. Solve the equation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16� 8xþ x2

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x2 � 13x� 17

p
¼ x� 4.

Solution: Because the left side is nonnegative, then x� 4 � 0 ) x � 4. Com-

pleting the square under the first square root and using the inequality above, we

obtain
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16� 8xþ x2

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� xð Þ2

q
¼ 4� xj j ¼ x� 4: Now the equation will

be rewritten as
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x2 � 13x� 17

p
¼ 0

x � 4

�

Solving this we will obtain the answer x ¼ 4:25.

Answer: x ¼ 4:25.

26. Solve the equation 2 sin x ¼ yþ 1
y.

Solution: Using the boundedness of the left and right sides, there are two cases:

Case 1 y > 0:
sin x ¼ 1

y ¼ 1

�
, x ¼ π

2
þ 2πn; y ¼ 1.

Case 2 y < 0:
sin x ¼ �1

y ¼ �1

�
, x ¼ �π

2
þ 2πm; y ¼ �1:

Answer: �π
2
þ 2πn;�1

� 	
; π

2
þ 2πm; 1

� 	
.

27. Solve the equation x2 þ 4x � cos xyð Þ þ 4 ¼ 0.

Solution: If we consider this equation as quadratic in x, then for real solutions

its discriminant must be nonnegative: D
4
¼ 4 cos 2xy� 4 � 0. Because

cos xyj j � 1, then we will have real solutions if cos xyj j ¼ 1.

1.

cos xy ¼ 1

xy ¼ 2πn
x2 þ 4xþ 4 ¼ 0

8<
: ) x ¼ �2, y ¼ πn

2.
cos xy ¼ �1

xy ¼ πk

�
) x ¼ 2, y ¼ π

2
� k

Answer: �2, πnð Þ; 2; πk
2

� 	
, k, n 2 Z:

28. Solve the inequality tan 3x
�� ��þ cot 3x

�� �� � 2� x� π
4

� 	2
.

Solution: Because tan x ¼ 1
cot x, then tan 3x

�� ��þ cot 3x
�� �� � 2. On the other hand,

the right side is less than or equal to 2. Therefore, the solution occurs if both

sides are equal to 2.

Answer: x ¼ π
4
.

29. Solve the system
x5 þ y5 ¼ 1

x6 þ y6 ¼ 1

�
.

Solution: Consider the second equation of the system; it follows that it is

possible if xj j � 1, yj j � 1: From the first equation we obtain y5
�� �� ¼ 1� x5

�� ��
� 1 and thus we have two solutions.

Answer: (0, 1); (1, 0).

30. Solve the equation sin 2 πxð Þ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 3xþ 2

p ¼ 0.
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Solution: In order for this equation to have a solution, each term must be zero.

Thus

sin 2πx ¼ 0

x2 þ 3xþ 2 ¼ 0

(
) πx ¼ πn

xþ 1ð Þ xþ 2ð Þ ¼ 0

(
, x ¼ n, n 2 Z

x ¼ �1; x ¼ �2

(

Answer: x 2 �1, 2f g.
31. Solve the inequality

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 36

p
� xþ 4ð Þ < 0.

Solution: The product of two quantities is positive when both quantities are

positive or both are negative. The first factor is nonnegative, so we will have the

following system:

x2 � 36 > 0

xþ 4 > 0

(
) x� 6ð Þ xþ 6ð Þ > 0

x > �4

(
,

x < �6

x > �4

(

x > 6

x > �4

(
2
666664

Answer: x > 6.

32. Solve the inequality

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
76þ 55

1� cos x4

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 � 2�2x2 � 1

p
.

Solution: Using boundedness of the function y¼ cos x and monotonic behavior

of y ¼ ax, we know that 1� cos x � 0 ) 51� cos x � 50 ¼ 1 ) 55
1� cos x � 5

(bounded below), then

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
76þ 55

1� cos x4

q
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

76þ 54
p ¼ 3: On the other hand, the

expression under the square root on the right-hand side is bounded above and

�2x2 � 0 ) 2�2x2 � 1 ) 5 � 2�2x2 � 5

)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 � 2�2x2 þ 4

p
� 3

Therefore the two sides are equal if and only if x ¼ 0.

Answer: x ¼ 0.

33. Solve the inequality cos 2 xþ 1ð Þ � log 9� 2x� x2ð Þ � 1:

Solution: The left side of the inequality is a product of two functions,

f xð Þ ¼ cos 2 xþ 1ð Þ, g xð Þ ¼ log 9� 2x� x2ð Þ, and can be written as

f xð Þ � g xð Þ � 1. Because cosine is a bounded function, we know that

0 � cos 2 xþ 1ð Þ � 1. On the other hand, a logarithmic function with base

10 is a monotonically increasing function (for all x, such that 9� 2x� x2

> 0). Thus the following must be true:
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f xð Þ � 1

g xð Þ � 1

(
) cos 2 xþ 1ð Þ � 1

log 9� 2x� x2ð Þ � 1

(

9� 2x� x2 � 10 , xþ 1ð Þ2 � 0 , x ¼ �1:

Answer: x ¼ �1.

34. Solve the inequality 2cos x þ 2 sin x � 21�
ffiffi
2

p
2 :

Solution: Let us show that the left side is bounded below as

2cos x þ 2 sin x � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cos x � 2 sin x

p
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cos xþ sin x

p
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffi
2

p � sin xþπ
4ð Þp
¼ 21 � 2

ffiffi
2

p
2
sin xþ π

4

� 	
2cos x þ 2 sin x � 21þ

ffiffi
2

p
2
� sin xþ π

4

� 	
� 21þ

ffiffi
2

p
2 :

Because 21þ
ffiffi
2

p
2 > 21�

ffiffi
2

p
2 is always true, then the given inequality is true for all

real x.
You might want to learn about using an auxiliary argument in Chapter 3

before attempting this problem.

Answer: x 2 R:

35. Solve the inequality log0:5 1� xj j � logx�12 � 2.

Solution: First, we will find the domain of all functions:

x� 1 > 0

x� 1 6¼ 1

�
, x 2 1; 2ð Þ [ 2;1ð Þ.

Second, we will rewrite all logarithms with base 2:

logx�12 ¼ 1

log2 x� 1ð Þ

log2�1 1� xj j ¼ log2 1� xj j
log2

1
2

¼ �log2 1� xj j ¼ �log2 x� 1ð Þ

Now the inequality can be rewritten as

�log2 x� 1ð Þ � 1

log2 x� 1ð Þ � 2

Considering its left side and using Property 4, Section 1.6, we will have the

following two cases:

Case 1 If log2 x� 1ð Þ > 0 so that x > 2, then

log2 x� 1ð Þ þ 1

log2 x� 1ð Þ
� �

� 2

or
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� log2 x� 1ð Þ þ 1

log2 x� 1ð Þ
� �

� �2 � 2

The given inequality is true for all x > 2.

Case 2 If log2 x� 1ð Þ < 0, using the domain of the logarithmic function, this

is possible if x 2 1; 2ð Þ only and the following is true:

log2 x� 1ð Þ þ 1

log2 x� 1ð Þ � �2

� log2 x� 1ð Þ þ 1

log2 x� 1ð Þ
� �

� 2

Then from this case, we can include only such values of x that make the last

inequality an equality, i.e., log2 x� 1ð Þ ¼ �1. The solution of this equation is

x ¼ 1þ 1

2
¼ 3

2
:

Combining the two cases, we finally get the solution to this inequality as one

value (3/2) and an interval.

Answer: x > 3=2 and x > 2.

36. (Budak) Solve the inequality: x
2�1
x2þ1

þ x2 � 5xþ 6 < 0.

Hint: Show that the function on the left-hand side is always positive.

Solution: We can rewrite the left side as

h xð Þ ¼ f xð Þ þ g xð Þ, f xð Þ ¼ x2 � 1

x2 þ 1
, g xð Þ ¼ x2 � 5xþ 6:

Also it is convenient to rewrite the functions as follows:

f xð Þ ¼ x2 þ 1� 2

x2 þ 1
¼ 1� 2

x2 þ 1

g xð Þ ¼ x� 2ð Þ x� 3ð Þ ¼ x� 5

2

� �2

� 1

4

It helps us to see the boundedness of the functions and the intervals on which

the functions are negative, positive, or zero. Thus, f(x) is bounded and it has the
upper bound, �1. The sign of f(x) depends on the numerator, so

f xð Þ < 0, x 2 �1, 1ð Þ
f xð Þ > 0, x 2 �1, � 1ð Þ [ 1;1ð Þ
f xð Þ ¼ 0, x ¼ �1, x ¼ 1

:

Similarly, g(x) is also bounded and has the lower bound, �1=4. Also,
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g xð Þ < 0, x 2 2; 3ð Þ
g xð Þ > 0, x 2 �1, 2ð Þ [ 3;1ð Þ
g xð Þ ¼ 0, x ¼ 2, x ¼ 3

Combining the behavior of the two functions, the following is true:

1. If x 2 2; 3ð Þ, then

�1

4
� g xð Þ < 0

f xð Þ > 1� 2

22 þ 1
¼ 3

5

8><
>: ) h xð Þ ¼ f xð Þ þ g xð Þ > 3

5
� 1

4
¼ 7

20
> 0:

There is no solution on this interval.

2. If x 2 ��1, 1
� [ 1; 2½ � [ 3;1ð Þ; then f xð Þ � 0, g xð Þ � 0 ) h xð Þ � 0. No

solutions.

3. If x 2 �1, 1ð Þ ) �1 < f xð Þ < 0, g xð Þ > 2 ) h xð Þ > 1: No solution.

Therefore, the function on the left is always positive!

Answer: No solution.

37. Solve the equation ln3xþ 1
ln3x ¼ 2 sin 3xþ π

6

� 	
.

Solution: Because the following is true:

ln3xþ 1

ln3x

����
���� � 2

2 sin 3xþ π

6

� ���� ��� � 2

8><
>:

then applying Property 8, we can consider two cases:

Case 1
ln3xþ 1

ln3x
¼ 2

2 sin 3xþ π

6

� �
¼ 2

8><
>:

or

Case 2
ln3xþ 1

ln3x
¼ �2

2 sin 3xþ π

6

� �
¼ �2

8><
>:

Neither case has a solution.

Answer: No solutions.

38. Find all functions f(x) defined 8x 2 R and that 8x, y 2 R satisfies the inequality:

f xþ yð Þ þ sin xþ sin yj j < 2.
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Solution: If the given inequality is true for any real x and y, then we can check

two simple cases:

a. Let x ¼ π
2
, y ¼ π

2
then f πð Þ þ 2j j < 2 ) f πð Þ < 0:

b. Let x ¼ 3π
2
, y ¼ �π

2
then f πð Þ � 2j j < 2 ) f πð Þ > 0:

We obtain a contradiction.

Therefore, f(x) does not exist.

39. Solve the equation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� ffiffiffi

3
pp� �x

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ffiffiffi

3
pp� �x

¼ 4.

Hint: Use the fact that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� ffiffiffi

3
pp� �x

¼ 1ffiffiffiffiffiffiffiffiffi
2þ ffiffi

3
pp

� �x

¼ y, then the equation can

be written as yþ 1
y ¼ 4 and solved as the quadratic y2 � 4yþ 1 ¼ 0, so

y1,2 ¼ 2� ffiffiffi
3

p
.

Answer: x ¼ 2:

40. Function f(x) satisfies the following relationships for any real x and y:

f xþ yð Þ ¼ f xð Þ þ f yð Þ þ 80xy. Evaluate f 4
5

� 	
if f 1

4

� 	 ¼ 2.

Solution:

f
1

2

� �
¼ f

1

4
þ 1

4

� �
¼ 2þ 2þ 80

1

4

� �
1

4

� �
¼ 9

f 2xð Þ ¼ 2 f xð Þ þ 80x2

f 1ð Þ ¼ f
1

2
þ 1

2

� �
¼ 9þ 9þ 80

1

2

� �
1

2

� �
¼ 38

f 3xð Þ ¼ 3 f xð Þ þ 3 80ð Þx2
f 2ð Þ ¼ f 1þ 1ð Þ ¼ 38þ 38þ 80 1ð Þ 1ð Þ ¼ 156

f 4xð Þ ¼ 4 f xð Þ þ 6 � 80 � x2
f 4ð Þ ¼ f 2þ 2ð Þ ¼ 156þ 156þ 80 � 2 � 2 ¼ 682

f 5xð Þ ¼ 5 f xð Þ þ 10 � 80 � x2

Now,

f 5 � 4

5

� �� �
¼ 5 f

4

5

� �
þ 10 � 80 � 4

5

� �2

)

f 4ð Þ ¼ 5 � f 4

5

� �
þ 512 )

632 ¼ 5 � f 4

5

� �
þ 512

Solving for f 4
5

� 	 ¼ 632�512
5

¼ 24; we obtain the answer.

Answer: f 4
5

� 	 ¼ 24:
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Chapter 2

Polynomials

This chapter covers problems involving polynomials. You will learn or review very

important theorems, most with proofs, properties of polynomial functions starting

from quadratic functions and ending with polynomial functions of the nth order.

You will see the generalized form of the Vieta’s Theorem and its special cases for

quadratic, cubic, and quartic equations. Newton’s Binomial Theorem will be

introduced as will some well-known special products. In order to solve complex

problems, we will need to review simple methods of solving polynomial equations

of special types: then you will be ready to recognize when it might be helpful

to make a special substitution that would simplify the equation, or the methods

that can be used for an equation of a special type (for example, one that can be

applied to a recurrent polynomial equation). We will spend some time working

on the derivation of Cardano’s formula for a general cubic equation and even

demonstrate how Babylonians solved cubic equations of a special type. Though

many facts can be found now on the Internet and using other sources, we will

learn how to derive such formulas using the Vieta’s Theorem or the Fundamental

Theorem of Algebra, and also how to solve quartic equation by Ferrari or

Euler methods. An important part of this chapter is the many problems with a

parameter, and the variety of different approaches to solving such problems.

Additionally, there are many problems involving integer solutions. For example,

we know that a prime number in form 4mþ 1 can be written as the sum of two

squares, such as 22 þ 32 ¼ 13; 42 þ 52 ¼ 41. Can you prove that for any quadratic

equation x2 þ axþ 1 ¼ bwith natural roots, the expression a2 þ b2 is never a prime

number? This and many other interesting and challenging problems will be solved

in this chapter. Some topics will be familiar to you and some not. For example, we

will solve polynomial equations in real variable and will look mainly for real

solutions. However, we will demonstrate how sometimes it is convenient to eval-

uate a polynomial at an imaginary number in order to solve the equation in real

numbers! This technique can be applied to the problem mentioned above and many

others. Moreover, we will use Rolle’s and Lagrange’s Theorems and their
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applications by going one step beyond elementary mathematics content, in order to

get additional proofs for our statements, or in order to see how different fields of

mathematics are connected.

2.1 Introduction to Polynomial Equations: Important
Theorems

In general, a polynomial of nth degree in one variable x can be written as

pn xð Þ ¼ anx
n þ an�1x

n�1 þ . . .þ a3x
3 þ a2x

2 þ a1xþ a0, an 6¼ 0.

In this book, we consider only polynomials with real and most of the time with

integer coefficients.

Theorem 10 Two polynomials in x are equal if and only if they have the same
degree and equal coefficients for corresponding powers of x.

Theorem 11 If a product of two polynomials equals zero, then at least one of
the polynomials equals zero.

For example, if (x� 1)(x+ 3)¼ 0, then x¼ 1 or x¼�3.

Theorem 12 For any two polynomials P(x) and D xð Þ, D xð Þ 6¼ 0ð Þ there exists
a unique pair of polynomials q(x) and r(x) such that P xð Þ ¼ D xð Þq xð Þ þ r xð Þ.

This theorem can also be written in the following form:

P xð Þ
D xð Þ ¼ q xð Þ þ r xð Þ

D xð Þ :

From which we can see that the degree of the remainder polynomial r(x) must

be less than the degree of the divisor polynomial D(x). Thus if we divide a

polynomial of the third degree by a quadratic polynomial, then the remainder’s

degree must be less than 2. Therefore, the remainder polynomial will be either

linear or a constant.

In order to understand it, we can think of division with and without a remainder.

For example, 15 is divisible by 3(divisor) and can be written as 15 ¼ 3 � 5þ 0. 16 is

not divisible by 3 and when divided by 3 gives a remainder of 1. Thus 16 ¼ 3 � 5þ 1

or it can be written as
16

3
¼ 5þ 1

3
. Polynomials also can be divided with a remainder
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or without a remainder. For example, cubic polynomial P xð Þ ¼ x3 � 2x2 � x� 2

is divisible by D xð Þ ¼ x2 � 1 with the resulting quotient q xð Þ ¼ x� 2: so we can

write x3 � 2x2 � x� 2 ¼ x2 � 1ð Þ � x� 2ð Þ.
On the other hand, p xð Þ ¼ x3 � 2x2 � 2 is not divisible by D xð Þ ¼ x2 � 1, and

after long division can be written as x3 � 2x2 � 2 ¼ x2 � 1ð Þ � x� 2ð Þ þ x� 4½ �.
Therefore, x� 4½ � is the remainder. Division with a remainder can also be written in

the equivalent form as

x3 � 2x2 � 2

x2 � 1
¼ x� 2þ x� 4

x2 � 1
:

Theorem 13 (Bezout’s) The remainder from the division of polynomial P(x)
by the binomial (x�a) equals the value of the polynomial P(x) at x¼ a, i.e.,
r(a)¼P(a).

Proof Consider the equality Pn xð Þ ¼ x� að Þq xð Þ þ r xð Þ. Substituting a for x we

obtain Pn að Þ ¼ a� að Þq að Þ þ r að Þ ¼ r að Þ.
Therefore, we state the following.

Theorem 14 Polynomial P(x) is divisible by the binomial (x�a) if and only if
the value of the polynomial at x ¼ a equals zero, i.e., P(a)¼ 0.

We can also say that if x ¼ a is not zero of a polynomial, then P að Þ 6¼ 0.

This theorem helps us quickly create a polynomial of any desired degree with a

given zero. For example, let x ¼ 1 be a zero; then we can claim that the polynomial

7x4 � 5x3 � x2 þ 3x� 4 ¼ 0 has this root because simple arithmetic operation

gives us 7 � 14 � 5 � 13 � 12 þ 3 � 1� 4 ¼ 0. This simple trick can be used in a

classroom when a polynomial with certain zeroes must be created for demonstra-

tion. You can try any integer as a zero, but the simplest way is to always try x¼ 1.

Let us see how this property can be used for the following problem:

Problem 36 Let a, b, c be real numbers such that no pair of these numbers is

equal. Prove the expression a2 c� bð Þ þ b2 a� cð Þ þ c2 b� að Þ 6¼ 0.

Proof If no pair of the parameters is equal, then no difference of two parameters is

zero, i.e., a� b 6¼ 0 or b� c 6¼ 0 or a� c 6¼ 0. However, it looks like the given

expression is divisible by a� bð Þ b� cð Þ a� cð Þ.
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Let us prove this as follows:

a2 c� bð Þ þ b2 a� cð Þ þ c2 b� að Þ ¼ a2c� a2bþ b2a� b2cþ c2b� c2a

a2 c� bð Þ � a c� bð Þ cþ bð Þ þ bc c� bð Þ ¼ c� bð Þ a2 � ac� abþ bcð Þ
¼ c� bð Þ a� bð Þ a� cð Þ:

There are several corollaries of Bezout’s Theorem.

Corollary 1 Polynomial Pn xð Þ ¼ xn � an is divisible by binomial x� að Þ for
any natural n.

Proof Obviously, Pn að Þ ¼ an � an ¼ 0:

Corollary 2 Polynomial Pn xð Þ ¼ xn � an is divisible without remainder by
binomial xþ að Þ for any even degree n (n¼ 2k, k 2 N).

Proof In fact, P2k �að Þ ¼ �að Þ2k � a2k ¼ 0:

Corollary 3 Polynomial Pn xð Þ ¼ xn þ an is divisible without remainder by
binomial xþ að Þ for any odd degree n (n¼ 2k+ 1, k 2 N).

Proof In fact, P2kþ1 �að Þ ¼ �að Þ2kþ1 þ a2kþ1 ¼ 0:
The following problem will demonstrate application of these corollaries and

Bezout’s Theorem.

Problem 37 Prove that for any even n the number 20n þ 16n � 3n � 1ð Þ is
divisible by 19.

Proof Becausen ¼ 2k, k 2 N, then using special product formulas (see more about

special product formulas in the following section) we obtain

20n þ 16n � 3n � 1 ¼ 202k � 1
� 	þ 162k � 32k

� 	
¼ 20k � 1
� 	

20k þ 1
� 	þ 16k þ 3k

� 	
16k � 3k
� 	

In the first term, the first factor 20k � 1
� 	

is divisible by 19 for any value of k.

In the second term, if k¼ 2m + 1 then the second factor of it can be written as

16m þ 3mð Þ 16m � 3mð Þ. Thus if m is odd, then decomposition of the second factor

16m � 3mð Þ is completed. If m is even, then we continue to factor; after a finite

52 2 Polynomials



number of steps, that is at most (n� 1), the factorization will be completed and one

of the factors of this decomposition will have the form of 16s þ 3sð Þ, s ¼ 2lþ 1

(s is an odd number). Then this factor 16s þ 3sð Þ is divisible by 19. We showed that

both terms above are divisible by 19 8k 2 N ; therefore, 20n þ 16n � 3n � 1 is

divisible by 19 for any even natural number n.

Definition A number a is a zero of polynomial P(x) if P(a)¼ 0.

Theorem 15 A number a is a zero of polynomial P(x) if and only if the
polynomial is divisible by (x� a).

Theorem 16 (Rational Zero Theorem). If P(x) is a polynomial with integer

coefficients and if p
q is a zero of P(x), P p

q

� �
¼ 0

� �
, then p is a factor of the

constant term a0 of P(x) and q is a factor of the leading coefficient an of P(x)
a0 6¼ 0, an 6¼ 0ð Þ.

We can use the Rational Zero Theorem to find all the rational zeroes of a

polynomial. Here are the steps:

1. Arrange the polynomial in descending order.

2. Write down all the factors of the constant term. These are all the possible values

of p.
3. Write down all the factors of the leading coefficient. These are all the possible

values of q.

4. Write down all the possible values of
p

q
. Remember that since factors can be

negative,
p

q
and � p

q
must both be included. Simplify each value and cross out

any duplicates.

5. Use synthetic or long-term division to determine the values of
p

q
for which

P
p

q

� �
¼ 0. These are all the rational roots of P(x).

Example Find all rational zeroes of P(x)¼ x3� 9x+ 9 + 2x4� 19x2.

1. P(x)¼ 2x4 + x3� 19x2� 9x+ 9.
2. Factors of the constant term: �1, �3, �9.

3. Factors of the leading coefficient: �1, �2.

2.1 Introduction to Polynomial Equations: Important Theorems 53



4. Possible values of
p

q
: �1

1
, � 1

2
:� 3

1
;�3

2
, � 9

1
, � 9

2
: which can be simplified to:

p

q
: �1, � 1

2
:� 3;�3

2
, � 9, � 9

2
.

5. Use synthetic division (Figure 2.1).

Remark If x¼ a is the root of polynomial pn(x) and x¼ b is also the root of pn(x),
then pn xð Þ ¼ x� að Þqn�1 xð Þ and (x� b) must be a factor of qn�1, such that

qn�1 ¼ x� bð Þsn�2 xð Þ, etc. Therefore as soon as we find one of the rational zeroes,

for example, when we find pn að Þ ¼ 0 we can continue to divide the resulting

polynomial by the next zero until we are done. For example, because in the previous

example x¼�1, x¼ 3, x¼�3 are zeroes, then we could obtain the following by

using Horner synthetic division:

Figure 2.1 Synthetic

division
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pn xð Þ ¼ xþ 1ð Þ x� 3ð Þ xþ 3ð Þ 2x� 1ð Þ ¼ 0

Hence the last root is x¼ 1/2.

Theorem 17 If all coefficients of a polynomial of nth degree are integers
(n � 1) and a zero of this polynomial is also an integer, then it is a factor
of the constant term.

Proof Consider a polynomial pn xð Þ ¼ anx
n þ an�1x

n�1 þ . . .þ a3x
3 þ a2x

2þ
a1xþ a0, n � 1, an 6¼ 0, with a zero x ¼ a. Suppose that we can divide p(x) by
the binomial x� að Þ with a remainder, and obtain the divisor as a polynomial of

degree (n� 1), i.e., qn�1 xð Þ ¼ bn�1x
n�1 þ . . .þ b3x

3 þ b2x
2 þ b1xþ b0, n � 1,

bn�1 6¼ 0 and the remainder r.
Because all coefficients of p(x) are integers and number a is also integer, then the

numbers bn�1, . . . b3, b2, b1, b0 and r are also integers.

Using synthetic division (William George Horner, British mathematician,

1786–1837, functional analysis, number theory, known for Horner synthetic division

algorithm) we obtain that r ¼ an þ a � bn�1. However, it follows from Theorem 13

that if a is a root of a polynomial then r að Þ ¼ 0; hence an ¼ a � �bn�1ð Þ.
Since an, a and �bn�1ð Þ are integer numbers, a must be a factor of an. The

theorem is proven.

Corollary 4 Integer zeroes of a polynomial are the factors of its constant term.

Problem 38 Does polynomial p4 xð Þ ¼ x4 þ 2x3 � 2x2 � 6xþ 5 have any

integer roots?

Solution Divisors of a constant term are: 1, �1, 5, and �5.

Let us evaluate the polynomial at each of the possible integer roots:

p4 1ð Þ ¼ 14 þ 2 � 13 � 2 � 12 � 6 � 1þ 5 ¼ 0 ) x ¼ 1 is a zero

p4 �1ð Þ ¼ �1ð Þ4 þ 2 � �1ð Þ3 � 2 � �1ð Þ2 � 6 � �1ð Þ þ 5 ¼ 8 6¼ 0

) x ¼ �1 is not a zero

p4 5ð Þ ¼ 14 þ 2 � 53 � 2 � 52 � 6 � 5þ 5 ¼ 800 6¼ 0 ) x ¼ 5 is not a zero

p4 �5ð Þ ¼ �5ð Þ4 þ 2 � �5ð Þ3 � 2 � �5ð Þ2 � 6 � �5ð Þ þ 5 ¼ 360 6¼ 0

) x ¼ �5 is not a zero
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Therefore, only integer x¼ 1 makes the polynomial zero. However, a polyno-

mial of 4th degree can have at most 4 real roots; furthermore, some roots can have

multiplicity more than one. Applying Horner’s algorithm (synthetic division) let us

divide p(x) by (x� 1):

p4 xð Þ ¼ x4 þ 2x3 � 2x2 � 6xþ 5 ¼ x� 1ð Þ x3 þ 3x2 þ x� 5
� 	

:

Next, we will consider polynomial p3 xð Þ ¼ x3 þ 3x2 þ x� 5. There is no need to

evaluate this at x¼�1, 5, and �5. However, let us evaluate it at x¼ 1:

p3 xð Þ ¼ 13 þ 3 � 12 þ 1� 5 ¼ 0 ) x ¼ 1 is zero:

Applying Horner’s algorithm again we finally obtain

p4 xð Þ ¼ x4 þ 2x3 � 2x2 � 6xþ 5 ¼ x� 1ð Þ2 x2 þ 4xþ 5
� 	

:

The second factor does not have real zeroes (its discriminant is negative, see more

in the following section). The given polynomial has two integer roots x¼ 1 and

x¼ 1 or we say that it has an integer root x¼ 1 of multiplicity 2.

Definition If pn xð Þ¼anx
n þ an�1x

n�1þ . . .þ a3x
3 þa2x

2þa1xþ a0, n � 1,

an 6¼ 0 is divisible by x� að Þk then x¼ a is zero of the polynomial of

multiplicity k.

Theorem 18 If a polynomial pn xð Þ ¼ xn þ an�1x
n�1 þ . . .þ a3x

3 þ a2x
2 þ

a1xþ a0, n � 1 with integer coefficients and with the leading coefficient
equal to 1 has a rational zero, then that zero is an integer.

Proof We will prove this by contradiction. Assume that a zero of the polynomial

can be written as a ¼ p
q where p and q are relatively prime. Then the following must

be true:

p

q

� �n

þ an�1

p

q

� �n�1

þ . . .þ a3
p

q

� �3

þ a2
p

q

� �2

þ a1
p

q
þ a0 ¼ 0;

which can be written as

p

qn

n ¼ � an�1

p

q

� �n�1

þ . . .þ a3
p

q

� �3

þ a2
p

q

� �2

þ a1
p

q
þ a0

 !
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Multiplying this by qn�1 we will obtain an equivalent equality

p

q

n ¼ �an�1 p
n�1 � an�2 p

n�2q� . . .� a1 pq
n�2 � a0q

n�1:

Because p and q are relatively prime, then pn

q cannot be an integer number. On the

other hand, the right side is an integer number. Such equality cannot occur.

Therefore, our assumption was wrong. The theorem is proven.

Problem 39 Find all real zeroes of x3 þ 2x2 � 3136 ¼ 0.

Solution By the Rational Zero Theorem if this polynomial has a rational zero,

then it is an integer. Hence we will factorize 3136:

3136 ¼ 2 � 1568 ¼ 2 � 2 � 784 ¼ 2 � 2 � 2 � 392 ¼ 26 � 72

By substitution we can see that x¼ 14 is a zero, then (x� 14) is a factor of

p xð Þ ¼ x3 þ 2x2 � 3136 ¼ 0.

Hence, we can divide the given polynomial by (x� 14) using long division or

Horner synthetic division and obtain

x3 þ 2x2 � 3136 ¼ x� 14ð Þ x2 þ 16xþ 224
� 	 ¼ 0

The second factor never equals zero over the set of real numbers. You can check it

yourself by finding that the discriminant of the quadratic equation is negative

(�160).

Answer x¼ 14.

Remark There is another proof that x¼ 14 is the only real solution for

the problem above. If we take a derivative of p(x), we obtain,

p
0
xð Þ ¼ 3x2 þ 4x ¼ x � 3xþ 4ð Þ ¼ 0. Then the polynomial function will increase

monotonically for x> 0 and x<�4/3 and it will decrease on (�4/3, 0). At x¼ 0

p(0)¼�3136, at x¼ 14 p(14)¼ 0; therefore this zero x¼ 14 is unique. This prob-

lem is also solved later in this book using the Babylonian’s approach.

Corollary 5 For any polynomial with integer coefficients and unit leading
coefficient, all its rational zeroes are integers.
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Let us see how it can be applied to the problem below.

Problem 40 Find all real solutions of the equation x5 þ x� 34 ¼ 0.

Solution The function on the left is monotonically increasing over the entire set of

real numbers because f xð Þ ¼ f 1 xð Þ þ f 2 xð Þ, where both f 1 xð Þ ¼ x5, f 2 xð Þ ¼ x� 34

are monotonically increasing functions. Therefore, if we find a divisor of 34 that

would make the function zero, then that value of x is the only real root that the

function has. Divisors of 34 are �1;�2;�17;�34 and x¼ 2 is the zero because

f 2ð Þ ¼ 0.

Answer x¼ 2.

You can practice more on such functions in the HW section.

Consider a polynomial Pn xð Þ ¼ anx
n þ an�1x

n�1 þ . . .þ a3x
3þ a2x

2 þ a1xþ a0,
n � 1 with integer coefficients and another polynomial

Qn xð Þ ¼ an
n�1Pn xð Þ

¼ anxð Þn þ an�1 anxð Þn�1 þ . . .

þ a3an
n�4 anxð Þ3 þ a2an

n�3 anxð Þ2 þ a1an
n�2 anxð Þ þ an

n�1a0

It is obvious that Pn(x) and Qn(x) have the same zeroes. Denote y ¼ anx, then
Pn xð Þ ¼ Tn xð Þ:

Tn xð Þ ¼ yn þ an�1y
n�1 þ . . .þ a3an

n�4y3 þ a2an
n�3y2 þ a1an

n�2yþ an
n�1a0

By Theorem 18 this polynomial has only integer zeroes y1, y2, . . . ym, then the

numbers xk ¼ yk
an
, k 2 1; 2; 3; . . . ;mf g.

And they will be the only rational zeroes of Qn(x). Thus for any polynomial with

integer coefficients we can always find all its rational zeroes. If a polynomial has

rational coefficients we can always multiply it by the greatest common denominator

and then find solutions of the corresponding polynomial.

Problem 41 Find real solutions of the following equation:

P xð Þ ¼ x3 þ 1

2
� x2 � 1

4
� x� 1

8
¼ 0.

Solution Multiplying by 8 we will obtain the equivalent polynomial equation

8x3 þ 4x2 � 2x� 1 ¼ 0, which if y¼ 2x can be written as

T yð Þ ¼ y3 þ y2 � y� 1 ¼ 0:

The only rational roots of this equation must be integers and factors of (�1).
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T(1)¼ T(�1)¼ 0, then (y+ 1)(y� 1) are factors of the polynomial T(y).
Applying Horner’s algorithm we obtain

y3 þ y2 � y� 1 ¼ y� 1ð Þ yþ 1ð Þ yþ 1ð Þ ¼ 0

Therefore T(y) has three zeroes, 1, �1, and �1, and hence P(x)’s zeroes are 1/2,

�1/2, and �1/2.

Remark This method was known to ancient Babylonians. See more problems later

in this chapter.

Any polynomial of nth degree has n zeroes. However, it has at most n real

zeroes. Some zeroes are not necessarily real.

Theorem 19 (Fundamental Theorem of Algebra). Any polynomial of nth
degree has n complex zeroes.

Moreover, if x ¼ aþ ib is a complex zero of a polynomial then its complex

conjugate a� ib is also the root of the function.

Simple behavior of the graphs of polynomial functions predicted based on their

degree and leading coefficients can be summarized as follows:

• The graph of a polynomial function of even degree with positive leading

coefficient increases on the left and on the right.

• The graph of a polynomial function of even degree with negative leading

coefficient decreases on the left and on the right.

• The graph of a polynomial function of odd degree with positive leading coeffi-

cient decreases on the left and increases on the right.

• The graph of a polynomial function of odd degree with negative leading coef-

ficient increases on the left and decreases on the right.

Remark 1 It is clear that polynomials of odd degree will always have at least one

X-intercept (real zero). Moreover, if pn xð Þ ¼ f 1 xð Þ þ f 2 xð Þ, n ¼ 2k þ 1, k 2 N and

if both f1(x), f2(x) are monotonically increasing or decreasing functions, then the

polynomial function has only one real zero. You can try to investigate the following

functions: f xð Þ ¼ x3 þ 3x� 3, g xð Þ ¼ 2x3 þ x� 18 or solve similar problems in

the HW.

Remark 2 We can also explain the “left” and “right” behavior of a polynomial

function by the sign of the leading coefficient (the coefficient of the highest degree

term) and by the degree (odd or even n). For example, for a polynomial function of

nth degree y ¼ anx
n þ pn�1 xð Þ as x increases or decreases without bound, the

behavior of the function at the ends is dominated by the term of the largest degree,

anx
n. Thus, for a positive leading coefficient, and odd degree, the function y ¼ anx

n

is monotonically increasing and it falls to the left and rises to the right.
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On the other hand, if the function y ¼ anx
n is of even degree and positive an, then

it rises to both ends, as does the entire polynomial y ¼ anx
n þ pn�1 xð Þ.

Problem 42 Find a polynomial function that has the given zeroes and

Y-intercept. Zeroes: 3i, �2, 1 and the Y-intercept (0, 18).

Solution

y ¼ a x� 3ið Þ xþ 3ið Þ xþ 2ð Þ x� 1ð Þ ¼ a x2 þ 9ð Þ x2 þ x� 2ð Þ
¼ a x4 þ x3 þ 7x2 þ 9x� 18ð Þ

y 0ð Þ ¼ 18 ) a ¼ �1:

Answer y ¼ � x4 þ x3 þ 7x2 þ 9x� 18
� 	

:

Theorem 20 (Vieta’s Theorem). If x1, x2, x3 . . . xn are the zeroes of the poly-

nomial equation anx
n þ an�1x

n�1 þ . . .þ a1xþ a0 ¼ 0, an 6¼ 0ð Þ, then the
following relationships are true:

x1 þ x2 þ . . .þ xn ¼ �an�1

an

x1x2 þ x2x3 þ . . .þ xn�1xn ¼ an�2

an
:::::::::::::::::::::::::::::::::::::::::::::

x1 � x2 � . . . � xn ¼ �1ð Þn a0
an

8>>>>>>>><
>>>>>>>>:

Vieta’s Theorem is very important and is most applicable to quadratic and cubic

polynomials. For example, for a polynomial of fourth degree with the unit leading

coefficient p xð Þ ¼ x4 þ ax3 þ bx2 þ cxþ d ¼ 0 with four real roots, x1, x2, x3, x4
the following is valid:

x1x2 þ x1x3 þ x1x4 þ x2x3 þ x2x4 þ x3x4 ¼ b

x1x2x3x4 ¼ d

x1 þ x2 þ x3 þ x4 ¼ �a

x1x2x3 þ x1x2x4 þ x2x3x4 þ x1x3x4 ¼ �c

8>>>><
>>>>:
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Problem 43 Factor the polynomial xþ yþ zð Þ3 � x3 � y3 � z3:

Solution Note that if we substitute x ¼ �y , y ¼ �z or x ¼ �z, then the given

expression becomes zero. Therefore, by Bezout’s Theorem, the given expression must

be divisible by xþ yð Þ xþ zð Þ yþ zð Þ. Finally, the answer is 3 xþ yð Þ xþ zð Þ yþ zð Þ.
The coefficient 3 can be explained by the formula for the cube of a sum. Thus,

the given expression is divisible by xþ yð Þ, and we can rewrite it as

xþ yð Þ þ zð Þ3 � x3 � y3 � z3 ¼ xþ yð Þ3 þ 3 xþ yð Þ2zþ 3 xþ yð Þz2 � x3 þ y3ð Þ
¼ 3 xþ yð Þ z2 þ z xþ yð Þ þ xyð Þ
¼ 3 xþ yð Þ zþ xð Þ zþ yð Þ:

Two other factors come from Vieta’s Theorem applied to a quadratic function in

variable z.

Answer 3 xþ yð Þ xþ zð Þ yþ zð Þ:

Sometimes, it is helpful to consider a polynomial at a complex number, i, P(i);
then P �ið Þ will be its complex conjugate, and their product will be a real number.

For example, consider a linear function P xð Þ ¼ axþ b. Evaluate P ið Þ ¼
aiþ b, P �ið Þ ¼ �aiþ b, then P ið Þ � P �ið Þ ¼ bþ iað Þ b� iað Þ ¼ b2 þ a2 2 R.

In the following problem we will apply these ideas; however, it could also be

solved with the use of Vieta’s Theorem. Please try it yourself.

Problem 44 Polynomial function p xð Þ ¼ x3 þ ax2 þ bxþ c has three real

roots. Assuming that c� aj j ¼ 8, b ¼ 7, evaluate x21 þ 1
� 	

x22 þ 1
� 	

x23 þ 1
� 	

.

Solution If x1, x2, x3 are the roots, then the polynomial can be factored as

p xð Þ ¼ x� x1ð Þ x� x2ð Þ x� x3ð Þ, and by the ideas mentioned above, we have

p ið Þ � p �ið Þ ¼ 1þ x21
� 	

1þ x22
� 	

1þ x23
� 	

On the other hand,

p ið Þ ¼ i3 þ ai2 þ biþ c ¼ �i� aþ biþ c ¼ c� að Þ þ i � b� 1ð Þ
p �ið Þ ¼ �ið Þ3 þ a �ið Þ2 þ b �ið Þ þ c ¼ i� a� biþ c ¼ c� að Þ � i � b� 1ð Þ
p ið Þ � p �ið Þ ¼ c� að Þ2 þ b� 1ð Þ2
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Therefore, 1þ x21
� 	

1þ x22
� 	

1þ x23
� 	 ¼ c� að Þ2 þ b� 1ð Þ2 ¼ 82 þ 7� 1ð Þ2 ¼ 100:

Answer 1þ x21
� 	

1þ x22
� 	

1þ x23
� 	 ¼ c� að Þ2 þ b� 1ð Þ2 ¼ 100:

2.2 Quadratic Functions and Quadratic Equations

In order to solve many problems about polynomials, we need to review quadratic

functions and quadratic equations. A function f xð Þ ¼ ax2 þ bxþ c, a 6¼ 0 is called

a quadratic function, and the graph of it is a parabola. Unfortunately, just a few facts

are studied in high schools such as that a parabola opens upward if a> 0 and

downward if a< 0, that all parabolas are symmetric with respect to the line

x ¼ xv ¼ � b

2a
, and that the point (xv, f(xv)) is the vertex of the parabola.

When a student is asked to find zeroes of a quadratic function or solve the

corresponding quadratic equation

ax2 þ bxþ c ¼ 0 ð2:1Þ

he or she usually factors the equation using the FOIL technique or tries to use

graphing technology.

However, it is important to introduce the discriminant (here and below we

denote it by D) of a quadratic equation: a special feature of each quadratic equation
that determines the number of its real zeroes or X-intercepts of the quadratic

function, respectively.

The roots of a quadratic equation ax2 þ bxþ c ¼ 0 can be found as

x1,2 ¼ �b� ffiffiffiffi
D

p

2a
, D ¼ b2 � 4ac ð2:2Þ

If D � 0, then a quadratic equation has two real roots, and if D <0, then it has no

real roots.

Proof Let us factor a out and complete the square inside parentheses:

ax2 þ bxþ c ¼ a x2 þ b

a
� xþ c

a

� �
¼ 0

a x2 þ 2
b

2a
� xþ b

2a

� �2

� b

2a

� �2

þ c

a

 !
¼ 0

xþ b

2a

� �2

¼ b2 � 4ac

4a2
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Denote D ¼ b2 � 4ac and substitute it into the previous equation:

xþ b

2a

� �2

¼ D

4a2

If D > 0, then the right side of the equation above is positive and it can be solved

for x as

xþ b

2a
¼

ffiffiffiffi
D

p

2a
or xþ b

2a
¼ �

ffiffiffiffi
D

p

2a

Both roots can be written as

x1,2 ¼ �b� ffiffiffiffi
D

p

2a

If D > 0, then a quadratic equation has two real roots and the quadratic function

intersects the X-axis at two points.

If D¼ 0 then we obtain one real root x ¼ � b
2a of multiplicity two. Hence, the

quadratic function has only one X-intercept.
If D< 0, then (2.1) has no real roots and the quadratic function does not intersect

the X-axis!

If the coefficient b of the linear term of a quadratic equation is an even, then it is

better to use the so-called D/4 formula. Dividing all terms of (2.2) by 2 we obtain

x1,2 ¼
�b

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

4

s

2 � a
2

¼
�b

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b

2

� �2

� ac

s
a

Thus D/4 formula can also be written as

x1, 2 ¼
�b

2
�

ffiffiffiffi
D

4

r
a

, where
D

4
¼ b

2

� �2

� ac ð2:3Þ

The advantage of using this formula can be demonstrated by the following example.

Solve the equation

7x2 � 4x� 1 ¼ 0

D

4
¼ 22 þ 7 ¼ 11

x1,2 ¼ 2� ffiffiffiffiffi
11

p

7

Additionally, it gives us a solution in the simplest form.
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Problem 45 For what value of a parameter a does the quadratic function

f xð Þ ¼ 5a� 1ð Þx2 � 5aþ 2ð Þxþ 3a� 2 have one X-intercept?

Solution If the discriminant equals zero then there is one X-intercept:

D ¼ 5aþ 2ð Þ2 � 4 5a� 1ð Þ 3a� 2ð Þ ¼ 0

35a2 � 72aþ 4 ¼ 0

a ¼ 2, a ¼ 2

35
:

Answer a ¼ 2, a ¼ 2

35
:

2.2.1 Vieta’s Theorem for a Quadratic Equation

The French mathematician Vieta is well known for his work in number theory

and analysis. Rational and of course integer zeroes x1, x2 of a quadratic equation

ax2 þ bxþ c ¼ 0, a 6¼ 0 can be found using Vieta’s Theorem.

Vieta’s Theorem: If x1, x2 are the roots of a quadratic equation

ax2 þ bxþ c ¼ 0, a 6¼ 0, then

x1 � x2 ¼ c

a

x1 þ x2 ¼ �b

a

Reversed Vieta’s Theorem: If numbers x1, x2 satisfy the following system:

x1 � x2 ¼ q
x1 þ x2 ¼ � p

�
then x1, x2 are the roots of a quadratic equation

x2 þ pxþ q ¼ 0:

Though Vieta’s Theorem is not well known in the USA, some students can factor

quadratic trinomials mentally using FOIL. If you have such skills go ahead and

factor, but do not forget to check your factorization by multiplication. Of course,

every technique has an underlying explanation. Let us expand the expression
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xþ αð Þ xþ βð Þ ¼ x2 þ αþ βð Þxþ αβ ¼ 0

Working backward this formula is FOIL.

On the other hand, if we need to solve x2 þ αþ βð Þxþ αβ ¼ 0 instead, we could

apply Vieta’s Theorem and obtain

x1 � x2 ¼ αβ
x1 þ x2 ¼ � αþ βð Þ

�
) x1 ¼ �α, x2 ¼ �β:

This gives the same zeros.

Vieta’s Theorem and its reverse are very useful, especially when you can guess

one of the zeroes or that zero is given.

Example You can see by substitution that x¼ 1 is the root of

17x2 þ 4x� 21 ¼ 0

Since a¼ 17, b¼ 4, c¼�21, and x1 ¼ 1, then from the first formula of Vieta’s

Theorem we obtain right away that the second root is x2 ¼ �21
17
.

Remark When I teach lower level math classes and I have to create a quadratic

equation with real roots, I quickly in my mind make one of the roots 1 and then by

“playing” with the coefficients, I can make several equations with this root, by

mentally satisfying the equation

aþ bþ c ¼ 0. For example, I can set a¼ 12, b¼�5, then c¼�7, and

x2 ¼ � 7
12
.

Or, if I chose a¼ 4, b¼�15, then c¼ 9 and x2 ¼ 9
4
, etc. It is a very useful trick

when you do not have a calculator and have to check your students’ work.

If a¼ 1 the factoring looks easier:

x2 þ bxþ c ¼ x� x1ð Þ x� x2ð Þ, where

x1 � x2 ¼ c

x1 þ x2 ¼ �b

Therefore, we are looking for such numbers x1 and x2, the product of which

equals the constant term (c), and the sum of which adds up to a negative coefficient

of x.

Example x2 � 7xþ 6 ¼ x� 1ð Þ x� 6ð Þ because

1 � 6 ¼ 6

1þ 6 ¼ � �7ð Þ ¼ 7

Let us apply Vieta’s Theorem to the following problems.
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Problem 46 It is known that x1, x2 are the roots of the equation

2x2� ffiffiffi
3

p þ5
� 	

x�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ2

ffiffiffi
3

pp
¼0. Find the value of A¼x1þx1 �x2þx2.

Solution Expression A contains the sum and the product of the zeroes of the

quadratic equation, so it will be useful to apply Vieta’s Theorem right away. We

obtain the following: A ¼ x1 þ x2ð Þ þ x1 � x2 ¼
ffiffi
3

p þ5
2

�
ffiffiffiffiffiffiffiffiffiffiffi
4þ2

ffiffi
3

pp
2

.

This can be the answer but it does not look nice and we will try to simplify

it. Consider the radicand of the second term, 4þ 2
ffiffiffi
3

p
, and try to recognize in it a

trinomial square. Indeed, 4þ 2
ffiffiffi
3

p ¼ 1þ 2
ffiffiffi
3

p þ ffiffiffi
3

p� 	2 ¼ ffiffiffi
3

p þ 1
� 	2

. Sinceffiffiffi
3

p þ 1 > 0, then
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 2

ffiffiffi
3

pp
¼ ffiffiffi

3
p þ 1:

ffiffiffiffiffi
a2

p
¼ aj j ¼ a, if a � 0

�a, if a < 0

�� �
.

Finally, we can evaluate A as

A ¼
ffiffiffi
3

p þ 5

2
�

ffiffiffi
3

p þ 1

2
¼

ffiffiffi
3

p þ 5� ffiffiffi
3

p � 1

2
¼ 2:

Answer A¼ 2.

Problem 47 Find such parameter a, for which the sum of the squares of the

roots of a quadratic equation x2 þ 3a� 1ð Þxþ a ¼ 0 equals 1.

Solution Applying Vieta’s Theorem we have the system below:

x1 þ x2 ¼ 1� 3a

x1 � x2 ¼ a

x21 þ x22 ¼ 1

8><
>:

In order to have two roots, the discriminant must be positive:

D ¼ 3a� 1ð Þ2 � 4a ¼ 9a2 � 10aþ 1 > 0

By completing the square the last equality can be rewritten in terms of the sum

and product of the roots as

x1 þ x2ð Þ2 � 2 � x1 � x2 ¼ 1

3a� 1ð Þ2 � 2 � a ¼ 1

9a2 � 8a ¼ 0

a ¼ 0, a ¼ 8

9
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Finally, substituting both values of the parameter into discriminant formula, we

conclude that the quadratic equation has two real roots only at a¼ 0.

Answer a¼ 0.

Problem 48 x1, x2 are the roots of a quadratic equation x2 þ bx� 1 ¼ 0.

Evaluate x31 þ x32.

Solution Let us rewrite the requested expression using the formula of the cube of

a sum:

x1 þ x2ð Þ3 ¼ x31 þ x32 þ 3x1x2 � x1 þ x2ð Þ
x31 þ x32 ¼ x1 þ x2ð Þ3 � 3x1x2 � x1 þ x2ð Þ
x31 þ x32 ¼ �bð Þ3 � 3 �bð Þ �1ð Þ ¼ �b3 � 3b

In the last expression we substituted the sum and the product of the roots given

by Vieta’s Theorem.

Answer x31 þ x32 ¼ �b3 � 3b:

Problem 49 Forwhat value of a parameter a is the ratio of the roots of quadratic

equation x2 þ ax� 16 ¼ 0 equal to �4?

Solution We will apply Vieta’s Theorem as follows:

x1 � x2 ¼ �16

x1
x2

¼ �4

8<
: ) x1 ¼ �4x2

�4 x2ð Þ2 ¼ �16

(
, x2 ¼ 2 or x2 ¼ �2

x1 ¼ �8 or x1 ¼ 8

"

Therefore, a ¼ � x1 þ x2ð Þ ¼ �6.

Answer a ¼ �6.

Problem 50 For what values of parameters p and q does the difference of the

roots of x2 þ pxþ q ¼ 0 equal 5 and the difference of their cubes equal 35?
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Solution Let us use the following formula:

x31 � x32 ¼ x1 � x2ð Þ x21 þ x1x2 þ x22
� 	

x31 � x32 ¼ x1 � x2ð Þ x1 � x2ð Þ2 þ 3x1x2

� �
:

Additionally, we will use Vieta’s Theorem for the product of the roots as

x1 � x2 ¼ q
x1 þ x2 ¼ � p

Substituting the second set of equalities into the first formula and using the

condition of the problem, such that x1 � x2 ¼ 5 and x31 � x32 ¼ 35, we obtain

35 ¼ 5 � 52 þ 3 � q� 	
3q ¼ 7� 25

q ¼ �6:

On the other hand, from the difference of squares the following is also true:

x1 þ x2ð Þ2 � x1 � x2ð Þ2 ¼ 4x1 � x2

This relationship gives us the connection between parameters p and q of the

quadratic equation

� pð Þ2 � 5ð Þ2 ¼ 4q

p2 ¼ 4qþ 25 ¼ 4 � �6ð Þ þ 25 ¼ 1

p ¼ 1 or p ¼ �1

Therefore we have two possible pairs for parameters p and q:

p; qð Þ ¼ 1, � 6ð Þ; �1, � 6ð Þf g

It is interesting that using Vieta’s Theorem, the difference of squares, and

difference of cubes formulas, we were able to find the answer without finding the

roots (2, �3) and (3, �2) of the equations x2 þ x� 6 ¼ 0 and x2 � x� 6 ¼ 0,

respectively.

Answer p; qð Þ ¼ 1, � 6ð Þ; �1, � 6ð Þf g.
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Problem 51 Solve the equation x2 þ x ¼ 1111111122222222:

Solution We are not going to solve it using a quadratic formula because the

number on the right side is too big. Instead, we will factor the left side and rewrite

the big number in a standard form with base 10:

x xþ 1ð Þ ¼ 1 � 1016 þ 1 � 1015 þ . . .þ 1 � 1010 þ 1 � 109
þ 2 108 þ 107 þ . . .þ 102 þ 10þ 1
� 	

Next, we can regroup terms on the right-hand side and obtain

x xþ 1ð Þ ¼ 1 � 1016 þ 1 � 1015 þ . . .þ 1 � 102 þ 1 � 10þ 1
� 	
þ 108 þ 107 þ . . .þ 102 þ 10þ 1
� 	

¼ 1016 � 1

10� 1
þ 108 � 1

10� 1

Here we applied the formula for the sum of a geometric series twice, with common

ratio 10, first term 1 with 16 and 8 terms, respectively.

Next, we can further simplify the right-hand side by applying the difference of

squares to the first term and factoring the common factor:

x xþ 1ð Þ ¼ 1016 � 1

9
þ 108 � 1

9

¼ 108 � 1
� 	

108 þ 1
� 	

3 � 3 þ 108 � 1

3
� 1
3

¼ 108 � 1

3

108 þ 1þ 1

3

� �
¼ 108 � 1

3

108 � 1þ 3

3

� �

¼ 108 � 1

3

108 � 1

3
þ 1

� �

It follows from the last equality that one of the roots of the given quadratic

equation is

x1 ¼ 108 � 1

3
¼ 33333333:

Then by Vieta’s Theorem, the second root is

x2 ¼ � 108 � 1

3
� 1 ¼ �33333334:

Answer The roots are 33333333 and �33333334.
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2.2.2 Interesting Facts About Quadratic Functions
and Their Roots

Many challenging problems in elementary mathematics are related to location of

the zeroes of a quadratic function on the X-axis but can be solved without actual

evaluation of these zeroes. Below are some examples that can be very helpful.

Case 1 Figure 2.2 demonstrates the case when both roots of quadratic function

are greater than a given number (number M for the red curve and number N for

the blue). For example, this condition for the red parabola and point M can be

written as

D > 0

xv > M

a � f Mð Þ > 0

8><
>:

The same set of the inequalities can be obtained for the blue parabola and point N.

Case 2 Both roots of a quadratic function lie inside segment [M, N] (see

Figure 2.3).

The following system is valid:

D > 0

xv 2 M;N½ �
a � f Mð Þ � 0

a � f Nð Þ � 0

8>>>><
>>>>:

8

6

4

2

-2

-4

-6

-15 -10 -5 5 10 15

f(N)

D>0

a<0

g(x) = -x2-10·x-24

f(x) = (x2-5·x)+4

D>0

a>0

xv

xv

f(M)

M

N

Figure 2.2 Case 1 for quadratic functions
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Below we show a parabola with positive leading coefficient. However, the same

system will be valid for a negative leading coefficient. Sketch it yourself and you

will see that both products, a � f Mð Þ and a � f Nð Þ, will be greater than or equal to

zero as products of two negative numbers.

Case 3 One of the zeroes of a quadratic function is inside of the given interval

[M, N] and the other zero is to the left of the given interval:

D > 0

xv 2 M;N½ �
a � f Mð Þ < 0

a � f Nð Þ > 0

8>>>><
>>>>:

For illustration we can consider parabola with a negative leading coefficient

(Figure 2.4). You can show that the set of the relationships is valid for any sign

of the leading coefficient.

Case 4 Quadratic function has two real zeroes and one of them is inside of the

given interval [M, N] and the other is to the right of the interval.
The following is true:

D > 0

xv 2 M;N½ �
a � f Mð Þ > 0

a � f Nð Þ < 0

8>>>><
>>>>:

14

12

10

8

6

4

2

-2

-10 -5 5 10 15

D>0

a>0

xv

f(N)

f(M)

f(x) = (x2-5·x)+4

M N

Figure 2.3 Case 2 for quadratic functions
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Please sketch the parabola yourself and make sure that you understand it, and that

now you can consider all other cases that we omitted here and left for you as an

exercise.

Problem 52 (MGU Exam 1996). Find the sum of all integer values of a

parameter a for which function f xð Þ ¼ x2 þ 2axþ a2 þ 4a is negative for

all x 2 1; 3ð Þ.

Solution This parabola opens upward, and it can have negative behavior for all

x from the given interval if and only if it has two zeroes x1, x2 such that if x2 > x1,

then x2 > 3, x1 < 1. Moreover, D
4
> 0, f 1ð Þ < 0, f 3ð Þ < 0. We have the system

D

4
¼ a2 � a2 þ 4a

� 	 ¼ �4a > 0

f 1ð Þ ¼ a2 þ 6aþ 1 < 0

f 3ð Þ ¼ a2 þ 10aþ 9 < 0

8>>><
>>>:

Using D/4 formula for both trinomials, we obtain

a < 0

�3� 2
ffiffiffi
2

p � a � �3þ 2
ffiffiffi
2

p

�9 � a � �1

8><
>: , a 2 �3� 2

ffiffiffi
2

p
, � 1

h i

8

6

4

2

-2

-4

-6

-8

-15 -10 -5 5 10

y=f(x)

x2

x1

a<0
D>0

f(M)

f(N)

M N

f(x) = (-x2-4·x)+5

Figure 2.4 Case 3 for quadratic functions

72 2 Polynomials



The following natural numbers belong to this interval: a¼ {�5,�4,�3,�2,�1}.

Adding all these numbers gives us the answer.

Answer �15.

Problem 53 Find all values of a parameter a at which the minimal value of

the function y ¼ x x� 1� að Þ � a2 þ 3aþ 7 on the interval [0, 2] equals 2.

Solution This function can be written as

y ¼ x2 � aþ 1ð Þx� a2 þ 3aþ 7

The graph of this function is a parabola that is opened upward and it will have an

absolute minimum at its vertex,

xv ¼ aþ 1

2
: ð2:4Þ

However, we need to look for the minimal value on the given interval.

The following cases are possible:

1. Vertex of the parabola xv 2 0; 2½ � and the value of the function at xv equals 2:

x2 � aþ 1ð Þx� a2 þ 3aþ 7 ¼ 2

or

x2 � aþ 1ð Þx� a2 þ 3aþ 5 ¼ 0 ð2:5Þ

Because this equation must have only one root (the value of 2 must occur at

the vertex of a parabola) then the discriminant of this quadratic equation must be

zero!

D ¼ aþ 1ð Þ2 þ 4 a2 � 3a� 5
� 	 ¼ 0

or

5a2 � 10a� 19 ¼ 0

This occurs at two values of parameter a:

a1 ¼ 5� 2
ffiffiffiffiffi
30

p

5
, a2 ¼ 5þ 2

ffiffiffiffiffi
30

p

5

2.2 Quadratic Functions and Quadratic Equations 73



However, if we substitute either of these values into the formula (2.4) for the

vertex, we obtain that xv a1ð Þ < 0, xv a2ð Þ > 2.

This contradicts our assumption that the parabola’s vertex belongs to the

given interval (blue curve in Figure 2.5).

2. Consider now the case illustrated by the black curve. The coordinate of its vertex

(B) is greater than 2 and the function is decreasing on the given interval [0, 2];

then it approaches its minimal value on [0, 2] at x¼ 2. (See point M on the

graph.)

Replacing x by 2 into (2.5) we obtain the following quadratic equation:

a2 � a� 7 ¼ 0

a1 ¼ 1� ffiffiffiffiffi
29

p

2
, a2 ¼ 1þ ffiffiffiffiffi

29
p

2

If we substitute each of the a values into (2.4), we obtain that only at the second

value the vertex of the parabola will lie to the right of x¼ 2:

xv a2ð Þ ¼ 1þ ffiffiffiffiffi
29

p þ 2

4
¼ 3þ ffiffiffiffiffi

29
p

4
> 2

Therefore, a ¼ 1þ ffiffiffiffiffi
29

p

2
is one of the solutions.

3. Consider the third and the last possible cases illustrated by the purple curve. This

parabola is increasing on the interval [0, 2] and has its vertex (C) located to the

left of 0. Therefore, its minimal value on [0, 2] will occur at x¼ 0 (point N in

Figure 2.5).

14
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y=2

q(x)= 220 xv

A
M

B

C

N

r(x) = (x2-6·x)+10

f(x) = (x2-2·x)+3

t(x) = (x2+2·x)+1

Figure 2.5 Sketch for Problem 53
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If we substitute x¼ 0 into (2.5) we obtain

a2 � 3a� 5 ¼ 0

a1 ¼ 3� ffiffiffiffiffi
29

p

2
, a2 ¼ 3þ ffiffiffiffiffi

29
p

2

Substituting both values of a into vertex formula (2.4) we obtain that only at

a ¼ 3� ffiffiffiffiffi
29

p

2
, xv ¼ 3� ffiffiffiffiffi

29
p þ 2

4
¼ 5� ffiffiffiffiffi

29
p

4
< 0 (the vertex is located to the

left of the left boundary of the interval, 0). Therefore this value for the parameter

a will also be an answer.

Answer a ¼ 1þ ffiffiffiffiffi
29

p

2
;
3� ffiffiffiffiffi

29
p

2
.

Problem 54 For what values of a parameter a does one of the roots of quadratic

function f xð Þ ¼ 4x2 � 4x� 3a lie in the interval [�1, 1]?

Solution Note that if one of the roots belongs to the given interval, [a, b], then the

quadratic function takes opposite values at the ends of the given interval. This can

be written as

f �1ð Þ � f 1ð Þ � 0

f �1ð Þ ¼ 4 � �1ð Þ2 � 4 � �1ð Þ � 3a ¼ 8� 3a

f 1ð Þ ¼ 4 � 1ð Þ2 � 4 � 1ð Þ � 3a ¼ �3a

3a� 8ð Þ � 3a � 0

0 � a � 8

3

Answer 0 � a � 8

3
.

Remark Please notice that while solving the above problem, we did not use the

positiveness of discriminant. Explain why that was not necessary in order to get the

answer.

Problem 55 Find all solutions of the given equation

x2 � 2 xj j þ 1
�� �� ¼ 3 2� xj j � 1.
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Solution Let us rewrite the equation in a different form by completing the square

on the left:

xj j � 1ð Þ2 ¼ 3 � x� 2j j � 1 ð2:6Þ

And consider this equation as

f(x)¼ g(x)

on each on the following intervals
��1, 0

� [ �0, 2� [ 2;1ð Þ:
1. If x 2 ��1, 0

�
then xj j ¼ �x and x� 2j j ¼ 2� x

Then (2.6) takes the form

x2 þ 5x� 4 ¼ 0;

which has to be solved under the condition x � 0. Hence out of the two roots

x1 ¼ �5� ffiffiffiffiffi
41

p

2
, x2 ¼ �5þ ffiffiffiffiffi

41
p

2

only the first one,
�5� ffiffiffiffiffi

41
p

2
, works.

2. If 0 < x � 2, then (2.6) becomes

x2 þ x� 4 ¼ 0

x1 ¼ �1� ffiffiffiffiffi
17

p

2
, x2 ¼ �1þ ffiffiffiffiffi

17
p

2

Only x ¼ �1þ ffiffiffiffiffi
17

p

2
2 �0, 2�.

3. If x> 2, then (2.6) has the form

x2 � 5xþ 8 ¼ 0

Because the discriminant of this equation is less than zero, this equation does not

have real roots.

Answer The equation has two solutions: x ¼ �5� ffiffiffiffiffi
41

p

2
and x ¼ �1þ ffiffiffiffiffi

17
p

2
.

Next, I want to offer you a problem that will use algebra and geometry.
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Problem 56 Consider all quadratic functions f xð Þ ¼ x2 þ pxþ q that inter-

sect the coordinate system at three points. Prove that all circles that pass

through each of such three points have a common point. Find its coordinates.

Proof If a parabola with positive leading coefficient intersects the coordinate

system at three points, then it has a positive discriminant. Assume that two

of these points are X-intercepts A(x1, 0),B(x2, 0) and the third one is the Y-intercept,
C(0, q). For different values of the parameters in the quadratic function the origin is

either between the two intercepts or on one side of both X-intercepts. Consider both
cases shown in Figure 2.6. We need to prove that point G is that common point of

all possible circles.

Case 1 Let us connect points A and C, C and B, A and B, A and G, and G and B (see

Figure 2.7).

Because the angles ACO and GBA are the same (they subtend the same arc AG),

triangles AOC and GOB are similar. Therefore,
AOj j
OGj j ¼ OCj j

OBj j. Denote OGj j ¼ y, then

x1j j
yj j ¼

qj j
x2j j

Solving which for y will give us

x1x2 ¼ q � y

6
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2
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-6

-8

-10 -5 5 10 15

x

y=g(x)

y=f(x)

f(x) = (x+2)·(x-4)

g(x) = (x-1)·(x-5)

G

O D

A B

C

E

F

Figure 2.6 Sketch for Problem 56
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On the other hand, from Vieta’s Theorem we have that

x1x2 ¼ q

It follows from these two equations that y¼ 1, and that G(0,1).

Case 2 Let us draw the second parabola and form a red cyclic quadrilateral by

connecting G, E, F, and D (see Figure 2.8). We need to prove that in this case point

G is the same as in Case 1, i.e., G(0,1).
In order to prove this, we will erase our parabola and the coordinate system as it

is shown in Figure 2.9. Angles GDO and GDF are supplementary angles. Quadri-

lateral EFDG is cyclic, so the angles GDF and GEF are also supplementary.

Therefore, ∠GDO ¼ ∠GEF (shown by green arc).

Because the angle EOF is the right angle triangles GDO and EOF are similar

right triangles, where OFj j ¼ x2j j, ODj j ¼ x1, OEj j ¼ q and OG ¼ y. The follow-

ing is valid:

x1j j
yj j ¼

qj j
x2j j , y ¼ x1x2

q
¼ q

q
¼ 1 ¼ OGj j

The proof is complete and all circles pass through the point G(0,1).

y=f(x)

G

O

A B

C

Figure 2.7 Case 1

(Problem 56)
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2.3 Polynomial Equations in Two or Three Variables

Equations in integers or natural numbers are often used at different mathematics

contests. Very often students are afraid to even start solving such problems. Some

techniques will be taught here. In order to introduce you to the topic, I want to offer

the following problems.

Problem 57 Can a quadratic equation ax2 þ bxþ c ¼ 0 with integer coef-

ficients have discriminant 23?

12
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2
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-10 -5 5 10 15

x

y=g(x)

G

O D

E

F

Figure 2.8 Case 2 (Problem 56)

G

O D F

E

Figure 2.9 Similar

triangles (Problem 56)
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Solution Assume that discriminant is 23, i.e., b2 � 4ac ¼ 23.

Adding 2 to both sides and moving 4ac to the right-hand side, we rewrite it as

b2 � 25 ¼ 4ac� 2

Applying the difference of squares to the left side and factoring the right side, we

have

b� 5ð Þ bþ 5ð Þ ¼ 2 2ac� 1ð Þ ð2:7Þ

The two factors on the left-hand side differ by 10 and they are either both odd or

both even. If the factors are odd, then the equation has no solution.

If the factors are even, then the left side is divisible by 4. The right side, in turn, is

even, but not divisible by 4. Equation (2.7) has no solution in integers. Since (2.7)

has no solution, its discriminant cannot be 23.

Answer No.

Problem 58 (USSROlympiad 1986) It is known that the roots of the equation

x2 þ axþ 1 ¼ bare natural numbers. Prove thata2 þ b2 is not a prime number.

Proof 1 (Using Vieta’s Theorem)

Let us rewrite the equation as

x2 þ axþ 1� b ¼ 0

By Vieta’s Theorem we have

x1 � x2 ¼ 1� b

x1 þ x2 ¼ �a

Solving for a and b

b ¼ 1� x1 � x2
a ¼ � x1 þ x2ð Þ
b2 ¼ 1� x1 � x2ð Þ2
a2 ¼ x1 þ x2ð Þ2
a2 þ b2 ¼ x1

2 þ x2
2 þ 1þ x1x2ð Þ2

¼ x2
2 1þ x21
� 	þ 1þ x21

� 	
¼ 1þ x21
� 	

1þ x22
� 	

Because the sum of the squares is a product of two quantities, it is a composite

number. Therefore, it is not prime.
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Proof 2 (Using complex conjugate polynomials)

Consider p xð Þ ¼ x2 þ axþ 1� bð Þ, then

p ið Þ � p �ið Þ ¼ i2 þ a � iþ 1� b
� 	 � �ið Þ2 � aiþ 1� b

� �
¼ ai� bð Þ � �ai� bð Þ
¼ a2 þ b2

ð2:8Þ

On the other hand, if x1, x2 are natural roots of the quadratic equation

x2 þ axþ 1� b ¼ 0, then the quadratic function can be written as

p xð Þ ¼ x� x1ð Þ x� x2ð Þ

Substituting x ¼ i, x ¼ �i, we obtain the following:

p ið Þ ¼ i� x1ð Þ � i� x2ð Þ
p �ið Þ ¼ �i� x1ð Þ � �i� x2ð Þ

)
)

p ið Þp �ið Þ ¼ �x1 þ ið Þ �x1 � ið Þ �x2 þ ið Þ �x2 � ið Þ
p ið Þ � p �ið Þ ¼ x21 þ 1

� 	
x22 þ 1
� 	 ð2:9Þ

Equating the right sides of (2.8) and (2.9), we obtain that

a2 þ b2 ¼ 1þ x21
� 	 � 1þ x22

� 	
Because the sum of the squares is the product of two numbers, each different

from one, the sum of the squares cannot be a prime number.

2.3.1 Special Products

Many equations in two or three variables that are subject to solution over the set of all

integers can be essentially simplified if we apply factoring. In order to refresh your

factoring skills I want to give you the most important formulas called special products.

A Difference of Squares

A difference of squares can be factored as

u2 � v2 ¼ u� vð Þ uþ vð Þ ð2:10Þ

whatever we have for u and v.
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Example x� 1ð Þ2 � 9 ¼ x� 1ð Þ2 � 32 ¼ x� 1� 3ð Þ x� 1þ 3ð Þ ¼ x� 4ð Þ xþ 2ð Þ
Here u¼ x� 1 and v¼ 3.

Many students now are very addicted to a calculator. If they do not have a

calculator, they panic and start using their cell phone calculator. Most of them still

know their multiplication tables and squares of simple numbers. So I tell the

following story: Suppose you like windsurfing and, seeking the best wave, you

come to a Pacific island X where some aborigines are still practicing cannibalism.

You appear to be in a small village of these “cruel” people who are preparing to eat

you. The only thing that can save your life is to give them the answer right away:

What is 3999*4001?

Students who do not know the difference of squares formula would not get out

alive . . ..
Those who notice that

3999 � 4001 ¼ 4000� 1ð Þ 4000þ 1ð Þ

would get the answer immediately as

4000ð Þ2 � 1 ¼ 16000000� 1 ¼ 15999999:

Of course, the story is a joke. However, formulas above and those below are created

and proven for us in order to make our mathematical experience a more pleasant

journey. By the way, this formula for the difference of squares was known to

ancient Greeks, who used geometric approach for its proof.

Proof Consider a big square ABCD with side a and a small red square EBGF with

side b (see Figure 2.10).
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a 2-b 2=(a -b)a+(a -b)b=(a-b)(a+b)

AB=BC=AD=DC=a
EB=BG=EF=FG=b
AE=a-b
GC=FH=a-b
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D C

F
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G

H

Figure 2.10 Big and small squares
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If we cut out the red square, we will obtain a geometric figure containing a green

rectangle with sides (a� b) and a, and the yellow rectangle with sides b and again

(a� b). In order to find the sum of the areas of both rectangles we can rearrange

them in such a way that they will touch each other by the side of the same length

(a� b). Thus, a new rectangle will be formed with one side (a� b) and the other

(a+ b), the area of which is (a� b)(a+ b) (see Figure 2.11).
By taking the area of b2 away from the larger area of a2, or in other words,

finding a2 � b2, we have found that the area is also equal to a� bð Þ aþ bð Þ. Done.

Difference of Cubes

u3 � v3 ¼ u� vð Þ u2 þ uvþ v2
� 	 ð2:11Þ

Sum of Cubes

u3 þ v3 ¼ uþ vð Þ u2 � uvþ v2
� 	 ð2:12Þ

Difference of nth Powers

un � vn ¼ u� vð Þ un�1 þ un�2vþ un�3v2 þ . . .þ u2vn�3 þ uvn�2 þ vn�1
� 	

ð2:13Þ

If n¼ 2k (an even power), then
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Figure 2.11 Difference of squares
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un � vn ¼ u2k � v2k ¼ uk � vk
� 	

uk þ vk
� 	

¼ u2ð Þk � v2ð Þk ¼ u2 � v2ð Þ � p 2k�2ð Þ
¼ u� vð Þ uþ vð Þ � p 2k�2ð Þ

ð2:14Þ

where p 2k�2ð Þ is a polynomial of 2k � 2ð Þ degree.
This formula plays a very important role in solving problems on integers and

divisibility.

A Trinomial Square

u2 þ 2uvþ v2 ¼ uþ vð Þ2
u2 � 2uvþ v2 ¼ u� vð Þ2 ð2:15Þ

Example x2 þ 1� 2x ¼ x2 � 2x � 1þ 12 ¼ x� 1ð Þ2.

Factoring Quadratic Function

Any quadratic equation with zeros x1 and x2 can be factored as

ax2 þ bxþ c ¼ a x� x1ð Þ x� x2ð Þ

Example Factor x4 � 2x2 � 8.

Let u ¼ x2; then the given function becomes quadratic with respect to u:

u2 � 2u� 8 ¼ u� 4ð Þ uþ 2ð Þ ¼ x2 � 4
� 	

x2 þ 2
� 	 ¼ x� 2ð Þ xþ 2ð Þ x2 þ 2

� 	
To complete factoring we applied the formula of the difference of squares

as well.

Some problems involving numbers contain exponential expressions, so we have

to list two of the most useful properties of exponents. We utilized these formulas

earlier in this chapter.

Cube of a Binomial

aþ bð Þ3 ¼ a3 þ 3a2bþ 3ab2 þ b3 ¼ a3 þ b3 þ 3ab aþ bð Þ
a� bð Þ3 ¼ a3 � 3a2bþ 3ab2 � b3 ¼ a3 � b3 � 3ab a� bð Þ

ð2:16Þ
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Problem 59 Prove that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6þ

ffiffiffiffiffiffi
847
27

q
3

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6�

ffiffiffiffiffiffi
847
27

q
3

r
is a rational number.

Proof Assume that x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6þ

ffiffiffiffiffiffiffiffi
847

27

r
3

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6�

ffiffiffiffiffiffiffiffi
847

27

r
3

s
and let us cube both sides

using the formula above:

x3 ¼ 12þ 3x �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
62 � 847

27
:

3

r

This can be written as x3 � 5x� 12 ¼ 0.

By the Rational Zero Theorem, we can find that x¼ 3 is a zero of the equation.

Continuing factoring it, we get

x3 � 5x� 12 ¼ x� 3ð Þ x2 þ 3xþ 4
� 	 ¼ 0

The second factor does not have any real zeroes.

Therefore, x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6þ

ffiffiffiffiffiffiffiffi
847

27

r
3

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6�

ffiffiffiffiffiffiffiffi
847

27

r
3

s
¼ 3 is a rational number.

Useful Formula

a3 þ b3 þ c3 � 3abc ¼ aþ bþ cð Þ a2 þ b2 þ c2 � ab� bc� ac
� 	 ð2:17Þ

Factoring of an Exponent

anþm ¼ an � am
anð Þm ¼ an�m

ð2:18Þ

Example 42x � 1 ¼ 4xð Þ2 � 12 ¼ 4x � 1ð Þ 4x þ 1ð Þ.
Doing this problem, we used properties of exponents and again a difference of

squares.

Factoring the Sum of Squares

acþ bdð Þ2 þ ad � bcð Þ2 ¼ a2 þ b2
� 	

c2 þ d2
� 	 ð2:19Þ
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Please prove this formula yourself. The usage of this formula is very importantwhen

you have to rewrite a number as sum of squares of other numbers. Though this formula

is true for any a, b, c, and d, not every integer can be written as a sum of two squares.

Homogeneous Polynomials

If a polynomial f(x,y) possesses the property f tx; tyð Þ ¼ tn f x; yð Þ for some natural

number n, then f(x,y) is said to be a homogeneous polynomial of degree n in two

variables x, y.

For example, f x; yð Þ ¼ x3 þ 2x2yþ y3 is a homogeneous polynomial of degree 3

because

f tx; tyð Þ ¼ txð Þ3 þ 2 txð Þ2 tyð Þ þ tyð Þ3 ¼ t3 x3 þ 2x2yþ y3
� 	 ¼ t3 f x; yð Þ

There exists a general approach of factoring homogeneous polynomials as

f x; yð Þ ¼ yn f 1; uð Þ, where u ¼ x

y
ð2:20Þ

Let us consider a homogeneous polynomial of the 4th degree:

f x; yð Þ ¼ 6x4 þ 25x3yþ 12x2y2 � 25xy3 þ 6y4 ð2:21Þ

Next, we apply (2.20) to it. For this we factor out y4:

f x; yð Þ ¼ y4 6
x

y

� �4

þ 25
x

y

� �3

þ 12
x

y

� �2

� 25
x

y
þ 6

" #

¼ y4 6u4 þ 25u3 þ 12u2 � 25uþ 6½ �
ð2:22Þ

If polynomial (2.21) can be factored, then the polynomial within brackets must have

rational zeroes. Using the Rational Zero Theorem we find u¼�2, u¼�3, u¼ 1/2,

and u¼ 1/3. Now the polynomial (2.22) can be factored as

f x; yð Þ ¼ y4 uþ 3ð Þ uþ 2ð Þ 3u� 1ð Þ 2u� 1ð Þ½ �
¼ y uþ 3ð Þ½ � y uþ 2ð Þ½ � y 3u� 1ð Þ½ � y 2u� 1ð Þ½ �

Replacing u¼ x/y into above, we obtain that f x; yð Þ ¼ xþ 3yð Þ xþ 2yð Þ
3x� yð Þ 2x� yð Þ.
Remark I have to mention here that some homogeneous polynomials of second

degree can be factored mentally using FOIL as

ax2 þ bxyþ cy2 ¼ mxþ pyð Þ nxþ syð Þ;
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if we can find m, n, p, and s such that mn¼ a, ps¼ c, and ms+ pn¼ b

Thus, 15x2 � 11xyþ 2y2 ¼ 5x� 2yð Þ 3x� yð Þ, because
5 � 3 ¼ 15, �2ð Þ �1ð Þ ¼ 2 and 5 � �1ð Þ þ �2ð Þ � 3 ¼ �11:

Special Property of Homogeneous Equations of Even Degree

For a homogeneous equation of second, fourth, sixth, and so on (any even degree) if

(a, b) is a solution, then (�a,�b) will be a solution as well. From the definition of a

homogeneous polynomial we find that f �a, � bð Þ ¼ �1ð Þn � f a; bð Þ: But if n¼ 2k
(even degree), then f(�a, �b)¼ f(a, b).

Therefore, if (a, b) is a solution, then (�a, �b) is another solution.

Summary Every time you have a problem in integers, first try to factor it. For this,

you have to be able to recognize a special product or rewrite the given expression

such that you can use a special product.

Problem 60 (Sophie Germain) Prove that n4 þ 4 cannot be prime, if n> 1.

Proof Let us show that this number can be factored. Thus,

n4 þ 4 ¼ n4 þ 4� 4n2 þ 4n2 ¼ n4 þ 4n2 þ 4� 2nð Þ2 ¼ n2 þ 2ð Þ2 � 2nð Þ2

¼ n2 þ 2nþ 2ð Þ n2 � 2nþ 2ð Þ ¼ nþ 1ð Þ2 þ 1
� �

n� 1ð Þ2 þ 1
� �

Therefore this number is a product of two other numbers and of course, it cannot be

prime.

Problem 61 DeBouvelles (1509) claimed that one or both of (6n + 1) and
(6n� 1) are primes for all positive integers. Show that there are infinitely

many n such that (6n� 1) and (6n + 1) are composite.

Solution Because the sum and the difference of cubes can be factored, let

n ¼ 36m3.

6nþ 1 ¼ 6 � 36m3 þ 1 ¼ 6mð Þ3 þ 13 ¼ 6mþ 1ð Þ 36m2 � 6mþ 1ð Þ
6n� 1 ¼ 6 � 36m3 � 1 ¼ 6mð Þ3 � 13 ¼ 6m� 1ð Þ 36m2 þ 6mþ 1ð Þ

For example,

m ¼ 1, n ¼ 36, 6n� 1 ¼ 215 ¼ 5 � 43; 6nþ 1 ¼ 217 ¼ 7 � 31
m ¼ 2, n ¼ 288, 6n� 1 ¼ 1727 ¼ 11 � 15 � 7; 6nþ 1 ¼ 1729 ¼ 7 � 13 � 19
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There are other possible values for n that allow us to factor (6n + 1) or (6n� 1).

For example, if n ¼ 6k2, k 2 N ) 6n� 1 ¼ 36k2 � 1 ¼ 6k � 1ð Þ � 6k þ 1ð Þ.
Some such numbers are shown below. Note that the above substitution will not

work for 6nþ 1ð Þ:

k ¼ 1, n ¼ 6, 6n� 1 ¼ 35 ¼ 5 � 7
k ¼ 2, n ¼ 24, 6n� 1 ¼ 143 ¼ 11 � 13
k ¼ 3, n ¼ 54, 6n� 1 ¼ 323 ¼ 17 � 19

Problem 62 (American Mathematical Monthly 1977) The difference of two

consecutive cubes is a perfect square of some number. Prove that this number

can be represented as the sum of two consecutive squares.

Proof Let us consider the difference of two consecutive cubes:

xþ 1ð Þ3 � x3 ¼ 3x2 þ 3xþ 1 ¼ y2

Here y is unknown and we must prove that it can be written as the sum of two

consecutive squares. Multiply both sides by 4:

4 3x2 þ 3xþ 1ð Þ ¼ 4y2

12x2 þ 12xþ 4 ¼ 4y2

Completing the square on the left and moving one to the right-hand side:

3 4x2 þ 4xþ 1ð Þ þ 1 ¼ 4y2

3 2xþ 1ð Þ2 ¼ 4y2 � 1

3 2xþ 1ð Þ2 ¼ 2y� 1ð Þ 2yþ 1ð Þ

Because (2y� 1,2y+ 1) are relatively prime, we have two possible cases:

Case 1

2y� 1 ¼ 3m2, n;mð Þ ¼ 1

2yþ 1 ¼ n2, 4y2 ¼ n2 þ 3m2;

Case 2

2y� 1 ¼ m2, n;mð Þ ¼ 1

2yþ 1 ¼ 3n2, 4y2 ¼ 3n2 þ m2;

Of course, m and n are odd integers.
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Case 1 is not possible because it leads to the equation

n2 � 3m2 ¼ 2

which does not have a solution in integers (the square of any number divided by

3 leaves a remainder of 0 or 1, not 2).

From case 2 we have

2y� 1 ¼ m2, n;mð Þ ¼ 1

2y ¼ m2 þ 1

2y ¼ 2k þ 1ð Þ2 þ 1

2y ¼ 4k2 þ 4k þ 2 ¼ 2 k2 þ 2k þ 1þ k2
� 	

2y ¼ 2 k þ 1ð Þ2 þ k2
h i

y ¼ k þ 1ð Þ2 þ k2

The last formula represents y as the sum of two consecutive squares.

Problem 63 Find all integers x and y that satisfy the equation xy¼ x+ y.

Solution Let us rewrite the equation in the form

xy� x� yþ 1 ¼ 1

Factoring by grouping the left-hand side we have

x y� 1ð Þ � y� 1ð Þ ¼ 1

y� 1ð Þ x� 1ð Þ ¼ 1

We have obtained a very interesting situation. Because a number on the right side is

one, we have only two opportunities.

If y� 1¼ 1 and x� 1¼ 1, then y¼ 2 and x¼ 2.

If y� 1¼�1 and x� 1¼�1, then x¼ 0 and y¼ 0.

Answer (0, 0) and (2, 2).

Problem 64 Find all primes x and y (positive and negative) that satisfy the

equation 2x3 þ xy� 7 ¼ 0.
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Solution This problem may look unusual, because it has one equation and two

variables x and y. Of course, you noticed that 7 is a prime number. Using ideas from

the previous problem, we can see the advantage of moving 7 to the right-hand side

of the equation

2x3 þ xy ¼ 7

The left side of this equation can be factored as

x 2x2 þ y
� 	

The right side (number 7) in turn can be factored as follows:

7 ¼ 1	 7

7 ¼ 7	 1

7 ¼ �1ð Þ 	 �7ð Þ
7 ¼ �7ð Þ 	 �1ð Þ

Next, we have four possible cases for numbers x and y that are reducible to four

systems:

Case 1
x ¼ 1

2x2 þ y ¼ 7

(
x¼ 1, y¼ 5.

Case 2
x ¼ 7

2x2 þ y ¼ 1

(
x¼ 7, y¼�97.

Case 3
x ¼ �1

2x2 þ y ¼ �7

(
x¼�1, y¼�9.

Case 4
x ¼ �7

2x2 þ y ¼ �1

(
x¼�7, y¼�99.

We find four ordered pairs of (x,y) that satisfy the given equation, but among

them only the pair of primes (7, �97) x¼ 7 and y¼�97 satisfies the condition of

the problem.

Answer x¼ 7 and y¼�97.

Problem 65 Find all integers n and m, such that nm � 9, that satisfy the

equation 2mnþ n ¼ 14.
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Solution Factoring the given equation gives us

(2m+ 1)n¼ 14

Since (2m + 1) is an odd number, n must be even. This can be written as

1.
2mþ 1 ¼ 1

n ¼ 14

(
, m ¼ 0, n ¼ 14, nm ¼ 0 not a solution

2.
2mþ 1 ¼ 7

n ¼ 2

(
, m ¼ 3, n ¼ 2, mn ¼ 6 < 9 not a solution

3.
2mþ 1 ¼ �7

n ¼ �2

(
, m ¼ �4, n ¼ �2, nm ¼ 8 < 9 not a solution

4.
2mþ 1 ¼ �1

n ¼ �14

(
, m ¼ �1, n ¼ �14, nm ¼ 14 � 9 true.

Answer m¼�1 and n¼�14.

In the following problem, we will learn how, by adding an expression that is

equal to zero, we are able to complete a square or cube.

Problem 66 Assume that a > 1 is the root of x3 � x� 1 ¼ 0. Evaluateffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a2 � 4a3

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3a2 þ 4aþ 23
p

.

Solution Since a3 � a� 1 ¼ 0, by adding or subtracting it inside the radicals we

will not change anything! We can then use the cube of difference and cube of sum

formulas:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a2 � 4a

3
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a2 � 4a� a3 � a� 1ð Þ3

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3aþ 3a2 � a3

3
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� að Þ33

q
¼ 1� affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3a2 þ 4aþ 2þ a3 � a� 1ð Þ3
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ að Þ33

q
¼ 1þ a

Therefore adding the left and the right sides, we getffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a2 � 4a3

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3a2 þ 4aþ 23
p ¼ 1� aþ 1þ a ¼ 2:

Answer 2.
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2.3.2 Newton’s Binomial Theorem

You are probably familiar with Pascal’s triangle (Blaisé Pascal, French mathema-

tician, 1623–1662) that allows one to raise (x+ y) or (x� y) to an integer power and
find appropriate coefficients of the expansion (Figure 2.12).

Thus after making a Pascal triangle as above, and considering that the starting

1 belongs to a zero row and selecting, for example, row 5, we can evaluate the fifth

power of (x+ y):

xþ yð Þ5 ¼ 1 � x5 þ 5 � x4yþ 10 � x3y2 þ 10 � x2y3 þ 5 � xy4 þ 1 � y5

In this way you could find coefficients for any other power of (x+ y) or (x� y).
However, it is not a very efficient way if the power is greater than 10. In order to

expand any power of (x+ y), we will introduce Newton’s Binomial Theorem:

uþ vð Þn ¼
Xn
k¼0

n!

k! n� kð Þ!u
n�kvk

¼ un þ nun�1vþ n n� 1ð Þ
2

un�2v2 þ . . .þ nuvn�1 þ vn
ð2:23Þ

This identity is known as Newton’s Binomial Theorem because it was first stated by

Isaac Newton, and (x+ y) is a “binomial,” an expression with two terms.

The binomial coefficient in the formula above is often denoted by the symbol

Ck
n ¼ n

k

� �
(pronounced “n choose k”) and defined for nonnegative integers n and

k by formulas

n
k

� �
¼ n!

k! n� kð Þ! , k ¼ 0, 1, . . . , n: ð2:24Þ

Here and below we introduce the factorial of a nonnegative integer n, denoted by

n ! that is the product of all positive integers less than or equal to n.
The factorial can be written as

n! ¼ 1 � 2 � 3 � . . . � n� 1ð Þ � n

Figure 2.12 Pascal’s

triangle
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Zero factorial equals one (0! ¼ 1) and 1! ¼ 1. We can continue as follows:

2! ¼ 1 � 2 ¼ 2

3! ¼ 1 � 2 � 3 ¼ 2! � 3 ¼ 6

4! ¼ 1 � 2 � 3 � 4 ¼ 3! � 4 ¼ 6 � 4 ¼ 24

5! ¼ 4! � 5 ¼ 24 � 5 ¼ 120

. . .

n! ¼ n� 1ð Þ!n

Each time we use formula (2.24) we try to factor the factorial in the numerator so

that one of the factors would match with a factorial in the denominator. Because
n!

k! n� kð Þ! ¼
n!

n� kð Þ! n� n� kð Þð Þ!, we also can state the following property of the
binomial coefficients:

Ck
n ¼ Cn�k

n ð2:25Þ

By applying formula (2.24) directly, it is easy to show that

Cn�k
n ¼ n

n� k

� �
¼ Ck

n ¼ n
k

� �
¼ n!

k! n� kð Þ!

Let us evaluate some of the binomial coefficients:

C1
n ¼

n!

1! n� 1ð Þ! ¼
n� 1ð Þ!n
n� 1ð Þ! ¼ n

C2
n ¼

n!

2! n� 2ð Þ! ¼
n� 2ð Þ! n� 1ð Þn

2 n� 2ð Þ! ¼ n� 1ð Þn
2

Cn�1
n ¼ n!

n� 1ð Þ! n� n� 1ð Þð Þ! ¼
n� 1ð Þ!n
n� 1ð Þ! � 1 ¼ n

If you have taken a probability course or even introductory statistics, then you are

familiar with binomial coefficients and their properties. In statistics, when someone

selects a simple random sample of size n from a population of size N, the total

number of possible samples can be found using the formula

Cn
N ¼ N

n

� �
¼ N!

n! N � nð Þ!

Formula (2.23) can also be rewritten for the nth power of the difference of u and v,
by placing “minus” before each odd power of v. For example, if v¼ 1 and n¼ 100,

we obtain the following:
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u� 1ð Þ100 ¼ u100 � 100u99 þ 100 � 99
2

u98 � . . .� 100uþ 1

Problem 67 Show that

n
k � 1

� �
þ n

k

� �
¼ nþ 1

k

� �
, k ¼ 1, 2, . . . n ð2:26Þ

Proof The proof can be done directly by applying formula (2.24):

n

k � 1

 !
þ n

k

 !
¼ n!

k � 1ð Þ! n� k þ 1ð Þ!þ
n!

kð Þ! n� kð Þ! ¼
n!k þ n! n� k þ 1ð Þ

kð Þ! n� k þ 1ð Þ!

¼ n! nþ 1ð Þ
kð Þ! n� k þ 1ð Þ! ¼

nþ 1ð Þ!
kð Þ! nþ 1� kð Þ! ¼

nþ 1

k

 !

Next, let us show that Newton’s formula is true.

Theorem 21 For any nonnegative number n, the following statement is valid:

1þ xð Þn ¼
Xn
k¼0

n
k

� �
xk ð2:27Þ

This statement can be deduced to

aþ bð Þn ¼
Xn
k¼0

n
k

� �
akbn�k for any a, b: ð2:28Þ

Proof We will conduct the proof of (2.27) by induction.

1. Let n¼ 1. 1þ xð Þ1 ¼
X1
k¼0

1

k

� �
xk ¼ 1

0

� �
x0 þ 1

1

� �
x1 ¼ 1þ x.

2. Assume that (2.27) is true for n¼ t, t � 1, i.e.,

1þ xð Þt ¼
Xt
k¼0

t
k

� �
xt

¼ t
0

� �
þ t

1

� �
xþ t

2

� �
x2 þ . . .þ t

t� 1

� �
xt�1 þ t

t

� �
xt ð2:29Þ

3. Let us show that (2.27) is also true for n¼ t+ 1, i.e., 1þ xð Þtþ1 ¼
Xt¼1

k¼0

tþ 1

k

� �
xk
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1þ xð Þtþ1 ¼ 1þ xð Þ 1þ xð Þt

¼ 1þ xð Þ
Xt
k¼0

t

k

� �
xt

" #

¼ 1þ xð Þ � t

0

� �
þ t

1

� �
xþ t

2

� �
x2 þ . . .þ t

t� 1

� �
xt�1 þ t

t

� �
xt

� �

Above we substituted (2.29) into the formula because we have assumed it to be

true. Using distributive law we will obtain the following:

1þ xð Þtþ1 ¼ t

0

 !
þ t

1

 !
xþ t

2

 !
x2 þ . . .þ t

t� 1

 !
xt�1 þ t

t

 !
xt

þ t

0

 !
xþ t

1

 !
x2 þ t

2

 !
x3 þ . . .þ t

t� 1

 !
xt þ t

t

 !
xtþ1:

Next, we will combine like terms and use the property of binomial coefficients

such as (2.26) and the formulas below:

C0
n ¼

n

0

� �
¼ C0

nþ1 ¼
nþ 1

0

� �
¼ C0

m ¼ m

0

� �
¼ 1

Cn
n ¼ n

n

� �
¼ Cnþ1

nþ1 ¼
nþ 1

nþ 1

� �
¼ Cm

m ¼ m

m

� �
¼ 1

1þ xð Þtþ1 ¼ tþ 1

0

 !
þ t

0

 !
þ t

1

 ! !
xþ t

1

 !
þ t

2

 ! !
x2 þ . . .

þ t

t� 1

 !
þ t

t

 ! !
xt þ tþ 1

tþ 1

 !
xtþ1

¼ tþ 1

0

 !
þ tþ 1

1

 !
xþ tþ 1

2

 !
x2 þ . . .þ tþ 1

tþ 1

 !
xtþ1

¼
Xt
k¼0

tþ 1

k

 !
xk:

Because we have shown it to be true for n ¼ tþ 1, by induction we have proven

that it is true for all n 2 N.
In order to prove (2.28), we will use a similar induction approach, but because

we understand now how to proceed, we will use only sigma notation.

Problem 68 Prove that aþ bð Þn ¼
Xn
k¼0

n
k

� �
akbn�k.
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Proof

1. For n¼ 1 the statement is true (please check yourself).

2. Assume that A(n) is true and that aþ bð Þn ¼
Xn
k¼0

n
k

� �
akbn�k.

3. Let us show that A(n+ 1) is also true:

aþ bð Þnþ1 ¼ aþ bð Þ aþ bð Þn ¼ aþ bð Þ
Xn
k¼0

n

k

 !
akbn�k

¼
Xn
k¼0

n

k

 !
akþ1bn�k þ

Xn
k¼0

n

k

 !
akbn�kþ1

Next, we will do a little “trick” by introducing a new variable j¼ k + 1.
Then k¼ j� 1, and if k is changing between 0 and n, then j will change between 1

and n+ 1. Now the summation in our two sums will use this new index j:

¼
Xnþ1

j¼1

n

j� 1

 !
a jbnþ1� j þ

Xn
j¼0

n

j

 !
a jbn� jþ1

¼
Xnþ1

j¼1

n

j� 1

 !
a jbnþ1� j þ

Xn
j¼0

n

j

 !
a jbnþ1� j

Combining like terms ambnþ1�m from j¼ 1 to j¼ n and applying formula (2.26)

again we complete the proof:

¼
Xn
j¼1

n

j� 1

 !
þ n

j

 ! !
a jbnþ1� j þ n

0

 !
a0bnþ1�0 þ n

n

 !
anþ1bnþ1� nþ1ð Þ

¼
Xn
j¼1

nþ 1

j

 !
a jbnþ1� j þ nþ 1

0

 !
a0bnþ1�0 þ nþ 1

nþ 1

 !
anþ1bnþ1� nþ1ð Þ

¼
Xnþ1

j¼0

nþ 1

j

 !
a jbnþ1� j ¼ aþ bð Þnþ1:

The proof is completed.

Next, we will discuss Pascal’s triangle and other properties of the binomial

coefficients.

Let us expand (2.28):

aþ bð Þn ¼ an þ nan�1bþ n n� 1ð Þ
2

an�2b2 þ . . .þ n n� 1ð Þ
2

a2bn�2

þ nabn�1 þ bn ð2:30Þ
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We notice that the coefficients of the terms are symmetric with respect to the

“center” of the formula. Thus, going from the ends to the center of the formula,

we have 1 and 1, n and n, etc. This symmetry follows from (2.25).

In high school, many students learn Pascal’s triangle, which has already been

mentioned above. Using Figure 2.12 let us see how some properties of the binomial

coefficients can be visualized from it.

1. The numbers in each row are the coefficients of xþ yð Þn.
2. In each row, the numbers symmetric with respect to the center of the row are the

same. This is true because Ck
n
¼ Cn�k

n .

3. The numbers in each consecutive row can be obtained from the previous one by

the ruleCk
n þ Ckþ1

n ¼ Ckþ1
nþ1. Thus number 10 in row 5 is the sum of 4 and 6 in the

previous row 4.

Lemma 1 The sum of all binomial coefficients in the row corresponding to
power n equals 2n.

Proof Thus, if n¼ 1 we obtain 1 + 1¼ 2, if n¼ 2 we have 1 + 2 + 1¼ 4 ¼ 22, for

n¼ 3 we get 1 + 3 + 3 + 1¼ 8 ¼ 23, etc.

Let us prove these properties of the binomial coefficients, i.e.,

Xn
k¼0

n
k

� �
¼ n

0

� �
þ n

1

� �
þ n

2

� �
þ . . .þ n

n� 1

� �
þ n

n

� �
¼ 2n: ð2:31Þ

The proof of this statement is simple.

Consider formula (2.27) again:

1þ xð Þn ¼
Xn
k¼0

n
k

� �
xk

If this formula is correct, then it is correct for any value of x. Let x be 1, then the

answer follows immediately:

1þ 1ð Þn ¼ 2n ¼
Xn
k¼0

n
k

� �

Remark Though Newton’s binomial formula can be used for any power of n, it is
useful to memorize some often-used formulas without deriving them all the time;

no need to reinvent the wheel each time you need one. This is why some rules and

formulas I recommend remembering by heart.
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Problem 69 Find m and n if the following is true:

nþ 1

mþ 1

� �
:

nþ 1

m

� �
:

nþ 1

m� 1

� �
¼ 5 : 5 : 3

Solution On one hand,

nþ 1

mþ 1

� �
:

nþ 1

m

� �
¼ nþ 1ð Þ!

mþ 1ð Þ! n� mð Þ! �
m! � n� mþ 1ð Þ!

nþ 1ð Þ! ¼ n� mþ 1

mþ 1
¼ 5

5
¼ 1:

On the other hand,

nþ 1

m

� �
:

nþ 1

m� 1

� �
¼ nþ 1ð Þ!

mð Þ! n� mþ 1ð Þ! �
m� 1ð Þ! � n� mþ 2ð Þ!

nþ 1ð Þ! ¼ n� mþ 2

m
¼ 5

3
:

Answer n¼ 6, m¼ 3.

Problem 70 Evaluate the constant term of the expansion: 1þ xþ 1

x

� �8

:

Solution Let u ¼ xþ 1
x, then the given formula can be rewritten as

1þ uð Þ8 ¼ 1þ 8uþ 8

2

� �
u2 þ 8

3

� �
u3 þ . . .þ 8

7

� �
u7 þ u8; where

uk ¼ xþ 1

x

� �k

¼ xk þ kxk�2 þ . . .þ k
m

� �
xk�2m þ . . .þ 1

xk
:

We can see that uk will have zero power whenever k¼ 2m. There are four

possible pairs when this is true for k and m: (k,m) : {(2, 1), (4, 2), (6, 3), (8, 4)}.
Thus the constant term is

1þ 8

2

� �
� 2

1

� �
þ 8

4

� �
� 4

2

� �
þ 8

6

� �
� 6

3

� �
þ 8

8

� �
8

4

� �
¼ 1þ 56þ 420þ 560þ 70 ¼ 1107:

Answer 1107.
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2.4 Biquadratic Equations: Special Substitutions

Some equations can be simplified to a quadratic type equation if we introduce a new

variable.

Example 1 Solve 4x6 � 13x3 þ 9 ¼ 0.

By introducing a new variable y ¼ x3 x ¼ ffiffiffi
y3

p Þ�
, the equation will become a

quadratic in y:

4y2 � 13yþ 9 ¼ 0

y1 ¼ 1, y2 ¼
9

4

x1 ¼ 1, x2 ¼
ffiffiffi
9

4

3

r

Example 2 Solve 15x
2
3 þ 11x

1
3 � 26 ¼ 0.

Denote y ¼ x
1
3 , x > 0 x ¼ y3ð Þ.

15y2 þ 11y� 26 ¼ 0

y1 ¼ 1, y2 ¼ �26

15
:

x ¼ 1

Here we had to remember that rational exponent function y ¼ x
1
3 is defined only for

positive values of the independent variable. This is why we have one answer, x ¼ 1.

For some equations, a good substitution can be not that obvious and we need to

learn how to recognize it. For example, if an equation contains the terms like
a

x
;
x

b
raised to some power, you can try to introduce a new variable as

y ¼ a

x
� x

b
: ð2:32Þ

Then for example,

y2 ¼ a

x
� x

b

� �2
¼ a2

x2
� 2

a

b
þ x2

b2

a2

x2
þ x2

b2
¼ y2 � 2

a

b

Problem 71 Solve the equation
x2

3
þ 48

x2
¼ 10

x

3
� 4

x

� �
.

2.4 Biquadratic Equations: Special Substitutions 99



Solution We can try to introduce a new variable using (2.32):

y ¼ x

3
� 4

x
ð2:33Þ

Squaring both sides of the equation above we obtain

y2 ¼ x

3
� 4

x

� �2

¼ x2

9
� 8

3
þ 16

x2
, which can be written as

y2 þ 8

3
¼ x2

9
þ 16

x2

Multiplying both sides by 3 we have

3y2 þ 8 ¼ x2

3
þ 48

x2

This we can substitute back into the original equation and get the following:

3y2 þ 8 ¼ 10y or 3y2 � 10yþ 8 ¼ 0

This quadratic equation in variable y can be solved easily and it has the

following roots: y1 ¼ 2 and y2 ¼ 4
3

Next, we have to solve (2.33) for each y value.

1.
x

3
� 4

x
¼ 2: and 2.

x

3
� 4

x
¼ 4

3
:

The first equation is equivalent to a quadratic equation:

x2 � 6x� 12 ¼ 0, x 6¼ 0

x1,2 ¼ 3� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 12

p

x1 ¼ 3þ ffiffiffiffiffi
21

p

x2 ¼ 3� ffiffiffiffiffi
21

p

The second equation is equivalent to a quadratic equation:

x2 � 4x� 12 ¼ 0, x 6¼ 0

x3,4 ¼ 2� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 12

p

x3 ¼ 6

x4 ¼ �2

Therefore, the original equation has four real roots.

Answer x ¼ 3þ
ffiffiffiffiffi
21

p
, x ¼ 3�

ffiffiffiffiffi
21

p
, x ¼ 6, x ¼ �2:
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Remark You can argue that the problem could be solved without any substitution if

we multiply both sides of the equation by 3x2. Then the given equation would take

the following polynomial form of the fourth degree x4 � 10x3 þ 120xþ 144 ¼ 0,

and fortunately, by the Rational Zero Theorem, we could find two integer solutions

x¼�2 and x¼ 6. Then by dividing the given polynomial by (x+ 2) and (x� 6) we

would obtain a quadratic equation that would give us two other irrational roots.

I agree that the method introduced in this section is not the only method of solving

the equation given in this particular problem. However, it is always nice to solve a

problem in several ways. In my opinion, learning how some equations can be

simplified is important for developing problem solving skills. Indeed, the more

you know, the better you will be prepared for any math contest. For example, a

similar idea of substitution can be applied to some cubic equations and for solving

symmetric polynomial equations. You will see it soon in the text.

Other types of substitution can be seen in the following problems.

Problem 72 Solve the equation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ 3� 4

ffiffiffiffiffiffiffiffiffiffiffi
x� 1

pp
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ 8� 6

ffiffiffiffiffiffiffiffiffiffiffi
x� 1

pp
¼ 1.

Solution Let us introduce a new variable:

y ¼ ffiffiffiffiffiffiffiffiffiffiffi
x� 1

p � 0, x � 1. Then y2 ¼ x� 1, and x ¼ y2 þ 1.

In terms of the new variable, our equation looks likeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 1þ 3� 4y

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 1þ 8� 6y

p
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y� 2ð Þ2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y� 3ð Þ2

q
¼ 1

Next, we will open each square root as an absolute value:

y� 2j j þ y� 3j j ¼ 1: ð2:34Þ

Wewill solve this equation using the method of intervals. Let us place 2 and 3 on

the number line in increasing order. They divide the number line into three

intervals: y < 2, 2 � y < 3, y � 3. We will solve the modulus equation on each

of these intervals. Thus

1.
y < 2:
2� yþ 3� y ¼ 1

y ¼ 2

∅
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2.
2 � y < 3

y� 2þ 3� y ¼ 1

1 ¼ 1 trueð Þ
y 2 2; 3½ Þ

3.
y � 3

y� 2þ y� 3 ¼ 1

y ¼ 3

Therefore, (2.34) is true on the closed interval y 2 2; 3½ �.
Next, we will find the interval for x. The following is valid:

2 � ffiffiffiffiffiffiffiffiffiffiffi
x� 1

p � 3

4 � x� 1 � 9

5 � x � 10:

Answer x 2 5; 10½ �.
We obtained a very interesting case, because the solution to the equation is

the closed interval and then any real value of x from that interval makes the

equation true. You can check for example x ¼ 6. We need to show thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6þ 3� 4

ffiffiffi
5

pq
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6þ 8� 6

ffiffiffi
5

pq
¼ 1

or that ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 4

ffiffiffi
5

pq
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
14� 6

ffiffiffi
5

pq
¼ 1: ð2:35Þ

At first glance, it does not look right. However, let us complete the square under

each radical, and consider

2� ffiffiffi
5

p� 	2 ¼ 22 � 2 � 2 � ffiffiffi
5

p þ ffiffiffi
5

p� 	2 ¼ 9� 4
ffiffiffi
5

p

3� ffiffiffi
5

p� 	2 ¼ 32 � 2 � 3 � ffiffiffi
5

p þ ffiffiffi
5

p� 	2 ¼ 14� 6
ffiffiffi
5

p

Because
ffiffiffi
5

p
> 2 and

ffiffiffi
5

p
< 3, finally, (2.35) becomes 2� ffiffiffi

5
p�� ��þ 3� ffiffiffi

5
p�� �� ¼ffiffiffi

5
p � 2þ 3� ffiffiffi

5
p ¼ 1.

A similar result can be obtained for any real x 2 5; 10½ �.

Problem 73 Solve the equation

ffiffiffiffiffiffiffiffiffiffiffi
xþ 1

x� 1

r
�

ffiffiffiffiffiffiffiffiffiffiffi
x� 1

xþ 1

r
¼ 3

2
.
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Solution Instead of working with radicals, we can denote

y ¼
ffiffiffiffiffiffiffiffiffiffiffi
xþ 1

x� 1

r
) 1

y
¼

ffiffiffiffiffiffiffiffiffiffiffi
x� 1

xþ 1

r
:

Then the equation can be rewritten as

y� 1
y ¼ 3

2
or 2y2 � 2 ¼ 3y, y > 0:

With the solution y¼ 2. (Note that the second root of the quadratic equation,

y¼�1/2, would not satisfy the original equation domain.)

Next, we will find the corresponding x:ffiffiffiffiffiffiffiffiffiffiffi
xþ 1

x� 1

r
¼ 2

xþ 1

x� 1
¼ 4

xþ 1 ¼ 4x� 4

3x ¼ 5

x ¼ 5

3

Answer x ¼ 5

3
.

Problem 74 Solve the equation x2 þ x� 1ð Þ � x2 þ xþ 1ð Þ ¼ 2.

Solution You can simplify this equation of the 4th degree to a quadratic by making

a substitution of t ¼ x2 þ x
Then the equation becomes

t� 1ð Þ tþ 1ð Þ ¼ 2

t2 � 1 ¼ 2

t1 ¼
ffiffiffi
3

p
, t2 ¼ � ffiffiffi

3
p

x2 þ x ¼ ffiffiffi
3

p
or x2 þ x ¼ � ffiffiffi

3
p

Only the first equation leads to real solutions in x:

x2 þ x� ffiffiffi
3

p ¼ 0

x ¼ �1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

ffiffiffi
3

pp
2

or x ¼ �1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

ffiffiffi
3

pp
2
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Answer x1,2 ¼ �1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

ffiffiffi
3

pp
2

.

Remark If you tried to solve this equation directly without recognizing an appro-

priate substitution you would get the following polynomial equations of the fourth

degree: x4 þ 2x3 þ x2 � 3 ¼ 0.

You would see that there are no integer solutions to this equation because

numbers 1, �1, 3, and �3 do not make this polynomial zero. However, if you

rewrite it as x4 þ 2x3 þ x2 ¼ 3, you could notice a trinomial square on the left and

then the solution is similar to the previous one:

x2 þ xð Þ2 ¼ 3

x2 þ x ¼ � ffiffiffi
3

p
, etc:

Problem 75 Solve the equation 4x þ 2xþ2 þ 7 ¼ p� 4�x � 2 � 21�x.

Solution Let us rewrite this equation in the following form:

4x þ 1

4x
þ 4 � 2x þ 1

2x

� �
þ 7� p ¼ 0

Denote

y ¼ 2x > 0

Then y2 ¼ 4x, 1
y ¼ 2�x;, etc.

In terms of the new variables our equation becomes

y2 þ 1

y2
þ 4 � yþ 1

y

� �
þ 7� p ¼ 0 ð2:36Þ

It is natural to introduce another variable

z ¼ yþ 1

y
ð2:37Þ

from which

z2 ¼ y2 þ 2þ 1

y2

y2 þ 1

y2
¼ z2 � 2

Now instead of solving a polynomial equation of 4th degree in variable x (2.36),
we will solve a quadratic in z:
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z2 þ 4zþ 5� pð Þ ¼ 0:

Because the coefficient of z is even, we will use D/4 formula (2.3) for the roots of

a quadratic equation. The value of x is real if D/4 is nonnegative:

D

4
¼ 22 � 5� pð Þ ¼ p� 1 � 0

p � 1

And the roots are

z ¼ �2�
ffiffiffiffiffiffiffiffiffiffiffiffi
p� 1

p
:

Because z is positive as the sum of two positive expressions, then out of two

possible values of z, we will select only one, such as

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
p� 1

p
� 2, p > 5:

Substituting it into (2.37), we obtain a new quadratic equation in y:

y2 �
ffiffiffiffiffiffiffiffiffiffiffiffi
p� 1

p
� 2

� �
� yþ 1 ¼ 0 ð2:38Þ

Consider the discriminant for (2.38):

D ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
p� 1

p � 2ð Þ2 � 4 � 0

p� 1� 4
ffiffiffiffiffiffiffiffiffiffiffiffi
p� 1

p þ 4� 4 � 0

p� 1 � 4
ffiffiffiffiffiffiffiffiffiffiffiffi
p� 1

p

p� 1ð Þ2 � 16 p� 1ð Þ
p� 1ð Þ p� 17ð Þ � 0

Because the first factor is positive, in order for the inequality to be true, p� 17 � 0

must hold or

p � 17: ð2:39Þ

Do you remember that we obtained this restriction on p by solving Problem 30 of

Chapter 1? From (2.38) and under condition (2.39), we obtain two solutions for

variable y:

y1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
p� 1

p � 2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p� 1� 4

ffiffiffiffiffiffiffiffiffiffiffiffi
p� 1

pp
2

y2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
p� 1

p � 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p� 1� 4

ffiffiffiffiffiffiffiffiffiffiffiffi
p� 1

pp
2
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Both values of y satisfying the inequality (2.39) are positive at any p.
The corresponding values of x can be found as

x1 ¼ log2

ffiffiffiffiffiffiffiffiffiffiffiffi
p� 1

p � 2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p� 1� 4

ffiffiffiffiffiffiffiffiffiffiffiffi
p� 1

pp
2

 !

x2 ¼ log2

ffiffiffiffiffiffiffiffiffiffiffiffi
p� 1

p � 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p� 1� 4

ffiffiffiffiffiffiffiffiffiffiffiffi
p� 1

pp
2

 !

For example, if p¼ 17, we obtain that x1 ¼ x2 ¼ 0:

2.5 Symmetric (Recurrent) Polynomial Equations

An equationanx
n þ an�1x

n�1 þ . . .þ a1xþ a0 ¼ 0 is called recurrent if and only if

ak ¼ an�k, k ¼ 0, 1, 2, . . . , n: ð2:40Þ

We will consider separately recurrent equations of odd and even degree.

2.5.1 Symmetric Polynomial Equations of Even Degree

If for any polynomial of even degree written in descending form, the left and right

coefficients are symmetric (equal), satisfying (2.40), such equation can be simpli-

fied by substitution:

y ¼ xþ 1

x
ð2:41Þ

Example Consider a polynomial equation of the 4th order:

ax4 þ bx3 þ cx2 þ bxþ a ¼ 0:

First, we will divide both sides of it by x2 x 6¼ 0ð Þ and obtain its equivalent form:

ax2 þ bxþ cþ b

x
þ a

x2
¼ 0

This equation will be reduced to a biquadratic equation in variable y given by

formula (2.40).
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Thus, y2 ¼ x2 þ 1
x2 þ 2 or

x2 þ 1

x2
¼ y2 � 2 ð2:42Þ

Regrouping the terms and making substitution (2.41) and (2.42), we obtain a

quadratic equation in y that can be solved using standard methods:

a x2 þ 1

x2

� �
þ b xþ 1

x

� �
þ c ¼ 0

a y2 � 2ð Þ þ byþ c ¼ 0

ay2 þ byþ c� 2að Þ ¼ 0:

Problem 76 Solve the equation x4 � 5x3 þ 6x2 � 5xþ 1 ¼ 0.

Solution This equation is a symmetric polynomial equation of the 4th order, so we

can use the method and substitution discussed above.

Dividing by the square of x, we obtain the new form of the equation:

x2 � 5xþ 6� 5

x
þ 1

x2
¼ 0:

y ¼ xþ 1

x
ð2:43Þ

and

x2 þ 1

x2
¼ y2 � 2

y2 � 5yþ 4 ¼ 0

y1 ¼ 1, y2 ¼ 4:

Next, for each value of y we have to solve (2.43):

1: xþ 1

x
¼ 1 2: xþ 1

x
¼ 4

x2 � xþ 1 ¼ 0 x2 � 4xþ 1 ¼ 0

no real solutions x ¼ 2þ ffiffiffi
3

p
, x ¼ 2� ffiffiffi

3
p

:

Remark As you could see, for this problem the Rational Zero Theorem would not

be helpful because the equation has two irrational roots. Our method allowed us to

find these roots analytically. The graph of the polynomial function with two

irrational roots is given in Figure 2.13.
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Problem 77 Solve 4x2 þ 12xþ 12
x þ 4

x2 ¼ 47.

Solution Method 1: This equation is not polynomial but can be solved using a

similar substitution:

y ¼ 2xþ 2

x

y2 ¼ 4x2 þ 4

x2

� �
þ 8

Then the given equation will be reduced to a quadratic in y:

y2 þ 6y� 55 ¼ 0

y1 ¼ �11, y2 ¼ 5

0

-5

-10

-15

1 2 3
x

y

y=x4–5x3+6x2–5x+1

4 5

5

10

-1-2

Figure 2.13 Sketch for Problem 76
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y ¼ �11 y ¼ 5

2x2 þ 11xþ 2 ¼ 0 2x2 � 5xþ 2 ¼ 0

x1,2 ¼ �11� ffiffiffiffiffiffiffiffi
105

p

4
x3 ¼ 2, x4 ¼ 1

2

Method 2: We can multiply both sides by x2 and obtain polynomial equation of 4th

order:

4x4 þ 12x3 � 47x2 þ 12xþ 4 ¼ 0

Using the Rational Zero Theorem we can find that x ¼ 2, x ¼ 1
2
are the roots, and

then using Horner’s algorithm we will divide the original polynomial by factors

x� 2ð Þ and x� 1
2

� 	
and obtain the quadratic equation 2x2 þ 11xþ 2 ¼ 0 whose

solution will give us the remaining roots.

Answer
�11� ffiffiffiffiffiffiffiffi

105
p

4
;
1

2
; 2:

2.5.2 Symmetric Polynomial Equations of Odd Degree

Lemma 2 Any symmetric polynomial equation of odd degree has a solution
x¼�1.

This lemma can be easily proven in general. Instead, let us consider a cubic

symmetric equation:

ax3 þ bx2 þ bxþ a ¼ 0:

Regrouping the terms and factoring out common factors we obtain

a x3 þ 1ð Þ þ b x2 þ xð Þ ¼ 0

a xþ 1ð Þ x2 � xþ 1ð Þ þ bx xþ 1ð Þ ¼ 0

xþ 1ð Þ ax2 � a� bð Þxþ að Þ ¼ 0

The solution of x¼�1 is obtained.

Remark A similar approach can be used for a skew symmetric odd equation. For

example, the equation ax3 þ bx2 � bx� a ¼ 0 can be rewritten as

x� 1ð Þ ax2 þ aþ bð Þxþ að Þ ¼ 0 and will have at least one real zero x¼ 1.
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2.6 Cubic Equations

In general, any cubic equation ax3 þ bx2 þ cxþ d ¼ 0, a 6¼ 0 has at least one real

zero and at most three real zeroes. Even ancient Babylonians tried to solve cubic

equations. We can try to find such zeroes using the Rational Zero Theorem.

However, if there is no rational zero, then finding the solution to a cubic equation

can be challenging. In this section, we discuss some helpful methods and derive

important formulas.

2.6.1 Vieta’s Theorem for Cubic Equations

In the previous sections, we formulated Vieta’s Theorem for quadratic equations.

This important theorem is also valid for polynomials of higher degree and it is very

useful for cubic equations. For example, if x1, x2, x3 are the roots of the polynomial

equation

x3 þ ax2 þ bxþ c ¼ 0 ð2:44Þ

then they satisfy the following system of equations:

x1 þ x2 þ x3 ¼ �a

x1 � x2 þ x2 � x3 þ x1 � x3 ¼ b

x1x2x3 ¼ �c

8><
>: ð2:45Þ

The reverse theorem is also valid: Solutions of system (2.45) are the roots of cubic

equation (2.44).

Remark In general, for any equation ax3 þ bx2 þ cxþ d ¼ 0, a 6¼ 0, the Vieta’s

Theorem can be applied. For example, if x1, x2, x3 are the roots of the polynomial

equation

ax3 þ bx2 þ cxþ d ¼ 0, a 6¼ 0 ð2:46Þ

then they satisfy the following system of equations:

x1 þ x2 þ x3 ¼ �b

a

x1 � x2 þ x2 � x3 þ x1 � x3 ¼ c

a

x1x2x3 ¼ �d

a

8>>>>>><
>>>>>>:

ð2:47Þ

Let us see how this can be used for solving the following problem.
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Problem 78 Find such pairs of positive values of parameters a and c for which

all three roots of the equation 2x3 � 2ax2 þ a2 � 81ð Þx� c ¼ 0 are natural

numbers.

Solution Assume that we know all natural zeroes of the given equation, x1� x2� x3;
then they must satisfy Vieta’s Theorem (2.45):

x1 þ x2 þ x3 ¼ a

x1 � x2 þ x2 � x3 þ x1 � x3 ¼ a2 � 81

2

x1x2x3 ¼ c

2

8>>>><
>>>>:

Using the true equality

x1 þ x2 þ x3ð Þ2 ¼ x21 þ x22 þ x23 þ 2 x1 � x2 þ x2 � x3 þ x1 � x3ð Þ

the first two equations of the system can be combined as

að Þ2 ¼ x21 þ x22 þ x23 þ 2 � a2 � 81ð Þ
2

x21 þ x22 þ x23 ¼ 81

We can find the following triples of natural numbers, the sum of the squares of

which is 81:

x1; x2; x3ð Þ ¼ 1; 4; 8ð Þ; 4; 4; 7ð Þ; 3; 6; 6ð Þf g

And for each triple we obtain the corresponding values of a ¼ x1 þ x2 þ x3 and

corresponding value of parameter c ¼ 2 � x1x2x3:

1; 4; 8ð Þ : a ¼ x1 þ x2 þ x3 ¼ 1þ 4þ 8 ¼ 13, c ¼ 2 � x1x2x3 ¼ 2 � 1 � 4 � 8 ¼ 64

4; 4; 7ð Þ : a ¼ x1 þ x2 þ x3 ¼ 4þ 4þ 7 ¼ 15, c ¼ 2 � x1x2x3 ¼ 2 � 4 � 4 � 7 ¼ 224

3; 6; 6ð Þ : a ¼ x1 þ x2 þ x3 ¼ 3þ 6þ 6 ¼ 15, c ¼ 2 � x1x2x3 ¼ 2 � 3 � 6 � 6 ¼ 216

Finally, the positive pairs of the parameters are given as

a; cð Þ : 13; 64ð Þ; 15; 224ð Þ; 15; 216ð Þf g:

Remark Because we obtained three different polynomial functions with all even

coefficients, the polynomials can be simplified as
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p1 xð Þ ¼ x3 � 13x2 þ 44x� 32 , x1; x2; x3ð Þ ¼ 1; 4; 8ð Þ
p2 xð Þ ¼ x3 � 15x2 þ 72x� 112 , x1; x2; x3ð Þ ¼ 4; 4; 7ð Þ
p3 xð Þ ¼ x3 � 15x2 þ 72x� 108 , x1; x2; x3ð Þ ¼ 3; 6; 6ð Þ

2.6.2 The Babylonian Approach to Cubic Equations

It is known that ancient Babylonians could solve simple cubic equations

(Table 2.1).

We will review their methods by solving the following problem.

Problem 79 A Babylonian tablet has been discovered that gives the value of

n3 þ n2 for n¼ 1 to 30. Make such a table for n¼ 1 to 10. Using the table

solve the equation x3 þ 2x2 � 3136 ¼ 0.

Solution The equation x3 þ 2x2 � 3136 ¼ 0 is not ready to be solved using the

table. Notice that the Table 2.1 gives us the sum of the cube and square of a number

with the unit coefficients of each term. Let us divide the given equation by 23 ¼ 8

and then introduce a new variable n ¼ x

2
:

x3

23
þ 2 � x

2

23
¼ 3136

23

x

2

� �3
þ x

2

� �2
¼ 392

n3 þ n2 ¼ 392

n ¼ 7

x ¼ 14:

Answer x¼ 14.

Table 2.1 Babylonian

Method
N n3 n2 n3 þ n2

1 1 1 2

2 8 4 12

3 27 9 36

4 64 16 80

5 125 25 150

6 216 36 252

7 343 49 392

8 512 64 576

9 729 81 810

10 1000 100 1100
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Problem 80 Solve a cubic equation 3x3 þ 5x ¼ 16.

Solution First, this equation can be rewritten as f xð Þ ¼ 3x3 þ 5x� 16 ¼ 0 and

before we find any way to solve this equation, we know that the function on the left

is monotonically increasing as the sum of two increasing functions, and hence it

will have only one real root. Second, it does not have a quadratic term (linear

instead), so it will be difficult to use the Babylonian table here. It looks like a good

idea to multiply this by 9 and then rewrite the equation as

3xð Þ3 þ 15 � 3x ¼ 144

y3 þ 15y� 144 ¼ 0, y ¼ 3x
ð2:48Þ

Do not try to solve this cubic equation using the quadratic formula because it

works only for quadratic equations. Because the Rational Zero Theorem does not

give any help (this equation does not have any integer solutions either), one

technique is to apply Cardano’s formula that gives a closed form solution for an

equation of the form x3 þ pxþ q ¼ 0. This formula is derived later in the text.

The other option here is to try the substitution:

y ¼ 5

z
� z ð2:49Þ

from which we obtain that

z2 þ y � z� 5 ¼ 0 ð2:50Þ

From the Vieta’s Theorem for a quadratic equation we have that

y ¼ � z1 þ z2ð Þ; ð2:51Þ

where z1, z2 are the solutions of the quadratic equation (2.50).

Raise both sides of (2.49) to the third power:

y3 ¼ 5

z
� z

� �3

¼ 125

z3
� 3 � 25

z
þ 3 � 5z� z3 ð2:52Þ

Next, we will evaluate 15y:

15y ¼ 15
5

z
� z

� �
¼ 75

z
� 15z ð2:53Þ

Adding (2.52) and (2.53) and substituting the result in (2.48), we obtain
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y3 þ 15y ¼ 125

z3
� z3 ¼ 144

or

125

z3
� z3 ¼ 144 ð2:54Þ

Equation (2.54) becomes quadratic in a new variable

t ¼ z3 ð2:55Þ
and can be written as

t2 þ 144t� 125 ¼ 0

t1 ¼ �72þ ffiffiffiffiffiffiffiffiffiffi
5309

p
and t2 ¼ �72� ffiffiffiffiffiffiffiffiffiffi

5309
p

Then using (2.55) we will evaluate two values of z:

z1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�72þ ffiffiffiffiffiffiffiffiffiffi

5309
p

3
p


 4:16 > 0 z2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�72�

ffiffiffiffiffiffiffiffiffiffi
5309

p3

q
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
72þ

ffiffiffiffiffiffiffiffiffiffi
5309

p3

q

 �5:25 < 0 ð2:56Þ

For each z using (2.49) we can obtain the corresponding value of y:

y1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�72þ ffiffiffiffiffiffiffiffiffiffi

5309
p

3
p

þ 5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�72þ ffiffiffiffiffiffiffiffiffiffi

5309
p

3
p

y2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
72þ ffiffiffiffiffiffiffiffiffiffi

5309
p

3
p

� 5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
72þ ffiffiffiffiffiffiffiffiffiffi

5309
p

3
p ð2:57Þ

Finally, dividing each y by 3 we will obtain two real x as

x1 ¼ y1
3
, x2 ¼ y2

3
:

On the other hand, we could substitute (2.56) into (2.51) and evaluate just one value

of y as

y ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�72þ

ffiffiffiffiffiffiffiffiffiffi
5309

p3

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
72þ

ffiffiffiffiffiffiffiffiffiffi
5309

p3

q
ð2:58Þ

Then we would have just one value of x.

Question Are there two or one real zeros? Which formula (2.57) or (2.58) should

we use?

Usually my students get only formulas (2.57) and answer that the polynomial

equation has two real zeroes given by (2.57) and that it is fine because a polynomial

function can have two X-intercepts. I say then that yes, a polynomial function of

third degree can have one, two, or three X-intercepts, but we need to find out if the
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given polynomial function of this special type can have two X-intercepts. I also tell
them that independently of (2.57), they could get just one solution for y given by

(2.58) and ask them to solve this “contradiction” because formulas (2.57) and (2.58)

at first glance do not look the same.

Consider a polynomial function p xð Þ ¼ x3 þ 3ax� 2b, a > 0.

Our polynomial function above fits this type at a¼ 5, b¼ 72.

Let us take its first derivative:

p0 xð Þ ¼ 3x2 þ 3a ¼ 3 x2 þ a
� 	

> 0, 8x 2 R

Moreover, our polynomial has a negative Y-intercept p 0ð Þ ¼ �2b < 0ð Þ and

passing through this intercept, the function is monotonically increasing; then its

X-intercept must be positive and unique!

Further, if we rationalize the denominator in the second terms of the formulas

(2.57) and use the difference of squares formula (2.10), we would obtain that

�5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
72þ ffiffiffiffiffiffiffiffiffiffi

5309
p

3
p ¼ �5 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
72� ffiffiffiffiffiffiffiffiffiffi

5309
p

3
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
72þ ffiffiffiffiffiffiffiffiffiffi

5309
p� 	

72� ffiffiffiffiffiffiffiffiffiffi
5309

p� 	
3

q
¼ �5 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
72� ffiffiffiffiffiffiffiffiffiffi

5309
p

3
p
ffiffiffiffiffiffiffiffiffiffiffi�1253

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
72�

ffiffiffiffiffiffiffiffiffiffi
5309

p3

q
and that

5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�72þ ffiffiffiffiffiffiffiffiffiffi

5309
p

3
p ¼ 5 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�72� ffiffiffiffiffiffiffiffiffiffi

5309
p

3
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�72þ ffiffiffiffiffiffiffiffiffiffi

5309
p� 	 �72� ffiffiffiffiffiffiffiffiffiffi

5309
p� 	

3

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
72þ

ffiffiffiffiffiffiffiffiffiffi
5309

p3

q

Thus in the formulas (2.57) both values of y are identical and equal to the value for
y given by (2.58).

Answer x ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�72þ ffiffiffiffiffiffiffiffiffiffi

5309
p

3
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
72þ ffiffiffiffiffiffiffiffiffiffi

5309
p

3
p

3
.

Remark Of course, we do not need calculus in order to show the existence of only

one real root for this equation. Consider x3 þ pxþ q ¼ 0, p > 0, q 6¼ 0ð Þ. If p> 0,

then f xð Þ ¼ x3 þ pxþ q is a monotonically increasing function (g xð Þ ¼ � f xð Þ is
monotonically decreasing) and it can have only one real zero!

2.6.3 Special Substitutions for Cubic Equations

Special Substitution for Cubic Equations of Typex3 þ 3ax ¼ 2b, a > 0ð Þ

As we have already learned by solving Problem 81, this equation we will have only

one real zero. Let us try a new variable:
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x ¼ a

y
� y ð2:59Þ

First, we will multiply both sides by y and obtain

a� y2 ¼ xy
y2 þ x � y� a ¼ 0

Applying Vieta’s Theorem to the quadratic equation, we have that y1 � y2 ¼ �a
and that

x ¼ � y1 þ y2ð Þ ð2:60Þ

Second, let us cube both sides:

x3 ¼ a

y
� y

� �3

x3 ¼ a3

y3
� 3a2

y
þ 3ay� y3 ð2:61Þ

On the other hand, we can obtain

3ax ¼ 3a
a

y
� y

� �
¼ 3a2

y
� 3ay ð2:62Þ

Adding (2.61) and (2.62) we obtain that

x3 þ 3ax ¼ a3

y3
� y3:

Now, the given equation can be written as

a3

y3
� y3 ¼ 2b ð2:63Þ

I hope you recognized that (2.63) is a quadratic type equation that can be obtained

by substitution:

z ¼ y3 ) y ¼ ffiffi
z3

p ð2:64Þ

z2 þ 2bz� a3 ¼ 0

z1 ¼ �bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ a3

p
z2 ¼ �b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ a3

p ð2:65Þ
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For each z given by (2.65), the values of y can be found from (2.64) as a cubic root

of z

(y1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ a3

p
3

q
; y2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ a3

p
3

q
) and then using (2.60), we

find the corresponding x:

x ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ a3

p
3

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ a3

p
3

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ a3

p
3

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ a3

p
3

q

Answer x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ a3

p
3

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ a3

p
3

q
.

Special Substitution for Cubic Equations of Type

x3 � 3ax ¼ 2b a > 0, b > 0ð Þ
Let us find out if we can do something similar to the (2.59) substitution here, such as

x ¼ a

y
þ y ð2:66Þ

First, we will multiply both sides by y and obtain

aþ y2 ¼ xy
y2 � x � yþ a ¼ 0

Applying Vieta’s Theorem to the quadratic equation, we have that y1 � y2 ¼ a and

that

x ¼ y1 þ y2ð Þ ð2:67Þ

Second, let us cube both sides:

x3 ¼ a

y
þ y

� �3

x3 ¼ a3

y3
þ 3a2

y
þ 3ayþ y3 ð2:68Þ

On the other hand, we can obtain

�3ax ¼ �3a
a

y
þ y

� �
¼ � 3a2

y
� 3ay ð2:69Þ
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Adding (2.68) and (2.69) we obtain that

x3 � 3ax ¼ a3

y3
þ y3:

Now, the given equation can be written as

a3

y3
þ y3 ¼ 2b ð2:70Þ

Equation (2.70) becomes a quadratic equation after substitution:

z ¼ y3 ð2:71Þ
z2 � 2bzþ a3 ¼ 0

z1 ¼ bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a3

p

z2 ¼ b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a3

p ð2:72Þ

If b2 > a3, then using (2.71) we will find the corresponding y for each z given by

(2.72), and then applying (2.67) we will get one unique solution for x as follows:

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a3

p
3

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a3

p
3

q
ð2:73Þ

Remark Despite the fact that the idea of solving a cubic equation of this type is

very similar to the previous problem, there is an obvious difference here that

depends on the expression under the square root of formulas (2.72). We will get

real values of z if and only if the discriminant of a quadratic equation is nonneg-

ative, D
4
¼ b2 � a3 � 0.

The following cases are valid.

Case 1 b2 ¼ a3, then we have only one value for z, z ¼ b and one value of y and x,
respectively:

y ¼ ffiffiffi
b3

p
x ¼ 2

ffiffiffi
b3

p

This means that the polynomial function has only one X-intercept at the indicated
x (and two complex conjugate roots).

Case 2 b2 > a3: ð2:74Þ

If (2.74) holds, then from (2.71) the solutions for y will be written as

y1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a3

p
3
p

y2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a3

p
3
p
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Please also notice that under condition (2.74) both roots for y are positive because

b >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a3

p
. Next, let us see what solutions can be obtained for x:

It follows from (2.67) that

x ¼ y1 þ y2 > 0;

which would lead us to the real solution (2.73).

Moreover, in this case the cubic equation has only one real root and two complex

roots.

Case 3 b2 < a3. In this case the discriminant of a quadratic equation (2.72) is

negative, and then
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a3

p
¼ i � s, i ¼ ffiffiffiffiffiffiffi�1

p

x ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�bþ i � s3
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�b� i � s3

p

It is not obvious but in this case, the cubic function has three distinct real roots and

three X-intercepts. However, the roots cannot be written in radicals

(irreducible case).

An example of such a polynomial is x3 � 9x� 8 ¼ 0 a ¼ 3, b ¼ 4, 42 < 33
� 	

.

Obviously, it has an integer solution x1 ¼ �1 because �1ð Þ3 � 9 �1ð Þ � 8 ¼ 0.

Two other irrational real roots can be obtained by using synthetic division of the

polynomial by (x+ 1):

x3 � 9x� 8 ¼ xþ 1ð Þ x2 � x� 8
� 	 ¼ 0

The second factor (quadratic function) gives two additional real roots: x2,3 ¼ 1� ffiffiffiffi
33

p
2

.

Let us see what would happen to our equation if we try to solve it using the

substitution (2.66):

x ¼ 3

y
þ y

y6 � 8y3 þ 27 ¼ 0

z ¼ y3

y ¼ ffiffi
z3

p

z2 � 8zþ 27 ¼ 0

z1,2 ¼ 4� ffiffiffiffiffi
11

p � i
y1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ ffiffiffiffiffi

11
p

i
3
p

; y2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� ffiffiffiffiffi

11
p

i
3
p

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ ffiffiffiffiffi

11
p

i
3
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� ffiffiffiffiffi

11
p

i
3
p

Of course, it is hard to recognize three real roots x1 ¼ �1, x2,3 ¼ 1� ffiffiffiffi
33

p
2

in the

answer obtained above. However, if you studied complex numbers, then you

probably remember that there are three different cubic roots of a complex number.

Thus, the last formula actually represents three real zeroes.
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Calculus Question for Case 2 Is there always only one X-intercept for the

function p xð Þ ¼ x3 � 3ax� 2b, a > 0, b > 0 and b2 > a3
� 	

?

Consider again the first derivative of p(x):

p
0
xð Þ ¼ 3x2 � 3a ¼ 3 x� ffiffiffi

a
p� 	

xþ ffiffiffi
a

p� 	
Since a> 0, the derivative takes zero values atx ¼ � ffiffiffi

a
p

, x ¼ ffiffiffi
a

p
and the function is

decreasing on x 2 � ffiffiffi
a

p
,
ffiffiffi
a

pð Þ and is increasing on x 2 �1, � ffiffiffi
a

pð Þ [ ffiffiffi
a

p
;1ð Þ.

Using an inequality between geometric and arithmetic means applied to (2.66)

and remembering that y> 0, we obtain that the following is true:

x ¼ a

y
þ y � 2

ffiffiffiffiffiffiffiffiffi
a

y
� y

r
¼ 2

ffiffiffi
a

p

Therefore, the unique real root satisfying this inequality is positive. The function

p xð Þ ¼ x3 � 3ax� 2b has a negative Y-intercept and does not have other

X-intercepts.

Problem 81 Solve the equation x3 � 15x ¼ 144.

Solution This equation fits the required substitution x ¼ 5
y þ y for a¼ 5, b¼ 72. It

can be rewritten as y6 � 144y3 þ 125 ¼ 0 (biquadratic type equation). Because

722 > 53, we could solve the equation or simply use formulas (2.73):

y1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a3

p
3
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
72þ ffiffiffiffiffiffiffiffiffiffi

5059
p

3
p

> 0

y2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a3

p
3
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
72� ffiffiffiffiffiffiffiffiffiffi

5059
p

3
p

> 0

The answer can be written as x ¼ y1 þ y2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
72þ ffiffiffiffiffiffiffiffiffiffi

5059
p

3
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
72� ffiffiffiffiffiffiffiffiffiffi

5059
p

3
p

Answer x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
72þ ffiffiffiffiffiffiffiffiffiffi

5059
p

3
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
72� ffiffiffiffiffiffiffiffiffiffi

5059
p

3
p

.

Problem 82 Consider a polynomial equation x3 þ 2x2 þ xþ a ¼ 0. Explain

how you would solve it. Answer the following questions:

a. What values of a parameter a make this equation solvable using the Rational

Zero Theorem? Give an example and solve the equation. Explain how three,

two, or one real zeros of the function depend on the value of a.
b. If the Rational Zero Theorem is not applicable, then the equation can be

solved by factoring or by other methods presented above. However, those

methods require that there be no x2 term. What substitution can you use in

order to rewrite it in the form z3 þ pzþ q ¼ 0? Let a¼ 11. Solve the

equation.
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Solution (a) Consider x3 þ 2x2 þ xþ a ¼ 0. We can rewrite the equation as

a ¼ � x3 þ 2x2 þ xð Þ ¼ � f xð Þ. It is clear that there are infinitely many values of

x for which this equation can be solved using the Rational Zero Theorem. For

example, Table 2.2 demonstrates some possible pairs of x and a: (1, �4); (�1, 0);

(2, �18); (�2, 2). You can continue this table.

Next we will investigate how behavior of the function depends on the value of its

parameter a.

Obviously, if a ¼ 0, then the function y ¼ x3 þ 2x2 þ x has two X-intercepts; at
x ¼ �1 the function has its local maximum and its graph is tangent to the X-axis.

Can we get an irreducible case with three real roots?

Let us use a calculus approach now and find the first derivative:

f xð Þ ¼ x3 þ 2x2 þ xþ a

f
0
xð Þ ¼ 3x2 þ 4xþ 1

f
0
xð Þ ¼ 0

x ¼ �1, x ¼ �1

3

Therefore the function is increasing on x 2 �1, � 1ð Þ [ �1
3
,1� 	

and decreasing

on x 2 �1, � 1

3

� �
. Assume that a > 0. Then it will have one real zero on the

interval �1
3
< x < 0.

In order for f xð Þ ¼ x3 þ 2x2 þ xþ a to have two additional real zeros, then one

root must be on the interval x 2 �1, � 1

3

� �
and the other one is on the interval

x 2 �1, � 1ð Þ. Thus on each interval of monotonic increasing and decreasing, the

function must have one zero.

This can be achieved if the following inequality is true:

f �1

3

� �
� f �1ð Þ < 0;

which means that the function takes opposite signs at its two critical points.

Table 2.2 Problem 82

x a x3 þ 2x2 þ xþ a ¼ 0 x� að Þ � p2 xð Þ Real zeros

1 �4 x3 þ 2x2 þ x� 4 ¼ 0 x� 1ð Þ x2 þ 3xþ 4ð Þ x ¼ 1

�1 0 x3 þ 2x2 þ x ¼ 0 x xþ 1ð Þ2 x1 ¼ 0, x2,3 ¼ �1

2 �18 x3 þ 2x2 þ x� 18 ¼ 0 x� 2ð Þ x2 þ 4xþ 9ð Þ x ¼ 2

�2 2 x3 þ 2x2 þ xþ 2 ¼ 0 xþ 2ð Þ x2 þ 1ð Þ x ¼ �2
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Replacing x ¼ �1

3
and x ¼ �1 we obtain the inequality for a parameter a:

a � a� 4

27

� �
< 0

0 < a <
4

27

If a satisfies the inequality, then the function f xð Þ ¼ x3 þ 2x2 þ xþ a will have

precisely three real zeroes. For example, we can choose a ¼ 1

27
and state that the

0

0.1y

x

0.2

-0.1

-0.2

0.5 1-0.5-1-1.5

Figure 2.14a Cubic

function with three

X-intercepts

0

2
y

x

4

-2

-4

-6

1 2 3-1-2-3

Figure 2.14b One

X-intercept (Problem 82)
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equation x3 þ 2x2 þ xþ 1
27
¼ 0 or the equivalent equation 27x3 þ 54x2 þ 27xþ 1

¼ 0 has three real zeroes. Below you can see the graph (Figure 2.14a) of the

function f xð Þ ¼ x3 þ 2x2 þ xþ 1
27
. We cannot find its zeros using the ideas

described above because we need to eliminate a quadratic term first. Detailed

methods of finding its zeroes analytically and the methods of solving a general

type cubic equation are presented in the following section.

If f �1ð Þ � f �1
3

� 	
> 0 (ora � a� 4

27

� 	
> 0) then the quantities keep the same sign,

either both positive or both negative. This will happen if either a < 0 or a >
4

27
.

If f �1ð Þ � f �1

3

� �
¼ 0 (or a � a� 4

27

� �
¼ 0), then one of the two possible

X-intercepts of the function is also either its local maximum (x ¼ �1, a ¼ 0) or

local minimum x ¼ �1

3
a ¼ 4

27

� �
.

If a < 0, then the function f xð Þ ¼ x3 þ 2x2 þ xþ a will have only one positive

real zero, to the right of its local minimum x ¼ �1

3
and if a ¼ 0 then f(x) has two

real zeros, x ¼ 0 and x ¼ �1 (of multiplicity two). If a >
4

27
, the function will have

one negative real zero, to the left of the local maximum, x ¼ �1, and if a ¼ 4

27
, the

function will have two real zeros, x ¼ �4

3
and x ¼ �1

3
(of multiplicity two).

Two cases with one X-intercept for a ¼ �4 < 0, x ¼ 1 and for a ¼ 2 >
4

27
,

x ¼ �2 are shown in Figure 2.14b as red and green curves, respectively.

0

0.2

0.4

1-1
x

y

-2

-0.2

-0.4

Figure 2.14c Graph of

f xð Þ ¼ x3 þ 2x2 þ xþ 4

27
(two X-intercepts)
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There are only two values of the parameter a a ¼ 0, a ¼ 4

27

� �
at which our

function will have two X-intercepts. Let us confirm our statement for a ¼ 4

27
.

The first case (a ¼ 0) is trivial and can be seen in Table 2.2.

At a ¼ 4

27
, f xð Þ ¼ x3 þ 2x2 þ xþ 4

27
and its zeros can be found by solving the

following equation:

27x3 þ 54x2 þ 27xþ 4 ¼ 0:

Making the substitution z ¼ 3x we obtain a simpler equation in z:

z3 þ 6z2 þ 9zþ 4 ¼ 0:

Using the Rational Zero Theorem we can find that z ¼ �1 x ¼ �1
3

� 	
is the root.

After synthetic division we obtain that the modified equation can be factored as

zþ 1ð Þ zþ 1ð Þ zþ 4ð Þ ¼ 0. Hence zero x ¼ �1
3
has multiplicity two (coincides with

the local minimum of the function) and another real zero for f(x) is x ¼ �4
3
< �1

(to the left of the local maximum). See Figure 2.14c.

(b) One of this type of problem with a¼ 11 and hence the equation x3 þ 2x2þ
xþ 11 ¼ 0 can be rewritten in the form z3 � 3zþ 295 ¼ 0 by first introducing

x ¼ y� a
3
and then by replacing z¼ 3y. Since a ¼ 11 > 4

27
, we can state that the

equation will have only one real zero, which is located to the left of x ¼ �1. This

equation is solved later as Problem 84.

2.6.4 Cardano’s Formula for Cubic Equations

Consider a polynomial equation of the third order:

x3 þ ax2 þ bxþ c ¼ 0 ð2:75Þ

Our goal is to solve this equation if for example the Rational Zero Theorem or

other methods cannot be applied to find its zeroes.

First, we will learn what substitution would eliminate the quadratic termmaking

the equation look like one that we solved in the previous sections

y3 þ pyþ q ¼ 0ð Þ. Next, we will derive Cardano’s formula. Cardano in 1545

published methods developed by Tartaglia for solving a cubic equation of a

general type.
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Let

x ¼ y� a

3
ð2:76Þ

Then

y� a

3

� �3
þ a y� a

3

� �2
þ b y� a

3

� �
þ c ¼ 0

We will show all work here:

y3 � 3y2 � a
3
þ 3y � a

2

9
� a3

27
þ a y2 � 2ya

3
þ a2

9

� �
þ by� ab

3
þ c ¼ 0

y3 � a2y

3
þ 2a3

27
þ by� ab

3
þ c ¼ 0

y3 þ b� a2

3

� �
� yþ cþ 2a3

27
� ab

3

� �
¼ 0

Let p ¼ b� a2

3
, q ¼ cþ 2a3

27
� ab

3
; then we can rewrite the previous equation

in the form

y3 þ pyþ q ¼ 0; ð2:77Þ

where p, q 2 R (real numbers).

After the familiar substitution

y ¼ z� p

3z
ð2:78Þ

we obtain the following

y3 ¼ z� p

3z

� �3
¼ z3 � 3z2 � p

3z
þ 3z � p2

9z2
� p3

27z3
¼ z3 � pzþ p2

3z
� p3

27z3

Now, in terms of the new variable, z, the equation (2.77) has the following form:

z3 � p3

27z3
þ q ¼ 0:

This can be changed to a quadratic type polynomial equation in t by letting t ¼ z3,

t2 ¼ z6 as
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z6 þ q � z3 � p3

27
¼ 0 ð2:79Þ

From (2.79) we obtain the solutions as

z31,2 ¼
�q�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 4 p3

27

q
2

¼ �q

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

4
þ p3

27

r

After taking a cubic root the solutions look as

z1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�q

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

4
þ p3

27

r
3

s
, z2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�q

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

4
þ p3

27

r
3

s
ð2:80Þ

It follows from (2.78) that there are two solutions for y:

yi ¼ zi � p

3zi
, i ¼ 1, 2:

However, as we have already seen, the two answers are the same, and the

solution of (2.78) is

y ¼ y1 ¼ y2 ¼ z1 þ z2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�q

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

4
þ p3

27

r
3

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�q

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

4
þ p3

27

r
3

s
ð2:81Þ

Formula (2.81) is known as Cardano’s formula for a cubic equation of type (2.77).
The value of y depends on the relationships between parameters q and p and their

values. This dependence will be discussed later in this section. The corresponding

value of x for the general type cubic equation (2.75) can be easily obtained from

formula (2.76).

Historical Solution of Cardano-Tartaglia: Vieta’s Theorem Approach

In order to solve cubic equation (2.77), we can also use Vieta’s Theorem.

Let

y ¼ uþ v ð2:82Þ
uþ vð Þ3 ¼ u3 þ 3u2vþ 3v2uþ v3 ¼ u3 þ v3 þ 3uv uþ vð Þ

Then we can substitute this into (2.77):
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u3 þ v3 þ 3uv uþ vð Þ þ p uþ vð Þ þ q ¼ 0 ð2:83Þ

Next, we can impose a new condition:

p ¼ �3uv ð2:84Þ

This would make (2.83) have the following form:

u3 þ v3 ¼ �q ð2:85Þ

Equation (2.84) can also be written as

u3v3 ¼ � p3

27
ð2:86Þ

If we look at (2.84) and (2.85) together, we can recognize the Reversed Vieta’s
Theorem written for the roots

t1 ¼ u3, t2 ¼ v3 ð2:87Þ

of a quadratic equation

t2 þ q � t� p3

27
¼ 0; ð2:88Þ

such as

t1 þ t2 ¼ �q

t1 � t2 ¼ � p3

27

8<
:

The roots of a quadratic equation (2.88) can be found using the discriminant divided

by 4 version of the quadratic formula:

t1,2 ¼ �q

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

4
þ p3

27

r

I hope that you understand the great “plan” of Cardano-Tartaglia.

1. Using substitution (2.76), you rewrite x3 þ ax2 þ bxþ c ¼ 0 in terms of a new

variable y without quadratic term as y3 þ pyþ q ¼ 0.

2. Write corresponding to it a quadratic equation t2 þ q � t� p3

27
¼ 0 and find its

solutions.

3. Because y ¼ uþ v and u3 ¼ �q

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

4
þ p3

27

r
and v3 ¼ �q

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

4
þ p3

27

r
,
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we will have to evaluate the corresponding values of u and v. Of course, this
would lead us to Cardano’s formula. However, we need to understand

that further calculation of the roots will depend strongly on the value of the

discriminant
D

4
¼ q2

4
þ p3

27
¼ q

2

� �2
þ p

3

� �3
of the quadratic equation and on the

values of parameters q and p. Thus the following cases are possible:

Case 1 (Trivial) p¼ q¼ 0, then y¼ 0, then x¼�b is the real root of multiplicity 3.

Case 2 If p ¼ 0, q 6¼ 0, then u ¼ 0, v ¼ � ffiffiffi
q3

p
, y ¼ � ffiffiffi

q3
p

.

Case 3 If
D

4
¼ q2

4
þ p3

27
¼ 0 p < 0, q 6¼ 0ð Þ, then u ¼ v ¼ �q

2
, y ¼ �q. In this

case, we will have either one real root of multiplicity 3 or one real root

of multiplicity 2 and one single real root. Hence, the cubic function has one

X-intercept or two X-intercepts. Therefore, the function will not change its sign at

its intercept, or at one of its intercepts, respectively, but will be tangent to the X-axis
at that point.

Algebraically we can show that discriminant of a cubic equation x3 þ pxþ q ¼ 0

can be written asD ¼ x1 � x2ð Þ2 x1 � x3ð Þ2 x3 � x2ð Þ2. IfD¼ 0 or if4 p3 þ 27q2 ¼ 0,

then at least two roots of the cubic equation must be the same.

Case 4 If
D

4
¼ q2

4
þ p3

27
> 0, ) y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�q

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

4
þ p3

27

r
3

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�q

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

4
þ p3

27

r
3

s
.

In this case, a polynomial of third degree has only one real root and two complex

roots.

Case 5 If
D

4
¼ q2

4
þ p3

27
< 0 (discriminant is strictly negative), then there are

three real roots. This case is called Casus irreducibilis and it means that the roots

cannot be written in the radical form.

Case 5 needs clarification. Because each complex root has three different cubic

roots, in order to find all solutions of the corresponding cubic equation, it is

convenient to use Cardano’s formula in the form

y ¼ z� p

3z
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�q

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

4
þ p3

27

r
3

s
� p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�q

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

4
þ p3

27

q
3

r ð2:89Þ

Remark Let us now see how well you learned the material of Chapter 1. Please

answer the following question: Howmany X-intercepts does the function y ¼ f xð Þ ¼
x3 þ xþ 1 have?

128 2 Polynomials

http://dx.doi.org/10.1007/978-3-319-19887-3_1


Of course, you can easily calculate the discriminant:
D

4
¼ q

2

� �2
þ p

3

� �3
¼

1

4
þ 1

27
> 0, and then state that the function has only one X-intercept.

However, we can look at the function as the sum of two increasing functions,

h xð Þ ¼ x3, g xð Þ ¼ xþ 1, and therefore, their sum is also an increasing function with

only one real zero.

Problem 83 Solve the equation 27x3 þ 54x2 þ 27xþ 1 ¼ 0.

Solution Denote t ¼ 3x, and then x ¼ t

3
, t3 ¼ 27x3, t2 ¼ 9x2 and the equation has

the form t3 þ 6t2 þ 9tþ 1 ¼ 0.

Our next step is to eliminate the quadratic term by following (2.76):

t ¼ y� 6

3
¼ y� 2

y� 2ð Þ3 þ 6 y� 2ð Þ2 þ 9 y� 2ð Þ þ 1 ¼ 0

After simplification we will obtain the equation in the form y3 þ pyþ q ¼ 0:

y3 � 3y� 1 ¼ 0 where p ¼ �3, q ¼ �1.

In order to write solutions to this equation, first we will evaluate the

discriminant:

D

4
¼ q2

4
þ p3

27
¼ 1

4
þ �3ð Þ3

27
¼ � 3

4
< 0ffiffiffiffiffiffiffi

� 3

4

r
¼

ffiffiffi
3

p

2
� i

In this case, we have three real irrational roots. Thus, we need to evaluate three

different cubic roots of a complex number
1

2
þ

ffiffiffi
3

p

2
i.

Using Euler’s formula eiφ ¼ cosφþ i sinφ, we will denote the complex number

under the cubic root by z0 and rewrite it in the exponential form

z0 ¼ 1

2
þ

ffiffiffi
3

p

2
i ¼ e

π
3
�i ¼ ei�

π
3
þ2πnð Þ

Note, that sine and cosine are periodic functions, and this is why we added the

period in the power. Assume that z is the 3rd root of z0. Then the following is true:
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z3 ¼ z0

ei3φ ¼ ei
π
3
þ2πnð Þ

φn ¼
π

9
þ 2π

3
� n, n ¼ 0, 1, 2

φ1 ¼
π

9
) z1 ¼ ei

π
9

φ2 ¼
7π

9
) z2 ¼ ei

7π
9

φ1 ¼
13π

9
) z3 ¼ ei

13π
9

For each z we will find the corresponding value of y (2.89) and then t and x:

y1 ¼ z� p

3z
¼ ei

π
9 þ 1

ei
π
9

¼ ei
π
9 þ e�iπ

9 ¼ 2 cos
π

9

x1 ¼ y� 2

3
¼ 2 cos π

9
� 2

3
¼ 2

3
cos

π

9
� 1

� �

 �0:04

y2 ¼ z2 � p

3z2
¼ ei

7π
9 þ 1

ei
7π
9

¼ ei
7π
9 þ e�i7π

9 ¼ 2 cos
7π

9

x2 ¼ y2 � 2

3
¼ 2 cos 7π

9
� 2

3
¼ 2

3
� cos

7π

9
� 1

� �

 �1:173

y3 ¼ z3 � p

3z3
¼ ei

13π
9 þ 1

ei
13π
9

¼ ei
13π
9 þ e�i13π

9 ¼ 2 cos
13π

9
¼ 2 cos

5π

9

x3 ¼ y3 � 2

3
¼ 2

3
cos

5π

9
� 1

� �

 �:782

Answer x1 ¼ 2

3
cos

π

9
� 1

� �
, x2 ¼ 2

3
cos

5π

9
� 1

� �
, t3 ¼ 2

3
cos

7π

9
� 1

� �
.

Note that the trigonometric form of the three real zeroes is more appropriate

than a complex radical form (see Figure 2.15). This way we can always see our

zeroes exactly and even check that the answer is true on a graphing calculator.

Maple, for example, for this equation, gives the following roots presented in

Figure 2.16.
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More about the trigonometric approach to solving cubic equations and Casus
irreducibilis can be found in Chapter 3 of this book.

Problem 84 Find solutions to the equation x3 þ 2x2 þ xþ 11 ¼ 0.

0

-1

-2

-3

0.5 1

1

y

x

2

3

-0.5-1-1.5

Figure 2.15 The graph of f xð Þ ¼ 27x3 þ 54x2 þ 27xþ 1

Figure 2.16 MAPLE 15 answer for 27x3 þ 54x2 þ 27xþ 1 ¼ 0
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Solution Based on the Rational Zero Theorem, this equation does not have integer

zeroes. Let us use Cardano’s formula:

y ¼ xþ b ¼ xþ 2

3

y3 � 1

3
yþ 295

27
¼ 0

27y3 � 9yþ 295 ¼ 0

Let z ¼ 3y and we obtain a cubic equation without a quadratic term:

z3 � 3zþ 295 ¼ 0

Define the corresponding p¼�3 and q¼ 295. Because
D

4
¼ 2952

4
� 1 > 0, we have

only one real root and one X-intercept (see Figure 2.17).
In order to make simplifications, let us use a difference of squares formula (2.10)

again. Thus

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2952

4
� 1

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2952 � 22

22

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
293 � 297

22

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
293 � 9 � 33

22

r
¼ 3

ffiffiffiffiffiffiffiffiffiffi
9669

p

2

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�295

2
þ 3

ffiffiffiffiffiffiffiffiffiffi
9669

p

2

3

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�295

2
� 3

ffiffiffiffiffiffiffiffiffiffi
9669

p

2

3

r
< � ffiffiffiffiffiffiffiffi

2953
p 
 �6:656

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2952

4
� 1

r
<

295

2

 !

0

-5

-10

5

10

15

1 2
x

y

3 4-1-2-3-4

Figure 2.17 The graph of

y ¼ x3 þ 2x2 þ xþ 11
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The answer can be simplified as

x ¼ z� 2

3
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
ffiffiffiffiffiffiffi
9669

p �295
2

3

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
ffiffiffiffiffiffiffi
9669

p þ295
2

3

q
� 2

3

 �2:88:

Problem 85 Solve the equation x3 � 12x2 þ 21x� 11 ¼ 0.

Solution If this equation has any rational zeroes, then they must be integers and

factors of (�11). If we check for x¼ 1, �1, 11, and �11, then we can state that this

equation does not have integer roots. Let us use Cardano’s formula and rewrite this

equation in terms of y:

y3 þ pyþ q ¼ 0

y ¼ x� 4

Let us substitute x ¼ yþ 4 into the original equation:

yþ 4ð Þ3 � 12 yþ 4ð Þ2 þ 21 yþ 4ð Þ � 11 ¼ 0

y3 � 27y� 55 ¼ 0

p ¼ �27, q ¼ �55

Calculate the discriminant
D

4
¼ q2

4
þ p3

27
¼ �55ð Þ2

4
þ �27ð Þ3

27
¼ 552

4
� 4 � 272

4
¼

55� 54ð Þ 55þ 54ð Þ
4

¼ 109

4
> 0.

From this, we know that this equation will have only one real root:

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
55

2
þ

ffiffiffiffiffiffiffiffi
109

p

2

3

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
55

2
�

ffiffiffiffiffiffiffiffi
109

p

2

3

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
55þ ffiffiffiffiffiffiffiffi

109
p

3
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
55� ffiffiffiffiffiffiffiffi

109
p

3
pffiffiffi
23

p

x ¼ yþ 4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
55þ ffiffiffiffiffiffiffiffi

109
p

3
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
55� ffiffiffiffiffiffiffiffi

109
p

3
p
ffiffiffi
23

p þ 4 
 6:012

Answer x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
55þ ffiffiffiffiffiffi

109
p3

p
þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
55� ffiffiffiffiffiffi

109
p3

pffiffi
23

p þ 4.

In present times, because of the existence of calculators and computers,

Cardano’s formula is rarely used in the classroom. However, in my opinion, the
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beauty of how the formula was derived can be a great learning tool for future

mathematicians, even in this computer generation.

Problem 86 For what value of a does the equation x3 � 3x ¼ a have two

real, distinct solutions?

Solution Method 1: Let us sketch the graph of the cubic function

y ¼ f xð Þ ¼ x3 � 3x. This function has a local maximum at x¼�1 and a local

minimum at x¼ 1. The line y¼ g(x)¼ a has two common points with the graph of

the cubic function at a¼ 2 or a¼�2 (only at the points tangent to the extrema)

(Figure 2.18).

Method 2: Consider a cubic equation x3 � 3x� a ¼ 0. It is in the reduced form

x3 þ pxþ q ¼ 0, p ¼ �3, q ¼ �að Þ, so we can apply Cardano’s formula. First,

we will evaluate the discriminant and set it equal to zero:

D

4
¼ q2

4
þ p3

27
¼ a2

4
� 1 ¼ a� 2ð Þ aþ 2ð Þ

4
¼ 0

Because the discriminant is zero at a ¼ 2, a ¼ �2, at these values both y1 ¼ x3

�3xþ 2 shown in blue and y2 ¼ x3 � 3x� 2 shown in green have precisely two

X-intercepts (Figure 2.19).

Answer a¼ 2, a¼�2.

0

2
y

Two Distinct Roots

x

4

-2

-4

2 4-2-4

Figure 2.18 Two roots of

the equation x3 � 3x ¼ a
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2.7 Higher Order Equations: Methods of Ferrari
and Euler

So far we have learned how to solve quadratic equations, cubic equations, and

equations of higher degree with symmetric coefficients. We also know that any

quadratic equation can be solved any time for any coefficients using, for example,

the quadratic formula. What about a quartic equation of general type? Can we find a

formula to express the roots in terms of the equation’s coefficients? In the 16th

century a solution to a general type polynomial equation of fourth degree was

obtained by the Italian mathematician Ferrari, who was a student of Cardano. Let

us briefly describe his method.

Assume that we need to solve the equation

ax4 þ 4bx3 þ 6cx2 þ 4dxþ c ¼ 0

Using a substitution

x ¼ y� b

a
;

0

2

y

x

4

6

2 4-2-4

-2

-4

-6

Figure 2.19 Two cubic curves
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we will obtain a new equation without a cubic term:

y4 þ 2py2 þ 2qyþ r ¼ 0 ð2:90Þ

If in the equation above, the coefficient q is zero; then we can solve it by introducing

a new variable z ¼ y2 and then solve it as a quadratic equation in z.
However, usually q 6¼ 0, and then we need to find a different idea.

Let us separate the terms of (2.90) as follows:

y4 þ 2py2 ¼ �2 py� r

And complete the square on the left-hand side:

y2 þ p
� 	2 ¼ p2 � 2qy� r

The idea is to introduce a new variable, t, so we can also complete the square on the

right-hand side:

y2 þ pþ t
� 	2 ¼ p2 � 2qy� r þ 2ptþ 2ty2 þ t2 ð2:91Þ

Consider p2 � 2qy� r þ 2ptþ 2ty2 þ t2 as a quadratic function in variable y:

f yð Þ ¼ 2ty2 � 2q � yþ t2 þ 2ptþ p2 � r
� 	 ð2:92Þ

If the discriminant (or D
4
for an even coefficient of y) of f(y) equals zero, then (2.92)

will be rewritten as 2t � y� y*ð Þ2, where y* ¼ q

2t
and (2.91) will take an appropriate

form y2 þ pþ tð Þ2 ¼ 2t y� q

2t

� �2
, which can be written as a difference of squares:

y2 þ pþ t
� 	2 � ffiffiffi

2
p

t y� q

2t

� �� �2
¼ 0

And then factored and decomposed into two quadratic equations!

y2 þ pþ tþ
ffiffiffiffi
2t

p
� y� q

2t

� �� �
� y2 þ pþ t�

ffiffiffiffi
2t

p
� y� q

2t

� �� �
¼ 0

y2 þ
ffiffiffiffi
2t

p
� yþ pþ t� qffiffiffiffi

2t
p

� �
� y2 þ

ffiffiffiffi
2t

p
� y� pþ tþ qffiffiffiffi

2t
p

� �
¼ 0 ð2:93Þ

Now, we need to find the unknown function, t. Let us solve the equation
D

4
¼ 0:

D

4
¼ q2 � 2t t2 þ 2ptþ p2 � r

� 	 ¼ 0 ð2:94Þ
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The equation (2.94) is called the resolvent. Note that (2.94) is a cubic equation in

variable t that can also be rewritten as

2t3 þ 4 pt2 þ p2 � r
� 	

t� q2 ¼ 0

Solving this equation, we will find the unknown t, substitute it in (2.93), and find y.
Unfortunately, all attempts of mathematicians to find a method of solving

polynomial equations of general type of degree higher than four had failed. Finally,

in the early 1800s, Norwegian mathematician Abel (1802–1829) proved that

expressing the solution of a general equation of degree five or higher by any

formula is impossible.

Let us practice Ferrari’s method in solving the following problem.

Problem 87 Solve the equation y4 þ 4y� 1 ¼ 0.

Solution Comparing the equation with (2.90), we will find the corresponding

coefficients as

p ¼ 0, q ¼ 3, r ¼ �1:

Introduce a new variable t and complete the squares as follows:

y2 þ t
� 	2 ¼ �4yþ 1þ t2 þ 2ty2

2ty2 � 4yþ t2 þ 1 ¼ 2t y� y*ð Þ2

y* ¼ 1

t

D

4
¼ 4� 2t t2 þ 1

� 	 ¼ 0

Thus the resolvent is a cubic equation:

t3 þ t� 2 ¼ 0

From the Rational Zero Theorem we can find the required root,

t ¼ 1 ) y* ¼ 1:

Next, our equation can be rewritten as

y2 þ 1
� 	2 ¼ ffiffiffi

2
p

� y� 1ð Þ
� �2
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And then decomposed into two quadratic equations that can be solved separately:

y2 þ
ffiffiffi
2

p
yþ 1�

ffiffiffi
2

p� �
¼ 0

y1,2 ¼
� ffiffiffi

2
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
ffiffiffi
2

p � 2
p
2

¼ �1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8

p � 1
p
ffiffiffi
2

p

and

y2 �
ffiffiffi
2

p
yþ 1þ

ffiffiffi
2

p
¼ 0

y3,4 ¼
1� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8

p þ 1
p
ffiffiffi
2

p

Since this equation does not give real roots, the 4th degree polynomial equation

has only two real zeroes.

Answer

y1,2 ¼
�1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8

p � 1
p
ffiffiffi
2

p :

Remark With some experience, this equation can be written as

y2 þ 1
� 	2 ¼ ffiffiffi

2
p

� y� 1ð Þ
� �2

If we do the following steps

y4 ¼ 1� 4y

y4 þ 2y2 þ 1 ¼ 2y2 þ 1þ 1� 4y

y2 þ 1ð Þ2 ¼ 2 y2 � 2yþ 1ð Þ
y2 þ 1ð Þ2 ¼ ffiffiffi

2
p

y� 1ð Þ� 	2
then the solution can be found much more easily and without any resolvent.

Problem 88 Solve the equation xþ 2ð Þ2 þ x2
� �3

¼ 8x4 � xþ 2ð Þ2.
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Solution This equation is a polynomial of 6th degree. Let us first simplify it by

introducing a new variable:

y ¼ xþ 1 ð2:95Þ

After substitution and simplification, we will obtain

yþ 1ð Þ2 þ y� 1ð Þ2
� �3

¼ 8 y� 1ð Þ4 � yþ 1ð Þ2

This can be further simplified by applying the difference of squares formula to the

right-hand side and by using the binomial square formulas:

2y2 þ 2ð Þ3 ¼ 8 y� 1ð Þ2 y� 1ð Þ yþ 1ð Þ½ �2

y2 þ 1ð Þ3 ¼ y� 1ð Þ2 � y2 � 1ð Þ2

The last equation can be written as

2y5 þ 4y4 � 4y3 þ 4y2 þ 2y ¼ 0

and can be factored as

y � y4 þ 2y3 � 2y2 þ 2yþ 1ð Þ ¼ 0

1: y ¼ 0 x ¼ �1ð Þ 2: y4 þ 2y3 � 2y2 þ 2yþ 1 ¼ 0

Next, we will focus on solving a quartic equation. We probably could use Ferrari’s

method here and this problem is left as HW Problem 11 for you. However, I want

you to notice that we obtained a symmetric polynomial of even degree, so we can

get solutions faster by dividing the equation by y2:

y2 þ 2y� 2þ 2

y
þ 1

y2
¼ 0 ð2:96Þ

and then by introducing a new variable as was done in the earlier section:

z ¼ yþ 1

y
ð2:97Þ

z2 ¼ y2 þ 2þ 1

y2
ð2:98Þ
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Substituting (2.97) and (2.98) into (2.96) we obtain a quadratic equation in z:

z2 þ 2z� 4 ¼ 0

z1,2 ¼ �1� ffiffiffi
5

p

Now for each value of z, we need to solve (2.97) and find the corresponding y:

1: yþ 1

y
¼ �1þ

ffiffiffi
5

p
2: yþ 1

y
¼ �1�

ffiffiffi
5

p

y2 � ffiffiffi
5

p � 1
� 	

yþ 1 ¼ 0 y2 þ ffiffiffi
5

p þ 1
� 	

yþ 1 ¼ 0

y1,2 ¼
ffiffiffi
5

p � 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2

ffiffiffi
5

pp
2

y3,4 ¼
� ffiffiffi

5
p � 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2

ffiffiffi
5

pp
2

Only the last two answers are real solutions. If we substitute those values of y in
(2.95), we will obtain the corresponding values of x.

Answer x1 ¼ �1; x2,3 ¼ � ffiffi
5

p �3
2

�
ffiffiffiffiffiffiffiffiffiffiffi
5

p þ1
2

q
.

It is interesting that the original polynomial looked like one of 6th degree, but the

6th degree terms were cancelled and we obtained three real roots and two complex

roots for a polynomial function of the 5th degree by factoring and solving a

symmetric quartic equation.

2.7.1 Euler’s Method for Solving a Quartic Equation

Consider the equation y4 þ py2 þ qyþ r ¼ 0.

Then find its cubic resolvent as

z3 þ 2 pz2 þ p2 � 4r
� 	

z� q2 ¼ 0

and its roots z1, z2, z3.
Then solutions to a quartic equation are

y1 ¼
1

2

ffiffiffiffi
z1

p þ ffiffiffiffi
z2

p þ ffiffiffiffi
z3

pð Þ

y2 ¼
1

2

ffiffiffiffi
z1

p � ffiffiffiffi
z2

p � ffiffiffiffi
z3

pð Þ

y3 ¼
1

2
� ffiffiffiffi

z1
p þ ffiffiffiffi

z2
p � ffiffiffiffi

z3
pð Þ

y4 ¼
1

2
� ffiffiffiffi

z1
p � ffiffiffiffi

z2
p � ffiffiffiffi

z3
pð Þ

ð2:99Þ
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The roots can be complex. Note that the signs of the roots are selected by the ruleffiffiffiffi
z1

p � ffiffiffiffi
z2

p � ffiffiffiffi
z3

p ¼ �q ð2:100Þ

Problem 89 Solve the equation x4 � 8x3 þ 18x2 � 27 ¼ 0 using Euler’s

method.

Solution Let x ¼ yþ 2. Next, we have

y4 � 6y2 þ 8y� 3 ¼ 0 ð2:101Þ

Its cubic resolvent is

z3 � 12z2 þ 48z� 64 ¼ 0

z� 4ð Þ3 ¼ 0
ð2:102Þ

Then the roots of (2.102) are z1 ¼ z2 ¼ z3 ¼ 4. Considering (2.100) and that

q¼ 8, we obtainffiffiffiffi
z1

p � ffiffiffiffi
z2

p � ffiffiffiffi
z3

p ¼ �8, and then
ffiffiffiffi
z1

p ¼ ffiffiffiffi
z2

p ¼ ffiffiffiffi
z3

p ¼ �2.

Therefore, applying (2.99), the roots of (2.101) are

y1 ¼ �3, y2,3,4 ¼ 1:

Answer x1 ¼ �1, x2,3,4 ¼ 3:

In general, any polynomial function of the fourth degree with four real roots and

unit leading coefficient can be factored as p xð Þ ¼ x4 þ ax3 þ bx2 þ cxþ d

¼ x� x1ð Þ� x� x2ð Þ � x� x3ð Þ � x� x4ð Þ ¼
Y4
i¼1

x� xið Þ
Then any two factors can be coupled to obtain a product of two quadratic

functions.

For example, x4 � 5x2 þ 4 ¼ x� 1ð Þ xþ 1ð Þ x� 2ð Þ xþ 2ð Þ
¼ x� 1ð Þ xþ 1ð Þ½ � � x� 2ð Þ xþ 2ð Þ½ � ¼ x2 � 1ð Þ x2 � 4ð Þ
¼ x� 1ð Þ x� 2ð Þ½ � � xþ 1ð Þ xþ 2ð Þ½ � ¼ x2 � 3xþ 2ð Þ x2 þ 3xþ 2ð Þ

In general, we can solve the following problem.
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Problem 90 A polynomial of the fourth degree with four real roots x1, x2 and

x3, x4 can be factored as p xð Þ ¼ x4 þ ax3 þ bx2 þ cxþ d ¼ x2 þ pxþ qð Þ
x2 þ rxþ sð Þ. Evaluate A ¼ x21 þ 1

� 	
x22 þ 1
� 	

x23 þ 1
� 	

x24 þ 1
� 	

in terms of

p, q, r, s.

Solution Without loss of generality, we can assume that x1, x2 and x3, x4 are the

roots of the first and the second quadratic equations, respectively. Now applying

Vieta formulas for the 1st quadratic, we have

x21 þ 1
� 	

x22 þ 1
� 	 ¼ x21x

2
2 þ x21 þ x22 þ 1 ¼ x1x2 � 1ð Þ2 þ x1 þ x2ð Þ2

¼ q� 1ð Þ2 þ p2:

Similarly for the 2nd quadratic equation we obtain

x23 þ 1
� 	

x24 þ 1
� 	 ¼ s� 1ð Þ2 þ r2:

So the product of all four quantities is

x21 þ 1
� 	

x22 þ 1
� 	

x23 þ 1
� 	

x24 þ 1
� 	 ¼ q� 1ð Þ2 þ p2

� �
s� 1ð Þ2 þ r2

� �
:

Answer A ¼ q� 1ð Þ2 þ p2
� �

s� 1ð Þ2 þ r2
� �

.

2.8 Miscellaneous Problems on Polynomials

Problem 91 Find a polynomial of minimal degree having a maximum value

of 6 at x¼ 1 and minimum value of 2 at x¼ 3.

Solution Given a maximum value of 6 at x ¼ 1 and a minimum value of 2 at x ¼ 3,

then the polynomial must be of third degree and its derivative must be a quadratic

function that can be written as f
0
xð Þ ¼ a x� 1ð Þ x� 3ð Þ for some real number a. The

following is true:

f
0
xð Þ ¼ a x2 � 4xþ 3

� 	 ¼ ax2 � 4axþ 3a

Then f xð Þ ¼ ax3

3
� 4ax2

2
þ 3axþ c.
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Evaluating f(1) and f(3), we obtain

f 1ð Þ ¼ a

3
� 4a

2
þ 3aþ c ¼ 6 and f 3ð Þ ¼ 27a

3
� 36a

2
þ 9aþ c ¼ 2

f 1ð Þ ¼ 4

3
aþ c ¼ 6 and f 3ð Þ ¼ c ¼ 2

Now substitute c ¼ 2 into f 1ð Þ ¼ 4

3
aþ c ¼ 6 and find a ¼ 3.

Therefore, the polynomial of minimal degree is f xð Þ ¼ x3 � 6x2 þ 9xþ 2.

Problem 92 Prove that there is no polynomial p(x) with integer coefficients

such that p(7)¼ 5 and p(15)¼ 9.

Solution We will prove this by contradiction.

Assume that such a polynomial P xð Þ ¼ anx
n þ an�1x

n�1 þ . . .þ a0 does

exist, and then P 7ð Þ ¼ an � 7n þ an�1 � 7n�1 þ . . .þ a0 and P 15ð Þ ¼ an � 15nþ
an�1 � 15n�1 þ . . .þ a0.

Subtracting the two polynomials, we obtain P 15ð Þ � P 7ð Þ ¼ an � 15n � 7nð Þ þ
an�1 � 15n�1 � 7n�1

� 	þ . . .þ a1 15� 7ð Þ ¼ 9� 5 ¼ 4.

Because 8k, 15k � 7k is divisible by 15� 7¼ 8 (recall Corollary 1 at the

beginning of this chapter), it follows that P 15ð Þ � P 7ð Þ ¼ 4 itself is divisible by

8, which is not true.

We obtained a contradiction. Hence, such a polynomial does not exist.

Problem 93 Let p(x) be a polynomial with integer coefficients taking value

5 at five integer values of x. Prove that p(x) does not have integer zeroes.

Solution Proof by contradiction: Assume that such a polynomial

P xð Þ ¼ Q xð Þ x� x1ð Þ x� x2ð Þ x� x3ð Þ x� x4ð Þ x� x5ð Þ þ 5 exists and that here xi
are five distinct integers and Q(x) is a polynomial with integer coefficients of lesser

degree than P(x). Assume that x ¼ n is an integer zero of the polynomial P(x). If
P nð Þ ¼ 0, then �5 ¼ Q nð Þ n� x1ð Þ n� x2ð Þ n� x3ð Þ n� x4ð Þ n� x5ð Þ. Therefore

Q(n) is also an integer.

Note that each of the factors on the right-hand side must be a factor of 5 and xi
are five distinct integers. However, 5 is a prime number and only has four integer

factors �1;�5f g, a contradiction. Therefore P(x) does not have integer zeroes.

Problem 94 Prove the equation x5 þ ax4 þ bx3 þ c ¼ 0, where a, b, c 2 R,
c 6¼ 0 has at least two complex, not real zeroes.
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Solution This problem requires knowledge of calculus and derivatives. Let this

equation have only real roots and denote them a1, a2, . . . , as a1 < a2 < . . . < asð Þ.
Because some of the roots can have multiplicity more than one, we will also assume

that k1, k2, . . ., ks are the corresponding multiplicities of the roots and then the

following must be satisfied: k1 þ k2 þ . . .þ ks ¼ 5.

For example, some polynomial function of fifth degree with only real zeroes can

have the form

h xð Þ ¼ x� a1ð Þ2 x� a2ð Þ3; g xð Þ ¼ x� a1ð Þ3 x� a2ð Þ x� a3ð Þ;
p xð Þ ¼ x� a1ð Þ x� a2ð Þ x� a3ð Þ x� a4ð Þ x� a5ð Þ; s xð Þ ¼ x� a1ð Þ4 � x� a2ð Þ

Denote f xð Þ ¼ x5 þ ax4 þ bx3 þ c. If ki > 1, then ai is also a zero of the first

derivative of the function, f 0(x), of multiplicity ki � 1ð Þ. Thus the sum of the

multiplicities of the zeroes of f 0(x) among the roots a1, a2, . . ., as equals 5� sð Þ.
Moreover, f 0(x) must have zero bi between ai and aiþ1 (in total it will have � s

�1 such zeroes), and if at least one other root, bi, has multiplicity more than one,

then the sum of the multiplicities of the roots for the first derivative of the function

will be � 5� sð Þ þ s ¼ 5, which is impossible because all zeroes of f 0(x) with
multiplicity more than one are among the zeroes (a1, . . ., as) of function f(x). On the
other hand, 0 is a zero of the first derivative with multiplicity two and 0 is not the

root of f(x). Thus we obtained a contradiction and based on the Fundamental

Theorem of Algebra, the given function will have at least two complex conjugate

roots, and maximum three real zeroes.

Remark The reason why we considered zeroes of the function with multiplicities

more than one is that if we assume that the function has five distinct zeroes, we

would obtain a contradiction right away. If

f xð Þ ¼ x5 þ ax4 þ bx3 þ c ) f
0
xð Þ ¼ 5x4 þ 4ax3 þ 3bx2

¼ x2 5x2 þ 4axþ 3bð Þ:

Depending on the discriminant of the quadratic function
D

4
¼ 4a2 � 15b

� �
, the

first derivative will have either one zero (x¼ 0) of multiplicity two, two zeroes

(both with multiplicity two), or three zeroes (one (0) with multiplicity two, two

other zeroes with multiplicity one). Consider the last case when the derivative can

be written as f
0
xð Þ ¼ x2 � x� b1ð Þ x� b2ð Þ. By Rolle’s Theorem, if a function f(x) is

continuous on [a, b] and differentiable on (a, b), and if f(a)¼ f(b), then there must

be at least one zero of the first derivative, c 2 a; bð Þ. Because x¼ 0 is not a zero of

f(x), the function can have at most three zeroes, a1 < a2 < a3, such that

b1 2 a1; a2ð Þ, b2 2 a2; a3ð Þ.
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Problem 95 Given c0 þ c1
2
þ c2

3
þ . . .þ cn

nþ1
¼ 0. Prove that the polynomial

p xð Þ ¼ cnx
n þ . . .þ c2x

2 þ c1xþ c0 has at least one real zero.

Solution Let f xð Þ ¼ c0xþ c1
2
x2 þ c3

3
x3 þ . . .þ cn

nþ 1
xnþ1 ; then its derivative is

f
0
xð Þ ¼ c0 þ c1xþ c2x

2 þ . . .þ cnx
n ¼ p xð Þ.

Evaluate f 0ð Þ ¼ 0 and f 1ð Þ ¼ 0. Because f(x) is continuous on [0, 1] and

f 0ð Þ ¼ f 1ð Þ ¼ 0, by Rolle’s Theorem ∃ ξ 2 0; 1ð Þ such that f
0
ξð Þ ¼ 0. Therefore,

the polynomial p(x) has at least one real zero.

Problem 96
How many polynomials are there of the form

p xð Þ ¼ x3 þ ax2 þ bxþ c such that their roots are a, b, and c?

Solution Let p xð Þ ¼ x3 þ ax2 þ bxþ c with roots x ¼ a, x ¼ b, x ¼ c.
Applying Vieta’s Theorem for a cubic equation, we obtain the system

aþ bþ c ¼ �a

bcþ acþ ab ¼ b

abc ¼ �c

8><
>:

Solving for a, b, c, all possible solutions are

c abþ 1ð Þ ¼ 0

2aþ bþ c ¼ 0

bcþ acþ ab ¼ b

8><
>:

From the first equation of the system, the following cases are possible:

1. c¼ 0.

c ¼ 0

2aþ b ¼ 0

b a� 1ð Þ ¼ 0

8><
>: ,

c ¼ 0, b ¼ 0, a ¼ 0f
c ¼ 0

a ¼ 1

b ¼ �2

8><
>:

2
66664
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2. ab¼�1.

a ¼ �1

b

�2

b
þ bþ c ¼ 0

bc� c

b
� 1 ¼ b

8>>>>>><
>>>>>>:

)

c b� 1

b

� �
¼ bþ 1

c ¼ 2

b
� b

a ¼ �1

b

8>>>>>>><
>>>>>>>:

,

c b2 � 1
� 	 ¼ bþ 1ð Þb

c ¼ 2

b
� b

a ¼ �1

b

8>>>>><
>>>>>:

,

bþ 1ð Þ � c b� 1ð Þ � bð Þ ¼ 0

c ¼ 2

b
� b

a ¼ �1

b

8>>>><
>>>>:
Using the first equation of the last system, we obtain two cases:

b ¼ �1

a ¼ 1

c ¼ �1

8><
>:

or

c b� 1ð Þ � b ¼ 0

c ¼ 2

b
� b

a ¼ �1

b

8>>>><
>>>>:

,

2

b
� b

� �
b� 1ð Þ � b ¼ 0

c ¼ 2

b
� b

a ¼ �1

b

8>>>>>>><
>>>>>>>:

,

b3 � 2bþ 2 ¼ 0

c ¼ 2

b
� b

a ¼ �1

b

8>>>><
>>>>:

Let us investigate the number of real roots of the first, cubic equation in this last

system and evaluate its discriminant:

D

4
¼ q2

4
þ p3

27
¼ 19

27
> 0:

Because the discriminant is positive, the cubic equation has only one real, negative

root. It can be shown that b0< �
ffiffiffi
2

3

r
. Therefore there are four such polynomials

with the following coefficients:

Answer a; b; cð Þ : 0; 0; 0ð Þf , 1, � 2, 0ð Þ, 1, � 1, � 1ð Þ, � 1

b0
, b0,

2

b0
� b0

� �
.
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2.9 Homework on Chapter 2

1. Solve 2014x2 � 2013x� 1 ¼ 0:
Solution: Do not use the quadratic formula, the numbers would be too big.

Instead, find that x¼ 1 is one root, and then by Vieta’s Theorem the second root

is 1/2014.

2. Solve 37x2 þ 73x� 2 ¼ 0.

Hint: Use Vieta’s Theorem to obtain x ¼ �2, x ¼ 1=37.

3. Solve 2x3 þ x� 18 ¼ 0.

Solution: The cubic function on the left is monotonically increasing, so it will

have only one real zero. By checking we see that x¼ 2 is zero. Therefore, this is

the only zero of the function.

4. Solve 116x2 þ 115x ¼ 1.

Hint: We can mentally find one of the roots. It is x ¼ �1, and then the second

roots is found by Vieta’s Theorem as x ¼ �1=116.

5. For a polynomial p xð Þ ¼ x4 þ ax3 þ bx2 þ cxþ d with four real zeroes, x1, x2,
x3, x4, the following relationship is valid: b� d � 5: Find the minimal value of

the product A ¼ x21 þ 1
� 	

x22 þ 1
� 	

x23 þ 1
� 	

x24 þ 1
� 	! min.

Solution: (One of the methods). As we did in Problem 91, the polynomial can

be written as the product of two quadratic functions:

p xð Þ ¼ x4 þ ax3 þ bx2 þ cxþ d ¼ x2 þ pxþ q
� 	

x2 þ rxþ s
� 	

And the value of A in terms of p, q, r, s was obtained earlier as

A ¼ q� 1ð Þ2 þ p2
� �

s� 1ð Þ2 þ r2
� �

ð2:103Þ

Comparing coefficients of the original polynomial and its factorized form, we

have that

b ¼ qþ sþ pr, d ¼ qs

Therefore, the given inequality is

b� d � 5

qþ sþ pr � qs � 5

pr � qs� q� sþ 1þ 4
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The last inequality can be written as

pr � q� 1ð Þ � s� 1ð Þ þ 4

or as

pr � q� 1ð Þ s� 1ð Þ � 4 ð2:104Þ

Next, we will prove the following statement:

x2 þ y2
� 	

z2 þ t2
� 	 � yt� xzð Þ2, x, y, z, t 2 R: ð2:105Þ

Note that the validity of a similar inequality x2 þ y2ð Þ z2 þ t2ð Þ � ytþ xzð Þ2
follows from the Cauchy- Bunyakovsky inequality (see Chapter 4).

Proof: Expanding both sides we have

x2z2 þ x2t2 þ y2z2 þ y2t2 � y2t2 � 2xyztþ x2z2

x2t2 þ y2z2 � �2xyzt

xtþ yzð Þ2 � 0;

which is true.

Therefore, the inequality (2.105) is true.

Using (2.105) and (2.104), we can rewrite (2.103) as follows:

A ¼ q� 1ð Þ2 þ p2
� �

s� 1ð Þ2 þ r2
� �

� pr � q� 1ð Þ s� 1ð Þð Þ2 � 42 ¼ 16:

Therefore the smallest value of A is 16. In order to verify this case we can

consider p xð Þ ¼ x� 1ð Þ4 ¼ x4 � 4x3 þ 6x2 � 4xþ 1:

6. Prove that if x2 þ axþ b ¼ 0 has rational root, then it is an integer.

Hint: The proof is similar to the proof of Theorem 18. Assume that

x ¼ p
q, p; qð Þ ¼ 1, substitute it into the quadratic equation, isolate the qua-

dratic term on the left, then multiply both sides of the equation by q, and
demonstrate that the equation will not have solutions in integers.

7. Solve the equation x2 � xþ 8ð Þ x2 � 6� xð Þ ¼ 120.

Hint: Look at the substitution y ¼ x2 � xþ 8 ) x2 � x� 6 ¼ y� 14 and the

equation become quadratic in y:

y y� 14ð Þ ¼ 120

y2 � 14y� 120 ¼ 0, etc:

Answer: 4; �3.
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8. Find all X-intercepts of the function f xð Þ ¼ x2015 þ 35x� 36.

Hint: Since f(x) consists of two monotonically increasing functions, it takes

each value once, including the zero value. We can see that f 1ð Þ ¼ 0.

Answer: x ¼ 1.

9. Solve the equation xþ 1ð Þ xþ 2ð Þ xþ 3ð Þ xþ 4ð Þ ¼ 840.

Hint: Combine the two middle factors and the two outer factors separately and

then introduce a new variable:

xþ 1ð Þ xþ 2ð Þ xþ 3ð Þ xþ 4ð Þ ¼ 840

x2 þ 5xþ 4ð Þ x2 þ 5xþ 6ð Þ ¼ 840

y ¼ x2 þ 5xþ 4

y � yþ 2ð Þ ¼ 840

Answer: x ¼ �8; 3.

10. Solve the equation xþ 4ð Þ xþ 6ð Þ xþ 8ð Þ xþ 10ð Þ ¼ 5760.

Answer: �16; 2.

11. Solve the equation y4 þ 2y3 � 2y2 þ 2yþ 1 ¼ 0 using Ferrari’s method.

Answer: y1,2 ¼
� ffiffiffi

5
p � 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2

ffiffiffi
5

pp
2

:

12. Solve the equation x2 þ 3xþ 2ð Þ x2 � 20þ 3xð Þ ¼ 240.

Answer: �7; 4.

13. Solve the equation: x4 � 5x3 þ 6x2 � 5xþ 1 ¼ 0.

Answer: 2� ffiffiffi
3

p
.

14. Solve the equation x4 þ 3x3 � 8x2 þ 3xþ 1 ¼ 0

Answer: 1;�2:5� ffiffiffiffiffiffiffiffiffi
5:25

p
.

15. Solve the equation 4x4 � 8x3 � 37x2 � 8xþ 4 ¼ 0.

Hint: This is a symmetric equation.

Answer: �2; �1=2;
9� ffiffiffiffiffi

65
p

4
.

16. One of the roots of 4x4 � 12x3 þ 13x2 � 12þ a ¼ 0 equals 2. Find the value of

a and other roots of the equation.

Answer: a ¼ 2, x1 ¼ 2, x2 ¼ 1

2
.

17. Prove that if p is the root of the equation ax4 þ bx3 þ cx2 þ bxþ a ¼ 0, a 6¼ 0

then
1

p
is also the root of it.
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Proof: Because the equation is a symmetric quartic equation, we can find its

solutions by introducing a new variable, y ¼ xþ 1

x
. Without solving this

equation, we notice that if we substitute the solution, x ¼ p, then we will

obtain y pð Þ ¼ pþ 1

p
¼ y

1

p

� �
. Therefore x ¼ 1

p
is also a solution.

18. Solve the equation x2 � x� 1ð Þ2 � x3 ¼ 5.

Solution: Instead of raising this quantity to the second power, we will factor it

as follows, first by writing 5 as 4 + 1:

x2 � x� 1ð Þ2 � 4 ¼ x3 þ 1

x2 � x� 1ð Þ2 � 22 ¼ xþ 1ð Þ x2 � xþ 1ð Þ

Applying a difference of squares formula and then factoring out the common

factor we obtain

x2 � x� 1� 2
� 	

x2 � x� 1þ 2
� 	 ¼ xþ 1ð Þ x2 � xþ 1

� 	
x2 � xþ 1
� 	

x2 � 2x� 4
� 	 ¼ 0

x1,2 ¼ 1�
ffiffiffi
5

p

19. Solve the equation x2 þ xð Þ2 þ x2 þ x
�� ��� 2 ¼ 0.

Solution: We will use the following important substitution:

zj j2 ¼ z2, z ¼ x2 þ x
�� ��

z2 þ z� 2 ¼ 0

z ¼ 1, z ¼ �2

x2 þ x
�� �� ¼ 1

x2 þ x� 1 ¼ 0

x1,2 ¼ �1� ffiffiffi
5

p

2

20. Find a polynomial function that has the given zeroes and Y-intercept.
Zeroes: 1, �1, i; Y-intercept (0, �5).

Answer: y ¼ 5x4 � 5.

21. List all possible rational zeroes of the function. Sketch the graph and explain it

using the leading coefficient test: y ¼ f xð Þ ¼ 4x3 þ x2 � x� 4.

Answer: Possible rational zeros: �1

4
, � 1

2
, � 1, � 2, � 4.

Notice that f 1ð Þ ¼ 0 and then x ¼ 1 is a zero and using synthetic division we

can factor the function as x� 1ð Þ 4x2 þ 5xþ 4ð Þ ¼ 0:The function has only one
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X-intercept. The Y-intercept is �4. Since the leading coefficient is positive and

the degree is odd, the function rises to the right and falls to the left.

22. Peter expanded a binomial xþ yð Þn and lost his notes. He remembers that the

second term was 240, the third was 720, and the fourth was 1080. Please help

him to find x, y, and n.

Hint: Using (2.30) we can write the following system for the second, third, and

fourth terms:

nxn�1y ¼ 240

n n� 1ð Þ
2

� xn�2y2 ¼ 720

n n� 1ð Þ n� 2ð Þ
6

� xn�3y3 ¼ 1080

8>>>>><
>>>>>:

Solving the system we obtain the answer.

Answer: x¼ 2, y ¼ 3, n¼ 5.

23. Evaluate S1 ¼ n
0

� �
þ n

2

� �
þ n

4

� �
þ . . . and S2 ¼ n

1

� �
þ n

3

� �
þ n

5

� �
þ . . ..

Hint: Adding the two sums, reorganizing terms and using (2.31) we obtain

n
0

� �
þ n

2

� �
þ n

4

� �
þ . . .þ n

1

� �
þ n

3

� �
þ n

5

� �
þ . . . ¼ 2n. Half of the

sum is the answer.

Solution: Earlier we proved Theorem 21 that can be written as

xþ 1ð Þn ¼
Xn
k¼0

n
k

� �
xn�k ¼ n

0

� �
xn þ n

1

� �
xn�1 þ n

2

� �
xn�2 þ n

3

� �
xn�3 þ . . .

Using it we can state that the following is also true:

x� 1ð Þn ¼
Xn
k¼0

n
k

� �
�1ð Þkxn�k

¼ n
0

� �
xn � n

1

� �
xn�1 þ n

2

� �
xn�2 � n

3

� �
xn�3 þ . . .

Substituting x ¼ 1 in the formula above, we see that the left-hand side becomes

zero and on the right-hand side, the binomial coefficients with even lower index

will have the “+” sign and all binomial coefficients with odd lower index will

have the “�“ sign. Moving all negative terms to the left side, we obtain that the

sum of all even binomial coefficients, S1, equals the sum of all odd binomial

coefficients, S2. Because by (2.31) the total sum of all binomial coefficients

equals 2n, each sum (S1 or S2) is half of it or 2
n�1.

Answer: S1 ¼ S2 ¼ 2n�1:
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24. Prove that any even polynomial function with positive coefficients is concave

up (convex) and has only one extreme point.

Proof: Because the given even polynomial function with positive

coefficients can be written as f xð Þ ¼
X
n¼0

a2nx
2n, its derivative g xð Þ ¼ f

0
xð Þ

¼ 2
X
n¼1

na2nx
2n�1 is an odd function, such that g �xð Þ ¼ �g xð Þ. Because each

coefficient is positive, the derivative function is strictly increasing and has only

one zero, x ¼ 0. At this zero the first derivative changes its sign from minus to

plus, then at x¼ 0, the given polynomial function has a local minimum. We can

confirm that the function is concave up because the second derivative of f(x) is
always positive. Therefore, f(x) has only one extreme point, the minimum at

x ¼ 0.

25. Solve the equation x4 � 8x2 � 4xþ 3 ¼ 0.

Hint: Apply the Rational Zero Theorem and find two integer solutions x¼�1

and x¼ 3. Use synthetic division to find two other irrational roots.

Answer: �1; 3;�1� ffiffiffi
2

p
.

26. Find all X-intercepts of the function f xð Þ ¼ x4 þ x3 � 5x2 þ 2.

Hint: Because, by the Rational Zero Theorem, any integer factors of 2 are not

the solutions of the equation, apply Ferrari’s method.

Answer: x1,2 ¼ �1� ffiffiffi
3

p
; x3,4 ¼ 1� ffiffiffi

5
p

2
.

27. Find the X-intercept of the cubic function y ¼ x3 þ 9x� 2.

Solution: Because the equation x3 þ 9x� 2 ¼ 0 fits a special type of cubic

equation x3 þ 3ax ¼ 2b, a ¼ 3, b ¼ 1 we will denote x ¼ 3

y
� y and make a

substitution. The equation will be rewritten as a quadratic in z ¼ y3 as z2þ
2z� 27 ¼ 0, which has the following solutions:

z1 ¼ �1þ ffiffiffiffiffi
28

p ) y1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1þ ffiffiffiffiffi

28
p

3
p

z2 ¼ �1� ffiffiffiffiffi
28

p ) y2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ffiffiffiffiffi

28
p

3
p

Next, we will find x ¼ � y1 þ y2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ffiffiffiffiffi

28
p

3
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
28

p � 1
3
p

.

Answer: x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ffiffiffiffiffi

28
p

3
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
28

p � 1
3
p

.

28. Find all points of the intersection of cubic function f xð Þ ¼ 8x3 � 3x� 4 with

parabola g xð Þ ¼ 3x2 � 3.

Solution: If the two functions intersect, then the following is true:

8x3 � 3x� 4 ¼ 3x2 � 3

8x3 � 3x2 � 3x� 1 ¼ 0
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Of course, we can solve this equation, but instead, let us rewrite the last equation as

8x3 þ x3 ¼ x3 þ 3x2 þ 3xþ 1 in order to complete the cube on the right-hand side:

9x3 ¼ xþ 1ð Þ3ffiffiffi
93

p
x

� 	3 � xþ 1ð Þ3 ¼ 0

x ¼ 1

1� ffiffiffi
93

p

Answer: x ¼ 1

1� ffiffiffi
93

p .

29. For what values of a one of the roots of x2 � 15
4
� xþ a3 ¼ 0 is the square of the

other root?

Answer: a ¼ �5

2
;
3

2
:

30. Prove that x2 � 1995xþ 10aþ 1 ¼ 0 cannot have integer roots for any integer

parameter a 2 Z.

Proof: Using Vieta’s Theorem we have the system

x1 � x2 ¼ 10aþ 1

x1 þ x2 ¼ 1995

(

The sum of the roots is odd (1995), then one the roots must be odd, and the other

root must be even number. This contradicts the first equation of the system,

because the product of odd and even number must be an even, but 10a+ 1 is odd!

31. Given a function f xð Þ ¼ ax2 þ bxþ c, such that f 1ð Þ < 0, f 2ð Þ > 3, f 3ð Þ < 6.

Find the sign of the leading coefficient, a.

Solution: Using the conditions of the problem we have the system

aþ bþ c < 0

4aþ 2bþ c > 3

9aþ 3bþ c < 6

8><
>:

Adding the first and the last inequalities we obtain

10aþ 4bþ 2c < 6

aþ 4aþ 2bþ cð Þ < 3

Because the quantity inside parentheses is greater than 3, we can state that a is

negative.

Answer: a< 0.
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32. Solve the equation x4 � 4x3 þ 7x2 � 2x� 5 ¼ 0.

Solution: Let x¼ y+ 1 and substitute it into the equation y4 þ y2þ 4y� 3 ¼ 0.

This equation has a cubic resolvent as z3 þ 2z2 þ 13z� 16 ¼ 0, which by the

Rational Zero Theorem has zero z ¼ 1 (please check by substitution). Two

other roots will be obtained after applying synthetic division of the resolvent by

z� 1ð Þ. However, one can factor the quartic equation in y as follows:

y2 � yþ 3ð Þ y2 þ y� 1ð Þ ¼ 0

y2 � yþ 3 ¼ 0 y2 þ y� 1 ¼ 0

y1:2 ¼
1� i

ffiffiffiffiffi
11

p

2
y3:4 ¼

�1� ffiffiffi
5

p

2

x1,2 =2 R x3,4 ¼ 1� ffiffiffi
5

p

2

Answer: Two real solutions are x ¼ 1� ffiffiffi
5

p

2
.

33. Solve the equation x4 � 8x3 þ 18x2 � 27 ¼ 0.

Answer: x1 ¼ �1, x2,3, 4 ¼ 3:

Solution: Method 1: Using a standard method for quartic equations, let x ¼ y

þ2; then for the equation y4 � 6y2 þ 8y� 3 ¼ 0 we obtain the cubic resolvent

as z3 � 12z2 þ 48z� 64 ¼ 0.

We can recognize the cube of the difference here as

z� 4ð Þ3 ¼ 0, then z ¼ 4, etc.

Method 2: Applying the Rational Zero Theorem we notice that x¼ 1 is the

solution; then using synthetic division we factor the original polynomial equa-

tion as xþ 1ð Þ x� 3ð Þ x� 3ð Þ x� 3ð Þ ¼ 0.

34. Find real solutions of the equation 2 x2 þ 1

x2

� �
� 7 xþ 1

x

� �
¼ 0.

Hint: Make a substitution y ¼ xþ 1

x
, then y2 � 2 ¼ x2 þ 1

x2
, and the equation

becomes a quadratic 2y2 � 7y� 4 ¼ 0 in variable y, etc.

Answer: x ¼ 2� ffiffiffi
3

p
.

35. Solve a problem proposed by Cardano: 13x2 ¼ x4 þ 2x3 þ 2xþ 1.

Hint: Rewrite the equation as x4 þ 2x3 � 13x2 þ 2xþ 1 ¼ 0, recognize a

recurrent (symmetric) equation of even degree, then divide both side by x2,

and substitute y ¼ xþ 1

x
.

Solution: Applying the Rational Zero Theorem we conclude that there are no

rational zeroes. However, the equation is symmetric and after an appropriate

substitution we obtain
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y2 þ 2y� 15 ¼ 0

yþ 5ð Þ y� 3ð Þ ¼ 0

y ¼ �5, y ¼ 3:

Next, we will find the corresponding values of x:

1.

xþ 1

x
¼ �5

x2 þ 5xþ 1 ¼ 0

x ¼ �5� ffiffiffiffiffi
21

p

2

2.

xþ 1

x
¼ 3

x2 � 3xþ 1 ¼ 0

x ¼ 3� ffiffiffi
5

p

2

It is interesting that all roots are real and irrational (two negative and two

positive), so they could not be obtained by the Rational Zero Theorem.

Introduction of a new variable allows to decouple the equation into two

quadratic equations x2 þ 5xþ 1ð Þ x2 � 3xþ 1ð Þ ¼ 0.

Answer: There are four real irrational roots: x1,2 ¼ �5� ffiffiffiffiffi
21

p

2
,

x3,4 ¼ 3� ffiffiffi
5

p

2
.

36. Numbers a, b, c are three of the four real zeroes of the function

y ¼ x4 � ax3 � bxþ c. Find all such polynomial functions.

Hint: See Problem 96.

Answer: x4 � ax3; x4 � ax3 � xþ a; x4 � x3 þ x� 1; x4 þ x

37. Find the relationship between the coefficients of the polynomial

ax3 þ bx2 þ cxþ d ¼ 0, if it is known that the sum of two of its roots equals

the product of these roots.

Hint: Use Vieta’s Theorem for cubic equation (2.47).

Solution: Let x1, x2, x3 be zeros of the given cubic equation. Denote z ¼ x1 þ x2
¼ x1 � x2: Then Vieta’s Theorem can be written as
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zþ x3 ¼ �b

a

zþ x3 � z ¼ �d

a

z � x3 ¼ c

a

8>>>>>><
>>>>>>:

Dividing the second and third equations of the system we obtain
1þ x3
x3

¼ �c

d
that can be solved for x3 as

x3 ¼ � d

d þ c
: ð2:106Þ

From the first equation of the system we have

z ¼ �b

a
� x3

z ¼ �b

a
þ d

d þ c

or

x1 � x2 ¼ �bd � bcþ ad

a d þ cð Þ ð2:107Þ

Multiplying (2.106) and (2.107), using the last equation of the system and after

simplification, we obtain the requested formula:

x1x2x3 ¼ � d

d þ c
� �bd � bcþ ad

a d þ cð Þ ¼ �d

a

d þ cð Þ2 ¼ ad � bc� bd

d2 þ 2dcþ c2 þ bcþ bd ¼ ad

cþ dð Þ bþ cþ dð Þ ¼ ad:

Answer: cþ dð Þ bþ cþ dð Þ ¼ ad.

38. Prove that if x2 þ axþ b ¼ 0 has a rational root, then it is an integer.

Hint: The proof is similar to the proof of Theorem 18.

156 2 Polynomials



Proof: Assume that the root is rational, such as x ¼ p

q
, p; qð Þ ¼ 1. Substituting

it into the equation, we obtain the following:

p

q

� �2

þ a � p
q
þ b ¼ 0:

Multiplying both sides by q and separating the terms, we have

p2

q
¼ �ap� bq

It follows from this equation that the right-hand side is an integer while the left-

hand side is a fraction that cannot be reduced (because p and q are relatively

prime). We have obtained a contradiction. Therefore, the given equation cannot

have rational roots, only integer roots.

39. Prove that the positive root of the equation x5 þ x ¼ 10 cannot be a rational

number.

Hint: Use Theorem 18.

Proof: Using Theorem 18, we know that if the given equation has a rational

root, then it must be an integer. You can use the knowledge of Chapter 1

material and the fact that the function f xð Þ ¼ x5 þ x� 10 is increasing over the

entire domain and then it can have one real zero. Next, using the corollary from

the Intermediate Value Theorem, we notice that g xð Þ ¼ x5 þ x > 10, if x ¼
1:6 and that g xð Þ ¼ x5 þ x < 10, if x ¼ 1:5. There is not an integer number

between 1.5 and 1.6. Therefore, this equation does not have any rational roots.

40. Prove that the equation x3 þ ax2 � b ¼ 0, b > 0 can have only one

positive root.

Proof: Assume a contradiction and that the equation has two positive roots, for

example, x2 > 0, x3 > 0. Then obviously x2x3 > 0, x2 þ x3 > 0. Applying

Vieta’s Theorem, we have the following system:

x1x2 þ x1x3 þ x2x3 ¼ 0

x1x2x3 ¼ b > 0

(

From the first equation we obtain that

x1 x2 þ x3ð Þ ¼ �x2x3

x1 ¼ � x2x3
x2 þ x3

< 0
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If x1 < 0, then it will make the product of three roots negative, x1x2x3 < 0, which

contradicts the second equation of the system. Therefore, if b> 0, then the given

equation x3 þ ax2 � b ¼ 0 can have only one positive root.

41. Solve the equation x3 þ x2 þ x ¼ �1

3
.

Solution: If we multiply both sides by 3 we obtain

3x3 þ 3x2 þ 3xþ 1 ¼ 0:

The Rational Zero Theorem would not help to find any zeros. However, after

rewriting the first term as 2x3 þ x3, the equation can be factored as a sum of two

cubes:

ffiffiffi
23

p
x

� 	3 þ x3 þ 3x2 þ 3xþ 1ð Þ ¼ 0ffiffiffi
23

p
x

� 	3 þ xþ 1ð Þ3 ¼ 0ffiffiffi
23

p
xþ xþ 1

� 	 ffiffiffi
23

p
xÞ2 � ffiffiffi

23
p

x xþ 1ð Þ þ xþ 1ð Þ2
� �

¼ 0
�
x � ffiffiffi

23
p þ 1
� 	þ 1 ¼ 0

x ¼ � 1

1þ ffiffiffi
23

p

Answer: x ¼ � 1

1þ ffiffiffi
23

p :

42. Ann noticed that the numbers 112 ¼ 121 and 113 ¼ 1331 look like the rows of

the Pascal’s triangle; then she found an explanation to this fact and quickly

predicted the value of 114. Can you do the same? Explain, please.

Solution: Because 11 ¼ 10þ 1, then

112 ¼ 10þ 1ð Þ2 ¼ C0
210

2 þ C1
2
� 101 þ C2

2
� 100 ¼ 1 � 102 þ 2 � 10þ 1 ¼ 121

113 ¼ 10þ 1ð Þ3 ¼ C0
310

3 þ C1
3 � 102 þ C2

3 � 10þ C3
3
� 100 ¼ 1 � 103 þ 3 � 102

þ 3 � 10þ 1 ¼ 1331

114 ¼ 10þ 1ð Þ4 ¼ 14641:

Answer: 14641.
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Chapter 3

Problems from Trigonometry

Trigonometry is not a topic that is well understood by many students. In fact,

trigonometry is not covered at all in some high schools’ curriculum. I notice that

many of my students remember the “cool look” of some trigonometric functions

(sine wave, etc.) and even the fact of their periodicity but still cannot solve a simple

trigonometric equation if its solution requires something more than just knowledge

of the main trigonometric identities. For example, when solving trigonometric

equations, some students think of drawing a sine curve but forget about its bound-

edness. Thus when I ask them to find the maximum and minimum of the function

f xð Þ ¼ 3 sin 4x, some can correctly state that it is 3 and �3, respectively. However,

if I change the function a little bit, and ask the same question about

g xð Þ ¼ 3 sin 4xþ 4 cos 4x, then the students either give a wrong answer or try

to use a calculator or solve the problem using a derivative, which can work but is

not the most efficient method. It would be much better to rewrite the function

using an auxiliary argument as g xð Þ ¼ 5 sin 4xþ φð Þ and then state that

�5 � g xð Þ � 5.

This chapter contains many challenging and Olympiad-type problems and

the best methods of solving them. We are going to look at trigonometry not from

an application point of view, where knowing nothing more than the relationships in

a triangle is needed, but from a different angle. We focus on the unit circle

representation of trigonometric functions, their boundedness, restricted domains,

and important formulas, along with their derivation. The purpose of this chapter is

not only to fill the gaps of the math educational system but also to help you develop

a “love” for the subject, so you will be in the “mood to learn” more about

trigonometry.
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3.1 Introduction to the Unit Circle and Trigonometric
Identities

Consider the unit circle (circle of radius 1 with center at the origin O, as shown in

Figure 3.1). Let C be the intersection of this circle with the positive X-axis. If t is
any real number, we can define the sin(t) and the cos(t) as follows: measure |t| units
along the circle from the point C (measuring counterclockwise if t � 0 and

clockwise if t < 0). Let A(x,y) be the point on the circle arrived at by thus measuring

t units.
Then (byEmbry,Calculus, andLinearAlgebra)wedefine its first coordinate as cos t

and the second coordinate as sin(t). Since for any circle the central angle measure

equals the radian measure of the corresponding arc,∠COA ¼ t. Hence we have

x ¼ cos ∠COAð Þ ¼ cos t

y ¼ sin ∠COAð Þ ¼ sin t

Most trigonometric identities that are so “difficult” to memorize can be seen from

the construction on the unit circle. Let us modify Figure 3.1 and reflect point A with

respect to the X-axis, obtaining point N and with respect to the vertical axis Y,
obtaining point M on the circle and with respect to the origin, obtaining point L.
Thus, rectangle AMLN is inscribed into the unit circle and the coordinates of all

points are obvious (Figure 3.2).

Using Figure 3.3, first, let us prove that

cos �tð Þ ¼ cos t

sin �tð Þ ¼ � sin t
ð3:1Þ

The angle �t in Figure 3.3 corresponds to point N on the unit circle, where its first

coordinate is the cosine of the corresponding angle and the second coordinate is the

sine of the corresponding angle. Since N can be obtained by reflection of A with

0.5

−0.5

−3 −2 2 3

y

x

t

t

O C

A=(x,y)

−1

−1

1

1

Figure 3.1 A point on the unit circle
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respect of the X axis, points A and N have the same first coordinate (cos(�t)¼
cos(t)) and their second coordinates are of opposite sign (sin(�t)¼�sin(t)).

Similarly, using coordinates of points A and M, we can prove these so-called

supplementary identities:

cos π � tð Þ ¼ � cos t

sin π � tð Þ ¼ sin t
ð3:2Þ

Point M corresponds to the angle∠COM ¼ π � t. Its first coordinate is opposite to
that of point A and the second coordinate is the same. The identities are proven.

Next, because points A and L are centrally symmetric with respect to the origin,

their coordinates are opposite and their corresponding angles differ by π. Thus if
∠COA ¼ t ) ∠COL ¼ π þ t we can write the following:

cos π þ tð Þ ¼ � cos t

sin π þ tð Þ ¼ � sin t
ð3:3Þ

1

0.5

−0.5

−1

−3 −2 −1 1 2 3

y

x

t

t

L N

M

O C

A=(x,y)

Figure 3.2 AMLN on the unit circle

y
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t

t

L=(-x,-y) N=(x,-y)

M=(-x,y)

O C

A=(x,y)
1

0.5

−0.5

−1

−3 −2 −1 1 2 3

Figure 3.3 Proof of formulas (3.1)–(3.3)
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Let us prove the complementary angle properties of cosine and sine functions.

Construct point E as the intersection of the unit circle and the vertical axis

(Figure 3.4). Measure AG and using a compass make a segment OF¼AG. For this,
we can construct a circle of radius AG at center O until it intersects the horizontal

axis at F. Next, through F we will draw a line parallel to OE, so it intersects the

circle at B. Since both A and B are on the unit circle OA¼OB¼ 1 and from the

Pythagorean Theorem for the right triangles OFB and OGA we will obtain that

BF¼OG and OF¼AG. Hence the triangles are equal and their corresponding

angles are also equal:∠COA ¼ ∠OBF ¼ t and∠FOB ¼ ∠COB ¼ π
2
� t:Therefore

the following relationships are valid:

cos
π

2
� t

� �
¼ sin t

sin
π

2
� t

� �
¼ cos t

ð3:4Þ

or

cos 90� � tð Þ ¼ sin tð Þ
sin 90� � tð Þ ¼ cos tð Þ

From this you can always understand why cos 30� ¼ sin 60� or cos 36� ¼ sin 54�.
Let us evaluate some values of the cosine and sine functions. Recall that the

circumference of the unit circle is 2π.
Thus, for t ¼ π

2
(point E on the circle, Figure 3.5) we have coordinates (0, 1), and

then cos π
2

� 	 ¼ 0, sin π
2

� 	 ¼ 1. For point t ¼ π (point P) we have cos πð Þ ¼ �1,

sin πð Þ ¼ 0.

If t ¼ 5π
2
, then we again are at the point E (0,1) and algebraically t ¼ 5π

2
¼ 2π þ π

2
:

Moreover, cos t, sin t are periodic functions with minimal period T ¼ 2π and their

values are the same for any values of t that differ by a multiple of a period. Thus,

y

x

t

t

B

F G

E

O C

A=(cos(t),sin(t))

1.5

1
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−0.5

−1
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Figure 3.4 Complementary angles
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cos tþ 2π � nð Þ ¼ cos t

sin tþ 2π � nð Þ ¼ sin t
ð3:5Þ

We can calculate values of sine or cosine for some angles easily.

For example, let t ¼ π
3
(see Figure 3.5). The corresponding point on the unit circle

is A. Since the other angle in the triangle formed by dropping a perpendicular line

from A to a point K is π
6
or 30�, in the right triangle OKA: OK¼ 1/2, AO¼ 1, and

KA ¼
ffiffi
3

p
2
. Hence, sin π

3

� 	 ¼ ffiffi
3

p
2
, cos π

3

� 	 ¼ 1
2
.

Let us prove the following formulas:

cos
π

2
þ t

� �
¼ � sin t

sin
π

2
þ t

� �
¼ cos t

ð3:6Þ

Draw a unit circle and place a point A corresponding to angle t. Perpendicular to the
horizontal axis from A is AM and point B is such that∠MOB ¼ tþ 90� (Figure 3.6).
The following will be true:

∠MOA ¼ t; ∠MOB ¼ tþ π

2
; AM ¼ sin t; OM ¼ cos t

ON ¼ cos tþ π

2

� �
,BN ¼ sin tþ π

2

� �
OA ¼ OB ¼ 1

∠NOB ¼ 180� � 90� þ tð Þ ¼ 90� � t
∠NBO ¼ t:

Further, because triangles NOB andOMA are congruent by angle-side angle (ASA),

their corresponding sides are equal. That can be written as

3 /2

1/2

1

A

P(-1,0)

E(0,1)

O
CK

1.5

1

0.5

−0.5

−1

−1.5

−2 −1 1 2 3

Figure 3.5 Sine and cosine of an angle
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NO ¼ AM

BN ¼ OM
ð3:7Þ

Since point B is in the second quadrant, its first coordinate is negative. Therefore,

(3.7) is the same as (3.6). The proof is completed.

Four other trigonometric functions, tangent (tan), cotangent (cot), secant (sec),

and cosecant (csc), can be defined in terms of cosine and sine as follows:

tan t ¼ sin t

cos t
, cos t 6¼ 0

cot t ¼ 1

tan t
¼ cos t

sin t
, sin t 6¼ 0

sec t ¼ 1

cos t
, cos t 6¼ 0

csct ¼ 1

sin t
, sin t 6¼ 0

ð3:8Þ

Let us make a Table 3.1 of common values of sine, cosine, tangent, secant, and

cosecant for some commonly used angles.

3.1.1 Introduction to Inverse Trigonometric Functions

In the following section we will learn methods used to solve simple trigonometric

equations. In order to introduce these methods we need to learn about inverse

trigonometric functions.

t
y

x

t

t

N M

E

O

A=(cos(t),sin(t))

B

1.5

1

0.5

−0.5

−1

−1.5

−2 −1 1 2 3

Figure 3.6 Proof of formulas (3.6)
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Consider an equation sin x ¼ 1 or sin x ¼ 1
2
that are both geometrically

presented in Figure 3.7 on the closed interval x 2 �2π, 2π½ �.
We understand that on the entire domain, each horizontal line (y ¼ a, �1 � a

� 1) intersects the sine curve at infinitely many points. In order to describe all these

Table 3.1 Common Values

of Trigonometric Functions 0

π

6

π

4

π

3

π

2 π
3π

2 2π

sin 0 1
2

1ffiffiffi
2

p
ffiffiffi
3

p

2

1 0 �1 0

cos 1
ffiffiffi
3

p

2

1ffiffiffi
2

p 1

2

0 �1 0 1

tan 0 1ffiffiffi
3

p 1
ffiffiffi
3

p
– 0 – 0

cot –
ffiffiffi
3

p
1 1ffiffiffi

3
p 0 – 0 –

sec 1 2ffiffiffi
3

p
ffiffiffi
2

p
2 – �1 – 1

csc – 2
ffiffiffi
2

p
2ffiffiffi
3

p 1 – �1 –

1.5

1

0.5

-0.5 x

y

y= sinx y= 1y=

2
p p-p

-1

-1.5

2
1

2
--
p

2
3p 2p-2p

2
3p

Figure 3.7 Intersections with the sine curve
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points, we need to select such subinterval of the domain on which y ¼ sin x is one to
one; that is, there will be only one point of the intersection between the sine curve

and horizontal line, y ¼ a, aj j � 1. For example, interval �π
2
, π
2

� �
satisfies this

request. There exists a unique value of x 2 �π
2
, π
2

� �
for which sin x ¼ a.

Arcsine of x is what we call a number y ¼ arcsinx, � 1 � x � 1, � π
2
� y � π

2

such that sin y ¼ x. Thus, a function y ¼ arcsinx is an inverse to y ¼ sin x with

domain:�1 � x � 1 and range:�π
2
� y � π

2
. Because the graphs of the inverses are

symmetric with respect to the line y ¼ x, the function y ¼ sin x can have its inverse

only on the closed interval x 2 �π
2
, π
2

� �
on which it is a one-to-one function (the

function is monotonically increasing on this interval). Therefore, the range of y

¼ arcsinx is restricted as y 2 �π
2
, π
2

� �
. Both functions go through the origin, have

central symmetry, and are odd functions:

arcsin �xð Þ ¼ �arcsin x: ð3:9Þ

For example, arcsin �1
2

� 	 ¼ �arcsin1
2
¼ �π

6
. The graphs of both functions are shown

in Figure 3.8.

Arccosine of x is defined as follows: y ¼ arccos x, � 1 � x � 1, 0 � y � π
such that cos y ¼ x.

Thus the function y ¼ arccos x is the inverse to y ¼ cos x with domain: �1 � x
� 1 and range: 0 � y � π. (In this case, the function y ¼ cos x is one to one only on
the interval x 2 0; π½ � and on this interval it has its inverse.) (See Figure 3.10.) This

function is neither odd nor even. However, it is central symmetric to the point 0; π
2

� 	
and this is why the following is true:

arccos �xð Þ ¼ π � arccos x: ð3:10Þ

In order to evaluate arccos pð Þ, pj j � 1, we can use the unit circle idea.

For example, what is arccos �1
2

� 	
? Many students wrongly believe that it has the

same value as arccos1
2
¼ π

3
. However, inverse cosine is not an even function, and

arccos �1
2

� 	
must equal the angle from the interval 0 � α � π (marked by the red arc

on the unit circle, Figure 3.9), the cosine of which is �1/2, and this would be the

angle 2π
3
.

Arctangent of x is defined as follows: y ¼ arctanx, x 2 R, � π
2
< y < π

2
such

that tan y ¼ x. The function y ¼ arctanx is inverse to y ¼ tan x with the domain:

x 2 R and range: y 2 �π
2
, π
2

� 	
(Figure 3.11). It is an odd function; therefore,

arctan �xð Þ ¼ �arctan x ð3:11Þ

Arccotangent of x is defined as follows: y ¼ arccotx, x 2 R, 0 < y < π such that

cot y ¼ x. The function y ¼ arc cot x is inverse to y ¼ cot xwith domain: x 2 R and

range: y 2 0; πð Þ. It is centrally symmetric with respect to point 0; π
2

� 	
(Figure 3.12).

It will be useful to remember the following formulas:
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sin arcsin að Þ ¼ a, cos arccos að Þ ¼ a, aj j � 1

tan arctan bð Þ ¼ b, cot arccot bð Þ ¼ b, b 2 R
ð3:12Þ

arctan aþ arccot a ¼ π

2
ð3:13Þ

arcsin xþ arccos x ¼ π

2
ð3:14Þ

1

0.5

–0.5
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–3 –2 –1 1 2 3

arccos(-1/2)=2p /3
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Figure 3.9 Finding arccos �1
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p
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Figure 3.8 The graphs of y ¼ sin x and y ¼ arcsinx
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Problem 97 Evaluate arccos sin �π

9

� �� �
.

Solution It follows from the definition of arccosine that

arccos cos xð Þ ¼ x, if 0 � x � π ð3:15Þ

Hence, in order to use this formula we need to replace the value of sin �π
9

� 	
by the

cosine of an angle concluded between 0 and π. Using the complementary angle

formula, we have

sin �π

9

� �
¼ � sin

π

9

� �
¼ cos

π

2
þ π

9

� �
¼ cos

11π

18

0 � 11π

18
� π

Therefore, arccos sin �π

9

� �� �
¼ arccos cos

11π

18

� �� �
¼ 11π

18

4
3p

2
p

p

4
p

4
3p

2-

-

-

2
3p-2p 2p

2
3p

-
p p

-p

-p

2
p

-
2
p

4
p

y

x

y= cos(x) y= arccos(x)

Figure 3.10 Graphs of y ¼ cos x and y ¼ arccosx
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Answer
11π

18
:

Problem 98 Evaluate arcsin cos
31π

5

� �� �
.

Solution It follows from the definition of arcsine that

arcsin sin xð Þ ¼ x, if � π

2
� x � π

2
ð3:16Þ

Using an approach similar to that of the previous problem we will rewrite cosine in

terms of sine of the angle concluded in the interval above:

cos
31π

5
¼ cos 6π þ π

5

� �
¼ cos

π

5
¼ sin

π

2
� π

5

� �
¼ sin

3π

10

Therefore, arcsin cos
31π

5

� �� �
¼ arcsin sin

3π

10

� �� �
¼ 3π

10
.

3p p

4
3p

2
p

p

4
p

4
3p

-

-

-

-p

2
p

4
p2

-2p - -p -
2
p

2
2p

2
3pp

x

y

y= tan(x) y= arctan(x)

Figure 3.11 Graphs of y ¼ tan x and y ¼ arctanx
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Answer
3π

10
:

Problem 99 Solve the equation arcsin xð Þ3 þ arccos xð Þ3 ¼ απ3 for all
α 2 R:

Solution In Chapter 2 we learned formula (2.16)

a3 þ b3 ¼ aþ bð Þ3 � 3ab aþ bð Þ

Applying this formula and formula (3.14), and after simplification, the equation can

be written as

12y2 � 6πyþ 1� 8αð Þπ2 ¼ 0, where y ¼ arcsin x.

2
3p-2p

-
-p

-
2
p

2
2p

2
3pp p

4
3p

2
p

p

4
p

4
3p

-

-

-

-p

2
p

4
p

y

x

y= cot(x) y= arccot(x)

Figure 3.12 Graphs of y ¼ cot x and y ¼ arc cot x
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Solutions of a quadratic equation depend on its discriminant. We can use D/4

formula because the coefficient of the linear term is even:

D

4
¼ 3πð Þ2 � 1� 8αð Þ12π2

D

4
¼ 9π2 � 12π2 1� 8αð Þ

D

4
¼ 3π2 32α� 1ð Þ

There are three possible outcomes:

1. If α <
1

32
there are no real solutions.

2. If α ¼ 1

32
then D/4¼ 0 and we have one solution

y ¼ 3π2

12π
¼ π

4

arcsin x ¼ π

4

x ¼
ffiffiffi
2

p

2

3. If α >
1

32
then there are two real solutions for the quadratic equation in y

y ¼ 3π2 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3π4 32α� 1ð Þp
12π

y ¼ π

12
� 3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 32α� 1ð Þ

p� �
arcsin x ¼ π

12
� 3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 32α� 1ð Þ

p� �
arcsin x ¼ π

12
� 3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 32α� 1ð Þ

p� �
2
64

Because arcsine changes on �π

2
,
π

2

h i
we have to investigate if there are any other

restrictions on α. Thus the following must be true:

�π

2
� π

12
3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
96α� 3

p� �
� π

2

π

12
3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
96α� 3

p� �
� 6π

12

3þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
96α� 3

p � 6ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
96α� 3

p � 3

96α� 3 � 32

96α � 12

α � 1

8
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and

�π

2
� π

12
� 3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
96α� 3

p� �
� π

2

�6 � 3� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
96a� 3

p� 	 � 6

�9 � � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
96a� 3

p � 3

�3 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
96a� 3

p � 9

96a� 3 � 81

96a � 84

a � 7

8

Putting together the two restriction on the parameter we finally obtain the following

solution to case 3:

If
1

32
< α <

1

8
then x ¼ sin

π

12
3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
96α� 3

p� �� �
If α ¼ 1

8
then

x ¼ sin
π

12
3� 3ð Þ

� �
x ¼ sin

π

2
¼ 1

x ¼ sin 0 ¼ 0

2
4

Answer If α < 1=32, then there are no real solutions.

If α ¼ 1
32
then x ¼ 1ffiffi

2
p .

If 1
32
< α < 1

8
, then x ¼ sin π

12
3� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

96α� 3
p� 	� 	

;

If α ¼ 1
8
, then x ¼ 0, x ¼ 1.

3.2 Best Methods for Solving Simple Equations
and Inequalities

In this section I demonstrate the most efficient methods of solving simple trigono-

metric equations.

3.2.1 Solving cos x¼ a

Rephrase the problem: Find points on the unit circle, for which the first coordinate

equals a. This geometric approach will help you to find the solution right away.
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Draw a picture and for simplicity, assume that a is a positive real number less than

or equal 1 (Figure 3.13).

If OB¼ a then there are two points (C and D) within each revolution on the unit

circle that have a as their first coordinate. By finding the angles corresponding to

these points we will find the solution of the problem! (Figure 3.14)

By connecting O and C and O and D, we find that point C corresponds to

∠BOC ¼ α and point D (as symmetric to C) to ∠BOD ¼ �α. The angle

α ¼ arccosa, then �α ¼ �arccosa.
Uniting these two answers and applying periodicity of the cosine function, the

solution is

cosx=a

OB=a

a

D

C

O B

1

0.8
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0.2

–0.2
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–2 –1.5 –1 –0.5 0.5 1 1.5 2

Figure 3.13 Vertical line and the unit circle
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a
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Figure 3.14 Solving cos x ¼ a
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cos x ¼ a, aj j � 1

x ¼ �arccosaþ 2π � n, n 2 Z:
ð3:17Þ

Here and below, the notation n 2 Z means that n ¼ 0, � 1, � 2, . . .
If the value of a is one corresponding to the cosine row of Table 3.1, then arccosa is

the simplest corresponding angle between 0 and π. For example, if a¼ 1
2
) arccos1

2
¼ π

3

or a¼�1) arccos �1ð Þ¼ π; etc.
Many trigonometric equations are not that simple and usually after solving them

we will need to write their solutions in the simplest form. Consider some common

equations, positions of points, and solutions. We will learn how to describe points

on the unit circle based on their location on the circle.

Problem 100 Solve the equation cos 2 x ¼ 3

4
.

Solution This simple equation can be written as

cos x ¼ �
ffiffiffi
3

p

2

x ¼ �π

6
þ 2πn

x ¼ � 5π

6
þ 2πm, n,m 2 Z:

2
64

The first solution is given by points B and Q and the second one by points E and

M on the unit circle (Figure 3.15).

y=0.5

M Q

P
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E B

N

F

D

O

A

1
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Figure 3.15 Sketch for Problem 100
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Can this answer be simplified or written in a better form? Yes. By connecting

points B and M and Q and E, we can see that these corresponding pairs are

symmetric with respect to the origin, and their angles differ by π.

Answer x ¼ �π
6
þ π � k, k 2 Z:

Using Figure 3.15, we will solve the following simple problems that will help

you learn to represent your answer in the simplest and most efficient form.

Problem 101 Describe the angle that corresponds to point B shown in

Figure 3.15.

Solution Second coordinate of point B is½, so B corresponds to t ¼ π
6
þ 2πn, n 2 Z:

Problem 102 The solution of some trigonometric equation is given by points

B and Q on the unit circle (Figure 3.15). Find that solution.

Solution Points B and Q are symmetric with respect to the X-axis; then using

directed angles ∠AOB ¼ π
6
) ∠AOQ ¼ �π

6
:

Both points together can be described by t ¼ �π
6
þ 2πn, n 2 Z:

Problem 103 The solution of some trigonometric equation is given by two

points B and M on the unit circle shown in Figure 3.15 above. Describe the

solution.

Solution Points B and M are symmetric with respect to the origin. The angles

corresponding to them differ by π. Thus, the position of M can be written as

t ¼ π
6
þ π ¼ 7π

6
. However, if we add another π to this angle, we would jump to

point B again, and by adding one more π, we would again be atM. The formula that

gives us this alternation is

tB�M ¼ π

6
þ πn, n 2 Z:

Problem 104 Now assume that a solution is given by four points on the

circle B, E, M, and Q. How can you describe all these points together?
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Solution Points {B and E} and {M and Q} are symmetric to the Y-axis and {B,M}

and {E,Q} are centrally symmetric. Therefore, all four points can be described by

tB�E�M�Q ¼ �π

6
þ πn, n 2 Z:

If you are in doubt, please try the first four values of n. For example, if

n ¼ 0, t ¼ �π

6
, t ¼ π

6
, t ¼ �π

6

n ¼ 1, t ¼ �π

6
þ π , t ¼ 7π

6
, t ¼ 5π

6

The first pair of the answers describes points B and Q, respectively. The second
pair of answers describes points M and E, respectively.

Problem 105 Describe the solution given by a) points D, N, F, and A; b) by
the pairs D and N and then by F and A; and then c) by all four points together
(Figure 3.15).

Solution

a) Point D has coordinates (0, 1) and corresponds to the smallest angle π
2
. There will

be infinitely many angles that correspond with this point, all of them given by

tD ¼ π
2
þ 2πn:

Point N is symmetric to D with respect to the origin; hence their angles differ

by π. It can be described by tN ¼ 3π
2
þ 2πn or by tN ¼ �π

2
þ 2πm:

Point A has coordinates (1, 0) and matches with angle 0 or in general with

tA ¼ 2πn, n 2 Z:
b) If we want to describe two points together, then D and N are associated with

tD�N ¼ π
2
þ πn, n 2 Z:

c) All four points {A, D, F, N} can be seen together and the difference between

locations of two consecutive points is the same, π
2
. Therefore, all points can be

described by one formula tA�D�F�N ¼ π
2
� n, n 2 Z:

Problem 106 Describe points M and Q together (Figure 3.15).

Solution Points M and Q are symmetric with respect to the Y-axis, and they

can be described by supplemental angles. Hence, if M can be described by angle

α, then Q would be π � α. Both points together can be described by t ¼ �1ð Þn
arcsin �π

6

� 	þ πn, n 2 Z: This formula is often used when solving the equation

sin x ¼ a:
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3.2.2 Solving sinx¼ a

For simplicity, assume that 0 � a � 1: We are looking for such points on the unit

circle that have the second coordinate a. There are two points on the circle that

satisfy this condition {E and C}. Look at the sketch below (Figure 3.16). The points

are at the intersection of line y ¼ a and the unit circle.

The smallest angle corresponding to C ∠GOC is given by arcsin a; the other

angle associated with E is π � arcsina. (From symmetry, we know that the angles

between EO and the X-axis and CO and the X-axis are the same.)

Hence, the solution to sin x ¼ a can be written as

sin t ¼ a,

t ¼ �1ð Þnarcsinaþ πn, n 2 Z:
ð3:18Þ

For example, if you need to solve the following problem:

Problem 107 Find all x 2 π
2
; 11π

2

� �
satisfying the equation sin x ¼ 1

2
:

Solution First, we will draw a unit circle and since sine is the second coordinate of

a point on the unit circle, we will find such points by drawing a horizontal line

through point D with y coordinate½ until the line intersects the circle at two points,

B and A (Figure 3.17).

Both points A and B correspond to the value of sine of ½; hence we need to find

their angles. Within each revolution, point A matches with angle

1

0.8

0.6

0.4

0.2

–0.2

–0.4

–0.6

–0.8

–1

–2 –1.5 –1 –0.5 0.5 1 1.5 2 2.5

OF=a

sinx=a

y=aFE C

O G

Figure 3.16 Solving sin x ¼ a
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∠COA ¼ arcsin 1
2

� 	 ¼ π
6

and point B with angle

∠COB ¼ π � arcsin 1
2

� 	 ¼ π � π
6
¼ 5π

6
:

Therefore, the general solution to the given equation can be written as

x ¼ π

6
þ 2π � n,

x ¼ 5π

6
þ 2π � n, n ¼ 0, � 1, � 2, . . .

2
64

However, we need to select only solutions x 2 I ¼ π
2
; 11π

2

� �
.

How can we select all valid values of the variable x?
Let us find out how far down by integer n we should go.

Since 5π ¼ 10π
2
< 11π

2
< 12π

2
¼ 6π ¼ 2π � 3, we will consider only such n that

satisfy 0 � n � 2:

It is clear that if n¼ 0, then x ¼ π
6
=2I and that x ¼ 5π

6
2 I:

At n¼ 1 both solutions x ¼ π
6
þ 2π ¼ 13π

6
2 I and x ¼ 5π

6
þ 2π ¼ 17π

6
2 I:

Further, if n¼ 2 then x ¼ π
6
þ 2π � 2 ¼ 25π

6
2 I and

x ¼ 5π
6
þ 4π ¼ 29π

6
< 5π < 33π

6
¼ 11π

2
2 I:

Therefore, we have only five values of x that satisfy the condition of the problem.

Answer 5π
6
; 13π

6
; 17π

6
; 25π

6
; 29π

6


 � 2 π
2
; 11π

2

� �
.

3.2.3 Solving tanx¼ a and cotx¼ a

We will draw a unit circle and a so-called tangent line—a vertical line that is

tangent to the circle at point B (1,0). Positive values of a will be above B and

negative below (Figure 3.18). Thus, tan x ¼ 0 corresponds to point B. In order to

solve tan x ¼ a, we will place value of a on the tangent line. Let a> 0, for example,

BG¼ a, and connect G with the origin until it would intersect the unit circle at two

points (in our sketch at E and F). Yes, there are two angles∠BOE and∠BOF on the

unit circle corresponding to the given positive value of a. From triangle GOB we

–3 –2 –1 1 2 3

1

0.5

–0.5

–1

–1.5

O

C

D AB

D

Figure 3.17 Solving sin x ¼ 1
2
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have OB ¼ 1,BG ¼ a ) tan ∠BOGð Þ ¼ tan ∠BOEð Þ ¼ a. The angle x is arctan-
gent of a.

Points E and F differ by π. Hence, if the angle ∠BOE ¼ arctana, then

∠BOF ¼ π þ arctana.
Both angles satisfy the equation. Therefore this can be written as

tan x ¼ a

x ¼ arctanaþ πn, n 2 Z
ð3:19Þ

Example Solve the equation tan π
4
� 3x

� 	 ¼ 1.

Solution Since tangent is an odd function, the equation can be rewritten as

tan 3x� π

4

� �
¼ �1

3x� π

4
¼ �π

4
þ πn

3x ¼ πn

x ¼ π

3
� n, n 2 Z:

Solving cot x ¼ a is similar to solving tan x ¼ a. We need to draw a unit circle and

a cotangent line that is tangent to the circle at point (0,1). Cotangent value is zero at
this point, positive to the right of this point and negative to the left.

In Figure 3.19, you can see both cotangent and tangent lines. Also if the angle t is
given then the values of tan t (segment CD) and cot t (segment AB) are both shown

in Figure 3.19.

1.5

1

0.5

–0.5

–1

–1.5

–3 –2 –1 1 2 3 4

BG=a

tanx=a

F

E

O

B

G

Figure 3.18 Tangent line
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In general, the following is true:

cot x ¼ a

x ¼ arc cot aþ πn, n 2 Z
ð3:20Þ

In Figure 3.20, we showed the solution to the equation cot x ¼ 1ffiffi
3

p . There are two

points on the unit circle that correspond to this value of the cotangent. Both can be

written as x ¼ π
3
þ πn, n 2 Z.

3.2.4 Solving Trigonometric Inequalities

Many problems in trigonometry require selecting a solution from a given interval.

This can be asked directly as in the following problem:

3

2

1

–1

–2 2 4 6

cot(t)

tan(t)

t

tanx

cotx
C

BA

O D

Figure 3.19 Cotangent line

1.5

1

0.5

–0.5

–1

–2 –1 1 2 3 4 5

p/3

AB=1/ 3

Ap/2

C

B

Figure 3.20 Using cotangent line
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Solve the equation

1þ tan 2x
� 	

sin x� tan 2xþ 1 ¼ 0

Subject to the inequality tan x > 0.

Or indirectly when we have to be careful in selecting a correct solution. For

example, in problem: ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2 sin 2 x

p
¼

ffiffiffiffiffiffiffiffiffiffi
sin x

p
:

In solving this problem, because of the square roots, we need to consider only the

solutions that will satisfy the following system:

1� 2 sin 2x � 0

sin x � 0

sin x ¼ 1� 2 sin 2x

8<
:

It is useful to be able to sketch the solutions of the inequalities on the unit circle.

Below we will consider some simple examples, so you can understand how to

find geometric solutions to trigonometric inequalities:

Example 1 sin x > 1
2

Example 2 cos x < 1
2

Example 3
sin x � �1

2

cos x � 1

2

8><
>:

Example 4 cot x < 2
3

Example 5 tan 2x > 1
3

Example 1 Draw the unit circle (Figure 3.21).

There are two points corresponding to sin x ¼ 1
2
.

The angles satisfying the inequality sin x > 1
2
are marked by the thick green arc

and algebraically can be described as π
6
þ 2πn < x < 5π

6
þ 2πn, n 2 Z:

Remember that each solution arc on the unit circle must be described by an

interval between two angles, from the smallest to the biggest, by moving counter-

clockwise along the arc. For example, if we instead started from the left point on the

same circle and gave the following interval, 5π
6
þ 2πn < x < 13π

6
þ 2πn, then it

would describe the solution to the opposite inequality, sin x < 1
2
, and would be

given by the bigger arc.

Example 2 is shown in Figure 3.22 and its solution is marked by the red arc ABC.

Algebraically it can be written as π
3
þ 2πn < x < 5π

3
þ 2πn, n 2 Z:
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For Example 3 (system), each inequality must be sketched separately and then the

intersection (blue arc ABD) must be found (see Figure 3.23).

Thus, solution to the first inequality, cos x � 1
2
, is given by the arc ABC. The

solution to sin x � �1
2
is given by the arc EBD. The common part of the two arcs is

cosx<1/2

B

C

A1

0.5

–0.5

–1

–2 –1 1 2 3

Figure 3.22 Sketch for Example 2

1

0.5

–0.5

–1

–2 –1 1 2 3

cosx<1/2
sinx>-1/2

D E

B

C

A

O HF

Figure 3.23 Sketch for Example 3
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Figure 3.21 Sketch for Example 1
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arc ABD. The answer lies between angles, including the end points of the arcs, and it

can be written as π
3
þ 2πn � x � 7π

6
þ 2πn.

Let us solve Example 4, cot x < 2
3
.

Draw the unit circle and cotangent line that is tangent to the circle at point M
(0,1). Mark 2/3 on the positive part of the line (segment NM) and connect point N

with the center of the circle until it intersects the circle again at point

D (Figure 3.24).

The solution to the equation cot x ¼ 2
3
will be given by these two points and can

be written as x ¼ arccot2
3
þ πn:

Next, we will try to visualize what would happen to the solution if we start

moving point N to the left on the cotangent line and obtain a solution by connecting

a new point (for example, L) with the origin again in the same manner. It is clear

that there are two arcs for which the inequality is true, ABC and DEF (Figure 3.24).

Finally, our solution can be written as

arccot
2

3
þ πn < x < π þ πn, n 2 Z:

In order to find a solution to Example 5 and solve tan 2x > 1
3
, first, it is convenient,

using the difference of squares formula, to rewrite the inequality as follows:

tan x� 1ffiffi
3

p
� �

tan xþ 1ffiffi
3

p
� �

> 0. Then the solution is possible when either both

quantities inside parentheses are positive or both negative. This can be written as

tan x >
1ffiffiffi
3

p

tan x > � 1ffiffiffi
3

p

8>><
>>:

tan x <
1ffiffiffi
3

p

tan x < � 1ffiffiffi
3

p

8>><
>>:

2
66666666664
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Figure 3.24 Sketch for Example 4
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Finally, the union of the two systems is given graphically in Figure 3.25. Algebra-

ically it can be written as

π

6
þ πn < x <

5π

6
þ πn, n 2 Z:

Now we can practice by solving some trigonometric inequalities.

Problem 108 Solve the inequality sin xj j > cos xj j:

Solution It is useful to know that any modulus inequality of the type

f xð Þj j � g xð Þj j or f xð Þj j � g xð Þj j

can be rewritten in a different but equivalent form as

f 2 xð Þ � g2 xð Þ or f 2 xð Þ � g2 xð Þ; respectively.
Therefore, we will solve

sin 2x > cos 2x

cos 2x� sin 2x < 0

cos 2x < 0

π

2
þ 2πn < 2x <

3π

2
þ 2πn

π

4
þ πn < x <

3π

4
þ πn, n 2 Z

While solving this inequality, you could use Figure 3.14. Cosine of any argument is

less than zero if the argument (angle) belongs to the interval

1.5

1

0.5

–0.5

–1

–1.5

–3 –2 –1 1 2 3

p/6

tanx

A

B

O C

Figure 3.25 Solving the system of inequalities
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π
2
þ 2πn, 3π

2
þ 2πn

� 	
.

Dividing each term by 2 we obtain the answer.

Answer π
4
þ πn < x < 3π

4
þ πn:

Problem 109 Solve the equation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi� cos x

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�1þ 2 sin 2x
p

.

Solution In order to solve this equation correctly, we need to make the quantities

under the radicals nonnegative. The equation is equivalent to the following system:

� cos x ¼ �1þ 2 sin 2x
cos x � 0

�1þ 2 sin 2x � 0

8<
:

Using a main trigonometric identity we can rewrite the first equation as quadratic in

cos x. Now the system has the following form:

2 cos 2x� cos x� 1 ¼ 0

cos x � 0

cos 2x � 0

8<
: ,

cos x ¼ 1

cos x ¼ �1

2

"
cos x � 0

cos 2x � 0

8>>><
>>>: , cos x ¼ �1

2
, x ¼ � 2π

3
þ 2πn:

Remark While solving this problem we used the fact obtained in the previous

problem. Remember that the solution of cos 2x � 0 is

π
4
þ πn � x � 3π

4
þ πn, n 2 Z.

If we place these restrictions on the unit circle, we can see that our solution

x ¼ � 2π

3
þ 2πn is inside of the given region (Figure 3.26).

p/4
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B
A

D

E

1
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Figure 3.26 Sketch for Problem 109
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3.3 Solving Miscellaneous Trigonometric Equations

Some additional basic trigonometric identities can be summarized as follows. We

will use them in order to solve trigonometric problems:

cos αþ cos β ¼ 2 cos
αþ β

2
� cos α� β

2

cos α� cos β ¼ �2 sin
αþ β

2
� sin α� β

2

sin αþ sin β ¼ 2 sin
αþ β

2
� cos α� β

2

sin α� sin β ¼ 2 sin
α� β

2
� cos αþ β

2

cos α � cos β ¼ 1

2
cos α� βð Þ þ cos αþ βð Þð Þ

sin α � sin β ¼ 1

2
cos α� βð Þ � cos αþ βð Þð Þ

sin α � cos β ¼ 1

2
sin αþ βð Þ þ sin α� βð Þð Þ

cos αþ βð Þ ¼ cos α cos β � sin α sin β

cos α� βð Þ ¼ cos α cos β þ sin α sin β

sin αþ βð Þ ¼ sin α cos β þ cos α sin β

sin α� βð Þ ¼ sin α cos β � cos α sin β

tan αþ βð Þ ¼ tan αþ tan β

1� tan α tan β

tan α� βð Þ ¼ tan α� tan β

1þ tan α tan β

sin 2α ¼ 2 sin α cos α

cos 2α ¼ cos 2α� sin 2α ¼ 1� 2 sin 2α ¼ 2 cos 2α� 1

tan 2α ¼ 2 tan α

1� tan 2α

sin 2α ¼ 2 tan α

1þ tan 2α

cos 2α ¼ 1� tan 2α

1þ tan 2α

sin 3α ¼ 3 sin α� 4 sin 3α

cos 3α ¼ 4 cos 3α� 3 cos α

ð3:21Þ

Below I will show the most popular and effective methods of solving trigonometric

equations.
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3.3.1 Factoring

If we can set up the equation so that the right side will be zero, and factor, then this

will allow us to solve the more complicated equation as a set of simpler problems:

Example Solve sin xþ sin 5x ¼ 0.

Solution Rewriting the sum as a product using a corresponding formula from

(3.21), we obtain

sin xþ sin 5x ¼ 0

2 sin 3x � cos 2x ¼ 0

The solution to this example will be reduced to the solution of two much easier

problems:

sin 3x ¼ 0 cos 2x ¼ 0, etc.

Problem 110 cos 2x ¼ 1� sin x:

Solution
cos 2x ¼ 1� sin x
1� 2 sin 2x ¼ 1� sin x
sin x � 2 sin x� 1ð Þ ¼ 0

sin x ¼ 0 sin x ¼ 1

2

x ¼ πn x ¼ �1ð Þmπ
6
þ πm, n,m 2 Z:

Problem 111 Solve cos 3xþ sin 2x� sin 4x ¼ 0:

Solution We want to factor this equation and it is easy to rewrite the difference of

two sines as a product using a formula from (3.21):

cos 3xþ sin 2x� sin 4xð Þ ¼ 0

cos 3x� 2 sin x cos 3x ¼ 0

cos 3x 1� 2 sin xð Þ ¼ 0

cos 3x ¼ 0 ) x ¼ π

6
þ π

3
� n

sin x ¼ 1

2
) x ¼ �1ð Þkπ

6
þ πk, n, k 2 Z

2
64

If you put both solutions on the unit circle, you would see that the second solution is

included in the first solution. Hence the answer can be written as
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x ¼ π
6
þ π

3
� n, n 2 Z:

Answer x ¼ π
6
þ π

3
� n, n 2 Z:

3.3.2 Rewriting a Product as Sum or Difference

A factoring method works well only if the other side of an equation is zero or can

become zero. Sometimes you need to do the opposite and rewrite a factorized

expression as the sum or difference of trigonometric functions, so you can look for

common factors. Let us solve the following problem.

Problem 112 Solve sin 5x cos 3x ¼ sin 6x cos 2x:

Solution In order to find the solution to this equation we need to recall the

following formula:

sin α cos β ¼ 1

2
sin α� βð Þ þ sin αþ βð Þð Þ

We obtain

1

2
sin 8xð Þ þ sin 2xð Þð Þ ¼ 1

2
sin 8xð Þ þ sin 4xð Þð Þ

sin 2x ¼ sin 4x

This simple equationmust be solved bymoving sin 4x to the left side and by applying
the formula for the sine of a double angle (Method 1) or by applying the formula for

the difference of two sines (Method 2). Please do not equate the arguments.

Method 1.

sin 2x� 2 sin 2x cos 2x ¼ 0

sin 2x 1� 2 cos 2xð Þ ¼ 0

sin 2x ¼ 0 cos 2x ¼ 1

2

2x ¼ πn 2x ¼ �π

3
þ 2πk

x ¼ πn

2
or x ¼ �π

6
þ πk

Method 2.

sin 2x� sin 4x ¼ 0

�2 sin x cos 3x ¼ 0

sin x ¼ 0 or cos 3x ¼ 0

x ¼ πn or 3x ¼ π

2
þ πk , x ¼ π

6
þ πk

3
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If you place both solutions on the unit circle, then you will see that the answers

obtained in different ways are identical.

3.3.3 Reducing The Degree of Trigonometric Functions

From the identities above, we know that squares of sine or cosine can be replaced by

a linear expression in a double angle. For example, let us solve the following:

Problem 113 Solve sin 2xþ sin 23x ¼ 1.

Solution Rewriting the sine of single angles in terms of the cosine of a

corresponding double angle we obtain

sin 2xþ sin 23x ¼ 1

1� cos 2x

2
þ 1� cos 6x

2
¼ 1

cos 2xþ cos 6x ¼ 0

Because the right side is zero, we can factor the left side as

cos 2xþ cos 6x ¼ 0

2 cos 4x � cos 2x ¼ 0

We will proceed as follows:

cos 4x ¼ 0, cos 2x ¼ 0; etc.

Answer

x ¼ π

8
þ πn

4

x ¼ π

4
þ πk

2
, n, k 2 Z

2
64 .

3.3.4 Homogeneous Trigonometric Equations

An equation an sin
n xþ an�1 sin

n�1 x cos xþ . . .þ a1 sin x cos
n�1 x ¼ 0 is called a

homogeneous trigonometric equation of nth order. Such equations will be reduced

to a polynomial type equation by dividing either by sine or cosine raised to the

highest degree.

Problem 114 Solve the equation 3 sin 2x� 3 sin x cos xþ 4 cos 2x ¼ 0.
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Solution Let us divide both sides by cos 2x 6¼ 0:

3 tan 2x� 3 tan xþ 4 ¼ 0

D ¼ 9� 48 ¼ �39 < 0:

There are no real solutions.

Let us change this problem a little bit and make the right side 2. The following

problem will have a solution.

Problem 115 Solve the equation 3 sin 2x� 3 sin x cos xþ 4 cos 2x ¼ 2.

Solution Let us replace the right side by 2 cos 2xþ 2 sin 2x ¼ 2, collect like terms,

and obtain an equivalent equation:

sin 2x� 3 sin x cos xþ 2 cos 2x ¼ 0

We will again divide both sides by cos 2x 6¼ 0:

tan 2x� 3 tan xþ 2 ¼ 0

tan x ¼ 1 or tan x ¼ 2

x ¼ π

4
þ πn or x ¼ arctan2 þ πk, n, k 2 Z:

A simple example of a homogeneous equation is a sin xþ b cos x ¼ 0 that is a

homogeneous trigonometric equation of the first order.

Dividing both sides by cos x 6¼ 0 (or sin x 6¼ 0) we obtain

tan x ¼ �b
a, etc.

However, if we change the right side of the original equation, and make it

a sin xþ b cos x ¼ c, then dividing by sine or cosine would not help and I recom-

mend the method of using an auxiliary argument (angle), as explained below.

A homogeneous trigonometric equation of the first order can be written as

A sin x� B cos x ¼ 0, A2 þ B2 6¼ 0 ð3:22Þ

Such equations can be solved using two different methods:

Method 1: Assuming that either sin x 6¼ 0, cos x 6¼ 0we can divide (3.22) either by

sin x or cos x and obtain a new equation in cot x or tan x, respectively.
For example:

A tan x ¼ �B, tan x ¼ �B
A; etc.
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Method 2: Recalling the following trigonometric identities

sin xþ yð Þ ¼ sin x cos yþ cos x sin y
sin x� yð Þ ¼ sin x cos y� cos x sin y
cos xþ yð Þ ¼ cos x cos y� sin x sin y
cos x� yð Þ ¼ cos x cos yþ sin x sin y

we can divide and multiply (3.22) by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
:

A sin x� B cos x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p sin x� Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p cos x

 !

Next, we will introduce an auxiliary angle:

φ ¼ arcsin
Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 þ B2
p ;φ ¼ arctan

B

A
, A 6¼ 0 ð3:23Þ

Therefore, (3.22) can be rewritten as

A sin x� B cos x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
cosφ sin x� sinφ cos x

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
sin x� φð Þ ð3:24Þ

Formula (3.24) is rarely introduced in the high school curriculum. However, this

formula allows us to easily find a maximum or minimum of the following function

f xð Þ ¼ A sin xþ B cos x and it is absolutely necessary when solving equations like

this: A sin xþ B cos x ¼ C.

Remark If for A sin xþ B cos x, B � 0; then you choose φ ¼ arcsin Bffiffiffiffiffiffiffiffiffiffi
A2þB2

p .

If B < 0, then you choose φ ¼ �arccos Affiffiffiffiffiffiffiffiffiffi
A2þB2

p .

Let us practice this formula by solving two problems below.

Problem 116 Solve the equation 3 sin x� 4 cos x ¼ 5:

Solution Since
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32 þ 42

p
¼ 5; then the equation can be rewritten as

sin x� φð Þ ¼ 1, φ ¼ arccos
3

5

� �
x� φ ¼ π

2
þ 2πn

x ¼ arccos
3

5

� �
þ π

2
þ 2πn, n 2 Z

3.3 Solving Miscellaneous Trigonometric Equations 191



Problem 117 Find solutions to 4 sin 2xþ 3 cos 2x ¼ 5 for all x 2 0; π½ �:

Solution Using an auxiliary angle formula (3.23), we can rewrite the equation as

follows:

4 sin 2xþ 3 cos 2x ¼ 5

5 sin 2xþ φð Þ ¼ 5,φ ¼ arcsin
3

5
sin 2xþ φð Þ ¼ 1

As we know there is only one point on the unit circle within each revolution that has

the second coordinate 1. In the graph above it is point D. Point D corresponds to the

angle π
2
þ 2πn, n ¼ 0, � 1, � 2, . . . (Figure 3.27).

Therefore

2xþ φ ¼ π

2
þ 2πn, n ¼ 0, � 1, � 2, . . .

x ¼ π

4
� 1

2
� arcsin3

5
þ πn, n 2 Z:

Since we need to find only solutions in the first and the second quadrants, then

n ¼ 0, and x ¼ π
4
� 1

2
� arcsin3

5
.

Answer x ¼ π
4
� 1

2
� arcsin3

5
:

Problem 118 Solve sin xþ cos x ¼ �1:

–3 –2 –1 1 2 3

1

0.5

–0.5

–1

–1.5

O

C

D AB

D

Figure 3.27 Sketch for Problem 117

192 3 Problems from Trigonometry



Solution This problem can be attacked in several ways; some of them could lead to

the wrong answer, if proper restrictions are not applied.

Method 1: Using an auxiliary angle the given equation can be written as

ffiffiffi
2

p
sin xþ π

4

� �
¼ �1

The solution is obvious

sin xþ π
4

� 	 ¼ �1ffiffi
2

p , etc.

Method 2: Using a double-angle formula, we can write sinx and cosx in terms of the

tangent of a half angle. Note that the formula is proved in Section 3.4.2:

2 tan
x

2

1þ tan 2
x

2

þ
1� tan 2x

2

1þ tan 2
x

2

¼ �1

tan
x

2
¼ �1

x ¼ �π

2
þ 2πn

Method 3 (maybe not the best).

Some students try to square both sides of the equation and obtain

sin x � cos x ¼ 0

sin x ¼ 0 ) x ¼ πn

cos x ¼ 0 ) x ¼ π

2
þ πk

"

This solution is wrong because in the original equation the right side was negative,

and when we squared both sides we replaced our equation by an equation that is not

equivalent.

Question What restrictions can be added to the solution of the problem so we

would still get the correct answer?

Problem 119 It is known that function f xð Þ ¼ A cos xþ B sin x has zeros at
two different values of x such that f x1ð Þ ¼ f x2ð Þ ¼ 0. Prove that

x1 � x2 ¼ nπ, n 2 Z.
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Proof Let us rewrite the function as

f xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p cos xþ Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p sin x

 !
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
sin xþ φð Þ,

sinφ ¼ Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p , cosφ ¼ Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
Next, using the condition of the problem we can state that

sin x1 þ φð Þ ¼ sin x2 þ φð Þ

Answer x1 � x2 ¼ πn, n 2 Z:

3.3.5 Selecting Root Subject to Conditions

Sometimes, after solving an equation, we need to select only such roots that satisfy

a given condition.

Problem 120 Solve log sin �xð Þ sin x
2
þ sin 3x

2

� 	 ¼ 1.

Solution In order to solve this equation we have to use properties of logarithms:

loga b ¼ c , ac ¼ b

if a > 0, a 6¼ 1, b > 0
ð3:25Þ

The following must be true:

sin �xð Þ > 0

sin �xð Þ 6¼ 1

sin �xð Þ ¼ sin
x

2
þ sin

3x

2

8><
>:

Sine is an odd function, and the right side of the last equation can be written as a

product:

sin �xð Þ > 0

sin �xð Þ 6¼ 1

� sin x ¼ 2 sin x � cos x
2

8><
>:

After factoring sin x in the last equation and using the fact that sin x must be less

than zero, we have
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sin x < 0

sin x 6¼ �1

cos
x

2
¼ �1

2

8><
>:

The last equation has solution x ¼ � 4π
3
þ 4πn, n 2 Z:However, only x ¼ 4π

3
þ 4πn,

n 2 Z is in the region where sin x < 0:

Answer x ¼ 4π
3
þ 4πn, n 2 Z:

3.3.6 Completing a Square

Completing a square often helps to reduce the order of an equation and dramatically

simplify it as well. Let use learn this by solving the problem below.

Problem 121 (Chirsky) Solve the equation sin 6xþ cos 6x ¼ 3
4
cos 4x þð

sin 4xÞ.

Solution The idea is to complete the square on both sides and replace

sin 2xþ cos 2x ¼ 1.

sin 4xþ cos 4x ¼ sin 2xþ cos 2xð Þ2 � 2 sin 2x cos 2x ¼ 1� 1

2
sin 22x ¼ 3

4
þ 1

4
cos 4x

sin 6xþ cos 6x ¼ sin 2xþ cos 2xð Þ sin 4x� sin 2x cos 2xþ cos 4xð Þ ¼ 5

8
þ 3

8
cos 4x:

After simplification, our equation becomes

5

8
þ 3

8
cos 4x ¼ 3

4

3

4
þ 1

4
cos 4x

� �

cos 4x ¼ �1

3

x ¼ �arccos
1

3
þ πn

2
, n 2 Z

Answer x ¼ �1
4
arccos1

3
þ π

2
� n, n 2 Z:

3.4 Proofs of Some Trigonometric Identities

When I was a high school student, I chose to memorize these formulas; I still

remember all of them by heart. The younger generation is now able to find things

immediately on the Internet, and does not tend to memorize as we did.
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I disagree with this practice and am surprised that even some math teachers

never remember formulas. If you want to solve complex problems, then remem-

bering as many formulas as you can is helpful. When you see a problem, you can

quickly “play” different scenarios in your mind based on your experience and

knowledge of formulas. If you never tried to memorize any formulas, then you

would not see many “easy” solutions that come immediately to mind. In this

section, we show some proofs for important trigonometric formulas using the unit

circle and basic knowledge of plane geometry.

3.4.1 Angle Addition Formulas

sin αþ βð Þ ¼ sin α cos β þ cos α sin β

cos αþ βð Þ ¼ cos α cos β � sin α sin β
ð3:26Þ

Consider Point C (1,0) on the unit circle. Let ∠COA ¼ α and ∠AOB ¼ β
(Figure 3.28).

In the original, “blue” coordinate system, the coordinates of point C and point

B are (1, 0) and cos αþ βð Þ, sin αþ βð Þð Þ; respectfully. Since the distance between
two points is preserved despite a coordinate system, we will do the following.

1. Evaluate the square of the distance BC as

BC2 ¼ sin 2 αþ βð Þ þ cos αþ βð Þ � 1ð Þ2 ¼ �2 cos αþ βð Þ þ 2:

2. Draw a new coordinate system such that X goes through side OA and the Y-axis
is perpendicular to OA. In this coordinate system point C has coordinates C

O C

A

B

X
Y

1.5

1

0.5

–0.5

–1

–3 –2 –1 1 2 3

Figure 3.28 Angle addition formulas
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cos α, sin �αð Þð Þ ¼ cos α, � sin αð Þ and point B has simply coordinates (cos β,
sin β). Thus the square of the distance between C and B is

BC2 ¼ sin β þ sin αð Þ2 þ cos β � cos αð Þ2
¼ 2þ 2 sin α sin β-2 cos α cos β:

Equating the right sides of the square of the distance equations, we obtain

�2 cos αþ βð Þ þ 2 ¼ 2þ 2 sin α sin β � 2 cos α cos β

From which we immediately obtain the first formula in (3.26):

cos αþ βð Þ ¼ cos α cos β � sin α sin β:

The proof is completed.

The formula for sine of the sum of two angles can be easily proven if we use the

complementary angle property (3.4):

sin αþ βð Þ ¼ cos
π

2
� αþ βð Þ

� �
¼ cos αþ βð Þ � π

2

� �
¼ cos αþ β � π

2

� �� �
¼ cos α cos β � π

2

� �
� sin α sin β � π

2

� �
¼ cos α sin β þ sin α cos β

This proves the first addition formula in (3.26):

From (3.26) we can always derive the so-called double-angle formulas.

Denoting β ¼ α, we obtain

sin 2α ¼ 2 sin α cos α
cos 2α ¼ cos 2α� sin 2α

ð3:27Þ

The last formula can also be rewritten in two other convenient forms below, either

in terms of cos2α or sin2α by using a Pythagorean identity:

cos 2αð Þ ¼ 2 cos 2α� 1 ¼ 1� 2 sin 2α ð3:28Þ

Problem 122 Evaluate without a calculator cos
π

12
.

Solution

Method 1: Since π
12
¼ π

3
� π

4
, then
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cos
π

12
¼ cos

π

3
� π

4

� �
¼ cos

π

3
cos

π

4
þ sin

π

3
sin

π

4
¼ 1

2
� 1ffiffiffi

2
p þ

ffiffiffi
3

p

2
� 1ffiffiffi

2
p ¼ 1þ ffiffiffi

3
p

2
ffiffiffi
2

p

Method 2: Since we know that cos π
6
¼

ffiffi
3

p
2
, we can apply the formula of the cosine

of a double angle as

2cos2
π

12
¼ 1þ cos

π

6

cos
π

12
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffi
3

p

2
2

vuut
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

p þ 1
� 	2

2 � 4

s
¼

ffiffiffi
3

p þ 1

2
ffiffiffi
2

p

Answer

ffiffiffi
3

p þ 1

2
ffiffiffi
2

p :

Remark In Method 2, we had to demonstrate our abilities to work with radicals.

Thus
ffiffiffi
3

p þ 2 can be written as

2þ ffiffiffi
3

p ¼ 1þ ffiffiffi
3

p� 	2
2

¼ 1þ 2
ffiffiffi
3

p þ 3

2
¼ 4þ 2

ffiffiffi
3

p

2
¼ 2þ ffiffiffi

3
p

:

3.4.2 Double-Angle Formulas

Many formulas can be easily proven geometrically on the unit circle.

Using Figure 3.29, let us prove the following formulas:

1

0.5

–0.5

–1

–3 –2 –1 1 2 3

a /2

1 y

x

C

A

O B

a

Figure 3.29 Proof of double-angle formulas
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sin α ¼
2 tan

α

2

1þ tan 2
α

2

cos α ¼
1� tan 2α

2

1þ tan 2
α

2

tan α ¼
2 tan

α

2

1� tan 2
α

2

ð3:29Þ

Let us take a point A with coordinates (x, y) on the unit circle with center O. Since

the point is associated with angle α, then x ¼ OB ¼ cos α, y ¼ AB ¼ sin α. Drop
perpendicular line AB to the X-axis and then connect point A with point C on the

diameter. From Euclidean geometry we know that if∠AOB ¼ α, then∠ACB ¼ α
2
as

central and inscribed angles, respectfully.

From triangle ABC we have tan α
2
¼ AB

CB ¼ y
1þx from which we obtain

y ¼ tan
α

2
� 1þ xð Þ ð3:30Þ

On the other hand, from triangle ABO we obtain that x2 þ y2 ¼ 1 or

y2 ¼ 1� x2 ð3:31Þ

Squaring both sides of (3.30) and applying the difference of squares formula to

(3.31)

tan 2 α

2
� 1þ xð Þ2 ¼ 1� xð Þ 1þ xð Þ

Dividing both sides by (1 + x) we obtain

tan 2α

2
þ x � tan 2α

2
¼ 1� x

Factoring terms with x:

x 1þ tan 2α

2

� �
¼ 1� tan 2α

2

we obtain the required formula:

x ¼ cos α ¼ 1� tan 2α
2

1þ tan 2α
2

ð3:32Þ
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The formula for y immediately follows from (3.30) or (3.31). Please obtain it on

your own:

y ¼ sin α ¼ 2 tan α
2

1þ tan 2α
2

ð3:33Þ

Additionally, dividing (3.33) by (3.32) we obtain the last formula for (3.29):

tan α ¼ 2 tan α
2

1� tan 2α
2

ð3:34Þ

Let us now prove formulas for the sine and cosine of a double angle. We will

modify the previous picture a little bit by connecting point A withM of the diameter

(Figure 3.30). From geometry we know thatMAC is the right triangle, andMAC is a

right angle because MC is a diameter. Let AC¼ a and AM¼ b. Express the area of
triangle MAC in two different ways, first, using the half product of the legs and

second, the half product of the height AB and base CM:

a � b ¼ 2 � y ð3:35Þ

From triangle ABC we have

y ¼ a sin
α

2
ð3:36Þ

Since triangles ABM and ABC are similar (ΔABM�ΔABC), the corresponding

angles are equal, and then from ΔABM we have

b

a

a /2
a1 y

x

C

A

O MB

1.5

1

0.5

–0.5

–1

–1.5

–2 –1 1 2 3

Figure 3.30 Geometric proof of trigonometric formulas
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y ¼ b cos
α

2
ð3:37Þ

Multiplying the left and right sides of (3.36) and (3.37) we obtain that

ab ¼ y2

sin α
2
� cos α

2

ð3:38Þ

Equating the right sides of (3.35) and (3.38) and after simplification wewill have that

y ¼ 2 sin
α

2
cos

α

2

Replacing y ¼ sin α we prove the formula

sin α ¼ 2 sin
α

2
cos

α

2

Next, let us prove that cos α ¼ 2 cos 2α
2
� 1: We can again use Figure 3.30.

From the right triangle OAB we see that OBj j ¼ x ¼ cos α.
Applying the Pythagorean Theorem to the right triangle BAM, we obtain

BMj j2 þ ABj j2 ¼ AMj j2

1� xð Þ2 þ y2 ¼ b2

1� 2xþ x2 þ y2ð Þ ¼ b2

2� 2x ¼ b2

From this we can obtain

b2 ¼ 2 1� xð Þ ð3:39Þ
On the other hand, substituting (3.37) into (3.39) we obtain a new formula:

y2

cos 2α
2

¼ 2 1� xð Þ

From the right triangle OBA we have x2 þ y2 ¼ 1 and also x ¼ cos α, and finalize

our proof:

1� x2

cos 2
α

2

¼ 2 1� xð Þ

1þ x ¼ 2 cos 2
α

2

x ¼ 2 cos 2
α

2
� 1

cos α ¼ 2 cos 2
α

2
� 1
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In order to memorize these formulas, I want you to practice solving the following

two problems.

Problem 123 Solve sin xþ cos x ¼ 1:

Solution Let use replace both function in terms of tangent of half angle ((3.32) and

(3.33)):

2 tan
x

2

1þ tan 2
x

2

þ
1� tan 2x

2

1þ tan 2
x

2

¼ 1

2 tan
x

2
� 2 tan 2x

2
¼ 0

tan
x

2
� 2 tan 2x

2
¼ 0

1: tan
x

2
¼ 0 2: tan

x

2
¼ 1

x

2
¼ πn or

x

2
¼ π

4
þ πk

x ¼ 2πn or x ¼ π

2
þ 2πk, n, k 2 Z

Answer x ¼ 2πn; x ¼ π
2
þ 2πk, n, k 2 Z:

The following problem would require a similar substitution.

Problem 124 Find all solutions to the equation

1� tan x
2

� 	 � 1þ sin xð Þ ¼ 1þ tan x
2
� cos x.

Solution The idea is to rewrite the entire equation in terms of one function, for

example, tangent of half angle: 1� tan x
2

� 	
1þ 2 tan x

2

1þ tan 2x
2

� �
¼ 1þ tan x

2
� 1� tan 2x

2

1þ tan 2x
2

.

Denote

y ¼ tan
x

2
ð3:40Þ

and after substitution and simplification, we obtain the following polynomial

equation:

1� yð Þ yþ 1ð Þ2 ¼ y yþ 1ð Þ2

yþ 1ð Þ2 1� 2yð Þ ¼ 0

1: y ¼ �1 or 2: y ¼ 1

2
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Next, we will solve (3.40) for each value of variable y:

1.
tan

x

2
¼ �1

x ¼ �π

2
þ 2πk

2.
tan

x

2
¼ 1

2

x ¼ 2arctan
1

2
þ 2πn

Answer �π
2
þ 2πk; 2arctan1

2
þ 2πn, n, k 2 Z:

3.4.3 Triple Angles and More: Euler–De Moivre’s Formulas

I personally never memorize formulas for the sine or cosine of a triple angle, or

formulas for cos 4α or sin 5α, etc. I believed that they can be derived each time you

need them.

I am sharing my experience and do not want to make you repeat exactly what I

did or did not do. However, I learned all these ideas and created my own methods by

reading many books, and, more importantly, by practicing the solution of a lot of

problems.

Let us see how the sine or cosine of a triple angle can be derived from (3.26)–(3.28):

sin 2αþ αð Þ ¼ sin 2α cos αþ cos 2α sin α
¼ 2 sin α cos 2αþ 1� 2 sin 2αð Þ sin α
¼ 2 sin α 1� sin 2αð Þ þ 1� 2 sin 2αð Þ sin α
¼ 3 sin α� 4 sin 3α

Using the same approach, please derive cos 3α in terms of the cosine of a single

angle on your own. Together, we have

sin 3α ¼ 3 sin α� 4 sin 3α
cos 3α ¼ 4cos3α� 3 cos α

ð3:41Þ

Remark These formulas can be proven by using complex numbers, Euler and

De Moivre’s Theorem:

eiφ ¼ cosφþ i sinφ
eiφ�n ¼ cosφnþ i sinφn

�
) cosφþ i sinφð Þn ¼ cosφnþ i sinφn

In order to prove the double-angle formula we will use n¼ 2:
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cosφþ i sinφð Þ2 ¼ cos 2φþ i sin 2φ

The idea is to raise the left side to the corresponding power and then equate real and

imaginary parts. We also need to use the property that i2 ¼ �1:

cos 2φþ i � 2 sinφ cosφ� sin 2φ ¼ cos 2φþ i sin 2φ

cos 2φ� sin 2φð Þ þ i � 2 sinφ cosφ ¼ cos 2φþ i sin 2φ

Equating real and imaginary parts of both sides, we get double-angle formulas:

cos 2φ� sin 2φ ¼ cos 2φ

2 sinφ cosφ ¼ sin 2φ

Similarly using cube of a sum and the formula below, we will get the formulas for

triple angles:

cosφþ i sinφð Þ3 ¼ cos 3φþ i sin 3φ
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Because these formulas are not in the high school curriculum, we will demonstrate

how they can be obtained from each other and used for proving some trigonometric

identities. Euler stated the following formula:

eix ¼ cos xþ i sin x ð3:42Þ

On one hand, replacing x by nx in (3.42) we obtain De Moivre’s formula:

einx ¼ cos nxþ i sin nx

On the other hand, raising both sides of (3.42) to the second, third, fourth, and nth
power, we must get the following true chain of the equations:

eixð Þ2 ¼ cos xþ i sin xð Þ2

ei2x ¼ cos 2xþ i sin 2x

eixð Þ3 ¼ cos xþ i sin xð Þ3

ei3x ¼ cos 3xþ i sin 3x

eixð Þ4 ¼ cos xþ i sin xð Þ4

ei4x ¼ cos 4xþ i sin 4x

������������
einx ¼ cos nxþ i sin nx
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Using the fact that 8n, einx ¼ cos nxþ i sin nx ¼ cos xþ i sin xð Þn, we can easily

derive manywell-known formulas for the cosine or sine of double, triple, etc. angles.

For example, let us prove the formulas for sine and cosine of a triple angle:

cos 3xþ i sin 3x ¼ cos xþ i sin xð Þ3

cos 3xþ i sin 3x ¼ cos 3xþ 3 cos 2xi sin xþ 3 cos x � i2 sin 2xþ i3 sin 3x

cos 3xþ i sin 3x ¼ cos 3xþ i � 3 cos 2x sin x� 3 cos x sin 2x� i sin 3x

cos 3xþ i sin 3x ¼ cos 3x� 3 cos x sin 2xð Þ þ i 3 cos 2x sin x� sin 3xð Þ

By equating terms with and without i and using a Pythagorean identity, we obtain

cos 3x ¼ cos 3x� 3 cos x sin 2x ¼ 4 cos 3x� 3 cos x
sin 3x ¼ 3 sin x� 4 sin 3x

We can also derive any formulas for sine or cosine of the sum of two angles or their

difference.

Thus, consider Euler’s formula (3.42) for two different arguments, x, y.
Next, we will multiply the left and right sides:

eix � eiy ¼ cos xþ i sin xð Þ cos yþ i sin yð Þ

Simplifying left and right sides we will obtain

ei xþyð Þ ¼ cos x cos y� sin x sin yð Þ þ i sin x cos yþ sin y cos xð Þ ð3:43Þ

Because the left side of formula (3.43) can also be written as

ei xþyð Þ ¼ cos xþ yð Þ þ i sin xþ yð Þ ð3:44Þ

From (3.43) and (3.44) we obtain other very familiar formulas:

cos xþ yð Þ ¼ cos x cos y� sin x sin y
sin xþ yð Þ ¼ sin x cos yþ cos x sin y

ð3:45Þ

Equation (3.45) can easily be changed to the formulas for cosine and sine of the

difference. We need to remember that cosine is even and sine is an odd function.

Thus we have

cos x� yð Þ ¼ cos x cos yþ sin x sin y
sin x� yð Þ ¼ sin x cos y� cos x sin y

ð3:46Þ

Now, if we add the first formulas of (3.45) and (3.46), we will obtain another well-

known formula for the product of two cosine functions:
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cos x cos y ¼ 1

2
cos xþ yð Þ þ cos x� yð Þð Þ ð3:47Þ

By subtracting the first formula of (3.46) and the first formula of (3.45), we will

obtain the product of two sines:

sin x sin y ¼ 1

2
cos x� yð Þ � cos xþ yð Þð Þ ð3:48Þ

And, if we add the left and right sides of the second formulas of (3.45) and (3.46),

we will get

sin x cos y ¼ 1

2
sin xþ yð Þ þ sin x� yð Þð Þ ð3:49Þ

Finally, from (3.48), and after substitution

α ¼ x� y
β ¼ xþ y

, x ¼ αþ β

2
, y ¼ β � α

2

�
;

we can obtain the formulas for the difference of cosine functions:

cos α� cos β ¼ 2 sin
αþ β

2
� sin β � α

2
ð3:50Þ

If you remember, we proved these formulas in a different way earlier in this chapter.

Problem 125 Evaluate sin18� precisely.

Solution I remember when I was in 9th grade, a similar problem appeared at the

city math Olympiad. I noticed that cos 36� ¼ sin 54� (this is based on the properties
of complementary angles, e.g., cos β ¼ sin 90� � βð Þ), so sin18� can be found by

solving the equation

sin 3α ¼ cos 2α, α ¼ 18�

I first rewrote sin 3α as the sine of the sum of two angles and replaced the right-hand

side in terms of the sine of a single angle:

sin 2αþ αð Þ ¼ 1� 2 sin 2α

sin α cos 2αþ cos α sin 2α ¼ 1� 2 sin 2α

sin α 1� 2 sin 2αð Þ þ cos α2 sin α cos α ¼ 1� 2 sin 2α

4 sin 3α� 2 sin 2α� 3 sin αþ 1 ¼ 0
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This equation can be factored as

sin α� 1ð Þ 4 sin 2αþ 2 sin α� 1
� 	 ¼ 0:

We are not interested in sin α ¼ 1 α ¼ 90�ð Þ. Our answer comes from solving the

quadratic equation4 sin 2αþ 2 sin α� 1 ¼ 0and selecting the root that is less than 1:

sin α ¼ sin 18� ¼
ffiffiffi
5

p � 1

4
:

Answer sin 18� ¼
ffiffi
5

p �1
4

:

Remark In my book “Methods of Solving Complex Geometry Problems” I used

this approach in order to construct an angle of 36� by first constructing 18� and then
by doubling it.

Problem 126 Evaluate A ¼ sin 20� � sin 40� � sin 80�.

Solution Using formula (3.9) we will rewrite the product of the two first sines as

the difference of cosines:

A ¼ sin 20� � sin 40� � sin 80�

¼ 1

2
cos 20� � cos 60�ð Þ sin 80�

¼ 1

2
cos 20� sin 80� � 1

2
cos 60� sin 80�

¼ 1

2
� 1
2

sin 100� þ sin 60�ð Þ � 1

4
� sin 80�

Because sin 100� ¼ sin 80� as sines of supplementary angles, after simplification

we obtain

A ¼ 1

4
sin 60� ¼

ffiffiffi
3

p

8
:

Answer
ffiffi
3

p
8
:

Problem 127 Prove that A ¼ cos π
7
� cos 4π

7
� cos 5π

7
¼ 1

8
.

Proof Note that cos π � αð Þ ¼ � cos α; then cos 5π
7
¼ � cos π � 5π

7

� 	 ¼ � cos 2π
7
.

Using this we can rewrite the original expression as

3.4 Proofs of Some Trigonometric Identities 207



A ¼ � cos
π

7
� cos 2π

7
� cos 4π

7

Next, we will multiply it and divide by2 sin π
7
. Applying the formula for the sine of a

double angle twice we have

A ¼ � sin 8π
7

8 sin π
7

¼ � sin π þ π
7

� 	
8 sin π

7

¼ sin π
7

8 sin π
7

¼ 1

8
:

The proof is completed.

3.5 Trigonometric Series

In this section we consider trigonometric series. In order to evaluate trigonometric

series we need to know basic trigonometric identities, Euler and De Moivre’s

formulas. Next, we see how these formulas can be used for evaluating trigonometric

series.

Problem 128 Prove that

Sn ¼ sin xþ sin 2xþ sin 3xþ . . .þ sin nx ¼ sin nx
2
� sin nþ1ð Þx

2

sin x
2

:

Proof Multiplying the sum by 2 sin x
2
, and then using formula (3.48) for the product

of two sine functions, we obtain the following:

Sn � 2 sin x
2
¼ 2 � sin x

2
� sin xþ sin 2xþ sin 3xþ . . .þ sin nxð Þ

¼ 2 sin
x

2
sin xþ 2 sin

x

2
sin 2xþ . . .þ 2 sin

x

2
sin nx

¼ cos
x

2
� x

� �
� cos

x

2
þ x

� �
þ cos

x

2
� 2x

� �
� cos

x

2
þ 2x

� �
þ

. . .þ cos
x

2
� nx

� �
� cos

x

2
þ nx

� �
Because cosine is an even function, then cos �yð Þ ¼ cos y and all terms in the

middle of the sum will be eliminated as follows:

2 sin
x

2
� Sn ¼ cos

x

2
� cos

3x

2
þ cos

3x

2
� . . .� cos

2nþ 1ð Þx
2

¼ cos
x

2
� cos

2nþ 1ð Þx
2

:
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Applying the difference of two cosines formula (3.50) to the right-hand side, we get

2 sin
x

2
� Sn ¼ 2 sin

1
2
þ 2nþ1

2

� 	
x

2
� sin

2nþ1
2

� 1
2

� 	
x

2
¼ 2 sin

nþ 1ð Þx
2

� sin nx

2

Solving this for Sn, we obtain the requested formula.

The proof is completed.

Problem 129 Evaluate A ¼ cos π
4

2
þ cos 2π

4

22
þ . . .þ cos πn

4

2n
.

Solution Suppose that we have a complex number Aþ iB, such that

A ¼ cos π
4

2
þ cos 2π

4

22
þ . . .þ cos πn

4

2n

and

B ¼ sin π
4

2
þ sin 2π

4

22
þ . . .þ sin πn

4

2n
:

Assuming that B is the imaginary part of the complex number, let us multiply it by

i and add it to the expression for A:

Aþ iB ¼ 1
2
cos π

4
þ i sin π

4

� 	þ 1
22

cos 2π
4
þ i sin 2π

4

� 	þ . . .þ 1
2n

cos nπ
4
þ i sin nπ

4

� 	
.

Applying Euler’s formula to each quantity inside parentheses, we get

Aþ iB ¼ 1

2
cos

π

4
þ i sin

π

4

� �
þ 1

22
cos

π

4
þ i sin

π

4

� �2
þ . . .þ 1

2n
cos

π

4
þ i sin

π

4

� �n
:

Next, we can see that the right side of the complex number is a geometric series

with the first term and common ratio equal to

1

2
cos

π

4
þ i sin

π

4

� �
:

Therefore, using the formula for the sum of geometric series, we can rewrite our

complex number as

Aþ iB ¼ 1

2
cos

π

4
þ i sin

π

4

� � 1� 1
2n

cos π
4
þ i sin π

4

� 	n� 	
1� 1

2
cos π

4
þ i sin π

4

� 	� 	 :

Applying De Moivre’s formula to this again and using the fact that

sin π
4
¼ cos π

4
¼ 1ffiffi

2
p , we have the following complex number:
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Aþ iB ¼ 1

2
ffiffiffi
2

p 1þ ið Þ 1� 1
2n

cos π
4
þ i sin π

4

� 	n� 	
1� 1

2
ffiffi
2

p � i
2
ffiffi
2

p
� �

Rationalizing the denominator and extracting the real part of Aþ iB in the

expression above, we obtain that

A ¼
ffiffiffi
2

p � 1
� 	

2n � cos πn
4

� 	þ ffiffiffi
2

p
sin πn

4

2n 5� 2
ffiffiffi
2

p� 	 :

Answer A ¼
ffiffi
2

p �1ð Þ 2n� cos πn
4ð Þþ ffiffi

2
p

sin πn
4

2n 5�2
ffiffi
2

pð Þ :

3.6 Trigonometric Solution of Cubic Equations:
Casus Irreducibilis

Consider a cubic equationx3 þ pxþ q ¼ 0. Let us look for the solutions in the form

x ¼ A cosφ ð3:51Þ

Substituting (3.51) into the cubic equation we obtain

A3 cos 3φþ Ap cosφ ¼ �q ð3:52Þ

Let us recall the formula for the cosine of a triple angle:

cos 3φ ¼ 4 cos 3φ� 3 cosφ ð3:53Þ

and compare (3.52) and (3.53). The idea is to find such values of the parameter p at
which the left side of (3.52) can be written as B cos 3φ, where B is some constant.

Using the method of the undetermined coefficients, we obtain the following:

A3 ¼ 4

Ap ¼ �3

�
) A ¼

ffiffiffiffiffiffiffiffiffiffi
�4 p

3

r
and A2 ¼ � 4p

3
, p ¼ � 3A2

4
:

Because the value of A must be a real number, then it follows from A ¼
ffiffiffiffiffiffiffi
�4 p
3

q
that

this substitution can be used only for p< 0. We can substitute these in (3.52):
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A A2 cos 3φþ p cosφ
� 	 ¼ �q

A � 4 p

3
cos 3φþ p cosφ

� �
¼ �q

�Ap

3
4 cos 3φ� 3 cosφ
� 	 ¼ �q

Substituting p in terms of A into the last equation, we have A3

4
cos 3φ ¼ �q or

cos 3φ ¼ � 4q

A3

3φ ¼ �arccos � 4q

A3

� �
þ 2π � n

φ ¼ �1

3
� arccos � 4q

A3

� �
þ 2π

3
� n, n 2 Z

The last formula gives us three distinct values of the angle (solutions) within each

revolution:

n ¼ 0, φ1 ¼
1

3
arccos � 4q

A3

� �

n ¼ 1, φ2 ¼
1

3
arccos � 4q

A3

� �
þ 2π

3

n ¼ 2, φ3 ¼
1

3
arccos � 4q

A3

� �
þ 4π

3

n ¼ 3, φ4 ¼
1

3
arccos � 4q

A3

� �
þ 2π

You can see that the first and the last angle are the same and they differ by 2π. Now
we can obtain three different values of x:

x1 ¼ A cosφ1, x2 ¼ A cosφ2, x3 ¼ A cosφ3

Do you remember how we solved Problem 83 27x3 þ 54x2 þ 27xþ 1 ¼ 0ð Þ in

Chapter 2? We reduced it to a new one, y3 � 3y� 1 ¼ 0, p ¼ �3, q ¼ �1:
Furthermore, this problem can be solved using a trigonometric approach because

p¼�3< 0. Thus, we can evaluate that A¼ 2 and that

φ ¼ �1

3
� arccos � 4 � �1ð Þ

23

� �
þ 2π

3
� n,

φ ¼ �1

3
� arccos 1

2

� �
þ 2π

3
� n

φ ¼ �π

9
þ 2π

3
� n
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We can see that for n¼ 0, n¼ 1, and n¼ 2 we would have three distinct values of φ:
φ1 ¼ π

9
,φ2 ¼ 7π

9
,φ3 ¼ 13π

9
:

Remark 1 This method is efficient for finding solutions of x3 þ pxþ q ¼ 0 if

p < 0, D
4
¼ q2

4
þ p3

27
< 0.

Otherwise, try to use other methods.

Remark 2 Trigonometric substitution such as letting x ¼ cosφ, y ¼ sinφ is very

useful in solving some nonstandard problems. Some of the ideas can be found in the

following sections.

3.7 Parameterized Form of a Curve

Sometimes a curve or a trajectory is given in a parameterized form, for example as

x ¼ x tð Þ
y ¼ y tð Þ

�
in R2 or as

x ¼ x tð Þ
y ¼ y tð Þ
z ¼ z tð Þ

8<
: in R3, where t is a parameter. The parameter t is

often considered as time in physics problems, so a trajectory can be visualized as

the set of ordered pairs (x(t), y(t)) at each time t. In order to find out more about a

trajectory, we can graph the ordered pairs by hand, on a calculator or a computer.

Sometimes we can eliminate t from the equations and often obtain a trajectory as an

implicit curve, F x; yð Þ ¼ 0 or F x; y; zð Þ ¼ 0.

Let us consider several examples that students usually learn in calculus:

Example 1 We are given a trajectory
x� c ¼ a cos t
y� d ¼ b sin t

�
.

If we square the left and right sides of each equation and then add the left and the

right sides and apply a Pythagorean identity, we would obtain an implicit curve

(ellipse) in the form of a conic:

x� cð Þ2
a2

þ y� dð Þ2
b2

¼ 1:

An ellipse will become a circle if a¼ b.
The next example will present an explicit curve (line) also given by its param-

eterized form:

Example 2
x ¼ t� 1

y ¼ 3tþ 1

�
.

The parameter t (time) can be eliminated from the system if we use the first

equation substituted into the second one:
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t ¼ xþ 1

y ¼ 3 xþ 1ð Þ þ 1

y ¼ 3xþ 4

Clearly, now we obtained a line in its slope-intercept form.

Problem 130 Eliminate the parameter t from the system
x ¼ tan tþ 3

y ¼ cot t� 1

�
.

Solution We can rewrite the system as follows:

Multiplying the left sides and the right sides of the equations and using the property

that tan t � cot t ¼ 1, we obtain

x� 3ð Þ yþ 1ð Þ ¼ 1

or

y ¼ 1

x� 3
� 1:

Answer y ¼ 1
x�3

� 1:

Often the parameter cannot be eliminated. There are many examples of such

systems. For example,
x ¼ cos t� t
y ¼ sin tþ 3t

�
.

Sometimes we need to find a parametric curve from a given implicit or explicit

curve. For example, working backwards, we can find that x� 1ð Þ2 þ yþ 2ð Þ2 ¼ 9

(equation of a circle with center (1,�2) and radius 3) can be parameterized as

x� 1 ¼ 3 cosφ
yþ 2 ¼ 3 sinφ

This idea will be used in solving some nonstandard problems later in the text.

Some differential equations can be solved using the introduction of an additional

variable.

Let us consider the following problem.

Problem 131 Solve the equation y
0� 	3 � 3y

0 þ 2 ¼ 0, y
0 ¼ dy

dx.
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Solution At first glance, this is a nonlinear differential equation of the first order.

However, there is no dependent variable there, only its derivative.

If we denote

y
0 ¼ p;

we can rewrite the given equation as a polynomial equation in variable p:

p3 � 3pþ 2 ¼ 0:

This polynomial equation has the following zeros:

p ¼ 1

y
0 ¼ 1

y ¼ xþ C1

and

p ¼ �2

y
0 ¼ �2

y ¼ �2xþ C2

Answer y ¼ xþ C1; y ¼ �2xþ C2:

What if I change the previous problem a little bit and give you the following

problem?

Problem 132 Solve the equation y
0� 	3 � 3y

0 þ 2þ x ¼ 0, y
0 ¼ dy

dx, y ¼ y xð Þ.

Solution If we denote y
0 ¼ p, then we will have a polynomial equation in two

variables, p and x:

p3 � 3 pþ 2þ x ¼ 0

from which we can express x in terms of p as

x ¼ 3p� p3 � 2

Wouldn’t it be nice to find out how y depends on p? Then we would obtain the

parameterized form of the solution!

If y
0 ¼ p ) dy

dx ¼ p which can also be written as

dy ¼ pdx

How can we use this relationship?

Canwefinddx?Yes.Let us differentiate both sides of the parameterized formula for x:

dx ¼ 3� 3p2
� 	

dp

214 3 Problems from Trigonometry



Substituting this into the formula for dy we obtain

dy ¼ 3p� 3p3ð Þd p

y ¼ 3p2

2
� 3 p4

4
þ C

Finally, we can put together both parameterized equations and obtain the solution to

the given nonlinear differential equation:

Answer

x ¼ 3p� p3 � 2

y ¼ 3p2

2
� 3 p4

4
þ C

8<
:

It would be interesting to solve a problem in which we do not have an indepen-

dent variable.

Problem 133 Solve the equation y
0� 	3 � 3y

0 þ 2þ y ¼ 0, y
0 ¼ dy

dx, y ¼ y xð Þ.

Solution In this problem we can again introduce a new variable:

y
0 ¼ p

Then express y in terms of p:

y ¼ 3 p� p3 � 2

dy ¼ �3p2 þ 3ð Þd p

dx ¼ dy

p

dx ¼ �3pþ 3

p

� �
d p

x ¼ � 3p2

2
þ 3ln pj j þ C

This parameterized solution is shown in Figure 3.31.

Answer
x ¼ � 3p2

2
þ 3ln pj j þ C

y ¼ 3p� p3 � 2, p 6¼ 0

8<
: .
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3.8 Nonstandard Trigonometric Equations
and Inequalities

In this section, I demonstrate some ideas for attacking and solving challenging

trigonometric equations. I am sure that after reading this section you will find that

many complex problems do not look complex anymore.

Problem 134 Solve the equation cos 6xþ sin 5x
2
¼ 2:

Solution I noticed that usually students try to rewrite the left side as a product of

two trig functions. However, that approach is good only if the right side is zero. For

anything else it would not help much. Instead, focus on the boundary of the cosine

and sine functions. Thus, the following is true:

cos 6x � 1

sin
5x

2
� 1

) cos 6xþ sin
5x

2
� 2

8<
:

Therefore, the left side of the equation is less than or equal to 2 and the right side is

2. Hence, this equation can have a solution iff both cos 6x ¼ 1 and sin 5x
2
¼ 1

simultaneously.

Then we need to solve the following system:

cos 6x ¼ 1

sin
5x

2
¼ 1

(
,

6x ¼ 2πn
5x

2
¼ π

2
þ 2πm

(
,

x ¼ π

3
� n, n 2 Z

x ¼ π

5
� 4mþ 1ð Þ, m 2 Z

8<
: ð3:54Þ

It would be wrong to state that we solved the equation by giving the answer above.

You can see that the first value of x depends on an integer n and the second

x depends on an integer m. These integers are changing independently; moreover,

the solutions are given by two formulas, but we need only one solution.

0

–100

–100 –80 –60 –40 –20

–200

100

200
Figure 3.31 Sketch for

Problem 133
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Let us equate the right sides of the equations in the last system:

π

3
� n ¼ π

5
� 4mþ 1ð Þ

5n ¼ 3 4mþ 1ð Þ
The following equation must be solved in integers:

5n ¼ 12mþ 3

The right side is divisible by 3; then we need to replace

n ¼ 3k

and substitute it back into the equation

15k ¼ 3 4mþ 1ð Þ

or

5k ¼ 4mþ 1 ð3:55Þ

Next, we can think of it this way: the right side is odd, but 5 k can be either odd or

even, so in order to have solutions we need to select only odd values of k; then

k ¼ 2uþ 1 ð3:56Þ

Substituting (3.56) into (3.55) we obtain the following chain of true relationships:

10uþ 5 ¼ 4mþ 1

5u ¼ 2m� 2

u ¼ 2t
10t ¼ 2m� 2

5t ¼ m� 1

Finally, we obtain that

m ¼ 5tþ 1, t 2 Z

This expression for integer m can be substituted into the second solution of (3.54) to

give us the final answer:

x ¼ π

5
� 4mþ 1ð Þ ¼ π

5
� 4 5tþ 1ð Þ þ 1ð Þ ¼ π

5
20tþ 5ð Þ ¼ π 4tþ 1ð Þ ¼ π þ 4π � t, t 2 Z:

Answer x ¼ π þ 4πt, t 2 Z:
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Problem 135 Solve the equation cos 6xþ sin 6x ¼ 2:

Solution If you try to do this problem similarly to the previous one, you would not

succeed because cosine and sine depend on each other. You need to use an auxiliary

argument and rewrite the left side as we did in Section 3.3.4:

ffiffiffi
2

p 1ffiffiffi
2

p cos 6xþ 1ffiffiffi
2

p sin 6x

� �
¼

ffiffiffi
2

p
sin

π

4
þ 6x

� �

Using boundedness of the sine function, we conclude that the equation cannot have

any solutions because the right side (number 2) is greater than the left side ever gets.

In the following problem, you can use the boundary of sine and cosine again.

Problem 136 Find real x and y that satisfy the equation

cos xþ cos y ¼ 3
2
þ cos xþ yð Þ:

Solution We will rewrite the left side as a product and use the double-angle

formula for the cosine function on the right:

2 cos
xþ y

2
� cos x� y

2
¼ 1

2
þ 1þ cos xþ yð Þð Þ

2 cos
xþ y

2
� cos x� y

2
¼ 1

2
þ 2 cos 2

xþ y

2

Multiplying both sides by 2 we obtain the equation below, which is equivalent to

the original equation:

4 cos
xþ y

2
� cos x� y

2
¼ 1þ 4 cos 2

xþ y

2
ð3:57Þ

On the other hand, using the trinomial square formula, we can write

2 cos
xþ y

2
� cos

x� y

2

� �2
¼ 4 cos 2

xþ y

2
þ cos 2

x� y

2
� 4 cos

xþ y

2
� cos x� y

2

which is the same as

4 cos
xþ y

2
� cos x� y

2
¼ 4 cos 2

xþ y

2
þ cos 2

x� y

2
� 2 cos xþy

2
� cos x�y

2

� 	2 ð3:58Þ

Since the left sides of (3.57) and (3.58) are the same the right sides must be the

same:
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4 cos 2
xþ y

2
þ cos 2

x� y

2
� 2 cos

xþ y

2
� cos

x� y

2

� �2
¼ 1þ 4 cos 2

xþ y

2

After further simplifications, we obtain

cos 2
x� y

2
� 1 ¼ 2 cos

xþ y

2
� cos

x� y

2

� �2
ð3:59Þ

If we look at (3.59) as f xð Þ ¼ g xð Þ, then we know that f xð Þ � 0 and g xð Þ � 0

because of the boundedness of the cosine functions.

In order to have a possible solution both sides must take the same value of zero.

The following system has to be solved:

2 cos
xþ y

2
� cos

x� y

2
¼ 0

cos 2
xþ y

2
¼ 1

8><
>: ð3:60Þ

System (3.60) is now equivalent to two cases:

Case 1

cos
x� y

2
¼ 1

cos
xþ y

2
¼ 1

2

)
x� y

2
¼ 2πn

xþ y

2
¼ �π

3
þ 2πm

8><
>:

8><
>:

x� y ¼ 4πn

xþ y ¼ � 2π

3
þ 4πm

8<
:

x1 ¼ �π

3
þ 2π mþ nð Þ

y1 ¼ �π

3
þ 2π m� nð Þ

8><
>:

Case 2

cos
x� y

2
¼ �1

cos
xþ y

2
¼ �1

2

)
x� y

2
¼ π 2nþ 1ð Þ

xþ y

2
¼ � 2π

3
þ 2πm

x2 ¼ � 2π

3
þ π 2mþ 2nþ 1ð Þ

y2 ¼ � 2π

3
þ π 2m� 2n� 1ð Þ

8>><
>>:

8>><
>>:

8>><
>>:

Problem 137 Solve the equation 2þ 2 sin yþ cos yð Þ sin x ¼ cos 2x.
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Solution Let us replace the cosine using a double-angle formula:

cos 2x ¼ 1� 2 sin 2x

2þ 2 sin yþ cos yð Þ sin x ¼ 1� 2 sin 2x

2 sin 2xþ 2 sin yþ cos yð Þ sin xþ 1 ¼ 0 ð3:61Þ

Equation (3.61) can be considered as quadratic in sin x. UsingD
4
formula we obtain that

D

4
¼ sin yþ cos yð Þ2 � 2 ¼ sin 2y� 1

Therefore, (3.61) will have solutions iff sin 2y� 1 � 0 ) sin 2y � 1: Since sin 2y
cannot be greater than 1, the only option for this equation to have a real solution is

sin 2y ¼ 1

y ¼ π

4
þ π � n ð3:62Þ

Hence, the discriminant of the quadratic formula is zero and (3.61) has only one zero:

sin x ¼ � sin yþ cos yð Þ
2

ð3:63Þ

If we substitute (3.62) into (3.63) we will obtain two values of sin x:

sin x ¼
ffiffiffi
2

p

2
or sin x ¼ �

ffiffiffi
2

p

2

Uniting solutions of these two equations we obtain that

x ¼ �π

4
þ πm:

Answer x ¼ �π
4
þ πm, y ¼ π

4
þ πn, n,m 2 Z:

Remark You can get the same answer for x if we attack (3.63) differently.

For example, we can combine sin yþ cos y as
ffiffiffi
2

p
sin π

4
þ y

� 	
and then rewrite

(3.63) with the use of (3.62) as

sin x ¼
ffiffiffi
2

p

2
sin

π

4
þ y

� �
sin x ¼

ffiffiffi
2

p

2
sin

π

4
þ π

4
þ πn

� �
sin x ¼

ffiffiffi
2

p

2
sin

π

2
þ πn

� �
sin x ¼ �

ffiffiffi
2

p

2
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Problem 138 (Suprun) Solve the equation sin 6xþ cos 6x ¼ a sin 4x for
each possible value of a parameter a.

Solution Consider the left side as the sum of two cubes:

sin 6xþ cos 6x ¼ sin 2xð Þ3 þ cos 2xð Þ3 ¼ sin 2xð Þ2 � sin 2x cos 2xþ cos 2xð Þ2

¼ 1� 3 sin 2x cos 2x ¼ 1� 3

4
� sin 22x

Next, we will apply the double-angle formula as sin 22x ¼ 1� cos 4x
2

:

This will make the left side of our problem

1� 3

4
sin 22x ¼ 1� 3

8
1� cos 4xð Þ ¼ 5

8
þ 3

8
cos 4x:

Putting together the left and the right sides we obtain the following equation to

solve; we will use the technique of adding an auxiliary argument:

5

8
þ 3

8
cos 4x ¼ a sin 4x

or

a sin 4x� 3

8
cos 4x ¼ 5

8ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 9

64

r
� sin 4xþ φð Þ ¼ 5

8
, φ ¼ �arccos

affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 9

64

r ¼ �arccos
8affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

64a2 þ 9
p

sin 4xþ φð Þ ¼ 5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64a2 þ 9

p ð3:64Þ

This equation will have a real solution if and only if the right side is less than or

equal to one: ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64a2 þ 9

p � 5

64a2 þ 9 � 25

64a2 � 16

a2 � 1

4

aj j � 1

2

Therefore, if �1
2
< a < 1

2
; (3.64) has no real solutions.
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If a � �1
2
or a � 1

2
; then the solution of (3.64) can be found as

x ¼ �1ð Þn
4

arcsin
5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

64a2 þ 9
p þ 1

4
arccos

8affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64a2 þ 9

p þ πn

4
:

Sometimes a problem that at first glance does not even have any trigonometric

functions can be solved with the use of trigonometric equations. Also, there are

many trigonometry problems that contain a mixture of different functions with

restricted domains, such as logarithmic functions. For your consideration, here are

some interesting problems.

Problem 139 Find maximum and minimum of A ¼ xwþ yz� xþ wþ 2z� 61

if x, y, z, and w satisfy the system

x2 þ y2 þ 2xþ 4y� 20 ¼ 0

z2 þ w2 � 2w� 143 ¼ 0

�

Solution Completing the square in both equations we obtain

xþ 1ð Þ2 þ yþ 2ð Þ2 ¼ 25

z2 þ w� 1ð Þ2 ¼ 144
ð3:65Þ

The function of four variables will also be rewritten as

A ¼ xþ 1ð Þ w� 1ð Þ þ z yþ 2ð Þ � 60 ð3:66Þ

Let us try to parameterize (3.65) and (3.66).

Formula (3.65) represents two different circles. Therefore we can introduce

xþ 1 ¼ 5 cosφ
yþ 2 ¼ 5 sinφ
z ¼ 12 cosψ
w� 1 ¼ 12 sinψ

8>><
>>: ð3:67Þ

Substituting (3.67) into (3.66) we get

A ¼ 5 cosφ � 12 sinψ þ 12 cosψ � 5 sinφ� 60

A ¼ 60 sin φþ ψð Þ � 60

Because sine is a bounded function, then Amin ¼ �120, Amax ¼ 0:

Answer Amin ¼ �120, Amax ¼ 0:

Problem 140 (Chirsky) Solve the equation sin x� sin x � 1 ¼ cot 2x.
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Solution First, the left side is defined only for positive values of the sine function,

sin x > 0.

Next, we will move negative one to the right side and apply a trigonometric

identity, so that we have

sin xð Þ� sin x ¼ sin xð Þ�2

sin xð Þ2� sin x ¼ 1

sin x > 0 sin x � 1ð Þ

(

sin x ¼ 1 ) x ¼ π

2
þ 2πn:

Answer x ¼ π
2
þ 2πn:

Problem 141 (Lidsky) Let 0 < α1 < α2 < . . . < αn <
π

2
: Prove that

tan α1 <
sin α1 þ sin α2 þ . . .þ sin αn

cos α1 þ . . .þ cos αn
< tan αn.

Proof What do we know about the tangent function? We know that it is a periodic

function that is monotonically increasing in the first quadrant. Because all angles are

restricted by the first quadrant, we know that the following is true for tangent values:

tan α1 � . . . � tan αi � . . . tan αn

We also know that for any angle 0 < αi < π
2
of the first quadrant, the cosine function

is positive and we can state that the following is valid:

cos αi > 0

tan α1 � tan αi � tan αn, 0 < i < n ð3:68Þ

Let us multiply (3.68) by cos αi > 0:

tan α1 � cos αi � tan αi � cos αi � tan αn � cos αi ð3:69Þ
Inequality (3.69) is true for any angle alpha from the first quadrant. Thus we can

write such an inequality for each possible αi, i ¼ 1, 2, . . . , n:

tan α1 � cos α1 � tan α1 � cos α1 � tan αn � cos α1
tan α1 � cos α2 � tan α2 � cos α2 � tan αn � cos α2

. . .
tan α1 � cos αn � tan αn � cos αn � tan αn � cos αn

If we add all these double inequalities, replace tan αi � cos αi ¼ sin αi in the middle

and factor commonfactors on the left and right,weobtain the following true inequality:
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tan α1 � cos α1 þ . . .þ cos αnð Þ � sin α1 þ . . .þ sin αn
� tan αn � cos α1 þ . . .þ cos αnð Þ

Dividing all sides of this double inequality by the positive quantity inside paren-

theses will complete our proof. Therefore,

tan α1 <
sin α1 þ sin α2 þ . . .þ sin αn

cos α1 þ . . .þ cos αn
< tan αn:

Problem 142 Solve the equation 3 log2 sin xð Þ2 þ log2 1� cos 2xð Þ ¼ 2:

Solution Because 1� cos 2x ¼ 2 sin 2x � 0, and considering restrictions that

come from the first term, we need to impose a condition that sin x > 0:
Let us simplify the second logarithm:

log2 1� cos 2xð Þ ¼ log2 2 sin 2x
� 	 ¼ 1þ 2log2 sin x:

Now the equation can be rewritten as

3 log2 sin xð Þð Þ2 þ 2log2 sin xð Þ � 1 ¼ 0

y ¼ log2 sin xð Þ
3y2 þ 2y� 1 ¼ 0

1: y ¼ �1 or 2: y ¼ 1

3

log2 sin xð Þ ¼ �1 log2 sin xð Þ ¼ 1

3

sin x ¼ 1

2
sin x ¼ 2

1
3

x ¼ �1ð Þnπ
6
þ πn, n 2 Z ∅

3.9 Homework on this chapter

1. Solve the inequality y� 1
cos xj j �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y� x2

p
� 0:

Solution: Let us rewrite this inequality as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y� x2

p
� y� 1

cos xj j

Because 1� y� x2 � 0 ) 1� x2 � y. This can be rewritten as
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y � 1� x2 ð3:70Þ

On the other hand, because the square root is positive, then (3.70) is true, if

1� 1
cos xj j � 1. This can be written as

y � 1

cos x

����
���� � 1 ð3:71Þ

Combining (3.70) and (3.71) we obtain

1 � y � 1� x2

The last double inequality is true iff x ¼ 0, y ¼ 1.

Answer: x ¼ 0, y ¼ 1.

2. Solve the equation tan xð Þ sin x ¼ cot xð Þ cos x.
Solution: Making the replacement cot x ¼ 1

tan x the given equation can be

rewritten as tan xð Þ sin x ¼ tan xð Þ� cos x

If tan x < 0but sin x, cos x are fractions less than one, then this equation does
not make sense.

If tan x ¼ 0 then sin x ¼ 0 and again the equation does not make sense.

If tan x > 0 but tan x 6¼ 1 then sin x ¼ � cos x from which tan x < 0which is

a contradiction.

Finally, if tan x ¼ 1 then x ¼ π
4
þ πn, n 2 Z.

3. Solve the equation log sin xþ log sin 5xþ logcos4x ¼ 0.

Solution: Let us rewrite the equation as

sin x � sin 5x � cos 4x ¼ 1

Recalling the material of Chapter 1, all functions in the product are bounded

and their absolute value must be less than or equal to one. Moreover, the

original equation involves logarithms and each quantity that we are taking a

logarithm of must be positive. Therefore, in order for this equation to have

solutions, the following must be true:

sin x sin 5x cos 4x ¼ 1

sin xj j ¼ sin 5xj j ¼ cos 4xj j ¼ 1

sin x > 0

sin 5x > 0

cos 4x > 0

8>>>>>>><
>>>>>>>:

The system can be rewritten as
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sin x ¼ 1

sin 5x ¼ 1

cos 4x ¼ 1

8><
>:

Solving the first equation we obtain x ¼ π
2
þ 2πn. We will substitute it into the

second and third equations:

sin 5
π

2
þ 2πn

� �� �
¼ sin

π

2
¼ 1, cos 4

π

2
þ 2πn

� �� �
¼ cos 0� ¼ 1

which gives us the answer x ¼ π
2
þ 2πn:

4. Solve the equation sin 23xþ cos 22x ¼ 1.

Hint: Reduce the power and then use the difference of two cosines formula to

obtain sin 5x � sin x ¼ 0.

Answer: x ¼ πn
5
, n 2 Z:

5. Solve the equation sin xþ sin 2xþ 2 sin x sin 2x ¼ 2 cos xþ cos 2x:

Solution: Let us rewrite the product above as the difference of two cosines:

sin xþ sin 2xþ cos x� cos 3x ¼ 2 cos xþ cos 2x
sin xþ sin 2x� cos x� cos 2x� cos 3x ¼ 0

sin xþ sin 2x� cos xþ cos 3xð Þ � cos 2x ¼ 0

Next, rewrite the sum inside parentheses as a product:

sin xþ 2 sin x cos x� 2 cos 2x cos x� cos 2x ¼ 0

Now combine the first two and the last two terms and factor out common

factors by grouping:

sin x 1þ 2 cos xð Þ � cos 2x 1þ 2 cos xð Þ ¼ 0

sin x� cos 2xð Þ 1þ 2 cos xð Þ ¼ 0

There are two cases.

Case 1 sin x� cos 2x ¼ 0

Using a double-angle formula we get the quadratic equation below:

sin x� 1þ 2 sin 2x ¼ 0

2y2 þ y� 1 ¼ 0

sin x ¼ �1 or sin x ¼ 1

2

Case 2 1þ 2 cos x ¼ 0.
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cos x ¼ �1

2

x ¼ � 2π

3
þ 2πk, k 2 Z:

Answer: x ¼ � 2π
3
þ 2πn, x ¼ �π

2
þ 2πm, x ¼ �1ð Þkπ

6
þ πk, m, n, k 2 Z:

6. Solve the equation sin 4x ¼ tan x:

Hint: Use the double-angle formula twice and rewrite tangent as the ratio of

sine and cosine.

Solution:

2 sin 2x cos 2x ¼ 4 sin x cos x cos 2x ¼ sin x

cos x

sin x � 4 cos 2x � cos 2x� 1ð Þ ¼ 0

1: sin x ¼ 0 or 2: 4 cos 2x � cos 2x� 1 ¼ 0

x ¼ πm 2 � 2 cos 2x � cos 2x� 1 ¼ 0

2 1þ cos 2xð Þ cos 2x� 1 ¼ 0

2 cos 22xþ 2 cos 2x� 1 ¼ 0

cos 2x ¼
ffiffiffi
3

p � 1

2

x ¼ �1

2
arccos

ffiffiffi
3

p � 1

2
þ πn

7. Solve the equation 4 sin 4x ¼ 1þ 5 cos 2x.

Hint: Reduce the power on the left and on the right and rewrite the equation in

terms of cos2x.

Answer: x ¼ �π
3
þ πn, n 2 Z:

8. Solve the equation sin x cos x cos 2x cos 8x ¼ �1
4
sin 12x.

Hint: Apply the formula for the sine of a double angle to both sides of the

equation and then the formula for the product of sine and cosine on the left, and

then factor.

Answer: x ¼ π
8
� n, n 2 Z:

9. Solve cos 2x� 5 sin x� 3 ¼ 0.

Hint: Rewrite cos2x in terms of sinx.

Answer: x ¼ �1ð Þnπ
6
þ πk, k 2 Z:

10. Solve the equation 1ffiffi
3

p � tan x
� 1ffiffi

3
p þ tan x

¼ sin 2x.

Hint: Substitute sin 2x ¼ 2 tan x
1þ tan 2x :
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Answer: x ¼ π
4
þ π

2
� n; x ¼ πk, n, k 2 Z:

11. Solve sin x sin 3x ¼ � sin 4x sin 8x:

Answer: x ¼ πn
5
; x ¼ πk

7
, n, k 2 Z:

12. Solve the equation cot x� tan x ¼ cos x� sin x
1
2
sin 2x

.

Hint: Replace tangent and cotangent of a single argument in terms of sine and

cosine of a double argument.

Solution: Because cot x ¼ 1þ cos 2x
sin 2x , tan x ¼ 1� cos 2x

sin 2x , the equation becomes

2 cos 2x

sin 2x
¼ cos x� sin x

1

2
sin 2x

, sin 2x 6¼ 0

cos 2x� sin 2x ¼ cos x� sin x

cos x� sin xð Þ cos xþ sin x� 1ð Þ ¼ 0

Usually we have to equate each factor to zero, but the second factor cannot be

zero because the denominator of the original equation is not zero.

Therefore, the solution can be found by solving

cos x� sin x ¼ 0

x ¼ π

4
þ πn, n 2 Z :

13. Solve the equation sin xþ cos xð Þ4 þ sin x� cos xð Þ4 ¼ 3� sin 4x:

Answer: x ¼ π
16

1þ 4nð Þ, n 2 Z:

14. Solve the equation cot x� 1ð Þ 1þ sin 2xð Þ ¼ 1þ cot x.

Hint: Use cot x ¼ 1
tan x and sin 2x ¼ 2 tan x

1þ tan 2x; denote y ¼ tan x 6¼ 0.

Answer: x ¼ �π
4
þ πn

2
; x ¼ arctan3 þ πk, n, k 2 Z:

15. Solve sin 2x� 2 sin x cos x ¼ 3 cos 2x.

Hint: This is a homogeneous equation of second order.

Answer: x ¼ π
4
þ πn

2
; x ¼ arctan3 þ πk, n, k 2 Z:

16. Solve cos 3x� cos 2xþ 3
4
sin 2x ¼ 0:

Hint: Multiply the equation by 4 and then replace 4 cos 3x ¼ cos 3xþ 3 cos x.

Solution:

4 cos 3x� cos 3x� 3 cos xþ 3 sin 2x ¼ 0

cos 3x� cos xð Þ þ sin 2x ¼ 0

Rewrite the difference of cosines as the product and then factor out the common

factor:
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�2 sin 2x sin xþ sin 2x ¼ 0

sin 2x � 1� 2 sin xð Þ ¼ 0
1: sin 2x ¼ 0 or 2: 1� 2 sin x ¼ 0

2x ¼ πn sin x ¼ 1

2

x ¼ π

2
n x ¼ �1ð Þmπ

6
þ πm

Answer: π
2
� n; �1ð Þmπ

6
þ πm, n,m 2 Z:

17. Find all solutions to 5 sin 2xþ 2
ffiffiffi
3

p
sin x cos x� cos 2x ¼ 2 that satisfy the

inequality �π < x < π:

Hint: Replace 2 on the right-hand side by a double trigonometric identity, then

simplify and recognize a homogeneous equation of second order, and divide

both sides by cos2x. Denote y ¼ tan x. You will obtain the equation 3y2 þ 2ffiffiffi
3

p
y� 3 ¼ 0 and x ¼ π

6
þ πn: Next we will select only such solutions that

belong to the given interval. There are at n¼�1 and n¼ 0.

Answer: � 5π
6
, π
6
:

18. Solve log ffiffi2p
sin x 1þ 2 cos 2xð Þ ¼ 2:

Hint: Because this equation is logarithmic, make sure that you find restrictions

on the independent variable.

Solution: First, we will find the restrictions

ffiffiffi
2

p
sin x > 0ffiffiffi

2
p

sin x 6¼ 1

�
.

Second, applying the definition of the logarithm, the given equation can be

rewritten as

1þ 2 cos 2x ¼ ffiffiffi
2

p
sin x

� 	2
1þ 2 1� sin 2xð Þ ¼ 2 sin 2x

4 sin 2x ¼ 3

sin x ¼
ffiffiffi
3

p

2

x ¼ �1ð Þnπ
3
þ πn:

We selected only the positive root because of the restriction in the domain.

Answer: x ¼ �1ð Þnπ
3
þ πn, n 2 Z:

19. Solve the equation 3 sin 2xþ2 cos 2x þ 3 � 9� sin x cos x� sin xð Þ ¼ 28.

Hint: Note that sin 2xþ 2 cos 2x ¼ 2 sin x cos xþ cos 2xð Þ and that

� sin x cos x� sin xð Þ ¼ 1� sin x cos xþ cos 2xð Þ. Let y ¼ 9sin x cos xþ cos 2x.

Solution: In terms of the new variable our equation will be rewritten as
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yþ 3 � 9 � 1
y
¼ 28

y2 � 28yþ 27 ¼ 0

y ¼ 1 or y ¼ 27:

For each y we will find the corresponding x value:

Case 1

9 sin x cos xþ cos 2x ¼ 1

sin x cos xþ cos 2x ¼ 0

cos x sin xþ cos xð Þ ¼ 0

x ¼ π

2
þ πn; x ¼ �π

4
þ πk:

Case 2

9 sin x cos xþ cos 2x ¼ 27

sin x cos xþ cos 2x ¼ 3

2
2 cos 2x� 2 sin x cos xþ 3 sin 2x ¼ 0

∅ no real solutions

Answer:
π 2nþ1ð Þ

2
; 4k�1ð Þπ

4
:

20. Solve the equation 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
sin 2x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
� cos 2x.

Hint: Consider the restricted domain of the square root function.

Solution: Domain of the square root function is

1� x2 � 0 , �1 � x � 1: ð3:72Þ

Next, we will use a power reduction formula:

2 sin 2x ¼ 1� cos 2x

And factor the equation as

cos 2x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
� 1

� �
¼ 0

1: cos 2x ¼ 0 or 2:
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
¼ 1 ) x ¼ 0 :

The first equation give us a solution

x ¼ π

4
þ π

2
� n, n 2 Z:

Since our solution must satisfy (3.72), the following must be valid:

�1 � π

4
þ π

2
� n � 1

n ¼ �1, x ¼ �π

4

n ¼ 0, x ¼ π

4
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21. Solve the equation 1þ tan 2xð Þ sin x� tan 2xþ 1 ¼ 0 given the condition

tan x < 0:
Solution: First, we will restrict the domain of the tangent function, so x 6¼ π

2

þπn: Second, we will make substitution 1þ tan 2x ¼ 1
cos 2x and simplify:

1þ sin x� 2 sin 2x

cos 2x
¼ 0:

This equation is equivalent to the following system:

sin x� 1ð Þ sin xþ 1

2

� �
¼ 0

cos x 6¼ 0

tan x < 0

,
x ¼ π

6
þ 2πn

x ¼ 7π

6
þ 2πk

2
64
tan x < 0

8>><
>>:

8>><
>>: , x ¼ �π

6
þ 2πn:

Answer: �π
6
þ 2πn, n 2 Z:

22. Solve the equation log2 3� sin xð Þ ¼ sin x.

Solution: Because sin x � 1 ) 3� sin x � 2, the following is true:

1 � sin x ¼ log2 3� sin xð Þ � log22 ¼ 1

sin x ¼ 1

x ¼ π

2
þ 2πn

Answer: x ¼ 4nþ1ð Þ
2

� π, n 2 Z:

23. Solve the inequality 1� sin xþ cos x < 0.

Answer: π
2
þ 2πn < x < π þ 2πn:

Solution: We can rewrite this inequality as

cos x� sin x < �1

1ffiffiffi
2

p cos x� 1ffiffiffi
2

p sin x < � 1ffiffiffi
2

p

sin
π

4
� x

� �
< � 1ffiffiffi

2
p

sin x� π

4

� �
>

1ffiffiffi
2

p

π

4
þ 2πn < x� π

4
<

3π

4
þ 2πn

π

2
þ 2πn < x < π þ 2πn
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24. Evaluate the partial sum Sn ¼ cos πn þ cos 2π
n þ . . .þ cos

n�1ð Þπ
n :

Solution: Let us multiply the partial sum by 2 sin π
2n. Using identity (3.49) and

the fact that sine is an odd function we will obtain the following:

2Sn sin
π

2n
¼ 2 sin

π

2n
cos

π

n
þ 2 sin

π

2n
cos

2π

n
þ . . .þ 2 sin

π

2n
cos

n� 1ð Þπ
n

¼ sin
3π

2n
� sin

π

2n
þ sin

5π

2n
� sin

3π

2n
þ . . .

þ sin
2n� 3ð Þπ

2n
� sin

2n� 5ð Þπ
2n

þ sin
2n� 1ð Þπ

2n
� sin

2n� 3ð Þπ
2n

:

After simplification and canceling opposite terms, we have

2Sn sin
π

2n
¼ � sin

π

2n
þ sin

2n� 1ð Þπ
2n

¼ � sin
π

2n
þ sin π � π

2n

� �
¼ 0

Considering the equation above, we notice that the required sum multiplied by

the nonzero factor 2 sin π
2n 6¼ 0

� 	
equals zero. Therefore the sum is zero.

Answer: 0.

25. Evaluate S ¼ sin 10� þ sin 20� þ sin 30� þ sin 40� þ . . .þ sin 2020�

Hint: See Problem 129.

26. Prove that f xð Þ ¼ tan x is an odd function.

27. Express sin 5x in terms of sin x and evaluate sin 36�.

Hint: Use sine of the sum formula and consider sin 5x ¼ sin 3xþ 2xð Þ ¼
sin 3x cos 2xþ cos 3x sin 2x, then substituting the formulas (3.41) and (3.27)

we will obtain that

sin 5x ¼ 5 sin x� 20 sin 3xþ 16 sin 5x:

Because sin 180
� ¼ sin 5 � 36�ð Þ ¼ 0; the above trigonometric equation can be

written in terms of x ¼ sin 36� as follows, becoming a polynomial equation of

fifth order that can be solved as

16y5 � 20y3 þ 5y ¼ 0

y 16y4 � 20y2 þ 5ð Þ ¼ 0

y ¼ 0 16y4 � 20y2 þ 5 ¼ 0

z ¼ y2 16z2 � 20zþ 5 ¼ 0

z1 ¼ 10þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100� 80

p

16
¼ 10þ 2

ffiffiffi
5

p

16
¼ 5þ ffiffiffi

5
p

8

z2 ¼ 5� ffiffiffi
5

p

8

y1 ¼ 0, y2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ ffiffiffi

5
pp

2
ffiffiffi
2

p , y3 ¼ �1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ ffiffiffi

5
p

2

s
, y4 ¼

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5� ffiffiffi

5
p

2

s
, y5 ¼

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5� ffiffiffi

5
p

2

s
:
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Though the polynomial equation has five real roots, we have to select only one

answer. Our answer must be positive because 36� is in the first quadrant.

Moreover, we can state that

sin 30� < sin 36� < sin 45�

1

2
< sin 36� <

1ffiffiffi
2

p

Therefore, the only answer for y ¼ sin 36� ¼ 1
2

ffiffiffiffiffiffiffiffiffi
5� ffiffi

5
p
2

q
:

Answer: sin 5x ¼ 5 sin x� 20 sin 3xþ 16 sin 5x:

sin 36� ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5� ffiffiffi

5
p

2

s
:

28. Evaluate sin 2arctan1
5
� arctan 5

12

� 	
.

Answer: 0.

Solution: Denote arctan1
5
¼ α, arctan 5

12
¼ β, then tan α ¼ 1

5
, tan β ¼ 5

12
.

Using the formula for the tangent of a difference of two angles, we obtain

tan 2α� βð Þ ¼ tan 2α� tan β

1� tan 2α tanβ
,

tan 2α ¼ 2 tan α

1� tan 2α
¼

2 � 1
5

1� 1
5

� 	2 ¼ 5

12

Since tan 2α ¼ tan β ¼ 5
12
, then sin 2α� βð Þ ¼ tan 2α� βð Þ ¼ 0:

29. Prove that arcsin xþ arccos x ¼ π
2
.

30. Find all values of the parameter a for which the equation has a solution:

sin x sin 2x sin 3x ¼ a.
31. Solve the equation sin xþ 2 sin 2x ¼ 3þ sin 3x.

Answer: No solutions. Please solve it yourself using the fact that sine functions

are bounded.

32. Solve the equation cot 22xþ 8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� cot 2x

p � 3
�� �� ¼ cot 22x� 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� cot 2x
p � 3

�� ��.
Answer:

x ¼ π

4
þ π

2
� n

x ¼ 5π

12
þ π

2
� l, n, l 2 Z:

2
64

Solution: Denote t ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� cot 2x
p � 0, cot 2x � 0:

In order not to lose any solutions we will use the following property of the

absolute values:
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aj j ¼ bj j , aj j2 ¼ bj j2 , a2 ¼ b2:

Therefore the given equation can be rewritten in the following equivalent form:

t4 þ 8t� 3ð Þ� 	2 ¼ t4 � 8tþ 3ð Þ� 	2
After squaring both sides and canceling the same terms, we obtain

32t5 � 96t ¼ 0

or

32t � t4 � 3
� 	 ¼ 0

Two cases must be considered:

Case 1 t ¼ 0
cot 2x ¼ 0

cot 2x � 0

(
, x ¼ π

4
þ π

2
� n, n 2 Z:

Case 2 t4 ¼ 3 , t4 ¼ cot 22x ¼ 3. This can be solved as follows:

1þ cot 22x ¼ 4

1

sin 22x
¼ 4

and then applying restrictions imposed by the square root, we have to solve the

system

sin 22x ¼ 1

4
cot 2x � 0

(

or to solve two different systems

sin 2x ¼ 1

2

cot 2x � 0

8<
: ) 2x ¼ 5π

6
þ 2πn

sin 2x ¼ �1

2

cot 2x � 0

8<
: ) 2x ¼ �π

6
þ 2πm

2
66666664

Let us explain our approach: Please place solutions to the first equation of each

system on the unit circle. Each solution has two points on the unit circle.

However, because cotangent is negative only in the second and fourth quadrant,

wewill select only such solutions that are either in the second or fourth quadrant.

Further, angles�π
6
þ 2πm and 5π

6
þ 2πn are symmetric with respect to the origin

and therefore differ by π and both can be written in a simplest form as
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2x ¼ 5π

6
þ π � l, l 2 Z:

Dividing both sides by 2 we obtain

x ¼ 5π

12
þ π

2
� l, l 2 Z:

Uniting Case 1 and Case 2 we have the solution above.

33. Solve the equation sin 3xþ cos 4x ¼ 1.

Solution: Denote y ¼ sin x, yj j � 1:; then this equation will be rewritten as

y3 þ 1� y2ð Þ2 ¼ 1

y3 þ 1� 2y2 þ y4 ¼ 1

y2 y� 1ð Þ yþ 2ð Þ ¼ 0

y ¼ 0 y ¼ 1

1.
sin x ¼ 0

x ¼ πn, n 2 Z
2.

sin x ¼ 1

x ¼ π

2
þ 2πk, k 2 Z

34. Eliminate variable t from the system
x ¼ tþ 1

y ¼ t2 � 5t� sin t

�
.

Answer: y ¼ x2 � 7xþ 6� sin xþ 1ð Þ:
35. Solve the equation a sin xþ b cos x ¼ c for all values of real parameters a, b, c.

Solution: Rewrite the equation in the equivalent form

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
sin xþ φð Þ ¼ c, φ ¼ arcsin

bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p :

Then divide both sides by the coefficient of sine obtaining

sin xþ φð Þ ¼ cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
1. If c >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
then there are no real solutions.

2. If c ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
then

sin xþ φð Þ ¼ �1

x ¼ �π

2
� arcsin

bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p þ 2πn, n 2 Z:
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3. If cj j <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
then the solution can be written as

x ¼ �1ð Þn � arcsin cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p � arcsin
bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p þ πn:

36. Evaluate cos 20� � cos 40� � cos 80�.
Hint: Multiply and divide by 2 sin 20� and then apply the sine of a double-angle
formula (3.27) twice.

Answer: 1/8.

37. Given tan xþ cot x ¼ 3. Evaluate tan 3xþ cot 3x.

Answer: 27/11.

38. Evaluate arccos(cos 10).

Answer: 4π � 10:

39. Prove that sin π þ αð Þ � sin 4π
3
þ α

� 	 � sin 2π
3
þ α

� 	 ¼ sin 3α
4

� 	
.

Hint: Use formulas (3.2), (3.3), (3.41), and (3.48).

40. Solve the equation cos 2x� 7π
2

� 	 ¼ sin 4xþ 3πð Þ.
Answer: π

2
� n; � π

6
þ πk, n, k 2 Z:

Hint: Use supplementary and complementary angle formulas (3.2) and (3.3),

the formula for a sine of double angle (3.27), factor out a common factor, and

rewrite the given equation as a product of quantities equal to zero, etc.

41. Find maximum and minimum of the function A ¼ xwþ yzþ 4x�
3wþ y� 2z� 70, if its variables satisfy the system:

x2 þ y2 � 6x� 4y� 51 ¼ 0

z2 þ w2 þ 2zþ 8w� 32 ¼ 0

�
Hint: See similar Problem 139.

Denoting x� 3 ¼ 8 cosφ, y� 2 ¼ 8 sinφ, zþ 1 ¼ 7 cosψ , wþ 4 ¼ 7

sinψ , we obtain that

A ¼ x� 3ð Þ wþ 4ð Þ þ zþ 1ð Þ y� 2ð Þ � 56

A ¼ 56 sin φþ ψð Þ � 56:

Answer: Amin ¼ �112, Amax ¼ 0:
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42. Let 0 < α1 < . . . < αi < . . . < αn < π
2
. Prove that the following is true:

cot α1 >
cos α1 þ cos α2 þ . . .þ cos αn

sin α1 þ . . .þ sin αn
> cot αn:

Hint: Use the fact that the cotangent function is monotonically decreasing on

0; π
2

� 	
and use the ideas of Problem 141.

43. Solve the inequality: 4 1� tan xð Þ2012 þ 1þ tan xð Þ2014 � 22014

Solution: Let t ¼ tan x, then the inequality

4 1� tð Þ2012 þ 1þ tð Þ2014 � 22014 ð3:73Þ

is always valid

if t � 1 because 4 1� tð Þ2012 þ 1þ tð Þ2014 � 1þ tð Þ2014 � 22014

and if t � �1 because 4 1� tð Þ2012 þ 1þ tð Þ2014 � 1� tð Þ2012 � 22014

Therefore inequality (3.73) is valid for all tj j � 1.

Consider tj j < 1, let t ¼ cos α, 0 < α < π; then 4 1� cos αð Þ2012 þ 1þð cos

αÞ2014 ¼ 4 � 2 sin 2α
2

� 	2012 þ 2 cos 2α
2

� 	2014 ¼ 22014 sin 4024α

2
þ cos 4028

α

2

� �
< 22014 sin 2α

2
þ cos 2

α

2

� �
¼ 22014

Therefore, (3.73) is not valid for tj j < 1.

The original inequality has solutions is and only if tan xj j � 1:

π

4
þ πk � x � 3π

4
þ πk

x 6¼ π

2
þ πk, k 2 Z:

8><
>:

44. Solve the equation x3 � 3x� ffiffiffi
3

p ¼ 0:

Hint: Because p ¼ �3 < 0, q ¼ � ffiffiffi
3

p
; we can use trigonometric substitution

(3.51), x ¼ A cosφ.

Solution: A ¼
ffiffiffiffiffiffiffi
�4 p
3

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�4� �3ð Þ

3

q
¼ 2. The equation will be rewritten and

solved as
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8 cos 3φ� 6 cosφ� ffiffiffi
3

p ¼ 0

2 4 cos 3φ� 3 cosφð Þ ¼ ffiffiffi
3

p

cos 3φ ¼
ffiffiffi
3

p

2

3φ ¼ arccos

ffiffiffi
3

p

2

� �
þ 2πn

φ1 ¼
π

18
; φ2 ¼

13π

18
; φ3 ¼

21π

18

x1 ¼ 2 cos
π

18
, x2 ¼ 2 cos

13π

18
, x3 ¼ 2 cos

21π

18
:
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Chapter 4

Unusual and Nonstandard Problems

When we say “nonstandard,” one might think of a variety of problems that could be

unusual, complex, or “impossible to solve.” However, we can also say that “non-

standard” is the opposite of a standard or common way of thinking, or common

methodology. For example, most of the time when we need to find the maximal or

minimal value of a function, we often think of taking the derivative of a function.

However, there are other techniques that can be used to solving problems about

maximum and minimum values, including the use of the boundedness of functions

such as trigonometric or quadratic functions, or use of different inequalities such as

the inequality between arithmetic and geometric means, the Cauchy-Bunyakovsky

inequality, or Bernoulli’s inequality.

Another example of nonstandard problems would be problems with a parameter.

We have looked at many problems with parameters in this book already but in this

chapter you will see more problems with parameters and hopefully learn how to

solve them. Finally, there will be some word problems that do not look standard,

especially for a high school student. They are word problems to solve in integers or

problems with conditions that can be reduced to a nonlinear system of equations

with more variables than the number of the equations.

4.1 Problems on Maximum and Minimum

My teaching experience has been that every time students have to find amax ormin

of some expression or function they rush to calculate a derivative, even if this is not

necessary. Sometimes the derivative approach makes finding a solution longer and

more difficult.
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4.1.1 Using “Special” Behavior of Functions

Many problems in this section can be solved based on the properties of functions

and especially the boundedness of some functions, for example, quadratic or

trigonometric functions.

Problem 143 Find maximum and minimum of the function

f xð Þ ¼ 4 sin xþ 3 cos x.

Solution: Applying formula (3.24) directly we obtain

f xð Þ ¼ 4 sin xþ 3 cos x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
42 þ 32

p
sin xþ φð Þ ¼ 5 sin xþ φð Þ:

Since sine is a bounded function, Max¼ 5 and Min¼�5.

We can see that a thorough knowledge of trigonometry allowed us to find the

maximum and minimum without taking a derivative.

Problem 144 Find the maximum of the function y xð Þ ¼ 4x� x2 þ 6.

Solution: This problem can be easily solved using the derivative but let us show an

alternate way. The graph of y(x) is a parabola and it opens downward because the

leading coefficient (�1) is negative. It means that the function has its maximum at

its vertex:

xvertex ¼ � b

2a
¼ �4

2 � �1ð Þ ¼ 2

ymax ¼ y 2ð Þ ¼ �4þ 8þ 6 ¼ 10:

Answer The max of y(x)¼ 10.

Problem 145 Find the maximum and minimum of the function

f xð Þ ¼ sin 2xþ cos x� 1

2
.

Solution: Using the trigonometric identity sin 2xþ cos 2x ¼ 1 we can rewrite the

given function in the form f xð Þ ¼ 1� cos 2xþ cos x� 1

2
¼ 1

2
� cos 2x� cos x
� 	

And after completing the square within parentheses we obtain

f xð Þ ¼ 3

4
� cos x� 1

2

� �2
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Notice that cos x� 1

2

� �2

� 0, then f xð Þ � 3

4
for all real x.

On the other hand,

since cos xj j � 1, then max of cos x� 1

2

� �2

¼ �1� 1

2

� �2

¼ 9

4
, at cos x¼�1.

And f xð Þ � 3

4
� 9

4
¼ �3

2
for any real x

�3

2
� f xð Þ � 3

4
for 8x 2 R:

Maximum: f xð Þ ¼ 3

4
,

3

4
� cos

π

3
� 1

2

� �2

¼ 3

4
, xmax ¼ π

3

Minimum : f xð Þ ¼ �3

2
,

3

4
� cos π � 1

2

� �2

¼ �3

2
, xmin ¼ π:

Answer max: 3/4, min: �3/2.

Remark If you tried to solve this problem using a derivative you would encounter

many troubles. First, f (x) is defined for all real values of x x 2 Rð Þ, not just on some

closed interval [a, b]. Second, you can see that using boundedness and continuous-

ness of f (x) gives an accurate solution quickly.

The advantage of our approach becomes obvious and important in the next

problem.

Problem 146 Find Max and Min of the function f xð Þ ¼ log1
2
sin x2 þ 3ð Þ.

Solution: Let us consider a function f uð Þ ¼ log1
2
u. Because the base of the

logarithmic function is less than 1 (1/2< 1), then f(u) is decreasing over the entire

domain u> 0. This means that for any two 8u1, u2 u2 > u1 ) f u2ð Þ < f u1ð Þð Þ.
A sketch of such a function is given in Figure 4.1.

Figure 4.1 Sketch

for Problem 146
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In our problem u ¼ sin x2 þ 3 is bounded because sin x2
�� �� � 1 and

umin ¼ 1þ 3 ¼ 4 ¼ u2

umax ¼ �1þ 3 ¼ 2 ¼ u1

Because 4> 2, then f(4)< f(2), but since f xð Þ ¼ log1
2
sin x2 þ 3ð Þ is monotoni-

cally decreasing then

max f xð Þ ¼ f 2ð Þ ¼ log1
2
2ð Þ ¼ �1

min f xð Þ ¼ f 4ð Þ ¼ log1
2
4ð Þ ¼ �2:

Answer Max¼�1 and Min¼�2.

Problem 147 Find the minimum value of x xþ 1ð Þ xþ 2ð Þ xþ 3ð Þ without
calculus.

Solution: Let us multiply the middle terms together and complete the square:

f xð Þ ¼ x xþ 3ð Þ xþ 1ð Þ xþ 2ð Þ ¼ x2 þ 3xð Þ x2 þ 3xþ 2ð Þ
¼ x2 þ 3xð Þ2 þ 2 � x2 þ 3xð Þ þ 1
h i

� 1

¼ x2 þ 3xð Þ þ 1ð Þ2 � 1 � �1:

We can see that �1 is the minimum value of our function.

Answer Min f(x)¼�1.

Problem 148 Prove that for any x> 0 the inequality x2 þ πxþ 15

2
π sin x > 0

is true.

Proof Because sin xj j � 1, then the minimum of sin x¼�1, and the left side can

be written as x2 þ πx� 7:5π, where x ¼ 3π

2
þ 2πn, n ¼ 0, 1, 2, 3 . . . x > 0ð Þ. It is

obvious that when x ¼ 3π

2
n ¼ 0ð Þ the left side approaches its possible minimum.

So we have to show that
3π

2

� �2

þ π � 3π
2
� 15π

2
> 0.

Multiplying both sides by 4 we get 9π2 þ 6π2 � 30π ¼ 15π π � 2ð Þ > 0 because

π > 2. We have proven that the given inequality is greater than 0 for any x> 0.
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Problem 149 Find the minimum of the function

f xð Þ ¼
sin x� π

6

� �
4 sin x� π

6

� �
cos 3x� cos 6x� 7

Solution:

Method 1: First, we will not use any derivative for solving this problem:

f xð Þ ¼
sin x� π

6

� �
4 sin x� π

6

� �
cos 3x� cos 6x� 7

Let us substitute cos 6x ¼ 2 cos 23x� 1 and simplify the given function as

f xð Þ ¼
sin x� π

6

� �
4 sin x� π

6

� �
cos 3x� 2 cos 23x� 6

¼ �
sin x� π

6

� �
2 cos 23x� 2 sin x� π

6

� �
cos 3xþ 3

� �
We can define a new variable y ¼ cos 3x and rewrite the denominator. Since the

quadratic portion of the denominator, y2 � 2 sin x� π

6

� �
yþ 3 > 0 (because the

discriminant will always be negative, since) sin x� π

6

� ���� ��� � 1, then our goal is to

find the minimum possible value of the denominator. Completing the square inside

the denominator, we obtain

f xð Þ ¼ �
sin x� π

6

� �
2 cos 3x� sin x� π

6

� �� �2
þ 3� sin 2 x� π

6

� �� � ¼ � a

2 y� að Þ2 þ 3� a2
h i;

a ¼ sin x� π

6

� �
; y ¼ cos 3x:

We can see that the minimal value of the function, min f xð Þ ¼ �1
4
, will occur if

a¼ 1, y¼ a. The following must hold:

cos 3x� sin x� π

6

� �
¼ 0

sin x� π

6

� �
¼ 1

) x ¼ 2π

3
þ 2πn:

8<
:

Therefore min f xð Þ ¼ �1

4
:
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Method 2: 1. Denote x� π
6
¼ α ) x ¼ αþ π

6
; and then

3x ¼ 3αþ π

2
) cos 3x ¼ cos 3αþ π

2

� �
¼ � sin 3α

6x ¼ 6αþ π ) cos 6x ¼ cos 6αþ πð Þ ¼ � cos 6α

In terms of this new variable our original function will be rewritten as

f αð Þ ¼ sin αð Þ
�4 sin αð Þsin 3αþ cos 6α� 7

¼ sin αð Þ
�4 sin αð Þsin 3αþ 1� 2sin23α� 7

f αð Þ ¼ � sin αð Þ
2 sin 23αþ 2 sin 3α sin αþ 3ð Þ

In order to simplify “the look” of the function we will introduce new variables:

a ¼ sin α, b ¼ sin 3α

F a; bð Þ ¼ � a

2 bþ að Þ2 þ 3� a2
� �! min ð4:1Þ

Let us look closely at function (4.1).

First, we can write the following true inequalities:

bþ að Þ2 þ 3� a2 � 3� a2 aj j � 1ð Þ
1

2 bþ að Þ2 þ 3� a2
� � � 1

2 3� a2ð Þ
ð4:2Þ

We can state that (4.1) is true if the following is true:

a

2 bþ að Þ2 þ 3� a2
� �! max ð4:3Þ

If we put together (4.3) and (4.2), then we can write the chain of true inequalities:

F a; bð Þ ¼ �a

2 bþ að Þ2 þ 3� a2
� � � �a

2 3� a2ð Þ ð4:4Þ

Second, the maximum of
a

2 3� a2ð Þ occurs at a ¼ 1 and equals ¼.

Finally,

min f xð Þð Þ ¼ min F a; bð Þð Þ ¼ �1

4
: ð4:5Þ

Let us find for what values of x the statement (4.5) will hold.
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The equality in (4.4) holds if

a ¼ 1

b ¼ a

�
, sin α ¼ 1

sin 3α ¼ 1

�
, sin x� π

6

� �
¼ 1 ) x ¼ 2π

3
þ 2πn, n 2 Z:

Answer Min f xð Þð Þ ¼ �1

4
:

Problem 150 There are three alloys. The first alloy contains 30 % of Pb and

70 % of Sn. The second—80 % of Sn and 20 % of Zn, and the 3rd—50 % of

Sn, 10 % of Pb, and 40 % of Zn. From these three alloys we need to prepare a

new alloy containing 15 % of lead (Pb). What is the maximum and minimum

percentage of Sn that can be in these alloys?

Solution: Assuming that we are melting x kg of the 1st alloy, y kg of the 2nd alloy
and z kg of the 3rd, let us create the following table:

Because the new alloy must contain 15 % of Pb we can obtain the equation

0:3xþ 0:1z

xþ yþ z
¼ 0:15 ð4:6Þ

Multiplying both sides of (4.6) by 100(x+ y+ z) we obtain

30xþ 10z ¼ 15xþ 15yþ 15z

15x ¼ 15yþ 5z

x ¼ yþ z

3

ð4:7Þ

(4.7) expresses x in terms of y and z.
We have to find the maximum and minimum possible content of Sn in the alloy:

F x; y; zð Þ ¼ F ¼ 0:7xþ 0:8yþ 0:5z

xþ yþ z
ð4:8Þ

Using (4.7) let us exclude variable x from (4.8):

F ¼
0:7 yþ z

3

� �
þ 0:8yþ 0:5z

yþ z

3

� �
þ yþ z

¼
1:5yþ 2:2z

3

yþ z

3

� �
þ yþ z

¼
1:5yþ 2:2z

3

2yþ 4z

3

Table 4.1 Problem 150 # of alloy Amount (kg) Sn (%) Pb (%) Zn (%)

1 X 70 30 0

2 Y 80 0 20

3 Z 50 10 40
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Multiplying the numerator and denominator by 30, we obtain that

F ¼ 45yþ 22z

60yþ 40z
ð4:9Þ

The amount of Sn in the alloy is a function of two variables y and z
(y> 0, z> 0). Equation (4.9) can be written in the form

F ¼ 45yþ 30z� 8z

60yþ 40z
¼ 3 15yþ 10zð Þ � 8z

4 15yþ 10zð Þ
F ¼ 3

4
� 2z

15yþ 10z

F ¼ 3

4
� g y; zð Þ

Because z � 0, y � 0 let us make z¼ constant¼ z0 and consider F as a function

of y, y � 0 for z ¼ z0,F yð Þ ¼ 3
4
� g yð Þ, where g yð Þ > 0 and F(y) decreases for all y.

This means that the minimum of g(y) will correspond to the maximum of F(y):

Min ¼ F 0ð Þ ¼ 3

4
� 2�z
10�z ¼ 0:55 or 55%

We notice that the minimum does not depend on z.
The maximum of F can be reached only if z¼ 0.

Max of F¼ 3/4 or 75 %.

Actually F z ¼ 0ð Þ ¼ 3

4
� 2 � 0
15yþ 10 � 0 ¼ 3

4
:

Notice that g y; zð Þ > 0 if y> 0 and z> 0 and g y; zð Þ ¼ 0 if y> 0 but z¼ 0.

Answer 55 % and 75 %.

4.1.2 Using Arithmetic and Geometric Mean

Many problems about the maximum and minimum values of a function can be

solved without using a derivative, but instead using the inequality between the

arithmetic and geometric means:

aþ b

2
�

ffiffiffiffiffi
ab

p
for a > 0 and b > 0 ð4:10Þ

Inequality (4.10) becomes an equality only when a¼ b. For any other a and b an
arithmetic mean (AM) is always greater than the geometric mean (GM). This can be

proved as follows:

a� bð Þ2 � 0

a2 � 2abþ b2 � 0

a2 þ 2abþ b2 � 4ab

aþ bð Þ2 � 4ab

aþ b � 2
ffiffiffiffiffi
ab

p
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In 1893 the Russian collector Golenishchev purchased an Egyptian papyrus,

which was about eighteen feet long and about three inches high. From a sample of

problems from the papyrus it was clear that the inequality between arithmetic and

geometric means was known to ancient Egyptians in 1850 BC. Egyptians were

impressively good at building pyramids and they used a geometric approach for

establishing important relationships. They also introduced the so-called harmonic

mean (HM) and knew that

HM � GM � AM:

Let us demonstrate that (4.10) is true using plane geometry.

We will construct a circle with diameter (a+ b). Let a¼BD, b¼DC, and A be

the point where the perpendicular to BC at point D intersects the circle and let E be

the foot of the perpendicular from D to the radius AO. Let us denote AD¼ h,
AE¼ g. Since ABD and CAD are similar right triangles then

h

b
¼ a

h
) h ¼

ffiffiffiffiffi
ab

p
:

Also, since AOD and ADE are similar right triangles, we have

gffiffiffiffiffi
ab

p ¼
ffiffiffiffiffi
ab

p
aþb
2

) g ¼ 2ab

aþ b
¼ 2

1
a þ 1

b

� 	
Finally, from geometry we know that in a right triangle, the length of any leg is

always smaller than the length of the hypotenuse (Figure 4.2). Hence,

AE � AD � AO , g � h � aþb
2
, which can be rewritten as

2ab

aþ b
�

ffiffiffiffiffi
ab

p
� aþ b

2
ð4:11Þ

h

g

OB D C

A

E

Figure 4.2 Arithmetic and

geometric means on a circle
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Problem 151 For all positive x, y, and z find the minimum value of

(x+ y)(y + z) if xyz(x+ y+ z)¼ 9.

Solution: Since xyz xþ yþ zð Þ ¼ 9 can be written as

xz yxþ y2 þ yz
� 	 ¼ 9: ð4:12Þ

we can represent (x+ y)(y+ z) as

yþ xð Þ yþ zð Þ ¼ y yþ zð Þ þ x yþ zð Þ ¼ y2 þ yzþ xyð Þ þ xz:

Substituting for the term inside the parentheses from (4.12) and using the inequality

between arithmetic and geometric mean we obtain

xþ yð Þ yþ zð Þ ¼ 9

xz
þ xz � 2

ffiffiffiffiffiffiffiffiffiffiffiffi
9

xz
� xz

r
¼ 2 � 3 ¼ 6

Therefore, 6 is the minimum value of (x+ y)(y + z).

Answer Min¼ 6.

Remark A similar problem (Problem 172) is solved in Section 4.3 using a geo-

metric approach.

Problem 152 Two vessels contain different solutions of salt. There is 5 kg of

solution in the first vessel and 20 kg in the second. After evaporation the

percentage of salt in the first vessel increased p times, and in the second q

times. It is known that p	 q¼ 9. What is the maximum amount of water that

would have evaporated from both vessels together?

Solution: Let us introduce two variables:

x (kg) is the amount of water that evaporated from the first vessel.

y (kg) is the amount of water that evaporated from the second.

Translating the problem into the language of math we obtain the system:

5 ¼ p 5� xð Þ
20 ¼ q 20� yð Þ
p � q ¼ 9

p > 1

q > 1

8>>>>>><
>>>>>>:

,

x ¼ 5� 5

p

y ¼ 20� 20

q

pq ¼ 9

1 < p < q

8>>>>>>><
>>>>>>>:

,

x ¼ 5� 5

p

y ¼ 20� 20 p

9
pq ¼ 9

1 < p < q

8>>>>>>><
>>>>>>>:
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Using this system, let us find the maximum of (x + y) and consider

xþ y ¼ 5� 5

p
þ 20� 20 p

9
¼ 25� 5

p
þ 20p

9

� �
ð4:13Þ

Of course, we could take the derivative of (x+ y) with respect to p or solve it

graphically on a calculator. But using the inequality between arithmetic and

geometric means and the fact that 1 � p � 9 (4.13) can be written as

xþ y ¼ f pð Þ ¼ 25� 5

p
þ 20p

9

� �
� 25� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5

p
� 20 p

9

s
¼ 25� 20

3
¼ 18

1

3
ð4:14Þ

From (4.14) we conclude that the max f pð Þ
1� p�9

¼ 181
3
.

Let’s find the value of p that makes f( p) approach the maximum:

5
p þ 20 p

9
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
5
p � 20 p9

q
if and only if 5

p ¼ 20 p
9

or p2 ¼ 9
4
, p ¼ 3

2
:

max f pð Þ ¼ f
3

2

� �
¼ 18

1

3

q ¼ 9

p
¼ 6:

Answer The maximum amount of water that can have evaporated from the two

vessels is 181
3
kg. Moreover, the salt content in the 1st vessel increased 1.5 times and

in the 2nd vessel 6 times.

Remark This problem is also interesting because we were not given specific con-

centrations of the solutions in the 1st and the 2nd vessels, but we were able to solve

the problem without that information. If you do not understand how the first system

was obtained let’s look at an example. Let us assume that the 1st solution is 20% salt,

and the second 50% salt. Thus 5 kg of the first solution contains 0.2	 5 kg of the salt,

and 20 kg of the 2nd solutionwill contain 0.5	 20 kg of the salt. After x kg ofwater is
evaporated from the 1st solution, (5� x) kg of solution contains p times as much

concentration of the salt as before, meaning 0.2	 p. This gives us

0:2 � 5 ¼ 0:2 � p � 5� xð Þ
5 ¼ p 5� xð Þ

(See the first equation of the 1st system.)

Problem 153 Find theminimum value of the function f xð Þ ¼ 4xþ 9π2

x þ sin x

for x> 0.

4.1 Problems on Maximum and Minimum 249



Solution: Suggestion 1: If you try to use a derivative you will get a transcendental

equation:

f
0
xð Þ ¼ 4� 9π2

x2
þ cos x ¼ 0:

It is hard to solve this equation analytically.

Suggestion 2: Try to look at f(x) as a sum of two functions g(x) and h(x) such that

g xð Þ ¼ 4xþ 9π2

x and h(x)¼ sin x. For all x> 0, the function g(x) has a lower bound

because 4xþ 9π2

x � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4x � 9π2x

q
¼ 12π and this happens at 4x ¼ 9π2

x or x ¼ 3π
2
:

Is it a good number?

h xð Þ ¼ sin x is a periodic function, and sin xj j � 1 for all real x. Then f(x) must

have its minimum (Min) at

x ¼ 3π

2

 4:71

min of f xð Þ ¼ 12π � 1 
 36:7:

Answer fmin xð Þ ¼ 12π � 1.

Remark Of course, some of you would say that using technology, one could get the

answer in 2 s. Let us do it on a TI-84 graphing calculator. The function appeared in

window: 0< x< 70 and �5< y< 100. The function is continuous for all x> 0 and

using [2nd calc] we can find the minimum xmin 
 4:7, ymin 
 36:7: This is very
close to the exact answer. Just think of how easily we obtained the exact answer

analytically and what excellent techniques we have learned.

4.1.3 Using Other Important Inequalities

Let us unite our knowledge about methods of estimation and evaluation and list

three very famous inequalities.

The Inequality of Cauchy

If

a1 � 0, a2 � 0, . . . , an � 0 )
a1 þ a2 þ . . .þ an

n
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a1a2 � . . . � ann
p ð4:15Þ

This inequality becomes an equality if and only if a1 ¼ a2 ¼ . . . ¼ an:
We very often call on this when we use the inequality between geometric and

arithmetic means.
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Bernoulli’s Inequality
This inequality can be written as:

For any x > �1 and any natural number n we can state that

1þ xð Þn � 1þ nx B:1ð Þ ð4:16Þ

This becomes an equality only if x¼ 0 and n¼ 1.

Next, let us prove Bernoulli’s inequality (Theorem 22) using mathematical

induction. To ensure that it is an inequality we will use the condition that x 6¼ 0

and n � 2:

Theorem 22 If x > �1, x 6¼ 0, n � 2 then 1þ xð Þn � 1þ nx:

Proof Proof by induction

1. If n¼ 2, then 1þ xð Þ2 ¼ 1þ 2xþ x2 > 1þ 2x, which is obviously true.

2. Let n¼ k and assume that A(k) is true and that

1þ xð Þk > 1þ kx

3. Let us prove that A(k+ 1) is also true, i.e., 1þ xð Þkþ1 > 1þ k þ 1ð Þx:
Consider

1þ xð Þkþ1 ¼ 1þ xð Þk 1þ xð Þ > 1þ kxð Þ 1þ xð Þ ¼ 1þ k þ 1ð Þxþ kx2 > 1þ k þ 1ð Þx

The proof is completed.

Besides (B.1, (4.16)) there exists a more general Bernoulli’s inequality, which

contains two inequalities:

If p< 0 or p> 1, then

1þ xð Þ p � 1þ px ð4:17Þ

If 0< p< 1, and x>�1, then

1þ xð Þ p � 1þ px ð4:18Þ

The Inequality of Cauchy-Bunyakovsky (CB)

x1y1 þ x2y2 þ . . .þ xnynð Þ2 � x21 þ x22 þ . . .þ x2n
� 	

y21 þ y22 þ . . .þ y2n
� 	 ð4:19Þ

Inequality (CB) becomes an equality if and only if xk ¼ ayk, where a> 0 and

k ¼ 1, 2, 3, . . . n.
Let us demonstrate how this inequality can be proven with the use of the scalar

product of two vectors. Without loss of generality (WLOG), we will consider two
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two-dimensional vectors x ¼ x1; x2ð Þ, y ¼ y1; y2ð Þ. It is well known that the scalar

product of two vectors equals the product of their magnitudes times the cosine of

the angle between two vectors, which can be written as

x; yð Þ ¼ x � y ¼ xk k � yk k cos α:

Next, we will square both sides and will consider the fact the cosine is a bounded

function less than or equal to one. Thus, the proof is below:

x � yð Þ2 ¼ xk k2 � yk k2 cos 2α
x1 � y1 þ x2 � y2ð Þ2 ¼ x21 þ x22

� 	 � y21 þ y22
� 	

cos 2α

x1 � y1 þ x2 � y2ð Þ2 � x21 þ x22
� 	 � y21 þ y22

� 	
The CB inequality can be applied to solving many interesting problems.

I offer you several problems below that can be solved using these famous

inequalities. Try to recognize which is the appropriate one to use in each case.

Problem 154 Which is greater 100 ! or 10200?

Solution: It is not possible to do it on a typical graphing calculator: the numbers

are too big. However, we can use Cauchy’s inequality. It is obvious that

1þ 2þ 3þ . . .þ 100

100
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2 � 3 � . . . � 100100

p
¼

ffiffiffiffiffiffiffiffiffi
100!

100
p

50:5100 � 100!

10200 ¼ 100100 > 50:5100 > 100!

Answer 10200 > 100!

Problem 155 Which is greater 200 ! or 100200?

Solution: Let us consider the following ratio:

200!

100200
¼ 1

100
� 199
100

� �
2

100
� 198
100

� �
3

100
� 197
100

� �
. . .

. . .
99

100
� 101
100

� �
100

100
� 200
100

� �
¼

The numerator of each fraction inside parentheses can be rewritten using the

difference of squares formula:
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200!

100200
¼ 100� 99ð Þ

100
� 100þ 99ð Þ

100

� �
100� 98ð Þ

100
� 100þ 98ð Þ

100

� �
. . .

. . .
100� 1ð Þ
100

� 100þ 1ð Þ
100

� �
1 � 2ð Þ ¼

¼ 1002 � 992

1002
� 100

2 � 982

1002
. . .

1002 � 12

1002
� 1 � 2

ð4:20Þ

Since all fractions in (4.20) are less than 1, then 200! < 100200:

Problem 156 Given a + b+ c¼ 1. Prove that a2 þ b2 þ c2 � 1

3
:

Proof 1 Consider two vectors, x ¼ a; b; cð Þ and y ¼ 1; 1; 1ð Þ. From CB inequality

we have

a � 1þ b � 1þ c � 1ð Þ2 � a2 þ b2 þ c2
� 	 � 12 þ 12 þ 12

� 	
After substituting aþ b ¼ c ¼ 1 and taking the square root of both sides, we have

1 ¼ 1	 aþ 1	 bþ 1	 c �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 þ 12 þ 12

p
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2 þ c2

p
¼

ffiffiffi
3

p
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2 þ c2

p

From this we obtain that a2 þ b2 þ c2 � 1

3
.

Proof 2 On one hand, because a + b+ c¼ 1 then aþ bþ cð Þ2 ¼ 1 and

1 ¼ aþ bþ cð Þ2 ¼ a2 þ b2 þ c2 þ 2abþ 2acþ 2bc:

On the other hand, using the inequality between geometric and arithmetic

means, we know that

2ab � a2 þ b2, 2ac � a2 þ c2, 2bc � b2 þ c2:

Thus, 1 � 3a2 þ 3b2 þ 3c2 ¼ 3 a2 þ b2 þ c2
� 	

Then a2 þ b2 þ c2 � 1

3
.

The proof is completed.
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Problem 157 Prove that a4 þ b4 � 1
8
for any a and b such that a> 0, b> 0

a + b¼ 1.

Proof Let

a ¼ 1

2
� α, α > 0

b ¼ 1

2
þ α

then a+ b¼ 1 is true and

a4 þ b4 ¼ 1

8
þ 3α2 þ 2α4 � 1

8
8α:

Problem 158 Prove that if a> 0 and b> 0 and a3 þ b3 ¼ a5 þ b5; then

a2 þ b2 � 1þ ab:

Proof Let us proof it by contradiction. Suppose that

a2 þ b2 > 1þ ab ð4:21Þ

Separately multiplying (4.21) by a3 and b3 we obtain two inequalities:

a3 a2 þ b2
� 	

> a3 1þ abð Þ
b3 a2 þ b2
� 	

> b3 1þ abð Þ

Adding these two inequalities we obtain:

a5 þ a3b2 þ a2b3 þ b5 > a3 þ a4bþ b3 þ ab4

Because by the condition of the problem a3 þ b3 ¼ a5 þ b5; then

a3b2 þ a2b3 > a4bþ ab4 ) a2bþ ab2 > a3 þ b3

Factoring the left side of the last inequality and applying the sum of cubes formula

to the right side, and dividing both of the sides by (a+ b)> 0 we have

ab > a2 � abþ b2

a� bð Þ2 < 0

We understand that this inequality is false, then a2 þ b2 � 1þ ab:
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Problem 159 Find the maximum value of f xð Þ ¼ ffiffiffiffiffiffiffiffiffiffi
1� x

3

p þ ffiffiffiffiffiffiffiffiffiffiffi
1þ x6

p
.

Solution: Let us apply Bernoulli’s inequality to both terms on the right and then

add the left and right sides:

1� x

3

� �1
2 � 1� 1

2
� x
3

1þ xð Þ16 � 1þ 1

6
� x

9>>=
>>;) f xð Þ � 2:

Therefore the maximum value of the function is 2 at x¼ 0.

Answer Max of f(x) is 2 at x¼ 0.

Problem 160 (Suprun) Find maximum and minimum of the function

f x; yð Þ ¼ 6 sin x cos yþ 2 sin x sin yþ 3 cos x:

Solution: Cauchy-Bunyakovsky inequality (4.19) applied to three-component

vectors can be written as x1y1 þ x2y2 þ x3y3ð Þ2 � x21 þ x22 þ x23
� 	 � y21 þ y22 þ y23

� 	
and for our problem:

f x; yð Þð Þ2 � 62 þ 22 þ 32
� 	

sin x cos yð Þ2 þ sin x sin yð Þ2 þ cos 2x
� �

f 2 x; yð Þ � 49 sin 2x cos 2yþ sin 2y½ � þ cos 2xð Þ ¼ 49

f x; yð Þj j � 7

Therefore the minimum value of the function is �7 and maximum is 7.

Answer Max¼ 7, Min¼�7.

Problem 161 For the polynomial p xð Þ ¼ x4 þ ax3 þ bx2 þ cxþ d with real

coefficients a, b, c, and d and with four real zeros, x1, x2, x3, x4, the following
relationship is valid: b� d � 5. Find the minimal value of the product

A ¼ x21 þ 1
� 	

x22 þ 1
� 	

x23 þ 1
� 	

x24 þ 1
� 	! min.

Solution: (One of several methods). As we did in Problem 90, the polynomial with

four real zeros can be written as a product of two quadratic functions:

p xð Þ ¼ x4 þ ax3 þ bx2 þ cxþ d ¼ x2 þ pxþ q
� 	

x2 þ rxþ s
� 	 ð4:22Þ
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And the value of A in terms of p, q, r, s was obtained earlier as

A ¼ q� 1ð Þ2 þ p2
� �

s� 1ð Þ2 þ r2
� �

ð4:23Þ

Comparing coefficients of the original polynomial and its factorized form (4.22),

we have that

b ¼ qþ sþ pr; d ¼ qs

Therefore, the given inequality is

b� d � 5

qþ sþ pr � qs � 5

pr � qs� q� sþ 1þ 4

The last inequality can be written as

pr � q� 1ð Þ s� 1ð Þ þ 4

or as

pr � q� 1ð Þ s� 1ð Þ � 4 ð4:24Þ

Next, we will prove the following statement:

x2 þ y2ð Þ z2 þ t2ð Þ � yt� xzð Þ2, x, y, z, t 2 R ð4:25Þ

Proof Expanding both sides we have

x2z2 þ x2t2 þ y2z2 þ y2t2 � y2t2 � 2xyztþ x2z2

x2t2 þ y2z2 � �2xyzt

xtþ yzð Þ2 � 0 true:

Therefore, the inequality (4.25) is true.

Note that the validity of a similar inequality x2 þ y2ð Þ z2 þ t2ð Þ � ytþ xzð Þ2
follows from the Cauchy-Bunyakovsky inequality.

Using (4.25) and (4.24), we can rewrite (4.23) as follows:

A ¼ q� 1ð Þ2 þ p2
� �

s� 1ð Þ2 þ r2
� �

� pr � q� 1ð Þ s� 1ð Þð Þ2 � 42 ¼ 16:

256 4 Unusual and Nonstandard Problems



Therefore the smallest value of A is 16. In order to verify this case we can

consider a polynomial: p xð Þ ¼ x� 1ð Þ4 ¼ x4 � 4x3 þ 6x2 � 4xþ 1:

Answer Min¼ 16.

Problem 162 Given x1 > 0, x2 > 0, x3 > 0. Prove that
x1

x2 þ x3
þ x2
x1 þ x3

þ x3
x1 þ x2

� 3

2
:

Proof Let x2 þ x3 ¼ a, x3 þ x1 ¼ b, x1 þ x2 ¼ c )

2 x1 þ x2 þ x3ð Þ ¼ aþ bþ c

x1 þ a ¼ aþ bþ c

2

x1 ¼ bþ c� a

2

x2 ¼ aþ c� b

2

x3 ¼ aþ b� c

2

The left side of the inequality is rewritten as

bþ c� a

2a
þ aþ c� b

2b
þ aþ b� c

2c

Next, within each fraction, we will divide each term of the numerator by the

denominator and regroup the fractions, combine reciprocals, and apply Cauchy’s

inequality to each pair:

1

2

b

a
þ c

a
� 1þ a

b
þ c

b
� 1þ a

c
þ b

c
� 1

� �
¼

1

2
� a

b
þ b

a

� �
|fflfflfflfflffl{zfflfflfflfflffl}

�2

2
6664

3
7775þ 1

2
� a

c
þ c

a

� �
|fflfflfflffl{zfflfflfflffl}

�2

2
664

3
775þ 1

2
� c

b
þ b

c

� �
|fflfflfflfflffl{zfflfflfflfflffl}

�2

2
6664

3
7775� 3

2
� 3� 3

2
¼ 3

2

The proof is completed.
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Problem 163 Given x, y, z 2 R satisfying the system
xþ yþ z ¼ 5

xyþ xzþ yz ¼ 8

�
Prove that all the variables are bounded as 1 � x � 7

3
, 1 � y � 7

3
, 1 � z � 7

3
:

Proof If we square the first equation of the system and make a corresponding

substitution, we will obtain that

xþ yþ zð Þ2 ¼ x2 þ y2 þ z2 þ 2xyþ 2yzþ 2xy

52 ¼ x2 þ y2 þ z2 þ 2 � 8
x2 þ y2 þ z2 ¼ 9

Additionally, we can rewrite the system as

yþ z ¼ 5� x
yzþ x yþ zð Þ ¼ 8

)
�
yz ¼ 8� x 5� xð Þ ¼ x2 � 5xþ 8

We rewrite the last equality as

yz ¼ x2 � 5xþ 8

On the other hand, using Cauchy’s inequality, we can state that

yþ z � 2
ffiffiffiffiffi
yz

p

5� x � 2
ffiffiffiffiffi
yz

p

5� xð Þ2 � 4yz

Since the last inequality can be rewritten as

4yz � 5� xð Þ2;

Finally, we obtain that

4 x2 � 5xþ 8ð Þ � 25þ x2 � 10x

3x2 � 10xþ 7 � 0

1 � x � 7

3
:

Similarly, we can prove the two other inequalities.
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4.2 Nonstandard Systems and Equations in Two
or Three Variables

I remember how at an educational conference one high school math teacher said to

me: “Why do I need all these “tricks” if I can solve everything on a calculator?” Our

dispute was over about five minutes after I asked her to tell me which was greater:

2300000 or 3200000. Technology is a great thing, it can be very helpful, and certainly it

enhances math teaching, but it must be used wisely. Regarding this section, first, let

us discuss what type of systems can be solved using a typical graphing calculator

(not a computer). There are systems of k linear equations in k variables with

nonsingular coefficient matrices (with nonzero determinants) and nonlinear sys-

tems in two variables like

3x3 � yþ 10 ¼ 0

y� 2xþ 2x
4 � 5 sin 3x ¼ 4

�

Each equation of such a system can be written as an explicit function of x:

y ¼ 3x3 þ 10

y ¼ 2x� 2x
4 þ 5 sin 3xþ 4

�

And we would solve such a system graphically by looking for the intersections

of the two graphs. What can you do if a system is nonlinear, no variable can be

expressed as an explicit function of another, or a system has more than two vari-

ables? In this section we will learn some methods of solving nonstandard systems

and equations in two or three variables. 1978 Lomonosov Moscow State University

admission exam had the following problem.

Problem 164 Find all ordered pairs (x, y) that for all nonnegative y satisfy

the system of equations: 4x
2þ yþ1ð Þ2 � 32 ¼ 31 � 2x2þ yþ1ð Þ2

cos π x2 þ y2ð Þ½ � ¼ 1

�

Solution: Let us rewrite the system, adding an inequality to it:

4x
2þ yþ1ð Þ2 � 32 ¼ 31 � 2x2þ yþ1ð Þ2

cos π x2 þ y2ð Þ½ � ¼ 1

y � 0

8<
: ð4:26Þ

Solve equations of the system separately:

4x
2þ yþ1ð Þ2 � 32� 31 � 2x2þ yþ1ð Þ2 ¼ 0
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Let

2x
2þ yþ1ð Þ2 ¼ z ð4:27Þ

We obtain a quadratic equation:

z2 � 31z� 32 ¼ 0

z1 ¼ �1, and z2 ¼ 32

But we choose only z¼ 32 because z> 0 since it is an exponential function.

Then

2x
2þ yþ1ð Þ2 ¼ 32

x2 þ yþ 1ð Þ2 ¼ 5

x2 þ y2 þ 2y ¼ 4

cos π x2 þ y2ð Þð Þ ¼ 1

ð4:28Þ

From the last equation we have

π x2 þ y2ð Þ ¼ 2πn
x2 þ y2 ¼ 2n, n ¼ 0, � 1, � 2, . . .

Now we can rewrite a new system combining (4.27), (4.28), and the first equation of

(4.26):

x2 þ y2 þ 2y ¼ 4

x2 þ y2 ¼ 2n � 0

y � 0

8<
: ð4:29Þ

Subtracting the second equation of system (4.29) from the first, we obtain

y ¼ 2� n
x2 þ y2 ¼ 2n
y � 0

8<
: ) 0 � n � 2

x2 þ 2� nð Þ2 ¼ 2n

�
, 0 � n � 2

x2 ¼ 6n� n2 � 4

�
ð4:30Þ

It is easy to see from (4.30) that n¼ 0, 1, or 2.

Let us investigate for which value of n system (4.26) will have solutions? To do

this we attempt to solve system (4.30) for n¼ 0, n¼ 1, and n¼ 2.

1.

n ¼ 0

x2 ¼ 6n� n2 � 4

y ¼ 2� n

8<
: ,

x2 ¼ �4

y ¼ 2

n ¼ 0

8<
: , ∅ system has no solutions

2.

n ¼ 1

x2 ¼ 6n� n2 � 4

y ¼ 2� n

8<
: ,

n ¼ 1

x ¼ �1

y ¼ 1

8<
: , 1; 1ð Þ and �1, 1ð Þ solutions
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3.

n ¼ 2

x2 ¼ 6n� n2 � 4

y ¼ 2� n

8<
: ,

n ¼ 2

x2 ¼ 4

y ¼ 0

8<
: , x ¼ �2

y ¼ 0

�

Answer (1,1), (�1,1), (�2,0), and (2,0)

I hope that you can see the advantage of having the ability to solve such systems

by hand—you develop your math skills and it would be impossible to solve such a

system on a calculator.

Problem 165 Solve the system:

2 y� 2ð Þ y� zð Þ ¼ z� 2

4x2 þ z2 ¼ 4z
8x3 � z ¼ 3xy
z � 2

8>><
>>: ð4:31Þ

Solution: This system is nonstandard. Each equation of (4.31) is an implicit

function of two or three variables x, y, and z. In addition, one of the equations

contains the variable x raised to the third degree. Using a graphing calculator would
be difficult, as would an attempt to find triples (x, y, z) mentally. Let us try the

technique of solving this system using boundedness of some variables. Just a quick

look at the second equation of the system gives us the idea that since 4x2 þ z2 � 0

always, this equation has solutions only if its right side is nonnegative as well. Now

z � 0. Using the inequality condition of (4.31) we obtain that

0 � z � 2 ð4:32Þ

Let us solve the first equation of the system separately:

2 y2 � zy� 2yþ 2z
� 	 ¼ 2y2 � 2zy� 4yþ 4z ¼ z� 2:

Considering this equation as a quadratic equation in one variable y, and z as a
parameter, we can try to solve it for y:

2y2 � 2 zþ 2ð Þyþ 3zþ 2ð Þ ¼ 0

y ¼ zþ 2� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z z� 2ð Þp

2

ð4:33Þ

Notice that (4.33) has real solutions for y if and only if z z� 2ð Þ � 0 (its

discriminant is nonnegative). Thus,

z � 0 or z � 2 ð4:34Þ
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If we solve (4.32) and (4.34) together we obtain

z ¼ 0 or z ¼ 2

Using some “nontrivial thinking” we have found that solutions of system (4.31)

may exist only if z¼ 0 or z¼ 2.

Case 1 z¼ 0

Replacing z¼ 0 in the system we obtain

2 y� 2ð Þ y� 0ð Þ ¼ 0� 2

4x2 ¼ 0

8x3 ¼ 3xy

z ¼ 0

8>>>><
>>>>:

,
y ¼ 1

x ¼ 0

z ¼ 0

2
64 , 0; 1; 0ð Þ

Case 2 z¼ 2

Replacing z¼ 2 in the system, we obtain

2 y� 2ð Þ y� 2ð Þ ¼ 2� 2

4x2 þ 22 ¼ 4 � 2
8x3 � 2 ¼ 3xy

z ¼ 2

8>>>><
>>>>:

,

y ¼ 2

x ¼ �1

8x3 � 6x� 2 ¼ 0

z ¼ 2

2
66664 , 1; 2; 2ð Þ

We successfully found two triples.

Answer (0, 1, 0) and (1, 2, 2).

Problem 168 Find all solutions of the system:

yþ 2 ¼ 3� xð Þ3

2z� yð Þ yþ 2ð Þ ¼ 9þ 4y

x2 þ z2 ¼ 4x

z � 0

8>>>><
>>>>:

Solution: Let us first work with the second equation and divide it by yþ 2 6¼ 0.

This allows us to express variable z as follows:
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z ¼ 1

2
yþ 2þ 1

yþ 2
þ 2

� �
ð4:35Þ

Because it is nonnegative by the condition of the problem z � 0ð Þ, we can rewrite

the relationship above as an inequality:

yþ 2þ 1

yþ 2
� �2

Additionally we can see that this variable is bounded because it is the sum of two

reciprocals. Then the inequality above is equivalent to two cases.

Case 1 yþ 2 ¼ �1, y ¼ �3, x ¼ 4, z ¼ 0:
Case 2 yþ 2 > 0. Then by the property of two positive reciprocal numbers we

obtain that yþ 2þ 1
yþ2

� 2. Then it follows from (4.35) that z � 2:

Next, let us complete the square in the third equation of the system:

x2 þ z2 ¼ 4x
x� 2ð Þ2 þ z2 ¼ 4

Now we can see that in order for this equation to be true, variable zmust be less than

or equal to 2: z � 2ð Þ. Therefore, z ¼ 2, x ¼ 2, y ¼ �1:

Answer {(4,�3,0);(2.�1,2)}.

Problem 167 Solve the system of the inequalities:

sin
π xþ yð Þ

2

����
����þ x� y� 2ð Þ2 � 0

2xþ 3j j � 2

8<
: .

Solution: At first glance this system looks hard but if we look at the first inequality

more closely we notice that absolute values are nonnegative and x� y� 2ð Þ2 � 0.

However, the sum of two nonnegative expressions must be nonpositive (the right

side of the inequality). This can happen only if

sin
π xþ yð Þ

2
¼ 0 ð4:36Þ

and

x� y� 2ð Þ2 ¼ 0 ð4:37Þ

simultaneously!
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Then we get 0þ 0 � 0 which is true enough. Let us solve (4.36) and (4.37)

separately:

sin
π xþ yð Þ

2
¼ 0

π xþ yð Þ
2

¼ π � n, n ¼ 0, � 1, � 2, . . .

xþ y ¼ 2n
x� y� 2 ¼ 0

x� y ¼ 2

From the second inequality of the given system we can obtain more restrictions on

variable x:
2xþ 3j j � 2 is equivalent to a double inequality

�2 � 2xþ 3 � 2 or �5 � 2x � �1 ð4:38Þ

Combining (4.36)–(4.38) we obtain the system:

x� y ¼ 2

xþ y ¼ 2n
�5 � 2x � �1

8<
: ð4:39Þ

Adding the first two equations will give us

2x ¼ 2nþ 2

�5 � 2x � �1

�

Excluding x from the system we have

�7 � 2n � �3 or �3:5 � n � �1:5

But because n is a whole number there are just two possible numbers n that satisfy

this inequality. Those are n¼�3 and n¼�2. Now for each value of n we can solve
the system (4.39):

1.

n ¼ �3

x ¼ nþ 1

y ¼ x� 2

8<
: , �2, � 4ð Þ

2.

n ¼ �2

x ¼ nþ 1

y ¼ x� 2

8<
: , �1, � 3ð Þ

Answer We found two ordered pairs: (�2,�4) and (�1,�3).
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Problem 168 Find all triples (x, y, z) such thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2x2 � 2y2 þ 2z2 � 11x

ffiffiffi
6

p þ 2yþ 6z

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffi
6

p
x2 þ 3

ffiffiffi
6

p � 12x cos πy cos πz
q

¼ 0.

Solution: The first idea that should come to your mind is that
ffip

�0

þ ffip
�0

¼ 0 has

any sense if and only if both radicands are equal to zero simultaneously:

�2x2 � 2y2 þ 2z2 � 11x
ffiffiffi
6

p
þ 2yþ 6z ¼ 0 ð4:40Þ

2
ffiffiffi
6

p
x2 þ 3

ffiffiffi
6

p
� 12x cos πy cos πz ¼ 0 ð4:41Þ

Let us solve the second equation rewriting a product of cosines as a sum:

2
ffiffiffi
6

p
x2 þ 3

ffiffiffi
6

p
� 6x cos π y� zð Þ þ cos π yþ zð Þ½ � ¼ 0 ð4:42Þ

Denoting

a ¼ cos π y� zð Þ þ cos π yþ zð Þ ð4:43Þ

We rewrite (4.42) as a quadratic type:

2x2 � a
ffiffiffi
6

p
� xþ 3 ¼ 0 ð4:44Þ

Knowing that a quadratic equation has real roots only if its discriminant (D) is
greater or equal to zero, find D:

D ¼ 6a2 � 24 � 0 , a2 � 4 � 0 , a � �2 or a � 2 ð4:45Þ

Look at the expression (4.41) again. Because of the boundedness of the cosine
function

�2 � a � 2 ð4:46Þ

(4.45) and (4.46) together will give us two possible situations for a:

a ¼ cos π y� zð Þ þ cos π yþ zð Þ ¼ 2

a ¼ cos π y� zð Þ þ cos π yþ zð Þ ¼ �2

�

This system can be split into the union of two systems:

1.
cos π y� zð Þ ¼ 1

cos π yþ zð Þ ¼ 1

�
, π y� zð Þ ¼ 2πn

π yþ zð Þ ¼ 2πl

�
, y� z ¼ 2n

yþ z ¼ 2l

��
ð4:47Þ
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From (4.47) we conclude that if a¼ 2, then either both variables (y, z) are even
numbers or both are odd.

2.
cos π y� zð Þ ¼ �1

cos π yþ zð Þ ¼ �1

�
, π y� zð Þ ¼ π þ 2πn

π yþ zð Þ ¼ π þ 2πl

�
, y� z ¼ 1þ 2n

yþ z ¼ 1þ 2l

��
ð4:48Þ

From (4.48) we see that since for a¼�2 the difference and the sum of y and

z are an odd, only such ordered pairs (y, z) are possible: (odd, even) or (even,

odd).

Let us return us to (4.44) again. If D¼ 0, then a¼ 2 or a¼�2 and quadratic

(4.44) can have two solutions:

x1 ¼
ffiffiffi
6

p

2
and x2 ¼ �

ffiffiffi
6

p

2

Let us look at (4.40) after replacing x by

ffiffiffi
6

p

2
:

�2 � 6
4
� 2y2 þ 2z2 � 11 �

ffiffiffi
6

p

2
�
ffiffiffi
6

p
þ 2yþ 6z ¼ 0

y2 � z2 � y� 3zþ 18 ¼ 0

Let us rewrite this equation as y2 � y ¼ z2 þ 3z� 18 and then factor the left and the

right side of it

y y� 1ð Þ ¼ zþ 6ð Þ z� 3ð Þ

Since variables y and z are integers, the following pairs (y, z) satisfy the equation

above:

y; zð Þ : 0; 3ð Þ; 1; 3ð Þ; 0, � 6ð Þ; 1, � 6ð Þf g

However, only the first three ordered pairs, (0, 3), (1, 3), and (0, �6), satisfy (4.47)

(their difference and sum are even). Combining them with x ¼
ffiffi
6

p
2
we obtain three

triples:

x; y; zð Þ :
ffiffiffi
6

p

2
; 0; 3

� �
;

ffiffiffi
6

p

2
; 1; 3

� �
;

ffiffiffi
6

p

2
, 0, � 6

� �� �
ð4:49Þ

Note that since for a ¼ �2 x ¼ �
ffiffi
6

p
2

� �
(4.40) does not have integer solutions for

y and z, (4.49) will be the answer.

Answer x; y; zð Þ :
ffiffiffi
6

p

2
; 0; 3

� �
;

ffiffiffi
6

p

2
; 1; 3

� �
;

ffiffiffi
6

p

2
, 0, � 6

� �� �
.
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4.3 Geometric Approach to Solving Algebraic Problems

Sometimes it is beneficial to look at an algebraic problem from a geometric point of

view. For example, for positive values of x and y, the equation x2 þ y2 ¼ a2 can be

seen as the relationship between sides of a right triangle with hypotenuse a and legs
x and y. Next, think about the following equation:

x2 þ xyþ y2 ¼ a2: ð4:50Þ

Can this also be considered as a relationship between sides of a triangle? Please

recall the law of cosines for a triangle with sides a, b, c : a2 ¼ b2 þ c2 � 2bc � cos
∠Að Þ; where ∠A is opposite of side a. We can see that if ∠A ¼ 120�, then
a2 ¼ b2 þ c2 þ bc. Thus, if sides x and y form an angle of 120�, then (4.50)

expresses the third side, a, of a triangle in terms of x and y.
Next let us look at the following system of nonlinear equations:

y2 þ yzþ z2 ¼ b2

x2 þ xzþ z2 ¼ c2

x2 þ xyþ y2 ¼ a2

8<
:

Imagine now that we have a triangle ABC with sides a, b, and c. Also imagine a

point P inside the triangle connected with each of the three vertices of triangle ABC
(see Figure 4.3) such that the following is true:

∠APB ¼ ∠BPC ¼ ∠CPA ¼ 120�:

If we now need to evaluate A ¼ xyþ xzþ zy, for positive values of x, y, and z that
satisfy the system above. Let us show that each term of A can be expressed in terms

of the area of one of the three small triangles in which big triangle ABC is divided

by the interior point P (see Figure 4.3).

c

ba

z

y

x

P

C

B

A

Figure 4.3 Geometric

view of formula (4.50)
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For example, expressing the area of each small triangle as half of the product of

two sides and the sine of the angle between them and with the help of Figure 4.3, we

can state the following:

BPC½ � ¼ 1

2
� x � y � sin 120� ¼ xy

ffiffiffi
3

p

4

BPA½ � ¼ 1

2
� x � z � sin 120� ¼ xz

ffiffiffi
3

p

4

CPA½ � ¼ 1

2
� z � y � sin 120� ¼ zy

ffiffiffi
3

p

4

Adding the left and right sides we will get the area of the big triangle that can be

found using, for example, Heron’s formula:ffiffiffi
3

p

4
xyþ xzþ zyð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p p� að Þ p� bð Þ p� cð Þ

p
, p ¼ aþ bþ c

2
:

This formula can be solved for A:

A
ffiffiffi
3

p

4
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bþ c� að Þ aþ b� cð Þ aþ c� bð Þ aþ bþ cð Þp

4

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bþ c� að Þ aþ b� cð Þ aþ c� bð Þ aþ bþ cð Þ

3

r
:

Next, I want us to look at the following problem.

Problem 169 Prove that for any positive a, b, and c the following is always

true:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � abþ b2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � bcþ c2

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ acþ c2
p

: For what values of
the parameters does this inequality become an equality?

Proof From point M let us draw three rays such that

∠AMB ¼ 120�, ∠AMC ¼ 60�, ∠CMB ¼ 60�; where points A, C, and B are

such that AM ¼ a, MC ¼ b, MB ¼ c (see Figure 4.4).

y

x

c

a
E

M

A

B

C

Figure 4.4 First sketch for Problem 169
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Connect A and C, C and B, and A and B, respectively. Denote AC¼ x and

CB¼ y. Applying law of cosines to triangles AMC and CMB, respectively, we
have the following true relationships:

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 2ab cos 60� þ b2

p
y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 2bc cos 60� þ c2

p
(

which can also be written as

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � abþ b2

p
y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � bcþ c2

p
Now for side AB in triangle AMB we obtain

ABj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ acþ c2

p
:

Finally, because x¼AC, y¼CB, and AB are the sides of triangle ACB, then their

lengths must satisfy the triangle inequality (the sum of two sides is greater than the

third side): AC +CB>AB, which algebraically satisfies the strict inequality:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � abþ b2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � bcþ c2

p
>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ acþ c2

p
:

If point C belongs to side AB, then AC+CB¼AB or

xþ y ¼ AB and the inequality becomes the equality. Let us find the relationship

between parameters a, b, and c.
Consider a new triangle describing this case in Figure 4.5. Because MC is

an angle bisector, then applying the Triangle Bisector Theorem (see for example,

my book “Methods of Solving Complex Geometry Problems,” page 45 [3]) we

obtain

b

y

x

c

a

C

M

A

B

Figure 4.5 Final sketch for Problem 169
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AM

AC
¼ MB

CB
a

x
¼ c

y

From the last equation and after substituting for x and y their expressions using law
of cosines, we obtain

x

y

� �2

¼ a

c

� �2
a2

c2
¼ a2 � abþ b2

b2 � bcþ c2

a2 b2 � bcþ c2
� 	 ¼ c2 a2 � abþ b2

� 	
a2b2 � a2bc ¼ c2b2 � c2ab

We can divide all sides by the common factor b 6¼ 0 and then simplify as follows:

a2b� a2c ¼ c2b� c2a

b a2 � c2ð Þ ¼ ac a� cð Þ
b ¼ ac

aþ c

This can also be written as
1

b
¼ 1

a
þ 1

c
.

The proof is completed.

Problem 170 EvaluateA ¼ xyþ 2yzþ 3xz, if the positive numbers x, y, and z

satisfy the system:
3x2 þ 3xyþ y2 ¼ 75

y2 þ 3z2 ¼ 48

x2 þ xzþ z2 ¼ 9

8<
: .

Solution: This system can be rewritten as

x2 � 2x � yffiffiffi
3

p cos 150� þ yffiffiffi
3

p
� �2

¼ 25

yffiffi
3

p
� �2

þ z2 ¼ 16

x2 � 2xz cos 120� þ z2 ¼ 9

Law of Cosinesð Þ

Pythagorean Theoremð Þ

Law of Cosinesð Þ

8>>>>><
>>>>>:

This new system now can be seen geometrically as a relationship between the sides

of a geometric figure (Figure 4.6). For example, consider a triangle ABC and a point

P as its interior point:
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x ¼ AP, z ¼ PC,
yffiffiffi
3

p ¼ BP, ∠APC ¼ 120�, ∠APB ¼ 150�, ∠BPC ¼ 90� :

The area of triangle ABC equals the sum of the areas of the three inside triangles,

APB, APC, and BPC:

APB½ � ¼ 1

2
� x � yffiffiffi

3
p sin 150� ¼ xy

4
ffiffiffi
3

p

BPC½ � ¼ 1

2
� z � yffiffiffi

3
p ¼ 2yz

4
ffiffiffi
3

p

APC½ � ¼ 1

2
� x � z sin 120� ¼ 3xz

4
ffiffiffi
3

p

If we add the left sides and the right sides, respectively, and using the fact that

ABC½ � ¼ 1
2
� 4 � 3 ¼ 6, we obtain a new formula:

6 ¼ 1

4
ffiffiffi
3

p xyþ 2yzþ 3xzð Þ
A ¼ xyþ 2yzþ 3xz ¼ 24

ffiffiffi
3

p
:

Answer 24
ffiffiffi
3

p
.

Problem 171 Given positive numbers x, y, and z such thatxyz xþ yþ zð Þ ¼ 1:
Find the minimum of xþ yð Þ � zþ xð Þ:

Solution: 1. Let us imagine a triangle ABC with sides a, b, and c. Denote its half

perimeter as p ¼ aþ bþ c

2
.

4

y

3
z

3

x5

B C

A

P

Figure 4.6 Sketch for

Problem 170
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Next we can introduce positive variables x, y, and z as

x ¼ p� a ¼ bþ c� a

2

y ¼ p� b ¼ aþ c� b

2

z ¼ p� c ¼ aþ b� c

2

From the above we obtain the following true relationships:

xþ y ¼ c

xþ z ¼ b

)
) xþ yð Þ xþ zð Þ ¼ c � b

xyz ¼ p� að Þ p� bð Þ p� cð Þ
xþ yþ z ¼ 3p� 2 p ¼ p

)
)

xyz xþ yþ zð Þ ¼ p � p� að Þ p� bð Þ p� cð Þ ¼ 1:

2. On the other hand, using Heron’s formula for the area of triangle ABC, we can
state the following:

ABC½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p p� að Þ p� bð Þ p� cð Þ

p
¼ 1:

3. Expressing the same unit area using half of the product of two sides and the sine

of the angle between them we obtain

ABC½ � ¼ 1

2
c � b � sin∠A ¼ 1:

This can be solved for the product of two sides:

cb ¼ 2

sin∠A
:

4. Finally, we have

xþ yð Þ xþ zð Þ ¼ 2

sin∠A
:

Because the maximum of sine is one, then the minimum value of the quantity

is two.

Answer Min of xþ yð Þ xþ zð Þ ¼ 2.
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4.4 Trigonometric Substitution

In some problems it is appropriate to make a trigonometric substitution in order to

solve a much easier equation or a system of equations. For example let us consider

the following problem.

Problem 172

Solve the system
x2 þ y2 ¼ 1

4xy 2y2 � 1ð Þ ¼ �1

�
.

Solution: This system can be solved by expressing x from the second equation in

terms of y and substituting it into the first equation. However, it will result in a

polynomial equation of the 6th order, the solution of which would be problematic

(please try).

If we look instead at the first equation, we will notice that the ordered pairs (x,y)
must belong to the unit circle. Hence the following trigonometric substitution seems

to be reasonable:

x ¼ cos t, y ¼ sin t, 0 � t < 2π

The first equation is just a Pythagorean identity and the second equation becomes

4 cos t sin t 2 sin 2t� 1ð Þ ¼ �1

2 sin 2t �1� cos 2t� �1ð Þ ¼ �1

sin 4t ¼ 1

4t ¼ π

2
þ 2πn

t ¼ π

8
þ π

2
� n

0 � t � 2π

8<
: ) n ¼ 0, 1, 2, 3

Finally, we get the answer for x and y below.

Answer x ¼ cos
π

8
þ π

2
n

� �
, y ¼ sin

π

8
þ π

2
n

� �
, n ¼ 0, 1, 2, 3 .

In the following problem, we will have to find maximum value of the quantity

x+ y.

Problem 173 Find the maximum value of the expression A¼ x+ z if x, y, z,w

satisfy the following system
x2 þ y2 ¼ 4

z2 þ t2 ¼ 9

xtþ yz ¼ 6

8<
: .
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Solution: We can see that (x, y) and (z, t) belong to the circles of radius 2 and

3, respectively. Using a substitution:

x ¼ 2 cosφ, y ¼ 2 sinφ
z ¼ 3 cosψ , t ¼ 3 sinψ , φ,ψ 2 0, 2π½ Þ

The last equation of the system will be rewritten as

6 cosφ sinψ þ 6 sinφ cosψ ¼ 6

sin φþ ψð Þ ¼ 1

φ ¼ π

2
� ψ )

cosφ ¼ sinψ , sinφ ¼ cosψ

Hence,

A ¼ 2 cosφþ 3 cosψ
A ¼ 2 cosφþ 3 sinφ ¼ ffiffiffiffiffi

13
p

sin φþ αð Þ

It follows from the boundedness of the sine function that

Amax ¼ xþ zð Þmax ¼
ffiffiffiffiffi
13

p
:

Problem 174 (MGU 2004 exam) Find maximum and minimum values of the

expression
y2

121
þ w2

81
if x, y, z,w satisfy the following system:

x2 þ y2 � 8xþ 6y� 96 ¼ 0

z2 þ w2 þ 10z� 4w� 52 ¼ 0

xwþ yz� 2x� 4wþ 5yþ 3z� 76 � 0

8<
:

Solution: Completing the square we can rewrite the first two equations as

x� 4ð Þ2 þ yþ 3ð Þ2 ¼ 121

zþ 5ð Þ2 þ w� 2ð Þ2 ¼ 81

The last inequality can be transformed as

w� 2ð Þxþ zþ 5ð Þy� 4wþ 3z � 76

w� 2ð Þ x� 4ð Þ þ 4 w� 2ð Þ þ zþ 5ð Þ yþ 3ð Þð Þ � 3 zþ 5ð Þ � 4wþ 3z � 76

w� 2ð Þ x� 4ð Þ þ zþ 5ð Þ yþ 3ð Þ � 76þ 8þ 15 ¼ 99

Using trigonometric substitutions, such as the following
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x� 4 ¼ 11 cosφ
yþ 3 ¼ 11 sinφ
zþ 5 ¼ 9 cos ψ
w� 2 ¼ 9 sinψ

8>><
>>:

we can rewrite the last inequality of the given system as

9 sinψ � 11 cosφþ 9 cosψ � 11 sinφ � 99:

After simplification and applying the formula for the sine of the sum of two

angles, we obtain

sin φþ ψð Þ � 1:

Because sine is a bounded function, the inequality above must only be the

equality sin φþ ψð Þ ¼ 1 with the solution

ψ ¼ π

2
� φþ 2πn:

Hence, using the property of complementary angles we can state the following

true relationship:

sinψ ¼ cosφ
cosψ ¼ sinφ

Next, we need to find maximum and minimum of

y2

121
þ w2

81
¼ 11 sinφ� 3ð Þ2

121
þ 2þ 9 cosφð Þ2

81

¼ 1þ 9

121
þ 4

81
þ � 6

11
sinφþ 4

9
cosφ

� �

¼ 11014

9801
þ 2

ffiffiffiffiffiffiffiffiffiffi
1213

p

99
� sin α� φð Þ

Using boundedness of the sine function we finally get the answer.

Answer Max=Min ¼ 11014

9801
� 2

ffiffiffiffiffiffiffiffiffiffi
1213

p

99
.

Problem 175 Solve the system:
2xþ x2y ¼ y
2yþ y2z ¼ z
2zþ z2x ¼ x

8<
: .
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Solution: First, let us rewrite the system in a different form:

y ¼ 2x

1� x2

z ¼ 2y

1� y2

x ¼ 2z

1� z2

8>>>>>>><
>>>>>>>:

If we use a trigonometric substitution for x:

x ¼ tan t, �π

2
< t <

π

2
:

Then we can apply the formula for the tangent of a double angle.

Recall that tan 2t ¼ 2 tan t

1� tan 2t
.

Applying this formula to all of the equations, we will get the following:

y ¼ tan 2t

z ¼ tan 4t

x ¼ tan 8t

tan t ¼ tan 8t

The last equation has a solution:

tan 8t� tan t ¼ 0

tan 7t ¼ 0

7t ¼ πn

t ¼ π

7
� n

�π

2
< t <

π

2

8><
>:
�π

2
<

π

7
� n <

π

2

�7

2
< n <

7

2

Therefore, x; y; zð Þ ¼ tan
πn

7
, tan

2πn

7
, tan

4πn

7

� �
, �3 � n � 3:

Answer x; y; zð Þ ¼ tan
πn

7
, tan

2πn

7
, tan

4πn

7

� �
, �3 � n � 3:
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4.5 Problems with Parameters

In this book, we have already considered some equations and systems with param-

eters. I like problems with parameters. They are not just challenging but also very

useful because they usually represent a real situation. Both variables can depend on

a parameter (thickness of a wall, acidity of solution, etc.). If we have an equation

with one variable, say, x and with one parameter, a, then we can in general write it

as F x; að Þ ¼ 0. Usually (unless additional restrictions are applied) we assume that

parameter a represents all real numbers, and so we need to solve the given equation

for all possible values of a parameter. For demonstration we can start from a

quadratic equation with a parameter, for example, with the following problem:

Solve the equation x2 þ 3xþ a ¼ 0 for all real values of a parameter a.

Since we know that the number of the solutions will depend on the discriminant,

we can evaluate it asD ¼ 32 � 4a ¼ 9� 4a, and then if the discriminant is positive

a < 9
4

� 	
, the equation will have two distinct roots, if a¼ 9/4, then only one root, and

if the discriminant is negative, then for a> 9/4 the quadratic function will have no

zeros and the graph of the parabola will never intersect the X-axis.
Problems with a parameter can be very challenging and sometimes the methods

for solving them do not come easily. For example, what would you do, if I gave you

the following problem:

Find all values of parameter a, such that log5 a cos 2x� 1þ a2 � cos 2xð Þð
sin xþ 4� aÞ � 1 is true for any real x.

Ideas for solving the problem above and for many others are well explained in

this section. Though solutions of some of the problems with a parameter can be

predicted on a graphing calculator (and we will discuss it here), only an algebraic

approach gives you an opportunity to see the physical aspect of the situation, to be a

real participant of the situation, and not just a “button-presser.” Moreover, no

calculators are allowed on mathematics Olympiads anymore, so you need to learn

how to do problems analytically; I will help you to succeed.

Problem 176 Real x, y, and a satisfy the system:
xþ y ¼ a� 1

xy ¼ a2 � 7aþ 14

�
.

Find for what values of a does the sum x2 þ y2 approach a maximum.

Solution: I am sure we could find both x and y in terms of parameter a, then add

their squares . . . But this way seems to be very long and complicated. Try it!

4.5 Problems with Parameters 277



Let us rewrite x2 þ y2 differently. The fact of the matter is that we don’t need

x and y themselves; we need x2 þ y2. Our system gives us (x+ y) and xy “directly.”
Our task is now combining the first and second equations of the system to express

x2 þ y2 in terms of a.

Recalling that xþ yð Þ2 ¼ x2 þ 2xyþ y2, then

x2 þ y2 ¼ xþ yð Þ2 � 2xy:

The expression above tells us to square both sides of the first equation of system, to

multiply both sides of the second equation by 2, and to separately subtract the left

and the right sides of our new equations:

� xþ yð Þ2 ¼ a2 � 2aþ 1

2xy ¼ 2a2 � 14aþ 28

�
x2 þ y2 ¼ �a2 þ 12a� 27 ð4:51Þ

Completing the square on the right side of (4.51) we obtain

x2 þ y2 ¼ � a� 6ð Þ2 þ 9 ð4:52Þ

From which we see that when a¼ 6, x2 þ y2 approaches its maximum value,

x2 þ y2 ¼ 9: Note that for any other real a different from a¼ 6, the sum

x2 þ y2ð Þ given by (4.52) is less than 9.

Answer a¼ 6.

Problem 177 Find all values of parameter a, such that

log5 a cos 2x� 1þ a2 � cos 2ð Þ sin xþ 4� að Þ � 1 is true for any real x.

Solution:
log5 a cos 2x� 1þ a2 � cos 2ð Þ sin xþ 4� að Þ � 1

0 < a 1� 2 sin 2xð Þ � sin 2xþ a2ð Þ sin xþ 4� a � 5

�5 � sin 3xþ 2a sin 2xþ a2 sin x� 4 < 0

�1 � sin x sin xþ að Þ2 < 4 ð4:53Þ

If the inequality (4.53) is true for any x 2 R, then it must be true for x such that

sin x ¼ �1: Now, (4.53) can be written as

�1 � 1 1þ að Þ2 < 4

�1 � �1ð Þ �1þ að Þ2 < 4

(
) �2 � 1þ a < 2

�1 � �1þ a � 1

(
, 0 � a < 1:

278 4 Unusual and Nonstandard Problems



Let us show that for all values of parameter a from [0, 1) (4.53) is true 8x 2 R.
We will show separately that

sin x sin xþ að Þ2 < 4 and sin x sin xþ að Þ2 � �1

Using the boundedness of sin x we obtain

�1 � sin xþ a < 2 ) sin x sin xþ að Þ2 < 1 � 22 ¼ 4 ð4:54Þ

If sin x � 0, then sin x sin xþ að Þ2 � 0 � �1:

If sin x < 0; then �1 � sin x sin xþ að Þ2 < 1:
Therefore,

sin x sin xþ að Þ2 � �1: ð4:55Þ

Inequalities (4.54) and (4.55) together show that 0 � a < 1.

Answer a 2 0; 1½ Þ.
Remark Could a graphing calculator be helpful here? For this problem, it is difficult

to find an exact answer on a calculator. However, graphing a function Y1 ¼ log

a cos 2x� 1þ a2 � cos 2ð Þ sin xþ 4� að Þ=log5� 1 we can watch for what values

of parameter a it has a negative value (Figures 4.7, 4.8, 4.9, 4.10, 4.11, and 4.12).

Figure 4.7 Problem 177

Figure 4.8 Setting for

Problem 177
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We need to show that our entire function Y1 is below zero (the X-axis) only for a
parameter a from the interval [0, 1). Graphing Y1 for a¼�2 (Figure 4.9), a¼ 3

(Figure 4.10), a¼ 0.5 (Figure 4.11), and a¼ 0.001 (Figure 4.12) we can see that our

analytical solution was correct.

Figure 4.11 Graph

at A¼ 0.5

Figure 4.9 Graph

at A¼�2

Figure 4.10 Graph

at A¼ 3

Figure 4.12 Graph

at A¼ 0.001
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Problem 178 For all real values of a solve the logarithmic equation

log23ð Þ
ffiffiffiffiffiffiffiffiffiffiffi
xþaþ2

p
¼ log94ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þa2�6a�5

p
:

Solution: A calculator will not help us here. So let us try an analytical approach.

First, we rewrite log94 as a logarithm to the base 2:

log94 ¼ log24

log29
¼ 2

2log23
¼ 1

log23

Replacing log94 by log23ð Þ�1
in the original equation, we obtain

log23ð Þ
ffiffiffiffiffiffiffiffiffiffiffi
xþaþ2

p
¼ log23ð Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þa2�6a�5

p
ð4:56Þ

Equation (4.56) can be considered as an exponential equation with base log23. From

properties of exponents we know that if the bases are the same then the powers must

be the same. (Remember how we would solve the equation 4x ¼ 43? We would set

x¼ 3.) For (4.56) we have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ aþ 2

p ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a2 � 6a� 5

p
ð4:57Þ

Does it look hard? May be at first glance. What is interesting about this equation?

We have a square root of something equals “minus” another square root of

something. As you know
ffip � 0 always. So the expression on the left is always

greater or equal to zero, and the expression on the right (because of the “�” sign) is

always less than or equal to zero: ffiffiffiffiffi
M

p
�0

¼ �
ffiffiffiffi
N

p
�0

Such an equation, whatever the values ofM and N, can have solutions if and only if

M ¼ N ¼ 0 ð4:58Þ

Using (4.58) we can rewrite (4.57) in an equivalent form as a system of two

equations:

xþ aþ 2 ¼ 0

x2 þ a2 � 6a� 5 ¼ 0

(
, x ¼ �a� 2

2a2 � 2a� 1 ¼ 0

(

Let us solve the second equation of the system separately:
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2a2 � 2a� 1 ¼ 0

a1,2 ¼ 1� ffiffiffi
3

p

2

Answer We obtain two values of parameter a for which condition (4.58) can be

satisfied.

If a ¼ 1þ ffiffi
3

p
2

, then from the first equation of the system we have

x ¼ �a� 2 ¼ �1� ffiffi
3

p
2

� 2 ¼ �5� ffiffi
3

p
2

:

If a ¼ 1� ffiffi
3

p
2

, then x ¼
ffiffi
3

p �3
2

If a 6¼ 1� ffiffi
3

p
2

, then the given equation has no solutions.

We obtain two possible solutions of the equation for two different values of

parameter a. The solutions are not obvious; we cannot just guess and try. Using

properties of functions and common sense we have solved this nonstandard

equation.

Now let us try to solve the next problem using the same logic.

Problem 179 Solve the equation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cos xþ að Þ � 1

p ¼ sin 6x� 1 for every

value of parameter a from a 2 �π
2
, 0

� 	
:

Solution: Notice that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cos xþ að Þ � 1

p � 0 for all real x and a, and sin 6x� 1

� 0 for all real x, then ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cos xþ að Þ � 1

p
�0

¼ sin 6x� 1
�0

The equation has solutions if and only if both of its sides equal 0. This statement can

be written as the system:

2 cos xþ að Þ � 1 ¼ 0

sin 6x� 1 ¼ 0

�π

2
< a < 0

8>><
>>: ð4:59Þ

First, let us solve the second equation:

sin 6x ¼ 1

6x ¼ π

2
þ 2πn

x ¼ π

12
þ πn

3
, n 2 Z:

Substituting this x into the first equation of system (4.59) let us try to find a:
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cos
π

12
þ π

3
� nþ a

� �
¼ 1

2
:

π

12
þ π

3
� nþ a ¼ π

3
þ 2πk, n, k ¼ 0, � 1, � 2, . . .

ð4:60Þ

or

π

12
þ π

3
� nþ a ¼ �π

3
þ 2πm, n,m ¼ 0, � 1, � 2, . . . ð4:61Þ

(4.60) gives us

a ¼ π

4
þ 2πk � π

3
� n, n, k ¼ 0, � 1, � 2, . . . ð4:62Þ

Solving (4.61) we obtain that

a ¼ � 5π

12
þ 2πm� πn

3
, n,m ¼ 0, � 1, � 2, . . . ð4:63Þ

However, we have to select only those a, which satisfy the inequality of (4.59) or in

other words, select a from �π
2
, 0

� 	
. Because 2πk for any k 2 Z puts the value of

a outside the interval, we can omit 2πk, 2πm terms in (4.62) and (4.63).

There are two values of a that satisfy all restrictions simultaneously:

a ¼ � π

12
, a ¼ � 5π

12
:

Answer a ¼ � π

12
, a ¼ � 5π

12
.

Problem 180 Find the values of parameter a over 1;1½ Þ that maximize the

largest of two roots of the quadratic equation x2 � 6xþ 2axþ a� 13 ¼ 0:

Solution: Most students try to solve this problem directly. They express the largest

root of the equation in terms of a as x að Þ ¼ 3� aþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 7aþ 22

p
and start to

investigate the maximum of the function. Try it, please. If you do not intend to use a

calculator then this way is useless. However, using the TI Interact program on a TI

83–84 Plus we can graph a function:

y ¼ x2 � 6xþ 2axþ a� 13 and a 2 1;1½ Þ:

Graphing this function for different values of parameter a from 1;1½ � (a¼ 1

(Figures 4.13 and 4.14), a¼ 2 (Figures 4.15 and 4.16), and a¼ 6 (Figures 4.17

and 4.18)) we can see that the largest of two roots is maximized (x¼ 6) at a¼ 1.
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This problem can be solved algebraically if we consider a function a(x) that
establishes the correspondence between each root x, not necessarily the largest, and
that value of parameter a at which the given equation has this specific root x.

Figure 4.15 Problem 180

(A¼ 2)

Figure 4.13 Problem 180

(A¼ 1)

Figure 4.14 Positive zero

at A¼ 1

Figure 4.16 Positive zero

at A¼ 2
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Let us rewrite it as

x2 � 6x� 13þ a 2xþ 1ð Þ ¼ 0 and solve it for a:

a xð Þ ¼ �x2 þ 6xþ 13

2xþ 1

Note that x ¼ �1=2 is not within the domain of a(x), because if x ¼ �1=2, then the
original expression is not “0” for any a.

Check:

�1

2

� �2

� 6 � �1

2

� �
þ a � 2 � �1

2

� �
þ 1

� �
� 13 ¼ 1

4
þ 3þ a � 0� 13 ¼ �9

1

4
6¼ 0

What do we know about function a(x)?
We know that the range of a(x) is 1;1½ Þ or a xð Þ � 1:
But we are interested in its domain. Let us find the domain. We are going to find

x such that the following inequality is true:

a xð Þ � 1 , �x2 þ 6xþ 13

2xþ 1
� 1 ,

�x2 þ 4xþ 12

2xþ 1
� 0

Figure 4.17 Problem 180

(A¼ 6)

Figure 4.18 Positive zero

at A¼ 6

4.5 Problems with Parameters 285



Multiplying both sides of the last inequality by (�1), and then factoring the

numerator we obtain

x2 � 4x� 12

2xþ 1
� 0

x� 6ð Þ xþ 2ð Þ
2xþ 1

� 0

Let us put all “critical” points on the number line in increasing order:�2,�1/2, and 6.

We’ll put �2 and 6 as “closed” circles and �1/2 as “an open circle” (because

x¼�1/2 is excluded from the domain):

� + � +

- - - - - - - - - - - - - - - - - - - O- - - - - - - - - - - - - - - - - - - - - - - - - -

�2 �1/2 6

We will check the sign of f xð Þ ¼ x� 6ð Þ xþ 2ð Þ
2xþ 1

on each interval and choose

those intervals where f(x) is negative. Thus, a xð Þ � 1 on x 2 �1, � 2ð � [ �1
2
, 6

� �
:

We obtained the upper bound for all possible roots of the equation: x¼ 6.

If x¼ 6, then a(6)¼ 1.

Now we have to investigate the last detail: whether x¼ 6 is the largest of two

possible roots for a¼ 1. Replacing a by 1 into the given equation, we obtain

x2 � 6xþ 2xþ 1� 13 ¼ 0

x2 � 4x� 12 ¼ 0

x� 6ð Þ xþ 2ð Þ ¼ 0

x1 ¼ 6 x2 ¼ �2,

�2 < 6 true

Answer a¼ 1.

You can argue that a calculator approach is faster, but solving a problem

algebraically we move step by step, applying properties of functions, and we

prove everything. When we solve a problem on a calculator sometimes we get a

result, but cannot explain how we obtained it and why this or that answer appeared.

If you are the kind of student who always wants to know why, then the algebraic

method is for you. The criterion of competency in math is the ability to solve a

problem analytically. Sometimes an analytical approach is shorter and more ele-

gant. Since the purpose of this book is to give you such competency, I encourage

you to do this.

Problem 181 Let f xð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 4xþ 4

p � 3 and g xð Þ ¼ ffiffiffi
x

p � a. Solve for
x the inequality f g xð Þð Þ � 0:

O O
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Solution: Completing the square under the radical of the first function and using

properties of an absolute value, we can rewrite f(x) as

f xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� 2ð Þ2

q
� 3 ¼ x� 2j j � 3

g xð Þ ¼ ffiffiffi
x

p � a:

Next, we find the composition of f(x) and g(x) ( f∘gð Þ.
By the condition of the problem this composition must be less than or equal to

zero:

f g xð Þð Þ � 0 ) ffiffiffi
x

p � að Þ � 2j j � 3 � 0 ) ffiffiffi
x

p � a� 2j j � 3

�3 � ffiffiffi
x

p � a� 2 � 3

a� 1 � ffiffiffi
x

p � aþ 5

Let us consider three cases for this inequality:

If aþ 5 < 0 a < �5ð Þ, then we have no solutions.

If a� 1 < 0 � aþ 5 �5 < a < 1ð Þ, then
ffiffiffi
x

p � aþ 5 , 0 � x � aþ 5ð Þ2 .
If 0 � a� 1 a � 1ð Þ, then a� 1 � ffiffiffi

x
p � aþ 5 , a� 1ð Þ2 � x � aþ 5ð Þ2 .

Answer No solutions for a < �5 ; x 2 0; aþ 5ð Þ2
h i

if �5 < a < 1 ;

x 2 a� 1ð Þ2; aþ 5ð Þ2
h i

if a � 1:

Having solved this problem in general, for any value of a parameter a, you can

always find some particular solution of the problem, and answer a question like the

following:

If a¼ 10, what x will satisfy the given inequality f g xð Þð Þ � 0?

Analytically we obtained that if a � 1, then x 2 a� 1ð Þ2; aþ 5ð Þ2
h i

. If this is

true, then this must be true for a¼ 10 as well, and the graph of function y¼ f (g(x))

must go below the X-axis only for x 2 10� 1ð Þ2; 10þ 5ð Þ2
h i

or 81 � x � 225.

Let us check the answer on a TI 84 plus graphing calculator. First we make a

composition of two functions on our graphing calculator (Figure 4.20). Here

Y4 ¼ g xð Þ and Y5 ¼ f g xð Þð Þ (Figure 4.19).

We expect “negative” behavior between x¼ 81 and x¼ 225, then we need to set

up an appropriate window for our calculator. Next we use [2nd] [TRACE] (CALC)
buttons to find zeros of f(g(x)) (Figures 4.21, 4.22, 4.23, and 4.24).

As we expected, they are precisely 81 and 225 (Figures 4.25 and 4.26).

Problem 182 Find all values of a parameter a, such that the inequality

x2 þ 2 x� aj j � a2 is true.
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Solution:
x2 � a2 þ 2 x� aj j � 0 ,
x� að Þ xþ að Þ þ 2 x� aj j � 0

Let us consider three different cases.

If x¼ a, then the obtained inequality is true because 0 � 0

Figure 4.19 Graphing f(g
(x))

Figure 4.20 Problem 181

(A¼ 10)

Figure 4.21 Setting for

Problem 181

Figure 4.22 Finding X-
intercept
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If x � a, then x� að Þ xþ a� 2ð Þ � 0 ) xþ a� 2 � 0

x � a

�
) a � �1

If x< a, then x� að Þ xþ a� 2ð Þ � 0 ) xþ a� 2 � 0

x < a

�
) a � 1

Answer a 2 �1, 1½ �.

Figure 4.23 Right bound

for a zero

Figure 4.24 Left bound

for a zero

Figure 4.25 Solution

x¼ 81

Figure 4.26 Solution

x¼ 225
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Problem 183 Find all x for which 4� 2að Þx2 þ 13a� 27ð Þxþ 33� 13að Þ
> 0 for any value of parameter a from 1< a< 3.

Solution: Removing parentheses, we notice that the left side of the inequality is

linear in a. This can be written as

4x2 � 2ax2 þ 13ax� 27xþ 33� 13a > 0

a �2x2 þ 13x� 13ð Þ þ 4x2 � 27xþ 33ð Þ > 0

The last inequality can be written as

k xð Þ � aþ b xð Þ > 0 ð4:64Þ

where k xð Þ ¼ �2x2 þ 13x� 13 and b xð Þ ¼ 4x2 � 27xþ 33

If (4.64) is true, then the linear function y¼ k(x)a + b(x) is above the X-axis on
a 2 1; 3ð Þ. Then at points a¼ 1 and a¼ 3 it must satisfy the following inequalities

for some values of x:

k xð Þ � 1þ b xð Þ � 0

k xð Þ � 3þ b xð Þ � 0
ð4:65Þ

Replacing k(x) and b(x) in (4.65) with their expressions from (4.64) we can find

these x. Thus,

�2x2 þ 13x� 13ð Þ þ 4x2 � 27xþ 33ð Þ � 0

3 � �2x2 þ 13x� 13ð Þ þ 4x2 � 27xþ 33ð Þ � 0

�
)

x� 2ð Þ x� 5ð Þ � 0

x� 3� ffiffiffi
6

p� 	� 	
x� 3þ ffiffiffi

6
p� 	� 	 � 0

�
)

3� ffiffiffi
6

p � x � 2

5 � x � 3þ ffiffiffi
6

p
�

Answer x 2 3� ffiffiffi
6

p
; 2

� � [ 5; 3þ ffiffiffi
6

p� �
.

Problem 184 Find all values of a, such that an inequality x2 þ 4xþ 6a �
xþ 2j j þ 9a2 � 0 has at most one solution.

Solution: Let us rewrite the inequality in a different form by completing a square

on the left side:
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xþ 2j j � 4þ 6a � xþ 2j j þ 9a2 � 0

xþ 2j j þ 3að Þ2 � 4

This inequality is equivalent to

�2 � xþ 2j j þ 3a � 2

Subtracting 3a from both sides we obtain

�2� 3a � xþ 2j j � 2� 3a

This inequality will have at most one solution if and only if

2� 3a � 0, a � 2

3
ð4:66Þ

If (4.66) is true, then two cases are possible:

1. xþ 2j j ¼ 0 and x¼�2 (one solution). This happens if a¼ 2/3.

2. xþ 2j j < 0 and such an inequality has no solutions (a> 2/3).

Answer If a � 2
3
, then the inequality has at most one solution.

Problem 185 Find all values of a parameter a, for which the equation

aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6x� x2 � 8

p
¼ 3þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2ax� a2 � x2
p

has precisely one solution.

Solution: Let us switch places of the square roots and then complete a square

under each radical:

a� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ax� a2 � x2

p ¼ 3�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6x� x2 � 8

p
)

a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x� að Þ2

q
¼ 3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x� 3ð Þ2

q
:

Next, we try to imagine graphs of the left and right sides of the above expression.

The graph of the right side is the lower half circle with center (3, 3) and radius 1.

The graph of the left side is the lower half of the circle with radius 1 as well but

with the center (a, a).
If a< 2 or a> 4, these half circles do not have common points of intersection.

If a¼ 3, then the half circles coincide.

For all other values of a, the half circles have precisely one point of intersection
(see Figure 4.27).

Answer a 2 2; 3½ Þ [ 3; 4ð �.
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Problem 186 Find all values of a parameter a for which the roots of the

equation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ 3� 4

ffiffiffiffiffiffiffiffiffiffiffi
x� 1

pp
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ 8� 6

ffiffiffiffiffiffiffiffiffiffiffi
x� 1

pp
¼ a exist and belong to

the interval [2, 17].

Solution: Denoting a new variable, u, as u ¼ ffiffiffiffiffiffiffiffiffiffiffi
x� 1

p
, we can express x in terms of

u: x ¼ u2 þ 1 and rewrite the given equation as a new equation in u. Thus,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 4uþ 4

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 6uþ 9

p
¼ a

u� 2j j þ u� 3j j ¼ a ð4:67Þ

Next, if the roots of the given equation must be within x 2 2; 17½ �, then the roots of

(4.67) must be from u 2 1; 4½ �.
Let us consider a function y¼ y(u) in the restricted domain 1 � u � 4. Its range

will give us the values of parameter a. Since 1 � y uð Þ � 3, 1 � a � 3.

Answer 1 � a � 3.

-2 -1 1 2 3 4 5
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O1
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(3,3)

(2.5, 2.5)

(4,4)

(1.5,1.5)

Figure 4.27 Sketch for Problem 185
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Problem 187 For what values of parameter a are all four roots of the

equation x4 þ a� 5ð Þx2 þ aþ 2ð Þ2 ¼ 0 consecutive terms of an arithmetic

progression?

Solution: Let us imagine a number line. Four numbers will be consecutive terms

of some arithmetic progression only if they are�3z,�z, z, and 3z, z 6¼ 0, z> 0. This

means that quadratic equation

y2 þ a� 5ð Þyþ aþ 2ð Þ2 ¼ 0

has the following roots:

y1 ¼ z2 and y2 ¼ 9z2 ð4:68Þ

Now by Vieta’s Theorem we have

y1 � y2 ¼ aþ 2ð Þ2
y1 þ y2 ¼ 5� a

ð4:69Þ

Combining (4.68) and (4.69) we obtain

z2 ¼ 5� a

10
9z2 � z2 ¼ aþ 2ð Þ2

ð4:70Þ

Eliminating z from (4.70) we obtain the following conditional equation for a:

aþ 2 ¼ 3 5� að Þ
10

, a � 5

a ¼ � 5

13
:

Answer a¼�5/13.

4.6 Some Word Problems

4.6.1 Word Problems Involving Integers

It is not a secret that our students consider word problems as the most difficult. The

reasons for this are different in each student’s case. However, word problems

usually are closely connected to real-life problems. Word problems in integers

are also interesting because when solving them we need to use common sense in
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order to select valid answers. For example, if one solved a problem and obtained the

interval 3< x< 7 as a solution, where x is the number of apples in the basket, one

must understand that the actual answer is 4, 5, and 6 only. Because only whole

numbers of apples make sense. I want to start this section by giving you a problem

that can be easily performed in any classroom and can serve as a “fun” introduction

to more challenging problems on integers and divisibility.

Problem 188 A middle school teacher decided to introduce number theory

to her 6th graders. Each student got a piece of paper and scissors. The teacher

asked them to cut each paper into four pieces (not necessarily equal) and then

take only one of the four pieces to cut into four more pieces. Following the

second cutting, one of those four pieces is cut again into four pieces, and so

on. After that, she wondered if her students could cut the original paper into

97 pieces. Some students continued to cut, but a few knew the answer right

away. Do you know the answer too?

Solution: If one piece is broken into 4 pieces then the total number of pieces is

increased by 3 pieces. At the beginning each student had one piece, and after the

first cut each student had 1 + 3¼ 4 pieces. After the second cut, each student would

have 7 pieces 7 ¼ 1þ 3 � 2ð Þ. For example, after the third cut, a neat kid could have

the cutting path represented by the red segments in Figure 4.28. Counting the

number of pieces presented in this sketch, we obtain 10, which also can be written

as 10 ¼ 3 � 3þ 1:
If he/she continued, after the kth cut, they would have (1 + 3 k) pieces.
Because 97 divided by 3 gives a remainder of 1 97 ¼ 1þ 3 � 32ð Þ, it would be

possible to get 97 pieces eventually.

4

2

-2

-4

-5 5 10

109

87
6

54

3

21

Figure 4.28 Sketch for Problem 188
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Note It is interesting that the answer does not depend on how you cut a piece. It has

to be four pieces, but there is no need for scissors; the four pieces can be unequal by

size and even with fuzzy, not straight edges. (For example, one could rip the paper

by hand.) It is clear that an ability to get n pieces depends on whether or not

n divided by 3 gives a remainder of 1.

Problem 189 Three groups of fishermen caught 113 fish. The average

number of fish per fisherman in the first group is 13, in the second 5, and in the

third 4. How many fishermen were in each group if there were a total of

16 men?

Solution: We noticed that this problem is again a problem involving integers. We

cannot have 5.5 fishermen or 7.3 fish. Let us introduce three variables

corresponding to unknowns:

Let x be the number of fishermen in the first group.

y—the number of fishermen in the second group.

z—the number in the third group.

There were 16 men in total or

xþ yþ z ¼ 16 ð4:71Þ

They caught 113 fish in total and using the conditions of the problem, we have

the second equation:

13xþ 5yþ 4z ¼ 113 ð4:72Þ

Usually two equations in three variables cannot have a unique solution. Using

the fact that x, y, and zmust be integers, we will find a solution. From (4.71) we can

express z in terms of x and y and then find all integer solutions of (4.72):

z ¼ 16� y� x ð4:73Þ

then 13xþ 5yþ 4 16� y� xð Þ ¼ 113 or

yþ 9x ¼ 49 ð4:74Þ

Solving (4.74) for x and extracting an integer part of the quotient we obtain

x ¼ 49� y

9
¼ 45þ 4� y

9
¼ 5þ 4� y

9
ð4:75Þ

In order for x to be a natural number, 4�y
9

must be an integer as well. Therefore

4� yð Þ should be divisible by 9, so we can assume that
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4� y ¼ 9n, n 2 Z ð4:76Þ

Substituting (4.76) into (4.73) and (4.75) gives us the following:

x ¼ 5þ n ð4:77Þ
y ¼ 4� 9n ð4:78Þ
z ¼ 7þ 8n ð4:79Þ

Using common sense we know that x, y, and z must be positive integers and can

be written as a system of three inequalities:

y ¼ 4� 9n > 0

x ¼ 5þ n > 0

z ¼ 7þ 8n > 0

8<
: ð4:80Þ

Solving each inequality of (4.80) for n we obtain

n <
4

9
n > �5

n > �7

8

8>><
>>: , �7

8
< n <

4

9
ð4:81Þ

There is only one integer n, n¼ 0, that satisfies inequality (4.81). Plugging n¼ 0

into (4.77), (4.78), and (4.79) we obtain

y ¼ 4; x ¼ 5; z ¼ 7

Answer There were 5 fishermen in the first group, 4 in the second, and 7 in the

third.

Problem 190 A fruit farmer wants to plant trees. He has fewer than 1000. If

he plants them in rows, 37 trees per row, then there will be 8 trees remaining.

If he plants 43 per row, there will be 11 remaining. How many trees does he

have?

Solution: Let x be the number of trees. Using the conditions of the problem and

assuming that the farmer has either n rows of 37 planted orm rows of 43 planted, we

obtain the following:

x < 1000 ð4:82Þ
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x ¼ 37nþ 8 ð4:83Þ
x ¼ 43mþ 11 ð4:84Þ

Combining (4.83) and (4.84) we have

37nþ 8 ¼ 43mþ 11 ð4:85Þ

Presenting 43m as (37m + 6m) we can factor the left and the right sides of (4.85):

37n� 37m ¼ 6mþ 3

37 n� mð Þ ¼ 3 2mþ 1ð Þ ð4:86Þ

Wewant to find only integer solutions of (4.86) because we cannot plant half of a

tree. Because 3 and 37 are primes, in order for (4.86) to have any integer solutions,

(n�m) must be divisible by 3 and (2m+ 1) by 37. But there are a lot of numbers

that are multiples of 37:

37, 74,111, 148 . . .
Let us use condition (4.82) that restricts the possible values of x. (The fruit

farmer has less than 1000 trees.) Now combining (4.82) and (4.84) we obtain

x ¼ 43mþ 11 < 1000

43m < 989

m < 23

How can we use this inequality?

Recall that (2m + 1) should be a multiple of 37?. But if m< 23, then

2mþ 1 < 2 � 23þ 1 ¼ 47

2mþ 1 < 47
ð4:87Þ

Looking at the last equation of (4.87) we can see that there is only one multiple

of 37 that is less than 47: this is 37 itself. Therefore 2m+ 1¼ 37, and m¼ 18.

Replacing m¼ 18 into (4.84) we obtain

x ¼ 43 � 18þ 11 ¼ 785

Answer The fruit farmer has 785 trees.

Problem 191 One box contains only red balls, and another only blue. The

number of red balls is 15/19 of the number of blue balls. When 3/7 of the red

balls and 2/5 of the blue are removed from the boxes, there are less than 1000

balls in the first box and greater than 1000 balls in the second. How many

balls were originally in each box?

4.6 Some Word Problems 297



Solution: Let x be the original number of red balls in the first box. Let y be the

original number of blue balls in the second box. Now we can write the following

system of equations and inequalities:

4

7
x < 1000

x ¼ 15

19
y

3

5
y > 1000

8>>>>><
>>>>>:

ð4:88Þ

Some of you could try to solve this system in a standard way and would obtain

4

7
� 15
19

y < 1000

x ¼ 15

19
y

y > 1666
2

3

8>>>>><
>>>>>:

)
1666

2

3
< y < 2216

2

3

x ¼ 15

19
y

8><
>: ð4:89Þ

Just a quick look at system (4.89) says that there are many numbers between

1666 and 2216, and also x and ymust satisfy the second equation of the system. Let

us try to find some nonstandard way of solving system (4.89). We will use

properties of integers. If x and y exist and satisfy system (4.88), x must be divisible

by 15 and y must be divisible by 19. In order that
4

7
x and

3

5
y be integers x must also

be a multiple of 7 and y a multiple of 5. So we can represent

x ¼ 15	 7	 x1
y ¼ 19	 5	 y1

ð4:90Þ

where x1, y1 are some unknown integers.

Replacing these x and y into system (4.88) we obtain

7 � 15 � x1 ¼ 15

19
� 5 � 19 � y1

4

7
� 7 � 15 � x1 < 1000

3

5
� 5 � 19 � y1 > 1000

x1, y1 2 N

8>>>>>>>>><
>>>>>>>>>:

,

7x1 ¼ 5y1

3x1 < 50

3 � 19 � y1 > 1000

x1, y1 2 N

8>>>><
>>>>:

ð4:91Þ

In order for the first equation of (4.91) to have some integer solutions, x1 must be

a multiple of 5 and y1 a multiple of 7. Let us introduce new variables (do a new

substitution):
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x1 ¼ 5 � x2
y1 ¼ 7 � y2

Now system (4.91) can be solved:

7 � 5 � x2 ¼ 5 � 7 � y2
3 � 5 � x2 < 50

3 � 19 � 7 � y2 > 1000

x2, y2 2 N

8>>>><
>>>>:

)

x2 ¼ y2

x2 <
10

3
¼ 3

1

3

y2 >
1000

399
¼ 2

202

399

x2, y2 2 N

8>>>>>>><
>>>>>>>:

ð4:92Þ

From system (4.92) we notice that 2
202

399
< x2 < 3

1

3
and2

202

399
< y2 < 3

1

3
. Because

there is only one integer x2 ¼ y2 ¼ 3, then

x ¼ 7 � 15 � x1 ¼ 7 � 15 � 5 � x2 ¼ 7 � 15 � 5 � 3 ¼ 1575

y ¼ 5 � 19 � y1 ¼ 5 � 19 � 7 � y2 ¼ 5 � 19 � 7 � 3 ¼ 1995

Answer There are 1575 red balls and 1995 blue balls.

Problem 192 There are 600 more applicants to the University from high

school students than from people who worked full time. There are 5 times as

many ladies among the high school students than ladies among the

non-students. And there are n times as many men among the high school

graduates than there are in the group of non-students, such that 6 � n � 12

(where n is an integer). Find the total number of college applicants if there are

20 more men than women among the non-students.

Solution: In my elementary number theory class, my students always start by

using the finite value of the parameter n, between 6 and 12, and then they try to

decide which one fits the condition of the problem. However, this way is not as good

as it seems to be. There are 7 integer values possible for n between 6 and 12, and

you would solve seven similar problems and it could take a while . . ..
Let us find a general approach to this problem. Analysis of the conditions shows

that in order to translate the problem into a mathematical language, it is sufficient,

besides n, to introduce just one other variable, say x, as a number of some subset of

the applicants. Which one? Recalling the previous problem maybe we will have to

verify divisibility of the value of x by some other number, and then replace x by

some “smaller” integer, we conclude that the better choice is to introduce x as the
number of female non-students. Then the number of any other type of applicants

is going to be a positive integer as well. Of course, we assume that x is a natural

number. If x is the number of female non-student applicants, then (x+ 20) is
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the number of male non-student applicants, and the total of non-student applicants

will be

xþ xþ 20ð Þ ð4:93Þ

(5x) will be the number of female high school students, and the total number of

applicants from high school will be represented by

5xþ n xþ 20ð Þ ð4:94Þ

By the condition of the problem expression (4.93) is 600 less than expression

(4.94). Thus, we have the equation

2xþ 20þ 600 ¼ 5xþ n xþ 20ð Þ ð4:95Þ

Solving (4.95) for x we obtain

x ¼ 620� 20n

nþ 3
ð4:96Þ

Recalling that x must be a positive integer, we rewrite the right part of (4.96) as

x ¼ 620� 20 nþ 3ð Þ þ 20 � 3
nþ 3

¼ 680

nþ 3
� 20:

In order that x be a natural number, the number 680 must be divisible by (n+ 3).
A prime factorization of 680 gives 680 ¼ 2 � 2 � 2 � 5 � 17.

If 6 � n � 12 ) 9 � nþ 3 � 15, then n can be only 9,10,11,12,13, 14, or 15.

Notice that only nþ 3 ¼ 10 is a factor of 680. This means that n¼ 7. Then x ¼ 680

10
�20 ¼ 48 and the total number of applicants is

2xþ 20þ 5xþ 7 xþ 20ð Þ ¼ 832:

Answer 832 applicants.

Problem 193 Three ranchers came to the Fort Worth Stock Show to sell

their yearling heifers. The first rancher brought 10 heifers, the second 16, and

third 26. On the first day every rancher sold some of his heifers. Moreover, all

ranchers sold their heifers at the same price, one that had not changed during

the entire first day. On the second day the price for heifers went down and all

three ranchers in fear of further reductions in price sold all their remaining

heifers at a reduced price per heifer. What was the price per heifer on the first

day and on the second day if each rancher took home $3500?
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Solution: Let us introduce three variables x, y, and z as a number of heifers sold by

the first, second, and third ranchers, respectively, on the first day. Because the first

rancher originally had 10 heifers, the second 16, and the third 26, on the second day

they would sell 10� xð Þ, 16� yð Þ and 26� zð Þ heifers, respectively. Let us create a
table.

Introducing two additional variables: t as the price for heifers on the first day of

the Stock Show and p as the price for heifers on the second day, and using the

conditions of the problem, we obtain the following system of three equations in five

variables, x, y, z, t, and p:

xtþ 10� xð Þp ¼ 3500, 1 � x � 9

ytþ 16� yð Þp ¼ 3500, 1 � y � 15

ztþ 26� zð Þp ¼ 3500, 1 � z � 25

8<
: ð4:97Þ

Combining like terms in each equation, we obtain

x t� pð Þ þ 10p ¼ 3500

y t� pð Þ þ 16 p ¼ 3500

z t� pð Þ þ 26p ¼ 3500

8<
: ð4:98Þ

Subtracting the last equation from the first and from the second we have

x� zð Þ t� pð Þ ¼ 16p
y� zð Þ t� pð Þ ¼ 10p

�
ð4:99Þ

Dividing these two equations gives us the equality:

x� z

y� z
¼ 16

10

or

x� zð Þ � 5 ¼ y� zð Þ � 8 ð4:100Þ

Using our previous experience of solving equations like (4.100) for integers x, y,
and z we conclude that (x� z) should be divisible by 8 and (y� z) by 5. These can

be written as

Table 4.2 Problem 193

Heifers brought

Heifers sold

on the first day

Sold on the

second day

Rancher 1 10 x 10� x

Rancher 2 16 y 16� y

Rancher 3 26 z 26� z
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x� z ¼ 8n, n 2 N, 1 � x � 9

y� z ¼ 5m, m 2 N, 1 � y � 15

1 � z � 25

8<
:

Because x> z, then x� z¼ 8 only. On the other hand, from (4.100) we can see that

y� z¼ 5 only. If x� z¼ 8 and y� z¼ 5, then x¼ 9, z¼ 1, and y¼ 6. It means that

on the first day the first rancher sold 9 heifers, the second rancher sold 6 heifers, and

the third rancher sold only one heifer.

Knowing x, y, and z we can easily find t and p from equations of (4.99):

8 t� pð Þ ¼ 16 p

5 t� pð Þ ¼ 10p, then t� p ¼ 2p or

t ¼ 3 p ð4:101Þ

Using the first equation of system (4.98) and replacing t by 3p from (4.101) we

obtain

9 � 2pþ 10p ¼ 3500

28p ¼ 3500

p ¼ 125

t ¼ 3 � 125 ¼ 375

Answer On the first day the price per heifer was $375 and on the second day $125.

Problem 194 Today in one hospital the average age of doctors and patients

together is 40 years. The average age of the doctors is 35 and the average age

of the patients is 50. Are there more doctors or patients? How many times

more?

Solution: Assume that d is the number of doctors in the hospital and p is the

number of patients. Also assume that p ¼ k � d. Then the total age of the doctors is

35d and the patients is 50kd. Then the quantity 35d þ 50kd will represent the

doctors and patients together and the following is true:

35d þ 50kd ¼ 40 d þ kdð Þ
5d 7þ 10kð Þ ¼ 5d 8þ 8kð Þ
2k ¼ 1

k ¼ 1

2

Answer There are twice as many doctors as patients.
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Problem 195 An American tourist came to Moscow and was surprised at

how difficult it was to pay for goods in Russian currency. Russians have

kopeks and rubles. 100 kopeks is 1 ruble. It sounds similar to a dollar and

cents but in Russia there are 1 kop., 2 kop., 3 kop., 5 kop., 15 kop., 20 kop.,

and 50 kop. coins (compare with US coins for 1, 5, 10, and 25 cents). The

tourist put together in a plate some number (less than 15) of 3 kopeks and

5 kopeks coins and obtained 53 kopeks. He noticed that if in this set he

replaces all 3 kopeks coins by 5 kopeks coins and all 5 kopeks coins by

3 kopeks coins, then the amount of money will decrease but not more than 1.5

times. How many 3 kopeks coins did our tourist originally have?

Solution: Let n be the initial number of 3 kopeks coins. Letm be the initial number

of 5 kopeks coins. Then

3 � nþ 5 � m ¼ 53

Solving this equation for n we obtain

n ¼ 53� 5m

3
ð4:102Þ

In order for n to be a positive integer (53� 5m) must be a positive multiple of 3. There

are four such opportunities for m:m1 ¼ 1,m2 ¼ 4,m3 ¼ 7,m4 ¼ 10. Solving (4.102)

for each m we obtain four possible ordered pairs:

m; nð Þ : 1; 16ð Þ, 4; 11ð Þ, 7; 6ð Þ and 10; 1ð Þf g ð4:103Þ

Only one of (4.103) will satisfy the problem condition:

nþ m < 15

1:5 5nþ 3mð Þ � 53

�
ð4:104Þ

Checking all possible ordered pairs (4.103) we notice that only (7, 6) m¼ 7 and

n¼ 6 satisfy (4.104).

Answer Our tourist had six 3 kopeks coins and seven 5 kopeks coins.

4.6.2 Other Word Problems

There are so many different types of word problems that we would need to write an

entire book devoted only to them, and we would still not describe all possible

problems. Earlier in this chapter you solved two interesting problems on amixture
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(Problems 150 and 152). In this section we will go over a few interesting problems

and will give you some good ideas for your own search for a beautiful solution.

Some word problems are about work, for example, problems about two or more

pipes filling a swimming pool or problems about two or more painters painting the

walls in a house. Usually the entire job is considered to be 1. If this job can be done

by n workers, and if the kth worker can have the entire job finished by himself or

herself in tk hours, then his or her production rate is 1
tk
work per hour. Then all

n workers working together will finish the job in

t ¼ 1
1
t1
þ 1

t2
þ . . .þ 1

tn

hours

Let us solve the following problem.

Problem 196 Three painters working together for one hour painted 7/10 of

the house. It is known that each painter alone would be able to paint the house

in an integer number of hours. Each of the painters has a different rate of

painting. In how many hours could each of the three painters working alone

paint the entire house?

Solution: Let n, k, and m be the number of hours needed to paint the house for the

first, second, and third painter, respectively. Assume that n, k, and m are distinct

natural numbers satisfying the inequality:

1 < n < k < m ð4:105Þ

and then 1
n,

1
k,

1
m their production rates per hour will satisfy

1

m
<

1

k
<

1

n
ð4:106Þ

From the condition of the problem we obtain that

1

m
þ 1

k
þ 1

n
¼ 7

10
ð4:107Þ

Using inequality (4.106) we can state that

1

m
þ 1

k
þ 1

n
¼ 7

10
<

3

n

Or that
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7n < 30 ) n <
30

7
:

Because n is a natural number greater than 1, we obtain that n¼ 2, 3, 4:

2 � n � 4

Let us show that n¼ 4 is not a possible solution to this problem.

Substituting n¼ 4 into (4.107) we obtain the following true equality:

1

m
þ 1

k
þ 1

4
¼ 7

10

1

m
þ 1

k
¼ 9

20

Because of (4.106) we can state that
1
m þ 1

k <
2
k and we will obtain the restriction on variable k:

9

20
<

2

k

9k < 40

k <
40

9

From this we obtain possible values for k:

k ¼ 2, 3, 4

That contradicts our assumption (4.105) and the fact that k> n¼ 4.

If n¼ 3, using a similar argument we will find restrictions on k:

1

m
þ 1

k
þ 1

3
¼ 7

10

1

m
þ 1

k
¼ 11

30

11

30
<

2

k

11k < 60:

k <
60

11

k > n ¼ 3

8<
:
k ¼ 4; 5f g

We obtain a solution n¼ 3, k¼ 5, and m¼ 6.
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If n¼ 2 and using the same chain of arguments we obtain that

1

m
þ 1

k
þ 1

2
¼ 7

10

1

m
þ 1

k
¼ 1

5

1

5
<

2

k

k < 10:

k < 10

k > n ¼ 2

(

k ¼ 3; 4; 5; 6; 7; 8; 9f g
The second solution is n¼ 2, k¼ 6, and m¼ 30.

Answer (n, k,m) : {(2, 6, 30), (3, 5, 6)}.
Additionally, there are many problems aboutmotion. If a person, an animal, a car,

a plane, etc. maintains the same speed, then the distance equals speed times time:

d ¼ v � t
If speed is not constant, and it is different on different time intervals, then the

average speed equals the total distance divided by the total travel time. Please recall

a speeding ticket example, discussed in Section 1.3 of Chapter 1.

Problem 197 Peter lives near a bus stop A. Bus stops A, B, C, and D are on

the same street. Peter walks for exercise every weekend. He starts at A with a

speed of 5 km per hour and goes to D. Reaching D he turns back and goes to

B. Walking this route (A–D–B) requires 5 h. At B Peter takes a bus and goes

home. It is known that he can cover the distance between A and C in 3 h. The

distances between A and B, B and C, and C and D form a geometric sequence

in the given order. Find the distance between B and C.

Solution: Usually it is a good idea to draw a picture of the problem. Bus stops A,

B, C, and D are on the same street. It means that we can draw them as points on the

same line; A and D will be the end points of the segment and B and C between them

in the order A–B–C–D (Figure 4.29).

Because our unknown is the distance between B and C it seems obvious to

introduce three variables x, y, and z as distances between A and B, B and C, and C

and D, respectively. Using the condition of the problem and recalling that

zyx

A DB C

Figure 4.29 Sketch for Problem 197
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distance¼ speed	 time we write two equations:

xþ yþ zþ zþ y ¼ 5 � 5 ¼ 25 and xþ y ¼ 3 � 5 ¼ 15

Now we are going to write the last equation of the system. Because x, y, and z are

consecutive terms of a geometric sequence, then y2 ¼ xz, and we can complete and

solve the system as follows:

xþ 2yþ 2z ¼ 25

xþ y ¼ 15

y2 ¼ xz

8><
>:

yþ 2z ¼ 10

x ¼ 15� y

y2 ¼ xz

8><
>:

z ¼ 10� y

2

x ¼ 15� y

y2 ¼ 15� yð Þ 10� yð Þ
2

8>>>><
>>>>:

Subtracting the second equation from the first equation in the first system, we

can eliminate variable x. (See the second system.) Then we express z and x in terms

of y and put them into the third equation of the last system. Let us solve the last

equation for y. Multiplying both sides by 2 we have

2y2 ¼ 150� 25yþ y2

y2 þ 25y� 150 ¼ 0

y1 ¼ 5, y2 ¼ �30

Because y is a distance, it has to be positive, so we choose y¼ 5.

Answer The distance between B and C is 5 km.

Finally, the last three word problems are not of any specific type. They involve a

variety of different topics and ideas including knowledge of the properties of the

natural numbers and number theory. Sometimes a problem looks like, for example,

a “problem on work” but has nothing to do with the rate of production and is not

such a problem at all. Only experience in solving many word problems of different

types can make you an expert. I hope that your experience will be successful.

Problem 198 A boy was drinking a cup of tea with sugar. He put three

spoons in one cup, dissolved it, drank 2/3 of the cup, then added one spoon of

sugar, and filled the whole cup with the hot water. After dissolving the sugar

in it and drinking 1/3 of the amount in the cup, the boy decided that the tea

was not sweet enough. Howmuch sugar should be added to the cup in order to

make the tea as sweet as it was at the beginning?
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Solution: In order to solve this problem we do not need any variables. First,

3 spoons of sugar per 1 cup is equivalent to 2 spoons of sugar per 2/3 of a cup or

1 spoon of sugar per 1/3 of the cup. Because the boy drank 2/3 of the sweet tea, there

was exactly 1 spoon of sugar in 1/3 of the cup remaining. When he added 1 spoon of

sugar to it, he had 2 spoons of sugar per 1/3 of cup. When he added hot water to it to

fill the cup, then he had 2 spoons of sugar per one cup of hot water. The boy

understood that the tea was not sweet enough when he drank 1/3 of the tea. At that

moment he had 2(2/3)¼ 4/3 spoons of sugar in 2/3 of the cup. Remember that he

liked his original tea (2 spoons of sugar per 2/3 of the cup). Then the boy would

have to add x spoons of sugar to it: 4/3 + x¼ 2, x¼ 2/3 of a spoon of sugar.

Answer 2/3 of a spoon of sugar.

Problem 199 At night seven artists, in a certain order, painted a white wall,

each with their own paint and color. Each artist painted k% of the wall

without seeing what the previous artists painted. If any piece of the wall

was painted by all 7 colors together, then it would again become white. For

what integers k is there a warranty of the existence of at least one white piece
on the wall?

Solution: Let 1 be the area of the wall. If each artist painted part of the wall with

the area s< 1/7, then there would be an unpainted piece of the wall.

Since 14.2< 100/7< 14.3 then the following integers 0, 1, 2, 3, . . ., 14

would work.

On the other hand, if s> 6/7, then each artist does not paint the area less than 1/7,

then the union of all unpainted pieces by at least one of the artists has the area less

than 1. Therefore, the remaining part of the positive area has all 7 colors. So the

second part of the answer can be obtained as

k> [6	 100/7]¼ 85, so k¼ 86, 87, 88,. . .99, 100
Next we will consider the case 1/7< s< 6/7 and k¼ 15, 16, 17, . . . 84, 85. Let us

show that these values of k do not guarantee an existence of at least one white piece
on the wall. We will demonstrate it for the following type of painting. This is such a

painting of the wall that each point of the wall is painted but by less than 6 artists.

Imagine the square with area 1 as a lateral surface of some cylinder. For any value

of s from the considered interval the first artist would paint a part of the lateral

surface with area s (shaded), then the next artist would paint a surface of area s that

has common side with the previous one, etc. Finally, the entire surface would be

painted but there will be no point at which all 7 colors meet.

Answer k¼ {1, 2,. . .14} and k¼ {86, 87,. . .99, 100}.
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Problem 200 Paul marked a rectangle with m	 n cells on a piece of graph

paper, such that m and n are relatively prime and m< n. The diagonal of this
rectangle does not intersect precisely 116 “cells.” Find all possible values of

m and n.

Solution: Because m and n are relatively prime then the diagonal of the rectangle

cannot go through the vertices of the interior cells. In fact, if it is not true then there

will be a rectangle of a smaller size (made out of interior cells of the rectangle) such

that its diagonal is part of the diagonal of the given rectangle. Let m1 and n1 be the
width and length, respectively, of the biggest of such rectangles. Then obviously

there exists such a number k 2 N, k > 1,m ¼ km1, n ¼ k ¼ kn1 that contradicts the
condition. In the case when the diagonal of a rectangle does not contain vertices of

the interior cells, then the number of the cells it intersects is one more than the sum

of the vertical and horizontal lines going through the rectangle. Indeed, considering

for example the diagonal going through the left lower vertex (angle) into the right

upper vertex (angle) of the rectangle we can associate with each intersecting cell

(except the upper right one) a unique point at which the diagonal intersects either a

right or a left boundary of the cell. Note that in this manner each of the vertical and

horizontal lines inside that rectangle will be intersected only once.

Therefore, the number of the intersecting cells is m� 1ð Þ þ n� 1ð Þþ
1 ¼ mþ n� 1.

Then from the condition of the problem, we will obtain the equation that can be

easily solved:

mn� 116 ¼ mþ n� 1

m� 1ð Þ n� 1ð Þ ¼ 116

Because m < n, then the ordered pair m� 1, n� 1ð Þ can be selected out of the

three possible answers: (1,116), (2,58), and (4,29).

However, the last one does not lead to a correct answer.

Answer (2;117) and (3;59).

4.7 Homework on Chapter 4

1. Find all values of a a < �4ð Þ, for which the smallest root of the equation

x2 þ ax� 3x� 2a� 2 ¼ 0 has the minimal value.

Solution: Let us solve the given equation for a(x):
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x2 � 3x� 2þ a � x� 2ð Þ ¼ 0

a xð Þ ¼ �x2 þ 3xþ 2

x� 2
:

We can see that x ¼ 2 is not in the domain of a(x) because

22 � 3 � 2� 2þ a � 0 6¼ 0.

The range of a(x) is �1, � 4ð �::

�x2 þ 3xþ 2

x� 2
� �4

x2 � 7xþ 6

x� 2
� 0

x� 1ð Þ x� 6ð Þ
x� 2

� 0

Using the intervals method, we can conclude the following:

a xð Þ � �4 if x 2 1; 2½ Þ [ 6;1½ Þ:

Moreover, x ¼ 1 is the smallest value of x at which a xð Þ � �4: If a ¼ �4

x2 � 7xþ 6 ¼ 0

x1 ¼ 6, x2 ¼ 1

Answer: x ¼ 1 is the smallest of the two roots when a ¼ �4:
2. There are three alloys. The first alloy contains 30 % of Ni and 70 % of Cu. The

second contains 10 % of Cu and 90 % of Mn. The third—15 % of Ni, 25 % of

Cu, and 60% ofMn.We need to prepare a new alloy containing 40%Mn.What

is the smallest and the largest percentage of Cu (copper) that can be contained

in the new alloy?

Answer: 40 % and 43 %.

3. There are two vessels containing a mixture of water and sand. In the first vessel

there is 1000 kg of the mixture and in the second 1960 kg of the mixture. Water

was added in both vessels. After that the % content of the sand in the first vessel

was reduced k times, and in the 2nd l times. It is known that kl ¼ 9� k. Find the
minimum amount of water that could be added to both vessels together.

Answer: 3480 kg.

4. Find the maximum of the function f xð Þ ¼ 5 sin 2xþ 7 cos 2x:

Answer:
ffiffiffiffiffi
74

p
:

5. Find the maximum of f xð Þ ¼ 3� 2 sin 22x� 2 cos 2x:

Answer: x ¼ �π

6
þ πn, n 2 Z:

6. Solve the inequality: sin
x

2
þ cos

x

2
� sin x� 3ffiffiffi

2
p

Answer: x ¼ π 8k � 3ð Þ
2

, k 2 Z:
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7. Find all solutions of the equation 1ffiffi
2

p sin 2 xþ π
2

� 	þ sin 3x ¼ cos 3x� ffiffiffi
2

p
on

the interval x 2 �2π, 2π½ �:
Answer: � π

12
, 2π, � π

12
8. Solve the inequality: x2 � 4xþ 3ð Þlog 1ffiffi

2
p cos2πxþ cos xþ 2 sin xð Þ � 2

Answer: x ¼ 2.

9. Solve the system:

x2 þ 2x sin yþ 1 ¼ 0

8 xj jy x2 þ y2ð Þ þ π3 þ 4π ¼ 0

�

Answer: 1, � π
2

� 	
.

10. Solve the equation sin 2xþ 3x2 � cos xþ 3x2 ¼ 0.

Answer: 0; π þ 2πn, n 2 Z .

11. Solve the equation 2 1þ sin 2 x� 1ð Þð Þ ¼ 22x�x2 :
Hint: Use boundedness of the functions on the right and left sides.

Answer: x ¼ 1.

12. Find all triples (x, y, z) satisfying the equation

x2 þ 1� 2x sin πyþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yz� 2z2 � 64

p
¼ 41� yzð Þ cos 2πyþ cos πzð Þ2

Answer: 1;
513

2
; 128

� �
, �1, � 513

3
, � 128

� �
.

13. Find all ordered pairs (x, y) that satisfy the system:

2 x2�2x�3j j�log23 ¼ 3�y�4

4 yj j � y� 1j j þ yþ 3ð Þ2 � 8

�

Answer: �1, � 3ð Þ and 3, � 3ð Þ.
14. Prove that if xyþ yzþ zx ¼ 1, then xþ yþ z � 1.

Hint: Assume that x+ y+ z< 1 and prove by contradiction.

Proof: Assume that x+ y+ z< 1, then the following must be true:

xþ yþ zð Þ2 < 1

x2 þ y2 þ z2 þ 2xyþ 2xzþ 2yz < 1

x2 þ y2 þ z2 þ 2 xyþ yzþ xzð Þ < 1

x2 þ y2 þ z2 þ 2 < 1

x2 þ y2 þ z2 < �1:

We can see that the last inequality is false. Therefore, our assumption was

wrong and xþ yþ z � 1:

15. Prove that for any three positive real numbers a, b, and c, the inequality

aþ bþ cð Þ � 1
a þ 1

b þ 1
c

� 	 � 9 is true. For what values of three variables does

the equality hold?
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Hint: Multiply two quantities and apply the inequality between arithmetic and

geometric means.

Proof: Using distributive law and after multiplication the left side of the

inequality can be written as

1þ a

b
þ a

c
þ b

a
þ 1þ b

c
þ c

a
þ c

b
þ 1:

If we rearrange the terms and apply Cauchy’s inequality to each pair of

reciprocals, we will obtain

3þ a

b
þ b

a

� �
þ a

c
þ c

a

� �
þ c

b
þ b

c

� �
� 3þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

b
� b
a

� �s
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

c
� c
a

� �r

þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c

b
� b
c

� �s

¼ 9:

The proof is completed. The equality holds if a¼ b¼ c.

16. Prove that for any natural number n, the inequality

nn > 1 � 3 � 5 � 7 � . . . � 2n� 1ð Þ is true.
17. Prove that

1

22
þ 1

32
þ . . .þ 1

1002
<

99

100
.

Hint: Use the inequality
1

k2
<

1

k � 1ð Þk.
Proof:

1

22
<

1

1 � 2 ¼ 1� 1

2

1

32
<

1

2 � 3 ¼ 1

2
� 1

3
. . .

1

1002
<

1

99 � 100 ¼ 1

99
� 1

100

Adding left and right sides of all inequalities we obtain

1

22
þ 1

32
þ . . .þ 1

1002
< 1� 1

100
¼ 99

100
:

The proof is completed.

18. Solve the equation 2 cos
x

16
¼ 2x þ 2�x:

Answer: x ¼ 0.

19. Solve the equation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin x

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos x

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 2

ffiffiffi
2

pp
:

Answer: x ¼ π

4
þ 2πn, n 2 Z:
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20. Find all real solutions of the inequality tan 3x
�� ��þ cot 3x

�� �� � 2� x� π=4ð Þ2
Answer: x ¼ π

4
.

Find all values of parameter b for which the system
4y ¼ 4bþ 3� x3 þ 2x
x2 þ y2 ¼ 2x

�
has precisely two solutions.

Solution: After some manipulations, the given system can be written as

y2 � 4yþ 3 ¼ �4b
x� 1ð Þ2 þ y2 ¼ 1

�
, y� 2ð Þ2 ¼ �4bþ 1

x� 1ð Þ2 þ y2 ¼ 1

�
Að Þ
Bð Þ

where curve (A) is a parabola, f yð Þ ¼ y� 2ð Þ2 þ 2b� 1 with the vertex

(2, �4b + 1), and curve (B) is a circle with center (1,0) and radius 1. We can

see that the two curves will have two points of intersection if

�1 < y < 1

f �1ð Þ > �4b > f 1ð Þ
0 < �4b < 8

This gives the final answer: �2 < b < 0:
Answer: �2 < b < 0:

21. What is greater 10! or 710? Do not use a calculator.

Hint: See Problem 156.

Answer: 710 > 10!
22. Find all functions f(x), such that for any real x, the following relationship holds:

f xð Þ þ x � f 1� xð Þ ¼ 3x: ð4:108Þ

Answer: f xð Þ ¼ 3x2

x2 � xþ 1
.

Solution: If (4.108) is true for any x, then it must be true for 1� xð Þ.
Substituting 1� xð Þ for x in (4.108), we obtain

f 1� xð Þ þ 1� xð Þ � f xð Þ ¼ 3 1� xð Þ ð4:109Þ

Solving (4.108) and (4.109) together and by eliminating f 1� xð Þ, we obtain

x 1� xð Þ � f xð Þ � f xð Þ ¼ 3x � 1� xð Þ � 3x

or

f xð Þ ¼ 3x2

x2 � xþ 1
:

23. Solve the system
x2y2 � 2xþ y2 ¼ 0

2x2 � 4xþ 3þ y2 ¼ 0

�
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Hint: Consider both equations as quadratic in variable x. Remember that a

quadratic equation has a solution in real numbers if its discriminant is

nonnegative.

Solution: Let us find the discriminant of the first equation:

y2x2 � 2xþ y2 ¼ 0, a ¼ y2, b ¼ �2, x ¼ y2:

Because the coefficient of the linear term is even, then we will use D/4 formula:

D

4
¼ 12 � y4 ¼ 1� y4 � 0:

On the other hand, for the second equation of the system we have

2x2 � 4xþ 3þ y3ð Þ ¼ 0, a ¼ 2, b ¼ �4, c ¼ 1þ y3

D

4
¼ 22 � 2 � 3þ y3

� 	 ¼ 2 �1� y3
� 	 � 0:

The condition that both discriminants be positive is equivalent to the system:

Then the corresponding x ¼ 1: The answer is unique, it is the ordered pair

x; yð Þ ¼ 1, � 1ð Þ.
Answer: (1, �1).

24. For what values of a does the system

2xþ y ¼ a� 1

2xy ¼ a2 � 3aþ 1

4x2 þ y2 � �a2 þ 5a� 4

8<
:

have a solution?

Answer: a ¼ 3.

25. Given a > 0, b > 0, c > 0 and a2 þ b2 þ c2 ¼ 1: Prove that aþ bþ c � ffiffiffi
3

p
.

Hint: Use Cauchy-Bunyakovsky (CB) inequality.

Proof: The left side of the inequality to be proved can be rewritten as

a � 1þ b � 1þ c � 1. Applying the CB inequality to it and substituting the

condition constrains a2 þ b2 þ c2 ¼ 1; we have

a � 1þ b � 1þ c � 1ð Þ2 � a2 þ b2 þ c2
� 	

12 þ 12 þ 12
� 	 ¼ 3 a2 þ b2 þ c2

� 	 ¼ 3;

which leads us to the proof of the statement

aþ bþ c �
ffiffiffi
3

p
:

26. Prove that for any real x, y, and z, the inequality is true:

x2 þ 2xyþ 3y2 þ 2xþ 6y � �3:
Hint: Try to complete the squares on the left side.
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Proof: The left-hand side can be rewritten as

x2 þ 2x yþ 1ð Þ þ yþ 1ð Þ2
n o

� yþ 1ð Þ2 þ 3y2 þ 6y ¼
xþ yþ 1ð Þ2 � y2 � 2y� 1þ 3y2 þ 6yþ 3� 3 ¼
xþ yþ 1ð Þ2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

�0

þ 2 yþ 1ð Þ2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
�0

�3 � �3:

27. Given a � 0, b � 0, c � 0: Prove that
2a

bþ c
þ 2b

aþ c
þ 2c

aþ b
� 3:

Hint: Add 2 to each fraction on the left and put 2 and the fraction over the

common denominator.

Proof: Adding 2 to each fraction we obtain new inequality to prove:

2a

bþ c
þ 2þ 2b

aþ c
þ 2þ 2c

aþ b
þ 2 � 9

2aþ 2bþ 2c

bþ c
þ 2bþ 2cþ 2a

cþ a
þ 2cþ 2aþ 2b

aþ b
� 9

2 aþ bþ cð Þ 1

bþ c
þ 1

cþ a
þ 1

aþ b

� �
� 9

It is convenient to denote x ¼ bþ c, y ¼ cþ a, z ¼ aþ b ) xþ yþ
z ¼ 2 aþ bþ cð Þ:

And the left side of the last inequality will be rewritten as follows:

xþ yþ zð Þ 1

x
þ 1

y
þ 1

z

� �

Using distributive law, we will multiply two factors and rewrite the expres-

sion above as

1þ x

y
þ x

z
þ y

x
þ 1þ y

z
þ z

x
þ z

y
þ 1

Combining reciprocals together and after simplification, this expression

becomes greater than or equal to 9:

3þ x

y
þ y

x

� �
|fflfflfflfflffl{zfflfflfflfflffl}

�2

þ x

z
þ z

x

� �
|fflfflfflffl{zfflfflfflffl}

�2

þ y

z
þ z

y

� �
|fflfflfflfflffl{zfflfflfflfflffl}

�2

� 3þ 6 ¼ 9:

Therefore, the proof is completed.

Note: Above, for each parenthesis we used the inequality between the arith-

metic and geometric means.

For example, xy þ y
x � 2

ffiffiffiffiffiffiffi
x
y � yx

q
¼ 2.

4.7 Homework on Chapter 4 315



28. Solve the equation
ffiffiffiffiffiffiffiffiffiffiffi
1� x

p þ ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

4
p

þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x24

p ¼ 4.

Answer: x ¼ 0.

Hint: Apply Bernoulli’s inequality to each term on the left-hand side.

Solution: Using Beroulli’s inequality we have the following:

1� xð Þ12 � 1� 1

2
x

1þ xð Þ12 � 1þ 1

2
x

1� x2ð Þ14 � 1� 1

4
x2

1þ x2ð Þ14 � 1þ 1

4
x2

If we add the left and the right sides of these inequalities, we will obtain that

the left side is less than or equal to 4. Therefore the function on the left of the

given equation is bounded from the top by 4. In order to have a solution, the left

side must take the value of 4. It occurs at x¼ 0.

29. Find the minimal value of xy, where x and y satisfy the following system:

xþ y ¼ 3a� 1

x2 þ y2 ¼ 4a2 � 2aþ 2

�
Hint: Complete the square in the second equation. See Problem 177 of

the book.

Answer: �9/10.

Solution: Completing the square in the second equation of the system and

substituting xþ y ¼ 3a� 1 there we obtain

3a� 1ð Þ2 � 4a2 þ 2a� 2 ¼ 2xy
2xy ¼ 5a2 � 4a� 1

2xy ¼ 5 a� 2

5

� �2

� 9

5

xy ¼ 5

2
a� 2

5

� �2

� 9

10

It is easy to see that the minimum of xy is �9/10 and it occurs at a¼ 2/5.

30. Solve the system
x2 þ y2 ¼ 0:5xyz
y2 þ z2 ¼ 0:5xyz
z2 þ x2 ¼ 0:5xyz

8<
: .

If we subtract the second and first, second and third, and third and the first

equation we will obtain
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x� zð Þ xþ zð Þ ¼ 0

y� zð Þ yþ zð Þ ¼ 0

y� xð Þ yþ xð Þ ¼ 0

8<
:

Because of the symmetry of this system, we notice that if (a, a, a) is a solution,
then �a, a, � að Þ, �a, � a, að Þ, a, � a, � að Þ are also solutions. We get that

2a2 ¼ 0:5a3

a ¼ 0, a ¼ 4

Answer: 0; 0; 0ð Þ, 4; 4; 4ð Þ, �4, � 4, 4ð Þ, 4, � 4, � 4ð Þ, 4, � 4, � 4ð Þ:
31. Find the maximum and minimum of y2

25
þ w2

144
subject to system

x2 þ y2 þ 2xþ 4y� 20 ¼ 0

z2 þ w2 � 2w� 143 ¼ 0

xwþ yz� xþ wþ 2z� 61 � 0

8<
:

Hint: See Problem 174.

Solution: The system will be rewritten as

xþ 1ð Þ2 þ yþ 2ð Þ2 ¼ 52

zð Þ2 þ w� 1ð Þ2 ¼ 122

xþ 1ð Þ w� 1ð Þ þ z yþ 2ð Þ � 60

8<
:

After substitution

xþ 1 ¼ 5 cosφ
yþ 2 ¼ 5 sinφ
z ¼ 12 cosψ
w� 1 ¼ 12 sinψ , φ,ψ 2 0, 2π½ Þ

The inequality will be written as follows: 60 sin φþ ψð Þ � 60:
That has solutions if and only if

ψ ¼ π
2
� φþ 2πn, and then cosψ ¼ sinφ, sinψ ¼ cosφ .

Now we see that y ¼ 5 sinφ� 2, w ¼ 12 cosφþ 1: After substitution we
obtain

y2

25
þ w2

144
¼ 5 sinφ� 2ð Þ2

25
þ 12 cosφþ 1ð Þ2

144

¼ 1þ 4

25
þ 1

144
þ � 4

5
sinφþ 1

6
cosφ

� �
Amax=min ¼ 4201

3600
�

ffiffiffiffiffiffiffiffi
601

p

30

Answer: 4201
3600

�
ffiffiffiffiffiffi
601

p
30

.
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32. Solve the system of equations:

x2 þ xyþ y2 ¼ 7

x2 þ xzþ z2 ¼ 21

y2 þ yzþ z2 ¼ 28

8<
:

Hint: Subtract the second and first, the third and second equations, and the third

and first equations. Simplify, and apply difference of squares formula and

factor out common factors:

z� yð Þ zþ yþ xð Þ ¼ 14

y� xð Þ yþ xþ zð Þ ¼ 7

z� xð Þ yþ zþ xð Þ ¼ 14

8<
: ) z ¼ 3y� 2x etc:

Answer:

x; y; zð Þ : 1; 2; 4ð Þ; �1, � 2, � 4ð Þ; � ffiffiffi
7

p
, 0, 2

ffiffiffi
7

p� 	
;

ffiffiffi
7

p
, 0, � 2

ffiffiffi
7

p� 	
 �
.

33. Solve the system:
y ¼ 2x2 � 1

z ¼ 2y2 � 1

x ¼ 2z2 � 1

8<
: .

Hint: Use trigonometric substitution, x ¼ cos t, 0 � t � π .
Answer:

x; y; zð Þ ¼ cos
2πk

9
, cos

4πk

9
, cos

8πk

9

� �
, k ¼ 0, 1, 2, 3, 4

x; y; zð Þ ¼ cos
2πk

7
, cos

4πk

7
, cos

8πk

7

� �
, k ¼ 1, 2, 3:

2
664

34. Let a, b, and c be the sides of the triangle and ha, hb, hc are the heights dropped
to the sides, respectively. S is the area of triangle ABC. Prove that

a2 þ b2 þ c2
� 	 � h2a þ h2b þ h2c

� 	 � 36S2.

Proof: Because the area of the same triangle can be found in three different

ways, we can start from the obvious equality
aha
2
þ bhb

2
þ chc

2
¼ 3S, which can also be written as

aha þ bhb þ chcð Þ2 ¼ 36S2

Finally, we will apply the CB inequality to the left-hand side of the equality

above and obtain

aha þ bhb þ chcð Þ2 ¼ 36S2 � a2 þ b2 þ c2
� 	

h2a þ h2b þ h2c
� 	

, which proves

the requested inequality.

35. At a classroom costume party, the average age of the b boys is g, and the average
age of the g girls is b. If the average age of everyone at the party (all these boys
and girls, plus their 42-year-old teacher) is b+ g, what is the value of b+ g?
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Solution: Let us consider the average age in the group of g girls. If we add up

the ages of g girls (let us say A) and divide it by the number of girls (g) we
obtain b. On the other hand, if we add up the ages of all b boys (B) and divide it
by the number of boys (b) we obtain g. This can be written as

A

g
¼ b,

B

b
¼ g ð4:110Þ

Then the average age of everyone at the party including the teacher will be

Aþ Bþ 42

bþ gþ 1
¼ bþ g ð4:111Þ

Replacing A and B from (4.110), we can rewrite (4.111) as

2gbþ 42

bþ gþ 1
¼ bþ g

or multiplying both sides by (b+ g + 1) we obtain

2gbþ 42 ¼ bþ gð Þ bþ gþ 1ð Þ ð4:112Þ

We have from (4.112) that 42 ¼ b2 þ g2 þ bþ g.
Multiplying both sides by 4 we have

168 ¼ 4b2 þ 4g2 þ 4bþ 4g
168þ 2 ¼ 4b2 þ 4bþ 1

� 	þ 4g2 þ 4gþ 1ð Þ

Completing the square, we have

170 ¼ 2bþ 1ð Þ2 þ 2gþ 1ð Þ2
2bþ 1 ¼ 11, 2gþ 1 ¼ 7 ) b ¼ 5, g ¼ 3

or

2bþ 1 ¼ 7, 2gþ 1 ¼ 11 ) b ¼ 3, g ¼ 5

Answer: bþ g ¼ 8.

36. A box has red, white, and blue balls. The number of blue balls is at least the

number of white balls and at most 1/3 of the number of the red balls. The total

number of white and blue balls is at least 55. What is the minimal possible

number of red balls?

Solution: Let r, w, and b be the number of red, white, and blue balls, respec-

tively. By the condition of the problem the following is valid:
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b � w

b � r

3

(

This can also be written as a double inequality:

w � b � r

3
:

Adding b to all sides of the inequality, we obtain

wþ b � 2b � r

3
þ b:

Using the information about the total number of blue and white balls and the

second inequality of the system, we have the following:

55 � bþ w � r

3
þ w � r

3
þ r

3
¼ 2r

3

This can be written as

55 � bþ w � 2r

3
2r � 165

r � 82:5

Because the number of the balls can be only a natural number, then r¼ 83 will

be the first possible choice to check. If we substitute it into the first double

inequality, we will obtain w � b � 27 but this contradicts the condition

bþ w � 55. Let us check the next natural number for r, r ¼ 84; we obtain that

w � b � 84

3
¼ 28

And that w ¼ b ¼ 28 would give us the minimal number of balls in the box.

Answer: The box has 28 white, 28 blue, and 84 red balls.

37. A frustrated bond investor tears a bond into eight pieces. Then she continues

and cuts one of the pieces again into eight pieces. If she continues, can she get

2016 pieces?

Hint: See Problem 188.

Answer: No, it is not possible.

Solution: If one piece is broken into 8 pieces then the number of pieces is

increased by 7 pieces. At the beginning she had one piece, one bond, and after

the first cut she had 1 + 7¼ 8 pieces. If she continued, she would get (1 + 7 k)
pieces. Unfortunately, 2016 divided by 7 is divisible by 7 and cannot give us a

remainder of 1. Therefore, the bond investor cannot tear the bond into 2016

pieces, but could cut it into 2017 pieces: 2017 ¼ 7 � 288þ 1ð Þ.
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38. Using a red pipe the tank is filled in 3 h and using a blue pipe in 9 h. How soon

will the tank be filled if both pipes are open?

Solution: The rate of filling the tank by the red pipe is 1/3 of the tank per hour

and by the blue pipe is 1/9 of the tank per hour. Working together the two pipes

have the following rate
1

3
þ 1

9
¼ 4

9
of the tank per hour. Then the entire tank will

be filled in 9/4 h.

Answer: The tank will be filled in 2 h and 15 min.

39. Maria has 1 kg of 3.5 % salt solution and 1 kg of 0.5 % solution. Can she get

1.5 kg of 1.5 % by mixing two solutions? How can she do it?

Answer: Yes she can if she takes 0.5 kg of the first solution and 1 kg of the

second solution.

Solution: If we mix x1 kg of a solution (alloy, etc.) containing p1% of a

substance A and x2 kg containing p2% of A, then we will obtain x1 þ x2ð Þ kg
of new solution that will contain

p1x1 þ p2x2
x1 þ x2

% of substance A.

Assume that she takes x kg of the first solution y kg of the second, then the

following is true:

3:5xþ 0:5y

xþ y
¼ 1:5

xþ y ¼ 1:5

8<
: ) x ¼ 0:5, y ¼ 1:5

40. A boat is going 10 miles downstream in a river and then against the current for a

distance of 6 miles. The rate of current is 1 mile per hour. What is the speed of

the boat itself (the speed it would have in still water) if the total trip time is

between 3 and 4 h?

Solution: Let v be the boat speed then the total time of the trip can be expressed as

t ¼ 10

vþ 1
þ 6

v� 1
:

It is clear that v> 1; otherwise the boat would not be able to go against the stream.

Using this and the condition of the problem we obtain

3 � 10

vþ 1
þ 6

v� 1
� 4

3 v2 � 1ð Þ � 16v� 4 � 4 v2 � 1ð Þ
4v2 � 16v � 0

(

8� ffiffiffiffiffi
61

p

3
� v � 8þ ffiffiffiffiffi

61
p

3

4 � v � 8þ ffiffiffiffiffi
61

p

3
:
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Answer: 4 � v � 8þ ffiffiffiffiffi
61

p

3
miles per hour.

42. An object is moving from point A to point B with a speed of 10 m/s for the first

half of the distance and a speed of 15 m/s for the second half of the distance.

What is the average speed on AB?

Solution: Let x be the half of the distance, so the total distance is 2x. Then the

object travelled the first half of the distance in
x

10
seconds and the second half in

x

15
seconds. The total travel time is

x

10
þ x

15
¼ x

6
seconds.

The average speed is 2x
 x

6
¼ 12 m/s.

Answer: 12 m/s.
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