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Preface to the Second Edition

This is a revised and expanded version of my 2002 book on real analysis. Some
topics and chapters have been rewritten (i.e., Chaps. 7–10) and others have been
expanded in several directions by including new topics and, most importantly,
considerably more practice problems. Noteworthy is the collection of problems in
calculus with distributions at the end of Chap. 8. These exercises show how to solve
algebraic equations and differential equations in the sense of distributions, and how
to compute limits and series in D 0. Distributional calculations in most texts are
limited to computing the fundamental solution of some linear partial differential
equations. We have sought to give an array of problems to show the wide appli-
cability of calculus in D 0. I must thank U. Gianazza and V. Vespri for providing me
with most of these problems, taken from their own class notes. Chapter 9 has been
expanded to include a proof of the Riesz convolution rearrangement inequality in N-
dimensions. This is preceded by the topics on Steiner symmetrization as a supporting
background. Chapter 11 is new, and it goes more deeply in the local fine properties
of weakly differentiable functions by using the notion of p-capacity of sets in R

N . It
clarifies various aspects of Sobolev embedding by means of the isoperimetric
inequality and the co-area formula (for smooth functions). It also links to measure
theory in Chaps. 3 and 4, as the p-capacity separates the role of measures versus
outer measure. In particular, while Borel sets are p-capacitable, Borel sets of positive
and finite capacity are not measurable with respect to the measure generated by the
outer measure of p-capacity. Thus, it also provides an example of nonmetric outer
measures and non-Borel measure. As it stands, this book provides a background to
more specialized fields of analysis, such as probability, harmonic analysis, functions
of bounded variation in several dimensions, partial differential equations, and
functional analysis. A brief connection to BV functions in several variables is offered
in Sect. 7.2c of the Complements of Chap. 5.

The numbering of the sections of the Problems and Complements of each
chapter follow the numbering of the section in that chapter. Exceptions are Chaps. 6
and 8. Most of the Problems and Complements of Chap. 8 are devoted to calculus
with distributions, not directly related to the sections of that chapter.
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Sections 20c–23c of the Complements of Chap. 6 are devoted to present the
Vitali–Saks–Hahn theorem. The relevance of the theorem is in that it gives suffi-
cient conditions on a set of integrable functions to be uniformly integrable. This in
turn it permits one to connect the notions of weak and strong convergence to
convergence in measure. In particular, as a consequence it gives necessary and
sufficient conditions for a weakly convergent sequence in L1 to be strongly con-
vergent in L1. As an application, in ‘1, weak and strong convergence coincide
(Sects. 22c–23c of Chap. 6).

Over the years, I have benefited from comments and suggestions from several
collaborators and colleagues including U. Gianazza, V. Vespri, U. Abdullah,

Olivier Guibé, A. Devinatzy, J. Serriny, J. Manfredi, and several current and former
students, including Naian Liao, Colin Klaus Stockdale, Jordan Nikkel, and Zach
Gaslowitz Special thanks go to Ugo Gianazza and Olivier Guibé for having read in
detail large parts of the manuscript and for pointing out imprecise statements and
providing valuable suggestions. To all of them goes my deep gratitude.

This work was partially supported by NSF grant DMS-1265548.
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Preface to the First Edition

This book is a self-contained introduction to real analysis assuming only basic
notions on limits of sequences in R

N , manipulations of series, their convergence
criteria, advanced differential calculus, and basic algebra of sets.

The passage from the setting in R
N to abstract spaces and their topologies is

gradual. Continuous reference is made to the R
N setting where most of the basic

concepts originated.
The first eight chapters contain material forming the backbone of a basic training

in real analysis. The remaining three chapters are more topical, relating to maximal
functions, functions of bounded mean oscillation, rearrangements, potential theory
and the theory of Sobolev functions. Even though the layout of the book is theo-
retical, the entire book and the last chapters in particular have in mind applications
of mathematical analysis to models of physical phenomena through partial differ-
ential equations.

The preliminaries contain a review of the notions of countable sets and related
examples. We introduce some special sets, such as the Cantor set and its variants
and examine their structure. These sets will be a reference point for a number of
examples and counterexamples in measure theory (Chapter 3) and in the Lebesgue
differentiability theory of absolute continuous functions (Chapter 5). This initial
Chapter contains a brief collection of the various notions of ordering, the Hausdorff
maximal principle, Zorn’s Lemma, the well-ordering principle, and their funda-
mental connections.

These facts keep appearing in measure theory (Vitali’s construction of a
Lebesgue non-measurable set), topological facts (Tychonov’s Theorem on the
compactness of the product of compact spaces; existence of Hamel bases) and
functional analysis (Hahn-Banach Theorem; existence of maximal orthonormal
bases in Hilbert spaces).

Chapter 2 is an introduction to those basic topological issues that hinge upon
analysis or that are, one way or another, intertwined with it. Examples include
Uhryson’s Lemma and the Tietze Extension Theorem, characterization of com-
pactness and its relation to the Bolzano-Weierstrass property, structure of the
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compact sets in R
N , and various properties of semi-continuous functions defined on

compact sets. This analysis of compactness has in mind the structure of the compact
subsets of the space of continuous functions (Chapter 5) and the characterizations
of the compact subsets of the spaces LpðEÞ for all 1� p\1 (Chapter 6).

The Tychonov Theorem is proved with its application in mind in the proof of the
Alaoglu Theorem on the weak� compactness of closed balls in a linear, normed space.

We introduce the notion of linear, topological vector spaces and that of linear
maps and functionals and their relation to boundedness and continuity.

The discussion turns quickly to metric spaces, their topology, and their structure.
Examples are drawn mostly from spaces of continuous or continuously differen-
tiable functions or integrable functions. The notions and characterizations of
compactness are rephrased in the context of metric spaces. This is preparatory to
characterizing the structure of compact subsets of LpðEÞ.

The structure of complete metric spaces is analyzed through Baire’s Category
Theorem. This plays a role in subsequent topics, such as an indirect proof of the
existence of nowhere differentiable functions (Chapter 5), in the structure of Banach
spaces (Chapter 6), and in questions of completeness and non-completeness of
various topologies on C1

o ðEÞ (Chapter 8).
Chapter 3 is a modern account of measure theory. The discussion starts from the

structure of open sets in R
N as sequential coverings to construct measures and a

brief introduction to the algebra of sets. Measures are constructed from outer
measure by the Charathéodory process. The process is implemented in specific
examples such as the Lebesgue-Stiltjes measures in R and the Hausdorff measure.
The latter seldom appears in introductory textbooks in Real Analysis. We have
chosen to present it in some detail because it has become, in the past two decades,
an essential tool in studying the fine properties of solutions of partial differential
equations and systems. The Lebesgue measure in R

N is introduced directly starting
from the Euclidean measure of cubes rather than regarding it, more or less
abstractly, as the N-product of the Lebesgue measure on R. In R

N , we distinguish
between Borel sets and Lebesgue measurable sets, by cardinality arguments and by
concrete counterexamples.

For general measures, emphasis is put on necessary and sufficient criteria of
measurability in terms of . In this, we have in mind the operation of
measuring a set as an approximation process. From the applications point of view,
one would like to approximate the measure of a set by the measure of measurable
sets containing it and measurable sets contained into it. The notion is further
expanded in the theory of Radon measures and their regularity properties.

It is also further expanded into the covering theorems, even though these rep-
resent an independent topic in their own right. The Vitali Covering Theorem is
presented by the proof due to Banach. The Besicovitch covering is presented by
emphasizing its value for general Radon measures in R

N . For both, we stress the
measure-theoretical nature of the covering as opposed to the notion of covering a
set by inclusion.
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Coverings have made possible an understanding of the local properties of
solutions of partial differential equations, chiefly the Harnack inequality for
non-negative solutions of elliptic and parabolic equations. For this reason, in the
Complements of this chapter, we have included various versions of the Vitali and
Besicovitch covering theorems.

Chapter 4 introduces the Lebesgue integral. The theory is preceded by the
notions of measurable functions, convergence in measure, Egorov’s Theorem on
selecting almost everywhere convergent subsequences from sequences convergent
in measure, and Lusin’s Theorem characterizing measurability in terms of
quasi-continuity. This theorem is given relevance as it relates measurability and
local behavior of measurable functions. It is also a concrete application of the
necessary and sufficient criteria of measurability of the previous chapter.

The integral is constructed starting from non-negative simple functions by the
Lebesgue procedure. Emphasis is placed on convergence theorems and the Vitali’s
Theorem on the absolute continuity of the integral. The Peano-Jordan and Riemann
integrals are compared to the Lebesgue integral by pointing out differences and
analogies.

The theory of product measures and the related integral is developed in the
framework of the Charathéodory construction by starting from measurable rect-
angles. This construction provides a natural setting for the Fubini-Tonelli
Theorem on multiple integrals.

Applications are provided ranging from the notion of convolution, the conver-
gence of the Marcinkiewicz integral, to the interpretation of an integral in terms
of the distribution function of its integrand.

The theory of measures is completed in this chapter by introducing the notion of
signed measure and by proving Hahn’s Decomposition Theorem. This leads to
other natural notions of decompositions such as the Jordan and Lebesgue
Decomposition Theorems. It also suggests naturally other notions of comparing two
measures, such as the absolute continuity of a measure m with respect to another
measure l. It also suggests representing m, roughly speaking, as the integral of l by
the Radon-Nykodým Theorem.

Relating two measures finds application in the Besicovitch-Lebesgue Theorem,
presented in the next chapter, and connecting integrability of a function to some of
its local properties.

Chapter 5 is a collection of applications of measure theory to issues that are at
the root of modern analysis. What does it mean for a function of one real variable to
be differentiable? When can one compute an integral by the Fundamental
Theorem of Calculus? What does it mean to take the derivative on an integral?
These issues motivated a new way of measuring sets and the need for a new notion
of integral.

The discussion starts from functions of bounded variation in an interval and their
Jordan’s characterization as the difference of two monotone functions. The notion
of differentiability follows naturally from the definition of the four Dini’s numbers.
For a function of bounded variation, its Dini numbers, regarded as functions, are
measurable. This is a remarkable fact due to Banach.
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Functions of bounded variations are almost everywhere differentiable. This is a
celebrated theorem of Lebesgue. It uses, in an essential way, Vitali’s Covering
Theorem of Chapter 3.

We introduce the notion of absolutely continuous functions and discuss simi-
larities and differences with respect to functions of bounded variation. The
Lebesgue theory of differentiating an integral is developed in this context. A natural
related issue is that of the density of a Lebesgue measurable subset of an interval.
Almost every point of a measurable set is a density point for that set. The proof uses
a remarkable theorem of Fubini on differentiating term by term a series of monotone
functions.

Similar issues for functions of N real variables are far more delicate. We present
the theory of differentiating a measure m with respect to another l by identifying
precisely such a derivative in terms of the singular part and the absolutely con-
tinuous part of l with respect to m. The various decompositions of measures of
Chapter 4 find here their natural application, along with the Radon-Nykodým
Theorem.

The pivotal point of the theory is the Besicovitch-Lebesgue Theorem asserting
that the limit of the integral of a measurable function f when the domain of inte-
gration shrinks to a point x actually exists for almost all x and equals the value of f
at x. The shrinking procedure is achieved by using balls centered at x, and the
measure can be any Radon measure. This is the strength of the Besicovitch covering
theorem. We discuss the possibility of replacing balls with domains that are,
roughly speaking, comparable to a ball. As a consequence, almost every point of an
N-dimensional Lebesgue-measurable set is a density point for that set.

The final part of the chapter contains an array of facts of common use in real
analysis. These include basic facts on convex functions of one variable and their
almost everywhere double differentiability. A similar fact for convex functions of
several real variables (known as the Alexandrov Theorem) is beyond the scope
of these notes. In the Complements, we introduce the Legendre transform and
indicate the main properties and features.

We present the Ascoli-Arzelá Theorem, keeping in mind a description of
compact subsets of spaces of continuous functions.

We also include a theorem of Kirzbraun and Pucci extending bounded, con-
tinuous functions in a domain into bounded, continuous functions in the whole RN

with the same upper bound and the same concave modulus of continuity. This
theorem does not seem to be widely known.

The final part of the chapter contains a detailed discussion of the
Stone-Weierstrass Theorem. We present first the Weierstrass Theorem (in N
dimensions) as a pure fact of Approximation Theory. The polynomials approxi-
mating a continuous function f in the sup-norm over a compact set are constructed
explicitly by means of the Bernstein polynomials. The Stone Theorem is then
presented as a way of identifying the structure of a class of functions that can be
approximated by polynomials.
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Chapter 6 introduces the theory of Lp spaces for 1� p�1. The basic
inequalities of Hölder and Minkowski are introduced and used to characterize the
norm and the related topology of these spaces. A discussion is provided to identify
elements of LpðEÞ as equivalence classes.

We introduce also the LpðEÞ spaces for 0\p\1 and the related topology. We
establish that there are not convex open sets except LpðEÞ itself and the empty set.

We then turn to questions of convergence in the sense of LpðEÞ and their
completeness (Riesz-Fisher Theorem) as well as issues of separating such spaces by
simple functions. The latter serves as a tool in the notion of weak convergence of
sequences of functions in LpðEÞ. Strong and weak convergence are compared and
basic facts relating weak convergence and convergence of norms are stated and
proved.

The Complements contain an extensive discussion comparing the various
notions of convergence.

We introduce the notion of functional in LpðEÞ and its boundedness and conti-
nuity and prove the Riesz representation Theorem, characterizing the form of all the
bounded linear functionals in LpðEÞ for 1 � p � 1. This proof is based on the
Radon-Nykodým Theorem and as such is measure theoretical in nature.

We present a second proof of the same theorem based on the topology of Lp. The
open balls that generate the topology of LpðEÞ are strictly convex for 1\p\1.
This fact is proved by means of the Hanner and Clarkson’s inequality, which while
technical, are of interest in their own right.

The Riesz Representation Theorem permits one to prove that if E is a
Lebesgue-measurable set in R

N , then LpðEÞ for 1� p\1, are separable. It also
permits one to select weakly convergent subsequences from bounded ones. This
fact holds in general, reflexive, separable Banach spaces (Chapter 7). We have
chosen to present it independently as part of the Lp theory. It is our point of view
that a good part of functional analysis draws some of its key facts from concrete
spaces, such as spaces of continuous functions, the Lp, space and the spaces ‘p.

The remainder of the chapter presents some technical tools regarding LpðEÞ for
E, a Lebesgue-measurable set in R

N , to be used in various parts of the later
chapters. These include the continuity of the translation in the topology of LpðEÞ,
the Friedrichs mollifyiers, and the approximation of functions in LpðEÞ with C1ðEÞ
functions. It includes also a characterization of the compact subsets in LpðEÞ.

Chapter 7 is an introduction to those aspects of functional analysis closely related
to the Euclidean spaces R

N , the spaces of continuous functions defined on some
open set E � R

N , and the spaces LpðEÞ. These naturally suggest the notion of finite
dimensional and infinite dimensional normed spaces. The difference between the
two is best characterized in terms of the compactness of their closed unit ball. This
is a consequence of a beautiful counterexample of Riesz.

The notions of maps and functionals is rephrased in terms of the norm topology.
In R

N , one thinks of a linear functional as an affine functions whose level sets are
hyperplanes through the origin. Much of this analogy holds in general normed
spaces with the proper rephrasing.
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Families of pointwise equi-bounded maps are proven to be uniformly
equi-bounded as an application of Baire’s Category Theorem.

We also briefly consider special maps such as those generated by Riesz potential
(estimates of these potentials are provided in Chapter 9), and related Fredholm
integral equations.

A proof of the classical Open Mapping Theorem and Closed Graph Theorem are
presented as a way of inverting continuous maps to identify isomorphisms out of
continuous linear maps.

The Hahn-Banach Theorem is viewed in its geometrical aspects of separating
closed convex sets in a normed space and of “drawing” tangent planes to a convex
set.

These facts all play a role in the notion of weak topology and its properties.
Mazur’s Theorem on weak and strong closure of convex sets in a normed space is
related to the weak topology of the LpðEÞ spaces. These provide the main examples,
as convexity is explicit through Clarkson’s inequalities.

The last part of the chapter gives an introduction to Hilbert spaces and their
geometrical aspects through the parallelogram identity. We present the Riesz
Representation Theorem of functionals through the inner product. The notion of
basis is introduced and its cardinality is related to the separability of a Hilbert space.
We introduce orthonormal systems and indicate the main properties (Bessel’s
inequality) and some construction procedures (Gram-Schmidt). The existence of a
complete system is a consequence of the Hausdorff maximum principle. We also
discuss various equivalent notions of completeness.

Chapter 8 is about spaces of real-valued continuous functions, differentiable
functions, infinitely differentiable functions with compact support in some open set
E � R

N , and weakly differentiable functions.
Together with the LpðEÞ spaces, these are among the backbone spaces of real

analysis.
We prove the Riesz Representation Theorem for continuous functions of com-

pact support in R
N . The discussion starts from positive functionals and their rep-

resentation. Radon measures are related to positive functionals and bounded, signed
Radon measures are related to bounded linear functionals. Analogous facts hold for
the space of continuous functions with compact support in some open set E � R

N .
We then turn to making precise the notion of a topology for C1

o ðEÞ.
Completeness and non-completeness are related to metric topologies in a con-
structive way. We introduce the Schwartz topology and the notion of continuous
maps and functionals with respect to such a topology. This leads to the theory of
distributions and its related calculus (derivatives, convolutions etc. of distributions).

Their relation to partial differential equations is indicated through the notion of
fundamental solution. We compute the fundamental solution for the Laplace
operator also in view of its applications to potential theory (Chapter 9) and to
Sobolev inequalities (Chapter 10).

The notion of weak derivative in some open set E � R
N is introduced as an

aspect of the theory distributions. We outline their main properties and state and
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prove the by now classical Meyers-Serrin Theorem. Extension theorems and
approximation by smooth functions defined in domains larger than E are provided.
This leads naturally to a discussion of the smoothness properties of @E for these
approximations and/or extensions to take place (cone property, segment property,
etc.).

We present some calculus aspects of weak derivatives (chair rule, approxima-
tions by difference quotients, etc.) and turn to a discussion of W1;1ðEÞ and its
relation to Lipschitz functions. For the latter, we conclude the chapter by stating and
proving the Rademaker Theorem.

Chapter 9 is a collection of topics of common use in real analysis and its
applications. First is the Wiener version of the Vitali Covering Theorem (commonly
referred to as the “simple version” of Vitali’s Theorem). This is applied to the
notion of maximal function, its properties, and its related strong type Lp estimates
for 1\p\1. Weak estimates are also proved and used in the Marcinkiewicz
Interpolation Theorem. We prove the by now classical Calderón-Zygmund
Decomposition Theorem and its applications to the space functions of bounded
mean oscillation (BMO) and the Stein-Fefferman Lp estimate for the sharp maximal
function.

The space of BMO is given some emphasis. We give the proof of the
John-Nirenberg estimate and provide its counterexample. We have in mind here the
limiting case of some potential estimates (later in the chapter) and the limiting
Sobolev embedding estimates (Chapter 10).

We introduce the notion of rearranging the values of functions and provide their
properties and the related notion of equi-measurable function. The discussion is for
functions of one real variable. Extensions to functions of N real variables are
indicated in the Complements.

The goal is to prove the Riesz convolution inequality by rearrangements. The
several proofs existing (Riesz, Zygmund, Hardy-Littlewood-Polya) all use, one way
or another, the symmetric rearrangement of an integrable function.

We have reproduced here the proof of Hardy-Littlewood-Polya as appearing in
their monograph [70]. In the process, we need to establish Hardy’s inequality, of
interest in its own right.

The Riesz convolution inequality is presented in several of its variants, leading
to an N-dimensional version of it through an application of the continuous version
of the Minkowski inequality.

Besides its intrinsic interest of these inequalities, what we have in mind here is to
recover some limiting cases of potential estimates an their related Sobolev
embedding inequalities.

The final part of the chapter introduces the Riesz potentials and their related Lp

estimates, including some limiting cases. These are on one hand based on the
previous Riesz convolution inequality, and on the other hand to Trudinger’s version
of the BMO estimates for particular functions arising as potentials.

Chapter 10 provides an array of embedding theorems for functions in Sobolev
spaces. Their importance to analysis and partial differential equations cannot be
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underscored. Although good monographs exist ([1, 104]), I have found it laborious
to extract the main facts, listed in a clean manner and ready for applications.

We start from the classical Gagliardo-Nirenberg inequalitites and proceed to
Sobolev inequalities. We have made an effort to trace, in the various embedding
inequalities, how the smoothness of the boundary enters in the estimates. For
example, whenever the cone condition is required, we trace back in the various
constant the dependence on the height and the angle of the cone. We present the
Poincaré inequalities for bounded, convex domains E, and trace the dependence
of the various constants on the “modulus of convexity” of the domain through the
ratio of the radius of the smallest ball containing E and the largest ball contained in
E. The limiting case p ¼ N of the Sobolev inequality builds of the limiting
inequalities for the Riesz potentials, and is preceded by an introduction to Morrey
spaces and their connection to BMO.

The characterization of the compact subsets of LpðEÞ (Chapter 6) is used to
prove Reillich’s Theorem on compact Sobolev inequalities.

We introduce the notion of trace of function in W1;pðRN � R
þ Þ on the hyper-

plane xNþ 1 ¼ 0. Through a partition of unity and a local covering, this provides the
notion of trace of functions in W1;pðEÞ on the boundary @E, provided such a
boundary is sufficiently smooth. Sharp inequalities relating functions in W1;pðEÞ
with the integrability and regularity of their traces on @E are established in terms of
fractional Sobolev spaces. Such inequalities are first established for E being a
half-space and @E an hyperplane, and then extended to general domains E with
sufficiently smooth boundary @E. In the Complements we characterize functions f
defined and integrable on @E as traces on @E of functions in some Sobolev spaces
W1;pðEÞ. The relation between p and the order of integrability of f on @E is shown
to be sharp. For special geometries, such as a ball, the inequality relating the
integral of the traces and the Sobolev norm can be made explicit. This is indicated
in the Complements.

The last part of the chapter contains a newly established multiplicative Sobolev
embedding for functions in W1;pðEÞ that do not necessarily vanish on @E. The open
set E is required to be convex. Its value is in its applicability to the asymptotic
behavior of solutions to Neumann problems related to parabolic partial differential
equations.
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Chapter 1
Preliminaries

1 Countable Sets

A set E is countable if it can be put in one-to-one correspondence with a subset of
the natural numbers N. Every subset of a countable set is countable.

Proposition 1.1 The set SE of the finite sequences of elements of a countable set E
is countable.

Proof Let {2, 3, 5, 7, 11, . . . ,m j . . .} be the sequence of prime numbers. Every pos-
itive integer n has a unique factorization, of the type

n = 2α13α2 · · ·mα j

j

where the sequence {α1, . . . ,α j } is finite and the αi are nonnegative integers. Let
now σ = {e1, . . . , e j } be an element of SE . Since E is countable, to each element
ei there corresponds a unique positive integer αi . Thus to σ there corresponds the
unique positive integer given by the indicated factorization.

Corollary 1.1 The set of pairs {m, n} of integers is countable.
Corollary 1.2 The set Q of the rational numbers is countable.

Proof The rational numbers can be put in one-to-one correspondence with a subset
of the ratios m

n for two integers m, n with n �= 0.

Proposition 1.2 The union of a countable collection of countable sets is countable.

Proof Let {E j } be a countable collection of countable sets. Since each of the E j is
countable, their elements may be listed as

© Springer Science+Business Media New York 2016
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E1 = {a11 a12 a13 . . . a1n . . .}
E2 = {a21 a22 a23 . . . a2n . . .}
· · · = {· · · · · · · · · · · · · · · · · · }
Em = {am1 am2 am3 . . . amn . . .}
· · · = {· · · · · · · · · · · · · · · · · · }

Thus the elements of ∪E j are in one-to-one correspondence with a subset of the
ordered pairs {m, n} of natural numbers.

Proposition 1.3 (Cantor [22]) The interval [0, 1] as a subset of R, is not countable.
Proof Theproof usesCantor’s diagonal process. If [0, 1]were countable, its elements
could be listed as the countable collection

x j = 0.a1 j a2 j · · · amj · · · for j ∈ N

where amj are integers from 0 to 9. Now set a j = 1 if a j j is even and a j = 2 if a j j

is odd. Then, the element x = 0.a1a2 · · · , is in [0, 1] and is different from any one
of the {x j }.

2 The Cantor Set

Divide the closed interval [0, 1] into 3 equal subintervals and remove the central
open interval I1 = ( 13 ,

2
3 ), so that [0, 1] − I1 = [0, 1

3 ] ∪ [ 23 , 1]. Subdivide each of
these intervals in 3 equal parts and remove their central open interval. If I2 is the set
that has been removed

I2 = (
1
32 ,

2
32

) ∪ (
7
32 ,

8
32

)

[0, 1] − I1 ∪ I2 = [
0, 1

32
] ∪ [

2
32 ,

3
32 i

] ∪ [
6
32 ,

7
32

] ∪ [
8
32 , 1

]
.

We subdivide each of the closed intervals making up [0, 1] − I1 ∪ I2, into 3 equal
subintervals and remove their central open interval. If I3 is the set that has been
removed

I3 = (
1
33 ,

2
33

) ∪ (
7
33 ,

8
33

) ∪ (
19
33 ,

20
33

) ∪ (
25
33 ,

26
33

)

[0, 1] − (I1 ∪ I2 ∪ I3) = [
0, 1

33
] ∪ [

2
33 ,

3
33

] ∪ [
6
33 ,

7
33

] ∪ [
8
33 ,

9
33

]

∪ [
18
33 ,

19
33

] ∪ [
20
33 ,

21
32

] ∪ [
24
33 ,

25
33

] ∪ [
26
33 , 1

]
.

Proceeding in this fashion defines a sequence of disjoint open sets In , each being
the finite, disjoint union of open intervals and satisfying

meas(In) = 2n−1

3n
and

∑
meas(In) = 1.
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The Cantor set C = [0, 1] − ∪In is the set that remains after removing, the
union of the In out of [0, 1]. The Cantor set C is closed and each of its point is an
accumulation point of the extremes of the intervals In . Thus C coincides with the set
of all its accumulation points. Set

E =
{

the collection of all sequences {εn}
where the numbers εn are either 0 or 1

}
.

Every element x ∈ C can be represented as (2.1–2.2 of the Complements)

x = ∑ 2

3 j
ε j for some sequence {εn} ∈ E . (2.1)

Every element of C is associated to one and only one sequence {εn} ∈ E by the
representation formula (2.1). For example

1
3 ↔ {0, 1, 1, 1, . . . , 1, . . .} 2

3 ↔ {1, 0, 0, 0, . . . , 0, . . .}
1
9 ↔ {0, 0, 1, 1, . . . , 1, . . .} 2

9 ↔ {0, 1, 0, 0, . . . , 0, . . .}
7
9 ↔ {1, 0, 1, 1, . . . , 1, . . .} 8

9 ↔ {1, 1, 0, 0, . . . , 0, . . .}.

Vice versa any such a sequence identifies by (2.1) one and only one element of C.
The set of all sequences in E has the cardinality of the real numbers in [0, 1], being
their binary representation. Thus C has the cardinality ofR and therefore is uncount-
able. It also follows from (2.1) that the Cantor set could be defined alternatively as
the set of those numbers in [0, 1] whose ternary expansion has only the digits 0 and
2. The two definitions are equivalent.

3 Cardinality

Two sets X and Y have the same cardinality if there exists a one-to-one map f
from X onto Y . In such a case one writes card(X) = card(Y ). If X is finite, then
card(X) is the number of elements of X . The formal inequality card(X) ≤ card(Y )

means that there exists a one-to-one map from X into Y . In particular if X ⊂ Y ,
then card(X) ≤ card(Y ). The formal inequality card(X) ≥ card(Y )means that there
exists a one-to-one map from X onto Y . In particular if X ⊃ Y , then card(X) ≥
card(Y ).

Proposition 3.1 (Schöder–Bernstein) Let X and Y be any two sets. If card(X) ≤
card(Y ) and card(X) ≥ card(Y ), then card(X) = card(Y ).

Proof Let f and be a one-to-one function from X into Y and let g be a one-to-one
function from Y into X . Partition X into the disjoint union of three sets Xo, X1, X2 by
the following iterative procedure. If x is not in the range of g we say that x ∈ X1. If
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x is in the range of g form g−1(x) ∈ Y . If g−1(x) is not in the range of f the process
terminates and we say that x ∈ X2. Otherwise form f −1(g−1(x)). If such an element
is not in the range of g the process terminates and we say that x ∈ X1. Proceeding
in this fashion, either the process can be continued indefinitely or it terminates. If it
terminates with an element not in the range of g we say that the starting element is in
X1. If it terminates with an element not in the range of f we say that the starting x is
in X2. If it can be continued indefinitely we say that x ∈ Xo. The three sets Xo, X1,
X2 are disjoint and X = Xo ∪ X1 ∪ X2. Similarly Y = Yo ∪ Y1 ∪ Y2 where the sets
Y j for j = 0, 1, 2 are constructed similarly. By construction f is a bijection from
Xo onto Yo and from X1 onto Y2. Similarly g is a bijection from Y1 onto X2. Thus
the map h : X → Y defined by

h(x) =
{
f (x) if x ∈ Xo ∪ X1

g−1(x) if x ∈ X2

is a one-to-one map from X onto Y .

Corollary 3.1 card(X) = card(Y ) if and only if card(X) ≤ card(Y ) and card(X) ≥
card(Y ).

The formal strict inequality card(X) < card(Y ) means that any one-to-one function
f : X → Y is not a surjection, that is, roughly speaking, X contains strictly fewer
elements than Y . For example card(N) < card(R).

3.1 Some Examples

A set X has the cardinality of N if it can be put in a one-to-one correspondence
with N. In such a case one writes card(X) = card(N). For example card(Z) =
card(Q) = card(N). A set X has the cardinality of R if it can be put in a one-to-one
correspondence with R. In such a case one writes card(X) = card(R). For example
if C is the Cantor set, card(C) = card(R). For a positive integer m denote by

Xm = X × X × · · · × X︸ ︷︷ ︸
m times

the collection of all m-tuples (x1, . . . , xm) of elements of X . Also, denote by 2X the
set of all subsets of a set X . Thus 2N is the collections of all subsets of N and 2R is
the collection of all subsets of R.

Proposition 3.2 card(Nm) = card(N) and card(2N) = card(R). Moreover for any
X there holds card(2X ) > card(X).

Proof The first statement follows form Proposition 1.1. A non-empty subset A ⊂ N,
consists of an increasing sequence, finite or infinite, of positive integers, say for
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example A = {m1, . . . ,mn, . . .}. Label by zero the elements of N − A, and by 1
the elements of A, and keep their ordering within N. This uniquely identifies the
sequence

εA = {0, . . . , 1m1 , . . . , 0, . . . , 1m2 , . . .} ∈ E .

If A = ∅ associate to ∅ the sequence ε∅ whose elements are all zero. Conversely,
any sequence {εn} ∈ E identifies uniquely, by the inverse process, one and only one
element of 2N. Thus 2N is in one-to-one correspondence with the Cantor set E , which,
in turn, is in one-to-one correspondence with R.

The last statement is established by proving that no function f : X → 2X is
a surjection. Let f be any such function and set A f = {x ∈ X |x /∈ f (x)}. The
set A f could be empty. If f were a surjection, there would exists y ∈ X such
that f (y) = A f . By the definition of A f , such a y cannot be neither in A f nor in
X − A f .

Corollary 3.2 Given any non-empty set X, there exists a set Y containing X and of
strictly larger cardinality.

Corollary 3.3 card(R) < card(2R).

4 Cardinality of Some Infinite Cartesian Products

For a positive integerm, the set Xm is the collection of allm-tuples of elements of X .
Any suchm-tuple (x1, . . . , xm) can be regarded as a function from the firstm integers
(1, . . . ,m) into X . By analogy XN is defined as the collection of all sequences of
elements of X , and any such sequence {xn} can be regarded as a function from
N into X . For example R

N is the collection of all sequences of real numbers or
equivalently is the collection of all functions f : N → R. The product space (0, 1)N

is called the Hilbert cube and is the collection of all sequences {xn} of elements in
(0, 1). Let {0, 1} denote any set consisting of only 2 elements, say for example 0
and 1. Then {0, 1}N is in one-to-one correspondence with the Cantor set. Therefore
card({0, 1}N) = card(R).

If A is any set, countable or not, the Cartesian product X A is defined to be the
collection of all functions f : A → X . For example (0, 1)(0,1) is the collection of
all functions f : (0, 1) → (0, 1). Likewise RR is the set of all real valued functions
defined in R.

Proposition 4.1 card(2N × 2N) = card(2N) = card(R).

Proof We exhibit a one-to-one correspondence between (2N × 2N) and 2N. For any
two subsets A and B of N, set

g(A) = ⋃

n∈A
{2n}, h(B) = ⋃

m∈B
{2m − 1}.
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Then for any pair of sets A, B ∈ 2N define

f (A, B) = g(A) ∪ h(B) = C ∈ 2N.

By this procedure, every element (A, B) ∈ 2N × 2N is mapped into one and only
one element of 2N. Vice-versa, given any C ∈ 2N, by separating its even and odd
numbers, identifies in a unique manner two sets A and B in 2N, and hence a unique
element (A, B) ∈ 2N × 2N.

Corollary 4.1 card(Rm) = card(R), for all m ∈ N.

Proof Let first m = 2. Then

card(R2) = card(R × R) = card(2N × 2N) = card(R).

For general m ∈ N the statement follows by induction.

Proposition 4.2 Let X,Y and Z be any triple of sets. Then

card
(
XY×Z

) = card
[(
XY

)Z ]
.

Proof Let f ∈ XY×Z so that f (y, z) ∈ X for all pairs (y, z) ∈ Y × Z . For a fixed
z ∈ Z , set hz(y) = f (y, z). This gives an element of XY . Thus as z ranges over Z ,
the map hz(·) uniquely identifies a function from Z into XY . Conversely any element
hz ∈ (XY )Z uniquely identifies an element f ∈ XY×Z by the same formula.

Corollary 4.2 card(RN) = card(R).

Proof Since R is in one-to-one correspondence with {0, 1}N

card(RN) = card
[
({0, 1}N)N

] = card
({0, 1}N×N

) = card({0, 1}N) = card(R)

since N × N and N are in one-to-one correspondence.

Corollary 4.3 card
(
N

N
) = card(R).

Proof An element of NN is a sequence of elements of N. In particular NN contains
those sequences containing only two fixed elements of N, say for example {1, 2}.
Therefore {1, 2}N ⊂ N

N, and

card
(
N

N
) ≥ card

({1, 2}N) = card(R).

On the other hand N
N is contained in RN, and

card
(
N

N
) ≤ card

(
R

N
) = card(R).



5 Orderings, the Maximal Principle, and the Axiom of Choice 7

5 Orderings, the Maximal Principle, and the Axiom
of Choice

A relation ≺ on a set X , is a partial ordering of X if it is transitive (x ≺ y and y ≺ z
implies x ≺ z) and antisymmetric (x ≺ y and y ≺ x implies x = y). The relation
≤ of less than or equal to is a partial ordering of R. The set inclusion ⊆ partially
orders the set 2X of all subsets of X .

A partial ordering ≺ on a set X is a linear or total ordering on X if for any two
elements x, y ∈ X , either x ≺ y or y ≺ x . The relation ≤ is a linear ordering on R,
whereas ⊆ is not a linear ordering on 2X .

Let X be a set partially ordered by a relation ≺ and let E ⊂ X . An upper bound
of a subset E ⊂ X , is an element x ∈ X such that y ≺ x for all y ∈ E . If x ∈ E ,
then x is a maximal element of E .

A linearly ordered subset E ⊂ X is maximal if any linearly ordered subset of X
containing E , coincides with E . Partial and linear ordering are meant with respect to
the same ordering ≺. In particular if E is a proper subset of X , linearly ordered and
maximal with respect to the same relation ≺ by which X is partially ordered, then
for all x ∈ X−E , the set E∪{x} ⊂ X is not linearly ordered, by the same ordering≺.

TheHausdorffMaximal Principle: Every partially ordered set contains a maximal
linearly ordered subset, by the same ordering.

The HausdorffMaximal Principle will be taken here as an Axiom. The maximality
and ordering statements given below, that is, Zorn’s lemma, the Axiom of Choice,
and theWell Ordering Principle, will be proven to be a consequence of the Hausdorff
Maximal Principle. Actually it can be proven that all these maximality and ordering
statements are equivalent, that is, any one of them, taken as an Axiom, implies the
remaining three ([80]).

Zorn’s Lemma: Let X be a partially ordered set X, such that every linearly ordered
subset has an upper bound. Then X has a maximal element.

Proof Let M be the maximal linearly ordered set claimed by the Maximal Principle.
An upper bound for M is a maximal element of X .

The Axiom of Choice: Let {Xα} be a collection of nonempty sets, as the index α
ranges over some set A. There exists a function f defined in A, such that f (α) ∈ Xα.
Equivalently one may choose an element xα out of each set Xα. If the sets of the
collection {Xα} are disjoint, one might select one and only one representative out of
each Xα.

Proof A functionϕ that maps the elements β of a subset B ⊂ A into elements of Xβ ,
may be regarded as a set of ordered pairs ϕ = ∪{(β, xβ) where β ∈ B and xβ ∈ Xβ ,
such that no two of such pairs have the same first coordinate. The set Φ of all such
ϕ is partially ordered by inclusion. Let Ψ be a linearly ordered subset of Φ and set
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ψ = ∪{ϕ|ϕ ∈ Ψ }. Such a ψ is union of pairs (α, xα) for α ∈ A and xα ∈ Xα. Since
Ψ is linearly ordered, any two such pairs (α, xα) and (β, xβ) must belong to some
ϕ ∈ Ψ . Therefore α �= β since ϕ is a function. This implies that ψ is a function in Φ

and is an upper bound for Ψ . Thus every linearly ordered subset of Φ has an upper
bound. By Zorn’s lemma Φ has a maximal element f . To prove the axiom it remains
to show that the domain of f is A. If not, we may select an element α ∈ A−dom{ f }
and associate to it an element xα ∈ Xα, since Xα is not empty. Then the function
f ′ = f ∪ (α, xα) is in Φ and f ⊂ f ′, against the maximality of f .

Corollary 5.1 Let X be a set. There exists a function f : 2X → X such that
f (E) ∈ E, for every E ⊂ X. Equivalently, one may choose an element out of every
subset of X.

6 Well Ordering

A linear ordering ≺ is a well ordering of X if every subset of X has a first element.
The set N of positive integers is well ordered by ≤. The set R is not well ordered by
the same ordering.

Well Ordering Principle ([177]): Every set X can be well ordered, that is, there
exists a relation ≺ that well orders X .

Proof Let f : 2X → X be a function as in Corollary 5.1, whose existence is
guaranteed by the axiom of choice. Set

x1 = f (X) and xn = f
(
X −

n−1⋃

j=1
x j

)
for n ≥ 2.

The sequence {xn} can be given the ordering of N and, as such, is well ordered.
Let D be a subset of X and let ≺ be a linear ordering defined on D. A subset E ⊂ D
is a segment, relative to ≺ if for any x ∈ E , all the elements y ∈ D such that
y ≺ x , belong to E . The segments of {xn}, relative to the ordering induced by N, are
the sets of the form {x1, x2, . . . , xm} for some m ∈ N. The union and intersection
of two segments is a segment. The empty set is a segment relative to any linear
ordering≺. Denote byF the family of linear orderings≺ defined on subsets D ⊂ X
and satisfying:

If E ⊂ D is a segment, then the first element of D − E is f (X − E). (∗)

Such a family is not empty since the ordering of N on the domain D = {xn} is
in F .

Lemma 6.1 Every element of F is a well ordering on its domain.
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Proof Let D ⊂ X be the domain of a linear ordering ≺∈ F . For a nonempty subset
A ⊂ D let

E = {y ∈ D
∣∣ y ≺ x for all x ∈ A and y �= x}.

Then the first element of A is the first element of D−E and the latter is f (X −E)

since E is a segment.

Lemma 6.2 Let ≺1 and ≺2 be two elements in F with domains D1 and D2. Then,
one of the two domains, say for example D1 is a segment for the other, say for example
D2 with respect to the corresponding ordering ≺2. Moreover ≺1 and ≺2 coincide on
such a segment.

Proof Let E denote the set of all x such that

{y ∈ D1

∣∣ y ≺1 x} = {y ∈ D2

∣∣ y ≺2 x}

and such that ≺1 and ≺2 agree on these two sets. By construction E is a segment
for both D1 and D2 with respect to their orderings. The set E must coincide with at
least one of D1 and D2. If not, the element f (X − E) is the first element of both
D1 − E and D2 − E . By the definition of E , such an element is in E . This is however
a contradiction since f (X − E) /∈ E .

Let Do be the union of the domains of the elements ofF . Let also≺o be that order-
ing on Do that coincides with the ordering ≺ in F on its domain D. By Lemma 6.2
this is a linear ordering on Do and it satisfies the requirement (*) of the classF . There-
fore by Lemma 6.1, it is a well ordering on Do. It remains to show that Do = X .
Consider the set D′

o = Do ∪ { f (X − Do)}, and the ordering ≺′
o that coincides with

≺o on Do and by which f (X − Do) follows any element of Do. One checks that ≺′
o

satisfies the requirements of the class F and its domain is D′
o. Therefore Do = D′

o.
This however is a contradiction unless X − Do = ∅.

6.1 The First Uncountable

Let X be an uncountable set, well ordered by the ordering ≺. Without loss of gener-
ality we may assume that X has an upper bound, that is, there exists some x∗ ∈ X
such that x ≺ x∗ for all x ∈ X − {x∗}. Indeed if not we may add to X an element
x∗ and on X ∪ {x∗} define an ordering ≺∗ to coincide with ≺ on X and by which
x ≺ x∗ for all x ∈ X .

For x ∈ X , set Ex = {y ∈ X |y ≺ x}. If Ex is a finite set, then x is called a
finite ordinal. Consider now the set Eo = {x ∈ X |Ex is infinite}. Since X is infinite
and has an upper bound Eo �= ∅. Since X is well ordered by ≺, the set Eo has a
least element denoted by ω. The set Eω is infinite and for each x ≺ ω the set Ex is
finite. For this reason ω is referred to as the first infinite ordinal. The set Eω is the set
of finite ordinals and is in one-to-one correspondence with the set N of the natural



10 1 Preliminaries

numbers ordered with the natural ordering of N. If Ex is a countable set, then x is
called a countable ordinal.

Set E1 = {x ∈ X |Ex is uncountable}. Since X is uncountable and has an upper
bound, E1 �= ∅. Since X is well ordered by≺, the set E1 has a least element denoted
by Ω . The set EΩ is uncountable and for each x ≺ Ω the set Ex is countable. For
this reason Ω is referred to as the first uncountable ordinal.

LetR bewell ordered by≺. The cardinality of Eω is denoted byℵo. The cardinality
of EΩ is denotedbyℵ1. The inclusion EΩ ⊂ R impliesℵ1 ≤ card(R). The continuum
hypothesis states that the cardinality of R is ℵ1, that is, roughly speaking, there are
no sets, in the sense of cardinality, between EΩ and R.

Problems and Complements

1c Countable Sets

1.1. A real number x is called algebraic if it is the root of a polynomial with rational
coefficients. Prove that the set of algebraic numbers is countable.

1.2. Prove that the set of all the prime numbers is countable.

2c The Cantor Set

2.1. Let s ≥ 2 be a positive integer and let {σn} be a sequence of positive integers
that can take only the values 1, . . . , s−1. Any x ∈ [0, 1] has the representation

x = ∑ σn

sn
where {σn} is one such sequence. (2.1c)

The sequence {σn} that identifies x is unique except if x is of the form x = r/sn

for some positive integer r . In the latter case there are exactly 2 sequences that
identify x . Conversely if {σn} is any such sequence, then (2.1c) converges to a
number x ∈ [0, 1]. For s = 2, 3, 10, this gives the binary, ternary or decimal
representation of x .

2.2. Let Ln and Rn denote respectively the set of all the left and right hand points of
the 2n−1 intervals removed out of [0, 1], at the nth step of the construction of
the Cantor set. For example Lo = {1} and Ro = {0}, and

L1 = { 13 } L2 = { 1
32 ,

7
32 } L3 = { 1

33 ,
7
33 ,

19
33 ,

25
33 } · · ·

R1 = { 23 } R2 = { 2
32 ,

8
32 } R3 = { 2

33 ,
8
33 ,

20
33 ,

26
33 } · · · .
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By construction ∪(Ln ∪ Rn) ⊂ C with strict inclusion. The elements of Ln and
Rn can be constructed recursively as

Ln =
{
numbers of the form r + 1

3n
for r ∈

n−1⋃

j=0
R j

}

Rn =
{
numbers of the form r + 2

3n
for r ∈

n−1⋃

j=0
R j

}
.

It follows that if βn ∈ Rn , there exist a finite sequence of positive integers
j1 < j2 < · · · < jn−1 ≤ (n − 1), such that

βn = 2

3 j1
+ 2

3 j2
+ · · · + 2

3 jn−1
+ 2

3n
.

Therefore βn has a ternary expansion with only digits 0 and 2, of the form

βn = {0, . . . , 2 j1 , 0, . . . , 2 j2 , 0, . . . , 2 jn−1 , 0, . . . , 2n, 0n+1, 0, 0, . . .}.

Likewise an element αn ∈ Ln is of the form

αn = 2

3 j1
+ 2

3 j2
+ · · · + 2

3 jn−1
+ 1

3n
.

The ternary expansion of αn has only digits 0 and 2 and is of the form

αn = {0, . . . , 2 j1 , 0, . . . , 2 j2 , 0, . . . , 2 jn−1 , 0, . . . , 1n, 0n+1, 0, 0, . . .}
= {0, . . . , 2 j1 , 0, . . . , 2 j2 , 0, . . . , 2 jn−1 , 0, . . . , 0n, 2n+1, 2, 2, . . .}.

If (αn,βn) is an interval removed out of [0, 1] at the nth step of the process,
thenαn and βn have the same ternary expansion up to the terms of order (n−1).
The term of order n is 2 for the right end point and is 0 for the left hand point.
The remaining terms in the expansion of αn are all 2 and those in the expansion
of βn are all 0.

2.1c A Generalized Cantor Set of Positive Measure

Let α ∈ (0, 1) and out of the interval [0, 1] remove the central open interval

Iα
1 =

(1
2

− α

6
,
1

2
+ α

6

)
of length

α

3
.
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Out of each of the remaining two intervals (0, 1
2 − α

6 ) and ( 12 + α
6 , 1), remove the

two central intervals each of length 1
9α and denote by Iα

2 their union. Proceeding in
this fashion, define sequences of open sets Iα

n each being the finite union of disjoint
open intervals and satisfying

meas(Iα
n ) = α

2n−1

3n
and

∑
meas(Iα

n ) = α.

The generalizedCantor set is the setCα = [0, 1]−∪Iα
n that remains after removing

the union of the Iα
n out of [0, 1].

2.2c A Generalized Cantor Set of Measure Zero

Fix δ ∈ (0, 1
2 ). From [0, 1] remove the open middle interval Io = (δ, 1 − δ), of

length (1 − 2δ), so that

[0, 1] − Io = J1,1 ∪ J1,2, where J1,1 = [0, δ], J1,2 = [1 − δ, 1].

Next, out of J1,1 and J1,2 remove the open middle intervals I1,1 and I1,2, each of
length δ − 2δ2, and denote by I1 their union. Thus

I1 = I1,1 ∪ I1,2, meas(I1) = 2δ − 4δ2

where
I1,1 = (

δ2, δ − δ2
)
, I1,2 = (

1 − (δ − δ2), 1 − δ2
)
.

The set that remains is

[0, 1] − (Io ∪ I1) = J2,1 ∪ J2,2 ∪ J2,3 ∪ J2,4

where
J2,1 = [

0, δ2
]

J2,3 = [
1 − δ, 1 − (δ − δ2)

]
J2,2 = [

δ − δ2, δ
]

J2,4 = [
1 − δ2, 1

]
.

From this

meas(Io ∪ I1) = 1 − 4δ2 and
4∑

j=1
meas(J2, j ) = 4δ2.

Next out of each J2, j remove the open middle interval I2, j , of length δ2 −2δ3 and
denote by I3 their union. Thus
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I3 =
4⋃

j=1
I2, j and meas(I3) = 4δ2 − 8δ3.

The set that remains is

[0, 1] −
3⋃

i=0
Ii =

23⋃

j=1
J3, j

where J3, j are closed disjoint sub-intervals of [0, 1], each of length δ3. Proceeding
in this fashion we generate sequences of open sets In , each being the finite union of
disjoint, open intervals and of disjoint, closed intervals Jm,n ⊂ [0, 1], such that

[0, 1] −
n⋃

i=0
Ii =

2n⋃

j=1
Jn, j .

Moreover

n∑

i=0
meas(Ii ) = 1 − 2nδn and

2n∑

j=1
meas(Jn, j ) = 2nδn.

The generalized Cantor set Cδ is defined as Cδ = [0, 1] − ∪Ii . For δ = 1
3 this

coincides with the Cantor set C introduced in § 2. By construction, meas(Cδ) = 0,
for all δ ∈ (0, 1

2 ).

Remark 2.1c For each n ∈ N the Cantor set Cδ is covered by the union of the closed
intervals Jn, j for j = 1, 2, . . . , 2n .

2.3c Perfect Sets

A non-empty set E ⊂ R
N is perfect if it coincides with the set of its accumulation

points. The Cantor set is perfect. The set of the rational numbers is not perfect.

Proposition 2.1c A perfect set is uncountable.

Proof Assume that E = ⋃
xn , for a sequence {xn} of elements in R

N . Pick y1 ∈
(E − x1). Since dist{x1, y1} > 0, there exists a closed cube Q1, centered at y1 that
avoids x1. Since E is perfect and Q1 is closed and bounded Q1 ∩ E is compact
and avoids x1. Next, remove x2 out of E . The point y1 as an element of E , is an
accumulation point of elements in E − x2. Therefore the intersection Qo

1 ∩ (E − x2)
is not empty and we may pick an element y2 out of it. Since y2 is different than
x1 and x2, there exists a closed cube Q2 centered at y2, contained in Q1 and not
containing x1 and x2. For such a cube Q1 ∩ E ⊃ Q2 ∩ E is compact and avoids x1
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and x2. Proceeding in this fashion construct a nested sequence of closed bounded
sets Qn ∩ E satisfying

Qn−1 ∩ E ⊃ Qn ∩ E is compact and avoids x1, . . . , xn .

Thus
⋂

(Qn ∩ E) = ∅. This however is impossible by 2.4 below.

2.4. Let {En} be a sequence of non-empty, closed sets inRN such that En+1 ⊂ En . If
Eno is bounded for some index no, then ∩En �= ∅. If all the En are unbounded,
their intersection might be empty.

3c Cardinality

Below is an equivalent but constructive proof of the Schröder-Bernstein Theorem.
Define

Xo = X Yo = Y and X1 = f (Xo) Y1 = g(Yo)

and then inductively for all n ∈ N

X2n = g(X2n−1)

Y2n = f (Y2n−1)

X2n+1 = f (X2n)

Y2n+1 = g(Y2n).

By construction

Xo ⊇ Y1 ⊇ X2 ⊇ Y3 ⊇ X4 ⊇ Y5 · · ·
Yo ⊇ X1 ⊇ Y2 ⊇ X3 ⊇ Y4 ⊇ X5 · · · .

From this

∞⋂

j=0
X2 j =

∞⋂

j=0
Y2 j+1 and

∞⋂

j=0
Y2 j =

∞⋂

j=0
X2 j+1.

Set

X∞ =
∞⋂

j=0
X2 j =

∞⋂

j=0
Y2 j+1 and Y∞ =

∞⋂

j=0
Y2 j =

∞⋂

j=0
X2 j+1.

The set X can be partitioned into the disjoint union of the sets

X∞, Xo − Y1, Y1 − X2, X2 − Y3, . . . .

Likewise Y can be partitioned into the disjoint union of the sets

Y∞, Yo − X1, X1 − Y2, Y2 − X3, . . . .
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A bijection from X onto Y is given by

h(x) =
⎧
⎨

⎩

f (x) if x ∈ X2 j − Y2 j+1 for some j = 0, 1, 2, . . .
g−1(x) if x ∈ Y2 j+1 − X2 j+2 for some j = 0, 1, 2, . . .
f (x) if x ∈ X∞.

3.1. The first statement of Proposition 3.2 would be false if N is replaced by a finite
set X . Give conditions on an infinite set X , for which card(Xm) = card(X).



Chapter 2
Topologies and Metric Spaces

1 Topological Spaces

Let X be a set. A collection U of subsets of X defines a topology on X if:

i. the empty set ∅ and X belong to U

ii. the union of any collection of sets in U is in U

iii. the intersection of finitely many elements of U is in U .
The pair {X;U}, that is X endowed with the topology generated by U , is a topo-

logical space. The elements O of U are the open sets of X. A set C in X is closed if
X −C is open. The empty set ∅ and X are both open and closed. It follows from the
definitions that the finite union of closed sets is closed and the intersection of any
collection of closed sets is closed.

An open neighborhood of a set A ⊂ X is any open set that contains A. In particular
a neighborhood of a singleton x ∈ X, is any open set O such that x ∈ O. A subset
O ⊂ X is open if and only if is an open neighborhood of any of its points.

A point x ∈ A is an interior point of A if there exists an open set O such that
x ∈ O ⊂ A. The interior of A is the set of all its interior points. A set A ⊂ X is open
if and only if it coincides with its interior.

A point x is a point of closure of A if every open neighborhood of x intersects A.
The closure Ā of A is the set of all the points of closure of A. A set A is closed if and
only if A = Ā. It follows that A is closed if and only if it is the intersection of all
closed sets containing A.

Let {xn} be a sequence of elements of X. A point x ∈ X is a cluster point for the
sequence {xn} if every open set O containing x, contains infinitely many elements
of {xn}. The sequence {xn} converges to x if for every open setO containing x, there
exists a positive integer m(O) depending on O, such that xn ∈ O for all n ≥ m(O).
Thus limit points for {xn} are cluster points. The converse is false. Indeed, there exist

© Springer Science+Business Media New York 2016
E. DiBenedetto, Real Analysis, Birkhäuser Advanced
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sequences {xn} with a cluster point xo such that no subsequence of {xn} converges to
xo (1.11 of the Complements).

Proposition 1.1 (Cauchy)A sequence {xn} of elements of a topological space {X;U}
converges to x if and only if every subsequence {xn′ } ⊂ {xn} contains in turn a
subsequence {xn′′ } ⊂ {xn′ } converging to x.

Let A and B be subsets of X. The set B is dense in A if A ⊂ B̄. If also B ⊂ A, then
Ā = B̄. The space {X;U} is separable if it contains a countable dense set.

Let Xo be a subset of X. The collection U induces a topology on Xo, by the family
Uo = {O ∩ Xo}. The pair {Xo;Uo} is a topological subspace of {X;U}. A subspace
of a separable topological space need not be separable (4.9 of the Complements).

Let {X;U} and {Y;V} be any two topological spaces. A function f : X → Y is
continuous at a point x ∈ X if for every open set O ∈ V containing f (x), there is an
open set O ∈ U containing x and such that f (O) ⊂ O. A function f : X → Y is
continuous if it is continuous at every x ∈ X. This implies that f is continuous if and
only if the pre-image of every open set is open, that is if for every open set O ∈ V ,
the set f −1(O) is an open set O ∈ U . Equivalently f is continuous if and only if the
pre-image of a closed set is closed.

The restriction of a continuous function f : X → Y to a subset Xo ⊂ X is
continuous with respect to the induced topology of {Xo;Uo}.

An homeomorphism between {X;U} and {Y;V} is a continuous one-to-one func-
tion f fromX onto Y , with continuous inverse f −1. If f : X → Y is a homeomorphism
then f (O) ∈ V for all O ∈ U .

Two homeomorphic topological spaces are equivalent in the sense that the ele-
ments of X are in one-to-one correspondence with the elements of Y and the open
sets making up the topology of {X;U} are in one-to-one correspondence with the
open sets making up the topology of {Y;V}.

The collection 2X of all subsets of X generates a topology on X called the dis-
crete topology. Every function f from

{
X; 2X}

into a topological space {Y;V} is
continuous.

By a real valued function f defined on some {X;U}, we mean a function from
{X;U} into R endowed with the Euclidean topology.

The trivial topology on X is that for which the only open sets are X and ∅. The
closure of any point x ∈ X is X. All the continuous real-valued functions defined on
X are constant.

As a short-hand notation, we denote by X a topological space, whenever a topol-
ogy U is clear from the context, or whenever the specification of a topology U is
immaterial.

1.1 Hausdorff and Normal Spaces

A topological space {X;U} is a Hausdorff space if it separates points, that is, if for
any two distinct points x, y ∈ X, there exist disjoint open sets Ox and Oy such that
x ∈ Ox and y ∈ Ox.



1 Topological Spaces 19

Proposition 1.2 Let {X;U} be aHausdorff topological space. Then, the points x ∈ X
are closed.

Proof Every point y ∈ (X − x) is contained in some open set contained in X − x.
Since X − x is the union of all such open sets, it is open. Thus {x} is closed.
Remark 1.1 The converse is false. See § 4.2 of the Complements.

A topological space {X;U} is normal if it separates closed sets, that is, for any
two disjoint closed sets C1 and C2, there exist disjoint open setsO1 andO2 such that
C1 ⊂ O1 and C2 ⊂ O2.

A normal space need not be Hausdorff. For example the trivial topology is not
Hausdorff but it is normal. However, if in addition the singletons {x} are closed, then
a normal space is Hausdorff. The converse is false as there exist Hausdorff spaces
that do not separate closed sets (§ 1.19 of the Complements).

2 Urysohn’s Lemma

Lemma 2.1 (Uryson [166]) Let {X;U} be normal. Given any two closed, disjoint
sets A and B in X, there exist a continuous function f : X → [0, 1] such that f = 0
on A and f = 1 on B.

Proof We may assume that neither A nor B is empty. Indeed, for example, A = ∅,
the function f = 1 satisfies the conclusion of the Lemma. Let t denote nonnegative,
rational dyadic numbers in [0, 1], that is of the form

t = m

2n
m = 0, 1, . . . , 2n; n = 0, 1, . . . .

For each such t we construct an open set Ot in such a way that the family {Ot}
satisfies

Oo ⊃ A, O1 = X − B, and Ōτ ⊂ Ot whenever τ < t. (2.1)

Since {X;U} is normal, there exists an open setOo containingA andwhose closure
is contained in X − B. For n = 0 and m = 0, select such an open set Oo. For n = 0
andm = 1 selectO1 as in (2.1). To n = 1 andm = 0, 1, 2, there correspond setsOo,
O 1

2
, and O1. The first and last have been selected and we select set O 1

2
so that

Ōo ⊂ O 1
2

⊂ Ō 1
2

⊂ O1.

To n = 2 and m = 0, 1, 2, 3, 4 there correspond open setsO m
22
of which onlyO 1

4

andO 3
4
have to be selected. Since {X;U} is normal, there exist open setsO 1

4
andO 3

4

such that
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Ōo ⊂ O 1
4

⊂ Ō 1
4

⊂ O 1
2

and Ō 1
2

⊂ O 3
4

⊂ Ō 3
4

⊂ O1.

Proceeding by induction, if the open sets Om/2n−1 have been selected we choose
the setsOm/2n by first observing that the ones corresponding to m even, have already
been selected. Therefore, we have only to choose those corresponding to m odd. For
any such m fixed the open sets O(m−1)/2n and O(m+1)/2n have been selected. Since
{X;U} is normal, there exists an open set Om/2n such that

Ō m−1
2n

⊂ O m
2n

⊂ Ō m
2n

⊂ O m+1
2n

.

Define f : X → [0, 1] by setting f (x) = 1 for x ∈ B and

f (x) = inf{t ∣
∣ x ∈ Ot} for x ∈ X − B.

By construction f (x) = 0 on A and f (x) = 1 on B. It remains to prove that f is
continuous. From the definition of f it follows that for all s ∈ (0, 1]

[f < s] = ⋃
t<sOt and [f ≤ s] = ⋂

t>sOt .

Therefore [f < s] is open. On the other hand by the last of (2.1) Ōτ ⊂ Ot ,
whenever τ < t. Therefore

[f ≤ s] = ⋂
t>sOt = ⋂

t>sŌt

and [f ≤ s] is closed.

Corollary 2.1 A Hausdorff space {X;U} is normal if and only if, for every pair of
closed disjoint subsets C1 and C2 of X, there exists a continuous function f : X → R

such that f = 1 on C1 and f = 0 on C2.

3 The Tietze Extension Theorem

Theorem 3.1 (Tietze [158]) Let {X;U} be normal. A continuous function f from a
closed subset C of X into R has a continuous extension on X, that is, there exists a
continuous real-valued function f∗ defined on the whole X, such that f = f∗ on C.
Moreover if f is bounded, say

|f (x)| ≤ M for all x ∈ C for some M > 0

then f∗ satisfies the same bound.
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Proof Assume first that f is bounded and thatM ≤ 1. We will construct a sequence
of real valued, continuous functions {gn}, defined on the whole X, such that for all
n ∈ N

|gn(x)| ≤ 1

3

(2
3

)n−1
for all x ∈ X

∣∣f (x) −
n∑

j=1
gj(x)

∣∣ ≤
(2
3

)n
for all x ∈ C.

(3.1)

Assuming the sequence {gn} has been constructed, by virtue of the first of (3.1), the
series

∑
gn is uniformly convergent in X and |∑ gn| ≤ 1. Therefore, the functions

fn = ∑n
j=1gj are continuous and form a sequence {fn}, uniformly convergent on X

to a continuous function f ∗. From the second of (3.1) it follows that f = f∗ on C. It
remains to construct the sequence {gn}.

Since f is continuous, the two sets [f ≤ − 1
3 ] and [f ≥ 1

3 ] are closed and disjoint.
By Urysohn’s lemma, there exists a continuous function g1 : X → [− 1

3 ,
1
3 ] such that

g1 = 1
3 on [f ≥ 1

3 ] and g1 = − 1
3 on [f ≤ − 1

3 ].

By construction |f (x) − g1(x)| ≤ 2
3 for all x ∈ C. The function h1 = f − g1 is

continuous and bounded on C. The two sets [h1 ≤ − 2
9 ] and [h1 ≥ 2

9 ] are closed and
disjoint. Therefore by Urysohn’s lemma there exists a continuous function g2 : X →
[− 2

9 ,
2
9 ] such that

g2 = 2
9 on [h1 ≥ 2

9 ] and g2 = − 2
9 on [h1 ≤ − 2

9 ].

By construction

|h1 − g2| = |f − (g1 + g2)| ≤ 4
9 on C.

The sequence {gn} is constructed inductively by this procedure. This proves
Tietze’s Theorem if f is bounded and |f | ≤ 1. If f is bounded and |f | ≤ M, the
conclusion follows by replacing f with f /M. If f is unbounded, set

fo = f

1 + |f | .

Since fo : C → R is continuous and bounded it has a continuous extension
go : X → [−1, 1]. In particular

go(x) = f (x)

1 + |f (x)| ∈ (−1, 1) for all x ∈ C.
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This implies that the set [|go| = 1] is closed and disjoint from C. By the Uryshon
Lemma there exists a continuous function η : X → R such that η = 1 on C and
η = 0 on [|go| = 1]. The function

g = ηgo

1 − η|go| : X → R

is continuous and coincides with f on C.

4 Bases, Axioms of Countability and Product Topologies

A family of open sets B is a base for the topology of {X;U}, if for every open setO
and every x ∈ O, there exists a set B ∈ B such that x ∈ B ⊂ O. A collection Bx of
open sets, is a base at x if for each open setO containing x, there exists B ∈ Bx such
that x ∈ B ⊂ O. Thus if B is a base for the topology of {X;U}, it is also a base for
each of the points of X. More generally, B is a base if and only if it contains a base
for each of the points of X. A setO is open if and only if for each x ∈ O there exists
B ∈ B such that x ∈ B ⊂ O.

Let B be a base for {X;U}. Then:
i. Every x ∈ X belongs to some B ∈ B
ii. For any two given sets B1 and B2 in B and every x ∈ B1 ∩B2, there exists some

B3 ∈ B such that x ∈ B3 ⊂ B1 ∩ B2.

The notion of base is induced by the presence of a topology generated by U on
X. Conversely, if a collection of sets B satisfies (i) and (ii), then it permits one to
construct a topology on X for which B is a base.

Proposition 4.1 Let B be a collection of sets in X satisfying (i)–(ii). There exists a
collection U of subsets of X, which generates a topology on X, for which B is a base.

Proof Let U consist of the empty set ∅ and the collection of all subsetsO of X, such
that for every x ∈ O there exists an element B ∈ B such that x ∈ B ⊂ O. Such a
collection is not empty since X ∈ U .

It follows from the definition that the union of any collection of elements in U
remains in U . Moreover U contains the empty set ∅ and X.

Let O1 and O2 be any two elements of U with nonempty intersection. For every
x ∈ O1 ∩ O2 there exist sets B1, B2 and B3 in B such that Bi ⊂ Oi, i = 1, 2 and

x ∈ B3 ⊂ B1 ∩ B2 ⊂ O1 ∩ O2.

Therefore O1 ∩ O2 ∈ U . This implies that the collection U generates a topology
on X for which B is a base.
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A topological space {X;U} satisfies the first axiom of countability if each point x ∈
X has a countable base. The space {X;U} satisfies the second axiom of countability
if there exists a countable base for its topology.

Proposition 4.2 Every topological space satisfying the second axiomof countability
is separable.

Proof Let {O} be a countable base for the topology of {X;U}. For each i ∈ N select
an element xi ∈ Oi. This generates a countable, dense subset of {X;U}.

4.1 Product Topologies

Let {X1;U1} and {X2;U2} be two topological spaces. The product topology U1 × U2

on the Cartesian product X1×X2 is constructed by considering the collection B of all
products O1 × O2 where Oi ∈ Ui for i = 1, 2. These are called the open rectangles
of the product topology. First, one verifies that they form a base in the sense of (i)-
(ii). Then the product topological space {X1 × X2;U1 × U2} is constructed by the
procedure of Proposition 4.1. The symbol U1 × U2 means the collection U of sets in
X1 × X2, constructed by the procedure of Proposition 4.1.

If {X1,U1} and {X2;U2} are Hausdorff spaces, then the topological product space
is a Hausdorff space.

Let X1 ×X2 be endowed with the product topology U1 ×U2. Then the projections

πj : X1 × X2 → Xj, j = 1, 2

are continuous. Moreover U1×U2 is the weakest topology on X1×X2 for which such
projections are continuous. The procedure can be iterated to construct the product
topology on the product of n topological spaces {Xi;Ui}ni=1. Such a topology is the
weakest topology for which the projections

πj :
n∏

i=1
Xi → Xj, j = 1, . . . , n

are continuous. More generally, given an infinite family of topological spaces
{Xα;Uα}α∈A, the product topology

∏Uα on the Cartesian product
∏

Xα is con-
structed as the weakest topology for which the projections

πβ : ∏
Xα → Xβ

are continuous for all β ∈ A. Such a topology must contain the collection

B =
{
finite intersections of the inverse images

π−1
α (Oα) for α ∈ A and Oα ∈ Uα

}
.
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One verifies that B satisfies the conditions (i)–(ii) of a base. Then, the product
topology is generated, starting from such a base, by the procedure of Proposition 4.1.

Let f be a function defined on A such that f (α) ∈ Xα for all α ∈ A.
The collection {f (α)} can be identified with a point in∏

Xα. Conversely any point
x ∈ ∏

Xα can be identified with one such function. If Xα = X for some set X and all
α ∈ A, then

∏
Xα is denoted by XA and it is identified with the set of all functions

defined on A and with values in X. If A = N then XN is the set of all sequences {xn}
of elements of X.

5 Compact Topological Spaces

A collectionF of open setsO is an open covering of X if every x ∈ X is contained in
some O ∈ F . The covering is countable if it consists of countably many elements,
and it is finite if it consists of a finite number of open sets.

It might occur that X is covered by a subfamily F ′ of elements of F . Such a
subfamily, if it exists, is an open sub-covering of X, relative to F .

The topological space {X;U} is compact if every open covering F contains a
finite sub-covering F ′. A set Xo ⊂ X is compact if {Xo;Uo} is a compact topological
space.

A collection G of closed subsets of X has the finite intersection property if the
elements of any finite subcollection have nonempty intersection. Let F be an open
covering for X and let G be the collection of the complements of the elements in
F . The elements of G are closed and if X is compact, G does not have the finite
intersection property. More generally X is compact if and only if every collection
of closed subsets of X with empty intersection, does not have the finite intersection
property.

Proposition 5.1 (i) {X;U} is compact if and only if every collection G of closed
sets with the finite intersection property has nonempty intersection.

(ii) Let E be a closed subset of a compact space {X;U}. Then E is compact.
(iii) Let E be a compact subset of a Hausdorff topological space. Then E is closed.
(iv) Let f from {X;U} into {Y;V} be continuous. If {X;U} is compact then f (X) ⊂ Y

is compact. If in addition f is one-to-one, and {Y;V} is Hausdorff, then f is a
homeomorphism between {X;U} and {Y;V}.

Proof Part (i) follows from the previous remarks. To prove (ii), let F be any open
covering for E. Then the collection {F , (X−E)} is an open covering for X. From this
we may extract a finite sub-covering F ′ for X which, by possibly removing X − E,
gives a finite sub-covering for E.

Turning to (iii), let y ∈ (X − E) be fixed. Since X is a Hausdorff space, for every
x ∈ E there exist disjoint open sets Ox and Ox,y separating x and y. The collection
{Ox} forms an open cover for E, from which we extract a finite one {Ox1 , . . . ,Oxn}
for some positive integer n. The intersection

⋂n
j=1Oxj,y is open and does not intersect
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E. Therefore every element y of the complement ofE contains an open neighborhood
not intersecting E. Thus E is closed.

To establish (iv), let {X;U} be compact and let {Y;V} be the image of a contin-
uous function f from X onto Y . Given an open covering {Φ} of Y , the collection
F = {f −1(Φ)} is an open covering for X from which we may extract a finite one
{f −1(Φ1), . . . , f −1(Φn)}. Then the finite collection {Φ1, . . . , Φn} covers Y .

Let f : X → Y be continuous and one-to-one and let {Y;V} be Hausdorff. A
closed subset E ⊂ X is compact, and its image f (E) is compact in Y and hence
closed. Therefore f −1 is continuous.

Remark 5.1 In (iii), the assumption that {X;U} be Hausdorff cannot be removed.
Indeed if U is the trivial topology on X, every proper subset of X is compact and not
closed.

A topological space {X;U} is locally compact if for each x ∈ X there exists an
open setO containing x and such that Ō is compact. For example,RN endowed with
the Euclidean topology is locally compact but not compact.

5.1 Sequentially Compact Topological Spaces

A topological space {X;U} is countably compact if every countable open covering
of X contains a finite sub-covering. If {X;U} is compact it is also countably compact.
The converse is false (5.7 of the Complements).

A topological space {X;U} has the Bolzano–Weierstrass property if every infinite
sequence {xn} of elements of X has at least one cluster point.

A topological space {X;U} is sequentially compact if every infinite sequence {xn}
of elements of X has a convergent subsequence.

Thus if {X;U} is sequentially compact it has the Bolzano–Weierstrass property.
The converse is false.1

Proposition 5.2 (i) The continuous image of a countably compact space is count-
ably compact.

(ii) {X;U} is countably compact if and only if every countable family G of closed
sets with the finite intersection property has nonempty intersection.

(iii) {X;U} has the Bolzano–Weierstrass property if and only if it is countably
compact.

(iv) If {X;U} is sequentially compact then it is countably compact.
(v) If {X;U} is countably compact and if it satisfies the first axiom of countability,

then it is sequentially compact.

Proof Parts (i)–(ii) follows from the definitions and the proof of Proposition 5.1.
The proof of (iii) uses the characterization of countable compactness stated in (ii).

1By part (v) of Proposition 5.2 a counterexample can be constructed starting from a space {X;U}
that does not satisfy the first axiom of countability. See 5.7 of the Complements.
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Let {X;U} be countably compact and let {xn} be a sequence of elements of X. The
closed sets

Bn = closure of {xn, xn+1, . . . , }

satisfy the finite intersection property and therefore have nonempty intersection. Any
element x ∈ ∩Bn is a cluster point for {xn}.

Conversely let {X;U} satisfy the Bolzano–Weierstrass property and let {Bn} be
a countable collection of closed subsets of X with the finite intersection property.
Since for all n ∈ N the intersection

⋂n
j=1Bj is nonempty we may select an element

xn out of it. The sequence {xn} has at least one cluster point x, which by construction,
belongs to the intersection of all Bn.

Part (iv) follows from (iii), since sequential compactness implies the Bolzano–
Weierstrass property.

To prove (v) let {xn} be an infinite sequence of elements of X and let x be in the
closure of {xn}. Since {X;U} satisfies the first axiom of countability, there exist a
nested countable collection of open sets Om ⊃ Om+1, each containing x and each
containing an element xm out of the sequence {xn}. The subsequence {xm} converges
to x.

Proposition 5.3 Let {X;U} satisfy the second axiom of countability. Then every
open covering of X contains a countable sub-covering.

Proof Let {Bn} a countable collection of open sets that forms a base for the topology
of {X;U} and let F be an open covering of X. To each Bn we associate one and only
one open set On ∈ F that contains it. The countable collection On is a countable
sub-covering of F .

Corollary 5.1 For spaces satisfying the second axiom of countability, compactness,
countable compactness and sequential compactness, are equivalent.

6 Compact Subsets of RN

Let E be a subset of RN . We regard E as a topological space with the topology
inherited from the Euclidean topology of RN .

Proposition 6.1 The closed interval [0, 1] is compact.
Proof Let {Iα} be a collection of open intervals covering [0, 1] and set

E = ⋃
{
x ∈ [0, 1] such that the closed interval [0, x] is
covered by finitely many elements out of {Iα}

}
.

Let c = sup{x|x ∈ E}. Since 0 belongs to some Iα we have 0 < c ≤ 1. Such
an element c it is covered by some open set Iαc ∈ {Iα}, and therefore, there exist
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ε > 0 such that (c − ε, c + ε) ⊂ Iαc . By the definition of c, the interval [0, c − ε] is
covered by finitely many open sets {I1, . . . , In} out of {Iα}. Augmenting such a finite
collection with Iαc gives a finite covering of [0, c + ε]. Thus if c < 1, it is not the
supremum of the set E .
Proposition 6.2 The closed interval [0, 1] has the Bolzano–Weierstrass property.
Proof Let {xn} be an infinite sequence of elements of [0, 1] without a cluster point
in [0, 1]. Then, each of the open intervals (x − ε, x + ε), for x ∈ [0, 1] and ε > 0,
contains at most finitely many elements of {xn}. The collection of all such intervals
forms an open covering of [0, 1], from which we may select a finite one. This would
imply {xn} is finite.
Corollary 6.1 Every sequence in [0, 1] has a convergent subsequence.
Corollary 6.2 A bounded, closed subset E ⊂ R

N has the Bolzano–Weierstrass
property.

Proof Let {xn} be a sequence of elements in E and represent each of the xn in terms
of its coordinates, that is, xn = (x1,n, . . . , xN,n). Since {xn} is bounded, each of
the sequences {xj,n} is contained in some closed interval [aj, bj]. Out of {x1,n} we
extract a convergent subsequence {x1,n1}. Then out of {x2,n1} we extract a convergent
subsequence {x2,n2}. Proceeding in this fashion, the sequence {xnN } has a limit. Since
E is closed, such a limit is in E.

Proposition 6.3 (Borel-Riesz ([18, 124])) Let E be a bounded, closed subset ofRN .
Then, every open covering U of E contains a finite sub-covering U ′.

Proof By Proposition 5.3, may assume the covering is countable, say U = {On}.
We claim that E ⊂ ⋃m

i=1Oi for some m ∈ N. Indeed if not, we may select for each
positive integer n, an element xn ∈ E −⋃n

i=1On and select, out of the sequence {xn},
a subsequence {xn′ } convergent to some x ∈ E. Since the collection {On} covers E,
there exists an index m such that x ∈ Om. Thus xn′ ∈ Om for infinitely many n′.

Proposition 6.4 (Heine-Borel) Every compact subset of RN , endowed with the
Euclidean topology, is closed and bounded.

Proof Let E ⊂ R
N be compact. Since R

N , endowed with the Euclidean topology,
is a Hausdorff space, E is closed by (iii) of Proposition 5.1. The collection of balls
{Bn} centered at the origin and radius n ∈ N is an open covering for E. Since E is
contained in the union of a finite sub-covering, it is bounded.

Theorem 6.1 A subset E of RN is compact if and only if is bounded and closed.
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7 Continuous Functions on Countably Compact Spaces

Let f be a map from a topological space {X;U} into R and for t ∈ R set [f < t] =
{x ∈ X|f (x) < t}. The sets [f ≤ t], [f ≥ t], and [f > t] are defined analogously. A
map f from a topological space {X;U} into R, is upper semi-continuous if [f < t] is
open for all t ∈ R, and it is lower semi-continuous if [f > t] is open for all t ∈ R. A
map f : X → R is continuous if and only if is both upper and lower semi-continuous.

Theorem 7.1 (Weierstrass-Baire) Let {X;U} be countably compact and let f : X →
R be upper semi-continuous. Then f is bounded above in X and it achieves its
maximum in X.

Proof The collection of sets {[f < n]} is a countable open covering of X, from
which we extract a finite one, say, for example, [f < n1], . . . , [f < nN ]. Then
f ≤ max{n1, . . . , nN }. Thus f is bounded above. Next, let fo denote the supremum
of f on X. The sets [f ≥ fo − 1

n ] are closed and form a family with the finite inter-
section property. Since {X;U} is countably compact, their intersection is nonempty.
Therefore, there is an element xo ∈ [f ≥ fo − 1

n ] for all n ∈ N. By construction
f (xo) = fo.

Corollary 7.1 (i) A continuous real-valued function from a countably compact
topological space {X;U} takes its maximum and minimum in X.

(ii) A continuous real-valued function from a countably compact topological space
{X;U} is uniformly continuous.

Theorem 7.2 (Dini) Let {X;U} be countably compact and let {fn} be a sequence of
real-valued, upper semi-continuous functions such that fn+1 ≤ fn for all n ∈ N, and
converging pointwise in X to a lower semi-continuous function f . Then {fn} → f
uniformly in X.

Proof By possibly replacing fn with fn − f , we may assume that {fn} is a decreasing
sequence of upper semi-continuous functions converging to zero pointwise in X. For
every ε > 0, the collection of open sets [fn < ε] covers X and we extract a finite
cover, say for example, up to a possible reordering

[fn1 < ε], [fn2 < ε], · · · , [fnε
< ε], n1 < n2 · · · < nε.

Since {fn} is decreasing [fnε
< ε] = X. Thus fn(x) < ε for all x ∈ X and all

n ≥ nε.

8 Products of Compact Spaces

Theorem 8.1 (Tychonov ([165])) Let {Xα;Uα} be a family of compactspaces. Then∏
Xα endowed with the product topology, is compact.
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The proof is based on showing that every collection of closed sets with the finite
intersection property, has nonempty intersection.

Lemma 8.1 Let {X;U} be a topological space and letGo be a collection of subsets of
X with the finite intersection property. There exists a maximal collection G of subsets
of X with the finite intersection property and containing Go, that is, if G ′ is another
collection of subsets of X with the finite intersection property and containing G, then
G ′ = G. Moreover, the finite intersection of elements in G is in G and every subset of
X that intersects each set of G is in G.2
Proof The family of all collections of sets with the finite intersection property and
containing Go is partially ordered by inclusion, so that by the Hausdorff principle,
there is a maximal linearly ordered subfamily F . We claim that G is the union of all
the collections in F .

Any n-tuple {E1, . . . ,En} of elements of G belongs to at most n collections Gj.
Since {Gj} is linearly ordered there is a collection Gn that contains the others. There-
fore, Ei ∈ Gn for all i = 1, . . . , n and since Gn has the finite intersection property,
∩Ei �= ∅. Thus G has the finite intersection property. The maximality of G follows
by its construction.

The collection G ′ of all finite intersections of sets in G contains G and has the
finite intersection property. Therefore G ′ = G by maximality.

Let E be a subset of X that intersects all the sets in G. Then, the collection
G ⋃{E} has the finite intersection property and contains G. Therefore E ∈ G, by
maximality.

Proof (of Tychonov’s Theorem) Let Go be a collection of closed sets in
∏

α Xα, with
the finite intersection property and let G be the maximal collection constructed in
Lemma 8.1. While the sets in Go are closed, the elements of G need not be closed.
We will establish that the intersection of the closure of all elements in G is not empty.
For each α ∈ A let Gα be the collection of the projection of G into Xα, that is

Gα = {collection of πα(E)| for E ∈ G}.

The sets in Gα need not be closed nor open. However since G has the finite
intersection property in

∏
Xα, the collection Gα has the finite intersection property

in Xα. Therefore the collection of their closures in {Xα,Uα}

Gα = {collection of πα(E)| for E ∈ G}

has nonempty intersection, since each of {Xα;Uα} is compact. Select an element

xα ∈ ⋂{πα(E)| for E ∈ G} ⊂ Xα.

We claim that the element x ∈ ∏
Xα, whose α-coordinate is xα, belongs to the

closure of all sets in G. Let O be a set, open in the product topology that contains

2It is not claimed here that the elements of G are closed.
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x. By the construction of the product topology, there exists finitely many indices
α1, . . . ,αn and finitely many sets Oαj , open in Xαj , such that

x ∈
n⋂

j=1
π−1

αj
(Oαj ) ⊂ O.

For each j the projection xαj belongs to Oαj . Since xαj belongs to the closure of
all sets in Gαj , the open set Oαj intersects all the sets in Gαj . Therefore, π−1

αj
(Oαj )

intersects all the sets in G and by Lemma 8.1 it belongs to G. Likewise the finite
intersection

⋂n
j=1π

−1
αj

(Oαj ) intersects every element in G and therefore it belongs to
G. Thus, an arbitrary open setO containing x, intersects all the sets in G and therefore
x belongs to the closure of all such sets.

Remark 8.1 Tychonov’s theorem provides a motivation for defining the topology
on a product space

∏
Xα as the weakest topology for which all the projection maps

πα are continuous. Indeed if all the topological spaces {Xα;Uα} are Hausdorff, the
product topology is also a Hausdorff topology. But then any topology stronger than
the product topology would violate Tychonov’s theorem. This follows from Propo-
sition 5.1c and 5.3 of the Complements.

9 Vector Spaces

A linear space consists of a set X, whose elements are called vectors, and a field F ,
whose elements are called scalars, endowed with operations of sum+ : X×X → X,
and multiplication by scalars • : F × X → X satisfying the addition laws

x + y = y + x

(x + y) + z = x + (y + z),
for all x, y, z ∈ X

there exists Θ ∈ X such that x + Θ = x for all x ∈ X

for all x ∈ X there exists − x ∈ X such that x + (−x) = Θ

and the scalar multiplication laws

λ(x + y) = λx + λy

λ(μx) = (λμ)x

(λ + μ)x = λx + μx

1x = x

for all x, y ∈ X

for all λ,μ ∈ F
for all λ,μ ∈ F
where 1 is the unit element of F .

It follows that λΘ = Θ for all λ ∈ F and if 0 is the zero-element of F , then
0x = Θ for all x ∈ X. Also, for all x, y ∈ X and λ ∈ F

(−1)x = −x, x − y = x + (−y), λ(x − y) = λx − λy.
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A nonempty subset Xo ⊂ X is a linear subspace of X if it is closed under the
inherited operations of sum andmultiplication by scalars. The largest linear subspace
of X is X itself and the smallest is the null space {Θ}. A linear combination of an
n-tuple of vectors {x1, . . . , xn}, is an expression of the form

y =
n∑

j=1
λjxj where {λ1, . . . ,λn} is an n-tuple of scalars.

If Xo ⊂ X, the linear span of Xo is the set of all linear combinations of elements
of Xo. It is a linear space, and it is the smallest linear subspace of X containing Xo,
or spanned by Xo. An n-tuple {e1, . . . , en} of vectors is linearly independent if

n∑

j=1
λjej = 0 implies that λj = 0 for all j = 1, . . . , n.

A linear space X is of dimension n if it contains an n-tuple of linearly independent
vectorswhose span is thewholeX. Any such n-tuple, say for example {e1, . . . , en} is a
basis in the sense that given x ∈ X there exists an n-tuple of scalars {λ1, . . . ,λn} such
that x = ∑n

j=i λjej. For each x ∈ X, the n-tuple {λ1, . . . ,λn} is uniquely determined
by the basis {e1, . . . , en}. While F could be any field we will consider F = R and
call X vector space over the reals.

Let A and B be subsets of a linear space X and let α,β ∈ R. Define the set
operation

αA + βB = ∪{αa + βb|a ∈ A, b ∈ B}.

One verifies that the sum is commutative and associative, that is,

A + B = B + A and A + (B + C) = (A + B) + C.

Moreover
A + (B ∪ C) = (A + B) ∪ (A + C).

However A + A �= 2A and A − A �= {Θ}.

9.1 Convex Sets

Aconvex combination of two elements x, y ∈ X is an element of the form tx+(1−t)y
where t ∈ [0, 1]. As t ranges over [0, 1] this describes the line segment of extremities
x and y. The convex combination of n elements {x1, . . . , xn} of X is an element of
the form

n∑

j=1
αjxj where αj ≥ 0 and

n∑

j=1
αj = 1.
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A set A ⊂ X is convex if for any pair x, y ∈ A the elements tx+ (1− t)y belong to
A for all t ∈ [0, 1]. Alternatively, if the line segment of extremities x and y belongs
to A.

The convex hull c(A) of a set A ⊂ X is the smallest convex set containing A. It
can be characterized as either the intersection of all the convex sets containing A, or
as the set of all convex combinations of n-tuples of elements in A, for any n.

The intersection of convex sets is convex; the union of convex sets need not be
convex. Linear subspaces of X are convex.

9.2 Linear Maps and Isomorphisms

Let X and Y be linear spaces over R. A map T : X → Y is linear if

T(λx + μy) = λT(x) + μT(y) for all x, y ∈ X and λ,μ ∈ R.

The image of T is T(X) ⊂ Y and the kernel of T is ker{T} = T−1{0}. The
image T(X) is a linear subspace of Y and the kernel ker{T} is a linear subspace of
X. A linearmap T : X → Y is an isomorphism between X and Y if it is one-to-one
and onto. The inverse of an isomorphism is an isomorphism and the composition
of two isomorphisms is an isomorphism. If X and Y are finite-dimensional and are
isomorphic, then they have the same dimension.

10 Topological Vector Spaces

A vector space X endowed with a topology U is a topological vector space overR, if
the operations of sum+ : X ×X → X, and multiplication by scalars • : R×X → X
are continuous with respect to the product topologies of X × X and R × X.

Fix xo ∈ X. The translation by xo is defined by Txo(x) = xo + x for all x ∈ X.
For a fixed λ ∈ R − {0}, the dilation by λ is defined by Dλ(x) = λx for all x ∈ X.
If {X;U} is a topological vector space, the maps Txo and Dλ are homeomorphisms
from {X;U} onto itself. In particular if O is open then x + O is open for all fixed
x ∈ X. Any topology with such a property is translation invariant.

Remark 10.1 This notion can be used to construct a vector topological space {X;U}
for which the sum is not continuous. It suffices to construct a vector space endowed
with a topology which is not translation invariant. For an example of a linear, topo-
logical vector space for which the product by scalars is not continuous, see 10.4 and
10.5 of the Complements.

Let {X;U} be a topological vector space. If BΘ is a base at the zero element Θ of
X, then for any fixed x ∈ X, the collectionBx = x+BΘ forms a base for the topology
U at x. Thus a base BΘ at Θ determines the topology U on X. If the elements of the
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base BΘ are convex, the topology of {X;U} is called locally convex. An example
of a topological vector space with a nonlocally convex topology, is in § 3.5c of the
Complements of Chap.6.

An open neighborhood of the origin O is symmetric if O = −O.
The next remarks imply that the topology of a topological vector space, while non-

necessarily locally convex is, roughly speaking, ball-like and, while not necessarily
Hausdorff is roughly speaking close to being Hausdorff.

Proposition 10.1 Let {X;U} be a topological vector space. Then:
(i) The topology U is generated by a symmetric base BΘ .
(ii) If O is an open neighborhood of the origin, then X = ⋃

λ∈RλO.
(iii) {X;U} is Hausdorff if and only if the points are closed.
(iv) {X;U} is Hausdorff if and only if

⋂{O ∈ BΘ} = {Θ}.
Proof The continuity of the multiplication by scalars implies that if O is open, also
λO is open for all λ ∈ R−{0}. If Θ ∈ O, then Θ ∈ λO for all |λ| ≤ 1. In particular
ifO is a neighborhood of the origin also−O is a neighborhood of the origin. The set
A = −O ∩ O is an open neighborhood the origin, and is symmetric since A = −A.
One verifies that the collection of such symmetric sets is a base BΘ at the origin, for
the topology of {X;U}.

To prove (ii) fix x ∈ X and letO be an open neighborhood ofΘ . Since 0·x = Θ , by
the continuity of the product by scalars, there exist ε > 0 and an open neighborhood
Ox of x such that λ · y ∈ O for all |λ| < ε and all y ∈ Ox. Thus δ · x ∈ O for some
0 < |δ| < ε and x ∈ δ−1O.

The direct part of (iii) follows from Proposition 1.1. For the converse, assume
that Θ and x ∈ (X − Θ) are closed. Then there exists an open set O containing the
origin Θ and not containing x. Since Θ + Θ = Θ and the sum + : (X × X) → X is
continuous, there exists two open sets O1 and O2 such that O1 + O2 ⊂ O. Set

Oo = O1 ∩ O2 ∩ (−O1) ∩ (−O2).

Then
Oo + Oo ⊂ O and Oo ∩ (x + Oo) = ∅.

The last statement is a consequence of (iii).

Proposition 10.2 Let {X;U} and {Y;V} be topological vector spaces. A linear map
T : X → Y is continuous if and only if is continuous at the origin Θ of X.

Proof Since T is linear, T(Θ) = θ ∈ Y , where θ is the origin of Y . Let O ∈ V be
an open set containing θ. By assumption T−1(O) is an open set containing Θ . Let
x ∈ X be fixed. An open set in Y that contains T(x) is of the form T(x) + O, where
O is an open set containing θ. The pre-image T−1(T(x) + O) contains the open set
x + T−1(O).

http://dx.doi.org/10.1007/978-1-4939-4005-9_6
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10.1 Boundedness and Continuity

Let {X;U} be a topological vector space. A subset E ⊂ X is bounded if for every
open neighborhood O of the origin Θ , there exists μ > 0 such that E ⊂ λO for all
λ > μ. A map T from a topological vector space {X;U} into a topological vector
space {Y;V} is bounded if it maps bounded subsets of X into bounded subsets of Y .

Proposition 10.3 A linear, continuousmapT froma topological vector space {X;U}
into a topological vector space {Y;V}, is bounded.
Proof Let E ⊂ X be bounded. For every neighborhood O of the origin θ of Y , open
in the topology of {Y;V}, the inverse image T−1(O) is a neighborhood of the origin
Θ , open in the topology of {X;U}. Since E is bounded, there exists some δ > 0 such
that E ⊂ δT−1(O). Therefore, T(E) ⊂ δO.

Remark 10.2 Linearity alone does not imply boundedness. An example of
unbounded linear map between two topological vector spaces is in § 15. Further
examples are in 3.4 and 3.5 of the Complements of Chap. 7.

Remark 10.3 For general topological vector spaces {X;U} and {Y;V}, the converse
of Proposition 10.3 is false; that is, linearity and boundedness do not imply continuity
of T . See 10.3 of the Complements for a counterexample. However, the converse is
true for linear, bounded maps T between metric vector spaces, as stated in Proposi-
tion 14.2.

11 Linear Functionals

If the target space Y is the field R endowed with the Euclidean topology, the linear
map T : X → R is called a functional on {X;U}. A linear functional T : {X;U} → R

is bounded in a neighborhood of Θ , if there exists an open set O containing Θ and
a positive number k such that |T(x)| < k for all x ∈ O.

Proposition 11.1 Let T : {X;U} → R be a not identically zero, linear functional
on X. Then:

(i) If T is bounded in a neighborhood of the origin, then T is continuous.
(ii) If ker{T} is closed then T is bounded in a neighborhood of the origin.
(iii) T is continuous if and only if ker{T} is closed.
(iv) T is continuous if and only if it is bounded in a neighborhood of the origin.

Proof Let O be an open neighborhood of the origin such that |T(x)| ≤ k for all
x ∈ O. For every ε ∈ (0, k) the pre-image of the open interval (−ε, ε), contains the
open sets λO for all 0 < λ < ε/k. Thus T is continuous at the origin and therefore
continuous by Proposition 10.2.

http://dx.doi.org/10.1007/978-1-4939-4005-9_7
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Turning to (ii), if ker{T} is closed there exist x ∈ X and some open neighborhood
O ofΘ , such that (x+O)∩ker{T} = ∅. By (i) of Proposition 10.1, we may assume,
that O is symmetric and that λO ⊂ O for all |λ| ≤ 1. This implies that T(O) is
a symmetric interval about the origin of R. If such an interval is bounded, there is
nothing to prove. If such an interval coincides with R, then there exist y ∈ O such
that T(y) = T(x). Thus (x − y) ∈ ker{T} and (x + O) ∩ ker{T} is not empty since
y ∈ O. The contradiction proves (ii).

To prove (iii) observe that the origin {0} ofR is closed. Therefore ifT is continuous
T−1(0) = ker{T} is closed.

The remaining statements follow from (i)–(ii).

Proposition 11.2 Let {T1, . . . ,Tn} be a finite collection of bounded linear function-
als on a Hausdorff, linear, topological vector space {X;U}, and set

K =
n⋂

j=1
ker{Tj}.

If T is a bounded linear functional on {X;U} vanishing on K, then there exists a
n-tuple (α1, . . . ,αn) ∈ R

n such that

T =
n∑

j=1
αjTj.

Proof The map
X � x → (

T1(x), . . . ,Tn(x)
) ∈ R

n

is bounded and linear, and its image Rn
o is a closed subspace Rn. The map

R
n
o � (

T1(x), . . . ,Tn(x)
) → To

(
T1(x), . . . ,Tn(x)

) def−→ T(x) ∈ R

is well defined since T vanishes on K . The map To is bounded and linear, and it
extends to a bounded linear map T : Rn → R, defined in the whole Rn. The latter
must be of the form

R
n � (y1, . . . , yn) → T (y1, . . . , yn) =

n∑

j=1
αjyj

for a fixed n-tuple (α1, . . . ,αn) ∈ R
n. Since T agrees with To on R

n
o

X � x → T(x) =
n∑

j=1
αjTj(x).



36 2 Topologies and Metric Spaces

12 Finite Dimensional Topological Vector Spaces

The next proposition asserts that a n-dimensional Hausdorff topological vector space,
can only be given, up to a homeomorphism, the Euclidean topology of Rn.

Proposition 12.1 Let {X;U} be a n-dimensionalHausdorff topological vector space
over R. Then {X;U} is homeomorphic to Rn equipped with the Euclidean topology.

Proof Given a basis {e1, . . . , en} for {X;U}, the representation map

R
n � (λ1, . . . ,λn) → T(λ1, . . . ,λn) =

n∑

i=1
λiei ∈ X

is linear, one-to-one, and onto. Let O be a neighborhood of the origin in X, which
we may assume to be symmetric and such that αO ⊂ O for all |α| ≤ 1. By the
continuity of the sum and multiplication by scalars the pre-image T−1(O) contains
an open ball about the origin of Rn. Thus T is continuous at the origin and therefore
continuous.

To show that T−1 is continuous assume first that n = 1. In such a case T(λ) = λe
for some e ∈ (X−Θ). The kernel of the inversemap T−1 : X → R consist only of the
zero element {Θ}, which is closed since X is Hausdorff. Therefore T−1 is continuous
by (iii) of Proposition 11.1. Proceeding by induction, assume that the representation
map T is a homeomorphism between R

m and any m-dimensional Hausdorff space,
for allm = 1, . . . , n−1. Thus in particular any (n−1)-dimensional Hausdorff space
is closed.

The inverse of the representation map has the form

X � x → T−1(x) = (λ1(x), . . . ,λn−1(x),λn(x)).

Each of the n maps λj(·) : X → R is a linear functional on X, whose null-space
is a (n − 1)-dimensional subspace of X. Such a subspace is closed by the induction
hypothesis. Thus each of the λj(·) is continuous.
Corollary 12.1 Every finite dimensional subspace of aHausdorff topological vector
space is closed.

If {X;U} is n-dimensional and not Hausdorff, it is not homeomorphic to R
n. An

example is RN with the trivial topology.

12.1 Locally Compact Spaces

A topological vector space {X;U} is locally compact if there exist an open neigh-
borhood of the origin whose closure is compact.
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Proposition 12.2 Let {X;U} be a Hausdorff, locally compact topological vector
space. Then X is of finite dimension.

Proof Let O be a neighborhood of the origin, whose closure is compact. We may
assume thatO is symmetric and λO ⊂ O for all |λ| ≤ 1. There exist at most finitely
many points x1, . . . , xn ∈ O, such that

O ⊂ (x1 + 1
2O) ∪ (x2 + 1

2O) ∪ · · · ∪ (xn + 1
2O).

The space Y = span{x1, . . . , xn}, is a closed, finite dimensional subspace of X.
From the previous inclusion, 1

2O ⊂ Y + 1
4O. Therefore

O ⊂ Y + 1
2O ⊂ 2Y + 1

4O = Y + 1
4O.

Thus, by iteration
O ⊂ ⋂ (

Y + 1
2nO

) = Ȳ = Y .

This implies that λO ⊂ Y for all λ ∈ R. Thus, by (ii) of Proposition 10.1

X = ⋃
λO ⊂ Y ⊂ X.

The assumption that {X;U} be Hausdorff cannot be removed. Indeed, any {X;U}
with the trivial topology is compact, and hence locally compact. However, it is not
Hausdorff and, in general, it is not of finite dimension.

13 Metric Spaces

A metric on a nonvoid set X is a function d : X × X → R satisfying the properties:

(i) d(x, y) ≥ 0 for all pairs (x, y) ∈ X × X
(ii) d(x, y) = 0 if and only if x = y
(iii) d(x, y) = d(y, x) for all pairs (x, y) ∈ X × X
(iv) d(x, y) ≤ d(x, z) + d(y, z) for all x, y, z ∈ X.

This last requirement is called the triangle inequality. The pair {X; d} is a metric
space. Denote by Bρ(x) = {y ∈ X|d(y, x) < ρ}, the open ball centered at x and of
radius ρ > 0. The collection B of all such balls, satisfies the conditions (i)–(ii) of § 4
and therefore, by Proposition 4.1, generates a topology U on {X; d}, called metric
topology, for which B is a base. The notions of open or closed sets can be given in
terms of the elements of B. In particular, a set O ⊂ X is open if for every x ∈ O
there exists some ρ > 0 such that Bρ(x) ⊂ O.

A point x is a point of closure for a set E ⊂ X if Bε(x) ∩ E �= ∅ for all ε > 0. A
set E is closed if and only if it coincides with the set of all its points of closure. In
particular points are closed.
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Let {xn} be a sequence of elements of X. A point x ∈ X is a cluster point for {xn}
if for all ε > 0, the open ball Bε(x) contains infinitely many elements of {xn}. The
sequence {xn} converges to x if for every ε > 0 there exists nε such that d(x, xn) < ε
for all n ≥ nε. The sequence {xn} is a Cauchy sequence if for every ε > 0 there exists
an index nε, such that d(xn, xm) ≤ ε, for all m, n ≥ nε.

A metric space {X; d} is complete if every Cauchy sequence {xn} of elements of
X converges to some element x ∈ X.

13.1 Separation and Axioms of Countability

The distance between two subsets A,B of X is defined by

d(A,B) = inf
x∈A;y∈B

d(x, y).

Proposition 13.1 Let A be a subset of X. The function x → d(A, x) is continuous
in {X; d}.
Proof Let x, y ∈ X and z ∈ A. By the requirement (iv) of a metric

d(z, x) ≤ d(x, y) + d(z, y).

Taking the infimum of both sides for z ∈ A gives

d(A, x) ≤ d(x, y) + d(A, y).

Interchanging the role of x and y yields

|d(A, x) − d(A, y)| ≤ d(x, y).

If E1 and E2 are two disjoint closed subsets of {X; d}, then the two sets

O1 = {x ∈ X
∣∣ d(x,E1) < d(x,E2)}

O2 = {x ∈ X
∣∣ d(x,E2) < d(x,E1)}

are open and disjoint. Moreover E1 ⊂ O1 and E2 ⊂ O2. Thus every metric space is
normal. In particular every metric space is Hausdorff.

Every metric space satisfies the first axiom of countability. Indeed the collection
of balls Bρ(x) as ρ ranges over the rational numbers of (0, 1), is a countable base for
the topology at x.
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Proposition 13.2 A metric space {X; d} is separable if and only if it satisfies the
second axiom of countability.3

Proof Let {X; d} be separable and let A be a countable, dense subset of {X; d}. The
collection of balls centered at points of A and with rational radius forms a countable
base for the topology of {X; d}. The converse follows from Proposition 4.2.

Corollary 13.1 Every subset of a separable metric space is separable.

Proof Let {xn} be a countable dense subset. For a pair of positive integers (m, n),
consider the balls B1/m(xn) centered at xn and radius 1/m. If Y is a subset of X,
the ball B1/m(xn) must intersect Y for some pair (m, n). For any such pair, select an
element yn,m ∈ B1/m(xn)∩Y . The collection of such ym,n is a countable, dense subset
of Y .

13.2 Equivalent Metrics

From a given metric d on X, one can generate other metrics. For example, for a given
d, set

do(x, y) = d(x, y)

1 + d(x, y)
. (13.1)

One verifies that do satisfies the requirements (i)–(iii). To verify that do satisfies
(iv) it suffice to observe that the function

t → t

1 + t
for t ≥ 0

is nondecreasing. Thus do is a new metric on X and generates the metric spaces
{X; do}. Starting from the Euclidean metric in R

N , one may introduce a new metric
by

d∗(x, y) =
∣∣∣

x

1 + |x| − y

1 + |y|
∣∣∣ x, y ∈ R

N . (13.2)

More generally, the same set X can be given different metrics, say for example d1
and d2, to generate metric spaces {X; d1} and {X; d2}.

Two metrics d1 and d2 on the same set X are equivalent if they generate the same
topology. Equivalently d1 and d2 are equivalent if they define the same open sets. In
such a case, the identity map between {X; d1} and {X; d2} is a homeomorphism.

3An example of non separablemetric space is in § 15.1 ofChap. 6. See also 15.2. of theComplements
of Chap.6.

http://dx.doi.org/10.1007/978-1-4939-4005-9_6
http://dx.doi.org/10.1007/978-1-4939-4005-9_6
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13.3 Pseudo Metrics

A function d : (X × X) → R is a pseudometric if it satisfies all but (ii) of the
requirements of being a metric. For example d(x, y) = ||x| − |y|| is a pseudometric
on R. The open balls Bρ(x) are defined as for metrics and generate a topology on
X, called the pseudometric topology. The space {X; d} is a pseudo-metric space.
The statements of Propositions 13.1, 13.2 and Corollary 13.1 continue to hold for
pseudo-metric spaces.

14 Metric Vector Spaces

Let {X; d} and {Y; η} be metric spaces. The notion of continuity of a function from
X into Y can be rephrased in terms of the metrics η and d. Precisely, a function
f : {X; d} → {Y; η} is continuous at some x ∈ X, if and only if for every ε > 0 there
exists δ = δ(ε, x) such that η{f (x), f (y)} < ε whenever d(x, y) < δ. The function f
is continuous if it is continuous at each x ∈ X and it is uniformly continuous if the
choice of δ depends on ε and is independent of x.

A homeomorphism f between two metric spaces {X; d} and {Y; η} is uniform if
the map f : X → Y is one-to-one and onto, and if it is uniformly continuous and has
uniformly continuous inverse.

An isometry between {X; d} and {Y; η} is a homeomorphism f between {X; d}
and {Y; η} that preserves distances, that is, such that

η{f (x), f (y)} = d(x, y) for all x, y ∈ X.

Thus an isometry is a uniform homeomorphism between {X; d} and {Y; η}.
Let {X1; d1} and {X2; d2} be metric spaces. The product metric (d1 × d2) on the

Cartesian product (X1 × X2) is defined by

(d1 × d2){(x1, x2), (y1, y2)} = d1(x1, y1) + d2(x2, y2)

for all x1, y1 ∈ X1 and x2, y2 ∈ X2. One verifies that the topology generated by
(d1 × d2) on (X1 ×X2) coincides with the product topology of {X1; d1} and {X2; d2}.

If X is a vector space, then {X; d} is a topological vector space if the operations
of sum + : X ×X → X and product by scalars • : R×X → X, are continuous with
respect to the topology generated by d on X and the topology generated by (d × d)

on X × X.
A metric d on a vector space X is translation invariant if

d(x + z, y + z) = d(x, y) for all x, y, z ∈ X.
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If d is translation invariant, then the metric do in of (13.1) is translation invariant.
The metric d∗ in (13.2) is not translation invariant.

Proposition 14.1 If d on a vector space X is translation invariant then the sum
+ : (X × X) → X is continuous.

Proof It suffices to show that X × X � (x, y) → x + y is continuous at an arbitrary
point (xo, yo) ∈ X × X. From the definition of product topology

d(x + y, xo + yo) = d(x − xo, yo − y)

≤ d(x − xo,Θ) + d(yo − y,Θ)

= d(x, xo) + d(y, yo)

= (d × d){(x, y), (xo, yo)}.

Translation invariant metrics generate translation invariant topologies. There exist
nontranslation invariant metrics that generate translation invariant topologies.

Remark 14.1 The topology generated by a metric on a vector space X, need not
be locally convex. A counterexample is in Corollary 3.1c of the Complements of
Chap.6.

Remark 14.2 In general the notion of a metric on a vector space X does not imply,
alone, any continuity statement of the operations of sum or product by scalars. Indeed
there exists metric spaces for which both operations are discontinuous.

To construct examples, let {X; d} be a metric vector space and let h be a discon-
tinuous bijection from X onto itself. Setting

dh(x, y)
def= d(h(x), h(y)) (14.1)

defines a metric in X. The bijection h can be chosen in such a way that for the metric
vector space {X; dh} the sum and themultiplication by scalars are both discontinuous.
One such a choice is in § 14c of the Complements.4

14.1 Maps Between Metric Spaces

The notion of maps between metric spaces and their properties, is inherited from
the corresponding notions between topological vector spaces. In particular Proposi-
tions 10.1–10.3 and 11.1, continue to hold in the context of metric spaces. However
for metric spaces Proposition 10.3 admits a converse.

Proposition 14.2 Let {X; d} and {Y; η} be metric vector spaces. A bounded linear
map T : X → Y is continuous.

4This construction was suggested by Ethan Devinatz.

http://dx.doi.org/10.1007/978-1-4939-4005-9_6
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Proof For any ball Br in {Y; η}, of radius r centered at the origin of Y , there exists a
ball Bρ in {X; d}, centered at origin of X such that Bρ ⊂ T−1(Br). If not, for all δ > 0
the ball δ−1B1 is not contained in T−1(Br). Thus T(B1) is not contained in δBr for
any δ > 0 against the boundedness of T . The contradiction implies T is continuous
at the origin and, by linearity T is continuous everywhere.

15 Spaces of Continuous Functions

Let E be a subset of RN , denote by C(E) the collection of all continuous functions
f : E → R and set

d(f , g) = sup
x∈E

|f (x) − g(x)| f , g ∈ C(E). (15.1)

If E is compact, this defines a metric in C(E) by which C(E) turns into a metric
vector space. Themetric in (15.1) generates a topology inC(E) called the topology of
uniform convergence. Cauchy sequences inC(E) converge uniformly to a continuous
function in E. In this sense C(E) is complete.

If E is compact, C(E) is separable (Corollary 16.1 of Chap.5).
If E is open, a function f ∈ C(E), while bounded on every compact subset of E,

in general is not bounded in E.
If E ⊂ R

N is compact, then any f ∈ C(E) is uniformly continuous in E. If E is
open then f ∈ C(E) does not imply uniform continuity even if f is bounded in E.

Let {En} be a collection of bounded open sets invading E, that is, Ēn ⊂ En+1 for
all n, and E = ∪En. For every f , g ∈ C(E) set

dn(f , g) = sup
x∈Ēn

|f (x) − g(x)|.

Each dn, while a metric in C(Ēn), is a pseudometric in C(E). Setting

d(f , g) = ∑ 1

2n
dn(f , g)

1 + dn(f , g)
(15.2)

defines a metric in C(E) by which {C(E); d} is a metric vector space.
A sequence {fn} of functions in C(E) converges to f ∈ C(E), in the metric (15.2),

if and only if {fn} → f uniformly on every compact subset of E. Cauchy sequences
in C(E) converge uniformly over compact subsets of E, to a function in C(E). In this
sense, the space C(E) with the topology generated by the metric (15.2) is complete.

Denote by L1(E) the collection of functions in C(E) whose Riemann integral
over E is finite. Since L1(E) is a linear subspace of C(E), it can be given the metric
(15.2) and the corresponding topology. This turns L1(E) into a metric vector space.
The linear functional

http://dx.doi.org/10.1007/978-1-4939-4005-9_5
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T(f ) =
∫

E
fdx : L1(E) → R

is unbounded and hence discontinuous. As an example let E = (0, 1). The functions
fn(t) = t

1
n −1 are all in L1(0, 1) and the sequence {fn} is bounded in the topology of

(15.2) since d(fn, 0) ≤ 1. However T(fn) = n. If E is bounded, the linear functional

T(f ) =
∫

E
fdx : C(Ē) → R

is bounded and hence continuous.

15.1 Spaces of Continuously Differentiable Functions

Let E be an open subset ofRN and denote byC1(E) the collection of all continuously
differentiable functions f : E → R. Denote by C1(Ē) the collection of functions
in C1(E) whose derivatives fxj for j = 1, . . . ,N admit a continuous extension to Ē,
which we continue to denote by fxj .

For f , g ∈ C1(Ē) set formally

d(f , g) = sup
x∈Ē

|f (x) − g(x)| +
N∑

j=1
sup
x∈Ē

|fxj (x) − gxj (x)|. (15.3)

If E is bounded, so that Ē is compact, this defines a metric in C1(Ē) by which
C1(Ē) turns into a metric vector space. Cauchy sequences in C1(Ē) converge to
functions in C1(Ē). Therefore C1(Ē) is complete.

The space C1(Ē) can also be given the metric (15.1). This turns C1(Ē) into a
metric space. The topology generated by such a metric in C1(Ē) is the same as the
topology that C1(Ē) inherits as a subspace of C(Ē). With respect to such a topology
C1(Ē) is not complete. The linear map

T(f ) = fxj : C1(Ē) → C(Ē) for some fixed j ∈ {1, . . . ,N}

is bounded, and hence continuous, provided C1(Ē) is given the metric (15.3). It is
unbounded, and hence discontinuous if C1(Ē) is given the metric (15.1).

As an example, let Ē = [0, 1]. The functions fn(t) = tn are in C1[0, 1] for all
n ∈ N and the sequence {fn} is bounded in C[0, 1] since d(fn, 0) = 1. However
T(fn) = ntn−1 is unbounded in C[0, 1].

IfE is open and f ∈ C1(E), the functions f and fxj for j = 1, . . . ,N , while bounded
on every compact subset of E, in general are not bounded in E. A metric in C1(E)

can be introduced along the lines of (15.2).
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15.2 Spaces of Hölder and Lipschitz Continuous Functions

LetE be an open set inRN and letα ∈ (0, 1] be fixed. A function bounded f : E → R

is said to be Hölder continuous with exponent α if there exists a constant Lα > 0
such that

|f (x) − f (y)| ≤ Lα|x − y|α for all pairs x, y ∈ E. (15.4)

The best constant Lα is given by

[f ]α,E = sup
x,y∈E

|f (x) − f (y)|
|x − y|α . (15.5)

The collection of all Hölder continuous functions with exponent α ∈ (0, 1) is
denoted by Cα(E). If α = 1 these functions are called Lipschitz continuous, and
their collection is denoted by Lip(E). Setting

d(f , g) = sup
x∈E

|f (x) − g(x)| + [f − g]α,E . (15.6)

defines a translation invariantmetric inCα(E) or Lip(E)which turns these intometric
topological vector spaces.

16 On the Structure of a Complete Metric Space

Let {X;U} be a topological space. A set E ⊂ X is nowhere dense in X, if Ēc is dense
in X. If E is nowhere dense, then also Ē is nowhere dense. A closed set E is nowhere
dense, if and only if it does not contain any open set. If E is nowhere dense, for any
open set O the complement O − Ē must contain an open set. Indeed if not Ē would
contain the open set O. If E is nowhere dense and open, Ē − E is nowhere dense. If

E is nowhere dense and closed, E− o
E is nowhere dense.

A finite subset of [0, 1] is nowhere dense in [0, 1]. The Cantor set is nowhere
dense in [0, 1]. Such a set is the uncountable union of if Ēc is dense in X. If E is
nowhere if Ēc is dense in X. If E is nowhere nowhere dense sets. The rationals are not
nowhere dense in [0, 1]. However, they are the countable union of nowhere dense
sets in [0, 1]. Thus, the uncountable union of nowhere dense sets might be nowhere
dense and the countable union of nowhere dense sets, might be dense.

A set E ⊂ X is said to be meager, or of first category if is the countable union of
nowhere dense sets. A set that is not of first category, is said to be of second category.

The complement of a set of first category is called a residual or non-meager set.
The rationals in [0, 1] are a set of first category. The Cantor set is of first category in
[0, 1].
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A metric space {X; d} is complete if every Cauchy sequence {xn} of elements of
X converges to some element x ∈ X. An example of noncomplete metric space is
the set of the rationals in [0, 1] with the Euclidean metric. Every metric space can
be completed as indicated in § 16.3c of the Complements. The completion of the
rationals are the real numbers.

The Baire Category Theorem asserts that a complete metric space cannot be the
countable union of nowhere dense sets, much the same way as [0, 1] is not the union
of the rationals.

Theorem 16.1 (Baire [7]) A complete metric space is of second category.

Proof If not, there exist a countable collection {En} of nowhere dense subsets of X,
such that X = ∪En. Pick xo ∈ X and consider the open ball B1(xo) centered at xo and
radius one. Since E1 is nowhere dense in X, the complement B1(xo) − Ē1 contains
an open set. Select an open ball Br1(x1), such that

B̄r1(x1) ⊂ B1(xo) − Ē1 ⊂ B̄1(xo).

The selection can be done so that r1 < 1
2 . Since E2 is nowhere dense the comple-

ment Br1(x1) − Ē2 contains an open set so that we may select an open ball Br2(x2)
such that

B̄r2(x2) ⊂ Br1(x1) − Ē2 ⊂ B̄r1(x1).

The selection can be done so that r2 < 1
3 . Proceeding in this fashion generates a

sequence of points {xn} and a family of balls {Brn(xn)} such that

B̄rn+1(xn+1) ⊂ B̄rn(xn) rn ≤ 1

n + 1
and B̄rn(xn)

⋂ n⋃

j=1
Ēn = ∅

for all n. The sequence {xn} is Cauchy and we let x denote its limit. Now the element
x must belong to all the closed ball B̄rn(xn) and it does not belong to any of the Ēn.
Thus x /∈ ∪Ēn and X �= ∪En.

Corollary 16.1 A complete metric space {X; d} does not contain open subsets of
first category.

16.1 The Uniform Boundedness Principle

Theorem 16.2 (Banach-Steinhaus [15]) Let {X; d} be a complete metric space and
let F be a family of continuous, real-valued functions defined in X. Assume that the
functions f ∈ F are pointwise equi-bounded, that is, for all x ∈ X, there exists a
positive number F(x) such that

|f (x)| ≤ F(x) for all f ∈ F . (16.1)
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Then, there exists a nonempty open setO ∈ X and a positive number F, such that

|f (x)| ≤ F for all f ∈ F and all x ∈ O. (16.2)

Thus if the functions of the family F are pointwise equibounded in X, they are
uniformly equibounded within some open subset of X. For this reason the theorem
is also referred to as the Uniform Boundedness Principle.

Proof For n ∈ N, let En,f and En be subsets of X defined by

En,f = {x ∈ X
∣∣ |f (x)| ≤ n}, En = ⋂

f∈F
En,f .

The sets En,f are closed, since the functions f are continuous. Therefore also the
sets En are closed. Since the functions f are pointwise equi-bounded, for each x ∈ X
there exists some integer n such that |f (x)| ≤ n for all f ∈ F . Therefore each x ∈ X
belongs to some En, that is, X = ∪En.

Since {X; d} is complete, by the Baire category theorem, at least one of the En

must not be nowhere dense. Since En is closed, it must contain a nonempty open set
O. Such a set satisfies (16.2) with F = n.

The Baire category theorem, and related category arguments, are remarkable, as
they afford function-theoretical conclusions from purely topological information.

17 Compact and Totally Bounded Metric Spaces

Since a metric space satisfies the first axiom of countability, sequential compactness,
countable compactness and the Bolzano–Weierstrass property all coincide (Proposi-
tion 5.2).

A metric space {X; d} is totally bounded if for each ε > 0 there exists a finite
collection of elements of X, say {x1, . . . , xm} for some positive integer m depending
upon ε, such that X is covered by the union of the balls Bε(xi) of radius ε and centered
at xi. A finite sequence {x1, . . . , xm}with such a property is called a finite ε-net for X.

Proposition 17.1 A countably compact metric space {X; d} is totally bounded.
Proof Proceeding by contradiction, assume that there exists some ε > 0 for which
there is no finite ε-net. Then, for a fixed x1 ∈ X the ball Bε(x1) does not cover X and
we choose x2 ∈ X − Bε(x1). The union of the two balls Bε(x1) and Bε(x2) does not
cover X and we select x3 ∈ X−Bε(x1)∪Bε(x2). Proceeding in this fashion generates
a sequence of points {xn} at mutual distance of at least ε. Such a sequence cannot
have a cluster point, thus contradicting the Bolzano–Weierstrass property.

Corollary 17.1 A countably compact metric space is separable.
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Proof For positive integers m and n, let En,m be the finite ε-net of X corresponding
to ε = 1

n . The union ∪En,m is a countable subset of X which is dense in X.

If {X; d} is separable, every open covering of X has a countable sub-covering.
Therefore, countable compactness implies compactness (Proposition 5.3 and Corol-
lary 5.1). Thus for separable metric spaces, all the various notions of compactness
are equivalent.

We next examine the relation between compactness and total boundedness.
If {X; d} is compact it is also totally bounded. Indeed having fixed ε > 0, the

balls Bε(x) centered at all points of X, form an open covering of X, from which one
may extract a finite one. It turns out that total boundedness implies compactness,
provided the metric space {X; d} is complete.

Proposition 17.2 A totally bounded and complete metric space {X; d} is sequen-
tially compact.

Proof Let {xn} be a sequence of elements of X. The proof consists of selecting a
Cauchy sequence {xn′ } ⊂ {xn}. Since {X; d} is complete, such a Cauchy subsequence
would then converge to some x ∈ X thereby establishing that {X; d} is sequentially
compact. Fix ε = 1

2 and determine a corresponding 1
2 -net {y1,1, . . . , y1,m1} for some

positive integer m1. The union of the balls B 1
2
(y1,j) for j = 1, . . . ,m1, covers X.

Therefore at least one of these balls, say for example B 1
2
(y1,j) contains infinitely

many elements of {xn}. Select these elements and relabel them, to form a sequence
{xn1}. These elements satisfy d(xn1 , xm1) < 1.

Next, let ε = 1
22 and determine a corresponding 1

4 -net {y2,1, . . . , y2,m2} for some
positive integerm2. There exist a ballB 1

4
(y2,j), for some j ∈ {1, . . . ,m2} that contains

infinitely many elements of {xn1}. Select these elements and relabel them to form a
sequence {xn2}. Thy satisfy d(xn2 , xm2) < 1

2 .
Let h ≥ 2 be a positive integer. If the subsequence {xnh−1} has been selected, we let

ε = 2−h, and determine a corresponding 2−h−net, say for example {yh,1, . . . , yh,mh}
for some positive integer mh. There exist a ball B 1

2h
(yh,j), for some j ∈ {1, . . . ,mh}

that contains infinitelymany elements of {xnh−1}.We select these elements and relabel
them to form a sequence {xnh}, whose elements satisfy

d(xnh , xmh) <
1

2h+1
.

The Cauchy subsequence {xn′ } is selected by diagonalization, out of the sequences
{xnh}.
Theorem 17.1 A metric space {X; d} is compact if and only if is totally bounded
and complete.
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17.1 Pre-Compact Subsets of X

The various notions of compactness and their characterization in terms of total bound-
edness, do not require that {X; d} be a vector space. Thus, in particular they apply to
any subset K ⊂ X, endowed with the metric d inherited from {X; d}, by regarding
{K; d} as a metric space in its own right.

Proposition 17.3 A subset K ⊂ X of a metric space {X; d} is compact if and only
if it is sequentially compact.

A subset K ⊂ X is pre-compact if its closure K̄ is compact.

Proposition 17.4 A subset K of a complete metric space {X; d} is pre-compact if
and only if is totally bounded.

Problems and Complements

1c Topological Spaces

1.1. A countable union of open sets is open. A countable union of closed sets
need not be closed.

1.2. A countable intersection of closed sets is closed. A countable intersection of
open sets need not be open.

1.3. Let U1 and U2 be topologies on X. Then U1 ∩U2 is a topology on X; however
U1 ∪ U2 need not be a topology on X.

1.4. The Euclidean topology on R induces a relative topology on [0, 1). The sets
[0, ε) for ε ∈ (0, 1) are open in the relative topology of [0, 1) and not in the
original topology of R.

1.5. Let X = N ∪ {ω}, where ω is the first infinite ordinal. A set O ⊂ X is open
if either is any subset of N, or if it contains {ω} and all but finitely many
elements of N. The collection of all such sets, complemented with ∅ and X
defines a topology on X. A function f : X → R is continuous with respect
to such a topology if and only if lim f (n) = f (ω).

1.6. Linear combinations of continuous functions are continuous.Letg : {X;U} →
{Y;V} and f : {Y;V} → {Z;Z} be continuous. Then f (g) : {X;U} →
{Z;Z} is continuous. The maximum or minimum of two real valued, con-
tinuous functions is continuous.

1.7. Let U1 and U2 be topologies on X. The topology U1 is stronger or finer than
U2 if U2 ⊂ U1, that is, roughly speaking, if U1 contains more open sets than
U2. Equivalently if the identity map from {X;U1} onto {X;U2} is continuous.

1.8. Let {fn} be a sequence of real valued, continuous functions from {X;U} into
R. If {fn} → f uniformly, then f is continuous.
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1.9. Let C ⊂ X be closed and let {xn} be a sequence of points in C. Every cluster
point of {xn} belongs to C.

1.10. Let f : X → Y be continuous and let {xn} be a sequence in X. If x is a cluster
point of {xn}, then f (x) is a cluster point of {f (xn)}.

1.11. Let X be the collection of pairs (m, n) of nonnegative integers. Any subset
of X that does not contain (0, 0) is declared to be open. A setO that contains
(0, 0) is open if and only if for all but a finite number of integers m, the set
{n ∈ N∪{0}|(m, n) /∈ O} is finite. For a fixed m the collection of (m, n) as n
ranges overN∪{0} can be regarded as a column. With this terminology, a set
O containing (0, 0) is open if and only if it contains all but a finite number
of elements for all but a finite number of columns. This defines a Hausdorff
topology on X. No sequence in X can converge to (0, 0). The sequence (n, n)
has (0, 0) as a cluster point, but no subsequence of (n, n) converges to (0, 0).
This example is in [4].

1.12c Connected Spaces

A topological space {X;U} is connected if it is not the union of two disjoint open
sets. A subset Xo ⊂ X is connected if the space {Xo;Uo} is connected.
1.13. The continuous image of a connected space is connected.
1.14. Let {Aα} be a family of connected subsets of {X;U} with nonempty inter-

section. Then ∪Aα is connected.
1.15. (Intermediate Value Theorem)] Let f be a real valued continuous function

on a connected space {X;U}. Let a, b ∈ X such that f (a) < z < f (b) for
some real number z. There exists c ∈ X such that f (c) = z.

1.16. The discrete topology is a Hausdorff topology. If X is finite, then the discrete
topology is the only one for which {X;U} is Hausdorff.

1.17. Let {X;U} beHausdorff. Then {X;U1} isHausdorff for any stronger topology
U1.

1.18. A Hausdorff space {X;U} is normal if and only if, for any closed set C
and any open set O such that C ⊂ O, there exists an open set O such that
C ⊂ O ⊂ O ⊂ O.

1.19c Separation Properties of Topological Spaces

A topological space {X;U} is said to be regular if points are separated from closed
sets, that is, for a given closed set C ⊂ X and x not in C, there exist disjoint open
sets OC and Ox such that C ⊂ OC and x ∈ Ox.

A Hausdorff space is said to be of type (T2). A regular space for which the
singletons {x} are closed is said to be of type (T3). A normal space for which the
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singletons {x} are closed is said to be of type (T4). The separation properties of a
topological space {X;U} are classified as follows:

To: Points are separated by open sets, that is, for any two given points x, y ∈ X
there exists an open set containing one of the two points, say for example y,
but not the other.

T1: The singletons {x} are closed.
T2: Hausdorff spaces.
T3: Regular +T1.
T4: Normal +T1.

From the definitions it follows that (T4) =⇒ (T3) =⇒ (T2) =⇒ (T1) =⇒ ((To).
The converse implications are false in general. In particular (To) does not imply (T1).
For example the space X = {x, y} with the open sets {∅,X, y} is (To) and not (T1).
We have already observed that (T1) does not imply Hausdorff. Hausdorff in turn
does not imply normal. Counterexamples are rather specialized and can be found in
[150, 41].

We will be concerned only with Hausdorff and normal spaces.

4c Bases, Axioms of Countability and Product Topologies

4.1. Let {X;U} satisfy the first axiom of countability and let A ⊂ X. For every
x ∈ Ā, there exists a sequence {xn} of elements of A converging to x. For every
cluster point y of a sequence {xn} of points in X, there exists a subsequence
{xn′ } → y.

4.2. Let X be infinite and let U consist of the empty set and the collection of all
subsets of X whose complement is finite. Then U is a topology on X. If X is
uncountable {X;U} does not satisfy the first axiom of countability. The points
are closed but {X;U} is not Hausdorff.

4.3. Let B be the collection of all intervals of the form [α,β). Then B is a base for
a topology U onR, constructed as in Proposition 4.1. The setR endowed with
such a topology satisfies the first but not the second axiom of countability. The
intervals [α,β) are both open and closed. This is called the half-open interval
topology. The sequence {1− 1

n } converges to 1 in the Euclidean topology and
not in the half-open interval topology.

4.4. Let X be an uncountable set, well ordered by ≺ and let � be the first uncount-
able. Set Xo = {x ∈ X|x ≺ �}, X1 = Xo ∪ �, and consider the collection Bo

of sets

{x ∈ Xo|x ≺ α} for some α ∈ Xo

{x ∈ Xo|β ≺ x} for some β ∈ Xo

{x ∈ Xo|α ≺ x ≺ β} for α,β ∈ Xo.
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Define similarly a collection of sets B1 where the various elements are taken
out of X1.

i. The collection Bo forms a base for a topology Uo on Xo. The resulting
space {Xo;Uo} satisfies the first but not the second axiom of countability.
Moreover {Xo;Uo} is separable.

ii. The collection B1 forms a base for a topology U1 on X1. The resulting
space {X1;U1} does not satisfy the first axiom of countability and is not
separable.

4.5. The product of two connected topological spaces is connected.
4.6. The product of a family {Xα;Uα} of Hausdorff spaces is Hausdorff.
4.7. A sequence {xn} of elements of

∏
Xα converges to some x ∈ ∏

Xα if and only
if the sequences of the projections {xα,n} converge to the projections xα of x.

4.8. The countable product of separable topological spaces is separable.
4.9. Let {X;U} satisfy the second axiom of countability. Every topological sub-

space of X is separable. If {X;U} is separable but it does not satisfy the second
axiom of separability, a topological subspace of X might not be separable. The
interval [0, 1] with the half-open interval topology is separable. The Cantor
set C ⊂ [0, 1] with the inherited topology is not separable.

4.10c The Box Topology

Let {Xα;Uα} be a family of topological spaces and set

B = ⋃{∏Oα|Oα ∈ Uα}.

Each set in B is an open rectangle, since it is the Cartesian product of open sets in
Uα. The collection B forms a base for a topology in

∏
α Xα, called the box-topology.

While the projections πα are continuous with respect to such a topology, the box
topology contains, roughly speaking, too many open sets.

As an example let [0, 1] be endowed with the topology inherited from the Euclid-
ean topology onR. Then the Hilbert box [0, 1]N can be endowedwith either the prod-
uct topology or the box-topology. The sequence {xn} = { 1n , . . . , 1

n , . . .} converges to
zero in the product topology and not in the box-topology. Indeed the neighborhood
of the origin O = ∏[0, 1

j ) does not contain any of the elements of {xn}.

5c Compact Topological Spaces

5.1. A Hausdorff and compact topological space is regular and normal.
5.2. If {X;U} is compact, then {X;Uo} is compact for anyweaker topologyUo ⊂ U .

The converse is false.
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Proposition 5.1c Let f : {X;U} → {Y;V} be continuous, one-to-one and onto. If
{X;U} is compact and {Y;V} is Hausdorff then f is a homeomorphism.

Proof The inverse f −1 is one-to-one and onto. It is continuous if for every closed set
C ⊂ X, the image f (C) is closed. IfC ⊂ X is closed, it is compact and its continuous
image f (C) is compact and hence closed since {Y;V} is Hausdorff.
5.3. Let {X;U} be Hausdorff and compact. Then the previous Proposition implies

that:

i. {X;U1} is not compact for any stronger topology U1.
ii. {X;Uo} is not Hausdorff for any weaker topology Uo.
iii. If {X;U1} is compact for a stronger topology U1 ⊃ U , then U = U1.

Thus, the topological structure of a compact Hausdorff space {X;U} is rigid in
the sense that one cannot strengthen its topology without loosing compactness
and cannot weaken it without loosing the separation property.

5.4. Let ‖x‖ be the Euclidean norm in RN and consider the function

f (x) =
⎧
⎨

⎩

max{|x1|, . . . , |xN |}
‖x‖ x for x �= 0

0 for x = 0.

The function f maps cubes of wedge 2ρ in RN , onto balls of radius ρ in RN , it
is continuous, one-to-one and onto. Thus f is a homeomorphism between RN

equipped with the topology generated by the cubes with faces parallel to the
coordinate planes, andRN equipped with the topology generated by the balls.

5.5. A space X consisting of more than one point and equipped with the trivial
topology is compact and not Hausdorff.

5.6. Let {X;U} be locally compact. A subset C ⊂ X is closed if and only if C ∩K
is closed, for every closed compact subset K ⊂ X.

5.7. Let {Xo;Uo} and {X1;U1} be the spaces introduced in 4.4. The space {Xo;Uo}
is sequentially compact but not compact. The space {X1;U1} is compact.

5.8c The Alexandrov One-Point Compactification
of {X;U} ([3])

Let {X;U} be a noncompact Hausdorff topological space. Having fixed x∗ /∈ X
consider the set X∗ = X ∪ {x∗} and define a collection of sets U∗ consisting of U ,X∗,
and all subsets O∗ ⊂ X∗ containing x∗ and such that X∗ − O∗ is compact in {X;U}.
Then U∗ is a Hausdorff topology on X∗. Moreover {X∗;U∗} is compact, X is dense
in X∗ and the restriction of U∗ to X, coincides with the original topology U on X.

5.9. The topological space of 1.5 is compact. It can be regarded as the Alexandrov
one-point compactification of N equipped with the discrete topology.
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5.10. The one-point compactification of RN with its Euclidean topology, is home-
omorphic to the unit sphere in RN+1 by stereographic projection.

5.11. The one-point compactification of {Xo;Uo} in 4.4 is {X1;U1}.

7c Continuous Functions on Countably Compact Spaces

7.1c Upper-Lower Semi-continuous Functions

7.1. Characteristic functions of open(closed) sets in R
N are lower(upper) semi-

continuous. A function f for an open set E ⊂ R
N into R

∗ is upper(lower)
semi-continuous if and only is for each x ∈ E

lim sup
y→x

f (y) ≤ f (x)
(
lim inf
y→x

f (y) ≥ f (x)
)
.

7.2. Let {fα} be a collection of upper(lower) semi-continuous functions on a topo-
logical space {X;U}. Then inf(sup)fα is upper(lower) semi-continuous.

7.3. The finite sum of nonnegative upper(lower) semi-continuous functions is
upper(lower) semi-continuous.

7.4. Let {fn} be a sequence of nonnegative, lower semi-continuous function on
{X;U}. Then ∑

fn is lower semi-continuous.
7.5. Let {fn} be a sequence of nonnegative, upper semi-continuous function on

{X;U}. Then∑
fn need not be upper semi-continuous.Give a counterexample.

7.6. Modulus of Continuity: For an arbitrary real valued function f defined on an
open set E ⊂ R

N , and for ε > 0, set

η(x, ε) = sup{|f (y) − f (z)| : y, z ∈ Bε(x) ∩ E}
η(x) = inf

ε
η(x, ε).

Prove that η(·) is upper semi-continuous. Prove that f is continuous at x if and
only if η(x) = 0 and therefore the points of continuity of any f : E → R are
countable intersection of open sets. The function

E × R
+ � (x, ε) → η(x, ε)

is themodulus of continuity of f at x. The function f is Hölder continuous at x,
with Hölder exponentα ∈ (0, 1], if there exists positive constant δ = δ(x) and
C = C(x) depending upon such that η(x, ε) ≤ C(x)εα for all 0 < ε ≤ δ(x).
In such a case

|f (x) − f (y)| ≤ C(x)|x − y|α for all |x − y| ≤ δ(x).
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The function f is Hölder continuous inE with exponentα, if the constants δ(x)
and C(x) are independent of x ∈ E. If α = 1 then f is Lipschitz continuous
at x and respectively in E.

7.7. Upper and Lower Envelope of a Function: For an arbitrary real valued
function f defined on an open set E ⊂ R

N , and for ε > 0, set

ϕ(x) = supε>0 inf |x−y|<ε f (y) lower envelope of f at x

ψ(x) = infε>0 sup|x−y|<ε f (y) upper envelope of f at x.

Prove that ϕ is lower semi-continuous and ψ is upper semi-continuous; more-
over ϕ ≤ f ≤ ψ.

7.2c Characterizing Lower-Semi Continuous
Functions in R

N

Proposition 7.1c Let E be an open subset of RN . A function f : E → R
+ is lower

semi-continuous if and only if it is the pointwise limit of an increasing sequence of
continuous functions defined in E.

Proof (=⇒) For n ∈ N and x ∈ E set

fn(x) = inf{f (z) + n|x − z| : z ∈ E}.

Prove that |fn(x) − fn(y)| ≤ n|x − y|.

7.3c On the Weierstrass-Baire Theorem

7.8. The set of discontinuities of a real valued function could be as diverse as
possible. As an example consider the functions

f (x) =
⎧
⎨

⎩

1 if x ∈ Q

−1 if x ∈ [0, 1] − Q

g(x) =
⎧
⎨

⎩

x if x ∈ Q

−x if x ∈ [0, 1] − Q.

The first is everywhere discontinuous but its absolute value is continuous.
The second is continuous only at x = 0.
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7.9. There exists a function f : (0, 1) → R continuous at the irrationals and
discontinuous at the rationals of (0, 1). To construct an example recall that
a rational number r ∈ (0, 1] can be written as the ratio m/n of two positive
integers in lowest terms. That is, m and n are the smallest integers for which
r = m

n . A rational number r is an equivalence class of ratios of the form m
n .

Out of such an equivalence class we select the representative in lowest terms.
Set

f (x) =
⎧
⎨

⎩

1
n if x ∈ Q ∩ (0, 1]

0 if x ∈ (0, 1] − Q.

(7.1c)

However there exists no function f : (0, 1] → R continuous at the rationals
and discontinuous at the irrationals of (0, 1] (see Corollary 16.1c of the
Complements).
The function in (7.1c) is everywhere upper semi-continuous in (0, 1] since,
for every y ∈ (0, ]

lim sup
x→y

f (x) = 0 ≤ f (y).

7.10. There exists functions that are everywhere finite in their domain of definition
and not bounded in every subset of their domain of definition. Continue to
represent a rational number r ∈ (0, 1) as the ratiom/n of twopositive integers
in lowest terms. Then set

f (x) =
⎧
⎨

⎩

n if x ∈ Q ∩ (0, 1)

0 if x ∈ (0, 1) − Q.

(7.2c)

Such a function is everywhere finite in [0, 1] and unbounded in every subin-
terval of [0, 1]. Indeed let I ⊂ [0, 1] be an interval. If f were bounded in I ,
then the denominator n of all rational numbers m

n ∈ I , would be bounded.
This would imply that there are only finitely many rationals in I .

7.11. There exist real valued, bounded functions, defined on a compact set that do
not take neither maxima or minima.
Continue to represent a rational number r ∈ (0, 1) as the ratio m/n of two
positive integers in lowest terms. Then set

f (x) =
⎧
⎨

⎩

(−1)n n
n+1 if x ∈ Q ∩ (0, 1)

0 if x ∈ (0, 1) − Q.

(7.3c)

About any point of (0, 1) the values of f are arbitrarily close to ±1. The
function in (7.3c) is nowhere upper semi-continuous in [0, 1]. Indeed for
every y ∈ [0, 1]

lim sup
x→y

f (x) = 1 > f (y).
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Thus the assumption that f be upper semi-continuous cannot be relaxed in the
Weierstrass-Baire Theorem. The function in (7.3c) is also nowheremonotone
in [0, 1].

7.4c On the Assumptions of Dini’s Theorem

7.12. The assumption that the limit function f be lower semi-continuous cannot
be removed from Dini’s theorem. Indeed the sequence {xn} for x ∈ [0, 1]
is decreasing, each xn is continuous in [0, 1] but the limit f is not lower
semi-continuous. Accordingly, the convergence {xn} → f is not uniform in
[0, 1].

7.13. The assumption that each of the fn be upper semi-continuous, cannot be
removed from Dini’s theorem. Set

fn(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 for x = 0

1 for 0 < x < 1
n

0 for 1
n ≤ x ≤ 1.

The sequence {fn} is decreasing, it converges to zero pointwise in [0, 1], but
the convergence is not uniform.

7.14. The requirement that the sequence {fn} be decreasing cannot be removed
from Dini’s Theorem. Set

fn(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2n2x for 0 ≤ x ≤ 1
2n

n − 2n2(x − 1
2n ) for 1

2n ≤ x ≤ 1
n

0 for 1
n ≤ x ≤ 1.

The functions fn are continuous in [0, 1] and converge to zero pointwise in
[0, 1]. However the convergence is not uniform.

9c Vector Spaces

9.1. The element Θ ∈ X is unique.
9.2. Let A, B and C be subsets of a vector space X. Then:

(i) A ∩ B �= ∅ if and only if Θ ∈ A − B.
(ii) A ∩ (B + C) �= ∅ if and only if B ∩ (A − C) �= ∅. Equivalently if and

only if C ∩ (A − B) �= ∅.
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(iii) Xo is a subspace of X if and only if αXo = Xo for all α ∈ R − {0} and
x + Xo = Xo for all x ∈ Xo.

(iv) If Xo and X1 are linear subspaces of X then αXo + βX1 is a subspace of
X.

(v) If A and B are convex, then A + B is convex and λA is convex for all
λ ∈ R.

9.3c Hamel Bases

A collection {xα} of elements of a vector space X is linearly independent if any finite
subcollection of elements {xα} is linearly independent.

A linearly independent collection {xα} is a Hamel basis for a vector space X if
span{xα} = X. Equivalently, if every x ∈ X has a unique representation as a finite
linear combination of elements of {xα}, that is

x =
m∑

j=1
cjxαj for some finite m, cj ∈ R.

Proposition 9.1c Every vector space X has a Hamel basis.

Proof Let L be the collection of all subsets of X whose elements are linearly inde-
pendent. This collection is partially ordered by inclusion. Every linearly ordered
subcollection {Bσ} of L has an upper bound given by B = ∪Bσ . Indeed the elements
of B are linearly independent since any finitely many of them must belong to some
Bσ , and the elements of Bσ are linearly independent. Therefore by Zorn’s lemma
L has a maximal element {xα}. The elements of {xα} are linearly independent and
every x ∈ X can be written as a finite linear combination of them. Indeed if not, the
collection {xα, x} belongs to L, contradicting the maximality of {xα}.
9.4. A Hamel basis for RN is the usual Euclidean basis.
9.5. Let � denote the collection of all sequences {cn} of real numbers and consider

the countable subcollection of �

e1 = {1, 0, 0, . . . , 0m, 0, . . .}
e2 = {0, 1, 0, . . . , 0m, 0, . . .}
· · · = · · · · · · · · · · · ·
em = {0, 0, 0, . . . , 1m, 0, . . .}
· · · = · · · · · · · · · · · ·

(9.1c)

Every x ∈ � can be written as x = ∑
cnen. However {en} is not a Hamel basis

for �.
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9.6c On the Dimension of a Vector Space

If the Hamel basis of a vector space X is of the form {xn} for n ∈ N, the dimension of
X isℵo, that is, the cardinality ofN. More generally, if {xα} forα ∈ A is a Hamel basis
for a vector space X, then the dimension of X is the cardinality of A. This definition
of dimension of X is independent of the choice of the Hamel basis.

9.7. Let �o denote the collection of all sequences of real numbers {cn} with only
finitely many non zero elements. Then (9.1c) is a Hamel basis for �o and the
dimension of �o is ℵo.

9.8. Let �[0, 1] denote the collection of all sequences {cn} of real numbers in
[0, 1]. The dimension of �[0, 1] is no less than the cardinality ofR, since the
collection xα = {α,α2, . . . ,αn, . . .} for α ∈ (0, 1) is linearly independent.

9.9. A vector space with a countable Hamel basis is separable.
9.10. The pair {R;Q}, that is, the realsR over the field of the rationalsQ, is a vector

space. If x ∈ R is not an algebraic number, then the elements {1, x, x2, . . .} are
linearly independent. The dimension of {R;Q} is not less than the cardinality
of R.

10c Topological Vector Spaces

10.1. Let A and B be subsets of a topological vector space {X;U}. Then:
(i) If A and B are open, the αA + βB is open.
(ii) Ā+ B̄ ⊂ A + B. The inclusion is in general strict unless either one of

Ā or B̄ is compact.

(iii) If A ⊂ X is convex then Ā and
o
A are convex.

(iv) The convex hull of an open set is open.

10.2. If x ∈ O ∈ BΘ , there exists an open set A such that x + A ⊂ O.
10.3. The identity map from R equipped with the Euclidean topology, onto R

equipped with the half-open interval topology of 4.3, is bounded, linear but
not continuous.

10.4. Let E be an open set in RN and denote by C(E) the linear vector space of all
real valued continuous functions defined in E. In C(E) introduce a topology
as follows. For g ∈ C(E) and ρ > 0, stipulate that the set,

Og,ρ = {
f ∈ C(E)

∣
∣ sup

E
|f − g| < ρ

}

is an open neighborhood of g. The collection of such Og,ρ is a base for
a topology in C(E). The sum + : C(E) × C(E) → C(E) is continuous
with respect to such a topology. However the multiplication by scalars • :
R × C(E) → C(E), is not continuous.
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10.5. For x, y ∈ R set

d(x, y) =
⎧
⎨

⎩

|x − y| + 1 if either x = 0 or y = 0 but not both

|x − y| otherwise.

Prove that d(·, ·) is a distance in R and that the resulting topological space,
is not a linear topological vector space. The ball B 1

2
(0) = {O} is open, and

its pre-image under translation need not be open.

13c Metric Spaces

13.1. Properties (i) and (iii) in the definition of a metric, follow from (ii) and (iv).
Setting x = y in the triangle inequality (iv), and using (ii) gives 2d(x, z) ≥ 0
for all x, z ∈ X. Setting z = y in (iv) gives d(x, y) ≤ d(y, x), and by
symmetry d(y, x) ≤ d(x, y). Thus a metric could be defined as a function
d : (X × X) → R satisfying (ii) and (iv).

13.2. The identically zero pseudo-metric generates the trivial topology on X. The
function d(x, y) = 1 if x �= y and d(x, y) = 0 if x = y is the discrete metric
on X and generates the discrete topology. With respect to such a metric the
open balls B1(x) contain only the element x and their closure still coincides
with x. Thus B̄1(x) �= {y ∈ X|d(x, y) ≤ 1}.

13.3. The function (x, y) → min{1; |x − y|} is a metric on R.
13.4. Let A ⊂ X. Then Ā = ∪{x|d(A, x) = 0}.
13.5. A function f : {X; d} → {Y; η} is continuous at x ∈ X if and only if

{f (xn)} → f (x), for every sequence {xn} → x.
13.6. Two metrics d1 and d2 on X are equivalent if and only if:

(i) For every x ∈ X and every ball B1
ρ(x) in the metric d1, there exists a

radius r = r(ρ, x) such that the ball B2
r (x) in the metric d2 is contained

in B1
ρ(x).

(ii) For every x ∈ X and every ball B2
r (x) in the metric d2, there exists a

radius ρ = ρ(r, x) such that the ball B1
ρ(x) in the metric d1 is contained

in B2
r (x).

The two metrics are uniformly equivalent if the choices of r in (i) and the
choice of ρ in (ii) are independent of x ∈ X. Equivalently, d1 and d2 are
uniformly equivalent if and only if the identity map between {X; d1} and
{X; d2} is a uniform homeomorphism.

13.7. In RN the following metrics are uniformly equivalent

dp(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

( N∑

i=1
|xi − yi|p

) 1
p
for p ∈ [1,∞)

max
1≤i≤N

|xi − yi| for p = ∞.
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The discrete metric in RN is not equivalent to any of the metrics dp.
13.8. The metric do in (13.1) is equivalent, but not uniformly equivalent, to the

original metric d.
13.9. A metric space {X; d} is bounded if there exists and element Θ ∈ X and a

numberM > 0 such that d(x,Θ) < M for all x ∈ X. Boundedness depends
only on themetric and it is neither an intrinsic property ofX nor a topological
property. In particular the same set X can be endowed with two equivalent
metrics d and do in such a way that {X; d} is not bounded and {X; do} is
bounded.

13.10c The Hausdorff Distance of Sets

Let {X; d} be a metric space. For A ⊂ X and σ > 0 set

Aσ = {x ∈ X
∣∣ d(x,A) < σ}.

The Hausdorff distance of two sets A and B in X is ([72], Chap. VIII)

dH(A,B) = inf{σ > 0 such that A ⊂ Bσ and B ⊂ Aσ}.

If A and B have nonempty intersection their distance is zero but their Hausdorff
distancemight be positive. There exist distinct subsetsA andB ofX whose Hausdorff
distance is zero. Thus dH is a pseudo-metric on 2X and generates the pseudo-metric
space {2X; dH}.

The identity map from {X; d} to {2X; dH} is an isometry.
The topology on {2X; dH} is generated only by the original metric d, via the

definition of dH, and not by the topology of {X; d}. Indeed there might exist metrics
d1 and d2 that generate the same topology on X and such that the corresponding
Hausdorff distances d1,H and d2,H generate different topologies on 2X . As an example
let X = R

+ endowed with the two equivalent metrics

d1(x, y) =
∣
∣∣

x

1 + x
− y

1 + y

∣
∣∣, d2(x, y) = min{1; |x − y|}.

The topologies of {2R+; d1,H} and {2R+; d2,H} are different. The set of natural
numbers N is a point in 2R

+
. The ball B1

ε(N) centered at N and of radius ε ∈ (0, 1),
in the topology of {2R+; d1,H} contains infinitely many finite subsets ofR+. The ball
B2

ε(N) in the topology of {2R+; d2,H} does not contain any finite subset of R+.
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13.11c Countable Products of Metric Spaces

Let {Xn; dn} be a countable collection of metric spaces. Then the product topology
on

∏
Xn coincides with the topology generated by the metric

d(x, y) = ∑ 1

2n
dn(xn, yn)

1 + dn(xn, yn)
. (13.1c)

This will follow from the two inclusions:

(i) Every neighborhood Oy of a point y ∈ ∏
Xn open in the product topology,

contains a ball Bε(y) with respect to the metric in (13.1c).
(ii) Every ball Bε(y) with respect to the metric in (13.1c) contains a neighborhood

of y, open in the product topology.

Elements y ∈ ∏
Xn are sequences {yn} such that yn ∈ Xn. For a fixed y ∈ ∏

Xn a
neighborhoodOy of y, open in the product topology contains an open set of the form

Oy,k =
k∏

n=1
B(n)

ε (yn) for some finite k (13.2c)

where B(n)
ε (yn) is the ball in {Xn; dn}, centered at yn and of radius ε.

There exists δ > 0 sufficiently small depending on ε and k, such that the ball
Bδ(y) in

∏
Xn is contained in Oy. Indeed from

∑ 1

2n
dn(xn, yn)

1 + dn(xn, yn)
< δ

it follows that, the number δ can be chosen so small that

dn(xn, yn) < 2n+1δ ≤ ε for all n = 1, . . . , k.

Thus Bδ(y) ⊂ Oy. Conversely, every ball Bδ(y) in
∏

Xn contains an open set of
the form (13.2c). Indeed let k be a positive integer so large that

∞∑

n=k

1

2n
<

δ

2
.

For such a k fixed the open set in (13.2c) with ε = 1
2δ is contained in Bδ(y).

13.12. The countable product of complete metric spaces is complete.
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14c Metric Vector Spaces

Referring back to (14.1), the discontinuity of the bijection h is meant with respect to
the topology generated by the original metric, whereas the discontinuity of the sum
+ : X × X → X, or the product by scalars • : R × X → X, should be proved with
respect to the new metric dh.

14.1. Let X = R and let d be the usual Euclidean metric. Define

h(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if x = 0

0 if x = 1

x otherwise

and let dh = d(h) be defined as in (14.1). For ε ∈ (0, 1) the ball Bε(0),
centered at 0 and radius ε, in the new metric dh, consists of the singleton
{0} and the open ball Bε(1), in the original Euclidean metric, of radius ε and
centered at 1 from which the singleton {1} has been removed. Likewise the
ball Bε(1) of radius ε and centered at 1, in the new metric dh, consists of
the singleton {1} and the and the open ball Bε(0), in the original Euclidean
metric, of radius ε and centered at 0 from which the singleton {0} has been
removed. For such ametric dh, both the sum and themultiplication by scalars
are discontinuous.

14.2. The half-open interval topology of 4.3 is not metrizable, that is, there exists
no metric onR that generates the half-open interval topology. Combine 10.3
with Proposition 14.2.

14.3. Let �∞ be the collection of all sequences x = {xn} or real numbers such that
sup |xn| < ∞, endowed with with the metric

d(x, y) = sup
n

|xn − yn|. (14.1c)

Show that �∞ is not complete nor separable.
14.4. Let t : R → [0, 1] be the tent function defined by

t(s) =
⎧
⎨

⎩

1 − 2|s| if |s| ≤ 1
2 ;

0 otherwise.
(14.2c)

For x ∈ �∞ define
T(x) = ∑

xit(s − i).

Prove that T is an isometry between �∞ and T(�∞).
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15c Spaces of Continuous Functions

15.1c Spaces of Hölder and Lipschitz Continuous Functions

15.1. Prove that the quantity [f − g]α,E is a pseudo-metric in Cα(E).
15.2. Prove that Cα(E) is complete for the metric in (15.6).
15.3. Prove that Cβ(E) ⊂ Cα(E) for all β > α.
15.4. Prove that Hölder continuous functions in E are uniformly continuous.
15.5. Let E be a subset of RN containing the origin, and let α ∈ (0, 1) be fixed.

Prove that E � x → |x|α is in Cα(E). Prove also that for any g ∈ C1(Ē)

d(|x|α, g) ≥ 1 with respect to the metric d(·, ·) in (15.6).

15.6. Prove that Cα(E) is not separable in its own metric topology.
15.7. Prove that E � x → |x| ∈ Lip(E). Prove also that for any g ∈ C1(Ē), such

that gxj (xo) = 0 for j = 1, . . . ,N , for some xo ∈ E,

d(|x|, g) ≥ 1 with respect to the metric d(·, ·) in (15.6)

15.8. In Lip(0, 1) consider the functions

(0, 1) � x → |a − x|, |b − x| for fixed a, b ∈ (0, 1).

Prove that if a �= b then

d(|a − x|, |b − x|) ≥ 2 with respect to the metric d(·, ·) in (15.6).

Deduce that Lip(E) is not separable.

16c On the Structure of a Complete Metric Space

16.1. Let d1 and d2 be two equivalent metrics on the same vector space X. The two
metric spaces {X; d1} and {X; d2} have the same topology and the identity
map is a homeomorphism. However, the identity map does not preserve
completeness. As an example consider R with the Euclidean metric and the
metric do given in (13.1) corresponding to the Euclidean metric.

16.2. Intersection Properties of a Complete Metric Space

Proposition 16.1c (Cantor) Let {X; d} be a complete metric space, and let {En} be a
countable collection of closed subsets of X such that En+1 ⊂ En and diam{En} → 0.
Then ∩En �= ∅.
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16.3c Completion of a Metric Space

Every metric space {X; d} can be completed by the following procedure.

(a) First, one defines X ′ as the set of all the Cauchy sequences {xn} of elements in
X and verifies that such a set has the structure of a linear space. Then on X ′
one defines a distance function

({xn}; {yn}) → d′({xn}; {yn}) = lim d(xn, yn).

Since {xn} and {yn} are Cauchy sequences in X, the sequence {d(xn, yn)} is a
Cauchy sequence in R+. Thus the indicated limit exists. Since several pairs of
Cauchy sequences might generate the same limit, this is not a metric on X ′.
One verifies however that it is a pseudo-metric.

(b) InX ′ introduce an equivalence relationbywhich two sequences {xn} and {yn} are
equivalent if d′({xn}; {yn}) = 0. One verifies that such a relation is symmetric,
reflexive and transitive and therefore generates equivalence classes. Define
X∗ as the set of equivalence classes of all Cauchy sequences of {X; d}. Any
such class, contains only sequences at zero mutual pseudo-distance. For any
two such equivalence classes x∗ and y∗ choose representatives {xn} ∈ x∗ and
{yn} ∈ y∗ and set

d∗(x∗, y∗) = d′({xn}; {yn}).

One verifies that the definition is independent of the choices of the represen-
tatives and that d∗ defines a metric in X∗. The original metric space {X; d} is
embedded into {X∗; d∗} by identifying elements of X with elements of X∗ as
constant Cauchy sequences. Such an embedding is an isometry.

(c) The metric space {X∗; d∗} is complete. Let {x∗
j } be a Cauchy sequence in

{X∗; d∗} and select a representative {xj,n} out of each equivalence class x∗
j .

By construction any such a representative is a Cauchy sequence in {X; d}.
Therefore for each j ∈ N, there exists an index nj such that d(xj,n, xj,nj ) ≤ 1

j
for all n ≥ nj. By diagonalization select now the sequence {xj,nj } and verify
that itself is a Cauchy sequence in {X; d}. Thus {xj,nj } identifies an equivalence
class x∗ ∈ X∗. The Cauchy sequence {x∗

n} converges to x∗ in {X∗; d∗}. Finally
the original metric space {X; d}, with the indicated embedding, is dense in
{X∗; d∗}.

Remark 16.1c While every metric space can be completed, a deeper problem is that
of characterizing the elements of the new space and its metric. A typical example is
the completion of the rational numbers into the real numbers.
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16.4c Some Consequences of the Baire Category Theorem

The category theorem is equivalent to the following:

Proposition 16.2c Let {X; d} be a complete metric space. Then a countable collec-
tion {On} of open dense subsets of X, has nonempty intersection.

16.5. Let {X; d} be a complete metric space. Then every closed, proper subset of
X of first category, is nowhere dense.

16.6. The countable union of sets of first category is of first category. However the
countable union of nowhere dense sets need not be nowhere dense. Give an
example.

16.7. Let {En} be a countable collection of closed subsets of a complete metric

space {X; d}, such that ∪En = X. Then ∪ o
En is dense in X.

16.8. The rational numbersQ cannot be expressed as the countable intersection of
open intervals.

16.9. An infinite dimensional complete metric space {X; d} cannot have a count-
able Hamel basis.

Proposition 16.3c Let f : R → R be continuous on a dense subset Eo of R. Then f
is continuous on a set E of the second category.

Proof For x ∈ (0, 1)

f ′(x) = sup
ε

inf|x−y|<ε
f (y), f ′′(x) = inf

ε
sup

|x−y|<ε
f (y).

For n ∈ N set also

On = {
x ∈ R

∣∣ f ′′(x) − f ′(x) < 1
n

}
.

The set of continuity of f is the intersection of the On. The sets On are open and
dense in R and their complements Oc

n are nowhere dense in R. Therefore ∪Oc
n is of

the first category in R and ∩On is of the second category in R.

Corollary 16.1c There exist no function f : [0, 1] → R continuous only at the
rationals of [0, 1].
See also the construction in 7.2 of the Complements.

17c Compact and Totally Bounded Metric Spaces

Lemma 17.1c (The Lebesgue Number Lemma) Let {X; d} be a sequentially com-
pact topological space. For every finite open covering {Om}km=1 for some k ∈ N,
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there exists a positive number σ such that every ball Bσ(y) ⊂ X is contained in some
Om. The number σ is called the Lebesgue number of the covering.

Proof If such a σ > 0 does not exist, there exists a sequence of balls {B 1
n
(xn)}n∈N, of

centers {xn} and radii 1
n each not contained in any of the open sets Om. There exists

a subsequence {xn′ } ⊂ {xn} and y ∈ X such that {xn′ } → y. Since {Om} is a covering
y ∈ Om for some m. Since Om is open there exists σm > 0 such that Bσm(y) ⊂ Om.
Then

B 1
n′
(xn′) ⊂ Bσm(y) ⊂ Om for n′ >

2

σm
.

17.1c An Application of the Lebesgue Number Lemma

Let Cδ be the Cantor set constructed in § 2.1c–§ 2.2c of Chap.1, and let Jn,j be the
closed intervals left after the n-stage of removal of the middle open intervals In,j.
Then for any given open covering {Im} of Cδ there exists n sufficiently large such that
each Jn,j is contained in some Im.

http://dx.doi.org/10.1007/978-1-4939-4005-9_1


Chapter 3
Measuring Sets

1 Partitioning Open Subsets of RN

Proposition 1.1 (Cantor [21]) Every open subset E ofR is the union of a countable
collection of pairwise disjoint, open intervals.

Proof For x ∈ E , let Ex be the union of all open intervals containing x and contained
in E . By construction Ex is an interval. If x and y are two distinct elements of E , then
either Ex = Ey or Ex ∩ Ey = ∅. Indeed if their intersection is not empty, their union
is an interval containing both x and y and contained in E . Since Ex is an interval,
it contains a rational number. Therefore, the collection of the intervals Ex that are
distinct is countable and E is the union of such intervals.

An open subset of RN cannot be partitioned, in general, into countably many,
mutually disjoint, open cubes. However, it can be partitioned into a countable col-
lection of disjoint, 1

2 -closed dyadic cubes.
Let q = (q1, . . . , qN ) ∈ Z

N denote a N -tuple of integers. For a positive integer p
and some N -tuple q, denote by Qp,q the 1

2 -closed dyadic cube

Qp,q =
{
x ∈ R

N
∣∣ qi − 1

2p
< xi ≤ qi

2p
; i = 1, . . . , N

}
. (1.1)

The whole RN can be partitioned into disjoint, 1
2 -closed dyadic cubes, by slicing

it with the hyperplanes
{
x j = q� j2

−p
}
where for each j = 1, . . . , N the numbers

q� j range over the integers Z. By this procedure, for all fixed p ∈ N

R
N = ⋃

q∈ZN

Q p,q with Qp,q ∩ Qp,q′ = ∅ for q �= q′.

The collection of all 1
2 -closed dyadic cubes in RN is denoted by Qdiad.

Proposition 1.2 An open set E ⊂ R
N is the union of a countable collection of 1

2 -
closed disjoint, dyadic cubes.

© Springer Science+Business Media New York 2016
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Proof Consider the 1
2 -closed dyadic cubes Q1,q. At most countably many of them

are contained in E and we denote by Q1 their union, i.e.,

Q1 = {⋃
Q1,q

∣∣ Q1,q ⊂ E
}
.

If the complement E − Q1 is nonempty, it contains at most countably many of
the 1

2 -closed dyadic cubes Q2,q, and we denote by Q2 their union, i.e.,

Q2 = {⋃
Q2,q

∣∣ Q2,q ⊂ E − Q1
}
.

Proceeding in this fashion define inductively

Qn =
{ ⋃

q
Qn,q

∣∣ Qn,q ⊂ E −
n−1⋃

j=1
Q j

}
n = 2, 3, . . . .

The union of the Qn consist of countably many 1
2 -closed, disjoint, dyadic cubes

of the type (1.1). Moreover, E = ∪Qn . Indeed, since E is open, for every x ∈ E
there exists a 1

2 -closed dyadic cube Qp,q contained in E and containing x . Such a
cube must be contained in some of the Qn for some n.

Remark 1.1 The decomposition of an open set E into cubes is not unique. For exam-
ple, by analogous arguments, an open set E could be decomposed into a countable
union of closed dyadic cubes with pairwise disjoint interior. Another decomposition
is in § 1c of the Complements. Having determined one, reorder and relabel the cubes
as {Qn}, and write E = ∪Qn .

Remark 1.2 The collection Qdiad of all 1
2 -closed dyadic cubes in R

N , has the fol-
lowing set algebraic properties:

• The intersection of any two elements inQdiad, if nonempty, is an element ofQdiad

• The mutual, relative complement of any two elements inQdiad is the finite disjoint
union of elements in Qdiad.

2 Limits of Sets, Characteristic Functions, and σ-Algebras

Let {En} be a countable collection of sets. The upper and lower limits of the sequence
{En}, are defined as

lim sup En =
∞⋂

n=1

∞⋃

j=n
E j lim inf En =

∞⋃

n=1

∞⋂

j=n
E j . (2.1)

The sequence {En} is convergent if

lim sup En = lim inf En.



2 Limits of Sets, Characteristic Functions, and σ-Algebras 69

Such a limit exists if the collection {En} ismonotone increasing, i.e., if En ⊂ En+1

for all n ∈ N, or if {En} is monotone decreasing, i.e., if En+1 ⊂ En for all n ∈ N.
However, for the limit to exist the sequence {En} need not be monotone. It might also
occur that a sequence {En} of nonvoid sets, and whose cardinality tends to infinity,
has a limit and the limit is the empty set. For example, this occurs if En is the set of
positive integers between n and 2n.

The characteristic function χE of a set E is defined as

χE (x) =
{
1 if x ∈ E
0 if x /∈ E .

It follows from the definition that for any two sets E and F , and their symmetric
difference EΔF = (E − F) ∪ (F − E)

χE−F = χE (1 − χF ) and χEΔF = |χE − χF |.

It also follows from the definition that for a sequence of sets {En}

χ ⋃∞
j = n E j

= sup
j ≥ n

χE j χ ⋂∞
j = n E j

= inf
j ≥ n

χE j .

Thus the notion of upper and lower limits of a sequence of sets can be equivalently
rephrased in terms of upper and lower limits of the corresponding characteristic
functions.

A set E ⊂ R
N is of the type of Fσ if it is the union of a countable collection of

closed subsets of RN . It is of the type of Gδ if it is the intersection of a countable
collection of open subsets of RN . The set of the rational numbers is of the type of
Fσ and the set of the irrational numbers is of the type of Gδ .

Similarly, one may define sets of type Fσδ and Gδσ . . . as

Fσδ = { countable intersection of sets of the type Fσ} ,

Gδσ = { countable union of sets of the type Gδ} .

Let X be a set. A collectionA of subset of X is an algebra if it contains X and is
closed under finite union and complements. This implies that ∅ ∈ A.

The collectionA is a σ-algebra of subsets of X , if it is an algebra and if in addition
is closed under countable union [72].

There are algebras that are not σ-algebras (3.1 of the Complements).
The collection 2X of all subsets of X is a σ-algebra called the discrete σ-algebra

of subsets of X . The collection {X; ∅} is a σ-algebra, called the trivial σ-algebra of
subsets of X .

Proposition 2.1 Given any collection O of subsets of X, there exists a smallest
σ-algebra Ao that contains O.
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Proof Let F be the collection of all the σ-algebras containing O. Such a collection
is nonvoid since it contains discrete σ-algebra. Set

Ao = ⋂ {A ∣∣ A ∈ F}
.

Any two sets inAo belong to all the σ-algebras in F . Therefore, their union is in
Ao since it must be in all the A ∈ F . Analogously, one proves that the complement
of a set in Ao remains in Ao and the countable union of sets in Ao remains in Ao.
Therefore,Ao is a σ-algebra. IfA′ is any σ-algebra containingO, then it must be in
the family F . Thus Ao ⊂ A′.

Let B denote the smallest σ-algebra containing the open subsets of RN . The
elements of B are the Borel sets and B is the Borel σ-algebra [72].

Open and closed subsets of RN are Borel sets. Sets of the type of Fσ, Gδ, Fσδ,

Gδσ, . . . are Borel sets.

3 Measures

Denote by R
∗ = {−∞} ∪ R ∪ {+∞} the set of the extended real numbers, with

the formal ordering −∞ < c < +∞, and formal operations ±∞ ± c = ±∞ for all
c ∈ R, and (±∞)c = (±∞) sign c for all c ∈ R − {0}. If c = 0 somewhat arbitrarily
one sets 0 · ∞ = 0. The operation ∞ − ∞ is not defined,

Let X be a set and let A be a σ-algebra of subsets of X . A set function μ defined
onAwith values on the extended realsR∗, is countably subadditive if for a countable
collections {En} of elements of A

μ
(⋃

En
) ≤ ∑

μ(En).

The set function μ is countably additive if for a countable collections {En} of
disjoint elements of A

μ
(⋃

En
) = ∑

μ(En)
(
Ei ∩ E j = ∅ for i �= j

)
.

The triple {X,A,μ} is a measure space and μ is a measure on X if

(i) the domain of μ is a σ − algebra A (ii) μ is nonnegative on A
(iii) μ is countably additive (iv) μ(E) < ∞ for some E ∈ A.

Proposition 3.1 Let μ : A → R
∗ be a measure and let A, B ∈ A. Then:

(a). μ is monotone, that is μ(A) ≤ μ(B), whenever A ⊂ B.
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(b). If A ⊂ B and if μ(B) < ∞

μ(B − A) = μ(B) − μ(A). (3.1)

(c). If μ(A ∪ B) < ∞

μ(A ∪ B) = μ(A) + μ(B) − μ(A ∩ B). (3.2)

(d). The set functionμ is countably subadditive.Moreover for a countable collection
{En} of elements of A1

lim inf μ(En) ≥ μ (lim inf En) . (3.3)

(e). Finally, if μ(∪En) < ∞, then

lim supμ(En) ≤ μ (lim sup En) . (3.4)

Proof Write B = A ∪ (B − A). Since A and B − A are disjoint, by (iii)

μ(B) = μ(A) + μ(B − A).

This proves the monotonicity of μ, since μ(B − A) ≥ 0. It also proves (3.1) if
μ(B) < ∞. To prove (3.2) write A ∪ B as the disjoint union

A ∪ B = A ∪ (
B − A ∩ B

)

and apply (iii) and (3.1). Let {En} be a countable collection of sets in A and set

B1 = E1 and Bn = En −
n−1⋃

j=1
E j for n = 2, 3, . . . .

The sets Bn are mutually disjoint and their union coincides with the union of the
En . Therefore, by (iii) and the monotonicity of μ

μ
(⋃

En
) = μ

(⋃
Bn

) = ∑
μ(Bn) = ∑

μ
(
En −

n−1⋃

j=1
E j

)
≤ ∑

μ(En).

Thus μ is countably subadditive. To prove (3.3) write

lim inf En = ∪Dn, where Dn = ∩ j≥n E j .

Since Dn ⊂ Dn+1 ⋃
Dn = D1 ∪ ⋃

(Dn+1 − Dn).

1This is a version of Fatou’s lemma (§ 8.1 of Chap.4).

http://dx.doi.org/10.1007/978-1-4939-4005-9_4
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May assume that μ(Dn) < ∞ for all n, otherwise the conclusion is trivial. Since
the sets Dn+1 − Dn are disjoint, by countable additivity and (3.1)

μ (lim inf En) = μ
(⋃

Dn
) = μ

[
D1 ∪ ⋃

(Dn+1 − Dn)
]

= μ(D1) + ∑
μ(Dn+1 − Dn)

= μ(D1) + ∑[
μ(Dn+1) − μ(Dn)

]

= lim μ(Dn) ≤ lim inf μ(En).

To prove (3.4), consider the increasing family of sets

⋃
En − ⋃

j≥n E j ,

and compute

μ
[
lim

(⋃
En − ⋃

j≥n
E j

)] = μ
( ⋃

En − lim sup
⋃

j≥n
E j

)

= μ
(⋃

En
) − μ

(
lim sup

⋃

j≥n
E j

)
.

On the other hand, by (3.3)

μ
[
lim

(⋃
En − ⋃

j≥n
E j

)] ≤ lim inf μ
(⋃

En − ⋃

j≥n
E j

)

= μ
(⋃

En
) − lim supμ

( ⋃

j≥n
E j

)
.

Combining these two inequalities, proves (3.4).

Remark 3.1 Let E ∈ A be a set for which (iv) holds. Then (3.1) implies that μ(∅) =
μ(E − E) = 0.

3.1 Finite, σ-Finite, and Complete Measures

Themeasureμ is finite ifμ(X) < ∞. It isσ-finite if there exists a countable collection
{En} of subsets of X such that X = ∪En and μ(En) < ∞ for all n. An example of
a non σ-finite measure is in 3.2 of the Complements.

A measure space {X,A,μ} is complete if every subset of a set of measure zero
is in the σ-algebra A. From the monotonicity of μ it follows that if {X,A,μ} is
complete, the measure of every subset of a set of measure zero is zero. An example
of a not complete measure is in § 14.3. Every measure can be completed (§ 3.1c of
the Complements).
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3.2 Some Examples

Let X be a set. The set function μ(∅) = 0 and μ(X) = ∞ is a measure on the trivial
σ-algebra {X; ∅}. Let X be a set and let E be a subset of X . Define μ(E) to be the
number of elements in E if E is finite, and infinity otherwise. The set function μ is
a measure on 2X called the counting measure on X .

Let X = {xn} be a sequence and let {αn} be a sequence of nonnegative numbers.
The set function

X ⊃ E −→ μ(E) = ∑{
αn

∣∣ xn ∈ E
}

is a σ-finite measure on X .
Let X be infinite and for every subset E ⊂ X define μ(E) = 0 if E is countable

and μ(E) = ∞ otherwise. This defines a measure on 2X .
The sum of two measures defined on the same σ-algebra is a measure.
Let {μn} be a sequence of measures on X defined on the same σ-algebraA. Then

μ = ∑
μn , is a measure on X defined on A.

Let {X,A,μ} be a measure space and for a fixed set B ∈ A define,

AB = { the collection of sets A ∩ B for A ∈ A} .

Then AB is a σ-algebra and the restriction of μ to AB is a measure.
Let A be the discrete σ-algebra of all subset of RN . Fix x ∈ R

N and define

μ(E) =
{
1 if x ∈ E,

0 if x /∈ E .
(3.5)

One verifies thatμ is ameasure defined on 2R
N
. It is called theDirac deltameasure

in RN with mass concentrated at x , and it is denoted by δx .

4 Outer Measures and Sequential Coverings

A set function μe from the subsets of X into R∗ is an outer measure if,

(i) μe is defined on all subsets of X (ii) μe is monotone
(iii) μe is nonnegative and μe(∅) = 0 (iv) μe is countably subadditive.

A collection Q of subsets of X is a sequential covering for X if it contains the
empty set and if for every E ⊂ X there exists a countable collection {Qn} of elements
of Q such that E ⊂ ∪Qn . For example, the collection of the 1

2 -closed dyadic cubes
Qdiad is a sequential covering for RN .
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Outer measures can be constructed from a sequential coveringQ by the following
procedure. Let λ be a given nonnegative set function defined onQ, taking values on
R

∗ and such that λ(∅) = 0. For every E ⊂ X , set

μe(E) = inf
{∑

λ(Qn)
∣∣ Qn ∈ Q and E ⊂ ⋃

Qn
}
. (4.1)

It follows from the definition that, if μe(E) < ∞, for every ε > 0 there exists a
countable collection {Qε,n} of elements of Q such that

E ⊂ ⋃
Qε,n and

∑
λ(Qε,n) ≤ μe(E) + ε. (4.2)

Proposition 4.1 The set function μe defined by (4.1) is an outer measure.

Proof The requirements (i)–(iii) are a direct consequence of the definitions. Let
{En} be a countable collection of subsets of X . In proving (iv) may assume that
μe(En) < ∞ for all n. Fix ε > 0. For each n ∈ N there exists a countable collection
{Q jn } of elements of Q such that

En ⊂ ⋃
Q jn and

∑
λ(Q jn ) ≤ μe(En) + ε2−n.

The union of the sets Q jn as both n and jn range over N, covers the union of the
En . Therefore,

μe
(⋃

En
) ≤ ∑

n

∑

jn

λ(Q jn ) ≤ ∑
μe(En) + ε.

The outer measure μe generated by the sequential coveringQ and the nonnegative
set function λ need not coincide with λ on elements of Q. By construction

μe(Q) ≤ λ(Q) for all Q ∈ Q (4.3)

and strict inequality might occur (§ 4.2 and § 5 below).

4.1 The Lebesgue Outer Measure in R
N

Let Qdiad denote the collection of the 1
2 -closed dyadic cubes in R

N and let λ be the
Euclidean measure of cubes, i.e.,

for all Q ∈ Qdiad λ(Q) =
(diamQ√

N

)N
.
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The Lebesgue outer measure of a set E ⊂ R
N is defined by

μe(E) = inf
{ ∑(diamQn√

N

)N ∣∣ E ⊂ ⋃
Qn, Qn ∈ Qdiad

}
. (4.4)

4.2 The Lebesgue–Stieltjes Outer Measure [89, 154]

Let f : R → R be monotone nondecreasing and right continuous. For an open inter-
val (a, b) ⊂ R define λ(a, b) = f (b) − f (a). The collection of open intervals (a, b)
forms a sequential covering of R. The corresponding outer measure μ f,e is the
Lebesgue–Stieltjes outer measure on R generated by f . By construction

μ f,e(a, b] = f (b) − f (a).

However, it might occur that μ f,e(a, b) < f (b) − f (b). Thus for such an outer
measure, (4.3) might hold with strict inequality.

5 The Hausdorff Outer Measure in R
N [71]

For ε > 0 let Eε be the sequential covering of RN , consisting all subsets E of RN

whose diameter is less than ε. Fix α > 0 and set λ(∅) = 0 and

Eε � E −→ λ(E) = (diamE)α.

This defines a nonnegative set function on Eε which in turn generates the outer
measure

Hα,ε(E) = inf
{∑

(diamEn)
α

∣∣ E ⊂ ⋃
En, En ∈ Eε

}
. (5.1)

For such an outer measure the inequality in (4.3) might be strict. Indeed if Q is a
cube of unit edge in RN

λ(Q) = (
√
N )α and Hα,1(Q) = 0 for all α > N .

If ε′ < ε, then Hα,ε ≤ Hα,ε′ . Therefore, the limit

Hα(E) = lim
ε→0

Hα,ε(E)

exists and defines a nonnegative set function Hα on the subsets of RN .
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Proposition 5.1 Hα is an outer measure on R
N . Moreover,

Hα(E) < ∞ implies Hβ(E) = 0 for all β > α;
Hα(E) > 0 implies Hβ(E) = ∞ for all β < α.

Proof The first statement is proved as in Proposition 4.1. Let {En} be countable
collection of elements of Eε such that E ⊂ ⋃

En . For β > α

Hβ,ε(E) ≤ ∑
(diamEn)

β ≤ εβ−α ∑
(diamEn)

α.

Thus Hβ,ε(E) ≤ εβ−αHα,ε(E) for all ε > 0.

Proposition 5.2 Letμe(·) denote the Lebesgue outer measure inRN defined in (4.4).
There exists two positive constants cN ≤ CN depending only upon N such that, for
every set E ⊂ R

N

cNHN (E) ≤ μe(E) ≤ CNHN (E).

Moreover, c1 = C1 = 1. In particular, for N = 1 the Lebesgue outer measure on
R coincides with the Hausdorff outer measure H1.

Proof May assume that both μe(E) and HN (E) are finite.
Having fixed ε > 0 there exists a countable collection of 1

2 -closed dyadic cubes
{Qn} whose union covers E and

μe(E) ≥ ∑ (diamQn√
N

)N − ε.

By possibly subdividing the cubes Qn and using the finite additivity of the Euclid-
ean measure of cubes, may assume that diamQn < ε. Then

μe(E) ≥ 1

NN/2

∑
(diamQn)

N − ε ≥ 1

NN/2
HN ,ε(E) − ε

for all ε > 0. This proves the left inequality with cN = √
N−N .

For the upper bound on μe(E), having fixed ε > 0, there exists a countable col-
lection {En} of elements of Eε such that

HN ,ε(E) ≥ ∑
(diamEn)

N − ε. (5.2)

Each of the En can be included in a 1
2 -closed dyadic cube Qn of edge not exceeding

2diamEn . Therefore,

(diamEn)
N ≥ 1

2N
{volume of Qn} and En ⊂ Qn.
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From this and (4.4)

HN ,ε(E) ≥ 1

2N
∑(diamQn√

N

)N − ε ≥ 1

2N
μe(E) − ε

for all ε > 0. This establishes the upper bound with CN = 2N .
If N = 1 each of the sets En in (5.2) can be included in the finite union (αn,βn]

of 1
2 -closed, dyadic intervals, in such a way that

diamEn ≥ length of (αn,βn] − 2−nε.

From this and (4.4)

H1,ε(E) ≥ ∑
length of (αn,βn] − 2ε ≥ μe(E) − 2ε.

TheHausdorff outermeasure is additive on sets that are atmutual positive distance.

Proposition 5.3 Let E and F be subsets of RN such that dist{E; F} = δ for some
δ > 0. Then Hα(E ∪ F) = Hα(E) + Hα(F), for all α > 0.

Proof Since Hα is subadditive, it suffices to prove the statement with equality
replaced by ≥. Also may assume that Hα(E ∪ F) is finite.

Having fixed ε < 1
2δ, there exists a collection of sets {Gn} whose union contains

E ∪ F and each of diameter less than ε, such that

Hα,ε(E ∪ F) ≥ ∑
(diamGn)

α − ε.

If a point x ∈ E is covered by some Gn , such a set does not intersect F . Likewise,
if y ∈ F is covered by Gm , then Gm ∩ E = ∅. Therefore, the collection {Gn} can
be separated into two subcollections {En} and {Fn}. The union of the En contains E
and the union of the Fn contains F . From this

Hα,ε(E ∪ F) ≥ ∑
(diamEn)

α + ∑
(diamFn)

α − ε

≥ Hα,ε(E) + Hα,ε(F) − ε.

5.1 Metric Outer Measures

An outer measure μe in RN is a metric outer measure if for any two sets E and F at
positive mutual distance, μ(E ∪ F) = μe(E) + μe(F). The Lebesgue outer measure
inRN ismetric. TheLebesgue–Stieltjes outermeasure onR is ametric outermeasure.
TheHausdorff outermeasureHα is metric. An example of a nonmetric outermeasure
is in § 14.2 of Chap.11.

http://dx.doi.org/10.1007/978-1-4939-4005-9_11
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6 Constructing Measures from Outer Measures [26]

Let μe be an outer measure on X and let A and E be any two subsets of X . Then the
set identity A = (A ∩ E) ∪ (A − E), implies

μe(A) ≤ μe(A ∩ E) + μe(A − E). (6.1)

Consider the collection A of those sets E ⊂ X satisfying (6.1) with equality, for
all sets A ⊂ X , i.e., the collection of the sets E ⊂ X such that [25 26]

μe(A) ≥ μe(A ∩ E) + μe(A − E) (6.2)

for all sets A ⊂ X . Sets E ∈ A are said μe-measurable.

Proposition 6.1 (i) The empty set is in A
(ii) If E is a set of outer measure zero, then E ∈ A
(iii) If E ∈ A, its complement Ec is in A
(iv) If E1 and E2 are in A, then E1 ∪ E2, E1 − E2, E1 ∩ E2 are in A
(v) Let {En} be a collection of disjoint sets in A. Then

μe
(
A ∩ ⋃

En
) = ∑

μe (A ∩ En) for every A ⊂ X.

(vi) The countable union of sets in A is in A.

Proof To establish that a set E is in the collection A, it suffices to verify (6.2) for
all sets A of finite outer measure. Statements (i) and (ii) follow from (6.2) and the
monotonicity of μe. Statement (iii) follows from the set identities

A ∩ Ec = A − E A − Ec = A ∩ E .

To prove the first statement in (iv) let E1 and E2 be elements ofA and write (6.2)
for the pair A, E1 and for the pair (A − E1), E2,

μe(A) ≥ μe(A ∩ E1) + μe(A − E1);
μe(A − E1) ≥ μe

(
(A − E1) ∩ E2

) + μe
(
(A − E1) − E2

)
.

Add these inequalities and use the subadditivity of μe and the set identities

(A − E1) − E2 = A − (E1 ∪ E2)
(
(A − E1) ∩ E2

) ∪ (
A ∩ E1

) = A ∩ (E1 ∪ E2).

This gives

μe(A) ≥ μe
(
A ∩ (E1 ∪ E2)

) + μe
(
A − (E1 ∪ E2)

)
.
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The remaining statements in (vi) follow from the set identities

E1 − E2 = (
Ec
1 ∪ E2

)c
E1 ∩ E2 = (

Ec
1 ∪ Ec

2

)c
.

We first establish (v) for a finite collection of disjoint sets. That is, if

Bn =
n⋃

j=1
E j and Ei ∩ E j = ∅ for i �= j

then for every set A ⊂ X

μe(A ∩ Bn) =
n∑

j=1
μe(A ∩ E j ).

The statement is obvious for n = 1. Assuming it holds for n, we show it continues
to hold for n + 1. By (iv), Bn is in A, and may write (6.2) for the pair (A ∩ Bn+1)

and Bn . This gives

μe(A ∩ Bn+1) = μe(A ∩ Bn+1 ∩ Bn) + μe(A ∩ Bn+1 − Bn)

= μe(A ∩ Bn) + μe(A ∩ En+1).

Let now {En} be a countable collection of disjoint sets inA. By the subadditivity
and monotonicity of the outer measure μe

∑
μe(A ∩ En) ≥ μe

(
A ∩ ⋃

En
) ≥ μe

(
A ∩

m⋃

j=1
E j

) =
m∑

j=1
μe(A ∩ E j )

To prove (vi) assume first that the sets of the collection {En} are mutually disjoint.
For every A ⊂ X and every m ∈ N

μe(A) = μe
(
A ∩

m⋃

j=1
E j

) + μe
(
A −

m⋃

j=1
E j

)

≥
m∑

j=1
μe(A ∩ E j ) + μe

(
A − ⋃

En
)
.

Lettingm → ∞ and using the countable subadditivity of μe, shows that the union
of the En satisfies (6.2) and therefore is in A.

For a general countable collection {En} of elements of A write D1 = E1 and
Dn = En − ⋃n−1

j=1E j . The sets Dn are in A, they are mutually disjoint and their
union coincides with the union of the En .
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Proposition 6.2 The restriction of μe to A is a complete measure.

Proof By Proposition 6.1, A is a σ-algebra and the restriction μe|A satisfies the
requirements of a complete measure. In particular, the countable additivity follows
from (v) with A replaced with the union of the En and the completeness follows
from (ii).

7 The Lebesgue–Stieltjes Measure on R

TheLebesgue–Stieltjes outermeasureμ f,e inducedby an increasing, right continuous
function f : R → R, generates a σ-algebra A f of subset of R and a measure μ f

defined on A f .

Proposition 7.1 A f contains the Borel sets on R.

Proof It suffices to verify that intervals of the type (α,β] belong toA f , i.e., that for
every subset E ⊂ R

μ f,e(E) ≥ μ f,e(E ∩ (α,β]) + μ f,e(E − (α,β]). (7.1)

Lemma 7.1 Let λ f be the Lebesgue–Stieltjes set function defined on open intervals
of R, from which μ f,e is constructed. Then for any open interval I and any interval
of the type (α,β],

λ f (I ) ≥ μ f,e(I ∩ (α,β]) + μ f,e(I − (α,β]).

Proof Let I = (a, b) and assume that (α,β] ⊂ (a, b). Denote by ε and η positive
numbers. By the right continuity of f and the definition of μ f,e,

λ f (I ) = f (b) − f (a)

= lim
ε→ 0

(
f (b) − f (β + ε)

)

+ lim
ε→0

lim
η→0

(
f (β + ε) − f (α + η)

) + lim
η→0

(
f (α + η) − f (a)

)

≥ μ f,e(β, b) + μ f,e(α,β] + μ f,e(a,α]
≥ μ f,e(α,β] + μ f,e

(
I − (α,β]).

The cases α ≤ a < β < b and a ≤ α < b < β are handled similarly.

Returning to the proof of (7.1), may assume that μ f,e(E) is finite. Having fixed
ε > 0, there exists a collection of open intervals {In} whose union covers E , such
that



7 The Lebesgue–Stieltjes Measure on R 81

μ f,e(E) + ε ≥ ∑
λ f (In)

≥ ∑
μ f,e(In ∩ (α,β]) + ∑

μ f,e(In − (α,β])
≥ μ f,e

(⋃
In ∩ (α,β]) + μ f,e

(⋃
In − (α,β])

≥ μ f,e
(
E ∩ (α,β]) + μ f,e

(
E − (α,β])

7.1 Borel Measures

A measure μ in R
N is a Borel measure if the σ-algebra of its domain of definition,

contains the Borel sets. By Proposition 7.1, the Lebesgue–Stieltjes measure on R is
a Borel measure.

8 The Hausdorff Measure on R
N

For a fixed α > 0, the Hausdorff outer measureHα generates a σ-algebra Aα and a
measure Hα called the Hausdorff measure on R

N .

Proposition 8.1 Aα contains the Borel sets in R
N .

Proof It suffices to verify that closed sets E ⊂ R
N belong to Aα, i.e., that for every

subset A ⊂ R
N ,

Hα(A) ≥ Hα(A ∩ E) + Hα(A − E) for E ⊂ R
N closed.

May assume that Hα(A) is finite. For n ∈ N, set

En =
{
x ∈ R

N
∣∣ dist{x; E} ≤ 1

n

}

and estimate below

Hα(A) = Hα

[
(A ∩ En) ∪ (A − En)

]

≥ Hα

[
(A ∩ E) ∪ (A − En)

]

= Hα(A ∩ E) + Hα(A − En).

The last inequality follows from Proposition 5.3, since

dist
{
(A ∩ E); (A − En)

} ≥ 1

n
.
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From this

Hα(A) ≥ Hα(A ∩ E) + Hα(A − E) − Hα

[
A ∩ (En − E)

]
.

Lemma 8.1 limHα

[
A ∩ (En − E)

] = 0.

Proof For j = n, n + 1, . . . , set

Fj =
{
x ∈ A

∣∣ 1

j + 1
< dist{x; E} ≤ 1

j

}
.

Then A ∩ (En − E) =
∞⋃

j=n
Fj , and

Hα

(
A ∩ (En − E)

) ≤
∞∑

j=n
Hα(Fj ).

The conclusion would follow from this, if the series
∑Hα(Fj ) were convergent.

To this end regroup the Fj into those whose index j is even and those whose index
is odd. By construction dist{Fj ; Fi } > 0 if i �= j and if either both i and j are even,
or if both are odd. For any two such sets

Hα(Fj ) + Hα(Fi ) = Hα(Fj ∪ Fi )

by virtue of Proposition 5.3. Therefore, for all finite m

m∑

j=1
Hα(Fj ) ≤

m∑

h=1
Hα(F2h) +

m∑

h=0
Hα(F2h+1)

= Hα

( m⋃

h=1
F2h

) + Hα

( m⋃

h=0
F2h+1

)

≤ 2Hα(F1) ≤ 2Hα(A).

Corollary 8.1 For all α > 0, the Hausdorff measure Hα is a Borel measure.

Remark 8.1 The definition (5.1) valid for α > 0 and the previous remarks suggest
we define Ho to be the counting measure.

Remark 8.2 Theproof of Proposition 8.1 only used thatHα is ametric outermeasure.
Therefore, the measure generated by any metric outer measure in R

N is a Borel
measure. This is known as the Carathéodory sufficient condition for a measure in
R

N to be a Borel measure [26]. An example of a nonmetric outer measure is in § 14.2
of Chap.11.

http://dx.doi.org/10.1007/978-1-4939-4005-9_11
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9 Extending Measures from Semi-algebras to σ-Algebras

A measure space {X,A,μ} can be constructed starting from a sequential covering
Q of X and a nonnegative set function λ : Q → R

∗. First, one constructs an outer
measure μe by the procedure of § 4 and then, by the procedure of § 6 such an outer
measure μe, generates a σ-algebraA of subsets of X and a measure μ defined onA.
The elements of the originating sequential covering Q need not be measurable with
respect to the resulting measure μ. Even if the elements of Q are μe-measurable,
the set function λ and the outer measure μe, might disagree on Q. Examples can be
constructed using the Lebesgue–Stieltjes outer measure in R or the Hausdorff outer
measure in RN .

The next proposition provides sufficient conditions both on Q and λ for the ele-
ments of Q to be measurable and for λ to coincide with μe on Q.

The collection Q is said to be a semi-algebra if

(i). The intersection of any two elements in Q is in Q
(ii). For any two elements Q1 and Q2 in Q, the difference Q1 − Q2 is the finite

disjoint union of elements in Q.

The collection of all the half-closed intervals of the type (a, b] for a, b ∈ R, is
a semi-algebra. The collection of the open intervals on R is not a semi-algebra.
The collection Qdiad of the 1

2 -closed dyadic cubes in R
N is a semi-algebra. The

sequential covering Eε from which the Hausdorff outer measures are constructed, is
a semi-algebra.

The set function λ : Q → R
∗ is finitely additive onQ, if for any finite collection

{Q1, . . . , Qn} of disjoint elements of Q, whose union is in Q,2

λ
( n⋃

j=1
Q j

) =
n∑

j=1
λ(Q j ),

( n⋃

j=1
Q j ∈ Q

)
.

The set function λ is countably subadditive on Q, if for any countable collection
{Qn} of elements of Q, whose union is in Q

λ
(⋃

Q j
) ≤ ∑

λ(Qn),
(⋃

Qn ∈ Q)
.

The Euclidean measure of parallepipeds is finitely additive. The Lebesgue–
Stieltjes set function λ f is finitely additive. The Hausdorff set function is not finitely
additive.

Proposition 9.1 Assume that Q is a semi-algebra, and the set function λ is finitely
additive onQ. ThenQ ⊂ A. If in addition λ is countably subadditive, then λ agrees
with μe on Q.

2The notion of sequential covering Q does not require that Q be closed under finite union, even if
it is a semi-algebra.



84 3 Measuring Sets

Proof Let Q ∈ Q be fixed and select A ⊂ X . If μe(A) = ∞ then (6.2) holds with
E = Q. If μe(A) < ∞, having fixed ε > 0, there exists a countable collection {Qε,n}
of elements of Q such that

ε + μe(A) ≥ ∑
λ(Qε,n), and A ⊂ ⋃

Qε,n. (9.1)

For each fixed n write

Qε,n = (Qε,n ∩ Q) ∪ (Qε,n − Q).

The intersection Qε,n ∩ Q is in Q, by virtue of (i), whereas by (ii)

Qε,n − Q =
mn⋃

jn=1
Q jn

where the Q jn are disjoint elements ofQ. Therefore, each Qε,n can be written as the
finite union of disjoint elements of Q. Since λ(·) is finitely additive

λ(Qε,n) = λ(Qε,n ∩ Q) +
mn∑

jn=1
λ(Q jn ). (9.2)

The elements of the collection {Qε,n ∩ Q} are inQ and their union covers A ∩ Q.
Likewise, the elements of the collection {Q jn } as jn ranges over {1, . . . ,mn} and n
ranges over N, are in Q and their union covers A − Q. Therefore, by the definition
of outer measure

∑
λ(Qε,n) = ∑

n
λ(Qε,n ∩ Q) + ∑

n

mn∑

jn=1
λ(Q jn )

≥ μe(A ∩ Q) + μe(A − Q).

This proves that Q is μe-measurable. To prove that μe(Q) = λ(Q), may assume
that μe(Q) < ∞. Fix an arbitrary ε > 0 and let {Qε,n} be a countable collection of
elements in Q such that

ε + μe(Q) ≥ ∑
λ(Qε,n) and Q ⊂ ⋃

Qε,n . (9.3)

From (9.2), for each fixed n, estimate below

λ(Qε,n) ≥ λ(Qε,n ∩ Q).

The elements of the collection {Qε,n ∩ Q} are in Q by (i). Moreover, their union
is in Q since, by the second of (9.3), Q = ⋃

(Q ∩ Qε,n). Therefore, since λ(·) is
countably subadditive

ε + μe(Q) ≥ ∑
λ(Qε,n ∩ Q) ≥ λ(Q).
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Remark 9.1 For the inclusionQ ⊂ A it suffices to require that λ be finitely additive
onQ. If λ is both finitely additive and countably subadditive, then it is also countably
additive.

A set function λ on a semi-algebra Q is said to be a measure on Q if it satisfies
the requirements (i)–(iv) of § 3. The countable additivity (iii) is required to hold for
any countable collection {Qn} of sets in Q whose union is in Q. The assumptions
of Proposition 9.1 are verified if λ is a measure on a semi-algebra Q. In such a case
Q ⊂ A and μe agrees with λ on Q. This way the measure μ, restriction of μe to A,
can be regarded as an extension of λ from Q to A (see 4.2. of the Complements).

9.1 On the Lebesgue–Stieltjes and Hausdorff Measures

The assumptions of Proposition 9.1 are not satisfied, on different accounts, for neither
the Lebesgue–Stieltjes measure in R nor the Hausdorff measure in R

N . For the
Lebesgue–Stieltjes measure, Q is the collection of all open intervals (a, b) ⊂ R.
Such a collection is not a semi-algebra. The set function λ f is finitely additive and
countably additive. The Lebesgue–Stieltjes measurability of the open intervals must
be established by a different argument (Proposition 7.1). For the Hausdorff measure
inRN , the sequential coveringQ is the collection of all subsets ofRN whose diameter
is less than some ε > 0. Such a collection is a semi-algebra. However, the set function
λ(E) = (diamE)α is not finitely additive for all α > 0. TheHα-measurability of the
open sets is established by an independent argument (Proposition 8.1).

10 Necessary and Sufficient Conditions for Measurability

Let {X,A,μ} be the measure space generated by the pair {Q;λ} whereQ is a semi-
algebra of subsets of X and λ is a measure on Q. Denote by Qσ the collection of
all sets Eσ , that are the countable union of elements of Q. Also denote by Qσδ the
collection of sets Eσδ that are the countable intersection of elements of Qσ .

Proposition 10.1 Let E ⊂ X be of finite outer measure. For every ε > 0 there exists
a set Eσ,ε ∈ Qσ such that

E ⊂ Eσ,ε and μe(E) ≥ μ(Eσ,ε) − ε. (10.1)

Moreover, there exists Eσδ ∈ Qσδ , such that E ⊂ Eσδ and μe(E) = μ(Eσδ).

Proof By (4.2), for every ε > 0 there exists Eσ,ε = ⋃
Qn ∈ Qσ , such that

μe(E) + ε ≥ ∑
λ(Qn) = ∑

μ(Qn) ≥ μ
(⋃

Qn
) = μ(Eσ,ε).
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This proves (10.1). As a consequence, for each n ∈ N there exists Eσ, 1n
∈ Qσ such

that

μ(Eσ, 1n
) − 1

n
≤ μe(E) ≤ μ(Eσ, 1n

).

Thus Eσδ = ⋂
Eσ, 1n

is one possible choice for such a claimed set.

Remark 10.1 Proposition 10.1 continues to hold if μ is any measure that agrees with
λ on Q.

Proposition 10.2 Let {X,A,μ} be the measure space generated by a measure λ on
a semi-algebraQ. A set E ⊂ X of finite outer measure, is μ-measurable if and only
if for every ε > 0 there exists a set Eσ,ε ∈ Qσ , such that

E ⊂ Eσ,ε and μe(Eσ,ε − E) ≤ ε. (10.2)

Proof The necessary condition follows from Proposition 10.1. Indeed if E is μ-
measurable

μ(Eσ,ε) ≤ μe(E) + ε ⇐⇒ μ(Eσ,ε − E) ≤ ε.

For the sufficient condition, assuming (10.2) holds, we verify that E satisfies (6.2)
for all A ⊂ X . Since Eσ,ε is μ-measurable

μe(A) = μe(A ∩ Eσ,ε) + μe(A − Eσ,ε)

≥ μe(A ∩ E) + μe(A − E) − μe
(
A ∩ (Eσ,ε − E)

)

≥ μe(A ∩ E) + μe(A − E) − ε.

Remark 10.2 The sufficient condition of Proposition 10.2 does not require that E
be of finite outer measure.

Proposition 10.3 Let {X,A,μ} be a measure space generated by a measure λ on
a semi-algebraQ. A set E ⊂ X of finite outer measure, is μ-measurable if and only
if there exists Eσδ ∈ Qσδ , such that E ⊂ Eσδ and μe(Eσδ − E) = 0.

11 More on Extensions from Semi-algebras to σ-Algebras

Theorem 11.1 [48, 61] Every measure λ on a semi-algebraQ generates a measure
space {X,A,μ}, where A is a σ-algebra containing Q and μ is a measure on A
which agrees with λ on Q. Moreover, if Qo is the smallest σ-algebra containing Q,
the restriction of μ to Qo is an extension of λ to Qo. If λ is σ-finite on Q, such an
extension is unique.
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Proof There is only to prove the uniqueness whenever λ is σ-finite. Assume that μ1

and μ2 are both extensions of λ and let μe be the outer measure generated by {Q;λ}.
Since Q is a semi-algebra, every element of Qσ can be written as the disjoint union
of elements ofQ. Since μ1 and μ2 agree onQ, they also agree onQσ . Next we show
that both μ1 and μ2 agree with the outer measure μe on sets of Qo of finite outer
measure.

Let E ∈ Qo be of finite outer measure. By (10.1) for every ε > 0 there exists
Eσ,ε ∈ Qσ , such that

μ1(Eσ,ε) ≤ μe(E) + ε.

Since E ⊂ Eσ,ε and ε > 0 is arbitrary, this impliesμ1(E) ≤ μe(E), for all E ∈ Qo

of finite outer measure. Also, since μe is a measure on Qo

μe(Eσ,ε − E) = μe(Eσ,ε) − μe(E) = μ1(Eσ,ε) − μe(E) ≤ ε.

From this, since both μe and μ1 are measures on Qo and E ⊂ Eσ,ε

μe(E) ≤ μe(Eσ,ε) = μ1(Eσ,ε) = μ1(E) + μ1(Eσ,ε − E)

≤ μ1(E) + μe(Eσ,ε − E) ≤ μ1(E) + ε.

Therefore, μ1(E) = μe(E) on sets E ∈ Qo of finite outer measure. Interchanging
the role ofμ1 andμ2, one concludes thatμ1(E) = μ2(E) = μe(E), for every E ∈ Qo

of finite outer measure.
Fix now E ∈ Qo not necessarily of finite outer measure. Since λ is σ-finite on

Q, there exists a sequence of sets Qn ∈ Q such that E = ⋃
Qn ∩ E and each of

the intersections Qn ∩ E is in Qo and is of finite outer measure. Since Q is a semi-
algebra, may assume that the Qn are mutually disjoint. Then

μ1(E) = ∑
μ1(Qn ∩ E) = ∑

μ2(Qn ∩ E) = μ2(E).

The requirement that λ be σ-finite is essential to insure a unique extension (11.7
of § 10.2c of the Complements).

12 The Lebesgue Measure of Sets in R
N

The collection Q of the 1
2 -closed dyadic cubes, including the empty set, is a semi-

algebra of subsets of RN . The Euclidean measure λ of cubes in R
N , provides a

nonnegative, finitely additive set function definedonQ fromwhich onemay construct
the outer measure μe as indicated in (4.1). The restriction of μe to the σ-algebra M
generated by μe, is the Lebesgue measure in R

N , and sets in M are said to be
Lebesgue measurable.
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The collection of 1
2 -closed dyadic cubes and the Euclidean measure on them

satisfy the assumption of Proposition 9.1. Therefore, the elements inQ are Lebesgue
measurable. As a consequence, open and closed sets, and sets of the type Fσ , Gδ ,
Fσδ , Gδσ…, are Lebesgue measurable.

The outer measure of a singleton {y} ∈ R
N is zero, since {y} may be included

into cubes or arbitrarily small measure. From this and the countable subadditivity
of μe it follows that any countable set in R

N has outer measure zero. Therefore,
by (iii) of Proposition 6.1, any countable set in RN is Lebesgue measurable and has
Lebesguemeasure zero. In particular, the setQ of the rational numbers is measurable
and has measure zero. Analogously, the set of points in R

N of rational coordinates
is measurable and has measure zero.

Every Borel set is Lebesgue measurable. The converse is false as the inclusion
B ⊂ M is strict. In § 14 we exhibit a measurable subset of [0, 1]which is not a Borel
set.

Remark 12.1 By virtue of Theorem 11.1, the restriction of the Lebesgue measure to
the Borel σ-algebra is the unique extension of the Euclidean measure of cubes, from
Q into B.

12.1 A Necessary and Sufficient Condition of Measurability

Let μ be the Lebesgue measure in RN . For a subset E of RN define

μ′
e(E) = inf

{
μ(O)

∣∣ where O is open and E ⊂ O}
.

The definition is analogous to that of the outer measure (4.1) except for the class
of sets where the infimum is taken.

Since every open set is the countable, disjoint union of 1
2 -closed cubes, the class

of the open sets containing E is contained in the class of the countable unions of
1
2 -closed cubes, containing E . Thus μe(E) ≤ μ′

e(E).

Proposition 12.1 μe(E) = μ′
e(E).

Proof One may assume that μe(E) < ∞. Having fixed ε > 0, let {Qε,n} be a count-
able collection of 1

2 -closed, dyadic cubes, whose union contains E and satisfying
(4.2). For each n there exists an open cube Q′

ε,n congruent to the interior of Qε,n

such that

Qε,n ⊂ Q′
ε,n and μ(Q′

ε,n − Qε,n) ≤ 1

2n
ε.

The union of the Q′
ε,n is open and contains E . Therefore,

μ′
e(E) ≤ ∑

μ(Q′
ε,n) ≤ ∑

μ(Qε,n) + ∑
2−nε ≤ μe(E) + 2ε.
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Proposition 12.2 A set E ⊂ R
N such that μe(E) < ∞, is Lebesgue measurable if

and only if for every ε > 0 there exists an open set Eo,ε such that

E ⊂ Eo,ε and μe(Eo,ε − E) ≤ ε. (12.1)

Equivalently, a set E ⊂ R
N of finite Lebesgue outer measure, is Lebesgue mea-

surable if and only if there exists a set Eδ of the type of a Gδ , such that

E ⊂ Eδ and μe(Eδ − E) = 0. (12.2)

Proof The sufficient condition follows from Propositions 10.2 and Remark 10.1.
Since the Lebesgue measure in RN is σ-finite, the necessary condition follows from
Propositions 10.1–10.3, using that μe(E) = μ′

e(E).

Proposition 12.3 A set E ⊂ R
N such that μe(E) < ∞, is Lebesgue measurable if

and only if for every ε > 0 there exists a closed set Ec,ε such that

Ec,ε ⊂ E and μe(E − Ec,ε) ≤ ε. (12.3)

Equivalently, a set E ⊂ R
N of finite Lebesgue outer measure, is Lebesgue mea-

surable if and only if there exists a set Eσ of the type of a Fσ , such that

Eσ ⊂ E and μe(E − Eσ) = 0. (12.4)

Proof (Sufficient Condition) Assume that for all ε > 0 there exists a closed set Ec,ε

satisfying (12.3). Then Ec
c,ε is open, it contains E

c and

μe(E
c
c,ε − Ec) = μe(E − Ec,ε) ≤ ε.

Therefore by Proposition 12.2, the set Ec
c,ε is Lebesgue measurable. Hence Ec,ε

is Lebesgue measurable.

Proof (Necessary Condition) Assume first that E is bounded and Lebesgue mea-
surable, and let Q be a closed cube containing E in its interior. The set Q − E is
Lebesguemeasurable and of finitemeasure. Therefore, by Proposition 12.2, for every
ε > 0 there exists an open set Eo,ε such that

Q − E ⊂ Eo,ε and μ
[
Eo,ε − (Q − E)

] ≤ ε.

The set Ec,ε = Ec
o,ε ∩ Q is closed, is contained in E and it satisfies (12.3). For n ∈

N set En = E ∩ [|x | ≤ n]. If E is Lebesguemeasurable and of finitemeasure, having
fixed ε > 0 there exists n so that μ(E ∩ [|x | > n]) < 1

2ε. The set En is bounded and
measurable. Hence there exists a closed set Ec,ε ⊂ En , such that μ(En − Ec,ε) < 1

2ε.
The set Ec,ε is closed, is contained in E and

μ(E − Ec,ε) ≤ μ(En − Ec,ε) + μ(E ∩ [|x | > n]) ≤ ε.
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Remark 12.2 The sufficient part of Propositions 12.2–12.3, does not require that
μe(E) < ∞. This follows from the proof of Proposition 10.2 and Remark 10.2.

13 Vitali’s Nonmeasurable Set [168]

The following construction, due to Vitali, exhibits a subset of [0, 1] which is not
Lebesgue measurable. Let • : [0, 1) × [0, 1) → [0, 1) be the addition mod-1 acting
on pairs x, y ∈ [0, 1), that is

x • y =
{
x + y if x + y < 1;
x + y − 1 if x + y ≥ 1.

If E is a Lebesgue measurable subset of [0, 1), then for every fixed y ∈ [0, 1), the
set

E • y
def= {

x • y
∣∣ x ∈ E

}

is Lebesgue measurable and μ(E • y) = μ(E). Next introduce an equivalence rela-
tion ∼ in [0, 1) by x ∼ y if x − y is rational. Such a relation identifies equivalence
classes in [0, 1). If E is one such class, then any two elements of E differ by a rational
number. In particular, the rational numbers in [0, 1) all belong to one such equiva-
lence class. Select one and only one element out of each class, to form a set E which
by this procedure, contains one and only one element from each of these equivalence
classes. In particular, any two distinct elements x, y ∈ E are not equivalent. Such
a selection is possible by the axiom of choice. Let now ro = 0 and let {rn} denote
the sequence of rational numbers in (0, 1), and set En = E • rn . The sets En are
pairwise disjoint. Indeed if x ∈ En ∩ Em , there exist two elements xn, xm ∈ E , and
two rational numbers rn and rm , such that

xn • rn = xm • rm .

Therefore xn − xm is rational, and xn ∼ xm . This however contradicts the defini-
tion of E , unlessm = n. Next observe that each element of [0, 1) belongs to some En .
Indeed every x ∈ [0, 1) must belong to some equivalence class and therefore there
must exist some y ∈ E such that x − y is rational. If x − y ≥ 0, then x = y + rn for
some rn and hence x ∈ En . If x − y < 0, then x = y − rm for some rm . This can be
rewritten as

x = y + (1 − rm) − 1 or equivalently as x = y • (1 − rm).

Thus in either case, x ∈ En for some n. Therefore, [0, 1) = ⋃
En . If E were

Lebesgue measurable, also En would be Lebesgue measurable and it would have the
same measure. Since the sets En are mutually disjoint,
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μ
([0, 1)) = ∑

μ(En).

This however is a contradiction since the right-hand side is either zero or infinity.

14 Borel Sets, Measurable Sets, and Incomplete Measures

Proposition 14.1 There exists a subset E of [0, 1] which is Lebesgue measurable
but it is not a Borel set.

Proposition 14.2 The restriction of the Lebesgue measure on R to the σ-algebra of
the Borel sets in R, is not a complete measure.

The next sections prepare for the proof of these propositions which is given in
§ 14.3.

14.1 A Continuous Increasing Function f : [0, 1] → [0, 1]

Construct inductively a nonincreasing sequence of functions { fn} defined in [0, 1]
by setting fo(x) = x

f1(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 x if 0 ≤ x ≤ 1

3

2x − 1
2 if 1

3 ≤ x ≤ 1
2

1
2 x + 1

4 if 1
2 ≤ x ≤ 5

6

2x − 1 if 5
6 ≤ x ≤ 1.

The function f1 has been constructed by dividing first [0, 1] into the two subin-
tervals [0, 1

2 ] and [ 12 , 1]. The first subinterval is subdivided in turn into the two
subintervals [0, 1

3 ] and [ 13 , 1
2 ]. In the first of these f1 is affine and has derivative 1

2 ,
whereas in the second f1 is affine and has derivative 2. The second subinterval [ 12 , 1]
is divided into two intervals [ 12 , 5

6 ] and [ 56 , 1]. In the first of these f1 is affine and has
derivative 1

2 , whereas in the second f1 is affine and has derivative 2. The resulting
function f1 is continuous and increasing in [0, 1]. Moreover, f1 ≤ fo and f1 = fo
at each of the end points of the initial subdivision. The functions fn for n ≥ 2 are
constructed inductively to satisfy:

i. Each fn is continuous and increasing in [0, 1]. Moreover, [0, 1] is subdivided
into 4n subintervals in such a way that fn is affine on each of them and has
derivative either 2−n or 2n .
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ii. fn+1(x) ≤ fn(x) for all n ∈ N and all x ∈ [0, 1].
iii. If α is anyone of the end points of the 4n intervals into which [0, 1] has been

subdivided, then fm(α) = fn(α) for all m ≥ n.
iv. If [α,β] is an interval where fn is affine, then (β − α) ≤ 4−n and fn(β) −

fn(α) ≤ 2−n .

Let fn be constructed and let [α,β] be one of the intervals where fn is affine. Then
fn+1 restricted to [α,β] can be constructed by the following a graphical procedure.
Set

A = (
α, fn(α)

)
, B = (

β, fn(β)
)

and let C be the midpoint of the segment AB. Next let D be the unique point below
the segment AC such that the slope of AD is 2−n−1 and the slope of DC is 2n+1.
Likewise, let E be the unique point below the segment CB such that the slope of
CE is 2−n−1 and the slope of CB is 2n+1. Then the polygonal ADCEB is the graph
of fn+1 within [α,β].

Since the fn are continuous and strictly increasing in [0, 1], their inverses f −1
n

are also continuous and strictly increasing in [0, 1]. Moreover by construction, such
inverses satisfy properties (i)–(iv) except (ii) where the inequality is reversed. For a
fixed n ∈ N, any fixed x ∈ [0, 1] belongs to at least one of the 4n closed subintervals
where fn is affine. If for example x ∈ [α,β], then for all m ≥ n

0 ≤ fn(x) − fm(x) ≤ fn(β) − fn(α) ≤ 2−n.

Since x ∈ [0, 1] is arbitrary the sequence { fn} converges uniformly in [0, 1] to a
nondecreasing, uniformly continuous function f in [0, 1].

Having fixed x < y in [0, 1], there exists n so large that one of the intervals [α,β]
where fn is affine, is contained in [x, y]. Therefore,

f (x) ≤ f (α) = fn(α) < fn(β) = f (β) ≤ f (y).

Thus f is strictly increasing in [0, 1] and has a continuous strictly increasing
inverse f −1 in [0, 1]. Set

An = ⋃ {
intervals [α,β] where fn is affine and f ′

n = 2n
} ;

Bn = ⋃ {
intervals [α,β] where fn is affine and f ′

n = 2−n
}
.

From the definition

[α,β] ∈ An =⇒ f (β) − f (α) = 2n(β − α)

[α,β] ∈ Bn =⇒ f (β) − f (α) = 2−n(β − α).
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Therefore, adding over all such intervals

μ
(
f (An)

) = 2nμ(An)

μ
(
f (Bn)

) = 2−nμ(Bn)

μ(An) + μ(Bn) = 1

μ
(
f (An)

) + μ
(
f (Bn)

) = 1.

From this compute

μ(An) = 2n − 1

22n − 1

μ
(
f (An)

) = 2n
2n − 1

22n − 1

μ(Bn) = 2n
2n − 1

22n − 1

μ
(
f (Bn)

) = 2n − 1

22n − 1
.

Set

Sn =
∞⋃

j=n
A j S =

∞⋂

n=1
Sn.

The set S is measurable and compute

0 ≤ μ(S) = lim μ(Sn) ≤ lim
∞∑

j=n
μ(A j ) = 0.

The sets f (An) are measurable being the finite union of intervals. Therefore, the
sets

f (Sn) =
∞⋃

j=n
f (A j ) f (S) =

∞⋂

n=1
f (Sn)

are also measurable. Then compute

1 ≥ μ
(
f (S)

) = lim μ
(
f (Sn)

) ≥ lim μ
(
f (An)

) = 1.

Therefore, f maps the set S ⊂ [0, 1] of measure zero onto f (S) ⊂ [0, 1] of
measure 1. Likewise, f maps the set [0, 1] − S of measure 1, onto [0, 1] − f (S) of
measure zero.

14.2 On the Preimage of a Measurable Set

Since f is continuous, the preimage of an open or closed subset of [0, 1] is open
or closed and hence Lebesgue measurable. More generally one might consider the
family

F =
{

the collection of the subsets E of [0, 1]
such that f −1(E) is Lebesgue measurable

}
. (14.1)

Since f is strictly increasing, the complement of any set in F is in F .
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If {En} is a countable collection of elements of F , then

f −1
( ⋃

En
) = ⋃

f −1(En) and f −1
( ⋂

En
) = ⋂

f −1(En).

Therefore, the countable union or intersection of elements in F remains in F .
Thus F is a σ-algebra of subsets of [0, 1]. It follows that F must contain the Borel
sets B of [0, 1], since they form the smallest σ-algebra containing the open sets. In
particular, the preimage of a Borel set is measurable.

Since f is continuous and increasing, the same argument shows that the preimage
of a Borel set is a Borel set.

14.3 Proof of Propositions 14.1 and 14.2

Since the Lebesgue measure is complete, every subset of S is measurable and has
measure zero. Likewise, every subset of [0, 1] − f (S) ismeasurable and hasmeasure
zero. Let E be the Vitali nonmeasurable subset of [0, 1]. Then E − S is also nonmea-
surable. Indeed if it weremeasurable E would be the disjoint union of themeasurable
sets E − S and E ∩ S. The setD = f (E − S) is contained in [0, 1] − f (S). There-
fore,D is measurable and it has measure zero. The preimage ofD is not measurable.
The measurable setD is not a Borel set, for otherwise f −1(D)would be measurable.
Since D is measurable and has measure zero, by (12.2) of Proposition 12.2, there
exists a set Dδ of the type of Gδ such that D ⊂ Dδ and μ(Dδ) = 0. Since D is not a
Borel set, the restriction of the Lebesgue measure to the σ-algebra of the Borel sets,
is not complete.

Remark 14.1 Returning to the family F defined in (14.1), the same example shows
thatF does not contain theσ-algebraMof theLebesguemeasurable subsets of [0, 1],
as there exists measurable sets whose preimage is not measurable. By interchanging
the role of f and f −1 shows that in general F is not contained inM.

15 Borel Measures

A feature of the Lebesguemeasure inRN is that the measure of a measurable set E ⊂
R

N of finite measure, can be approximated by the measure of open sets containing
E or closed sets contained in E . This is the content of Propositions 12.2–12.3.

A Borel measure μ in R
N is a measure defined on a σ-algebra containing the

Borel sets B.3 Such a requirement alone does not guarantee that the μ-measure of
a Borel set E ⊂ R

N of finite μ-measure can be approximated by the μ-measure of
open sets containing E and closed sets contained in E .

3Some authors define it as a measure μ whose domain of definition is exactly B.
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As an example consider the counting measure on R. A single point is a Borel set
with counting measure one and every open set that contains it has counting measure
infinity. However, if μ is a finite Borel measure in R

N and E is a Borel set, then
μ(E) can be approximated by the μ-measure of closed sets included in E or by the
μ-measure of open sets containing E .

Proposition 15.1 Let μ be a finite Borel measure in R
N and let E be a Borel set.

For every ε > 0 there exists a closed set Ec,ε ⊂ E, such that

Ec,ε ⊂ E and μ
(
E − Ec,ε

) ≤ ε. (15.1)

Moreover, for every ε > 0 there exists an open set Eo,ε, such that

E ⊂ Eo,ε and μ
(
Eo,ε − E

) ≤ ε. (15.2)

Proof (of (15.1)) Let A be the σ-algebra where μ is defined and set

Co =
{

the collection of sets E ∈ A such that for every ε > 0

there exists a closed set C ⊂ E, such that μ(E − C) ≤ ε

}
.

Such a collection is not empty since the closed sets are in Co. Let {En} be a
countable collection of sets in Co and, having fixed ε > 0, select closed setsCn ⊂ En

such that μ(En − Cn) ≤ 2−nε for all n ∈ N. Then

μ
(⋂

En − ⋂
Cn

) ≤ μ
[ ⋃

(En − Cn)
] ≤ ∑

μ(En − Cn
) ≤ ε.

Since ∩Cn is closed, the intersection ∩En belongs to Co. Next, by (3.3)–(3.4) of
Proposition 3.1, since μ is finite

lim
m→∞ μ

( ⋃
En −

m⋃

n=1
Cn

) = μ
( ⋃

En − ⋃
Cn

) ≤ μ
[ ⋃

(En − Cn)
] ≤ ε.

Therefore, there exists a positive integer mε such that

μ
(⋃

En −
mε⋃

n=1
Cn

) ≤ 2ε.

Since the union
⋃mε

n=1Cn is closed, the union ∪En belong to Co.
The collection Co contains trivially the closed sets, and in particular the closed

dyadic cubes in R
N . Since every open set is the countable union of such cubes, Co

contains also the open sets (Remark 1.1). Set

C = {
the collection of sets E ∈ Co such that (RN − E) ∈ Co

}
.
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If E ∈ C then the definition implies that (RN − E) belongs to C. Thus C is closed
under taking complements. In particular C contains all the open sets and all the closed
sets. Let {En} be a countable collections of sets in C, i.e., both En and (RN − En)

belong to Co for all n. Then ∪En ∈ Co and

R
N − ⋃

En = ⋂
(RN − En) ∈ Co.

Analogously ∩En ∈ Co and

R
N − ⋂

En = ⋃
(RN − En) ∈ Co.

Thus C is a σ-algebra. Since C contains the open sets it contains the σ-algebra of
the Borel sets.

Proof (of (15.2)) Let E ∈ B. Then (RN − E) is a Borel set and by (15.1), having
fixed ε > 0 there exists a closed set C ⊂ (RN − E) such that

μ
[
(RN − E) − C

] = μ
(
(RN − C) − E

) ≤ ε.

Since RN − C is open (15.2) follows.

Corollary 15.1 Let μ be a finite Borel measure in RN and let E ∈ B.
There exists Eσ ∈ Fσ, such that Eσ ⊂ E and μ(E − Eσ) = 0.
There exists Eδ ∈ Gδ , such that E ⊂ Eδ and μ(Eδ − E) = 0.

16 Borel, Regular, and Radon Measures

The approximation with closed sets contained in E continues to hold for Borel
measures that are not necessarily finite, provided E is of finite measure.

Proposition 16.1 Let μ be a Borel measure in RN and let E be a Borel set of finite
measure. For every ε > 0 there exists a closed set Ec,ε ⊂ E, such that (15.1) holds.

Proof LetA be the σ-algebra where μ is defined. The set E being fixed, set μE (A) =
μ(E ∩ A) for all A ∈ A. Then μE is a finite Borel measure in RN .

Statement (15.2) is false for general Borel measures even if μ(E) < ∞, as indi-
cated by the countingmeasure onR. However, it continues to hold for Borelmeasures
that are finite on bounded sets.

Proposition 16.2 Let μ be a Borel measure in R
N which is finite on bounded sets,

and let E be a Borel set of finite measure. For every ε > 0 there exists an open set
Eo,ε ⊃ E, such that (15.2) holds.
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Proof Let Qn be the open cube centered at the origin, of edge n and with faces
parallel to the coordinate planes. Since E is a Borel set, Qn − E is also a Borel set
and μ(Qn − E) < ∞. By Proposition 16.1, having fixed ε > 0, there exists a closed
set Cn ⊂ (Qn − E) such that,

μ
[
(Qn − E) − Cn

] = μ
[
(Qn − Cn) − E

] ≤ 2−nε.

The set Qn − Cn is open and contains Qn ∩ E . Therefore,

E = ⋃
Qn ∩ E ⊂ ⋃

(Qn − Cn) = Eo,ε.

The set Eo,ε is open, contains E and

μ(Eo,ε − E) = μ
[⋃ (

Qn − Cn
) − E

] ≤ ∑
2−nε.

16.1 Regular Borel Measures

Let μ be a Borel measure in R
N . The statements of Proposition 15.1 and Proposi-

tions 16.1–16.2, give conditions for the measure of a Borel set E to be approximated
by the measure of closed sets contained in E or open sets containing E . Those Borel
measures for which the indicated approximation holds for all measurable sets E ,
define a subclass of measures called regular.

A Borel measure μ in RN is outer regular if for every measurable set E ⊂ R
N of

finite measure,

μ(E) = inf{μ(O) where O is open and E ⊂ O}. (16.1)

A Borel measure μ in RN is inner regular if for every measurable set E ⊂ R
N of

finite measure,

μ(E) = sup{μ(C) where C is closed and C ⊂ E}. (16.2)

A Borel measure μ in RN is regular if it is both outer and inner regular.
The the counting measure on R is not outer regular, but it is inner regular.
The Hausdorff measure Hα in R

N , for 0 ≤ α < N is inner regular and not outer
regular.

By Proposition 15.1, a finite Borel measure inRN defined exactly on B is regular.
By Propositions 16.1–16.2 a Borel measure defined exactly on B, and finite on
bounded, measurable subsets of RN is regular.

By Propositions 12.2–12.3, the Lebesgue measure in RN is regular.
If μ is outer regular, then for all measurable sets E of finite measure, there exists

a Borel set Eδ ∈ Gδ such that E ⊂ Eδ and μ(E) = μ(Eδ).
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If μ is inner regular, then for all measurable sets E of finite measure, there exists
a Borel set Eσ ∈ Fσ such that Eσ ⊂ E and μ(E) = μ(Eσ).

16.2 Radon Measures

ARadonmeasure inRN is a Borel measure which is finite on bounded subsets ofRN .
The Lebesgue measure in RN is a Radon measure. The Lebesgue–Stieltjes measure
on R is a Radon measure. The Dirac measure δx with mass concentrated at x is a
Radon measure. The counting measure on R is a Borel measure but not a Radon
measure. The Hausdorff measure Hα is a Borel measure in R

N but not a Radon
measure for all α ∈ [0, N ).

Let μ be a Radon measure in R
N and for every set E ⊂ R

N , set

μe(E) = inf
{
μ(O) where O is open and E ⊂ O}

. (16.3)

By the previous remarks, this is an outer measure which coincides with μ on the
Borel sets.

Proposition 16.3 A Radon measure μ in R
N generates, by the formula (16.3), an

outer measure μe which coincides with μ on the Borel sets. Moreover for every set
E ⊂ R

N such that μe(E) < ∞, there exists a set Eδ of the type of a Gδ such that
E ⊂ Eδ and μe(E) = μ(Eδ).

17 Vitali Coverings

Let {X,A,μ} beRN endowed with the Lebesgue measure, and letF denote a family
of closed, nontrivial cubes in R

N . A family F is a fine Vitali covering for a set
E ⊂ R

N , if for every x ∈ E and every ε > 0, there exist a cube Q ∈ F such that
x ∈ Q and diamQ < ε.

The collection of N -dimensional closed dyadic cubes of diameter not exceeding
some given positive number, is an example of a fine Vitali covering for any set
E ⊂ R

N . Other examples are in § 2, 3, 5 of Chap.5.

Theorem 17.1 (Vitali [168, 10]) Let E be a bounded, Lebesgue measurable set in
R

N and let F be a fine Vitali covering for E. There exists a countable collection
{Qn} of cubes Qn ∈ F , with pairwise disjoint interior, such that

μ(E − ∪Qn) = 0. (17.1)

Remark 17.1 The theorem does not claim that ∪Qn covers all points of E . Rather,
∪Qn covers E in a measure-theoretical sense. Construction of pointwise coverings
are in § 17.1c of the Complements.

http://dx.doi.org/10.1007/978-1-4939-4005-9_5
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Remark 17.2 The theorem is more general in that E need not be Lebesgue mea-
surable. See 17.1–17.3 of § 17c the Complements. If F is a covering of E , but not
necessarily a fine Vitali covering, a similar statement holds in a weaker form (§ 1 of
Chap.9).

Proof Without loss of generality may assume that E and the cubes making up the
family F are all included in some larger cube Q. Label by Fo the family F , and
out of Fo select a cube Qo. If Qo covers E then the theorem is proven. Otherwise
introduce the family of cubes

F1 =
{

the collection of cubes Q ∈ Fo whose interior is

disjoint from the interior of Qo, i.e.,
o
Q ∩ o

Qo= ∅

}

.

If Qo does not cover E , such a family is not empty. Introduce also the number

d1 = {the supremum of the diameters of the cubes Q ∈ F1} .

Then out of F1 select a cube Q1 whose diameter is larger than 1
2d1. If Qo ∪ Q1

covers E then the theorem is proven. Otherwise introduce the family of cubes

F2 =
{

the collection of cubes Q ∈ F1 whose interior is

disjoint from the interior of Q1, i.e.,
o
Q ∩ o

Q1= ∅

}

and the number

d2 = {the supremum of the diameters of the cubes Q ∈ F2} .

Then out ofF2 select a cube Q2 whose diameter is larger than 1
2d2. Proceeding in

this fashion, define inductively families {Fn}, positive numbers {dn} and cubes {Qn},
by the recursive procedure

Fn =
{

the collection of cubes Q ∈ Fn−1 whose interior is

disjoint from the interior of Qn−1, i.e.,
o
Q ∩ o

Qn−1= ∅

}

;

dn = {the supremum of the diameters of the cubes Q ∈ Fn} ;
Qn = {

a cube selected out of Fn, such that diamQn > 1
2dn

}
.

The cubes {Qn} have pairwise disjoint interior and they are all included in some
larger cube Q. Therefore,

∑(diamQn√
N

)N = ∑
μ(Qn) < ∞. (17.2)

http://dx.doi.org/10.1007/978-1-4939-4005-9_9
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The convergence of the series implies that lim diamQn = 0. To prove (17.1) pro-
ceed by contradiction, by assuming that

μ
(
E − ⋃

Qn
) ≥ 2ε for some ε > 0. (17.3)

First, for each Qn construct a larger cube Q′
n of diameter

diamQ′
n = (4

√
N + 1)diamQn (17.4)

with same center as Qn and faces parallel to the faces of Qn . By the convergence of
the series in (17.2) there exists some nε ∈ N such that

μ
( ∞⋃

n=nε+1
Q′

n

) ≤
∞∑

n=nε+1
μ(Q′

n) ≤ ε.

Using this inequality and (17.3) estimate

μ
[(
E −

nε⋃

n=1
Qn

) −
∞⋃

n=nε+1
Q′

n

] ≥ μ
(
E − ⋃

Qn
) − μ

( ∞⋃

n=nε+1
Q′

n

) ≥ ε.

This implies that there exists an element

x ∈ (
E −

nε⋃

n=1
Qn

) −
∞⋃

n=nε+1
Q′

n. (17.5)

Such an element, must have positive distance 2σ from the union of the first nε

cubes. Indeed such a finite union is closed and x does not belong to any of the cubes
Qn for n = 1, . . . , nε. By the definition of fine Vitali covering, given such a σ, there
exists a cube Qδ ∈ F of positive diameter 0 < δ ≤ σ that covers x . By construction
Qδ does not intersect the interior of any of the first nε cubes Qn . It follows that Qδ

belongs to the family Fnε+1. Next we claim that

Qδ∩
o
Qn �= ∅ for some n = nε + 1, nε + 2, . . . .

Indeed, if Qδ did not intersect the interior of any such cubes, it would belong to
all the families Fn . This however would imply that

0 < δ = diamQδ ≤ dn → 0 as n → ∞.

Let then m ≥ (nε + 1) be the smallest positive integer for which Qδ∩
o
Qm �= ∅.

In particular,
Qδ /∈ Fm+1 Qδ ∈ Fm and δ ≤ dm .
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Fig. 1 About the proof of Vitali’s covering theorem

By the selection (17.5), the element x does not belong to Q′
m . Therefore, the

intersection Qδ∩
o
Qm can be not empty only if (Fig. 1)

δ = diamQδ >
1

2
√
N

(
diamQ′

m − diamQm
)
.

This and (17.4) yield the contradiction dm ≥ δ > dm .

Corollary 17.1 Let E be a bounded, Lebesgue measurable set in R
N and let F

be a fine Vitali covering for E. For every ε > 0, there exists a finite collection
{Q1, . . . , Qnε

} of cubes in F , with pairwise disjoint interior, such that

∑
μ(Qn) − ε ≤ μ(E) ≤ μ

( nε⋃

n=1
E ∩ Qn

) + ε.

Proof Having fixed ε > 0, let Eo,ε be an open set containing E and satisfying (12.1).
Introduce the subfamily Fε of the cubes in F that are contained in Eo,ε, and out of
Fε select a countable collection of closed cubes {Qn}, with pairwise disjoint interior,
satisfying (17.1). By construction

∑
μ(Qn) ≤ μ(Eo,ε) ≤ μ(E) + ε.

This implies that there exists a positive integer nε such that
∑∞

nε+1 μ(Qn) ≤ ε.
From this and (17.1)

μ(E) = μ
(⋃

E ∩ Qn
) ≤ μ

( nε⋃

n=1
E ∩ Qn

) + ε.

18 The Besicovitch Covering Theorem

Let E be a subset of RN . A collection F of closed balls in R
N is a Besicovitch

covering for E if each x ∈ E is the center of a nontrivial ball B(x) belonging to F .
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Theorem 18.1 (Besicovitch [16]) Let E be a bounded subset of RN and let F be a
Besicovitch covering for E such that

{
the supremum of the radii of the balls in F} def= R < ∞. (18.1)

There exists a countable collection {xn} of points in E and a corresponding col-
lection of balls {Bn} in F

Bn = Bρn (xn) balls centered at xn and radius ρn

such that E ⊂ ⋃
Bn. Moreover, there exists a positive integer cN depending only

upon the dimension N, and independent of E, the covering F , and R, such that the
balls {Bn} can be organized into cN subcollections

B1 = {
Bn1

}
, B2 = {

Bn2

}
, . . . ,BcN = {

BncN

}

in such a way that the balls {Bn j } of each subcollection B j are disjoint.

Remark 18.1 The theorem continues to hold, by essentially the same proof, if the
balls making up the Besicovitch coveringF are replaced by cubes with faces parallel
to the coordinate planes [112].

Proof Since E is bounded and R < ∞, may assume that E and the balls making up
the familyF are all included in some large ball Bo centered at the origin. Set E1 = E
and

F1 = { the collection of balls B(x) ∈ F whose center is in E1}
r1 = {

the supremum of the radii of the balls in F1
}
.

There exists x1 ∈ E1 and a ball

B1 = Bρ1(x1) ∈ F1 of radius ρ1 > 3
4r1.

If E1 ⊂ B1, the process terminates. Otherwise set E2 = E1 − B1 and

F2 = { the collection of balls B(x) ∈ F whose center is in E2}
r2 = {

the supremum of the radii of the balls in F2
}
.

There exists x2 ∈ E2 and a ball

B2 = Bρ2(x2) ∈ F2 of radius ρ2 > 3
4r2.

Proceeding recursively, define countable collections of sets En , balls Bn , familiesFn

and positive numbers rn by
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En = E −
n−1⋃

j=1
Bj , xn ∈ En

Fn = { the collection of balls B(x) ∈ F whose center is in En}
rn = {

the supremum of the radii of the balls in Fn
}

Bn = Bρn (xn) ∈ Fn of radius ρn > 3
4rn.

By construction, if m > n

ρn > 3
4rn ≥ 3

4rm ≥ 3
4ρm . (18.2)

This implies the balls B 1
3 ρn

(xn) are disjoint. Indeed since xm /∈ Bn

|xn − xm | > ρn = 1
3ρn + 2

3ρn > 1
3ρn + 1

3ρm . (18.3)

The balls B 1
3 ρn

(xn) are all contained in Bo and are disjoint. Therefore, {ρn} → 0
as n → ∞. The union of the balls {Bn} covers E . If not, select x ∈ E − ∪Bn and a
nontrivial ball Bρ(x) centered at x and radius ρ > 0. Such a ball exists since F is
a Besicovitch covering. By construction Bρ(x) must belong to all the families Fn .
Therefore, 0 < ρ ≤ rn → 0.

The proof of the last statement regarding the subcollections B j , is based on the
following geometrical fact, whose proof is postponed to the next section.

Proposition 18.1 There exists cN ∈ N depending only on N and independent of E,
such that, for every k ∈ N, at most cN balls out of {B1, . . . , Bk} intersect Bk.

The collections B j are constructed by regarding them initially as empty boxes, to
be filled with disjoint balls, taken out of {Bn}. Each element of {Bn} is allocated to
some of the boxes B j as follows.

First, for j = 1, . . . , cN , put Bj into B j . Consider next the ball BcN+1. By Propo-
sition 18.1, at least one of the first cN balls does not intersect BcN+1, say for example,
B1. Then allocate BcN+1 to B1.

Consider the subsequent ball BcN+2. At least 2 of the first (cN + 1) balls do not
intersect BcN+2. If one of the Bj for j = 2, . . . , cN , say for example, B2, does not
intersect BcN+2, allocate BcN+2 to B2. If all the balls Bj for j = 2, . . . , cN intersect
BcN+2 then, B1 and BcN+1 do not intersect BcN+2, since at least 2 of the first (cN + 1)
balls do not intersect BcN+2. Then allocate BcN+2 to B1 which now would contain 3
disjoint balls.

Proceeding recursively, assume all the balls

B1, . . . , BcN , . . . , BcN+n−1 for some n ∈ N

have been allocated, so that at the (n − 1)th step of the process, each of the B j

contains at most n disjoint balls. To allocate BcN+n observe that by Proposition 18.1,
at least n of the first (cN + n − 1) balls must be disjoint from BcN+n . This implies
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that the elements of at least one of the boxes B j for j = 1, . . . , cN , are all disjoint
from BcN+n . Allocate BcN+n to one such a box and proceed inductively.

19 Proof of Proposition 18.1

Fix some positive integer k, consider those balls Bj for j = 1, . . . , k that intersect
Bk = Bρk (xk), and divide them into two sets

G1 =
{
the collection of balls Bj = Bρ j (x j ) for j = 1, . . . , k

that intersect Bk and such that ρ j ≤ 3
4Mρk

}

G2 =
{
the collection of balls Bj = Bρ j (x j ) for j = 1, . . . , k

that intersect Bk and such thatρ j > 3
4Mρk

}

where M > 3 is a positive integer to be chosen.

Lemma 19.1 The number of balls in G1 does not exceed 4N (M + 1)N .

Proof Let #{G1} be the number of elements in G1. The balls {B 1
3 ρ j

(x j )} are disjoint
and are contained in B(M+1)ρk (xk). Indeed, since Bj ∩ Bk �= ∅

|x j − xk | ≤ ρ j + ρk ≤ (
3
4M + 1

)
ρk .

Moreover for any x ∈ B 1
3 ρ j

(x j ),

|x − xk | ≤ |x − x j | + |x j − xk | ≤ 1
3ρ j + (

3
4M + 1

)
ρk ≤ (M + 1)ρk .

From this, denoting by κN the volume of the unit ball in RN

∑

j :Bj∈G1

κN
(
1
3ρ j

)N ≤ κN (M + 1)NρN
k .

Since j < k, it follows from (18.2) that 1
3ρ j > 1

4ρk . Therefore,

#{G1}κN
(
1
4ρk

)N ≤ κN (M + 1)NρN
k .

An upper estimate of the number of balls in G2 is derived by counting the number
of rays originating from the center xk of Bk to each of the centers x j of Bj ∈ G2. We
first establish that the angle between any two such rays is not less than an absolute
angle θo. Then we estimate the number of rays originating from xk and mutually
forming an angle of at least θo.

Let Bρn (xn) and Bρm (xm) be any two balls in G2 and set

θ = {
angle between the rays from xk to xn and xm

}
.
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Lemma 19.2 The number M can chosen so that θ > θo = arccos 5
6 .

Proof Assume n < m < k. By construction xm /∈ Bρn (xn), i.e.,

|xn − xm | > ρn. (19.1)

Also xk /∈ Bρn (xn) ∪ Bρm (xm), i.e.,

ρn < |xn − xk | and ρm < |xm − xk |.

Since both Bρn (xn) and Bρm (xm) intersect Bk and are in G2

3
4Mρk < ρn ≤ |xn − xk | ≤ ρn + ρk
3
4Mρk < ρm ≤ |xm − xk | ≤ ρm + ρk .

(19.2)

By elementary trigonometry

cos θ = |xn − xk |2 + |xm − xk |2 − |xn − xm |2
2|xn − xk ||xm − xk | .

Assuming cos θ > 0 and using (19.1) and (19.2) estimate

cos θ ≤ (ρn + ρk)
2 + (ρm + ρk)

2 − ρ2n
2ρnρm

≤ ρ2m + 2ρ2k + 2ρk(ρn + ρm)

2ρnρm

≤ 1

2

ρm

ρn
+ ρk

ρn

ρk

ρm
+ ρk

ρm
+ ρk

ρn

≤ 1

2

ρm

ρn
+

(
4

3

)2 1

M2
+ 2

4

3

1

M
.

Since m > n, from (18.2) it follows that ρn > 3
4ρm . Therefore,

cos θ ≤ 2

3
+ 4

3

1

M

(4
3

1

M
+ 2

)
.

Now choose M so large that the cos θ ≤ 5
6 .

If N = 2, the number of rays originating from the origin and mutually forming
an angle θ > θo does not exceed 2π/θo. If N ≥ 3 let C(θo) be a circular cone in RN

with vertex at the origin, whose axial cross section with a 2-dimensional hyperplane,
forms an angle 1

2θo. Denote by σN (θo) the solid angle corresponding to C(θo). Then
the number of rays originating from the origin and mutually forming an angle θ > θo
does not exceed ωN/σN (θo).
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The number cN claimed by Proposition 18.1 is estimated by,

cN = #{G1} + #{G2} ≤ 4N (M + 1)N + ωN

σN (θo)
.

20 The Besicovitch Measure-Theoretical Covering
Theorem

A family F of closed balls in RN is a fine Besicovitch covering for a set E ⊂ R
N , if

for every x ∈ E and every ε > 0, there exists a ball Bρ(x) ∈ F centered at x and of
radius ρ < ε.

The next measure theoretical covering, called the Besicovitch covering theorem,
holds for any Radon measure μ and its associated outer measure μe (§ 16.1). The set
E to be covered in a measure theoretical sense, is not required to be μ-measurable.

Theorem 20.1 (Besicovitch [16]) Let E be a bounded set in RN and let F be a fine
Besicovitch covering for E. Let μ be a Radon measure in RN and let μe be the outer
measure associated with it.

There exists a countable collection {Bn} of disjoint balls Bn ∈ F such that

μe (E − ∪Bn) = 0. (20.1)

Remark 20.1 It is not claimed that E ⊂ ⋃
Bn . The collection {Bn} forms ameasure-

theoretical covering of E in the sense of (20.1).

Remark 20.2 A fine Besicovitch covering of a set E ⊂ R
N differs from a fine Vitali

covering, in that each x ∈ E is required to be the center of a ball of arbitrarily
small radius. In this respect it is less flexible than the fine Vitali covering. However,
Besicovitch covering theorem applies to any Radon measure and in this respect is
more flexible than the Vitali covering theorem.

Proof May assumeμe(E) > 0 otherwise the statement is trivial. Since E is bounded,
may assume that both E and all the balls making up the covering F are contained in
some larger ball Bo.

Let B j for j = 1, . . . , cN be the subcollections of disjoint balls claimed by
Theorem 18.1. Since E ⊂ ⋃cN

j=1

⋃∞
n j=1 Bn j

μe
(
E

⋂ cN⋃

j=1

∞⋃

n j=1
Bn j

) = μe(E) > 0.

Therefore, there exists some index j ∈ {1, . . . , cN } for which

μe
(
E

⋂ ∞⋃

n j=1
Bn j

) ≥ 1

cN
μe(E).
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Since all the balls Bn j are disjoint and are all included in Bo

μe
(
E

⋂ ∞⋃

n j=1
Bn j

) ≤
∞∑

n j=1
μ(Bn j ) ≤ μ(Bo) < ∞.

Therefore, there exists some index m1 such that

μe
(
E

⋂ m1⋃

n j=1
Bn j

) ≥ 1

2cN
μe(E). (20.2)

The finite union of balls isμ-measurable. Therefore, by theCarathéodory criterion
of measurability (6.2) and the lower estimate in (20.2)

μe(E) = μe
(
E

⋂ m1⋃

n j=1
Bn j

) + μe
(
E −

m1⋃

n j=1
Bn j

)

≥ 1

2cN
μe(E) + μe

(
E −

m1⋃

n j=1
Bn j

)
.

Therefore,

μe
(
E −

m1⋃

n j=1
Bn j

) ≤ ημe(E) η = 1 − 1

2cN
∈ (0, 1).

Set now

E1 = E −
m1⋃

n j=1
Bn j .

If μe(E1) = 0 the process terminates and the theorem is proven. Otherwise let
F1 denote the collection of balls in F that do not intersect any of the balls Bn j for
n j = 1, . . . ,m1. Since F is a fine Besicovitch covering for E , the family F1 is not
empty and it is a fine Besicovitch covering for E1. Repeating the previous selection
process for the set E1 and the Besicovitch covering F1, yields a finite number m2 of
closed disjoint balls Bn�

in F1 such that

μe
(
E1 −

m2⋃

n�=1
Bn�

) ≤ ημe(E1) = ημe
(
E −

m1⋃

n j=1
Bn j

) ≤ η2μe(E).
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Relabeling the balls Bn j and Bn�
yields a finite number s2 of closed, disjoint balls

Bn in F such that

μe
(
E −

s2⋃

n=1
Bn

) ≤ η2μe(E).

Repeating the process k times gives a collection of sk closed disjoint balls in F
such that

μe
(
E −

sk⋃

n=1
Bn

) ≤ ηkμe(E). (20.3)

If for some k ∈ N

μe
(
E −

sk⋃

n=1
Bn

) = 0

the process terminated and the theorem is proven. Otherwise, (20.3) holds for all
k ∈ N. Letting k → ∞ proves (20.1).

Problems and Complements

1c Partitioning Open Subsets of RN

The dyadic cubes covering an open set E can be chosen so that their diameter is
proportional to their distance from the boundary of E .

Proposition 1.1c (Whitney [174]) Every open set E ⊂ R
N can be partitioned into

the countable union of closed dyadic cubes {Qn}, with pairwise disjoint interior and
satisfying,

diamQ j ≤ dist{Q j ; ∂E} ≤ 4diamQ j for all j.

2c Limits of Sets, Characteristic Functions and σ-Algebras

2.1. From the definition (2.1) it follows that E ′ ⊂ E ′′. There are sequences of
sets {En} for which the inclusion is strict.

2.2. Prove that for a sequence of sets {En}

lim supχEn = χE ′′ lim inf χEn = χE ′(
lim sup En

)c = lim inf Ec
n

(
lim inf En

)c = lim sup Ec
n.

Set D1 = E1 and Dn+1 = DnΔEn+1 for n ∈ N. Prove that lim Dn exists if
and only if lim En = ∅.
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2.3. Let A be the collection of subsets E ⊂ X such that either E or Ec is finite.
Then if X is not finite A is an algebra but not a σ-algebra.

2.4. Construct the smallest σ-algebra generated by two elements of X .
2.5. Construct the smallest σ-algebra generated by the collection of all finite

subsets of X .
2.6. Prove that an algebraA is a σ-algebra if and only if for every nondecreasing

(nonincreasing) sequence of sets {En} ⊂ A, lim En ∈ A.
2.7. The smallest σ-algebra Ao containing a collection of sets O ⊂ 2X , is the

union of all the smallest σ-algebras containing a countable collection of
elements of O.

2.8. An infinite σ-algebra contains a countably infinite collection of disjoint non-
empty sets.

2.9. If a σ-algebra A contains infinitely many sets, then card A ≥ card R.
2.10. Let {X;U} be a topological space such that the collection of its open sets is

an algebra. Characterize {X;U}.
2.11. The intersection of any collection of algebras is an algebra. The union of

algebras need not be an algebra.
2.12. For a countable collection of sets {En} characterize lim sup En as the set of

all x lying in infinitely many En .

3c Measures

3.1. Let X be an infinite set and let A be the collection of subsets of X that
are either finite or have a finite complement. Let also μ : A → R

∗ be a set
function defined by, μ(E) = 0 if E is finite and μ(E) = ∞ if E has finite
complement. The collection A is not a σ-algebra and μ is not countably
additive.

3.2. Let X be an uncountable set and let A be the collection of subsets of X that
are either countable or have a countable complement. Let also μ : A → R

∗
be a set function defined by, μ(E) = 0 if E is countable and μ(E) = ∞ if
E has countable complement. The collection A is a σ-algebra and μ is a
measure.

3.3. Semifinite Measures: A measure μ on a σ-algebra A is semifinite if every
measurable set of infinite measure contains a measurable set of positive and
finite measure. Measures that are σ-finite are semifinite. The converse is
false. Give an example of a non-semifinite measure.
Prove that ifμ is semifinite, everymeasurable set of infinitemeasure contains
a measurable set of arbitrarily large measure.

3.4. For a measure μ on a σ-algebra A set

A � E → μo(E) = sup{μ(A)
∣∣ A � A ⊂ E, and μ(A) < ∞}.

Prove that μo is semifinite and that if μ is semifinite, then μ = μo.
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3.5. Locally Measurable Sets: For a measure space {X,A,μ}, define the col-
lection A loc

A loc =
{
collection of all E ⊂ X, such that E ∩ A ∈ A

for all A ∈ A such that μ(A) < ∞
}

.

Prove that if μ is σ-finite, then A = A loc. Give an example showing that
the inclusion A ⊂ A loc might be strict. Prove that A loc is a σ-algebra and
construct a measure μ loc on A loc that coincides with μ on A.

3.6. Extension of {X,A,μ} to {X,A loc,μ loc}: Prove that the set function

A loc � E → μ loc(E) =
{

μ(E) if E ∈ A
∞ otherwise

is a measure on A loc.
3.7. Measure Theoretical Distance of Sets. Let μ be a measure on a σ-algebra

A. Prove thatμ(AΔB) = 0, for A, B ∈ A, impliesμ(A) = μ(B). Prove that
the relation

A ∼ B if and only if μ(AΔB) = 0

is an equivalence relation on A. A distance d(·; ·) between any two sets
E, F ∈ A can be defined by setting d(E; F) = μ(EΔF). Prove that

d(E; F) ≥ 0, d(E; F) = d(F; E), d(E; F) ≤ d(E;G) + d(G; F)

for anyG ∈ A.Moreover, if E ∼ E ′ and F ∼ F ′, thend(E; F) = d(E ′; F ′).
The set operations

A � E, F −→ E ∪ F, E ∩ F, Ec

are continuous with respect to d(·; ·). Specifically, for all ε > 0, there exists
δ, depending on ε and μ(X), such for every pair of sets

A � Ei , Fi for i = 1, 2, such that d(E1; E2) < δ and d(F1; F2) < δ,

there holds

d
(
(E1 ∪ F1); (E2 ∪ F2)

)
< ε;

d
(
(E1 ∩ F1); (E2 ∩ F2)

)
< ε;

d
(
Ec
1; Ec

2) < ε.

This follows from the finite additivity of μ, and the set identities

(E1 ∪ F1)Δ(E2 ∪ F2) = (E1ΔE2)Δ(F1ΔF2)ΔE1

∩ (F1ΔF2)ΔF2 ∩ (E1ΔE2);
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(E1 ∩ F1)Δ(E2 ∩ F2) = E1 ∩ (F1ΔF2)ΔF2 ∩ (E1ΔE2);
Ec
1ΔEc

2 = E1ΔE2;
(E1ΔF1)Δ(E2ΔF2) = (E1ΔE2)Δ(F1ΔF2).

3.8. Finitely and Countably Additive Measures: A set function μ satisfying
the requirements (i)–(iv) of § 3 of a measure, is also called a countably
additive measure. A finite, and finitely additive measure on a σ-algebraA is
a nonnegative set function μ : A → R

∗ such μ(X) < ∞, and for every finite
collection {E1, . . . , En} of disjoint elements of A

μ(E1 ∪ · · · ∪ En) = μ(E1) + · · · + μ(En).

Prove that a finite, and finitely additivemeasureμ is countably additive if and
only if for every nondecreasing (nonincreasing) sequence of sets {En} ⊂ A,

μ(lim En) = lim μ(En).

3.9. Let μ be a measure on a σ-algebraA and let {Eα} be a collection of disjoint
sets inA. Prove that for every measurable set E of positive σ-finite measure,
μ(E ∩ Eα) > 0 for at most countably many Eα.

3.10. Let {X,A,μ} be a measure space and let {En} ⊂ A satisfy
∑

μ(En) < ∞.
Prove that the set of points belonging to infinitely many En has measure zero
(see 2.12).

3.1c Completion of a Measure Space

If {X,A,μ} is not complete it can be completed as follows. First define

Acompl =
{
the collection of sets of the type E ∪ N where E ∈ A

and N is a subset of a set in A of measure zero

}
.

Then set
Acompl � E ∪ N → μcompl(E ∪ N ) = μ(E).

The definition does not depend on the choices of E and N identifying the same
element E ∪ N ∈ Acompl. Indeed if E1 ∪ N1 = E2 ∪ N2 ∈ Acompl then E1 ⊂ E2 ∪
N ′
2 and E2 ⊂ E1 ∪ N ′

1, where N ′
1 and N ′

2 are subsets of sets in A of measure zero.
Therefore,

μcompl(E1 ∪ N1) = μcompl(E2 ∪ N2).

Prove that Acompl is a σ-algebra and μcompl is a complete measure.
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4c Outer Measures

4.1. If μe(N ) = 0 then μe(E) = μe(E ∪ N ) for every E ⊂ X .
4.2. A finitely additive outer measure is a measure.
4.3. The countable sum of outer measures is an outer measure.
4.4. Construct the Lebesgue–Stieltjes outer measure corresponding to the func-

tions

f (x) = ex , f (x) =
{ [[x]] for x ≥ 0,
0 for x < 0,

f (x) =
{

1 for x ≥ 0,
−1 for x < 0.

4.5. LetQ consist of X,∅ and all the singletons in X . Define set functions λ1 and
λ2, from Q into R∗, by

λ1(X) = ∞, λ1(∅) = 0, λ1(E) = 1, for all E ∈ Q other than X and ∅;
λ2(X) = 1, λ2(∅) = 0, λ2(E) = 0, for all E ∈ Q such that E �= X.

Each of these is a set function on a sequential covering of X . Describe the
outer measures they generate.

4.6. The Lebesgue outermeasure onR coincides with the Lebesgue–Stieltjes outer
measure generated by f (x) = x .

5c The Hausdorff Outer Measure in R
N

5.1c The Hausdorff Dimension of a Set E ⊂ R
N

By Propositions 5.1 and 5.2, if μe(E) is finite, then HN+η(E) = 0 for all η > 0. If
E ⊂ R

2 is a segment, then μe(E) = H2(E) = 0. Moreover,

H1+η(E) = 0 for all η > 0 and H1(E) = {length of E}.

The Hausdorff dimension of a set E ⊂ R
N is defined by

dimH(E) = inf
{
α

∣∣ Hα(E) = 0
}
. (5.1c)

5.1. Let {En} be a countable collection of sets in R
N with the same Hausdorff

dimension d. Then their union has the same Hausdorff dimension d.
5.2. The Hausdorff dimension of a point in RN is zero. The Hausdorff dimension

of a countable set in RN is zero.
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5.2c The Hausdorff Dimension of the Cantor Set is ln 2/ln 3

For δ ∈ (0, 1), let Cδ be the generalized Cantor set introduced in § 2.2c of the Com-
plements of Chap. 1. For n ∈ N, consider the intervals {Jn, j } , j = 1, 2 . . . , 2n intro-
duced in the same section. For each n ∈ N they form a finite sequence of disjoint
closed intervals covering Cδ and each of length δn . Therefore, by the definition of
the outer measure Hα, for α > 0,

Hα

(Cδ

) ≤ lim
n→∞

2n∑

j=1
(diamJn, j )

α = lim
n→∞ 2nδαn. (5.2c)

Therefore if α > log1/δ 2, thenHα

(Cδ

) = 0. It follows from (5.1c) that the Haus-
dorff dimension of Cδ does not exceed log1/δ 2. If δ = 1

3 then Cδ coincides with the
standard Cantor set C. Thus

dimH
(C) ≤ ln 2

ln 3
.

To prove the converse inequality we may assume that Hα(Cδ) < ∞. Then given
ε > 0 there exists a countable collection of sets Im of diameter not exceeding ε,
whose union covers Cδ , such that

∞∑

m=1
(diamIm)α ≤ Hα(Cδ) + ε.

By possibly changing ε into 2ε on the right-hand side, may assume that Im are
open intervals. Since Cδ is compact, may also assume that the collection Im is finite.
Since {Im} is a finite covering of Cδ consisting of open intervals, there exists n ∈ N

sufficiently large, such that each of the intervals Jn, j must be contained in some Im
(§ 17.1c of Chap.2).

Lemma 5.1c For each m ∈ N let nm be the smallest positive integer such that
Jnm , j ⊂ Im for some j = 1, . . . , 2nm . Then at most 4 of the intervals Jnm , j inter-
sect Im, say for example Jnm , j� , for � = 1, . . . , �m,n with �n,m ≤ 4.

Proof It follows from the construction of the Jn, j in § 2.2c of the Complements of
Chap.1. Indeed if not Jnm−1, j ⊂ Im for some j = 1, . . . 2nm−1.

Corollary 5.1c For each m ∈ N

diamIm ≥ 1

4

�m,n∑

�=1
diamJnm , j� .

http://dx.doi.org/10.1007/978-1-4939-4005-9_1
http://dx.doi.org/10.1007/978-1-4939-4005-9_2
http://dx.doi.org/10.1007/978-1-4939-4005-9_1


114 3 Measuring Sets

Let n = max{nm}. Then

ε + Hα(Cδ) ≥ ∑
(diamIm)α ≥ 1

4α

∑

m

�m,n∑

�=1
(diamJnm ,�)

α

≥ 1

4α

2n∑

j=1
(diamJn, j )

α = 1

4α
2nδαn.

Thus the Hausdorff dimension of Cδ is ln 2/ ln 1/δ.

8c The Hausdorff Measure in R
N

8.1c Hausdorff Outer Measure of the Lipschitz Image of a Set

A function f : RN → R
m for N ,m ∈ N is Lipschitz continuous if there exists a

constant L such that

| f (x1) − f (x2)|m ≤ L|x1 − x2|N for all x1, x2 ∈ R
N . (8.1c)

Here | · |m and | · |N denote the Euclidean distance in R
m and R

N , respectively.
The constant L is the Lipschitz constant of f .

Proposition 8.1c Let f : RN → R
m beLipschitz continuouswithLipschitz constant

L and let E ⊂ R
N . Then, for all 0 ≤ α < ∞,

Hα

[
f (E)

] ≤ LαHα(E). (8.2c)

Proof The statement is obvious for α = 0. Assuming α > 0, fix ε > 0 and let {En}
be a countable collection of subsets of RN , each of diameter not exceeding ε, and
whose union covers E . Then f (E) ⊂ ⋃

f (En) and

diam f (En) ≤ LdiamEn ≤ Lε.

From this
Hα,Lε

[
f (E)

] ≤ Lα ∑
(diamEn)

α.

Corollary 8.1c A Lipschitz function f : RN → R
m maps sets of α-Hausdorff mea-

sure zero, into sets of α-Hausdorff measure zero.

Corollary 8.2c For m ≤ N, let PN ,m be the projection of sets in RN into Rm. Then
for all E ⊂ R

N and all 0 ≤ α < ∞

Hα

[
PN ,m(E)

] ≤ Hα(E). (8.3c)
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As a consequence

{Hausdorff dimension of PN ,m(E)} ≤ {Hausdorff dimension of E}. (8.4c)

8.2c Hausdorff Dimension of Graphs of Lipschitz Functions

The graph of a function f from a set E ⊂ R
N into R is the set

G f ;E = {(
x, f (x)

)
for x ∈ E

} ⊂ R
N+1. (8.5c)

Proposition 8.2c Let f : RN → R be Lipschitz and let E ⊂ R
N be Lebesgue mea-

surable and of positive Lebesgue measure. Then the

Hausdorff dimension of G f ;E = N . (8.6c)

Proof By Corollary 8.2c the Hausdorff dimension of G f ;E is no less than N . For the
converse inequality, use an argument similar to the proof of Proposition 5.1 to prove
that

Hα

(G f ;E
) = 0 for all α > N .

9c Extending Measures from Semi-algebras to σ-Algebras

Given a nonnegative set function λ : Q → R
∗ on a semi-algebra Q one might ask

under what conditions λ is actually a measure on Q. It turns out that more stringent
conditions need to be imposed both on λ and Q. The collection Q is required to be
an algebra and λ is required to be regular on Q in the following sense.

9.1c Inner and Outer Continuity of λ on Some Algebra Q

A nonnegative set function λ on some algebra Q is inner continuous, if for every
Q ∈ Q and all increasing sequences {Qn} ⊂ Q such that

⋃
Qn = Q, there holds

lim λ(Qn) = λ(Q).
The set function λ is outer continuous if for every Q ∈ Q and all decreasing

sequences {Qn} ⊂ Q such that
⋂

Qn = Q, there holds lim λ(Qn) = λ(Q).
A measure λ on some algebra Q is both inner and outer continuous. The next

proposition asserts that the converse is true, provided λ is finitely additive and finite.
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Proposition 9.1c A nonnegative, finite, finitely additive set function λ on some alge-
bra Q is countably additive on Q, if and only if is either inner or outer continuous.

Proof Let {Qn} be a disjoint sequence of sets in Q, whose union is Q ∈ Q. If λ is
inner continuous

λ(Q) = lim λ
( n⋃

j=1
Q j

) = lim
n∑

j=1
λ(Q j ) = ∑

λ(Qn).

If λ is outer continuous

λ(Q) = λ
( n⋃

j=1
Q j

) + λ
(
Q −

n⋃

j=1
Q j

)

= lim
n∑

j=1
λ(Q j ) + lim λ

(
Q −

n⋃

j=1
Q j

)

Corollary 9.1c Anonnegative, finite, finitely additive set functionλ on some algebra
Q is countably additive onQ, if and only if for every decreasing sequence {Qn} ⊂ Q
with empty intersection, lim λ(Qn) = 0.

10c More on Extensions from Semi-algebras to σ-Algebras

10.1c Self-extensions of Measures

Let {X,A,μ} be a measure space, not necessarily generated by an outer measure.
Using A as a sequential covering of X and μ : A → R

∗ as a set function, one may
construct an outer measure μee, by the procedure indicated in (4.1), and a measure
μμ defined on a σ-algebra Aμμ.

The measure μμ is a self-extension of μ.

11.1. Prove that if μ is σ-finite, then μμ is the completion of μ. In particular, if
{X,A,μ} is σ-finite and complete then μ = μμ.

11.2. Let {X,Acompl,μcompl} denote the completion of {X,A,μ} (§ 3.1c). Prove
that Aμμ = Acompl;loc and μμ = μcompl;loc (see 3.5–3.6 of § 3c of the Com-
plements).

11.3. Assume μ(X) < ∞ and let E ⊂ X be such that μee(E) = μ(X). Prove that
if A, B ∈ A satisfy A ∩ E = B ∩ E , then μ(A) = μ(B). Define

{A ∩ E : A ∈ A} = AE � A ∩ E → μE (A ∩ E) = μ(A).

Prove that AE is a σ-algebra on E and that μE is a well defined measure on
AE .

In the problems below assume that {X,A,μ} itself is generated by an outer mea-
sure μe. By construction μe ≤ μee.
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11.4. Prove that if {X,A,μ} is generated by a measure λ on a semi-algebraQ then
μee = μe. Moreover, Aμμ = A loc and μμ = μ loc.

11.5. Prove that μee(E) = μe(E) if and only if there exists a μ-measurable set
A ⊃ E such that μ(A) = μe(E).

11.6. Give an example of {X,A,μ} and E ⊂ X for which μe(E) < μee(E).

An example can be constructed by the following steps. First divide all subsets of
R into three classes

(2R)o = {the collection of all countable subsets of R}
(2R)1 = {the collection of all uncountable subsets of R

with uncountable complement}
(2R)2 = {the collection of all uncountable subsets of R

with countable complement}.

Then define a set function μe : 2R → R
+, by

2R � E → μe(E) =
⎧
⎨

⎩

0 if E ∈ (2R)o
1 if E ∈ (2R)1
2 if E ∈ (2R)2

and verify that μe is an outer measure on 2R. Let {R,A,μ} be the measure space
generated by μe. Since μe is not finitely additive A is not expected to coincide with
2R (Proposition 9.1).

Lemma 10.1c Sets in (2R)o and in (2R)2 are measurable, whereas sets in (2R)1 are
not measurable.

Proof The first two statements are established by the Carathéodory measurability
condition (6.2). If E ∈ (2R)1 then Ec is uncountable and it can be separated into the
disjoint union of two uncountable sets B,C ∈ (2R)1. In the Carathéodory condition
(6.2) take A = E ∪ B ∈ (2R)1. Then

μe(A) = 1, μe(A ∩ E) = μe(E) = 1, μe(A − E) = μ(B) = 1.

If E ∈ (2R)2, for any ε > 0, there is no measurable set A ⊃ E such that

1 = μe(E) ≥ μe(A) − ε, since μe(A) is either 0 or 2.

10.2c Nonunique Extensions of Measures λ
on Semi-algebras

11.7. Let X = Q ∩ [0, 1] and letQ be the semi-algebra of the finite unions of sets
of the type (a, b] ∩ X where a, b are real numbers and 0 ≤ a < b ≤ 1. The
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set function
λ {(a, b] ∩ X} = ∞ and λ(∅) = 0

is a non σ-finite measure on Q. Prove that Qo = 2Q and verify that

μ1 = {the counting measure on Qo}
μ2 = {μ2(E) = ∞ for every E ∈ Qo and μ(∅) = 0}

are extensions of λ to 2Q.
11.8. Let {X,A,μ} be generated by a finite measure λ on a semi-algebraQ. Define

the inner measure of a set E ⊂ X by

μi (E) = μ(X) − μe(X − E).

Prove that E is measurable if and only if μe(E) = μi (E).

12c The Lebesgue Measure of Sets in R
N

In this section “measure” means the Lebesgue measure in R
N and μe is the outer

measure form which the Lebesgue measure is constructed.

12.1. TheLebesguemeasure of a polyhedron coincideswith its Euclideanmeasure.
12.2. The Lebesgue outer measure and measure are translation invariant.
12.3. The interval [0, 1] is not countable for otherwise it would have measure

zero. The Cantor set provides an example of a measurable uncountable set
of measure zero.

12.4. There exist unbounded sets with finite measure.
12.5. Let 0 < k < N be an integer. A R

N−k hyperplane in RN has measure zero.
12.6. The boundary of a ball inRN hasmeasure zero.However, there exist open sets

in RN whose boundary has positive measure. For example, the complement
of the generalized Cantor set. Such a set also provides an example of an
open set E ⊂ [0, 1] which is dense in [0, 1], its measure is less than 1 and
for every interval I ⊂ [0, 1], the measure of I ∩ E is positive.

12.7. The set of the rational numbers has Lebesgue measure zero and its boundary
has infinite measure.

12.8. Let E be a bounded measurable set in R
N . There exists a set Eδ of the type

of Gδ , containing E and such that

μe(A ∩ E) = μe(A ∩ Eδ) for all A ⊂ R
N .

This is false if E is not measurable.
12.9. Let E ∈ M be of positive measure. For every ε ∈ (0, 1) there exists a cube

Qε such that μ(E ∩ Qε) > εμ(Qε).
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Proof May assume that μ(E) < ∞. For every ε ∈ (0, 1) there exists an open set
Eo ⊃ E such that εμ(Eo) < μ(E). Since Eo is open it is the countable union of
dyadic, disjoint cubes {Qn}. Therefore,

εμ(Eo) = εμ
( ⋃

Qn
) = ε

∑
μ(Qn)

< μ(E) = μ
( ⋃

E ∩ Qn
) = ∑

μ(E ∩ Qn).

Hence μ(E ∩ Qn) > εμ(Qn) for some n.

12.10. Let E ⊂ R be a bounded, Lebesgue measurable set of positive measure.
Prove that the set

E − E = {x − y; x, y,∈ E}

contains an interval about the origin.

Proof Having fixed ε ∈ (0, 1)0, let I = (a, b) be an open interval for which μ(E ∩
I ) > εμ(I ). Such an interval exists by 12.9. Let α ∈ (0, 1) and consider the interval

( − αμ(I ) , αμ(I )
) = J.

The numbers α, ε ∈ (0, 1) can be chosen so that

(I ∩ E) ∩ [(I ∩ E) + x] �= ∅ for all fixed x ∈ J. (∗)

This would establish the claim. Indeed, for each x ∈ J there exist y, z ∈ (I ∩ E)

such that y = z + x , i.e., x = y − z for some y, z ∈ E . To prove (*) proceed by
contradiction. By construction

(I ∩ E) ∪ [(I ∩ E) + x] ⊂ (
a, b + αμ(I )

)
.

If (*) is violated

2εμ(I ) < 2μ(I ∩ E) = μ(I ∩ E) + μ[(I ∩ E) + x] ≤ (1 + α)μ(I ).

Choose α = 1
2 nd ε = 3

4 .

12.11. For ε > 0 and xn ∈ Q ∩ [0, 1] construct the open interval Iε,n , about xn of
length 2−nε, and set Eε = ⋃

Iε,n and E = ⋂
E1/m . Prove that Eε ⊂ [0, 1]

with strict inclusion, for all ε ∈ (0, 1).
12.12 Let E ⊂ [0, 1] be Lebesgue measurable and of Lebesgue measure zero.

Prove that the set E2 = {x2 : x ∈ E} is measurable and has measure zero.
12.13. The Lebesguemeasure onR coincideswith the Lebesgue–Stieltjesmeasure

generated by f (x) = x .
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12.1c Inner Measure and Measurability

Let μe be the Lebesgue outer measure in R
N . Define the Lebesgue inner measure

μi (E) of a bounded set E ⊂ R
N as

μi (E) = sup
{
μe(C)

∣∣ where C is closed and C ⊂ E
}
. (12.1c)

If E is of finite inner measure, for every ε > 0 there exists a closed set Ec,ε such
that Ec,ε ⊂ E and μi (E) ≤ μ(Ec,ε) + ε.

Proposition 12.1c A bounded set E ⊂ R
N is Lebesgue measurable if and only if

μi (E) = μe(E).

12.2c The Peano–Jordan Measure of Bounded Sets in R
N

Let E be a bounded set in RN and construct the two classes of sets

OE =
{
sets that are the finite union of open

cubes in RN and that contain E

}

IE =
{

sets that are the finite union of closed

cubes in RN and that are contained in E

}
.

The Peano–Jordan outer and inner measure of E are defined as

μe
P−J (E) = inf

O∈OE

μ(O), μi
P−J (E) = sup

I∈IE

μ(I ). (12.2c)

A bounded set E ⊂ R
N is Peano–Jordanmeasurable if its Peano–Jordan outer and

inner measures coincide. From the definition of Lebesgue outer and inner measure
it follows that

μi
P−J (E) ≤ μi (E) ≤ μe(E) ≤ μe

P−J (E).

Thus a Peano–Jordan measurable set is Lebesgue measurable. The converse is
false. The set Q ∩ [0, 1] is Lebesgue measurable and its measure is zero. However,

μe
P−J (Q ∩ [0, 1]) = 1, μi

P−J (Q ∩ [0, 1]) = 0.

Thus Q ∩ [0, 1] is not Peano–Jordan measurable. This last example shows that
the Peano–Jordan measure is not a measure in the sense of § 3, since its domain is
not a σ-algebra.
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12.3c Lipschitz Functions and Measurability

A continuous function fromR
N into itself need not preserve measurability as shown

by the continuous function f : [0, 1] → [0, 1] constructed in § 14. It is then natural to
ask what properties onemay require on f : RN → R

N , to map Lebesguemeasurable
set in R

N into Lebesgue measurable sets in R
N . The next proposition asserts that

this occurs if f is Lipschitz continuous in the sense of (8.1c).

Proposition 12.2c A Lipschitz continuous function f : RN → R
N , maps Lebesgue

measurable sets in RN into Lebesgue measurable sets in RN .

Prove the proposition by the following steps:

i. f maps compact sets of RN into compact sets in RN . Hence it maps bounded,
closed sets into bounded closed sets.

ii. f maps countable unions of closed dyadic cubes into measurable sets. Hence
f maps open sets into measurable sets.

iii. f maps sets of measure zero in R
N into sets of measure zero of RN . See

Corollary 8.1c.
iv. If E ⊂ R

n is bounded and measurable, there exists a set Eσ ⊂ E of the type
of Fσ , and a measurable set E ⊂ E of measure zero, such that E = Eσ ∪ E .
Then f (E) = f (Eσ) ∪ f (E).

v. If E is unbounded write

E = ⋃
E ∩ { j ≤ |x | < j + 1}.

Remark 12.1c Let f be a Lipschitz map from R
N into Rm for some N ,m ∈ N. The

conclusion of the proposition is false, in general, if N �= m. Give counterexamples
and identify which of the previous points fails.

12.3.1c Linear Maps, Measurability and Volumes

Let T be a linear bijection in R
N (i.e., a linear nonsingular transformation of RN

onto itself). Such a map is Lipschitz continuous and therefore it maps Lebesgue
measurable sets into Lebesgue measurable sets.

Proposition 12.3c Let T : RN → R
N linear and nonsingular. Then for every

Lebesgue measurable set E ⊂ R
N ,

μ(T E) = | det T |μ(E). (12.3c)

Prove the proposition by the following steps:

i. T maps parallelepipeds in R
N into parallelepipeds in RN .

ii. Let P be a parallelepiped in R
N with edges identified by the vectors xi for

i = 1, . . . , N . Then
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μ(P) = | det(xi j )|, and μ(T P) = | det T |μ(P)

where (xi j ) is the matrix whose rows are the vectors xi .
iii. If E ⊂ R

N is open, then (12.3c) holds. An open set is the countable disjoint
union of dyadic cubes.

iv. If E ⊂ R
N is bounded andmeasurable, for every ε > 0 there exists a countable

collection {Qn} of disjoint dyadic cubes such that

E ⊂ ⋃
Qn and

∑
μ(Qn) ≤ μ(E) + ε.

Now T E ⊂ ⋃
T Qn and hence

μ(T E) ≤ | det T |μ(E) + | det T |ε.

v. If E ⊂ R
N is bounded and measurable, for every ε > 0 there exists an open

set Eo such that
E ⊂ Eo and μ(Eo − E) ≤ ε.

Now T E ⊂ T Eo and

| det T |μ(E) ≤ | det T |μ(Eo) = μ(T Eo)

= μ(T E) + μ[T (Eo − E)] ≤ μ(T E) + | det T |ε.

vi. If E is measurable and unbounded, write it as the disjoint union of bounded
measurable sets.

Thus in particular the Lebesgue measure is invariant by rotations and translations.

13c Vitali’s Nonmeasurable Set

13.1. Every measurable subset A of the nonmeasurable set E has measure zero.
Indeed the sets An = A • rn ⊂ En for rn ∈ Q ∩ [0, 1] are disjoint, have each
measure equal to the measure of A, and their union is contained in [0, 1].
Thus ∑

μ(An) = μ
( ⋃

An
) ≤ 1.

13.2. Every set A ⊂ [0, 1] of positive outer measure, contains a nonmeasurable
set. Indeed at least one of the intersections A ∩ En is nonmeasurable. If all
such intersections were measurable then by the subadditive property of the
outer measure,

0 < μe(A) ≤ ∑
μ(A ∩ En) = 0

since all the A ∩ En are measurable subsets of E .
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13.3. Let E ⊂ [0, 1] be the Vitali nonmeasurable set, and let μe(·) be the Lebesgue
outer measure. Prove that μe(E) > 0. Moreover for all ε > 0, there exists a
nonneasurable set Eε ⊂ [0, 1], such that 0μe(Eε) < ε.

13.4. The Lebesgue measure on [0, 1] is a set function defined of the Lebesgue
measurable subsets of [0, 1] satisfying:
(a). μ is nonnegative
(b). μ is countably additive
(c). μ is translation invariant
(d). If I ⊂ [0, 1] is an interval then μ(I ) coincides with the Euclidean

measure if I .

It is impossible to define a set function μ satisfying (a)–(d) and defined on
all subsets of [0, 1].
The construction of the nonmeasurable set E ⊂ [0, 1] uses only the prop-
erties (a)–(c) of the function μ and it is independent of the particular con-
struction of the Lebesgue measure. The final contradiction argument uses
property (d). If a function μ satisfying (a)–(d) and defined in all the subsets
of [0, 1] were to exist, the same construction would imply that μ([0, 1]) is
either zero or infinity. The requirement (d) cannot be removed from these
remarks. Indeed the counting measure or the identically zero measure would
satisfy (a)–(c) but not (d).

14c Borel Sets, Measurable Sets and Incomplete Measures

The strict inclusion B ⊂ M can be established by an indirect cardinality argument.

14.1. Let Bo denote the collection of all open intervals of [0, 1]. Prove that
card (Bo) ≤ card (R).

14.2. Define inductively Bn for all n ∈ N, as the collection of all countable unions,
countable intersections and complements of elements of Bn−1. Prove that
card (Bn) ≤ card

(
R

N
) = card (R).

14.3. Let Ω be the first uncountable. For each α < Ω define Bα as the collection
of all countable unions, countable intersection and complements of elements
of Bβ for all ordinal numbers β < α. By definition of first uncountable, the
cardinality of Bα does not exceed card (RN) = card (R).

14.4. The smallest σ-algebra containing the open sets of [0, 1] can be constructed
by this procedure by setting B = ⋃

α<Ω Bα. Hence the cardinality of B does
not exceed card (R).

14.5. Since the Lebesgue measure is complete, every subset of the Cantor set is
measurable and has measure zero. Since the cardinality of the Cantor set is
the cardinality of R, the cardinality of all the subset of the Cantor sets is
card (2R).

14.6. The cardinality of the Lebesgue measurable subsets of [0, 1] is not less than
card (2R), and the cardinality of the Borel subsets of [0, 1] does not exceed
card (R).
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16c Borel, Regular and Radon Measures

16.1c Regular Borel Measures

16.1. Prove that in the Proposition 15.1, the closed sets Ec,ε can be taken to be
bounded.

16.2. prove that the counting measure on R is not outer regular, but it is inner
regular.

16.3. prove that the Hausdorff measure in R
N generated by the outer measure

HN−ε, for 0 < ε < N is inner regular and not outer regular.

16.2c Regular Outer Measures

Let μ be a Borel measure in RN , and let μe be an outer measure inRN that coincides
with μ on the Borel sets. The outer measure μe is outer regular with respect to μ if
for every set E ⊂ R

N of finite outer measure, there exists a set Eδ of the type of a Gδ

such that E ⊂ Eδ and μe(E) = μ(Eδ). An example of such μe is the one generated
from a Radon measure μ by formula (16.3).

16.4. Prove that if μe is generated by a nonnegative set function λ on the collection
of open sets, then μe is outer regular with respect to μ. In particular, the
Lebesgue–Stieltjes outer measure μ f,e is outer regular with respect to the
Lebesgue–Stieltjes measure μ f .

16.5. Prove that the Hausdorff outer measure Hα for α > 0, is outer regular with
respect to the Hausdorff measure it generates.

Let E ⊂ R
N be of finiteHα outer measure. Form ∈ N fixed, There exists a countable

collection of sets {Em,n}, each of diameter less than 1
m , whose union contains E and

satisfying
Hα, 1

m
(E) ≥ ∑

n
diam(Em,n)

α − 1
m .

The sets
Om,n = {x ∈ R

N
∣∣ dist{x; Em,n} < 1

m diam(Em,n)}

are open and satisfy

(
1 + 2

m

)α Hα(E) ≥ ∑
diam(Om,n)

α − 1
m ≥ Hα,εm (Eδ) − 1

m

where
Eδ = ⋂

m

⋃

n
Om,n, and εm = (

1 + 1
m

)
1
m .
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17c Vitali Coverings

17.1. The notion ofVitali’s covering of a set E ⊂ R
N is independent of themeasur-

ability of E . Let μe be the outer measure associated to the Lebesgue measure
in R

N and generated by (16.1). Extend the Vitali covering theorem to the
case of a set E of finite outer measure μe(E).

17.2. Let E be a bounded subset ofRN of finite outer measure which admits a fine
Vitali covering with cubes contained in E . Then E is Lebesgue measurable.
The requirement that the cubes making up the Vitali covering, be contained
in E is essential. Give a counterexample.

17.3. Let {Qα} be an uncountable family of closed, nontrivial cubes in R
N . Then⋃

Qα is Lebesgue measurable.

17.1c Pointwise and Measure-Theoretical Vitali Coverings

It has been remarked that the collection {Qn} claimed by Theorem 17.1 covers E only
in a measure-theoretical sense. Here we indicate how the covering can be realized to
be pointwise.

Proposition 17.1c Let F be a family of closed, nontrivial cubes Q(d) ⊂ R
N of

uniformly bounded diameter d, i.e.,

sup{d | Q(d) ∈ F} = D < ∞

There exists a countable collection of disjoint cubes {Qn(dn)} ⊂ F such that

⋃{Q(d) ∈ F} ⊂ ⋃
Qn(3dn). (17.1c)

Proof For j = 1, 2, . . . define

F j =
{
Q(d) ∈ F ∣∣ D

2 j
< d ≤ D

2 j−1

}
.

Select {Qn1(dn1)} as any maximal collection of disjoint cubes in F1. Then introduce
the collection of cubes

{
Q(d) ∈ F2

∣∣ Q(d) ∩ ⋃
Qn1(dn1) = ∅}

and out of this collection select any maximal subcollection of disjoint cubes
{Qn2(dn2)}. Proceeding in this fashion, select recursively {Qn j (dn j )} as any max-
imal subcollection of disjoint cubes out of
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{
Q(d) ∈ F j

∣
∣ Q(d) ∩

j−1⋃

k=1
{Qnk (dnk )} = ∅}

The countable, disjoint collection claimed by the proposition is

{Qn(dn)} = ⋃

j∈N
{Qn j (dn j )}

A cube Q(d) ∈ F belongs to some F j . By maximality of {Qn j (dn j )} there exists
Q j (d j ) ∈ {Qn j (dn j )}, such that Q(d) ∩ Q j (d j ) �= ∅. By construction

D

2 j
< diamQ(d) ≤ D

2 j−1
and

D

2 j
< diamQ j (d j ).

Therefore, d < 2d j .

Proposition 17.2c Let F be a fine Vitali covering of a set E ⊂ R
N . There exists

a countable collection of cubes {Qn(dn)} ⊂ F such that for any finite collection
{Q1, . . . , Qm} ⊂ F

E −
m⋃

�=1
Q� ⊂ ⋃

Qn(dn)∈{Qn(dn)}−{Q1,...,Qm }
Qn(3dn).

Proof SinceF is a fine Vitali covering for E , may assume, without loss of generality,
that the diameters of the cubes in F are uniformly bounded. Then select {Qn(dn)}
as in the previous proposition and fix the finite collection {Q1, . . . , Qm} ⊂ F . If E
is covered by the union of the Q� there is nothing to prove. Otherwise take

x ∈ E −
m⋃

�=1
Q�

and select a cube Qx ∈ F containing x and not intersecting any of the Q�. Such a
cube exists sinceF is a fine Vitali covering and the cubes are closed. By the previous
proof there exists Q j (d j ) ∈ {Qn(dn)} such that Qx ⊂ Q j (3d j ).

18c The Besicovitch Covering Theorem

18.1c The Besicovitch Theorem for Unbounded E

The boundedness of E insures that, for the balls Bρn (xn), the radii {ρn} → 0 as
n → ∞. This information only enters in the proof in a qualitative way. The number
cN , claimed by the theorem, is independent of F , the number R in (18.1), the set E
and its boundedness. These remarks permit one to extend the Besicovitch covering
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theorem to the case of E unbounded. For n ∈ N set

En = {2R(n − 1) ≤ |x | < 2Rn}

and apply the Besicovitch theorem to each of the En to obtain finite collections of
countable collections of disjoint balls {Bn

1 , . . . ,Bn
cN }. By construction, the balls of

each of the collections B3
j , do not intersect any of the balls of B1

j . Hence they can
be incorporated into B1

j to form a larger subcollection of disjoint balls. Likewise,
the balls of each of the collections B5

j do not intersect any of the balls of B3
j and

thy can be incorporated into B1
j ∪ B3

j to form a larger subcollection of disjoint balls.
Proceeding by induction set

Bodd
j = ⋃

n odd
Bn

j for j = 1, . . . , cN .

Each of Bodd
j is a countable collection of disjoint balls. A similar argument holds

for the collections Bn
j of even index n. Set

Beven
j = ⋃

n even
Bn

j for j = 1, . . . , cN .

The finite collection of countable collections of disjoint balls claimed by the
theorem can be taken to be

Beven
1 , . . . ,Beven

cN , Bodd
1 , . . . ,Bodd

cN .

Thus the theorem continues to hold with cN replaced by 2cN .

18.2c The Besicovitch Measure-Theoretical Inner Covering
of Open Sets E ⊂ R

N

Proposition 18.1c Let E ⊂ R
N be open. There exists a countable collection of dis-

joint, closed balls {Bn}, contained in E, such that μ(E − ∪En) = 0.

18.3c A Simpler Form of the Besicovitch Theorem

The next is a covering statement, based only on the geometry of cubes in R
N and

independent of measures.

Theorem 18.1c (Besicovitch) Let E be a bounded subset of RN and let F be a
collection of cubes in RN with faces parallel to the coordinate planes and such that
each x ∈ E is the center of a nontrivial cube Q(x) belonging to F .
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There exists a countable collection {xn} of points xn ∈ E, and a corresponding
collection of cubes {Q(xn)} in F such that

E ⊂ ⋃
Q(xn) and

∑
χQ(xn) ≤ 4N . (18.1c)

Remark 18.1c The second of (18.1c) asserts that each point x ∈ R
N is covered by at

most 4N cubes out of {Q(xn)}. Equivalently at most 4N cubes overlap at each given
point.

It is remarkable that the largest number of possible overlaps of the cubes Q(xn),
at each given point, is independent of the set E and the covering F , and depends
only on the geometry of the cubes in RN .

Lemma 18.1c Let {Q(xn)} be a countable collection of cubes in R
N with centers

at xn and satisfying

If n < m then xm /∈ Q(xn) and μ(Q(xm)) ≤ 2μ(Q(xn)). (18.2c)

Then each point x ∈ R
N is covered by at most 4N cubes out of {Q(xn)}.

Proof Assume first N = 2. Having fixed x ∈ R
2 may assume up to a translation

that x is the origin. Denote by 2ρn the edge of the cube Q(xn) and let {Q j } be the
collection of squares containing the origin, whose center x j is in the first quadrant,
and of edge 2ρ j . Starting from Q1 and the corresponding edge 2ρ1 consider the 4
closed squares,

S1 = [0, ρ1] × [0, ρ1]
S3 = [ρ1, 2ρ1] × [ρ1, 2ρ1]

S2 = [0, ρ1] × [ρ1, 2ρ1]
S4 = [ρ1, 2ρ1] × [0, ρ1].

Let also
So = [0, 2ρ1] × [0, 2ρ1] = S1 ∪ S2 ∪ S3 ∪ S4.

By construction Q1 covers S1 and by the second of (18.2c) the center x j of each
of the Q j , for j = 2, 3, . . . , cannot lie outside So. Indeed if it did, since Q j contains
the origin, ρ j > 2ρ1 and μ(Q j ) > 4μ(Q1).

Thus the centers x j of the Q j , for j = 2, 3, . . . , must belong to some of the
squares S1, S2, S3, S4. Now x j cannot belong to S1 because otherwise the first of
(18.2c) would be violated, since S1 ⊂ Q1.

If some x j ∈ S2, then since Q j contains the origin, S2 ⊂ Q j . Therefore, by the
first of (18.2c), no other center x�, for � > j , belongs to S2. This implies that S2
contains at most one center x j .

By a similar argument S3 and S4 contain each at most one center x j of a cube Q j .
Thus the collection {Q j } contains at most 4 cubes.

Defining analogously the collections of cubes containing the origin and whose
center is, respectively, in the second, third and fourth quadrant, we conclude that
each of these collections contains at most 4 cubes. Thus the origin is covered by at
most 16 cubes out of the collection {Q(xn)}.
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Fig. 1c Constructing the sequence of cubes Q(xn)

A similar argument for N = 3 gives that each point is covered by at most 64
cubes. The general case follows by induction (Fig. 1c).

Proof (of Theorem 18.1c) Set

E1 = E and λ1 = sup
{
μ
(
Q(x)

) ∣
∣ x ∈ E

}
.

If λ1 = ∞ there exists cubes Q(x) ∈ F of arbitrarily large edge and centered
at some x ∈ E . Since E is bounded we select one such a cube. If λ1 < ∞ select
x1 ∈ E1 and a cube Q(x1) such that μ(Q(x1)) > 1

2λ1. Then set

E2 = E1 − Q(x1) and λ2 = sup
{
μ(Q(x))

∣∣ x ∈ E2
}
.

If E1 ⊂ Q(x1) the process terminates. Otherwise λ2 > 0 and we select x2 ∈ E2

and a cube Q(x2) such that μ(Q(x2)) > 1
2λ2.

Proceeding recursively, define countable collections of sets En , points xn ∈ En ,
corresponding cubes Q(xn) and positive numbers λn by

En = E −
n−1⋃

j=1
Q(x j ) λn = sup

{
μ(Q(x))

∣∣ x ∈ En
}
, μ(Q(xn)) ≥ 1

2
λn.

By construction {λn} is a decreasing sequence and

μ(Q(xm)) ≤ λm ≤ λn ≤ 2μ(Q(xn)) for n < m

as long asλm > 0. Therefore by the previous lemma, at most 4N of the cubes {Q(xn)}
overlap at each x ∈ R

N . It remains to prove that E ⊂ ⋃
Q(xn).
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If En = ∅ for some n, then, E ⊂ ⋃n−1
j=1 Q(x j ) and the process terminates. If

En �= ∅ for all n, we claim that lim λn = 0. To this end compute

lim supμ(Q(xn)) = δ.

Let xo be a cluster point of {xn}. If δ > 0, then xo would be covered by infinitely
many cubes Q(xn). Therefore, δ = 0. The relations

1
2λn ≤ μ(Q(xn)) ≤ λn, λn+1 ≤ λn

now imply that lim λn = 0. If x ∈ E − ⋃
Q(xn), there exists a nontrivial cube

Q(x) ∈ F such that μ(Q(x)) < λn for all n. Therefore, μ(Q(x)) = 0 and Q(x)
is a trivial cube.

18.4c Another Besicovitch-Type Covering

Proposition 18.2c Let E be a bounded subset ofRN and let x → ρ(x) be a function
from E into (0, 1).4 There exists a countable collection {xn} of points in E, such
that the closed balls B

(
xn, ρ(xn)

)
, with center at xn and radius ρ(xn), are pairwise

disjoint, and
E ⊂ ⋃

B
(
xn, 3ρ(xn)

)
. (18.3c)

Proof Let F1 be the collection of pairwise disjoint balls B
(
x, ρ(x)

)
such that 1

2 ≤
ρ(x) < 1. Since E is bounded, F1 contains at most a finite number of such balls, say
for example,

B
(
x1, ρ(x1)

)
, B

(
x2, ρ(x2)

)
, . . . , B

(
xn1 , ρ(xn1)

)
(18.4c)1

for some n1 ∈ N. If their union covers E , the construction terminates. If not, let F2

be the collection of pairwise disjoint balls B
(
x, ρ(x)

)
, not intersecting any of the

balls selected in (18.4c)1, and such that 2−2 ≤ ρ(x) < 2−1. Since E is bounded, F2,
if not empty, contains at most a finite number of such balls, say for example

B
(
xn1+1, ρ(xn1+1)

)
, B

(
xn1+2, ρ(xn1+2)

)
, . . . , B

(
xn2 , ρ(xn2)

)

for some n2 ∈ N. If the union of the balls

B
(
xi , ρ(xi )

)
for i = 1, . . . , n1, n1 + 1, . . . , n2 (18.4c)2

covers E , the construction terminates. If F2 is empty, or if the union of these balls
does not cover E , construct the collection F3 of pairwise disjoint balls B

(
x, ρ(x)

)
,

4Neither E nor x → ρ(x) are required to be measurable.
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not intersecting any of balls selected in (18.4c)2, and such that 2−3 ≤ ρ(x) < 2−2.
Proceeding recursively, assume we have selected a finite collection of pairwise dis-
joint balls

B
(
x1, ρ(x1)

)
, B

(
x2, ρ(x2)

)
, . . . , B

(
xn j , ρ(xn j )

)
(18.4c) j

for some n j ∈ N. If their union does not cover E , construct the family F j+1 of pair-
wise disjoint balls B

(
x, ρ(x)

)
, not intersecting any of balls selected in (18.4c) j , and

such that 2−( j+1) ≤ ρ(x) < 2− j . Since E is bounded, F j+1, if not empty, contains at
most a finite number of such balls, which we add to the collection in (18.4c) j . If for
some j ∈ N, the union of the balls in (18.4c) j covers E the process terminates. Oth-
erwise this recursive procedure generates a countable collection of pairwise disjoint
balls {B(

xn, ρ(xn)
)}. It remains to prove that such a collection satisfies (18.3c). Fix

x ∈ E . By construction

B
(
x, ρ(x)

) ∩ B
(
x j , ρ(x j )

) �= ∅ for some j.

Therefore, ρ(x) ≤ 2ρ(x j ). For one such x j fixed

|x − x j | ≤ ρ(x) + ρ(x j ) ≤ 3ρ(x j ).

Thus x ∈ B
(
x j , 3ρ(x j )

)
.



Chapter 4
The Lebesgue Integral

1 Measurable Functions

Let {X,A,μ} be a measure space and E ∈ A. For a function f : E → R
∗ and c ∈ R

set
[ f > c] = {x ∈ E

∣∣ f (x) > c}.

The sets [ f ≥ c], [ f < c], [ f ≤ c], are defined similarly, and are linked by

[ f ≥ c] = ⋂ [
f > c − 1

n

] [ f > c] = ⋃ [
f ≥ c + 1

n

]

[ f ≤ c] = E − [ f > c] [ f < c] = E − [ f ≥ c].

Therefore, if any one of the four sets

[ f > c], [ f ≥ c], [ f < c], [ f ≤ c] (1.1)

is measurable for all c ∈ R, the remaining three are measurable for all c ∈ R. A
function f : E → R

∗ is measurable if at least one of the sets in (1.1) is measurable
for all c ∈ R.

Remark 1.1 The notion of measurable function depends only on the σ-algebra A
and is independent of the measure μ defined on A.

Proposition 1.1 A function f : E → R
∗ is measurable if and only if at least one of

the sets in (1.1) is measurable for all c ∈ Q.

Proof Assume for example that the third of the sets in (1.1) is measurable for all
c ∈ Q. Having fixed some c ∈ R − Q let {qn} be a sequence of rational numbers
decreasing to c. Then [ f > c] = ⋃[ f ≥ qn] is measurable.
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Proposition 1.2 Let f : E → R
∗ be measurable and let α ∈ R − {0}. Then

(i) The functions | f |, α f , α + f , f 2, are measurable
(ii) If f �= 0 then also 1/ f is measurable
(iii) For any measurable subset E ′ ⊂ E, the restriction f

∣∣
E ′ is measurable.

Proof The statements (i) and (ii) follow from the set identities:

[| f | > c] =
⎧
⎨

⎩

[ f > c] ∪ [ f < −c] if c ≥ 0

E if c < 0

[α + f > c] = [ f > c − α]

[α f > c] =

⎧
⎪⎪⎨

⎪⎪⎩

[
f >

c

α

]
if α > 0

[
f <

c

α

]
if α < 0

[
f 2 > c

] =
⎧
⎨

⎩

[
f >

√
c
] ∪ [

f < −√
c
]

if c ≥ 0

E if c < 0

[
1

f
> c

]
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

[
f > 0

] ∩ [
f <

1

c

]
if c > 0

[
f > 0

]
if c = 0

[
f > 0

] ∪ [
f <

1

c

]
if c < 0.

To prove (iii) observe that
[
f

∣∣
E ′> c

] = [ f > c] ∩ E ′.

Proposition 1.3 Let f : E → R
∗ and g : E → R be measurable. Then

(i) the set [ f > g] is measurable
(ii) the functions f ± g are measurable
(iii) the function f g is measurable
(iv) if g �= 0, the function f/g is measurable.

Proof Let {qn} be the sequence of the rational numbers. Then

[ f > g] = ⋃ [ f ≥ qn] ⋂ [g < qn].

This proves (i). To prove (ii) observe that for all c ∈ R
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[ f ± g > c] = [ f > ∓g + c]

and the latter is measurable in view of (i). By the previous proposition ( f ± g)2 are
measurable and this implies (iii) in view of the identity

4 f g = ( f + g)2 − ( f − g)2.

Finally (iv) follows from (iii) and (ii) of the previous proposition.

Proposition 1.4 Let { fn} be a sequence of measurable functions in E. Then the
functions

ϕ = sup fn, ψ = inf fn, f ′′ = lim sup fn, f ′ = lim inf fn

are measurable.

Proof For every c ∈ R,

[ϕ > c] = ⋃[ fn > c] and [ψ ≥ c] = ⋂[ fn ≥ c].

Let f and g be two functions defined in E . We say that f = g almost everywhere
(a.e.) in E if there exists a set E ⊂ E of measure zero such that

f (x) = g(x) for all x ∈ E − E and μ(E) = 0.

More generally, a property of real-valued functions defined on a measure space
{X,A,μ} is said to hold almost everywhere (a.e.), if it does hold for all x ∈ X except
possibly for a measurable set E of measure zero.

Lemma 1.1 Let {X,A,μ} be complete. If f is measurable and f = g a.e. in E,
then also g is measurable.

Corollary 1.1 Let {X,A,μ} be complete and let { fn} be a sequence of measurable
functions defined in E ∈ A and taking values in R

∗. A function f : E → R
∗ such

that f = lim fn a.e. in E is measurable.

2 The Egorov–Severini Theorem [39, 145]

Let { fn} be a sequence of functions defined in a measurable set E with values in R∗
and set

f ′′(x) = lim sup fn(x) f ′(x) = lim inf fn(x) x ∈ E . (2.1)



136 4 The Lebesgue Integral

The functions f ′′ and f ′ are defined in E and take values in R∗. We will assume
throughout that they are a.e. finite in E , i.e., there exist measurable sets E ′′ and E ′
contained in E such that

f ′′(x) ∈ R for all x ∈ E − E ′′ and μ(E ′′) = 0
f ′(x) ∈ R for all x ∈ E − E ′ and μ(E ′) = 0.

(2.2)

The upper limit in (2.1) is uniform, if for every ε > 0 there exists an index nε

such that

fn(x) < f ′′(x) + ε for all n ≥ nε and for all x ∈ E − E ′′.

Similarly the lower limit in (2.1) is uniform, if for every ε > 0, there exists an
index nε such that

fn(x) ≥ f ′(x) − ε for all n ≥ nε and for all x ∈ E − E ′.

Proposition 2.1 Let { fn} be a sequence of measurable functions defined on a mea-
surable set E ∈ A of finite measure, and with values in R

∗.
Assume that, for example, the second(first) of (2.2) holds. Then for every η > 0

there exists a measurable set Eη ⊂ E, such thatμ(E−Eη) ≤ η and the lower(upper)
limit in (2.1) is uniform in Eη.

Proof The statement is only proved for the lower limit, the arguments for the upper
limit being analogous. Fix m, n ∈ N, and introduce the sets

Em,n =
∞⋂

j=n

{
x ∈ (E − E ′)

∣
∣ f j (x) ≥ f ′(x) − 1

m

}
.

For m ∈ N fixed, the sets Em,n are measurable and expanding. By the definitions
of f ′ and E ′

E − E ′ =
∞⋃

n=1
Em,n and μ(E) = lim

n
μ(Em,n).

Therefore, having fixed η > 0, there exists an index n(m, η) such that

μ(E − Em,n(m,η)) ≤ 1

2m
η.

The set claimed by the proposition is

Eη =
∞⋂

m=1
Em,n(m,η). (2.3)

Indeed Eη is measurable and by construction
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μ(E − Eη) = μ
( ∞⋃

m=1
(E − Em,n(m,η))

) ≤
∞∑

m=1
μ(E − Em,n(m,η)) ≤ η.

Fix an arbitrary ε > 0 and letmε be the smallest positive integer such that εmε ≥ 1.
From the inclusion Eη ⊂ Emε,n(mε,η) and the definition of the sets Em,n , it follows
that

fn(x) ≥ f ′(x) − ε for all n ≥ nε ≡ n(mε, η) and for all x ∈ Eη.

Theorem 2.1 (Egorov-Severini [39, 145]) Let { fn} be a sequence of measurable
functions defined in a measurable set E of finite measure, and with values in R

∗.
Assume that the sequence converges a.e., in E, to a function f : E → R

∗, which is
finite a.e. in E. Then, for every η > 0 there exists a measurable set Eη ⊂ E, such
that μ(E − Eη) ≤ η and the limit is uniform in Eη.

Remark 2.1 The Egorov–Severini theorem is in general false if E is not of finite
measure (2.2 of the Complements).

2.1 The Egorov–Severini Theorem in R
N

Proposition 2.2 Let {X,A,μ} be RN endowed with a inner regular Borel measure
μ (in the sense of (16.2) of Chap.2). Let { fn} be a sequence ofμmeasurable functions
defined on a μ-measurable set E ⊂ R

N , of finite measure, and with values in R
∗.

Assume that, for example, the second of (2.2) holds. Then for every η > 0 there exists
a closed set Ec,η ⊂ E, such that μ(E − Ec,η) ≤ η and the lower limit in (2.1) is
uniform in Ec,η .

Proof The set Eη in (2.3) is a μ-measurable subset of RN of finite measure. Since μ
is inner regular, there exists a closed set Ec,η ⊂ Eη such that μ(Eη − Ec,η) ≤ η.

The proposition holds in particular if μ is the Lebesgue measure in RN , since the
latter is inner regular (Proposition 12.3 of Chap. 3).

3 Approximating Measurable Functions by Simple
Functions

A function f from a measurable set E with values in R is simple if it is measurable
and if it takes a finite number of values. The characteristic function of a measurable
set is simple. Let f be simple in E , let { f1, . . . , fn} be the distinct values taken by
f in E and set

Ei = {x ∈ E
∣∣ f (x) = fi }. (3.1)

http://dx.doi.org/10.1007/978-1-4939-4005-9_2
http://dx.doi.org/10.1007/978-1-4939-4005-9_3
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The sets Ei are measurable and disjoint, and f can be written in its canonical
form

f =
n∑

i=1
fiχEi . (3.2)

Given measurable sets E1, . . . , En and real numbers f1, . . . , fn , the expression
in (3.2) defines a simple function, but not in general its canonical form. This occurs
only if the Ei are disjoint and the fi are distinct.

The sum and the product of simple functions are simple functions.
If f and g are simple functions written in their canonical form (3.2), then f + g

and f g are simple but not necessarily in their canonical form.

Proposition 3.1 Let f : E → R
∗ be a nonnegative measurable function. There

exists a sequence of simple functions { fn}, such that fn ≤ fn+1 and

f (x) = lim fn(x) for all x ∈ E .

Proof For a fixed n ∈ N set

fn(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

n if f (x) ≥ n

j

2n
if

j

2n
≤ f (x) <

j + 1

2n

for j = 0, 1, . . . , n2n − 1.

(3.3)

By construction fn ≤ fn+1. Since f is measurable, the sets

[
f ≥ j

2n
] − [

f ≥ j + 1

2n
]
, j = 0, 1, . . . , n2n − 1

and the set [ f ≥ n], are measurable and disjoint. Thus the fn are simple.
Fix some x ∈ E . If f (x) is finite, by choosing no ≥ f (x),

0 ≤ f (x) − fn(x) ≤ 1

2n
for all n ≥ no.

If f (x) = ∞, then fn(x) = n for all positive integers n and the conclusion holds
in either case.

A function f from a set E into R∗ can be decomposed as

f = f + − f − where f ± = 1
2 (| f | ± f ). (3.4)
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Corollary 3.1 Let f : E → R
∗ be a measurable function. There exists a sequence

of simple functions { fn}, such that f (x) = lim fn(x) for all x ∈ E.

4 Convergence in Measure (Riesz [125], Fisher [46])

Let { fn} be a sequence of measurable functions from a measurable set E of finite
measure, into R

∗ and let f : E → R
∗ be measurable and a.e. finite in E . The

sequence { fn} converges in measure to f , if for any η > 0

lim μ
{
x ∈ E

∣∣ | fn(x) − f (x)| > η
} = 0.

Proposition 4.1 The convergence in measure identifies the limit uniquely up to a set
of measure zero, i.e., if { fn} converges in measure to f and g, then f = g a.e. in E.

Proof For n ∈ N and a.e. x ∈ E ,

| f (x) − g(x)| ≤ | f (x) − fn(x)| + | fn(x) − g(x)|.

Therefore, for all η > 0

[| f − g| > η] ⊂ [| f − fn| > 1
2η

] ∪ [| fn − g| > 1
2η

]
.

Take the measure of both sides and let n → ∞.

Proposition 4.2 Let {X,A,μ} be a measure space and let E ∈ A be of finite
measure. If { fn} converges a.e. in E to a function f : E → R

∗ which is finite a.e. in
E, then { fn} converges to f in measure.

Proof Having fixed an arbitrary ε > 0, by the Egorov–Severini theorem, there exists
ameasurable set Eε ⊂ E , such thatμ(E−Eε) ≤ ε and { fn} converges to f uniformly
in Eε. Therefore, for any η > 0,

lim supμ{x ∈ E
∣∣ | fn(x) − f (x)| > η} ≤ ε.

Remark 4.1 The proposition is in general false if E is not of finite measure.

Remark 4.2 Convergence in measure does not imply a.e. convergence as shown by
the following example. For m, n ∈ N and m ≤ n, let

ϕnm(x) =

⎧
⎪⎨

⎪⎩

1 for x ∈ [m − 1

n
,
m

n

]

0 for x ∈ [0, 1] − [m − 1

n
,
m

n

]
.

(4.1)
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Then construct a sequence of functions fn : [0, 1] → R by setting

f1 = ϕ11, f2 = ϕ21, f3 = ϕ22, f4 = ϕ31, f5 = ϕ32,

f6 = ϕ33, f7 = ϕ41, f8 = ϕ42, f9 = ϕ43, · · · · · · .

The sequence { fn} converges in measure to zero in [0, 1]. However { fn} does
not converge to zero anywhere in [0, 1]. Indeed for any fixed x ∈ [0, 1] there exist
infinitely many indices m, n ∈ N such that

m − 1

n
≤ x ≤ m

n
and hence ϕnm(x) = 1.

Even though the sequence { fn} does not converge to zero anywhere in [0, 1], it
contains a subsequence { fn′ } ⊂ { fn} converging to zero a.e. in [0, 1]. For example
one might select { fn′ } = {ϕn1}.
Proposition 4.3 (Riesz [126]) Let {X,A,μ} be a measure space and let E ∈ A. Let
{ fn} and f be measurable functions from E intoR∗, a.e. finite in E. If { fn} converges
in measure to f , there exists a subsequence { fn′ } ⊂ { fn} converging to f a.e. in E.

Proof For m, n ∈ N, arguing as in Proposition 4.1

μ ([| fn − fm | > η]) ≤ μ
([| fn − f | > 1

2η
]) + μ

([| fm − f | > 1
2η

])
.

From this and the definition of convergence in measure

lim
n,m→∞ μ ([| fn − fm | > η]) = 0. (4.2)

We will establish the proposition under the assumption (4.2). It implies that for
every j ∈ N, there exists a positive integer n j such that

μ
([| fn − fm | >

1

2 j

]) ≤ 1

2 j+1
for all m, n ≥ n j .

The numbers n j may be chosen so that n j < n j+1. Setting

En j = [| fn j − fn j+1 | ≤ 1

2 j

]

one estimates

μ
(
E − En j

) ≤ 1

2 j+1
and μ

(
E − ⋂

j≥k
En j

) ≤ 1

2k

for every fixed, positive integer k. The subsequence { fn j } selected out of { fn}, is
convergent for all x ∈

∞⋂

j=k
En j . Indeed for any such x , and any pair of indices
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k ≤ n j < n j+�

| fn j (x) − fn j+�
(x)| ≤

j+�−1∑

i= j
| fni (x) − fni+1(x)| ≤ 1

2 j−1
.

Since k ∈ N is arbitrary, { fn j } converges a.e. in E .

The next proposition can be regarded as a Cauchy-type criterion for a sequence
{ fn} to converge in measure.

Proposition 4.4 Let {X,A,μ} be a measure space and let E ∈ A be of finite
measure. Let { fn} be a sequence of measurable functions from a measurable set E of
finite measure, into R

∗. The sequence { fn} converges in measure if and only if (4.2)
holds for all η > 0.

Proof The necessary condition has been established in the first part of the proof of
Proposition 4.3, leading to (4.2). To prove its sufficiency, let (4.2) hold for all η > 0
and let { fn′ } be a subsequence, selected out of { fn} and convergent a.e. in E . The
limit f = lim fn′ , a.e. in E , defines a measurable function f : E → R

∗, which is
finite a.e. in E . Having fixed positive numbers η and ε, by virtue of (4.2), there exists
an index nε such that

μ
([| fn − fm | > 1

2η
]) ≤ 1

2ε for all n,m ≥ nε.

Since { fn′ } → f a.e. in E , by the Egorov–Severini theorem, there exists a mea-
surable set Eε ⊂ E , and an index n′

ε, such that μ(E − Eε) ≤ 1
2ε, and

| fn′(x) − f (x)| ≤ 1
2η for all x ∈ Eε and for all n′ ≥ n′

ε.

From this and the inclusion

[| fn − f | > η] ⊂ [| fn − fn′ | > 1
2η

]⋃ [| fn′ − f | > 1
2η

]

it follows
μ ([| fn − f | > η]) ≤ ε for all n ≥ max{nε; n′

ε}.

5 Quasicontinuous Functions and Lusin’s Theorem

Let μ be a Borel, regular measure in R
N , in the sense of (16.1)–(16.2) of Chap.3.

Let E ⊂ R
N be measurable and of finite measure. A function f : E → R

∗ is
quasi-continuous if for every ε > 0 there exists a closed set Ec,ε ⊂ E , such that

μ(E − Ec,ε) ≤ ε and the restriction of f to Ec,ε is continuous. (5.1)

http://dx.doi.org/10.1007/978-1-4939-4005-9_3
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Proposition 5.1 A simple function defined in a measurable set E ⊂ R
N of finite

measure is quasi-continuous.

Proof Let f : E → R be simple and let { f1, . . . , fn} be its range. Since the sets Ei ,
defined in (3.1) aremeasurable, having fixed ε > 0, there exists closed sets Ec,i ⊂ Ei

such that

μ(Ei − Ec,i ) ≤ 1

n
ε for i = 1, . . . , n.

The set Ec,ε = ⋃n
i=1Ec,i is closed and μ(E − Ec,ε) ≤ ε. The sets Ec,i being

closed and disjoint, are at positive mutual distance. Since f is constant on each of
them, it is continuous in Ec,ε.

Theorem 5.1 (Lusin [99]) Let E be a μ-measurable set in R
N of finite measure. A

function f : E → R is measurable if and only if it is quasi-continuous.

Proof (Necessity) Assume first that E is bounded. By Proposition 3.1 there exists a
sequence of simple functions { fn} that converges to f pointwise in E . Since each of
the fn is quasi-continuous, having fixed ε > 0 there exist closed sets Ec,n ⊂ E such
that

μ(E − Ec,n) ≤ 1

2n+1
ε

and the restriction of fn to Ec,n is continuous. By the Egorov–Severini theorem in
R

N , there exists a closed set Ec,o ⊂ E such that

μ(E − Ec,o) ≤ 1
2ε and fn converges uniformly to f in Ec,o.

The set Ec,ε = ∩Ec,n is closed and

μ(E − Ec,ε) = μ
(
E − ∩Ec,n

)

= μ
[∪(E − Ec,n)

] ≤
∞∑

n=0
μ(E − Ec,n) ≤ ε.

Since the functions fn are continuous in Ec,ε and converge to f uniformly in Ec,ε,
also f is continuous in Eε.

If E is unbounded, having fixed ε > 0 there exists n ∈ N such that

μ(E ∩ [|x | > n]) ≤ 1
2ε.

The set E ∩ [|x | ≤ n] is bounded and there exists a closed set

Ec,ε ⊂ E ∩ [|x | ≤ n] such that μ(E ∩ [|x | ≤ n] − Ec,ε) ≤ 1
2ε

and the restriction of f to Ec,ε is continuous. The set Ec,ε is closed, is contained in
E and it satisfies (5.1).
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Proof (Sufficiency) Let f be quasi-continuous in E . Having fixed ε > 0, let Ec,ε be
a closed set satisfying (5.1). To show that [ f ≥ c] is measurable write

[ f ≥ c] = ([ f ≥ c
] ∩ Ec,ε) ∪ ([ f ≥ c] ∩ (E − Ec,ε)

)
.

Since the restriction of f to Ec,ε is continuous, [ f ≥ c]∩Ec,ε is closed. Moreover

μe
([ f ≥ c] ∩ (E − Ec,ε)

) ≤ μ
(
E − Ec,ε

) ≤ ε.

Therefore, [ f ≥ c] is measurable by Proposition 12.3 of Chap.3.

6 Integral of Simple Functions ([87])

Let {X,A,μ} be a measure space and let E ∈ A. For a measurable set A and α ∈ R

define, ∫

E
αχAdμ =

{
αμ(E ∩ A) if α �= 0
0 if α = 0.

Since μ(E ∩ A) ∈ R
∗, the first of these is well defined, as an element of R∗, for

all α ∈ R − {0}. Let f : E → R be a nonnegative simple function, with canonical
representation

f =
n∑

i=1
fiχEi , (6.1)

where {E1, . . . , En} is a finite collection ofmutually disjointmeasurable sets exhaust-
ing E and { f1, . . . , fn} is a finite collection of mutually distinct, nonnegative num-
bers. The Lebesgue integral of a nonnegative simple function f is defined by

∫

E
f dμ =

n∑

i=1

∫

E
fiχEi dμ =

n∑

i=1
fiμ(Ei ). (6.2)

This could be finite or infinite. If it is finite, f is said to be integrable in E .

Remark 6.1 If f : E → R
∗ is nonnegative, simple and integrable, the set [ f > 0]

has finite measure.

Remark 6.2 The integral of a nonnegative simple function is independent of the
representation of f . In particular if the representation in (6.1) is not canonical, the
integral of f is still given by (6.2).

http://dx.doi.org/10.1007/978-1-4939-4005-9_3


144 4 The Lebesgue Integral

Let f, g : E → R be nonnegative simple functions. Then

f ≥ g a.e. in E =⇒
∫

E
f dμ ≥

∫

E
gdμ.

If f and g are both nonnegative, simple and integrable

∫

E
(α f + βg)dμ = α

∫

E
f dμ + β

∫

E
gdμ for all α,β ∈ R

+.

7 The Lebesgue Integral of Nonnegative Functions

Let f : E → R
∗ be measurable and nonnegative and let S f denote the collection of

all nonnegative simple functions ζ : E → R such that ζ ≤ f . Since ζ ≡ 0 is one
such function, the class S f is not empty.

The Lebesgue integral of f over E is defined by

∫

E
f dμ = sup

ζ∈S f

∫

E
ζdμ. (7.1)

This could be finite or infinite. The elements ζ ∈ S f are not required to vanish
outside a set of finitemeasure. For example if f is a positive constant on ameasurable
set of infinite measure, its integral is well defined by (7.1) and is infinity. The key
new idea of this notion of integral is that the range of a nonnegative function f is
partioned, as opposed to its domain, as in the notion of Riemann integral (see also
§ 7.2c of the Complements).

If f : E → R
∗ is measurable and nonpositive, define

∫

E
f dμ = −

∫

E
(− f )dμ

(
f ≤ 0

)
. (7.2)

A nonnegative measurable function f : E → R
∗ is said to be integrable if

(7.1) defines a finite number. As an example, if μ is the counting measure on N, a
nonnegative function f : N → R is integrable if and only if

∑
f (n) < ∞.

If f, g : E → R
∗ are measurable, nonnegative and f ≤ g a.e. in E , thenS f ⊂ Sg .

Thus ∫

E
f dμ ≤

∫

E
gdμ.

A measurable function f : E → R
∗ is said to be integrable if | f | is integrable.

From the decomposition (3.4) it follows that f ± ≤ | f |. Therefore, if f is integrable,
also f ± are integrable. If f is integrable, its integral is defined by
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∫

E
f dμ =

∫

E
f +dμ −

∫

E
f −dμ. (7.3)

If E ′ ⊂ E is measurable and f : E → R
∗ is integrable, then also f χE ′ is

integrable and ∫

E ′
f dμ =

∫

E
f χE ′dμ. (7.4)

The integral of a nonnegative,measurable function f : E → R
∗ is always defined,

finite or infinite, by (7.1). More generally, for a measurable function f : E → R
∗,

we set
∫

E
f dμ =

⎧
⎨

⎩

+∞ if
∫
E f +dμ = ∞ and

∫
E f −dx < ∞

−∞ if
∫
E f +dμ < ∞ and

∫
E f −dx = ∞.

(7.5)

If f + and f − are both not integrable, then the integral of f is not defined.

8 Fatou’s Lemma and the Monotone Convergence Theorem

Given a measure space {X,A,μ} and a measurable set E , let { fn} denote a sequence
of measurable functions from E with values in R∗.

Lemma 8.1 (Fatou [43]) Let { fn} be a sequence of measurable and a.e. nonnegative
functions in E. Then

∫

E
lim inf fndμ ≤ lim inf

∫

E
fndμ. (8.1)

Proof Set f = lim inf fn and select a nonnegative simple function ζ ∈ S f . Assume
first that ζ be integrable, so that it vanishes outside a measurable set F ⊂ E , of finite
measure. For fixed x ∈ F and ε > 0 there exists an index nε(x) such that

fn(x) ≥ ζ(x) − ε for all n ≥ nε(x).

By the Egorov–Severini theorem as in Proposition 2.1, having fixed η > 0, there
exists a set Fη ⊂ F such that μ(F − Fη) ≤ η and this inequality holds uniformly in
Fη, i.e., for every fixed ε > 0, there exists nε such that

fn(x) ≥ ζ(x) − ε for all n ≥ nε and for all x ∈ Fη.

From this, for n ≥ nε

∫

E
fndμ ≥

∫

Fη

fndμ ≥
∫

Fη

(ζ − ε)dμ
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≥
∫

F
ζdμ −

∫

F−Fη

ζdμ − εμ(F)

≥
∫

E
ζdμ − η sup ζ − εμ(F).

Since μ(F) is finite, this implies

lim inf
∫

E
fndμ ≥

∫

E
ζdμ for all integrable ζ ∈ S f . (8.2)

If ζ is not integrable, it equals some positive number δ, on ameasurable set F ⊂ E
of infinite measure. Fix ε ∈ (0, δ) and set

Fn = {x ∈ E
∣
∣ f j (x) ≥ δ − ε for all j ≥ n}.

From the definition of lower limit Fn ⊂ Fn+1 and F ⊂ ∪Fn . Therefore,

lim inf μ(Fn) ≥ μ(lim inf Fn) = ∞.

by (3.3) of Proposition 3.1 of Chap. 3. From this

lim inf
∫

E
fndμ ≥ lim inf

∫

Fn

fndμ ≥ (δ − ε) lim inf μ(Fn).

Thus in either case (8.2) holds for all ζ ∈ S f .

In the conclusion (8.1) of Fatou’s lemma, equality does not hold in general. For
example in R with the Lebesgue measure, the sequence

fn(x) =
{
1 for x ∈ [n, n + 1]
0 otherwise

satisfies (8.1) with strict inequality. This raises the issue of when (8.1) holds with
equality, or equivalently when one can pass to the limit under integral.

Theorem 8.1 (MonotoneConvergence)Let { fn}beamonotone increasing sequence
of measurable, nonnegative functions in E, i.e.,

0 ≤ fn(x) ≤ fn+1(x) for all x ∈ E and for all n ∈ N.

Then

lim
∫

E
fndμ =

∫

E
lim fndμ.

Remark 8.1 The integrals are meant in the sense of (7.1). In particular both sides
could be infinite.

http://dx.doi.org/10.1007/978-1-4939-4005-9_3
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Proof The sequence { fn} converges for all x ∈ E to a measurable function f : E →
R

∗. Therefore, by Fatou’s lemma

∫

E
f dμ =

∫

E
lim fndμ ≤ lim

∫

E
fndμ ≤

∫

E
f dμ.

9 More on the Lebesgue Integral

Proposition 9.1 Let f, g : E → R be integrable. Then for all α,β ∈ R

∫

E
(α f + βg)dμ = α

∫

E
f dμ + β

∫

E
gdμ. (9.1)

If f ≥ g a.e. in E, then ∫

E
f dμ ≥

∫

E
gdμ. (9.2)

Also for every integrable function f

∣∣
∫

E
f dμ

∣∣ ≤
∫

E
| f |dμ. (9.3)

If E ′ is a measurable subset of E, then
∫

E
f dμ =

∫

E−E ′
f dμ +

∫

E ′
f dμ. (9.4)

Proof For α ≥ 0 denote by αS f the collection of functions of the form αζ where
ζ ∈ S f . If α ≥ 0 and f ≥ 0 then αS f = Sα f . Therefore,

∫

E
α f dμ = sup

η∈Sα f

∫

E
ηdμ = α sup

ζ∈S f

∫

E
ζdμ = α

∫

E
f dμ.

Similarly, if α < 0 use (7.2) and conclude that for every nonnegative measurable
function f : E → R

∗
∫

E
α f dμ = α

∫

E
f dμ. (9.5)

If α > 0 and f is integrable and of variable sign, then (9.5) continues to hold
in view of (7.3) and the decomposition α f = (α f )+ − (α f )−. A similar argument
applies if α < 0 and we conclude that (9.5) holds true for every integrable function
and every α ∈ R. Therefore, it suffices to prove (9.1) for α = β = 1.



148 4 The Lebesgue Integral

Assume first that both f and g are nonnegative. There exist monotone increasing
sequences of simple functions {ζn} and {ξn} converging pointwise in E , to f and g,
respectively. By the monotone convergence theorem

∫

E
( f + g)dμ = lim

∫

E
(ζn + ξn)dμ

= lim
∫

E
ζndμ + lim

∫

E
ξndμ =

∫

E
f dμ +

∫

E
gdμ.

Next we assume that f ≥ 0 and g ≤ 0. First observe that f +g is integrable since
| f + g| ≤ | f | + |g|. From the decomposition

( f + g)+ − g = ( f + g)− + f

and (9.1) proven for the sum of two nonnegative functions

∫

E
( f + g)+dμ +

∫

E
−gdμ =

∫

E
( f + g)−dμ +

∫

E
f dμ.

This and the definitions (7.2)–(7.3) prove (9.1) for f ≥ 0 and g ≤ 0. If f and g
are integrable with no further sign restriction

∫

E
( f + g)dμ =

∫

E
[( f + + g+) − ( f − + g−)]dμ =

∫

E
f dμ +

∫

E
gdμ.

To prove (9.2) observe that from f − g ≥ 0 and (9.1)

0 ≤
∫

E
( f − g)dμ =

∫

E
f dμ −

∫

E
gdμ.

Inequality (9.3) follows from (9.2) and

−| f | ≤ f ≤ | f |.

Finally, (9.4) follows from (9.1) upon writing

f = f χE ′ + f χE−E ′ .

Corollary 9.1 Let f : E → R
∗ be integrable and let E be of finite measure. Then

μ(E) inf
E

f ≤
∫

E
f dμ ≤ μ(E) sup

E
f.
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10 Convergence Theorems

The properties of the Lebesgue integral, permit one to formulate various versions
of Fatou’s lemma and of the monotone convergence theorem. For example the con-
clusion of Fatou’s lemma continues to hold if the functions fn are of variable sign,
provided they are uniformly bounded below by some integrable function g.

Proposition 10.1 Let g : E → R
∗ be integrable and assume that fn ≥ g a.e. in E

for all n ∈ N. Then

lim inf
∫

E
fndμ ≥

∫

E
lim inf fndμ.

Proof Since fn − g ≥ 0, the sequence { fn − g} satisfies the assumptions of Fatou’s
lemma. Thus

lim inf
∫

E
fndμ ≥

∫

E
gdμ +

∫

E
(lim inf fn − g)dμ.

Proposition 10.2 Let { fn} be a sequence of nonnegative, measurable, functions on
E. Then

∑
∫

E
fndμ =

∫

E

∑
fndμ.

Proof The sequence
{∑n

i=1 fi
}
is a monotone sequence of nonnegative, measurable

functions.

Remark 10.1 It is not required that the fn be integrable, nor that
∑

fn be integrable.
The integral of measurable, nonnegative functions, finite or infinite, is well defined
by (7.1).

Theorem 10.1 (Dominated Convergence) Let { fn} be a dominated and convergent
sequence of integrable functions in E, i.e.,

lim fn(x) = f (x) for all x ∈ E

and there exists an integrable function g : E → R
∗ such that

| fn| ≤ g a.e. in E for all n ∈ N.

Then the limit function f : E → R
∗ is integrable and

lim
∫

E
fndμ =

∫

E
lim fndμ.



150 4 The Lebesgue Integral

Proof The limit function f is measurable and by Fatou’s lemma

∫

E
| f |dμ ≤ lim inf

∫

E
| fn|dμ ≤

∫

E
gdμ < ∞.

Thus f is integrable. Next

g − fn ≥ 0 and fn + g ≥ 0 for all n ∈ N.

Therefore, by Fatou’s lemma

∫

E
f dμ ≤ lim inf

∫

E
fn ≤ lim sup

∫

E
fndμ ≤

∫

E
f dμ.

11 Absolute Continuity of the Integral

Theorem 11.1 (Vitali [169]) Let E be measurable and let f : E → R
∗ be inte-

grable. For every ε > 0 there exists δ > 0 such that for every measurable subset
E ⊂ E of measure less than δ ∫

E
| f |dμ < ε.

Proof May assume that f ≥ 0. For n ∈ N consider the functions

E � x → fn(x) =
{
f (x) if f (x) < n
n if f (x) ≥ n.

Since { fn} is increasing
∫

E
fndμ ≤

∫

E
f dμ and lim

∫

E
fndμ =

∫

E
f dμ.

Having fixed ε > 0 there exists some index nε such that

∫

E
fnε

dμ >

∫

E
f dμ − 1

2
ε.

Choose δ = ε/2nε. Then for every measurable set E ⊂ E of measure μ(E) < δ

∫

E
f dμ ≤

∫

E
fnε

dμ +
∫

E−E
( fnε

− f )dμ + 1

2
ε ≤ nεμ(E) + 1

2
ε < ε.
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12 Product of Measures

Let {X,A,μ} and {Y,B, ν} be two measure spaces. Any pair of sets A ⊂ X and
B ⊂ Y , generates a subset A×B of the Cartesian product X×Y called a generalized
rectangle. There are subsets of X × Y that are not rectangles.

The intersection of any two rectangles is a rectangle, by the formula

(A1 × B1) ∩ (A2 × B2) = (A1 ∩ A2) × (B1 ∩ B2).

The mutual complement of any two rectangles, while not a rectangle, can be
written as the disjoint union of two rectangles, by the decomposition

(A2 × B2) − (A1 × B1
) = (A2 − A1) × B2 ∪ (A1 ∩ A2) × (B2 − B1).

Thus, the collectionR of all rectangles is a semi-algebra. If A ∈ A and B ∈ B, the
rectangle A × B is called a measurable rectangle. The collection of all measurable
rectangles is denoted by Ro. By the previous remarks Ro is a semi-algebra. Since
X×Y ∈ Ro, such a collection forms a sequential covering of X×Y . The semi-algebra
Ro can be endowed with the nonnegative set function

λ(A × B) = μ(A)ν(B) (12.1)

for all measurable rectangles A × B.

Proposition 12.1 Let {An × Bn} be a countable collection of disjoint, measurable
rectangles whose union is a measurable rectangle A × B. Then

λ(A × B) = ∑
λ(An × Bn).

Proof For each x ∈ A

B = ⋃ {Bj

∣
∣ (x, y) ∈ A j × Bj ; y ∈ B}.

Since for each x ∈ A fixed this is a disjoint union

ν(B)χA(x) = ∑
ν(Bj )χA j (x).

Integrating in dμ over A and using Proposition 10.2 now gives

μ(A)ν(B) = ∑
μ(An)ν(Bn).

Thus λ is unambiguously defined, since the measure of a measurable rectangle
does not depend on its partitions into countably many, pairwise disjoint measurable
rectangles. The proposition also implies that λ is a measure on the semi-algebra
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Ro. Therefore, λ can be extended to a complete measure (μ × ν) on X × Y , which
coincides with λ on Ro (Theorem 11.1 of Chap. 3).

Theorem 12.1 Every pair {X,A,μ} and {Y,B, ν} of measure spaces generates a
complete, product measure space

{X × Y, (A × B), (μ × ν)}

where (A × B) is a σ-algebra containingRo and (μ × ν) is a measure on (A × B)

that coincides with (12.1) on measurable rectangles.

13 On the Structure of (A × B)

Denote by (A × B)o the smallest σ-algebra generated by the collection of all mea-
surable rectangles. Set also

Rσ = {countable unions of elements of Ro}
Rσδ = {countable intersections of elements of Rσ} .

By construction

Ro ⊂ Rσ ⊂ Rσδ ⊂ (A × B)o ⊂ (A × B).

For E ⊂ X × Y the two sets

Y ⊃ Ex = {y ∣
∣ (x, y) ∈ E} for a fixed x ∈ X

X ⊃ Ey = {x ∣∣ (x, y) ∈ E} for a fixed y ∈ Y

are, respectively, the X -section and the Y -section of E .

Proposition 13.1 Let E ∈ (A × B)o. Then for every y ∈ Y the Y -section Ey is in
A and for every x ∈ X the X-section Ex is in B.
Proof The collection F of all sets E ∈ (A × B) such that Ex ∈ B for all x ∈ X
is a σ-algebra. Since F contains all the measurable rectangles, it must contain the
smallest σ-algebra generated by the measurable rectangles.

Remark 13.1 There exist nonmeasurable sets E ⊂ X × Y such that all the x and y
sections are measurable (13.4 of the Complements).

Remark 13.2 There exist (μ × ν)-measurable rectangles A × B that are not mea-
surable rectangles. To construct an example, let Ao ⊂ X be not μ-measurable but
included into a measurable set of finite μ-measure. Let also Bo ∈ B be of zero
ν-measure. The rectangle Ao × Bo is (μ × ν)-measurable and has measure zero.

http://dx.doi.org/10.1007/978-1-4939-4005-9_3
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For each ε > 0, there exists a measurable rectangle Rε containing Ao × Bo and of
measure less than ε. Therefore, Ao × Bo is (μ × ν)-measurable, by the criterion of
measurability of Proposition 10.2 of Chap.3. This last example implies that Proposi-
tion 13.1 does not hold if (A×B)o is replaced by (A×B). In particular the inclusion
(A × B)o ⊂ (A × B) is strict.

Remark 13.3 While {X×Y, (A×B), (μ×ν)} is complete, the restriction of (μ×ν) to
(A×B)o in general is not complete. For example let μ = ν be the Lebesgue measure
on X = Y = R. The segment (0, 1) × {0} is measurable in the product measure and
has measure zero. However, if E ∈ (0, 1) is the Vitali nonmeasurable set, the set
E × {0} is contained in (0, 1) × {0}, is measurable in (μ × ν) but is not in (A×B)o.

Proposition 13.2 Assume that {X,A,μ}and {Y,B, ν}are completemeasure spaces,
and let E ∈ Rσδ be of finite (μ × ν)-measure. Then the function x → ν(Ex ) is μ-
measurable and the function y → μ(Ey) is ν-measurable. Moreover

∫

X×Y
χEd(μ × ν) =

∫

X
ν(Ex )dμ =

∫

Y
μ(Ey)dν.

Proof The conclusion holds true if E is a measurable rectangle. If E ∈ Rσ , it can
be decomposed into the countable union of disjoint measurable rectangles En . The
functions

x → ν(Ex ) = ∑
ν(En,x ), y → μ(Ey) = ∑

μ(En,y)

are, respectively, μ and ν measurable. By monotone convergence

∫

X×Y
χEd(μ × ν) = ∑

∫

X×Y
χEnd(μ × ν)

= ∑
∫

X
ν(En,x )dμ = ∑

∫

Y
μ(En,y)dν

=
∫

X

∑
ν(En,x )dμ =

∫

Y

∑
μ(En,y)dν

=
∫

X
ν(Ex )dμ =

∫

Y
μ(Ey)dν.

If E ∈ Rσδ there exists a countable collection {En} of elements of Rσ , each of
finite measure, such that En+1 ⊂ En , and E = ∩En . Since E is of finite measure,
may assume that (μ × ν)(E1) < ∞. Then, since E1 ∈ Rσ ,

(μ × ν)(E1) =
∫

E1

d(μ × ν) =
∫

X
ν(E1,x )dμ =

∫

Y
μ(E1,y)dν < ∞.

The sequence of sets {En,x } and {En,y} are decreasing, for all x ∈ X and all y ∈ Y ,
respectively, and have limits

http://dx.doi.org/10.1007/978-1-4939-4005-9_3
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Ex = lim En,x , Ey = lim En,y .

The sets Ex and Ey are ν-, and μ-measurable, respectively. Moreover ∪En,x has
finite ν-measure for μ-a.e. x ∈ X , and ∪En,y has finite μ-measure for ν-a.e. y ∈ Y .
Therefore, by (d)–(e) of Proposition 3.1 of Chap.3,

ν(Ex ) = lim ν(En,x ) forμ-a.e. x ∈ X;
μ(Ey) = lim μ(En,y) for ν-a.e. y ∈ Y.

The functions x → ν(En,x ) are μ-measurable. Since {X,A,μ} is complete, their
μ-a.e. limit x → ν(Ex ) is also μ-measurable. Likewise, since {Y,B, ν} is complete,
y → μ(Ey) is ν-measurable. Moreover

ν(Ex ) ≤ ν(En,x ) ≤ ν(E1,x ) forμ-a.e. x ∈ X,

μ(Ey) ≤ μ(En,y) ≤ μ(E1,y) for ν-a.e. y ∈ Y,
for all n ∈ N.

Then, by dominated convergence

∫

X×Y
χEd(μ × ν) = lim

∫

X×Y
χEnd(μ × ν)

= lim
∫

X
ν(En,x )dμ = lim

∫

Y
μ(En,y)dν

=
∫

X
lim ν(En,x )dμ =

∫

Y
lim μ(En,y)dν

=
∫

X
ν(Ex )dμ =

∫

Y
μ(Ey)dν.

Remark 13.4 If E ∈ Rσ , the proof is based on the Monotone Convergence Theo-
rem 8.1, and in view of Remark 8.1, it does not require that E be of finite measure.
If E ∈ Rσδ the proof is based on the Dominated Convergence Theorem 10.1. The
assumptions that E is of finite measure provides integrable upper bounds that permit
one to pass to the limit under integral.

Proposition 13.3 Assume that {X,A,μ}and {Y,B, ν}are completemeasure spaces,
and Let E ∈ (A × B) be of (μ × ν)-measure zero. Then

Ex are ν-measurable and ν(Ex ) = 0 μ-a.e. in X

Ey areμ-measurable andμ(Ey) = 0 ν -a.e. in Y.

Proof If E ∈ Rσδ the conclusion follows from the previous proposition. If E is
(μ × ν)-measurable, there exist a set Eσδ ∈ Rσδ such that E ⊂ Eσδ and (μ ×
ν)(Eσδ − E) = 0 (Proposition 10.3 of Chap. 3). Then Ex ⊂ Eσδ,x and Ey ⊂ Eσδ,y ,
and the conclusion follows since μ and ν are complete.

http://dx.doi.org/10.1007/978-1-4939-4005-9_3
http://dx.doi.org/10.1007/978-1-4939-4005-9_3
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Proposition 13.4 Assume that {X,A,μ} and {Y,B, ν} are completemeasure spaces
and let E ∈ (A × B) be of finite (μ × ν)-measure. Then

Ex are ν-measurable forμ-a.e. x ∈ X and x → ν(Ex ) is integrable

Ey areμ-measurable for ν-a.e. y ∈ Y and y → μ(Ey) is integrable.

Moreover ∫

X×Y
χEd(μ × ν) =

∫

X
ν(Ex )dμ =

∫

Y
μ(Ey)dν.

Proof There exists Eσδ ∈ Rσδ , such that E ⊂ Eσδ and Eσδ − E = E has (μ × ν)-
measure zero. Therefore, by Proposition 13.3 the sets Ex = Eσδ,x − Ex are ν-
measurable for μ-almost all x ∈ X , and ν(Ex ) = ν(Eσδ,x ) for μ-almost all x ∈ X .
A similar statement holds for ν-almost all Ey . Since E and E are disjoint

∫

X×Y
χEd(μ × ν) =

∫

X×Y
χEσδ

d(μ × ν)

=
∫

X
ν(Eσδ,x )dμ =

∫

Y
μ(Eσδ,y)dν

=
∫

X
ν(Ex )dμ =

∫

Y
μ(Ey)dν.

14 The Theorem of Fubini–Tonelli

Theorem 14.1 (Fubini [52]) Let {X,A,μ} and {Y,B, ν} be two complete measure
spaces and let

X × Y � (x, y) −→ f (x, y) be integrable in X × Y.

Then

X � x −→ f (x, y) isμ-integrable in X for ν-almost all y ∈ Y

Y � y −→ f (x, y) is ν-integrable in Y forμ-almost all x ∈ X.

Moreover

X � x −→
∫

Y
f (x, y)dν isμ-integrable in X

Y � y −→
∫

X
f (x, y)dμ is ν-integrable in Y

(14.1)
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and ∫

X×Y
f (x, y)d(μ × ν) =

∫

X

( ∫

Y
f (x, y)dν

)
dμ

=
∫

Y

( ∫

X
f (x, y)dμ

)
dν.

(14.2)

Proof By the decomposition (3.4) we may assume that f ≥ 0. By Proposition 13.4,
the statement holds true if f is the characteristic function of a measurable set E of
finite measure. If f is nonnegative and integrable there exists a sequence { fn} of
nonnegative integrable simple functions such that { fn} ↗ f a.e. in (X × Y ). Since
each of the fn is integrable it vanishes outside a set of finite measure. Therefore,
Proposition 13.4 holds for each of such fn . Then by monotone convergence

∫

X×Y
f (x, y)d(μ × ν) = lim

∫

X×Y
fn(x, y)d(μ × ν)

=
∫

X
lim

( ∫

Y
fn(x, y)dν

)
dμ =

∫

Y
lim

( ∫

X
fn(x, y)dμ

)
dν

=
∫

X

( ∫

Y
f (x, y)dν

)
dμ =

∫

Y

( ∫

X
f (x, y)dμ

)
dν.

14.1 The Tonelli Version of the Fubini Theorem

The double integral formula (14.2) requires that f be integrable in the product mea-
sure (μ × ν). Tonelli observed that if f is nonnegative the integrability requirement
can be relaxed provided (μ × ν) is σ-finite.

Theorem 14.2 (Tonelli [160]) Let {X,A,μ} and {Y,B, ν} be complete and σ-finite,
and let f : (X × Y ) → R

∗ be measurable and nonnegative. Then the measurability
statements in (14.1) and the double integral formula (14.2) hold. The integrals in
(14.2) could be either finite or infinite.

Proof The integrability requirement in the Fubini theorem was used to insure the
existence of a sequence { fn} of integrable functions each vanishing outside a set of
finite measure and converging to f . The positivity of f and the σ-finiteness in the
Tonelli theorem provide a similar information.

If f is integrable in d(μ × ν) then Fubini’s theorem holds and equality occurs
in (14.2). If f is not integrable and nonnegative then the left-hand side of (14.2) is
infinite. Tonelli’s theorem asserts that in such a case also the right-hand side is well
defined and is infinity, provided (μ × ν) is σ-finite.

In particular, Tonelli’s theorem could be used to establish whether a nonnegative,
measurable function f : (X × Y ) → R

∗ is integrable, through the equality of the
two right-hand sides of (14.2).
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The requirement that (μ × ν) be σ-finite cannot be removed as shown by the
example in 14.4 of the Complements.

15 Some Applications of the Fubini–Tonelli Theorem

15.1 Integrals in Terms of Distribution Functions

Let f : E → R
∗ be measurable and nonnegative. The distribution function of f

relative to E is defined as

R
+ � t −→ μ([ f > t]).

This is a nonincreasing function of t and if f is finite a.e. in E , then

lim
t→∞ μ([ f > t]) = 0 unless μ([ f > t]) ≡ ∞.

If f is integrable, such a limit can be given a quantitative form. Indeed

tμ([ f > t]) =
∫

E
tχ[ f >t]dμ ≤

∫

E
f dμ < ∞.

Proposition 15.1 Let {X,A,μ} be complete and σ-finite and let f : E → R
∗ be

measurable and nonnegative. Let also ν be a complete and σ-finite measure on R
+

such that ν([0, t)) = ν([0, t]) for all t > 0. Then

∫

E
ν([0, f ])dμ =

∫ ∞

0
μ([ f > t])dν. (15.1)

In particular if ν([0, t]) = t p for some p > 0, then

∫

E
f pdμ = p

∫ ∞

0
t p−1μ([ f > t])dt (15.2)

where dt is the Lebesgue measure on R
+.

Proof The function f : E → R
∗, when regarded as a function from E × R

+ into
R

∗, is measurable in the product measure (μ × ν). Likewise, the function g(t) = t
from R

+ into R
∗, when regarded as a function from E × R into R

∗, is measurable
in the product measure (μ × ν). Therefore, the difference f − t is measurable in
the product measure (μ × ν). This implies that the set [ f − t > 0] = [ f > t] is
measurable in the product measure (μ × ν). Therefore, by the Tonelli theorem
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∫ ∞

0
μ([ f > t])dν =

∫ ∞

0

( ∫

E
χ[ f >t]dμ

)
dν

=
∫

E

( ∫ ∞

0
χ[ f >t]dν

)
dμ =

∫

E

( ∫ f

0
dν

)
dμ

=
∫

E
ν([0, f ])dμ.

Both sides of (15.1) could be infinity and the formula could be used to verify
whether ν([0, f ]) is μ-integrable over E .

Corollary 15.1 Let E be an open set in RN and let f be continuous in E. Then for
all x ∈ E,

f (x) =
∫ ∞

0
χ[ f (x)>0]dt. (15.3)

Proof Apply (15.2) with μ = δx .

Corollary 15.2 Let E be an open set inRN and let f and h be nonnegative Lebesgue
measurable functions defined in E. Then for all p > 0

∫

E
f phdx =

∫ ∞

0
pt p−1

( ∫

[ f >t]
hdx

)
dt (15.4)

where dx is the Lebesgue measure in RN .

Proof Apply (15.2) with dμ = hdx .

If f and h are of variable sign, with f integrable and h bounded, then

∫

E
f hdμ =

∫ ∞

0

( ∫

[ f +>t]
h dx

)
dt −

∫ ∞

0

( ∫

[ f −>t]
h dx

)
dt. (15.5)

In the next two applications in § 15.2 and § 15.3, the measure space {X,A,μ} is
R

N with the Lebesgue measure.

15.2 Convolution Integrals

Lemma 15.1 Let f : RN → R
∗ be measurable. Then the function

R
2N � (x, y) → f (x − y)

is measurable with respect to the product measure of R2N .
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Proof Consider the change of variables

R
2N �

(
x
y

)
−→ T

(
x
y

)
=

(
x − y
x + y

)
=

(
ξ
η

)
∈ R

2N .

This an invertible, Lipschitz map fromR
2N into itself. By Proposition 12.2c of the

Complements of Chap.3, Lebesgue measurable sets in R2N in the (ξ, η) coordinates
are mapped, by T−1, into Lebesgue measurable sets inR2N in the (x, y) coordinates.
Now for all c ∈ R

{(x, y) ∈ R
2N

∣∣ f (x − y) > c} = {ξ ∈ R
N

∣∣ f (ξ) > c} × R
N .

Since f : RN → R
∗ is measurable, the latter is a measurable rectangle.

Given any two nonnegative measurable functions f, g : RN → R
∗ their convolu-

tion is defined as

x −→ ( f ∗ g)(x) =
∫

RN

g(y) f (x − y)dy. (15.6)

Since f and g are both nonnegative, the right-hand side, finite or infinite, is well
defined for all x ∈ R

N .

Proposition 15.2 Let f and g be nonnegative and integrable inRN . Then ( f ∗g)(x)
is finite for a.e. x ∈ R

N , the function ( f ∗ g) is integrable in RN and

∫

RN

( f ∗ g)dx =
∫

RN

f dx
∫

RN

gdx .

Proof The function (x, y) → g(y) f (x − y) is nonnegative and measurable with
respect to the product measure. Therefore, by the Tonelli theorem

∫∫

R2N
g(y) f (x − y)dxdy =

∫

RN

( ∫

RN

g(y) f (x − y)dx
)
dy

=
∫

RN

f dx
∫

RN

gdx .

The convolution of any two integrable functions f and g is defined as in (15.6).
Since

|g(y) f (x − y)| ≤ |g(y)|| f (x − y)|

the convolution ( f ∗ g) is well defined as an integrable function over R2N .

http://dx.doi.org/10.1007/978-1-4939-4005-9_3
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15.3 The Marcinkiewicz Integral ([101, 102])

Let E ⊂ R
N be non void, and for x ∈ R

N let δ(x) denote the distance from x to E .
By the definition of distance, δE (x) = 0 for all x ∈ E .

Lemma 15.2 Let E be a nonempty set in RN . Then the distance function x → δ(x)
is Lipschitz continuous with Lipschitz constant one.

Proof Fix x and y in R
N and assume that δE (x) ≥ δE (y). By definition of δE (y),

having fixed ε > 0 there exists z′ ∈ E such that δE (y) ≥ |y − z′| − ε. Then estimate

0 ≤ δE (x) − δE (y) ≤ inf
z∈E |x − z| − |y − z′| + ε

≤ |x − z′| − |y − z′| + ε ≤ |x − y| + ε.

Let E be a bounded, closed set in R
N . Fix a positive number λ and a cube Q

containing E . The Marcinkiewicz integral relative to E and λ is the function

R
N � x −→ ME,λ(x) =

∫

Q

δλ
E (y)

|x − y|N+λ
dy.

The right-hand side is well defined as the integral of a measurable, nonnegative
function.

Proposition 15.3 TheMarcinkiewicz integral ME,λ(x) is finite for a.e. x ∈ E.More-
over the function x → ME,λ(x) is integrable in E and

∫

E
ME,λdx ≤ ωN

λ
μ(Q − E).

where ωN is the measure of the unit sphere in RN .

Proof Since δE (y) = 0 for all y ∈ E , by the Tonelli theorem

∫

E
ME,λ(x)dx =

∫

Q
δλ
E (y)

( ∫

E

dx

|x − y|N+λ

)
dy

=
∫

Q−E
δλ
E (y)

( ∫

E

dx

|x − y|N+λ

)
dy.

(15.7)

For y ∈ (Q − E) and x ∈ E , since E is closed, |x − y| ≥ δE (y) > 0. Therefore,

∫

E

dx

|x − y|N+λ
≤

∫

|x−y|≥δE (y)

d(x − y)

|x − y|N+λ

≤ ωN

∫ ∞

δE (y)

ds

s1+λ
= ωN

λδλ
E (y)

.
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Using this estimate in (15.7) establishes the proposition.

16 Signed Measures and the Hahn Decomposition

Let μ1 and μ2 be two measures both defined on the same σ-algebraA. If one of them
is finite, the set function

A � E −→ μ(E) = μ1(E) − μ2(E)

is well defined and countably additive on A. However since it is not necessarily
nonnegative it is called a signed measure. Signed measures are also generated by an
integrable function f on a measure space {X,A,μ} by the formula

A � E −→
∫

E
f dμ =

∫

E
f +dμ −

∫

E
f −dμ. (16.1)

More generally a signed measure on X is a set function μ satisfying:

(i) the domain ofμ is aσ-algebraA (ii) μ(∅) = 0
(iii) μ takes at most one of ± ∞ (iv) μ is countably additive.

The last property is intended in the sense of convergent or divergent series.
Any linear, real combination of measures defined on the same σ-algebra is a

signed measure provided all but one are finite.
Let {X,A,μ} be ameasure space for a signedmeasureμ. Ameasurable set E ⊂ A

is said to be positive (negative) if μ(A) ≥ (≤)0, for all measurable subsets A ⊂ E .
The difference and the union of two positive (negative) sets is positive (negative).
Since μ is countably additive, the countable, disjoint union of positive (negative)
sets is positive (negative). From this it follows that any countable union of positive
(negative) sets is positive (negative).

Lemma 16.1 Let {X,A,μ} be a measure space for a signed measure μ. Let E ⊂ X
be measurable and such that |μ(E)| < ∞. Then every measurable set A ⊂ E
satisfies |μ(A)| < ∞.

Proof Assume for example that μ does not take the value +∞. Let A ⊂ E . If
μ(A) > 0 then μ(A) < ∞. If μ(A) < 0, taking the measure of the disjoint union
E = (E − A) ∪ A gives μ(E) = μ(E − A) + μ(A), which in turn implies

0 < −μ(A) = μ(E − A) − μ(E) < ∞.

Proposition 16.1 Let {X,A,μ} be a measure space for a signed measure μ. Every
measurable set E of positive, finite measure contains a positive subset A of positive
measure.
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Proof If E is positive we take A = E . Otherwise E contains a measurable set of
negative measure. Let n1 be the smallest positive integer for which there exists a
measurable set B1 ⊂ E such that

μ(B1) ≤ − 1

n1
.

If A1 = E − B1 is positive then we take A = A1. Otherwise A1 contains a
measurable set of negative measure. We then let n2 be the smallest positive integer
for which there exist a measurable set B2 ⊂ E − B1 of negative such that

μ(B2) ≤ − 1

n2
.

Proceeding in this fashion, if for some finite m the set

Am = E −
m⋃

j=1
Bj

is positive, the process terminates. Otherwise the indicated procedure generates the
sequences of sets {Bj } and {Am}. We establish that the set

A = ∩Am = E − ∪Bj

is positive by showing that every measurable subset C ⊂ A has nonnegative mea-
sure. Since A ⊂ E and E is of finite measure |μ(A)| < ∞, by Lemma 16.1. By
construction the sets Bj and A are measurable and disjoint. Since μ is countably
additive

0 < μ(E) = μ(A) + ∑
μ(Bj ) ≤ μ(A) − ∑ 1

n j
.

This implies that the series
∑

n−1
j is convergent and therefore n j → ∞ as j →

∞. It also implies thatμ(A) > 0. LetC be ameasurable subset of A. Since A belongs
to all A j , by construction

μ(C) ≥ − 1

n j − 1
−→ 0 as j → ∞.

Theorem 16.1 (HahnDecomposition [58], Vol. 1)Let {X,A,μ} be ameasure space
for a signed measure μ. Then X can be decomposed into a positive set X+ and a
negative set X−.

Proof Assume for example that μ does not take the value +∞ and set

M = {supμ(A) where A ∈ A is positive}.
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Let {An} be a sequence of positive sets such that μ(An) increases to M and set
A = ∪An . The set A is positive and, by construction μ(A) ≤ M . On the other hand
A = (A − An) ∪ An for all n. Since this is a disjoint union and A is positive

μ(A) = μ(A − An) + μ(An) ≥ μ(An) for all n.

Thus μ(A) = M and M < ∞. The complement X − A is a negative set. For
otherwise it would contain a set E of positive measure, which in turn would contain
a positive set Ao of positive measure. Then A and Ao are disjoint and A ∪ Ao is a
positive set. Therefore,

μ(A ∪ Ao) = μ(A) + μ(Ao) > M

contradicting the definition of M . The Hahn decomposition is realized by taking
X+ = A and X− = X − X+.

A set E ∈ A is a null set if every measurable subset of E has measure zero. There
exist measurable sets of zero measure that are not null sets. By removing out of X+ a
null set E and adding it to X−, the set (X+ − E) remains a positive set and (X− ∪ E)

remains negative. Moreover

X = (X+ − E) ∪ (X− ∪ E).

Thus the Hahn decomposition is not unique. However it can be determined up to
null sets.

17 The Radon-Nikodým Theorem

Let μ and ν be two measures defined on the same σ-algebra A. The measure ν is
absolutely continuous with respect to μ if μ(E) = 0 implies ν(E) = 0, and in such
a case write ν � μ. Let {X,A,μ} be a measure space and let f : X → R

∗ be
measurable and nonnegative. The set function

A � E −→ ν(E) =
∫

E
f dμ (17.1)

is a measure defined on A and absolutely continuous with respect to μ.

Theorem 17.1 (Radon-Nikodým)1 Let {X,A,μ} be σ-finite and let ν be a measure
on the same σ-algebra, absolutely continuous with respect to μ (ν � μ). There exists

1Although referred to as the Radon-Nikodým theorem, the first version of this theorem, in the
context of a measure in R

N absolutely continuous with respect to the Lebesgue measure, is in
Lebesgue [90]. Radon extended it to Radon measures in [121], and Nikodým to general measures
in [115, 116].
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a nonnegativeμ-measurable function f : X → R
∗ such that ν has the representation

(17.1). Such a f is unique up to a set of μ-measure zero.

The function f in the representation (17.1) is called the Radon-Nikodým deriv-
ative of ν with respect to μ, since formally dν = f dμ. It is not asserted that f is
μ-integrable. This would occur if and only if ν is finite. The assumption that μ be
σ-finite cannot be removed as shown by counterexamples in 17.1 and 17.2 of the
Complements.

17.1 Sublevel Sets of a Measurable Function

Let {X,A,μ} be a measure space and let f : X → R
∗ be measurable. For t ∈ R,

any measurable set Et such that

[ f < t] ⊂ Et ⊂ [ f ≤ t]

is a sublevel set for f at the value t . The next proposition asserts that for any increasing
collection of measurable sets {Et }, as t ranges over a countable index, there exists a
measurable function f : X → R

∗, which admits Et as sublevel sets.

Proposition 17.1 (von Neumann [114]) For a countable index t, let {Et } be a col-
lection of measurable sets such that Es ⊂ Et for s < t . There exists a measurable
function f : X → R

∗ such that

f ≤ t in Et , and f ≥ t in X − Et . (17.2)

Proof Define

X � x → f (x) =
{
inf{t | x ∈ Et } if x ∈ ⋃

Et

+∞ otherwise.

If x ∈ Et , then f (x) ≤ t . If x /∈ Et , then x does not belong to Es for any s < t ,
and hence f (x) ≥ t . Such a function is measurable, since for all c ∈ R

[ f < c] = ⋃

t<c
Et .

The assumptions imply that if t > s, then μ(Es − Et ) = 0. The proposition
continues to hold if the monotonicity of {Et } is replaced by such a weaker, measure
theoretical notion of monotonicty. In such a case however, the conclusion (17.2)
holds up to a set of measure zero.

Corollary 17.1 For a countable index t, let {Et } be a collection of measurable sets
such that
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μ(Es − Et ) = 0 whenever s < t.

There exists a measurable function f : X → R
∗

f ≤ t a.e. in Et , and f ≥ t a.e. in X − Et . (17.3)

Proof Set
E = ⋃

s<t
(Es − Et ) and E ′

t = Et ∪ E .

The collection {E ′
t } is monotone and, by Proposition 17.1, there exists a measur-

able function f : X → R
∗ satisfying (17.2) with Et replaced by E ′

t . Since the index
t is countable μ(E) = 0 and hence (17.3) holds except possibly for a set of measure
zero.

17.2 Proof of the Radon-Nikodým Theorem

Assume first that μ is finite. For nonnegative, rational t consider the signed measure
ν − tμ on {X,A}, and the corresponding Hahn’s decomposition {X+

t , X−
t } up to a

null set Et . If s < t ,

(ν − sμ)(X−
s − X−

t ) ≤ 0 and (ν − tμ)(X−
s − X−

t ) ≥ 0.

Therefore,
μ(X−

s − X−
t ) ≤ 0 for s < t.

By Corollary 17.1 there exists a measurable function f : X → R
∗

f ≤ t μ-a.e. in X−
t , and f ≥ t μ-a.e. in X − X−

t .

Moreover f ≥ 0 a.e. in X , since X−
t = ∅, for all t ≤ 0. For a measurable set

E ⊂ X , and positive integers j, n, set

En, j = E ∩ (
X−

j+1
n

− X−
j
n

)
, En = E − ⋃

j∈N
En, j

and, for fixed n ∈ N, write E as the disjoint union

E = En ∪ ⋃

j∈N
En, j .
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From this for any fixed n ∈ N, and all E ∈ A

ν(E) = ν(En) + ∑

j∈N
ν(En, j ).

By the properties of the Hahn decomposition

En, j ⊂ X−
j+1
n

∩ X+
j
n

.

Therefore,

(
ν − j+1

n μ
)
(En, j ) ≤ 0 and

(
ν − j

nμ
)
(En, j ) ≥ 0.

From this

ν(En, j ) − 1

n
μ(En, j ) ≤ j

n
μ(En, j ) ≤ j + 1

n
μ(En, j ) ≤ ν(En, j ) + 1

n
μ(En, j ).

By construction
j

n
≤ f ≤ j + 1

n
on En, j

which implies
j

n
μ(En, j ) ≤

∫

En, j
f dμ ≤ j + 1

n
μ(En, j )

and hence

ν(En, j ) − 1

n
μ(En, j ) ≤

∫

En, j
f dμ ≤ ν(En, j ) + 1

n
μ(En, j ).

By construction, En ⊂ X+
j/n for all j ∈ N, and hence

(
ν − j

nμ
)
(En) ≥ 0 =⇒ ν(En) ≥ j

nμ(En) for all j ∈ N.

If μ(En) > 0 then ν(En) = ∞ and if μ(En) = 0 then ν(En) = 0 since ν � μ.
By the construction of f one has f = ∞ on En . Therefore, in either case

ν(En) =
∫

En

f dμ.

Adding this and the previous inequalities yields

ν(E) − 1

n
μ(E) ≤

∫

E
f dμ ≤ ν(E) + 1

n
μ(E).
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Since n is arbitrary and μ is finite this implies the conclusion (17.1).
If g : X → R

∗ is another nonnegative measurable function by which the measure
ν can be represented as in (17.1), let

An = [
f − g ≥ 1

n

]
.

Then for all n ∈ N

1

n
μ(An) ≤

∫

An

( f − g)dμ = ν(An) − ν(An) = 0.

Thus f = g μ-a.e. in X . Assume next that μ is σ-finite and let Xn be a sequence
of expanding sets such that

μ(Xn) ≤ μ(Xn+1) < ∞ and X = ⋃
Xn.

Denote by μn the restriction of μ to A ∩ Xn , and let fn be the unique function
claimed by the Radon-Nikodým theorem for the pair of measures {μn; ν} on the
σ-algebra A ∩ Xn . While defined in Xn we regard fn as defined in the whole X by
setting it to be zero in X − Xn . By construction

fn+1

∣∣
Xn

= fn for all n.

The function f claimed by the theorem is

f = sup fn = lim fn.

Indeed if E ∈ A, by monotone convergence

ν(E) = lim ν(E ∩ Xn) = lim
∫

E
fndμ =

∫

E
f dμ.

The uniqueness of f is proved as in the case of μ finite.

18 Decomposing Measures

Two measures μ and ν on the same space {X,A} are mutually singular if X can be
decomposed into two measurable, disjoint sets Xμ and Xν such

μ(E ∩ Xν) = 0 and ν(E ∩ Xμ) = 0 for all E ∈ A.

An example of mutually singular measures is given by (16.1). If μ and ν are
mutually singular we write ν ⊥ μ. If ν � μ and ν ⊥ μ, then ν = 0.
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18.1 The Jordan Decomposition

Given a measure space {X,A,μ} for a signed measure μ, let X = X+ ∪ X− be the
corresponding Hahn decomposition of X . For every E ∈ A set

μ+(E) = μ(E ∩ X+) and μ−(E) = −μ(E ∩ X−).

The set functions μ± are measures on A and (i) at least one of them is finite, (ii)
they are independent of the particular Hahn decomposition, (iii) they are mutually
singular. Moreover for every E ∈ A

μ(E) = μ+(E) − μ−(E). (18.1)

Theorem 18.1 (Jordan [79], Vol 1) Let {X,A,μ} be a measure space for a signed
measure μ. There exists a unique pair (μ+,μ−) of mutually singular measures, one
of which is finite such that μ = μ+ − μ−.

Proof Let X = X+ ∪ X− be the Hahn decomposition of X relative to μ and deter-
mined up to a null set. The existence of μ± follows from (18.1). If μ = ν+ − ν−
is another such decomposition, there exists disjoint sets Y+ and Y− such that
X = Y+ ∪ Y−, and

ν+(E ∩ Y−) = ν−(E ∩ Y+) = 0 for all E ∈ A.

Since Y+ is positive and Y− is negative with respect to the same measure μ,
X+ = Y+ and X− = Y− up to null sets. Therefore, for all E ∈ A

μ±(E) = μ(E ∩ X± ∩ Y±) = ν±(E).

The two measures μ± are the upper and lower variation of μ. The measure |μ| =
μ+ + μ− is the total variation of μ. Both measures μ± are absolutely continuous
with respect to |μ|. Moreover for every E ∈ A

−μ−(E) ≤ μ(E) ≤ μ+(E) and |μ(E)| ≤ |μ|(E).

18.2 The Lebesgue Decomposition

Two signed measures μ and ν on the same space {X,A} are mutually singular,
denoted by ν ⊥ μ, if the measures |μ| and |ν| are mutually singular. The signed
measure ν is absolutely continuous with respect to μ, denoted by ν � μ, if |μ(E)| =
0 implies |ν|(E) = 0.
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Theorem 18.2 (Lebesgue) Let {X,A,μ} be a σ-finite measure space for a signed
measure μ and let ν be a σ-finite signed measure defined onA. There exists a unique
pair (νo, ν1) of σ-finite, signed measures defined on the same σ-algebraA such that

ν = νo + ν1 and νo ⊥ μ ν1 � μ.

Proof If ν = ν ′
o + ν ′

1 is another such decomposition, then

νo − ν ′
o = ν ′

1 − ν1.

This implies that νo − ν ′
o is both singular and absolutely continuous with respect

to μ and therefore identically zero. Analogously ν1 = ν ′
1.

The notions of mutually singular signed measures and absolute continuity of a
signed measure ν with respect to a signed measure μ are set in terms of the same
notions for their total variations |ν| and |μ|. Therefore, we may assume that μ is a
measure. If ν± is the Jordan decomposition of ν, by treating ν+ and ν− separately,
we may assume that also ν is a measure.

Setλ = μ+ν. Bothμ and ν are absolutely continuouswith respect toλ. Therefore,
by the Radon-Nikodým Theorem, there exist measurable, nonnegative functions f
and g such that

μ(E) =
∫

E
f dλ and ν(E) =

∫

E
gdλ for all E ∈ A.

Define νo and ν1 by

νo(E) = ν(E ∩ [ f = 0]) ν1(E) = ν(E ∩ [ f > 0]).

By construction ν = νo + ν1. The measure νo is singular with respect to μ since
X = [ f > 0] ∪ [ f = 0] and for every measurable set E

νo(E ∩ [ f > 0]) = μ(E ∩ [ f = 0]) = 0.

The measure ν1 is absolutely continuous with respect to μ. Indeed μ(E) = 0
implies that f = 0, λ-a.e. on E . Therefore,

0 = λ(E ∩ [ f > 0]) ≥ ν(E ∩ [ f > 0]) = ν1(E).

18.3 A General Version of the Radon-Nikodým Theorem

Theorem 18.3 Let {X,A,μ} be a σ-finite measure space and let ν be a σ-finite,
signed measure on the same space {X,A}. If ν � μ, there exists a measurable
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function f : X → R
∗ such that

ν(E) =
∫

E
f dμ for all E ∈ A. (18.2)

The function f need not be integrable, however at least one of f + or f − must
be integrable. Precisely, if the signed measure ν does not take the value +∞ (−∞),
then the upper(lower) variation ν+ (ν−) of ν is finite and f + ( f −) is integrable. If
f + is integrable and f − is not, the integral in (18.2) is well defined in the sense of
(7.5).

Such a function f is unique up to a set of μ-measure zero.

Proof Determine the Hahn decomposition X = X+ ∪ X− up to a null set, and the
corresponding Jordan decomposition ν = ν+ − ν−.

The upper and lower variations ν± are absolutely continuous with respect to μ.
Applying the Radon-NikodýmTheorem to the pairs (ν±,μ), determines nonnegative
μ-measurable functions f± such that

ν±(E) = ν(E ∩ X±) =
∫

E
f±dμ for all E ∈ A.

One verifies that f± vanish μ-a.e. in X∓ and that the function claimed by the
theorem is f = f+ − f−.

Problems and Complements

1c Measurable Functions

In the problems 1.1–1.12 {X,A,μ} is a measure space and E ∈ A.

1.1. The characteristic function of a set E is measurable if and only if E is
measurable.

1.2. A function f is measurable if and only if its restriction to any measurable
subset of its domain is measurable.

1.3. A function f is measurable if and only if f + and f − are both measurable.
1.4. Let {X,A,μ} be complete. A function defined on a set of measure zero is

measurable.
1.5. Let {X,A,μ} not be complete. Then there exists a measurable set A of

measure zero that contains a nonmeasurable set B. The two functions f = χA

and g = χA−B differ on a set of outermeasure zero.However f ismeasurable
and g is not.

1.6. If f is measurable then [ f = c] is measurable for all c in the range of f .
The converse is false.
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1.7. Let f be measurable. Then also | f |p−1 f is measurable for all p > 0.
1.8. | f |measurable does not imply that f is measurable. Likewise f 2 measurable

does not imply that f is measurable.
1.9. A function f is measurable if and only if its preimage of a Borel set is

measurable.
1.10. Let { fn} be a sequence of measurable functions from E into R∗. The subset

of E where lim fn exists is measurable.
1.11. The supremum(infimum) of an uncountable family { fα} of measurable func-

tions, need not be measurable.
1.12. Upper(lower) semi-continuous functions f : E → R

∗ are measurable.

In the problems 1.13–1.19, {RN ,M,μ} is RN with the Lebesgue measure and E ∈
M.

1.13. There exists a nonmeasurable function f : R → R such that f −1(y) is
measurable for all y ∈ R. Hint: given a nonmeasurable set E ⊂ R, define
f (x) = x for x ∈ R − E and f (x) = −x for x ∈ E .

1.14. A monotone function f in some interval (a, b) ⊂ R is measurable.
1.15. Let f : R → R be measurable and let g : R → R be continuous. The

composition g( f ) : E → R is measurable. However the composition f (g) :
E → R in general is notmeasurable. To construct a counterexample consider
the function of § 14 of Chap. 3.

1.16. Let f : [0, 1] → R
∗ be measurable. Then χQ∩[0,1]( f ), is measurable.

1.17. Let f : R2 → R
∗ be such that f (·, y) is continuous for all y ∈ R and f (x, ·)

is measurable for all x ∈ R. Prove that f is measurable.
We indicate two approaches to this statement. The first is based on the fol-
lowing lemma.

Lemma 1.1c Let c ∈ R and let y ∈ R be fixed. Then f (x, y) ≥ c if and only if, for
all n ∈ N there exists a rational number rm such that

|x − rm | < 1
n and f (rm, y) > c − 1

n .

Proof Since g = f (·, y) is continuous g−1(c − 1
n ,∞) is open and we may select

rm ∈ Q with the indicated properties. Conversely, let x satisfy the property of the
lemma, and assume by contradiction that g(x) < c. Since g is continuous, there
exists k ∈ N such that g(x) < c − 1

k . Since x ∈ g−1(−∞, c − 1
k ), and since this set

is open, there exists h ∈ N such that

(x − 1
h , x + 1

h ) ⊂ g−1(−∞, c − 1
k ).

Take n = max{k; h} and select any r ∈ Q such that

|x − r | < 1
m and r ∈ g−1(−∞, c − 1

k ).

http://dx.doi.org/10.1007/978-1-4939-4005-9_3
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For such choices
g(r) = f (r, y) < c − 1

n ≤ c − 1
k .

Using the lemma

[ f ≥ c] = ⋂

n

⋃

m

([
f (rm, ·) > c − 1

m

] × B 1
n
(rm)

)
.

The second approach is based on the following construction. For n ∈ N and j ∈ Z

set ai = i/n and

fn(x, ·) = f (a j+1, ·)(x − a j ) − f (a j , ·)(x − a j+1)

a j+1 − a j
, for a j+1 ≤ x ≤ a j .

1.18. Find an example of a function f : R
2 → R

∗ measurable in each of its
variables separately, and not measurable. Hint: see the Sierpinsky example
13.4. of § 13c.

1.19. Let T be a linear nonsingular transformation of RN onto itself and let f :
R

N → R
∗ bemeasurable. Prove that f (T ) : RN → R

∗ is measurable.Hint:
By § 12.3c of Chap.3 it suffices to show that

[ f (T ) > c] = T−1[ f > c] for all c ∈ R.

1.1c Sublevel Sets

Let {X,A,μ} be a measure space and let f : X → R be measurable. For t ∈ R, the
sublevel set of f at t , is defined as Et = [ f ≤ t]. By the definition

Es ⊂ Et for s < t; ⋃
Et = X; ⋂

Et = ∅; ⋂

s<t
Et = Es . (1.1c)

Conversely, given a collection of measurable sets {Et }t∈R in Ω , satisfying (1.1c)
there exists a measurable function f : X → R for which Et = [ f ≤ t]. Verify that
(von Neumann [114])

X � x → f (x) = inf{t : x ∈ Et }

is such a function and prove that it is unique.

http://dx.doi.org/10.1007/978-1-4939-4005-9_3
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2c The Egorov–Severini Theorem

2.1. Let {X,A,μ} be a measure space and let E ∈ A be of finite measure. Let { fn}
be a sequence of measurable functions from E into R

∗. Assume that for a.e.
x ∈ E the set { fn(x)} is bounded. For every ε > 0 there exists a measurable
set Eε ⊂ E and a positive number kε such that

μ(E − Eε) ≤ ε and | fn| ≤ kε on Eε for all n ∈ N.

2.2. Let μ be the counting measure on 2N. Define fn as the characteristic function
of {1, . . . , n}. The sequence { fn} converges to 1 everywhere in N but not in
measure.

Proposition 2.1c Let {X,A,μ} be a measure space and let E ∈ A. Let { fn} and
f be measurable functions from E into R

∗. Assume that f is finite a.e. in E. Then
{ fn} → f a.e. in E if and only if for all η > 0

lim μ
( ∞⋃

j=n

[| f j − f | ≥ η
] ) = 0. (2.1c)

Hint: Denoting by A the set where { fn} is not convergent

A = ⋃

m
lim sup

[| fn − f | ≥ 1
m

]
.

Then μ(A) = 0 if and only if (2.1c) holds.

3c Approximating Measurable Functions by Simple
Functions

Proposition 3.1c Let {X,A,μ} be a measure space and let f : X → R
∗ be non-

negative and measurable. There exists a countable collection {E j } ⊂ A such that
X = ⋃

E j and

f = ∑

j∈N
1

j
χE j . (3.1c)

Proof Let E1 = [ f ≥ 1] and f1 = χE1 . Then, for j ≥ 2 define recursively

E j =
[
f ≥ 1

j
+ f j−1

]
where f j =

j∑

i=1

1

i
χEi .

By construction f ≥ f j for all j . If f (x) = ∞ then x ∈ E j for all j . Hence f (x)
has the representation (3.1c). If f (x) < ∞ then x /∈ E j for infinitely many j . For
such an x



174 4 The Lebesgue Integral

0 ≤ f (x) − f j (x) ≤ 1

j + 1
for infinitely many j.

The functions f j are simple and hence the proposition gives an alternative proof
of Proposition 3.1. However simple functions, even in canonical form, cannot be
written, in general, as a finite sum of the type of (3.1c). As an example:

3.1. Find the representation (3.1c) of a positive, real multiple of the characteristic
function of the interval (0, 1).

3.2. Find the representation (3.1c) of a simple function taking only two positive
values on distinct, measurable sets.

4c Convergence in Measure

In the problems 4.1–4.7, {X,A,μ} is complete measure space, and E ∈ A is of finite
measure.

4.1. Let f : E → R
∗ be measurable and assume that | f | > 0 a.e. on E . For every

ε > 0 there exists a measurable set Eε ⊂ E and a positive number δε such
that μ(E − Eε) ≤ ε and | f | > δε on Eε.

4.2. Let { fn} : E → R
∗ be a sequence of measurable functions converging to f

a.e. in E . Assume that | f | > 0 and | fn| > 0 a.e. on E for all n ∈ N. For every
ε > 0 there exists a measurable set Eε ⊂ E and a positive number δε such
that

μ(E − Eε) ≤ ε and | fn| > δε on Eε for all n ∈ N.

4.3. Let μ be the counting measure on the rationals of [0, 1]. Then convergence in
measure is equivalent to uniform convergence.

4.4. Let { fn} : E → R
∗ be a sequence of measurable and a.e. finite functions.

There exists a sequence of positive numbers {kn} such that fnk−1
n → 0 a.e. in

E .
4.5. Let { fn}, {gn} : E → R

∗ be sequences of measurable functions converging
in measure to f and g, respectively, and let α,β ∈ R. Then

{α fn + βgn}, {| fn|}, { fngn} −→ α f + βg, | f |, f g

in measure. Moreover if f �= 0 a.e. on E and fn �= 0 a.e. on E for all n, then
1/ fn converges to 1/ f in measure. (Hint: Use 4.1–4.2).

4.6. Let {X,A,μ} be a measure space and let {En} be a sequence of measurable
sets. The sequence {χEn } converges in measure if and only if d(En; Em) → 0
as n,m → ∞ (see 2.2. and 3.7. of the Complements of Chap. 3).

4.7. Let { fn} : E → R
∗ be a sequence of measurable and a.e. finite functions.

Prove that { fn} → f in measure if and only if every subsequence of { fn}
contains in turn a subsequence converging to f in measure.

http://dx.doi.org/10.1007/978-1-4939-4005-9_3
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7c The Lebesgue Integral of Nonnegative Measurable
Functions

7.1c Comparing the Lebesgue Integral
with the Peano-Jordan Integral

Let E ⊂ R
N be bounded and PeanoJordan measurable, and denote by P = {En}

a finite partition of E into pairwise disjoint PeanoJordan measurable sets. For a
bounded function f : E → R set

hn = inf x∈En f (x) F−
P = ∑

hnμP−J (En)

kn = supx∈En
f (x) F+

P = ∑
knμP−J (En).

A bounded function f : E → R is PeanoJordan integrable if for every ε > 0,
there exists a partition Pε of E into PeanoJordan measurable sets En , such that

F+
P − F−

P ≤ ε.

The sets En are also Lebesgue measurable. Therefore,

∑
hnμP−J (En) ≤

∫

E
f dμ ≤ ∑

knμP−J (En).

Thus if a bounded function f is PeanoJordan integrable it is also Lebesgue inte-
grable. The converse is false. Indeed the characteristic function of the rationalsQ of
[0, 1] is Lebesgue integrable and not PeanoJordan integrable.

This is not longer the case however if f is not bounded. Following Riemann’s
notion of improper integral, the function

f (x) = 1

x
sin

1

x
for x ∈ (0, 1]

is PeanoJordan integrable in (0, 1) but not Lebesgue integrable.

In the problems 7.1–7.7, {X,A,μ} is a measure space and E ∈ A.

7.1. Let f : E → R
∗ be measurable and nonnegative. If f = ∞ in a set E ⊂ E

of measure zero ∫

E
f dμ =

∫

E−E
f dμ.

7.2. Let f : X → R
∗ be measurable and nonnegative. Then

∫

E
f dμ = 0 for all E ∈ A implies f = 0 a.e. in X.
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7.3. Let f : E → R
∗ be integrable. If the integral of f over every measurable

subset A ⊂ E is nonnegative, then f ≥ 0 a.e. on E .
7.4. Let f : R → R be Lebesgue integrable. Then for every h ∈ R and every

interval [a, b] ⊂ R

∫

[a,b]
f dμ =

∫

[a+h,b+h]
f (x − h)dμ.

7.5. Construct the Lebesgue integral of a nonnegative μ-measurable function f :
R

N → R, when μ is the Dirac delta measure δx concentrated at some x ∈ R
N .

7.6. Let E be of finite measure. A measurable function f : E → R
∗ is integrable

if and only if
∑

μ([| f | ≥ n]) < ∞. Hint:

∑
μ([| f | ≥ n]) = ∑

nμ([n ≤ | f | < n + 1]).

7.7. Let {X,A,μ}beRN with theLebesguemeasure. Let T be a linear nonsingular
transformation ofRN onto itself and let f : RN → R

∗ beLebesgue integrable.
Prove that ∫

E
f (x)dμ = 1

| det T |
∫

T E
f (y)dμ.

Hint: § 12.3.1c of the Complements of Chap. 3 and Problem 1.19.

7.2c On the Definition of the Lebesgue Integral

The original definition of Lebesgue was based only on the Lebesgue measure inRN .
The integral of a measurable, nonnegative function f was defined as in (7.1), where
the supremum was taken over the class of simple functions ζ ≤ f , and vanishing
outside a set of finite measure. Denote by Φ f such a class of simple functions and
observe that ∫

E
f dμ = sup

ϕ∈Φ f

∫

E
ϕdμ.

Such a definition, while adequate for the Lebesgue measure in R
N , is not adequate

for a general measure space {X,A,μ}. For example let {X,A,μ} be the measure
space of 3.2 of Chap.3. Then

∞ =
∫

X
1dμ = sup

ϕ∈Φ1

∫

X
ϕdμ = 0.

http://dx.doi.org/10.1007/978-1-4939-4005-9_3
http://dx.doi.org/10.1007/978-1-4939-4005-9_3
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9c More on the Lebesgue Integral

Let {X,A,μ} be a measure space with μ(X) = 1 and let f : X → R be μ-
measurable. In particular, for all Borel sets B ∈ R, the set f −1(B) is μ-measurable.
Set

μ f (B) = μ([ f −1(B)]) for all Borel sets B ⊂ R. (9.1c)

9.1. Distribution Measure of a Measurable Function: Verify that μ f is a mea-
sure on B. Verify that if f = χE for some E ∈ A, then for a Borel set
B ⊂ R

μ f (B) = χB(1)μ(E) + χB(0)μ(X − E).

9.2. A function h : R → R
∗ is Borel measurable if the preimage of a Borel set in

R is a Borel set in R. Let h be Borel measurable and integrable with respect
to μ f . Prove that h( f ) is integrable in {X,A,μ} and

∫

X
h( f )dμ =

∫

R

h(t)dμ f . (9.2c)

Hint: Given μ f , compute the integral of both sides by assuming first that
h = χB where B ⊂ R is a Borel set. Then in view of (9.1c), the integrals
equalμ f (B) = μ{ f −1(B)}. Next assume that h is nonnegative. Compute both
sides of (9.2c) by using the definition (7.1) and show that both sides are equal.
The general case follows by linear combinations and limiting processes.

9.3. For a μ-measurable function f on {X,A,μ} prove that
∫

X
| f |pdμ =

∫ ∞

0
t pdμ f

9.4. Equidistributed Measurable Functions: Two measurable function f1, f2 :
X → R are equidistributed if

μ[ f −1
1 (B)] = μ[ f −1

2 (B)] for every Borel set B ⊂ R.

Give an example of equidistributed measurable functions f1 �= f2. Prove that
if f1 and f2 are equi-distributed, then

∫

X
h( f1)dμ =

∫

X
h( f2)dμ for all h(·) as in 9.2.

9.5. Expectation and Variance of a Measurable Function: The expectation
E( f ) and the variance σ2( f ) of a measurable function f are defined as
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E( f ) =
∫

X
f dμ =

∫

R

tdμ f

σ2( f ) =
∫

X
( f − E( f ))2dμ =

∫

R

(t − E( f ))2dμ f .

(9.3c)

The quantity σ( f ), is the standard deviation of f . Prove that σ2( f ) = 0 if
and only if there exists t ∈ R such that f = 1 a.e. in X and t = E( f ).

9.6. Let f1 and f2 be equidistributed measurable functions on {X,A,μ}. Then
σ2( f1) = σ2( f2).

10c Convergence Theorems

In the problems 10.1–10.10, {X,A,μ} is a measure space and E ∈ A.

10.1. Let f : E → R
∗ be integrable and let {En} be a countable collection of

measurable, disjoint subsets of E such that E = ∪En . Then

∫

E
f dμ = ∑

∫

En

f dμ.

10.2. Let μ be the counting measure on the positive rationals {r1, r2, . . . }, and let

fn(r j ) =

⎧
⎪⎪⎨

⎪⎪⎩

1

j
if j < n

0 if j ≥ n.

The sequence { fn} converges uniformly to a nonintegrable function.
10.3. Let μ be a finite measure and let { fn} be a sequence of integrable functions

converging uniformly in X . The limiting function f is integrable and one
can pass to the limit under integral.

10.1c Another Version of Dominated Convergence

Theorem 10.1c Let { fn} be a sequence of integrable functions in E converging a.e.
in E to some f . Assume that there exists a sequence of integrable functions {gn}
converging a.e. in E to an integrable function g and such that

lim
∫

E
gndμ =

∫

E
gdμ.
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Assume moreover that | fn| ≤ gn a.e. in E for all n ∈ N. Then f is integrable and

lim
∫

E
fndμ =

∫

E
f dμ.

10.4. Let { fn} : E → R
∗ be a sequence of integrable functions converging to an

integrable function f a.e. in E . Then

lim
∫

E
| fn − f |dμ = 0 if and only if lim

∫

E
| fn|dμ =

∫

E
| f |dμ.

10.5. Let { fn} : E → R
∗ be a sequence of measurable functions satisfying

∑
∫

E
| fn|dμ < ∞.

Then
∑

fn defines, a.e. in E and integrable function and

∫

E

∑
fndμ = ∑

∫

E
fndμ.

10.6. Let { fn} : E → R
∗ be a sequence of measurable functions satisfying

| fn| ≤ | f | for an integrable function f : E → R. Then

∫

E
lim inf fndμ ≤ lim inf

∫

E
fndμ ≤ lim sup

∫

E
fndμ ≤

∫

E
lim sup fndμ.

10.7. Let E be of finite measure and let { fn} : E → R
∗ be a sequence of

measurable functions satisfying | fn| ≤ |g| for an integrable function g :
E → R. If { fn} → f in measure, then

∫

E
f dμ = lim

∫

E
fndμ and lim

∫

E
| fn − f |dμ = 0.

10.8. Let E be of finite measure and let { fn} : E → R
∗ be a sequence of

nonnegative measurable functions converging in measure to f . Then

∫

E
f dμ ≤ lim inf

∫

E
fndμ.

10.9. Prove that in the Egorov-Severini Theorem 2.1 the assumption μ(E) < ∞
can be replaced by | fn| ≤ g for an integrable function g : E → R

∗.
10.10. Let { fn} : E → R

∗ be a nonincreasing sequence of nonnegative, measur-
able functions. Give an example to show that in general
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lim
∫

E
fndμ �=

∫

E
lim fndμ.

Thus in theMonotoneConvergenceTheorem8.1, themonotonicity assump-
tion fn ≤ fn+1, cannot be replaced with the monotonicity assumption
fn ≥ fn+1.

In the problems 10.11–10.16, {X,A,μ} is RN with the Lebesgue measure.

10.11. Let sequences { fn} be defined by

fn(x) =
{
n if x ∈ [0, 1

n ]
0 otherwise,

fn =
{

1
n for 0 ≤ x ≤ n
0 for x > n.

In either case

1 = lim
∫

R+
fndx �=

∫

R+
lim fndx = 0.

10.12. Let f : R → R be Lebesgue measurable, nonnegative, and locally
bounded. Assume that f is Riemann-integrable on R. Then f is Lebesgue
integrable on R and ∫

R

f dμ = lim
∫ n

−n
f dμ.

10.13. Let { fn} be the sequence of nonnegative integrable functions defined on
R

N by

fn(x) =
⎧
⎨

⎩
nN exp

{ −1

1 − n2|x |2
}

if |x | < 1
n

0 if |x | ≥ 1
n .

The sequence { fn} converges to zero a.e. in R
N and each fn is integrable

with uniformly bounded integral. However

lim
∫

RN

fndx �=
∫

RN

lim fndx .

10.14. Let { fn} be the sequence defined in 7.7 of the Complements of Chap. 2. The
assumptions of the dominated convergence theorem fail and

lim
∫ 1

0
fn(x)dx = 1

2
and

∫ 1

0
lim fn(x)dx = 0.

10.15. The two sequences {xn} and {nxn} converge to zero in (0, 1). For the first
one can pass to the limit under integral and for the second one cannot.

http://dx.doi.org/10.1007/978-1-4939-4005-9_2
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10.16. Integrability andBoundedness:There exist positive, Lebesgue integrable
functions onR, that are infinity at all the rationals. Let {rn} be the sequence
of the rationals in R

+ and set

f (x) = ∑ 1

2n
e−x

√|x − rn| .

Prove that f is integrable over R+ (Proposition 10.2).

11c Absolute Continuity of the Integral

The proof of Theorem 11.1 shows that for an integrable function f , given ε > 0, the
corresponding δ claimed by the theorem, depends upon ε and f .

A collection Φ of integrable functions f : E → R
∗ is uniformly integrable, if for

all ε > 0 there exists δ = δ(ε) > 0 such that the conclusion of Theorem 11.1 holds
for all f ∈ Φ, for all measurable sets E ⊂ E such that μ(E) < δ (Vitali [169]).

11.1. If Φ is finite then it is uniformly integrable.
11.2. Let { fn} be a sequence of integrable functions such that | fn| ≤ g for an

integrable function g. Then { fn} is uniformly integrable.
11.3. Let E be of finite measure and let { fn} be a sequence of uniformly integrable

functions converging a.e. in E to an integrable function f . Prove that (Hint:
Egorov–Severini theorem)

lim
∫

E
| fn − f |dμ = 0. (11.1c)

This gives an alternate proof of the Lebesgue dominated convergence theo-
rem when μ(E) < ∞. Give an example showing that the conclusion is false
if E is not of finite measure.

11.4. Let { fn} be a sequence of integrable functions in E , satisfying (11.1c) for an
integrable f . Then { fn} is uniformly integrable.

11.5. Show that the following sequences of functions defined in (−1, 1), are not
uniformly Lebesgue integrable.

fn(x) = √
ne−x2n; fn(x) = x√

n
e−x2n;

fn(x) = n

n2x2 + 1
; fn(x) = n2x

(n2x2 + 1)2
.

(11.2c)

11.6. Let E be of finite measure and let { ft } : E → R
∗ be a family of functions

uniformly integrable in E and such that ft (x) is continuous in t ∈ (0, 1) for
every fixed x ∈ E . Prove that
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(0, 1) � t →
∫

E
ftdμ is continuous.

12c Product of Measures

12.1c Product of a Finite Sequence of Measure Spaces

Given a finite sequence of measure spaces {X j ,A j ,μ j }nj=1 for some n ∈ N their
product space is constructed by the following steps:

12.1. Measurable n-Rectangles. A measurable n-rectangle is a set of the form

E = ∏n
j=1E j for E j ∈ A j for all j = 1, . . . , n.

Denote byRn
o be the collection of all measurable n-rectangles and prove that

it forms a semi-algebra.
12.2. Measuring Measurable Rectangles. OnRn

o introduce the set function

Rn
o � E → λn(E) =

n∏

j=1
μ j (E j ). (12.1c)

Prove that λn is countably additive on Rn
o . For this use a n-dimensional

version of Proposition 12.1. As a consequence λn is well defined on Rn
o in

the sense that, for Q ∈ Rn
o , the value λn(Q) is independent of a particular

partition of elements in Rn
o making up Q.

12.3. Constructing the Product Measure Space. The set function λn on Rn
o

generates an outer measure μn
e on

∏n
j=1X j . The latter in turn generates the

measure space {Yn,Bn, νn}, where

Yn =
n∏

j=1
X j , Bn =

( n∏

j=1
A j

)
, νn =

( n∏

j=1
μ j

)
.

Moreover Rn
o ⊂ Bn and νn(E) = λn(E) for all E ∈ Rn

o .

12.1.1c Alternate Constructions

Fix an integer 1 ≤ m < n and construct first, by the indicated procedure, the two
measure spaces {Ym,Bm, νm} and {Ym,Bm, νm}, where
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Ym =
m∏

j=1
X j , Bm =

( m∏

j=1
A j

)
, νm =

( m∏

j=1
μ j

)

Ym =
n∏

j=m+1
X j , Bm =

( n∏

j=m+1
A j

)
, νm =

( n∏

j=m+1
μ j

)
.

Then construct their product

{Ym × Ym, (Bm × Bm), (νm × νm)}. (12.2c)

Denote by An
o the smallest σ-algebra containing Rn

o .

12.4. Prove that An
o is contained in (Bm × Bm) for all 1 ≤ m < n.

12.5. Prove that for all 1 ≤ m < n, the restriction of (νm × νm) to Rn
o coincides

with the function λn introduced in (12.1c).
12.6. Prove that for all 1 ≤ m < n, the product space in (12.2c) is generated by

the same outer measure μn
e , generated by λn on Rn

o . Conclude that

{Yn,Bn, νn} = {Ym × Ym, (Bm × Bm), (νm × νm)} (12.3c)

and thus the finite product of measure spaces is associative.
12.7. Prove that the Lebesgue measure in R

N coincides with the product of N
copies of the Lebesgue measure in R.

13c On the Structure of (A × B)

13.1. Let {X,A,μ} and {Y,B, ν} be complete measure spaces. Let A ⊂ X be
μ-measurable and let B ⊂ Y be not ν-measurable. Denote by (A × B)e the
outer measure on A × B that generates the product measure space {X ×
Y, (A × B), (μ × ν)}. Prove that:
i. If (A × B)e(A × B) = 0 then A × B is (A × B)-measurable.
ii. If 0 < (A×B)e(A× B) < ∞ then A× B is not (A×B)-measurable.

If (A × B)e(A × B) = ∞ then A × B might be (μ × ν)-measurable.
Give an example or an argument.

iii. If {X,A,μ} and {Y,B, ν} are σ-finite and (A×B)e(A× B) > 0, then
then A × B is not (A × B)-measurable.

13.2. Let {X,A,μ} be non complete and let A ⊂ X be non μ-measurable, but
included in a μ-measurable set A′ of measure zero. For every ν-measurable
set B ⊂ Y , the rectangle A × B is (μ × ν)-measurable. As a consequence,
the assumption that both {X,A,μ} and {Y,B, ν} be complete, cannot be
removed from Proposition 13.4.
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13.3. Let E ⊂ [0, 1] be the Vitali non measurable set. The diagonal set E =
{(x, x)|x ∈ E} is Lebesgue measurable in R

2 and has measure zero. The
rectangle E × E is not Lebesgue measurable in R2.

13.4. (Sierpinski [146]).LetRbewell orderedby≺, denote byΩ thefirst uncount-
able and let

X = Y = EΩ = {x ∈ R|x ≺ Ω}.

Let A be the σ-algebra of the subsets of X that are either countable or their
complement is countable. For E ∈ A, let μ(E) = 0 if E is countable and
μ(E) = 1 otherwise. Consider the set

E = {(x, y) ∈ X × X
∣∣ x ≺ y}.

All the x and y sections of E are measurable. However E is not (μ × μ)-
measurable. Indeed if E were measurable, it would have finite measure,
since

E ⊂ X × X and (μ × μ)(X × X)) = μ(X)μ(X) = 1.

Therefore, it would have to satisfy Proposition 13.4. However

∫

Y
μ(Ey)dν = 0 and

∫

X
μ(Ex )dμ = 1.

13.1c Sections and Their Measure

Given a finite sequence {X j ,A,μ j }nj=1 of measure spaces, let {Yn,Bn, νn} be their
product measure space as constructed either in (12.1c)–(12.3c).

For a set E ⊂ Yn and ym ∈ Ym , and ym ∈ Ym for some 1 ≤ m < n, the ym-section
Eym of E and the ym-section Eym of E are defined as

Ym � Eym = {ym ∣∣ (ym, ym) ∈ E for a fixed ym ∈ Ym}
Ym � Eym = {ym

∣∣ (ym, ym) ∈ E for a fixed ym ∈ Ym}. (13.4c)

13.5. Prove that for all E ∈ An
o and all 1 ≤ m < n the sections Eym ∈ Bm and

Eym ∈ Bm .
13.6. Prove that for all E ∈ An

o of finite νn measure and for all 1 ≤ m < n

νn(E) =
∫

Yn

χEdνn =
∫

Ym

νm(Eym )dνm =
∫

Ym

νm(Eym )dνm . (13.5c)

13.7. State and prove a version of Fubini’s Theorem when all the measure spaces
{X j ,A j ,μ j }, for j = 1, . . . , n, are complete.
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13.8. State and prove a version of Tonelli’s Theorem when all the measure spaces
{X j ,A j ,μ j }, for j = 1, . . . , n, are complete and σ-finite.

14c The Theorem of Fubini–Tonelli

14.1. Let ωN be the measure of the unit sphere in RN . Then

ωN+1 = 2ωN

∫ π/2

0
(sin t)N−1dt.

14.2. By the Fubini–Tonelli theorem

∫

RN

e−|x |2dx =
N∏

i=1

∫

R

e−x2i dxi = πN/2.

14.3. Let {X,A,μ} be [0, 1] with the Lebesgue measure and let {Y,B, ν} be the
rationals in [0, 1] with the counting measure. The function f (x, y) = x is
integrable on {X,A,μ} and not integrable on the product space.

14.4. Let [0, 1]be equippedwith theLebesguemeasureμ and the countingmeasure
ν both acting on the same σ-algebra of the Lebesgue measurable subsets of
[0, 1]. The corresponding product measure space is not σ-finite since ν is
not σ-finite. The diagonal set E = {x = y} is of the type ofRσδ , and hence
(μ × ν)-measurable and

ν(Ex ) = 1 ∀ x ∈ [0, 1] and μ(Ey) = 0 ∀ y ∈ [0, 1].

Therefore,

∫

[0,1]
ν(Ex )dμ = 1 and

∫

[0,1]
μ(Ey)dν = 0.

Moreover ∫∫

[0,1]×[0,1]
χEd(μ × ν) = ∞.

14.5. Let f and g be integrable functions on complete measure spaces {X,A,μ}
and {Y,B, ν}, respectively. Then F(x, y) = f (x)g(y) is integrable on the
product space (X × Y ).

14.6. Let {X,A,μ} be any measure space and let {Y,B, ν} beNwith the counting
measure. Prove that the conclusion of Fubini’s theorem continues to hold
even i {X,A,μ} is not complete, and that the conclusion of Tonelli’s theorem
continues to hold even if {X,A,μ} is neither complete nor σ-finite.

14.7. Let {X,A,μ} and {Y,B, ν}bebothNwith the countingmeasure and consider
the function
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f (m, n) =
⎧
⎨

⎩

1 if m = n
−1 if m = n + 1
0 otherwise.

Prove that f is not integrable in the product space {X ×Y, (A×B), (μ×ν)}
and the conclusion of Fubini’s theorem fails.

14.8. Let {X,A,μ} and {Y,B, ν} be both (0, 1) with the Lebesgue measure. Let
f : (0, 1) → R be measurable and assume that

(0, 1) × (0, 1) � (x, y) → f (x) − f (y)

is integrable in the product space {X × Y, (A × B), (μ × ν)}. Prove that f
is integrable in (0, 1).

15c Some Applications of the Fubini–Tonelli Theorem

15.1c Integral of a Function as the “Area Under the Graph”

Let {X,A,μ} be complete, and σ-finite, and let f : X → R
∗ be a nonnegative and

integrable. The graph of f on E is the set of points {x : (x, f (x)} and the set of
points “under the graph” is

U f = {(x, y) ∣∣ x ∈ X : 0 ≤ y < f (x)}.

Prove that U f is measurable in the product measure space of {X,A,μ} and R

with the Lebesgue measure dx , and

{measure ofU f } =
∫

X
f (x)dμ.

Prove that the graph of f as a subset of X × R is measurable in the product
measure and has measure zero.

15.2c Distribution Functions

Let {X,A,μ} be a measure space and let f : X → R
∗ and { fn} : X → R

∗ be
nonnegative and integrable. Prove:

Proposition 15.1c Assume that μ([ f > t]) �≡ ∞. Then
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lim
ε→0

μ([ f > t + ε]) = μ([ f > t])
lim
ε→0

μ([ f > t − ε]) = μ([ f ≥ t]).

Therefore, the distribution function t → μ([ f > t]) is right-continuous, and it is
continuous at a point t if only if μ([ f = t]) = 0.

Proposition 15.2c Let { fn} → f in measure. Then for every ε > 0

lim supμ([ fn > t]) ≤ μ([ f > t − ε])
lim inf μ([ fn > t]) ≥ μ([ f > t + ε]).

Therefore, μ([ fn > t]) → μ([ f > t]) at those t where the distribution function
of f is continuous.

15.1. For a measurable function f on {X,A,μ} set

R
∗ � t → f∗(t) = μ

([ f ≤ t]) (15.1c)

prove that f∗ is nondecreasing, right-continuous, and f∗(∞) = μ(X).
15.2. Give an example of f and {X,A,μ} for which fX is right-continuous and

not continuous.
15.3. The function f∗ generates the Lebesgue–Stiltjies measure μ f∗ on R. Let μ f

be the measure defined by (9.1c). Prove that μ f∗ = μ f on the Borel sets of
R and that μ f∗ is the completion of μ f .

17c The Radon-Nikodým Theorem

17.1. Let ν be the Lebesgue measure in [0, 1] and let μ be the counting measure on
the same σ-algebra of the Lebesgue measurable subsets of [0, 1]. Then ν is
absolutely continuous with respect to μ, but it does not exist a nonnegative,
μ-measurable function f : [0, 1] → R

∗ for which ν can be represented as
in (17.1).

17.2. In [0, 1] let A be the σ-algebra of the sets that are, either countable or
have countable complement. Let μ be the counting measure on A and let
ν : A → R

∗ be defined by ν(E) = 0 if E is countable and ν(E) = 1
otherwise. Then ν is absolutely continuous with respect to μ but it does not
have a Radon-Nikodým derivative.

17.3. Changing the Variables of Integration: Let the assumptions of the Radon-
Nikodým theorem hold. If g is ν-integrable, g(dν/dμ) is μ-integrable and
for every measurable set E

∫

E
gdν =

∫

E
g
dν

dμ
dμ. (17.1c)
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17.4. Linearity of the Radon-Nikodým Derivative: Let μ and ν1 and ν2 be σ-
finite measures defined on the same σ-algebraA. If ν1 and ν2 are absolutely
continuous with respect to μ

d(ν1 + ν2)

dμ
= dν1

dμ
+ dν2

dμ
μ-a.e.. (17.2c)

17.5. The Chain Rule: Let μ, ν, and η be σ-finite measures on X defined on the
same σ-algebraA. Assume that μ is absolutely continuous with respect to η
and that ν is absolutely continuous with respect to μ. Then

dν

dη
= dν

dμ

dμ

dη
a.e. with respect to η. (17.3c)

17.6. Derivative of the Inverse: Let μ and ν be two not identically zero, σ-
finite measures defined on the same σ-algebra A and mutually absolutely
continuous. Then

dν

dμ
�= 0 and

dμ

dν
=

(
dν

dμ

)−1

. (17.4c)

Hint: For all nonnegative ν-measurable functions g

∫

E
gdν =

∫

E
g
dν

dμ
dμ.

This is true for simple functions and hence for nonnegative ν-measurable
functions g. Now for all E ∈ A of finite μ-measure

μ(E) =
∫

E
1dμ =

∫

E

dμ

dν
dν =

∫

E

dμ

dν

dν

dμ
dμ.

The inverse formula (17.4c) follows from the uniqueness of the Radon-
Nikodým derivative.

17.7. Let {X,A,μ} be [0, 1]with the Lebesguemeasure. Let {En} be ameasurable
partition of [0, 1] and let {αn} be a sequence of positive numbers such that∑

αn < ∞. Find the Radon-Nikodým derivative of the measure

A � E −→ ν(E) = ∑
αnμ(E ∩ En)

with respect to the Lebesgue measure.

Proposition 17.1c Let μ and ν be two measures defined on the same σ-algebra A.
Assume that ν is finite. Then ν is absolutely continuous with respect to μ if and only
if for every ε > 0 there exists δ > 0 such that ν(E) < ε for every set E ∈ A such
that μ(E) < δ.
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Proof (Necessity) If not, there exist ε > 0 and a sequence of measurable sets {En},
such that ν(En) ≥ ε and μ(En) ≤ 2−n . Let E = lim sup En and compute

ν(E) = ν(lim sup En) ≥ lim sup ν(En) ≥ ε.

On the other hand for all n ∈ N

μ(E) ≤ μ
( ∞⋃

j=n
E j

) ≤
∞∑

j=n
μ(E j ) ≤ 1

2n−1
.

17.8. The proposition might fail if ν is not finite. Let X = N and for every subset
E ⊂ N, set

μ(E) = ∑

n∈E
1

2n
ν(E) = ∑

n∈E
2n.

17.9. More on ν � μ: There exist σ-finite measures ν on the Lebesgue measur-
able sets ofR, absolutely continuous with respect to the Lebesgue measure
μ onR and such that ν(E) = ∞ for every measurable set E with nonempty
interior. Let {rn} be the sequence of the rationals in R and set

g(x) = ∑ 1

2n
e−|x |

|x − rn| and ν(E) =
∫

E
gdμ

for all Lebesgue measurable set E ⊂ R.
17.10. Let {X,A,μ} be a measure space and let ν be a signed measure on A of

finite total variation |ν|. Then ν � μ if and only if for every ε > 0 there
exists δ > 0 such that |ν|(E) < ε for all E ∈ A such that μ(E) < δ. Give
an counterexample if |ν| is not finite.

18c A Proof of the Radon-Nikodým TheoremWhen Both μ
and ν Are σ-Finite

Amore constructive proof of Theorem 17.1 can be given if both μ and ν are σ-finite.
Assume first that both μ and ν are finite. Let Φ be the family of all measurable
nonnegative functions ϕ : X → R

∗ such that
∫

E
ϕdμ ≤ ν(E) for all E ∈ A.

Since 0 ∈ Φ such a class is not empty. For two given functions ϕ1 and ϕ2 in Φ

the function max{ϕ1;ϕ2} is in Φ. Indeed for any E ∈ A
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∫

E
max{ϕ1;ϕ2}dμ =

∫

E∩[ϕ1≥ϕ2]
ϕ1dμ +

∫

E∩[ϕ2>ϕ1]
ϕ2dμ

≤ ν(E ∩ [ϕ1 ≥ ϕ2]) + ν(E ∩ [ϕ2 < ϕ1]) = ν(E).

Since ν is finite

M = sup
ϕ∈Φ

∫

X
ϕdμ ≤ ν(X) < ∞.

Let {ϕn} be a sequence of functions in Φ such that

lim
∫

X
ϕndμ = M

and set fn = max{ϕ1, · · · ,ϕn}. The sequence { fn} is nondecreasing, and μ-a.e.
convergent to a function f that belongs to Φ. Indeed by monotone convergence, for
every measurable set E

∫

E
f dμ = lim

∫

E
fndμ ≤ ν(E).

Such a limiting function is the f claimed by the theorem. For this it suffices to
establish that the measure

A � E −→ η(E) = ν(E) −
∫

E
f dμ

is identically zero. If not, there exists a set A ∈ A such that η(A) > 0. Since both
ν and η are absolutely continuous with respect to μ, for such a set, μ(A) > 0. Also,
since μ is finite, there exists ε > 0 such that

ξ(A) = η(A) − εμ(A) > 0.

The set function
A � E −→ ξ(E) = η(E) − εμ(E)

is a signedmeasure onA. Therefore, by Proposition 16.1 the set A contains a positive
subset Ao of positive measure. In particular

η(E ∩ Ao) − εμ(E ∩ Ao) ≥ 0 for all E ∈ A.

From this and the definition of η

εμ(E ∩ Ao) ≤ ν(E ∩ Ao) −
∫

E∩Ao

f dμ for all E ∈ A.
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The function ( f + εχAo) belongs to Φ. Indeed, for every measurable set E

∫

E
( f + εχAo)dμ =

∫

E−Ao

f dμ +
∫

E∩Ao

( f + ε)dμ

≤ ν(E − Ao) + ν(E ∩ Ao) = ν(E).

This however contradicts the definition of M since
∫

X
( f + εχAo)dμ = M + εμ(Ao) > M.

If g : X → R
∗ is another nonnegative measurable function by which the measure

ν can be represented, let An = [ f − g ≥ 1
n ]. Then for all n ∈ N

1

n
μ(An) ≤

∫

An

( f − g)dμ = ν(An) − ν(An) = 0.

Thus f = g μ-a.e. in X .
Assume next that μ is σ-finite and ν is finite. Let En be a sequence of measurable,

expanding sets such that

μ(En) ≤ μ(En+1) < ∞ and X = ⋃
En

and denote by μn the restriction of μ to En . Let fn be the unique function claimed by
the Radon-Nikodým theorem for the pair of finite measures {μn; ν}. By construction
fn+1

∣∣
En

= fn for all n. The function f claimed by the theorem is f = sup fn . Indeed
if E ∈ A, by monotone convergence

ν(E) = lim ν(E ∩ En) = lim
∫

E
fndμ =

∫

E
f dμ.

The uniqueness of such a f is proved as in the case of μ finite. Finally a similar
argument, establishes the theorem when also ν is σ-finite.



Chapter 5
Topics on Measurable Functions of Real
Variables

1 Functions of Bounded Variation ([78])

Let f be a real-valued function defined and bounded in some interval [a, b] ⊂ R.
Denote by P = {a = xo < x1 < · · · < xn = b} a partition of [a, b] and set

V f [a, b] = sup
P

n∑

i=1
| f (xi ) − f (xi−1)|.

This number, finite or infinite, is called the total variation of f in [a, b]. IfV f [a, b]
is finite the function f is said to be of bounded variation in [a, b] and one writes
f ∈ BV [a, b]. If f is monotone in [a, b], then f ∈ BV [a, b], and

V f [a, b] = | f (b) − f (a)|.

More generally, if f is the difference of two monotone functions in [a, b], then
f ∈ BV [a, b]. If f is Lipschitz continuous in [a, b] with Lipschitz constant L , then
f ∈ BV [a, b], and V f [a, b] ≤ L(b − a).
Continuity does not imply bounded variation. The function

f (x) =
{

x cos
π

x
for x ∈ (0, 1]

0 for x = 0
(1.1)

is continuous in [0, 1] and not of bounded variation on [0, 1]. Consider the partition
of [0, 1]

Pn = {
0 <

1

n
<

1

n − 1
< · · · <

1

n − (n − 1)
= 1

}
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and estimate

V f [0, 1] ≥ lim
n→∞

{∣∣cos nπ

n

∣∣ +
n−1∑

j=1

∣∣cosπ(n − j)

n − j
− cosπ(n − j + 1)

n − j + 1

∣∣
}

= lim
n→∞

{1
n

+
n−1∑

j=1

( 1

n − j
+ 1

n − j + 1

)}
≥ lim

n→∞
n∑

i=1

1

i
.

Bounded variation does not imply continuity. The function

f (x) =
{
0 for x ∈ [−1, 1] − {0}
1 for x = 0

is discontinuous and of bounded variation and V f [−1, 1] = 2.

Proposition 1.1 Let f and g of bounded variation in [a, b] and let α and β be real
numbers. Then (α f + βg) and ( f g) are of bounded variation in [a, b]. If |g| ≥ ε
for some ε > 0, then ( f/g) is of bounded variation in [a, b].
Proposition 1.2 Let f be of bounded variation in [a, b]. Then f is of bounded
variation in every closed subinterval of [a, b]. Moreover for every c ∈ [a, b]

V f [a, b] = V f [a, c] + V f [c, b]. (1.2)

The positive and negative variations of f in [a, b] are defined by

V +
f [a, b] = sup

P

n∑

j=1
[ f (x j ) − f (x j−1)]+

V −
f [a, b] = sup

P

n∑

j=1
[ f (x j ) − f (x j−1)]−.

Proposition 1.3 Let f be of bounded variation in [a, b]. Then

V f [a, b] = V +
f [a, b] + V −

f [a, b]
f (b) − f (a) = V +

f [a, b] − V −
f [a, b].

In particular for every x ∈ [a, b], there holds the Jordan decomposition

f (x) = f (a) + V +
f [a, x] − V −

f [a, x]. (1.3)

Since x → V ±
f [a, x] are both non-decreasing, a function f of bounded variation

can be written as the difference of two non-decreasing functions. We have already
observed that the difference of two monotone functions in [a, b] is of bounded vari-
ation in [a, b]. Thus a function f is of bounded variation in [a, b] if and only if it is
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the difference of two monotone functions in [a, b]. The Jordan decomposition also
implies that a function of bounded variation in [a, b] is measurable in [a, b].
Proposition 1.4 A function f of bounded variation in [a, b] has at most countably
many jump discontinuities in [a, b].
Proof May assume that f is monotone increasing. Then, for every c ∈ (a, b), the
limits

lim
x→c+

f (x) = f (c+), lim
x→c−

f (x) = f (c−)

exist and are finite. If f (c+) > f (c−), we select one and only one rational number
out of the interval

(
f (c−), f (c+)

)
. This way the set of jump discontinuities of f is

put in one-to-one correspondence with a subset of N.

2 Dini Derivatives ([37])

Let f be a real-valued function defined in [a, b]. For a fixed x ∈ [a, b] set

D± f (x) = lim inf
h→0±

f (x + h) − f (x)

h

D± f (x) = lim sup
h→0±

f (x + h) − f (x)

h
.

(2.1)

These are the four Dini numbers or the four Dini derivatives of f at x . If f is
differentiable at x these four numbers all coincide with f ′(x).

Proposition 2.1 (Banach-Sierpiński [9, 147]) Let f be real-valued and non-
decreasing in [a, b]. Then the functions D± f and D± f are measurable.

Proof Weprove that D+ f is measurable, the arguments for the remaining ones being
similar. For n ∈ N set

un(x) = sup
0<h< 1

n

f (x + h) − f (x)

h
.

Since D+ f = lim un , it suffices to prove that theun aremeasurable.Bymonotonic-
ity f is measurable and, for h fixed, the difference quotients in the definition of un are
measurable. We prove that the supremum of such difference quotients for h ∈ (0, 1

n ]
is be realized for h ranging over a countable subset of (0, 1

n ]. This way un would be
the supremum of a countable collection of measurable functions. Set

vn(x) = sup
h∈Q∩(0, 1n ]

f (x + h) − f (x)

h
.
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By construction vn(x) ≤ un(x). To establish the reverse inequality, having fixed
ε > 0, there exists τ ∈ (0, 1

n ] such that

f (x + τ ) − f (x)

τ
> un(x) − ε.

Having fixed such a τ , there exist h ∈ Q ∩ (0, 1
n ], and h ≥ τ , such that

1

τ
<

1

h
+ ε

| f (x + τ )| + | f (x)| + 1
.

Therefore, since f (x + τ ) ≤ f (x + h)

f (x + h) − f (x)

h
+ ε ≥ f (x + τ ) − f (x)

τ
> un(x) − ε.

Thus vn(x) ≥ un(x) − 2ε for all ε > 0.

For a function f defined in [a, b] set

D′′ f = max{D− f ; D+ f }, D′ f = min{D− f ; D+ f }.

If f is non-decreasing the two functions D′′ f and D′ f are both measurable.

Proposition 2.2 Let f be a real-valued, non-decreasing function in [a, b]. Then

f (b) − f (a) ≥ tμ([D′′ f > t]) for all t ∈ R.

Proof The assertion is trivial if μ
([D′′ f > t]) = 0 or if t ≤ 0. Assuming that

μ(
[
D′′ f > t

]
) > 0 and t > 0

let F denote the family of all closed intervals [α,β] ⊂ [a, b] such that at least one
of the extremes α or β is in [D′′ f > t] and such that

f (β) − f (α)

β − α
> t.

By the definition of D′′ f , having fixed x ∈ [D′′ f > t] and δ > 0, there exists
some interval [α,β] ∈ F of length less than δ and such that x ∈ [α,β]. ThereforeF
is a fine Vitali covering for [D′′ f > t]. By Corollary 17.1 of Chap.3, for any fixed
ε > 0 there exist a finite collection of intervals [αi ,βi ] ∈ F for i = 1, . . . , n, with
pairwise disjoint interior, such that

n∑

i=1
(βi − αi ) > μ([D′′ f > t]) − ε.

http://dx.doi.org/10.1007/978-1-4939-4005-9_3
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From this and the definition of F

f (b) − f (a) ≥
n∑

i=1
[ f (βi ) − f (αi )]

>
n∑

i=1
t (βi − αi ) > tμ([D′′ f > t]) − tε

Corollary 2.1 Let f be a real-valued, non-decreasing function defined in [a, b].
Then D′′ f and D′ f are a.e. finite in [a, b].
Proof For all t > 0

μ([D′ f = ∞]) ≤ μ([D′′ f = ∞]) ≤ μ([D′′ f > t]) ≤ f (b) − f (a)

t
.

3 Differentiating Functions of Bounded Variation

A real valued function f defined in [a, b] is differentiable at some x ∈ (a, b) if
and only if D′′ f (x) is finite at x and D′′ f (x) = D′ f (x). The function f is a.e.
differentiable in [a, b] if and only if D′′ f is a.e. finite in [a, b] and μ([D′′ f >

D′ f ]) = 0.

Theorem 3.1 (Lebesgue [91])1 A real-valued, non-decreasing function f in [a, b]
is a.e. differentiable in [a, b].
Proof ByCorollary 2.1, D′′ f and D′ f are a.e. finite in [a, b].Assume thatμ([D′′ f >

D′ f ]) > 0 and, for p, q ∈ N, set

E p,q =
[

D′ f <
p

q
<

p + 1

q
< D′′ f (x)

]
.

Since
[D′′ f > D′ f ] = ⋃

E p,q

there exists a pair p, q of positive integers such that μ(E p,q) > 0. Let F be the
family of closed intervals [α,β] ⊂ [a, b] such that at least one of the extremes α and
β belongs to E p,q and such that

f (β) − f (α)

β − α
<

p

q
.

Having fixed x ∈ E p,q and some δ > 0, there exists an interval [α,β] ∈ F of
length less than δ, such that x ∈ [α,β]. ThereforeF is a fine Vitali covering of E p,q .

1Also in [122]. A proof independent of measure theory is in [134], pp. 5–9.
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By Corollary 17.1 of Chap. 3, having fixed an arbitrary ε > 0, one may extract out
of F , a finite collection of intervals [αi ,βi ] for i = 1, . . . , n, with pairwise disjoint
interior, such that

n∑

i=1
(βi − αi ) − ε < μ(E p,q) < μ

(
E p,q ∩

n⋃

i=1
[αi ,βi ]

) + ε.

Therefore by the construction of the family F
n∑

i=1
[ f (βi ) − f (αi )] <

p

q

n∑

i=1
(βi − αi ) <

p

q
μ(E p,q) + p

q
ε.

By Proposition 2.2 applied to f restricted to the interval [αi ,βi ] we derive

f (βi ) − f (αi ) >
p + 1

q
μ(E p,q ∩ [αi ,βi ]).

Adding these inequalities for i = 1, . . . , n, gives

n∑

i=1
[ f (βi ) − f (αi )] >

p + 1

q

n∑

i=1
μ(E p,q ∩ [αi ,βi ])

≥ p + 1

q
μ
(

E p,q ∩
n⋃

i=1
[αi ,βi ]

)
>

p + 1

q
μ(E p,q) − p + 1

q
ε.

Combining the inequalities involving μ(E p,q)

p

q
μ(E p,q) + p

q
ε >

p + 1

q
μ(E p,q) − p + 1

q
ε.

From this μ(E p,q) < (2p + 1)ε, for all ε > 0.

Corollary 3.1 A real-valued function f of bounded variation in [a, b] is a.e. differ-
entiable in [a, b].

4 Differentiating Series of Monotone Functions

Theorem 4.1 (Fubini [53])2 Let { fn} be a sequence of real-valued, non-decreasing
functions in [a, b] and assume that the series

∑
fn is convergent in [a, b] to a real-

valued function f defined in [a, b]. Then f is a.e. differentiable in [a, b] and

f ′(x) = ∑
f ′
n(x) for a.e. x ∈ [a, b].

2Also in [161].

http://dx.doi.org/10.1007/978-1-4939-4005-9_3
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Proof By possibly replacing fn with fn − fn(a), we may assume that fn(a) = 0
and fn ≥ 0. For n ∈ N write

f =
n∑

i=1
fi + Rn where Rn =

∞∑

j=n+1
f j .

The functions Rn are non-decreasing and hence a.e. differentiable in [a, b]. The
difference Rn − Rn+1 = fn+1, is also non-decreasing and a.e. differentiable in [a, b].
Therefore R′

n − R′
n+1 = f ′

n+1 ≥ 0, a.e. in [a, b]. This implies that the sequence {R′
n}

is decreasing, and has a limit g = lim R′
n a.e. in [a, b]. The sum f is non-decreasing

and hence a.e. differentiable in [a, b]. Therefore

f ′ =
n∑

i=1
f ′
i + R′

n a.e. in [a, b].

To prove the theorem it suffices to show that g = 0 a.e. in [a, b]. Apply Propo-
sition 2.2 to the function Rn , and take into account that Rn ≥ g a.e. in [a, b]. This
gives

Rn(b) ≥ tμ([R′
n > t]) ≥ tμ([g > t]) for all n ∈ N.

Since the series is convergent everywhere in [a, b] the left-hand side goes to zero
as n → ∞. Thus μ([g > t]) = 0 for all t > 0.

5 Absolutely Continuous Functions ([91, 169])

A real valued function f defined in [a, b] is absolutely continuous in [a, b] if for
every ε > 0 there exists a positive number δ such that, for every finite collection of
disjoint intervals (a j , b j ) ⊂ [a, b], j = 1, . . . , n of total length not exceeding δ

n∑

j=1
| f (b j ) − f (a j )| < ε

( n∑

j=1
(b j − a j ) < δ

)
. (5.1)

If g is integrable in [a, b] then the function

x →
∫ x

a
g(t)dt

is absolutely continuous in [a, b]. This follows from the absolute continuity of the
integral. If f is Lipschitz continuous in [a, b] it is absolutely continuous in [a, b].
The converse is false. A counterexample can be constructed using 5.1 of the Problems
and Complements. Absolute continuity implies continuity but the converse is false.
The function in (1.1) is continuous and not absolutely continuous.

http://dx.doi.org/10.1007/978-1-4939-4005-9_1
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The linear combination of two absolutely continuous functions f and g in [a, b] as
well as their product f g are absolutely continuous. Their quotient f/g is absolutely
continuous if |g| ≥ co > 0 in [a, b].
Proposition 5.1 Let f be absolutely continuous in [a, b]. Then f is of bounded
variation in [a, b].
Proof Having fixed ε > 0 and the corresponding δ, partition [a, b] by points a =
xo < x1 < · · · < xn = b such that

1
2δ < xi − xi−1 < δ i = 1, . . . , n.

The number n of intervals of this partition does not exceed 2(b − a)/δ. In each
of them the variation of f is less than ε. Then by (1.2) of Proposition 1.2

V f [a, b] =
n∑

i=1
V f [xi−1, xi ] ≤ 2(b − a)

ε

δ
.

Corollary 5.1 Let f be absolutely continuous in [a, b]. Then f is a.e. differentiable
in [a, b].
Proposition 5.2 Let f be absolutely continuous in [a, b]. If f ′ ≥ 0 a.e. in [a, b]
then f is non-decreasing in [a, b].
Proof Fix [α,β] ⊂ [a, b] and set E = [ f ′ ≥ 0] ∩ [α,β]. By the assumptionμ(E) =
β − α. Having fixed ε > 0, let δ be a corresponding positive number claimed by the
absolute continuity of f . For every x ∈ E , there exist some σx > 0 such that

f (x + h) − f (x) > −εh for all h ∈ (0,σx ).

The collection of intervals [x, x + h] for x ranging over E and h ∈ (0,σx ), is
a fine Vitali covering for E . Therefore, in correspondence of the previously fixed
δ > 0, we may extract a finite collection of intervals [αi ,βi ] for i = 1, . . . , n, with
pairwise disjoint interior, such that

μ(E) − δ ≤ μ
[
E ∩

n⋃

i=1
(αi − βi )

]
and f (βi ) − f (αi ) > −ε(βi − αi ).

The complement

[α,β] −
n⋃

i=1
(αi ,βi )

consists of finitely many disjoint intervals [a j , b j ] for j = 1, . . . , m of total length
not exceeding δ. Therefore (5.1) holds for such a finite collection, and

http://dx.doi.org/10.1007/978-1-4939-4005-9_1
http://dx.doi.org/10.1007/978-1-4939-4005-9_5
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f (β) − f (α) =
n∑

i=1
[ f (βi ) − f (αi )] +

m∑

j=1
[ f (b j ) − f (a j )]

≥ −ε
n∑

i=1
(βi − αi ) − ε for all ε > 0.

Corollary 5.2 Let f be absolutely continuous in [a, b]. If f ′ = 0 a.e. in [a, b] then
f is constant in [a, b].
Remark 5.1 The conclusions of Proposition 5.2 and Corollary 5.2 are false if f is of
bounded variation and not absolutely continuous. A counterexample is the function
of the jumps introduced in § 1.1c (see 2.4 of the Complements).

Remark 5.2 The assumption of absolute continuity cannot be relaxed to the mere
continuity as shown by the Cantor ternary function and its variants (§ 5.1c–§ 5.2c
of the Problems and Complements). The same examples also show that bounded
variation and continuity do not imply absolute continuity.

6 Density of a Measurable Set

Let E ⊂ [a, b] be Lebesgue measurable. The set density functions

x → dE (x) =
∫ x

a
χE (t)dt, d[a,b]−E (x) =

∫ x

a
χ[a,b]−E (t)dt

are absolutely continuous and non-decreasing in [a, b]. Moreover

dE (x) + d[a,b]−E (x) = x − a

d ′
E (x) + d ′

[a,b]−E (x) = 1
for a.e. x ∈ [a, b].

Proposition 6.1 (Lebesgue [91]) Let E ⊂ [a, b] be Lebesgue measurable. Then

d ′
E = 1 a.e. in E and d ′

E = 0 a.e. in [a, b] − E .

Proof It suffices to prove the first of these. If E is open then d ′
E = 1 in E . Assume

now that E is of the type of a Gδ , i.e., there exists a countable collection of open sets
{En} such that En+1 ⊂ En and E = ∩En . By dominated convergence

dE (x) =
∫ x

a
χE (t)dt = lim

∫ x

a
χEn (t)dt = lim dEn (x).

Therefore
dE = dE1 + ∑

(dEn+1 − dEn ).
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Each of the term of the series is non-increasing since d ′
En+1

≤ d ′
En
. Therefore by

the Fubini theorem

d ′
E = d ′

E1
+ ∑

(dEn+1 − dEn )
′, a.e. in [a, b].

If x ∈ E then d ′
En

= 1 for all n ∈ N, and the assertion follows.
If E is a measurable subset of [a, b], there exists a set Eδ of the type of a Gδ , such

that E ⊂ Eδ and μ(Eδ − E) = 0. This implies that dE = dEδ
and thus d ′

E = d ′
Eδ

= 1
a.e. in E .

7 Derivatives of Integrals

We have observed that if f is Lebesgue integrable in [a, b] then the function

x −→ F(x) =
∫ x

a
f (t)dt

is absolutely continuous and hence a.e. differentiable in [a, b].
Proposition 7.1 Let f be Lebesgue integrable in [a, b]. Then F ′ = f , a.e. in [a, b].
Proof Assume first that f is simple. Then if {λ1, . . . ,λn} are the distinct values
taken by f , there exist disjoint, measurable sets Ei ⊂ [a, b], i = 1, . . . , n such that

f =
n∑

i=1
λiχEi and F =

n∑

i=1
λi dEi .

Therefore the assertion follows from Proposition 6.1.
Assume next that f is integrable and nonnegative in [a, b]. There exists a sequence

of simple functions { fn} such that

fn ≤ fn+1 and lim fn(x) = f (x) for all x ∈ [a, b].

By dominated convergence

F(x) = lim Fn(x) where Fn(x) =
∫ x

a
fn(t)dt.

Therefore
F = F1 + ∑

(Fn+1 − Fn).

The terms of the series are non-decreasing since

(Fn+1 − Fn)
′ = fn+1 − fn ≥ 0 a.e. in [a, b].
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Therefore by the Fubini theorem

F ′ = lim F ′
n = lim fn = f a.e. in [a, b].

A general integrable f is the difference of two nonnegative integrable
functions.

Proposition 7.2 (Lebesgue [91]) Let f be absolutely continuous in [a, b]. Then f ′
is integrable and

f (x) = f (a) +
∫ x

a
f ′(t)dt. (7.1)

Proof Assume first that f is non-decreasing so that f ′ ≥ 0 a.e. in [a, b]. Defining
f (x) = f (b) for x ≥ b, the limit

f ′(x) = lim
f
(

x + 1

n

)
− f (x)

1

n

exists a.e. in [a, b]. Then by Fatou’s lemma

∫ b

a
f ′dx ≤ lim inf n

∫ b

a

[
f
(

x + 1

n

)
− f (x)

]
dx

= lim inf n
( ∫ b+ 1

n

b
f (x)dx −

∫ a+ 1
n

a
f (x)dx

)

≤ lim inf n
f (b) − f (a)

n
= f (b) − f (a).

Since f is absolutely continuous, it is of bounded variation and by the Jordan
decomposition is the difference of two non-decreasing functions. Thus f ′ is inte-
grable in [a, b]. The function

g(x) = f (a) +
∫ x

a
f ′(t)dt

is absolutely continuous and g′ = f ′ a.e. in [a, b]. Thus (g − f )′ = 0 a.e. in [a, b]
and by Corollary 5.2, g = f + const in [a, b]. Since g(a) = f (a) the conclusion
follows.

Remark 7.1 The proof of Proposition 7.2 contains the following

Corollary 7.1 Let f be of bounded variation in [a, b]. Then f ′ is integrable in
[a, b].
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Remark 7.2 Proposition 7.2 is false if f is only of bounded variation in [a, b]. A
counterexample is given by a non-constant, non-decreasing simple function. For such
a function the representation (7.1) does not hold.

The proposition continues to be false even by requiring that f be continuous. The
Cantor ternary function (§ 5.1c of the Problems and Complements) is of bounded
variation and continuous in [0, 1] and its derivative is integrable. However it is not
absolutely continuous and (7.1) does not hold. A similar conclusion holds for the
function in § 5.2c of the Problems and Complements.

8 Differentiating Radon Measures

Let f be a nonnegative, Lebesgue measurable, real-valued function defined in R
N ,

integrable on compact subsets of RN and let Bρ(x) denote the closed ball in R
N

centered at x and radius ρ. If μ is the Lebesgue measure in RN , the notion of differ-
entiating the integral of f at some point x ∈ R

N is replaced by

lim
ρ→0

1

μ(Bρ(x))

∫

Bρ(x)

f dμ = lim
ρ→0

ν(Bρ(x))

μ(Bρ(x))
where dν = f dμ

provided the limit exists. More generally, given any two Radon measures μ and ν in
R

N , set

D+
μ ν(x) = lim sup

ρ→0

ν(Bρ(x))

μ(Bρ(x))
, D−

μ ν(x) = lim inf
ρ→0

ν(Bρ(x))

μ(Bρ(x))
(8.1)

provided μ(Bρ(x)) > 0 for all ρ > 0. Set also D±
μ ν(x) = ∞ if μ(Bρ(x)) = 0 for

some ρ > 0. If for some x ∈ R
N the upper and lower limits in (8.1) are equal and

finite, we set
D+

μ ν(x) = D−
μ ν(x) = Dμν(x)

and say that the Radon measure ν is differentiable at x , with respect to the Radon
measure μ.

Proposition 8.1 Let μ and ν be two Radon measures in R
N and let μe and νe be

their associated outer measures. For every t > 0 and every set

E ⊂ [D+
μ ν ≥ t] there holds μe(E) ≤ 1

t
νe(E). (8.2)

Analogously, for every t > 0 and every set

E ⊂ [D−
μ ν ≤ t] there holds μe(E) ≥ 1

t
νe(E). (8.3)

http://dx.doi.org/10.1007/978-1-4939-4005-9_7
http://dx.doi.org/10.1007/978-1-4939-4005-9_7
http://dx.doi.org/10.1007/978-1-4939-4005-9_8
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Proof In proving (8.2) assumefirst that the set E is bounded. Fix t > 0 and ε ∈ (0, t).
By the definition of D+

μ ν(x), for every x ∈ E , there exists a ball Bρ(x) centered at
x and of arbitrarily small radius ρ such that

(t − ε)μ(Bρ(x)) < ν(Bρ(x)). (8.4)

Let O be an open set containing E and set

F =
{
collection of closed balls Bρ(x) for x ∈ E

satisfying (8.4) and contained in O
}

.

SinceO is open and ρ is arbitrarily small, such a collection is not empty and forms
a fine Besicovitch covering for E . By the Besicovitch measure-theoretical covering
theorem, there exists a countable collection {B(xn)} of disjoint, closed balls in F ,
such that μe(E − ∪Bn) = 0. From this and (8.4)

μe(E) ≤ ∑
μ(Bn) <

1

t − ε

∑
ν(Bn) ≤ 1

t − ε
ν(O).

Since ν is regular, there exists a set Eδ of the type of a Gδ and containing E , such
that νe(E) = ν(Eδ). Therefore

νe(E) = ν(Eδ) = inf{ν(O) where O is open and containsEδ}.

Thus

μe(E) ≤ 1

t − ε
νe(E) for all ε ∈ (0, t).

This proves (8.2) if E is bounded. If not, construct a countable collection {En}
of bounded sets such that En ⊂ En+1 whose union if E . Then apply (8.2) to each of
the En to obtain

μe(En) ≤ 1

t
νe(E) for all n ∈ N.

For each n let En,δ be a set of the type of Gδ such that En ⊂ En,δ and μe(En) =
μ(En,δ). By construction E ⊂ lim inf En,δ . Therefore

μe(E) ≤ μe(lim inf En,δ) = μe(lim inf En,δ)

≤ lim inf μ(En,δ) = lim inf μe(En).

The proof of (8.3) is analogous.

http://dx.doi.org/10.1007/978-1-4939-4005-9_8
http://dx.doi.org/10.1007/978-1-4939-4005-9_8
http://dx.doi.org/10.1007/978-1-4939-4005-9_8
http://dx.doi.org/10.1007/978-1-4939-4005-9_8
http://dx.doi.org/10.1007/978-1-4939-4005-9_8
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9 Existence and Measurability of Dμν

The next proposition asserts that ν is differentiable with respect to μ for μ-almost all
x ∈ R

N . Equivalently Dμν(x) exists μ-a.e. in RN .

Proposition 9.1 There exists a Borel set E ⊂ R
N of μ-measure zero, such that D±

μ ν

is finite, and Dμν = D±
μ ν in R

N − E .

Proof Assume first that both μ and ν are finite and set E∞ = [D+
μ ν = ∞]. By (8.2)

μe([D+
μ ν > t]) ≤ 1

t
ν(RN ) for all t > 0.

Since E∞ ⊂ [D+
μ ν > t], for all t > 0, one has μe(E∞) = 0. There exists a Borel

set E∞,δ of the type of a Gδ , such that E∞ ⊂ E∞,δ , and μe(E∞) = μ(E∞,δ) = 0. Next,
for positive integers p, q, set

E p,q =
[

D−
μ ν <

p

q
<

p + 1

q
< D+

μ ν
]

− E∞,δ.

By (8.2)–(8.3)

p + 1

q
μe(E p,q) ≤ νe(E p,q) ≤ p

q
μe(E p,q).

Therefore μe(E p,q) = 0. From this

μe([D−
μ ν < D+

μ ν]) ≤ μe(
⋃

E p,q) ≤ ∑
μe(E p,q) = 0.

There exists a Borel set [D−
μ ν < D+

μ ν]δ containing [D−
μ ν < D+

μ ν] and such that

μe([D−
μ ν < D+

μ ν]) = μ([D−
μ ν < D+

μ ν]δ) = 0.

Setting
E = E∞,δ ∪ [D−

μ ν < D+
μ ν]δ

proves the proposition if μ and ν are finite. For the general case, one first considers
the restrictions μn and νn of μ and ν to the ball Bn centered at the origin and radius
n, and then lets n → ∞.

Henceforth we regard Dμν as defined in the whole RN by setting it to be zero on
the Borel set E claimed by Proposition 9.1. For ρ > 0 set

fρ(x) =
⎧
⎨

⎩

ν(Bρ(x))

μ(Bρ(x))
for x ∈ R

N − E
0 for x ∈ E .

(9.1)

http://dx.doi.org/10.1007/978-1-4939-4005-9_8
http://dx.doi.org/10.1007/978-1-4939-4005-9_8
http://dx.doi.org/10.1007/978-1-4939-4005-9_8
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The limit as ρ → 0 exists everywhere in RN and equals Dμν. Taking such a limit
along a countable collection {ρn} → 0

Dμν = lim fρn for all x ∈ R
N . (9.2)

Proposition 9.2 For all t ∈ R the sets [Dμν ≥ t] are Borel sets. In particular Dμν
is Borel measurable.

The proof hinges upon the following lemma.

Lemma 9.1 For all fixed ρ > 0, the two functions

R
N � x → μ(Bρ(x)), R

N � x → ν(Bρ(x))

are upper semi-continuous.

Proof The statement for x → μ(Bρ(x)) reduces to

lim sup
y→x

μ(Bρ(y)) ≤ μ(Bρ(x)) for all x ∈ R
N .

Let {xn} be a sequence of points in RN converging to x . Then

lim supχBρ(xn) ≤ χBρ(x) pointwise in R
N .

Equivalently

lim inf(1 − χBρ(xn)) ≥ (1 − χBρ(x)) pointwise in R
N .

By Fatou’s lemma

μ(B2ρ(x)) − μ(Bρ(x)) =
∫

B2ρ

(1 − χBρ(x))dμ

≤
∫

B2ρ

lim inf(1 − χBρ(xn))dμ

≤ lim inf
∫

B2ρ

(1 − χBρ(xn))dμ

= lim inf
{
μ(B2ρ(x)) − μ(Bρ(xn))

}

= μ(B2ρ(x)) − lim supμ(Bρ(xn)).
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9.1 Proof of Proposition 9.2

If t ≤ 0, then [Dμν ≥ t] = R
N . Therefore it suffices to consider t > 0. From (9.1)–

(9.2), Dμν = inf ϕn where ϕn = sup j≥n fρ j . Since

[Dμν ≥ t] = ⋂

n
[ϕn ≥ t] = ⋂

n

⋂

k

[
ϕn > t − 1

k

]
= ⋂

n

⋂

k

⋃

j≥n

[
fρ j > t − 1

k

]

it suffices to show that [ fρ > τ ] are Borel sets for all ρ, τ > 0. From (9.1)

[ fρ > τ ] = {
x ∈ R

N
∣∣ [ν(Bρ(x)) > τμ(Bρ(x))

} − E .

Since E is a Borel set, it suffices to show that [ν(Bρ) > τμ(Bρ)] is a Borel set.
Let {qn} denote the sequence of rational numbers. For a fixed τ > 0

[ν(Bρ) > τμ(Bρ)] = ⋃[ν(Bρ) ≥ qn] ∩ [τμ(Bρ) < qn].

Since the two functions x → μ(Bρ(x)), ν(Bρ(x)) are upper semi-continuous, the
sets [τμ(Bρ) < qn] are open and the sets [ν(Bρ) ≥ qn] are closed.

10 Representing Dμν

In representing Dμν assume that the two Radon measures μ and ν are defined on the
same σ-algebra A. The measurable function Dμν can be identified by considering
separately the cases when ν is absolutely continuous or singular with respect to μ.
For general Radon measures, Dμν is identified by combining these two cases and
applying the Lebesgue decomposition theorem of ν into two measures νo and ν1
where the first is absolutely continuous and the second is singular with respect to μ
(Theorem 18.2 of Chap. 4).

10.1 Representing Dμν for ν � μ

Lemma 10.1 Let ν � μ. Then ν([Dμν = 0]) = 0.

Proof Let E be the Borel set claimed by Proposition 9.1 and appearing in (9.1).
Then for all t > 0, [Dμν = 0] ⊂ E ∪ [D−

μ ν < t]. From this, (8.3), and the absolute
continuity of ν with respect to μ

ν([Dμν = 0]) ≤ ν([D−
μ ν < t]) ≤ tμ([D−

μ ν < t]).

http://dx.doi.org/10.1007/978-1-4939-4005-9_9
http://dx.doi.org/10.1007/978-1-4939-4005-9_9
http://dx.doi.org/10.1007/978-1-4939-4005-9_9
http://dx.doi.org/10.1007/978-1-4939-4005-9_4
http://dx.doi.org/10.1007/978-1-4939-4005-9_9
http://dx.doi.org/10.1007/978-1-4939-4005-9_8
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If μ is finite, the conclusion follows by letting t → 0. If not, restrict first μ and ν
to balls Bn centered at the origin and radius n, and then let n → ∞.

It follows from Lemma 10.1 that

ν([Dμν = 0]) =
∫

[Dμν=0]
Dμνdμ = 0.

The next proposition asserts that such a formula actually holdswith the set [Dμν =
0] replaced by any μ-measurable set E .

Proposition 10.1 Assume ν is absolutely continuous with respect to μ. Then for
every μ-measurable set E

ν(E) =
∫

E
Dμνdμ. (10.1)

Proof Let E ⊂ R
N be μ-measurable and for t > 1 and n ∈ Z set

En = E ∩ [tn < Dμν ≤ tn+1].

By construction
⋃

n∈ZEn ⊂ E , and

E − ⋃

n∈Z
En ⊂ [Dμν = 0] =⇒ ν

(
E − ⋃

n∈Z
En

) = 0.

From this and (8.3)

ν(E) = ∑

n∈Z
ν(En) ≤ ∑

n∈Z
tn+1μ(En)

= t
∑

n∈Z
tnμ(En) ≤ t

∑

n∈Z

∫

En

Dμνdμ = t
∫

E
Dμνdμ.

Similarly using (8.2)

ν(E) = ∑

n∈Z
ν(En) ≥ ∑

n∈Z
tnμ(En)

= 1

t

∑

n∈Z
tn+1μ(En) ≥ 1

t

∑

n∈Z

∫

En

Dμνdμ = 1

t

∫

E
Dμνdμ.

Therefore
1

t

∫

E
Dμνdμ ≤ ν(E) ≤ t

∫

E
Dμνdμ

for all t > 1. Letting t → 1 proves (10.1).

http://dx.doi.org/10.1007/978-1-4939-4005-9_8
http://dx.doi.org/10.1007/978-1-4939-4005-9_8
http://dx.doi.org/10.1007/978-1-4939-4005-9_10
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10.2 Representing Dμν for ν ⊥ μ

Continue to assume that μ and ν are two Radon measures inRN defined on the same
σ-algebra A.

Proposition 10.2 Assume ν is singular with respect to μ. There exists a Borel set
E⊥ of μ-measure zero, such that Dμν = 0 in R

N − E⊥.

Proof Since μ and ν are singular, RN can be partitioned into two disjoint sets RN
μ

and R
N
ν , such that for every E ∈ A (§ 18 of Chap.4).

μ(E ∩ R
N
ν ) = 0 and ν(E ∩ R

N
μ ) = 0.

By (8.2), for all t > 0

μ([Dμν > t]) = μ([Dμν > t] ∩ R
N
μ ) ≤ 1

t
ν([Dμν > t] ∩ R

N
μ ) = 0.

Denoting by {tn} the positive rational numbers, [Dμν > 0] = ⋃[Dμν > tn] and

μ([Dμν > 0]) ≤ ∑
μ([Dμν > tn]) = 0.

11 The Lebesgue-Besicovitch Differentiation Theorem

Let μ be a Radonmeasure inRN defined on a σ-algebraA. A function f : RN → R
∗

measurable with respect to A, is locally μ-integrable in R
N if

∫

E
| f |dμ < ∞ for every bounded set E ∈ A.

If f is nonnegative, the formula

A � E −→ ν(E) =
∫

E
f dμ

defines a Radon measure ν in R
N , absolutely continuous with respect to μ, whose

Radon-Nykodým derivative with respect to μ is f . Moreover, such an f is unique,
up to a set of μ-measure zero. Therefore by Proposition 10.1

Dμν = dν

dμ
= f μ − a.e. in RN .

http://dx.doi.org/10.1007/978-1-4939-4005-9_4
http://dx.doi.org/10.1007/978-1-4939-4005-9_8
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Let now f be locally μ-integrable in R
N and of variable sign. By writing f =

f + − f − and applying the same reasoning separately to f ±, proves a N -dimensional
version of the Lebesgue differentiation theorem for general Radon measures.

Theorem 11.1 (Lebesgue-Besicovitch [16]) Let μ be a Radon measure in R
N and

let f : RN → R
∗ be locally μ-integrable. Then

lim
ρ→0

1

μ(Bρ(x))

∫

Bρ(x)

f dμ = f (x) for μ − a.e.x ∈ R
N . (11.1)

If μ is the Lebesgue measure in R and f is locally Lebesgue integrable, the limit
in (11.1) takes the form

lim
h→0

1

2h

∫ x+h

x−h
f (y)dy = f (x) for a.e. x ∈ R. (11.1)N=1

In this sense, (11.1) can be regarded as a N -dimensional notion of taking the
derivative of an integral at a fixed point x ∈ R

N .

11.1 Points of Density

Let E ⊂ R
N be μ measurable. Applying (11.1) with f = χE , gives

lim
ρ→0

μ(E ∩ Bρ(x))

μ(Bρ(x))
= χE (x) μ − a.e. in E .

A point x ∈ E for which such a limit is one, is a point of density of E .

Corollary 11.1 Almost every point of a μ-measurable set E ⊂ R
N is a point of

density for E.

11.2 Lebesgue Points of an Integrable Function

Letμ be a Radonmeasure inRN and let f be locallyμ-integrable. The points x ∈ R
N

where (11.1) holds form a set called the set of differentiability of f . A point x is a
Lebesgue point for f if

lim
ρ→0

1

μ(Bρ(x))

∫

Bρ(x)

| f (y) − f (x)|dμ = 0. (11.2)

A Lebesgue point is a differentiability point for f . The converse is false.
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Theorem 11.2 Let μ be a Radon measure in R
N and let f be locally μ-integrable.

There exists a μ-measurable set E ⊂ R
N of μ-measure zero, such that (11.2) holds

for all x ∈ R
N − E . Equivalently, μ-a.e. x ∈ R

N is a Lebesgue point for f .

Proof Let rn be a rational number. The function | f − rn| is locally μ-integrable.
Therefore there exists a Borel set En ⊂ R

N of μ-measure zero, such that

lim
ρ→0

1

μ(Bρ(x))

∫

Bρ(x)

| f − rn|dμ = | f (x) − rn| for all x ∈ R
N − En.

Since f is locally μ-integrable in R
N , there exists Eo ⊂ R

N , of μ-measure zero,
such that f (x) is finite for all x ∈ R

N − Eo. The set E = ⋃∞
n=0En , has μ-measure

zero. Then for all x ∈ R
N − E , by the triangle inequality

lim
ρ→0

1

μ(Bρ(x))

∫

Bρ(x)

| f − f (x)|dμ ≤ 2| f (x) − rn|

for all rational numbers {rn}. Since f (x) is finite, there exists a sequence {rn′ } ⊂ {rn}
converging to f (x). Thus (11.2) holds for all x ∈ R

N − E .

12 Regular Families

Let μ be a Radon measure in R
N . For a fixed x ∈ R

N a family Fx of μ-measurable
subsets of RN is said to be regular at x if:

(i) For every ε > 0 there exists S ∈ Fx such that diam S ≤ ε
(ii) There exists a constant c ≥ 1, such that for each S ∈ Fx

μ(B(x)) ≤ cμ(S). (12.1)

where B(x) is the smallest ball in RN centered at x and containing S.

The first of these asserts, roughly speaking, that the sets S ∈ Fx shrink to x , even
though x is not required to be in any of the sets S ∈ Fx . The second says that each
S is, roughly speaking, comparable to a ball centered at x .

If μ is the Lebesgue measure inRN , examples of regular familiesFo at the origin,
include the collection of cubes, ellipsoids or regular polygons centered at the origin.
An example of a regular family Fo whose sets S don’t contain the origin is the
collection of spherical annuli 1

2ρ < |x | < ρ.
The sets in Fx have no symmetry restrictions.
The sets shrinking to a point x , in Theorem 11.2 need not be balls, provided they

shrink to x along a regular family Fx .
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Proposition 12.1 Let f locally μ-integrable in R
N . Then if x is a Lebesgue point

for f and Fx is a regular family at x

lim
diam S→0

S∈Fx

1

μ(S)

∫

S
| f (y) − f (x)|dμ = 0. (12.2)

In particular

f (x) = lim
diam S→0

S∈Fx

1

μ(S)

∫

S
f dμ. (12.3)

Proof Having fixed S ∈ Fx let B(x) be the ball satisfying (12.1). Then

1

μ(S)

∫

S
| f − f (x)|dμ ≤ c

μ(B(x))

∫

B(x)

| f − f (x)|dμ.

Referring back to (11.1)N=1, these remarks imply that for locally Lebesgue inte-
grable functions of one variable

lim
h→0

1

h

∫ x+h

x
f dμ = f (x) for a.e. x ∈ R. (11.1)′N=1

13 Convex Functions

A function f from an open interval (a, b) into R
∗ is convex if for every pair x, y ∈

(a, b) and every t ∈ [0, 1]

f (t x + (1 − t)y) ≤ t f (x) + (1 − t) f (y).

A function f is concave if − f is convex. The set

G f = {
(x, y) ∈ R

2
∣∣ x ∈ (a, b), y ≥ f (x)

}

is the epigraph of f . The function f is convex if and only if its epigraph is convex.
The positive linear combination of convex functions is convex and the pointwise
limit of a sequence of convex functions is convex.

Proposition 13.1 Let { fα} be a family of convex functions defined in (a, b). Then
the function f = sup fα is convex in (a, b).

Proof Fix x, y ∈ (a, b) and t ∈ [0, 1] and assumefirst that f (t x + (1 − t)y) is finite.
Having fixed an arbitrary ε > 0 there exists α such that

f (t x + (1 − t)y) ≤ fα(t x + (1 − t)y) + ε

≤ t fα(x) + (1 − t) fα(y) + ε ≤ t f (x) + (1 − t) f (y) + ε.
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If f (t x + (1 − t)y) = ∞, having fixed an arbitrarily large number k, there exists
α, such that k ≤ t fα(x) + (1 − t) fα(y).

Proposition 13.2 Let f be a real-valued, convex function in some interval (a, b) ⊂
R. Then the function

y −→ F(x; y) = f (x) − f (y)

x − y
x, y ∈ (a, b); x �= y

is non-decreasing.

Proof Assume y > x . It suffices to show that

F(x; z) ≤ F(x; y) for z = t x + (1 − t)y for all t ∈ (0, 1).

By the convexity of f

F(x; z) = f (t x + (1 − t)y) − f (x)

(1 − t)(y − x)
≤ (1 − t)[ f (y) − f (x)]

(1 − t)(y − x)
= F(x; y).

By symmetry, the function x → F(x; y) is also non-decreasing.

Proposition 13.3 Let f be a real-valued, convex function in some interval [a, b] ⊂
R. Then f is locally Lipschitz continuous in (a, b).

Proof Fix a subinterval [c, d] ⊂ (a, b). Then for all x, y ∈ [c, d]

F(c; a) = f (c) − f (a)

c − a
≤ f (x) − f (y)

x − y
≤ f (b) − f (d)

b − d
= F(b; d)

If F(x; y) is nonnegative, also F(b; d) is nonnegative. Therefore

| f (x) − f (y)| ≤ F(b; d)|x − y|.

If the difference quotient F(x; y) is negative, then

| f (x) − f (y)| ≤ −F(a; c)|x − y|.
Proposition 13.4 Let f be a real-valued convex function in (a, b). Then f is a.e.
differentiable in (a, b). Moreover the right and left derivatives D± f (x) exist and
are finite at each x ∈ (a, b) and are both monotone non-decreasing functions. Also
D− f (x) ≤ D+ f (x) for all x ∈ (a, b).
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Proof For each x ∈ (a, b) fixed, the function (h, k) → F(x + h; x + k) is non-
decreasing in both variables. Therefore there exist and are finite the limits

D− f (x) = lim
h↗0

F(x + h; x) ≤ lim
k↘0

F(x; x + k) = D+ f (x).

Since f is absolutely continuous in every closed subinterval of (a, b), it is a.e.
differentiable in (a, b) and D− f (x) = D+ f (x) for a.e. x ∈ (a, b). If x < y

D+ f (x) = lim
h↘0

F(x + h; x) ≤ lim
h↘0

F(y + h; y) = D+ f (y).

Thus D± f are both non-decreasing.

14 The Jensen’s Inequality

Letϕ be a real-valued, convex function in some interval (a, b). For a fixed x ∈ (a, b)

consider the set
∂xϕ = [D−ϕ(x), D+ϕ(x)].

If ϕ is differentiable at x , then ∂xϕ = ϕ′(x). Otherwise ∂xϕ is an interval. Fix
α ∈ (a, b) and m ∈ ∂αϕ. Since ϕ is convex the line through (α,ϕ(α)) and slope m
lies below the epigraph of ϕ. In particular

ϕ(α) + m(η − α) ≤ ϕ(η) for all η ∈ (a, b). (14.1)

Proposition 14.1 (Jensen [76]) Let E be a measurable set of finite measure, and
let f : E → R be integrable in E. Then, for every real-valued, convex function ϕ
defined in R

ϕ
( 1

μ(E)

∫

E
f dμ

)
≤ 1

μ(E)

∫

E
ϕ( f )dμ. (14.2)

Proof Applying (14.1) for the choices

α = 1

μ(E)

∫

E
f dμ η = f (x) for a.e. x ∈ E

yields

ϕ
( 1

μ(E)

∫

E
f dμ

)
+ m

(
f (x) − 1

μ(E)

∫

E
f dμ

)
≤ ϕ

(
f (x)

)
.

Integrate over E and divide by the measure of E .
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15 Extending Continuous Functions

Let f be a continuous function defined on a set E ⊂ R
N with values in R and with

modulus of continuity

ω f (s) = sup
|x−y|≤s
x,y∈E

| f (x) − f (y)| s > 0.

The function s → ω f (s) is nonnegative and non-decreasing in [0,∞). The func-
tion f is uniformly continuous in E if and only if ω f (s) → 0 as s → 0.

15.1 The Concave Modulus of Continuity of f

Assume that ω f (·) is dominated in [0,∞) by some increasing, affine function �(·),
i.e.,

ω f (s) ≤ as + b for all s ∈ [0,∞) for some a, b ∈ R
+. (15.1)

Denote by s → c f (s) the concave modulus of continuity of f , i.e., the smallest
concave function in [0,∞) whose graph lies above the graph of s → ω f (s). If ω f (·)
satisfies (15.1), then c f (·) can be constructed as

c f (s) = inf{�(s) ∣
∣ � is affine and � ≥ ω f in [0,∞)}.

It follows from the definitions that

c f (|x − y|) − | f (x) − f (y)| ≥ 0 for all x, y ∈ E . (15.2)

Theorem 15.1 (Kirzbraun-McShane-Pucci)3 Let f be a real-valued, uniformly con-
tinuous function on a set E ⊂ R

N with modulus of continuity ω f satisfying (15.1).
There exists a continuous function f̃ defined on R

N , which coincides with f on E.
Moreover f and f̃ have the same concave modulus of continuity c f and

sup
RN

f̃ = sup
E

f ; inf
RN

f̃ = inf
E

f.

3If the modulus of continuity is of Lipschitz type, the theorem is in M.D. Kirzbraun [83]. The proof
of Kirzbraun is rather general as it does include vector-valued functions. A simpler proof for scalar
functions, is in McShane [106]. Pucci observed that the concavity of the modulus of continuity
is sufficient to construct the extension. The proof has been taken from the 1974 lectures on Real
Analysis by C. Pucci, at the Univ. of Florence, Italy.
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Proof For each x ∈ R
N , set

g(x) = inf
y∈E

{ f (y) + c f (|x − y|)}.

The required extension is

f̃ (x) = min{g(x); sup
E

f }.

If x ∈ E , by (15.2)

f (y) + c f (|x − y|) ≥ f (x) + c f (|x − y|) − | f (x) − f (y)| ≥ f (x)

for all y ∈ E . Therefore g = f within E . Next for all x ∈ R
N and all y ∈ E

inf
E

f + inf
y∈E

c f (|x − y|) ≤ g(x) ≤ f (y) + c f (|x − y|).

Therefore
inf
RN

g = inf
E

f and sup
RN

f̃ = sup
E

f.

To prove that f and f̃ have the same concave modulus of continuity, it suffices
to prove that g has the same concave modulus of continuity as f . Fix x1, x2 ∈ R

N

and ε > 0. There exists y ∈ E such that

g(x1) ≥ f (y) + c f (|x1 − y|) − ε.

Therefore for such y ∈ E

g(x1) − g(x2) ≥ c f (|x1 − y|) − c f (|x2 − y|) − ε.

If |x2 − y| ≤ |x1 − x2|

g(x1) − g(x2) ≥ −c f (|x1 − x2|) − ε.

Otherwise
|x1 − y| > |x2 − y| − |x1 − x2| > 0.

Since s → c f (s) is concave, −c f (·) is convex, and by Proposition 13.2

c f (|x1 − y|) − c f (0)

|x1 − y| ≥ c f (|x1 − y| + |x2 − x1|) − c f (|x1 − x2|)
|x1 − y| + |x2 − x1| − |x1 − x2|

≥ c f (|x2 − y|) − c f (|x1 − x2|)
|x1 − y| .
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From this, taking into account that c f (0) = 0

c f (|x1 − y|) − c f (|x2 − y|) ≥ −c f (|x1 − x2|).

Thus in either case

g(x1) − g(x2) ≥ −c f (|x1 − x2|) − ε.

Interchanging the role of x1 and x2 and taking into account that ε > 0 is arbitrary,
gives

|g(x1) − g(x2)| ≤ c f (|x1 − x2|).

16 The Weierstrass Approximation Theorem

Theorem 16.1 (Weierstrass [172]) Let f be a real-valued, uniformly continuous
function defined on a bounded set E ⊂ R

N . There exists a sequence of polynomials
{Pj } such that

sup
E

| f − Pj | → 0 as j → ∞.

Proof By Theorem 15.1 we may regard f as defined in the whole RN with modulus
of continuity ω f . After a translation and dilation, we may assume that Ē is contained
in the interior of the unit cube Q centered at the origin of RN and with faces parallel
to the coordinate planes.

For x ∈ R
N and δ > 0, we let Qδ(x) denote the cube of edge 2δ centered at x and

congruent to Q. For j ∈ N, set

p j (x) = 1

αN
j

N∏

i=1
(1 − x2

i ) j α j =
∫ 1

−1

(
1 − t2

) j
dt,

These are polynomials of degree 2 j N satisfying

∫

Q1(x)

p j (x − y)dy = 1 for all j ∈ N and all x ∈ R
N .

The approximating polynomials claimed by the theorem are

Pj (x) =
∫

Q
f (y)p j (x − y)dy. (16.1)

These are called the Stieltjes polynomials relative to f . For x ∈ E compute

Pj (x) − f (x) =
∫

Q
f (y)p j (x − y)dy −

∫

Q1(x)

f (x)p j (x − y)dy.
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Let δ > 0 be so small that Qδ(x) ⊂ Q. Then

|Pj (x) − f (x)| ≤
∫

Qδ(x)∩Q
| f (x) − f (y)|p j (x − y)dy

+ ∣∣
∫

Q−Qδ(x)

f (y)p j (x − y)dy
∣∣

+ ∣∣
∫

Q1(x)−Qδ(x)

f (x)p j (x − y)dy
∣∣

≤ ω f (2
√

Nδ) + sup
E

| f |
∫

Q−Qδ(x)

p j (x − y)dy

+ sup
E

| f |
∫

Q1(x)−Qδ(x)

p j (x − y)dy.

To estimate the last two integrals we observe that for y /∈ Qδ(x), for at least one
index i ∈ {1, . . . , N }, there holds |xi − yi | > δ. Therefore

p j (x − y) ≤ α−N
j (1 − δ2) j .

Moreover from the definition of α j

α j ≥ 2
∫ 1

0
(1 − t) j dt = 2

j + 1
.

Combining these calculations we estimate

sup
E

| f − Pj | ≤ ω(δ) + 21−N sup
E

| f |( j + 1)N (1 − δ2) j .

Corollary 16.1 Let E be a compact subset of RN . Then C(E) endowed with the
topology of the uniform convergence, is separable.

Proof The collection of polynomials in the real variables x1, . . . , xN , with rational
coefficients is a countable, dense subset of C(E).

17 The Stone-Weierstrass Theorem

Let {X;U} be a compact Hausdorff space, and denote by C(X) the collection of all
real-valued, continuous functions defined in X . Setting

d( f, g) = sup
x∈X

| f (x) − g(x)| f, g ∈ C(X) (17.1)
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defines a complete metric in C(X). We continue to denote by C(X) the resulting
metric space. The sum of two functions in C(X) is in C(X) and the product of a
function in C(X) by a real number is an element of C(X). Thus C(X) is a vector
space. One verifies that the operations of sum and product by real numbers

+ : C(X) × C(X) → C(X) • : R × C(X) → C(X)

are continuous with respect to the corresponding product topologies. Thus C(X) is
a topological vector space. The space C(X) is also an algebra in the sense that the
product of any two functions in C(X) remains in C(X). More generally a subset
F ⊂ C(X) is an algebra if it is closed under the operations of sum, product, and
product by real numbers. For example, the collection of functions f ∈ C(X) that
vanish at some fixed point xo ∈ X , is an algebra. The intersection of all algebras
containing a given subset of C(X) is an algebra. Since {X;U} is Hausdorff its points
are closed. Therefore, having fixed x �= y in X , there exists a continuous function
f : X → [0, 1] such that f (x) = 0 and f (y) = 1 (Urysohn’s lemma, § 2 of Chap.2).
Thus there exists an element of C(X) that distinguishes any two fixed, distinct points
in X . More generally an algebra F ⊂ C(X) separates points of X if for any pair of
distinct points x, y ∈ X , there exists a function f ∈ F , such that f (x) �= f (y). For
example if E is a bounded, open subset of RN the collection of all polynomials in
the coordinate variables forms an algebra P of functions in C(Ē). Such an algebra
trivially separates points.

The classical Weierstrass theorem asserts that every f ∈ C(Ē) can be approxi-
mated by elements of P , in the metric of (17.1). Equivalently, C(Ē) is the closure of
P in the metric (17.1). The proof was based on constructing explicitly the approxi-
mating polynomials to a given f ∈ C(Ē).

Stone’s theorem identifies the structure that a subset of C(X) must possess to be
dense in C(X).

Theorem 17.1 (Stone [155]) Let {X;U} be a compact Hausdorff space and let F ⊂
C(X) be an algebra that separates points and that contains the constant functions.
Then F̄ = C(X).

18 Proof of the Stone-Weierstrass Theorem

Proposition 18.1 Let {X;U} be a compact Hausdorff space and let F ⊂ C(X) be
an algebra. Then

(i) The closure F̄ in C(X), is an algebra
(ii) If f ∈ F then | f | ∈ F̄

(iii) If f and g are in F , then max{ f ; g} and min{ f ; g} are in F̄ .

http://dx.doi.org/10.1007/978-1-4939-4005-9_2
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Proof The first statement follows from the structure of an algebra and the notion of
closure in the metric (17.1). To prove (ii) we may assume, without loss of generality,
that | f | ≤ 1. Regard f as a variable ranging over [−1, 1]. By the classicalWeierstrass
approximation theorem, applied to the function [−1, 1] � f → | f |, having fixed
ε > 0, there exists a polynomial Pε( f ) in the variable f , such that

sup
f ∈[−1,1]

∣
∣| f | − Pε( f )

∣
∣ ≤ ε.

This in turn implies that

sup
x∈X

∣∣| f (x)| − Pε

(
f (x)

)∣∣ ≤ ε.

Since F is an algebra, Pε( f ) ∈ F . Thus | f | is in the closure of F . The last
statements follow from (ii) and the identities

max{ f ; g} = 1
2 ( f + g) + 1

2 | f − g|
min{ f ; g} = 1

2 ( f + g) − 1
2 | f − g|.

18.1 Proof of Stone’s Theorem

Having fixed f ∈ C(X) and ε > 0, we exhibit a function ϕ ∈ F̄ such that d( f,ϕ) ≤
ε. SinceF separates points of X , for any two distinct points ξ, η ∈ X , there exists h ∈
F such that h(ξ) �= h(η). SinceF contains the constants, there exist numbersλ andμ,
such that the function ϕξη = λh + μ is inF and ϕξη(ξ) = f (ξ) and ϕξη(η) = f (η).
By keeping ξ fixed, regard ϕξη as a family of continuous functions, parameterized
with η ∈ X . Since ϕξη and f coincide at η and are both continuous, for each η ∈ X ,
there exists an open set Oη containing η and such that ϕξη < f + ε in Oη. The
collection of open setsOη, as η ranges over X is an open covering for X from which
we extract a finite one {Oη1 , . . . ,Oηn }, for some finite n. Set

ϕξ = min
{
ϕξη1 , . . . ,ϕξηn

}
.

By Proposition 18.1–(iii), ϕξ ∈ F̄ . Moreover by construction

ϕξ ≤ f + ε in X and ϕξ(ξ) = f (ξ) for all ξ ∈ X.

Since ϕξ and f coincide at ξ and they are both continuous, for each ξ ∈ X there
exists an open setOξ containing ξ and such that ϕξ > f − ε inOξ . The collection of
open sets Oξ , as ξ ranges over X is an open covering for X , from which we extract
a finite one, for example {Oξ1 , . . . ,Oξm } for some finite m. Set
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ϕ = max
{
ϕξ1 , . . . ,ϕξm

}
.

By Proposition 18.1–(iii), ϕ ∈ F̄ , and by construction | f − ϕ| ≤ ε in X .

19 The Ascoli-Arzelà Theorem

Let E ⊂ R
N be open and let x ∈ E . A sequence of functions { fn} from E into R is

equibounded at x if there exists M(x) > 0 such that

| fn(x)| ≤ M(x) for all n ∈ N. (19.1)

The sequence { fn} is equi-continuous at x if there exists a continuous increasing
function ωx : R+ → R

+ with ωx (0) = 0, such that for all y ∈ E

| fn(x) − fn(y)| ≤ ωx (|x − y|) for all n ∈ N. (19.2)

Theorem 19.1 (Ascoli-Arzelà)4 Let { fn} be a sequence of pointwise equibounded
and equi-continuous functions in E. There exists a subsequence { fn′ } ⊂ { fn} con-
verging to a continuous function f in E. Moreover for all x ∈ E

| f (x) − f (y)| ≤ ωx (|x − y|) for all y ∈ E

and the convergence is uniformly on compact subsets K ⊂ E.

Proof Let Q denote the set of points of RN whose coordinates are rational. Such
a set is countable and dense in E . Let x1 ∈ Q ∩ E . Since the sequence of numbers
{ fn(x1)} is bounded, we may select a subsequence { fn1(x1)} convergent to some
real number that we denote with f (x1). If x2 ∈ Q ∩ E , the sequence of numbers
{ fn1(x2)} is bounded, and we may select a convergent subsequence { fn1,2(x2)} →
f (x2). Proceeding in this fashion we may select out of { fn}, by a diagonalization
process, a subsequence { fn′ } such that

fn′(x) −→ f (x) for all x ∈ Q ∩ E .

Next, fix x ∈ E − Q. SinceQ is dense in E , for each ε > 0 there exist x� ∈ Q ∩ E
such that |x − x�| < ε. Therefore by the assumption of equi-continuity at x ,

4First proved by Ascoli in [6] for equi-Lipschitz functions, and extended by Arzelà in [5] to a
general family of equi-continuous functions.
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| fn′(x) − fm ′(x)| ≤ | fn′(x) − fn′(x�)|
+ | fm ′(x) − fm ′(x�)|
+ | fn′(x�) − fm ′(x�)|

≤ 2ωx (ε) + | fn′(x�) − fm ′(x�)|.

Since { fn′(x�)} is convergent, there exists a positive integer m(x�) large enough
that

| fn′(x�) − fm ′(x�)| ≤ ε for all n′, m ′ > m(x�).

Therefore for all such n′ and m ′

| fn′(x) − fm ′(x)| ≤ ε + 2ωx (ε).

Hence { fn′(x)} is a Cauchy sequence with limit f (x). For x, y ∈ E

| f (x) − f (y)| = lim | fn′(x) − fn′(y)| ≤ ωx (|x − y|).

Let K ⊂ E be compact and let ε > 0 be fixed. For each x ∈ K there exists δx > 0,
depending on ε, such that

ωx (|x − y|) < 1
3ε for all y ∈ Bδx (x).

The collection of open balls {B 1
2 δx

(x)}x∈K covers K and we select a finite one, for

the radii { 12δx1 , . . .
1
2δxm } for some finite m. Since Q is dense in E , the points x j can

be chosen in Q, and in such a way that the collection of balls {Bδx j
(x j )}m

j=1 covers
K . From the convergence of { fn′ } → f there exists an integer nm,ε such that

| f (x j ) − fn′(x j )| < 1
3ε for n′ ≥ nm,ε and j = 1, . . . , m.

Each x ∈ K is contained in some ball Bδx j
(x j ). Therefore for n′ ≥ nm,ε

| fn′(x) − f (x)| ≤ | fn′(x) − fn′(x j )|
+ | fn′(x j ) − f (x j )|
+ | f (x) − f (x j )| < ε.

19.1 Pre-compact Subsets of C(Ē)

Let E be a bounded, open subset of RN and denote by C(Ē) the collection of all
real-valued, continuous functions defined in E , with the metric (17.1).
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Proposition 19.1 A subset K ⊂ C(Ē) is pre-compact in C(Ē), if and only if the
elements of K are pointwise equibounded and equi-continuous in Ē.

Proof SinceC(E) is metric and separable, compactness and sequential compactness
are equivalent (Proposition 17.3 of Chap. 2). Then, the sufficient condition follows
from Theorem 19.1. For the necessary part recall that if K is pre-compact in C(Ē),
then K̄ is totally bounded, and hence it admits an ε-net, for all ε > 0 (Theorem 17.1
of Chap.2).

Problems and Complements

1c Functions of Bounded Variations

1.1. The continuous function on [0, 1]

f (x) =
{

x2 cos
π

x
for x ∈ (0, 1]

0 for x = 0

is of bounded variation in [0, 1].
1.2. Let f be the continuous function defined in [0, 1] by

f (0) = 0, f
(

1
2n+1

) = 0, f
(

1
2n

) = 1
2n for all n ∈ N

f is affine on the intervals
[

1
m+1 ,

1
m

]
for all m ∈ N.

Such an f is not of bounded variation in [0, 1].
1.3. Prove Propositions 1.1–1.3.
1.4. Let { fn} be a sequence of functions in [a, b] converging pointwise in [a, b] to

f . Then V f [a, b] ≤ lim inf V fn [a, b], and strict inequality may occur as shown
by the sequence

fn(x) =
⎧
⎨

⎩

0 for x = 0
1
2 for x ∈ (0, 1

n ]
0 for x ∈ ( 1n , 1].

1.5. Let f be continuous and of bounded variation in [a, b]. Then the functions
x → V f [a, x], V+

f [a, x], V−
f [a, x] are continuous in [a, b].

1.6. Prove that the distribution function f∗(·) of a measurable function f on a mea-
sure space {X,A,μ}, as defined by (15.1c) of Chap.4, is of bounded variation
in every interval [a, b] ⊂ R.

http://dx.doi.org/10.1007/978-1-4939-4005-9_2
http://dx.doi.org/10.1007/978-1-4939-4005-9_2
http://dx.doi.org/10.1007/978-1-4939-4005-9_4
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1.1c The Function of The Jumps

Let f be of bounded variation in [a, b] and regard it as defined in R, by extending f
to be equal to f (a) on (−∞, a] and equal to f (b) in [b,∞). Prove that the limits

f (x±)
def= lim

h→0
f (x ± h) for h > 0

exist for all x ∈ [a, b]. The function of the jumps of f is defined by

J f (x) = ∑

a≤c j ≤x

[
f (c+

j ) − f (c−
j )

]
.

The difference f − J f is continuous in [a, b]. Also J f is of bounded variation in
[a, b] and

V f [a, b] = V f −J f [a, b] + VJ f [a, b].

Therefore a function f of bounded variation in [a, b] can be decomposed into the
continuous function f − J f and J f . The latter bears the possible discontinuities of
f in [a, b].
1.7. Construct a non-decreasing function in [0, 1] which is discontinuous at all the

rational points of [0, 1].

1.2c The Space BV [a, b]

Let [a, b] ⊂ R be a finite interval and denote by BV [a, b] the collection of all
functions f : [a, b] → R of bounded variation in [a, b]. One verifies that BV [a, b]
is a linear vector space. Also setting

d( f, g) = | f (a) − g(a)| + V f −g[a, b] for f, g ∈ BV [a, b] (1.1c)

defines a distance in BV [a, b] by which {BV [a, b]; d} is a metric space.
For any two functions f, g ∈ BV [a, b]

sup
[a,b]

| f − g| ≤ | f (a) − g(a)| + V f −g[a, b]. (1.2c)

Therefore a Cauchy sequence in BV [a, b] is also Cauchy in the sup-norm. The
converse is false as illustrated in Fig. 1c. The sequence { fn} generated as in Fig. 1c
is not a Cauchy sequence in the topology of BV [0, 1], while it is a Cauchy sequence
in the topology of C[0, 1].
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Fig. 1c Cauchy sequence in the sup-norm and not in the BV-norm

1.2.1c Completeness of BV [a, b]

Let { fn} be a Cauchy sequence in BV [a, b]. There exists f ∈ BV [a, b] such that
{ fn} → f in the topology of BV [a, b].

The proof is in two steps. First one uses (1.2c) to identify the limit f . Then
one proves that such an f is actually in BV [a, b] by using that { fn} is Cauchy in
BV [a, b]. As a consequence BV [a, b] is a complete metric space.

2c Dini Derivatives

2.1. Compute D+ f (0) and D+ f (0) for the function in (1.1).
2.2. Let f have a maximum at some c ∈ (a, b). Then D− f (c) ≥ 0.
2.3. Let f be continuous in [a, b]. If D+ f ≥ 0 in [a, b], then f is non-decreasing

in [a, b]. The assumption that f be continuous cannot be removed.
Hint: Fix [α,β] ⊂ (a, b), and by continuity extend the function f to be equal
to f (β) for x ≥ β and to be equal to f (α) for x ≤ α. Having fixed ε > 0, the
assumption implies that for each x ∈ [α,β] there exists

0 < hx = h(x, ε) < 1
2 (b − β)

such that
f (x) < f (x + hx ) + hε.

By continuity, such inequality continues to hold for all y ∈ (x − δx , x + δx ) for
some δx > 0, which without loss of generality we may assume not to exceed
1
4hx . The collection of these open intervals covers [α,β]. From this select a
finite sub-collection, say

(x j − δ j , x j + δ j ) for j = 1, . . . , n.

http://dx.doi.org/10.1007/978-1-4939-4005-9_1
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To these are associated positive numbers h j < 1
2 (β − b) such that

f (y) < f (y + h j ) + h jε for all y ∈ (x j − δ j , x j + δ j ).

Starting with y = α and iterating this inequality m ≤ n times gives

f (α) < f
(
α +

m∑

j=1
h j

)
+

m∑

j=1
h jε.

By construction, there exists m ≤ n such that

α +
m∑

j=1
h j ≥ β and

m∑

j=1
h j ≤ b − a.

Therefore
f (α) < f (β) + ε(b − a) for all ε > 0.

2.4. Let f ∈ BV [a, b] and let J f the function of the jumps of f introduced in § 1.1c.
Prove that J ′

f = 0 a.e. in [a, b].
Hint: Assume that f is non-decreasing, so that J f is non decreasing. Denoting
by {cn} the sequence of the jumps of f

J f (b) − J f (a) = ∑

a<c j ≤b

[
f (c+

j ) − f (c−
j )

]
. (2.1c)

Fix m ∈ N and let ε > 0 be so small that the intervals

(α j ,β j ] =
(

c j − ε

2m
, c j + ε

2m

]⋂
(a, b] for j = 1, . . . , m

are disjoint. The complement of their union is thefinite union of disjoint intervals
[α′

j ,β
′
j ). For t > 0 assume that μ([D J f > t]) > 0, and choose

ε < 1
2μ([D J f > t]).

For such a choice estimate

μ
(
[D J f > t] ⋂ m ′⋃

j=1
[α′

j ,β
′
j ]
)

>
1

2
μ([D J f > t]) > 0

for a positive integer m ′. By Proposition 2.2

J f (β
′
j ) − J f (α

′
j ) ≥ tμ

([
D J f > t

] ∩ [
α′

j ,β
′
j

])
.
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Therefore

J f (b) − J f (a) =
m∑

j=1

[
J f (β j ) − J f (α j )

] +
m+1∑

j=1

[
J f (β

′
j ) − J f (α

′
j )

]

≥
m∑

j=1

[
f (c+

j ) − f (c−
j )

] + 1
2μ([D J f > t]).

Letting m → ∞ and taking into account (2.1c) implies μ([D J f > t]) = 0 for
all t > 0. For a different approach use Theorem 4.1.

2.1c A Continuous, Nowhere Differentiable Function ([167])

For a real number x , denote by {x} the distance from x to its nearest integer and set

f (x) =
∞∑

n=0

{10n x}
10n

. (2.2c)

Each term of the series is continuous.Moreover the series is uniformly convergent
being majorized by the geometric series

∑
10−n . Therefore f is continuous. Since

f (x) = f (x + j) for every integer j and all x ∈ R, it suffices to consider x ∈ [0, 1).
Any such x has a decimal expansion of the form x = 0.a1a2 . . . an . . . , where ai are
integers from 0 to 9. By excluding the case when ai = 9 for all i larger than some
m, such a representation is unique.

For n ∈ N fixed compute

{10n x} = 0.an+1an+2 . . . if 0.an+1an+2 · · · ≤ 1
2{10n x} = 1 − 0.an+1an+2 . . . if 0.an+1an+2 · · · > 1
2 .

Having fixed x ∈ [0, 1) choose increments

hm =
{−10−m if either am = 4 or am = 9

+10−m otherwise.

Then form the difference quotients of f at x

f (x + hm) − f (x)

hm
= 10m

∞∑

n=0
±{10n(x ± 10−m)} − {10n x}

10n
.

The numerators of the terms of this last series, all vanish for n ≥ m, whereas for
n = 0, 1, . . . , (m − 1) they are equal to ±10n−m . Therefore the difference quotient
reduces to the sum of m terms each of the form ±1. Such a sum is an integer,
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positive or negative, which has the same parity of m. Thus the limit as hm → 0 of
the difference ratios does not exists.

Remark 2.1c The function in (2.2c) is not of bounded variation in any interval
[a, b] ⊂ R.

2.2c An Application of the Baire Category Theorem

The existence of a continuous and nowhere differentiable function, can be estab-
lished indirectly, by a category-type argument. The Dini derivatives D+ f and D+ f
introduced in (2.1), are called the right Dini numbers.

Proposition 2.1c (Banach [12]) There exists a real-valued, continuous function in
[0, 1] such that its Dini’s numbers |D+ f | and |D+ f | are infinity at every point of
(0, 1).

Proof For n ∈ N let En denote the collection of all functions f ∈ C[0, 1], for which
there exists at least one point t ∈ [0, 1 − 1

n ] for which
∣∣∣

f (t + h) − f (t)

h

∣∣∣ ≤ n for all h ∈ (0, 1 − t).

Each En is closed and nowhere dense in C[0, 1]. Both statements are meant
with respect to the topology of the uniform convergence in C[0, 1]. To prove that
En is nowhere dense in C[0, 1] observe that any continuous function in [0, 1] can
be approximated in the sup-norm by continuous functions with polygonal graph of
arbitrarily large Lipschitz constant. Then the complement C[0, 1] − ∪En is non-
empty.

4c Differentiating Series of Monotone Functions

4.1. Let { fn} be a sequence of functions of bounded variation in [a, b] such that the
series

∑
fn(x) and

∑V fn [a, x] are both convergent in [a, b]. Then the sum
f of the first series is of bounded variation in [a, b] and the derivative can be
computed term by term, a.e. in [a, b].

5c Absolutely Continuous Functions

5.1. Let f be absolutely continuous in [a, b]. Then f is Lipschitz continuous in
[a, b] if and only f ′ is a.e. bounded in [a, b].
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5.2. The function

f (x) =
{

x1+ε sin
1

x
for x ∈ (0, 1]

0 for x = 0

is absolutely continuous in [0, 1] for all ε > 0.

5.1c The Cantor Ternary Function ([23])

Set f (0) = 0 and f (1) = 1. Divide the interval [0, 1] into 3 equal subintervals and
on the central interval [ 13 , 2

3 ] set f = 1
2 , i.e., f is defined to be the average of its

values at the extremes of the parent interval [0, 1]. Next divide the interval [0, 1
3 ] into

3 equal subintervals, and on the central interval [ 1
32 ,

2
32 ] set f = 1

4 , i.e., f is defined
to be the average of its values at the extremes of the parent interval [0, 1

3 ]. Likewise
divide the interval [ 23 , 1] into 3 equal subintervals, and on the central interval [ 7

32 ,
8
32 ]

set f = 3
4 , i.e., f is defined to be the average of its values at the extremes of the

parent interval [ 23 , 1].
Proceeding in this fashion we define f in the whole [0, 1], by successive averages.

By construction f is non-constant, non-decreasing, and continuous in [0, 1]. Since
it is constant on each of the intervals making up the complement of the Cantor set C,
its derivative vanishes in [0, 1] except on C. Thus f ′ = 0 a.e. on [0, 1].

5.1.1c Another Construction of the Cantor Ternary Function

The same function can be defined by an alternate procedure that uses the ternary
expansion of the elements of the Cantor set. For x ∈ C let {ε j } be sequence, with
entries only 0 or 1, corresponding to the ternary expansion of x , as in (2.1) of Chap.1.
Then define

f (x) = f
( ∞∑

j=1

2

3 j
εi x, j

)
def=

∞∑

j=1

1

2 j
εx, j . (5.1c)

Let (αn,βn) be an interval removed in the nth step of the construction of the Cantor
set. The extremes αn and βn belong to C and their ternary expansion is described in
2.2 of the Complements of Chap. 1. From the form of such expansion compute

f (αn) − f (βn) = 1

2n
−

∞∑

j=n+1

1

2 j
= 0.

If (αn,βn) is an interval in [0, 1] − C we set

f (x) = f (αn) for all x ∈ [αn,βn].

http://dx.doi.org/10.1007/978-1-4939-4005-9_1
http://dx.doi.org/10.1007/978-1-4939-4005-9_1
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In such a way f is defined in the whole [0, 1] and f ′ = 0 a.e. in [0, 1]. The
right-hand side of (5.1c) is the decimal representation of the number in [0, 1] whose
binary representation is the sequence εx . As x ranges over C, the sequences εx , with
only entries 0 or 1, range over all such sequences. Therefore f maps C onto [0, 1].
To show that f is continuous, observe that f is monotone and finite. Therefore its
possible discontinuity points are discrete jumps. If f were not continuous then it
would not be a surjection over [0, 1].

TheCantor ternary function is continuous, of bounded variation, but not absolutely
continuous. This can be established indirectly bymeans ofCorollary 5.2.Give a direct
proof.

5.2c A Continuous Strictly Monotone Function
with a.e. Zero Derivative

The Cantor ternary function is piecewise constant on the complement of the Cantor
set. This accounts for f ′ = 0 a.e. in [0, 1]. We next exhibit a continuous strictly
increasing function in [0, 1], whose derivative vanishes a.e. in [0, 1].

Let t ∈ (0, 1) be fixed and define fo(x) = x and

f1(x) =
{

(1 + t)x for 0 ≤ x ≤ 1
2

(1 − t)x + t for 1
2 ≤ x ≤ 1.

The function f1 is constructed by dividing [0, 1] into two equal subintervals, by
setting f1 = fo at the end points of [0, 1], by setting

f1
(1
2

)
= 1 − t

2
fo(0) + 1 + t

2
fo(1) = 1 + t

2

and by defining f1 to be affine in the intervals [0, 1
2 ] and [ 12 , 1].

This procedure permits one to construct an increasing sequence { fn} of strictly
increasing functions in [0, 1]. Precisely if fn has been defined, it must be affine in
each of the subintervals

[ j

2n
,

j + 1

2n

]
j = 0, 1, . . . , 2n − 1.

Subdivide each of these into two equal subintervals, and define fn+1 to be affine
on each of these with values at the end points, given by

fn+1

( j

2n

)
= fn

( j

2n

)

fn+1

( j + 1

2n

)
= fn

( j + 1

2n

)

fn+1

(2 j + 1

2n+1

)
= 1 − t

2
fn

( j

2n

)
+ 1 + t

2
fn

( j + 1

2n

)
.
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By construction { fn} is increasing and

fm

( j

2n

)
= fn

( j

2n

)
for all m ≥ n, j = 0, 1, . . . , 2n − 1. (5.2c)

The limit function f is non-decreasing. We show next that it is continuous and
strictly increasing in [0, 1]. Every fixed x ∈ [0, 1] is included into a sequence of
nested and shrinking intervals [αn,βn] of the type

αn = mn,x

2n
βn = mn,x + 1

2n
for some mn,x ∈ N ∪ {0}.

By the construction of fn+1, if the parent interval of [αn,βn] is [αn,βn−1]

fn+1(βn) − fn+1(αn) = 1 + t

2
[ fn(βn−1) − fn(αn)].

Likewise if the parent interval of [αn,βn] is [αn−1,βn]

fn+1(βn) − fn+1(αn) = 1 − t

2
[ fn(βn) − fn(αn−1)].

Therefore by (5.2c) either

fn+1(βn) − fn+1(αn) = 1 + t

2
[ fn(βn−1) − fn(αn−1)] (5.2c)+

or

fn+1(βn) − fn+1(αn) = 1 − t

2
[ fn(βn−1) − fn(αn−1)]. (5.2c)−

From this by iteration

fn+1(βn) − fn+1(αn) =
n∏

i=1

1 + εi t

2
where εi = ±1.

Since for all m ≥ n + 1

fm(βn) = fn+1(βn) and fm(αn) = fn+1(αn)

the previous equality implies

f (βn) − f (αn) =
n∏

i=1

1 + εi t

2
where εi = ±1.
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For each fixed n the right-hand side is strictly positive. Thus f (βn) > f (αn), i.e.,
f is strictly monotone. On the other hand (5.2c)± imply also

f (βn) − f (αn) ≤
(1 + t

2

)n −→ 0 as n → ∞.

Thus f is continuous in [0, 1]. Still from (5.2c)± we compute

f (βn) − f (αn)

βn − αn
=

n∏

i=1
(1 + εi t).

As n → ∞ the right-hand side either converges to zero, or diverges to infinity
or the limit does not exists. However, since f is monotone it is a.e. differentiable.
Therefore the limit exists for a.e. x ∈ [0, 1] and is zero. By Corollary 5.2 such a
function is not absolutely continuous. Give a direct proof.

5.3. The function f constructed in § 14 of Chap.3 is not absolutely continuous.
5.4. Let μ be a Radon measure on R defined on the same σ-algebra of the Lebesgue

measurable sets in R, and absolutely continuous with respect to the Lebesgue
measure on R. Then set

f (x) =
{+μ([α, x]) for x ∈ [α,∞)

−μ([x,α]) for x ∈ (−∞,α].

The function f is locally absolutely continuous, i.e., its restriction to any
bounded interval is absolutely continuous. The function f can be used to gen-
erate the Lebesgue-Stieltjes measure μ f . The measure μ f coincides with μ on
the Lebesgue measurable sets.

5.3c Absolute Continuity of the Distribution Function
of a Measurable Function

For a measurable function f on a measure space {X,A,μ}, let μ f and f∗ be respec-
tively, the distribution measure and the distribution function of f , as defined (9.1)
and (15.1c of the Complements of Chap. 4).

Proposition 5.1c The distribution function f∗ is absolutely continuous, in every
closed subinterval of R, if and only if the distribution measure μ f is absolutely
continuous with respect to the Lebesgue measure on R. In such a case

f∗(t) =
∫ t

−∞
ϕ(s)ds

where ϕ is the Radon-Nikodým derivative of μ with respect to the Lebesgue measure
ds.

http://dx.doi.org/10.1007/978-1-4939-4005-9_3
http://dx.doi.org/10.1007/978-1-4939-4005-9_9
http://dx.doi.org/10.1007/978-1-4939-4005-9_4
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5.5. Give an example of {X,A,μ} and f for which f∗ is continuous and not
absolutely continuous.

7c Derivatives of Integrals

7.1. Construct a measurable set E ⊂ (−1, 1) such that d ′
E (0) = 1

2 .
For n ∈ N set5

In =
[ 1

2n
,

1

2n−1

)
so that (0, 1) = ⋃

n∈N
In.

Divide each In into 2n equal subintervals, each of length 2−2n and retain only
those 1

2 -closed intervals of even parity, to obtain sets

En =
2n−1−1⋃

j=0

[2n + 2 j

22n
,
2n + 2 j + 1

22n

)
, and E+ = ⋃

En.

Verify thatμ(En) = 1
2μ(In) andμ(E+) = 1

2 . having fixed h ∈ (0, 1) there exists
nh, ih ∈ N, such that

h ∈
[ 1

2nh
,

1

2nh−1

]
and h ∈

[2nh + ih

22nh
,
2nh + (ih + 1)

22nh

]
.

The first of these implies that h = O(2−nh ). Next compute

(0, h] ∩ E+ =
( ∞⋃

�=nh+1
E�

)⋃ ( 2nh −1−1⋃

j=0
(0, h]⋂

(2nh + 2 j

22nn
,
2nh + 2 j + 1

22nh

))
.

From this

μ
[
(0, h] ∩ E

] = 1
2h + O(2−2nh ) =⇒ μ

[
(0, h] ∩ E+] = 1

2h + O(h2).

Thus

lim
h→0

1

h

∫ h

0
χE+dx = 1

2
.

Let E− be the symmetric of E+ in (−1, 0] and set E = E− ∪ E+.
7.2. Let f be absolutely continuous in [a, b]. Then the function x → V f [a, x] is

also absolutely continuous in [a, b]. Moreover

V f [a, x] =
∫ x

a
| f ′(t)|dt for all x ∈ [a, b].

5This construction was suggested by V. Vespri and U. Gianazza.
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7.3. Let f be of bounded variation in [a, b]. The singular part of f is the function
([90])

σ f (x) = f (x) − f (a) −
∫ x

a
f ′(t)dt. (7.1c)

The singular part of f is of bounded variation and σ′ = 0 a.e. in [a, b]. It has
the same singularities as f , and ( f − σ) is absolutely continuous.
Thus every function f of bounded variation in [a, b], can be decomposed into
the sum of an absolutely continuous function in [a, b] and a singular function.
Compare the σ f with the functions of the jumps J f given in § 1.1c of the
Complements.

7.4. Let f be Lebesgue integrable in the interval [a, b] and let F denote a primitive
of f . Then for every absolutely continuous function g defined in [a, b]

∫ b

a
f gdx = F(b)g(b) − F(a)g(a) −

∫ b

a
Fg′dx .

7.5. Let f, g : [a, b] → R be absolutely continuous. Then

∫ b

a
f g′dx +

∫ b

a
f ′gdx = f (a)g(a) − f (b)g(b).

7.6. Let h : [a, b] → [c, d] be absolutely continuous, increasing and such that
h(a) = c and h(b) = d. Then for every nonnegative, Lebesgue measurable
function f : [c, d] → R, the composition f (h) is measurable and

∫ d

c
f (s)ds =

∫ b

a
f
(
h(t)

)
h′(t)dt.

This is established sequentially for f the characteristic function of an inter-
val, the characteristic function of an open set, the characteristic function of a
measurable set, for a simple function.

Proposition 7.1c Let f be absolutely continuous in [a, b]. Then for every measur-
able E ⊂ [a, b] of measure zero, f (E) ⊂ R is a set of measure zero.

Proof Combine Proposition 7.2 with and Vitali’s absolute continuity of the integral
(Theorem 11.1 of Chap. 4).

The converse of Proposition 7.1c is in false. The characteristic function of the
rationals maps any set into a set of measure zero. Such a function however is not
continuous.

7.7. Prove by a counterexample that the converse of Proposition 7.1c is false, even
if f is assumed to be continuous. Hint: The function f in (1.1) is continous in
[0, 1] and not BV [0, 1]. To show that it maps measurable sets of measure zero,
into sets of measure zero, observe that f ∈ AC[ε, 1] for all ε > 0.

http://dx.doi.org/10.1007/978-1-4939-4005-9_4
http://dx.doi.org/10.1007/978-1-4939-4005-9_1
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Proposition 7.2c Let f : [a, b] → R be continuous and monotone and such that for
every measurable E ⊂ [a, b] of measure zero, f (E) ⊂ R is a set of measure zero.
Then f is absolutely continuous in [a, b].
Proof Assuming f non-decreasing the function h(x) = x + f (x) is strictly increas-
ing. The set function ν(E) = μ(h(E)) for all Lebesgue measurable sets in [a, b] is
a measure on the same σ-algebra, satisfying ν � μ. Apply the Radon-Nykodým
theorem.

7.1c Characterizing BV [a, b] Functions

Denote by C1
o [a, b] the collection of continuously differentiable functions ϕ of com-

pact support in [a, b].
Proposition 7.3c Let f ∈ BV [a, b]. Then

sup
ϕ∈C1

o (R)

|ϕ|≤1

∫ b

a
f ϕ′dx ≤ V f [a, b]. (7.2c)

Proof Onemay assume that f is monotone increasing and nonnegative. There exists
an increasing sequence of simple functions such that { fn} → f everywhere in [a, b]
(Proposition 3.1 of Chap.4). By the monotonicity of f , the construction of { fn}
identifies a partition

P = {a = xo < x1 < · · · < xn = b} (7.3c)

of [a, b] such that

fn(x) = f (x j−1) in the interval [x j−1, x j ] for j = 1, . . . , n.

For 0 < δ � 1 and n fixed construct the Lipschitz continuous functions

fn,δ(x) =
n∑

j=1

{
f (x j−1)χ[x j−1,x j ] + [ f (x j ) − f (x j−1)]χ[x j −δ,x j ]

x − x j + δ

δ

}
.

One verifies that

∫ b

a
f ϕ′dx = lim

n→∞ lim
δ→0

∫ b

a
fn,δϕ

′dx .

Since fn,δ are absolutely continuous in [a, b], integration by parts is justified.
Hence for every ϕ ∈ C1

o [a, b],
∣∣
∣
∫ b

a
fn,δϕ

′dx
∣∣
∣ =

∣∣
∣

n∑

j=1

∫ x j

x j−1

fn,δϕ
′dx

∣∣
∣ ≤ V f [a, b].

http://dx.doi.org/10.1007/978-1-4939-4005-9_4
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The converse of (7.2c) is in general false. For example χ{ 1
2 } ∈ BV [0, 1] with

variation 2, whereas the left-hand side of (7.2c) is zero. The latter only requires that
f be integrable, whereas the notion of bounded variation requires that f be defined
at every point of [a, b]. However if f is integrable in [a, b] then it is unambigously
defined by (11.1), or (11.1)′N=1, everywhere in [a, b] except for a set of measure zero.
Given f integrable in [a, b] introduce partitions Pf as in (7.3c), where however x j

are differentiability points of f . Then define the essential variation of f in (a, b) as

ess−V f (a, b) = sup
Pf

n∑

j=1
| f (x j ) − f (x j−1)|.

Proposition 7.4c Let f be integrable in [a, b]. Then

ess−V f (a, b) ≤ sup
ϕ∈C1

o [a,b]
|ϕ|≤1

∫ b

a
f ϕ′dx . (7.4c)

Proof Assume the right-hand side of (7.4c) is finite, and fix a partition Pf . Without
loss of generality may assume that a and b are points of Pf , and construct the polyg-
onal of vertices

(
x j , f (x j )

)
. Assume momentarily that such a polygonal changes its

monotonicity at each of its veritice, i.e.,

if f (x j−1) < f (x j ) then f (x j ) > f (x j+1);
if f (x j−1) > f (x j ) then f (x j ) < f (x j+1).

(7.5c)

Assume f (a) < f (x1) and set

ϕδ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

a − x

δ
for a ≤ x < a + δ,

−1 for a + δ ≤ x ≤ x1 − δ,
x − x1 + δ

δ
− 1 for x1 − δ ≤ x < x1.

Then, for j = 1, . . . , n, define ϕ recursively as

ϕδ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

x j−1 − x

δ
for x j−1 ≤ x < x j−1 + δ,

−1 for x j−1 + δ ≤ x ≤ x j − δ,
x − x j + δ

δ
− 1 for x j − δ ≤ x < x j ,

if f (x j−1) < f (x j );

ϕ(x)δ =

⎧
⎪⎪⎨

⎪⎪⎩

x − x j−1

δ
for x j−1 ≤ x < x j−1 + δ,

1 for x j−1 + δ ≤ x ≤ x j − δ,
x j − δ − x

δ
+ 1 for x j − δ ≤ x < x j ,

if f (x j−1) > f (x j ).
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Assuming momentarily that such a choice is admissible, compute

sup
ϕ∈C1

o [a,b]
|ϕ|≤1

∫ b

a
f ϕ′dx ≥ lim sup

δ→0

∣∣
∣
∫ b

a
f ϕ′

δdx
∣∣
∣

= lim sup
δ→0

∣
∣
∣
sign ϕ′

δ

δ

∫ a+δ

a
f dx

+
n−1∑

j=1

sign ϕ′
δ

δ

∫ x j +δ

x j −δ
f dx + sign ϕ′

δ

δ

∫ b

b−δ
f dx

∣
∣∣

≥
n∑

j=1
| f (x j ) − f (x j−1)|,

since x j are differentiability points of f .

Complete the proof by the following steps:

i. Prove that in (7.4c) the supremum can be taken over all Lipschitz continuous
functions ϕ ∈ Co[a, b].

ii. Remove the assumptions and that Pf satisfies (7.5c), to establish the inequality
for all partitions Pf of [a, b].

Corollary 7.1c An integrable function f in [a, b] is of essentially bounded variation
in [a, b] if and only if the right-hand side of (7.4c) is finite.

7.2c Functions of Bounded Variation in N Dimensions [55]

The characterization ofCorollary 7.1c suggests a notion bounded variations in several
dimensions. A function f locally integrable in R

N is of bounded variation in a
Lebesgue measurable set E ⊂ R

N if there exists a constant C such that

∣
∣∣
∫

E
f divϕdx

∣
∣∣ ≤ C (7.6c)

for all vector valued functions

ϕ = (ϕ1, . . . ,ϕN ) ∈ [C1
o(R

N )]N such that |ϕ| ≤ 1.

The smallest constant C for which (7.6c) holds is the variation of f in E and is
denoted by ‖D f ‖(E).
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7.2.1c Perimeter of A Set

Let E be a boundedmeasurable set inRN with smooth boundary ∂E . Prove thatχE ∈
BV (RN ) and that VχE (RN ) = HN−1(∂E), whereHN−1 is the (N − 1)-dimensional
Hausdorff measure of sets in RN .

If ∂E is not smooth, (7.6c) suggests defining the “measure of ∂E” or, roughly
speaking, the perimeter of E , by

Per(E) = sup
ϕ∈[C1

o ]N , |ϕ|≤1

∫

RN

χE divϕdx, (7.7c)

provided the right-hand side is finite. Sets E ⊂ R
N for which Per(E) < ∞ are called

of finite perimeter. They correspond, roughly speaking, to sets for which the Gauss-
Green theorem holds.

13c Convex Functions

13.1. Give an example of a bounded, discontinuous, convex function in [a, b]. Give
an example of a convex function unbounded in (a, b).

13.2. A continuous function f in (a, b) is convex if and only if

f
( x + y

2

)
≤ f (x) + f (y)

2
for all x, y ∈ (a, b).

13.3. Let f be convex, non-decreasing andnon-constant in (0,∞). Then f (x) → ∞
as x → ∞.

13.4. Let f be convex in [0,∞). Then the limit of x−1 f (x) as x → ∞, exists finite
or infinite.

13.5. Let { fn} be a sequence of convex functions in (a, b) converging to some
real-valued function f . Then the convergence is uniform within any closed
subinterval of (a, b). The conclusion is false if f is permitted to take values
in R∗, as shown by the sequence {xn} for x ∈ (0, 2).

13.6. Let f ∈ C2(a, b). Then f is convex in (a, b) if and only if f ′′(x) ≥ 0 for each
x ∈ (a, b). Proof: Having fixed x < y it suffices to prove that

[0, 1] � t → ϕ(t) = f (t x + (1 − t)y) − t f (x) − (1 − t) f (y) (13.1c)

is nonpositive in [0, 1]. Such a function vanishes at the end points of [0, 1] and
its extrema are minima since

ϕ′′(t) = (x − y) f ′′(t x + (1 − t)y) ≤ 0.
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Proposition 13.1c A continuous function f in (a, b) is convex if and only if either
one of the two one-sided derivatives D± f is non-decreasing.

Proof Assume for example that D+ f is non-decreasing. If the function ϕ in (13.1c)
has a positive maximum ϕ(to) > 0, at some to ∈ (0, 1), then

D+ϕ(to) = (x − y)D+ f (tox + (1 − to)y) + f (y) − f (x) ≤ 0.

Therefore, since D+ f is non-decreasing, D+ϕ(t) is non-positive in [0, to]. Thus
ϕ is non-increasing in [0, to] and ϕ(to) ≤ 0.

13.7. The function f (x) = |x |p is convex for p ≥ 1 and concave for p ∈ (0, 1).

13.8c Convex Functions in R
N

Let E be a convex subset of RN . A function f : E → R
∗ is convex if for every pair

of points x and y in E and every t ∈ [0, 1]

f (t x + (1 − t)y) ≤ t f (x) + (1 − t) f (y).

The (N + 1)-dimensional set

G f = {
(x, xN+1) ∈ R

N+1
∣∣ x ∈ E, xN+1 ≥ f (x)

}

is the epigraph of f . The function f is convex if and only if its epigraph is convex.

13.9. Let E ⊂ R
N be open and convex. A function f ∈ C2(E) is convex if and

only if
∑N

i, j=1 fxi x j ξiξ j ≥ 0 for all ξ ∈ R
N .

Hint: Fix Bρ(x) ⊂ E and ξ in the unit sphere ofRN . The function (−ρ, ρ) �
t → ϕ(t) = f (x + tξ) is convex.

13.10. Construct a non convex function f ∈ C2(R2) such that fxx and fyy are both
nonnegative.

13.11. Let E ⊂ R
N be open and convex, and let f be convex and real-valued in E .

Then f is continuous on E . Moreover for every x ∈ E there exist the left
and right directional derivatives

D±
u f (x) = D±

t f (x + tu)
∣∣
t=0 for all |u| = 1.

Moreover D−
u f ≤ D+

u f . In particular for each x ∈ E , there exist the left and
right derivatives D±

x j
f , along the coordinate axes and D−

x j
f ≤ D+

x j
f .

13.12. Let E ⊂ R
N be convex. A function f defined in E is convex if and only if

f (x) = supπ(x), where π ≤ f is affine.
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13.13. Let f : RN → R be convex. There exist a positive number k such that
lim inf |x |→∞ |x |−1 f (x) ≥ −k.

13.14c The Legendre Transform ([92])

The Legendre transform f ∗ of a convex function f : RN → R
∗ is defined by

f ∗(x) = sup
y∈RN

{x · y − f (y)}. (13.2c)

Proposition 13.2c f ∗ is convex in R
N and f ∗∗ = f .

Proof The convexity of f follows from 13.12. From the definition (13.2c), f (y) +
f ∗(x) ≥ y · x , for all x, y ∈ R

N . Therefore

f (y) ≥ sup
x∈RN

{y · x − f ∗(x)} = f ∗∗(y).

Also, still from (13.2c)

f ∗∗(x) = sup
y∈RN

{
x · y − sup

z∈RN

{y · z − f (z)}}

= sup
y∈RN

inf
z∈RN

{y · (x − z) + f (z)}.

Since f is convex, for a fixed x ∈ R
N , there exists a vector m such that

f (z) − f (x) ≥ m · (z − x) for all z ∈ R
N .

Combining these inequalities yields

f ∗∗(x) ≥ f (x) + sup
y∈RN

inf
z∈RN

(z − x) · (m − y) = f (x).

13.15c Finiteness and Coercivity

The Legendre transform f ∗, as defined by (13.2c), could be infinite even if f is finite
in RN . For example in R

|x |∗ =
{
0 if |x | ≤ 1
∞ if |x | > 1.
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A convex function f : RN → R is coercive at infinity if

lim|x |→∞
f (x)

|x | = ∞.

Proposition 13.3c If f is coercive at infinity, then f ∗ is finite in R
N . If f is finite,

then f ∗ is coercive at infinity.

Proof Assume f is coercive at infinity. If the sup in (13.2c) is achieved for y = 0
the assertion is obvious. Otherwise

f ∗(x) = sup
y∈RN −{0}

|y|
{

x · y

|y| − f (y)

|y|
}
.

Therefore the supremum is achieved for some finite y and f ∗(x) is finite.
To prove the converse statement, fix λ > 0 and write

f ∗(x) = sup
y∈RN

{x · y − f (y)} ≥ {x · y − f (y)} ∣∣
y=λx/|x |

= λ|x | − f
(
λ

x

|x |
) ≥ λ|x | − sup

|u|=λ

| f (u)|.

Therefore, since x ∈ R
N − {0} is arbitrary

lim|x |→∞
f ∗(x)

|x | ≥ λ for all λ > 0.

13.16c The Young’s Inequality

Prove that the Legendre transform of the convex function

R � a → f (a) = 1

p
|a|p for 1 < p < ∞

is

R � b → f ∗(b) = 1

q
|b|q for 1 < q < ∞ and

1

p
+ 1

q
= 1.

Then the definition (13.2c) of theLegendre transform implies theYoung’s inequal-
ity

|ab| ≤ 1

p
|q|p + 1

q
|b|q for all a, b ∈ R. (13.3c)

The inequality continues to holds for the limiting case p = 1 and q = ∞. For a
different proof see Proposition 2.1 of Chap. 6.

http://dx.doi.org/10.1007/978-1-4939-4005-9_6
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14c Jensen’s Inequality

Proposition 14.1c (Hölder [75]) Let {αi } be a sequence of nonnegative numbers
such that

∑
αi = 1, and let {ξi } be a sequence in R. Then

exp
(∑

αiξi
) ≤ ∑

αi exp(ξi ). (14.1c)

Proof Apply (14.1) to ex with η = ξ j and α = ∑
αiξi , to get

exp
(∑

αiξi
) + m j

(
ξ j − ∑

αiξi
) ≤ exp(ξ j ).

Multiply by α j and add over j .

Corollary 14.1c Let {αi } be a sequence of nonnegative numbers such that
∑

αi =
1, and let {ξi } be a sequence of positive numbers. Then

∏
ξαi

i ≤ ∑
αiξi . (14.2c)

14.1c The Inequality of the Geometric and Arithmetic Mean

In the case where αi = 0 for i > n and αi = 1/n for i = 1, 2, . . . , n, inequality
(14.2c) reduces to the inequality between the geometric and arithmetic mean of n
positive numbers6

(ξ1ξ2 · · · ξn)
1/n ≤ ξ1 + ξ2 + · · · + ξn

n
. (14.3c)

14.2c Integrals and Their Reciprocals

Proposition 14.2c Let E be a measurable set of finite measure and let f : E → R
+

be measurable. Then

1
(

1

μ(E)

∫

E
f dμ

)p ≤ 1

μ(E)

∫

E

1

f p
dμ, for all p > 0. (14.4c)

Proof Assume first that f is integrable and that f ≥ ε, and apply Jensen’s inequality
with ϕ(t) = t−p.

6[70], Chap. II, § 5 contains an alternate proof of this inequality that does not use Jensen’s inequality.
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15c Extending Continuous Functions

15.1. Let f be convex in a closed interval [a, b] and assume that D+ f (a) and
D− f (b) are both finite. There exists a convex function f̃ defined in R such
that f = f̃ in [a, b].

16c The Weierstrass Approximation Theorem

16.1. Let E ⊂ R
N be open, bounded andwith smooth boundary ∂E . Let f ∈ C1(Ē)

vanish on ∂E , and let Pj denote the j th Stieltjes polynomial relative to f . Then

lim
j→∞

∂Pj

∂xi
= ∂ f

∂xi
j = 1, . . . , N in E .

16.2. Let E ⊂ R
N be bounded and open, and fet f : Ē → R and be Lipschitz con-

tinuous in Ē . with Lipschitz constant L . Then the Stieltjes polynomials Pj

relative to f are equi-Lipschitz continuous in E , with the same constant L .
16.3. A continuous function f : [0, 1] → R, can be approximated by the Bernstein

polynomials B j , relative to f

B j (x) =
j∑

i=1

( j
i

)
f
( i

j

)
xi (1 − x) j−i .

State and prove a N -dimensional version of such an approximation ([98]).
16.4. Let f be uniformly continuous on a bounded, open set E ⊂ R

N and denote
by Pn the set of all polynomials of degree n in the coordinate variables. Then

∫

E
f pndx = 0 for all pn ∈ Pn and all n ∈ N =⇒ f = 0.

17c The Stone-Weierstrass Theorem

17.1. The Stone-Weierstrass theorem fails for complex valued functions.
Let D be the closed, unit disc in the complex plane C and denote by C(D;C)

the linear space of all the continuous complex valued functions defined in D
endowed with the topology generated by the metric in (17.1).
Consider also the subset H(D) of C(D;C), consisting of all holomorphic
functions defined in D. One verifies that H(D) is an algebra. Moreover uni-
form limits of holomorphic functions in D are holomorphic ([24], Chap. V,
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Théoréme 1, page 145). Thus H(D) is closed under the metric in (17.1). The
algebra H(D) is called the disc algebra.
Such an algebra separates points since it contains the holomorphic func-
tion f (z) = z. Moreover H(D) contains the constants. However H(D) �=
C(D;C). Indeed the function f (z) = z is continuous but not holomorphic in
D.

17.2. Let f : R → R be continuous and 2π-periodic. For every ε > 0 there exists a
function of the type

ϕ(x) = ao +
m∑

n=1
(bn cos nx + cn sin nx)

such that sup
R

| f − ϕ| ≤ ε (Hint: Use Stone’s Theorem).

19c A General Version of the Ascoli-Arzelà Theorem

The proof of Theorem 19.1 uses only the separability of RN and the metric structure
ofR. Thus it can be extended into any abstract framework with these two properties.

Let { fn} be a countable collection of continuous functions from a separable topo-
logical space {X;U} into a metric space {Y ; dY }. The functions fn are equibounded
at x if the closure in {Y ; dY } of the set { fn(x)} is compact.

The functions fn are equi-continuous at a point x ∈ X if for every ε > 0, there
exists an open set O ∈ U containing x and such that

dY ( fn(x), fn(y)) ≤ ε for all y ∈ O and all n ∈ N.

Theorem 19.1c Let { fn} be a sequence of continuous functions from a separa-
ble space {X;U} into a metric space {Y ; dY }. Assume that the functions fn are
equibounded and equi-continuous at each x ∈ X. Then, there exists a subsequence
{ fn′ } ⊂ { fn} and a continuous function f : X → Y such that { fn′ } → f pointwise
in X. Moreover the convergence is uniform on compact subsets of X.

State and prove an analog of Proposition 19.1.



Chapter 6
The Lp Spaces

1 Functions in Lp(E) and Their Norm

Let {X,A,μ} be a measure space and let E ∈ A. A measurable function f : E → R
∗

is said to be in Lp(E), for 1 ≤ p < ∞, if |f |p is integrable on E, i.e., if

‖f ‖p def=
( ∫

E
|f |pdμ

)1/p
< ∞. (1.1)

Equivalently, the collection of all such functions is denoted byLp(E). The quantity
‖f ‖p is the norm of f in Lp(E). It follows from the definition that ‖f ‖p ≥ 0 for all
f ∈ Lp(E), and ‖f ‖p = 0 if and only if f = 0 a.e. in E. Let f and g be in Lp(E) and
let α,β ∈ R. Then (2.2c of the Complements)

|αf + βg|p ≤ 2p−1 (|α|p|f |p + |β|p|g|p) p ≥ 1, a.e. in E.

Therefore Lp(E) is a linear space. Ameasurable function f : E → R
∗ is in L∞(E)

if |f | ≤ M a.e. in E for some M > 0. Equivalently, L∞(E) is the linear space of all
such functions. Set

ess sup
E

f = inf
{
k

∣∣ μ([f > k]) = 0
}

ess inf
E

f = sup
{
k

∣∣ μ([f < k]) = 0
}
.

(1.2)

A norm ‖ · ‖∞ in L∞(E) is defined by

‖f ‖∞
def= ess sup

E
|f |. (1.3)

© Springer Science+Business Media New York 2016
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It follows from the definition that for ε > 0 arbitrarily small

μ(|f | ≥ ‖f ‖∞ + ε) = 0 and μ(|f | ≥ ‖f ‖∞ − ε) > 0. (1.4)

Remark 1.1 The μ-measurability of f is essential in the definition of the spaces
Lp(E). For example, let E ⊂ [0, 1] be the Vitali non-Lebesgue measurable set con-
structed in § 13 of Chap.3. The function

f (x) =
{

1 for x ∈ E
−1 for x ∈ [0, 1] − E

is not in L2[0, 1], although f 2 is Lebesgue integrable in [0, 1].

2 The Hölder and Minkowski Inequalities

Two elements p and q in the extended real numbers R∗ are said to be conjugate, if
p, q ≥ 1 and

1

p
+ 1

q
= 1. (2.1)

Since p, q ∈ R
∗, if p = 1 then q = ∞. Likewise if q = 1 then p = ∞.

Proposition 2.1 (Young’s Inequality)1 Let 1 ≤ p, q ≤ ∞ be conjugate. Then for
all a, b ∈ R

|a b| ≤ 1

p
|a|p + 1

q
|b|q (2.2)

and equality holds only if |a|p = |b|q.
Proof The inequality is obvious if either a or b is zero. Thus assume |a| > 0 and
|b| > 0. The inequality is also obvious if either p = 1 or q = 1. Thus assume
1 < p, q < ∞. The function

s −→
( sp

p
+ 1

q
− s

)
s ≥ 0

has an absolute minimum at s = 1. Therefore for all s > 0

s ≤ sp

p
+ 1

q

1When p = q = 2, this is the Cauchy–Schwarz inequality. An alternative proof of (2.2) is in
§ 13.16c of the Complements of Chap.5. It can also be established by using Proposition 14.1c of
Chap.5. See also [70] pp. 132–133.

http://dx.doi.org/10.1007/978-1-4939-4005-9_3
http://dx.doi.org/10.1007/978-1-4939-4005-9_5
http://dx.doi.org/10.1007/978-1-4939-4005-9_5


2 The Hölder and Minkowski Inequalities 249

and equality holds only if s = 1. Choosing s = |a||b|−q/p yields

|a|
|b|q/p ≤ 1

p

|a|p
|b|q + 1

q
. �

Proposition 2.2 (Hölder’s Inequality) Let f ∈ Lp(E) and g ∈ Lq(E), where 1 ≤
p, q ≤ ∞ satisfy (2.1). Then f g ∈ L1(E) and

∫

E
|f g|dμ ≤ ‖f ‖p‖g‖q. (2.3)

Moreover if 1 < p, q < ∞, equality holds only if |f |p = c|g|q a.e. in E, for some
constant c ≥ 0.

Proof May assume that f and g are nonnegative and neither is zero a.e. in E. Also
(2.3) is obvious if either p = 1 or q = 1. If p, q > 1, in (2.2) take

a = f

‖f ‖p and b = g

‖g‖q
to obtain

f g

‖f ‖p‖g‖q ≤ 1

p

f p

‖f ‖pp + 1

q

gq

‖g‖qq .

Integrating over E ∫
E f gdμ

‖f ‖p‖g‖q ≤ 1

p
+ 1

q
= 1.

For the indicated choice of a and b in (2.2), equality holds only if

f p(x) = ‖f ‖pp
‖g‖qq gq(x) for a.e. x ∈ E. �

Proposition 2.3 (Minkowski Inequality) Let f , g ∈ Lp(E) for some 1 ≤ p ≤ ∞.
Then

‖f + g‖p ≤ ‖f ‖p + ‖g‖p. (2.4)

Moreover if 1 < p < ∞, equality holds only if f = Cg a.e. in E, for some
constant C.

Proof The inequality is obvious if p = 1 and p = ∞. If 1 < p < ∞

‖f + g‖pp =
∫

E
|f + g|pdμ =

∫

E
|f + g|p−1|f + g|dμ

≤
∫

E
|f + g|p−1|f |dμ +

∫

E
|f + g|p−1|g|dμ.
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The integrals on the right-hand side are majorized by Hölder’s inequality

‖f + g‖pp ≤ ‖f + g‖p−1
p

(‖f ‖p + ‖g‖p
)
. �

3 More on the Spaces Lp and Their Norm

3.1 Characterizing the Norm ‖f‖p for 1 ≤ p < ∞

Proposition 3.1 Let f ∈ Lp(E) for some 1 ≤ p < ∞. Then

‖f ‖p =
( ∫

E
|f |pdμ

)1/p = sup
g∈Lq (E)

‖g‖q=1

∫

E
f gdμ

where 1 ≤ p < ∞ and 1 < q ≤ ∞ are conjugate.

Proof May assume that f 
≡ 0. By Hölder’s inequality

sup
g∈Lq (E)

‖g‖q=1

∫

E
f gdμ ≤ ‖f ‖p.

If 1 < p < ∞ one verifies that

g∗ = |f |p−2f

‖f ‖p/qp

∈ Lq(E) and ‖g∗‖q = 1.

Then

sup
g∈Lq (E)

‖g‖q=1

∫

E
f gdμ ≥

∫

E
f g∗dμ = ‖f ‖p.

If p = 1 the proof is similar for the choice g∗ = sign f ∈ L∞(E). �

3.2 The Norm ‖ · ‖∞ for E of Finite Measure

Assume that μ(E) < ∞. If f ∈ Lq(E), then for all 1 ≤ p < q, by the Hölder
inequality, applied to the pair of functions f and g ≡ 1

‖f ‖p ≤ μ(E)
q−p
qp ‖f ‖q.
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Therefore f ∈ Lp(E) for all 1 ≤ p ≤ q. In particular if f ∈ L∞(E) then f ∈ Lp(E)

for all p ≥ 1.

Proposition 3.2 Let μ(E) < ∞ and f ∈ L∞(E). Then

lim
p→∞ ‖f ‖p = ‖f ‖∞.

Proof Since E is of finite measure

lim sup
p→∞

‖f ‖p ≤ ‖f ‖∞ lim sup
p→∞

μ(E)1/p = ‖f ‖∞.

Next, for any ε > 0

∫

E
|f |pdμ ≥

∫

[|f |>‖f ‖∞−ε]
|f |pdμ ≥ (‖f ‖∞ − ε)p μ

[|f | > ‖f ‖∞ − ε
]
.

From the second of (1.2) the last term is positive. Therefore taking the (1/p)-power
and letting p → ∞

lim inf
p→∞ ‖f ‖p ≥ ‖f ‖∞ − ε. �

3.3 The Continuous Version of the Minkowski Inequality

Proposition 3.3 Let {X,A,μ} and {Y ,B, ν} be two complete measure spaces and
assume in addition that {Y ,B, ν} is σ-finite. Then for every nonnegative f ∈ Lp(X ×
Y) for some 1 ≤ p < ∞

( ∫

X

∣∣
∣
∫

Y
f (x, y)dν

∣∣
∣
p
dμ

)1/p ≤
∫

Y
‖f (·, y)‖p,Xdν.

Proof Assume first that ν(Y) < ∞. Then for every g ∈ Lq(X) one has f g ∈ L1(X ×
Y). Setting

F =
∫

Y
f (·, y)dν,

the left hand side is ‖F‖p,X . Then
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‖F‖p,X = sup
‖g‖q,X=1

∫

X
Fgdμ = sup

‖g‖q,X=1

∫

X

( ∫

Y
f (x, y)dν

)
g(x)dμ

= sup
‖g‖q,X=1

∫

Y

( ∫

X
f (x, y)g(x)dμ

)
dν

≤
∫

Y

(
sup

‖g‖q,X=1

∫

X
f (x, y)g(x)dμ

)
dν =

∫

Y
‖f (·, y)‖p,Xdν.

If {Y ,B, ν} is σ-finite the proof is concluded by a limiting argument. �

4 Lp(E) for 1 ≤ p ≤ ∞ as Normed Spaces of Equivalence
Classes

Since Lp(E) is a linear space it must contain a zero element with respect to the
operations of addition and multiplication by scalars. Such an element is defined by
f + (−1)f for any f ∈ Lp(E).

A norm in Lp(E) is a function ‖ · ‖ : Lp(E) → R
+ satisfying

‖f ‖ = 0 ⇐⇒ f is the zero element of Lp(E) (4.1)

‖αf ‖ = |α|‖f ‖ for all f ∈ Lp(E) and for all α ∈ R (4.2)

‖f + g‖ ≤ ‖f ‖ + ‖g‖ for all f , g ∈ Lp(E). (4.3)

The norm ‖ · ‖p defined in (1.1) for p ∈ [1,∞) and in (1.3) for p = ∞, satisfies
(4.2). It also satisfies (4.3) by the Minkowski inequality. Finally, it satisfies (4.1) if
the zero element of Lp(E) is meant in the sense

f is the zero element of Lp(E) if f (x) = 0 for a.e. x ∈ E.

However, the norm ‖ · ‖p does not distinguish between two elements f and g in
Lp(E) that differ on a set of measure zero.

Motivated by this remark, we regard the elements of Lp(E) as equivalence classes.
If Cf is one such class and f is a representative, then

Cf =
{
all measurable functions g : E → R

∗ such that |g|p
is integrable on E and such that f = g a.e. in E

}
.

With such interpretation the function ‖ · ‖p : Lp(E) → R
+ is a norm in Lp(E),

which then becomes a normed linear space.
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4.1 Lp(E) for 1 ≤ P ≤ ∞ as a Metric Topological Vector
Space

The norm ‖·‖p generates a distance in Lp(E) by d(f , g) = ‖f −g‖p. One verifies that
such a metric is translation invariant and therefore it generates a translation invariant
topology in Lp(E) determined by a base at the origin consisting of the balls

[‖f ‖p < ρ] = {f ∈ Lp(E)
∣∣ ‖f ‖p < ρ} (ρ > 0).

Such a topology is called the norm topology of Lp(E). ByMinkowski’s inequality,
for h, g ∈ Lp(E) and t ∈ (0, 1)

‖tg + (1 − t)h‖p ≤ t‖g‖p + (1 − t)‖h‖p.

Therefore the balls [‖f ‖p < ρ] are convex, and the norm topology of Lp(E) for
1 ≤ p ≤ ∞, is locally convex. The unit ball [‖f ‖p < 1] is uniformly convex if for
every ε > 0 there exists δ > 0 such that for any pair h, g ∈ Lp(E)

‖h‖p = ‖g‖p = 1 and ‖h − g‖p ≥ ε =⇒
∥∥∥
h + g

2

∥∥∥
p

≤ 1 − δ. (4.4)

If this occurs the norm topology of Lp(E) is said to be uniformly convex or simply
that Lp(E) is uniformly convex.

If p = ∞ one can construct examples of functions h, g ∈ L∞(E) such that

‖h‖∞ = ‖g‖∞ = 1 ‖h − g‖∞ ≥ 1 and
∥∥∥
h + g

2

∥∥∥∞
= 1.

Similar examples can be constructed in L1(E). Thus L∞(E) and L1(E) are not
uniformly convex. However Lp(E) are uniformly convex for all 1 < p < ∞ (see
§ 15).

5 Convergence in Lp(E) and Completeness

A sequence {fn} of functions in Lp(E) for some 1 ≤ p ≤ ∞, converges in the sense
of Lp(E) to a function f ∈ Lp(E) if

lim ‖fn − f ‖p = 0.

This notion of convergence is also called convergence in the mean of order p, or
in the norm Lp(E) or strong convergence in Lp(E).
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The sequence {fn} is a Cauchy sequence in Lp(E), if for every ε > 0 there exists
a positive integer nε such that

‖fn − fm‖p ≤ ε for all n,m ≥ nε.

If {fn} → f in Lp(E), then {fn} is a Cauchy sequence. Indeed if n,m are sufficiently
large

‖fn − fm‖p ≤ ‖fn − f ‖p + ‖fm − f ‖p ≤ ε.

The next theorem asserts the converse, i.e., if {fn} is a Cauchy sequence in Lp(E)

for some 1 ≤ p ≤ ∞, it converges in Lp(E) to some f ∈ Lp(E). In this sense the
spaces Lp(E) for 1 ≤ p ≤ ∞, are complete.

Theorem 5.1 (Riesz–Fischer [46, 125]) Let {fn} be a Cauchy sequence in Lp(E) for
some 1 ≤ p ≤ ∞. There exists f ∈ Lp(E) such that {fn} → f in Lp(E).

Proof Assume p ∈ [1,∞), the arguments for L∞(E) being similar. For j ∈ N let nj
be a positive integer, such that

‖fn − fm‖p ≤ 1

2j
for all n,m ≥ nj. (5.1)

Without loss of generality we may arrange that nj < nj+1 for all j ∈ N. Set
formally

f (x) = fn1(x) + ∑[fnj+1(x) − fnj (x)] for a.e. x ∈ E. (5.2)

We claim that (5.2) defines a function f ∈ Lp(E) and that {fn} → f in Lp(E). For
m = 1, 2, . . . , set

gm(x) =
m∑

j=1
|fnj+1(x) − fnj (x)| for a.e. x ∈ E.

Since gm ≤ gm+1 there exists the limit

lim gm(x) = g(x) for a.e. x ∈ E.

By Fatou’s lemma, the Minkowski inequality and (5.1)

( ∫

E
gpdμ

)1/p ≤
(
lim inf

∫

E
gpmdμ

)1/p ≤
m∑

j=1

1

2j
≤ 1.

Thus g ∈ Lp(E). The a.e. convergence of {gn} implies that the limit

lim
m→∞

m∑

j=1
[fnj+1(x) − fnj (x)]

exists for a.e. x ∈ E. Therefore (5.2) defines a function f measurable in E.
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From (5.2) and the definition of g

|f (x)| ≤ |fn1(x)| + |g(x)| for a.e. x ∈ E.

Thus f ∈ Lp(E). Next, from (5.2)–(5.1) and the Minkowski inequality, it follows
that for any positive integer k

‖fnk − f ‖p ≤
∞∑

j=k
‖fnj+1 − fnj‖p ≤ 1

2k−1
.

Therefore {fnj } converges to f in Lp(E). In particular for every ε > 0, there exist
a positive integer jε such that

‖fnj − f ‖p ≤ 1
2ε for all j ≥ jε.

We finally establish that the entire sequence {fn} converges to f in Lp(E). Since
{fn} is a Cauchy sequence, having fixed ε > 0, there exists a positive integer nε such
that

‖fn − fm‖p ≤ 1
2ε for all n,m ≥ nε.

Therefore for n ≥ nε

‖fn − f ‖p ≤ ‖fn − fnj‖p + ‖fnj − f ‖p ≤ ε

provided j ≥ jε and nj ≥ nε. �
Remark 5.1 The spaces Lp(E), for all 1 ≤ p ≤ ∞, endowed with their norm topol-
ogy are complete metric spaces. As such they are of second category, i.e., they are
not the countable union of nowhere dense sets.

6 Separating Lp(E) by Simple Functions

Proposition 6.1 Let f ∈ Lp(E) for some 1 ≤ p ≤ ∞. For every ε > 0 there exists
a simple function ϕ ∈ Lp(E), such that ‖f − ϕ‖p ≤ ε.2

Proof By the decomposition f = f + − f −, one may assume that f is nonnegative.
Since f is measurable, there exists a sequence {ϕn} of nonnegative, simple functions
such that

ϕn ≤ ϕn+1 and ϕn → f everywhere in E.

If 1 ≤ p < ∞ the sequence {(f − ϕn)
p} converges to zero a.e. in E and it is

dominated by the integrable function f p. Therefore ‖f − ϕn‖p → 0.

2It is not claimed here that Lp(E) is separable. See § 15.
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If p = ∞ the construction of the ϕn implies that

μ
([
f − ϕn >

1

2n
‖f ‖∞

]) = 0.

Thus ‖f − ϕn‖∞ ≤ 2−n‖f ‖∞ for all n. �

Proposition 6.2 Let 1 ≤ p, q ≤ ∞ be conjugate, and let g ∈ L1(E) satisfy

∫

E
ϕgdμ ≤ K‖ϕ‖p for all simple functions ϕ

for some positive constant K. Then g ∈ Lq(E) and ‖g‖q ≤ K.

Proof If q = 1 it suffices to choose ϕ = sign g ∈ L∞(E). Assuming q ∈ (1,∞), let
{ϕn} denote a sequence on nonnegative simple functions, such that ϕn ≤ ϕn+1 and
ϕn → |g|q. Since

0 ≤ ϕ1/q
n ≤ |g| ∈ L1(E)

eachϕn is simple and vanishes outside a set of finitemeasure. Therefore the functions

hn = ϕ1/p
n sign g

are simple and in Lp(E). For these choices

∫

E
ϕndμ =

∫

E
ϕ1/p
n ϕ1/q

n dμ ≤
∫

E
ϕ1/p
n |g|dμ

=
∫

E
hngdμ ≤ K‖hn‖p = K

( ∫

E
ϕndμ

)1/p
.

From this and Fatou’s lemma

‖g‖q ≤
(
lim inf

∫

E
ϕndμ

)1/q ≤ K .

Consider now the case q = ∞. For ε > 0 set

Eε = {x ∈ E such that |g(x)| ≥ K + ε}

and choose ϕ = χEε
sign g. Since g ∈ L1(E) the set Eε is of finite measure and

ϕ ∈ L1(E). Therefore

(K + ε)μ(Eε) ≤ ∣
∣
∫

E
ϕgdμ

∣
∣ ≤ Kμ(Eε).

Thus μ(Eε) = 0 for all ε > 0. �
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Corollary 6.1 Let 1 ≤ p, q ≤ ∞ be conjugate, and let g ∈ L1(E) satisfy

∫

E
f gdμ ≤ K‖f ‖p for all f ∈ Lp(E) ∩ L∞(E)

for some positive constant K. Then g ∈ Lq(E) and ‖g‖q ≤ K.

7 Weak Convergence in Lp(E)

Let 1 ≤ p, q ≤ ∞ be conjugate. A sequence of functions {fn} in Lp(E) for 1 ≤ p ≤
∞, converges weakly to a function f ∈ Lp(E) if

lim
∫

E
fngdμ =

∫

E
f gdμ for all g ∈ Lq(E).

If {fn} converges to f in Lp(E) it also converges weakly to f in Lp(E). Indeed by
the Hölder inequality, for all g ∈ Lq(E)

∣∣∣
∫

E
(fng − f g)dμ

∣∣∣ ≤ ‖g‖q‖fn − f ‖p.

Thus strong convergence implies weak convergence. The converse is false as
indicated by the following

7.1 Counterexample

The functions x → cos nx, n = 1, 2, . . . , satisfy

∫ 2π

0
cos2 nxdx = π for all n ∈ N.

Therefore {cos nx} is a sequence in L2[0, 2π] which does not converge to zero
in L2[0, 2π]. However it converges to zero weakly in L2[0, 2π]. To prove it, let first
g = χ(α,β), where (α,β) ⊂ [0, 2π], and compute

∫ 2π

0
χ(α,β) cos nxdx = 1

n
(sin nβ − sin nα) → 0 as n → ∞.

Let now ϕ be a simple function of the form
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ϕ =
m∑

i=1
giχ(αi,βi) (7.1)

where (αi,βi) are mutually disjoint subintervals of [0, 2π] and gi are real numbers.
For any such function

lim
∫ 2π

0
ϕ cos nxdx = 0.

Simple functions of the form (7.1) are dense in L2[0, 2π] (Corollary 6.1c of the
Complements). Thus

lim
∫ 2π

0
g cos nxdx = 0 for all g ∈ L2[0, 2π].

8 Weak Lower Semi-continuity of the Norm in Lp(E)

Proposition 8.1 Let {fn} be a sequence of functions in Lp(E) for some 1 ≤ p < ∞,
converging weakly to some f ∈ Lp(E). Then

lim inf ‖fn‖p ≥ ‖f ‖p. (8.1)

If p = ∞ the same conclusion holds if {X,A,μ} is σ-finite.

Proof Assume first that 1 ≤ p < ∞. The function g = |f |p/qsign f belongs to Lq(E)

and

lim
∫

E
fngdμ =

∫

E
f gdμ = ‖f ‖pp.

On the other hand, by Hölder’s inequality

∣∣∣
∫

E
fngdμ

∣∣∣ ≤ ‖fn‖p‖g‖q = ‖fn‖p‖f ‖p/qp .

Therefore
lim inf ‖fn‖p‖f ‖p/qp ≥ ‖f ‖pp.

Assume next that p = ∞ and μ(E) < ∞. Fix ε > 0 and set

Eε = [|f | ≥ ‖f ‖∞ − ε] and g = χEε
sign f .

For such choices

lim
∫

E
fngdμ =

∫

E
f gdμ ≥ (‖f ‖∞ − ε) μ(Eε).
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By Hölder’s inequality

∣∣∣
∫

E
fngdμ

∣∣∣ ≤ ‖fn‖∞μ(Eε).

Since μ(Eε) > 0, this implies

lim inf ‖fn‖∞ ≥ ‖f ‖∞ − ε for all ε > 0.

If p = ∞ and {X,A,μ} is σ-finite let Aj ⊂ Aj+1 be a sequence of measurable
sets, of finite measure whose union is X. Setting Ej = E ∩ Aj, the previous remarks
give

lim inf ‖fn‖∞,E ≥ ‖f ‖∞,Ej for all j ∈ N. �

Remark 8.1 The counterexample of § 7.1 shows that the inequality in (8.1) might
be strict.

Corollary 8.1 Let p ∈ [1,∞). The function ‖ · ‖p : Lp(E) → R
+, is weakly,

sequentially, lower semi-continuous. If p = ∞ the same conclusion holds if {X,A,μ}
is σ-finite.

9 Weak Convergence and Norm Convergence

Weak convergence does not imply norm convergence, nor the latter implies weak
convergence. The sequence in § 7.1 provides a counterexample to both statements.
The next proposition relates these two notions of convergence.

Proposition 9.1 (Radon [121])Let p ∈ (1,∞)and let {fn}be a sequence of functions
in Lp(E) converging weakly to some f ∈ Lp(E). If also ‖fn‖p → ‖f ‖p, then {fn}
converges to f strongly in Lp(E).

The counterexample of § 7.1 shows that weak convergence and norm convergence
does not imply strong convergence. For this to occur the norm of the weak limit is
required to coincide with the norm-limit.

The proposition is false for p = ∞. In (0, 1) with the Lebesgue measure set

fn(x) =
{
0 for 0 ≤ x ≤ 1

n
1 for 1

n < x ≤ 1
for n ∈ N.

One verifies that {fn} → 1 weakly in L∞(0, 1), and ‖fn‖∞ → 1. However ‖fn −
1‖∞ = 1 for all n ∈ N.
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The proposition is false for p = 1. In (0, 2π) with the Lebesgue measure, set

fn(x) = 4 + sin nx for n ∈ N.

One verifies that {fn} → 4 weakly in L1(0, 2π) and ‖fn‖1 → ‖4‖1. However
‖fn − 4‖1 = 4 for all n ∈ N.3

The proof of Proposition 9.1 rests on the following inequalities.

Lemma 9.1 Let p ≥ 2. There exists a constant c ∈ (0, 1], such that for all t ∈ R

|1 + t|p ≥ 1 + pt + c|t|p. (9.1)

Lemma 9.2 Let 1 < p < 2. There exists a constant c ∈ (0, 1) such that for all t ∈ R

|1 + t|p ≥
{
1 + pt + c|t|p if |t| ≥ 1
1 + pt + c|t|2 if |t| ≤ 1.

(9.2)

The proof of these lemmas is given in § 9.1c of the Complements.

9.1 Proof of Proposition 9.1 for p ≥ 2

In (9.1) put

t = fn(x) − f (x)

f (x)
for f (x) 
= 0. (9.3)

Multiplying the inequality so obtained by |f (x)|p gives

|fn|p ≥ |f |p + p|f |p−2f (fn − f ) + c|fn − f |p.

One verifies that such an inequality continues to hold also if f (x) = 0. Integrating
it over E and taking the limit as n → ∞ yields

c lim sup
∫

E
|fn − f |pdμ ≤ lim

(‖fn‖pp − ‖f ‖pp
)

−p lim
∫

E
|f |p−2f (fn − f )dμ = 0. �

3This example was suggested by J. Manfredi.
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9.2 Proof of Proposition 9.1 for 1 < p < 2

For n ∈ N, introduce the sets

En = {
x ∈ E

∣
∣ |fn(x) − f (x)| ≥ |f (x)|} .

In (9.2) choose t as in (9.3) and multiply by |f (x)|p to obtain

|fn|p ≥ |f |p + p|f |p−2f (fn − f ) + c|fn − f |p in En

|fn|p ≥ |f |p + p|f |p−2f (fn − f ) + c(fn − f )2|f |p−2 in E − En.

Integrate the first overEn and the second overE−En, add the resulting inequalities
and let n → ∞ to obtain

c lim sup
{ ∫

En

|fn − f |pdμ +
∫

E−En

(fn − f )2|f |p−2dμ
}

≤ lim
{‖fn‖pp − ‖f ‖pp

} − p lim
∫

E
|f |p−2f (fn − f )dμ = 0.

This implies

lim
∫

En

|fn − f |pdμ = 0

and

lim
∫

E−En

(fn − f )2|f |p−2dμ = 0.

From this, the definition of En and Hölder’s inequality

∫

E
|fn − f |pdμ ≤

∫

En

|fn − f |pdμ +
∫

E−En

|f |p−1|fn − f |dμ

≤
∫

En

|fn − f |pdμ +
( ∫

E
|f |pdμ

)1/2( ∫

E−En

|f |p−2|fn − f |2dμ
)1/2

. �

10 Linear Functionals in Lp(E)

A map F : Lp(E) → R is a linear functional in Lp(E) if for all f , g ∈ Lp(E) and
α,β ∈ R

F(αf + βg) = αF(f ) + βF(g).
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The functional F is bounded if there exists a constant K such that

|F(f )| ≤ K‖f ‖p for all f ∈ Lp(E).

The norm of F is the smallest of such constants K . Therefore

‖F‖ = sup
‖f ‖p 
=0

|F(f )|
‖f ‖p = sup

‖f ‖p=1
|F(f )|. (10.1)

A bounded linear functional in Lp(E) is continuous.

Proposition 10.1 Let 1 < p ≤ ∞ and 1 ≤ q < ∞ be conjugate. Every g ∈ Lq(E)

generates a bounded linear functional in Lp(E) by the formula

Fg(f ) =
∫

E
f gdμ for all f ∈ Lp(E). (10.2)

Moreover ‖Fg‖ = ‖g‖q. If p = 1 and q = ∞ the same conclusion holds if
{X,A,μ} is σ-finite.

Proof ThemapFg is linear. ByHölder’s inequality it is also bounded. If 1 ≤ q < ∞,
Proposition 3.1 identifies the norm ‖Fg‖ as the norm ‖g‖q.

Let now q = ∞ and assume momentarily that E is of finite measure. For ε > 0
set

Eε = {
x ∈ E

∣∣ |g(x)| ≥ ‖g‖∞,E − ε
}

(10.3)

and in (10.2) choose f = χEε
sign g ∈ L1(E). This gives

Fg(f ) =
∫

Eε

|g|dx ≥ ‖f ‖1,E(‖g‖∞,E − ε) for all ε > 0.

Therefore
‖g‖∞,E − ε ≤ ‖Fg‖ ≤ ‖g‖∞,E .

If {X,A,μ} is σ-finite, let Aj ⊂ Aj+1 be a countable collection of measurable sets
of finite measure, whose union is X. Set Ej = E ∩Aj and define Ej,ε as in (10.3) with
E replaced by Ej. Choosing f = χEj,εsign g ∈ L1(E) in (10.2) gives

‖g‖∞,Ej − ε ≤ ‖Fg‖ ≤ ‖g‖∞,E . �

Remark 10.1 Let p ∈ (1,∞). The proof shows that if g is not the zero equivalence
class of Lq(E), the norm ‖Fg‖ is achieved by computing Fg at the element

g∗ = |g|q−1sign g

‖g‖q/pq

∈ Lp(E). (10.4)
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Remark 10.2 If p = 1 and {X,A,μ} is not σ-finite, formula (10.2), for a given g ∈
L∞(E), still defines a bounded linear functional in L1(E). However the identification
‖Fg‖ = ‖g‖∞, might fail. A counterexample can be constructed using the measure
space {X,A,μ} in 3.2 of the Complements of Chap. 3.

The Riesz representation theorem asserts that if 1 ≤ p < ∞, the functionals in
(10.2) are the only bounded linear functionals in Lp(E).

11 The Riesz Representation Theorem

Theorem 11.1 Let 1 < p, q < ∞ be conjugate. For every bounded, linear func-
tionalF in Lp(E), there exists a unique function g ∈ Lq(E) such thatF is represented
by the formula (10.2). Moreover ‖F‖ = ‖g‖q.

If p = 1 and q = ∞ the same conclusion holds if {X,A,μ} is σ-finite.

Remark 11.1 The conclusion is false for p = 1 if {X,A,μ} is not σ-finite. A coun-
terexample can be constructed using the measure space in 3.2 of the Complements
of Chap.3.

Remark 11.2 The theorem is false for p = ∞. A counterexample is in § 9.2c of the
Complements of Chap.7.

11.1 Proof of Theorem 11.1: The Case of {X,A,μ} Finite

Assume first that μ(X) < ∞ and that E = X. For every μ-measurable set A ⊂ X
the function χA is in Lp(E). The functional F induces a set function ν defined on the
σ-algebra A by the formula

A � A −→ ν(A) = F(χA).

The set function ν(·) is finite for all A ∈ A, it vanishes on the empty set and is
countably additive. To establish the last claim, let {An} be a countable collection of
mutually disjoint, measurable sets in A. Since μ(∪An) < ∞, for every ε > 0 there
exists nε ∈ N such that

∑
j>nε

μ(Aj) < ε. By linearity

F(
χ⋃

An

) = F(
χ⋃nε

j=1 Aj
+ χ⋃

j>nε
Aj

)

= F( nε∑

j=1
χAj + χ⋃

j>nε
Aj

) =
nε∑

j=1
F(χAj ) + F(

χ⋃
j>nε

Aj

)
.

Since the Aj are disjoint and p ∈ [1,∞)

http://dx.doi.org/10.1007/978-1-4939-4005-9_3
http://dx.doi.org/10.1007/978-1-4939-4005-9_3
http://dx.doi.org/10.1007/978-1-4939-4005-9_7
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∣
∣F(

χ⋃
An

) −
nε∑

j=1
F(χAj )

∣
∣ ≤ ‖F‖∥∥χ⋃

j>nε Aj

∥
∥
p

= ‖F‖( ∑

j>nε

μ(Aj)
)1/p ≤ ‖F‖ ε1/p.

Since ε is arbitrary, this implies

ν
(⋃

An
) = F(

χ⋃
An

) = ∑F(χAn) = ∑
ν(An).

Therefore ν is countably additive and defines a signed measure on A. Since
|ν(A)| = 0 whenever μ(A) = 0, the signed measure ν is absolutely continuous with
respect to μ. By the Radon–Nikodým theorem there exists a μ-measurable function
g : X → R

∗ such that

A � A −→ ν(A) =
∫

E
gχAdμ.

For every simple function ϕ = ∑n
i=1 αiχAi , by the linearity of F

F(ϕ) =
n∑

i=1
αiν(Ai) =

n∑

i=1
αi

∫

E
gχAidμ =

∫

E
gϕdμ.

For all the simple functions

∣∣
∫

E
gϕdμ

∣∣ ≤ ‖F‖‖ϕ‖p,X .

Moreover g ∈ L1(E), since E is of finite measure. Therefore by Proposition 6.2,
g ∈ Lq(E) and ‖g‖q ≤ ‖F‖. Since the simple functions are dense in Lp(E)

F(f ) =
∫

E
f gdμ for all f ∈ Lp(E) and ‖F‖ = ‖g‖q.

If g′ ∈ Lq(E) identifies the same functional F , then

∫

E
f (g − g′)dμ = 0 for all f ∈ Lp(E).

Thus g = g′ a.e. in E. �

11.2 Proof of Theorem 11.1: The Case of {X,A,μ} σ-Finite

Let Aj ⊂ Aj+1 be a countable collection of sets of finite measure exhausting X, and
set Ej = E ∩ Aj. For each f ∈ Lp(E) and j ∈ N set
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fj =
{
f on Ej

0 on E − Ej.

For each j ∈ N there exists gj ∈ Lq(Ej) such that

F(fj) =
∫

Ej

f gjdμ for all f ∈ Lp(E).

We regard gj as defined in the whole E by setting them to be equal to zero outside
Ej. If f ∈ Lp(E) vanishes outside Ej, then

F(f ) =
∫

Ej

f gjdμ =
∫

Ej+1

f gj+1dμ.

Therefore ∫

Ej

f (gj − gj+1)dμ = 0 for all f ∈ Lp(Ej)

andgj coincideswithgj+1 onEj. The sequence {gj} converges a.e. onE to ameasurable
function g. The sequence {|gj|} is nondecreasing, and by monotone convergence

‖g‖q = lim ‖gj‖q ≤ ‖F‖, 1 < q ≤ ∞.

Thus g ∈ Lq(E). Given now any f ∈ Lp(E), the sequence {fjg} converges to f g
a.e. on E and |fjg| ≤ |f g| ∈ L1(E). Therefore by dominated convergence

∫

E
f gdμ = lim

∫

E
fjgdμ = limF(fj) = F(f ).

The characterization of ‖F‖ follows from Proposition 10.1. �

11.3 Proof of Theorem 11.1: The Case 1 < p < ∞

We assume 1 < p < ∞ and place no restrictions on the measure space {X,A,μ}.
If A ⊂ E is of σ-finite measure, there exists a unique gA ∈ Lq(E), and vanishing on
E − A, such that4

F(f |A) =
∫

E
f gAdμ for all f ∈ Lp(E).

Moreover if B ⊂ A is of σ-finite measure, then gB = gA a.e. on B. The set function
A → ‖gA‖q defined on the subsets of E of σ-finite measure, is uniformly bounded
since

4f |A is the restriction of f to A, defined in the whole E by setting it to be zero outside A.
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‖gA‖q ≤ ‖F‖ for all sets A of σ − finite measure.

Denote byM the supremum of ‖gA‖q as A ranges over such sets and let {An} be a
sequence of sets of σ-finite measure such that

‖gAn‖q ≤ ‖gAn+1‖q and lim ‖gAn‖q = M.

The set A∗ = ∪An is of σ-finite measure and ‖gA∗‖q = M. Thus the supremum of
‖gA‖ is actually achieved at A∗. We regard gA∗ as defined in the whole E by setting
it to be zero outside A∗. In such a way gA∗ ∈ Lq(E). Such a function gA∗ is the one
claimed by the Riesz representation theorem.

If B is a set of σ-finite measure containing A∗, then gA∗ = gB a.e. on A∗. By
maximality

‖gA∗‖q ≤ ‖gB‖q ≤ ‖gA∗‖q.

Therefore gB = 0 a.e. on B − A∗, since 1 < q < ∞.
Given f ∈ Lp(E), the set [|f | > 0] is of σ-finite measure. Since also the set

B = [|f | > 0] ∪ A∗ is of σ-finite measure

F(f ) =
∫

E
f gBdμ =

∫

E
f gA∗dμ. �

12 The Hanner and Clarkson Inequalities

Proposition 12.1 (Hanner’s Inequalities [64]) Let f and g be in Lp(E) for some
1 ≤ p < ∞. Then

‖f + g‖pp + ‖f − g‖pp ≤ (‖f ‖p + ‖g‖p)p + | ‖f ‖p − ‖g‖p|p
for p ≥ 2 (12.1)

‖f + g‖pp + ‖f − g‖pp ≥ (‖f ‖p + ‖g‖p)p + | ‖f ‖p − ‖g‖p|p
for p ∈ [1, 2] (12.2)

(‖f + g‖p + ‖f − g‖p)p + | ‖f + g‖p − ‖f − g‖p|p ≥ 2p(‖f ‖pp + ‖g‖pp)
for p ≥ 2 (12.3)

(‖f + g‖p + ‖f − g‖p)p + | ‖f + g‖p − ‖f − g‖p|p ≤ 2p(‖f ‖pp + ‖g‖pp)
for p ∈ [1, 2] (12.4)

Proposition 12.2 (Clarkson’s Inequalities [28]) Let 1 < p, q < ∞ be conjugate,
and let f , g ∈ Lp(E). Then
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∥∥∥
f + g

2

∥∥∥
p

p
+

∥∥∥
f − g

2

∥∥∥
p

p
≤ ‖f ‖pp + ‖g‖pp

2
for p ≥ 2 (12.5)

∥∥∥
f + g

2

∥∥∥
p

p
+

∥∥∥
f − g

2

∥∥∥
p

p
≥ ‖f ‖pp + ‖g‖pp

2
for p ∈ (1, 2] (12.6)

∥∥
∥
f + g

2

∥∥
∥
q

p
+

∥∥
∥
f − g

2

∥∥
∥
q

p
≥

(‖f ‖pp + ‖g‖pp
2

)q−1
for p ≥ 2 (12.7)

∥∥∥
f + g

2

∥∥∥
q

p
+

∥∥∥
f − g

2

∥∥∥
q

p
≤

(‖f ‖pp + ‖g‖pp
2

)q−1
for p ∈ (1, 2] (12.8)

Remark 12.1 If p = 2, both Hanner’s and Clarkson’s inequalities reduce to the stan-
dard parallelogram identity, and for p = 1 they coincide with the triangle inequality.

For p > 1 and p 
= 2 set

ϕ(s; t) = h(s) + k(s)tp

where, for s ∈ (0, 1] and t > 0

h(s) = (1 + s)p−1 + (1 − s)p−1

k(s) = [
(1 + s)p−1 − (1 − s)p−1

]
s1−p.

Lemma 12.1 Let 1 < p, q < ∞ be conjugate. For every fixed t > 0 there holds

ϕ(s; t) ≤ |1 + t|p + |1 − t|p for p ∈ (1, 2]

ϕ(s; t) ≥ |1 + t|p + |1 − t|p for p ≥ 2.
(12.9)

Moreover for all t ∈ [0, 1]
∣∣
∣
1 + t

2

∣∣
∣
q +

∣∣
∣
1 − t

2

∣∣
∣
q ≤

(1 + tp

2

)q−1
for q ≥ 2

∣∣∣
1 + t

2

∣∣∣
q +

∣∣∣
1 − t

2

∣∣∣
q ≥

(1 + tp

2

)q−1
for q ∈ (1, 2].

(12.10)

Proof Assume first t ∈ (0, 1). By direct calculation

1

p − 1

dϕ(s; t)
d s

= [
(1 + s)p−2 − (1 − s)p−2

] sp − tp

sp
.

Therefore if p ∈ (1, 2) the function s → ϕ(s; t) increases for s ∈ (0, t), decreases
for s ∈ (t, 1] and takes its maximum at s = t. Analogously, if p > 2 the function
s → ϕ(s; t) takes its minimum for s = t. Therefore if t ∈ (0, 1)
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ϕ(s; t) ≤ ϕ(t; t) = |1 + t|p + |1 − t|p for p ∈ (1, 2]
ϕ(s; t) ≥ ϕ(t; t) = |1 + t|p + |1 − t|p for p ≥ 2.

By continuity these continue to hold for also for t = 1.
Assume now that t > 1. If p ∈ (1, 2) then k(s) ≤ h(s). Indeed the function

s → {k(s) − h(s)} vanishes for s = 1 and is increasing for s ∈ (0, 1). Therefore

ϕ(s; t) = h(s) + k(s)tp ≤ h(s)tp + k(s)

= tp
(
h(s) + k(s)

1

tp
) = tpϕ

(
s; 1

t

)

≤ tpϕ
(1
t
; 1
t

) = |1 + t|p + |1 − t|p.

If p > 2 and t > 1 the argument is similar, starting from the inequality k(s) ≥ h(s)
for p > 2. Inequalities (12.10) are obvious for t = 0 and t = 1. To prove the first
of (12.10) for t ∈ (0, 1), write the second of (12.9) with q replacing p and in the
resulting inequality take s = tp. Such a choice is admissible since t ∈ (0, 1). The
second of (12.10) is proved analogously. �

12.1 Proof of Hanner’s Inequalities

Having fixed f and g in Lp(E) may assume ‖f ‖p ≥ ‖g‖p > 0. Let p ∈ (1, 2) and
in the first of (12.9) take t = |g|/|f | provided |f | 
= 0. Multiplying the inequality so
obtained by |f | gives

h(s)|f |p + k(s)|g|p ≤ |f + g|p + |f − g|p

and this inequality continues to hold if |f | = 0. Integrating over E

h(s)‖f ‖pp + k(s)‖g‖pp ≤ ‖f + g‖pp + ‖f − g‖pp (12.11)

for all s ∈ (0, 1]. Taking s = ‖g‖p/‖f ‖p proves (12.2). Inequality (12.4) follows
from (12.2) by replacing f with (f + g) and g with (f − g). The proof of (12.1) and
(12.3) is analogous starting from the second of (12.9). �

12.2 Proof of Clarkson’s Inequalities

Since (12.11) holds for all s ∈ (0, 1], by taking s = 1 proves (12.6). If p ≥ 2
inequality (12.11) holds with the sign reversed and still for all s ∈ (0, 1]. By taking
s = 1 proves (12.5). To establish (12.7) and (12.8), observe first that
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∥∥∥
f ± g

2

∥∥∥
q

p
=

( ∫

E

∣∣∣
f ± g

2

∣∣∣
p
dμ

) 1
p−1

=
( ∫

E

∣∣∣
f ± g

2

∣∣∣
p

p−1 (p−1)
dμ

) 1
p−1 =

∥∥∥
∣∣∣
f ± g

2

∣∣∣
q∥∥∥

p−1
.

To prove (12.7), since q ∈ (1, 2) the second of (12.10) implies the pointwise
inequality ∣∣∣

f + g

2

∣∣∣
q +

∣∣∣
f − g

2

∣∣∣
q ≥

( |f |p + |g|p
2

)q−1
. (12.12)

By the Minkowski inequality

∥∥∥
f + g

2

∥∥∥
q

p
+

∥∥∥
f − g

2

∥∥∥
q

p
=

∥∥∥
∣∣∣
f + g

2

∣∣∣
q∥∥∥

p−1
+

∥∥∥
∣∣∣
f − g

2

∣∣∣
q∥∥∥

p−1

≥
( ∫

E

(∣
∣∣
f + g

2

∣
∣∣
q +

∣
∣∣
f − g

2

∣
∣∣
q)p−1

dμ
) 1

p−1

≥
( ∫

E

|f |p + |g|p
2

dμ
) 1

p−1 =
(‖f ‖pp + ‖g‖pp

2

)q−1
.

Inequality (12.8) is established the same way, by making use of the reverse
Minkowski inequality. Since q > 2, inequality (12.12) is reversed. Therefore, since
(p − 1) ∈ (0, 1)

∥
∥∥
f + g

2

∥
∥∥
q

p
+

∥
∥∥
f − g

2

∥
∥∥
q

p
=

∥
∥∥

∣
∣∣
f + g

2

∣
∣∣
q∥∥∥

p−1
+

∥
∥∥

∣
∣∣
f − g

2

∣
∣∣
q∥∥∥

p−1

≤
( ∫

E

(∣∣∣
f + g

2

∣∣∣
q +

∣∣∣
f − g

2

∣∣∣
q)p−1

dμ
) 1

p−1

≤
( ∫

E

|f |p + |g|p
2

dμ
) 1

p−1 =
(‖f ‖pp + ‖g‖pp

2

) 1
p−1

. �

13 Uniform Convexity of Lp(E) for 1 < p < ∞

Proposition 13.1 The spaces Lp(E) for 1 < p < ∞ are uniformly convex.

Proof It suffices to verify (4.4). Let f , g ∈ Lp(E) satisfy ‖f ‖p = ‖g‖p = 1, and
‖f − g‖p ≥ ε > 0. By the Clarkson inequalities

∥∥∥
f + g

2

∥∥∥
p

p
≤ 1 − εp

2p
if p ≥ 2

∥
∥∥
f + g

2

∥
∥∥
q

p
≤ 1 − εq

2q
if p ∈ (1, 2]. �
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A remarkable fact is that the Riesz representation theorem depends only on the
uniform convexity of Lp(E) and, in particular, is independent of the Radon–Nikodým
theorem. The starting point is the following consequence of the Clarkson’s inequal-
ities.

Proposition 13.2 Let 1 < p, q < ∞ be conjugate. For a nonzero g ∈ Lq(E) let g∗
be defined by (10.4).

If F1 and F2 are two bounded linear functionals in Lp(E) satisfying

Fi(g
∗) = ‖Fi‖ = 1 i = 1, 2

for some fixed g ∈ Lq(E), then F1 = F2.

Proof If F1 
≡ F2, there exists f ∈ Lp(E) such that F1(f ) 
= F2(f ). Set

ϕ = 2f

F1(f ) − F2(f )
− F1(f ) + F2(f )

F1(f ) − F2(f )
g∗ ∈ Lp(E).

One verifies that F1(ϕ) = 1 and F2(ϕ) = −1. Let t ∈ (0, 1) and compute

1 + t = F1(g
∗ + tϕ) ≤ ‖F1‖‖g∗ + tϕ‖p = ‖g∗ + tϕ‖p

1 + t = F2(g
∗ − tϕ) ≤ ‖F2‖‖g∗ − tϕ‖p = ‖g∗ − tϕ‖p.

Assume first that p ≥ 2. Then from these inequalities and Clarkson’s inequality
(12.7)

(1 + t)q ≤
(‖g∗ + tϕ‖pp + ‖g∗ − tϕ‖pp

2

)q−1

≤
∥∥∥
(g∗ + tϕ) + (g∗ − tϕ)

2

∥∥∥
q

p
+

∥∥∥
(g∗ + tϕ) − (g∗ − tϕ)

2

∥∥∥
q

p

= ‖g∗‖qp + tq‖ϕ‖qp = 1 + tq‖ϕ‖qp
since ‖g∗‖p = 1. Similarly if 1 < p ≤ 2 using Clarkson’s inequality (12.6)

(1 + t)p ≤ ‖g∗ + tϕ‖pp + ‖g∗ − tϕ‖pp
2

≤
∥∥∥
(g∗ + tϕ) + (g∗ − tϕ)

2

∥∥∥
p

p
+

∥∥∥
(g∗ + tϕ) − (g∗ − tϕ)

2

∥∥∥
p

p

= ‖g∗‖pp + tp‖ϕ‖pp = 1 + tp‖ϕ‖pp.

Consider the last of these. Expanding the left hand side with respect to t about
t = 0, gives

pt + O(t2) ≤ tp‖ϕ‖pp.
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Dividing by t and letting t → 0 gives a contradiction. A similar contradiction
occurs if p ≥ 2. �

14 The Riesz Representation Theorem By Uniform
Convexity

Theorem 14.1 Let 1 < p, q < ∞ be conjugate. To every bounded, linear functional
F in Lp(E), there corresponds a unique function g ∈ Lq(E) such thatF is represented
by the formula (10.2). Moreover ‖F‖ = ‖g‖q.

If p = 1 and q = ∞ the same conclusion holds if {X,A,μ} is σ-finite.

14.1 Proof of Theorem 14.1. The Case 1 < p < ∞

Without loss of generality we may assume ‖F‖ = 1. By the definition (10.1) of
‖F‖, there exists a sequence {fn} of functions in Lp(E), such that

‖fn‖p = 1 |F(fn)| ≥ 1
2 and lim |F(fn)| = 1.

By possibly replacing fn with −fn we may assume, without loss of generality, that
F(fn) > 0 for all n ∈ N.

We claim that {fn} is a Cauchy sequence in Lp(E). Proceeding by contradiction, if
not, there exists some ε > 0 such that ‖fm−fn‖p ≥ ε for infinitelymany indicesm and
n. The uniform convexity of Lp(E), then implies that there exists δ = δ(ε) ∈ (0, 1),
such that ∥∥∥

fm + fn
2

∥∥∥
p

≤ 1 − δ

for infinitely many indices m and n. Letting m, n → ∞ along such indices

2 = lim {F(fm) + F(fn)} = limF(fm + fn)

≤ lim ‖fm + fn‖p ≤ 2(1 − δ).

The contradiction proves that {fn} is a Cauchy sequence in Lp(E) and we let f
denote its limit. By construction ‖f ‖p = 1. Set

g = |f |p/qsign f and g∗ = |g|q−1sign g = f .

By construction g ∈ Lq(E) and g∗ ∈ Lp(E), and

‖f ‖p = ‖g‖q/pq = ‖g∗‖p = 1.
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Let Fg be the bounded linear functional in Lp(E) generated by such a g ∈ Lq(E),
by the formula (10.2). By construction the two functionals F and Fg satisfy

F(g∗) = Fg(g
∗) = ‖F‖ = ‖Fg‖ = 1.

Therefore F = Fg , by Proposition 13.2. �

14.2 The Case p = 1 and E of Finite Measure

Without loss of generality we may assume ‖F‖ = 1. If μ(E) < ∞, then Lp(E) ⊂
L1(E) for all p ≥ 1. In particular for all f ∈ Lp(E)

|F(f )| ≤ ‖f ‖1 ≤ μ(E)1/q‖f ‖p.

Therefore for each fixed p ∈ (1,∞), the mapF may be identified with a bounded
linear functional in Lp(E). By Theorem 14.1 for any such p, there exists a unique
gp ∈ Lq(E) such that

F(f ) = Fgp(f ) =
∫

E
f gpdμ for all f ∈ Lp(E).

Moreover

‖gp‖q = ‖Fgp‖ = sup
f∈Lp(E)

‖f ‖p=1

|Fgp(f )| = sup
f∈Lp(E)

‖f ‖p=1

|F(f )|

≤ sup
f∈Lp(E)

‖f ‖p=1

‖F‖‖f ‖1 ≤ sup
f∈Lp(E)

‖f ‖p=1

‖f ‖pμ(E)1/q = μ(E)1/q.

Now let 1 < p1 < p2 < ∞ and let

gpi ∈ Lqi(E) i = 1, 2
1

pi
+ 1

qi
= 1

be the two functions that identify Fgp1
and Fgp2

. If ϕ is a simple function

F(ϕ) = Fgpi
(ϕ) =

∫

E
ϕgpidμ i = 1, 2.

From these, by difference (gp1 − gp2) ∈ L1(E), and

∫

E
(gp1 − gp2)ϕdμ = 0 for all simple functions ϕ.
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Since the simple functions are dense inL1(E) this implies that gp1 = gp2 . Therefore
there exists a function g ∈ Lq(E) for all q ∈ [1,∞), such that

F(f ) =
∫

E
f gdμ for all f ∈ Lp(E).

For such a function g

∣∣∣
∫

E
f gdμ

∣∣∣ = |F(f )| ≤ ‖f ‖1 for all f ∈ L1(E) ∩ L∞(E).

By Corollary 6.1 this implies that g ∈ L∞(E) and ‖g‖∞ ≤ 1. Therefore, by
density, (10.2) gives a representation of F for all f ∈ L1(E). Also

1 = ‖F‖ = sup
f∈L1(E)

‖f ‖1=1

∫

E
f gdμ ≤ ‖g‖∞ ≤ 1. �

14.3 The Case p = 1 and {X,A,μ} σ-Finite

Let An ⊂ An+1 be a countable collection of sets of finite measure whose union is X.
Set

En = E ∩ (An+1 − An)

and let Fn be the restriction of F to L1(En). A function ϕ ∈ L1(En) may be regarded
as an element of L1(E), by possibly defining it to be zero in E − En. In this sense
L1(En) ⊂ L1(E), and F = Fn within L1(En). Since En has finite measure, there
exists gn ∈ L∞(En), such that

Fn(ϕ) =
∫

En

gnϕdμ for all ϕ ∈ L1(En) and ‖gn‖∞,En = 1.

By extending gn to be zero in (E − En) we regard it as an element of L∞(E) and
set g = ∑

gnχEn . Then, for all f ∈ L1(E)

F(f ) = F (∑
fχEn

) = ∑F (
fχEn

) = ∑
∫

En

gnfdμ =
∫

E
gfdμ. �

15 If E ⊂ R
N and p ∈ [1,∞), then Lp(E) Is Separable

Let dx denote the Lebesgue measure inRN and let E ⊂ R
N be Lebesgue measurable.

The R
N structure of E affords to Lp(E) further defining properties. For example

by Proposition 6.1, the collection of simple functions is dense in Lp(E), for E a
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measurable subset of any measure space {X,A,μ}. When E ⊂ R
N is Lebesgue

measurable and 1 ≤ p < ∞, the space Lp(E) contains a dense countable collection
of step functions.

Theorem 15.1 LetE ⊂ R
N bemeasurable. ThenLp(E) for1 ≤ p < ∞ is separable,

i.e., it contains a dense countable set.

Proof Let {Qn} denote the collection of closed dyadic cubes in R
N . For a fixed

positive integer n, let Sn denote the family of step functions defined on E and taking
constant, rational values on the first n cubes, i.e.,

Sn =
⎧
⎨

⎩
ϕ : E → R of the form

n∑

i=1
fiχQi∩E

where the numbers fi are rational

⎫
⎬

⎭
.

Each Sn is countable and the union S = ∪Sn is a countable family of simple
functions.We claim that S is dense in Lp(E) for 1 ≤ p < ∞, i.e., for every f ∈ Lp(E)

and every ε > 0 there exists ϕ ∈ S such that ‖f − ϕ‖p ≤ ε.
Assume first that E is bounded and that f ∈ Lp(E)

⋂
L∞(E). By Lusin’s theorem

f is quasi-continuous. Therefore having fixed ε > 0 there exists a closed set Eε ⊂ E
such that

μ(E − Eε) ≤ εp

4p‖f ‖p∞
and f is uniformly continuous in Eε. In particular there exists δ > 0, such that

|f (x) − f (y)| ≤ ε

4μ(E)1/p

for all x, y ∈ Eε such that |x−y| < δ. Since Eε is bounded, having determined δ > 0,
there exist a finite number of closed dyadic cubes, with pairwise disjoint interior and
with diameter less than δ, whose union covers Eε, say for example {Q1, . . . ,Qnδ

}.
Select xi ∈ Qi ∩ Eε and then choose a rational number fi such that

|fi − f (xi)| ≤ ε

4μ(E)1/p
.

Set

ϕ =
nδ∑

i=1
fiχQi∩E
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and compute

∫

E
|f − ϕ|pdx =

∫

Eε

|f − ϕ|pdx +
∫

E−Eε

|f − ϕ|pdx

=
nδ∑

i=1

∫

Qi∩Eε

|(f − f (xi)) + (f (xi) − fi)|pdx

+
∫

E−Eε

|f − ϕ|pdx

≤ 1

2p
εp + 2p‖f ‖p∞μ(E − Eε) ≤ εp.

If E is unbounded, since f ∈ Lp(E)

∫

E
|f |pdx = ∑

∫

E∩{n<|x|≤n+1}
|f |pdx < ∞.

Therefore, having fixed ε > 0, there exists an index nε so large that

∫

E∩{|x|≥nε}
|f |pdx ≤ 1

4p
εp.

Also

npμ([|f | ≥ n]) ≤
∫

E
|f |pdx = ‖f ‖pp.

Therefore, for every δ > 0 there exists a positive integer nδ such that

μ([|f | ≥ n]) ≤ δ for all n ≥ nδ.

By the Vitali theorem on the absolute continuity of the integral, having fixed
ε > 0, there exists δ > 0 such that

∫

[|f |≥n]
|f |pdx ≤ 1

4p
εp for all n ≥ nδ.

Setting
En = E ∩ {[|x| ≥ n] ∪ [|f | ≥ n]}

one estimates
‖f ‖p,En ≤ 1

2ε for all n ≥ max{nε; nδ}.

The set E − En is bounded and the restriction of f to such a set is bounded.
Therefore there exists a simple function ϕ ∈ S, vanishing outside E − En such that
‖f − ϕ‖p,E−En ≤ 1

2ε. �
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Remark 15.1 Let E be a Lebesgue measurable subset of RN . Then the spaces Lp(E)

for all 1 ≤ p < ∞ satisfy the second axiom of countability (Proposition 13.2 of
Chap.2).

15.1 L∞(E) Is Not Separable

Proposition 15.1 Let E ⊂ R
N be Lebesgue measurable and of positive measure.

Then L∞(E) is not separable, i.e., it does not contain a dense sequence {fn}.
Proof Denote by {Bs(y)} the collection of open balls of radius s centered at y and
such that μ

(
E ∩ Bs(y)

)
> 0. For each s > 0 fixed there exists uncountably many r

such that ∥∥χE∩Bs(y) − χE∩Br(y)

∥∥∞,E = 1.

The collection {
χE∩Bs(y)

∣∣ s > 0, y ∈ E
} ⊂ L∞(E)

is uncountable and it cannot be separated by a countable sequence {fn} of functions
in L∞(E). �

Corollary 15.1 L∞(E) satisfies the first but not the second axiom of countability.

16 Selecting Weakly Convergent Subsequences

We continue to assume that E is a Lebesgue measurable subset of RN and dx is the
Lebesgue measure inRN . A sequence {fn} of functions in Lp(E) is bounded in Lp(E)

if there exists a constant K such that ‖fn‖p ≤ K for all n.

Proposition 16.1 Let 1 < p ≤ ∞. Every sequence {fn} bounded in Lp(E), contains
a subsequence {fn′ } ⊂ {fn} weakly convergent in Lp(E).

Proof Let q ∈ [1,∞) be the conjugate of p ∈ (1,∞]. The corresponding Lq(E)

is separable and we let {gn} be a countable collection of simple functions dense in
Lq(E). For any such simple function gj set

Fn(gj) =
∫

E
gj fndx.

By Hölder’s inequality and the assumption of equiboundedness

|Fn(gj)| ≤ K‖gj‖q.

http://dx.doi.org/10.1007/978-1-4939-4005-9_2
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Therefore the sequence of numbers {Fn(g1)} is bounded and we extract a conver-
gent subsequence {Fn,1(g1)}. Analogously the sequence {Fn,1(g2)} is bounded and
we extract a convergent subsequence {Fn,2(g2)}. Proceeding in this fashion, for each
m ∈ N, we may select a sequence {Fn,m}. such that

lim
n→∞Fn,m(gj) exists for all j = 1, 2, . . . ,m.

The diagonal sequence Fn′ = Fn,n is such that

lim
n′→∞Fn′(gj) exists for all simple functions gj ∈ {gn}.

Fix g ∈ Lq(E) and ε > 0, let gj ∈ {gn} be such that ‖g − gj‖q < ε. Since {Fn′(gj)}
is a Cauchy sequence, there exists an index nε such that

|Fn′(gj) − Fm′(gj)| ≤ ε for all n′,m′ ≥ nε.

From this

|Fn′(g) − Fm′(g)| ≤ |Fn′(g − gj)| + |Fm′(g − gj)| + |Fn′(gj) − Fm′(gj)|
≤ 2K‖g − gj‖q + ε ≤ (2K + 1)ε.

Thus for all g ∈ Lq(E), the sequence {Fn′(g)} is a Cauchy sequence and hence
convergent. Setting

F(g) = limFn′(g) for all g ∈ Lq(E)

defines a bounded, linear functional in Lq(E). Since q ∈ [1,∞), by the Riesz repre-
sentation theorem there exists f ∈ Lp(E) such that

F(g) =
∫

E
gfdx for all g ∈ Lq(E).

Therefore

lim
∫

E
gfn′dx =

∫

E
gfdx for all g ∈ Lq(E). �

Remark 16.1 The conclusion of Proposition 16.1 is false for p = 1. A counterex-
ample is provided by the sequence in 10.13 of the Complements of Chap. 4.

17 Continuity of the Translation in Lp(E) for 1 ≤ p < ∞

Let E ⊂ R
N be Lebesgue measurable. For f ∈ Lp(E) and h ∈ R

N , let Thf denote the
translated of f , that is

http://dx.doi.org/10.1007/978-1-4939-4005-9_4
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Thf (x) =
{
f (x + h) if x + h ∈ E
0 if x + h /∈ E.

The following proposition asserts that the translation operation is continuous in
the norm topology of Lp(E) for all p ∈ [1,∞).

Proposition 17.1 Let E be a Lebesgue measurable set in R
N and let f ∈ Lp(E) for

some 1 ≤ p < ∞. For every ε > 0 there exists δ = δ(ε), such that

sup
|h|≤δ

‖Thf − f ‖p ≤ ε.

Proof Assumefirst thatE is bounded, i.e., contained in a ballBR centered at the origin
and radius R, for some R > 0 sufficiently large. Indeed, without loss of generality,
we may assume that E = BR, by defining f to be zero outside E. For a subset E ⊂ E
and a vector η ∈ R

N , set

E − η = {
x ∈ R

N
∣∣ x + η ∈ E}

.

Having fixed ε > 0, let δp be the number claimed by Vitali’s theorem on the
absolute continuity of the integral, and for which

∫

E
|f |pdx ≤ 1

2p+1
εp

whenever E ⊂ E is measurable and μ(E) ≤ δp. Since the Lebesgue measure is
translation invariant, for any vector η ∈ R

N and any such set E

μ[(E − η) ∩ E] ≤ δp.

Therefore, for any such set E
∫

E
|Tηf − f |pdx ≤ 2p−1

( ∫

E
|f |pdx +

∫

(E−η)∩E
|f |pdx

)
≤ 1

2
εp.

Since f ismeasurable, by Lusin’s theorem it is quasi-continuous. Therefore having
fixed the positive number

σ = δp

2 + μ(E)

there exists a closed set Eσ ⊂ E such that μ(E − Eσ) ≤ σ and f is uniformly
continuous in Eσ . In particular, there exists δσ > 0, such that

|Thf (x) − f (x)|p ≤ 1

2μ(E)
εp for all |h| < δσ
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provided both, x and x + h belong to Eσ . For any such vector h

∫

Eσ∩(Eσ−h)
|Thf − f |pdx ≤ 1

2
εp.

For any vector η of length |η| < σ, estimate5

μ[E − (Eσ − η)] = μ((E + η) − Eσ)

≤ μ(E − Eσ) + μ((E + η) − E) ≤ σ + σμ(E).

From this

μ {E − [Eσ ∩ (Eσ − η)]} ≤ μ(E − Eσ) + μ[E − (Eσ − η)]
≤ σ[2 + μ(E)] = δp.

If |h| ≤ δ = min{σ; δσ}, estimate

∫

E
|Thf − f |pdx ≤

∫

Eσ∩(Eσ−h)
|Thf − f |pdx

+
∫

E−[Eσ∩(Eσ−h)]
|Thf − f |pdx

=
∫

Eσ∩(Eσ−h)
|Thf − f |pdx + 1

2
εp ≤ εp.

If E is unbounded, having fixed ε > 0, there exists R so large that, for all |h| < 1

∫

E∩{|x|>2R}
|Thf − f |pdx ≤ 2p

∫

E∩{|x|>R}
|f |pdx ≤ 1

2p
εp.

For such a fixed R, there exists δ = δ(ε), such that

sup
|h|<δ

‖Thf − f ‖p,E∩{|x|<2R} ≤ 1

2
ε.

Therefore
sup
|h|<δ

‖Thf − f ‖p,E ≤ sup
|h|<δ

‖Thf − f ‖p,E∩{|x|≤2R}

+ 2‖f ‖p,E∩{|x|>R} ≤ ε. �

Remark 17.1 The proposition is false for p = ∞. Counterexamples can be con-
structed as in § 15.1.

5Since E = BR, we may estimate μ[(E + η) − E] ≤ σμ(BR).
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17.1 Continuity of the Convolution

Corollary 17.1 Let f ∈ Lp(E) and g ∈ Lq(E) where p and q are Hólder conjugate
and 1 ≤ p < ∞. Regard f and g as defined in the whole RN by extending them to be
zero outside E. Then the convolution R

N � x → (f ∗ g)(x) is a continuous function
of x.

18 Approximating Functions in Lp(E) with Functions
in C∞(E)

Let f be a real valued function defined in R
N . The support of f is the closure of the

set [|f | > 0] and we write
supp {f } = [|f | > 0].

Let E be an open subset ofRN . We regard a real valued function f defined in E, as
defined in the wholeRN , by extending it to be zero inRN −E. A function f : E → R

is of compact support in E if supp {f } is compact and contained in E. Set

C∞(E) =
{
the collection of all infinitely differentiable

functions f : E → R

}

C∞
o (E) =

{
the collection of all infinitely differentiable
functions f : E → R of compact support in E

}
.

A function f ∈ Lp(E) for 1 ≤ p < ∞, can approximated in its norm topology, by
functions in C∞(E), by means of the Friedrichs mollifying kernels [51]

J(x) =
⎧
⎨

⎩
k exp

{ −1

1 − |x|2
}

if |x| < 1

0 if |x| ≥ 1

where k is a positive constant chosen so that ‖J(x)‖1,RN = 1. For ε > 0 let

Jε(x) = 1

εN
J

(x
ε

)
.

The kernels J and Jε are in C∞
o (RN ). Moreover, for all ε > 0

∫

RN

Jε(x)dx = 1 and Jε(x) = 0 for |x| ≥ ε.
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The convolution of the mollifying kernels Jε with a function f ∈ L1(E) is

x → (Jε ∗ f )(x) =
∫

RN

Jε(x − y)f (y)dy. (18.1)

Since Jε ∈ C∞
o (RN ), the convolution (Jε ∗ f ) is in ∈ C∞(RN ). In this sense (Jε ∗ f )

is a regularization or mollification of f .
For fixed x ∈ R

N , the domain of integration in (18.1) is the ball centered at x and
radius ε. If f ∈ Lp(E) and x ∈ ∂E, then (18.1) is well defined since f is extended
to be zero outside E. If the support of f is contained in E and has positive distance
from ∂E, then

(Jε ∗ f ) ∈ C∞
o (E) provided ε < dist{supp{f }; ∂E}.

Proposition 18.1 Let f ∈ Lp(E) for some 1 ≤ p < ∞. Then

(Jε ∗ f ) ∈ Lp(E) and ‖(Jε ∗ f )‖p ≤ ‖f ‖p
and

lim
ε→0

‖(Jε ∗ f ) − f ‖p = 0. (18.2)

If f ∈ C(E), then for every compact subset K ⊂ E

lim
ε→0

(Jε ∗ f )(x) = f (x) uniformly in K. (18.3)

Proof By Hölder’s inequality

|(Jε ∗ f )(x)| =
∣∣∣
∫

RN

Jε(x − y)f (y)dy
∣∣∣

≤
( ∫

RN

Jε(x − y)dy
)1/q( ∫

RN

Jε(x − y)|f |p(y)dy
)1/p

=
( ∫

RN

Jε(x − y)|f |p(y)dy
)1/p

.

Taking the p-power of both sides and integrating over RN with respect to the
x-variables, gives ∫

RN

|Jε ∗ f |pdx ≤
∫

RN

|f |pdy.
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To establish (18.2) write

|(Jε ∗ f )(x) − f (x)| =
∣∣∣
∫

RN

Jε(x − y)[f (y) − f (x)]dy
∣∣∣

≤
∫

|η|<ε

Jε(η)|f (x + η) − f (x)|dη

≤
( ∫

RN

Jε(η)dη
)1/q( ∫

RN

Jε(η)|f (x + η) − f (x)|pdη
)1/p

.

Taking the p-power and integrating R
N with respect to the x-variables, gives

‖(Jε ∗ f ) − f ‖p,RN ≤ sup
|η|<ε

‖Tηf − f ‖p,RN .

Now (18.2) follows from Proposition 17.1. To prove (18.3) fix a compact subset
K ⊂ E and, for x ∈ K, write

|(Jε ∗ f )(x) − f (x)| =
∣∣∣
∫

RN

Jε(x − y)[f (y) − f (x)]dy
∣∣∣

≤ sup
|x−y|<ε

|f (x) − f (y)|. �

Proposition 18.2 Let E be an open subset ofRN . Then C∞
o (E) is dense in Lp(E) for

p ∈ [1,∞).

Proof Having fixed ε > 0, let Kε be a compact subset of E such that

∫

E−Kε

|f |pdy ≤ 1

2p
εp.

Let 2δε = dist {Kε; ∂E} and set

fε =
{
f (x) for x ∈ Kε

0 for x ∈ E − Kε.

If δ < δε the functions fδ = fε∗Jδ have compact support inE. By Proposition 18.1
there exists δ′

ε such that

‖fε − fδ‖p ≤ 1

2
ε for all δ < δ′

ε.

Therefore for all such δ

‖f − fδ‖p ≤ ‖fε − fδ‖p + ‖f ‖p,E−Kε
< ε. �
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19 Characterizing Pre-compact Sets in Lp(E)

Let E ⊂ R
N be open and let dx denote the Lebesgue measure in R

N . Pre-compact
subsets of Lp(E) for 1 ≤ p < ∞ are characterized in terms of total boundedness
(Proposition 17.3 of Chap.2). For δ > 0 set

Eδ =
{
x ∈ E

∣
∣ dist {x; ∂E} > δ and |x| <

1

δ

}

and assume that δ is so small that Eδ is not empty.

Theorem 19.1 (Kolmogorov [84] and Riesz [132]) A bounded subset K of Lp(E)

for 1 ≤ p < ∞, is pre-compact in Lp(E) if and only if for every ε > 0 there exists
δ > 0 such that for all vectors h ∈ R

N of length |h| < δ and for all u ∈ K

‖Thu − u‖p < ε and ‖u‖p,E−Eδ
< ε. (19.1)

Proof (Sufficient Condition) For all ν > 0 wewill construct a ν-net forK . For ε > 0,
choose δ so that (19.1) is satisfied and let Jη be the η-mollifying kernel, for η ≤ δ.
For a.e. x ∈ Eδ

|(Jη ∗ u)(x) − u(x)| =
∣∣
∣
∫

|y|<η

Jη(y)[u(x + y) − u(x)]dy
∣∣
∣

≤
∫

|y|<η

Jη(y)|(T−yu − u)(x)|dy.

From this and the condition of the theorem

‖Jη ∗ u − u‖p,Eδ
≤ sup

|h|<η

‖Thu − u‖p ≤ ε.

The family {Jη ∗ u | u ∈ K} for a fixed η ∈ (0, δ), is equibounded and equicontin-
uous in Ēδ . Indeed

|(Jη ∗ u)(x)| ≤ ‖Jη‖q‖u‖p for all x ∈ Ēδ.

Moreover, for every ξ ∈ R
N

|Jη ∗ u(x + ξ) − Jη ∗ u(x)| ≤ ‖Jη‖q‖Tξu − u‖p.

Therefore having fixed an arbitrary σ > 0, there exists τ > 0, such that for all
vectors |ξ| < τ

|Jη ∗ u(x + ξ) − Jη ∗ u(x)| ≤ ‖Jη‖qσ for all u ∈ K .

http://dx.doi.org/10.1007/978-1-4939-4005-9_2


284 6 The Lp Spaces

Thus by the Ascoli–Arzelá theorem, the set {Jη ∗ u | u ∈ K} is pre-compact in
C(Ēδ) and for all fixed ε > 0, it admits a finite ε-net {ϕ1, . . . ,ϕm} of functions in
C(Ēδ) (§ 19.1 of Chap.5). Precisely, for every u ∈ K , there exists some ϕj such that

|ϕj(x) − (Jη ∗ u)(x)| < ε for all x ∈ Ēδ.

Define

ϕ̄j =
{

ϕj(x) for x ∈ Ēδ

0 otherwise.

Having fixed ν > 0, the numbers ε, δ, and ε, can be chosen so that the collection
{ϕ̄1, . . . , ϕ̄m} is a finite ν-net for K in Lp(E). Indeed, if u ∈ K

‖u − ϕ̄j‖p ≤ ‖u‖p,E−Eδ
+ ‖Jη ∗ u − u‖p,Eδ

+ ‖Jη ∗ u − ϕj‖p,Eδ
.

The proof is concluded by choosing ε, δ, and ε so that the right hand side does
not exceed ν. �

Proof (Necessary Condition) The existence of ε-nets for all ε > 0 implies that for
all ε ∈ (0, 1) there exists δ > 0 such that

‖u‖p,E−Eδ
≤ ε for all u ∈ K .

To prove this, let {ϕ1, . . . ,ϕn} be a finite 1
2ε-net. Then for every u ∈ K there

exists some ϕj such that for all δ > 0

‖u‖p,E−Eδ
≤ ‖ϕj‖p,E−Eδ

+ 1
2ε.

Now we may choose δ so that

‖ϕj‖p,E−Eδ
≤ 1

2ε for all j = 1, 2, . . . , n.

Fix ε > 0 and δ > 0 so small that

‖u‖p ≤ ‖u‖p,Eδ
+ 1

2ε for all u ∈ K .

Next, for all u ∈ K

‖Thu − u‖p ≤ 2ε + ‖Thu − u‖p,Eδ

and

‖Thu − u‖p,Eδ
≤ ‖Thu − Thϕj‖p,Eδ

+ ‖Thϕj − ϕj‖p,Eδ
+ ‖u − ϕj‖p,Eδ

≤ 2ε + ‖Thϕj − ϕj‖p,Eδ
. �

http://dx.doi.org/10.1007/978-1-4939-4005-9_5
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Problems and Complements

1c Functions in Lp(E) and Their Norm

1.1c The Spaces Lp for 0 < p < 1

A measurable function f : E → R
∗ is in Lp(E) for 0 < p < 1 if |f |p ∈ L1(E). A

norm-like function f → ‖f ‖p might be defined as in (1.1). The collection Lp(E) for
0 < p < 1 is a linear space. This is a consequence of the following lemma.

Lemma 1.1c Let 0 < p < 1. Then for nonnegative x, y

(x + y)p ≤ xp + yp.

Proof If either x or y is zero, the inequality is trivial. Otherwise, letting t = x/y, the
inequality is equivalent to

f (t) = (1 + t)p − (1 + tp) ≤ 0 for t ≥ 0 and 0 < p < 1 �

1.2c The Spaces Lq for q < 0

If 0 < p < 1, its Hölder conjugate q is negative. A measurable function f : E → R
∗

is in Lq(E) for q < 0 if

0 <

∫

E
|f |qdμ =

∫

E

1

|f | p
1−p

dμ < ∞,
1

p
+ 1

q
= 1.

A norm-like function f → ‖f ‖q might be defined as in (1.1). If f ∈ Lq(E) for
q < 0, then f 
= 0 a.e. in E and |f | 
≡ ∞. If q < 0 the set Lq(E) is not a linear space.

1.3c The Spaces �p for 1 ≤ P ≤ ∞

Let a = {an} be a sequence of real numbers and set

‖a‖p = (∑ |an|p
)1/p

if 1 ≤ p < ∞
‖a‖∞ = sup |an| if p = ∞.

(1.1c)

Denote by �p the set of all sequences a such that ‖a‖p < ∞. One verifies that �p
is a linear space for all 1 ≤ p ≤ ∞ and that (1.1c) is a norm. Moreover �∞ satisfies
analogues of (1.2) and (1.4).
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2c The Inequalities of Hölder and Minkowski

Corollary 2.1c Let p, q ∈ (1,∞) be conjugate. For a, b ∈ R and ε > 0

|ab| ≤ εp

p
|a|p + 1

εqq
|b|q.

Corollary 2.2c Let αi ∈ (0, 1) for i = 1, . . . , n, and
∑n

i=1 αi = 1. Then for any
n-tuple of real numbers ξ1, . . . , ξn

n∏

i=1
|ξi|αi ≤

n∑

i=1
αi|ξi|.

State and prove a variant of these corollaries when p is permitted to be one, or
some of the αi is permitted to be one.

2.1c Variants of the Hölder and Minkowski Inequalities

Corollary 2.3c Let fi ∈ Lpi(E), for 1 ≤ pi ≤ ∞ and i = 1, . . . , n. Then

∫

E

n∏

i=1
|fi|dμ ≤

n∏

i=1
‖fi‖pi whenever

n∑

i=1

1

pi
= 1.

Prove the following convolution inequality.

Corollary 2.4c Let f ∈ Lp(RN ), g ∈ Lq(RN ) and h ∈ Lr(RN ), where p, q, r ≥ 1
satisfy

1

p
+ 1

q
+ 1

r
= 2.

Then ∫

RN

f (g ∗ h)dx ≤ ‖f ‖p‖g‖q‖h‖r . (2.1c)

Proof Write

f (x)g(x − y)h(y) = [f p(x)gq(x − y)] 1
r′ [gq(x − y)hr(y)] 1

p′ [f p(x)hr(y)] 1
q′ .

where p′, q′ and r′ are the Hölder conjugate of p, q and r. �

Corollary 2.5c Let 1 ≤ p, q ≤ ∞ be conjugate. Then for a ∈ �p and b ∈ �q

|a · b| = ∑ |aibi| ≤ ‖a‖p‖b‖q.



Problems and Complements 287

For a, b ∈ �p and 1 ≤ p ≤ ∞ [109]

‖a + b‖p ≤ ‖a‖p + ‖b‖p.

2.2c Some Auxiliary Inequalities

Lemma 2.1c Let x and y be any two positive numbers. Then for 1 ≤ p < ∞

|x − y|p ≤ |xp − yp|; (2.2c)

(x + y)p ≥ xp + yp;

(x + y)p ≤ 2p−1(xp + yp). (2.3c)

Proof Assuming x ≥ y and p > 1

xp − yp =
∫ 1

0

d

ds
[sx + (1 − s)y]pds = p(x − y)

∫ 1

0
[sx + (1 − s)y]p−1ds

= p(x − y)
∫ 1

0
[s(x − y) + y]p−1ds

≥ p(x − y)
∫ 1

0
sp−1(x − y)p−1ds = (x − y)p.

This proves the first of (2.2c). The second follows from the first, since

(x + y)p − yp ≥ (x + y − y)p.

To prove (2.3c) we may assume that both x and y are nonzero and that p > 1.
Setting t = x/y, the inequality is equivalent to

f (t) = (1 + t)p

1 + tp
≤ 2p−1 for all t > 0. �

2.3c An Application to Convolution Integrals

Proposition 2.1c Let f ∈ Lp(RN ) and g ∈ Lq(RN ) for some 1 ≤ p ≤ ∞, with p
and q Hölder conjugate. Then

f ∗ g ∈ L∞(RN ) and ‖f ∗ g‖∞ ≤ ‖f ‖p‖g‖q.



288 6 The Lp Spaces

Proposition 2.2c Let f ∈ L1(RN ) and g ∈ Lp(RN ) for some 1 ≤ p ≤ ∞. Then

f ∗ g ∈ Lp(RN ) and ‖f ∗ g‖p ≤ ‖f ‖1‖g‖p.

Hint: Assume ‖f ‖1 = 1 and observe that |t|p is a convex function of t in R.

2.4c The Reverse Hölder and Minkowski Inequalities

Proposition 2.3c (ReverseHölder Inequality) Let p ∈ (0, 1) and q < 0 satisfy (2.1).
Then for every f ∈ Lp(E) and g ∈ Lq(E)

∫

E
|f g|dμ ≥ ‖f ‖p‖g‖q, 1

p
+ 1

q
= 1.

Proof We may assume that f g ∈ L1(E). Apply Hölder’s inequality with

p = 1

p
> 1 q = 1

1 − p
> 1

1

p
+ 1

q
= 1. �

Proposition 2.4c (ReverseMinkowski Inequality)Let p ∈ (0, 1). Then for all f , g ∈
Lp(E)

‖ |f | + |g| ‖p ≥ ‖f ‖p + ‖g‖p.

2.5c Lp(E)-Norms and Their Reciprocals

Proposition 2.5c Let E ⊂ R
N be measurable with μ(E) = 1. Then for every non-

negative measurable function f defined in E, and all p > 0

‖f ‖1
∥∥
∥
1

f

∥∥
∥
p

≥ 1. (2.4c)

Proof Apply inequality (14.4c) of Chap.5. �

3c More on the Spaces Lp and Their Norm

3.1. Let {fn} be a sequence in Lp(E) for some p ≥ 1. Then

http://dx.doi.org/10.1007/978-1-4939-4005-9_5
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( ∫

E

∣∣∑ fn
∣∣p dμ

) 1
p ≤ ∑ ‖fn‖p.

( ∑∣∣
∫

E
fndμ

∣∣p
) 1

p ≤
∫

E

(∑ |fn|p
) 1

p dμ.

3.2. The spaces �p satisfy analogues of Propositions 3.1 and 3.2.
3.3. Let f ∈ Lp(E) for all 1 ≤ p < ∞. Assume that ‖f ‖p ≤ K for all 1 ≤ p < ∞,

for some constant K , and that μ(E) < ∞. Then f ∈ L∞(E) and ‖f ‖∞ ≤ K .
3.4. Give an example of f ∈ Lp(E) for all p ∈ [1,∞), and f /∈ L∞(E).
3.5. Let E ⊂ be open set. Give an example of f ∈ Lp(E) for all p ∈ [1,∞), and

f /∈ L∞(E′) for any open subset E′ ⊂ E.Hint: Properly modify the function
in 17.9. of the Complements of Chap. 4.

3.4c A Metric Topology for Lp(E) when 0 < p < 1

If 0 < p < 1, the norm-like function f → ‖f ‖p defined as in (1.1), is not a norm.
Indeed (4.3) is violated in view of the reverse Minkowski inequality. By the same
token (f , g) → ‖f − g‖p is not a metric in Lp(E). A topology could be generated by
the balls

Bρ(g) = {
f ∈ Lp(E)

∣
∣ ‖f − g‖p < ρ

}
, p ∈ (0, 1).

where g ∈ Lp(E) is fixed. By the reverse Minkowski inequality these balls are not
convex. A distance in Lp(E) for 0 < p < 1 is introduced by setting

d(f , g) = ‖f − g‖pp =
∫

E
|f − g|pdμ. (3.1c)

One verifies that d(·, ·) satisfies the requirements (i)–(iii) of § 13 of Chap.2, to
be a metric. The triangle inequality (iv) follows from Lemma 1.1c.

3.5c Open Convex Subsets of Lp(E) for 0 < p < 1

Let {X,A,μ} be RN with the Lebesgue measure.

Proposition 3.1c (Day [31]) Let Lp(E) for 0 < p < 1 be equipped with the topology
generated by the metric in (3.1c). Then the only open, convex subsets of Lp(E) are ∅
and Lp(E) itself.

Proof Let O be a nonempty, open, convex neighborhood of the origin of Lp(E) and
let f be an arbitrary element of Lp(E). Since O is open it contains some ball Bρ

centered at the origin. Let n be a positive integer such that

http://dx.doi.org/10.1007/978-1-4939-4005-9_4
http://dx.doi.org/10.1007/978-1-4939-4005-9_2
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1

n1−p

∫

E
|f |pdx ≤ ρ i.e., nf ∈ Bnρ.

Partition E into exactly n disjoint, measurable subsets {E1, . . . ,En} such that

∫

Ej

|f |pdx = 1

n

∫

E
|f |pdx j = 1, . . . , n.

Such a partition can be carried out in view of the absolute continuity of the
Lebesgue integral. Set

hj =
{
nf in Ej

0 in E − Ej

and compute ∫

E
|hj|pdx = np

∫

Ej

|f |pdx ≤ ρ.

Thus hj ∈ Bρ ⊂ O for all j = 1, . . . , n. Since O is convex

f = h1 + h2 + · · · + hn
n

∈ O.

Since f ∈ Lp(E) is arbitrary O ≡ Lp(E). �

Corollary 3.1c The topology generated by the metric (3.1c) in Lp(E) for 0 < p < 1
is not locally convex.

5c Convergence in Lp(E) and Completeness

5.1. A sequence {fn} ⊂ L∞(E) converges in L∞(E) to some f , if and only if there
exists a set E ⊂ E of measure zero, such that {fn} → f uniformly in E − E .

5.2. A sequence {fn} ⊂ Lp(E) converges to some f in Lp(E) if and only if every
subsequence {fn′ } ⊂ {fn}, contains in turn a subsequence {fn′′ } converging to
f in Lp(E).

5.3. �p is complete for all 1 ≤ p ≤ ∞.
5.4. Let {fn} be a sequence of functions in Lp(E) for p ∈ (1,∞), converging a.e.

in E to a function f ∈ Lp(E). Then {fn} converges to f in Lp(E) if and only
if lim ‖fn‖p = ‖f ‖p.

5.5. Let Lp(E) for 0 < p < 1 be endowed with the metric topology generated
by the metric in (3.1c). With respect to such a topology Lp(E) is a complete
metric space. In particular Lp(E) is of second category.
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5.1c The Measure Space {X,A,μ} and the Metric Space
{A; d}

Let {X,A,μ} be a measure space and let d(E;F) be the distance of any two measur-
able sets E and F, as introduced in 3.7 of the Complements of Chap.3. One verifies
that

d(E;F) =
∫

X

∣
∣χE − χF

∣
∣dμ.

Two measurable sets E and E′ are equivalent if d(E;E′) = 0. This identifies
equivalence classes inA. Continue to denote byA the collection of such equivalence
classes. By the Riesz-Fisher theorem, L1(X) is complete (Theorem 5.1). Therefore
{A; d} is a complete metric space and, as such, is of second category.

5.1.1c Continuous Functions on {A; d}

Lemma 5.1c Let {X,A,μ} be a measure space, and let λ be a signed measure on
A, absolutely continuous with respect to μ, and of finite total variation |λ|. Then
the function λ : {A; d} → R, is continuous with respect to the metric topology of
{A; d}.
Proof Let {En} be a sequence of equivalence classes in A, converging to E ∈ A, in
the sense that d(E;En) → 0. Equivalently,

lim μ(E − E ∩ En) = lim μ(En − E ∩ En) = 0.

Since |λ| is finite and λ � μ, by (c) and (d) of Chap.3, this implies

lim |λ|(E − E ∩ En) = lim |λ|(En − E ∩ En) = 0.

Hence lim λ(En) = λ(E). �

6c Separating Lp(E) by Simple Functions

For a measure space {X,A,μ} and E ∈ A, Proposition 6.1 asserts that the simple
functions, is dense in Lp(E) for all 1 ≤ p ≤ ∞.

When E ⊂ R
N is Lebesgue measurable, the simple functions dense in Lp(E) can

be given specific forms, provided 1 ≤ p < ∞. Let So denote the collection of simple
functions of the form

ϕo =
n∑

j=1
ϕjχEj,o (6.1c)

http://dx.doi.org/10.1007/978-1-4939-4005-9_3
http://dx.doi.org/10.1007/978-1-4939-4005-9_3
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where ϕj ∈ R and Ej,o are open for j = 1, . . . , n.

Proposition 6.1c Let E ⊂ R
N be Lebesgue measurable. Then So is dense in Lp(E)

for 1 ≤ p < ∞.

Proof Fix f ∈ Lp(E) and ε > 0. There exists a simple function

ϕ =
n∑

j=1
ϕjχEj such that ‖f − ϕ‖p,E < 1

2ε.

Each Ej is of finite measure. Therefore, by Proposition 12.2 of Chap. 3, there exist
open sets Ej,o ⊃ Ej such that

μ(Ej,o − Ej) <
1

(2n)p maxj∈{1,...,n} |ϕj|p εp. �

If N = 1, the sets Ej,o can be taken to be open intervals (aj, bj).

Corollary 6.1c Let E ⊂ R be Lebesgue measurable. Then the collection of simple
functions of the form

ϕ =
n∑

j=1
ϕjχ(aj,bj) (6.2c)

is dense in Lp(E) for 1 ≤ p < ∞.

Proof Fix f ∈ Lp(E) and ε > 0, and let ϕo of the form (6.1c) be such that

‖f − ϕ‖p <
1

2
ε.

Each Ej,o is the countable union of disjoint open intervals {(aj,i, bj,i)}i∈N. Since
each Ej,o is of finite measure, for each j ∈ {1, . . . , n}, there exists an index mj, such
that ∞∑

i=mj+1

(bj,i − aj,i) ≤ 1

(2n)p maxj∈{1,...,n} |ϕj|p εp.
�

7c Weak Convergence in Lp(E)

Throughout this section {X,A,μ} is RN with the Lebesgue measure and E ⊂ R
N is

Lebesgue measurable and of finite measure.

7.1. Let {fn} be a sequence of functions in Lp(E) converging weakly in Lp(E) to
some f ∈ Lp(E), and converging a.e. in E to some g. Then f = g, a.e. in E.

7.2. Let {fn} → f weakly in Lp(E) and {fn} → g in measure. Then f = g, a.e. in E.

http://dx.doi.org/10.1007/978-1-4939-4005-9_3
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7.3c Comparing the Various Notions of Convergence

Denote by {a.e.} the set of all sequences {fn} of functions from E intoR∗, convergent
a.e. in E. Analogously denote by {meas}, {Lp(E)} and {w-Lp(E)} the set of all
sequences {fn} of measurable functions defined in E and convergent respectively, in
measure, strongly and weakly in Lp(E).

By the remarks in § 7 and the counterexample of § 7.1

{Lp(E)} ⊂ {w- Lp(E)} and {w- Lp(E)} 
⊂ {Lp(E)}.

By Proposition 4.2 of Chap. 4 and the counterexample (4.1)

{a.e.} ⊂ {meas} and {meas} 
⊂ {a.e.}.

Weak convergence in Lp(E) does not imply convergence in measure, nor does
convergence in measure imply weak convergence in Lp(E), i.e.,

{w- Lp(E)} 
⊂ {meas } and {meas } 
⊂ {w- Lp(E)}.

The sequence {cos nx} for x ∈ [0, 2π], converges weakly to zero, but not in
measure. Indeed

μ
(
x ∈ [0, 2π] | | cos nx| ≥ 1

2

) = 4
3π.

This proves the first statement. For the second consider the sequence

fn(x) =
{
n for x ∈ [0, 1

n ]
0 for x ∈ ( 1n , 1].

Such a sequence converges to zero in measure and not weakly in Lp[0, 1]. Almost
everywhere convergence does not imply weak convergence in Lp(E). Strong conver-
gence in Lp(E) does not imply a.e. convergence, i.e.,

{a.e.} 
⊂ {w- Lp(E)} and {Lp(E)} 
⊂ {a.e.}.

Indeed the sequence {fn} above, converges a.e. to zero and does not converge
to zero weakly in Lp(E). For the second statement consider the sequence {ϕnm}
introduced in (4.1) of Chap. 4.

The relationships between these notions of convergence can be organized in the
diagram below in form of inclusion of sets where each square represents convergent
sequences (Fig. 1c).6

6This discussion on the various notions of convergence and the picture have been taken from the
1974 lectures on Real Analysis by C. Pucci at the Univ. of Florence, Italy.

http://dx.doi.org/10.1007/978-1-4939-4005-9_4
http://dx.doi.org/10.1007/978-1-4939-4005-9_4
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Fig. 1c Various notions of convergence

7.4. Exhibit a sequence {fn} of measurable functions in [0, 1] convergent to zero
in measure and weakly in L2[0, 1], but not convergent almost everywhere in
[0, 1].

7.5c Weak Convergence in �p

Let 1 ≤ p, q ≤ ∞ be conjugate. Let {an} be a sequence of elements in �p and let
b ∈ �q. The sequence {an} converges weakly in �p to some a ∈ �p if

lim
∑

aj,nbj = ∑
ajbj for all b ∈ �q.

Strong convergence implies weak convergence. For 1 < p ≤ ∞, the converse is
false. For example, let

aj,n =
{
n− 1

p for 1 ≤ j ≤ n
0 for j > n

for 1 < p < ∞;

bj,n =
{
0 for 1 ≤ j ≤ n
1 for j > n

for p = ∞.

Then ‖an‖p = 1 for all n and {an} → 0 weakly in �p. Likewise ‖bn‖∞ = 1
for all n and {bn} → 0 weakly in �∞. Discuss and compare the various notions of
convergence in �p, for 1 < p ≤ ∞, and construct examples. For p = 1 weak and
strong convergence are equivalent (Corollary 22.1c and § 23c).
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9c Weak Convergence and Norm Convergence

When p = 2, the proof of Proposition 9.1 is particularly simple and elegant. Indeed

‖fn − f ‖22 = ‖fn‖22 + ‖f ‖22 − 2
∫

E
fnfdμ.

9.1c Proof of Lemmas 9.1 and 9.2

For t 
= 0 and x = t−1, consider the function

f (t) = |1 + t|p − 1 − pt

|t|p = |1 + x|p − |x|p − p|x|p−2x = ϕ(x).

It suffices to prove that ϕ(x) ≥ c for all x ∈ R for some c > 0. If x ∈ (−1, 0] we
estimate directly

ϕ(x) ≥ (1 − |x|)p + (p − 1)|x|p−1 ≥ 1

2p
min{1; (p − 1)}.

If x ∈ (0, 1]

(1 + x)p − xp =
∫ 1

0

d

ds
(s + x)pds = p

∫ 1

0
(s + x)p−1ds

= −p
∫ 1

0
(s + x)p−1 d

ds
(1 − s)ds

= pxp−1 + p(p − 1)
∫ 1

0
(1 − s)(s + x)p−2ds

≥ pxp−1 + min
{
1; p(p − 1)

4

}
.

Therefore for |x| ≤ 1

ϕ(x) ≥ cp(p − 1) for some positive constant cp.

The Case p ≥ 2 and |x| > 1: By direct calculation

|1 + x|p − |x|p =
∫ 1

0

d

ds
|s + x|pds = p

∫ 1

0
|s + x|p−1sign (s + x)ds.

From this, for x ≥ 1 and p ≥ 2, making use of the second of (2.2c)
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|1 + x|p − |x|p ≥ p
∫ 1

0

(
xp−1 + sp−1) ds ≥ p|x|p−2x + 1.

For x ≤ −1 and p ≥ 2, making use of the first (2.2c)

|1 + x|p − |x|p = −p
∫ 1

0
(|x| − s)p−1ds

≥ −p
∫ 1

0

(|x|p−1 − sp−1
)
ds = p|x|p−2x + 1.

The Case 1 < p < 2 and |x| > 1: Assume first t ∈ (0, 1). Then by repeated
integration by parts

(1 + t)p − 1 = −
∫ t

0

d

ds
[1 + (t − s)]pds = p

∫ t

0
[1 + (t − s)]p−1ds

= pt + p(p − 1)
∫ t

0
s[1 + (t − s)]p−2ds

≥ pt + p(p − 1)

4
t2.

Therefore

(1 + t)p − 1 − pt

t2
≥ p(p − 1)

2
for all t ∈ (0, 1).

A similar calculation holds for t ∈ (−1, 0) with the same bound below.

11c The Riesz Representation Theorem

11.1c Weakly Cauchy Sequences in Lp(X) for 1 < p ≤ ∞

Let {X,A,μ} be a measure space. A sequence of functions {fn} : E → R
∗ is weakly

Cauchy in Lp(X) if it is bounded in Lp(X), and if, for all measurable subsets E, of
finite measure, the sequence

{ ∫

E
fndμ

}
is a Cauchy sequence in R (11.1c)

In such a case, for all such sets, there exists the limit

ν(E) = lim
∫

E
fndμ. (11.2c)
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Prove that for 1 < p < ∞ a sequence {fn} ⊂ Lp(X) is weakly convergent to some
f ∈ Lp(E), if and only if it is weakly Cauchy in Lp(X). Thus for 1 < p < ∞, the
space Lp(X) is weakly complete. Prove that the same conclusion holds for p = ∞ if
{X,A,μ} is σ-finite.

11.2c Weakly Cauchy Sequences in Lp(X) for p = 1

If p = 1, the notion of weakly Cauchy sequence is modified by requiring that
(11.1c) holds for all measurable sets E. Prove that if {X,A,μ}, is σ-finite, then
L1(X) isweakly complete.Hint:Use the indicatedmodified notion ofweaklyCauchy
sequence and the Radon–Nikodým theorem.

11.3c The Riesz Representation Theorem in �p

Let a ∈ �p and b ∈ �q, where 1 ≤ p, q ≤ ∞ are conjugate. Every element b ∈ �q
induces a bounded linear functional on �p by the formula

T(a) = a · b = ∑
aibi.

Theorem 11.1c Let 1 ≤ p < ∞. For every bounded, linear functional F in �p,
there exists a unique element b ∈ �q such that F(a) = a · b for all a ∈ �p.

14c The Riesz Representation Theorem By Uniform
Convexity

14.1c Bounded Linear Functional in Lp(E) for 0 < p < 1

Let {X,A,μ} be R
N with the Lebesgue measure and let E ⊂ R

N be Lebesgue
measurable. The topology generated in Lp(E) for 0 < p < 1 by the metric (3.1c)
is not locally convex. A consequence is that there are no linear, bounded maps
T : Lp(E) → R except the identically zero map.

Proposition 14.1c (Day [31]) Let E be a Lebesgue measurable subset ofRN and let
Lp(E) for 0 < p < 1 be equipped with the topology generated by the metric (3.1c).
Then the only bounded, linear functional on Lp(E) is the identically zero functional.
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Proof Let T be a bounded linear functional in Lp(E) for some 0 < p < 1. Since
T is continuous and linear, the pre-image of any open interval must be open and
convex in Lp(E). However by Proposition 3.1c, Lp(E) for 0 < p < 1, with the
indicated topology, does not have any open convex sets except the empty set and
Lp(E) itself. Let (−α,α) for some α > 0 be an interval about the origin of R. Then
T−1(−α,α) = Lp(E) for all α > 0. Thus T ≡ 0. �

14.2c An Alternate Proof of Proposition 14.1c

The alternate proof below is independent of the lack of open, convex neighborhoods
of the origin in the metric topology of Lp(E).7

Let T be a continuous, linear functional in Lp(E) and let f ∈ Lp(E) be such that
T(f ) 
= 0. There exists A ∈ E ∩ A such that

∫

E
χA|f |pdμ = 1

2
‖f ‖pp.

Set f = fo and fo,1 = foχA and fo,2 = foχE−A. Therefore fo = fo,1 + fo,2, and

‖fo‖pp = ‖fo,1‖pp + ‖fo,2‖pp, ‖fo,1‖pp = ‖fo,2‖pp = 1
2‖fo‖pp.

Since T is linear, T(fo) = T(fo,1) + T(fo,2), and

|T(fo)| ≤ |T(fo,1)| + |T(fo,2)|.

Therefore either

|T(fo,1)| ≥ 1
2 |T(fo)| or |T(fo,2)| ≥ 1

2 |T(fo)|.

Assume the first holds true and set f1 = 2fo,1. For this choice

|T(f1)| ≥ |T(fo)| and ‖f1‖pp = 2p‖fo,1‖pp = 2p−1‖fo‖pp.

Now repeat this construction with fo replaced by f1 and generate a function f2 such
that

|T(f2)| ≥ |T(fo)| and ‖f2‖pp = 2p−1‖f1‖pp = 22(p−1)‖fo‖pp.

By iteration generate a sequence of functions {fn} in Lp(E) such that

|T(fn)| ≥ |T(fo)| and ‖fn‖pp = 2n(p−1)‖fo‖pp.

7This proof was provided by A.E. Nussbaum.
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Since p ∈ (0, 1) the sequence {fn} converges to zero in the metric topology of
Lp(E). However T(fn) does not converge to zero. �

15c If E ⊂ R
N and p ∈ [1,∞), then Lp(E) Is Separable

15.1. The spaces �p for 1 ≤ p < ∞ are separable, whereas �∞ is not separable.
15.2. BV [a, b] is not separable (§ 1.2c of the Complements of Chap.5).
15.3. Let E be a measurable subset in R

N and let Lp(E) for 0 < p < 1 be
endowed with the metric topology generated by the metric in (3.1c).With
respect to such a topology Lp(E) is separable. In particular it satisfies the
second axiom of countability.

18c Approximating Functions in Lp(E) with Functions
in C∞(E)

A function f ∈ Lp(RN ) can approximated by smooth functions by forming the
convolution with kernels other than the Friedrichs mollifying kernels Jε.

We mention here two such kernels. Their advantage with respect to the Friedrichs
kernels is that they satisfy specific Partial Differential Equations and therefore they
are more suitable in applications related to such equations. Their disadvantage is that
they are not compactly supported. Therefore even if f is of compact support in R

N ,
its approximations will not be.

18.1c Caloric Extensions of Functions in Lp(RN)

For x ∈ R
N and t > 0 set

Γ (x − y; t) = 1

(4πt)N/2
e− |x−y|2

4t .

Set formally

Δx = div∇x =
N∑

j=1

∂2

∂x2j

and define Δy similarly. Verify by direct calculation that for all x, y ∈ R
N and t > 0

Γt − ΔxΓ = 0 and Γt − ΔyΓ = 0.

http://dx.doi.org/10.1007/978-1-4939-4005-9_5
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This partial differential equation is called the heat equation. The variables x are
referred to as the space variables and t is referred to as the time.

A function (x, t) → u(x, t) that satisfies the heat equation in a space-time open
set E ⊂ R

N × R, is said to be caloric in E. For example (x, t) → Γ (x − y; t) is
caloric in RN × R

+ for all y ∈ R
N .

Verify that ∫

RN

Γ (x − y; t)dy =
∫

RN

Γ (x − y; t)dx = 1

for all x, y ∈ R
N and all t > 0. Hint: Introduce the change of variables

x − y

2
√
t

= η for a fixed y ∈ R
N and t > 0

and use 14.2 of the Complements of Chap. 4.
Let E be an open set in RN and regard functions in Lp(E) as functions in Lp(RN )

by extending them to be zero in RN − E. For f ∈ Lp(E) and t > 0 set

ft(x) = (Γ ∗ f )(x) =
∫

RN

Γ (x − y; t)f (y)dy.

The function (x, t) → ft(x) is caloric inRN×R
+ and is called the caloric extension

of f in the upper half space RN ×R
+. Such an extension is a mollification of f since

x → ft(x) ∈ C∞(RN ).

Proposition 18.1c Let f ∈ Lp(E) for some 1 ≤ p < ∞. Then Γ ∗ f ∈ Lp(E) and
‖Γ ∗ f ‖p ≤ ‖f ‖p. The mollifications Γ ∗ f approximate f in the sense

lim
t→0

‖ft − f ‖p = 0.

Moreover if f ∈ C(E) and f is bounded in R
N then for every compact subset

K ⊂ E
lim
t→0

ft(x) = f (x) uniformly in K.

Proof The first two statements are proved as in Proposition 18.1. To prove the last,
fix a compact set K ⊂ E and a positive number εo. If εo is sufficiently small, there
exists a compact set Kεo such that K ⊂ Kεo ⊂ E, and dist {K;Kεo} ≥ εo. For all
x ∈ K and all ε ∈ (0, εo), write

http://dx.doi.org/10.1007/978-1-4939-4005-9_4
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|ft(x) − f (x)| =
∣∣∣
∫

RN

Γ (x − y; t)[f (y) − f (x)]dy
∣∣∣

≤
∣∣∣
∫

|x−y|≤ε

Γ (x − y; t)[f (y) − f (x)]dy
∣∣∣

+
∣∣∣
∫

|x−y|>ε

Γ (x − y; t)[f (y) − f (x)]dy
∣∣∣

≤ sup
|x−y|≤ε;x∈K

|f (y) − f (x)|
∫

RN

Γ (x − y; t)dy

+ 2‖f ‖∞
∫

|x−y|>ε

Γ (x − y; t)dy

≤ ω(ε) + 2‖f ‖∞
∫

|x−y|>ε

Γ (x − y; t)dy

where ωo(·) is the uniform modulus of continuity of f in Kεo . The last integral is
transformed into

∫

|x−y|>ε

Γ (x − y; t)dy = 1

πN/2

∫

|η|> ε
2
√
t

e−|η|2dη.

From this, for ε ∈ (0, εo) fixed

lim
t→0

∫

|x−y|>ε

Γ (x − y; t)dy = 0.

Letting now t → 0 in the previous inequality gives

lim
t→0

|ft(x) − f (x)| = ωo(ε) for all ε ∈ (0, εo). �

Remark 18.1c The assumption that f be bounded in R
N can be removed. Indeed a

similar approximation would hold if f grows as |x| → ∞ not faster than eγ|x|2 , for a
positive constant γ ([34] Chap.V).

18.2c Harmonic Extensions of Functions in Lp(RN)

For x, y ∈ R
N and t > 0 set

H(x − y; t) = 1

ωN+1

2t

[|x − y|2 + t2] N+1
2

.

Set formally

Δ(x,t) = Δx + ∂2

∂t2
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and define Δ(y,t) similarly. Verify by direct calculation that for all x, y ∈ R
N and all

t > 0
Δ(x,t)H = Δ(y,t)H = 0.

This is the Laplace equation in the variables (x, t). A function that satisfies the
Laplace equation in an open set E ⊂ R

N+1 is called harmonic in E. As an example,
(x, t) → H(x − y; t) is harmonic in RN × R

+ for all y ∈ R
N .

Verify that for all x, y ∈ R
N and all t > 0

∫

RN

H(x − y; t)dy =
∫

RN

H(x − y; t)dx = 1.

Hint: The change of variables (x − y) = tη transforms these integrals in

2

ωN+1

∫

RN

dη
(
1 + |η|2) N+1

2

= 2
ωN

ωN+1

∫ ∞

0

ρN−1dρ
(
1 + ρ2

) N+1
2

= 1.

Use also 14.1 of the Complements of Chap. 4.
Let E be an open set in RN and regard functions in Lp(E) as functions in Lp(RN )

by extending them to be zero in RN − E. For f ∈ Lp(E) and t > 0 set

ft(x) = (H ∗ f )(x) =
∫

RN

H(x − y; t)f (y)dy.

The function (x, t) → ft(x) is harmonic in R
N × R

+ and is called the harmonic
extension of f in the upper half spaceRN ×R

+. Such and extension is a mollification
of f since x → ft(x) ∈ C∞(RN ).

The integral defining ft(·) is called the Poisson Integral of f ([34] Chap. II).

Proposition 18.2c Let f ∈ Lp(E) for some 1 ≤ p < ∞. Then H ∗ f ∈ Lp(E) and
‖H ∗ f ‖p ≤ ‖f ‖p. The mollifications H ∗ f approximate f in the sense,

lim
t→0

‖ft − f ‖p = 0.

Moreover if f ∈ C(E) and f is bounded in R
N then for every compact subset

K ⊂ E
lim
t→0

ft(x) = f (x) uniformly in K.

If p = ∞ neither C∞
o (E) nor C(Ē) is dense in L∞(E).

http://dx.doi.org/10.1007/978-1-4939-4005-9_4
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18.3c Characterizing Hölder Continuous Functions

Let E ⊂ R
N be open and let Cα(E) be the space of Hölder continuous functions in

E, endowed with the topology generated by the distance d(·, ·) introduced in (15.6)
of Chap.2. With respect to such a topology a function u ∈ Cα(E) cannot be approx-
imated, in general, by smooth functions (15.5–15.7 of § 15.1c of the Complements
of Chap.2).

However u can be approximated in the topology of the uniform convergence by its
mollifications {uε}. Indeed the rate of convergence of {uε} to u inL∞(E) characterizes
Cα(E).

Proposition 18.3c Let u ∈ Cα(E) for some α ∈ (0, 1). Then

‖u − uε‖∞ ≤ [u]αεα, and ‖uε,xj‖∞ ≤ ‖Jxj‖1[u]αεα−1 (18.1c)

for j = 1, . . . ,N.

Proof Without loss of generality we may assume E = R
N . Indeed, since u is uni-

formly continuous in E, with concave modulus of continuity, it can be extended to
a Hölder continuous function defined in R

N with the same upper and lower bounds
and with the same Hölder exponent α (Theorem 15.1 of Chap. 5). Then

|u(x) − uε(x)| ≤
∫

|x−y|<ε

Jε(x − y)|u(x) − u(y)|dy ≤ [u]αεα.

Also by the properties of Jε

|uε,xj | =
∣∣
∣
∫

RN

Jε,xj u(y)dy −
( ∫

RN

Jεdy
)

xj
u(x)

∣∣
∣

≤
∫

|x−y|<ε

|Jε,xj ||u(x) − u(y)|dy

≤ ‖Jxj‖1[u]αεα−1. �

This rate of convergence characterizes Cα(E) in the following sense.

Proposition 18.4c Let u be a continuous function defined in R
N and assume that

for some fixed α ∈ (0, 1), for all ε > 0 there exists vε ∈ C1(RN ) such that

‖u − vε‖∞ ≤ γεα, and ‖vε,xj‖∞ ≤ γεα−1 (18.2c)

for some fixed constant γ > 0. Then u ∈ Cα(RN ) and [u]α ≤ 3γ.

Proof For any pair x, y ∈ R
N with |x − y| < ε

|u(x) − u(y)| ≤ |u(x) − vε(x)| + |u(y) − vε(y)| + |vε(x) − vε(y)|. �

http://dx.doi.org/10.1007/978-1-4939-4005-9_2
http://dx.doi.org/10.1007/978-1-4939-4005-9_2
http://dx.doi.org/10.1007/978-1-4939-4005-9_5
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19c Characterizing Pre-compact Sets in Lp(E)

19.1. A closed, bounded subset C of �p for 1 ≤ p < ∞ is compact if and only if
for every ε > 0, there exists an index nε such that

∑
n>nε

|an|p ≤ ε for all
a ∈ C.

19.2. The closed unit ball of Lp(E) is not compact since is not sequentially com-
pact. The same conclusion holds for the unit ball of �p and C(Ē).

19.1c The Helly’s Selection Principle

When E = (a, b) is an open interval and {fn} ⊂ BV [a, b] then Lp(E)-convergence
of a subsequence can be replaced with everywhere pointwise convergence, provided
{fn} is uniformly bounded. Continue to denote by Vf [a, b] the variation of f in [a, b].

Proposition 19.1c (Helly [73]) Let (a, b) be an open interval of R and let {fn} be a
sequence of real valued functions defined in [a, b], such that

sup
[a,b]

|fn| ≤ M, and Vfn ≤ M (19.1c)

for some constant M independent of n. Then, there exists a function f ∈ BV [a, b],
with Vf [a, b] ≤ M and a subsequence {fn′ } ⊂ {fn} such that {fn′ } → f everywhere in
(a, b).

Proof By the Jordan’s decomposition we may assume that each of the fn are nonde-
creasing. Define fn in the wholeR by extending them to be zero inRN −[a, b]. Then
for h > 0 however small, compute

∫

R

|fn(x + h) − fn(x)|dx = ∑

j∈Z

∫ h

0
|fn(x + (j + 1)h) − fn(x + jh)|dx

=
∫ h

0

∑

j∈Z
|fn(x + (j + 1)h) − fn(x + jh)|dx

≤ hVfn [a, b] ≤ hM for all n ∈ N.

Hence {fn} satisfy (19.1) uniformly in n. Therefore there exists f ∈ L1[a, b] and
a subsequence {fn1} ⊂ {fn} such that {fn1} → f in L1[a, b]. From this a further
subsequence {fn2} ⊂ {fn1} can be selected converging to f a.e. in [a, b]. Since {fn} is
equibounded in [a, b] a further subsequence {fn3} ⊂ {fn2} can be selected converging
to f at all rationals of [a, b]. Here f is properly redefined on a set of measure zero.
Since the fn are all nondecreasing, the function f is nondecreasing at the points
of convergence. Also by properly redefining f on a set of measure zero we may
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assume that f is nondecreasing in [a, b]. One also verifies that {fn3} → f at all
points of continuity of f . Thus {fn3} might fail to converge to f only at the points of
discontinuity of f . However f being nondecreasing, it has at most countably many
points of discontinuity. Hence a further selection of {fn′ } ⊂ {fn3} can be effected such
that {fn′ } → f everywhere in [a, b]. �

20c The Vitali-Saks-Hahn Theorem [59, 138, 170]

Theorem 20.1c (Vitali-Saks-Hahn [59, 138, 170])Let {X,A,μ} be ameasure space
and let {λn} be a sequence of signed measures on A, absolutely continuous with
respect to μ, each of finite variation |λn|, and such that

lim
n

λn(E) exists for all E ∈ A.

Then
lim

μ(E)→0
λn(E) = 0 uniformly in n.

Proof Continue to denote by {A; d} the collection of equivalence classes of measur-
able sets at zero mutual distance, endowed with the metric topology, generated by
d(·; ·). Having fixed ε > 0, consider the collection of equivalence classes

Em,n = {
E ∈ A ∣∣ |λn(E) − λm(E)| ≤ ε

}
, for m, n = 1, 2 . . . .

By Lemma 5.1c, λm and λn are continuous functions in {A; d}. Therefore the sets
Em,n are closed in the metric topology of {A; d}. Set

Ek = ⋂
m,n≥kEm,n.

The assumption implies that every E ∈ A belongs to some Ek , and hence
A = ⋃

Ek . Since {A; d} is a complete metric space, by the Baire category theo-
rem (Theorem 16.1 of Chap. 2), at least one of the Ek has nonempty interior. Thus
there exists k ∈ N, a positive number r, and an equivalence class A ∈ Ek such that
all equivalence classes F in the ball Br(A) of radius r centered at A

Br(A) = {
F ∈ A ∣∣ d(A;F) = μ(AΔF) < r

}

belong to Ek . Equivalently

|λn(F) − λn(F)| ≤ ε, for all m, n ≥ k, and for all F ∈ Br(A).

Determine 0 < δ < r such that for any E ∈ A of μ-measure μ(E) < δ, there
holds

http://dx.doi.org/10.1007/978-1-4939-4005-9_2
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|λn(E)| ≤ ε, for n = 1, . . . , k.

Such choice is possible since λn are absolutely continuous with respect to μ, and
k is finite. For any such set E, one verifies that both A∪ E, and A− E, belong to the
ball Br(A). Then compute

λn(E) = λk(E)r + λn(E) − λk(E)

= λk(E) + [
λn(A ∪ E) − λk(A ∪ E)

]

− [
λn(A − E) − λk(A − E)

]

Hence |λn(E)| ≤ 3ε, for all n ∈ N. �

Remark 20.1c A consequence of the Vitali-Saks-Hahn theorem is that there exists
a Lebesgue measurable set E ⊂ [0, 1] such that

lim
∫

E
nχ[0, 1n ]dx does not exist.

Likewise there exists a Lebesgue measurable set E ⊂ R
N such that

lim
( n

4π

) N
2

∫

E
e−n |y|2

4 dy does not exist.

Construct such sets explicitly.

Corollary 20.1c Let {X,A,μ} be a finite measure space and let {λn} be a sequence
of finite measures on A, absolutely continuous with respect to μ, and such that

λ(E)
def= lim

n
λn(E) exists for all E ∈ A.

Then λ(·) is a measure on A.

Proof There is only to prove that λ is countably additive. By the Vitali-Saks-Hahn
theorem, for all ε > 0 there exists δ = δ(ε) independent of n such that

λn(E) < ε for all E ∈ A such that μ(E) < δ, for all n ∈ N.

Let {Ej} be a countable collection of disjoint, measurable sets. Since μ is finite,
for all δ > 0 there exists an index m = m(δ) such that

μ
( ⋃

j>m
Ej

)
< δ.

Fix ε > 0, determine δ as claimed by the Vitali-Saks-Hahn theorem, and choose
m = m(δ) accordingly. Then
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λ
(⋃

Ej
) = lim

n
λn

( m⋃

j=1
Ej

) + lim
n

( ⋃

j>m
Ej

)

=
m∑

j=1
λ(Ej) + lim

n

( ⋃

j>m
Ej

)
.

Thus ∣∣∣λ
(⋃

Ej
) −

m∑

j=1
λ(Ej)

∣∣∣ < ε. �

Corollary 20.2c (Nikodým [117]) LetA be a σ-algebra on a set X, and let {λn} be
a sequence signed measures on A, each with finite variation |λn|, and such that

λ(E)
def= lim

n
λn(E) exists for all E ∈ A.

Then λ(·) is countably additive on A.

Proof For all E ∈ A and all n ∈ N set

μn(E) = |λn|(E)

|λn|(X)
and μ(E) = ∑ 1

2n
μn(E).

One verifies that μ is a finite measure on A and λn � μ for all n. Thus the
conclusion follows from the Vitali-Saks-Hahn theorem and Corollary 20.1c. �

21c Uniformly Integrable Sequences of Functions

The next assertions are a direct consequence of the Vitali-Saks-Hahn Theorem 20.1c.
As a consequence give conditions on a sequence of functions {fn} to be uniformly
integrable in X, in the sense of § 11c of Chap.4.

Proposition 21.1c Let {X,A,μ} be a measure space and let {λn} be a sequence
of signed measures on A, absolutely continuous with respect to μ, each of finite
variation |λn|, and such that

lim
n

λn(E) exists for all E ∈ A.

Then for all ε > 0 there exists δ such that

μ(E) < δ implies |λn|(E) < ε uniformly in n.

Proof If the conclusion does not hold, there exists ε > 0 and a sequence {Em} of
measurable subsets of X, such that

http://dx.doi.org/10.1007/978-1-4939-4005-9_4
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μ(Em) <
1

m
and |λm(Em)| > ε.

For each m fixed

ε < |λm|(Em) = λ+
m(Em) + λ−

m(Em).

Therefore either
λ+
m(Em) > 1

2ε, or λ−
m(Em) 12ε.

Let X+
m ∪ X−

m be the Hanh’s decomposition of X induced by λ. By replacing Em

with either Em ∩ X+
m or Em ∩ X−

m , the sets {Em} can be chosen so that

μ(Em) <
1

m
and λm(Em) > 1

2ε.

This contradicts the conclusion of the Vitali-Hahn-Saks theorem and establishes
the proposition. �
Corollary 21.1c Let {X,A,μ} be a measure space and {fn} be a sequence of inte-
grable functions in X such that

{ ∫

E
fndμ

}
is a Cauchy sequence in R

for all E ∈ A. Then {fn} is uniformly integrable in X, in the sense of § 11c of Chap.4.
Proof Since fn ∈ L1(X), setting

A � E −→ λn(E) =
∫

E
fndμ.

defines signedmeasuresλn onA, absolutely continuouswith respect toμ, and each of
finite variation |λn|. By the assumptions {λn(E)} has a limit for all E ∈ A. Therefore
by the Vitali-Saks-Hahn theorem

lim
μ(E)→0

∣∣∣
∫

E
fndμ

∣∣∣ = 0 uniformly in n.

If {fn} is not uniformly integrable, there exists ε > 0 and a sequence {Em} of
measurable subsets of X, such that

μ(Em) <
1

m
and

∫

Em

|fm|dμ > ε.

For each m fixed

ε <

∫

Em

f +
m dμ +

∫

Em

f −dμ.

http://dx.doi.org/10.1007/978-1-4939-4005-9_4
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Therefore either
∫

Em

f +
m dμ > 1

2ε, or
∫

Em

f −
m dμ > 1

2ε.

Thus by replacing Em with either Em ∩ [fm > 0] or Em ∩ [fm ≤ 0], the sets {Em}
can be chosen so that

μ(Em) <
1

m
and

∣∣∣
∫

Em

fmdμ
∣∣∣ > 1

2ε. �

Corollary 21.2c Let {X,A,μ} be a measure space and {fn} be a sequence of inte-
grable functions in X weakly convergent in L1(X) to some f ∈ L1(X). Then {fn} is
uniformly integrable in X, in the sense of § 11c of Chap.4.

22c Relating Weak and Strong Convergence
and Convergence in Measure

The previous statements permit one to give necessary and sufficient conditions for
weak convergence to imply strong convergence.

Proposition 22.1c Let {X,A,μ} be a finite measure space and let {fn} be a sequence
of integrable functions in X. Then {fn} converges strongly in L1(X) if and only if
{fn} → f weakly and in measure.

Proof Strong convergence implies weak convergence and convergence in measure.
To prove the converse, fix ε > 0 and determine δ > 0 such that

μ(E) < δ implies
∫

E
|fn − f |dμ < ε uniformly in n.

This is possible, since by Corollary 21.2c, {fn} is uniformly integrable. Since
{fn} → f in measure, there exists nε such that

μ(|fn − f | > ε]) < ε for all n > nε.

Then since μ is finite

∫

X
|fn − f |dμ =

∫

|fn−f |>ε

|fn − f |dμ

+
∫

|fn−f |≤ε

|fn − f |dμ < ε
(
1 + μ(X)

)
. �

The next proposition extends Proposition 22.1c to σ-finite measure spaces.

http://dx.doi.org/10.1007/978-1-4939-4005-9_4
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Proposition 22.2c Let {X,A,μ} be a σ-finite measure space and let {fn} be a
sequence of integrable functions in X converging weakly in L1(X) to some f ∈ L1(X).
Then {fn} converges strongly in L1(X) if and only if {fn} → f in measure, on every
subset of X of finite measure.

Proof By replacing fn with fn − f , one may assume that f = 0. For a measurable set
E ⊂ X and n ∈ N set

λn(E) =
∫

E
fndμ; νn(E) =

∫
E |fn|dμ

∫
X |fn|dμ

; ν(E) = ∑ 1

2n
νn(E).

One verifies that ν is a finite measure on A and that λn � ν for all n. Moreover,
since {fn} → 0 weakly in L1(X), the lim λn(E) exists for all E ∈ A. Thus, by
Proposition 22.1c, for all ε > 0 there exists δ such that

ν(E) < δ implies
∫

E
|fn|dμ

∣∣∣ < ε uniformly in n.

Having fixed ε and the corresponding δ, there is n = nδ such that

∑

j>nδ

1

2j
νj(E) <

1

2
δ for all E ∈ A.

Since {X,A,μ} is σ-finite, there exists a countable collection of measurable sets
{Em} of finite μ-measure, such that Em ⊂ Em+1, and X = ⋃

Em. Since fj ∈ L1(X),
there exists m = m(nδ) such that

∫

X−Em(nδ )

|fj|dμ <
1

2
δ for j = 1, . . . , nδ.

Therefore, by the definition of ν, the set X − Em(nδ) satisfies

ν(X − Em(nδ)) < δ

and hence, ∫

X−Em(nδ )

|fn|dμ < ε uniformly in n.

Then

lim
∫

X
|fn|dμ = lim

∫

X−Em(nδ )

|fn|dμ + lim
∫

Em(nδ )

|fn|dμ

< ε + lim
∫

Em(nδ )

|fn|dμ.
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Since Em(nδ) is of finite μ-measure, the last limit is zero (Proposition 22.1c). �

Corollary 22.1c In �1 weak and strong convergence coincide.

23c An Independent Proof of Corollary 22.1c

Proposition 23.1c A sequence {xn} ⊂ �1 converges weakly to some x ∈ �1 if and
only if ‖xn − x‖1 → 0 as n → ∞.

Proof Strong convergence implies weak convergence. To show the converse assume
x = 0. Thus the assumption is

lim〈xn, y〉 = lim
∑

xj,nyj = 0 for all y ∈ �∞. (23.1c)

Choosing y as the base elements of �∞, gives

lim
n

xj,n = 0 for all j ∈ N. (23.2c)

If lim sup ‖xn‖1 > 0, there exists ε > 0 and a subsequence {xn′ } ⊂ {xn} such that

‖xn′ ‖1 > ε and lim〈xn′′ , y〉 = 0 (23.3c)

for all subsequences {xn′′ } ⊂ {xn′ } and all y ∈ �∞. The proof consists of extracting
a subsequence {xn′′ } ⊂ {xn′ } and an element y ∈ �∞ fow which that last statement
fails to hold.

Fix the index m1 = n′
1 and consider the sequence xm1 = {xj,m1}. Since xm1 ∈ �1,

there exists an index jm1 such that
∑

j>jm1

|xj,m1 | < 1
4ε.

Then choose
yj = sign {xj,m1}, for j = 1, . . . , jm1 .

For such a choice, and in view of the first of (23.3c),

∣∣∣
jm1∑

j=1
yjxj,m1

∣∣∣ > ‖xm1‖1 − ∑

j>jm1

|xj,m1 | > 3
4ε.

The index jm1 being fixed, by the pointwise convergence in (23.2c), there exists
an integer m1 < m2 ∈ {n′} such that

∣∣
∣
jm1∑

j=1
yjxj,m2

∣∣
∣ < 1

8ε.
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Since xm2 ∈ �1, there is an index jm2 , such that

∑

j>jm2

|xj,m2 | < 1
8ε.

Without loss of generality we may take jm2 > jm1 + 1 and set

yj = sign {xj,m2}, for j = jm1 + 1, . . . , jm2 .

Taking into account the first of (23.3c) the element xm2 satisfies

∣∣∣
jm1∑

j=1
yjxj,m2

∣∣∣ < 1
8ε;

jm2∑

jm1+1
yjxj,m2 > 3

4ε;
∑

j>jm2

|xj,m2 | < 1
8ε. (23.4c)

Proceeding by induction, assume that for a positive integer s ≥ 2, an element
xms ∈ {xn′ }, an index jms and numbers yj for j = 1, . . . jms , have been selected
satisfying

∣
∣∣
jms−1∑

j=1
yjxj,ms

∣
∣∣ < 1

8ε;
jms∑

jms−1+1
yjxj,ms > 3

4ε;
∑

j>jms

|xj,ms | < 1
8ε. (23.4c)s

An element xms+1 ∈ {xn′ }, an index jms+1 and numbers yj for j = jms + 1, . . . , jms+1

are constructed by first choosing ms+1 ∈ {n′} so that
∣∣∣
jms∑

j=1
yjxj,ms+1

∣∣∣ < 1
8ε.

Such a choice is possible in view of the pointwise convergence in (23.2c). Then
choose jms+1 so that ∑

j>jms+1

|xj,ms+1 | < 1
8ε.

Such a choice is possible since xms+1 ∈ �1. Then choose

yj = sign {xj,ms+1}, for j = jms + 1, . . . , jms+1 .

Taking into account the first of (23.3c) one verifies that xms+1 satisfies (23.4c)s+1.
This procedure identifies a subsequence {xms} ⊂ {xn′ }, and an element y ∈ �∞, of
norm 1, such that

〈y, xms〉 =
jms−1∑

j=1
yjxj,ms +

jms∑

j=ms−1+1
yjxj,ms + ∑

j>jms

yjxj,ms > 1
2ε. �



Chapter 7
Banach Spaces

1 Normed Spaces

Let X be a vector space and let Θ be its zero element. A norm on X is a function
‖ · ‖ : X → R

+ satisfying:

i. ‖x‖ = 0 if and only if x = Θ

ii. ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ X
iii. ‖λ x‖ = |λ| ‖x‖ for all λ ∈ R and x ∈ X .

Every norm on X defines a translation invariant metric by the formula d(x, y) =
‖x − y‖. This in turn generates a translation-invariant topology in X . We denote by
{X; ‖ · ‖} the corresponding metric space. By Proposition 14.1 of Chap. 2, the sum
+ : X × X → X and the product • : R× X → X are continuous with respect to the
metric topology of X . Therefore the norm ‖ · ‖ induces a topology on X by which
{X; ‖ · ‖} is a topological vector space. By the requirements (ii) and (iii), the balls
in {X; ‖ · ‖} are convex. Therefore such a topology is locally convex.

Remark 1.1 The requirements (i)–(iii) distinguish between metrics and norms.
While every norm is a metric, there exist metrics that do not satisfy (iii). For example
the metric do in (13:1) of Chap.2 does not satisfy (iii) even if d does.

The pair {X; ‖ · ‖} is called a normed space and the topology generated by ‖ · ‖ is the
norm topology of X . If {X; ‖ · ‖} is complete, it is called a Banach space. The spaces
R

N , for all N ∈ N, endowed with their Euclidean norm, are Banach spaces. The
spaces L p(E) for 1 ≤ p ≤ ∞ are Banach spaces. The spaces �p for 1 ≤ p ≤ ∞ are
Banach spaces. Let E be a bounded open set in R

N . Then C(Ē) is a Banach space
by the norm

C(Ē) � f −→ ‖ f ‖ = sup
Ē

| f |. (1.1)

This is also called the sup-norm and generates the topology of uniform conver-
gence (§ 15 of Chap.2).
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Let [a, b] be an interval ofR. Then the space BV [a, b] of the functions of bounded
variations in [a, b] is a Banach space by the norm

BV [a, b] � f −→ ‖ f ‖ = | f (a)| + V f [a, b] (1.2)

where V f [a, b] is the variation of f in [a, b] (§ 1.1c of the Complements of Chap.5).
Let E be a bounded open set inRN andα ∈ (0, 1). The spaceCα(E) of the Hölder

continuous functions defined in E , with Hölder exponent α is a Banach space by the
norm (see § 15.2 of Chap.2)

Cα(E) � f → ‖ f ‖ = ‖ f ‖∞ + [ f ]α. (1.3)

If Xo is a subspace of X we denote by {Xo; ‖ · ‖} the normed space Xo with the
norm inherited from {X; ‖ · ‖}. If Xo is a closed subspace of X then also {Xo; ‖ · ‖}
is a Banach space.

The same vector space X can be endowed with different norms. The notion of
equivalence of two norms ‖ · ‖1 and ‖ · ‖2 on the same vector space X can be inferred
from the notion of equivalence of the corresponding metrics (see § 13.2 of Chap. 2
and related problems; see also 1.1 and 1.4 of the Complements).

All norms in a finite dimensional, Hausdorff, topological vector space, space is
equivalent (§ 12 of Chap.2).

Every finite dimensional subspace of a normed space is closed.

1.1 Semi-norms and Quotients

A nonnegative function p : X → R is a semi-norm if it satisfies the requirements
(ii)–(iii) of a norm. A semi-norm p is a norm on X if and only if it satisfies also
the requirement (i). As an example, the function p : C[0, 1] → R defined by
p( f ) = | f ( 12 )| is a semi-norm in C[0, 1], which is not a norm.

The kernel of a semi-norm p is defined by

ker{p} = {x ∈ X
∣∣ p(x) = 0}.

Since p is nonnegative, the triangle inequality implies that ker{p} is a subspace
of X . If p is a norm ker{p} = {Θ} and if p ≡ 0 then ker{p} = X . As an example,
let {X; ‖ · ‖} be a normed space and let Xo be a subspace of X . The distance from
an element x ∈ X to Xo

d(x, Xo) = inf
y∈Xo

‖x − y‖

defines a semi-norm on X whose kernel is Xo.
A semi-norm p on X and its kernel ker{p}, induce an equivalence relation in X ,

by stipulating that two elements x, y ∈ X are equivalent if and only if p(x − y) = 0.

http://dx.doi.org/10.1007/978-1-4939-4005-9_5
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Equivalently, x is equivalent to y if and only if p(x) = p(y). The quotient space
X/ ker{p} consists of the equivalence classes of elements x ′ = x + ker{p}.

The operation of linear combination of any two elements x ′ and y′ of X/ ker{p}
can be introduced by operating with representatives out of these equivalence classes,
and by verifying that such an operation is independent of the choice of these rep-
resentatives. This turns X/ ker{p} into a vector space whose zero element is the
equivalence class ker{p}. Moreover, the function p : X → R may be redefined as a
map p′ from X/ ker{p} into R by setting

p′(x ′) = p′(x + ker{p}) = p(x).

One verifies that p′ : X/ ker{p} → R is now a norm on X/ ker{p} by which
{X/ ker{p}; p′} is a normed space.

2 Finite and Infinite Dimensional Normed Spaces

A vector space X is of finite dimension if it has a finite Hamel basis and is of infinite
dimension if any Hamel basis is infinite (§ 9.6c of the Complements of Chap. 2).

The unit sphere of a normed space {X; ‖ ·‖}, centered at the origin of X is defined
as S1 = {x ∈ X |‖x‖ = 1}.

Let S1 be the unit sphere centered at the origin of RN and let π be an hyperplane
through the origin of RN . Then there exists at least one element xo ∈ S1 whose
distance from π is 1.

The analog in an infinite dimensional normed space {X; ‖ · ‖} is stated as follows.
One fixes a closed, proper subspace {Xo, ‖ · ‖} and seeks an element xo ∈ X such
that

‖xo‖ = 1 and d(xo, Xo) = inf
x∈Xo

‖xo − x‖ = 1. (2.1)

Unlike the finite dimensional case, such an element in general does not exist, as
shown by the following counterexample.

2.1 A Counterexample

Let X be the subspace of C[0, 1] endowed with the sup-norm, of those functions
vanishing at 0. Let also Xo ⊂ X be the subspace of X of those functions with
vanishing integral average over [0, 1]. One verifies that Xo endowed with the sup-
norm is a closed, proper subspace of X .

Proposition 2.1 There exists no function f ∈ X such that and

‖ f ‖ = 1 and ‖ f − g‖ ≥ 1 for all functions g ∈ Xo. (2.2)

http://dx.doi.org/10.1007/978-1-4939-4005-9_2
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Remark 2.1 If (2.2) holds for some f of unit norm, is equivalent to (2.1). Indeed
(2.1) implies (2.2), whereas the latter implies d( f, Xo) ≥ 1. However, g ≡ 0 is in
Xo and ‖ f ‖ = 1. Therefore d( f, Xo) = 1.

Proof (of Proposition 2.1) Assume such a f exists. For h ∈ X − Xo set

g = f − c h where c =
∫ 1
0 f (t)dt
∫ 1
0 h(t)dt

.

Then g ∈ Xo and
1 ≤ ‖ f − ( f − ch)‖ = |c|‖h‖,

that is ∣∣∣
∫ 1

0
h(t)dt

∣∣∣ ≤
∣∣∣
∫ 1

0
f (t)dt

∣∣∣ sup
t∈[0,1]

|h(t)|.

Choosing h = t1/n ∈ X − Xo gives

n

n + 1
≤
∣∣∣
∫ 1

0
f (t)dt

∣∣∣ for all n ∈ N.

Therefore letting n → ∞
1 ≤

∫ 1

0
| f (t)|dt.

This however is impossible since f is continuous, ‖ f ‖ = 1 and f (0) = 0.

2.2 The Riesz Lemma

While in general an element xo ∈ S1 at distance 1 from a given subspace, does not
exist, there exist elements of norm 1 and at a distance arbitrarily close to 1 from the
given subspace.

Lemma 2.1 (Riesz [128]) Let {X; ‖ · ‖} be a normed space and let {Xo; ‖ · ‖} be a
closed, proper subspace of {X; ‖ · ‖}. For every ε ∈ (0, 1) there exists xε ∈ X such
that ‖xε‖ = 1 and ‖xε − x

∥∥ ≥ 1 − ε for all x ∈ Xo.

Proof Fix xo ∈ X − Xo and let d be the distance from xo to Xo. Since Xo is a proper,
closed subspace of X we have d > 0. There exists an element x1 ∈ Xo, such that

d ≤ ‖xo − x1‖ ≤ d + εd

1 − ε
.
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The element claimed by the lemma is

xε = xo − x1
‖xo − x1‖ ‖xε‖ = 1.

To prove the lemma for such xε first observe that, for every x ∈ Xo

x̃ = x1 + ‖xo − x1‖x ∈ Xo.

Then, for every x ∈ Xo

‖xε − x‖ =
∥∥∥

xo − x1
‖xo − x1‖ − x

∥∥∥

= 1

‖xo − x1‖‖xo − x̃‖

≥ d

‖xo − x1‖ ≥ 1 − ε.

2.3 Finite Dimensional Spaces

A locally compact, Hausdorff, topological vector space is of finite dimension (Propo-
sition 12.2 of Chap.2). In normed spaces {X; ‖ · ‖}, the Riesz lemma permits one to
give an independent proof.

Proposition 2.2 Let {X; ‖ · ‖} be a normed space. If the unit sphere S1 is compact,
then X is finite dimensional.

Proof If not, choose x1 ∈ S1 and consider the subspace X1 spanned by x1. It is a
proper subspace of X and by Corollary 12.1 of Chap.2, it is closed. Therefore by the
Riesz lemma, there exists x2 ∈ S1 such that ‖x1 − x2‖ ≥ 1

2 .
The space X2 = spn{x1, x2} is a proper, closed subspace of {X; ‖ · ‖}. Therefore

there exists x3 ∈ S1 such that ‖x2 − x3‖ ≥ 1
2 .

Proceeding in this fashion we generate a sequence {xn} of elements in S1 such
that ‖xn − xm‖ ≥ 1

2 , for n �= m. Such a sequence does not contain any convergent
subsequence contradicting the compactness of S1.

Corollary 2.1 A normed space {X; ‖ · ‖} is of finite dimension if and only if S1 is
compact.

http://dx.doi.org/10.1007/978-1-4939-4005-9_2
http://dx.doi.org/10.1007/978-1-4939-4005-9_2
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3 Linear Maps and Functionals

Let {X; ‖·‖X } and {Y ; ‖·‖Y } be normed spaces. A linear map T : X → Y is bounded
if there exists a positive number M such that

‖T (x)‖Y ≤ M‖x‖X for all x ∈ X.

The norm of T is defined as the smallest of such M , i.e.,

‖T ‖ = sup
x∈X−Θ

‖T (x)‖Y
‖x‖X

= sup
‖x‖X=1

‖T (x)‖Y . (3.1)

Proposition 3.1 Let T be a linear map from a normed space {X; ‖ · ‖X } into a
normed space {Y ; ‖ · ‖Y }. Then
(i). If T is bounded, it is uniformly continuous.
(ii). If T is continuous at some xo ∈ X, it is bounded.

Proof If T is bounded, for any pair of elements x, y ∈ X

‖T (x) − T (y)‖Y ≤ ‖T ‖‖x − y‖X .

This proves (i). To prove (ii) we may assume that xo = Θ . There exists a ball Bε

of radius ε and centered at the origin of X such that

‖T (y)‖Y < 1 for all y ∈ Bε.

If x is an element of X not in the ball Bε, put

xε = ε

2

x

‖x‖X
∈ Bε.

By the linearity of T

ε

2‖x‖X
‖T (x)‖Y = ‖T (xε)‖Y ≤ 1.

Therefore

‖T (x)‖Y ≤ 2

ε
‖x‖X for all x ∈ X.

Let B(X; Y ) denote the collection of all the bounded linear maps from {X; ‖ · ‖X }
into {Y ; ‖·‖Y }. Such a collection has the structure of a vector space, for the operations
of sum and product by scalars, i.e.,

(T1 + T2)(x) = T1(x) + T2(x), αT (x) = T (αx)
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for all x ∈ X and all α ∈ R. It has also the structure of a normed space by the norm
in (3.1). Therefore a topology and the various notions of convergence in B(X; Y )

are defined in terms of such a norm. One also verifies that the operations

+ : B(X; Y ) × B(X; Y ) → B(X; Y ), • : R × B(X; Y ) → B(X; Y )

are continuous with respect to the corresponding product topology. Therefore
B(X; Y ) is a topological vector space by the topology generated by the norm in (3.1).
The next proposition gives a sufficient condition for the normed space B(X; Y ) to
be a Banach space.

Proposition 3.2 Let {Y ; ‖ ·‖Y } be a Banach space. Then B(X; Y ) endowed with the
norm (3.1) is also a Banach space.

Proof Let {Tn} be a Cauchy sequence in B(X; Y ), i.e., for any fixed ε > 0, there
exist an index nε such that, ‖Tn − Tm‖ ≤ ε for all n,m ≥ nε. For each fixed x ∈ X ,
the sequence {Tn(x)} is a Cauchy sequence in Y . Indeed

‖Tn(x) − Tm(x)‖Y ≤ ‖Tn − Tm‖‖x‖X .

Since {Y ; ‖ · ‖Y } is complete {Tn(x)} has a limit in Y which is denoted by T (x).
For every x ∈ X and all n ≥ nε

‖Tn(x) − T (x)‖Y = lim
m

‖Tn(x) − Tm(x)‖Y ≤ ε‖x‖X .

The map T : X → Y so constructed is linear. It is also bounded since

‖T ‖ = sup
‖x‖X=1

lim ‖Tn(x)‖Y ≤ ‖Tnε
‖ + ε.

This implies that T ∈ B(X; Y ) and that {Tn} converges to T in the norm of
B(X; Y ). Indeed

‖Tn − T ‖ = sup
‖x‖X=1

‖Tn(x) − T (x)‖Y ≤ ε for n ≥ nε.

If the target space {Y ; ‖ · ‖Y } is the set of the real numbers, endowed with the
Euclidean norm, then T is said to be a functional. The space B(X;R) of all the
bounded linear functionals in X , is denoted by X∗ and is called the dual space to X .

Corollary 3.1 The dual X∗ of a normed space {X; ‖ · ‖}, endowed with the norm
(3.1) is a Banach space.
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4 Examples of Maps and Functionals

Let E be a bounded open set in RN and let dx denote the Lebesgue measure in RN .
Given a real valued function K (·, ·), defined and measurable in the product space
E × E , set formally

T ( f )(x) =
∫

E
K (x, y) f (y)dy. (4.1)

If K (·, ·) ∈ Lq(E × E) for some 1 < q < ∞ then (4.1) defines a bounded linear
map T : L p(E) → Lq(E), where p and q are conjugate. A formal example of (4.1)
is the Riesz potential

T ( f )(x) =
∫

E

f (y)

|x − y|N−1
dy. (4.2)

whose kernel satisfies (Proposition 21.1 of Chap.9)

sup
y∈E

∫

E
|K (x, y)|dx ≤ γ

(
def= Nκ

N−1
N

N μ(E)
1
N

)
(4.3)

where κN is the volume of the unit ball in R
N . Therefore the Riesz potential can

be regarded as a bounded linear map from L1(E) into L1(E) or from L∞(E) into
L∞(E).

Denote by C1([0, 1]) the space of all continuously differentiable functions in
[0, 1] with the topology inherited from the sup-norm on C[0, 1]. The differentiation
map

T ( f ) = f ′ : C1([0, 1]) −→ C([0, 1])

is linear and not bounded. Let C[0, 1] be equipped with the sup-norm. The map

T ( f )(t) =
∫ t

0
f (s)ds, t ∈ [0, 1]

from C[0, 1] into itself, is linear, continuous but not onto.

4.1 Functionals

The dual ofRN equipped with its Euclidean norm is isometrically isomorphic toRN ,
that is, RN ∗ = R

N , up to an isomorphism. By the Riesz representation theorem, the
dual of L p(E) for 1 ≤ p < ∞ is isometrically isomorphic to Lq(E) where p and q
are conjugate, that is, L p(E)∗ = Lq(E), up to an isomorphism. Similarly �∗

p = �q .

http://dx.doi.org/10.1007/978-1-4939-4005-9_9
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4.2 Linear Functionals on C(Ē)

Let E ⊂ R
N be bounded and open. For a fixed xo ∈ E set

T ( f ) = f (xo) for all f ∈ C(Ē). (4.4)

This is called the evaluationmap at xo and it identifies a bounded linear functional
T ∈ C(Ē)∗, with norm ‖T ‖ = 1. Let now μ be a σ-finite Borel measure in RN and
set

T ( f ) =
∫

E
f dμ for all f ∈ C(Ē). (4.5)

This identifies a functional T ∈ C
(
Ē
)∗
, with norm ‖T ‖ = μ(E). It will be

shown in § 2–6 of Chap.8, that, in a sense to be made precise, these are essentially
all the bounded linear functionals on C(Ē). Also the evaluation map (4.4) can be
represented as in (4.5) if μ is the Dirac mass δxo .

4.3 Linear Functionals on Cα(Ē) for Some α ∈ (0, 1)

Since Cα(Ē) ⊂ C(Ē) one has the inclusion C(Ē)∗ ⊂ Cα(Ē)∗. The inclusion is in
general strict. Take for example E = (−1, 1) and consider the map

Cα[−1, 1] � f → lim
ε→0

∫

|x |>ε

f (x)

x
dx . (4.6)

One verifies that this defines a bounded, linear functional in Cα[−1, 1] which
cannot be extended to be an element of C(Ē)∗. Precisely for all γ > 0 there is
f ∈ C(Ē) such that ‖ f ‖∞ = 1 and T ( f ) > γ.

5 Kernels of Maps and Functionals

Let T be a map from {X; ‖ · ‖X } into {Y ; ‖ · ‖Y }. The kernel of T is

ker{T } = {x ∈ X
∣∣ T (x) = ΘY }.

If T is linear ker{T } is a linear subspace of X . If T ∈ B(X; Y ) and {X; ‖ · ‖X } is
a Banach space, then ker{T } is a closed subspace of X .

Let T : {X; ‖ · ‖} → R be a linear functional. It is not assumed that T is bounded,
nor that {X; ‖ · ‖} is a Banach space. The mere linearity of T provides information
on the structure of X in terms of the kernel of T .

http://dx.doi.org/10.1007/978-1-4939-4005-9_8
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Proposition 5.1 Let Xo be a closed subspace of X such that the quotient space
X/Xo is 1-dimensional. Then, there exists a nontrivial, bounded, linear functional
T : X → R such that Xo = ker{T }.

Conversely, let T : X → R be a not identically zero linear functional. Then the
quotient space X/ ker{T } is 1-dimensional.
Proof To prove the first statement choose x ∈ X − Xo such that dist{x; Xo} > 0 and
write X − Xo =⋃{λx |λ ∈ R}. Every element y ∈ X can be written as y = xo +λx
for some xo ∈ Xo and some λ ∈ R. Then set T (y) = λ.

To establish the converse statement fix x ∈ X −ker{T }. Such a choice is possible
since T �= 0. To show that X = span{x; Xo}, pick any element y ∈ X and compute

T
(
y − T (y)

T (x)
x
)

= T (y) − T (y)

T (x)
T (x) = 0.

Therefore

y − T (y)

T (x)
x ∈ ker{T }.

Thus y is a linear combination of x and an element of ker{T }.
Corollary 5.1 Let {X; ‖ · ‖} be a normed space. For any nonzero, linear functional
T : X → R, the normed space {X; ‖ · ‖} can be written as the direct sum of ker{T }
and the 1-dimensional space spanned by an element in X − ker{T }.
Corollary 5.2 Let T be a not identically zero linear functional on a normed space
{X; ‖ · ‖}. Then T is continuous if and only if ker{T } is not dense in X. As a conse-
quence T is continuous if and only if ker{T } is nowhere dense in X.

Corollary 5.3 Let T beanot identically zero, bounded, linear functional in anormed
space {X; ‖ · ‖}. Then for every x ∈ X − ker{T }

‖T ‖ = |T (x)|
dist{x; ker{T }} .

6 Equibounded Families of Linear Maps

If {X; ‖ · ‖} is a Banach space, it is of second category. In such a case, the uniform
boundedness principle can be applied to families of bounded linear maps in B(X; Y )

in the following form.

Proposition 6.1 Let T be a family of bounded linear maps from a Banach space
{X; ‖ · ‖X } into a normed space {Y ; ‖ · ‖Y }. Assume that the elements of T are
pointwise equibounded in X, i.e., for every x ∈ X, there exists a positive number
F(x), such that
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‖T (x)‖Y ≤ F(x) for all T ∈ T .

Then, the elements of T are uniformly equibounded in B(X; Y ), i.e., there exists
a positive number M, such that

‖T (x)‖Y ≤ M‖x‖X for all T ∈ T and all x ∈ X.

Proof The functions ‖T (x)‖Y : X → R satisfy the assumptions of the Banach–
Steinhaus theorem. Therefore there exists a positive F and a ball Bε(xo) ⊂ X , of
radius ε and centered at some xo ∈ X , such that

‖T (y)‖Y ≤ F for all T ∈ T and all y ∈ Bε(xo).

Given any nonzero x ∈ X , the element

y = xo + ε

2‖x‖X
x

belongs to Bε(xo). Therefore

‖T (x)‖Y ≤ 2
F + ‖T (xo)‖Y

ε
‖x‖X ≤ 4F

ε
‖x‖X

for all T ∈ T .

Corollary 6.1 Let {X; ‖ · ‖} be a Banach space. Then a pointwise bounded family
of elements in X∗ is equibounded in X.

6.1 Another Proof of Proposition 6.1

The proposition can be proved without appealing to category arguments. It suffices
to establish that the elements of T are equiuniformly bounded in some open ball
Bε(xo) ⊂ X . The proof proceeds by contradiction, assuming that such a ball does
not exists [119].

Fix any such ball B1(xo). There exists x1 ∈ B1(xo) and T1 ∈ T such that
‖T1(x1)‖Y > 1. By continuity, there exists a ball Bε1(x1) ⊂ X such that ‖T1(x)‖Y >

1 for all x ∈ Bε1(x1). By taking ε1 sufficiently small, we may insure that,

B̄ε1(x1) ⊂ Bε(xo) and ε1 < 1.

There exists x2 ∈ Bε1(x1) and T2 ∈ T , such that ‖T2(x2)‖Y > 2. By continuity,
there exists a ball Bε2(x2) ⊂ X such that ‖T2(x)‖Y > 2 for all x ∈ Bε2(x2). By
taking ε2 sufficiently small, we may ensure that
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B̄ε2(x2) ⊂ Bε1(x1) and ε2 < 1
2 .

Proceeding in this fashion we construct a sequence {xn} of elements of X , a
countable family of balls Bεn (xn), and a sequence {Tn} of elements of T , such that

B̄εn+1(xn+1) ⊂ Bεn (xn) εn < 1
n

and
‖Tn(x)‖Y > n for all x ∈ Bεn (xn).

The sequence {xn} is a Cauchy sequence and its limit x must belong to the closure
of all Bεn (xn). Therefore ‖Tn(x)‖Y > n for all n ∈ N. This contradicts the assumption
that the maps in T are pointwise equibounded.

7 Contraction Mappings

A map T from a normed space {X; ‖ · ‖} into itself is a contraction if there exists
t ∈ (0, 1) such that

‖T (x) − T (y)‖ ≤ t‖x − y‖ for all x, y ∈ X.

Theorem 7.1 ([Banach [13]) Let T be a contraction form a Banach space {X; ‖ · ‖}
into itself. Then T has a unique fixed point, i.e., there exists a unique xo ∈ X such
that T (xo) = xo.

Proof Starting from an arbitrary x1 ∈ X , define the sequence xn+1 = T (xn). Then

‖T (xn+1) − T (xn)‖ ≤ tn‖x2 − x1‖.

Equivalently
‖T (xn) − xn‖ ≤ tn−1‖x2 − x1‖.

Therefore, the sequences {xn} and {T (xn)} are both Cauchy sequences. If xo is
the limit of {xn}, by continuity

‖T (xo) − xo‖ = lim ‖T (xn) − xn‖ = 0.

Thus T (xo) = xo. If x̄ were another fixed point

‖T (x̄) − T (xo)‖ ≤ t‖x̄ − xo‖ = t‖T (x̄) − T (xo)‖.

Thus x̄ = xo.
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Remark 7.1 The theorem continues to hold in a complete metric space with the
proper variants.

7.1 Applications to Some Fredholm Integral Equations

Let E be an open set in RN and consider formally the integral equation [49]

f (x) =
∫

E
K (x, y) f (y)dy + h(x). (7.1)

Assume the kernel K (x, y) satisfies (4.3) for some given constant γ. Given a
function h ∈ L1(E) one seeks a function f ∈ L1(E) satisfying (7.1) for a.e. x ∈ E .

Proposition 7.1 Assume the constant γ in (4.3) is less than 1. Then the integral
equation (7.1) has a unique solution.

Proof The solution would be the unique fixed point of

T ( f ) =
∫

E
K (x, y) f (y)dy + h

provided T : L1(E) → L1(E) is a contraction. For f, g ∈ L1(E)

‖T ( f − g)‖1 ≤ γ‖ f − g‖1.

Remark 7.2 In the case of the Riesz kernel in (4.2), the assumption is satisfied if
μ(E) is sufficiently small.

Remark 7.3 If the kernel K (x, y) is as in (4.2) one gives a function h ∈ L∞(E) and
seeks a function f ∈ L∞(E) satisfying (7.1). The integral equation (7.1) could be
set in L2(E), provided K ∈ L2(E × E). A more complete theory is in [34, 108, 162]
Chapter IV.

8 The Open Mapping Theorem

A map T from a topological space {X;U} into a topological space {Y ;V} is called
open if it maps open sets of U into open sets of V . If T is one-to-one and open, T−1

is continuous. An open map T : X → Y which is continuous, one-to-one, and onto,
is a homeomorphism between {X;U} and {Y ;V}.

The next theorem called theOpen Mapping Theorem states that continuous linear
maps between Banach spaces are open mappings.
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Theorem 8.1 (Open Mapping Theorem) A bounded linear map T from a Banach
space {X; ‖ · ‖X } onto a Banach space {Y ; ‖ · ‖Y } is an open mapping. If T is also
one-to-one, it is a homeomorphism between {X; ‖ · ‖X } and {Y ; ‖ · ‖Y }.
Remark 8.1 The requirement that T be linear cannot be removed. Let T (x) =
ex cos x : R → R, where R is endowed with the Euclidean norm. Then T is contin-
uous but not open, since the image of (−∞, 0) is not open.

Let Bρ denote the open ball in X of radius ρ and centered at the origin of X .
Denote also by Bε the open ball in Y of radius ε and centered at the origin of Y .

Lemma 8.1 T (B1) contains a ball Bε for some ε > 0.

Proof Since T is linear and onto

X =⋃ nB1/2 and Y =⋃ nT (B1/2).

Since {Y ; ‖ · ‖Y } is of second category, T (B1/2) is not nowhere dense and its
closure contains an open ball B2ε(ȳ) in Y centered at some ȳ. The inclusions

T (B1/2) − ȳ ⊂ T (B1/2) − T (B1/2) ⊂ 2T (B1/2) ⊂ T (B1)

imply that B2ε ⊂ T (B1). The linearity of T also implies

B2ε/2n ⊂ T
(
B1/2n

)
for all n ∈ N. (8.1)

We next show that Bε ⊂ T (B1). Fix y ∈ Bε. Since y ∈ T (B1/2) there exist
x1 ∈ B1/2 such that

‖y − T (x1)‖Y < 1
2ε.

In particular the element y−T (x1) belongs toBε/2. Therefore, by (8.1) for n = 2,
there exist x2 ∈ B1/4 such that

‖y − T (x1) − T (x2)‖Y < 1
4ε.

Proceeding in this fashion we find a sequence {xn} of elements of X such that
xn ∈ B1/2n and ∥

∥∥y −
n∑

j=1
T (x j )

∥
∥∥
Y

≤ 1

2n
ε.

Since ‖xn‖X < 2−n , the series
∑

xn is absolutely convergent and identifies an
element x =∑ xn in the ball B1. Since T is linear and continuous

T (x) = T
(∑

xn
) =∑ T (xn) = y.

Thus y ∈ T (B1). Since y is an arbitrary element of Bε this implies that Bε ⊂
T (B1).



8 The Open Mapping Theorem 327

Proof (of the Open Mapping Theorem) LetO ⊂ X be open. To establish that T (O)

is open in Y , for every fixed ξ ∈ O and η = T (ξ) we exhibit a ball Bε(η) contained
in T (O). SinceO is open there exists an open ball Bσ(ξ) ⊂ O. Then by Lemma 8.1,
T (Bσ(ξ)) contains a ball Bε(η).

8.1 Some Applications

The open mapping theorem may be applied to finding conditions for two different
norms on the same vector space, to generate the same topology.

Proposition 8.1 Let ‖ · ‖1 and ‖ · ‖2 be two norms on the same vector space X, by
which {X; ‖ · ‖1} and {X; ‖ · ‖2} are both Banach spaces. Assume that there exists a
positive constant C1 such that

‖x‖2 ≤ C1‖x‖1 for all x ∈ X. (8.2)

Then, there exists a positive constant C2 such that

‖x‖1 ≤ C2‖x‖2 for all x ∈ X. (8.3)

Proof The identity map T (x) = x , from {X; ‖ ·‖1} onto {X; ‖ ·‖2} is linear and one-
to-one. By (8.2) is also continuous. Therefore it is a homeomorphism. In particular
the inverse T−1 is linear and continuous, and hence bounded.

8.2 The Closed Graph Theorem

Let T be a linear map from aBanach space {X; ‖·‖X } into a Banach space {Y ; ‖·‖Y }.
The graph GT of T is a subset of X × Y defined by

GT =⋃{(x, T (x))
∣
∣ x ∈ X}.

The closure of GT is meant in the product topology on X × Y . In particular the
graph GT is closed if and only if whenever {xn} is a Cauchy sequence in {X; ‖ · ‖X }
and {T (xn)} is a Cauchy sequence in {Y ; ‖ · ‖Y }, then

lim T (xn) = T (lim xn). (8.4)

This would hold true if T were continuous. The next theorem, called Closed
Graph theorem states the converse, i.e., (8.4) implies that T is continuous.
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Theorem 8.2 (Closed Graph Theorem) Let T be a linear map from a Banach space
{X; ‖ · ‖X } into a Banach space {Y ; ‖ · ‖Y }. If GT is closed, then T is continuous.

Proof On X introduce a new norm ‖x‖ = ‖x‖X + ‖T (x)‖Y . One verifies this is
a norm on X and if GT is closed, {X; ‖ · ‖} is complete. Therefore if GT is closed,
{X; ‖ · ‖} is a Banach space. Since ‖x‖X ≤ ‖x‖, by Proposition 8.1 there exists a
positive constant C such that

‖x‖X + ‖T (x)‖Y ≤ C‖x‖X for all x ∈ X.

This implies that ‖T (x)‖Y ≤ C‖x‖X . Thus T is bounded and hence continuous.

Remark 8.2 The assumption that both {X; ‖·‖X } and {Y ; ‖·‖Y } be Banach spaces is
essential for the Closed Graph theorem to hold. Indeed, without such a completeness
requirement, there is no relationship between the continuity of a linear map T :
X → Y and the closedness of its graph GT , as illustrated by the following two
counterexamples.

Let C[0, 1] be endowed with the sup-norm. Let also C1[0, 1] ⊂ C[0, 1] be
equipped with the topology inherited from the norm-topology of C[0, 1]. The map
T = d

dt from C1[0, 1] into C[0, 1], is linear, has closed graph, but is discontinuous.
Regard C[0, 1] as a topological subspace of L2[0, 1]. The identity map from

C[0, 1] into L2[0, 1] is linear but its graph is not closed.

9 The Hahn–Banach Theorem

Let X be a linear vector space over the reals. A sub-linear, homogeneous, real-valued
map from X into R, is a function p : X → R, satisfying

p(x + y) ≤ p(x) + p(y) for all x, y ∈ X
p(λx) = λp(x) for all x ∈ X and all λ > 0.

The Dominated Extension Theorem states that a real-valued, linear functional To
defined on a linear vector subspace Xo of X , and dominated by a sub-linear map p,
can be extended into a linear map T : X → R, in such a way that the extended map
is dominated by p in the whole X .

While the main applications of this extension procedure are in Banach spaces, it is
worth noting that such an extension is algebraic in nature and topology-independent.
In particular while X is required to have a vector structure, it is not required to be a
topological vector space. Likewise no topological assumptions, such as continuity,
are placed on the sub-linear map p nor on the linear functional To defined on Xo.
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Theorem 9.1 (Hahn–Banach [60, 11]) Let X be a real vector space and let p :
X → R be sub-linear and homogeneous. Then, every linear functional To : Xo → R

defined on a subspace Xo of X and satisfying

To(x) ≤ p(x) for all x ∈ Xo

admits a linear extension T : X → R such that

T (x) ≤ p(x) for all x ∈ X

Proof If Xo �= X choose η ∈ X − Xo and let Xη be the linear span of Xo and η.
First we extend To to a linear functional Tη defined in Xη, coinciding with To on Xo,
and dominated by p on Xη. If Tη is such an extension, then by linearity

Tη(x + λη) = To(x) + λTη(η)

for all λ ∈ R and all x ∈ Xo. Therefore, to construct Tη it suffices to specify its value
at η. Since To is dominated by the sub-linear map p on Xo

To(x) + To(y) = To(x + y) ≤ p(x + y) ≤ p(x − η) + p(y + η)

for all x, y ∈ Xo. Therefore

sup
x∈Xo

{To(x) − p(x − η)} ≤ inf
y∈Xo

{p(y + η) − To(y)}.

Define Tη(η) = α where α is any number satisfying

sup
x∈Xo

{To(x) − p(x − η)} ≤ α ≤ inf
y∈Xo

{p(y + η) − To(y)}. (9.1)

By construction Tη : Xη → R is linear and it coincides with To on Xo. It remains
to show that such an extended functional is dominated by p in Xη, that is

Tη(x + λη) = To(x) + λα ≤ p(x + λη)

for all x ∈ Xo and all λ ∈ R. If λ > 0, by the upper inequality in (9.1)

λα + To(x) = λ
[
α + To

( x
λ

) ]

≤ λ
[
p
( x
λ

+ η
)

− To
( x
λ

)
+ To

( x
λ

) ]
≤ p(x + λη).

If λ < 0 the same conclusion holds by using the lower inequality in (9.1).
If Xη �= X , the construction can be repeated by extending Tη to a larger subspace

of X . The extension of To to the whole X can now be concluded by induction.
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Introduce the set E of all the dominated extensions of To, i.e., the set of pairs
{Tη; Xη} where Tη is a linear functional defined on Xη such that Tη(x) ≤ p(x) for
all x ∈ Xη and Tη(x) = To(x) for all x ∈ Xo. On the set E introduce an ordering
relation by stipulating that

{Tξ; Xξ} ≤ {Tη; Xη} if and only if Xξ ⊂ Xη and Tη = Tξ on Xξ.

One verifies that such a relation is a partial ordering on E .
Every linearly ordered subset E ′ ⊂ E has an upper bound. Indeed, denoting by

{Tσ; Xσ} the elements of E ′, setting X ′ = ⋃
Xσ and T ′ = Tσ on Xσ , provides an

upper bound for E ′. It follows by Zorn’s lemma that E has amaximal element {T ; X̃}.
For such a maximal element, X̃ = X . Indeed otherwise X − X̃ would be not empty
and the extension process could be repeated, contradicting the maximality of {T ; X̃}.

10 Some Consequences of the Hahn–Banach Theorem

Themain applications of theHahn–Banach theoremoccur in normed spaces {X; ‖·‖}
and for a suitable choice of the dominating sub-linear function p. For example p
could be a norm or a semi-norm in X . If Xo is a subspace of {X; ‖ · ‖}, let {Xo; ‖·‖}
denote the corresponding normed space and let X∗

o be its dual. Typically, given
To ∈ X∗

o dominated by some sub-linear function p, one seeks to extend it to an
element T ∈ X∗.

Proposition 10.1 Let {X; ‖ · ‖} be a normed space and let Xo be a subspace of X.
Every To ∈ X∗

o admits an extension T ∈ X∗ such that ‖T ‖ = ‖To‖.
Proof Apply the Hahn–Banach theorem with p(x) = ‖To‖‖x‖. This gives an exten-
sion T defined in X and satisfying

|T (x)| ≤ ‖To‖‖x‖ for all x ∈ X.

Therefore ‖T ‖ ≤ ‖To‖. On the other hand ‖T ‖ ≥ ‖To‖, since T is an extension
of To.

Proposition 10.2 Let {X; ‖ · ‖} be a normed space. For every xo ∈ X, and xo �= Θ ,
there exists T ∈ X∗ such that ‖T ‖ = 1 and T (xo) = ‖xo‖.
Proof Having fixed xo ∈ X let Xo = {λxo|λ ∈ R} be the span of xo. On Xo consider
the functional To(λxo) = λ‖xo‖ and as p take the norm ‖·‖. By the Hahn–Banach
theorem To can be extended into a linear functional T defined in the whole X and
satisfying

T (x) ≤ ‖x‖ for all x ∈ X and T (λxo) = λ‖xo‖ for all λ ∈ R.
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The first implies ‖T ‖ ≤ 1. The second ‖T ‖ = 1.

Corollary 10.1 Let {X; ‖ · ‖} be a normed space. Then X∗ separates the points
of X, i.e., for any pair x, y of distinct points of X, there exists T ∈ X∗ such that
T (x) �= T (y).

Proof Apply Proposition 10.2 to the element x − y.

Corollary 10.2 Let {X; ‖ · ‖} be a normed space. Then, for every x ∈ X

‖x‖ = sup
T∈X∗;T �=0

|T (x)|
‖T ‖ = sup

T∈X∗;‖T ‖=1
|T (x)|.

Proposition 10.3 Let {X; ‖ · ‖} be a normed space and let Xo be a linear subspace
of X. Assume that there exists an element η ∈ X − Xo that has positive distance from
Xo, i.e.,

inf
x∈Xo

‖x − η‖ ≥ δ > 0.

There exists T ∈ X∗ such that

‖T ‖ ≤ 1 T (η) = δ and T (x) = 0 for all x ∈ Xo.

Proof Let Xη be the spanof Xo andη.On Xη define the linear functional Tη(λη+x) =
λδ for all x ∈ Xo and all λ ∈ R. From the definition of δ for λ �= 0 and x ∈ Xo

λδ ≤ |λ|
∥∥∥η + x

λ

∥∥∥ = ‖λη + x‖.

Therefore, denoting by y = λη + x the generic element of Xη

Tη(y) ≤ ‖y‖ for all y ∈ Xη.

By the Hahn–Banach theorem, Tη has an extension T defined in the whole X and
satisfying T (x) ≤ ‖x‖ for all x ∈ X . Therefore ‖T ‖ ≤ 1. Moreover T (x) = 0 for
all x ∈ Xo and T (η) = δ.

Remark 10.1 The assumptions of Proposition 10.3 are verified if Xo is a proper,
closed linear subspace of X .

Corollary 10.3 Let {X; ‖ · ‖} be a normed space and let Xo be a linear subspace
of X. If Xo is not dense in X there exists a nonzero functional T ∈ X∗ such that
T (x) = 0 for all x ∈ Xo.

Proposition 10.4 Let {X; ‖ · ‖} be a normed space. Then if X∗ is separable also
{X; ‖ · ‖} is separable.
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Proof Let {Tn} be a sequence dense in X∗. For each Tn choose xn ∈ X such that
‖xn‖ = 1 and |Tn(xn)| ≥ 1

2‖Tn‖. Let now Xo be the set of all finite linear combina-
tions of elements of {xn} with rational coefficients. The set Xo is countable and we
claim it is dense in X . If not, the closure X̄o is a linear, closed, proper subspace of
X . By Corollary 10.3, there exists a nonzero functional T ∈ X∗ vanishing on Xo.
Since {Tn} is dense in X∗, there exists a subsequence {Tn j } convergent to T . For such
a sequence

‖T − Tn j ‖ ≥ |(T − Tn j )(xn j )| ≥ 1
2‖Tn j ‖.

Thus {Tn j } → 0, contradicting that T is nonzero.

Remark 10.2 The converse of Proposition 10.4 is in general false, i.e., X separable
does not imply that X∗ is separable. As an example consider L1(E) where E is an
open set in R

N with the Lebesgue measure. By the Riesz representation theorem,
L1(E)∗ = L∞(E), up to an isometric isomorphism. However L1(E) is separable
and L∞(E) is not.

10.1 Tangent Planes

Let {X; ‖ · ‖} be a normed space. For a fixed T ∈ X∗ and α ∈ R, set

[T = α] = {x ∈ X | T (x) = α}

and introduce analogously the sets [T > α] and [T < α]. In analogy with linear
functionals in Euclidean spaces, [T = α] is called an hyperplane in X , and divides
X into two disjoint half-spaces [T > α] and [T < α].

Let now C be a set in X and let xo ∈ C . An hyperplane [T = α] is tangent to C
at xo, if xo ∈ [T = α], and T (x) ≤ T (xo) for all x ∈ C .

With this terminology, Proposition 10.2 can be rephrased in the following geo-
metric form.

Proposition 10.5 The unit ball of X has a tangent plane at any one of its boundary
points.

11 Separating Convex Subsets of a Hausdorff, Topological
Vector Space {X;U}

As indicated earlier, theHahn–Banach theorem, holds in linear vector spaces, with no
particular topological structure, and hinges upon specifying a suitable, dominating,
homogeneous, sub-linear function p : X → R. For topological vector spaces {X;U},
the Minkowski functional μC(·) defined below, is one such a function.
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Let {X;U} be a Hausdorff, linear, topological vector space and let C be a non-
empty, convex, open neighborhood of the origin of X . Then for every x ∈ X there
exists some positive number t such that x ∈ tC . Define

μC(x) = inf{t > 0
∣∣ x ∈ tC}.

IfC is the unit ball of a normed space {X; ‖ ·‖}, then μB1(x) = ‖x‖ for all x ∈ X .
An element x is in C if and only if μC(x) < 1. If C is unbounded, then μC(x)
vanishes for x = 0 and for infinitely many nonzero elements of X . It follows from
the definition that λμC(x) = μC(λx), for all λ > 0.

Proposition 11.1 The map x → μC(x) is sub-linear in X.

Proof Fix x, y ∈ X and let t and s be positive numbers such that μC(x) < t and
μC(y) < s. For such choices, t−1x ∈ C and s−1y ∈ C . Then, since C is convex

1

s + t
(x + y) = t

s + t
t−1x + s

s + t
s−1y ∈ C.

Therefore μ(x + y) ≤ s + t .

By Corollary 10.1 the collection X∗ of the bounded linear functionals on a normed
space {X; ‖ · ‖} separates points. The next more general proposition asserts that any
two nonempty, convex subsets of a topological vector space {X;U} can be separated
by a nontrivial, linear, continuous functional T , provided one of them is open.

Proposition 11.2 Let C1 and C2 be two disjoint, convex subsets of a Hausdorff,
linear, topological vector space {X;U}, and assume C1 is open. There exists a non-
trivial, linear, continuous functional T on X, and α ∈ R such that

T (x) < α ≤ T (y) for all x ∈ C1 and all y ∈ C2. (11.1)

Proof Fix some x1 ∈ C1 and x2 ∈ C2 and set

C = C1 − C2 + xo where xo = x2 − x1.

The set C is open, convex and it contains the origin. Since C1 and C2 are disjoint,
xo /∈ C . On the one-dimensional span of xo, define a bounded linear functional by
To(λxo) = λ. Such a functional is pointwise bounded above, on the span of xo, by
the Minkowski functional μC relative to the set C . Indeed, for λ ≥ 0

To(λxo) = λ ≤ λμC(xo) = μC(λxo).

If λ < 0 then To(λxo) = λ ≤ μC(λxo). By the Hahn–Banach theorem, there
exists a linear functional T on X that coincides with To on the span of xo and such
that T (x) ≤ μC(x) for all x ∈ X . Using the definition of μC(·) and the linearity of T ,
one verifies that T (x) ≤ 1 for all x ∈ C and T (x) ≥ −1 for all x ∈ −C . Therefore
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|T (x)| ≤ 1 for all x ∈ C ∩ (−C). Thus T is bounded in a neighborhood of the origin
and hence is continuous (Proposition 11.1 of Chap.2). For x ∈ C1 and y ∈ C2, the
element x − y + xo is in C . Therefore μC(x − y + xo) < 1 since C is open. Using
that T (xo) = 1, compute

T (x − y + xo) = T (x) − T (y) + 1 ≤ μC(x − y + xo) < 1.

Thus T (x) < T (y). The existence of α satisfying (11.1) follows since T (C1) and
T (C2) are convex subsets of R and T (C1) is open.

Remark 11.1 The topological structure of C1 and C2 is essential for the separation
statement of Proposition 11.2 to hold, as shown by the following counterexample.

Let C1 and C2 be the two convex, subsets of L2[0, 1] defined by

C1 = { f ∈ C[0, 1] nonnegative and vanishing only at t = 0}
C2 = { f ∈ C[0, 1] nonnegative and vanishing only at t = 1}.

One verifies thatC1−C2 is dense in L2[0, 1] and henceC1 andC2 cannot be separated
by any bounded linear functional.

11.1 Separation in Locally Convex, Hausdorff, Topological
Vector Spaces {X;U}

A linear functional T on a topological vector space {X;U} strictly separates two
disjoint, convex sets C1 and C2 if there exist real numbers α < β such that

T (x) < α < β ≤ T (y) for all x ∈ C1 and all y ∈ C2. (11.2)

The previous proposition gives sufficient conditions of separations but not strict
separation. In general strict separation under the assumptions of Proposition 11.2 is
not expected to hold. For example inR2, the two sets [x < 0] and [x ≥ 0] are convex
and disjoint, and one of them is open. Yet they are not strictly separated.

If the topology of {X;U} is locally convex, the next proposition gives some more
stringent conditions on C2 for strict separation to occur.

Proposition 11.3 Let C1 and C2 be two nonempty, disjoint, convex subsets of a
locally convex, Hausdorff, topological vector space {X;U}. Assume that C1 is com-
pact and C2 is closed. There exists a bounded linear functional T on X and real
numbers α < β such that (11.2) holds.

http://dx.doi.org/10.1007/978-1-4939-4005-9_2
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Proof We claim that there exists a convex, open neighborhood O of the origin such
thatC1+O is open, convex anddoes not intersectC2.Whence the claim is established,
Proposition 11.3 follows from Proposition 11.2 applied to the pair of sets C1 + O
and C2.

To establish the claim, observe that, sinceC2 is closed andC1 ∩C2 = ∅, for every
x ∈ C1 there exists a convex neighborhood of the origin Ox such that x + Ox does
not intersect C2. By possibly replacing Ox with Ox ∩ (−Ox ) we may assume that
Ox is symmetric. By the continuity of the sum and product in {X;U} the sets 1

2Ox

are open. The collection {x + 1
2Ox } for x ∈ C1 is an open covering of C1 from which

we extract a finite one {
x1 + 1

2Ox1 , . . . , xn + 1
2Oxn

}
.

Setting

O =
n⋂

j=1

1
2Ox j

the set C1 + O is open, convex and does not intersect C2, since

C1 + O ⊂
n⋃

j=1

(
x j + 1

2Ox j + O) ⊂
n⋃

j=1

(
x j + 1

2Ox j + 1
2Ox j

)

and none of the sets of this union intersects C2.

Corollary 11.1 Let C be a closed, convex subset of a locally convex, Hausdorff,
topological vector space {X;U}. Then C is the intersection of all the closed half-
spaces [T ≥ α] that contain C.

Corollary 11.2 The collection of bounded, linear functionals on a locally convex,
Hausdorff, topological vector space {X;U}, separates the points of X.

12 Weak Topologies

Let {X; ‖ · ‖} be a normed space and let X∗ be its dual. The topology generated on
X by its norm ‖·‖ is called the strong topology of X .

Since any T ∈ X∗ is a continuous linear map from X into R, the inverse image
of any open set in R is open in the strong topology of X . Set

B =
{
the collection of the finite intersections of the inverse images

T−1(O) where T ∈ X∗ and O are open subsets of R

}
.

The collection B is a base for a topology W on X called the weak topology of
{X; ‖ · ‖}. The collection B satisfies the requirements (i)–(ii) of § 4 of Chap.2, to be
a base for a topology. The corresponding topology is constructed by the procedure
of Proposition 4.1 of Chap. 2.

http://dx.doi.org/10.1007/978-1-4939-4005-9_2
http://dx.doi.org/10.1007/978-1-4939-4005-9_2
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The weak topologyW on X is the weakest topology for which all the functionals
T ∈ X∗ are continuous. The procedure is similar to the construction of a product
topology in the Cartesian product of topological spaces, as the weakest topology for
which all the projections are continuous (§ 4.1 of Chap. 2).

One verifies that the operations of sum + : X × X → X and multiplication
by scalars • : R × X → X , are continuous with respect to such a topology (see
Proposition 12.1c of the Complements). Thus {X;W} is a topological vector space.

The topology ofW is translation invariant and is determined by a local base at the
origin of X . A neighborhood of the origin, in the topology W , contains an element
of B of the form

O =
n⋂

j=1
T−1
j (−α j ,α j ), where Tj ∈ X∗, (12.1)

for some finite n and α j > 0. Equivalently

O = {x ∈ X
∣∣ |Tj (x)| < α j for j = 1, . . . , n}. (12.2)

The collection of open sets of the form (12.1) forms a local base Bo at the origin,
for the weak topology W . These open sets are convex, since Tj are linear. Thus W
is a locally convex topology. A sequence {xn} of elements of X converges weakly
to 0 if and only if every weak neighborhood of the origin contains all but finitely
many elements of {xn}. From (12.2) it follows that {xn} converges weakly to 0 if and
only if {T (xn)} → 0 for all T ∈ X∗. More generally, {xn} converges weakly to some
xo ∈ X if and only if {T (xn)} → T (xo), for all T ∈ X∗. Strong convergence implies
weak convergence, but the converse is false (see § 9 of Chap.6).

12.1 Weak Boundedness

The weak topology W contains, roughly speaking, fewer open sets than the strong
topology. The two topologies are markedly different also in terms of local bounded-
ness.

A set E ⊂ X is weakly bounded if and only if for everyO ∈ Bo there exists some
positive number t , depending upon O, such that E ⊂ tO.

In view of the structure (12.1)–(12.2) of the open sets of Bo, a set E ⊂ X is
bounded in the weak topology of X if and only if for every T ∈ X∗, there exists a
positive number γT such that |T (x)| ≤ γT for all x ∈ E .

Proposition 12.1 Let X be infinite dimensional. Then every weak neighborhood of
the origin, contains an infinite dimensional subspace Xo.

Proof Having fixed a weak neighborhood of the origin, we may assume is of the
form (12.1)–(12.2) and set

http://dx.doi.org/10.1007/978-1-4939-4005-9_2
http://dx.doi.org/10.1007/978-1-4939-4005-9_6
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Xo =
n⋂

j = 1
ker{Tj }.

This is a subspace of X and Xo ⊂ O. To prove that Xo is infinite dimensional,
consider the map F : X → R

n defined by

X � x → F(x) = (T1(x), . . . , Tn(x)) ∈ R
n.

Such a map is linear, continuous and its kernel is Xo. It is also a one-to-one map
between the quotient space X/Xo and R

n . Thus dim{X} ≤ n + dim{Xo}.
Corollary 12.1 Let X be infinite dimensional. Then every weak neighborhood of
the origin, is unbounded.

In particular a ball Bρ, open in the strong topology of {X; ‖ · ‖} cannot contain any
weak neighborhood of the origin.

Corollary 12.2 The weak topology of an infinite dimensional normed space does
not satisfy the first axiom of countability.

Proof Assume by contradiction that {On} is a countable base for the weak topology
at the origin. By Proposition 12.1 and Corollary 12.1 one may pick

xn ∈
n⋂

j=1
O j such that ‖xn‖ ≥ n.

The sequence {xn} is not strongly bounded and hence not weakly bounded. Thus
there exists a weak neighborhood of the originO such that λO does not contain {xn}
for all λR. On the other handOn ⊂ O for some n, since {On} is a base for the weak
topology at the origin. ThereforeO contains all but finitely many elements of {xn}.
Corollary 12.3 The weak topology of an infinite dimensional normed space is not
metrizable, i.e., there is no metric d(·, ·) on X × X that generates its weak topology.

Proof If the weak topology of {X; ‖ · ‖} were metrizable, it would satisfy the first
axiom of countability.

12.2 Weakly and Strongly Closed Convex Sets

Sets that are closed in the weak topology are also closed in the strong topology. The
converse, while false in general, holds for convex sets.

Proposition 12.2 (Mazur [105]) Let E be a convex subset of a normed space
{X; ‖ · ‖}. Then, the weak closure of E coincides with its strong closure.
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Proof Denote by Ēw and Ēs the closure of E in the weak and, respectively, strong
topology. Since W is weaker than the strong topology, Ēs ⊂ Ēw. For the converse
inclusion it suffices to show that X−Ēs is aweakly open set. This in turnwould follow
if every point xo ∈ X − Ēs admits a weakly open neighborhood not intersecting Ēs .

Having fixed xo ∈ X − Ēs , consider the two disjoint, closed, convex sets xo and
Ēs . Since xo is compact, by Proposition 11.3, there exists T ∈ X∗ and α ∈ R, such
that

T (xo) < α < T (x) for all x ∈ Ēs .

Therefore the half-space [T < α] is a weakly open neighborhood of xo that does
not intersect Ēs .

Corollary 12.4 Let {X; ‖ · ‖} be a normed space. Then any weakly closed subspace
Xo ⊂ X, is also strongly closed.

Corollary 12.5 Let {X; ‖ · ‖} be a normed space and let {xn} be a sequence of
elements of X converging weakly to some x ∈ X. Then there exists a sequence {ym}
of elements of X, such that each ym is the convex combination of finitely many xn,
that is,

ym =
nm∑

j=1
α j xn j where α j > 0 and

nm∑

j=1
α j = 1

and {ym} → x strongly.

Proof Let c({xn}) be convex hull of {xn} and denote by c({xn})w its weak closure.
By assumption the weak limit x belongs to c({xn})w. The conclusion follows since
weak and strong closure coincide.

13 Reflexive Banach Spaces

Let {X; ‖ · ‖} be a normed space and let X∗ be its dual. The collection of all bounded
linear functionals f : X∗ → R is denoted by X∗∗ and is called the double dual of
the second dual of X . It is a Banach space by the norm

‖ f ‖ = sup
T∈X∗;T �=0

f (T )

‖T ‖ = sup
T∈X∗;‖T ‖=1

f (T ). (13.1)

Every element x ∈ X identifies an element fx ∈ X∗∗ by the formula

X∗ � T −→ fx (T ) = T (x). (13.2)

Let X∗∗ denote the collection of all such functionals, that is

X∗∗ =
{
the collection of all functionals fx ∈ X∗∗

of the form (13.2) as x ranges over X

}
. (13.3)
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FromCorollary 10.2 and (13.1) it follows that ‖ fx‖ = ‖x‖. Therefore the injection
map

X � x −→ fx ∈ X∗ ⊂ X∗∗ (13.4)

is an isometric isomorphism between X and X∗∗. In general, not all the bounded
linear functionals f : X∗ → R are derived from the injection map (13.4); otherwise
said, the inclusion X∗∗ ⊂ X∗∗ is in general strict.

A Banach space {X; ‖ · ‖} is reflexive if X∗∗ = X∗∗, i.e., if all the bounded
linear functionals f ∈ X∗∗ are derived from the injection map (13.4). In such a case
X = X∗∗ up to the isometric isomorphism in (13.4). By the Riesz representation
theorem, the spaces L p(E) are reflexive for all 1 < p < ∞. The spaces L1(E) and
L∞(E) are not reflexive since the dual of L∞(E) is strictly larger than L1(E) (§ 9.2c
of the Complements). Also the spaces �p are reflexive for all 1 < p < ∞. The
spaces �1 and �∞ are not reflexive.

Proposition 13.1 Let Xo be a closed, linear, proper subspace of a reflexive Banach
space {X; ‖ · ‖}. Then Xo is reflexive.

Proof By Proposition 10.1, every x∗
o ∈ X∗

o can be regarded as the restriction to Xo

of some x∗ ∈ X∗, such that ‖x∗‖X∗ = ‖x∗
o‖X∗

o
. Now fix fo ∈ X∗∗

o and set

f ′(x∗) = fo(x
∗|Xo) for all x∗ ∈ X∗.

One verifies that this is a bounded linear functional in X∗. Since X is reflexive,
by the injection map (13.4), there exists xo ∈ X such that f ′ = fxo . To establish the
proposition, it suffices to show that xo ∈ Xo. If not, there exists T ∈ X∗ such that
T (x) = 0 for all x ∈ Xo and T (xo) �= 0. Therefore such a T , when restricted to Xo

is the zero element of X∗
o . Thus

0 �= T (xo) = fxo(T ) = f ′(T ) = fo(T |Xo) = 0.

Remark 13.1 The assumption that Xo be closed is essential. Indeed L∞(E) for a
bounded, Lebesgue measurable set E ⊂ R

N , is a nonreflexive linear subspace of
L p(E) for all 1 < p < ∞.

The following statements are a consequence of the definitions modulo isometric
isomorphisms.

Proposition 13.2 A reflexive normed space is weakly complete.
If {X; ‖ · ‖X } and {Y ; ‖ · ‖Y } are isometrically isomorphic Banach spaces, X is

reflexive if and only if Y is reflexive.
A Banach space {X; ‖ · ‖} is reflexive if and only if X∗ is reflexive.
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14 Weak Compactness

Let {X; ‖ · ‖} be a normed space and let X∗ be its dual. A subset E ⊂ X is weakly
closed if X − E is weakly open. The weak sequential closure of a set E ⊂ X need
not coincide with its weak closure (§ 12.3c of the Complements).

A set E ⊂ X is weakly bounded if and only if for every T ∈ X∗, there exists a
constant γT , such that

|T (x)| ≤ γT for all x ∈ E . (14.1)

Proposition 14.1 Let {X; ‖ · ‖} be a normed space. A set E ⊂ X is weakly bounded
if and only if is strongly bounded.

Proof If E is strongly bounded, there exists a constant R such that ‖x‖ ≤ R for all
x ∈ E . Then for all T ∈ X∗

|T (x)| ≤ ‖T ‖‖x‖ ≤ ‖T ‖R.

Thus E is weakly bounded. Assume now E is weakly bounded so that (14.1)
holds. Let fx be the injection map (13.4). Then, for each fixed T ∈ X∗, (14.1) takes
the form | fx (T )| ≤ γT for all x ∈ E . The family { fx } for x ∈ E is a collection
of bounded linear maps from the Banach space X∗ into R, which are pointwise
uniformly bounded in X∗. Therefore, by Proposition 6.1 they are equiuniformly
bounded, i.e., there is a positive constant C such that |T (x)| ≤ C‖T ‖ for all x ∈ E
and all T ∈ X∗. Thus ‖x‖ ≤ C for all x ∈ E .

Corollary 14.1 Let E be a weakly, countably compact subset of a normed space
{X; ‖ · ‖}. Then E is strongly bounded.

Proof Let O be a weakly open neighborhood of the origin. Then the collection
{nO}n∈N is a countable, weakly open covering for E , since X = ⋃

nO. There-
fore E ⊂ tO for some t > 0. Thus E is weakly bounded and hence strongly
bounded.

14.1 Weak Sequential Compactness

Corollary 14.2 Let {X; ‖ · ‖} be a normed space and let {xn} be a sequence of
elements of X weakly convergent to some x ∈ X. There exists a positive constant C
such that ‖xn‖ ≤ C for all n. Moreover

‖x‖ ≤ lim inf ‖xn‖. (14.2)
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Therefore in a normed linear space, the norm ‖·‖ : X → R is a weakly lower
semi-continuous function.1

Proof The uniform upper bound of ‖xn‖ follows from Proposition 14.1. For all
T ∈ X∗, by definition of weak limit

|T (x)| ≤ lim inf |T (xn)| ≤ ‖T ‖ lim inf ‖xn‖.

The conclusion now follows from Corollary 10.2.

Proposition 14.2 Let {X; ‖ · ‖} be a reflexive Banach space. Then every bounded
sequence {xn} of elements of X contains a weakly convergent subsequence {xn′ }.2
Proof Let Xo be the closed linear span of {xn}. Such a subspace is separable since the
finite linear combinations of elements of {xn}with rational coefficients is a countable
dense subset.

Since Xo is reflexive, its double-dual X∗∗
o , being isometrically isomorphic to Xo

is also separable. Then by Proposition 10.4, also X∗
o is separable.

Let {Tn} be a countable, dense subset of X∗
o . The sequence {T1(xn)} is bounded in

R and we may extract a convergent subsequence {T1(xn1)}. The sequence {T2(xn1)}
is bounded inR and we may extract a convergent subsequence {T2(xn2)}. Proceeding
in this fashion at the k th step we extract a subsequence {xnk } such that

{Tj (xnk )} is convergent for all j = 1, 2, . . . k.

The diagonal sequence {xn′ } = {xnn } is such that {Tj (xn′)} is convergent for all
j ∈ N. Since {Tn} is dense in X∗

o , the sequences {T (xn′)} are convergent for all
T ∈ X∗

o . Every T ∈ X∗
o can be regarded as the restriction to Xo of some element of

X∗. Therefore {T (xn′)} is convergent for all T ∈ X∗. In particular for all T ∈ X∗
there exists αT ∈ R, such that

lim T (xn′) = αT .

By the identification map (13.4), each xn′ identifies a functional fxn′ ∈ X∗∗.
Therefore the previous limit can be rewritten as

lim fxn′ (T ) = αT for all T ∈ X∗.

This process identifies an element h ∈ X∗∗ by the formula

h(T ) = lim fxn′ (T ) for all T ∈ X∗.

1Compare with Proposition 10.1 of Chap.6.
2Compare with Proposition 16.1 of Chap.6.

http://dx.doi.org/10.1007/978-1-4939-4005-9_6
http://dx.doi.org/10.1007/978-1-4939-4005-9_6
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Since X is reflexive, there exists x ∈ X such that h = fx . Now we claim that
{xn′ } → x weakly in X . Indeed for any fixed T ∈ X∗

lim T (xn′) = lim fxn′ (T ) = fx (T ) = T (x).

Corollary 14.3 Let {X; ‖·‖} be a reflexive Banach space. A subset C ⊂ X is weakly
sequentially compact if and only if is both weakly bounded and weakly sequentially
closed.

Proof Sequential compactness implies countable compactness (Proposition 5.2 of
Chap.2).

As an example consider the space L p(E) where E is a Lebesgue measurable subset
of RN and 1 < p < ∞. By Proposition 14.2 and Corollary 14.2, the unit ball
{‖ f ‖p ≤ 1} is weakly sequentially compact. However, the unit sphere {‖ f ‖p = 1}
is not weakly sequentially compact. For example, the unit sphere of L2[0, 2π] is
bounded, but not weakly closed and therefore is not sequentially compact (§ 9.1 of
Chap.6).

The unit ball of L p(E) for 1 < p < ∞ is not sequentially compact in the strong
topology of L p(E), since it does not satisfy the necessary and sufficient conditions
for compactness given in § 19 of Chap.6. Compare also with Proposition 2.2.

15 The Weak∗ Topology of X∗

The dual X∗ of a normed space {X; ‖ · ‖} is a Banach space and as such can be
endowed with, the corresponding weak topology, that is, the weakest topology for
which all the elements of X∗∗ are continuous, with respect to the norm topology of
X∗.

The weak∗ topology on X∗ is the weakest topology which renders continuous
all the functionals fx ∈ X∗∗ of the form (13.4), that is, those that are in a natural
one-to-one correspondence with the elements of X . If {X; ‖ · ‖} is a reflexive Banach
space then X = X∗∗ up to an isometric isomorphism, and the weak topology of X∗
coincides with its weak∗ topology.

The collectionW∗ of weak∗ open sets in X∗ is constructed starting from the base

B∗ =
{
the collection of finite intersections of the inverse images

f −1
x (O) where x ∈ X and O are open subsets of R

}
.

One verifies that the operations of sum and multiplication by scalars

+ : X∗ × X∗ −→ X∗ • : R × X∗ −→ X∗

are continuous with respect to the topology of W∗. Thus {X∗;W∗} is a topological
vector space. The topology of W∗ is translation invariant and it is determined by a

http://dx.doi.org/10.1007/978-1-4939-4005-9_2
http://dx.doi.org/10.1007/978-1-4939-4005-9_6
http://dx.doi.org/10.1007/978-1-4939-4005-9_6
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local base at the origin of X∗. A weak∗ open neighborhood of the origin contains an
element of B∗ of the form

O∗ =
n⋂

j=1
f −1
x j

(−α j ,α j ) (15.1)

for some finite n and α j > 0. Equivalently,

O∗ = {T ∈ X∗ ∣∣ |T (x j )| < α j for j = 1, . . . , n}. (15.1′)

Since these open sets are convex, W∗ is a locally convex topology. A sequence
{Tn} of elements of X∗ converges weakly∗ to 0 if and only if every weak∗ open
neighborhood of the origin contains all but finitely many elements of {Tn}. From
(15.1)′ it follows that {Tn} → 0 if and only if {Tn(x)} → 0 for all x ∈ X . More
generally, {Tn} → To if and only if {Tn(x)} → To(x), for all x ∈ X . Weak conver-
gence implies weak∗ convergence. The converse is false. Thus in general, the weak∗
topology W∗ contains, roughly speaking, fewer open sets than those of the weak
topology generated by X∗∗.

16 The Alaoglu Theorem

Theorem 16.1 (Alaoglu [2]) Let {X; ‖ ·‖} be a normed space and let X∗ be its dual.
The closed unit ball B∗ = {T ∈ X∗| ‖T ‖ ≤ 1} in X∗, is weak∗ compact.

Proof If T ∈ B∗ then T (x) ∈ [−‖x‖, ‖x‖] for all x ∈ X . Consider now theCartesian
product

P = ∏

x∈X

[− ‖x‖, ‖x‖].

A point in P is a function f : X → R such that f (x) ∈ [−‖x‖, ‖x‖] and P is
the collection of all such functions. The set B∗ is a subset of P and as such inherits
the product topology of P . On the other hand, as a subset of X∗ it also inherits the
weak∗ topology of X∗.

Lemma 16.1 These two topologies coincide on B∗.

Proof Every weak∗ open neighborhood of a point To ∈ X∗ contains an open set of
the form

O =
{
T ∈ X∗ ∣∣ |T (x j ) − To(x j )| < δ for some δ > 0

for finitely many x j , j = 1, . . . n.

}
.
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Likewise, every neighborhood of a point To ∈ P , open in the product topology
of P , contains an open set of the form

V =
{
f ∈ P

∣∣ | f (x j ) − To(x j )| < δ for some δ > 0

for finitely many x j , j = 1, . . . n.

}
.

These collections of open sets form a base for the corresponding topologies. Since
B∗ = P ∩ X∗

O ∩ B∗ = V ∩ B∗.

These intersections form a base for the corresponding relative topologies inherited
by B∗. Therefore, the weak∗ topology and the relative product topology coincide on
B∗.

Lemma 16.2 B∗ is closed in its relative product topology.

Proof Let fo be in the closure of B∗ in the relative product topology. Fix x, y ∈ X
and α,β ∈ R and consider the three points

x1 = x x2 = y x3 = αx + βy.

For ε > 0, the sets

Vε = { f ∈ P
∣∣ | f (x j ) − fo(x j )| < ε for j = 1, 2, 3.}

are open neighborhoods of fo. Since they intersect B∗, there exists T ∈ B∗ such that

| fo(x) − T (x)| < ε | fo(y) − T (y)| < ε

and, since T is linear

| fo(αx + βy) − αT (x) − βT (y)| < ε.

From this

| fo(αx + βy) − α fo(x) − β fo(y)| < (1 + |α| + |β|)ε

for all ε > 0. Thus fo is linear and it belongs to B∗.

Proof (of Theorem 16.1 concluded) Each [−‖x‖, ‖x‖] as a bounded, closed interval
in R, equipped with its Euclidean topology, is compact. Therefore, by Tychonov’s
theorem P is compact in its product topology.

Then B∗, as a closed subset of a compact space, is compact in its relative product
topology and hence in its relative weak∗ topology.
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Corollary 16.1 Let {X; ‖·‖} be a reflexive Banach space. Then its unit ball is weakly
compact.

Corollary 16.2 Let {X; ‖ · ‖} be a reflexive Banach space. Then a subset of the unit
ball of X is weakly compact if and only if it is weakly closed.

Remark 16.1 The weak∗ compactness of the unit ball B∗ of X∗, does not imply
B∗ is compact in the norm topology of X∗. As an example let X = L2(E). Then
L2(E) = L2(E)∗ = L2(E)∗∗ up to isometric isomorphisms. The unit ball of L2(E)∗
is weak∗ compact but not compact in the strong norm topology.

Remark 16.2 The weak∗ compactness of the unit ball ‖x‖ ≤ 1 of a normed space,
does not imply that the unit sphere ‖x‖ = 1 is weak∗ compact. For example the unit
sphere of L2[0, 2π] is bounded but not weak∗ closed and therefore it is not weak∗
compact.

17 Hilbert Spaces

Let X be a vector space over R. A scalar or inner product on X over R is a function,
〈·, ·〉 : X × X → R, satisfying

(i) 〈x, y〉 = 〈y, x〉 for all x, y ∈ X
(ii) 〈x1 + x2, y〉 = 〈x1, y〉 + 〈x2, y〉 for all x1, x2, y ∈ X
(iii) 〈λx, y〉 = λ〈x, y〉 for all x, y ∈ X and all λ ∈ R

(iv) 〈x, x〉 ≥ 0 for all x ∈ X and
(v) 〈x, x〉 = 0 if and only if x = Θ .

A vector space X equipped with a scalar product 〈·, ·〉 is called a pre-Hilbert space.
Set

〈x, x〉 = ‖x‖2. (17.1)

17.1 The Schwarz Inequality

Let X be a pre-Hilbert space for a scalar product 〈·, ·〉. Then for all x, y ∈ X

〈x, y〉 ≤ ‖x‖‖y‖ (17.2)

and equality holds if and only if x = λy for some λ ∈ R. Indeed for all x, y ∈ X
and λ ∈ R

0 ≤ ‖x − λy‖2 = 〈x − λy, x − λy〉 = ‖x‖2 − 2λ〈x, y〉 + λ2‖y‖2.

From this, 2λ〈x, y〉 ≤ ‖x‖2 + λ2‖y‖2. Inequality (17.2) is trivial if either y = Θ

or x = Θ . Otherwise choose λ = ‖x‖/‖y‖.
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17.2 The Parallelogram Identity

Let X be a pre-Hilbert space for a scalar product 〈·, ·〉. Then for all x, y ∈ X

‖x + y‖2 + ‖x − y‖2 = 2(‖x‖2 + ‖y‖2). (17.3)

From the properties of a scalar product

‖x + y‖2 = ‖x‖2 + 2〈x, y〉 + ‖y‖2
‖x − y‖2 = ‖x‖2 − 2〈x, y〉 + ‖y‖2.

Adding these identities yields (17.3).
Using the properties (i)–(v) of a scalar product, and the Schwarz inequality (17.2),

one verifies that the function ‖·‖ : X → R, introduced in (17.1), defines a norm in
X . Therefore a pre-Hilbert space is a normed space {X; ‖ · ‖} by the norm in (17.1).

A Hilbert space is a pre-Hilbert space which is complete with respect to the topol-
ogy generated by the norm (17.1). Equivalently, a Hilbert space is a Banach space
whose norm is generated by an inner product 〈·, ·〉. The N -dimensional Euclidean
spaces areHilbert spaces for the Euclidean scalar product. Let {X,A,μ} be ameasure
space and let E ∈ A. Then L2(E) is a Hilbert space for the scalar product

〈 f, g〉 =
∫

E
f gdμ for all f, g ∈ L2(E).

In particular �2 is a Hilbert space for the inner product

〈a,b〉 =∑ aibi , for a,b ∈ �2.

We will denote by H a Hilbert space for the inner product 〈·, ·〉.

18 Orthogonal Sets, Representations and Functionals

Two elements x, y ∈ H are orthogonal if 〈x, y〉 = 0 and in such a case we write
x ⊥ y. In L2(0, 2π) the two elements t → sin t, cos t are orthogonal.

An element x ∈ H is said to be orthogonal to a set Ho ⊂ H if x ⊥ y for all
y ∈ Ho, and in such a case we write x ⊥ Ho.

Proposition 18.1 (Riesz [133]) Let Ho be a closed, convex, proper subset of H.
Then for every x ∈ H − Ho there exists a unique xo ∈ Ho, such that

inf
y∈Ho

‖x − y‖ = ‖xo − x‖. (18.1)
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Proof Let {yn} be a sequence in Ho such that

δ
def= inf

y∈Ho

‖x − y‖ = lim ‖yn − x‖. (18.2)

Since Ho is convex

yn + ym
2

∈ Ho for any two elements yn, ym ∈ {yn}.

Therefore by the parallelogram identity

‖yn − ym‖2 = ‖(yn − x) + (x − ym)‖2
= 2‖yn − x‖2 + 2‖ym − x‖2 − ‖yn + ym − 2x‖2

= 2‖yn − x‖2 + 2‖ym − x‖2 − 4
∥∥∥
yn + ym

2
− x
∥∥∥
2

≤ 2‖yn − x‖2 + 2‖ym − x‖2 − 4δ2.

Therefore {yn} is aCauchy sequence and, since Ho is closed, it converges to some xo ∈
Ho which satisfies (18.1). If xo and x ′

o both satisfy (18.1), then by the parallelogram
identity

‖x ′
o − xo‖2 = 2‖x ′

o − x‖2 + 2‖xo − x‖2 − 4
∥∥∥
xo + x ′

o

2
− x
∥∥∥
2 ≤ 0.

Let Ho be a subset of H . The orthogonal complement H⊥
o of Ho is defined as the

collection of all x ∈ H , such x ⊥ Ho.

Proposition 18.2 Let Ho be a closed, proper subspace of H. Then H = Ho ⊕ H⊥
o ,

i.e., every x ∈ H can be represented in a unique way as

x = xo + η for some xo ∈ Ho and η ∈ H⊥
o . (18.3)

Proof If x ∈ Ho it suffices to take xo = x and y = Θ . If x ∈ H − Ho let xo be
the unique element claimed by Proposition 18.1 and let δ be defined as in (18.2). Set
now x = xo + η where η = x − xo. To prove that η ⊥ Ho, fix y ∈ Ho and consider
the function

R � t → h(t)
def= ‖η + t y‖2 = ‖η‖2 + 2t〈y, η〉 + t2‖y‖2.

Such a function takes its minimum for t = 0. Indeed h(0) = δ2 and

inf
t∈R

‖η − t y‖2 = inf
t∈R

‖x − (xo + t y)‖2 ≥ inf
y∈Ho

‖x − y‖2 = δ2.

Therefore h′(0) = 0, i.e., 〈η, y〉 = 0 for all y ∈ Ho.
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If the representation (18.3) were not unique there would exist x ′
o �= xo and η′ �= η

such that
x = x ′

o + η′ x ′
o ∈ Ho and η′ ∈ H⊥

o . (18.3)′

Then, by difference

xo − x ′
o ∈ Ho η − η′ ∈ H⊥

o and xo − x ′
o = η′ − η.

Thus xo − x ′
o and η − η′ are perpendicular to themselves and therefore must both

be equal to Θ .

18.1 Bounded Linear Functionals on H

Every y ∈ H identifies a bounded linear functional Ty ∈ H∗ by the formula

Ty(x) = 〈y, x〉 for all x ∈ H. (18.4)

Moreover ‖Ty‖ = ‖y‖. The next proposition asserts that these are the only
bounded, linear functionals on H .

Proposition 18.3 For every T ∈ H∗ there exists a unique y ∈ H, such that T can
be represented as in (18.4).

Proof The conclusion is trivial if T ≡ 0. If T �≡ 0 its kernel Ho is a closed, proper
subspace of H . Select a nontrivial element η ∈ H⊥

o and observe that, for all x ∈ H

T (η)x − T (x)η ∈ Ho i.e., T (x)η = T (η)x + ηo for some ηo ∈ Ho.

By taking the inner product of both sides by η

T (x) = 〈y, x〉 where y = T (η)
η

‖η‖2 .

Since x ∈ H is arbitrary, this implies also ‖T ‖ = ‖y‖.
If y1 and y2 were to identify the same functional T , then 〈y1 − y2, x〉 = 0 for all

x ∈ H . Thus ‖y1 − y2‖ = 0.

Roughly speaking T is identified by the unique “direction” orthogonal to its kernel.
Compare with Proposition 5.1.
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19 Orthonormal Systems

A set S of elements of H is said to be orthogonal, if any two distinct elements x
and y of S are orthogonal. The set S is orthonormal if it is orthogonal and all its
elements have norm 1. In such a case S is called an orthonormal system. In R

N

with its Euclidean norm, an orthonormal system is given by any n-tuple of mutually
orthogonal unit vectors. In L2(0, 2π) an orthonormal system is given by

1√
2π

,
1√
π
cos t,

1√
π
cos 2t,

1√
π
cos 3t, . . .

1√
π
sin t,

1√
π
sin 2t,

1√
π
sin 3t, . . .

(19.1)

In �2 an orthonormal system is given by,

e1 = {1, 0, 0, . . . , 0m, 0, . . . }
e2 = {0, 1, 0, . . . , 0m, 0, . . . }

· · ·
em = {0, 0, 0, . . . , 1m, 0, . . . }
. . . = . . .

(19.2)

Lemma 19.1 Let S be an orthonormal system in H. Any two distinct elements x
and y in S are at mutual distance

√
2.

Proof For any x, y ∈ S and x �= y, compute

‖x − y‖2 = 〈x − y, x − y〉 = ‖x‖2 − 2〈x, y〉 + ‖y‖2.

The conclusion follows since ‖x‖ = ‖y‖ = 1.

19.1 The Bessel Inequality

Proposition 19.1 Let H be a Hilbert space and let S be an orthonormal system in
H. Then for any n-tuple {u1, . . . ,un} of elements of S3

n∑

i=1
〈ui , x〉2 ≤ ‖x‖2 for all x ∈ H. (19.3)

3 S need not be countable.
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Moreover, for any fixed x ∈ H the inner product 〈u, x〉 vanishes except for at
most countably many u ∈ S, and

∑

u∈S
〈u, x〉2 ≤ ‖x‖2 for all x ∈ H. (19.4)

Proof For any such n-tuple and any x ∈ H

0 ≤ ∥∥x −
n∑

i=1
〈ui , x〉ui

∥∥2 = 〈x −
n∑

i=1
〈ui , x〉ui, x −

n∑

i=1
〈ui , x〉ui

〉

= ‖x‖2 −
n∑

i=1
〈ui , x〉2.

This establishes (19.3). To prove (19.4), fix x ∈ H and observe that for any m ∈ N

the set {
u ∈ S such that

1

2m+1
‖x‖2 ≤ 〈u, x〉2 <

1

2m
‖x‖2

}

contains at most finitely many elements. Therefore the collection of those u ∈ S
such that 〈u, x〉 �= 0 is countable and (19.4) holds.

19.2 Separable Hilbert Spaces

Proposition 19.2 Let H be a separableHilbert space. Then any orthonormal system
S in H is countable.

Proof Let Ho be a countable subset of H dense in H and let S be an orthonormal
system in H . For every u ∈ S there exists x(u) ∈ Ho such that

‖u − x(u)‖ <

√
2

3
. (19.5)

If u1 and u2 are distinct elements of S then any two elements x(u1) and x(u2) in
Ho for which (19.5) holds are distinct. Indeed

√
2 = ‖u1 − u2‖ ≤ ‖u1 − x(u1)‖ + ‖u2 − x(u2)‖ + ‖x(u1) − x(u2)‖

≤ 2

√
2

3
+ ‖x(u1) − x(u2)‖.

Thus S can be put in a one-to-one correspondence with a subset of Ho.
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20 Complete Orthonormal Systems

An orthonormal system S in H is said to be complete if

〈x,u〉 = 0 for all u ∈ S implies x = Θ. (20.1)

The orthonormal system in (19.2) is complete in �2. It can be shown that the
orthonormal system in (19.1) is complete in L2(0, 2π).

Proposition 20.1 Let S be a complete orthonormal system in H. Then for every
x ∈ H

x = ∑

u∈S
〈x,u〉u (representation of x). (20.2)

Moreover
‖x‖2 = ∑

u∈S
|〈x,u〉|2 (Parseval’s identity). (20.3)

Proof As u ranges over S, only countably many of the numbers 〈x,u〉 are not zero
and we order them in some fashion {〈x,un〉}. By the Bessel inequality the series∑〈x,un〉2 converges. Therefore for any two positive integers n < m

∥∥
∥

m∑

i=n
〈x,ui 〉ui

∥∥
∥
2 =

m∑

i=n
〈x,ui 〉2 −→ 0 as m, n → ∞.

This implies that the sequence
{∑n

i=1〈x,ui 〉ui
}
is a Cauchy sequence in H and

has a limit
y =∑ 〈x,ui 〉ui = ∑

u∈S
〈x,u〉u.

For any u ∈ S

〈x − y,u〉 = lim
〈
x −

m∑

i=1
〈x,ui 〉ui ,u

〉
= 0.

Thus 〈x − y,u〉 = 0 for all u ∈ S and since S is complete x = y.
From (20.2), by taking the inner product with respect to x

‖x‖2 = lim
〈
x,

n∑

i=1
〈x,ui 〉ui

〉 = lim
n∑

i=1
〈x,ui 〉2.
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20.1 Equivalent Notions of Complete Systems

Let S be an orthonormal system in H . If (20.3) holds for all x ∈ H then S is
complete. Indeed if not there would be an element x ∈ H such that 〈x,u〉 = 0 for
all u ∈ S and x �= Θ . However if (20.3) holds x = Θ .

The proof of Proposition 20.1 shows that the notion (20.1) of complete system
implies (20.2) and this in turn implies (20.3). We have just observed that (20.3)
implies the notion (20.1) of complete system. Thus (20.1)–(20.3) are equivalent and
each could be taken as a definition of complete system.

20.2 Maximal and Complete Orthonormal Systems

An orthonormal system S in H is maximal if it is not properly contained in any
other orthonormal system of H . From the definitions it follows that an orthonormal
system S in H is complete if and only if it is maximal.

The family� of all orthonormal systems in H is partially ordered by set inclusion.
Moreover every linearly ordered subset �′ ⊂ � has an upper bound given by the
union of all orthonormal systems in�′. Therefore by Zorn’s lemma H has amaximal
orthonormal system.

Zorn’s lemma provides an abstract notion of existence of a maximal orthonormal
system in H . Of greater interest is the actual construction of a complete system.

20.3 The Gram–Schmidt Orthonormalization Process ([142])

Let {xn} be a countable collection of linearly independent elements of H and set

u1 = x1
‖x1‖ un+1 =

xn+1 −
n∑

i=1
〈xn+1,ui 〉ui

∥∥
∥∥xn+1 −

n∑

i=1
〈xn+1,ui 〉ui

∥∥
∥∥

for n = 1, 2, . . . .

These are well defined since {xn} are linearly independent. One verifies that {un}
forms an orthonormal system and {un} = {xn}.

If H is separable this procedure can be used to generate a maximal orthonormal
system S in H , independent of Zorn’s lemma.
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20.4 On the Dimension of a Separable Hilbert Space

If H is separable any complete orthonormal system S, is either finite or infinite-
countable.

Assume first S is infinite-countable and index its elements as {un}. By Parseval’s
identity, any element x ∈ H generates an element of �2 by the formula {an} =
{〈x,un〉}. Vice versa any element a ∈ �2 generates a unique element x ∈ H by the
formula x = ∑

aiui . Let x and y be two elements in H and let a and b be their
corresponding elements in �2. By same reasoning 〈x, y〉H = 〈a,b〉�2 . This implies
that the isomorphism between H and �2 is an isometry. Thus any separable Hilbert
space with an infinite-countable orthonormal system S is isometrically isomorphic
to �2. Equivalently, any complete, infinite-countable, orthonormal system S of a
Hilbert space H , can be put in one-to-one correspondence with the system (19.2)
which forms a complete orthonormal system of �2.

We say that the dimension of a separable Hilbert space with an infinite-countable
orthonormal system, is ℵo, i.e., the cardinality of {en}.

If S is finite, say for example {u1, . . . ,uN } then by the same procedure H is
isometrically isomorphic to RN and its dimension is N .

Problems and Complements

1c Normed Spaces

1.1. Let E be a bounded, open subset of RN . The space C(Ē) endowed with the
norm of L p(E) is not a Banach space.

1.2. Every normed space is homeomorphic to its open unit ball.
1.3. Anormed space {X; ‖·‖} is complete if andonly if the intersection of a countable

family of nested, closed balls is nonempty.
1.4. The L2-norm and the sup-norm on C[0, 1] are not equivalent. In particular

C[0, 1] is not complete in L p[0, 1] for all 1 ≤ p < ∞. The norms of L p(E)

and Lq(E) for 1 ≤ q < p < ∞, are not equivalent.

The next proposition provides a criterion for a normed space to be a Banach space.

Proposition 1.1c Anormed space {X; ‖·‖} is complete if and only if every absolutely
convergent series converges to an element of X.

Proof Let {X; ‖·‖} be complete and let
∑

xn be absolutely convergent in {X; ‖·‖}, so
that

∑ ‖xn‖ ≤ M for someM > 0. Then {∑n
j=1 x j } is Cauchy and hence convergent

to some x ∈ X .
Conversely, let {xn} be Cauchy in {X; ‖ · ‖}, so that for each j ∈ N there exists

n j such that
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‖xn − xm‖ ≤ 2− j for n,m ≥ n j .

Set
y j = xn j+1 − xn j .

The series
∑

y j is absolutely convergent and we let x denote its limit. Thus the
subsequence {xn j } ⊂ {xn} converges to x . Since {xn} is Cauchy, the whole sequence
converges to x .

In the context of L p(E) the criterion has been used in the proof of Theorem 5.1 of
Chap.6.

Proposition 1.2c Every norm p on R
N is equivalent to the Euclidean norm ‖ · ‖.

Remark 1.1c The statement is a particular case of Proposition 12.1 of Chap. 2. The
proof below is more direct using that the topology of RN is generated by a norm
p(·).
Proof (of Proposition 1.2c) Let {e1, . . . , eN } be a basis of RN . Then

x =
N∑

j=1
c je j =⇒ p(x) ≤

N∑

j=1
|c j |p(e j ) ≤ C‖x‖

for a constant C independent of x . This implies that

|p(x) − p(y)| ≤ p(x − y) ≤ C‖x − y‖ for all x, y ∈ R
N .

Thus p(·) is continuous in the topology of the Euclidean norm. Its restriction
to the Euclidean unit sphere S1 is a continuous function pointwise strictly bounded
below in S1. Since the S1 is compact in RN with its Euclidean topology, p(·) attains
its minimum c > 0 there. From this

p(x) = p
(
‖x‖ x

‖x‖
)

= ‖x‖p
( x

‖x‖
)

≥ c‖x‖ for all x ∈ R
N − {0}.

1.1c Semi-Norms and Quotients

1.5. The quantities V f [a, b] in (1.2), and [ f ]α in (1.3) are semi-norms in their
respective spaces.

1.6. Let {pα} be a collection of semi-norms on X such that

p∞(x) = sup
α

pα(x) < ∞ for all x ∈ X.

Then p∞(·) defines a semi-norm on X .

http://dx.doi.org/10.1007/978-1-4939-4005-9_6
http://dx.doi.org/10.1007/978-1-4939-4005-9_2
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1.7. Let {p j } for j = 1, . . . , n be a finite collection of semi-norms on X . Then

q1(x) =
n∑

j=1
p j (x); q2(x) =

√
n∑

j=1
p2j (x); q∞(x) = max

1≤ j≤n
p j (x),

are also semi-norms.
1.8. Prove that a semi-norm p on X is convex. Conversely a convex function f :

X → R
+ which is homogeneous of order 1 in X , defines a semi-norm in X .

Hint:Homogeneous of orderα ∈ Rmeans that f (t x) = |t |α f (x) for all t ∈ R.

2c Finite and Infinite Dimensional Normed Spaces

2.1. An infinite dimensional Banach space {X; ‖ ·‖} cannot have a countable Hamel
basis (16.9 of the Complements of Chap. 2).

2.2. Let �o be the collection of all sequences of real numbers {cn} with only finitely
many nonzero elements. There is no norm on �o by which �o would be a Banach
space. See also § 9.6c of the Complements of Chap. 2.

2.3. L p(E) and �p are of infinite dimension for all 1 ≤ p ≤ ∞ and their dimension
is larger than ℵo.

2.4. Let C1[0, 1] be the collections of all continuously differentiable functions in
[0, 1] with norm

C1[0, 1] � f → ‖ f ‖C1[0,1] = sup
[0,1]

| f | + sup
[0,1]

| f ′|.

Let Xo be a closed subspace of C1[0, 1] which is also closed in L2[0, 1]. Prove
that

i. The norms ‖ · ‖C1[0,1] and ‖ · ‖L2[0,1] are equivalent on Xo, i.e., there exists
two positive constants c ≤ C such that

c ‖ f ‖C1[0,1] ≤ ‖ f ‖L2[0,1] ≤ C ‖ f ‖C1[0,1].

ii. Xo is a finite dimensional subspace of L2[0, 1].
2.5. The dimension of C[0, 1] and BV [0, 1] is uncountably infinite. The collection

{xn} is an infinite set of linearly independent elements ofC[0, 1] and BV [0, 1].
2.6. An infinite dimensional Banach space {X; ‖·‖} has an infinite dimensional non-

closed subspace. Fix aHamel basis {xα}, for X , whereα is an uncountable index,
select an infinite, countable collection {xn} ⊂ {xα} of linearly independent
elements and set Y = {xn}. Then Y is non-closed, for otherwise it would be an
infinite dimensional Banach space with a countable Hamel basis.

http://dx.doi.org/10.1007/978-1-4939-4005-9_2
http://dx.doi.org/10.1007/978-1-4939-4005-9_2
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3c Linear Maps and Functionals

3.1. A linear map T from {X; ‖ · ‖X } into {Y ; ‖ · ‖Y } is continuous if and only if it
maps sequences {xn} converging to ΘX into bounded sequences of {Y ; ‖ · ‖Y }.

3.2. Two normed spaces {X; ‖·‖1} and {X; ‖·‖2} are homeomorphic if and only if
there exist positive constants 0 < co ≤ 1 ≤ c1 such that

co‖x‖1 ≤ ‖x‖2 ≤ c1‖x‖1 for all x ∈ X.

3.3. A linear functional on a finite dimensional normed space is continuous.
3.4. Let E be a bounded, open subset of RN . A linear map T : C(Ē) → R is a

positive functional, if T ( f ) ≥ 0 whenever f ≥ 0. A positive linear functional
on C(Ē) is bounded. Thus positivity implies continuity. Moreover any two of
the conditions

(i) ‖T ‖ = 1 (ii) T (1) = 1 (iii) T ≥ 0

implies the remaining one.
3.5. Let {X; ‖ · ‖} be an infinite dimensional Banach space. There exists a discon-

tinuous, linear map T : X → X .

Having fixed a Hamel basis {xα} for X , after a possible renormalization, we
may assume that ‖xα‖ = 1 for all α. Every element x ∈ X can be represented
in a unique way, as the finite linear combination of elements of {xα}, i.e., for
every x ∈ X there exists a unique m-tuple of real numbers {c1, . . . , cm} such
that

x =
m∑

j=1
c j xα j . (3.1c)

Since X is of infinite dimension, the index α ranges over some set A such that
(A) ≥ (N). Out of {xα} select a countable collection {xn} ⊂ {xα}. Then set

T (xn) = nxn and T (xα) = Θ if α /∈ N.

For x ∈ X , having determined its representation (3.1c), set also

T (x) =
m∑

j=1
c j T (xα j ).

In view of the uniqueness of the representation (3.1c), this defines a linear
map from X into X . Such a map, however, is discontinuous since ‖T (xn)‖ =
n‖xn‖ → ∞ as n → ∞.

3.6. Let {X; ‖ · ‖} be an infinite dimensional Banach space. There exists a discon-
tinuous, linear functional T : X → R.
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3.7. Are the constructions of 3.5 and 3.6 possible if {X; ‖ · ‖} is an infinite dimen-
sional normed space?

Remark 3.1c The conclusion of 3.6 is in general false formetric spaces. For example
if X is a set, the discrete metric, generates the discrete topology on X . With respect
to such a topology there exists no discontinuous maps T : X → R.

However there exist metric, not normed, spaces that admit discontinuous linear
functionals. As an example consider L p(E) for 0 < p < 1 endowed with the metric
(3.1c) of § 3.4c of the Complements of Chap. 6. If E is a Lebesgue measurable
subset of RN and μ is the Lebesgue measure, then every nontrivial, linear functional
on L p(E) is discontinuous.4

3.8. Let the unit ball in R
N in some norm ‖ · ‖, be∏N

j=1[−1, 1]. Compute the unit
ball of the dual space.

3.9. Let X = ⊕k
j=1 X j where X j for j = 1, . . . , k are Banach spaces. Then X∗ =

⊕k
j=1 X

∗
j . In particular (L p(E)k)∗ = Lq(E)k where 1 ≤ p < ∞ and p and q

are Hölder conjugate.

6c Equibounded Families of Linear Maps

Let {X; ‖ · ‖X } and {Y ; ‖ · ‖Y } be Banach spaces.

6.1. Let T (x, y) : X × Y → R be a functional linear and continuous in each of the
two variables. Then T is linear and bounded with respect to both variables.

6.2. Let {Tn} be a sequence in B(X; Y ), such that the limit of {Tn(x)} exists for all
x ∈ X . Then T (x) = lim Tn(x) defines a bounded, linear map from {X; ‖ · ‖X }
into {Y ; ‖ · ‖Y }.

6.3. Let {Tn} be a sequence in B(X; Y ), such that ‖Tn‖ ≤ C for some positive
constant C and all n ∈ N. Let Xo be the set of x ∈ X for which {Tn(x)}
converges. Then Xo is a closed subspace of {X; ‖ · ‖X }.

6.4. Let T1 and T2 be elements of B(X; X) and let T1T2(·) = T1(T2(·)) be the com-
position map. Then T1T2 ∈ B(X; X) and ‖T1T2‖ ≤ ‖T1‖ ‖T2‖.

Let T ∈ B(X; X) satisfy ‖T ‖ < 1. Then (I + T )−1 exists as an element of
B(X; X) and

(I + T )−1 = I +∑ (−1)nT n.

Hint: Since‖T ‖ < 1, the series
∑ ‖T n‖ ≤∑ ‖T ‖n converges. SinceB(X; X)

is a Banach space,
∑

(−T )n converges to an element B(X; X).
6.5. Let E be a bounded open set in RN . Fix h ∈ L∞(E) and find f ∈ L∞(E) such

that

4 These remarks on existence and nonexistence of unbounded linear functionals in metric spaces
were suggested by Allen Devinatz†.

http://dx.doi.org/10.1007/978-1-4939-4005-9_6


358 7 Banach Spaces

h = (I + T ) f i.e., formally f = (I + T )−1h (6.1c)

where T ( f ) is the Riesz potential introduced in (4.2). Verify that T is a bounded
linear map from L∞(E) into itself. Give conditions on E so that such a formal
solution formula is actually justified and exhibit explicitly the solution f .

6.6. Let E be a Lebesgue measurable subset of RN of finite measure and let 1 ≤
p, q ≤ ∞ be conjugate. Then if q > p the space Lq(E) is of first category in
L p(E). Hint: Lq(E) is the union of

[‖g‖q ≤ n
]
.

8c The Open Mapping Theorem

{X; ‖ · ‖X } and {Y ; ‖ · ‖Y } are Banach spaces:

8.1. T ∈ B(X; Y ) is a homeomorphism if and only if it is onto, and there exist
positive constants c1 ≤ c2 such that

c1‖x‖X ≤ ‖T (x)‖Y ≤ c2‖x‖X for all x ∈ X.

8.2. A bounded linear map T from a subspace Xo ⊂ X into Y , has closed graph if
and only if its domain is closed.

8.3. The sup-norm on C[0, 1] generates a strictly stronger topology than the L2-
norm.

8.4. Let T ∈ B(X; Y ). If T (X) is of second category in Y , then T is onto.

9c The Hahn–Banach Theorem

Let X be a vector space over the complex field C. The norm ‖·‖ is defined as in
(i)–(iii) of § 1, except that λ ∈ C. In such a case |λ| is the modulus of λ as element
of C.

Denote by XR the vector space X when multiplication is restricted to scalars in
R. A linear functional T : X → C is separated into its real and imaginary part by

T (x) = TR(x) + iTi (x) (9.1c)

where the maps TR and Ti are functionals from XR into R. Since T : X → C is
linear, T (i x) = iT (x) for all x ∈ X . From this compute

T (i x) = TR(i x) + iTi (i x) iT (x) = iTR(x) − Ti (x).

This implies
Ti (x) = −TR(i x) for all x ∈ X. (9.2c)
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Thus T : X → C is identified by its real part TR regarded as a linear functional
from XR into R. Vice versa any such real-valued functional TR : XR → R identifies
a linear functional T : X → C by the formulae (9.1c)–(9.2c).

9.1c The Complex Hahn–Banach Theorem

Theorem 9.1c ([17, 151]) Let X be a complex vector space and let p : X → R

be a semi-norm on X. Then, every linear functional To : Xo → C defined on a
subspace Xo of X and satisfying |To(x)| ≤ p(x) for all x ∈ Xo, admits an extension
T : X → C such that

|T (x)| ≤ p(x) for all x ∈ X and T (x) = To(x) for x ∈ Xo.

Proof Denote by Xo,R the real subspace of Xo and by To,R : Xo,R → R the real part
of T . By the representation (9.1c)–(9.2c) it suffices to extend To,R into a linear map
TR : XR → R. This follows from the Hahn–Banach theorem, since

To,R(x) ≤ |T (x)| ≤ p(x) for all x ∈ X.

9.2c Linear Functionals in L∞(E)

The Riesz representation theorem for the bounded linear functionals in L p(E), fails
for p = ∞. A counterexample can be constructed as follows.

On C[−1, 1] let To( f ) = f (0). This is bounded, linear functional on C[−1, 1].
The boundedness of To is meant in the sense of L∞[−1, 1], i.e.,

‖To‖ = sup
ϕ∈C[−1,1]
‖ϕ‖∞=1

|To(ϕ)|.

Then, by the Hahn–Banach theorem, To can be extended to a bounded linear
functional T in L∞[−1, 1] coinciding with To on C[−1, 1] and such that ‖T ‖ =
‖To‖. For such an extension there exists no function g ∈ L1[−1, 1] such that

T ( f ) =
∫ 1

−1
f gdx for all f ∈ L∞[−1, 1].
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11c Separating Convex Subsets of X

11.1c A Counterexample of Tukey [164]

The nonempty interior assumption is essential. We produce two disjoint, closed,
convex sets C1 and C2 in �2, such that C1 − C2 is dense in �2. This implies that
C1 − C2 cannot be separated from Θ and hence C1 and C2 cannot be separated.
Identify x ∈ �2 with its corresponding sequence {xn} and define

C1 =
{
x ∈ �2

∣∣ x1 >
∣∣n2
(
xn − 1

n

)∣∣, for all n > 1
}

C2 = {x ∈ �2
∣∣ xn = 0 for all n > 1

}
.

One verifies that C1 and C2 are convex and closed. They are also disjoint. Indeed
if y ∈ C1 ∩ C2

y1 ≥ ∣∣n2(0 − 1
n

)∣∣ = n for all n ≥ 2.

Thus y1 = ∞ and hence y /∈ �2. To show that C1 − C2 is dense in �2, fix z ∈ �2
and ε > 0 and pick nε so large that

∑

n≥nε

n−2 + ∑

n≥nε

z2n <
ε2

4
.

Choose a number

x1 >
∣∣n2
(
zn − 1

n

)∣∣ for 2 ≤ nε < n

and let x = {xn} ∈ C1 and y = {yn} ∈ C2 be defined by

xn =
⎧
⎨

⎩

x1 for n = 1;
zn for 2 ≤ n < nε;
1
n for n ≥ nε;

yn =
{
z1 + x1 for n = 1;
0 for n > 1.

By the triangle inequality ‖z − (x − y)‖ < ε.

11.1.1c A Variant of Tukey’s Counterexample

Corollary 11.1c Every infinite dimensional Banach space X contains a
1-dimensional subspace C1 and a closed, convex set C2 that cannot be separated by
a bounded linear functional.
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Proof Let {en} be a sequence of linearly independent elements on the unit sphere of
X and set C2 = {e1} and

C1 =
{
x ∈ X of the form x =∑ xnen with

x1 ≥ n3
∣∣xn − n−2

∣∣ for all n ≥ 2

}

11.2c A Counterexample of Goffman and Pedrick [56]

Let X be a linear space with a countably infinite Hamel basis {xn}. Let C1 be the
collections of all elements x ∈ X whose last nonzero coefficient of its representations
in terms of {xn} is positive. The set C1 is convex and Θ /∈ C1. Any functional T that
separates {Θ} from C1 must be either non-positive or nonnegative on C1. Let then T
be a linear functional on X , which is nonnegative on C1. For every x j ∈ {xn} and all
α ∈ R the element αx j + x j+1 ∈ C1. Therefore

T (αx j + x j+1) = αT (x j ) + T (x j+1) ≥ 0 for all α ∈ R.

Thus T (x j ) = 0. Since x j ∈ {xn} is arbitrary, T vanishes on all basis elements of X
and therefore is the zero functional.

11.3c Extreme Points of a Convex Set

Let C be a convex set in a linear, normed space. A point x ∈ C is an extreme
point of C if there do not exist distinct points u, v ∈ C and t ∈ (0, 1), such that
x = tu + (1 − t)v, that is, if no line segment in C has x as an interior point.

11.1. The extreme points of a convex, closed polyhedron in R
N are its vertices.

11.2. An open convex polyhedron in R
N has no extreme points.

11.3. A closed 1
2 -space in R

N has no extreme points.
11.4. The set of extreme points of the closed unit ball of a uniformly convex linear

normed space {X; ‖ · ‖} is the unit sphere. In particular the extreme points of
L p(E) for 1 < p < ∞ are all those functions in L p(E) such that ‖ f ‖p = 1.

11.5. The set of the extreme points of the closed unit ball in L∞(E) are those
f ∈ L∞(E) such that | f | = 1 a.e. in E .

11.6. The set of the extreme points of the closed unit ball in L1(E) is empty.
11.7. Let E be a bounded, connected, open set in RN . The closed unit ball of C(Ē)

has no, non constant, extreme points. Examine the case when E has several
connected components.

A set E ⊂ C is an extremal subset of C if it satisfies the property:
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{
if there exist u, v ∈ C and t ∈ (0, 1) such that

tu + (1 − t)v ∈ E, then u, v ∈ E .

}

Extreme points are extremal sets. Convex portions of a face of a closed, convex
polyhedron are extremal sets of that polyhedron. Prove the following:

Lemma 11.1c If E1 is an extremal subset of C and E2 is an extremal subset of E1,
then E2 is an extremal subset of C.

Lemma 11.2c A nonempty, convex, compact subset C of a linear, normed space X,
has extreme points.

Proof Consider the collection E of all closed, extremal subsets ofC , partially ordered
by inclusion. Such a collection is not empty since C ∈ E . Any linearly ordered
subcollectionE1 ⊂ E has the finite intersection property (§ 5 ofChap.2) and therefore

Eo =⋂{E | E ∈ E1} is not empty, closed and compact.

We claim that Eo is a singleton which is extreme of C . If Eo contains more than
one point, pick p, q ∈ Eo with p �= q, let T ∈ X∗ be such that T (p) > T (q)

(Corollary 10.1), and set

E ′
o =

{
x ∈ Eo

∣
∣ T (x) = inf

y∈Eo

T (y)
}
.

The set E ′
o is well defined, since T is continuous and Eo is compact, and is a

proper subset of Eo, since T (p) > T (q). The proof consists in verifying that E ′
o is a

convex, closed, extremal subset of Eo. Thus by Lemma 11.1c it would be a closed,
extremal subset of C , properly contained in Eo, thereby contradicting the definition
of Eo.

If there exists u, v ∈ C and t ∈ (0, 1) such that tu + (1 − t)v ∈ E ′
o ⊂ Eo, then

u, v ∈ Eo and

tT (u) + (1 − t)T (v) = T (tu + (1 − t)v) = inf
y∈Eo

T (y).

Now
T (u) > inf

y∈Eo

T (y) implies T (v) < inf
y∈Eo

T (y)

contradicting that v ∈ Eo. Thus

T (u) = T (v) = inf
y∈Eo

T (y) which implies u, v ∈ E ′
o.

Theorem 11.1c (Krein–Milman [86]) A compact, convex set C in a normed linear
space is the closed convex hull of its extreme points.

http://dx.doi.org/10.1007/978-1-4939-4005-9_2
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Proof Let E be the set of the extreme points of C . By the definition of convex hull,
c(E) ⊂ C . To prove the converse inclusion, proceed by contradiction, assuming that
there exists xo ∈ C such that xo /∈ c(E). By Proposition 11.3 there exists T ∈ X∗
such that T (xo) < T (c(E)). Set

C1 =
{
x ∈ C

∣∣ T (x) = inf
y∈C T (y)

}
.

Proceeding as in the proof of Lemma 11.2c one verifies that C1 is a nonempty,
convex, closed, extremal subset of C . Moreover C1 ∩ E = ∅. Since C1 is convex
and compact it has at least one extreme point yo, which by Lemma 11.1c is also an
extreme point of C .

11.8. Give an example to show that the compactness assumption on C is essential.

11.4c A General Version of the Krein–Milman Theorem

Prove that Theorem 11.1c continues to hold, with essentially the same proof if X is
a Hausdorff topological vector space on which X∗ separates points. Compactness of
C is referred to the topology of X .

12c Weak Topologies

Proposition 12.1c Let {X; ‖ · ‖} be a normed space and let W denote its weak
topology. Denote also by O a weak neighborhood of the origin of X. Then:

(i) For every V ∈ W and xo ∈ V , there exists O such that xo + O ⊂ V .
(ii) For every V ∈ W and xo ∈ V , there exists O such that O + O + xo ⊂ V .

(iii) For every O there exists O′ such that λO′ ⊂ O, for all |λ| ≤ 1.

Proof (of (i)) An open weak neighborhood V of xo ∈ X contains an open set of the
form

Vo =
m⋂

j=1
T−1
j (Tj (xo) − α j , Tj (xo) + α j )

for some finite m and α j > 0. Equivalently

Vo = {x ∈ X
∣∣ |Tj (x − xo)| < α j for j = 1, . . . , n}.

The neighborhood of the origin

O = {x ∈ X
∣∣ |Tj (x)| < α j for j = 1, . . . , n

}
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is such that xo + O ⊂ Vo.

The remaining statements are proved similarly.

12.1. In a finite dimensional normed linear space, the notions of weak and strong
convergence coincide.

12.2. Construct examples and counterexamples for the following statements:

i. A weakly closed subset of a normed linear space is also strongly closed.
The converse is false.

ii. A strongly sequentially compact subset of a normed linear space is also
weakly sequentially compact. The converse is false.

12.3. A normed linear space is weakly complete if and only if it is complete in its
strong topology. A weakly dense set in {X; ‖ · ‖} is also strongly dense.

12.4. The weak topology on a normed linear space is Hausdorff (Proposition 11.3).

12.1c Infinite Dimensional Normed Spaces

Let {X; ‖ · ‖} be an infinite dimensional Banach space. There exists a countable
collection {Xn} of infinite dimensional, closed subspaces of X such that Xn+1 ⊂ Xn

with strict inclusion. For example one might take a nonzero functional T1 ∈ X∗ and
set X1 = ker{T1}. Such a subspace is infinite dimensional (Hint: Proposition 5.1).
Then select a nonzero functional T2 ∈ X∗

1 , set X2 = ker{T2}, and proceed by
induction.

For each n, select an element xn ∈ Xn+1 − Xn so that ‖xn‖ = 2−n . This generates
a sequence {xn} of linearly independent elements of X whose span Xo is isomorphic
to �∞ by the representation

�∞ � {cn} −→ ∑
cnxn ∈ X

Since the dimension of �∞ is not less than the cardinality of R the dimension of
an infinite dimensional Banach space is at least the cardinality of R. Compare with
2.1.

12.5. A Banach space {X; ‖ · ‖} is finite dimensional if and only if every linear
subspace is closed (2.6). However an infinite dimensional Banach space X
contains infinitely many, infinite dimensional, closed subspaces.

12.6. Theweak topology of an infinite dimensional normed space X is not normable,
i.e., there exists no norm ‖ · ‖w on X that generates the weak topology. This
follows fromCorollary 12.3. Give an alternate proof.Hint: If such ‖·‖w exists,
the open unit ball, with respect to such a norm, would be an open neighborhood
of the origin.
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12.2c About Corollary 12.5

In the context of L p(E) spaces the corollary had been established in [14]. When
p = 2 the coefficientsα j can be given an elegant form as established by the following
proposition.

Proposition 12.2c Let { fn} be a sequence of functions in L2(E) weakly convergent
to some f ∈ L2(E). There exists a subsequence { fn j } such that setting

ϕm = fn1 + fn2 + · · · + fnm
m

the sequence {ϕm} converges to f strongly in L2(E).

Proof By possibly replacing fn with fn − f , wemay assume that f = 0. Fix n1 = 1.
Since { fn} → 0 weakly in L2(E), there exists an index n2 such that

∣∣∣
∫

E
fn1 fn2dμ

∣∣∣ ≤ 1

2
.

Then there is an index n3 such that

∣∣∣
∫

E
fn1 fn3dμ

∣∣∣ ≤ 1

3
and

∣∣∣
∫

E
fn2 fn3dμ

∣∣∣ ≤ 1

3
.

Proceeding in this fashion we extract, out of { fn}, a subsequence { fn j }, such that,
for all k ≥ 2 ∣

∣∣
∫

E
fn�

fnk dμ
∣
∣∣ ≤ 1

k
for all � = 1, . . . , k − 1.

Denoting by M the upper bound of ‖ fn‖2, compute

∫

E
ϕ2
mdμ = 1

m2

∫

E
( fn1 + fn2 + · · · fnm )2dμ

≤ 1

m2

(
mM2 + 2 + 4

1

2
+ · · · + 2m

1

m

)

≤ M2 + 2

m
−→ 0 as m → ∞.

12.3c Weak Closure and Weak Sequential Closure

For a subset E of a normed space {X; ‖ · ‖} denote by Ēw−σ its is weak sequential
closure, that is the set of all limit points of weakly convergent sequences in E .
Equivalently, by Ēw−σ is the set of all points x ∈ X , for which there exists a sequence
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{xn} ⊂ E weakly convergent to x . By the definition Ēw−σ ⊂ Ēw. The inclusion is
in general strict, as shown by the following examples.

12.7. Let E = {√nen} ⊂ �2, where en is the infinite sequence consisting of zeroes
except the nth entry which is one. Denoting by 0 the zero element of �2

0 ∈ {√nen}w but 0 /∈ {√nen}w−σ. (12.1c)

To prove the first of these, pick T ∈ �∗
2 and for a fixed α > 0, consider the

weak, open neighborhood of the origin

OT,α = {x ∈ �2
∣∣ |T (x)| < α}.

By the Riesz representation theorem any such T is identified by some t ∈ �2
acting on elements a ∈ �2 by the formula

T (a) = t · a =∑ tnan.

Since t ∈ �2, for all M > 0, there exists n > M such that |tn| ≤ α/
√
n. Indeed

otherwise

‖t‖2 ≥ ∑

n>M
t2n > α

∑ 1

n
.

For such an index, |T (
√
nen)| < α, and hence

√
nen ∈ OT,α. Let now

O =
k⋂

j=1
T−1
j (−α j ,α j ), for α j > 0 for some k ∈ N. (12.2c)

Prove that n can be chosen so large that
√
nen ∈ O. Therefore any weak, open

neighborhood of the origin intersects {√nen}.

To prove the second of (12.1c) we establish that there exists no subsequence
{√mem} ⊂ {√nen}, weakly convergent to 0. Having picked such a subse-
quence assume first that some fixed index j ∈ N occurs infinitely many times
in {√mem}. Pick Tj ∈ �∗

2 corresponding to e j ∈ �2. For such a choice the
sequence {Tj (

√
mem)} contains the value √

j infinitely many times, and thus
it cannot converge to zero. If no index j ∈ N occurs infinitely many times in
{√mem} pick a subsequence

{√m jem j } ⊂ {√mem} so that m j ≥ 2 j
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and set

t = ∑

j∈N
1√
m j

em j satisfying ‖t‖2 = ∑

j∈N
1

m j
< ∞.

Therefore t ∈ �2 and we let T ∈ �∗
2 be its corresponding functional. For such

a functional T (
√
m jem j ) = 1. Therefore the sequence {T (

√
mem)} contains 1

infinitely many times and thus it cannot converge to zero.

Remark 12.1c The set E is countable, so that countability alone is not sufficient to
identifty weak closure with weak sequential closure.

Remark 12.2c The set {√nen} is unbounded in �2. However the strict inclusion
Ēw−σ ⊂ Ēw continues to hold even for bounded sets, as shown by the next example.

12.8. Consider the set E ⊂ �1

E = ⋃

n,m∈N;m �=n
{em − en}.

We claim that E is bounded in �1, its weak closure contains 0 but its weak
sequential closure does not contain 0.

To establish the first claim let O be a weakly open set of the form (12.2c).
Every Tj ∈ �∗

1 is identified with an element t j ∈ �∞ acting on elements a ∈ �1
by the formula

Tj (a) = t j · a =∑ t j,nan.

Since t j ∈ �∞ for j = 1, . . . , k, as n ranges overN, the k-tuple (t1,n, . . . , tk,n)
ranges over a bounded set K ⊂ R

k , which, without loss of generality we
may assume to be a closed cube with faces parallel to the coordinate planes.
Pick ε = min{α1, . . . ,αk} and subdivide K into no less than ε−k homotetic
closed sub-cubes Kε of edge not exceeding ε. At least one of these sub-cubes
must contain infinitely many k-tuples (t1,n, . . . , tk,n). Select one such cube and
relabel the corresponding k-tuples as {(t1,ni , . . . , tk,ni )}i∈N. For the element
emi − eni ∈ {em − en} compute

|Tj (emi − eni )| = |t j,mi − t j,ni | ≤ ε ≤ α j for j = 1, . . . k.

Therefore emi − eni ∈ O. Thus every weak open neighborhood of 0 intersects
{em − en} and hence 0 ∈ {em − en}w.
To show that no subsequence {em j −en j } ⊂ {em −en} converges weakly to 0 it
suffices for any such subsequence, to construct a functional T ∈ �∗

1 such that
{T (em j − en j )} does not converge to zero. Construct one such T by examining
separately the following cases
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i. Some pair (m j , n j ) occurs infinitely many times;
ii. Some index m j occurs infinitely many times and n j → ∞, or vice versa.
iii. Both m j , n j → ∞.

12.9. Let E = �2 be defined by (von Neuman [113])

E = {en + nem} for 0 ≤ n < m.

Prove that E is strongly closed (Hint: all the sequences in E , Cauchy in �2
are constant).

Prove that the origin of �2 is in the weak closure but not in the weak sequential
closure of E .

12.10. Prove that �2 and �1 equipped with their weak topology do not satisfy the first
axiom of countability.

14c Weak Compactness

14.1. A weakly compact subset of a normed linear space is weakly closed. See also
Proposition 5.1 of Chap. 2.

14.2. A weakly compact, convex subset of a normed linear space is strongly closed.

14.1c Linear Functionals on Subspaces of C(Ē)

Let E be a bounded, open set inRN and let C(Ē) denote the space of the continuous
functions in Ē equipped with the sup-norm.

Let Xo be a subspace of C(Ē) closed in the topology of L2(E). Prove that there
exist positive constants Co ≤ C1, such that

Co‖ f ‖∞ ≤ ‖ f ‖2 ≤ C1‖ f ‖∞.

Let To,y ∈ X∗
o be the evaluation map at y

To,y( f ) = f (y) for all f ∈ Xo.

By the Hahn–Banach theorem there exists a functional Ty ∈ L2(E)∗ such that
Ty = To,y on Xo. By the Riesz representation of the bounded linear functionals in
L2(E), there exists a function K (·, y) ∈ L2(E), such that

f (y) =
∫

E
K (x, y) f (x)dμ for all f ∈ Xo. (14.1c)

http://dx.doi.org/10.1007/978-1-4939-4005-9_2
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Proposition 14.1c The unit ball of Xo is compact.

Proof The closed unit ball B̄o,1 of Xo is also weakly closed. Since L2(E) is reflex-
ive, also Xo is reflexive. Therefore B̄o,1 is bounded and weakly closed and hence
sequentially compact. In particular every sequence { fn} ⊂ B̄o,1 contains in turn a
subsequence { fn′ } weakly convergent to some f ∈ B̄o,1. By (14.1c) such a sequence
converges pointwise to f and

‖ fn‖∞ ≤ (const)‖ fn‖2 ≤ (const)′

for a constant independent of n. Therefore, by the Lebesgue dominated convergence
theorem, { fn′ } → f strongly in L2(E).

Thus every sequence { fn} ⊂ B̄o,1 contains in turn a strongly convergent sub-
sequence. This implies that B̄o,1 is compact in the strong topology inherited form
L2(E).

Corollary 14.1c Every subspace Xo ⊂ C(Ē), closed in L2(E) is finite dimensional.

14.2c Weak Compactness and Boundedness

14.3. Give a different proof of Corollary 14.1 by means of the uniform boundedness
principle. Hint: For all T ∈ X∗, the image T (E) is a compact and hence
bounded subset of R.

15c The Weak∗ Topology of X∗

15.1c Total Sets of X

The linear span X∗ of a collection of linear functionals on a linear vector space X
is a total set of X , if it separates its points, that is, if for any two distinct elements
x, y ∈ X , there exists T ∈ X∗ such that T (x) �= T (y). The dual X∗ of a normed
space {X; ‖·‖} separates the points of X and therefore is a total set of X . However the
notion of total set does not require a topology being placed on X nor the continuity
of the linear maps in X∗.

If X∗ is total for X , one might endow X with the weakest topologyW∗, for which
all the elements of X∗ are continuous. A W∗-open base neighborhood of the origin
is of the form

O∗ =
{
x ∈ X

∣∣ |Tj (x)| < α j for Tj ∈ X∗ and α j ∈ R
+

for j = 1, . . . , n for some finite n.

}
(15.1c)
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The construction is in all similar to the construction of the weak topology of
a normed space {X; ‖ · ‖}. Since X∗ is total, the W∗ topology on X is Hausdorff
and one verifies that the operations of sum and product by scalars are continuous
in the indicated topology. Thus {X;W∗} is a Hausdorff, topological vector space.
By construction the elements of X∗ are continuous from {X;W∗} into R. The next
proposition asserts that these are the only bounded linear functional on {X;W∗}.
Proposition 15.1c Let T : {X;W∗} → R be nonidentically zero, linear and con-
tinuous. Then T ∈ X∗.

Proof By the continuity of T , there exists aW∗-open set of the form (15.1c) such that
O∗ ⊂ T−1(−1, 1). LetTj ∈ X∗ for j = 1, . . . , n be the functionals in X∗ that identify
O∗. If x ∈ ⋂n

j=1 ker{Tj } then x ∈ T−1(−ε, ε) for all ε > 0. Therefore T vanishes
on
⋂n

j=1 ker{Tj }, and by Proposition 11.2 of Chap.2, T is a linear combination of
the Tj .

15.1. Let {X; ‖ · ‖} be a normed space. Then X∗∗ as defined in (13.3) separates the
points in X∗ and is total for X∗. The elements of X∗∗ are the only bounded
linear functionals on X∗ equipped with its weak∗ topology. In particular every
T∗ ∈ X∗∗ − X∗∗ is discontinuous with respect to the weak∗ topology of X∗,

15.2. Let {X; ‖ · ‖} be a normed space. Then X∗ equipped with its weak∗ topology
is a topological vector space whose dual is isometrically isomorphic to X .

15.3. Let {X; ‖ · ‖} be a normed space. Then every convex, weak∗ compact subset
of X∗ is the weak∗ closed convex hull of its extreme points (§ 11.4c).

15.2c Metrization Properties of Weak∗ Compact Subsets
of X∗

Proposition 15.2c Let {X; ‖ · ‖} be a Banach space. Then the weak∗ topology of a
weak∗ compact set K ⊂ X∗ is metric if and only if {X; ‖ · ‖} is separable.
Proof (sufficient condition) Assume first that X is separable and let {xn} ⊂ X be a
sequence dense in X . For T1, T2 ∈ X∗ set

d(T1, T2) =∑ 1

2n
|(T1 − T2)(xn)|

1 + |(T1 − T2)(xn)| .

Keeping in mind that X as a subset of X∗∗ separates the points of X∗, one verifies
that

d : X∗ × X∗ → R
+

is a metric which generates ametric topology on X∗ (§ 13.11c of the Complements of
Chap.2). One also verifies that every ball Bε(T ) ⊂ X∗ of center T ∈ X∗ and radius
ε > 0 in the metric d(·, ·) contains a weak∗ open neighborhood of T . Therefore

http://dx.doi.org/10.1007/978-1-4939-4005-9_2
http://dx.doi.org/10.1007/978-1-4939-4005-9_2
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the identity map from X∗ equipped with its weak∗ topology onto X∗ equipped with
the metric topology of d(·, ·), is continuous. Let {K ;weak∗} and {K ; d} be the
topological spaces formed by K equipped with the topologies inherited respectively
from the weak∗ and metric topologies of X∗. The identity map from the compact
space {K ;weak∗} onto {K ; d} is continuous and one-to-one. To show that it is a
homeomorphism we appeal to Proposition 5.1 of Chap.2. A weak∗-closed set E ⊂
{K ;weak∗} is weak∗ compact. Since the identity map from {K ;weak∗} onto {K ; d}
is continuous, the image of E in {K ; d} is compact and hence closed in the metric
topology of {K ; d}, since the latter is Hausdorff.
Remark 15.1c The identity map from {K ;weak∗} onto {K ; d}, being a homeomor-
phism, identifies the two topologies. For this is essential that {K ;weak∗} be weak∗
compact. In particular, the proposition does not imply that the weak∗ topology of the
whole X∗ is metrizable.

Proof (necessary condition) Assume conversely that the weak∗ topology of K ⊂ X∗
is metric. Up to a translation, may assume that Θ ∈ K . There exists a countable
collection {O∗

n} of weak∗ open neighborhoods ofΘ∗ such that
⋂O∗

n = Θ∗. Without
loss of generality the O∗

n are of the form

O∗
n =

{
T ∈ X∗ ∣∣ |x jn (T )| < α jn for α jn > 0 and x jn ∈ X

for jn ∈ { jn,1, . . . , jn,k} ⊂ N

}
.

The collection of {x jn } is countable and its closed linear span is separable. We
claim that {x jn } = X . If not, there exists a nontrivial T ∈ X∗ vanishing on {x jn }
(Corollary 10.3). However if T (x jn ) = 0 for all x jn then T ∈ O∗

n for all n and thus
T = Θ∗.

16c The Alaoglu Theorem

16.1. Let E be a bounded open set inRN . Prove that there is no linear normed space
{X; ‖ · ‖} whose dual is L1(E) with respect to the Lebesgue measure. Hint:
Problems 11.6, and 15.3.

16.2. Let E be a bounded open set in R
N . Prove that C(Ē) is not the dual of any

linear normed space. Hint: Problems 11.7, and 15.3.
16.3. The weak∗ topology of the closed unit ball of L∞(E) and �∞ are metrizable.
16.4. A bounded and weakly closed subset E of a Banach space X , need not be

weakly compact. In particular the closed unit balls of L1(E), L∞(E), �1 and
�∞ are weakly closed but not weakly compact.

16.5. Let {X; ‖ · ‖} be a normed space and let

B1 = {x ∈ X
∣∣ ‖x‖ ≤ 1}, S1 = {x ∈ X

∣∣ ‖x‖ = 1}

http://dx.doi.org/10.1007/978-1-4939-4005-9_2
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be respectively the unit ball and the unit sphere in X . Prove or disprove by a
counterexample the following statements:

i. B1 is strongly and weakly bounded.
ii. B1 is weakly sequentially closed.
iii. S1 is weakly sequentially closed.
iv. If {X; ‖ · ‖} is reflexive then S1 is weakly sequentially closed.
v. If {X; ‖ · ‖} is reflexive then B1 is weakly sequentially compact.
vi. If {X; ‖ · ‖} is reflexive then it is Banach.
vii. If {X; ‖ · ‖} is Banach then it is reflexive.
viii. The weak topology of {X; ‖ · ‖} is Hausdorff.

16.1c The Weak∗ Topology of X∗∗

Denote by X∗∗∗ the dual of X∗∗, that is the collection of all bounded linear functionals
f : X∗∗ → R. It is a Banach space by the norm

‖ f ‖ = sup
x∗∗∈X∗∗;x∗∗ �=0

f (x∗∗)
‖x∗∗‖ = sup

x∗∗∈X∗∗;‖x∗∗‖=1
f (x∗∗). (16.1c)

Every element x∗ ∈ X∗ identifies an element fx∗ ∈ X∗∗∗ by the formula

X∗∗ � x∗∗ −→ fx∗(x∗∗) = x∗∗(x∗). (16.2c)

Let X∗∗∗ denote the collection of all such functionals, that is

X∗∗∗ =
{
the collection of all functionals fx∗ ∈ X∗∗∗

of the form (13.2) as x∗ ranges over X∗

}
.

From Corollary 10.2 and (16.1c) it follows that ‖ fx∗‖ = ‖x∗‖. Therefore the
injection map

X∗ � x∗ −→ fx∗ ∈ X∗∗∗ ⊂ X∗∗∗ (16.3c)

is an isometric isomorphism between X∗ and X∗∗∗. In general, not all the bounded
linear functionals f : X∗∗ → R are derived from the injectionmap (16.3c); otherwise
said, the inclusion X∗∗∗ ⊂ X∗∗∗ is in general strict. The set X∗∗∗ is total for X∗∗ and
it generates a topologyW∗∗ on X∗∗ which is the weak∗ topology generated by X∗ on
X∗∗ (§ 15.1c). By this topology, {X∗∗;W∗∗} turns into aHausdorff, linear, topological
vector space (§ 15.1c), and for such a space the separation Proposition 11.3 holds. In
particularW∗∗-closed sets are separated from points by a bounded linear functional
on {X∗∗;W∗∗}. By Proposition 15.1c, any such a functional is of the form (16.2c).
Let
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B the unit ball of X closed in the norm of {X; ‖ · ‖X }
B∗∗ the unit ball of X∗∗ closed in the norm of {X∗∗; ‖ · ‖∗∗}.

Since the natural injection X � x → fx ∈ X∗∗ defined by (14.2) is an isometric
isomorphism, the ball B when regarded as a subset of B∗∗ is a closed subset of B∗∗
and the inclusion is proper unless X is reflexive. If B∗∗ is given the W∗∗ topology,
by the Alaoglu Theorem is weak∗ compact, and sinceW∗∗ is Hausdorff, B∗∗ is both
‖ · ‖∗∗-closed and W∗∗-closed (Proposition 5.1-(iii) of Chap. 2). Set

B∗∗ =
{
the W∗∗-closure of norm-closed unit ball of X

regarded as a subset of {X∗∗;W∗∗}
}

The next proposition asserts that while B with its norm topology is a subset B∗∗,
with in general strict inclusion, when it is given theW∗∗ topology, it is actually dense
in B∗∗.

Proposition 16.1c ([57]) B∗∗ = B∗∗.

Proof B∗∗ is a closed and convex subset of B∗∗ (10.1-(iii) of the Complements of
Chap.2). If B∗∗ ⊂ B∗∗ with proper inclusion, select and fix x∗∗ ∈ B∗∗ − B∗∗. By
Proposition 11.3 there exists a nontrivial, bounded, linear functional f on {X∗∗;W∗∗}
and real numbers α < β such that

f (y) ≤ α < β ≤ f (x∗∗) for all y ∈ B∗∗.

By Proposition 15.1c, such a functional f is of the form (16.2c). Therefore, there
exists x∗ ∈ X∗ such that

x∗(y) ≤ α < β ≤ x∗∗(x∗) for all y ∈ B. (16.4c)

Now y ∈ B implies −y ∈ B. Therefore

‖x∗‖ = sup
‖y‖=1

x∗(y) ≤ α.

On the other hand, since x∗∗ ∈ B∗∗

α < β ≤ x∗∗(x∗) ≤ ‖x∗∗‖ ‖x∗‖ ≤ α.

This contradicts (16.4c) and proves the proposition.

Corollary 16.1c The Banach space {X; ‖ · ‖} when regarded as a subspace of X∗∗
and equipped with the weak∗ topology of X∗∗, is dense in X∗∗.

http://dx.doi.org/10.1007/978-1-4939-4005-9_2
http://dx.doi.org/10.1007/978-1-4939-4005-9_2
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16.2c Characterizing Reflexive Banach Spaces

The next statements follow from the previous proposition, upon observing that the
W∗∗ topology of X , as a subset of X∗∗, is precisely the weak topology generated on
X by X∗.

Corollary 16.2c A Banach space {X; ‖ · ‖} is reflexive if and only if its closed unit
ball is weakly compact.

Corollary 16.3c A Banach space {X; ‖ · ‖} is reflexive if and only if a bounded and
weakly closed set is weakly compact.

Thus in some sense, reflexive Banach spaces are those for which a version of the
Heine–Borel Theorem holds (Proposition 6.4 of Chap.2).

16.6. Some of the following statements contain fallacies. Identify and disprove them,
by an argument or a counterexample.

i. The closed unit ball B of a normed space {X; ‖ · ‖}, is convex and hence
weakly closed (Proposition 12.2).

ii. Regarding B as a subset of B∗∗ its W∗∗ topology coincides precisely with
its weak topology.

iii. Therefore B as a subset of B∗∗ isW∗∗ closed and henceW∗∗-compact, since
it is a closed subset of a compact set.

iv. Since theW∗∗ topology on B ⊂ B∗∗ coincides with its weak topology, B is
weakly compact.

16.3c Metrization Properties of the Weak Topology
of the Closed Unit Ball of a Banach Space

Proposition 16.2c Let {X; ‖ · ‖} be a Banach space. Then the weak topology of the
closed unit ball B ⊂ X is metric, if and only if the dual X∗ is separable.

Proof If X∗ is separable, the weak∗ topology of B∗∗ ⊂ X∗∗ is metric. Identify X as
a subset of X∗∗ by the natural injection map X � x → fx ∈ X∗∗ and observe that
the weak∗ topology inherited by X as a subset of X∗∗ is precisely the weak topology
of X .

Assume next that the weak topology of the closed unit ball B ⊂ X is metric.
There exists a countable collection {On} of weakly open neighborhoods of the origin
such that every weak neighborhood of the origin contains some On . Without loss of
generality the On can be taken of the form

On =
{
x ∈ X

∣∣ |Tjn (x)| < εn for εn > 0 and Tjn ∈ X∗

for jn ∈ { jn,1, . . . , jn,k} ⊂ N

}

http://dx.doi.org/10.1007/978-1-4939-4005-9_2
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The collection of {Tjn } is countable and its closed linear span is separable. We claim
that {Tjn } = X∗. If not pick η∗ ∈ X∗ − {Tjn } at distance δ ∈ (0, 1) from {Tjn } and
determine a nontrivial, bounded linear functional x∗∗ ∈ X∗∗, of norm ‖x∗∗‖ ≤ 1,
vanishing on {Tjn } and such that x∗∗(η∗) = δ (Proposition 10.3). The set

Oδ = {x ∈ X
∣∣ |η∗(x)| < 1

2δ
}

is a weak neighborhood of the origin of X and hence On ⊂ Oδ for some n. Since
x∗∗ ∈ B∗∗, by the density Proposition 16.1c, there exists x ∈ B such that

|x∗∗(Tjn ) − Tjn (x)| < εn for all jn ∈ { jn,1, . . . , jn,k}

and simultaneously

|δ − η∗(x)| = |x∗∗(η∗) − η∗(x)| < εn.

By picking εn sufficiently small we may insure that εn < 1
2δ. Then, since x∗∗

vanishes on {Tjn }, the first of these gives,

|Tjn (x)| < εn for all jn ∈ { jn,1, . . . , jn,k}

which implies that x ∈ On . However the second of these implies |η∗(x)| > 1
2δ. That

is x /∈ Oδ ⊂ On .

16.7. The weak topology of the closed unit ball of L1(E) and �1 are not metrizable.

16.4c Separating Closed Sets in a Reflexive Banach Space

Proposition 16.3c Let C1 and C2 be two nonempty, disjoint, closed subsets of a
reflexive Banach space {X; ‖ · ‖}. Assume that at least one of them is bounded. There
exists a bounded linear functional T on X and real numbers 0 < α < β such that
(11.2) holds. Equivalently, any two closed subsets of a reflexive Banach space, can
be strictly separated, provided at least one of them is bounded.

Proof If C1 is closed and bounded it is weak∗ compact. The statement then follows
from Proposition 11.3.

Remark 16.1c The requirement that at least one of the two closed sets C1 and C2 be
bounded is essential, in view of the counterexample in § 11.1c
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17c Hilbert Spaces

17.1c On the Parallelogram Identity

The parallelogram identity is equivalent to the existence of an inner product on a
vector space X in the following sense.

A scalar product 〈·, ·〉 on a vector space X generates a norm ‖·‖ on X that satisfies
the parallelogram identity. Vice versa, let {X; ‖ · ‖} be a normed space whose norm
‖ · ‖ satisfies the parallelogram identity. Then setting

4〈x, y〉 = ‖x + y‖2 − ‖x − y‖2

defines a scalar product in X .

17.2. If p �= 2 then L p(E) is not a Hilbert space.
17.3. Let {xn} and {yn} be Cauchy sequences in a Hilbert space H . Then {〈xn, yn〉}

is a Cauchy sequence in R.

18c Orthogonal Sets, Representations and Functionals

18.1. For an n-tuple {x1, x2, . . . , xn} of orthogonal elements in a Hilbert space H

∥
∥∥

n∑

i=1
xi
∥
∥∥
2 =

n∑

i=1
‖xi‖2 (Pythagora’s theorem)

18.2. Let E be a subset of H . Then E⊥ is a linear subspace of H and
(
E⊥)⊥ is the

smallest, closed, linear subspace of H containing E .
18.3. Every closed convex set of H has a unique element of least norm. More

generally, let C be a weakly closed subset of a reflexive Banach space. Then
the functional h(x) = ‖x‖ takes its minimum on C , i.e., there exists xo ∈ C
such that inf x∈C ‖x‖ = ‖xo‖.

18.4. Let E be a bounded open set in R
N and let f ∈ C(Ē). Denote by Pn the

collections of polynomials of degree at most n in the coordinate variables.
There exists a unique Po ∈ Pn such that

∫

E
| f − P|2dx ≥

∫

E
| f − Po|2dx for all P ∈ Pn.
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19c Orthonormal Systems

19.1. Let H be a Hilbert space and let S be an orthonormal system in H . Then for
any pair x, y of elements in H

∑

u∈S
|〈u, x〉||〈u, y〉| ≤ ‖x‖‖y‖.

19.2. Let S be an orthonormal system in H and denote by Ho the closure of the
linear span of S. The projection of an element x ∈ H into Ho is defined by

xo = ∑

u∈S
〈x,u〉u.

Such a formula defines xo uniquely. Moreover xo ∈ Ho and (x − xo) ⊥ Ho.
19.3. A Non Separable Hilbert Space: In L2

loc(R) with respect to the Lebesgue
measure, define

L2
loc(R) � f, g → 〈 f, g〉 def= lim

ρ→∞
1

ρ

∫ ρ

−ρ

f gdx .

Set
Ho = { f ∈ L2

loc(R)
∣∣ ‖ f ‖ = 0}

H1 = { f ∈ L2
loc(R)

∣∣ ‖ f ‖ < ∞}.

Since Ho contains nonzero elements, ‖ ·‖ is not a norm. Introduce the quotient
space

H = H1

Ho
of equivalence classes f + Ho for f ∈ H1.

Verify that 〈·, ·〉 is an inner product and ‖ · ‖ is a norm on H . The system

{
sinαx + Ho

}
α∈R

is orthonormal in H , and uncountable. Therefore H is non separable, by Propo-
sition 19.2.



Chapter 8
Spaces of Continuous Functions,
Distributions, and Weak Derivatives

1 Bounded Linear Functionals on Co(R
N)

Let Co(R
N ) denote the space of continuous functions of compact support in R

N ,
equipped with the sup-norm. Continuity of functionals T ∈ Co(R

N )∗ is meant with
respect to such a norm. A finite Radon measures μ inR

N , generates a bounded linear
functional in Co(R

N ), by the formula

Co(R
N ) � f → T ( f ) =

∫

RN

f dμ. (1.1)

Oneverifies that‖T ‖ = μ(RN ).Given twofiniteRadonmeasuresμ1 andμ2 inR
N ,

the signedmeasureμ = μ1 − μ2 generates a bounded linear functional T ∈ Co(R
N )∗

by the formula

Co(R
N ) � f → T ( f ) =

∫

RN

f dμ1 −
∫

RN

f dμ2. (1.2)

One verifies that ‖Tμ‖ = |μ|(RN ), where |μ| is the total variation of μ. More
generally given a Radon measure μ in R

N and a μ-integrable function w the formula

Co(R
N ) � f → T ( f ) =

∫

RN

f wdμ. (1.3)

identifies a bounded linear functional on Co(R
N ) with ‖T ‖ = ‖w‖1,RN . One also

checks that (1.3) is of the same form as (1.2).
A linear map T : Co(R

N ) → R is locally bounded if for every compact set K ⊂
R

N there exists a positive constant γK such that

|T ( f )| ≤ γK‖ f ‖ for all f ∈ Co(R
N ) with supp{ f } ⊂ K . (1.4)

© Springer Science+Business Media New York 2016
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Elements T ∈ Co(R
N )∗ are locally bounded; the converse is false. If in (1.3)

w ∈ L1
loc(R

N ), the corresponding functional is locally bounded. A relevant class of
locally bounded linear functionals is that of positive functionals.

1.1 Positive Linear Functionals on Co(R
N)

A linear map T : Co(R
N ) → R is positive if T ( f ) ≥ 0 whenever f ≥ 0. Since T is

linear f ≥ g implies T ( f ) ≥ T (g). The functional in (1.1) is positive even if μ is
not finite. Thus positive functionals need not be bounded; however they are locally
bounded.

Proposition 1.1 A positive, linear functional T on Co(R
N ) is locally bounded.

Proof For a compact set K ⊂ R
N choose ϕ ∈ Co(R

N ) such that 0 ≤ ϕ ≤ 1, and
ϕ = 1 on K . Given f ∈ Co(R

N ) with supp{ f } ⊂ K , the two functions ‖ f ‖ϕ ± f
are both nonnegative. Therefore ±T ( f ) ≤ ‖ f ‖T (ϕ). �

1.2 The Riesz Representation Theorem

For the integrals in (1.1)–(1.3) to be well defined, f has to be μ-measurable, that
is the sets [ f > c] must be μ-measurable for all c ∈ R. Since these sets are open it
suffices that μ be defined only on the Borel sets. For a Radon measure μ denoted by
μ|B its restriction to the Borel σ-algebra. The Riesz representation theorem asserts
that all locally bounded linear functionals in Co(R

N ) are of the form (1.3) for some
Borel measure μ|B and some locally μ-integrable function w.

Theorem 1.1 Let T : Co(R
N ) → R be linear and locally bounded. There exists a

Radon measure μ in R
N , and a μ-measurable real valued function w, with |w| = 1,

μ-a.e. in R
N , such that T can be represented as in (1.3). Moreover the pair {μ|B, w}

is unique.

Corollary 1.1 (Riesz Representation) Every T ∈ Co(R
N )∗ has a unique represen-

tation of the form (1.3) for a finite Radon measure μ|B and a μ-measurable function
w, with |w| = 1, μ-a.e. in R

N .

The first form of this theorem for Co[0, 1] is in [127]. Through various extensions
it is known to hold for Co(X) where X is a locally compact Hausdorff topological
space ([74], vol. I, § 11).
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2 Partition of Unity

Let E be a subset of R
N and let U be an open covering of E . A countable collection

{ϕn} ⊂ C∞
o

(
R

N
)
is a locally finite partition of the unity for E , subordinate to U if

(i) for any compact set K ⊂ E all but finitely many of the functions ϕn are iden-
tically zero on K

(ii) 0 ≤ ϕ j ≤ 1 in E
(iii) for any ϕ j , there exists O ∈ U such that supp{ϕ j } ⊂ O
(iv)

∑
ϕn(x) = 1 for all x ∈ E .

Proposition 2.1 For every open covering U of E, there exists a partition of unity
for E, subordinate to U .
Proof Consider the collection of balls Bri (x j ) centered at points x j ∈ E of rational
coordinates and rational radii ri , and contained in someO ∈ U . The union of B 1

2 ri
(x j )

covers E . For each such ball construct

ψi j ∈ C∞
o

(
Bri (x j )

)
0 ≤ ψi j ≤ 1 ψi j = 1 on B 1

2 ri
(x j ).

The ψi j can be constructed for example by mollifying the characteristic functions
of B 2

3 ri
(x j ). Order the {ψi j } in some fashion, say {ψn}, and construct a partition of

unity {ϕn} by setting

ϕ1 = ψ1 and ϕ j+1 = ψ j+1

j∏

i=1
(1 − ψi ) for j = 1, 2, . . .

The collection {ϕn} satisfies (i)–(iii). Moreover, for all m = 1, 2, . . .

m∑

j=1
ϕ j = 1 −

m∏

i=1
(1 − ψi ).

This holds true for m = 1 and is verified by induction for all m ∈ N, by making
use of the definition of the ϕn . To verify (iv) observe that for each x ∈ E there exists
some ψi j such that ψi j (x) = 1. �

3 Proof of Theorem 1.1. Constructing μ

For a non-void open set O ⊂ R
N , introduce the class of functions

ΓO = {
f ∈ Co(O)

∣∣ | f | ≤ 1
}
. (3.1)
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The collectionQ of all non-void, open sets in R
N , complemented with the empty

set ∅, forms a sequential covering for R
N . On Q define a nonnegative set function

λ, by setting λ(∅) = 0 and

λ(O) = sup
f ∈ΓO

T ( f ) for all, non empty, open sets O ⊂ R
N .

This generates an outer measure μe by

R
N ⊃ E → μe(E) = inf

{∑
λ(On)

∣∣ On ∈ Q and E ⊂ ⋃On
}
.

Lemma 3.1 The set function λ : Q → R
∗ is monotone, countably sub-additive, and

it coincides with μe on the open sets.

Proof The monotonicity follows from the definition. Let {On} be a countable col-
lection of open sets in R

N and let O = ∪On . For f ∈ ΓO, the collection {On} is an
open covering for supp{ f }. Construct a partition of unity for supp{ f } subordinate
to {On} and let {ϕn} be the sum of those elements of the partition supported in On .
Then f ϕn ∈ ΓOn , and f = ∑

f ϕn . Since supp{ f } is compact, this sum involves
only finitely many, non identically zero terms, and by the linearity of T

T ( f ) = ∑
T ( f ϕn) ≤ ∑

λ(On).

Since f ∈ ΓO is arbitrary, by the definition of λ(O)

λ(O) = λ(
⋃On) = sup

f ∈ΓO
T ( f ) ≤ ∑

λ(On).

By construction μe(O) ≤ λ(O). On the other hand since λ is countably sub-
additive and monotone

μe(O) ≥ inf{λ(
⋃On)

∣∣ On open and O ⊂ ⋃On} ≥ λ(O). �

The outermeasureμe generates in turn ameasureμ inR
N defined on theσ-algebra

A of all sets E satisfying the Carathéodory measurability condition (6.2) of Chap.3.

Proposition 3.1 The open sets are μ-measurable.

Proof An open set O is μ-measurable if it satisfies the Carathéodory condition, for
all sets A ⊂ R

N of finite outer measure. Assume first that A is itself open. Then
A ∩ O is open and from the definition of λ(·), for any ε > 0 there exists f ∈ ΓA∩O
such that

T ( f ) ≥ λ(A ∩ O) − ε.

http://dx.doi.org/10.1007/978-1-4939-4005-9_3
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The set A − supp{ f } is open and there exists g ∈ ΓA−supp{ f } such that

T (g) ≥ λ(A − supp{ f }) − ε.

Then f + g ∈ ΓA and by the linearity of T

μe(A) = λ(A) ≥ T ( f + g) = T ( f ) + T (g)

≥ λ(A ∩ O) + λ(A − supp{ f }) − 2ε

≥ μe(A ∩ O) + μe(A − O) − 2ε

since λ and μe coincide on open sets. If A is any subset ofR
N of finite outer measure,

having fixed ε > 0 there exists an open set Aε containing A, and such that μe(A) ≥
μe(Aε) − ε. From this

μe(A) ≥ μe(Aε) − ε ≥ μe(Aε ∩ O) + μe(Aε − O) − ε

≥ μe(A ∩ O) + μe(A − O) − ε. �

Thus the σ-algebra A contains the Borel σ-algebra B. By construction

μ = μe

∣∣
A, and μ(O) = μe(O) = λ(O)

for all open sets O. The process by which μ is constructed from μe, generates a
σ-algebra A which might be strictly larger than the Borel σ-algebra. We restrict μ
to B.

4 An Auxiliary Positive Linear Functional on Co(R
N)+

Denote by Co(R
N )+ the collection of all nonnegative f ∈ Co(R

N ). Given a locally
bounded linear functional T : Co(R

N ) → R, set

Co(R
N )+ � f → T+( f ) = sup{|T (h)| ∣∣ | h ∈ Co(R

N ), |h| ≤ f }. (4.1)

Note that T is assumed to be locally bounded but not to be positive.

Proposition 4.1 The functional T+ : Co(R
N )+ → R

+ is positive and linear.

Proof One verifies that T+(α f ) = αT+( f ), for all f ∈ Co(R
N )+ and α > 0. To

show that T+ is linear, fix two nonnegative functions f1 and f2 in Co(R
N ) and select

two functions h1 and h2 in Co(R
N ) such that |hi | ≤ fi . Then

|h1 + h2| ≤ |h1| + |h2| ≤ f1 + f2.
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Without loss of generality we may assume that T (hi ) ≥ 0 for i = 1, 2. Then

T+( f1 + f2) ≥ |T (h1 + h2)| = |T (h1)| + |T (h2)|.

Since |hi | ≤ fi are arbitrary this gives

T+( f1 + f2) ≥ T+( f1) + T+( f2).

To prove the reverse inequality, select h ∈ Co(R
N ) such that |h| ≤ f1 + f2, and

set

h j =
⎧
⎨

⎩

f j h

f1 + f2
if f1 + f2 > 0

0 otherwise
for j = 1, 2.

One verifies that |h j | ≤ f j and therefore

|T (h)| ≤ |T (h1)| + |T (h2)| ≤ T+( f1) + T+( f2).

Since the function h is arbitrary, this implies

T+( f1 + f2) ≤ T+( f1) + T+( f2). �

4.1 Measuring Compact Sets by T+

For a compact set K ⊂ R
N , introduce the class of functions

ΓK = {
f ∈ Co(R

N )+
∣∣ f ≥ 1 on K

}
. (4.2)

Proposition 4.2 Let T be a locally bounded linear functional on Co(R
N ) and let μ

be its corresponding, previously constructed Radonmeasure. Then for every compact
set K ⊂ R

N

μ(K ) = inf
f ∈ΓK

T+( f ). (4.3)

Proof Since K is a Borel set, μe(K ) = μ(K ) and

μ(K ) ≤ inf{λ(O)
∣
∣ O open and K ⊂ O}.

Fix f ∈ ΓK and ε ∈ (0, 1), and consider the open set [ f > 1 − ε]. By definition
of ΓO

h ∈ Γ[ f >1−ε] =⇒ |h| ≤ 1

1 − ε
f.
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Therefore

μ(K ) ≤ λ([ f > 1 − ε]) = sup
h∈Γ[ f >1−ε]

T (h) ≤ 1

1 − ε
T+( f ).

Since f ∈ ΓK is arbitrary

μ(K ) ≤ 1

1 − ε
inf
f ∈ΓK

T+( f ), for all ε ∈ (0, 1).

From the construction of μe(K ), for any ε > 0, there exists an open set O con-
taining K , and such that μ(K ) ≥ λ(O) − ε. There exists f ∈ ΓO such that f = 1
on K . From this and the definition of λ(·)

μ(K ) ≥ sup
h∈ΓO

T (h) − ε ≥ T+( fK ) − ε ≥ inf
f ∈ΓK

T+( f ) − ε.
�

5 Representing T+ on Co(R
N)+ as in (1.1) for a Unique μB

Having fixed f ∈ Co(R
N )+, we may assume that ‖ f ‖ = 1 and for n ∈ N set

Ko = supp{ f }

K j = [
f ≥ j

n

] f j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

n
in K j

f (x) − j − 1

n
in K j−1 − K j

0 in R
N − K j−1

for j = 1, . . . , n. One verifies that f j ∈ Co(R
N )+, and

1

n
χK j ≤ f j ≤ 1

n
χK j−1 .

Let now μ be the Radon measure constructed in § 3. From such a construction
and Proposition 4.2

1

n
μ(K j ) ≤

∫

RN

f j dμ ≤ 1

n
μ(K j−1)

1

n
μ(K j ) ≤ T+( f j ) ≤ 1

n
μ(K j−1).
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By construction f = ∑n
j=1 f j . Therefore

1

n

n∑

j=1
μ(K j ) ≤

∫

RN

f dμ ≤ 1

n

n∑

j=1
μ(K j−1)

1

n

n∑

j=1
μ(K j ) ≤ T+( f ) ≤ 1

n

n∑

j=1
μ(K j−1).

From these, by difference

∣
∣T+( f ) −

∫

RN

f dμ
∣
∣ ≤ 1

n

[
μ(Ko) − μ(Kn)

]
.

Since T is locally bounded μ(Ko) < ∞. Therefore, letting n → ∞ gives

Co(R
N )+ � f → T+( f ) =

∫

RN

f dμ.

If μ1 and μ2 are two Radon measures identifying the same T+, by formula (1.1),
they must coincide on open and compact subsets of R

N . Thus, by Theorem 11.1 of
Chap.3, they coincide on the Borel sets. �

6 Proof of Theorem 1.1. Representing T on Co(R
N)

as in (1.3) for a Unique μ-Measurable w

The functional T : Co(R
N ) → R can be bounded above as

|T ( f )| ≤ sup
{|T (h)| ∣∣ |h| ≤ | f |}

= T+(| f |) =
∫

RN

| f |dμ = ‖ f ‖1,RN .

Therefore T ( f ) onCo(R
N ) is dominated by the L1-norm of f , where the integrals

are meant with respect to the Radon measure μ. By the Hahn-Banach dominated
extension theorem (§ 9 of Chap.7) T can be extended to a linear functional T̃ from
L1(RN ) into R, still dominated by the L1-norm. Then, by the Riesz representation
theorem in L1 (§ 11 of Chap.6) there exists a unique μ-measurable function w ∈
L∞(RN ) such that

T̃ ( f ) =
∫

RN

f w dμ for all f ∈ L1(RN ).

Since T̃ = T on Co(R
N ), the representation (1.3) holds for T . If such a represen-

tation is realized by two μ-measurable functions w1 and w2 in L∞(RN ), then

http://dx.doi.org/10.1007/978-1-4939-4005-9_3
http://dx.doi.org/10.1007/978-1-4939-4005-9_7
http://dx.doi.org/10.1007/978-1-4939-4005-9_6
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Co(R
N ) � f →

∫

RN

f (w1 − w2)dμ = 0.

This implies that w1 = w2, μ-a.e. in R
N . Having identified w, fix an open set

O ⊂ R
N and let { fn} ⊂ Co(O) be such that | fn| ≤ 1 and { fn} → sign{w}, μ-a.e. in

O. From the construction of μ one has μ(O) = μe(O) = λ(O), and by dominated
convergence

μ(O) = sup
f ∈ΓO

T ( f )

= sup
{ ∫

RN

f w dμ
∣∣ f ∈ Co(O), and | f | ≤ 1

}

≥ lim
∫

RN

fn w dμ =
∫

O
|w|dμ.

Also by the same construction

μ(O) ≤
∫

O
|w|dμ.

Thus |w| = 1 μ-a.e. in O. �

Corollary 6.1 Let T : Co(R
N ) → R be linear and locally bounded. There exist two

Radon measures μ1 and μ2 in R
N , such that

T ( f ) =
∫

RN

f dμ1 −
∫

RN

f dμ2 for all f ∈ Co(R
N ).

Moreover the restrictions of μi to the Borel σ-algebra B is unique.

The two Radon measures need not be finite. However they are finite on bounded
sets and the representation formula is well defined since f ∈ Co(R

N ). If T is linear
and bounded, then the two measures μ1 and μ2 are both finite.

7 A Topology for C∞
o (E) for an Open Set E ⊂ R

N

A N -dimensional multi-index α of size |α| is a N -tuple of nonnegative integers,
whose sum is |α|, that is α = (α1, . . . ,αN ), with |α| = ∑N

j=1 α j . If all the compo-
nents of α are zero, α is the null multi-index. For f ∈ C |α|(E) set

Dα f = ∂α1+···+αN f

∂xα1
1 . . . ∂xαN

N

.
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If some of the components of α are zero, say for example if α j = 0, then
∂α j f/∂x

α j

j = f . If α is the null multi-index, Dα f = f . Set

p j ( f ) = max
x∈E {|Dα f (x)|; |α| ≤ j} j = 0, 1, . . . .

These are norms inC∞
o (E) satisfying p j ( f ) ≤ p j+1( f ) for all f ∈ C∞

o (E). Intro-
duce the neighborhoods of the origin of C∞

o (E)

O j = {
f ∈ C∞

o (E)
∣∣ p j ( f ) <

1

j + 1

}
j = 0, 1, . . .

and the neighborhoods Bϕ, j = ϕ + O j of a given ϕ ∈ C∞
o (E). By construction

O j+1 ⊂ O j and Bϕ, j+1 ⊂ Bϕ, j .

Lemma 7.1 For any f ∈ O j , there exists an index � j such that f + O� ⊂ O j for
all � ≥ � j .

Proof Having fixed f ∈ O j , there exists ε > 0 such that

p j ( f ) ≤ 1

j + 1
− ε.

Let � j be a positive integer satisfying � j ≥ max{ j + 1; ε−1}. Then for every g ∈
O�, for � ≥ � j

p j ( f + g) ≤ p j ( f ) + p j (g) <
1

j + 1
− ε + 1

� + 1
≤ 1

j + 1
.

Thus f + g ∈ O j . �
Proposition 7.1 The collection B = {Bϕ, j } as ϕ ranges over C∞

o (E) and j =
0, 1, . . ., forms a base for a topology U of C∞

o (E). The topology U satisfies the
first axiom of countability and is translation invariant. For all δ ∈ (0, 1], the sets
δO j ∈ U . Finally δO j for all δ �= 0, are open, convex, symmetric neighborhoods of
the origin of C∞

o (E).

Proof Weverify thatB satisfies the requirements (i)–(ii) of § 4 of Chap.2 to be a base
for a topology. Let Bϕ,i and Bψ, j be out of B, and with non-empty intersection. Fix
η ∈ Bϕ,i ∩ Bψ, j , so that η − ϕ ∈ Oi and η − ψ ∈ O j . There exist positive integers
�i and � j such that

η − ϕ + O� ⊂ Oi and η − ψ + O� ⊂ O j for all � ≥ max{�i ; � j }.

For all such �, η + O� ⊂ ϕ + Oi and η + O� ⊂ ψ + O j .
Let f ∈ δO j . There exists an index �(δ, j) such that f + O� ⊂ δO j , for all � >

�(δ, j). Therefore, by the construction procedure of the topology U from the base
B, the set δO j is open. �

http://dx.doi.org/10.1007/978-1-4939-4005-9_2
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The space C∞
o (E) endowed with the topology U is denoted by D(E).

Proposition 7.2 D(E) is a topological vector space.

Proof Let ϕ1,ϕ2 ∈ D(E) and letU be an open set containing ϕ1 + ϕ2. There exists
an open neighborhood of the origin O j such that ϕ1 + ϕ2 + O j ⊂ U . Since O j is
convex

(ϕ1 + 1
2O j ) + (ϕ2 + 1

2O j ) ⊂ ϕ1 + ϕ2 + O j ⊂ U.

This implies that the sum + : D(E) × D(E) → D(E) is continuous. Fix ϕo ∈
D(E), a real number λo and an open neighborhood of the origin O j . To establish
that the product • : R × D(E) → D(E), is continuous, one needs to show that for
all ε > 0 there exists a positive number δ = δ(O j ,ϕo,λo, ε) such that

λϕ ∈ λoϕo + εO j for all |λ − λo| < δ

and for all ϕ ∈ ϕo + δO j . The element ϕo belongs to σO j for some σ > 0. Having
fixed ε > 0, the number δ is chosen from

λϕ − λoϕo = λ(ϕ − ϕo) + (λ − λo)ϕo ⊂ λδO j + δσO j ⊂ εO j

for a suitable choice of δ. �

8 A Metric Topology for C∞
o (E)

As an alternative construction of a topology for C∞
o (E), introduce the metric (§ 15

of Chap.2)

d( f, g) = ∑ 1

2 j

p j ( f − g)

1 + p j ( f − g)
.

Since each of the p j is translation invariant, d(·, ·) is also translation invariant, and
generates a translation invariant topology inC∞

o (E). The sum and themultiplications
by scalars, are continuous with respect to such a topology. The continuity of the sum
follows from Proposition 14.1 of Chap. 2. The continuity of the product follows from
the definition of p j and d(·, ·). Thus C∞

o (E) equipped with the topology generated
by d(·, ·) is a metric, topological, vector space.

8.1 Equivalence of These Topologies

A base for the metric topology of C∞
o (E) is the collection of open balls

Bρ(ϕ) = { f ∈ C∞
o (E)

∣∣ d( f,ϕ) < ρ}

http://dx.doi.org/10.1007/978-1-4939-4005-9_2
http://dx.doi.org/10.1007/978-1-4939-4005-9_2
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for ϕ ∈ C∞
o (E) and rational ρ ∈ (0, 1). For fixed j ∈ N, the ball Bρ centered at the

origin of C∞
o (E) and radius

ρ = 1

2 j+1( j + 1)

is contained in O j . Indeed for every f ∈ Bρ

∑ 1

2i
pi ( f )

1 + pi ( f )
<

1

2 j+1( j + 1)
.

From this

p j ( f )

1 + p j ( f )
<

1

2( j + 1)
i.e., p j ( f ) <

1

j + 1
.

Thus f ∈ O j . Vice versa, every ball Bρ about the origin, contains an open neigh-
borhood of the originO j for some j ∈ N. Indeed, let � be a nonnegative integer such
that ρ > 4(� + 1)−1. Then, for every f ∈ O�

d( f, 0) = ∑ 1

2 j

p j ( f )

1 + p j ( f )
≤

�∑

j=1

1

2 j

p j ( f )

1 + p j ( f )
+ 1

2�
≤ 2

� + 1
+ 1

2�
< ρ

provided � is sufficiently large. Since the topologies generated by the base B and
the one generated by the metric d(·, ·) are both translation invariant, every open set
ϕ + O j ∈ B contains a ball Bρ(ϕ) and viceversa.

8.2 D(E) Is Not Complete

Cauchy sequences in D(E) need not converge to an element of C∞
o (E). As an

example let E = R. Having fixed some f ∈ C∞
o (0, 1) consider the sequence

fn(x) =
n∑

j=1

1

j
f (x − j).

One verifies that fn ∈ C∞
o (R) and that { fn} is a Cauchy sequence in D(R). How-

ever { fn} does not converge to a function in C∞
o (R).

For an example in bounded domains, let E = B1 be the open unit ball centered at
the origin of R

N . The functions

fn(x) =

⎧
⎪⎨

⎪⎩

exp
{ n2

|nx |2 − (n − 1)2

}
for |x | <

n − 1

n

0 for |x | ≥ n − 1

n
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are in C∞
o (B1) and form a Cauchy sequence in D(B1). However their limit is not in

C∞
o (B1). An indirect proof of the non completeness of D(E) will be given in § 9.2

by a category argument.

9 A Topology for C∞
o (K ) for a Compact Set K ⊂ E

For a compact subset K ⊂ E denote by C∞
o (K ) the space of all f ∈ C∞

o (E) whose
support is contained in K . On C∞

o (K ) introduce the norms

pK ; j ( f ) = max
x∈K {|Dα f (x)

∣∣ |α| ≤ j}, j = 0, 1, 2, . . .

the neighborhoods of the origin of C∞
o (K )

OK ; j = {
f ∈ C∞

o (K )
∣∣ pK ; j ( f ) <

1

j + 1

}
j = 0, 1, 2, . . .

and the neighborhoods BK ;ϕ, j = ϕ + OK ; j , of a given ϕ ∈ C∞
o (K ). Proceeding

exactly as in the previous sections, the collection BK = {BK ;ϕ, j } as ϕ ranges over
C∞
o (K ) and j ranges over {0, 1, . . .}, forms a base for a translation invariant, first

countable topology UK of C∞
o (K ). Moreover for all δ �= 0 the sets δOK ; j are open.

Finally C∞
o (K ) equipped with the topology UK is a topological vector space, and is

denoted by D(K ). A topology in C∞
o (K ) can also be constructed by the the metric

dK ( f, g) = ∑ 1

2 j

pK ; j ( f − g)

1 + pK ; j ( f − g)
.

The equivalence of UK with the metric topology generated by dK can be estab-
lished as § 8.1.

9.1 D(K ) Is Complete

The notion of convergence in D(K ) can be given in terms of the metric dK (·, ·),
that is a sequence { fn} of functions in D(K ) converges to some f ∈ D(K ) if and
only if {Dα fn} → Dα f uniformly in K , for every N -dimensional multi-index α.
With respect to such a notion of convergence D(K ) is complete. Indeed for every
Cauchy sequence { fn} in D(K ) the sequences {Dα fn} are Cauchy in C(K ′) for
every compact subset K ′ ⊂ E containing K , for all multi-indices α. Thus { fn} → f
and {Dα fn} → fα in the uniform topology of C(K ′), for functions f, fα ∈ C(K ′),
vanishingoutside K . Byworkingwith difference quotients, one identifies fα = Dα f .



392 8 Spaces of Continuous Functions, Distributions, and Weak Derivatives

9.2 Relating the Topology of D(E) to the Topology of D(K )

The construction of U and UK , by means of the open sets O j in D(E) and OK ; j in
D(K ), implies that the topology UK is the restriction of U to D(K ). Equivalently
UK = U ∩ D(K ). As K ranges over the compact subsets of E , each D(K ) is a
closed subspace of D(E). Moreover D(K ) does not contain any open set of D(E).
Therefore D(K ) is nowhere dense in D(E). By construction, D(E) = ∪D(Kn) for
a countable collection {Kn} of nested, compact subsets of E , exhausting E . If D(E)

were complete, it would be the countable union of nowhere dense sets, against the
Baire Category Theorem.

10 The Schwartz Topology of D(E)

The topology of D(E) allows, roughly speaking, for too many sequences { fn} in
C∞
o (E) to be Cauchy. Equivalently, it does not contain sufficiently many open sets

to restrict the Cauchy sequences to the ones with limit in C∞
o (E). This accounts for

its lack of completeness. A topologyW by whichC∞
o (E)would be complete, would

have to be stronger thanU , that isU ⊂ W . However since the topology of eachD(K )

is completely determined by U , such a stronger topologyW , would have to preserve
such a property. Specifically, when restricted to D(K ), it should not generate new
open sets in D(K ).

To constructW , define first the collection Vo of open, base-neighborhoods of the
origin. A set V containing the origin, is in Vo if and only if

i. V is convex and δV ⊂ V for all δ ∈ (0, 1]
ii. V ∩ D(K ) ∈ UK for all compact subsets K ⊂ E .

The collection Vo is not empty, since O j ∈ Vo for all j ∈ N ∪ {0}. The base-
neighborhoods of a given ϕ ∈ C∞

o (E) are of the form ϕ + V for some V ∈ Vo.

Proposition 10.1 (Schwartz [141]) The collection V = {ϕ + V } as ϕ ranges over
C∞
o (E) and V ranges over Vo, forms a base for a topology W on C∞

o (E).

Proof Let ϕ1 + V1 and ϕ2 + V2 be any two elements of V with non empty intersec-
tion. Choose

η ∈ (ϕ1 + V1) ∩ (ϕ2 + V2)

and let K be a compact subset of E such that

supp{ϕ1} ∪ supp{ϕ2} ∪ supp{η} ⊂ K .

Then η − ϕi ∈ D(K ), and η − ϕi ∈ Vi ∩ D(K ) for i = 1, 2. Since Vi ∩ D(K )

are open in D(K ), there exists ε > 0 such that
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η − ϕi ∈ (1 − ε)Vi ∩ D(K ) ⊂ (1 − ε)Vi .

Since the sets Vi are convex

η − ϕi + εVi ⊂ (1 − ε)Vi + εVi .

From this, η + εVi ⊂ ϕi + Vi , and

η + ε(V1 ∩ V2) ⊂ (ϕ1 + V1) ∩ (ϕ2 + V2).

Since Vo is closed under intersection, V1 ∩ V2 ∈ Vo. �

The continuity of the sum and multiplication by scalars, with respect to such a
topology, is proved as in § 7. Thus C∞

o (E) equipped with the topology W is a
topological vector space and is denoted by D(E).

Proposition 10.2 The restriction ofW to D(K ) is UK .

Proof The inclusion U ⊂ W , implies the inclusion UK ⊂ W ⋂D(K ). For the con-
verse inclusion, let W ∈ W and select ϕ ∈ W ∩ D(K ). There exists V ∈ Vo such
that (ϕ + V ) ⊂ W , and for such V

(ϕ + V ) ∩ D(K ) = ϕ + V ∩ D(K ).

Therefore, (ϕ + V ) ∩ D(K ) ∈ UK , since V ∩ D(K ) is open inD(K ). ThusW ∩
D(K ) ∈ UK . �

By construction U ⊂ W . In the next section it will be shown that the inclusion is
strict.

11 D(E) Is Complete

A set B ⊂ D(E) is bounded if and only if, for every W ∈ W , containing the origin,
B ⊂ δW for some δ > 0.

Proposition 11.1 Let B be a bounded subset ofD(E). There exists a compact subset
K ⊂ E, such that B ⊂ D(K ).

Proof Assuming that such a K does not exists, there exists be a countable collection
{Kn} of compact, nested subsets of E , exhausting E , a sequence of functions { fn} ⊂
B, and a sequence of points {xn}, such that xn ∈ Kn+1 − Kn , and | fn(xn)| > 0. By
construction the sequence {xn} ⊂ E has no limit in E .
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Let V be the collection of functions f ∈ D(E) satisfying

| f (xn)| <
1

n
| fn(xn)| for all n ∈ N.

Such a set is convex, contains the origin and δV ⊂ V for all δ ∈ (0, 1]. Let K ⊂ E
be compact. Since finitely many points {xn} are in K , there exists δK > 0 such that
V ∩ D(K ) = δKOK ;0. Therefore V ∩ D(K ) ∈ UK . Since K is arbitrary, V ∈ Vo. On
the other hand B is not contained in δV for any δ > 0. �

11.1 Cauchy Sequences inD(E) and Completeness

A sequence { fn} ⊂ C∞
o (E) is a Cauchy sequence in D(E) if for every base-

neighborhood of the origin V ∈ Vo, there exists nV ∈ N, such that fn − fm ∈ V
for all n,m ≥ nV . Therefore a Cauchy sequence in D(E) is a bounded set in D(E).
In this sense the enlargement of the topology ofC∞

o (E) fromU toW , places stringent
restrictions on a sequence { fn} to be Cauchy. Indeed if { fn} is a Cauchy sequence,
then by the previous proposition, { fn} ⊂ D(K ) for some compact subset K ⊂ E .
Thus if { fn} is a Cauchy sequence inD(E), the notion of convergence coincides with
that of the metric topology ofD(K ), since the restriction ofW toD(K ) is precisely
the metric topology UK .

Corollary 11.1 D(E) is complete.

Corollary 11.2 A sequence { fn} ⊂ D(E) is Cauchy, if and only if there exists a com-
pact subset K ⊂ E, and a function f ∈ D(K ), such that {Dα fn} → Dα f uniformly
in K for all multi-indices α.

11.2 The Topology ofD(E) Is Not Metrizable

There exists no metric d(·, ·) onC∞
o (E) that generates the same topologyW . If such

a metric were to exist, then D(E) would be a complete metric space and hence of
second category. Let {Kn} be a countable collection of compact, nested subsets of
E , exhausting E . ThenD(E) = ⋃D(Kn)would be the countable union of nowhere
dense, closed subsets, thereby violating Baire’s Category Theorem.

Corollary 11.3 The inclusion U ⊂ W is strict.

Proof IfW = U , the topology W would be metric. �
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12 Continuous Maps and Functionals

A set B ⊂ D(K ) is bounded if and only if for every neighborhood of the origin OK

there exists a positive number δ such that B ⊂ δOK . This in turn implies that there
exists positive numbers λ j such that

pK ; j ( f ) < λ j for all f ∈ B. (12.1)

12.1 Distributions in E

A continuous linear functional T : D(E) → R maps bounded neighborhoods of the
origin of D(E) into bounded intervals about the origin of R (Proposition 10.3 of
Chap.2). A bounded neighborhood of the origin ofD(E) is a bounded neighborhood
of the origin ofD(K ) for some compact subset K ⊂ E . Therefore T is continuous if
and only if its restriction to everyD(K ) is a continuous functional TK : D(K ) → R.
Since D(K ) is a metric space the continuity of T can be characterized in terms of
sequences.

Proposition 12.1 A linear functional T inD(E) is continuous if and only if for every
sequence { fn} converging to zero in the sense of D(E), the sequence {T ( fn)} → 0
in R.

Corollary 12.1 A linear functional T inD(E) is continuous if and only if for every
compact subset K ⊂ E and for every sequence { fn} ⊂ D(K ) converging to zero in
D(K ), the sequence {T ( fn)} → 0 in R.

A distribution on E is a continuous linear functionalT : D(E) → R. Its action on
ϕ ∈ D(E) is denoted by either symbol T [ϕ] = 〈T,ϕ〉. The latter is also referred to
as the distribution pairing of T and ϕ. The linear space of all the continuous, linear
functionals T on D(E) is denoted by D′(E). The topology on D′(E) is the weak∗
topology induced by D(E). Each element ϕ ∈ D(E) can be identified with a linear
functional onD′(E) by the distribution pairing. The weak∗ topology ofD′(E) is the
weakest topology onD′(E) bywhich all elements ofD(E) define a continuous linear
functional onD′(E) by the distribution pairing. With respect to such a topology, sets
of the type

O =
{
collection of T ∈ D′(E)such that 〈T,ϕ〉 ∈ (α,β)

for some α,β ∈ R and some ϕ ∈ D(E)

}

are open. A base for the weak∗ topology of D′(E) is the collection B of finite
intersections of these open sets. This induces a notion of convergence in D′(E),
by which {Tn} → T ∈ D′(E) if and only if lim〈Tn − T,ϕ〉 = 0 for all ϕ ∈ D(E).
Given Radon measures μ and ν in R

N , the formula

http://dx.doi.org/10.1007/978-1-4939-4005-9_2
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∫

E
ϕd(μ − ν) = 〈μ − ν,ϕ〉 ϕ ∈ D(E)

identifies an element of D′(E). As an example, for ν = 0 and μ = δxo , for a fixed
xo ∈ E , the evaluation map 〈δxo ,ϕ〉 = ϕ(xo) is a distribution. If ν is the Lebesgue
measure and f ∈ L1(E) with respect to ν, then μ = f dν is the difference of two
signed Radon measures and identifies an element of D′(E). Thus L1(E) ↪→ D′(E)

up to an identification.

12.2 Continuous Linear Maps T : D(E) → D(E)

Proposition 12.2 A linear map T : D(E) → D(E) is continuous if and only if is
bounded.

The statement holds true for maps T between metric spaces. The proof consists in
establishing that if T is bounded, it is restricted to some D(K ), which is a metric
space.

Proof Continuity of T implies T is bounded. To prove the converse, if B ⊂ D(E)

is bounded, it is a bounded subset of D(K ) for some compact subset K ⊂ E . Since
T (B) is bounded inD(E), it is a bounded subset ofD(K ′), for some compact subset
K ′ ⊂ E . Since bothD(K ) andD(K ′) are metric spaces, the restriction of T toD(K )

is continuous (Propositions 10.3 and 14.2 of Chap.2). �

Corollary 12.2 The differentiation maps Dα : D(E) → D(E) are continuous for
every multi-index α.

Proof Let B ⊂ D(E) be bounded and let λ j be the positive numbers claimed by the
characterization (12.1) of the bounded subsets of D(E). Then

pK ; j (Dα f ) < λ j+|α|.

Thus Dα(B) ⊂ B ′ for some bounded set B ′ ⊂ D(E). �

13 Distributional Derivatives

Let α be a multi-index and let f ∈ C |α|(E). By integration by parts

∫

E
Dα f ϕdx = (−1)|α|

∫

E
f Dαϕdx for all ϕ ∈ D(E).

This motivates the following definition of derivative of a distribution. The deriv-
ative DαT of a distribution T , is a distribution acting on ϕ ∈ D(E) as

http://dx.doi.org/10.1007/978-1-4939-4005-9_2
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〈DαT,ϕ〉 = (−1)|α|〈T, Dαϕ〉 for all ϕ ∈ D(E).

Such a definition coincides with the classical one, when T ∈ C |α|(E). One also
verifies the formula Dα(DβT ) = Dβ(DαT ), valid for any pair of multi-indices α
and β. For f ∈ L1

loc(E) the derivative Dα f is that distribution acting on ϕ ∈ D(E),
as

〈Dα f,ϕ〉 = (−1)|α|
∫

E
f Dαϕdx .

The distributional derivative of f (x) = |x | for x ∈ R, is the Heaviside graph

H(x) =
⎧
⎨

⎩

1 if x > 0
[0, 1] if x = 0
−1 if x < 0.

Taking now the distributional derivative of H , gives

H ′[ϕ] = −
∫

R

H(s)ϕ′(s)ds =
∫ 0

−∞
ϕ′ds −

∫ ∞

0
ϕ′ds = 2ϕ(0).

Therefore |x |′′ = 2δo in the sense of D′(R).
Two distributions T1 and T2 in D′(E) are equal if and only if 〈T1,ϕ〉 = 〈T2,ϕ〉

for all ϕ ∈ D(E). If T ∈ D′(E) coincides with a function in Ck(E) for some posi-
tive integer k, then the distributional derivatives DαT , for all multi-indices |α| ≤ k,
coincide with the classical derivatives of T .

The product of two distributions is, in general, not defined. However, ifψ ∈ D(E)

and T ∈ D′(E) the product ψT is defined as that distribution acting on ϕ ∈ D(E),
as

〈ψT,ϕ〉 = 〈T,ψϕ〉 for all ϕ ∈ D(E).

Let Jε be the Friedrichs mollifying kernel introduced in § 18 of Chap. 6. For
T ∈ D′(RN ), the convolution Tε = T ∗ Jε is defined as that distribution acting on
ϕ ∈ D(RN ) as

〈T ∗ Jε(· − x),ϕ〉 = 〈T,ϕ ∗ Jε(x − ·)〉.

To justify such a formula, assume first that T ∈ L1
loc(R

N ). Then for every ϕ ∈
D(RN )

〈T,ϕ ∗ Jε(x − ·)〉 =
∫

RN

T (x)
∫

RN

ϕ(y)Jε(x − y)dydx

=
∫

RN

( ∫

RN

T (x)Jε(x − y)dx
)
ϕ(y)dy

= 〈T ∗ Jε(· − x),ϕ〉.

http://dx.doi.org/10.1007/978-1-4939-4005-9_6
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More generally, the convolution of a distribution T with a kernel K ∈ L1
loc(R

N ) is
defined by the formula

〈T ∗ K (· − x),ϕ〉 = 〈T,ϕ ∗ K (x − ·)〉 for all ϕ ∈ D(RN )

provided proper assumptions are made on K to insure that K ∗ ϕ ∈ D(RN ). For
example T ∗ Dα Jε(· − x) is well defined with K = Dα Jε. One verifies that x →
T ∗ Jε(· − x) ∈ C∞(RN ), by the formula

Dα(T ∗ Jε(· − x)) = T ∗ Dα Jε(· − x).

Moreover Tε → T in D′(RN ). Thus a distribution T can be approximated, in the
weak∗ topology, by functions in C∞(RN ).

14 Fundamental Solutions

For a multi-index α let aα denote an N -tuple of real numbers labeled with the entries
of α, as in aα = (aα1 , . . . , aαN ). A linear differential operator L of order m, with
constant coefficients, and its adjoint L∗ are formally defined by

L = ∑

|α|≤m
aαD

α L∗ = ∑

|α|≤m
(−1)|α|aαD

α.

Let f ∈ D′(E) be fixed and consider formally the partial differential equation

L(u) = f in E .

A distribution u ∈ D′(E) is a solution of this equation, if

u[L∗(ϕ)] = f [ϕ] for all ϕ ∈ D(E).

If f = δx the corresponding solution is called a fundamental solution of the oper-
ator L with pole at x . When regarding x as varying over E a fundamental solution
of L is a family of distributions, parameterized with x ∈ E , satisfying

Lyu = δx in the sense u[L∗
y(ϕ)] = ϕ(x) for all ϕ ∈ D(E).

Here Ly and L∗
y are the differential operator L and L∗ where the derivatives are

taken with respect to the variables y.
A linear differential operator of any fixed order m, with constant coefficients

admits a fundamental solution [40, 100].
Here, as an example, we compute the fundamental solution of two particular linear

differential operators.
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14.1 The Fundamental Solution of the Wave Operator in R
2

Let E = R
2, fix (ξ, η) ∈ R

2 and set

u(x, y) =
{
1 if x > ξ and y > η
0 otherwise.

Compute in D′(R2)

∂2u

∂x∂y
[ϕ] =

∫∫

R2
uϕxydxdy =

∫ ∞

η

∫ ∞

ξ

ϕxydxdy = ϕ(ξ, η).

Therefore

∂2u

∂x∂y
= δ(ξ,η) in D′(R2).

For fixed (ξ, η) ∈ R
2 consider now the function

u(x, y) =
{

1
2 if |x − ξ| < y − η
0 otherwise.

This is the characteristic function of the sector S(ξ,η) delimited by the two half
lines originating at (ξ, η)

�+
(ξ,η) = {x − y = ξ − η} ∩ {x ≥ ξ}

�−
(ξ,η) = {x + y = ξ + η} ∩ {x ≤ ξ}.

The exterior normal to such a sector is

(1,−1)√
2

on �+
(ξ,η) and

(−1,−1)√
2

on �−
(ξ,η).

Compute in D′(E)

(∂2u

∂y2
− ∂2u

∂x2

)
[ϕ] =

∫∫

R2
u(ϕyy − ϕxx )dxdy = 1

2

∫∫

S(ξ,η)

(ϕyy − ϕxx )dxdy

= − 1

2
√
2

∫

�+
(ξ,η)

(ϕx + ϕy)ds + 1

2
√
2

∫

�−
(ξ,η)

(ϕx − ϕy)ds
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where s is the abscissa along �±
(ξ,η) and ds is the corresponding measure. On �±

(ξ,η)

one computes ϕx ± ϕy = √
2ϕ′(s). Therefore

∂2u

∂y2
− ∂2u

∂x2
= δ(ξ,η), in D′(E).

14.2 The Fundamental Solution of the Laplace Operator

For x, y ∈ R
N and x �= y, set

F(x; y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

(N − 2)ωN

1

|x − y|N−2
if N ≥ 3

−1

2π
ln |x − y| if N = 2

(14.1)

where ωN is the area of the unit sphere in R
N . Compute

∇y F(x; y) = 1

ωN

x − y

|x − y|N for x �= y, N ≥ 2. (14.2)

From this

Δy F(x; y) = divy ∇y F(x; y) = 0 for x �= y, N ≥ 2. (14.3)

Proposition 14.1 (Stokes Formula)1 For all ϕ ∈ C∞
o (RN ) and all x ∈ R

N

ϕ(x) = −
∫

RN

F(x; y)Δϕdy. (14.4)

Proof For a fixed x ∈ R
N , the function y → F(x; y) is integrable about x . Therefore

∫

RN

F(x; y)Δϕdy = lim
ε→0

∫

RN−Bε(x)
F(x; y)Δϕdy

where Bε(x) is the ball centered at x and of radius ε. The last integral is transformed
by applying recursively the Gauss–Green Theorem

1This is a particular case of a more general Stokes representation formula when ϕ is not required
to vanish on ∂E ([34], Chap. II).
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∫

RN−Bε(x)
F(x; y)Δϕdy =

∫

|x−y|=ε

F(x; y)∇ϕ · (x − y)

ε
dy

−
∫

RN−Bε(x)
∇y F(x; y) · ∇ϕdy

=
∫

|x−y|=ε

F(x; y)∇ϕ · (x − y)

ε
dy

−
∫

|x−y|=ε

ϕ∇y F(x; y) · (x − y)

ε
dy

+
∫

RN−Bε(x)
ϕΔy F(x; y)dy

= I1,ε + I2,ε + I3,ε.

The last integral is zero for all ε > 0 in view of (14.3), since the domain of inte-
gration excludes the singular point y = x . Using (14.1) for |x − y| = ε one com-
putes limε→0 I1,ε = 0. The second integral is computed with the aid of (14.2) for
|x − y| = ε, and gives

I2,ε = − 1

ωNεN−1

∫

|x−y|=ε

ϕdy

= −1

ωNεN−1

∫

|x−y|=ε

[
ϕ(y) − ϕ(x)

]
dy − 1

ωNεN−1

∫

|y−x |=ε

ϕ(x)dy.

The last integral equals ϕ(x) for all ε > 0, whereas the first integral tends to zero as
ε → 0, since its modulus is majorized by sup|x−y|=ε |ϕ(y) − ϕ(x)|. �

The Stokes formula can be rewritten in terms of distributions as

−Δy F(x; y) = δx .

Therefore F(·; ·) given by (14.1) is the fundamental solution of the Laplace oper-
ator.

15 Weak Derivatives and Main Properties

Let u ∈ L1
loc(E) and let α be a multi-index. If the distribution Dαu coincides a.e.,

with a function w ∈ L1
loc(E), then w is called the weak Dα-derivative of u and

∫

E
uDαϕdx = (−1)|α|

∫

E
wϕdx for all ϕ ∈ D(E).
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If u ∈ C |α|
loc(E) then w coincides with the classical Dα derivative of u. Let 1 ≤

p ≤ ∞ and let m be a nonnegative integer. A function u ∈ L p(E) is said to be in
Wm,p(E), if all its weak derivatives Dαu for all |α| ≤ m are in L p(E). Equivalently
([148])

Wm,p(E) =
{
the collection of all u ∈ L p(E)such that

Dαu ∈ L p(E) for all |α| ≤ m

}
.

A norm in Wm,p(E) is

‖u‖m,p = ∑

|α|≤m
‖Dαu‖p.

If m = 0, then Wm,p(E) = L p(E) and ‖ · ‖0,p = ‖ · ‖p. Define also

Hm,p(E) = {
the closure of C∞(E) with respect to ‖ · ‖m,p

}

Wm,p
o (E) = {

the closure of C∞
o (E) with respect to ‖ · ‖m,p

}
.

Proposition 15.1 Wm,p(E) is a Banach space.

Proof If {un} is a Cauchy sequence in Wm,p(E), the sequences {Dαun} are Cauchy
in L p(E) for all multi-indices 0 ≤ |α| ≤ m. By the completeness of L p(E), there
exist u ∈ L p(E) and functions uα ∈ L p(E), such that {un} → u and {Dαun} → uα

in L p(E). For all ϕ ∈ D(E)

∫

E
uαϕdx = lim

∫

E
Dαunϕdx

= lim(−1)|α|
∫

E
unD

αϕdx = (−1)|α|
∫

E
uDαϕdx .

Therefore uα is the weak Dα-derivative of u. �

Corollary 15.1 Hm,p(E) ⊂ Wm,p(E).

Theorem 15.1 (Meyers–Serrin [107]) Let 1 ≤ p < ∞. Then C∞(E) is dense in
Wm,p(E), and as a consequence Hm,p(E) = Wm,p(E).

Proof Having chosen u ∈ Wm,p(E) and ε ∈ (0, 1), we exhibit a function ϕ ∈
C∞(E) such that ‖u − ϕ‖m,p < ε. For j = 1, 2, . . ., set

E j = {
x ∈ E

∣
∣ dist{x, ∂E} >

1

j
and |x | < j

}
, Eo = E−1 = ∅.

Set also O j = E j+1 ∩ Ēc
j−1. The set O j for j ≥ 2 is the set of points of E such

that
1

j + 1
< dist{x, ∂E} <

1

j − 1
and j − 1 < |x | < j + 1.
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The setsO j are open and their collection U , forms an open covering of E . Let Φ
be a partition of unity subordinate to U and let ψ j be the sum of the finitely many
ϕ ∈ Φ, whose support is contained in O j . Then ψ j ∈ C∞

o (O j ), and
∑

ψ j (x) = 1,
for all x ∈ E . If ε j are positive numbers satisfying

0 < ε j <
1

( j + 1)( j + 2)

the mollification Jε j ∗ (ψ j u) has support in E j+2 ∩ Ēc
j−2 = E j . Since ψ j u ∈

Wm,p(E), one may choose ε j so small that

‖Jε j ∗ (ψ j u) − ψ j u‖m,p;E j <
1

2 j
ε.

Set ϕ = ∑
Jε j ∗ (ψ j u), and observe that within any compact subset of E , all the

terms in the sum vanish except at most finitely many. Therefore ϕ ∈ C∞(E). For
x ∈ E j

ϕ(x) =
j+2∑

i=1
Jεi ∗ (ψi u)(x) and u(x) =

j+2∑

i=1
ψi (x)u(x).

Therefore, for all j = 1, 2, . . .

‖u − ϕ‖m,p;E j ≤
j+2∑

i=1
‖Jεi ∗ (ψi u) − ψi u‖m,p;E ≤ ε

∑ 1

2i
.

From this, by monotone convergence, ‖u − ϕ‖m,p < ε. �

16 Domains and Their Boundaries

Let E denote an open set in R
N and let ∂E denote its boundary. We list here some

structural assumptions that might be necessary to impose on ∂E . A countable col-
lection of open balls {Bρ(x j )} centered at points x j ∈ ∂E and radius ρ is an open,
locally finite covering of ∂E if ∂E ⊂ ⋃

Bρ(x j ) and there exists a positive integer k
such that any (k + 1) distinct elements of {Bρ(x j )} have empty intersection.

16.1 ∂E of Class C1

The boundary ∂E is said to be of class C1 if there exist a positive ρ and an open,
locally finite covering {Bρ(x j )} of ∂E such that for all x j ∈ ∂E the portion of ∂E
within the ball Bρ(x j ) can be represented, in a local system of coordinates with the
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origin at x j , as the graph of function f j of class class C1 in a neighborhood of the
origin of the new local coordinates and such that f j (0) = 0 and Df j (0) = 0. Denote
by K j the (N − 1)-dimensional domain where f j is defined and set

‖|∂E |‖1 = sup
j
max
K j

|Df j |. (16.1)

This quantity depends upon the choice of the covering {Bρ(x j )}. However, hav-
ing fixed one such covering, it is invariant under homotetic transformations of the
coordinates. In particular it does not depend upon the size of E .

16.2 Positive Geometric Density and ∂E Piecewise Smooth

The boundary ∂E satisfies the property of positive geometric density at some xo ∈
∂E , with respect to the Lebesgue measure μ in R

N , if there exists θ ∈ (0, 1) and
ρo > 0 such that for every ball Bρ(xo) centered at xo and radius ρ ≤ ρo

μ
(
E ∩ Bρ(xo)

) ≤ (1 − θ)μ
(
Bρ(xo)

)
. (16.2)

The boundary ∂E satisfies the property of uniform geometric density, if such
inequality is satisfied for all xo ∈ ∂E for the same value of ρo and θ.

16.3 The Segment Property

The boundary ∂E has the segment property if there exists a locally finite, open
covering of ∂E with balls {Bt(x j )}, a corresponding sequence of unit vectors n j and
a number t∗ ∈ (0, 1), such that

x ∈ Ē ∩ Bt (x j ) =⇒ x + tn j ∈ E for all t ∈ (0, t∗). (16.3)

Such a requirement forces, in some sense, the domain E to lie, locally on one side
of its boundary. For example, the unit disc from which a radius is removed, does not
satisfy the segment property. For x ∈ R set

h(x) =
{√|x | sin2 1

x
for |x | > 0

0 for x = 0,
E = (−1, 1) × {y > h(x)}. (16.4)

The bidimensional set E satisfies the segment property.
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16.4 The Cone Property

Let Co denote a closed, circular, spherical cone of solid angle ω, height h and vertex
at the origin. Such a cone has volume

μ(Co) = ω

N
hN . (16.5)

A domain E has the cone property if there exist some Co, such that for all x ∈ Ē ,
there exists a circular, spherical cone Cx with vertex at x and congruent to Co, all
contained in Ē .

16.5 On the Various Properties of ∂E

The cone property does not imply the segment property. For example the unit disc
from which a radius is removed, satisfies the cone property and does not satisfy the
segment property.

The segment property does not imply the cone property. For example the set in
(16.4), does not satisfy the cone property.

The cone property does not imply the property of positive geometric density. For
example the unit disc from which a radius is removed, satisfies the cone property
and does not satisfy the property of positive geometric density.

The property of positive geometric density does not imply the cone property. For
example the boundary of the cusp-like domain

E = {
(x1, x2) ∈ R

2
∣∣ 0 < x1 < 1; 0 < x2 < xα

1

}
(16.6)

for some α > 1, satisfies the property of positive geometric density, but not the cone
property.

The segment property does not imply that ∂E is of class C1 as indicated by the
domain in (16.4). Conversely, ∂E of class C1 does not imply the segment property.
For example let

E = {x2 + y2 < 1} − {x2 + y2 = 1
4 }. (16.7)

The boundary of E is regular but ∂E does not satisfy the segment property.

17 More on Smooth Approximations

The approximations constructed in the proof of theMeyers–Serrin’s Theorem, might
deteriorate near ∂E and it is natural to ask whether a function in Wm,p(E) can be
approximated, in the sense of Wm,p(E) by functions that are smooth up to Ē . This
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in general is not the case as indicated by the following example. Let E as in (16.7)
and set

u(x, y) =
{
1 for 1

4 < x2 + y2 < 1
0 for x2 + y2 < 1

4 .

The function u is inWm,p(E) but there is no smooth function up to∂E that approx-
imates u in the norm of Wm,p(E). This example shows that such an approximation
property is in general false for domains that do not satisfy the segment property.

Proposition 17.1 Let E be a bounded domain in R
N with boundary ∂E satisfying

the segment property. Then C∞
o (RN ) is dense in Wm,p(E) for 1 ≤ p < ∞.

Proof Since ∂E is bounded, the open covering claimed by the segment property is
finite, say for example

{Bt (x1), . . . , Bt (xn)} for some n ∈ N and some t > 0. (17.1)

Denote by n j the corresponding unit vectors pointing inside E and that realize the
segment property. By reducing t if necessarywemay assume that for all j = 1, . . . , n

for all x ∈ ∂E ∩ B8t (x j ) x + τn j ∈ E for all τ ∈ (0, 8t).

Construct an open covering U of E , by

U = {Bo, B2t (x1), . . . , B2t (xn)}, Bo = E −
n⋃

j=1
B̄t (x j ). (17.2)

Let Φ be a partition of unity subordinate to U , and for j = 1, . . . , n, let ψ j

be the sum of the finitely many ϕ ∈ Φ supported in B2t (x j ). For j = 0 define ψo

analogously by replacing B2t (x j ) with Bo. Set

u j (x) =
{

(uψ j )(x) for x ∈ E
0 otherwise

j = 0, 1, . . . , n.

Let Γ j be the portion of ∂E within the ball B4t (x j ). By definition of weak deriva-
tive u j ∈ Wm,p(RN − Γ j ). To prove the Proposition, having fixed ε > 0, it suffices
to find functions ϕ j ∈ C∞

o (RN ) such that

‖u j − ϕ j‖m,p <
ε

n + 1
for all j = 0, 1, . . . , n.

Indeed putting ϕ =
n∑

j=n
ϕ j it would give

‖u − ϕ‖m,p ≤
n∑

j=0
‖u j − ϕ j‖m,p < ε.
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For j = 0 such a ϕo can be constructed by a standard mollification since uo is
compactly supported in E . To construct ϕ j , for j ∈ {1, 2, . . . , n}, move Γ j , towards
the outside of E by setting

Γ j,τ = Γ j − τn(x j ) for τ ∈ (0, 8t).

Then define

u j,τ (x) = u j (x + τn(x j )) for all x ∈ R
N − Γ j,τ .

By definition of weak derivative u j,τ ∈ Wm,p(RN − Γ j,τ ) and

Dαu j,τ (x) = Dαu j
(
x + τn(x j )

)
for all x ∈ R

N − Γ j,τ .

Since the translation operation is continuous in L p(E), there exists τε ∈ (0, 4t),
such that

‖u j,τ − u j‖m,p;E ≤ ε

2(n + 1)
.

The function ϕ j ∈ C∞
o

(
R

N
)
is constructed by the mollification ϕ j = Jδ ∗ u j,τ ,

where for a fixed τ ∈ (0, τε) the positive number δ is chosen so small that

‖Jδ ∗ u j,τ − u j,τ‖m,p;E ≤ ε

2(n + 1)
.

�

18 Extensions into R
N

Proposition 18.1 ([93]) Let E be a bounded domain in R
N with boundary ∂E

satisfying the segment property and of class C1, and let {Bt (x j )}nj=1 be a finite open
covering of ∂E with balls of radius t centered at points x j ∈ ∂E as in (17.1). A
function u ∈ W 1,p(E), for some 1 ≤ p < ∞, admits an extension w ∈ W 1,p

o (RN )

such that
‖w‖p,RN ≤γ(1 + ‖|∂E |‖1)‖u‖p,E

‖Dw‖p;RN ≤γ(1 + ‖|∂E |‖1)
(
‖Du‖p,E + 1

t
‖u‖p;E

) (18.1)

where γ depends only upon N, p, n and the number of local overlaps of the covering
{Bt (x j )}nj=1.

Proof By density we may assume u ∈ C1(Ē). Consider first the following spe-
cial case. For x̄ = (x1, . . . , xN−1) and R > 0 let BR = [|x̄ | < R] be the (N − 1)-
dimensional ball of radius R centered at the origin. Set also
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Q+
R = BR × [0, R), Q−

R = BR × (−R, 0], QR = Q+
R ∪ Q−

R .

Assume that, as a function of the first (N − 1) variables, x̄ → u(x, xN ) is com-
pactly supported in BR , and that u(x, R) = 0. Thus u vanishes on the top and on the
lateral boundary of Q+

R and it is of class C1 up to xN = 0. The claimed extension,
in such a case is

ũ(x, xN ) = −3u(x,−xN ) + 4u(x,− 1
2 xN ) xN ≤ 0. (18.2)

The function w defined as u within Q+
R and as ũ within Q−

R satisfies the indicated
requirements. The general case is proved by a local flattening of ∂E . Referring back
to the proof of Proposition 17.1, consider the finite covering (17.2), and construct
the functions ψ j . These can be chosen to satisfy

sup
B2t (x j )

|Dψ j | ≤ γ

t
for a positive constant γ.

Represent ∂E ∩ Bt (x j ), in a local system of coordinates as the graph of
xN = f j (x), for x̄ = (x1, . . . , xN−1), where f j is of class C1 within the (N − 1)-
dimensional ball Bt . For each j fixed, flatten ∂E ∩ Bt (x j ) by introducing the system
of coordinates

(y1, . . . , yN−1, yN ) = (
x, xN − f j (x̄)

)
.

This maps ∂E ∩ Bt (x j ) into Bt and, by taking t even smaller if necessary,

E ∩ Bt (x j ) is mapped into Q+
t = Bt × [0, t). The functions ũψ j obtained from

the uψ j with these transformations, are of class C1 in Q̄+
t , and x̄ → ũψ j (x, yN )

has compact support in Bt . Next extend ũψ j with a function w̃ j of class C1 in
the whole cylinder Qt = Bt × (−t, t), by the procedure of (18.2). Let w j denote
the function obtained from w̃ j by the change of variables that maps Q+

t back to
E ∩ Bt (x j ). The extension claimed by the Proposition can be constructed by setting
w = uψo + ∑n

j=1 w j . Indeed for each j = 1, . . . , n

‖w̃ j‖p;Qt ≤ γ(1 + ‖|∂E |‖1)‖u‖p;E∩Bt (x j )

‖Dw̃ j‖p;Qt ≤ γ(1 + ‖|∂E |‖1)
(
‖Du‖p;E∩Bt (x j ) + 1

t
‖u‖p;E∩Bt (x j )

) (18.3)

and each Bt (x j ) overlaps at most finitely many balls Bt (xi ). �

Remark 18.1 The boundedness of E is not needed. It suffices to require that ∂E
admits a locally finite, open covering. In such a case however one has to assume
u ∈ W 1,p(E).
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Remark 18.2 If E is the ball BR , the balls Bt (x j ) can be chosen so that, for example,
t = 1

8 R and the number of their mutual overlap can be estimates by an absolute
number depending only on the dimension and independent of R. Then the extension
w ∈ W 1,p(RN ) of a function u ∈ W 1,p(BR) can be constructed as to satisfy

‖w‖p;RN ≤ γ‖u‖p;BR

‖Dw‖p;RN ≤ γ
(
‖Du‖p;BR + 1

R
‖u‖p;BR

) (18.4)

where γ is an absolute constant depending only on N and independent of R.

19 The Chain Rule

Proposition 19.1 Let u ∈ W 1,p(E) for some 1 ≤ p < ∞, and let f ∈ C1(R) satisfy
sup | f ′| ≤ M for some positive constant M. Then the composition f (u) belongs to
W 1,p(E) and D f (u) = f ′(u)Du.

Proof Let C∞(E) ⊃ {un} → u in W 1,p(E). By possibly passing to a subsequence
we may assume that {un} → u a.e. in E . Then { f (un)} → f (u) and

lim ‖Df (un) − f ′(u)Du‖p = lim ‖ f ′(un)Dun − f ′(u)Du‖p

≤ lim M‖Dun − Du‖p + lim
∥∥| f ′(un) − f ′(u)||Du|∥∥p.

The sequence
{(

f ′(un) − f ′(u)
)p |Du|p} tends to zero a.e. in E . Moreover it is

dominated by the integrable function (2M)p |Du|p. Therefore Df (un) → f ′(u)Du
in L p(E). Also, for all ϕ ∈ C∞

o (E)

lim
∫

E
D f (un)ϕdx = −

∫

E
f (u)Dϕdx .

Thus Df (u) = f ′(u)Du in D′(E). �

Proposition 19.2 Let u ∈ W 1,p(E) for some 1 ≤ p < ∞. Then u+, u− and |u|
belong to W 1,p(E) and

Du+ =
{
Du a.e. [u > 0]
0 a.e. [u ≤ 0] Du− =

{−Du a.e. [u < 0]
0 a.e. [u ≥ 0]

D|u| =
⎧
⎨

⎩

Du a.e. [u > 0]
0 a.e. [u = 0]

−Du a.e. [u < 0].
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Proof For ε > 0 let

fε(u) =
{√

u2 + ε2 − ε if u > 0
0 if u ≤ 0.

Then fε ∈ C1(R) and | f ′
ε| ≤ 1. Therefore for all ϕ ∈ C∞

o (E)

∫

E
fε(u)Dϕdx = −

∫

E
D fε(u)ϕdx = −

∫

[u>0]
uDu√
u2 + ε2

ϕdx .

Letting ε → 0 ∫

E
u+Dϕdx = −

∫

[u>0]
Duϕdx .

Thus the conclusion holds for u+. The remaining statements follow from u− =
(−u)+ and |u| = u+ + u−. �

Corollary 19.1 Let u ∈ W 1,p(E). Then Du = 0 a.e. on any level set of u.

Corollary 19.2 Let f, g ∈ W 1,p(E). Thenmax{ f ; g} andmin{ f ; g} are inW 1,p(E)

and

Dmax{ f ; g} =
⎧
⎨

⎩

Df a.e. [ f > g]
Dg a.e. [ f < g]
0 a.e. [ f = g].

A similar formula holds for min{ f ; g}.
Proof It follows from Proposition 19.2 and the formulae

2max{ f ; g} = ( f + g) + | f − g|
2min{ f ; g} = ( f + g) − | f − g|. �

20 Steklov Averagings

Regard u ∈ L p(E) as defined in the whole R
N by setting it to be zero outside E . For

h �= 0 set

uh,i (x) = 1

h

∫ xi+h

xi

u(x1, . . . , ξi , . . . xN )dξi .

These are the Steklov averages of u with respect to the variable xi .
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Proposition 20.1 Let u ∈ L p(E) for some p ∈ [1,∞). Then uh,i → u in L p(E) as
h → 0.

Proof For almost all x ∈ E

|uh,i (x) − u(x)| =
∣∣∣
1

h

∫ xi+h

xi

[u(. . . , ξi , . . .) − u(x)]dξi

∣∣∣

=
∣∣∣
1

h

∫ h

0
[u(. . . , xi + σ, . . .) − u(x)

]
dσ

∣∣∣

≤ 1

h

∫ h

0
|Tσ,i u(x) − u(x)|dσ

≤ 1

|h|1/p
( ∫ |h|

0
|Tσ,i u(x) − u(x)|p dσ

)1/p

where Tσ,i is the translation operator in L p(E)with respect to xi . Taking the p-power
and integrating in dx over E , gives

‖uh,i − u‖p ≤ sup
|σ|≤|h|

‖Tσ,i u − u‖p.
�

For δ > 0 let Eδ = {x ∈ E
∣∣ dist{x; ∂E} > δ} and assume that δ is so small that

Eδ �= ∅. Denote by h = (h1, . . . , hN ) ∈ R
N a vector of length |h| < δ, and set

whi ,i (x) = u(. . . , xi + hi . . .) − u(. . . , xi , . . .)

hi
= ∂uhi ,i

∂xi

a.e. in Eδ . If hi = 0 set w0,i = 0 and denote by wh the vector of components whi ,i .

Proposition 20.2 Let u ∈ L p(E) for some 1 < p < ∞ and assume that there exists
positive constant Cp and δo, such that

‖wh‖p,Eδ
≤ Cp for all δ ≤ δo and all |h| < δ.

Then u ∈ W 1,p(E) and ‖Du‖p ≤ Cp. If E is of finite measure, the conclusion
continues to hold for p = ∞.

Proof Fix δ ∈ (0, δo) and ϕ ∈ C∞
o (Eδ). For fixed i ∈ {1, . . . , N }

lim
hi→0

∫

E
whi ,iϕdx = − lim

hi→0

∫

E
uhi ,i Diϕdx = −

∫

E
uDiϕdx .

The family {whi ,i } for |hi | ∈ (0, δ), is uniformly bounded in L p(Eδ). Therefore
for a subsequence, relabelled with h, {whi ,i } → wi , weakly in L p(Eδ). For such a
subsequence
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lim
hi→0

∫

E
whi ,iϕdx =

∫

E
wiϕdx for all ϕ ∈ C∞

o (Eδ).

Thuswi = Diu in Eδ . This identifieswi as the distributional Di -derivative of u in
Eδ . Once the limit has been identified, the selection of subsequences is unnecessary
and the entire family {whi ,i } converges to Diu weakly in L p(Eδ). By weak lower
semi-continuity of the L p-norm

‖Du‖p
p ≤ lim inf

δ→0

∫

Eδ

|Du|pdx ≤ lim inf
δ→0

lim inf
h→0

∫

Eδ

|wh|pdx ≤ C p.

If p = ∞ and E is of finite measure, the same arguments give

‖Du‖p ≤ C∞μ(E)1/p for all p > 1. �

20.1 Characterizing W1, p(E) for 1 < p < ∞

Proposition 20.3 A function u belongs to W 1,p(E) for some 1 < p < ∞, if and
only if there exists a positive number δo and a vector valued function w ∈ L p(E)

such that
‖u(· + h) − u − h · w‖p,Eδ

= o(|h|) as |h| → 0 (20.1)

for every 0 < δ ≤ δo and every |h| < δ. In such a case w = Du in D′(E).

Proof (Sufficient Condition) Let u ∈ L p(E) satisfy (20.1) and for |h| > 0 let wh

denote its discrete gradient. Fix δ > 0 and choose h = (0, . . . , hi , . . . 0) with 0 <

|hi | < δ. For such a choice

‖wh‖p,Eδ
= 1

|h| ‖u(· + h) − u‖p,Eδ

≤ 1

|h| ‖u(· + h) − u − h · w‖p,Eδ
+ 1

|h| ‖h · w‖p,Eδ

≤ 1 + ‖w‖p.

Therefore u ∈ W 1,p(E) and w = Du by Proposition 20.2. �

Proof (Necessary Condition) Let u ∈ W 1,p(E), fix δ > 0 and compute

u(. . . , xi + hi , . . .) − u(. . . , xi , . . .) =
∫ hi

0
uxi (. . . , xi + σ, . . .)dσ

= hi (uxi )hi a.e. in Eδ
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where (uxi )hi is the Steklov average of uxi . From this

‖u(· + h) − u − h · Du‖p,Eδ
≤ |h|‖(Du)h − Du‖p,Eδ

= o(h). �

20.2 Remarks on W1,∞(E)

Assume (20.1) holds for p = ∞ for some w ∈ L∞(E). Then

‖u(· + h) − u‖∞,Eδ

|h| ≤ (1 + ‖w‖∞,E ) for all |h| < δ.

If E is of finite measure, this implies u ∈ W 1,∞(E) and Du = w. Thus if (20.1)
holds for p = ∞, then u is Lipschitz continuous in Eδ . Conversely, if u is Lipschitz
continuous in some domain E it also is inW 1,∞(E ′) for every subdomain E ′ ⊂ E of
finite measure. Indeed the discrete gradient wh of u is pointwise bounded above by
the Lipschitz constant of u. It remains to investigate whether a Taylor formula of the
type of (20.1) would hold for such functions. This is the content of the Rademacher
Theorem.

21 The Rademacher’s Theorem

Acontinuous function f : R
N → R is differentiable at x ∈ R

N if there exists a vector
Df (x) ∈ R

N such that

f (y) = f (x) + Df (x) · (y − x) + o(|x − y|) as y → x . (21.1)

If such a vector Df (x) exists, then Df = ( fx1 , . . . , fxN ) = ∇ f at x . However
the existence of ∇ f (x) does not imply f is differentiable at x . For a unit vector u
and x ∈ R

N set

D′
u f (x) = lim inf

τ→0

f (x + τu) − f (x)

τ

D′′
u f (x) = lim sup

τ→0

f (x + τu) − f (x)

τ
.

Since f is continuous, the limit can be taken along τ rational. Therefore D′
u f and

D′′
u f are measurable. Set also

Du f (x) = lim
τ→0

f (x + τu) − f (x)

τ



414 8 Spaces of Continuous Functions, Distributions, and Weak Derivatives

provided the limit exists.

Proposition 21.1 Let f : R
N → Rbe locally Lipschitz continuous. Then Du f exists

a.e. in R
N . In particular ∇ f exists a.e. in R

N , and Du f = u · ∇ f , a.e. in R
N .

Proof Let Eu = [D′
u f < D′′

u f ], be the set where Du f does not exist. Since D′
u f and

D′′
u f aremeasurable Eu ismeasurable. For x ∈ R

N fixed, the function of one variable
t → f (x + tu) is absolutely continuous in every sub-interval of R, and hence a.e.
differentiable in R. Therefore the intersection of Eu with any line parallel to u has
1-dimensional Lebesgue measure zero. Thus by Fubini’s Theorem, μ(Eu) = 0. Let
{τn} be the rationals in (−1, 1) and let e j be the unit vector along the j th coordinate
axis of R

N . For all ζ ∈ C∞
o (RN )

∣∣∣
f (x + τnu) − f (x)

τn
ζ
∣∣∣ ≤ Lζ |ζ|

where Lζ is the Lipschitz constant of f over a sufficiently large ball containing the
support of ζ. By dominated convergence and change of variables

∫

RN

Du f ζdx = lim
τn→0

∫

RN

f (· + τnu) − f

τn
ζdx

= − lim
τn→0

∫

RN

f
ζ(· + τnu) − ζ

τn
dx = −u j

∫

RN

f ζx j dx

= −u j lim
τn→0

∫

RN

f
ζ(· + τne j ) − ζ

τn
dx

= u j lim
τn→0

∫

RN

f (· + τne j ) − f

τn
ζdx

=
∫

RN

u · ∇ f ζdx .

�

Theorem 21.1 (Rademacher [120]) Let f : R
N → R be locally Lipschitz continu-

ous. Then f is a.e. differentiable in R
N .

Proof Let {un} be a countable dense subset of the unit sphere in R
N , and let Eun =

[D′
un f < D′′un f ], that is the set where the directional derivative along un does not

exist. By the previous proposition, μ(
⋃

Eun ) = 0. To prove the theoremwe establish
that f is differentiable in R

N − ⋃
Eun . Fix x ∈ R

N − ⋃
Eun and y ∈ B1(x) with

y �= x and set

u = y − x

|x − y| , t = |x − y|, y = x + tu.
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Let also LR be the Lipschitz constant of f in the ball BR centered at the origin
and radius R = 2max{|x |; 1}. Then, for u j ∈ {un}

| f (y) − f (x)−∇ f (x) · (y − x)| ≤ | f (x + tu) − f (x) − tu · ∇ f (x)|
= | f (x + tu j ) − f (x) − tu j · ∇ f (x)|

+ | f (x + tu) − f (x + tu j )| + t |(u − u j ) · ∇ f (x)|
≤ t

∣
∣∣
f (x + tu j ) − f (x)

t
− u j · ∇ f (x)

∣
∣∣ + t2LR|u − u j |.

Having fixed ε > 0 fix y ∈ Bδ(x), where δ > 0 is to be chosen. Then for u fixed,
choose u j such that 2LR|u − u j | ≤ 1

2ε. Such a choice is independent of δ. For u j

fixed, there exists δ > 0 such that

∣∣∣
f (x + tu j ) − f (x)

t
− u j · ∇ f (x)

∣∣∣ ≤ 1

2
ε for all 0 < t < δ.

Therefore for all ε > 0, there exists δ > 0 such that

| f (y) − f (x) − ∇ f (x) · (y − x)| ≤ |x − y|ε

provided |x − y| ≤ δ. �

Remark 21.1 Rademacher’s Theorem continues to hold for a function f , Lipschitz
continuous on a subset E ⊂ R

N , modulo a preliminary application of the extension
Theorem 15.1 of Chap.5.

Problems and Complements

1c Bounded Linear Functionals on Co(R
N; R

m)

For a positive integer m denote by Co(R
N ; R

m) the collection of all vector valued
functions f = ( f1, . . . , fm) with f j ∈ Co(R

N ) for all j = 1, . . . ,m, equipped with
the norm

‖f‖ = sup
RN

|f |

where |·| is the Euclidean length. Continuity of functionals T ∈ Co(R
N ; R

m)∗ is
meant with respect to such a norm. Given a finite Radon measure μ in R

N and a
μ-integrable vector valued function e = (e1, . . . , em), the formula

Co(R
N ; R

m) � f → T (f) =
∫

RN

f · e dμ (1.1c)

http://dx.doi.org/10.1007/978-1-4939-4005-9_5
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generates a bounded linear functional inCo(R
N ; R

m)with norm ‖T ‖ = ‖e‖1, where
the integral is meant with respect to the measure μ.

However (1.1c) continues to be well defined, if μ is a Radon measure (not neces-
sarily finite) and if e is locally μ-integrable in R

N .
A linear functional T on Co(R

N ; R
m) is locally bounded if for every compact set

K ⊂ R
N there exists a constant γK such that

|T (f)| ≤ γK‖ f ‖ for all f ∈ Co(R
N ; R

m) with supp{f} ⊂ K . (1.2c)

The vector valued version of theRiesz representation theorem asserts the elements
of Co(R

N ; R
m)∗ are of the form (1.1c) for some finite Radon measure μ and a μ-

integrable function e The theorem is more general as it applies to locally bounded
linear functionals on Co(R

N ; R
m).

Theorem 1.2c Let T be a linear, locally bounded functional in Co(R
N ; R

m). There
exists a Radon measure μ and a μ-measurable function e : R

N → R
m such that

|e| = 1, μ-a.e. in R
N and T (f) has the form (1.1c).

The proof follows the main ideas as for the scalar casem = 1 as presented in § 1–
§ 6withminor changes. Themeasureμ is constructed as in § 3 by using vector valued
functions. The linear functional T+ in § 4 is constructed still on scalar nonnegative
functions f but using vector valued h. The remainder of the proof follows the same
steps with minor changes.

2c Convergence of Measures

Endow Co(R
N )∗ with its weak∗ topology. Then a sequence of measures {μn} ⊂

Co(R
N )∗ converges weak∗ to some μ ∈ Co(R

N )∗ if and only if (§ 15 of Chap.7)

lim
∫

RN

f dμn =
∫

RN

f dμ for all f ∈ Co(R
N ). (2.1c)

The next proposition provides alternative ways of characterizing such a conver-
gence.

Proposition 2.1c A sequence of measures {μn} ⊂ Co(R
N )∗ converges weak∗ to a

measure μ ∈ Co(R
N )∗ if and only if either

lim supμn(K ) ≤ μ(K ) for all compact sets K ⊂ R
N , and

lim inf μn(O) ≤ μ(O) for all open sets O ⊂ R
N

(2.2c)

http://dx.doi.org/10.1007/978-1-4939-4005-9_7
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or

lim μn(E) = μ(E)
for all bounded Borel setsE ⊂ R

N

such that μ(∂E) = 0.
(2.3c)

Thus the notions (2.1c)–(2.3c) are equivalent and each of them can be taken as a
notion of weak∗ convergence of measures. To prove the proposition we establish that
(2.1c)=⇒ (2.2c)=⇒ (2.3c)=⇒ (2.1c).

Proof (2.1c)=⇒ (2.2c) Having fixed a compact set K ⊂ R
N let O be an open set

cotaining K and construct a nonnegative function f ∈ Co(O) such that f = 1 on K .
Then

μ(K ) ≤
∫

RN

f dμ = lim
∫

RN

f dμn ≤ lim inf μn(O).

This proves the first of (2.1c). For the second having fixed O take any compact
set K ⊂ O and construct a similar f . Then

μ(O) ≥
∫

RN

f dμ = lim
∫

RN

f dμn ≥ lim supμn(K ).
�

Proof (2.2c)=⇒ (2.3c) Let E ⊂ R
N be a bounded Borel set such that μ(∂E) = 0.

Then μ(E) < ∞ and denoting by
o

E its interior

μ(E) = μ
( o

E
) ≤ lim inf μn

( o

E
) ≤ lim supμn

(
Ē

) ≤ μ
(
Ē

) = μ(E). �

Proof (2.3c)=⇒ (2.1c) Let f ∈ Co(R
N ) be nonnegative and supported in some ball

Bρ centered at the origin and radius ρ. Having fixed ε > 0 select a finite sequence

0 = so < s1 < · · · < sk−1 < sk = sup f + 1, such that
s j − s j−1 < ε and μ[ f = s j ] = 0 for j = 1, . . . , k.

(2.4c)

Setting
E j = [s j−1 < f ≤ s j ] for j = 1, . . . , k

estimate for all n

k∑

j=2
s j−1μn(E j ) ≤

∫

RN

f dμn ≤
k∑

j=2
s jμn(E j ) + s1μn(Bρ)

and
k∑

j=2
s j−1μ(E j ) ≤

∫

RN

f dμ ≤
k∑

j=2
s jμ(E j ) + s1μ(Bρ).
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By the construction of {s j } the sets E j are Borel sets andμ(∂E j ) = 0. Then letting
n → ∞ and using (2.3c) these inequalities yield

∣
∣∣
∫

RN

f dμn −
∫

RN

f dμ
∣
∣∣ ≤ 2εμ(Bρ). �

2.1. Prove that Co(R
N ) is separable.

2.2. Prove that Co(R
N ) is not reflexive.

2.3. Prove that the construction in (2.4c) can be effected.
2.4. Weak∗ Sequential Compactness: The space Co(R

N ), and hence Co(R
N )∗,

is not reflexive. Therefore Proposition 14.2 of Chap. 7 does not apply. Nev-
ertheless a similar statement continues to hold for sequences of measures
{μn} ⊂ Co(R

N )∗.

Proposition 2.2c Let {μn} ⊂ Co(R
N )∗ be a sequence of measures equibounded on

compact sets, i.e., for every compact set K ⊂ R
N there exists a constant CK such

that
μn(K ) ≤ CK for all n ∈ N. (2.5c)

Then, there exists a subsequence {μn′ } ⊂ {μn} and measure μ ∈ Co(R
N )∗ such

that {μn′ } → μ in the weak∗ topology.

Proof Assume first the {μn} is uniformly bounded in R
N , i.e., that (2.5c) holds

with K replaced by R
N . Then mimic the proof of Proposition 14.2 of Chap. 7 or

Proposition 16.1 of Chap. 6. �

3c Calculus with Distributions2

3.1. If u ∈ C1(R) there holds the differentiation formula

(u3)′ = 3u2u′ in R.

This formula is no longer valid if u is a distribution in R or even a function in
L1
loc(R), even if both sides of this formula are well defined. The left-hand side

is well defined inD′(R) if u ∈ L3
loc(R) and the right-hand side is well defined

if u2 ∈ C∞(R). Even under these more restrictive condition the indicated
differentiation formula is false in D′(R). Consider for example

u = sign x, so that u2 = 1 ∈ C∞(R), and u3 = u.

2Most of the problems in Sections 3c-6c, were provided by U. Gianazza and V. Vespri.

http://dx.doi.org/10.1007/978-1-4939-4005-9_7
http://dx.doi.org/10.1007/978-1-4939-4005-9_7
http://dx.doi.org/10.1007/978-1-4939-4005-9_6


Problems and Complements 419

Then compute in D′(R)

(u3)′ = 2δo, and 3u2u′ = 6δ0.

3.2. The function u(x) = x−1 is measurable but not locally integrable. Prove that
the limit

lim
ε→0

1

x
χ|x |≥ε = PV

( 1
x

)
in D′(R)

defines a distribution in R called the Cauchy Principal Value of x−1. Show
that

PV
(1
x

)
= (ln |x |)′ in D′(R).

3.3. Compute the limit

lim
ε→0

( 1
x
χ[ε,∞) + (ln ε)δo

)
= (

H(x) ln |x |)′
in D′(R).

3.4. The function u(x) = x−2 is measurable but not locally integrable. Prove that
the limit

lim
ε→0

( 1

x2
χ|x |≥ε − 2

ε
δo

)
= FP

( 1

x2

)
in D′(R)

defines a distribution in R called the Finite Part of x−2. Show that

FP
( 1

x2

)
= −PV

( 1
x

)′ = −(ln |x |)′′ in D′(R).

Verify that

x PV
(1
x

)
= x2FP

( 1

x2

)
= 1 in D′(R).

3.5. Prove that

lim
ε→0

1

x ± iε
= PV

(1
x

)
∓ i

π

2
δo in D′(R).

Hint: 〈 1

x ± iε
,ϕ

〉
=

∫

R

x ∓ iε

x2 + ε2
ϕdx .

3.6. Let ln z and sin z be the holomorphic branches of the homologous maps,
defined in the complex plane C from which the closed, negative imaginary
semi-axis has been removed. Compute the limits
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(a) lim ln
(
x + i

n

)
= ln |x | + iπH(−x);

(b) lim sin

√

x + i

n
=

{
sin x if x > 0;
sin (−i x) if x < 0.

in D′(R).

3.7. A distribution T ∈ D′(RN ) is homogeneous of order λ ∈ R if

tλ〈T,ϕ〉 = t−N
〈
T,ϕ

( ·
t

)〉
for all t > 0 and all ϕ ∈ C∞

o (RN ).

i. Verify that this definition coincides with the classical one whenever T ∈
C(RN ).

ii. Prove that the distributions T± = [ln |x | H(±x)]′ are homogeneous of order
−1 in R.

iii. If T ∈ D′(R) is homogeneous of order λ, then its T ′ is homogeneous of
order λ − 1. The converse is false.

3.8. Let {cn} be a sequence of real numbers. Prove that

∑
cnδ 1

n2
∈ D′(RN ) ⇐⇒ ∑

cn < ∞.

3.9. Given an interval (a, b) ⊂ R consider a partition

P = {a = xo < x1 < · · · < xn = b}.

Given n functions f j ∈ C2[x j−1, x j ] for j = 1, . . . , n introduce the piecewise
continuous function

f = f j in [x j−1, x j ) for j = 1, . . . , n.

Compute f ′ and f ′′ in D′(a, b). Give conditions on the functions f j for f ′ ∈
L1
loc(a, b). Similarly give conditions on the f j for f ′′ ∈ L1

loc(a, b).
3.10. Let f ∈ BV [a, b]. Compute f ′ in D′(a, b). Give conditions on f for f ′ ∈

L1
loc(a, b). Note that the distributional derivative of f need not coincide with

the a.e. derivative of f . Hint: Use the function of the jumps introduced in
§ 1.1c and 3.4. of Chap.5.

3.11. Let E ⊂ R
2 be bounded with boundary ∂E , locally representable by a smooth

curve γ. Compute DxχE and DyχE .
3.12. Compute

Δ(1 − |x |2)+ in D′(RN ).

3.13. Let E be a domain in R
N with smooth boundary ∂E , and let f ∈ C2(E) ∩

C(Ē) vanish on ∂E . Regard f as defined in the whole R
N by extending it to

be zero outside E , and compute Δ f in D′(RN ).

http://dx.doi.org/10.1007/978-1-4939-4005-9_5
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4c Limits in D′

4.1. Prove that

lim
sin nx

πx
= δo in D′(R).

4.2. Prove that

lim
2

π
arctan

n

x
= sign x in D′(R)

and indeed also in L1
loc(R).

4.3. Prove that in D′(RN ),

lim
nα

πN/2
exp{−n2|x |2} =

⎧
⎨

⎩

0 if α < N ;

δo if α = N .

Forα > N , the distributional limit does not exists, whereas the a.e. limit exists
and is zero, and the L1(RN )-limit exists and is ∞.

4.4. Prove that in D′(R),

lim nα exp{−n2|y|} =
⎧
⎨

⎩

0 if α < 2;

2δo if α = 2.

For α > 2 the distributional limit does not exist.
4.5. Prove that

lim
n

1 + n2x2
= πδo in D′(R).

4.6. Let fn : (0, 1) → R, for n = 2, 3, . . ., be defined by ([8], p. 661)

fn(x) =
⎧
⎨

⎩

n2

2
for x ∈

n⋃

j=1

( j

n + 1
− 1

n3
,

j

n + 1
+ 1

n3

)

0 otherwise.

Verify that:

i. The intervals where fn > 0 do not overlap;

ii. ‖ fn‖1 = 1 for all n = 2, 3, . . .;

iii. The measure of the set [ fn > 0] is 2/n2.
Therefore { fn} → 0 in measure but not in L1(0, 1). However { fn} → 1 in
D′(0, 1). Indeed for ϕ ∈ C∞

o (0, 1) and the mean value theorem,
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∫ 1

0
fnϕdx =

n∑

j=1

∫ j
n+1+ 1

n3

j
n+1− 1

n3

n2

2
ϕ(x)dx

= n2

2

n∑

j=1

2

n3
ϕ(y j,n) = 1

n

n∑

j=1
ϕ(y j,n)

for some points

y j,n ∈
( j

n + 1
− 1

n3
,

j

n + 1
+ 1

n3

)
.

Now as n → ∞

lim
∫ 1

0
fnϕdx = lim

1

n

n∑

j=1
ϕ(y j,n) =

∫ 1

0
ϕdx .

Prove that { fn} → 0 a.e. in (0, 1). Thus distributional limits in general do not
coincide with a.e. limits nor limits in measure. Compare with the example in
Remark 4.2 of Chap.4, and 10.13 of the Complements of Chap. 4.

4.7. Consider the sequence

un =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

n

2
+ n2

2
x for −1

n
< x < 0;

n

2
− n2

2
x for 0 ≤ x <

1

n
;

0 otherwise .

Prove that ‖u‖1 = 1
2 uniformly in n and that

lim un = 1
2δo in D′(R).

4.8. Consider the sequence

vn =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

n2

2
for −1

n
< x < 0;

−n2

2
for 0 ≤ x <

1

n
.

0 otherwise .

Prove that
lim vn = 1

2δ
′
o in D′(R).

http://dx.doi.org/10.1007/978-1-4939-4005-9_4
http://dx.doi.org/10.1007/978-1-4939-4005-9_4
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Verify that vn = u′
n in D′(R) and that

lim u′
n = (lim un)

′ = lim vn, in D′(R).

4.9. Prove that if {Tn} → T inD′(E) then also {DαTn} → DαT inD′(E) for every
multi-index α.

4.10. Compute in D′(R)

lim
(
2n3xe−(nx)2 + sin n2x

) = −√
πδ′

o.

Hint: 2n3xe−(nx)2 = −[ne−(nx)2 ]′.
4.11. Compute the distributional limits

lim arctan x2n = π

2

⎧
⎨

⎩

0 for |x | < 1;
1
2 for x = ±1;
1 for |x | > 1.

lim
x2n+1

1 + |x |2n+1
=

⎧
⎨

⎩

0 for |x | < 1;
± 1

2 for |x | < 1;
sign x for |x | > 1.

Compute the pointwise limits and show that they are different from the distri-
butional limits.

4.12. Prove that sequence

{ n2

1 + n2x2

}
has no limit in D′(R).

4.13. Let f ∈ C(R) ∩ L1(R) be nonnegative, and not identically zero, and set

fn(x) = nα f (nβx) for parameters α,β ∈ R.

Verify the distributional limit

lim fn =

⎧
⎪⎪⎨

⎪⎪⎩

0 if α < β;
0 if α = β < 0;
f if α = β = 0;
‖ f ‖1δo if α = β > 0.

in D′(R).

The distributional limit does not exists if α > β.
4.14. Prove that

lim n2χ(− 1
n , 1n ) sin 2nπx = − 8

π
δ′
o in D′(R).
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4.15. Prove that
lim n(4nx − n2x2 − 3)+ = 4

3δo in D′(R).

4.16. Compute the limit

lim
2nx2n−1

1 + x4n
= 1

2π
(
δ1 − δ−1

)
in D′(R).

Hint: The expression is the derivative of arctan x2n . See 4.11.
4.17. Prove that for every positive integer k

lim nk sin nx = lim nk cos nx = 0, in D′(R).

Hint:

cos nx =
( sin nx

n

)′
, sin nx = −

(cos nx
n

)′
.

4.18. Compute the limits in D′(R) of the sequences

{sin2 nx}, {cos2 nx}, {sink nx}, {cosk nx}

for a positive integer k.
4.19. Compute the limit

lim
n2x

1 + n2x2
= (ln |x |)′ in D′(R).

5c Algebraic Equations in D′

5.1. Find all the solutions of the “algebraic” equation

xu − u = sin 3(x − 1) in D′(R).

The associated homogeneous equation is (x − 1)u = 0, whose solutions are
γδ1 for an arbitrary contant γ. The non-homogeneous equation is then

v = sin 3(x − 1)

x − 1
∈ L1

loc(R).

Thus all solutions are

u = γδ1 + sin 3(x − 1)

x − 1
.
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5.2. Find all distributional solutions of

(x2 − 1)u = δo in D′(R).

The associated homogeneous equation is solved by a linear combination of δ±1.
The full equation is then solved by

u = γ1δ1 + γ−1δ−1 − δo.

5.3. Find all distributional solutions of

xu = δ′′
o in D′(R).

The homogeneous equation is solved by γδo for an arbitrary constant γ. To
solve the non-homogeneous equation observe that xδo is the zero distribution.
From this by repeated distributional differentiation

( j + 1)δ j
o + xδ j+1 = 0 in D′(R).

For j = 2 this permits one to find all solutions

u = γδo − 1
3δ

′′′
o .

5.4. Find all distributional solutions of

x2u = x in D′(R).

The homogeneous equation is solved

uo = γoδo + γ1δ
′
o

for arbitrary constants γo and γ1. The non-homogeneous equation is solved by

u = γoδo + γ1δ
′
o + PV

(1
x

)
in D′(R).

5.5. Solve the “algebraic” distributional equation

sin x3u = δo in D′(R).

The associated homogeneous equation has solution

uo = γoδo + γ1δ
′
o + γ2δ

′′
o + ∑

j∈N
c±
j δ± 3√ jπ
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for constants γi for i = 0, 1, 2 and c±
j . Prove that a particular solution of the

non-homogenous equation is

v = − 1
6δ

′′′
o in D′(R)

5.6. Solve the “algebraic” distributional equation

(cos x) u = sin
1

|x | + π

2

(
1 − χ(−1,1)

)
.

Setting x j = π
2 + jπ, the solution is

u = ∑

j∈Z
c jδx j + PV

( 1

cos x
sin

1

x

)
+ π

2
PV

( 1

cos x

(
1 − χ(−1,1)

))
.

5.7. Compute the limit

lim
1 − cos nx

x
= PV

(1
x

)
+ γδo, in D′(R)

for an arbitrary constant γ.Hint:Naming un the argument of the limit, observe
that {xun} → 1 in D′(R). Then solve xu = 1 in D′(R).

6c Differential Equations in D′

6.1. Solve the differential equation in D′(R)

(x2u′′)′ = π.

A first integration in D′(R) gives

x2u′′ = πx + γo

for an arbitrary constant γo. Proceeding as before, i.e., considering this first as
an “algebraic” equation in D′(R) one has

u′′ = πPV
(1
x

)
+ +γoFP

( 1

x2

)
+ γoδo + γ1δ

′
o

for arbitrary constants γo, and γ1. From this



Problems and Complements 427

u′ = π ln |x | − γoPV
( 1
x

)
+ γoH(x) + γ1δo + γ2;

u = πx ln |x | − γo ln |x | + γoxH(x) + γ1H(x) + γ2x + γ3,

for arbitrary constants γi , for i = 0, 1, 2, 3.
6.2. Solve the differential equation

(x2 − 4)u′′ = ∑

j∈Z
δ′
j in D′(R).

setting u′′ = v solve first the associated “algebraic” equation in v. The corre-
sponding homogeneous equation for v is solved by a linear combination of δ±2.
A particular solution of the non-homogeneous equation for v is the sum of v j

where

(x2 − 4)v j = δ′
j in D′(R).

For j �= ±2 one computes

〈v j ,ϕ〉 =
〈 1

x2 − 4
δ′
j ,ϕ

〉
=

〈 2 j

( j2 − 4)2
δ j + 1

j2 − 4
δ′
j ,ϕ

〉
.

For j = 2 the non-homogeneous equation of v2 reduces to

(x − 2)v2 = 1

x + 2
δ′
2 = − 1

16
δ2 + 1

4
δ′
2 in D′(R).

From (x − 2)δ2 = 0 compute by double differentiation

(x − 2)δ′
2 + δ2 = 0;

(x − 2)δ′′
2 + 2δ′

2 = 0.

From this compute

− 1
16δ2 + 1

4δ
′
2 = (x − 2)

(
1
16δ

′
2 − 1

8δ
′′
2

)
.

Hence

v2 = 1
16δ

′
2 − 1

8δ
′′
2 .

Similarly one computes

v−2 = 1
8δ

′′
−2 + 1

16δ
′
−2.
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Combining these remarks gives

v = γ2δ2 + γ−2δ−2 + 1
16δ

′
2 − 1

8δ
′′
2 + 1

16δ
′
−2 + 1

8δ
′′
−2

+ ∑

j∈Z
j �=±2

( 2 j

( j2 − 4)2
δ j + 1

j2 − 4
δ′
j

)
.

Finally, by double distributional integration

u = γo + γ1x + γ2(x − 2)H(x − 2) + γ−2(x + 2)H(x + 2)

− 1
8

(
δ2 − δ−2

) + 1
16

(
H(x − 2) + H(x + 2)

)

+ ∑

j∈Z
j �=±2

( 2 j

( j2 − 4)2
(x − j)H(x − j) + 1

j2 − 4
H(x − j)

)
.

6.3. Solve the differential equations in D′(R)

(i) u′′ + u = δo : (ii) u′′ + u = δ′
o; (iii) u′′′ + u = δ′′

o .

Seek solutions of the form

(i) u = v + γ1|x | : (ii) u = v + γ2H(x); (iii) u = v + γ3H(x)

for constants γ1, γ2 and γ3 to be chosen. This recasts the problems in terms of
v solutions of

(i) v′′ + v = − 1
2 sign x; (ii) v′′ + v = − 1

2 |x |; (iii) v′′′ + v = −H(x).

These can be solved by classicalmethods since the right-hand sides are bounded
functions.

6.4. Solve (xu′)′ = 0 in D′(R). Establish first that the differential equation implies

u′ = γ1PV
(1
x

)
+ γ2δo in D′(R).

7c Miscellaneous Problems

7.1. Characterize C(Ē)∗
7.2. Positive distributions on E are identified by Radon measures.
7.3. Let AC(a, b) denote the space of absolutely continuous functions in (a, b).

A function u ∈ W 1,p(a, b) if and only if u ∈ L p(a, b) ∩ AC(a, b) and u′ ∈
L p(a, b).
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7.4. Introduce the notion of ∂E of class Cm for some positive integer m. The exten-
sion Proposition 18.1 is a special case of

Proposition 7.1c Let E be a bounded domain in R
N with boundary ∂E of class

Cm for some positive integer m. Every function u ∈ Cm(Ē) admits an extension
w ∈ Cm

o (RN ) such that w = u in Ē and

‖w‖m,p;RN ≤ C‖u‖m,p;E

where C is a constant depending only upon N, m, p and ‖|∂E |‖m.
Proof If E = {xN > 0}, extend u in {xN ≤ 0} by

ũ(x̄, xN ) =
m+1∑

j=1
c ju

(
x̄,−1

j
xN

)
where

m+1∑

j=1
(−1)h

c j
j h

= 1.
�

7.5. Let E be the unit disc in R
2 from which a diameter has been removed. There

exists u ∈ W 1,2(E) that cannot be approximated, in W 1,2(E) by functions in
C1(Ē).

7.6. ApproximatingCharacteristic Functions of Some Sets by Functions inC∞
o :

Let J : R → R
+ be defined by

J (x) =
{
e− 1

x if x > 0;
0 otherwise;

The function J ∈ C∞(R) and J (x) → 1 as x → ∞. Consider now the sets

(a, b) ⊂ R; R =
N∏

i=1
(ai , bi ); D = [|x | < R]

and the sequences

J(a,b);n(x) = J
[
n(b − x)(a − x)

] ∈ C∞
o (R);

JR;n(x) =
N∏

i=1
J
[
n(bi − xi )(ai − xi )

] ∈ C∞
o (RN );

JD;n(x) = J
[
n(R2 − |x |2)] ∈ C∞

o (RN ).

Prove that as n → ∞ they tend pointwise to the characteristic function of the
interval (a, b), the rectangle R and the disc D respectively.



Chapter 9
Topics on Integrable Functions
of Real Variables

1 A Vitali-Type Covering

Let μ be the Lebesgue measure in R
N and refer the notions of measurability and

integrability to such a measure. Let E ⊂ R
N be measurable and of finite measure,

and let F be a collection of cubes in RN , with faces parallel to the coordinate planes
whose union covers E . Such a covering is a Vitali-type covering. The cubes making
up F are not required to be open or closed.

The next theorem asserts that E can be covered, in a measure theoretical sense,
by a countable collections of pairwise disjoint cubes in F . The key feature of this
theorem is that, unlike the Vitali, or the Besicovitch measure theoretical covering
Theorems, the covering F is not required to be fine (see § 17 and 18 of Chap.3).

This limited information on the covering F results in a weaker covering, that
is, the measure theoretical covering is realized through an estimation, rather than
equality of the measure of the set E in terms of the measure of the selected cubes.

Theorem 1.1 (Wiener [175]) Let E ⊂ R
N be of finite measure and letF be a Vitali-

type covering for E. There exists a countable collection {Qn} of pairwise disjoint
cubes in F , such that

μ(E) ≤ 5N
∑

μ(Qn). (1.1)

Proof Label F by F1 and set

2ρ1 = {
the supremum of the edges of cubes inF1

}
.

If ρ1 = ∞, we select a cube Q of edge so large that

μ(E) ≤ 5Nμ(Q).

© Springer Science+Business Media New York 2016
E. DiBenedetto, Real Analysis, Birkhäuser Advanced
Texts Basler Lehrbücher, DOI 10.1007/978-1-4939-4005-9_9
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If ρ1 < ∞ select a cube Q1 ∈ F1 of edge �1 > ρ1, and subdivide F1 into two
subcollections F2 and F ′

2, by setting

F2 = {
the collection of cubes Q ∈ F1 that do not intersect Q1

};
F ′

2 = {
the collection of cubes Q ∈ F1 that intersect Q1

}
.

Denote by Q′
1 the cube with the same center as Q1 and edge 5�1. Then by con-

struction ⋃ {
Q

∣∣ Q ∈ F ′
2

} ⊂ Q′
1.

If F2 is empty then

E ⊂ Q′
1 and μ(E) ≤ 5Nμ(Q1).

If F2 is not empty, set

2ρ2 = {
the supremum of the edges of the cubes in F2

}

and select a cube Q2 ∈ F2 of edge �2 > ρ2. Then subdivide F2 into the two
subcollections

F3 = {
the collection of cubes Q ∈ F2 that do not intersect Q2

};
F ′

3 = {
the collection of cubes Q ∈ F2 that intersect Q2

}
.

Denote by Q′
2 the cube with the same center as Q2 and edge 5�2. Then by con-

struction ⋃ {
Q

∣∣ Q ∈ F ′
3

} ⊂ Q′
2.

If F3 is empty

E ⊂ Q′
1 ∪ Q′

2 and μ(E) ≤ 5N
(
μ(Q1) + μ(Q2)

)
.

IfF3 is not empty, we repeat the process to define inductively subfamilies of cubes
{Fn}, positive numbers {ρn} and {�n}, and cubes {Qn} and {Q′

n}, by the procedure,

Fn = {
collection of cubes in Fn−1 that do not intersect Qn−1

};
2ρn = {

the supremum of the edges of the cubes in Fn
};

Qn = {
a cube selected out of Fn of edge �n > ρn

};
Q′

n = {
a cube with the same center as Qn and edge 5�n

}
.

If Fn+1 is empty for some n ∈ N, then

E ⊂ Q′
1 ∪ · · · ∪ Q′

n and μ(E) ≤ 5N
n∑

j=1
μ(Q j ).
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If Fn is not empty for all n ∈ N, consider series
∑

μ(Qn). If the series diverges
then (1.1) is trivial. If the series converges then ρn → 0 as n → ∞. In such a case
we claim that every cube Q ∈ F belongs to some Q′

n . Indeed if not, Q must belong
to all Fn and therefore the length of its edge is zero. Thus

E ⊂ ⋃
Q′

n and μ(E) ≤ ∑
μ(Q′

n) = 5N
∑

μ(Qn). �

Remark 1.1 The theorem is more general in that the set E is not required to be
measurable. The same conclusion continues to hold, by the same proof, with μ
replaced by the Lebesgue outer measure μe.

Remark 1.2 The set E is not required to be bounded. It is not claimed here that the
union of the disjoint cubes Qn , satisfying (1.1), covers E .

Corollary 1.1 Let E ⊂ R
N be measurable and of finite measure, and let F be a

collection of cubes in RN , with faces parallel to the coordinate planes and covering
E. For every ε > 0, there exists a finite collection {Q1, . . . , Qm} of disjoint cubes in
F , such that

μ(E) − ε ≤ 5N
m⋃

j=1
μ(Q j ). (1.2)

2 The Maximal Function (Hardy–Littlewood [69]
and Wiener [175])

Let Q denote a cube centered at the origin and with faces parallel to the coordinate
planes. For x ∈ R

N , we let Q(x) denote the cube centered at x and congruent to Q.
The maximal function M( f ) of a function f ∈ L1

loc(R
N ) is defined by

M( f )(x) = sup
Q

1

μ(Q)

∫

Q(x)
| f (y)|dy.

From the definition it follows that M( f ) is nonnegative and sub-additive with
respect to the argument f , i.e.,

M( f + g) ≤ M( f ) + M(g).

Moreover M(α f ) = |α|M( f ), for all α ∈ R.

Proposition 2.1 M( f ) is measurable and lower semi-continuous. Moreover, if f
is the characteristic function of a bounded measurable set E, there exists positive
constants Co,C1, and γ, depending only upon E, such that
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Co

|x |N ≤ M
(
χE

)
(x) ≤ C1

|x |N for all |x | > γ. (2.1)

Proof If | f | = 0, also M( f ) = 0. Otherwise M( f )(x) > 0 for all x ∈ R
N . Let

c > 0 and x ∈ [M( f ) > c]. There exist ε > 0 and a cube Q, such that

1

μ(Q)

∫

Q(x)
| f |dx ≥ M( f )(x) − ε > c.

By the absolute continuity of the integral, there exists δ > 0 such that

M( f )(y) ≥ 1

μ(Q)

∫

Q(y)
| f |dx > c for all |y − x | < δ.

Thus [M( f ) > c] is open and hence M( f ) is lower semi-continuous and mea-
surable. To prove (2.1) observe that

M
(
χE

)
(x) = sup

Q

μ
(
E ∩ Q(x)

)

μ(Q)
.

Since E is bounded is included in some cube Qo. Let d be the maximum distance
of points in Qo from the origin. Fix x ∈ R

N such that |x | ≥ 2d/
√
N and let Q(x)

be the smallest cube centered at x and containing E . Then

M
(
χE

)
(x) ≥ μ

(
E ∩ Q(x)

)

μ(Q)
= μ(E)

μ(Q)
= Co

|x |N .

The bound above is estimated analogously. �

Corollary 2.1 Let f ∈ L1(RN ) be of compact support in R
N and not identically

zero. There exists positive constants Co, C1 and γ, depending only upon f , such that

Co

|x |N ≤ M( f )(x) ≤ C1

|x |N , for all |x | > γ. (2.2)

It follows from (2.1) and (2.2) that M( f ) is not in L1(RN ) even if f is bounded
and compactly supported, unless f = 0.

Proposition 2.2 Let f ∈ L1(RN ). Then for all t > 0

μ([M( f ) > t]) ≤ 5N

t

∫

RN

| f |dx . (2.3)

Proof Assume first that f is of compact support. Then (2.2) implies that [M( f ) > t]
is of finite measure. For every x ∈ [M( f ) > t], there exists a cube Q(x) centered at
x and with faces parallel to the coordinate planes such that
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μ(Q) ≤ 1

t

∫

Q(x)
| f |dy. (2.4)

The collectionF of all such cubes is a covering of [M( f ) > t]. Out ofF we may
extract a countable collection {Qn} of disjoint cubes such that

μ([M( f ) > t]) ≤ 5N
∑

μ(Qn).

From this and (2.4),

μ([M( f ) > t]) ≤ 5N
∑

μ(Qn)

≤ 5N

t

∑
∫

Qn

| f |dx ≤ 5N

t

∫

RN

| f |dx .

If f ∈ L1(RN ), wemay assume that f ≥ 0. Let { fn} be a nondecreasing sequence
of compactly supported, nonnegative functions in L1(RN ), converging to f a.e. in
R

N . Then {M( fn)} is a nondecreasing sequence of measurable functions, converging
to M( f ) a.e. in RN . Therefore, by monotone convergence

μ([M( f ) > t]) = lim μ([M( fn) > t])
≤ 5N

t
lim

∫

RN

fndx ≤ 5N

t

∫

RN

f dx . �

3 Strong L p Estimates for the Maximal Function

Proposition 3.1 Let f ∈ L p(RN ) for some p ∈ (1,∞]. Then the maximal function
M( f ) is in L p(RN ) and

‖M( f )‖p ≤ γp‖ f ‖p where γ p
p = 2p p5N

p − 1
. (3.1)

Proof The estimate is obvious for p = ∞. Assuming then p ∈ (1,∞) fix t > 0 and
set

g(x) =
{

f (x) if | f (x)| ≥ 1
2 t;

0 if | f (x)| < 1
2 t.

Such a function g is in L1(RN ). Indeed,

∫

RN

|g|dx =
∫

[| f |≥ 1
2 t]

| f |dx ≤
(2
t

)p−1
∫

RN

| f |pdx .
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Since | f | ≤ |g| + 1
2 t

M( f )(x) ≤ sup
1

μ(Q)

∫

Q(x)
|g|dy + 1

2
t = M(g)(x) + 1

2
t.

Therefore
[M( f ) > t] ⊂ [

M(g) > 1
2 t

]
.

By Proposition 2.2, applied to g and M(g)

μ([M( f ) > t]) ≤ μ
([
M(g) > 1

2 t
]) ≤ 2 · 5N

t

∫

RN

|g|dx

= 2 · 5N
t

∫

[| f |≥ 1
2 t]

| f |dx .

Next express the integral of M( f )p in terms of the distribution function of M( f )
(§ 15.1 of Chap.4), and in the integral so obtained interchange the order of integration
by means of Fubini’s theorem. This gives

∫

RN

M( f )pdx = p
∫ ∞

0
t p−1μ([M( f ) > t])dt

≤ 2p5N
∫ ∞

0
t p−2

( ∫

[| f |≥ 1
2 t]

| f |dx
)
dt

= 2p5N
∫

RN

| f |
( ∫ 2| f |

0
t p−2dt

)
dx

= 2p p5N

p − 1

∫

RN

| f |pdx . �

3.1 Estimates of Weak and Strong Type

Let E ⊂ R
N be measurable. A measurable function g : E → R is in the space

weak-L1(E), denoted by L1
w(E), if there exists a constant C , depending only upon

g, such that

μ([|g| > t]) ≤ C

t
for all t > 0.

If g ∈ L1(E)

μ([|g| > t]) ≤ 1

t

∫

E
|g|dx .

http://dx.doi.org/10.1007/978-1-4939-4005-9_4
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Therefore L1(E) ⊂ L1
w(E). The converse inclusion is false. The function

g(x) =
{ |x |−N for |x | > 0
0 for |x | = 0

is in weak-L1(RN ) and not to L1(RN ). By Proposition 2.2 the maximal function
M( f ) of a function f ∈ L1(RN ) is in weak-L1(RN ) and, in general, not in L1(RN ).

Let T be a map acting on L1(E) and such that T ( f ) is a real-valued, measurable
function defined on E . Examples include the maximal function T ( f ) = M( f ) and
the convolution T ( f ) = Jε ∗ f for a mollifying kernel Jε.

Amap T is ofweak type in L1(E) if T ( f ) is inweak-L1(E), for every f ∈ L1(E).
By Proposition 2.2, the map T ( f ) = M( f ) is of weak type in L1(RN ).

A map T is of strong type in L p(E) for some 1 ≤ p ≤ ∞, if

f ∈ L p(E) =⇒ T ( f ) ∈ L p(E).

The convolution T ( f ) = Jε ∗ f is of strong type in L p(RN ) for all p ∈ [1,∞)

(§. 18 and §18c of Chap. 6). By Proposition 3.1, themaximal function T ( f ) = M( f )
is of strong type in L p(E) for p ∈ (1,∞).

4 The Calderón–Zygmund Decomposition Theorem [20]

Theorem 4.1 Let f be a nonnegative function in L1(RN ). Then, for any fixedα > 0,
R

N can be partitioned into two disjoint sets E and F, such that

(i) f ≤ α a.e. in E;
(ii) F is the countable union of closed cubes Qn,with faces parallel to the coordinate

planes and with pairwise disjoint interior. For each of these cubes,

α <
1

μ(Qn)

∫

Qn

f (y)dy ≤ 2Nα. (4.1)

Proof Let α > 0 be fixed and partition R
N into closed cubes with pairwise disjoint

interior, with faces parallel to the coordinate planes, and of equal edge. Since f ∈
L1(RN ), such a partition can be realized so that for every cube Q′ of such a partition,

1

μ(Q′)

∫

Q′
f (y)dy ≤ α.

Having fixed one such cube Q′, we partition it into 2N equal cubes, by bisecting
Q′ with hyperplanes parallel to the coordinate planes. Let Q′′ be any one of these
new cubes. Then either

http://dx.doi.org/10.1007/978-1-4939-4005-9_6
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1

μ(Q′′)

∫

Q′′
f (y)dy ≤ α (a)

or
1

μ(Q′′)

∫

Q′′
f (y)dy > α. (b)

If the second case occurs, then Q′′ is not further subdivided and is taken as one
of the cubes of the collection {Qn} claimed by the theorem. Indeed for such a cube

α <
1

μ(Q′′)

∫

Q′′
f (y)dy ≤ 2N

μ(Q′)

∫

Q′
f (y)dy ≤ 2Nα.

If (a) occurs, we subdivide further Q′′ into 2N sub-cubes and on each of then
repeat the same alternative.

For each of the cubes Q′ of the initial partition of RN , we carry on this recursive
partitioning process. The process terminates only if case (b) occurs. Otherwise it is
continued recursively.

Let F = ⋃
Qn , where Qn are cubes for which (b) occurs. By construction these

are cubes with faces parallel to the coordinate planes, and with pairwise disjoint
interior. Moreover (4.1) holds for all of them.

Setting E = R
N − F , it remains to prove (i). Let x be a Lebesgue point of f in

E . There exists a sequence of cubes Q̃ j with faces parallel to the coordinate planes
and containing x , resulting from the recursive partition such that

lim
j→∞ diam{Q̃ j } = 0 and

1

μ(Q̃ j )

∫

Q̃ j

f (y)dy ≤ α.

The collection of cubes {Q̃ j } forms a regular family Fx at x . Therefore (§ 12 and
Proposition 12.1 of Chap. 5)

f (x) = lim
j→∞

1

μ(Q̃ j )

∫

Q̃ j

f (y)dy ≤ α. �

5 Functions of Bounded Mean Oscillation

Let Qo be a cube inRN centered at the origin and with faces parallel to the coordinate
planes. For a function f ∈ L1

loc(Qo) and a cube Q ⊂ Qo with faces parallel to the
coordinate planes, let fQ denote the integral average of f in Q

fQ = 1

μ(Q)

∫

Q
f (y)dy.

http://dx.doi.org/10.1007/978-1-4939-4005-9_5
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A function f ∈ L1(Qo) is of bounded mean oscillation if

| f |o = sup
Q⊂Qo

1

μ(Q)

∫

Q
| f − fQ |dy < ∞. (5.1)

The collection of all f ∈ L1(Qo) of bounded mean oscillation is denoted by
BMO(Qo). One verifies that BMO(Qo) is a linear space and that

‖ f ‖o = ‖ f ‖1 + | f |o
defines a norm on BMO(Qo). Moreover, from the definition, and the completeness
of L1(Qo), it follows that BMO(Qo) is complete.

Theorem 5.1 (John-Nirenberg [77]) There exist two positive constants C1, C2,
depending only on N such that, for every f ∈ BMO(Qo), for all cubes Q ∈ Qo,
and all t ≥ 0

μ([| f − fQ | > t] ∩ Q) ≤ C1 exp
{

− C2t

| f |o
}
μ(Q). (5.2)

5.1 Some Consequences of the John–Nirenberg Theorem

Proposition 5.1 If f ∈ BMO(Qo) then for all cubes Q ⊂ Qo

f − fQ ∈ L p(Q) and f ∈ L p(Q) for all 1 ≤ p < ∞.

Proof From (5.2)

∫

Q
| f − fQ |pdy = p

∫ ∞

0
t p−1μ([| f − fQ | > t] ∩ Q)dt

≤ pC1μ(Q)

∫ ∞

0
t p−1 exp

{
− C2t

| f |o
}
dt

≤ pC1μ(Q)
( | f |o
C2

)p
∫ ∞

0
t p−1e−t dt

≤ γ(N , p)| f |poμ(Q)

for a constant γ(N , p) depending only upon N and p. This in turn implies that
f ∈ L p(Q), since

∫

Q
| f |pdy ≤ γ(p)

( ∫

Q
| f − fQ |pdy + | fQ |pμ(Q)

)
. �
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Proposition 5.2 Let f ∈ L1(Qo) and assume that for every sub-cube Q ⊂ Qo there
is a constant γQ such that

μ([| f − γQ | > t] ∩ Q) ≤ γ1 exp{−γ2t}μ(Q) for all t > 0 (5.3)

for two given constants γ1 and γ2 independent of Q and t. Then f is of bounded
mean oscillation in Qo and | f |o ≤ 2γ1/γ2.

Proof Assume first that γQ = fQ . Then

∫

Q
| f − fQ |dy =

∫ ∞

0
μ([| f − fQ | > t] ∩ Q)dt

≤ γ1μ(Q)

∫ ∞

0
e−γ2t dt ≤ γ1

γ2
μ(Q)

for all sub-cubes Q ⊂ Qo. Hence f ∈ BMO(Qo) and | f |o ≤ γ1/γ2. For general
γQ , by a similar argument

sup
Q∈Qo

1

μ(Q)

∫

Q
| f − γQ |dy ≤ γ1

γ2
.

From this, for every Q ⊂ Qo

1

μ(Q)

∫

Q
| f − fQ |dy ≤ 2

μ(Q)

∫

Q
| f − γQ |dy. �

Corollary 5.1 The inequalities (5.2) and (5.3) are necessary and sufficient for a
function f ∈ L1(Qo) to be of bounded mean oscillation in Qo.

Proposition 5.3 The function x → ln |x | is of bounded mean oscillation in the unit
cube Qo, centered at the origin of RN .

Proof Having fixed Q ∈ Qo, let ξ be the element of largest Euclidean length in Q
and set γQ = ln |ξ|. Then

Σt = {x ∈ Q
∣
∣ | ln |x | − γQ | > t}

=
{
x ∈ Q

∣
∣ ln

|ξ|
|x | > t

}

= {x ∈ Q
∣
∣ |x | < |ξ|e−t }.

Let h be the edge of Q and denote by η the element of least Euclidean length in
Q. If Σt is not empty, it must contain η. Hence

|ξ|e−t ≥ |η| ≥ |ξ| − |ξ − η| ≥ |ξ| − √
Nh
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which implies

|ξ| ≤
√
Nh

1 − e−t
.

Therefore Σt is contained in the ball

|x | ≤
√
Nh

et − 1
.

This implies

μ(Σt ) ≤ ωN

N

( √
N

et − 1

)N
μ(Q).

If t ≥ 1 this gives (5.3) for γ2 = N and a suitable constant γ1. If 0 < t < 1, the
inequality (5.3) is still satisfied by possibly modifying γ1. �

Remark 5.1 A function f ∈ L∞(Qo) is in BMO(Qo). The converse is false as the
function x → ln |x | is in of bounded mean oscillation in the unit cube Qo centered
at the origin but is not bounded in Qo.

Remark 5.2 The converse to Proposition 5.1 is false. Indeed the function (−1, 1) �
x → f (x) = (ln |x |)2 is in L p(−1, 1) for all 1 ≤ p < ∞, but is not in BMO[−1, 1].

6 Proof of the John–Nirenberg Theorem 5.1

Having fixed some cube Q ⊂ Qo we may assume, without loss of generality, that
Q = Qo. Also, by possibly replacing f with f/‖ f ‖o wemay assume that ‖ f ‖o = 1.
Set

fo =
{ | f − fQo | in Qo;
0 otherwise.

Since fo ∈ L1(RN ), having fixed someα > 1, by theCalderón–Zygmund decom-
position theorem there exists a countable collection of closed cubes {Q1

n}, with faces
parallel to the coordinate planes and with pairwise disjoint interior, such that

α <
1

μ(Q1
n)

∫

Q1
n

| f − fQo |dy ≤ 2Nα and

| f − fQo | ≤ α a.e. in Qo − ⋃
Q1

n.

(6.1)

It follows from the first of (6.1) and ‖ f ‖o = 1, that

∑
μ(Q1

n) ≤ 1

α

∫

Qo

| f − fQo |dy ≤ 1

α
μ(Qo). (6.2)
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Also, using again that ‖ f ‖o = 1

| fQ1
n
− fQo | ≤ 1

μ(Q1
n)

∫

Q1
n

| f − fQo |dy ≤ 2Nα. (6.3)

Finally since α > 1 and ‖ f ‖o = 1

1

μ(Q1
n)

∫

Q1
n

| f − fQ1
n
|dy < α for all cubes Q1

n. (6.4)

For n ∈ N fixed, set

f1,n(x) =
{ | f − fQ1

n
| in Q1

n;
0 otherwise.

Apply again the Calderón–Zygmund decomposition, for the same α > 1 to the
function f1,n , starting from the cube Q1

n and using (6.4). This generates a countable
collection of cubes {Q2

n,m}, with faces parallel to the coordinate planes and with
pairwise disjoint interior, such that

α <
1

μ(Q2
n,m)

∫

Q2
n,m

| f − fQ1
n
|dy ≤ 2Nα and

| f − fQ1
n
| ≤ α a.e. in Q1

n − ⋃

m
Q2

n,m .

(6.5)

For such a collection, also the analog of (6.2) is satisfied, i.e.,

∑

m
μ(Q2

n,m) ≤ 1

α

∑

m

∫

Q2
n,m

| f − f 1Qn
|dy

≤ 1

α

∫

Q1
n

| f − fQ1
n
|dy ≤ 1

α
μ(Q1

n)

(6.6)

where we have used that ‖ f ‖o = 1. Next we claim that

| f − fQo | ≤ 2 · 2Nα a.e. in Qo − ⋃

n,m
Q2

n,m .

If x ∈ Qo − ⋃
Q1

n , this follows from the second of (6.1). If x ∈ Q1
n − ⋃

mQ
2
n,m

then by (6.3) and the second of (6.5)

| f (x) − fQo | ≤ | f (x) − fQ1
n
| + | fQ1

n
− fQo | ≤ 2 · 2Nα.
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Adding (6.6) with respect to n and taking into account (6.2), gives

∑

n,m
μ(Q2

n,m) ≤ 1

α2
μ(Qo).

Also, using the first of (6.5) and (6.3)

| fQ2
n,m

− fQo | ≤ | fQ2
n,m

− fQ1
n
| + | fQ1

n
− fQo |

≤ 1

μ(Q2
n,m)

∫

Q2
n,m

| f − fQ1
n
|dy + | fQ1

n
− fQo |

≤ 2 · 2Nα.

We now relabel {Q2
n,m} to obtain a countable collection {Q2

n} of closed cubes,
with faces parallel to the coordinate planes, with pairwise disjoint interior and such
that | f − fQo | ≤ 2 · 2Nα a.e. in Qo − ⋃

Q2
n;

∑
μ(Q2

n) ≤ 1

α2
μ(Qo);

| fQ2
n
− fQo | ≤ 2 · 2Nα.

(6.7)2

Repeating the process k times generates a countable collection {Qk
n} of closed

sub-cubes of Qo, with faces parallel to the coordinate planes, with pairwise disjoint
interior, and such that

| f − fQo | ≤ k · 2Nα a.e. in Qo − ⋃

n
Qk

n;
∑

n
μ(Qk

n) ≤ 1

αk
μ(Qo);

| fQk
n
− fQo | ≤ k · 2Nα.

(6.7)k

From this, for a fixed positive integer k,

μ([| f − fQo | > k2Nα] ∩ Qo) ≤ ∑

n
μ(Qk

n) ≤ 1

αk
μ(Qo).

This inequality continues to hold for k = 0. Fix now t > 0 and let k ≥ 0 be such
that

k2Nα < t ≤ (k + 1)2Nα.

Then

μ([| f − fQo | > t] ∩ Qo) ≤ μ([| f − fQo | > k2Nα] ∩ Qo)

≤ 1

αk
μ(Qo) ≤ αe−γtμ(Qo)

where γ = (lnα)/2Nα. �
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7 The Sharp Maximal Function

Continue to denote by Qo and Q closed cubes in R
N , with faces parallel to the

coordinate planes. Given a measurable function f defined in Qo, we regard it as
defined in the whole RN by setting it to be zero outside Qo.

For a cube Q such that μ(Q ∩ Qo) > 0, let fQ∩Qo denote the integral average of
f over Q ∩ Qo, i.e.,

fQ∩Qo = 1

μ(Q ∩ Qo)

∫

Q∩Qo

f dy.

Set also,

| f |Qo = 1

μ(Qo)

∫

Qo

| f |dy.

The sharp maximal function Qo � x → f #(x), is defined by

f #(x) = sup
Q�x

1

μ(Q ∩ Qo)

∫

Q∩Qo

| f − fQ∩Qo |dy (7.1)

where the supremum is taken over all cubes Q containing x . This is also called the
function of maximal mean oscillation.

It follows from the definition that if f # ∈ L∞(Qo) then f ∈ BMO(Qo). Also,
from (7.1) and the definition of maximal function M( f )

f #(x) ≤ 2N+1M( f )(x) for a.e. x ∈ Qo.

By Proposition 2.2, this implies that if f ∈ L1(Qo) then

μ([ f # > t]) ≤ 2 · 10N
t

∫

Qo

| f |dy for all t > 0.

Hence f # ∈ L1
w(Qo). If f ∈ L p(Qo) for p ∈ (1,∞), by Proposition 3.1

‖ f #‖p ≤ 2N+1γp‖ f ‖p where γ p
p = 2p p5N

p − 1
.

The next theoremasserts the converse, i.e., if f # ∈ L p(Qo) then also f ∈ L p(Qo).

Theorem 7.1 (Fefferman–Stein [45]) Let f ∈ L1(Qo) and assume the correspond-
ing sharp maximal function f # is in L p(Qo). Then f ∈ L p(Qo) and there exists a
positive constant γ = γ(N , p) depending only upon N and p, such that

‖ f ‖p ≤ γ(N , p)
(‖ f #‖p + μ(Qo)| f |Qo

)
. (7.2)
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8 Proof of the Fefferman–Stein Theorem

Fix t > | f |Qo and apply the Calderón–Zygmund decomposition to the function | f |,
for α = t . This generates a countable collection {Qt

n} of closed cubes with faces
parallel to the coordinate planes, with pairwise disjoint interior and such that

t <
1

μ(Qt
n)

∫

Qt
n

| f |dy ≤ 2N t and

| f | ≤ t a.e. in Qo − ⋃
Qt

n.

(8.1)t

Without loss of generality, wemay arrange that Qo is part of the initial partition of
R

N in the Calderón–Zygmund process. Therefore, the cubes Qt
n result from repeated

bisections starting from the parent cube Qo.
Let t > τ > | f |Qo , and {Qτ

j } be the corresponding Calderón–Zygmund decom-
position, for α = τ , satisfying the analog of (8.1)t , i.e.,

τ <
1

μ(Qt
n)

∫

Qτ
n

| f |dy ≤ 2N τ and

| f | ≤ τ a.e. in Qo − ⋃
Qτ

n .

(8.1)τ

Moreover the cubes Qτ
j result from a repeated bisection of the parent cube Qo.

By the Calderón–Zygmund recursive bisection process, and since t > τ , each of the
cubes Qt

n is a sub-cube of some Qτ
j . Therefore

m(t) = ∑
μ(Qt

n) ≤ ∑
μ(Qτ

j ) = m(τ ).

Also for any t > τ > | f |Qo

μ([| f | > t] ∩ Qo) ≤ m(t). (8.2)

Lemma 8.1 Let t > 2N+1| f |Qo . Then

m(t) ≤ μ([ f # > tδ] ∩ Qo) + 2δm(t2−(N+1))

where δ is an arbitrary positive constant.

Proof Set τ = t2−(N+1) and determine the two countable families of cubes {Qt
n} and

{Qτ
j } satisfying (8.1)t and (8.1)τ , respectively. Fix one of the cubes Qτ

j and consider
those cubes Qt

n out of {Qt
n} that are contained in Qτ

j . For such a cube Qτ
j , either

Qτ
j ⊂ [ f # > tδ], or Qτ

j �⊂ [ f # > tδ].
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If the first alternative occurs

∑

Qt
n⊂Qτ

j

μ(Qt
n) ≤ μ([ f # > tδ] ∩ Qτ

j ). (8.3)

If the second alternative occurs, then there exists some x ∈ Qτ
j such that f

#(x) ≤
tδ. From the definition of f #, for such a cube

1

μ(Qτ
j )

∫

Qτ
j

| f − fQτ
j
|dy ≤ tδ.

By the lower bound in the first of (8.1)t and the upper bound in the first of (8.1)τ ,

| f |Qt
n
> t and | f |Qτ

j
≤ 2N τ .

From this, for each of the cubes Qt
n contained in the fixed cube Qτ

j

∫

Qt
n

| f − fQτ
j
|dy ≥ (| f |Qt

n
− | f |Qτ

j
)μ(Qt

n)

≥ (t − 2N τ )μ(Qt
n) = 1

2 tμ(Qt
n).

Adding over all the cubes Qt
n contained in Qτ

j gives

∑

Qt
n⊂Qτ

j

μ(Qt
n) ≤ 2

t

∑

Qt
n⊂Qτ

j

∫

Qt
n

| f − fQτ
j
|dy

≤ 2

t

∫

Qτ
j

| f − fQτ
j
|dy ≤ 2δμ(Qτ

j ).

(8.4)

Combining the first alternative, leading to (8.3) and the second alternative, leading
to (8.4) gives ∑

Qt
n⊂Qτ

j

μ(Qt
n) ≤ μ([ f # > tδ] ∩ Qτ

j + 2δμ(Qτ
j ).

Adding over j proves the lemma. �

Taking into account (8.2), the estimate (7.2) of the theorem will be derived from
the limiting process

∫

Qo

| f |pdy = lim
s→∞ p

∫ s

0
t p−1μ([| f | > t] ∩ Qo)dt

≤ lim sup
s→∞

p
∫ s

0
t p−1m(t)dt

(8.5)



8 Proof of the Fefferman–Stein Theorem 447

provided the last limit is finite. To estimate such a limit fix s > 2N+1| f |Qo and use
Lemma 8.1 to compute

p
∫ s

0
t p−1m(t)dt = p

∫ 2N+1| f |Qo

0
t p−1m(t)dt + p

∫ s

2N+1| f |Qo

t p−1m(t)dt

≤ (2N+1| f |Qo)
pμ(Qo) + p

∫ ∞

0
t p−1μ([ f # > tδ] ∩ Qo)dt

+ 2pδ
∫ s

0
t p−1m(t2−(N+1))dt

= (2N+1| f |Qo)
pμ(Qo) + δ−p‖ f #‖p

p

+ 2δ2(N+1)p p
∫ s

0
t p−1m(t)dt.

Choosing δ−1 = 4 · 2(N+1)p gives

p
∫ s

0
t p−1m(t)dt ≤ 2(2N+1| f |Qo)

pμ(Qo) + 2δ−p‖ f #‖p
p.

Putting this in (8.5) proves the theorem. �

9 The Marcinkiewicz Interpolation Theorem

Let E be a measurable subset of RN and let 1 ≤ p < ∞. A measurable function
f : E → R is in weak-L p(E), denoted by L p

w(E), if there is a positive constant F
such that

μ([| f | > t]) ≤ F p

t p
for all t > 0. (9.1)

Set
‖ f ‖p,w = inf{F for which (9.1) holds}.

Let f, g ∈ L p
w(E) and let α and β be nonzero real numbers. Then for all t > 0

[|α f + βg| > t] ⊂
[
| f | >

t

2|α|
]⋃ [

|g| >
t

2|β|
]
.

Thus L p
w(E) is a linear space. However ‖ · ‖p,w is not a norm on L p

w(E).
If f ∈ L p(E), then for all t > 0

μ([| f | > t]) ≤ 1

t p
‖ f ‖p

p.
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Therefore f ∈ L p
w(E), and ‖ f ‖p ≥ ‖ f ‖p,w. However there exist functions

f ∈ L p
w(E) that are not in L p(E) (examples can be constructed as in § 3.1).

The space L∞
w (E) is defined as the collection of measurable functions for which

(9.1) holds, for some constant F , for all p ≥ 1 and all t > 0.
If t > F then μ([| f | > t]) = 0. Thus if f ∈ L∞

w (E), then f ∈ L∞(E) and
‖ f ‖∞ ≤ ‖ f ‖∞,w. On the other hand if f ∈ L∞(E) then (9.1) holds for F = ‖ f ‖∞.
Thus L∞

w (E) = L∞(E) and ‖ · ‖∞,w = ‖ · ‖∞.

9.1 Quasi-linear Maps and Interpolation

Let T be a map T defined in L p(E) and such that T ( f ) is measurable for all f ∈
L p(E). The map T is quasi-linear if there exists a positive constant C such that for
all f and g in L p(E)

|T ( f + g)| ≤ C(|T ( f )| + |T (g)|) a.e. in E .

If T is quasi-linear, then for all t > 0

[|T ( f + g)| > t] ⊂
[
|T ( f )| >

t

2C

] ⋃ [
|T (g)| >

t

2C

]
.

A quasi-linear map T : L p(E) → Lq(E), for some pair p, q ≥ 1, is of strong
type (p, q) if there exists a positive constant Mp,q such that

‖T ( f )‖q ≤ Mp,q‖ f ‖p for all f ∈ L p(E).

A quasi-linear map T defined in L p(E) and such that T ( f ) is measurable for all
f ∈ L p(E), is of weak type (p, q) if there exists a positive constant Np,q such that

‖T ( f )‖q,w ≤ Np,q‖ f ‖p for all f ∈ L p(E).

When p = q we set Mp,p = Mp and Np,p = Np. Examples of maps of strong
and weak type are in § 3.1. Further example will arise from the Riesz potentials in
§ 24.

Theorem 9.1 (Marcinkiewicz [103]) Let T be a quasi-linear map defined both in
L p(E) and Lq(E) for some pair 1 ≤ p < q ≤ ∞. Assume that T is both of weak
type (p, p) and of weak type (q, q), i.e., there exist positive constants Np and Nq

such that
‖T ( f )‖p,w ≤ Np‖ f ‖p for all f ∈ L p(E);
‖T ( f )‖q,w ≤ Nq ‖ f ‖q for all f ∈ Lq(E).

(9.2)
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Then T is of strong type (r, r) for every p < r < q and

‖T ( f )‖r ≤ γN δ
pN

1−δ
q ‖ f ‖r for all f ∈ Lr (E) (9.3)

where

δ =

⎧
⎪⎨

⎪⎩

p(q − r)

r(q − p)
if q < ∞;

p

r
if q = ∞;

(9.4)

and

γ = 2C

⎧
⎪⎨

⎪⎩

( r(q − p)

(r − p)(q − r)

)1/r
if q < ∞;

( r

r − p

)1/r
if q = ∞;

(9.5)

where C is the constant appearing in the definition of semi-linear map.

10 Proof of the Marcinkiewicz Theorem

Having fixed r ∈ (p, q), and some f ∈ Lr (E), decompose it as f = f1 + f2, where

f1 =
{
f for | f | > λt;
0 for | f | ≤ λt; f2 =

{
0 for | f | ≥ λt;
f for | f | < λt

where t > 0 and λ is a positive constant to be chosen later.
We claim that f1 ∈ L p(E) and f2 ∈ Lq(E). Since f ∈ Lr (E), the set [| f | > λt]

has finite measure. Therefore by Hölder’s inequality

∫

E
| f1|pdy ≤ ‖ f ‖p

r

(
μ([| f | > λt]))1− p

r .

Thus f1 ∈ L p(E). Moreover

∫

E
| f2|qdy ≤

∫

E
| f2|q−r | f |r dy ≤ (λt)q−r

∫

E
| f |r dy.

Assume first 1 ≤ p < q < ∞. Then, using the quasi-linear structure of T , and
the assumptions (9.2)
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μ([|T ( f )| > t]) ≤ μ
([

|T ( f1)| >
t

2C

])
+ μ

([
|T ( f2)| >

t

2C

])

≤ (2CNp)
p

t p
‖ f1‖p

p + (2CNq)
q

tq
‖ f2‖qq

= (2CNp)
p

t p

∫

| f |>λt
| f |pdy + (2CNq)

q

tq

∫

| f |≤λt
| f |qdy.

(10.1)

From this
∫

E
|T ( f )|r dy = r

∫ ∞

0
tr−1μ([|T ( f )| > t])dt

≤ r(2CNp)
p
∫ ∞

0
tr−p−1

∫

| f |>λt
| f |pdy

+ r(2CNq)
q
∫ ∞

0
tr−q−1

∫

| f |≤λt
| f |qdy.

The integrals on the right-hand side are transformedbymeans of Fubini’s Theorem
and give

∫ ∞

0
tr−p−1

∫

| f |>λt
| f |pdy =

∫

E
| f |p

( ∫ | f |/λ

0
tr−p−1dt

)
dy

= 1

r − p

1

λr−p

∫

E
| f |r dy.

∫ ∞

0
tr−q−1

∫

| f |≤λt
| f |qdy =

∫

E
| f |q

( ∫ ∞

| f |/λ
tr−q−1dt

)
dy

= 1

q − r
λq−r

∫

E
| f |r dy.

Combining these estimates

‖T ( f )‖rr ≤ r
{ (2C)p

r − p

N p
p

λr−p
+ (2C)q

q − r
Nq
q λq−r

}
‖ f ‖rr . (10.2)

Minimizing the right-hand side with respect to λ proves (9.3) with the value of
λ = δ given by (9.4) and (9.5).

Turning now to the case q = ∞, we begin by choosing the parameter λ so large
that

μ
([

|T ( f2)| >
t

2C

])
= 0. (10.3)

If this is violated, then ‖T ( f2)‖∞ > t/2C . From this and the second of (9.2) with
q = ∞

λt ≥ ‖ f2‖∞ ≥ 1

N∞
‖T ( f2)‖∞ ≥ 1

N∞
t

2C
.
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Therefore choosing

λ = 1

2CN∞
, one has ‖T ( f2)‖∞ = t

2C
,

and (10.3) holds. We proceed now as before, starting from (10.1) where the terms
involving f2 are discarded. This gives an analog of (10.2) without the terms involving
q, i.e.,

‖T ( f )‖rr ≤ r
(2C)p

r − p

N p
p

λr−p
‖ f ‖rr , λ = 1

2CN∞
. �

11 Rearranging the Values of a Function

Let E ⊂ R
N be measurable and of finite Lebesgue measure μ(E). The set E is

symmetrically rearranged about the origin of RN into an open ball BR = E∗, of
equal measure as E . Thus

κN R
N = μ(E)

where κN is the volume of the unit ball in RN . The symmetric rearrangement of the
characteristic function of E is the characteristic function of E∗, i.e.,

χ∗
E = χE∗ .

Next, let f be a nonnegative, simple function taking n distinct positive values
f1 < · · · < fn , on mutually disjoint sets {E1, . . . , En}, each of finite measure.
Rewrite f as

f = f1χE1∪···∪En + ( f2 − f1)χE2∪···∪En + · · · ( fn − fn−1)χEn (11.1)

and define the rearrangement of f as

f ∗ = f1χ(E1∪···∪En)∗ + ( f2 − f1)χ(E2∪···∪En)∗ + · · · + ( fn − fn−1)χE∗
n
.

By construction

E1 ∪ · · · ∪ En = [ f > t] for all t ∈ [0, f1);
E2 ∪ · · · ∪ En = [ f > t] for all t ∈ [ f1, f2);

· · · · · · = · · · · · · · · · · · ·
En−1 ∪ En = [ f > t] for all t ∈ [ fn−2, fn−1);

En = [ f > t] for all t ∈ [ fn−1, fn).
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Likewise

(E1 ∪ · · · ∪ En)
∗ = [ f ∗ > t] for all t ∈ [0, f1);

(E2 ∪ · · · ∪ En)
∗ = [ f ∗ > t] for all t ∈ [ f1, f2);

· · · · · · = · · · · · · · · · · · ·
(En−1 ∪ En)

∗ = [ f ∗ > t] for all t ∈ [ fn−2, fn−1);
E∗
n = [ f ∗ > t] for all t ∈ [ fn−1, fn).

Hence, picking some x ∈ (E1 ∪ · · · ∪ En)
∗ the value of f ∗ at x is determined by

f ∗(x) = sup{t ∣∣ μ([ f > t]) > κN |x |N }. (11.2)

Also by this construction

μ([ f > t]) = μ([ f ∗ > t]) for all t ≥ 0. (11.3)

One also verifies that if f and g are any two such nonnegative, simple func-
tions, then f ≤ g implies f ∗ ≤ g∗. Thus the operation of symmetric decreasing
rearrangement of such simple functions preserves the ordering.

Let now f be a real-valued, measurable, nonnegative function defined in RN and
such that

μ([ f > t]) < ∞ for all t > 0. (11.4)

There exists a sequence of nonnegative, measurable, simple functions { fn} → f
pointwise in R

N , and fn ≤ fn+1. The assumption (11.4) and the construction of
the fn in § 3 of Chap.4, implies that each fn takes finitely many, distinct values on
distinct, measurable sets of finite measure. Hence, f ∗

n is well defined for each n.
Moreover f ∗

n ≤ f ∗
n+1 and the limit of { f ∗

n } exists. Define

f ∗(x) = lim f ∗
n (x) pointwise in R

N

= sup
n

sup{t ∣∣ μ([ fn > t]) > κN |x |N }
= sup{t ∣∣ μ([ f > t]) > κN |x |N }.

(11.5)

Hence (11.2) can be taken as the definition of the symmetric, decreasing rearrange-
ment of a real-valued, nonnegative, measurable function f defined in RN and satis-
fying (11.4).

Proposition 11.1 Let f and g be real-valued, nonnegative, measurable functions
satisfying (11.4). Then

(i) f ∗ is nonnegative, radially symmetric and nonincreasing;
(ii) f ≤ g implies f ∗ ≤ g∗;
(iii) Let F : R+ → R

+ be, nondecreasing. Then F( f )∗ = F( f ∗). In particular
( f − t)∗+ = ( f ∗ − t)+ for any constant t;

http://dx.doi.org/10.1007/978-1-4939-4005-9_4
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(iv) [ f ∗ > t] are open and hence f ∗ is measurable.
(v) f and f ∗ are equi-measurable, in the sense that (11.3) holds.
(vi) For s ≤ t , μ([s < f ≤ t]) = μ([s < f ∗ ≤ t]);
(vii) If f ∈ L p(RN ) for some 1 ≤ p ≤ ∞, then f ∗ ∈ L p(RN ) and moreover

‖ f ‖p = ‖ f ∗‖p.

Proof The statements (i)–(vi) follow from the construction of f ∗ leading to (11.5).
As for (vii), the statement is obvious if p = ∞. If 1 ≤ p < ∞, since f and f ∗ are
equi-measurable

‖ f ‖p
p =

∫ ∞

0
t p−1μ([ f > t])dt =

∫ ∞

0
t p−1μ([ f ∗ > t])dt = ‖ f ∗‖p

p. �

12 Some Integral Inequalities for Rearrangements

Proposition 12.1 Let f and g be real-valued, nonnegative, measurable functions
in RN satisfying (11.4). Then

∫

RN

f gdμ ≤
∫

RN

f ∗g∗dμ. (12.1)

Proof Assume first that f and g are simple and both take only the values 0 and 1.
Set

E = [ f = 1], E∗ = [ f ∗ = 1];
G = [g = 1], G∗ = [g∗ = 1].

Now compute and estimate

∫

RN

f gdμ = μ(E ∩ G)

≤ min{μ(E);μ(G)}
= min{μ(E∗);μ(G∗)}
= μ(E∗ ∩ G∗).

By linear combinations and iterations the statement holds for nonnegative simple
functions satisfying (11.4). By approximation and a limiting process, it continues to
hold for nonnegative, measurable functions satisfying (11.4).

Remark 12.1 Neither f , g or f g are required to be integrable. If f g is not integrable
(12.1) is meant in the sense that if the left-hand side is infinite so is the right-hand
side.
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Corollary 12.1 Let f and g be real-valued, nonnegative, measurable functions in
R

N satisfying (11.4). Then

∫

RN

f χ[g≤t]dμ ≥
∫

RN

f ∗χ[g∗≤t]dμ. (12.2)

Proof Assume first f ∈ L1(RN ), and apply (12.1) to the pair of functions f and
χ[g>t]. Writing the latter as 1 − χ[g≤t] gives

∫

RN

f (1 − χ[g≤t])dμ ≤
∫

RN

f ∗χ[g∗>t]dμ

=
∫

RN

f ∗(1 − χ[g∗≤t])dμ.

The general case follows from this by a limiting process, understanding that if the
right-hand side of (12.2) is infinite, so is the left-hand side. �

12.1 Contracting Properties of Symmetric Rearrangements

Theorem 12.1 (Chiti [27]; also in [29]) Let f and g be nonnegative functions in
L p(RN ) for 1 ≤ p ≤ ∞. If p = ∞ assume also that f and g satisfy (11.4). Then

‖ f ∗ − g∗‖p ≤ ‖ f − g‖p. (12.3)

Proof The inequality is obvious for p = ∞. Let 1 ≤ p < ∞ and assume first that
f ≥ g. Compute

( f − g)p = −
∫ f

g

d

dt
( f − t)pdt

= p
∫ f

g

( f − t)p−1dt

= p
∫ ∞

0
( f − t)p−1

+ χ[g≤t]dt.

Integrate over RN and interchange the order of integration by means of Fubini’s
theorem. In the integral so obtained use (12.2). These operation yield
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‖ f − g‖p
p = p

∫ ∞

0

∫

RN

( f − t)p−1
+ χ[g≤t]dμdt

≥ p
∫ ∞

0

∫

RN

( f ∗ − t)p−1
+ χ[g∗≤t]dμdt

=
∫

RN

p
∫ ∞

0
( f ∗ − t)p−1

+ χ[g∗≤t]dtdμ

=
∫

RN

∫ f ∗

g∗
p( f ∗ − t)p−1dtdμ

=
∫

RN

∫ f ∗

g∗

d

dt
( f ∗ − t)pdtdμ

=
∫

RN

( f ∗ − g∗)pdμ = ‖ f ∗ − g∗‖p
p.

In general,

‖ f − g‖p = ‖ f ∨ g − f ∧ g‖p ≥ ‖( f ∨ g)∗ − ( f ∧ g)∗‖p ≥ ‖ f ∗ − g∗‖p. �

12.2 Testing for Measurable Sets E Such that E= E∗ a.e.
in R

N

Proposition 12.2 Let E ⊂ R
N be measurable and of finite measure and let f be

nonnegative, radially symmetric, and strictly decreasing in |x |. If
∫

RN

f χEdx =
∫

RN

f ∗χE∗dx (12.4)

then E = E∗ a.e. in RN .

Proof The assumptions on f imply that f = f ∗ and f > 0 in RN . The sets [ f > t]
are balls of radius ρ(t) about the origin, for some positive function ρ(·). While f
may exhibit jump discontinuities, the assumptions on f imply that the function

R
+ � t → μ([ f > t]) = κNρN (t)

is continuous and ρ ranges over (0,∞). By (12.1) for all t > 0,

∫

RN

χ[ f >t]χEdx ≤
∫

RN

χ[ f >t]χE∗dx .
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Integrating in dt over R+

∫

RN

f χEdx =
∫ ∞

0

( ∫

RN

χ[ f >t]χEdx
)
dt

≤
∫ ∞

0

( ∫

RN

χ[ f >t]χE∗dx
)
dt

=
∫

RN

f χE∗dx =
∫

RN

f χEdx

where we have used the assumption (12.4). From this

∫

RN

χ[ f >t]χEdx =
∫

RN

χ[ f >t]χE∗dx for a.e. t > 0.

From the continuity of ρ(·) this implies

μ
([ f > t] ∩ E

) = μ
([ f > t] ∩ E∗) for all t > 0.

This equality is possible if for all fixed ρ > 0, either E and E∗ are both contained
in Bρ, except for a set of measure zero, or if E and E∗ both contain Bρ, except for a
set of i measure zero. �

Corollary 12.2 Let g be a real-valued, nonnegative, measurable function inRN sat-
isfying (11.4), and let f be nonnegative, radially symmetric, and strictly decreasing
in |x |. Then (12.1) holds with equality if and only if g = g∗.

Proof For all t > 0 by (12.1)

∫

RN

f χ[g>t]dx ≤
∫

RN

f χ[g∗>t]dx .

Integrating in dt over R+,
∫

RN

f gdx =
∫ ∞

0

( ∫

RN

f χ[g>t]dx
)
dt

≤
∫ ∞

0

( ∫

RN

f χ[g∗>t]dx
)
dt

=
∫

RN

f g∗dx =
∫

RN

f gdx .

Thus ∫

RN

f χ[g>t]dx =
∫

RN

f χ[g∗>t]dx for a.e. t > 0.

Apply now Proposition 12.2 with E = [g > t]. �
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13 The Riesz Rearrangement Inequality

Theorem 13.1 (Riesz [131]; also Zygmund [178]) Let f, g and h be real-valued,
nonnegative, measurable functions in RN satisfying (11.4). Then

I =
∫

RN

∫

RN

f (x)g(y)h(y − x)dxdy

≤
∫

RN

∫

RN

f ∗(x)g∗(y)h∗(y − x)dxdy = I∗.
(13.1)

Since f , g and h are measurable and nonnegative, the integrals in (13.1), finite
or infinite are well defined, and the inequality holds with the understanding that if
I = ∞ then also I∗ = ∞.

In the next sections we will prove this inequality for N = 1. The proof, albeit
lengthy, is rather elementary, being based on examining the various occurrences and
overlaps of the support of f , g, and h.While 1-dimensional, it suffices to establish the
main potential estimates, in any number of dimensions (§ 18–§ 22), needed for the
Sobolev embedding theorems of Chap.10. The proof for N = 2 and N > 2 will be
given in § 25–§ 26. It is more intricate and based on different ways of symmetrizing
sets and functions (Steiner symmetrization in § 23). In all cases, the starting point is
the reduction of the proof to the case when f , g, and h are characteristic functions
of measurable, bounded sets.

13.1 Reduction to Characteristic Functions of Bounded Sets

It suffices to prove the theorem for characteristic functions ofmeasurable sets. Indeed
f , g, and h are the pointwise limit of nondecreasing sequences of simple functions
{ fn},{gn}, and {hn}, each having the representation

fn =
n∑

j=1
ϕ jχFj , Fj ⊃ Fj+1, j = 1, . . . , n;

gm =
m∑

s=1
γsχGs , Gs ⊃ Gs+1, s = 1, . . . ,m;

hk =
k∑

�=1
θ�χH�

, H� ⊃ H�+1, � = 1, . . . , k,

where ϕ j , γs , and θ� are positive constants, and Fj , Gs , and H� are measurable
subsets of RN , of finite measure. Their symmetric rearrangements are

f ∗
n =

n∑

j=1
ϕ jχF∗

j
, g∗

m =
m∑

s=1
γsχG∗

s
, h∗

k =
k∑

�=1
θ�χH∗

�
.

http://dx.doi.org/10.1007/978-1-4939-4005-9_10
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Assuming (13.1) holds true for characteristic functions of measurable sets, by
monotone convergence,

I =
∫

RN

∫

RN

f (x)g(y)h(y − x)dxdy

= lim
n,m,k→∞

∫

RN

∫

RN

fn(x)gm(y)hk(y − x)dxdy

= lim
n,m,k→∞

∑

j,s,�
ϕ jγsθ�

∫

RN

∫

RN

χFj (x)χGs (y)χH�
(y − x)dxdy

≤ lim
n,m,k→∞

∑

j,s,�

ϕ jγsθ�

∫

RN

∫

RN

χ∗
Fj

(x)χ∗
Gs

(y)χ∗
H�

(y − x)dxdy

≤ lim
n,m,k→∞

∫

RN

∫

RN

f ∗
n (x)g∗

m(y)h∗
k(y − x)dxdy

=
∫

RN

∫

RN

f ∗(x)g∗(y)h∗(y − x)dxdy.

Thus in what follows we may assume that

f = χF , g = χG, h = χH (13.2)

where F , G, and H are measurable subsets of RN of finite measure.
For a positive integer n let Bn denote the ball of radius n centered at the origin.

Assume that (13.1) holds for measurable, bounded sets F , G, and H . Then by
monotone convergence

I = lim
∫

RN

∫

RN

χF∩Bn (x)χG∩Bn (y − x)χH∩Bn (y)dxdy

≤ lim
∫

RN

∫

RN

χ∗
F∩Bn

(x)χ∗
G∩Bn

(y − x)χ∗
H∩Bn

(y)dxdy = I∗.

Thus the proof of the Riesz rearrangement inequality (13.1) reduces to the case
when f , g, and h are of the form (13.2) where F , G, and H are measurable and
bounded sets in RN .

14 Proof of (13.1) for N = 1

14.1 Reduction to Finite Union of Intervals

Since F is measurable and of finite measure, for every ε > 0 there exists an open set
Fo,ε containing F and such that (Proposition 16.2 of Chap. 3),

μ(Fo,ε − F) < 1
2ε.

http://dx.doi.org/10.1007/978-1-4939-4005-9_3
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Such an open set Fo,ε is the countable union of mutually disjoint open intervals
{In} (Proposition 1.1 of Chap.3). Since Fo,ε is of finitemeasure, there exists a positive
integer nε such that ∑

j>nε

μ(I j ) < 1
2ε.

Setting

Fε =
nε⋃

j=1
I j , F1,ε = F

⋂ ⋃

j>nε

I j , F2,ε = Fε − F

the set F can be represented as

F = Fε

⋃
F1,ε − F2,ε with μ(F1,ε ∪ F2,ε) < ε

where Fε is the finite union of open disjoint intervals. Moreover,

χF = χFε
+ χF1,ε − χF2,ε .

Similar decompositions hold for G and H . It is apparent that sets of arbitrarily
smallmeasure give arbitrarily small contributions in the integralsI andI∗. Therefore,
in proving (13.1) for N = 1 one may assume that f , g, and h are characteristic
functions of sets F ,G, and H , each finite union of disjoint, open intervals. Moreover,
by changing ε if necessary, wemay assume that the end points of the intervalsmaking
up F and respectively G and H are rational.

In such a case, in the integralI wemay introduce a change of variables by rescaling
x and y of a multiple equal to the minimum, common denominator of the end points
of the intervals making up F , G, and H . This reduces the proof of Theorem 13.1 for
N = 1, to the case when each of the sets F , G, and H is the finite union of intervals
of the type ( j, j + 1) for integral j .

Finally, we may assume that the number of intervals making up each of the sets
F , G, and H is even. This can be realized by bisecting each of these intervals and
by effecting a further change of variables.

Thus in proving Theorem 13.1 for N = 1, we may assume that f , g, and h are
characteristic functions of sets F , G, and H of the form,

F =
2R⋃

i=1
(mi ,mi + 1) for positive integers mi

and some positive integer R;
G =

2S⋃

j=1
(n j , n j + 1)

for positive integers n j

and some positive integer S;
H =

2T⋃

�=1
(k�, k� + 1)

for positive integers k�

and some positive integer T .

From this
f ∗ = χF∗ , g∗ = χG∗, h∗ = χH∗ ,

http://dx.doi.org/10.1007/978-1-4939-4005-9_3
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where,
F∗ = (−R, R), G∗ = (−S, S), H∗ = (−T, T ).

From the definition of symmetric, decreasing rearrangement, it follows that for
all x ∈ R,

h∗(· − x) = χH∗
x

where H∗
x = (x − T, x + T ).

With this notation we rewrite I and I∗ as

I =
∫

R

f (x)Γ (x)dx, where Γ (x) =
∫

R

g(y)h(y − x)dy;
I∗ =

∫

R

f ∗(x)Γ ∗(x)dx, where Γ ∗(x) =
∫

R

g∗(y)h∗(y − x)dy.

Moreover

I∗ =
∫ R

−R
Γ ∗(x)dx and Γ ∗(x) =

∫ S

−S
χ(x−T,x+T )(y)dy.

14.2 Proof of (13.1) for N = 1. The Case T + S ≤ R

Without loss of generality we may assume that

μ(H) ≤ μ(G) i.e., T ≤ S.

Indeed we may always reduce to such a case, by interchanging the role of g and h
and effecting a suitable change of variables in the integral I. Estimate and compute

I ≤
∫

R

∫

R

g(y)h(y − x)dydx

=
∫

R

g(y)dy
∫

R

h(η)dη

= μ(G)μ(H) = 4ST .

Next we show that I∗ = 4ST . From the definition of Γ ∗

Γ ∗(x) = μ
(
(−S, S) ∩ (x − T, x + T )

)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 for x ≤ −(S + T );
x + (S + T ) for −(S + T ) ≤ x ≤ −(S − T );
2T for −(S − T ) ≤ x ≤ (S − T );
(S + T ) − x for (S − T ) ≤ x ≤ (S + T );
0 for (S + T ) ≤ x .

(14.1)
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Assuming now that (S + T ) ≤ R, compute

I∗ =
∫ R

−R
Γ ∗(x)dx =

∫ (S+T )

−(S+T )

Γ ∗(x)dx = 4ST .

So far no use has been made of the structure of the sets F , G, and H . Such a
structure will be employed in examining the case S + T > R.

14.3 Proof of (13.1) for N = 1. The Case S + T > R

Since S, T and R are positive integers, the difference (S + T ) − R is a positive
integer, i.e.,

1
2μ(G) + 1

2μ(H) − 1
2μ(F) = S + T − R = n

for some positive integer n. The arguments of the previous section show that the
theorem holds for n ≤ 0. We show by induction that if it does hold for some integer
(n − 1) ≥ 0, then it continues to hold for n. Set

G1 =
2S−1⋃

j=1
(n j , n j + 1)

i.e., the set G from which the last
interval on the right has been removed;

H1 =
2T−1⋃

�=1
(k�, k� + 1)

i.e., the set H from which the last
interval on the right has been removed.

By construction

1
2μ(G1) + 1

2μ(H1) − 1
2μ(F) = (S − 1

2 ) + (T − 1
2 ) − R = n − 1 ≥ 0. (14.2)

Set also g1 = χG1 and h1 = χH1 . From the definitions it follows that

g∗
1 = χG∗

1
where G∗

1 = (−S + 1
2 , S − 1

2 );
h∗
1 = χH∗

1
where H∗

1 = (−T + 1
2 , T − 1

2 ).

Moreover,

h∗
1(· − x) = χH∗

1,x
where H∗

1,x = (x − T + 1
2 , x + T − 1

2 ).

Taking into account (14.2), the induction hypothesis is that
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I1 =
∫

R

f (x)
∫

R

g1(y)h1(y − x)dydx

=
∫

R

f (x)Γ1(x)dx

≤
∫

R

f ∗(x)
∫

R

g∗
1(y)h

∗
1(y − x)dydx

=
∫

R

f ∗(x)Γ ∗
1 (x)dx = I∗

1 .

Next observe that Γ ∗
1 is defined by (14.1) with S and T replaced, respectively, by

S − 1
2 and T − 1

2 , i.e.,

Γ ∗
1 (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 for x ≤ −(S + T − 1);
x + (S + T − 1) for −(S + T − 1) ≤ x ≤ −(S − T );
2T − 1 for −(S − T ) ≤ x ≤ (S − T );
(S + T − 1) − x for (S − T ) ≤ x ≤ (S + T − 1);
0 for (S + T − 1) ≤ x .

From this and (14.1) one verifies that

Γ ∗(x) − Γ ∗
1 (x) = 1 for all |x | ≤ (S + T − 1).

In particular this holds true for all |x | ≤ R, since R ≤ (S + T − 1). Using these
remarks, compute

I∗ − I∗
1 =

∫

R

f ∗(x)Γ ∗(x)dx −
∫

R

f ∗(x)Γ ∗
1 (x)dx

=
∫ R

−R
(Γ ∗(x) − Γ ∗

1 (x))dx = 2R.

Next we examine the structure of the function

x → Γ (x) − Γ1(x) = μ({G ∩ Hx )) − μ(G1 ∩ H1,x ).

Here by Hx and H1,x we have denoted the sets H and H1 shifted by x .

Lemma 14.1 0 ≤ Γ (x) − Γ1(x) ≤ 1, for all x ∈ R.

Assuming the lemma for the moment, compute

I − I1 =
∫

R

f (x)Γ (x)dx −
∫

R

f (x)Γ1(x)dx

=
∫

R

f (x)(Γ (x) − Γ1(x))dx

≤
∫

R

χFdx = 2R.



14 Proof of (13.1) for N = 1 463

From this
I − I1 ≤ I∗ − I∗

1 .

This implies the theorem since, by the induction hypothesis, I1 ≤ I∗
1 . �

14.4 Proof of the Lemma 14.1

It is apparent that such a function is affine within any interval of the form (n, n + 1)
for integral n. Therefore it must take its extrema for some integral value of x . If x
is an integer, the set Hx is the finite union of unit intervals whose end points are
integers. Now, still for integral x , the set H1,x is precisely Hx from which the last
interval on the right has been removed. Set

IG = {the rightmost interval of G};
IHx = {the rightmost interval of Hx }.

If IG coincides with IHx , then removing them both, amounts to removing a single
interval of unit length out of G ∩ Hx . Therefore

μ(G ∩ Hx ) − μ(G1 ∩ H1,x ) = 1.

If IHx is on the right with respect to IG , then removing it, has no effect on the
intersection G ∩ Hx , i.e.,

G ∩ Hx = G ∩ H1,x .

Now, by removing IG out of G, the two sets G ∩ Hx and G1 ∩ H1,x , differ at most
by one interval of unit length. Thus

μ(G ∩ Hx ) − μ(G1 ∩ H1,x ) ≤ 1.

Finally, if IHx is on the left with respect to IG , we arrive at the same conclusion
by interchanging the role of G and Hx . �

15 The Hardy’s Inequality

Proposition 15.1 (Hardy [66]) Let f ∈ L p(R+) for some p > 1, be nonnegative.
Then ∫ ∞

0

1

x p

( ∫ x

0
f (t)dt

)p
dx ≤

( p

p − 1

)p
∫ ∞

0
f pdx . (15.1)
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Proof Fix 0 < ξ < η < ∞. Then, by integration by parts

∫ η

ξ

1

x p

( ∫ x

0
f (t)dt

)p
dx = −1

p − 1

∫ η

ξ

( ∫ x

0
f (t)dt

)p d

dx
x1−pdx

= ξ1−p

p − 1

( ∫ ξ

0
f (t)dt

)p − η1−p

p − 1

( ∫ η

0
f (t)dt

)p

+ p

p − 1

∫ η

ξ

x1−p f (x)
( ∫ x

0
f (t)dt

)p−1
dx .

The second term on the right-hand side is nonpositive and it is discarded. The first
term tends to zero as ξ → 0. Indeed by Hölder’s inequality

ξ1−p
( ∫ ξ

0
f (t)dt

)p ≤
∫ ξ

0
f p(t)dt.

Therefore letting ξ → 0 and applying Hölder’s inequality in the resulting inequal-
ity, gives ∫ η

0

1

x p

( ∫ x

0
f (t)dt

)p
dx

≤ p

p − 1

∫ η

0
x1−p f (x)

( ∫ x

0
f (t)dt

)p−1
dx

≤ p

p − 1

[ ∫ η

0

1

x p

( ∫ η

0
f (t)dt

)p
dx

] p−1
p

( ∫ η

0
f pdx

) 1
p
. �

The constant on the right-hand side of (15.1) is the best possible as it can be tested
for the family of functions

fε(x) =
{
x− 1

p −ε for x ≥ 1;
0 for 0 ≤ x < 1,

for ε > 0. Assume (15.1) were to hold for a smaller constant, say for example

( p

p − 1

)p
(1 − δ)p for some δ ∈ (0, 1).

If (15.1) were applied to fε it would give

∫ ∞

1

1

x p

( ∫ x

1
t−

1
p −εdt

)p
dx ≤

( p

p − 1

)p
(1 − δ)p

1

pε
. (15.2)

To estimate below the left-hand side, set
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Aε =
( p

p − 1 − εp

)p
, Bε,ρ =

(
1 − 1

(1 + ρ)
1− 1

p −ε

)p

where ε > 0 is so small that (p− 1− εp) > 0 and ρ is an arbitrary positive number.
Then

∫ ∞

1

1

x p

( ∫ x

1
t−

1
p −εdt

)p
dx = Aε

∫ ∞

1

1

x p

(
x1−

1
p −ε − 1

)p
dx

≥ AεBε

∫ ∞

1+ρ

x−1−pεdx

= AεBε
1

pε

1

(1 + ρ)εp
.

Putting this in (15.2), multiplying by pε and letting ε → 0 gives

1 − 1

(1 + ρ)
p−1
p

≤ 1 − δ.

Since ρ > 0 is arbitrary this is a contradiction.

16 The Hardy–Littlewood–Sobolev Inequality for N = 1

Theorem 16.1 ([67, 68]) Let f and g be nonnegative measurable functions in R

and let p, q > 1 and σ ∈ (0, 1) be linked by

1

p
+ 1

q
+ σ = 2. (16.1)

There exists a constant C depending only upon p, q, and σ, such that

∫

R

∫

R

f (x)g(y)

|x − y|σ dxdy ≤ C‖ f ‖p‖g‖q . (16.2)

Remark 16.1 The constant C(p, q,σ) can be computed explicitly as

C(p, q,σ) = 4

1 − σ

{( p

p − 1

)p q−1
q +

( q

q − 1

)q p−1
p

}
. (16.3)

Thus C(p, q,σ) tends to infinity as either σ → 1 or p → 1. Also q = 1 is not
permitted in (16.2) and (16.3).
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16.1 Some Reductions

Assume that (16.2) holds true for nonnegative and symmetrically decreasing func-
tions. Then, for general nonnegative functions f and g, by the Riesz rearrangement
inequality of Theorem 13.1 applied to f , g and h(x) = |x |−σ

∫

R

∫

R

f (x)g(y)

|x − y|σ dxdy ≤
∫

R

∫

R

f ∗(x)g∗(y)
|x − y|σ dxdy

≤ C‖ f ∗‖p‖g∗‖q = C‖ f ‖p‖g‖q .

Thus it suffices to prove (16.2) for nonnegative and symmetrically decreasing
functions f and g. Next, it suffices to prove the theorem in the seemingly weaker
form ∫ ∞

0

∫ ∞

0

f (x)g(y)

|x − y|σ dxdy ≤ Co‖ f ‖p‖g‖q (16.4)

for a constant Co depending only upon p and q. For this divide the domain of
integration in (16.2), into the four coordinate quadrants. By changing the sign of
both variables one verifies that the contributions of the first and third quadrant to the
integral in (16.2) are equal. The contribution of the second quadrant is majorized by
the contribution of the first quadrant. Indeed, by changing x into −x ,

∫ ∞

0

∫ 0

−∞
f (x)g(y)

|x − y|σ dxdy =
∫ ∞

0

∫ ∞

0

f (x)g(y)

|x + y|σ dxdy

≤
∫ ∞

0

∫ ∞

0

f (x)g(y)

|x − y|σ dxdy.

Similarly, the contribution of the fourth quadrant is majorized by the contribution
of the first quadrant. We conclude that

∫

R

∫

R

f (x)g(y)

|x − y|σ dxdy ≤ 4
∫ ∞

0

∫ ∞

0

f (x)g(y)

|x − y|σ dxdy.

17 Proof of Theorem 16.1

Divide further the first quadrant into the two octants [x ≥ y] and [y > x] and write

∫ ∞

0

∫ ∞

0

f (x) g(y)

|x − y|σ dxdy =
∫ ∞

0
f (x)

( ∫ x

0

g(y)

(x − y)σ
dy

)
dx

+
∫ ∞

0
g(y)

( ∫ y

0

f (x)

(y − x)σ
dx

)
dy

= J1 + J2.
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We estimate the first of these integrals in terms of the right-hand side of (16.2),
the estimation of the second being similar.

Lemma 17.1 Let t → u(t), v(t) be nonnegative and measurable on a measurable
subset E ⊂ R of finite measure. Assume in addition that u is nondecreasing and v

is nonincreasing. Then

∫

E
uvdt ≤ 1

μ(E)

( ∫

E
udt

)( ∫

E
vdt

)
.

Proof By the stated monotonicity of u and v,

∫

E

∫

E

(
u(x) − u(y)

)(
v(y) − v(x)

)
dxdy ≥ 0.

From this
∫

E

∫

E
u(x)v(y)dxdy +

∫

E

∫

E
u(y)v(x)dxdy

≥
∫

E

∫

E
u(x)v(x)dxdy +

∫

E

∫

E
u(y)v(y)dxdy. �

Applying the Lemma with

E = (0, x), u(t) = (x − t)−σ, v(t) = g(t)

gives ∫ x

0

g(y)

(x − y)σ
dy ≤ 1

(1 − σ)xσ

∫ x

0
g(y)dy. (17.1)

Using Hölder’s inequality, estimate

G(x) =
∫ x

0
g(y)dy ≤

( ∫ x

0
gq(y)dy

) 1
q
x

q−1
q .

Return now to J1. Using (17.1), the expression of G(x) and Hölder’s inequality

J1 ≤ 1

1 − σ

∫ ∞

0
f (x)x−σG(x)dx

≤ 1

1 − σ
‖ f ‖p

( ∫ ∞

0
x−σ p

p−1 G(x)
p

p−1 dx
) p−1

p

= 1

1 − σ
‖ f ‖p

( ∫ ∞

0
x−σ p

p−1 G(x)qG(x)
p

p−1−qdx
) p−1

p
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≤ 1

1 − σ
‖ f ‖p‖g‖1−q p−1

p
q

( ∫ ∞

0
x−σ p

p−1 x
q−1
q (

p
p−1−q)G(x)qdx

) p−1
p

≤ 1

1 − σ
‖ f ‖p‖g‖1−q p

p−1
q

( ∫ ∞

0

1

xq

( ∫ x

0
g(y)dy

)q
dx

) p−1
p

.

The last integral is estimated by means of Hardy’s inequality and gives

( ∫ ∞

0

1

xq

( ∫ x

0
g(y)dy

)q
dx

) p−1
p ≤

( q

q − 1

)q p−1
p ‖g‖q

p−1
p

q .

Putting this in the previous inequality proves the theorem. �

18 The Hardy–Littlewood–Sobolev Inequality for N ≥ 1

Theorem 18.1 ([67, 68, 148]) Let f and g be nonnegative measurable functions in
R

N and let p, q > 1 and σ ∈ (0, N ) be linked by

1

p
+ 1

q
+ σ

N
= 2. (18.1)

There exists a constant C(p, q,σ, N ) depending only upon p, q, σ, and N, such
that ∫

RN

∫

RN

f (x)g(y)

|x − y|σ dxdy ≤ C(p, q,σ, N )‖ f ‖p‖g‖q . (18.2)

Remark 18.1 The constant C(p, q, N ,σ) can be computed explicitly as

C(p, q,σ, N ) = 1

Nσ/2

( 4N

N − σ

)N{( p

p − 1

)p q−1
q +

( q

q − 1

)q p−1
p

}N
. (18.3)

Thus C(p, q, N ,σ) tends to infinity as either σ → N or p → 1. Also q = 1 is
not permitted in (18.2).

18.1 Proof of Theorem 18.1

The arithmeticmean of N positive numbers ismore than the corresponding geometric
mean (§ 14.1c of Chap.5). Therefore

|x − y| =
( N∑

i=1
(xi − yi )

2
) 1

2 ≥ √
N

N∏

i=1
|xi − yi | 1

N .

http://dx.doi.org/10.1007/978-1-4939-4005-9_5


18 The Hardy–Littlewood–Sobolev Inequality for N ≥ 1 469

Set
x̄ = (x1, . . . , xN−1) and ȳ = (y1, . . . , yN−1).

From this and Fubini’s Theorem
∫

RN

∫

RN

f (x)g(y)

|x − y|σ dxdy ≤ 1

N
σ
2

∫

RN−1

∫

RN−1

1
∏N−1

i=1 |xi − yi | σ
N

×
( ∫

R

∫

R

f (x̄, xN )g(ȳ, yN )

|xN − yN | σ
N

dxNdyN
)
dx̄d ȳ

≤ C

N
σ
2

∫

RN−1

∫

RN−1

‖ f (x̄, ·)‖p‖g(ȳ, ·)‖q
∏N−1

i=1 |xi − yi | σ
N

d x̄d ȳ

where C is the constant appearing in (16.3) with σ replaced by σ/N . Repeated
application of this procedure proves the theorem. �

Remark 18.2 The structure of the constant CN in (18.3) shows that neither p = 1,
nor q = 1, nor σ = N are permitted in (18.2).

19 Potential Estimates

Let f be a nonnegative function in L p(RN ) for some p ∈ (1,∞) and set,

h(y) =
∫

RN

f (x)

|x − y|σ dx for some σ ∈ (0, N ).

This is the formal potential of f of order σ, and it is natural to ask for what values
of p and σ such a potential is well defined as an integrable function.

Let p > 1, q > 1 and σ ∈ (0, N ) satisfy (18.1), which we rewrite as

1

p
+ σ

N
= 1 + 1

p∗

where p∗ = q ′ is the Hölder conjugate of q. Such a number is also called the Sobolev
conjugate of p. The next proposition asserts that h ∈ L p∗

(RN ).

Theorem 19.1 There exists a constant CN depending only upon σ, N and p, such
that

‖h‖p∗ ≤ CN‖ f ‖p where
1

p∗ = 1

p
+ σ

N
− 1. (19.1)

The constant CN is the same as the one appearing in (18.3).
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Proof Since 1 < p∗ < ∞ the norm ‖h‖p∗ is characterized by (§ 3.1 of Chap.6)

‖h‖p∗ = sup
g∈Lq (RN )

‖g‖q=1

∫

RN

hgdy (19.2)

≤ CN‖ f ‖p‖g‖q
where we have applied Theorem 18.1. �

Remark 19.1 The previous argument shows that Theorem 18.1 implies Theo-
rem19.1.On the other hand, assuming (19.1) holds true, (19.2) impliesTheorem18.1.
Thus these two theorems are equivalent.

Remark 19.2 The constantCN in (19.1) is the same as the constantC(p, q,σ, N ) in
(18.3) with p∗ = q

q−1 . From the explicit form (18.3) it follows that the values p = 1
and p∗ = ∞ are not permitted in (19.1).

20 L p Estimates of Riesz Potentials

Let E be a Lebesgue measurable subset ofRN and let f ∈ L p(E) for some 1 ≤ p ≤
∞. The Riesz potential generated by f in RN , is defined by ([129, 130]),

V f (x) =
∫

E

f (y)

|x − y|N−1
.

The definition is formal and it is natural to ask whether such a potential is well
defined as an integrable function. When p ∈ (1, N ) an answer in this direction is
provided by Theorem 19.1.

One may regard f as a function in L p(RN ) by extending it to be zero outside E .
By such an extension, one might regard the domain of integration in (20.1) as the
whole RN . By Theorem 19.1 with σ = N − 1

Theorem 20.1 Let f ∈ L p(E) for 1 < p < N. There exists a constant C(N , p)
depending only upon N and p, such that

‖V f ‖p∗ ≤ C(N , p)‖ f ‖p where p∗ = Np

N − p
. (20.1)

Remark 20.1 The constant C(N , p) in (20.2) is the same as the one in (18.3) with
σ = N − 1. As such it tends to infinity as either p → 1 or p → N .

Remark 20.2 The value p = 1 is not permitted in Theorem 20.1. To construct a
counterexample, let Jε be the Friedrichs mollifying kernels introduced in § 18 of
Chap.6. If (20.2) where to hold for p = 1, then

http://dx.doi.org/10.1007/978-1-4939-4005-9_6
http://dx.doi.org/10.1007/978-1-4939-4005-9_6
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∫

RN

( ∫

RN

Jε(y)

|x − y|N−1
dy

) N
N−1

dx ≤ C

for a constant C independent of ε. Letting varep → 0, gives the contradiction

∫

RN

1

|x |N dx ≤ C.

Remark 20.3 The values p = N and p∗ = ∞, are not permitted as indicated by the
following counterexample. For 0 < ε � 1 and N ≥ 2, set

f (x) =

⎧
⎪⎨

⎪⎩

1

|x |
1

∣∣ ln |x |∣∣ 1+ε
N

for |x | ≤ 1
2 ;

0 for |x | > 1
2 .

One verifies that f ∈ LN (RN ) and that the corresponding potential V f (x) is
unbounded near the origin.

20.1 Motivating L p Estimates of Riesz Potentials
as Embeddings

Consider the Stokes formula (14.1) of Chap. 8 written for a function ϕ ∈ C∞
o (E).

After an integration by parts

ϕ(x) =
∫

E
∇y F(x; y) · ∇ϕdy.

Using (14.2) of Chap. 8

|ϕ(x)| ≤ 1

ωN

∫

E

|∇ϕ|
|x − y|N−1

dy. (20.2)

Given now a function u ∈ W 1,p
o (E) there is a sequence {ϕn} of functions in

C∞
o (E) such that ϕn → u in the norm of W 1,p

o (E). Thus up to a limiting process
(20.2) continues to hold for functions ϕ ∈ W 1,p

o (E).
Given that |∇ϕ| ∈ L p(E) it is natural to ask what is the order of integrability

of ϕ. This motivates Theorem 20.1. Statements of this kind are called embedding
theorems and are systematically treated in Chap.10.

Remark 20.4 A remarkable feature of Theorem 20.1 is that the constant C(N , p) is
independent of E and hence it continues to hold for E of infinite measure. However
p = 1 and p ≥ N are not allowed. If one permits the constant C to depend on N , p

http://dx.doi.org/10.1007/978-1-4939-4005-9_8
http://dx.doi.org/10.1007/978-1-4939-4005-9_8
http://dx.doi.org/10.1007/978-1-4939-4005-9_10
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and the measure of E , then estimates of the type of (20.2) continue to hold for p = 1
and p ≥ N as presented in the next sections.

21 L p Estimates of Riesz Potentials for p = 1 and p > N

Similar estimates for the limiting cases p = 1 and p ≥ N , require a preliminary
estimation of the potential generated by a function f , constant on a set E of finite
measure.

Proposition 21.1 Let E be of finite measure. For every r ∈ [1, N
N−1 ),

sup
x∈E

∫

E

dy

|x − y|(N−1)r
≤ κ

N−1
N r

N

1 − N−1
N r

μ(E)1−
N−1
N r (21.1)

where κN is the volume of the unit ball in R
N .

Proof Fix x ∈ E . The symmetric rearrangement (E − x)∗ of (E − x) is a ball about
the origin of radius ρ > 0 such that μ(E) = μ(Bρ(x)). Then by Proposition 12.1,

∫

E

dy

|x − y|(N−1)r
=

∫

RN

χ(E−x)

|y|(N−1)r
dy

≤
∫

RN

χ(E−x)∗

|y|(N−1)r
dy

=
∫

Bρ

dy

|y|(N−1)r
= NκN

N − (N − 1)r
ρN−(N−1)r . �

Proposition 21.2 Let E be of finite measure, and let f ∈ L1(E). Then V f ∈ Lq(E)

for all q ∈ [1, N
N−1 ), and

‖V f ‖q ≤ κ
N−1
N

N
(
1 − N−1

N q
) 1

q

μ(E)
1
q − N−1

N ‖ f ‖1. (21.2)

Proof Fix q ∈ (1, N
N−1 ) and write

| f (y)|
|x − y|N−1

= | f (y)|1− 1
q

| f (y)| 1
q

|x − y|N−1
.
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Then by Hölder’s inequality,

V f (x) ≤ ‖ f ‖1−
1
q

1

( ∫

E

| f (y)|
|x − y|(N−1)q

dy
) 1

q
.

Take the q-power and integrate in dx over E , to obtain

‖V f ‖qq ≤ ‖ f ‖q−1
1

∫

E
| f (y)|

( ∫

E

dx

|x − y|(N−1)q

)
dy

≤ ‖ f ‖q1 sup
y∈E

∫

E

dx

|x − y|(N−1)q

≤ κ
N−1
N q

N

1 − N−1
N q

μ(E)1−
N−1
N q‖ f ‖q1 . �

Remark 21.1 The limiting integrability q = N
N−1 is not permitted in (21.2).

Proposition 21.3 Let E be of finite measure, and let f ∈ L p(E) for some p > N.
Then V f ∈ L∞(E) and

‖V f ‖∞ ≤ C(N , p)μ(E)
p−N
Np ‖ f ‖p (21.3)

where

C(N , p) = κ
N−1
N

N

[N (p − 1)

p − N

] p−1
p

. (21.4)

Proof By Hölder’s inequality, and the definition of V f ,

‖V f ‖∞ ≤ ‖ f ‖p

(
sup
x∈E

∫

E

dy

|x − y|(N−1) p
p−1

) p−1
p

.

The estimate (21.3) and the form (21.4) of the constant C(N , p) now follow from
Proposition 21.1. �

22 The Limiting Case p = N

The value p = N is not permitted neither in Theorem 20.1c nor in Proposition 21.3c.
The next theorem indicates that the potential V f of a function f ∈ LN (E) belongs to
some intermediate space lying, roughly speaking between every Lq(E) and L∞(E).
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Theorem 22.1 (Trudinger [163]) Let E be of finite measure, and let f ∈ LN (E).
There exist constants C1 and C2 depending only upon N, such that

∫

E
exp

( |V f |
C1‖ f ‖N

) N
N−1

dx ≤ C2μ(E). (22.1)

Proof For any q > N and 1 < r < N
N−1 satisfying

1

r
= 1 + 1

q
− 1

N
,

write formally

| f (y)|
|x − y|N−1

= | f (y)| N
q

|x − y|(N−1) r
q

| f (y)|1− N
q

|x − y|(N−1) r(N−1)
N

.

Then by Hölder’s inequality applied with the conjugate exponents

q − N

Nq
+ 1

q
+ N − 1

N
= 1,

we obtain, at least formally,

|V f (x)| ≤ ‖ f ‖1−
N
q

N

( ∫

E

| f (y)|N
|x − y|(N−1)r

dy
) 1

q
( ∫

E

dy

|x − y|(N−1)r

) N−1
N

.

Take the q power of both sides and integrate in dx over E to obtain

‖V f ‖q ≤ ‖ f ‖1−
N
q

N

{ ∫

E
| f (y)|N

( ∫

E

dx

|x − y|(N−1)r

)
dy

} 1
q

× sup
x∈E

( ∫

E

dy

|x − y|(N−1)r

) N−1
N

≤ ‖ f ‖N sup
x∈E

( ∫

E

dy

|x − y|(N−1)r

) 1
r
.

These formal calculations become rigorous provided the last term is finite. By
Proposition 21.1 this occurs if r < N

N−1 and we estimate

sup
x∈E

( ∫

E

dy

|x − y|(N−1)r

) 1
r ≤ κ

N−1
N

N
(
1 − N−1

N r
) 1

r

μ(E)
1
q

= κ
N−1
N

N

(q
r

)1+ 1
q − 1

N
μ(E)

1
q

≤ κ
N−1
N

N q
N−1
N + 1

q μ(E)
1
q
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for all q > N . Therefore for all such q,

‖V f ‖q ≤ κ
N−1
N

N q
N−1
N + 1

q μ(E)
1
q ‖ f ‖N . (22.2)

Set q = N
N−1 s and let s range over the positive integers larger than N − 1. Then

from (22.2), after we take the q power, we derive

∫

E

[( |V f |
‖ f ‖N

) N
N−1

]s
dx ≤ N

N − 1
μ(E)

( NκN

N − 1

)s
ss+1.

Let C be a constant to be chosen. Divide both sides by C
Ns
N−1 s! and add for all

integer s = N , N + 1, . . . , k. This gives

∫

E

k∑

s=N

1

s!
[( |V f |

C‖ f ‖N

) N
N−1

]s
dx

≤ N

N − 1
μ(E)

∞∑

s=0

( NκN

(N − 1)C
N

N−1

)s ss

(s − 1)!

for all k ≥ N . The right-hand side is convergent provided we choose C so large that

NκN

(N − 1)C
N

N−1

<
1

e
.

Making use of (22.2), it is readily seen that the sum on the left-hand side can
be taken for s = 0, 1, . . ., by possibly modifying the various constants on the
right-hand side. Letting k → ∞ and using the monotone convergence theorem
proves (22.1). �

23 Steiner Symmetrization of a Set E ⊂ R
N

For a unit vector in u ∈ R
N let

πu = {
P ∈ R

N
∣∣ P · u = 0

}

denote the plane through the origin normal to u. Also, for P ∈ R
N let �P;u be the

line through P and directed as u, i.e., in parametric form

�P;u = ⋃

t∈R
{P + tu}.

The Steiner symmetrization of a set E ⊂ R
N with respect to πu is defined by

E∗
u = ⋃

P∈πu ; E∩�P;u �=∅

{
P + tu

∣∣ |t | ≤ 1
2H1

(
E ∩ �P;u

)}
(23.1)
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whereH1(·) is the 1-dimensional Hausdorff outer measure on R as defined in § 5 of
Chap.3. As such (23.1) is well defined for all E ⊂ R

N .
Roughly speaking, from each P ∈ πu we draw a line normal to πu and look at the

1-dimensional set of intersection of �P:u with E . If such intersection is nonempty,
we take its 1-dimensional Hausdorff outer measure, and construct a segment of
lengthH1

(
E ∩ �P:u

)
, symmetric about P and normal to πu. Thus, roughly speaking,

the points of E along the line �P;u are “rearranged” symmetrically, in a measure
theoretical sense, about the hyperplane πu starting at P , and along the same line.

Lemma 23.1 diam E∗
u ≤ diam E.

Proof May assume that diam E < ∞ and that E is closed. Having fixed ε > 0, let
x, y ∈ E∗

u be such that
diam E∗

u ≤ |x − y| + ε

and set
P = x − (x · u)u, Q = y − (y · u)u.

By the definitions P, Q ∈ πu. Set

α = sup{t | P + tu ∈ E}, β = inf{t | P + tu ∈ E};
γ = sup{t | Q + tu ∈ E}, δ = inf{t | Q + tu ∈ E}.

Without loss of generality may assume γ − β ≥ α − δ. Then

γ − β ≥ 1
2 (γ − β) + 1

2 (α − δ)

= 1
2 (α − β) + 1

2 (γ − δ)

≥ 1
2H1(E ∩ �P;u) + 1

2H1(E ∩ �Q;u).

On the other hand

|x · u| ≤ 1
2H1(E ∩ �P;u), |y · u| ≤ 1

2H1(E ∩ �Q;u).

Therefore
|x · u − y · u| ≤ γ − β.

From this

(diam E∗
u − ε)2 ≤ |x − y|2

= |P − Q|2 + |x · u − y · u|2
≤ |P − Q|2 + (γ − β)2

= |(P + βu) − (Q + γu)|2
≤ (diam E)2. �

http://dx.doi.org/10.1007/978-1-4939-4005-9_3
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The Steiner symmetrization does not require that E be measurable. However on
measurable sets the symmetrization is volume preserving.

Lemma 23.2 Let E be Lebesgue measurable. Then E∗
u is Lebesgue measurable and

μ(E∗
u) = μ(E).

Proof By Proposition 5.2 of Chap. 3, the 1-dimensional Hausdorff outer measure
coincides with the 1-dimensional Lebesgue outer measure and the latter coincides
with the 1-dimensional Lebesgue measure μ1 on measurable sets. Therefore

H1(E ∩ �P;u) = μ1(E ∩ �P;u)

whenever E ∩ �P;u is μ1-measurable. Since the Lebesgue measure is rotation invari-
ant, having fixed u on the unit sphere of RN , we may assume u = eN , so that
πu = R

N−1. Denote by μN−1 the Lebesgue measure on R
N−1.

By the Tonelli version of Fubini’s Theorem (§ 14.1 of Chap. 4) the sets

E ∩ �(P; eN ) are μ1 -measurable, for μN−1 -a.e. P ∈ R
N−1.

Moreover, the nonnegative valued function

R
N−1 � P → f (P)

def= μ1
(
E ∩ �P;eN

)

is μN−1-measurable and

μN (E) =
∫

RN−1
f (P)dP.

It follows that the set

E∗
eN = {

(P, y)
∣∣ − 1

2 f (P) ≤ y ≤ 1
2 f (P)

} − {
(P, 0)

∣∣ E ∩ �P;eN = ∅}
,

is Lebesgue measurable in R
N and (§ 15.1c of Chap.4)

μN (E∗
eN ) =

∫

RN−1
f (P)dP. �

24 Some Consequences of Steiner’s Symmetrization

24.1 Symmetrizing a Set About the Origin

For a set E ⊂ R
N apply the Steiner symmetrization recursively with respect to all

the coordinate unit vectors (e1, . . . , eN ), and set

E∗
1 = E∗

e1 , E∗
2 = (E∗

1 )
∗
e2 , . . . , E∗

N = (E∗
N−1)

∗
eN . (24.1)

http://dx.doi.org/10.1007/978-1-4939-4005-9_3
http://dx.doi.org/10.1007/978-1-4939-4005-9_4
http://dx.doi.org/10.1007/978-1-4939-4005-9_4
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The set E∗
1 is symmetric with respect to πe1 and E∗

2 is symmetric with respect to
πe2 . We claim that E∗

2 is also symmetric with respect to πe1 . Given P ∈ πe2 let P
′ be

its symmetric with respect to πe1 . If for some t ∈ R

P + e2t ∈ E∗
1 , then also P ′ + e2t ∈ E∗

1

since E∗
1 is symmetric about πe1 . Therefore

{t ∣∣ P + e2t ∈ E∗
1 } = {t ∣∣ P ′ + e2t ∈ E∗

1 }.

Thus E∗
2 is also symmetric with respect to the plane πe1 . Applying the same

argument to E∗
3 , as constructed by Steiner symmetrization from E∗

2 , shows that E
∗
3

is symmetric with respect to the planes πe j for j = 1, 2, 3. By induction E∗
N is

symmetric with respect to all the coordinate planes, and hence is symmetric about
the origin.

24.2 The Isodiametric Inequality

Proposition 24.1 For every E ⊂ R
N

μe(E) ≤ κN
(
1
2 diam E

)N
(24.2)

where μe is the Lebesgue outer measure inRN and κN is the measure of the unit ball
in RN .

Proof Assuming diam E < ∞, let E∗
N be constructed in (24.2). Since E∗

N is sym-
metric about the origin, if x ∈ E∗

N then also −x ∈ E∗
N . Therefore 2|x | ≤ diam E∗

N
and hence E∗

N is contained in a ball of radius 1
2 diam E∗

N about the origin. From this

μe(E
∗
N ) ≤ κN

(
1
2 diam E∗

N

)N
.

The set Ē is measurable and by Lemmas 23.1 and 23.2,

μ(Ē∗
N ) = μ(Ē), and diam Ē∗

N ≤ diam Ē .

From this

μe(E) ≤ μ(Ē) = μ(Ē∗
N ) ≤ κN

(
1
2 diam Ē∗

N

)N

≤ κN
(
1
2 diam Ē

)N = κN
(
1
2 diam E

)N
. �
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24.3 Steiner Rearrangement of a Function

Let E ⊂ R
N be Lebesgue measurable and of finite measure. The Steiner rearrange-

ment of χE with respect to a unit vector u is the characteristic function of E∗
u , i.e.,

(χE )∗u = χE∗
u
.

Next, let f be a nonnegative, simple function taking n distinct positive values
f1 < · · · < fn , on mutually disjoint sets {E1, . . . , En}, each of finite measure.
Rewrite f as in (11.1), and define the Steiner rearrangement of f with respect to u
as

f ∗
u = f1χ(E1∪···∪En)∗u + ( f2 − f1)χ(E2∪···∪En)∗u + · · · + ( fn − fn−1)χ(En)∗u .

By construction

[ f > t]∗u = [ f ∗
u > t], for all t ≥ 0. (24.3)

Let now f be a real-valued, measurable, nonnegative function defined in R
N

and satisfying (11.4). There exists a sequence of nonnegative, measurable, simple
functions { fn} → f pointwise in R

N , and fn ≤ fn+1. Moreover each fn takes
finitely many, distinct values on distinct, measurable sets of finite measure. Hence,
( fn)∗u is well defined for each n. Moreover ( fn)∗u ≤ ( fn+1)

∗
u and the pointwise limit

of {( fn)∗u} exists. Define

f ∗
u = lim( fn)

∗
u =

∫ ∞

0
χ[ f >t]∗udt. (24.4)

One verifies that (24.3) continues to hold in the limit and that statements analogous
to those in Proposition 11.1 are in force.

25 Proof of the Riesz Rearrangement Inequality for N = 2

Let Mθ be the counterclockwise rotation matrix in R
2 of an angle θ and denote

by Fθ, Gθ and Hθ the measurable bounded sets obtained from F , G and H by a
counterclockwise rotation of an angle θ, i.e., for example

Fθ � (x, y) ⇐⇒ M−1
θ (x, y) ∈ F.

Denote also by Sx and Sy the operations of Steiner symmetrization of a set, about
the x- and y-axes, respectively. Then, by repeated application of Fubini’s theorem
and the 1-dimensional version of the Riesz rearrangement inequality (13.1)
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I(F,G, H) =
∫

R2

∫

R2
χF (x)χG(x − y)χH (y)dxdy

=
∫

R2

∫

R2
χFθ

(x)χGθ
(x − y)χHθ

(y)dxdy

≤
∫

R2

∫

R2
SxχFθ

(x)SxχGθ
(x − y)SxχHθ

(y)dxdy

≤
∫

R2

∫

R2
Sy SxχFθ

(x)Sy SxχGθ
(x − y)Sy SxχHθ

(y)dxdy

=
∫

R2

∫

R2
χF1(x)χG1(x − y)χH1(y)dxdy = I(F1,G1, H1)

where we have set

F1 = (Sy SxMθ)F, G1 = (Sy SxMθ)G, H1 = (Sy SxMθ)H.

Set

T 1
θ = (Sy SxMθ) and T n

θ = (Sy SxMθ)T
n−1
θ for n = 2, 3, . . . .

Repeating this process n times and setting

Fn = T n
θ F, Gn = T n

θ G, Hn = T n
θ H

one has
I(F,G, H) ≤ I(Fn,Gn, Hn) for all n ∈ N.

Since the sets F , G, and H are bounded, they are contained in some disc D
about the origin of R2. Then, by the definition of T n

θ , the sets Fn , Gn , and Hn are all
contained in the same disc D. In particular the sequences {χFn }, {χGn }, and {χHn }
are equi-uniformly bounded.

By the 1-dimensional version of the Riesz rearrangement inequality (13.1) the
sequence {I(Fn,Gn, Hn)} is nondecreasing and hence it has a limit. Therefore, the
proof of the Riesz rearrangement inequality for N = 2 reduces to showing that

lim χFn , χGn , χHn = χF∗ , χG∗, χH∗ a.e. in R
2

where F∗, G∗, and H∗ are the symmetric, decreasing rearrangements of F , G, and
H about the origin of R2. Indeed, if this is established, by dominated convergence

lim I(Fn,Gn, Hn) = I(F∗,G∗, H∗).

Wewill establish (25.1) for {Fn}, the proof for the remaining sets being analogous.
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25.1 The Limit of {Fn}

Proposition 25.1 There exists ameasurable set F∗ ⊂ D, and a subsequence {Fn′ } ⊂
{Fn}, such that

lim χFn′ = χF∗ a.e. in R
2. (25.1)

Moreover
Sy SxMθF∗ = SxMθF∗ = SyMθF∗ = MθF∗. (25.2)

Proof Consider the portion of Fn in the right, upper, quarter plane, i.e.,

F+
n = Fn ∩ [x > 0] ∩ [y > 0].

The least upper bound of F+
n in [x > 0] ∩ [y > 0] is the graph of a function

fn , which by the symmetrizations Sx and Sy is nonincreasing. The family { fn} is
uniformly bounded and uniformly of bounded variation in some common interval
(0, b) for some b > 0. Hence by the Helly’s selection principle (§ 19.1c of the
Complements of Chap.6), there exists a nonincreasing function f defined in (0, b)
and a subsequence { fn′ } ⊂ { fn} such that { fn′ } → f pointwise everywhere in (0, b).
Define

F+
∗ = ⋃ {

(x, y)
∣∣ 0 < y ≤ f (x), for x > 0

}
.

Since f is measurable, the set F+∗ is measurable, and

μ(F+
∗ ) =

∫ ∞

0
f dx =

∫ ∞

0

∫ ∞

0
χF+∗ dxdy

By dominated convergence

lim ‖χF+
n′ − χF+∗ ‖2 = 0.

Since the sets Fn′ are symmetric with respect to the x- and y-axes, there exists a
set F∗ symmetric with respect to the x- and y-axes, such that

lim χFn′ = χF∗ a.e. in R
2.

To establish (25.2) we first observe that for any two sets E1 and E2 of finite
measure

‖SyχE1 − SyχE2‖2 ≤ ‖χE1 − χE2‖2;
‖SxχE1 − SxχE2‖2 ≤ ‖χE1 − χE2‖2;

‖Sx SyχE1 − Sx SyχE2‖2 ≤ ‖χE1 − χE2‖2;
‖MθχE1 − MθχE2‖2 = ‖χE1 − χE2‖2;
‖T 1

θ χE1 − T 1
θ χE2‖2 ≤ ‖χE1 − χE2‖2.

(25.3)

http://dx.doi.org/10.1007/978-1-4939-4005-9_6
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Thefirst three follow from the contracting properties of symmetric rearrangements
of Theorem 12.1, applied for N = 1 and repeated application of Fubini’s theorem.
The fourth is implied by the rotational invariance of the Lebesgue measure in R

N .
The last one is a sequential application of the previous ones. Next compute

lim ‖T 1
θ χFn′ − T 1

θ χF∗‖2 ≤ lim ‖χFn′ − χF∗‖2 = 0.

Let ϕ be a radially symmetric, strictly decreasing positive function. For such a ϕ

Sxϕ = Syϕ = Mθϕ = T 1
θ ϕ = ϕ.

By dominated convergence

lim ‖ϕ − χFn′ ‖2 = ‖ϕ − χF∗‖2;
lim ‖ϕ − T 1

θ χFn′ ‖2 = ‖ϕ − T 1
θ χF∗‖2.

Moreover by (25.3)

‖ϕ − T 1
θ χF∗‖2 ≤ ‖ϕ − χF∗‖2.

By repeated application of the contracting properties of symmetric rearrangements
and (25.3), for all n′, there exists an integer k(n′) ≥ 1 such that

‖ϕ − χF(n+1)′ ‖2 = ‖ϕ − χFn′+k(n′)‖2
= ‖ϕ − T k(n′)

θ χFn′ ‖2 ≤ ‖ϕ − T 1
θ χFn′ ‖2.

From this

‖ϕ − χF∗‖2 = lim ‖ϕ − χF(n+1)′ ‖2 ≤ lim ‖ϕ − T 1
θ χFn′ ‖2

= ‖ϕ − T 1
θ χF∗‖2 ≤ ‖ϕ − SxMθχF∗‖2 ≤ ‖ϕ − χF∗‖2.

A similar chain of inequalities holds with Sx replaced by Sy . Hence

‖ϕ − χF∗‖2 = ‖ϕ − MθχF∗‖2 = ‖ϕ − T 1
θ χF∗‖2

= ‖ϕ − SxMθχF∗‖2 = ‖ϕ − SyMθχF∗‖2 = ‖ϕ − χF∗‖2.

Expanding the L2-norm and using the volume preserving properties of the
rearrangements, implies

∫

R2
ϕχMθF∗dx =

∫

R2
ϕSxχMθF∗dx =

∫

R2
ϕSyχMθF∗dx .

Repeated application of Proposition 12.2, along the x- and y-axes, with the aid
of Fubini’s theorem yields (25.2). �
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25.2 The Set F∗ Is the Disc F∗

The set F∗ is a disc if MδF∗ = F∗ for all δ ∈ [0, 2π). The angle θ so far is arbitrary
and it will be chosen shortly. By (25.2) the set MθF∗ is symmetric with respect to
both coordinate axes. Therefore MθF∗ = M−θF∗, implying

M2θF∗ = F∗ and hence Mk2θF∗ = F∗ for all k ∈ Z.

Now choose 2θ to be an irrational multiple of 2π. For such a choice, the collection
of numbers of the form {k2θ mod 2π} for k ∈ Z, is dense in [0, 2π). Therefore the
function

[0, 2π) � δ → ‖χF∗ − MδχF∗‖2
vanishes on a dense subset of [0, 2π). If such a function were continuous, then
MδF∗ = F∗ a.e. in R

2, for all δ ∈ [0, 2π) and F∗ is a disc. To prove the continuity
of such a function of δ it suffices to show that

[0, 2π) � δ →
∫

R2
χF∗MδχF∗dx

is continuous. SinceC∞
o (D) is dense in L2(D), for ε > 0 fixed, there existsψε ∈ C∞

o
such that ∫

R2
|(χF∗ − ψε)MδχF∗ |dx ≤ ‖χF∗ − ψε‖2

√
μ(F) ≤ 1

3ε

uniformly in δ. The function ψε being fixed, there exists ηε > 0 such that

∫

R2

∣∣M−δ−ηψε − M−δψε

∣∣χF∗dx ≤ 1
3ε for all |η| < ηε.

Therefore

∣∣∣
∫

R2
χF∗MδχF∗dx −

∫

R2
χF∗Mδ±ηχF∗dx

∣∣∣

≤
∣∣∣
∫

R2

(
χF∗ − ψε

)
MδχF∗dx

∣∣∣ +
∣∣∣
∫

R2

(
χF∗ − ψε

)
Mδ+ηχF∗dx

∣∣∣

+
∣∣
∣
∫

R2
ψεMδ+ηχF∗dx −

∫

R2
ψεMδχF∗dx

∣∣
∣

≤ 2
3ε +

∣
∣∣
∫

R2
(M−δ−ηψε − M−δψε)χF∗dx

∣
∣∣ ≤ ε. �
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26 Proof of the Riesz Rearrangement Inequality for N > 2

The proof is by induction. Denote the coordinates of RN by x = (x̄, xN ) and set

SN = {the Steiner symmetrization with respect to xN };
Σx̄ = {the symmetric rearrangement with respect to x̄ ∈ R

N−1}.

Denote also by M the unitary matrix that rotates the xN axis by π/2, interchanges
the xN−1 and xN axes, and keeps the remaining (N − 2) axes unchanged. Set also

T 1 = (Σx̄ SN M) and T n = (Σx̄ SN M)T n−1 for n = 2, 3, . . . .

Proceeding as before we introduce sets

Fn = T nF, G1 = T nG, H1 = T nH.

The proof reduces to showing that these sets tend, in some appropriate sense, to
F∗,G∗, and H∗. Concentrating on {Fn}, observe that these sets are radially symmetric
with respect to the first (N − 1) variables, and symmetric with respect to xN . Their
least upper bound in the 1

2 − space [xN > 0] are graphs of functions { fn}, defined in
R

N−1, radially symmetric, and nonincreasing in |x̄ |. As such, they can be regarded
as functions of one variable to which the Helly’s selection principle can be applied.
The same procedure as before now yields a limiting set F∗ satisfying

Σx̄ SN MF∗ = SNMF∗ = MF∗ = F∗ (26.1)

in the sense of the characteristic functions of these sets. The set F∗ is radially sym-
metric with respect to the first (N − 1) variables, and symmetric with respect to xN .
Moreover by the last of (26.1), the role of xN and xN−1 can be interchanged. Thus
χF∗ depends on x , formally, as

χ
(√∑N−1

j=1 x
2
j ,±xN

)
= χ

(√∑N−2
j=1 x

2
j + x2N ,±xN−1

)
.

By setting first xN−1 = 0 and then xN = 0, this implies that χF∗ depends on x
radially, thereby proving that F∗ is a ball. The argument can be made nonformal,
by approximating χF∗ in L2(RN ), by smooth functions that preserve the indicated
symmetry. �
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Problems and Complements

11c Rearranging the Values of a Function

Let f be a real-valued, nonnegative, measurable function, satisfying (11.4).

11.1 Prove that the definition of f ∗ introduced in (11.2) or (11.5) is equivalent to
(compare with (15.3) of Chap. 4)

f ∗ =
∫ ∞

0
χ∗

[ f >t]dt. (11.1c)

11.2 Give a detailed proof of (iii) of Proposition 11.1.
11.3 Prove the following more general version of (vii) of Proposition 11.1. Let

ϕ(·) : R+ → R
+ be monotone increasing. Then

∫

RN

ϕ( f )dμ =
∫

RN

ϕ( f ∗)dμ. (vii)′

11.4 Prove that (vii)′ continues to hold for ϕ = ϕ1 − ϕ2, where each of the ϕ j are
monotone increasing and for at least one of them the corresponding integral in
(vii)′ is finite.

11.5 For a measurable set E of finite measure redefine E∗
c as the closed ball about

the origin of radius
κN R

N = μ(E).

Then redefine the nondecreasing, symmetric rearrangement f ∗′
c of a nonneg-

ative function f , satisfying (11.4), by the same procedure as in § 11 with the
proper modifications. Prove that all statements in Proposition 11.1 continue to
hold, except that f ∗

c is upper semi-continuous.
11.6 If f does not satisfy (11.4) then the symmetric, decreasing rearrangement of

f can still be defined by setting

χ∗
[ f >t] =

⎧
⎪⎪⎨

⎪⎪⎩

0 if μ([ f > t]) = 0;
χ|x |<R

if μ([ f > t]) < ∞;
where κN RN = μ([ f > t]);

1 if μ([ f > t]) = ∞.

The symmetric rearrangement of f is then defined by the formula (11.1c)
using this new definition ofχ∗

[ f >t]. Prove that all statements of Proposition 11.1
remain force.

http://dx.doi.org/10.1007/978-1-4939-4005-9_4
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12c Some Integral Inequalities for Rearrangements

Let f and g be real-valued, nonnegative, measurable functions, satisfying (11.4).

12.1 Let E be a measurable set in RN of finite measure. Let Bρ be a ball of radius ρ
about the origin and apply (12.1) with f = χBρ

and g = χE . Assume that for
all balls Bρ (12.1) holds with equality, i.e.,

∫

RN

χBρ
χEdμ =

∫

RN

χ∗
Bρ

χ∗
Edμ.

Prove that E = E∗.
12.2 Let f = f ∗ be strictly decreasing. Prove that (12.1) holds with equality if and

only if g = g∗.
12.3 Let f = f ∗ be strictly decreasing. Prove that (12.2) holds with equality for all

t ≥ 0 if and only if g = g∗.
12.4 Prove the following more general version of Theorem 12.1

Theorem 12.1c Letϕ be a nonnegative convex function inR vanishing at the origin.
Then ∫

RN

ϕ( f ∗ − g∗)dμ ≤
∫

RN

ϕ( f − g)dμ. (12.1c)

When ϕ(t) = |t |p for p ≥ 1 this is Theorem 12.1.

12.5 Let ϕ be strictly convex and let f = f ∗ be strictly decreasing. Prove that
(12.1c) holds with equality if and only if g = g∗.

20c L p Estimates of Riesz Potentials

Let E be a domain inRN and for α ∈ (0, N ) and f ∈ L p(E), consider the potentials

Vα, f (x) =
∫

E

f (y)

|x − y|N−α
dy.

If α = 1 these coincide with the Riesz potentials.

Theorem 20.1c Let f ∈ L p(E) for 1 < p < N
α
. There exists a constant C(N , p,α)

depending only upon N , p and α such that

‖Vα, f ‖q ≤ C(N , p,α)‖ f ‖p, where q = Np

N − αp
. (20.1c)

Compute explicitly the constant C(N , p,α) and verify that it tends to infinity as
either p → 1 or p → N

α
.
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21c L p Estimates of Riesz Potentials for p = 1 and p > N

Proposition 21.1c For every α ∈ (0, N ) and every 1 ≤ r < N
N−α

sup
x∈E

∫

E

dy

|x − y|(N−α)r
≤ κ

N−α
N r

N

1 − N−α
N r

μ(E)1−
N−α
N r . (21.1c)

Proposition 21.2c Let E be of finite measure, and let f ∈ L1(E). Then Vα, f ∈
Lq(E) for all q ∈ [1, N

N−α
), and

‖Vα, f ‖q ≤ κ
N−α
N

N
(
1 − N−α

N q
) 1

q

μ(E)
1
q − N−α

N ‖ f ‖1. (21.2c)

Remark 21.1c The limiting integrability q = N
N−α

is not permitted in (21.2c).

Proposition 21.3c Let E be of finite measure, and let f ∈ L p(E) for some p > N
α
.

Then Vα, f ∈ L∞(E) and

‖Vα, f ‖∞ ≤ C(N , p,α)μ(E)
αp−N
Np ‖ f ‖p (21.3c)

where

C(N , p,α) = κ
N−α
N

N

(N (p − 1)

αp − N

) p−1
p

. (21.4c)

22c The Limiting Case p = N
α

The value αp = N is not permitted neither in Theorem 20.1c nor in Proposi-
tion 21.3c. Prove the following:

Theorem 22.1c Let E be of finite measure, and let f ∈ L p(E) for p = N
α
. There

exist constants C1 and C2 depending only upon N and α, such that

∫

E
exp

( |Vα, f |
C1‖ f ‖p

) N
N−α

dx ≤ C2μ(E). (22.1c)
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23c Some Consequences of Steiner’s Symmetrization

23.1c Applications of the Isodiametric Inequality

The Hausdorff outer measure Hα, introduced in § 5 of Chap. 3, can be properly re-
normalized by a factor γα, so that when α = N it coincides with the Lebesgue outer
measure μe in RN . Set

γα = π
α
2

2αΓ
(

α
2 + 1

) where Γ (t) =
∫ ∞

0
e−x x t−1dx, t > 0,

is the Euler gamma function. One verifies that for α = N

γN = κN

2N
, κN = {volume of the unit ball in RN }.

Define the re-normalized Hausdorff outer measure as

Hα = γαHα.

Proposition 23.1c HN (E) = μe(E) for all subsets E ⊂ R
N .

Proof Wemay assume that μe(E) < ∞. Having fixed ε > 0, let {E j } be a countable
collection of sets in R

N each of diameter not exceeding ε and such that E ⊂ ∪E j .
By the isodiametric inequality

μe(E) ≤ ∑
μe(E j ) ≤ ∑

κN ( 12 diam E j )
N = γN

∑
(diam E j )

N .

Taking the infimum of all such collections {E j }, and then letting ε → 0, gives

μe(E) ≤ γNHα(E) = Hα(E).

For ε > 0 fixed, let {Q j } be a countable collection of cubes in R
N with faces

parallel to the coordinate planes, such that E ⊂ ⋃
Q j and

μe(E) ≥ ∑
μe(Q j ) − ε.

By the Besicovitch measure theoretical covering of open sets in R
N (Proposi-

tion 18.1c of Chap. 3) for each Q j there exists a countable collection of disjoint,

closed balls {Bi, j }, contained in
o
Q j , of diameter not exceeding ε such that

μe
(
Q j − ⋃

Bi, j
) = μ

(
Q j − ⋃

Bi, j
) = μ

( o
Q j −⋃

Bi, j
) = 0.

http://dx.doi.org/10.1007/978-1-4939-4005-9_3
http://dx.doi.org/10.1007/978-1-4939-4005-9_3
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For these residual sets, by Proposition 5.2 of Chap.3,

HN
(
Q j − ⋃

Bi, j
) = 0.

Then compute and estimate

HN (E) ≤ ∑
HN (Q j ) ≤ ∑

j HN
(⋃

i Bi, j
)

≤ ∑
i, jγN (diam Bi, j )

N = ∑
i, jμe(Bi, j )

= ∑
μe(Q j ) ≤ μe(E) + ε. �

http://dx.doi.org/10.1007/978-1-4939-4005-9_3


Chapter 10
Embeddings of W1, p(E) into Lq(E)

1 Multiplicative Embeddings of W1, p
o (E)

Let E be a domain in R
N . An embedding from W 1,p(E) into Lq(E) is an estimate

of the Lq(E)-norm of a function u ∈ W 1,p(E), in terms of its W 1,p(E)-norm. The
structure of such an estimate and the various constants involved should not depend
neither on the particular function u ∈ W 1,p(E) nor on the size of E , although they
might depend on the structure of ∂E . Since typically q > p, an embedding estimate
amounts, roughly speaking, to an improvement on the local order of integrability of
u. Also if p is sufficiently large one might expect a function u ∈ W 1,p(E) to possess
some local regularity, beyond a higher degree of integrability.

The backbone of such embeddings is that of W 1,p
o (E) into Lq(E), in view of its

relative simplicity. Functions in W 1,p
o (E) are limits of functions in C∞

o (E) in the
norm of W 1,p

o (E), and in this sense they vanish on ∂E . This permits embedding
inequalities in a multiplicative form, such as (1.1) below. Such an inequality would
be false for functions not vanishing, in some sense, on a subset of Ē . For example
a constant, nonzero function would not satisfy (1.1). The proof is only based on
calculus ideas and applications of Hölder’s inequality.

Theorem 1.1 (Gagliardo [54]–Nirenberg[118]) Let E be a domain in R
N and let

u ∈ W 1,p
o (E) ∩ Lr (E) for some r ≥ 1. There exists a constant C depending upon

N , p, r such that
‖u‖q ≤ C‖Du‖θ

p‖u‖1−θ
r (1.1)

where θ ∈ [0, 1] and p, q ≥ 1 are linked by

θ =
(1
r

− 1

q

)( 1

N
− 1

p
+ 1

r

)−1
(1.2)

© Springer Science+Business Media New York 2016
E. DiBenedetto, Real Analysis, Birkhäuser Advanced
Texts Basler Lehrbücher, DOI 10.1007/978-1-4939-4005-9_10
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and their admissible range is

⎧
⎨

⎩

If N = 1 then q ∈ [r,∞] and

θ ∈
[
0,

p

p + r(p − 1)

]
, C =

(
1 + p − 1

rp

)θ; (1.3)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

If N > p ≥ 1 then

q ∈
[
r,

Np

N − p

]
if r ≤ Np

N − p

q ∈
[ Np

N − p
, r

]
if r ≥ Np

N − p

θ ∈ [0, 1] and C =
[ p(N − 1)

N − p

]θ;

(1.4)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

If p > N > 1 then q ∈ [r,∞] and

θ ∈
[
0,

Np

Np + r(p − N )

]

If p = N then q ∈ [r,∞) and θ ∈ [0, 1)

(1.5)

moreover the constant C is given explicitly in (6.1) below.

By taking θ = r = 1 in (1.4), yields the embedding

Corollary 1.1 Let u ∈ W 1,p
o (E) for 1 ≤ p < N. Then

‖u‖p∗ ≤ p (N − 1)

N − p
‖Du‖p where p∗ = Np

N − p
. (1.6)

Remark 1.1 The constant p(N−1)
N−p in (1.6) is not optimal. The best constant is com-

puted in [157]. When p = 1, (1.6) with best constant takes the form

‖u‖ N
N−1

≤ 1

N

( N

ωN

)1/N‖Du‖1. (1.7)

where ωN is the area of the unit sphere in R
N .
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1.1 Proof of Theorem 1.1

Since C∞
o (E) is dense in W 1,p

o (E), in proving Theorem 1.1 may assume that u ∈
C∞
o (E). Also since u is compactly supported, we may assume, possibly after a

translation, that its support is contained in a cube centered at the origin and faces
parallel to the coordinate planes, say for example

Q = {
x ∈ R

N
∣∣ max
1≤i≤N

|xi | < M
}

for some M > 0.

Thus u ∈ C∞
o (Q). The embedding constant C in (1.1) is independent of M .

2 Proof of Theorem 1.1 for N = 1

Assume first p > 1 and q < ∞. For r ≥ 1, s > 1 and q ≥ r , and all x ∈ Q

|u(x)|q = |u(x)|r(|u(x)|s) q−r
s = |u(x)|r

( ∫ x

−∞
D|u(ξ)|sdξ

) q−r
s

≤ |u(x)|r
( ∫

E
s|u(ξ)|s−1|Du(ξ)|dξ

) q−r
s

.

Integrate in dx over E and apply Hölder’s inequality to the last integral to obtain

‖u‖qq ≤ ‖u‖rr
(
s ‖Du‖p‖u‖s−1

p(s−1)
p−1

) q−r
s

.

Choose s from

p(s − 1)

p − 1
= r i.e., s = 1 + r(p − 1)

p

and set

θ = q − r

qs
=

(1
r

− 1

q

)( 1

N
− 1

p
+ 1

r

)−1
.

Then

|u‖q ≤ C‖Du‖θ
p‖u‖1−θ

r where C =
[
1 + r(p − 1)

p

]θ

.

The limiting cases p = 1 and q = ∞ are established similarly.
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3 Proof of Theorem 1.1 for 1 ≤ p < N

The proof for the case (1.4) uses two auxiliary lemmas.

Lemma 3.1 ‖u‖ N
N−1

≤ ‖Du‖1.
Proof It suffices to establish the stronger inequality

‖u‖ N
N−1

≤
N∏

i=1
‖uxi ‖1/N1 . (3.1)

Such inequality holds for N = 2. Indeed

∫∫

E
u2(x1, x2)dx1dx2 =

∫∫

E
u(x1, x2)u(x1, x2)dx1dx2

≤
∫∫

E
max
x2

u(x1, x2)max
x1

u(x1, x2)dx1dx2

=
∫

R

max
x2

u(x1, x2)dx1

∫

R

max
x1

u(x1, x2)dx2

≤
( ∫∫

E
|ux1 |dx

)( ∫∫

E
|ux2 |dx

)
.

The lemma is now proved by induction, that is if (3.1) hold for N ≥ 2 it continues
to hold for N + 1. Set

x̄ = (x1, . . . , xN ), t = xN+1, x = (x̄, t).

Then by Hölder’s inequality

‖u‖ N+1
N

N+1
N

=
∫

R

∫

RN

|u(x̄, t)| N+1
N d x̄dt =

∫

R

∫

RN

|u(x̄, t)||u(x̄, t)| 1
N d x̄dt

≤
∫

R

( ∫

RN

|u(x̄, t)|dx̄
) 1

N
( ∫

RN

|u(x̄, t)| N
N−1 dx̄

) N−1
N
dt.

Observe that
∫

RN

|u(x̄, t)|dx̄ ≤
∫

R

∫

RN

|ut (x̄, t)|dx̄dt =
∫

E
|ut |dx .

Moreover, by the induction hypothesis

( ∫

RN

|u(x̄, t)
N

N−1 dx̄
) N−1

N ≤
N∏

i=1

( ∫

RN

|uxi (x̄, t)|dx̄
) 1

N
.
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Therefore

∫

E
|u| N+1

N dx ≤
∫

R

N∏

i=1

( ∫

RN

|uxi (x̄, t)|dx̄
) 1

N
dt

( ∫

E
|ut |dx

) 1
N
.

By the generalized Hölder inequality

∫

R

N∏

i=1

( ∫

RN

|uxi (x̄, t)|dx̄
) 1

N
dt ≤

N∏

i=1

( ∫

R

∫

RN

|uxi (x̄, t)|dx̄dt
) 1

N

=
( N∏

i=1

∫

E
|uxi |dx

) 1
N
.

Combining these last two inequalities proves the lemma.

Lemma 3.2 ‖u‖ Np
N−p

≤ p(N−1)
N−p ‖Du‖p.

Proof Write

‖u‖ Np
N−p

=
( ∫

E

(|u| p(N−1)
N−p

) N
N−1 dx

) N−1
N

N−p
p(N−1)

and apply (3.1) to the function w = |u|p(N−1)/(N−p). This gives

‖u‖ Np
N−p

≤
[ N∏

i=1

( ∫

E

∣
∣∣
(|u| p(N−1)

N−p
)
xi

∣
∣∣dx

) 1
N
] N−p

p(N−1)

= γ
N∏

i=1

( ∫

E
|u| p(N−1)

N−p −1|uxi |dx
) N−p

Np(N−1)

where

γ =
[ p(N − 1)

N − p

] N−p
p(N−1)

.

Now for all i = 1, . . . , N , by Hölder’s inequality

∫

E
|u| p(N−1)

N−p −1|uxi |dx ≤
( ∫

E
|uxi |pdx

) 1
p
( ∫

E
|u| Np

N−p dx
) p−1

p

and

N∏

i=1

( ∫

E
|u| p(N−1)

N−p −1|uxi |dx
) N−p

Np(N−1) =
N∏

i=1

(‖uxi ‖p
) N−p

Np(N−1) ‖u‖
p−1

p(N−1)
Np
N−p

≤ ‖Du‖
N−p

p(N−1)
p ‖u‖

p−1
p

N
N−1

Np
N−p

.

Combining these inequalities proves the Lemma.
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4 Proof of Theorem 1.1 for 1 ≤ p < N Concluded

According to (1.2) the case θ = 0 corresponds to q = r and therefore (1.1) is trivial.
The case θ = 1 corresponds to q = Np

N−p and is contained in Lemma 3.2. Let r ∈
[1,∞) and p < N be fixed and choose θ ∈ (0, 1) and q such that

min
{
r; Np

N − p

}
< q < max

{
r; Np

N − p

}
, θq <

Np

N − p
. (4.1)

Then by Hölder’s inequality

∫

E
|u|qdx =

∫

E
|u|θq |u|(1−θ)qdx

≤
( ∫

E
|u| Np

N−p dx
) N−p

Np θq( ∫

E
|u|r dx

) (1−θ)q
r

where we have set

(1 − θ)q
Np

Np − (N − p)θq
= r. (4.2)

From this, by Lemma 3.2

‖u‖q ≤ C‖Du‖θ
p‖u‖1−θ

r , where C =
[ p(N − 1)

N − p

]θ

.

By direct calculation one verifies that (4.2) is exactly (1.1). Moreover the ranges
indicated in (1.4) correspond to the compatibility of (4.1) and (4.2).

5 Proof of Theorem 1.1 for p ≥ N > 1

Let F(x; y) be the fundamental solution of the Laplace operator introduced in (14.3)
of Chap.8. Then by Stokes formula (Proposition 14.1 of Chap. 8), for all u ∈ C∞

o (E)

and all x ∈ E

u(x) = −
∫

RN

F(x; y)Δu(y)dy = 1

ωN

∫

RN

Du(y) · (x − y)

|x − y|N dy. (5.1)

Fix ρ > 0 and rewrite this as

ωNu(x) =
∫

|x−y|<ρ

Du(y) · (x − y)

|x − y|N dy

+
∫

|x−y|>ρ

Du(y) · x − y

|x − y|N dy.
(5.2)

http://dx.doi.org/10.1007/978-1-4939-4005-9_8
http://dx.doi.org/10.1007/978-1-4939-4005-9_8
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The second integral can be computed by an integration by parts, as

∫

|x−y|>ρ

Du(y) · x − y

|x − y|N dy = 1

N − 2

∫

|x−y|>ρ

Du(y) · D 1

|x − y|N−2
dy

= 1

ρN−1

∫

|x−y|=ρ

u(y)dσ

since F(x; y) is harmonic in R
N − {x}. Here dσ denotes the surface measure on the

sphere {|x − y| = ρ}. Put this in (5.2), multiply by NρN−1 and integrate in dρ over
(0, R) where R is a positive number to be chosen later. This gives

ωN R
N |u(x)| ≤N

∫ R

0

( ∫

|x−y|<ρ

|Du(y)|
|x − y|N−1

dy
)
ρN−1dρ

+ N
∫ R

0

( ∫

|x−y|=ρ

|u(y)|dσ
)
dρ.

From this, for all x ∈ E

ωN |u(x)| ≤
∫

BR(x)

|Du(y)|
|x − y|N−1

dy + N

RN

∫

BR(x)
|u(y)|dy

= I1(x, R) + N I2(x, R)

(5.3)

where BR(x) is the ball of radius R centered at x .

5.1 Estimate of I1(x, R)

Choose two positive numbers a, b < N such that

a

q
+ b

(
1 − 1

p

)
= N − 1. (5.4)

Since
N

q
+ N

(
1 − 1

p

)
> N

(
1 − 1

N

)
= N − 1

such a choice can be made. Now write

|Du(y)|
|x − y|N−1

= |Du|p( 1
p − 1

q ) |Du| p
q

|x − y| a
q

1

|x − y|b(1− 1
p )
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and apply the generalized Hölder inequality with conjugate exponents

( 1

p
− 1

q

)
+ 1

q
+

(
1 − 1

p

)
= 1.

This gives

I1(x, R) ≤ ‖Du‖1−
p
q

p

( ∫

BR(x)

|Du(y)|p
|x − y|a dy

) 1
q
( ∫

BR(x)

1

|x − y|b dy
)1− 1

p
.

Taking the q-power and integrating over E , gives

‖I1(R)‖q ≤ ω
1− 1

p + 1
q

N R
N
(

1
N − 1

p + 1
q

)

(N − a)
1
q (N − b)1−

1
p

‖Du‖p.

5.2 Estimate of I2(x, R)

I2(x, R) ≤ R−N
( ∫

|x−y|<R
|u(y)|r dy

) 1
r
( ∫

|x−y|<R
1dy

)1− 1
r

≤
(ωN

N

)1− 1
r
R− N

r ‖u‖1−
r
q

r

( ∫

|ξ|<R
|u(x + ξ)|r dξ

) 1
q
.

Take the q-power and integrate in dx over R
N to obtain

‖I2‖q ≤
(ωN

N

)1+ 1
q − 1

r
R−N ( 1

r − 1
q )‖u‖r .

6 Proof of Theorem 1.1 for p ≥ N > 1 Concluded

Combining these estimates into (5.3) gives

‖u‖q ≤ ω
1
q − 1

p

N

(N − a)
1
q (N − b)1−

1
p

‖Du‖p R
N
(

1
N − 1

p + 1
q

)

+
(ωN

N

) 1
q − 1

r ‖u‖r R−N ( 1
r − 1

q )
.
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Setting

A = ω
1
q − 1

p

N ‖Du‖p

(N − a)
1
q (N − b)1−

1
p

, B =
(ωN

N

) 1
q − 1

r ‖u‖r

the previous inequality takes the form

‖u‖q ≤ ARβ + BR−β̄

where

β = N
( 1

N
− 1

p
+ 1

q

)
, β̄ = N

(1
r

− 1

q

)
.

Minimizing the right-hand side with respect to the parameter R ∈ (0,∞), we find

‖u‖q ≤
[( β̄

β

) β

β+β̄ +
(β

β̄

) β̄

β+β̄
]
A

β̄

β+β̄ B
β

β+β̄ .

Setting

β̄

β + β̄
= θ,

β

β + β̄
= 1 − θ so that

β

β̄
= 1 − θ

θ

proves (1.1)–(1.2), with the constant C given explicitly by

C =
[( θ

1 − θ

)1−θ+
(1 − θ

θ

)θ] (ωN

N

)( 1
q − 1

r )(1−θ)

×
( ω

1
q − 1

p

N

(N − a)
1
q (N − b)1−

1
p

)θ

.

(6.1)

The ranges indicated in (1.5) depend on the possibility of choosing numbers a
and b as in (5.4).

7 On the Limiting Case p = N

A function u ∈ W 1,p
o (E) for p > N belongs to L∞(E), by the embedding (1.1)–

(1.5). However, the constant C = C(N , p) in (6.1) deteriorates as p → N . Indeed
as p → N , the number b in (5.4) tends to N and consequently C(N , p) → ∞. If
p = N the same embedding implies that u is Lq(E) for all 1 ≤ q < ∞. On the
one hand such an embedding is rather precise as there exist functions in W 1,N

o (E)

for N > 1, that are not essentially bounded. For example u(x) = ln | ln |x || is not
bounded near the origin and belongs toW 1,N (B1/e). On the other it does not provide
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the sharp embedding space for W 1,N
o (E). A sharp embedding for p = N can be

derived from the limiting estimates of the Riesz potentials (§ 22 of Chap.9).

Theorem 7.1 Let u ∈ W 1,N
o (E). There exist constants C1 and C2 depending only

upon N, such that ∫

E
exp

{ |u|
C1‖Du‖N

} N
N−1

dx ≤ C1μ(E).

Proof We may assume u ∈ C∞
o (E). From the representation formula (5.1)

|u(x)| ≤ 1

ωN

∫

E

|Du|
|x − y|N−1

dy.

The embedding now follows from the limiting potential estimates.

8 Embeddings of W1, p(E)

Embedding inequalities for functions inW 1,p(E) depend in general, on the structure
of ∂E . A minimal requirement is that E satisfy the cone property (§ 16.4 of Chap.8).
The embedding constants are independent of E and its size, and depend on the
structure of ∂E only through the cone property. Let κN denote the volume of the unit
ball in R

N and denote by C(N , p) a positive constant depending only on N and p
and independent of E .

Theorem 8.1 (Sobolev–Nikol’skii [149]) Let E satisfy the cone condition for a
fixed circular cone Co of solid angle ω, height h and vertex at the origin, and let
u ∈ W 1,p(E).

If 1 < p < N then u ∈ L p∗
(E) where p∗ = Np

N−p , and

‖u‖p∗ ≤ C(N , p)

ω

(1
h

‖u‖p + ‖Du‖p

)
, p∗ = Np

N − p
. (8.1)

The constant C(N , p) in (8.1) tends to infinity as either p → 1 or p → N.
If p = 1 and μ(E) < ∞, then u ∈ Lq(E) for all q ∈ [1, N

N−1 ) and

‖u‖q ≤ C(N , q)

ω
μ(E)

1
q − N−1

N

(1
h

‖u‖1 + ‖Du‖1
)

(8.2)

where

C(N , q) = κ
N−1
N

N(
1 − N−1

N q
)1/q . (8.2)′

http://dx.doi.org/10.1007/978-1-4939-4005-9_9
http://dx.doi.org/10.1007/978-1-4939-4005-9_8
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If p > N, then u ∈ L∞(E) and

‖u‖∞ ≤ C(N , p,ω)

μ(Co)1/p
[‖u‖p + h‖Du‖p

]
(8.3)

where

C(N , p,ω) = 1

N

(ωN

ω

) N−1
N
(N (p − 1)

p − N

) p−1
p

. (8.3)′

If p > N and in addition E is convex, then u has a representative, still denoted
by u, which is Hölder continuous in Ē, and for every x, y ∈ Ē such that |x − y| < h

|u(x) − u(y)| ≤ C(N , p)

ω
|x − y|1− N

p ‖Du‖p (8.4)

where

C(N , p) = 2N+1κ
p−1
p

N

Np

p − N
. (8.4)′

Remark 8.1 The estimates exhibit an explicit dependence on the height h and the
solid angle ω of the cone Co. They deteriorate as either h or ω tend to zero. Estimate
(8.4) depends on the height h of the coneCo through the requirement that |x − y| < h.

Remark 8.2 The value q = 1∗ = N
N−1 is not permitted in (8.2). Such a limiting value

is permitted for embeddings of W 1,p
o (E) as indicated in Corollary 1.1. The limiting

case p = N , not permitted neither in (8.3) nor in (8.4), will be given a sharp form in
§ 13.

Remark 8.3 The assumption that ∂E satisfies the cone property is essential for the
embedding (8.3). Consider the domain E ⊂ R

2 introduced in (16.6) of Chap.8 and
the function u(x1, x2) = x−β

1 defined in E , for some β > 0. The parameters β > 0
and α > 1 can be chosen so that u ∈ W 1,p(E) for some p > 2, and u is unbounded
near the origin.

Remark 8.4 If E is not convex, the estimate (8.4) can be applied locally. Thus if
p > N a function u ∈ W 1,p(E) is locally Hölder continuous in E .

9 Proof of Theorem 8.1

Proof of (8.1) and (8.2): It suffices to prove the various assertions for u ∈ C∞(E).
Fix x ∈ E and let Cx ⊂ Ē be a cone congruent to Co and claimed by the cone property.
Then

http://dx.doi.org/10.1007/978-1-4939-4005-9_8
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|u(x)| =
∣∣∣
∫ h

0

∂

∂ρ

(
1 − ρ

h

)
u(x + ρn)dρ

∣∣∣

≤
∫ h

0
|Du(x + ρn)|dρ + 1

h

∫ h

0
|u(x + ρn)|dρ

where n denotes an arbitrary unit vector ranging on the same solid angle as Cx .
Integrating over such a solid angle

ω|u(x)| ≤
∫

Cx

|Du(y)|
|x − y|N−1

dy + 1

h

∫

Cx

|u(y)|
|x − y|N−1

dx

≤
∫

E

|Du(y)|
|x − y|N−1

dy + 1

h

∫

E

|u(y)|
|x − y|N−1

dx .

(9.1)

The right hand of (9.1) is the sum of two Riesz potentials. Therefore inequal-
ity (8.1) follows from the second of (9.1) and the L p∗

(E)-estimates of the Riesz
potentials in § 20 of Chap.9. The behavior of the constant C(N , p) follows from
Remark 20.1 of the same chapter. Analogously, (8.2) and the form of the constant
C(N , p) follows from the Lq(E)-estimates of the Riesz potentials (Proposition 21.2
of Chap.9).

To establish (8.3), start from the first of (9.1) and estimate

ω|u(x)| ≤ sup
z∈Cx

∫

Cx

|Du(y)|
|z − y|N−1

dy + 1

h
sup
z∈Cx

∫

Cx

|u(y)|
|z − y|N−1

dx .

Therefore by the L∞(E)-estimates of the Riesz potentials of Proposition 21.3 of
Chap.9 with E replaced by Cx

ω|u(x)| ≤ C(N , p)μ(Co)
p−N
Np

(1
h

‖u‖p,Cx + ‖Du‖p,Cx

)

≤ C(N , p)

h
μ(Co)

p−N
Np

(‖u‖p + h‖Du‖p
)
.

The form of the constant C(N , p) is in (21.4) of Chap.9. The form (8.3)′ of the
constant C(N , p,ω) is computed from this and the expression of the volume of Co.
Proof of (8.4) (Morrey [111]): For x ∈ Ē , let Cx be a circular, spherical cone con-
gruent to Co and all contained Ē . Then for all 0 < ρ ≤ h, the circular, spherical cone
Cx,ρ of vertex at x , radius ρ, coaxial with Cx and with the same solid angle ω, is
contained in Ē and its volume is

μ(Cx,ρ) = ω

N
ρN .

Denote by uCx,ρ the average of u over Cx,ρ

uCx,ρ = 1

μ(Cx,ρ)
∫

Cx,ρ

u(ξ)dξ.

http://dx.doi.org/10.1007/978-1-4939-4005-9_9
http://dx.doi.org/10.1007/978-1-4939-4005-9_9
http://dx.doi.org/10.1007/978-1-4939-4005-9_9
http://dx.doi.org/10.1007/978-1-4939-4005-9_9
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Lemma 9.1 For every pair x, y ∈ Ē such that |x − y| = ρ ≤ h

|u(y) − uCx,ρ | ≤ 2N+1− N
p
κ

p−1
p

N

ω

Np

p − N
ρ1−

N
p ‖Du‖p.

Proof Fix x, y ∈ E such that |x − y| = ρ ≤ h. Since E is convex, for all ξ ∈ Cx,ρ

|u(y) − u(ξ)| =
∣∣
∣
∫ 1

0

∂

∂t
u
(
y + t (ξ − y)

)
dt

∣∣
∣.

First integrate in dξ over Cx,ρ, and then in the resulting integral perform the change
of variables

y + t (ξ − y) = η.

The Jacobian is t−N and the new domain of integration is transformed in those η
given by

|y − η| = t |ξ − y| as ξ ranges over Cx,ρ.

Therefore such a transformed domain is contained in the ball B2ρt (y), of center
y and radius 2ρt . These operations give

ω

N
ρN |u(y) − uCx,ρ | ≤

∫ 1

0

( ∫

Cx,ρ

|ξ − y||Du(y + t (ξ − y))|dξ
)
dt

≤
∫ 1

0
t−(N+1)

∫

E∩B2ρt (y)
|η − y||Du(η)|dηdt

≤ κ
p−1
p

N

∫ 1

0
t−(N+1)(2ρt)N (1− 1

p )+1‖Du‖pdt.

To conclude the proof of (8.4) fix x, y ∈ Ē and let

z = 1
2 (x + y) ρ = |x − z| = |y − z| = 1

2 |x − y|.

Then
|u(x) − u(y)| ≤ |u(x) − uCz,ρ | + |u(y) − uCz,ρ |

≤ 2N+1

ω
κ

p−1
p

N

Np

p − N
|x − y|1− N

p ‖Du‖p.

10 Poincaré Inequalities

The multiplicative inequalities of Theorem 1.1 cannot hold for functions inW 1,p(E)

as it can be verified if u is a nonzero constant. In general an integral norm of u cannot
be controlled in terms of some integral norm of its gradient unless one has some
information on the values of the function in some subset of Ē .
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10.1 The Poincaré Inequality

Let E be a bounded domain in R
N and for u ∈ L1(E), let

uE = −
∫

E
udx = 1

μ(E)

∫

E
udx

denote the integral average of u over E .

Theorem 10.1 Let E be bounded and convex and let u ∈ W 1,p(E) for some 1 <

p < N. There exists a constant C depending only upon N and p, such that

‖u − uE‖p∗ ≤ C
(diam E)N

μ(E)
‖Du‖p where p∗ = Np

N − p
(10.1)

‖u − uE‖1 ≤ C(diam E)N‖Du‖N (10.2)

Proof Having fixed x, y ∈ E , denote by R(x, y) the distance from x to ∂E , along
the direction of (y − x) and write

|u(x) − u(y)| ≤
∫ R(x,y)

0

∣∣∣
∂

∂ρ
u(x + ρn)

∣∣∣dρ n = (y − x)

|y − x | .

Integrate in dy over E , to obtain

μ(E)|u(x) − uE | ≤
∫

E

( ∫ R(x,y)

0
|Du(x + ρn)|dρ

)
dy.

The integral in dy is calculated by introducing polar coordinates with pole at x .
Therefore if n is the angular variable spanning the sphere |n| = 1, the right-hand
side is majorized by

(diam E)N−1
∫ diam E

0

∫

|n|=1

∫ R(x,y)

0
ρN−1 |Du(x + ρn)|

|x − y|N−1
dρdndr

≤ (diam E)N
∫

E

|Du|
|x − y|N−1

dy.

Therefore

|u(x) − uE | ≤ (diam E)N

μ(E)

∫

E

|Du(y)|
|x − y|N−1

dy. (10.3)

The proof of (10.1) now follows from this and the L p∗
(E)-estimates of the Riesz

potentials given in Theorem 20.1 of Chap.9. Following Remark 20.1 there, the con-
stant C in (20.1) tends to infinity as either p → 1 or p → N .

http://dx.doi.org/10.1007/978-1-4939-4005-9_9


10 Poincaré Inequalities 505

Inequality (10.2) follows from (10.1) and Hölder’s inequality. Indeed having fixed
1 < p < N

‖u − uE‖1 ≤ ‖u − uE‖p∗μ(E)
1− N−p

Np

≤ Cμ(E)
1− N−p

Np
(diam E)N

μ(E)
‖Du‖p

≤ C(diam E)N‖Du‖N .

Remark 10.1 The estimate depends upon the structure of the convex set E through
the ratio (diam E)N/μ(E). If E is a ball, then such a ratio is 2N/κN , where κN is
the volume of the unit ball in R

N . In general if R is the radius of the smallest ball
containing E and ρ is the radius of the largest ball contained in E

(diam E)N

μ(E)
≤ 2N

κN

( R

ρ

)N
.

Remark 10.2 For a ball Bρ(x) denote by (u)x,ρ the integral average of u over Bρ(x),
i.e.,

uBρ(x) = (u)x,ρ = 1

μ(Bρ)

∫

Bρ(x)
u dy = −

∫

Bρ(x)
u dy. (10.4)

Then (10.1)–(10.2) imply

−
∫

Bρ(x)
|u − (u)x,ρ|dx ≤ C ′

(
ρp−

∫

Bρ(x)
|Du|pdy

) 1
p

(10.5)

for all 1 ≤ p < N and for a constant C ′ depending only on N and p. Also

−
∫

Bρ(x)
|u − (u)x,ρ|pdx ≤ C ′ρp−

∫

Bρ(x)
|Du|pdy (10.6)

for all 1 < p < N .

10.2 Multiplicative Poincaré Inequalities

Proposition 10.1 Let E be a bounded and convex subset ofRN , and let u ∈ W 1,p(E)

for some 1 < p < N. There exists a constant C depending only upon N and p, such
that

‖u − uE‖q ≤ Cθ
[ (diam E)N

μ(E)

]θ‖Du‖θ
p‖u − uE‖1−θ

r (10.7)

where the numbers r > 1, 1 < p < N and θ ∈ [0, 1] are linked by (1.2).
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Proof The case θ = 0 corresponds to q = r and (10.7) is trivial. The case θ = 1
corresponds to q = Np

N−p and coincides with (10.1). Let r ∈ (1,∞) and p ∈ (1, N )

be fixed and choose θ ∈ (0, 1) and q satisfying (4.1). By Hölder’s inequality

∫

E
|u − uE |qdx =

∫

E
|u − uE |θq |u − uE |(1−θ)qdx

≤
( ∫

E
|u − uE | Np

N−p dx
) N−p

Np θq( ∫

E
|u − uE |r dx

) (1−θ)q
r

where r is chosen as in (4.2). The inequality follows from this and (10.1).

Remark 10.3 It follows from (10.7) that the multiplicative embedding inequality
(1.1) continues to hold for functions u ∈ W 1,p(E) of zero average over a bounded,
convex domain E .

10.3 Extensions of (u − uE) for Convex E

Let E be a bounded domain with the segment property and ∂E of class C1. Then ∂E
admits a finite open covering with balls {Bt (x j )}nj=1, of radius t centered at x j ∈ ∂E .
By Proposition 19.1 of Chap. 8, a function u ∈ W 1,p(E) can be extended into a
function w ∈ W 1,p

o (RN ) in such a way that ‖w‖1,p;RN ≤ C‖u‖1,p;E for a constant
C that depends only on the geometric structure of ∂E , the radius t of the finite
open covering of ∂E , and the number of local overlaps of the balls Bt (x j ). If E is
convex, the Poincaré inequality of Theorem 10.1 affords an extention of (u − uE )

into a function w ∈ W 1,p
o (RN ) in such a way that ‖Dw‖p;RN is controlled only by

‖Du‖p;E .

Proposition 10.2 Let E be a bounded, convex domain in R
N with boundary ∂E

of class C1, and let u ∈ W 1,p(E) for some 1 ≤ p < ∞. Then (u − uE ) admits an
extension w ∈ W 1,p

o (RN ) such that

‖Dw‖p;RN ≤ γ(1 + ‖|∂E‖1)
(
1 + 1

t

(diam E)N

μ(E)
N−1
N

)
‖Du‖p,E (10.8)

where t is the radius of the balls {Bt(x j )}nj=1, making up an open covering of ∂E,
and γ is a constant depending only on N, p and the number of local overlaps of the
balls Bt (x j ).

Proof Write down the estimate (18.1), of Chap. 8, for (u − uE ) and apply the
Poincaré inequality to estimate the last term.

Remark 10.4 We stress that w ∈ W 1,p
o (RN ) is an extension of (u − uE ) and not an

extension of u.

http://dx.doi.org/10.1007/978-1-4939-4005-9_8
http://dx.doi.org/10.1007/978-1-4939-4005-9_8
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Corollary 10.1 Let BR be the ball of radius R centered at the origin of R
N , let u ∈

W 1,p(BR) for some 1 ≤ p < ∞. Then (u − uBR ) admits an extensionw ∈ W 1,p
o (RN )

such that
‖Dw‖p;RN ≤ γ‖Du‖p,E (10.9)

for an absolute constant γ depending only on N, p and independent of R.

Proof It follows from (10.8) and Remark 18.2 of Chap.8.

Corollary 10.2 Let BR be the ball of radius R centered at the origin of R
N , let u ∈

W 1,p(BR) for some1 ≤ p < ∞. Then (u − uBR )± admit extensionsw± ∈ W 1,p
o (RN )

such that
‖Dw±‖p;RN ≤ γ‖Du‖p,E (10.10)

for an absolute constant γ depending only on N, p and independent of R.

Proof Extend w± as in Proposition 19.1 of Chap. 8, and following Remark 18.2,
write down (10.4) of Chap.8. In the last of these majorize

‖(u − uBR )±‖p;BR ≤ ‖u − uBR‖p;BR

and apply Poincaré inequality.

11 Level Sets Inequalities

Theorem 11.1 (DeGiorgi [32]) Let E be a bounded convex open set in R
N and let

u ∈ W 1,1(E). Assume that the set where u vanishes has positive measure. Then

‖u‖1 ≤ κ
N−1
N

N

(diam E)Nμ(E)
1
N

μ([u = 0]) ‖Du‖1 (11.1)

where κN is the volume of the unit ball in R
N .

Proof Let n denote the unit vector ranging over the unit sphere in R
N . For almost

all x ∈ E and almost all y ∈ [u = 0]

|u(x)| =
∣∣∣
∫ |y−x |

0

∂

∂ρ
u(x + nρ)dρ

∣∣∣ ≤
∫ |y−x |

0
|Du(x + nρ)|dρ.

Integrating in dx over E and in dy over [u = 0], gives

μ([u = 0])‖u‖1 ≤
∫

E

( ∫

[u=0]

∫ |y−x |

0
|Du(x + nρ)|dρdy

)
dx .

http://dx.doi.org/10.1007/978-1-4939-4005-9_8
http://dx.doi.org/10.1007/978-1-4939-4005-9_8
http://dx.doi.org/10.1007/978-1-4939-4005-9_8
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The integral over [u = 0] is computed by introducing polar coordinates with
center at x . Denoting by R(x, y) the distance from x to ∂E in the along n

∫

[u=0]

∫ |y−x |

0
|Du(x + nρ)|dρdy

≤
∫ R(x,y)

0
sN−1ds

∫

|n|=1

∫ R(x,y)

0
|Du(x + nρ)|dρdn.

Combining these remarks we arrive at

μ([u = 0])‖u‖1 ≤ 1

N
(diam E)N

∫

E

∫

E

|Du(y)|
|x − y|N−1

dydx .

Inequality (11.1) follows from this since (Proposition 21.1 of Chap.9, with r = 1)

sup
y∈E

∫

E

dx

|x − y|N−1
≤ Nκ

N−1
N

N μ(E)
1
N .

If E is the ball BR of radius R centered at the origin

‖u‖1 ≤ 2NκN
RN+1

μ([|u| = 0])‖Du‖1. (11.2)

For a real number � and u ∈ W 1,1(E), set

u� =
{

� if u > �,

u if u ≤ �.

For k ∈ R the function (u� − k)+ belongs to W 1,1(E), by Proposition 20.2 of
Chap.8. Putting such a function in (11.1) and assuming k < �, gives

(� − k)μ([u > �]) ≤ κ
N−1
N

N

(diam E)Nμ(E)
1
N

μ([u < k])
∫

[k<u<�]
|Du|dx . (11.3)

This is referred to as a discrete version of the isoperimetric inequality [32].

12 Morrey Spaces [110]

A function f ∈ L1(E) belongs to the Morrey space Mp(E), for some p ≥ 1 if there
exists a constant C f depending upon f , such that

sup
x∈E

∫

Bρ(x)∩E
| f (y)|dy ≤ C f ρ

N (1− 1
p ) for all ρ > 0. (12.1)

http://dx.doi.org/10.1007/978-1-4939-4005-9_9
http://dx.doi.org/10.1007/978-1-4939-4005-9_8
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If f ∈ Mp(E) set

‖ f ‖Mp = inf
{
C f for which (12.1) holds

}
. (12.2)

It follows from the definition that L p(E) ⊂ Mp(E) and

‖ f ‖p ≥ κ
1
p −1

N ‖ f ‖Mp . (12.3)

Moreover

L1(E) = M1(E)

L∞(E) = M∞
and

and

‖ f ‖1 = ‖ f ‖M1

‖ f ‖∞ = 1

κN
‖ f ‖M∞ .

We regard f as being defined in the whole R
N by setting it to be zero outside E .

Thus if f ∈ Mp(E)

‖ f ‖1 ≤ ‖ f ‖Mp (diam E)
N (1− 1

p )
. (12.4)

12.1 Embeddings for Functions in the Morrey Spaces

For a given p > 1 and α ∈ (0, N
p ) let Vα, f be the potential generated by some f ∈

Mp(E), that is

Vα, f (x) =
∫

E

f (y)

|x − y|N−α
dy.

By Theorem 20.1c of Chap.9 such a potential is well defined as a function in
Lq(E) for q = N

N−αp . The next proposition gives an estimate of ‖Vα, f ‖∞ in terms

of ‖ f ‖Mp , provided p > N
α
and E is bounded.

Proposition 12.1 Let f ∈ Mp(E) for some p > N
α
. Then

‖Vα, f ‖∞ ≤ N (p − 1)

αp − N
(diam E)

αp−N
p ‖ f ‖Mp . (12.5)

Proof For x and y in R
N let n = y−x

|x−y| . Then by making use of polar coordinates,
compute

d

dρ

∫

Bρ(x)
| f (y)|dy = d

dρ

∫

|n|=1

∫ ρ

0
r N−1| f (x + nr)|drdn

=
∫

|n|=1
ρN−1| f (x + nρ)|dn.

http://dx.doi.org/10.1007/978-1-4939-4005-9_9
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Using this calculation in the definition of Vα, f

|Vα, f (x)| ≤
∫

|n|=1

∫ diam E

0

1

ρN−α
ρN−1| f (x + nρ)|dndρ

=
∫ diam E

0

1

ρN−α

( d

dρ

∫

Bρ(x)
| f (y)|dy

)
dρ

= ‖ f ‖1
(diam E)N−α

− lim
ε→0

1

εN−α

∫

Bε(x)
| f (y)|dy

+ (N − α)

∫ diam E

0

1

ρN+1−α

∫

Bρ(x)
| f (y)|dydρ.

To prove (12.5) estimate each of these terms by making use of the definition
(12.1)–(12.2) of ‖ f ‖Mp .

Themain interest of inequality (12.5) is forα = 1,when applied to theRiesz potential
of the type of the right-hand side of (10.3). By the embedding (8.4) of Theorem 8.1,
if p > N and if E is convex, then a function in W 1,p(E) is Hölder continuous with
Hölder exponent η = p−N

p . The next theorem asserts that the same embedding (8.4)
continues to hold for functions whose weak gradient is in Mp(E) for p > N .

Theorem 12.1 Let u ∈ W 1,1(E) and assume that |Du| ∈ Mp(E) for some p > N.
Then u ∈ Cη(E) with η = p−N

p . Moreover for every ball Bρ(x) ⊂ E

ess osc
Bρ(x)

u ≤ 2N+1

κN

N (p − 1)

p − N
‖Du‖Mpρη. (12.6)

Proof Consider the potential inequality (10.3) written for the ball Bρ(x) replacing
E . It gives

|u(x) − (u)x,ρ| ≤ 2N

κN

∫

Bρ(x)

|Du(y)|
|x − y|N−1

dy

where (u)x,ρ denotes the integral average of u over Bρ(x) as in (10.4). This implies
(12.6) in view of Proposition 12.1 applied with α = 1.

Since L p(E) ⊂ Mp(E) the embedding (12.6) generalizes the embedding (8.4).

13 Limiting Embedding of W1,N(E)

Let f be in the Morrey space MN (E), and consider its Riesz potential

V f (x) =
∫

E

f (y)

|x − y|N−1
dy.
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Proposition 13.1 Let f ∈ MN (E). There exist constants C1 and C2 depending only
upon N, such that

∫

E
exp

( |V f |
C1‖ f ‖MN

)
dy ≤ C2(diam E)N .

Proof Let q > 1 and rewrite the integrand in the potential V f , as

| f (y)| 1
q

|x − y|(N− 1
q ) 1

q

| f (y)|1− 1
q

|x − y|(N− q+1
q )(1− 1

q )
.

By Hölder’s inequality

|V f (x)| ≤
( ∫

E

| f (y)|
|x − y|N− 1

q

dy
) 1

q
( ∫

E

| f (y)|
|x − y|N− q+1

q

dy
)1− 1

q
.

The second integral is estimated by Proposition 12.1 with α = q+1
q and p = N .

This gives ∫

E

| f (y)|
|x − y|N− q+1

q

dy ≤ (N − 1)q(diam E)
1
q ‖ f ‖MN .

Put this in the previous inequality, take the q-power of both sides and integrate
over E in dx , to obtain

∫

E
|V f |qdx ≤ [

(N − 1)q(diam E)
1
q ‖ f ‖MN

]q−1
∫

E
| f (y)|

( ∫

E

dx

|x − y|N− 1
q

)
dy.

The last double integral is estimated by using (12.4) with p = N , and Theo-
rem 20.1c of Chap. 9 with α = 1

q , and Proposition 21.1c of the same chapter for
r = 1. It yields

∫

E
| f (y)|

( ∫

E

dx

|x − y|N− 1
q

dx
)
dy ≤ ‖ f ‖1 sup

y∈E

∫

E

dx

|x − y|N− 1
q

≤ ωNq(diam E)
1
q ‖ f ‖1

≤ ωNq(diam E)
N−1+ 1

q ‖ f ‖MN .

Combining these estimates

∫

E
|V f |qdx ≤ ωN (N − 1)q−1qq(diam E)N‖ f ‖qMN .

http://dx.doi.org/10.1007/978-1-4939-4005-9_9
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Since q > 1 is arbitrary we write this inequality for q = 2, 3, . . . . Then in a manner
similar to the proof of Theorem 22.1 of Chap.9

∫

E

k∑

q=0

1

q!
( |V f |
C1‖ f ‖N

)q
dx ≤ ωN (diam E)N

(N − 1)

∞∑

q=0

(N − 1

C1

)q qq

q!

for all k ∈ N and all C1 > 0.

Let u ∈ W 1,1(E) be such that |Du| ∈ MN (E), so that

∫

Bρ(x)
|Du|dy ≤ ‖Du‖MN ρN−1 for all Bρ(x) ⊂ E . (13.1)

Theorem 13.1 (John–Nirenberg ([77]) Let u ∈ W 1,1(E) and let (13.1) hold. There
exist constants C1 and C2 depending only upon N, such that

∫

Bρ(x)
exp

( |u − (u)x,ρ|
C1‖Du‖MN

)
dy ≤ C2μ(Bρ)

where (u)x,rho is the integral average of u over Bρ(x) as in (10.4).

Proof It follows fromProposition 13.1, starting from the potential inequality (10.3).

This estimate can be regarded as a limiting case of the Hölder estimates of Theo-
rem 12.1 when p → N .

14 Compact Embeddings

Let E be a bounded domain in R
N with the cone property and let K be a bounded

set in W 1,p(E), say

K = {u ∈ W 1,p(E)
∣∣ ‖u‖1,p ≤ C} for some positive constant C.

If 1 ≤ p < N , by the embedding Theorem 8.1, K is a bounded subset of L p∗
(E)

where p∗ = Np
N−p . Since E is of finite measure, K is also a bounded set of Lq(E) for

all 1 ≤ q ≤ p∗. The next theorem asserts that K is a compact subset of Lq(E) for
all 1 ≤ q < p∗.

Theorem 14.1 (Rellich–Kondrachov ([123, 85]) Let E be a bounded domain in R
N

with the cone property, and let 1 ≤ p < N. Then the embedding of W 1,p(E) into
Lq(E) is compact for all 1 ≤ q < p∗.

http://dx.doi.org/10.1007/978-1-4939-4005-9_9
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Proof The proof consists of verifying that a bounded subset ofW 1,p(E) satisfies the
conditions for a subset of Lq(E) to be compact, given in § 19 of Chap.6. For δ > 0
let

Eδ = {x ∈ E
∣∣ dist (x, ∂E) > δ}

and let δ be so small that Eδ is not empty. For q ∈ [1, p∗) and u ∈ W 1,p(E)

‖u‖q,E−Eδ
≤ ‖u‖p∗ μ(E − Eδ)

1
q − 1

p∗ .

Next, for a vector h ∈ R
N of length |h| < δ compute

∫

Eδ

|u(x + h) − u(x)|dx ≤
∫

Eδ

( ∫ 1

0

∣∣
∣
d

dt
u(x + th)

∣∣
∣dt

)
dx

≤ |h|
∫ 1

0

( ∫

Eδ

|Du(x + th)|dx
)
dt

≤ |h|μ(E)
p−1
p ‖Du‖p.

Therefore ∀σ ∈ (0, 1
q )

∫

Eδ

|Thu − u|qdx =
∫

Eδ

|Thu − u|qσ+q(1−σ)dx

≤
( ∫

Eδ

|Thu − u|dx
)qσ( ∫

Eδ

|Thu − u| q(1−σ)

1−qσ dx
)1−qσ

.

Choose σ so that

(1 − σ)q

1 − qσ
= p∗, that is σq = p∗ − q

p∗ − 1
.

Such a choice is possible if 1 < q < p∗. Applying the embedding Theorem 8.1

∫

Eδ

|Thu − u|qdx ≤ γ(1−σ)q
( ∫

Eδ

|Thu − u|dx
) p∗−q

p∗−1 ‖u‖(1−σ)q
1,p

for a constant γ depending only upon N , p and the geometry of the cone property
of E , as indicated in (8.1). Combining these estimates gives

‖Thu − u‖q,Eδ
≤ γ1|h|σ‖u‖1,p, where γ1 = γ

1
q −σμ(E)

p−1
p σ

.

The assertion of the theorem is now a consequence of the characterization of the
precompact subsets in Lq(E).

http://dx.doi.org/10.1007/978-1-4939-4005-9_6
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Corollary 14.1 Let E be a bounded domain in R
N with the cone property, and let

1 ≤ p < N. Then, every sequence { fn} of functions equi-bounded in W 1,p(E), has
a subsequence { fn′ } strongly convergent in Lq(E) for all 1 ≤ q < p∗.

15 Fractional Sobolev Spaces in R
N

Let s ∈ (0, 1), p ≥ 1 and N ≥ 1 and consider the collection of functions u ∈ L p(RN )

with finite semi-norm

‖|u|‖s,p =
(∫

RN

∫

RN

|u(x) − u(y)|p
|x − y|N+sp

dxdy

) 1
p

. (15.1)

They form a linear subspace of L p(RN ) which is a Banach space when equipped
with the norm

‖u‖s,p = ‖u‖p + ‖|u|‖s,p.

Such a Banach space is denoted with Ws,p(RN ) and it is called the fractional
Sobolev space of order s.

Proposition 15.1 W 1,p(RN ) is continuously embedded into Ws,p(RN ) for all s ∈
(0, 1). Moreover

‖|u|‖s,p ≤
( 2ωN

ps(1 − s)

) 1
p ‖Du‖sp‖u‖1−s

p .

Proof A change of variable in the definition of the semi-norm in (15.1) gives

‖|u|‖p
s,p =

∫

RN

|ξ|−(N+sp)dξ

∫

RN

|u(x + ξ) − u(x)|pdx

=
∫

|ξ|<λ

|ξ|−(N+sp)dξ

∫

RN

|u(x + ξ) − u(x)|pdx

+
∫

|ξ|>λ

|ξ|−(N+sp)dξ

∫

RN

|u(x + ξ) − u(x)|pdx

whereλ is a positive parameter to be chosen later. The second integral ismajorized by

2pωN‖u‖p
p

spλsp
.

The first integral is estimated by

∫

|ξ|<λ

|ξ|−(N+sp)dξ

∫

RN

∣∣∣
∫ 1

0

∂

∂t
u(x + tξ)dt

∣∣∣
p
dx
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≤
∫

|ξ|<λ

|ξ|p−(N+sp)dξ

∫

RN

|Du|pdx

≤ ωN

p(1 − s)
λp(1−s)‖Du‖p

p.

Combining these estimates we arrive at

‖|u|‖p
s,p ≤ 2pωN

sp

1

λsp
‖u‖p

p + ωN

p(1 − s)
λp(1−s)‖Du‖p

p

valid for every λ > 0. To prove the proposition, minimize the right-hand side with
respect to λ.

Proposition 15.2 C∞
o

(
R

N
)
is dense in Ws,p(RN ).

Proof For ε > 0 let ζε denote a nonnegative piecewise smooth cutoff function in
R

N , such that

ζε = 1 for |x | <
1

ε

ζε = 0 for |x | ≥ 2

ε

and |Dζε| ≤ ε.

One verifies that
‖uζε‖s,p ≤ ‖u‖s,p + εsγ‖u‖p

for all u ∈ Ws,p(RN ), where γ depends only upon N and p, and that

‖u − uζε‖s,p → 0, as ε → 0.

The functions Jε ∗ (uζε) are in C∞
o

(
R

N
)
and as u ranges over Ws,p(RN ) and ε

ranges over (0, 1), they span a dense subset of Ws,p(RN ). For this we verify that

‖|Jε ∗ u − u|‖s,p → 0, as ε → 0.

For almost every pair x, y ∈ R
N

∣∣ [(Jε ∗ u)(x) − u(x)] − [(Jε ∗ u)(y) − u(y)]
∣∣p

|x − y|N+sp

≤
∫

|ξ|<ε

Jε(ξ)
∣∣∣
u(x + ξ) − u(y + ξ)

|(x + ξ) − (y + ξ)| N
p +s

− u(x) − u(y)

|x − y| N
p +s

∣∣∣
p
dξ.
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Integrating in dxdy over R
N × R

N , gives

‖|Jε ∗ u − u|‖p
s,p ≤ sup

|ξ|<ε

∫∫

RN×RN

∣∣∣
u(x + ξ) − u(y + ξ)

|(x + ξ) − (y + ξ)| N
p +s

− u(x) − u(y)

|x − y| N
p +s

∣∣∣
p
dxdy.

If u ∈ Ws,p(RN ), by the definition (15.1),

w(x, y) = u(x) − u(y)

|x − y| N
p +s

∈ L p(RN × R
N ).

Therefore, if Tξ is the translation operator in L p(RN × R
N ),

‖|Jε ∗ u − u|‖p
s,p ≤ sup

|ξ|<ε

‖Tξw − w‖p,RN×RN .

By the continuity of the translation in L p(RN × R
N ), the right-hand side tends

to zero as ε → 0 (§ 17 of Chap.6).

16 Traces

Let R
N+ = R

N−1 × R
+ denote the upper half-space xN > 0 whose points we denote

by (x̄, xN ), where x̄ = (x1, . . . , xN−1). If u is a function inW 1,p(RN+), continuous in
R

N+ up to xN = 0, the trace of u on the hyperplane xN = 0 is defined as its restriction
to xN = 0, that is tr(u) = u(x̄, 0).

Proposition 16.1 Let u ∈ W 1,p(RN+) be continuous in R
N
+ . Then

‖u(·, 0)‖rr,RN−1 ≤ r‖Du‖p,RN+ ‖u‖r−1
q,RN+

(16.1)

for all q, r ≥ 1 such that q(p − 1) = p(r − 1), provided u ∈ Lq(RN+).

Proof May assume that u ∈ C∞
o

(
R

N
)
. For x̄ ∈ R

N−1 and r ≥ 1

|u(x̄, 0)|r ≤ r
∫ ∞

0
|u(x̄, xN )|r−1

∣∣∣
∂

∂xN
u(x̄, xN )

∣∣∣dxN .

Integrate both sides in dx̄ overR
N−1 and applyHölder’s inequality to the resulting

integral on the right-hand side.

If u ∈ W 1,p(RN+) there exists a sequence of functions {un} inC∞
o

(
R

N
)
converging

to u in W 1,p(RN+). By (16.1) with r = p

‖un(·, 0) − um(·, 0)‖p,RN−1 ≤ ‖un − um‖1,p,RN+ .

http://dx.doi.org/10.1007/978-1-4939-4005-9_6
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Therefore {un} is a Cauchy sequence in L p(RN−1) converging to some function
tr(u) ∈ L p(RN−1). Such a function we define as the trace of u ∈ W 1,p(RN+), on the
hyperplane xN = 0. We will use the perhaps improper but suggestive symbolism
tr(u) = u(·, 0).
Proposition 16.2 Let u ∈ W 1,p(RN+) for some p ≥ 1. Then

‖u(·, 0)‖p,RN−1 ≤ p
1
p ‖u‖1−

1
p

p,RN+
‖Du‖

1
p

p,RN+
. (16.2)

If 1 ≤ p < N, then u(·, 0) ∈ L p N−1
N−p (RN−1), and

‖u(·, 0)‖p N−1
N−p ,RN−1 ≤ p(N − 1)

N − p
‖Du‖p,RN+ . (16.3)

If p > N, the equivalence class u(·, 0) has a Hölder continuous representative,
whichwe continue to denote by u(·, 0), and there exists a constant γ(N , p) depending
only upon N and p, such that, for all x̄, ȳ ∈ R

N−1

‖u(·, 0)‖∞,RN−1 ≤ γ‖u‖1−
N
p

p,RN+
‖Du‖

N
p

p,RN+
(16.4)

|u(x̄, 0) − u(ȳ, 0)| ≤ γ|x̄ − ȳ|1− N
p ‖Du‖p,RN+ . (16.5)

Proof Inequality (16.2) follows from (16.1) with r = p. The domainR
N+ satisfies the

cone condition with cone Co of solid angle 1
2ωN and height h ∈ (0,∞). Then (16.5)

follows from (8.4) of Theorem 8.1, whereas (16.4) follows from (8.3) by minimizing
over h ∈ (0,∞). To prove (16.3) let {un} be a sequence of functions in C∞

o

(
R

N
)

converging to u in W 1,p(RN+). For these, by (1.6) of Corollary 1.1

‖un‖ Np
N−p ,RN ≤ p(N − 1)

N − p
‖Dun‖p,RN .

Then from (16.1) with r = p N−1
N−p

‖un(·, 0)‖r,RN−1 ≤ r
1
r ‖un‖1−

1
r

Np
N−p ,RN+

‖Dun‖
1
r

p,RN+
≤ r‖Dun‖p,RN+ .

Remark 16.1 The constant γ(N , p) can be computed explicitly from (8.3)–(8.4) of
Theorem 8.1. This shows that γ(N , p) → ∞ as p → N .
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17 Traces and Fractional Sobolev Spaces

Denote by (x, t) the coordinates inR
N+1
+ where x ∈ R

N and t ≥ 0. For a function u ∈
W 1,p(RN+1

+ ) for some p > 1, we describe the regularity of its trace on the hyperplane
t = 0 in terms of the fractional Sobolev spaces

Ws,p(RN ) where s = 1 − 1

p
.

Introduce the symbolism

DN =
( ∂

∂x1
, . . . ,

∂

∂xN

)
and D =

(
DN ,

∂

∂t

)
.

Proposition 17.1 Let u ∈ W 1,p(RN+1
+ ) for some p > 1. Then the trace of u on the

hyperplane t = 0 belongs to the fractional Sobolev space W 1− 1
p ,p

(RN ). Moreover

‖|u(·, 0)|‖1− 1
p ,p;RN ≤ p2[2(p − 1)] 1

p

(p − 1)2
‖ut‖

1
p

p,RN+1+
‖DNu‖1−

1
p

p,RN+1+
.

Proof For every pair x, y ∈ R
N set 2ξ = x − y and consider the point z ∈ R

N+1+ of
coordinates z = ( 12 (x + y),λ|ξ|), where λ is a positive parameter to be chosen. Then

|u(x, 0) − u(y, 0)| ≤ |u(z) − u(x, 0)| + |u(z) − u(y, 0)|
≤ |ξ|

∫ 1

0
|DNu(x − ρξ,λρ|ξ|)|dρ + |ξ|

∫ 1

0
|DNu(y + ρξ,λρ|ξ|)|dρ

+ λ|ξ|
∫ 1

0
|ut (x − ρξ,λρ|ξ|)|dρ + λ|ξ|

∫ 1

0
|ut (y + ρξ,λρ|ξ|)|dρ.

From this

|u(x, 0) − u(y, 0)|p
|x − y|N+(p−1)

≤ 1

2p

( ∫ 1

0

|DNu(x − ρξ,λρ|ξ|)|
|x − y| N−1

p

dρ
)p

+ 1

2p

( ∫ 1

0

|DNu(y + ρξ,λρ|ξ|)|
|x − y| N−1

p

dρ
)p

+ 1

2p
λp

( ∫ 1

0

|ut (x − ρξ,λρ|ξ|)|
|x − y| N−1

p

dρ
)p

+ 1

2p
λp

( ∫ 1

0

|ut (y + ρξ,λρ|ξ|)|
|x − y| N−1

p

dρ
)p

.
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Next integrate both sides over R
N × R

N . In the resulting inequality take the 1
p -

power and estimate the various integrals on the right-hand side by the continuous
version of Minkowski’s inequality (§ 3.3 of Chap. 6). This gives

‖|u(·, 0)|‖1− 1
p ,RN ≤

∫ 1

0

( ∫

RN

∫

RN

|DNu(x − ρξ,λρ|ξ|)|p
|x − y|N−1

dxdy
) 1

p
dρ

+ λ

∫ 1

0

( ∫

RN

∫

RN

|ut (x − ρξ,λρ|ξ|)|p
|x − y|N−1

dxdy
) 1

p
dρ.

Compute the first integral by integrating first in dy and perform such integration
in polar coordinates with pole at x . Denoting with n the unit vector spanning the unit
sphere in R

N and recalling that 2|ξ| = |x − y|, we obtain
∫

RN

∫

RN

|DNu(x − ρξ,λρ|ξ|)|p
|x − y|N−1

dxdy

= 2
∫

|n|=1
dn

∫ ∞

0
d|ξ|

∫

RN

|DNu(x + ρn|ξ|,λρ|ξ|)|pdx

= 2
ωN

λρ

∫

R
N+1+

|DNu|pdx .

Compute the second integral in a similar fashion and combine them into

‖|u(·, 0)|‖1− 1
p ,p;RN ≤ 2

1
p λ− 1

p ‖DNu‖p,RN+1+

∫ 1

0
ρ− 1

p dρ

+ 2
1
p λ1− 1

p ‖ut‖p,RN+1+

∫ 1

0
ρ− 1

p dρ

= 2
1
p

p

p − 1

(
λ− 1

p ‖DNu‖p,RN+1+ + λ1− 1
p ‖ut‖p,RN+1+

)
.

The proof is completed by minimizing with respect to λ.

Remark 17.1 Proposition17.1 admits a converse, that is, a functionu∈W 1− 1
p ,p

(RN ),
is the trace on the hyperplane t = 0 of a function in W 1,p(RN+1

+ ) (see § 17c of the

Complements). Thus a measurable function u defined in R
N is in W 1− 1

p ,p
(RN ) if

and only it is the trace on t = 0 of a function in W 1,p(RN+1
+ ).

18 Traces on ∂E of Functions in W1, p(E)

Let E be a bounded domain in R
N with boundary ∂E of class C1 and with the

segment property. There exists a finite covering of ∂E with open balls Bt (x j ) of
radius t > 0 and center x j ∈ ∂E , such that the portion of ∂E within Bt (x j ), can be

http://dx.doi.org/10.1007/978-1-4939-4005-9_6
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represented, in a local system of coordinates, as the graph of a function f j of class
C1 in a neighborhood of the origin of the local coordinate system. Consider now the
covering of E given by

U = {Bo, Bt (x1), . . . , Bt (xn)} where Bo = E −
n⋃

j=1
B̄ 1

2 t
(x j ).

Let Φ be a partition of unity subordinate to U and construct functions ψ j ∈
C∞
o

(
Bt (x j )

)
satisfying

∑n
j=1ψ j = 1 in Ē , and |Dψ j | ≤ 2/t . For each x j fixed,

introduce a local system of coordinates ξ̄ = (ξ1, . . . ξN−1), and ξ = (ξ̄, ξN ), such that
E ∩ Bt (x j ) is mapped into the cylinder Q+

t = {|ξ̄| < t} × [0, t] and ∂E ∩ Bt (x j ), is
mapped into the portion of the hyperplane {ξN = 0} ∩ {|ξ̄| < t}. If f is a measurable
function defined in E denote by f̃ the transformed of f by the new coordinate system.
In these new coordinates

ũψ j ∈ W 1,p(RN−1 × R
+)

and its trace on {ξN = 0} can be defined as in § 16. In particular (16.1) and Proposi-
tion 16.1 hold for it.

If ũψ j (·, 0) is such a trace, we define the trace of uψ j on ∂E ∩ Bt (x j ) as the
function obtained from ũψ j (·, 0) upon returning to the original coordinates. With a
perhaps improper but suggestive notation, we denote it by uψ j |∂E . We then define
the trace of u on ∂E as

tr(u) = ∑n
j=1uψ j |∂E

and denote it by u|∂E . Applying (16.1) to each ũψ j

( ∫

|ξ̄|<t
|ũψ j |r d ξ̄

) 1
r ≤ r

1
r

( ∫∫

Q+
t

|Dũψ j |pdξ
) 1

rp
( ∫∫

Q+
t

|ũψ j |qdξ
) 1

q (1− 1
r )

≤ γ‖Dũ‖ 1
r

p,Q+
t
‖ũ‖1− 1

r

q,Q+
t

+ γt−
1
r ‖ũ‖ 1

r

p,Q+
t
‖ũ‖1− 1

r

q,Q+
t

for all q, r ≥ 1 such that q(r − 1) = p(r − 1), provided that u ∈ Lq(E).
Next return to the original coordinates and add up the resulting inequalities for

j = 1, . . . , n. Recalling that only finitely many Bt (x j ) have nonempty mutual inter-
section, we deduce that

‖u‖r,∂E ≤ γ
(‖Du‖p + ‖u‖p

) 1
r ‖u‖1− 1

r
q . (18.1)

Remark 18.1 In deriving (18.1), the requirement that E be bounded can be elimi-
nated. It is only necessary that the open covering of ∂E be locally finite whence we
observe that the notion of trace of u on ∂E is of local nature. We conclude that the
trace on ∂E of a function u ∈ W 1,p(E) is well defined for any domain E ⊂ R

N with
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boundary of class C1 and with the segment property. Moreover such a trace satisfies
(18.1).

Proceeding as before we may derive a counterpart of the embedding Proposi-
tion 16.2. Namely:

Proposition 18.1 Let u ∈ W 1,p(E) and assume that ∂E is of class C1 and with the
segment property. There exists a constant γ that can be determined a priori only in
terms of N , p and the structure of ∂E, such that ∀p ≥ 1 and ∀ε > 0

‖u‖p,∂E ≤ εp−1‖Du‖p + γ(1 + ε−1)‖u‖p. (18.2)

If 1 ≤ p < N the trace u|∂E belongs to L p N−1
N−p (∂E) and

‖u‖p N−1
N−p ,∂E ≤ γ‖u‖1,p. (18.3)

If p > N, the equivalence class u ∈ W 1,p(E) has a representativewhich isHölder
continuous in Ē, and

‖u‖∞,∂E ≤ γε‖Du‖p + γ(1 + ε−1)‖u‖p (18.4)

|u(x) − u(y)| ≤ γ|x − y|1− N
p ‖u‖1,p for all x, y ∈ Ē . (18.5)

18.1 Traces and Fractional Sobolev Spaces

Let E be a bounded domain in R
N whith boundary ∂E of class C1 and with the

segment property. Motivated by Proposition 17.1, we may introduce a notion of frac-
tional Sobolev space Ws,p(∂E) for s ∈ (0, 1) on the (N − 1)-dimensional domain
∂E . A function u ∈ L p(∂E), belongs to Ws,p(∂E) if the semi-norm

‖|u|‖s,p;∂E =
( ∫

∂E

∫

∂E

|u(x) − u(y)|p
|x − y|(N−1)+sp

dσ(x)dσ(y)
) 1

p

is finite. Here dσ(·) is the surface measure on ∂E . A norm in Ws,p(∂E) is given by

‖u‖s,p;∂E = ‖u‖p,∂E + ‖|u|‖s,p;∂E .

Statements concerning Ws,p(∂E) can be derived from § 17, by working with the
functions ũψ j , returning to the original coordinates and adding over j .

Theorem 18.1 Let u ∈ W 1,p(E) for p > 1 and let ∂E be of class C1 and with
the segment property. Then the trace of u on ∂E belongs to Ws,p(∂E) where s =
1 − 1/p, and
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‖|u|‖1− 1
p ,p;∂E ≤ γ‖u‖1,p

for a constant γ depending only upon N , p and the structure of ∂E.

Remark 18.2 This theorem admits a converse, that is, a function u ∈ W 1− 1
p ,p

(∂E)

is the trace on ∂E of a function in W 1,p(E). Thus a measurable function u defined
in ∂E is in W 1− 1

p ,p
(∂E) if and only it is the trace on ∂E of a function in W 1,p(E)

(see Theorems 18.2c and 18.3c of the Complements).

19 Multiplicative Embeddings of W1, p(E)

Multiplicative embeddings in the form of (1.1) hold for functions inW 1,p
o (E) and are

in general false for functions in W 1,p(E). The Poincaré inequalities of § 10, recover
a multiplicative form of the embedding of W 1,p(E) for functions of zero integral
average on E . The discrete form of the isoperimetric inequality (11.1) would be
vacuous if u were a nonzero constant. It is meaningful only if the measure of the set
[u = 0] is positive. These remarks imply that amultiplicative embedding ofW 1,p(E)

into Lq(E) is only possible if some information is available on the values of u on
some subset of Ē . The next Theorem provides a multiplicative embedding in terms
of the trace of u on some subset Γ of ∂E , provided E is convex.

Theorem 19.1 (DiBenedetto–Diller ([35, 36])) Let E be a bounded, open, convex
subset of R

N for some N ≥ 1 and let Γ ⊂ ∂E be open in the relative topology of
∂E. There exist constants γ and CΓ , such that for every u ∈ W 1,p(E)

‖u‖q,E ≤ γC
N
q

Γ

(‖u‖1−α
m,E‖u‖α

s,Γ + C2θ
Γ ‖u‖1−θ

r,E ‖∇u‖θ
p,E

)
(19.1)

where the parameters {α, θ,m, s, r, p, q}, satisfy

m, r ≥ 1, sp > 1, q ≥ max{m; r}, α, θ ∈ [0, 1] (19.2)

and in addition the two sets of parameters {α,m, s, q, N } and {θ, r, p, q, N } are
linked by

θ =
(1
r

− 1

q

)( 1

N
− 1

p
+ 1

r

)−1

α =
( 1

m
− 1

q

)( 1

Ns
− 1

s
+ 1

m

)−1
(19.3)

and their admissible range is restricted by

s ≥ max
{
1;m N − 1

N

}
; r ≤ (s − 1)p

p − 1
≤ q (19.4)
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q < ∞ if p ≥ N , and q ≤ Np

N − p
if p < N (19.5)

The constant γ depends only on the parameters {α, θ,m, s, r, p, q} and is inde-
pendent of u. The constant CΓ depends only on the geometry of E and Γ .

Remark 19.1 If u vanishes on Γ in the sense of the traces, then (19.1) coincides
with the multiplicative embedding of Theorem 1.1, that is

‖u‖q ≤ γC
N
q +2θ

Γ ‖u‖1−θ
r ‖Du‖θ

p. (19.1)′

By taking α = 0 in the second of (19.3), and using the arbitrariness of m and s,
yields for the parameters {θ, r, q, p, N }, the same range as the one in (1.3)–(1.5).
Thus the multiplicative embedding (1.1) continues to hold for functions in W 1,p(E)

vanishing only on a nontrivial portion of ∂E .

Remark 19.2 The difference between (19.1)′ and the embedding (1.1) is the presence
of the constant CΓ in the right-hand side of (19.1)′. This is because u is known to
vanish only on Γ ⊂ ∂E as opposed to (1.1) where u vanishes on the whole ∂E in
the sense of W 1,p

o (E).

Remark 19.3 Since q ≥ m it follows from (19.3) that α, θ ∈ [0, 1]. The links (19.3)
arise naturally from the proof. Through a rescaling argument one can see that these
are the only possible links between the two sets of parameters {θ, r, p, q, N } and
{α,m, s, r, N }. For example let E be the ball BR of radius R centered at the origin
of R

N . By rescaling R, inequality (19.1) is independent of the radius of E only if
(19.3) holds.

Remark 19.4 The constant γ in (19.1) depends only upon the indicated parameters.
In particular it is independent of u and possible rotations, translations, and dilations
of E and Γ .

Remark 19.5 The constantCΓ depends on the geometry of E andΓ in the following
manner. Let x̄ ∈ Γ and for ε > 0 let Bε(x̄) be the N -dimensional ball centered at x̄
and radius ε. The number ε is chosen as the largest radius forwhich Bε(x̄) ∩ ∂E ⊂ Γ .
Then choose xo ∈ Bε(x̄) ∩ E and let ρ > 0 be the largest radius for which Bρ(xo) ⊂
E . Finally, let R > 0 be the smallest radius for which E ⊂ BR(xo). Thus

Bρ(xo) ⊂ Bε(x̄) and E ⊂ BR(xo). (19.6)

Then the constant CΓ is the smallest value of the ratio R/ρ, for all the possible
choices of x̄ ∈ Γ and xo ∈ Bε(x̄).

Remark 19.6 By choosing θ = α = m = r = 1 in (19.3) gives

‖u‖p∗,E ≤ γCN/p∗
Γ

(‖u‖s∗,Γ + C2
Γ ‖∇u‖p,E

)
(19.1)

′′
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where

p∗ = Np

N − p
and s∗ = (N − 1)p

N − p
.

Remark 19.7 It is an open question to establish the embedding (19.1) for nonconvex
domains.

20 Proof of Theorem 19.1. A Special Case

Assume first that E is the unit cube in R
N for N ≥ 2 with edges on the positive

coordinate semiaxes, that is Q = ⋂N
i=1{0 ≤ xi < 1}. As the portion Γo of ∂Q we

take the union of the faces of the cube lying on the coordinate planes, that is Γo =⋃N
i=1Q ∩ {xi = 0}. To establish (19.1) for such a domain and such a Γo, we may

assume u is nonnegative and in C1(Q̄). Set

x̄i = (x1, . . . , 0︸︷︷︸
i-th entry

, . . . , xN )

(x̄i , t) = (x1, . . . , t︸︷︷︸
i-th entry

, . . . , xN )
i = 1, . . . , N .

Then for all s ≥ 1 and all x ∈ Q

us(x) = us(x̄i ) + s
∫ xi

0
us−1(x̄i , t)

∂u(x̄i , t)

∂xi
dt

≤ us(x̄i ) + s
∫ 1

0
us−1(x̄i , t)

∣∣∣
∂u(x̄i , t)

∂xi

∣∣∣dt
def= wi (x̄i ).

(20.1)

Choose numbers q ≥ � ≥ 0 and all s ≥ 1 satisfying (N − 1)(q − �) < Ns and set

k = Ns�

Ns − (N − 1)(q − �)
⇐⇒ � = [Ns − (N − 1)q]k

Ns − (N − 1)k
. (20.2)

One verifies that the requirement 0 ≤ � ≤ q is equivalent to 0 ≤ k ≤ q. Having
fixed m, r ≥ 1, choose k to satisfy max{r;m} ≤ k ≤ q. Then from (20.1), for all
x ∈ Q

uq(x) = u�(x)[uNs(x)] q−�

Ns = u�(x)
N∏

i=1
w

q−�

Ns
i (x̄i ).

Integrating this in dx1 over (0, 1) and applying Hölder’s inequality

∫ 1

0
uq(x)dx1 ≤ w1(x̄1)

∫ 1

0
u�(x)

N∏

i=2
w

q−�

Ns
i (x̄i )dx1
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≤ w1(x̄1)
( ∫ 1

0
uk(x)dx1

) �
k

N∏

i=2

( ∫ 1

0
wi (x̄i )dx1

) q−�

Ns
.

Next integrate this in dx2 over (0, 1) and apply Hölder’s inequality with the same
conjugate exponents. Proceeding by induction to exhaust all the variables x j , yields

∫

Q
uq(x)dx ≤

( ∫

Q
uk(x)dx

) �
k

N∏

i=1

( ∫

Qi
N−1

wi (x̄i )dx̄i
) q−�

Ns

where Qi
N−1 = Q ∩ {xi = 0} is the (N − 1)-dimensional cube excluding the i th

coordinate. By Hölder’s inequality and the definition of wi (x̄i )

∫

Qi
N−1

wi (x̄i )dx̄i ≤
∫

Γo

us(x)dσ + s
( ∫

Q
|Du|pdx

) 1
p
( ∫

Q
u

(s−1)p
p−1 dx

) p−1
p

where dσ is the surface measure on Γo. Combining these estimates, we arrive at

‖u‖q,Q ≤ γ‖u‖
�
q

k,Q‖u‖
q−�

q

s,Γo
+ γ‖u‖

�
q

k,Q‖u‖
s−1
s

q−�

q
(s−1)p
p−1 ,Q

‖Du‖
q−�

qs

p,Q . (20.3)

If either m = q or r = q then k = q and (20.3) imply that k = � = q. In such a
case the multiplicative inequality (19.1) follows from (20.5) and is vacuous. Thus
in the definition (19.3) of θ it is stipulated that θ = 0 if r = q. A similar stipulation
holds for α.

Assume that max{m; r} < q and choose k satisfying max{m; r} < k < q. By
Hölder’s inequality

‖u‖k,Q ≤ ‖u‖
m(q−k)
k(q−m)

m,Q ‖u‖
q(k−m)

k(q−m)

q,Q

‖u‖k,Q ≤ ‖u‖
r(q−k)
k(q−r)

r,Q ‖u‖
q(k−r)
k(q−r)

q,Q .

(20.4)

Assume first that the second of (19.4) holds with strict inequalities. Then by
Hölder’s inequality

‖u‖ (s−1)p
(p−1) ,Q ≤ ‖u‖

r [q(p−1)−p(s−1)]
p(s−1)(q−r)

r,Q ‖u‖
q[p(s−1)−r(p−1)]

p(s−1)(q−r)

q,Q . (20.5)

Assume that of the two terms on the right-hand side of (20.3), the first majorizes
the second. Then using the first of (20.5)

‖u‖q,Q ≤ 2γ‖u‖
�(k−m)

k(q−m)

q,Q ‖u‖
m(q−k)
k(q−m)

m,Q ‖u‖
q−�

q

s,Γo
.

By reducing the powers of ‖u‖q,Q this gives
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‖u‖q,Q ≤ γ′‖u‖1−α
m,Q‖u‖α

s,Γo

where α is given by the second of (19.3), and γ′ is a constant depending only on
the set of parameters {N , p, q, s,m, r}. If of the two terms on the right-hand side
of (20.3) the second majorizes the first, then, using the second of (20.4), and (20.5),
gives

‖u‖q,Q ≤ 2γ‖u‖
�(k−r)
k(q−r) + (q−�)[(s−1)p−r(p−1)]

s(q−r)

q,Q

× ‖u‖
�r(q−k)
qk(q−r) + r(q−�)[q(p−1)−p(s−1)]

qsp(q−r)

r,Q ‖Du‖
q−�

qs

p,Q .

By reducing the powers of ‖u‖q,Q this gives

‖u‖q,Q ≤ γ′′‖u‖1−θ
r,Q ‖Du‖1−θ

p,Q

where θ is given by the first of (19.3), and γ′′ is a constant depending only on the
set of parameters {N , p, q, s,m, r}. Finally, if the second of (19.4) holds with some
equality, the arguments are similar and indeed simpler.

21 Constructing a Map Between E and Q. Part I

Let E be a bounded, convex subset of R
N and let Γ ⊂ ∂E be open in the relative

topology of ∂E . Having fixed x̄ ∈ Γ construct the ball Bε(x̄) where ε is the largest
radius so that Bε(x̄) ∩ ∂E ⊂ Γ . Then pick xo ∈ Bε(x̄) ∩ E and construct the balls
Bρ(xo) and BR(xo) as in (19.6). Continue to denote byΓo that portion of the boundary
of the cube Q consisting of the faces lying on the coordinate planes.

Proposition 21.1 There exists a map F : Ē → Q and positive, absolute constants
C > c > 0, independent of the geometry of ∂E and Γ , such that Q = F−1(E),
Γo ⊂ F−1(Γ ) and

cρ|x − y| ≤ |F(x) − F(y)| ≤ CR
R

ρ
|x − y|. (21.1)

Moreover the Jacobian J of F , satisfies

cρN ≤ J (x) ≤ CRN for all x ∈ E . (21.2)

Proof Let n be the unit vector in R
N ranging over the unit sphere S1, and consider

the map φxo,E : S1 → ∂E defined by

φxo,E (n) = xo + tn (21.3)
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where t is the unique positive number such that xo + tn ∈ ∂E . Such a map is well
defined since E is bounded and convex.

Lemma 21.1 There exists a constant Co, depending on xo and E, such that

ρ|n1 − n2| ≤ |φxo,E (n1) − φxo,E (n2)| ≤ 4R
R

ρ
|n1 − n2|. (21.4)

Proof Up to a translation we may assume that xo = 0 and set φxo,E = φ. Having
fixed n1 and n2 on S1, the bound below in (21.4) follows from the definition (21.3)
since the sphere Sρ centered at the origin is contained in the interior of E . For the
bound above, by intersecting E with the hyperplane through xo and containing n1
and n2, it suffices to assume N = 2. Denoting by i and j the coordinate unit vectors
in R

2, we may assume up to a possible rotation that n1 = i. Then

n2 = (cosλ, sin λ)
def= n for some λ ∈ (−π,π).

Therefore the bound above in (21.4) reduces to

|φ(n) − φ(i)| ≤ 4R
R

ρ

√
1 − cosλ. (21.4)′

Let Σn be the line segment joining φ(i) and φ(n). Let also Ln be the line through
φ(i).

21.1 Case 1. Σn intersects Bρ

Since Ln intersects Bρ, the point x∗ on the line Ln which minimizes the distance
from Ln to the origin 0, is in Bρ and thus on the line segment Σn. Let λ1 and λ2 be
the angles

λ1 = φ̂(i)0x∗ λ2 = ̂x∗0φ(n).

Then λ1 + λ2 = λ and by elementary trigonometry

|φ(n) − φ(i)| = |φ(i)| sin λ1 + |φ(n)| sin λ2 ≤ R(sin λ1 + sin λ2).

At least one of the λi is less than 1
2λ, say, for example λ1. Then, since 1

2λ ∈ (0, π
2 )

sin λ1 + sin λ2 ≤ sin 1
2λ + sin(λ − λ1)

≤ sin 1
2λ + sin λ cosλ1 − cosλ sin λ1

≤ 2 sin 1
2λ + sin λ ≤ 4√

2

√
1 − cosλ.
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21.2 Case 2. Σn does not intersect Bρ

Without loss of generality, by possibly interchanging the role of i and n, we may
assume that |φ(i)| > |φ(n)|. Let λo = ̂φ(n)φ(i)0. Then by the law of sines

sin λ

|φ(n) − φ(i)| = sin λo

|φ(n)| .

From this

|φ(n) − φ(i)| = |φ(n)| sin λ

sin λo
≤ R

sin λ

sin λo
.

Since the line segment Σn does not intersect Bρ, the smallest λo could possibly
be is if the line Ln is tangent to Bρ. In such a case

sin λo ≥ ρ

|φ(i)| ≥ ρ

R
.

Combining these estimates proves the Lemma.

22 Constructing a Map Between E and Q. Part II

Extend φxo,E to a map ϕxo,E from the whole unit ball B1 onto E by

B1 � x → ϕxo,E (x) = xo + |x |t (nx )nx nx =
{ x

|x | if x �= 0

0 if x = 0
(22.1)

and t (nx ) is defined as in (21.3), in correspondence of the unit vector nx .

Lemma 22.1 For all x, y ∈ B1

1

4
ρ

ρ

R
|x − y| ≤ |ϕxo,E (x) − ϕxo,E (y)| ≤ 5R

R

ρ
|x − y|. (22.2)

Moreover, denoting by Jϕ the Jacobian of ϕxo,E

Jϕ(x) = |t (nx)|N for all x ∈ B1. (22.3)

Finally from the definition of t (nx ) it follows that

ρN ≤ Jϕ(x) ≤ RN for all x ∈ B1. (22.4)
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Proof Assume xo = 0, set ϕxo,E = ϕ, and fix any two nonzero vectors x, y ∈ B1.
By intersecting E with the hyperplane through the origin and containing x and y,
it suffices to consider the case N = 2. Assume for example that |y| ≤ |x |. Then by
elementary plane geometry

∣∣
∣
x

|x | − y

|y|
∣∣
∣ ≤ 1

|y| |x − y|.

From this, making also use of the upper estimate in Lemma 21.1

|ϕ(x) − ϕ(y)| ≤ R|x − y| + 4R
R

ρ
|y|

∣∣∣
x

|x | − y

|y|
∣∣∣ ≤ 5R

R

ρ
|x − y|.

For the lower estimate in (22.2) assume for example |x | ≥ |y|. Suppose first that

|x | − |y| ≤ 1

4

ρ

R
|x − y|.

Then by the lower estimate of Lemma 21.1

|ϕ(x) − ϕ(y)| = ∣∣|x |t (nx )nx − |y|t (ny)ny

∣∣

≥ |x |∣∣t (nx )nx − t (ny)ny

∣
∣ − R(|x | − |y|)

≥ ρ|x |
∣
∣∣
x

|x | − y

|y|
∣
∣∣ − 1

4
ρ|x − y|

≥ ρ|x |
∣
∣∣
x − y

|x | + y

|x | − y

|y|
∣
∣∣ − 1

4
ρ|x − y|

≥ ρ|x − y| − ρ(|x | − |y|) − 1
4ρ|x − y| ≥ 1

2ρ|x − y|.

If on the other hand

|x | − |y| >
1

4

ρ

R
|x − y|

then by elementary plane geometry

|ϕ(x) − ϕ(y)| = ∣∣|x |t (nx )nx − |y|t (ny)ny

∣∣ ≥ ρ(|x | − |y|) ≥ 1

4
ρ

ρ

R
|x − y|.

To establish (22.3) express the Lebesgue measure dν of B1 in polar coordinates as
dν = r N−1drdn for r ∈ (0, 1) and n ranging over the unit sphere of R

N . Likewise
the Lebesguemeasure of E in polar coordinates is dμ = τ N−1dτdn for τ ∈ (

0, t (n))

where t (n) is the polar representation of ∂E with pole at the origin. From the defin-
ition (22.1) it follows that τ = r t (n). Therefore

dμ = τ N−1dτdn = |t (n)|Nr N−1drdn = |t (n)|Ndν.
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The transformation ϕ−1
xo,E

is a one-to-one Lipschitz map between E and B1 with
Lipschitz continuous inverse. The boundary of E is mapped into ∂B1 and the
portion Γ ⊂ ∂E is mapped into a subset Γ1 ⊂ ∂B1, open in the relative topol-
ogy of the unit sphere S1. The Lipschitz constants and the Jacobian of such a
transformation are controlled by (22.2)–(22.4). Therefore the proof of Proposi-
tion 21.1 reduces to the case where E = B1 and Γ1 ⊂ ∂B1. Up to a rotation,
we may assume that (0, . . . , 0, 1) ∈ Γ1. Since Γ1 is open, there is ε > 0 such
that [xN > 1 − ε] ∩ S1 ⊂ Γ1. Set xε = (0, . . . , 0, 1 − ε) and construct the map
ϕxε,B1 : B1 → B1. Such a map satisfies estimates analogous to (22.2)–(22.4) with ρ
replaced by ε and R = 2.MoreoverΓ1 ismapped into an open portionΓ2 ∈ ∂B1 such
thatϕxε,B1([xN > 0] ∩ S1) ⊂ Γ2. Thuswe have reduced to the casewhen E = B1 and
Γ2 = [xN > 0] ∩ S1. Then, after an appropriate rotation, the map ϕx#,Q : B1 → B1

where x# = ( 12 , . . . ,
1
2 ), maps the cube Q onto B1 andΓo ontoΓ2. ThemapF claimed

by Proposition 21.1 is obtained by composing themaps occurring in the various steps
of the construction.

23 Proof of Theorem 19.1 Concluded

Let E be a bounded, convex subset of R
N and let Γ ⊂ ∂E be open in the relative

topology of ∂E . Having fixed x̄ ∈ Γ construct the ball Bε(x̄), where ε is the largest
radius for which Bε(x̄) ∩ ∂E ⊂ Γ . Then pick xo ∈ Bε(x̄) ∩ E and construct the balls
Bρ(xo) and BR(xo) as in (19.6). Let also F be the map claimed by Proposition 21.1
for these choices of x̄ , ρ and R. The Jacobian is estimated in (21.2), whereas by
(21.1) |DF | ≤ CR(R/ρ). Given u ∈ W 1,p(E), by Theorem 19.1 applied for the
unit cube Q

‖u‖q,E =
( ∫

Q
|u(F)|q Jdy

) 1
q ≤ γR

N
q ‖u(F)‖q,Q

≤ γR
N
q
(‖u(F)‖1−α

m,Q, ‖u(F)‖α
s,Γo

+ ‖u(F)‖1−θ
r,Q ‖Dyu(F)‖θ

p,Q

)

≤ γR
N
q ρ− N (1−α)

m ‖u‖1−α
m,Eρ− (N−1)α

s ‖u‖α
s,Γ

+ γR
N
q

( R2

ρ

)θ

ρ− N (1−θ)
r ‖u‖1−θ

r,E ρ− Nθ
p ‖Dxu‖θ

p,E

≤ γ
( R

ρ

) N
q
[
‖u‖1−α

m,E‖u‖α
s,Γ +

( R

ρ

)2θ‖u‖1−θ
r,E ‖Dxu‖θ

p,E

]
.

24 The Spaces W1, p
p∗ (E)

The proof of Corollary 1.1 only requires that Du ∈ L p(E), and that u is the limit of
a sequence {un} ⊂ C∞

o (E), in some topology, by which
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lim sup ‖Dun‖p ≤ ‖Du‖p, and ‖u‖p∗ ≤ lim inf ‖un‖p∗ .

Then u ∈ L p∗
(E). However u need not be in L p(E), unless E is of finite measure.

An example is

u(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1 for |x | ≤ 1

1

|x |α for |x | > 1
for

N − p

p
< α <

N

p
.

This suggest introducing the linear space

W 1,p
p∗ (E) = {

u ∈ L p∗
(E), with Du ∈ L p(E)

}

with norm
‖u‖1,p;p∗ = ‖u‖p∗ + ‖Du‖p.

One verifies that W 1,p
p∗ (E) with such a norm is a Banach space. If μ(E) < ∞ the

norms ‖ · ‖1,p and ‖ · ‖1,p;p∗ are equivalent and W 1,p
p∗ (E) = W 1,p(E), up to a bijec-

tion. In general, by virtue of (1.6),W 1,p(E) ⊂ W 1,p
p∗ (E). The next proposition asserts

that W 1,p
p∗ (E) is the closure of W 1,p(E) in the norm ‖ · ‖1,p;p∗ and that functions in

W 1,p
p∗ (E) are only those satisfying the embedding of Corollary 1.1.

Proposition 24.1 Let u ∈ W 1,p
p∗ (E). For all ε > 0 there exists uε ∈ W 1,p(E) such

that ‖u − uε‖1,p;p∗ < ε. Moreover u and Du satisfy (1.6).

Proof May assume E = R
N . Let ζn be a nonnegative, piecewise smooth cutoff func-

tion in R
N , such that

ζn = 1 for |x | < n
ζn = 0 for |x | ≥ 2n

and |Dζn| ≤ 1

n
.

Set un = uζn , verify that un ∈ W 1,p(RN ) and compute

∫

RN

|u − un|p∗
dx ≤

∫

|x |>n
|u|p∗

dx .

Moreover
∫

RN

|Du − Dun|pdx ≤ 2p−1
( ∫

RN

(1 − ζn)|Du|pdx +
∫

RN

|u Dζn|pdx
)

≤ 2p−1
( ∫

|x |>n
|Du|pdx + 1

np

∫

n<|x |<2n
|u|pdx

)

≤ 2p−1
[ ∫

|x |>n
|Du|pdx + ω

p
N
N

( ∫

|x |>n
|u|p∗

dy
) p

p∗
]
.
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The second assertion follows from (1.6) applied to un .

Proposition 24.2 Let {un} be a sequence of nonnegative functions in W 1,p
p∗ (E) and

set
v = sup un, w j = sup |un,x j |, w = (w1, . . . , wN ).

If w ∈ L p(E), then v ∈ W 1,p
p∗ (E) and |vx j | ≤ w j for j = 1, . . . , N.

Proof May assume E = R
N . The assertion is obvious if {un} = {u1, u2}, and by

induction, if {un} is a finite sequence. Otherwise set
vn = max{u1, . . . un} and wn, j = max{|u1,x j |, . . . , |un,x j |}

for j = 1, . . . , N . Then vn ∈ W 1,p
p∗ (E) and

|vn,x j | ≤ wn, j ≤ w j for all j = 1, . . . , N .

Since {vn} is monotone increasing, by monotone convergence

‖v‖p∗ = lim ‖vn‖p∗ ≤ p(N − 1)

N − p
lim inf ‖Dvn‖p ≤ p(N − 1)

N − p
‖w‖p.

This implies that v ∈ L p∗
(E). It remains to show that the distributional derivatives

vx j are real valued functions in L p(RN ), and |vx j | ≤ w j .
Let ϕ ∈ C∞

o (RN ) and compute

∫

RN

vϕx j dy = lim
∫

RN

vnϕx j dy = − lim
∫

RN

vn,x j ϕdy ≤
∫

RN

w j |ϕ|dy.

The left-hand side defines a linear functional Tj on C∞
o (RN ) with upper bound,

uniform in ϕ, given by

C∞
o (RN ) � ϕ → Tj (ϕ) ≤ ‖ϕ‖q‖w j‖p where

1

p
+ 1

q
= 1.

Assume first 1 < p < N , so that N
N−1 < q < ∞. Endow C∞

o (RN ) with the norm
‖ · ‖q and, as such, regard it as a subspace of Lq(RN ). By the Hahn–Banach theo-
rem 9.1 ofChap.7 (dominated extension of functionals), Tj admits an extension T̃ j

to Lq(RN ) satisfying the same uniform upper bound on Lq(RN ). Since C∞
o (RN )

is dense in Lq(RN ), such an extension is unique. By the Riesz representation theo-
rem 11.1 of Chap. 6 there exists a unique function in L p(RN ), which we denote by
−vx j ∈ L p(RN ) such that

T̃ j (ϕ) =
∫

RN

(−vx j )ϕdy for all ϕ ∈ Lq(RN ).

http://dx.doi.org/10.1007/978-1-4939-4005-9_7
http://dx.doi.org/10.1007/978-1-4939-4005-9_6
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Since T̃ j = Tj on C∞
o (RN )

−
∫

RN

vϕx j dy =
∫

RN

vx j ϕ ≤
∫

RN

w j |ϕ|dy for all ϕ ∈ C∞
o (RN ).

Thus vx j is the weak x j -derivative of v and |vx j | ≤ w j .
If p = 1 endow C∞

o (RN ) with the sup-norm ‖ · ‖ and, as such, regard it as a
dense subset of Co(R

N ). By the dominated extension theorem, Tj admits a unique
extension T̃ j ∈ Co(R

N )∗ satisfying the upper bound

T̃ j (ϕ) ≤
∫

RN

|ϕ|w j dy ≤ ‖ϕ‖ ‖w j‖1 for all ϕ ∈ Co(R
N ).

By the Riesz representation theorem 1.1 of Chap.8, there exists a Radon measure
μ j and a μ j -measurable function η j such that |η j | = 1 and

T̃ j (ϕ) =
∫

RN

ϕη j dμ j for all ϕ ∈ Co(R
N ).

The construction of the measure μ j in § 3 of Chap.8 implies that

μ j (E) ≤
∫

E
w j dy

for all Lebesgue measurable sets E ⊂ R
N . Therefore μ j is absolutely continuous

with respect to the Lebesgue measure and is finite, since w j ∈ L1(RN ). The signed
measure

dμ̃ j = η j dμ j

is also absolutely continuous with respect to the Lebesgue measure and its total
variation

|μ̃ j | = μ̃+
j + μ̃−

j

is also finite. By the Radon–Nykodým theorem 18.3 of Chap.4, there exists ia func-
tion in L1(RN ), which we denote by−vx j ∈ L1(RN ) such that dμ̃ j = −vx j dy. Thus

T̃ j (ϕ) =
∫

RN

ϕ(−vx j )dy for all ϕ ∈ Co(R
N ).

Since T̃ j coincides with Tj on C∞
o (RN )

−
∫

RN

vϕx j dy =
∫

RN

vx j ϕdy ≤
∫

RN

w j |ϕ|dy for all ϕ ∈ C∞
o (RN ).

Thus vx j is the weak x j -derivative of v and |vx j | ≤ w j .

http://dx.doi.org/10.1007/978-1-4939-4005-9_8
http://dx.doi.org/10.1007/978-1-4939-4005-9_8
http://dx.doi.org/10.1007/978-1-4939-4005-9_4
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Problems and Complements

1c Multiplicative Embeddings of W1, p
o (E)

1.1. The following two Propositions are established by a minor variant of the
arguments in § 2–4. Their significance is that u is not required to vanish, in
some sense, on ∂E . Let Q = ∏N

j=1(a j , b j ) be a cube in R
N .

Proposition 1.1c Let u ∈ W 1,p(Q) for some p ∈ [1, N ). Then u ∈ L p∗
(Q), and

‖u‖p∗ ≤
N∑

j=1

( 1

N (b j − a j )
‖u‖p + p(N − 1)

N (N − p)
‖ux j ‖p

)
.

The inequality continues to hold if (b j − a j ) = ∞ for some j , provided we set
(b j − a j )

−1 = 0.

Proposition 1.2c Let u ∈ W 1,p(RN ) for some p ∈ [1, N ). Then u ∈ L p∗
(RN ) and

‖u‖p∗ ≤ p(N − 1)

N (N − p)

N∑

j=1
‖ux j ‖p.

1.2. There exists a function u ∈ W 1,N
o (E), that is not essentially bounded.

1.3. The functional u → ‖Du‖p is a semi-norm in W 1,p(E) and a norm in
W 1,p

o (E). Such a norm is equivalent to ‖u‖1,p, that is, there exists a con-
stant γ depending only upon N and p such that

γ−1‖Du‖p ≤ ‖u‖1,p ≤ γ‖Du‖p for all u ∈ W 1,p
o (E).

8c Embeddings of W1, p(E)

8.1. Let W 1,p(E)∗ denote the dual of W 1,p(E) for some 1 ≤ p < ∞ and let q be
the Hölder conjugate of p. Prove that Lq(E)N ⊂ W 1,p(E)∗. Give an example
to show that inclusion is, in general strict.

8.2. Let E satisfy the cone condition, and letW 1,p(E)∗ denote the dual ofW 1,p(E)

for some 1 ≤ p < N . Prove that Lq(E)N ⊂ W 1,p(E)∗ where q is the Hölder
conjugate of p∗. Give an example to show that inclusion is, in general strict.

8.3. Let E be the unit ball of R
N and consider formally the integral

W 1,p(E) � f → T ( f ) =
∫

E
|x |−α f dx .
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Find the values of α for which this defines a bounded linear functional in
W 1,p(E).Note that the previous problemprovides only a sufficient conditions.
Hint: Compute (xi |x |−α)xi weakly.

8.4. Let E ⊂ be open set. Give an example of f ∈ W 1,p(E) unbounded in every
open subset of E . Hint: Properly modify the function in 17.9. of the Com-
plements of Chap. 4.

8.1c Differentiability of Functions in W1, p(E) for p > N

A continuous function u defined in an open set E ⊂ R
N , is differentiable at x ∈ E

if it admits a Taylor expansion of the form of (21.1) of Chap. 8 in the context of the
Rademacher’s theorem.

Functions u ∈ W 1,p(E) for 1 < p < ∞ are characterized as admitting a Taylor
type expansion in the topology of L p(E) (Proposition 20.3 of Chap.8). The embed-
ding Theorem 8.1 implies that for p > N , such an expansion holds a.e. in E .

Theorem 8.1c Functions u ∈ W 1,p
loc (E) for N < p ≤ ∞ are a.e. differentiable in E.

Proof Assume first N < p < ∞. Since Du ∈ L p
loc (E),

lim
ρ→0

−
∫

Bρ(x)
|Du − Du(x)|pdz = 0 for almost all x ∈ E .

For any such x fixed, set

v(y) = u(y) − u(x) − Du(x) · (y − x) for y ∈ Bρ(x).

In particular v(x) = 0. Apply (8.4) to the function v(·), with E being the ball
B|y−x |(x). It gives

|v(y)| = |v(y) − v(x)| ≤ C(N , p)|x − y|
(
−
∫

B|y−x |(x)
|Dv − Dv(x)|pdz

) 1
p
.

Thus for |y − x | � 1

∣∣u(y) − u(x) − Du(x) · (y − x)
∣∣

|y − x | = O(|y − x |).

Let now p = ∞. The previous arguments are local and L∞
loc (E) ⊂ L p

loc (E).
Hence one can always assume N < p < ∞.

Remark 8.1c The theorem is an extension of the Rademaker’s theorem to functions
inW 1,p(E) for N < p ≤ ∞. In particular for p = ∞ it provides an alternative proof
of the Rademaker’s theorem.

http://dx.doi.org/10.1007/978-1-4939-4005-9_4
http://dx.doi.org/10.1007/978-1-4939-4005-9_8
http://dx.doi.org/10.1007/978-1-4939-4005-9_8
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14c Compact Embeddings

14.1. Theorem 14.1 is false if E is unbounded. To construct a counterexample,
consider a sequence of balls {Bρ j (x j )} all contained in E such that |x j | →
∞ as j → ∞. Then construct a function ϕ ∈ W 1,p

o
(
Bρo(xo)

)
such that its

translated and rescaled copiesϕ j , all satisfy ‖ϕ j‖1,p;Bρ j (x j ) = 1 for all j ∈ N.
The sequence {ϕ j } does not have a subsequence strongly convergent in any
Lq(E) for all q ≥ 1.

14.2. Theorem 14.1 is false for q = p∗ for all p ∈ [1, N ). Construct an example.

17c Traces and Fractional Sobolev Spaces

17.1c Characterizing Functions in W1− 1
p , p

(RN) as Traces

Proposition 17.1c Every function ϕ ∈ W 1− 1
p ,p

(RN ) has an extension
u ∈ W 1,p(RN+1

+ ), such that the trace of u on the hyperplane t = 0, coincides with ϕ
and

‖u(·, t)‖p,RN ≤ ‖ϕ‖p,RN for all t > 0 (17.1c)

‖Du‖p,RN+1+ ≤ γ‖|ϕ|‖1− 1
p ,p;RN (17.2c)

where γ depends only on N and p.

Proof Assume N ≥ 2 and let

F(x − y; t) = 1

(N − 1)ωN+1

1
(|x − y|2 + t2

) N−1
2

be the fundamental solution of the Laplace equation in R
N+1 with pole at (x, 0),

introduced in § 14 of Chap.8. Let also

Φ(x, t) = 2

ωN+1

∫

RN

t
(|x − y|2 + t2

) N+1
2

ϕ(y)dy

= 2
∫

RN

Ft (x − y; t)ϕ(y)dy
def= (H ∗ ϕ)(x)

be the Poisson integral of ϕ in R
N+1
+ introduced in § 18.2c of the Complements

of Chap.6. Since the kernel H = 2Ft has mass one for all t > 0 and is harmonic
in R

N × R
+ we may regard 2Ft as a mollifying kernel following the parameter

t . Therefore (17.1c) follows from the properties of the mollifiers and in particular

http://dx.doi.org/10.1007/978-1-4939-4005-9_8
http://dx.doi.org/10.1007/978-1-4939-4005-9_6
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Proposition 18.2c of the Complements of Chap.6. Again, since H = 2Ft has mass
one

∂

∂t

∫

RN

Ft (x − y; t)dy = 0 and
∂

∂xi

∫

RN

Ft (x − y; t)dy = 0

for i = 1, . . . , N . Therefore denoting by η any one of the components of (x, t)

∂

∂η
Φ(x, t) =

∫

RN

∂2

∂η∂t
F(x − y; t)[ϕ(y) − ϕ(x)]dy

and by direct calculation

|DΦ(x, t)| ≤ γ

∫

RN

|ϕ(x) − ϕ(y)|
(|x − y| + t)N+1

dy

for a constant γ depending only upon N . Integrate in dy by introducing polar coor-
dinates with pole at x and radial variable ρt . If n denotes the unit vector spanning
the unit sphere in R

N

|DΦ(x, t)| ≤ γ

∫

|n|=1
dn

∫ ∞

0

ρN−1

(1 + ρ)N+1

|ϕ(x + ρtn) − ϕ(x)|
t

dρ.

By the continuous version of Minkowski’s inequality

‖DΦ‖p,RN+1+ ≤ γ

∫

|n|=1
dn

∫ ∞

0

ρN−1

(1 + ρ)N+1
dρ

×
( ∫ ∞

0

‖ϕ(· + ρtn) − ϕ(·)‖p
p,RN

t p
dt

) 1
p
.

The last integral is computed by the change of variable r = ρt . This gives

‖DΦ‖p,RN+1+ ≤ γ
( ∫ ∞

0

ρN− 1
p

(1 + ρ)N+1
dρ

)

×
∫

|n|=1

( ∫ ∞

0
r N−1

‖ϕ(· + rn) − ϕ(·)‖p
p,RN

r N+p−1

) 1
p
dn

≤ γ(N , p)
( ∫

RN

∫

RN

|ϕ(x) − ϕ(y)|p
|x − y|N+p−1

dxdy
) 1

p

= γ(N , p)‖|ϕ|‖1− 1
p ,p;RN .

The extension claimed by the proposition can be taken to be

u(x, t) = e−t/pΦ(x, t).

http://dx.doi.org/10.1007/978-1-4939-4005-9_6
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To prove thatϕ is the trace of u, consider a sequence {ϕn} ⊂ C∞
o

(
R

N
)
that approx-

imate ϕ in the norm ofWs,p(RN ) for s = 1 − 1/p. Such a sequence exists by virtue
of Proposition 15.2. Then construct the corresponding Poisson integrals Φn and let
un = e−t/pΦn . Writing

un − u = 2e−t/p
∫

RN

Ft (x − y; t)[ϕn(y) − ϕ(y)]dy

and applying (17.1c)–(17.2c) proves that un → u in W 1,p(RN+1
+ ). By the definition

of trace this implies that u(·, 0) = ϕ.

Combining Proposition 17.1 and this extension procedure, gives the following char-
acterization of the traces.

Theorem 17.1c A function ϕ defined and measurable in R
N belongs to Ws,p(RN )

for some s ∈ (0, 1) if and only if it is the trace on the hyperplane t = 0 of a function
u ∈ W 1,p(RN+1

+ ) where p = 1/(1 − s).

18c Traces on ∂E of Functions in W1, p(E)

Theorem 18.2c Let E be a bounded domain in R
N with boundary ∂E of class C1

and with the segment property. A function ϕ ∈ W 1− 1
p ,p

(∂E) for some p > 1 admits
an extension u ∈ W 1,p(E) such that the trace of u on ∂E is ϕ.

Theorem 18.3c Let E be a bounded domain in R
N with boundary ∂E of class C1

and with the segment property. A function ϕ defined and measurable on ∂E belongs
to Ws,p(∂E) for some s ∈ (0, 1) if and only if it is the trace on ∂E of a function
u ∈ W 1,p(E) where p = 1/(1 − s).

18.1c Traces on a Sphere

The embedding inequalities of Proposition 18.1 might be simplified if E is of rela-
tively simple geometry, such as a ball or a cube in R

N . Let BR the ball of radius R
about the origin of R

N and let SR = ∂BR .

Proposition 18.1c Let u ∈ W 1,p(BR) for some p ∈ [1,∞). Then

‖u‖p
p,SR

≤ N

R
‖u‖p

p + p‖u‖p−1
p

∥∥∥
∂u

∂|x |
∥∥∥
p
. (18.3c)

If p ∈ [1, N ) then
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‖u‖mm,SR ≤ Nκ
1
N
N ‖u‖mp∗ + m‖u‖m−1

p∗

∥∥∥
∂u

∂|x |
∥∥∥
p

(18.4c)

where

p∗ = Np

N − p
and m = N − 1

N
p∗.

Proof We may assume that u ∈ C1(B̄R). Having fixed q ≥ p ≥ 1, set

θ = max
{
p; 1 + q

(
1 − 1

p

)}
so that p ≤ θ ≤ q.

Then for any unit vector n

RN |u(Rn)|θ =
∫ R

0

∂

∂ρ
(ρN |u(ρn)|θ)dρ

= N
∫ R

0
ρN−1|u(ρn)|θdρ + θ

∫ R

0
ρN |u(ρn)|θ−1 ∂u(ρn)

∂ρ
sign u(ρn)dρ.

Integrating in dn over the unit sphere |n| = 1 gives

R
∫

n=1
|u(Rn)|θRN−1dn = N

∫

BR

|u|θdx + θ

∫

BR

|x ||u|θ−1 ∂u

∂|x | sign udx

≤ Nμ(BR)
1− θ

q

( ∫

BR

|u|qdx
) θ

q + θR
( ∫

BR

|u|(θ−1) p
p−1 dx

) p−1
p
∥∥∥

∂u

∂|x |
∥∥∥
p
.

Inequalities (18.3c) and (18.4c) follow form this for q = p and q = p∗.



Chapter 11
Topics on Weakly Differentiable Functions

1 Sard’s Lemma [140]

Let E be a bounded domain in R
N and let f ∈ C∞(E). For a multi-index α, and a

positive integer k, set

Dk = {
x ∈ E

∣∣ ∑

1≤|α|≤k
|Dα f (x)| = 0

} =
k⋂

|α|=1
[Dα f = 0].

Denote also by μ1 the Lebesgue measure on R. The next lemma asserts that the
image of DN by f is a subset of measure zero in the range of f . Equivalently, for
almost all level sets [ f = t]

N∑

|α|=1
|Dα f (x)| > 0 for all x ∈ [ f = t].

Lemma 1.1 μ1[ f (DN )] = 0.

Proof Fix ε ∈ (0, 1). For each x ∈ DN and for all 0 < ε ≤ ε there exists an open
ball Br (x) centered at x and radius 0 < r ≤ ε such that

sup
y∈Br (x)

| f (y) − f (x)| ≤ γr N+1

for a constant depending only of f and independent of x and r . Thus

f [Br (x)] ⊂ Ix,ε = [
f (x) − inf

Br (x)

(
f − f (x)

)
, f (x) + sup

Br (x)

(
f − f (x)

)]
.

© Springer Science+Business Media New York 2016
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The collection of intervals {Ix,ε for x ∈ DN and ε ∈ (0, ε), forms a fine Vitali cov-
ering for f (DN ). By the Vitali measure theoretical covering theorem (Theorem 17.1
of Chap.3), one may extract a countable subcollection of intervals {In}with pairwise
disjoint interior, such that

μ1
[
f (DN ) − ⋃

In
] = 0.

To each In there corresponds a ball Brn (xn) such that

Brn (xn) ⊂ f −1(In).

The pre-images f −1(In) have pairwise disjoint interior, and we estimate

μ1[ f (DN )] ≤ ∑
μ1(In) ≤ γ

∑
r N+1
n

≤ εγ
N

ωN

∑ ωN

N
r Nn = εγ

N

ωN

∑
μ
[
Brn (xn)

]

≤ εγ
N

ωN

∑
μ
[
f −1(In)

] ≤ ε
γN

ωN
μ(E).

The next lemma asserts that f (D1) has 1-dimensional Lebesgue measure zero.
Equivalently, for almost all level sets [ f = t]

|Df (x)| > 0 for all x ∈ [ f = t].

As a consequence, by the implicit function theorem, for almost all t in the range
of f , the level sets [ f = t] are, smooth (N − 1)-dimensional surfaces.

Lemma 1.2 μ1[ f (D1)] = 0.

Proof By the previous lemma it suffices to prove that

μ1
[
f (D1) − f (DN )

] = μ1
[
f (D1 − DN )

] = 0.

The proof is by induction on the dimension N . The lemma holds trivially for
N = 1. We will establish that if it does hold for (N − 1) it continues to hold for N .
Now

D1 − DN =
N−1⋃

k=1
(Dk − Dk+1) and

f (D1 − DN ) =
N−1⋃

k=1
f (Dk − Dk+1).

Therefore, it suffices to show that

μ1
[
f (Dk − Dk+1)

] = 0 for all k = 1, . . . , N − 1.

http://dx.doi.org/10.1007/978-1-4939-4005-9_3
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Having fixed x ∈ (Dk − Dk+1), there exists a multi-index α of size |α| = k, and
an index j ∈ {1, . . . , N }, such that

Dα f (x) = 0 and
∂

∂x j
Dα f (x) �= 0.

Up to a possible reordering of the coordinates, may assume without loss of gener-
ality that j = N . By the implicit function theorem, there exists a open neighborhood
O of x , and a local system of coordinates,

y = (ȳ, yN ), where ȳ = (y1, . . . , yN−1)

such that, within O the set [Dα f = 0] can be represented as the graph of a smooth
function yN = g(ȳ). Precisely, there is an open set U and a homeomorphism h :
O → U such that

f
∣
∣
O= f

(
h−1

∣
∣
U

) def= ϕ : U → R.

The restriction

ψ = ϕ
∣∣
U∩[yN=g(y)]= f

(
h−1

(U ∩ [yN = g(y)])
)

defines a smooth function of (N − 1) independent variables in U ∩ [yN = g(y)]. Set

D1,ψ = ⋃ {
y ∈ U ∩ [yN = g(y)] ∣∣ Dψ(y) = 0

}
.

By the induction hypothesis μ1[ψ(D1,ψ)] = 0. By construction, if y ∈ h
(
(Dk −

Dk+1) ∩ O)
, then y ∈ D1,ψ . Therefore,

h
(
(Dk − Dk+1) ∩ O) ⊂ D1,ψ.

From this
f
(
(Dk − Dk+1) ∩ O) ⊂ ψ(D1,ψ)

Hence
μ1

[
f
(
(Dk − Dk+1) ∩ O)] ≤ μ1(ψ(D1,ψ)) = 0.

As x ranges over (Dk − Dk+1) the open sets O about x , form an open covering
of (Dk − Dk+1), from which we may select a countable one {On}. Such a selection
is possible by virtue of Proposition 5.3 of Chap. 2. To establish the lemma it suffices
to observe that

μ1
[
f (Dk − Dk+1)

] = μ1
[
f
(⋃

(Dk − Dk+1) ∩ On
)]

≤ ∑
μ1

[
f
(
(Dk − Dk+1) ∩ On

)] = 0.

http://dx.doi.org/10.1007/978-1-4939-4005-9_2
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2 The Co-area Formula for Smooth Functions

Proposition 2.1 Let E be a bounded domain in R
N and let u ∈ C∞(E). Then for

all nonnegative ϕ ∈ C(E)

∫

E
ϕ|∇u|dx =

∫ ∞

0

( ∫

∂[|u|>t]
ϕdσ

)
dt (2.1)

where dσ is the (N − 1) Hausdorff measure on [u = t].
Remark 2.1 Since u ∈ C∞(E)(E), by Sard’s Lemma, the level sets [u = t] are
smooth (N−1)-dimensional surfaces for a.e. t ∈ R. Therefore, sinceϕ is continuous
in E and nonnegative, the integrals in (2.1), finite or infinite, are well defined.

Proof Assume first ϕ ∈ C∞
o (E) and, for ε > 0 set

h = ϕ
∇u

√|∇u|2 + ε
∈ C∞

o (E).

Then, by integration by parts and formula (15.5) of Chap.4

∫

E
h · ∇udx = −

∫

E
u div h dx

= −
∫ ∞

0

( ∫

[u>t]
div hdx

)
dt +

∫ 0

−∞

( ∫

[u<t]
div hdx

)
dt.

By Sard’s Lemma, the inner unit normal to ∂[u > t] is well defined for a.e. t ∈ R,
and it is given by ∇u/|∇u|. Then by the divergence theorem,

−
∫

[u>t]
div hdx =

∫

∂[u>t]
h · ∇u

|∇u|dσ for a.e. t > 0;

∫

[u<t]
div hdx =

∫

∂[u<t]
h · ∇u

|∇u|dσ for a.e. t < 0.

Therefore, taking into account the choice of h

∫

E
ϕ

|∇u|2
√|∇u|2 + ε

dx =
∫ ∞

0

( ∫

∂[|u|>t]
ϕ

|∇u|
√|∇u|2 + ε

dσ
)
dt.

Letting ε → 0 and passing to the limit under integral by means of the dominated
convergence theorem proves (2.1) for ϕ ∈ C∞

o (E). If ϕ ∈ Co(E), it is the pointwise
limit of functions in C∞

o (E). Thus a limiting process by dominated convergence

http://dx.doi.org/10.1007/978-1-4939-4005-9_4
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establishes (2.1) for all nonnegative ϕ ∈ Co(E). A nonnegative ϕ ∈ C(E) is the
monotone, pointwise limit of functions in Co(E). Thus, by monotone convergence,
(2.1) continues to hold for nonnegative ϕ ∈ C(E).

3 The Isoperimetric Inequality for Bounded Sets E
with Smooth Boundary ∂E

For a Lebesgue measurable set E ⊂ R
N with smooth boundary ∂E , denote by μ(E)

its Lebesgue measure, and by σ(∂E) the (N −1)-dimensional Hausforff measure of
∂E .

Proposition 3.1 Let E be a bounded, open set in R
N , with smooth boundary ∂E.

Then
σ(∂E)

N
N−1

μ(E)
≥ Nω

1
N−1
N . (3.1)

Proof Denote by E � x → δE (x) the distance from x to ∂E and for δ > 0 let Eδ

be defined as
Eδ = {x ∈ E

∣∣ δE (x) > δ} (3.2)

where δ is so small that Eδ is not empty. Introduce the family of functions

uδ =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 if x ∈ Eδ;
1

δ
δE (x) if x ∈ E − Eδ;

0 if x ∈ R
N − E .

(3.3)

The distance function δE (·) is a Lipschitz continuous function of x , with Lipschitz
constant L = 1 (Lemma 15.2 of Chap.4). Hence δE ∈ W 1,∞(E) (§ 20.2 of Chap.8).
The functions uδ can also be regarded as in W 1,1

o (RN ). From this and Corollary 1.1
of Chap.10, for p = 1, applied in the form (1.7) with the best constant,

μ(E) = lim
∫

E
u

N
N−1

δ dx

≤ (
Nω

1
N−1
N

)−1
lim

( ∫

E
|Duδ|dx

) N
N−1

≤ (
Nω

1
N−1
N

)−1
lim

(1
δ
μ(E − Eδ)

) N
N−1

= (
Nω

1
N−1
N

)−1
σ(∂E)

N
N−1 .

http://dx.doi.org/10.1007/978-1-4939-4005-9_4
http://dx.doi.org/10.1007/978-1-4939-4005-9_8
http://dx.doi.org/10.1007/978-1-4939-4005-9_10
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Remark 3.1 In computing the last limit we have used that ∂E is smooth. If ∂E
is not regular, such a limiting process could be used to define the measure of the
“perimeter” of E , i.e., [33]

lim
δ→0

∫
|Duδ|dx def= |∂E |.

Remark 3.2 The quantity in (3.1) is dimensionless and it measures the isoperimetric
ratio of ∂E relative to the volume of E . It is then natural to ask for what sets E such
a ratio is the least. A theorem of DeGiorgi [33] states that the inequality in (3.1) is
strict, unless E is a ball. Thus the balls are the domains of least perimeter among all
those of equal volume.

3.1 Embeddings of W1, p
o (E) Versus the Isoperimetric

Inequality

The isoperimetric inequality is a consequence of the embedding of W 1,1
o (E) into

L
N

N−1 (E), as stated in Corollary 1.1 of Chap.10, in the form (1.7) with best constant.
This embedding is the building block of all embeddings ofW 1,p

o (E) into L p∗
(E) for

all 1 ≤ p < N , as indicated in § 3–§ 4 of Chap.10.
Let now u ∈ C∞

o (E), so that by Sard’s Theorem, the sets [u > t] have smooth
boundaries [u = t], for a.e. t ∈ R. Apply the co-area formula (2.1), with ϕ = 1, and
the isoperimetric inequality to the sets [u > t] and their boundaries [u = t]. This
gives

1

N

( N

ωN

) 1
N

∫

E
|Du|dx = 1

N

( N

ωN

) 1
N

∫

R

σ([u = t])dt

≥
∫

R

μ([u > t]) N−1
N dt =

∫ ∞

0
μ([|u| > t]) N−1

N dt

≥
∫ ∞

0

1

h

{
h

N
N−1 μ([|u| > t])} N−1

N dt

≥
∫ ∞

0

1

h

{ ∫

E

(
min{|u|; t + h} − min{|u|; t}) N

N−1

} N−1
N
dt

=
∫ ∞

0

1

h

∥∥min{|u|; t + h} − min{|u|; t}∥∥ N
N−1

dt

≥
∫ ∞

0

1

h

[∥∥min{|u|; t + h}∥∥ N
N−1

− ∥∥min{|u|; t}∥∥ N
N−1

]
dt.

In these calculations 0 < h 
 1. Letting h → 0 yields

1

N

( N

ωN

) 1
N

∫

E
|Du|dx ≥

∫ ∞

0

d

dt

∥∥min{|u|; t}∥∥ N
N−1

dt = ‖u‖ N
N−1

. (3.4)

http://dx.doi.org/10.1007/978-1-4939-4005-9_10
http://dx.doi.org/10.1007/978-1-4939-4005-9_10
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Thus the isoperimetric inequality implies the embedding of Corollary 1.1 of
Chap.10, for p = 1, in its form (1.7) with best constant.

Remark 3.3 The isoperimetric inequality (3.1) is applied to the sets [u > t] and their
boundaries [u = t], which are smooth surfaces for a.e. t . The resulting Gagliardo
embedding (3.4) holds for domains E with boundary ∂E not necessarily smooth.

4 The p-Capacity of a Compact Set K ⊂ R
N ,

for 1 ≤ p < N

For a non-void, compact set K ⊂ R
N introduce the classes of functions

Γ (K ) = {
u ∈ C∞

o (RN ) with u ≥ 1 on K
}
;

Γo(K ) =
{
u ∈ C∞

o (RN ) with 0 ≤ u ≤ 1 in R
N

u ≥ 1 in an open neighborhood of K

}
;

Γ1(K ) =
{
u ∈ C∞

o (RN ) with 0 ≤ u ≤ 1 in R
N

u = 1 in an open neighborhood of K

}
.

(4.1)

For 1 ≤ p < N the p-capacity of K is equivalently defined as

cp(K ) = inf
{ ∫

RN

|Du|pdx ∣
∣ u ∈ Γ (K )

}
;

cop(K ) = inf
{ ∫

RN

|Du|pdx ∣∣ u ∈ Γo(K )
}
;

c1p(K ) = inf
{ ∫

RN

|Du|pdx ∣∣ u ∈ Γ1(K )
}
.

(4.2)

If K = ∅, set cp(K ) = cop(K ) = c1p(K ) = 0.

Proposition 4.1 cp(K ) = cop(K ) = c1p(K ).

Proof By construction cp(K ) ≤ cop(K ) ≤ c1p(K ). To establish the converse inequal-
ities, may assume that cp(K ) < ∞. For ε > 0 there exists uε ∈ C∞

o (RN ) with
uε ≥ 1 on K such that ∫

RN

|Duε|pdx − ε ≤ cp(K ).

For 0 < ε < 1
4 introduce the function

http://dx.doi.org/10.1007/978-1-4939-4005-9_10
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R � t → ζε(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 for −∞ < t ≤ ε;
t − ε

1 − 2ε
for ε ≤ t ≤ 1 − ε;

1 for 1 − ε ≤ t < ∞.

One verifies that ζε is Lipschitz continuous and 0 ≤ ζε ≤ 1. Moreover

0 ≤ ζ ′
ε ≤ 1 + 2ε a.e. in R. (4.3)

The mollifications ζε,ν for 0 < ν 
 ε share the same properties of ζε. The
function vε = ζε,ν(uε) is in the class Γ1(K ). Then, by the definition of cop(K ) and
c1p(K ),

cop(K ) ≤ c1p(K ) ≤
∫

RN

|Dvε|pdx =
∫

RN

ζ ′p
ε,ν |Duε|pdx

≤ (1 + 2ε)p
∫

RN

|Duε|pdx ≤ (cp(K ) + ε)(1 + 2ε)p.

4.1 Enlarging the Class of Competing Functions

Let now W 1,p
p∗ (RN ) be the space, introduced in § 24 of Chap. 10, for E = R

N , and
set

Γ∗(K ) = {
u ∈ W 1,p

p∗ (RN ) ∩ C(RN ) with u ≥ 1 on K
}

c∗
p(K ) = inf

{ ∫

RN

|Du|pdx ∣∣ u ∈ Γ∗(K )
}
.

(4.4)

Proposition 4.2 c∗
p(K ) = cp(K ).

Proof By construction c∗
p(K ) ≤ cp(K ). For ε > 0 there exists uε ∈ Γ∗(K ) such

that ∫

RN

|Duε|pdx − ε ≤ c∗
p(K ). (4.5)

Arguing as in the proof of Proposition 4.1, there exists ζε(uε) ∈ Γ∗(K ) such that

0 ≤ ζε(uε) ≤ 1 and ζε(uε) ≥ 1 in an open neighborhood of K .

Since ζ ′
ε satisfies (4.3), inequality (4.5) yields

http://dx.doi.org/10.1007/978-1-4939-4005-9_10
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∫

RN

|Dζε(uε)|pdx ≤ (1 + γpε)

∫

RN

|Duε|pdx
≤ c∗

p(K ) + εγ̄pcp(K )

(4.6)

for positive constants γp and γ̄p depending only on p. By Proposition 24.1 of
Chap.10, and its proof, there exists wε ∈ W 1,p

o (RN ), such that

‖Dζε(uε) − Dwε‖p ≤ ε
1
p .

The construction of wε insures that wε is compactly supported in RN and

0 ≤ wε ≤ 1 and wε ≥ 1 in an open neighborhood of K .

A proper Friedrichs mollification of wε generates wε,o ∈ C∞
o (RN ), such that

0 ≤ wε,o ≤ 1 and wε,o ≥ 1 in an open neighborhood of K

and
‖Dwε,o − Dwε‖p ≤ ε

1
p .

From this and (4.6)

∫

RN

|Dwε,o|pdx − ε ≤ c∗
p(K ) + γ̄pεcp(K ).

The function wε,o is in Γo(K ). Therefore taking the infimum of the left hand side
over all such functions yields

cp(K ) ≤ c∗
p + ε

(
1 + γ̄pεcp(K )

)
.

Corollary 4.1 Let K ⊂ R
N be compact. Then for all ε > 0 there exists an open set

O ⊃ K such that

cp(K ) ≤ cp(K
′) + ε for all compact sets K ⊂ K ′ ⊂ O. (4.7)

This property is also called right continuity of the set function cp(·) on compact
sets. The definition of p-capacity implies that if H and K are compact subsets of
R

N , then
H ⊂ K =⇒ cp(H) ≤ cp(K ) (4.8)

that is cp(·) is a monotone set function on compact sets. The definition implies also
that for all t > 0 and all rototranslations R of the coordinate axes

cp(t K ) = t N−pcp(K ); cp(RK ) = cp(K ). (4.9)

http://dx.doi.org/10.1007/978-1-4939-4005-9_10
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5 A Characterization of the p-Capacity of a Compact Set
K ⊂ R

N , for 1 ≤ p < N

For a given compact set K ⊂ R
N continue to denote by Γ (K ) the class of competing

functions introduced in (4.1). Set also

EK =
{
the collection of open sets E containing K

such that ∂E is a smooth surface

}
(5.1)

and denote by σ(∂E) the (N − 1) Hausdorff measure of ∂E .

Theorem 5.1 Let K be a compact subset of RN . Then for 1 < p < N

cp(K ) = inf
u∈Γ (K )

[ ∫ 1

0

( ∫

∂[u>t]
|Du|p−1dσ

) 1
1−p

]1−p
. (5.2)

If p = 1, then
c1(K ) = inf

E∈EK

σ(∂E). (5.3)

Proof (The Case 1 < p < N . The Lower Estimate in (5.2)) Let u be a nonnegative
function in C∞

o (RN ). By the co-area formula (2.1), for smooth functions

∫

RN

|Du|pdx ≥
∫ 1

0
f (t)dt

where

f (t) =
∫

∂[u>t]
|Du|p−1dσ (5.4)

where dσ is the (N − 1) Hausdorff measure on ∂[u > t]. By Sard’s Lemma, the set
∂[u > t] is a smooth (N − 1)-dimensional surface for a.e. t > 0, so that f is well
defined, nonnegative and a.e. finite as a measurable function of t > 0. As such the
integrals of f and f −1, finite or infinite, are well defined.

Let now f be any such function and assume in addition that

f and f − 1
p−1 are integrable in (0, 1).

Then by Hölder’s inequality

1 =
∫ 1

0
f

1
p f − 1

p dt ≤
( ∫ 1

0
f dt

) 1
p
( ∫ 1

0
f

1
1−p dt

) p−1
p

.

Therefore ( ∫ 1

0
f

1
1−p dt

)1−p ≤
∫ 1

0
f dt. (5.5)
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One verifies that this inequality continues to hold if either f or f − 1
p−1 or both,

fail to be integrable. Returning to the definition (4.2) of cp(K ), for all ε > 0 there
exists u ∈ Γ1(K ) such that

cp(K ) + ε ≥
∫

RN

|Du|pdx =
∫ 1

0
f (t)dt

with f defined by (5.4). Thus, taking into account (5.5)

cp(K ) ≥ inf
u∈Γ1(K )

[ ∫ 1

0

( ∫

∂[u>t]
|Du|p−1dσ

) 1
1−p

]1−p
.

Proof (The Case 1 < p < N . The Upper Estimate in (5.2)) Let ζ ∈ C∞(R) be
nondecreasing and satisfying

ζ = 0 in (−∞, 0]; ζ = 1 in [1,∞); ζ ∈ [0, 1] in [0, 1];
0 ≤ ζ ′(t) ≤ γ for some γ > 0 for all t ∈ (0, 1).

For any such function ζ and any u ∈ Γ (K ),

cp(K ) ≤
∫

RN

ζ ′p(u)|Du|pdx =
∫ 1

0
ζ ′p(t) f (t)dt

where f is introduced in (5.4). Assume momentarily that f and f − 1
p−1 are integrable

in (0, 1) and choose

ζ(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 for −∞ < t ≤ 0;
∫ t
0 ( f + ε)−

1
p−1 dτ

∫ 1
0 ( f + ε)−

1
p−1 dt

for 0 ≤ t ≤ 1;

1 for 1 ≤ t < ∞,

modulo a mollification process. For such a choice,

cp(K ) ≤
( ∫ 1

0
( f + ε)

1
1−p dt

)1−p

From this, by monotone convergence and the definition (5.4)

cp(K ) ≤
( ∫ 1

0
f

1
1−p dt

)1−p

=
[ ∫ 1

0

( ∫

∂[u>t]
|Du|p−1dσ

) 1
1−p

]1−p
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for all u ∈ Γ (K ). In this inequality we may assume that f is integrable for some

u ∈ Γ (K ), otherwise cp(K ) = ∞. The inequality continues to hold if f − 1
p−1 is not

integrable, in which case cp(K ) = 0.

Proof (The Case p = 1) For a nonnegative u ∈ C∞
o (RN )

∫

RN

|Du|dx =
∫ ∞

0
σ
([∂[u > t])dt

≥
∫ 1

0
σ
([∂[u > t])dt ≥ inf

E∈EK

σ(∂E).

Let E ∈ EK and, for 0 < δ < 1 let Eδ and uδ be defined as in (3.2) and (3.3).
Since K ⊂ E is compact, there is δ sufficiently small that K ⊂ [uδ = 1]. For such
a uδ ,

c1(K ) ≤
∫

E
|∇uδ|dx

up to a mollification process. Letting δ → 0 and proceeding as in the proof of
Proposition 3.1, gives c1(K ) ≤ σ(∂E), for all E ∈ EK .

6 Lower Estimates of cp(K ) for 1 ≤ p < N

Lemma 6.1 Let K be a compact subset of RN . Then for all 1 ≤ p < N,

cp(K ) ≥ N
(ωN

N

) p
N
(N − p

p − 1

)p−1
μ(K )

N−p
N (6.1)

where for p = 1 the term in round brackets is meant to be 1.

Proof (The Case 1 < p < N ) Let u ∈ C∞
o (RN ) be nonnegative and let 0 ≤ s < t .

By Hölder’s inequality

( ∫

[s<u<t]
u p−1|Du|dx

) p
p−1 =

( ∫

[u>s]−[u≥t]
u p−1|Du|dx

) p
p−1

≤
( ∫

[u>s]−[u≥t]
u pdx

)( ∫

[s<u<t]
|Du|pdx

) 1
p−1

.

From this, by the co-area formula (2.1), for smooth functions,

[ ∫ t

s
τ p−1

( ∫

∂[u>τ ]
dσ

)
dτ

] p
p−1 ≤ t pμ

([u > s] − [u > t])

×
[ ∫ t

s

( ∫

∂[u>τ ]
|Du|p−1dσ

)
dτ

] 1
p−1

.
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Divide by (t − s)
p

p−1 and let s → t to obtain

[
σ(∂[u > t])] p

p−1 ≤ − d

dt
μ([u > t])

( ∫

∂[u>t]
|Du|p−1dσ

) 1
p−1

for a.e. t > 0. The various limits are justified by the Lebesgue-Besicovitch dif-
ferentiation theorem, and the monotonicity of the function t → μ([u > t]) (see
Theorems 11.1 and 3.1 of Chap.5). From this and (5.3) of Theorem 5.1

cp(K ) = inf
u∈Γ (K )

[ ∫ 1

0

( ∫

∂[u>t]
|Du|p−1dσ

) 1
1−p

dt
]1−p

≥ inf
u∈Γ (K )

(
−

∫ 1

0

d
dt μ([u > t])

σ(∂[u > t]) p
p−1

dt
)1−p

.

(6.2)

By the isoperimetric inequality (3.1)

σ(∂[u > t]) ≥ N
N−1
N ω

1
N
N μ([u > t]) N−1

N

Therefore, from (6.2) for 1 < p < N ,

cp(K ) ≥ N
p(N−1)

N ω
p
N
N inf

u∈Γ (K )

(

−
∫ 1

0

d
dt μ([u > t])

μ([u > t]) p
p−1

N−1
N

dt

)1−p

≥ N
N−p
N ω

p
N
N

(N − p

p − 1

)p−1
inf

u∈Γ (K )

(∫ 1

0

d

dt
μ([u > t])− N−p

N (p−1) dt

)1−p

≥ N
N−p
N ω

p
N
N

(N − p

p − 1

)p−1
μ(K )

N−p
N .

Proof (The Case p = 1) The proof for p = 1 follows by combining (5.2) of
Theorem 5.1 with the isoperimetric inequality (3.1) of Proposition 3.1.

6.1 A Simpler Proof of Lemma 6.1 with a Coarser Constant

Letu be in anyoneof the classesΓ (K ),Γo(K ),Γ1(K ) introduced in (4.1). Thenby the
Gagliardo embedding of W 1,p

o (RN ) into L p∗
(RN ) as stated in (1.6) of Corollary 1.1

of Chap.10.

μ(K )
N−p
N ≤

( ∫

RN

u
Np
N−p dx

) N−p
N ≤ pp

( N − 1

N − p

)p
∫

RN

|Du|pdx

http://dx.doi.org/10.1007/978-1-4939-4005-9_5
http://dx.doi.org/10.1007/978-1-4939-4005-9_10
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for N ≥ 2 and 1 ≤ p < N . Minimizing the right-hand side over u ∈ Γ (K ), yields

cp(K ) ≥ p−p
(N − p

N − 1

)p
μ(K )

N−p
N . (6.3)

This estimate is analogous to (6.1), except for the different value of the constant.
One verifies that

N
(ωN

N

) p
N
(N − p

p − 1

)p−1
> p−p

(N − p

N − 1

)p
(6.4)

for all 1 ≤ p < N . Thus (6.1) is a more precise lower bound of cp(·) in terms of
μ(·).

6.2 p-Capacity of a Closed Ball B̄ρ ⊂ R
N, for 1 ≤ p < N

Corollary 6.1 Let Bρ be an open ball of radius ρ in RN . Then,

cp(B̄ρ) = ωN

(N − p

p − 1

)p−1
ρN−p for 1 < p < N . (6.5)

When p = 1 the power in round brackets is meant to be 1.

Proof If p = 1 the statement follows from (5.3) of Theorem 5.1. If 1 < p < N ,
from the previous lower estimate with K = B̄ρ one computes

cp(B̄ρ) ≥
(N − p

p − 1

)p−1
ωNρN−p.

On the other hand, from the definition (4.2) the p-capacity of Bρ is majorized if
the infimum is taken over radially symmetric functions. Then in (4.2) take

u(x) =
⎧
⎨

⎩

1 for |x | ≤ 1 :
( ρ

|x |
) N−p

p−1
for |x | > ρ

up to a density argument.

Remark 6.1 From the first of (4.9) it follows that cp(B̄ρ) = ρN−pcp(B̄1). It is the
precise lower estimate (6.1) that permits one to compute cp(B̄1).
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6.3 cp(B̄ρ) = cp(∂Bρ)

For u ∈ Γ1(∂Bρ) define

vu =
{
u for |x | ≥ ρ;
1 for |x | ≤ ρ.

One verifies that vu ∈ Γ∗(B̄ρ) and that

∫

RN

|Du|pdx ≥
∫

RN

|Dvu |pdx ≥ inf
v∈Γ∗(B̄ρ)

∫

RN

|Dv|pdx .

Therefore,

cp(∂Bρ) = inf
u∈Γ1(∂Bρ)

∫

RN

|Du|pdx ≥ cp(B̄ρ).

On the other hand cp(∂Bρ) ≤ cp(B̄ρ) and hence cp(∂Bρ) = cp(B̄ρ). An almost
identical argument establishes the following

Corollary 6.2 Let E be a bounded open set in R
N with smooth boundary ∂E and

let 1 ≤ p < N. Then cp(Ē) = cp(∂E).

7 The Norm ‖Du‖ p, for 1 ≤ p < N , in Terms
of the p-Capacity Distribution Function of u ∈ C∞

o (RN)

The p-capacity distribution function of a nonnegative function u ∈ C∞
o (RN ) is

defined by
R

+ � t → cp([u ≥ t]).

This is a nonincreasing function of t , vanishing for t sufficiently large.

Theorem 7.1 Let u ∈ C∞
o (RN ) be nonnegative. Then for all 1 ≤ p < N,

∫ ∞

0
t p−1cp([u ≥ t])dt ≤

( p

p − 1

)p−1
∫

RN

|Du|pdx . (7.1)

When p = 1 the coefficient on the right-hand side of (7.1) is meant to be 1.

7.1 Some Auxiliary Estimates for 1 < p < N

For a nonnegative u ∈ C∞
o (RN ) set

tu = inf{t > 0
∣∣ cp([u ≥ t]) = 0}.
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Let f be defined as in (5.4) and set

(0, tu) � t → s(t) =
∫ t

0
f − 1

p−1 (τ )dτ . (7.2)

This integral is well defined for t ∈ (0, tu). Indeed from (5.2) of Theorem 5.1, for
all such t

cp([u ≥ t]) ≤
[ ∫ 1

0

( ∫

∂[ ut >λ]

∣∣∣D
u

t

∣∣∣
p−1

dσ
) 1

1−p
dλ

]1−p

=
[ ∫ t

0

( ∫

∂[u>τ ]
|Du|p−1dσ

) 1
1−p

dτ
]1−p

=
( ∫ t

0
f − 1

p−1 (τ )dτ
)1−p = s(t)1−p.

(7.3)

From this,

s(t) ≤ [
cp([u ≥ t])]− 1

p−1 < ∞ for a.e. t ∈ (0, tu).

This estimate and the definition (5.4) of f (·) imply that

0 < f (t) < ∞ for a.e. t ∈ (0, tu).

It follows that s(·) is strictly increasing from 0 to su = s(tu). The inverse of s(·),
denoted by h(·), is also strictly increasing

(0, su) � s → h(s) ∈ (0, tu), with h[s(t)] = t for all t ∈ (0, tu).

Therefore, h(·) is of bounded variation in (0, su) and its derivative

h′(s) = f (t)
1

p−1

is integrable in (0, su).

Lemma 7.1 h′ ∈ L p(0, su) and,

∫ su

0
h′ p(s)ds ≤

∫

RN

|Du|pdx . (7.4)

Proof Let

0 = so < s1 < · · · < sn−1 < sn = su and

0 = to < t1 < · · · < tn−1 < tn = tu
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be a partition of (0, su) and the corresponding partition of (0, tu) bywhich h(s j ) = t j .
By the reverse Hölder inequality applied with conjugate powers 1

1−p and 1
p ,

∫ t j+1

t j

f (τ )dτ ≥
( ∫ t j+1

t j

f − 1
p−1 (τ )dτ

)1−p( ∫ t j+1

t j

1 dτ
)p

= (t j+1 − t j )p
( ∫ t j+1

t j
f − 1

p−1 (τ )dτ
)p−1 .

From this

n−1∑

j=0

(
h(s j+1) − h(s j )

)p

(s j+1 − s j )p−1
=

n−1∑

j=0

(t j+1 − t j )p
( ∫ t j+1

t j
f − 1

p−1 (τ )dτ
)p−1

≤
n−1∑

j=0

∫ t j+1

t j

f (τ )dτ ≤
∫

RN

|Du|pdx .

7.2 Proof of Theorem 7.1

In the integral below we effect the change of variable t = h(s), where s(·) is defined
in (7.2) and h(·) is the inverse of s(·). We also use the inequality (7.3) with no further
mention.

∫ ∞

0
t p−1cp([u ≥ t])dt ≤

∫ su

0

(h(s)

s

)p−1
h′(s)ds

≤
( ∫ su

0

(h(s)

s

)p
ds

) p−1
p

( ∫ su

0
h′ p(s)ds

) 1
p
.

By Hardy’s inequality (§ 15 of Chap.9)

∫ su

0

(h(s)

s

)p
ds ≤

( p

p − 1

)p
∫ su

0
h′ p(s)ds.

Therefore,

∫ ∞

0
t p−1cp([u ≥ t])dt ≤

( p

p − 1

)p−1
∫ su

0
h′ p(s)ds

≤
( p

p − 1

)p−1
∫

RN

|Du|pdx,

by virtue of (7.4) of Lemma 7.1.

http://dx.doi.org/10.1007/978-1-4939-4005-9_9
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8 Relating Gagliardo Embeddings, Capacities,
and the Isoperimetric Inequality

Proposition 8.1 Let p ≥ 1 and q > p. Then theGagliardo type embedding inequal-
ity

‖u‖q ≤ γ‖Du‖p for all u ∈ W 1,p
o (RN ) (8.1)

for a constant γ > 0 depending only on p, q, and N, holds if and only if, there exists
a positive constant γ, depending only upon N, p, and q, such that for all compact
sets K ⊂ R

N

μ(K )
p
q ≤ γ pcp(K ), (8.2)

Proof Let (8.1) hold. Having fixed a compact set K ⊂ R
N , let u be in the class

Γo(K ) introduced in (4.1). Then from (8.1)

μ(K )
p
q ≤ γ p

∫

RN

|Du|pdμ.

minimizing the right-hand side over Γo(K ) implies (8.2) with γ = γ. Conversely,
assuming the latter, for a nonnegative u ∈ C∞

o (RN ), compute and estimate

‖u‖p
q =

( ∫

RN

[u p] q
p dμ

) p
q = sup

‖v‖ q
q−p

=1

∫

RN

u pvdμ

= sup
‖v‖ q

q−p
=1

∫ ∞

0
pt p−1

( ∫

[u>t]
vdμ

)
dt

≤
∫ ∞

0
pt p−1

(
sup

‖v‖ q
q−p

=1

∫

RN

vχ[u≥t]dμ
)
dt

=
∫ ∞

0
pt p−1‖χ[u≥t]‖ q

p
dt =

∫ ∞

0
pt p−1μ([u ≥ t]) p

q dt

≤ γ p
∫ ∞

0
pt p−1cp([u ≥ t])dt ≤ pγ p

( p

p − 1

)p−1‖Du‖p
p,

where, in the last inequality we have used (7.1) of Theorem 7.1. The proof is con-
cluded by writing u = u+ − u− and by density.

The proposition asserts that Gagliardo’s embedding inequalities are equivalent to a
lower estimate of the capacity of compact sets K ⊂ R

N in terms of their corre-
sponding Lebesgue measure. By Lemma 6.1 this occurs for 1 ≤ p < N , and with
parameters

p

q
= N − p

N
and hence q = p∗ = Np

N − p
. (8.3)
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Remark 8.1 Assume q = p∗. The constant γ p in (8.2) is computed by the lower
estimate (6.1) of Lemma 6.1. Hence the constant γ in embedding (8.1) is

γ =
( p

N

) 1
p
( N

ωN

) 1
N
( p

N − p

) p−1
p

. (8.4)

This improves the constant of the Gagliardo embedding (1.6) of Corollary 1.1 of
Chap.10.

9 RelatingHN− p(K ) to cp(K ) for 1 < p < N

The “size” of a compact set K ⊂ R
N can be “measured” by its Lebesgue measure,

or its capacity or its Hausdorff dimension (§ 5.1c of Chap.3). The lower estimate of
Lemma 6.1, is a first coarse relation between cp(K ) and the Lebesgue measure of
K . If cp(K ) = 0 then also μ(K ) = 0. There exist sets of positive p-capacity, whose
Lebesgue measure is zero. An example is in § 6.3.

For a Borel set E ⊂ R
N and k > 0 denote byHk(E) the k-dimensional Hausdorff

measure of E . The next theorem provides a relation between the p-capacity of a
compact set K ⊂ R

N and its (N − p)-dimensional Hausdorff measure.

Theorem 9.1 Let K be a compact subset of RN and let 1 < p < N. Then

HN−p(K ) < ∞ =⇒ cp(K ) = 0. (9.1)

9.1 An Auxiliary Proposition

Proposition 9.1 Let K ⊂ R
N be compact and such thatHN−p(K ) < ∞. For every

open set Oo ⊃ K, there exists a bounded open set O1 containing K , and such that
O1 ⊂ Oo, and a nonnegative function ζ ∈ W 1,p

o (Oo), such that

O1 ⊂ [ζ = 1] and
∫

RN

|Dζ|pdy ≤ 2N−p ωN

N
HN−p(K ).

Proof Let HN−p,ε(K ) be the Hausdorff outer measure defined in (5.1) of Chap.3,
with

0 < ε < 1
8 dist{K ; ∂Oo},

Since
HN−p,ε(K ) ≤ HN−p(K ) < ∞,

http://dx.doi.org/10.1007/978-1-4939-4005-9_10
http://dx.doi.org/10.1007/978-1-4939-4005-9_3
http://dx.doi.org/10.1007/978-1-4939-4005-9_3
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having fixed a positive number ε, there exists a countable collection of sets {En} each
of diameter not exceeding ε such that

K ⊂ ⋃
En and

∑
diam(En)

N−p ≤ HN−p(K ) + ε.

We may assume that each of the En intersects K . Pick xn ∈ K ∩ En and consider
the open ball

Bρn (xn) with ρn = 2 diam(En).

By construction En ⊂ Bρn (xn) and

dist
{
B2ρn (xn); ∂Oo

}
> 1

2 dist{K ; ∂Oo}.

The family {Bρn (xn)} is an open cover for K , from which we extract a finite one
{Bρ1(x1), . . . , Bρk (xk)} for some k ∈ N. As a set O1 takes

O1 =
k⋃

j=1
Bρ j (x j ).

By construction
K ⊂ O1 ⊂ O1 ⊂ Oo.

For each B2ρ j (x j ) construct a nonnegative, piecewise smooth cutoff function ζ j ,
which equals one on Bρ j (x j ), vanishes for |x−x j | ≥ 2ρ j and such that |Dζ j | ≤ ρ−1

j .
For such functions ∫

RN

|Dζ j |pdy ≤ ωN

N
ρ
N−p
j

The function ζ claimed by the proposition can be taken to be

ζ = max
1≤ j≤k

ζ j .

By construction O1 ⊂ [ζ = 1] and ζ is compactly supported in Oo. Moreover

∫

RN

|Dζ|pdy ≤
k∑

j=1

∫

RN

|Dζ j |pdy

≤ ωN

N

k∑

j=1
ρ
N−p
j

≤ 2N−p ωN

N

k∑

j=1
diam(En)

N−p

≤ 2N−p ωN

N

[HN−p(K ) + ε
]
.
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9.2 Proof of Theorem 9.1

Fix an open set Oo containing K and apply the previous proposition recursively to
construct a sequence of nested open sets O j and a sequence of functions {v j } ∈
W 1,p

o (O j−1) satisfying

K ⊂ O j ⊂ O j ⊂ [v j = 1] ⊂ O j−1

and in addition
∫

RN

|Dv j |pdy ≤ 2N−p ωN

N
HN−p(K ) for all j = 1, 2, . . . .

Consider now the sequence of weighted sums

un = 1

wn

n∑

j=1

v j

j
, where wn =

n∑

j=1

1

j
.

By construction On ⊂ [un = 1]. Therefore,

cp(K ) ≤
∫

RN

|Dun|pdy for all n = 1, 2, . . . .

The last integral is computed and estimated by observing that the construction of
the v j implies that

supp{|Dv j |} ⊂ O j−1 − O j for all j = 1, 2, . . . .

From this

cp(K ) ≤
∫

RN

|Dun|pdy

= 1

w
p
n

n∑

j=1

1

j p

∫

RN

|Dv j |pdy

≤ 2N−p ωN

N
HN−p(K )

1

w
p
n

n∑

j=1

1

j p
.

Letting n → ∞ the right hand side goes to zero since p > 1.

Remark 9.1 As a consequence, segments in R
3 have positive, and finite

1-dimensional Hausdorff measure and zero 2-capacity.
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10 Relating cp(K ) to HN− p+ε(K ) for 1 ≤ p < N

Theorem 10.1 Let K be a compact subset of RN and let 1 ≤ p < N. Then

cp(K ) = 0 =⇒ HN−p+ε(K ) = 0 for all ε > 0. (10.1)

Proof For every j ∈ N there exists a nonnegative function u j ∈ C∞
o (RN ) such that

u j ≥ 1 in a open neighborhood of K , and

∫

RN

|Du j |pdy ≤ 1

2 j
.

Set u = ∑
u j . Then |Du| ∈ L p(RN ) and u ∈ L p∗

(RN ), where p∗ = Np
N−p .

Indeed

‖Du‖p ≤ ∑ ‖Du j‖p ≤ ∑ 1

2
j
p

.

Moreover by the embedding of the Corollary 1.1, of Chap.10, for all n ∈ N,

∥∥∥
n∑

j=1
u j

∥∥∥
p∗

≤
n∑

j=1
‖u j‖p∗ ≤ p (N − 1)

N − p

∑ ‖Du j‖p < ∞.

The set K is contained in a open neighborhood of [u ≥ k] for all k ∈ N. Therefore,
having fixed x ∈ E , for all k ∈ N there exists ρx,k > 0 small enough that

(u)x,ρ
def= −

∫

Bρ(x)
u dy ≥ k for all ρ > ρx,k .

Hence,

lim
ρ→0

−
∫

Bρ(x)
u dy = ∞ for all x ∈ K . (10.2)

We next establish that K is included in the set

Eε =
{
x ∈ R

N
∣∣ lim sup

ρ→0
ρp−ε−

∫

Bρ(x)
|Du|p dy = ∞

}
(10.3)

for all ε > 0. Let x ∈ Eε be such that

lim sup
ρ→0

ρp−ε−
∫

Bρ(x)
|Du|p dy < ∞

for some ε > 0. Then there exists a positive constant γx such that

ρp−ε−
∫

Bρ(x)
|Du|p dy ≤ γ p

x for all ρ ∈ (0, 1).

http://dx.doi.org/10.1007/978-1-4939-4005-9_10
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From this by the Poincarè inequality in the form (10.5) of Chap.10

−
∫

Bρ(x)
|u − (u)x,ρ|dy ≤ C ′

(
ρp−

∫

Bρ(x)
|Du|pdy

) 1
p ≤ C ′γxρ

ε
p .

For ρ ∈ (0, 1], compute and estimate

|(u)x, 12 ρ − (u)x,ρ| = 1

μ(B 1
2 ρ)

∣∣∣−
∫

Bρ(x)

[
u − (u)x,ρ

]
dy

∣∣∣

≤ 2N−
∫

Bρ(x)
|u − (u)x,ρ|dy ≤ Cxρ

ε
p

where Cx = 2NC ′γx . Fix any two positive integers m < n. Applying this estimate
recursively, gives

∣
∣(u)x, 1

2n
− (u)x, 1

2m

∣
∣ ≤

n∑

j=m+1

∣
∣(u)x, 1

2 j
− (u)x, 1

2 j−1

∣
∣ ≤ Cx

∑

j>m

1

2
ε
p j

.

The right-hand side is the tail of a convergent series and hence it tends to zero
as m → ∞. Therefore {(u)x, 1

2n
} is a Cauchy sequence, and hence convergent.

This contradicts (10.2) and establishes the inclusion K ⊂ Eε. The proof of The-
orem 10.1 is concluded by the following lemma, whose proof is a special case of
Proposition 15.1.

Lemma 10.1 HN−p+ε(E) = 0.

Remark 10.1 As a consequence, for 1 ≤ p < N , the Hausdorff dimension of
compact sets of zero p-capacity, does not exceed (N − p).

11 The p-Capacity of a Set E ⊂ R
N for 1 ≤ p < N

Let O be an open subset of RN . The inner p-capacity of O is defined by

cp(O) = sup
K⊂O

K compact

cp(K ). (11.1)

For a set E ⊂ R
N the inner p-capacity cp(E) and outer p-capacity cp(E) of E

are defined as

cp(E) = sup
K⊂E

K compact

cp(K ); cp(E) = inf
O⊃E
O open

cp(O). (11.2)

http://dx.doi.org/10.1007/978-1-4939-4005-9_10
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A set E ⊂ R
N is p-capacitable if its inner and outer p-capacities coincide. For a

p-capacitable set E ⊂ R
N , we set

cp(E) = cp(E) = cp(E). (11.3)

The definition implies that compact sets and open sets in RN are p-capacitable.

Proposition 11.1 Let E and F be subsets of RN and let p ≥ 1. Then

cp(E ∪ F) + cp(E ∩ F) ≤ cp(E) + cp(F). (11.4)

Remark 11.1 This is called strong sub-additivity of the set function cp(·).
Proof (of Proposition 11.1) May assume that the right hand side of (11.4) is finite.
Assume first that E and F are compact and let u ∈ Γ1(E) and v ∈ Γ1(F). Then
(u ∨ v) and (u ∧ v) are Lipschitz continuous, compactly supported in RN , and

(u ∨ v) = 1 in an open neighborhood of E ∪ F;
(u ∧ v) = 1 in an open neighborhood of E ∩ F.

Moreover

|D(u ∨ v)|p + |D(u ∧ v)|p = |Du|p + |Dv|p a.e. in R
N .

Also,
(u ∨ v) ∈ Γ∗(E ∪ F) and (u ∧ v) ∈ Γ∗(E ∩ F)

where Γ∗(·) is the class introduced in (4.4). From this

cp(E ∪ F) + cp(E ∩ F) ≤
∫

RN

|D(u ∨ v)|pdx +
∫

RN

|D(u ∧ v)|pdx

=
∫

RN

|Du|pdx +
∫

RN

|Dv|pdx .

This implies (11.4) for E and F compact. Assume next that E and F are open. As
such, they are the countable union of compact sets (see for example Proposition 1.2
and Remark 1.1 of Chap.3). For ε > 0 there exists compact sets H ⊂ E and K ⊂ F ,
such that

cp(E ∪ F) ≤ cp(H ∪ K ) + 1
2ε. and cp(E ∩ F) ≤ cp(H ∩ K ) + 1

2ε.

From this and (11.4), valid for compact sets,

cp(E ∪ F) + cp(E ∩ F) ≤ cp(H) + cp(K ) + ε.

http://dx.doi.org/10.1007/978-1-4939-4005-9_3
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This establishes (11.4) for open sets. Next, let E and F be sets in R
N of finite

outer p-capacity and no further topological restriction. LetOE andOF be open sets
containing E and F respectively. Writing down (11.4) for OE and OF gives

cp(E ∪ F) + cp(E ∩ F) ≤ cp(OE ) + cp(OF ).

Taking the infimum of the right-hand side for all open sets OE containing E and
OF containing F proves the proposition.

Proposition 11.2 Let {En} and {Fn} be countable collections of sets in RN , each of
finite outer p-capacity, and such that En ⊂ Fn. Then for all n ∈ N,

cp
( n⋃

j=1
Fj

)
− cp

( n⋃

j=1
E j

)
≤

n∑

j=1

(
cp(Fj ) − cp(E j )

)
. (11.5)

Proof It suffices to prove (11.5) for n = 2. Apply (11.4) to the pair of sets

E = E1 ∪ F1 and F = E1 ∪ F2

to get
cp(F1 ∪ F2) + cp

(
E1 ∪ (F1 ∩ F2)

) ≤ cp(F1) + cp(E1 ∪ F2).

From this, by the monotonicity of cp(·)

cp(F1 ∪ F2) + cp(E1) ≤ cp(F1) + cp(E1 ∪ F2). (11.6)

Next, apply (11.4) to the pair of sets

E = E2 ∪ F2 and F = E1 ∪ E2.

This gives

cp(E1 ∪ F2) + cp
(
E2 ∪ (E1 ∩ F2)

) ≤ cp(F2) + cp(E1 ∪ E2).

From this, by the monotonicity of cp(·)

cp(E1 ∪ F2) + cp(E2) ≤ cp(F2) + cp(E1 ∪ E2). (11.7)

Combining (11.6) and (11.7) the proposition follows.
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12 Limits of Sets and Their Outer p-Capacities

Proposition 12.1 Let {Kn} be a countable collection of compact sets such that
Kn+1 ⊂ Kn. Then

cp
(⋂

Kn
) = lim cp(Kn). (12.1)

Remark 12.1 This is called right continuity of the set function cp(·) when acting on
compact sets. Compare this with the notion of right continuity given by (4.7).

Proof (of Proposition 12.1) We may assume that cp(K1) < ∞. The set K = ∩Kn

is compact and hence p-capacitable. By the monotonicity of cp(·)

cp(K ) ≤ lim cp(Kn).

To establish the converse inequality, letΓo(K ) be the class of functions introduced
in (4.1). For each ε > 0 there exists ζ ∈ Γo(K ) such that

∫

RN

|Dζ|pdx ≤ cp(K ) + ε.

LetO be the open neighborhood of K where ζ ≥ 1. Since K is compact and {Kn}
is nested, there exists nε ∈ N such that Kn ⊂ O for all n ≥ nε. From this

lim cp(Kn) ≤
∫

RN

|Dζ|pdx ≤ cp(K ) + ε.

Proposition 12.2 Let {En} be a countable collection of sets in R
N such that En ⊂

En+1, and with cp(
⋃

En) < ∞. Then

cp
(⋃

En
) = lim cp(En). (12.2)

Proof Set E = ⋃
En . By monotonicity of cp(·)

cp(E) ≥ lim cp(En).

To establish the converse inequality, assume first that all En are open. Having
fixed ε > 0, let K be a compact set contained in E such that

cp(E) ≤ cp(K ) + ε.

Since the sets En are open and nested, there exists nε ∈ N such that K ⊂ En for
all n ≥ nε. From this

cp(E) ≤ cp(K ) + ε ≤ lim cp(En) + ε.
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Thus (12.2) holds for a countable collection of open sets. Let now {En} be nested,
and have no further topological restriction. Having fixed ε > 0, for all n ∈ N, there
exists an open set On such that

En ⊂ On, and cp(En) ≥ cp(On) − ε

2n
.

Applying (11.5) to the pair of collections {En} and On , gives

cp
( n⋃

j=1
On

)
− cp

( n⋃

j=1
En

)
≤ ε.

From this, since En ⊂ En+1

cp
( n⋃

j=1
On

)
≤ lim cp(En) + ε.

The sets
n⋃

j=1
On are open and nested, and as such, (12.2) holds for them. Then

cp(E) ≤ cp(∪On) = lim cp
( n⋃

j=1
On

)
≤ lim cp(En) + ε.

Corollary 12.1 The set function cp(·) is countably sub-additive.
Proof By Proposition 11.1 the outer p-capacity is finitely sub-additive. Let {En} be
a countable collection of sets in R

N . It suffices to consider the case when each En

and
⋃

En are of finite outer p-capacity. The collection of sets
⋃n

j=1E j satisfies the
assumptions of Proposition 12.2. Therefore,

cp
( ⋃

En
) = lim cp

( n⋃

j=1
E j

)
≤ ∑

cp(En).

13 Capacitable Sets

Proposition 13.1 Sets of the type of Fσδ are p-capacitable

Proof Any such set is of the form

E = ⋂

i

⋃

j
Ei, j
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where the sets Ei, j are closed. We may assume that for each fixed i , the sets Ei, j are
compact and Ei, j ⊂ Ei, j+1. This is effected by rewriting E as

E = ⋂

i

⋃

j
E ′
i, j , where E ′

i, j =
j⋃

�=1
Ei,� ∩ B̄ j

where B̄ j is the closed ball in R
N centered at the origin and radius j . We may also

assume that cp(E) < ∞. To proof the proposition, for each ε > 0 we will exhibit a
compact set Kε ⊂ E , such that

cp(Kε) ≥ cp(E) − ε.

Set
H1, j = E ∩ E1, j .

By construction

E = ⋃
H1, j , and H1, j ⊂ H1, j+1.

From this, by Proposition 12.2,

cp(E) = lim cp(H1, j ).

Therefore, having fixed ε > 0 there is an index j1 such that

cp(E) − cp(H1, j1) ≤ 1
2ε. (13.1)

Set
H1 = H1, j1 , and K1 = E1, j1 .

Consider the sets
H2, j = H1 ∩ E2, j .

By construction

H1 = ⋃
H2, j , and H2, j ⊂ H2, j+1.

From this, by Proposition 12.2,

cp(H1) = lim cp(H2, j ).

Therefore, for the same fixed ε > 0 there is an index j2 such that

cp(H1) − cp(H2, j2) ≤ 1
4ε.
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Set
H2 = H2, j2 , and K2 = E2, j2 .

Construct inductively countable collections of sets {Hn} and {Kn} as follows. If
Hn an Kn have been constructed, set

Hn+1, j = Hn ∩ En+1, j .

By construction

Hn+1 = ⋃
Hn+1, j , and Hn+1, j ⊂ Hn+1, j+1.

From this, by Proposition 12.2,

cp(Hn+1) = lim cp(Hn+1, j ).

Therefore, for the same fixed ε > 0 there is an index jn+1 such that

cp(Hn) − cp(Hn+1, jn+1) ≤ 1

2n+1
ε. (13.2)

Set
Hn+1 = Hn+1, jn+1 , and Kn+1 = En+1, jn+1 .

Having constructed {Hn} and {Kn}, set

Hε = ⋂
Hn, and Kε = ⋂

Kn.

By construction

Kε ⊂ E, and Hε = E ∩ (⋂
Kn

) = E ∩ Kε.

Therefore Kε is a compact subset of E . Moreover

Hε = Kε and Hε = lim
n⋂

j=1
K j .

Since the sets
⋂n

j=1K j are compact and nested, by Proposition 12.1

cp(Hε) = lim cp
( n⋂

j=1
K j

)
.

Also by construction

Hε ⊂ Hn =
n⋂

j=1
Hj ⊂

n⋂

j=1
K j .
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Therefore the limit of cp(Hn) exists and

cp(Kε) = cp(Hε) ≤ lim cp(Hn) ≤ lim
( n⋂

j=1
K j

)
= cp(Kε).

From this, taking into account (13.1) and (13.2)

cp(Kε) = lim cp(Hn) = cp(H1) + lim
n∑

j=1

[
cp(Hj+1) − cp(Hj )

]

= cp(E) − [
cp(E) − cp(H1)

] + lim
n∑

j=1

[
cp(Hj+1) − cp(Hj )

]

≥ cp(E) − ε.

Corollary 13.1 Sets of the type of Fσ and Gδ are p-capacitable.

14 Capacities Revisited and p-Capacitability of Borel Sets

Let ϕ(·) be a nonnegative set function, defined on compact subsets of RN , such that
ϕ(∅) = 0, and satisfying:

(a) ϕ(·) is monotone increasing in the sense of (4.8);
(b) ϕ(·) is strongly sub-additive, in the sense of (11.4);
(c) ϕ(·) is right-continuous, in the sense of Proposition 12.1;

Using such a ϕ(·), for an open set O in RN define

ϕ(O) = sup
K⊂O

K compact

ϕ(K ). (14.1)

For a set E ⊂ R
N define the inner and outer ϕ-capacity of E as

ϕ(E) = sup
K⊂E

K compact

ϕ(K ); ϕ(E) = inf
O⊃E
O open

ϕ(O). (14.2)

A set E ⊂ R
N is ϕ-capacitable if its inner and outer ϕ-capacities coincide. For a

ϕ-capacitable set E ⊂ R
N we set

ϕ(E) = ϕ(E) = ϕ(E). (14.3)

The definition implies that compact sets and open sets in R
N are ϕ-capacitable.

The proofs of Propositions 11.1 and 11.2, only use properties (a) and (b) of the set
function ϕ(·) = cp(·). Likewise the proof of Proposition 12.2 only uses properties
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(a)–(c) of the set function ϕ(·) = cp(·) on compact subsets of RN . Thus these
Propositions, continue to hold for any such set function ϕ(·). We summarize the
following:

Proposition 14.1 Let ϕ(·) be a nonnegative set function defined on compact subsets
of RN , such that ϕ(∅) = 0, and satisfying (a)–(c) above. Then

(i) For any two sets E, F ⊂ R
N

ϕ(E ∪ F) + ϕ(E ∩ F) ≤ ϕ(E) + ϕ(F). (14.4)

(ii) Let {En} and {Fn} be countable collections of sets in R
N , each of finite outer

ϕ-capacity, and such that En ⊂ Fn. Then for all n ∈ N,

ϕ
( n⋃

j=1
Fj

)
− ϕ

( n⋃

j=1
E j

)
≤

n∑

j=1

(
ϕ(Fj ) − ϕ(E j )

)
. (14.5)

(iii) Let {En} be a countable collection of sets inRN such that En ⊂ En+1, and with
ϕ
(⋃

En
)

< ∞. Then
ϕ
(⋃

En
) = limϕ(En). (14.6)

(iv) The set function ϕ(·) is countably sub-additive.
Next the proof of Proposition 13.1 only uses properties (a)–(c) of a ϕ-capacity and
its consequences as stated in Proposition 14.1. Hence we conclude:

Proposition 14.2 Let ϕ(·) be a nonnegative set function defined on compact subsets
ofRN , such thatϕ(∅) = 0, and satisfying (a)–(c) above. Then sets of the type ofFσδ in
R

N are ϕ-capacitable. In particular sets of the type of Fσ and Gδ are ϕ-capacitable.

14.1 The Borel Sets in R
N Are p-Capacitable

Continue to assume that 1 ≤ p < N . For a set E ⊂ R
N+1, denote by PN (E) the

projection of E into RN . If O is open in RN+1 then PN (O) is open in RN . Likewise
if K is compact in RN+1, then PN (K ) is compact in RN . If E is closed in RN+1 then
PN (E) need not be closed in RN .

A Borel set in RN is the projection into RN of some set of the type of Gδ in RN+1

[71]. For a compact set K ⊂ R
N+1 set

ϕ(K ) = cp
(
PN (K )

)
.

One verifies that such a ϕ(·) satisfies (a)–(c) above. Thus by Proposition 14.2 sets
of the type of Gδ in R

N+1 are ϕ-capacitable in the sense of (14.3). Hence all Borel
sets in RN are p-capacitable.
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The same reasoning applies to a larger class of sets in R
N , called Suslin sets, or

analytic sets. This is an algebra of sets closed under continuous transformations of
R

N . Every analytic set is the projection into RN of a set of the type of a Gδ in RN+1

[71]. Thus, by the same reasoning, analytic sets are p-capacitable.

14.2 Generating Measures by p-Capacities

The set function cp(·) satisfies the requirements (i)–(iv) of § 4 of Chap.3, to be an
outer measure in R

N . The countable sub-additivity of cp(·) is in Corollary 12.1.
Thus, by the Carathéodory procedure outlined in § 6 of Chap.3, and leading to
Proposition 6.1, of the same chapter, it generates a σ-algebra Ap and a measure Cp

defined on Ap. A set E ⊂ R
N is Ap if and only if

cp(A) ≥ cp(A ∩ E) + cp(A − E) (14.7)

for all sets A ⊂ R
N . If cp(E) = 0 then E ∈ Ap. Let now E be a bounded set in

R
N such that cp(E) > 0. Let B̄ρ be the closed ball centered at the origin and large

enough radius ρ, so that E ⊂ Bρ. By the arguments of § 6.3 and Corollary 6.2,
cp

(
B̄ρ

) = cp(∂Bρ). Writing down (14.7) with A = B̄ρ gives

cp(∂Bρ) = cp(B̄ρ) ≥ cp(E) + cp(∂Bρ).

Since cp(E) > 0, this is a contradiction and hence E /∈ Ap. We conclude that
no bounded set of positive p-capacity is Cp-measurable. In particular, no bounded
Borel set of positive p-capacity is Cp-measurable. Hence Cp is not a Borel measure.
As a consequence cp(·) is not a metric outer measure (§ 5.1 of Chap. 3). If it were,
Ap would contain the Borel sets (Remark 8.2 of Chap.3).

15 Precise Representatives of Functions in L1
loc(R

N)

Let u ∈ L1
loc(R

N ) with respect to the Lebesgue measure μ in RN , and set

u∗(x) =
⎧
⎨

⎩
lim
ρ→0

−
∫

Bρ(x)
udy if the limit exists;

0 otherwise.
(15.1)

This is called the L1
loc precise representative of u. By the Lebesgue-Besicovitch

Theorem 11.1 of Chap.5, the limit exists μ–a.e. in R
N and u is precisely defined

everywhere in RN , except for a set of measure zero. If u has a continuous represen-
tative then u∗ it is unambiguously well defined everywhere inRN . A point where the

http://dx.doi.org/10.1007/978-1-4939-4005-9_3
http://dx.doi.org/10.1007/978-1-4939-4005-9_3
http://dx.doi.org/10.1007/978-1-4939-4005-9_3
http://dx.doi.org/10.1007/978-1-4939-4005-9_3
http://dx.doi.org/10.1007/978-1-4939-4005-9_5
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limit exists is a differentiability point of u, as opposed to a Lebesgue point (§ 11.2
of Chap.5). For 0 < s < N set

Es =
{
x ∈ R

N
∣
∣ lim sup

ρ→0
ρs−

∫

Bρ(x)
|u|dy > 0

}
. (15.2)

The set Es contains points where, roughly speaking, u is unbounded. If x is a
Lebesgue point, then the limit in (15.2) is zero and therefore x /∈ Es . Hence Es

is a subset of the complement of the Lebesgue points of u. Since the latter has
measure zero, and since the Lebesgue σ-algebra is complete, Es is measurable and
μ(Es) = 0. In this sense the set Es is “small”. The next proposition further quantifies
the “smallness” of Es in terms of itsHN−s Hausdorff measure.

Proposition 15.1 HN−s(Es) = 0.

Proof For t > 0 introduce the set

Es,t =
{
x ∈ R

N
∣∣ lim sup

ρ→0
ρs−

∫

Bρ(x)
|u|dy > t

}
.

Since Es,t ⊂ Es , one also has μ(Es,t ) = 0. Therefore for all η > 0 there exists
an open set O ⊃ Es,t and μ(O) < η.

By the Vitali theorem on the absolute continuity of the integral (Theorem 11.1 of
Chap.4), for all ε > 0 there exists η > 0 such that

∫

E
|u|dμ < ε

for all Lebesgue measurable sets

E ⊂ RN such that μ(E) < η
.

Next, fix δ > 0 and define an arbitrary function

Es,t � x → ρ(x) ∈ (0, δ]

such that the corresponding balls B
(
x, ρ(x)

)
centered at x ∈ Es,t and radii 0 <

ρ(x) ≤ δ satisfy

B
(
x, ρ(x)

) ⊂ O and
∫

B(x,ρ(x))
|u|dy > tρN−s .

By Proposition 18.2c of the Complements of Chap.3, there exists a countable
collection of disjoint, closed balls {Bρn (xn)} with ρn = ρ(xn) such that

Es,t ⊂ ⋃
B3ρn (xn).

http://dx.doi.org/10.1007/978-1-4939-4005-9_5
http://dx.doi.org/10.1007/978-1-4939-4005-9_4
http://dx.doi.org/10.1007/978-1-4939-4005-9_3
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From this
HN−s,6δ(Es,ε) ≤ ∑

(6ρn)
N−s

≤ 6N−s

t

∑
∫

Bρn (xn)
udy

≤ 6N−s

t

∫

O
udy ≤ 6N−s

t
ε.

To prove the proposition let δ → 0 and then ε → 0.

Let now u ∈ W 1,p
loc (RN ) for some p ∈ [1,∞). If p > N then by the embedding

Theorem 8.1 of Chap.10, u has a Hölder continuous representative and hence it is
unambiguously well defined by (15.1) for all x ∈ R

N . If 1 ≤ p ≤ N the Poincarè
inequality, in the form (10.5) ofChap. 10 implies thatu is unambiguouslywell defined
by (15.1) except possibly in the set

Ep =
{
x ∈ R

N
∣∣ lim sup

ρ→0
ρp−

∫

Bρ(x)
|Du|pdy > 0

}
. (15.3)

For p = N , the set EN is empty and hence u, although not necessarily continuous,
is unambiguously well defined by (15.1) for all x ∈ R

N . If 1 ≤ p < N the set Ep is a
subset of the complement of the Lebesgue points of |Du|p ∈ L1

loc(R
N ). Therefore Ep

is measurable and μ(Ep) = 0. Moreover by Proposition 15.1 also HN−p(Ep) = 0.
We summarize:

Proposition 15.2 Let u ∈ W 1,p
loc (RN ) for some p ∈ [1,∞). There exists a Lebesgue

measurable set Ep ⊂ R
N such that μ(Ep) = 0 and HN−p(Ep) = 0, and u is

unambiguously well defined by (15.1) for all x ∈ R
N − Ep.

It turns out that for 1 ≤ p < N a function u ∈ W 1,p
loc (RN ), can be unambiguously

defined except for a Borel set of p-capacity zero. This is the content of the next
sections.

16 Estimating the p-Capacity of [u > t] for t > 0

Let u ∈ L p(RN ) for some 1 ≤ p < ∞ be non-negative. Then for all t > 0,

μ([u∗ > t]) ≤ 1

t p

∫

RN

u pdμ

where u∗ is the L1 precise representative of u introduced in (15.1). The analog of this
estimate, in terms of outer p-capacity for functions u ∈ W 1,p

p∗ (RN ), for 1 ≤ p < N ,
is

cp([u∗ > t]) ≤ γ

t p

∫

RN

|Du|pdμ

http://dx.doi.org/10.1007/978-1-4939-4005-9_10
http://dx.doi.org/10.1007/978-1-4939-4005-9_10
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for a constant γ = γ(N , p). While correct, this estimate is coarse. Indeed the set
[u∗ > t] avoids the complement of the set of differentiability of u. Such a set has
measure zero, but it might have positive capacity. A more precise estimate can be
given in terms of averages of u

(u)x,ρ = −
∫

Bρ(x)
u dy.

For t > 0 set

[u > t]∗ = ⋃

ρ>0

[
(u)·,ρ > t]

= {
x ∈ R

N
∣∣ (u)x,ρ > t for some ρ > 0

}
.

(16.1)

If u∗(x) > t , then there exists some ρ > 0 such that (u)x,ρ > t , and hence
[u∗ > t] ⊂ [u > t]∗ with strict inclusion. Let W 1,p

p∗ (RN ) be the class of functions
introduced in § 24 of Chap.10, for E = R

N .

Proposition 16.1 Let u ∈ W 1,p
p∗ (RN ) for some 1 ≤ p < ∞ be non-negative. There

exists a constant γ depending only on N and p, such that, for all t > 0,

cp([u > t]∗) ≤ γ

t p

∫

RN

|Du|pdμ (16.2)

Proof The closed balls Bρ(x) for x ∈ [u > t]∗ form a Besicovitch covering F , of
[u > t]∗, and their radius is uniformly bounded. Indeed

t ωNρN ≤
∫

Bρ(x)
udμ ≤ (ωNρN )

1− 1
p∗ ‖u‖p∗ .

Therefore

{
the supremum of the radii of the balls in F} = R ≤

( 1

t p∗ωN
‖u‖p∗

p∗
) 1

N
.

By the Besicovitch covering theorem, in its general form of § 18.1c of Chap. 3,
there exist a finite collection {B1, . . . ,BcN } of countable collections of disjoint closed
balls Bi, j ∈ B j , such that

[u > t]∗ ⊂
cN⋃

j=1

⋃

i∈N
Bi, j

with Bi, j ∩ Bi ′, j = ∅ for i �= i ′, for all j ∈ {1, . . . , cN }. Moreover

(u)Bi j > t for all i ∈ N, and all j ∈ {1, . . . , cN }.

http://dx.doi.org/10.1007/978-1-4939-4005-9_10
http://dx.doi.org/10.1007/978-1-4939-4005-9_3
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Set
ui j = max

{
(u)Bi j − u ; 0} on Bi j .

By construction ui j ∈ W 1,p(Bi j ). Extend ui j to functions vi j ∈ W 1,p
o (RN ),

defined in the whole RN , and such that

∫

RN

|Dvi j |pdy ≤ γ̄(N , p)
∫

Bi j

|Dui j |pdy

for a constant γ(N , p) depending only on N and p and independent of i, j , and u.
The extension is effected by means of Corollary 10.2 of Chap.10. Set

v = sup
i, j

vi j

and estimate
∫

RN

|Dv|pdy ≤
cN∑

j=1

∑

i∈N

∫

RN

|Dvi j |pdy ≤ γ̄
cN∑

j=1

∑

i∈N

∫

Bi j

|Dui j |pdy

≤ γ̄
cN∑

j=1

∑

i∈N

∫

Bi j

|Du|pdy ≤ γ̄
cN∑

j=1

∫

RN

|Du|pdy

= γ̄cN

∫

RN

|Du|pdy < ∞.

Therefore v ∈ W 1,p
p∗ (RN ), by Proposition 24.2 of Chap. 10. By construction

u∗ + v > t in a open neighborhood of [u > t]∗.

From this and the previous estimate,

t pcp([u > t]∗) ≤
∫

RN

|D(u + v)|pdy ≤ γ(N , p)
∫

RN

|Du|pdy.

17 Precise Representatives of Functions in W1, p
loc (RN)

Theorem 17.1 Let u ∈ W 1,p
loc (RN ). There exists a set E ⊂ R

N such that cp(E) = 0
and u∗ is well defined by the limit in (15.1) for all x ∈ R

N − E . Moreover, for all
ε > 0 there exists an open set Eε such that cp(Eε) < ε and u∗ restricted to RN − Eε

is continuous. Finally all points of RN − E are Lebesgue points for u.

http://dx.doi.org/10.1007/978-1-4939-4005-9_10
http://dx.doi.org/10.1007/978-1-4939-4005-9_10
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Proof Assume first u ∈ W 1,p(RN ) and let Ep be the set introduced in (15.3). The
limit in (15.1) might not exist if x ∈ Ep. By Proposition 15.2 and Theorem 9.1,
cp(Ep) = 0. Construct a sequence {un} ⊂ W 1,p(RN ) ∩ C∞(RN ) such that

‖u − un‖p + ‖Du − Dun‖p → 0 as n → ∞.

Then for j ∈ N select a subsequence {un( j)} ⊂ {un} such that
∫

RN

|Du − Dun( j)|pdy ≤ 1

2(p+1) j
for j = 1, 2 . . . .

Set

E j = ⋃

ρ>0

[
(|u − un( j)|)·,ρ >

1

2 j

]

=
{
x ∈ R

N
∣∣ (|u − un( j)|)x,ρ >

1

2 j
for some ρ > 0

}

Set also
Eh = Ep ∪ ⋃

j≥h
E j

The set where the limit in (15.1) fails to exist is contained in E∞. By Proposi-
tion 16.1 and the construction of {un( j)}

cp(E j ) ≤ γ2 j p
∫

RN

|Du − Dun( j)|pdy ≤ γ

2 j
for j = 1, 2 . . . .

Therefore ,

cp(Eh) ≤ cp(Ep) + ∑

j≥h
cp(E j ) ≤ 1

2h−1
.

Moreover

lim sup
ρ→0

∣
∣(u)x,ρ − un( j)(x)

∣
∣ ≤ 1

2 j
for all x ∈ R

N − E j .

For all x ∈ R
N − Eh and all i, j > h

|un(i)(x) − un( j)(x)| ≤ lim sup
ρ→0

|un(i)(x) − (u)x,ρ|

+ lim sup
ρ→0

|(u)x,ρ − un( j)(x)| ≤ 1

2i
+ 1

2 j
.

Therefore {un( j)} is a Cauchy sequence converging uniformly, as j → ∞, to
some continuous function u∗ in RN − Eh . Next
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lim sup
ρ→0

|u∗(x) − (u)x,ρ| ≤ lim sup
ρ→0

|u∗(x) − un( j)(x)|

+ lim sup
ρ→0

|(u)x,ρ − un( j)(x)|.

Therefore u∗ = u∗ in RN − Eh . As a consequence for all ε > 0 there exists a set
Eh of outer p-capacity not exceeding ε such that u∗ is well defined and continuous
in R

N − Eh . Since h ∈ N is arbitrary, u∗ is well defined by the limit in (15.1) in
R

N −E∞ with cp(E∞) = 0. Thus every point ofRN −E∞ is a differentiability point
of u. It is also a Lebesgue point since

lim
ρ→0

−
∫

Bρ(x)
|u − u∗(x)|dy ≤ lim

ρ→0
|(u)x,ρ − u∗(x)|

+ lim
ρ→0

(
−
∫

Bρ(x)
|u − (u)x,ρ|p∗

dy
) 1

p∗

≤ lim
ρ→0

ρ
(
−
∫

Bρ(x)
|Du|pdy

) 1
p
.

The last term is zero since x /∈ Ep. The proof for u ∈ W 1,p
loc (RN ) is concluded by

standard truncations and approximations.

17.1 Quasi-Continuous Representatives of Functions
u ∈ W1, p

loc (RN)

A function u : RN → R is quasi-continuous if for every ε > 0 there exists an open
set Eε such that cp(Eε) < ε and the restriction of u to RN − Eε is continuous.

The notion is analogous to that of Lusin’s theorem in § 5 ofChap.4. In that context,
the measure was any Borel regular measure μ, and continuity of a μ-measurable
function was claimed, except for a “small” set, quantified in terms of its measure.
The set E where the function was defined, had to be of finite measure.

Here RN is endowed with the Lebesgue measure, and the domain of definition of
u need not be of finite measure. Then continuity is sought everywhere in RN , except
possibly for a “small” set quantified in terms of its outer p-capacity.

http://dx.doi.org/10.1007/978-1-4939-4005-9_4


References

1. R.A. Adams, Sobolev Spaces (Academic Press, New York, 1975)
2. L. Alaoglu, Weak topologies of normed linear spaces. Ann. Math. 41, 252–267 (1940)
3. A.D.Alexandrov,On the extension of aHausdorff space to an H -closed space.C.R. (Doklady)

Acad. Sci. USSR., N.S. 37, 118–121 (1942)
4. R. Arens, Note on convergence in topology. Math. Mag. 23, 229–234 (1950)
5. C. Arzelà, Sulle funzioni di linee. Mem. Accad. Sc. Bologna 5(5), 225–244 (1894/5)
6. G. Ascoli, Le curve limiti di una varietà data di curve. Rend. Accad. Lincei 18, 521–586

(1884)
7. R. Baire, Sur les fonctions de variables réelles. Annali di Mat. 3(3), 1–124 (1899)
8. J.M. Ball, F. Murat, Remarks of Chacon’s biting lemma. Proc. Am. Math. Soc. 107(3), 655–

663 (1989)
9. S. Banach, Sur les fonctions dérivées des fonctions mesurables. Fundam. Math. 3, 128–132

(1922)
10. S. Banach, Sur un théorème de Vitali. Fundam. Math. 5, 130–136 (1924)
11. S. Banach, Sur les lignes rectifiables et les surfaces dont l’aire est finie. Fundam Math. 7,

225–237 (1925)
12. S. Banach, Über die Baire’sche Kategorie gewisser Funktionenmengen. Studia Math. 3, 174

(1931)
13. S. Banach, Théorie des Opérations Linéaires, 2nd edn. (Monografie Matematyczne, Warsaw,

1932); reprinted by Chelsea Publishing Co., New York, 1963
14. S. Banach, S. Saks, Sur la convergence forte dans les espaces L p . Studia Math. 2, 51–57

(1930)
15. S. Banach, H. Steinhaus, Sur le principe de la condensation des singularités. Fundam. Math.

9, 50–61 (1927)
16. A.S. Besicovitch, A General form of the covering principle and relative differentiation of ad-

ditive functions. Proc. Cambridge Philos. Soc. I(41), 103–110 (1945); ibidem II(42), (1946),
1–10

17. H.F. Bohnenblust, A. Sobczyk, Extensions of functionals on complex linear spaces. Bull. Am.
Math. Soc. 44, 91–93 (1938)

18. E. Borel, Théorie des Fonctions. Ann. École Norm., Serie 3 12, 9–55 (1895)
19. E. Borel, Leçons sur la Théorie des Fonctions (Gauthier-Villars, Paris, 1898)
20. A.P. Calderón, A. Zygmund, On the existence of certain singular integrals. Acta. Math. 88,

85–139 (1952)
21. G. Cantor, Über unendliche, lineare Punktmannigfaltigkeiten.Math. Ann. 20, 113–121 (1882)
22. G. Cantor, De la puissance des ensembles parfaits de points. Acta Math. 4, 381–392 (1884)

© Springer Science+Business Media New York 2016
E. DiBenedetto, Real Analysis, Birkhäuser Advanced
Texts Basler Lehrbücher, DOI 10.1007/978-1-4939-4005-9

579



580 Refernces

23. G. Cantor, Über verschiedene Theoreme aus der Theorie der Punktmengen in einem n-fach
ausggedehnten stetigen Raum Gn . Acta Math. 7, 105–124 (1885)

24. H. Cartan, Fonctions Analytiques d’une Variable Complexe (Dunod, Paris, 1961)
25. C. Carathéodory, Vorlesungen über reelle Funktionen (Chelsea Publishing Co., New York,

1946) (reprint)
26. C. Carathéodory, Algebraic Theory of Measure and Integration (Chelsea Publishing Co., New

York, 1963) (reprint)
27. G. Chiti, Rearrangement of functions and convergence in Orlicz spaces. Appl. Anal. 9, 23–27

(1979)
28. J.A. Clarkson, Uniformly convex spaces. Trans. AMS 40, 396–414 (1936)
29. M.G. Crandall, L. Tartar, Some relations between nonexpansive and order preserving map-

pings. Proc. Am. Math. Soc. 78, 385–390 (1980)
30. M.M. Day, Normed Linear Spaces, 3rd edn. (Springer, New York, 1973)
31. M.M. Day, The spaces L p with 0 < p < 1. Bull. Am. Math. Soc. 46, 816–823 (1940)
32. E. DeGiorgi, Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli rego-

lari. Mem. Acc. Sc. Torino, Cl. Sc. Mat. Fis. Nat. 3(3), 25–43 (1957)
33. E. DeGiorgi, Sulla proprietà isoperimetrica dell’ipersfera, nella classe degli insiemi aventi

perimetro finito. Rend. Accad. Lincei, Mem. Cl. Sci. Fis. Mat. Natur., Sez.I 5(8), 33–44
(1958)

34. E. DiBenedetto, Partial Differential Equations (Birkhäuser, Boston, 1995)
35. E. DiBenedetto, D.J. Diller, On the rate of drying in a photographic film. Adv. Diff. Equ. 1(6),

989–1003 (1996)
36. E. DiBenedetto, D.J. Diller, a new form of the sobolev multiplicative inequality and applica-

tions to the asymptotic decay of solutions to the neumann problem for quasilinear parabolic
equations with measurable coefficients. Proc. Nat. Acad. Sci. Ukraine 8, 81–88 (1997)

37. U. Dini, Fondamenti per la Teorica delle Funzioni di una Variabile Reale, Pisa. reprint of
Unione Matematica Italiana (Bologna, Italy, 1878)

38. N. Dunford, J.T. Schwartz, Linear Operators, Part I (Wiley-Inter-science, New York, 1958)
39. D.F. Egorov, Sur les suites des fonctions mesurables. C. R. Acad. Sci. Paris 152, 244–246

(1911)
40. L. Ehrenpreis, Solutions of some problems of division. Am. J. Math. 76, 883–903 (1954)
41. L.C. Evans, R.F. Gariepy, Measure Theory and Fine Properties of Functions (CRC Press,

Boca Raton, 1992)
42. P.J. Fatou, Séries trigonométriques et séries de Taylor. Acta Math. 30, 335–400 (1906)
43. H. Federer, Geometric Measure Theory (Springer, New York, 1969)
44. C. Fefferman, E.M. Stein, H p spaces of several variables. Acta Math. 129, 137–193 (1972)
45. E. Fischer, Sur la convergence en moyenne. C. R. Acad. Sci. Paris 144, 1148–1150 (1907)
46. W.H. Fleming, R. Rischel, An integral formula for total gradient variation. Arch. Math. XI,

218–222 (1960)
47. M. Fréchet, Des familles et fonctions additives d’ensembles abstraits. Fund.Math. 5, 206–251

(1924)
48. I. Fredholm, Sur une classe d’équations fonctionnelles. Acta Math. 27, 365–390 (1903)
49. A. Friedman, Foundations of Modern Analysis (Dover, New York, 1982)
50. K.O. Friedrichs, The identity of weak and strong extensions of differential operators. Trans.

AMS 55, 132–151 (1944)
51. G. Fubini, Sugli integrali multipli. Rend. Accad. Lincei, Roma 16, 608–614 (1907)
52. G. Fubini, Sulla derivazione per serie. Atti Accad. Naz. Lincei Rend. 16, 608–614 (1907)
53. E. Gagliardo, Proprietà di alcune funzioni in n variabili. Ricerche Mat. 7, 102–137 (1958)
54. E. Giusti, Functions of Bounded Variation (Birkhäuser, Basel, 1983)
55. C. Goffman, G. Pedrick, First Course in Functional Analysis (Chelsea Publishing Co., New

York, 1983)
56. H.H. Goldstine, Weakly complete banach spaces. Dukei Math J. 4, 125–131 (1938)
57. H. Hahn, Theorie der reellen Funktionen (Berlin 1921)



Refernces 581

58. H. Hahn, Über Folgen linearer operationen. Monatshefte für Mathematik un Physik 32(1),
3–88

59. H. Hahn, Über lineare Gleichungen in linearen Räumen. J. für Math. 157, 214–229 (1927)
60. H. Hahn, Über die Multiplikation total-additiver Menegnfunktionen. Ann. Sc. Norm. Sup.

Pisa 2, 429–452 (1933)
61. P.R. Halmos,Measure Theory (Springer, New York, 1974)
62. P.R. Halmos, Introduction to Hilbert Spaces (Chelsea Publishing Co., New York, 1957)
63. O. Hanner, On the uniform convexity of L p and �p . Ark. Math. 3, 239–244 (1956)
64. G.H. Hardy, J.E. Littlewood, G. Pólya, Themaximum of a certain bilinear form. Proc. London

Math. Soc. 2(25), 265–282 (1926)
65. G.H. Hardy, J.E. Littlewood, Some properties of fractional integrals I. Math. Zeitschr. 27,

565–606 (1928)
66. G.H. Hardy, J.E. Littlewood, On certain inequalities connected with the calculus of variations.

J. London Math. Soc. 5, 34–39 (1930)
67. G.H. Hardy, J.E. Littlewood, Amaximal theoremwith function-theoretical applications. Acta

Math. 54, 81–116 (1930)
68. G.H. Hardy, J.E. Littlewood, G. Pólya, Inequalities (Cambridge Univ, Press, 1963)
69. H.H. Hardy, Note on a theorem of Hilbert. Math. Zeitschr. 6, 314–317 (1920)
70. F. Hausdorff, Dimension und äusseres Mass. Math. Ann. 79, 157–179 (1919)
71. F. Hausdorff,Grundzüge derMengenlehre, Leipzig 1914 (Chelsea Publishing Co., NewYork,

1955) (reprint)
72. E. Helly, Über lineare Funktionaloperationen. Österreich. Akad. Wiss. Natur. Kl., S.-B. IIa

121, 265–297 (1912)
73. E. Hewitt, K.A. Ross, Abstract Harmonic Analysis (Springer, Berlin, 1963)
74. O. Hölder, Über einen Mittelwertsatz. Göttinger Nachr. 38–47 (1889)
75. J. Jensen, Sur les fonctions convexes et les inegalités entre les valeurs moyennes. Acta Math.

30, 175–193 (1906)
76. F. John, L. Nirenberg, On functions of bounded mean oscillation. Comm. Pure Appl. Math.

#14, 415–426 (1961)
77. C. Jordan, Sur la Série de Fourier. C. R. Acad. Sci. Paris 92, 228–230 (1881)
78. C. Jordan, Course d’Analyse (Gauthier Villars, Paris, 1893)
79. J.L. Kelley, General Topology (Van Nostrand, New York, 1961)
80. O.D. Kellogg, Foundations of Potential Theory (Dover, New York, 1953)
81. A. Khintchine, A.N. Kolmogorov, Über Konvergenz von Reihen, deren Glieder durch den

Zufall bestimmt werden Math. Sbornik 32, 668–677 (1925)
82. M.D. Kirzbraun, Über die zusammenziehenden und Lipschitzschen Transformationen. Fun-

dam. Math. 22, 77–108 (1934)
83. A.N.Kolmogorov,ÜberKompaktheit der Funktionenmengenenbei derKonvergenz imMittel.

Nachrr. Ges. Wiss. Göttingen 9, 60–63 (1931)
84. V.I. Kondrachov, Sur certaines propriétés des fonctions dans l’espace L p . C. R. (Doklady),

Acad. Sci. USSR (N.S.) 48, 535–539 (1945)
85. M. Krein, D. Milman, On extreme points of regularly convex sets. Studia Math. 9, 133–138

(1940)
86. H. Lebesgue, Sur une généralisation de l’intégrale définite. C. R. Acad. Sci. Paris 132, 1025–

1028 (1901)
87. H. Lebesgue, Sur les Fonctions représentables analytiquement. J. de Math. Pures et Appl.

6(1), 139–216 (1905)
88. H. Lebesgue, Sur l’intégrale de Stieltjes et sur les opérations fonctionnelles linéaires. C. R.

Acad. Sci. Paris 150, 86–88 (1910)
89. H. Lebesgue, Sur l’intégration des fonctions discontinues. Ann. Sci. École Norm. Sup. 27,

361–450 (1910)
90. H. Lebesgue, Leçons sur l’Integration et la Recherche des Fonctions Primitives, 2nd edn.

(Gauthier–Villars, Paris, 1928)



582 Refernces

91. A. Legendre, Mémoire sur l’integration de quelques équations aux différences partielles.
Mémoires de l’Académie des Sciences 309–351 (1787)

92. L. Lichenstein, Eine elementare Bemerkung zur reellen Analyis. Math. Z. 30, 794–795 (1929)
93. E.H. Lieb, M. Loss, Analysis, Graduate Studies in Mathematics, Vol. 14 (AMS, Providence

R.I. 1996)
94. J.E. Littlewood, Lectures on the Theory of Functions (Oxford, 1944)
95. L.A. Liusternik, V.J. Sobolev, Elements of Functional Analysis (Fredrick Ungar Publishing

Co., New York, 1967)
96. G. Lorentz, Approximation of Functions (Chelsea Publishing Co., New York, 1986)
97. G.G. Lorentz, Bernstein Polynomials (University of Toronto Press, Toronto, Canada, 1953)
98. N. Lusin, Sur les propriété des functions measurables. C. R. Acad. Sci. Paris 154, 1688–1690

(1912)
99. B. Malgrange, Existence at approximation des solutions des équations aux dérivée partielles

et des équations de convolution. Ann. Inst. Fourier 6, 271–355 (1955–56)
100. J. Marcinkiewicz, Sur les series de Fourier. Fundam. Math. 27, 38–69 (1936)
101. J. Marcinkiewicz, Sur quelques integrales du type de Dini. Ann. Soc. Pol. Math. 17, 42–50

(1938)
102. J. Marcinkiewicz, Sur l’interpolation d’opérations. C. R. Acad. Sc. Paris. 208, 1272–1273

(1939)
103. V.G. Mazja, Sobolev Spaces (Springer, New York, 1985)
104. S. Mazur, Über konvexe Mengen in linearen normierten Räumen. Studia Math. 4, 70–84

(1933)
105. E.J. McShane, Extension of range of functions. Bull. AMS 40, 837–842 (1934)
106. N. Meyers, J. Serrin, H = W . Proc. Nat. Acad. Sci. 51, 1055–1056 (1964)
107. S.G. Mikhlin, Integral Equations, Vol. 4 (Pergamon Press, New York, 1957)
108. H. Minkowski, Geometrie der Zahlen, Leipzig 1896 and 1910 (reprint Chelsea 1953)
109. C.B.Morrey, On the solutions of quasilinear elliptic partial differential equations. Trans. AMS

43, 126–166 (1938)
110. C.B. Morrey, Multiple Integrals in the Calculus of Variations (Springer, New York, 1966)
111. A.P. Morse, A theory of covering and differentiation. Trans. Am. Math. Soc. 55, 205–235

(1944)
112. O.M. Nikodým, Sur les fonctions d’ensembles, Comptes Rendus du 1er Congrès de Mathe-

matciens des Pays Slaves, Warsaw, pp. 304–313 (1929)
113. O.M.Nikodým, Sur une généralisation des intégrales deM. J. Radon Fund.Math. 15, 131–179

(1930)
114. O.M. Nikodým, Sur les suites des fonctions parfaitement additive d’ensembles abstraits. C.

R. Acad. Sci. Paris 192, 727–728 (1931) (Monatshefte für Mathematik un Physik 32(1), A23)
115. L. Nirenberg, On elliptic partial differential equations. Ann. Sc. Norm. Sup. Pisa 3(13), 115–

162 (1959)
116. W.F. Osgood, Non-uniform convergence and the integration of series term by term. Am. J.

Math. 19, 155–190 (1897)
117. H. Rademacher, Über partielle und totale Differenzierbarkeit. Math. Ann. 79, 340–359 (1919)
118. J. Radon, Theorie und Anwendungen der absolut additiven Mengenfunktionen. Sitzungsber.

Akad. Wiss. Wien 122, 1295–1438 (1913)
119. A. Rajchman, S. Saks, Sur la dérivabilité des fonctionsmonotones. Fundam.Math. 4, 204–213

(1923)
120. R. Rellich, Ein Satz über mittlere Konvergenz. Nachr. Akad. Wiss. Göttingen, Math.–Phys.

Kl., 30–35 (1930)
121. F. Riesz, Sur un théoréme de M. Borel. C. R. Acad. Sci. Paris 144, 224–226 (1905)
122. F. Riesz, Sur les systèmes ortogonaux de fonctions. C. R. Acad. Sci. Paris 144, 615–619

(1907)
123. F. Riesz, Sur les suites des fonctions mesurables. C. R. Acad. Sci. Paris 148, 1303–1305

(1909)



Refernces 583

124. F. Riesz, Sur les opérations fonctionnelles linéaires. C. R. Acad. Sci. Paris 149, 974–977
(1909)

125. F. Riesz, Über lineare Funktionalgleichungen. Acta. Math. 41, 71–98 (1917)
126. F. Riesz, Sur les fonctions subharmoniques et leur rapport à la théorie du potentiel. ActaMath.

48, 329–343 (1926)
127. F. Riesz, Sur les fonctions subharmoniques et leur rapport à la théorie du potentiel. ActaMath.

54, 162–168 (1930)
128. F. Riesz, Sur une inégalité intégrale. J. London Math. Soc. 5, 162–168 (1930)
129. F. Riesz, Sur les ensembles compacts de fonctions sommables. Acta Szeged Sect. Math. 6,

136–142 (1933)
130. F. Riesz, Zur Theorie des Hilbertschen Raumes. Acta Sci. Math. Szeged. 7, 34–38 (1934)
131. F. Riesz, B. Nagy, Leçons d’Analyse Fontionnelle, 6th edn. (Akadé-miai Kiadó, Budapest,

1972)
132. H.L. Royden, Real Analysis, 3rd edn. (Macmillan, New York, 1988)
133. W. Rudin, Real and Complex Analysis, 3rd edn. (McGraw–Hill, 1986)
134. S. Saks, Theory of the Integral, Vol. 7, 2nd edn. (Monografje Matematyczne, Warsaw, 1933);

(Hafner Publishing Co. New York, 1937)
135. S. Saks, On some functionals. Trans. Am. Math. Soc. 35(4), 549–556 (1933)
136. S. Saks, Addition to the note on some functionals. Trans. Am. Math. Soc. 35(4), 965–970

(1933)
137. A. Sard, Themeasure of the critical values of differentiablemaps. Bull. AMS 48(12), 883–890

(1942)
138. L. Schwartz, Théorie des Distributions (Hermann & Cie, Paris, 1966)
139. E. Schmidt, Entwicklung willkürlicher Funktionen nach Systemen vorgeschriebener. Math.

Ann. 63, 433–476 (1907)
140. J. Schur, Über lineare Transformationen in der unendlichen Reihen. Crelle J. Reine Ange-

wandte Mathematik 151, 79–111 (1921)
141. C. Severini, Sopra gli sviluppi in serie di funzioni ortogonali. Atti Accad. Gioenia 3(5),

Mem. XI, 1–7 (1910)
142. C. Severini, Sulle successioni di funzioni ortogonali. Atti Accad. Gioenia 3(5), Mem. XIII,

1–10 (1910)
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totally bounded, 46, 47, 65, 224, 283

Metric(s), 37, 389
discrete, 59, 60
equivalent, 39, 59
norm, 313
pseudo, 40, 60
translation invariant, 40, 253, 313

Minkowski functional, 332
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p-capacity, 547, 563
and Gagliardo embeddings, 558
and Hausdorff measure, 559, 562
and isoperimetric inequality, 558
characterization of, 550
distribution function, 555
inner, 563
lower estimates of, 552
of a closed ball, 554
of a compact set, 547
outer, 563, 565

countably sub-additive, 567
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