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Preface to the Second Edition

This is a revised and expanded version of my 2002 book on real analysis. Some
topics and chapters have been rewritten (i.e., Chaps. 7-10) and others have been
expanded in several directions by including new topics and, most importantly,
considerably more practice problems. Noteworthy is the collection of problems in
calculus with distributions at the end of Chap. 8. These exercises show how to solve
algebraic equations and differential equations in the sense of distributions, and how
to compute limits and series in D’. Distributional calculations in most texts are
limited to computing the fundamental solution of some linear partial differential
equations. We have sought to give an array of problems to show the wide appli-
cability of calculus in D’. I must thank U. Gianazza and V. Vespri for providing me
with most of these problems, taken from their own class notes. Chapter 9 has been
expanded to include a proof of the Riesz convolution rearrangement inequality in V-
dimensions. This is preceded by the topics on Steiner symmetrization as a supporting
background. Chapter 11 is new, and it goes more deeply in the local fine properties
of weakly differentiable functions by using the notion of p-capacity of sets in R". It
clarifies various aspects of Sobolev embedding by means of the isoperimetric
inequality and the co-area formula (for smooth functions). It also links to measure
theory in Chaps. 3 and 4, as the p-capacity separates the role of measures versus
outer measure. In particular, while Borel sets are p-capacitable, Borel sets of positive
and finite capacity are not measurable with respect to the measure generated by the
outer measure of p-capacity. Thus, it also provides an example of nonmetric outer
measures and non-Borel measure. As it stands, this book provides a background to
more specialized fields of analysis, such as probability, harmonic analysis, functions
of bounded variation in several dimensions, partial differential equations, and
functional analysis. A brief connection to BV functions in several variables is offered
in Sect. 7.2c of the Complements of Chap. 5.

The numbering of the sections of the Problems and Complements of each
chapter follow the numbering of the section in that chapter. Exceptions are Chaps. 6
and 8. Most of the Problems and Complements of Chap. 8 are devoted to calculus
with distributions, not directly related to the sections of that chapter.


http://dx.doi.org/10.1007/978-1-4939-4005-9_7
http://dx.doi.org/10.1007/978-1-4939-4005-9_10
http://dx.doi.org/10.1007/978-1-4939-4005-9_8
http://dx.doi.org/10.1007/978-1-4939-4005-9_9
http://dx.doi.org/10.1007/978-1-4939-4005-9_11
http://dx.doi.org/10.1007/978-1-4939-4005-9_3
http://dx.doi.org/10.1007/978-1-4939-4005-9_4
http://dx.doi.org/10.1007/978-1-4939-4005-9_5
http://dx.doi.org/10.1007/978-1-4939-4005-9_6
http://dx.doi.org/10.1007/978-1-4939-4005-9_8
http://dx.doi.org/10.1007/978-1-4939-4005-9_8

vi Preface to the Second Edition

Sections 20c—23c of the Complements of Chap. 6 are devoted to present the
Vitali-Saks—Hahn theorem. The relevance of the theorem is in that it gives suffi-
cient conditions on a set of integrable functions to be uniformly integrable. This in
turn it permits one to connect the notions of weak and strong convergence to
convergence in measure. In particular, as a consequence it gives necessary and
sufficient conditions for a weakly convergent sequence in L' to be strongly con-
vergent in L'. As an application, in ¢, weak and strong convergence coincide
(Sects. 22¢—23c of Chap. 6).

Over the years, I have benefited from comments and suggestions from several
collaborators and colleagues including U. Gianazza, V. Vespri, U. Abdullah,

Olivier Guibé, A. DevinatzT, J. SerrinT, J. Manfredi, and several current and former
students, including Naian Liao, Colin Klaus Stockdale, Jordan Nikkel, and Zach
Gaslowitz Special thanks go to Ugo Gianazza and Olivier Guibé for having read in
detail large parts of the manuscript and for pointing out imprecise statements and
providing valuable suggestions. To all of them goes my deep gratitude.

This work was partially supported by NSF grant DMS-1265548.
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Preface to the First Edition

This book is a self-contained introduction to real analysis assuming only basic
notions on limits of sequences in RV, manipulations of series, their convergence
criteria, advanced differential calculus, and basic algebra of sets.

The passage from the setting in RY to abstract spaces and their topologies is
gradual. Continuous reference is made to the R" setting where most of the basic
concepts originated.

The first eight chapters contain material forming the backbone of a basic training
in real analysis. The remaining three chapters are more topical, relating to maximal
functions, functions of bounded mean oscillation, rearrangements, potential theory
and the theory of Sobolev functions. Even though the layout of the book is theo-
retical, the entire book and the last chapters in particular have in mind applications
of mathematical analysis to models of physical phenomena through partial differ-
ential equations.

The preliminaries contain a review of the notions of countable sets and related
examples. We introduce some special sets, such as the Cantor set and its variants
and examine their structure. These sets will be a reference point for a number of
examples and counterexamples in measure theory (Chapter 3) and in the Lebesgue
differentiability theory of absolute continuous functions (Chapter 5). This initial
Chapter contains a brief collection of the various notions of ordering, the Hausdorff
maximal principle, Zorn’s Lemma, the well-ordering principle, and their funda-
mental connections.

These facts keep appearing in measure theory (Vitali’s construction of a
Lebesgue non-measurable set), topological facts (Tychonov’s Theorem on the
compactness of the product of compact spaces; existence of Hamel bases) and
functional analysis (Hahn-Banach Theorem; existence of maximal orthonormal
bases in Hilbert spaces).

Chapter 2 is an introduction to those basic topological issues that hinge upon
analysis or that are, one way or another, intertwined with it. Examples include
Uhryson’s Lemma and the Tietze Extension Theorem, characterization of com-
pactness and its relation to the Bolzano-Weierstrass property, structure of the

vii



viii Preface to the First Edition

compact sets in RY, and various properties of semi-continuous functions defined on
compact sets. This analysis of compactness has in mind the structure of the compact
subsets of the space of continuous functions (Chapter 5) and the characterizations
of the compact subsets of the spaces L7(E) for all 1 <p<oo (Chapter 6).

The Tychonov Theorem is proved with its application in mind in the proof of the
Alaoglu Theorem on the weak™ compactness of closed balls in a linear, normed space.

We introduce the notion of linear, topological vector spaces and that of linear
maps and functionals and their relation to boundedness and continuity.

The discussion turns quickly to metric spaces, their topology, and their structure.
Examples are drawn mostly from spaces of continuous or continuously differen-
tiable functions or integrable functions. The notions and characterizations of
compactness are rephrased in the context of metric spaces. This is preparatory to
characterizing the structure of compact subsets of L”(E).

The structure of complete metric spaces is analyzed through Baire’s Category
Theorem. This plays a role in subsequent topics, such as an indirect proof of the
existence of nowhere differentiable functions (Chapter 5), in the structure of Banach
spaces (Chapter 6), and in questions of completeness and non-completeness of
various topologies on C:°(E) (Chapter 8).

Chapter 3 is a modern account of measure theory. The discussion starts from the
structure of open sets in RY as sequential coverings to construct measures and a
brief introduction to the algebra of sets. Measures are constructed from outer
measure by the Charathéodory process. The process is implemented in specific
examples such as the Lebesgue-Stiltjes measures in R and the Hausdorff measure.
The latter seldom appears in introductory textbooks in Real Analysis. We have
chosen to present it in some detail because it has become, in the past two decades,
an essential tool in studying the fine properties of solutions of partial differential
equations and systems. The Lebesgue measure in R is introduced directly starting
from the Euclidean measure of cubes rather than regarding it, more or less
abstractly, as the N-product of the Lebesgue measure on R. In R, we distinguish
between Borel sets and Lebesgue measurable sets, by cardinality arguments and by
concrete counterexamples.

For general measures, emphasis is put on necessary and sufficient criteria of
measurability in terms of Gs and F,. In this, we have in mind the operation of
measuring a set as an approximation process. From the applications point of view,
one would like to approximate the measure of a set by the measure of measurable
sets containing it and measurable sets contained into it. The notion is further
expanded in the theory of Radon measures and their regularity properties.

It is also further expanded into the covering theorems, even though these rep-
resent an independent topic in their own right. The Vitali Covering Theorem is
presented by the proof due to Banach. The Besicovitch covering is presented by
emphasizing its value for general Radon measures in RY. For both, we stress the
measure-theoretical nature of the covering as opposed to the notion of covering a
set by inclusion.
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Coverings have made possible an understanding of the local properties of
solutions of partial differential equations, chiefly the Harnack inequality for
non-negative solutions of elliptic and parabolic equations. For this reason, in the
Complements of this chapter, we have included various versions of the Vitali and
Besicovitch covering theorems.

Chapter 4 introduces the Lebesgue integral. The theory is preceded by the
notions of measurable functions, convergence in measure, Egorov’s Theorem on
selecting almost everywhere convergent subsequences from sequences convergent
in measure, and Lusin’s Theorem characterizing measurability in terms of
quasi-continuity. This theorem is given relevance as it relates measurability and
local behavior of measurable functions. It is also a concrete application of the
necessary and sufficient criteria of measurability of the previous chapter.

The integral is constructed starting from non-negative simple functions by the
Lebesgue procedure. Emphasis is placed on convergence theorems and the Vitali’s
Theorem on the absolute continuity of the integral. The Peano-Jordan and Riemann
integrals are compared to the Lebesgue integral by pointing out differences and
analogies.

The theory of product measures and the related integral is developed in the
framework of the Charathéodory construction by starting from measurable rect-
angles. This construction provides a natural setting for the Fubini-Tonelli
Theorem on multiple integrals.

Applications are provided ranging from the notion of convolution, the conver-
gence of the Marcinkiewicz integral, to the interpretation of an integral in terms
of the distribution function of its integrand.

The theory of measures is completed in this chapter by introducing the notion of
signed measure and by proving Hahn’s Decomposition Theorem. This leads to
other natural notions of decompositions such as the Jordan and Lebesgue
Decomposition Theorems. It also suggests naturally other notions of comparing two
measures, such as the absolute continuity of a measure v with respect to another
measure u. It also suggests representing v, roughly speaking, as the integral of u by
the Radon-Nykodym Theorem.

Relating two measures finds application in the Besicovitch-Lebesgue Theorem,
presented in the next chapter, and connecting integrability of a function to some of
its local properties.

Chapter 5 is a collection of applications of measure theory to issues that are at
the root of modern analysis. What does it mean for a function of one real variable to
be differentiable? When can one compute an integral by the Fundamental
Theorem of Calculus? What does it mean to take the derivative on an integral?
These issues motivated a new way of measuring sets and the need for a new notion
of integral.

The discussion starts from functions of bounded variation in an interval and their
Jordan’s characterization as the difference of two monotone functions. The notion
of differentiability follows naturally from the definition of the four Dini’s numbers.
For a function of bounded variation, its Dini numbers, regarded as functions, are
measurable. This is a remarkable fact due to Banach.
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Functions of bounded variations are almost everywhere differentiable. This is a
celebrated theorem of Lebesgue. It uses, in an essential way, Vitali’s Covering
Theorem of Chapter 3.

We introduce the notion of absolutely continuous functions and discuss simi-
larities and differences with respect to functions of bounded variation. The
Lebesgue theory of differentiating an integral is developed in this context. A natural
related issue is that of the density of a Lebesgue measurable subset of an interval.
Almost every point of a measurable set is a density point for that set. The proof uses
a remarkable theorem of Fubini on differentiating term by term a series of monotone
functions.

Similar issues for functions of N real variables are far more delicate. We present
the theory of differentiating a measure v with respect to another u by identifying
precisely such a derivative in terms of the singular part and the absolutely con-
tinuous part of u with respect to v. The various decompositions of measures of
Chapter 4 find here their natural application, along with the Radon-Nykodym
Theorem.

The pivotal point of the theory is the Besicovitch-Lebesgue Theorem asserting
that the limit of the integral of a measurable function f when the domain of inte-
gration shrinks to a point x actually exists for almost all x and equals the value of f
at x. The shrinking procedure is achieved by using balls centered at x, and the
measure can be any Radon measure. This is the strength of the Besicovitch covering
theorem. We discuss the possibility of replacing balls with domains that are,
roughly speaking, comparable to a ball. As a consequence, almost every point of an
N-dimensional Lebesgue-measurable set is a density point for that set.

The final part of the chapter contains an array of facts of common use in real
analysis. These include basic facts on convex functions of one variable and their
almost everywhere double differentiability. A similar fact for convex functions of
several real variables (known as the Alexandrov Theorem) is beyond the scope
of these notes. In the Complements, we introduce the Legendre transform and
indicate the main properties and features.

We present the Ascoli-Arzeld Theorem, keeping in mind a description of
compact subsets of spaces of continuous functions.

We also include a theorem of Kirzbraun and Pucci extending bounded, con-
tinuous functions in a domain into bounded, continuous functions in the whole RY
with the same upper bound and the same concave modulus of continuity. This
theorem does not seem to be widely known.

The final part of the chapter contains a detailed discussion of the
Stone-Weierstrass Theorem. We present first the Weierstrass Theorem (in N
dimensions) as a pure fact of Approximation Theory. The polynomials approxi-
mating a continuous function f in the sup-norm over a compact set are constructed
explicitly by means of the Bernstein polynomials. The Stone Theorem is then
presented as a way of identifying the structure of a class of functions that can be
approximated by polynomials.
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Chapter 6 introduces the theory of L7 spaces for 1 <p<oo. The basic
inequalities of Holder and Minkowski are introduced and used to characterize the
norm and the related topology of these spaces. A discussion is provided to identify
elements of L7 (E) as equivalence classes.

We introduce also the L7(E) spaces for 0<p <1 and the related topology. We
establish that there are not convex open sets except L7 (E) itself and the empty set.

We then turn to questions of convergence in the sense of L[(E) and their
completeness (Riesz-Fisher Theorem) as well as issues of separating such spaces by
simple functions. The latter serves as a tool in the notion of weak convergence of
sequences of functions in L”(E). Strong and weak convergence are compared and
basic facts relating weak convergence and convergence of norms are stated and
proved.

The Complements contain an extensive discussion comparing the various
notions of convergence.

We introduce the notion of functional in L”(E) and its boundedness and conti-
nuity and prove the Riesz representation Theorem, characterizing the form of all the
bounded linear functionals in L7(E) for 1 < p < oco. This proof is based on the
Radon-Nykodym Theorem and as such is measure theoretical in nature.

We present a second proof of the same theorem based on the topology of L”. The
open balls that generate the topology of LP(E) are strictly convex for 1 <p <ooc.
This fact is proved by means of the Hanner and Clarkson’s inequality, which while
technical, are of interest in their own right.

The Riesz Representation Theorem permits one to prove that if E is a
Lebesgue-measurable set in RY, then I[P(E) for 1 <p<oo, are separable. It also
permits one to select weakly convergent subsequences from bounded ones. This
fact holds in general, reflexive, separable Banach spaces (Chapter 7). We have
chosen to present it independently as part of the I” theory. It is our point of view
that a good part of functional analysis draws some of its key facts from concrete
spaces, such as spaces of continuous functions, the L”, space and the spaces £,.

The remainder of the chapter presents some technical tools regarding L”(E) for
E, a Lebesgue-measurable set in RY, to be used in various parts of the later
chapters. These include the continuity of the translation in the topology of L”(E),
the Friedrichs mollifyiers, and the approximation of functions in L?(E) with C*°(E)
functions. It includes also a characterization of the compact subsets in L?(E).

Chapter 7 is an introduction to those aspects of functional analysis closely related
to the Euclidean spaces R", the spaces of continuous functions defined on some
open set E C R, and the spaces I (E). These naturally suggest the notion of finite
dimensional and infinite dimensional normed spaces. The difference between the
two is best characterized in terms of the compactness of their closed unit ball. This
is a consequence of a beautiful counterexample of Riesz.

The notions of maps and functionals is rephrased in terms of the norm topology.
In R, one thinks of a linear functional as an affine functions whose level sets are
hyperplanes through the origin. Much of this analogy holds in general normed
spaces with the proper rephrasing.
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Families of pointwise equi-bounded maps are proven to be uniformly
equi-bounded as an application of Baire’s Category Theorem.

We also briefly consider special maps such as those generated by Riesz potential
(estimates of these potentials are provided in Chapter 9), and related Fredholm
integral equations.

A proof of the classical Open Mapping Theorem and Closed Graph Theorem are
presented as a way of inverting continuous maps to identify isomorphisms out of
continuous linear maps.

The Hahn-Banach Theorem is viewed in its geometrical aspects of separating
closed convex sets in a normed space and of “drawing” tangent planes to a convex
set.

These facts all play a role in the notion of weak topology and its properties.
Mazur’s Theorem on weak and strong closure of convex sets in a normed space is
related to the weak topology of the L?(E) spaces. These provide the main examples,
as convexity is explicit through Clarkson’s inequalities.

The last part of the chapter gives an introduction to Hilbert spaces and their
geometrical aspects through the parallelogram identity. We present the Riesz
Representation Theorem of functionals through the inner product. The notion of
basis is introduced and its cardinality is related to the separability of a Hilbert space.
We introduce orthonormal systems and indicate the main properties (Bessel’s
inequality) and some construction procedures (Gram-Schmidt). The existence of a
complete system is a consequence of the Hausdorff maximum principle. We also
discuss various equivalent notions of completeness.

Chapter 8 is about spaces of real-valued continuous functions, differentiable
functions, infinitely differentiable functions with compact support in some open set
E C R, and weakly differentiable functions.

Together with the I (E) spaces, these are among the backbone spaces of real
analysis.

We prove the Riesz Representation Theorem for continuous functions of com-
pact support in RY. The discussion starts from positive functionals and their rep-
resentation. Radon measures are related to positive functionals and bounded, signed
Radon measures are related to bounded linear functionals. Analogous facts hold for
the space of continuous functions with compact support in some open set £ C R".

We then turn to making precise the notion of a topology for CJ°(E).
Completeness and non-completeness are related to metric topologies in a con-
structive way. We introduce the Schwartz topology and the notion of continuous
maps and functionals with respect to such a topology. This leads to the theory of
distributions and its related calculus (derivatives, convolutions etc. of distributions).

Their relation to partial differential equations is indicated through the notion of
fundamental solution. We compute the fundamental solution for the Laplace
operator also in view of its applications to potential theory (Chapter 9) and to
Sobolev inequalities (Chapter 10).

The notion of weak derivative in some open set E C R" is introduced as an
aspect of the theory distributions. We outline their main properties and state and
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prove the by now classical Meyers-Serrin Theorem. Extension theorems and
approximation by smooth functions defined in domains larger than E are provided.
This leads naturally to a discussion of the smoothness properties of OF for these
approximations and/or extensions to take place (cone property, segment property,
etc.).

We present some calculus aspects of weak derivatives (chair rule, approxima-
tions by difference quotients, etc.) and turn to a discussion of W'>(E) and its
relation to Lipschitz functions. For the latter, we conclude the chapter by stating and
proving the Rademaker Theorem.

Chapter 9 is a collection of topics of common use in real analysis and its
applications. First is the Wiener version of the Vitali Covering Theorem (commonly
referred to as the “simple version” of Vitali’s Theorem). This is applied to the
notion of maximal function, its properties, and its related strong type L7 estimates
for 1 <p<oo. Weak estimates are also proved and used in the Marcinkiewicz
Interpolation Theorem. We prove the by now classical Calderén-Zygmund
Decomposition Theorem and its applications to the space functions of bounded
mean oscillation (BMO) and the Stein-Fefferman L” estimate for the sharp maximal
function.

The space of BMO is given some emphasis. We give the proof of the
John-Nirenberg estimate and provide its counterexample. We have in mind here the
limiting case of some potential estimates (later in the chapter) and the limiting
Sobolev embedding estimates (Chapter 10).

We introduce the notion of rearranging the values of functions and provide their
properties and the related notion of equi-measurable function. The discussion is for
functions of one real variable. Extensions to functions of N real variables are
indicated in the Complements.

The goal is to prove the Riesz convolution inequality by rearrangements. The
several proofs existing (Riesz, Zygmund, Hardy-Littlewood-Polya) all use, one way
or another, the symmetric rearrangement of an integrable function.

We have reproduced here the proof of Hardy-Littlewood-Polya as appearing in
their monograph [70]. In the process, we need to establish Hardy’s inequality, of
interest in its own right.

The Riesz convolution inequality is presented in several of its variants, leading
to an N-dimensional version of it through an application of the continuous version
of the Minkowski inequality.

Besides its intrinsic interest of these inequalities, what we have in mind here is to
recover some limiting cases of potential estimates an their related Sobolev
embedding inequalities.

The final part of the chapter introduces the Riesz potentials and their related L”
estimates, including some limiting cases. These are on one hand based on the
previous Riesz convolution inequality, and on the other hand to Trudinger’s version
of the BMO estimates for particular functions arising as potentials.

Chapter 10 provides an array of embedding theorems for functions in Sobolev
spaces. Their importance to analysis and partial differential equations cannot be
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underscored. Although good monographs exist ([1, 104]), I have found it laborious
to extract the main facts, listed in a clean manner and ready for applications.

We start from the classical Gagliardo-Nirenberg inequalitites and proceed to
Sobolev inequalities. We have made an effort to trace, in the various embedding
inequalities, how the smoothness of the boundary enters in the estimates. For
example, whenever the cone condition is required, we trace back in the various
constant the dependence on the height and the angle of the cone. We present the
Poincaré inequalities for bounded, convex domains E, and trace the dependence
of the various constants on the “modulus of convexity” of the domain through the
ratio of the radius of the smallest ball containing E and the largest ball contained in
E. The limiting case p = N of the Sobolev inequality builds of the limiting
inequalities for the Riesz potentials, and is preceded by an introduction to Morrey
spaces and their connection to BMO.

The characterization of the compact subsets of LP(E) (Chapter 6) is used to
prove Reillich’s Theorem on compact Sobolev inequalities.

We introduce the notion of trace of function in W'#(RY x R™) on the hyper-
plane xy 1 = 0. Through a partition of unity and a local covering, this provides the
notion of trace of functions in W!?(E) on the boundary OE, provided such a
boundary is sufficiently smooth. Sharp inequalities relating functions in W'?(E)
with the integrability and regularity of their traces on OF are established in terms of
fractional Sobolev spaces. Such inequalities are first established for E being a
half-space and JE an hyperplane, and then extended to general domains E with
sufficiently smooth boundary OE. In the Complements we characterize functions f
defined and integrable on OF as traces on OF of functions in some Sobolev spaces
WP (E). The relation between p and the order of integrability of f on OE is shown
to be sharp. For special geometries, such as a ball, the inequality relating the
integral of the traces and the Sobolev norm can be made explicit. This is indicated
in the Complements.

The last part of the chapter contains a newly established multiplicative Sobolev
embedding for functions in W!”(E) that do not necessarily vanish on OE. The open
set E is required to be convex. Its value is in its applicability to the asymptotic
behavior of solutions to Neumann problems related to parabolic partial differential
equations.
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Chapter 1
Preliminaries

1 Countable Sets
A set E is countable if it can be put in one-to-one correspondence with a subset of
the natural numbers N. Every subset of a countable set is countable.

Proposition 1.1 The set Sg of the finite sequences of elements of a countable set E
is countable.

Proof Let{2,3,5,7,11,...,m; ...} be the sequence of prime numbers. Every pos-
itive integer n has a unique factorization, of the type

j
n =2Q‘3°‘2~-~mj’

where the sequence {a, ..., «;} is finite and the a; are nonnegative integers. Let
now o = {ey, ..., e;} be an element of Sg. Since E is countable, to each element
e; there corresponds a unique positive integer «;. Thus to o there corresponds the
unique positive integer given by the indicated factorization. ]

Corollary 1.1 The set of pairs {m, n} of integers is countable.
Corollary 1.2 The set Q of the rational numbers is countable.

Proof The rational numbers can be put in one-to-one correspondence with a subset
of the ratios % for two integers m, n with n # 0. ]

Proposition 1.2 The union of a countable collection of countable sets is countable.

Proof Let {E;} be a countable collection of countable sets. Since each of the E; is
countable, their elements may be listed as
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E1 = {an app a3 ... Ay }
Ez = {a21 azy azz ... dyy }
E, = {aml am2 Am3 - - - Amn }

Thus the elements of UE; are in one-to-one correspondence with a subset of the
ordered pairs {m, n} of natural numbers. ]

Proposition 1.3 (Cantor [22]) The interval [0, 1] as a subset of R, is not countable.

Proof The proof uses Cantor’s diagonal process. If [0, 1] were countable, its elements
could be listed as the countable collection

.XjZO.(anzj‘”amj'“ fOI‘jEN

where a,,; are integers from 0 to 9. Now seta; = 1 if aj; isevenand a; = 2 if a;
is odd. Then, the element x = 0.a;a; - - -, is in [0, 1] and is different from any one
of the {x;}. ]

2 The Cantor Set

Divide the closed interval [0, 1] into 3 equal subintervals and remove the central
open interval I; = (1, 2), so that [0, 1] — I; = [0, 1] U [, 1]. Subdivide each of
these intervals in 3 equal parts and remove their central open interval. If I, is the set
that has been removed

We subdivide each of the closed intervals making up [0, 1] — I; U I, into 3 equal
subintervals and remove their central open interval. If /5 is the set that has been
removed

=3 UEHUE UG
[0, 11— (1 ULUIL) =0,

Proceeding in this fashion defines a sequence of disjoint open sets /,,, each being
the finite, disjoint union of open intervals and satisfying

n—1

meas(l,) = ETH and > meas(l,) = 1.
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The Cantor set C = [0, 1] — UI, is the set that remains after removing, the
union of the I, out of [0, 1]. The Cantor set C is closed and each of its point is an
accumulation point of the extremes of the intervals /,. Thus C coincides with the set
of all its accumulation points. Set

_ the collection of all sequences {¢,}
" | where the numbers ¢, are either Oor 1 |

Every element x € C can be represented as (2.1-2.2 of the Complements)

xzzz

37 F for some sequence {e,} € £. (2.1)

Every element of C is associated to one and only one sequence {¢,} € £ by the
representation formula (2.1). For example

S {01, 1L,1,...,1,..)
< {0,0,1,1,...,1,...}
S {1,0,1,1,...,1,..)

< {1,0,0,0,...,0,...)
< 1{0,1,0,0,...,0,...}
< {1,1,0,0,...,0,...).

Ol Ol— Wi~
\Olo0 Ot WY

Vice versa any such a sequence identifies by (2.1) one and only one element of C.
The set of all sequences in £ has the cardinality of the real numbers in [0, 1], being
their binary representation. Thus C has the cardinality of R and therefore is uncount-
able. It also follows from (2.1) that the Cantor set could be defined alternatively as
the set of those numbers in [0, 1] whose ternary expansion has only the digits 0 and
2. The two definitions are equivalent.

3 Cardinality

Two sets X and Y have the same cardinality if there exists a one-to-one map f
from X onto Y. In such a case one writes card(X) = card(Y). If X is finite, then
card(X) is the number of elements of X. The formal inequality card(X) < card(Y)
means that there exists a one-to-one map from X into Y. In particular if X C Y,
then card(X) < card(Y). The formal inequality card(X) > card(Y) means that there
exists a one-to-one map from X onto Y. In particular if X D Y, then card(X) >
card(Y).

Proposition 3.1 (Schoder-Bernstein) Let X and Y be any two sets. If card(X) <
card(Y) and card(X) > card(Y), then card(X) = card(Y).

Proof Let f and be a one-to-one function from X into Y and let g be a one-to-one
function from Y into X. Partition X into the disjoint union of three sets X,, X, X, by
the following iterative procedure. If x is not in the range of g we say that x € X ;. If
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X is in the range of g form g ' (x) € Y.If g~ (x) is not in the range of f the process
terminates and we say that x € X,. Otherwise form f ~1(g~'(x)). If such an element
is not in the range of g the process terminates and we say that x € X,. Proceeding
in this fashion, either the process can be continued indefinitely or it terminates. If it
terminates with an element not in the range of g we say that the starting element is in
X,.If it terminates with an element not in the range of f we say that the starting x is
in X5. If it can be continued indefinitely we say that x € X,. The three sets X,, X1,
X, are disjoint and X = X, U X U X,. Similarly Y = Y, U Y| U Y, where the sets
Y; for j = 0, 1,2 are constructed similarly. By construction f is a bijection from
X, onto Y, and from X onto Y,. Similarly g is a bijection from Y; onto X,. Thus
the map # : X — Y defined by

[ fx) ifxeX,UX,
h(x) = [gl(x) if x € X,

is a one-to-one map from X onto Y. |

Corollary 3.1 card(X) = card(Y) ifand only if card(X) < card(Y) and card(X) >
card(Y).

The formal strict inequality card(X) < card(Y) means that any one-to-one function
f : X — Y is not a surjection, that is, roughly speaking, X contains strictly fewer
elements than Y. For example card(N) < card(R).

3.1 Some Examples

A set X has the cardinality of N if it can be put in a one-to-one correspondence
with N. In such a case one writes card(X) = card(N). For example card(Z) =
card(Q) = card(N). A set X has the cardinality of R if it can be put in a one-to-one
correspondence with R. In such a case one writes card(X) = card(R). For example
if C is the Cantor set, card(C) = card(R). For a positive integer m denote by

X"=XxXx---xX
—_—

m times

the collection of all m-tuples (xi, ..., x,,) of elements of X. Also, denote by 2% the
set of all subsets of a set X. Thus 2~ is the collections of all subsets of N and 2F is
the collection of all subsets of R.

Proposition 3.2 card(N") = card(N) and card(2") = card(R). Moreover for any
X there holds card(2X) > card(X).

Proof The first statement follows form Proposition 1.1. A non-empty subset A C N,
consists of an increasing sequence, finite or infinite, of positive integers, say for
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example A = {my,...,m,,...}. Label by zero the elements of N — A, and by 1
the elements of A, and keep their ordering within N. This uniquely identifies the
sequence

ea=1{0,..., Lyn,....0, ... 1y, ...} €E

If A = () associate to @ the sequence £y whose elements are all zero. Conversely,
any sequence {¢,} € £ identifies uniquely, by the inverse process, one and only one
element of 2V, Thus 2V is in one-to-one correspondence with the Cantor set £, which,
in turn, is in one-to-one correspondence with R.

The last statement is established by proving that no function f : X — 2%X is
a surjection. Let f be any such function and set Ay = {x € X|x ¢ f(x)}. The
set Ay could be empty. If f were a surjection, there would exists y € X such
that f(y) = Ay. By the definition of A/, such a y cannot be neither in A s nor in
X>—-Af. ]

Corollary 3.2 Given any non-empty set X, there exists a set Y containing X and of
strictly larger cardinality.

Corollary 3.3 card(R) < card(2®).

4 Cardinality of Some Infinite Cartesian Products

For a positive integer m, the set X" is the collection of all m-tuples of elements of X.
Any such m-tuple (xy, ..., x,,) can be regarded as a function from the first m integers
(1,...,m) into X. By analogy X" is defined as the collection of all sequences of
elements of X, and any such sequence {x,} can be regarded as a function from
N into X. For example RY is the collection of all sequences of real numbers or
equivalently is the collection of all functions f : N — R. The product space (0, 1)
is called the Hilbert cube and is the collection of all sequences {x,} of elements in
(0, 1). Let {0, 1} denote any set consisting of only 2 elements, say for example O
and 1. Then {0, 1} is in one-to-one correspondence with the Cantor set. Therefore
card({0, 1Y) = card(R).

If A is any set, countable or not, the Cartesian product X* is defined to be the
collection of all functions f : A — X. For example (0, 1)>" is the collection of
all functions f : (0, 1) — (0, 1). Likewise RR is the set of all real valued functions
defined in R.

Proposition 4.1 card(2Y x 2M) = card(2Y) = card(R).

Proof We exhibit a one-to-one correspondence between (21 x 2N) and 2. For any
two subsets A and B of N, set

g(A)=U@n, hB)=U{2m-1}.

neA meB
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Then for any pair of sets A, B € 2" define
f(A, B) = g(A)Uh(B) = C €2V,

By this procedure, every element (A, B) € 2V x 2V is mapped into one and only
one element of 2. Vice-versa, given any C € 2V, by separating its even and odd
numbers, identifies in a unique manner two sets A and B in 2N and hence a unique
element (4, B) € 2N x 2N, [ ]

Corollary 4.1 card(R™) = card(R), for allm € N.
Proof Let firstm = 2. Then
card(R?) = card(R x R) = card(2" x 21) = card(R).

For general m € N the statement follows by induction. |

Proposition 4.2 Let X, Y and Z be any triple of sets. Then
card (XYXZ) = card [(XY)Z].

Proof Let f € XV*Z so that f(y, z) € X for all pairs (y,z) € Y x Z. For a fixed
z € Z,seth.(y) = f(y,z). This gives an element of X¥. Thus as z ranges over Z,

the map & (-) uniquely identifies a function from Z into X¥. Conversely any element
h, € (X¥)? uniquely identifies an element f € X¥*Z by the same formula. m

Corollary 4.2 card(RY) = card(R).
Proof Since R is in one-to-one correspondence with {0, 1}

card(R") = card [({0, 1}')"] = card ({0, 1}"") = card({0, 1}"") = card(R)
since N x N and N are in one-to-one correspondence. ]
Corollary 4.3 card (NV) = card(R).

Proof An element of NV is a sequence of elements of N. In particular NV contains
those sequences containing only two fixed elements of N, say for example {1, 2}.
Therefore {1, 2}Y ¢ NN, and

card (NV) > card ({1, 2}"') = card(R).

On the other hand NY is contained in RY, and

card (NV) < card (R") = card(R). o
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5 Orderings, the Maximal Principle, and the Axiom
of Choice

A relation < on a set X, is a partial ordering of X if itis transitive (x < yand y < z
implies x < z) and antisymmetric (x < y and y < x implies x = y). The relation
< of less than or equal to is a partial ordering of R. The set inclusion C partially
orders the set 2% of all subsets of X.

A partial ordering < on a set X is a linear or total ordering on X if for any two
elements x, y € X, either x < y or y < x. The relation < is a linear ordering on R,
whereas C is not a linear ordering on 2% .

Let X be a set partially ordered by a relation < and let E C X. An upper bound
of asubset E C X,isanelementx € X suchthaty < x forally € E. If x € E,
then x is a maximal element of E.

A linearly ordered subset E C X is maximal if any linearly ordered subset of X
containing E, coincides with E. Partial and linear ordering are meant with respect to
the same ordering <. In particular if E is a proper subset of X, linearly ordered and
maximal with respect to the same relation < by which X is partially ordered, then
forallx € X —E, theset EU{x} C X isnotlinearly ordered, by the same ordering <.

The Hausdorff Maximal Principle: Every partially ordered set contains a maximal
linearly ordered subset, by the same ordering.

The Hausdorff Maximal Principle will be taken here as an Axiom. The maximality
and ordering statements given below, that is, Zorn’s lemma, the Axiom of Choice,
and the Well Ordering Principle, will be proven to be a consequence of the Hausdorff
Maximal Principle. Actually it can be proven that all these maximality and ordering
statements are equivalent, that is, any one of them, taken as an Axiom, implies the
remaining three ([80]).

Zorn’s Lemma: Let X be a partially ordered set X, such that every linearly ordered
subset has an upper bound. Then X has a maximal element.

Proof Let M be the maximal linearly ordered set claimed by the Maximal Principle.
An upper bound for M is a maximal element of X. |

The Axiom of Choice: Let {X,} be a collection of nonempty sets, as the index o
ranges over some set A. There exists a function f defined in A, such that f(a) € X,.
Equivalently one may choose an element x,, out of each set X,. If the sets of the
collection {X .} are disjoint, one might select one and only one representative out of
each X,.

Proof A function ¢ that maps the elements 3 of a subset B C A into elements of X3,
may be regarded as a set of ordered pairs ¢ = U{((3, x3) where 3 € B and x3 € X3,
such that no two of such pairs have the same first coordinate. The set @ of all such
 is partially ordered by inclusion. Let ¥ be a linearly ordered subset of @ and set
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1 = U{p|p € ¥}. Such a 1) is union of pairs («, x,,) for @ € A and x,, € X,,. Since
¥ is linearly ordered, any two such pairs (o, x,) and (3, x3) must belong to some
¢ € ¥. Therefore o # 3 since ¢ is a function. This implies that v is a function in @
and is an upper bound for ¥. Thus every linearly ordered subset of @ has an upper
bound. By Zorn’s lemma @ has a maximal element f. To prove the axiom it remains
to show that the domain of f is A. If not, we may select an element o« € A —dom{ f'}
and associate to it an element x, € X,, since X, is not empty. Then the function
f'=fU(x,x,)isin @ and f C f', against the maximality of f. ]

Corollary 5.1 Let X be a set. There exists a function f : 2% — X such that
f(E) € E, forevery E C X. Equivalently, one may choose an element out of every
subset of X.

6 Well Ordering

A linear ordering < is a well ordering of X if every subset of X has a first element.
The set N of positive integers is well ordered by <. The set R is not well ordered by
the same ordering.

Well Ordering Principle ([177]): Every set X can be well ordered, that is, there
exists a relation < that well orders X .

Proof Let f : 2X — X be a function as in Corollary 5.1, whose existence is
guaranteed by the axiom of choice. Set

n—1

x1=f(X) and x,=f(X—Ux;) forn=>2.
Jj=1

The sequence {x,} can be given the ordering of N and, as such, is well ordered.
Let D be a subset of X and let < be a linear ordering defined on D. A subset E C D
is a segment, relative to < if for any x € E, all the elements y € D such that
y < x, belong to E. The segments of {x,}, relative to the ordering induced by N, are
the sets of the form {x, x», ..., x,,} for some m € N. The union and intersection
of two segments is a segment. The empty set is a segment relative to any linear
ordering <. Denote by F the family of /inear orderings < defined on subsets D C X
and satisfying:

If E C D is a segment, then the first element of D — E is f(X — E). (%)

Such a family is not empty since the ordering of N on the domain D = {x,} is
in F.

Lemma 6.1 Every element of F is a well ordering on its domain.
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Proof Let D C X be the domain of a linear ordering <€ J. For a nonempty subset
A C D let
E:{yeD|y<x forall x € A and y # x}.

Then the first element of A is the first element of D — E and the latteris f(X — E)
since E is a segment. ]

Lemma 6.2 Let < and <, be two elements in F with domains D\ and D,. Then,
one of the two domains, say for example D is a segment for the other, say for example
D, with respect to the corresponding ordering <,. Moreover < and < coincide on
such a segment.

Proof Let E denote the set of all x such that
yeDi|y<ix}={yeDy|y=2x)

and such that <; and <, agree on these two sets. By construction E is a segment
for both D, and D, with respect to their orderings. The set £ must coincide with at
least one of D; and D;. If not, the element f(X — E) is the first element of both
Dy — E and D, — E. By the definition of E, such an element is in E. This is however
a contradiction since f(X — E) ¢ E. |

Let D, be the union of the domains of the elements of . Let also <,, be that order-
ing on D, that coincides with the ordering < in F on its domain D. By Lemma 6.2
this is a linear ordering on D, and it satisfies the requirement (*) of the class 7. There-
fore by Lemma 6.1, it is a well ordering on D,. It remains to show that D, = X.
Consider the set D/, = D, U {f(X — D,)}, and the ordering </, that coincides with
<, on D, and by which f(X — D,) follows any element of D,. One checks that </,
satisfies the requirements of the class F and its domain is D). Therefore D, = D).
This however is a contradiction unless X — D, = @. [ ]

6.1 The First Uncountable

Let X be an uncountable set, well ordered by the ordering <. Without loss of gener-
ality we may assume that X has an upper bound, that is, there exists some x* € X
such that x < x* for all x € X — {x*}. Indeed if not we may add to X an element
x* and on X U {x*} define an ordering <* to coincide with < on X and by which
x <x*forallx € X.

Forx € X,set E, = {y € X|y < x}. If E, is a finite set, then x is called a
finite ordinal. Consider now the set E° = {x € X|E, is infinite}. Since X is infinite
and has an upper bound E° # . Since X is well ordered by <, the set E? has a
least element denoted by w. The set E,, is infinite and for each x < w the set E is
finite. For this reason w is referred to as the first infinite ordinal. The set E, is the set
of finite ordinals and is in one-to-one correspondence with the set N of the natural
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numbers ordered with the natural ordering of N. If E, is a countable set, then x is
called a countable ordinal.

Set E! = {x € X|E, is uncountable}. Since X is uncountable and has an upper
bound, E' # @. Since X is well ordered by <, the set E' has a least element denoted
by §2. The set E; is uncountable and for each x < 2 the set E, is countable. For
this reason £2 is referred to as the first uncountable ordinal.

Let R be well ordered by <. The cardinality of E, is denoted by ®,,. The cardinality
of Eg isdenoted by 8. The inclusion E; C Rimplies R, < card(R). The continuum
hypothesis states that the cardinality of R is 8y, that is, roughly speaking, there are
no sets, in the sense of cardinality, between E, and R.

Problems and Complements

1¢c Countable Sets

1.1. A real number x is called algebraic if it is the root of a polynomial with rational
coefficients. Prove that the set of algebraic numbers is countable.
1.2. Prove that the set of all the prime numbers is countable.

2¢ The Cantor Set

2.1. Let s > 2 be a positive integer and let {o,,} be a sequence of positive integers

that can take only the values 1, ..., s — 1. Any x € [0, 1] has the representation
x=>, In where {0, } is one such sequence. 2.1¢)
sn

The sequence {0, } that identifies x is unique except if x is of the form x = r/s"
for some positive integer . In the latter case there are exactly 2 sequences that
identify x. Conversely if {0,} is any such sequence, then (2.1c) converges to a
number x € [0, 1]. For s = 2, 3, 10, this gives the binary, ternary or decimal
representation of x.

2.2. Let L, and R, denote respectively the set of all the left and right hand points of
the 2"~! intervals removed out of [0, 1], at the nth step of the construction of
the Cantor set. For example L, = {1} and R, = {0}, and

1 1 7 1 7 1 25
Li={(3 Lo={4 2} Ly= {4 £. 2. B)

553

R=3IR={3%R={5352%

W
w
[3%)
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By construction U(L, U R,,) C C with strict inclusion. The elements of L, and
R, can be constructed recursively as

1 n—1
L, = {numbers of the form r + e for r e Rj}
=0

n—1

2
R, = {numbers of the form r + T for re U Rj}.
j=0

It follows that if 3, € R, there exist a finite sequence of positive integers
J1 < j» <+ < jp—1 < (n—1),such that

Therefore 3, has a ternary expansion with only digits 0 and 2, of the form
B =10,...,24,0,...,2;,,0,...,2; ,,0,...,2,,0,41,0,0,...}.

Likewise an element «,, € L, is of the form

2 2 2 1
al1_§+ﬁ+...+3,in—l +3—n-

The ternary expansion of «, has only digits O and 2 and is of the form

ap=1{0,...,2;,0,...,2;,.0,...,2; ,0,....1,,0,41,0,0,...)
={0,...,2;,0,....2;,.0,....2; 0, ..., 0, 2,41.2,2,...}.

If (v, By) is an interval removed out of [0, 1] at the nth step of the process,
then o, and (3, have the same ternary expansion up to the terms of order (n — 1).
The term of order n is 2 for the right end point and is O for the left hand point.
The remaining terms in the expansion of «, are all 2 and those in the expansion
of (3, are all 0.

2.1c A Generalized Cantor Set of Positive Measure
Let o« € (0, 1) and out of the interval [0, 1] remove the central open interval

1 a 1 « a
1‘*:(-——,— —) flength —.
1=\37 g2 ) otlemeth 3
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Out of each of the remaining two intervals (0, % — %) and (% + ¢, 1), remove the
two central intervals each of length éa and denote by I3* their union. Proceeding in
this fashion, define sequences of open sets I, each being the finite union of disjoint
open intervals and satisfying

n—1

meas(/;)") = « T

and > meas(l) = a.

The generalized Cantor setis the setC, = [0, 1]—UI thatremains after removing
the union of the /' out of [0, 1].

2.2¢ A Generalized Cantor Set of Measure Zero

Fix 6 € (0, %). From [0, 1] remove the open middle interval I, = (4, 1 — 4), of
length (1 — 26), so that

[0,11-1,=J11UJip, where Ji;=1[0,6], Jip=[1-9,1]

Next, out of J;; and J; » remove the open middle intervals /; ; and I, », each of
length § — 262, and denote by I; their union. Thus

11 ZIL]UI],Q, meas(11)=25—452

where
L= (6%6-06%), TLao=(1-(-6)1-0).

The set that remains is
[0, 11 =L, UL) =0 1UJoUdszUldy

where
Doy =0, 6%] Jop=[6—06%6]

ha=[1-6,1-06-06)] ha=[1-0"1]

From this

4
meas(I, Ul}) =1 —46>  and > meas(Js, ;) = 40%.
j=1

Next out of each J, ; remove the open middle interval I ;, of length 52 —25% and
denote by /3 their union. Thus
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4
L= L and meas(l3) = 46> — 85°.
j=1

The set that remains is
23

3
0,11-UL=U /A,
i=0

j=1

where J3 ; are closed disjoint sub-intervals of [0, 1], each of length §°. Proceeding
in this fashion we generate sequences of open sets I, each being the finite union of
disjoint, open intervals and of disjoint, closed intervals J,, , C [0, 1], such that

n 2/!
0,11 Uli=U
i=0 j=1

Moreover

n 2"
Z;‘)meas(l,-) =1-2"" and 21 meas(J, ;) = 2"6".
i= j=

The generalized Cantor set Cs is defined as Cs = [0, 1] — Ul;. For § = % this
coincides with the Cantor set C introduced in § 2. By construction, meas(Cs) = 0,
forall § € (0, 3).

Remark 2.1¢ For each n € N the Cantor set C; is covered by the union of the closed
intervals J,, ; for j =1,2,...,2".

2.3c Perfect Sets

A non-empty set E C RY is perfect if it coincides with the set of its accumulation
points. The Cantor set is perfect. The set of the rational numbers is not perfect.

Proposition 2.1¢ A perfect set is uncountable.

Proof Assume that E = | x,,, for a sequence {x,} of elements in R¥. Pick y; €
(E — x1). Since dist{x;, y;} > 0, there exists a closed cube Q1, centered at y; that
avoids x;. Since E is perfect and Q; is closed and bounded Q; N E is compact
and avoids x;. Next, remove x, out of E. The point y; as an element of E, is an
accumulation point of elements in E — x,. Therefore the intersection Q¢ N (E — x»)
is not empty and we may pick an element y, out of it. Since y, is different than
x1 and x», there exists a closed cube Q, centered at y,, contained in Q; and not
containing x; and x;. For suchacube Q1 N E D @O, N E is compact and avoids x;
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and x,. Proceeding in this fashion construct a nested sequence of closed bounded
sets O, N E satisfying

0, 1NEDQO,NE is compact and avoids xi, ..., x,.

Thus ((Q, N E) = . This however is impossible by 2.4 below. ]

2.4. Let{E,} be a sequence of non-empty, closed sets in RY such that E,,| C E,.If
E,, is bounded for some index n,, then NE, # @. If all the E,, are unbounded,
their intersection might be empty.

3¢ Cardinality

Below is an equivalent but constructive proof of the Schroder-Bernstein Theorem.
Define

X, =X Y,=Y and X, =f(X, Y=g,

and then inductively forall n € N

Xy, = g(Xanl) X2n+1 = f(XZn)
YZn - f(YZn—l) Y2n+1 - Q(an)

By construction

From this
00 00 00 00
ﬂ ij = ﬂ Y2j+1 and ﬂ Yzj = ﬂ X2j+1.
Jj=0 Jj=0 j=0 j=0
Set
o0 o0 o0 o0
Xoo = n ij = Y2j+| and Yoo = ﬂ Y2j = X2j+1.
j=0 j=0 j=0 Jj=0

The set X can be partitioned into the disjoint union of the sets
Xooy Xo—Y1, V1 —Xp, Xo—7Ys,
Likewise Y can be partitioned into the disjoint union of the sets

Yoo Yo—X1, X1 -T2, Y—Xj,
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A bijection from X onto Y is given by

fx) if xeXy; —Yy41 forsome j=0,1,2,

0,1,2

h(x) =1 g '(x) if x e Ysj+1 — X2j4o forsome j=0,1,2,
fx) if x € Xeo.

3.1. The first statement of Proposition 3.2 would be false if N is replaced by a finite
set X. Give conditions on an infinite set X, for which card(X™) = card(X).



Chapter 2
Topologies and Metric Spaces

1 Topological Spaces

Let X be a set. A collection I/ of subsets of X defines a topology on X if:
i. the empty set ¥ and X belong to U/

ii.  the union of any collection of sets in I/ is in U/

iii. the intersection of finitely many elements of { is in U{.

The pair {X; U}, that is X endowed with the topology generated by U, is a topo-
logical space. The elements O of U/ are the open sets of X. A set C in X is closed if
X — C is open. The empty set ¥ and X are both open and closed. It follows from the
definitions that the finite union of closed sets is closed and the intersection of any
collection of closed sets is closed.

An open neighborhood of aset A C X is any open set that contains A. In particular
a neighborhood of a singleton x € X, is any open set O such that x € O. A subset
O C X is open if and only if is an open neighborhood of any of its points.

A point x € A is an interior point of A if there exists an open set O such that
x € O C A. The interior of A is the set of all its interior points. A set A C X is open
if and only if it coincides with its interior.

A point x is a point of closure of A if every open neighborhood of x intersects A.
The closure A of A is the set of all the points of closure of A. A set A is closed if and
only if A = A. It follows that A is closed if and only if it is the intersection of all
closed sets containing A.

Let {x,} be a sequence of elements of X. A point x € X is a cluster point for the
sequence {x,} if every open set O containing x, contains infinitely many elements
of {x,}. The sequence {x,} converges to x if for every open set O containing x, there
exists a positive integer m(O) depending on O, such that x,, € O for all n > m(O).
Thus limit points for {x,} are cluster points. The converse is false. Indeed, there exist

© Springer Science+Business Media New York 2016 17
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sequences {x,} with a cluster point x, such that no subsequence of {x,} converges to
X, (1.11 of the Complements).

Proposition 1.1 (Cauchy) A sequence {x,} of elements of a topological space {X; U}
converges to x if and only if every subsequence {x,} C {x,} contains in turn a
subsequence {x,»} C {x,} converging to x.

Let A and B be subsets of X. The set B is dense in A if A C B. If also B C A, then
A = B. The space {X; U} is separable if it contains a countable dense set.

Let X, be a subset of X. The collection ¢/ induces a topology on X, by the family
U, = {ONX,}. The pair {X,; U,} is a topological subspace of {X; /}. A subspace
of a separable topological space need not be separable (4.9 of the Complements).

Let {X; U} and {Y; V} be any two topological spaces. A functionf : X — Y is
continuous at a point x € X if for every open set O € V containing f (x), there is an
open set O € U containing x and such that f(O) C O. A function f : X — Y is
continuous if it is continuous at every x € X. This implies that f is continuous if and
only if the pre-image of every open set is open, that is if for every open set O € V,
the set =1 (0) is an open set O € U. Equivalently f is continuous if and only if the
pre-image of a closed set is closed.

The restriction of a continuous function f : X — Y to a subset X, C X is
continuous with respect to the induced topology of {X,; U,}.

An homeomorphism between {X; U} and {Y; V} is a continuous one-to-one func-
tion f from X onto Y, with continuous inverse f ~'. If f : X — Y is ahomeomorphism
then f(O) € Vforall O € U.

Two homeomorphic topological spaces are equivalent in the sense that the ele-
ments of X are in one-to-one correspondence with the elements of ¥ and the open
sets making up the topology of {X; I/} are in one-to-one correspondence with the
open sets making up the topology of {Y; V}.

The collection 2¥ of all subsets of X generates a topology on X called the dis-
crete topology. Every function f from {X ; 2% } into a topological space {Y; V} is
continuous.

By a real valued function f defined on some {X; {/}, we mean a function from
{X; U} into R endowed with the Euclidean topology.

The trivial topology on X is that for which the only open sets are X and @J. The
closure of any point x € X is X. All the continuous real-valued functions defined on
X are constant.

As a short-hand notation, we denote by X a topological space, whenever a topol-
ogy U is clear from the context, or whenever the specification of a topology U is
immaterial.

1.1 Hausdorff and Normal Spaces

A topological space {X; U} is a Hausdorff space if it separates points, that is, if for
any two distinct points x, y € X, there exist disjoint open sets O, and O, such that
xe€O;andy € O,.
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Proposition 1.2 Let {X; U} be a Hausdor{ftopological space. Then, the points x € X
are closed.

Proof Every point y € (X — x) is contained in some open set contained in X — x.
Since X — x is the union of all such open sets, it is open. Thus {x} is closed. ]

Remark 1.1 The converse is false. See § 4.2 of the Complements.

A topological space {X; U} is normal if it separates closed sets, that is, for any
two disjoint closed sets C; and C, there exist disjoint open sets O and O, such that
Ci Cc Opand C;, C O,.

A normal space need not be Hausdorff. For example the trivial topology is not
Hausdorff but it is normal. However, if in addition the singletons {x} are closed, then
a normal space is Hausdorff. The converse is false as there exist Hausdorff spaces
that do not separate closed sets (§ 1.19 of the Complements).

2 Urysohn’s Lemma

Lemma 2.1 (Uryson [166]) Let {X; U} be normal. Given any two closed, disjoint
sets A and B in X, there exist a continuous function f : X — [0, 1] such thatf = 0
onAandf =1onB.

Proof We may assume that neither A nor B is empty. Indeed, for example, A = 0,
the function /' = 1 satisfies the conclusion of the Lemma. Let  denote nonnegative,
rational dyadic numbers in [0, 1], that is of the form

t = m=0,1,...,2" n=0,1,....

m
o

For each such ¢ we construct an open set O, in such a way that the family {O,}
satisfies

0,2A, O,=X-B, and O,C O, whenever T < 1. (2.1)

Since {X; U} is normal, there exists an open set O, containing A and whose closure
is contained in X — B. For n = 0 and m = 0, select such an open set O,. Forn = 0
andm = 1select O asin (2.1). Ton = 1 and m = 0, 1, 2, there correspond sets O,,
(’)%, and O;. The first and last have been selected and we select set O so that

0,c O, cO:CO.

1 1
2 2

Ton=2andm = 0, 1, 2, 3, 4 there correspond open sets (9 nof which only (’)1
and (’)3 have to be selected. Since {X; I/} is normal, there exist open sets (91 and Os
such that
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@OC@%C@%C(’) and @%CO%C@%COI.

1
2

Proceeding by induction, if the open sets O,,/>-1 have been selected we choose
the sets O,,/>» by first observing that the ones corresponding to m even, have already
been selected. Therefore, we have only to choose those corresponding to m odd. For
any such m fixed the open sets Ou—1)/2» and O,,.41y/2» have been selected. Since
{X; U} is normal, there exists an open set O,,/»» such that

@%CO% C@%Co%l.
Define f : X — [0, 1] by setting f(x) = 1 forx € B and
f@x) =inf{t|x € O;} for x X —B.

By construction f(x) = 0 on A and f(x) = 1 on B. It remains to prove that f is
continuous. From the definition of f it follows that for all s € (0, 1]

If <sl=U,.,0 and If <sl1=0-,0:.

Therefore [f < s] is open. On the other hand by the last of (2.1) O, c O,
whenever 7 < t. Therefore

[f = S] = mt>sol = mt>s@t
and [f < s]is closed. ]

Corollary 2.1 A Hausdorf{f space {X; U} is normal if and only if, for every pair of
closed disjoint subsets C and C, of X, there exists a continuous functionf : X — R
suchthatf = 1on Cyandf = 0on C,.

3 The Tietze Extension Theorem

Theorem 3.1 (Tietze [158]) Let {X; U} be normal. A continuous function f from a
closed subset C of X into R has a continuous extension on X, that is, there exists a
continuous real-valued function f, defined on the whole X, such that f = f, on C.
Moreover if f is bounded, say

fx)| <M forall x € C for some M > 0

then f, satisfies the same bound.
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Proof Assume first that f is bounded and that M < 1. We will construct a sequence
of real valued, continuous functions {g,}, defined on the whole X, such that for all
neN

1 2\ ne1
lgn ()] < §(§) forall x € X

; yon (3.1)
fx) — > g < (—) forall x € C.
j=1 3

Assuming the sequence {g,} has been constructed, by virtue of the first of (3.1), the
series Y g, is uniformly convergent in X and | > g,| < 1. Therefore, the functions
= Z};lgj are continuous and form a sequence {f,}, uniformly convergent on X
to a continuous function f*. From the second of (3.1) it follows that f = f, on C. It
remains to construct the sequence {g,}.

Since f is continuous, the two sets [f < —%] and [f > %] are closed and disjoint.
By Urysohn’s lemma, there exists a continuous function g; : X — [—1, 1] such that

glz% on [fz%] and glz—% on [ff—%].

By construction |[f(x) — g;(x)| < 2 for all x € C. The function h; = f — g, is
continuous and bounded on C. The two sets [h; < —%] and [k, > 2] are closed and

disjoint. Therefore by Urysohn’s lemma there exists a continuous function g, : X —
2 2

—3, 5] such that

=35 on [h=3] and g=-Fon [h=<—3]

By construction

I —gl=1f— (g +g) <3 onC.

The sequence {g,} is constructed inductively by this procedure. This proves
Tietze’s Theorem if f is bounded and |f| < 1. If f is bounded and [f| < M, the
conclusion follows by replacing f with f /M. If f is unbounded, set

_f
f"_1+w'

Since f, : C — R is continuous and bounded it has a continuous extension
go : X — [—1, 1]. In particular

Jx)

e (—1,1) forall x e C.
L+ [f ()]

Yo (x) =
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This implies that the set [|g,| = 1] is closed and disjoint from C. By the Uryshon
Lemma there exists a continuous function 77 : X — R such that » = 1 on C and
7n = 0on [|g,| = 1]. The function

190

=— ' X—=R
l_nlgo|

g

is continuous and coincides with f on C. ]

4 Bases, Axioms of Countability and Product Topologies

A family of open sets B is a base for the topology of {X; U/}, if for every open set O
and every x € O, there exists a set B € 5 such that x € B C O. A collection B, of
open sets, is a base at x if for each open set O containing x, there exists B € B, such
that x € B C O. Thus if B is a base for the topology of {X; U/}, it is also a base for
each of the points of X. More generally, B3 is a base if and only if it contains a base
for each of the points of X. A set O is open if and only if for each x € O there exists
B e Bsuchthatx € BC O.
Let B be a base for {X; /}. Then:

i.  Every x € X belongs to some B € 3
ii. For any two given sets By and B, in 3 and every x € By N B,, there exists some
B3 € Bsuch that x € B3 C B; N B,.

The notion of base is induced by the presence of a topology generated by U/ on
X. Conversely, if a collection of sets 5 satisfies (i) and (ii), then it permits one to
construct a topology on X for which B is a base.

Proposition 4.1 Let B be a collection of sets in X satisfying (1)—(ii). There exists a
collection U of subsets of X, which generates a topology on X, for which B is a base.

Proof LetU consist of the empty set ¢ and the collection of all subsets O of X, such
that for every x € O there exists an element B € B such thatx € B C O. Such a
collection is not empty since X € U.

It follows from the definition that the union of any collection of elements in I/
remains in /. Moreover U contains the empty set J and X.

Let O, and O, be any two elements of &/ with nonempty intersection. For every
x € O N O, there exist sets By, B, and Bz in Bsuch that B; C O;, i = 1,2 and

XEB3;C B NB, CO;NO,.

Therefore O N O, € U. This implies that the collection I/ generates a topology
on X for which B is a base. |
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A topological space {X; U} satisfies the first axiom of countability if each pointx €
X has a countable base. The space {X; U/} satisfies the second axiom of countability
if there exists a countable base for its topology.

Proposition 4.2 Every topological space satisfying the second axiom of countability
is separable.

Proof Let {O} be a countable base for the topology of {X; U}. For each i € N select
an element x; € O;. This generates a countable, dense subset of {X; I/}. [

4.1 Product Topologies

Let {X;; U, } and {X,; U,} be two topological spaces. The product topology U, x U,
on the Cartesian product X x X, is constructed by considering the collection B of all
products O; x O, where O; € U; for i = 1, 2. These are called the open rectangles
of the product topology. First, one verifies that they form a base in the sense of (i)-
(ii). Then the product topological space {X; x X,; U x U,} is constructed by the
procedure of Proposition 4.1. The symbol U; x U, means the collection U/ of sets in
X1 x X5, constructed by the procedure of Proposition 4.1.

If {X;, U} and {X;; U>} are Hausdorff spaces, then the topological product space
is a Hausdorff space.

Let X; x X, be endowed with the product topology U/, x U,. Then the projections

71']':X1XX2—>X_', ]:1,2

are continuous. Moreover U x U, is the weakest topology on X; x X, for which such
projections are continuous. The procedure can be iterated to construct the product
topology on the product of n topological spaces {X;; U;}7_,. Such a topology is the
weakest topology for which the projections

n
7rj:'HX,»—>X', j=1,...,n

i=1

are continuous. More generally, given an infinite family of topological spaces
{Xo; Us}aea, the product topology [[U, on the Cartesian product [[X, is con-
structed as the weakest topology for which the projections

T3 - HXa — X 8
are continuous for all § € A. Such a topology must contain the collection

B finite intersections of the inverse images
7 1(0,) fora € A and O, € U,



24 2 Topologies and Metric Spaces

One verifies that B satisfies the conditions (i)—(ii) of a base. Then, the product
topology is generated, starting from such a base, by the procedure of Proposition 4.1.

Let f be a function defined on A such that f(«) € X,, for all a € A.

The collection {f (o)} can be identified with a point in [ | X,,. Conversely any point
x € [[ X, can be identified with one such function. If X,, = X for some set X and all
a € A, then [[ X,, is denoted by X4 and it is identified with the set of all functions
defined on A and with values in X. If A = N then X" is the set of all sequences {x,}
of elements of X.

5 Compact Topological Spaces

A collection F of open sets O is an open covering of X if every x € X is contained in
some O € F. The covering is countable if it consists of countably many elements,
and it is finite if it consists of a finite number of open sets.

It might occur that X is covered by a subfamily 7’ of elements of F. Such a
subfamily, if it exists, is an open sub-covering of X, relative to F.

The topological space {X; U} is compact if every open covering F contains a
finite sub-covering F'. A set X, C X is compact if {X,; U,} is a compact topological
space.

A collection G of closed subsets of X has the finite intersection property if the
elements of any finite subcollection have nonempty intersection. Let F be an open
covering for X and let G be the collection of the complements of the elements in
F. The elements of G are closed and if X is compact, G does not have the finite
intersection property. More generally X is compact if and only if every collection
of closed subsets of X with empty intersection, does not have the finite intersection
property.

Proposition 5.1 (i) {X; U} is compact if and only if every collection G of closed
sets with the finite intersection property has nonempty intersection.

(ii) Let E be a closed subset of a compact space {X; U}. Then E is compact.

(iii)  Let E be a compact subset of a Hausdorff topological space. Then E is closed.

(iv)  Letf from{X; U} into {Y; V} be continuous. If {X; U} is compact thenf (X) C Y
is compact. If in addition f is one-to-one, and {Y; V} is Hausdorff, then f is a
homeomorphism between {X; U} and {Y; V}.

Proof Part (i) follows from the previous remarks. To prove (ii), let 7 be any open
covering for E. Then the collection {F, (X — E)} is an open covering for X. From this
we may extract a finite sub-covering F’ for X which, by possibly removing X — E,
gives a finite sub-covering for E.

Turning to (iii), let y € (X — E) be fixed. Since X is a Hausdorff space, for every
x € E there exist disjoint open sets O, and O, , separating x and y. The collection
{O,} forms an open cover for E, from which we extract a finite one {O,,, ..., O,,}
for some positive integer n. The intersection ﬂj"zl O,y is open and does not intersect
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E. Therefore every element y of the complement of E contains an open neighborhood
not intersecting E. Thus E is closed.

To establish (iv), let {X; U/} be compact and let {Y; V} be the image of a contin-
uous function f from X onto Y. Given an open covering {®} of Y, the collection
F = {f~1(®)} is an open covering for X from which we may extract a finite one
{F~Y(®1), ..., "(®,)}. Then the finite collection {®, ..., ,} covers Y.

Let f : X — Y be continuous and one-to-one and let {¥; V} be Hausdorff. A
closed subset E C X is compact, and its image f(E) is compact in ¥ and hence
closed. Therefore f~! is continuous. ]

Remark 5.1 In (iii), the assumption that {X; ¢/} be Hausdorff cannot be removed.
Indeed if U/ is the trivial topology on X, every proper subset of X is compact and not
closed.

A topological space {X; U} is locally compact if for each x € X there exists an
open set O containing x and such that O is compact. For example, RY endowed with
the Euclidean topology is locally compact but not compact.

5.1 Sequentially Compact Topological Spaces

A topological space {X; U} is countably compact if every countable open covering
of X contains a finite sub-covering. If {X; {/} is compact it is also countably compact.
The converse is false (5.7 of the Complements).

A topological space {X; {/} has the Bolzano—Weierstrass property if every infinite
sequence {x,} of elements of X has at least one cluster point.

A topological space {X; U} is sequentially compact if every infinite sequence {x,}
of elements of X has a convergent subsequence.

Thus if {X; U} is sequentially compact it has the Bolzano—Weierstrass property.
The converse is false.!

Proposition 5.2 (i) The continuous image of a countably compact space is count-
ably compact.

(ii) {X; U} is countably compact if and only if every countable family G of closed
sets with the finite intersection property has nonempty intersection.

(iii)  {X; U} has the Bolzano—Weierstrass property if and only if it is countably
compact.

(iv) If{X; U} is sequentially compact then it is countably compact.

(v) If{X; U} is countably compact and if it satisfies the first axiom of countability,
then it is sequentially compact.

Proof Parts (i)—(ii) follows from the definitions and the proof of Proposition 5.1.
The proof of (iii) uses the characterization of countable compactness stated in (ii).

By part (v) of Proposition 5.2 a counterexample can be constructed starting from a space {X; U}
that does not satisfy the first axiom of countability. See 5.7 of the Complements.
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Let {X; U} be countably compact and let {x,} be a sequence of elements of X. The
closed sets
B, = closure of {x,, x,41, ..., }

satisfy the finite intersection property and therefore have nonempty intersection. Any
element x € NB,, is a cluster point for {x,}.

Conversely let {X; U/} satisfy the Bolzano—Weierstrass property and let {B,} be
a countable collection of closed subsets of X with the finite intersection property.
Since for all n € N the intersection ﬂ]": 1 Bj is nonempty we may select an element
x,, out of it. The sequence {x,} has at least one cluster point x, which by construction,
belongs to the intersection of all B,,.

Part (iv) follows from (iii), since sequential compactness implies the Bolzano—
Weierstrass property.

To prove (v) let {x,} be an infinite sequence of elements of X and let x be in the
closure of {x,}. Since {X; U} satisfies the first axiom of countability, there exist a
nested countable collection of open sets O,, D O,,+1, each containing x and each
containing an element x,, out of the sequence {x,}. The subsequence {x,,} converges
to x. |

Proposition 5.3 Let {X; U} satisfy the second axiom of countability. Then every
open covering of X contains a countable sub-covering.

Proof Let {B,} a countable collection of open sets that forms a base for the topology
of {X; U} and let F be an open covering of X. To each B, we associate one and only
one open set O, € F that contains it. The countable collection O, is a countable
sub-covering of F. |

Corollary 5.1 For spaces satisfying the second axiom of countability, compactness,
countable compactness and sequential compactness, are equivalent.

6 Compact Subsets of RY

Let E be a subset of RY. We regard E as a topological space with the topology
inherited from the Euclidean topology of RV,

Proposition 6.1 The closed interval [0, 1] is compact.

Proof Let {I,} be a collection of open intervals covering [0, 1] and set

o x € [0, 1] such that the closed interval [0, x] is
N covered by finitely many elements out of {I,} |

Let ¢ = sup{x|x € &}. Since 0 belongs to some I, we have 0 < ¢ < 1. Such
an element c it is covered by some open set I,, € {I,}, and therefore, there exist
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€ > O such that (c — €, ¢ +¢) C I,,. By the definition of ¢, the interval [0, ¢ — €] is

covered by finitely many open sets {/, ..., I} out of {I,}. Augmenting such a finite
collection with /,, gives a finite covering of [0, ¢ + €]. Thus if ¢ < 1, it is not the
supremum of the set £. ]

Proposition 6.2 The closed interval [0, 1] has the Bolzano—Weierstrass property.

Proof Let {x,} be an infinite sequence of elements of [0, 1] without a cluster point
in [0, 1]. Then, each of the open intervals (x — ¢, x + ), for x € [0, 1] and € > O,
contains at most finitely many elements of {x,}. The collection of all such intervals
forms an open covering of [0, 1], from which we may select a finite one. This would
imply {x,} is finite. ]

Corollary 6.1 Every sequence in [0, 1] has a convergent subsequence.

Corollary 6.2 A bounded, closed subset E C RN has the Bolzano—Weierstrass
property.

Proof Let {x,} be a sequence of elements in £ and represent each of the x,, in terms
of its coordinates, that is, x, = (X1, ...,Xy.,). Since {x,} is bounded, each of
the sequences {x; ,} is contained in some closed interval [a;, b;]. Out of {x; ,} we
extract a convergent subsequence {x ,, }. Then out of {x; ,, } we extract a convergent
subsequence {x» ,, }. Proceeding in this fashion, the sequence {x,, } has a limit. Since
E is closed, such a limit is in E. ]

Proposition 6.3 (Borel-Riesz ([18, 124])) Let E be a bounded, closed subset of RY.
Then, every open covering U of E contains a finite sub-covering U'.

Proof By Proposition 5.3, may assume the covering is countable, say U = {O,}.
We claim that E C UZ":, O, for some m € N. Indeed if not, we may select for each
positive integer n, an element x, € E — [ J_, O, and select, out of the sequence {x,},
a subsequence {x,,} convergent to some x € E. Since the collection {O,} covers E,
there exists an index m such that x € O,,. Thus x,; € O,, for infinitely many n’. =

Proposition 6.4 (Heine-Borel) Every compact subset of RN, endowed with the
Euclidean topology, is closed and bounded.

Proof Let E C RN be compact. Since R", endowed with the Euclidean topology,
is a Hausdorff space, E is closed by (iii) of Proposition 5.1. The collection of balls
{B,} centered at the origin and radius n € N is an open covering for E. Since E is
contained in the union of a finite sub-covering, it is bounded. ]

Theorem 6.1 A subset E of RY is compact if and only if is bounded and closed.
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7 Continuous Functions on Countably Compact Spaces

Let f be a map from a topological space {X; U} into R and for r € R set [f < 1] =
{x € X|f(x) < t}. Thesets [f < t],[f > t], and [f > ¢] are defined analogously. A
map f from a topological space {X; U/} into R, is upper semi-continuous if [f < t] is
open for all ¢ € R, and it is lower semi-continuous if [f > t] is open forall t € R. A
mapf : X — Ris continuous if and only if is both upper and lower semi-continuous.

Theorem 7.1 (Weierstrass-Baire) Let {X; U} be countably compact and letf : X —
R be upper semi-continuous. Then f is bounded above in X and it achieves its
maximum in X.

Proof The collection of sets {[f < n]} is a countable open covering of X, from
which we extract a finite one, say, for example, [f < n;],...,[f < ny]. Then
f < max{ny, ..., ny}. Thus f is bounded above. Next, let f, denote the supremum
of f on X. The sets [f > f, — %] are closed and form a family with the finite inter-
section property. Since {X; U} is countably compact, their intersection is nonempty.
Therefore, there is an element x, € [f > f, — %] for all n € N. By construction

f(xo) zfo- [

Corollary 7.1 (i) A continuous real-valued function from a countably compact
topological space {X; U} takes its maximum and minimum in X.

(ii) A continuous real-valued function from a countably compact topological space
{X; U} is uniformly continuous.

Theorem 7.2 (Dini) Let {X; U} be countably compact and let {f,} be a sequence of
real-valued, upper semi-continuous functions such that f,, 1 < f, foralln € N, and
converging pointwise in X to a lower semi-continuous function f. Then {f,} — f
uniformly in X.

Proof By possibly replacing f, with f,, — f, we may assume that {f,,} is a decreasing
sequence of upper semi-continuous functions converging to zero pointwise in X. For
every € > 0, the collection of open sets [f, < €] covers X and we extract a finite
cover, say for example, up to a possible reordering

o, <€l f, <€l lfn. <€l, mi<ng--- <ne.

Since {f,} is decreasing [f,. < €] = X. Thus f,(x) < ¢ for all x € X and all
n>n.. ]
8 Products of Compact Spaces

Theorem 8.1 (Tychonov ([165])) Let {X,; U} be a family of compactspaces. Then
[1 X endowed with the product topology, is compact.
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The proof is based on showing that every collection of closed sets with the finite
intersection property, has nonempty intersection.

Lemma 8.1 Let {X; U} be atopological space and let G, be a collection of subsets of
X with the finite intersection property. There exists a maximal collection G of subsets
of X with the finite intersection property and containing G,, that is, if G’ is another
collection of subsets of X with the finite intersection property and containing G, then
G' = G. Moreover, the finite intersection of elements in G is in G and every subset of
X that intersects each set of G is in G.

Proof The family of all collections of sets with the finite intersection property and
containing G, is partially ordered by inclusion, so that by the Hausdorff principle,
there is a maximal linearly ordered subfamily F. We claim that G is the union of all
the collections in F.

Any n-tuple {E, ..., E,} of elements of G belongs to at most n collections G;.
Since {G;} is linearly ordered there is a collection G, that contains the others. There-
fore, E; € G, foralli = 1, ..., n and since G, has the finite intersection property,

NE; # §. Thus G has the finite intersection property. The maximality of G follows
by its construction.

The collection G of all finite intersections of sets in G contains G and has the
finite intersection property. Therefore G’ = G by maximality.

Let E be a subset of X that intersects all the sets in G. Then, the collection
G U{E} has the finite intersection property and contains G. Therefore E € G, by
maximality. ]

Proof (of Tychonov’s Theorem) Let G, be a collection of closed sets in [ [, X,, with
the finite intersection property and let G be the maximal collection constructed in
Lemma 8.1. While the sets in G, are closed, the elements of G need not be closed.
We will establish that the intersection of the closure of all elements in G is not empty.
For each o € A let G, be the collection of the projection of G into X,,, that is

G, = {collection of 7, (E)| for E € G}.

The sets in G, need not be closed nor open. However since G has the finite
intersection property in [ ] X, the collection G, has the finite intersection property
in X,,. Therefore the collection of their closures in {X,,, U}

G, = {collection of 7, (E)| for E € G}
has nonempty intersection, since each of {X,; U} is compact. Select an element

Xo € o (E)| for E € G} C X,,.

We claim that the element x € [] X,, whose a-coordinate is x,, belongs to the
closure of all sets in G. Let O be a set, open in the product topology that contains

21t is not claimed here that the elements of G are closed.
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x. By the construction of the product topology, there exists finitely many indices
ai, ..., q, and finitely many sets (9%,, open in Xogs such that

n
x e ﬂl ﬂgjl (Oy) CO.
j=

For each j the projection x,,; belongs to (9&/,. Since x,, belongs to the closure of
all sets in G,,, the open set O, intersects all the sets in G, . Therefore, W;jl Oy,)
intersects all the sets in G and by Lemma 8.1 it belongs to G. Likewise the finite
intersection ﬂJ": 17@_1 (O,,) intersects every element in G and therefore it belongs to
G. Thus, an arbitrary open set O containing x, intersects all the sets in G and therefore
x belongs to the closure of all such sets. |

Remark 8.1 Tychonov’s theorem provides a motivation for defining the topology
on a product space [ X, as the weakest topology for which all the projection maps
T, are continuous. Indeed if all the topological spaces {X,; U, } are Hausdorff, the
product topology is also a Hausdorff topology. But then any topology stronger than
the product topology would violate Tychonov’s theorem. This follows from Propo-
sition 5.1c and 5.3 of the Complements.

9 Vector Spaces

A linear space consists of a set X, whose elements are called vectors, and a field F,
whose elements are called scalars, endowed with operations of sum + : X x X — X,
and multiplication by scalars e : 7 x X — X satisfying the addition laws

X+y=y+x
x+y+z=x+0O+2),
there exists @ € X suchthatx + ® = xforallx € X
for all x € X there exists — x € X such thatx 4+ (—x) = ®

forall x,y,ze€ X

and the scalar multiplication laws

Ax+y)=M+ Ay forall x,yeX
A(px) = (Ap)x forall \, u e F
A+wx=M+px forall \,peF

Ix=x where 1 is the unit element of F.

It follows that A@ = © for all A\ € F and if O is the zero-element of F, then
Ox = © forall x € X. Also, forall x,y € X and A € F

(—Dx = —x, x—y=x+(—y), Alx —y) = Ax — Ay.
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A nonempty subset X, C X is a linear subspace of X if it is closed under the
inherited operations of sum and multiplication by scalars. The largest linear subspace

of X is X itself and the smallest is the null space {®}. A linear combination of an
n-tuple of vectors {x1, ..., x,}, is an expression of the form

y= > Nx; where {A;,...,\,} isan n-tuple of scalars.
j=1

If X, C X, the linear span of X, is the set of all linear combinations of elements
of X,. It is a linear space, and it is the smallest linear subspace of X containing X,,
or spanned by X,. An n-tuple {ey, ..., e,} of vectors is linearly independent if

> Aej=0 impliesthat N\; =0 forall j=1,...,n.
j=1

A linear space X is of dimension 7 if it contains an n-tuple of linearly independent

vectors whose span is the whole X. Any such n-tuple, say for example {e, ..., e,}isa
basis in the sense that given x € X there exists an n-tuple of scalars { A, ..., A} such
that x = Z;'l:i Ajej. For each x € X, the n-tuple {\y, ..., \,} is uniquely determined

by the basis {ey, ..., e,}. While F could be any field we will consider 7 = R and
call X vector space over the reals.
Let A and B be subsets of a linear space X and let o, 3 € R. Define the set
operation
aA + OB = U{aa + Bbla € A, b € B}.

One verifies that the sum is commutative and associative, that is,
A+B=B+A and A+ B+C)=(A+B)+C.

Moreover
A+ BUCO)=A+B)UA+C).

However A+ A #2A and A — A # {O}.

9.1 Convex Sets

A convex combination of two elements x, y € X is an element of the form tx+ (1 —1¢)y
where ¢ € [0, 1]. As f ranges over [0, 1] this describes the line segment of extremities
x and y. The convex combination of n elements {xi, ..., x,} of X is an element of
the form
n n
> ajx; whereo; >0and > o, =1.
=1 =1
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A setA C X is convex if for any pair x, y € A the elements tx + (1 — ¢)y belong to
A for all ¢ € [0, 1]. Alternatively, if the line segment of extremities x and y belongs
to A.

The convex hull c(A) of a set A C X is the smallest convex set containing A. It
can be characterized as either the intersection of all the convex sets containing A, or
as the set of all convex combinations of n-tuples of elements in A, for any .

The intersection of convex sets is convex; the union of convex sets need not be
convex. Linear subspaces of X are convex.

9.2 Linear Maps and Isomorphisms

Let X and Y be linear spaces over R. Amap T : X — Y is linear if
TOx +py) =AT(x) + pT(y) forallx,y e Xand A, u € R.

The image of T is T(X) C Y and the kernel of T is ker{T} = T~'{0}. The
image 7'(X) is a linear subspace of Y and the kernel ker{T'} is a linear subspace of
X. Alinearmap T : X — Y is an isomorphism between X and Y if it is one-to-one
and onto. The inverse of an isomorphism is an isomorphism and the composition
of two isomorphisms is an isomorphism. If X and Y are finite-dimensional and are
isomorphic, then they have the same dimension.

10 Topological Vector Spaces

A vector space X endowed with a topology U is a fopological vector space over R, if
the operations of sum + : X x X — X, and multiplication by scalars e : R x X — X
are continuous with respect to the product topologies of X x X and R x X.

Fix x, € X. The translation by x, is defined by T, (x) = x, + x for all x € X.
For a fixed A € R — {0}, the dilation by A is defined by D) (x) = Ax for all x € X.
If {X; U} is a topological vector space, the maps T, and D) are homeomorphisms
from {X; U} onto itself. In particular if O is open then x + O is open for all fixed
x € X. Any topology with such a property is translation invariant.

Remark 10.1 This notion can be used to construct a vector topological space {X; U}
for which the sum is not continuous. It suffices to construct a vector space endowed
with a topology which is not translation invariant. For an example of a linear, topo-
logical vector space for which the product by scalars is not continuous, see 10.4 and
10.5 of the Complements.

Let {X; U} be a topological vector space. If B is a base at the zero element ® of
X, then for any fixed x € X, the collection 5, = x+ By forms a base for the topology
U at x. Thus a base By at ® determines the topology U/ on X. If the elements of the
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base By are convex, the topology of {X; U} is called locally convex. An example
of a topological vector space with a nonlocally convex topology, is in § 3.5c of the
Complements of Chap. 6.

An open neighborhood of the origin O is symmetric if O = —O.

The next remarks imply that the topology of a topological vector space, while non-
necessarily locally convex is, roughly speaking, ball-like and, while not necessarily
Hausdorff is roughly speaking close to being Hausdorff.

Proposition 10.1 Let {X; U} be a topological vector space. Then:

(i)  The topology U is generated by a symmetric base Bg.

(ii)  If O is an open neighborhood of the origin, then X = | J, g AO.
(iii) {X; U} is Hausdorff if and only if the points are closed.

(iv) {X; U} is Hausdorff if and only if ({O € Bo} = {O}.

Proof The continuity of the multiplication by scalars implies that if O is open, also
AOisopenforall A\ € R—{0}.If ® € O, then ® € \O forall |\| < 1. In particular
if O is a neighborhood of the origin also —(Q is a neighborhood of the origin. The set
A = —0O N O is an open neighborhood the origin, and is symmetric since A = —A.
One verifies that the collection of such symmetric sets is a base Bg at the origin, for
the topology of {X; U/}.

To prove (ii) fix x € X and let O be an open neighborhood of &. Since 0-x = @, by
the continuity of the product by scalars, there exist € > 0 and an open neighborhood
O of xsuchthat A -y € O forall [\]| < eandall y € O,. Thus § - x € O for some
0<|d] <eandx € 6'O.

The direct part of (iii) follows from Proposition 1.1. For the converse, assume
that @ and x € (X — @) are closed. Then there exists an open set O containing the
origin ® and not containing x. Since & + ®& = @ and the sum + : (X x X) — X is
continuous, there exists two open sets O; and O, such that O, + O, C O. Set

0, =0N0,N (=01 N(—-0,).

Then
O, +0,CcO and O,Nx+ 0O, =40.

The last statement is a consequence of (iii). [ ]

Proposition 10.2 Let {X; U} and {Y; V} be topological vector spaces. A linear map
T : X — Y is continuous if and only if is continuous at the origin ® of X.

Proof Since T is linear, T(®) = 6 € Y, where 6 is the origin of Y. Let O € V be
an open set containing 6. By assumption 7~'(0) is an open set containing ®. Let
x € X be fixed. An open set in Y that contains 7 (x) is of the form T'(x) + O, where
O is an open set containing 0. The pre-image 7~! (T (x) 4+ O) contains the open set
x+T710). ]
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10.1 Boundedness and Continuity

Let {X; U} be a topological vector space. A subset E C X is bounded if for every
open neighborhood O of the origin @, there exists 1 > 0 such that E C \O for all
A > p. A map T from a topological vector space {X; U/} into a topological vector
space {Y; V} is bounded if it maps bounded subsets of X into bounded subsets of Y.

Proposition 10.3 A linear, continuous map T from a topological vector space {X; U}
into a topological vector space {Y; V}, is bounded.

Proof Let E C X be bounded. For every neighborhood O of the origin 6 of Y, open
in the topology of {Y; V}, the inverse image 7~'(0) is a neighborhood of the origin
®, open in the topology of {X; {}. Since E is bounded, there exists some § > 0 such
that E C 6T~'(0). Therefore, T(E) C §O. n

Remark 10.2 Linearity alone does not imply boundedness. An example of
unbounded linear map between two topological vector spaces is in § 15. Further
examples are in 3.4 and 3.5 of the Complements of Chap. 7.

Remark 10.3 For general topological vector spaces {X; {/} and {Y; V}, the converse
of Proposition 10.3 is false; that is, linearity and boundedness do not imply continuity
of T. See 10.3 of the Complements for a counterexample. However, the converse is
true for linear, bounded maps 7" between metric vector spaces, as stated in Proposi-
tion 14.2.

11 Linear Functionals

If the target space Y is the field R endowed with the Euclidean topology, the linear
map T : X — Riscalled a functional on {X; U}. A linear functional 7" : {X; U} — R
is bounded in a neighborhood of @, if there exists an open set O containing ® and
a positive number k such that |7'(x)| < k forall x € O.

Proposition 11.1 Ler T : {X; U} — R be a not identically zero, linear functional
on X. Then:

(i)  If T is bounded in a neighborhood of the origin, then T is continuous.

(ii)  Ifker{T} is closed then T is bounded in a neighborhood of the origin.

(iii) T is continuous if and only if ker{T} is closed.

(iv) T is continuous if and only if it is bounded in a neighborhood of the origin.

Proof Let O be an open neighborhood of the origin such that |T'(x)| < k for all
x € O. For every ¢ € (0, k) the pre-image of the open interval (—¢, €), contains the
open sets AO for all 0 < A < ¢/k. Thus T is continuous at the origin and therefore
continuous by Proposition 10.2.
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Turning to (ii), if ker{T} is closed there exist x € X and some open neighborhood
O of ®, such that (x + O) Nker{T} = @. By (i) of Proposition 10.1, we may assume,
that O is symmetric and that A\O C O for all |A| < 1. This implies that 7(O) is
a symmetric interval about the origin of R. If such an interval is bounded, there is
nothing to prove. If such an interval coincides with R, then there exist y € O such
that T(y) = T'(x). Thus (x — y) € ker{T} and (x + O) N ker{T} is not empty since
y € O. The contradiction proves (ii).

To prove (iii) observe that the origin {0} of R is closed. Therefore if T is continuous
T-1(0) = ker{T} is closed.

The remaining statements follow from (i)—(ii). [ ]

Proposition 11.2 Let {T}, ..., T,} be a finite collection of bounded linear function-
als on a Hausdorff, linear, topological vector space {X; U}, and set

K = () ker{T}}.
j=1

If T is a bounded linear functional on {X; U} vanishing on K, then there exists a
n-tuple (o, ..., ay) € R" such that

T = Z ajTj.
j=1

Proof The map
X3x— (T1(x),...,T,(x)) € R"

is bounded and linear, and its image R is a closed subspace R". The map
RS (T1(0), ... Ty() = T,(T1(), ..., Ty(x)) —> T(x) eR

is well defined since 7 vanishes on K. The map 7, is bounded and linear, and it
extends to a bounded linear map 7 : R" — R, defined in the whole R". The latter
must be of the form

R'S iy ees ) > TO01, o0 00) = zaj)’j
j=1
for a fixed n-tuple (a, ..., a,) € R". Since 7 agrees with 7, on R

X>5x—>Tkx) = iaﬂ"j(x). [ ]
j=1
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12 Finite Dimensional Topological Vector Spaces

The next proposition asserts that a n-dimensional Hausdorff topological vector space,
can only be given, up to a homeomorphism, the Euclidean topology of R”.

Proposition 12.1 Let {X; U} be a n-dimensional Hausdorfftopological vector space
over R. Then {X; U} is homeomorphic to R" equipped with the Euclidean topology.

Proof Given a basis {ey, ..., e,} for {X; U/}, the representation map

RHB(Al,...,An)—)T()\l,...,)\n):ZAieiEX

i=1

is linear, one-to-one, and onto. Let O be a neighborhood of the origin in X, which
we may assume to be symmetric and such that «O C O for all |o| < 1. By the
continuity of the sum and multiplication by scalars the pre-image 7' () contains
an open ball about the origin of R”. Thus 7 is continuous at the origin and therefore
continuous.

To show that 7~! is continuous assume first that n = 1. In such a case T(\) = \e
forsome e € (X —®). The kernel of the inverse map T~! : X — R consist only of the
zero element {®}, which is closed since X is Hausdorff. Therefore 7~' is continuous
by (iii) of Proposition 11.1. Proceeding by induction, assume that the representation
map T is a homeomorphism between R™ and any m-dimensional Hausdorff space,
forallm =1, ..., n— 1. Thus in particular any (n — 1)-dimensional Hausdorff space
is closed.

The inverse of the representation map has the form

Xox—>T7'0) =), ..., A1 (6), My (X)).

Each of the n maps A;(-) : X — R is a linear functional on X, whose null-space
is a (n — 1)-dimensional subspace of X. Such a subspace is closed by the induction
hypothesis. Thus each of the A;(-) is continuous. ]

Corollary 12.1 Every finite dimensional subspace of a Hausdorff topological vector
space is closed.

If {X; U} is n-dimensional and not Hausdorff, it is not homeomorphic to R". An
example is RV with the trivial topology.
12.1 Locally Compact Spaces

A topological vector space {X; U} is locally compact if there exist an open neigh-
borhood of the origin whose closure is compact.
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Proposition 12.2 Let {X; U} be a Hausdorff, locally compact topological vector
space. Then X is of finite dimension.

Proof Let O be a neighborhood of the origin, whose closure is compact. We may
assume that O is symmetric and AO C O for all |A\| < 1. There exist at most finitely
many points xi, ..., x, € O, such that

O0C (i +1i0Um+1i0)U--- U +10).

The space Y = span{xy, ..., x,}, is a closed, finite dimensional subspace of X.
From the previous inclusion, %(9 cY+ i@. Therefore

Ocy+iocar+io=v+10.

Thus, by iteration B
OcN¥+50)=Y=Y.

This implies that A\O C Y for all A € R. Thus, by (ii) of Proposition 10.1
X=UJXOcCcyrYcXx. [

The assumption that {X; {/} be Hausdorff cannot be removed. Indeed, any {X; U/}
with the trivial topology is compact, and hence locally compact. However, it is not
Hausdorff and, in general, it is not of finite dimension.

13 Metric Spaces

A metric on a nonvoid set X is a function d : X x X — R satisfying the properties:

(1)  d(x,y) > 0forall pairs (x,y) € X x X

(i) d(x,y) = 0if and only if x = y

(i) d(x,y) = d(y, x) for all pairs (x,y) € X x X
@iv) dx,y) <d(x,z) +d(y,z) forallx,y,z € X.

This last requirement is called the triangle inequality. The pair {X; d} is a metric
space. Denote by B,(x) = {y € X|d(y,x) < p}, the open ball centered at x and of
radius p > 0. The collection 5 of all such balls, satisfies the conditions (i)—(ii) of § 4
and therefore, by Proposition 4.1, generates a topology U on {X; d}, called metric
topology, for which B is a base. The notions of open or closed sets can be given in
terms of the elements of 5. In particular, a set O C X is open if for every x € O
there exists some p > 0 such that B,(x) C O.

A point x is a point of closure foraset E C X if B.(x) NE # @ foralle > 0. A
set E is closed if and only if it coincides with the set of all its points of closure. In
particular points are closed.
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Let {x,} be a sequence of elements of X. A point x € X is a cluster point for {x,}
if for all € > 0, the open ball B.(x) contains infinitely many elements of {x,}. The
sequence {x,} converges to x if for every € > 0 there exists n. such that d(x, x,,) < ¢
forall n > n.. The sequence {x,} is a Cauchy sequence if for every ¢ > 0 there exists
an index n,, such that d(x,,, x,,) < ¢, forall m, n > n..

A metric space {X; d} is complete if every Cauchy sequence {x,} of elements of
X converges to some element x € X.

13.1 Separation and Axioms of Countability

The distance between two subsets A, B of X is defined by

dA.B) = xe}AI‘lvfeBd(x’ »)-

Proposition 13.1 Let A be a subset of X. The function x — d(A, x) is continuous
in {X; d}.

Proof Letx,y € X and z € A. By the requirement (iv) of a metric
d(z,x) <d(x,y) +d(z,y).
Taking the infimum of both sides for z € A gives
d(A,x) =d(x,y) +d(A,Yy).
Interchanging the role of x and y yields
ld(A, x) —d(A, y)| =d(x,y). u
If E| and E, are two disjoint closed subsets of {X; d}, then the two sets

O)={xeX|dx E) <dx,E)}
O, ={xeX |dx E) <d(x, Ep}

are open and disjoint. Moreover E; C O; and E; C O,. Thus every metric space is
normal. In particular every metric space is Hausdorff.

Every metric space satisfies the first axiom of countability. Indeed the collection
of balls B, (x) as p ranges over the rational numbers of (0, 1), is a countable base for
the topology at x.
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Proposition 13.2 A metric space {X; d} is separable if and only if it satisfies the
second axiom of countability.?

Proof Let {X; d} be separable and let A be a countable, dense subset of {X; d}. The
collection of balls centered at points of A and with rational radius forms a countable
base for the topology of {X; d}. The converse follows from Proposition 4.2. |

Corollary 13.1 Every subset of a separable metric space is separable.

Proof Let {x,} be a countable dense subset. For a pair of positive integers (m, n),
consider the balls By, (x,) centered at x, and radius 1/m. If Y is a subset of X,
the ball By, (x,) must intersect ¥ for some pair (m, n). For any such pair, select an
element y, ,, € B, (x,) NY. The collection of such y,, , is a countable, dense subset
of Y. [

13.2 Equivalent Metrics

From a given metric d on X, one can generate other metrics. For example, for a given
d, set
d(x,y)

do(xay) = 1+d(x,y)

(13.1)

One verifies that d, satisfies the requirements (i)—(iii). To verify that d, satisfies
(iv) it suffice to observe that the function

t
t—> —— for t>0
1+1¢

is nondecreasing. Thus d, is a new metric on X and generates the metric spaces
{X;d,}. Starting from the Euclidean metric in RY, one may introduce a new metric
by

d.(x,y) = x,y € RV, (13.2)

T+ x| T+

More generally, the same set X can be given different metrics, say for example d;
and d,, to generate metric spaces {X; d;} and {X; d>}.

Two metrics d; and d, on the same set X are equivalent if they generate the same
topology. Equivalently d; and d, are equivalent if they define the same open sets. In
such a case, the identity map between {X; d;} and {X; d,} is a homeomorphism.

3 An example of non separable metric space is in § 15.1 of Chap. 6. See also 15.2. of the Complements
of Chap. 6.
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13.3 Pseudo Metrics

A function d : (X x X) — R is a pseudometric if it satisfies all but (ii) of the
requirements of being a metric. For example d(x, y) = ||x| — |y|| is a pseudometric
on R. The open balls B,(x) are defined as for metrics and generate a topology on
X, called the pseudometric topology. The space {X; d} is a pseudo-metric space.
The statements of Propositions 13.1, 13.2 and Corollary 13.1 continue to hold for
pseudo-metric spaces.

14 Metric Vector Spaces

Let {X; d} and {Y; n} be metric spaces. The notion of continuity of a function from
X into Y can be rephrased in terms of the metrics 1 and d. Precisely, a function
f {X;d} = {Y;n}is continuous at some x € X, if and only if for every ¢ > 0 there
exists 0 = d(e, x) such that n{f (x),f(y)} < € whenever d(x,y) < d. The function f
is continuous if it is continuous at each x € X and it is uniformly continuous if the
choice of 4 depends on € and is independent of x.

A homeomorphism f between two metric spaces {X; d} and {Y; n} is uniform if
the map f : X — Y is one-to-one and onto, and if it is uniformly continuous and has
uniformly continuous inverse.

An isometry between {X; d} and {Y; n} is a homeomorphism f between {X; d}
and {Y; n} that preserves distances, that is, such that

nf ), fM}=dx,y) forall x,y€X.

Thus an isometry is a uniform homeomorphism between {X; d} and {Y; n}.
Let {X;; d;} and {X>; d,} be metric spaces. The product metric (d; x d) on the
Cartesian product (X; x X3) is defined by

(dy x do){(x1,x2), 01, y2)} = di(x1, y1) + da(x2, ¥2)

for all x;,y; € X; and xp,y, € X,. One verifies that the topology generated by
(d; x d,) on (X x X») coincides with the product topology of {X; d;} and {X>; d>}.
If X is a vector space, then {X; d} is a topological vector space if the operations
of sum 4 : X x X — X and product by scalars e : R x X — X, are continuous with
respect to the topology generated by d on X and the topology generated by (d x d)
on X x X.
A metric d on a vector space X is translation invariant if

dx+z,y+2 =dx,y) forall x,y,z € X.
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If d is translation invariant, then the metric d,, in of (13.1) is translation invariant.
The metric d, in (13.2) is not translation invariant.

Proposition 14.1 If d on a vector space X is translation invariant then the sum
+ : (X x X) — X is continuous.

Proof 1t suffices to show that X x X > (x,y) — x + y is continuous at an arbitrary
point (x,,y,) € X x X. From the definition of product topology

dx +y, %+ Yo) = d(x — X, Yo — ¥)
<d(x =%, 0) +d(y, —y, ®)
=d(x,x,) +d(y,y,)
= (d x d){(x, ), (x, yo)}.

Translation invariant metrics generate translation invariant topologies. There exist
nontranslation invariant metrics that generate translation invariant topologies.

Remark 14.1 The topology generated by a metric on a vector space X, need not
be locally convex. A counterexample is in Corollary 3.1c of the Complements of
Chap. 6.

Remark 14.2 In general the notion of a metric on a vector space X does not imply,
alone, any continuity statement of the operations of sum or product by scalars. Indeed
there exists metric spaces for which both operations are discontinuous.

To construct examples, let {X; d} be a metric vector space and let / be a discon-
tinuous bijection from X onto itself. Setting

dy(x.y) £ d(h(x). h()) (14.1)

defines a metric in X. The bijection 4 can be chosen in such a way that for the metric
vector space {X; dj} the sum and the multiplication by scalars are both discontinuous.
One such a choice is in § 14c of the Complements.4

14.1 Maps Between Metric Spaces

The notion of maps between metric spaces and their properties, is inherited from
the corresponding notions between topological vector spaces. In particular Proposi-
tions 10.1-10.3 and 11.1, continue to hold in the context of metric spaces. However
for metric spaces Proposition 10.3 admits a converse.

Proposition 14.2 Let {X; d} and {Y; n} be metric vector spaces. A bounded linear
map T : X — Y is continuous.

“This construction was suggested by Ethan Devinatz.
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Proof For any ball B, in {Y; n}, of radius r centered at the origin of Y, there exists a
ball B, in {X; d}, centered at origin of X such that B, C T-Y(B,).If not, forall § > 0
the ball ' B; is not contained in 7' (13,). Thus 7'(B)) is not contained in 63, for
any 0 > 0 against the boundedness of 7. The contradiction implies 7 is continuous
at the origin and, by linearity 7 is continuous everywhere. |

15 Spaces of Continuous Functions

Let E be a subset of RV, denote by C(E) the collection of all continuous functions
f:E — Rand set

d(f.g) =suplf(x) —g)| f.g € CE). (15.1)

xeE

If E is compact, this defines a metric in C(E) by which C(E) turns into a metric
vector space. The metric in (15.1) generates a topology in C(E) called the topology of
uniform convergence. Cauchy sequences in C(E) converge uniformly to a continuous
function in E. In this sense C(E) is complete.

If E is compact, C(E) is separable (Corollary 16.1 of Chap.5).

If E is open, a function f € C(E), while bounded on every compact subset of E,
in general is not bounded in E.

If E C RY is compact, then any f € C(E) is uniformly continuous in E. If E is
open then f € C(E) does not imply uniform continuity even if f is bounded in E.

Let {E,} be a collection of bounded open sets invading E, that is, E, C E, . for
all n,and E = UE,,. For every f, g € C(E) set

dn(f’ g) = SU_P lf(x) - g(x)l

xekE,
Each d,,, while a metric in C(E,), is a pseudometric in C(E). Setting

<1 4.9
d(f,g)—Zznlern(f,g) (15.2)

defines a metric in C(E) by which {C(E); d} is a metric vector space.

A sequence {f,} of functions in C(E) converges to f € C(E), in the metric (15.2),
if and only if {f;,} — f uniformly on every compact subset of E. Cauchy sequences
in C(E) converge uniformly over compact subsets of E, to a function in C(E). In this
sense, the space C(E) with the topology generated by the metric (15.2) is complete.

Denote by £!(E) the collection of functions in C(E) whose Riemann integral
over E is finite. Since L' (E) is a linear subspace of C(E), it can be given the metric
(15.2) and the corresponding topology. This turns £'(E) into a metric vector space.
The linear functional
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T@:/ﬂmﬁmﬂeR
E

is unbounded and hence discontinuous. As an example let £ = (0, 1). The functions
1

fu(t) = tn~Vare all in £'(0, 1) and the sequence {f,} is bounded in the topology of

(15.2) since d(f,, 0) < 1. However T(f,,) = n. If E is bounded, the linear functional

T@:/mmabem
E

is bounded and hence continuous.

15.1 Spaces of Continuously Differentiable Functions

Let E be an open subset of R and denote by C! (E) the collection of all continuously
differentiable functions f : E — R. Denote by C'(E) the collection of functions
in C'(E) whose derivatives Iy forj = 1,..., N admit a continuous extension to E,
which we continue to denote by Sy

For f, g € C'(E) set formally

N
d(f.g) =sup|f(x) —g(x)| + 21 sup [fy; (X) — gy (O] (15.3)
xeE J=1 xeE

If E is bounded, so that E is compact, this defines a metric in C 1(E) by which
C'(E) turns into a metric vector space. Cauchy sequences in C!(E) converge to
functions in C!(E). Therefore C'(E) is complete.

The space CY(E) can also be given the metric (15.1). This turns CYE) into a
metric space. The topology generated by such a metric in C'(E) is the same as the
topology that C' (E) inherits as a subspace of C(E). With respect to such a topology
C'(E) is not complete. The linear map

T(f)=f,: C'(E) > C(E) forsome fixed j € {1,..., N}

is bounded, and hence continuous, provided C!(E) is given the metric (15.3). It is
unbounded, and hence discontinuous if C'(E) is given the metric (15.1).

As an example, let E = [0, 1]. The functions fu(®) = t" arein C 110, 1] for all
n € N and the sequence {f,} is bounded in C[O0, 1] since d(f,,0) = 1. However
T(f,) = nt"~! is unbounded in C[O0, 1].

IfEisopenandf € C'(E), the functions f andf, forj =1, ..., N, while bounded
on every compact subset of E, in general are not bounded in E. A metric in C'(E)
can be introduced along the lines of (15.2).
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15.2 Spaces of Holder and Lipschitz Continuous Functions

Let E be an open setin RY and let a € (0, 1] be fixed. A function boundedf : E — R
is said to be Holder continuous with exponent « if there exists a constant L, > 0
such that

f(x) —fO)] < Lolx —y|*  for all pairs x,y € E. (15.4)

The best constant L, is given by

[f]a,E = Sup M (155)

x,yeE |x —y|"

The collection of all Holder continuous functions with exponent o € (0, 1) is
denoted by C*(E). If @ = 1 these functions are called Lipschitz continuous, and
their collection is denoted by Lip(E). Setting

df,9) = SU}E) IF &) = g+ [f — glak- (15.6)

defines a translation invariant metric in C*(E) or Lip(E) which turns these into metric
topological vector spaces.

16 On the Structure of a Complete Metric Space

Let {X; U} be a topological space. A set E C X is nowhere dense in X, if E¢ is dense
in X. If E is nowhere dense, then also E is nowhere dense. A closed set E is nowhere
dense, if and only if it does not contain any open set. If E is nowhere dense, for any
open set O the complement () — E must contain an open set. Indeed if not E would
contain the open set O. If E is nowhere dense and open, E — E is nowhere dense. If

E is nowhere dense and closed, E— ;3 is nowhere dense.

A finite subset of [0, 1] is nowhere dense in [0, 1]. The Cantor set is nowhere
dense in [0, 1]. Such a set is the uncountable union of if E¢ is dense in X. If E is
nowhere if E¢ is dense in X. If E is nowhere nowhere dense sets. The rationals are not
nowhere dense in [0, 1]. However, they are the countable union of nowhere dense
sets in [0, 1]. Thus, the uncountable union of nowhere dense sets might be nowhere
dense and the countable union of nowhere dense sets, might be dense.

A set E C X is said to be meager, or of first category if is the countable union of
nowhere dense sets. A set that is not of first category, is said to be of second category.

The complement of a set of first category is called a residual or non-meager set.
The rationals in [0, 1] are a set of first category. The Cantor set is of first category in
[0, 1].
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A metric space {X; d} is complete if every Cauchy sequence {x,} of elements of
X converges to some element x € X. An example of noncomplete metric space is
the set of the rationals in [0, 1] with the Euclidean metric. Every metric space can
be completed as indicated in § 16.3c of the Complements. The completion of the
rationals are the real numbers.

The Baire Category Theorem asserts that a complete metric space cannot be the
countable union of nowhere dense sets, much the same way as [0, 1] is not the union
of the rationals.

Theorem 16.1 (Baire [7]) A complete metric space is of second category.

Proof 1f not, there exist a countable collection {E,} of nowhere dense subsets of X,
such that X = UE,,. Pick x,, € X and consider the open ball B, (x,) centered at x,, and
radius one. Since E; is nowhere dense in X, the complement By (x,) — E, contains
an open set. Select an open ball B,, (x;), such that

B, (x1) C Bi(x,) — E; C By(x,).

The selection can be done so that r; < % Since E; is nowhere dense the comple-

ment B, (x1) — E, contains an open set so that we may select an open ball B, (x2)
such that B B B
B, (x2) C By, (x1) — E» C By, (x1).

The selection can be done so that r, < % Proceeding in this fashion generates a
sequence of points {x,} and a family of balls {B,, (x,)} such that

E, =0

Cs=

- - 1 -
Br n Br n n=" "7 d Br n
(i) C BLe) <y and By () )

j=1

for all n. The sequence {x,} is Cauchy and we let x denote its limit. Now the element
X must belm_lg to all the closed ball B, (x,) and it does not belong to any of the E,,.
Thus x ¢ UE, and X # UE,,. ]

Corollary 16.1 A complete metric space {X; d} does not contain open subsets of
first category.

16.1 The Uniform Boundedness Principle

Theorem 16.2 (Banach-Steinhaus [15]) Let {X; d} be a complete metric space and
let F be a family of continuous, real-valued functions defined in X. Assume that the
functions f € F are pointwise equi-bounded, that is, for all x € X, there exists a
positive number F(x) such that

F0)| < F(x) forall feF. (16.1)
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Then, there exists a nonempty open set O € X and a positive number F, such that
f)| <F forall feF andall xeO. (16.2)

Thus if the functions of the family F are pointwise equibounded in X, they are
uniformly equibounded within some open subset of X. For this reason the theorem
is also referred to as the Uniform Boundedness Principle.

Proof Forn € N, let E,, s and E,, be subsets of X defined by

Ey={xeX|lf®|<n}, E,= ) Euy.
feF

The sets E,, s are closed, since the functions f* are continuous. Therefore also the
sets E, are closed. Since the functions f are pointwise equi-bounded, for each x € X
there exists some integer n such that |f(x)| < n for all f € F. Therefore each x € X
belongs to some E,, that is, X = UE,,.

Since {X; d} is complete, by the Baire category theorem, at least one of the E,
must not be nowhere dense. Since E,, is closed, it must contain a nonempty open set
O. Such a set satisfies (16.2) with F = n. [ ]

The Baire category theorem, and related category arguments, are remarkable, as
they afford function-theoretical conclusions from purely topological information.

17 Compact and Totally Bounded Metric Spaces

Since a metric space satisfies the first axiom of countability, sequential compactness,
countable compactness and the Bolzano—Weierstrass property all coincide (Proposi-
tion 5.2).

A metric space {X; d} is totally bounded if for each ¢ > 0 there exists a finite
collection of elements of X, say {xi, ..., x,} for some positive integer m depending
upon &, such that X is covered by the union of the balls B. (x;) of radius € and centered
atx;. A finite sequence {xi, ..., x,,} with such a property is called a finite e-net for X.

Proposition 17.1 A countably compact metric space {X; d} is totally bounded.

Proof Proceeding by contradiction, assume that there exists some ¢ > 0 for which
there is no finite e-net. Then, for a fixed x; € X the ball B.(x;) does not cover X and
we choose x, € X — B.(x1). The union of the two balls B.(x;) and B.(x;) does not
cover X and we select x3 € X — B.(x1) UB.(x,). Proceeding in this fashion generates
a sequence of points {x,} at mutual distance of at least €. Such a sequence cannot
have a cluster point, thus contradicting the Bolzano—Weierstrass property. ]

Corollary 17.1 A countably compact metric space is separable.
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Proof For positive integers m and n, let E, ,, be the finite e-net of X corresponding
toe = % The union UE,, ,, is a countable subset of X which is dense in X. [

If {X; d} is separable, every open covering of X has a countable sub-covering.
Therefore, countable compactness implies compactness (Proposition 5.3 and Corol-
lary 5.1). Thus for separable metric spaces, all the various notions of compactness
are equivalent.

We next examine the relation between compactness and total boundedness.

If {X; d} is compact it is also totally bounded. Indeed having fixed ¢ > 0, the
balls B.(x) centered at all points of X, form an open covering of X, from which one
may extract a finite one. It turns out that total boundedness implies compactness,
provided the metric space {X; d} is complete.

Proposition 17.2 A totally bounded and complete metric space {X; d} is sequen-
tially compact.

Proof Let {x,} be a sequence of elements of X. The proof consists of selecting a
Cauchy sequence {x,/} C {x,}. Since {X; d} is complete, such a Cauchy subsequence
would then converge to some x € X thereby establishing that {X; d} is sequentially
compact. Fix ¢ = % and determine a corresponding %-net {y.1,...,Y1,m ) for some
positive integer m;. The union of the balls B1(y;;) forj = 1,...,my, covers X.
Therefore at least one of these balls, say for example B1(y; ;) contains infinitely
many elements of {x,}. Select these elements and relabel them, to form a sequence
{xn, }. These elements satisty d(x,,, X, ) < 1.

Next, let ¢ = 2—12 and determine a corresponding }l—net {y2.1, ..., y2,m,} for some
positive integer m,. There existaball B1 (y, ), forsomej € {1, ..., m,} that contains
infinitely many elements of {x,, }. Select these elements and relabel them to form a
sequence {x,,}. Thy satisfy d(x,,, xu,) < %

Let h > 2 be a positive integer. If the subsequence {x,, ,} has been selected, we let
¢ = 27" and determine a corresponding 2" _pet, say for example {yn 1, ..., Ynm,}
for some positive integer my,. There exist a ball B% (Yn,j), for some j € {1, ..., my}
that contains infinitely many elements of {x,, ,}. We select these elements and relabel
them to form a sequence {x,, }, whose elements satisfy

d (X, Xm,) < L

The Cauchy subsequence {x,,} is selected by diagonalization, out of the sequences
{x,}- ]

Theorem 17.1 A metric space {X; d} is compact if and only if is totally bounded
and complete.
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17.1 Pre-Compact Subsets of X

The various notions of compactness and their characterization in terms of total bound-
edness, do not require that {X; d} be a vector space. Thus, in particular they apply to
any subset K C X, endowed with the metric d inherited from {X; d}, by regarding
{K; d} as a metric space in its own right.

Proposition 17.3 A subset K C X of a metric space {X; d} is compact if and only
if it is sequentially compact.

A subset K C X is pre-compact if its closure K is compact.

Proposition 17.4 A subset K of a complete metric space {X; d} is pre-compact if
and only if is totally bounded.

Problems and Complements

1c Topological Spaces

1.1. A countable union of open sets is open. A countable union of closed sets
need not be closed.

1.2. A countable intersection of closed sets is closed. A countable intersection of
open sets need not be open.

1.3.  Letl; and U, be topologies on X. Then U, N4, is a topology on X ; however
U, U U, need not be a topology on X.

1.4.  The Euclidean topology on R induces a relative topology on [0, 1). The sets
[0, ¢) for € € (0, 1) are open in the relative topology of [0, 1) and not in the
original topology of R.

1.5. Let X = N U {w}, where w is the first infinite ordinal. A set O C X is open
if either is any subset of N, or if it contains {w} and all but finitely many
elements of N. The collection of all such sets, complemented with ¥ and X
defines a topology on X. A function f : X — R is continuous with respect
to such a topology if and only if lim f'(n) = f(w).

1.6.  Linearcombinations of continuous functions are continuous. Let g : {X; U} —
{Y;V}and f : {Y;V} — {Z; Z} be continuous. Then f(g) : {X;U} —
{Z; Z} is continuous. The maximum or minimum of two real valued, con-
tinuous functions is continuous.

1.7.  LetU; and U, be topologies on X. The topology U is stronger or finer than
U, if U, C U, that is, roughly speaking, if ¢/; contains more open sets than
U,. Equivalently if the identity map from {X; U/, } onto {X; {4, } is continuous.

1.8. Let {f,} be a sequence of real valued, continuous functions from {X; ¢/} into
R. If {f,} — f uniformly, then f is continuous.
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1.9. Let C C X be closed and let {x,} be a sequence of points in C. Every cluster
point of {x,} belongs to C.

1.10. Letf : X — Y be continuous and let {x,} be a sequence in X. If x is a cluster
point of {x,}, then f(x) is a cluster point of {f(x,)}.

1.11. Let X be the collection of pairs (m, n) of nonnegative integers. Any subset
of X that does not contain (0, 0) is declared to be open. A set O that contains
(0, 0) is open if and only if for all but a finite number of integers m, the set
{n e NU{0}|(m, n) ¢ O} is finite. For a fixed m the collection of (m, n) as n
ranges over NU {0} can be regarded as a column. With this terminology, a set
O containing (0, 0) is open if and only if it contains all but a finite number
of elements for all but a finite number of columns. This defines a Hausdorff
topology on X. No sequence in X can converge to (0, 0). The sequence (n, 1)
has (0, 0) as a cluster point, but no subsequence of (n, n) converges to (0, 0).
This example is in [4].

1.12¢ Connected Spaces

A topological space {X; U/} is connected if it is not the union of two disjoint open
sets. A subset X, C X is connected if the space {X,; U4,} is connected.

1.13. The continuous image of a connected space is connected.

1.14. Let {A,} be a family of connected subsets of {X; I/} with nonempty inter-
section. Then UA,, is connected.

1.15. (Intermediate Value Theorem)] Let f be a real valued continuous function
on a connected space {X;U}. Let a, b € X such that f(a) < z < f(b) for
some real number z. There exists ¢ € X such that f(c) = z.

1.16. The discrete topology is a Hausdorff topology. If X is finite, then the discrete
topology is the only one for which {X; U/} is Hausdorff.

1.17. Let{X; U} be Hausdorff. Then {X; I, } is Hausdorff for any stronger topology
U.

1.18. A Hausdorff space {X; U} is normal if and only if, for any closed set C
and any open set O such that C C O, there exists an open set O such that
cCcococoO.

1.19¢ Separation Properties of Topological Spaces

A topological space {X; U/} is said to be regular if points are separated from closed
sets, that is, for a given closed set C C X and x not in C, there exist disjoint open
sets O¢ and O, such that C C O¢ and x € O,.

A Hausdorff space is said to be of type (7»). A regular space for which the
singletons {x} are closed is said to be of type (73). A normal space for which the
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singletons {x} are closed is said to be of type (74). The separation properties of a
topological space {X; U/} are classified as follows:

T,: Points are separated by open sets, that is, for any two given points x,y € X
there exists an open set containing one of the two points, say for example y,
but not the other.

Ti: The singletons {x} are closed.

T,: Hausdorff spaces.

Ts: Regular +7;.

T4: Normal +T77.

From the definitions it follows that (73) = (T3) = (1) = (T1) = (T}).
The converse implications are false in general. In particular (7,) does not imply (7).
For example the space X = {x, y} with the open sets {#, X, y} is (T,)) and not (7).
We have already observed that (7) does not imply Hausdorff. Hausdorff in turn
does not imply normal. Counterexamples are rather specialized and can be found in
[150, 41].

We will be concerned only with Hausdorff and normal spaces.

4c Bases, Axioms of Countability and Product Topologies

4.1. Let {X; U} satisfy the first axiom of countability and let A C X. For every
x € A, there exists a sequence {x,} of elements of A converging to x. For every
cluster point y of a sequence {x,} of points in X, there exists a subsequence
{xn’} - ).

4.2. Let X be infinite and let I/ consist of the empty set and the collection of all
subsets of X whose complement is finite. Then ¢/ is a topology on X. If X is
uncountable {X; I/} does not satisfy the first axiom of countability. The points
are closed but {X; U/} is not Hausdorff.

4.3. Let B be the collection of all intervals of the form [«, 3). Then B is a base for
atopology U on R, constructed as in Proposition 4.1. The set R endowed with
such a topology satisfies the first but not the second axiom of countability. The
intervals [«, [3) are both open and closed. This is called the half-open interval
topology. The sequence {1 — %} converges to 1 in the Euclidean topology and
not in the half-open interval topology.

4.4. Let X be an uncountable set, well ordered by < and let €2 be the first uncount-
able. Set X, = {x € X|x < Q}, X; = X, U , and consider the collection 5,
of sets

{x e X,]x < a} forsome a€X,
{x e X,|3 <x} forsome (€X,
{xeX,Ja<x<p} for o, €X,.
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Define similarly a collection of sets B; where the various elements are taken
out of Xj.

i.  The collection B, forms a base for a topology U, on X,. The resulting
space {X,; U,} satisfies the first but not the second axiom of countability.
Moreover {X,; U,} is separable.

ii. The collection B, forms a base for a topology U, on X;. The resulting
space {X;; U} does not satisfy the first axiom of countability and is not
separable.

4.5. The product of two connected topological spaces is connected.

4.6. The product of a family {X,; U, } of Hausdorff spaces is Hausdorff.

4.7.  Asequence {x,} of elements of [ | X,, converges to some x € [[ X,, if and only
if the sequences of the projections {x, ,} converge to the projections x,, of x.

4.8. The countable product of separable topological spaces is separable.

4.9. Let {X; U]} satisfy the second axiom of countability. Every topological sub-
space of X is separable. If {X; I/} is separable but it does not satisfy the second
axiom of separability, a topological subspace of X might not be separable. The
interval [0, 1] with the half-open interval topology is separable. The Cantor
set C C [0, 1] with the inherited topology is not separable.

4.10c The Box Topology

Let {X,; U, } be a family of topological spaces and set

B= U{H Oa|0u € u{y}'

Each set in B is an open rectangle, since it is the Cartesian product of open sets in
Uy, The collection 5 forms a base for a topology in [ [, X, called the box-topology.
While the projections 7, are continuous with respect to such a topology, the box
topology contains, roughly speaking, too many open sets.

As an example let [0, 1] be endowed with the topology inherited from the Euclid-
ean topology on IR. Then the Hilbert box [0, 1]V can be endowed with either the prod-
uct topology or the box-topology. The sequence {x,} = {%, ey % ...} converges to
zero in the product topology and not in the box-topology. Indeed the neighborhood

of the origin O = [][O0, ]l) does not contain any of the elements of {x,}.

5¢ Compact Topological Spaces

5.1. A Hausdorff and compact topological space is regular and normal.
5.2.  If{X; U}iscompact, then {X; U,}is compact for any weaker topology U, C U.
The converse is false.
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Proposition 5.1¢ Let f : {X; U} — {Y; V} be continuous, one-to-one and onto. If
{X; U} is compact and {Y; V} is Hausdorff then f is a homeomorphism.

Proof The inverse f ! is one-to-one and onto. It is continuous if for every closed set
C C X, theimage f(C) is closed. If C C X is closed, it is compact and its continuous
image f(C) is compact and hence closed since {Y; V} is Hausdorff. ]

5.3. Let{X; U} be Hausdorff and compact. Then the previous Proposition implies
that:

i. {X; U,} is not compact for any stronger topology ;.
ii. {X;U,} is not Hausdorff for any weaker topology U,,.
iii. If {X; U} is compact for a stronger topology U; D U, then U = U,.

Thus, the topological structure of a compact Hausdorff space {X; /} is rigid in
the sense that one cannot strengthen its topology without loosing compactness
and cannot weaken it without loosing the separation property.

5.4. Let | x| be the Euclidean norm in RY and consider the function

maX{|x1|, s |-xN|}

f) = [l
0

x for x #0

for x =0.

The function f maps cubes of wedge 2p in RY, onto balls of radius p in RV, it
is continuous, one-to-one and onto. Thus f is a homeomorphism between RN
equipped with the topology generated by the cubes with faces parallel to the
coordinate planes, and RN equipped with the topology generated by the balls.

5.5. A space X consisting of more than one point and equipped with the trivial
topology is compact and not Hausdorff.

5.6. Let{X; U} be locally compact. A subset C C X is closed if and only if CN K
is closed, for every closed compact subset K C X.

5.7. Let{X,;U,}and {X;; U} be the spaces introduced in 4.4. The space {X,; U,}
is sequentially compact but not compact. The space {X;; {/;} is compact.

5.8¢ The Alexandrov One-Point Compactification
of {X; U} ([3])

Let {X; U} be a noncompact Hausdorff topological space. Having fixed x, ¢ X
consider the set X, = X U {x,} and define a collection of sets {/, consisting of U/, X,
and all subsets O, C X, containing x, and such that X, — O, is compact in {X; U}.
Then U, is a Hausdorff topology on X... Moreover {X,; U} is compact, X is dense
in X, and the restriction of U, to X, coincides with the original topology ¢/ on X.

5.9. The topological space of 1.5 is compact. It can be regarded as the Alexandrov
one-point compactification of N equipped with the discrete topology.
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5.10.

5.11.

The one-point compactification of RY with its Euclidean topology, is home-
omorphic to the unit sphere in RV*! by stereographic projection.
The one-point compactification of {X,; U, } in 4.4 is {X;; U, }.

7¢ Continuous Functions on Countably Compact Spaces

7.1c Upper-Lower Semi-continuous Functions

7.1.

7.2.

7.3.

74.

7.5.

7.6.

Characteristic functions of open(closed) sets in RY are lower(upper) semi-
continuous. A function f for an open set E C R" into R* is upper(lower)
semi-continuous if and only is for each x € E

limsupf(y) < /(0 (Liminff() = f(x)).

y—x

Let {f,,} be a collection of upper(lower) semi-continuous functions on a topo-
logical space {X; U}. Then inf (sup)f, is upper(lower) semi-continuous.

The finite sum of nonnegative upper(lower) semi-continuous functions is
upper(lower) semi-continuous.

Let {f,} be a sequence of nonnegative, lower semi-continuous function on
{X; U}. Then >_f, is lower semi-continuous.

Let {f,} be a sequence of nonnegative, upper semi-continuous function on
{X; U}. Then D f, need not be upper semi-continuous. Give a counterexample.
Modulus of Continuity: For an arbitrary real valued function f defined on an
open set E C RY, and for € > 0, set

n(x, &) =sup{lf(y) —f(@)]:y,z € B-(x) N E}
n(x) = inf 7(x, €).

Prove that 7(-) is upper semi-continuous. Prove that f is continuous at x if and
only if 77(x) = 0 and therefore the points of continuity of any f : E — R are
countable intersection of open sets. The function

E xRt 3 (x,e) = n(x, )
is the modulus of continuity of f at x. The function f is Holder continuous at x,
with Holder exponent v € (0, 1], if there exists positive constant = ¢(x) and

C = C(x) depending upon such that n(x, e) < C(x)e® forall 0 < € < §(x).
In such a case

) =fWI = Colx—y* forall |x —y[ < ).
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The function f is Holder continuous in E with exponent «, if the constants ¢ (x)
and C(x) are independent of x € E. If & = 1 then f is Lipschitz continuous
at x and respectively in E.

7.7. Upper and Lower Envelope of a Function: For an arbitrary real valued
function f defined on an open set E C RY, and for ¢ > 0, set

@(x) = sup,_qinf_y.. f(y) lower envelope of f at x
Y(x) = inf.-¢ sup,_, .. f(y) upper envelope of f at x.

Prove that ¢ is lower semi-continuous and 1) is upper semi-continuous; more-
over p < f < 1.

7.2¢ Characterizing Lower-Semi Continuous
Functions in RN

Proposition 7.1¢ Let E be an open subset of RN. A function f : E — R* is lower
semi-continuous if and only if it is the pointwise limit of an increasing sequence of
continuous functions defined in E.

Proof (—)Forn € Nand x € E set
fux) = inf{f(z) + nlx —z| : z € E}.

Prove that |f,(x) — f,(7)| < n|x —y|. [

7.3¢  On the Weierstrass-Baire Theorem

7.8. The set of discontinuities of a real valued function could be as diverse as
possible. As an example consider the functions

1 ifxeQ x if xe@Q

f) = g(x) =
—1ifxel0,1]1-Q —x if x €[0,1] - Q.

The first is everywhere discontinuous but its absolute value is continuous.
The second is continuous only at x = 0.
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7.9.

7.10.

7.11.

There exists a function f : (0, 1) — R continuous at the irrationals and
discontinuous at the rationals of (0, 1). To construct an example recall that
a rational number r € (0, 1] can be written as the ratio m/n of two positive
integers in lowest terms. That is, m and n are the smallest integers for which
r = ". A rational number r is an equivalence class of ratios of the form *.
Out of such an equivalence class we select the representative in lowest terms.
Set |

+ ifxeQn(,1]

fl) = (7.1c)
0 ifxe (0,11 —Q.

However there exists no function f : (0, 1] — R continuous at the rationals
and discontinuous at the irrationals of (0, 1] (see Corollary 16.1c of the
Complements).

The function in (7.1c) is everywhere upper semi-continuous in (0, 1] since,
for every y € (0, |

limsupf(x) =0 < f(y).

X—=>y

There exists functions that are everywhere finite in their domain of definition
and not bounded in every subset of their domain of definition. Continue to
represent arational number r € (0, 1) as the ratio m/n of two positive integers
in lowest terms. Then set

nifxeQn(@O,1)

fx) = (7.2¢)
0 ifxe0,1)—Q.

Such a function is everywhere finite in [0, 1] and unbounded in every subin-
terval of [0, 1]. Indeed let I C [0, 1] be an interval. If f were bounded in 7,
then the denominator n of all rational numbers % € I, would be bounded.
This would imply that there are only finitely many rationals in /.

There exist real valued, bounded functions, defined on a compact set that do
not take neither maxima or minima.

Continue to represent a rational number r € (0, 1) as the ratio m/n of two
positive integers in lowest terms. Then set

(1" ifx e QN (O, 1)

fo) = (7.30)
0 ifxe (0,1) —Q.

About any point of (0, 1) the values of f are arbitrarily close to 1. The
function in (7.3¢c) is nowhere upper semi-continuous in [0, 1]. Indeed for
every y € [0, 1]

limsupf(x) =1 > f(y).

X—>y



56 2 Topologies and Metric Spaces

Thus the assumption that f be upper semi-continuous cannot be relaxed in the
Weierstrass-Baire Theorem. The function in (7.3c¢) is also nowhere monotone
in [0, 1].

7.4c  On the Assumptions of Dini’s Theorem

7.12. The assumption that the limit function f be lower semi-continuous cannot
be removed from Dini’s theorem. Indeed the sequence {x"} for x € [0, 1]
is decreasing, each x" is continuous in [0, 1] but the limit f is not lower
semi-continuous. Accordingly, the convergence {x"} — f is not uniform in
[0, 1].

7.13. The assumption that each of the f,, be upper semi-continuous, cannot be
removed from Dini’s theorem. Set

0 for x=0

fix) =11 f0r0<x<%

The sequence {f,} is decreasing, it converges to zero pointwise in [0, 1], but
the convergence is not uniform.

7.14. The requirement that the sequence {f;,} be decreasing cannot be removed
from Dini’s Theorem. Set

2n’x for 0 <x < &

_ 2 1 I 1
o) ={n—-2n*(x—3) for - <x <1
0 for%fxfl.

The functions f,, are continuous in [0, 1] and converge to zero pointwise in
[0, 1]. However the convergence is not uniform.

9¢ Vector Spaces

9.1. Theelement ® € X is unique.
9.2. LetA, Band C be subsets of a vector space X. Then:

i) ANB#¢ifandonlyif ® € A — B.

(i) ANB+C) #Pifand only if BN (A — C) # (. Equivalently if and
onlyif CN (A —B) # 0.
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(iii)) X, is a subspace of X if and only if aX, = X, for all « € R — {0} and
x+ X, =X, forall x € X,,.

(iv) If X, and X are linear subspaces of X then aX, + 3X; is a subspace of
X.

(v) If A and B are convex, then A + B is convex and AA is convex for all
AeR.

9.3¢c Hamel Bases

A collection {x,} of elements of a vector space X is linearly independent if any finite
subcollection of elements {x,} is linearly independent.

A linearly independent collection {x,} is a Hamel basis for a vector space X if
span{x,} = X. Equivalently, if every x € X has a unique representation as a finite
linear combination of elements of {x,}, that is

m
X =D cjx,, forsome finite m, c¢; €R.
j=1

Proposition 9.1¢ Every vector space X has a Hamel basis.

Proof Let L be the collection of all subsets of X whose elements are linearly inde-
pendent. This collection is partially ordered by inclusion. Every linearly ordered
subcollection {B,} of £ has an upper bound given by B = UB,,. Indeed the elements
of B are linearly independent since any finitely many of them must belong to some
B,, and the elements of B, are linearly independent. Therefore by Zorn’s lemma
L has a maximal element {x,}. The elements of {x,} are linearly independent and
every x € X can be written as a finite linear combination of them. Indeed if not, the
collection {x,, x} belongs to £, contradicting the maximality of {x,}. [

9.4. A Hamel basis for R is the usual Euclidean basis.
9.5. Let ¢ denote the collection of all sequences {c,} of real numbers and consider
the countable subcollection of £

e ={1,0,0,...,0,,0,...}
e;=10,1,0,...,0,,0,...}
e e 9.1¢)
en=1{0,0,0,...,1,,0,...}

Every x € £ can be written as x = Y, ¢,e,. However {e,} is not a Hamel basis
for £.
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9.6¢

2 Topologies and Metric Spaces

On the Dimension of a Vector Space

If the Hamel basis of a vector space X is of the form {x,,} for n € N, the dimension of
X is R, that is, the cardinality of N. More generally, if {x,} for & € A is a Hamel basis
for a vector space X, then the dimension of X is the cardinality of A. This definition
of dimension of X is independent of the choice of the Hamel basis.

9.7.

9.8.

9.9.

9.10.

10c

10.1.

10.2.
10.3.

10.4.

Let ¢, denote the collection of all sequences of real numbers {c,} with only
finitely many non zero elements. Then (9.1c) is a Hamel basis for ¢, and the
dimension of ¢, is R,,.

Let £[0, 1] denote the collection of all sequences {c,} of real numbers in
[0, 1]. The dimension of £[0, 1] is no less than the cardinality of R, since the
collection x, = {ov, %, ..., ", ...} fora € (0, 1) is linearly independent.
A vector space with a countable Hamel basis is separable.

The pair {R; Q}, that is, the reals R over the field of the rationals Q, is a vector
space. If x € Risnotan algebraic number, then the elements {1, x, X2, .. .} are
linearly independent. The dimension of {R; Q} is not less than the cardinality
of R.

Topological Vector Spaces

Let A and B be subsets of a topological vector space {X; {/}. Then:

@) If A and B are open, the @A + 3B is open.
(i) A+ B C A+ B. Theinclusion is in general strict unless either one of
A or B is compact.

- (]
@iii) IfA C X is convex then A and A are convex.
(iv)  The convex hull of an open set is open.

If x € O € By, there exists an open set A such thatx + A C O.

The identity map from R equipped with the Euclidean topology, onto R
equipped with the half-open interval topology of 4.3, is bounded, linear but
not continuous.

Let E be an open set in RY and denote by C(E) the linear vector space of all
real valued continuous functions defined in E. In C(E) introduce a topology
as follows. For g € C(E) and p > 0, stipulate that the set,

Oyp=1{f € CE) | sup|f — gl < r}

is an open neighborhood of g. The collection of such O, , is a base for
a topology in C(E). The sum + : C(E) x C(E) — C(E) is continuous
with respect to such a topology. However the multiplication by scalars e :
R x C(E) — C(E), is not continuous.



Problems and Complements 59

10.5.

13c

13.1.

13.2.

13.3.
13.4.
13.5.

13.6.

13.7.

For x,y € R set

|x — y| 4+ 1 if either x = 0 or y = O but not both
dx,y) =
[x —y| otherwise.

Prove that d(-, -) is a distance in R and that the resulting topological space,
is not a linear topological vector space. The ball B% (0) = {0} is open, and
its pre-image under translation need not be open.

Metric Spaces

Properties (i) and (iii) in the definition of a metric, follow from (ii) and (iv).
Setting x = y in the triangle inequality (iv), and using (ii) gives 2d(x, z) > 0
for all x,z € X. Setting z = y in (iv) gives d(x,y) < d(y,x), and by
symmetry d(y, x) < d(x,y). Thus a metric could be defined as a function
d : (X x X) — R satisfying (ii) and (iv).

The identically zero pseudo-metric generates the trivial topology on X. The
function d(x,y) = 1 if x # y and d(x, y) = 0 if x = y is the discrete metric
on X and generates the discrete topology. With respect to such a metric the
open balls Bj (x) contain only the element x and their closure still coincides
with x. Thus B (x) # {y € X|d(x,y) < 1}.

The function (x, y) — min{l; |[x — y|} is a metric on R.

Let A C X. Then A = U{x|d(A, x) = 0}.

A function f : {X;d} — {Y;n} is continuous at x € X if and only if
{f (x,)} — f(x), for every sequence {x,} — x.

Two metrics d; and d, on X are equivalent if and only if:

(i) For every x € X and every ball B/')(x) in the metric d;, there exists a
radius r = r(p, x) such that the ball Bf (x) in the metric d, is contained
in B ; (x).

(i) For every x € X and every ball BE (x) in the metric d,, there exists a
radius p = p(r, x) such that the ball Bé (x) in the metric d, is contained
in B2(x).

The two metrics are uniformly equivalent if the choices of r in (i) and the
choice of p in (ii) are independent of x € X. Equivalently, d; and d, are
uniformly equivalent if and only if the identity map between {X; d;} and
{X; d»} is a uniform homeomorphism.

In RY the following metrics are uniformly equivalent

N 1
(Z Jxi —yil”)" for pel[l, o)
dy(x,y) = i=1
max |x; — y;i for p = oc.

1<i<N



60 2 Topologies and Metric Spaces

The discrete metric in RY is not equivalent to any of the metrics d,,.

13.8. The metric d, in (13.1) is equivalent, but not uniformly equivalent, to the
original metric d.

13.9. A metric space {X; d} is bounded if there exists and element ® € X and a
number M > 0 such that d(x, @) < M for all x € X. Boundedness depends
only on the metric and it is neither an intrinsic property of X nor a topological
property. In particular the same set X can be endowed with two equivalent
metrics d and d, in such a way that {X; d} is not bounded and {X; d,} is
bounded.

13.10c The Hausdorff Distance of Sets

Let {X; d} be a metric space. For A C X and o > 0 set
A, ={xeX ‘ d(x,A) < a}.
The Hausdorff distance of two sets A and B in X is ([72], Chap. VIII)
dr (A, B) = inf{oc > 0 suchthat A C B, and B C A,}.

If A and B have nonempty intersection their distance is zero but their Hausdorff
distance might be positive. There exist distinct subsets A and B of X whose Hausdorff
distance is zero. Thus dyy is a pseudo-metric on 2% and generates the pseudo-metric
space {2%; dy}.

The identity map from {X; d} to {2%; d} is an isometry.

The topology on {2%; dy} is generated only by the original metric d, via the
definition of dy¢, and not by the topology of {X; d}. Indeed there might exist metrics
dy and d, that generate the same topology on X and such that the corresponding
Hausdorff distances d, 7¢ and d» » generate different topologies on 2X. As an example
let X = R* endowed with the two equivalent metrics

y .
E—— dr(x,y) = 1; |x — y|}.
I g h(x,y) = min{1; |x — y|}

dl (x7 )’) =

The topologies of {2R+; dix} and {2R+; d> w} are different. The set of natural
numbers N is a point in 2R The ball le (N) centered at N and of radius € € (0, 1),
in the topology of {2%"; dy 1} contains infinitely many finite subsets of R*. The ball
B2(N) in the topology of (2R", d» 14} does not contain any finite subset of R,
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13.11c Countable Products of Metric Spaces

Let {X,; d,} be a countable collection of metric spaces. Then the product topology
on [] X,, coincides with the topology generated by the metric

1 dn(‘x]17yn)
d(x,y) = _— 13.1
) = 2 S T e, ) (131¢)

This will follow from the two inclusions:

(i)  Every neighborhood O, of a point y € [[X, open in the product topology,
contains a ball B, (y) with respect to the metric in (13.1c¢).

(i) Every ball B.(y) with respect to the metric in (13.1c) contains a neighborhood
of y, open in the product topology.

Elements y € [] X,, are sequences {y,} such that y, € X,,. Forafixedy € [[ X, a
neighborhood O, of y, open in the product topology contains an open set of the form

k
Oy = [1 B™(y,) for some finite k (13.2¢)

n=1

where Bi,”) (v,) is the ball in {X},; d,,}, centered at y,, and of radius €.
There exists § > 0 sufficiently small depending on € and k, such that the ball
Bs(y) in [] X, is contained in Oy. Indeed from

1 dy(xn, yn)

— <)
2" 1 4+ dy(xp, yn)

>

it follows that, the number ¢ can be chosen so small that
dy(Xn, yp) <26 <e forallm=1,..., k.

Thus Bs(y) C O,. Conversely, every ball B;(y) in [ ] X, contains an open set of
the form (13.2c). Indeed let k£ be a positive integer so large that

M2

<

N>

1
n k2n

For such a k fixed the open set in (13.2¢) with € = %5 is contained in Bs(y).

13.12.  The countable product of complete metric spaces is complete.
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14¢ Metric Vector Spaces

Referring back to (14.1), the discontinuity of the bijection 4 is meant with respect to
the topology generated by the original metric, whereas the discontinuity of the sum
+ : X x X — X, or the product by scalars e : R x X — X, should be proved with
respect to the new metric dj,.

14.1.

14.2.

14.3.

14.4.

Let X = R and let d be the usual Euclidean metric. Define
1if x=0
hx) =10 if x=1
x otherwise

and let d, = d(h) be defined as in (14.1). For € € (0, 1) the ball B.(0),
centered at O and radius ¢, in the new metric dj, consists of the singleton
{0} and the open ball B.(1), in the original Euclidean metric, of radius € and
centered at 1 from which the singleton {1} has been removed. Likewise the
ball B.(1) of radius ¢ and centered at 1, in the new metric dj, consists of
the singleton {1} and the and the open ball B.(0), in the original Euclidean
metric, of radius € and centered at O from which the singleton {0} has been
removed. For such a metric dj,, both the sum and the multiplication by scalars
are discontinuous.

The half-open interval topology of 4.3 is not metrizable, that is, there exists
no metric on R that generates the half-open interval topology. Combine 10.3
with Proposition 14.2.

Let £, be the collection of all sequences x = {x,} or real numbers such that
sup |x,| < oo, endowed with with the metric

d(x’ J’) = Sup |xn _yn| (141C)

Show that £, is not complete nor separable.
Lett: R — [0, 1] be the fent function defined by

1—20s] if |s] < &
t(s) = (14.2¢)

0 otherwise.

For x € £, define

T(x) = D> xit(s — ).

Prove that T is an isometry between £, and T (£,).
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15¢ Spaces of Continuous Functions

15.1¢ Spaces of Holder and Lipschitz Continuous Functions

15.1.
15.2.
15.3.
15.4.
15.5.

15.6.
15.7.

15.8.

16¢

16.1.

16.2.

Prove that the quantity [f — g],. g is a pseudo-metric in C“(E).
Prove that C“(FE) is complete for the metric in (15.6).
Prove that C*(E) C C*(E) for all 8 > a.
Prove that Holder continuous functions in £ are uniformly continuous.
Let E be a subset of RV containing the origin, and let o € (0, 1) be fixed.
Prove that E 5 x — |x|® is in C®(E). Prove also that for any g € C!(E)
d(|x|*, g) = 1 with respect to the metric d(-, -) in (15.6).
Prove that C“(E) is not separable in its own metric topology. B
Prove that E 5 x — |x| € Lip(E). Prove also that for any g € C'(E), such
that gx/.(x,,) =0forj=1,...,N, for somex, € E,
d(|x|,g) = 1 with respect to the metric d(-, -) in (15.6)
In Lip(0, 1) consider the functions
©0,1)>x— |la—x|, |b—x| forfixed a,b € (0, 1).
Prove that if a # b then

d(la — x|, |b —x|) > 2 with respect to the metric d(-, -) in (15.6).

Deduce that Lip(F) is not separable.

On the Structure of a Complete Metric Space

Let d, and d, be two equivalent metrics on the same vector space X. The two
metric spaces {X; d;} and {X; d»} have the same topology and the identity
map is a homeomorphism. However, the identity map does not preserve
completeness. As an example consider R with the Euclidean metric and the
metric d, given in (13.1) corresponding to the Euclidean metric.
Intersection Properties of a Complete Metric Space

Proposition 16.1¢ (Cantor) Let {X; d} be a complete metric space, and let {E,} be a
countable collection of closed subsets of X such that E,., C E, and diam{E,;} — 0.
Then NE, # .
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16.3¢ Completion of a Metric Space

Every metric space {X; d} can be completed by the following procedure.

(a)

(b)

(©)

First, one defines X’ as the set of all the Cauchy sequences {x,} of elements in
X and verifies that such a set has the structure of a linear space. Then on X’
one defines a distance function

({xn}; {yn}) - d/({-xn}; {yn}) = lim d(-xnv yn)-

Since {x,} and {y,} are Cauchy sequences in X, the sequence {d(x,, y,)} is a
Cauchy sequence in R*. Thus the indicated limit exists. Since several pairs of
Cauchy sequences might generate the same limit, this is not a metric on X'.
One verifies however that it is a pseudo-metric.

In X’ introduce an equivalence relation by which two sequences {x,, } and {y, } are
equivalent if d’({x,}; {y,}) = 0. One verifies that such a relation is symmetric,
reflexive and transitive and therefore generates equivalence classes. Define
X* as the set of equivalence classes of all Cauchy sequences of {X; d}. Any
such class, contains only sequences at zero mutual pseudo-distance. For any
two such equivalence classes x* and y* choose representatives {x,} € x* and
{y,} € y* and set

d*(x*,y") = d' ({xu}; {ya})-

One verifies that the definition is independent of the choices of the represen-
tatives and that d* defines a metric in X*. The original metric space {X; d} is
embedded into {X*; d*} by identifying elements of X with elements of X* as
constant Cauchy sequences. Such an embedding is an isometry.

The metric space {X*; d"} is complete. Let {x/} be a Cauchy sequence in
{X*; d*} and select a representative {x;,} out of each equivalence class xl*
By construction any such a representative is a Cauchy sequence in {X; d}.
Therefore for each j € N, there exists an index n; such that d(x; ,, xj,,) < 1
for all n > n;. By diagonalization select now the sequence {x; ,,} and verify
that itself is a Cauchy sequence in {X; d}. Thus {x; ,, } identifies an equivalence
class x* € X*. The Cauchy sequence {x} converges to x* in {X*; d*}. Finally
the original metric space {X; d}, with the indicated embedding, is dense in
{X*; d*}.

Remark 16.1c While every metric space can be completed, a deeper problem is that
of characterizing the elements of the new space and its metric. A typical example is
the completion of the rational numbers into the real numbers.
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16.4c Some Consequences of the Baire Category Theorem

The category theorem is equivalent to the following:

Proposition 16.2c Let {X; d} be a complete metric space. Then a countable collec-
tion {O,} of open dense subsets of X, has nonempty intersection.

16.5. Let {X; d} be a complete metric space. Then every closed, proper subset of
X of first category, is nowhere dense.

16.6. The countable union of sets of first category is of first category. However the
countable union of nowhere dense sets need not be nowhere dense. Give an
example.

16.7. Let {E,} be a countable collection of closed subsets of a complete metric

space {X; d}, such that UE,, = X. Then U ;Z,, is dense in X.

16.8. The rational numbers QQ cannot be expressed as the countable intersection of
open intervals.

16.9. An infinite dimensional complete metric space {X; d} cannot have a count-
able Hamel basis.

Proposition 16.3¢ Letf : R — R be continuous on a dense subset E, of R. Then f
is continuous on a set E of the second category.

Proof Forx € (0, 1)

fl@=sup inf fG). f')=inf sup f(y).

© x—yl<e
For n € N set also

On = {x eR ’f//(x) —f/(.X) < l}

n

The set of continuity of f is the intersection of the O,. The sets O, are open and
dense in R and their complements O are nowhere dense in R. Therefore UO5 is of
the first category in R and NO,, is of the second category in R. |

Corollary 16.1¢ There exist no function f : [0, 1] — R continuous only at the
rationals of [0, 1].

See also the construction in 7.2 of the Complements.

17¢ Compact and Totally Bounded Metric Spaces

Lemma 17.1¢ (The Lebesgue Number Lemma) Let {X; d} be a sequentially com-
pact topological space. For every finite open covering {Om}f;:1 for some k € N,
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there exists a positive number o such that every ball B,(y) C X is contained in some
Ou. The number o is called the Lebesgue number of the covering.

Proof 1If sucha o > 0 does not exist, there exists a sequence of balls {B1 (x,)},en, of

centers {x,} and radii % each not contained in any of the open sets O,,. There exists
a subsequence {x,y} C {x,} and y € X such that {x,;} — y. Since {O,,} is a covering
y € O, for some m. Since O,, is open there exists o, > 0 such that B, (y) C Oy,.
Then

2
Bi, () C Ba,,,(y) - Om for n' > —. u
n O'm

17.1c An Application of the Lebesgue Number Lemma

Let Cs be the Cantor set constructed in § 2.1c—§ 2.2c of Chap. 1, and let J,, ; be the
closed intervals left after the n-stage of removal of the middle open intervals I, ;.
Then for any given open covering {/,,} of C; there exists n sufficiently large such that
each J, ; is contained in some Z,,.
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Chapter 3
Measuring Sets

1 Partitioning Open Subsets of RY

Proposition 1.1 (Cantor [21]) Every open subset E of R is the union of a countable
collection of pairwise disjoint, open intervals.

Proof Forx € E,let E, be the union of all open intervals containing x and contained
in E. By construction E is an interval. If x and y are two distinct elements of E, then
either E, = E, or E; N E, = {. Indeed if their intersection is not empty, their union
is an interval containing both x and y and contained in E. Since E, is an interval,
it contains a rational number. Therefore, the collection of the intervals E, that are
distinct is countable and E is the union of such intervals. ]

An open subset of RY cannot be partitioned, in general, into countably many,
mutually disjoint, open cubes. However, it can be partitioned into a countable col-
lection of disjoint, %—closed dyadic cubes.

Letq=(q,...,qn) € Z" denote a N-tuple of integers. For a positive integer p
and some N-tuple q, denote by Q, q the %-closed dyadic cube

i — 1 }
o <x=di=1..n] (1.1
2r 2r

Qpq=frerY|

The whole R" can be partitioned into disjoint, 1-closed dyadic cubes, by slicing
it with the hyperplanes {x = qgl.Z’P} where for each j = 1,..., N the numbers
qe; range over the integers Z. By this procedure, for all fixed p € N

RY = UN Qpq With Q,NQ,q¢ =0 for q#q.
qEZ

The collection of all %-Closed dyadic cubes in R is denoted by Qgiad.

Proposition 1.2 An open set E C RV is the union of a countable collection of %—
closed disjoint, dyadic cubes.
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Proof Consider the %-closed dyadic cubes Q; q. At most countably many of them
are contained in E and we denote by Q; their union, i.e.,

9 ={UQu¢| Qg C E}.

If the complement £ — Q; is nonempty, it contains at most countably many of
the %-closed dyadic cubes Q5 4, and we denote by Q, their union, i.e.,

Q ={U Q24| Q2q CE—-Qi}.

Proceeding in this fashion define inductively
n—1

Qn = {UQn,q | Onqg CE - UIQ,»} n=2,3,....
q j=

The union of the Q,, consist of countably many %—closed, disjoint, dyadic cubes
of the type (1.1). Moreover, E = UQ,. Indeed, since E is open, for every x € E
there exists a %-closed dyadic cube Q) 4 contained in £ and containing x. Such a
cube must be contained in some of the Q,, for some n. ]

Remark 1.1 The decomposition of an open set E into cubes is not unique. For exam-
ple, by analogous arguments, an open set E could be decomposed into a countable
union of closed dyadic cubes with pairwise disjoint interior. Another decomposition
isin § Ic of the Complements. Having determined one, reorder and relabel the cubes
as {Q,}, and write E = UQ,,.

Remark 1.2 The collection Qg;,q of all %—closed dyadic cubes in R", has the fol-
lowing set algebraic properties:

e The intersection of any two elements in Qg;aq, if nonempty, is an element of Qgiaq
e The mutual, relative complement of any two elements in Qyg;aq is the finite disjoint
union of elements in Qgjaq.

2 Limits of Sets, Characteristic Functions, and o-Algebras

Let { E, } be a countable collection of sets. The upper and lower limits of the sequence
{E,}, are defined as

oo o0 oo o0
limsupE, = () U E; liminf E, = |J () E;. 2.1)

n=I1 j=n n=l1 j=n
The sequence {E,} is convergent if

limsup E,, = liminf E,,.
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Such a limit exists if the collection { E,, } is monotone increasing,i.e.,if E, C E,1;
for all n € N, or if {E,} is monotone decreasing, i.e., if E,y; C E, for all n € N.
However, for the limit to exist the sequence { £, } need not be monotone. It might also
occur that a sequence {E,} of nonvoid sets, and whose cardinality tends to infinity,
has a limit and the limit is the empty set. For example, this occurs if E,, is the set of
positive integers between n and 2n.

The characteristic function y g of a set E is defined as

o [1ifxeE
XEWD =10 if x ¢ E.

It follows from the definition that for any two sets £ and F, and their symmetric
difference EAF = (E — F)U(F — E)

Xe-r = Xe(l = xr) and Xgar = IXE — XFI-

It also follows from the definition that for a sequence of sets {E,,}

Xy

= sup Xg, ; = inf yg,.
inEj P XE; Xﬂf:nE/ XE;

jzn jzn

Thus the notion of upper and lower limits of a sequence of sets can be equivalently
rephrased in terms of upper and lower limits of the corresponding characteristic
functions.

A set E C RY is of the type of F, if it is the union of a countable collection of
closed subsets of RV It is of the type of Gs if it is the intersection of a countable
collection of open subsets of R". The set of the rational numbers is of the type of
F, and the set of the irrational numbers is of the type of G;.

Similarly, one may define sets of type F,; and Gs, ... as

Fos = { countable intersection of sets of the type F,},

Gs» = { countable union of sets of the type Gs}.

Let X be a set. A collection A of subset of X is an algebra if it contains X and is
closed under finite union and complements. This implies that ¥ € A.

The collection A is a o-algebra of subsets of X, ifitis an algebra and if in addition
is closed under countable union [72].

There are algebras that are not o-algebras (3.1 of the Complements).

The collection 2% of all subsets of X is a o-algebra called the discrete o-algebra
of subsets of X. The collection {X; } is a o-algebra, called the trivial o-algebra of
subsets of X.

Proposition 2.1 Given any collection O of subsets of X, there exists a smallest
o-algebra A, that contains O.
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Proof Let F be the collection of all the o-algebras containing O. Such a collection
is nonvoid since it contains discrete o-algebra. Set

A, =N{A|AeF}).

Any two sets in A, belong to all the o-algebras in F. Therefore, their union is in
A, since it must be in all the A € F. Analogously, one proves that the complement
of a set in 4, remains in 4, and the countable union of sets in 4, remains in A,.
Therefore, A, is a o-algebra. If A’ is any o-algebra containing O, then it must be in
the family F. Thus A, C A'. n

Let B denote the smallest o-algebra containing the open subsets of RY. The
elements of B are the Borel sets and B is the Borel o-algebra [72].

Open and closed subsets of R" are Borel sets. Sets of the type of F,, Gs, Fus,
Gso» - - . are Borel sets.

3 Measures

Denote by R* = {—o0o} UR U {400} the set of the extended real numbers, with
the formal ordering —co < ¢ < +00, and formal operations 00 £ ¢ = 300 for all
¢ € R, and (£00)c = (Fo00) sign cforallc € R — {0}. If ¢ = 0 somewhat arbitrarily
one sets 0 - oo = 0. The operation oo — oo is not defined,

Let X be a set and let .4 be a o-algebra of subsets of X. A set function u defined
on A with values on the extended reals R*, is countably subadditive if for a countable
collections {E,} of elements of A

1 (UEs) <3 u(Ey).

The set function u is countably additive if for a countable collections {E,} of
disjoint elements of A

p(UE) =X wE)  (ENE;=0 fori#j).
The triple {X, A, 1} is a measure space and y is a measure on X if
(i) the domain of i is a o — algebra A (ii) p is nonnegative on A

(iii) p is countably additive (iv) u(E) < oo for some E € A.

Proposition 3.1 Let i : A — R* be a measure and let A, B € A. Then:

(a). p is monotone, thatis u(A) < u(B), whenever A C B.



3 Measures 71

(b). If AC Bandif u(B) < oo

(B — A) = p(B) — pu(A). (3.1
(c) If(AUB) < o0
(AU B) = p(A) + p(B) — (AN B). (3.2
(d). The set function i is countably subadditive. Moreover for a countable collection
(E.} of elements of A
liminf u(E,) > p (liminf E,) . 3.3)

(e). Finally, if W(UE,) < oo, then

lim sup u(E,) < p(limsup E,) . 3.4
Proof Write B= AU (B — A). Since A and B — A are disjoint, by (iii)

j(B) = u(A) + (B — A).

This proves the monotonicity of u, since u(B — A) > 0. It also proves (3.1) if
w(B) < oo. To prove (3.2) write A U B as the disjoint union

AUB=AU(B—ANB)

and apply (iii) and (3.1). Let {E,,} be a countable collection of sets in .4 and set
n—1
Bi=E, and B,=E,—|J E; for n=2,3,....
j=1

The sets B, are mutually disjoint and their union coincides with the union of the
E,. Therefore, by (iii) and the monotonicity of

n—1

(UE) = (UB) = ZuB) =S u(En - U ;) < X pEy.

Thus  is countably subadditive. To prove (3.3) write
liminf E, =UD,,, where D, =N;>,E;.

Since D,, C D11
U Dn = Dl U U(Dn-H - Dn)

I'This is a version of Fatou’s lemma (§ 8.1 of Chap. 4).
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May assume that p1(D,) < oo for all n, otherwise the conclusion is trivial. Since
the sets D, — D, are disjoint, by countable additivity and (3.1)

pdliminf E,) = o (U D,) = 1[Dy UU (Dust — D]
= H’(Dl) + Z.U(Dn-&-l - D,)

= (D) + X [1(Dys1) — (D]
=lim (D,) < liminf u(E,).

To prove (3.4), consider the increasing family of sets

U E, — sznE]"

and compute

pltim (UE, — U Ej)] = (U E, —limsup U E))

jzn j=n

=pn(UE,) — p(limsup U Ej).

j=zn

On the other hand, by (3.3)

p[lim (U E, — U E;)] <liminf u(JE, — U E))

j=n j=n

=u (U E,) —limsupu( U Ej).

j=n
Combining these two inequalities, proves (3.4). |

Remark 3.1 Let E € Abe aset for which (iv) holds. Then (3.1) implies that . (¥) =
w(E —E)=0.

3.1 Finite, o-Finite, and Complete Measures

The measure p is finite if 4 (X) < oo. Itis o-finite if there exists a countable collection
{E,} of subsets of X such that X = UE,, and u(E,) < oo for all n. An example of
a non o-finite measure is in 3.2 of the Complements.

A measure space {X, A, u} is complete if every subset of a set of measure zero
is in the o-algebra A. From the monotonicity of x it follows that if {X, A, u} is
complete, the measure of every subset of a set of measure zero is zero. An example
of a not complete measure is in § 14.3. Every measure can be completed (§ 3.1c of
the Complements).
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3.2 Some Examples

Let X be a set. The set function p(¥) = 0 and p(X) = oo is a measure on the trivial
o-algebra {X; @}. Let X be a set and let E be a subset of X. Define u(E) to be the
number of elements in E if E is finite, and infinity otherwise. The set function p is
a measure on 2% called the counting measure on X.
Let X = {x,} be a sequence and let {c,} be a sequence of nonnegative numbers.
The set function
X2>E — wE) =Y {a,|x, € E}

is a o-finite measure on X.

Let X be infinite and for every subset £ C X define ;(E) = 0 if E is countable
and 1(E) = oo otherwise. This defines a measure on 2%,

The sum of two measures defined on the same o-algebra is a measure.

Let {u,,} be a sequence of measures on X defined on the same o-algebra A. Then
1= I, is a measure on X defined on A.

Let {X, A, u} be a measure space and for a fixed set B € A define,

Ap = { the collection of sets AN B for A € A}.

Then Ap is a o-algebra and the restriction of x4 to Ap is a measure.
Let A be the discrete o-algebra of all subset of RY. Fix x € RY and define

1 if xeE,
MB:[Oﬁx¢E 3.5

One verifies that 1« is a measure defined on 2RY Ttis called the Dirac delta measure
in RY with mass concentrated at x, and it is denoted by ;.

4 Outer Measures and Sequential Coverings

A set function y, from the subsets of X into R* is an outer measure if,

(1) e is defined on all subsets of X (ii) u,. is monotone
(iii) p is nonnegative and . (?) = 0 (iv) p,. is countably subadditive.

A collection Q of subsets of X is a sequential covering for X if it contains the
empty setand if forevery E C X there exists a countable collection { Q, } of elements
of Q such that E C UQ,,. For example, the collection of the %—closed dyadic cubes
Qiad is a sequential covering for RV .



74 3 Measuring Sets

Outer measures can be constructed from a sequential covering Q by the following
procedure. Let A be a given nonnegative set function defined on Q, taking values on
R* and such that A\(¥J) = 0. For every E C X, set

pe(E) =inf {3 MQ,) | 0, € Q and E C J Q,}. 4.1

It follows from the definition that, if u.(E) < oo, for every € > 0 there exists a
countable collection {Q. ,} of elements of Q such that

E C U Qa,n and z A(Qe.n) < ,U/e(E) + €. (42)

Proposition 4.1 The set function (i, defined by (4.1) is an outer measure.

Proof The requirements (i)—(iii) are a direct consequence of the definitions. Let
{E,} be a countable collection of subsets of X. In proving (iv) may assume that
we(E,) < oo for all n. Fix € > 0. For each n € N there exists a countable collection
{Q;,} of elements of Q such that

E,cUQ,, and > NQj) < p(E,) +e27".

The union of the sets Q;, as both n and j, range over N, covers the union of the
E, . Therefore,

He (U En) = ZZA(QJ,I) = ZMe(En)+5~ ]
njn
The outer measure u, generated by the sequential covering Q and the nonnegative
set function A need not coincide with A on elements of Q. By construction

1e(Q) = A(Q) forall Q € Q (4.3)

and strict inequality might occur (§ 4.2 and § 5 below).

4.1 The Lebesgue Outer Measure in R

Let Qgiaq denote the collection of the %-closed dyadic cubes in R" and let \ be the
Euclidean measure of cubes, i.e.,

diamQ)N'

forall Q€ Quua MQ) = ( T~
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The Lebesgue outer measure of a set E C RV is defined by

diamQ,,

N
JN ) |ECUQn QOne Qdiad}. (4.4)

pe(E) = inf {3 (

4.2 The Lebesgue—Stieltjes Outer Measure [89, 154]

Let f : R — R be monotone nondecreasing and right continuous. For an open inter-
val (a, b) C Rdefine A(a, b) = f(b) — f(a). The collection of open intervals (a, b)
forms a sequential covering of R. The corresponding outer measure (7, is the
Lebesgue—Stieltjes outer measure on R generated by f. By construction

Life(a, bl = f(b) — f(a).

However, it might occur that p.(a, b) < f(b) — f(b). Thus for such an outer
measure, (4.3) might hold with strict inequality.

5 The Hausdorff Outer Measure in RV [71]

For ¢ > 0 let £ be the sequential covering of RY, consisting all subsets E of RY
whose diameter is less than . Fix o > 0 and set A(J) = 0 and

E. 2 E—> AE) = (diamE)“.
This defines a nonnegative set function on £. which in turn generates the outer
measure

Ho(E) = inf {X(diamE,)" | E C UE,, E,€&}. (5.1)

For such an outer measure the inequality in (4.3) might be strict. Indeed if Q is a
cube of unit edge in RY

MQ) = WN)* and Ho1(Q)=0 forall o> N.
If &’ < ¢, then H, . < H, . Therefore, the limit

Ha(E) = lim Ha.-(E)

exists and defines a nonnegative set function ,, on the subsets of RV,
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Proposition 5.1 H,, is an outer measure on RN. Moreover;

Ho(E) < oo implies Hg(E) =0 forall § > «;
Ho(E) >0 implies Hzg(E) = o0 forall § < a.

Proof The first statement is proved as in Proposition 4.1. Let {E,} be countable
collection of elements of & such that E C |J E,,. For § > «

Hp-(E) < 3 (diamE,)” < 7~ (diamE,)°.

Thus Hs..(E) < e¥~H, . (E) forall € > 0. [ ]

Proposition 5.2 Let 11, (-) denote the Lebesgue outer measure in R defined in (4.4).
There exists two positive constants cy < Cy depending only upon N such that, for
every set E C RV

cNHN(E) < pe(E) < CNHN(E).

Moreover, ¢c; = C| = 1. In particular, for N = 1 the Lebesgue outer measure on
R coincides with the Hausdorff outer measure H;.

Proof May assume that both p,(E) and Hy (E) are finite.
Having fixed € > 0 there exists a countable collection of %-closed dyadic cubes
{Q,,} whose union covers E and

diamQ, )N .
VN '

By possibly subdividing the cubes Q,, and using the finite additivity of the Euclid-
ean measure of cubes, may assume that diamQ,, < . Then

pe(E) = 3 (

S (diamQ)" — £ = ——Hy (E) —

pe(E) = NP

NN/2
for all ¢ > 0. This proves the left inequality with cy = v NV,

For the upper bound on p,(E), having fixed € > 0, there exists a countable col-
lection {E,} of elements of &£. such that

Hye(E) = Y (diamE,)" — . (5.2)

Each of the E,, canbe includedin a %—closed dyadic cube Q, of edge not exceeding
2diamE),,. Therefore,

1
(diamE,)"N > 2—N{V01ume of Q,} and E, C Q,.
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From this and (4.4)

1 diamQ,
HueB) 2 3y X (=

for all ¢ > 0. This establishes the upper bound with Cy = 2V.
If N = 1 each of the sets E,, in (5.2) can be included in the finite union («,, 5,]
of %—closed, dyadic intervals, in such a way that

N 1
) —e 2 Syne(E) ¢

diamkE, > length of (av,, £,] — 27"¢.
From this and (4.4)

HI,E(E) = Z length of (am ﬁn] —2e¢ = /J/e(E) —2e. u

The Hausdorff outer measure is additive on sets that are at mutual positive distance.

Proposition 5.3 Let E and F be subsets of RN such that dist{E; F} = § for some
0>0.Then Ho,(EU F) = Ho(E) + Ho(F), for all o > 0.

Proof Since H,, is subadditive, it suffices to prove the statement with equality
replaced by >. Also may assume that H, (E U F) is finite.

Having fixed ¢ < %5 , there exists a collection of sets {G,,} whose union contains
E U F and each of diameter less than &, such that

Ho(EUF) > > (diamG,)" —e.

Ifapoint x € E is covered by some G, such a set does not intersect F. Likewise,
if y € F is covered by G,,, then G,, N E = (. Therefore, the collection {G,} can
be separated into two subcollections {E, } and {F},}. The union of the E, contains E
and the union of the F,, contains F. From this

Hea(EUF) > > (diamE,)" 4+ > (diamF,)" — ¢
2 H(x,e(E) + H(l.E(F) —¢&. u

5.1 Metric Outer Measures

An outer measure y, in R" is a metric outer measure if for any two sets E and F at
positive mutual distance, u(E U F) = u.(E) + p.(F). The Lebesgue outer measure
inR" is metric. The Lebesgue—Stieltjes outer measure on R is a metric outer measure.
The Hausdorff outer measure H,, is metric. An example of a nonmetric outer measure
isin § 14.2 of Chap.11.
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6 Constructing Measures from Outer Measures [26]

Let 1, be an outer measure on X and let A and E be any two subsets of X. Then the
setidentity A = (AN E) U (A — E), implies

te(A) < pe(ANE) + p1(A — E). (6.1)

Consider the collection A of those sets £ C X satistying (6.1) with equality, for
all sets A C X, i.e., the collection of the sets E C X such that [25 26]

tre(A) = pre(AN E) + p1(A — E) (6.2)

for all sets A C X. Sets E € A are said j.-measurable.

Proposition 6.1 (i) The empty set is in A

(ii) If E is a set of outer measure zero, then E € A
(iii) If E € A, its complement E€ is in A

(iv) If E\ and E5 are in A, then E\ U E>, Ey — E>, E; N Ey arein A
(v) Let {E,} be a collection of disjoint sets in A. Then

te (ANUE,) =2 e (ANE,) forevery AC X.
(vi) The countable union of sets in A is in A.

Proof To establish that a set E is in the collection A, it suffices to verify (6.2) for
all sets A of finite outer measure. Statements (i) and (ii) follow from (6.2) and the
monotonicity of . Statement (iii) follows from the set identities

ANE‘=A—E A—-E°=ANE.

To prove the first statement in (iv) let £ and E; be elements of .4 and write (6.2)
for the pair A, E| and for the pair (A — E)), E>,

He(A) = e (AN EY) + pe(A — Ey);
fre(A — E1) = pie((A — Ey) N Ea) + pie ((A — Ey) — E).

Add these inequalities and use the subadditivity of u, and the set identities

(A-E)—E=A—-(E1UE))
(A—EDNE)U(ANE) =AN(EIUE).

This gives

1e(A) = (A N (E1 U E)) + pie(A — (E U E)).
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The remaining statements in (vi) follow from the set identities
E\—E, = (E{UE)" E NE,=(E{UES)".

We first establish (v) for a finite collection of disjoint sets. That is, if
Bn:UEj and E,‘ﬂEj:@fOI‘l.;éj
j=
then for every set A C X

n
He(A N B,) = Z Me(A N E])
=

The statement is obvious for n = 1. Assuming it holds for n, we show it continues
to hold for n + 1. By (iv), B, is in A, and may write (6.2) for the pair (A N B,11)
and B,. This gives

te(AN Byi1) = pe(AN Byy1 N By) + pe(AN Byy1 — By)
= pte(AN By) + pe(AN Epyy).

Let now {E,} be a countable collection of disjoint sets in .A. By the subadditivity
and monotonicity of the outer measure /i,

m

S U(ANE) > p (ANUE) = ue(An U E}) = 3 ue(ANE))
j=1 =i

To prove (vi) assume first that the sets of the collection { £, } are mutually disjoint.
Forevery A C X andevery m € N

m m

1e(A) = pe(AN U Ej) + pe(A— U Ej)

j=1 j=1

> S U (ANE) + (A — UE).
j=1

Letting m — oo and using the countable subadditivity of 1., shows that the union
of the E,, satisfies (6.2) and therefore is in A.

For a general countable collection {E,} of elements of A write D; = E; and
D,=E, — U'};iE j. The sets D, are in A, they are mutually disjoint and their
union coincides with the union of the E,,. [
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Proposition 6.2 The restriction of . to A is a complete measure.

Proof By Proposition 6.1, A is a o-algebra and the restriction p.| 4 satisfies the
requirements of a complete measure. In particular, the countable additivity follows
from (v) with A replaced with the union of the E, and the completeness follows
from (ii). [ ]

7 The Lebesgue-Stieltjes Measure on R

The Lebesgue—Stieltjes outer measure /. 1. induced by an increasing, right continuous
function f : R — R, generates a o-algebra A, of subset of R and a measure /i ¢
defined on Ay.

Proposition 7.1 Ay contains the Borel sets on R.

Proof 1t suffices to verify that intervals of the type («, 3] belong to A/, i.e., that for
every subset £ C R

Ppe(E) = pupe(E N (o, B + ppe(E — (o, B]). (7.1)

Lemma 7.1 Let \s be the Lebesgue—Stieltjes set function defined on open intervals
of R, from which iz, is constructed. Then for any open interval I and any interval
of the type («, [3],

Ar(D) = ppe( 0 (e, B) + pped — (v, B]).

Proof Let I = (a, b) and assume that («, 5] C (a, b). Denote by € and 7 positive
numbers. By the right continuity of f and the definition of y .,

Arl) = f(b) — f(a)
= lim (f(b) = f(B+2)
+ lim Tim (£ (8 + &) = f(@+m) + lim (f (@ +n) = f(@)
> pire(B,b) + pigela, Bl + pyela, ol
Z ,uf,()(as B] + H“f.,E(I - (Oé, ﬂ])
The cases @« <a < f <banda < a < b < 3 are handled similarly. n

Returning to the proof of (7.1), may assume that yr.(E) is finite. Having fixed
€ > 0, there exists a collection of open intervals {/,} whose union covers E, such
that
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fre(E) +e >3 N\p(1)
> > prpe(In N (e, B + X prpe(ly — (o, B])
> pire (U LN (. B1) + ppe (U L — (a. B1)
> pre(EN (v, B) + pise(E — (o, B) n

7.1 Borel Measures

A measure i in RY is a Borel measure if the o-algebra of its domain of definition,
contains the Borel sets. By Proposition 7.1, the Lebesgue—Stieltjes measure on R is
a Borel measure.

8 The Hausdorff Measure on RY

For a fixed a > 0, the Hausdorff outer measure H,, generates a o-algebra A, and a
measure H® called the Hausdorff measure on RV,

Proposition 8.1 A, contains the Borel sets in RV,

Proof Tt suffices to verify that closed sets E C R" belong to Ay, i.e., that for every
subset A C RY,

Ho(A) > Ho(ANE) +Ho(A—E) for ECRY closed.

May assume that 7, (A) is finite. For n € N, set
N | 1
E, = {x eR ‘ dist{x; E} < —}
n

and estimate below

H(x(A) = Ha[(A N En) U (A - En)]
> Ha[(A N E) U (A - En)]
= H(y(A N E) + Hu(A - En)

The last inequality follows from Proposition 5.3, since

dist {(ANE); (A—E,} >

S| =
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From this
Ho(A) = Ho(ANE) + Ho(A — E) — Ho[AN(E, — E)].

Lemma 8.1 limH,[A N (E, — E)] =0.

Proof For j =n,n+1,..., set

1 1
Fj:{xeA | ,—<dist{x;E}§—_}.
J+1 J
o0
Then AN (E, — E) = |J F;,and
Jj=n

Ha(AN(E, — E)) < 3 Ha(F)).

j=n

The conclusion would follow from this, if the series D H,(F;) were convergent.
To this end regroup the F; into those whose index j is even and those whose index
is odd. By construction dist{F;; F;} > 0if i # j and if either both i and j are even,
or if both are odd. For any two such sets

Ho(Fj) + Ho(Fi) = Ho(Fj U F)

by virtue of Proposition 5.3. Therefore, for all finite m
ZHQ(FJ) = ZHQ(FZh)+ ZHQ(F2h+1)
j=1 h=1 h=0

= Ha( U F2h) +Ha( U F2h+1)
h=1 h=0
< 2Ho(F1) = 2H,(A). u
Corollary 8.1 For all o > 0, the Hausdorff measure H® is a Borel measure.

Remark 8.1 The definition (5.1) valid for o > 0 and the previous remarks suggest
we define H, to be the counting measure.

Remark 8.2 The proof of Proposition 8.1 only used that H,, is a metric outer measure.
Therefore, the measure generated by any metric outer measure in R" is a Borel
measure. This is known as the Carathéodory sufficient condition for a measure in
RY to be a Borel measure [26]. An example of a nonmetric outer measure is in § 14.2
of Chap. 11.
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9 Extending Measures from Semi-algebras to o-Algebras

A measure space {X, A, u} can be constructed starting from a sequential covering
Q of X and a nonnegative set function \ : @ — R*. First, one constructs an outer
measure /i, by the procedure of § 4 and then, by the procedure of § 6 such an outer
measure /i, generates a o-algebra A of subsets of X and a measure i defined on A.
The elements of the originating sequential covering Q need not be measurable with
respect to the resulting measure p. Even if the elements of Q are j.-measurable,
the set function A and the outer measure j., might disagree on Q. Examples can be
constructed using the Lebesgue—Stieltjes outer measure in R or the Hausdorff outer
measure in RV,

The next proposition provides sufficient conditions both on Q and A for the ele-
ments of Q to be measurable and for A to coincide with y, on Q.

The collection Q is said to be a semi-algebra if

(i). The intersection of any two elements in Q is in Q
(ii). For any two elements Q; and Q; in Q, the difference Q; — Q> is the finite
disjoint union of elements in Q.

The collection of all the half-closed intervals of the type (a, b] for a, b € R, is
a semi-algebra. The collection of the open intervals on R is not a semi-algebra.
The collection Qgij.q of the %-closed dyadic cubes in RV is a semi-algebra. The
sequential covering & from which the Hausdorff outer measures are constructed, is
a semi-algebra.

The set function A : @ — R* is finitely additive on Q, if for any finite collection

{Q1, ..., Q,) of disjoint elements of Q, whose union is in Q,>

MU e)=2 0. (0o <9)

j=1

The set function A is countably subadditive on Q, if for any countable collection
{Q,} of elements of Q, whose union is in Q

AMUQ) =>ZA2). (U0.€9).

The Euclidean measure of parallepipeds is finitely additive. The Lebesgue—
Stieltjes set function A is finitely additive. The Hausdorff set function is not finitely
additive.

Proposition 9.1 Assume that Q is a semi-algebra, and the set function \ is finitely
additive on Q. Then Q C A. If in addition X is countably subadditive, then \ agrees
with p, on Q.

2The notion of sequential covering Q does not require that Q be closed under finite union, even if
it is a semi-algebra.
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Proof Let Q € Q be fixed and select A C X. If u.(A) = oo then (6.2) holds with
E = Q.1f n.(A) < oo, having fixed € > 0, there exists a countable collection { Q. , }
of elements of Q such that

E4 pe(A) = 2 AN(Qe),  and  ACU Qe 9.1)

For each fixed n write

Qs,n = (Qs,n N Q) ) (Qs,n - Q)

The intersection Q. , N Q is in Q, by virtue of (i), whereas by (ii)

Qe,n - Q = r[lj Qj,l

Ja=1

where the Q;, are disjoint elements of Q. Therefore, each Q. , can be written as the
finite union of disjoint elements of Q. Since A(-) is finitely additive

MQew) = MQen N O+ 3 A(Q,). 9.2)

Jn=1

The elements of the collection {Q. , N Q} are in Q and their union covers A N Q.
Likewise, the elements of the collection {Q } as j, ranges over {1, ...,m,} and n
ranges over N, are in Q and their union covers A — Q. Therefore, by the definition
of outer measure

z)\(QE,n) = Z )‘(Qs,n m Q) + Z %l: )\(an)
n n j,=1

> (AN Q) + pte(A = Q).

This proves that Q is p,.-measurable. To prove that 1, (Q) = A(Q), may assume
that 1, (Q) < oo. Fix an arbitrary € > 0 and let { Q. ,} be a countable collection of
elements in Q such that

Et+ue(Q) =2 ANQ:)  and O C U Q- 9.3)

From (9.2), for each fixed n, estimate below

AQen) = M Qe N Q).

The elements of the collection {Q. , N Q} are in Q by (i). Moreover, their union
is in Q since, by the second of (9.3), O = [J(Q N Q..,,). Therefore, since A(-) is
countably subadditive

€4 1e(Q) = 2 MQ:n N Q) = AN(Q). "
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Remark 9.1 For the inclusion @ C A it suffices to require that A be finitely additive
on Q. If A is both finitely additive and countably subadditive, then it is also countably
additive.

A set function \ on a semi-algebra Q is said to be a measure on Q if it satisfies
the requirements (i)—(iv) of § 3. The countable additivity (iii) is required to hold for
any countable collection {Q,} of sets in @ whose union is in Q. The assumptions
of Proposition 9.1 are verified if A is a measure on a semi-algebra Q. In such a case
Q C A and p, agrees with A on Q. This way the measure p, restriction of p, to A,
can be regarded as an extension of A from Q to A (see 4.2. of the Complements).

9.1 On the Lebesgue-Stieltjes and Hausdorff Measures

The assumptions of Proposition 9.1 are not satisfied, on different accounts, for neither
the Lebesgue—Stieltjes measure in R nor the Hausdorff measure in R". For the
Lebesgue—Stieltjes measure, Q is the collection of all open intervals (a, b) C R.
Such a collection is not a semi-algebra. The set function Ay is finitely additive and
countably additive. The Lebesgue—Stieltjes measurability of the open intervals must
be established by a different argument (Proposition 7.1). For the Hausdorff measure
inRY, the sequential covering Q is the collection of all subsets of RY whose diameter
isless than some € > 0. Such a collection is a semi-algebra. However, the set function
A(E) = (diamE)“ is not finitely additive for all &« > 0. The H,-measurability of the
open sets is established by an independent argument (Proposition 8.1).

10 Necessary and Sufficient Conditions for Measurability

Let {X, A, u} be the measure space generated by the pair {Q; A} where Q is a semi-
algebra of subsets of X and A is a measure on Q. Denote by Q, the collection of
all sets E,, that are the countable union of elements of Q. Also denote by Qs the
collection of sets E,; that are the countable intersection of elements of Q.

Proposition 10.1 Let E C X be of finite outer measure. For every € > 0 there exists
aset E, . € Q, such that

ECE,. and p.E)> u(E,.) —ce. (10.1)

Moreover, there exists Ey5 € Qys, such that E C E,5 and p.(E) = (Eys).

Proof By (4.2), for every € > 0 there exists E, . = |J O, € Q,, such that

pe(E) + &> > XNQp) =2 pu(Qn) = p (U Q) = n(Es 0.
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This proves (10.1). As a consequence, foreachn € Nthere exists E, 1 € Q, such
that 1
H(E, 1) — Pl pe(E) = p(E, 1).
Thus E,; = () E, 1 is one possible choice for such a claimed set. |

Remark 10.1 Proposition 10.1 continues to hold if i is any measure that agrees with
Aon Q.

Proposition 10.2 Let {X, A, i} be the measure space generated by a measure A on
a semi-algebra Q. A set E C X of finite outer measure, is ji-measurable if and only
if for every € > O there exists a set E, . € Q,, such that

ECE,. and p.E,.—E)<ce. (10.2)

Proof The necessary condition follows from Proposition 10.1. Indeed if E is pu-
measurable
N(Ea,a) < /ie(E) +e& & M(EG',E - E) <e.

For the sufficient condition, assuming (10.2) holds, we verify that E satisfies (6.2)
forall A C X. Since E, . is u-measurable

He (A) = NE(A N Ea,s) + He (A - EO‘,E)
> 11e(ANE) + pio(A — E) — e (AN (B, . — E))
> 1o (AN E) + pe(A — E) —e. g

Remark 10.2 The sufficient condition of Proposition 10.2 does not require that E
be of finite outer measure.

Proposition 10.3 Let {X, A, u} be a measure space generated by a measure \ on
a semi-algebra Q. A set E C X of finite outer measure, is ji-measurable if and only
if there exists E,5 € Qy4, such that E C Eq5 and p.(Eys — E) = 0.

11 More on Extensions from Semi-algebras to o-Algebras

Theorem 11.1 [48, 61] Every measure A on a semi-algebra Q generates a measure
space {X, A, u}, where A is a o-algebra containing Q and |1 is a measure on A
which agrees with \ on Q. Moreover, if Q, is the smallest o-algebra containing Q,
the restriction of u to Q, is an extension of \ to Q,. If )\ is o-finite on Q, such an
extension is unique.
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Proof There is only to prove the uniqueness whenever A is o-finite. Assume that z;
and p, are both extensions of A and let y, be the outer measure generated by {Q; A}.
Since Q is a semi-algebra, every element of Q, can be written as the disjoint union
of elements of Q. Since y; and p, agree on Q, they also agree on Q,,. Next we show
that both y; and p, agree with the outer measure p, on sets of 9, of finite outer
measure.

Let E € Q, be of finite outer measure. By (10.1) for every € > 0 there exists
E, . € Q,, such that

/~L1(EU,6) = /ffe(E) +e.

Since E C E, . ande > Qisarbitrary, this implies y; (E) < p.(E),forall E € Q,
of finite outer measure. Also, since i, is a measure on Q,,

,LLe(E(r,E - FE) = Ne(Etr,a) - ,ue(E) = NI(EU,E) - ,Ufe(E) <e.

From this, since both (i, and p; are measures on Q, and E C E, .

pe(E) < ,ue(Eo,a) = ,LL](E(/',E) = pi(E) + NI(EU,E —E)
< (E) + pe(Ege — E) < 1 (E) + €.

Therefore, 11 (E) = p.(E) onsets E € Q, of finite outer measure. Interchanging
the role of 1) and 5, one concludes that 14 (E) = pa(E) = p.(E), forevery E € Q,
of finite outer measure.

Fix now E € Q, not necessarily of finite outer measure. Since A is o-finite on
Q, there exists a sequence of sets Q, € Q such that E = |J Q, N E and each of
the intersections Q, N E is in Q, and is of finite outer measure. Since Q is a semi-
algebra, may assume that the Q, are mutually disjoint. Then

pi(E) =2 1 (Qu N E) = 3 112(Qn N E) = 2 (E). u

The requirement that A be o-finite is essential to insure a unique extension (11.7
of § 10.2c of the Complements).

12 The Lebesgue Measure of Sets in RY

The collection Q of the %—closed dyadic cubes, including the empty set, is a semi-
algebra of subsets of R". The Euclidean measure A of cubes in R", provides a
nonnegative, finitely additive set function defined on Q from which one may construct
the outer measure y, as indicated in (4.1). The restriction of i, to the o-algebra M
generated by [, is the Lebesgue measure in R", and sets in M are said to be
Lebesgue measurable.
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The collection of %—closed dyadic cubes and the Euclidean measure on them
satisfy the assumption of Proposition 9.1. Therefore, the elements in Q are Lebesgue
measurable. As a consequence, open and closed sets, and sets of the type F,, Gs,
Foss Gso---» are Lebesgue measurable.

The outer measure of a singleton {y} € R is zero, since {y} may be included
into cubes or arbitrarily small measure. From this and the countable subadditivity
of y1, it follows that any countable set in RY has outer measure zero. Therefore,
by (iii) of Proposition 6.1, any countable set in R" is Lebesgue measurable and has
Lebesgue measure zero. In particular, the set QQ of the rational numbers is measurable
and has measure zero. Analogously, the set of points in R" of rational coordinates
is measurable and has measure zero.

Every Borel set is Lebesgue measurable. The converse is false as the inclusion
B C M isstrict. In § 14 we exhibit a measurable subset of [0, 1] which is not a Borel
set.

Remark 12.1 By virtue of Theorem 11.1, the restriction of the Lebesgue measure to
the Borel o-algebra is the unique extension of the Euclidean measure of cubes, from
Q into B.

12.1 A Necessary and Sufficient Condition of Measurability

Let 1 be the Lebesgue measure in RY. For a subset E of RV define
w,(E) = inf {M(O) | where O is open and E C (’)} .

The definition is analogous to that of the outer measure (4.1) except for the class
of sets where the infimum is taken.

Since every open set is the countable, disjoint union of %-closed cubes, the class
of the open sets containing E is contained in the class of the countable unions of
%-closed cubes, containing E. Thus p,.(E) < p,(E).

Proposition 12.1 . (E) = i, (E).

Proof One may assume that 1, (E) < oo. Having fixed ¢ > 0, let {Q. ,} be a count-
able collection of %-Closed, dyadic cubes, whose union contains E and satisfying
(4.2). For each n there exists an open cube Q. , congruent to the interior of Q. ,
such that 1
QE,I‘! - Q;,n and ,LL(Q/g,n - Qr:,n) < 2_,15-

The union of the Q’m is open and contains E. Therefore,

p(E) < 2 Q7 ,) < 2 i(Qen) + 227" < pe(E) + 2e. =



12 The Lebesgue Measure of Sets in RV 89

Proposition 12.2 A set E C RN such that p.(E) < 0o, is Lebesgue measurable if
and only if for every € > 0 there exists an open set E, . such that

ECE,, and  pe(E,. — E) <e. 12.1)

Equivalently, a set E C R of finite Lebesgue outer measure, is Lebesgue mea-
surable if and only if there exists a set Es of the type of a Gs, such that

ECEs and p.(Es—E)=0. (12.2)

Proof The sufficient condition follows from Propositions 10.2 and Remark 10.1.
Since the Lebesgue measure in RY is o-finite, the necessary condition follows from
Propositions 10.1-10.3, using that . (E) = p,(E). ]

Proposition 12.3 A set E C RN such that p.(E) < 0o, is Lebesgue measurable if
and only if for every € > 0 there exists a closed set E,. . such that

E..CE and  p.(E —E..) <e. (12.3)

Equivalently, a set E C R of finite Lebesgue outer measure, is Lebesgue mea-
surable if and only if there exists a set E, of the type of a F,, such that

E,CE and p.(E—E,) =0. (12.4)

Proof (Sufficient Condition) Assume that for all € > 0 there exists a closed set E, .
satisfying (12.3). Then E¢ _ is open, it contains £ and

,ue(Eg,g - Ec) = ,ue(E - Ec,s) <e.

Therefore by Proposition 12.2, the set E{ , is Lebesgue measurable. Hence E .
is Lebesgue measurable. ]

Proof (Necessary Condition) Assume first that E is bounded and Lebesgue mea-
surable, and let Q be a closed cube containing E in its interior. The set Q — E is
Lebesgue measurable and of finite measure. Therefore, by Proposition 12.2, for every
€ > 0 there exists an open set E, . such that

Q-ECE,. and p[E,.—(Q—E)]<e.

Theset E. . = E; . N Q isclosed, is contained in £ and it satisfies (12.3). Forn €
Nset E, = E N[|x| < n].If E is Lebesgue measurable and of finite measure, having
fixed € > 0 there exists n so that u(E N [|x| > n]) < %5. The set E,, is bounded and
measurable. Hence there exists a closed set E. . C E,, suchthat u(E, — E..) < %5.

The set E, . is closed, is contained in E and

p(E — Ec,e) < WE, — Ec,a) +u(EN[lx| >n]) <e. u



90 3 Measuring Sets

Remark 12.2 The sufficient part of Propositions 12.2—-12.3, does not require that
1e(E) < oo. This follows from the proof of Proposition 10.2 and Remark 10.2.

13 Vitali’s Nonmeasurable Set [168]

The following construction, due to Vitali, exhibits a subset of [0, 1] which is not
Lebesgue measurable. Let o : [0, 1) x [0, 1) — [0, 1) be the addition mod-1 acting
on pairs x, y € [0, 1), that is

ey — x+y ifx+y<l;
y= x+y—1if x+y>1.

If E is a Lebesgue measurable subset of [0, 1), then for every fixed y € [0, 1), the
set wor
Eoy;{xoy‘er}

is Lebesgue measurable and p(E e y) = u(E). Next introduce an equivalence rela-
tion ~ in [0, 1) by x ~ y if x — y is rational. Such a relation identifies equivalence
classesin [0, 1). If £ is one such class, then any two elements of £ differ by a rational
number. In particular, the rational numbers in [0, 1) all belong to one such equiva-
lence class. Select one and only one element out of each class, to form a set £ which
by this procedure, contains one and only one element from each of these equivalence
classes. In particular, any two distinct elements x, y € E are not equivalent. Such
a selection is possible by the axiom of choice. Let now r, = 0 and let {r,} denote
the sequence of rational numbers in (0, 1), and set E, = E e r,. The sets E,, are
pairwise disjoint. Indeed if x € E, N E,,, there exist two elements x,, x,, € E, and
two rational numbers r,, and r,,, such that

Xy ®F, = Xpy ® Ipy.

Therefore x,, — x,, is rational, and x,, ~ x,,. This however contradicts the defini-
tion of E, unless m = n. Next observe that each element of [0, 1) belongs to some E,,.
Indeed every x € [0, 1) must belong to some equivalence class and therefore there
must exist some y € E such that x — y isrational. If x — y > 0, thenx = y + r,, for
some r, and hence x € E,.If x — y < 0, then x = y — r,, for some r,,. This can be
rewritten as

x=y+(0—r,) —1 orequivalentlyas x=ye(l—r,).
Thus in either case, x € E, for some n. Therefore, [0, 1) = |J E,. If E were

Lebesgue measurable, also E,, would be Lebesgue measurable and it would have the
same measure. Since the sets E, are mutually disjoint,
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1[0, 1) = 3 p(Ey).

This however is a contradiction since the right-hand side is either zero or infinity.

14 Borel Sets, Measurable Sets, and Incomplete Measures

Proposition 14.1 There exists a subset E of [0, 1] which is Lebesgue measurable
but it is not a Borel set.

Proposition 14.2 The restriction of the Lebesgue measure on R to the o-algebra of
the Borel sets in R, is not a complete measure.

The next sections prepare for the proof of these propositions which is given in
§ 14.3.

14.1 A Continuous Increasing Function f : [0, 1] — [0, 1]

Construct inductively a nonincreasing sequence of functions { f;,} defined in [0, 1]
by setting f,(x) = x

!

: 1

37X lfOS.ng

1 1 1

2x—5 1f§§)€§§

filx) =

1 1 ¢ 1 5

x+gif g sx=<3

2x—1if 2<x<L

The function f; has been constructed by dividing first [0, 1] into the two subin-
tervals [0, %] and [%, 1]. The first subinterval is subdivided in turn into the two
subintervals [0, %] and [%, %]. In the first of these f; is affine and has derivative %,
whereas in the second f; is affine and has derivative 2. The second subinterval [%, 1]
is divided into two intervals [%, %] and [%, 1]. In the first of these f; is affine and has
derivative %, whereas in the second f is affine and has derivative 2. The resulting
function f) is continuous and increasing in [0, 1]. Moreover, f; < f, and f; = f,
at each of the end points of the initial subdivision. The functions f, for n > 2 are
constructed inductively to satisfy:

i. Each f, is continuous and increasing in [0, 1]. Moreover, [0, 1] is subdivided
into 4" subintervals in such a way that f, is affine on each of them and has
derivative either 27" or 2”.
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ii.  fur(x) < fu(x) foralln € Nand all x € [0, 1].

iii.  If o is anyone of the end points of the 4" intervals into which [0, 1] has been
subdivided, then f,, (o)) = f,(«) for all m > n.

iv.  If [a, O] is an interval where f, is affine, then (8 — «) < 47" and f,(0) —
Sule) =27

Let f, be constructed and let [, 3] be one of the intervals where f;, is affine. Then
Jut1 restricted to [, O] can be constructed by the following a graphical procedure.
Set

A = (a, fn(a))v B = (67 fn(ﬁ))

and let C be the midpoint of the segment AB. Next let D be the unique point below
the segment AC such that the slope of AD is 2~"~! and the slope of DC is 2"*!.
Likewise, let E be the unique point below the segment C B such that the slope of
CE is 27""! and the slope of C B is 2"*!. Then the polygonal ADC E B is the graph
of f,.1 within [«, §].

Since the f, are continuous and strictly increasing in [0, 1], their inverses fn_1
are also continuous and strictly increasing in [0, 1]. Moreover by construction, such
inverses satisfy properties (i)—(iv) except (ii) where the inequality is reversed. For a
fixedn € N, any fixed x € [0, 1] belongs to at least one of the 4" closed subintervals
where f,, is affine. If for example x € [, 3], then for all m > n

0<fulx)— fulx) < fn(ﬁ) — fula) < 2™,

Since x € [0, 1] is arbitrary the sequence { f,,} converges uniformly in [0, 1] to a
nondecreasing, uniformly continuous function f in [0, 1].

Having fixed x < y in [0, 1], there exists n so large that one of the intervals [«, (]
where f, is affine, is contained in [x, y]. Therefore,

J&x) = fl) = ful@) < fu(B) = f(B) = f(»).

Thus f is strictly increasing in [0, 1] and has a continuous strictly increasing
inverse f~!'in [0, 1]. Set

A, = U { intervals [a, 8] where f, is affine and f, =2"};
B, = {intervals [«v, 8] where f, is affine and f, = 2fn} )

From the definition

la,l€ Ay = [f(B)— fla)=2"(B-a)
a,81€ B, = [f(B)— fl)=27"(F—).
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Therefore, adding over all such intervals

1(f(An) = 2"u(A,) (A + (B, = 1
1(f(By) = 27" w(By) 1(f(A)) + p(f(By) = 1.

From this compute

-] 21
N(An)zﬁ p(Bn) =2 ]
(f(A) = 2" — (f(B) = 2t
:u’f n - zzn_l :uf n _22}1 ]
Set
[e.¢] o0
S, = U 4; S=N6&,
J=n n=1

The set S is measurable and compute

0 < u(S) = lim u(S,) < lim 3" 1(A;) = 0.

J=n

The sets f(A,) are measurable being the finite union of intervals. Therefore, the
sets

FSo=U &= 0 S
j=n n=

are also measurable. Then compute

1> pu(f(S) =limpu(f(Sy) = limp(f(A)) = 1.

Therefore, f maps the set S C [0, 1] of measure zero onto f(S) C [0, 1] of
measure 1. Likewise, f maps the set [0, 1] — S of measure 1, onto [0, 1] — f(S) of
measure zero.

14.2 On the Preimage of a Measurable Set

Since f is continuous, the preimage of an open or closed subset of [0, 1] is open
or closed and hence Lebesgue measurable. More generally one might consider the
family

the collection of the subsets E of [0, 1]
= . (14.1)

such that f~!(E) is Lebesgue measurable

Since f is strictly increasing, the complement of any set in F is in F.
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If {E,} is a countable collection of elements of F, then

FU UE) =Uf"E» and f'(NE)=NF"(E.

Therefore, the countable union or intersection of elements in F remains in F.
Thus F is a o-algebra of subsets of [0, 1]. It follows that 7 must contain the Borel
sets BB of [0, 1], since they form the smallest o-algebra containing the open sets. In
particular, the preimage of a Borel set is measurable.

Since f is continuous and increasing, the same argument shows that the preimage
of a Borel set is a Borel set.

14.3  Proof of Propositions 14.1 and 14.2

Since the Lebesgue measure is complete, every subset of S is measurable and has
measure zero. Likewise, every subset of [0, 1] — f(S) is measurable and has measure
zero. Let E be the Vitali nonmeasurable subset of [0, 1]. Then E — S is also nonmea-
surable. Indeed if it were measurable E would be the disjoint union of the measurable
sets E —Sand ENS.ThesetD = f(E — S)iscontained in [0, 1] — f(S). There-
fore, D is measurable and it has measure zero. The preimage of D is not measurable.
The measurable set D is not a Borel set, for otherwise ! (D) would be measurable.
Since D is measurable and has measure zero, by (12.2) of Proposition 12.2, there
exists a set D; of the type of G5 such that D C D; and u(Ds) = 0. Since D is not a
Borel set, the restriction of the Lebesgue measure to the o-algebra of the Borel sets,
is not complete. |

Remark 14.1 Returning to the family F defined in (14.1), the same example shows
that F does not contain the o-algebra M of the Lebesgue measurable subsets of [0, 1],
as there exists measurable sets whose preimage is not measurable. By interchanging
the role of f and f~' shows that in general F is not contained in M.

15 Borel Measures

A feature of the Lebesgue measure in RY is that the measure of a measurable set E C
RY of finite measure, can be approximated by the measure of open sets containing
E or closed sets contained in E. This is the content of Propositions 12.2-12.3.

A Borel measure 1 in RY is a measure defined on a o-algebra containing the
Borel sets B.% Such a requirement alone does not guarantee that the ;i-measure of
a Borel set E C RY of finite ;-measure can be approximated by the y-measure of
open sets containing E and closed sets contained in E.

3Some authors define it as a measure ; whose domain of definition is exactly B.
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As an example consider the counting measure on R. A single point is a Borel set
with counting measure one and every open set that contains it has counting measure
infinity. However, if p is a finite Borel measure in RY and E is a Borel set, then
1(E) can be approximated by the p-measure of closed sets included in E or by the
p-measure of open sets containing E.

Proposition 15.1 Let i be a finite Borel measure in RN and let E be a Borel set.
For every € > O there exists a closed set E. . C E, such that

E..CE and ,u(E - EC,E) <e. (15.1)
Moreover, for every € > QO there exists an open set E,, ., such that

ECE,; and ,u(Eo,g — E) <e. (15.2)
Proof (of (15.1)) Let A be the o-algebra where p is defined and set

c - the collection of sets E € A such that for every € > 0
® 7| there exists a closed set C C E, such that WE—-C)<e|’

Such a collection is not empty since the closed sets are in C,. Let {E,} be a
countable collection of sets in C, and, having fixed ¢ > 0, select closed sets C,, C E,
such that u(E, — C,) <27 "cforall n € N. Then

p(NE —NC) = p[UE, —C)] = X WE, —C,) <e.

Since NC, is closed, the intersection NE,, belongs to C,. Next, by (3.3)—(3.4) of
Proposition 3.1, since y is finite

Jim (U E = U C) = n(UE~UC) = [ UE -] <=

n=1

Therefore, there exists a positive integer m. such that
/L(U E, — U C,,) < 2e.
n=1

Since the union U:’f;lCn is closed, the union UE,, belong to C,.

The collection C, contains trivially the closed sets, and in particular the closed
dyadic cubes in R". Since every open set is the countable union of such cubes, C,
contains also the open sets (Remark 1.1). Set

C= {the collection of sets E € C, such that (RY — E) Co} .
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If E € C then the definition implies that (RN — E) belongs to C. Thus C is closed
under taking complements. In particular C contains all the open sets and all the closed
sets. Let {E,} be a countable collections of sets in C, i.e., both E, and (RN — E,)
belong to C, for all n. Then UE, € C, and

RY —JE,=NMRY —E,) €C,.
Analogously NE, € C, and
RY -NE,=UR" - E,) €C,.

Thus C is a g-algebra. Since C contains the open sets it contains the o-algebra of
the Borel sets. ]

Proof (of (15.2)) Let E € B. Then (R — E) is a Borel set and by (15.1), having
fixed € > O there exists a closed set C C (RY — E) such that

p[RY —E) = C]l=p(®RY —C)—E) <e.
Since RY — C is open (15.2) follows. n

Corollary 15.1 Let p be a finite Borel measure in RN and let E € B.
There exists E, € F,, such that E, C E and u(E — E,) = 0.
There exists E5 € Gs, such that E C Es and y(Es — E) = 0.

16 Borel, Regular, and Radon Measures

The approximation with closed sets contained in E continues to hold for Borel
measures that are not necessarily finite, provided E is of finite measure.

Proposition 16.1 Let 11 be a Borel measure in RY and let E be a Borel set of finite
measure. For every € > 0 there exists a closed set E. . C E, such that (15.1) holds.

Proof Let Abe the o-algebra where 1 is defined. The set E being fixed, set g (A) =
u(E N A) forall A € A. Then p is a finite Borel measure in RY. |

Statement (15.2) is false for general Borel measures even if pu(E) < oo, as indi-
cated by the counting measure on R. However, it continues to hold for Borel measures
that are finite on bounded sets.

Proposition 16.2 Let 1 be a Borel measure in RN which is finite on bounded sets,
and let E be a Borel set of finite measure. For every € > 0 there exists an open set
E, . D E, such that (15.2) holds.
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Proof Let Q, be the open cube centered at the origin, of edge n and with faces
parallel to the coordinate planes. Since E is a Borel set, 0, — E is also a Borel set
and u(Q, — E) < o0o. By Proposition 16.1, having fixed € > 0, there exists a closed
set C, C (Q, — E) such that,

1[(Qn — E) = C,] = u[(Qy — C) — E] < 27"%.
The set O, — C,, is open and contains 9, N E. Therefore,

E:UQnmECU(Qn_Cn)=E0,€~

The set E, . is open, contains E and

((Eoe —E) = p[U (@0 — Ca) — E] = 227" o

16.1 Regular Borel Measures

Let 1 be a Borel measure in RY. The statements of Proposition 15.1 and Proposi-
tions 16.1-16.2, give conditions for the measure of a Borel set E to be approximated
by the measure of closed sets contained in E or open sets containing E. Those Borel
measures for which the indicated approximation holds for all measurable sets E,
define a subclass of measures called regular.

A Borel measure 1 in RY is outer regular if for every measurable set E C R" of
finite measure,

w(E) = inf{u(O) where O is open and E C O}. (16.1)

A Borel measure . in RY is inner regular if for every measurable set E C RY of
finite measure,

w(E) = sup{u(C) where C is closed and C C E}. (16.2)

A Borel measure p in RY is regular if it is both outer and inner regular.

The the counting measure on R is not outer regular, but it is inner regular.

The Hausdorff measure H® in RV, for 0 < o < N is inner regular and not outer
regular.

By Proposition 15.1, a finite Borel measure in RY defined exactly on B is regular.
By Propositions 16.1-16.2 a Borel measure defined exactly on B, and finite on
bounded, measurable subsets of RY is regular.

By Propositions 12.2-12.3, the Lebesgue measure in RY is regular.

If 1 is outer regular, then for all measurable sets E of finite measure, there exists
a Borel set E5 € Gs such that E C Es5 and u(E) = u(Es).
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If 1 is inner regular, then for all measurable sets E of finite measure, there exists
a Borel set E, € F, such that E, C E and u(E) = pu(E,).

16.2 Radon Measures

A Radon measure in R" is a Borel measure which is finite on bounded subsets of R" .
The Lebesgue measure in RY is a Radon measure. The Lebesgue—Stieltjes measure
on R is a Radon measure. The Dirac measure §, with mass concentrated at x is a
Radon measure. The counting measure on R is a Borel measure but not a Radon
measure. The Hausdorff measure H® is a Borel measure in RY but not a Radon
measure for all o € [0, N).

Let 12 be a Radon measure in RV and for every set E C RY, set

tte(E) = inf {4(O) where O is open and E C O}. (16.3)

By the previous remarks, this is an outer measure which coincides with y on the
Borel sets.

Proposition 16.3 A Radon measure p in RN generates, by the formula (16.3), an
outer measure |1, which coincides with . on the Borel sets. Moreover for every set
E C RY such that u.(E) < oo, there exists a set Es of the type of a G5 such that
E C Esand p.(E) = p(Es).

17 Vitali Coverings

Let {X, A, 11} be RY endowed with the Lebesgue measure, and let F denote a family
of closed, nontrivial cubes in RY. A family F is a fine Vitali covering for a set
E c RV, if for every x € E and every € > 0, there exist a cube Q € F such that
x € Q and diamQ < e.

The collection of N-dimensional closed dyadic cubes of diameter not exceeding
some given positive number, is an example of a fine Vitali covering for any set
E C RY. Other examples are in § 2, 3, 5 of Chap. 5.

Theorem 17.1 (Vitali [168, 10]) Let E be a bounded, Lebesgue measurable set in
RY and let F be a fine Vitali covering for E. There exists a countable collection
{O,} of cubes Q,, € F, with pairwise disjoint interior, such that

wE —UQ,) =0. (17.1)
Remark 17.1 The theorem does not claim that UQ,, covers all points of E. Rather,

UQ, covers E in a measure-theoretical sense. Construction of pointwise coverings
are in § 17.1c of the Complements.
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Remark 17.2 The theorem is more general in that £ need not be Lebesgue mea-
surable. See 17.1-17.3 of § 17c the Complements. If F is a covering of E, but not
necessarily a fine Vitali covering, a similar statement holds in a weaker form (§ 1 of
Chap.9).

Proof Without loss of generality may assume that E and the cubes making up the
family F are all included in some larger cube Q. Label by F, the family F, and
out of F, select a cube Q,. If Q, covers E then the theorem is proven. Otherwise
introduce the family of cubes

- { the collection of cubes Q € F, whose interior is }
1= .

o o
disjoint from the interior of Q,, ie., QN Q,= ¥
If Q, does not cover E, such a family is not empty. Introduce also the number
d; = {the supremum of the diameters of the cubes Q € F}.

Then out of F) select a cube Q| whose diameter is larger than %dl. If 0, U 0,
covers E then the theorem is proven. Otherwise introduce the family of cubes

[ the collection of cubes Q € F; whose interior is ]
Fr =

o o
disjoint from the interior of O, i.e., QN Q=@
and the number
d, = {the supremum of the diameters of the cubes Q € F,}.

Then out of F, select a cube O, whose diameter is larger than %dz. Proceeding in
this fashion, define inductively families {F,}, positive numbers {d,} and cubes {Q,},
by the recursive procedure

the collection of cubes Q € F,,_; whose interior is
.7:" = o o )
disjoint from the interior of Q,,_y, i.e., 0N Q,_ =0

d, = {the supremum of the diameters of the cubes Q € F,};

0, = {a cube selected out of F,,, such that diamQ,, > %dn} .

The cubes {Q,} have pairwise disjoint interior and they are all included in some
larger cube Q. Therefore,

diamQ,,
275

)" =2 (@) < o0, (17.2)
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The convergence of the series implies that lim diamQ,, = 0. To prove (17.1) pro-
ceed by contradiction, by assuming that

1 (E -U Q,,) >2e¢  forsome ¢ > 0. (17.3)
First, for each Q, construct a larger cube Q), of diameter
diamQ! = (4v/'N + 1)diamQ, (17.4)

with same center as (,, and faces parallel to the faces of Q,. By the convergence of
the series in (17.2) there exists some n. € N such that

p( U )= X we)=<e
n=n.+1 n=n.+1

Using this inequality and (17.3) estimate

u(E-Ue)- U elznE-Ue)-u U ¢)==

n=1 n=n-+1 n=n.+1

This implies that there exists an element
xe(E-Uo)- U 0. (17.5)

Such an element, must have positive distance 2o from the union of the first n.
cubes. Indeed such a finite union is closed and x does not belong to any of the cubes
Q, forn =1, ..., n.. By the definition of fine Vitali covering, given such a o, there
exists a cube Q; € F of positive diameter 0 < § < ¢ that covers x. By construction
Qs does not intersect the interior of any of the first n. cubes Q,. It follows that Qs
belongs to the family 7, ;. Next we claim that

OsN Q,#9 forsome n =n.+1, n.+2,....

Indeed, if Qs did not intersect the interior of any such cubes, it would belong to
all the families J,,. This however would imply that

0 <d=diamQs <d, — 0 as n — oQ.

o
Let then m > (n. 4 1) be the smallest positive integer for which Q;N Q,,# 9.
In particular,
Qs ¢ Fnrt Os € Fun and 6 <d,,.
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Fig. 1 About the proof of Vitali’s covering theorem

By the selection (17.5), the element x does not belong to Q) . Therefore, the
o
intersection QsN Q,, can be not empty only if (Fig. 1)

. 1 . , .
0 =diamQs > —— (dlaQO — dlaQO) .

2J/N

This and (17.4) yield the contradiction d,, > § > d,,,. [ ]

Corollary 17.1 Let E be a bounded, Lebesgue measurable set in RN and let F
be a fine Vitali covering for E. For every € > 0, there exists a finite collection
{Q1, ..., Qu.} of cubes in F, with pairwise disjoint interior, such that

S Q) — & < () < f_JlEan)+s.

Proof Having fixed € > 0, let E, . be an open set containing E and satisfying (12.1).
Introduce the subfamily F. of the cubes in F that are contained in E, ., and out of
JF- select a countable collection of closed cubes { O, }, with pairwise disjoint interior,
satisfying (17.1). By construction

ZM(Qn) = ,U/(Eo,s) =< /J/(E) +e.

This implies that there exists a positive integer n. such that ZZQ L H(Qn) Ze.
From this and (17.1)

M(E)zu(UEﬂQn)fu(CjEﬂQn)—i-s. .

n=1

18 The Besicovitch Covering Theorem

Let E be a subset of RY. A collection F of closed balls in R" is a Besicovitch
covering for E if each x € E is the center of a nontrivial ball B(x) belonging to F.
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Theorem 18.1 (Besicovitch [16]) Let E be a bounded subset of RN and let F be a
Besicovitch covering for E such that

{the supremum of the radii of the balls in .7-'} LR < 0. (18.1)

There exists a countable collection {x,} of points in E and a corresponding col-
lection of balls {B,} in F

B, = B, (x,) balls centered at x,, and radius p,
such that E C J B,. Moreover, there exists a positive integer cy depending only

upon the dimension N, and independent of E, the covering F, and R, such that the
balls {B,} can be organized into cy subcollections

By ={B.,}, By={By}.....B ={Bu,}

in such a way that the balls { B, } of each subcollection B; are disjoint.

Remark 18.1 The theorem continues to hold, by essentially the same proof, if the
balls making up the Besicovitch covering F are replaced by cubes with faces parallel
to the coordinate planes [112].

Proof Since E is bounded and R < 0o, may assume that E and the balls making up
the family F are all included in some large ball B, centered at the origin. Set E; = E
and

F1 = { the collection of balls B(x) € F whose centerisin E;}

r = {the supremum of the radii of the balls in F; 1}.
There exists x; € E; and a ball
By =B, (x1) € Fi of radius p; > %r].
If E; C By, the process terminates. Otherwise set E; = E; — B and

JF> = { the collection of balls B(x) € F whose center is in E,}

ry = {the supremum of the radii of the balls in .7-"2}.
There exists x, € E, and a ball
B, =B, (x;) € >  ofradius py > 2r,.

Proceeding recursively, define countable collections of sets E,,, balls B,,, families F,
and positive numbers r,, by
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n—1
E,=E- UB;, x,€E,
j=1

F, = { the collection of balls B(x) € F whose center is in E,}
r, = {the supremum of the radii of the balls in F, }
B, =B, (x,) € F, of radius p, > %r,,.

By construction, if m > n

Pn = %rn = %rm . %Pm' (18.2)

This implies the balls B% on (x,) are disjoint. Indeed since x,, ¢ B,

[Xn = Xl > pu = 300 + 300 > 3P0 + 3P (18.3)

The balls B L, (x,) are all contained in B, and are disjoint. Therefore, {p,} — 0
as n — 00. The union of the balls {B,} covers E. If not, select x € E — UB,, and a
nontrivial ball B,(x) centered at x and radius p > 0. Such a ball exists since F is
a Besicovitch covering. By construction B,(x) must belong to all the families F,.
Therefore, 0 < p <r, — O.

The proof of the last statement regarding the subcollections B;, is based on the
following geometrical fact, whose proof is postponed to the next section.

Proposition 18.1 There exists cy € N depending only on N and independent of E,
such that, for every k € N, at most cy balls out of {By, ..., By} intersect By.

The collections B; are constructed by regarding them initially as empty boxes, to
be filled with disjoint balls, taken out of {B,}. Each element of {B,} is allocated to
some of the boxes B; as follows.

First, for j = 1,..., cy, put B; into B;. Consider next the ball B, 1. By Propo-
sition 18.1, at least one of the first ¢y balls does not intersect B, 11, say for example,
B, . Then allocate B, 1 to B;.

Consider the subsequent ball B., 1. At least 2 of the first (cy + 1) balls do not
intersect B.,4,. If one of the B; for j =2, ..., cy, say for example, B;, does not
intersect B, 1o, allocate B, > to B,. If all the balls B; for j =2, ..., cy intersect
B., 12 then, B and B, 4+ do not intersect B, 2, since at least 2 of the first (cy + 1)
balls do not intersect B, +». Then allocate B, > to 3; which now would contain 3
disjoint balls.

Proceeding recursively, assume all the balls

B, ..., B , Beytn—1 forsome n e N

PV
have been allocated, so that at the (n — 1) step of the process, each of the B I
contains at most n disjoint balls. To allocate B,,, observe that by Proposition 18.1,
at least n of the first (cy +n — 1) balls must be disjoint from B, ,. This implies
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that the elements of at least one of the boxes B; for j =1, ..., cy, are all disjoint
from B, 1. Allocate B,,, to one such a box and proceed inductively. ]

19 Proof of Proposition 18.1

Fix some positive integer k, consider those balls B; for j =1, ..., k that intersect
By = B, (x¢), and divide them into two sets

the collection of balls B; = B, (x;) for j =1,...,k
' that intersect By and such that p; < %M Pk

the collection of balls B; = B, (x;) for j =1,...,k
2T that intersect By and such thatp; > %M Dk

where M > 3 is a positive integer to be chosen.
Lemma 19.1 The number of balls in G, does not exceed 4" (M + 1),

Proof Let #{G,} be the number of elements in G;. The balls {B% o (x )} are disjoint
and are contained in By 11),, (xx). Indeed, since B; N By # ¢ o

lxj —xl < pj+pc < (3M 4+ 1) px.

Moreover for any x € B Ly, (x;),

v —xel < v — x5+ |x; —xl < 2p;+ GM +1)p < (M + Dpy.

From this, denoting by xy the volume of the unit ball in R"

N
> kn(3p) < EvM 4+ DNpY.
J:B;j€G

Since j < k, it follows from (18.2) that %pj > }‘pk. Therefore,

#{gl}f@N(ipk)N <kyM+DNpy. "

An upper estimate of the number of balls in G, is derived by counting the number
of rays originating from the center x; of By to each of the centers x; of B; € G,. We
first establish that the angle between any two such rays is not less than an absolute
angle 6,. Then we estimate the number of rays originating from x; and mutually
forming an angle of at least 6,,.

Let B, (x,) and B, (x,,) be any two balls in G, and set

¢ = {angle between the rays from x; to x,, and x,, }.
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Lemma 19.2 The number M can chosen so that 0 > 0, = arccos %

Proof Assume n < m < k. By construction x,, ¢ B, (x,), i.e.,
|Xn — Xm| > pn. (19.1)
Also xi ¢ B, (x,) U B, (xy),ie.,
Pn < lxp—x¢| and  py < |xm — Xl

Since both B, (x,) and B, (x,,) intersect By and are in G,

IMpr < pn < 1w — Xl < pu + pr (192)
%Mpk < Pm = |xm _-xk| =< Pm + Pk

By elementary trigonometry

cosf) = |xn —Xk|2+ |xm —)Ck|2 - |xn _xml2

20200 — xillxm — X

Assuming cos # > 0 and using (19.1) and (19.2) estimate

(pn + P)* + (pm + p)* — P}
20nm
= Pt 200+ 2pc(pn + )
- 200 Pm
Lom oo e
200 PuPm Pm o Pn

RV 4\* 1 +241
=2 p, 3) M2 3IM’

Since m > n, from (18.2) it follows that p, > %pm. Therefore,

cosf <

1 41
3

2 4
cos0<§+§ﬁ( M+ ).

Now choose M so large that the cos 6 < % [

If N = 2, the number of rays originating from the origin and mutually forming
an angle 6 > 6, does not exceed 27/0,. If N > 3 let C(6,) be a circular cone in RY
with vertex at the origin, whose axial cross section with a 2-dimensional hyperplane,
forms an angle %90. Denote by oy (8,) the solid angle corresponding to C(6,). Then
the number of rays originating from the origin and mutually forming an angle § > 6,
does not exceed wy /oy (6,).
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The number ¢y claimed by Proposition 18.1 is estimated by,

WN
ON (90) '

ey = #{Gi} +#G) <4V M+ DV +

20 The Besicovitch Measure-Theoretical Covering
Theorem

A family F of closed balls in R" is a fine Besicovitch covering for a set E C R, if
for every x € E and every € > 0, there exists a ball B,(x) € F centered at x and of
radius p < e.

The next measure theoretical covering, called the Besicovitch covering theorem,
holds for any Radon measure g and its associated outer measure i, (§ 16.1). The set
E to be covered in a measure theoretical sense, is not required to be y-measurable.

Theorem 20.1 (Besicovitch [16]) Let E be a bounded set in RN and let F be a fine
Besicovitch covering for E. Let 11 be a Radon measure in RN and let 11, be the outer
measure associated with it.

There exists a countable collection {B,} of disjoint balls B, € F such that

fte (E — UB,) = 0. (20.1)

Remark 20.1 Ttisnot claimed that E C |J B,,. The collection { B, } forms a measure-
theoretical covering of E in the sense of (20.1).

Remark 20.2 A fine Besicovitch covering of a set E C R differs from a fine Vitali
covering, in that each x € E is required to be the center of a ball of arbitrarily
small radius. In this respect it is less flexible than the fine Vitali covering. However,
Besicovitch covering theorem applies to any Radon measure and in this respect is
more flexible than the Vitali covering theorem.

Proof May assume (i, (E) > 0 otherwise the statement is trivial. Since E is bounded,
may assume that both E and all the balls making up the covering F are contained in
some larger ball B,.

Let B; for j =1,...,cy be the subcollections of disjoint balls claimed by
Theorem 18.1. Since £ C 32, U, ~; By,

o0

n(ENU U By) = () > 0.

j=ln;=1

Therefore, there exists some index j € {1, ..., cy} for which

1
,U/e(E m U Bn,v) > _/J/E(E)
CN
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Since all the balls B, are disjoint and are all included in B,

oo

,Ue(Eﬂ U an) =< % ﬂ(an) < u(B,) < o0.

nj=l1 nj=l1

Therefore, there exists some index m; such that

nmi 1
He(EN U Byy) = 5 —pe(E). (20.2)
nj=1 CN

The finite union of balls is y-measurable. Therefore, by the Carathéodory criterion
of measurability (6.2) and the lower estimate in (20.2)

1e(E) = jie(EN U Boy) +1e(E~ U By)

n/=1 njzl

1 m
Me(E)+/'Le(E_ U an)~

>
2CN nj=1

Therefore,

mp

1
te(E— U Bu) <nue(E) n=1--—€(0,1).
n/=1 2CN

Set now
mi
E.=E- | By, .

nj=1

If p.(E) = 0 the process terminates and the theorem is proven. Otherwise let
JF7 denote the collection of balls in F that do not intersect any of the balls B,; for
n; =1,...,my. Since F is a fine Besicovitch covering for E, the family ¥ is not
empty and it is a fine Besicovitch covering for E;. Repeating the previous selection
process for the set £ and the Besicovitch covering F, yields a finite number m, of
closed disjoint balls B,, in F; such that

m

te(Er = U Bu) < nite(E) = npae(E = U Ba)) < nPpie(E).

ne=1 nj=1
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Relabeling the balls By, and B,, yields a finite number s, of closed, disjoint balls
B,, in F such that
52
pe(E — U By) < pre(E).
1

n=

Repeating the process k times gives a collection of s; closed disjoint balls in F
such that
Sk
pe(E = U Ba) < pue(E). (20.3)
1

n=

If for some k € N .
Sk
,Ue(E - U Bn) =0

n=1

the process terminated and the theorem is proven. Otherwise, (20.3) holds for all
k € N. Letting k — oo proves (20.1). ]

Problems and Complements

lc Partitioning Open Subsets of RY

The dyadic cubes covering an open set E can be chosen so that their diameter is
proportional to their distance from the boundary of E.

Proposition 1.1c (Whitney [174]) Every open set E C RY can be partitioned into
the countable union of closed dyadic cubes {Q,}, with pairwise disjoint interior and
satisfying,

diamQ; < dist{Q;; OE} < 4diamQ;  forall j.

2¢ Limits of Sets, Characteristic Functions and o-Algebras

2.1. From the definition (2.1) it follows that E’ C E”. There are sequences of
sets { E,} for which the inclusion is strict.
2.2.  Prove that for a sequence of sets {E,}

limsup xg, = XEr liminf xg, = xp
(limsup E,)" = liminf E¢ (liminf E,)° = lim sup E.

Set Dy = E| and D, = D,AE,, for n € N. Prove that lim D,, exists if
and only if lim E,, = (.
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2.3.

24.
2.5.

2.6.

2.7.

2.8.

2.9.
2.10.

2.11.

2.12.

3c

3.1.

3.2

3.3.

34.

Let A be the collection of subsets £ C X such that either E or E€ is finite.
Then if X is not finite .4 is an algebra but not a o-algebra.

Construct the smallest o-algebra generated by two elements of X.
Construct the smallest o-algebra generated by the collection of all finite
subsets of X.

Prove that an algebra A is a o-algebra if and only if for every nondecreasing
(nonincreasing) sequence of sets {E,} C A, lim E,, € A.

The smallest o-algebra A, containing a collection of sets O C 2%, is the
union of all the smallest o-algebras containing a countable collection of
elements of O.

An infinite o-algebra contains a countably infinite collection of disjoint non-
empty sets.

If a o-algebra A contains infinitely many sets, then card A > card R.

Let {X; U} be a topological space such that the collection of its open sets is
an algebra. Characterize {X; U}.

The intersection of any collection of algebras is an algebra. The union of
algebras need not be an algebra.

For a countable collection of sets {E, } characterize lim sup E,, as the set of
all x lying in infinitely many E,,.

Measures

Let X be an infinite set and let A be the collection of subsets of X that
are either finite or have a finite complement. Let also i : A — R* be a set
function defined by, p(E) = 0 if E is finite and p(E) = oo if E has finite
complement. The collection A is not a o-algebra and p is not countably
additive.

Let X be an uncountable set and let A be the collection of subsets of X that
are either countable or have a countable complement. Let also p : A — R*
be a set function defined by, u(E) = 0 if E is countable and pu(E) = oo if
E has countable complement. The collection A is a o-algebra and  is a
measure.

Semifinite Measures: A measure p on a g-algebra A is semifinite if every
measurable set of infinite measure contains a measurable set of positive and
finite measure. Measures that are o-finite are semifinite. The converse is
false. Give an example of a non-semifinite measure.

Prove that if 1 is semifinite, every measurable set of infinite measure contains
a measurable set of arbitrarily large measure.

For a measure y on a o-algebra A set

A3 E — p,(E) = sup{u(A) | A>3 ACE, and pu(A) < oo}.

Prove that y, is semifinite and that if x4 is semifinite, then p = p,.
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3.5.

3.6.

3.7.

3 Measuring Sets

Locally Measurable Sets: For a measure space {X, A, 11}, define the col-
lection A 1o,

Ao = collectionof all E C X, suchthat ENA € A
foe = forall A € A such that u(A) < oo

Prove that if p is o-finite, then A = A o.. Give an example showing that
the inclusion A C A, might be strict. Prove that Ao is a o-algebra and
construct a measure /o on A 1o that coincides with g on A.

Extension of {X, A, u} to {X, A, 1t 1oc}: Prove that the set function

wE) if Ec A

Atoe 3 E = pioc(E) = oo otherwise

is a measure on A .
Measure Theoretical Distance of Sets. Let 1, be a measure on a o-algebra
A.Prove that f(AAB) = 0, for A, B € A, implies j1(A) = p(B). Prove that
the relation

A~ B ifandonlyif u(AAB)=0

is an equivalence relation on A. A distance d(-; -) between any two sets
E, F € A can be defined by setting d(E; F) = u(EAF). Prove that

d(E; F) =0, d(E;F)=d(F;E), d(E;F)=<d(E;G)+d(G;F)

forany G € A.Moreover,if E ~ E'and F ~ F',thend(E; F) = d(E’; F').
The set operations

AsE,F—EUF, ENF, E°

are continuous with respect to d(-; -). Specifically, for all € > 0, there exists
0, depending on ¢ and u(X), such for every pair of sets

A3 E;, F;, fori =1,2, suchthat d(E;; E») < ¢ and d(Fy; F>) < 6,

there holds

d((E\UF); (E2U ) <&
d((E\ N F); (Ex N F)) <&
d(Ef; ES) < e.

This follows from the finite additivity of w, and the set identities

(EyUFDA(E,U ) = (E1AE)A(FIAR)AE,
n (F1AF2)AF2 n (ElAEz);
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(EiNF)A(E; N F) = E\N(FIAFR)AF, N (E1AE));
ESAES = E\AEs;
(E1AF)A(E2AF,) = (E\AE)A(FLAF).

3.8.  Finitely and Countably Additive Measures: A set function p satisfying
the requirements (i)—-(iv) of § 3 of a measure, is also called a countably
additive measure. A finite, and finitely additive measure on a o-algebra A is
anonnegative set function y : A — R* such u(X) < 0o, and for every finite
collection {E1, ..., E,} of disjoint elements of .A

P(ELU - UEy) = p(Ey) + - + p(Ey).

Prove that a finite, and finitely additive measure x is countably additive if and
only if for every nondecreasing (nonincreasing) sequence of sets {E,} C A,

3.9.  Let ube a measure on a o-algebra .4 and let {E,} be a collection of disjoint
sets in \A. Prove that for every measurable set E of positive o-finite measure,
w(E N E,) > 0 for at most countably many E,.

3.10. Let {X, A, u} be a measure space and let {E,} C A satisfy > u(E,) < oo.
Prove that the set of points belonging to infinitely many E, has measure zero
(see 2.12).

3.1¢c Completion of a Measure Space

If {X, A, u} is not complete it can be completed as follows. First define

A [ the collection of sets of the type E U N where E € A]
compl — .

and N is a subset of a set in A of measure zero

Then set
Acompl SEUN — Ncompl(E UN) = /L(E)

The definition does not depend on the choices of E and N identifying the same
element EU N € Acompr. Indeed if Ey UN; = E; UN; € Acompl then E; C E> U
N} and E, C E; U N{, where N and N, are subsets of sets in .A of measure zero.
Therefore,

,Ufcompl(El UN)) = Mcompl(EZ U N>).

Prove that Acomp is a o-algebra and ficompi 1S @ complete measure.
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4c

4.1.
4.2.
4.3.
44.

4.5.

4.6.

Sc

3 Measuring Sets

Outer Measures

If p.(N) = 0 then p.(E) = p.(E U N) forevery E C X.

A finitely additive outer measure is a measure.

The countable sum of outer measures is an outer measure.

Construct the Lebesgue—Stieltjes outer measure corresponding to the func-
tions

[x] for x >0,

. _ 1 for x >0,
f(-x)Ze" f(x)_[o forx<0,

f(x):[_] for x < O.
Let Q consist of X, ¢ and all the singletons in X. Define set functions A and
A2, from Q into R*, by

AM(X) =00, \(¥) =0, \{(E) =1, forall E € Q other than X and ¢;
MX)=1, @) =0, \(E) =0, forall E € Q such that £ # X.

Each of these is a set function on a sequential covering of X. Describe the
outer measures they generate.

The Lebesgue outer measure on R coincides with the Lebesgue—Stieltjes outer
measure generated by f(x) = x.

The Hausdorff Outer Measure in R

5.1c The Hausdorff Dimension of a Set E c RY

By Propositions 5.1 and 5.2, if p,(E) is finite, then Hy,(E) = 0 for all > 0. If
E C R?is a segment, then p,(E) = H,(E) = 0. Moreover,

Hity(E) =0 forall n>0 and H(E) = {length of E}.

The Hausdorff dimension of a set E C R is defined by

5.1.

5.2.

dimy(E) = inf {a | Ho(E) = 0}. (5.1¢)

Let {E,} be a countable collection of sets in RY with the same Hausdorff
dimension d. Then their union has the same Hausdorff dimension d.

The Hausdorff dimension of a point in R is zero. The Hausdorff dimension
of a countable set in R" is zero.
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5.2¢c The Hausdorff Dimension of the Cantor Set is In 2/In 3

For § € (0, 1), let Cs be the generalized Cantor set introduced in § 2.2¢ of the Com-
plements of Chap. 1. Forn € N, consider the intervals {J, ;}, j =1,2 ..., 2" intro-
duced in the same section. For each n € N they form a finite sequence of disjoint
closed intervals covering Cs and each of length ¢”. Therefore, by the definition of
the outer measure H,,, for a > 0,

o
Ho(Cs) < lim Y (diamJ, ;)* = lim 2"6". (5.2¢)
n—oo

n—00 i

Therefore if o > log,; /5 2, then 'H,, (C(;) = 0. It follows from (5.1c¢) that the Haus-
dorff dimension of Cs does not exceed log; /6 2.If6 = % then C; coincides with the

standard Cantor set C. Thus
In2

dimy (C) < E

To prove the converse inequality we may assume that H,(C5) < oco. Then given
€ > 0 there exists a countable collection of sets Z,, of diameter not exceeding ¢,
whose union covers Cs, such that

Z (dlarnzm)(l = Ha(cé) +e.

m=1

By possibly changing ¢ into 2¢ on the right-hand side, may assume that 7, are
open intervals. Since Cs is compact, may also assume that the collection Z,, is finite.
Since {I,,} is a finite covering of Cs consisting of open intervals, there exists n € N
sufficiently large, such that each of the intervals J,, ; must be contained in some Z,,
(§ 17.1c of Chap.2).

Lemma S5.1¢ For each m € N let n,, be the smallest positive integer such that
Jun,j C Ly for some j=1,...,2". Then at most 4 of the intervals J,, ; inter-
sect L, say for example J,, ;,, for& =1,..., 48, , with €, , < 4.

Proof It follows from the construction of the J, ; in § 2.2¢ of the Complements of
Chap. 1. Indeed if not J,,_y ; C Z,, for some j = 1,...2" "1 n

Corollary S.1¢ For eachm € N

14

1 m,n
diamZ,, > — > diamlJ,, ;,.
4o
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Let n = max{n,,}. Then

1 Z/ll./!
€+ Ha(Cs) > D (diamZ,)" > T 2. 2 (diamJ,, )"
m (=1

on

s « 1 n san
> E};(dlamjn.j) = 472 o,

Thus the Hausdorff dimension of Cs is In2/1n 1/4.

8¢ The Hausdorff Measure in RV

8.1c Hausdorff Outer Measure of the Lipschitz Image of a Set

A function f:RM — R™ for N,m € N is Lipschitz continuous if there exists a
constant L such that

|f 1) = f(2)lw < Llxi — xaly  forall xi,x; € RY. (8.1¢)

Here | - |,, and | - |y denote the Euclidean distance in R” and R¥, respectively.
The constant L is the Lipschitz constant of f.

Proposition 8.1¢ Let f : RY — R™ be Lipschitz continuous with Lipschitz constant
L and let E C RN. Then, forall 0 < a < 00,

Haol f(E)] < L"Ha(E). (8.2¢)

Proof The statement is obvious for o = 0. Assuming o > 0, fix ¢ > 0 and let {E,,}
be a countable collection of subsets of RY, each of diameter not exceeding ¢, and
whose union covers E. Then f(E) C | f(E,) and

diamf(E,) < LdiamE, < Le.

From this
Hor[ f(E)] < L* > (diamE,)". -

Corollary 8.1¢ A Lipschitz function f : RN — R™ maps sets of a-Hausdorff mea-
sure zero, into sets of a-Hausdorff measure zero.

Corollary 8.2¢c Form < N, let Py, be the projection of sets in RY into R™. Then
forall ECRY andall0 < o < o0

Ha[PN,m(E)] < Ha(E) (830)
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As a consequence

{Hausdorff dimension of Py ,(E)} < {Hausdorff dimension of E}. (8.4¢)

8.2¢ Hausdorff Dimension of Graphs of Lipschitz Functions

The graph of a function f from a set E C RY into R is the set

Gre={(x, f(x)) for x € E} C RN, (8.5¢)

Proposition 8.2¢ Let f : RY — R be Lipschitz and let E C RY be Lebesgue mea-
surable and of positive Lebesgue measure. Then the

Hausdorff dimension of Gy.p = N. (8.6¢)

Proof By Corollary 8.2c the Hausdorff dimension of G, ¢ is no less than N. For the
converse inequality, use an argument similar to the proof of Proposition 5.1 to prove
that

Ho(Grg) =0 forall a > N. n

9¢ Extending Measures from Semi-algebras to o-Algebras

Given a nonnegative set function A : @ — R* on a semi-algebra Q one might ask
under what conditions A is actually a measure on Q. It turns out that more stringent
conditions need to be imposed both on A and Q. The collection Q is required to be
an algebra and ) is required to be regular on Q in the following sense.

9.1c Inner and Outer Continuity of X on Some Algebra Q

A nonnegative set function A on some algebra Q is inner continuous, if for every
0 € Q and all increasing sequences {Q,} C Q such that | J Q, = Q, there holds
lim A(Q,) = A(Q).

The set function \ is outer continuous if for every Q € Q and all decreasing
sequences {Q,} C Q such that (| O, = Q, there holds lim A\(Q,) = A\(Q).

A measure )\ on some algebra Q is both inner and outer continuous. The next
proposition asserts that the converse is true, provided A is finitely additive and finite.
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Proposition 9.1¢ A nonnegative, finite, finitely additive set function \ on some alge-
bra Q is countably additive on Q, if and only if is either inner or outer continuous.

Proof Let {Q,} be a disjoint sequence of sets in Q, whose union is Q € Q. If \ is
inner continuous

M@ =timA(U @) = lim 3 X(0)) = X AQ).
j= j=
If )\ is outer continuous

MO =AU 0)+ M2 - U )

j=1 Jj=1
= lim zl AMQ)) +limA(Q — -01 ;) .
j= J=

Corollary 9.1c¢ A nonnegative, finite, finitely additive set function X on some algebra
Q is countably additive on Q, if and only if for every decreasing sequence {Q,} C Q
with empty intersection, lim \(Q,) = O.

10c More on Extensions from Semi-algebras to o-Algebras

10.1c¢ Self-extensions of Measures

Let {X, A, u} be a measure space, not necessarily generated by an outer measure.
Using A as a sequential covering of X and i : A — R* as a set function, one may
construct an outer measure /i, by the procedure indicated in (4.1), and a measure
pipe defined on a o-algebra A,,,.

The measure pup is a self-extension of p.

11.1.  Prove that if p is o-finite, then pu is the completion of p. In particular, if
{X, A, u} is o-finite and complete then p = pup.

11.2.  Let {X, Acompl, fcompl} denote the completion of {X, A, p} (§ 3.1c). Prove
that A, = Acomptiioc and [t = Licompliioc (s€€ 3.5-3.6 of § 3¢ of the Com-
plements).

11.3.  Assume pu(X) < oo and let E C X be such that p..(E) = pu(X). Prove that
if A, B € Asatisfy AN E = BN E, then u(A) = u(B). Define

[ANE:AeAy=Ar 5 ANE — up(ANE) = u(A).

Prove that Ag is a o-algebra on E and that u is a well defined measure on

Ag.

In the problems below assume that { X, A, u} itself is generated by an outer mea-
sure .. By construction fi, < fiee.
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11.4. Prove thatif {X, A, u} is generated by a measure \ on a semi-algebra Q then
tee = fte. Moreover, A, = Ao and pipt = fiioc.

11.5. Prove that p..(E) = pu.(E) if and only if there exists a u-measurable set
A D E such that u(A) = p.(E).

11.6. Give an example of {X, A, u} and E C X for which p.(E) < piee(E).

An example can be constructed by the following steps. First divide all subsets of
R into three classes

(ZR)O = {the collection of all countable subsets of R}

(2%), = {the collection of all uncountable subsets of R
with uncountable complement}

(2%), = {the collection of all uncountable subsets of R

with countable complement}.

Then define a set function i, : 2® — R, by

0if E € 2%),
X5 E— u(E)y={1if E e (2®),
2if E € 2%),

and verify that i, is an outer measure on 2. Let {R, A, 11} be the measure space
generated by 1. Since 1, is not finitely additive .4 is not expected to coincide with
2R (Proposition 9.1).

Lemma 10.1¢ Sets in (2%), and in 2®), are measurable, whereas sets in (2®), are
not measurable.

Proof The first two statements are established by the Carathéodory measurability
condition (6.2). If E € (2®), then E€ is uncountable and it can be separated into the
disjoint union of two uncountable sets B, C € (2%);. In the Carathéodory condition
(6.2) take A = E U B € (2%),. Then

pe(A) =1, p(ANE)=p.(E)=1, p,(A—E)=puB)=1 m
If E € 2®),, for any € > 0, there is no measurable set A D E such that

1 = pe(E) > p.(A) — ¢, since . (A) is either O or 2.

10.2¢ Nonunique Extensions of Measures \
on Semi-algebras

11.7. Let X = QN [0, 1] and let Q be the semi-algebra of the finite unions of sets
of the type (a, b] N X where a, b are real numbers and 0 < a < b < 1. The
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set function
M@, bp]NX} =00 and AW) =0

is a non o-finite measure on Q. Prove that Q, = 22 and verify that

11 = {the counting measure on Q,}
iy = {p2(E) = oo forevery E € Q, and p(9) = 0}

are extensions of \ to 29.

Let {X, A, 11} be generated by a finite measure A on a semi-algebra Q. Define
the inner measure of a set E C X by

1 (E) = p(X) — pe(X — E).

Prove that E is measurable if and only if u.(E) = u; (E).

12c The Lebesgue Measure of Sets in R"Y

In this section “measure” means the Lebesgue measure in RY and p, is the outer
measure form which the Lebesgue measure is constructed.

12.1.
12.2.
12.3.

124.
12.5.
12.6.

12.7.

12.8.

12.9.

The Lebesgue measure of a polyhedron coincides with its Euclidean measure.
The Lebesgue outer measure and measure are translation invariant.

The interval [0, 1] is not countable for otherwise it would have measure
zero. The Cantor set provides an example of a measurable uncountable set
of measure zero.

There exist unbounded sets with finite measure.

Let 0 < k < N be an integer. A R¥~* hyperplane in R has measure zero.
The boundary of aballin R" has measure zero. However, there exist open sets
in R whose boundary has positive measure. For example, the complement
of the generalized Cantor set. Such a set also provides an example of an
open set E C [0, 1] which is dense in [0, 1], its measure is less than 1 and
for every interval I C [0, 1], the measure of I N E is positive.

The set of the rational numbers has Lebesgue measure zero and its boundary
has infinite measure.

Let E be a bounded measurable set in R". There exists a set E; of the type
of Gs, containing E and such that

pe(ANE) =, (ANEs) forall AcRY.

This is false if E is not measurable.
Let E € M be of positive measure. For every € € (0, 1) there exists a cube
Q: such that u(E N Q.) > eu(Q:).
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Proof May assume that (E) < oo. For every € € (0, 1) there exists an open set
E, D E such that eu(E,) < u(E). Since E, is open it is the countable union of
dyadic, disjoint cubes {Q,}. Therefore,

e(Ey) = ep(U Qn) = € 2 (@)
<u(E)=p(UENQ,) = uEN Q).

Hence u(E N Q) > eu(Q,) for some n. ]

12.10. Let E C R be a bounded, Lebesgue measurable set of positive measure.
Prove that the set
E—E={x—yx,y €E}

contains an interval about the origin.

Proof Having fixed € € (0, 1)0, let I = (a, b) be an open interval for which p(E N
I) > eu(I). Such an interval exists by 12.9. Let o € (0, 1) and consider the interval

(— o), aph)) = J.
The numbers «, € € (0, 1) can be chosen so that
UINEYN[INE)+x]#@ forall fixed x € J. (%)

This would establish the claim. Indeed, for each x € J there exist y,z € (I N E)
such that y =z 4 x, i.e., x = y — z for some y, z € E. To prove (*) proceed by
contradiction. By construction

(INE)U[UINE)+x]C (a,b+au)).
If (*) is violated

2ep(l) <2p(INE) = p(I NE) + p[(I NE) +x] = (1 +a)u(d).

1

Choose o = Endsz [

3

1

12.11. Fore > 0 and x, € Q N [0, 1] construct the open interval I. ,, about x,, of
length27"¢, and set E. = |J I. , and E = () Ey,,. Prove that E. C [0, 1]
with strict inclusion, for all £ € (0, 1).

12.12 Let E C [0, 1] be Lebesgue measurable and of Lebesgue measure zero.
Prove that the set E> = {x? : x € E} is measurable and has measure zero.

12.13. The Lebesgue measure on R coincides with the Lebesgue—Stieltjes measure
generated by f(x) = x.
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12.1c¢ Inner Measure and Measurability

Let 1, be the Lebesgue outer measure in RY. Define the Lebesgue inner measure
i (E) of abounded set E C RN as

wi(E) = sup {,ue(C) | where C is closed and C C E} (12.1¢)

If E is of finite inner measure, for every € > 0 there exists a closed set E, . such
that E.. C E and p; (E) < p(E. ) + €.

Proposition 12.1¢ A bounded set E C RY is Lebesgue measurable if and only if
pi(E) = pre(E).

12.2c The Peano—Jordan Measure of Bounded Sets in RN

Let E be a bounded set in R" and construct the two classes of sets

O =
£ { cubes in RV and that contain E

[ sets that are the finite union of closed ]
E= .

sets that are the finite union of open }

cubes in RV and that are contained in E

The Peano-Jordan outer and inner measure of E are defined as

o s(E) = inf p(0).  po_y(E)=sup u().  (12.2¢)
0e0Og 1T

Abounded set E C R is Peano-Jordan measurable if its Peano—Jordan outer and
inner measures coincide. From the definition of Lebesgue outer and inner measure
it follows that

wp_7(E) < pi(E) < p(E) < pip_ 7 (E).

Thus a Peano—Jordan measurable set is Lebesgue measurable. The converse is
false. The set Q N [0, 1] is Lebesgue measurable and its measure is zero. However,

fo_,@Q@NI0, 1) =1,  pp_,(QN[O0,1]) =0.

Thus Q N [0, 1] is not Peano—Jordan measurable. This last example shows that
the Peano—Jordan measure is not a measure in the sense of § 3, since its domain is
not a o-algebra.
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12.3c¢ Lipschitz Functions and Measurability

A continuous function from R" into itself need not preserve measurability as shown
by the continuous function f : [0, 1] — [0, 1] constructedin § 14. Itis then natural to
ask what properties one may require on f : RV — R, to map Lebesgue measurable
set in R" into Lebesgue measurable sets in R". The next proposition asserts that
this occurs if f is Lipschitz continuous in the sense of (8.1c¢).

Proposition 12.2¢ A Lipschitz continuous function f : RN — RN, maps Lebesgue
measurable sets in RN into Lebesgue measurable sets in RY .

Prove the proposition by the following steps:

i. f maps compact sets of R into compact sets in R". Hence it maps bounded,
closed sets into bounded closed sets.

ii.  f maps countable unions of closed dyadic cubes into measurable sets. Hence
f maps open sets into measurable sets.

iii. f maps sets of measure zero in RY into sets of measure zero of RV. See
Corollary 8.1c.

iv.  If E C R" is bounded and measurable, there exists a set E, C E of the type
of F,, and a measurable set £ C E of measure zero, such that E = E, U €.
Then f(E) = f(E;) U f(E).

V. If E is unbounded write
E=UEN{j<l|x|<j+1}.

Remark 12.1c Let f be a Lipschitz map from R” into R™ for some N, m € N. The
conclusion of the proposition is false, in general, if N # m. Give counterexamples
and identify which of the previous points fails.

12.3.1¢ Linear Maps, Measurability and Volumes

Let T be a linear bijection in R" (i.e., a linear nonsingular transformation of R"
onto itself). Such a map is Lipschitz continuous and therefore it maps Lebesgue
measurable sets into Lebesgue measurable sets.

Proposition 12.3¢ Let T : RY — RY linear and nonsingular. Then for every
Lebesgue measurable set E C RV,

(W(TE) = |det T|u(E). (12.3¢)

Prove the proposition by the following steps:

i. T maps parallelepipeds in R" into parallelepipeds in R".
ii.  Let P be a parallelepiped in RY with edges identified by the vectors x; for
i=1,...,N.Then
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iii.

iv.

vi.
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p(P) = |det(x;;)|, and p(TP)=|[detT|u(P)

where (x;;) is the matrix whose rows are the vectors x;.

If E C RY is open, then (12.3c) holds. An open set is the countable disjoint
union of dyadic cubes.

If E ¢ RY is bounded and measurable, for every € > ( there exists a countable
collection {Q,} of disjoint dyadic cubes such that

EcUQ, and > pu(Qn) = u(E)+e.
Now TE C |J T Q, and hence
WTE) <|detT|u(E) + |detT|e.
If E ¢ RY is bounded and measurable, for every ¢ > 0 there exists an open
set E, such that
ECE, and wu(E,—FE)<e.

Now TE C TE, and

| det T|u(E) < |det T|p(E,) = p(TE,)
— W(TE) + plT (E, — E)] < p(TE) + | det T'e.

If E is measurable and unbounded, write it as the disjoint union of bounded
measurable sets.

Thus in particular the Lebesgue measure is invariant by rotations and translations.

13c

13.1.

13.2.

Vitali’s Nonmeasurable Set

Every measurable subset A of the nonmeasurable set £ has measure zero.
Indeed the sets A, = Aer, C E, forr, € QN [0, 1] are disjoint, have each
measure equal to the measure of A, and their union is contained in [0, 1].
Thus

Z,UJ(An) = ,U(UAn) <L

Every set A C [0, 1] of positive outer measure, contains a nonmeasurable
set. Indeed at least one of the intersections A N E,, is nonmeasurable. If all
such intersections were measurable then by the subadditive property of the
outer measure,

0< :U'e(A) = Z.U(A NE,)=0

since all the A N E,, are measurable subsets of E.
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13.3. Let E C [0, 1] be the Vitali nonmeasurable set, and let y, (-) be the Lebesgue
outer measure. Prove that u,(E) > 0. Moreover for all € > 0, there exists a
nonneasurable set E. C [0, 1], such that Oy, (E:) < €.

13.4. The Lebesgue measure on [0, 1] is a set function defined of the Lebesgue
measurable subsets of [0, 1] satisfying:

(a). pis nonnegative

(b).  p is countably additive

(c). pis translation invariant

(d). If I C[0,1] is an interval then p(/) coincides with the Euclidean
measure if /.

It is impossible to define a set function w satisfying (a)—(d) and defined on
all subsets of [0, 1].

The construction of the nonmeasurable set £ C [0, 1] uses only the prop-
erties (a)—(c) of the function p and it is independent of the particular con-
struction of the Lebesgue measure. The final contradiction argument uses
property (d). If a function p satisfying (a)—(d) and defined in all the subsets
of [0, 1] were to exist, the same construction would imply that p([0, 1]) is
either zero or infinity. The requirement (d) cannot be removed from these
remarks. Indeed the counting measure or the identically zero measure would
satisfy (a)—(c) but not (d).

14c¢ Borel Sets, Measurable Sets and Incomplete Measures

The strict inclusion 5 C M can be established by an indirect cardinality argument.

14.1. Let B, denote the collection of all open intervals of [0, 1]. Prove that
card (B,) < card (R).

14.2. Define inductively B, for all n € N, as the collection of all countable unions,
countable intersections and complements of elements of B,_;. Prove that
card (B,) < card (RY) = card (R).

14.3. Let £2 be the first uncountable. For each o« < £2 define BB, as the collection
of all countable unions, countable intersection and complements of elements
of B for all ordinal numbers 8 < «. By definition of first uncountable, the
cardinality of B, does not exceed card (RY) = card (R).

14.4. The smallest o-algebra containing the open sets of [0, 1] can be constructed
by this procedure by setting B = | J,,_, B.. Hence the cardinality of B does
not exceed card (R).

14.5. Since the Lebesgue measure is complete, every subset of the Cantor set is
measurable and has measure zero. Since the cardinality of the Cantor set is
the cardinality of R, the cardinality of all the subset of the Cantor sets is
card (2F).

14.6. The cardinality of the Lebesgue measurable subsets of [0, 1] is not less than
card (2®), and the cardinality of the Borel subsets of [0, 1] does not exceed
card (R).
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16¢ Borel, Regular and Radon Measures

16.1c Regular Borel Measures

16.1. Prove that in the Proposition 15.1, the closed sets E. . can be taken to be
bounded.

16.2. prove that the counting measure on R is not outer regular, but it is inner
regular.

16.3. prove that the Hausdorff measure in RV generated by the outer measure
Hy—e, for 0 < € < N is inner regular and not outer regular.

16.2¢ Regular Outer Measures

Let 1 be a Borel measure in RV, and let /1, be an outer measure in RY that coincides
with p on the Borel sets. The outer measure p, is outer regular with respect to p if
for every set E C R of finite outer measure, there exists a set E of the type of a G
such that £ C E; and p.(E) = pu(Es). An example of such g, is the one generated
from a Radon measure p by formula (16.3).

16.4. Prove that if 1, is generated by a nonnegative set function A on the collection
of open sets, then ., is outer regular with respect to u. In particular, the
Lebesgue—Stieltjes outer measure jir,. is outer regular with respect to the
Lebesgue—Stieltjes measure fi 7.

16.5. Prove that the Hausdorff outer measure H,, for a > 0, is outer regular with
respect to the Hausdorff measure it generates.

Let E C RY be of finite H,, outer measure. Form € N fixed, There exists a countable
collection of sets {E,, ,}, each of diameter less than %, whose union contains £ and
satisfying
Mo, 1 (E) = 3 diam(E,,,)" — L
n
The sets
Opn={xeR | dist{x; E.n} < %diam(Em,n)}

are open and satisfy

(1+ 2)" Ho(E) = 3 diam(Op ) — = > My o, (Es) — =

1
m

where
Es=NUOu, and e,=(1+21)L
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17¢ Vitali Coverings

17.1.  Thenotion of Vitali’s covering of aset E C R" is independent of the measur-
ability of E. Let u, be the outer measure associated to the Lebesgue measure
in RY and generated by (16.1). Extend the Vitali covering theorem to the
case of a set E of finite outer measure p.(E).

17.2. Let E be a bounded subset of R" of finite outer measure which admits a fine
Vitali covering with cubes contained in £. Then E is Lebesgue measurable.
The requirement that the cubes making up the Vitali covering, be contained
in E is essential. Give a counterexample.

17.3. Let {Q,} be an uncountable family of closed, nontrivial cubes in R". Then
J Q. is Lebesgue measurable.

17.1c¢ Pointwise and Measure-Theoretical Vitali Coverings

It has been remarked that the collection { Q,,} claimed by Theorem 17.1 covers E only
in a measure-theoretical sense. Here we indicate how the covering can be realized to
be pointwise.

Proposition 17.1¢ Let F be a family of closed, nontrivial cubes Q(d) C R of
uniformly bounded diameter d, i.e.,

sup{d | Q(d) e F} =D < o0
There exists a countable collection of disjoint cubes {Q,(d,)} C F such that

UlQ@) € F} € U 0.(3d,). (17.1¢)

Proof For j = 1,2, ... define

D D
F=lower| 5 <dszs=)

Select {Q,, (d,,)} as any maximal collection of disjoint cubes in F;. Then introduce
the collection of cubes

(0@ eF | o@nU Q. dy,) =0}

and out of this collection select any maximal subcollection of disjoint cubes
{On,(dy,)}. Proceeding in this fashion, select recursively {Q,,(d,;)} as any max-
imal subcollection of disjoint cubes out of
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j-1
{0@) e 7} | Q@) N U{Qu(dn)} = 0}
k=1
The countable, disjoint collection claimed by the proposition is

{Qn(d)} = U {0Qn, ()}

jeN

A cube Q(d) € F belongs to some F;. By maximality of {Q,,(dy,)} there exists
Q;(d;) € {Qn,;(dn;)}, such that Q(d) N Q;(d;) # ¥. By construction

b di d) < b d D di d
5 < iamQ(d) < T an %< iamQ;(d;).

Therefore, d < 2d;. [

Proposition 17.2¢ Let F be a fine Vitali covering of a set E C R"N. There exists
a countable collection of cubes {Q,(d,)} C F such that for any finite collection

{le”" Qm}Cf

m
E-UQcC U 0, (3dy).
(=1 0u(d)e{Qn (@)} (011 O}

Proof Since F is a fine Vitali covering for £, may assume, without loss of generality,
that the diameters of the cubes in F are uniformly bounded. Then select {Q,(d,)}
as in the previous proposition and fix the finite collection {Q4, ..., Q,} C F.If E
is covered by the union of the Q, there is nothing to prove. Otherwise take

XEE—UQg
=1

and select a cube O, € F containing x and not intersecting any of the Q,. Such a
cube exists since F is a fine Vitali covering and the cubes are closed. By the previous
proof there exists Q;(d;) € {Q,(d,)} such that O, C Q;(3d;). [

18¢ The Besicovitch Covering Theorem

18.1c The Besicovitch Theorem for Unbounded E

The boundedness of E insures that, for the balls B, (x,), the radii {p,} — O as
n — oo. This information only enters in the proof in a qualitative way. The number
¢y, claimed by the theorem, is independent of F, the number R in (18.1), the set E
and its boundedness. These remarks permit one to extend the Besicovitch covering
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theorem to the case of E unbounded. For n € N set
E,={2R(n —1) < |x| < 2Rn}

and apply the Besicovitch theorem to each of the E, to obtain finite collections of
countable collections of disjoint balls {B7, ..., BZFN}. By construction, the balls of
each of the collections Bj do not intersect any of the balls of 5 11 Hence they can
be incorporated into B} to form a larger subcollection of disjoint balls. Likewise,
the balls of each of the collections Bi do not intersect any of the balls of B; and

thy can be incorporated into B} U Bf to form a larger subcollection of disjoint balls.
Proceeding by induction set

B;?ddz UB;’ for j=1,...,cn.
n odd

Each of B;?dd is a countable collection of disjoint balls. A similar argument holds
for the collections B;’ of even index n. Set

Bj:"enz U B? for j=1,...,cpn.

n even

The finite collection of countable collections of disjoint balls claimed by the
theorem can be taken to be

even even odd odd
BYen, L B, By B

Thus the theorem continues to hold with ¢y replaced by 2cy.

18.2¢ The Besicovitch Measure-Theoretical Inner Covering
of Open Sets E c RN

Proposition 18.1c Let E C RY be open. There exists a countable collection of dis-
Jjoint, closed balls {B,}, contained in E, such that y(E — UE,) = 0.

18.3c¢ A Simpler Form of the Besicovitch Theorem

The next is a covering statement, based only on the geometry of cubes in R and
independent of measures.
Theorem 18.1¢ (Besicovitch) Let E be a bounded subset of RN and let F be a

collection of cubes in RN with faces parallel to the coordinate planes and such that
each x € E is the center of a nontrivial cube Q(x) belonging to F.
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There exists a countable collection {x,} of points x,, € E, and a corresponding
collection of cubes {Q(x,)} in F such that

EcUQ) and 3 xow, <4V (18.1¢c)

Remark 18.1¢ The second of (18.1c) asserts that each point x € RY is covered by at
most 4" cubes out of {Q(x,)}. Equivalently at most 4" cubes overlap at each given
point.

It is remarkable that the largest number of possible overlaps of the cubes Q (x,),
at each given point, is independent of the set E and the covering F, and depends
only on the geometry of the cubes in RY.

Lemma 18.1c Let {Q(x,)} be a countable collection of cubes in RN with centers
at x,, and satisfying

Ifn < m then x,, & Q(x,) and p(Q(x)) < 21(Q(x,)). (18.2¢)

Then each point x € RY is covered by at most 4~ cubes out of {Q(x,)}.

Proof Assume first N = 2. Having fixed x € R?> may assume up to a translation
that x is the origin. Denote by 2p, the edge of the cube Q(x,) and let {Q;} be the
collection of squares containing the origin, whose center x; is in the first quadrant,
and of edge 2p;. Starting from Q; and the corresponding edge 2p; consider the 4
closed squares,

S1 =10, p11 x [0, p1] S =10, p1] x [p1, 2p1]
S3 = [p1,2p1] x [p1.2p1]  Sa = [p1,2p1] x [0, p1].

Let also
So =10,2p1] x [0,201] = S1 US US3U S;.

By construction Q; covers S; and by the second of (18.2¢) the center x; of each

of the Q;, for j =2, 3, ..., cannot lie outside S,. Indeed if it did, since Q ; contains
the origin, p; > 2p; and (Q;) > 4p(Q1).
Thus the centers x; of the Q;, for j =2,3,..., must belong to some of the

squares Sy, S, 83, S4. Now x; cannot belong to S; because otherwise the first of
(18.2¢) would be violated, since S; C Q;.

If some x; € S5, then since Q; contains the origin, S, C Q. Therefore, by the
first of (18.2c), no other center x;, for £ > j, belongs to S,. This implies that S,
contains at most one center x;.

By a similar argument S3 and S4 contain each at most one center x; of a cube Q ;.
Thus the collection {Q;} contains at most 4 cubes.

Defining analogously the collections of cubes containing the origin and whose
center is, respectively, in the second, third and fourth quadrant, we conclude that
each of these collections contains at most 4 cubes. Thus the origin is covered by at
most 16 cubes out of the collection {Q (x,)}.
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2p

Sy Ss

71

S1 Sa

”, 2pm

Fig. 1c Constructing the sequence of cubes Q(x;)

A similar argument for N = 3 gives that each point is covered by at most 64
cubes. The general case follows by induction (Fig. I¢). ]

Proof (of Theorem 18.1c) Set
E,=E and A| = sup {u(Q(x)) | X € E}
If A\; = oo there exists cubes Q(x) € F of arbitrarily large edge and centered

at some x € E. Since E is bounded we select one such a cube. If \; < oo select
x1 € E; and a cube Q(x;) such that u(Q(x;)) > %)\1. Then set

E;=E;—Q(x;) and X =sup{u(Qx)) |x € E}.
If Ey C Q(x)) the process terminates. Otherwise A\, > 0 and we select x, € E;
and a cube Q(x,) such that u(Q(xz)) > %)\2.

Proceeding recursively, define countable collections of sets E,,, points x, € E,,
corresponding cubes Q(x,) and positive numbers \, by

n—1 1
E,=FE— U] Q(xj) A = sup {,LL(Q()C)) | X € En}v :U'(Q(xn)) = E)\n
j:

By construction {),} is a decreasing sequence and

w(Q(xpy)) < Am A < 21(Q(x,)) for n <m

aslongas \,, > 0. Therefore by the previous lemma, at most 4" of the cubes { Q(x,,)}
overlap at each x € RY. It remains to prove that E C |J Q(x,).
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If E, = for some n, then, £ C U;’;i Q(x;) and the process terminates. If
E, # () for all n, we claim that lim A, = 0. To this end compute

lim sup p(Q(x,)) = 9.

Let x, be a cluster point of {x,}. If § > 0, then x, would be covered by infinitely
many cubes Q(x,). Therefore, 6 = 0. The relations

I (@) <A A1 <\

now imply that lim A, =0. If x € E — |J O(x,), there exists a nontrivial cube
Q(x) € F such that u(Q(x)) < A, for all n. Therefore, (Q(x)) =0 and Q(x)
is a trivial cube. u

18.4c Another Besicovitch-Type Covering

Proposition 18.2¢ Let E be a bounded subset of RN and let x — p(x) be a function
from E into (0, 1).* There exists a countable collection {x,} of points in E, such
that the closed balls B(x,,, p(x,,)), with center at x,, and radius p(x,), are pairwise
disjoint, and

Ecl B(x,,, 3p(x,,)). (18.3¢)

Proof Let F be the collection of pairwise disjoint balls B (x, p(x)) such that % <
p(x) < 1. Since E is bounded, F| contains at most a finite number of such balls, say
for example,

B(.XI, p(xl))5 B(-x25 p(-xz))v MR B(xnl ’ p(-xl‘ll)) (1840)1
for some n; € N. If their union covers E, the construction terminates. If not, let 7>
be the collection of pairwise disjoint balls B(x, p(x)), not intersecting any of the

balls selected in (18.4¢), and such that 272 < p(x) < 27! Since E is bounded, F>,
if not empty, contains at most a finite number of such balls, say for example

B (X, 11, p(Xny11))s B (X420 p(tn12)) s -« oy B (X, p(x)))
for some n, € N. If the union of the balls
B(xi, p(xi)) for i=1,....,n,n+1,...,n; (18.4c),

covers E, the construction terminates. If F; is empty, or if the union of these balls
does not cover E, construct the collection F5 of pairwise disjoint balls B (x, p(x)),

4Neither E nor x — p(x) are required to be measurable.
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not intersecting any of balls selected in (18.4c),, and such that 273 < px) < 272,
Proceeding recursively, assume we have selected a finite collection of pairwise dis-
joint balls

B(Xl, p(-xl))v B(-x27 p(-x2))s s B(-xnjs p(xnj)) (184C)j

for some n; € N. If their union does not cover E, construct the family 7 of pair-
wise disjoint balls B (x, p(x)) , not intersecting any of balls selected in (18.4c);, and
such that 2-0U+D < plx) < 2-J. Since E is bounded, Fj+1,if not empty, contains at
most a finite number of such balls, which we add to the collection in (18.4c);. If for
some j € N, the union of the balls in (18.4c); covers E the process terminates. Oth-
erwise this recursive procedure generates a countable collection of pairwise disjoint
balls {B (xn, p(xn)) }. It remains to prove that such a collection satisfies (18.3c). Fix
x € E. By construction

B(x, p(x)) N B(x;, p(x;)) # for some ;.
Therefore, p(x) < 2p(x;). For one such x; fixed
= x;] < p(x) + p(x)) < 3p(x;).

Thus x € B(xj, 3p(x‘,~)). [



Chapter 4
The Lebesgue Integral

1 Measurable Functions

Let {X, A, 11} be a measure space and E € A. Fora function f : E — R*andc € R
set

[f>c]:{x€E|f(x)>c}.

The sets [f > c], [f < cl], [f < c], are defined similarly, and are linked by

[fZC]=ﬂ[f>C—%][f>c]=U[fzc+%]

[f=scl=E—-[f>c] [f<cl=E-[f=c]

Therefore, if any one of the four sets

[f>cl, [fzcl [f<cl [f=cl (1.1)

is measurable for all ¢ € R, the remaining three are measurable for all c € R. A
function f : E — R* is measurable if at least one of the sets in (1.1) is measurable
forall c € R.

Remark 1.1 The notion of measurable function depends only on the o-algebra A
and is independent of the measure ;. defined on A.

Proposition 1.1 A function f : E — R* is measurable if and only if at least one of
the sets in (1.1) is measurable for all ¢ € Q.

Proof Assume for example that the third of the sets in (1.1) is measurable for all
¢ € Q. Having fixed some ¢ € R — Q let {g,} be a sequence of rational numbers
decreasing to ¢. Then [f > ¢] = J[f > ¢,] is measurable. [
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Proposition 1.2 Let f : E — R* be measurable and let « € R — {0}. Then

(i) The functions | f|, of, o+ f, f? are measurable
(ii) If f # O then also 1/f is measurable
(iii) For any measurable subset E' C E, the restriction f |  is measurable.

Proof The statements (i) and (ii) follow from the set identities:

[f>clU[f <—c] ifc=>0

[fl>c]l=
E if c <O

[a+ f>cl=[f>c—a]
c .
[f>a] if >0

[af >c] =
[f<§] if o <0

[f>ﬂu[f<—ﬁ] ifc>0

E if c <O

'[f>0]ﬂ[f<%] if c>0

[%>c]: [f>0] if c=0

[f>0]U[f<%] if ¢ <O.

To prove (iii) observe that [f |E,> c] =[f>c]NE". [
Proposition 1.3 Let f : E — R* and g : E — R be measurable. Then

(i) the set [f > gl is measurable
(ii) the functions f + g are measurable
(iii) the function f g is measurable
(iv) if g # O, the function f/g is measurable.

Proof Let {g,} be the sequence of the rational numbers. Then

[f>9l=ULf=ag.] N9 <aqul

This proves (i). To prove (ii) observe that for all c € R
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[f£g>cl=[f>Fg+c]

and the latter is measurable in view of (i). By the previous proposition ( f % ¢)? are
measurable and this implies (iii) in view of the identity

Afg=(f+9° = (f -9
Finally (iv) follows from (iii) and (ii) of the previous proposition. [

Proposition 1.4 Let {f,} be a sequence of measurable functions in E. Then the
functions

p=supf,, Y=inff,, f’=limsup f,, f =Iliminf f,
are measurable.

Proof For every ¢ € R,

[e>cl=Ulfy >c] and [ =cl=[fu =cl L]

Let f and g be two functions defined in E. We say that f = g almost everywhere
(a.e.) in E if there exists a set £ C E of measure zero such that

f(x)=gkx) forall xe E—& and u(€)=0.

More generally, a property of real-valued functions defined on a measure space
{X, A, p} is said to hold almost everywhere (a.e.), if it does hold for all x € X except
possibly for a measurable set £ of measure zero.

Lemma 1.1 Ler {X, A, u} be complete. If f is measurable and f = g a.e. in E,
then also g is measurable.

Corollary 1.1 Let {X, A, u} be complete and let { f,,} be a sequence of measurable
functions defined in E € A and taking values in R*. A function f : E — R* such
that f = lim f, a.e. in E is measurable.

2 The Egorov-Severini Theorem [39, 145]

Let { f,,} be a sequence of functions defined in a measurable set E with values in R*
and set
f"(x) =limsup f,(x)  f'(x) =liminf f,(x) x€E. (2.1)
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The functions f” and f’ are defined in E and take values in R*. We will assume
throughout that they are a.e. finite in E, i.e., there exist measurable sets £” and &’
contained in £ such that

f”(x) eR forall x € E —&” and M(g//) -0

f'(x) eR forall x e E—&  and (&) =0. (2.2)

The upper limit in (2.1) is uniform, if for every € > 0 there exists an index n.
such that

fi(x) < f"(x)+¢e forall n>n. andforall x € E—&".

Similarly the lower limit in (2.1) is uniform, if for every € > 0, there exists an
index n. such that

fu@) > f'(x) —¢ forall n>n. andforall x € E —¢&'.
Proposition 2.1 Let { f,,} be a sequence of measurable functions defined on a mea-
surable set E € A of finite measure, and with values in R*.
Assume that, for example, the second(first) of (2.2) holds. Then for every n > 0
there exists a measurable set E, C E, such that p(E — E,)) < 1 and the lower(upper)

limit in (2.1) is uniform in E,,.

Proof The statement is only proved for the lower limit, the arguments for the upper
limit being analogous. Fix m, n € N, and introduce the sets

00 1
Enn= [xeE-&)] )= fx) - E}'
Jj=n

For m € N fixed, the sets E,, , are measurable and expanding. By the definitions
of f"and &’

E-&8=UEn, ad E)=1lmu(E,,).
Therefore, having fixed 7 > 0, there exists an index n(m, n) such that

1
,Uf(E - Em,n(m,n)) S ﬁn

The set claimed by the proposition is

[
En = ﬂ1 Em,n(m,r])~ (23)

m=

Indeed E, is measurable and by construction
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o0

wWE —E)) = M( I(E - Em’"(m’n))) =

m

3

/L(E - Em,n(m,r])) S 77
1

Fix an arbitrary ¢ > 0 and let m. be the smallest positive integer such thatem. > 1.
From the inclusion E,, C E,,_ m.,, and the definition of the sets E,, ,, it follows
that

fux) = f'(x) —e forall n > n. =n(m.,n) andforall x € E,. [

Theorem 2.1 (Egorov-Severini [39, 145]) Let {f,} be a sequence of measurable
functions defined in a measurable set E of finite measure, and with values in R*.
Assume that the sequence converges a.e., in E, to a function f : E — R*, which is
finite a.e. in E. Then, for every 1) > O there exists a measurable set E,, C E, such
that (E — E,) < 1 and the limit is uniform in E,).

Remark 2.1 The Egorov—Severini theorem is in general false if E is not of finite
measure (2.2 of the Complements).

2.1 The Egorov-Severini Theorem in RN

Proposition 2.2 Let {X, A, u} be RN endowed with a inner regular Borel measure
1 (in the sense of (16.2) of Chap. 2). Let { f,,} be a sequence of | measurable functions
defined on a pi-measurable set E C RN, of finite measure, and with values in R*,
Assume that, for example, the second of (2.2) holds. Then for every n > 0 there exists
a closed set E.,, C E, such that n(E — E.,) < n and the lower limit in (2.1) is
uniformin E .

Proof The set E, in (2.3) is a yi-measurable subset of RV of finite measure. Since p
is inner regular, there exists a closed set E,, C E; such that u(E,, — E.,;)) <7n. =

The proposition holds in particular if 1 is the Lebesgue measure in R”, since the
latter is inner regular (Proposition 12.3 of Chap. 3).

3 Approximating Measurable Functions by Simple
Functions

A function f from a measurable set E with values in R is simple if it is measurable
and if it takes a finite number of values. The characteristic function of a measurable
set is simple. Let f be simple in E, let { fi, ..., f,} be the distinct values taken by
fin E and set

Ei={xeE| fx)=f}. (3.1
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The sets E; are measurable and disjoint, and f can be written in its canonical
form

f=2 fixe- (3.2)
i=1
Given measurable sets Eq, ..., E, and real numbers fi, ..., f,, the expression

in (3.2) defines a simple function, but not in general its canonical form. This occurs
only if the E; are disjoint and the f; are distinct.

The sum and the product of simple functions are simple functions.

If f and g are simple functions written in their canonical form (3.2), then f + g
and f¢g are simple but not necessarily in their canonical form.

Proposition 3.1 Let f : E — R* be a nonnegative measurable function. There
exists a sequence of simple functions { f,}, such that f, < f,+1 and

f(x) =1lim f,(x) forall x € E.
Proof For a fixedn € N set
n if f(x)>n

j+1
on

P =50 it 2i < f(x) < (3.3)

for j=0,1,...,n2" — 1.
By construction f,, < f,+1. Since f is measurable, the sets

41
S L T 7

r=Lil-lr=1

and the set [ f > n], are measurable and disjoint. Thus the f, are simple.
Fix some x € E. If f(x) is finite, by choosing n, > f(x),

1
Off(x)—fn(x)fz—n forall n > n,.

If f(x) = oo, then f;,(x) = n for all positive integers n and the conclusion holds
in either case. ]

A function f from a set E into R* can be decomposed as

f=f"—f"  where fFf=1(fl£f). (3.4)
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Corollary 3.1 Let f : E — R* be a measurable function. There exists a sequence
of simple functions { f,,}, such that f(x) = lim f,(x) forall x € E.

4 Convergence in Measure (Riesz [125], Fisher [46])

Let { f,} be a sequence of measurable functions from a measurable set E of finite
measure, into R* and let f : E — R* be measurable and a.e. finite in E. The
sequence { f,} converges in measure to f,if forany n > 0

lim i {x € E | |f,(x) = f@)] > n} =0.

Proposition 4.1 The convergence in measure identifies the limit uniquely up to a set
of measure zero, i.e., if { f,,} converges in measure to f and g, then f = g a.e. in E.

Proof Forn e Nandae. x € E,

[f ) =g < [f(x) = fa@)] + [ fulx) = g0)I.

Therefore, for all n > 0

Uf—gl>nlC[lf = ful > 0] U[If. — gl > 3n].
Take the measure of both sides and let n — 0. [

Proposition 4.2 Let {X, A, u} be a measure space and let E € A be of finite
measure. If { f,} converges a.e. in E to a function f : E — R* which is finite a.e. in
E, then { f,} converges to f in measure.

Proof Having fixed an arbitrary € > 0, by the Egorov—Severini theorem, there exists
ameasurable set E. C E,suchthat u(E—E.) < eand {f,} convergesto f uniformly
in E.. Therefore, for any n > 0,

limsup pfx € E | | f,(x) — f(x)| > n} <e. u

Remark 4.1 The proposition is in general false if E is not of finite measure.

Remark 4.2 Convergence in measure does not imply a.e. convergence as shown by
the following example. For m,n € N and m < n, let

-1

1 for x € [m
<pnm(x) = n
0 forxel0,1]—]

m
]

—1 m] 4.1)

n n
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Then construct a sequence of functions f, : [0, 1] — R by setting

fi=o, L=vu, =90, fa=p3, [s=pn,
fo =033, f1=0a1, f3 =pa2, fo=1pa3, - --- .

The sequence {f,} converges in measure to zero in [0, 1]. However {f,} does
not converge to zero anywhere in [0, 1]. Indeed for any fixed x € [0, 1] there exist
infinitely many indices m, n € N such that

m—1 m
<x<— and hence Onm (x) = 1.
n

n

Even though the sequence {f,} does not converge to zero anywhere in [0, 1], it
contains a subsequence {f,y} C {f,} converging to zero a.e. in [0, 1]. For example
one might select { v} = {©n1}.

Proposition 4.3 (Riesz [126]) Let {X, A, 11} be a measure space and let E € A. Let
{fu} and f be measurable functions from E into R*, a.e. finite in E. If{ f,,} converges
in measure to f, there exists a subsequence {f,;} C {f,} converging to f a.e. in E.

Proof For m,n € N, arguing as in Proposition 4.1

(U fo = ful > 0D < u([Ifu = £1 > I0]) + (I fn = f1 > 3n])-

From this and the definition of convergence in measure
dim ([l fy = ful > 1) =0. (42)

We will establish the proposition under the assumption (4.2). It implies that for
every j € N, there exists a positive integer n; such that

1 1
,U/([|fn _fm| > 2_1]) < F forall m,n > n;.

The numbers n; may be chosen so thatn; < n;4. Setting
1
Ey = [|f"j = Jjul = 2_1]
one estimates

1
and  p(E — j@k E,) < 5

1
w(E = En) = 577

for every fixed, positive integer k. The subsequence {f,,} selected out of {f,}, is
convergent for all x € [ E,,. Indeed for any such x, and any pair of indices
j=k
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k< nj <njiy

Jjte-1

1
Lo, ) = fu GO = 20 1 () = fr 0] < T

i=j
Since k € N is arbitrary, { f,,,} converges a.e. in E. |

The next proposition can be regarded as a Cauchy-type criterion for a sequence
{ fu} to converge in measure.

Proposition 4.4 Let {X, A, u} be a measure space and let E € A be of finite
measure. Let { f,,} be a sequence of measurable functions from a measurable set E of
finite measure, into R*. The sequence { f,,} converges in measure if and only if (4.2)

holds for all n > 0.

Proof The necessary condition has been established in the first part of the proof of
Proposition 4.3, leading to (4.2). To prove its sufficiency, let (4.2) hold for all n > 0
and let {f,/} be a subsequence, selected out of {f,} and convergent a.e. in E. The
limit f = lim f,/, a.e. in E, defines a measurable function f : E — R*, which is
finite a.e. in E. Having fixed positive numbers 7 and ¢, by virtue of (4.2), there exists
an index 7. such that

w([Ifo = ful > 3n]) < 3¢ forall n,m > n..

Since {f,y} — f a.e.in E, by the Egorov—Severini theorem, there exists a mea-
surable set E. C E, and an index n’, such that u(E — E.) < %5, and

| fw(x) — f(X)] < %n forall x € E. andforall n' >n..
From this and the inclusion
Uf = fl>mC[Ifu— fol > U1 = 1> in]

it follows
plfu = fI>nD) <e forall n > max{n;n.}. n

5 Quasicontinuous Functions and Lusin’s Theorem

Let 1 be a Borel, regular measure in R, in the sense of (16.1)~(16.2) of Chap. 3.
Let E C RY be measurable and of finite measure. A function f : E — R* is
quasi-continuous if for every € > 0 there exists a closed set E. . C E, such that

W(E — E..) <¢e and the restriction of f to E, . is continuous. (5.1)
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Proposition 5.1 A simple function defined in a measurable set E C RY of finite
measure is quasi-continuous.

Proof Let f : E — Rbe simple and let { f1, ..., f,} be its range. Since the sets E;,
defined in (3.1) are measurable, having fixed € > 0, there exists closed sets E.; C E;
such that

1
WE —E.;)<—c fori=1,...,n.
n

The set E. . = U:.IZIEC,[ is closed and pu(E — E..) < . The sets E.; being
closed and disjoint, are at positive mutual distance. Since f is constant on each of
them, it is continuous in E, .. ]

Theorem 5.1 (Lusin [99]) Let E be a u-measurable set in RN of finite measure. A
function f : E — R is measurable if and only if it is quasi-continuous.

Proof (Necessity) Assume first that E is bounded. By Proposition 3.1 there exists a
sequence of simple functions { f,,} that converges to f pointwise in E. Since each of
the f, is quasi-continuous, having fixed € > 0 there exist closed sets E., C E such
that

,U,(E - Ec,n) S

2n+l €

and the restriction of f, to E., is continuous. By the Egorov—Severini theorem in
RY, there exists a closed set E., C E such that

WE —E.,) < %5 and f, converges uniformly to f in E. ,.
The set E.. = NE,, is closed and
HE —Eco) = (E - mEc,n)

= p[U(E — Ec)] < X w(E — E.p) <e.
n=0

Since the functions f,, are continuous in E. . and converge to f uniformly in E .,
also f is continuous in E..
If E is unbounded, having fixed £ > 0 there exists n € N such that
w(E N [lx| > n]) < 3e.
The set E N [|x| < n] is bounded and there exists a closed set

E.. C EN[lx]| <n] such that pEN[x]| <n]l—E..) < %5

and the restriction of f to E. . is continuous. The set E, . is closed, is contained in
E and it satisfies (5.1). [
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Proof (Sufficiency) Let f be quasi-continuous in E. Having fixed € > 0, let E. . be
a closed set satisfying (5.1). To show that [ f > c] is measurable write

[fzcd=(f = C] NE.)U ([f >c]N(E - Ec,a))-
Since the restriction of f to E, . is continuous, [ f > c]N E, . is closed. Moreover
pe(lf = )N (E = E..)) < u(E — Ecc) <e.

Therefore, [ f > c] is measurable by Proposition 12.3 of Chap. 3. |

6 Integral of Simple Functions ([87])

Let {X, A, u} be a measure space and let E € A. For a measurable set A and @ € R

define,
_ | au(ENA) if a#0
AQMW“WO if a=0.

Since u(E N A) € R*, the first of these is well defined, as an element of R*, for
all « € R — {0}. Let f : E — R be a nonnegative simple function, with canonical
representation

n
f=2 fixe, (6.1)

i=1
where{E, ..., E,}isafinite collection of mutually disjoint measurable sets exhaust-
ing E and { f1, ..., f,} is a finite collection of mutually distinct, nonnegative num-

bers. The Lebesgue integral of a nonnegative simple function f is defined by
[ ran=% [ fixudu=3 fuceo. 62)
E i=1JE i=1

This could be finite or infinite. If it is finite, f is said to be integrable in E.

Remark 6.1 If f : E — R* is nonnegative, simple and integrable, the set [ f > 0]
has finite measure.

Remark 6.2 The integral of a nonnegative simple function is independent of the
representation of f. In particular if the representation in (6.1) is not canonical, the
integral of f is still given by (6.2).
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Let f, g : E — R be nonnegative simple functions. Then

f>g ae.in E — /fd,uz/gd,u.
E E

If f and g are both nonnegative, simple and integrable

/(af+ﬁg)du=a/fdu+ﬁ/gdu forall o, 3 e RT.
E E E

7 The Lebesgue Integral of Nonnegative Functions

Let f : E — R* be measurable and nonnegative and let Sy denote the collection of
all nonnegative simple functions ( : E — R such that { < f. Since { = 0 is one
such function, the class Sy is not empty.

The Lebesgue integral of f over E is defined by

fdu = sup/(du. (7.1)
E E

CES/‘

This could be finite or infinite. The elements ( € S; are not required to vanish
outside a set of finite measure. For example if f is a positive constant on a measurable
set of infinite measure, its integral is well defined by (7.1) and is infinity. The key
new idea of this notion of integral is that the range of a nonnegative function f is
partioned, as opposed to its domain, as in the notion of Riemann integral (see also
§ 7.2c of the Complements).

If f: E — R* is measurable and nonpositive, define

[ ran=-[pan (s =<0). (7.2)
E E

A nonnegative measurable function f : E — R* is said to be integrable if
(7.1) defines a finite number. As an example, if  is the counting measure on N, a
nonnegative function f : N — R is integrable if and only if >_ f(n) < oo.

If f, g : E — R* are measurable, nonnegative and f < ga.e.in E,then Sy C S,,.

Thus
/ fdu < / g,
E E

A measurable function f : E — R* is said to be integrable if | f| is integrable.
From the decomposition (3.4) it follows that f* < | f|. Therefore, if f is integrable,
also f¥* are integrable. If f is integrable, its integral is defined by
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/E fdp = /E frdp— /E fdp. (13)

If E/ C E is measurable and f : E — R* is integrable, then also fyg is

integrable and
/ fdp = / Fxedu. (7.4)
E E

The integral of a nonnegative, measurable function f : E — R*isalways defined,
finite or infinite, by (7.1). More generally, for a measurable function f : E — R*,

we set
+oo if [, ftdu=o00 and [, f~dx < o0

[ ran= @5)
E —oo if [, ffdpu <oo and [, f7dx = oc.

If £+ and £~ are both not integrable, then the integral of f is not defined.

8 Fatou’s Lemma and the Monotone Convergence Theorem
Given a measure space {X, A, u} and a measurable set E, let { f,,} denote a sequence
of measurable functions from E with values in R*.

Lemma 8.1 (Fatou [43]) Let { f,,} be a sequence of measurable and a.e. nonnegative
functions in E. Then

/liminf fudp < lim inf/ ym (8.1)
E E

Proof Set f = liminf f, and select a nonnegative simple function ¢ € Sy. Assume
first that ¢ be integrable, so that it vanishes outside a measurable set ' C E, of finite
measure. For fixed x € F and € > 0 there exists an index n.(x) such that

fu(x) > (Cx)—¢e  forall n>n.(x).
By the Egorov—Severini theorem as in Proposition 2.1, having fixed n > 0, there
exists a set F,, C F such that u(F — F,)) < 1 and this inequality holds uniformly in
F,, i.e., for every fixed € > 0, there exists n. such that

fax) = ((x) —¢ forall n>n. andforall x € F),.

From this, forn > n,

/fnd,uZ/ fnduz/(é—e)du
E F, F,
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> / Cdp— / Cdp— ep(F)
F F—F,

> /Ecdu—nsupé—eu(F).

Since p(F) is finite, this implies

liminf/ fudp > / Cdp for all integrable ¢ € Sy. (8.2)
E E

If  is not integrable, it equals some positive number §, on a measurable set F' C E
of infinite measure. Fix ¢ € (0, §) and set

F,={x€E| fj(x) >=6—¢ forall j>n}.
From the definition of lower limit F,, C F,; and F' C UF),. Therefore,
liminf p(F,) > p(liminf F,) = oo.

by (3.3) of Proposition 3.1 of Chap. 3. From this
lim inf/ fudp > lim inf/ fudp = (6 —e) liminf p(F),).
E Fy

Thus in either case (8.2) holds for all { € Sy . [

In the conclusion (8.1) of Fatou’s lemma, equality does not hold in general. For
example in R with the Lebesgue measure, the sequence

)1 for x € [n,n + 1]
fn(x) = [0 otherwise

satisfies (8.1) with strict inequality. This raises the issue of when (8.1) holds with
equality, or equivalently when one can pass to the limit under integral.

Theorem 8.1 (Monotone Convergence) Let{ f,,} be a monotone increasing sequence
of measurable, nonnegative functions in E, i.e.,

0< f,(x) < fur1(x)  forall x € E and forall n € N.
Then

lim/ f,,du:/limfndﬂ.
E E

Remark 8.1 The integrals are meant in the sense of (7.1). In particular both sides
could be infinite.
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Proof The sequence { f,,} converges for all x € E to a measurable function f : E —
R*. Therefore, by Fatou’s lemma

/Efdu:/Elimfndu§lim/Ef,,du§/Efdu. .

9 More on the Lebesgue Integral

Proposition 9.1 Let f, g : E — R be integrable. Then for all a, § € R

/ (af + f)du = a / fdu+ B / g, ©.1)
E E E

/ fdu > / gdp. ©.2)
E E

Also for every integrable function f

!/Efdu! S/Elfldu. 9.3)

If E' is a measurable subset of E, then

If f > ga.e. inE, then

/fdp: fdu+/ fdp. 9.4)
E E—E' E

Proof For ac > 0 denote by oS the collection of functions of the form a{ where
(eSs. Ifa>0and f > 0then oSy = S,¢. Therefore,

/ozfdu: sup/ndy:asup/(du:a/ fdpu.
E n€Sar J E CeS;JE E

Similarly, if @« < 0 use (7.2) and conclude that for every nonnegative measurable

function f : E — R*
/afdu:a/ fdu. 9.5)
E E

If @« > 0 and f is integrable and of variable sign, then (9.5) continues to hold
in view of (7.3) and the decomposition o f = (af)* — (af)~. A similar argument
applies if & < 0 and we conclude that (9.5) holds true for every integrable function
and every a € R. Therefore, it suffices to prove (9.1) fora = g = 1.
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Assume first that both f and g are nonnegative. There exist monotone increasing
sequences of simple functions {(,} and {£,} converging pointwise in E, to f and g,
respectively. By the monotone convergence theorem

/ (f + g)dp = lim / (G + Edp
E E

zlim/Cndu+lim/§ndu=/fdu+/gd/i-
E E E E

Next we assume that f > 0and g < 0. First observe that f + g is integrable since
|f 4+ gl <|f|+ |g|. From the decomposition

f+T—g=(+9 +f

and (9.1) proven for the sum of two nonnegative functions

/(f+g)+du+/ —gdu=/(f+g)*du+/ fdp.
E E E E

This and the definitions (7.2)—(7.3) prove (9.1) for f > 0and g < 0.If f and g
are integrable with no further sign restriction

[+adn= 1 +5 - +gnau= [ ran+ [ gan
E E E E
To prove (9.2) observe that from f — g > 0 and (9.1)

05/(f—g)du=/fdu—/gdu-
E E E

Inequality (9.3) follows from (9.2) and

—Ifl=f=Ifl

Finally, (9.4) follows from (9.1) upon writing

f=rxe+ fxe-e- u
Corollary 9.1 Let f : E — R* be integrable and let E be of finite measure. Then

W(E)inf f < / Fdyu < u(E) sup f.
E E
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10 Convergence Theorems

The properties of the Lebesgue integral, permit one to formulate various versions
of Fatou’s lemma and of the monotone convergence theorem. For example the con-
clusion of Fatou’s lemma continues to hold if the functions f,, are of variable sign,
provided they are uniformly bounded below by some integrable function g.

Proposition 10.1 Ler g : E — R* be integrable and assume that f, > g a.e. in E
foralln € N. Then

liminf/ fnd,uz/liminf fudp.
E E

Proof Since f, — g > 0, the sequence { f,, — g} satisfies the assumptions of Fatou’s
lemma. Thus

liminf/ fnduz/gdu—i-/(liminffn — g)dpu. -
E E E

Proposition 10.2 Let { f,,} be a sequence of nonnegative, measurable, functions on
E. Then

> /E fodp = /E > fudp.

Proof The sequence {27:1 f,} is a monotone sequence of nonnegative, measurable
functions. u

Remark 10.1 Ttis notrequired that the f;, be integrable, nor that > f, be integrable.
The integral of measurable, nonnegative functions, finite or infinite, is well defined
by (7.1).

Theorem 10.1 (Dominated Convergence) Let { f,,} be a dominated and convergent
sequence of integrable functions in E, i.e.,

lim f,(x) = f(x) forall x € E
and there exists an integrable function g : E — R* such that
|fal <g aein E forall neN.

Then the limit function f : E — R* is integrable and

lim/ f,,du:/lim fudp.
E E
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Proof The limit function f is measurable and by Fatou’s lemma

/ |l sliminf/ \fuldp < / gdp < ox.
E E E

Thus f is integrable. Next

g—f, >0 and f,+¢g>0 forall neN.

Therefore, by Fatou’s lemma

/fd,ugliminf/ fnflimsup/ fnduf/fd,u. -
E E E E

11 Absolute Continuity of the Integral
Theorem 11.1 (Vitali [169]) Let E be measurable and let f : E — R* be inte-

grable. For every € > 0 there exists 6 > 0 such that for every measurable subset
E C E of measure less than §
/ Fldp < <.
£

Proof May assume that f > 0. For n € N consider the functions

fx) if f(x)<n
E”_)f"(x):[n if f(x)>n.

Since { f,,} is increasing

/Efnduf/Efdu and lim/Efnduz/Efdu.

Having fixed £ > 0 there exists some index n. such that

[ = [ gdn=3e.

Choose d = £/2n.. Then for every measurable set £ C E of measure () <

1
/ fdp < / Indp +/ (fo. = Ddp+ se < np(€) + 16 <e. -
£ £ E-& 2 2
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12 Product of Measures

Let {X, A, u} and {Y, BB, v} be two measure spaces. Any pair of sets A C X and
B C Y, generates a subset A x B of the Cartesian product X x Y called a generalized
rectangle. There are subsets of X x Y that are not rectangles.

The intersection of any two rectangles is a rectangle, by the formula

(A1 X B1) N (A2 X By) = (A1 N Ay) x (B1 N By).

The mutual complement of any two rectangles, while not a rectangle, can be
written as the disjoint union of two rectangles, by the decomposition

(A3 x By) — (A1 x By) = (Ay — A1) X B, U (A1 N Ay) x (B, — By).

Thus, the collection R of all rectangles is a semi-algebra. If A € Aand B € B, the
rectangle A x B is called a measurable rectangle. The collection of all measurable
rectangles is denoted by R,. By the previous remarks R, is a semi-algebra. Since
XxY € R,,suchacollection forms a sequential covering of X x Y. The semi-algebra
R, can be endowed with the nonnegative set function

AA x B) = u(A)v(B) (12.1)

for all measurable rectangles A x B.

Proposition 12.1 Let {A, x B,} be a countable collection of disjoint, measurable
rectangles whose union is a measurable rectangle A x B. Then

AA x B) = > AMA, X By).
Proof Foreachx € A
B={B;|(x,y) € A; x B;; y € B}.
Since for each x € A fixed this is a disjoint union
v(B)xa(x) =2 v(Bj)xa,(x).
Integrating in d ¢4 over A and using Proposition 10.2 now gives

p(Av(B) = 23 i(An)v(By). "

Thus ) is unambiguously defined, since the measure of a measurable rectangle
does not depend on its partitions into countably many, pairwise disjoint measurable
rectangles. The proposition also implies that A is a measure on the semi-algebra



152 4 The Lebesgue Integral

R,. Therefore, A can be extended to a complete measure (i X ) on X x Y, which
coincides with A on R, (Theorem 11.1 of Chap. 3).

Theorem 12.1 Every pair {X, A, u} and {Y, B, v} of measure spaces generates a
complete, product measure space

{(X xY,(AxB), (uxv)}

where (A x B) is a o-algebra containing R, and (1 X v) is a measure on (A x B)
that coincides with (12.1) on measurable rectangles.

13 On the Structure of (A x B)

Denote by (A x B), the smallest o-algebra generated by the collection of all mea-
surable rectangles. Set also

R, = {countable unions of elements of R,}

R,s = {countable intersections of elements of R,}.
By construction
R, CRs CRos C (A xB), C(AxDB).
For E C X x Y the two sets

YDEx:{y|(x,y)eE} forafixed x € X
XDE, ={x | (x,y) e E} forafixed yeVY

are, respectively, the X-section and the Y-section of E.

Proposition 13.1 Let E € (A x B),. Then for every y € Y the Y-section Ey is in
A and for every x € X the X-section E, is in B.

Proof The collection F of all sets E € (A x B) such that E, € Bforall x € X
is a o-algebra. Since F contains all the measurable rectangles, it must contain the
smallest o-algebra generated by the measurable rectangles. |

Remark 13.1 There exist nonmeasurable sets £ C X x Y such that all the x and y
sections are measurable (13.4 of the Complements).

Remark 13.2 There exist (1 X v)-measurable rectangles A x B that are not mea-
surable rectangles. To construct an example, let A, C X be not p-measurable but
included into a measurable set of finite pu-measure. Let also B, € B be of zero
v-measure. The rectangle A, x B, is (1 x v)-measurable and has measure zero.


http://dx.doi.org/10.1007/978-1-4939-4005-9_3

13 On the Structure of (A x B) 153

For each ¢ > 0, there exists a measurable rectangle R. containing A, x B, and of
measure less than €. Therefore, A, x B, is (i x v)-measurable, by the criterion of
measurability of Proposition 10.2 of Chap. 3. This last example implies that Proposi-
tion 13.1 does not hold if (A x B), is replaced by (A x B). In particular the inclusion
(A x B), C (A x B) is strict.

Remark 13.3 While {X xY, (AxB), (uxv)}is complete, the restriction of (i x v) to
(A x B), in general is not complete. For example let ;» = v be the Lebesgue measure
on X =Y = R. The segment (0, 1) x {0} is measurable in the product measure and
has measure zero. However, if E € (0, 1) is the Vitali nonmeasurable set, the set
E x {0} is contained in (0, 1) x {0}, is measurable in (i x /) butis not in (A x B),.

Proposition 13.2 Assume that{X, A, u} and{Y, B, v} are complete measure spaces,
and let E € Rys be of finite (11 x v)-measure. Then the function x — v(Ey) is -
measurable and the function y — (1(Ey) is v-measurable. Moreover

| xedxn = [ vEgdi= [ pei
XxY X Y

Proof The conclusion holds true if E is a measurable rectangle. If E € R, it can
be decomposed into the countable union of disjoint measurable rectangles E,. The
functions

x —> v(Ey) = Z V(En,x)s y — M(Ey) = z M(En,y)

are, respectively, 1 and v measurable. By monotone convergence

/ Xed(p X v) = XE, d(p x V)
XxY

XxY

=ZAW&QW=ZAM&QW
:/XZV(En,x)dMZ/YZM(En,y)dV

:/ V(Ex)duz/u(Ey)dl/.
X Y

If E € R,s there exists a countable collection {E,,} of elements of R, each of
finite measure, such that £, C E,, and E = NE,. Since E is of finite measure,
may assume that (i x v)(E;) < oo. Then, since E| € R,

(< v)(Ey) =/

dew=/w&ﬂw:/m&@W<m.
E; X Y

The sequence of sets {E,, «} and { E, ,} are decreasing, forallx € X andally € Y,
respectively, and have limits
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E, =limE,,, E,=1mE,,.

The sets E, and E, are v-, and p-measurable, respectively. Moreover UE,,  has
finite v-measure for p-a.e. x € X, and UE,, , has finite y-measure for v-a.e. y € Y.
Therefore, by (d)—(e) of Proposition 3.1 of Chap. 3,

v(E,) =limv(E, ) foru-ae. x € X;
w(Ey) =limu(E, ) forv-ae. yeY.

The functions x — v(E, ) are y-measurable. Since {X, A, u} is complete, their
p-a.e. limit x — v(E,) is also u-measurable. Likewise, since {Y, B, v} is complete,
y — u(E,) is v-measurable. Moreover

v(Ey) <v(E,y) <v(E;,) forp-ae. xeX,

W(Ey) < u(E,,) < p(Eyy) forv-ae. yev, forall n € .

Then, by dominated convergence

/ xed(ux v) =lim [ ygd(uxv)
XxY

XxY

= lim/ v(E,)dp = lim/ H(E, y)dv
X Y

:/limz/(En,x)du:/limu(En,y)dV
X Y

=/ V(Ex)dﬂz/H(Ey)dV' u
X Y

Remark 13.4 If E € R,, the proof is based on the Monotone Convergence Theo-
rem 8.1, and in view of Remark 8.1, it does not require that £ be of finite measure.
If E € R,s the proof is based on the Dominated Convergence Theorem 10.1. The
assumptions that E is of finite measure provides integrable upper bounds that permit
one to pass to the limit under integral.

Proposition 13.3 Assume that{X, A, u}and{Y, B, v} are complete measure spaces,
and Let E € (A x B) be of (u x v)-measure zero. Then

E, arev-measurable andv(E,) =0 p-a.e.in X

E, are p-measurable and (((Ey) =0 v-a.e.in Y.

Proof It E € R,s the conclusion follows from the previous proposition. If E is
(1 x v)-measurable, there exist a set E,5 € R,s such that E C E,; and (i X
V)(E,s — E) = 0 (Proposition 10.3 of Chap.3). Then E; C E,s, and E, C Eysy,
and the conclusion follows since ;4 and v are complete. ]
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Proposition 13.4 Assume that {X, A, i} and {Y, B, v} are complete measure spaces
and let E € (A x B) be of finite (1 X v)-measure. Then

E, are v-measurable for ji-a.e. x € X andx — v(E,) is integrable

E, are p-measurable forv-a.e.y € Y andy — j(E) is integrable.

Moreover
| xedxo = [ vEgde= [ pei
XxY X Y

Proof There exists E,5 € Ry, such that E C E,5 and E,; — E = £ has (u X v)-
measure zero. Therefore, by Proposition 13.3 the sets E, = E,s5, — & are v-
measurable for p-almost all x € X, and v(E,) = v(Eys,,) for p-almost all x € X.
A similar statement holds for v-almost all Ey. Since E and £ are disjoint

/ Xed (X v) = / XE,d(p X V)
XxY

XxY

Z/V(Eaé,x)dﬂz/ﬂ(Eaé,y)dV
X Y

= [ Eddu= [ uEav.
X Y

14 The Theorem of Fubini—-Tonelli

Theorem 14.1 (Fubini [52]) Let {X, A, u} and {Y, BB, v} be two complete measure
spaces and let

XxY>(x,y)— f(x,y) beintegrablein X x Y.
Then

X >x — f(x,y) ispu-integrable in X forv-almostally € Y
Y >y — f(x,y) isv-integrable inY for p-almost allx € X.

Moreover
X>x — / f(x,y)dv is p-integrable in X
; (14.1)
Y>y— / f(x, y)dp isv-integrable inY
X
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and

£ (i x v) =/ (/f(x,y)du)du
X Y

:/Y(/Xf(x,y)d,u)dl/.

Proof By the decomposition (3.4) we may assume that f > 0. By Proposition 13.4,
the statement holds true if f is the characteristic function of a measurable set E of
finite measure. If f is nonnegative and integrable there exists a sequence { f,,} of
nonnegative integrable simple functions such that {f,} / f a.e.in (X x Y). Since
each of the f, is integrable it vanishes outside a set of finite measure. Therefore,
Proposition 13.4 holds for each of such f,. Then by monotone convergence

XxY

(14.2)

S, y)d(p x v) =lim Ja G, y)d(p < v)

XxY XxY

:/Xlim(/yf,,(x,y)dy)dp:/ylim(/Xf,,(x,y)du)du
Z/X(/Yf(x,y)du)duz/y(/Xf(x,y)du)dv. .

14.1 The Tonelli Version of the Fubini Theorem

The double integral formula (14.2) requires that f be integrable in the product mea-
sure (1 x v). Tonelli observed that if f is nonnegative the integrability requirement
can be relaxed provided (u x v) is o-finite.

Theorem 14.2 (Tonelli [160]) Let {X, A, u} and {Y, B, v} be complete and o-finite,
andlet f : (X x Y) — R* be measurable and nonnegative. Then the measurability
statements in (14.1) and the double integral formula (14.2) hold. The integrals in
(14.2) could be either finite or infinite.

Proof The integrability requirement in the Fubini theorem was used to insure the
existence of a sequence { f,,} of integrable functions each vanishing outside a set of
finite measure and converging to f. The positivity of f and the o-finiteness in the
Tonelli theorem provide a similar information. ]

If f is integrable in d(ix x v) then Fubini’s theorem holds and equality occurs
in (14.2). If f is not integrable and nonnegative then the left-hand side of (14.2) is
infinite. Tonelli’s theorem asserts that in such a case also the right-hand side is well
defined and is infinity, provided (1 X v) is o-finite.

In particular, Tonelli’s theorem could be used to establish whether a nonnegative,
measurable function f : (X x Y) — R* is integrable, through the equality of the
two right-hand sides of (14.2).
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The requirement that (11 x v) be o-finite cannot be removed as shown by the
example in 14.4 of the Complements.

15 Some Applications of the Fubini—Tonelli Theorem

15.1 Integrals in Terms of Distribution Functions

Let f : E — R* be measurable and nonnegative. The distribution function of f
relative to E is defined as

RY st — u([f > t]).
This is a nonincreasing function of ¢ and if f is finite a.e. in E, then
tlim u(f >t]) =0 unless w(l f > t]) = oo.
—00

If f is integrable, such a limit can be given a quantitative form. Indeed

t(Lf >f])=/lX[f>;]d,u§/ fdup < oo.
E E

Proposition 15.1 Let {X, A, u} be complete and o-finite and let f : E — R* be
measurable and nonnegative. Let also v be a complete and o-finite measure on Rt
such that v([0, t)) = v ([0, t]) forallt > 0. Then

/E (10, fdp = /0 WL f > (Ddv. (15.1)

In particular if v([0, t]) = t? for some p > 0, then
oo
/fde=P/ " (L f > thde (15.2)
E 0

where dt is the Lebesgue measure on R,

Proof The function f : E — R*, when regarded as a function from E x R* into
R*, is measurable in the product measure (o x v). Likewise, the function g(¢) = ¢
from R" into R*, when regarded as a function from E x R into R*, is measurable
in the product measure (¢ x v). Therefore, the difference f — ¢ is measurable in
the product measure (v x v). This implies that the set [f — ¢ > 0] = [f > t] is
measurable in the product measure (11 x v). Therefore, by the Tonelli theorem
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/OO u(lf > thdv = /OO (/ X[f>t]d:u)d1/
0 0 E
o0 f
=/E(/0 X[.f>t]dl’)d,u=/E(/0 dV)du

_ / (10, Fdp. .
E

Both sides of (15.1) could be infinity and the formula could be used to verify
whether v([0, f]) is pu-integrable over E.

Corollary 15.1 Let E be an open set in RY and let f be continuous in E. Then for
allx € E,

o0
fx) =/ Xif(x)=01dt. (15.3)
0
Proof Apply (15.2) with p = J. |

Corollary 15.2 Let E be an open setin RYN and let f and h be nonnegative Lebesgue
measurable functions defined in E. Then for all p > 0

/f”hdx:/ pt”_l(/ hdx)dt (15.4)
E 0 [f>1]

where dx is the Lebesgue measure in RN .
Proof Apply (15.2) with du = hdx. ]

If f and & are of variable sign, with f integrable and & bounded, then

/thdu=/ooo (/W>l]hdx)dt —/Ooo (/[f>t]hdx)dt. (15.5)

In the next two applications in § 15.2 and § 15.3, the measure space {X, A, p} is
RY with the Lebesgue measure.

15.2 Convolution Integrals

Lemma 15.1 Let f : RN — R* be measurable. Then the function
RN 5 (x,y) = f(x =)

is measurable with respect to the product measure of R*V.
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Proof Consider the change of variables

2o (1) = ()= ()= () ==
y y xX+y n

This an invertible, Lipschitz map from R? into itself. By Proposition 12.2c of the
Complements of Chap. 3, Lebesgue measurable sets in R*" in the (£, ) coordinates

are mapped, by T~!, into Lebesgue measurable sets in R*" in the (x, y) coordinates.
Now forall c € R

(e, ) eRN | fx —y) >} ={£ e RV | f(§) > c} xR,

Since f : RY — R* is measurable, the latter is a measurable rectangle. |

Given any two nonnegative measurable functions f, g : RN — R* their convolu-
tion is defined as

x — (f*g)(X)=/

Wgo&ﬂx—yMy (15.6)

Since f and g are both nonnegative, the right-hand side, finite or infinite, is well
defined for all x € RV,

Proposition 15.2 Let f and g be nonnegative and integrable in RN . Then (f % g)(x)
is finite for a.e. x € RY, the function (f * g) is integrable in RY and

/ (f*g)dx:/ fdx/ gdx.
RV RV RV

Proof The function (x,y) — g(y)f(x — y) is nonnegative and measurable with
respect to the product measure. Therefore, by the Tonelli theorem

/ / 90 f (x = )dxdy = / ( / 9O f (& = y)dx)dy
R2N RN RN
=/ fdx/ gdx. -
RN RN

The convolution of any two integrable functions f and g is defined as in (15.6).
Since

lgM f&x = =< lgWIfx =)

the convolution (f * g) is well defined as an integrable function over R*" .
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15.3 The Marcinkiewicz Integral ([101, 102])

Let E C RY be non void, and for x € R" let §(x) denote the distance from x to E.
By the definition of distance, g (x) = 0 forall x € E.

Lemma 15.2 Let E be a nonempty set in RN . Then the distance function x — §(x)
is Lipschitz continuous with Lipschitz constant one.

Proof Fix x and y in RY and assume that 6z (x) > 6z(y). By definition of J¢(y),
having fixed € > 0 there exists 7 € E such that 0g(y) > |y — z/| — €. Then estimate

0<dp(x)—0p(y) < i?fs x —zl—ly—2|+e

<l x—=7Z|—-ly=Z|+e<|x—y|+e. u

Let E be a bounded, closed set in RY. Fix a positive number A and a cube Q
containing E. The Marcinkiewicz integral relative to £ and A is the function

62 () dy

RY 5 x — Mg, (x) = [ —E=——dy.
E(X) ST

The right-hand side is well defined as the integral of a measurable, nonnegative
function.

Proposition 15.3 The Marcinkiewicz integral Mg ) (x) is finite fora.e. x € E. More-
over the function x — Mg \(x) is integrable in E and

/ M adx < 2 (0 ~ ).
E

where wy is the measure of the unit sphere in RV .

Proof Since dg(y) = 0 for all y € E, by the Tonelli theorem

_ A\ dx
/EMEA,)\(x)dx—/QdE(Y)(/Em)dy

_ A _ dx

B /Q_E 55(”(/5 x —y|N+A)dy'

Fory € (Q — E) and x € E, since E is closed, |x — y| > dz(y) > 0. Therefore,

/ dx - / dx —y)
E X — )’|N+A T Jlx—yl20e () lx — }’|N+A

*® ds Wy
S Wy sl+/\ = )\6)\ :
0r(y) E()’)

(15.7)
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Using this estimate in (15.7) establishes the proposition. ]

16 Signed Measures and the Hahn Decomposition

Let 11 and i, be two measures both defined on the same o-algebra A. If one of them
is finite, the set function

A3 E — p(E) = i (E) — 2(E)

is well defined and countably additive on .A. However since it is not necessarily
nonnegative it is called a signed measure. Signed measures are also generated by an
integrable function f on a measure space {X, A, i1} by the formula

ABE—>/fdu=/f+du—/f_du. (16.1)
E E E
More generally a signed measure on X is a set function p satisfying:

(i) the domain of pis ac-algebrad (i) u(@) =0
(iii) p takes at most one of + oo (iv) pis countably additive.

The last property is intended in the sense of convergent or divergent series.

Any linear, real combination of measures defined on the same o-algebra is a
signed measure provided all but one are finite.

Let{X, A, i} be ameasure space for a signed measure .. A measurable set £ C A
is said to be positive (negative) if (A) > (=)0, for all measurable subsets A C E.
The difference and the union of two positive (negative) sets is positive (negative).
Since p is countably additive, the countable, disjoint union of positive (negative)
sets is positive (negative). From this it follows that any countable union of positive
(negative) sets is positive (negative).

Lemma 16.1 Let {X, A, 11} be a measure space for a signed measure ji. Let E C X
be measurable and such that |u(E)| < oo. Then every measurable set A C E
satisfies |(A)| < oo.

Proof Assume for example that p does not take the value +oo. Let A C E. If
w(A) > 0 then u(A) < oo. If u(A) < 0, taking the measure of the disjoint union
E =(E—A)UA gives u(E) = p(E — A) 4+ pu(A), which in turn implies

0<—u(A)=pu(E—A) — u(E) < oo. [

Proposition 16.1 Let {X, A, u} be a measure space for a signed measure p. Every
measurable set E of positive, finite measure contains a positive subset A of positive
measure.
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Proof If E is positive we take A = E. Otherwise E contains a measurable set of
negative measure. Let n; be the smallest positive integer for which there exists a
measurable set B; C E such that

1
w(By) < ——.
nj

If Ay = E — Bj is positive then we take A = A;. Otherwise A; contains a
measurable set of negative measure. We then let n, be the smallest positive integer
for which there exist a measurable set B, C E — Bj of negative such that

1
w(By) < ——.
ny

Proceeding in this fashion, if for some finite m the set

is positive, the process terminates. Otherwise the indicated procedure generates the
sequences of sets {B;} and {A,,}. We establish that the set

A=A, =E — UB,

is positive by showing that every measurable subset C C A has nonnegative mea-
sure. Since A C E and E is of finite measure |u(A)| < oo, by Lemma 16.1. By
construction the sets B; and A are measurable and disjoint. Since p is countably
additive

1
0 < p(E) = p(A) + 2 p(B)) = p(A) = 3 —.
J

This implies that the series n;l is convergent and therefore n; — oo as j —
oo. Italso implies that ;4(A) > 0. Let C be a measurable subset of A. Since A belongs
to all A;, by construction

(=

—> 0 as j — oo.

J

Theorem 16.1 (Hahn Decomposition [58], Vol. 1) Let {X, A, 11} be ameasure space
for a signed measure 1. Then X can be decomposed into a positive set X+ and a
negative set X .

Proof Assume for example that ;4 does not take the value +o00 and set

M = {sup u(A) where A € Ais positive}.
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Let {A,} be a sequence of positive sets such that ;1(A,) increases to M and set
A =UA,. The set A is positive and, by construction t(A) < M. On the other hand
A= (A—-A,)UA, forall n. Since this is a disjoint union and A is positive

p(A) = (A — Ap) + u(Ay) = p(A,)  forall n.

Thus p(A) = M and M < oo. The complement X — A is a negative set. For
otherwise it would contain a set E of positive measure, which in turn would contain
a positive set A, of positive measure. Then A and A, are disjoint and A U A, is a
positive set. Therefore,

,U(A U Au) = ,U(A) + ,u(Ao) > M

contradicting the definition of M. The Hahn decomposition is realized by taking
XtT=Aand X~ =X — XT. ]

Aset E € Ais anull set if every measurable subset of E has measure zero. There
exist measurable sets of zero measure that are not null sets. By removing out of X+ a
null set £ and adding it to X, the set (X* — &) remains a positive set and (X~ UE)
remains negative. Moreover

X=X"—-&EUX Ub).

Thus the Hahn decomposition is not unique. However it can be determined up to
null sets.

17 The Radon-Nikodym Theorem

Let 1 and v be two measures defined on the same o-algebra A. The measure v is
absolutely continuous with respect to u if (E) = 0 implies v(E) = 0, and in such
a case write ¥ < p. Let {X, A, u} be a measure space and let f : X — R* be
measurable and nonnegative. The set function

ABE—)Z/(E):/fd/,L (17.1)
E
is a measure defined on .4 and absolutely continuous with respect to .

Theorem 17.1 (Radon-Nikodym)' Let {X, A, 11} be o-finite and let v be a measure
on the same o-algebra, absolutely continuous with respect to i (v < ). There exists

! Although referred to as the Radon-Nikodym theorem, the first version of this theorem, in the
context of a measure in RV absolutely continuous with respect to the Lebesgue measure, is in
Lebesgue [90]. Radon extended it to Radon measures in [121], and Nikodym to general measures
in [115, 116].
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anonnegative pi-measurable function f : X — R* such that v has the representation
(17.1). Such a f is unique up to a set of ji-measure zero.

The function f in the representation (17.1) is called the Radon-Nikodym deriv-
ative of v with respect to p, since formally dv = fdpu. It is not asserted that f is
p-integrable. This would occur if and only if v is finite. The assumption that p be
o-finite cannot be removed as shown by counterexamples in 17.1 and 17.2 of the
Complements.

17.1 Sublevel Sets of a Measurable Function

Let {X, A, 11} be a measure space and let f : X — R* be measurable. For r € R,
any measurable set E, such that

[f <t]ICE CI[f =1]

isasublevel set for f atthe value 7. The next proposition asserts that for any increasing
collection of measurable sets {E£,}, as ¢ ranges over a countable index, there exists a
measurable function f : X — R*, which admits E, as sublevel sets.

Proposition 17.1 (von Neumann [114]) For a countable index t, let {E,} be a col-
lection of measurable sets such that E; C E; for s < t. There exists a measurable
Sfunction f : X — R* such that

f<tinE, and f>tin X —E,. (17.2)
Proof Define
_ |inf{r|x e E} if xeJE
Xox—=> f0)= [ +o0 otherwise.

If x € E;, then f(x) <t.If x ¢ E,, then x does not belong to E for any s < f,
and hence f(x) > ¢. Such a function is measurable, since for all ¢ € R

[f<c]=UE2‘ [

t<c

The assumptions imply that if ¢+ > s, then u(E; — E;) = 0. The proposition
continues to hold if the monotonicity of {E,} is replaced by such a weaker, measure
theoretical notion of monotonicty. In such a case however, the conclusion (17.2)
holds up to a set of measure zero.

Corollary 17.1 For a countable index t, let {E,} be a collection of measurable sets
such that
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W(E; — E;) =0 whenever s < t.
There exists a measurable function f : X — R*
f<taeinE, and f >t aein X—E,. (17.3)
Proof Set
E=U(E;—E) and E, =E,UE.
s<t

The collection { E}} is monotone and, by Proposition 17.1, there exists a measur-
able function f : X — R* satisfying (17.2) with E, replaced by E;. Since the index
t is countable 14(€) = 0 and hence (17.3) holds except possibly for a set of measure
Zero. |

17.2 Proof of the Radon-Nikodym Theorem

Assume first that p is finite. For nonnegative, rational # consider the signed measure
v —tp on {X, A}, and the corresponding Hahn’s decomposition {X;", X;} up to a
null set&. If s < ¢,

v—-—sw(X;y —X;)<0 and (¥—t1w)(X; —X,)=0.

Therefore,
wXy — X, ) <0 for s<t.

By Corollary 17.1 there exists a measurable function f : X — R*
f <t paein X;, and f >t p-ae.in X — X, .

Moreover f > 0 a.e. in X, since X, = ¢, for all r < 0. For a measurable set
E C X, and positive integers j, n, set

E,.j=EN(X. —X;), E,=E- | E,;
. : =

and, for fixed n € N, write E as the disjoint union

E=E, Ul E, ;.
jeN
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From this for any fixedn € N, and all E € A

v(E) =v(E,) + %V(En,j)-
je

By the properties of the Hahn decomposition
E,; CX. NXT.
Therefore,
(v— L) (E, ;) <0 and (v — Lp)(E, ;) = 0.
From this
1 J J+1 1
v(E, ;) — ;,U(En,j) < ;,U(En,j) < T,M(En,j) <v(E,;)+ ;,U(En,j)-

By construction

. a1
i < f < St on En,j
n n
which implies
J j+1
_M(En,j) =< fdM =< _M(En,j)
n En,j n

and hence

1 1
V(En,j) - ;M(Enj) = fd/’L = I/(En,j) + ;M(En,j)-

En,j
By construction, E, C X;.L/n for all j € N, and hence
(v—Lip)(E) =20 = v(E,) = LiuE,) forall jeN.

If u(E,) > 0 then v(E,) = oo and if u(E,) = 0 then v(E,) = 0 since v < p.
By the construction of f one has f = oo on E,. Therefore, in either case

W(E,) = / fdp.

n

Adding this and the previous inequalities yields

1 1
V(E) — u(E) = /E Fdp < v(E) + - p(E).
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Since n is arbitrary and p is finite this implies the conclusion (17.1).

If g : X — R* is another nonnegative measurable function by which the measure
v can be represented as in (17.1), let

Av=[f—9z3]
Then foralln € N

1
(A = /A (f — g)dp = v(Ay) — v(Ay) = 0.

Thus f = g p-a.e. in X. Assume next that p is o-finite and let X, be a sequence
of expanding sets such that

//L(Xn) =< M(XH-H) <oo and X = U Xﬂ’
Denote by u, the restriction of p to AN X, and let f, be the unique function
claimed by the Radon-Nikodym theorem for the pair of measures {y,; v} on the

o-algebra A N X,,. While defined in X, we regard f,, as defined in the whole X by
setting it to be zero in X — X,,. By construction

Jut1 |Xn= fn forall n.
The function f claimed by the theorem is
f =sup fu =lim f,.
Indeed if E € A, by monotone convergence

v(E) =limv(ENX,) =lim/ f,,du:/ fdu.
E E

The uniqueness of f is proved as in the case of u finite. ]

18 Decomposing Measures

Two measures 4 and v on the same space {X, A} are mutually singular if X can be
decomposed into two measurable, disjoint sets X, and X, such

WENX,)=0 and v(ENX, =0 foral Eec A

An example of mutually singular measures is given by (16.1). If ;1 and v are
mutually singular we write v L pu. If v <« pand v L p, then v = 0.
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18.1 The Jordan Decomposition

Given a measure space {X, A, u} for a signed measure u, let X = X U X~ be the
corresponding Hahn decomposition of X. For every E € A set

pHE)=wENXY)  and  p(E)=—wENX).

The set functions p* are measures on A and (i) at least one of them is finite, (ii)
they are independent of the particular Hahn decomposition, (iii) they are mutually
singular. Moreover for every E € A

W(E) = p*(E) — ™ (E). (18.1)

Theorem 18.1 (Jordan [79], Vol 1) Let {X, A, u} be a measure space for a signed
measure . There exists a unique pair (", ™) of mutually singular measures, one
of which is finite such that p = pt — ™.

Proof Let X = X+ U X~ be the Hahn decomposition of X relative to i and deter-
mined up to a null set. The existence of u* follows from (18.1). If y = v+
is another such decomposition, there exists disjoint sets ¥+ and Y~ such that
X=YTUY",and

— U

vVI(ENY )=v (ENY") =0 forall E € A.

Since Y™ is positive and Y~ is negative with respect to the same measure g,
Xt =Y*and X~ = Y~ up to null sets. Therefore, for all E € A

pE(E) = w(ENXENYd) =vH(E). n
The two measures ;* are the upper and lower variation of y. The measure || =

put 4 o is the total variation of . Both measures ™ are absolutely continuous
with respect to |u|. Moreover for every E € A

—p (E) < (E) < p*(E)  and  |u(E)| < |pl(E).

18.2 The Lebesgue Decomposition

Two signed measures p and v on the same space {X, .4} are mutually singular,
denoted by v L u, if the measures |p| and |v| are mutually singular. The signed
measure v is absolutely continuous with respect to y, denoted by v < p, if |[u(E)| =
0 implies |[V[(E) = 0.
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Theorem 18.2 (Lebesgue) Let {X, A, i} be a o-finite measure space for a signed
measure |1 and let v be a o-finite signed measure defined on A. There exists a unique
pair (V,, V1) of o-finite, signed measures defined on the same o-algebra A such that

v=1v,+1 and vo Lp v L p.
Proof If v = v, + v} is another such decomposition, then
/ /
Vy — UV, = V| — V.

This implies that v, — /) is both singular and absolutely continuous with respect
to 4 and therefore identically zero. Analogously v = v.

The notions of mutually singular signed measures and absolute continuity of a
signed measure v with respect to a signed measure y are set in terms of the same
notions for their total variations |v| and |pu|. Therefore, we may assume that p is a
measure. If 7 is the Jordan decomposition of v, by treating v+ and v~ separately,
we may assume that also v is a measure.

Set A = p+v. Both pand v are absolutely continuous with respect to . Therefore,

by the Radon-Nikodym Theorem, there exist measurable, nonnegative functions f
and ¢ such that

u(E):/fd)\ and v(E):/gd/\ forall E € A.
E E

Define v, and v; by
Vo(E) =v(EN[f =0 wn(E)=v(EN[f >0].

By construction v = v, + v;. The measure v, is singular with respect to y since
X =[f > 0]U[f = 0] and for every measurable set £

Vo(ENL[f > 0D =pENLf=0])=0.

The measure v; is absolutely continuous with respect to p. Indeed p(E) = 0
implies that f = 0, A-a.e. on E. Therefore,

0=MEN[f>0)=>v(EN[f>0]) =uv(E). n

18.3 A General Version of the Radon-Nikodym Theorem

Theorem 18.3 Ler {X, A, i} be a o-finite measure space and let v be a o-finite,
signed measure on the same space {X, A}. If v < pu, there exists a measurable
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Sfunction f : X — R* such that
v(E) =/fd,u forall E € A. (18.2)
E

The function f need not be integrable, however at least one of f* or f~ must
be integrable. Precisely, if the signed measure v does not take the value +00 (—00),
then the upper(lower) variation v* (v~ ) of v is finite and f ( f~) is integrable. If
[T is integrable and f~ is not, the integral in (18.2) is well defined in the sense of
(7.5).

Such a function f is unique up to a set of p-measure zero.

Proof Determine the Hahn decomposition X = X U X~ up to a null set, and the
corresponding Jordan decomposition v = vt — v ™.

The upper and lower variations v are absolutely continuous with respect to .
Applying the Radon-Nikodym Theorem to the pairs (v, 1), determines nonnegative
p-measurable functions f4 such that

vi(E) =v(ENXT) = / fedp forall E € A.
E

One verifies that f vanish p-a.e. in X and that the function claimed by the
theoremis f = f, — f_. ]

Problems and Complements

1c Measurable Functions

In the problems 1.1-1.12 {X, A, 11} is a measure space and E € A.

1.1.  The characteristic function of a set E is measurable if and only if E is
measurable.

1.2. A function f is measurable if and only if its restriction to any measurable
subset of its domain is measurable.

1.3. A function f is measurable if and only if f* and f~ are both measurable.

14. Let {X, A, u} be complete. A function defined on a set of measure zero is
measurable.

1.5. Let {X, A, 1} not be complete. Then there exists a measurable set A of
measure zero that contains anonmeasurable set B. The two functions f = x4
and g = y 4—p differ on a set of outer measure zero. However f is measurable
and g is not.

1.6.  If f is measurable then [ f = c] is measurable for all c in the range of f.
The converse is false.
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1.7.  Let f be measurable. Then also | f|?~! f is measurable for all p > 0.

1.8. | f| measurable does not imply that f is measurable. Likewise f? measurable
does not imply that f is measurable.

1.9. A function f is measurable if and only if its preimage of a Borel set is
measurable.

1.10. Let {f,} be a sequence of measurable functions from E into R*. The subset
of E where lim f, exists is measurable.

1.11. The supremum(infimum) of an uncountable family { f,,} of measurable func-
tions, need not be measurable.

1.12. Upper(lower) semi-continuous functions f : £ — R* are measurable.

In the problems 1.13-1.19, (RN, M, u}is RY with the Lebesgue measure and E €
M.

1.13. There exists a nonmeasurable function f : R — R such that f~!(y) is
measurable for all y € R. Hint: given a nonmeasurable set £ C R, define
f(x)=xforx e R— Eand f(x) = —xforx € E.

1.14. A monotone function f in some interval (a, b) C R is measurable.

1.15. Let f : R — R be measurable and let g : R — R be continuous. The
composition g(f) : E — Ris measurable. However the composition f(g) :
E — Rin general is not measurable. To construct a counterexample consider
the function of § 14 of Chap. 3.

1.16. Let f : [0, 1] — R* be measurable. Then xqnjo,1;(f), is measurable.

1.17. Let f : R? — R*be such that f(-, y) is continuous forall y € Rand f(x, -)
is measurable for all x € R. Prove that f is measurable.

We indicate two approaches to this statement. The first is based on the fol-
lowing lemma.

Lemma 1.1¢ Letc € Rand let y € R be fixed. Then f(x,y) > c if and only if, for
all n € N there exists a rational number r,, such that

1

PR

x—rml <1 and  f@rmy) >c—

Proof Since g = f(-, y) is continuous ¢~ (c — ,ll, 00) is open and we may select
rm € Q with the indicated properties. Conversely, let x satisfy the property of the
lemma, and assume by contradiction that g(x) < c. Since g is continuous, there
exists k € N such that g(x) < ¢ — % Since x € g~!(—o00, ¢ — %), and since this set
is open, there exists # € N such that

(x =4, x+3) Cg (=00, c— ).
Take n = max{k; h} and select any r € Q such that

1 —1 1
lx —rl <. and reg (—o0o,c— ).
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For such choices

g =fny)<c—t<e-L .

>~

Using the lemma

[f>c]= ﬂU([f(rm,~) >c—1]x B%(rm)).

m

The second approach is based on the following construction. Forn € Nand j € Z
seta; = i/n and
_ f@aji,)x —a;) — f(aj, )(x —aj1)

fulx, ) , foraj; <x<aj.
aj+1 = aj

1.18. Find an example of a function f : R> — R* measurable in each of its
variables separately, and not measurable. Hint: see the Sierpinsky example
13.4. of § 13c.

1.19. Let T be a linear nonsingular transformation of R" onto itself and let f :
RY — R* be measurable. Prove that f(T) : RN — R* is measurable. Hint:
By § 12.3c of Chap. 3 it suffices to show that

[f(T)>c]=T7'[f >c] forall ceR.

1.1c Sublevel Sets

Let {X, A, u} be a measure space and let f : X — R be measurable. For ¢ € R, the
sublevel set of f atr, is defined as E, = [ f < t]. By the definition

E;CE, fors<t; UE,=X; NE =% [)E: =E;,. (1.1¢)

s<t

Conversely, given a collection of measurable sets {E; };cr in §2, satisfying (1.1c)
there exists a measurable function f : X — R for which E, = [f < t]. Verify that
(von Neumann [114])

X>x — f(x)=inf{r : x € E,}

is such a function and prove that it is unique.
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2¢ The Egorov-Severini Theorem

2.1. Let{X, A, u}beameasure space and let E € A be of finite measure. Let { f},}
be a sequence of measurable functions from E into R*. Assume that for a.e.
x € E the set { f,,(x)} is bounded. For every € > 0 there exists a measurable
set E. C E and a positive number k. such that

WE—E.)<e and |f,| <k. on E. forall n eN.

2.2. Let yu be the counting measure on 2. Define f, as the characteristic function
of {1, ..., n}. The sequence {f,} converges to 1 everywhere in N but not in
measure.

Proposition 2.1c Let {X, A, 11} be a measure space and let E € A. Let { f,,} and
f be measurable functions from E into R*. Assume that f is finite a.e. in E. Then
{fu} = f a.e in E if and only if for alln > 0

timp( U (1~ /12 n]) =0. 210
j=n

Hint: Denoting by A the set where { f,,} is not convergent

A=Ulimsup[|f, — fI = L].

m

Then p(A) = 0 if and only if (2.1c) holds.

3c Approximating Measurable Functions by Simple
Functions

Proposition 3.1¢ Let {X, A, i} be a measure space and let f : X — R* be non-
negative and measurable. There exists a countable collection {E;} C A such that
X=UE;and
1
f=2 =Xxg- (3.1¢)

jeN J

Proof Let E; = [f > 1] and f| = xg,. Then, for j > 2 define recursively

| ,
E; = [f > 7-1— fj,l] where  f; = ; ~XE;-

By construction f > f; forall j.If f(x) = cothenx € E; forall j. Hence f(x)
has the representation (3.1c). If f(x) < oo then x ¢ E; for infinitely many j. For
such an x
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1
0<fx)—filx) < 1 for infinitely many ;. -
J

The functions f; are simple and hence the proposition gives an alternative proof
of Proposition 3.1. However simple functions, even in canonical form, cannot be
written, in general, as a finite sum of the type of (3.1c). As an example:

3.1.

3.2

Find the representation (3.1c) of a positive, real multiple of the characteristic
function of the interval (0, 1).

Find the representation (3.1c) of a simple function taking only two positive
values on distinct, measurable sets.

4c¢ Convergence in Measure

In the problems 4.1-4.7, { X, A, u} is complete measure space, and E € A is of finite
measure.

4.1.

4.2.

4.3.

44.

4.5.

4.6.

4.7.

Let f : E — R* be measurable and assume that | f| > 0 a.e. on E. For every
€ > 0 there exists a measurable set E. C E and a positive number 4. such
that u(E — E.) <eand | f| > 0. on E..

Let {f,} : E — R* be a sequence of measurable functions converging to f
a.e.in E. Assume that | f| > Oand | f;;| > O a.e. on E for alln € N. For every
€ > 0 there exists a measurable set E. C E and a positive number 4. such
that

WE—E.)<e and |f,| >0d. on E. forall n eN.

Let p be the counting measure on the rationals of [0, 1]. Then convergence in
measure is equivalent to uniform convergence.

Let {f,} : E — R* be a sequence of measurable and a.e. finite functions.
There exists a sequence of positive numbers {k, } such that f,k,;! — 0 a.e. in
E.

Let {f,.}, {g.} : E — R* be sequences of measurable functions converging
in measure to f and g, respectively, and let o, 3 € R. Then

{afu + B}, UL {fagnd — af +89. Ifl, fg

in measure. Moreover if f # O a.e.on E and f, # 0 a.e. on E for all n, then
1/f, converges to 1/f in measure. (Hint: Use 4.1-4.2).

Let {X, A, 1} be a measure space and let {E,} be a sequence of measurable
sets. The sequence {x g, } converges in measure if and only if d(E,;; E,,) — 0
as n, m — oo (see 2.2. and 3.7. of the Complements of Chap. 3).

Let {f,} : E — R* be a sequence of measurable and a.e. finite functions.
Prove that {f,} — f in measure if and only if every subsequence of {f,}
contains in turn a subsequence converging to f in measure.
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7¢ The Lebesgue Integral of Nonnegative Measurable
Functions

7.1¢c Comparing the Lebesgue Integral
with the Peano-Jordan Integral

Let E C RY be bounded and PeanoJordan measurable, and denote by P = {E,}
a finite partition of E into pairwise disjoint PeanoJordan measurable sets. For a
bounded function f : £ — R set

hy, =infiep, f(x) Fp =2 hupiy_, (Ey)
kn = sup,cp, f(X) Fp =2 kattp_ 5 (Ep).

A bounded function f : E — R is PeanoJordan integrable if for every ¢ > 0,
there exists a partition P- of E into PeanoJordan measurable sets E,,, such that

Fh—Fp <e.

The sets E,, are also Lebesgue measurable. Therefore,

> hopip- g () < / Fdu<S koppg(En).
E

Thus if a bounded function f is PeanoJordan integrable it is also Lebesgue inte-
grable. The converse is false. Indeed the characteristic function of the rationals QQ of
[0, 1] is Lebesgue integrable and not PeanoJordan integrable.

This is not longer the case however if f is not bounded. Following Riemann’s
notion of improper integral, the function

1 1
f(x) = — sin— for x € (0, 1]
X X

is PeanoJordan integrable in (0, 1) but not Lebesgue integrable.

In the problems 7.1-7.7, {X, A, 1} is a measure space and E € A.

7.1. Let f: E — R* be measurable and nonnegative. If f = coinaset& C E
of measure zero

[ rau= | sn.
E E-€
7.2. Let f: X — R* be measurable and nonnegative. Then

/fdu:O forall E € A implies f =0 ae.in X.
E
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7.3. Let f : E — R* be integrable. If the integral of f over every measurable
subset A C E is nonnegative, then f > 0 a.e. on E.

74. Let f : R — R be Lebesgue integrable. Then for every 27 € R and every
interval [a, b] C R

pap= [ fec-ndn
la,b] la+h,b+h)

7.5. Construct the Lebesgue integral of a nonnegative y-measurable function f :
RY — R, when j is the Dirac delta measure §, concentrated at some x € R",

7.6. Let E be of finite measure. A measurable function f : E — R* is integrable
if and only if >_ u([| f| = n]) < oo. Hint:

2 ulfl = nh) =2 npdn < |f] <n+1]).

7.7. Let{X, A, u}be RY with the Lebesgue measure. Let T be a linear nonsingular
transformation of RY ontoitself andlet £ : RN — R* be Lebesgue integrable.

Prove that |

/Ef(x)du = [det 7] /TE fdp.

Hint: § 12.3.1c of the Complements of Chap.3 and Problem 1.19.

7.2¢ On the Definition of the Lebesgue Integral

The original definition of Lebesgue was based only on the Lebesgue measure in RV,
The integral of a measurable, nonnegative function f was defined as in (7.1), where
the supremum was taken over the class of simple functions ¢ < f, and vanishing
outside a set of finite measure. Denote by @ ; such a class of simple functions and
observe that

fdp= sup/wdu-
E pedr JE

Such a definition, while adequate for the Lebesgue measure in RV, is not adequate

for a general measure space {X, A, u}. For example let {X, A, 1} be the measure
space of 3.2 of Chap. 3. Then

oo:/ldu:sup/gaduzo.
X ped; JX
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9c¢ More on the Lebesgue Integral

Let {X, A, u} be a measure space with u(X) = 1l and let f : X — R be u-
measurable. In particular, for all Borel sets B € R, the set f~'(B) is yu-measurable.

Set

9.1.

9.2.

9.3.

9.4.

9.5.

pr(B) = u([f’l(B)]) for all Borel sets B C R. (9.1¢)

Distribution Measure of a Measurable Function: Verify that ;.7 is a mea-
sure on B. Verify that if f = g for some E € A, then for a Borel set
BCR

pp(B) = xp(Dp(E) + xp(O)pu(X — E).

A function i : R — R* is Borel measurable if the preimage of a Borel set in
R is a Borel set in R. Let # be Borel measurable and integrable with respect
to f . Prove that i(f) is integrable in {X, A, u} and

/h(f)du:/h(t)duf. (9.2¢)
X R

Hint: Given s s, compute the integral of both sides by assuming first that
h = xp where B C R is a Borel set. Then in view of (9.1c), the integrals
equal s (B) = pff ~1(B)}. Next assume that / is nonnegative. Compute both
sides of (9.2¢) by using the definition (7.1) and show that both sides are equal.
The general case follows by linear combinations and limiting processes.

For a u-measurable function f on {X, A, i} prove that

o0
/ | f1Pdp = / Py
X 0

Equidistributed Measurable Functions: Two measurable function fi, f> :
X — R are equidistributed if

plf (B) = ulfy '(B)]  for every Borel set B C R.

Give an example of equidistributed measurable functions f; # f,. Prove that
if fi and f, are equi-distributed, then

/h(fl)du:/h(fz)du for all 4(-) asin9.2.
X X

Expectation and Variance of a Measurable Function: The expectation
E(f) and the variance o>(f) of a measurable function f are defined as



178

9.6.

10c

4 The Lebesgue Integral

EH = [ fau= [ ran;

(9.3¢)
2(f) = /X (f — E(f)du = /IR (t — ECf)Ydu;.

The quantity o(f), is the standard deviation of f. Prove that o>(f) = 0 if
and only if there exists + € R such that f = 1 a.e.in X and r = E(f).
Let f; and f, be equidistributed measurable functions on {X, A, 1}. Then

o (f1) = o*(fo).

Convergence Theorems

In the problems 10.1-10.10, {X, A, 11} is a measure space and E € A.

10.1.

10.2.

10.3.

Let f : E — R* be integrable and let {E,} be a countable collection of
measurable, disjoint subsets of E such that £ = UE,,. Then

/Efdu:z/Enfdu.

Let i be the counting measure on the positive rationals {ry, r;, ...}, and let

- if j<n

~. | —

fn(rj) =
0 if j>n.

The sequence { f,,} converges uniformly to a nonintegrable function.

Let i be a finite measure and let { f,,} be a sequence of integrable functions
converging uniformly in X. The limiting function f is integrable and one
can pass to the limit under integral.

10.1c Another Version of Dominated Convergence

Theorem 10.1c Let { f,,} be a sequence of integrable functions in E converging a.e.
in E to some f. Assume that there exists a sequence of integrable functions {g,}
converging a.e. in E to an integrable function g and such that

lim/g,,duz/gdu.
E E



Problems and Complements 179

Assume moreover that | f,,| < g, a.e. in E foralln € N. Then f is integrable and

10.4.

10.5.

10.6.

10.7.

10.8.

10.9.

10.10.

lim/Efnduz/Efdu.

Let {f,} : E — R* be a sequence of integrable functions converging to an
integrable function f a.e.in E. Then

lim/|fn—f|du=0 if and only if lim/|fn|du=/|f|du.
E E E

Let {f,} : E — R* be a sequence of measurable functions satisfying

Z/E | fuldp < 0.

Then >’ f, defines, a.e. in E and integrable function and

/E S fudu=3 /E fudp.

Let {f,} : E — R* be a sequence of measurable functions satisfying
| fu| < |f] for an integrable function f : E — R. Then

/liminf fudp < lim inf/ fadp < lim sup/ fudp < / lim sup f,dp.
E E E E

Let E be of finite measure and let {f,} : E — R* be a sequence of
measurable functions satisfying | f,| < |g| for an integrable function g :
E — R.If {f,} — f in measure, then

/fd,u:lim/fndu and lim/|fn—f|du=0.
E E E

Let E be of finite measure and let {f,} : E — R* be a sequence of
nonnegative measurable functions converging in measure to f. Then

/fdusliminf/ fudp.
E E

Prove that in the Egorov-Severini Theorem 2.1 the assumption u(E) < 0o
can be replaced by | f,,| < g for an integrable function g : E — R*.

Let {f,} : E — R* be a nonincreasing sequence of nonnegative, measur-
able functions. Give an example to show that in general
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lim/Efndu;é/Elimf,,du.

Thus in the Monotone Convergence Theorem 8.1, the monotonicity assump-
tion f, < fu,+1, cannot be replaced with the monotonicity assumption

fn = fn+1~
In the problems 10.11-10.16, {X, A, 1} is RY with the Lebesgue measure.
10.11. Let sequences { f,} be defined by

fn(x) = i

n if x €0, 1 £ = Lfor0<x=<n
0 otherwise, "7 10 for x > n.

In either case

1=1lim [ fudx# | lim fydx =0.
R+ Rt

10.12. Let f : R — R be Lebesgue measurable, nonnegative, and locally
bounded. Assume that f is Riemann-integrable on R. Then f is Lebesgue

integrable on R and
/ fdu = lim/ fdu.
R -n

10.13. Let {f,} be the sequence of nonnegative integrable functions defined on
RY by

-1

N - .

Fix) = n eXle—n2|x|2] if |x] <

0 if x| >

Sl= 3=

The sequence { f,} converges to zero a.e. in RV and each f, is integrable
with uniformly bounded integral. However

lim/ fndx 75/ lim f,dx.
RY R¥

10.14. Let{f,} be the sequence defined in 7.7 of the Complements of Chap. 2. The
assumptions of the dominated convergence theorem fail and

1 1 1
lim/ fu(x)dx = 3 and / lim f,(x)dx = 0.
0 0

10.15. The two sequences {x"} and {nx"} converge to zero in (0, 1). For the first
one can pass to the limit under integral and for the second one cannot.
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10.16.

Integrability and Boundedness: There exist positive, Lebesgue integrable
functions on R, that are infinity at all the rationals. Let {r, } be the sequence
of the rationals in R* and set

_ I e
Jx) = Z?ﬁ'

Prove that f is integrable over R* (Proposition 10.2).

11c Absolute Continuity of the Integral

The proof of Theorem 11.1 shows that for an integrable function f, given € > 0, the
corresponding ¢ claimed by the theorem, depends upon ¢ and f.

A collection @ of integrable functions f : E — R* is uniformly integrable, if for
all & > 0 there exists § = §(¢) > 0 such that the conclusion of Theorem 11.1 holds
for all f € @, for all measurable sets £ C E such that u(€) < § (Vitali [169]).

11.1.
11.2.

11.3.

11.4.

11.5.

11.6.

If @ is finite then it is uniformly integrable.

Let {f,} be a sequence of integrable functions such that | f,| < g for an
integrable function g. Then { f,,} is uniformly integrable.

Let E be of finite measure and let { f;,} be a sequence of uniformly integrable
functions converging a.e. in E to an integrable function f. Prove that (Hint:
Egorov—Severini theorem)

lim/ | fo — fldp = 0. (11.1c)
E

This gives an alternate proof of the Lebesgue dominated convergence theo-
rem when p(E) < oo. Give an example showing that the conclusion is false
if E is not of finite measure.

Let { f,,} be a sequence of integrable functions in E, satisfying (11.1c) for an
integrable f. Then {f,} is uniformly integrable.

Show that the following sequences of functions defined in (—1, 1), are not
uniformly Lebesgue integrable.

fulx) = Ve n; fulx) = %e—*n;
) (11.2¢)

n-x

falx) = m

n
e N AOL
Let E be of finite measure and let { f;} : E — R* be a family of functions
uniformly integrable in E and such that f;(x) is continuous in ¢ € (0, 1) for
every fixed x € E. Prove that
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O, 1))>t — / fidp is continuous.
E

12¢ Product of Measures

12.1¢ Product of a Finite Sequence of Measure Spaces

Given a finite sequence of measure spaces {X;, A;, u;};_; for some n € N their
product space is constructed by the following steps:

12.1.

12.2.

12.3.

Measurable n-Rectangles. A measurable n-rectangle is a set of the form
E:H;'.zlEj for E;eA; forall j=1,...,n.

Denote by R) be the collection of all measurable n-rectangles and prove that
it forms a semi-algebra.
Measuring Measurable Rectangles. On R/ introduce the set function

R, 2 E = M(E) =[] pj(E)). (12.1c)
j=1

Prove that ), is countably additive on R/. For this use a n-dimensional
version of Proposition 12.1. As a consequence ), is well defined on R} in
the sense that, for Q € R, the value \,(Q) is independent of a particular
partition of elements in R, making up Q.

Constructing the Product Measure Space. The set function )\, on R}
generates an outer measure /i, on H?=1X ;- The latter in turn generates the
measure space {Y,, B,, v,}, where

Y, = ﬁ X, B,= (jli[l.Aj), v, = (j]i[luj).

j=1

Moreover R} C B, and v,(E) = A\, (E) forall E € R.

12.1.1c Alternate Constructions

Fix an integer 1 < m < n and construct first, by the indicated procedure, the two
measure spaces {Y,,, By, v, } and {Y™, B", ™}, where
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v = ] X, 8" = ( 11 A7), v = (

Jj=m+1 Jj=m+1 j=m+1

Then construct their product

{Y,, x Y™, (B, x B™), (v,, x V™)}. (12.2¢)

Denote by A” the smallest o-algebra containing R..

12.4.
12.5.

12.6.

12.7.

13c

13.1.

13.2.

Prove that A” is contained in (B,, x B") forall 1 <m < n.

Prove that for all 1 < m < n, the restriction of (v, x ™) to R coincides
with the function ), introduced in (12.1c¢).

Prove that for all 1 < m < n, the product space in (12.2c) is generated by
the same outer measure ), generated by A, on R);. Conclude that

{Yu, By, vy} = Y x Y™, (B x B™), (U, x V™)} (12.3¢)

and thus the finite product of measure spaces is associative.
Prove that the Lebesgue measure in RV coincides with the product of N
copies of the Lebesgue measure in R.

On the Structure of (A x B)

Let {X, A, u} and {Y, B, v} be complete measure spaces. Let A C X be
p-measurable and let B C Y be not v-measurable. Denote by (A x B), the
outer measure on 4 x B that generates the product measure space {X x
Y, (A x B), (u x v)}. Prove that:

i. If (A x B).(A x B) =0then A x Bis (A x B)-measurable.

ii. If0 < (AxB).(Ax B) < oothen A x Bisnot (A x B)-measurable.
If (A x B).(A x B) = oo then A x B might be (2 x v)-measurable.
Give an example or an argument.

iii. If{X, A, u}and{Y, B, v} are o-finite and (A x B).(A x B) > 0, then
then A x B is not (A x 1B)-measurable.

Let {X, A, u} be non complete and let A C X be non p-measurable, but
included in a y-measurable set A’ of measure zero. For every v-measurable
set B C Y, the rectangle A x B is (i1 X v)-measurable. As a consequence,
the assumption that both {X, A, u} and {Y, B, v} be complete, cannot be
removed from Proposition 13.4.
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Let E C [0, 1] be the Vitali non measurable set. The diagonal set £ =
{(x,x)|x € E}is Lebesgue measurable in R? and has measure zero. The
rectangle E x E is not Lebesgue measurable in R?.
(Sierpinski [146]). Let R be well ordered by <, denote by £2 the first uncount-
able and let

X=Y=Ep={xeR|x < 2}.

Let A be the o-algebra of the subsets of X that are either countable or their
complement is countable. For £ € A, let u(E) = 0 if E is countable and
w(E) = 1 otherwise. Consider the set

E={(x,y)€XxX|x=<y}
All the x and y sections of E are measurable. However E is not (i X p)-
measurable. Indeed if E were measurable, it would have finite measure,
since

ECcXxX and (uxpu)(X xX))=puX)uX)=1.

Therefore, it would have to satisfy Proposition 13.4. However

/ wE)dv =0 and / w(Edp = 1.
Y X

13.1¢ Sections and Their Measure

Given a finite sequence {X;, A u j};le of measure spaces, let {Y,, B,, v,} be their
product measure space as constructed either in (12.1¢)—(12.3c¢).

Foraset E C Y,and y,, € Y,,,and y" € Y" forsome 1 < m < n, the y,,-section
E,, of E and the y™-section E,» of E are defined as

13.5.

13.6.

13.7.

Y" s E,, ={y" | (Ym, y™) € E forafixed y, € Y,}

(13.4¢)
Yy 3 Eyn = {yn | (Ym, Y") € E forafixed y" € Y"}.

Prove that for all £ € A? and all 1 < m < n the sections E, € B™ and
E y € Bm.
Prove that for all E € A’ of finite v, measure and forall 1 <m < n

I/n(E)Z/ XEedvy, =/ V’”(Eym)dumz/ Un(Eyn)dv™.  (13.5¢)
Ym m

n

State and prove a version of Fubini’s Theorem when all the measure spaces
{X;, Aj, u;},for j =1,...,n,are complete.
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13.8.

14c

14.1.

14.2.

14.3.

14.4.

14.5.

14.6.

14.7.

State and prove a version of Tonelli’s Theorem when all the measure spaces
{X;, A, u}, for j =1, ..., n,are complete and o-finite.

The Theorem of Fubini—Tonelli

Let wy be the measure of the unit sphere in R . Then

w/2
WNil = 2wN/ (sint)Nfldt.
0

By the Fubini—Tonelli theorem

—|x|? N —x? N/2
e "dx =11 | e ¥idx; =n"/".
RN i=1JR

Let {X, A, u} be [0, 1] with the Lebesgue measure and let {Y, 5, v} be the
rationals in [0, 1] with the counting measure. The function f(x,y) = x is
integrable on {X, A, 11} and not integrable on the product space.

Let[0, 1]be equipped with the Lebesgue measure £ and the counting measure
v both acting on the same o-algebra of the Lebesgue measurable subsets of
[0, 1]. The corresponding product measure space is not o-finite since v is
not o-finite. The diagonal set £ = {x = y} is of the type of R,;, and hence
(i X v)-measurable and

V(Ey) =1 Vxe[0,1] and u(E,) =0 Vyel0,1].

Therefore,

/ v(Ey)dp =1 and / w(Ey)dv = 0.
[0,1] [0,1]

// Xed(p X V) = 00.
[0,1]x[0,1]

Let f and g be integrable functions on complete measure spaces {X, A, i}
and {Y, B, v}, respectively. Then F(x,y) = f(x)g(y) is integrable on the
product space (X x Y).

Let {X, A, uu} be any measure space and let {Y, 13, v} be N with the counting
measure. Prove that the conclusion of Fubini’s theorem continues to hold
eveni{X, A, u}is not complete, and that the conclusion of Tonelli’s theorem
continues to hold even if {X, A, 11} is neither complete nor o-finite.

Let{X, A, u}and {Y, B, v} be both N with the counting measure and consider
the function

Moreover
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1 ifm=n
fm,n)=13—-1 iftm=n+1
0  otherwise.
Prove that f is not integrable in the product space {X x Y, (A x B), (u x v)}
and the conclusion of Fubini’s theorem fails.

14.8. Let {X, A, u} and {Y, 3, v} be both (0, 1) with the Lebesgue measure. Let
f :(0,1) - R be measurable and assume that

0.1 x(0,1) > (x,y) = fx) = f(y)

is integrable in the product space {X x Y, (A x B), (u x v)}. Prove that f
is integrable in (0, 1).

15¢ Some Applications of the Fubini-Tonelli Theorem

15.1c Integral of a Function as the “Area Under the Graph”

Let {X, A, 11} be complete, and o-finite, and let f : X — R* be a nonnegative and
integrable. The graph of f on E is the set of points {x : (x, f(x)} and the set of
points “under the graph” is

Up={.y)|xeX: 0=y < f)

Prove that U is measurable in the product measure space of {X, A, u} and R
with the Lebesgue measure dx, and

{measure ofo}:/ fx)dpu.
X

Prove that the graph of f as a subset of X x R is measurable in the product
measure and has measure zero.

15.2¢ Distribution Functions

Let {X, A, u} be a measure space and let f : X — R* and {f,} : X — R* be
nonnegative and integrable. Prove:

Proposition 15.1¢c Assume that ([ f > t]) # oo. Then
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lim p([f > 1 +e]) = plf > 1]

lim pu(Lf > 1 —el) = p(lf = 2D).

Therefore, the distribution function t — p([f > t]) is right-continuous, and it is
continuous at a point t if only if u([f =t]) = 0.

Proposition 15.2¢ Let { f,,} — f in measure. Then for every ¢ > 0

limsup pu([f, > 1]) < u([f > 1 —¢€))
liminf p([f, > 11) = p((f > t +€)).

Therefore, p([ f, > t]) — w(lf > t]) at those t where the distribution function
of f is continuous.

15.1. For a measurable function f on {X, A, y} set

R* 51— f() = p(lf <1]) (15.1¢)

prove that f, is nondecreasing, right-continuous, and f,(c0) = u(X).

15.2. Give an example of f and {X, A, p} for which fx is right-continuous and
not continuous.

15.3. The function f, generates the Lebesgue—Stiltjies measure ji 7, on R. Let p1 ¢
be the measure defined by (9.1c). Prove that s, = p s on the Borel sets of
R and that ji, is the completion of 1.

17¢ The Radon-Nikodym Theorem

17.1. Let v be the Lebesgue measure in [0, 1] and let 1 be the counting measure on
the same o-algebra of the Lebesgue measurable subsets of [0, 1]. Then v is
absolutely continuous with respect to p, but it does not exist a nonnegative,
p-measurable function f : [0, 1] — R* for which v can be represented as
in (17.1).

17.2. 1In [0, 1] let A be the o-algebra of the sets that are, either countable or
have countable complement. Let x4 be the counting measure on A and let
v : A — R* be defined by v(E) = 0 if E is countable and v(E) = 1
otherwise. Then v is absolutely continuous with respect to x4 but it does not
have a Radon-Nikodym derivative.

17.3. Changing the Variables of Integration: Let the assumptions of the Radon-
Nikodym theorem hold. If g is v-integrable, g(dv/dp) is p-integrable and
for every measurable set £

dv
/gdu:/g—du. (17.1¢)
E E dp
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174.

17.5.

17.6.

17.7.

4 The Lebesgue Integral

Linearity of the Radon-Nikodym Derivative: Let ;2 and v, and v, be o-
finite measures defined on the same o-algebra A. If 1| and v, are absolutely
continuous with respect to

d d d

dote) _dn, dn e (17.20)
du du du

The Chain Rule: Let 4, v, and 1 be o-finite measures on X defined on the

same o-algebra 4. Assume that 1 is absolutely continuous with respect to 7

and that v is absolutely continuous with respect to p. Then

dv  dvdp .
— = —— a.e. with respect to7. (17.3¢)
dn dpdn

Derivative of the Inverse: Let ;1 and v be two not identically zero, o-
finite measures defined on the same c-algebra A and mutually absolutely
continuous. Then

dv du dv\™"
— #0 and — ={(— . (17.4¢)
du dv du

Hint: For all nonnegative v-measurable functions g

dv
/gdu:/g—du.
E E dp

This is true for simple functions and hence for nonnegative -measurable
functions g. Now for all E € A of finite y-measure

du dupdv
wE)y= [ ldu= | —dv= | ——dpu.
E E dv E dv d,u

The inverse formula (17.4c) follows from the uniqueness of the Radon-
Nikodym derivative.

Let {X, A, u} be [0, 1] with the Lebesgue measure. Let { E,, } be a measurable
partition of [0, 1] and let {c,} be a sequence of positive numbers such that
>, < oo. Find the Radon-Nikodym derivative of the measure

A>E — v(E)=> ayu(ENE,)

with respect to the Lebesgue measure.

Proposition 17.1¢ Let i and v be two measures defined on the same o-algebra A.
Assume that v is finite. Then v is absolutely continuous with respect to p if and only
if for every £ > 0 there exists 6 > 0 such that v(E) < € for every set E € A such
that 1l(E) < 4.
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Proof (Necessity) If not, there exist ¢ > 0 and a sequence of measurable sets {E,},
such that v(E,) > ¢ and u(E,) <27". Let E = lim sup E, and compute

v(E) = v(limsup E,) > limsupv(E,) > ¢.

On the other hand foralln e N

o0

H(E) < p( U Ej) < Z;l HWEj) < -1 n

~
Il
3

~
|

17.8.  The proposition might fail if » is not finite. Let X = N and for every subset
E C N, set
1
wE)y=> — v(E)= > 2"

nekE 2n nek

17.9. Moreon v « p: There exist o-finite measures v on the Lebesgue measur-
able sets of IR, absolutely continuous with respect to the Lebesgue measure
pon R and such that v(E) = oo for every measurable set £ with nonempty
interior. Let {r,} be the sequence of the rationals in R and set

oWl

1
gx) =2 —

21 |X _rn|

and u(E):/gdu
E

for all Lebesgue measurable set E C R.

17.10. Let {X, A, 1} be a measure space and let v be a signed measure on A of
finite total variation |v|. Then v < p if and only if for every € > 0 there
exists & > 0 such that [v|(E) < ¢ for all E € A such that u(E) < 6. Give
an counterexample if |v| is not finite.

18c A Proof of the Radon-Nikodym Theorem When Both g
and v Are o-Finite

A more constructive proof of Theorem 17.1 can be given if both p and v are o-finite.
Assume first that both p and v are finite. Let @ be the family of all measurable
nonnegative functions ¢ : X — R* such that

/gpdu <wv(E) forall E € A.
E

Since 0 € @ such a class is not empty. For two given functions ¢; and ¢, in @
the function max{(p;; .} is in @. Indeed for any E € A
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/max{wl;soz}du=/ wldwr/ padp
E ENlp1=¢2] EN[pr>p1]

=v(EN[pr = @) +v(EN[p2 < ¢1]) = V(E).
Since v is finite
M= sup/ pdp < v(X) < oo.
X

ped

Let {¢,} be a sequence of functions in @ such that

lim/ opdp =M
X

and set f, = max{yy, -, ,}. The sequence {f,} is nondecreasing, and p-a.e.
convergent to a function f that belongs to @. Indeed by monotone convergence, for
every measurable set E

/ fdp = Tim / fudpt < v(E).
E E

Such a limiting function is the f claimed by the theorem. For this it suffices to
establish that the measure

ABE—>77(E)=1/(E)—/fdu
E

is identically zero. If not, there exists a set A € A such that n(A) > 0. Since both
v and 7 are absolutely continuous with respect to p, for such a set, (A) > 0. Also,
since y is finite, there exists € > 0 such that

§(A) = n(A) — eu(A) > 0.

The set function
A3 E — §(E) =n(E) —eu(E)

is a signed measure on .4. Therefore, by Proposition 16.1 the set A contains a positive
subset A, of positive measure. In particular

NENA,) —eu(ENA) >0 forall E € A.

From this and the definition of n

ew(ENA,) <v(ENA,) —/ fdup forall E € A.

ENA,
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The function (f 4 x4,) belongs to @. Indeed, for every measurable set E

/ (f +exa)dp = / Fdu+ / (f +o)dp
E E—A, ENA,
< u(E — A,) 4+ v(EN A, = v(E).

This however contradicts the definition of M since
/(f +exa)dp =M +ep(A,) > M.
X

If g : X — R* is another nonnegative measurable function by which the measure
v can be represented, let A, = [f — g > %]. Then for alln € N

1
(A < /A (f = g)dp = v(Ay) — v(Ay) = 0.

Thus f = g p-a.e. in X.
Assume next that p is o-finite and v is finite. Let £, be a sequence of measurable,
expanding sets such that

M(En) =< ,M(En-H) <00 and X = U En
and denote by p,, the restriction of i to E,,. Let f,, be the unique function claimed by
the Radon-Nikodym theorem for the pair of finite measures {1, ; v}. By construction

Ja1 | p = Jn forall n. The function f claimed by the theorem is f* = sup f,. Indeed
if E € A, by monotone convergence

V(E)=limv(ENE, = lim/ fadp :/ fdpu.
E E

The uniqueness of such a f is proved as in the case of u finite. Finally a similar
argument, establishes the theorem when also v is o-finite. ]



Chapter 5
Topics on Measurable Functions of Real
Variables

1 Functions of Bounded Variation ([78])

Let f be a real-valued function defined and bounded in some interval [a, b] C R.
Denote by P = {a = x, < x| < --- < x, = b} a partition of [a, b] and set

Vila, bl = sgpfz] f ) = FGaonl.

This number, finite or infinite, is called the fotal variation of f in[a, b].If V¢[a, b]
is finite the function f is said to be of bounded variation in [a, b] and one writes
f € BV]a, b]. If f is monotone in [a, b], then f € BV|[a, b], and

Vila,bl =1f () = f(a)l.

More generally, if f is the difference of two monotone functions in [a, b], then
f € BV]a, b]. If f is Lipschitz continuous in [a, b] with Lipschitz constant L, then
f € BV]a, b], and V¢[a, b] < L(b —a).

Continuity does not imply bounded variation. The function

T
f(x):[;COS; for x € (0, 1] (1)

for x =0

is continuous in [0, 1] and not of bounded variation on [0, 1]. Consider the partition
of [0, 1]
1 1 1
Pn={0<—< <~--<—=1}
n n-—1 n—m-—1)
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and estimate

. cosnm n=1 cosm(n —j cosmt(n —j+1
e T

j=1 n—] n—]—l-l

1onml,o 1 1 "

— lim {—+Z( I )}znmzf.
n—oo Ln s\ —j n—]—|—] n—o0 /2] 1

Bounded variation does not imply continuity. The function

_ |0 for x € [-1,1] — {0}
f(x)_[l for x =0

is discontinuous and of bounded variation and V[—1, 1] = 2.

Proposition 1.1 Let f and g of bounded variation in [a, b] and let « and 3 be real
numbers. Then (af + Bg) and (fg) are of bounded variation in [a, b). If |g| > ¢
for some € > 0, then (f/g) is of bounded variation in [a, b].

Proposition 1.2 Let f be of bounded variation in [a, b]. Then f is of bounded
variation in every closed subinterval of [a, b]. Moreover for every ¢ € [a, b]

Vila, bl = Vyla, c] + Vyle, bl. (1.2)

The positive and negative variations of f in [a, b] are defined by

V/la,b] = sup f(x) JACTEI
P

~.
= ] M:

Vi la, bl = supz fx) = flx-Dl.

j=1
Proposition 1.3 Let f be of bounded variation in [a, b]. Then
Vila, bl = V+[a b1+ V,la,b]
F®) = f@ = Vla, bl - Vla. bl
In particular for every x € [a, b], there holds the Jordan decomposition

fx) = f@+V/la,x]1-V;la,x]. (1.3)

Since x — Vi[a x] are both non-decreasing, a function f of bounded variation
can be written as the difference of two non-decreasing functions. We have already
observed that the difference of two monotone functions in [a, b] is of bounded vari-
ation in [a, b]. Thus a function f is of bounded variation in [a, b] if and only if it is
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the difference of two monotone functions in [a, b]. The Jordan decomposition also
implies that a function of bounded variation in [a, b] is measurable in [a, b].

Proposition 1.4 A function f of bounded variation in [a, b] has at most countably
many jump discontinuities in [a, b].

Proof May assume that f is monotone increasing. Then, for every ¢ € (a, b), the
limits

lim f) =), lim f() = f(c)
exist and are finite. If f(c*) > f(c™), we select one and only one rational number

out of the interval (f(c™), f(c")). This way the set of jump discontinuities of f is
put in one-to-one correspondence with a subset of N. ]

2 Dini Derivatives ([37])

Let f be a real-valued function defined in [a, b]. For a fixed x € [a, b] set

Jx+h) — fx)

D = liminf
+ f(x) im in

I
B 2.1)
D f(x) = limsup 20+ = [
h—0* h

These are the four Dini numbers or the four Dini derivatives of f at x. If f is
differentiable at x these four numbers all coincide with f'(x).

Proposition 2.1 (Banach-Sierpifiski [9, 147]) Let f be real-valued and non-
decreasing in [a, b]. Then the functions D+ f and D* f are measurable.

Proof We prove that D™ f is measurable, the arguments for the remaining ones being
similar. For n € N set

B fa+h) — f(x)
u,(x) = sup —mm.
0<h<% h

Since DT f = lim u,,, it suffices to prove that the u,, are measurable. By monotonic-
ity f is measurable and, for / fixed, the difference quotients in the definition of u,, are
measurable. We prove that the supremum of such difference quotients for 2 € (0, %]
is be realized for & ranging over a countable subset of (0, %]. This way u, would be
the supremum of a countable collection of measurable functions. Set

fx+h)— fx)

vy(x) = sup h

heQn(0,1]
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By construction v, (x) < u,(x). To establish the reverse inequality, having fixed
e > 0, there exists 7 € (0, %] such that

Jx+7) - fx)

T

> u,(x) —e.

Having fixed such a 7, there exist h € Q N (0, %], and & > 7, such that

3

|f+DI+ 1) +1

1 1 +

p— < J—

T h
Therefore, since f(x +7) < f(x + h)

S+ h)— f(x) tes Jx+71)— fx) o () — .
h T
Thus v, (x) > u,(x) — 2¢ forall ¢ > 0. [ ]

For a function f defined in [a, b] set
D"f =max{D” f; D f},  D'f=min{D_f; Dy f}.
If f is non-decreasing the two functions D" f and D’ f are both measurable.
Proposition 2.2 Let f be a real-valued, non-decreasing function in [a, b]. Then
fb)— fa)>tu((D"f >1t]) forall t €R.
Proof The assertion is trivial if /L([D” f> t]) = 0 orif r <0. Assuming that
w([D"f>1t])>0 and >0

let F denote the family of all closed intervals [«, 3] C [a, b] such that at least one
of the extremes o or §is in [D” f > t] and such that

A ACON
f—a '

By the definition of D” f, having fixed x € [D” f > ] and ¢ > 0, there exists
some interval [, 3] € F of length less than § and such that x € [«, (3]. Therefore F
is a fine Vitali covering for [D” f > t]. By Corollary 17.1 of Chap. 3, for any fixed
€ > 0 there exist a finite collection of intervals [y, §;] € F fori =1, ..., n, with
pairwise disjoint interior, such that

iZl(ﬁi —a;) > pu([D" f >t]) —e.
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From this and the definition of F
F0) = f@) > S LFB) — flan)]
i=1

> 1B —an) > (D' f > 1)) — 12 .
i=1

Corollary 2.1 Let f be a real-valued, non-decreasing function defined in [a, b].
Then D" f and D' f are a.e. finite in [a, b).

Proof Forallt > 0

IO —f@

p([(D'f = oo]) = u([D" f =o0]) < u([D"f > 1] ;

3 Differentiating Functions of Bounded Variation

A real valued function f defined in [a, b] is differentiable at some x € (a, b) if
and only if D” f(x) is finite at x and D” f(x) = D’ f(x). The function f is a.e.
differentiable in [a, b] if and only if D” f is a.e. finite in [a, b] and pu([D"f >
D'f]) =0.

Theorem 3.1 (Lebesgue 911! A real-valued, non-decreasing function f in [a, b]
is a.e. differentiable in [a, b].

Proof By Corollary 2.1, D” f and D’ f are a.e. finitein [a, b]. Assume that ([ D" f >
D' f]) > 0 and, for p,q € N, set

I
Epg=[Df <% < P+l D' f()].
¢ q

Since
[D"f>Dfl=UE,,

there exists a pair p, g of positive integers such that u(E,,) > 0. Let F be the
family of closed intervals [«, 3] C [a, b] such that at least one of the extremes « and
3 belongs to E, , and such that

fB-—f@ _p

f—a q

Having fixed x € E, , and some ¢ > 0, there exists an interval [c, §] € F of
length less than 6, such that x € [«, B]. Therefore F is a fine Vitali covering of E, ;.

I'Also in [122]. A proof independent of measure theory is in [134], pp. 5-9.
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By Corollary 17.1 of Chap. 3, having fixed an arbitrary € > 0, one may extract out
of F, a finite collection of intervals [y, §;] fori = 1, ..., n, with pairwise disjoint
interior, such that

Z(ﬁt_al)_5<M(qu)</J( U al?ﬁi])+€

Therefore by the construction of the family F

< P p p

2 LB — flan] < 4 2B —ap) < 5M(Ep,q) + .
i=1

i=1

By Proposition 2.2 applied to f restricted to the interval [«;, 3;] we derive

1
FGB) = flan > P uE, , N law. 8.

Adding these inequalities fori =1, ..., n, gives

Z[f(ﬁl)_f(a )] > q ZM(Equ[ala/Bl])

p+1 ( n p+1 p+1
- 2y O o 1) = 2 - 2L
q L:J q - q

Combining the inequalities involving p(E), ;)

p+1 p+1
—,u(qu)—i-—E > T W(Epq) — €.
From this (£, ;) < 2p + 1)e, forall € > 0. [ ]

Corollary 3.1 A real-valued function f of bounded variation in [a, b] is a.e. differ-
entiable in [a, b].

4 Differentiating Series of Monotone Functions

Theorem 4.1 (Fubini [53])% Let { f,,} be a sequence of real-valued, non-decreasing
functions in [a, b] and assume that the series Y, f, is convergent in [a, b] to a real-
valued function f defined in [a, b]. Then f is a.e. differentiable in [a, b] and

f'x)y=> fi(x) forae xé€la,b].

2Also in [161].
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Proof By possibly replacing f, with f, — f,(a), we may assume that f,(a) =0
and f, > 0. For n € N write

n o0
f:zif,-—i—Rn where R, = Zlfj.
i= Jj=n+

The functions R, are non-decreasing and hence a.e. differentiable in [a, b]. The
difference R, — R,+1 = fu+1,1s also non-decreasing and a.e. differentiable in [a, D].
Therefore R, — R; | = f,., = 0,a.e.in [a, b]. This implies that the sequence {R;}
is decreasing, and has a limit ¢ = lim R, a.e. in [a, b]. The sum f is non-decreasing

and hence a.e. differentiable in [a, b]. Therefore
f'=>f+R, a.e.in [a, b].
i=1

To prove the theorem it suffices to show that g = 0 a.e. in [a, b]. Apply Propo-
sition 2.2 to the function R,,, and take into account that R, > g a.e. in [a, b]. This
gives

R,(b) > tp([R, > t]) > tu([g > t]) forall n € N.

Since the series is convergent everywhere in [a, b] the left-hand side goes to zero
asn — 0o. Thus u([g > t]) =0 forall r > 0. [

5 Absolutely Continuous Functions ([91, 169])

A real valued function f defined in [a, b] is absolutely continuous in [a, b] if for
every € > 0 there exists a positive number 9 such that, for every finite collection of
disjoint intervals (a;, b;) C [a, b], j = 1, ..., n of total length not exceeding J
D f) — flapl<e (Z(bj—aj)<§). (5.1)
j=1 j=1

If g is integrable in [a, b] then the function

x — /x g(t)dt

is absolutely continuous in [a, b]. This follows from the absolute continuity of the
integral. If f is Lipschitz continuous in [a, b] it is absolutely continuous in [a, b].
The converse is false. A counterexample can be constructed using 5.1 of the Problems
and Complements. Absolute continuity implies continuity but the converse is false.
The function in (1.1) is continuous and not absolutely continuous.
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The linear combination of two absolutely continuous functions f and g in [a, b] as
well as their product f g are absolutely continuous. Their quotient f/g is absolutely
continuous if |g| > ¢, > 0in [a, b].

Proposition 5.1 Let f be absolutely continuous in [a, b]. Then f is of bounded
variation in [a, b].

Proof Having fixed € > 0 and the corresponding ¢, partition [a, b] by points a =
X, < X1 < --- < x, = b such that

%5<x,~—xi_1<6 i=1,...,n.

The number n of intervals of this partition does not exceed 2(b — a)/4. In each
of them the variation of f is less than €. Then by (1.2) of Proposition 1.2

n &‘
Vela, bl = 3" Velxi—i, xi]1 <2(b — a)g~ -
i=1

Corollary 5.1 Let f be absolutely continuous in [a, b]. Then f is a.e. differentiable
inla, b].

Proposition 5.2 Let f be absolutely continuous in [a, b). If f' > 0 a.e. in [a, b]
then f is non-decreasing in [a, b].

Proof Fix[a, B] C [a, blandset E = [f' > 0] N [, 3]. By the assumption u(E) =
(8 — a. Having fixed € > 0, let § be a corresponding positive number claimed by the
absolute continuity of f. For every x € E, there exist some o, > 0 such that

f&x+h)— f(x) > —ch forall i € (0, 0y).

The collection of intervals [x, x + &] for x ranging over E and h € (0, 0,), is
a fine Vitali covering for E. Therefore, in correspondence of the previously fixed
6 > 0, we may extract a finite collection of intervals [«;, §;] fori =1, ..., n, with
pairwise disjoint interior, such that

WE) =5 < p[EN Ulos — B)] and () — Fla) > —=( — an).

i=1

The complement

[O[, ﬁ] - 'L’:Jl(ais 61)

consists of finitely many disjoint intervals [a;, b;] for j =1, ..., m of total length
not exceeding §. Therefore (5.1) holds for such a finite collection, and
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FB) — fla) = 21 L) — flan] + il Lf b)) — f(a))]
= J:

v

—> (Bi—a;))—e  forall € > 0.
i=1

Corollary 5.2 Let f be absolutely continuous in [a, b). If f' = 0 a.e. in [a, b] then
f is constant in [a, b].

Remark 5.1 The conclusions of Proposition 5.2 and Corollary 5.2 are false if f is of
bounded variation and not absolutely continuous. A counterexample is the function
of the jumps introduced in § 1.1c (see 2.4 of the Complements).

Remark 5.2 The assumption of absolute continuity cannot be relaxed to the mere
continuity as shown by the Cantor ternary function and its variants (§ 5.1c—§ 5.2¢c
of the Problems and Complements). The same examples also show that bounded
variation and continuity do not imply absolute continuity.

6 Density of a Measurable Set

Let E C [a, b] be Lebesgue measurable. The set density functions

X X
x — dp(x) = / xe)dt,  dip-p(x)= / Xla,b1—E(t)dt
a a
are absolutely continuous and non-decreasing in [a, b]. Moreover

dp(x) +digp—g(x) =x —a
f( ) [,a’h] £ (1) fora.e. x € [a, b].
dp(x) +dp, pp(x) =1
Proposition 6.1 (Lebesgue [91]) Let E C [a, b] be Lebesgue measurable. Then
dy;=1aein E and d;=0 ae. in [a,b] —E.
Proof 1t suffices to prove the first of these. If E is open then d. = 1 in E. Assume

now that E is of the type of a Gy, i.e., there exists a countable collection of open sets
{E,} such that £, C E, and E = NE,. By dominated convergence

dp(x) = /X xEe(t)dt = hm/x XE,,(t)dt = llden()C)

Therefore
dpg =dg, + 2. (dg,,, —dg,).
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Each of the term of the series is non-increasing since dj, =< dj, . Therefore by
the Fubini theorem

d;; = d/E] + Z (dE’H_I — dE,,)/v a.e.in [Cl, b]
If x € E then d’En =1 for all n € N, and the assertion follows.
If E is a measurable subset of [a, b], there exists a set E of the type of a G5, such

that E C Esand u(Es — E) = 0. This implies that dg = dg, and thus dj, = d}ia =1
a.e.in E. [ ]

7 Derivatives of Integrals

We have observed that if f is Lebesgue integrable in [a, b] then the function

x — F(x) =/x f@®)dt

is absolutely continuous and hence a.e. differentiable in [a, b].

Proposition 7.1 Let f be Lebesgue integrable in [a, b]. Then F' = f, a.e. in [a, b].

Proof Assume first that f is simple. Then if {\, ..., \,} are the distinct values
taken by f, there exist disjoint, measurable sets E; C [a, b],i = 1, ..., n such that

f = Z )‘iXEi and F = z )\idE;-
i=1 i=1

Therefore the assertion follows from Proposition 6.1.
Assume next that f is integrable and nonnegative in [a, b]. There exists a sequence
of simple functions { f;,} such that

fo < for and lim f,(x) = f(x) forall x € [a,b].

By dominated convergence

F(x) =lim F,(x) where F,(x) = /x fa(t)dt.

Therefore
F=F +Z(Fn+] _Fn)

The terms of the series are non-decreasing since

(Fn-H - Fn)/ = f;H—l - fn >0 a.e.in [a,b].
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Therefore by the Fubini theorem
F'=limF, =lim f, = f a.e.in [a, b].

A general integrable f is the difference of two nonnegative integrable
functions. u

Proposition 7.2 (Lebesgue [91]) Let f be absolutely continuous in [a, b]. Then f'
is integrable and

fx) = f(a) +/ f'dt. (7.1)

Proof Assume first that f is non-decreasing so that /' > 0 a.e. in [a, b]. Defining
f(x) = f(b) for x > b, the limit
£+

— fx)
f/(x) = lim

21 =3

exists a.e. in [a, b]. Then by Fatou’s lemma

/b fldx < liminfn/b [£(x+ %) — £ () Jdx

b+l

a+nl
Fx)dx — / f(x)dx)
f) — fla)
n

= lim infn(
b

< liminf n

= f(b) = f(a).

Since f is absolutely continuous, it is of bounded variation and by the Jordan
decomposition is the difference of two non-decreasing functions. Thus f’ is inte-
grable in [a, b]. The function

g(x) = f(a) +/ f'(t)dt

is absolutely continuous and ¢ = f’ a.e. in [a, b]. Thus (¢ — f) = 0 a.e. in [a, b]
and by Corollary 5.2, g = f + const in [a, b]. Since g(a) = f(a) the conclusion
follows. |

Remark 7.1 The proof of Proposition 7.2 contains the following

Corollary 7.1 Let f be of bounded variation in [a, b). Then f' is integrable in
[a, b].
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Remark 7.2 Proposition 7.2 is false if f is only of bounded variation in [a, b]. A
counterexample is given by a non-constant, non-decreasing simple function. For such
a function the representation (7.1) does not hold.

The proposition continues to be false even by requiring that f be continuous. The
Cantor ternary function (§ 5.1c of the Problems and Complements) is of bounded
variation and continuous in [0, 1] and its derivative is integrable. However it is not
absolutely continuous and (7.1) does not hold. A similar conclusion holds for the
function in § 5.2c of the Problems and Complements.

8 Differentiating Radon Measures

Let f be a nonnegative, Lebesgue measurable, real-valued function defined in RV,
integrable on compact subsets of RV and let B,(x) denote the closed ball in RY
centered at x and radius p. If ;1 is the Lebesgue measure in R", the notion of differ-
entiating the integral of f at some point x € R" is replaced by

Fdy = lim LB

lim ———— where dv = fdu
p=0 /’L(Bp(x)) B, (x) p—0 M(Bp(x))

provided the limit exists. More generally, given any two Radon measures p and v in
RN, set

D, v(x) = liminf v(B, ()

N L v(B,(x))
D, v(x) = limsup —= p—0  p(B,(x))

) 8.1
p—0 H(B,(x)) &1

provided p(B,(x)) > 0 for all p > 0. Set also D/jfy(x) = oo if u(B,(x)) = 0 for
some p > 0. If for some x € RV the upper and lower limits in (8.1) are equal and

finite, we set
D:V(x) = D;I/()C) = D,v(x)

and say that the Radon measure v is differentiable at x, with respect to the Radon
measure /.

Proposition 8.1 Let 11 and v be two Radon measures in RN and let j1, and v, be
their associated outer measures. For every t > 0 and every set

1
E C [D:’y > t] there holds p.(E) < ;z/e(E). (8.2)
Analogously, for every t > 0 and every set

1
ECI[D,v =t] there holds  p.(E) > ?Ve(E). (8.3)
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Proof Inproving (8.2) assume first that the set E is bounded. Fixt > Oande € (0, 7).
By the definition of D;fu(x), for every x € E, there exists a ball B,(x) centered at
x and of arbitrarily small radius p such that

(t = )p(By(x)) < v(B,(x)). (8.4
Let O be an open set containing E and set

7o collection of closed balls B,(x) for x € E
- satisfying (8.4) and contained in O '

Since O is open and p is arbitrarily small, such a collection is not empty and forms
a fine Besicovitch covering for E. By the Besicovitch measure-theoretical covering
theorem, there exists a countable collection {B(x,)} of disjoint, closed balls in F,
such that u.(E — UB,) = 0. From this and (8.4)

1
pe(E) < 27 pu(By) < P 2 V(By) < v(0).

t—e¢

Since v is regular, there exists a set E; of the type of a G5 and containing E, such
that v,(E) = v(Es). Therefore

v.(E) = v(E;) = inf{r(O) where O is open and contains Es}.

Thus

te(E) < V.(E) forall ¢ € (0, ).

t—e¢

This proves (8.2) if E is bounded. If not, construct a countable collection {E,}
of bounded sets such that E,, C E, | whose union if E. Then apply (8.2) to each of
the E, to obtain

1
e (Ey) < " v.(E) forall n € N.

For each n let E, ; be a set of the type of G5 such that E,, C E, 5 and p.(E,) =
1(E, s). By construction E C liminf E, ;. Therefore

pe(E) < p(iminf E, 5) =t (liminf E, )
< liminf u(E, ;) = liminf p1,(E,.).

The proof of (8.3) is analogous. |
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9 Existence and Measurability of D, v
The next proposition asserts that v is differentiable with respect to u for p-almost all
x € RV, Equivalently D, v(x) exists p-a.e. in RV.

Proposition 9.1 There exists a Borel set & C RY of ji-measure zero, such that Diu
is finite, and D, v = Dfu inRN — €.

Proof Assume first that both p and v are finite and set £ = [D;rz/ = 00]. By (8.2)

+ 1 N
pe([D, v > t]) < ;V(R ) forall ¢+ > 0.

Since £, C [D:V > t], for all t > 0, one has p,(Ex) = 0. There exists a Borel
set E.5 of the type of a G;, such that Eog C Exo.5, and 1, (Ex) = 11(Ex0.5) = 0. Next,
for positive integers p, g, set

1
E,,= [D;y <L P+’ < D;y] —Ex.5-

q q
By (8.2)~(8.3)

p+1 p
T/J/e(Ep,q) < Ve(Ep,q) =< ;/—j/e(Ep,q)‘

Therefore p.(E, 4) = 0. From this

,ue([D;V < D;V]) =< /’(‘E(U Ep,q) =< ZMe(Ep,q) =0.

There exists a Borel set [D;V < D/fl/](; containing [D;V < D;rz/] and such that

ne(ID v < Div)) = WD, v < Djvl;) =0.

Setting
£ =CExsUID, v < DfVls

proves the proposition if 1 and v are finite. For the general case, one first considers
the restrictions (i, and v, of  and v to the ball B, centered at the origin and radius
n, and then lets n — oo. [

Henceforth we regard D, v as defined in the whole R by setting it to be zero on
the Borel set £ claimed by Proposition 9.1. For p > 0 set

M for x e RN — &

Jox) =1 p(B,(x)) 9.1
0 for x € £.


http://dx.doi.org/10.1007/978-1-4939-4005-9_8
http://dx.doi.org/10.1007/978-1-4939-4005-9_8
http://dx.doi.org/10.1007/978-1-4939-4005-9_8

9 Existence and Measurability of D, v 207

The limit as p — 0 exists everywhere in R and equals D,,v. Taking such a limit
along a countable collection {p,} — 0

D, =lim f,  forall x e RV, 9.2)

Proposition 9.2 Forallt € R the sets [D,v > t] are Borel sets. In particular D,v
is Borel measurable.

The proof hinges upon the following lemma.
Lemma 9.1 For all fixed p > 0, the two functions
RY 5 x — u(B,(x)), RY 3x — v(B,(x))
are upper semi-continuous.

Proof The statement for x — 1(B,(x)) reduces to

lim sup (B, (y)) < u(B,(x)) forall x € RV,

y—=x
Let {x,} be a sequence of points in R" converging to x. Then
lim sup x5,(x,) < XB,xy  Ppointwise in RY.

Equivalently
liminf(1 — xp,¢x,)) = (1 — x,x))  pointwise in R".

By Fatou’s lemma

p(Bap(x)) — p(By(x)) = | (1 — xB,x)dp

B,
5/ liminf(1 — xg,(x,))d
B,

<liminf [ (1 — xg,u,))dp
sz

= liminf {1:(B2,(x)) — pu(B,(xx))}
= p(By,(x)) — limsup p(B,(x,)). [ ]
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9.1 Proof of Proposition 9.2

Ift <0,then [D,v > 1] = R¥. Therefore it suffices to consider ¢ > 0. From (9.1)—
(9.2), D,v = inf ¢, where ¢, = sup;., f,. Since

U =1-¢]

jzn

1
D =1=Nlen=1=NN[e>1-7]=NN
n k n k

n

it suffices to show that [ f, > 7] are Borel sets for all p, 7 > 0. From (9.1)

[f, >71={x e RY | [W(B,(x)) > Tu(B,(x)} — £.

Since £ is a Borel set, it suffices to show that [v(B,) > Tu(B,)] is a Borel set.
Let {g,} denote the sequence of rational numbers. For a fixed 7 > 0

[V(B/)) > TU(Bp)] = U[V(B/J) = qn] N [T/’L(B/J) < QH]

Since the two functions x — u(B,(x)), v(B,(x)) are upper semi-continuous, the
sets [Tu(B,) < g,] are open and the sets [v(B,) > g,] are closed. [

10 Representing D,v

In representing D, assume that the two Radon measures ; and v are defined on the
same o-algebra A. The measurable function D,v can be identified by considering
separately the cases when v is absolutely continuous or singular with respect to p.
For general Radon measures, D, v is identified by combining these two cases and
applying the Lebesgue decomposition theorem of v into two measures v, and v
where the first is absolutely continuous and the second is singular with respect to 1
(Theorem 18.2 of Chap. 4).

10.1 Representing D, v for v L p

Lemma 10.1 Let v < p. Then v([D,v =0]) = 0.

Proof Let £ be the Borel set claimed by Proposition 9.1 and appearing in (9.1).
Then forallt > 0, [D,v =0] C E£U [D,v < t]. From this, (8.3), and the absolute
continuity of v with respect to i

V(D = 0)) < v([D, v < 1)) < tu([D; v < 1]).


http://dx.doi.org/10.1007/978-1-4939-4005-9_9
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If 1 is finite, the conclusion follows by letting ¢+ — 0. If not, restrict first x4 and v
to balls B, centered at the origin and radius 7, and then let n — oo. ]

It follows from Lemma 10.1 that

v([Dw =0]) = / D,vdp = 0.
[D,v=0]

The next proposition asserts that such a formula actually holds with the set[D,v =
0] replaced by any p-measurable set E.

Proposition 10.1 Assume v is absolutely continuous with respect to . Then for
every p-measurable set E

V(E) = / D,vdp. (10.1)
E
Proof Let E C R be p-measurable and for # > 1 and n € Z set
E,=EN[t" <D, <t".
E, C E,and

By construction |,

E-UE,CDw=01 = v(E- | E,)=0.

nez nez

From this and (8.3)

V(E) =Y v(E,) < X " WwE,)

nez nez
=t > "uwE,) <ty Dyvdp = t/ D,vdp.
nez neZ JE, E

Similarly using (8.2)

V(E) = 2 v(Ey) = 2 t"u(Ey)

nez nez

1
t

1 1
> WE,) = A > | Duwdp= ;/ D,vdp.
E

nez neZ JE,

Therefore |
—/ D,vdp < v(E) < t/ D,vdp
tJE E

for all + > 1. Letting t — 1 proves (10.1). ]
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10.2 Representing D, v for v L p

Continue to assume that z and v are two Radon measures in R" defined on the same
o-algebra A.

Proposition 10.2 Assume v is singular with respect to . There exists a Borel set
&\ of p-measure zero, such that D,v = 0 in RN — &, .

Proof Since 1 and v are singular, RN can be partitioned into two disjoint sets Rﬁ’
and RY, such that for every E € A (§ 18 of Chap.4).

W(ENR))=0 and v(ENR})=0.

By (8.2), forallt > 0
1
p([(Dyv > t]) = p([Dyr > t]NRY) < ;V([Dﬂz/ > 1]NRY) =0.

Denoting by {z,} the positive rational numbers, [D,v > 0] = U[D/,u > t,] and

p(Dw > O]) = X p([Dyv > 1,1) = 0. o

11 The Lebesgue-Besicovitch Differentiation Theorem

Let 12 be a Radon measure in R" defined on a o-algebra A. A function f : RY — R*
measurable with respect to A, is locally p-integrable in RV if

/ |fldp < oo for every bounded set E € A.
E
If f is nonnegative, the formula
ABE—>V(E)=/fdu
E

defines a Radon measure v in R", absolutely continuous with respect to i, whose
Radon-Nykodym derivative with respect to u is f. Moreover, such an f is unique,
up to a set of y-measure zero. Therefore by Proposition 10.1

Dyv=—= pu—ae.in RV,
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Let now f be locally p-integrable in RY and of variable sign. By writing f =
fT — f~ and applying the same reasoning separately to f*, proves a N-dimensional
version of the Lebesgue differentiation theorem for general Radon measures.

Theorem 11.1 (Lebesgue-Besicovitch [16]) Let i be a Radon measure in RN and
let f : RY — R* be locally y-integrable. Then

: _ _ N
/1)1_1)1}) 2B, Lo fdp= f(x) forp—aexeR". (11.1)

If 1 is the Lebesgue measure in R and f is locally Lebesgue integrable, the limit
in (11.1) takes the form

1

x+h
%i—%ﬁ/kh f(y)dy = f(x) forae. x € R. (11.1) =y

In this sense, (11.1) can be regarded as a N-dimensional notion of taking the
derivative of an integral at a fixed point x € RY.

11.1 Points of Density

Let E C RY be ;1 measurable. Applying (11.1) with f = x, gives

p(E N By(x) _ o
pli% 1B, () =xeg(x) p— ae.in E.

A point x € E for which such a limit is one, is a point of density of E.

Corollary 11.1 Almost every point of a ji-measurable set E C RY is a point of
density for E.

11.2 Lebesgue Points of an Integrable Function

Let /2 be a Radon measure in RY and let f be locally p-integrable. The points x € RY
where (11.1) holds form a set called the set of differentiability of f. A point x is a
Lebesgue point for f if

lim ———— — f)ldp = 0. 112
pl—l;%,u(Bp(X)) Bﬂ(x)lf(y) F)ldp (11.2)

A Lebesgue point is a differentiability point for f. The converse is false.
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Theorem 11.2 Let ;1 be a Radon measure in RN and let f be locally pi-integrable.
There exists a ji-measurable set € C RN of p-measure zero, such that (11.2) holds
forall x e RN — . Equivalently, pi-a.e. x € RY is a Lebesgue point for f.

Proof Let r, be a rational number. The function | f — r,| is locally p-integrable.
Therefore there exists a Borel set £, ¢ RY of p-measure zero, such that

lim ——— |f —rpldp = | f(x) —r,| forall x e RN —&,.
p=0 u(B,(x)) JB,0x)

Since f is locally p-integrable in RY, there exists £, C RV, of Ji-measure zero,
such that f(x) is finite for all x € RN — &,. The set £ = U;’;O&,, has p-measure
zero. Then for all x € RV — &, by the triangle inequality

/{%m . Lf = fOldp =21 f(x) —ryl

for all rational numbers {r, }. Since f(x) is finite, there exists a sequence {r,/} C {r,}
converging to f(x). Thus (11.2) holds for all x € RY — &. ]

12 Regular Families

Let 1 be a Radon measure in R". For a fixed x € R" a family F, of u-measurable
subsets of R¥ is said to be regular at x if:

(i) For every € > 0 there exists S € F, such that diam § < ¢
(i) There exists a constant ¢ > 1, such that for each S € F;

(B(x)) = cu(S). (12.1)

where B(x) is the smallest ball in R" centered at x and containing S.

The first of these asserts, roughly speaking, that the sets S € F, shrink to x, even
though x is not required to be in any of the sets S € F,. The second says that each
S is, roughly speaking, comparable to a ball centered at x.

If 11 is the Lebesgue measure in RY, examples of regular families F,, at the origin,
include the collection of cubes, ellipsoids or regular polygons centered at the origin.
An example of a regular family F, whose sets S don’t contain the origin is the
collection of spherical annuli % p < x| <p.

The sets in F; have no symmetry restrictions.

The sets shrinking to a point x, in Theorem 11.2 need not be balls, provided they
shrink to x along a regular family F.
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Proposition 12.1 Let f locally p-integrable in RN. Then if x is a Lebesgue point
for f and F, is a regular family at x

1
lim —— / 1) = FGldp =0, (12.2)
(/igxygx}r(] /’L(S) S
In particular
1
O (123)
a0 1(S) Js

Proof Having fixed S € F, let B(x) be the ball satisfying (12.1). Then

L
w(S)

c
u(B(x)) Jpw

/Slf — fldp = lf — f)ldp. -

Referring back to (11.1)y-1, these remarks imply that for locally Lebesgue inte-
grable functions of one variable

1 x+h
lim _/ fdu= f(x) forae. x € R. (L.Dy—,
=0 h J,

13 Convex Functions

A function f from an open interval (a, b) into R* is convex if for every pair x, y €
(a,b) and every t € [0, 1]

fax+A -0y =tfx)+dA -0 f().

A function f is concave if — f is convex. The set

Gr={x.y eR’|xe(ab), y=> )}

is the epigraph of f. The function f is convex if and only if its epigraph is convex.
The positive linear combination of convex functions is convex and the pointwise
limit of a sequence of convex functions is convex.

Proposition 13.1 Let { f,} be a family of convex functions defined in (a, b). Then
the function f = sup f, is convex in (a, b).

Proof Fixx,y € (a,b)andt € [0, 1]and assume firstthat f(zx 4+ (1 — ¢)y) is finite.
Having fixed an arbitrary € > 0 there exists o such that

fx+ A =0y < faltx+ (1 =1)y) +¢
<tfa@)+ A= feM+e=<tfX)+ A=) f(y) +e.
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If f(tx 4+ (1 —¢t)y) = 00, having fixed an arbitrarily large number k, there exists
a, such that k < zf,(x) + (1 — 1) fo (¥). [

Proposition 13.2 Let f be a real-valued, convex function in some interval (a, b) C
R. Then the function

y—>f<x;y)=%§(” xye@b)y x4y

is non-decreasing.

Proof Assume y > x. It suffices to show that

Fx;2) <F(x;y) for z=tx+ (1 —1¢t)y forall te(0,1).

By the convexity of f
o Saex+d=0y) = fx) _ A =0)[f(y)— f)] .
M R () e B R

By symmetry, the function x — F(x; y) is also non-decreasing.

Proposition 13.3 Ler f be a real-valued, convex function in some interval [a, b] C
R. Then f is locally Lipschitz continuous in (a, b).

Proof Fix a subinterval [c, d] C (a, b). Then for all x, y € [c, d]

_SfO-f@ _fO-fO _ f®) = fd)

=F(b;d
c—a - x—y - b—d (b: d)

Flc; a)

If F(x; y) is nonnegative, also F (b; d) is nonnegative. Therefore

lf () = fOI = Fbs d)lx — yl.

If the difference quotient F(x; y) is negative, then

[f(x) = fO)l = —=Fa;o)lx — yl. u

Proposition 13.4 Let f be a real-valued convex function in (a, b). Then f is a.e.
differentiable in (a, b). Moreover the right and left derivatives D4 f (x) exist and
are finite at each x € (a, b) and are both monotone non-decreasing functions. Also
D_f(x) < Dy f(x)forall x € (a,Db).
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Proof For each x € (a, b) fixed, the function (h, k) — F(x + h; x + k) is non-
decreasing in both variables. Therefore there exist and are finite the limits

D_f(x) =1111}1(1).7-'(x+h;x) 511(1{‘1(1)]:()6;)5 + k) = D, f(x).

Since f is absolutely continuous in every closed subinterval of (a, b), it is a.e.
differentiable in (a, b) and D_ f(x) = D, f(x) forae.x € (a,b). If x <y

Difx)= llqigg)if(x +h;x) < llqig(l)F(erh; y)=Dif(y).

Thus D f are both non-decreasing. ]

14 The Jensen’s Inequality

Let ¢ be a real-valued, convex function in some interval (a, b). For a fixed x € (a, b)
consider the set

¢ =[D-p(x), Dyp(x)].
If ¢ is differentiable at x, then 0, = ¢'(x). Otherwise ;¢ is an interval. Fix
« € (a,b) and m € 0,¢p. Since ¢ is convex the line through («, p(«)) and slope m
lies below the epigraph of . In particular
@) +mm—a) <pm) forall ne(a,b). (14.1)

Proposition 14.1 (Jensen [76]) Let E be a measurable set of finite measure, and
let f : E — R be integrable in E. Then, for every real-valued, convex function ¢

defined in R
1 1
— d — dpu. 14.2
@(N(E)/Ef u) = M(E)/Ew(f) Iz (14.2)
Proof Applying (14.1) for the choices
=$/Efdu n=f(x) forae. x € E

yields
M(E)/fdu om0 - (E)/f i) < ().

Integrate over E and divide by the measure of E. |
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15 Extending Continuous Functions

Let f be a continuous function defined on a set E C R" with values in R and with
modulus of continuity

wr(s) = sup |f(x)—fO) s>0.

|x=yl<s
x,yeE

The function s — wy(s) is nonnegative and non-decreasing in [0, 0o). The func-
tion f is uniformly continuous in £ if and only if ws(s) — O ass — 0.

15.1 The Concave Modulus of Continuity of f

Assume that w(-) is dominated in [0, 00) by some increasing, affine function £(-),
ie.,
wyr(s) <as+b forall s €[0,00) forsome a,be R*. (15.1)

Denote by s — cy(s) the concave modulus of continuity of f, i.e., the smallest
concave function in [0, 00) whose graph lies above the graph of s — w(s). If w ()
satisfies (15.1), then c¢(-) can be constructed as

cr(s) = inf{l(s) | ¢ is affine and £ > wy in [0, 00)}.
It follows from the definitions that

crlx =y = 1fx) = fMI =0 forall x,yeE. (15.2)

Theorem 15.1 (Kirzbraun-McShane-Pucci)® Let f be a real-valued, uniformly con-
tinuous function on a set E C RN with modulus of continuity w satisfying (15.1).
There exists a continuous function f defined on RN, which coincides with f on E.
Moreover f and f have the same concave modulus of continuity ¢ r and

sup f =sup f; inf f =inf f.
RN E RN E

31f the modulus of continuity is of Lipschitz type, the theorem is in M.D. Kirzbraun [83]. The proof
of Kirzbraun is rather general as it does include vector-valued functions. A simpler proof for scalar
functions, is in McShane [106]. Pucci observed that the concavity of the modulus of continuity
is sufficient to construct the extension. The proof has been taken from the 1974 lectures on Real
Analysis by C. Pucci, at the Univ. of Florence, Italy.
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Proof For each x € RY, set
900 = inf (£ () +ep(lx = D).
The required extension is
f ) = min{g(x): sup £},
If x € E, by (15.2)
FO +eplx—yD = f) +ceplx —yD = 1f(x) = fFODI = fx)
forall y € E. Therefore g = f within E. Next forall x € RV and all y € E
inf f + inf ¢/ (bx = ¥) < 9) < F) + el =y,

Therefore N
inf g = inf d = .
inf g =in S an sng f sup f

To prove that f and f have the same concave modulus of continuity, it suffices
to prove that g has the same concave modulus of continuity as f. Fix xi, x, € RY
and € > 0. There exists y € E such that

g(x1) = f() +cp(lxr —y)) —e.
Therefore for such y € E
g(x1) — g(x2) = cp(lxr = y)) —cp(fx2 — y) —e.
If [x2 — yI < [x1 — x2
g(x1) — g(x2) = —cf(|x) — x2|) — €.

Otherwise
lx1 — ¥l > |x2 — y[ — [x; — x2| > 0.

Since s — c¢(s) is concave, —c () is convex, and by Proposition 13.2

crler —yD = e (0 _ crlxi =yl +x2 = xil) = er(fxr — x2])
|x1 — ¥ - lx1 =y + |x2 — x1| — |x1 — X2
o ¢l =y —ep(x —x2|)'
- lx1 — ¥l
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From this, taking into account that ¢ ,(0) =0
cr(lxt = yD) —cp(lx2 — yD) = —cr(lx1 — x2).
Thus in either case
g(x1) — g(x2) = —cr(jx; — x2|) — €.
Interchanging the role of x; and x, and taking into account that € > 0 is arbitrary,

gives
lg(x1) — g(x2)| < cr(Jx1 — x2|). m

16 The Weierstrass Approximation Theorem

Theorem 16.1 (Weierstrass [172]) Let f be a real-valued, uniformly continuous
function defined on a bounded set E C RN . There exists a sequence of polynomials
{P;} such that
sup|f — Pj| >0 as j— oo.
E

Proof By Theorem 15.1 we may regard f as defined in the whole R" with modulus
of continuity wy. After a translation and dilation, we may assume that E is contained
in the interior of the unit cube Q centered at the origin of R and with faces parallel
to the coordinate planes.

For x € RV and § > 0, we let Qs(x) denote the cube of edge 25 centered at x and
congruent to Q. For j € N, set

(O 1

[ 2\j 1 2\J
pj(x):—N (l—xi)*’ Q= (l—l)' dt,
j =1 -
These are polynomials of degree 2j N satisfying
/ pj(x—y)dy=1 forall j e Nandall x € R".
Q1 (x)
The approximating polynomials claimed by the theorem are
P = [ 0Ipsx = dy. (16.1)
Q
These are called the Stieltjes polynomials relative to f. For x € E compute

Pi(x) — f(x) = /Q FOps =iy = [ Gy
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Let 0 > 0 be so small that Q5(x) C Q. Then

|Pj(x) = f(x)] S/ |f ) = fODIpjx —y)dy
Q;(x)NQ

+| FO)pj(x — y)dy|
0—0s5(x)

- I/ f)p;(x — y)dy|
011 05(x)

< wr(2V/NO) + sup| f] pj(x — y)dy
E 0—0s(x)

+ sup | f pj(x = y)dy.
E 01()-05(x)

To estimate the last two integrals we observe that for y ¢ Q;(x), for at least one
index i € {1, ..., N}, there holds |x; — y;| > 0. Therefore

pix —y) <a; V(1 =48

Moreover from the definition of o

1
; 2
aj > 2/ (1 -0ldt = ——.
0 Jj+1
Combining these calculations we estimate
1-N . N 2yJ

sup | f — Pjl =w() +2" " sup | fI(j + D7 (1 — 6% . -

E E

Corollary 16.1 Let E be a compact subset of RY. Then C(E) endowed with the
topology of the uniform convergence, is separable.

Proof The collection of polynomials in the real variables x, ..., xy, with rational
coefficients is a countable, dense subset of C(E). [ ]

17 The Stone-Weierstrass Theorem

Let {X; U} be a compact Hausdorff space, and denote by C (X) the collection of all
real-valued, continuous functions defined in X. Setting

d(f.9) =sup|f(x) —g(x)| f geCX) 17.1)

xeX
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defines a complete metric in C(X). We continue to denote by C(X) the resulting
metric space. The sum of two functions in C(X) is in C(X) and the product of a
function in C(X) by a real number is an element of C(X). Thus C(X) is a vector
space. One verifies that the operations of sum and product by real numbers

+:CX)xC(X) > C(X) o . RxC(X) - C(X)

are continuous with respect to the corresponding product topologies. Thus C(X) is
a topological vector space. The space C(X) is also an algebra in the sense that the
product of any two functions in C(X) remains in C(X). More generally a subset
F C C(X) is an algebra if it is closed under the operations of sum, product, and
product by real numbers. For example, the collection of functions f € C(X) that
vanish at some fixed point x, € X, is an algebra. The intersection of all algebras
containing a given subset of C'(X) is an algebra. Since {X; U} is Hausdorff its points
are closed. Therefore, having fixed x # y in X, there exists a continuous function
f X — [0, 1]suchthat f(x) = 0and f(y) = 1 (Urysohn’s lemma, § 2 of Chap. 2).
Thus there exists an element of C (X) that distinguishes any two fixed, distinct points
in X. More generally an algebra 7 C C(X) separates points of X if for any pair of
distinct points x, y € X, there exists a function f € F, such that f(x) # f(y). For
example if E is a bounded, open subset of R" the collection of all polynomials in
the coordinate variables forms an algebra P of functions in C(E). Such an algebra
trivially separates points.

The classical Weierstrass theorem asserts that every f € C(E) can be approxi-
mated by elements of P, in the metric of (17.1). Equivalently, C (E) is the closure of
‘P in the metric (17.1). The proof was based on constructing explicitly the approxi-
mating polynomials to a given f € C(E).

Stone’s theorem identifies the structure that a subset of C(X) must possess to be
dense in C(X).

Theorem 17.1 (Stone [155]) Let {X; U} be a compact Hausdorff space and let F C
C(X) be an algebra that separates points and that contains the constant functions.
Then F = C(X).

18 Proof of the Stone-Weierstrass Theorem

Proposition 18.1 Ler {X; U} be a compact Hausdorff space and let F C C(X) be
an algebra. Then

(i) The closure Fin C(X), isan algebra
(ii) If f € Fthen|f|eF B
(iii) If f and g are in F, then max{ f; g} and min{f; g} are in F.


http://dx.doi.org/10.1007/978-1-4939-4005-9_2
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Proof The first statement follows from the structure of an algebra and the notion of
closure in the metric (17.1). To prove (ii) we may assume, without loss of generality,
that | f| < 1.Regard f asavariableranging over [—1, 1]. By the classical Weierstrass
approximation theorem, applied to the function [—1, 1] > f — |f], having fixed
€ > 0, there exists a polynomial P.(f) in the variable f, such that

sup I!|f| —P.f)] e

fel—1,1

This in turn implies that

sup [1f@=P(f0)] <e.

Since F is an algebra, P-(f) € F. Thus | f] is in the closure of F. The last
statements follow from (ii) and the identities

max{f; g} = 1(f +9) + 3If — gl
min{f; g} = 3(f +9) — 31f — gl. n

18.1 Proof of Stone’s Theorem

Having fixed f € C(X) and e > 0, we exhibit a function ¢ € F such that d(f, ) <
€. Since F separates points of X, for any two distinct points £, 7 € X, there exists & €
F suchthat h(§) # h(n). Since F contains the constants, there exist numbers A and (,
such that the function ¢, = M + pisin F and ¢¢,(§) = (&) and ¢, () = f().
By keeping ¢ fixed, regard ¢, as a family of continuous functions, parameterized
with 7 € X. Since ¢, and f coincide at 1) and are both continuous, for each 1) € X,
there exists an open set O, containing 7 and such that ¢, < f +¢ in O,. The
collection of open sets O,, as 7 ranges over X is an open covering for X from which
we extract a finite one {0, ..., O, }, for some finite n. Set

e = min {805711’ R ‘ann} .
By Proposition 18.1-(iii), ¢¢ € F. Moreover by construction

pe < f4+ein X and (&) = f(§) forall £ € X.

Since ¢ and f coincide at £ and they are both continuous, for each £ € X there
exists an open set O, containing § and such that ¢ > f — ¢ in O¢. The collection of
open sets O, as £ ranges over X is an open covering for X, from which we extract
a finite one, for example {O , ..., O, } for some finite m. Set
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<p=max{<pgl,---v<?£m}'

By Proposition 18.1—(iii), ¢ € F, and by construction | f — ¢| < ¢ in X. |

19 The Ascoli-Arzela Theorem

Let E C RY be open and let x € E. A sequence of functions { f,} from E into R is
equibounded at x if there exists M (x) > 0 such that

|fo(x)] < M(x) forall neN. (19.1)

The sequence { f,,} is equi-continuous at x if there exists a continuous increasing
function w, : R™ — R with w,(0) = 0, such that forall y € E

[fu(X) = fuW| <= wx(lx —yl)  forall n eN. (19.2)

Theorem 19.1 (Ascoli-Arzeld)* Let { f,} be a sequence of pointwise equibounded
and equi-continuous functions in E. There exists a subsequence { f,,} C {f,} con-
verging to a continuous function f in E. Moreover for all x € E

[fx) = fOI =wellx —yD) forall y € E
and the convergence is uniformly on compact subsets K C E.

Proof Let Q denote the set of points of RV whose coordinates are rational. Such
a set is countable and dense in E. Let x; € QN E. Since the sequence of numbers
{fa(x1)} is bounded, we may select a subsequence {f,, (x1)} convergent to some
real number that we denote with f(x;). If x, € QN E, the sequence of numbers
{fa, (x2)} is bounded, and we may select a convergent subsequence { f,, ,(x2)} —
f(x2). Proceeding in this fashion we may select out of {f,}, by a diagonalization
process, a subsequence { f,/} such that

fo(x) — f(x) forall x e QNE.

Next, fixx € E — Q. Since Qisdensein E, foreache > Othereexistx, € QN E
such that |x — x¢| < ¢. Therefore by the assumption of equi-continuity at x,

“First proved by Ascoli in [6] for equi-Lipschitz functions, and extended by Arzela in [5] to a
general family of equi-continuous functions.
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[fo (X) = fow O] = | fur (X) = fur (x0)]
+ [fow () = fowr (x0) ]
+ [ fw (xe) = fr (x0)]
< 2wi (@) + | fw(xe) — fur (x|

Since {f,v(x¢)} is convergent, there exists a positive integer m(x,) large enough
that
| fur(xe) — frw(x)| <€ forall n',m’ > m(xy).

Therefore for all such n’ and m’
| fr (X) = for (0] < € 4 2wy (o).
Hence { f,/(x)} is a Cauchy sequence with limit f(x). Forx,y € E
Lf ) — fOD =Tim | fr (x) = fu D] = we(lx — y]).

Let K C E becompactandlete > 0 be fixed. Foreach x € K there exists §, > 0,
depending on ¢, such that

we(lx =y < %5 forall y € Bs, (x).

The collection of open balls {B% 5. (X)}xek covers K and we select a finite one, for

the radii {%5)0’ e %5,%} for some finite m. Since Q is dense in E, the points x; can

be chosen in @, and in such a way that the collection of balls {B;_ (x j)}’j’.’ | covers
. . o

K . From the convergence of {f,;} — f there exists an integer n,, . such that

|f(x;) = fuxp)] < 4e forn’ >n, . and j=1,....m.

Each x € K is contained in some ball ngj (x;). Therefore for n' > n,, .

| fw () = FOOI = | fw(x) = fur(x))]
+ [fw () = f(x))
+1f(x) = fxpl <e. u

19.1 Pre-compact Subsets of C(E)

Let E be a bounded, open subset of RV and denote by C(E) the collection of all
real-valued, continuous functions defined in E, with the metric (17.1).
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Proposition 19.1 A subset K C C(E) is pre-compact in C(E), if and only if the
elements of K are pointwise equibounded and equi-continuous in E.

Proof Since C (E) is metric and separable, compactness and sequential compactness
are equivalent (Proposition 17.3 of Chap.2). Then, the sufficient condition follows
from Theorem 19.1. For the necessary part recall that if K is pre-compact in C(E),
then K is totally bounded, and hence it admits an e-net, for all € > 0 (Theorem 17.1
of Chap.2). |

Problems and Complements

1c Functions of Bounded Variations
1.1. The continuous function on [0, 1]

2 s

x“cos — for x € (0,1

fx) = x ©.11
for x =0

is of bounded variation in [0, 1].
1.2. Let f be the continuous function defined in [0, 1] by

fO) =0, f(z7)=0. f(5) =35 foral neN
f 1is affine on the intervals [mL_H %] forall m € N.
Such an f is not of bounded variation in [0, 1].

1.3. Prove Propositions 1.1-1.3.

1.4. Let { f,,} be a sequence of functions in [a, b] converging pointwise in [a, b] to
f.Then V¢[a, b] < liminf Vy [a, b], and strict inequality may occur as shown
by the sequence

for x =0

for x € (0, 1]

for x € (1, 1].

fn(x) =

Owi— O

1.5. Let f be continuous and of bounded variation in [a, b]. Then the functions
x = Vyla, x], V}’[a, x1, V5 la, x] are continuous in [a, b].

1.6. Prove that the distribution function f,(-) of a measurable function f on a mea-
sure space {X, A, p}, as defined by (15.1c) of Chap.4, is of bounded variation
in every interval [a, b] C R.
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1.1c The Function of The Jumps

Let f be of bounded variation in [a, b] and regard it as defined in R, by extending f
to be equal to f(a) on (—o0, a] and equal to f(b) in [b, 00). Prove that the limits

def

fxh) = lim f(x & h) for h > 0

exist for all x € [a, b]. The function of the jumps of f is defined by

T = > [f)—=fep]

a<cj=<x

The difference f — J¢ is continuous in [a, b]. Also J; is of bounded variation in
[a, b] and
Vyrla, bl =V la, b1+ Vy,la, b,

Therefore a function f of bounded variation in [a, b] can be decomposed into the
continuous function f — J; and Jy. The latter bears the possible discontinuities of

f in [a, b].

1.7. Construct a non-decreasing function in [0, 1] which is discontinuous at all the
rational points of [0, 1].

1.2¢ The Space BV |[a, b]

Let [a,b] C R be a finite interval and denote by BV[a, b] the collection of all
functions f : [a, b] — R of bounded variation in [a, b]. One verifies that BV [a, b]
is a linear vector space. Also setting

d(f,9) =1f(@ —g@l+Vrgla, bl for f g€ BVla,bl] (1.1¢)

defines a distance in BV [a, b] by which {BV[a, b]; d} is a metric space.
For any two functions f, g € BV|[a, b]

[sulgl lf =gl <1f(a) —gla)| + Vi_4la, b]. (1.2¢)

Therefore a Cauchy sequence in BV [a, b] is also Cauchy in the sup-norm. The
converse is false as illustrated in Fig. 1c. The sequence { f,,} generated as in Fig. 1c
is not a Cauchy sequence in the topology of BV [0, 1], while it is a Cauchy sequence
in the topology of C[0, 1].
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1

SR T

0 1 ] % 1 0

B
e

Fig. 1¢ Cauchy sequence in the sup-norm and not in the BV-norm

1.2.1c Completeness of BV [a, b]

Let { f,,} be a Cauchy sequence in BV [a, b]. There exists f € BV [a, b] such that
{f:} — f in the topology of BV|a, b].

The proof is in two steps. First one uses (1.2c) to identify the limit f. Then
one proves that such an f is actually in BV [a, b] by using that {f,} is Cauchy in
BV]a, b]. As a consequence BV [a, b] is a complete metric space.

2¢

2.1.
2.2
2.3.

Dini Derivatives

Compute D* f(0) and D, f(0) for the function in (1.1).

Let f have a maximum at some ¢ € (a, b). Then D~ f(c) > 0.

Let f be continuous in [a, b]. If DT f > 0in [a, b], then f is non-decreasing
in [a, b]. The assumption that f be continuous cannot be removed.

Hint: Fix [«, 6] C (a, b), and by continuity extend the function f to be equal
to f(B) for x > [ and to be equal to f(a) for x < «. Having fixed € > 0, the
assumption implies that for each x € [«, (] there exists

0<hy=h(xe) <3(b-p)

such that
f) < f(x+ hy) + he.

By continuity, such inequality continues to hold forall y € (x — d,, x + J,) for
some 0, > 0, which without loss of generality we may assume not to exceed
ihx. The collection of these open intervals covers [«, 5]. From this select a
finite sub-collection, say

(Xj —6.]',)Cj+5j) for j=1,...,n.


http://dx.doi.org/10.1007/978-1-4939-4005-9_1
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24.

To these are associated positive numbers 4 ; < %(6 — b) such that
fO) < f(y+hj)+hje forall ye (x;—46;,x;+6;).

Starting with y = « and iterating this inequality m < n times gives
m m
f@ < fla+ X h)+ X he
J=l J=l
By construction, there exists m < n such that
m m
a+ > h;j>p and D> h; <b-—a.
j=1 j=1

Therefore
f(@) < f(B)+e(b—a) forall > 0.

Let f € BV|[a, b] and let J the function of the jumps of f introducedin § 1.1c.
Prove that J} = 0a.e.in [a, b].

Hint: Assume that f is non-decreasing, so that J, is non decreasing. Denoting
by {c,} the sequence of the jumps of f

Ji) =@ = 3 [f) = fe))] 2.1¢)

a<c;<
Fix m € N and let ¢ > 0 be so small that the intervals

€ € )
(ozj,ﬁj]=(cj——,cj—i—%]ﬂ(a,b] for j=1,...,m

2m

are disjoint. The complement of their union is the finite union of disjoint intervals
[a_/]. , ﬁ_;). For ¢ > 0 assume that ;1([DJ > t]) > 0, and choose

e < u(DJ; > 1]).
For such a choice estimate

! 1
u([DJf > 1] ﬂjL:Jl[a/j,ﬁ;]) > Su(ADJ; > 1) > 0

for a positive integer m’. By Proposition 2.2

Tr(B) = Jp(ay) = tp([DJy > t] N [a), B7]).
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Therefore

m+1

LM@—#@H+§UN$—#@H
p=

Mz

#@_0@21

~.
Il

\%
M=

(£ = Fe)H]+ 5uUDIs > t]).

~
Il

Letting m — oo and taking into account (2.1c) implies u([DJy > t]) = 0 for
all # > 0. For a different approach use Theorem 4.1.

2.1c A Continuous, Nowhere Differentiable Function ([167])

For a real number x, denote by {x} the distance from x to its nearest integer and set

© {10"
fx)y=> {10nx} (2.2¢)
n=0

Each term of the series is continuous. Moreover the series is uniformly convergent
being majorized by the geometric series > 107". Therefore f is continuous. Since
f(x) = f(x + j) forevery integer j and all x € R, it suffices to consider x € [0, 1).
Any such x has a decimal expansion of the form x = 0.aya; .. .a, ..., where a; are
integers from O to 9. By excluding the case when a; = 9 for all i larger than some
m, such a representation is unique.

For n € N fixed compute

(10" x} = 0.ap41anss - . . if 0.ay41apyn--- < %
{10"x} =1 —0.app10p42 ... if O.appi@nen--- > 5.
Having fixed x € [0, 1) choose increments
o —10™" if eithera,, =4 ora, =9
| 4107 otherwise.
Then form the difference quotients of f at x
h,) — 0 10" (x £ 107™)} — {10
S+ h) f(x)zlo’”Zi{ (x 10n)} { x}.
m n=0

The numerators of the terms of this last series, all vanish for n > m, whereas for
n=0,1,...,(m — 1) they are equal to £10"~™. Therefore the difference quotient
reduces to the sum of m terms each of the form =£1. Such a sum is an integer,
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positive or negative, which has the same parity of m. Thus the limit as A,, — 0 of
the difference ratios does not exists.

Remark 2.1c The function in (2.2c) is not of bounded variation in any interval
[a,b] C R.

2.2¢ An Application of the Baire Category Theorem

The existence of a continuous and nowhere differentiable function, can be estab-
lished indirectly, by a category-type argument. The Dini derivatives D f and D" f
introduced in (2.1), are called the right Dini numbers.

Proposition 2.1¢ (Banach [12]) There exists a real-valued, continuous function in
[0, 1] such that its Dini’s numbers |D, f| and |D* f| are infinity at every point of
O, 1).

Proof Forn € Nlet E, denote the collection of all functions f € C[O0, 1], for which
there exists at least one point # € [0, 1 — rll] for which

fa+h)—f@

. <n forall h e (0,1—1).

Each E, is closed and nowhere dense in C[0, 1]. Both statements are meant
with respect to the topology of the uniform convergence in C[0, 1]. To prove that
E, is nowhere dense in C[0, 1] observe that any continuous function in [0, 1] can
be approximated in the sup-norm by continuous functions with polygonal graph of
arbitrarily large Lipschitz constant. Then the complement C[0, 1] — UE,, is non-
empty. |

4c Differentiating Series of Monotone Functions

4.1. Let { f,} be a sequence of functions of bounded variation in [a, b] such that the
series Y f,(x) and >V, [a, x] are both convergent in [a, b]. Then the sum
f of the first series is of bounded variation in [a, b] and the derivative can be
computed term by term, a.e. in [a, b].

S5c¢ Absolutely Continuous Functions

5.1. Let f be absolutely continuous in [a, b]. Then f is Lipschitz continuous in
[a, b] if and only f’ is a.e. bounded in [a, b].
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5.2. The function

1
) x*Esin— for x € (0, 1]
fx) = 0 X

for x =0

is absolutely continuous in [0, 1] for all € > 0.

5.1c The Cantor Ternary Function ([23])

Set f(0) =0 and f(1) = 1. Divide the interval [0, 1] into 3 equal subintervals and
on the central interval [%, %] set f = %, i.e., f is defined to be the average of its
values at the extremes of the parent interval [0, 1]. Next divide the interval [0, %] into
3 equal subintervals, and on the central interval [3%, 3%] set f = }1, i.e., f is defined
to be the average of its values at the extremes of the parent interval [0, %]. Likewise
divide the interval [%, 1] into 3 equal subintervals, and on the central interval [312, 3%]
set f = %, i.e., f is defined to be the average of its values at the extremes of the
parent interval [%, 1].

Proceeding in this fashion we define f in the whole [0, 1], by successive averages.
By construction f is non-constant, non-decreasing, and continuous in [0, 1]. Since
it is constant on each of the intervals making up the complement of the Cantor set C,
its derivative vanishes in [0, 1] except on C. Thus f’ = 0 a.e. on [0, 1].

5.1.1c Another Construction of the Cantor Ternary Function

The same function can be defined by an alternate procedure that uses the ternary
expansion of the elements of the Cantor set. For x € C let {¢;} be sequence, with
entries only O or 1, corresponding to the ternary expansion of x, as in (2.1) of Chap. 1.
Then define

o0

2 o 21
fx) = f( > —.e,-x,j) =S 57 6x (5.1¢)

j=1 3/ j=1

Let (av,, 3,) be an interval removed in the n'h step of the construction of the Cantor
set. The extremes «, and 3, belong to C and their ternary expansion is described in
2.2 of the Complements of Chap. 1. From the form of such expansion compute

1 x 1
f(an)_f(ﬁn)zz_n_j;l 2_J=O

If (o, B,) is an interval in [0, 1] — C we set

f(x) = f(ay)  forall x € [ay, B,].
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In such a way f is defined in the whole [0, 1] and f’ =0 a.e. in [0, 1]. The
right-hand side of (5.1c¢) is the decimal representation of the number in [0, 1] whose
binary representation is the sequence €,. As x ranges over C, the sequences ¢, with
only entries 0 or 1, range over all such sequences. Therefore f maps C onto [0, 1].
To show that f is continuous, observe that f is monotone and finite. Therefore its
possible discontinuity points are discrete jumps. If f were not continuous then it
would not be a surjection over [0, 1].

The Cantor ternary function is continuous, of bounded variation, but not absolutely
continuous. This can be established indirectly by means of Corollary 5.2. Give a direct
proof.

5.2¢ A Continuous Strictly Monotone Function
with a.e. Zero Derivative

The Cantor ternary function is piecewise constant on the complement of the Cantor
set. This accounts for f/ =0 a.e. in [0, 1]. We next exhibit a continuous strictly
increasing function in [0, 1], whose derivative vanishes a.e. in [0, 1].

Letr € (0, 1) be fixed and define f,(x) = x and

(14+1)x for O
(1—t)x+1 for 1

e

fl(X)Z[

=x =
=x =

The function f; is constructed by dividing [0, 1] into two equal subintervals, by
setting f1 = f, at the end points of [0, 1], by setting

i(3) = 5o+ =

and by defining f; to be affine in the intervals [0, %] and [%, 1].
This procedure permits one to construct an increasing sequence { f,} of strictly

increasing functions in [0, 1]. Precisely if f, has been defined, it must be affine in
each of the subintervals

[L J+1

, i=0.1,....2"—1.
2 2n] J

Subdivide each of these into two equal subintervals, and define f,; to be affine
on each of these with values at the end points, given by

fn+1( ) fn( )
(P = (25
() = S ()
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By construction { f;,} is increasing and

fm(zj—;) - f(zi) forall m>n, j=0,1,...,2"—1. (5.2¢)

The limit function f is non-decreasing. We show next that it is continuous and
strictly increasing in [0, 1]. Every fixed x € [0, 1] is included into a sequence of
nested and shrinking intervals [cv,, 3,] of the type

My my, , +1
on B = 2n

o, = for some m,, € NU {0}.

By the construction of f, 1, if the parent interval of [cv,, 3,] is [au, Bu—1]

1
o1 B) = fog1 (o) = %[fnwn_l) ~ fulanl.

Likewise if the parent interval of [«v,, 8,] s [ay,—1, B,]

—1

1
fn+1(ﬁn) — for1(ay) = T[fn(ﬂn) — falan-1)].

Therefore by (5.2c¢) either

1
Fo1B) = frs1 (o) = %Wﬂn,l) ~ fulan)] (5.20),

or
1 —
Jor1(Bn) = S (an) = Tt[fn(ﬁn—o — fulan-1]. (5.20)-

From this by iteration

n o] i
Fonr(B) — fnr(an) = [T —=2i1

i=1

where ¢; = %1.

Since forallm >n + 1

S (Bw) = fuy1(By) and  fi (o) = fur1(aw)
the previous equality implies

n 1 i
1) = fen) =11 +2“

where ¢; = +£1.
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For each fixed n the right-hand side is strictly positive. Thus f(5,) > f(«y),i.e.,
f is strictly monotone. On the other hand (5.2¢). imply also

f(By) — flaw) < (%)” —0 as n— oo.

Thus f is continuous in [0, 1]. Still from (5.2¢)+ we compute

f(ﬁn) - f(an)

By —ow il;ll (H+ean.

As n — oo the right-hand side either converges to zero, or diverges to infinity
or the limit does not exists. However, since f is monotone it is a.e. differentiable.
Therefore the limit exists for a.e. x € [0, 1] and is zero. By Corollary 5.2 such a
function is not absolutely continuous. Give a direct proof.

5.3. The function f constructed in § 14 of Chap. 3 is not absolutely continuous.

5.4. Let i be a Radon measure on R defined on the same o-algebra of the Lebesgue
measurable sets in R, and absolutely continuous with respect to the Lebesgue
measure on R. Then set

Flx) = H—f-,u([a,x]) for x € [a, 00)

—u([x, a]) for x € (—o0, a].
The function f is locally absolutely continuous, i.e., its restriction to any
bounded interval is absolutely continuous. The function f can be used to gen-
erate the Lebesgue-Stieltjes measure 1 r. The measure p ¢ coincides with £ on
the Lebesgue measurable sets.

5.3¢c Absolute Continuity of the Distribution Function
of a Measurable Function

For a measurable function f on a measure space {X, A, i}, let i1y and f, be respec-
tively, the distribution measure and the distribution function of f, as defined (9.1)
and (15.1c of the Complements of Chap.4).

Proposition 5.1¢ The distribution function f, is absolutely continuous, in every
closed subinterval of R, if and only if the distribution measure iy is absolutely
continuous with respect to the Lebesgue measure on R. In such a case

fiu@) = / o(s)ds

where  is the Radon-Nikodym derivative of | with respect to the Lebesgue measure
ds.
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Tc

7.1.

7.2
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Give an example of {X, A, u} and f for which f, is continuous and not
absolutely continuous.

Derivatives of Integrals

Construct a measurable set E C (—1, 1) such that d(0) = %
Forn € N set’

o1
I, = [—, —) sothat (0,1) = U I,.
2n 2}171 neN

Divide each I, into 2" equal subintervals, each of length 272" and retain only
those %—closed intervals of even parity, to obtain sets

and Et =JE,.

»lon 40 24241
En = U [ 22n ’ 22n )’
j=0

Verify that u(E,) = %M(In) and y(E™) = %.having fixedh € (0, 1) there exists
ny, i € N, such that

2" i) 2"h+(ih+1)]

1o
nel R

2}11, ’ znhfl

The first of these implies that 2 = O (27""). Next compute

np—1_1 2N +2J 2nh +2j+1))

omner=( U e)U (U enn (St =g

t=np+1

From this
p[O.AINE]=3h+0Q7*) = p[(0.AINET] = 3h+ O(?).

Thus
h 1

lim — dx = —.
hl—%h 0XE+X 2

Let E~ be the symmetric of E* in (—1,0] and set E = E- U E™.

Let f be absolutely continuous in [a, b]. Then the function x — V¢[a, x] is
also absolutely continuous in [a, b]. Moreover

Vila, x] = /x | f'(t)|dt forall x € [a, b].

SThis construction was suggested by V. Vespri and U. Gianazza.
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7.3.

74.

7.5.

7.6.

Let f be of bounded variation in [a, b]. The singular part of f is the function
(190D

or(x) = fx) = fla) —/ [t (7.1¢0)

The singular part of f is of bounded variation and ¢’ = 0 a.e. in [a, b]. It has
the same singularities as f, and (f — o) is absolutely continuous.

Thus every function f of bounded variation in [a, b], can be decomposed into
the sum of an absolutely continuous function in [a, b] and a singular function.
Compare the oy with the functions of the jumps J; given in § 1.1c of the
Complements.

Let f be Lebesgue integrable in the interval [a, b] and let F' denote a primitive
of f. Then for every absolutely continuous function g defined in [a, b]

b b
/ fgdx = F(b)g(b) — F(a)g(a) —/ Fg'dx.

Let f, g : [a, b] — R be absolutely continuous. Then

b b
/ Foldx + / Flgdx = f@yg@) — FB)gb).

Let & :[a,b] — [c,d] be absolutely continuous, increasing and such that
h(a) = c and h(b) = d. Then for every nonnegative, Lebesgue measurable
function f : [c, d] — R, the composition f (k) is measurable and
d b
/ f(s)ds = / f(h@)h' ()dr.
This is established sequentially for f the characteristic function of an inter-

val, the characteristic function of an open set, the characteristic function of a
measurable set, for a simple function.

Proposition 7.1¢c Let f be absolutely continuous in [a, b]. Then for every measur-
able E C [a, b] of measure zero, f(E) C R is a set of measure zero.

Proof Combine Proposition 7.2 with and Vitali’s absolute continuity of the integral
(Theorem 11.1 of Chap.4). [ ]

The converse of Proposition 7.1c is in false. The characteristic function of the
rationals maps any set into a set of measure zero. Such a function however is not
continuous.

7.17.

Prove by a counterexample that the converse of Proposition 7.1c is false, even
if f is assumed to be continuous. Hint: The function f in (1.1) is continous in
[0, 1] and not BV [0, 1]. To show that it maps measurable sets of measure zero,
into sets of measure zero, observe that f € AC[e, 1] forall e > 0.


http://dx.doi.org/10.1007/978-1-4939-4005-9_4
http://dx.doi.org/10.1007/978-1-4939-4005-9_1
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Proposition 7.2¢ Let f : [a, b] — R be continuous and monotone and such that for
every measurable E C [a, b] of measure zero, f(E) C R is a set of measure zero.
Then f is absolutely continuous in [a, b].

Proof Assuming f non-decreasing the function 4(x) = x 4+ f(x) is strictly increas-
ing. The set function v(E) = p(h(E)) for all Lebesgue measurable sets in [a, b] is
a measure on the same o-algebra, satisfying v <« . Apply the Radon-Nykodym
theorem. ]

7.1c Characterizing BV [a, b] Functions

Denote by C}[a, b] the collection of continuously differentiable functions ¢ of com-
pact support in [a, b].

Proposition 7.3c Let f € BV]a, b]. Then

b
sup / fe'dx <Vyla,bl. (7.2¢)

pecl®)
lpl=1

Proof One may assume that f is monotone increasing and nonnegative. There exists
an increasing sequence of simple functions such that { f,,} — f everywhere in [a, b]
(Proposition 3.1 of Chap.4). By the monotonicity of f, the construction of {f,}
identifies a partition

P={a=x,<x1<--<x,=0b} (7.3¢)
of [a, b] such that
fa(x) = f(xj—y) intheinterval [x;_;,x;] for j=1,...,n.
For 0 < 0 « 1 and n fixed construct the Lipschitz continuous functions
X—xj+6

Faad ) = 3 G008 1o + L) = £y )

j=1

One verifies that

b b
/ fo'dx = lim l_im/ Susp'dx.
a n—>000—0 J,
Since f, s are absolutely continuous in [a, b], integration by parts is justified.
Hence for every ¢ € C][a, b],

b X
| x| =

i

J=1Jxj

fn,é(P/dx‘ < Vsla, bl.


http://dx.doi.org/10.1007/978-1-4939-4005-9_4
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The converse of (7.2¢) is in general false. For example X1y € BV]0, 1] with
variation 2, whereas the left-hand side of (7.2¢) is zero. The latter only requires that
f be integrable, whereas the notion of bounded variation requires that f be defined
at every point of [a, b]. However if f is integrable in [a, b] then it is unambigously
defined by (11.1), or (1 1.1)}\,:l ,everywhere in [a, b] except for a set of measure zero.
Given f integrable in [a, b] introduce partitions Py as in (7.3c), where however x;
are differentiability points of f. Then define the essential variation of f in (a, b) as

ess Yy (a. b) = sup S FG) — FaoDl.

roJ=1

Proposition 7.4¢ Let f be integrable in [a, b]. Then

b
ess—Vy(a,b) < sup / fodx. (7.4¢)
] a

peChlab
lpl=t

Proof Assume the right-hand side of (7.4c) is finite, and fix a partition P,. Without
loss of generality may assume that a and b are points of Py, and construct the polyg-
onal of vertices (x i fx j)). Assume momentarily that such a polygonal changes its
monotonicity at each of its veritice, i.e.,

if f(xj—1) < f(x;) then f(x;) > f(xj41);

. (7.5¢)
it f(xj—1) > f(x;) then f(x;) < f(xj11).

Assume f(a) < f(x;) and set

a—x
5 fora<x<a+9,
ps(x) =1 —1 for a+6 <x <x;—96,
X—x1+9
Tl—l for x; —0 < x < x;.
Then, for j =1, ..., n, define ¢ recursively as
% for xj_1 <x <xj_1+9,
ws(x) =1 —1 for xj_1 +0 <x <xj—0, if fxj—1) < f(x;);
X—xj+46
?71 for x; — 0 < x < xj,
x—équ for xj_1 <x <xj_1+9,
ex)s =11 for xj_1+d <x <xj—0, if f(xj—1) > f(x)).
xj—6—x X
5 +1 for x; —0 <x < xj,




238 5 Topics on Measurable Functions of Real Variables

Assuming momentarily that such a choice is admissible, compute

b
/ fs@édX‘
a

b
sup f¢'dx > lim sup
5

wecliap) Ja —0
lpl=t
sien /. a+o
= lim sup i fdx
6—0 a
n=l sign @ [¥it0 sign ¢} [
+y ﬁ/ fdx + % <p‘*/ fx|
=t 0 Uy § s
n
> 2 1 f(xp) = flx-l,
j=1
since x; are differentiability points of f. |

Complete the proof by the following steps:

i. Prove that in (7.4c) the supremum can be taken over all Lipschitz continuous
functions ¢ € C,la, b].

ii. Remove the assumptions and that P satisfies (7.5¢), to establish the inequality
for all partitions Py of [a, b]. n

Corollary 7.1¢c Anintegrable function f in[a, b] is of essentially bounded variation
in [a, b] if and only if the right-hand side of (7.4c) is finite.

7.2¢ Functions of Bounded Variation in N Dimensions [55]

The characterization of Corollary 7.1c suggests a notion bounded variations in several
dimensions. A function f locally integrable in R" is of bounded variation in a
Lebesgue measurable set E C RY if there exists a constant C such that

‘ / £ div godx‘ <c (7.6¢)
E
for all vector valued functions
@ =(p1,...,0n) € [CLRY)]Y  suchthat |p| < 1.

The smallest constant C for which (7.6c) holds is the variation of f in E and is
denoted by || Df||(E).
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7.2.1c Perimeter of A Set

Let E be abounded measurable setin RY with smooth boundary OE . Prove that y g €
BV (RY) and that V,, (RY) = HV~1(JE), where HV~! is the (N — 1)-dimensional
Hausdorff measure of sets in RV .

If OF is not smooth, (7.6¢) suggests defining the “measure of JE” or, roughly
speaking, the perimeter of E, by

Per(E) = sup / Xk div pdx, (7.7¢)
pelCIV, <1 JRY

provided the right-hand side is finite. Sets E C R" for which Per(E) < oo are called
of finite perimeter. They correspond, roughly speaking, to sets for which the Gauss-
Green theorem holds.

13¢ Convex Functions

13.1. Give an example of a bounded, discontinuous, convex function in [a, b]. Give
an example of a convex function unbounded in (a, b).
13.2. A continuous function f in (a, b) is convex if and only if

f(x+y><f(x)+f(y) forall x,y € (a, b).

2 - 2

13.3. Let f be convex, non-decreasing and non-constantin (0, o). Then f(x) — oo
as x — oo.

13.4. Let f be convex in [0, 00). Then the limit of x ™! f(x) as x — o0, exists finite
or infinite.

13.5. Let {f,} be a sequence of convex functions in (a, b) converging to some
real-valued function f. Then the convergence is uniform within any closed
subinterval of (a, b). The conclusion is false if f is permitted to take values
in R*, as shown by the sequence {x"} for x € (0, 2).

13.6. Let f € C?(a, b). Then f is convex in (a, b) if and only if f”(x) > 0 for each
x € (a, b). Proof: Having fixed x < y it suffices to prove that

[0.1131 = @) = fix+A=-0y) —1f(x) = (A =0)f(y)  (13.1c)

is nonpositive in [0, 1]. Such a function vanishes at the end points of [0, 1] and
its extrema are minima since

O')y=@x—yf'ex+ 1 -1y <0.
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Proposition 13.1¢c A continuous function f in (a, b) is convex if and only if either
one of the two one-sided derivatives D f is non-decreasing.

Proof Assume for example that D, f is non-decreasing. If the function ¢ in (13.1c¢)
has a positive maximum ¢(¢,) > 0, at some ¢, € (0, 1), then

Dio(t)) = (x = y) Dy ftox + (1 —1)y) + f(y) — f(x) = 0.

Therefore, since D f is non-decreasing, D (t) is non-positive in [0, 7,]. Thus
( is non-increasing in [0, ,] and ¢(¢,) < 0. [

13.7. The function f(x) = |x|” is convex for p > 1 and concave for p € (0, 1).

13.8¢ Convex Functions in RN

Let E be a convex subset of RY. A function f : E — R* is convex if for every pair
of points x and y in E and every ¢ € [0, 1]

fax+ A -0y =tf(x)+A=1)f().

The (N + 1)-dimensional set
Gr={0r,xny) eRY [x € B, xyy1 = f(0))

is the epigraph of f. The function f is convex if and only if its epigraph is convex.

13.9. Let E C RY be open and convex. A function f € C?(E) is convex if and
only if 37, fux,&&; = 0forall & e RY.

Hint: Fix B,(x) C E and ¢ in the unit sphere of RY. The function (—p, p) 3
t — o) = f(x + 1) is convex.

13.10. Construct a non convex function f € C?(R?) such that fxx and f,, are both
nonnegative.

13.11. Let E c RV be open and convex, and let f be convex and real-valued in E.
Then f is continuous on E. Moreover for every x € E there exist the left
and right directional derivatives

Dy f(x) =D f(x+1u)|_, forall |u| = 1.

Moreover D f < Dj f-Inparticular for each x € E, there exist the left and
right derivatives Dxif f, along the coordinate axes and Dx_, f < D;f], f.

13.12. Let E C R" be convex. A function f defined in E is convex if and only if
f(x) =supm(x), where m < f is affine.
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13.13. Let f: RY — R be convex. There exist a positive number k such that
liminf |y - oo x| 7' f(x) > —k.

13.14c The Legendre Transform ([92])

The Legendre transform f* of a convex function f : R¥ — R* is defined by

f5(x) = supfx-y— f(»} (13.2¢)
yeRN
Proposition 13.2¢ f* is convex in RY and f** = f.

Proof The convexity of f follows from 13.12. From the definition (13.2¢), f(y) +
f*(x) >y -x,forall x, y € RV. Therefore

f() = sup{y-x — f*(0)} = ().

xeRN

Also, still from (13.2¢)

@) =sup {x-y—suply-z— f(2)}}
yeRN zeRV
= sup inf {y - (x —2) + f(D)}.
yeRN ZERY

Since f is convex, for a fixed x € R, there exists a vector m such that
f@—fx)>m-(z—x) forall zeR".
Combining these inequalities yields

[T = f) + sup inf (z—x) - (m—y) = f(x). -
yeRY Z€RY

13.15¢ Finiteness and Coercivity

The Legendre transform f*, as defined by (13.2c), could be infinite even if f is finite
in RY. For example in R
0 if x| <1

*
x|* = .
Il oo if |x| > 1.
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A convex function f : RN — R is coercive at infinity if

G
1m =00

lx|>o0 x|

Proposition 13.3¢ If f is coercive at infinity, then f* is finite in RN. If f is finite,
then f* is coercive at infinity.

Proof Assume f is coercive at infinity. If the sup in (13.2c¢) is achieved for y = 0
the assertion is obvious. Otherwise

Frw= sy 2 L0
yeRN—{0} [yl [yl

Therefore the supremum is achieved for some finite y and f*(x) is finite.
To prove the converse statement, fix A > 0 and write

f*(-x) = Ssup {.X Yy - f(}’)} = {.X Y- f(}’)} |y=/\x/\x|

yeRN

= Ax| = F(A\=) = Alx| — sup | FQu)].
x| Juj=A

Therefore, since x € RY — {0} is arbitrary

i frx)
1m

[x|-o0 |x]

> A\ forall A > 0. -

13.16¢c The Young’s Inequality
Prove that the Legendre transform of the convex function
1
Raa— f(a) =—lal’ for 1 <p< oo
p

is
1 11
Rsb— f*(b)=—~|b|? forl <qg<oco and —+ — = 1.
4 P q

Then the definition (13.2c¢) of the Legendre transform implies the Young’s inequal-
ity
1 1
lab] < —|q|? + —|b]? forall a,b € R. (13.3¢)
p q

The inequality continues to holds for the limiting case p = 1 and ¢ = oo. For a
different proof see Proposition 2.1 of Chap. 6.


http://dx.doi.org/10.1007/978-1-4939-4005-9_6
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14¢ Jensen’s Inequality

Proposition 14.1¢ (Holder [75]) Let {o;} be a sequence of nonnegative numbers
such that > o; = 1, and let {&;} be a sequence in R. Then

exp (2 &) < 2 aiexp(&). (14.1¢c)

Proof Apply (14.1) to e* with = ¢; and v = 3 ;& to get

exp (2 ai&i) +mj (& — 2 i) < exp(é)).
Multiply by a; and add over j. |

Corollary 14.1¢ Let {«;} be a sequence of nonnegative numbers such that > o; =
1, and let {£;} be a sequence of positive numbers. Then

[T&" =3 wé. (14.2¢)

14.1c The Inequality of the Geometric and Arithmetic Mean

In the case where a; =0 fori >n and a; = 1/n fori =1, 2, ..., n, inequality
(14.2¢) reduces to the inequality between the geometric and arithmetic mean of n

positive numbers®

T AP I R 1} (14.3¢)

n

14.2¢ Integrals and Their Reciprocals

Proposition 14.2¢ Let E be a measurable set of finite measure and let f : E — R*
be measurable. Then

1 1 1
1 ? SME)/EF‘Z
— | sa
(u(E)/Ef “)

Proof Assume first that f is integrable and that f > ¢, and apply Jensen’s inequality
with o(¢) =¢77. [

w, forall p>0. (14.4¢)

6[70], Chap. 11, § 5 contains an alternate proof of this inequality that does not use Jensen’s inequality.
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15¢

15.1.

16¢

16.1.

16.2.

16.3.

16.4.

17¢

17.1.
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Extending Continuous Functions

Let f be convex in a closed interval [a, b] and assume that D, f(a) and
D_ f (D) are both finite. There exists a convex function f defined in R such
that f = f in [a, b].

The Weierstrass Approximation Theorem

Let E C R" be open, bounded and with smooth boundary 9E.Let f € C'(E)
vanish on OF, and let P; denote the jth Stieltjes polynomial relative to f. Then

lim op; _ 9f
j—oo 6x,~ o 8x,~

Let E C R" be bounded and open, and fet f : E — R and be Lipschitz con-
tinuous in E. with Lipschitz constant L. Then the Stieltjes polynomials P;
relative to f are equi-Lipschitz continuous in E, with the same constant L.
A continuous function f : [0, 1] — R, can be approximated by the Bernstein
polynomials B}, relative to f

B;(x) =§ ({)f(%)xi(l — )

State and prove a N-dimensional version of such an approximation ([98]).
Let f be uniformly continuous on a bounded, open set E C R" and denote
by P, the set of all polynomials of degree n in the coordinate variables. Then

/fpndxzo forall p, € P,andalln e N = f =0.
E

The Stone-Weierstrass Theorem

The Stone-Weierstrass theorem fails for complex valued functions.

Let D be the closed, unit disc in the complex plane C and denote by C(D; C)
the linear space of all the continuous complex valued functions defined in D
endowed with the topology generated by the metric in (17.1).

Consider also the subset H (D) of C(D; C), consisting of all holomorphic
functions defined in D. One verifies that (D) is an algebra. Moreover uni-
form limits of holomorphic functions in D are holomorphic ([24], Chap. V,
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Théoréme 1, page 145). Thus H(D) is closed under the metric in (17.1). The
algebra H (D) is called the disc algebra.
Such an algebra separates points since it contains the holomorphic func-
tion f(z) = z. Moreover H (D) contains the constants. However H (D) #
C(D; C). Indeed the function f(z) = 7 is continuous but not holomorphic in
D.

17.2. Let f : R — R be continuous and 27-periodic. For every £ > 0 there exists a
function of the type

o(x) = a, + >_ (b, cosnx + c, sinnx)

n=1

such that supy | f — ¢| < € (Hint: Use Stone’s Theorem).

19¢ A General Version of the Ascoli-Arzela Theorem

The proof of Theorem 19.1 uses only the separability of RV and the metric structure
of R. Thus it can be extended into any abstract framework with these two properties.
Let { f,,} be a countable collection of continuous functions from a separable topo-
logical space {X; U/} into a metric space {Y; dy}. The functions f, are equibounded
at x if the closure in {Y; dy} of the set { f,(x)} is compact.
The functions f, are equi-continuous at a point x € X if for every € > 0, there
exists an open set O € U containing x and such that

dy(f(x), f(y)) <e forall ye O andall n eN.

Theorem 19.1c Let {f,} be a sequence of continuous functions from a separa-
ble space {X; U} into a metric space {Y; dy}. Assume that the functions f, are
equibounded and equi-continuous at each x € X. Then, there exists a subsequence
{fw} C {fn} and a continuous function f : X — Y such that { f,y} — f pointwise
in X. Moreover the convergence is uniform on compact subsets of X.

State and prove an analog of Proposition 19.1.



Chapter 6
The L? Spaces

1 Functions in I” (E) and Their Norm

Let {X, A, u} be ameasure space and let E € A. A measurable functionf : E — R*
is said to be in L7 (E), for 1 < p < oo, if |f|7 is integrable on E, i.e., if

e 1/
i, 2 ([ rvan) " <. (1.1)

Equivalently, the collection of all such functions is denoted by L” (E). The quantity
f1l, is the norm of f in LP(E). It follows from the definition that ||f||, > O for all
felP(E),and ||f||, = 0if and only if f = O a.e. in E. Let f and g be in L”(E) and
let o, B € R. Then (2.2c of the Complements)

lof + Bgl’ <277 (alIfP +18F1gl") p=1, ae.inE.
Therefore L”(E) is a linear space. A measurable functionf : E — R* isin L*(FE)

if |f| < M a.e. in E for some M > 0. Equivalently, L°°(F) is the linear space of all
such functions. Set

esssupf = inf {k | u([f > k]) = 0}
E

(1.2)
essinff = sup {k | u([f < k]) = 0}.
A norm || - || in L*°(E) is defined by
def
flloo < ess sup |f]. (1.3)
E
© Springer Science+Business Media New York 2016 247
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It follows from the definition that for € > 0 arbitrarily small

pfl = flle +e) =0 and  pudf| = Ifllc —€) > 0. (1.4)

Remark 1.1 The p-measurability of f is essential in the definition of the spaces
LP(E). For example, let E C [0, 1] be the Vitali non-Lebesgue measurable set con-
structed in § 13 of Chap. 3. The function

1 forxeE
ﬂ”—[—lﬁnxemu—E

is not in L2[0, 1], althoughf2 is Lebesgue integrable in [0, 1].

2 The Holder and Minkowski Inequalities

Two elements p and ¢ in the extended real numbers R* are said to be conjugate, if
p,qg>1land

T 2.1)

Since p, g € R*, if p = 1 then ¢ = oco. Likewise if ¢ = 1 then p = oco.

Proposition 2.1 (Young’s Inequality)' Let 1 < p,q < oo be conjugate. Then for
alla,b e R

1 1
labl < —lal” + —|b|* 2.2)
p q

and equality holds only if |a|P = |b|4.

Proof The inequality is obvious if either a or b is zero. Thus assume |a| > 0 and
|b| > 0. The inequality is also obvious if either p = 1 or ¢ = 1. Thus assume
1 < p, g < oo. The function

"When p = ¢ = 2, this is the Cauchy—Schwarz inequality. An alternative proof of (2.2) is in
§ 13.16c of the Complements of Chap. 5. It can also be established by using Proposition 14.1c of
Chap.5. See also [70] pp. 132-133.


http://dx.doi.org/10.1007/978-1-4939-4005-9_3
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and equality holds only if s = 1. Choosing s = |a||b|~%/? yields

|al Lal 1
< —

bla/r = plbla g u

Proposition 2.2 (Holder’s Inequality) Let f € LP(E) and g € LI(E), where 1 <
p.q < oo satisfy (2.1). Then fg € L'(E) and

/Elfgldu = IIfllpllgllg- (2.3)

Moreover if 1 < p, q < 00, equality holds only if ||’ = c|g|? a.e. in E, for some
constant ¢ > 0.

Proof May assume that f and ¢ are nonnegative and neither is zero a.e. in E. Also
(2.3) is obvious if eitherp = lorg = 1. If p, ¢ > 1, in (2.2) take

a= L and b= g
1l llglly
to obtain
fo__ _1f 1y
IFlolgly ~ P IFIE  allglg

Integrating over E
Jefodn _

1
- =1.
IFlpllglly — P

1
i
q

For the indicated choice of @ and b in (2.2), equality holds only if

Irllp

797(x) forae. x € E.
lgllg

1) = .

Proposition 2.3 (Minkowski Inequality) Let f, g € L?(E) for some 1 < p < oo.
Then

If =+ gllp = IWFllp + llgllp- 2.4)

Moreover if 1 < p < oo, equality holds only if f = Cg a.e. in E, for some
constant C.

Proof The inequality is obviousif p =1l andp =o00. If | < p < 00

If+gly= [ If +gldu= [ |f +9|P71U +gldp
P
E E

< / i+ gl i+ / I + g7 gldp.
E E
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The integrals on the right-hand side are majorized by Holder’s inequality

I + 9112 < IF + gle=" (I 1, + Nlgl,) - m

3 More on the Spaces L” and Their Norm

3.1 Characterizing the Norm ||f ||, for 1 <p < oo

Proposition 3.1 Let f € LP(E) for some 1| < p < oco. Then
» 1/p
o= ( [ Urau) ™ = swp [ rodu
E gel1E) JE
lgllg=1
where 1 < p < ooand 1 < g < oo are conjugate.

Proof May assume that f = 0. By Holder’s inequality

sup / Fodp < If -
E

geLd (E)
lglg=1

If 1 < p < oo one verifies that

FP—>f
go=——= e LYE) and g, = 1.
1l
Then
sp [ fodu= [ fo.dn =11,
gel9E) JE E
llgllg=1
If p = 1 the proof is similar for the choice g, = sign f € L*°(E). |

3.2 The Norm || - || for E of Finite Measure

Assume that u(E) < oo. If f € LY(E), then for all 1 < p < ¢, by the Holder
inequality, applied to the pair of functions f and g = 1

Fll, < (B (Iflly-
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Therefore f € LP(E) forall 1 < p < ¢q.Inparticularif f € L>(E) thenf € L”(E)
forallp > 1.

Proposition 3.2 Let (E) < oo and f € L*°(E). Then
lim fll, = [If lloc-
p—>00

Proof Since E is of finite measure

limsup [|f [}, < IIflloo lim sup (E)'? = |[f | o-

p—>00 p—>00

Next, for any € > 0

/ Flrdp = / FlPdp = (flloo — &7 u[If1 > Ifllso — ]
E [IF 1> 1f lloo—e€]

From the second of (1.2) the last term is positive. Therefore taking the (1/p)-power
and letting p — o0
liprgj)gf Ifllp = W lloo — €. m

3.3 The Continuous Version of the Minkowski Inequality

Proposition 3.3 Let {X, A, u} and {Y, BB, v} be two complete measure spaces and
assume in addition that {Y , B, v} is o-finite. Then for every nonnegative f € L7 (X X
Y) for some 1 <p < o0

(/X ‘Lf(x, y)d,/"’du)l/p g /Y f G W llp,xdv.

Proof Assume first that v(Y) < co. Then for every g € L9(X) one has fg € L'(X x
Y). Setting

F=/f(ny)dl/,
Y

the left hand side is || ]|, x. Then
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1Pl = s [ Fodp= sw [ ( [ fexodv)gean
X X Y

llgllg.x=1 llgllgx=1
= sup / ( / f V) g@dp)dv
lglgx=1JY *JX
< [ (s [rengean)dr = [ 1re .
Y Cigllgx=1J/X Y
If {Y, B, v} is o-finite the proof is concluded by a limiting argument. |

4 IP(E)for1 <p < oo as Normed Spaces of Equivalence
Classes

Since LP(E) is a linear space it must contain a zero element with respect to the
operations of addition and multiplication by scalars. Such an element is defined by
f+ (—1f forany f € LP(E).

A normin LP(E) is a function || - || : L?(E) — R satisfying
Ifll =0 <= f is the zero element of L”(E) 4.1)
lafll = lalllf]l forall f € LP(E) and for all o € R 4.2)
If +gll < If L+ Nl forall f, g € L7(E). (4.3)

The norm || - ||, defined in (1.1) for p € [1, 00) and in (1.3) for p = oo, satisfies
(4.2). It also satisfies (4.3) by the Minkowski inequality. Finally, it satisfies (4.1) if
the zero element of LP(E) is meant in the sense

f is the zero element of L7 (E) if f(x) = 0 fora.e.x € E.

However, the norm || - ||, does not distinguish between two elements f and g in
L (E) that differ on a set of measure zero.

Motivated by this remark, we regard the elements of L? (E) as equivalence classes.
If Cr is one such class and f is a representative, then

C — all measurable functions g : E — R* such that |g|?
= is integrable on E and such that f = g a.e.in E
With such interpretation the function || - ||, : L7(E) — R* is a norm in L”(E),

which then becomes a normed linear space.
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4.1 IP(E) for1 <P < oo as a Metric Topological Vector
Space

The norm || - ||, generates a distance in L” (E) by d(f, g) = |lf — gl|,- One verifies that
such a metric is translation invariant and therefore it generates a translation invariant
topology in L”(E) determined by a base at the origin consisting of the balls

Wl < pl={f € LPE) [ Ifll, <P} (p>0).

Such a topology is called the norm topology of L” (E). By Minkowski’s inequality,
forh,g € LP(E) andt € (0, 1)

lzg + (1 = Dhll, < tligll, + (1 —D)lAl,-
Therefore the balls [||f|l, < p] are convex, and the norm topology of L’ (E) for

1 < p < o0, is locally convex. The unit ball [||f|l, < 1] is uniformly convex if for
every € > ( there exists § > 0 such that for any pair &, g € LP(E)

Sl-b @4

Ihll, = llgl, =1 and |k — gll, > & H

If this occurs the norm topology of L?(E) is said to be uniformly convex or simply
that L7 (E) is uniformly convex.
If p = oo one can construct examples of functions &, g € L*°(E) such that

|ww=mm=lm—mmzlmdu H

Similar examples can be constructed in L'(E). Thus L®(E) and L'(E) are not
uniformly convex. However L”(E) are uniformly convex for all 1 < p < oo (see

§15).

5 Convergence in L7 (E) and Completeness

A sequence {f,} of functions in L”(E) for some 1 < p < 0o, converges in the sense
of LP(E) to a function f € L?(E) if

lim [, — fll, = 0.

This notion of convergence is also called convergence in the mean of order p, or
in the norm L?(E) or strong convergence in L7 (E).
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The sequence {f,} is a Cauchy sequence in L”(E), if for every € > 0 there exists
a positive integer n. such that

Ify = full, <& forall n,m > n..

If{f,} — finLP(E), then {f,} is a Cauchy sequence. Indeed if n, m are sufficiently
large

W = fullp = W = fllp + W — N, < e
The next theorem asserts the converse, i.e., if {f,} is a Cauchy sequence in L”(E)

for some 1 < p < o0, it converges in L7 (E) to some f € L7(E). In this sense the
spaces L?(E) for 1 < p < oo, are complete.

Theorem 5.1 (Riesz—Fischer [46, 125]) Let {f,} be a Cauchy sequence in L (E) for
some 1 < p < oo. There exists f € LP(E) such that {f,,} — f in L (E).

Proof Assume p € [1, 0o), the arguments for L>°(E) being similar. For j € N let n;
be a positive integer, such that

1
W — fnllp < > forall n,m > n;. (5.1)

Without loss of generality we may arrange that n; < n;y for all j € N. Set
formally

f &) = fo, ) + 2 [foy, ) = fi;, ()] forae. x € E. 5.2)

We claim that (5.2) defines a function f € LP(F) and that {f,,} — f in L7 (E). For
m=1,2,...,set

gm(x) = i lan,] ()C) _fn_,- ()C)| forae. x € E.
j=1

Since g, < gm+1 there exists the limit
lim gm(-x) = g(-x) fora.e. x € E.

By Fatou’s lemma, the Minkowski inequality and (5.1)

(/Egpd”)l/p = (ﬁm inf/Eg,’i,du)l/p < i% <1

Jj=1

Thus g € LP(E). The a.e. convergence of {g,} implies that the limit

lim i[f"’“ () = fu; ()]

m—0o0 ;
J

exists for a.e. x € E. Therefore (5.2) defines a function f measurable in E.
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From (5.2) and the definition of g
FO =< fn 0]+ [gkx)|  forae. x€E.

Thus f € LP(E). Next, from (5.2)—(5.1) and the Minkowski inequality, it follows
that for any positive integer k

oS 1
ank _f”p = Z]:( ”ﬁl,ur] _f;l,’”p =< F
J:

Therefore {f,;} converges to f in LP(E). In particular for every ¢ > 0, there exist
a positive integer j. such that

”fn/ —fllp < %5 forall j > j..

We finally establish that the entire sequence {f,} converges to f in L”(FE). Since
{f.} is a Cauchy sequence, having fixed ¢ > 0, there exists a positive integer n. such
that

W —fully < 3¢ forall n,m > n..

Therefore for n > n.

”fn _f”p = ”fn _fnij + ”f;lj _f”p <e

provided j > j. and n; > n.. |
Remark 5.1 The spaces LP(E), for all 1 < p < oo, endowed with their norm topol-

ogy are complete metric spaces. As such they are of second category, i.e., they are
not the countable union of nowhere dense sets.

6 Separating L? (E) by Simple Functions

Proposition 6.1 Let f € LP(E) for some 1 < p < oo. For every € > Q there exists
a simple function ¢ € LP(E), such that ||f — ¢|l, < e
Proof By the decomposition f = f* — f~, one may assume that f is nonnegative.
Since f is measurable, there exists a sequence {¢,} of nonnegative, simple functions
such that

on < pnpy1 and @, — f everywhere in E.

If 1 < p < oo the sequence {(f — ¢,)’} converges to zero a.e. in E and it is
dominated by the integrable function f”. Therefore ||f — .|, — O.

21t is not claimed here that L? (E) is separable. See § 15.
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If p = oo the construction of the ¢, implies that

1
u(lf = on > 5,1 I]) =0.
Thus ”f - @n”oo = 2_n”f||oo for all n. ]

Proposition 6.2 Let 1 < p, g < 0o be conjugate, and let g € L' (E) satisfy

/ wgdp < Kl|loll, for all simple functions ¢
E

for some positive constant K. Then g € LY(E) and ||g|l, < K.

Proof 1f ¢ = 1 it suffices to choose ¢ = sign g € L>*(E). Assuming g € (1, 00), let
{xn} denote a sequence on nonnegative simple functions, such that ¢, < ¢,4; and
©n — |g|?. Since

0=<¢,/? <lgl € L'(E)
each ¢, is simple and vanishes outside a set of finite measure. Therefore the functions

hn = @,/Psign g

are simple and in L? (E). For these choices

/sondu=/<pi/”<pi/qdu§/w}/”lgldu
E E E
1
= / hygdp < K”hn”p = K(/ (Pndﬂ) /P.
E E
From this and Fatou’s lemma
. /q
lglly = (timinf / endp) ' <K
E

Consider now the case g = oo. For ¢ > 0 set
E. = {x € E suchthat |[g(x)| > K + ¢}

and choose ¢ = yg.sign g. Since g € L'(E) the set E. is of finite measure and
¢ € L'(E). Therefore

(& + k) = | [ podu] < Kk

Thus p(E-) = 0 forall e > 0. |
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Corollary 6.1 Let1 < p, g < oo be conjugate, and let g € L' (E) satisfy

[ Fodu =KIfl, forall f € 12E)NL¥E)
E

for some positive constant K. Then g € LY(E) and ||gll; < K.

7 Weak Convergence in L? (E)

Let I < p, g < oo be conjugate. A sequence of functions {f,} in L’(E) for 1 <p <
00, converges weakly to a function f € LP(E) if

lim/f,,gdu:/fgdu for all g € LY(E).
E E

If {f,} converges to f in L”(E) it also converges weakly to f in L”(E). Indeed by
the Holder inequality, for all g € LI(E)

‘/EO‘ng — fo)dp| < gl = £l

Thus strong convergence implies weak convergence. The converse is false as
indicated by the following

7.1 Counterexample
The functions x — cosnx,n = 1,2, ..., satisfy
2
/ cos’nxdx = forall n e N.
0

Therefore {cosnx} is a sequence in L2[0, 27r] which does not converge to zero
in L*[0, 27r]. However it converges to zero weakly in L2[0, 27]. To prove it, let first
9 = X(a,p)» Where (a, 3) C [0, 27], and compute

2w 1
/ X(a,p) COSs nxdx = —(sinnf —sinna) - 0 as n — oo.
0 n

Let now ¢ be a simple function of the form
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© =2 GiXwB) (7.1)

i=1

where (o, B;) are mutually disjoint subintervals of [0, 27r] and g; are real numbers.
For any such function

27
lim/ pcosnxdx = 0.
0

Simple functions of the form (7.1) are dense in L?[0, 27] (Corollary 6.1c of the
Complements). Thus

27
lim / gcosnxdx =0 forall g € L*[0, 2]
0

8 Weak Lower Semi-continuity of the Norm in L” (E)

Proposition 8.1 Let {f,} be a sequence of functions in LP (E) for some 1 < p < 00,
converging weakly to some f € LP(E). Then

liminf [|fp [, = [l 8.1
If p = oo the same conclusion holds if {X, A, p} is o-finite.

Proof Assume first that 1 < p < oco. The function g = |f|"/4sign f belongs to L?(E)
and

im [ frodn = [ fodu= 1,

On the other hand, by Holder’s inequality

| / Fagdn| < Wallplgly = Ul 712/
E

Therefore
tim inf (I, [, IF112/7 > 1712

Assume next that p = oo and u(E) < oo. Fix € > 0 and set
E.=[lfl zfllo —€] and g = xgsignf.

For such choices

lim /E fugdy = /E Fodu = (f oo — ) (E2).
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By Holder’s inequality

| /Efngdu\ < Wllooht(E.

Since p(E-) > 0, this implies
liminf ||f;]lcc = |Ifllcc —€ forall € > 0.

If p = oo and {X, A, p} is o-finite let A; C A;;; be a sequence of measurable
sets, of finite measure whose union is X. Setting E; = E N A;, the previous remarks
give

liminf ||, llco.e > [floo,; forall j € N. |

Remark 8.1 The counterexample of § 7.1 shows that the inequality in (8.1) might
be strict.

Corollary 8.1 Let p € [1,00). The function || - ||, : LP(E) — RY, is weakly,
sequentially, lower semi-continuous. If p = 0o the same conclusion holds if (X, A, u}
is o-finite.

9 Weak Convergence and Norm Convergence

Weak convergence does not imply norm convergence, nor the latter implies weak
convergence. The sequence in § 7.1 provides a counterexample to both statements.
The next proposition relates these two notions of convergence.

Proposition 9.1 (Radon[121])Letp € (1, 00) and let {f,} be a sequence of functions
in LP(E) converging weakly to some f € LP(E). If also ||full, — Wfllp, then {f,}
converges to f strongly in LP (E).

The counterexample of § 7.1 shows that weak convergence and norm convergence
does not imply strong convergence. For this to occur the norm of the weak limit is
required to coincide with the norm-limit.

The proposition is false for p = co. In (0, 1) with the Lebesgue measure set

0 for 0<x<

1
1 for %<x§’i for n € N.

fn(x) = [

One verifies that {f,} — 1 weakly in L*°(0, 1), and ||f;;||coc — 1. However ||f,, —
1o = 1 forall n € N.
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The proposition is false for p = 1. In (0, 27) with the Lebesgue measure, set
fu(x) =4+ sinnx for n € N.

One verifies that {f,} — 4 weakly in L'(0,27) and ||f,]l; — [4]l;. However

I\, —4ll1 =4 foralln e N.3
The proof of Proposition 9.1 rests on the following inequalities.

Lemma 9.1 Let p > 2. There exists a constant ¢ € (0, 1], such that for allt € R
[T +¢tP > 1+ pt+clt]. 9.1)
Lemma 9.2 Let1 < p < 2. There exists a constant ¢ € (0, 1) such that forallt € R

L pt+cliP if =1

Y4
L+t =0 e i 1 < 1. ©.2)
The proof of these lemmas is given in § 9.1c of the Complements.
9.1 Proof of Proposition 9.1 forp > 2
In (9.1) put
/1S At A f(x) #0. (9.3)

J(x)

Multiplying the inequality so obtained by |f(x)|P gives

VP = 1P +pUf P2 (o = ) + el — £

One verifies that such an inequality continues to hold also if f (x) = 0. Integrating
it over E and taking the limit as n — oo yields

¢ lim sup / Iy — fPdp < tim (I — IF112)
E

~ptim [ {13, ~ P =0. =

3This example was suggested by J. Manfredi.
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9.2 Proof of Proposition 9.1 for 1 <p < 2

For n € N, introduce the sets
E,={xcE|fx)—f@|=[F®l}.
In (9.2) choose ¢ as in (9.3) and multiply by |f(x)|? to obtain
Vl? = 1P + plf P2 (= ) + el — 1P in E,
l? = 1P+ plfIP2F (= ) + e = IfIP2 in E —E,.

Integrate the first over E, and the second over E — E,,, add the resulting inequalities
and let n — oo to obtain

ctimsp( [ 1 ~fPdu+ [ - pPer-dn
< lim (I, 2 — 12} — plim /E P21y — f)dp = 0.

This implies
lim/ Ife —f1Pdp =0
E,
and

lim (= )IfFIP*du = 0.

E-E,

From this, the definition of E, and Holder’s inequality

n pd n pd p—l n d
/Ev £l us/Env £l u+/E_Enm o — fldp

< /E = P /E ) ( /E il )

10 Linear Functionals in I” (E)

A map F : L(E) — R is a linear functional in L7 (E) if for all f, g € LP(E) and
a,BeR
Flof + Bg) = aF () + BF(9).
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The functional F is bounded if there exists a constant K such that
|[FOI <KIfll, forall feL’(E).

The norm of F is the smallest of such constants K. Therefore

].'
7|l = sup 2N sup | F (). (10.1)

=0 Wl =1

A bounded linear functional in L7 (E) is continuous.

Proposition 10.1 Ler 1 < p < ooand 1 < g < 0o be conjugate. Every g € L1(E)
generates a bounded linear functional in LP (E) by the formula

Fy(f) = /fgdu forall f € LP(E). (10.2)
E

Moreover | Fyll = llgllg- If p = 1 and q = oo the same conclusion holds if
{X, A, u} is o-finite.

Proof The map F, is linear. By Holder’s inequality itis also bounded. If 1 < g < oo,
Proposition 3.1 identifies the norm || F|| as the norm | g/l,,-

Let now ¢ = oo and assume momentarily that E is of finite measure. For ¢ > 0
set

E.={x€E|lgW)| = liglloor — ¢} (10.3)
and in (10.2) choose f = xg.sign g € L'(E). This gives
Fo(f) =/ lgldx = |[fIh.£(lgllcc.e —€) forall € > 0.
E.
Therefore
I9lloc.e — € < IF4ll < Iglloo,E-

If {X, A, 1} is o-finite, let A; C A1 be a countable collection of measurable sets
of finite measure, whose union is X. Set E; = ENA; and define E; . as in (10.3) with
E replaced by Ej. Choosing f = X, _sign g € LY(E) in (10.2) gives

l9lloc.; — € < IFgll < lIglloc.£- u

Remark 10.1 Let p € (1, 00). The proof shows that if g is not the zero equivalence
class of LI(E), the norm || F,|| is achieved by computing F, at the element

. _ lgl""Isigng

lgllé”

e L7(E). (10.4)
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Remark 10.2 If p = 1 and {X, A, pu} is not o-finite, formula (10.2), for a given g €
L®(E), still defines a bounded linear functional in L' (E). However the identification
17,1l = llgllo, might fail. A counterexample can be constructed using the measure
space {X, A, u} in 3.2 of the Complements of Chap. 3.

The Riesz representation theorem asserts that if 1 < p < oo, the functionals in
(10.2) are the only bounded linear functionals in L” (E).

11 The Riesz Representation Theorem

Theorem 11.1 Let 1 < p,q < o0 be conjugate. For every bounded, linear func-
tional F in LP (E), there exists a unique function g € L1(E) such that F is represented
by the formula (10.2). Moreover || F|| = llgll,-

If p = 1 and g = oo the same conclusion holds if {X, A, u} is o-finite.

Remark 11.1 The conclusion is false for p = 1if {X, A, u} is not o-finite. A coun-
terexample can be constructed using the measure space in 3.2 of the Complements
of Chap. 3.

Remark 11.2 The theorem is false for p = co. A counterexample is in § 9.2c of the
Complements of Chap. 7.

11.1 Proof of Theorem 11.1: The Case of {X, A, )} Finite

Assume first that ;1(X) < oo and that E = X. For every pu-measurable set A C X
the function x4 is in L”(E). The functional F induces a set function v defined on the
o-algebra A by the formula

A3A — v(A) = F(xa).

The set function v(-) is finite for all A € 4, it vanishes on the empty set and is
countably additive. To establish the last claim, let {A,} be a countable collection of
mutually disjoint, measurable sets in A. Since p(UA,) < oo, for every £ > 0 there
exists n. € N such that Zj>n, ((A;) < €. By linearity

f(XUAn) = f(XU;’;]A/ + XU;’>anj)

= f(iiXA/ + XUjmfAj) = Z}_(XA/) + f(XU Aj)'
j=

= j>ne

Since the A; are disjoint and p € [1, c0)
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|F(xua,) — 21 Fou)| < 1F1xu,., 4,
Jj=

= |1FI( X wap)” < |1F) V.

J>ne

Since ¢ is arbitrary, this implies

v(UAL) = F(xya,) = 2 Flxa,) = 2 v(Ay).

Therefore v is countably additive and defines a signed measure on .A. Since
|[v(A)| = 0 whenever 11(A) = 0, the signed measure v is absolutely continuous with
respect to u. By the Radon—Nikodym theorem there exists a y-measurable function
g : X — R* such that

A3A — vAd) = /EgXAdu.
For every simple function ¢ = >"_| a;xa,, by the linearity of F
Flp) = éaiV(Ai) = éai/ngA,-du = /ngdw
For all the simple functions
| /E gedp| < 1Fl¢lp.x.

Moreover g € L'(E), since E is of finite measure. Therefore by Proposition 6.2,
g € L4(E) and ||gll; < IF|l. Since the simple functions are dense in L’ (E)

F() = / fgdp forall f € L’(E) and | F|| = lgll,-
E
If ¢ € L1(F) identifies the same functional F, then

/f(g —g¢)dp =0 forall f e LF(E).
E

Thus g = ¢’ a.e. in E. |

11.2 Proof of Theorem 11.1: The Case of {X, A, u} o-Finite

Let A; C Aj4 be a countable collection of sets of finite measure exhausting X, and
set E; = ENA;. Foreach f € L”(E) and j € N set
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f= f on E;
7710 on E—E;.

For each j € N there exists g; € LY(E;) such that
F) =/fgjd,u forall f € LP(E).
Ej

We regard g; as defined in the whole E by setting them to be equal to zero outside
E;. If f € LP(E) vanishes outside Ej, then

f(f)Z/fgjdu=/ fgjr1dp.
Ej Ej

Therefore
/f(gj —gi+1)dp =0 forall f e LP(E))
E/

and g; coincides with g;;; on E;. The sequence {g;} converges a.e. on E to ameasurable
function g. The sequence {|g;|} is nondecreasing, and by monotone convergence

lgllg =1lim [lg;lly < IFIl, 1 <g=<oo0.

Thus g € LY(E). Given now any f € LP(E), the sequence {fjg} converges to fg
a.e.on E and |f;g| < |fg| € L' (E). Therefore by dominated convergence

/fgdu = lim/]j-gdu =1lim F(f) = F(f).
E E

The characterization of || F|| follows from Proposition 10.1. |

11.3 Proof of Theorem 11.1: The Case 1 <p < o0

We assume 1 < p < oo and place no restrictions on the measure space {X, A, u}.
If A C E is of o-finite measure, there exists a unique g4 € LY(E), and vanishing on
E — A, such that*

F(fla) =/ngd,u forall f € LP(E).
E

Moreover if B C A is of o-finite measure, then g = g4 a.e. on B. The set function
A — |lgall4 defined on the subsets of E of o-finite measure, is uniformly bounded
since

4f|a is the restriction of f to A, defined in the whole E by setting it to be zero outside A.
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lgally < IIF]l  for all sets A of o — finite measure.

Denote by M the supremum of | gall4 as A ranges over such sets and let {A,} be a
sequence of sets of o-finite measure such that

94, llg < g9a,.illy and  lim|lga, llg = M.

The set A, = UA,, is of o-finite measure and ||ga, |l; = M. Thus the supremum of
llgall is actually achieved at A,.. We regard g4, as defined in the whole E by setting
it to be zero outside A,. In such a way g4, € LY(E). Such a function g4, is the one
claimed by the Riesz representation theorem.

If B is a set of o-finite measure containing A,, then g4, = gp a.e. on A,. By
maximality

lga.llg < llgslly < lga. l,-

Therefore gg = 0 a.e.on B — A,, since | < g < oo.
Given f € LP(E), the set [|f| > 0] is of o-finite measure. Since also the set
B =[|f| > 0] U A, is of o-finite measure

Fif) = /E Fasdy = /E fondp. .

12 The Hanner and Clarkson Inequalities

Proposition 12.1 (Hanner’s Inequalities [64]) Let f and g be in LP(E) for some
1 <p < oo. Then

W+ gl + 1UF = gl < Al + Ngllp)” + 1IN = lglpl”

for p>2 12.1)
W+ glly + I = gli; = AFlp + 1gllp)” + Tl = lglpl”
for p e[l,2] (12.2)

(I + gllp + If = gllp)” + 11+ gll, = If = gll,” = 2°AF 15 + 19l

for p>2 (12.3)
AV + glly + I = gllp)” + 1+ gllp = If = gll,l” = 2°AF1, + llgly)
for p e[l1,2] (12.4)

Proposition 12.2 (Clarkson’s Inequalities [28]) Let 1 < p, g < oo be conjugate,
andletf, g € LP(E). Then
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+ P _ P P+ P
”fzg p+Hf29 < I 117 : lgll; for =2
g 1 f =g o Wl + gl
Hfng,,+Hf2ng— lfpz = for pe(1,2]
— p P
Hfgg Z*Hf 29 ZZ (ufnp;ngnp)q for p =2
+9| — g P lgllhya-t
Hf 2ng+ Hf ng,, - (IU‘llp : llgllp) for p e (1L2]
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(12.5)

(12.6)

(12.7)

(12.8)

Remark 12.1 1f p = 2, both Hanner’s and Clarkson’s inequalities reduce to the stan-
dard parallelogram identity, and for p = 1 they coincide with the triangle inequality.

Forp > 1 and p # 2 set
o(s5 1) = h(s) + k(s)tP
where, fors € (0, 1]and > 0

h(s) = (149" + (1 -5y
k(s) = [A+ 57" = (1 =5 ']s' 7.

Lemma 12.1 Let 1 < p, g < 00 be conjugate. For every fixed t > 0 there holds

pls;0) < [1+1fP +[1 =1l for p e (1,2]
el = |1 4+11P + [1 =1l for p= 2.

Moreover for all t € [0, 1]

1419 11—t 14+
ST =

g—1 )
>
2 2 2 ) Jor q =

1+17\a-!
z( : ) for g € (1,2].

‘ 141t ‘q ) 1—1¢ ‘q
2 2
Proof Assume first ¢ € (0, 1). By direct calculation

P — 1t

=[A+sy -1 —5)?] ——

sP

1 do(s;t)
p—1 ds

(12.9)

(12.10)

Therefore if p € (1, 2) the function s — @(s; t) increases for s € (0, ), decreases
for s € (¢, 1] and takes its maximum at s = ¢. Analogously, if p > 2 the function

s — (s; t) takes its minimum for s = ¢. Therefore if ¢ € (0, 1)
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p(s;1) <p(t; 1) =1 + 1P + [1 — ¢t for p € (1,2]
w(s; 1) = ;) =1+ 1P + |1 — 1P for p > 2.

By continuity these continue to hold for also for t = 1.
Assume now that t > 1. If p € (1,2) then k(s) < h(s). Indeed the function
s — {k(s) — h(s)} vanishes for s = 1 and is increasing for s € (0, 1). Therefore

o(s51) = h(s) + k()" < h(s)t" + k(s)
1 1
= (h(s) + k(s)t_P) = t"’tp(s; ?)
< tpw(%; %) =[141" + 1 — 1.

Ifp > 2and ¢ > 1 the argument is similar, starting from the inequality k(s) > h(s)
for p > 2. Inequalities (12.10) are obvious for # = 0 and r = 1. To prove the first
of (12.10) for ¢t € (0, 1), write the second of (12.9) with g replacing p and in the
resulting inequality take s = #”. Such a choice is admissible since ¢ € (0, 1). The
second of (12.10) is proved analogously. |

12.1 Proof of Hanner’s Inequalities

Having fixed f and g in LP(E) may assume ||f|l, > |lgll, > 0. Let p € (1, 2) and
in the first of (12.9) take t = |g|/|f| provided |f| # 0. Multiplying the inequality so
obtained by |f]| gives

O +k®1gl” < If + 9l +1f — gl

and this inequality continues to hold if |f| = 0. Integrating over E

RO IFII, + kgl < IIf + gllb + 1If — gll) (12.11)

for all s € (0, 1]. Taking s = |lgll,/If ll, proves (12.2). Inequality (12.4) follows
from (12.2) by replacing f with (f + ¢) and g with (f — g). The proof of (12.1) and
(12.3) is analogous starting from the second of (12.9). |

12.2  Proof of Clarkson’s Inequalities

Since (12.11) holds for all s € (0, 1], by taking s = 1 proves (12.6). If p > 2
inequality (12.11) holds with the sign reversed and still for all s € (0, 1]. By taking
s = 1 proves (12.5). To establish (12.7) and (12.8), observe first that
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5= (=)
(LI ) =5,

To prove (12.7), since g € (1,2) the second of (12.10) implies the pointwise
inequality

‘f-;—g’q+‘f;9)‘lz (lf|p+|g|p)q_]_ (12.12)

2

By the Minkowski inequality
+g4 —g|4 +gya — g4
520+ 2 =S+ LS
2 p 2 p 2 p—1 2 p—1
f+g)q ’f—g‘Q)P—l =
> — — d )
= ( /E (‘ 2 | T s

> (/Ewdu)pll _ (w)q—l.

Inequality (12.8) is established the same way, by making use of the reverse
Minkowski inequality. Since ¢ > 2, inequality (12.12) is reversed. Therefore, since

(-1 €(.1)
=20+ 120 = 12+ L
(LIS 152T) )™

13 Uniform Convexity of L?(E) for 1 <p < o0

Proposition 13.1 The spaces LP(E) for 1 < p < oo are uniformly convex.

Proof It suffices to verify (4.4). Let f, g € LP(E) satisfy |[f]l, = llgll, = 1, and
Ilf — gll, = € > 0. By the Clarkson inequalities

p
[ =-5 ez
P
f+gye el .
H_2 pil_ﬂ if pe(1,2]. -
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A remarkable fact is that the Riesz representation theorem depends only on the
uniform convexity of L”(E) and, in particular, is independent of the Radon—-Nikodym
theorem. The starting point is the following consequence of the Clarkson’s inequal-
ities.

Proposition 13.2 Ler 1 < p, g < oo be conjugate. For a nonzero g € LI(E) let g*
be defined by (10.4).
If F1 and F, are two bounded linear functionals in LP (E) satisfying

FilgHh =I1Fl=1 i=12
for some fixed g € LY(E), then F, = F>.
Proof If F| # F,, there exists f € L7 (E) such that F(f) # F,(f). Set

_ 2f A +]'—2(f)g* c L (E).
Fil) — ) Fi(f) — F(f)

2

One verifies that () = 1 and F,(¢) = —1. Letr € (0, 1) and compute

1+1t=Fi(g" +to) < |Fllllg* +tel, = llg" + toll,
141 =F(g" —to) < | Fllg* —toll, = llg* — tell,.

Assume first that p > 2. Then from these inequalities and Clarkson’s inequality
(12.7)

(1407 < (Ilg* +tollp + llg* — tsDIIZ)q—l
- 2
_ H (g* 4+ to) + (¢° — ty) Hq H (g" +1tp) — (g" —tp) Hq
< +
2 » 2 »

= llg*llZ + 1llllg = 1+ 7)ol
since ||g*|l, = 1. Similarly if 1 < p < 2 using Clarkson’s inequality (12.6)

lg* + tollh + llg* — tolh

I+ < >
_ H (g* +to) + (g% — to) ||P H (9" +tp) — (g5 —tp) HP
< +
2 P 2 P

= lg" 12+ llolle = 1+ |0

Consider the last of these. Expanding the left hand side with respect to ¢ about
t =0, gives
pt+ 0 < lloll.
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Dividing by ¢ and letting + — 0 gives a contradiction. A similar contradiction
occurs if p > 2. |

14 The Riesz Representation Theorem By Uniform
Convexity

Theorem 14.1 Let1 < p, g < 0o be conjugate. To every bounded, linear functional
FinLP(E), there corresponds a unique function g € L1(E) such that F is represented
by the formula (10.2). Moreover | F|| = llgll,-

If p = 1 and q = oo the same conclusion holds if {X, A, u} is o-finite.

14.1 Proof of Theorem 14.1. The Case 1 <p < oo

Without loss of generality we may assume || F|| = 1. By the definition (10.1) of
| F|l, there exists a sequence {f,} of functions in L”(E), such that

Wl =1 IFf) =5 and  lim |[F(f)] = 1.

By possibly replacing f, with —f,, we may assume, without loss of generality, that
F(fy) > 0foralln € N.

We claim that {f, } is a Cauchy sequence in L” (E). Proceeding by contradiction, if
not, there exists some € > O such that ||f,, —f ||, > € for infinitely many indices m and
n. The uniform convexity of L”(E), then implies that there exists § = d(¢) € (0, 1),

such that
Hfm + fn
2

<1-9
P

for infinitely many indices m and n. Letting m, n — oo along such indices

2 =lim{(F(fn) + F ()} = lim F (£ + 1)
< lim [lfi +fullp, = 2(1 = 9).

The contradiction proves that {f,} is a Cauchy sequence in L”(E) and we let f
denote its limit. By construction ||f|, = 1. Set

g=1f1"signf and  g* =|[g|" 'signg =Ff.
By construction g € LY(E) and g* € LP(E), and

W1, = lghd” = llg*ll, = 1.
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Let F, be the bounded linear functional in L7 (E) generated by such a g € L(E),
by the formula (10.2). By construction the two functionals 7 and F, satisfy

F(g") = Fylg") = IFIl = IF4ll = 1.

Therefore F = F,, by Proposition 13.2. u

14.2 The Case p = 1 and E of Finite Measure

Without loss of generality we may assume || F|| = 1. If u(E) < oo, then LP(E) C
L'(E) for all p > 1. In particular for all f € LP(E)

IFO1 < Il < wEVF -

Therefore for each fixed p € (1, 00), the map F may be identified with a bounded
linear functional in LP(E). By Theorem 14.1 for any such p, there exists a unique
gp € L1(E) such that

F() =Fy,(f) = /fgpdu forall f € LP(E).
E
Moreover

ligpllq = IFg, Il = sup |Fy, ()| = sup [F ()]

feLP(E) feLP(E)
IFllp=1 Iflp=1
1 1
< sup [IFIIfIh < sup |Ifll,u(E)"4 = u(E)".
felP (E) felP(E)
IIFllp=1 IIFllp=1

Now let 1 < p; < p» < oo and let

1 1
+—=1

gy, ELT(E) i=1,2 —
pi i

be the two functions that identify F, and 7, .If ¢ is a simple function
F(p) = Fy, (p) = / ogpdp =12
E
From these, by difference (g,, — gp,) € L' (E), and

/ (gp, — gp)pdp =0 for all simple functions .
E
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Since the simple functions are dense in L' (E) this implies that g,, = g,. Therefore
there exists a function g € L9(E) for all g € [1, 00), such that

f(f)z/fgdu forall f e LP(E).
E

For such a function ¢

|/Efgdu\ = |FOI < Ifl1 forall f e L'(E) NL¥(E).

By Corollary 6.1 this implies that ¢ € L*°(E) and ||g||lcc < 1. Therefore, by

density, (10.2) gives a representation of F for all f € L'(E). Also

I =|Fl = sup /fgduillylloofl- u
E

feLl ()
I =1

14.3 The Casep = 1and {X, A, u} o-Finite

Let A, C A,+ be a countable collection of sets of finite measure whose union is X.
Set
En =EnN (ArH—l - An)

and let F,, be the restriction of F to L' (E,). A function ¢ € L' (E,) may be regarded
as an element of L'(E), by possibly defining it to be zero in E — E,. In this sense
LY (E,) c L'(E), and F = F, within L'(E,). Since E, has finite measure, there
exists g, € L*(E,), such that

Fu(p) :/ gnpdp forall ¢ € L'(E,) and ||gullcor, = 1.
E

n

By extending g, to be zero in (E — E,) we regard it as an element of L°°(E) and
set g = > gnXg,. Then, forall f € L'(E)

F) =F(Xfxe) =S F (fxe) =2 /E gufdps = /E afdp. =

15 IfE c RY and p € [1, 00), then I” (E) Is Separable

Let dx denote the Lebesgue measure in RY and let E C R" be Lebesgue measurable.
The RV structure of E affords to L”(E) further defining properties. For example
by Proposition 6.1, the collection of simple functions is dense in LP(E), for E a
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measurable subset of any measure space {X, A, ). When E C RY is Lebesgue
measurable and 1 < p < oo, the space L”(E) contains a dense countable collection
of step functions.

Theorem 15.1 LetE C RN be measurable. Then LP (E) for 1 < p < oo is separable,
i.e., it contains a dense countable set.

Proof Let {Q,} denote the collection of closed dyadic cubes in RY. For a fixed
positive integer n, let S, denote the family of step functions defined on E and taking
constant, rational values on the first n cubes, i.e.,

S ¢ : E — R of the form Y fixone
- =

where the numbers f; are rational

Each &, is countable and the union § = US, is a countable family of simple
functions. We claim that S is dense in L?(E) for 1 < p < oo, i.e., forevery f € LP(E)
and every ¢ > 0 there exists ¢ € S such that ||[f — ¢||, < e.

Assume first that E is bounded and that f € L?(E) (| L>°(E). By Lusin’s theorem
f is quasi-continuous. Therefore having fixed € > 0 there exists a closed set E. C E

such that
p

E—E.
ME=E) = i

and f is uniformly continuous in E.. In particular there exists § > 0, such that
) —f O] < —
X) — =
YU duEyn

forall x, y € E. such that [x —y| < ¢. Since E. is bounded, having determined § > 0,
there exist a finite number of closed dyadic cubes, with pairwise disjoint interior and
with diameter less than ¢, whose union covers E., say for example {Q;, ..., Oy}
Select x; € Q; N E. and then choose a rational number f; such that

g
Ifi —fGx)l < W

Set
ns
© =2 fiXonE
i=1
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and compute

/U‘—solpdx:/ lf—wl”dx+/ If — wlPdx
E E. E—E.
ng

=2 I(F = f @) + (F (i) — fi)Pdx

i=1JOinE.

+ If — plPdx
E—E.

1
=< 56" + 2°If I8 (E — E2) < €.

If E is unbounded, since f € L7(E)

/ [flPdx =3 [fIPdx < oo.
E

EN{n<|x|<n+1}

Therefore, having fixed £ > 0, there exists an index 7. so large that

1
IfIPdx < —&P.
/Em{xzng} 4v

Also
Wl = ) < [ = i,
E
Therefore, for every & > 0 there exists a positive integer ns such that
u(lfl =nl) <6  forall n> ny.

By the Vitali theorem on the absolute continuity of the integral, having fixed
e > 0, there exists & > 0 such that

1
/ flPdx < —¢& for all n > ng.
e 4v

Setting
E, = En{[lx| = n] U[lf] = nl}

one estimates
Ifllpe, < 3e  forall n > max{n.; ns}.

The set E — E, is bounded and the restriction of f to such a set is bounded.

Therefore there exists a simple function ¢ € S, vanishing outside £ — E,, such that
1

Wf — ellpe-g, < €. [ |
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Remark 15.1 Let E be a Lebesgue measurable subset of RV . Then the spaces L (E)
forall 1 < p < oo satisfy the second axiom of countability (Proposition 13.2 of
Chap.2).

15.1 L°°(E) Is Not Separable
Proposition 15.1 Let E C RY be Lebesgue measurable and of positive measure.
Then L (E) is not separable, i.e., it does not contain a dense sequence {f,}.

Proof Denote by {B,(y)} the collection of open balls of radius s centered at y and
such that 11(E N By(y)) > 0. For each s > 0 fixed there exists uncountably many r
such that

I xEns.0) = XEnB.0) ”ooE =1L

The collection
{Xers,o) | s >0, y € E} C L¥(E)

is uncountable and it cannot be separated by a countable sequence {f;} of functions
in L*(E). |

Corollary 15.1 L*°(E) satisfies the first but not the second axiom of countability.

16 Selecting Weakly Convergent Subsequences

We continue to assume that E is a Lebesgue measurable subset of RY and dx is the
Lebesgue measure in RV . A sequence {f,} of functions in L”(E) is bounded in L? (E)
if there exists a constant K such that ||f, ||, < K for all n.

Proposition 16.1 Ler 1 < p < oo. Every sequence {f,} bounded in L? (E), contains
a subsequence {f,y} C {f,} weakly convergent in L7 (E).

Proof Let g € [1, 00) be the conjugate of p € (1, oo]. The corresponding L7(E)
is separable and we let {g,} be a countable collection of simple functions dense in
LY(E). For any such simple function g; set

fn(gj) = / gjfndx-
E
By Holder’s inequality and the assumption of equiboundedness

1Fn(g| = Kllgjllq-
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Therefore the sequence of numbers {F,,(g;)} is bounded and we extract a conver-
gent subsequence {F, ;(g1)}. Analogously the sequence {F, (g2)} is bounded and
we extract a convergent subsequence {F; 2(g2)}. Proceeding in this fashion, for each

m € N, we may select a sequence {F,, ,,}. such that

lim F,,,(g;) exists forall j =1,2,...,m.

The diagonal sequence F,; = F, , is such that

lim F,(g;) exists for all simple functions g; € {g,}.
n'—o0

Fix g € LY(E) and € > 0, let g; € {g,} be such that ||g — g;ll, < €. Since {F,y (g,)}
is a Cauchy sequence, there exists an index n. such that

|Fu(g) — Fu(g))| < e forall n',m" > n..
From this

|Fw(9) — For (@] < N Fw(g — gl + | Fw(g — gl + 1Fu(g) — Fuw (gl
<2K|lg — gjllg +€ < 2K + De.

Thus for all g € LY(E), the sequence {F,(g)} is a Cauchy sequence and hence
convergent. Setting

F(g) =limF,(g) forall g € LY(E)

defines a bounded, linear functional in LY(E). Since g € [1, 00), by the Riesz repre-
sentation theorem there exists f € L”(E) such that

F(g9) =/gfdx forall g € LY(E).
E

Therefore
lim/gfn/dx =/gfdx forall g € LY(E). m
E E

Remark 16.1 The conclusion of Proposition 16.1 is false for p = 1. A counterex-
ample is provided by the sequence in 10.13 of the Complements of Chap. 4.
17 Continuity of the Translation in I”(E) for 1 <p < o0

Let E C RY be Lebesgue measurable. For f € LP(E) and h € RV, let T),f denote the
translated of f, that is
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| f&x+h) if x+heE
T"f(x)_[o if x+h¢E.

The following proposition asserts that the translation operation is continuous in
the norm topology of L”(E) for all p € [1, 00).

Proposition 17.1 Let E be a Lebesgue measurable set in RN and let f € LP(E) for
some 1 < p < oo. For every € > 0 there exists = d(g), such that

sup [|Tuf = fllp < e

|h|<0

Proof Assume first that E is bounded, i.e., contained in a ball B centered at the origin
and radius R, for some R > O sufficiently large. Indeed, without loss of generality,
we may assume that E = Bg, by defining f to be zero outside E. For a subset £ C E
and a vector n € R, set

E—n={xeR"|x+neé&}.

Having fixed ¢ > 0, let 6, be the number claimed by Vitali’s theorem on the
absolute continuity of the integral, and for which

1
P P
/gw dr < 5oe

whenever £ C E is measurable and ;(£) < 6,. Since the Lebesgue measure is
translation invariant, for any vector 7 € RY and any such set £

pl(€ —m) NE] < 6.

Therefore, for any such set £

1
fms—spar =2 ([ypacs [ ppa) < 3o
£ £ (E=mNE 2

Since f is measurable, by Lusin’s theorem it is quasi-continuous. Therefore having
fixed the positive number
9p
0=———
2+ (E)

there exists a closed set E, C E such that u(E — E,) < o and f is uniformly
continuous in E,. In particular, there exists J, > 0, such that

e’ for all |h| < é,

IThf %) = f)I” = 30(E)
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provided both, x and x + /& belong to E,. For any such vector h
1
|Twf — flPdx < =€P.
E,N(E,—h) 2

For any vector ) of length || < o, estimate’

PIE — (E; —m)] = p((E + 1) — E;)
< wE—-E;)+p((E+n) —E) <o+ ou(E).

From this

/J’{E - [EJ n (Ea - ’r])]} =< M(E - EU) + ,LL[E - (EU - 7])]
< o2+ W) = 6,

If || < 0 = min{o; d,}, estimate

/an—fwwxs/’ \Tf — fPdx
E E,N(E;—h)

+ / |Tf — fIPdx
E—[E,N(E,~N)]

1
:/ |Thf — fIPdx + =&l < &P,
E,N(Ey—h) 2
If E is unbounded, having fixed ¢ > 0, there exists R so large that, for all |A| < 1

1
[ mfespas2 [ ppacs g
EN{lx|>2R) EN{lx|>R) 2p
For such a fixed R, there exists § = d(¢), such that

1
sup | Tnf — fllp.engix|<2r) < €
h <6

Therefore

sup [ Tnf — fllp.e < sup [ITf — fllp.enixi<2r)
|h|<d |h|<§
+ 2|f llp.enfui>ry < €. [ |

Remark 17.1 The proposition is false for p = oo. Counterexamples can be con-
structed as in § 15.1.

5Since E = Bg, we may estimate p[(E + 1) — E] < op(BR).
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17.1 Continuity of the Convolution

Corollary 17.1 Letf € LP(E) and g € L1(E) where p and q are Holder conjugate
and 1 < p < oo. Regard f and g as defined in the whole RN by extending them to be
zero outside E. Then the convolution RY > x — (f * g)(x) is a continuous function

of x.

18 Approximating Functions in L? (E) with Functions
in C*(E)

Let f be a real valued function defined in R". The support of f is the closure of the
set [|f| > 0] and we write
supp {f} = [If| > 0].

Let E be an open subset of RY. We regard a real valued function f defined in E, as
defined in the whole R", by extending it to be zero in RY — E. A functionf : E — R
is of compact support in E if supp {f} is compact and contained in E. Set

C®(E) = [ the collection of all infinitely differentiable ]

functions f : E — R

C®(E) = [ the collection of all infinitely differentiable ] '

functions f : E — R of compact support in £

A function f € LP(E) for 1| < p < oo, can approximated in its norm topology, by
functions in C*°(E), by means of the Friedrichs mollifying kernels [51]

J(}C): kexp[l_—W] if |X|<1
0 if [x] >1

where k is a positive constant chosen so that ||J(x)||; gv = 1. For ¢ > 0 let

T.(x) = ELNJ ()-C) .

€

The kernels J and J. are in C5° (RM). Moreover, for all € > 0

/ J.(x)dx =1 and J.(x) =0 for |x|>¢e.
]RN
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The convolution of the mollifying kernels J. with a function f € LY (E) is
x = (Je xf)(x) :/N Je(x — y)f (n)dy. (18.1)
R

Since J. € C°(RV), the convolution (J. xf) is in € C*(R"). In this sense (J. *f)
is a regularization or mollification of f.

For fixed x € RV, the domain of integration in (18.1) is the ball centered at x and
radius . If f € LP(E) and x € OE, then (18.1) is well defined since f is extended
to be zero outside E. If the support of f is contained in E and has positive distance
from OFE, then

(Jexf) € Co°(E) provided e < dist{supp{f}; OE}.
Proposition 18.1 Letf € LP(E) for some 1 < p < co. Then
- *f) € LP(E) and ||(J: *f)”p =< ”f”p

and
11_1)1}) e+ f) = fll, = 0. (13.2)

Iff € C(E), then for every compact subset K C E

lirr(l)(JE *f)(x) =f(x) uniformly in K. (18.3)

Proof By Holder’s inequality
0l = | [ = f o
R

< ([ sw=nas) ([ rw-nirrow)”

= ([ r=irronm)”.

Taking the p-power of both sides and integrating over RV with respect to the

x-variables, gives
/ o Py < / iF1Pdy.
RN RN
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To establish (18.2) write

0P =f = | [ =17 6) s

5/ LIf G+ ) —fldn
Inl<e

< ([ seoman) ([ scnise+m —seran)”

Taking the p-power and integrating RY with respect to the x-variables, gives

(e % f) = fllpry < sup [IT5f —fllpry.

Inl<e

Now (18.2) follows from Proposition 17.1. To prove (18.3) fix a compact subset
KC C E and, for x € K, write

0P =7 = | [ =176 —ray

= swp [F@ —fO)l. .

[x—yl<e

Proposition 18.2 Let E be an open subset of RY. Then C°(E) is dense in L (E) for
p € [1, 00).

Proof Having fixed € > 0, let K. be a compact subset of E such that

1
[flPdy < —&”.
E—K. 2p

Let 20, = dist {K.; OE} and set

f= fx) for x € K.
710 forxeE—K..

If 0 < §. the functions f5 = f. *J5 have compact support in E. By Proposition 18.1
there exists d. such that

1
If: = fill, < 3¢ forall § < oL

Therefore for all such §

W =Sl = e =Ssllp + W llpe-k. < u
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19 Characterizing Pre-compact Sets in L? (E)

Let E C R" be open and let dx denote the Lebesgue measure in R". Pre-compact
subsets of LP(E) for 1 < p < oo are characterized in terms of total boundedness
(Proposition 17.3 of Chap.2). For § > 0 set

Es = {er | dist {x; IE} > ¢ and |x| < %}

and assume that ¢ is so small that E; is not empty.

Theorem 19.1 (Kolmogorov [84] and Riesz [132]) A bounded subset K of L (E)
for 1 < p < oo, is pre-compact in LP (E) if and only if for every € > 0 there exists
& > 0 such that for all vectors h € RN of length |h| < 6 and for all u € K

1Thu —ull, <c and lullpe—£5 < €. (19.1)

Proof (Sufficient Condition) For all v > 0 we will construct a v-net for K. Fore > 0,
choose § so that (19.1) is satisfied and let J,, be the -mollifying kernel, for n < ¢.
Forae.x € E;

[(Jy * u)(x) —ux)| = ‘ / JyMulx +y) — u(x)]dy

[yl<n
< / Oy — ) () ldy.
Iyl<n
From this and the condition of the theorem

Iy * u—ullp.e; < sup [Thu —ull, <.

|h|<n

The family {J,, % u | u € K} for afixed n € (0, 9), is equibounded and equicontin-
uous in Ej. Indeed

|(Jy * w)| < 1 yllgllull,  forall x € Es.
Moreover, for every £ € RY
|Jr/ *u(x + E) - Jr/ *u(x)| < ”J'I/”q”TEu - M”p

Therefore having fixed an arbitrary o > 0, there exists 7 > 0, such that for all
vectors [&] < T

[y *u(x + &) —J, xux)| < ||[J,llqjo forall u € K.
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Thus by the Ascoli-Arzeld theorem, the set {J, * u | u € K} is pre-compact in
C (l:](g) and for all fixed € > 0, it admits a finite e-net {1, ..., ¢, } of functions in
C(E5) (8§ 19.1 of Chap.5). Precisely, for every u € K, there exists some ¢; such that
loj(x) — (J, xuw)(x)| <€  forall x € E;.
Define

=o otherwise.

_ pj(x) for x € Ej
B;
Having fixed v > 0, the numbers ¢, ¢, and &, can be chosen so that the collection
{o1, ..., @m} is a finite v-net for K in LP(E). Indeed, if u € K
||Lt - ()Bj”p =< ”u”p,EfE(; + ”Jn kU — u”p,E(s + ”]7] kU — Soj”p,EAw

The proof is concluded by choosing ¢, d, and ¢ so that the right hand side does
not exceed v. |

Proof (Necessary Condition) The existence of e-nets for all ¢ > 0 implies that for
all € € (0, 1) there exists 6 > 0 such that

lullpe—g; <€ forall u € K.

To prove this, let {¢1, ..., ¢,} be a finite %e—net. Then for every u € K there
exists some ; such that for all 6 > 0

lwllp - < @jllpe—E; + %E.
Now we may choose § so that
ljllpe-g, <3¢ forall j=1,2,... n.
Fix ¢ > 0 and 6 > 0 so small that
lull, < llullpe, + 3 forall ueKk.
Next, forall u € K
I Thu — ullp < 2& + | Thu — ullp, g
and

1wt = ellp.g; < WTwte = Tugjllp.s + 1 Taes = @illp.es + it = @5l
< 2e + IThp; — 9jllp.Es- u
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Problems and Complements
1c Functions in L7 (E) and Their Norm

1.1c The Spaces L? for 0 <p < 1

A measurable function f : E — R*isin LP(E) for 0 < p < 1if [f|? € L' (E). A
norm-like function f — ||f ||, might be defined as in (1.1). The collection L”(E) for
0 < p < lis alinear space. This is a consequence of the following lemma.

Lemma 1.1¢ Ler O < p < 1. Then for nonnegative x, y
x4y <x 4y~

Proof If either x or y is zero, the inequality is trivial. Otherwise, letting t = x/y, the
inequality is equivalent to

fO=A4+—-10+)<0 fort>0 and O<p<1 |

1.2¢ The Spaces L1 for q < 0

If 0 < p < 1, its Holder conjugate ¢ is negative. A measurable functionf : £ — R*
isin LY(E) for g < 0 if

1 1 1
0< [ |fl%dp = —dp < oo, -+-=1
E E |f|Tr P q

A norm-like function f — ||fl, might be defined as in (1.1). If f € L(E) for
q < 0,thenf # Oa.e.in E and |f| # oo. If ¢ < 0 the set LY(E) is not a linear space.

1.3c¢ The Spaces £, for1 <P < o0

Let a = {a,} be a sequence of real numbers and set

p .
lall, = (3 lau?) " if 1< p < 00 (1.16)
llallco = sup |ax| if p = oo.
Denote by £, the set of all sequences a such that ||a||, < co. One verifies that £,
is a linear space for all 1 < p < oo and that (1.1c) is a norm. Moreover £, satisfies
analogues of (1.2) and (1.4).
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2¢ The Inequalities of Holder and Minkowski
Corollary 2.1¢c Let p, g € (1, 00) be conjugate. Fora,b € Rande > 0
P 1
jabl < —af” + —|b[".
p elq

Corollary 2.2¢ Let o; € (0, 1) fori = 1,...,n, and >_"_, o = 1. Then for any
n-tuple of real numbers &1, . . ., &,

n ) n
[T1&1%Y < > ail&l.
=1 =

State and prove a variant of these corollaries when p is permitted to be one, or
some of the ¢; is permitted to be one.

2.1c Variants of the Holder and Minkowski Inequalities

Corollary 2.3c Letf; € LPI(E), for1 <p; <ococandi=1,...,n. Then
n n n l
I1ilde < TTWfll,,  whenever > — =1.
E i=1 i=1 i=1Pi
Prove the following convolution inequality.

Corollary 2.4c Letf € LP(RN), g € LYRY) and h € L' (RY), where p,q, r > 1

satisfy
1 1 1
-+-+-=2
p q r

Then
/RNf(g*h)dx < flpligliglially (2.1¢)

Proof Write
FO9G = V() = [P @) g"(x = 17 [g(x — WH W7 [P N ()17

where p’, ¢’ and ' are the Holder conjugate of p, ¢ and r. [ |

Corollary 2.5¢ Let 1 < p, g < oo be conjugate. Then fora € £, andb € {,

la- bl =2 laibi| < [all,bll,.
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Fora,bef,and1 <p < oo [109]

lla+bll, < llall, + [Ib]l,.

2.2¢ Some Auxiliary Inequalities

Lemma 2.1¢ Let x and y be any two positive numbers. Then for 1 < p < 0o
lx —yI” < & =73 (2.2¢)
CR =R
@+ <2771 67 4. (2.3¢)
Proof Assuming x > yandp > 1

I 1
XP—YPZ/ i[S)C-i-(l—S)y]pds:p()c—y)/ [sx + (1 — 5)y)P~"ds
o ds 0

1
=px—y) [ [sx—y) +yPds
0

1
= ple—y) [y s = )
0
This proves the first of (2.2¢). The second follows from the first, since

G+ =y =@+y-—yr.

To prove (2.3c) we may assume that both x and y are nonzero and that p > 1.
Setting t = x/y, the inequality is equivalent to

a+nv _

—1
f = T <2 forall > 0. -

2.3¢ An Application to Convolution Integrals

Proposition 2.1¢ Letf € LP(RY) and g € LI(RN) for some 1 < p < oo, with p
and q Holder conjugate. Then

fxg e LX®RY) and ||f % glloo < Ifl,llgllq-
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Proposition 2.2¢ Letf € L'(RY) and g € LP(R") for some 1 < p < oo. Then

frxgel’?®Y) and |If xgll, < Ifllillgll,-

Hint: Assume ||f||; = 1 and observe that |¢|” is a convex function of 7 in R.

2.4c The Reverse Holder and Minkowski Inequalities

Proposition 2.3¢ (Reverse Holder Inequality) Letp € (0, 1) and g < O satisfy (2.1).
Then for every f € LP(E) and g € LY(E)

1 1
/ Faldu = 1Ifpllglls -+-=1
E P 4

Proof We may assume that fg € L' (E). Apply Holder’s inequality with

1 1
p=->1 Gg=—>1

1
p 1—p p u

Proposition 2.4c (Reverse Minkowski Inequality) Letp € (0, 1). Thenforallf, g €
LP(E)
I+ Mgl = 11l + Ngllp-

2.5¢ IP(E)-Norms and Their Reciprocals

Proposition 2.5¢ Let E C RY be measurable with ((E) = 1. Then for every non-
negative measurable function f defined in E, and all p > 0

i | }HP - 1. (2.40)

Proof Apply inequality (14.4c) of Chap. 5. |

3c More on the Spaces I” and Their Norm

3.1. Let {f,,} be a sequence in L?(E) for some p > 1. Then
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(/E SAPd) =3 Wl
(=1 [naul’) < [ (1)

3.2.  The spaces £, satisfy analogues of Propositions 3.1 and 3.2.

3.3. Letf € LP(E) forall 1 < p < oco. Assume that ||f||, < K forall 1 <p < oo,
for some constant K, and that ;4(E) < oo. Then f € L°°(E) and ||f|loo < K.

34. Give an example of f € LP(E) forall p € [1, 00), and f ¢ L™ (E).

3.5. Let E C be open set. Give an example of f € LP(E) for all p € [1, 00), and
f & L™ (E’) for any open subset E’ C E. Hint: Properly modify the function
in 17.9. of the Complements of Chap. 4.

" d.

3.4c A Metric Topology for IP (E) when 0 <p < 1

If 0 < p < 1, the norm-like function f — |||, defined as in (1.1), is not a norm.
Indeed (4.3) is violated in view of the reverse Minkowski inequality. By the same
token (f, g) — |If — gll, is not a metric in L/ (E). A topology could be generated by
the balls

B,(9) ={f e L”E) | IIf —gll, <p}. pe©1).

where g € LP(E) is fixed. By the reverse Minkowski inequality these balls are not
convex. A distance in L”(E) for 0 < p < 1 is introduced by setting

d(f, ) = If — glls = /E i — glPdp. (3.10)

One verifies that d(-, -) satisfies the requirements (i)—(iii) of § 13 of Chap.2, to
be a metric. The triangle inequality (iv) follows from Lemma 1.1c.

3.5¢ Open Convex Subsets of LP (E) for 0 <p < 1

Let {X, A, 11} be RN with the Lebesgue measure.

Proposition 3.1c (Day [31]) Let L7 (E) for 0 < p < 1 be equipped with the topology
generated by the metric in (3.1c). Then the only open, convex subsets of LP (E) are ()
and L (E) itself.

Proof Let O be a nonempty, open, convex neighborhood of the origin of L”(E) and
let f be an arbitrary element of LP(E). Since O is open it contains some ball B,
centered at the origin. Let n be a positive integer such that
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1
F/ [f|”dx <p ie., l’lf € Bn/).
E

Partition E into exactly n disjoint, measurable subsets {E}, ..., E,} such that

1
/lflpdxz—/lflpdx ji=1,...,n
E; nJje

Such a partition can be carried out in view of the absolute continuity of the
Lebesgue integral. Set

ho— I’lf in Ej
7710 in E—E;
and compute
/ ||V dx = np/ IfIPdx < p.
E Ej

Thus hj € B, C Oforallj=1,...,n. Since O is convex

_ hm+h A+t hy c
n

f 0.

Since f € LP(E) is arbitrary O = LP(E). |

Corollary 3.1c The topology generated by the metric (3.1c) in LP(E) for0 < p < 1
is not locally convex.

5¢ Convergence in L7 (E) and Completeness

5.1. A sequence {f,,} C L>(E) converges in L*°(E) to some f, if and only if there
exists a set £ C E of measure zero, such that {f,,} — f uniformly in E — £.

5.2. A sequence {f,,} C L(E) converges to some f in L”(E) if and only if every
subsequence {f,;} C {f,}, contains in turn a subsequence {f,~} converging to
fin LP(E).

5.3. £), is complete forall 1 < p < oo.

5.4. Let {f,} be a sequence of functions in L7 (E) for p € (1, 00), converging a.e.
in E to a function f € LP(E). Then {f,} converges to f in L”(E) if and only
it Lim [y ll, = [1F1l-

5.5. Let LP(E) for 0 < p < 1 be endowed with the metric topology generated
by the metric in (3.1c). With respect to such a topology L?(E) is a complete
metric space. In particular L”(E) is of second category.
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5.1c The Measure Space {X, A, u} and the Metric Space
{A; d}

Let {X, A, 1} be a measure space and let d(E; F) be the distance of any two measur-
able sets E and F, as introduced in 3.7 of the Complements of Chap. 3. One verifies
that

d(E; F) = / \xe — xr|dp-
X

Two measurable sets E and E’ are equivalent if d(E; E’) = 0. This identifies
equivalence classes in 4. Continue to denote by A the collection of such equivalence
classes. By the Riesz-Fisher theorem, L' (X) is complete (Theorem 5.1). Therefore
{A; d} is a complete metric space and, as such, is of second category.

5.1.1¢ Continuous Functions on {.A; d}

Lemma 5.1¢ Let {X, A, pu} be a measure space, and let \ be a signed measure on
A, absolutely continuous with respect to p, and of finite total variation |\|. Then
the function X\ : {A; d} — R, is continuous with respect to the metric topology of

{A; d}.

Proof Let {E,} be a sequence of equivalence classes in .4, converging to E € A, in
the sense that d(E; E,) — 0. Equivalently,

limpu(E — ENE,) =limu(E, —ENE, =0.
Since || is finite and A\ < pu, by (¢) and (d) of Chap. 3, this implies
lim |A\(E—ENE, =lim|\(E, —ENE,) =0.

Hence lim A(E,) = A\(E). |

6c Separating 17 (E) by Simple Functions

For a measure space {X, A, 1} and E € A, Proposition 6.1 asserts that the simple
functions, is dense in L7 (E) forall 1 < p < oo.

When E C RY is Lebesgue measurable, the simple functions dense in L”(E) can
be given specific forms, provided 1 < p < oo. Let S, denote the collection of simple
functions of the form .

%=§%mﬂ (6.1¢)

j=
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where ¢; € Rand E; , are open forj =1, ..., n.

Proposition 6.1¢ Let E C RN be Lebesgue measurable. Then S, is dense in LP (E)
forl <p < oo.

Proof Fix f € LP(E) and € > 0. There exists a simple function

n
© =2 wjXxg suchthat |[f —oll,r < %5.
j=1

Each E; is of finite measure. Therefore, by Proposition 12.2 of Chap. 3, there exist
open sets Ej , D Ej such that
1

w(Ej, — Ej) e,

AAAAA

If N =1, the sets E; , can be taken to be open intervals (a;, b;).

Corollary 6.1c Let E C R be Lebesgue measurable. Then the collection of simple
functions of the form

© =D POiX(abp (6.2¢)
j=1

is dense in LP (E) for 1 <p < oo.

Proof Fix f € LP(E) and € > 0, and let ¢, of the form (6.1c) be such that

1
— < —e.
I 80”17 2
Each E; , is the countable union of disjoint open intervals {(a; ;, b; ;)}ien. Since
each E; , is of finite measure, for each j € {1, ..., n}, there exists an index m;, such
that
> (i —an) 1 ,
ji T i) = e
i= (2n)P maxje(1,...ny 19517 u

7¢  Weak Convergence in L? (E)

Throughout this section {X, A, p} is R with the Lebesgue measure and E C RY is
Lebesgue measurable and of finite measure.

7.1. Let {f,} be a sequence of functions in L”(E) converging weakly in L”(E) to
some f € LP(E), and converging a.e. in E to some g. Then f = g, a.e. in E.
7.2. Let {f,} — f weakly in LP(F) and {f,,} — g in measure. Then f = g, a.e. in E.
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7.3¢ Comparing the Various Notions of Convergence

Denote by {a.e.} the set of all sequences {f,,} of functions from E into R*, convergent
a.e. in E. Analogously denote by {meas}, {L”(E)} and {w-LP(E)} the set of all
sequences {f,} of measurable functions defined in E and convergent respectively, in
measure, strongly and weakly in L (E).

By the remarks in § 7 and the counterexample of § 7.1

{LP(E)} C{w-LP(E)} and {w- LP(E)} ¢ {L"(E)}.
By Proposition 4.2 of Chap.4 and the counterexample (4.1)
{a.e.} C {meas} and {meas} ¢ {a.e.}.

Weak convergence in L7 (E) does not imply convergence in measure, nor does
convergence in measure imply weak convergence in L7 (E), i.e.,

{w-LP(E)} ¢ {meas} and {meas} ¢ {w-L7(E)}.

The sequence {cosnx} for x € [0, 27], converges weakly to zero, but not in
measure. Indeed
pi(x € [0,27] | [cosnx| > §) = 4.

This proves the first statement. For the second consider the sequence

_ [ n for x €0, 1]
FD=10 for xe (4,11

Such a sequence converges to zero in measure and not weakly in L7[0, 1]. Almost
everywhere convergence does not imply weak convergence in L” (E). Strong conver-
gence in L7 (E) does not imply a.e. convergence, i.e.,

{ae} ¢ {w-LP(E)} and {LP(E)} ¢ {ae.}.

Indeed the sequence {f,} above, converges a.e. to zero and does not converge
to zero weakly in LP(E). For the second statement consider the sequence {®,,}
introduced in (4.1) of Chap. 4.

The relationships between these notions of convergence can be organized in the
diagram below in form of inclusion of sets where each square represents convergent
sequences (Fig. 1¢).

OThis discussion on the various notions of convergence and the picture have been taken from the
1974 lectures on Real Analysis by C. Pucci at the Univ. of Florence, Italy.
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convergence in measure

a.e. convergence

convergence
in LP(E)

weak convergence in LF(E)

Fig. 1¢ Various notions of convergence

7.4. Exhibit a sequence {f,,} of measurable functions in [0, 1] convergent to zero
in measure and weakly in L?[0, 1], but not convergent almost everywhere in
[0, 1].

7.5¢  Weak Convergence in {,

Let 1 < p,q < oo be conjugate. Let {a,} be a sequence of elements in £, and let
b € £,. The sequence {a,} converges weakly in £, to some a € £, if

lim > a;,bj =2 aib; forall bef,.

Strong convergence implies weak convergence. For 1 < p < oo, the converse is
false. For example, let
i for 1<
] <
ajp = n Or,fj—n for 1 <p < oc;
0 forj>n

bj’n:HOfOTISJSH for p = o0.

1for j>n

Then ||a,||, = 1 for all n and {a,} — 0 weakly in £,. Likewise [|b,|lcc = 1
for all n and {b,} — 0 weakly in f,. Discuss and compare the various notions of
convergence in £,, for 1 < p < oo, and construct examples. For p = 1 weak and
strong convergence are equivalent (Corollary 22.1c and § 23c).
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9¢ Weak Convergence and Norm Convergence

When p = 2, the proof of Proposition 9.1 is particularly simple and elegant. Indeed

W = F13 = W63+ IF13 — 2 /E fufdp.

9.1c Proof of Lemmas 9.1 and 9.2

Fort #A#0and x = t~1, consider the function

[1+tP—1—pt _
fO = = 4l = xl" = plal” 2x = ().

It suffices to prove that ¢(x) > ¢ for all x € R for some ¢ > 0. If x € (—1, 0] we
estimate directly

1
o) = (1 =[x+ (p— Dx)P~" > 2—pmin{1; (r— D}
Ifx € (0, 1]
1 d 1
(1+x)"’—x”=/ —(s—l—x)”ds:p/ (s +x)""'ds
0 ds 0
! d
= —p/ (s+xy ' —(1 —s)ds
0 dS

1
=p ' +pp—1) / (1 —5)(s +x)"2ds
0

> px’~! + min {1;
>px' + { 2

Therefore for |x| < 1

@(x) = ¢,(p — 1) for some positive constant c,,.
The Case p > 2 and |x| > 1: By direct calculation

1 1
d
14+ xP — |x|P :/ $|s+x|pds :p/ s 4+ x|P~sign (s + x)ds.
0 0

From this, for x > 1 and p > 2, making use of the second of (2.2¢c)
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1
[T+ x|P — |x|? 217/ (=" 45771 ds > plxlP2x + 1.
0

For x < —1 and p > 2, making use of the first (2.2c)

1
1T+ x]? = |x]P = _1’/ (x| = s)P~'ds
0

1
= _p/ (=" = s"~") ds = plxl"?x + 1.
0

The Case 1| < p < 2 and |x| > 1: Assume first ¢+ € (0, 1). Then by repeated
integration by parts

(l—i-t)p—lz—/ i[l—i—(l—s)]pds:p/ [1+(l‘—s)]p_lds
o ds 0

=pt+pp— 1)/ s[14 (t — )P 2ds
0

P — l)tz.

>pt+ 1

Therefore

(L1 —1—pt _pp—1)

p > 7 forall r € (0, 1).

A similar calculation holds for r € (—1, 0) with the same bound below.

11c The Riesz Representation Theorem

11.1c Weakly Cauchy Sequences in I”(X) for 1 <p < o0

Let {X, A, 11} be a measure space. A sequence of functions {f,} : E — R* is weakly
Cauchy in L7 (X) if it is bounded in L”(X), and if, for all measurable subsets E, of
finite measure, the sequence

{ /fndu} is a Cauchy sequence in R (11.1¢)
E

In such a case, for all such sets, there exists the limit

V(E) = lim/fndu. (11.2¢)
E
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Prove that for 1 < p < oo asequence {f,} C L”(X) is weakly convergent to some
f € LP(E), if and only if it is weakly Cauchy in L”(X). Thus for 1 < p < oo, the
space L7 (X) is weakly complete. Prove that the same conclusion holds for p = oo if
{X, A, u} is o-finite.

11.2¢ Weakly Cauchy Sequences in LP (X) forp = 1

If p = 1, the notion of weakly Cauchy sequence is modified by requiring that
(11.1c) holds for all measurable sets E. Prove that if {X, A, u}, is o-finite, then
L'(X) is weakly complete. Hint: Use the indicated modified notion of weakly Cauchy
sequence and the Radon—-Nikodym theorem.

11.3c¢ The Riesz Representation Theorem in {,

Leta € £, and b € {,, where 1 < p, g < oo are conjugate. Every element b € ¢,
induces a bounded linear functional on £, by the formula

T(a) =a-b= Z aib,-.

Theorem 11.1¢ Let 1 < p < oo. For every bounded, linear functional F in £,
there exists a unique element b € £, such that F(a) = a-b foralla € (.

14c The Riesz Representation Theorem By Uniform
Convexity

14.1¢c Bounded Linear Functional in I (E) for0 <p <1

Let {X, A, u} be RV with the Lebesgue measure and let E C RY be Lebesgue
measurable. The topology generated in L”(E) for 0 < p < 1 by the metric (3.1c¢)
is not locally convex. A consequence is that there are no linear, bounded maps
T : L’(E) — R except the identically zero map.

Proposition 14.1¢ (Day [31]) Let E be a Lebesgue measurable subset of RN and let
LP(E) for 0 < p < 1 be equipped with the topology generated by the metric (3.1c).
Then the only bounded, linear functional on LP (E) is the identically zero functional.
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Proof Let T be a bounded linear functional in LP(E) for some 0 < p < 1. Since
T is continuous and linear, the pre-image of any open interval must be open and
convex in L”(E). However by Proposition 3.1c, LP(E) for 0 < p < 1, with the
indicated topology, does not have any open convex sets except the empty set and
LP(E) itself. Let (—a, ) for some o > 0 be an interval about the origin of R. Then
T~ '(—o, @) = LP(E) for all & > 0. Thus T = 0. |

14.2¢ An Alternate Proof of Proposition 14.1c

The alternate proof below is independent of the lack of open, convex neighborhoods
of the origin in the metric topology of LF(E).”

Let T be a continuous, linear functional in L7 (E) and let f € L”(E) be such that
T(f) # 0. There exists A € E N A such that

1
/XAlf|pdﬂ = §|lf||ﬁ-
E

Setf =f, and fo,1 = foxa and f, > = foXEg-a. Therefore f, = fo.1 + fo.2, and

Wolle = Wt 12+ o2 lee W2 = o2l = L1512
Since T is linear, T'(f,) = T (fo.1) + T (fo.2), and

1T = 1T, + 1T (fo,2)]-
Therefore either
ITEo)| = 5ITEN or  (T(o2)| = ST ().

Assume the first holds true and set fj = 2f, ;. For this choice

TG = 1T and A lL =27 1fon =271 1D

Now repeat this construction with f, replaced by f; and generate a function f, such
that
T = [TE) and  [A1E =2 AL = 22~V 2.

By iteration generate a sequence of functions {f,} in L”(E) such that

ITEN = ITE) and  f05 = 2"Vl |12,

TThis proof was provided by A.E. Nussbaum.
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Since p € (0, 1) the sequence {f,} converges to zero in the metric topology of
LP(E). However T'(f,,) does not converge to zero. [ |

15c IfE c RN andp € [1, o), then I” (E) Is Separable

15.1. The spaces £, for 1 < p < oo are separable, whereas £, is not separable.

15.2. BVa, b] is not separable (§ 1.2¢c of the Complements of Chap.5).

15.3. Let E be a measurable subset in RY and let L”(E) for 0 < p < 1 be
endowed with the metric topology generated by the metric in (3.1c). With
respect to such a topology L”(E) is separable. In particular it satisfies the
second axiom of countability.

18¢ Approximating Functions in L” (E) with Functions
in C*(E)

A function f € LP(R") can approximated by smooth functions by forming the
convolution with kernels other than the Friedrichs mollifying kernels J..

‘We mention here two such kernels. Their advantage with respect to the Friedrichs
kernels is that they satisfy specific Partial Differential Equations and therefore they
are more suitable in applications related to such equations. Their disadvantage is that
they are not compactly supported. Therefore even if f is of compact support in R",
its approximations will not be.

18.1¢ Caloric Extensions of Functions in P (RM)

Forx e RV and ¢ > 0 set

1 _bi?
F(x—y,t):me 4
Set formally
N2
A =divy, =3 2
j=1 axj

and define A, similarly. Verify by direct calculation that for all x, y € RV and 7 > 0

L—AT=0 and TI,—AT =0.
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This partial differential equation is called the heat equation. The variables x are
referred to as the space variables and ¢ is referred to as the time.

A function (x, r) — u(x, t) that satisfies the heat equation in a space-time open
set E C RY x R, is said to be caloric in E. For example (x,f) — I'(x — y; 1) is
caloric in RY x R* forall y € RV,

Verify that

/ F(x—y;t)dy:/ I'x—y,tdx=1
RN RN

forall x,y € RN and all # > 0. Hint: Introduce the change of variables

x—y
N
and use 14.2 of the Complements of Chap. 4.

Let E be an open set in RV and regard functions in L”(E) as functions in L (R")
by extending them to be zero in RY — E. For f € LP(E) and ¢ > 0 set

n forafixed yeRY and >0

Ji@) = (I" = f)(x) =/

[ T@=y0f0)dy.

The function (x, f) — f;(x) is caloricin RN x R* and is called the caloric extension
of f in the upper half space RY x R*. Such an extension is a mollification of f since
x — f,(x) € C®@RM).

Proposition 18.1c Let f € LP(E) for some 1 < p < oo. Then I xf € LP(E) and
1" *fll, < Ilfllp- The mollifications I' * f approximate f in the sense

lim (1, —f1, = 0.

Moreover if f € C(E) and f is bounded in RN then for every compact subset
KCE
liné fi(x) =f(x) uniformlyin K.
t—

Proof The first two statements are proved as in Proposition 18.1. To prove the last,
fix a compact set £ C E and a positive number &,. If ¢, is sufficiently small, there
exists a compact set /., such that K C K., C E, and dist {; K.} > ¢,. For all
x e Kandalle € (0,¢,), write
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0 —f = | [ re=yiniro) ooty
=| [ re-vore sl
[ ra-voro - swia

< s 0 —fol [ ey

[x—y|<e;xekC

+2uf||oo/ F(x— y: dy
[x—y|>¢

<o)+ 2uf||oo/ P —y: 0dy

[x—y|>¢

where w,(-) is the uniform modulus of continuity of f in K.,. The last integral is
transformed into

/ F'x—y;0dy = L/ e"mzdn.
|x—yl>¢ /2 Inl> 55

2
From this, for € € (0, ¢,) fixed
lim I'(x—y;t)dy =0.
=0 Jlx—yi>e
Letting now ¢ — 0 in the previous inequality gives
}LH(]) i) —f ()] = w,(e) forall e € (0,¢,). m

Remark 18.1c The assumption that f be bounded in RY can be removed. Indeed a
similar approximation would hold if f grows as |x| — oo not faster than ¢”*", for a
positive constant v ([34] Chap. V).

18.2¢ Harmonic Extensions of Functions in LP (RN)

Forx,y e R¥ andt > 0 set

2t

Wyt [lx =y 4+ 215

Hx—y 1) =

Set formally
52
A(x,t) = Ax + ﬁ
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and define Ay, similarly. Verify by direct calculation that for all x, y € RY and all
t>0
ApnH = Ay nH = 0.

This is the Laplace equation in the variables (x, t). A function that satisfies the
Laplace equation in an open set E C R¥*! is called harmonic in E. As an example,
(x,t) = H(x — y; t) is harmonic in RV x R* for ally € RV,

Verify that for all x,y € RY and all > 0

H(x—y;t)dy=/ H(x —y; dx = 1.
RN RN

Hint: The change of variables (x — y) = 7 transforms these integrals in

2 / dn o, wN /°° PN tdp 9
WN+1 JRN (1+|77|2)% WN+1 Jo (1+p2)%

Use also 14.1 of the Complements of Chap. 4.
Let E be an open set in RV and regard functions in L”(E) as functions in L (R")
by extending them to be zero in RY — E. For f € LP(E) and ¢ > 0 set

00 = (H %f)(x) = /R HG =y 0 ).

The function (x, ) — f;(x) is harmonic in R¥ x R and is called the harmonic
extension of f in the upper half space RY x R*. Such and extension is a mollification
of f since x — f;(x) € C®(RN).

The integral defining f;(-) is called the Poisson Integral of f ([34] Chap.II).

Proposition 18.2¢ Let f € LP(E) for some 1 < p < oo. Then H x f € LP(E) and
IH *fll, < fll,- The mollifications H x f approximate f in the sense,

lim I, — 1, = 0.

Moreover if f € C(E) and f is bounded in RN then for every compact subset
KCE
lir%f,(x) = f(x) uniformlyin K.
—

If p = oo neither C°(E) nor C(E) is dense in L®(E).
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18.3c¢ Characterizing Holder Continuous Functions

Let E C RN be open and let C*(E) be the space of Holder continuous functions in
E, endowed with the topology generated by the distance d(-, -) introduced in (15.6)
of Chap. 2. With respect to such a topology a function u € C“(E) cannot be approx-
imated, in general, by smooth functions (15.5-15.7 of § 15.1c of the Complements
of Chap.2).

However u can be approximated in the topology of the uniform convergence by its
mollifications {u.}. Indeed the rate of convergence of {u.} to u in L> (E) characterizes
C(E).

Proposition 18.3c Let u € C*(E) for some o € (0, 1). Then
lu—uclloo < [ulac®,  and ey lloo < gl [u]ac®™! (18.1c)

forj=1,...,N.

Proof Without loss of generality we may assume E = R". Indeed, since u is uni-
formly continuous in E, with concave modulus of continuity, it can be extended to
a Holder continuous function defined in RY with the same upper and lower bounds
and with the same Holder exponent o (Theorem 15.1 of Chap.5). Then

lu(x) —u-(x)| < / Je(x = Yux) —u@)ldy < [ulae”.

[x—yl<e

Also by the properties of J.

et = | [ Sy = ([ ) ueo)
RN RN Xj
- / Vo 110) — () ldy
[x—yl<e

—1
= ||JXj||l[u](¥E(} . |
This rate of convergence characterizes C“(E) in the following sense.

Proposition 18.4¢ Let u be a continuous function defined in RN and assume that
for some fixed o € (0, 1), for all € > 0 there exists v. € C'(R") such that

= velloe < 7% and Jveylloo < ™" (18.2¢)

for some fixed constant v > 0. Then u € C*(R") and [u], < 3.

Proof For any pair x, y € RY with [x —y| < ¢

lu(x) —u)| < |ux) — v + [u(y) — v+ [v=(x) = V=) u
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19¢ Characterizing Pre-compact Sets in L7 (E)

19.1. A closed, bounded subset C of £, for 1 < p < oo is compact if and only if
for every £ > 0, there exists an index n. such that > la,|P < e for all
acC.

19.2.  The closed unit ball of L?(E) is not compact since is not sequentially com-
pact. The same conclusion holds for the unit ball of £, and C (E).

n>n.

19.1c The Helly’s Selection Principle

When E = (a, b) is an open interval and {f,} C BV[a, b] then L7 (E)-convergence
of a subsequence can be replaced with everywhere pointwise convergence, provided
{f+} is uniformly bounded. Continue to denote by V;[a, b] the variation of f in [a, b].

Proposition 19.1c (Helly [73]) Let (a, b) be an open interval of R and let {f,} be a
sequence of real valued functions defined in [a, b], such that

sup |ful <M, and Vi <M (19.1¢)
[a,b]

for some constant M independent of n. Then, there exists a function f{ € BV |a, D],
with Vrla, b] < M and a subsequence {f,;} C {f,} such that {f,;} — f everywhere in
(a, D).

Proof By the Jordan’s decomposition we may assume that each of the f,, are nonde-
creasing. Define f, in the whole R by extending them to be zero in RY — [, b]. Then
for h > 0 however small, compute

h
/R fax+ 1) = fuldx =2 [ fulx+ G+ Dh) — fux + jh)|dx

jez.Jo
h

=, %Vn(x+0+l)h) — fu(x 4 jh)|dx
JE

<hV;la,b] <hM forall neN.

Hence {f,} satisfy (19.1) uniformly in n. Therefore there exists f € L'[a, b] and
a subsequence {f,,} C {f,} such that {f,,} — f in L'[a, b]. From this a further
subsequence {f,,} C {fn, } can be selected converging to f a.e. in [a, b]. Since {f,} is
equibounded in [a, b] a further subsequence {f,,} C {f,,} can be selected converging
to f at all rationals of [a, b]. Here f is properly redefined on a set of measure zero.
Since the f, are all nondecreasing, the function f is nondecreasing at the points
of convergence. Also by properly redefining f on a set of measure zero we may
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assume that f is nondecreasing in [a, b]. One also verifies that {f,,} — f at all
points of continuity of f. Thus {f,,} might fail to converge to f only at the points of
discontinuity of f. However f being nondecreasing, it has at most countably many
points of discontinuity. Hence a further selection of {f,;} C {f,,} can be effected such
that {f,;} — f everywhere in [a, b]. ]

20c The Vitali-Saks-Hahn Theorem [59, 138, 170]

Theorem 20.1¢ (Vitali-Saks-Hahn [59, 138, 170]) Let {X, A, 1} be ameasure space
and let {\,} be a sequence of signed measures on A, absolutely continuous with
respect to i, each of finite variation |\,|, and such that

lim \,(E) exists forall E € A.

Then
(E)—0 ( ) Yy

Proof Continue to denote by {A; d} the collection of equivalence classes of measur-
able sets at zero mutual distance, endowed with the metric topology, generated by
d(-; -). Having fixed € > 0, consider the collection of equivalence classes

Enn=1{E € A||IME) = A\u(E) <}, formn=12....

By Lemma 5.1c¢, \,, and )\, are continuous functions in {A4; d}. Therefore the sets
E,. » are closed in the metric topology of {A4; d}. Set

Ec=(), . .E

m,n>k—~m,n:

The assumption implies that every E € A belongs to some Ej, and hence
A = |J Ex. Since {A; d} is a complete metric space, by the Baire category theo-
rem (Theorem 16.1 of Chap.2), at least one of the E; has nonempty interior. Thus
there exists k € N, a positive number r, and an equivalence class A € E; such that
all equivalence classes F in the ball B, (A) of radius r centered at A

B,(A) = {F € A|d(A; F) = wW(AAF) < r}
belong to Ej. Equivalently
[Mi(F) — A\(F)| < e, forall m,n >k, andforall F e B,(A).

Determine 0 < & < r such that for any E € A of y-measure p(E) < 4, there
holds
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IM(E) <e, forn=1,... k.

Such choice is possible since ), are absolutely continuous with respect to y, and
k is finite. For any such set E, one verifies that both A U E, and A — E, belong to the
ball B, (A). Then compute

M(E) = M(E)r + M(E) — M(E)
= M(E) + [MAUE) = M(AUE)]
—[M@A —E) = M(A — E)]
Hence |\, (E)| < 3¢, forall n € N. [ |

Remark 20.1c¢ A consequence of the Vitali-Saks-Hahn theorem is that there exists
a Lebesgue measurable set E C [0, 1] such that

lim/ nxo,1dx  does not exist.
- "
Likewise there exists a Lebesgue measurable set E C RY such that

ny\z bi?
lim (—) / e "+ dy does not exist.
47 E

Construct such sets explicitly.

Corollary 20.1c Let {X, A, u} be a finite measure space and let {\,} be a sequence
of finite measures on A, absolutely continuous with respect to i, and such that

AE) “ lim M(E) exists forall E € A.

Then \(+) is a measure on A.

Proof There is only to prove that A is countably additive. By the Vitali-Saks-Hahn
theorem, for all € > 0 there exists 6 = §(¢) independent of n such that

M(E) < e forall E € A suchthat u(E) <6, forall neN.

Let {£;} be a countable collection of disjoint, measurable sets. Since i is finite,
for all § > O there exists an index m = m(d) such that

(U E) <o

j>m

Fix € > 0, determine ¢ as claimed by the Vitali-Saks-Hahn theorem, and choose
m = m(0) accordingly. Then
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MUE) =tim (U B) +1im (U B)

j=1 j>m

- iA(E,-) +1im (U E).
p=

j>m
Thus .
‘)\(UEJ-)—Z)\(EJ»)‘ <ke. .
j=1
Corollary 20.2¢ (Nikodym [117]) Let A be a o-algebra on a set X, and let {\,} be

a sequence signed measures on A, each with finite variation |\,|, and such that

ME) “ Jim M(E) exists forall E € A.

Then A\(+) is countably additive on A.
Proof Forall E € Aandall n € N set

_ @
Ml (X0

1
tin(E) HwE) =2, ;un(E)-

One verifies that y is a finite measure on A and A\, < p for all n. Thus the
conclusion follows from the Vitali-Saks-Hahn theorem and Corollary 20.1c. |

21c Uniformly Integrable Sequences of Functions

The next assertions are a direct consequence of the Vitali-Saks-Hahn Theorem 20.1c.
As a consequence give conditions on a sequence of functions {f,} to be uniformly
integrable in X, in the sense of § 11c of Chap. 4.

Proposition 21.1¢ Let {X, A, u} be a measure space and let {\,} be a sequence
of signed measures on A, absolutely continuous with respect to i, each of finite
variation |\,|, and such that

lim \,(E) exists forall E € A.

Then for all € > 0 there exists § such that
WE) < implies |M\|(E) <& uniformly in n.

Proof If the conclusion does not hold, there exists ¢ > 0 and a sequence {E,,} of
measurable subsets of X, such that
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1
/J/(Em) < ; and I)\m(Em)| > €.
For each m fixed

€< IAmKEm) = )\I(Em) + An_l(Em)

Therefore either
AE,) > %5, or A, (Ep) %s.

Let X7 U X, be the Hanh’s decomposition of X induced by \. By replacing E,,
with either E,, N X, or E,, N X,,, the sets {E,,} can be chosen so that

1 1
/f['(Em) < Z and /\m(Em) > 26-

This contradicts the conclusion of the Vitali-Hahn-Saks theorem and establishes
the proposition. |

Corollary 21.1c Let {X, A, uu} be a measure space and {f,} be a sequence of inte-
grable functions in X such that

{ /fnd,u} is a Cauchy sequence in R
E

forall E € A. Then {f,,} is uniformly integrable in X, in the sense of § 11c of Chap. 4.
Proof Since f, € L'(X), setting

A3 E —> \(E) = /f,,d,u.
E

defines signed measures A, on .4, absolutely continuous with respect to 11, and each of
finite variation |\, |. By the assumptions {\,(E)} has a limit for all E € A. Therefore
by the Vitali-Saks-Hahn theorem

Jim ) / - d ):0 uniformly in 7.
H(E)—0 Ef K y

If {f,} is not uniformly integrable, there exists ¢ > 0 and a sequence {E,,} of
measurable subsets of X, such that

1
w(E,) < — and / lfinldp > €.
m Epn

For each m fixed

€</ f;{du+/f*du.
Ey En
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Therefore either

/f”’:d,u>%€, or /f,;dﬂ>%€.
Ep En

Thus by replacing E,, with either E,, N [f,, > 0] or E,, N [f,, < 0], the sets {E,,}
can be chosen so that

1 1
W(E,) < = and ‘/E f,,,du‘ > 3. -

m

Corollary 21.2¢ Let {X, A, uu} be a measure space and {f,} be a sequence of inte-
grable functions in X weakly convergent in L' (X) to some f € L'(X). Then {f,} is
uniformly integrable in X, in the sense of § 11c of Chap.4.

22¢ Relating Weak and Strong Convergence
and Convergence in Measure

The previous statements permit one to give necessary and sufficient conditions for
weak convergence to imply strong convergence.

Proposition 22.1¢ Let {X, A, p} be a finite measure space and let {f;} be a sequence
of integrable functions in X. Then {f,} converges strongly in L'(X) if and only if
{fu} — f weakly and in measure.

Proof Strong convergence implies weak convergence and convergence in measure.
To prove the converse, fix € > 0 and determine § > 0 such that

w(E) < § implies / lfi —fldp < & uniformly in n.
E

This is possible, since by Corollary 21.2¢, {f,} is uniformly integrable. Since
{f.} — f in measure, there exists n. such that

w(lfn — f1 >5]) <e forall n > n..

Then since ( is finite

Jv—sian= [ ~slan

+/ o — fldp < (1 + p(X)). -
U(n_f‘ff

The next proposition extends Proposition 22.1c to o-finite measure spaces.
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Proposition 22.2¢ Let {X, A, pi} be a o-finite measure space and let {f,} be a
sequence of integrable functions in X converging weakly in L' (X) to somef € L'(X).
Then {f,,} converges strongly in L' (X) if and only if {f,} — f in measure, on every
subset of X of finite measure.

Proof By replacing f, with f, — f, one may assume that f = 0. For a measurable set
E C Xandn € Nset

Jp aldp

1
fX lﬁ1|d,U/’ Z/(E) = Z EVn(E).

One verifies that v is a finite measure on A and that )\, < v for all n. Moreover,
since {f,} — 0 weakly in L'(X), the lim \,(E) exists for all E € .A. Thus, by
Proposition 22.1c, for all € > 0 there exists § such that

v(E) < implies /[fn|d,u‘ < ¢ uniformly in n.
E
Having fixed € and the corresponding d, there is n = n; such that

1 1
> El/j(E) < 56 forall E € A.

j>ns
Since {X, A, p} is o-finite, there exists a countable collection of measurable sets

{E,.} of finite y-measure, such that E,, C E,41, and X = |J E,,. Since f; € L'(X),
there exists m = m(ng) such that

1
/ fildp < =6 for j=1,...,n.
X—Epnng) 2

Therefore, by the definition of v, the set X — E,,(,,) satisfies
Z/(X — Em(ng)) <0
and hence,
/ |fuldp <€ uniformly in n.
X—Emnng)

Then

lim/ Ifuldp = lim Ifuldp + lim Ifuldp
X

X—Epnng) Enng)

<€+lim/ Ifuld .
E

m(ng)
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Since E,,(,) is of finite -measure, the last limit is zero (Proposition 22.1c). MW

Corollary 22.1¢ In ¢; weak and strong convergence coincide.

23c¢ An Independent Proof of Corollary 22.1¢c
Proposition 23.1¢c A sequence {x,} C £ converges weakly to some x € £, if and
only if |x, —X|l; = 0asn — oo.

Proof Strong convergence implies weak convergence. To show the converse assume
x = 0. Thus the assumption is

lim(x,,y) =lim > x;,y; =0 forall y € {. (23.1¢)
Choosing y as the base elements of £, gives

limx;, =0 forall jeN. (23.2¢)

If lim sup ||x, || > O, there exists € > 0 and a subsequence {X,,} C {X,} such that
X1 >€¢ and lim(x,,y) =0 (23.3¢)

for all subsequences {x,} C {x,/} and all y € £,. The proof consists of extracting
a subsequence {x,”} C {X,/} and an element y € ¢, fow which that last statement
fails to hold.

Fix the index m; = n and consider the sequence X,,, = {x; ,, }. Since Xx,,, € €1,
there exists an index j,,, such that

1
> im | < ge
P

Then choose

yj =sign {xj ), for j=1,...,ju.
For such a choice, and in view of the first of (23.3c),

Jm \
> i | > Il = 2 b | > 3.
j=1

=

The index j,,, being fixed, by the pointwise convergence in (23.2c), there exists
an integer my; < my € {n'} such that

jml
P
=1

1
< §€.
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Since x,,, € {1, there is an index j,,, such that

1
> xml < 3€-

J>im
Without loss of generality we may take j,,, > j,,, + 1 and set
yj =sign {xj .}, for j=ju,, +1,... jm,.

Taking into account the first of (23.3c) the element x,,, satisfies

Jmy Jmy
1. 3 1
Zijj*mz <35 2 ViXim > 36 Z 1Xm, | < g€- (23.4¢)
Jj=1 /m] +1 J=Imy
Proceeding by induction, assume that for a positive integer s > 2, an element
Xn, € {Xy}, an index j,, and numbers y; for j = 1,...j,,, have been selected
satisfying
Jms_y ] Joms X 1
‘ Z ViXjm,| < g&i D ViXim, > 36 2 Xim| < ge. (23.4¢),
Jmg_y +1 J>ms
An element X, ,, € {X,/}, an index j,,,, and numbers y; forj =j,, +1,...,ju,,

are constructed by first choosing m; € {n} so that

g

1
Z;YiX/,mA+1 < g&-
=

Such a choice is possible in view of the pointwise convergence in (23.2c). Then
choose ji,,,, so that

1
z |‘xjsms+l| < §8'
s

Such a choice is possible since X, ,, € £1. Then choose

y] = Sign {xj,mHl}a fOr .] :jm.\- + 1a . 7jmly+1 .

Taking into account the first of (23.3c) one verifies that x,, ,, satisfies (23.4¢)y1.
This procedure identifies a subsequence {X,, } C {X,}, and an elementy € £, of
norm 1, such that

Jmg_y Jms

(¥, Xm,) Z ViXim F 20 ViXim, 2 ViXjm, > 5
Jj=ms—1+1 J>Jms u



Chapter 7
Banach Spaces

1 Normed Spaces

Let X be a vector space and let ® be its zero element. A norm on X is a function
-1l : X — RT satisfying:

i. ||x]| =0ifandonlyifx = &
i |lx +yll = llxl[+ Iyl forallx, y € X
iii. [Ax|| = [A]||x] forall A € Rand x € X.

Every norm on X defines a translation invariant metric by the formula d(x, y) =
|lx — y|. This in turn generates a translation-invariant topology in X. We denote by
{X; |l - |I} the corresponding metric space. By Proposition 14.1 of Chap. 2, the sum
4+ : X x X — X and the product e : R x X — X are continuous with respect to the

metric topology of X. Therefore the norm || - || induces a topology on X by which
{X; |l - I} is a topological vector space. By the requirements (ii) and (iii), the balls
in {X; || - ||} are convex. Therefore such a topology is locally convex.

Remark 1.1 The requirements (i)—(iii) distinguish between metrics and norms.
While every norm is a metric, there exist metrics that do not satisfy (iii). For example
the metric d, in (13:1) of Chap. 2 does not satisfy (iii) even if d does.

The pair {X; || - ||} is called a normed space and the topology generated by || - || is the
norm topology of X. If {X; | - ||} is complete, it is called a Banach space. The spaces
R¥, for all N e N, endowed with their Euclidean norm, are Banach spaces. The
spaces L?(E) for 1 < p < oo are Banach spaces. The spaces £, for 1 < p < oo are
Banach spaces. Let E be a bounded open set in RY. Then C(E) is a Banach space
by the norm

C(E)s f —> |IfIl =suplfl. (1.1)
E

This is also called the sup-norm and generates the topology of uniform conver-
gence (§ 15 of Chap. 2).

© Springer Science+Business Media New York 2016 313
E. DiBenedetto, Real Analysis, Birkhduser Advanced
Texts Basler Lehrbiicher, DOI 10.1007/978-1-4939-4005-9_7


http://dx.doi.org/10.1007/978-1-4939-4005-9_2
http://dx.doi.org/10.1007/978-1-4939-4005-9_2
http://dx.doi.org/10.1007/978-1-4939-4005-9_2

314 7 Banach Spaces

Let [a, b] be an interval of R. Then the space BV [a, b] of the functions of bounded
variations in [a, b] is a Banach space by the norm

BVla,b]> f — | fll=1f(@)|+ Vyla,b] (1.2)

where V¢|a, b] is the variation of f in [a, b] (§ 1.1c of the Complements of Chap.5).

Let E be abounded open set in RYand o € (0, 1). The space C“(E) of the Holder
continuous functions defined in E, with Holder exponent « is a Banach space by the
norm (see § 15.2 of Chap.2)

CUE)> f = IIf =Sl + [fla- (1.3)

If X, is a subspace of X we denote by {X,; || - ||} the normed space X, with the
norm inherited from {X; || - ||}. If X,, is a closed subspace of X then also {X,; || - ||}
is a Banach space.

The same vector space X can be endowed with different norms. The notion of
equivalence of two norms || - ||; and | - [|» on the same vector space X can be inferred
from the notion of equivalence of the corresponding metrics (see § 13.2 of Chap.2
and related problems; see also 1.1 and 1.4 of the Complements).

All norms in a finite dimensional, Hausdorff, topological vector space, space is
equivalent (§ 12 of Chap.2).

Every finite dimensional subspace of a normed space is closed.

1.1 Semi-norms and Quotients

A nonnegative function p : X — R is a semi-norm if it satisfies the requirements
(ii)—(iii) of a norm. A semi-norm p is a norm on X if and only if it satisfies also
the requirement (i). As an example, the function p : C[0, 1] — R defined by
p(f) = |f(%)| is a semi-norm in C[0, 1], which is not a norm.

The kernel of a semi-norm p is defined by

ker{p} ={x e X | p(x) =0}.

Since p is nonnegative, the triangle inequality implies that ker{p} is a subspace
of X. If p is a norm ker{p} = {®} and if p = O then ker{p} = X. As an example,
let {X; || - ||} be a normed space and let X, be a subspace of X. The distance from
an element x € X to X,

d(x, X,) = inf [lx — |
yeX,

defines a semi-norm on X whose kernel is X,,.
A semi-norm p on X and its kernel ker{p}, induce an equivalence relation in X,
by stipulating that two elements x, y € X are equivalent if and only if p(x —y) = 0.
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Equivalently, x is equivalent to y if and only if p(x) = p(y). The quotient space
X/ ker{p} consists of the equivalence classes of elements x" = x + ker{p}.

The operation of linear combination of any two elements x’ and y" of X/ ker{p}
can be introduced by operating with representatives out of these equivalence classes,
and by verifying that such an operation is independent of the choice of these rep-
resentatives. This turns X/ ker{p} into a vector space whose zero element is the
equivalence class ker{p}. Moreover, the function p : X — R may be redefined as a
map p’ from X/ ker{p} into R by setting

p'(x') = p'(x + ker{p}) = p(x).

One verifies that p’ : X/ker{p} — R is now a norm on X/ ker{p} by which
{X/ker{p}; p'} is a normed space.

2 Finite and Infinite Dimensional Normed Spaces

A vector space X is of finite dimension if it has a finite Hamel basis and is of infinite
dimension if any Hamel basis is infinite (§ 9.6¢ of the Complements of Chap. 2).
The unit sphere of a normed space {X; || - ||}, centered at the origin of X is defined
as Sy = {x € X|||x|| = 1}.
Let S; be the unit sphere centered at the origin of RY and let 7 be an hyperplane
through the origin of RY. Then there exists at least one element x, € S; whose
distance from 7 is 1.

The analog in an infinite dimensional normed space {X; | - ||} is stated as follows.
One fixes a closed, proper subspace {X,, || - ||} and seeks an element x, € X such
that

Ixoll =1 and  d(xo, X,) = inf Jlx, —x|| = 1. 2.1)

Unlike the finite dimensional case, such an element in general does not exist, as
shown by the following counterexample.

2.1 A Counterexample

Let X be the subspace of C[0, 1] endowed with the sup-norm, of those functions
vanishing at 0. Let also X, C X be the subspace of X of those functions with
vanishing integral average over [0, 1]. One verifies that X, endowed with the sup-
norm is a closed, proper subspace of X.

Proposition 2.1 There exists no function f € X such that and

lfl=1 and | f—gll =1 forallfunctions g € X,. (2.2)
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Remark 2.1 1f (2.2) holds for some f of unit norm, is equivalent to (2.1). Indeed
(2.1) implies (2.2), whereas the latter implies d(f, X,) > 1. However, g = 0 is in
X, and | f|| = 1. Therefore d( f, X,) = 1.

Proof (of Proposition 2.1) Assume such a f exists. Forh € X — X, set

) fydr

g=f—ch where c="r——.
Jo h(n)dt

Then g € X, and
L=< |lf = (f —chl = Iclliall,

that is

1 1
‘/0 h(t)dt‘g‘ [ fwai] sup 1ol

te0,1]

Choosing h = t'/" € X — X, gives

1
n
= ‘/0 f(t)dt‘ forall n € N.

Therefore letting n — oo

1
1s/|ﬂmm.
0

This however is impossible since f is continuous, || f|| = 1 and f(0) = 0. [ ]

2.2 The Riesz Lemma

While in general an element x, € S; at distance 1 from a given subspace, does not
exist, there exist elements of norm 1 and at a distance arbitrarily close to 1 from the
given subspace.

Lemma 2.1 (Riesz [128]) Let {X; || - ||} be a normed space and let {X,; || - ||} be a
closed, proper subspace of {X; || - ||}. For every € € (0, 1) there exists x. € X such
that ||x.|| = 1 and ||x; — x|| >1—cforall x € X,.

Proof Fix x, € X — X, and let d be the distance from x,, to X,. Since X, is a proper,
closed subspace of X we have d > 0. There exists an element x; € X, such that

d
d<lx,—xi <d+——.
1—¢
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The element claimed by the lemma is

Xo — X1
e = llxell = 1.
llxo — x1]]

X

To prove the lemma for such x. first observe that, for every x € X,
X =x1+ |lx, — x1]lx € X,.

Then, for every x € X,

Xo — X1
I = xll = | 22— -
o =l
= —— %, — 7
oo —
d
>————>1-—¢ -
Ix, — il

2.3 Finite Dimensional Spaces

A locally compact, Hausdorff, topological vector space is of finite dimension (Propo-
sition 12.2 of Chap.?2). In normed spaces {X; || - ||}, the Riesz lemma permits one to
give an independent proof.

Proposition 2.2 Let {X; || - ||} be a normed space. If the unit sphere S is compact,
then X is finite dimensional.

Proof If not, choose x; € S| and consider the subspace X; spanned by x;. It is a
proper subspace of X and by Corollary 12.1 of Chap. 2, it is closed. Therefore by the
Riesz lemma, there exists x, € S; such that || x; — x| > %

The space X, = spn{xj, x,} is a proper, closed subspace of {X; || - ||}. Therefore
there exists x3 € S such that [|x, — x3|| > %

Proceeding in this fashion we generate a sequence {x,} of elements in S; such
that ||x, — x| > %, for n # m. Such a sequence does not contain any convergent

subsequence contradicting the compactness of ;. ]

Corollary 2.1 A normed space {X; || - ||} is of finite dimension if and only if S; is
compact.
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3 Linear Maps and Functionals

Let{X; |- llx}and {Y; |- ||y} be normed spaces. A linearmap 7 : X — Y is bounded
if there exists a positive number M such that

TNy = Mlxllx  forall x € X.

The norm of T is defined as the smallest of such M, i.e.,

17 (x)lly
171 = ———— = sup [T()y. (3.1)
rex-o [xlx lxlx=1
Proposition 3.1 Let T be a linear map from a normed space {X; || - ||x} into a
normed space {Y; || - ||y}. Then

(i). If T is bounded, it is uniformly continuous.
(ii). If T is continuous at some x, € X, it is bounded.

Proof If T is bounded, for any pair of elements x, y € X
ITx) =Ty = ITlHx = ylix.

This proves (i). To prove (ii) we may assume that x, = @. There exists a ball B.
of radius ¢ and centered at the origin of X such that

T,y <1 forall y € B..

If x is an element of X not in the ball B., put

€ X
Xe = = .
T 20kl T
By the linearity of T
€
S IT)lly = IIT(x)lly < 1.
2|xllx
Therefore 5
ITx)|ly < —|lx]lx forall x € X. =
€

Let B(X; Y) denote the collection of all the bounded linear maps from {X; | - || x}
into {Y; ||- ||y }. Such a collection has the structure of a vector space, for the operations
of sum and product by scalars, i.e.,

(N +T)(x) =Ti(x) + Ta(x),  aT(x) =T (ax)
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for all x € X and all o € R. It has also the structure of a normed space by the norm
in (3.1). Therefore a topology and the various notions of convergence in B(X; Y)
are defined in terms of such a norm. One also verifies that the operations

+:B(X;Y)x B(X;Y) > B(X;Y), o :Rx B(X;Y)— B(X;Y)

are continuous with respect to the corresponding product topology. Therefore
B(X; Y) is atopological vector space by the topology generated by the normin (3.1).
The next proposition gives a sufficient condition for the normed space 5(X; Y) to
be a Banach space.

Proposition 3.2 Let {Y; | - ||y} be a Banach space. Then B(X; Y) endowed with the
norm (3.1) is also a Banach space.

Proof Let {T,} be a Cauchy sequence in B(X; Y), i.e., for any fixed ¢ > 0, there
exist an index n. such that, ||T,, — T,,|| < e for all n, m > n.. For each fixed x € X,
the sequence {7, (x)} is a Cauchy sequence in Y. Indeed

T2 (x) = T () lly < 1T — Tl x| x-

Since {Y; || - ||y} is complete {7, (x)} has a limit in ¥ which is denoted by T (x).
Forevery x € X and alln > n,

I7:(x) = Ty = Hm [T, (x) = Tu (O lly = ellxllx.
The map T : X — Y so constructed is linear. It is also bounded since

ITI = sup Lm||T,(x)lly < 7.1l +e.

llxllx=1

This implies that T € B(X;Y) and that {T,} converges to T in the norm of
B(X;Y).Indeed

T, — Tl = sup |T,(x) =Ty <e  for n>n.. n

lxlix=1

If the target space {Y; || - ||y} is the set of the real numbers, endowed with the
Euclidean norm, then 7 is said to be a functional. The space B(X; R) of all the
bounded linear functionals in X, is denoted by X* and is called the dual space to X.

Corollary 3.1 The dual X* of a normed space {X; || - ||}, endowed with the norm
(3.1) is a Banach space.
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4 Examples of Maps and Functionals

Let E be a bounded open set in RY and let dx denote the Lebesgue measure in R,
Given a real valued function K (-, -), defined and measurable in the product space
E x E, set formally

T(f)(x) Z/EK(x,y)f(y)dy- 4.1

IfK(., ) € LI1(E x E) forsome 1 < g < oo then (4.1) defines a bounded linear
map T : LP(E) — L?(E), where p and g are conjugate. A formal example of (4.1)
is the Riesz potential

riHw = [ oy 42)

whose kernel satisfies (Proposition 21.1 of Chap.9)

sup / Keroyldx =5 (& Nry p(E)Y) (4.3)
E

yeE

where ky is the volume of the unit ball in R". Therefore the Riesz potential can
be regarded as a bounded linear map from L'(E) into L'(E) or from L*(E) into
L*®(E).

Denote by C'([0, 1]) the space of all continuously differentiable functions in
[0, 1] with the topology inherited from the sup-norm on C[0, 1]. The differentiation
map

T(f)=f":C'(0,1]) — C([0, 1])
is linear and not bounded. Let C[0, 1] be equipped with the sup-norm. The map
t
= [ feds. rero
0

from C[O0, 1] into itself, is linear, continuous but not onto.

4.1 Functionals

The dual of RN equipped with its Euclidean norm is isometrically isomorphic to R",
that is, RV* = R, up to an isomorphism. By the Riesz representation theorem, the
dual of L?(E) for 1 < p < oo is isometrically isomorphic to L?(E) where p and g
are conjugate, that is, LP(E)* = L?(E), up to an isomorphism. Similarly £}, = ¢,.
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4.2 Linear Functionals on C(E)

Let E C RY be bounded and open. For a fixed x, € E set

T(f)= f(x,) forall fe C(E). 4.4)
This is called the evaluation map at x, and it identifies a bounded linear functional
T e C(E)*, withnorm || T|| = 1. Let now u be a o-finite Borel measure in RV and
set
T(f) = / fdu  forall f e C(E). 4.5)
E

This identifies a functional T € C (E)*, with norm ||T| = wp(E). It will be
shown in § 2—6 of Chap. 8, that, in a sense to be made precise, these are essentially
all the bounded linear functionals on C(E). Also the evaluation map (4.4) can be
represented as in (4.5) if p is the Dirac mass J,, .

4.3 Linear Functionals on C*(E) Jor Some o € (0, 1)

Since C*“(E) C C(E) one has the inclusion C(E)* C C®(E)*. The inclusion is in
general strict. Take for example £ = (—1, 1) and consider the map

fx)

x|>e X

C°[-1,1] 3 f — lim

E—>

dx. (4.6)

One verifies that this defines a bounded, l_inear functional in C*[—1, 1] which
cannot be extended to be an element of C(E)*. Precisely for all v > 0 there is
f e C(E)suchthat || flleo =1and T(f) > 7.

5 Kernels of Maps and Functionals

Let T be a map from {X; || - ||x} into {Y; || - ||y}. The kernel of T is
ker{T} = {x € X | T(x) = Oy}.

If T is linear ker{T'} is a linear subspace of X.If T € B(X; Y) and {X; | - ||x} is
a Banach space, then ker{T'} is a closed subspace of X.

LetT : {X; |- ||} — R be alinear functional. It is not assumed that T is bounded,
nor that {X; || - ||} is a Banach space. The mere linearity of T provides information
on the structure of X in terms of the kernel of T'.


http://dx.doi.org/10.1007/978-1-4939-4005-9_8

322 7 Banach Spaces

Proposition 5.1 Let X, be a closed subspace of X such that the quotient space
X/ X, is 1-dimensional. Then, there exists a nontrivial, bounded, linear functional
T : X — R such that X, = ker{T'}.

Conversely, let T : X — R be a not identically zero linear functional. Then the
quotient space X/ ker{T} is 1-dimensional.

Proof To prove the first statement choose x € X — X, such that dist{x; X,} > 0 and
write X — X, = [J{\x|\ € R}. Every element y € X can be written as y = x, + Ax
for some x, € X, and some A € R. Then set T (y) = A.

To establish the converse statement fix x € X —ker{T'}. Such a choice is possible
since 7" # 0. To show that X = span{x; X,}, pick any element y € X and compute

T T
T(y _ ﬂx) — 7 - LD 7 =0,
T(x) T(x)
Therefore )
y— Y x € ker{T}.
T(x)
Thus y is a linear combination of x and an element of ker{T'}. [ ]
Corollary 5.1 Let {X; || - ||} be a normed space. For any nonzero, linear functional
T : X — R, the normed space {X; || - ||} can be written as the direct sum of ker{T }

and the 1-dimensional space spanned by an element in X — ker{T}.

Corollary 5.2 Let T be a not identically zero linear functional on a normed space
{X; |l - I}. Then T is continuous if and only if ker{T} is not dense in X. As a conse-
quence T is continuous if and only if ker{T'} is nowhere dense in X.

Corollary 5.3 Let T be anotidentically zero, bounded, linear functional in anormed
space {X; || - ||}. Then for every x € X — ker{T}

|7 (x|

1T = g
ist{x; ker{T}}

6 Equibounded Families of Linear Maps

If {X; | - ||} is a Banach space, it is of second category. In such a case, the uniform
boundedness principle can be applied to families of bounded linear maps in B(X; )
in the following form.

Proposition 6.1 Ler T be a family of bounded linear maps from a Banach space
{X; |l - Ix} into a normed space {Y; || - ||ly}. Assume that the elements of T are
pointwise equibounded in X, i.e., for every x € X, there exists a positive number
F(x), such that
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IT)|y < F(x) forall TeT.

Then, the elements of T are uniformly equibounded in B(X; Y), i.e., there exists
a positive number M, such that

ITx)|ly <Mlx|lx forall T €T andall x € X.

Proof The functions ||T(x)|ly : X — R satisfy the assumptions of the Banach—
Steinhaus theorem. Therefore there exists a positive F' and a ball B.(x,) C X, of
radius ¢ and centered at some x, € X, such that

ITy)|ly <F forall T €7 andall ye B.(x,).

Given any nonzero x € X, the element
n €
Yy=Xo+ —X
2|lxllx

belongs to B.(x,). Therefore

F+ T x)lly 4F
1Ty < anxnx < ?”x”x

foral T € 7. [

Corollary 6.1 Let {X; | - ||} be a Banach space. Then a pointwise bounded family
of elements in X* is equibounded in X.

6.1 Another Proof of Proposition 6.1

The proposition can be proved without appealing to category arguments. It suffices
to establish that the elements of 7 are equiuniformly bounded in some open ball
B.(x,) C X. The proof proceeds by contradiction, assuming that such a ball does
not exists [119].

Fix any such ball Bi(x,). There exists x; € Bj(x,) and Ty € 7 such that
IT1(x1)]ly > 1. By continuity, there exists a ball B, (x;) C X such that |71 (x)]y >
1 for all x € B, (x;). By taking ¢; sufficiently small, we may insure that,

B.,(x;) C B-(x,) and & < 1.
There exists x, € B.,(x) and T, € 7, such that | T>(x;)|ly > 2. By continuity,

there exists a ball B.,(x2) C X such that |[T2(x)|ly > 2 for all x € B.,(xz). By
taking e, sufficiently small, we may ensure that
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B.,(x;) C B-,(x;) and & < 1.

Proceeding in this fashion we construct a sequence {x,} of elements of X, a
countable family of balls B, (x,), and a sequence {7} of elements of 7, such that

ésnﬂ(xn-&-l) C Bsn (xn) En < 1

n

and
”Tn(x)”Y >n forall x € Bsn (xn)~

The sequence {x,} is a Cauchy sequence and its limit x must belong to the closure

of all B;, (x,,). Therefore || T, (x)|ly > nforalln e N. This contradicts the assumption
that the maps in 7 are pointwise equibounded. ]

7 Contraction Mappings

A map T from a normed space {X; || - ||} into itself is a contraction if there exists
t € (0, 1) such that

IT) =TI <tllx—yll forall x,yeX.

Theorem 7.1 ([Banach [13]) Let T be a contraction form a Banach space {X; || - ||}
into itself. Then T has a unique fixed point, i.e., there exists a unique x, € X such
that T (x,) = x,.

Proof Starting from an arbitrary x; € X, define the sequence x,,+; = T (x,). Then
17 (ept1) = T )|l < 1" llx2 — x1 |-

Equivalently
1T (o) = 2l < " lvy — 21l

Therefore, the sequences {x,} and {7 (x,)} are both Cauchy sequences. If x, is
the limit of {x,}, by continuity

17 (xo) — Xoll = im |7 (x,) — x|l = 0.
Thus T (x,) = x,. If x were another fixed point
17 (%) = Tx)ll < tllx —xoll =t T (%) = T(xo)ll.

Thus x = x,. [
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Remark 7.1 The theorem continues to hold in a complete metric space with the
proper variants.

7.1 Applications to Some Fredholm Integral Equations

Let E be an open set in RY and consider formally the integral equation [49]

£ =/El<<x,y>f<y)dy +h(x). (7.1)

Assume the kernel K (x, y) satisfies (4.3) for some given constant . Given a
function h € L'(E) one seeks a function f € L'(E) satisfying (7.1) fora.e. x € E.

Proposition 7.1 Assume the constant ~ in (4.3) is less than 1. Then the integral
equation (7.1) has a unique solution.

Proof The solution would be the unique fixed point of
T = [ KGonfoxy+h
E

provided T : L'(E) — L'(E) is a contraction. For f,g € L'(E)
IT7(f =l =1 f —glh- u

Remark 7.2 In the case of the Riesz kernel in (4.2), the assumption is satisfied if
u(E) is sufficiently small.

Remark 7.3 1If the kernel K (x, y) is as in (4.2) one gives a function h € L*°(E) and
seeks a function f € L*°(FE) satisfying (7.1). The integral equation (7.1) could be
setin L2(E), provided K € L?*(E x E). A more complete theory is in [34, 108, 162]
Chapter I'V.

8 The Open Mapping Theorem

A map T from a topological space {X; U/} into a topological space {Y; V} is called
open if it maps open sets of I/ into open sets of V. If T is one-to-one and open, 7 ~!
is continuous. An open map 7 : X — Y which is continuous, one-to-one, and onto,
is a homeomorphism between {X; i/} and {Y; V}.

The next theorem called the Open Mapping Theorem states that continuous linear
maps between Banach spaces are open mappings.
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Theorem 8.1 (Open Mapping Theorem) A bounded linear map T from a Banach
space {X; || - ||x} onto a Banach space {Y; || - ||y} is an open mapping. If T is also
one-to-one, it is a homeomorphism between {X; || - ||x} and {Y; || - |Iv}.

Remark 8.1 The requirement that 7" be linear cannot be removed. Let 7' (x) =
e*cosx : R — R, where R is endowed with the Euclidean norm. Then 7 is contin-
uous but not open, since the image of (—oo, 0) is not open.

Let B, denote the open ball in X of radius p and centered at the origin of X.
Denote also by B. the open ball in Y of radius € and centered at the origin of Y.

Lemma 8.1 T (B)) contains a ball B. for some € > 0.

Proof Since T is linear and onto
X = UnBl/2 and Y = Ul’lT(Bl/z).

Since {Y; || - |ly} is of second category, T (B),2) is not nowhere dense and its
closure contains an open ball 3,.(y) in Y centered at some y. The inclusions

T(Bij) —y CT(Bijp2) —T(Byyp) C2T(By2) CT(By)
imply that By, C T (B;). The linearity of 7 also implies
Boej C T(Bl/zn) forall n € N. 8.1

We next show that B. C T'(Bj). Fix y € B.. Since y € T(B),;) there exist
X] € B]/2 such that
ly = TxDlly < 3e.

In particular the element y — T'(x;) belongs to B. ». Therefore, by (8.1) forn = 2,
there exist x, € By/4 such that

ly = Tx) = T(x)lly < e

Proceeding in this fashion we find a sequence {x,} of elements of X such that
Xn € B1/2u and

1 1
S, = g
Hy J; ) y = ¢

Since ||x,|x < 27", the series > x, is absolutely convergent and identifies an
element x = >_ x, in the ball B;. Since T is linear and continuous

Tx) =T (X x)=2T) =y

Thus y € T(By). Since y is an arbitrary element of 3. this implies that B. C
T(By). n
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Proof (of the Open Mapping Theorem) Let O C X be open. To establish that 7 (O)
is open in Y, for every fixed £ € O and n = T (£) we exhibit a ball .(n) contained
in 7(0). Since O is open there exists an open ball B, () C O. Then by Lemma 8.1,
T (B,(£)) contains a ball B.(n). ]

8.1 Some Applications

The open mapping theorem may be applied to finding conditions for two different
norms on the same vector space, to generate the same topology.

Proposition 8.1 Let || - ||| and || - ||2 be two norms on the same vector space X, by
which {X; || - |1} and {X; || - ||2} are both Banach spaces. Assume that there exists a
positive constant Cy such that

lxll> = Cillxllh forall x € X. (8.2)

Then, there exists a positive constant C, such that
x|l < Chllxlla forall x € X. 8.3)
Proof The identity map T (x) = x, from {X; || - |1} onto {X; || - ||2} is linear and one-

to-one. By (8.2) is also continuous. Therefore it is a homeomorphism. In particular
the inverse 7! is linear and continuous, and hence bounded. [

8.2 The Closed Graph Theorem

Let T be a linear map from a Banach space {X; |- || x} into a Banach space {Y; |||y}
The graph Gr of T is a subset of X x Y defined by

Gr =Ul(x. T) | x € X}
The closure of Gr is meant in the product topology on X x Y. In particular the
graph Gr is closed if and only if whenever {x,} is a Cauchy sequence in {X; || - || x}
and {7 (x,)} is a Cauchy sequence in {Y; || - ||y}, then

lim 7T (x,) = T (limx,). (8.4)

This would hold true if T were continuous. The next theorem, called Closed
Graph theorem states the converse, i.e., (8.4) implies that 7" is continuous.
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Theorem 8.2 (Closed Graph Theorem) Let T be a linear map from a Banach space
{X; |l - lIx} into a Banach space {Y; || - ||y} If Gr is closed, then T is continuous.

Proof On X introduce a new norm || x|| = ||x|lx 4+ [|7(x)]ly. One verifies this is
anorm on X and if Gy is closed, {X; || - ||} is complete. Therefore if G is closed,
{X; |l - I} is a Banach space. Since ||x||x < ||x||, by Proposition 8.1 there exists a
positive constant C such that

xllx + 1Ty < Clixllx forall x € X.

This implies that | T (x)|ly < C||x|/x. Thus T is bounded and hence continuous.
m

Remark 8.2 The assumption that both {X; || - || x} and {Y; || - ||y} be Banach spaces is
essential for the Closed Graph theorem to hold. Indeed, without such a completeness
requirement, there is no relationship between the continuity of a linear map T :
X — Y and the closedness of its graph Gy, as illustrated by the following two
counterexamples.

Let C[0, 1] be endowed with the sup-norm. Let also C'[0,1] C CJ0, 1] be
equipped with the topology inherited from the norm-topology of C[0, 1]. The map
T = % from C'[0, 1] into C[O0, 1], is linear, has closed graph, but is discontinuous.

Regard C[0, 1] as a topological subspace of L2[0, 1]. The identity map from

C[0, 1]into L?[0, 1] is linear but its graph is not closed.

9 The Hahn-Banach Theorem

Let X be a linear vector space over the reals. A sub-linear, homogeneous, real-valued
map from X into R, is a function p : X — R, satisfying

px+y) < p(x)+ pQy) forall x,y € X
p(Ax) = Ap(x) forall x € X andall A > 0.

The Dominated Extension Theorem states that a real-valued, linear functional 7,
defined on a linear vector subspace X, of X, and dominated by a sub-linear map p,
can be extended into a linear map 7 : X — R, in such a way that the extended map
is dominated by p in the whole X.

While the main applications of this extension procedure are in Banach spaces, it is
worth noting that such an extension is algebraic in nature and topology-independent.
In particular while X is required to have a vector structure, it is not required to be a
topological vector space. Likewise no topological assumptions, such as continuity,
are placed on the sub-linear map p nor on the linear functional 7, defined on X,,.
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Theorem 9.1 (Hahn—Banach [60, 11]) Let X be a real vector space and let p :
X — R be sub-linear and homogeneous. Then, every linear functional T, : X, — R
defined on a subspace X, of X and satisfying

T,(x) < p(x) forall x € X,
admits a linear extension T : X — R such that
T(x) < px) forall x e X
Proof If X, # X choose n € X — X, and let X,, be the linear span of X, and 7.

First we extend T;, to a linear functional T;, defined in X, coinciding with T, on X,
and dominated by p on X,,. If T, is such an extension, then by linearity

T,(x + An) = T,(x) + AT, (n)

forall A € Rand all x € X,,. Therefore, to construct 7;, it suffices to specify its value
at 7. Since T, is dominated by the sub-linear map p on X,

T,(x)+ T, =T,(x+y) < px+y) <px—n+ply+mn

for all x, y € X,. Therefore

sup{T,(x) — p(x —m} = yig {p(&y+m —T,(»}

xeX,

Define T;,(n) = o where « is any number satisfying

sup {T,(x) = px =m} = a < inf {p(y + ) = To(»)}- ©.1)

xeX,

By construction 7;, : X,, — R is linear and it coincides with T, on X,. It remains
to show that such an extended functional is dominated by p in X, that is

T,(x +An) = To(x) + da < p(x + An)

forall x € X, and all A € R. If A > 0, by the upper inequality in (9.1)

Ao+ T,(x) = A[a T, (%) ]

AP (G+n) -1 (5)+7.(5) ] = pec+ 2.

If A < 0 the same conclusion holds by using the lower inequality in (9.1).
If X, # X, the construction can be repeated by extending 7, to a larger subspace
of X. The extension of 7, to the whole X can now be concluded by induction.



330 7 Banach Spaces

Introduce the set £ of all the dominated extensions of 7,, i.e., the set of pairs
{T;); X,)} where T, is a linear functional defined on X,, such that 7, (x) < p(x) for
all x € X, and T;)(x) = T,(x) for all x € X,. On the set £ introduce an ordering
relation by stipulating that

{Te; X¢} < {T,; X)) ifand only if X, C X, and T;, = T on X,.

One verifies that such a relation is a partial ordering on &.

Every linearly ordered subset £ C & has an upper bound. Indeed, denoting by
{T,; X,} the elements of &', setting X' = |J X, and T’ = T, on X,,, provides an
upper bound for £’. It follows by Zorn’s lemma that £ has a maximal element {7'; X}.
For such a maximal element, X = X. Indeed otherwise X — X would be not empty
and the extension process could be repeated, contradicting the maximality of {T; X}.

]
10 Some Consequences of the Hahn—-Banach Theorem

The main applications of the Hahn—Banach theorem occur in normed spaces { X; ||- ||}
and for a suitable choice of the dominating sub-linear function p. For example p
could be a norm or a semi-norm in X. If X,, is a subspace of {X; || - ||}, let {X,; |||}

denote the corresponding normed space and let X be its dual. Typically, given
T, € X} dominated by some sub-linear function p, one seeks to extend it to an
element 7 € X*.

Proposition 10.1 Lez {X; || - ||} be a normed space and let X, be a subspace of X.
Every T, € X} admits an extension T € X* such that |T || = ||T, .

Proof Apply the Hahn—Banach theorem with p(x) = || 7, ||x||. This gives an exten-
sion T defined in X and satisfying

Tl < [ Tollllx]l forall x € X.

Therefore ||T|| < ||T,]||. On the other hand ||T|| > ||7,]|, since T is an extension
of T,. [

Proposition 10.2 Letr {X; || - ||} be a normed space. For every x, € X, and x, # O,
there exists T € X* such that |T| = 1 and T (x,) = ||x,]|-

Proof Having fixed x, € X let X, = {\x,|\ € R} be the span of x,,. On X, consider
the functional T,(\x,) = Allx,|| and as p take the norm || - ||. By the Hahn—Banach
theorem T, can be extended into a linear functional 7 defined in the whole X and
satisfying

T(x) <|x| forall x e X and T(\x,) = Allx,| forall A € R.
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The first implies || 7| < 1. The second || T|| = 1. ]

Corollary 10.1 Ler {X; | - ||} be a normed space. Then X* separates the points
of X, i.e., for any pair x,y of distinct points of X, there exists T € X* such that
T(x)#T(y).

Proof Apply Proposition 10.2 to the element x — y. ]

Corollary 10.2 Let {X; || - ||} be a normed space. Then, for every x € X

|7 (x)]
xll= sup = sup |T(x)|
rex=r20 Tl TeX*|T|=1
Proposition 10.3 Ler {X; || - ||} be a normed space and let X, be a linear subspace

of X. Assume that there exists an element n € X — X, that has positive distance from
X,, ie.,

inf |x —n|l = >0.

xeX,

There exists T € X* such that
ITN<1 Tm=6 and T(x) =0 forall x € X,.

Proof Let X, be the span of X, and n. On X, define the linear functional 7;,(An+x) =
A for all x € X, and all A € R. From the definition of § for A # 0 and x € X,

X
2 = Al fn+ 2| = 1w+ x11.
Therefore, denoting by y = An + x the generic element of X,

T,(y) < |yl forall y e X,.

By the Hahn—-Banach theorem, 7), has an extension 7" defined in the whole X and
satisfying T'(x) < ||x|| for all x € X. Therefore ||T| < 1. Moreover T (x) = 0 for
allx € X, and T (n) = 0. [ ]

Remark 10.1 The assumptions of Proposition 10.3 are verified if X, is a proper,
closed linear subspace of X.

Corollary 10.3 Let {X; || - ||} be a normed space and let X, be a linear subspace
of X. If X, is not dense in X there exists a nonzero functional T € X* such that
T(x)=0forall x € X,.

Proposition 10.4 Let {X; || - ||} be a normed space. Then if X* is separable also
{(X; || - I} is separable.
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Proof Let {T,} be a sequence dense in X*. For each 7, choose x,, € X such that
lx |l = 1 and |T,,(x,)| > %H T,||. Let now X, be the set of all finite linear combina-
tions of elements of {x,} with rational coefficients. The set X, is countable and we
claim it is dense in X. If not, the closure }_(0 is a linear, closed, proper subspace of
X. By Corollary 10.3, there exists a nonzero functional 7 € X* vanishing on X,.
Since {7, } is dense in X*, there exists a subsequence {7}, } convergent to 7. For such
a sequence
IT =T, Il = (T = T,,)Cea )| = 31T, .

Thus {7,;} — 0, contradicting that T is nonzero. ]

Remark 10.2 The converse of Proposition 10.4 is in general false, i.e., X separable
does not imply that X* is separable. As an example consider L'(E) where E is an
open set in RY with the Lebesgue measure. By the Riesz representation theorem,
LY(E)* = L*(E), up to an isometric isomorphism. However L!(E) is separable
and L*°(E) is not.

10.1 Tangent Planes

Let {X; || - ||} be a normed space. For a fixed T € X* and o € R, set
[T=al={xeX|Tkx)=a}

and introduce analogously the sets [T > a] and [T < «]. In analogy with linear
functionals in Euclidean spaces, [T = «] is called an hyperplane in X, and divides
X into two disjoint half-spaces [T > «] and [T < af.

Let now C be a setin X and let x, € C. An hyperplane [T = o] is tangent to C
atx,,ifx, € [T = «],and T (x) < T(x,) forall x € C.

With this terminology, Proposition 10.2 can be rephrased in the following geo-
metric form.

Proposition 10.5 The unit ball of X has a tangent plane at any one of its boundary
points.

11 Separating Convex Subsets of a Hausdorff, Topological
Vector Space {X; U}

As indicated earlier, the Hahn—Banach theorem, holds in linear vector spaces, with no
particular topological structure, and hinges upon specifying a suitable, dominating,
homogeneous, sub-linear function p : X — R. For topological vector spaces { X; U/},
the Minkowski functional pc(-) defined below, is one such a function.
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Let {X; U} be a Hausdorff, linear, topological vector space and let C be a non-
empty, convex, open neighborhood of the origin of X. Then for every x € X there
exists some positive number ¢ such that x € tC. Define

pic(x) =inf{t > 0 | x € tC}.

If C is the unit ball of a normed space {X; | - ||}, then up, (x) = ||x|| forallx € X.
An element x is in C if and only if puc(x) < 1. If C is unbounded, then pc(x)
vanishes for x = 0 and for infinitely many nonzero elements of X. It follows from
the definition that Auc (x) = pc(Ax), for all A > 0.

Proposition 11.1 The map x — pc(x) is sub-linear in X.

Proof Fix x,y € X and let ¢ and s be positive numbers such that uc(x) < t and
e (y) < s. For such choices, t~'x € C and s~'y € C. Then, since C is convex

1
(x+y)=—t71x+ silyeC.

s+t s+t s+t
Therefore pu(x + y) < s +1¢. ]

By Corollary 10.1 the collection X* of the bounded linear functionals on a normed
space {X; || - ||} separates points. The next more general proposition asserts that any
two nonempty, convex subsets of a topological vector space {X; U/} can be separated
by a nontrivial, linear, continuous functional 7', provided one of them is open.

Proposition 11.2 Ler Cy and C, be two disjoint, convex subsets of a Hausdorff,
linear, topological vector space {X; U}, and assume C| is open. There exists a non-
trivial, linear, continuous functional T on X, and o € R such that

T(x) <a<T(y) forall xe Cy andally € Cj. (11.1)
Proof Fix some x; € Cy and x, € C; and set
C=C—Cr+x, where x, = x, — xj.

The set C is open, convex and it contains the origin. Since C; and C; are disjoint,
X, ¢ C. On the one-dimensional span of x,, define a bounded linear functional by
T,(Ax,) = A. Such a functional is pointwise bounded above, on the span of x,, by
the Minkowski functional pc relative to the set C. Indeed, for A > 0

T,(Ax,) =A< )\,L"C(xo) = ,U'C(Axo)~

If A < 0then 7,(A\x,) = A < pc(A\x,). By the Hahn—Banach theorem, there
exists a linear functional T on X that coincides with 7, on the span of x, and such
that T (x) < pc(x) forall x € X. Using the definition of y¢ (-) and the linearity of T,
one verifies that T(x) < 1 forall x € C and T (x) > —1 for all x € —C. Therefore
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|T(x)| < 1forallx € CN(—C). Thus T is bounded in a neighborhood of the origin
and hence is continuous (Proposition 11.1 of Chap.2). For x € C; and y € C, the
element x — y + x, is in C. Therefore pc(x — y + x,) < 1 since C is open. Using
that T'(x,) = 1, compute

Tx—y+x)=Tx) =T +1=<pcx—y+x) <l

Thus T (x) < T (y). The existence of « satisfying (11.1) follows since 7 (C;) and
T (C,) are convex subsets of R and 7' (C) is open. [ ]

Remark 11.1 The topological structure of C; and C is essential for the separation
statement of Proposition 11.2 to hold, as shown by the following counterexample.

Let C; and C, be the two convex, subsets of L2[0, 1] defined by

Cy = {f € C[0, 1] nonnegative and vanishing only at ¢ = 0}
C, = {f € C[0, 1] nonnegative and vanishing only at ¢ = 1}.

One verifies that C; — C, is dense in L?[0, 1] and hence C, and C, cannot be separated
by any bounded linear functional.

11.1 Separation in Locally Convex, Hausdorff, Topological
Vector Spaces { X ; U}

A linear functional 7 on a topological vector space {X; U} strictly separates two
disjoint, convex sets C; and C, if there exist real numbers o < ( such that

T(x) <a<pB<T(y) forall x e C; andally e C,. (11.2)

The previous proposition gives sufficient conditions of separations but not strict
separation. In general strict separation under the assumptions of Proposition 11.2 is
not expected to hold. For example in R2, the two sets [x < 0] and [x > 0] are convex
and disjoint, and one of them is open. Yet they are not strictly separated.

If the topology of {X; U/} is locally convex, the next proposition gives some more
stringent conditions on C, for strict separation to occur.

Proposition 11.3 Ler C, and C, be two nonempty, disjoint, convex subsets of a
locally convex, Hausdorff, topological vector space {X; U}. Assume that C, is com-
pact and C, is closed. There exists a bounded linear functional T on X and real
numbers o < (3 such that (11.2) holds.


http://dx.doi.org/10.1007/978-1-4939-4005-9_2

11 Separating Convex Subsets of a Hausdorff, Topological Vector Space {X; U/} 335

Proof We claim that there exists a convex, open neighborhood O of the origin such
that C;4Q is open, convex and does not intersect C,. Whence the claim is established,
Proposition 11.3 follows from Proposition 11.2 applied to the pair of sets C; + O
and Cz.

To establish the claim, observe that, since C; is closed and C; N C, = @, for every
x € C there exists a convex neighborhood of the origin O, such that x + O, does
not intersect C. By possibly replacing O, with O, N (—O,) we may assume that
O, is symmetric. By the continuity of the sum and product in {X; U/} the sets %Ox
are open. The collection {x + %Ox} for x € C) is an open covering of C; from which
we extract a finite one

{x1 + %Oxn R %(’)X”}.

Setting

the set C; + O is open, convex and does not intersect C», since

Ci+0cC U (xj + 105, +0) U (x; + 30x, + 10y

j=1 j=1

and none of the sets of this union intersects Cs. [

Corollary 11.1 Let C be a closed, convex subset of a locally convex, Hausdorff,
topological vector space {X; U}. Then C is the intersection of all the closed half-
spaces [T > «] that contain C.

Corollary 11.2 The collection of bounded, linear functionals on a locally convex,
Hausdorff, topological vector space {X; U}, separates the points of X.

12 Weak Topologies

Let {X; | - ||} be a normed space and let X* be its dual. The topology generated on
X by its norm ||| is called the strong topology of X.

Since any T € X* is a continuous linear map from X into R, the inverse image
of any open set in R is open in the strong topology of X. Set

[ the collection of the finite intersections of the inverse images
T-1(O) where T € X* and O are open subsets of R

The collection B is a base for a topology W on X called the weak topology of
{X; || - II}. The collection B satisfies the requirements (i)—(ii) of § 4 of Chap. 2, to be
a base for a topology. The corresponding topology is constructed by the procedure
of Proposition 4.1 of Chap. 2.
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The weak topology W on X is the weakest topology for which all the functionals
T € X* are continuous. The procedure is similar to the construction of a product
topology in the Cartesian product of topological spaces, as the weakest topology for
which all the projections are continuous (§ 4.1 of Chap. 2).

One verifies that the operations of sum 4+ : X x X — X and multiplication
by scalars ¢ : R x X — X, are continuous with respect to such a topology (see
Proposition 12.1c of the Complements). Thus {X; W} is a topological vector space.

The topology of WV is translation invariant and is determined by a local base at the
origin of X. A neighborhood of the origin, in the topology W, contains an element
of B of the form

n

O= T '(~aj,a;), where T; € X", (12.1)

j=1
for some finite n and «; > 0. Equivalently
O:{xeX||Tj(x)|<aj for j =1,...,n} (12.2)

The collection of open sets of the form (12.1) forms a local base B, at the origin,
for the weak topology W. These open sets are convex, since T; are linear. Thus W
is a locally convex topology. A sequence {x,} of elements of X converges weakly
to 0 if and only if every weak neighborhood of the origin contains all but finitely
many elements of {x,}. From (12.2) it follows that {x, } converges weakly to 0 if and
only if {T (x,)} — Oforall T € X*. More generally, {x,} converges weakly to some
X, € X ifand only if {T (x,)} — T (x,),forall T € X*. Strong convergence implies
weak convergence, but the converse is false (see § 9 of Chap.6).

12.1 Weak Boundedness

The weak topology W contains, roughly speaking, fewer open sets than the strong
topology. The two topologies are markedly different also in terms of local bounded-
ness.

Aset E C X is weakly bounded if and only if for every O € B3, there exists some
positive number ¢, depending upon O, such that £ C rO.

In view of the structure (12.1)—(12.2) of the open sets of 5,, aset E C X is
bounded in the weak topology of X if and only if for every 7 € X*, there exists a
positive number 7 such that |7 (x)| < 7 forall x € E.

Proposition 12.1 Letr X be infinite dimensional. Then every weak neighborhood of
the origin, contains an infinite dimensional subspace X,,.

Proof Having fixed a weak neighborhood of the origin, we may assume is of the
form (12.1)—(12.2) and set
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n
X, = ) ker{T;}.
=1

This is a subspace of X and X, C O. To prove that X, is infinite dimensional,
consider the map F : X — R” defined by

Xo3x—> Fx)=(Tx),...,T,(x)) € R".

Such a map is linear, continuous and its kernel is X,. It is also a one-to-one map
between the quotient space X/ X, and R”. Thus dim{X} < n 4+ dim{X,}. ]

Corollary 12.1 Let X be infinite dimensional. Then every weak neighborhood of
the origin, is unbounded.

In particular a ball B, open in the strong topology of {X; || - |} cannot contain any
weak neighborhood of the origin.

Corollary 12.2 The weak topology of an infinite dimensional normed space does
not satisfy the first axiom of countability.

Proof Assume by contradiction that {0, } is a countable base for the weak topology
at the origin. By Proposition 12.1 and Corollary 12.1 one may pick

n
x, € () O; suchthat |x,| > n.
j=1

The sequence {x,} is not strongly bounded and hence not weakly bounded. Thus
there exists a weak neighborhood of the origin O such that AO does not contain {x,}
for all AR. On the other hand O, C O for some n, since {O, } is a base for the weak
topology at the origin. Therefore O contains all but finitely many elements of {x,}. m

Corollary 12.3 The weak topology of an infinite dimensional normed space is not
metrizable, i.e., there is no metric d(-, -) on X x X that generates its weak topology.

Proof 1f the weak topology of {X; || - ||} were metrizable, it would satisfy the first
axiom of countability. ]

12.2 Weakly and Strongly Closed Convex Sets

Sets that are closed in the weak topology are also closed in the strong topology. The
converse, while false in general, holds for convex sets.

Proposition 12.2 (Mazur [105]) Let E be a convex subset of a normed space
{X; |l - I}. Then, the weak closure of E coincides with its strong closure.
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Proof Denote by E,, and E, the closure of E in the weak and, respectively, strong
topology. Since W is weaker than the strong topology, E; C E,,. For the converse
inclusion it suffices to show that X — E; is a weakly open set. This in turn would follow
if every point x, € X — E admits a weakly open neighborhood not intersecting E;.

Having fixed x, € X — Es, consider the two disjoint, closed, convex sets x, and
E,. Since x, is compact, by Proposition 11.3, there exists 7 € X* and a € R, such
that

T(x,) <a<T(x) forall x € E;.

Therefore the half-space [T < ] is a weakly open neighborhood of x,, that does
not intersect Ej. u

Corollary 12.4 Let {X; || - ||} be a normed space. Then any weakly closed subspace
X, C X, is also strongly closed.

Corollary 12.5 Let {X; || - ||} be a normed space and let {x,} be a sequence of
elements of X converging weakly to some x € X. Then there exists a sequence {y,,}
of elements of X, such that each y,, is the convex combination of finitely many x,,
that is,

N N
Vi = Zlajx,,j where a; >0 and Zlajzl
j= j=

and {y,} — x strongly.

Proof Let c({x,}) be convex hull of {x,} and denote by c({x,}),, its weak closure.
By assumption the weak limit x belongs to c({x,}),,. The conclusion follows since
weak and strong closure coincide. ]

13 Reflexive Banach Spaces

Let {X; || - ||} be a normed space and let X* be its dual. The collection of all bounded
linear functionals f : X* — R is denoted by X** and is called the double dual of
the second dual of X. It is a Banach space by the norm

LA sup  f(T). (13.1)

IFIl = =
Texs120 1T Tex=|T)=1
Every element x € X identifies an element f, € X** by the formula

X*>T — f(T)=T(x). (13.2)

Let X.. denote the collection of all such functionals, that is

the collecti f all functionals f, € X**
X.. — [ e collection of all functionals f, ] (13.3)

of the form (13.2) as x ranges over X
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From Corollary 10.2 and (13.1) itfollows that || f, || = ||x||. Therefore the injection
map
Xo>x — fieX,CcX*™ (13.4)

is an isometric isomorphism between X and X,.. In general, not all the bounded
linear functionals f : X* — R are derived from the injection map (13.4); otherwise
said, the inclusion X,, C X™* is in general strict.

A Banach space {X; || - ||} is reflexive if X,, = X**, i.e., if all the bounded
linear functionals f € X** are derived from the injection map (13.4). In such a case
X = X up to the isometric isomorphism in (13.4). By the Riesz representation
theorem, the spaces L”(E) are reflexive for all 1 < p < oo. The spaces L' (E) and
L (E) are not reflexive since the dual of L®(E) is strictly larger than L' (E) (§ 9.2¢
of the Complements). Also the spaces £, are reflexive for all 1 < p < oo. The
spaces £; and £, are not reflexive.

Proposition 13.1 Ler X, be a closed, linear, proper subspace of a reflexive Banach
space {X; || - ||}. Then X, is reflexive.

Proof By Proposition 10.1, every x) € X can be regarded as the restriction to X,
of some x* € X*, such that [|x*||x- = ||x}[/x:. Now fix f, € X" and set

() = folx*|x,) forall x* e X*.

One verifies that this is a bounded linear functional in X™*. Since X is reflexive,
by the injection map (13.4), there exists x, € X such that ' = f, . To establish the
proposition, it suffices to show that x, € X,. If not, there exists 7 € X* such that
T(x) =0forall x € X, and T (x,) # 0. Therefore such a T, when restricted to X,
is the zero element of X*. Thus

0# T(xo) = fx,(T) = f'(T) = fo(Tlx,) = 0. "

Remark 13.1 The assumption that X, be closed is essential. Indeed L*°(E) for a
bounded, Lebesgue measurable set £ C RY, is a nonreflexive linear subspace of
LP(E)forall 1 < p < oo.

The following statements are a consequence of the definitions modulo isometric
isomorphisms.

Proposition 13.2 A reflexive normed space is weakly complete.

If{X; || - lIx}and {Y; || - Iy} are isometrically isomorphic Banach spaces, X is
reflexive if and only if Y is reflexive.

A Banach space {X; || - ||} is reflexive if and only if X* is reflexive.
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14 Weak Compactness

Let {X; || - ||} be a normed space and let X* be its dual. A subset E C X is weakly
closed if X — E is weakly open. The weak sequential closure of a set E C X need
not coincide with its weak closure (§ 12.3c of the Complements).
A set E C X is weakly bounded if and only if for every T € X*, there exists a
constant vz, such that
I T(x)] <r forall x € E. (14.1)

Proposition 14.1 Let {X; || - ||} be a normed space. A set E C X is weakly bounded
if and only if is strongly bounded.

Proof If E is strongly bounded, there exists a constant R such that ||x|| < R for all
x € E.Thenforall T € X*

ITCHI = IITllxll < ITIIR.

Thus E is weakly bounded. Assume now E is weakly bounded so that (14.1)
holds. Let f, be the injection map (13.4). Then, for each fixed T € X*, (14.1) takes
the form | f,(T)| < ~r for all x € E. The family {f,} for x € E is a collection
of bounded linear maps from the Banach space X* into R, which are pointwise
uniformly bounded in X*. Therefore, by Proposition 6.1 they are equiuniformly
bounded, i.e., there is a positive constant C such that |T(x)| < C||T| forallx € E
and all T € X*. Thus ||x|| < C forall x € E. m

Corollary 14.1 Let E be a weakly, countably compact subset of a normed space
{X; |l - I}. Then E is strongly bounded.

Proof Let O be a weakly open neighborhood of the origin. Then the collection
{nO},en is a countable, weakly open covering for E, since X = |JnO. There-
fore E C tO for some t > 0. Thus E is weakly bounded and hence strongly
bounded. |

14.1 Weak Sequential Compactness

Corollary 14.2 Let {X; || - ||} be a normed space and let {x,} be a sequence of
elements of X weakly convergent to some x € X. There exists a positive constant C
such that || x, || < C for all n. Moreover

lx]l < liminf ||x,|. (14.2)
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Therefore in a normed linear space, the norm || -|| : X — R is a weakly lower
semi-continuous function.'

Proof The uniform upper bound of |x,| follows from Proposition 14.1. For all
T € X*, by definition of weak limit

IT(x)| < liminf [T (x,)| < ||T'[| lim inf ||x, .

The conclusion now follows from Corollary 10.2. |

Proposition 14.2 Let {X; || - ||} be a reflexive Banach space. Then every bounded
sequence {x,} of elements of X contains a weakly convergent subsequence {x,}.>

Proof Let X, be the closed linear span of {x,}. Such a subspace is separable since the
finite linear combinations of elements of {x,} with rational coefficients is a countable
dense subset.

Since X, is reflexive, its double-dual X}*, being isometrically isomorphic to X,
is also separable. Then by Proposition 10.4, also X7 is separable.

Let {T,} be a countable, dense subset of X . The sequence {7 (x,)} is bounded in
R and we may extract a convergent subsequence {77 (x,,)}. The sequence {72(x,,)}
is bounded in R and we may extract a convergent subsequence {75 (x,,)}. Proceeding
in this fashion at the k" step we extract a subsequence {x,, } such that

{T;(x,,)} 1isconvergentforall j =1,2,...k.
The diagonal sequence {x,/} = {x,,} is such that {T;(x,)} is convergent for all
Jj € N. Since {7} is dense in X}, the sequences {7 (x,/)} are convergent for all
T € X}.Every T € X, can be regarded as the restriction to X, of some element of
X*. Therefore {T (x,/)} is convergent for all T € X*. In particular for all T € X*
there exists a7 € R, such that

Iim T (x,) = ar.

By the identification map (13.4), each x, identifies a functional f,, € X**.
Therefore the previous limit can be rewritten as

lim f, (T) = ar forall T € X™.
This process identifies an element &7 € X** by the formula

h(T) = lim f, (T) forall T € X*.

Compare with Proposition 10.1 of Chap. 6.
2Compare with Proposition 16.1 of Chap. 6.
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Since X is reflexive, there exists x € X such that h = f,. Now we claim that
{x,/} = x weakly in X. Indeed for any fixed T € X*

lim T (x,) = lim f, (T) = fo(T) = T(x). n

Corollary 14.3 Let{X; |- ||} be a reflexive Banach space. A subset C C X is weakly
sequentially compact if and only if is both weakly bounded and weakly sequentially
closed.

Proof Sequential compactness implies countable compactness (Proposition 5.2 of
Chap. 2). |

As an example consider the space L?(E) where E is a Lebesgue measurable subset
of RV and 1 < p < oo. By Proposition 14.2 and Corollary 14.2, the unit ball
{Ilfll, < 1} is weakly sequentially compact. However, the unit sphere {|| f ||, = 1}
is not weakly sequentially compact. For example, the unit sphere of L2[0, 27] is
bounded, but not weakly closed and therefore is not sequentially compact (§ 9.1 of
Chap. 6).

The unit ball of LP(E) for 1 < p < o0 is not sequentially compact in the strong
topology of L?(E), since it does not satisfy the necessary and sufficient conditions
for compactness given in § 19 of Chap. 6. Compare also with Proposition 2.2.

15 The Weak* Topology of X*

The dual X* of a normed space {X; || - ||} is a Banach space and as such can be
endowed with, the corresponding weak topology, that is, the weakest topology for
which all the elements of X** are continuous, with respect to the norm topology of
X*.

The weak* topology on X* is the weakest topology which renders continuous
all the functionals f, € X** of the form (13.4), that is, those that are in a natural
one-to-one correspondence with the elements of X. If {X; || - ||} is a reflexive Banach
space then X = X ™" up to an isometric isomorphism, and the weak topology of X*
coincides with its weak™ topology.

The collection WW* of weak™ open sets in X* is constructed starting from the base

B the collection of finite intersections of the inverse images
N f1(0) where x € X and O are open subsets of R
One verifies that the operations of sum and multiplication by scalars

+ X" x X — X" e:RxX*— X*

are continuous with respect to the topology of W*. Thus {X™*; WW*} is a topological
vector space. The topology of W* is translation invariant and it is determined by a
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local base at the origin of X*. A weak™ open neighborhood of the origin contains an
element of B* of the form

O* = f'(=a;,q)) (15.1)
j=1
for some finite n and o; > 0. Equivalently,

O*={T eX* | ITx))| <a; for j=1,...,n) (15.1)

Since these open sets are convex, WW* is a locally convex topology. A sequence
{T,} of elements of X* converges weakly* to O if and only if every weak™ open
neighborhood of the origin contains all but finitely many elements of {7,}. From
(15.1) it follows that {7,,} — O if and only if {7, (x)} — 0 for all x € X. More
generally, {T,,} — T, if and only if {T,,(x)} — T,(x), for all x € X. Weak conver-
gence implies weak™ convergence. The converse is false. Thus in general, the weak*
topology W* contains, roughly speaking, fewer open sets than those of the weak
topology generated by X**.

16 The Alaoglu Theorem

Theorem 16.1 (Alaoglu [2]) Let {X; || - ||} be a normed space and let X* be its dual.
The closed unit ball B* = {T € X*|||T| < 1} in X*, is weak* compact.

Proof If T € B*thenT (x) € [—|x]|, |lx||]forallx € X.Consider now the Cartesian
product

P= HX [ — lxll, llxcl]-

A point in P is a function f : X — R such that f(x) € [—|x]|, [[x|]] and P is
the collection of all such functions. The set B* is a subset of P and as such inherits
the product topology of P. On the other hand, as a subset of X* it also inherits the
weak™ topology of X*.

Lemma 16.1 These two topologies coincide on B*.

Proof Every weak* open neighborhood of a point 7, € X* contains an open set of
the form

0- T eX* | |T(x;)—T,(x;)| <6 forsome § > O]

for finitely many x;, j =1,...n.



344 7 Banach Spaces

Likewise, every neighborhood of a point 7, € P, open in the product topology
of P, contains an open set of the form

_[feP | |f(x;) = T,(x;)| <& forsome & >0
for finitely many x;, j =1,...n.

V

These collections of open sets form a base for the corresponding topologies. Since
* __ *
B*=PNX
ONB*=VYnNB*

These intersections form a base for the corresponding relative topologies inherited
by B*. Therefore, the weak™ topology and the relative product topology coincide on
B*. ]

Lemma 16.2 B* is closed in its relative product topology.

Proof Let f, be in the closure of B* in the relative product topology. Fix x, y € X
and «, 8 € R and consider the three points

X1=x xpx=y x3=ax+0y.
For € > 0, the sets
V.={feP |If(xj) = folxp)l <e for j=1,2,3]}
are open neighborhoods of f,. Since they intersect B*, there exists 7 € B* such that

[fo) =T <e |foy) =TI <e¢

and, since T is linear

| folax + By) — aT (x) — BT (y)| < €.

From this

| folax + By) — afo(x) = B < (1 +al 4+ |5De
for all € > 0. Thus f, is linear and it belongs to B*. |

Proof (of Theorem 16.1 concluded) Each [—||x]|, || x]|] as a bounded, closed interval
in R, equipped with its Euclidean topology, is compact. Therefore, by Tychonov’s
theorem P is compact in its product topology.

Then B*, as a closed subset of a compact space, is compact in its relative product
topology and hence in its relative weak™ topology. ]
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Corollary 16.1 Let{X; |||} be a reflexive Banach space. Then its unit ball is weakly
compact.

Corollary 16.2 Let {X; || - ||} be a reflexive Banach space. Then a subset of the unit
ball of X is weakly compact if and only if it is weakly closed.

Remark 16.1 The weak™ compactness of the unit ball B* of X*, does not imply
B* is compact in the norm topology of X*. As an example let X = L?(E). Then
L*(E) = L*(E)* = L*(E)*™ up to isometric isomorphisms. The unit ball of L?(E)*
is weak™ compact but not compact in the strong norm topology.

Remark 16.2 The weak™ compactness of the unit ball ||x|| < 1 of a normed space,
does not imply that the unit sphere ||x|| = 1 is weak™ compact. For example the unit
sphere of L?[0, 2] is bounded but not weak* closed and therefore it is not weak*
compact.

17 Hilbert Spaces

Let X be a vector space over R. A scalar or inner product on X over R is a function,

(-, ) : X x X — R, satisfying

®
)

(ii

(x,y)=(y,x)forallx,y e X

(x1 +x2,y) = (x1,y) + (x2, y) forall x;, x, y € X
(i) (Ax,y) = A{x,y)forallx,y € X andall A € R
@iv) (x,x) >Oforall x € X and

(v) (x,x) =0ifand only if x = ©.

A vector space X equipped with a scalar product (-, -) is called a pre-Hilbert space.
Set
(x,x) = lx])*. (17.1)

17.1 The Schwarz Inequality

Let X be a pre-Hilbert space for a scalar product (-, -). Then forall x, y € X

(. y) < Iyl (17.2)

and equality holds if and only if x = Ay for some A € R. Indeed for all x,y € X
and A e R

0 < lx = Ayl* = (x — Ay, x = Ay) = [Ix[|* — 2\ {x, ) + A*[|y[I*.

From this, 2\(x, y) < [lx[|> + A?||y||?. Inequality (17.2) is trivial if either y = @
or x = ©. Otherwise choose A = ||x||/|y]l-
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17.2 The Parallelogram Identity

Let X be a pre-Hilbert space for a scalar product (-, -). Then for all x, y € X
lx + 17 + llx = yII* = 2(x1” + 1Ly [1%). (17.3)
From the properties of a scalar product

x4+ yI* =[x +2¢x, ) + Iyl?
lx — ylI? = llxI> = 2(x, y) + Iy lI*

Adding these identities yields (17.3).

Using the properties (i)—(v) of a scalar product, and the Schwarz inequality (17.2),
one verifies that the function ||-|| : X — R, introduced in (17.1), defines a norm in
X. Therefore a pre-Hilbert space is a normed space {X; || - ||} by the norm in (17.1).

A Hilbert space is a pre-Hilbert space which is complete with respect to the topol-
ogy generated by the norm (17.1). Equivalently, a Hilbert space is a Banach space
whose norm is generated by an inner product (-, -). The N-dimensional Euclidean
spaces are Hilbert spaces for the Euclidean scalar product. Let { X, A, 11} be ameasure
space and let E € A. Then L?(E) is a Hilbert space for the scalar product

(f.g) = / fodu  forall f.ge LX(E).
E

In particular ¢, is a Hilbert space for the inner product
(a,b) = > a;b;, for a,b € ;.

We will denote by H a Hilbert space for the inner product (-, -).

18 Orthogonal Sets, Representations and Functionals

Two elements x, y € H are orthogonal if (x, y) = 0 and in such a case we write
x L y.In L?(0, 27) the two elements  — sin¢, cos ¢ are orthogonal.

An element x € H is said to be orthogonal to a set H, C H if x L y for all
y € H,, and in such a case we write x L H,.

Proposition 18.1 (Riesz [133]) Let H, be a closed, convex, proper subset of H.
Then for every x € H — H, there exists a unique x, € H,, such that

inf [lx —yll =[x, — x| (18.1)
YeH,
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Proof Let {y,} be a sequence in H, such that
def . .
6 = inf ||x — y| =lim ||y, — x]|. (18.2)
y€H,

Since H, is convex

Yn + Ym

> € H, forany two elements y,, v, € {y.}-.

Therefore by the parallelogram identity

Ve = Ymll> = 1 — X) + (x = y)lI?
=2llyn — x>+ 20ym — x> = llyn + ym — 2x]?

Y+ Ym H2
— X
2

=2l = I + 2y — 51 - 4|

< 2y = X7 + 2l ym — xII> — 45%.

Therefore {y, } is aCauchy sequence and, since H, is closed, it converges to some x, €
H, which satisfies (18.1). If x, and x, both satisfy (18.1), then by the parallelogram
identity

<0. [

et |
—_— =X
2

Let H, be a subset of H. The orthogonal complement H;- of H, is defined as the
collectionof all x € H,suchx L H,.

2 2 2
;= xolI™ = 2llx;, — x[I° + 2]lx, — x| —4‘

Proposition 18.2 Let H, be a closed, proper subspace of H. Then H = H, & H}.,
i.e., every x € H can be represented in a unique way as

xX=x,+mn forsome x, € H, and n € HOL. (18.3)
Proof If x € H, it sufficesto take x, = x and y = ®.If x € H — H, let x, be
the unique element claimed by Proposition 18.1 and let ¢ be defined as in (18.2). Set

now x = x, + n where n = x — x,. To prove that n L H,, fix y € H, and consider
the function

def
R>1— h(t) = In+oyl* = lInl* + 26y, m) + 2 llyI1*.
Such a function takes its minimum for r = 0. Indeed /(0) = 6> and

inf |n — ty||* = inf ||x — M2 > inf ||lx — y||> = 6°.
}IelRlln M }gRllx (xo + )l _ylgHullx M

Therefore h'(0) = 0, i.e., (n, y) =0 forall y € H,,.
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If the representation (18.3) were not unique there would exist x|, # x, and ' # 7
such that
x=x,+n x,eH, and 7 € H}. (18.3)
Then, by difference

X,—x,€H, n—-neH- ad x,—x,=n—n.

Thus x, — x| and n — n’ are perpendicular to themselves and therefore must both
be equal to ©. |

18.1 Bounded Linear Functionals on H

Every y € H identifies a bounded linear functional T, € H* by the formula
Ty(x) = (y, x) forall x € H. (18.4)

Moreover ||T,|| = [lyll. The next proposition asserts that these are the only
bounded, linear functionals on H.

Proposition 18.3 For every T € H* there exists a unique y € H, such that T can
be represented as in (18.4).

Proof The conclusion is trivial if 7 = 0. If T # 0 its kernel H, is a closed, proper
subspace of H. Select a nontrivial element 7 € H;- and observe that, for all x € H

T(mx—-TxmeH, ie, Tx)=Tmnx-+n, forsome 7, € H,.

By taking the inner product of both sides by 7

T(x) = (y,x) where y=T(n)”n$.

Since x € H is arbitrary, this implies also || 7| = || y|.
If y; and y, were to identify the same functional T, then (y; — y», x) = 0 for all
x € H. Thus ||y; — y2|| = 0. ]

Roughly speaking T is identified by the unique “direction” orthogonal to its kernel.
Compare with Proposition 5.1.
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19 Orthonormal Systems

A set S of elements of H is said to be orthogonal, if any two distinct elements x
and y of § are orthogonal. The set S is orthonormal if it is orthogonal and all its
elements have norm 1. In such a case S is called an orthonormal system. In RY
with its Euclidean norm, an orthonormal system is given by any n-tuple of mutually
orthogonal unit vectors. In L?(0, 27) an orthonormal system is given by

1 1 1 1
——, —Ccost, cos 2t, cos3t, ...
TN RN NG
(19.1)
1
sm t, sm 2t, sm 3t,
In ¢, an orthonormal system is given by,
e, ={1,0,0,...,0,,0,...}
e2 = {07 1507"‘70171707"'}
(19.2)

en =10,0,0,...,1,,0,...}

Lemma 19.1 Let S be an orthonormal system in H. Any two distinct elements x
and y in S are at mutual distance /2.

Proof For any x,y € S and x # y, compute
Ix = yI? = (x =y, x = y) = Ix|> = 2(x, y) + IylI*.

The conclusion follows since || x|| = [|y]| = 1. =

19.1 The Bessel Inequality

Proposition 19.1 Let H be a Hilbert space and let S be an orthonormal system in
H. Then for any n-tuple {uy, ..., u,} of elements of S°

z (w,x)> < |x|*> forall x € H. (19.3)

3 S need not be countable.
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Moreover, for any fixed x € H the inner product (u, x) vanishes except for at
most countably many u € S, and

> (u,x)? < |x|I*> forall x € H. (19.4)

uesS

Proof For any such n-tuple and any x € H

n

0= [ = Xt ow[” = v = (. upox — 3 (w )y

i= i=1 i=1
n

= [lxI* = 3 (w;, x)%

i=l1

This establishes (19.3). To prove (19.4), fix x € H and observe that for any m € N
the set

1
{u e S such that Ix]? < (u, x)* < 2—m||x||2]

om+1

contains at most finitely many elements. Therefore the collection of those u € S
such that (u, x) # 0 is countable and (19.4) holds. ]

19.2 Separable Hilbert Spaces
Proposition 19.2 Let H be a separable Hilbert space. Then any orthonormal system
S in H is countable.

Proof Let H, be a countable subset of H dense in H and let S be an orthonormal
system in H. For every u € S there exists x(u) € H, such that

2
o —x(] < é (19.5)

If u; and u, are distinct elements of S then any two elements x (u;) and x (uy) in
H, for which (19.5) holds are distinct. Indeed

V2 = Jlu = < fluy = x(u) |+ oy = x (@) + x(ur) — x(uy)]]
2
=< 2% + [lx(up) — x(u)|l.

Thus S can be put in a one-to-one correspondence with a subset of H,. ]



20 Complete Orthonormal Systems 351

20 Complete Orthonormal Systems

An orthonormal system S in H is said to be complete if
(x,u)y =0 forallueS implies x = O. (20.1)

The orthonormal system in (19.2) is complete in £,. It can be shown that the
orthonormal system in (19.1) is complete in L>(0, 27).

Proposition 20.1 Let S be a complete orthonormal system in H. Then for every
xeH

x =Y (x,u)u (representation of x). (20.2)
ueS
Moreover
IxlI> = > |(x,w)|*>  (Parseval’s identity). (20.3)
ueS

Proof As uranges over S, only countably many of the numbers (x, u) are not zero
and we order them in some fashion {({x, u,)}. By the Bessel inequality the series
> (x, u,)? converges. Therefore for any two positive integers n < m

m

Z (-xv uf)ui

i=n

2 m
=> (x,u;)> — 0 as m,n — oo.

i=n

This implies that the sequence {Z;’zl (x,u;) u,«} is a Cauchy sequence in H and
has a limit

y=2 (x,u)u = > (x,u)u.

uesS

Foranyue S

(x —y,u) = lim<x — i (x, w;)u;, u> =0.

i=1

Thus (x — y,u) = 0 for all u € S and since S is complete x = y.
From (20.2), by taking the inner product with respect to x

x> = Tim (x,

n
i=

(x,ui)ui)zlimZ(x,ui)z. -
1 i=1



352 7 Banach Spaces

20.1 Egquivalent Notions of Complete Systems

Let S be an orthonormal system in H. If (20.3) holds for all x € H then S is
complete. Indeed if not there would be an element x € H such that (x,u) = 0O for
allu € S and x # ©®. However if (20.3) holds x = ©.

The proof of Proposition 20.1 shows that the notion (20.1) of complete system
implies (20.2) and this in turn implies (20.3). We have just observed that (20.3)
implies the notion (20.1) of complete system. Thus (20.1)—(20.3) are equivalent and
each could be taken as a definition of complete system.

20.2 Maximal and Complete Orthonormal Systems

An orthonormal system & in H is maximal if it is not properly contained in any
other orthonormal system of H. From the definitions it follows that an orthonormal
system S in H is complete if and only if it is maximal.

The family ¥ of all orthonormal systems in H is partially ordered by set inclusion.
Moreover every linearly ordered subset ¥’ C X has an upper bound given by the
union of all orthonormal systems in X’. Therefore by Zorn’s lemma H has a maximal
orthonormal system.

Zorn’s lemma provides an abstract notion of existence of a maximal orthonormal
system in H. Of greater interest is the actual construction of a complete system.

20.3 The Gram—-Schmidt Orthonormalization Process ([142])

Let {x,} be a countable collection of linearly independent elements of H and set

n
Xn+1 — Z (Xnt1, W)

X1 i=1
Uy =

[l

- forn=1,2,....

X1 — 2 {Xngrs W)W
=

These are well defined since {x,} are linearly independent. One verifies that {u,}
forms an orthonormal system and {u,} = {x,}.

If H is separable this procedure can be used to generate a maximal orthonormal
system S in H, independent of Zorn’s lemma.
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20.4 On the Dimension of a Separable Hilbert Space

If H is separable any complete orthonormal system &, is either finite or infinite-
countable.

Assume first S is infinite-countable and index its elements as {u,}. By Parseval’s
identity, any element x € H generates an element of ¢, by the formula {a,} =
{(x,u,)}. Vice versa any element a € £, generates a unique element x € H by the
formula x = > a;u;. Let x and y be two elements in H and let a and b be their
corresponding elements in £,. By same reasoning (x, y)y = (a, b),,. This implies
that the isomorphism between H and ¢, is an isometry. Thus any separable Hilbert
space with an infinite-countable orthonormal system S is isometrically isomorphic
to ¢,. Equivalently, any complete, infinite-countable, orthonormal system S of a
Hilbert space H, can be put in one-to-one correspondence with the system (19.2)
which forms a complete orthonormal system of £5.

We say that the dimension of a separable Hilbert space with an infinite-countable
orthonormal system, is 8,, i.e., the cardinality of {e,}.

If S is finite, say for example {uj, ..., uy} then by the same procedure H is
isometrically isomorphic to R" and its dimension is N.

Problems and Complements

1c Normed Spaces

1.1. Let E be a bounded, open subset of RY. The space C(E) endowed with the
norm of L7 (E) is not a Banach space.

1.2. Every normed space is homeomorphic to its open unit ball.

1.3. Anormedspace {X; |-||}is complete if and only if the intersection of a countable
family of nested, closed balls is nonempty.

1.4. The L*-norm and the sup-norm on C[0, 1] are not equivalent. In particular
C[0, 1] is not complete in L?[0, 1] for all 1 < p < oo. The norms of L”(E)
and L1(E) for 1 < g < p < 00, are not equivalent.

The next proposition provides a criterion for a normed space to be a Banach space.

Proposition 1.1¢c A normed space {X; |||} is complete if and only if every absolutely
convergent series converges to an element of X.

Proof Let{X; ||-||} be complete and let > x,, be absolutely convergentin {X; |||}, so
that > ||lx, || < M forsome M > 0. Then {Z;le xj}1is Cauchy and hence convergent
to some x € X.

Conversely, let {x,} be Cauchy in {X; || - ||}, so that for each j € N there exists
n; such that
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%, = xmll <277 for n,m > n;.

Set

Vi = Xnju = Xnj -

The series > y; is absolutely convergent and we let x denote its limit. Thus the
subsequence {x,,;} C {x,} converges to x. Since {x,} is Cauchy, the whole sequence
converges to x. u

In the context of L”(E) the criterion has been used in the proof of Theorem 5.1 of
Chap. 6.

Proposition 1.2¢ Every norm p on RY is equivalent to the Euclidean norm | - |.

Remark 1.1c The statement is a particular case of Proposition 12.1 of Chap. 2. The
proof below is more direct using that the topology of RV is generated by a norm

pC).
Proof (of Proposition 1.2¢) Let {ey, . .., ey} be a basis of R¥. Then
N N
x=2 cje; = px) =2 lcjlple;) < Clx]
j=1 j=1
for a constant C independent of x. This implies that

Ip(x) — p(| < p(x —y) <Cllx —y|| forall x,y e R".

Thus p(-) is continuous in the topology of the Euclidean norm. Its restriction
to the Euclidean unit sphere S is a continuous function pointwise strictly bounded
below in S;. Since the S| is compact in R with its Euclidean topology, p(-) attains
its minimum ¢ > 0 there. From this

_ R X N
p(x)—p(nxnnx”)—||x||p(”x”)zcnxn forall x e RY —{0}.

1.1c Semi-Norms and Quotients

1.5. The quantities V¢[a, b] in (1.2), and [f], in (1.3) are semi-norms in their
respective spaces.
1.6. Let {p,} be a collection of semi-norms on X such that

Poo(X) = sup po(x) < oo forall x € X.

Then poo(-) defines a semi-norm on X.
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1.7. Let{p;} for j =1, ..., n be a finite collection of semi-norms on X. Then

00 = 2 90 @ = [ P20 gl = max pico.
j=1 j=1 sjsn

are also semi-norms.

1.8. Prove that a semi-norm p on X is convex. Conversely a convex function f :
X — R* which is homogeneous of order 1 in X, defines a semi-norm in X.
Hint: Homogeneous of order € R means that f(tx) = [¢|* f(x) forallt € R.

2¢ Finite and Infinite Dimensional Normed Spaces

2.1. Aninfinite dimensional Banach space {X; || - ||} cannot have a countable Hamel
basis (16.9 of the Complements of Chap. 2).

2.2. Let £, be the collection of all sequences of real numbers {c,} with only finitely
many nonzero elements. There is no norm on £, by which ¢, would be a Banach
space. See also § 9.6c of the Complements of Chap. 2.

2.3. LP(E) and £, are of infinite dimension for all 1 < p < oo and their dimension
is larger than R,,.

2.4. Let C'[0, 1] be the collections of all continuously differentiable functions in
[0, 1] with norm

C'10,11> f — | fllcio.n; = sup | |+ sup | £].
[0,1] [0.1]

Let X, be a closed subspace of C'[0, 1] which is also closed in L?[0, 1]. Prove
that

i. The norms | - [|¢1p0,17 and || - [|z270,17 are equivalent on X, i.e., there exists
two positive constants ¢ < C such that

cllfllcron < 1f ez, < C N fllerpo,n-

ii. X, is a finite dimensional subspace of L2[0, 1].

2.5. The dimension of C[0, 1] and BV[O0, 1] is uncountably infinite. The collection
{x"} is an infinite set of linearly independent elements of C[0, 1] and BV[O, 1].

2.6. Aninfinite dimensional Banach space {X; || ||} has an infinite dimensional non-
closed subspace. Fix a Hamel basis {x }, for X, where a is an uncountable index,
select an infinite, countable collection {x,} C {x,} of linearly independent
elements and set Y = {x,}. Then Y is non-closed, for otherwise it would be an
infinite dimensional Banach space with a countable Hamel basis.
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3c

3.1.

3.2.

3.3.
34.

3.5.

3.6.

7 Banach Spaces

Linear Maps and Functionals

A linear map T from {X; || - ||x} into {Y; || - ||y} is continuous if and only if it
maps sequences {x, } converging to @y into bounded sequences of {Y; || - ||y}
Two normed spaces {X; ||- |1} and {X; ||-||»} are homeomorphic if and only if

there exist positive constants 0 < ¢, < 1 < ¢; such that
Collxlly < llxll2 < erllxfly  forall x € X.

A linear functional on a finite dimensional normed space is continuous.

Let E be a bounded, open subset of RY. A linear map T : C(E) — Ris a
positive functional, if 7(f) > 0 whenever f > 0. A positive linear functional
on C(E) is bounded. Thus positivity implies continuity. Moreover any two of
the conditions

@® ITi=1 @ TH)=1 @) T=0

implies the remaining one.
Let {X; || - ||} be an infinite dimensional Banach space. There exists a discon-
tinuous, linearmap 7 : X — X.

Having fixed a Hamel basis {x,} for X, after a possible renormalization, we
may assume that ||x, || = 1 for all a. Every element x € X can be represented
in a unique way, as the finite linear combination of elements of {x,}, i.e., for
every x € X there exists a unique m-tuple of real numbers {c, ..., ¢, } such
that

X =2 CjXa,. (3.1¢)
j=1

Since X is of infinite dimension, the index « ranges over some set A such that
(A) = (N). Out of {x,} select a countable collection {x,} C {x.}. Then set

T(x,) =nx, and T(x,) =6 if a¢N.

For x € X, having determined its representation (3.1c), set also

m

T(x) =2 ¢;T(xq).

Jj=1

In view of the uniqueness of the representation (3.1c), this defines a linear
map from X into X. Such a map, however, is discontinuous since ||T (x,)|| =
n||x,|| = coasn — oo.

Let {X; || - ||} be an infinite dimensional Banach space. There exists a discon-
tinuous, linear functional 7 : X — R.
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3.7. Are the constructions of 3.5 and 3.6 possible if {X; || - ||} is an infinite dimen-
sional normed space?

Remark 3.1c The conclusion of 3.6 is in general false for metric spaces. For example
if X is a set, the discrete metric, generates the discrete topology on X. With respect
to such a topology there exists no discontinuous maps 7' : X — R.

However there exist metric, not normed, spaces that admit discontinuous linear
functionals. As an example consider L? (E) for 0 < p < 1 endowed with the metric
(3.1c) of § 3.4c of the Complements of Chap.6. If E is a Lebesgue measurable
subset of RN and . is the Lebesgue measure, then every nontrivial, linear functional
on L?(E) is discontinuous.*

3.8. Let the unit ball in RY in some norm || - ||, be H?’:l [—1, 1]. Compute the unit
ball of the dual space.

3.9. Let X = @];:1 X where X; for j =1, ..., k are Banach spaces. Then X* =
@];ZI Xj. In particular (L?(E)*)* = L4(E)f where 1 < p < oo and p and ¢
are Holder conjugate.

6c Equibounded Families of Linear Maps

Let {X; | - lx}and {Y; || - ||y} be Banach spaces.

6.1. Let T(x,y) : X x Y — R be a functional linear and continuous in each of the
two variables. Then T is linear and bounded with respect to both variables.

6.2. Let {T,} be a sequence in B(X; Y), such that the limit of {7, (x)} exists for all
x € X.Then T (x) = lim T,,(x) defines a bounded, linear map from {X; | - || x}
into {Y; || - [y}

6.3. Let {T,,} be a sequence in B(X;Y), such that ||7,] < C for some positive
constant C and all n € N. Let X, be the set of x € X for which {7, (x)}
converges. Then X, is a closed subspace of {X; || - ||x}.

6.4. Let T} and 75 be elements of B(X; X) and let T 7>(-) = T;(T»(-)) be the com-
position map. Then 717> € B(X; X) and | Ty T2 || < |T1|| |1 T2]]-

Let T € B(X; X) satisfy ||T|| < 1. Then (I + T)~! exists as an element of
B(X; X) and
T+T) ' =1+> D"

Hint: Since ||| < 1,theseries >_ [|T"|| < > ||T||" converges. Since B(X; X)
is a Banach space, >_(—T)" converges to an element B(X; X).

6.5. Let E be a bounded open set in RV, Fix # € L>°(E) and find f € L*®(E) such
that

4 These remarks on existence and nonexistence of unbounded linear functionals in metric spaces
were suggested by Allen Devinatz'.
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h={+T)f ie,formally f={+T)"'h (6.1c)

where T (f) is the Riesz potential introduced in (4.2). Verify that T is a bounded
linear map from L*°(E) into itself. Give conditions on E so that such a formal
solution formula is actually justified and exhibit explicitly the solution f.

6.6. Let E be a Lebesgue measurable subset of RV of finite measure and let 1 <
P, q < oo be conjugate. Then if ¢ > p the space LY (E) is of first category in
L?(E). Hint: LY(E) is the union of [||g||q < n]

8¢ The Open Mapping Theorem

{X; |- llx}and {Y; || - ||y} are Banach spaces:

8.1. T € B(X;Y) is a homeomorphism if and only if it is onto, and there exist
positive constants ¢; < ¢, such that

cilixllx = ITX)lly < c2llxllx  forall x € X.

8.2. A bounded linear map 7 from a subspace X, C X into Y, has closed graph if
and only if its domain is closed.

8.3. The sup-norm on C[0, 1] generates a strictly stronger topology than the L>-
norm.

84. LetT € B(X; Y).If T(X) is of second category in Y, then T is onto.

9¢ The Hahn-Banach Theorem

Let X be a vector space over the complex field C. The norm ||| is defined as in
(1)—(iii) of § 1, except that A € C. In such a case || is the modulus of A as element
of C.

Denote by Xy the vector space X when multiplication is restricted to scalars in
R. A linear functional 7 : X — C is separated into its real and imaginary part by

T(x) =Tr(x) +iTi(x) (9.1¢)

where the maps Tr and 7; are functionals from Xp into R. Since 7 : X — C is
linear, T (ix) = iT (x) for all x € X. From this compute

T(ix) = Te(ix) +iTi(ix) iT(x) =iTe(x) — T;(x).

This implies
T:(x) = —Tr(ix) forall x € X. (9.2¢)
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Thus 7 : X — C is identified by its real part T regarded as a linear functional
from X into R. Vice versa any such real-valued functional T : Xr — R identifies
a linear functional 7 : X — C by the formulae (9.1¢c)—(9.2c).

9.1c The Complex Hahn-Banach Theorem

Theorem 9.1c ([17, 151]) Let X be a complex vector space and let p : X — R
be a semi-norm on X. Then, every linear functional T, : X, — C defined on a
subspace X, of X and satisfying |T,(x)| < p(x) forall x € X,, admits an extension
T : X — C such that

IT(x)] < px) forall x e X and T(x)=T,(x) for x € X,.

Proof Denote by X, r the real subspace of X, and by 7T, r : X, r — R the real part
of T. By the representation (9.1c)—(9.2c¢) it suffices to extend 7, r into a linear map
Tr : Xg — R. This follows from the Hahn—Banach theorem, since

T,r(x) < |T(x)| < p(x) forall x € X. -

9.2¢ Linear Functionals in L°°(E)

The Riesz representation theorem for the bounded linear functionals in L? (E), fails
for p = oco. A counterexample can be constructed as follows.

On C[—1, 1] let T,(f) = f(0). This is bounded, linear functional on C[—1, 1].
The boundedness of T, is meant in the sense of L*°[—1, 1], i.e.,

IToll = sup |T,(p)I.
peCl-1,1]
llelloo=1

Then, by the Hahn—Banach theorem, 7, can be extended to a bounded linear
functional T in L*°[—1, 1] coinciding with T, on C[—1, 1] and such that | T|| =
|17, |. For such an extension there exists no function g € L'[—1, 1] such that

1
T(f):/ fgdx forall f e L*[—1,1].
-1
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11c Separating Convex Subsets of X

11.1¢ A Counterexample of Tukey [164]

The nonempty interior assumption is essential. We produce two disjoint, closed,
convex sets C; and C, in £;, such that C; — C, is dense in £,. This implies that
C| — C, cannot be separated from ® and hence C; and C, cannot be separated.
Identify x € £, with its corresponding sequence {x, } and define

C] = {X 6@2 ‘ X1 > ‘nz(x,,—ﬁ)

, forall n > 1}

Co={xet, | x,=0forall n> 1}.

One verifies that C; and C; are convex and closed. They are also disjoint. Indeed
ify eCiNGC
yi = [n?(0—1)|=n forall n>2.

Thus y; = oo and hence y ¢ £,. To show that C; — C; is dense in €5, fix z € £,
and € > 0 and pick n. so large that

2

€
>+ Y <+
n>n. n>n. 4
Choose a number
X1 >|n2(zn—£)| for 2 <n.<n

and letx = {x,} € C; and y = {y,} € C; be defined by

f =1
x; for n ; 714+ x; for n=1;
X, =12, for 2<n <ng Yn = 0 for n > 1
L for n > n,; |

By the triangle inequality ||z — (x — y)|| < &.

11.1.1c A Variant of Tukey’s Counterexample

Corollary 11.1c Every infinite dimensional Banach space X contains a
1-dimensional subspace C| and a closed, convex set C; that cannot be separated by
a bounded linear functional.
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Proof Let {e,} be a sequence of linearly independent elements on the unit sphere of
X and set C, = {e;} and

_ [ x € X of the form x = > xne, with
! X1 2n3|xn—n—2| forall n > 2

11.2¢ A Counterexample of Goffman and Pedrick [56]

Let X be a linear space with a countably infinite Hamel basis {x,}. Let C; be the
collections of all elements x € X whose last nonzero coefficient of its representations
in terms of {x,} is positive. The set C| is convex and ® ¢ C;. Any functional T that
separates {®} from C; must be either non-positive or nonnegative on C;. Let then T
be a linear functional on X, which is nonnegative on C. For every x; € {x,} and all
a € R the element ax; + x4 € Cy. Therefore

T(axj+xj11) =aT(x;)+T(xjy1) >0 forall aeR.

Thus 7'(x;) = 0. Since x; € {x,} is arbitrary, T vanishes on all basis elements of X
and therefore is the zero functional.

11.3¢ Extreme Points of a Convex Set

Let C be a convex set in a linear, normed space. A point x € C is an extreme
point of C if there do not exist distinct points u, v € C and ¢t € (0, 1), such that
x =tu+ (1 —t)v, that is, if no line segment in C has x as an interior point.

11.1. The extreme points of a convex, closed polyhedron in RY are its vertices.

11.2. An open convex polyhedron in R has no extreme points.

11.3. A closed %—space in RY has no extreme points.

11.4. The set of extreme points of the closed unit ball of a uniformly convex linear
normed space {X; || - ||} is the unit sphere. In particular the extreme points of
LP(E) for 1 < p < oo are all those functions in L”(E) such that || f||, = 1.

11.5. The set of the extreme points of the closed unit ball in L°°(E) are those
f € L*(E) such that | f| = 1 a.e. in E.

11.6. The set of the extreme points of the closed unit ball in L' (E) is empty.

11.7. Let E be a bounded, connected, open set in RM. The closed unit ball of C(E )
has no, non constant, extreme points. Examine the case when E has several
connected components.

Aset E C C is an extremal subset of C if it satisfies the property:
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if there exist u, v € C and t € (0, 1) such that
tu+ (1 —t)vekE, thenu,v e kE.

Extreme points are extremal sets. Convex portions of a face of a closed, convex
polyhedron are extremal sets of that polyhedron. Prove the following:

Lemma 11.1¢c If E| is an extremal subset of C and E, is an extremal subset of E|,
then E, is an extremal subset of C.

Lemma 11.2¢ A nonempty, convex, compact subset C of a linear, normed space X,
has extreme points.

Proof Consider the collection £ of all closed, extremal subsets of C, partially ordered
by inclusion. Such a collection is not empty since C € £. Any linearly ordered
subcollection &; C & has the finite intersection property (§ 5 of Chap. 2) and therefore

E,=({E|E €&} isnotempty, closed and compact.

We claim that E, is a singleton which is extreme of C. If E, contains more than
one point, pick p,q € E, with p # ¢, let T € X* be such that T(p) > T(q)
(Corollary 10.1), and set

E = {x €E,|T(x)= )jgé T(y)}.

The set E! is well defined, since T is continuous and E, is compact, and is a
proper subset of E,, since T (p) > T (q). The proof consists in verifying that E’ is a
convex, closed, extremal subset of E,. Thus by Lemma 11.1c it would be a closed,
extremal subset of C, properly contained in E,, thereby contradicting the definition
of E,.

If there exists u, v € C and ¢ € (0, 1) such that ru + (1 — r)v € E/ C E,, then
u,v € E, and

1T() + (1 =0T @) = T(tu+ (1 =0v) = inf T(y).
YEL,

Now
T(u) > inf T(y) implies 7T (v) < inf T(y)
yeE, YEE,

contradicting that v € E,. Thus
Tw)=T(Ww) = inbf T(y) whichimplies u,v € E,. n
y€E,

Theorem 11.1¢ (Krein—Milman [86]) A compact, convex set C in a normed linear
space is the closed convex hull of its extreme points.
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Proof Let E be the set of the extreme points of C. By the definition of convex hull,
c(E) C C.To prove the converse inclusion, proceed by contradiction, assuming that
there exists x, € C such that x, ¢ c(E). By Proposition 11.3 there exists 7 € X*
such that T'(x,) < T (c(E)). Set

C) = {x eC | T = iggT(y)}.

Proceeding as in the proof of Lemma 11.2c one verifies that C; is a nonempty,
convex, closed, extremal subset of C. Moreover C; N E = (. Since C; is convex
and compact it has at least one extreme point y,, which by Lemma 11.1c is also an
extreme point of C. u

11.8. Give an example to show that the compactness assumption on C is essential.

11.4c A General Version of the Krein—-Milman Theorem

Prove that Theorem 11.1c continues to hold, with essentially the same proof if X is
a Hausdorff topological vector space on which X* separates points. Compactness of
C is referred to the topology of X.

12¢ Weak Topologies

Proposition 12.1¢ Letr {X; || - ||} be a normed space and let VW denote its weak
topology. Denote also by O a weak neighborhood of the origin of X. Then:

(i) ForeveryV € W and x, € V, there exists O such that x, + O C V.
(ii) ForeveryV € W and x, € V, there exists O such that O + O 4+ x, C V.
(iii) For every O there exists O’ such that \O' C O, forall |\ < 1.

Proof (of (i)) An open weak neighborhood V of x, € X contains an open set of the
form

Vo= N T (Tj(x0) =, Tj(x,) + a))
j=1
for some finite m and or; > 0. Equivalently
V,={xeX|ITj(x —x,)| <a; for j=1,....n}.
The neighborhood of the origin

O:{xeXilTj(x)|<aj forj:l,...,n}
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is such that x, + O C V,. (]

The remaining statements are proved similarly.

12.1. In a finite dimensional normed linear space, the notions of weak and strong
convergence coincide.
12.2. Construct examples and counterexamples for the following statements:

i. A weakly closed subset of a normed linear space is also strongly closed.
The converse is false.

ii. A strongly sequentially compact subset of a normed linear space is also
weakly sequentially compact. The converse is false.

12.3. A normed linear space is weakly complete if and only if it is complete in its
strong topology. A weakly dense set in {X; || - ||} is also strongly dense.
12.4. The weak topology on a normed linear space is Hausdorff (Proposition 11.3).

12.1c Infinite Dimensional Normed Spaces

Let {X; || - ||} be an infinite dimensional Banach space. There exists a countable
collection { X} of infinite dimensional, closed subspaces of X such that X, C X,
with strict inclusion. For example one might take a nonzero functional 7; € X* and
set X| = ker{7}}. Such a subspace is infinite dimensional (Hint: Proposition 5.1).
Then select a nonzero functional 7, € X7, set X, = ker{7>}, and proceed by
induction.

For each n, select an element x,, € X, — X,, so that ||x, || = 27". This generates
a sequence {x,} of linearly independent elements of X whose span X, is isomorphic
to £ by the representation

loo D} — D cpxn€ X

Since the dimension of £, is not less than the cardinality of R the dimension of
an infinite dimensional Banach space is at least the cardinality of R. Compare with
2.1.

12.5. A Banach space {X; || - ||} is finite dimensional if and only if every linear
subspace is closed (2.6). However an infinite dimensional Banach space X
contains infinitely many, infinite dimensional, closed subspaces.

12.6. The weak topology of an infinite dimensional normed space X is not normable,
i.e., there exists no norm || - ||,, on X that generates the weak topology. This
follows from Corollary 12.3. Give an alternate proof. Hint: If such || - ||, exists,
the open unit ball, with respect to such a norm, would be an open neighborhood
of the origin.
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12.2¢ About Corollary 12.5

In the context of L”(E) spaces the corollary had been established in [14]. When
p = 2 the coefficients cr; can be given an elegant form as established by the following
proposition.

Proposition 12.2¢ Let { f,,} be a sequence of functions in L*(E) weakly convergent
to some f € L*(E). There exists a subsequence { Jn;} such that setting

=ﬁ11+fnz+"'+fnm

m
n

the sequence {,,} converges to f strongly in L*>(E).

Proof By possibly replacing f,, with f, — f, we may assume that f = 0. Fixn; = 1.
Since { f,} — 0 weakly in L?(E), there exists an index 7, such that

1
e
E
Then there is an index 73 such that
1 1
’ ntfn3d[L’ =z and ‘ fnzfnsdu‘ < —.
E 3 E 3

Proceeding in this fashion we extract, out of { f,,}, a subsequence { f"/ }, such that,
forallk > 2

1
‘/f,,{f,,kd,u‘s— forall €=1,....k— 1.
p k

Denoting by M the upper bound of || f;||2, compute

1
/ ‘andﬂ = _2/(fn1 +f"2 + '”f”m)zdu
E m= JE

1 ) 1 1
E—(mM +2+4—+---+2m—)
m? 2 m
M?+2
< —> 0 as m — oo. [
m

12.3¢ Weak Closure and Weak Sequential Closure

For a subset E of a normed space {X; || - ||} denote by E,_, its is weak sequential
closure, that is the set of all limit points of weakly convergent sequences in E.
Equivalently, by E,,_, is the set of all points x € X, for which there exists a sequence
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{x,} C E weakly convergent to x. By the definition E,,_, C E,,. The inclusion is
in general strict, as shown by the following examples.

12.7. Let E = {\/ne,} C {,, where e, is the infinite sequence consisting of zeroes
except the nth entry which is one. Denoting by 0 the zero element of £,

0c{Vne,), but  0¢{/ne),_,. (12.1¢)

To prove the first of these, pick T € €5 and for a fixed o > 0, consider the
weak, open neighborhood of the origin

Ora=1{xeb | ITW| <ol

By the Riesz representation theorem any such 7 is identified by some t € ¢,
acting on elements a € ¢, by the formula

T@ =t-a=> t,a,.

Sincet € ¢,, forall M > 0, there exists n > M such that |¢,| < «/+/n. Indeed
otherwise

1
It = > 62 >ad -

n>M n

For such an index, |T (/ne,)| < «, and hence /ne, € Or . Let now

k
0= nl T '(—aj, ), for a; >0 forsome k € N. (12.2¢)
J=

Prove that n can be chosen so large that /e, € O. Therefore any weak, open
neighborhood of the origin intersects {/ne,}.

To prove the second of (12.1c) we establish that there exists no subsequence
{/me,} C {/ne,}, weakly convergent to 0. Having picked such a subse-
quence assume first that some fixed index j € N occurs infinitely many times
in {{/me,,}. Pick T; € {5 corresponding to e; € {,. For such a choice the
sequence {7 (y/me,,)} contains the value /j infinitely many times, and thus
it cannot converge to zero. If no index j € N occurs infinitely many times in
{/me,,} pick a subsequence

{Vmjen,} C {v/me,} sothat m; >2/
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and set

1 1
t=> —e,, satisfying [t|>= > < 00
N, jeNMm;j

Therefore t € £, and we let T € £ be its corresponding functional. For such
a functional T (,/n;e,,,) = 1. Therefore the sequence {7'(\/me,,)} contains 1
infinitely many times and thus it cannot converge to zero.

Remark 12.1c¢ The set E is countable, so that countability alone is not sufficient to
identifty weak closure with weak sequential closure.

Remark 12.2¢ The set {«/ne,} is unbounded in ¢,. However the strict inclusion
E,_, C E, continues to hold even for bounded sets, as shown by the next example.

12.8. Consider the set E C £,

E= U {em _en}‘

n,meN;m#n

We claim that E is bounded in ¢, its weak closure contains 0 but its weak
sequential closure does not contain 0.

To establish the first claim let O be a weakly open set of the form (12.2c).
Every T; € £] is identified with an element t; € £, acting on elements a € £,
by the formula

Tj(a) = tj -a= th,nan.

Sincet; € £y for j =1, ..., k, asnranges over N, the k-tuple (1 ,, . .., tx.n)
ranges over a bounded set K C R, which, without loss of generality we
may assume to be a closed cube with faces parallel to the coordinate planes.
Pick ¢ = min{a, ..., oy} and subdivide K into no less than e % homotetic
closed sub-cubes K. of edge not exceeding €. At least one of these sub-cubes
must contain infinitely many k-tuples (¢ ,, . . ., t.,). Select one such cube and
relabel the corresponding k-tuples as {(#1 ,, - .., t.n)}ien. For the element
e, —e, € {e, —e,} compute

|Tj(emi —eni)| = |tj,m,- _tj,ni| =e=qj for j=1,...k.

Therefore e,,, — e,, € O. Thus every weak open neighborhood of 0 intersects
{e,, —e,} and hence 0 € {e,, —e,},,.

To show that no subsequence {e,,; —e,,} C {e, —e,} converges weakly to 0 it
suffices for any such subsequence, to construct a functional T € £7 such that
{T (e;, — €,,)} does not converge to zero. Construct one such 7' by examining
separately the following cases
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i. Some pair (m;, n;) occurs infinitely many times;
ii. Some index m ; occurs infinitely many times and n; — oo, or vice versa.
iii. Bothmj,n; — oo.

12.9. Let E = ¢, be defined by (von Neuman [113])
E ={e, +ne,} for 0 <n<m.

Prove that E is strongly closed (Hint: all the sequences in E, Cauchy in ¢,
are constant).

Prove that the origin of ¢ is in the weak closure but not in the weak sequential
closure of E.

12.10. Prove that ¢, and £; equipped with their weak topology do not satisfy the first
axiom of countability.

14c Weak Compactness

14.1. A weakly compact subset of a normed linear space is weakly closed. See also
Proposition 5.1 of Chap. 2.
14.2. A weakly compact, convex subset of a normed linear space is strongly closed.

14.1¢ Linear Functionals on Subspaces of C(E)

Let E be a bounded, open set in RY and let C(E) denote the space of the continuous
functions in E equipped with the sup-norm.

Let X, be a subspace of C (E) closed in the topology of L?*(E). Prove that there
exist positive constants C, < Cy, such that

Coll flloo = 11 f1l2 = Cill flloo-
Let T, € X} be the evaluation map at y
Toy(f) = f(y)  forall feX,.
By the Hahn—Banach theorem there exists a functional 7, € L*(E)* such that

T, = T, on X,. By the Riesz representation of the bounded linear functionals in
L?(E), there exists a function K (-, y) € L?(E), such that

f(y)Z/K(x,y)f(x)du forall f € X,. (14.1c)
E


http://dx.doi.org/10.1007/978-1-4939-4005-9_2

Problems and Complements 369

Proposition 14.1¢ The unit ball of X, is compact.

Proof The closed unit ball BDJ of X, is also weakly closed. Since L?(E) is reflex-
ive, also X, is reflexive. Therefore B(,,l is bounded and weakly closed and hence
sequentially compact. In particular every sequence {f,} C B, contains in turn a
subsequence { f,,} weakly convergent to some f € B,,, 1- By (14.1c¢) such a sequence
converges pointwise to f and

I fulloo < (const)|| fll2 < (const)’

for a constant independent of n. Therefore, by the Lebesgue dominated convergence
theorem, { f,;} — f strongly in L?(E).

Thus every sequence {f,} C B, contains in turn a strongly convergent sub-
sequence. This implies that B, | is compact in the strong topology inherited form
L*(E). "

Corollary 14.1¢ Every subspace X, C C (E), closedin L*(E) is finite dimensional.

14.2c  Weak Compactness and Boundedness

14.3. Give a different proof of Corollary 14.1 by means of the uniform boundedness
principle. Hint: For all 7 € X*, the image T (E) is a compact and hence
bounded subset of R.

15¢ The Weak* Topology of X*

15.1c Total Sets of X

The linear span X, of a collection of linear functionals on a linear vector space X
is a total set of X, if it separates its points, that is, if for any two distinct elements
x,y € X, there exists T € X, such that T (x) # T (y). The dual X* of a normed
space {X; || - ||} separates the points of X and therefore is a total set of X. However the
notion of total set does not require a topology being placed on X nor the continuity
of the linear maps in X,.

If X, is total for X, one might endow X with the weakest topology W, for which
all the elements of X, are continuous. A W,-open base neighborhood of the origin
is of the form

o. [x eX | 1Ty <« for Tj € X, and a; € R+] (15.1¢)

for j =1,...,n for some finite n.
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The construction is in all similar to the construction of the weak topology of
a normed space {X; || - ||}. Since X, is total, the W, topology on X is Hausdorff
and one verifies that the operations of sum and product by scalars are continuous
in the indicated topology. Thus {X; W,} is a Hausdorff, topological vector space.
By construction the elements of X, are continuous from {X; W,} into R. The next
proposition asserts that these are the only bounded linear functional on {X; W,]}.

Proposition 15.1c¢ Let T : {X; W,} — R be nonidentically zero, linear and con-
tinuous. Then T € X,.

Proof By the continuity of T, there exists a VW,-open set of the form (15.1c) such that
O, c T '(—1,1).Let T, € X,forj =1, ..., nbethefunctionalsin X, thatidentify
O,.Ifx € ﬂ;zl ker{T;} then x € T~ '(—¢,¢) for all ¢ > 0. Therefore T vanishes
on ﬂ;'.zl ker{T;}, and by Proposition 11.2 of Chap.2, T is a linear combination of
the 7;. m

15.1. Let {X; || - ||} be a normed space. Then X, as defined in (13.3) separates the
points in X* and is total for X*. The elements of X, are the only bounded
linear functionals on X* equipped with its weak™ topology. In particular every
T, € X*™* — X, is discontinuous with respect to the weak* topology of X*,

15.2. Let {X; || - ||} be a normed space. Then X* equipped with its weak™ topology
is a topological vector space whose dual is isometrically isomorphic to X.

15.3. Let {X; || - ||} be a normed space. Then every convex, weak™ compact subset
of X* is the weak™ closed convex hull of its extreme points (§ 11.4¢).

15.2¢ Metrization Properties of Weak™ Compact Subsets
of X*

Proposition 15.2¢ Let {X; || - ||} be a Banach space. Then the weak™ topology of a
weak™ compact set K C X* is metric if and only if {X; || - ||} is separable.

Proof (sufficient condition) Assume first that X is separable and let {x,} C X be a
sequence dense in X. For T}, T, € X* set

B 1 (T} — T2) (x,)]
A1) = 2 S T T Ty

Keeping in mind that X as a subset of X** separates the points of X*, one verifies
that
d:X* x X*— RT

is a metric which generates a metric topology on X* (§ 13.11c of the Complements of
Chap. 2). One also verifies that every ball B.(T) C X* of center T € X* and radius
€ > 0 in the metric d(-, -) contains a weak® open neighborhood of 7. Therefore


http://dx.doi.org/10.1007/978-1-4939-4005-9_2
http://dx.doi.org/10.1007/978-1-4939-4005-9_2

Problems and Complements 371

the identity map from X* equipped with its weak™ topology onto X* equipped with
the metric topology of d(-, -), is continuous. Let {K; weak*} and {K; d} be the
topological spaces formed by K equipped with the topologies inherited respectively
from the weak™ and metric topologies of X*. The identity map from the compact
space {K; weak®™} onto {K; d} is continuous and one-to-one. To show that it is a
homeomorphism we appeal to Proposition 5.1 of Chap.2. A weak*-closed set E C
{K; weak™} is weak™ compact. Since the identity map from { K ; weak*} onto {K; d}
is continuous, the image of E in {K; d} is compact and hence closed in the metric
topology of {K; d}, since the latter is Hausdorff. |

Remark 15.1¢ The identity map from {K ; weak*} onto {K; d}, being a homeomor-
phism, identifies the two topologies. For this is essential that {K; weak*} be weak*
compact. In particular, the proposition does not imply that the weak® topology of the
whole X* is metrizable.

Proof (necessary condition) Assume conversely that the weak* topology of K C X*
is metric. Up to a translation, may assume that ® € K. There exists a countable
collection {O}} of weak™* open neighborhoods of ®* such that () O = ©@*. Without
loss of generality the O} are of the form

O — [T € X* | |x;,(T)| <, for aj, >0 and x;, € X
! for jun € {jn1, .-, juk} CN

The collection of {x;,} is countable and its closed linear span is separable. We
claim that {x; } = X. If not, there exists a nontrivial 7 € X* vanishing on {x; }
(Corollary 10.3). However if T'(x;,) = 0 for all x;, then T € O}, for all n and thus
T =0 |

16¢c The Alaoglu Theorem

16.1. Let E be a bounded open set in R". Prove that there is no linear normed space
{X: | - ||} whose dual is L' (E) with respect to the Lebesgue measure. Hint:
Problems 11.6, and 15.3.

16.2. Let E be a bounded open set in RV, Prove that C (E) is not the dual of any
linear normed space. Hint: Problems 11.7, and 15.3.

16.3. The weak™ topology of the closed unit ball of L>°(E) and ¢, are metrizable.

16.4. A bounded and weakly closed subset £ of a Banach space X, need not be
weakly compact. In particular the closed unit balls of L' (E), L*(E), £, and
£~ are weakly closed but not weakly compact.

16.5. Let {X; || - ||} be a normed space and let

Bi={xeX|[lIxll<1}, Si=fxeX|lxl=1
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be respectively the unit ball and the unit sphere in X. Prove or disprove by a
counterexample the following statements:

i. Bj is strongly and weakly bounded.
ii. B is weakly sequentially closed.
iii. §; is weakly sequentially closed.

iv. If {X; || - ||} is reflexive then S; is weakly sequentially closed.
v. If {X; || - ||} is reflexive then B, is weakly sequentially compact.
vi. If {X; || - ||} is reflexive then it is Banach.

vii. If {X; || - ||} is Banach then it is reflexive.

viii. The weak topology of {X; || - ||} is Hausdorff.

16.1c The Weak™ Topology of X**

Denote by X*** the dual of X**, that is the collection of all bounded linear functionals
[ X* — R. Itis a Banach space by the norm

= sip 29D e Fet. (16.10)

wexsemz0 X pmexes =1

Every element x* € X* identifies an element f,« € X*** by the formula
X5 3 x™ — for (x™) = 7 (x¥). (16.2¢)
Let X... denote the collection of all such functionals, that is

X the collection of all functionals fy« € X***
o of the form (13.2) as x* ranges over X*

From Corollary 10.2 and (16.1c) it follows that || f,+|| = ||x*||. Therefore the
injection map
X* 2 x" —> fir € Xy C X (16.3¢)

is an isometric isomorphism between X* and X,... In general, not all the bounded
linear functionals f : X** — R are derived from the injection map (16.3c); otherwise
said, the inclusion X, C X™** is in general strict. The set X .. is total for X** and
it generates a topology W, on X** which is the weak™ topology generated by X* on
X** (§ 15.1c). By this topology, { X**; Wi} turns into a Hausdorff, linear, topological
vector space (§ 15.1c), and for such a space the separation Proposition 11.3 holds. In
particular W,.-closed sets are separated from points by a bounded linear functional
on {X**; W,.}. By Proposition 15.1c, any such a functional is of the form (16.2c).
Let
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B the unit ball of X closed in the norm of {X; || - || x}
B** the unit ball of X** closed in the norm of {X**; || - ||}

Since the natural injection X 5 x — f, € X defined by (14.2) is an isometric
isomorphism, the ball B when regarded as a subset of B** is a closed subset of B**
and the inclusion is proper unless X is reflexive. If B** is given the W, topology,
by the Alaoglu Theorem is weak™ compact, and since W, is Hausdorff, B** is both
I - ll+«-closed and W,,-closed (Proposition 5.1-(iii) of Chap.2). Set

. the Wi,.-closure of norm-closed unit ball of X
- regarded as a subset of {X**; W,.}

The next proposition asserts that while B with its norm topology is a subset B**,
with in general strict inclusion, when it is given the W, topology, it is actually dense
in B**,

Proposition 16.1¢ ([57]) B, = B**.

Proof B, is a closed and convex subset of B** (10.1-(iii) of the Complements of
Chap.2). If B, C B™" with proper inclusion, select and fix x** € B** — B,,. By
Proposition 11.3 there exists a nontrivial, bounded, linear functional f on {X**; W,.}
and real numbers o« < (3 such that

fO) <a<pB<f(x*™) forall y€ B,,.

By Proposition 15.1¢, such a functional f is of the form (16.2c). Therefore, there
exists x* € X* such that

() <a< B <x™x*) forall ye B. (16.4¢)
Now y € B implies —y € B. Therefore

[x* = sup x*(y) < a.
Iyl=1

On the other hand, since x** € B**
a < @< xMET) < I I < e
This contradicts (16.4c) and proves the proposition. |

Corollary 16.1¢ The Banach space {X; || - ||} when regarded as a subspace of X™**
and equipped with the weak™ topology of X**, is dense in X™*.
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16.2¢ Characterizing Reflexive Banach Spaces

The next statements follow from the previous proposition, upon observing that the
W, topology of X, as a subset of X**, is precisely the weak topology generated on
X by X*.

Corollary 16.2¢c A Banach space {X; || - ||} is reflexive if and only if its closed unit
ball is weakly compact.

Corollary 16.3c A Banach space {X; || - ||} is reflexive if and only if a bounded and
weakly closed set is weakly compact.

Thus in some sense, reflexive Banach spaces are those for which a version of the
Heine—Borel Theorem holds (Proposition 6.4 of Chap.2).

16.6. Some of the following statements contain fallacies. Identify and disprove them,
by an argument or a counterexample.

i. The closed unit ball B of a normed space {X; || - ||}, is convex and hence

weakly closed (Proposition 12.2).

ii. Regarding B as a subset of B** its W, topology coincides precisely with
its weak topology.

iii. Therefore B as a subset of B** is W, closed and hence W,,-compact, since
it is a closed subset of a compact set.

iv. Since the W,, topology on B C B** coincides with its weak topology, B is
weakly compact.

16.3¢ Metrization Properties of the Weak Topology
of the Closed Unit Ball of a Banach Space

Proposition 16.2¢ Let {X; || - ||} be a Banach space. Then the weak topology of the
closed unit ball B C X is metric, if and only if the dual X* is separable.

Proof TIf X* is separable, the weak™ topology of B** C X™* is metric. Identify X as
a subset of X** by the natural injection map X > x — f, € X** and observe that
the weak* topology inherited by X as a subset of X** is precisely the weak topology
of X.

Assume next that the weak topology of the closed unit ball B C X is metric.
There exists a countable collection {O, } of weakly open neighborhoods of the origin
such that every weak neighborhood of the origin contains some O,. Without loss of
generality the O, can be taken of the form

0 [x € X |IT;,(x)] <&, for g, >0 and T}, € X}
! fOr ji’l E{jll,l""ajn,k}CN
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The collection of {7, } is countable and its closed linear span is separable. We claim
that {T},} = X*. If not pick n* € X* — {T,} at distance 6 € (0, 1) from {7} and
determine a nontrivial, bounded linear functional x** € X**, of norm ||x**| < 1,
vanishing on {7, } and such that x**(n*) = 0 (Proposition 10.3). The set

05 = {x eX } In*(x)| < %5}

is a weak neighborhood of the origin of X and hence O, C Os for some n. Since
x** e B**, by the density Proposition 16.1c, there exists x € B such that

|x**(Tjn) - Tj” ()C)| < é&n for all jn € {jn,h ey jn,k}
and simultaneously
16 =" ()] = [x™ ") =" ()| < &

By picking ¢, sufficiently small we may insure that ¢, < %5 . Then, since x**

vanishes on {7, }, the first of these gives,
IT;, (x)| <&, forall j, € {ju1,.--, jni}

which implies that x € O,,. However the second of these implies |7*(x)| > %5 . That
isx ¢ O5 C O,. ]

16.7. The weak topology of the closed unit ball of L'(E) and ¢, are not metrizable.

16.4c Separating Closed Sets in a Reflexive Banach Space

Proposition 16.3¢ Let Cy and C, be two nonempty, disjoint, closed subsets of a
reflexive Banach space {X; || - ||}. Assume that at least one of them is bounded. There
exists a bounded linear functional T on X and real numbers 0 < o < (3 such that
(11.2) holds. Equivalently, any two closed subsets of a reflexive Banach space, can
be strictly separated, provided at least one of them is bounded.

Proof 1If C, is closed and bounded it is weak® compact. The statement then follows
from Proposition 11.3. |

Remark 16.1¢ The requirement that at least one of the two closed sets C; and C; be
bounded is essential, in view of the counterexample in § 11.1c
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17¢ Hilbert Spaces

17.1c On the Parallelogram Identity

The parallelogram identity is equivalent to the existence of an inner product on a
vector space X in the following sense.

A scalar product (-, -) on a vector space X generates a norm ||-|| on X that satisfies
the parallelogram identity. Vice versa, let {X; || - ||} be a normed space whose norm
| - || satisfies the parallelogram identity. Then setting

40x,y) = lx +yI* = llx — y|I?

defines a scalar product in X.

17.2. If p # 2 then L?(E) is not a Hilbert space.
17.3. Let {x,} and {y, } be Cauchy sequences in a Hilbert space H. Then {(x,, y,)}
is a Cauchy sequence in R.

18¢ Orthogonal Sets, Representations and Functionals

18.1. For an n-tuple {x|, x5, ..., x,} of orthogonal elements in a Hilbert space H
n 2 n 5
> X ‘ = > |lxl (Pythagora’s theorem)
i=1 i=1

18.2. Let E be a subset of H. Then E= is a linear subspace of H and (El)L is the
smallest, closed, linear subspace of H containing E.

18.3. Every closed convex set of H has a unique element of least norm. More
generally, let C be a weakly closed subset of a reflexive Banach space. Then
the functional i (x) = || x| takes its minimum on C, i.e., there exists x, € C
such that inf ¢ ||x|| = [|x,]l-

18.4. Let E be a bounded open set in RY and let f € C(E). Denote by P, the
collections of polynomials of degree at most n in the coordinate variables.
There exists a unique P, € P, such that

/|f—P|2dx Z/ |f — P,|*dx forall P € P,.
E E
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19¢

19.1.

19.2.

19.3.

Orthonormal Systems

Let H be a Hilbert space and let S be an orthonormal system in H. Then for
any pair x, y of elements in H

2 w0 u, )| < lx iyl

uesS

Let S be an orthonormal system in H and denote by H, the closure of the
linear span of S. The projection of an element x € H into H, is defined by

X, = 2. {x,u)u

uesS

Such a formula defines x, uniquely. Moreover x, € H, and (x — x,) L H,.
A Non Separable Hilbert Space: In L2 _(IR) with respect to the Lebesgue
measure, define

2 def . 1 p
L, R)> f,g— (f,g) = lim - fgdx.
p=o00p J_,

Set 5

H,={f € Li,,(®) | I /]| = 0}

Hy={f € Ly ®) | [ f]l < o0}.
Since H, contains nonzero elements, || - || is not a norm. Introduce the quotient
space

H, .
H = A of equivalence classes f 4+ H, for f € H,.
o

Verify that (-, -) is an inner product and || - || is @ norm on H. The system

{ sin aex + H,,}ae]R

is orthonormal in H, and uncountable. Therefore H is non separable, by Propo-
sition 19.2.



Chapter 8
Spaces of Continuous Functions,
Distributions, and Weak Derivatives

1 Bounded Linear Functionals on C,(RY)

Let C,(R") denote the space of continuous functions of compact support in R",
equipped with the sup-norm. Continuity of functionals T € C,(R")* is meant with
respect to such a norm. A finite Radon measures ;. in RV, generates a bounded linear
functional in C,(R"), by the formula

C,RY) 5 f — T(f) = /R fdp. (L.1)

One verifiesthat || T'|| = w(R"). Given two finite Radon measures 1¢; and o inR",
the signed measure yt = p; — 1, generates a bounded linear functional T € C,(RV)*
by the formula

C,®Y) 3 f = T(f) =/RN Fdp —/RN fdps. (12)

One verifies that ||7,] = | 1| (RN), where |u| is the total variation of p. More
generally given a Radon measure 1 in RV and a p-integrable function w the formula

C,(RNy> f— T(f) =/ fwdp. (1.3)
]RN

identifies a bounded linear functional on C,(RY) with | T|| = |[w||; grv. One also
checks that (1.3) is of the same form as (1.2).

A linear map T : C,(RY) — R is locally bounded if for every compact set K C
RY there exists a positive constant vx such that

IT(HI <kl Il forall feC,(RY) with supp{f} C K. (1.4)
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Elements T € C,(RV)* are locally bounded; the converse is false. If in (1.3)
w e Llloc (RY), the corresponding functional is locally bounded. A relevant class of

locally bounded linear functionals is that of positive functionals.

1.1 Positive Linear Functionals on C,(RY)

Alinearmap T : C,(RY) — Ris positive if T (f) > 0 whenever f > 0. Since T is
linear f > g implies T (f) > T (g). The functional in (1.1) is positive even if p is
not finite. Thus positive functionals need not be bounded; however they are locally
bounded.

Proposition 1.1 A positive, linear functional T on C,(RN) is locally bounded.

Proof For a compact set K C RY choose ¢ € C,(R") such that 0 < ¢ < 1, and
=1on K. Given f € C,(RV) with supp{f} C K, the two functions | f|¢ =+ f
are both nonnegative. Therefore =7 (f) < || f||T (¥).

1.2 The Riesz Representation Theorem

For the integrals in (1.1)—(1.3) to be well defined, f has to be p-measurable, that
is the sets [ f > ¢] must be py-measurable for all ¢ € R. Since these sets are open it
suffices that 1 be defined only on the Borel sets. For a Radon measure i denoted by
4| B its restriction to the Borel o-algebra. The Riesz representation theorem asserts
that all locally bounded linear functionals in C,(R") are of the form (1.3) for some
Borel measure 11| and some locally p-integrable function w.

Theorem 1.1 Let T : C,(RY) — R be linear and locally bounded. There exists a
Radon measure ;i in RN, and a p-measurable real valued function w, with |w| = 1,
p-a.e. in RN, such that T can be represented as in (1.3). Moreover the pair { |5, w}
is unique.

Corollary 1.1 (Riesz Representation) Every T € C,(RY)* has a unique represen-
tation of the form (1.3) for a finite Radon measure ji|3 and a p-measurable function
w, with |lw| = 1, p-a.e. in RV,

The first form of this theorem for C,[0, 1] is in [127]. Through various extensions
it is known to hold for C,(X) where X is a locally compact Hausdorff topological
space ([74], vol. I, § 11).



2 Partition of Unity 381

2 Partition of Unity

Let E be a subset of R" and let 2/ be an open covering of E. A countable collection
{n} C C°(RY) is a locally finite partition of the unity for E, subordinate to U if

(i) for any compact set K C E all but finitely many of the functions ¢, are iden-
tically zero on K
(i) 0<¢;<1inE
(iii) for any ¢;, there exists O € U such that supp{p;} C O
(iv) D @n(x) =1forallx € E.

Proposition 2.1 For every open covering U of E, there exists a partition of unity
for E, subordinate to U.

Proof Consider the collection of balls B,, (x;) centered at points x; € E of rational
coordinates and rational radii r;, and contained in some O € U. The union of B%r,- (x;)
covers E. For each such ball construct

Yij € CF(By(x))) 0=ty <1 ¢y =1on By, (x)).

The 1);; can be constructed for example by mollifying the characteristic functions
of B%,I, (x;). Order the {¢);;} in some fashion, say {¢,}, and construct a partition of
unity {,,} by setting

J
<p1=1/)1 and (,0j+1=wj+|H(1—¢i) fOI‘j:l,Z,...
i=l1

The collection {p,} satisfies (i)—(iii). Moreover, forallm =1, 2, ...

3

(I — ).
1

2. pj=1-
j=1 i

This holds true for m = 1 and is verified by induction for all m € N, by making
use of the definition of the ¢, . To verify (iv) observe that for each x € E there exists
some ;; such that 1);;(x) = 1. |

3 Proof of Theorem 1.1. Constructing p

For a non-void open set O C RY, introduce the class of functions

Fo={fec,o|Ifl<1}. (3.1)
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The collection Q of all non-void, open sets in RY, complemented with the empty
set ¥, forms a sequential covering for RY. On Q define a nonnegative set function
A, by setting A(¥) = 0 and

MO) = sup T(f) forall, non empty, open sets O C R".

felo
This generates an outer measure i, by
RY D E — p(E) =inf {3 XNO,) | O, € Q and E C |J O,}.

Lemma 3.1 The set function X : Q — R* is monotone, countably sub-additive, and
it coincides with L, on the open sets.

Proof The monotonicity follows from the definition. Let {O,} be a countable col-
lection of open sets in RY and let © = UQ,,. For f € I'p, the collection {0, } is an
open covering for supp{ f}. Construct a partition of unity for supp{ f} subordinate
to {O,} and let {¢,} be the sum of those elements of the partition supported in O,,.
Then f¢, € I'o,, and f = f,. Since supp{f} is compact, this sum involves
only finitely many, non identically zero terms, and by the linearity of T

Since f € I is arbitrary, by the definition of A(O)

)\(O) = )‘(U On) = sup T(f) = z)‘(on)

felo

By construction i, (O) < A(O). On the other hand since A is countably sub-
additive and monotone

e (O) > inf{(A(J O,) | O, openand O C | O,} = A(O). m

The outer measure /i, generates in turn ameasure y in RV defined on the o-algebra
A of all sets E satisfying the Carathéodory measurability condition (6.2) of Chap. 3.

Proposition 3.1 The open sets are pi-measurable.

Proof An open set O is p-measurable if it satisfies the Carathéodory condition, for
all sets A C RY of finite outer measure. Assume first that A is itself open. Then
A N O is open and from the definition of \(-), for any € > 0 there exists f € I'4no
such that

T(f)=XANO) —e.
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The set A — supp{ f} is open and there exists g € I's_supp( s such that

T(g9) = AM(A —supp{f}) —e.

Then f + g € I'4 and by the linearity of 7'

pe(A) =ANA) =T (f +9)=T(f)+T(9)
> AMANO)+ AA —supp{f}) —2¢
> pte(ANO) + pe(A—0) =2

since A and j, coincide on open sets. If A is any subset of R of finite outer measure,
having fixed € > 0 there exists an open set A, containing A, and such that ,(A) >
e (Az) — . From this

Ne(A) = /LE(AE) —€= ME(AE N O) + Ne(As - O) — &
> e (ANO) + p(A—0) —e. [ ]

Thus the o-algebra A contains the Borel o-algebra 3. By construction

=t | 4 and p(O) = p.(0) = \O)

for all open sets O. The process by which p is constructed from p,, generates a
o-algebra A which might be strictly larger than the Borel o-algebra. We restrict
to B.

4 An Auxiliary Positive Linear Functional on C, (RM)+

Denote by C,(RV)* the collection of all nonnegative f € C,(R"). Given a locally
bounded linear functional 7 : C,(RY) — R, set

CoRM)* 5 f — To(f) = sup{IT ()] | |h € C,RY), |h| < f). (4.1)
Note that 7 is assumed to be locally bounded but not to be positive.

Proposition 4.1 The functional T, : C,(RY)* — R is positive and linear.

Proof One verifies that T, (af) = aT(f), for all f € C,(R¥)* and a > 0. To
show that 7', is linear, fix two nonnegative functions f; and f> in C, (R") and select
two functions &, and h» in C,(R") such that |i;| < f;. Then

|hy + ha| < |hi] + |ha] < fi + fo.
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Without loss of generality we may assume that 7'(h;) > 0 fori = 1, 2. Then
T (fi+ f2) = |T(h + ho)| =T (h)| + |T (h2)].
Since |h;| < f; are arbitrary this gives
Iy (fi + f) = T (f) + T (f).

To prove the reverse inequality, select 1 € C,(R") such that [z] < f; + f>, and

set fh
i .
I A Y BN

0 otherwise

One verifies that |2 ;| < f; and therefore

1T < T (h)|+ 1T (h2)| = T (f1) + To(f2)-

Since the function £ is arbitrary, this implies

Ty (fi + f2) =T (f) + T (f2)- m

4.1 Measuring Compact Sets by T

For a compact set K C RY, introduce the class of functions
Ik ={feCo®""| f>=1on K}. (4.2)
Proposition 4.2 Let T be a locally bounded linear functional on C,(RN) and let

be its corresponding, previously constructed Radon measure. Then for every compact
set K ¢ RN

w(K) = flgﬁk T (f). (4.3)
Proof Since K is a Borel set, . (K) = p(K) and
w(K) < inf{\(O) | O openand K C O}.

Fix f € I'kr and € € (0, 1), and consider the open set [ f > 1 — £]. By definition
of FO

h e 1ﬂ[f>lfsl = |h =<

f.

1—¢
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Therefore

wK) < M[f >1—-€e)= sup T(h) =<
hellfs1—q l—e¢

T .(f).

Since f € Ik is arbitrary

1
inf T,.(f), forall € € (0, 1).
£ felk

WK) = 7

From the construction of 1, (K), for any € > 0, there exists an open set O con-
taining K, and such that ;1 (K) > A(O) — €. There exists f € I'» such that f =1
on K. From this and the definition of \(-)

w(K) = sup T(h) —e = Ti(fx) —e = inf T,.(f) —e.
helo ferlk

5 Representing T, on C,(RY)* as in (1.1) for a Unique ;5

Having fixed f € C,(RV)*, we may assume that || f|| = 1 and for n € N set

1

K, = supp{f} - in K;
K;=[f= i] g f) = n Kir = K;
! ~n 0 in RV — K;_,

for j =1, ..., n. One verifies that f; € C,(R¥)™, and

XK, = fi < XK

Let now p be the Radon measure constructed in § 3. From such a construction
and Proposition 4.2

1 1
—u(K;) S/ fidp < —p(Kj-1)
n RN n

1 1
—u(Kj) = T (fj) = —p(K ).
n n
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By construction f = Z'J’.zl fj- Therefore

1
nj

1 n
w(K ) S/R Sfdp < — ZIM(KJA)
N j=

n

S| =

ilu(K,-fl).

=1

n 1
S u(Kp) <Tp(f) < -
j=1 n;

From these, by difference

1

Since T is locally bounded ©(K,) < oo. Therefore, letting n — oo gives

Co®MY 5 f = To(f) = /R .

If 14; and i, are two Radon measures identifying the same 7y, by formula (1.1),
they must coincide on open and compact subsets of R". Thus, by Theorem 11.1 of
Chap. 3, they coincide on the Borel sets. |

6 Proof of Theorem 1.1. Representing T on C,(R")
as in (1.3) for a Unique p-Measurable w

The functional 7 : C,(R"Y) — R can be bounded above as

IT(f)] <sup{IT ()| | |h] < |fI}
= 70fD = [ 1fidn =1 fl s

Therefore T () on C,(R") is dominated by the L'-norm of f, where the integrals
are meant with respect to the Radon measure ;. By the Hahn-Banach dominated
extension theorem (§ 9 of Chap.7) T can be extended to a linear functional T from
L'(R") into R, still dominated by the L'-norm. Then, by the Riesz representation
theorem in L' (§ 11 of Chap.6) there exists a unique y-measurable function w €
L>®(RY) such that

T(f):/ fwdp forall fe L'(RY).
RN

Since T = T on C,(R"), the representation (1.3) holds for 7. If such a represen-
tation is realized by two pu-measurable functions w; and w; in L>°(R"), then
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C,R")> f - / fw; —wy)dp =0.
RN

This implies that w; = w,, p-a.e. in RY. Having identified w, fix an open set
O c RY and let { f,} C C,(O) be such that | f,| < 1and {f,} — sign{w}, u-a.e. in
O. From the construction of x one has u(O0) = u.(O) = A(O), and by dominated
convergence

u(0) = sup T(f)

felo

—sup{ [ fwdu| fec©). maifi<i)

Zlim/ f,,wd,u:/ |lwld .
RW o

Also by the same construction

HO) < / wldp.
O

Thus |w| = 1 p-a.e. in O. |
Corollary 6.1 LetT : C,(RY) — R be linear and locally bounded. There exist two

Radon measures j11 and o in RY, such that

T(f) =/RN fd —/RN fdu, forall fe C,(RY).

Moreover the restrictions of p; to the Borel o-algebra B is unique.

The two Radon measures need not be finite. However they are finite on bounded
sets and the representation formula is well defined since f € C,(R"). If T is linear
and bounded, then the two measures p; and u; are both finite.

7 A Topology for C2°(E) for an Open Set E ¢ RV

A N-dimensional multi-index « of size |« is a N-tuple of nonnegative integers,
whose sum is |a], thatis o = (v, ..., ay), with |a] = Z;V:l . If all the compo-
nents of « are zero, « is the null multi-index. For f e CI*I(E) set

oxttay f

D°f = ————.
/ oxy" .. OxyY



388 8 Spaces of Continuous Functions, Distributions, and Weak Derivatives

If some of the components of « are zero, say for example if «; =0, then
0% f/ 8x7/ = f.If a is the null multi-index, D“f = f. Set

pi(f) =max(ID" f()]:lal < j} j=0.1,....

These arenormsin C5°(E) satisfying p; (f) < pj+1(f)forall f € C°(E). Intro-
duce the neighborhoods of the origin of C;°(E)

1
O;,={feCI(E j <——} j=0,1,...
p={feCE [P < 7
and the neighborhoods B, ; = ¢ + O; of a given ¢ € C;°(E). By construction
Oj+1 C Oj and B, j11 C By ;.

Lemma 7.1 For any f € Oj, there exists an index £ such that f + Oy C O; for
all ¢ > 5/‘-

Proof Having fixed f € O, there exists € > 0 such that
() = :
j — —c.
PR =50
Let £; be a positive integer satisfying £; > max{j + 1; ¢~'}. Then for every g €

Oy, for > ¢

1 1
—e+ < :
j+1 C+1- j+1

pi(f+9 <pi(f)+pilg <

Thus f 4+ g € O;. [ |

Proposition 7.1 The collection B = (B, ;} as ¢ ranges over C);°(E) and j =
0,1,..., forms a base for a topology U of C;°(E). The topology U satisfies the
first axiom of countability and is translation invariant. For all § € (0, 1], the sets
00; € U. Finally §O; for all § # 0, are open, convex, symmetric neighborhoods of
the origin of C°(E).

Proof We verify that B satisfies the requirements (i)—(ii) of § 4 of Chap. 2 to be a base
for a topology. Let B, ; and B, ; be out of 53, and with non-empty intersection. Fix
ne By, N By j,sothatn — ¢ € O; and n — ¢ € O;. There exist positive integers
£; and £; such that

n—e+0,CO; and n—9v+0,CO; forall £>max{{;;}.

Forallsuch £, 7+ O, C ¢+ O;andn+ Oy C 9 + O;.

Let f € O;. There exists an index £(4, j) such that f + Oy C 00;, forall £ >
£(6, j). Therefore, by the construction procedure of the topology I/ from the base
B, the set 60; is open. |
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The space C;°(E) endowed with the topology U/ is denoted by D(E).
Proposition 7.2 D(E) is a topological vector space.

Proof Let ¢y, ¢2 € D(E) and let U be an open set containing ¢; + ¢,. There exists
an open neighborhood of the origin O; such that ¢; 4+ ¢, + O; C U. Since O; is
convex
(p1+30) + (2 +10) Co1+ v+ 0; CU.
This implies that the sum + : D(E) x D(E) — D(E) is continuous. Fix ¢, €
D(E), a real number ), and an open neighborhood of the origin O;. To establish

that the product e : R x D(E) — D(E), is continuous, one needs to show that for
all € > 0 there exists a positive number § = (O}, @,, A, €) such that

Ap € A, +€0;  forall A=A <§

and for all ¢ € ¢, + 6O;. The element ¢, belongs to cO; for some o > 0. Having
fixed € > 0, the number ¢ is chosen from

/\<P - )\()(po = /\(<P - <p0) + ()\ — )\0)800 C )\(5(9, + 60’0(,‘ C 60]‘

for a suitable choice of §. [ |

8 A Metric Topology for C ;°(E)

As an alternative construction of a topology for C;°(E), introduce the metric (§ 15
of Chap.2)
1 pi(f-9

a(f,g9) =2, 2jm-

Since each of the p; is translation invariant, d (-, -) is also translation invariant, and
generates a translation invariant topology in C;°(E). The sum and the multiplications
by scalars, are continuous with respect to such a topology. The continuity of the sum
follows from Proposition 14.1 of Chap. 2. The continuity of the product follows from
the definition of p; and d(-, -). Thus C5°(E) equipped with the topology generated
by d(-, -) is a metric, topological, vector space.

8.1 Egquivalence of These Topologies

A base for the metric topology of C;°(E) is the collection of open balls

By(p) = {f € CX(E) | d(f. ) < p}
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for ¢ € C;°(E) and rational p € (0, 1). For fixed j € N, the ball B, centered at the
origin of C$°(E) and radius
1

)

is contained in O;. Indeed for every f € B,

1 pi(H) - 1

25 T ) G

From this

pi(f) 1
<

. 1
T+p,00) 26+ o PO=5

j+1

Thus f € O;. Vice versa, every ball B, about the origin, contains an open neigh-
borhood of the origin O; for some j € N. Indeed, let £ be a nonnegative integer such
that p > 4(£ 4+ 1)~!. Then, for every f € O,

L opin tpH 2 1
A0 =3 F s o Thpy oy T ST <

provided ¢ is sufficiently large. Since the topologies generated by the base B and
the one generated by the metric d(-, -) are both translation invariant, every open set
¢ + O; € Bcontains a ball B,(¢) and viceversa.

8.2 D(E) Is Not Complete

Cauchy sequences in D(E) need not converge to an element of CS°(E). As an
example let £ = R. Having fixed some f € C;°(0, 1) consider the sequence

n

1
fnx) =2 ;f(x - ).

j=1

One verifies that f, € C;°(R) and that { f,,} is a Cauchy sequence in D(RR). How-
ever { f,} does not converge to a function in C;°(R).

For an example in bounded domains, let E = B; be the open unit ball centered at
the origin of RY. The functions

{ n? }f0r|| n—1

X B ——— X <

Pl = = 12 "
.

0 for |x| > ——
n

fn(x) =
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are in C5°(By) and form a Cauchy sequence in D(B;). However their limit is not in
C2°(By). An indirect proof of the non completeness of D(E) will be given in § 9.2
by a category argument.

9 A Topology for C3°(K) for a Compact Set K C E

For a compact subset K C E denote by Co°(K) the space of all f € C;°(E) whose
support is contained in K. On C;°(K) introduce the norms

Pr:j(f) = max{| D" f (x) |lal<j}, j=012,...

the neighborhoods of the origin of C3°(K)

1 .
OK;jZ{fGC:;o(K)‘PK;j(f)<j?} j=0,1,2,...

and the neighborhoods B., ; = ¢ + Ok, of a given ¢ € CS°(K). Proceeding
exactly as in the previous sections, the collection By = {Bg.,,j} as ¢ ranges over
C>°(K) and j ranges over {0, 1, ...}, forms a base for a translation invariant, first
countable topology Uk of CS°(K). Moreover for all § # 0 the sets 6Ok ; are open.
Finally CS°(K) equipped with the topology Uk is a topological vector space, and is
denoted by D(K). A topology in C°(K) can also be constructed by the the metric

1 pei(f—9)
de(f.9) =2, — ———F.
KD =2 S T s ()
The equivalence of Uk with the metric topology generated by dg can be estab-
lished as § 8.1.

9.1 D(K) Is Complete

The notion of convergence in D(K) can be given in terms of the metric dg (-, -),
that is a sequence { f,,} of functions in D(K) converges to some f € D(K) if and
only if {D*f,} — D®f uniformly in K, for every N-dimensional multi-index o.
With respect to such a notion of convergence D(K) is complete. Indeed for every
Cauchy sequence {f,} in D(K) the sequences {D® f,} are Cauchy in C(K') for
every compact subset K’ C E containing K, for all multi-indices . Thus {f,} — f
and {D" f,} — f, in the uniform topology of C(K’), for functions f, f, € C(K’),
vanishing outside K . By working with difference quotients, one identifies f,, = D" f.
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9.2 Relating the Topology of D(E) to the Topology of D(K)

The construction of I/ and Uy, by means of the open sets O; in D(E) and Ok in
D(K), implies that the topology Uy is the restriction of U to D(K). Equivalently
Uy =UND(K). As K ranges over the compact subsets of E, each D(K) is a
closed subspace of D(E). Moreover D(K') does not contain any open set of D(E).
Therefore D(K) is nowhere dense in D(E). By construction, D(E) = UD(K,) for
a countable collection { K} of nested, compact subsets of E, exhausting E. If D(E)
were complete, it would be the countable union of nowhere dense sets, against the
Baire Category Theorem.

10 The Schwartz Topology of D(E)

The topology of D(E) allows, roughly speaking, for too many sequences { f,,} in
C2°(E) to be Cauchy. Equivalently, it does not contain sufficiently many open sets
to restrict the Cauchy sequences to the ones with limit in C;°(E). This accounts for
its lack of completeness. A topology W by which C5°(E) would be complete, would
have to be stronger than ¢/, thatis &/ C WW. However since the topology of each D(K')
is completely determined by I/, such a stronger topology WV, would have to preserve
such a property. Specifically, when restricted to D(K), it should not generate new
open sets in D(K).

To construct W, define first the collection V, of open, base-neighborhoods of the
origin. A set V containing the origin, is in V, if and only if

i. Visconvexand 0V C V forall § € (0, 1]
ii. VN'D(K) € Uk for all compact subsets K C E.

The collection V, is not empty, since O; €V, for all j € NU {0}. The base-
neighborhoods of a given ¢ € C°(E) are of the form ¢ + V for some V € V,.

Proposition 10.1 (Schwartz [141]) The collection V = {¢ + V'} as p ranges over
CX°(E) and V ranges over V,, forms a base for a topology VW on C;°(E).

Proof Let ¢ + Vi and ¢, + V, be any two elements of )V with non empty intersec-
tion. Choose
ne 1+ Vi) N(p2+ V2)

and let K be a compact subset of E such that

supp{1} U supp{y>} U supp{n} C K.

Then n — ¢; € D(K), and n — ¢; € V; N D(K) for i =1, 2. Since V; N D(K)
are open in D(K), there exists € > 0 such that
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n—@i€(1-9V,NDK)C (1-9)V,.
Since the sets V; are convex
n—g+eViC(l—-¢e)V,+eV.
From this, n 4+ ¢V; C ¢; + V;, and
n+e(VinNVy) C (p1+ Vi) N2+ V).

Since V), is closed under intersection, V; NV, € V,,. [ |

The continuity of the sum and multiplication by scalars, with respect to such a
topology, is proved as in § 7. Thus C;°(E) equipped with the topology W is a
topological vector space and is denoted by D(E).

Proposition 10.2 The restriction of W to D(K) is Uk.

Proof The inclusion Y C W, implies the inclusion Ux C W () D(K). For the con-
verse inclusion, let W € W and select ¢ € W ND(K). There exists V € V, such
that (o + V) C W, and for such V

e+ V)NDK) = p+ VNDK).

Therefore, (p + V) N D(K) € Uk, since V N'D(K) is openin D(K). Thus W N
D(K) € Uk. |

By construction &/ C W. In the next section it will be shown that the inclusion is
strict.

11 D(E) Is Complete

A set B C D(E) is bounded if and only if, for every W € WV, containing the origin,
B C §W for some § > 0.

Proposition 11.1 Let B be a bounded subset of D(E). There exists a compact subset
K C E, such that B C D(K).

Proof Assuming that such a K does not exists, there exists be a countable collection
{K,} of compact, nested subsets of E, exhausting E, a sequence of functions { f,} C
B, and a sequence of points {x,}, such that x, € K,+; — K, and | f,(x,)| > 0. By
construction the sequence {x,} C E has no limit in E.
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Let V be the collection of functions f € D(E) satisfying

| f (x| < lIfn()c,,)l forall n € N.
n

Such a set is convex, contains the originand V C V forallé € (0, 1].Let K C E
be compact. Since finitely many points {x, } are in K, there exists d¢ > 0 such that
V ND(K) = dgOk.o. Therefore V N D(K) € Uk. Since K is arbitrary, V € V,.On
the other hand B is not contained in §V for any § > 0. |

11.1 Cauchy Sequences in D(E) and Completeness

A sequence {f,} C C;°(E) is a Cauchy sequence in D(E) if for every base-
neighborhood of the origin V € V,, there exists ny € N, such that f, — f,, € V
for all n, m > ny. Therefore a Cauchy sequence in D(E) is a bounded set in D(E).
In this sense the enlargement of the topology of C;°(E) from U to WV, places stringent
restrictions on a sequence { f,,} to be Cauchy. Indeed if {f,} is a Cauchy sequence,
then by the previous proposition, {f,} C D(K) for some compact subset K C E.
Thus if { f,,} is a Cauchy sequence in D(E), the notion of convergence coincides with
that of the metric topology of D(K), since the restriction of W to D(K) is precisely
the metric topology Uk .

Corollary 11.1 D(E) is complete.

Corollary 11.2 A sequence{ f,} C D(E) is Cauchy, ifand only if there exists a com-
pact subset K C E, and a function f € D(K), such that {D* f,} — D® f uniformly
in K for all multi-indices o

11.2 The Topology of D(E) Is Not Metrizable

There exists no metric d (-, -) on C,°(E) that generates the same topology W. If such
a metric were to exist, then D(E) would be a complete metric space and hence of
second category. Let {K, } be a countable collection of compact, nested subsets of
E, exhausting E. Then D(E) = | J D(K,) would be the countable union of nowhere
dense, closed subsets, thereby violating Baire’s Category Theorem.

Corollary 11.3 The inclusion U C W is strict.

Proof If YW = U, the topology VW would be metric. |
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Aset B C D(K) is bounded if and only if for every neighborhood of the origin Og
there exists a positive number § such that B C dOk. This in turn implies that there
exists positive numbers \; such that

pk.i(f) <XA; forall f e B. (12.1)

12.1 Distributions in E

A continuous linear functional 7 : D(E) — R maps bounded neighborhoods of the
origin of D(E) into bounded intervals about the origin of R (Proposition 10.3 of
Chap. 2). A bounded neighborhood of the origin of D(E) is a bounded neighborhood
of the origin of D(K) for some compact subset K C E. Therefore T is continuous if
and only if its restriction to every D(K) is a continuous functional 7k : D(K) — R.
Since D(K) is a metric space the continuity of 7' can be characterized in terms of
sequences.

Proposition 12.1 A linear functional T in D(E) is continuous if and only if for every
sequence { f,} converging to zero in the sense of D(E), the sequence {T (f,)} — 0
in R.

Corollary 12.1 A linear functional T in D(E) is continuous if and only if for every
compact subset K C E and for every sequence { f,,} C D(K) converging to zero in
D(K), the sequence {T (f,)} — 0in R.

A distribution on E is a continuous linear functional? : D(E) — R. Its action on
¢ € D(E) is denoted by either symbol T'[¢] = (T, ¢). The latter is also referred to
as the distribution pairing of T and ¢. The linear space of all the continuous, linear
functionals 7' on D(E) is denoted by D’(E). The topology on D'(E) is the weak*
topology induced by D(E). Each element ¢ € D(E) can be identified with a linear
functional on D’(E) by the distribution pairing. The weak* topology of D' (E) is the
weakest topology on D’ (E) by which all elements of D(E) define a continuous linear
functional on D’ (E) by the distribution pairing. With respect to such a topology, sets
of the type

0— collection of 7 € D’'(E)such that (T, ¢) € (a, 3)
- for some «, 3 € R and some ¢ € D(E)

are open. A base for the weak™ topology of D'(E) is the collection 55 of finite
intersections of these open sets. This induces a notion of convergence in D'(E),
by which {T,,} — T € D'(E) if and only if lim(T,, — T, ¢) = 0 for all p € D(E).
Given Radon measures £ and v in RV, the formula
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/Esod(u—V)= (u—v,0) @€ D)

identifies an element of D’(E). As an example, for v = 0 and ;¢ = §,,, for a fixed
X, € E, the evaluation map (d,,, ) = ©(x,) is a distribution. If v is the Lebesgue
measure and f € L'(E) with respect to v, then = fdv is the difference of two
signed Radon measures and identifies an element of D'(E). Thus L' (E) — D'(E)
up to an identification.

12.2 Continuous Linear Maps T : D(E) — D(E)

Proposition 12.2 A linear map T : D(E) — D(E) is continuous if and only if is
bounded.

The statement holds true for maps 7' between metric spaces. The proof consists in
establishing that if 7' is bounded, it is restricted to some D(K), which is a metric
space.

Proof Continuity of T implies 7 is bounded. To prove the converse, if B C D(E)
is bounded, it is a bounded subset of D(K) for some compact subset K C E. Since
T (B) is bounded in D(E), itis a bounded subset of D(K"), for some compact subset
K’ C E. Since both D(K) and D(K") are metric spaces, the restriction of 7 to D(K)
is continuous (Propositions 10.3 and 14.2 of Chap. 2). |

Corollary 12.2 The differentiation maps D® : D(E) — D(E) are continuous for
every multi-index c.

Proof Let B C D(E) be bounded and let \; be the positive numbers claimed by the
characterization (12.1) of the bounded subsets of D(E). Then

Pk (DY) < Ajjal-

Thus D*(B) C B’ for some bounded set B’ C D(E). [ |

13 Distributional Derivatives
Let o be a multi-index and let f € C!*/(E). By integration by parts
/ D fodx = (—1) / fD%pdx forall p € D(E).
E E

This motivates the following definition of derivative of a distribution. The deriv-
ative DT of a distribution T', is a distribution acting on ¢ € D(E) as
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(DT, ) = (—=1)!*NT, D*p) forall ¢ € D(E).

Such a definition coincides with the classical one, when 7' € C!®/(E). One also
verifies the formula D*(D’T) = D”(DT), valid for any pair of multi-indices o
and 5. For f € LIIOC(E ) the derivative D f is that distribution acting on ¢ € D(E),
as

(D“f, @) = (—1)‘“‘/EfDa<pdx.

The distributional derivative of f(x) = |x| for x € R, is the Heaviside graph

1 ifx>0
H(x)=11[0,11if x =0
-1 if x <0.

Taking now the distributional derivative of H, gives

0

H'[p] = —/ H(s)¢'(s)ds =/ o'ds —/ P'ds = 2p(0).
R —00 0

Therefore |x|” = 26, in the sense of D'(R).

Two distributions 7 and 75 in D’(E) are equal if and only if (T3, ¢) = (T3, ¢)
for all p € D(E).If T € D'(E) coincides with a function in C¥(E) for some posi-
tive integer k, then the distributional derivatives DT, for all multi-indices || < k,
coincide with the classical derivatives of T'.

The product of two distributions is, in general, not defined. However, if ¢y € D(E)
and T € D/(E) the product ¥ T is defined as that distribution acting on ¢ € D(E),
as

(WT, ) =(T,pyp) forall ¢ € D(E).
Let J. be the Friedrichs mollifying kernel introduced in § 18 of Chap.6. For
T € D'(RV), the convolution 7. = T * J. is defined as that distribution acting on

v € DRN) as

(T * Jo(- = x),0) = (T, px Jo(x — ).

To justify such a formula, assume first that 7 € L} .(R"). Then for every ¢ €
DRY)

(T, % J.(x — ) = /RN T(x)/RN () J-(x — y)dydx

= [ ([ 70000 pax)eray
RN RN
= (T % 1. =), 9).
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More generally, the convolution of a distribution 7 with a kernel K € L! (RV) is

loc
defined by the formula
(T*K(—x),0)=(T,pxK(x—"-)) forall p € DRY)

provided proper assumptions are made on K to insure that K % ¢ € D(RV). For
example T * D*J.(- — x) is well defined with K = D“J.. One verifies that x —
T % J.(- — x) € C®(RY), by the formula

D*(T % J.(- —x)) = T % D*J.(- — x).

Moreover T, — T in D'(R"). Thus a distribution T can be approximated, in the
weak* topology, by functions in C*®(RY).

14 Fundamental Solutions

For a multi-index « let a,, denote an N-tuple of real numbers labeled with the entries
of a, as in a, = (aq,, - .-, da,)- A linear differential operator £ of order m, with
constant coefficients, and its adjoint £* are formally defined by

L= 3 a,D" L= 3 (=D%g,D".

lal<m la|<m
Let f € D'(E) be fixed and consider formally the partial differential equation
Lu)=f in E.
A distribution u € D’'(E) is a solution of this equation, if

ulL* (@] = flp]l  forall ¢ € D(E).

If f = J, the corresponding solution is called a fundamental solution of the oper-
ator £ with pole at x. When regarding x as varying over E a fundamental solution
of L is a family of distributions, parameterized with x € E, satisfying

Lyu = d, inthe sense u[ﬁi‘,(gp)] = p(x) forall p € D(E).

Here £, and L} are the differential operator £ and £L* where the derivatives are
taken with respect to the variables y.

A linear differential operator of any fixed order m, with constant coefficients
admits a fundamental solution [40, 100].

Here, as an example, we compute the fundamental solution of two particular linear
differential operators.
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14.1 The Fundamental Solution of the Wave Operator in R?

Let E = R?, fix (¢, ) € R? and set

lif x>&and y >
0 otherwise.

u(x,y) = [

Compute in D'(R?)

821/! o0 [e%s)
= dxdy = wdxdy = o€, n).
axaym //szyxy /n /5 rydxdy = p(§, 1)

Therefore

Ou

—— =0, in D' (R?).
axay &m n ( )

For fixed (£, ) € R? consider now the function

1 .
_ it lx=&l<y—n
ulx, y) = [O otherwise.

This is the characteristic function of the sector S, delimited by the two half
lines originating at (&, 77)

Zén)={x—y=£—n}ﬂ{x>€}
fn) {X+Y—§+U}H{X<§}

The exterior normal to such a sector is
(=1, -1)

1, —1
( ) on Z+ and ——=—= on (

V2 &m V2 &m-
Compute in D'(E)

( By a el [ ]—// u(pyy — @xx)dxdy = = //Sw(%y Prx)dxdy

~ 5 [, eoreds+ = [ oo—eas

(5 m) (5 )
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where s is the abscissa along Z(im) and ds is the corresponding measure. On Eé’n)
one computes ¢, £ ¢, = V24 (s). Therefore

Ou  Pu

8_);2 — @ = (5(5’7]), in D/(E)

14.2 The Fundamental Solution of the Laplace Operator

Forx,y € RV and x # y, set

1 1

if N>3
(N = 2wy |x — N2
F(x;y) = (14.1)

—1
2w

where wy is the area of the unit sphere in R"Y. Compute

1 —
V,F(riy) = ———2_ forx#y, Nz2 (14.2)
wy |x =y
From this
AyF(x;y) =divy VyF(x;y) =0 for x #y, N=>2. (14.3)

Proposition 14.1 (Stokes Formula)! For all ¢ € C°(R") and all x € RN
o)== [ Fosnapdy. (144
RN
Proof Forafixedx € RY, thefunctiony — F(x; y)is integrable about x. Therefore

/ F(x; y)Apdy = lim F(x; y)Apdy
RN =0 JRVN _B_(x)

where B.(x) is the ball centered at x and of radius €. The last integral is transformed
by applying recursively the Gauss—Green Theorem

IThis is a particular case of a more general Stokes representation formula when ¢ is not required
to vanish on OF ([34], Chap. II).



14 Fundamental Solutions 401

(x—y)

/ F(x; y)Apdy = / F(x; )V dy
RN —B.(x)

[x—yl|=e

—/ VyF(x;y) - Vody
RN —B.(x)

=/ F(x;y)Vw-(x;y)
[x—yl=¢

- / OV F(x;y)-
[x—y|=¢

+/ @A F(x; y)dy
RN —B.(x)

= Il,e + 12,5 + I3,6~

dy

(x —y)dy
g

The last integral is zero for all € > 0 in view of (14.3), since the domain of inte-
gration excludes the singular point y = x. Using (14.1) for |x — y| = € one com-
putes lim._,¢ I; . = 0. The second integral is computed with the aid of (14.2) for
|x — y| = ¢, and gives

1
he=—— d
e v /Ul:ssa y
~1 1
= — — o) ]dy — —— dy.
SN »/Ix—_v—e [ = p(x)]dy wNEN_l/ p(x)dy

[y—x|=¢

The last integral equals ¢ (x) for all € > 0, whereas the first integral tends to zero as
¢ — 0, since its modulus is majorized by sup,_,_. [¢(y) — @(x)]. |

The Stokes formula can be rewritten in terms of distributions as
—A F(x;y) = dy.

Therefore F(-; -) given by (14.1) is the fundamental solution of the Laplace oper-
ator.

15 Weak Derivatives and Main Properties

Letu € L} (E) and let a be a multi-index. If the distribution D®u coincides a.e.,

with a function w € L] _(E), then w is called the weak D“-derivative of u and

/uD”<pdx = (—1)'“'/ wedx  forall ¢ € D(E).
E E
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Ifue Cllgcl (E) then w coincides with the classical D® derivative of u. Let 1 <

p < oo and let m be a nonnegative integer. A function u € L?(E) is said to be in
WP (E), if all its weak derivatives D“u for all |o| < m are in L? (E). Equivalently

([148])
the collection of all # € L?(E)such that

W™P(E) =
(£) Deu € LP(E) forall |a| <m

A norm in W™ P(E) is

lullmp = 22 II1D%ullp.

|aj<m
If m =0, then W"™P(E) = LP(E) and || - [lo,, = || - ||, Define also

H™P(E) = {the closure of C*°(E) with respect to || - ||m,p}
WP (E) = {the closure of C;°(E) with respect to || - [} -

Proposition 15.1 W™ P (E) is a Banach space.

Proof 1If {u,} is a Cauchy sequence in W™ 7 (E), the sequences { D“u, } are Cauchy
in LP(E) for all multi-indices 0 < |a| < m. By the completeness of L7 (E), there
existu € L?(E) and functions u,, € L?(E), such that {&#,} — u and {D%u,} — u,
in LP(E). For all p € D(E)

/uagadx =lim/ D%u,pdx
E E

=1im(—1)'“'/unm<pdx=(—1)'a'/uD“<pdx.
E E

Therefore u,, is the weak D®-derivative of u. |
Corollary 15.1 H™P(E) Cc W™P(E).

Theorem 15.1 (Meyers—Serrin [107]) Let 1 < p < oo. Then C*°(E) is dense in
W"™P(E), and as a consequence H™P(E) = W™P(E).

Proof Having chosen u € W"P(E) and ¢ € (0, 1), we exhibit a function ¢ €
C*(E) such that lu — ||, <. Forj=1,2,..,set

1
E;={x € E |dist{x,0E} > - and |x| < j}, E,=E_;=0.
J

Setalso O; = Ej;1 N Ej_l. The set O; for j > 2 is the set of points of E such
that

1 1
—— <dist{x,0E} < —— and j—-1l<|x|<j+1
Jj+1 j—1
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The sets O; are open and their collection ¢/, forms an open covering of E. Let @
be a partition of unity subordinate to I/ and let v; be the sum of the finitely many
¢ € @, whose support is contained in O;. Then ¢; € C°(O;), and > ¢;(x) =1,
for all x € E. If ¢; are positive numbers satisfying

1

0< Ej S ——

G+DG+2)
the mollification J;, * (¢»;u) has support in E;ioN E;_z =¢&;. Since Yju e
W™ P (E), one may choose ¢; so small that

1
”JE/ * (1/}1‘14) - 1/}ju||m,p;£j < 55-
Setp=> Je; * (1 ;u), and observe that within any compact subset of E, all the
terms in the sum vanish except at most finitely many. Therefore ¢ € C*°(E). For

X € Ej
j+2 jt2

e(x) = > Jx (Wu)(x) and  w(x) = Y i (x0)u(x).
i=1 i=1

Therefore, forall j =1,2,...

Jj+2 1
= pllm.pg; < 22 ey (i) = il pre < €3 5
i=1
From this, by monotone convergence, [[u — ||, < €. |

16 Domains and Their Boundaries

Let E denote an open set in RY and let O denote its boundary. We list here some
structural assumptions that might be necessary to impose on JE. A countable col-
lection of open balls {B,(x;)} centered at points x; € JF and radius p is an open,
locally finite covering of OE if OE C |J B,(x;) and there exists a positive integer k
such that any (k + 1) distinct elements of {B,(x;)} have empty intersection.

16.1 OE of Class C!

The boundary OE is said to be of class C! if there exist a positive p and an open,
locally finite covering {B,(x;)} of OF such that for all x; € JE the portion of OF
within the ball B,(x;) can be represented, in a local system of coordinates with the
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origin at x;, as the graph of function f; of class class C' in a neighborhood of the
origin of the new local coordinates and such that f;(0) = 0 and Df;(0) = 0. Denote
by K the (N — 1)-dimensional domain where f; is defined and set

IOEN: = supmax [Dfjl. (16.1)
J U
This quantity depends upon the choice of the covering {B,(x;)}. However, hav-

ing fixed one such covering, it is invariant under homotetic transformations of the
coordinates. In particular it does not depend upon the size of E.

16.2 Positive Geometric Density and O E Piecewise Smooth

The boundary OF satisfies the property of positive geometric density at some x, €
OE, with respect to the Lebesgue measure p in RY, if there exists 6 € (0, 1) and
po > 0 such that for every ball B,(x,) centered at x,, and radius p < p,

1(E N By(x,)) < (1= O)p(B,(x,)). (16.2)

The boundary OF satisfies the property of uniform geometric density, if such
inequality is satisfied for all x, € JE for the same value of p, and 0.

16.3 The Segment Property

The boundary OFE has the segment property if there exists a locally finite, open
covering of OE with balls { B;(x;)}, a corresponding sequence of unit vectors n; and
a number t* € (0, 1), such that

x € ENB,(x;) = x+1; e E forall t e (0,1%). (16.3)
Such a requirement forces, in some sense, the domain E to lie, locally on one side

of its boundary. For example, the unit disc from which a radius is removed, does not
satisfy the segment property. For x € R set

1
h(x) = [msmz Lo =0 p iy sk} (164)
0 for x =0,

The bidimensional set E satisfies the segment property.
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16.4 The Cone Property

Let C, denote a closed, circular, spherical cone of solid angle w, height 4 and vertex
at the origin. Such a cone has volume

1(C,) = %hN. (16.5)

A domain E has the cone property if there exist some C,, such that for all x € E,
there exists a_circular, spherical cone C, with vertex at x and congruent to C,, all
contained in E.

16.5 On the Various Properties of OE

The cone property does not imply the segment property. For example the unit disc
from which a radius is removed, satisfies the cone property and does not satisfy the
segment property.

The segment property does not imply the cone property. For example the set in
(16.4), does not satisfy the cone property.

The cone property does not imply the property of positive geometric density. For
example the unit disc from which a radius is removed, satisfies the cone property
and does not satisfy the property of positive geometric density.

The property of positive geometric density does not imply the cone property. For
example the boundary of the cusp-like domain

E={(,x)eR |0<x <1;0<x <x(} (16.6)

for some «v > 1, satisfies the property of positive geometric density, but not the cone
property.

The segment property does not imply that OE is of class C' as indicated by the
domain in (16.4). Conversely, OF of class C' does not imply the segment property.
For example let

E={"+y <1} —{x’+y* =1} (16.7)

The boundary of E is regular but E does not satisfy the segment property.

17 More on Smooth Approximations

The approximations constructed in the proof of the Meyers—Serrin’s Theorem, might
deteriorate near JF and it is natural to ask whether a function in W7 (E) can be
approximated, in the sense of W7 (E) by functions that are smooth up to E. This
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in general is not the case as indicated by the following example. Let E as in (16.7)
and set | 5 5
I for ; <x"4+y" <1
— 4
”(x’y)_[o for x2+yr < i

The function u is in W7 (E) but there is no smooth function up to OE that approx-
imates u in the norm of W7 (E). This example shows that such an approximation
property is in general false for domains that do not satisfy the segment property.

Proposition 17.1 Let E be a bounded domain in RN with boundary OE satisfying
the segment property. Then C>°(RY) is dense in W™ P (E) for 1 < p < oo.

Proof Since OE is bounded, the open covering claimed by the segment property is
finite, say for example

{B;(x1), ..., B;(x,)} forsome n € N andsome ¢ > 0. (17.1)

Denote by n; the corresponding unit vectors pointing inside £ and that realize the
segment property. By reducing ¢ if necessary we may assume thatforall j = 1,...,n

forall x € 9E N By, (x;) x+7n; € E forall 7€ (0, 8).

Construct an open covering U of E, by
U = (B, Bu(x1), ..., Bu(x)}, By, =E — | Bi(x)). (17.2)
j=1

Let @ be a partition of unity subordinate to ¢/, and for j =1,...,n, let 1;
be the sum of the finitely many ¢ € @ supported in By (x;). For j = 0 define v,
analogously by replacing By (x;) with B,. Set

.., I

v @Y (x) for xe B
uj(r) = [ 0 otherwise =0,1.

Let I'; be the portion of 9 E within the ball B4, (x;). By definition of weak deriva-
tive u; € W™P(RY — TI7;). To prove the Proposition, having fixed £ > 0, it suffices
to find functions ¢; € C°(R") such that

3 .
N —@illm,p, < m forall j =0,1,...,n.

Indeed putting p = > ; it would give

j=n

n
”u - 99||m,p = Z ”uj - @j“m,p <E&.
j=0
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For j = 0 such a ¢, can be constructed by a standard mollification since u, is
compactly supported in E. To construct ¢;, for j € {1,2,...,n}, move I';, towards
the outside of E by setting

Ii.=1T;—mn(x;) for 7€ (0,8).
Then define
ujr(x)=u;j(x+7n(x;)) forall x e RN — r;..
By definition of weak derivative u; , € W™?(RY — I'; ;) and
D%uj  (x) = D%u; (x + Tn(xj)) forall x e RN — I,

Since the translation operation is continuous in L?”(E), there exists 7. € (0, 4¢),

such that R
”u],r u_]”m,p,E = 2(!’1 + 1)

The function ¢; € C3°(RY) is constructed by the mollification ¢; = Js * u; ;,
where for a fixed 7 € (0, 7.) the positive number § is chosen so small that

9
Jsxujr —u;j E S ———.
” J.T j,’T”l‘ﬂ,p, = 2(l1+ ]) m

18 Extensions into RY

Proposition 18.1 ([93]) Let E be a bounded domain in RN with boundary OE
satisfying the segment property and of class C', and let {B, (xj)}i=y be a finite open
covering of OE with balls of radius t centered at points x; € OF as in (17.1). A
function u € WP (E), for some 1 < p < oo, admits an extension w € W,,l’p(RN)

such that
lwlpry <y +NOENDNullp.£

1 (18.1)
|Dw iz <3(1+ NOEND (1 Dullp.z + 1l i)

where vy depends only upon N, p, n and the number of local overlaps of the covering
(Bi(x)Y'_.

Proof By density we may assume u € C'(E). Consider first the following spe-
cial case. For x = (x1,...,xy_1) and R > 0 let Bg = [|x| < R] be the (N — 1)-
dimensional ball of radius R centered at the origin. Set also
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QF =Br x[0,R), Qp=DBgx(—R,0l, Qr= 0}V Q5%

Assume that, as a function of the first (N — 1) variables, x — u(x, xy) is com-
pactly supported in Bg, and that u(x, R) = 0. Thus u vanishes on the top and on the
lateral boundary of Q7 and it is of class C' up to xy = 0. The claimed extension,
in such a case is

u(x, xy) = —3ux, —xy) + 4u(x, —%xN) xy <0. (18.2)

The function w defined as u within Q) and as # within Q, satisfies the indicated
requirements. The general case is proved by a local flattening of OE. Referring back
to the proof of Proposition 17.1, consider the finite covering (17.2), and construct
the functions 1);. These can be chosen to satisfy

sup |Dvy;| < J for a positive constant .
B t
Zl(xj)

Represent OE N B;(x;), in a local system of coordinates as the graph of
xy = f;(X), for X = (x1, ..., xy_1), where f; is of class C' within the (N — 1)-
dimensional ball B;. For each j fixed, flatten F N B;(x;) by introducing the system
of coordinates

V1 - yv-1 y8) = (X 2y — fi(2)).

This maps OF N B;(x;) into B, and, by taking ¢ even smaller if necessary,
E N B(x;) is mapped into Q; = B, x [0, t). The functions u?); obtained from
the uv; with these transformations, are of class C!in Q;*, and X — uy; (X, yn)
has compact support in B,. Next extend ut); with a function w; of class C' in
the whole cylinder Q;, = B; x (—t,t), by the procedure of (18.2). Let w; denote
the function obtained from w; by the change of variables that maps Q;" back to
E N B, (x;). The extension claimed by the Proposition can be constructed by setting
w = u, + Z;f:l w;. Indeed foreach j =1,....n

lwillp:o, < YL+ NOEN D Null p: 0B, (x))
_ 1 (18.3)
1D;l0, = 7(1 + NIEND (I Dull iy + £ el pirrmcsy))

and each B, (x;) overlaps at most finitely many balls B, (x;). [ |

Remark 18.1 The boundedness of E is not needed. It suffices to require that OE
admits a locally finite, open covering. In such a case however one has to assume
ue Whr(E).
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Remark 18.2 1f E is the ball Bg, the balls B, (x;) can be chosen so that, for example,
t = éR and the number of their mutual overlap can be estimates by an absolute
number depending only on the dimension and independent of R. Then the extension
w € WHP(RN) of a function u € W'?(Bg) can be constructed as to satisfy

lwll piry < ylluell p; e

1 (18.4)
1Dwlper <y (I1Dullyizy + s, )

where + is an absolute constant depending only on N and independent of R.

19 The Chain Rule

Proposition 19.1 Letu € WP (E) forsome 1 < p < oo, andlet f € C'(R) satisfy
sup | f'| < M for some positive constant M. Then the composition f(u) belongs to
WUP(E) and Df (u) = f'(u)Du.

Proof Let C*(E) D {u,} — u in W"?(E). By possibly passing to a subsequence
we may assume that {u#,} — u a.e.in E. Then {f (u,)} — f(u) and
lim | Df (u) — f'w)Dull, = lim || f'(up) Duy — f'(w)Dull,
< lim M| Du, — Dull, +lim ||| f' () = £ Gl Dul| .
The sequence {(f’(u,,) — f’(u))p |Du|1’} tends to zero a.e. in E. Moreover it is

dominated by the integrable function (2M)? | Du|?. Therefore Df (u,) — f'(u)Du
in LP(E). Also, for all ¢ € C°(E)

lim/ Df(u,)pdx = —/ fw)Dydx.
E E

Thus Df () = f'(u)Du in D' (E). (]

Proposition 19.2 Let u € W'"P(E) for some 1 < p < co. Then u*, u~ and |u|
belong to WP (E) and
Du a.e. [u> 0] _ —Du a.e. [u <0]
+ _ _
Du _[0 a.e. [u <0] Du _[ 0 ae [u>0]

Du a.e [u> 0]
Dlu| = 0 ae [u=0]
—Du a.e. [u <0].
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Proof Fore > 0 let

Vul+e2—cifu>0

ff(”):[o if u < 0.

Then f. € C'(R) and | f| < 1. Therefore for all ¢ € Co°(E)

uDu
f-w)Dypdx = —/ Df.(uw)pdx = —/ _ 7T ody.
/E 7 E v [u>0] v u? +62w

Lettinge — 0

/u+D<pdx = —/ Dupdx.
E [u>0]

Thus the conclusion holds for u*. The remaining statements follow from u~ =
(—u)T and |u| =ut +u". [ |

Corollary 19.1 Letu € W'“?(E). Then Du = 0 a.e. on any level set of u.

Corollary 19.2 Let f, g € W'"P(E). Thenmax{ f; g} andmin{ f; g} arein W' P (E)
and
Df ae. [f > g]
Dmax{f; g} =1 Dg ae [f <yl
0 ae [f=gl

A similar formula holds for min{ f; g}.

Proof Tt follows from Proposition 19.2 and the formulae

2max{f; g} =(f+9 +|f —gl
2min{f; g} =(f+9 —|f — gl [ |

20 Steklov Averagings

Regard u € L?(E) as defined in the whole RV by setting it to be zero outside E. For
h # 0 set

1 xi+h
/ u(xl,...,é“,-,...xN)dfi.

up(x) = 7

i

These are the Steklov averages of u with respect to the variable x;.
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Proposition 20.1 Letu € LP(E) for some p € [1,00). Thenuy,; — win LP(E) as
h— 0.

Proof For almost all x € E

1 xi+h
i) = a0l =[5 [ ) — w0

1 h
= ‘—/ [u(...,x,-—i—a,...)—u(x)]do‘
h Jo

1 h
< —/ T, u(x) — u()|do
i

1 I12|
< W(/O | T, iu(x) —u(x)|? dJ)

where T} ; is the translation operator in L? (E) with respect to x;. Taking the p-power
and integrating in dx over E, gives

1/p

lupi —ullp, < sup [Ty iu — ullp.
lo|<|h| |

Ford >0let Es={x € E | dist{x; OE} > d} and assume that § is so small that
E; # (. Denote by h = (hy, ..., hy) € RY a vector of length |h| < 4, and set

uCooo,xi+hioo)—uo,x,..) Oup, i

Wy, ,i(X) =
i(x) I Bx,
a.e.in E;. If h; = 0 set wy; = 0 and denote by wy, the vector of components wy, ;.

Proposition 20.2 Letu € L?(E) for some 1 < p < 0o and assume that there exists
positive constant C,, and 6,, such that

IWnllp.e, <Cp, forall 6 <6, andall |h| < 9.

Then u € WhP(E) and IDull, < C,. If E is of finite measure, the conclusion
continues to hold for p = oo.

Proof Fix § € (0, 6,) and ¢ € C°(E;). For fixed i € {1,..., N}

lim Wy, ipdx = — lim up, i Dipdx = —/ uD;pdx.
hi—0 J g hi—0 J g E
The family {wy, ;} for |h;| € (0, §), is uniformly bounded in L?(Ejs). Therefore
for a subsequence, relabelled with 4, {wy, ;} — w;, weakly in L?P(Ej5). For such a
subsequence
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h;—0

im [ wy, pdx = / w; pdx forall ¢ € CS°(Ey).
E E

Thus w; = D;u in Es. This identifies w; as the distributional D;-derivative of u in
E;. Once the limit has been identified, the selection of subsequences is unnecessary
and the entire family {wj, ;} converges to D;u weakly in L?(Es). By weak lower
semi-continuity of the L”-norm

[Dul|? <liminf [ |Du|’dx <liminfliminf | |wy|’dx < CP?.
P -0 Jp, -0 h—0 Jp,

If p = oo and E is of finite measure, the same arguments give

[ Dull, < Coop(E)? forall p > 1. n

20.1 Characterizing WY?(E) for 1 < p < 0o

Proposition 20.3 A function u belongs to WP (E) for some 1 < p < oo, if and
only if there exists a positive number §, and a vector valued function w € L? (E)
such that

lu(- +h) —u —h-w|, g =o(h]) as |h|—0 (20.1)
for every 0 < 6 < 0, and every |h| < 0. In such a case w = Du in D' (E).

Proof (Sufficient Condition) Let u € LP(E) satisfy (20.1) and for |2| > O let wy
denote its discrete gradient. Fix § > 0 and choose h = (0, ..., 4;,...0) with 0 <
|h;| < 6. For such a choice

1
IWnllp.e; = mlluﬁ +h) —ull, ks

1 1
< —luC+h) —u—-h-w|, g+ —|h-wl,g
[h| g [h| g
<1+ |[wlp.

Therefore u € W'-?(E) and w = Du by Proposition 20.2. |

Proof (Necessary Condition) Letu € WP (E), fix § > 0 and compute

hi
u(...,xi+hi,...)—u(...,x,-,...):/ Uy, (..., xi+0,..)do
0

= ]’li (ux,-)h,» a.e.in E(g



21 The Rademacher’s Theorem 413

where (uy, ), is the Steklov average of u,,. From this

lu(- +h) —u —h- Dull, g; < [h|[[(Du)n — Dull,g; = o(h). ]

20.2 Remarks on W1 (E)

Assume (20.1) holds for p = oo for some w € L*°(E). Then

(- +h) — ulloo, 5
|h|

< (1+ |Wllee.g) forall |h| <.

If E is of finite measure, this implies u € W (E) and Du = w. Thus if (20.1)
holds for p = oo, then u is Lipschitz continuous in Es. Conversely, if « is Lipschitz
continuous in some domain E it also is in W!*°(E") for every subdomain E’ C E of
finite measure. Indeed the discrete gradient wj, of u is pointwise bounded above by
the Lipschitz constant of u. It remains to investigate whether a Taylor formula of the
type of (20.1) would hold for such functions. This is the content of the Rademacher
Theorem.

21 The Rademacher’s Theorem

A continuous function f : R¥ — Risdifferentiable atx € R if there exists a vector
Df(x) € RY such that

O =fx)+Dfx)-(y—x)+o(x—y)) asy—x. LD

If such a vector Df (x) exists, then Df = (fy,,..., fxy) = V[ at x. However
the existence of V f(x) does not imply f is differentiable at x. For a unit vector u
and x € RV set

S+ 71w — fx)

D, f(x) = lim i(r)lf

T
Dlll/f(x) = lim sup fx+7u) — f(x)
7—0 T

Since f is continuous, the limit can be taken along 7 rational. Therefore D, f and
D] f are measurable. Set also

Duf (x) = lim fortmw - fx)
T T
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provided the limit exists.

Proposition 21.1 Let f : RN — Rbe locally Lipschitz continuous. Then Dy, f exists
a.e. in RN, In particular V f exists a.e. in RN, and Dy f =u -V f, a.e. in RV,

Proof Let E, = [D, f < Dj, f],bethe set where Dy, f does not exist. Since D;, f and
Dy, f are measurable E,, is measurable. For x € RY fixed, the function of one variable
t — f(x + ru) is absolutely continuous in every sub-interval of R, and hence a.e.
differentiable in R. Therefore the intersection of E, with any line parallel to u has
1-dimensional Lebesgue measure zero. Thus by Fubini’s Theorem, p(E,) = 0. Let
{7} be the rationals in (—1, 1) and let e; be the unit vector along the j th coordinate
axis of RV. For all ¢ € C*(RY)

fx+nw— fx)

Tn

¢| < LICl

where L is the Lipschitz constant of f over a sufficiently large ball containing the
support of . By dominated convergence and change of variables

/ Dufdx = tim [ LEFTW =T
RN

=0 JrN Tn
Cgim [ pETW G, —u,/ £ G dx
=0 JRN Tn
—u; lim f—C( + 7€) Cdx
J Ta—>0 J RN Tn
f( + Tnej) - f

=0 JRrN Tn

|
S
=
=

(dx

Theorem 21.1 (Rademacher [120]) Let f : RY — R be locally Lipschitz continu-
ous. Then f is a.e. differentiable in RV,

Proof Let {u,} be a countable dense subset of the unit sphere in RY, and let E,, =
[Dl/ln f < D"u, f], that is the set where the directional derivative along u,, does not
exist. By the previous proposition, (| J Ey,) = 0. To prove the theorem we establish
that f is differentiable in RN — | J E,,. Fix x € RN — | J E,,, and y € B;(x) with
y # x and set
y—x
lx —yl’

=|x —yl, y=x+ru.
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Let also Ly be the Lipschitz constant of f in the ball By centered at the origin
and radius R = 2 max{|x|; 1}. Then, foru; € {u,}

lfO) = f)=Vfx)-(y =0l = [f(x+1m) — fx) —tu-Vfx)
=|f(x+rmy) — fx) —ra; - V)l
+ 1 f ) — flx +rup)| +1](@—uy) - V)

< L e ) = f&)
- t

u; - Vfx) +12LR|U—Uj|.

Having fixed € > 0 fix y € Bs(x), where § > 0 is to be chosen. Then for u fixed,
choose u; such that 2Lg[u —u;| < %5. Such a choice is independent of d. For u;
fixed, there exists 6 > O such that

f(x—l—tll;')—f(x)_uj,vf(x) 5%5 forall 0 <t < 4.

Therefore for all € > 0, there exists § > 0 such that

lf ) —fx) = V@) -—x)]=<|x—yle
provided |x — y| < 4. [ |

Remark 21.1 Rademacher’s Theorem continues to hold for a function f, Lipschitz
continuous on a subset E C RY, modulo a preliminary application of the extension
Theorem 15.1 of Chap. 5.

Problems and Complements

lc Bounded Linear Functionals on C, (RN ; R™)

For a positive integer m denote by C,(R"Y; R™) the collection of all vector valued
functions £ = (fi, ..., fi) with f; € C,(RN) for all j =1,...,m, equipped with
the norm
£l = sup If]
RN

where |-| is the Euclidean length. Continuity of functionals 7 € C,(RY; R™)* is
meant with respect to such a norm. Given a finite Radon measure y in RV and a
p-integrable vector valued function e = (ey, ..., e,), the formula

C,RY;R"™) 5 f — T(f):/ f.-edu (1.1c)
RN


http://dx.doi.org/10.1007/978-1-4939-4005-9_5

416 8 Spaces of Continuous Functions, Distributions, and Weak Derivatives

generates a bounded linear functional in C,(R"; R™) with norm || T || = ||e||;, where
the integral is meant with respect to the measure .

However (1.1c) continues to be well defined, if z is a Radon measure (not neces-
sarily finite) and if e is locally p-integrable in RV,

A linear functional T on C,(RY; R™) is locally bounded if for every compact set
K C RV there exists a constant g such that

IT ()| <kl fll forall fe C,(RY; R™) with supp{f} C K. (1.2¢)

The vector valued version of the Riesz representation theorem asserts the elements
of C,(RN; R™)* are of the form (1.1c) for some finite Radon measure p and a j-
integrable function e The theorem is more general as it applies to locally bounded
linear functionals on C,(RY; R™).

Theorem 1.2¢ Let T be a linear, locally bounded functional in C,(RY; R™). There
exists a Radon measure ;i and a p-measurable function e : RN — R™ such that
le| = 1, p-a.e. in RN and T (£) has the form (1.1c).

The proof follows the main ideas as for the scalar case m = 1 as presented in § 1—
§ 6 with minor changes. The measure 1 is constructed as in § 3 by using vector valued
functions. The linear functional 7', in § 4 is constructed still on scalar nonnegative
functions f but using vector valued h. The remainder of the proof follows the same
steps with minor changes.

2¢ Convergence of Measures

Endow C,(RY)* with its weak® topology. Then a sequence of measures {u,} C
C,(RM)* converges weak* to some i € C,(RY)* if and only if (§ 15 of Chap.7)

lim / fdu, = / fdp  forall f e C,(RY). (2.1¢c)
RN RN

The next proposition provides alternative ways of characterizing such a conver-
gence.

Proposition 2.1¢ A sequence of measures {j1,} C C,(RN)* converges weak* to a
measure |1 € C,(RY)x if and only if either

lim sup 1, (K) < u(K)  for all compact sets K C R, and (220)
2¢
lim inf 1, (O) < p(O)  for all open sets © C RY
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or
for all bounded Borel setsE C RN

lim 1, (E) = 1CE) 0 b that w(OE) = 0.

(2.3¢)

Thus the notions (2.1¢)—(2.3c) are equivalent and each of them can be taken as a
notion of weak™* convergence of measures. To prove the proposition we establish that
2.1c)=(2.2¢c) = (2.3c) = (2.1¢).

Proof (2.1c)==(2.2c) Having fixed a compact set K C R" let O be an open set
cotaining K and construct a nonnegative function f € C,(O) suchthat f = 1 on K.
Then

p(K) 5/ fdu=1im/ fdp, <liminf p,(O).
RN RN

This proves the first of (2.1c). For the second having fixed O take any compact
set K C O and construct a similar f. Then

wO) 2/ fdu=1im/ fdpn = limsup g, (K).
RN RN .

Proof (2.2c)== (2.3c) Let E C R" be a bounded Borel set such that 1(9E) = 0.
Then p(E) < oo and denoting by E its interior

W(E) = p( E) < liminf i, ( E ) <limsup iy (E) < p(E) = (E).  m

Proof (2.3c)==(2.1c) Let f € C,(R") be nonnegative and supported in some ball
B, centered at the origin and radius p. Having fixed € > 0 select a finite sequence

O=s, <81 < - <S_1 <sg=supf+1, suchthat (2.40)
si—sj—1<e and p[f =s5;1=0 for j=1,... k. '
Setting

Ei=[sj.1 < f<s;] for j=1,...,k

estimate for all n

k k
S 55 1im(E)) s/ Fdn < s;0(E) + 51100(B,)
= R¥ i=

and

k k
> s; u(E)) < / fdp < S s;u(E;)) + s1i(B,).
j= RV 2

j=
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By the construction of {s;} the sets E ; are Borel sets and ;«(OE ;) = 0. Then letting
n — oo and using (2.3c) these inequalities yield

| /R fdp - /R fdp| = 2:u(B,). .

2.1. Prove that C,(R") is separable.

2.2. Prove that C,(R") is not reflexive.

2.3. Prove that the construction in (2.4¢) can be effected.

2.4. Weak* Sequential Compactness: The space C,(R"), and hence C,(R")*,
is not reflexive. Therefore Proposition 14.2 of Chap.7 does not apply. Nev-
ertheless a similar statement continues to hold for sequences of measures
{1} C Co(RY)*.

Proposition 2.2¢ Let {11,} C C,(RY)* be a sequence of measures equibounded on
compact sets, i.e., for every compact set K C RV there exists a constant Cx such
that

un(K) < Ck  forall n e N. (2.5¢)

Then, there exists a subsequence {{,y} C {it,} and measure j € C,(RN)* such
that {{,y} — p in the weak™ topology.

Proof Assume first the {y,} is uniformly bounded in RY, i.e., that (2.5¢) holds
with K replaced by R". Then mimic the proof of Proposition 14.2 of Chap.7 or
Proposition 16.1 of Chap. 6. u

3¢ Calculus with Distributions?

3.1. If u € C'(R) there holds the differentiation formula
@) =3u*u’ in R.

This formula is no longer valid if « is a distribution in R or even a function in
L} .(R), even if both sides of this formula are well defined. The left-hand side
is well defined in D'(R) if u € L13OC (R) and the right-hand side is well defined
if u?> € C*®(R). Even under these more restrictive condition the indicated
differentiation formula is false in D’(IR). Consider for example

u=signx, sothat u?>’=1eC®MR), and u’=u.

ZMost of the problems in Sections 3c-6¢c, were provided by U. Gianazza and V. Vespri.
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3.2

3.3.

34.

3.5.

3.6.

Then compute in D’ (R)
W) =26,, and 3u’u’ = 60.

The function u(x) = x~! is measurable but not locally integrable. Prove that
the limit

1 1
M — Xxjoe = Pv(—) in D'(R)
e—0Xx - X
defines a distribution in R called the Cauchy Principal Value of x~!. Show
that |
Pv(—) — (In|x|)’ in D'(R).
x

Compute the limit

. 1 ;o ,
!1_1}(1) (;X[&oo) + (In 5)5,,) = (H(x) In |x|) in D'(R).

The function u(x) = x 2

the limit

is measurable but not locally integrable. Prove that

lim ()%XMZE — 56) = Fp(x—lz) in D'(R)

e—0

defines a distribution in R called the Finite Part of x 2. Show that

FP(%) - —PV(}C)/ — _(njx])" in D'(R).

Verify that
1 1
xPV(—) = szP(—z) =1 in DR).
X X
Prove that
lim — PV(I) i 25, in D'(R)
i = - i—=90, i .
e=0x tie X + 2
Hint:

< 1 > /x:FiE J
,o)= | ——pdx.
xxie' ¥ Rx2~|—5290

Let Inz and sinz be the holomorphic branches of the homologous maps,
defined in the complex plane C from which the closed, negative imaginary
semi-axis has been removed. Compute the limits
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(a) limln (x n ’—) = In |x| + imH (—x);
n

; ) £ 0 in D'(R).
. sin x if x >0;
(b) Timsin/x + n_ [sin (—ix) if x <O.

3.7. A distribution T € D'(R") is homogeneous of order A € R if
MT, o) = z—N<T, ¢(2)> forall 1 >0 andall p € CT(RY).

i. Verify that this definition coincides with the classical one whenever T €
C(RM).
ii. Prove that the distributions Tx = [In |x| H (+x)]" are homogeneous of order
—linR.
iii. If T € D'(R) is homogeneous of order A, then its 7’ is homogeneous of
order A\ — 1. The converse is false.

3.8. Let {c,} be a sequence of real numbers. Prove that
/ N
chén% e DRY) < > ¢, <oo.
3.9. Given an interval (a, b) C R consider a partition
P={a=x,<x; <---<x, =b}.

Given n functions f; € Cz[xj,l ,xjlfor j =1, ..., nintroduce the piecewise
continuous function

f:f/‘ in [.Xj_],x]‘) forj:l,...,n.

Compute f"and f” in D'(a, b). Give conditions on the functions f; for f’ €
L} .(a, b). Similarly give conditions on the f; for f” € L} (a, b).

3.10. Let f € BV]a, b]. Compute f’ in D'(a, b). Give conditions on f for [’ €
L} .(a, b). Note that the distributional derivative of f need not coincide with
the a.e. derivative of f. Hint: Use the function of the jumps introduced in
§ 1.1c and 3.4. of Chap.5.

3.11. Let E C R? be bounded with boundary O E, locally representable by a smooth
curve . Compute D, x g and D, .

3.12. Compute

A(l — x4 in D'(RY).

3.13. Let E be a domain in RY with smooth boundary OE, and let f € C*(E) N
C(E) vanish on OE. Regard f as defined in the whole R" by extending it to
be zero outside E, and compute Af in D' (RV).
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4¢ Limits in D’

4.1. Prove that .
sin nx

lim =4, in D'(R).
X
4.2. Prove that 5
lim = arctan © = signx in D'(R)
T X
and indeed also in L] (R).
4.3. Prove that in D' (RV),
ne 0 if a<N;
. 2002y _
lim N2 exp{—n~|x|"} = .
b, if a =N.

For o« > N, the distributional limit does not exists, whereas the a.e. limit exists
and is zero, and the L' (R™)-limit exists and is co.
4.4. Prove that in D'(R),

0 if a<?2;
lim n® exp{—n?|y|} =
20, if a=2.

For o« > 2 the distributional limit does not exist.

4.5. Prove that n

Iim ———
14 n2x2

=md, in D'(R).

4.6. Let f, : (0,1) > R, forn = 2,3, ..., be defined by ([8], p. 661)

n? n j 1 1
— f € ( - +—)
fn(x)z 2 or jL:J] I’l+1 I’l3 n+1 I’l3

0 otherwise.

Verify that:

i. The intervals where f, > 0 do not overlap;
ii. ||fulh=1foralln=23,..;

iii. The measure of the set [ f, > 0] is 2/n>.

Therefore {f,} — 0 in measure but not in L'(0, 1). However {f,} — 1 in
D'(0, 1). Indeed for ¢ € C°(0, 1) and the mean value theorem,
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J e —
2
n- 2 2 1 2
=5 2. 590 =~ 2. ¢(¥jn)
2 Jé n3"/ nio
for some points
J L J 1 )
in € -, —+ =)
Vi (n+1 n3 n+1+n3

Now as n — o0
1 1 1
lim/ fopdx =1im — > o(yj.a) :/ wdx.
0 nj—i 0

Prove that { f,,} — O a.e. in (0, 1). Thus distributional limits in general do not
coincide with a.e. limits nor limits in measure. Compare with the example in
Remark 4.2 of Chap. 4, and 10.13 of the Complements of Chap. 4.

4.7. Consider the sequence

2

[ n n n f 1 0
— + —x for ——<x <0
272 n o
u,=1n n? . 0 < 1
— — —x for < —;
2 27 =t
0 otherwise
Prove that ||u||; = % uniformly in 7 and that
. 1 .
limu, =50, in D'(R).
4.8. Consider the sequence
2
— for —— <x <0
n
2
n — 1
v v for 0<x<-—.
2 n
0 otherwise

Prove that

limv, =16, in D'(R).
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Problems and Complements

Verify that v, = ), in D’'(R) and that

limu, = (limu,) = limv,, in D'(R).

423

4.9. Provethatif{T,} — T inD’'(E)thenalso {D"T,} — DT in D'(E) forevery

4.10.

4.11.

4.12.

4.13.

4.14.

multi-index .
Compute in D’'(R)

lim (2n°xe™ ™" 4 sinn’x) = —/76..

Hint: 2n3xe~ " = —[pe= 0],
Compute the distributional limits

0 for |x| < 1;

lim arctan x> = g % for x = +1;
1 for |x| > 1.
2+l 0 for |x| < 1;

li = +1 for |x] < I;

m 1 2n+1
+ x| signx for |x| > 1.

Compute the pointwise limits and show that they are different from the distri-

butional limits.
Prove that sequence

2
{#} has no limit in D' (R).

Let f € C(R)N L'(R) be nonnegative, and not identically zero, and set

fu(x) =n“f(n’x) for parameters o, 5 € R.

Verify the distributional limit

0 if a < (3,
. 0 if a=06<0;
fim fu =1 ¢ if a=3=0:;

I fllido if =0 > 0.

The distributional limit does not exists if a > (3.
Prove that

8
limnzx(fl 1y 8in2nmx = ——0, in D'(R).
n’n 7'('

in D'(R).
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4.15. Prove that
limn(4nx —n’x* —3); = 35, in D'(R).

4.16. Compute the limit

2nx2n71

lim
1 + x4n

= %ﬂ'((;] — 5_1) iIl D/(R)

Hint: The expression is the derivative of arctan x*". See 4.11.
4.17. Prove that for every positive integer k

lim n* sinnx = limn* cosnx =0, in D' (R).
Hint: .
sinnx\’ . cosnxy\’
cosnx:( ), smnx:—( )
n n

4.18. Compute the limits in D’'(R) of the sequences
{sin®nx}, {cos’nx}, {sin®nx}, {cos*nx)}

for a positive integer k.
4.19. Compute the limit

n2x

Iim ———
14 n2x2

=(n|x|) in D'(R).

5¢ Algebraic Equations in D’

5.1. Find all the solutions of the “algebraic” equation
xu —u =sin3(x — 1) in D'(R).

The associated homogeneous equation is (x — 1)u = 0, whose solutions are
~0, for an arbitrary contant . The non-homogeneous equation is then

in3(x —1
V= M e Llloc(R)'
x —1
Thus all solutions are )
sin3(x — 1)
U=+ —".

x—1
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5.2

5.3.

54.

5.5.

Find all distributional solutions of
x>=Du=246, in D'(R).

The associated homogeneous equation is solved by a linear combination of ..
The full equation is then solved by

u =01 +v-10_1 — 9.
Find all distributional solutions of
xu =96, in D'(R).
The homogeneous equation is solved by 79, for an arbitrary constant ~. To
solve the non-homogeneous equation observe that xd, is the zero distribution.
From this by repeated distributional differentiation
(j+ 1o + x5 =0 in D'(R).
For j = 2 this permits one to find all solutions
u=~5,— 10
Find all distributional solutions of
x’u=x in D'(R).
The homogeneous equation is solved
Uo = Y000 + 710,

for arbitrary constants 7, and ;. The non-homogeneous equation is solved by

1
U= 7,00 + 0, + PV(—) in D'(R).

X

Solve the “algebraic” distributional equation
sinx’u =4, in D'(R).

The associated homogeneous equation has solution

o =Yobo + 710, + 120, + 3. ;s y7=
jeN
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5.6.

5.7.

6¢

6.1.

8 Spaces of Continuous Functions, Distributions, and Weak Derivatives

for constants +; fori =0, 1,2 and cf. Prove that a particular solution of the
non-homogenous equation is

v = —%55’ in D'(R)

Solve the “algebraic” distributional equation

COSX) u = sin + — .
| | 2 X(-1,1)

Setting x; = g + j, the solution is

1 T
U= cﬁxv—}—PV( sin—)+—PV(
jezi I Cos x X 2

(1 —X<71,1)))~

COS x

Compute the limit

- I
lim ——2"% = PV(=) 45, in D'(R)
X

X

for an arbitrary constant . Hint: Naming u,, the argument of the limit, observe
that {xu,} — 1in D'(R). Then solve xu = 1 in D' (R).

Differential Equations in D’

Solve the differential equation in D’(R)
x*u"y = .
A first integration in D'(R) gives
X2’ = wx + 7,

for an arbitrary constant ,. Proceeding as before, i.e., considering this first as
an “algebraic” equation in D’(RR) one has

1 1
l/t” = WPV(—) + +’Y()FP(_2) + 7060 + 716;
X X

for arbitrary constants 7,, and ;. From this
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6.2.

1
W =7ln x| — %PV(;) + Yo H (x) + 16y + 2
w = mx In x| = 7 In x| + 70 H () + 71 H () + 75 + 73,

for arbitrary constants v;, fori =0, 1, 2, 3.
Solve the differential equation

* —4u" =3 8, in D'R).
JEZ

setting u” = v solve first the associated “algebraic” equation in v. The corre-
sponding homogeneous equation for v is solved by a linear combination of d,.
A particular solution of the non-homogeneous equation for v is the sum of v;
where

(x> —4v; =&, in D'(R).

For j # +£2 one computes

(v, ) = <x21_45_;,¢> = <(j22_"4)26j + j21_45}’ o).

For j = 2 the non-homogeneous equation of v, reduces to

1 1
O =—1z0+ 30 in D'R).

— ), =
(x —2)vp T 6

+2
From (x — 2)d, = 0 compute by double differentiation

(x —=2)05+ 0, = 0;
(x — 28 +28), = 0.

From this compute
b+ 0= = 2 (30— 1),
Hence
Uy = ll—ﬁéé — %(55

Similarly one computes

N Y/ 1 g
v_z —_— 85_2 + 165_2.
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6.3.

6.4.

Tc

7.1.
7.2
7.3.

8 Spaces of Continuous Functions, Distributions, and Weak Derivatives
Combining these remarks gives
V=720 + y-20_2 + 750 — 305 + =0/, + 307,
+ 2 ( -22_J4)251 + j21_46.//')'

JEL (]

jAE2

Finally, by double distributional integration

=% +nx+ 0 =2DHKE =2) + 72 +2)H(x +2)
— (62 —6- ) 5(Hx —2)+ H(x +2))

J 1
+ 3 (gt = DHG =D+ g He = ).

JEL
JFEE2

Solve the differential equations in D’ (R)
Du"+u=56,: ({)u"4+u=0); (@i)u"+u=27.
Seek solutions of the form
Du=v+ylx|: @u=v+ymnHX); ({i)u=v+yHx)

for constants i, 7, and 73 to be chosen. This recasts the problems in terms of
v solutions of

v +v=—1signx; (i)v' +v= ——|x| (iii) v +v = —H(x).

These can be solved by classical methods since the right-hand sides are bounded
functions.
Solve (xu’)’ = 0 in D’(R). Establish first that the differential equation implies

1
W =71PV(—) + 70, in D'R).
X

Miscellaneous Problems

Characterize C(E)*

Positive distributions on E are identified by Radon measures.

Let AC(a, b) denote the space of absolutely continuous functions in (a, b).
A function u € W (a, b) if and only if u € L”(a, b) N AC(a, b) and u’ €
L?(a,Db).
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7.4. Introduce the notion of OF of class C™ for some positive integer m. The exten-
sion Proposition 18.1 is a special case of

Proposition 7.1¢ Let E be a bounded domain in RV with boundary OE of class
C™ for some positive integer m. Every function u € C™(E) admits an extension
w € C™(RN) such that w = u in E and

”w”m,p;]RN = C”u”mpE
where C is a constant depending only upon N, m, p and ||OE || ..
Proof If E = {xy > 0}, extend u in {xy < 0} by
_ m+1 1 m+1 C:
BE ) =S cju(;z,——,xN) where Y (-1l = 1.
j=1 J Jj=1 J u

7.5. Let E be the unit disc in R? from which a diameter has been removed. There
exists u € W!2(E) that cannot be approximated, in W'2(E) by functions in
C(E).

7.6. Approximating Characteristic Functions of Some Sets by Functions in C°:
Let J : R — R* be defined by

1
“x if x > 0;
J _ e i ;
) 0  otherwise;

The function J € C*°(R) and J(x) — 1 as x — oo. Consider now the sets

(a,b) CR; R=11_V[(ai,bi); D =[lx] < R]
i=l

and the sequences
Jabyn(x) = J[n(b—x)(a —x)] € CFR);
Jrin(x) = ﬁ J[n(bi — xi)(a; — x;)] € CPRY);
Tpin(x) = lJ_[ln(Rz —x)] € C@Y).

Prove that as n — oo they tend pointwise to the characteristic function of the
interval (a, b), the rectangle R and the disc D respectively.



Chapter 9
Topics on Integrable Functions
of Real Variables

1 A Vitali-Type Covering

Let 4 be the Lebesgue measure in RY and refer the notions of measurability and
integrability to such a measure. Let E C R" be measurable and of finite measure,
and let F be a collection of cubes in R, with faces parallel to the coordinate planes
whose union covers E. Such a covering is a Vitali-type covering. The cubes making
up F are not required to be open or closed.

The next theorem asserts that E can be covered, in a measure theoretical sense,
by a countable collections of pairwise disjoint cubes in F. The key feature of this
theorem is that, unlike the Vitali, or the Besicovitch measure theoretical covering
Theorems, the covering F is not required to be fine (see § 17 and 18 of Chap. 3).

This limited information on the covering F results in a weaker covering, that
is, the measure theoretical covering is realized through an estimation, rather than
equality of the measure of the set E in terms of the measure of the selected cubes.

Theorem 1.1 (Wiener [175]) Let E C RY be of finite measure and let F be a Vitali-
type covering for E. There exists a countable collection {Q,} of pairwise disjoint
cubes in F, such that

WE) < 58 3 1(Qn). (1.1
Proof Label F by F; and set
2p) = {the supremum of the edges of cubes in F; }

If p; = oo, we select a cube Q of edge so large that

w(E) < 5" u(Q).

© Springer Science+Business Media New York 2016 431
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If p1 < oo select a cube Q) € F; of edge £; > p;, and subdivide F| into two
subcollections F, and F;, by setting

Fr = {the collection of cubes Q € F; that do not intersect Ql};
F; = {the collection of cubes Q € F that intersect Q1 }.

Denote by Q7 the cube with the same center as Q; and edge 5¢;. Then by con-
struction

Uf{eleer}co.
If F, is empty then
EcC Q) and u(E) <5"u(Q).
If F, is not empty, set
2p> = {the supremum of the edges of the cubes in 7>}

and select a cube Q, € F, of edge ¢, > p,. Then subdivide F, into the two
subcollections

F3 = {the collection of cubes Q € F; that do not intersect Q5};
F} = {the collection of cubes Q € F; that intersect Q5}.

Denote by Q) the cube with the same center as Q, and edge 5¢,. Then by con-
struction

Uf{el|oer}cos.
If F5 is empty
ECQjuQ, and uE)<5"(u(Q)+ 1(Q2).

If 73 is not empty, we repeat the process to define inductively subfamilies of cubes
{F.}, positive numbers {p,} and {¢,}, and cubes {Q,} and {Q/ }, by the procedure,

Fn = {collection of cubes in F,_; that do not intersect Q,,_1 };
2py = {the supremum of the edges of the cubes in F, };

O, = {a cube selected out of F,, of edge £, > p, };

0, = {a cube with the same center as Q, and edge 5¢,}.

If F,41 is empty for some n € N, then

EcQ,u---uQ, and u(E)fSNi/L(Qj).
j=1
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If F,, is not empty for all n € N, consider series >, u(Q,,). If the series diverges
then (1.1) is trivial. If the series converges then p, — 0 as n — oo. In such a case
we claim that every cube Q € F belongs to some Q). Indeed if not, Q must belong
to all F,, and therefore the length of its edge is zero. Thus

EcUQ, and uE) <> Q) =5"> Q. ]

Remark 1.1 The theorem is more general in that the set E is not required to be
measurable. The same conclusion continues to hold, by the same proof, with
replaced by the Lebesgue outer measure f,.

Remark 1.2 The set E is not required to be bounded. It is not claimed here that the
union of the disjoint cubes Q,, satisfying (1.1), covers E.

Corollary 1.1 Let E C RN be measurable and of finite measure, and let F be a
collection of cubes in RN, with faces parallel to the coordinate planes and covering

E. For every € > 0, there exists a finite collection {Q1, ..., Q. } of disjoint cubes in
F, such that

p(E) — e 5" () u(e)). (1.2)

j=1

2 The Maximal Function (Hardy-Littlewood [69]
and Wiener [175])

Let Q denote a cube centered at the origin and with faces parallel to the coordinate
planes. For x € R", we let Q(x) denote the cube centered at x and congruent to Q.
The maximal function M (f) of a function f € Ll (RY) is defined by

loc

M(f)(x) = sup

dy.
0 Q(X)If(y)l y

From the definition it follows that M (f) is nonnegative and sub-additive with
respect to the argument f, i.e.,

M(f +9) = M(f)+ M(g).

Moreover M (a.f) = |a|M(f), for all « € R.

Proposition 2.1 M (f) is measurable and lower semi-continuous. Moreover, if f
is the characteristic function of a bounded measurable set E, there exists positive
constants C,, Cy, and vy, depending only upon E, such that
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C C
|x_|0N < M(XE)(x) < ﬁ forall |x| > 7. (2.1)

Proof If | f| = 0, also M(f) = 0. Otherwise M(f)(x) > O for all x € R¥. Let
c>0andx € [M(f) > c]. There exist ¢ > 0 and a cube Q, such that

1

—_— d M — .
(0) Q(X)Ifl x>=M(fHx)—e>c

By the absolute continuity of the integral, there exists § > 0 such that

M(f)(y)Z; |fldx > ¢ forall |y —x| <.
p(0) Jow

Thus [M(f) > c] is open and hence M (f) is lower semi-continuous and mea-
surable. To prove (2.1) observe that

W(EN QW)

M =
(xE) (x) D —r

Since E is bounded is included in some cube Q,. Let d be the maximum distance
of points in Q, from the origin. Fix x € R" such that |x| > 2d/ V'N and let Q(x)
be the smallest cube centered at x and containing E. Then

MENQW) _ wE) _ G
Q) W@ IxV

M(xE)(x) =

The bound above is estimated analogously. |

Corollary 2.1 Let f € L'(RN) be of compact support in RN and not identically
zero. There exists positive constants C,, C| and vy, depending only upon f, such that

c, c
Xy S M = ﬁ forall x| > 7. 2.2)

It follows from (2.1) and (2.2) that M(f) is not in L' (R") even if f is bounded
and compactly supported, unless f = 0.

Proposition 2.2 Let f € L'(RN). Then forallt > 0

SN
pM(f) > t]) = T/RN |fldx. (2.3)

Proof Assume first that f is of compact support. Then (2.2) implies that [M (f) > ¢]
is of finite measure. For every x € [M (f) > t], there exists a cube Q(x) centered at
x and with faces parallel to the coordinate planes such that



2 The Maximal Function (Hardy-Littlewood [69] and Wiener [175]) 435
1
u(Q) < - [fldy. 2.4
I Jow

The collection F of all such cubes is a covering of [M (f) > t]. Out of F we may
extract a countable collection {Q,} of disjoint cubes such that

p(IM(f) > 1) <53 1(0,).
From this and (2.4),
p(M(f) > 1) <5V > u(Qy)
5N 5N
<25 [ Ifldx < —/ \fldx.
t On t Jry

If f € L'(RY), we may assume that f > 0.Let { f,} be a nondecreasing sequence
of compactly supported, nonnegative functions in L'(R"), converging to f a.e. in
RN . Then {M(f,)} is a nondecreasing sequence of measurable functions, converging
to M(f) a.e. in RV, Therefore, by monotone convergence

(M (f) > t]) = lim p((M(f,) > 1])

5N 5N
§Tllm/Randx§T/RNfdx. m

3 Strong L? Estimates for the Maximal Function

Proposition 3.1 Let f € L?(RY) for some p € (1, oo]. Then the maximal function
M(f) isin LP(RN) and

27 p5N

IM(OIp <pllfllp,  where vp = PR (3.1)

Proof The estimate is obvious for p = co. Assuming then p € (1, oo) fix f > 0 and

set
S 1f0] = 31
gx) = . |
0 it [f(0)] < 3t

Such a function g is in L' (R"). Indeed,

2\r-1
[giax= [ igar=(3)"7 [ irras,
RV (ELD) t RV
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Since | f] < Ig| + 51

1 1
M(f)(x) < sup \gldy + 5t = M(g)(x) + 5t.

1(0) Jow) 2

Therefore
[M(f) > 1] C [M(g) > 31].

By Proposition 2.2, applied to g and M (g)

2.5V
(M (f) > t]) < p([M(g) > 31]) < p /}RN lgldx

2.5N
= / [fldx.
t (VELD!

Next express the integral of M (f)? in terms of the distribution function of M (f)
(§ 15.1 of Chap. 4), and in the integral so obtained interchange the order of integration
by means of Fubini’s theorem. This gives

/ M(f)Pdx = p / ) " (M (f) > thdt
RN 0
<2p5V /OozH(/ |f|dx)dt
0 [f1=51]
2| f1
=2p5N/ |f|(/ tp‘zdt)dx
RN 0

2P p5N
_¥m_ / |f17dx.
p—1 Jry

3.1 Estimates of Weak and Strong Type

Let E C RY be measurable. A measurable function g : E — R is in the space

weak-L!(E), denoted by L' (E), if there exists a constant C, depending only upon
g, such that

C
n(lgl > t]) < forall ¢ > 0.

t
Ifge L'(E)
1
j(llgl > D) < ~ / gldx.
t JE
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Therefore L'(E) C L} (E). The converse inclusion is false. The function

) = lx|~¥ for |x| >0
IY=10  for x| =0

is in weak-L'(R") and not to L'(R"). By Proposition 2.2 the maximal function
M (f) of a function f € L'(R") is in weak-L' (R") and, in general, not in L' (RV).

Let T be a map acting on L' (E) and such that T (f) is a real-valued, measurable
function defined on E. Examples include the maximal function T (f) = M (f) and
the convolution 7'(f) = J. * f for a mollifying kernel J..

Amap T is of weak type in L' (E) if T (f) isin weak-L'(E), forevery f € L'(E).
By Proposition 2.2, the map T'(f) = M(f) is of weak type in L' (R").

A map T is of strong type in L?(E) for some 1 < p < oo, if

feLV(E) = T(f) € LP(E).

The convolution T (f) = J. * f is of strong type in L”(R") for all p € [1, 00)
(§. 18 and §18c of Chap. 6). By Proposition 3.1, the maximal function T (f) = M (f)
is of strong type in L?(E) for p € (1, 00).

4 The Calder6n-Zygmund Decomposition Theorem [20]

Theorem 4.1 Let f be anonnegative function in L' (RN ). Then, for any fixed o > 0,
RY can be partitioned into two disjoint sets E and F, such that

() f<aae inE;
(ii) F isthe countable union of closed cubes Q,, with faces parallel to the coordinate
planes and with pairwise disjoint interior. For each of these cubes,

o< fdy <2Va. .1

1
:U'(Qn) O,

Proof Let a > 0 be fixed and partition R into closed cubes with pairwise disjoint
interior, with faces parallel to the coordinate planes, and of equal edge. Since f €
L'(RV), such a partition can be realized so that for every cube Q' of such a partition,

1
Q")

/ f(dy < a.
o

Having fixed one such cube Q’, we partition it into 2V equal cubes, by bisecting
Q’ with hyperplanes parallel to the coordinate planes. Let Q” be any one of these
new cubes. Then either
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1
d
R /Qﬂf(y) y=o (a)
or 1
d . b
u(Q”)/wa(y) y >« (b)

If the second case occurs, then Q" is not further subdivided and is taken as one
of the cubes of the collection {Q,} claimed by the theorem. Indeed for such a cube

1 2N
d d 2]\] )
“= M(Q”) /;N f(y) Y S M(Q/) /Q’ f()’) y f Q

If (a) occurs, we subdivide further Q” into 2V sub-cubes and on each of then
repeat the same alternative.

For each of the cubes Q' of the initial partition of RY, we carry on this recursive
partitioning process. The process terminates only if case (b) occurs. Otherwise it is
continued recursively.

Let F = |J Q,, where Q, are cubes for which (b) occurs. By construction these
are cubes with faces parallel to the coordinate planes, and with pairwise disjoint
interior. Moreover (4.1) holds for all of them.

Setting E = RY — F, it remains to prove (i). Let x be a Lebesgue point of f in
E. There exists a sequence of cubes Q; with faces parallel to the coordinate planes
and containing x, resulting from the recursive partition such that

= fdy < a.
u(Q;j) Jo,

lim diam{Q;} =0  and
J—00

The collection of cubes {Q ;) forms a regular family 7. at x. Therefore (§ 12 and
Proposition 12.1 of Chap. 5)

1
F) = lim —— [ foydy < e
VT Jo, T =

5 Functions of Bounded Mean Oscillation

Let Q, be acube in RV centered at the origin and with faces parallel to the coordinate
planes. For a function f € Llloc( Q,) and a cube Q C Q, with faces parallel to the
coordinate planes, let f, denote the integral average of f in Q

1
- dy.
fo M(Q)/Qf(y) y
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A function f € L'(Q,) is of bounded mean oscillation if
£ o |1 = old 5.1)
o= SUp —— — y < 00. .
oco, H(Q) Jo ©

The collection of all f € L'(Q,) of bounded mean oscillation is denoted by
BMO(Q,). One verifies that BM O(Q,) is a linear space and that

Ifllo = I1F 11t +1f1o

defines a norm on BM O (Q,). Moreover, from the definition, and the completeness
of L'(Q,), it follows that BM O(Q,) is complete.

Theorem 5.1 (John-Nirenberg [77]) There exist two positive constants Cy, Ca,
depending only on N such that, for every f € BMO(Q,), for all cubes Q € Q,,
andallt > 0

Cat

|10

wlf = fol > 1N @) = Crexp { — =~ (o). (5:2)

5.1 Some Consequences of the John—Nirenberg Theorem

Proposition 5.1 If f € BMO(Q,) then for all cubes Q C Q,

f—foel?(Q) and feLP(Q) forall 1 <p < ooc.

Proof From (5.2)

/Qlf—fglpdy= P/O " udllf = fol > 11N Q)d1

o0 C
< pCi(Q) /0 i exp { - | ff Ja
f

o\ [
SPC1M(Q)(C—2) /) Pl di
(

<N, pIf1Eu(Q)

for a constant (N, p) depending only upon N and p. This in turn implies that
f € LP(Q), since

|f1Pdy < ()/If—fl”d + 1fol”i(Q)).
/Q y ’YP(Q ol ay ol K ) m
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Proposition 5.2 Let f € L'(Q,) and assume that for every sub-cube Q C Q, there
is a constant vy such that

pllf =0l > 11N Q) < yexp{—nt}u(Q) forall t >0 (5.3)

for two given constants v and v, independent of Q and t. Then f is of bounded
mean oscillation in Q, and | f|, < 2v1/7.-

Proof Assume first that vo = f. Then

/Q \f — foldy =/0 W01 = fol > 110 Qdr
< 1p(Q) / e dr < 10
0 Y2

for all sub-cubes Q C Q,. Hence f € BMO(Q,) and | f|, < v1/7». For general
Yo, by a similar argument

1 / M
sup —— [ |f —7oldy = —.
0c0, M(Q) Jo © 7

From this, for every O C Q,

1 2
S — fold — —Yoldy.
#(Q)/Qu fol ys#(Q)/Qu Yoldy .

Corollary 5.1 The inequalities (5.2) and (5.3) are necessary and sufficient for a
function f € L'(Q,) to be of bounded mean oscillation in Q..

Proposition 5.3 The function x — In |x| is of bounded mean oscillation in the unit
cube Q,, centered at the origin of RV,

Proof Having fixed Q € Q,, let £ be the element of largest Euclidean length in Q
and set 7o = In [£]. Then

X ={xeQ|lln|x|—vol >t}
={er’ln%>t}
={xe Q| Ix| <|&e}.

Let i be the edge of Q and denote by 1 the element of least Euclidean length in
Q.If X%, is not empty, it must contain 7. Hence

Ele™ > Inl > 1€l — |€ —nl = €] — V/Nh
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which implies

~Nh
€l = — =
—e
Therefore X, is contained in the ball
~Nh
lx| < .
el —1
This implies
w VN \N
) = () o).
N \e' —1

If + > 1 this gives (5.3) for 7, = N and a suitable constant ;. If 0 < 7 < 1, the
inequality (5.3) is still satisfied by possibly modifying ;. |

Remark 5.1 A function f € L*(Q,) isin BM O(Q,). The converse is false as the
function x — In|x| is in of bounded mean oscillation in the unit cube Q, centered
at the origin but is not bounded in Q,,.

Remark 5.2 The converse to Proposition 5.1 is false. Indeed the function (—1, 1) >
x — f(x)=(In |x])?isin L?(—1, 1) forall 1 < p < oo,butisnotin BM O[—1, 1].

6 Proof of the John—-Nirenberg Theorem 5.1

Having fixed some cube Q C Q, we may assume, without loss of generality, that
0 = Q,. Also, by possibly replacing f with f/|| f |, we may assume that || f||, = 1.

Set .
ﬁ:[v—mAme

0 otherwise.

Since f, € L'(RV), having fixed some o > 1, by the Calderén-Zygmund decom-
position theorem there exists a countable collection of closed cubes {Q}l }, with faces
parallel to the coordinate planes and with pairwise disjoint interior, such that

1
(01 /Ql If = fo,ldy =< 2Va  and

If = fol<a aein Q,—J Q.

o<

6.1)

It follows from the first of (6.1) and || ||, = 1, that

1 1
Zu@bg—/Wf—@ﬂ@s—M@» 62)
@ Jo, a
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Also, using again that || f||, = 1

o = fol = = [ 1f = o ldy < 2¥a. 63)
o0 D Joy ¢
Finally since a > 1 and || f|, = 1
|f — forldy < a for all cubes Q,ll. (6.4)
u@bA; o
For n € N fixed, set
|f — fol in Q)
fl n(x) H
otherwise.

Apply again the Calderén—Zygmund decomposition, for the same o > 1 to the
function fi ,, starting from the cube Q! and using (6.4). This generates a countable
collection of cubes {Q7 ,}, with faces parallel to the coordinate planes and with
pairwise disjoint interior, such that

|f — forldy <2¥a  and
u(Q%m)/ (6.5)

|f_fQ,l,|§O[ a.e.in Qn_UQn,m'

For such a collection, also the analog of (6.2) is satisfied, i.e.,

mew<—z/ = £ Idy
e | 66
s—/lf—@WWS—M&)
0! «

«

where we have used that || f||, = 1. Next we claim that

If — fo,l <2-2%a ae.in Q,— U 0},

n,m

If x € Q, — U Q). this follows from the second of (6.1). If x € Q) — U,, Q2 .
then by (6.3) and the second of (6.5)

[ f(x) = fo,l < 1f(x) = forl +1fo1 — fo,l < 2.2,
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Adding (6.6) with respect to n and taking into account (6.2), gives
1
> Q) = —51UQ0)-

Also, using the first of (6.5) and (6.3)

Ifoz,, — fol = |fez, — forl +1fo — fo.l
: /
<——— | If = foldy+Ifo — fo.l
w(02,) Jo: O e Je

n,m

<2.2%aq.

We now relabel {Qﬁ’m} to obtain a countable collection {Qﬁ} of closed cubes,
with faces parallel to the coordinate planes, with pairwise disjoint interior and such

that |f—fQ0|§2~2Na a.e.in QD—UQﬁ;
1
> Q) = — Qo) (6.7)
v
|for — fo,l <2-2"a.

Repeating the process k times generates a countable collection {Q*} of closed
sub-cubes of Q,, with faces parallel to the coordinate planes, with pairwise disjoint
interior, and such that

|f = fo,l <k-2Ya ae.in Q, - 0;
n
1
2 (@) = —Qo); 6.7
|for = fo,l <k-2%a.
From this, for a fixed positive integer k,

1
u(lf = fo,l > k2¥aln Q,) < 3 u(Q) < Q).

This inequality continues to hold for k = 0. Fix now ¢ > 0 and let k > 0 be such
that
K2Va <t < (k+ 12V

Then
n(lf = fo,l > 10 Q) < ullf — fo,l > k2¥aln Q,)

1
= JM(QU) = ae_wlul(Qo)

where v = (Ina) /2 a. [ |
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7 The Sharp Maximal Function

Continue to denote by Q, and Q closed cubes in RY, with faces parallel to the
coordinate planes. Given a measurable function f defined in Q,, we regard it as
defined in the whole RY by setting it to be zero outside Q,.

For a cube Q such that 4£(Q N Q,) > 0, let fpnp, denote the integral average of
fover QN Q,,ie.,
1

= — dy.
Sfono, (0N 0y Qanf y

Set also,

[flo, = | fldy.

/J'(Qo) O,

The sharp maximal function Q, 3 x — f#(x), is defined by

1
# = _— — d 7.1
P =8 A 00 Jong, T ene 14y 7D

where the supremum is taken over all cubes Q containing x. This is also called the
function of maximal mean oscillation.

It follows from the definition that if f# € L>(Q,) then f € BMO(Q,). Also,
from (7.1) and the definition of maximal function M ( f)

) <2V M(f)(x)  forae. x € Q,.

By Proposition 2.2, this implies that if f € L'(Q,) then

. 10N

2
p(f* > 1)) <

| fldy forall ¢ > 0.
QO

Hence f* € L} (Q,).If f € LP(Q,) for p € (1, 00), by Proposition 3.1

27 p5V
p—1"

I 1, < 289,01 £l where % =

The next theorem asserts the converse, i.e., if f# € L?(Q,)thenalso f € L”(Q,).

Theorem 7.1 (Fefferman—Stein [45]) Let f € L'(Q,) and assume the correspond-
ing sharp maximal function f* is in LP(Q,). Then f € LP(Q,) and there exists a
positive constant v = (N, p) depending only upon N and p, such that

10, <N (L1 + Q) flo,)- (7.2)
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8 Proof of the Fefferman—Stein Theorem

Fixt > | flp, and apply the Calderén—Zygmund decomposition to the function | f,
for o = t. This generates a countable collection {Q',} of closed cubes with faces
parallel to the coordinate planes, with pairwise disjoint interior and such that

| fldy <2Vt and
Q) Jor (8.1),

|fl <t aein Q,—U Q).

<

Without loss of generality, we may arrange that Q,, is part of the initial partition of
RY in the Calderén-Zygmund process. Therefore, the cubes Q') result from repeated
bisections starting from the parent cube Q,.

Lett > 7 > |flg,, and {Q;} be the corresponding Calder6n—Zygmund decom-
position, for o = T, satisfying the analog of (8.1),, i.e.,

T <

|fldy <2V and
Q) Jor (8.1),

|fl<T aein Q,—U Q.
Moreover the cubes Q7 result from a repeated bisection of the parent cube Q,.

By the Calderén—Zygmund recursive bisection process, and since ¢ > 7, each of the
cubes Q! is a sub-cube of some Q;. Therefore

m(t) = 25 1u(Q,) < 2 u(QF) = m(7).
Alsoforany t > 7 > | f|g,

plf1 > 110 Qo) < m(1). (8.2)

Lemma 8.1 Lett > 2N*! | flo,. Then
m(t) < p([f* > 161N Q,) + 26m (12~ N+D)

where § is an arbitrary positive constant.

Proof Set T = 2~ ¥+ and determine the two countable families of cubes {Q!}and
{Q;} satisfying (8.1), and (8.1),, respectively. Fix one of the cubes Q} and consider
those cubes Q' out of {Q' } that are contained in Q}. For such a cube Q7, either

Qi clff>15., o Q] If"> 10l
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If the first alternative occurs

> @) <l f* > 1610 Q). (8.3)
0,CcQ;

If the second alternative occurs, then there exists some x € Q; such that f#(x) <
td. From the definition of f #_ for such a cube

1
_ — forld 0.
M(Q;)/lef forldy <1

By the lower bound in the first of (8.1), and the upper bound in the first of (8.1),
|floy >t and  |flo; <2V7.

From this, for each of the cubes Q) contained in the fixed cube Q7

/Q/ |f = fojldy = (1 flg, — | flopi(Q,)
>t =20} = 11pu(Q)).

Adding over all the cubes Q' contained in Q7 gives

T e =2 / | = fojldy
0;c0; ' 0ico 4
L 17 = sajlay = 20u0)).

IA

t

Combining the first alternative, leading to (8.3) and the second alternative, leading
to (8.4) gives

D @) < L f* > 1610 QF +260(07).
0,co;

Adding over j proves the lemma. |

Taking into account (8.2), the estimate (7.2) of the theorem will be derived from
the limiting process

|f1Pdy = Yljglop/ "7 £ > 110 Q,)dt
e ‘ L (8.5)

flimsupp/ P \m(@0)dr
0

§—>00
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provided the last limit is finite. To estimate such a limit fix s > 2V*1| f|, and use
Lemma 8.1 to compute

s 2% f1g, s
p/ " "m@)dt = p/ tP*Im(t)dter/ " 'm(t)dt
0 0 2

N+l‘f‘Qn

< @\ f1o) (00 + p / P > 1810 Q)
0

0
= QY flo) Qo) + 6771 f*117

42520+, / (.
0

Choosing 6! =4 . 2V+DP gjyes

P / = m(dt <228 f10,)"1(Q0) + 257 1S}
0

Putting this in (8.5) proves the theorem. |

9 The Marcinkiewicz Interpolation Theorem

Let E be a measurable subset of RV and let 1 < p < 0o. A measurable function
f : E — Ris in weak-L”(E), denoted by L} (E), if there is a positive constant F
such that

w(l fl > t] < f—pp forall ¢+ > 0. 9.1)

Set
| fllp,w = inf{F for which (9.1) holds}.

Let f, g € LY (E) and let o and 3 be nonzero real numbers. Then for all ¢ > 0

t

llof + gl = 1< [11 > ﬁ] U[igl > M]'

Thus L% (E) is a linear space. However || - [l ,w 1S NOt a norm on LY(E).
If f e LP(E), thenforallt > 0

1
plfl > 1) = t—pllfIIZ-
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Therefore f € LL(E), and | f]| » = I fllpw. However there exist functions
f € LY (E) that are not in L?(E) (examples can be constructed as in § 3.1).

The space LS (E) is defined as the collection of measurable functions for which
(9.1) holds, for some constant F, forall p > 1 and all ¢ > 0.

If t > F then pu([|f] > t]) = 0. Thus if f € L3’(E), then f € L*°(E) and
| flloo < II.f lloo.w- On the other hand if f € L°°(E) then (9.1) holds for F = || f | cc-
Thus L3P (E) = L*(E) and || - loo,w = || * lloc-

9.1 Quasi-linear Maps and Interpolation

Let T be a map T defined in L”(E) and such that 7'(f) is measurable for all f €
LP(E). The map T is quasi-linear if there exists a positive constant C such that for
all fandgin L?(E)

IT(f+@| <CUT(NHI+1T(g)]) ae.in E.

If T is quasi-linear, then for all > 0

1T +9)l >[I = 5=|U[IT@)1 > 55

A quasi-linear map 7 : L?(E) — L49(E), for some pair p,q > 1, is of strong
type (p, q) if there exists a positive constant M, , such that

IT(Nllg < Mpgllfll,  forall f e LP(E).

A quasi-linear map 7 defined in L?(E) and such that T'(f) is measurable for all
f € LP(E), is of weak type (p, q) if there exists a positive constant N, ;, such that

IT(Nllgw = Npgllfll,  forall f e LP(E).

When p = g weset M, , = M, and N, , = N,. Examples of maps of strong
and weak type are in § 3.1. Further example will arise from the Riesz potentials in
§ 24.

Theorem 9.1 (Marcinkiewicz [103]) Let T be a quasi-linear map defined both in
LP(E) and L1(E) for some pair 1 < p < q < oo. Assume that T is both of weak
type (p, p) and of weak type (g, q), i.e., there exist positive constants N, and N,

such that
IT(Ollpw < Nplfll,  forall e LP(E);

9.2)
1T gw = Ng I fllg  forall feLI(E).
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Then T is of strong type (r, 1) for every p <r < q and

ITCHI <ANJN, N f Nl forall f € L'(E) (9.3)
where
plg —r) if g < co:
5= ;(q -p) ’ 9.4)
- if g = o0;
.
and ( ) y
rig—p T
———"—)  if q <00
y=2C ((’r— P = r)) 9.5)
(r — p) lf 1=0%

where C is the constant appearing in the definition of semi-linear map.

10 Proof of the Marcinkiewicz Theorem

Having fixed r € (p, ¢), and some f € L"(E), decompose itas f = fi + f», where

f= f for |f| > At; f= 0 for | f| > Ar;
'= 00 for | f] < Ar; 27 ffor |f] < Mt

where ¢t > 0 and A is a positive constant to be chosen later.
We claim that f; € L?(E) and f, € LY(E). Since f € L"(E), theset[| f| > A]
has finite measure. Therefore by Holder’s inequality

/E AilPdy < 1F12 (udllf1 > MD)' 7
Thus f; € L?(E). Moreover
/ folfdy < / LTI T dy < (e / fTdy.
E E E

Assume first 1 < p < g < o0o. Then, using the quasi-linear structure of 7', and
the assumptions (9.2)
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pUT D1 > 1) = w([IT DI > %]) +u([iTce > %])
(2CN )P (2CN,)4

< ———IAls+ tqq I 2118 (10.1)
2CN P 2CN.)¢
1’ 1>\t 1 f1<A

From this

/EIT(f)I’dy =V/O = uIT (O] > t)di

o0
< FQCN,)” / i / \f1Pdy
0 TSy

o0
+r(2CNq)q/ z’*’H/ | f19dy.
0 | fl=<At

The integrals on the right-hand side are transformed by means of Fubini’s Theorem

and give
00 [f1/A
[ [ pray=[agr([ e tara
0 [fl>At E 0
11 .
g v AL
[ [ ipmay = / ([ rotan)ay
0 [fl=A [£1/A
i / \/1dy.
—

2C)? NJ 2C)1
e

Combining these estimates

NN . (10.2)

Minimizing the right-hand side with respect to A proves (9.3) with the value of
A = § given by (9.4) and (9.5).

Turning now to the case ¢ = 0o, we begin by choosing the parameter A so large
that

p([Ir = 52]) =o. (10.3)

If this is violated, then || T (f>) || > ?/2C. From this and the second of (9.2) with
q =

1 ¢
At = falloo = —IIT(fz)Iloo > Noac
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Therefore choosing

t
, one has ||T(f2)||oo:f

A= ,
2CNy

and (10.3) holds. We proceed now as before, starting from (10.1) where the terms

involving f, are discarded. This gives an analog of (10.2) without the terms involving

q,ie.,

(2C)? N} 1

T "< - A= :
1T, < r = 5 115 2CNy .

11 Rearranging the Values of a Function

Let E C R" be measurable and of finite Lebesgue measure j(E). The set E is
symmetrically rearranged about the origin of R into an open ball By = E*, of
equal measure as E. Thus

kyRY = p(E)

where ky is the volume of the unit ball in RY. The symmetric rearrangement of the
characteristic function of E is the characteristic function of E*, i.e.,

X5 = XE*

Next, let f be a nonnegative, simple function taking n distinct positive values
fi < -+ < fu, on mutually disjoint sets {Ej, ..., E,}, each of finite measure.
Rewrite f as

f = fixe,u-vg, + (f2 — fOXEU-UE, + - (fu — [u=1)XE, (11.1)

and define the rearrangement of f as

[ = fixe,u-vE,y + (f2 = fOXEU-UE) + -+ (fu = famDXE:

By construction

E\U---UE,=[f>1t] forall 7 €[0, f);
E,U---UE,=[f>1t] forall t € [fi, f>);
E,_UE,=[f >1t] forall t €[f,—2, fuz1);
E,=[f>1t] forall 1 €[fu_1, fn)-
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Likewise

(EyU---UE)*=[f*>1t] forall t [0, f);
(E;U---UE)*=[f*>1t] forall t €[fi, f);
(En UE)*=[f">1t] forall t €[fus, fu1);
Ef=[f*>1t] forall 1 €[fu1, fn)

Hence, picking some x € (E; U--- U E,)* the value of f* at x is determined by
fH0) = supfe [ w(Lf > 1]) > wlx|™}. (11.2)
Also by this construction

w(lf >1t]) = pu((f*>1t]) forall t+ >0. (11.3)

One also verifies that if f and g are any two such nonnegative, simple func-
tions, then f < g implies f* < g*. Thus the operation of symmetric decreasing
rearrangement of such simple functions preserves the ordering.

Let now f be a real-valued, measurable, nonnegative function defined in RY and
such that

uw(f >t]) <oo forall > 0. (11.4)

There exists a sequence of nonnegative, measurable, simple functions { f,,} — f
pointwise in RV, and f, < f,;1. The assumption (11.4) and the construction of
the f, in § 3 of Chap.4, implies that each f, takes finitely many, distinct values on
distinct, measurable sets of finite measure. Hence, f,* is well defined for each n.
Moreover f* < fr_, and the limit of { f,*} exists. Define

f*(x) =lim f*(x) pointwise in R

= sup sup{z | w(lfu >t]) > /<;N|x|N} (11.5)
=sup{t | p(Lf > 1]) > rylx|"}.

Hence (11.2) can be taken as the definition of the symmetric, decreasing rearrange-
ment of a real-valued, nonnegative, measurable function f defined in RY and satis-
fying (11.4).

Proposition 11.1 Ler f and g be real-valued, nonnegative, measurable functions
satisfying (11.4). Then
(i) f* is nonnegative, radially symmetric and nonincreasing;
(ii) f < gimplies f* < g*;
(iii) Let F : RY — R* be, nondecreasing. Then F(f)* = F(f*). In particular
(f =L = (f* —t)4 for any constant t;
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(iv) [f* > t] are open and hence f* is measurable.
(v) f and f* are equi-measurable, in the sense that (11.3) holds.

(vi) Fors <t, pu(ls < f <t]) = pu(ls < f* <1]);
(vii) If f € LP(RY) for some 1 < p < oo, then f* € LP(R") and moreover

11 = 1" p-
Proof The statements (i)—(vi) follow from the construction of f* leading to (11.5).

As for (vii), the statement is obvious if p = c0. If | < p < oo, since f and f* are
equi-measurable

A5 = /0 P f > tdt = /0 P > hde = 111D

12 Some Integral Inequalities for Rearrangements

Proposition 12.1 Let f and g be real-valued, nonnegative, measurable functions
in RN satisfying (11.4). Then

/fgdusf frg*dp. (12.1)
RN RV

Proof Assume first that f and g are simple and both take only the values 0 and 1.

Set
E=[f=1], E*=[f"=1];
G=I[g=1], G'=[g"=1].

Now compute and estimate

/ Fgdu = (ENG)
RN

< min{u(E); u(G)}
= min{u(E"); n(G*)}

By linear combinations and iterations the statement holds for nonnegative simple
functions satisfying (11.4). By approximation and a limiting process, it continues to
hold for nonnegative, measurable functions satisfying (11.4).

Remark 12.1 Neither f, g or fg are required to be integrable. If fg is notintegrable
(12.1) is meant in the sense that if the left-hand side is infinite so is the right-hand
side.
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Corollary 12.1 Let f and g be real-valued, nonnegative, measurable functions in
RN satisfying (11.4). Then

/RN S Xig=ndp = /RN I Xigr<nd - (12.2)

Proof Assume first f € L'(RV), and apply (12.1) to the pair of functions f and
X[g>r]- Writing the latter as 1 — x[g</ gives

/ f = Xxg=mdp = / f*Xigr>ndp
R¥ 0
= [ £ = X<
RN
The general case follows from this by a limiting process, understanding that if the
right-hand side of (12.2) is infinite, so is the left-hand side. |
12.1 Contracting Properties of Symmetric Rearrangements

Theorem 12.1 (Chiti [27]; also in [29]) Let f and g be nonnegative functions in
LP(RN) for 1 < p < oo. If p = oo assume also that f and g satisfy (11.4). Then

If*=g*ll, <IIf —glp. (12.3)

Proof The inequality is obvious for p = co. Let | < p < oco and assume first that
f > g. Compute

I d
U—gV=—L LY
f
= p/ (f =P ldr
g
= P/O (f =02 Xig=ndt.

Integrate over RY and interchange the order of integration by means of Fubini’s
theorem. In the integral so obtained use (12.2). These operation yield
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o0
If —glt=p /0 /R = 0% Xigzndds
0 1
> P/O /RN(f* — Y Xigr<ndpdt

o0
* -1
=/RNP/O (f* =05 Xigr<ndtdp

o
= [ [ e o taan
RN g*

_/ / f*d(f* tPdid
- RN g* dt 'u

- / (F* = g")du =1 f* — "I,
RN
In general,

If=glp=1fvg—rrglh=I(fvVa = Al =1/ =g, B

12.2 Testing for Measurable Sets E Such that E= E* a.e.
in RN

Proposition 12.2 Let E C RY be measurable and of finite measure and let f be
nonnegative, radially symmetric, and strictly decreasing in |x|. If

/ fxpdx = / Frypedx (12.4)
RN RN

then E = E* a.e. in RY.
Proof The assumptions on f imply that f = f*and f > 0in R". The sets [ f > ]

are balls of radius p(f) about the origin, for some positive function p(-). While f
may exhibit jump discontinuities, the assumptions on f imply that the function

RY 51— p(f > t]) = rnp™ (1)

is continuous and p ranges over (0, c0). By (12.1) for all ¢ > 0,

/X[f>t]Xde§/ Xif>nXEe-dx.
RN RN
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Integrating in dt over R™

o0
[ rxear= ([ xaraear)ar
RN 0 RN
oo
< X[ > XE*dx )dt
f, (L)

/fxE*dx—/ fxedx

where we have used the assumption (12.4). From this

/RN X[f>nXEAX = /RN Xif>nXe-dx forae. r>0.
From the continuity of p(-) this implies
w(lf > 11NE)=pu(lf >11NE*) forall 1> 0.
This equality is possible if for all fixed p > 0, either E and E* are both contained

in B, except for a set of measure zero, or if E and E* both contain B, except for a
set of 1 measure zero. |

Corollary 12.2 Let g be a real-valued, nonnegative, measurable function in RN sat-
isfying (11.4), and let f be nonnegative, radially symmetric, and strictly decreasing
in |x|. Then (12.1) holds with equality if and only if g = g*.

Proof Forallt > 0by (12.1)

/ fX[g>t]dx 5/ fX[g*>t]dx'
RN RN

Integrating in dt over RT,

fgdx = / ( / fX[g>,]dx)dt
RN 0 RN
o0
E/O (AN fX[g*>t]dx)dt
:/ fg*dx:/ fgdx.
RN RN

/ SXig=ndx :/ fXig->ndx forae. t > 0.
RN RN

Thus

Apply now Proposition 12.2 with E = [g > t]. |
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13 The Riesz Rearrangement Inequality

Theorem 13.1 (Riesz [131]; also Zygmund [178]) Let f, g and h be real-valued,
nonnegative, measurable functions in RN satisfying (11.4). Then

7= / / FEGOIR(y — x)dxdy
RV JRY (13.1)

< / / FH)g* IR (y — x)dxdy = T
RN JRN

Since f, g and h are measurable and nonnegative, the integrals in (13.1), finite
or infinite are well defined, and the inequality holds with the understanding that if
7 = oo then also Z* = oo.

In the next sections we will prove this inequality for N = 1. The proof, albeit
lengthy, is rather elementary, being based on examining the various occurrences and
overlaps of the support of f, g, and 2. While 1-dimensional, it suffices to establish the
main potential estimates, in any number of dimensions (§ 18—§ 22), needed for the
Sobolev embedding theorems of Chap. 10. The proof for N = 2 and N > 2 will be
given in § 25-§ 26. It is more intricate and based on different ways of symmetrizing
sets and functions (Steiner symmetrization in § 23). In all cases, the starting point is
the reduction of the proof to the case when f, g, and & are characteristic functions
of measurable, bounded sets.

13.1 Reduction to Characteristic Functions of Bounded Sets

It suffices to prove the theorem for characteristic functions of measurable sets. Indeed
f, g, and h are the pointwise limit of nondecreasing sequences of simple functions
{fu}.{gn}, and {h,}, each having the representation

n
fo=20ixr, F; D Fjpr, j=1,....m
=1

m
gm = Z’YsXGU Gy DGypr,s=1,...,m;
s=1

k
hy = ZegXHl, H, DHK-H’ L=1,...,k,
=1

where ¢, 7, and 6, are positive constants, and F;, G4, and H, are measurable
subsets of RY, of finite measure. Their symmetric rearrangements are

n m k
fo =2 @iXF, Gy =2 YVsXe:  hp= 2 Ouxn;.
j=1 o= (=1
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Assuming (13.1) holds true for characteristic functions of measurable sets, by
monotone convergence,

I=/ / f@gyh(y — x)dxdy
RN JRN

— Iim / / 10 e (v — x)dxdy
RN JRN

n,m,k—o0

— im0 / / X (X6, ) (3 — x)dxdy
RN JRN

n,m,k—o00 j.s.t

< lim > 0, / / Xr, (O)XG, ()X, (v — x)dxdy
n.m,k—)oojxe RN JRN J

< lim / / 1 (g, (Mh(y — x)dxdy
n,m,k— o0 RN JRN

= / / [T g Mh*(y — x)dxdy.
RY JRY
Thus in what follows we may assume that
f=xr, 9=x6. h=xu (13.2)
where F, G, and H are measurable subsets of RY of finite measure.
For a positive integer n let B, denote the ball of radius n centered at the origin.

Assume that (13.1) holds for measurable, bounded sets F, G, and H. Then by
monotone convergence

I:lim/ / Xrng, X)XcnB, (Y — X)XHnB, (Y)dxdy
RN JRN
< lim/ / Xrn, ) XGnp, (Y — X)Xunp, (V)dxdy = T
RN JRV

Thus the proof of the Riesz rearrangement inequality (13.1) reduces to the case
when f, g, and & are of the form (13.2) where F, G, and H are measurable and
bounded sets in RY

14 Proof of (13.1)for N =1

14.1 Reduction to Finite Union of Intervals

Since F is measurable and of finite measure, for every € > 0 there exists an open set
F, . containing F and such that (Proposition 16.2 of Chap. 3),

W(F,. — F) < 1e.
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Such an open set F, . is the countable union of mutually disjoint open intervals
{I,} (Proposition 1.1 of Chap. 3). Since F, . is of finite measure, there exists a positive

integer n. such that
Z u(l;) < %E.

Jj=>ne

Setting

FSZlej, Fl,a:FﬂUI‘, FRh.=F—-F
=1

jone
the set F can be represented as
F=F.UFi.—F. with pF. . UFR,)<ce¢
where F is the finite union of open disjoint intervals. Moreover,

XF = XF. + XF. ~ XF.-

Similar decompositions hold for G and H. It is apparent that sets of arbitrarily
small measure give arbitrarily small contributions in the integrals Z and Z*. Therefore,
in proving (13.1) for N = 1 one may assume that f, g, and h are characteristic
functions of sets F', G, and H, each finite union of disjoint, open intervals. Moreover,
by changing ¢ if necessary, we may assume that the end points of the intervals making
up F and respectively G and H are rational.

Insuchacase, in the integral Z we may introduce a change of variables by rescaling
x and y of a multiple equal to the minimum, common denominator of the end points
of the intervals making up F, G, and H. This reduces the proof of Theorem 13.1 for
N = 1, to the case when each of the sets F', G, and H is the finite union of intervals
of the type (j, j + 1) for integral ;.

Finally, we may assume that the number of intervals making up each of the sets
F, G, and H is even. This can be realized by bisecting each of these intervals and
by effecting a further change of variables.

Thus in proving Theorem 13.1 for N = 1, we may assume that f, g, and h are
characteristic functions of sets F', G, and H of the form,

2R

F = |J(m;, m; + 1) for positive integers m;
i=l and some positive integer R;
28 for positive integers 7 ;

G = ni,n;+ 1 Lo
jL:Jl( joni 1 and some positive integer S;
2T for positive integers k

H= (e ke+ 1) dp tesers K
et and some positive integer 7.

From this
ff=xr. g =x¢ h=xnu,
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where,
F* =(_R7R)’ G*Z(_Sv S)7 H*Z(_T’ T)
From the definition of symmetric, decreasing rearrangement, it follows that for
allx e R,
h*(- —x) = xn: where H' =x-T,x+T).

With this notation we rewrite Z and Z* as
7 = / f)IM(x)dx, where I'(x) = / gy)h(y — x)dy;
R R
"= | f*x)I(x)dx, where I'*(x)= / g h*(y — x)dy.
R R

Moreover

R s
T* =/ I'*(x)dx and TI*(x) =/ Xa—Tx+1)(¥)dy.
—R -s

14.2 Proof of (13.1) for N = 1. The Case T + S < R

Without loss of generality we may assume that

w(H) < pu(G) ie., T <S§S.

Indeed we may always reduce to such a case, by interchanging the role of g and &
and effecting a suitable change of variables in the integral 7. Estimate and compute

1< / / gO)h(y — x)dydx
RJR

_ / g dy / hndn
R R

— 1(G)u(H) = 4ST.
Next we show that 7* = 4ST. From the definition of I"*

@) =p((=S, )N —T,x+1))

0 for X< —=(8§+T);
= 12T for —(S—T)<x<(S-T);

S+T)—xfor (S—-T)<x=<(S+T7T);
0 for (S+T)<x.
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Assuming now that (S + 7)) < R, compute

R (S+T)
"= / I(x)dx = / I*(x)dx = 4ST.
—R —(S+T)

So far no use has been made of the structure of the sets F', G, and H. Such a
structure will be employed in examining the case S + 7 > R.

14.3 Proof of (13.1) for N = 1. The Case S+ T > R

Since S, T and R are positive integers, the difference (S + 7T) — R is a positive
integer, i.e.,
$1(G) + yu(H) = 5u(F) =S+ T —R=n

for some positive integer n. The arguments of the previous section show that the
theorem holds for n < 0. We show by induction that if it does hold for some integer
(n — 1) > 0, then it continues to hold for n. Set

25-1 i.e., the set G from which the last
G = ]L:J] (nj,nj+1) interval on the right has been removed;
H = 2T71(ke, kot 1) i.e., the set H from which the last

P interval on the right has been removed.

By construction
3G + 3u(H) = 3u(F) = (S =)+ (T —3) —R=n—120. (142
Set also g1 = x¢, and h; = x g,. From the definitions it follows that

g\ = Xc; where G = (=S + %, S — %);
hi = XH; where H{ = (=T + % T — %)_
Moreover,

hi(-—x) = Xny, where Hl*.,x =x-T+ %,x—i—T _ %)

Taking into account (14.2), the induction hypothesis is that
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7= / £ / 910y — x)dydx
R R
- / FOOT (x)dx
R
< / £ / GO — x)dydx
R R
=/ﬂ{f*(x)1]*(x)dx =T.

Next observe that I'}* is defined by (14.1) with S and T replaced, respectively, by
S — % and T — %, 1.e.,

0 for x<—(S+T-1);
x+S+T—-1for —(S+T-1)<x<—-(S-T);

I'(x)=42T -1 for —(S—-T)<x=<(-T),
(S+T—-1)—x for S—-T)<x=<(S+T-1);
0 for (S4+T7-1)<ux.

From this and (14.1) one verifies that
I'(x)—I7x =1 forall |x| < (S+T —1).

In particular this holds true for all |x| < R, since R < (S + T — 1). Using these
remarks, compute

" -1 = / )M (x)dx —/ I (x)dx
R R
R
= / (r'*(x) — Inj*(x))dx = 2R.
-R
Next we examine the structure of the function

x = I'(x) = IN(x) = p({G N Hy)) — p(Gy N Hy ).

Here by H, and H, , we have denoted the sets H and H; shifted by x.
Lemma 14.1 0 < I'(x) — I (x) < 1, forall x € R.

Assuming the lemma for the moment, compute
I-1,= / J)I(x)dx —/ J ) IMN(x)dx
R R

:/Rf(x)(r(x)—ﬂ(x))dx

< / xrdx = 2R.
R
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From this
I-1,<I"-1.

This implies the theorem since, by the induction hypothesis, Z; < Z7. |

14.4 Proof of the Lemma 14.1

It is apparent that such a function is affine within any interval of the form (n, n 4 1)
for integral n. Therefore it must take its extrema for some integral value of x. If x
is an integer, the set H, is the finite union of unit intervals whose end points are
integers. Now, still for integral x, the set H; , is precisely H, from which the last
interval on the right has been removed. Set

I = {the rightmost interval of G};
Iy, = {the rightmost interval of H,}.

If I coincides with 7y, then removing them both, amounts to removing a single
interval of unit length out of G N H,. Therefore

(G N Hy) — (G NH ) =1
If I, is on the right with respect to /i, then removing it, has no effect on the
intersection G N H,, i.e.,

GNH,=GNH,.,.

Now, by removing I out of G, the two sets G N H, and G| N H, ., differ at most
by one interval of unit length. Thus

WG N H) = (G N H) < 1.

Finally, if Iy, is on the left with respect to I, we arrive at the same conclusion
by interchanging the role of G and H,. |

15 The Hardy’s Inequality

Proposition 15.1 (Hardy [66]) Let f € L?(R") for some p > 1, be nonnegative.

Then o . 00
/0 xip(/o f(t)dt)pdx < (pli I)P/O frdx. (15.1)
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Proof Fix 0 < £ < n < oo. Then, by integration by parts

/g” )%(/0 f(t)dt)pdx - p_——ll ! (/O f(t)dt)p%xl—l’dx
S o) = 2 ([ oa)
+ %/Jxl—l’f(x)(/oxf(t)dt)p_ldx.

The second term on the right-hand side is nonpositive and it is discarded. The first
term tends to zero as £ — 0. Indeed by Holder’s inequality

§1p</0£f(t)dt)p < /05 FP(t)dt.

Therefore letting £ — 0 and applying Holder’s inequality in the resulting inequal-

ity, gives
] * P
/0 x—p( /0 f(t)dt) dx

P 7]x1*Pf(x)(/Xf(t)dt)p_]dx
0

o1,
L S el ([

The constant on the right-hand side of (15.1) is the best possible as it can be tested
for the family of functions

IA

_1_,
) x » " for x > 1;
fg(x)_[O for 0 <x < 1,

for € > 0. Assume (15.1) were to hold for a smaller constant, say for example

(L)p(l — P for some 4 € (0, 1).

p—1

If (15.1) were applied to f; it would give

/1°° %(/lxt_%_gdt)pdx < (%)”(1 _ 5)%. (152)

To estimate below the left-hand side, set
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P P 1 P
p= () ma= (o)
p—1l—ep A+p'r=

where € > 01is so small that (p — 1 —ep) > 0 and p is an arbitrary positive number.

Then
* 1 o r “ 1 1-1_¢ P
/ —(/ tr 'dt) dx:AS/ —(x » —l) dx
1 xXPAJy 1 xP

o0
> ASBE/ x~1Pedx
I+p
1 1

=A.B.——.
pe (1 + p)er
Putting this in (15.2), multiplying by pe and letting ¢ — 0 gives

1
l——<1-4.

-1 =

(A+p7

Since p > 0 is arbitrary this is a contradiction.

16 The Hardy-Littlewood—Sobolev Inequality for N =1
Theorem 16.1 ([67, 68]) Let f and g be nonnegative measurable functions in R

andlet p,q > 1 and o € (0, 1) be linked by

11
— 4 —+o0=2 (16.1)
P q

There exists a constant C depending only upon p, q, and o, such that

[ [ 229 anay < ciriial, (16.2)
rRJr X — Yl

Remark 16.1 The constant C(p, g, o) can be computed explicitly as

SIGR) TR TR e

Thus C(p, g, o) tends to infinity as either 0 — 1 or p — 1. Also ¢ = 1 is not
permitted in (16.2) and (16.3).

C(p,q,0) =
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16.1 Some Reductions

Assume that (16.2) holds true for nonnegative and symmetrically decreasing func-
tions. Then, for general nonnegative functions f and g, by the Riesz rearrangement
inequality of Theorem 13.1 applied to f, g and h(x) = |x|77

/ f(X)g(y)dxdy 5/ f*(X)g*(y)dxdy
R RJR

R |[x—yl° |x — y|7
<Clflplig*lly = Clfliplgly-

Thus it suffices to prove (16.2) for nonnegative and symmetrically decreasing
functions f and g. Next, it suffices to prove the theorem in the seemingly weaker

form
/ [T f0)g(y)
0

s =yl dxdy < Coll flipllgllg (16.4)

for a constant C, depending only upon p and g. For this divide the domain of
integration in (16.2), into the four coordinate quadrants. By changing the sign of
both variables one verifies that the contributions of the first and third quadrant to the
integral in (16.2) are equal. The contribution of the second quadrant is majorized by
the contribution of the first quadrant. Indeed, by changing x into —x,

o] 0 o) 00
/ f(X)g(y)dxdy :/ f(X)g(y)dxdy
0 Joso X =17 o Jo I|x+yl°

S/"" > f(X)g(y)dxdy.
0

o lx—=yl7

Similarly, the contribution of the fourth quadrant is majorized by the contribution
of the first quadrant. We conclude that

/ f(X)g(y)dxdy - 4/°° * f(x)g(y)dxdy_
RJR [x —yI7 o Jo lx—yl°
17 Proof of Theorem 16.1
Divide further the first quadrant into the two octants [x > y] and [y > x] and write
/ f(x)g(y)dxdy =/ f(x)(/x g dy)dx
o Jo [x—=yl7 0 0o (x—y)°

o Yof)
4 /0 ao( /0 LEax)ay

=Ji+ /5
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We estimate the first of these integrals in terms of the right-hand side of (16.2),

the estimation of the second being similar.

Lemma 17.1 Lett — u(t), v(t) be nonnegative and measurable on a measurable
subset E C R of finite measure. Assume in addition that u is nondecreasing and v

is nonincreasing. Then

/Euvdtf ﬁ(/Eudt)(/Evdt)'

Proof By the stated monotonicity of u and v,

/E / (1) — u(»)) (v(y) — v())dxdy = 0.

From this
//u(x)v(y)dxdy+//u(y)v(x)dxdy
EJE EJE
2//u(x)v(x)dxdy—i—//u(y)v(y)dxdy.
EJE EJE
Applying the Lemma with
E=(0,x), u@®)=&-0"7  v@)=g@1)
gives

T og(y) 1 /
d dy.
/0 o =) y < d—on Jo g(y)dy

Using Holder’s inequality, estimate

6o = [ gy = ([ grar) 7.
0 0

(17.1)

Return now to J;. Using (17.1), the expression of G (x) and Holder’s inequality

Ji

IA

/OQ f(x)x°G(x)dx
0

1—0

1 R P P L_l
_||f||p(/ x*”ﬁG(x),fldx) :
1—0' 0

— ﬁ”f”p(/ooox—dpplG(x)‘IG(x)ppl—qu)

IA

p—1
)4
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IA

1 17q"7‘l 0 P I p ”T’]
I llgly (] X T T0G )
— i

p—1

i ||1““f‘(/°° 1 (/ ()dy)"dx) *
P — X
(=g gl 0w \Jy T

The last integral is estimated by means of Hardy’s inequality and gives

IA

p—1 1

(/00o )%(/Oxg(y)dy)qu)p”l < (57) T hal 7

Putting this in the previous inequality proves the theorem. |

18 The Hardy-Littlewood—Sobolev Inequality for N > 1

Theorem 18.1 ([67, 68, 148]) Let f and g be nonnegative measurable functions in
RY and let p,q > 1 and o € (0, N) be linked by
1 1 o

S+ =2 (18.1)

There exists a constant C(p, q, o, N) depending only upon p, q, o, and N, such
that

/ f(Lg():,)dXdy <C(p.q,0, NI fllplglg- (18.2)
rY Jry X — Y|

Remark 18.1 The constant C(p, g, N, o) can be computed explicitly as

C(p.q.0.N)= N}r/z(NM_vg)N{(pli 1)[)% * (qu)q”,,‘}fv' (18.3)

Thus C(p, g, N, o) tends to infinity as eitherc — N or p — 1. Alsog = 1 is
not permitted in (18.2).

18.1 Proof of Theorem 18.1

The arithmetic mean of N positive numbers is more than the corresponding geometric
mean (§ 14.1c of Chap.5). Therefore

N 1 N 1
b=yl = (2 —?) = VN [T — IV,
i=1 i=1
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Set
X=(x1,....,xy-1) and y= (..., YN-1)-

From this and Fubini’s Theorem

/ f®g» / /
RN JRY |X—y|J NZ Jry-1 ]RN‘H 1|x,—y,|N
// fx, xn)g(y, yN)dedyN)d)?di
lxy — ynI¥

0/ / If & )pllgy, )Ilqd cd5
N7 Jry-1 Jra- 11|x1_yl|N

where C is the constant appearing in (16.3) with o replaced by o/N. Repeated
application of this procedure proves the theorem. |

Remark 18.2 The structure of the constant Cy in (18.3) shows that neither p = 1,
nor g = 1, nor o = N are permitted in (18.2).

19 Potential Estimates

Let f be a nonnegative function in L?(R") for some p € (1, o0) and set,

h(y):/ T v forsome o € (0. N).
RV X — |7

This is the formal potential of f of order o, and it is natural to ask for what values
of p and o such a potential is well defined as an integrable function.
Let p > 1,g > 1 and 0 € (0, N) satisfy (18.1), which we rewrite as

1 n o

p N p*
where p* = ¢’ is the Holder conjugate of g. Such a number is also called the Sobolev
conjugate of p. The next proposition asserts that & € L”" (RV).

Theorem 19.1 There exists a constant Cy depending only upon o, N and p, such

that
2l < Call £ h ! 1+U 1 (19.1)
r —_— = — — — 1. .
pr = Cn P wnere I > N

The constant Cy is the same as the one appearing in (18.3).
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Proof Since 1 < p* < oo the norm ||A|| ,- is characterized by (§ 3.1 of Chap. 6)

Al = sup / hgdy (19.2)
geLd®N) JRN
lglg=1
= Cnliflipligllg
where we have applied Theorem 18.1. |

Remark 19.1 The previous argument shows that Theorem 18.1 implies Theo-
rem 19.1. On the other hand, assuming (19.1) holds true, (19.2) implies Theorem 18.1.
Thus these two theorems are equivalent.

Remark 19.2 The constant Cy in (19.1) is the same as the constant C(p, g, o, N) in
(18.3) with p* = qu. From the explicit form (18.3) it follows that the values p = 1
and p* = oo are not permitted in (19.1).

20 LP? Estimates of Riesz Potentials

Let E be a Lebesgue measurable subset of RN and let f € LP(E) forsome 1 < p <
oo. The Riesz potential generated by f in RY, is defined by ([129, 130]),

£
V) = /| R

The definition is formal and it is natural to ask whether such a potential is well
defined as an integrable function. When p € (1, N) an answer in this direction is
provided by Theorem 19.1.

One may regard f as a function in L? (R") by extending it to be zero outside E.
By such an extension, one might regard the domain of integration in (20.1) as the
whole RY. By Theorem 19.1 witho = N — 1

Theorem 20.1 Let f € LP(E) for 1 < p < N. There exists a constant C(N, p)
depending only upon N and p, such that

Np
N—p

IVillpr < CIN, PIISIl,  where p* = (20.1)

Remark 20.1 The constant C (N, p) in (20.2) is the same as the one in (18.3) with
o = N — 1. As such it tends to infinity as either p — 1 or p — N.

Remark 20.2 The value p = 1 is not permitted in Theorem 20.1. To construct a
counterexample, let J. be the Friedrichs mollifying kernels introduced in § 18 of
Chap. 6. If (20.2) where to hold for p = 1, then


http://dx.doi.org/10.1007/978-1-4939-4005-9_6
http://dx.doi.org/10.1007/978-1-4939-4005-9_6

20 LP Estimates of Riesz Potentials 471

J:-(y) o
e g dx <C
Aw(&ww—yW” y)dx <

for a constant C independent of ¢. Letting varep — 0, gives the contradiction

1
——dx <C.
AMMNX_

Remark 20.3 The values p = N and p* = oo, are not permitted as indicated by the
following counterexample. For 0 < ¢ <« 1 and N > 2, set

1
— - for |x| < 3
fe)y =1 W x| ™
0 for |x| > %

One verifies that f € LY(R") and that the corresponding potential V(x) is
unbounded near the origin.

20.1 Motivating LP Estimates of Riesz Potentials
as Embeddings

Consider the Stokes formula (14.1) of Chap. 8 written for a function ¢ € C°(E).
After an integration by parts

wmz/kuWva»
E

Using (14.2) of Chap. 8

1 v
lp(0)| < —/Eid (20.2)

WN |x — V-t v

Given now a function u € W,”(E) there is a sequence {y,} of functions in
C:°(E) such that ¢, — u in the norm of A4 (E). Thus up to a limiting process
(20.2) continues to hold for functions ¢ € Wol”’ (E).

Given that |V¢| € LP(E) it is natural to ask what is the order of integrability
of . This motivates Theorem 20.1. Statements of this kind are called embedding
theorems and are systematically treated in Chap. 10.

Remark 20.4 A remarkable feature of Theorem 20.1 is that the constant C(N, p) is
independent of E and hence it continues to hold for E of infinite measure. However
p = land p > N are not allowed. If one permits the constant C to depend on N, p
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and the measure of E, then estimates of the type of (20.2) continue to hold for p = 1
and p > N as presented in the next sections.

21 LP Estimates of Riesz Potentials for p =1and p > N

Similar estimates for the limiting cases p = 1 and p > N, require a preliminary
estimation of the potential generated by a function f, constant on a set E of finite
measure.

Proposition 21.1 Let E be of finite measure. For everyr € [1, %),

dy Ky N,
i P T ol v p(E) N (21.1)

where Ky is the volume of the unit ball in RY.

Proof Fix x € E. The symmetric rearrangement (E — x)* of (E — x) is a ball about
the origin of radius p > 0 such that u(E) = u(B,(x)). Then by Proposition 12.1,

/ dy =/ X(E—x) dy
g |lx —y|&V=br gy [y|V=Dr

X(E—x)*
</, TG
=/ dy _ Nky pN=N=Dr
5, DIV T N — (N = Dr =

Proposition 21.2 Let E be of finite measure, and let f € L'(E). Then Vy € L1(E)
forallq € [1, ). and

N-1
Ky 1N-1
IVilly < —————nE)™ T | flh. (212)
1 — ;q q
N
Proof Fix q € (1, 5*7) and write
1
Lf I -1 1FOle
e = O =
lx =yl Ix =yl
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Then by Holder’s inequality,

Vf(x)<||f||1 /%”);'

Take the g-power and integrate in dx over E, to obtain

Ve < IF1E l/ 1F O] /| |<N )y

=< IIfIIqSUP/ T Y
yeE JE |X |(N_l)q
K e N1
< lN—u(E)l A1, =
— T‘I
Remark 21.1 The limiting integrability ¢ = 7~ is not permitted in (21.2).

Proposition 21.3 Let E be of finite measure, and let f € LP(E) for some p > N.
Then Vy € L*°(E) and

Villoo < C(N, P)M(E)% L fIlp (21.3)
where 5
Nf] N(p _ p—1
C(N, p) = [p_—N] . 21.4)

Proof By Holder’s inequality, and the definition of V,

dy o
== A

xekE

The estimate (21.3) and the form (21.4) of the constant C (N, p) now follow from
Proposition 21.1. u

22 The Limiting Case p = N

The value p = N is not permitted neither in Theorem 20.1c nor in Proposition 21.3c.
The next theorem indicates that the potential V; of a function f € LY (E) belongs to
some intermediate space lying, roughly speaking between every L?(E) and L*°(E).
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Theorem 22.1 (Trudinger [163]) Let E be of finite measure, and let f € LV (E).
There exist constants C| and C, depending only upon N, such that

Vil N
/Eexp (—C1 ||f||N) dx < Copu(E). 22.1)

Proof Foranyg > Nand1 <r < % satisfying

I 1+ 1 1
ro g N’
write formally
N _N
D)l If I
R A S

Then by Holder’s inequality applied with the conjugate exponents

g—N 1 N-1

i o,

Ng q N

we obtain, at least formally,

- LFOIN ‘ dy =
Vil = I1f 1y (/Ede) (/Em) :

Take the g power of both sides and integrate in dx over E to obtain

1

Velly < 1Ny * /If(y)IN /| = )y}
dy o
X sup(/E—u_y'(N,l),.)

xeE

1
< Il sup /| |(N 5) -

xeE

These formal calculations becorne rigorous provided the last term is finite. By
Proposition 21.1 this occurs if r < ﬁ and we estimate

d ’ Ky
sup(/ yN l ) = Yo (E)e
g |x — y|N=br — Ny
N

xeE
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for all ¢ > N. Therefore for all such ¢,

Nl N-1 1 1
IVillg < ky" g % "8 p(E)e 1S Iy (22.2)
Set g = %s and let s range over the positive integers larger than N — 1. Then

from (22.2), after we take the ¢ power, we derive

/E [(u';ﬁ'N)m]sdx < By ()

Let C be a constant to be chosen. Divide both sides by C 5! and add for all
integer s = N, N + 1, ..., k. This gives

k Aoos
/EENH(CMN) Jax

N x Nky s s
E
v )sgo((zv—l)c%) (s = D!

s

for all k > N. The right-hand side is convergent provided we choose C so large that

NKN 1
< —.

(N-DCF1 e

Making use of (22.2), it is readily seen that the sum on the left-hand side can

be taken for s = 0, 1,..., by possibly modifying the various constants on the
right-hand side. Letting k — oo and using the monotone convergence theorem
proves (22.1). [ |

23 Steiner Symmetrization of a Set E c RV

For a unit vector in u € R" let
Ta={PeRY | P-u=0}

denote the plane through the origin normal to u. Also, for P € R" let £p., be the
line through P and directed as u, i.e., in parametric form

eP;u = U{P +tll}.
teR

The Steiner symmetrization of a set E C RY with respect to m, is defined by

EX = U {P+ru | |t] < sH(ENLpy)} (23.1)
Pemy; ENCpy#0
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where H; () is the 1-dimensional Hausdorff outer measure on R as defined in § 5 of
Chap. 3. As such (23.1) is well defined for all E C RV

Roughly speaking, from each P € 7, we draw a line normal to 7, and look at the
1-dimensional set of intersection of £p., with E. If such intersection is nonempty,
we take its 1-dimensional Hausdorff outer measure, and construct a segment of
length H; (E N ¢p.), symmetric about P and normal to 7. Thus, roughly speaking,
the points of E along the line {p., are “rearranged” symmetrically, in a measure
theoretical sense, about the hyperplane 7, starting at P, and along the same line.

Lemma 23.1 diam E; < diam E.

Proof May assume that diam E < oo and that E is closed. Having fixed ¢ > 0, let
x,y € E} be such that
diam Ej < |x —y|+¢

and set
P=x—-(x-wu, QO=y-(Q- -wu

By the definitions P, Q € m,. Set

a=sup{t| P +rtueE}, G =inf{t | P +tu € E};
v=-sup{t|Q +tue€ E}, 6=inf{t| Q +tu e E}.

Without loss of generality may assume v — 3 > a — 4. Then

Y=Bz 30y = B+ 5(a—0)
Ha=PB)+1(y=96)
SHI(E N Lp) + 3HI(E N Lgi).

v

On the other hand
Ix-ul < SHI(ENLpw), |y -ul < 3H1(ENLow).
Therefore
x-u—y-ul <vy-—4.
From this
(diam E} —&)* < |x — y|?

=|P-QF +|x-u—y-uf
<IP=QP+(y-p)°

= |(P + fu) — (@ + )|
< (diam E)?. [ |
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The Steiner symmetrization does not require that E be measurable. However on
measurable sets the symmetrization is volume preserving.

Lemma 23.2 Let E be Lebesgue measurable. Then E}; is Lebesgue measurable and
W(EY) = W(E).
Proof By Proposition 5.2 of Chap. 3, the 1-dimensional Hausdorff outer measure
coincides with the 1-dimensional Lebesgue outer measure and the latter coincides
with the 1-dimensional Lebesgue measure 1; on measurable sets. Therefore
Hi(ENLpw) = ui(ENLpy)

whenever E N{p., is pj-measurable. Since the Lebesgue measure is rotation invari-
ant, having fixed u on the unit sphere of RY, we may assume u = ey, so that
ma = RV~ Denote by juy_; the Lebesgue measure on RV~

By the Tonelli version of Fubini’s Theorem (§ 14.1 of Chap.4) the sets

E NZE(P;ey) are u; -measurable, for yy_; -a.e. P € RN

Moreover, the nonnegative valued function

RY"'5 P o f(P)E ju(ENLpey)

is py—1-measurable and

pn(E) = /R  fPyap.
It follows that the set
E; ={(P.y) | =Lf(P)<y<if(P)}={(P.0) | ENtpe, =10},

is Lebesgue measurable in RY and (§ 15.1c of Chap.4)

v (E,) = /R f(P)P. -

24 Some Consequences of Steiner’s Symmetrization

24.1 Symmetrizing a Set About the Origin

For a set E C RY apply the Steiner symmetrization recursively with respect to all
the coordinate unit vectors (ej, ..., ey), and set

Ef=E., Ei=(EDL, .... Ey=(Ey_ )i, 24.1)

ey’
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The set E} is symmetric with respect to me, and E3 is symmetric with respect to
Te,- We claim that E7 is also symmetric with respect to 7, . Given P € 7, let P’ be
its symmetric with respect to , . If for some € R

P +ex € Ef, thenalso P'+ext € Ef
since E} is symmetric about 7, . Therefore
{t | P+exteEf}={t| P +erekE]}.
Thus E7J is also symmetric with respect to the plane me,. Applying the same
argument to E3, as constructed by Steiner symmetrization from E7, shows that E}
is symmetric with respect to the planes 7, for j = 1,2, 3. By induction E} is

symmetric with respect to all the coordinate planes, and hence is symmetric about
the origin.

24.2 The Isodiametric Inequality

Proposition 24.1 For every E C RV
pe(E) < rin (4 diam E)Y (24.2)

where [1, is the Lebesgue outer measure in RN and ky is the measure of the unit ball
in RV,

Proof Assuming diam E < oo, let E}, be constructed in (24.2). Since EY; is sym-
metric about the origin, if x € E} then also —x € E},. Therefore 2|x| < diam E}
and hence E}; is contained in a ball of radius % diam E7}, about the origin. From this

pe(EG) < roy (L diam E5)".
The set E is measurable and by Lemmas 23.1 and 23.2,
u(E}f,) = pu(E), and diam EX, < diam E.

From this

1e(E) < w(E) = u(E%y) < kn (4 diam E5)"

< oy (L diam E)Y = ky (4 diam E)". u



24 Some Consequences of Steiner’s Symmetrization 479

24.3 Steiner Rearrangement of a Function

Let E C RY be Lebesgue measurable and of finite measure. The Steiner rearrange-
ment of x g with respect to a unit vector u is the characteristic function of £}, i.e.,

(XE)y = XE:-

Next, let f be a nonnegative, simple function taking n distinct positive values
fi < -+ < fu, on mutually disjoint sets {E, ..., E,}, each of finite measure.
Rewrite f asin (11.1), and define the Steiner rearrangement of f with respect to u
as

fa = fix@eo-uEy; + (f2 = fOXEU-UE); + -+ (fu = facDX(ED-
By construction
[f >ty =1[f) >1t], forall r>0. (24.3)

Let now f be a real-valued, measurable, nonnegative function defined in RN
and satisfying (11.4). There exists a sequence of nonnegative, measurable, simple
functions {f,} — f pointwise in R, and f, < f,11. Moreover each f, takes
finitely many, distinct values on distinct, measurable sets of finite measure. Hence,
(fn)3 is well defined for each n. Moreover (f,,);; < (f,+1);; and the pointwise limit
of {(f.);} exists. Define

fo=Um(f)5 =/ Xif>nzdt. (24.4)
0

One verifies that (24.3) continues to hold in the limit and that statements analogous
to those in Proposition 11.1 are in force.

25 Proof of the Riesz Rearrangement Inequality for N = 2

Let My be the counterclockwise rotation matrix in R? of an angle 6 and denote
by Fy, Gy and Hy the measurable bounded sets obtained from F, G and H by a
counterclockwise rotation of an angle 6, i.e., for example

Fy> (x,y) == Me_l(x,y)eF.
Denote also by S, and Sy, the operations of Steiner symmetrization of a set, about

the x- and y-axes, respectively. Then, by repeated application of Fubini’s theorem
and the 1-dimensional version of the Riesz rearrangement inequality (13.1)
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7.6 = [ [ xreoxots = yuudxdy
R? JR
= / / XF (X)XG, (X — Y)xn,(y)dxdy
]Rz R2
< / / Sexr (9Sexa, (6 — W) Sexa, ()dxdy
R? JR2
< / /2 SySexF (X)SySexc, (x — ¥)SyScxn, (y)dxdy
2 JR
= /2 /2 Xr (X)XG, (X = Y)xm (V)dxdy =1(Fy, Gy, Hy)
R2 JR
where we have set
Fi = ($,S:M¢)F, G| =(8,85:Mp)G, H, = (S,S:My)H.
Set
T) = (SyScMy) and T;' = (S,S;Mp)T;”" for n=2,3,....
Repeating this process n times and setting
F,=T)F, G,=T)G, H,=T/H

one has
I(F,G,H) <1I(F,,G,, H,) forall neN.

Since the sets F, G, and H are bounded, they are contained in some disc D
about the origin of R2. Then, by the definition of T, the sets F,, G,, and H, are all
contained in the same disc D. In particular the sequences {xf,}, {x¢,}, and {x#,}
are equi-uniformly bounded.

By the 1-dimensional version of the Riesz rearrangement inequality (13.1) the
sequence {Z(F,, G,, H,)} is nondecreasing and hence it has a limit. Therefore, the
proof of the Riesz rearrangement inequality for N = 2 reduces to showing that

. . 2
lim xr,. X6,» Xn, = XF*» Xc*» Xu+ ae.in R

where F*, G*, and H* are the symmetric, decreasing rearrangements of F, G, and
H about the origin of R2. Indeed, if this is established, by dominated convergence

imZ(F,, G, Hy) = I(F*, G*, H").

We will establish (25.1) for { F,, }, the proof for the remaining sets being analogous.
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25.1 The Limit of {F,}

Proposition 25.1 There exists ameasurable set F, C D, and a subsequence {F,;} C
{F,}, such that
limyg, = xr, ae. in R% (25.1)

Moreover
SySeMoFy, = SiMyF, = S,MpF, = MyFi. (25.2)

Proof Consider the portion of F,, in the right, upper, quarter plane, i.e.,
Fr=F,N[x>0]N[y > 0].

The least upper bound of F, in [x > 0] N [y > 0] is the graph of a function
fu» which by the symmetrizations S, and S, is nonincreasing. The family {f,} is
uniformly bounded and uniformly of bounded variation in some common interval
(0, b) for some b > 0. Hence by the Helly’s selection principle (§ 19.1c of the
Complements of Chap. 6), there exists a nonincreasing function f defined in (0, b)
and a subsequence { f,v} C {f,} suchthat {f,,} — f pointwise everywhere in (0, b).
Define

Fr=U{@»|0<y<f@), for x>0}

Since f is measurable, the set Fj is measurable, and

o0 o0 o0
H(FF) = / fdx = / / Xrsdxdy
0 0 0

By dominated convergence
lim [[x 7 — xpll2 = 0.

Since the sets F), are symmetric with respect to the x- and y-axes, there exists a
set F, symmetric with respect to the x- and y-axes, such that

limxr, = xr, ae.in R2.

To establish (25.2) we first observe that for any two sets E; and E, of finite
measure
1SyxE, — Syxell2 < lIxe, — XE 23

1ScxE, — SexEll2 < IxXE, — XE 2
1SSy XE, — SxSyXe 2 < IXE, — XE 2 (25.3)

Moxe, — Moxe,ll2 = lIXE, — XE, ll2;

1Ty xE, — Ty xe:ll2 < IXE, — XEl2-
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The first three follow from the contracting properties of symmetric rearrangements
of Theorem 12.1, applied for N = 1 and repeated application of Fubini’s theorem.
The fourth is implied by the rotational invariance of the Lebesgue measure in RV,
The last one is a sequential application of the previous ones. Next compute

lim |7y xr, — Ty xr. |2 < lim[Ixr, = x£.ll2 = 0.
Let ¢ be a radially symmetric, strictly decreasing positive function. For such a ¢
Sep=Syp=Mpp =T o =0¢.
By dominated convergence

lim [l — x£, 12 =l — xF, ll2;
lim [ — T} xr, 2 = o — T, xF.|l2-

Moreover by (25.3)

le — Ty xr N2 < e = X |-

By repeated application of the contracting properties of symmetric rearrangements
and (25.3), for all n’, there exists an integer k(n’) > 1 such that

o = XFpyll2 = 1Y = XFyior, 12
k(n') 1
=lle—T," xr,ll2 < llp — Ty x5, 2.

From this

le — xrll2 =lim [l — x£,,, ]2 <lim [l — T)' x£, |2
=l —T)xrl2 <l — ScMyxr.ll2 <l — xr. |2

A similar chain of inequalities holds with S, replaced by S,. Hence

le — xrll2 = llo — Mpxrll2 = llp — Ty xr. I
= [l — SxMoxr 2 = llp — SyMoxr, N2 = llp — XF. 2.

Expanding the L?-norm and using the volume preserving properties of the
rearrangements, implies

/ XM, F,dX =/ Sy XmyF,dx =/ ©SyXmyF,dx.
R2 R2 R2

Repeated application of Proposition 12.2, along the x- and y-axes, with the aid
of Fubini’s theorem yields (25.2). |
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25.2 The Set F, Is the Disc F*

The set F, is a disc if MsF, = F, for all § € [0, 27). The angle 6 so far is arbitrary
and it will be chosen shortly. By (25.2) the set My F, is symmetric with respect to
both coordinate axes. Therefore My F, = M_gyF,, implying

MyF, = F, andhence MyyF,=F, forall k € Z.

Now choose 26 to be an irrational multiple of 27r. For such a choice, the collection
of numbers of the form {k26 mod 27} for k € Z, is dense in [0, 27). Therefore the
function

[0,27) 30 — lIxr. — Msxr. |2
vanishes on a dense subset of [0, 27). If such a function were continuous, then

M;F, = F, a.e.in R2, for all § € [0, 27) and F, is a disc. To prove the continuity
of such a function of § it suffices to show that

[0,27) 36 — / XFMsxr.dx
RZ

is continuous. Since C2°(D) is dense in L?*(D), fore > 0 fixed, there exists 1. € Ccx
such that

/ |(XE, — V) Msxr,dx < Xk, — Yellov/p(F) < je
Rz

uniformly in 4. The function 1. being fixed, there exists 7. > 0 such that

/ M s o — M_stbe|xrdx < ke forall [n] < 1.
RZ
Therefore
‘/ XF*M5XF*dx_/ XF*MﬁinXF*dx‘
R? R?
<| [ G = v Mixras| + | [ (e = 0 Mo
R R
+ ‘/ 1/}5M6+nXF*dX—/ "/JSMzSXF*dx‘
R? R?

=< %5 + ‘ (M—6—7]'l/)€ - M—ﬁws)XF*dx‘ <e. ]
3 R2
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26 Proof of the Riesz Rearrangement Inequality for N > 2

The proof is by induction. Denote the coordinates of R by x = (X, xy) and set

Sy = {the Steiner symmetrization with respect to xy};

X; = {the symmetric rearrangement with respect to ¥ € R¥ 1},

Denote also by M the unitary matrix that rotates the x axis by 7/2, interchanges
the x_; and xy axes, and keeps the remaining (N — 2) axes unchanged. Set also

T'=(Z:SyM) and T" = (Z:SyM)T"' forn=23,....
Proceeding as before we introduce sets
F,=T"F, G, =T"G, H =T"H.

The proof reduces to showing that these sets tend, in some appropriate sense, to
F*,G*,and H*. Concentrating on { F}, }, observe that these sets are radially symmetric
with respect to the first (N — 1) variables, and symmetric with respect to x . Their
least upper bound in the % — space [xy > 0] are graphs of functions { f,,}, defined in
R¥~!, radially symmetric, and nonincreasing in |X|. As such, they can be regarded
as functions of one variable to which the Helly’s selection principle can be applied.
The same procedure as before now yields a limiting set F, satisfying

YiSVMF, =SyMF, =MF, =F, (26.1)

in the sense of the characteristic functions of these sets. The set F, is radially sym-
metric with respect to the first (N — 1) variables, and symmetric with respect to x .
Moreover by the last of (26.1), the role of xy and xy_; can be interchanged. Thus
X r, depends on x, formally, as

X(m, :|:XN) = X(,/Ziyz_lzsz- + szv, :I:xN_l).

By setting first xy_; = 0 and then xy = 0, this implies that y r, depends on x
radially, thereby proving that F, is a ball. The argument can be made nonformal,
by approximating . in L2(R"), by smooth functions that preserve the indicated
symmetry. |
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Problems and Complements

11c Rearranging the Values of a Function

Let f be a real-valued, nonnegative, measurable function, satisfying (11.4).

11.1 Prove that the definition of f* introduced in (11.2) or (11.5) is equivalent to
(compare with (15.3) of Chap.4)

o0
f*:/ X{-ndt- (11.1¢)
0

11.2 Give a detailed proof of (iii) of Proposition 11.1.
11.3 Prove the following more general version of (vii) of Proposition 11.1. Let
©() : R* — R be monotone increasing. Then

/so(f)dﬂ=/ e(fHdp. (vii)’
RN RN

11.4 Prove that (vii)’ continues to hold for ¢ = ¢ — ¢, where each of the ¢; are
monotone increasing and for at least one of them the corresponding integral in
(vii)’ is finite.
11.5 For a measurable set E of finite measure redefine E as the closed ball about
the origin of radius
kyRY = w(E).

Then redefine the nondecreasing, symmetric rearrangement f,* of a nonneg-
ative function f, satisfying (11.4), by the same procedure as in § 11 with the
proper modifications. Prove that all statements in Proposition 11.1 continue to
hold, except that f;* is upper semi-continuous.

11.6 If f does not satisfy (11.4) then the symmetric, decreasing rearrangement of
f can still be defined by setting

0 it p([f >1t])=0;
« if p([f >1]) < o0;
Xif>0 = | Xkl<R where gy RN = u(lf > t]);
1t p(f > 1]) = oo

The symmetric rearrangement of f is then defined by the formula (11.1c)
using this new definition of x{,_,,. Prove that all statements of Proposition 11.1
remain force.


http://dx.doi.org/10.1007/978-1-4939-4005-9_4
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12¢ Some Integral Inequalities for Rearrangements

Let f and g be real-valued, nonnegative, measurable functions, satisfying (11.4).

12.1 Let E be a measurable set in RV of finite measure. Let B, be a ball of radius p
about the origin and apply (12.1) with f = xp, and g = x . Assume that for
all balls B, (12.1) holds with equality, i.e.,

/RN XB,XEd[ = /RN X5, XEd /-
Prove that E = E*.

12.2 Let f = f* be strictly decreasing. Prove that (12.1) holds with equality if and
only if g = g*.

12.3 Let f = f* be strictly decreasing. Prove that (12.2) holds with equality for all
t > 0if and only if g = g*.

12.4 Prove the following more general version of Theorem 12.1

Theorem 12.1¢ Let p be a nonnegative convex function in R vanishing at the origin.
Then

/RN o(f*—g"dp < /RN o(f —g)dp. (12.1c)

When ¢(t) = |¢|” for p > 1 this is Theorem 12.1.

12.5 Let ¢ be strictly convex and let f = f* be strictly decreasing. Prove that
(12.1c) holds with equality if and only if g = g*.

20c LP Estimates of Riesz Potentials

Let E be a domain in RY and for « € (0, N) and f € L”(E), consider the potentials

f ()
Vo) = /| —ya?

If a = 1 these coincide with the Riesz potentials.

Theorem 20.1c Let f € LP(E)forl < p < % There exists a constant C(N, p, o)
depending only upon N, p and o such that

Np
N—ap’

Varllg = C(N, p, DN fllp,  where g = (20.1¢)

Compute explicitly the constant C(N, p, o) and verify that it tends to infinity as
either p — lor p — %
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21c L7 Estimates of Riesz Potentials for p =1and p > N

. N
Proposition 21.1c For every ac € (0, N) and every 1 <r < 5=
d N};ar
y Ry |_N=a,
su < E v 21.1c
s [, e = ) @19

Proposition 21.2¢ Let E be of finite measure, and let f € L'(E). Then Va s €
Li(E) forall q € [1, Ny and

N—«
HNT_O 1_N-a
Ve rllg < —( - )lu(E)q 7 - (21.2¢)
1 — ;q q
N

Remark 21.1c The limiting integrability g = % is not permitted in (21.2c¢).

Proposition 21.3¢ Let E be of finite measure, and let f € LP(E) for some p > %
Then Vo y € L™(E) and

Vaslloo < CN, p, )(E) 5 |1 £, 213¢)
where
_ me N(p— D5
C(N’ P, a) = Ry (—O[p _N ) . (2140)
22¢ The Limiting Case p = &

The value ap = N is not permitted neither in Theorem 20.1c nor in Proposi-
tion 21.3c. Prove the following:

Theorem 22.1¢ Let E be of finite measure, and let f € LP(E) for p = % There
exist constants Cy and C, depending only upon N and o, such that

|Vuf| %
exp | ———— dx < Cru(E). 22.1c
/E p(clufu,,) * = CoplE) (22.1¢)
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23c¢ Some Consequences of Steiner’s Symmetrization

23.1c Applications of the Isodiametric Inequality

The Hausdorff outer measure H,,, introduced in § 5 of Chap. 3, can be properly re-
normalized by a factor +,, so that when o = N it coincides with the Lebesgue outer

measure /i, in RY. Set

wls

™

o0
= — where (@) :/ e *x'ldx, t>0,
20r($+1) 0

Ve

is the Euler gamma function. One verifies that for « = N

oy = ’;—x Ky = {volume of the unit ball in RV}
Define the re-normalized Hausdorff outer measure as

H, = FY(yHa'

Proposition 23.1¢ Hy(E) = j.(E) for all subsets E C RY.

Proof We may assume that j1,(E) < 0o. Having fixed ¢ > 0, let { £} be a countable
collection of sets in RV each of diameter not exceeding ¢ and such that E C UE;.

By the isodiametric inequality
fe(E) < p1e(Ej) < > k(3 diam E))Y = yy 3 (diam E )"
Taking the infimum of all such collections {E |}, and then letting ¢ — 0, gives
pe(E) = ywHa(E) = Ho(E).

For ¢ > 0 fixed, let {Q;} be a countable collection of cubes in RY with faces
parallel to the coordinate planes, such that E C |J Q; and

te(E) = 37 11e(Q)) — &

By the Besicovitch measure theoretical covering of open sets in RV (Proposi-
tion 18.1c of Chap.3) for each Q; there exists a countable collection of disjoint,
o

closed balls {B; ;}, contained in Q ;, of diameter not exceeding € such that

pe(Q; —UBij) = n(Q; = UBi;) = u( &j -UB.;) =0.


http://dx.doi.org/10.1007/978-1-4939-4005-9_3
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For these residual sets, by Proposition 5.2 of Chap. 3,
Hy(Q; —UBi;) =0.
Then compute and estimate

Hy(E) =3 Hy(Q)) < 3 Hy(U,;B:)
<> w(diam B; )Y =", pie(B: )
=D 11e(Q)) < pe(E) + €. u


http://dx.doi.org/10.1007/978-1-4939-4005-9_3

Chapter 10
Embeddings of W!:?(E) into L1 (E)

1 Multiplicative Embeddings of W,'? (E)

Let E be a domain in RY. An embedding from W'?(E) into L7(E) is an estimate
of the L9(E)-norm of a function u € W7 (E), in terms of its W' ?(E)-norm. The
structure of such an estimate and the various constants involved should not depend
neither on the particular function # € W'?(E) nor on the size of E, although they
might depend on the structure of OE. Since typically ¢ > p, an embedding estimate
amounts, roughly speaking, to an improvement on the local order of integrability of
u. Also if p is sufficiently large one might expect a function u € W7 (E) to possess
some local regularity, beyond a higher degree of integrability.

The backbone of such embeddings is that of Wo1 "P(E) into L9(E), in view of its
relative simplicity. Functions in W(,1 "P(E) are limits of functions in C(E) in the
norm of Wo1 "P(E), and in this sense they vanish on JE. This permits embedding
inequalities in a multiplicative form, such as (1.1) below. Such an inequality would
be false for functions not vanishing, in some sense, on a subset of E. For example
a constant, nonzero function would not satisfy (1.1). The proof is only based on
calculus ideas and applications of Holder’s inequality.

Theorem 1.1 (Gagliardo [54]-Nirenberg[118]) Let E be a domain in RN and let
u e W,,l’p(E) N L"(E) for some r > 1. There exists a constant C depending upon
N, p, r such that

lullg < ClDulflluf™* (1.1)

where 0 € [0, 1] and p, g > 1 are linked by

(DG 4D
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and their admissible range is
If N=1 then g €[r,00] and

If N>p=>1 then

(1.4)

If p>N=>1 then qe€lr,o0] and

(1.5)

496[0 Np ]

"Np+r(p—N)

If p=N then q €[r,00) and 6 € [0, 1)
moreover the constant C is given explicitly in (6.1) below.

By taking = r = 1 in (1.4), yields the embedding
Corollary 1.1 Letu € Wy " (E) for 1 < p < N. Then

p(N—1)
N-—-p

\Dull,  wh «o NP (1.6)
ull, where = . .
; P N—p

lluell pr <

Remark 1.1 The constant % in (1.6) is not optimal. The best constant is com-
puted in [157]. When p = 1, (1.6) with best constant takes the form

1/ N\UN
el = (=) " 1Dulh. (1.7)
N-1 N \wy

where wy is the area of the unit sphere in RY.
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1.1 Proof of Theorem 1.1

Since C,°(E) is dense in A4 (E), in proving Theorem 1.1 may assume that u €
C3°(E). Also since u is compactly supported, we may assume, possibly after a
translation, that its support is contained in a cube centered at the origin and faces
parallel to the coordinate planes, say for example

0={xeR"| max [x;] < M} forsome M > 0.
I<i<N

Thus u € C;°(Q). The embedding constant C in (1.1) is independent of M.

2 Proof of Theorem 1.1 for N =1

Assume first p > landg < oo. Forr > 1,s > landg > r,and all x € Q

Dl dg)

q-r
s

GOl = lu)l" (Ul = |u(x>|r(/

< |u(x>|’(/Es|u<£)|S*1|Du(§>|d5)

Integrate in dx over E and apply Holder’s inequality to the last integral to obtain

q-r

_1 s
el < el (s 1Dl lullt )
=1

Choose s from

—1 —1
—p(s ) =r ie., =1+ —r(p )
p—1 P
and set
e_q—r_(l 1)(1 1 1)*1
- qs T \r g/ \N p r
Then ( 1y
jully < CIDullul}™" where € =[1+=L=2T
p

The limiting cases p = 1 and ¢ = oo are established similarly. |
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3 Proof of Theorem 1.1for1 < p < N

The proof for the case (1.4) uses two auxiliary lemmas.

Lemma 3.1 [lu| » < | Dul.

Proof 1t suffices to establish the stronger inequality

N
lull g, =TTl ™. (3.1)

Such inequality holds for N = 2. Indeed

// u? (x1, x2)dxidx; =// u(xy, x2)u(xy, xo)dxidxy
E E

5/ maxu(xl,xg)maxu(xl,xg)dxldxg
E *2

maxu(xl,xz)dxl/maxu(xl X2)dx;
X2

// qulldx // quZIdx

The lemma is now proved by induction, that is if (3.1) hold for N > 2 it continues
to hold for N + 1. Set

)Ez(xh""-xN)v tZXN+1, XZ(.)E,I)

Then by Hélder’s inequality

|M||N+l // u(x, )| didt = // u(x, D) (X, 1)| ¥ dxdt
d ,0)|7d .
S/R(/ u(E, 1)| x) (/RN (. )| x) ‘

Observe that

/ |u(5c,t)|d)25// |u,(x,t)|d5cdz=/|u,|dx.
RN R JRN E

Moreover, by the induction hypothesis

< ﬁ (/RN qu‘.()?,t)|di)%.

i=1

N—-1

(/R |u(;z,z)%d)z)T
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Therefore

1 1
/|M|NT+]dx§ H(/ |uxi(32,t)|dx th /|u,|dx N.
E R

i=1

By the generalized Holder inequality

N L N 1
H(/ |ux,.<i,t>|df)”dt_n // e, (, Dlddr) "
Ri=1 R¥ =1

(il;[l i |uxi|dx)ﬁ.

/\

Combining these last two inequalities proves the lemma. ]

Lemma 3.2 |u| x» < p(N l)||D ull p.
e

Proof Write
pIN=D N %%
Jull o = ([ (155" ax)
N>p E
and apply (3.1) to the function w = |u|PN=D/(N=P) This gives
N PN=1) 5
Nl o H /‘ |u| N ‘d ) ],(N 0]
e
1:

N pN=D) _ Tows
H / lu| ~=r 1|1,txl,|dx) e
i=1 E

_[p(N—l)]%
=[5 ,

where

Now foralli =1, ..., N, by Holder’s inequality

p—1

|u|Nv Nuy, |dx < /|uxl|”dx /|u|Nde !

and

N—p ool

N T N N—p
PIN=D) Np(N-T) B Y -
Il ( Jul 7 e ) = T (e 1) % flall 7,
i=1

i=1 E N—p

NN =y e
< 1Dul| 5™ Nue| N’,y
=

N
N—

Combining these inequalities proves the Lemma. |
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4 Proof of Theorem 1.1 for 1 < p < N Concluded

According to (1.2) the case # = 0 corresponds to g = r and therefore (1.1) is trivial.
The case # = 1 corresponds to g = Aﬁ\%” and is contained in Lemma 3.2. Let r €

[1,00) and p < N be fixed and choose 5 € (0, 1) and ¢ such that

N N
min {r; ] < g < max [r; P }, Oq < —p. 4.1)
N N-—-p

- P - P

Then by Holder’s inequality

/|u|qu=/ |ua|% || D9 d x
E E

N—

rg -y
N q ;
= (/ |M|N*de) . (/ |M|rdx)

E E

Np
—_— =
Np — (N — p)bq

where we have set

(1—-10)q 4.2)

From this, by Lemma 3.2

p(N — 1)]9.

0 1-6 —
lully = CllDullpllull,”",  where C—[ N=p

By direct calculation one verifies that (4.2) is exactly (1.1). Moreover the ranges
indicated in (1.4) correspond to the compatibility of (4.1) and (4.2).

5 Proof of Theorem 1.1 for p > N > 1

Let F(x; y) be the fundamental solution of the Laplace operator introduced in (14.3)
of Chap. 8. Then by Stokes formula (Proposition 14.1 of Chap. 8), forallu € C;°(E)
andallx € E

ﬁdy. (5.1)

1
ue == [ Faipaumdy = [ puy-
RY WN JRN
Fix p > 0 and rewrite this as

wxu(x) = / Duty) - =2 4y
[x—yl<p |x - )’|

Y

o (5.2)
+ [ puty Sy,
[x=y|>p |x - Y|
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http://dx.doi.org/10.1007/978-1-4939-4005-9_8

5 Proof of Theorem 1.1 for p > N > 1 497

The second integral can be computed by an integration by parts, as

Du(y) - dy = / Du(y) - D-————dy
/Xyl>p lx —yI¥ N =2 Jioy=p Ix — y|N-2

=),
== u(y)do
PV Jiemyi=p

since F(x; y) is harmonic in RN — {x}. Here do denotes the surface measure on the
sphere {|x — y| = p}. Put this in (5.2), multiply by Np"~! and integrate in dp over
(0, R) where R is a positive number to be chosen later. This gives

R
won RN ()| §N/ (/ Mdy)pzudp
0 \

x—y|l<p |x - )’|N_1

R
+N/ / lu(y)|do)dp.
0 (\x—y|=puy U) ’

From this, for all x € E

[Du(y)| N
wylu@)| = / ———dy+ —~ lu(y)ldy
Beoy X — ¥V RN /gy (5.3)
=1(x,R)+ NL(x,R)

where By (x) is the ball of radius R centered at x.
5.1 Estimate of I1(x, R)
Choose two positive numbers a, b < N such that

a 1

—+b(1——)=N—1. (5.4)

p
Since
N 1 1
—+N(1——) >N(1——)=N—1
)4 N
such a choice can be made. Now write
P
DU _ = 1Dl 1
lx — [ lx — ¥l |x — y|

b(1—1)
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and apply the generalized Holder inequality with conjugate exponents

o1y 1 1
(- )+-+(1--)=1
r q/ q P

This gives

-t [DuI” i 1 -
nery < ipuly ([ PEEEa) ([ )
Bg(x) lx — vl Br(x) lx — v

Taking the g-power and integrating over E, gives

4 g (-3+0)

Wi
I (R)ly < T — 1 Dull,.
(N—a)s(N—Db) v
5.2 Estimate of I(x, R)
L(x, Ry < RV / u)HIdy) / 1dy) *
g ( |x—y|<R ) ( [x—y|<R )

= ()" anuui‘;(/lfkk e+ O de)

Take the g-power and integrate in dx over R" to obtain

WN 1+$7% —N(L-1y
I52llg =\ %7 R lull,

6 Proof of Theorem 1.1 for p > N > 1 Concluded

Combining these estimates into (5.3) gives

1_1
wry " 1141
el <~ );(VN b),_lnpunpr(N )
otV —b) 2
1

1
WN\qgr —N({-1
+( ) " VR C
N l[ull
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Setting

1 1

wy "I Dul| WN i~
A= 5 T . . B= (W) lluell
(N—a)i(N—=0b) 7

~i—

the previous inequality takes the form

lull, < AR® + BR™"

o) el

Minimizing the right-hand side with respect to the parameter R € (0, co), we find

where

< [(5)7 + (3)

Setting
B _, B__
B+ B+p
proves (1.1)—(1.2), with the constant C given explicitly by

- [) (e

1_1
q P

1—-6 so that é.:—
B

6.1)

w 0
: ((N - a)«l](vN - b)“i) '

The ranges indicated in (1.5) depend on the possibility of choosing numbers a
and b as in (5.4). [ ]

7 On the Limiting Case p = N

A function u € W(,l’p(E) for p > N belongs to L*°(E), by the embedding (1.1)-
(1.5). However, the constant C = C(N, p) in (6.1) deteriorates as p — N. Indeed
as p — N, the number b in (5.4) tends to N and consequently C(N, p) — oo. If
p = N the same embedding implies that u is LY(E) for all 1 < g < oco. On the
one hand such an embedding is rather precise as there exist functions in WOI*N (E)
for N > 1, that are not essentially bounded. For example u(x) = In|In |x|| is not
bounded near the origin and belongs to W'V (B ). On the other it does not provide
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the sharp embedding space for W)V (E). A sharp embedding for p = N can be
derived from the limiting estimates of the Riesz potentials (§ 22 of Chap.9).

Theorem 7.1 Let u € W}N(E). There exist constants Cy and C, depending only

upon N, such that
|ul W
exp {—} dx < Cu(E).
/E Cil|Dully

Proof We may assume u € C>°(E). From the representation formula (5.1)

T w yI

v JE Ix —

The embedding now follows from the limiting potential estimates. |

8 Embeddings of W17 (E)

Embedding inequalities for functions in W'!?(E) depend in general, on the structure
of OE. A minimal requirement is that E satisfy the cone property (§ 16.4 of Chap. 8).
The embedding constants are independent of E and its size, and depend on the
structure of OE only through the cone property. Let xy denote the volume of the unit
ball in RY and denote by C (N, p) a positive constant depending only on N and p
and independent of E.

Theorem 8.1 (Sobolev-Nikol’skii [149]) Let E satisfy the cone condition for a
fixed circular cone C, of solid angle w, height h and vertex at the origin, and let
ue Whr(E).

. N
If1 <p <N thenu € L? (E)Wherep*zN—fp,and

8.1)

C(N,p)(l ) e Np

lluell p h||u||p+|| ullp N—p

The constant C(N, p) in (8.1) tends to infinity as either p — 1 or p — N.
If p=1and u(E) < oo, thenu € LI(E) forall q € [1, %) and

C(N,q) Lonel 1
lully = === (B~ (5 luly + 1 Duly) (8.2)
where
N—1
& (8.2)
CIN,¢)= —N . 2)
(1= 55tq) ™
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If p> N, thenu € L*(E) and

C(N, p,w)
lulloo < W[”u“p + k|| Dul,] (3.3)
where
1wy (N = Dy ,
C(N, p,w) = N(U) (p——N) . (8.3)

If p > N and in addition E is convex, then u has a representative, still denoted
by u, which is Holder continuous in E, and for every x,y € E such that |x —y| < h

C(N, p) N
|u<x>—u<y)|sT”|x—y|‘ » | Dull, (8.4)
where N
C(N. p) = 2N+ 2P 8.4)
(N, p) oy (8.4)

Remark 8.1 The estimates exhibit an explicit dependence on the height 4 and the
solid angle w of the cone C,. They deteriorate as either /& or w tend to zero. Estimate
(8.4) depends on the height & of the cone C, through the requirement that |x — y| < A.
Remark 8.2 Thevalueg = 1* = % is not permitted in (8.2). Such a limiting value
is permitted for embeddings of w,” (E) as indicated in Corollary 1.1. The limiting
case p = N, not permitted neither in (8.3) nor in (8.4), will be given a sharp form in
§ 13.

Remark 8.3 The assumption that OF satisfies the cone property is essential for the
embedding (8.3). Consider the domain E C R? introduced in (16.6) of Chap. 8 and
the function u(x1, xp) = xf‘g defined in E, for some § > 0. The parameters 3 > 0
and « > 1 can be chosen so that u € W!?(E) for some p > 2, and u is unbounded
near the origin.

Remark 8.4 If E is not convex, the estimate (8.4) can be applied locally. Thus if
p > N afunction u € W"P(E) is locally Holder continuous in E.

9 Proof of Theorem 8.1

Proof of (8.1) and (8.2): It suffices to prove the various assertions for u € C*(E).
Fixx € E andletC, C E beacone congruent to C, and claimed by the cone property.
Then


http://dx.doi.org/10.1007/978-1-4939-4005-9_8
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lu(x)| = ‘/ - = u(x —i—pn)dp‘

5/ |Du<x+pn)|dp+z/ u(x + p)ldp
0 0

where n denotes an arbitrary unit vector ranging on the same solid angle as C,.
Integrating over such a solid angle

ADul ] lu()l
w|u<x>|</ T e ST

e — V-t ©.1)
[Du(y)l 1 lu(y)| ’
N-— ld 7 N—ldx'
E X =Yl hJEg |x =yl

The right hand of (9.1) is the sum of two Riesz potentials. Therefore inequal-
ity (8.1) follows from the second of (9.1) and the L (E)-estimates of the Riesz
potentials in § 20 of Chap.9. The behavior of the constant C (N, p) follows from
Remark 20.1 of the same chapter. Analogously, (8.2) and the form of the constant
C (N, p) follows from the L7 (E)-estimates of the Riesz potentials (Proposition 21.2
of Chap.9).

To establish (8.3), start from the first of (9.1) and estimate

|Du(y)| lu(y)l
wlu(x)| < sup/ —d + — sup ———dx.
zeCy JC - |N ! h zeCy JC, |Z - y|N_1

Therefore by the L>°(E)-estimates of the Riesz potentials of Proposition 21.3 of
Chap. 9 with E replaced by C,

p=r 1
wlu()] = CV () (- lullpe, + I1Dullye, )

_CWN.p
- h

=P (lully + kI Dull,)

The form of the constant C(N, p) is in (21.4) of Chap.9. The form (8.3)’ of the
constant C (N, p, w) is computed from this and the expression of the volume of C,,.

Proof of (8.4) (Morrey [111]): For x € E, let C, be a circular, spherical cone con-
gruent to C, and all contained E.Then forall 0 < p < h, the circular, spherical cone
Cy,, of vertex at x, radius p, coaxial with C, and with the same solid angle w, is
contained in E and its volume is

w
C.,) = —p".
w(Cx p) NP

Denote by uc, , the average of u over C, ,

1
= dé.
uc,, 1Co) /Cwu(ﬁ) ¢
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Lemma 9.1 For every pair x,y € E such that |x —y| =p < h

p—1

vky N _N
N I P =Dl .

u(y) —uc,,| < P

Proof Fix x,y € E such that |[x — y| = p < h. Since E is convex, forall { € C, ,

1
0
) =@l =| [ Sty + 16 = )a]

Firstintegrate in d§ over Cy ,,, and then in the resulting integral perform the change

of variables
y+u€—y) =n.

The Jacobian is =V and the new domain of integration is transformed in those 7
given by
ly —nl =1t|§ —y| as&ranges over Cy ).

Therefore such a transformed domain is contained in the ball By, (y), of center
y and radius 2pt. These operations give

w

1
o) —ue i< [ ([ 16— ylDuty o6 = ypiag)a

X.p

1
< / VD / 7 — vl| Du(n)dndr
0 Eﬂszz(y)

p=1

1
1
<Ky / =N )N DT Du|dr.
0

To conclude the proof of (8.4) fix x, y € E and let

z=304+y) p=lx—zl=ly—zl=3x—yl

Then
[u(x) —u)| < |ux) —uc, |+ u(y) —uc,,|
IN+1 pt Np N
< Kaf x —y| "7 ||Dul,.
TR Bl (i L

10 Poincaré Inequalities

The multiplicative inequalities of Theorem 1.1 cannot hold for functions in W7 (E)
as it can be verified if u is a nonzero constant. In general an integral norm of # cannot
be controlled in terms of some integral norm of its gradient unless one has some
information on the values of the function in some subset of E.
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10.1 The Poincaré Inequality

Let E be a bounded domain in RY and for u € L'(E), let

1
MEz][MdXZ—/MdX
E w(E) Jg

denote the integral average of u over E.

Theorem 10.1 Let E be bounded and convex and let u € WP (E) for some 1 <
p < N. There exists a constant C depending only upon N and p, such that

. N
Wi — gl <C P EY b where pr = VP (10.1)
B =" w(E) r P
lu —uglly < C(diam E)N | Dul|y (10.2)

Proof Having fixed x, y € E, denote by R(x, y) the distance from x to OF, along
the direction of (y — x) and write

R(x,y)
() — u(y)| 5/0

Integrate in dy over E, to obtain

y—x)
ly — x|

0
—u(x + pn)‘dp n=
dp

R(x,y)
u<E>|u(x)—uE|s/ (/ IDutx + pdp) dy.
E 0

The integral in dy is calculated by introducing polar coordinates with pole at x.
Therefore if n is the angular variable spanning the sphere |n| = 1, the right-hand
side is majorized by

diam E R(x, &) D
(diam E)N~ 1/ / / -1 u(x+pn)|d pdndr
Inj=1

|x — y|N-!

< (dlam E)N/ Wdy

Therefore

lu(x) —ug| < dy. (10.3)

(diam E)N/ | Du(y)|
H(E)  JE lx —yN!

The proof of (10.1) now follows from this and the L?” (E)-estimates of the Riesz
potentials given in Theorem 20.1 of Chap. 9. Following Remark 20.1 there, the con-
stant C in (20.1) tends to infinity as either p — 1 or p — N.


http://dx.doi.org/10.1007/978-1-4939-4005-9_9

10 Poincaré Inequalities 505

Inequality (10.2) follows from (10.1) and Holder’s inequality. Indeed having fixed
l<p<N

N—p

1—
lu—upl < llu—ugllpp(E)

- (E)I_NN—;; (diam E)N | Dl
=Cu r ————||[Du
H(E) 4
< C(diam E)V || Du||y. n

Remark 10.1 The estimate depends upon the structure of the convex set E through
the ratio (diam E)" /u(E). If E is a ball, then such a ratio is 2V /ky, where ky is
the volume of the unit ball in RY. In general if R is the radius of the smallest ball
containing E and p is the radius of the largest ball contained in E

(diam E)N - ﬁ(R)N‘

WE) " ry\p

Remark 10.2 For aball B,(x) denote by (u),,, the integral average of u over B,(x),
ie.,

1
up,y = Wyp=——— udy =][ udy. (10.4)
' ’ w(B,) B,(x) B,(x)

Then (10.1)~(10.2) imply

1
f Iu—thMSC(Mf |Duldy)’ (10.5)
B,(x) B,(x)

forall 1 < p < N and for a constant C’ depending only on N and p. Also

][ lu — (u)x,p|"dx < C/Pp][ |Du|”dy (10.6)
B!,(X)

By (x)

foralll < p < N.

10.2 Multiplicative Poincaré Inequalities

Proposition 10.1 Let E be a bounded and convex subset of RN, and letu € WP (E)
forsome 1 < p < N. There exists a constant C depending only upon N and p, such
that

(diam E)N

0
ME)]anmW—umr” (10.7)

0
e —uglly < C°[

where the numbersr > 1,1 < p < N and 6 € [0, 1] are linked by (1.2).
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Proof The case 0 = O corresponds to g = r and (10.7) is trivial. The case 6 = 1
corresponds to g = N and coincides with (10.1). Let r € (1, 00) and p € (1, N)
be fixed and choose e (0, 1) and g satisfying (4.1). By Holder’s inequality

/|u—uE|"dx:/|u—uE|9q|u—uE|(l_9)qu
E E

Nopg, A=0)g

Np_ q

< (/ |u—uE|Nﬂ’dx) " (/ |u—uE|'dx) '
E E

where r is chosen as in (4.2). The inequality follows from this and (10.1). ]

Remark 10.3 1t follows from (10.7) that the multiplicative embedding inequality
(1.1) continues to hold for functions u € W!?(E) of zero average over a bounded,
convex domain E.

10.3 Extensions of (u — ug) for Convex E

Let E be a bounded domain with the segment property and OE of class C'. Then OE
admits a finite open covering with balls { B; (x j)}_']’.: 1 of radius ¢ centered at x; € OF.
By Proposition 19.1 of Chap.8, a function u € W!?(E) can be extended into a
function w € W(,l’p(]RN) in such a way that |wl|; ,.;rv < Cllulli ;¢ for a constant
C that depends only on the geometric structure of OF, the radius ¢ of the finite
open covering of OF, and the number of local overlaps of the balls B;(x;). If E is
convex, the Poincaré inequality of Theorem 10.1 affords an extention of (# — ug)
into a function w € W(,l’p (R™) in such a way that || Dw|| p:rv is controlled only by
[ Dullp; -

Proposition 10.2 Let E be a bounded, convex domain in RN with boundary OE
of class C', and let u € WP (E) for some 1 < p < 0o. Then (u — ug) admits an
extension w € W,,l’p (RN such that

1 (diam )N )

[Dwl|p;ry < (1 + |||3EII1)(1 + - 5 1 Dullp. (10.8)
I

where t is the radius of the balls {B;(x;)};_,, making up an open covering of OE,
and 7y is a constant depending only on N, p and the number of local overlaps of the
balls B;(x;).

Proof Write down the estimate (18.1), of Chap.8, for (v —ug) and apply the
Poincaré inequality to estimate the last term. |

Remark 10.4 We stress that w € W, (RV) is an extension of (z — ur) and not an
extension of u.
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Corollary 10.1 Let By be the ball of radius R centered at the origin of RV, let u e
Wl’l’(BR)forsomel < p < 00.Then (u — up,) admits an extension w € Wol’p(RN)
such that

I Dwll pry < Y Dullp, £ (10.9)

for an absolute constant v depending only on N, p and independent of R.

Proof 1t follows from (10.8) and Remark 18.2 of Chap. 8. [ ]

Corollary 10.2 Let By be the ball of radius R centered at the origin of RV, let u €
WP (Bg) forsomel < p < 0o. Then (u — U g,)+ admit extensions wy € W(,l’p(RN)
such that

I Dwillpry < I Dullp, £ (10.10)

for an absolute constant v depending only on N, p and independent of R.

Proof Extend wy as in Proposition 19.1 of Chap.8, and following Remark 18.2,
write down (10.4) of Chap. 8. In the last of these majorize

l(u —up)sllp;Be < llt — upyllp: 5,

and apply Poincaré inequality. ]

11 Level Sets Inequalities

Theorem 11.1 (DeGiorgi [32]) Let E be a bounded convex open set in RN and let
u € WUI(E). Assume that the set where u vanishes has positive measure. Then

lully < s (diam EY"u(E)
LN (= o))

[ Dull; (1L1)

where Ky is the volume of the unit ball in RV,

Proof Let n denote the unit vector ranging over the unit sphere in RY. For almost
all x € E and almost all y € [u = 0]

[y—x| o [y—x|
u (@) = | / a—pu(x+np)dp\ < / |Du(x + np)|dp.
0 0

Integrating in dx over E and in dy over [u = 0], gives

[y—x|
= O] el < / ( / / |Dux +np)ldpdy)dx.
E [u=0] JO
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The integral over [u = 0] is computed by introducing polar coordinates with
center at x. Denoting by R(x, y) the distance from x to OE in the along n

ly—x|
/ / |Du(x +np)ldpdy
[u=0] JO

R(x,y) R(x,y)
5/ sN_lds/ / |Du(x +np)|dpdn.
0 In|=1J0

Combining these remarks we arrive at

(u_01)||u||1<—<d1amE)N// 'D"(fNN. ydx.
E

lx —

Inequality (11.1) follows from this since (Proposition 21.1 of Chap. 9, withr = 1)

dx
wp J, gy = Ve e "

If E is the ball By of radius R centered at the origin

N+1
lully <2V ky ————||Dul);. (11.2)
: Nuur=op"'

For a real number ¢ and u € W!(E), set

|t ifu>¢,
ke = u if u <4¢.

For k € R the function (1, — k). belongs to W!!(E), by Proposition 20.2 of
Chap. 8. Putting such a function in (11.1) and assuming k < ¢, gives

N 1 N /v
€ —ou(u > €) < ry Jiam E) pEY / \Duldx. (11.3)
w(lu < kJ) lk<u<f]

This is referred to as a discrete version of the isoperimetric inequality [32].

12 Morrey Spaces [110]

A function f € L'(E) belongs to the Morrey space M? (E), for some p > 1 if there
exists a constant C s depending upon f, such that

sup/ IFD)ldy < Crp"I=9 forall p> 0. (12.1)
B,(x)NE

xeE


http://dx.doi.org/10.1007/978-1-4939-4005-9_9
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If f e MP(E) set
| fllpr = inf {Cf for which (12.1) holds} . (12.2)

It follows from the definition that L?(E) C MP?(E) and

1

£y = K5 1 F lle (12.3)
Moreover
LUE) = M E) ana M= 17 T
L¥(E) = M* and | flle = %Hf”wo-

We regard f as being defined in the whole RY by setting it to be zero outside E.
Thus if f € MP(E)
. 1
1/ < 1Lf e (diam £V, (12.4)

12.1 Embeddings for Functions in the Morrey Spaces

For a given p > 1 and a € (0, %) let V,,, ; be the potential generated by some f €
MP(E), that is
f )
Va,f(x) =/ dy
E

x — y[V-e

By Theorem 20.1c of Chap.9 such a potential is well defined as a function in
L9(E) for g = NiLap. The next proposition gives an estimate of ||V, ||« in terms

of || f|lmr, provided p > % and E is bounded.

Proposition 12.1 Let f € M?(E) for some p > % Then

N(p-1) . ap=N
Wauslke = L= iam B 1 £ (12.5)

Proof For x and y in RV let n = ﬁ Then by making use of polar coordinates,
compute ’

d d p

— [f(»)ldy = —/ / MU f(x +nr)|drdn

dp Jp,) dp Jini=1.Jo

:/ S ),
[n|=
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Using this calculation in the definition of V,, s

diam E
Ve, s ()] < / / —p" 7! f(x +np)ldndp
[n|=1J0 PN

diam E
= | fDldy)dp
/ N « dp/B(x) )

S W L
(diamE)N*“ e—0 gN—a B.(x) Yy

diam E 1
+ (N—Oé)/ —/ [f () Idydp.
0 pNTI=e Jp P

, (x

To prove (12.5) estimate each of these terms by making use of the definition
(12.1)-(12.2) of || f | m- [

The main interest of inequality (12.5) is for « = 1, when applied to the Riesz potential
of the type of the right-hand side of (10.3). By the embedding (8.4) of Theorem 8.1,
if p > N and if E is convex, then a function in W'?(E) is Holder continuous with
Holder exponent np = 2N The next theorem asserts that the same embedding (8.4)
continues to hold for functions whose weak gradient is in M?(E) for p > N.

Theorem 12.1 Letu € W 1(E) and assume that |Du| € MP(E) for some p > N.

Thenu € C'"(E) withn = Moreoverfor every ball B,(x) C E
2N+1 N _
essoscu < —LHDuHM,} (12.6)
B,(x) [

Proof Consider the potential inequality (10.3) written for the ball B,(x) replacing
E. Tt gives
2N | Du(y)|
lu(x) — (U)x,pl < —/ 74y
KN JB,x) 1X — ¥l

where (1), denotes the integral average of u over B,(x) as in (10.4). This implies
(12.6) in view of Proposition 12.1 applied with a = 1. |

Since L?(E) C MP?(E) the embedding (12.6) generalizes the embedding (8.4).

13 Limiting Embedding of WV (E)

Let f be in the Morrey space M (E), and consider its Riesz potential

f»

Velx) = _
il AP

dy.
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Proposition 13.1 Let f € MY (E). There exist constants Cy and C, depending only
upon N, such that

|Vf| . N
exp| ————)dy < Co(diam E)".
/E P (Gl )40 < Caldiam E)

Proof Let g > 1 and rewrite the integrand in the potential V, as

ok FOonl' e

1 gty 1y
T e — y|N-EHA=D)

_1
lx — y|N e

By Holder’s inequality

Vi (o)l = (/E L)',dy)‘i(/E O )

N-—1
v —yl™ e e —y"

q+1

. and p = N.

The second integral is estimated by Proposition 12.1 with o =
This gives

/E %dy < (N = Dg(diam E)7 || [~

N—
e —y|m s

Put this in the previous inequality, take the g-power of both sides and integrate
over E in dx, to obtain

i _ d
[ st < {8 = Dggiam ) 15101 [ 1o [ —Z ) a.
E E Elx —y|" ¢

The last double integral is estimated by using (12.4) with p = N, and Theo-
rem 20.1c of Chap.9 with a = é, and Proposition 21.1c of the same chapter for
r = 1. Ityields

dx dx
Jrol( [ —=5dx)ay =it [ —
E E|x—y| q veE E|x—y| q

. 1
< wyq(diam E) || f 1|,

< wyq(diam E)Y T £y

Combining these estimates

/ |Vlfdx < wy(N — 147 g4 (diam E)N| £%,.
E


http://dx.doi.org/10.1007/978-1-4939-4005-9_9

512 10 Embeddings of W!-P(E) into L9 (E)

Since g > 1 is arbitrary we write this inequality for ¢ = 2, 3, .. .. Then in a manner
similar to the proof of Theorem 22.1 of Chap.9

/ k l( Vil )qu<wN(diamE)N o (N—l)qﬂ
Eq=0q9' \Cill flln - N=1D SN G q!

forall k € Nandall C; > 0. [

Let u € WVI(E) be such that |[Du| € MV (E), so that

/ |Duldy < |Dulyxp~"  forall B,(x) C E. (13.1)
B,(x)

Theorem 13.1 (John-Nirenberg ([77]) Let u € W (E) and let (13.1) hold. There
exist constants C| and C, depending only upon N, such that

| e (st ydy < cants,)
B,(x) Cill Du| pgv

where (i)« o IS the integral average of u over B,(x) as in (10.4).
Proof Ttfollows from Proposition 13.1, starting from the potential inequality (10.3).m

This estimate can be regarded as a limiting case of the Holder estimates of Theo-
rem 12.1 when p — N.

14 Compact Embeddings

Let E be a bounded domain in R" with the cone property and let K be a bounded
setin WhP(E), say

K ={ue W' (E) | llull1,, < C} for some positive constant C.

If 1 < p < N, by the embedding Theorem 8.1, K is a bounded subset of LV (E)
where p* = NNj’ o Since E is of finite measure, K is also a bounded set of L4(E) for
all 1 < g < p*. The next theorem asserts that K is a compact subset of LY (E) for

alll <g < p*.

Theorem 14.1 (Rellich—-Kondrachov ([123, 85]) Let E be a bounded domain in RY
with the cone property, and let 1 < p < N. Then the embedding of WP (E) into
Li(E) is compact forall 1 < g < p*.
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Proof The proof consists of verifying that a bounded subset of W7 (E) satisfies the
conditions for a subset of L4(E) to be compact, given in § 19 of Chap. 6. For § > 0
let

Es; = {x € E | dist (x, OE) > &}

and let § be so small that Es is not empty. For g € [1, p*) and u € WP (E)

L
%

I
lullg.e—£s < lullp- p(E — Eg)e 7"

Next, for a vector & € RY of length |h| < & compute

ux + h) — u@)ldx < /E (/01 \%m +1h)|dr) dx

1
< |h| (/ |Du(x+th)|dx)dt
0 Es

E;s

p=1
< |hlpu(E) » || Dullp.
Therefore Vo € (0, %)

| Thu — ul?dx = | Thu — u|9°T41= g x
E; Es

q0 q(—0) I—go
< (/ |Thu—u|dx) (/ |Thu — u| =4 dx) .
Es Es

Choose o so that

1— _
(d=0o)q = p*, thatis og = i
1 —gqgo pr—1

Such a choice is possible if 1 < g < p*. Applying the embedding Theorem 8.1

=g
(T — ultdx <2 ([ (T = wldx) ™ ],

Es Es
for a constant y depending only upon N, p and the geometry of the cone property
of E, as indicated in (8.1). Combining these estimates gives

1_ =l
I Thu — ullye; < il Nlully,p, where vy =~¢ Tu(E) 7 °.

The assertion of the theorem is now a consequence of the characterization of the

precompact subsets in L(E). |
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Corollary 14.1 Let E be a bounded domain in RN with the cone property, and let
1 < p < N. Then, every sequence { f,} of functions equi-bounded in W'? (E), has
a subsequence { f,'} strongly convergent in L1(E) forall 1 < q < p*.

15 Fractional Sobolev Spaces in RY

Lets € (0, 1), p > land N > 1and consider the collection of functions u € L? (R")
with finite semi-norm

Cul N\
il = (/R | dy) . (15.1)

They form a linear subspace of L? (R") which is a Banach space when equipped
with the norm

lells.p = Nullp + Nuellls, p-

Such a Banach space is denoted with W*”(R") and it is called the fractional
Sobolev space of order s.

Proposition 15.1 W7 (RN) is continuously embedded into W*?(RN) for all s €
(0, 1). Moreover

sz » : —
el p = (= 2ss ) Dl el

Proof A change of variable in the definition of the semi-norm in (15.1) gives

luall, = /R | lerrrdg /R e+ ) —u(o)|rdx
= / [SRRRr3 / lu(x + &) — u(x)|"dx
€<\ RN
+ / [SRaars / lu(x + &) — u(x)|Pdx
[E]>A RN

where )\ is a positive parameter to be chosen later. The second integral is majorized by

2Pwy|lullp
SPASP

The first integral is estimated by

/ e <N+W’>d5/ ‘/ Sulx + 1)di "dx
[§l<A
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< / €V e / | Duldx
[€l<A

—Ap(l 3)||Du||p
p(l—ys)
Combining these estimates we arrive at
2‘”&)1\/ 1—
Mully, < . || Iy + N\t N Dullh
sp AP p(l—s)

valid for every A > 0. To prove the proposition, minimize the right-hand side with
respect to A. |

Proposition 15.2 C°(RY) is dense in W*7(R").

Proof For € > 0 let (. denote a nonnegative piecewise smooth cutoff function in
R¥, such that
1
- =1 for |x| < -
€
and |D(| <e.

™| N

¢ =0 for |x| =

One verifies that
Nucells.p < lulls.p + " yllull,

for all u € W*?(R"), where « depends only upon N and p, and that
lu —ullls,, >0, as &— 0.

The functions J. * (#(.) are in C° (IR{N) and as u ranges over W*?(RV) and ¢
ranges over (0, 1), they span a dense subset of W*?(R"). For this we verify that

e % u —ullls,, >0, as e—0.
For almost every pair x, y € RY

|1 % w)(x) — u()] = [(Je % w) () — u()]|”
lx — y|VHsr

e e
b @O - +OI T r—y "
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Integrating in dxdy over R¥ x RY, gives

IJ % u —ul|?, < sup //
|€]<e J JRN xRN

If u € WSP(RY), by the definition (15.1),

ux +8 —uly+8  ulx) —uy)|r
G+ —G+OI7™ x—yr ™

dxdy.

_u) —u@)

e LP(RY x RVY).
x— y| 7t

w(x, y)

Therefore, if 7 is the translation operator in L? (RY x RV),

Ve u —ulllf , < sup [[Tew — wll gy xRy
[€l<e

By the continuity of the translation in L? (RY x RV), the right-hand side tends
to zero as ¢ — 0 (§ 17 of Chap.6). ]

16 Traces

Let RY = R¥~! x RT denote the upper half-space xy > 0 whose points we denote
by (X, xy), where X = (x1, ..., xy_1). If uis a function in W!7 (RY), continuous in
Rﬁ up to xy = 0, the trace of u on the hyperplane xy = 0 is defined as its restriction
toxy = 0, thatis tr(u) = u(x, 0).

Proposition 16.1 Letu € W'? (Rﬁ ) be continuous in EZ Then
I Oy s < 7l Datll ey el (16.1)
forall g, r > 1 such that g(p — 1) = p(r — 1), provided u € Lq(Ri’).

Proof May assume that u € C° (RN). Forx e R¥landr > 1

_ ST R
GO =7 [ G el [d.
0 XN

Integrate both sides in dx over R¥~! and apply Holder’s inequality to the resulting
integral on the right-hand side. |

Ifu e Whr (Rﬁ) there exists a sequence of functions {u,} in CJ° (RN ) converging
tou in Wl'p(Rﬁ). By (16.1) withr = p

||Mn(~, 0) —up (-, O)H[J,RN’l =< ”un - um”l,p,Rﬁ'
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Therefore {u,} is a Cauchy sequence in L”(R"~") converging to some function
tr(u) € LP(RN~"). Such a function we define as the trace of u € W7 (RY), on the
hyperplane xy = 0. We will use the perhaps improper but suggestive symbolism
tr(u) = u(-,0).

Proposition 16.2 Let u € WP (RY) for some p > 1. Then

1 1

T 1
Ol vt < prllal, gyllDull ] gy - (16.2)

Ifl1<p <N, thenu(-,0) € L"%+ RN-"), and

p(N -1

lleaC, O p =t v < N

[ Dull, gy - (16.3)

If p > N, the equivalence class u(-,0) has a Holder continuous representative,
which we continue to denote by u(-, 0), and there exists a constant y(N, p) depending
only upon N and p, such that, for all X,y € RN~!

N
»

-~
Gy O) oozt < Il g I Dull? (16.4)

u(X, 0) — u(3,0)| <~1% = 31"~ 7 || Dull , - (16.5)

Proof Inequality (16.2) follows from (16.1) withr = p. The domain Rﬁ satisfies the
cone condition with cone C, of solid angle %wN and height i € (0, co). Then (16.5)
follows from (8.4) of Theorem 8.1, whereas (16.4) follows from (8.3) by minimizing
over h € (0, 00). To prove (16.3) let {u,} be a sequence of functions in C°(R")
converging to u in W7 (RY). For these, by (1.6) of Corollary 1.1

p(N—1)
||Mn||NNfﬂp,RN = T”Dun”p,RN-
. N—1
Then from (16.1) with r = PN
1 1-1 1
||un(" O)Hr,RN*l =rr ”un” NN_[)[:JRQ/ ”Dun ”;Ri < r”Dun”p,Rﬂ' u

Remark 16.1 The constant y(N, p) can be computed explicitly from (8.3)—(8.4) of
Theorem 8.1. This shows that y(N, p) - coas p — N.
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17 Traces and Fractional Sobolev Spaces

Denote by (x, 7) the coordinates in Rﬂ“ where x € RN and¢ > 0. Fora functionu €
wl.p (Rﬂ‘r’“) for some p > 1, we describe the regularity of its trace on the hyperplane
t = 0 in terms of the fractional Sobolev spaces

, 1
WSP(RY) where s=1——.
p

Introduce the symbolism

DN=(i

0 0
(‘3x1"”’%) and D:(DN,—).

ot

Proposition 17.1 Letu € WI’P(R_]XH) for some p > 1. Then the trace of u on the
hyperplane t = 0 belongs to the fractional Sobolev space AR (RN). Moreover

PH2(p — D7

SO my <
lloeC-s Oy — s pimev = »— 17

[ zII"RN+1 IDyull’ RV

Proof For every pair x, y € RY set 2¢ = x — y and consider the point z € R_’XH of
coordinates 7 = (% (x + ), Al&]), where A is a positive parameter to be chosen. Then

u(x,0) —u(y, 0)| < |u(z) —u(x,0)| + |u(z) — u(y, 0)]
1 1
=< Ifl/0 |Dyu(x — p&, AplEDldp + Ié“l/0 |Dyu(y + p&, AplEDldp

1 1
+MQAwm—%JMMW+MﬂAhMHw&MWWﬂ

From this

lu(x,0) —uly,0)” 1 (/1 |Dyulx — pg. AplEDI )

x — y|V+—D = 20 X — ] B=l
+_(/' |Dyuly + 08 AIEDI )
27 3o =yl
+14%/”mu SEUEIPAY
22 Mo =yl

1 " u (y + P&, /\plél)l
+ AP / .
2r (o =yl )’
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Next integrate both sides over RY x RV, In the resulting inequality take the %-
power and estimate the various integrals on the right-hand side by the continuous
version of Minkowski’s inequality (§ 3.3 of Chap. 6). This gives

1 1
|Dyutx = p& MIEDIP  \h
oy = ([ [ PRI vy dp

1 1

lu: (x — p&, Apl€DIP »
+)\/ / dxd dp.
0 ( RY S |x — V-t y) P

Compute the first integral by integrating first in dy and perform such integration
in polar coordinates with pole at x. Denoting with n the unit vector spanning the unit
sphere in RY and recalling that 2|¢| = |x — y|, we obtain

// IDNu(x—pE,)\plél)l”dxdy
RN JRN

lx — y|¥-!
[oe)
=2/ dn/ d|§|/ | DyuCx + pnlé], ApléD) | Pdx
In|=1 0 R¥

v /NH |[DyulPdx.
R+

Compute the second integral in a similar fashion and combine them into

r’

1
1o _1 _1
ety Ol 1 gy < 27 A p||DNu||,,,M+n/ prdp
0

1
1 _1 _1
+27 A ﬂllutllp,mﬂ/o p rdp

1p 1 1
=27 ﬁ ()\ » ||DNM||p.]Ri"“ + )\1 3 ||uf||p,Rﬁ“) .

The proof is completed by minimizing with respect to \. |

Remark 17.1 Proposition 17.1 admits aconverse, thatis, a functionu € Wlﬁ”’ (RM),
is the trace on the hyperplane ¢ = 0 of a function in W!» (R_’XH) (see § 17c of the

Complements). Thus a measurable function u defined in R" is in wir (RV) if
and only it is the trace on t = 0 of a function in W7 (RY ™).

18 Traces on OE of Functions in W7 (E)

Let E be a bounded domain in RY with boundary OE of class C' and with the
segment property. There exists a finite covering of OF with open balls B;(x;) of
radius ¢ > 0 and center x; € OE, such that the portion of E within B;(x;), can be
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represented, in a local system of coordinates, as the graph of a function f; of class
C! in a neighborhood of the origin of the local coordinate system. Consider now the
covering of E given by

U ={B,, B/(x)),...,Bi(x,)} where B,=FE— |JB

Let @ be a partition of unity subordinate to ¢/ and construct functions 1; €
C{‘,"’(B,(xj)) satisfying Z?zle =11in E, and D] <2/t. For each x; fixed,
introduce a local system of coordinates £ = (51,. JEv_1),and € = (€, &y), such that
E N B,(x;) is mapped into the cylinder {|§| <t} x [0, f]and OF N B, (x;), is
mapped into the portion of the hyperplane {f v =0} N{|€] < 1}.If f is a measurable
function defined in £ denote by f the transformed of f by the new coordinate system.
In these new coordinates

up; € WP RV x RT)

and its trace on {{y = 0} can be defined as in § 16. In particular (16.1) and Proposi-
tion 16.1 hold for it.

If m/)j(-, 0) is such a trace, we define the trace of u1); on OE N B,(x;) as the
function obtained from 127771]»(-, 0) upon returning to the original coordinates. With a
perhaps improper but suggestive notation, we denote it by u1;|gg. We then define
the trace of u on OF as

tr(u) =35 uilok

and denote it by u|sg. Applying (16.1) to each I;T/)j

(/léqluwjldf l// |Du1pj|f’d§ // |’4¢,|"d§ -1

X E I LN I

forall g, » > 1 such that g(r — 1) = p(r — 1), provided that u € LI(E).

Next return to the original coordinates and add up the resulting inequalities for
Jj =1, ..., n.Recalling that only finitely many B, (x;) have nonempty mutual inter-
section, we deduce that

L -1
lulror <~ (IDull, + llully)" llully " (18.1)

Remark 18.1 In deriving (18.1), the requirement that E be bounded can be elimi-
nated. It is only necessary that the open covering of OF be locally finite whence we
observe that the notion of trace of u on OF is of local nature. We conclude that the
trace on OF of a function u € W7 (E) is well defined for any domain E C R" with
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boundary of class C' and with the segment property. Moreover such a trace satisfies
(18.1).

Proceeding as before we may derive a counterpart of the embedding Proposi-
tion 16.2. Namely:

Proposition 18.1 Let u € WP (E) and assume that OE is of class C' and with the
segment property. There exists a constant v that can be determined a priori only in
terms of N, p and the structure of OF, such thatVp > 1 and Ve > 0

lullp.or < ”~ ' IDull, + (1 4+ Hull,. (18.2)
If 1 < p < N the trace ulyg belongs to L”%(GE) and
el 2=t o < Ylulh,p- (18.3)

Ifp > N, the equivalence classu € WP (E) has a representative which is Holder
continuous in E, and

lulloo,08 < YellDull, + (1 4+~ ull, (18.4)
_N -
lu(x) —u()| <ylx —y|'" 7 llulli, forall x,y € E. (18.5)

18.1 Traces and Fractional Sobolev Spaces

Let E be a bounded domain in RY whith boundary OE of class C! and with the
segment property. Motivated by Proposition 17.1, we may introduce a notion of frac-
tional Sobolev space W*?(OF) for s € (0, 1) on the (N — 1)-dimensional domain
OE. A function u € L?(OF), belongs to W*?(JE) if the semi-norm

lu(x) = u(y)|? ’
el o = /0 ) /a O SO dodo)

is finite. Here do(-) is the surface measure on E. A norm in W*?(QF) is given by

”M”s,p;aE = ”u”p,(‘)E + |||u|||s,p;8E'

Statements concerning W*” (OE) can be derived from § 17, by working with the
functions u1) ;, returning to the original coordinates and adding over ;.

Theorem 18.1 Let u € W?(E) for p > 1 and let OE be of class C' and with
the segment property. Then the trace of u on OE belongs to W*P(OE) where s =
1—1/p, and
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Maelli—1 proe = Vil p

for a constant v depending only upon N, p and the structure of OE.

Remark 18.2 This theorem admits a converse, that is, a function u € Wl_%”’ (OE)
is the trace on OE of a function in W!7(E). Thus a measurable function u defined
in OF is in W“%"’(aE) if and only it is the trace on OF of a function in W7 (E)
(see Theorems 18.2c and 18.3c of the Complements).

19 Multiplicative Embeddings of W17 (E)

Multiplicative embeddings in the form of (1.1) hold for functions in W(,1 "P(E) and are
in general false for functions in W7 (E). The Poincaré inequalities of § 10, recover
a multiplicative form of the embedding of W'?(E) for functions of zero integral
average on E. The discrete form of the isoperimetric inequality (11.1) would be
vacuous if # were a nonzero constant. It is meaningful only if the measure of the set
[u = 0]is positive. These remarks imply that a multiplicative embedding of W'7(E)
into L7(E) is only possible if some information is available on the values of u on
some subset of E. The next Theorem provides a multiplicative embedding in terms
of the trace of u on some subset I" of OF, provided E is convex.

Theorem 19.1 (DiBenedetto—Diller ([35, 36])) Let E be a bounded, open, convex
subset of RN for some N > 1 and let I' C OF be open in the relative topology of
OE. There exist constants v and C, such that for everyu € W7 (E)

N
lullg.e < ACE (lully gllullS 4+ CElull 1Vl ) (19.1)
where the parameters {c, 0, m, s, r, p, q}, satisfy
m,r>1, sp>1, q>max{m;r}, «a,0¢€]0,1] (19.2)

and in addition the two sets of parameters {a,m,s,q, N} and {0,r, p,q, N} are

linked by
_ (1 1)(1 1 + 1)—1
“\r g/J\N p r
_(1 1)( 1 1+ 1)—1 (19.3)
“= m q/\Ns s m
and their admissible range is restricted by
N -1 -1
szmax{l;m—}; riui (19.4)
N p—1
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N
g<ooif p>N, and g < P
N-—p

if p<N (19.5)

The constant ~y depends only on the parameters {c, 0, m, s, r, p, q} and is inde-
pendent of u. The constant C depends only on the geometry of E and I'.

Remark 19.1 If u vanishes on I" in the sense of the traces, then (19.1) coincides
with the multiplicative embedding of Theorem 1.1, that is

1426 _
lully <~CE ™ Null ="l Dull,. (19.1y

By taking o = 0 in the second of (19.3), and using the arbitrariness of m and s,
yields for the parameters {6, r, g, p, N}, the same range as the one in (1.3)—(1.5).
Thus the multiplicative embedding (1.1) continues to hold for functions in W'?(E)
vanishing only on a nontrivial portion of OF.

Remark 19.2 The difference between (19.1)" and the embedding (1.1) is the presence
of the constant C in the right-hand side of (19.1). This is because u is known to
vanish only on I" C OF as opposed to (1.1) where u vanishes on the whole JF in
the sense of W, (E).

Remark 19.3 Since g > m it follows from (19.3) that «, 6 € [0, 1]. The links (19.3)
arise naturally from the proof. Through a rescaling argument one can see that these
are the only possible links between the two sets of parameters {0, r, p, ¢, N} and
{ar, m, s, r, N}. For example let E be the ball Bg of radius R centered at the origin
of RV, By rescaling R, inequality (19.1) is independent of the radius of E only if
(19.3) holds.

Remark 19.4 The constant v in (19.1) depends only upon the indicated parameters.
In particular it is independent of u and possible rotations, translations, and dilations
of Eand I'.

Remark 19.5 The constant C depends on the geometry of E and I” in the following
manner. Let x € I" and for € > 0 let B.(x) be the N-dimensional ball centered at x
and radius €. The number ¢ is chosen as the largest radius for which B.(x) N OE C I.
Then choose x, € B-(x) N E and let p > 0 be the largest radius for which B,(x,) C
E. Finally, let R > 0 be the smallest radius for which £ C Bg(x,). Thus

B,(x,) C B:(x) and E C Bgr(x,). (19.6)

Then the constant C is the smallest value of the ratio R/p, for all the possible
choices of x € I" and x,, € B-(X).

Remark 19.6 By choosing 0 = a = m =r = 11in (19.3) gives

lull o & < ACNP (el r + CEINVull k) (19.1)



524 10 Embeddings of W!-P(E) into L9 (E)

where

*

N N -1
pr= P and s*—u.

N-p ~ N-p

Remark 19.7 Ttis an open question to establish the embedding (19.1) for nonconvex
domains.

20 Proof of Theorem 19.1. A Special Case

Assume first that E is the unit cube in RY for N > 2 with edges on the positive
coordinate semiaxes, that is Q = ﬂfvz {0 < x; < 1}. As the portion I, of 0Q we
take the union of the faces of the cube lying on the coordinate planes, that is I, =
Uf.vzl O N {x; = 0}. To establish (19.1) for such a domain and such a I,, we may
assume u is nonnegative and in C'(Q). Set

=x,..., 0 ,...,xn)
i-th entry
_ i=1,...,N.
(-xivt)_(-xh"'s t 7~-~a-xN)
i-th entry
Then foralls > 1 and all x € Q
i 0 X;, t
u%ﬂ:f@%ﬂ/‘ﬁq@J%%?Jm
Xi
0 a( Y (20.1)
sus(fi)+S/ 0| T E @),
0

Choose numbers g > £ > 0 and all s > 1 satisfying (N — 1)(¢ — £) < Ns and set

_ Nst ¢ [Ns — (N — 1)qlk
TNs—(N—Dq-0 — T Ns—(N—1x

(20.2)

One verifies that the requirement 0 < £ < ¢ is equivalent to 0 < k < g. Having
fixed m, r > 1, choose k to satisfy max{r; m} < k < g. Then from (20.1), for all

xeQ
Muywmmwmunm—uujnw%x

Integrating this in dx; over (0, 1) and applying Holder’s inequality

1
/ u? (x)dx; < wl(xl)/ u'(x) H w; = (x,)dxl
0
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= U)I(JE])(/()1 uk(x)dxl)é ﬁ (/01 wi(ii)dxl)%.

i=2

Next integrate this in dx, over (0, 1) and apply Holder’s inequality with the same
conjugate exponents. Proceeding by induction to exhaust all the variables x;, yields

/Qu"(x)dx < (/Quk(x)dx)i

where Q§V71 = Q0 N{x; =0} is the (N — 1)-dimensional cube excluding the ith
coordinate. By Holder’s inequality and the definition of w; (x;)

I,

N-1

=4

ﬁ(/: wx&m&)m

i=1

w; (%) d%; 5/Fnus(x)da—i—s(/gIDu|de)’l’(/QMde)pr

where do is the surface measure on I,. Combining these estimates, we arrive at

g—t

?qu“ (20.3)

g-t

. ;
lullg.o < Nl ollulls’r, + ’Y||M||k ollull .

s

(

If either m = q or r = g then k = ¢ and (20.3) imply that k = ¢ = g. In such a
case the multiplicative inequality (19.1) follows from (20.5) and is vacuous. Thus
in the definition (19.3) of @ it is stipulated that # = 0 if r = ¢. A similar stipulation
holds for a.

Assume that max{m;r} < g and choose k satisfying max{m;r} < k < g. By
Holder’s inequality

m(qg—k) q(k—m)
k(g— k
lulle.o < Null,'o” Nully Q"
ot q(k . (20.4)

lulle.o < Ml lull,o”

Assume first that the second of (19.4) holds with strict inequalities. Then by
Holder’s inequality

rlg(p=D—p(Gs—D] qlpGs=D=r(p=D]
lullsne o < Null, 5" llull, 57 (20.5)
(p=1)

Assume that of the two terms on the right-hand side of (20.3), the first majorizes
the second. Then using the first of (20.5)

ﬁk /n)) ZT" L; q-t
n
lullg.o < 270l 2" Nl g7 Nl 7 -

By reducing the powers of [|u||4, o this gives
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1— ol
lullg.0 =< Null,y pllullS

where « is given by the second of (19.3), and 7 is a constant depending only on
the set of parameters {N, p, g, s, m, r}. If of the two terms on the right-hand side
of (20.3) the second majorizes the first, then, using the second of (20.4), and (20.5),
gives

Lk=r) | (@=0OlGs=Dp=r(p=D]
k(g—r) slg=r)

lullg,0 = 27vllull,’o

trig=k) | r(g=0Olg(p=D—p(s—D] q=t
< lullig™ " 1Dull,

By reducing the powers of [|u||4, o this gives

1-60 1-6
lullg.o <" lul1Dull

where 6 is given by the first of (19.3), and 4" is a constant depending only on the
set of parameters {N, p, q, s, m, r}. Finally, if the second of (19.4) holds with some
equality, the arguments are similar and indeed simpler.

21 Constructing a Map Between E and Q. Part 1

Let E be a bounded, convex subset of RN and let I C JE be open in the relative
topology of OE. Having fixed X € I" construct the ball B.(x) where ¢ is the largest
radius so that B.(x) N OE C I'. Then pick x, € B-(x) N E and construct the balls
B,(x,) and Bg(x,) asin (19.6). Continue to denote by I, that portion of the boundary
of the cube Q consisting of the faces lying on the coordinate planes.

Proposition 21.1 There exists a map F : E — Q and positive, absolute constants
C > ¢ > 0, independent of the geometry of OE and I', such that Q = F~'(E),
I, c FY(I) and

R
cplx =yl = |F(x) = F(y)l SCRZIx—yI‘ 2L
Moreover the Jacobian J of F, satisfies

cpV <J(x) <CRY  forall x € E. (21.2)

Proof Let n be the unit vector in RY ranging over the unit sphere S, and consider
the map ¢, g : S — OE defined by

¢x,,e(M) =X, + 1N (21.3)
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where ¢ is the unique positive number such that x, + tn € JE. Such a map is well
defined since E is bounded and convex.

Lemma 21.1 There exists a constant C,, depending on x, and E, such that
R
pny —ma| < @y, E(M)) — @y, (M2)] < 4R;|n1 —m. (21.4)

Proof Up to a translation we may assume that x, = 0 and set ¢,, p = ¢. Having
fixed n; and n, on S, the bound below in (21.4) follows from the definition (21.3)
since the sphere S, centered at the origin is contained in the interior of E. For the
bound above, by intersecting E with the hyperplane through x, and containing n,
and ny, it suffices to assume N = 2. Denoting by i and j the coordinate unit vectors
in R?, we may assume up to a possible rotation that n; = i. Then

n, = (cos A, sin \) def n forsome \ € (—m, ).

Therefore the bound above in (21.4) reduces to
R
|p(m) — ¢p(i)] <4R—~/1 —cos \. (21.4)
P

Let X, be the line segment joining ¢(i) and ¢(n). Let also L, be the line through
o).

21.1 Case l. X, intersects B,

Since L, intersects B, the point x, on the line L, which minimizes the distance
from L, to the origin 0, is in B, and thus on the line segment X,,. Let A\; and A, be
the angles

M=0M0x X =x00m).
Then A; + A\» = X and by elementary trigonometry
[p(m) — d(A)] = |P@)|sin A\; + |p(m)|sin Ay < R(sin A} + sin Ap).
At least one of the ); is less than %)\, say, for example ;. Then, since %)\ €(0,5)

sin Ay + sin Ay < sin 21X 4 sin(A — Ay)
< sin %)\ + sin A cos A\; — cos Asin )\

<2sin i\ +sin\ < %\/1 — cos \.
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21.2 Case 2. X, does not intersect B,

Without loss of generality, by possibly interchanging the role of i and n, we may
assume that |p(i)| > |p(n)|. Let A, = ¢(n)¢(i)0. Then by the law of sines

sin A sin A\,

lom) — M| [pm)|’

From this

< R— .
Ao sin A,

lp(m) — ¢(i)| = |p(n)]

sin A sin A
sin

Since the line segment Xy, does not intersect B, the smallest A, could possibly
be is if the line L, is tangent to B,. In such a case

P
()]

sin A\, >

%

L
=

Combining these estimates proves the Lemma. ]

22 Constructing a Map Between E and Q. Part 11

Extend ¢,, ¢ to a map ¢y, g from the whole unit ball B, onto E by

LT
By 3x — ., g(x) =X, + |x[t(n)n, n, =1 x| (22.1)
0 ifx=0

and 7(n,) is defined as in (21.3), in correspondence of the unit vector n,.

Lemma 22.1 Forall x,y € B;

1 p R
=P lx =y = lox, (X)) — @, eV = SR—|x — y|. (22.2)
4" R P
Moreover, denoting by J, the Jacobian of .,
Jo(x) = |tm)|¥  forall x € By. (22.3)

Finally from the definition of t (n,) it follows that

pN < J,(x) <RV forall x € By. (22.4)
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Proof Assume x, = 0, set ¢, g = ¢, and fix any two nonzero vectors x, y € Bj.
By intersecting E with the hyperplane through the origin and containing x and y,
it suffices to consider the case N = 2. Assume for example that |y| < |x|. Then by
elementary plane geometry

X y 1
o = =l

X
Il Iyl Iyl
From this, making also use of the upper estimate in Lemma 21.1
R X y R
p() = O] = Rlx =yl +4R= |yl — 2| < SRZJx -y,
p o txl Iyl P
For the lower estimate in (22.2) assume for example |x| > |y|. Suppose first that

1p
[x] — [yl = ZE'X =yl

Then by the lower estimate of Lemma 21.1

lo(x) — o) = |Ix]t(m)n, — [y[t (ny)n,|
= |x||t(nx)nx - t(ny)ny| = R(|x[ = |yD

> plal[ 5 = 2| = Tolx —

SR ITR T A
- 1

> phel| o+ - | - Sl — v
BT

> plx =yl — p(lx| = [y]) — 3plx — y| = 1plx — yl.

If on the other hand 1
p
lx| — [yl > 4RIX vl

then by elementary plane geometry

lo(x) — ()] = |Ix]tm)n — [yt (mny| > p(lx| = |y]) > %pglx =l
To establish (22.3) express the Lebesgue measure dv of Bj in polar coordinates as
dv = r"~!'drdn for r € (0, 1) and n ranging over the unit sphere of R". Likewise
the Lebesgue measure of E in polar coordinatesis dju = 7V ~'drdnfor t € (0, t(m))
where £ (n) is the polar representation of JE with pole at the origin. From the defin-
ition (22.1) it follows that 7 = rt (n). Therefore

dp="""drdn = |r(@)|"r"'drdn = ()| Vdv. "
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The transformation <p;ol g 1s a one-to-one Lipschitz map between E and B; with
Lipschitz continuous inverse. The boundary of E is mapped into dB; and the
portion I C OF is mapped into a subset I7 C JB;, open in the relative topol-
ogy of the unit sphere S;. The Lipschitz constants and the Jacobian of such a
transformation are controlled by (22.2)—(22.4). Therefore the proof of Proposi-
tion 21.1 reduces to the case where E = By and I} C dB;. Up to a rotation,
we may assume that (0,...,0,1) € I]. Since I is open, there is € > 0 such
that [xy >1—¢]NS; CI7. Set x. =(0,...,0,1 —¢) and construct the map
©x.,p, - Bi — Bj. Such a map satisfies estimates analogous to (22.2)—(22.4) with p
replaced by e and R = 2. Moreover I} is mapped into an open portion I € 0B such
that . g, ([xy > 0] N S;) C I>. Thus we have reduced to the case when E = B; and
Iy =[xy > 0] N Sy. Then, after an appropriate rotation, the map ¢,, o : B — B
where xs = (%, e, %), maps the cube Q onto B and I, onto I>. The map F claimed
by Proposition 21.1 is obtained by composing the maps occurring in the various steps
of the construction.

23 Proof of Theorem 19.1 Concluded

Let E be a bounded, convex subset of RY and let I" C JE be open in the relative
topology of OE. Having fixed x € I" construct the ball B.(x), where ¢ is the largest
radius for which B.(x) N OE C I'.Then pick x, € B.(x) N E and construct the balls
B,(x,) and Bg(x,) as in (19.6). Let also F be the map claimed by Proposition 21.1
for these choices of x, p and R. The Jacobian is estimated in (21.2), whereas by
(21.1) |DF| < CR(R/p). Given u € W"?(E), by Theorem 19.1 applied for the
unit cube Q

1

e = ([ WIay)" <R WPl
Qo

N o _
<R (w5 NN, + NG IDyu G o)
N _Nl-®) _ _ (N—-Da y
<qARap~w Nuly g o lullf .

N(1-0)

N R2\O _ 1-g —N0 0
+ YR« (7) p~ 7 Mull, g p 7 IDxull, g

R\ Y a , R\20 _
<(5)" [l + (Z) 1Dl |

24 The Spaces W’ (E)

The proof of Corollary 1.1 only requires that Du € L?(E), and that u is the limit of
a sequence {u,} C C;°(E), in some topology, by which
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lim sup || Du, ||, < [|Dull,, and lull p < liminf ||u,]| .

Thenu € L?"(E). However u need not be in L” (E), unless E is of finite measure.
An example is

1 for |x| <1

This suggest introducing the linear space
WP (E) = {u € LP (E), with Du € L”(E)}

with norm
llellr, pspr = llullpe + (| Dullp.

One verifies that W;;p (E) with such a norm is a Banach space. If u(E) < oo the
norms || - [|1,, and || - ||, are equivalent and W,i;p(E) = WP (E), up to a bijec-
tion. In general, by virtue of (1.6), W7 (E) C W,]);p (E). The next proposition asserts
that W;;”(E) is the closure of W7 (E) in the norm || - ll1,p;p~ and that functions in
W;;” (E) are only those satisfying the embedding of Corollary 1.1.

Proposition 24.1 Let u € Wpl;‘”(E). For all € > 0 there exists u. € W“P(E) such
that |u — uc||1,p. p» < €. Moreover u and Du satisfy (1.6).

Proof May assume E = R". Let ¢, be a nonnegative, piecewise smooth cutoff func-
tion in R¥, such that

¢, =1 for |x| <n I
& =0 for [x| =20 24 1DGI=

Set u,, = u(,, verify that u, € W"?(R") and compute

/ |u—u,,|"*dx5/ lu|” dx.
RN |x|>n

Moreover
/ |Du — Du,|Pdx < 2”’1(/ (1= ¢)|DulPdx +/ |u D(,,|pdx)
RN RV RN
1
52""(/ \DulPdx + — |u|”dx)
[x|>n n n<|x|<2n

ul”dy) "]

< 21’*1[/ |Du|de+w1§(/
[x|>n |

x|>n
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The second assertion follows from (1.6) applied to u,,. [

Proposition 24.2 Let {u,} be a sequence of nonnegative functions in Wplip (E) and

set
v = sup uy,, w; =supluyy;l, W= (wi,..., wy).

Ifwe LP(E), thenv € W;;p(E) and |vy,| < wj for j=1,...,N.

Proof May assume E = RV. The assertion is obvious if {u,} = {u, u»}, and by
induction, if {u,} is a finite sequence. Otherwise set

v, = max{u, ... u,} and w, ;= max{|u1,xl.|, R |un,x/.|}

forj=1,...,N.Thenv, € W;LP(E) and

|v,,,x/.| <w,; <w; forall j=1,...,N.

Since {v,} is monotone increasing, by monotone convergence

N -1 N -1
uhmlnf ”Dvn”p =< u”VV”[)
N—p N-—-p

vl p« = Lm [[va |l <
This implies thatv € L” "(E). It remains to show that the distributional derivatives
vy, are real valued functions in L” (RY), and vy, | < wj.
Let ¢ € C°(RY) and compute

/ vgox.dy:lim/ Vpoy.dy = —lim/ Uy ody 5/ wjlpldy.
RV RV ! RV RN

The left-hand side defines a linear functional 7; on C5° (R™) with upper bound,
uniform in ¢, given by

1 1
CEM®RY) 3 9 = Ti(@) < llgllyllw,ll, where > + P L.

Assume first 1 < p < N, so that % < g < 00. Endow C2°(R") with the norm
|l - Il; and, as such, regard it as a subspace of L¢ (RV). By the Hahn—Banach theo-
rem 9.1 of Chap. 7 (dominated extension of functionals), 7; admits an extension Tj
to L4(R") satisfying the same uniform upper bound on L?(R"). Since C3°(RY)
is dense in L7(R"), such an extension is unique. By the Riesz representation theo-
rem 11.1 of Chap. 6 there exists a unique function in L” (R"), which we denote by
—vy, € LP(R") such that

)= [ (cu,edy forall e LR,
RN
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Since T; = T; on C°(RV)

—/ vgox}.dy:/ vx/.gog/ wilpldy forall ¢ € CRY).
RN RV RN

Thus v,; is the weak x;-derivative of v and |v,;| < w;.

If p=1 endow C° (RY) with the sup-norm || - || and, as such, regard it as a
dense subset of C,(R"). By the dominated extension theorem, 7; admits a unique
extension f,- e C,(RN)* satisfying the upper bound

Ti(p) < /N lplw;dy < gl lw;lli forall ¢ e C,(RY).
R

By the Riesz representation theorem 1.1 of Chap. 8, there exists a Radon measure
; and a i j-measurable function 7; such that |7;| = 1 and

RN

The construction of the measure y; in § 3 of Chap. 8 implies that
i (E) < / w;dy
E

for all Lebesgue measurable sets E C RY. Therefore 1, is absolutely continuous
with respect to the Lebesgue measure and is finite, since w; € L'(R"). The signed
measure

djij = mn;dp,;
is also absolutely continuous with respect to the Lebesgue measure and its total
variation
gl = i+ iy
is also finite. By the Radon—-Nykodym theorem 18.3 of Chap. 4, there exists ia func-
tionin L' (RY), which we denote by —v,, € L'(R") such that dfi; = —v,,dy. Thus
Ti(p) = /RN @(—vy)dy forall ¢ e C,(RY).
Since T coincides with 7; on C2°(RY)
—/ vy, dy = / vy, pdy < / wjlpldy forall ¢ e CE(RY).
RV RV RV

Thus v,; is the weak x;-derivative of v and |v,,| < w;. n
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Problems and Complements

1c Multiplicative Embeddings of Wo1 'P(E)

1.1.  The following two Propositions are established by a minor variant of the
arguments in § 2—4. Their significance is that u is not required to vanish, in
some sense, on OF. Let Q = H7=1(aj» b;) be a cube in RV

Proposition 1.1c Let u € W'?(Q) for some p € [1, N). Thenu € L? (Q), and

Yo PN = 1)
b = 22 (575 —ary 1l + Ry —py M)

The inequality continues to hold if (b; — a;) = oo for some j, provided we set
(bj — Clj)il =0.

Proposition 1.2¢ Letu € WHP(RY) for some p € [1, N). Thenu € L?"(RY) and

PIN-1) 1) ul

llaell pe < NN = Z N, p-

1.2.  There exists a function u € WV (E), that is not essentially bounded.

1.3.  The functional ¥ — || Du||, is a semi-norm in W'P(E) and a norm in
Wol’p(E). Such a norm is equivalent to [[ul|;,,, that is, there exists a con-
stant v depending only upon N and p such that

Yy "Dull, < luly,p < ylIDull, forall ue W) "(E).

8¢ Embeddings of W7 (E)

8.1. Let WI?(E)* denote the dual of W7 (E) for some 1 < p < oo and let ¢ be
the Holder conjugate of p. Prove that LY(E)Y ¢ W!?(E)*. Give an example
to show that inclusion is, in general strict.

8.2.  Let E satisfy the cone condition, and let W7 (E)* denote the dual of W'-? (E)
for some 1 < p < N.Prove that L4 (E)YN C WP (E)* where g is the Holder
conjugate of p,. Give an example to show that inclusion is, in general strict.

8.3. Let E be the unit ball of RY and consider formally the integral

WUYP(E) s f — T(f) :/ x|~ fdx.
E
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Find the values of a for which this defines a bounded linear functional in
WP (E). Note that the previous problem provides only a sufficient conditions.
Hint: Compute (x;|x|~%),, weakly.

8.4. Let E C be open set. Give an example of f € W!”?(E) unbounded in every
open subset of E. Hint: Properly modify the function in 17.9. of the Com-
plements of Chap. 4.

8.1c Differentiability of Functions in WYP(E) for p > N

A continuous function u defined in an open set £ C RV, is differentiable at x € E
if it admits a Taylor expansion of the form of (21.1) of Chap. 8 in the context of the
Rademacher’s theorem.

Functions u € W'?(E) for 1 < p < oo are characterized as admitting a Taylor
type expansion in the topology of L? (E) (Proposition 20.3 of Chap. 8). The embed-
ding Theorem 8.1 implies that for p > N, such an expansion holds a.e. in E.

Theorem 8.1¢ Functionsu € W,;”

(E)for N < p < ocoarea.e. differentiable in E.
Proof Assume first N < p < oo. Since Du € L (E),

loc

lin%) |Du — Du(x)|’dz =0 for almostall x € E.
p— Bﬂ(x)

For any such x fixed, set
v(y) =u(y) —u(x) — Du(x) - (y —x)  for y € By(x).

In particular v(x) = 0. Apply (8.4) to the function v(-), with E being the ball
Bjy_y(x). It gives
1

PO =10G) = v@| = CN, plx=yI(f  1Dv=DuwIrdz)’.
By (x)

Thus for |y — x| < 1

lu(y) —ux) — Du(x) - (y — x)|
|y — x|

= O(ly — x)).

Let now p = co. The previous arguments are local and L{2 (E) C Ll (E).

Hence one can always assume N < p < o0. ]

Remark 8.1c The theorem is an extension of the Rademaker’s theorem to functions
in WhP(E) for N < p < oo. Inparticular for p = oo it provides an alternative proof
of the Rademaker’s theorem.
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14¢ Compact Embeddings

14.1. Theorem 14.1 is false if E is unbounded. To construct a counterexample,
consider a sequence of balls {B,,(x;)} all contained in E such that |x;| —

00 as j — oo. Then construct a function ¢ € W,” (B, (x,)) such that its
translated and rescaled copies ¢}, all satisty ||} |1, p;8, ;) = 1 forall j € N.
The sequence {;} does not have a subsequence strorfgly convergent in any
L9(E) forallg > 1.

14.2. Theorem 14.1 is false for ¢ = p* for all p € [1, N). Construct an example.

17¢ Traces and Fractional Sobolev Spaces

1
17.1c Characterizing Functions in wli=»P (RN) as Traces

Proposition 17.1¢ Every function ¢ € wimpr (RY) has an extension
ue W”’(Rﬁ“), such that the trace of u on the hyperplane t = 0, coincides with
and
luC, Ollpry < llellpry  forall t >0 (17.1c)
IDull, ryer = Yllelli-1, pimy (17.2¢)

where «y depends only on N and p.
Proof Assume N > 2 and let

1 1

Fx—y;t) =
(x =y 1) (N — Dwy41 (|x—y|2—|—t2)

N-1
2

be the fundamental solution of the Laplace equation in RV*! with pole at (x, 0),
introduced in § 14 of Chap. 8. Let also

t

2
db(x, t) = / N+l go(y)dy
WN+1 JRY (|x _ y|2 +t2) 2

= Z/RN Fi(x —y; )o(y)dy o (H * ) (x)

be the Poisson integral of ¢ in Rf“ introduced in § 18.2c of the Complements
of Chap.6. Since the kernel H = 2F; has mass one for all # > 0 and is harmonic
in RY x Rt we may regard 2F, as a mollifying kernel following the parameter
t. Therefore (17.1c) follows from the properties of the mollifiers and in particular
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Proposition 18.2¢ of the Complements of Chap. 6. Again, since H = 2F, has mass
one

0
8/ F,(x —y;t)dy =0 and 8_ Fi(x—y;t)dy=0

RN
fori = 1,..., N. Therefore denoting by 7 any one of the components of (x, )
) 2
8—77@(96, 1) = v It Flx =y Dle(y) —¢(x)ldy

and by direct calculation

lo(x) — @(y)]

D@Dx,t < _
IDRDI=T [T i

for a constant v depending only upon N. Integrate in dy by introducing polar coor-
dinates with pole at x and radial variable pt. If n denotes the unit vector spanning
the unit sphere in RY
N-1
lplx + pim) — p)]
P
+pNH! t

ID®(x,1)] <~ dn/
Inj=1 (1

By the continuous version of Minkowski’s inequality

o0
ID®, g < n/ a4
Ri Inj=1 o (L+pN+Ht

5 (/°° e+ prm) = @O g dt)g
i :

tpP

The last integral is computed by the change of variable » = pt. This gives

o0
p_’
Do w1 < —d
10915 =3( [ o)
o+ rm) = 9OI?
N 1 P,
XAI 1(/ rN+p=1 ) dn

lo(x) —(|? 0
<~(N, p) /]RN/]RN o dxdy)

= (N, P)|||<P|||1—%,p:RN'

The extension claimed by the proposition can be taken to be

ulx, 1) =e ""Pd(x,1).
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To prove that ¢ is the trace of u, consider a sequence {¢,} C C° (RN ) that approx-
imate ¢ in the norm of W*?(RY) fors = 1 — 1/p. Such a sequence exists by virtue
of Proposition 15.2. Then construct the corresponding Poisson integrals @,, and let
u, = e~ ''?®,. Writing

U, —u =2e"P /RN Fi(x — y; Hlon(y) — o()]dy

and applying (17.1¢c)—(17.2c) proves that u,, — u in W"P(Rﬁﬂ). By the definition
of trace this implies that u (-, 0) = ¢. ]

Combining Proposition 17.1 and this extension procedure, gives the following char-
acterization of the traces.

Theorem 17.1¢ A function o defined and measurable in RN belongs to W*? (RN)
for some s € (0, 1) if and only if it is the trace on the hyperplane t = 0 of a function
u e Wl'p(]Rf“) where p = 1/(1 — s).

18c Traces on OE of Functions in W7 (E)

Theorem 18.2¢ Let E be a bounded domain in RN with boundary OE of class C'

and with the segment property. A function ¢ € Wlf%’p(ﬁ'E) for some p > 1 admits
an extension u € WP (E) such that the trace of u on OF is ©.

Theorem 18.3¢ Let E be a bounded domain in RN with boundary OE of class C'
and with the segment property. A function p defined and measurable on OE belongs
to WP(OE) for some s € (0, 1) if and only if it is the trace on OE of a function
ue WUP(E) where p =1/(1 — ).

18.1c Traces on a Sphere

The embedding inequalities of Proposition 18.1 might be simplified if E is of rela-
tively simple geometry, such as a ball or a cube in R". Let By the ball of radius R
about the origin of R and let Sz = OBg.

Proposition 18.1¢ Let u € WP (By) for some p € [1, 00). Then

N Ou
Po< S al Ec 18.3
] 5, = lal + ooy 52| (18.30)

If p e [1,N) then
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1 Ou
-1
s, < Ny el + mlalp! | 22

o,

where

Proof We may assume that u € CI(BR). Having fixedg > p > 1, set
1
9=max{p; 1 +q(1 — —)} sothat p <6 <gq.

p

Then for any unit vector n

R Ju(Rm)|* = / S0 ol dp
N 1 0 0—1 ( )
=N lu(pm)’dp +6 [ p"u(pn)]| ap — —signu(pn)dp.
Integrating in dn over the unit sphere |n| = 1 gives

u
R/ wR)PRYN 'an = N [ julldx +0 [ |xljul’ 2L sign udx
n=1 Bx Bx Jlx|

, )
< NM(BR)I’%(/ |u|qczx)" +0R</ |u|(€’1)n%ldx) ’
Br Bg

Inequalities (18.3c) and (18.4c) follow form this forg = pandg = p

539

(18.4¢)



Chapter 11
Topics on Weakly Differentiable Functions

1 Sard’s Lemma [140]

Let E be a bounded domain in R and let f € C*°(E). For a multi-index «, and a
positive integer k, set

k
Dy={x€E | 1 ‘Z‘:k|D“f(x)|=O}=‘D1[D"f=0].

Denote also by p; the Lebesgue measure on R. The next lemma asserts that the
image of Dy by f is a subset of measure zero in the range of f. Equivalently, for
almost all level sets [ f = 7]

N
> IDYf(x)| >0 forall x e [f =1].
lal=1

Lemma 1.1 pu[f(Dy)] =0.

Proof Fix € € (0, 1). For each x € Dy and for all 0 < ¢ < ¢ there exists an open
ball B, (x) centered at x and radius O < r < ¢ such that

sup |f(y) — fx)| <4Vt
yEB,(x)

for a constant depending only of f and independent of x and r. Thus

FIB, (O] C Lie = [f () = jinf (f = f(). @)+ sup (f = f ()]

B, (x)
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The collection of intervals {/, . forx € Dy and e € (0, €), forms a fine Vitali cov-
ering for f(Dy). By the Vitali measure theoretical covering theorem (Theorem 17.1
of Chap. 3), one may extract a countable subcollection of intervals {,,} with pairwise
disjoint interior, such that

i f(Dy) = U L] =0.

To each I, there corresponds a ball B,, (x,) such that

B, (x,) C f7'(I).

The pre-images f~!(I,) have pairwise disjoint interior, and we estimate

wlf (D] < S (L) <4 rN+!

N WN N N

< —_— —_— = - Br n

<er - DIt v > u[Br, (xn)]
N N

< ey — S p[f U] < e u(E). .
Wy WN

The next lemma asserts that f (D)) has 1-dimensional Lebesgue measure zero.
Equivalently, for almost all level sets [ f = ]

|IDf(x)| >0 forall x e [f =1].
As a consequence, by the implicit function theorem, for almost all ¢ in the range

of f, the level sets [ f = t] are, smooth (N — 1)-dimensional surfaces.

Lemma 1.2 y[f(D)] =0.

Proof By the previous lemma it suffices to prove that

[ f(D1) = f(DN)] = m[f(D1 — Dy)] =0.

The proof is by induction on the dimension N. The lemma holds trivially for
N = 1. We will establish that if it does hold for (N — 1) it continues to hold for N.

Now
N—1

Dy — Dy = | (Dx — Diy1)  and

k=1

N—1

f(D1 = Dy)= U f(Dr — Diy1)-
=1

Therefore, it suffices to show that

pi[f(Dx — Dgy)] =0 forall k=1,...,N —1.
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Having fixed x € (Dy — Di+1), there exists a multi-index « of size |a| = k, and
anindex j € {1, ..., N}, such that

Df(x) =0 and iD“f(x) £0.
8xj

Up to a possible reordering of the coordinates, may assume without loss of gener-
ality that j = N. By the implicit function theorem, there exists a open neighborhood
O of x, and a local system of coordinates,

y=(y9yN)s where )_7:()’11-“,)’N71)

such that, within O the set [D® f = 0] can be represented as the graph of a smooth
function yy = g(y). Precisely, there is an open set {/ and a homeomorphism # :

O — U such that ot
flo=f™ )= e:U—>R

The restriction
V=9 lunyymgon= f(hfl(u Ny = 9(7)]))
defines a smooth function of (N — 1) independent variables in U/ N [yy = g(y)]. Set

Diy=U{eUnlyv=9 | Dy@) =0}.

By the induction hypothesis p[1¢(D; )] = 0. By construction, if y € h((D/< -
Dy+1) N O), theny € Dy . Therefore,

h((Dk — D) N O) - D]yrl/;.

From this
F((De = D) N O) C (Dy )

Hence
[ f((Dx = Dis) N O)] < i ((Dyy)) = 0.

As x ranges over (Dy — Dy41) the open sets O about x, form an open covering
of (Dy — Dy+1), from which we may select a countable one {O,}. Such a selection
is possible by virtue of Proposition 5.3 of Chap. 2. To establish the lemma it suffices
to observe that

pi[f (Dx = Dis)] = [ f (UDk = D) N O,) ]
< X m[f((De = D) N O,)] = 0. u


http://dx.doi.org/10.1007/978-1-4939-4005-9_2

544 11 Topics on Weakly Differentiable Functions

2 The Co-area Formula for Smooth Functions

Proposition 2.1 Let E be a bounded domain in RN and let u € C*®(E). Then for
all nonnegative ¢ € C(E)

o0
/cp|Vu|dx=/ (/ apda)dt 2.1)
E 0 M|ul>1]

where do is the (N — 1) Hausdorff measure on [u = t].

Remark 2.1 Since u € C*(E)(E), by Sard’s Lemma, the level sets [u = t] are
smooth (N — 1)-dimensional surfaces for a.e. t € R. Therefore, since  is continuous
in E and nonnegative, the integrals in (2.1), finite or infinite, are well defined.

Proof Assume first ¢ € C3°(E) and, for e > 0 set

%
h=gp—— e CX(E).

QO\/|VI/L|2+E

Then, by integration by parts and formula (15.5) of Chap.4

/h~Vudx = —/ udivhdx
E E
00 0
- —/ (/ divhdx)dt+/ (/ divhdx)dt.
0 [u>t] —00 [u<t]

By Sard’s Lemma, the inner unit normal to O[u > t]is well defined fora.e.t € R,
and it is given by Vu/|Vu|. Then by the divergence theorem,

\Y%
—/ divhdx :/ h- “ do forae. t > 0;
[u>t] Olu>t] |vu|

. Vu
divhdx = h- do forae. t <O.
[u<t] Olu<t] |VM|

Therefore, taking into account the choice of h

/ |Vul? 4 o0 / [Vu| do)ds
P——————dx = ( P o) .
E |Vul*+e¢ 0 Mui>n | Vul> +¢

Letting € — 0 and passing to the limit under integral by means of the dominated
convergence theorem proves (2.1) for p € C°(E). If ¢ € C,(E), itis the pointwise
limit of functions in C;°(E). Thus a limiting process by dominated convergence
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establishes (2.1) for all nonnegative ¢ € C,(E). A nonnegative ¢ € C(E) is the
monotone, pointwise limit of functions in C,(E). Thus, by monotone convergence,
(2.1) continues to hold for nonnegative ¢ € C(E). ]

3 The Isoperimetric Inequality for Bounded Sets E
with Smooth Boundary O E

For a Lebesgue measurable set E C RY with smooth boundary O E, denote by pu(E)
its Lebesgue measure, and by o (0F) the (N — 1)-dimensional Hausforff measure of
OE.

Proposition 3.1 Let E be a bounded, open set in RN, with smooth boundary OE.
Then .
OE)v-1 L
CACLLERV 3 3.1)
W(E)
Proof Denote by E > x — 0g(x) the distance from x to OF and for 6 > 0 let E;
be defined as
E;={x € E|6p(x) > 4} (3.2)

where ¢ is so small that E; is not empty. Introduce the family of functions

1 if x € Ej;
1 .

Us = SéE(x) if x e E— Eg; (3.3)
0 if xeRY —E.

The distance function g (+) is a Lipschitz continuous function of x, with Lipschitz
constant L = 1 (Lemma 15.2 of Chap.4). Hence 6z € W!'*°(E) (§ 20.2 of Chap. 8).
The functions us can also be regarded as in W' (R"). From this and Corollary 1.1
of Chap. 10, for p = 1, applied in the form (1.7) with the best constant,

W(E) :lim/ ugf'dx
E
e | Mor
< (NwF ™) lim (/ |Du5|dx)
E

1 1 +
< (Nwl ") '1im (g,u(E ~ Ey)

= (Nwlﬁ)_la(aE)%. n
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Remark 3.1 In computing the last limit we have used that E is smooth. If OE
is not regular, such a limiting process could be used to define the measure of the
“perimeter” of E, i.e., [33]

%in})/|Du5|dx L9E].

Remark 3.2 The quantity in (3.1) is dimensionless and it measures the isoperimetric
ratio of OF relative to the volume of E. It is then natural to ask for what sets E such
a ratio is the least. A theorem of DeGiorgi [33] states that the inequality in (3.1) is
strict, unless E is a ball. Thus the balls are the domains of least perimeter among all
those of equal volume.

3.1 Embeddings of W,,1 P (E) Versus the Isoperimetric
Inequality

The isoperimetric inequality is a consequence of the embedding of WOI*I(E ) into

LT (E), as stated in Corollary 1.1 of Chap. 10, in the form (1.7) with best constant.
This embedding is the building block of all embeddings of Wal "P(E) into L?"(E) for
all 1 < p < N, as indicated in § 3-§ 4 of Chap. 10.

Let now u € C.;°(E), so that by Sard’s Theorem, the sets [ > ¢] have smooth
boundaries [u = ¢], for a.e. t € R. Apply the co-area formula (2.1), with ¢ = 1, and
the isoperimetric inequality to the sets [u > t] and their boundaries [u = t]. This

gives
1 /N~ 1Ny~
N(E) /E|Du|dx—ﬁ(a) /RU([M—I])df
(o]
Z/u([u>t])%dt=/ p(llul > 1)~ d
R 0
o0 1 N—1
z/ ARt > ) T dr
o h
2/ —{/(min{|u|;t+h}—min{lul;l})N"] dt
o hlJg
|
=/ | minlu ¢+ b = min{jul; 1]  dr
0 :
z/ —[||min{|u|;t+h}||i—||min{|u|§l}||i]dt-
0 h N-1 N-1
In these calculations 0 < & < 1. Letting & — 0 yields
1 /N\w “d, .
Es /E|Du|dx2/0 S mintluls )] e =l G
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Thus the isoperimetric inequality implies the embedding of Corollary 1.1 of
Chap. 10, for p = 1, in its form (1.7) with best constant.

Remark 3.3 The isoperimetric inequality (3.1) is applied to the sets [# > ¢] and their
boundaries [# = ¢], which are smooth surfaces for a.e. t. The resulting Gagliardo
embedding (3.4) holds for domains E with boundary OF not necessarily smooth.

4 The p-Capacity of a Compact Set K c RY,
forl<p<N

For a non-void, compact set K C RY introduce the classes of functions

I'(K) = {u e CXRY) with u > 1 on K};

u€ CPMRY) with 0 <u <1 in RY
I(K) = . . ; 4.1)
u > 1 in an open neighborhood of K :
FK) = ue C(?‘.)(IR{N) with qu <1 in RY '
u = 1 in an open neighborhood of K
For 1 < p < N the p-capacity of K is equivalently defined as
cp(K) = inf{/ \DulPdx |u e F(K)};
RN
¢ (K) = inf{/ \DulPdx | u e FO(K)}; 42)
RN

ch(K) = inf{/RN |DulPdx | u e Fl(K)}.

If K =0,setc,(K) =c)(K) = c},(K) =0.
Proposition 4.1 ¢,(K) = ¢} (K) = c},(K).

Proof By construction ¢, (K) < c‘,’,(K ) < ¢l (K). To establish the converse inequal-

ities, may assume that ¢,(K) < oo. For ¢ > 0 there exists u. € C3° (RN) with
u: > 1 on K such that

/RN [Du.|"dx — e < cp(K).

For0 < ¢ < % introduce the function


http://dx.doi.org/10.1007/978-1-4939-4005-9_10

548 11 Topics on Weakly Differentiable Functions
0 for —oc0o <t <g;

t—e¢
1 —2¢

Rat— (.(t) = for e<t<1-—c¢

1 for 1 —e <t < 0.
One verifies that (. is Lipschitz continuous and 0 < (. < 1. Moreover
0<(¢ <142 ae.inR. 4.3)

The mollifications (., for 0 < v <« ¢ share the same properties of (.. The
function v, = (., (u.) is in the class I71(K). Then, by the definition of c;(K ) and

ch(K),
0 (K) < ch(K) < / |Dv.|Pdx = / ¢7, | Du.|Pdx
RN RV

< (1 +2£)”/ |[Du.|’dx < (cp(K) +¢e)(1 4+ 2¢)”. -
]RN

4.1 Enlarging the Class of Competing Functions

Let now W;;p (R") be the space, introduced in § 24 of Chap. 10, for E = R", and
set
I(K)={uew"®)nC®R") with u>1 on K}

4.4
c;(K)zinf{/ |Dul?dx | ueF*(K)}. @)
RN

Proposition 4.2 c;‘,(K ) = c,p(K).

Proof By construction c;’; (K) < ¢,(K). For ¢ > 0 there exists u. € I',(K) such
that

/ |Du.|Pdx —e < c;’;(K). 4.5)

]RN

Arguing as in the proof of Proposition 4.1, there exists (. (u#.) € I's(K) such that
0<((u.) <1 and (. (u.)>1 inan open neighborhood of K.

Since (! satisfies (4.3), inequality (4.5) yields
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/ DC)Pdx < (1 +2) / \Du.|Pdx
RN RN

=< C;(K) + 5:chp(K)

(4.6)

for positive constants 7, and 7, depending only on p. By Proposition 24.1 of
Chap. 10, and its proof, there exists w. € Wo” (RV), such that

IDC-(u) = D, < 7.
The construction of w, insures that w, is compactly supported in R and
0<w.<1 and w.>1 inan open neighborhood of K.
A proper Friedrichs mollification of w. generates w. , € C°(RY), such that
0<w.p<1 and w., > 1 inan open neighborhood of K

and 1
”Dws,o - Dw5||,, <er.

From this and (4.6)
/ |[Dw,|Pdx —e < c;(K) + Ypec, (K).
RN

The function w, , is in I, (K). Therefore taking the infimum of the left hand side
over all such functions yields

cp(K) < ¢y +e(1 +pec, (K)). 0

Corollary 4.1 Let K C RY be compact. Then for all € > O there exists an open set
O D K such that

c,(K) =< C[,(K/) + ¢ forall compactsets K C K' C O. 4.7

This property is also called right continuity of the set function ¢, (-) on compact
sets. The definition of p-capacity implies that if H and K are compact subsets of
RY then

HCK = cp(H)=<c,(K) (4.8)

that is ¢, (-) is a monotone set function on compact sets. The definition implies also
that for all # > 0 and all rototranslations R of the coordinate axes

c,(tK) =t""Pc,(K); ¢p,(RK) = cp(K). (4.9)
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5 A Characterization of the p-Capacity of a Compact Set
KcRN,forl<p<N

For a given compact set K C R continue to denote by I" (K ) the class of competing
functions introduced in (4.1). Set also

the collection of open sets E containing K
Ex = (5.1

such that OF is a smooth surface

and denote by o(0FE) the (N — 1) Hausdorff measure of OE.
Theorem 5.1 Let K be a compact subset of RN. Then for 1 < p < N

. ! p—1 =R L
cp(K) = inf [ ( |Dul da) ] . (5.2)
uel (K) 0 u>t]

c1(K) = inf 0 (9E). (5.3)
EEE[(

If p =1, then

Proof (The Case 1 < p < N. The Lower Estimate in (5.2)) Let u be a nonnegative
function in C;° (RY). By the co-area formula (2.1), for smooth functions

1
/IDu|”dx2/ f@)dt
RN 0

f() = / |Du|P~'do (5.4)
Olu>t)

where

where do is the (N — 1) Hausdorff measure on O[u > t]. By Sard’s Lemma, the set
Olu > t]is a smooth (N — 1)-dimensional surface for a.e. t > 0, so that f is well
defined, nonnegative and a.e. finite as a measurable function of r > 0. As such the
integrals of f and f —1_finite or infinite, are well defined.

Let now f be any such function and assume in addition that

f and fﬁﬁ are integrable in (0, 1).

Then by Holder’s inequality

1

lz/olfrl?fllidt < (/Olfdz)’]’(/olfl—'pdt)p;.
(/01 fl%vdt)lip < /01 rdr. (5.5)

Therefore
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1
One verifies that this inequality continues to hold if either f or f~ »-T or both,

fail to be integrable. Returning to the definition (4.2) of ¢,(K), for all ¢ > 0 there
exists u € I'1(K) such that

1
cp(K)+52/RN|Du|”dx=/0 f(@)dt

with f defined by (5.4). Thus, taking into account (5.5)

1 %} 171,
cp(K) > inf [/ (/ |Du|"—‘da)"] . .
ueli(K) L Jo Ou>t]

Proof (The Case 1 < p < N. The Upper Estimate in (5.2)) Let { € C*°(R) be
nondecreasing and satisfying

¢=01in (-00,0; ¢=11in [l,00); (¢ €][0,1] in [0, 1];
0 < ('(t) <~ forsome~y > Oforallt € (0, 1).

For any such function ¢ and any u € I"(K),
1
(k) < [ crwipulrax = [ ¢ far
RV 0

where f is introduced in (5.4). Assume momentarily that f and f “iT are integrable
in (0, 1) and choose

[0 for —oo <t <0;

Jo(f +) 7 dr

C(t) = 1
Jo(f +e) 7de

or 0<r<l;

| 1 for 1<t<o

modulo a mollification process. For such a choice,

ep(K) = (/01(f+6)'lpdt)]_p

From this, by monotone convergence and the definition (5.4)

ep(K) < (/01 yrrar)
=[[ ([, urae) ]
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for all u € I'(K). In this inequality we may assume that f is integrable for some

u € I'(K), otherwise c,(K) = oo. The inequality continues to hold if f T is not
integrable, in which case ¢, (K) = 0. [ ]

Proof (The Case p = 1) For a nonnegative u € C3°(R")

/ |Du|dx :/ U([a[u > t])dt
RN 0

1
z/ o([0lu > t])dt = inf o(JE).
0 Ee&g

Let E € g and, for 0 < § < 1 let E5 and ug be defined as in (3.2) and (3.3).
Since K C E is compact, there is  sufficiently small that K C [us = 1]. For such
a us,

&) = [ Vuldx
E
up to a mollification process. Letting § — 0 and proceeding as in the proof of
Proposition 3.1, gives ¢;(K) < 0(JE), for all E € &k. ]

6 Lower Estimates of c,(K)for1<p <N

Lemma 6.1 Let K be a compact subset of RY. Then forall 1 < p < N,

w_N)ﬁ(N—p

p—1 Np
S —)" ) 6.1)

cp(K) > N(

where for p = 1 the term in round brackets is meant to be 1.

Proof (The Case 1 < p < N) Letu € C°(RY) be nonnegative and let 0 < s < ¢.
By Holder’s inequality

P

(/ up71|Du|dx)P7l = (/ up71|Du|dx)Pfl
[s<u<t] [u>s]—[u>t]
1
< (/ u”dx)(/ |Du|”dx) .
[u>s]—[u>t] [s<u<t]
From this, by the co-area formula (2.1), for smooth functions,
' 2
[/ Tpfl(/ do)dT] < tpﬂ([u >s]—[u> t])
s Olu>T]
t 1]
X [/ (/ |Du|”_ld0)dr] .
s Iu>T]
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Divide by (r — s)ﬂ%l and let s — t to obtain

1

r_ d .
[o@lu > D] = ——pu(lu > t])(/ |Du|P*1dg)

Olu>1t]

for a.e. t > 0. The various limits are justified by the Lebesgue-Besicovitch dif-
ferentiation theorem, and the monotonicity of the function r — u([u > ¢]) (see
Theorems 11.1 and 3.1 of Chap.5). From this and (5.3) of Theorem 5.1

1 -
¢p(K)= inf [/ (/ |Du|l’—1d0)tﬂdt] p
uel (K) 0 Ou>t]
1 4 >t 1-
= g (- [ A )
uel (K) 0 o(Olu > t])r?

By the isoperimetric inequality (3.1)

6.2)

c@lu > 1) = NV wf > )

Therefore, from (6.2) for 1 < p < N,

p(N— A 1 4 u=>t op
cp(K) > N“5"wl inf (—/ _ahu=1D dt)
0

el pll > )7

l-p

—p LA N_ P*l 1 d —-P

> N7 w,c( p) inf / L > 1)) "o di
p—1 uel(K) \Jo dt

—p 2 /N — p—1 _
ZNNN[UJ]@( i)) ,LL(K)¥- -
p—

Proof (The Case p = 1) The proof for p = 1 follows by combining (5.2) of
Theorem 5.1 with the isoperimetric inequality (3.1) of Proposition 3.1. |
6.1 A Simpler Proof of Lemma 6.1 with a Coarser Constant

Letu bein anyone of the classes I (K), I, (K), I'1(K) introduced in (4.1). Then by the

Gagliardo embedding of W, ” (RV) into L”" (R") as stated in (1.6) of Corollary 1.1
of Chap. 10.

N— P N N—l 14
W(K) ™ < (/ uNN—pdx) " Spp( ) / |Du|”dx
RV N—p/ Jrv
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for N > 2 and 1 < p < N. Minimizing the right-hand side over u € I'(K), yields

- P
-1

N-p

(N )4
¢ (K) = p (1) KD (6.3)
This estimate is analogous to (6.1), except for the different value of the constant.

One verifies that

N(%N)g(i:f)p_l > p‘P(x:lf)p 6.4)

forall 1 < p < N. Thus (6.1) is a more precise lower bound of ¢, (-) in terms of

().

6.2 p-Capacity of a Closed Ball Bp cRN, fort<p<N

Corollary 6.1 Let B, be an open ball of radius p in RN. Then,

_ N—p
B, = (
Cp( p) WN p—1

-1
)p PN for 1 < p < N. (6.5)

When p = 1 the power in round brackets is meant to be 1.

Proof If p = 1 the statement follows from (5.3) of Theorem 5.1. If 1 < p < N,
from the previous lower estimate with K = B, one computes

N-—p
p—1

_ p—1
c,(B,) > ( ) wnpV P

On the other hand, from the definition (4.2) the p-capacity of B, is majorized if
the infimum is taken over radially symmetric functions. Then in (4.2) take

1 for |x| <1:
u(x) =1 ¢ p\rt
— for |x| > p
|x|
up to a density argument. ]

Remark 6.1 From the first of (4.9) it follows that ¢,(B,) = p"~Pc,(B)). It is the
precise lower estimate (6.1) that permits one to compute ¢, (B1).
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6.3 cp(By) =cp(0B))

For u € I'1 (0B,) define
L for 1xl = p:
"1 for |x| < p.

One verifies that v, € F*(B,)) and that

/|Du|”dxz/ |Dv,|Pdx > inf / |Dv|Pdx.
RN RN velL(B,) JRN

Therefore,

= i p > B
cp(0B,) ue}}r%ng)/RN [Dul|’dx > c,(B,).

On the other hand ¢,(9B,) < c,(B,) and hence c,(9B,) = c,(B,). An almost
identical argument establishes the following

Corollary 6.2 Let E be a bounded open set in RN with smooth boundary OF and
let1 < p < N.Thenc,(E)=c,(0F).

7 The Norm || Du||,, for 1 < p < N, in Terms
of the p-Capacity Distribution Function of u € CJ° (RMN)

The p-capacity distribution function of a nonnegative function u € C°(RY) is
defined by
R* 51— c,([u > t]).

This is a nonincreasing function of 7, vanishing for ¢ sufficiently large.

Theorem 7.1 Let u € C°(RY) be nonnegative. Then forall 1 < p < N,

g 1 p p—1
/Ot” cp([uzt])dtg(ﬁ) /RNIDulpdx. (7.1)

When p = 1 the coefficient on the right-hand side of (7.1) is meant to be 1.

7.1 Some Auxiliary Estimates for1 < p < N

For a nonnegative u € C°(RV) set

t, =inf{t > 0 | c,([u >1]) =0}.
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Let f be defined as in (5.4) and set

t
0,1,) 51 — s(t) = / o (r)dT (7.2)
0
This integral is well defined for ¢ € (0, #,,). Indeed from (5.2) of Theorem 5.1, for
all such ¢ | 1
—1 1 1—
cp(lu > 1)) < [/ (/ ‘DE)" dJ) ""dA] !
0 st
t %} 1—
— [/ (/ |Du|1’—1da)‘ 'dr] ! (7.3)
0 Iu>T]
! 1 I-p
- (/ fﬂf}(r)dr) — ().
0
From this,

s(t) < [e,(u = )] 7T <00 forae.r € (0,1,).
This estimate and the definition (5.4) of f(-) imply that
0< f(t) <o fora.e.t € (0,t,).

It follows that s(-) is strictly increasing from O to s, = s(¢,). The inverse of s(-),
denoted by &(-), is also strictly increasing

©O,s,) 35 > h(s) € (0,t,), with h[s(t)]=1¢t forall t e (0,1,).
Therefore, h(-) is of bounded variation in (0, s,) and its derivative
, 1
W ()= f@)r

is integrable in (0, s,,).

Lemma 7.1 h' € L?(0, s,) and,

/ WP (s)ds < / |Du|’dx. (7.4)
0 RN
Proof Let

O=s, <81 < - <81 <8, =5, and

O=t, << - <t <t,=t
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be a partition of (0, s,,) and the corresponding partition of (0, #,) by which h(s;) = ¢;.

By the reverse Holder inequality applied with conjugate powers ﬁ and %,
Ljt1 i+t \ 1—p Lj+1 P
/ fdr = ( / rrmar) / Lar)
l 2 Z
(tjy1 —17)7

(j;im f*ﬁ(T)dT)pil.

From this

n

=1 (h(sj1) — h(sp))”  ncl (tjv1 — ;)7
Z: ($iq4) —s;)P! = ‘i 1 p=l1
=0 e = (fir )

n—1 flj+1
< / f(ndr < / |Du|?dx.
4 ‘ RN |

Jj=0J1;

7.2 Proof of Theorem 7.1

In the integral below we effect the change of variable r = h(s), where s(-) is defined
in (7.2) and K (-) is the inverse of s(-). We also use the inequality (7.3) with no further
mention.

® )yt
/0 % lcp([uzt])dtf/o (Ts) h'(s)ds

< (/Osu (@)pds) v (/Osu h’p(s)ds)%.

By Hardy’s inequality (§ 15 of Chap.9)

/Osu (@)pds < (%)p/osu h'P(s)ds.

Therefore,

|~

/ootl’_lcp([u > t]dt < ( )p_l /X h'P(s)ds
0 p—1 0

—1
< (-2 /|Du|”dx,
p—l RN

by virtue of (7.4) of Lemma 7.1. [
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8 Relating Gagliardo Embeddings, Capacities,
and the Isoperimetric Inequality

Proposition 8.1 Let p > 1 andq > p. Thenthe Gagliardo type embedding inequal-
ity
lully, <~llDull, forall ue W(}’”(RN) (8.1)

for a constant v > 0 depending only on p, q, and N, holds if and only if, there exists
a positive constant 5, depending only upon N, p, and q, such that for all compact
sets K ¢ RV ;

WEK)r <7Pc,p(K), (8.2)

Proof Let (8.1) hold. Having fixed a compact set K C R", let u be in the class
I',(K) introduced in (4.1). Then from (8.1)

IKK)givp/nlDMVdM
RN

minimizing the right-hand side over I',(K) implies (8.2) with 7 = . Conversely,
assuming the latter, for a nonnegative u € C>°(R"), compute and estimate

)2 = (Jf [w'Fdp)* = sup ]f uvd
RN RN

vl _q_=1
q-r

o0
= sup / ptpfl(/ vdu)dt
HUH(,ZWZI 0 [u>1]
oo
5/ P[pil( sup / UX[uzt]dﬂ)dt
0 RN

vl _¢_=1
q—=p

o0 oo »
Z/‘m“Wmmmm=/)m“W®zﬂﬂm
0 0

oo 1 P*l
=7 [ tepu = e = g (<L) iou,
0

p—1

where, in the last inequality we have used (7.1) of Theorem 7.1. The proof is con-
cluded by writing u = u™ — u~ and by density. n

The proposition asserts that Gagliardo’s embedding inequalities are equivalent to a
lower estimate of the capacity of compact sets K C R in terms of their corre-
sponding Lebesgue measure. By Lemma 6.1 this occurs for | < p < N, and with

parameters

N
and hence ¢ = p* = P (8.3)
q N N-—p

p_N-p
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Remark 8.1 Assume g = p*. The constant 77 in (8.2) is computed by the lower
estimate (6.1) of Lemma 6.1. Hence the constant  in embedding (8.1) is

=) G ) 4

This improves the constant of the Gagliardo embedding (1.6) of Corollary 1.1 of
Chap. 10.

9 Relating HN-P(K) to cp(K)forl<p <N

The “size” of a compact set K C RY can be “measured” by its Lebesgue measure,
or its capacity or its Hausdorff dimension (§ 5.1c of Chap. 3). The lower estimate of
Lemma 6.1, is a first coarse relation between c,(K) and the Lebesgue measure of
K.If ¢,(K) = 0 then also ;1(K) = 0. There exist sets of positive p-capacity, whose
Lebesgue measure is zero. An example is in § 6.3.

For aBorel set E C R" and k > 0 denote by H*(E) the k-dimensional Hausdorff
measure of E. The next theorem provides a relation between the p-capacity of a
compact set K C RY and its (N — p)-dimensional Hausdorff measure.

Theorem 9.1 Let K be a compact subset of RN and let 1 < p < N. Then

HNP(K) <00 =  ¢,(K)=0. 9.1)

9.1 An Auxiliary Proposition

Proposition 9.1 Let K C RY be compact and such that HY ~7(K) < oc. For every
open set O, D K, there exists a bounded open set O, containing K, and such that
O, c O,, and a nonnegative function ¢ € W,,l"p (0,), such that

O,cl¢c=11 and / |DC|Pdy < 2N"’WWNHN"’(K).
RN

Proof Let Hy_, .(K) be the Hausdorff outer measure defined in (5.1) of Chap. 3,
with
0<e< %dist{K; 00,1},

Since
Hy—p(K) < HNP(K) < o0,
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having fixed a positive number e, there exists a countable collection of sets { E, } each
of diameter not exceeding ¢ such that

KcUE, and > diam(E,)"7 < HY"P(K) +e.
We may assume that each of the E,, intersects K. Pick x, € K N E,, and consider
the open ball
B, (x,) with p, =2diam(E,).
By construction E, C B, (x,) and

dist { By, (x,); 00,} > 1 dist{K; 00, }.

The family {B,, (x,)} is an open cover for K, from which we extract a finite one
{B,,(x1), ..., By, (x¢)} for some k € N. As a set O; takes

k
O1r= U By, (x)).
j=1

By construction o
K C Ol C 01 C OU.

For each By, (x;) construct a nonnegative, piecewise smooth cutoff function ¢,
which equals one on B, (x;), vanishes for [x —x;| > 2p; and such that | D(;| < p;l .
For such functions

WN N-—
DCilPdy < =—=p 7 F
/R R GlPdy = NP
The function ( claimed by the proposition can be taken to be
¢ = max (.

l=<j=k

By construction O; C [¢ = 1] and ( is compactly supported in O,. Moreover

k
/ DClrdy <3 [ 1D¢I1Pdy
R¥ =1 Jry

S
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9.2 Proof of Theorem 9.1

Fix an open set O, containing K and apply the previous proposition recursively to
construct a sequence of nested open sets O; and a sequence of functions {v;} €
Wol’p(Oj_l) satisfying
KCO;cO;cClv;=11CO;
and in addition
/ |Dv;|Pdy < 2N”’w—NHN’P(K) forall j=1,2,....
RN N

Consider now the sequence of weighted sums

V; n
Uy =— > <, where  w, = >
Wy j=1J j=1

By construction O,, C [u, = 1]. Therefore,
c,,(K)f/ |Du,|"dy forall n=1,2,....
]RN

The last integral is computed and estimated by observing that the construction of
the v; implies that

supp{|Dv;|} C O;_; — O; forall j=1,2,....

From this
e (K) = / |Du, " dy
= |Dv;[Pdy
wn j=1 ]p/ !
n 1
< 2N QISR
wn j= l.]p
Letting n — oo the right hand side goes to zero since p > 1. ]

Remark 9.1 As a consequence, segments in R? have positive, and finite
1-dimensional Hausdorff measure and zero 2-capacity.
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10 Relating c,(K) to HN=P*¢(K)for1 < p < N

Theorem 10.1 Let K be a compact subset of RN and let 1 < p < N. Then
cp(K)=0 = HN=PH(K) =0 forall € > 0. (10.1)

Proof For every j € N there exists a nonnegative function u; € C3°(R") such that
u; > 1in a open neighborhood of K, and

D ”d<1
|u|y_2—j

Set u = > u;. Then |Du| € LP(RY) and u € L”" (RY), where p* = 2.
Indeed

1
[ Dull, = 22 11Dujll, < 227.

P

Moreover by the embedding of the Corollary 1.1, of Chap. 10, for alln € N,

p (N

N _ ZIIDM I, < oo.

n
2
j=1

n
wi| = XMl <
P j=1

The set K is contained in a open neighborhood of [u > k] forall k € N. Therefore,
having fixed x € E, for all k € N there exists p, x > 0 small enough that

)y, d—Ef][ udy >k forall p> p, .
B,(x)

Hence,

lim udy =00 forall x € K. (10.2)
r=0JB, )

‘We next establish that K is included in the set

E. = {x e RY | limsup pH][ \Dul” dy = oo} (10.3)

p—0 B,(x)

for all ¢ > 0. Let x € E. be such that

lim sup p”_E][ |Du|? dy < oo
B, (x)

p—0

for some € > 0. Then there exists a positive constant -y, such that

pp—s][ |Du|? dy < ’Yf forall p € (0, 1).
B, (x)
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From this by the Poincare inequality in the form (10.5) of Chap. 10

1 .
][ lu— () pldy < C/(Pp][ |Du|”dy) "< Clypr.
B, (x) B, (x)

For p € (0, 1], compute and estimate

1
- —w),.,ld
M(B%/)) ]ip(x) [u (@) ’p] y‘

< 2N][ U — () ldy < Cop
B,(x)

W)y 1, — (W)l =

where C, = 2V C’~,. Fix any two positive integers m < n. Applying this estimate
recursively, gives

@, = = X | =@, o |<C Y

Jj=m+1 j>m 2

X, 5 X, 5w

The right-hand side is the tail of a convergent series and hence it tends to zero
as m — oo. Therefore {(u), 5 } is a Cauchy sequence, and hence convergent.
This contradicts (10.2) and establishes the inclusion K C E.. The proof of The-
orem 10.1 is concluded by the following lemma, whose proof is a special case of
Proposition 15.1. ]

Lemma 10.1 HV—7P*(E) = 0.

Remark 10.1 As a consequence, for 1 < p < N, the Hausdorff dimension of
compact sets of zero p-capacity, does not exceed (N — p).

11 The p-Capacity ofaSet Ec RN for1 < p < N

Let O be an open subset of RY. The inner p-capacity of O is defined by

¢, (O) = sup cp(K). (11.1)

K compact

For a set E C RY the inner p-capacity ¢ »(E) and outer p-capacity ¢, (E) of E
are defined as

¢, (E) = sup c¢,(K); ¢p(E) = inf ¢,(0). (11.2)

K compact O open
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A set E C RY is p-capacitable if its inner and outer p-capacities coincide. For a
p-capacitable set E C RV, we set

cp(E) = ¢, (E) = ¢, (E). (11.3)

The definition implies that compact sets and open sets in R" are p-capacitable.

Proposition 11.1 Let E and F be subsets of RY and let p > 1. Then
cp(EUF)+Cc,(ENF)<c,(E)+cy(F). (11.4)

Remark 11.1 This is called strong sub-additivity of the set function ¢, (-).

Proof (of Proposition 11.1) May assume that the right hand side of (11.4) is finite.
Assume first that £ and F' are compact and let u € I'/(E) and v € I'|(F). Then
(u v v) and (u A v) are Lipschitz continuous, compactly supported in R", and

(u Vv) =1 inan open neighborhood of E U F;
(u Av) =1 1inan open neighborhood of E N F.

Moreover
ID(u Vv v)|” 4+ |Du Av)|P =|Dul” +|Dv|” ae.in RV.

Also,
(uvv)e I L(EUF) and (unv)yel (ENF)

where I, (+) is the class introduced in (4.4). From this

cp(EUF)—I—cp(EﬂF)S/ |D(uVU)|"dx+/ |D(u A v)|Pdx
RN RV

=/ |Du|pdx+/ |Dv|Pdx.
RN RN

This implies (11.4) for £ and F compact. Assume next that £ and F' are open. As
such, they are the countable union of compact sets (see for example Proposition 1.2
and Remark 1.1 of Chap. 3). For ¢ > 0 there exists compactsets H C Eand K C F,
such that

CHEUF) <c,(HUK)+3e. and ¢,(ENF)<c,(HNK)+ je.

From this and (11.4), valid for compact sets,

Ey(EUF)+¢,(ENF) < cp(H) +cp(K)+e.
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This establishes (11.4) for open sets. Next, let £ and F be sets in RV of finite

outer p-capacity and no further topological restriction. Let Og and Of be open sets

containing E and F respectively. Writing down (11.4) for Og and OF gives

CHEUF)+T,(ENF) < cp(Op) +cp(Op).

Taking the infimum of the right-hand side for all open sets Og containing E and
Op containing F proves the proposition. ]

Proposition 11.2 Let {E,} and {F,} be countable collections of sets in RY, each of
finite outer p-capacity, and such that E, C F,. Then for alln € N,

Ep(jol F/) - Ep(jLnJ] Ej) =< ]nz"l (E,,(Fj) — Ep(Ej)), (11.5)

Proof It suffices to prove (11.5) for n = 2. Apply (11.4) to the pair of sets
E=E/UF, and F=E UPF,

to get
Cp(FIUF) +¢,(E1U(FINF)) <T,(F1) +Cp(E1 UF).

From this, by the monotonicity of ¢, (-)

cp(F1UF) +¢cp(Ey) <cp(F)+¢p,(E1UFR). (11.6)
Next, apply (11.4) to the pair of sets

E=E,UF, and F=E UE;.
This gives
CH(E1UF) +C,(E2U(EINF)) <¢,(F) +¢,(E, UEy).

From this, by the monotonicity of ¢, (-)

Ccp(E1UF) +c¢p(Er) <¢p(F2) +¢,(E1 U E). (11.7)

Combining (11.6) and (11.7) the proposition follows. [ ]
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12 Limits of Sets and Their Outer p-Capacities

Proposition 12.1 Ler {K,} be a countable collection of compact sets such that
K,11 C K,,. Then
c,,(ﬂKn) =limc,(K,). (12.1)

Remark 12.1 This is called right continuity of the set function ¢, () when acting on
compact sets. Compare this with the notion of right continuity given by (4.7).

Proof (of Proposition 12.1) We may assume that ¢, (K;) < oo. The set K = NK,
is compact and hence p-capacitable. By the monotonicity of ¢, (-)

cp(K) <lime,(K,).

To establish the converse inequality, let I, (K) be the class of functions introduced
in (4.1). For each € > 0 there exists ( € I,(K) such that

/RN IDC|Pdx < cp(K) +e.

Let O be the open neighborhood of K where ¢ > 1. Since K is compact and {K,}
is nested, there exists n. € N such that K,, C O for all n > n.. From this

limc,(K,) 5/ |IDC|Pdx < cp(K) +e. -
RN

Proposition 12.2 Let {E,} be a countable collection of sets in RY such that E,, C
E,41, and with ¢,(\J E,) < oo. Then

¢,(UE,) =limc,(E,). (12.2)
Proof Set E = | J E,. By monotonicity of ¢, (-)
cp(E) > limc,(E,).

To establish the converse inequality, assume first that all E, are open. Having
fixed € > 0, let K be a compact set contained in E such that

cp(E) <cp(K) +e.

Since the sets E,, are open and nested, there exists n. € N such that K C E,, for
all n > n.. From this

cp(E) <cp(K)+e <limc,(E,) +e.
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Thus (12.2) holds for a countable collection of open sets. Let now {E,,} be nested,
and have no further topological restriction. Having fixed € > 0, for all n € N, there
exists an open set O, such that

— 3
En C Onv and Cp(En) = Cp(On) - 2_n

Applying (11.5) to the pair of collections {E,} and O, gives
(U0 =2 UE)=e
j=1 j=1
From this, since £, C E, 1

c,)(jLnJl on) <1im&,(E,) +e.

The sets |J O, are open and nested, and as such, (12.2) holds for them. Then
j=1

,(E) < c,(UO,) = lim c,,( U on) <1imz,(E,) +e.
j:

Corollary 12.1 The set function ¢, (-) is countably sub-additive.

Proof By Proposition 11.1 the outer p-capacity is finitely sub-additive. Let {E, } be
a countable collection of sets in RY. It suffices to consider the case when each E,
and | E,, are of finite outer p-capacity. The collection of sets U?Zl E; satisfies the
assumptions of Proposition 12.2. Therefore,

e (UE) =limEp( U Ej) <> %, (E). .
P

13 Capacitable Sets

Proposition 13.1 Sets of the type of F,s are p-capacitable

Proof Any such set is of the form

E=NUEi,
iy
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where the sets E; ; are closed. We may assume that for each fixed i, the sets E; ; are

compact and E; ; C E; j1;. This is effected by rewriting E as

ij =

J -
E=NUE;;, where E] U Ei¢NB;
i =1

where B j 1s the closed ball in RY centered at the origin and radius j. We may also
assume that ¢,(E) < oo. To proof the proposition, for each € > 0 we will exhibit a
compact set K. C E, such that

cp(KS) = Ep(E) — €.

Set
H.,=ENE,;.

By construction
E=\JH ;. and H,; C H .
From this, by Proposition 12.2,
¢p(E) =limc,(H, ;).
Therefore, having fixed € > 0 there is an index j; such that

cp(E) —cp(Hyj) < 5e. (13.1)

1
2

Set
H1=Hl,j|a and KIZEl,jI-

Consider the sets
Hy;=H NE,;.

By construction
H =JH,;, and H,; C H .
From this, by Proposition 12.2,
¢p(Hy) =limc,(H ;).
Therefore, for the same fixed € > 0 there is an index j, such that

Ep(lil) - Ep(HZ,jz) = jTa
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Set
H2 = H2,j2v and K2 = E2,jz-

Construct inductively countable collections of sets {H,,} and {K,} as follows. If
H, an K, have been constructed, set

Hyt1j = HyNEyyy .
By construction
Hy1 =UHupj, and Hypj C Hygr g
From this, by Proposition 12.2,
p(Hy) = im e, (Ho ).

Therefore, for the same fixed € > 0 there is an index j, such that

_ _ 1
cp(Hy) — ¢p(Hpy,j,,) < WE. (13.2)

Set
Hyyy=H,1,,, and K, 1 =E. 1.,

Having constructed {H,,} and {K,}, set
H.=(H, and K.=[K,.
By construction
K. CE, and H5=Eﬁ(ﬂK,,) =ENK..
Therefore K. is a compact subset of E. Moreover

H.=K. and H.=Ilim ) K;.

j=1

Since the sets ﬂj;l K ; are compact and nested, by Proposition 12.1
n
ey (H) = limE,,( N K,-).
j=1

Also by construction

n n
HECHnZHHjCﬂKj.
j=1 j=1
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Therefore the limit of ¢, (H,,) exists and

=

ep(K2) =p(H.) < lime,(H,) < lim ( |

| lKj) = ¢, (K.).

From this, taking into account (13.1) and (13.2)

Cp(Ks) = limEp(Hn) = Ep([{l) + lim i:] [Ep(Hj-H) - Ep(I—Ij)]
j=

=¢,(E) — [¢,(E) — ¢, (H)] + lim z} [c,(Hjs1) —¢,(H))]
iz
>cp(E) —e. [

Corollary 13.1 Sets of the type of F, and Gs are p-capacitable.

14 Capacities Revisited and p-Capacitability of Borel Sets

Let ¢(-) be a nonnegative set function, defined on compact subsets of R", such that
(@) = 0, and satisfying:

(a) () is monotone increasing in the sense of (4.8);
(b) ©(-) is strongly sub-additive, in the sense of (11.4);
(¢) () is right-continuous, in the sense of Proposition 12.1;

Using such a ¢(-), for an open set O in RY define

p(0) = sug w(K). (14.1)

For a set E C RY define the inner and outer y-capacity of E as

P(E) = sup p(K); P(E) = inf p(O). (14.2)

K compact O open

A set E C RY is p-capacitable if its inner and outer (-capacities coincide. For a
p-capacitable set E C RV we set

e(E) = o(E) = p(E). (14.3)
The definition implies that compact sets and open sets in R" are ¢-capacitable.

The proofs of Propositions 11.1 and 11.2, only use properties (a) and (b) of the set
function () = ¢, (-). Likewise the proof of Proposition 12.2 only uses properties
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(a)—(c) of the set function ¢(-) = ¢,(-) on compact subsets of RN. Thus these
Propositions, continue to hold for any such set function ¢(-). We summarize the
following:

Proposition 14.1 Ler ©(-) be a nonnegative set function defined on compact subsets
of R, such that (@) = 0, and satisfying (a)—(c) above. Then

(i) For any two sets E, F C RN
P(EUF)+P(ENF) <p(E) +p(F). (14.4)

(ii) Let {E,} and {F,} be countable collections of sets in RN, each of finite outer
-capacity, and such that E, C F,. Then foralln € N,

A(UR)-#(UE) =3 (Fe-7E). 049

j=1

(iii) Let {E,} be a countable collection of sets in RY such that E, C E,.1, and with
?(UE,) < oc. Then
?(UE,) =limB(E,). (14.6)

(iv) The set function ©(-) is countably sub-additive.

Next the proof of Proposition 13.1 only uses properties (a)—(c) of a ¢-capacity and
its consequences as stated in Proposition 14.1. Hence we conclude:

Proposition 14.2 Let ©(-) be a nonnegative set function defined on compact subsets
of RN, such that o(§)) = 0, and satisfying (a)-(c) above. Then sets of the type of F,s in
RY are -capacitable. In particular sets of the type of F, and Gs are p-capacitable.

14.1 The Borel Sets in RN Are p-Capacitable

Continue to assume that 1 < p < N. For aset E C R¥*!, denote by Py(E) the
projection of E into RY . If O is open in RN *! then Py(O) is open in RY. Likewise
if K is compact in R¥*!, then Py (K) is compact in RV . If E is closed in RV*! then
Py (E) need not be closed in RV.

A Borel set in R" is the projection into RY of some set of the type of Gs in RV*!
[71]. For a compact set K ¢ RV*! set

P(K) = ¢, (Pn(K)).

One verifies that such a ¢(+) satisfies (a)—(c) above. Thus by Proposition 14.2 sets
of the type of G5 in RN*! are (-capacitable in the sense of (14.3). Hence all Borel
sets in RV are p-capacitable.
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The same reasoning applies to a larger class of sets in RY, called Suslin sets, or
analytic sets. This is an algebra of sets closed under continuous transformations of
RY. Every analytic set is the projection into R" of a set of the type of a G5 in RV +!
[71]. Thus, by the same reasoning, analytic sets are p-capacitable.

14.2 Generating Measures by p-Capacities

The set function ¢, (-) satisfies the requirements (i)—(iv) of § 4 of Chap.3, to be an
outer measure in RY. The countable sub-additivity of ¢, (-) is in Corollary 12.1.
Thus, by the Carathéodory procedure outlined in § 6 of Chap.3, and leading to
Proposition 6.1, of the same chapter, it generates a o-algebra .A,, and a measure C,
defined on A,. A set E C R is A, if and only if

¢p(A) > C(ANE)+¢,(A—E) (14.7)

for all sets A ¢ RV If ¢p(E) = Othen E € A,. Let now E be a bounded set in
RY such that ¢,(E) > 0. Let B,, be the closed ball centered at the origin and large
enough radius p, so that E C B,. By the arguments of § 6.3 and Corollary 6.2,
¢y(B,) = ¢,(0B,). Writing down (14.7) with A = B,, gives

cp(0B,) = c,(B,) > ¢,(E) + c,(OB,).

Since ¢, (E) > 0, this is a contradiction and hence E ¢ A,. We conclude that
no bounded set of positive p-capacity is C,-measurable. In particular, no bounded
Borel set of positive p-capacity is C,-measurable. Hence C,, is not a Borel measure.
As a consequence ¢, (-) is not a metric outer measure (§ 5.1 of Chap. 3). If it were,
A, would contain the Borel sets (Remark 8.2 of Chap. 3).

15 Precise Representatives of Functions in Llloc (RM)

Letu € L}

e ®Y) with respect to the Lebesgue measure y in RV, and set

lim udy if the limit exists;
ui(x) = 1,0 Jp,x) (15.1)

0 otherwise.
This is called the L}, precise representative of u. By the Lebesgue-Besicovitch
Theorem 11.1 of Chap.5, the limit exists u—a.e. in RV and u is precisely defined
everywhere in RV, except for a set of measure zero. If u has a continuous represen-
tative then u, it is unambiguously well defined everywhere in R". A point where the
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limit exists is a differentiability point of u, as opposed to a Lebesgue point (§ 11.2
of Chap.5). For 0 < s < N set

E = {x eRY | lim supps][ luldy > 0}. (15.2)
B,(x)

p—0

The set E contains points where, roughly speaking, u is unbounded. If x is a
Lebesgue point, then the limit in (15.2) is zero and therefore x ¢ E,. Hence E;
is a subset of the complement of the Lebesgue points of u. Since the latter has
measure zero, and since the Lebesgue o-algebra is complete, E; is measurable and
u(E;) = 0. In this sense the set E; is “small”. The next proposition further quantifies
the “smallness” of E; in terms of its H" ~* Hausdorff measure.

Proposition 15.1 HV~5(E,) = 0.

Proof Fort > 0 introduce the set

E,, = {x eRY | lim supp‘v][ luldy > t}.
p—0 B,(x)

Since E;; C Ej, one also has p(Es;) = 0. Therefore for all > 0 there exists
an open set O D E;, and pu(O) < n.

By the Vitali theorem on the absolute continuity of the integral (Theorem 11.1 of
Chap. 4), for all € > 0 there exists 7 > 0 such that

for all Lebesgue measurable sets
luldp < €
£ E C R¥ such that (&) <7

Next, fix > 0 and define an arbitrary function
Es; 2 x — p(x) € (0, 9]

such that the corresponding balls B(x, p(x)) centered at x € E;, and radii 0 <
p(x) < 9 satisfy

B(x, p(x)) coO and / luldy > tpN=*.
B(x,p(x))

By Proposition 18.2¢ of the Complements of Chap.3, there exists a countable
collection of disjoint, closed balls {B,, (x,)} with p, = p(x,) such that

Es,t - U B3ﬂn (xn)
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From this
Hy-s.60(Ese) < Z(épn)N7S
6N—s
< > / udy
! B, (xn)
6Nfs 6N7s
< / udy < €
o
To prove the proposition let § — 0 and then € — 0. ]

Let now u € W,.”(RY) for some p € [1,00). If p > N then by the embedding
Theorem 8.1 of Chap. 10, # has a Holder continuous representative and hence it is
unambiguously well defined by (15.1) for all x € R¥. If 1 < p < N the Poincare
inequality, in the form (10.5) of Chap. 10 implies that u is unambiguously well defined
by (15.1) except possibly in the set

E,= {x e RY | limsup pp][ \Du|?dy > 0}. (15.3)
B, (x)

p—0

For p = N, the set Ey is empty and hence u, although not necessarily continuous,
is unambiguously well defined by (15.1) forallx € RV.If1 < p < N theset E, isa
subset of the complement of the Lebesgue points of [ Du|” € L} (R"). Therefore E,

is measurable and p(E,) = 0. Moreover by Proposition 15.1 also HN_”(E,,) =0.
We summarize:

Proposition 15.2 Letu ¢ WIL‘CP (RN) for some p € [1, 00). There exists a Lebesgue

measurable set E, C RN such that wEp) = 0 and ’HN_P(EP) = 0, and u is
unambiguously well defined by (15.1) for all x € RN — E,.

It turns out that for 1 < p < N a function u € Wl:)’cp (RV), can be unambiguously
defined except for a Borel set of p-capacity zero. This is the content of the next
sections.

16 Estimating the p-Capacity of [u > ¢] for ¢t > 0

Letu € LP?(R") for some 1 < p < oo be non-negative. Then for all t > 0,

u(luy > 1]) < tip/ uldp

RN

where u,. is the L' precise representative of u introduced in (15.1). The analog of this
estimate, in terms of outer p-capacity for functions u € W;;p (RM),for1 < p <N,
is

C l 14
£yl > 1) < /IR \DulPdy
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for a constant v = (N, p). While correct, this estimate is coarse. Indeed the set
[u. > t] avoids the complement of the set of differentiability of . Such a set has
measure zero, but it might have positive capacity. A more precise estimate can be
given in terms of averages of u

(u)x,p =][ udy.
B,(x)

Fort > O set

[u > t]* = U [(I/l).’/) > t]
p=0 (16.1)

={x eR" | (w),, >t for some p > 0}.

If u,(x) > t, then there exists some p > 0 such that (), , > ¢, and hence
[u. > t] C [u > t], with strict inclusion. Let W;;p (R") be the class of functions
introduced in § 24 of Chap. 10, for E = RV

Proposition 16.1 Letu € W;;p (RN) for some 1 < p < oo be non-negative. There
exists a constant vy depending only on N and p, such that, for all t > 0,

eyl > 11 < /IR 1Dul’dy (16.2)

Proof The closed balls B,(x) for x € [u > t], form a Besicovitch covering F, of
[4 > t],, and their radius is uniformly bounded. Indeed

1-%
twyp” 5/ udp < (np™)' 77 e
B,(x)

Therefore

N
)™

By the Besicovitch covering theorem, in its general form of § 18.1c of Chap. 3,
there exist a finite collection {B;, .. ., B, } of countable collections of disjoint closed
balls B; ; € B}, such that

1
{the supremum of the radii of the balls in F} = R < (ﬂ)

P
Wy

[u>rl.c U UBij
j=lieN

with B; j N By j =W fori #i',forall j € {l,..., cy}. Moreover

(u)p;, >t forall i e N, andall je{l,...,cn}.
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Set
u;; = max {(u)B,/. —u; O} on B;;.

By construction u;; € W'7(B;;). Extend u;; to functions v;; € WaP (RV),
defined in the whole RY, and such that

/ |Dv|Pdy < 5(N. p) / \Duyy P dy
RV B;

for a constant y(N, p) depending only on N and p and independent of i, j, and u.
The extension is effected by means of Corollary 10.2 of Chap. 10. Set

U = Sup v;;
iJ

and estimate

/ DuPdy <33 [ 1Duylrdy < Z z/ \Duy | dy

j=1ieNJRVN

<535 [ \Dupdy <+ z/ \Dul’dy
ij =1

j=lieNJB
= ﬁcN/ |Duldy < oo.
RN
Therefore v € W;;p (RYM), by Proposition 24.2 of Chap. 10. By construction
u, + v >t in a open neighborhood of [u > ¢],.

From this and the previous estimate,

17¢,([u > tly) 5/ [D(u+v)[Pdy < (N, P)/ |Dul?dy. m
RY RN

17 Precise Representatives of Functions in W, ! L2 (RN

Theorem 17.1 Letu € Wlécp (RN). There exists a set £ C RN such that ¢ ,(E) =0
and u, is well defined by the limit in (15.1) for all x € RN — &. Moreover, for all
€ > 0 there exists an open set &, such that c,(E.) < € and u, restricted to RN — &

is continuous. Finally all points of RN — & are Lebesgue points for u.
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Proof Assume first u € W7 (R") and let E,, be the set introduced in (15.3). The
limit in (15.1) might not exist if x € E,. By Proposition 15.2 and Theorem 9.1,
¢p(E,) = 0. Construct a sequence {u,} C W' (RY) N C>(RY) such that

lu —u,ll, + |1 Du — Du,|l, - 0 as n — oo.

Then for j € N select a subsequence {u,j)} C {u,} such that

1 .
/RN|D”_Dun(j)|pdy§m for j=1,2....

Set |
&=U [(lu — Un(jl)-p > g]
p>0 '

1

= {x e RV | (It — unjyDx,p > o for some p > O}
Set also
gh = Ep U U g]
j=h

The set where the limit in (15.1) fails to exist is contained in £%. By Proposi-
tion 16.1 and the construction of {u,;}

e, (&) < 721'1’/ |Du — Duy | dy < % for j=1,2....
RN .

Therefore ,
CH(EM <C,(E)) + X ¢,(E) <

j=h

1
2h71'
Moreover

. 1
l1rpn_)s(1)1p|(u)xm —un(j)(x)| < 57 forall x e RY —&;.

Forallx e RN —&"andalli, j > h

|un(i)(x) - un(j)(x)| < lim sup |Mn(i)(x) - (u)x,p|

p—0

1 1
1. . — Up(i S _— —.
+ II;l_)S(l)lpK”) p U (J)(x)| i + 2J

Therefore {u,(;)} is a Cauchy sequence converging uniformly, as j — oo, to
some continuous function u* in RY — £”. Next
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lim sup |u*(x) — ()| < limsup [u*(x) — upuj)(x)]

p—0 p—0

+ limsup |()y,, — tn(jy(X)].
p—0

Therefore u, = u* in RN — £”. As a consequence for all ¢ > 0 there exists a set
&M of outer p-capacity not exceeding ¢ such that u, is well defined and continuous
in RV — £". Since h € N is arbitrary, u, is well defined by the limit in (15.1) in
RN — &% with ¢, (£>) = 0. Thus every point of RY — £ is a differentiability point
of u. It is also a Lebesgue point since

lim lu —u ()ldy < lim |(u)x,p — u* (x|
p—

p—0 B,(x)
1
+ lim (][ lu — (M)x,p|p*dy) !
p—0 B,(x)
1
< lim p(][ |Du|”dy) "
=0 N B,

The last term is zero since x ¢ E,. The proof for u € W,;” (RV) is concluded by
standard truncations and approximations. ]

17.1 Quasi-Continuous Representatives of Functions
ue Wyl RV

A function u : RN — R is quasi-continuous if for every ¢ > 0 there exists an open
set & such that ¢,(€.) < € and the restriction of u to RN — &, is continuous.

The notion is analogous to that of Lusin’s theorem in § 5 of Chap. 4. In that context,
the measure was any Borel regular measure p, and continuity of a p-measurable
function was claimed, except for a “small” set, quantified in terms of its measure.
The set E where the function was defined, had to be of finite measure.

Here RY is endowed with the Lebesgue measure, and the domain of definition of
u need not be of finite measure. Then continuity is sought everywhere in R", except
possibly for a “small” set quantified in terms of its outer p-capacity.
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Cone property d E, 405
Continuum hypothesis, 10
Contraction mapping(s)
in Banach spaces, 324
fixed point, 324
Convergence in L?(E), 253
Cauchy sequences, 254
norm, 259
strong, 253, 309, 310
weak, 257, 259, 276
Convergence in measure, 139, 174
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differentiable, 413, 535
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nowhere differentiable, 228, 229

of bounded mean oscillation, 438, 441

of bounded variation, 193—-195, 304
a.e. derivative(s) of, 197
characterization of, 236, 238
in RN, 236, 238
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of the jumps, 201, 225
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of the Laplace operator, 400
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Gamma function, 488
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measure(s), 81, 85, 550, 573
outer measure(s), 75, 113, 488, 559
re-normalized, 488
topological space(s), 18-20
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Hausdorff, Felix, 75
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Heine-Borel theorem, 27
Helly selection principle, 304, 481
Hilbert cube, 5, 51
Hilbert space(s), 345
orthonormal system(s), 350
complete, 351, 352
Gram—Schmidt process, 352
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pre-Hibert, 346
separable, 350, 353
dimension of, 353
Holder continuous, 44, 53, 63, 303, 314
function(s), 44, 53, 63
functions, 303, 314
Holder, Otto Ludwig, 243, 249
Holder’s inequality, 248-250
generalized, 286
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Homeomorphism, 18, 36, 40, 52, 59
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Bessel’s, 349
Clarkson’s, 266
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reverse, 288
Hanner’s, 266
Hardy, 463
Hardy-Littlewood—Sobolev, 465, 468
isodiametric, 478
isoperimetric, 545
isoperimetric , 546, 553
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discrete versions, 243
level set(s), 507
Minkowski’s, 248, 249, 253
continuous version, 251
reverse, 288
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468
Poincaré, 503, 505
Riesz rearrangement, 457, 479, 484
for N =1, 457
for N = 2,479, 484
Schwarz, 345
Young’s, 242, 248
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Lebesgue, 121
Peano-Jordan, 121
Inner product, 345, 346, 376
Integrable
uniformly, 181, 308, 309
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of quasi-linear maps, 448
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Isometry, 40, 60, 339, 342, 372
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isometric, 339, 342, 372
Isoperimetric inequality, 545, 546, 553
discrete, DeGiorgi, 507

J
Jensen’s inequality, 215

discrete versions, 243
Jensen, Johann, 215
John Fritz, 439, 441
John—Nirenberg theorem, 439, 441
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Jumps, function of the, 201, 225
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Lebesgue o-algebra, 87, 124
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Lebesgue integral, 143-145, 147
absolute continuity of, 150, 199
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properties of, 147
Lebesgue measure(s), 87, 88, 90, 91, 93, 94,
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in C,(RY), 379
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representation of, 348
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norm of, 262
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in LP(E) for0 < p < 1,297
in normed space(s)
norm of, 318
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kernel of, 321
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McShane E.J., 216
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Lebesgue, 74-76, 121, 433
Lebesgue—Stieltjes, 75
metric, 77, 82
of a Radon measure, 98, 107
Peano-Jordan, 121
product of, 151, 152, 182
n-rectangle(s), 182
finite sequence, 182
Radon, 98, 107, 204, 208, 210-212
as functional(s) in C, (RY), 379, 380
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inner, 97, 125
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as functional(s) in C, (R"), 379, 387
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continuous version, 251
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Radon—-Nikodym
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chain rule, 188
theorem, 163, 169, 187, 533
Real number(s), representation of
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Rearrangement(s), 451, 452, 454, 457
contracting property(ies) of, 454, 457
of function(s), 451, 452, 454, 457
symmetric, decreasing, 451, 452,
454,457
of set(s), 451, 452, 454, 457
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454, 457
Riesz inequality for, 457
Steiner, 479
of a set, 479
of function, 479
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generalized, 151
semi-algebra of, 151
measurable, 151, 152, 159
Reflexive Banach space(s), 338, 339
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measure(s), 97, 125, 141
inner, 97, 125
outer, 97, 125
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inner, 125
outer, 125
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Scalar product, 345, 346, 376
Schoder-Bernstein theorem, 3, 14
Schwartz topology of D(E), 392
base of, 392
boundedness in, 393, 395
Cauchy sequences in, 394
completeness of, 393, 394
not metrizable, 394
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Semi-algebra(s), 83, 87, 117
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Sequential covering(s), 73-75, 83, 113, 382
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Series of monotone functions
derivative(s) of, 198, 202
Set function(s), 74, 382, 570, 571
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Sierpinski, Waclaw, 184
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o -finite measure(s), 72, 156, 157, 169
linear functional(s) in C(E), 321
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137
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Sobolev space(s), 402
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L*®(E), 250
Standard deviation
of a measurable function, 178
Stein, Elias Menachem, 444
Steiner
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