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Preface

Weak convergence of probability measures or, what is the same, convergence in
distribution of random variables is arguably one of the most important basic con-
cepts of asymptotic probability theory and mathematical statistics. The classical
central limit theorem for sums of independent real random variables, a cornerstone
of these fields, cannot possibly be thought of properly without the notion of weak
convergence/convergence in distribution. Interestingly, this limit theorem as well as
many others which are usually stated in terms of convergence in distribution remain
true under unchanged assumptions for a stronger type of convergence. This type of
convergence, called stable convergence with mixing convergence as a special case,
originates from the work of Alfred Rényi more than 50 years ago and has been used
by researchers in asymptotic probability theory and mathematical statistics ever
since (and should not be mistaken for weak convergence to a stable limit distri-
bution). What seems to be missing from the literature is a single comprehensive
account of the theory and its consequences in applications, illustrated by a number
of typical examples and applied to a variety of limit theorems. The goal of this book
is to present such an account of stable convergence which can serve as an intro-
duction to the area but does not compromise on mathematical depth and rigour.
In Chap. 1 we will give a detailed motivation for the study of stable convergence
of real random variables and disclose some of its main features. With the exception
of one crucial example this introductory chapter contains no proofs, but references
to later chapters in which proofs can be found. It will be seen that stable conver-
gence is best thought of as a notion of convergence for conditional distributions of
random variables given sub-o-fields of the o-field of the underlying probability
space on which the random variables are defined. Now conditional distributions are
Markov kernels so that the theory of weak convergence of Markov kernels is the
proper framework for stable convergence. Since we want to include limit theorems
for (continuous-time) stochastic processes later on, it is reasonable to consider from
the very start random variables with values in separable metrizable spaces.
Therefore, we have to deal with the setting of Markov kernels from sample spaces
of arbitrary probability spaces to separable metrizable spaces (which quite often are
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assumed to be polish). The required facts from the theory of weak convergence of
such Markov kernels will be presented in Chap. 2.

In Chap. 3 the material from Chap. 2 is used to describe two approaches to stable
convergence of random variables in separable metrizable spaces. In the first
approach the limits of stably convergent sequences are always Markov kernels. In
the second (essentially equivalent) approach the limit kernels are represented as
conditional distributions of random variables. This approach allows for what might
sometimes be considered as a somewhat more intuitive description of stable con-
vergence results.

In Chap. 4 we demonstrate the usefulness of stable convergence in different
areas. Our focus is on limit points of stably convergent sequences with an appli-
cation to occupation times of Brownian motion and random index limit theorems as
well as the empirical measure theorem and the J-method.

Chapters 5-10 constitute in some sense the second part of the book in which it is
shown that in a variety of known distributional limit theorems the convergence is
actually stable or even mixing.

In Chap. 5 we discuss general conditions under which limit theorems in distri-
bution are mixing. In particular, it turns out that the classical distributional limit
theorems for centered and normalized partial sums and sample maxima of inde-
pendent and identically distributed real random variables are automatically mixing.

Chapter 6 is devoted to martingale central limit theorems. Here, stable and
mixing convergence is strongly dependent on the filtrations involved and the
normalization used. Full stable convergence follows from a nesting condition of the
filtrations. Illustrations concern martingales with stationary increments, exchange-
able sequences, the Polya urn and adaptive Monte Carlo estimators.

In Chap. 7 it is shown that the natural extension of Donsker’s functional central
limit theorem for partial sum processes of independent real random variables to
martingale difference sequences holds with stable convergence in the metric space
of all continuous real valued functions defined on the nonnegative real axis.

Chapter 8 contains a stable limit theorem for “explosive” processes with
exponential rate. Since the increments of these processes are not asymptotically
negligible, conditions of Lindeberg-type are not satisfied. Nevertheless, the limits
can be normal, but quite different limits are also possible. This result is crucial for
deriving stable limit theorems for some estimators in autoregressive processes of
order one in Chap. 9 and in Galton-Watson branching processes in Chap. 10. From
our point of view, these applications in two classical models of probability theory
and mathematical statistics provide once more convincing illustrations of the
importance of the concept of stable convergence.

Exercises appear throughout the book. We have supplied solutions of the
exercises in Appendix B while Appendix A contains some basic facts about weak
convergence of probability distributions, conditional distributions and martingales.

As is apparent from the brief description of its content this book is by no means
meant as an encyclopedic account of all major stable limit theorems which have
been established in the last 50 years or so. We tried to be reasonably complete in the
basic Chap. 3 and in some sense also in Chaps. 4 and 6, but the selection of the
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material presented in other chapters is quite subjective. As far as our sources are
concerned, we tried to give credit where credit is due, but we did not spend much
time obtaining definite historical evidence in all cases. In addition to the published
sources listed in the References, the first author benefitted considerably from a
series of lectures on stable convergence given by David Scott at the University of
Munich in the fall semester 1978/79. It is a pleasure to thank Holger Rootzén who
made valuable comments on an earlier version of the manuscript. Our thanks also
go to a referee for careful reading of the manuscript and for useful suggestions.
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Chapter 1
Why Stable Convergence?

This chapter is of an introductory nature. We make the motivation for the study of
stable convergence more precise and present an exposition of some of its features.
With the exception of Example 1.2, no proofs are given, only references to later
chapters where proofs may be found.

Our starting point is the classical central limit theorem. For this, let (Zi);>; be a
sequence of independent and identically distributed real random variables, defined
on some probability space (2, F, P). Assume Z; € L£> (P) and set © = EZ; and
o2 =VarZ 1. To exclude the trivial case of almost surely constant variables, assume
also 02 > 0. Then the classical central limit theorem says that

. 1 Zi—p *
nll)rréoP(mZ > <x =<I>(x)=/ (W) du forallx e R,

k=1 -

where ¢ (1) = \/#27 exp (—%uz), u € R, denotes the density of the standard normal

distribution. It is customary to write this convergence of probabilities in a somewhat
more abstract way as convergence in distribution of random variables, i.e. as

1 < Zi—
> KR 4 N© 1) asn— oo,
n g

k=1

where N (0, 1) denotes the standard normal distribution, or as

Li:zk_ﬂ—d>N asn — oo
nl/2k_1 o ’

where N is a random variable which “realizes” the standard normal distribution, that
is, the distribution PV of N (under P) equals N (0, 1). To put this notation into a
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2 1 Why Stable Convergence?

broader perspective, recall that for a probability distribution  on R and real random
variables (X},),> convergence in distribution of (X}),>; to v, written as

d
X, —> v asn — 00,

is equivalent to
lim Eh(X,) :/hdl/ forall h € Cp (R) ,
n—o00

whereas convergence in distribution of (X ), to a real random variable X, written
as

d
X, > X asn — o0,

d . . .
means X, — v with v = P¥X and is equivalent to

lim Eh(X,) = Eh(X) forallh € Cy(R) ,

n—oo

where Cj, (R) is the set of all continuous, bounded functions 4 : R — R. Here it
is implicitly assumed that the probability space (€2, F, P) is rich enough to carry a
random variable X with distribution v.

Writing, as usual, 7,1 = %ZZ=1 Zi for the sample mean of Zi,..., Z,, an
equivalent formulation of the classical central limit theorem is

nl/z(fn—u)—dmfN asn — 00,

which means that Z,, considered as an estimator for 11 is asymptotically normal, where
the asymptotic distribution N (O, 02) of o N is the centered normal distribution with
variance 2. If in a statistical setting 1 and o2 are supposed to be unknown and s is
the parameter of interest and o2 is not, i.e. o2 is a so-called nuisance parameter, then
o has to be removed from the limit theorem by replacing it by a suitable consistent
estimator, if the limit theorem is to be used for statistical inference. The proper tool
for doing this is

Theorem 1.1 (Cramér-Slutzky) Let (X,,),>1 and (Yy,),> be sequences of real ran-
dom variables. If

d
X, —> X asn—> o©
for some real random variable X and

Y, — ¢ in probability asn — oo
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for some c € R, then

d
Y, X, > cX asn— oco.

A proof of this fundamental result can be found in almost any textbook on
asymptotic theory in mathematical statistics. For the sample variance

n

~ 1 =
R=->(%-7)

"=t
of Z1, ..., Z, we have '5,% — o2 almost surely as n — 0o by the strong law of large
numbers, and Theorem 1.1 gives
Zn— 1t d
nl/Z"A—u 5 N asn— oo,
On

This convergence result can now be used in asymptotic statistical inference about
because it is free from the unknown nuisance parameter o.

The situation is different in the following setting. Consider the classical super-
critical Galton-Watson branching process as a model for exponentially growing pop-
ulations. For n > 0 let X,, denote the size of the n-th generation, and « the mean
per-capita number of offspring. Here o > 1, and if « is unknown, it can be estimated
from observed values of X, X1, ..., X, in various ways. For simplicity, we assume
here that lim,,_, o, X;, = 0o almost surely; the general case is considered in Chap. 10.
If lim,,_, oo X, = oo almost surely, then the Harris estimator

AU . Z}%?:] Xi
" 2.1 Xin

is a consistent estimator for o, and

an/Z

E— (E(H) - a) 4 aMgol/zN asn — 00,

(a— iz \Un

where o is the offspring variance (assumed to be positive and finite), where N is a
random variable with a standard normal distribution and M, is a positive random
variable with positive variance, i.e. M, is a proper random variable and not a constant
almost surely, which is independent of N. Since the norming sequence in this limit
theorem depends on the unknown parameter o and, more importantly, since the limit
distribution is a variance mixture of centered normals with unknown mixing law, the
result as it stands is not suitable for asymptotic statistical inference about cv. Now
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1/2
‘ / (a—D'? 12
EX,-,] n—/2—>MoO a.s.asn — 00,
«Q
i=1

and we would immediately get

. 1/2
—~ d
(inl) (ale) - a) — oN asn — 00,
i=1

if in Theorem 1.1 the constant limit ¢ could be replaced by a proper random vari-
able. The remaining nuisance parameter o could then be removed with the help of
Theorem 1.1 as it stands and a consistent estimator for o exactly as in the case of
the classical central limit theorem for independent observations discussed before.
Unfortunately, as shown by the following example, Theorem 1.1 is no longer true if
c is replaced by a proper random variable so that removing the mixing variable M,
from the limit theorem and thereby transforming it into a statistically useful result
requires a new tool.

Example 1.2 Consider (2, F, P) = ([0, 11, B ([0, 1], /\[0,1]) and set X, =
1{a,,a,+1/2) for all n > 1 and some sequence (a,),>; of real numbers in [0, 1/2].
Clearly, PX» = (69 + 61) /2 forall n > 1 so that

d
X, > X1 asn — o0.

Consider the random variable Y with Y (w) = w for all w € Q and the function
h(u)=wmA1)vO0,ueR. Thenh € Cp (R), and

tln+% 1 1
Eh(YXn)z/a udu:z(an-l—z).

n

This shows that for any sequence (ay),>; which is not convergent, the sequence
(Eh (Y X,)),> is also not convergent so that the sequence (Y X,),> cannot con-
verge in distribution, and in particular not to Y X. Therefore, Theorem 1.1 does not
hold if the limit ¢ in the assumption Y, — ¢ in probability as n — oo is replaced by
a proper random variable. (I

A second example of a more probabilistic nature for a distributional limit theo-
rem in which the limit is a variance mixture of centered normals with non-constant
mixing law is as follows (cf. Corollary 6.26). Let (X )~ be a martingale difference
sequence w.r.t. an increasing sequence (Fg)sq of sub-o-fields of F. If (Xz)g> is
also stationary and X; € L2 (P), then the following version of the central limit
theorem is true:


http://dx.doi.org/10.1007/978-3-319-18329-9_6

1 Why Stable Convergence? 5
1 < d 12
WZX/(—)E(X%HX) N asn— o0,
k=1

where Zx is the o-field of the invariant sets of X = (Xy);>, N is a random variable
with a standard normal distribution and the random variables E (X % |Z. x) and N
are independent. It is important to note that £ (X % |Z X) is in general indeed a proper
random variable so that the limit distribution is a variance mixture of centered normals
again. Therefore, though we have

1 n
- E X,% — E (X%|IX) a.s.asn —> o0
n

k=1

by the ergodic theorem, we cannot derive

n _1/2 n d
(ZX,%) ZXk—>N asn — 00
k=1

k=1

by an application of Theorem 1.1 thus removing the mixing variable £ (X %|I X) 12
from the limit theorem by a random norming, because for a proper application
% i X ,% would have to converge (in probability) to a constant, which is not the
case in general (unless the stationary sequence (X ).~ is ergodic, of course). Mixed
normality in the limit as appearing here and in the Galton-Watson branching process
typically occurs in “non-ergodic” or “explosive” models.

As Example 1.2 shows, the concept of convergence in distribution is not strong
enough to allow for a version of the Cramér-Slutzky Theorem 1.1 in which the
constant factor ¢ in the limit variable is replaced by a proper random variable. There
is, however, a stronger notion of convergence for which such a stronger version
of the Cramér-Slutzky theorem is true, and this is stable convergence. For a brief
exposition of its main features let (X,),> be a sequence of real random variables
defined on some probability space (2, F, P), let G be a sub-o-field of F and let K
be a G-measurable Markov kernel from €2 to R. Then the sequence (X},),> is said
to converge G-stably to K as n — o0, denoted by

X, — K G-stably asn — o0,

if the conditional distributions P19 of the random variables X, given G converge
weakly to K in the sense of weak convergence of Markov kernels, i.e. if

lim Efh(X,) :/ / fw)yhx)K (w,dx) dP (w)
n—o0 Q R

for every f € £' (G, P) and h € Cp, (R). In case K does not depend on w € Q in
the sense that K = v P-almost surely for some probability distribution » on R, then
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(X3)p>1 1s said to converge G-mixing to v, and we write
X, — v G-mixingasn — 00.

This means
lim th(X,,):/fdP/hdu
n—oo

for every f € L' (G, P) and h € Cp (R). Therefore, the weak topology on the set
of G-measurable Markov kernels from €2 to R and the theory of weak convergence
of such Markov kernels does provide the proper framework for stable convergence.
We will develop this theory (for more general state spaces) as far as necessary in
Chap.2.

To get a feeling for the difference between convergence in distribution and stable
convergence, recall that convergence in distribution of random variables X, towards
a distribution v is in fact weak convergence of the distributions P*» towards the
distribution v, i.e. the underlying concept is that of weak convergence of probability
measures. Now the distributions P*» may obviously be interpreted as the conditional
distributions PX»1?-$%} of the random variables X,, given the trivial o-field {¢J, 2}.
In the concept of stable convergence this trivial o-field is replaced by some larger
sub-o-field G of the o-field F in (2, F, P), and the limit distribution v is replaced by
the G-measurable Markov kernel K. Note that G-stable convergence always implies
convergence in distribution (take f = 1 in the definition of stable convergence).

As for convergence in distribution it can be convenient to “realize” the limit kernel
K through a random variable X which satisfies PX I9 — K. Such a random variable
does always exist on a suitable extension of (€2, F, P). Therefore, if (X,),>; and X
are real random variables, defined on some probability space (2, F, P),and G C F
is a sub-o-field, we say that (X,),>| converges G-stably to X as n — oo, written as

X, — X G-stablyasn — oo,
if X,, converges G-stably to the conditional distribution PX!9. This is equivalent to

lim Efh(X,) = Efh (X)

forevery f € £ (G, P) and h € C; (R).
Most useful criteria for G-stable convergence X, — X are

X, —d> X under Pr forevery F € G with P (F) > 0,

where PF = P (-N F) /P (F) denotes the conditional probability given the event
F,or
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(Xann)_d> (X,Y) asn — oo

for every sequence (Y,),>; of real random variables and every G-measurable real
random variable Y satisfying ¥,, — Y in probability (cf. Theorems 3.17 and 3.18).
In particular, a generalized version of the Cramér-Slutzky theorem about random
norming holds under G-stable convergence where full strength is obtained if G is
sufficiently large.

In case X is independent of G so that pXlg — pX , G-stable convergence X,, — X
means G-mixing convergence. If X is G-measurable so that pXIg —§ x, the Dirac-
kernel associated with X, then G-stable convergence X,, — X turns into convergence
in probability just as for G = {#, 2} distributional convergence to a constant means
convergence in probability to this constant (cf. Corollary 3.6).

In the two examples discussed above we, in fact, can show that

an/Z % i
(a—1)72 (O‘:(1H) - a) — oMy /"N G-stably asn — oo,

where G = 0 (X,,;, n > 0) and N is independent of G, and

1 <& 1/2
szk — E (X%|IX) N G-stably asn — oo,
n
k=1

where G = 0 (X,,,n > 1) and N is independent of G, respectively (cf. Corollaries
10.6 and 6.26). Consequently, the generalized Cramér-Slutzky theorem implies the
desired limit theorems

0 12
(in_l) (ale)—a) i)arN asn — 00
i=1

and

n “12 n J
(ZX,%) ZXk—>N asn — 00.
k=1

k=1

As we have seen we can formulate stable limit theorems with Markov kernels as
limits or with random variables as limits, if the limit kernels are identified as condi-
tional distributions of these random variables. Both approaches will be developed in
Chap. 3 and applied as convenient.

Stable convergence has a number of other interesting consequences and applica-
tions beyond the random norming discussed earlier. Let us demonstrate this for the
classical central limit theorem. We will see that

nl/? (Z,—p) = N (O, 02) F-mixing as n — 00
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(cf. Example 3.13). This mixing convergence and the second criterion above applied
with X,, = n!/? (7,, — ,u) and Y, = Y forall n € N imply

lim P (nl/2 (Z, —p) < Y) =/N (0, 02) ((—o0., y]) dPY (dy)

n—o00

for any real random variable Y on (2, F, P), whereas convergence in distribution
covers only constants Y .

Another area in which stable convergence proves its value are limit theorems with
random indices, i.e. limit theorems for sequences (XT,,)n>1 with random variables
X, and N-valued random variables 7;, with 7,, — o0 in probability as n — oo; see
Sect.4.2. For instance, if 7, /a,, — 1 in probability for some (0, co)-valued random
variable n and a, € (0, co) satisfying a, — oo, then

7',}/2 (77,, —,u) —d> N (0, 02) R

and this convergence is again F-mixing (cf. Example 4.8). In this context we can
also demonstrate the advantage of stable convergence for restrictions to subsets
of Q. Assume that the limiting random variable 7 is R -valued satisfying merely
P (n > 0) > 0. Since by the first criterion n!/? (7,, - ,u) —- N (O, 02) F-mixing
under P>y, and Py;=0y (7 > 0) = 1, we can conclude in this case that

Tnl/2 (77,1 _ M) _d> N (0, 02) under Py~ .

Still another area concerns the fluctuation behavior of stably convergent sequences
of random variables; see Sect.4.1. As for the classical mixing central limit theorem
this implies that the set of limit points of the sequence (nl/ 2 (7/1 - M))n>1 coincides

with R, the support of N (0, 02), almost surely (cf. Example 4.2).

Historically, the idea of mixing convergence was developed first. Early appli-
cations of the concept, not yet in its most general form, can be found in [84, 85,
90, 93, 94]. In the work of Rényi, the idea can be traced back at least to [75] and
was developed in its general form in [76, 78]. Therefore, the notion is also known
as “Rényi-mixing”. More detailed information on the early history of the theory of
mixing and its application to random-sum central limit theorems in particular can be
found in [21].

Stable convergence originates from [77], where an unspecified limit version of
JF-stability in the sense of

d
X, — vr under Pr

for every F € F with P (F) > 0 and some probability distribution vz on R is used
which, however, is equivalent to our definition (cf. Proposition 3.12). The classical
limit theory for sums of independent real random variables as well as for maxima of
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independent and identically distributed random variables provides, in fact, mixing
limit theorems (cf. Examples 3.13 (a) and 5.6 (¢)). In view of the consequences of
stable convergence as outlined above its importance is simply due to the fact that
many other distributional limit theorems are stable. The concept of stable convergence
played one of its first major roles in the development of the theory of martingale
central limit theorems in discrete time; see [41, 82] and the references therein. Later
it became important in the theory of limit theorems for stochastic processes; see
e.g. the monographs [50, 60]. More recently, stable convergence has appeared as
a crucial tool in the investigation of discretized processes [49], the approximation
of stochastic integrals and stochastic differential equations [56, 59, 70, 71] and the
statistics of high-frequency financial data [1].

As explained in this chapter, stable convergence is in fact weak convergence
of conditional distributions, for which weak convergence of Markov kernels is the
proper framework. In the next chapter we will therefore present the essential parts
of the theory for Markov kernels from measurable spaces to separable metric spaces
equipped with their Borel-o-fields. This somewhat abstract level cannot be avoided
if we want to include the convergence of stochastic processes in later chapters, as we
will do.


http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_5

Chapter 2
Weak Convergence of Markov Kernels

As indicated in the previous chapter, stable convergence of random variables can be
seen as suitable convergence of Markov kernels given by conditional distributions.
Let ($2, F, P) be a probability space and let X be a separable metrizable topological
space equipped with its Borel o-field B (X'). In this chapter we briefly describe the
weak topology on the set of Markov kernels (transition kernels) from (2, F) to
(X, B(X)).

Let us first recall the weak topology on the set M! (X') of all probability measures
on B (X). It is the topology generated by the functions

VI—)/hdI/, heCy(X),

where Cj, (X) denotes the space of all continuous, bounded functions # : X — R
equipped with the sup-norm ||h||Sup = sup,cy |h (x)]. The weak topology on
MU (X) is thus the weakest topology for which each function v [ hdv is con-
tinuous. Consequently, weak convergence of a net (1), in M! (X) tov € M! (X)
means

lim hduaz/hdy
«

for every h € Cp (X) (here and elsewhere we omit the directed set on which a net
is defined from the notation). Because [hdv = [ hdv, for vy, v, € M! (X) and
every h € Cp (X) implies that 1 = v, this topology is Hausdorff and the limit is
unique. Moreover, the weak topology is separable metrizable e.g. by the Prohorov
metric, see e.g. [69], Theorem I1.6.2, and polish if X is polish; see e.g. [69], Theorem
I1.6.5, [26], Corollary 11.5.5. The relatively compact subsets of M! (X) are exactly
the tight ones, provided X’ is polish, where I' ¢ M (X) is called right if for every
€ > 0 there exists a compact set A C X such that sup, . v (X \ A) < ¢; see e.g.
[69], Theorem 11.6.7, [26], Theorem 11.5.4.
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12 2 Weak Convergence of Markov Kernels

A map K : Q x B(X) — [0, 1] is called a Markov kernel from (2, F) to
(X,B(X))if K (w,-) € M (X) for every w € Q and K (-, B) is F-measurable
for every B € B(X). Let K! = K'(F) = K!(F, X) denote the set of all
such Markov kernels. If M! (X) is equipped with the o-field ¥ (/\/ll (X )) =
o v(B), B € B(X)), then Markov kernels K € K! can be viewed as
(./\/l1 X)),z (Ml X )))-valued random variables w +— K (w, -). Furthermore,
)y (Ml (X )) coincides with the Borel o-field of M! (X) (see Lemma A.2).

For a Markov kernel K € K! and a probability distribution Q on F we define the

product measure (which is a probability distribution again) on the product o-field
F Q@ B (X) by

0Q®K (C) :=//1c(w,x)K(w,dx) dO (w)

for C € F ® B (X) and its marginal on 5 (X) by

QK(B):=Q®K(Q><B)=/K(w,B)dQ(w)

for B € B (X). For functions f : 2 - Randh : X - Rlet f®h: Q2 x X — R,
f®h(w,x):= f(w)h(x), be the tensor product.

Lemma 2.1 (a) (Fubini’s theorem for Markov kernels) Ler K € K!' and ¢ :
QxX, FRBWX) — (@,B(E)) be measurable such that g~ (or g*)€
LY (P ® K). Then

/gdP@K://g(w,x)K(w,dx) dP (w) .

(b) (Uniqueness) For K1, K, € K!, we have {we Q: Kj (w,-) = K3 (w, )} €
F, and K| (-, B) = Kj (-, B) P-almost surely for every B € B (X) implies
P{weQ: Ky (w,-) =Ky (w,)}) =1, thatis, K| = K, P-almost surely.

Proof (a) For g = 1¢ with C € F ® B (X) this is the definition of P ® K. The
formula extends as usual by linearity, monotone convergence and the decomposition
— gt -
9=9 —9g .
(b) Note that B (X) is countably generated. Let C be a countable generator of
B (X) and let Cp be the (countable) system of all finite intersections of sets from C.
Then by measure uniqueness

fwe: K| (w,')=Kr(w, )} = m {fwe:K;(w,B)=K3(w, B)} .
BeCy

Hence the assertion. O
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Exercise 2.1 LetC C B (X) be closed under finite intersections with o (C) = B (X))
and let K : Q x B(X) — [0, 1] satisfy K (w, -) € M! (X) for every w € Q and
K (-, B) is F-measurable for every B € C. Show that K € K!.

Definition 2.2 The topology on K! generated by the functions
K|—>/f®th®K, fel (P, heCyX)

is called the weak topology and is denoted by 7 = 7 (P) = 7 (F, P). Accordingly,
weak convergence of a net (K,),, in K' to K € K' means

lim/f®th®Ka=/f®th®K
[0}

forevery f € L' (P)and h € C) (X).

The dependence of 7 on P is usually not explicitly indicated. This topology is
well known e.g. in statistical decision theory where K! corresponds to all randomized
decision rules and in areas such as dynamic programming, optimal control, game
theory or random dynamical systems; see [7, 13, 18, 61, 62, 87].

Simple characterizations of weak convergence are as follows. For a sub-o-field G
of F,let K! (G) = K! (G, X) denote the subset of K1 consisting of all G-measurable
Markov kernels, that is of Markov kernels from (€2, G) to (X, B(X)). For F € F
with P(F) > Olet Pr := P(:-|[F) = P(-NF)/P (F) denote the conditional
probability measure given F, and let Er and Varp denote expectation and variance,
respectively, under Pr. Further recall that for a net (y,), in R=RU {—00, o0}

lim sup y, :=inf sup yg and liminf y, := sup inf yg.
o ¥ Bra «a a Bza

Theorem 2.3 Let G C F be a sub-o-field, (Ko), anetin K' (G), K € K' (G) and
let £ C G be closed under finite intersections with Q € & such that o (£) = G. Then
the following statements are equivalent:

(i) Ko — K weakly,

(ii) limy [ f ® hdP ® Ko = [ f ® hdP ® K for every f € L (G, P) and
h € Cp (X),

(ili) QKo — QK weakly (in M (X)) for every probability distribution Q on F
such that Q < P,

(iv) PrK, — PpK weakly for every F € £ with P (F) > 0.
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Proof (i) = (iii). Let Q <« P. Setting f := d Q/d P and using Fubini’s theorem for
Markov kernels 2.1 (a), we obtain for h € Cp, (X)

/thKaz//h(x)Ka(w,dx)dQ(w):/f@th@Ka
—>/f®th®K=/thK~

(iii) = (iv) is obvious because Pr < P.
(iv) = (ii). Let

L= {fezl(g,P):hén/f®hdp®1{a=/f®hdp®1<
forevery h € Cp (X)}.

Then L is a vector subspace of £! (G, P) with {Ig : G € £} C L, in particular
lg € L,andif fy € £, f € L' (G, P), fx = 0, f > Osuchthat f; 1 f,then f € L.
In fact,

‘/f@th@Ka—/f@)th@K'

S/|f®h—fk®h|dP®K(y+’/fk®th®Ka—/fk®th®K‘
+/Ifk®h—f®h|dP®K

sznhnsup/(f—fk) dP+‘/fk@thtX)Ka—/fk@th@K’

and hence

/f®th®Ka—/f®th®K

§2||h||sup/(f_fk) dP.

lim sup
«
Letting k — oo yields by monotone convergence
lim/f@th@Kaz/f(@th@K.
(&%

Thus f € L. One can conclude that D := {G € G : 15 € L} is a Dynkin-system so
that D = o (£) = G. This clearly yields £ = £ (G, P), hence (ii).

(i) = (i). For f € £' (P) we have E (f|G) € £! (G, P) and thus in view of the
G-measurability of K, and K
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lim/f®th®Ka=1im/E(f|g)®th®Ka

« o
=/E(f|g)®th®K=/f®th®K

for every h € Cp (X). U

Exercise 2.2 Prove that weak convergence K, — K is also equivalent to QK. —
QK weakly for every probability distribution Q on F such that Q0 = P, where =
means mutual absolute continuity.

Exercise 2.3 Show that weak convergence is preserved under an absolutely continu-
ous change of measure, thatis, 7 (Q) C 7 (P),if Q <« P,andhence 7 (Q) = 7 (P),
if Q9 =P.

Exercise 2.4 One may consider M (X) as a subset of . Show that 7 N M ()
is the weak topology on M! (X).

The weak topology on K is not necessarily Hausdorff and the weak limit kernel
is not unique, but it is P-almost surely unique. In fact, if [ f @ hdP ® K| =
[f®hdP ® K, for K1, K> € K" and every f € L' (P) and h € Cj (X), then
[ hdPpK; = [ hdPpK, for every h € Cp, (X) so that PrK; = PrK> for every
F e F with P (F) > 0. This implies K1 (-, B) = K> (-, B) P-almost surely for
every B € B (X) and thus K; = K, P-almost surely by Lemma 2.1 (b).

The following notion is sometimes useful.

Definition 2.4 Assume that & is polish. Let K € K! and G C F be a sub-o-field.
Then by disintegration of measures there exists a (P-almost surely unique) kernel
H € K'(G) such that

PRHIGRB(X)=(PIG)®H =P ®K|G QB (X)

(see Theorem A.6). The Markov kernel H is called the conditional expectation of
K w.rt. G and is denoted by E (K|G).

For a sub-o-field G C F, the weak topology on K1 (G) is denoted by 7(G) =
7 (G, P). We will see that the map X! — K! (G) or K!, K +— E (K|G), is weakly
continuous.

Corollary 2.5 Let (K,), be anetin K!', K € K' and G C F a sub-o-field.

(@) 7(G) coincides with the topology induced by T on K' (G), that is T(G) =
TN K G).

(b) Assume that X is polish. If K, — K weakly, then E (K,|G) — E (K|G)
weakly (in K' and K' (G)).

(c) Assume that X is polish. If (N € F : P(N) =0} C G, then K' (G) is T-closed
in K.
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Proof (a) is an immediate consequence of Theorem 2.3.
(b) is immediate from Theorem 2.3 and

/f®th®E(K|g)=/f®th®K

for K e K', f € £1 (G, P) and h € Cp, (X).

(c) Let (Kq4), be a net in K'(G), K € K! and assume K, — K weakly in
IC'. Then by (b), Ko, = E (K4|G) — E (K|G) weakly in K and hence, by almost
sure uniqueness of limit kernels, we obtain E (K|G) = K P-almost surely. The
assumption on G now implies K € KC! (G). Thus K! (G) is 7-closed. O

We provide further characterizations of weak convergence. Recall that a function
h:)Y —>Rona topological space ) is said to be lower semicontinuous if {# < r}
is closed for every r € R or, what is the same, if & (y) < liminf, & (y4) for every
net (y), and y in Y with y, — y. The function 4 is upper semicontinuous if —# is
lower semicontinuous. A function which is both upper and lower semicontinuous is
continuous.

Theorem 2.6 Foranet (K,), and K in KC' the following statements are equivalent:

(i) K, — K weakly,
(i) lim, [gdP @ Ko = [gdP ® K for every measurable, bounded function
g:(Qx X, FRBX)) — (R, B(R)) such that g (w, -) € Cp (X) for every
w e,
(iii) (For X polish) limsup, [gdP ® K, < [gdP ® K for every measurable

function g : (Qx X, FQB(X)) — (R B (R)) which is bounded from

above such that g (w, -) is upper semicontinuous for every w € 2,
(iv) (For X polish) liminf, [ gdP ® Ko > [gdP ® K for every measurable

function g : (X X, FQB(X)) — (E, B (@)) which is bounded from

below such that g (w, -) is lower semicontinuous for every w € .

Note that statements (ii)—(iv) say that the function ! — R, K f gdP®K,is
weakly continuous, upper semicontinuous and lower semicontinuous, respectively.
Moreover, it is interesting to note that the 7 ® B (X)-measurability of the function
g in (ii) already follows from the F-measurability of g (-, x) for every x € X’; see
[18], Lemma 1.1.

Proof (i) = (i) and (i) = (iv). Letg : 2 x X — R be as in (iv). Replacing g by
g—inf g, we may assume g > 0. There exists a totally bounded metric d inducing the
topology of & so that the subspace Uj, (X, d) of Cj, (X) consisting of all d-uniformly
continuous, bounded functions is separable; see [26], Theorem 2.8.2, [69], Lemma
11.6.3. Let {h, : n € N} be a countable dense subset of Uj (X, d). We obtain the
representation

g(w,x) = sup{h;lL x):h, <g(w,-),n¢€ N}


http://dx.doi.org/10.1007/978-3-319-18329-9_1
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foreveryw € Qandx € X. Tosee this, lete > 0, fixw € Q and x € X and consider
the functions

g X =R, g (y):= in{/{kAg(w,z)—i—kd(y,z)}—a
Z€E

for k € N. One easily checks that g; is d-Lipschitz and thus g € Up (X, d),
gk < 9w, )—cand g (¥) 1+ g (w,y) —eforeveryy € X.If g (w, x) < 00, choose
k € Nsuch that gx (x) > g (w, x) —2¢ and then m € N such that || gy — hm||Sup <e.
This implies 4, < g (w, -) and h;, (x) > g (w, x) — 3¢, hence

sup (I (¥) 1y < g (@, )} = sup fhy (0) 1 hy < g (W, )} = g (W, x) — 3e.

Since ¢ was arbitrary, we get the above representation. If g (w, x) = oo, fort > 0,
choose k € N such that g (x) > ¢+ andm € Nsuch that [|gk — hmllgp < €. Then
hym < g(w,-)and hy,, (x) > t which yields sup {h,;Ir x):hy, <g(w, -)} = 00.
Setting F, == {we Q:h, <g(w,-)} forn € N we obtain g (w,x) = sup
{1r, ® b} (w,x) :n € N} foreveryw € Qand x € X.
Now assume that g is bounded and g (w, ) € Cp (X) for every w € Q2. Then

Fo= () {ha () < g, 2)

XEXO

for some countable dense subset X of X' and hence F,, € F. In view of the rather
obvious fact that

n
V= {Z 1y, ® ki : H; € F pairwise disjoint, k; € Cp, (X), ,n € N}

i=1

is a lattice in the pointwise ordering there exists a nondecreasing sequence (Vy),>]
in V such that g (w,x) = sup,cyvn (w,x) for every w € Q and x € X.
Using monotone convergence we obtain that the map K + [gdP ® K =
sup,cn [ vn dP ® K is lower 7-semicontinuous on KC!. This can be applied to the
function —g + sup g and yields that the map K +— f gdP ® K is T-continuous,
hence (ii).

In the setting of (iv) the proof is a bit more involved because F}, is not necessarily
in F. However,

F, = U fweQ:h,(x)>gw,x)}
xeX

istheimage of A, := {(w, x) € R x X : h;, (x) > g (w, x)} € F® B (X) under the

projection g : 2 x X' — € onto £, that is

T (Ay) = U An,x = Fyf’
xeX
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and hence, using that X is polish, it follows from a projection theorem that F;, belongs
to the P-completion of F; see [83], Theorem 4. Therefore, for every n € N there
is aset G, € F and a P-null set N, € F such that G,, C F, and F,\G, C N,.
Defining N := |J,,cry Na We obtain g (w, x) = sup{lg, ® h;} (w,x) : n € N} for
every w € N¢ and x € X. As above, this yields the lower T-semicontinuity of
K — [gdP ® K, hence (iv).

(i1) = (i) is obvious, as is (iv) < (iii) = (ii). O

Finally we mention a characterization of compactness in K. For this, it is con-
venient to identify Markov kernels in IC! that agree P-almost surely. One arrives
at the space K' (P) = K!(F, P) = K!(F, P, X) of P-equivalence classes.
The weak topology on K'! (P), still denoted by 7 (P), is now Hausdorff. For a
sub-o-field G C F, let K! (G, P) denote the subspace of K 1 (P) consisting of
equivalence classes which contain at least one representative from X' (G). By
Corollary 2.5 (c), the set K (G, P) is weakly closed in K Lp) provided X is polish.

Anetin M (X) is called right if the corresponding subset is tight. A weakly con-
vergent sequence in M (X) is tight provided & is polish. In fact, weak convergence
vy — v in M! (X) obviously implies weak compactness of {r, : n € N} U {v},
hence {v, : n € N} is relatively weakly compact and thus tight.

Theorem 2.7 Assume that X is polish. For a subset ' C K Lep),

(1) T isrelatively T (P)-compact
if and only if
(i) PT :={PK : K e I'} is relatively compact in M (X),
and then
(iii) T is relatively sequentially T (P)-compact.
In particular, if (K,),, is a net (sequence) in K such that (PK.), is tight, then
(Ka), has a weakly convergent subnet (subsequence).

Proof (i) = (ii) is an immediate consequence of the continuity of the map K +— PK.

(i1) = (i). Choose as in the proof of Theorem 2.6 a totally bounded metrization of
X. Then the completion ) of X is compact and X € B ())) because X is, as a polish
subspace of the polish space ), a Gs-set, i.e. a countable intersection of open subsets
of Y. Hence B (X') C B ()). Because U, (X) and Cp, () are isometrically isomor-
phic, it follows from the Portmanteau theorem that (K 1 (P,X), 7(P, X )) is homeo-
morphic to the subspace {K € K! (P, ) : PK (X) = 1}of (K' (P, V), 7 (P,))).
Identifying these spaces and because K 1 (P,Y)is T (P, Y)-compact, see [29], [65],
[33], Theorem 3.58, the 7 (P, Y)-closure T of I"in K! (P, ) is compact. Let K € T
and let (K,), be anetin I' such that K, — K weakly in K'(P,)Y).Because PT
is tight in M! (X), for every ¢ > 0 we find a compact set A C X such that
PK, (A) > 1 — ¢ for every a. By Theorem 2.3 and the Portmanteau theorem we
obtain

1 —e <limsup PK, (A) < PK (A) < PK (X) .
(%

This implies PK (X) = 1 and hence K € K! (P, X).
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(i) = (iii). Let (K;),~1 be asequence in " and G := o (K,,, n € N). If A denotes
a countable generator of B (X)) which is stable under finite intersections, then G =
o (K, (-, B),B e A,neN) so that G is a countably generated sub-o-field of F.
In view of Corollary 2.5 (a) the set {K, : n € N} is relatively 7 (G, P)-compact
and because (K] (G, P), 7 (G, P)) is metrizable, see [33], Proposition 3.25, [18],
Theorem 4.16, (K,),~; has a 7 (G, P)-convergent subsequence which is again by
Corollary 2.5 (a) also 7 (P)-convergent. O

Exercise 2.5 Show that one can replace in the last part of Theorem 2.7 the tightness
of the net (P K, ), by its weak convergence in M ().

Exercise 2.6 Assume that X is polishand let I' ¢ K!. Regarding each K € K! asan
(/\/ll X)), B (/\/ll (X )))—valued random variable, prove that PT is tight in M (X)
if and only if {PK 1K e 1"} is tight in M! (./\/ll (X)). Here PX denotes the image
measure.

Exercise 2.7 Let ) be a further separable metrizable topological space. Show that
the weak topology on M! (X x ) is generated by the functions

pe [h@kdu, hec, @) ke )
and the weak topology on k! (F, X x ) is generated by the functions
Hr—>/1F®h®de®H, FeF,heCy(X), keCy()).

Exercise 2.8 Let ) be a further separable metrizable space. Let (H,), be a net in
KY'(F, X), H e K!' (F, X) and let (K,,), be anetin K! (F,)), K € K' (F, ).
Assume that H, — H weakly and

/k(y) Ko (-, dy) — /k(y) K (,dy) inL!'(P) foreveryk € Cy ().

Show that H, ® K, — H ® K weakly in ! (F, X x ).



Chapter 3
Stable Convergence of Random Variables

Based on the notions and results of Chap.2 we may now introduce and deeply
investigate the mode of stable convergence of random variables. Starting from the
papers [76-78] expositions can be found in [4, 13, 48, 50, 57].

Let X still be a separable metrizable topological space and fix a metric d that
induces the topology on X'. For an (X, B (X'))-valued random variable X and a sub-
o-field G C Flet PX19 denote the conditional distribution which exists, for example,
provided that X is polish. It is a Markov kernel from (€2, G) to (X, B (X)) such
that PX19 (-, B) = P (X € B|G) almost surely for all B € B (X). The conditional
distribution is P-almost surely unique by Lemma 2.1 (b) and characterized by the
Radon-Nikodym equations

/ PX19 (w, B) dP (w) = P (X‘l (B)N G) forevery G € G, B € B(X) ,
G

or, what is the same,
PRPXY9=P®dyonGRBA),

where 0y is the Dirac-kernel associated with X given by dx (w) := 6x (). If, for
example, X is G-measurable, then pXIg — § x. The distribution of X (under P)
is denoted by PX. In the sequel we restrict our attention to sequences of random
variables, all defined on the same probability space (2, F, P).

3.1 First Approach

Definition 3.1 Let G C F be a sub-o-field. A sequence (X,),>; of (X, B (X))-
valued random variables is said to converge G-stably to K € K1 (G), written as
X, — K G-stably, if pXnl9 s K weakly as n — 00. In case K does not depend on

© Springer International Publishing Switzerland 2015 21
E. Héusler and H. Luschgy, Stable Convergence and Stable Limit Theorems,

Probability Theory and Stochastic Modelling 74,

DOI 10.1007/978-3-319-18329-9_3


http://dx.doi.org/10.1007/978-3-319-18329-9_2
http://dx.doi.org/10.1007/978-3-319-18329-9_2

22 3 Stable Convergence of Random Variables

w € Qin the sense that K = v P-almost surely for some v € M! (X), then (X3),>1
is said to converge G-mixing to v, and we write X,, — v G-mixing. Stable and mixing
convergence are short for F-stable and F-mixing convergence, respectively.

In Definition 3.1 and in the sequel we always assume that the conditional distri-
butions involved exist. (Existence is not part of the subsequent assertions.)

Using Fubini’s theorem for Markov kernels (see Lemma 2.1 (a)) and the fact that
[ h(x) PXnlY (dx) = E (h (X,) |G), G-stable convergence X, — K reads

Jin EGEGXI0) = [ £ [ heo K (o) ap

for every f € L' (P)and h € Cp (X). The choice f = 1 implies X, 4 PK, that
is, PXn > PK weakly. Here and elsewhere the reference measure for distributional
convergence is always P. The G-mixing convergence X, — v means

lim E (FE (h (X,)10)) = / Fdp / hdv

for every f € L' (P) and h € Cp, (X), which implies X, —d> v. Because PXnl9 =
E (0x,1G) in the sense of Definition 2.4, G-stable convergence X, — K can also
be read as E (dx,|G) — K weakly. In the extreme case G = {#, 2}, G-stable
convergence X, — K coincides with distributional convergence X, — v, because
K = v for some v € M! (X) by G-measurability of K.

Typical limit kernels for G-stable convergence X, — K are of the type
K (w,) = p?“) where p € M'(Y), Visa separable metrizable space and
p:(R2xV,G§RB()) — (X, B (X)) is some “concrete” measurable map. Here
@) is the image measure of y under the map ¢ (w,-) so that K (w, B) =
w{y €Y :¢(w,y) € B}).In fact, every kernel has such a representation provided
X is polish; see [51], Lemma 3.22)). In particular, if ¥ =Y =R, u = N (0, 1) and
© (w, x) := 1 (w) x for some G-measurable and nonnegative real random variable 7,
we obtain the Gauss-kernel K (w,-) = N (0, )?“) = N (0, n* (w)).

The results of Chap. 2 provide the following characterizations of G-stable conver-
gence.

Theorem 3.2 Let X, be (X, B (X))-valued random variables, K € K' (G) and let
E C G be closed under finite intersections with Q € £ and o (£) = G. Then the
following statements are equivalent:

(i) X, — K G-stably,
(i) limy—oo Efh(X,) = [ f @ hdP ® K forevery f € LY (G, P)and h €
Cp (X),
(ii1) QX" — QK weakly (in M! (X)) for every probability distribution Q on F
such that Q < P and dQ/d P is G-measurable,
@iv) P;(” — PrK weakly for every F € £ with P (F) > 0,
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) limn%oofg(w, X, (W) dP (w) = fgdP ® K for every measurable,
bounded function g : (2 x X,G ® B (X)) - (R, B(R)) such that g (w, -) €
Cp (X) for every w € €,

(vi) (For X polish) limsup,_, o, [ g (w, X, (w)) dP (w) < [gdP ® K for every
measurable function g : (L x X,GQ B (X)) — (@, B (K)) which is
bounded from above such that g (w, -) is upper semicontinuous for every
w e Q,

(vil) (X,,Y) > K ® dy G-stably for every separable metrizable space Y and

every G-measurable (Y, B (}))-valued random variable Y, where K ® dy €
KNG, X x V), K ® 6y (w,") =K (w,") ® by (),

(vii)) (X, 15) > P (K ®8,,) for every F € £.

Proof The equivalences (i)—(vi) follow from Theorems 2.3 and 2.6. Here are some
comments. First, observe that for Q <« P such that dQ/d P is G-measurable we
have 0 ® PX"19 = 0 @ dx, on G ® B (&) and hence QPXnl9 = Qdx, = Q% for
the marginals on B (X)) (see Lemma A.4 (d)).

(i) < (ii). For f € £' (G, P) and h € Cp (X) we have E (fE (h (X)) |G)) =
Efh(Xp).

(i) = (iii)) = (iv) = (i) are clear from the above formulas and Theorem 2.3.

(i) < (v) & (vi). For a measurable function g : (2 x X, G ® B(X)) —

(E, B (K)) which is bounded from above,

/gdP@ pXnlG =/gdP®6x,, =/g(w,xn (W) dP ().

Therefore the equivalences follow from Theorem 2.6 applied to the weak topology
7(G) on K! (G) instead of 7.

(v) = (vii)). For F € Gand h € Cp (X x )) define g : Q@ x X — R by
g, x) =1 W)h(x,Y (w)). Using B(X x V) = B(X) ® B()) we see that g
is G ® B (X)-measurable and g (w, -) € Cp (X) for every w € €, so that

Jim E1eh (6, 1) = tim [ X, @) dP @) = [gap ok
=///1F<w>h<x,y) doy ey () K (@, dx) dP ()
:/1F®hdp®(K®5y).

Now G-stable convergence (vii) follows in view of (iv) < (i). Note that no further
assumption on ) is needed to assure the existence of conditional distributions because
PXnDIG — pXald & 6y (see Lemma A.5 (a)).

(vii) = (viii) is clear.

(viii)) = (iv). For F € £, h € Cp (X) and k € Cp (R) satisfying k (x) = x for
x€[0,1land Y = 1, wehave h ® k € Cj, (X x R) and thus


http://dx.doi.org/10.1007/978-3-319-18329-9_2
http://dx.doi.org/10.1007/978-3-319-18329-9_2
http://dx.doi.org/10.1007/978-3-319-18329-9_2
http://dx.doi.org/10.1007/978-3-319-18329-9_2

24 3 Stable Convergence of Random Variables

n—o0

lim Elph(X,) = lin;th®k(Xn,Y)=/h®de (K ® by)
n—

_ / / / I () k () doy ) () K (@, dx) dP (@)
:/1F®th®K. O

Some of the above equivalent conditions are more useful in a given situation
than the others. So, for proving a particular stable limit theorem, Theorem 3.2
(iv) is usually used. In order to obtain theoretical consequences of stability, the
other conditions are more interesting.

Unlike convergence in distribution, stable convergence X, — K is a property of
the random variables X, rather than of their distributions. Consider, for example, a
U (0, 1)-distributed random variable U and set X, := U ifniseven, X,, := 1—U if
nisoddand Y, := U forevery n. Then PX» = PY» forevery n and Y,, — dy stably,
but X, does not converge stably, because otherwise oy = §1_y by uniqueness of
limit kernels sothat U = 1 — U or U = 1/2 almost surely.

Exercise 3.1 Let (Fy),>| be a nonincreasing (nondecreasing) sequence in F, F =
N2, Fo (F = 52, Fy) and P(F) > 0. Show that if P)" — v weakly for some
v e M (X), then P;i" — v weakly as n — oo.

Exercise 3.2 LetF, € F,a: Q — [0, 1] G-measurable and K (w, -) := o (w) 01 +
(1 — a(w)) do. Show that 1, — K G-stably if and only if lim,, o P (F, N G) =
JgadP forevery G € G.

Exercise 3.3 Let (2, F, P) = ([0, 1], B([0, 1]), No,1}), an € [0,1/2], X, :=
lgp.an+1/21 and G := o (Y), where ¥ : @ — R, Y (w) = w. Show that PX» =
(0o + d1) /2 for every n but, if (ay), > is not convergent, (X, ), does not converge
G-stably.

Corollary 3.3 (Mixing convergence) In the situation of Theorem 3.2 let K = v
almost surely for some v € M (X). Then the following assertions are equivalent:

(i) X, = v G-mixing,
(ii) limy—oo Efh (Xy) = [fdP [hdv for every f € L' (G, P) and h €
Cp (X),
(iii) QX" — v weakly for every probability distribution Q on F such that Q < P
and dQ/dP is G-measurable,
@iv) Pg” — v weakly for every F € £ with P (F) > 0,

W) (X,,Y) 4 v ® PY for every separable metrizable space ) and every G-
measurable (), B ()))-valued random variable Y .
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Proof The equivalences (i)—(iv) are obvious consequences of Theorem 3.2.

(i) = (v). By Theorem 3.2, we have (X,,Y) — v ® dy G-stably so that
Xn V) S Pw@sy) =ve P,

(v) = (i) is again immediate from Theorem 3.2. ([l

Exercise 3.4 Assume that o (X,,) and G are independent for every n € N. Prove that

(i) (X,) converges G-stably,
(i) (X,) converges G-mixing,
(iii) (X,) converges in distribution

are equivalent assertions.
Next we state various further features of stable convergence.

Proposition 3.4 (a) (For X polish) If (PX")
has a stably convergent subsequence.

(b) (For X polish) Let Gi C Go C F be sub-o-fields and K € K'(G>). If X, — K
Go-stably, then X,, — E(K|G)) Gi-stably.

(¢) Let Y be a separable metrizable space, Y a (), B ()))-valued random variable,

G =o0)and K € K'(G). Then X, — K G-stably if and only if (X,,Y) 4
P (K ® dy).

is tight in M (X), then (Xp),>

n>1

Proof (a) By Theorem 2.7, there exists a subsequence (Xj) of (X,) with 6x, — K
weakly for some K € K! because (Pdy,) = (PX") is tight. Using PX7 = 6y,
this means X; — K stably.

(b) It follows from Lemma A.7 (b) and Corollary 2.5 (b) that PX»191 =
E(PX191G)) — E(K|G)) weakly in !, that is, X, — E(K|G1) G-stably.

(c) The “if” part. One checks that

L= {feﬁl G, P): lingoth(X,,)=/f®th®Kforeveryher(X)]

isaclosed vector subspace of L! (G, P). Moreover, functions f of the type f = k (¥)
with k € Cp ())) belong to L because

th(X,,):Eh®k(X,1,Y)—>/h®de(K®6y):/f®th®K.

Since Cj, () is dense in £! (PY), the vector space {k (Y) : k € Cp ()))} is dense in
L' (G, P)sothat L = L' (G, P). Theorem 3.2 yields X,, — K G-stably.
The “only if” part follows from Theorem 3.2. ]

The most powerful case concerns G-stability when X, is G-measurable for every n.

Proposition 3.5 Let X, be G-measurable, (X, B (X))-valued random variables and
let K € K' (G). Then the following assertions are equivalent:
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(1) X, — K G-stably,
(i) X, — K stably,
(iii) 6x, — K weakly.

Proof The result is an immediate consequence of Definition 3.1 and PXnld —
PXalF = §x  P-almost surely. O

Exercise 3.5 Show that the following assertions are equivalent:

(i) X, — v mixing,
(i) Py — v weakly forevery F € € := |J2, o (Xx) with P (F) > 0,

(i) X, <4 vand lim,,_, oo PXX0) (B x B) = v (B) P (B) forevery k € Nand
B € B(X) with v (OB) = 0,

iv) (Xn, Xi) 4 v ® PXk asn — oo for every k € N.

(Note that £ is a generator of o (X, n > 1) which is generally not closed under finite
intersections.)

In case of a Dirac kernel as limit kernel, stable convergence turns into conver-
gence in probability. Recall that a sequence (X,),>; of (X, B (X))-valued random
variables is said to converge in probability to an (X, B (X))-valued random variable
X if limy,— P (d (X5, X) > ) = 0 for every € > 0, where d is any metric which
metrizes X’ and d (X, X) is F-measurable because B (X x X) = B(X) ® B (X).
This feature does not depend on the choice of the metric, see e.g. [35], p. 335, and
is equivalent to lim,, . E (d (X, X) A 1) = 0.

Corollary 3.6 (Convergence in probability) For (X, B (X))-valued random vari-
ables X, and X, where X is G-measurable for some sub-o-field G of F, the following
assertions are equivalent:

(i) X, — X in probability,
(i) X, — Ox G-stably,
(iii) QX" — QX weakly for every probability distribution Q on F such that Q < P
and dQ/d P is G-measurable.

This corollary may of course be applied with G = F.

Proof (i) = (iii). For Q with 0 <« P it follows from (i) that X;, — X in Q-
probability and hence (iii).
(ii) < (iii) is an immediate consequence of Theorem 3.2 because QX = Qdy.
(i) = (i). Define g : 2 x X — R by g(w, x) :=d (x, X (w)) A 1. Since g is
g ® B (X)-measurable and g (w, -) € Cp (X) for every w € 2, Theorem 3.2 yields

lim Ed Xy, X)AD) = lim [ g(w, X» (w)) dP(w):/gdP@(SX
n—oo

n—00

/g(w,X(w)) dP (w) =0,

hence (1). U
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Exercise 3.6 Assume X,, — v mixing, where v € M! (X) is no Dirac-measure.
Show that X, cannot converge in probability.

Exercise 3.7 (a) Assume that X is polish. Find a direct proof of the implication (ii)
= (i) in Corollary 3.6 based only on the definition of G-stable convergence (that is,
on Theorem 3.2, (i) = (ii)).

(b) Find a proof of the same implication based on Theorem 3.2, (i) = (vii).

The main advantage of stable convergence when compared with distributional
convergence is contained in part (b) of the next result.

Theorem 3.7 Assume X,, — K G-stably for (X, B (X))-valued random variables
X, and K € K! (G). Let Y be a separable metrizable space and Y,,Y random
variables with values in (), B ())).

(a) Let X = Y. If d (X,,, Yy,) — O in probability, then Y, — K G-stably.

(b) If Y, — Y in probability and Y is G-measurable, then (X,,Y,) —> K ® dy
G-stably.

) Ifg : X — Y is Borel-measurable and P K -almost surely continuous, then
g (X)) — K9 G-stably with K9 (w, ) := K (w, -)Y. The P K -almost sure continuity
of g means that the Borel set {x € X : g is not continuous at x} has P K-measure
zero.

Proof (a) For F € G with P (F) > 0 we have d (X,,, Y,) — 0 in Pg-probability
and, by Theorem 3.2, P;( " — PrK weakly. This implies P}/” — PrK weakly by
Theorem 4.1 in [9]. Hence Y,, — K G-stably again by Theorem 3.2.

(b) Since (X, Y) — K ® dy G-stably by Theorem 3.2, (b) follows from (a).

(c) For any distribution Q on F such that Q <« P and d Q/d P is G-measurable
we have weak convergence 0% - QK by Theorem 3.2. Since QK <« PK, the
function g is Q K-almost surely continuous so that (QX")g — (QK)Y9 weakly (in
M () by [9], Theorem 5.1. In view of (0*")! = Q9" and (QK) = QK
the assertion follows from Theorem 3.2. O

We now consider special spaces X. In case X = R, let (-, -) denote the usual
scalar product.

Corollary 3.8 Let X' = RY. Let X, be RY-valued random variables, K €
K! (g, ]Rd) and let £ C G be closed under finite intersections with Q € &€ and
o (£) = G. Then the following assertions are equivalent:

(i) X, — K G-stably,
(i) limy—o Elpexp (i (u, Xn)) = Elf fexp (i (u,x)) K (-,dx) for every F €
Eandu € RY,
(iii) (Cramér-Wold device) (u, X,) — K" G-stably for every u € R?, where K" €
K (G, R) is given by K" (w, -) :== K (w, ).

Proof This follows from Theorem 3.2 and Lévy’s continuity theorem. (]
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Now let X = C ([0, T]) = Cp ([0, T]), for 0 < T < oo and equipped with
the sup-norm, or X = C (R4). Then C ([0, T]) is polish. The space C (R4) of all
continuous functions x : R — R is equipped with the local uniform topology
induced by the metric d (x,y) = > o2, 27" (max;efo,n |x (t) — y (1)| A 1). This
metric is complete, C (R4.) is a polish space and B(C (I)) = o (m;,t € 1), [ =
[0,T]or I = Ry, where ; : C(I) — R, 7 (x) = x (¢) denotes the projection
(see [53], Theorems 21.30 and 21.31). Consequently, any path-continuous stochastic
process X = (X;);c; may beviewedasa (C (1), B(C (I)))-valued random variable.
Fortjelletm, ,:CU)— R my ()= (), ..., x #%).

Proposition 3.9 Let X = C (I) with I = [0,T] or Ry, and let X" = (X?)tel
be path-continuous processes and K € K' (G). Then the following assertions are
equivalent:

(i) X" — K G-stably,
(ii) (Pxn)n>1 is tight and (X?l, ceey X{;() — K™% G-stably for every k > 1 and
0<n 2-~-<tk,tj61.

Proof (1) = (ii). Since PX" - PK weakly, the sequence (PXn)n> | 1s tight. The
second assertion follows from Theorem 3.7 (c).

(i) = (i). If X* —-» K G-stably, we may choose functions f € Ll (G, P) and
h € Cp (X) and some € > 0 such that ‘th (X" — ff QhdP ® K| > ¢ along a
subsequence (r) of the sequence (n) of all positive integers. By Proposition 3.4 (a),
(b) there exists a further subsequence (m) of (r) and an H € K'(G) such that
X™ — H G-stably. But then by Theorem 3.7 (c) and Theorem 3.2

P(X;?""’X;Z) P Hﬂ'tl el — Ty et k1
\ — PpH™ = (PpH)™ - weakly,

and because also by (ii)

(i) .
Py — (PpK)™-% weakly,

forevery 7 € G with P (F) > Oandeveryk > 1,0 <t < --- < ft, t; € I, we
obtain Pr H = PpK forevery F € G with P (F) > 0, which yields H = K almost
surely. Thus X — K G-stably, and so Efh (X™) — f fQ®hdP ® K, whichis a
contradiction. ([l

Note that characterizations of stable convergence similar to Proposition 3.9 may
by given for spaces of cadlag functions, e.g. X = D ([0, T1), D (Ry), D (R4, R¥)
etc.

The following approximation result provides a useful tool for proving stable
convergence.
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Theorem 3.10 (Approximation) Let X, , and Y, be (X, B(X))-valued random
variables and K,, K € K (G) forn,r € N. Assume that

(1) Xn,r — K, G-stably forn — oo and allr € N,

(i) K, — K weakly forr — oo,
(iii) lim,— o limsup,_, ., P (d (X,,’,, Yn) > 5) = 0 for everye > 0.
Then'Y,, — K G-stably.

Proof For F € G with P (F) > Owehave P,"" — PpK, weakly forn — oo by (i)
and Theorem 3.2, and Pr K, — PpK weakly for r — oo by (ii) and Theorem 2.3.
It remains to show that this combined with (iii) implies P },/” — Pp K weakly. Then
Theorem 3.2 yields G-stable convergence Y, — K.

Foraclosedset B C X ande > Olet B: :={y € X :infycpd (v, x) < €}. Since
{Y, € B} C {Xn,r € BE} U {d (X,,,,, Yn) > 5}, we obtain P;" (B) < P;("” (B:) +
Pp (d (Xn,r. Yn) > €). Since B. is closed, the subadditivity of limsup and the Port-
manteau theorem yield

lim sup P};” (B) < PFK, (B:) + limsup Pp (d (X,,,,, Y,,) > s)
n—oo n— 00
and furthermore lim sup, _, ., PrK, (B:) < PrK (B;.). By (iii) and since B. | B
ase | O we getlimsup,_, o, P;” (B) < PrK (B) so that, B being arbitrary closed,
again by the Portmanteau theorem P;/" — Pr K weakly. (I

Exercise 3.8 Show that condition (iii) of Theorem 3.10 is equivalent to the condition
lim,—, o lim sup,,_, oo E (d (Xnr, Yn) A1) = 0.

The following observation is sometimes useful.

Proposition 3.11 Let P = > 2, s5; Q; for probability distributions Q; on F and
si € [0, 1] satisfying >°i2, si = 1. If X, — K G-stably under Q; for every i € N
with s; > 0 for (X, B(X))-valued random variables X, and K € K'(G), then
X, = K G-stably (under P).

Proof This is an immediate consequence of Theorem 3.2. In fact, let / = {i € N :
si >0}, FeGand h € Cp (X). Then

[rencenap =35 [1ehx) a0

iel
—>Zsi/1p®th,-®K=/1F®th®K. O
iel

Finally, we state an unspecified limit version of (parts of) Theorem 3.2. Typically,
unspecified limit results are not of great interest. However, the subsequent condition
(iii) with & = G = F was the original definition of stable convergence.
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Proposition 3.12 (Unspecified limit) Assume that X is polish. Let € C G be closed
under finite intersections with Q € € and o (£) = G. Then the following assertions
are equivalent:

(i) (Xy) converges G-stably,
(i1) (PX") is tight and the sequence (E1gh (X)) converges in R for every F € £
and h € Cp (X),
(iii) (Pi-( ”) converges weakly for every F € € with P (F) > 0,
(iv) ((Xn, Y)) converges in distribution for every separable metrizable space ) and
every G-measurable (Y, B ()))-valued random variable Y .

Proof The implications (i) = (iii) = (ii) are obvious in view of Theorem 3.2.

(i) = (). For F € Eand h € Cp (X), let crp = limpoo E1rh (X,). By
Proposition 3.4 (a) and (b), there is a subsequence (Xi) of (X,) with Xz — K
G-stably for some K € K! (G). Hence, limg_ o0 E1ph (Xi) = f 1lFp ®hdP ® K
sothatcrp, = [1F @ hdP Q K forevery F € £, h € Cp (X). Again Theorem 3.2
yields X,, — K G-stably.

(1) = (iv) follows from Theorem 3.2.

(iv) = (ii). Clearly, (PX") is tight. For F € &, let (X, 1F) —d> wr for some
urp € M" (X x R). Then for h € Cp (X) and k € Cp, (R) satisfying k (x) = x for
x € [0, 1], we obtain

lim Elph(X,) = lim Eh®k(Xn,1F)=/h®kdup. O
n—oo n—0o0

Exercise 3.9 Assume that & is polish. Show that for (general) stable convergence
an unspecified limit version of most parts of Exercise 3.5 is true, that is,

(1) (Xn)p>1 converges stably,
(i1) (P;f”) lconvergesweaklyforevery Feé& .= U,fil o (Xp)with P (F) > 0,
n>
(iii) ((Xn, Xx)),>1 converges in distribution for every k € N

are equivalent assertions.
Here is a first example.

Example 3.13 (Classical stable central limit theorem; Takahashi, Rényi)

(a) We observe automatic stability in the following setting. Let (Z,),>; be an
independent sequence of real random variables, b, € R, a, > 0, a, — oo and
ve M (R). If

1 - d
X, = — ZZj—bn —> v,
a =
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then X, — v mixing as n — oo. To see this, let G := 0 (Z,,n > 1) and £ :=

U,fil o(Zy,...,7Zy). Then Eisafield witho (£) = G and the X, are G-measurable.
IfFeo(Z,...,Z;) forsome k € N with P (F) > 0 and

1 n
Y, = — sz_b” ,n>k,

j=k+1
then
k
1
| X, =Y, = —ZZj — 0 everywhere on Q2 asn — oo
ay =
so that Y, —d> v. Since 0 (Z1, ..., Zy) and 0 (Z,,n > k + 1) are independent, we

have P;:" = P — v weakly (in M! (R)) and hence Plf.( " — v weakly. The
assertion follows from Corollary 3.3 and Proposition 3.5.

(b) Now let (Z,),,~1 be an independent and identically distributed sequence of real
random variables with Z | € £%(P) and 0% : =Var Z;. Then by the classical central
limit theorem and (a),

I < ..
X, = — (Zj—EZl)—>N(O,02) mixing as n — ©0.
NG ,Z_l
Consequences of the mixing feature are, for example, statements such as

Tim P (X, <) = / N (0.0%) (=00, ¥]) dP” ()

for any real random variable Y, which is out of scope under mere distributional

convergence. In fact, by Corollary 3.3, (X,, Y) —d> N (O, 02) ® PY so that for the
closed set D := {(x, y) € R? : x <y}, by the Portmanteau theorem,

P(X,<Y)=P({(X,,Y) e D)
SN (0, 02) ® PY (D) =/N (0, 02) (=00, y]) dPY (y)
because N (0, 02) ® PY (OD) = 0 provided ¢ > 0.

We can also easily derive a multivariate version of the above stable central limit
theorem using the Cramér-Wold device from Corollary 3.8 (iii). (]
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Example 3.14 (Classical stable functional central limit theorem, cf. [9], Theorem
16.3) Let (Z),>; be an independent and identically distributed sequence of real
random variables with Z; € £2 (P), EZ; = 0 and o2:=VarZ; > 0. Forn € N,
consider the path-continuous process X" = (X}),_, defined by

[nt]

1
n . .
Xz = —\/_ jgl Zj + (nt — [nt]) Z[mH] ,t>0

(Z(J)-:l Zj:= 0) , where [nt] denotes the integer part. By Donsker’s theorem, X" 4
vin C (Ry), where v € M! (C (R,)) denotes the Wiener measure ([53], Theorem
21.43). We show that X" — v mixing. Arguing as in Example 3.13 (a), it is enough

to show that P}f" — v weakly forevery F € U/fi] o(Zy,...,Zy) with P (F) > 0.
IfFeo(Zy,...,2Z) forsome k € N with P (F) > 0 and

0 ,0<tr<

Yln = 1 [nt] k
' —_— Zi+ (nt —[nt]) Z Lt > —
o jzk;rl j+(C [nt]) Zin+1 .

S|

for n € N, then

k
2
d(X",Y") < —Z|Z,~| — 0 everywhere on Q as n — 00

o/n P

d . .
so that Y" — v. Since 0 (Z1, ..., Zx) and o (Y") are independent, we have Pg” =

PY» — v weakly and hence P? " — v weakly. For a martingale approach to the
mixing Donsker theorem, see Chap. 7. |

Exercise 3.10 Show in the situation of Example 3.14 that

max ZZ — mixing ,
af0<j<n H g

where

a1y = 2 (—f)l ®)
ax T e P\ T ) R

Hint: 1 is the distribution of max;¢(o,1] W; for a Brownian motion W.
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3.2 Second Approach

The limit kernel for G-stable convergence X,, — K can always be represented as a G-
conditional distribution of a further random variable X defined on a suitable extension
of the underlying probability space (2, F, P): Take @ = Q x X, F = F ® B (X),
P=P®K and X (w, x) = x. So, for instance, the Gauss-kernel N (0 n ) where
7 is a G-measurable, nonnegative real random variable, satisfies N (O, n ) = pnZlg
assuming the existence of a N (0, 1)-distributed random variable Z on (2, F, P)
which is independent of G. This motivates the following approach.

Definition 3.15 Let G C F be a sub-o-field. A sequence (X,),>; of (X, B (X))-
valued random variables is said to converge G-stably to an (X, 3 (X))-valued random
variable X if X,, — PX9 G-stably for n — co. Then we write X,, — X G-stably.

As before, we assume the existence of conditional distributions. By Definition 3.1
G-stable convergence X,, — X reads

dim E(fE(h(Xa)19) = E(fE (h(X)19))

forevery f € £' (P) and h € Cp, (X) and implies X,, 4 X. The G-mixing conver-
gence X, — X corresponds to PX I = pX P-almost surely which is equivalent to
the independence of o (X) and G. Thus X,, — X G-mixing means X,, — X G-stably
and o (X) and G are independent which is also equivalent to X,, — PX G-mixing
and independence of ¢ (X) and G.

For the formulation of stable limit theorems in subsequent chapters we sometimes
use the “K-approach”, sometimes the “X-approach”, and sometimes both.

Example 3.16 1In the situation of Example 3.13 (b) withG = o (Z,;,n > 1) let X be
N (O, 02)—distributed and independent of G. Such an X exists at least after a suitable
extension of (2, F, P). Then Example 3.13 (b) yields

z EZ] — X §G-mixing.

However, there is nothing special about this G. The above statement holds for any
pair (G, X), where PX = N (0, 02) and o (X), G are independent. The random
variable X is merely an “artificial” construct to describe the limit kernel. In practice,
G can and will be chosen so large that all random variables of interest are measurable
w.rt. G. O

The previous characterizations of G-stable convergence now read as follows.

Theorem 3.17 Let X,, and X be (X, B (X))-valued random variables and let £ C G
be closed under finite intersections with Q € &€ and o (£) = G. Then the following
assertions are equivalent:
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(1) X, —> X G-stably,

(i) lim,_ oo Efh (X,) = Efh(X) for every f € L' (G, P) and h € Cj, (X),

(i) QX — QX weakly for every probability distribution Q on F such that
QO K PanddQ/dP is G-measurable,

>iv) Pg" — P}( weakly for every F € € with P (F) > 0,

V) limy— o0 [ g (W, Xy (W) dP (w) = [ g (w, X (w)) dP (w) for every measur-
able, bounded function g : (2 x X,GQ B(X)) — (R, B(R)) such that
g (w,-) € Cp (X) forevery w € Q,

(vi) (For X polish)limsup,,_, fg (w, X5 (W) dP (w) < fg (w, X (w)) dP (w)
for every measurable function g : (R x X,GQ B(X)) — (E, B (E))
which is bounded from above such that g (w, -) is upper semicontinuous for
every w € €,

(vi) (X,,Y) — (X, Y) G-stably for every separable metrizable space ) and every
G-measurable (), B (Y))-valued random variable Y,

i) (X, 15) > (X, 15) for every F € €.

Proof Just apply Theorem 3.2. As for (vii) and (viii) one has to recall that PX 9
8y = PXVIY by G-measurability of ¥ so that P (Px|g ® oy) = PXD), O

Exercise 3.11 Let) be a separable metrizable space, Y a (), B ())))-valued random

variable and G = o (Y). Show that X,, — X G-stably if and only if (X,, Y) —d>
(X,Y)asn — oo.

Exercise 3.12 Let G = 0 (X, n > 1). Prove that X,, — X G-stably if and only if
(X X1, -, Xi) % (X, X1, ..., X) asn — oo for every k > 1.

In case G; C G C F itis clear from Theorem 3.17 that G,-stable convergence
X, — X implies G -stable convergence X, — X.

The G-measurability of all X,, in G-stable convergence X, — X has no specific
impact (in contrast to Proposition 3.5) while the G-measurability of X has a very
strong impact. In fact, if 0 (X) C G, then X,, — X G-stably if and only if X,, — X
in probability. This is a reformulation of Corollary 3.6 because PX 19 = 6x. In
particular, still under G-measurability of X, we have X,, — X G-mixing if and only
if X = ¢ almost surely for some constant ¢ € X and X,, — c in probability.

Since G = {@, 2} reduces G-stable convergence X, — X to distributional con-
vergence and o (X) C G gives convergence in probability, G-stability provides a
type of convergence in between.

In the “X-approach” Theorem 3.7 reads as follows.

Theorem 3.18 Assume X, — X G-stably and let Y,, and Y be random variables
with values in (), B ())) for some separable metrizable space.
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(@) Let X =Y. Ifd (X,,Y,) — 0 in probability, then Y,, — X G-stably.

(b) IfY, — Y in probability and Y is G-measurable, then (X,,Y,) — (X,Y)
G-stably.

(c) Ifg : X — Y is Borel-measurable and PX-almost surely continuous, then
g (Xp) = g(X) G-stably.

Proof Recall that PX19 @ 6y = PXNIY note that (PX19)9 = P9XIY and use
Theorem 3.7. (I

Corollary 3.8 reads as follows.

Corollary 3.19 Let X = R%. Let X,, and X be R¥-valued random variables and
let £ C G be closed under finite intersections with Q2 € € and 0 (£) = G. Then the
following assertions are equivalent:

(1) X, = X G-stably,
(i) lim,_ oo Elpexp (i (u, Xp)) = Elpexp (i (u, X)) for every F € £ and u €
R4,
(iii) (u, Xn) — (u, X) G-stably for every u € R.
Proposition 3.9 reads as follows.

Proposition 3.20 Ler X = C (I) with I = [0, T] or Ry. For path-continuous
processes X" = (X ;1) re; and X = (X1)¢; the following assertions are equivalent:

(1) X, — X G-stably,
(ii) (PXn)n>1 is tight and (thw e, X;’k) — (X,,, ...,X,k) G-stably for every
k>1and0 <t <--- <ty tj €l

Theorem 3.10 reads as follows.

Theorem 3.21 (Approximation) Let X, ,, X, X and Y, be (X, B (X))-valued ran-
dom variables. Assume that

1) Xn.,r — X, G-stably forn — oo andallr € N,
(i) X, — X G-stably forr — oo,
(iii) lim,— o limsup,_, o, P (d (Xn,,, Y,,) > 5) = 0 for every e > Q.

Then Y, — X G-stably.
Using Theorem 3.21 we can treat a further special case quite easily.

Proposition 3.22 Let X = [] jeN Y for separable metrizable spaces ;. For

(X, B (X))-valued random variables X" = (XZ)
lent:

-1 and X = (Xi)>1 are equiva-
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(1) X" — X G-stably,
(ii) (X’f, e XZ) — (X1, ..., Xx) G-stably for every k > 1.

Proof (i) = (ii) follows from the continuity of X - H 1 Vs T,k
((xp)) := (x1, ..., xx) for every k € N and Theorem 3. 18 (©).
(i) = (i). Fix any (¢,) € X. For k € N, the map ; : H’]‘.Zlyj - X,

ok ((x1, .., X)) == (X1, ..., Xk, Ck+1, Ck+2, - - -) 1S continuous so that by Theo-
rem 3.18 (¢)
zmk .= Ok ((X'l’, . X,’(’)) — 7k .= or (X1, ..., X)) G-stably as n — o0

for every k € N. Note that if d; denotes a metric inducing the topology of );, then
the metric d ((x;) , (v;)) = 252,27/ (d; (xj, y;) A 1) provides a metrization of
the product topology of X, and note also that d (Z™*, X") < >°%2,.,27/ and

d (Zk X) Zj k412 J forall k, n € N. The G-stable convergence X" — X now
follows from Theorem 3.21. O

One can deduce a characterization of stable convergence of continuous processes.

Corollary 3.23 Let X = C (Ry). For path-continuous processes X" = (X;”)
and X = (X;),>( are equivalent:

t>0

(1) X" — X G-stably,
(ii) (X?)telo,k] — (X1)iepo.x) G-stably in C ([0, k]) for every k € N.

Proof (i) = (ii) follows from the continuity of the restriction maps ¢y : C (R;) —
C ([0, k]) and Theorem 3.18 (c).

(ii) = (i). By hypothesis y (X") — ¢ (X) G-stably in C ([0, k]) for every k €
N. Since the restriction map C ([0, k]) — ]_[];1:1 C (0,m]),y+— (y|[0,1], ...,y
[0, k]) is continuous, Theorem 3.18 (c) implies

k
(gol (X”) s Ok (X")) — (p1 (X), ...,k (X)) G-stably in H C ([0, m])

m=1
for every k € N so that Proposition 3.22 yields
(m (X)) ey = @m X)pen G-stably in [ ] € (10, m)
meN

as n — 00. Now () en 1S @ homeomorphism from C (R ) onto its range Z, say,
in [[,,cn C ([0, m]). (Z is a Borel subset of [[,, .y C ([0, m]); see [69], Theorem
1.3.9.) Using the Portmanteau theorem one checks that
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(0m (X™)), o0 = (@m (XD)pen G-stably in Z.

Assertion (i) follows again from Theorem 3.18 (c). O

Proposition 3.11 reads as follows.

Proposition 3.24 Let P = > 2 s5; Q; for probability distributions Q; on F and
si € [0, 1] satisfying Z;Oil si = L. If X;, — X G-stably under Q; for every i with
s; > 0, then X,, — X G-stably (under P).



Chapter 4
Applications

The goal of this chapter is to establish consequences of stable convergence of
random variables. We thus demonstrate the importance of this notion simply because
many distributional limit theorems can be shown to be stable. Stable convergence
implies convergence in distribution. But it implies much more. Stable convergence
is useful, for example, in connection with random normalization and random index
limit theorems and can be used to prove results on the fluctuations of sample paths of
stochastic processes. Also the J-method with random centering works under stable
convergence, and stable convergence X, — K implies the existence of a subse-
quence (X,,) such that the associated empirical measures of every further subse-
quence of (X,,) converge weakly to K (w, -), almost surely. Thus the stable limit
kernel specifies the almost sure limit of empirical measures.

As before, let X' be a separable metrizable space and let d be a metric inducing
the topology on X.

4.1 Limit Points

In order to describe the fluctuation behavior of stably convergent random variables
recall that x € X is said to be a limit point of a sequence (x,),>; in & if it has a
subsequence converging to x. We denote by L ((x,)) the set of all limit points of
(xn)n>1- Since X is first countable (each point has a countable neighborhood basis)
the limit points of a sequence are precisely the cluster (or accumulation) points of
the sequence, so that L ((x,)) = ), en *x 1 k > n}, where B denotes the closure
of B C X. Furthermore, the set L := {((x4),x) € XN x X : x € L ((x,))} can be
written as L = (1), oy Ln, Where
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eXNxX x € {x: k>n}}

ﬁGi x) e XN x x: d(xkx)<1_],

hence L,, L € B (X)N ® B(X).Forv e M (X), let supp(v) denote the support
of v (i.e. the smallest closed set B such that v (B) = 1), which exists in our setting
([69], Theorem I1.2.1).

Theorem 4.1 (Limit points) Assume that X is polish. If X, — K stably for
(X, B(X))-valued random variables X, and K € K!, then L ((X, (w))) D
supp(K (w, -)) almost surely.

Proof Themap p: (R2x X, F ® B (X)) — (XNXX, BV ® B(X)),cp (W, x) i=
(X, (w)), x), is measurable. Hence the sets

Cp ::{(w,x)eQxX:xe{Xk(w):kzn}}z{cpeL,,}

and

C={w,x)eQxX :xelL(X,W)}={pel}= ﬂc”

n=1

satisfy C,,,C € F @ B (X), and the w-sections C,,, are closed so that 1¢, (w, -) is
upper semicontinuous for every w € Q2. Since obviously

/ le, @ X @) dP @) = 1
for every k > n, Theorem 3.2 yields

1= limsup/ Ic, (W, Xk (W)) dP (w) < P ® K (Cp)

k—o00
for every n € N. This implies P ® K (C) = 1 and thus K (w, C,) = 1 for almost
all w € @, where C,, = L (X, (w))). O

In the mixing case the above theorem first appeared in [80] and for the gen-
eral case see [7], Corollary 3.18. A sharper “subsequence principle”” may be found
in [48].

Example 4.2 1In the situation of Example 3.13 (b) with o2 € (0, 00) we obtain from
Theorem 4.1 that

n
L{[n7'2>(z;-EZ) || =R as.
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This may be compared with Strassen’s law of the iterated logarithm

n
L[ @nloglogn)™2> (z; - EZ))| | =[-0.0] as.
j=1

which, of course, is much better and implies the above statement as well as the strong
law of large numbers

n

L n_QZ(Zj—EZl) ={0} as.
j=1

forall « > 1/2. U

Example 4.3 (Occupation time of Brownian motion) Let W = (W), be an (every-
where path-continuous) Brownian motion and 7 its occupation measure, defined by

t
nt(A):z/ la(Wy)ds=X(s <t:W;eA)
0

fort > 0and A € B (R). Using Theorem 4.1 we show for A = (0, 0co) that the limit
points of the sequence (n_ln,, (0, OO)))n>l coincide almost surely with [0, 1] and,
in particular, B

1
limsup—-A(t <n:W,;>0)=1 as.

n—oo N

and

1
liminf =A(t <n: W, >0)=0 as.

n—oo n

We proceed as follows. Let X = C ([0, 1]), v := PWre01 ¢ M! (X) and for
n e Nlet X} = n~12W,,t €10, 1]. By the scaling invariance of Brownian motion

we obtain PX" = v for every n (and obviously X" 4 v and (PX")n>1 is tight). We
first observe that X" — v mixing as n — oo. By Proposition 3.9 and Corollary 3.8
it is enough to show that

k
k
W
E qu;’j s pZimtiWy mixing as n — o0

j=1
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foreveryk e N,O <t <--- <ty <landuy,...,u; € R.(Thecaset; = 0canbe
excluded since Xg = Wp = 0.) Choose a, € (0, co) such that a, < n, a, 1 oo and
an/n — 0asn — oo and define Y, := n~1/2 Z';zl wj (Wai; — Wa,q;) forn € N.

tj nlj

Since E (Wa,l,/ﬁ)2 = ayt/n — 0 for every t > 0, we obtain

k k
zujxg — Yy =02 ujWa, > 0 in L7 (P)
j=1 j=1

and thus in probability asn — oco. Hence by Theorem 3.7 (a) it is enough to show that

Y, — PZ-,;=‘ uiWi mixing. LetG := 0 (Yy,n € Nyand &€ := {J_ ;0 (Y1, ..., Yn),
satisfying 0 (£) = G. For all m € N, we have o (Y,...,Yy,) C 0 (W, t <m)
and for all n € N such that a,t; > m, we have o (Y,)) C 0 (W; — Wy, t > m).
Also, the o-fields o (W;,t < m) and o (W; — W,,,t > m) are independent by the
independence of the increments of W. Thus, if F € o (Y1, ..., Y,) with P (F) > 0,
then for n € N with a,t; > m

k .
P;" — pYn 5 pi-iiiW weakly .
The desired mixing convergence of Y, follows from Corollary 3.3 and Proposi-
tion 3.5.
We can mention, as a first consequence of Proposition 4.1, that

L ((X")) =supp(v) = {x € C([0, 1]) : x(0) = 0} P-as.

and compare this with Strassen’s law of the iterated logarithm for Brownian motion,
saying that the processes Z}' := (2n loglog )2 W, t €0, 1], satisfy

L ((Z")) = unit ball of the reproducing kernel Hilbert space of v

= {x e C ([0, 1]) : x (0) = 0, x absolutely continuous and

1
/ S0 dt < 1} as.;
0
see [91], Theorem 1.17.

Now consider the occupation time functional g : X — [0, 1] defined by

1
g (x) ::/ Lo,o0) x (@) dt =A(t <1:x(t)>0).
0
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Since X x [0, 1] — [0, 1], (x,?) +— x (¢), is obviously continuous, hence Borel-
measurable, and B (X x [0,1]) = B(X) ® B([0, 1]), the functional ¢ is also
Borel-measurable. Furthermore, g is v-almost surely continuous. In fact, for the
t-sections of

D:={(x,t) e X x[0,1]:x(t) =0} € B(X)®B([0, 1])

we have v (D;) = PV ({0}) = N (0, 1) ({0}) = O for every r > 0 and by Fubini’s
theorem

1
0:/ V(Dt)dt=1/®)\(D)=/ N (Dy) dv (x) .
0 X

Hence there exists a set N € B(X) with v(N) = 0 such that A\(Dy) = 0
for every x € N For x € N€¢ and x, € X such that x, — x we obtain
10,00) (X5 (1)) = 10,00) (x (¢)) for every t € D¢, hence A-almost surely, so that
by dominated convergence g (x,) — ¢ (x). This gives continuity of g at every point
x € N¢. By Theorem 3.7 (c) we can conclude ¢g (X"*) — 1Y mixing. Since

1 1 [ 1
g(X") :/0 10,00) (Wyy) dt = ;/0 110,00y (Wy) ds = ~ 1 ((0, 00)),

and 9 = PI((Wreon) = pm©.2) a5 well as supp(P™(©-2)) = [0, 1] sim-
ply because 71 ((0, 00)) has an arcsine distribution with strictly positive A-density
on (0, 1), see e.g. [51], Theorem 13.16, the assertion about the limit points of
(n~'n, ((0, 00))), .., stated at the beginning follows from Theorem 4.1. O

Example 4.4 (Borel-Cantelli-type features; [30]) Let F,, € F and a € (0, 1).
Assume that (Fy), > is mixing with density « in the sense of

lin;o P(F,NG)=aP(G) forevery G € F
n—

(cf. [76]). Then 15, — ad; + (1 — a) dp mixing so that by Theorem 4.1, the limit

points of (l Fn)n>1 coincide almost surely with {0, 1}. In particular,
lim supF, = limsuplp, =1 as.
n— 00 n—00
and

1151131013an =liminf 15, =0 as.
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which implies

P (lim sup Fn) —1 and P (lim inf Fn) —0.
n—00 n—>00

For instance, if X, — v mixing, B € B(X) with v (OB) = 0, v(B) € (0, 1) and
F, := {X,, € B}, then by Corollary 3.3 and the Portmanteau theorem, Pg (F,) =
Pg” (B) — v (B) for every G € F with P (G) > 0, so that the sequence (Fy),>
satisfies the above mixing condition with o = v (B).

More generally, let o : (2, F) — ([0, 1], B ([0, 1])) be measurable and assume
that (F,),> is stable with density « in the sense of

lim P(FnﬂG)z/ adP forevery G € F
n— oo G

(cf. [77]). If K (w, ) := a(w)d; + (1 —a(w))dp, then 15, — K stably. Since
1 € supp(K(w,-)) for w € {a > 0}, Theorem 4.1 yields limsup,_, ., 1r, = 1
almost surely on {a > 0} so that

P (limsup Fn) >P(a>0).

n—o0

Analogously, one obtains

P(limian,,) <1-P@<1).

n—oQ

If X, — H stably, B € B(X) with PH (OB) = 0 and F, := {X,, € B}, then by
Theorem 3.2 and the Portmanteau theorem,

PG (Fy) = P}" (B) — PGH (B) = %/GH(OJ, B) dP (w)

for every G € F with P (G) > 0. Consequently, the sequence (F;),>; satisfies the
above stability condition with « = H (-, B). O

4.2 Random Indices

Let 73, be an N-valued random variable for every n € N. We are interested in the con-
vergence of (X Tn )n>l for (X, B (X))-valued random variables X, provided 7;, — oo
in probability as n — oo, that is lim, o P (7, > C) = 1 for every C € (0, 00).
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We start with the simple independent setting where (7,),,>1 and (X;),>; are
independent. Here we observe that stable convergence is preserved by such a random
time change with the same limit.

Proposition 4.5 Let X, be (X, B (X))-valued random variables, K € K' and
Tn — 00 in probability as n — 00. Assume that

(1) Hy:=o0(mm,n>1)and Hy :== o (K, X,,, n > 1) are independent.
Let H) C 'H; be sub-o-fields and G := o (H} UH,). If K € K'(G) and
(i) X, — K G-stably,

then X, — K G-stably as n — oo.

Proof The system £ := {F1 NF:FleH|, F,e H/z} is closed under finite inter-
sections, 2 € £ and ¢ (£) = G. Thus by Theorem 3.2 it is enough to show that

nlggo Elpnph (XTH) = / lrnp ®hdP @ K

for every F; € H: and h € Cp, (X). For this, let F; € H; and h € Cj, (X) be fixed.
The independence of H/ and H; yields

/1F10Fz QhdP ® K =P(F1)/1F2®th®K.
Let € > 0. By (ii), there exists an N € N such that for every n > N,

‘EIFQh(X,,)—/IFZQbth@K <e.

Furthermore, there exists an Ni € N such that P (1;, < N) < ¢ for every n > Nj.
We obtain for n > Ny, using (i),

‘ElFlﬂFQh (XTn)_/lFlﬁF2®th®K‘

oo

/ lF]ﬁth(Xk) dP_P(Fl)/le ®th®K
{mh=k

k=1
<P (mm <N) ”h”sup

+ Z/ 15 nmh (Xi) dP—P(Fl)/1F2®th®K
k>N {m=

=P (m <N) ”h”sup

+ ZP(FIO{Tn:k})Eleh(Xk)—P(Fl)/lpz®th®K
k>N
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<P(m <N) ”h”sup

HE @rnm = -r@) [1nordrek
k>N

+ZP(F10{T,,=k})‘E1p2h(Xk)—/1F2®th®K‘
k>N
<2P(tpn < N) ”h”sup

+ > P(Fin{m =k ‘Elpzh(Xk) —/1;:2 ®th®K‘
k>N

=€ (1 +2 ||h||sup) )
which completes the proof. ([

Exercise 4.1 Show that in Proposition 4.5 it is enough to assume K € K! (H}) and
X, — K 'H)-stably instead of condition (ii).

Exercise 4.2 Assume X, — X almost surely and 7;, — o0 in probability. Show
that X, — X in probability.

In case H; = 'H;, the G-stable convergence X, — K and X, — K is, by
Proposition 3.5, the same as stable convergence, while in case H’l = H’2 = {0, Q},
G-stable convergence means distributional convergence. So for mere distributional
convergence of X there is no need of stable convergence of X,,. This is different in
the general (dependent) case, where stable convergence plays an essential role. Now
we need the condition 73, /a, — 7 in probability asn — oo for some random variable
n > 0, where a, € (0, 00), a, — oo. For simplicity, we specialize from general
sequences of (X, B (X))-valued random variables to normalized real processes (thus
avoiding explicit use of Anscombe-type conditions); see [9], Theorem 17.1, [2], [13],
Theorem 9.4.3, [32].

Theorem 4.6 Let G C F be a sub-o-field, (X;),>( a path-continuous real process,
X! =n"X,, t >0, n e N, witha € (0,00) and X = C (R). Assume

(1) m/an — nin probability as n — oo

Jfor some R -valued, G-measurable random variable 1 with P (n > 0) > 0

and a,, € (0, 00) satisfying a, — oo. If

(i) X" — K G-stably

for some K € Kl c (R})), then X — K G-stably under Py,~oy as n — oo.

Proof Choose k, € N such that lim,,—, o k, /a, = 1. Clearly, by (i), 7,/ k, — nin
probability. Let ¢ : C (Ry) x Ry — C (R) be defined by

_[box ), ifb >0
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Then ¢ is Borel-measurable, ¢ (X kn Tn/ kn) = X™ and one checks that ¢ is con-

tinuous on C (R4) x (0, 0o). Condition (ii) yields G-stable convergence X kn s K
and hence by Theorem 3.7 (b),

(Xk”, I:—") — K, ==K ®9, G-stably.

n

In particular, we have G-stable convergence under Py,-q; because {n > 0} € G.
Since Pp;-01 Ky (C (Ry) x {0}) = Pp=0y (n = 0) = 0, pis Pyy>0y Ky-almost surely
continuous so that we derive from Theorem 3.7 (c) that

X" = (an’ Z_”) — Kj]’ G-stably under Py;~0) asn — 00.
n

It remains to show that K;f = K Py,-~0;-almost surely. Setting ¢, (x) := ¢ (x, b)
for b > 0, the limiting kernel reads

K ()= (KW, ) ®dyw)” =KW, )", we{n>0}.

Since ¢pop. = @pecand X" = ¢, (X),wehaveforb = N € N, oy (X") = XN —
K G-stably as n — oo while continuity of ¢}, yields py (X") — K¥N G-stably as
n — oo (see Theorem 3.7 (c)). Hence, by almost sure uniqueness of stable limits,
K% = K P-almost surely. Moreover, ¢1/ny (X"N ) = X" — K G-stably while
continuity of ¢ yields /v (X™V) — K*¥VN G-stably so that K¥1/¥ = K P-almost
surely. We obtain K¥» = K P-almost surely for every b € Q, b > 0. Consequently,
there exists a Q9 € G with P (R9) = 1 such that K (w, -)¥» = K (w, -) for every
w e Qo, b e Qb > 0. Since the map (0, c0) — M! (C (Ry)), b — K (w, )%,
is continuous for every w € €2, the above equality holds for all » € (0, oo). This
implies K (w, -)¥1«© = K (w, -) for every w € Q9 N {n > 0} and thus K?,O =K
P> 0y-almost surely. O

One obtains the same result for cadlag processes X and X = D (Ry).

Remark 4.7 (a) Literally the same proof shows that Theorem 4.6 is still true for
(0, 00)-valued random variables 7, where X" = X, /7.
(b) Condition (i) may be weakened. For instance, Theorem 4.6 still holds if (i) is
replaced by
Gy i LIS PR i 1, in probabilit
i=1 i oo i=1 ey g

where m € N, {Gy, ..., G} is a G-measurable partition of 2, ; are R -valued,
G-measurable random variables with P (n > 0) > 0 and a,; € (0, oo) satisfying
api — 00 asn — oo.

Infact,fori € I :={j € {l,...,m}: P(G; N{n > 0}) >0} wehaver,/a,; >
7; in Pg,-probability and X" — K G-stably under Pg, so that by Theorem 4.6 (with
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P replaced by Pg,) X™ — K G-stably under Pg,n(;;>0}. Since Pg,ni;>0) =
PG>0y and

Py=0y = Z Ppy=0) (Gi) PG;nfn>0) »

iel

the assertion follows from Proposition 3.11.

(¢) ([2]) The role of condition (ii) can be further clarified as follows. Assume that X’ is
polish. If X, are (X, B (X'))-valued random variables (like X" in Theorem 4.6) such
that X, — vforsomev € M! (X) and every sequence (7;,) n>1 satisfying condition
(i)’ from (b) withm < 2 and P (n > 0) = 1, then (X,), > must converge G-stably.
Otherwise, by Proposition 3.12, there exists G € G with P (G) € (0, 1) such that

(Pg ”) | does not converge weakly in M! (X). Thus we can find & € Cp, (X) and
n>

subsequences (k) and (my,) of (n) such that

/ h (an) dP — ¢; and / h (an) dP — ¢,
G G

where c1, 2 € R, ¢ # ¢2. The N-valued random variables 7, := m, and o, :=
knlg + my1ge satisfy (i)’ with = 1 and

B (X,,) ~ Eh (%) = [

h (Xx,) dP—/ h(Xm,) dP — c1 —c2 #0,
G

G

a contradiction.

Exercise 4.3 Show that (X,),>| converges stably if and only if X, 4 ) for some
v € M'(X) and all sequences (Tw)p>1 of N-valued random variables such that
Tn — 00 in probability and P|o (7, n > 1) is purely atomic.

Example 4.8 (Classical stable functional random-sum central limit theorem) In the
situation of Example 3.14 let

[7]
X =~ le,-+(t—[t])2m+1 , 120
iz

and X} = n’l/zX,,,, t > 0,n € N. Since X" — v mixing in C (R4) for the
Wiener measure v € M! (C (R..)), it follows from Theorem 4.6 (with G = F) that
X — v mixing under Py, 0y provided condition (i) of Theorem 4.6 is satisfied. In
particular, using Theorem 3.7 (c),

1<
—7 Z Zj=X{"— N(0,1) mixing under Py;-0} .

R
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It is not enough to assume 7;; — o0 in probability as n — o0 in Theorem 4.6.
For instance, if P (Z; = 1) = 1/2, 7; := inf {k >1: Zle Z; = O} and 7, 1=

inf {k > Th_1 : Zf:l Z; = O} forn > 2, then P (1, € N) = 1 and 7, > n so that

Ty — 00 almost surely but Z:”: 1 Zi =0 foreveryn € N. g

Exercise 4.4 Let W = (W;),5( be a (path-continuous) Brownian motion, X f’ =
b= 12Wy,,t > 0,b > 0, and let 7, be (0, co)-valued random variables satisfying
condition (i) of Theorem 4.6 with G = F. Show that X™ — v mixing under Py, o)
in C (Ry), where v = PV e M! (C (R})).

Exercise 4.5 In the situation of Example 4.8 let

Tnzznl{ }+2n1{

25-12;>0 >ia ijo} '

Show that 7, /n LY (01 + 62) /2, but 0’17,1_1/2 Z;”zl Z; does not even converge in

distribution to N (0, 1) asn — oo. Thus in condition (i) of Theorem 4.6 convergence
in probability cannot be replaced by convergence in distribution.

4.3 The Empirical Measure Theorem and the §-Method

The following result (see [7], Corollary 3.16, Theorem 4.7, [31]) allows us to pass
from stable convergence to almost sure convergence and has the Komlés theorem as
its point of departure.

Theorem 4.9 (Empirical measure theorem) If X, — K stably for (X, B (X))-
valued random variables X, and K € K, then there exists a subsequence (X,,) of
(Xy) such that for every further subsequence (Xi) of (Xu), almost surely

1 r
= E 0x ) = K (w,-) weakly (in M! (X)) asr — 00.
r

k=1

The above assertion simply means almost sure convergence of %22:1 0x, to
K when the Markov kernels are seen as (./\/ll X),B (Ml X )))-Valued random
variables. Note that the exceptional null set may vary with the subsequence. In
general, the assertion is not true for (X,) itself (see [7], Example 3.17). However, in
the classical case of an independent and identically distributed sequence (X,,) it is
well known that (X,, — PX! mixing and) almost surely

1 r
= > 6x, W) > PX' weakly as r — oo.
p

n=1
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Proof of Theorem 4.9. Step 1. We rely on the Koml6s theorem: If (f3),>; is a
sequence in £! (P) satisfying sup,~1 E | ful < 00, then there exists a subsequence
(fm) of (f,) and a function f € £! (P) such that for every further subsequence ( fi)
of (fim)

1 r
—E Jr — f as.asr — oo
-

k=1

(see [14], Théoreme 1X.1).

Step 2. Let {h; : i € N}be acountable convergence-determining subset of Cp (X)
for M! (X), that is, the weak topology on M! (X) is generated by the functions
V> f hi dv,i € N. For instance, any countable dense subset of U}, (X , Zl) for some
totally bounded metric d inducing the topology of X has the desired property (see
the proof of Theorem 2.6). If f; , := h; (X;), then sup, | E |f,-,,,| < Nhillgyp < 00.
Applying Step 1 (to ( fi,n)n>1) in a diagonal procedure, we obtain a subsequence

(X,n) of (X,) and functions f; € L' (P) such that for every further subsequence
(Xx) of (Xpm)

1 r
;Zfi*k — fi as.asr — 00
k=1

for every i € N. Setting K, := 22:1 0x,/r this reads fhi x) K (-,dx) — f;
almost surely. The exceptional null set is denoted by Nj. Dominated convergence
yields

lim//h,- (x) Kr(-,dx)sz/fidP
r—00 F F

for every F' € F,i € N. On the other hand, by stable convergence X; — K,

lim /h,- (Xp) dP:/ /h,- (x) K (-,dx)dP
k—oo JF F

and hence

lim //h x) K, (-, dx)dP =/ /h,- (x) K (-,dx)dP
r—00 F F

for every F € F,i € N. Consequently, f; = [ h;(x) K (-, dx) almost surely
for every i € N. The exceptional null set is denoted by N>. We obtain for every
weNfNNjandi e N
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r—00

Iim [ h; (x) Ky (w,dx) = /hi x) K (w,dx)

and thus

1 r
K, (w,-)= - Z‘SXk(w) — K (w,-) weakly
k=1

which completes the proof. O

Exercise 4.6 Let A be countable and dense in X and B the collection of all
finite unions of open balls with centers in A and radius in Q N (0, c0). Asso-
ciate to each B € BB and n € N the function hp, € Cp (X), where hp, (x) :=
1 A ninfyepe d (x, y). The resulting collection of all such functions is countable.
Show that it is convergence-determining for M! (X).

Exercise 4.7 Assume that X is polish. Let K € K! and let X,, be (X, B (X))-valued
random variables such that (PX») _ s tight and for every subsequence (X,,) of
(X5), almost surely

n>1

1 r
- Z‘sXm(w) — K (w,-) weaklyasr — 00.
,

m=1
Show that X,, — K stably.
The §-method with random centering needs stable convergence.

Proposition 4.10 (5-method) Let G C F be a sub-o-field, g : RY — R continu-
ously differentiable and a, € (0, 0c0) with a,, — oo asn — oo. If

an (Y, —Y) —> X G-stably
for RY-valued random variables X, Y, and Y, where Y is G-measurable, then
an (9 (Yn) —g(¥)) — (Vg (Y), X) G-stablyasn — oo.
Proof The mean value theorem implies that
an (g (Yp) =g (¥)) = (Vg &) .an ¥Yn = Y)) =(Vg(¥),an Yy —Y)) + Ry
forsomemapé,, : Q — R4 (notnecessarily measurable) with ||§, — Y || < ||Y,, — Y|
everywhere on 2, where R, := (Vg (§,) — Vg (Y), a, (Y, — Y)) (which is measur-

able) and ||-|| denotes the euclidean norm on RY. By Theorems 3.17 and 3.18 (b), (¢),

(Vg Y),a, (Y, — Y)) — (Vg Y), X) Q-stably.
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In view of Theorerr; 3.18 (a) it remains to show that R, — 0 in probability.
Since a, (Y, —Y) — X, we have ||Y,, — Y| — O in probability. Let £ > 0 and
0 < N < oo be arbitrary. The map Vg is uniformly continuous on the compact
subset By := {x € RY: x| < N+ 1} of R? so that there exists a > 0 such
that | Vg (x) — Vg ()|l < e/N forall x,y € By with ||x — y|| < . On the event
(IR, >} N{IIYIl < N}yN{a, Yy, — Y| < N} we have, by the Cauchy-Schwarz
inequality,

€ <|Rul =IVg (&) = VgMllan IYn — Y| = IVg (&) — Vg ()N

so that |Vg (&,) — Vg (Y)|| > £/N. Moreover, on this event we have [|§, — V|| <
Y, — Y| < N/a, < lforalllargen € N,whichimplies¢,, Y € By.Consequently,
0 < 1€ = Y| < |IY, — Y|, yielding, for all large n € N,
{IRn] > e} C {IRul > e} N{IIYI = N}Nfan 1Yy — Y| < N}
ULIIYIl > N}Ufan 1Yy — Yl > N}
C{llYy =Yl > U{lIIYll > N} U{an Y, — Y| > N} .

Therefore, for all large n € N,

PRl >e) = P(IYu =Y >0+ PUYI>N)+P@ Yy —Y[|>N).

. . d .
From ||Y, — Y| — O in probability and a, ||Y,, — Y|| — || X| we obtain, by the
Portmanteau theorem,

limsup P (|R,| > ) < P(|Y] > N) + P (| X[| = N)

n—o0

forevery e > 0and 0 < N < oo. Letting N — oo yields the assertion. ]

Remark 4.11 (a) For G = {@, Q} Proposition 4.10 reduces to the usual §-method for
convergence in distribution in which Y is almost surely constant.

(b) To see that the J-method for convergence in distribution does not in general work
with random centering we consider the probability space and sequence (X;),>1
from Example 1.2. For any sequence b, € (0, co) with b,, — o0 as n — 0o we set
Y, = bn_an + Y, where Y is as in Example 1.2. Then

bn(Yn—Y)zX,,—d>X1 asn — 00.
For the continuously differentiable function g (x) = x2, x € R, we have

by (g (Yy) —g(Y) =b, ' X2 +2X,Y foralln > 1.
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Now (b, IX%)P] converges almost surely to zero because b, — oo asn — oo
and |X,| < 1, and the sequence (Y X},),,~ does not converge in distribution as seen
in Example 1.2, if the sequence (ay),> used to define the random variables X, is
not convergent. Thus, the random variables b, (g (Y,,) — g (Y)) do not converge in
distribution.

Random centering occurs, for example, in connection with exchangeable
processes; see Corollary 6.27. Stable convergence in connection with random nor-
malization occurs in various subsequent chapters.


http://dx.doi.org/10.1007/978-3-319-18329-9_1
http://dx.doi.org/10.1007/978-3-319-18329-9_6

Chapter 5
Stability of Limit Theorems

In this chapter we present some first results on the stability of limit theorems taken
from [28] (see also [79, 100]). More precisely, we derive simple sufficient conditions
for distributional limit theorems to be mixing.

To this end, let Z,, be (Z, C)-valued random variables for some measurable space
(Z,0)and f,, : (Z",C") — (X, B (X)) measurable maps forevery n € N, where we
need a vector space structure for X. So, let X’ be a polish topological vector space (like
RZ, C ([0, T]) for0 < T < oo or C (Ry)). Then there exists a translation invariant
metric d on X inducing the topology ([86], Theorem 1.6.1) so that U, — V;, — 0O in
probability for (X, B (X))-valued random variables U, and V,, means d (U,, V) =
d (U, — V,, 0) — 0 in probability or, what is the same, E (d (U, V,) A1) — 0.

Furthermore, let b, € X and a, € (0, c0). We consider the (X, B (X))-valued
random variables

1
Xn = a_(fl’l (Zla"'vzn)_bn)

for n € N and assume X, —d> v for some v € M! (X). The tail o-field of Z = (Z,)
is given by

o
TZ:mO’(Zk,an).

n=1

Proposition 5.1 Assume X, L and

(1) foreveryk € N,

1
— (n (Z1y .o Zn) — fo—k Zks1s .., Zy)) = O in probability asn — oo,
ap
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(i) Tz is trivial, i.e. P (17) = {0, 1}.
Then X,, — v mixing as n — 00.

Proof Since (PX) _ is tightin M' (X), (X,,),> has a stably convergent subse-

quence by Proposition 3.4 (a). Let (X,,) be any subsequence of (X,) with X,, - K
stably forsome K € K!andfork € N,let X,, (k) := (fin—t (Zis1s---+ Zm) —bm) /
am, m > k. Distributional convergence X,, — v yields PK = v. By (i), we have
Xm — Xm (k) — 0 in probability as m — oco. Consequently, by Theorem 3.7 (a),
Xm (k) — K stably as m — o0o. Now, X, (k) is Hjy41-measurable, where Hy :=
o (Z;j, j = k), so that by Propositions 3.4 (b) and 3.5, X,, (k) — E (K |Hy41) stably
as m — o0o. The P-almost sure uniqueness of stable limits yields K = E (K |Hg+1)
P-almost surely for every k € N. Letting H := E (K|7z), the martingale conver-
gence theorem and Lemma A.7 (c) imply for every B € B (X)

K(,B)=E(K (-, B)|His1) > E(K(,B)|Tz) =H(-,B) P-as.

as k — oo and hence, K = H P-almost surely by Lemma 2.1 (b). Therefore, by
(i), K is P-almost surely constant and thus K = PK = v P-almost surely. Thus
all subsequences of (X,) which converge stably, converge mixing to v and so the
original sequence must converge mixing to v. g

Condition (ii) in Proposition 5.1 is met for independent sequences (Z,),,~ by the
Kolmogorov zero-one law. In this case, for instance, the choice (Z, C) = (R, B (R))
and f, (21, ...,22) = >, zi yields Example 3.13 (a).

Triviality of the tail o-field may be characterized by asymptotic independence in
the following sense (see [11]).

Lemma 5.2 Let Fy = o (Zy,...,Z;) and Hy = o (Zj,j > k) Then the
assertions

(i) P(7z) =1{0,1},
(ii) forevery G € Ure; Fr,

lim sup |P(FNG)—P(F)P(G)| =0,

n— 00 FeH,
(i) forevery G € F,
lim sup |P(FNG)— P (F)P(G)| =0
n—o0 FeH,
are equivalent.

Proof (i) = (iii). Let G € F. The martingale convergence theorem and (i) yield
P (G|H,) — P (G|Tz) = P (G) in L' (P). Consequently, for every F € H,,
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|P(FﬂG)—P(F)P(G)|=‘/ (lG—P(G))dP'
F

/ (P (G[Hy) — P (G)) dP
F

s/|P(G|Hn) _P(G)| dP— 0,

hence (iii).

The implication (iii) = (ii) is obvious.

(i) = (). Let F € T = ﬂ?ozl H; with P (F) > 0and G € &€ := ;2| Fk
with P (G) > 0. Then for every n € N

|PG (F) — P (F)| =

P(DNG)—P(D)P(G)] .
P(G)Ds;lgnl ( ) — P (D) P(G)]

Condition (ii) yields Pg (F) = P (F) or, what is the same, Pr (G) = P (G).
Clearly, this also holds if P (G) = 0. We obtain Pr = P on the field £ and thus on
o (£) = H;. Consequently, P (F) = Pr (F) = 1 because F € o (£). (I
Second proof of Proposition 5.1. Let G € F with P(G) > 0 and ¢ > 0. By
(i1) and Lemma 5.2, there exists a k € N such that SUP et |Pg (F) — P (F)| <e,
where Hy = o (Zj,j > k) Forn > k,letY, := (fu—k (Zk+1, ..., Zyn) — by) /ay.
By (i), we have X,, — Y,, — 0 in probability so that ¥, — v asn — oo. Now for all
closedsets B C X wehave {Y,, € B} € Hy andhence P; (Y, € B) < P (Y, € B)+
¢ for every n > k. The Portmanteau theorem yields lim sup,_, ., Pg (¥, € B) <
v (B) + ¢ and letting ¢ tend to zero gives lim sup,,_, o, PG (Y, € B) < v (B). Using
again the Portmanteau theorem, this implies Pé" — v weakly and thus Pg” —> v
weakly. The assertion follows from Corollary 3.3. (]

Exercise 5.1 ([92]) Assume Z, —d> v, where Z is a polish space and C = B (2),
and condition (ii) of Proposition 5.1. Show that Z, — v mixing.

The process Z = (Z,),> is called stationary if PS?) = PZ on the o-field C,
where S : ZN — ZN, §((2),en) = (@n41)pen denotes the shift operator. Clearly,
Sis (CN, CN)-measurable. Let CN (S) := {D € ¢ : D = 7! (D)} denote the o-
field of invariant measurable subsets of ZN and for O € M! (ZN), cN e, 0) =
{DecN: 0 (DAS! (D)) =0} is the o-field of Q-almost invariant measurable
sets. If 05 < Q, we have cN(s) =N s, Q) Q-almost surely, that is, for every
D € CN (S, Q) there exists a set C € CN (S) such that Q (DAC) = 0. In fact, if
DeCN(S,0)and §" = $" ' o S, then O (DA (sm~! (D)) =0foreveryn € N
because Q% « Q. Defining C := lim SUP,_ oo S"~1(D) yields C € CN (S) and
DAC c U, DA (")~ (D), hence Q (DAC) = 0.

A stationary process Z is said to be ergodic if Pz (CN (S, PZ)) = {0, 1} which
is equivalent to PZ (CN (S)) = {0, 1}. Since Z~! (CN (8)) C 7. asymptotic inde-
pendence of Z in the sense of Lemma 5.2 implies ergodicity.

We only need quasi-stationarity of Z, that is PS¥) <« PZ.
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Proposition 5.3 Assume that Z = (Zp),en IS quasi-stationary. Assume further

X —d> v and
1
O —(nZiy...nZy) — fu(Za, ..., Zys1)) = O in probability asn — oo,
an
(i) PZ(CN(S)) =1{0,1}.
Then X,, — v mixing as n — oo.
Since Z~! (CN (S)) C 7z, condition (ii) in Proposition 5.3 is weaker than con-

dition (ii) in Proposition 5.1.

Proof Step 1. First, we consider the canonical model (ZN, cN, p? ) with projections
T, zN 5 =, Letting Y, := (f, (71, ..., ) — by) /a, we will show that Y, — v
mixing under PZ as n — oo. For this, let (Y,,) be any subsequence of (¥,) with
Y,y — K stably under PZ for some K € K' (CN, X). As in the proof of Proposition

. . d ;
5.1, it is enough to show K = v PZ-almost surely. Since X,, — v and (PZ)Y =

PXr, we have Y, < under PZ and thus PZK = v. Condition (i) implies
1 o L
— (fu (T, ..oy m) — fu (2, ..., Tpy1)) — 0 in P“-probability .
[

Hence, Y, — Yo S — 0in P% -probability so that by Theorem 3.7 (a), ¥;, 0 S — K
stably under PZ as m — oo. On the other hand, we have Yy oS — K o S stably
under PZ, where K o S(z, B) := K (S(2),B), z € zZN B ¢ B (X). In fact, by
Theorem 3.2 and quasi-stationarity (PZ)S = P3? « PZ,Y, — K stably under
(PZ)S. This implies, for every C € S~! (CN), C = S~ 1 (D) with D € CN and
h e Cp(X),

/h(YmoS) szz/ h(Ym)d(PZ)S
C D

S
—>/1D®hd(PZ) ®K=/lc®thZ®KoS.

Hence, again by Theorem 3.2, ¥, 0 S — Ko § §~! (CN)-stably under PZ. Since
the maps Y, o S are s-1 (CN)—measurable, it follows from Proposition 3.5 that
Y, 0S8 — K o S stably under PZ.

Now, almost sure uniqueness of stable limits yields K o § = K PZ-almost surely.
Therefore, K is CN (S, PZ)—measurable because for all A € B(R), B € B(X)

(K(,B)e AYAST"({K(\B)e A) C{KoS #K}.

Consequently, by (ii) (which is the same as PZ (CN (S, PZ)) = {0, 1}), K must be
PZ-almost surely constant and thus K = v PZ-almost surely.
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Step 2. Let G := o (Zy,n>1) = Z~'(CN). Then it follows from Step 1
and Theorem 3.2 that X,, — v G-mixing because for every G € G, P(G) > 0,
G = Z7'(D) with D € CN, we have P}" = (PZ))L;". Since the maps X,, are
G-measurable, Proposition 3.5 yields X,, — v mixing. ([

Remark 5.4 One may consider even more general maps f;, in Proposition 5.3. In
fact, Proposition 5.3 still holds for £, : (2, CN) — (X, B (X)) and condition 5.3
(i) replaced by

i (fn ((Zj)jzl) = fn ((Zj)jzz)) — 0 in probability as n — oo

This is obvious from the proof of Proposition 5.3.
Most applications are for stationary ergodic processes.

Example 5.5 Let (Zy),> be a stationary and ergodic real process and X' = Z = R.
(a) If X, := (Z'}:l Zj— b,,) /an —d> v and a, — 00, then X;, — v mixing. This
follows from Proposition 5.3 because

n+1 1

Z Zj| = — (Zi — Zy41) — 0 in probability
an

j=2

l n
wl| P2

by stationarity. (As for X, —d> v see e.g. [41], Chap.5.)
b If X, = (maxofjfn Z{:] Z; — bn) /ay —d> v and a, — oo, then X,, — v
mixing. In fact, one checks that

j

| 4 1
— | max Z; — max E Zi| < —(Z11+1Zps1) — O
i=2 Gn

a, |0<j<n“ ] 1<j<n+1
1=

in probability so that the assertion follows from Proposition 5.3.

o IfX, = (maxlSiSn Z; — bn) /an i v and a, — oo, then X,, — v mixing.
This follows again from Proposition 5.3 because

1 1
— |max Z; — max Z;| < —|Z; — Z,+1| — 0 in probability. O
dn

ay |1<i<n 2<i<n+l1

The condition a,, — oo in Example 5.5 (c) excludes most extreme value distrib-
utions v. So let us explore this situation further.
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Example 5.6 Let (Z) jen be a sequence of real random variables. In order to estab-
lish mixing convergence of the normalized maxima a,; 1 (maxlf j<n Zj — bn) with
real constants a,, > 0 and b, for all n € N via Proposition 5.1, we set

fu(z1, ..., 2p) == max z; forallzy,...,z, € R
1<j<n ~

sothatforallk e Nandn > k + 1

a, \1<j<n k+1<j<n

1 1
a_(fn(Zlv---,Zn)_fn—k(Zk—Hw--,Zn)):_(max Z; — max Zj)-
n

(a) If a, — oo as n — oo, then condition (i) of Proposition 5.1 is satisfied
without further assumptions on the sequence (Z j)jeN' For a proof observe that

(max1 <j<n Z j)n < 1s a nondecreasing sequence of real random variables so that for
every o € Q the limit

Zyo (w) = lim max Z; (w)
n~>oo]5j§n

exists with Z, (w) € (—00, oo]. Let k € N be arbitrary. We consider two cases.

Case 1. Zo (w) = 00. Since maxi<j<x Z; (w) < 00, there exists an ng (w, k) € N
with ng (w,k) > k + 1 and maxi<j<x Z; (0) < maxi<j<, Z;j (w) for all n >
ng (w, k). Hence for all n > ng (w, k)

max Z;(w) < max Z;(w) = max Z;(w)V max Z;(w)= max Z;(w
1<j=<k i @) l<j=n i (@) 1<j<k i @) k+1<j<n i (@) k+1<j<n i (@)

so that

1
_ ( max Z; (w) —k+1}1521;(§n Z; (a))) =0.

ay \I<j=n

Case 2. Z (w) < 0o. By monotonicity, the limit

Zook (@)= lim max Z; (o)
n—>o00k+1<j<n

exists with —00 < Zi41 (0) < Zoo k (@) < Zo (w) < 00 so that, because —00 <
Z1 (w) < Z (w) < o0 and a;, — 00,

1
— | max Z;(w)— max Z;(w)) —> 0 asn— oo.
ap, \1<j<n k+1<j<n
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Thus we have verified condition (i) of Proposition 5.1, and a,, — oo is used only
in case 2 of the argument. Therefore, if a, — oo, then for any sequence (Z f)j eN

with trivial tail-o-field and an_l (maxlsjs,, Z;— bn) —d> v for some v € M! (R),
this convergence is automatically mixing by Proposition 5.1.

(b) The simple argument from (a) to establish condition (i) of Proposition 5.1 does
not work if a, does not converge to infinity. For an example, let (Z j)jeN be a

sequence of independent random variables with P%! = U [3,4], P = U[1,2]
and P%4i = U [0, 1] for all j > 3. Then maxi<;<, Z; = Z; forall n € N so that

1
—(max Zj—b,,>—d>U[3,4] asn — 0o

ap \1<j<n

with a, = 1 and b, = 0 for all n € N. On the other hand, max,<;<, Z; = Z for
all n > 2 so that

1
—(fn(Zl,...,Zn)—fn_l (Zz,...,Z,,)) = max Z;— max Z;=7Z1—Zy>1,
an I<j=n 2<j=n
showing that condition (i) of Proposition 5.1 is not satisfied. Because (Z f)j oy hasa
trivial tail-o-field, all the other assumptions in Proposition 5.1 hold. In fact, we have
maxi<j<, Z; —> &z, stably.

(c) If the sequence (Z i)jeN is independent and identically distributed and a, !

(maxi<j<p Zj — by) 2 ) for some v € M! (R) which is not a Dirac-measure,
then condition (i) of Proposition 5.1 is satisfied for all sequences (a,),cn, that is,
also without the assumption that a, — oo for n — oo. Therefore, the conver-
gence an_l (maxlfjfn Zj— b,,) — v is mixing by Proposition 5.1. For a proof,
let F denote the distribution function of Z; and introduce the right endpoint
xT = inf{x € R : F(x) = 1} of the support of F, where inf) = oo. Note
that for all x < x* we have F(x) < 1 so that

n
P(lg?zansx)zP Q{ngx} =Fx)" =0 asn — oo.
j=

This proves maxj<j<, Zj — x in probability as n — oo. But for non-decreasing
sequences of random-variables like maxi<;<, Z; convergence in probability and
almost sure convergence are equivalent so that we also have maxj<j<, Z; — x*
almost surely. If x™ = oo, then the argument of case 1in part (a), which does
not require a, — 00, applies and establishes the desired result. Therefore, assume
xT < 00.Then F(x*—0) = lim4 .+ F(x) = 1. To see this, assume F (x T —0) < 1.
Because maxj<j<, Z; 1 x* almost surely a nondegenerate weak limit means that
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there exist norming constants a, > O suchthata, — 0and (x+ —maxXi<j<u Z j) /an
has a nondegenerate weak limit. Clearly, for all x > 0

+ _ . .
P (x ma;(lfjfn Zj > x) =F (x+ — anx)n <F (x+ — 0)" .
n

If F ()c+ — O) < 1, then the right-hand side converges to zero as n — 00, a contra-
diction.

Now F (x* —0) = 1 = F (x*) implies that, forall k € N, maxj<j< Z; = x ™"
can occur only with probability zero so that maxj<j<x Z; < x T almost surely. In
view of maxi<j<, Z; — x almost surely we see, by the argument used in case 1 of
part (a), that for almost all w € 2 there exists anng (w, k) € Nwithng (w, k) > k+1
and max<j<; Z; (®) = maxXgti<j<p Z; () for all n > ng (w, k) which gives

1
— | max Z; — max Z; =0
ap (lfj;(n J (a)) k+l§;(§n 1 (a)))

for all n > ng (w, k) and almost all @ € 2. This completes the proof. U

Example 5.7 Let (Z f)j>1 be a stationary and ergodic real process with Z| € L (P)

with1 < p < 00, EZ; =0, Z = Rand X = C (I) with I = [0, T] or R,.
If

[n1]
f" ((Zj)jzl) = sz + (nt — [nt]) Z[nt]+1 s

j=1 tel

Xy = [ ((zj)jzl)/an < ) for some v € M!(C(I)) and n'/P = O (ay),

then X, — v mixing. (As for X, —d> v see e.g. [9], Theorems 20.1 and 23.1, [41],
Sect.5.4). Infact,if I =[0,T], T € (0, c0), we have

In ((Zj)jzl) —Jn ((Zj)jz2)

in probability, because for ¢ > 0,

1 m
P{—— max |Zj|>¢) =P {|Zi|>8ml/p} 5mP(|Z1|>sml/”)
ml/P 1<i<m ~

1

1

an

4
<— max |Zi]|—0
sup ay 1<i<nT+2

1
:mP(|Z1|p>8Pm)§—/ |Z1|P dP — 0
ep {1Z11P>ePm}

as m — oo. The assertion follows from Proposition 5.3 and Remark 5.4.
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In case I = R we obtain

1
e (%0 210 ((2),25))
= iZ_kE( sup
k=1

t€[0,k]

Xoi =2 £((2) 22),

/\1)—>0

so that again Proposition 5.3 and Remark 5.4 yield the assertion. (The assertion also
follows from Corollary 3.23.) (I

Exercise 5.2 Let (Z,),cn be a stationary ergodic process, where Z is a separable
metric space and C = B (Z). Prove that Z, — P%! mixing as n — 0o0.

Exercise 5.3 Let (Z,),cn be a stationary ergodic process, X = R, b, € R,
a, - ooand g : (Z,C) — (R, B(R)) a measurable function satisfying X, :=
(Z’;’:l 9(zj) - bn) /an “ ). Show that X,, — v mixing as n — oo.

Exercise 5.4 (U-statistics) Let (Z,),cn be an independent and identically distrib-

uted sequence of (Z, C)-valued random variables, g : (Zz, Cz) — R,BMR)) a
measurable symmetric function such that g (Z1, Z,) € L2 (P),

U, = (Tl) Z 9(Zi,Z;)

2) 1<i<j<n

forn > 2and ¢ := EU,.Furthermore, let g1 (z1) := Eg (z1, Zg),ol2 := Var g (Z1)
and 022 := Varg (Z1, Z2).

Prove that n'/? (U, — #) — N (0,40}) mixing and in case o} = 0 < o7,
n (U, —©®) — v mixing as n — oo with the distribution v of ijl Aj (sz — 1),
where (N;) .,
distributed random variables and (A j)j>1
T:L?*(P%) — L?(P%),Th:= Eh(Z))(g(Z1,") — ).
Hint: [64], Kapitel 10.

is an independent and identically distributed sequence of N (0, 1)-

are the nonzero eigenvalues of the operator

The last result demonstrates the role of a nesting condition on filtrations for the
stability of limit theorems in the case of a function space like X = C (Ry). We
consider the case of special identically distributed processes.
Theorem 5.8 Ler X = C (Ry). Forn € N, let F* = (F}'),_,

F, Wt = (th),>o a (path-continuous) F"-Brownian motion and t,, : Q@ — R4 a
(finite) F"-stopping time such that T, — 0 in probability as n — oo. Let

g::a(fj ﬂf;")

n=1lm=>n

be a filtration in
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Then W" — v G-mixing as n — 00, where v = PV e M! (C (Ry)).

Recall that 77 = {FeFL :Fn{z, <t} e Fforallt > 0}, where Fl :=
o (UIZO Fr) -

Proof Let V' := Wg ., — Wl ¢ : C(Ry) x Ry — R, ¢ (x,1) := x(¢) and
Y CRy) xRy — CRy), ¥ (x,1) := x(t+-) — x(-). We identify R with
the constant functions in C (R4). Then ¢ and ¢ are continuous and W”" — V" =
0 (W, 7,) — ¥ (W", 1,). Using 7, — 0 in probability, we have (W", 7,) > v ®
5o s0 that @ (W™, 7,) 5> (v ®80)? = 8o and ¥ (W", ,) > (v @30)? = 6.
Consequently, d (W", V") — 0 in probability as n — oo. Hence by Theorem 3.7
(a), it is enough to show that V" — v G-mixing. Note that by the strong Markov
property V" is a Brownian motion independent of 7 (see e.g. [S1], Theorem 13.11).
Forn € N, let G, := (=, For. Then (Gy),>1 is a filtration in F with G, C F}.
and Goo = 0 (UZil gn) = G.For F € G with P (F) > 0 we have by the martingale
convergence theorem P (F|G,) — 1p in L' (P) which implies

|E (h (V") P (FIG) — E (h (V") 17)| < Ihllsup E |P (FIGy) — 15| — 0

as n — oo for every h € Cjp (C (Ry)). Now, using the independence of o (V") and
G, we have

E(h (V") P (FIGy) = Eh (V") P (F) :/hva(F)

for every n € N. Thus we obtain P;/ QRS weakly. The assertion follows from
Corollary 3.3. (]

Corollary 5.9 In the situation of Theorem 5.8 assume a nesting condition of the
filtrations: For every n € N there exists a (finite) F"-stopping time 7, : Q@ — Ry
such that

(i) t, — 0in probability as n — oo,
(ii) .7:?" c Frtl for everyn € N, that is, (f

Tn+1 '?n)nzl
(iii) o (Uflozl an) =0 (UZOZI FL), where FI' := o (U,Zo ]—',")

Then W" — v mixing as n — o0.

is a filtration in F,

Proof Theorem 5.8 and Proposition 3.5. (]

Theorem 5.8 and Corollary 5.9 are very basic results on the stable convergence of
semimartingales. Corollary 5.9 has been established in [99] while the generalization
in Theorem 5.8 is contained in [71].
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The above nesting condition is undoubtedly very restrictive. It is, however, met
in the important case of the type of Example 4.3 where W;' = n 2w, I F o=
o (W, s <t)and F}' := Fy;, then the nesting condition is met, for example, with
T, = n=1/2,

General results on the stable convergence of sequences of semimartingales with
applications to stable convergence of discretized processes (without any nesting
condition) can be found in [60], Chap. 7, [50], Sections VIIL.5 and IX.7, [46, 47, 49].

An application of the preceding corollary can be found in Chap.6. Automatic
stability also occurs in classical central limit theorems for martingale arrays under a
nesting condition as is demonstrated in the next chapter.
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Chapter 6
Stable Martingale Central Limit Theorems

Martingale central limit theorems are a generalization of classical central limit
theorems for sums of independent random variables which have found a wide range
of applications. In this chapter we will discuss the basic results with stable conver-
gence in view and will illustrate them with some examples. Further applications will
follow in subsequent chapters.

We begin with a fundamental stable central limit theorem for martingale difference
arrays.

6.1 Martingale Arrays and the Nesting Condition

For every n € N let (X;x)1<k<x, be a sequence of real random variables defined
on a probability space (2, F, P), and let (Fux)o<k<k, be a filtration in F, i.e.
Fno C Fur C -+ C Fuk, C F. The sequence (X,k)<k<k, is called adapted to
the filtration (Fuk)o<k<k, if Xnk is measurable w.r.t. Fyy for all 1 < k < k. The
triangular array (Xyx)i<k<k, neN Of random variables is called adapted to the tri-
angular array (Fuk)o<k<k, neN Of o-fields if the row (Xpx)1<<x, 18 adapted to the
filtration (Fuk)o<k<k, for every n € N. Not all of the following results of a more
technical nature require the assumption of adaptedness. Therefore, we will always
state explicitly where adapted arrays are considered.

An array (Xpnk)1<k<k, neN adapted to (Fuk)o<i<k, neN i8 called a martingale
difference array if X, € Ll (P) with E (Xnk|-7:n,k—l) =O0foralll <k <k, and
n € N, which means that for every n € N the sequence (Xpx);<k<k, is a martingale
difference sequence w.r.t. the filtration (F,x)o<k<k,. A martingale difference array
is square integrable if X, € L2(P) forall 1 < k < k, and n € N. Note that
a martingale difference sequence or array is always by definition adapted to the
o-fields under consideration.
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From now on, we assume that the sequence (k,), < is nondecreasing with k, > n
for all n € N. We always set Foo = 0 (UZO:1 ]—",,k"). The array (Fuk)o<k<k,.neN 18
called nested it F,x C Fp+1.x holds foralln € Nand 0 < k < k;,. The subtle role of
this property of the o-fields in stable martingale central limit theorems will become
evident in the sequel.

Our basic stable martingale central limit theorem reads as follows.

Theorem 6.1 Let (Xyur)|<k<k, .neN be a square integrable martingale difference
array adapted to the array (Fui)o<k<k, neN- Let Gux = ) Fmk forn € N and

0 <k <knandG = o (U=, Gur,). Assume that

m>n

k"
N) ZE (szlfn,k—l) — 772 in probability as n — 00
k=1
for some G-measurable real random variable 1 > 0

and

kll
(CLB) > E (X2l Fkt) = O in probability as n — oo
k=1
forevery € >0

(conditional form of Lindeberg’s condition). Then

kl'l
ZX,,k — nN G-stably asn — 00,
k=1

where PN = N (0, 1) and N is independent of G.

The assertion may be read as

kn
ZX”" — N (O, 7]2) G-stably asn — o0.
k=1

Remark 6.2 (a) By construction (Guk)o<k<k, .neN 1S @ nested array of o-fields with
Guk C Fux foralln e Nand 0 < k < k,.
(b) If n? is constant, then G-measurability of > is immediate, and ZI;”: | Xuk — NN

G-stably implies Zi”: 1 Xnk LY nN as n — oo. Therefore, Theorem 6.1 contains
the classical central limit theorem for martingale difference arrays in which 7? is a
constant as a special case.

(o) If 772 is Fpo-measurable foralln > ngand someng € N, thenitis G,,0-measurable
and hence G-measurable. Measurability of 7> w.r.t. Nyon , Fno has sometimes been
used as an assumption in stable martingale central limit theorems.
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(d) The nesting condition which is satisfied in most applications yields full stable
convergence. In fact, if (Fux)o<k<k,.neN 1S nested, then G,x = Fy foralln € N and
0 < k < k;;, and measurability of 772 w.r.t. G = F can be assumed w.l.0.g.

Corollary 6.3 (Random norming) In the situation of Theorem 6.1 assume
P (n* > 0) > 0. Then

—1/2

kll n
(Z E (Xﬁk|fn,k_1)) Z Xuk — N G-mixing under P{nz>0}
k=1

k=1
asn — oQ.

Proof Applying Theorem 3.18 (b) to the assertion in Theorem 6.1 and condition (N),
we obtain

kll
(Z Xk, ZE ( %k|fn’k_1)) — (77N, 7)2) G-stably asn — o0.

Because {n* > 0} € G this implies

(Z Xk, Z E ( 5k|-7:n,k—1)) — (nN, 772) G-stably under P{nz>0}
k=1
as n — 00. The function g : R x R — R with

] x/ y >0
g(x,y>.—[ ey

(nN.72)

is Borel-measurable and P{ 220} -almost surely continuous so that by
Theorem 3.18 (¢)

kll kll
(Z Xk, ZE (x ﬁklfn,k_l)) —g(aN.) =N
k=1
G-stably as n — oo under Py,2_ ¢y -

Since N and G are independent, the convergence is G-mixing. O

Corollary 6.4 (Random time change) For every n € N, let (Xni)ren be a square
integrable martingale difference sequence w.r.t. the filtration (Fuy)g>o, and let 7, :
Q — Ny be a (finite) stopping time w.r.t. (Fur)gso. For n € N and k > 0 set
Gk = mmZn Fmkand G = o (UneN gnoo): where Gpoo = 0 (U](:i() gnk)- If
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http://dx.doi.org/10.1007/978-3-319-18329-9_3

70 6 Stable Martingale Central Limit Theorems

Tn

(N,) Z E (X;%k|-7:n,k—l) — n? in probability as n — 00
k=1
for some G-measurable real random variable n > 0

and

Tn
(CLB,) D E (X,%kl“ X”k,zg}m,k_l) — 0 in probability as n — 00
k=1
for everye > 0,

then

Tn
ZX”" — NN G-stably asn — o0,
k=1

where PY = N (0, 1) and N is independent of G.

Proof Since T, is a finite random variable for every n € N, there exists some k,, € N
with P (7, > k,;) < 1/n. Inductively, we can construct the k,, nondecreasing with
kn = nforalln € N.Theno (U, ey Gnk,) = G.Forn € Nand 1 < k < ky set Yy :=
Xk Lk <r,}- Since 7, is a stopping time W.r.t. (Fuk)g>0, the array (Ynr)1<ix<k, nen 18
a square integrable martingale difference array w.r.t. (Fux)o<k <k, .neN- On the event
{tn < k,} we have

kn kn AT T

E (Vi Fuior) = 2 E (X2l Fawr) = D E (Xl Foir )

k=1 k=1 k=1

so that, for every € > 0,

(

which proves

kn Tn

ZE (Ynzk|‘7:n,k_1) — ZE (X,%k|]:n,k—l)

k=1 k=1

1
Zg)SP(Tn>kn)§_

n

kn Tn

> E(Y2lFuk1) = D E (X2IFak1) > 0 in probability as n — oo
k=1 k=1

and thus

kn
Z E (Ynzklfn,k—l) — 7)2 in probability as n — oo.
k=1
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On the event {7;, < k;} we also have

kn ATy

kn Tn
D Y= D Kok =D Xut
k=1 k=1 k=1

so that, by the same type of argument as above,

kn Tn
Z Yk — ZXnk — 0 in probability as n — oo .
k=1 k=1

Finally, for all € > 0, using Y| < | Xk,

k’l
> E (Yfkl{wnuzs}lfn,k_l)
k=1
kn ATy -
< Z E (XZkl{‘XnHZE}'Fn,kfl) < E (X%k1{|xnk|2€}|fn,k71)
k=1 k=1

which implies

ky

E (Y,,zkl{|Y,1k|zs}|.7:n,k—1) — 0 in probability as n — oo
k=1

for all € > 0. Therefore, Theorem 6.1 yields

kn
Z Y.« — nN G-stably asn — oo,
k=1

and, using Theorem 3.18 (a), we conclude

Tn
ZX”k — NN G-stably asn — oo. 0
k=1

The preceding corollary implies, for instance, the non-functional part of
Example 4.8 for stopping times.

As for the proof of Theorem 6.1 we demonstrate that the Lindeberg method works
in a basic general setting (see Step 1 of the proof). We require some technical results
which will also be useful later. Note that in these statements adaptedness is not
required.
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Lemma 6.5 Let (Xuk)1<k<k, neN be an array of nonnegative integrable random
variables, and let (Fui)o<k<k, neN be an array of o-fields. Then

k”
Z E (Xuk|Fuk—1) = O in probability as n — 0o
k=1

implies
kn

ank — 0 in probability as n — oo .
k=1

Proof Forevery n € N
k
m=max §k €{0,1,... kn}: ZE (Xnj|Fnj—1) <1
j=1

is a stopping time w.r.t. the filtration (Fx)o<k<k,- From X" | E (Xpi| Fup—1) <

f":] E (X,,k|}",,,k_1) and ZZ”ZI E (Xnk|]-'n,k_1) < 1 forall n € N as well as the
assumption of the lemma we obtain by dominated convergence that

Tn Tn
E(Z X,,k) = E(Z E (X,,k|,7-"n,k1)) —~0 asn — oo
k=1 k=1

so that, in particular, >_;" | X, — 0 in probability. For every ¢ > 0 we have
kn Tn

P( ank - ank = 5)
k=1 k=1

kn
< P(my <ky) = P(ZE (Xnku:n,kf]) > 1) — 0
k=1

as n — 0o, which completes the proof. (]

Exercise 6.1 Deduce Lemma 6.5 in the adapted case from the Lenglart inequality
in Lemma A.8 (a).

Proposition 6.6 Let (Xy1)1<k<k, neN be an array of integrable random variables,
and let (Fui)o<k<k, neN be an array of o-fields. Then
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ki
(CLB,) ZE (IXnkl 1 X122} Frk—1) = O in probability as n — oo
k=1
foreverye > 0

(an L -version of (CLB)) implies

max |Xux| — O in probability asn — o0.

1<k<k,
Proof From the assumption and Lemma 6.5 for all € > 0 it follows that

kl’
Z | Xuk| 1{1x,41>c} — O in probability as n — 0.
k=1

But for all ¢ > 0 and n € N we have
kn
P (lg]lcaf);n [ Xkl > E) < P(;lxnﬂ LX) = 6) .

which completes the proof. (]

Proposition 6.7 Let (X )| <k<k, .neN be anarray of square integrable random vari-
ables, and let (Fui)o<k<k, .neN be an array of o-fields. Then the conditional Linde-
berg condition (CLB) implies

111}621)%{ E (X,Z,U]‘—n,k—l) — 0 in probability as n — 00 .
<k=<kn

Proof For every € > 0 and n € N we have

max E (X%k|-7:n,k—1)

1<k<k,
2 2
- 1I§I}<a§)§cn E (X”kl{\Xnkka} + Xnkl{lxnklza}lfn,k—l)
kll
=+ Z E (ngl{|xnk|25}|fn,k—l) .
k=1
which clearly implies the desired result. O

Now we are prepared to give the

Proof of Theorem 6.1. For brevity we write 02, = E (X2, |, x—1) foralln € Nand
1<k <k,.
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The proof proceeds in several steps.
Step 1. In addition to conditions (N) and (CLB) we assume that

ky
@) zgrzlk = 7)2 as.foralln e N,
k=1
(ii) 772 is Fo-measurable for all n € N, that is, n2 is G1p-measurable, and

(iii) 172 < C < oo a.s. for some constant C

and will show that Zi”: 1| Xnk —d> nN as n — oo holds.
W.Lo.g. we can assume that an array (Nni)|<k<t, neN Of independent standard
normal random variables is defined on (€2, 7, P) such that (Nuk) 1 <k <k, nen and Feo

are independent. Then for every n € N the conditional distribution of Zi”: 1 Onk Nk

given Fo is the normal distribution with mean zero and variance Zi”: | crrzl = n*, by

assumption (i). Therefore, with 4 denoting equality in distribution, zllz": 1 OnkNnk 4
nN.

Let f : R — R be bounded and three times continuously differentiable with
bounded derivatives. Taylor’s formula implies

f(x+h)=f(x)—i—f’(x)h—i—%f”(x)hz—i-Rf(x,h) forall x,h € R
with
|Rf(x,h)|SC(f)min{h2,|h|3} forallx,h € R,

where f’, f” and f'" are the derivatives of f and C (f) = max{%||f”’||oo, If oo} <
oo with || gl o, denoting the sup-norm of the bounded function g : R — R.
Introducing

k—1 kn
Yok := Zan + Z Uannj
j=1 j=k+1

foralln € Nand 1 < k < k,, we obtain

E (f (é Xnk)) — E(f (IN))
() ()
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kn
D UE(f Yuk + Xuk) — E (f Yk + anank»]’
k=1

kn 1

DB 7 00 X0t) 4 3 (77 0ot XE) + E (Ry (o X50)
k=1

1
—E (' Yu) ouiNok) = 5 E (1" (V) 34 N2) = E (Ry (Yt 00 Nw) ” :

In the next crucial step of the proof we will show that the two expectations
involving f’ on the right-hand side of this chain of equations vanish individu-
ally whereas the two expectations involving f” are equal and hence cancel out.
Clearly, by independence of (Y, onk) and Nyx we have E (f (Yok) ok Nuk) =
E(f’ Yur) o’nk)E(N,,k) = 0. We note that by independence of F, and
(N,,l, A Nnkn) foralln € Nand 1 < k < k, the conditional distribution

of Y,x given Fo is the normal distribution with mean le;i X,; and variance

Z];": 1 aﬁj =’ - Zl;zl aﬁj, where the last equality follows from assumption
(1). As a consequence of assumption (ii), this conditional distribution is measurable
w.r.t. Fpn k-1 up to Foo-null sets, and this implies that the conditional expectations
E (f" (Yni) |Foo) and E (f" (Yur) | Foo) are measurable w.r.t. Fy, x—1 up to Foo-null
sets as well. Hence

E(f' (Yu) Xuk) = E (E (f" (Ynk) Xk Foo))
= E (XukE (f (Ynk) 1 Foo)) = E (E (Xuk| Fuk—1) E (f Yut) | Foo)) =0

because E (X,,k|f,,,k_1) = 0 and
E(f" ) X32) = E (E (X2 Fakot) E (1 (Vi) 1 o))
= E (o0 E (f' () 1F) ) = E (" Gy oni) = E (£ V) o3V )

where the last equality holds by independence of (Y,x, onx) and N, combined with
E (N2,) = 1. Consequently, we obtain

kn
E(f (Z Xk)) —E(f (nN))‘
k=1

<> [E(|Rf Wuk. Xun)|) + E (|Rf Yk onk Nuk)|) ]

= (N D[ E (min (X2 1Xuil) ) + E (min (o2N2 o3 INul) ) ]
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where the last inequality follows from the bound on ]R 7 (x, h)!. For all n € N and
€ > 0 we have

krl
> E
k=1
e ko
< ZE (ngluxnklze}) + ZE (|Xnk|3 1{\Xnk\<5})
k=1

k=1

—

min (Xﬁk, |Xnk|3))

with

kn kn k"
SE (|X,,k|3 1{|Xnk|<5}) <> E (X,%k) —¢E (Z aﬁk) <eC

k=1 k=1
by assumptions (i) and (iii). Moreover,

n

k
. 2 a2 3 3 3 3

> E (min (o2 N2 o INlP)) = D2 E (a3 INul?)

kn

kn
-3 () £ naf) - 22 (%)
k=1 1

k=

3 kn 3 1/2
<4/ —FE| max o Jﬁk <4/ —CE | max Jﬁk
T 1 <k<ky s 1<k<ky

k=1

8 12
= \/;CE( max FE (X2k1{|x,,k|<g} + Xﬁkl{ankst]:n,kl))

1<k<k,

kﬂ
< \/EC e+ (Z E (Xﬁklnxnkzs}))
k=1

Combining these results, for all » € N and € > 0 we arrive at

k)l
E (f (Z xnk)) — E(f (N))
k=1

K
<C(f) [ZE (szlkl{\x,lk\zs}> + (1 + \/g)ec

k=1

oo

1/2

1/2

+\/§C(§:E(Xﬁkl{|xnk|ze})) }

k=1
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From (CLB) and assumptions (i) and (iii) we infer by dominated convergence
that Zl;":] E (X}%kluxnﬂzg}) — 0 asn — oo for every ¢ > 0. This implies

lim, o E (f (ZI,Z":] Xnk)) = E (f (nZ)) which proves Zi"zl Xk 4 7NN as
n — oo and completes Step 1 of the proof.
Step 2. In the second step of the proof we assume (N), (CLB) and in addition

kl‘l
@iv) Zoﬁk < C < oo forsome constant C and all n € N
k=1

and will show that Zi”zl Xk 4 nN as n — oo holds. For this, let m € N
be fixed. Note that for all n > m + 1 we have k, > n > m + 1 and that
(Xnk)m+1<k<k, n>m+1 1S @ square integrable martingale difference array adapted
to the array (Fui)m <k <k, .n>m+1- Clearly, for every n > m + 1

k
Tw(m)=maxke{mm+1,... k,}: Z O"%j 5E(772|gmm)
j=m+1

is a stopping time w.r.t. the filtration (Fk),, <k <x, (observe that (Gux)o<k<k, neN 15
a nested array with G, C F,x by Remark 6.2 (a)). For all n > m + 1 we introduce
) 12
& om) = | E(11Gum) = >

k=m+1

and let (Yuk)k,+1<k<k,+n D€ independent random variables with P (Yyr = 1) =
1/2 = P (Yyx = —1) forall k, + 1 < k < k, + n which are independent of Fy,.
Define

Xnilik<r,omyy s m+1=<k <k,
Zue =0 e o Yo ket 1<k <kytn
NG

and

Ho (m) 1= Fuk , m<k<=<k,
nk ' O'(fnk,,9Yn,kn+1’~-~aYn)a kn+1<k=<k,+n.

The sequence (Huk (1)), <k<k,+n 18 nondecreasing and (Zpx (1)) y41<k<k,+n 19
adapted to (Huk (1)) <k <k, +n for every n > m + 1. From (N) and assumption (iv)
we infer that 772 < C almost surely so that |£, (m) Y| < CY2 almost surely and,
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consequently, all Z,; (m) are square integrable. Forn > m+landm+1 <k <k,
we have

E (an (m) |Hn,k—l (m)) =E (Xnkl{kgfrn(m)ﬂfn’k_l)
= likzrmn E (Xnk| Fk—1) =0

because 7, (m) is a stopping time W.r.t. (Fug)m,<k<k, and E (X,,k|fn’k_1) =0, and
fork, +1 < k <k, +n we have

1
NG
1

= ﬁgn (m) E (Ynkla (fnk,,’ Yn,k,,+ls ceey Yn,k—l)) =0
because &, (m) is measurable w.rt. F,, and, by independence of Y, and
o (fnkn, ) S Yn,k—1)7 we also get E (Ynk|0 (fnkny Yokp+1, .-, Yn,k—l)) =

E(Yux) = 0. Thus, (Zuk (M) 4 1<k<k, n>=m+1 1S @ square integrable martingale dif-
ference array with

E (Zuk (m) |Hp k-1 (m)) = E ( &n (m) Yor

g (]:I’lknﬂ Yn,kn+1 LRI ] Yn,kl))

ky+n
> E (72 o) Haser o)
k=m+1
ko
= 2 E(Xﬁkl{kSTn(m)”}-n,k*l)
k=m+1
ky+n 1
+ > E(;fﬁ (m) Y,

k=kp+1

g (}—nk,,» Yn,kn-l—l’ ) Yn,k—l))

Ty (m) Ty (m) kn+n

= 3 E(RFa) | E(PGm) — 3 k| S EG

k=m+1 k=m+1 k=k,+1

= E (10

for n > m + 1. Thus, the martingale difference array (Z,x (m)) 11 <k <k, +n.n>m+1
satisfies assumption (i) from Step 1 with E (172|gmm) instead of 7? if m is identified
with 0. Trivially, E (n2|gm,,,) < C almost surely from 7> < C almost surely. If m
is identified with O and since G, C Gy, holds for all n > m + 1, assumptions (ii)
and (iii) are satisfied as well. Moreover, foralle > Oandn > m + 1
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kn +n

2 E (Zﬁk (m) 1{\znk<m>|za})
k=m-+1

k}l
2
< > E(Xnkl{\xmze})
k=m+1

ky+n

2 2
+; Z E (gn (m) Ynk1{|£,1(m)Ynk\Zgﬁ}) .
k=k,+1

The first summand on the right-hand side of this inequality converges to zero by
(CLB), assumption (iv) and the dominated convergence theorem. The second sum-
mand is equal to zero for all sufficiently large n because |, (m) Y,x| < C'/? almost
surely for alln > m + 1.

Thus we have shown that for every m € N the square integrable martingale differ-
ence array (Znk (m))m+1§k§k,,+n,n2m+1 w.r.t. (Hpk (m))mgkgk,,+n,n2m+l fulfills all

assumptions of Step 1 so that Zi":tfﬂ Znk (m) 4 E (n2|gmm)'/2 N asn — oo.
Because Gy is nondecreasing in k and n the sequence (G ), en 1S @ nondecreas-

ing sequence of o-fields with o (G, :m € N) = o (ann ‘ne N) = §. Conse-

quently, thanks to the martingale convergence theorem, £ (n2|gm,,,) — E (772|g) =

d
n* almost surely as m — oo. Hence E (172|gmm)1/2 N — nN as m — oo. In order
. d . . PP
to obtain z],z": | Xuk = 1N as n — oo it remains to verify in view of Theorem 3.21

that for every € > 0

k, kn+n

. . B - _
lim hlzisol(l)p P( D Xk — D Zm(m)| = 5) 0.
k=1 k=m+1
For all n > m + 1 we have
kn kn+n
Z Xnk - Z an (m)
k=1 k=m+1
kn Tn(m) kp+n l
= ank - z Xk — Z ﬁgn (m) Yok
k=1 k=m+1 k=ky+1
m kn 1 ky+n
:ank+ Z Xnk_'gn (m)ﬁ Z Ynk
k=1 k=7, (m)+1 k=ky+1

=Vi(m,n)+Va(m,n) = V3(m,n) ,
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say. Clearly, it suffices to show for alle > 0 and j = 1, 2, 3 that

lim hmsupP(|V (m, n)| >5) =0.

m—oo ,_,

Because foralle > 0Oandn € N

kn 1 kn

D E (1 Xkl Lixelza) Fae—1) _ZE(X%kl{lxnk|2€}|fn~,k—1)f
k=1 k=1

)

condition (CLB) implies > }"_; Xnx — 0 in probability as n — oo for every m € N
via Proposition 6.6, and lim, o lim sup,,_, o, P (|Vi (m, n)| > ¢) = 0 is immedi-
ate. To handle V> (m, n) we write

2

kn kn
E > Xu| |=E[ 2 omlmn<k)
k=1, (m)+1 k=1, (m)+1

= E((i on— E (nzlgmm) + &5 (m) — ’anoﬁk) 1m<m)<kn})
k=1 k=1

SE( S T]2)+E(‘T}2—E(772|gmm)’)+E(io—5k)
k=1 k=1

- 2
Z%k -
+E (5;% (m) l{'r,l(m)<k,l}) = In + IIm + IIIm,n + IVm,n 5

say. Clearly, lim,_,» I, = 0 by (N), assumption (iv) and dominated convergence,
and limy o0 Iy = 0 by E (1*|Gum) — 1* almost surely as m — oo, n*> <
C and dominated convergence. Obviously, IIl,, , < mE (max<x<, 02,) for all
n > m + 1. But (CLB) implies maxi <<, Jﬁk — 0 in probability as n — oo via
Proposition 6.7, whence E (max<x<k, 0%,) — 0asn — oo by assumption (iv) and
dominated convergence. Therefore, 111, , — 0asn — oo forall m € N. Finally, by
definition of 7, (m), IVyy n < E (maxlskfkn Jﬁk) — Qasn — oo foreverym € N.

2
Thus we have shown that lim,,, _, o lim sup,,_, . E (Z],:" 2 () +1 ) =0, and
limy,— o0 limsup,_, o, P (|V2 (m, n)| > ¢) = 0 follows by Markov’s inequality.

It remains to consider V3 (m, n). Writing ¢,, = \/Lﬁ Zf": J;{: 11 Yok foralln € Nwe

note that (,,) is bounded in probability ((, in fact converges in distribution to the
standard normal distribution by the classical central limit theorem). Then we obtain
forallm e Nandn > m + 1
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V3 (m, n) = & (m) Gz, 0m)<ka) + En (M) Go Lz, (m)y=ky)

12 kn
< ( max U,Z,k) 1l + | E (7)2|gmm) - > on
k=1

1<k=<kn

m 12
+(Za%k) 1Cal -
k=1

The first and the third summand on the right-hand side of this inequality converge to
zero in probability as n — 0o because maxi <k <, orzlk — 0 in probability and ((,)
is bounded in probability. Hence for all ¢ > 0

12

[

lim limsup P (|V3 (m,n)| > ¢)
m—00 u 00
12

< lim limsup P
m—0 p—o0

ky
E (772|gmm) - Zo—gk
k=1

g
|<n|Z§

Because ((;,) is bounded in probability the limit on the right-hand side of this inequal-
ity is zero provided that

1/2
kn
. . 2 . 2 —
mh_}moo 11’:Il)solcl)p P\ |E (77 |g,,,m) ]; Onk > e 0
for every € > 0. But this follows from the inequality

% 1/2 & 1/2

n 1/2 n

E (772|gmm) - Zoﬁk = ‘E (772|gmm) - 772‘ + 772 - Zoﬁk s
k=1 k=1

condition (N) and E (7]2|gmm) — n? as m — oo almost surely.

Summarizing our results we have shown that Zi”z 1 Xnk LY nN asn — oo. This
completes Step 2 of the proof.

Step 3. To remove assumption (iv) from Step 2, let 0 < ¢ < oo be fixed. Then for
everyn € N

k
T, (¢) = max k€{0,1,~--,kn}3202j <c
j=1

is a stopping time w.r.t. (Fuk)o<k<k, and Wyk (¢) := Xpil{k<r, (o)} for 1 <k <k,
defines a square integrable martingale difference sequence w.r.t. (Fuk)o<k<,- For
all n € N we have



82 6 Stable Martingale Central Limit Theorems

kn kn Tn(C)
ZE (ank (c) |fn,k—1) = Z Lk<r,(en E (X,%ku:n,k—l) = Z oo <
k=1 k=1 k=1

by definition of 7, (c) so that the square integrable martingale difference array
(Whk (©)) 1<k <k, neN WLt (Fuk)o<k <k, .neN satisfies assumption (iv). From W, (c)|
< |Xuk|foralln e N,1 <k <k, and0 < ¢ < oo and (CLB) itimmediately follows
that

k}'l
Z E (Wfk (c) 1{\Wnk(c)|ze}|‘7:n,k71) — 0 in probability as n — oo
k=1

for all € > 0. Now we set ) (¢) 1= i<y + ﬁl{nzzc} forall 0 < ¢ < oo and
will show that

kn
E (ank @) |an,k—1) — 772 (o) = 7721{;72<c} + Cl{nzzc}
k=1

in probability as n — oo. To see this, for every € > 0 and n € N we write

T (€)

=P[|Dom—n (@ =¢
k=1

Tu (€) kn
=P Zo'g'k_nz(c) > € 0[205k<0}ﬂ{n2<c}
k=1 k=1

kn
Z E (ank (c) |-7:n,k—1) —17% ()
k=1

Tu (€) kn

+P lZaﬁk—nz(c) >e H[Zagk<c]ﬂ{n22c}
k=1 k=1
Ta(€) kn

+P lZozk—nz(c) >epr N Zagkzc]ﬁ{n2<c}
k=1

Tu (€)

+P (11D om —n* (| =etn
k=1

=Pl,n+P2,n+P3,n+P4,n,

say, and we will prove that P; , converges to zeroasn — oo for1 < j <4,
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On the event {z],z”:l o2 < c] N{n* < ¢} we have 7, (¢) = k, and 7% (c) = 1*

so that
k
Pl,n =< P(
k=1

n
2
fonk -

2 ze)—>0 as — o0

by condition (N). On the event {Zi"zl crﬁk < c} N {n2 > c} we have 7, (¢) = kj,
and n2 (¢) = ¢ so that

Tn(C)

Zank 77(C) _C_Zglk—n _Zank_

k,
P2,n =< P(
k=1

On the event {Zi"zl o > c} N{n? <c} wehave i (¢) =% < ¢ < X3, 02,

whence

2
nk

—172 25)—)0 asn — 00.

and Z;”(? o, < c holds by definition of 7, (c). Therefore, 7, (¢) < k; and ¢ <

i (ﬁ)H o, agam by definition of 7, (¢). Now we consider two cases:

Case 1.y ;" "(c) o2, <n?. Then

Tn(€) Tn(€) Tn(€)
2 2 2 2 2
2 @ == > og <= D oy
k=1 k=1 k=1
Tn(c)+1 Tn(€)

IA

2 2 2
Ot — 2 o < max o
Z nk n I <k<k, nk *
k=1 k=1
Case 2. Z,:"(? o2, > n*. Then

Tn(€) Tu (€)

Zaﬁk—nz(c) Zank n <Z‘7nk
k=1

2_
nk

Combining the two cases we see that

k}l

Z Tnk —

P3,n§P(maX Uk>5)+P( >€)—>0 asn — 0o
1<k<k

from max <x<¢, 02, — 0 in probability and condition (N).
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Finally, on the event {Z],i”:l 0% > c}ﬂ{n2 > ¢} wehaven? (¢c) = cand 7, (¢) <

ky, and therefore Z;”:(? o <c< Z;”:(?H o2,. Thus

T (€) Tn(€) Tn(c)+1 T (C)

2 2 2 2 2 2
Zank_n () =c— E Ok = E Ouk — 2 Oy < Mmax o,
1<k<ky,
k=1 k=1 k=1 k=1
and, consequently,

Py, < P| max a,zszes — 0 asn —> 0.
’ 1<k<k,

Now we can apply the result established in Step 2 to obtain, for all 0 < ¢ < oo,
Sk Wk () S n(©) N asn — oo.

Foreverye > 0and0 < ¢ < cowehave P (| (¢) = n?| =€) < P (> = ¢) —>
0 as ¢ — oo so that 7 (c) — 7 in probability and hence 7 (¢) N LY nN. In order to

complete the proof of Zl,z": 1 Xnk < nN as n — oo we have to show for all ¢ > 0

that
kn kn
cgrrgoll,fisolépp( ;Xnk —;Wnk (c)| > 5) =0

(see Theorem 3.21). To see this, observe that
k)l kn
P(zxnk—zwnk@ ze)
k=1 k=1

kn Ta (€) kn
=P zxnk_zxnk =€ fP(Tn(C)<kn)§P(ZU,%k2C)

k=1 k=1 k=1
so that
kn kn ki
lim sup P ZXnk—ZWnk(c) >¢ ) <limsup P Zoﬁch —- 0
n—00 —1 = n—00 k=1

as ¢ — oo because (Zl,j": 1 Jrzlk) is bounded in probability by condition (N). This

completes the proof of le": 1 Xnk LY nN as n — oo and of Step 3.

Step 4. Now we will show that the convergence in distribution established so far is
G-stable. By monotonicity of G, in k and n we have G = o (€) for £ = U;’le [—
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and & is a sub-field of G because Gy, is increasing in m. By Theorem 3.17 itis enough

to show that Zﬁ’;l Xk 4 nN asn — oo under Pp = P (-|F) for all F € £ with
P (F) > 0. For this, let F' € £ be fixed. Then F € G,,,, for some m € N. For a sub-
o-field H C F and an integrable random variable X on (2, F, P), let Ep (X|H)
denote the conditional expectation of X w.r.t. H under P, whereas Ep, (X|H) is the
conditional expectation of X w.r.t. H under Pr. Observe that for F € H any version
of Ep (X|H) is also a version of Ep. (X|H), that is, Ep (X|H) = Ep. (X|H)
Pp-almost surely. Therefore, the array (X,k)+1<k<k, n>m-1 1S @ square integrable
martingale difference array adapted to (Fuk) <k <k, .n>m+1 under Pr. Note that by
(N), (CLB) and Proposition 6.7 we have

kn
Z Ep (X2k|}',,,k_1) — 772 in P-probability as n — oo
k=m+1

from which by Ep (X2 |Fni—1) = Ep, (X2, |Fnk—1) Pp-almost surely for all
m+1<k<k,andn > m + 1 we obtain

kn
Z Ep, (X£k|fn,k—1) — n2 in Pp-probability asn — oo.
k=m+1
Moreover,
kn
Z Ep. (X,%kl{\xnklzaﬂfn,kfl) — 0 in Pp-probability as n — oo
k=m+1

forall ¢ > 0is an immediate consequence of (CLB). Therefore Zi": a1 Xnk Le nN
under Pr as n — oo by Step 3. Because maxj<x<k, | Xqk| converges to zero in P-
probability by (CLB) and Proposition 6.6 and hence also in Pg-probability we arrive

d .
at Zi”zl Xuk — nN under Pr as n — oo so that the proof of Theorem 6.1 is
complete. a

Remark 6.8 (a) In applications of Theorem 6.1 stronger conditions than (CLB) may
be used. Clearly, (CLB) is implied by the classical Lindeberg condition

k}l
(LB) ZE (X)%kl{‘xnﬂzi}) — 0 asn — oo forevery e > 0
k=1

as well as by the conditional Lyapunov condition of order p € (2, 00), which requires
for some p € (2, 00) that
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kll
(CLY ) ZE (IXk|? | Fnk—1) — O in probability as n — oo
k=1

and entails (CLB) through the inequality, valid for all € > 0,

k k
n 1 n

2
k§1 E (Xnkl{\xnk\ZE”Fn‘kfl) ) ;1 E (1Xukl” | Fne-1)

provided that X,,; € LP (P) foralln € Nand 1 < k < k;. In the latter case, (CLY ;)
is obviously implied by the classical Lyapunov condition of order p € (2, 00), that
is,

k)l
(LY ,) > E(IXul?) = 0 asn — oo.
k=1

(b) For independent random variables N with PY =N (0,1) and n > 0, the char-
acteristic function ¢,y of nN is given by, for all € R,

un (1) = E (exp (itN)) = / E (exp (ituN)) d P (u)

[0,00)

1
= / exp (——tzuz) dP" (u) = Ee T2,
[0.00) 2

Thus ¢,y is real-valued and PV g symmetric around zero. Therefore, all limit

random variables in Theorem 6.1 are symmetric around zero. Furthermore, the dis-
tribution PV = PN (0, ?) satisfies PV <« X if and only if P (n* > 0) = 1 and
then

d PN 1
(x)=E e , xeR.
dA V2mn?

Exercise 6.2 (The case k,, = 00) In the situation of Theorem 6.1 let k,, = oo for
every n € N and assume that for every n € N,

o0
Z Xk converges a.s.in R
k=1

and

o0

ZE (X,zlk|]-"n,k_1) < 00 a.s.
k=1
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(By the martingale convergence theorem, both conditions are satisfied if

2

k 0
sup E ZX”f ZZEszzj < 00

for every n € N.)
Show that

o0
Zan — N (O, 772) G-stably as n — o0,
j=1

where Gy, = Guoo =0 (U?io g”j)'

Exercise 6.3 Inthe situation of Theorem 6.1 assume that (Fyx) o<k <k, .neN 18 @ nested
array and P (772 > 0) > 0. Show that the limit points satisfy

kn
L ((Z X,,k) ) =R P{nz>0}-a.s.
k=1 neN

6.2 Counterexamples

This section will shed some light on the role of the conditions in Theorem 6.1. The
first result shows that the row sums of a square integrable martingale difference array
have weak limit points if the row sums of the conditional variances are bounded in
probability.

Proposition 6.9 Let (X)) <x<k, .neN be a square integrable martingale differ-
ence array adapted to an array (Fni)o<k<k,neN Of o-fields. If the sequence
( i’;lE(X,%kLFn,k—l)) N is bounded in probability, then the sequence

ne

(Z’,z”zl X,lk) N is also bounded in probability.
ne

Note that for sequences of real (or R¢-valued) random variables boundedness in
probability is the same as tightness.

Proof For any fixed n € N, the process (Z,JCZIE(X,%,J}",,J(,]))O 'k is
=J=Kn
the compensator (quadratic characteristic) of the positive submartingale

, 2

((Z,ﬁzl X,,k) ) so that, for all 0 < C, M < oo by Lenglart’s inequality
0=j<kn

of Theorem A.8 (a)
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(

2
kn

> c) =P (ank) > C?
k=1

kil
S+ P (Z E (X2 Fuir) > M) .
k=1

kn
Z Xnk
k=1

I
S

a

Therefore, forall0 < C, M < o0,

M kn )
sup P >C)<_5+supP ZE (Xnk|‘7:"‘k*1) >M].
neN C

neN k=1
This inequality clearly implies the assertion by first letting C — oo and then
M — oo. (]

kn

ank

k=1

Boundedness in probability of (Zi": E (X,%k |]—",,,k_1)) N for a martingale dif-
ference array already entails the existence of weak limit p(e)ints for the row sums
by Proposition 6.9, the role of the much stronger condition (N) in conjunction with
(CLB) is to ensure uniqueness of the weak limit points and their form as variance
mixtures of centered normals. In the sequel we will show by examples that condition
(N) is essential for obtaining stable convergence to a Gauss-kernel.

First, we will consider the special case of a non-random limit 7? in condition
(N). According to Remark 6.2 (b) conditions (CLB) and (N) with 7)2 = 1 imply

]1?: 1 Xk 4 N as n — oo with PN = N (0, 1) for any square integrable mar-

tingale difference array. This convergence, however, is in general not F,-stable, as
shown by the following example.

Example 6.10 Let (W) (1)), fori = 1, 2 be two independent Brownian motions.
(Here and in the subsequent example it is convenient to write W (¢) instead of W;.)
Foralln e Nand 1 <k <k, = n we set

k k—1

w® (_) —w® ( ) , ifniseven
n n
k k—1

e (_) e ( )  ifnis odd
n n

and Fr == o (Xpj, 1 < j < k) with Fpo := {0, Q). Then, by independence of
the increments of W@, (X,x)1 < k<n.neN 1S a square integrable martingale difference
array W..t. (Fuk)o<k<n.nen- For all n € N we have D%_; E (X2 | Fux—1) = L,
again by independence of the increments of W), Moreover, forall e > 0, alln € N
and N with PV = N (0, 1),

nk =

n
D E (Xikl{\xnk\25}> =E (N21{|N|Zen1/2}) — 0 asn — 00.
k=1
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Finally, foralln € N

iX . w (1), ifniseven
P "=l w1y, ifnisodd,

so that P2i=1 Xnk = pN .

In this example, condition (N) is satisfied with 7> = 1 (even with equality for every
n € N instead of convergence in probability as n — 00), the classical Lindeberg
condition (LB) is satisfied which implies (CLB) by Remark 6.8 (a), and D"} _; X« 4
N as n — oo for N with PY = N (0, 1) (again with equality (in distribution) for
every n instead of convergence in distribution as n — o0). However, > ;_; Xk
cannot converge o (W(l) (1, w® (1))—stably (and o (W(l) 1, w® (1)) C Fxo)-
Otherwise, we have 6W(1>(1) = 5W(z)(1) and thus W (H = w® (1) almost surely,
a contradiction.

One checks that G is trivial, that is, P (G) = {0, 1}, hence Theorem 6.1 yields
nothing else than distributional convergence in the present setting. For this, letn € N
and 0 < k < k, = n be fixed. By definition G,; C Fx forallm € N withm > n
and

g i . k
fmk:a(W(’)(i)—W(’)(J—);l§j§k)Ca(W(l)(t);0§t§—)
m m m

withi = 1 if mis even and i = 2 if m is odd. For any € > 0 we have k/m < ¢
for all large m so that G, C o (W(l)(t); 0<t< 5) No (W(z)(t); 0<t< 5) which
implies

Gk C ﬂ o (W“)(t); 0<t< 5) N ﬂ o (W(2>(t);0 <t< 5) )

e>0 e>0
Hence also
GcC mJ(W(l)(t);Ogtfg)ﬂﬂa(W(z)(t);Oftgs) )
e>0 e>0

But by Blumenthal’s zero-one law for Brownian motion both o-fields on the right-
hand side of the last display are trivial, which proves the assertion. (]

Our next example shows what can happen for martingale difference arrays satisfy-
ing (CLB) and (N), except for the fact that the random variable 772 is not measurable
w.r.t. the o-field G.

Example 6.11 Let (W (t)),>( be a Brownian motion. Foreveryn € Nand 1 < k <
k, = 2n we define
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| k
A ,1<k<n
n

k—
Sk =34 W (1 + —nl{W(1)>o}) ,n+ 1<k <2nandn even
n

k —
W (2+ _nl{W(1)>0}) ,n+ 1<k <2nandn odd
n

with Sp0 := 0, Xk 1= Snk — Sn.k—1 and Fux := 0 (Sno, - - ., Snk). Note that S, =
w (%) Liwy=oy + W (1) Iywqy<o) foreven n € Nand n +1 < k < 2n and
Soe =W (L+5) Liway=0p + W (2) Liw(y=o) forodd n € Nandn + 1 < k < 2n,
which shows that the random variables S,; are square integrable. Consequently, the
random variables X,;; are also square integrable, and the array (X,k) 1<k <2n.neN 18,
by construction, adapted to the array (Fuk)o<k<on.neN- Foralln € Nand 1 <k <n
we have, by independence of the increments of (W (t)),>0 and its moment properties,

(v () () G) o (55)
() ()

E (X,%]Jf.n,k—l)
k k—1\7? 1 k—1
= wili-)-—-W wil{-1),....Ww
n n n n
() (00)-
=E{|(W(-)-W = —.
n n n
Forallevenn € Nandn + 1 < k < 2n we have

k k—1
Xnk = Spk — Sph—1 = | W ~) - w - Liw (1)>0} -

Note that W (1) is F; x—1-measurable and that 7, y—1 C o (W 1),0<t< kn;l) SO
that W (%) -W (ﬂ) is independent of F,, x—1, by independence of the increments

)-w () )

of (W (t));>¢. This implies
) ( 1))
n

E (Xuk| Fuk—1)

and

E (Xuk| Fak-1) = Lwy>0 E (W(

= lwm>0E (W (

S| & I
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E (X2 Frir) = l{W(1)>0}E([W (S) W (k - 1)}2 fn,k_l)
(o))

;1{W<1>>0}-

and

Foralloddn €e Nandn + 1 < k < 2n we have

k k—1
Xk = Snk — Snj—1 = [W (1 + ;) -w (1 + T)} Liw (1)>0} -

Note that again W (1) is measurable w.r.t. 7, x_i, and that F,, y—1 C o (W (),
0<tr<l1+ kn;]) so that W (1 + ],—‘l) 4 (1 + %) is independent of F, 1. This
now implies

k k—1
E (Xnk|Fuk=1) = Liwy>0) E (W (1 + —) -Ww (1 + ) ‘fn,k—l)

n

k k—1
=lwmnm>qE(W 1-{-; —Will+ . =0

E (X5k|~7:n,k71)

e (UCHRIC)
o ([ (2) - (- 45)])

1
= ;1{W(1>>0}~

and

Thus we have shown that (X,;x)1<¢<2,.neN 18 @ square integrable martingale differ-
ence array W.I.t. (Fux)o<k<2n.neN With

2n

> E (ngu:n‘kf]) =1+ Lw)=0)
k=1



92 6 Stable Martingale Central Limit Theorems

3

s

foralln € N.Moreover, foralln € Nand1 < k < n,|Xx]® = |w (%) —-Ww (u)

n
whereas | X, > < [W (X) —w (kn;l)|3 forallevenn € Nandn +1 < k < 2n
and [ X, 1> < [W (1 4+ %) = W (1+ 5L)] forallodd n € Nand n + 1 <k < 2n.
This yields E (| X,[*) < (8/m)!/*n=3/2 foralln € Nand 1 < k < 2n, because
any increment of (W (7)), of length 1/n has a centered normal distribution with
variance 1/n. Consequently, Ziil E (|Xnk|3) <2 (8/7r)1/2 n=12 forall n € N so
that the array (X,x)|<k<on.nen satisfies the classical Ljapunov condition (LY ) of
order p = 3 and hence (CLB) by Remark 6.8 (a). Thus, all conditions of Theorem 6.1
except G-measurability of 7> = 1 + 1y 1)~} are satisfied. For all n € N we have

w (1 + I{W(1)>0}) , n even
w (2 + I{W(])>0}) , nodd

2n
ank - Sn,2n - {
k=1

which shows that the sequences (Z,%’il Xnk) and (Z,%’il X nk)
- neN,n even - neN,n odd

have two different limits in distribution. For a formal proof of pY(+lwa=0) #*
PW(+lwm=0)) note that

W (14 Lway=0p) = W ) Liway=op + W (1) Tiw(y<oy
=[W @) - WDl liwmsoy + W (1)

so that, by independence of the increments of (W (¢));>0,

E(W(1+1wa-0)") = E (W@ = WOP) P 1) > 0)

2 3
+2E (W @) = W) E (WD) Lway-o) + E (W 1?) =3

and

W2+ Lwa=0) = W3 Liway=0y + W (2) Liw i) <o)
=[W3) -WIllwmso0 +W(Q2)

so that
2 2
E(W 2+ 1wn=0)") =E (WG - W@P) PW 1) >0)

N
+2EW ()= W) E (WO Lwa=o) + E (W ©2)7?) = =

Thus we have produced an example for which the sequence (Ziil X,,k) N
ne

does not converge in distribution. If we alter the construction by setting S,x =
W(l + ]‘;—"I{W(1)>0}) forall n € Nand n + 1 < k < 2n, then we get
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S Xk = W (1 + Liwi)=0y) foralln € N, thatis, now 33" | X, does converge
(mixing) in distribution (and all the other assumptions of Theorem 6.1 remain sat-
isfied, of course). The distribution of the limit random variable W (1 + Liw 1)-0})
is not a variance mixture of centered normal distributions, however, because it is
not symmetric around zero, see Remark 6.8 (b): In view of W (1 + 1yw(1)=0)) =
W (2) Liwysoy + W (1) 1yw(1)<oy, it is clearly continuous, and

P (W (l + l{W(1)>()}) > 0)

=P({W(2)>O}ﬁ{W(1)>O})+P({W(1)>0}ﬂ{W(1)§0})<%.

Summarizing, we see that without G-measurability of > in Theorem 6.1 there may be

several different distributional limit points for the whole sequence (Ziil X nk) N
ne
of row sums so that this sequence does not converge in distribution, or there may be

(mixing) convergence to a limit which is not a variance mixture of centered normal
distributions.

For a direct proof of the fact that the random variable 7> = 1 + 1{w1)=0; is not
G-measurable, we show that as in Example 6.10 the o-field G is trivial. For this, let
n € Nand 0 < k < k, = 2n be fixed. By definition, G,y C Fx for all m € N with
m > n. If even m > 2n holds, then k < 2n < m so that for both definitions of the
Snk

j k
kazo'(Smlvn-,Smk)ZU(W(L)Z1fjfk)CU(W(t)§O§t§_)o
m m

For any € > 0 we have k/m < ¢ for all large m so that G,y C o (W (¢);0 <t <¢)
and hence G, C ﬂ5>0 o(W();0<t<e) = Fw (04+) which finally implies
G C Fw (04). By Blumenthal’s zero-one law for Brownian motion, the o-field
Fw (04) is trivial, which implies the assertion. [l

Our final example shows that convergence in probability in condition (N) in
Theorem 6.1 cannot be replaced by G-mixing convergence. Note that

kn
ZE (X,%k|.7-',,,k,1) — n? G-mixing as n — oo
k=1

by definition requires independence of o (772) and G so that the assumption of
G-measurability of 77> makes no sense now for a nonconstant 7.

Example 6.12 Let (Ni)ien be an independent sequence of standard normal random
variables, and let g, 2 : R — R be two continuous functions with |g| = |k| and
E (lg(N)I®) < cc.Foralln € Nand 1 < k <k, = 2n we set
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n_l/sz 1 <k<n

n
n—12g n’l/ZZN}- Ni,n+1<k<2nandn even
Xk = j=1

n
n~V2h (V2> N; | Ne n+1 <k <2nandn odd
j=1

and Fpx := o (N1, ..., Ny) with Fo := {0, 2}. Then (X;1)| <x<2n.neN 1S an array
of square integrable random variables adapted to (Fyx)o<k<2n.neN» and this array is
nested because F, 41k = 0 (Ny,...,Niy) = Fpp foralln € Nand 1 < k < 2n.
Since the Ny are independent standard normal random variables, for all n € N and
1 < k < n we obtain

E (Xut| Fni—1) =n""2E (NN, ..., Net) = n~2E (Ng) = 0,

E (X§k|fn,k,1) =n'E (N,3|N1, o N,H) =n'E (N,E) =n!

and

g\ 1/2
E (1Xul?) =n72E (1N = (;) 2,

whereas forallevenn e Nandn +1 <k <2n

n
E (X Fak—1) =n"'2E | Nig n“”ZNf 'Nl’m’Nn’m’Nkl
j=1
n
=n"12g n_l/ZZNj E (NkIN1, ..., Nk-1) =0,
j=1
n
E(Xiku:n,k*l):n_lE Nig® | 2N ‘NI’W’NH’W’N“
j=1

n
g2 (12 ZNj E (N]3|N1, A Nk_1)
j=1

n
= n_192 n_l/QZNj
j=1
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and

3

n
E (|Xnk|3) —nPE [l [0 23N, E (|Nk|3)
j=1

g\ 1/2
=(;) E (lg VP n=2,

while foralloddn andn+1 < k < 2n,replacing g by h, clearly E (X,,k|}",,,k_1) =0
and

n n
E (Xﬁku:n,k—l) =n""h? n’]/ZZNj = n—lgz n=1/2 zNj
j=1 j=1

as well as

g\ /2 g\ /2
E(|Xnk|3|fn,k_1)=(ﬁ) E(|h(N1)|3)n-3/2=(w) E(lg(NDP)n—3/2,

using |h| = |g|.

From the above results we see that (X,x) | <x<2n.neN 1S @ square integrable mar-
tingale difference array w.rt. (Fu)o<k<amnen With Siti E (IXul}) = (%)1/2
(1+E (lg(NDPP))n~1/2 for all n € N so that the classical Ljapunov condition

(LY ) of order p = 3 holds. Moreover,

2n n

_ d
> E(X,%klfn,k_l):1+gz 2SN L)
k=1 =1

for all n € N and a random variable N with P¥ = N (0, 1) which is independent
of Fso. It follows from the classical stable central limit theorem (see Example 3.13
(b)) and the continuity of g, using Theorem 3.18 (c), that

n
1 ~|—g2 n~1/2 ZN]- — 1 +g2(N) Foo-mixing as n — 00,
j=1
which shows that condition (N) holds with mixing convergence instead of conver-
gence in probability. Note that for all evenn € N
2n n

n 2n
_ _ _ d
2 X =n 1/22 Ne+g|n 1/22 N; | n12 § Ny =N +g(N)N',
k=1 k=1 j=1 k=n-+1
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where N and N’ are independent random variables with PV = PN "=N O, 1)
which are independent of F,, whereas for all odd n € N, by the same argument,

2n
S X LN RN
k=1

For the functions g (x) = x and & (x) = |x| for all x € R the above assumptions on
g and h are satisfied, and PN+NN * PNHININ' 1o verify the latter, observe that,

by independence of N and N, E ((N + NN’)4) = E (N4) E ((1 + N’)4) - 30

because E (N*) =3 and E ((1 + N/)4) = 10, whereas E ((N + |N| N’)4) =24,
Therefore, our construction yields a square integrable martingale differ-
ence array with different distributional limits for (Z%’;l X,,k) and

neN,n even
2n
X k) .
(Zk_l " neN,n odd

If we take g = h, then we have Z,%’;l Xk 4N+ g (N) N’ forall n € N and, by
the same reasoning as above for Zii 1 E (X’%k |.7-"n,k_1), we see that

2n
ZX"" — N+ g(N)N' Fs-mixing as n — oo.
k=1

For the function g (x) := x1jp.00) (x),x € R, we obtain E ((N +g(N) N/)3) =

3E (N3110,00) (N)) > 0, showing that PN +9NIN" js not symmetric around zero and
hence no mixture of centered normal distributions by Remark 6.8 (b).
Consequently, if in condition (N) of Theorem 6.1 convergence in probability is
replaced by Fo-mixing convergence, there may occur several subsequential weak
limits for the row sums, or the row sums may converge Fo-mixing, but to a limit
which is not a variance mixture of centered normals. (]

6.3 Further Sufficient Conditions

The conditions (N) and (CLB) in Theorem 6.1 may be replaced by several other

sets of sufficient conditions. Some of these will be introduced and discussed in this

section, which is partly based on [34]. We always consider an array (X,k) 1<k <k, neN

of random variables and an array (Fx)o<k<k, .neN Of sub-o-fields of - for some basic

probability space (2, F, P). The o-fields G, and G are defined as in Theorem 6.1.
For a square integrable array (X,,x)1<k <k, neN We introduce the condition
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(M) E (]n}ca)i xﬁk) —~ 0 asn— 00
<K=Kkp

whereas the conditions

Myp) E(max |Xnk|)—>0 asn — 0o
1<k<k,
and
e
(CLB)) Z E (1Xuk| 1x,e 122} | Fnk—1) — O in probability as n — oo
k=1

forevery e > 0

can be imposed on any array (Xuk) <<k, neN Of integrable random variables.
Raikov’s condition o
kn
(R) Z X,zlk — n2 in probability as n — oo for some
k=1
G-measurable real random variable n > 0,

which may replace condition (N), and, for any a > 0, the conditions

kn
(Ta) zxnkl{lX,,k\>a} + E (Xuk X pl<a)| Fk—1) = 0
k=1
in probability as n — oo,
(TM,) (X | Xk lxs1<a) — E (Xuk L1, <0 | Pk —1) | = O
in probability as n — oo,
and
kn ,
(TRq) D Xk lxuiza) = E (Xl xuiza)| Fak—1)]” =
k=1

in probability as n — oo for some G-measurable

real random variable n > 0

are meaningful without any integrability assumption on (Xyx)1<k<k, .neN-
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We will first disclose the relationship between these conditions without reference
to the central limit theorem. As a technical tool, we need the following partial converse
of Lemma 6.5.

Lemma 6.13 Let (Xuk)i<k<k, neN be an array of nonnegative integrable ran-
dom variables adapted to the array (Fuk)o<k<k,neN Of o-fields. Assume that
{maxlgksk,, Xuk :n € N} is uniformly integrable. Then

kn
Z Xnk — 0 in probability as n — 0o
k=1
implies
kn
Z E (Xnk|~7:n,k—1) — 0 in probability as n — oo
k=1

Proof For every n € N the process (Z,{_l E (XuklFn k_l)) is the com-
- ' 0= <kn
pensator of the nonnegative submartingale (z,](: 1 X "k)o - so that, for every
<J=<kn

e, 6 > 0 by Lenglart’s inequality in Lemma A.8 (b)

k k
n 1 n
P(];E (Xnk|]:n,k—1) = 5) =< g ((5 + E (1g]l(a§)§<n Xnk)) + P(Z Xnk > (5) .

k=1
Consequently,

k,
é 5 1
lim sup P (Z E (Xuk| Fup—1) > g) < -+~ limsup E (1max Xnk) :
I <

n—00 k=1 € n—o0 <k=<ky,

Letting ¢ tend to zero and since 0 < maxj<x<k, Xpk < Zi”:l Xur — 0 in proba-
bility, and hence E (maxj<k<k, Xnx) — 0 using uniform integrability, the assertion
follows. [l

As a second technical tool, we need the following lemma.

Lemma 6.14 Let (Xui)i<k<k,.neN be an array of random variables with
1,2":1 E (sz) < C < oo for some constant C and all n € N and with

kll
(LB) ZE (X,Zlkl{|x"k|zg}) — 0 asn — oo foreverye > 0.
k=1
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Then for every array (Fuk)o<k<k, neN Of o-fields

kn kn
E (X2 Fasr) = D2 X2 =0 in £ (P) asn — oo.
k=1 k=1

Proof For every ¢ > 0 and n € N we have

ky
(Xﬁklfn,k—l) - Z X2
k=1

kn kn
<D E (X%kl{\x,,k|>e}|~7:n‘k71) + D X i l=2)

k=1 k=1
ke

+ Z [Xﬁklﬂxnuse} —E (Xﬁkluxnuse}lfn,k—l)]‘
k=1

= I, + I, + I, ,

say. Assumption (LB) implies I, — 0 and I, — 0 in LY (P) as n — oo, whereas
for I11,, we have

2
(”1 ) ZE ([X'%kl{|xnk<5} —E (Xﬁkl{anklszfn,k—l)] )
kn
<ZE( |xnk\<;)<ezzE<X ) e2C
k=1

by assumption so that E (II,) < £C'/?. Because ¢ > 0 is arbitrary, this clearly
implies the assertion of the lemma. (]

Now we are prepared to analyze the relationship between the conditions (N) and
(CLB) and the additional conditions formulated above.

Proposition 6.15 Let (Xu1)|<k<k, .neN be an array of square integrable random
variables adapted to the array (Fni)o<k<k, .neN 0f 0-fields. Then (My) implies (M)
and (CLB).

Proof Clearly, (M;) implies (M ). For the proof of (CLB) we note that foralle, § > 0
and n € N we have

kn
2
P(ankl{lxnklzd z 5) =P (12}(21;; [ Xnk| > 5) .

k=1 "
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Consequently, (M) implies

kn
ZX,%,CI{‘X”HZE} — 0 in probability as n — oo
k=1

for every € > 0 as well as uniform integrability of {max15k§k" X 5,( in € N}, and
(CLB) follows by an application of Lemma 6.13. (]

Proposition 6.16 Let (Xu1)|<i<k, neN be an array of square integrable random
variables, and let (Fui)o<k<k, neN be an array of o-fields. If (CLB) is satisfied and

( i"zl E (X5k|fn’k_l))neN is bounded in probability, then

kn
ZE (szlfn,kfl) ZXnk — 0 in probability as n — 00 .
k=1

In particular, (CLB) and (N) imply (R).

Proof For 0 < ¢ < oo and n € N we define the stopping time

Ty (¢) = max 1 k € {0, k) ZE( ,%le":n,j—1)SC

w.r.t. the filtration (Fuk)o<k<k, and introduce the random variables
Xk (¢) == Xnkl{kg'r,l(c)b 1<k<ky, neN.

Then forall0 <¢c <ocandn € N

kn kn ky kn
SUE (X2 Fuit) = DO X5 =D E (X2 Faict) = O E (X2, (©) | Fui)
k=1 k=1 k=1 k=1
kn
+ZE X () | Fuim1) = D ,,k(c>+zxnk(c) Zx
k=1 k=1 k=1

=1y (c)+ 1 (¢) + I, (c) ,
say. Because
T (C)

I (¢) = kz E (X2 Fasmr) = D E (X2l Fascn)
k=1

k=1
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we have
k)l
P @12 2) = P (7 (©) < k) < P (Z E (X2 Fuir) > c)
k=1

for every € > 0 and, similarly,

k

3

P (|, (c)] =€) < P(1,(c) <kp) < P(

E (X,%k|f,l,k_1) > c) .

k=

—_

By definition of 7;, (c) we have

kn Tn(c)
E (X2 @1 Fuit) = 2 E (X3l Fapr) < e
k=1 k=1

for all n € N, so that Zi”:l E (X2, (¢)) < c. Moreover, from | Xk ()] < |Xux| we
see that (CLB) implies

kn
E (Xﬁk (c) 1{|Xnk(c)\zg}|]-'n,k_1) — 0 in probability asn — oo
k=1

for all € > 0, so that, by dominated convergence,

ko
> E (X2 © Tixerza) = 0 asn — oo
k=1

Therefore, Lemma 6.14 yields
kn kn
(@)=Y E (Xﬁk (c) |fn,k_1) — > Xp(© =0 inL'(P)asn — oco.
k=1 k=1
Now, for every € > 0 and n € N we have
kn kn
P( >E (X§k|f,,,k_1) P A 35)
k=1 k=1

=Pl ze)+ P (I ()] = &) + P (I, (c)| = €)

ko
= 2P(ZE (X,%klfn,k_l) > c) + P (L, (o) =¢) .
k=1
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Here, P (|1, (¢)| =€) — 0 asn — oo because II, (¢) — 0in L' (P) asn —
0o, and the sequence Zl,i”: W E (X2k|fn,k—l), n € N, is bounded in probability by
assumption. This proves

kn kn

ZE (X,%kl]:n,kfl) - ZXﬁk — 0 in probability asn — oo. O
k=1 k=1

Proposition 6.17 Let (Xur)|<i<k, .neN be an array of square integrable random
variables, and let (Fuk)o<k<k, neN be an array of o-fields. Then (CLB) implies
(CLBy).

Proof For every € > 0 and n € N we have

k k
n 1 n
ZE (ank| l{IXnk|z€}|~7:n,k—1) = - ZE (X,%kl{ank\Zs}LFn,k—l) )
k=1 k=1
which proves the proposition. (]

Proposition 6.18 Let (X)) 1<k <k, neN be an array of integrable random variables
adapted to the array (Fur)o<k<k, neN of o-fields. Then (M) implies (CLBy).

Proof Forall e, > 0and n € N we have

k?l
P(Z | Xkl L{iX,i12e) = 5) =P (12@@1 | Xkl = E) .

k=1
Consequently, (M) implies

ko
D 1 Xukl 1x,412¢) — O in probability as n — oo
k=1

for every € > 0 as well as uniform integrability of {maX]Skskn | Xnk| :neN }, and
(CLB) follows by an application of Lemma 6.13. ]

Proposition 6.19 Let (Xpi)1<k<k, neN be a martingale difference array w.r.t. an
array (Fuk)o<k<k, neN of o-fields. Then (CLB1) and (R) imply (T,), (TM,) and
(TR,) for every a > 0.

Proof Fix a > 0. Because (Xpr)j<k<k, 1 a martingale difference sequence w.r.t.
the filtration (Fuk)o<k <k, We have

E (Xnid(x1<a) [ Frik—1) = —E (Xnt (X 1>a} | Frk—1)
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foralln € Nand 1 < k < k,. This fact will be crucial several times in the sequel.
For the proof of (T,) we use it to obtain for all n € N

kn kn
Z |E (Xnk 1 X, 1<a} | Fnk—1)| = Z |E (X L x,i>a} | Fnk—1)|
k=1 k=1

kn
< ZE (1Xn ] Lix,1=a) | Fnk—1)
k=1
so that by condition (CLB)
kn
Z |E (Xnkl{‘xnk|5a}|f,,,k_1)| — 0 in probability asn — oco.
k=1

Moreover, according to Lemma 6.5 condition (CLBj) implies

kn
Z | Xuk| 1{1X,|>a) — O in probability as n — o0,
k=1

which completes the proof of (T,).
To verify (TM,) we use Proposition 6.6 to obtain maxj<x<x, |Xnx| — 0 in prob-
ability as n — oo from (CLB1), and the inequality

max X1 x,1<a) = E (Xnk 11 %,1<a) | Fr k1)

1<k<ky,

kﬂ
< max |X E (| Xkl 1 Fok—
_1§k§k,,| nk|+]; (1X k| 1 x> a3 | Frnk—1)

completes the proof by another application of condition (CLB1).
It remains to verify (TR,). Note that for all n € N

ky &
Z [Xnkl{‘xnk|§a} - E (Xnk1{I)(y,klfa}|‘7:n,k*1)]2 - szk
1 k=1

o
2
< ank1{|Xnk|>a}
k=1

kn

+22 | Xkl Lol <ay | E (Xnk Ll <ay | Frk—1) |
k=1
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k/‘l
+DE (X L1, 1<) Feot)”
k=1
ko

k)l
< D X lixut=a) +3a D E (X 1ix,uia)| Fuk—1) -
k=1 k=1

Now

kn
Z X2 1(x,11>a) — O in probability as n — oo
k=1

follows from maxi<k<k, | Xnk| — O in probability, which when combined with
(CLB) gives

kn kn
S Xkl xoiza) = E Xk Lxolzall Faie1) ] = D X5 = 0
k=1 k=1

in probability as n — oco. Now (TR,) follows from (R). (I

As a consequence of Propositions 6.15-6.19 we see that for an array
(Xnk)1<k<k, neN Of random variables adapted to an array (Fuk)o<k <k, neN Of o-fields
the implications in the following display are true under appropriate moment assump-
tions and if (X,x)1<k<k, neN 18 @ martingale difference array w.r.t. (Fux)o<k<k, neN

for the implication (=*§:

6.20 Conditions in the martingale central limit theorem:

(Mp) and (N) = (M) and (R)
[’ [
(CLB) and (N) = (CLB) and (R) & (T,), (TM,) and (TR,)

The conditions in the left column require square integrable random variables,
in the middle integrability is sufficient, and on the right-hand side no moments are
needed at all. The role of these conditions as sufficient conditions in a stable central
limit theorem is disclosed by the following proposition which shows that for any
array (Xnk)1<k<k, neN Of random variables adapted to the array (Fpur)o<k <k, .neN Of
o-fields which satisfies (T, ), (TM,) and (TR,) for some a > 0 there exists a bounded
martingale difference array which satisfies the strongest set of conditions (M>) and
(N) and has asymptotically equivalent row sums.

Proposition 6.21 Let (X)) <k<k, neN be an array of random variables adapted
to an array (Fui)o<k<k, neN Of o-fields. Assume that there exists some a > 0 for
which the conditions (T,), (TM,) and (TR,) are satisfied. Then for the (bounded)
martingale difference array
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Xk (@) = Xnilxop1<a) — E (Xnk L xp12a} | Frk—1), 1 <k <kn, n €N,

w.r.t. (Fuk)o<k<k,.neN the conditions (My) and (N) are satisfied and

kn kn
ank - ZX,,k (a) — O in probability as n — oo.
k=1 k=1

Proof Note that condition (TM,) is tantamount to maxi<g<k, | Xk (@)| — 0 in
probability as n — oo and hence to maxj<x<k, X 5,( (a) — 0in probability. Because
| Xk (@) <2aforalln €e Nand 1 < k < k;,, we obtain E (maxlfkfkn X}%k (a)) —
0 as n — oo by dominated convergence, which is condition (M») for the array
(Xnk (@))1<k<k, .neN- By definition, we have

kn kn kn

D Xk = D Xk (@) =D Xl xiza) + E (Xnk lx,p1<a)| Fk—1) -
k=1 k=1 k=1

which converges to zero in probability as n — oo by condition (T, ). Therefore, it
remains to show that the array (X,,x (@)); <k <, .neN satisfies condition (N). For this,
we define the stopping time

k
Tn (c):min[ke{l,...,kn}:ZX,%i (a) >c}/\kn
i=1
withmin¥ := oo foralln € Nand 0 < ¢ < oo and set
Yuk (¢) := X (@) l{kay,(c)}» 1 <k=<ky neN.

Then foralln € N

kn kn
DE (X% @1 Fuin) = DX @
k=1 k=1

n k

=S E (X2 @1 Fint) - D E (Y31 Fui)
k=1 k=1
kn

kn
+ D E (YR © 1 Fust) = 2 VE©
k=1 k=1

kn kn
+ D Y (©) = D X (@) = L (¢) + Il (¢) + I, (c) .
k=1 k=1
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say. Because

ky ()
In(©) = D E (X2 @1 Fasr) = D E (X3 @ 1 Fuir )
k=1 k=1

we have foralln e Nande > 0
kn
P (I (0)l = 2) < P (7, (c) <ky) < P(ZX,%k (@) > c) :
k=1
Similarly, foralln e Nand e > 0
kn
2
P (|1l (&) = &) < P (14 (¢) < kn) < P(Z X2, (@) > c) .
k=1
To obtain a bound for II,, (¢), note that for all £, 6 > 0 and n € N we have
kn
P (kz; Yo (©) Ly ze) = 5) <P (12}2,, Yok () = s)

so that
kn
Z Ynzk (©) 11y,4(c))=e} — O in probability as n — oo
k=1

for every € > 0 because

max |V (¢)] < max |X,x (@) — 0 in probability asn — oo.
1<k<k, 1<k<ky,

Moreover, by definition of 7, (¢), for alln € N

kn Tn(C)
2 2 2 2
k_El Yo (o) = k_El X (@) <c+ 12}?5’2,1 X (@) <c+4a

so that z],i": L E (Y2, (¢)) < ¢+ 4a” and, by dominated convergence,
kn

> E (Ynzk () 1{w,,k<c>\zs}) — 0 asn — o0
k=1
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for all ¢ > 0. Hence by Lemma 6.14 we see that II,, (c) — 0 in LY (P)asn — .
Now, for every € > 0 and n € N we get
> 35)

kn kn

P ( DE (X% @1 Fuin) = D X2 @
k=1 k=1

= P @) 28 + P (1, @] 2 ) + P (111, )] = 2)

kll
<op (Z X2, (@) > c) +P (L 0]z 2) .

k=1

Here, P (|11, (¢)| > €) — 0 as n — o0, and the sequence Zi”zl XZk (a),n € N, is
bounded in probability because condition (TR,) is tantamount to

kl‘l
ZX%,{ (a) > 772 in probability as n — oo .
k=1

This proves

kn k"
ZE (X;%k (a) |.7-",,,k,1) — ZXZk (a) - 0 in probability as n — oo,
k=1 k=1

and another application of (TR,) gives

kn
Z E (X%k (a) |]-'n‘k,1) — 7]2 in probability as n — oo,
k=1

which is condition (N) for the array (X (a))<k<k, neN SO that the proof is
complete. (]

Corollary 6.22 Let (X;k)|<k<k, neN be an array of random variables adapted to
an array (Fur)o<k<k, neN of 0-fields. Assume that there exists some a > 0 for which
the conditions (T,), (TM,) and (TR,) are satisfied. Then

kn
ZX”" — nN G-stably asn — o0,
k=1

where PY = N (0, 1) and N is independent of G.

Proof Let the random variables X,x (a), | <k < k,,n € N, be defined as in Propo-
sition 6.21. Then according to Proposition 6.21, (X (@)1 <k <k, neN i @ bounded
martingale difference array w.r.t. (Fuk)o<k<k, neN Which satisfies (M2) and (N).
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According to Proposition 6.15 condition (CLB) is satisfied as well. Therefore by
Theorem 6.1

kn
ank (a) = nN G-stably asn — oo.
k=1

Since by Proposition 6.21

k}l kn
Z Xk — Z Xuk (a) — 0 in probability as n — oo,
k=1 k=1
the proof is completed by an application of part (a) of Theorem 3.18. ]

The self-evident consequence of 6.20 and of Corollary 6.22 is the fact that for
a martingale difference array (Xni)i<k<k, .neN W.IL an array (Fuk)o<k<k, neN Of
o-fields any set of conditions occurring in 6.20 implies G-stable convergence of the
row sums to V. In the sense made precise by 6.20 and Proposition 6.21, as sufficient
conditions in the G-stable martingale central limit theorem, all these conditions are
tantamount to each other, though not mathematically equivalent.

A version of Corollary 6.22 for martingale difference arrays under the condi-
tions (M7) and (R) is contained in [58].

Exercise 6.4 ([58]) Let (Xni)1<k<k, neN be a martingale difference array w.r.t.
(Fur)o<k<k, neN- Under conditions (Mp) and (R) we have

k}l

ank — nN G-stably
k=1

where PV = N (0, 1) and N is independent of G (see Corollary 6.22 and 6.20). Show
that, in general, this assertion is not true if (M) is replaced by the weaker condition
maxi<k<k, |Xnk| = 0in probability. To this end, consider an array (X,x)1<x<k, neN
with X1, ..., X,, being independent and identically distributed, P (an = %) =
(1- %)1/;1 and P (X, =x,) =1—(1 — %)Un,wherexn < Oissuchthat EX,; =
0. Furthermore, let Fux = 0 (X,;, 1 < j < k) with F0 = {0, Q}.

6.4 Martingales

Let (2, F, P) be a probability space and F = (Fy);~¢ a filtration, that is, a non-
decreasing sequence of sub-o-fields of F. Set F =0 (U,fio -7:k)- A sequence
(Xk)j>1 of random variables on (2, F, P) is called adapted to IF if X is measurable
w.r.t. i for every k € N, and a sequence (Xy);> of integrable random variables
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adapted to [F is called a martingale difference sequence w.r.t. F, if E (Xy|Fr—1) =0
for all k € N.

Let (Xr)g>1 be a martingale difference sequence w.r.t. the filtration IF, and let
(an),>1 be a sequence of positive real numbers. Then

1
X :=—Xy forl<k<n and Fu=F forO0<k<n,neN

dn

defines a martingale difference array (X,x)1<g<n.neN W-It. (Fuk)o<k<n.neN» and the
o-fields are nested because F+1x = Fx = Fux foralln € Nand 0 < k < n.
Therefore, Theorem 6.1 and the sufficient conditions of Sect.6.3 can be applied
with G = F and yield stable central limit theorems for the normalized partial sums
a, ! > ke Xkof (X &)k>1 under appropriate moment conditions. For ease of reference
we explicitly formulate here the two sets of sufficient conditions for martingale
difference sequences that will be applied later on.

Theorem 6.23 Let (Xy);> be a martingale difference sequence w.r.t. the filtration
F, and let (a,),en be a sequence of positive real numbers with a, — oo. If

n
X,% — 772 in probability as n — oo
k=1

(Ra,)

Q
S| —

for some real random variable n > 0

and

1
Mi,q,) —E(max |Xk|) — 0 asn — o0,
a 1<k<n

n

or if (X)r> is square integrable with

l n
(Na,) — Z E (X,%I}'k_l) — 1 in probability as n — 00
Ty
for some real random variable n > 0

and

1 n
(CLB,)  — D E (X,%l{,xﬂzgan”fk_l) — 0 in probability as n — 0o
4y k=1
foralle >0,



110 6 Stable Martingale Central Limit Theorems

then

1 n
— E Xy = NN Foo-stably asn — oo,
an

k=1

where PN = N (0, 1) and N is independent of Fc.

Proof Proposition 6.20 and Corollary 6.22. Note that n2 in conditions (N, ) and
(Rg,) is w.l.o.g. Foo-measurable. ([l

Condition (R,,) and slightly stronger conditions than (M 4, ) appear in Theorem
2 of [15] and Theorem 2 of [4].

Corollary 6.24 (Random norming) Under the assumptions of Theorem 6.23 in case
P (772 > O) > 0 conditions (R,,) and (M ) imply

(Z X,%) ZXk — N Foo-mixing under Py asn — 0o,
k=1 k=1

and conditions (N, ) and (CLB,) imply

n

n —-1/2
(Z E (X,%U-'k_l)) ZXk — N Foo-mixing under P{772>0} asn — oo,
k=1 k=1

where PY = N (0, 1) and N is independent of Foo.

Proof Replace Theorem 6.1 by Theorem 6.23 and condition (N) by conditions (R, )
or (N, ) in the proof of Corollary 6.3. ([l

An immediate consequence of the preceding theorem is the classical stable central
limit theorem of Examples 3.13 (b) or 3.16.

Remark 6.25 (a) In Theorem 6.23 we do require explicitly thata, — coasn — oo.
However, if P (E (X,%|.7—'k_1) > 0) > 0 for some k € N, which means that not all
X vanish almost surely, then (N, ) and (CLB,) as well as (M 4, ) already imply
ap, — oo as n — oo. For martingales Xo + > ;_; Xi with X # O the condition
a, — oo assures the validity of Theorem 6.23.

(b) Just as in Remark 6.8, condition (CLB,, ) is implied by its classical form

1 n
(LBg,) — ZE (X%1{|xk|35a,,}) — 0 asn— ocoforalle >0
an
k=1

and by the conditional Lyapunov condition of order p € (2, 0c0), which requires for
some p € (2, 00) that


http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_3
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1

(CLY,,.p) —-
dn

n
ZE (|Xk|” |-7:k—1) — 0 in probability as n — oo.
k=1

Condition (CLY,,, ) itself is implied by its classical form

n
LPZE(IXk|p)—>0 asn — 00.
a

n k=1

LYa,.p)

Corollary 6.26 (Stationary martingale differences) Let X = (X,,),cN be a station-
ary sequence of real random variables with o-field Ty = X! (B (R)N (S )) induced

by invariant sets (S : RN — RN being the shift operator; see Chap.5). If X1 €
L2 (P) and if X is a martingale difference sequence w.r.t. F = (Fi) k=0, then

1 <& 12
WZX]( — F (X%|ZX) N Foo-stably asn — 00,
k=1

where N is independent of Feo with PN = N (0, 1). If X is also ergodic, that is,
P (Zx) =10, 1}, then

1 <& 12

— Xy — E (X%) N  Foo-mixing asn — 00.
3

k=1

The distributional convergence in this result goes back to [8, 45].

Proof The ergodic theorem implies

l n
=3 X} > E(X}1Zx) as.andin£'(P) asn — oo
n

k=1

so that condition (R, ) is satisfied with a, = /n andn = E (X12|Ix)1/2. Since
the Xy are identically distributed, the classical Lindeberg condition (LB,,) is also
satisfied with a, = /n because for all € > 0

1 n
- ZE (X,%l“XkBEnl/z}) =F (X%l{lelzanl/z}) — 0 asn — oo,
k=1

which through the inequality, valid for alle > O and n € N,

! E (X 2<1E x2) < lnE(le )
T EOXD ) = m XE) =24 2B (Xl


http://dx.doi.org/10.1007/978-3-319-18329-9_5
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implies (M 4, ). Therefore, Theorem 6.23 implies the first assertion. If T is trivial,
then E (X 12|I X) =F (X 12) almost surely, whence the second assertion. O

Let X = (X,),en be an exchangeable sequence of real random variables on
(2, F, P), that is, P(X”l """ Xon) — P& Xn) for all permutations (71, ..., 7y,)
of (1,...,n) and all n € N. Then PX1:- X2 Xn.Xut1) — p(X2. X3, X1, X1) g
that P(X1:X2,.X0) — p(X2.X5,.Xu11) for all n € N, which shows the (X,,),cy is
stationary. Moreover, the o-field induced in €2 by symmetric events is almost surely
equal to the tail-o-field 7y and almost surely equal to the invariant o-field Zy of the
stationary process X; see e.g. [52], Corollary 1.6.

Corollary 6.27 (Exchangeable processes) If X = (Xp),en is exchangeable with
X| € L2 then

1 n
N z (Xx — E (X1|Tx)) — Var (X1|Tx)'/> N Fuo-stably as n — oo,
n
k=1

where N is independent of Foo = 0 (Xi, k € N) and PN =N (0, ).

In [16] this result was obtained with 7y instead of F under the assumptions
E (X1|7Tx) = 0 and E (X7|7x) < C for some finite constant C. The general result
is stated in [3], p. 59.

Proof Exchangeability implies that the conditional distribution of X, given 7y is
independent of n € N. This yields E (X,,|7x) = E (X1|7x) almost surely foralln €
N. The random variables Y,, := X, —E (X1|7x),n € N, form a martingale difference
sequence w.r.t. the o-fields F,, := o (Tx Uo (X1, ..., X)), n > 0: Clearly, Y, is
Fu-measurable for all n € N, and E (Y||Fy) = E(X| — EX|7x)|7x) = 0
almost surely. Moreover, for all n > 1, the o-fields o (X1, ..., X,—1) and o (X,)
are conditionally independent given 7x, and Theorem 7.3.1 in [17] implies for all
n > 2 almost surely

E (Y| Fu-1) = E (XnlFn-1) — E (X1|7Tx) = E (XulTx) — E (X1|7x) =0.

Furthermore, because 7y = Zx almost surely, we have E (X1|7x) = E (X1|Zx)
almost surely, from which it follows that (¥,),cn is a stationary process. Clearly,
X1 € £*(P) implies Y; € £?(P), and an application of Corollary 6.26 yields the
assertion. O

For arbitrary stationary sequences (X},),cy it is often possible to approximate the
partial sums (Z?:l X i)n <y Dy a martingale with stationary differences so that under
suitable conditions on the error term, Corollary 6.26 also yields a stable central
limit theorem in this general setting. In the ergodic case this approach is due to
Gordin [36] with generalization to the non-ergodic case in [27] (see also e.g. [22, 37,
41, 72]).

In order to check the assumptions of limit theorems, the following lemma is very
useful.
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Lemma 6.28 (Toeplitz) Let (b,),>1 be a sequence in [0, 00) such that by > 0 and

2z bn = o0,

(a) Let (x),>1 be a sequence in R. If lim,,, o0 X, = x with x € R, then
lim 2 —1bjx; _
n—00 Z’}—l bj

(b) Assume b, > 0 for every n > 1 and let (ay),>1 be a sequence in R. If
limy,, 5 an /by = c with ¢ € R, then

The assumption in (b) can be read as A (Z’}zl a./) /A (Z'}zl bj) — c. There-
fore, the variant (b) is called the discrete rule of de I’Hospital.

Proof (a) Lete > 0 and ng € N be such that [x, — x| < ¢ for every n > ng. Then
forn > no

‘Z’}_lb.ﬂj N DY R DY L/ Rkl WD Y B L)
S |

7:1 bj Zj:l bj a Z?:l bj Zj:l bj
s Z’;O:Iij |xj — x| L
Zj:l bj
This implies
. 2j=1bjxj
hjrlsolip w —x‘ <e.
(b) follows from (a) by setting x,, := a,/by. O

Example 6.29 (Adaptive Monte Carlo estimators) For X € L' (P), one wishes to
compute ¥ := EX.

(a) ([6]) We assume that there are a measurable space (Z, C), a measurable map
F:(R!x 2,B(RY)®C) — (R, B([R)) and a (Z, C)-valued random variable Z
such that F (\, Z) € L' (P) and EX = EF (\, Z) for every A € R%. Now let
(Z4)>1 be an independent and identically distributed sequence of (Z, C)-valued
random variables with Z; 4 Z,20:=0,F, =0 (Zo,...,Zn),F:= (Fu)y>0 and
(An)n>0 an F-adapted sequence of R?-valued random variables with Ao = 0. In this
abstract setting we investigate the adaptive Monte Carlo estimators
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of ¥. For all n > 0 define M, := >}_; (F(\j-1,Z;) —9) with My = 0.
Then 5,1 — 19 = M,/nforalln > 1. For p € [1,00), let f, : RY — [0, oo],
fp ) = E|F(\ 2)|P.If Efi (\y) < oo foreveryn > 0, then M = (M), is
an F-martingale. In fact, since \,_; is F,_j-measurable and o (Z,) and F,,_| are
independent, for all n > 1,

EIF 1. Z)| = // F (A 2 dPZ () dP1 () = Efi (1) < 0.
so that M is an F-adapted L',l-process, and moreover, foralln > 1,

E(F =1, Zo) |Fuct) = / F(M\i-1,2) dP% () =
which implies
EMy|Fn-1) =Muy_1 + E(F(Mu—1, Zp) | Fu—1) =0 = My

If additionally sup, - fp (An) < oo almost surely for some p > 1, then it follows
from the strong law of large numbers for martingales in Theorem A.9 that M,, /n — 0
almost surely and hence 19 — 1) almost surely as n — 0o0. Now we assume

(1) Ay — Ao a.s. for some R?-valued random variable Ao ,
(i) f2 < oo and f> is continuous ,

(iii)) Ef> (\;) < oo foreveryn > 0,

(iv) F (-,z) :R? — R is continuous forall z € Z or

(iv’) sup,sqg fp (An) < oo a.s. forsome p > 2.

Then an application of Corollary 6.23 yields
Vi @y =) =n" M, > N (0, f2 (o) = 97)  stably

In view of (iii), M is an £>-martingale with quadratic characteristic

M), = Zn: E ((AM.,‘)2 Ifj—l) = Zn: (fz (Aj-1) = 192)

j=1

because, forall n > 1,

E(OM) Fm1) = [ (F Ouor2) = 07 dP7 @) = fa i) = 2.
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Since fo (A—1) = f> (Axo) almost surely by (i) and (ii), the Toeplitz Lemma 6.28
yields (M),/n — f> (Aoo) — ©¥? almost surely as n — 0o, which is condition
(Ng,) with a, = n'/2. To verify the conditional Lindeberg condition (CLB,,) with
a, = n'/? note that foralln € Nand e > 0

1 n
n Zl E ((AM)” 1jap et} 71 )
J=

=

1 2
=~ E((AMJ) 1{|AM_,-|25j'/2}|fj—1)

so that (CLB,, ) follows from
E ((AM./)Z 1{|AM_/|25j1/2}|‘7_-j_1) — 0 as.asj — 00
and the Toeplitz Lemma 6.28. Now
E ((AM5)" Vjap |21y Fi-1)
= [ (F ) = 0 1oy 4P7 @)

and from (i) and (iv) it follows almost surely as j — oo for all z € Z that
F (>‘j—1’ Z) — F (Ao, 2) and hence

2
(F ()\jfl,z) - 19) 1{|F(/\j,1,z)—z9|zej1/2} -0

with an exceptional null set which is independent of z € Z. Moreover, almost surely
forallj e Nandz € Z

(F (>\j71, Z) - 19)2 1{|F()\j71,2)*’l9|25j]/2}
< (F(\jo1,2) =9)° = (F e 2) = 0)? asj — o0

and
/(F (Aj-1.2) =9)" dP* @) = f2 (Aj-1) =0

— fr (o) —0* = / (F (Ao, 2) — )% dP% (2)



116 6 Stable Martingale Central Limit Theorems

from which almost surely, by Pratt’s dominated convergence theorem,

2 .
/ (F ()\j—l’ Z) — 19) 1{|F()\_,-_|,z)—19|zsjl/2} dP? (z) >0 asj — 0.
Under condition (iv’) we have

E (|AM,|7 |Fuz1) = E (IF (Mi—1, Zp) — 9|7 | Fu-1)
< 2P VE (IF ety Zo) 1P | Fur) + 2871917
<2/ Vsup £, (A)) +277 1 [0 < o0
j=0

almost surely for all n > 1, hence the conditional Lyapunov condition
1 n
P
Py ZE (|AM]'| |fj_1) — 0 a.s.
j=1

Of course, one is mainly interested in estimators A, of the parameter A which
provide minimal variance, that is A\, — Apin almost surely with A\, € R4 such
that

> Omin) — 9> = VarF (Amin, Z) = min VarF (\, Z) .
AeRd
(b) ([68]) Assume X € £2(P) and VarX > 0. Let Y € £2 (P) be another random

variable with EX = EY, VarY > Oand Var (X —Y) > 0. For A e R, let U () :=
X —A(X —=Y). Then EU ()\) =1, and for

g (\) == VarU (\) = VarX — 2X\Cov (X, X — Y) + A*Var (X — Y)
we get

Cov(X,X—-Y)

r)\neiﬁg (A) =g Amin)  With  Apiy 1= Var (X —Y)

and

, Cov (X, X — Y)? 2
Omin *= 9 (Amin) = VarX — W = VarX (1 - pX,XfY) ’

where

Cov(X,X —Y)
(VarX Var (X — Y))1/2

PX.X-Y ‘=

denotes the correlation coefficient.
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Now let ((Xy, Yn)),>1 be an independent and identically distributed sequence of
R2-valued random variables with (X1, Y1) 4 (X,7Y) and set

5 X=X (X - Y)
ne— n 2
ijl (X.i - Y/)

for all n > 1 with Xo := 0 and X,, = (—n) Vv 6,1 A n) for all n > 0. We consider
the adaptive Monte Carlo estimator

Py 1 <& -
Yy = — Xi—XNi1(X;=-Y;)), n>1,
T2 0= R (- 1)
of 4.

This setting is a special case of (a) withd =1, Z = (X, Y), Z = R F(\z) =
z1 — A (z1 _AZZ) and A\, = \,. The strong law of large numbers of Kolmogorov
implies that A\, — Anpin almost surely and hence \, — Apin almost surely as well.
Furthermore, f> (A\) = VarF (A, Z) +9%2 =g (\) +l92 < oo so that f, is continuous
and thus sup,,~ f> (A) < coalmostsurely. Since |A,| < n,wehave Ef> (A;) < oo
for every n > 0. In particular, by (a), 3,1 — ¢ almost surely. Clearly, F (), z) is
continuous in \ for all z € R2. Thus (i)—(iv) are satisfied, and it follows from (a) that

min

\/17(1’9\,1 —19) — N(O,U2 ) mixing as n — 00
and therefore, the estimator 5,, provides the optimal variance reduction. ([

Example 6.30 (The Pdlya urn) Assume that an urn contains initially (at time 0) r
red balls and s black balls, r, s € N. Atevery time n one draws at random a ball from
the urn and then puts it back into the urn with another m balls of the same colour,
m € N. Then, at time n, the urn contains (once the new balls have been put into
the urn) » 4+ s 4+ mn balls. Let ¥, and X,, = Y,/ (r + s + mn) denote the number
and the proportion of red balls inside the urn at time n, respectively. One models
the drawings using an independent and identically distributed sequence (Uy),> of
U (0, 1)-distributed random variables as follows: If U,4+1 < X,,, the ball drawn at
time n + 1 is red, otherwise it is black. Then the dynamics of ¥ = (¥,),>¢ and
X = (Xu)y>0 are given by

Yo=r, Yo=Y, +mly,, <x,

and

r m
Xo = , X =X 1 - X;) .
0 r T n+1 n+ rts+mm+0) ( {(Uns1=Xp} n)
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The process X isa [0, 1]-valued martingale with respect to the filtration F = (F},),,~¢,
Fn =0 Uy, ..., Uy with Fy = {0, Q}, so that X;, — X, almost surely as n —
oo by the martingale convergence theorem, where the limit X, is 7x-measurable.
Furthermore, for fixed p € N, the process Z = (Z,),,>( defined by

p—1

7z '_H Y, +mi
" S rtstmnti

satisfies Z, — X%, almost surely and one checks that Z is also an F-martingale.
This implies

p—1 .

r+mi
EXP = EZy=Zy= _ .
* 0 0 gr—l—s—i—mi

Hence, the distribution of X, has the moments of a beta distribution with parameters
r/m and s /m. Both distributions have compact support, hence, they are equal.

Now, for n > 1 introduce V,, := l{y,<x,_,}. It is well known that (V},),,> is
exchangeable and

1 n
S V> W= EWVITY) as.
n

i=1

(see e.g. [64], Beispiel 10.15 and Satz 10.9). Since Var (V{|7y) = W — w? =
W (1 — W), Corollary 6.27 yields

(ZV W) \/_Z(V W) — N (0, W (1 —W)) stably.

We obtain

r mZLl Vi

+ — W a.s.
r+s+mn r+s+mn

Xp =

implying Xoo = W and
Vi (Xy — Xoo) = N (0, Xoo (1 — Xoo))  stably

using Theorem 3.7 (a) because

Xn ZV ryn rs Zn:V~—>O a.s
r+s+mn (r+s+mn)«/ﬁl,:l ' o
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Distributional convergence of the randomly centered X, has been investigated in
[41], pp. 80-81 and stable convergence is contained in [20], Example 6. (See
also [19], Corollary 4.2 and [39], Example 4.2 for an even stronger convergence
result.) ([l

Exercise 6.5 Let (Y,),> be an independent and identically distributed sequence
with Y, € £2(P), EY; = 0 and let X( be a {—1, 0 + 1}-valued random vari-
able independent of (¥,),>1. Set X, := Y,lix 20, My = Z?:o Xj, Fn =
o (Xo, Y1, ..., Yy) and F = (F,),0. Prove that M is an F-martingale,

n_l/zMn — N (O, 02X(2)) stably
and
n12M, 4 P (Xo=0)60+ P (Xo £0) N (0, 02) ,

where o2 := Var Y.

Exercise 6.6 Let (Z,),>; be an independent and identically distributed sequence
with Z| € LP (P)forsome p > 2and EZ; = 0.Set M), := Z?:l (Z{;l Z,-/i) Z;
with My = M; =0,0% ;= Var Zy and V := > 2%, Z;/i. Show that

n_l/zMn — N (O, 02V2) stably .

Exercise 6.7 (Martingale tail sums) Let M = (M), >( be an £2-bounded martin-
gale with respect to the filtration F = (F,),,>0, My = Xo+ ZZZI Xy andleta, > 0.
Assume

a,% ZE (X?lfj_l) —n? in probability as n — oo
j>n

for some random variable n > 0

and
a’ ZE (X?1{|Xj|zg/an}|_7-'j_1) — 0 in probability as n — oo
j>n
foralle > 0.
Show that

o0
an Z Xj— N(O,nz) stably as n — 00.
Jj=n+1
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Exercise 6.8 (Stabilizing time change) Let F = (F},),,~¢ be a filtration in F and
let M = (M,),>o be an F-martingale satisfying |AM,,_| < ¢ < oo almost surely
for every n > 1 and (M) = oo almost surely. Consider the F-stopping times
T = 1inf{k > 1: (M), > n}, n € N. Show that

n_l/zMTn — N (0,1) mixingasn — 00.

Exercise 6.9 Show that the numbers Y, of red balls in the P6lya urn scheme of
Example 6.30 satisfy

T2 (Y = s ) Xoo) > N (0.m2X oo (1= Xoc) ) stably

Exercise 6.10 Let X = (X,),>; be an exchangeable (X, B (X))-valued process,
where X is polish. Show that X,, — P¥ 11Tx stably.

6.5 A Continuous Time Version

We finally present a continuous-time version of Theorem 6.23 and Corollary 6.24
for path-continuous (local) martingales. Its proof is obtained by using the associated
Dambis-Dubins-Schwarz Brownian motion.

Theorem 6.31 Let M = (M;),>( be a path-continuous local F-martingale, where
F = (Ft);>0 denotes a right-continuous filtration in F, and let a : (0, 00) — (0, 00)
be anondecreasing function witha (t) — ooast — 00. Assume for the (continuous)
quadratic characteristic

(M),

2 . .
5 — 1 in probability as t — 00
a(t)

for some R -valued random variable 1. Then

M;
a(t)

— N (O, 772) stably as t — o0
and if P (772 > O) > 0,

— N (0, 1) mixing under Pf,p_oy ast — o0.

t
1/2
(m),’

(M, /0 := 0.)
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Proof Since (M — My) = (M), we may assume My = 0. Let (s,),> be an arbitrary
sequence in (0, oo) with s, 1 oco. The assertions reduce to

Msn 2
— N(O,n ) stably as n — oo
a(sp)

and

Sn

1/2
M),/

— N (0, 1) mixing under P,2_ gy asn — oo.

By the Dambis-Dubins-Schwarz time-change theorem there exists (possibly after
a suitable extension of the underlying probability space) a (continuous) Brownian
motion W such that M = Wy ([51], Theorem 18.4). For n € N, define

1
W' =—W 2, t>0
t a (Sn) a(s,,)zt —

and G" = (ga(wz,) 0 where G; = o (Wy, s < t). Then, by the scaling invariance

>
of Brownian motion, W" is a G"-Brownian motion and the filtrations G" satisfy
the nesting condition from Corollary 5.9 with ¢, := 1/a (s,): We have t, — 0,

(ga(‘gn)ztn)m is a filtration and o (U;’li 1 ga(‘gn)ztn) = Goo. Consequently, it fol-

lows from C_orollary 5.9 that W* — v mixing, where v = PV e M!(C (Ry)).
Therefore, by Theorem 3.7 (b),

a (M),
w", G )2 >R 6,]2 stably
a(Sp

and using the continuity of ¢ : C (Ry) x Ry — R, ¢ (x, ) = x (¢), Theorem 3.7
(c) yields

M; 1 <M>s
n — W — Wn — Wn, n
aGsn)  a(s M (M), fa(sn)? S0( a (sn)?

- (v®dp)’ =N (0, nz) stably

asn — oo.
As for the second assertion, observe that by Theorem 3.7 (b)

( Msn (M>x,,

. K,»:=N(0,7°)®4, stably,
2 G5n) a(sn)z)_) P ( n)@ 2 stably
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in particular we have stable convergence under P{”2>0}, the function g : R> — R,

gx,y) =x//yify > 0and g(x,y) := 0if y < 0 is Borel-measurable and
Py K ,2-almost surely continuous because

Ppp-o)Kyp (R x {0)) = / N (0.7%) R) 6,2 (0]) d Py
= P{n2>0} (772 = O) =0

and moreover, K, (w, )Y = N (0,1) for w € {n* > 0}. Thus, it follows from
Theorem 3.7 (c¢) that

M M M),
(M)Sil/ =g (a (;”), Li (S>;"2) — N (0,1) mixing under P20} - O
Sn n n
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Chapter 7
Stable Functional Martingale Central Limit
Theorems

This chapter is devoted to stable functional central limit theorems for partial sum
processes based on martingale differences which correspond to the results for partial
sums presented in Sects. 6.1, 6.3 and 6.4. As in Chap. 6 it is convenient to consider
arrays of martingale differences, but to keep technicalities as simple as possible, we
consider a fixed filtration ' = (F )0 on the basic probability space (€2, F, P). As
usual, Foo = 0 (Uge Fi)- Forevery n € N, let (X,k);>1 be a martingale difference
sequence w.r.t. IF, and for every n € N and ¢ € [0, 0o) set

[nt]

Sty (1) == D Xy + (nt = [n]) Xy, fury41 -
k=1

Then (S(n) (t)) 1€[0.00) is a random process with sample paths in C (R;.). Note that
the array (F.4),- o ,eny With Fok := Fi is obviously nested.
For a nonnegative stochastic process (1) (¢)),c[0.00) With paths in C (R) and

square integrable X,; we introduce the conditions

[n1]
) Z E (X5k|fk_1) — 12 (t) in probability as n — oo for all € [0, c0)
k=1

and

[nt]
(CLB) > E (Xﬁkl{|xnk|zg}|]—'k_1) — 0 in probability as n — 00
k=1
foralle > Oandallt € [0, 00).

Note that any process %> appearing in (N;) is nonnegative with almost surely non-
decreasing paths and 7 (0) = 0. The conditions (N;) and (CLB,) are our basic
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conditions which ensure stable convergence of S, to a Brownian motion with time
change 7.

Theorem 7.1 Let (Xni)ren be a square integrable martingale difference sequence
W.LL. (fn,k)k>0f0" every n € N. Under (N;) and (CLB,),

2 i .
Sy — (W (17 (t)))te[O,oo) Foo-stably asn — oo in C (Ry) ,

where W = (W (1)),>¢ is a Brownian motion which is independent of F.

According to Proposition 3.20 we have to show that the finite dimensional dis-
tributions of S(,) converge Fo-stably to the finite dimensional distributions of
(W (n? (t)))te[0 o) and that the sequence (Sn)) ,epy 18 tight in C (Ry).

Proof of stable convergence of the finite dimensional distributions. For all 0 < #] <
th < --- <, < 0o we have to show

(Soy (t1) s -+ Sy 1) = (W (> (1)) + .., W (0 (1)) Fo-stably as n — o0.
Clearly, this is equivalent to

(Sony (1) Sy (12) = Siuy (1) -+ Sty (1) — Sy (tr—1)) —
W0 @). W 0> @) =W @0 @) ... W (0 1) = W (0 (1--1)))

Foo-stably asn — oo. Putting tp = 0 and observing that S, (t9) = W (772 (to)) =0,
by the Cramér-Wold technique, Corollary 3.19, (i) < (iii), the last convergence is
equivalent to

r

Z::)‘q (S (tg) = Seny (tg-1)) — Z/\q (W (772 (tq)) -Ww (772 (tq—l)))

g=1

Foo-stably asn — oo forall Aj, ..., A\, € R.
First, note that for all € [0, c0)

[n1]
Sey (1) = D Xk

k=1

<|Xx < max Xl — 0
= } n,[nt]+l’ = l§k§[n(t+l)]| nk|

in probability as n — oo, where the convergence to zero follows from (CLB;) and
Proposition 6.6 (note that [nt] + 1 < [n (t + 1)]). Therefore, by Theorem 3.18 (a) it
is sufficient to show that

[ [n1g-1] r

r ]
Z{Aq kZ X — ; Yo | = 30 (W (1 1) = W (22 (14-0))
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Foo-stably as n — oo. Setting I ([ntg—1] + 1 <k < [ntg]) = Vif [ntg_1] +1 <
k < [ntq] is true and = O otherwise, we have, foralln € Nand 1 < k < [nt,],

r [n14] [nt4-1]

Z)\q Z Xk — Z Xk
g=1 k=1 k=1

nty] [nt,]

AT ([ptg—1] +1 < k < [n1,]) Xt = Zanank,
q=1 k=1

r

with
,
i = Z)\ql ([ntq_1] +1<k< [ntq]) .

We see that (ank Xnk)1<k<[nr,].neN 18 @ square integrable martingale difference array
w.r.t. the nested array (f”sk)0<k<[m |.neN (where F, x = Fi) and

[nt,] ntq
E(aﬁkxﬁkm,k_l) Z > a4E (x3k|fk_1)
k=1 g=1k=[nty_1]+1
r [n1q]

=> > RE(xFE)

q=1k=[nt;_1]+1

r [n14] [nty-1]
=20 (2 E (X)X E (XA)
q=1 k=1 k=1

QZV( — 1 (t-1))

in probability as n — oo by (N;). Moreover, for all £ > 0,

[nt]
D E (arzlkxﬁkl{mnknxnﬂzf}|‘7:”,k*1)

k=1
r 2[”fr]
2
;’Aq’ ];E(Xnkl{lxnk>E/Z;=||Aq|}|Fk1) -0

in probability as n — oo by (CLB;). Here, we assume w.l.o.g. that not all )\, are
equal to zero. Therefore, Theorem 6.1 and Remark 6.2 imply
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(1] 1/2

Zanank — Z)\z ( (tq 1)) N Fao-stably asn — oo,

where N is independent of F, with PV = N (0, 1). But, by independence of the
increments of W, independence of W and F., and Foo-measurability of 72, using
Lemmas A.4 (c¢) and A.5 (a), the conditional distributions of

12

S ) = ) | a3 8 G ) < W O )

given Fo both coincide with

zv( (tg) = 7 (15-1))

which gives

[n14] [n1y-1]

S (B ) - S v ) - )

Foo-stably asn — oo and completes the proof of the finite dimensional distributions.

Proof of tightness. We prove tightness of the sequence (S() (1)), 1o 1 € Nin

C ([0, T]) forevery T € N, thatis, forevery T € N and € > 0 we show

lim lim sup P sup |S(,,) ) — Sy (t)| >e] =0
00 n—oo 0<s,t<T
[s—t]<0

(cf. [51], Theorem 16.5). Then the assertion follows from Proposition 3.20 and
Corollary 3.23. Let T € N be fixed from now on.
Step 1. Forn € Nand 0 < k < nT, (Xuk)1<k<nT.neN 18 @ square integrable

martingale difference array w.r.t. (Fy.x) o <7 nery- We augment this array by inde-

pendent random variables X,; for n € N and k > nT + 1 which are independent
of Foo and satisfy P (X, = 1//n) = 1/2 = P (X = —1//n). (These new ran-
dom variables X,,x should not be confused with the original random variables X ,; for
k > nT 41, which play norole in the current proof for fixed 7'.) If we set }_nT,k = Fnk
forn e Nand0 < k < nT and]—'nT’k =0 (Far Yo (Xnnr+1, ..., Xuk)) forn € N
and k > nT + 1, then (X,1)g ,en 18 @ square integrable martingale difference array

W.I.L. (fnT k) with
") k>0,neN
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o
ZE (X3k|flk_l) =o0 as.foralln e N.
k=1

Foralln € Nand ¢ € [0, co) we define the almost surely finite stopping times
J
() =max {j=20: > E (X§k|f,{k_1) <1
k=1

T
W.I.L. (fn,k);po and

Ta (1)

Ty (1) = > Xuk.
k=1

Our first aim is to show that the process (7}, (¢));¢[0,00) Satisfies for every T € Nand
e>0,

lim lim sup P sup |Tu(s) =T, ()| =] =0.
040 n—soo 0<s.t<T
ls—t]<6

By monotonicity it is sufficient to show

lim limsup P sup |T,,(s) =T, ()| =¢e| =0.
M—00 n—o0 0<s,1<T
ls—tl<1/M

To prove this, we use a classical discretization technique. Clearly,

sup Ty (s) = Ty (1)
0<s,t<T
[s—t|<1/M

<3 max sup
O0<m<TM—-1m/M<t<(m+1)/M

wo-n (%)

J

<3 max max Z Xk
0<m<TM—1Tn(m/M)+1=j<7,((m+1)/M) Ky m ) M) +1
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so that

Pl sup |T,()—Tu@)l e

0<s,t<T
Is—t|<1/M

J

TM—1 -
=2 7 max 2, Xulzy
w0 \TO/MFISisT(ntD/M) | CE 3

Now we use the maximal inequality of Theorem A.10. To apply this inequality
note that

J J

max z Xuk| =  max ankln (k)
Tn(m/M)+1<j <7, ((m+1)/M) kmry(m M)+ 1 I=j=7u((m+1)/M) P

with I, (k) := 1z, (m/M)+1<k<r, ((m+1)/M)}» Where m and M are dropped from the
notation [, (k) for convenience. Because 7, () is a stopping time w.r.t. (]—"nT k)k o
k=
for every ¢ € [0, 0c0), the random variable I, (k) is .7-',{ «_1-measurable and, conse-
quently, (Xpily (k)= 18 a square integrable martingale difference sequence w.r.t.

Fr . For the associated square integrable martingale we have, for all j € N,
n.k k>0

j 2 T ((m+1)/M) "t
2\ T
E ankln (k) =E Z E (Xnku:n,kfl) = M
k=1 k=1, (m/M)+1

by definition of 7, ((m + 1) /M) so that this martingale is uniformly integrable.
Therefore

19
P max X > —
Tu(m/M)+1< <7, ((m+1)/ M) 2 =3

k=1 (m/ M)+1
6 Tn((m+1)/M)
<-E Xk dn (k)| 1| <@y 5
£ ; szzl X)Lkln(k)‘zg}
12
. (1) M) 2 Tu(m+1)/M) A\
< EE Z Xnkln (k) P Z Xnkln (k) > 8

k=1 k=1
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by Theorem A.10 and the Cauchy-Schwarz inequality. Thus we find

Pl swp 1Ti)-Ti)lze
0<s,t<T
ls—t]<1/M

FM_1 [ (1)) M) 12

2 E > E (XZkV:nT,k—l)
m=0

k=1, (m/M)+1

(U e

Ta((m+1)/M) 172

<Pl > Xulb|=

k=1

AN ™

FM_1 [ m(Gnt 1)/ M) 12

Z E (ngu_—nT,kfl)

m=0 k=T, (m/M)+1

A
[Ke)
™M
t

TM-1 Tn ((m+1)/ M) 1z

< 2P| X Xk =
m=0

k=1

6 TM—1 Tu ((m+1)/M) 1/2

g
< ET“Z mz_o P /; Xukln ()| = 2

because
Ta((m+1)/ M) (T)

TM—1
Z E Z E (Xiku:rz:k—l) =E Z E (X,%k|fnT,k—1) =T
m=0

k=7, (m/M)+1 k=1

by definition of 7, (T).
The probabilities on the right-hand side of the last chain of inequalities will

129

be

handled by the martingale central limit theorem. Note that for all # € [0, 00), ¢ > 0

andn € Nwithe/n > 1

Tn (1) nT
> E (szlkluxnkee}lfrfkq) <> E (sztkl{\xnk|26}|fk—l>
k=1 k=1

because 1y|x,,|>c} = 0 for all k > nT + 1. Therefore, (CLB,) implies

Tn (1)
Z E (X§k1{|xnk|zg}|}",{k_l) — 0 in probability as n — oo
k=1
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forall ¢+ € [0, 00) and € > 0. Moreover, for all t € [0, 00) andn € N,

2
max E( )< max E( .7-"_1)\/—
1<k <7y (1) +1 wlFic I <k<nT k| Tk

so that, by (CLB;) and Proposition 6.7, for all ¢ € [0, 00),

ma E(X2 Fr )—)O in probability as n — o0.
151(57"6)_'_1 nk| n,k—1 P y n

Since by definition of 7, () we have

T (1) T (1)+1

2 T 2\ pT
Z E (Xnku:n,kfl) =t< Z E (Xnku:n,kfl)
k=1 k=1

it follows that

T (1)
Z E (X5k|.’FnT’k71) — ¢ in probability as n — 00.
k=1

Therefore, in probability as n — oo, forall 0 <m < TM —1and M ¢ N,

Tum-+1)/M)
> E(Kukda 0 Vit orze) | Fiyr) = 0

k=1
and
T((m+1)/M) T((m+1)/M)
> E(mh 0P IEL L) = > E(XIEL)
k=1 k=1, (m/M)+1
T ((n+1)/M) 7 m/ M) |
— E(X2 ) E(X ) —.
]; k] Z k1) = 2

The martingale central limit theorem in the form of Corollary 6.4 gives

Ta((m+1)/M) .
Z XLy (k) = Ny asn — oo
k=1
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where PNv = N (0, 1/M) so that

ra(m41)/M) ) _
. < — o Sagl/2
lim P ; Xy ()] = = 2(1 ® (6M )) ,

where ® denotes the distribution function of the standard normal distribution. Hence

12 ~
lim sup P sup T, () —T, ()] =c| < =TMm'/? (1 - (EM”Z))
n—>00 0<s,1<T € 6
|s—t|<1/M

The bound on the right-hand side clearly converges to zero as M — oo and completes
the proof.

Step 2. In the second part of the proof we will switch from the time scales 7, (-)
to the time scales [n -] used in the definition of S(,). The potentialities of such a
random change of time in martingale central limit theory are elucidated in [81, 82].
Note that

Tn()+1
T
I < Z ( nk 7:,k—1)
by definition of 7, (¢) so that 7, (f) — oo almost surely as t — oco. Consequently,
7 ' (j) =inf {t € [0,00) : 7, (1) = j}
is almost surely well-defined for all j > 0. If j > 0 is fixed, then for all 7 € [0, 00),

by definition of 7, ! (j) and 7, (¢),

<m0 e mn<j e ZE( Faiet) > 1.

k=1

which implies

T;1<j>=iE( XFL)
k=1

so that

7
jediz0: X E(xFn ) =mt ()

k=1



132 7 Stable Functional Martingale Central Limit Theorems
and hence 7, (7, ! (j)) > j. Moreover, for all j > 0,

(T ()

Z Xnk_zxnk a.s.

To see this, write

(7 1)) (1L ())

Z Xk = ank+ Z Xk

k=j+1

and note that

7 (m ()

J

2 T 2\ T
ZE (Xnku:n,kfl) + Z E (Xnku:n,kfl)
k=1

k=j+1
(T 1)) j
= Z E(X5k|f;z:k71)§7—n_l (j)ZZE( el Fle 1)
k=1 k=1

which gives

Tn (Tz;l (j))

> E(XAELL) =0 as.,

k=j+1

whence

(T 1))

Z X =0 as.

k=j+1
because szlk = 0 almost surely on the event {E (szlk|]-"nT,k71) = 0}.
By monotonicity in t we get

[nt]

> E(X2Fa) - 0

k=1

sup
0<t<T

[nm/M] m
= £ (Xui7r) = (57)
= 0emamr ; kPt ) = M

+ s |6 =P )
0<s,t<T
|s—t|<1/M
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for every M € N, so that

[HZII,E(X il Fie— 1)—77 ()

k=1

sup
0<t<T

— 0 in probability as n — oo

by (N;) and continuity of the paths of the process 7. Foralln e Nand0 < < T
we have nt < nT and therefore

nt)

E(X2FL) =7 () =t (1)

1

k

so that

sup
0<t<T

N (1) — 7]2 (t)‘ — 0 in probability as n — co.

Now we can show that

[ns] [nt]

lim lim sup P sup Xnk — ZX”" >e]| =0.
00 n—oo 0<s,t<T | 2
|s— t|<5

To do this, observe again that nt < nT for all r € [0, T'] so that with probability one

[n1] 7 (1, ([nt)) T (7 (1))

D Xu= D Xu= D Xu=Tim®).
k=1

k=1 k=1
Therefore
[ns] [nt]
P sup ZX,,k—ZXnk >¢
0<s,t<T k=1
|s— t\<6

=P sup [T, (mu(s)) =T ()| =¢
0<s,t<T
|s—t|<d

Forall T e Nand 0 < d < 4 on the event
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A=A s 1T 6) = Tu ) z e 0 {2 (1) = T
0<s,t<T
|s—t|<0
2 d 2 2 d
sup |7, (&) — 7 (t)’fz N1 sup ‘n () —n (t)‘ 55
0<t<T 0<s,t<T

[s—t]|<0

we get, for all s, € [0, T] with |[s — ] < 0,

7 () — 1 (] =2 sup
0<t<T

@ =t O]+ swp | s) =P 0] <d
0<s,t<T
ls—t]=<d

and, recalling that the paths of 7% are nondecreasing,

d <T+1
4 =

M () < 070+ i ) =0 (0 < T+

as well as 7, (s) < T + 1. Therefore
Act sup T -T,()l=e

0<s,1<T+1
[s—t|=<d

so that
[ns] [nt]
Pl sup |D Xu— ank >
0<s,t<T k=1
|s—1]<é

=P| s L@-Tolz=|+P (@) >T)
0<s,t<T+1
ls—t=<d

+ P{ sup
0<t<T

which yields, for all § > 0, TeNand0 <d <4,

2 d 2 .2 d
M (1) =17 ()| >~ )+ P| sup |77 (s)—n" @) >3
4 0<s,t<T 2

ls—t|<d
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[ns] [nt]

lim sup P sup ZXnk—ZXnk >e
n—00 0<s,t<T k=1
|s— t|<<)

< limsup P sup T () =T, (1) = ¢

n—oo 0<s,t<T+1
[s—t|<d

2 7 2 2 d
+P\n°(T)>T)+P sup (7 () —n" ()| > =
0<s,t<T 2

[s—t]<é

By continuity of the paths of 7? it follows for all T e Nand 0 < d < 4 that

[ns]
llmllmsupP sup Xk — Xuk| =€
00 n—oo 0<s,t<T ]; ! Z "
|s—t]<d

<limsup P sup. T, () =T, (@)= |+ P (772 (T) > T) .

n—00 0<s,r<T+1
ls—1]<d

The right-hand side of this inequality converges to zeroasd | 0followed by T — oo,
which concludes the proof of

[ns] [nt]

hmhmsupP sup Xk —ZX,,k >e]| =0.
n—o00 0<s,t<T k=1
|s— t|<5

Because

[nt]

sup Sy (1) — ZX k< max | Xnkl — O in probability as n — oo
0<t<T 1 l<k=
the sequence (S(,,) (t))te 0.7 " € N, satisfies

limlimsup P | sup |S(,,) (s) — S (t)| >e| =0,
io n— 00 0<s,t<T
|s—1]<d

as claimed. |
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Now we show that conditions (N;) and (CLB;) may be replaced by other sets
of sufficient conditions which are functional versions of the conditions appearing in
Sect.6.3.

For a square integrable array (X ), ren of random variables we introduce

M2,;) E ( max X,%k) — 0 asn — oo forall ¢ € [0, 00)

1<k<[nt]

whereas the conditions

M) E ( max |Xnk|) — 0 asn — ooforallt € [0, 00)

1<k<[nt]
and

[n1]
(CLBy,) Z E (IXuk| 1{1x,1>2)|Fk—1) = O in probability as n — oo
k=1
for every ¢ > 0 and all ¢ € [0, c0)

only require integrable random variables.
The functional form of Raikov’s condition

[nt]
Ry) Xﬁk — 772 () in probability as n — oo for all ¢ € [0, c0)
k=1

and, for any a > 0, the conditions

[ns]
(Ta,0) sup | > [Xuk(xul=a) + E (Xak1{xu=al| Fi-1)]| = 0

0<s<t k=1

in probability as n — oo for all 7 € [0, 00)

and

[n1]
2
(TRq.1) D [Xutuxulza) = E (Xl ixui=all Fier) | = 7 @)
k=1
in probability as n — oo for all ¢ € [0, c0)

are meaningful without any integrability assumption on the X .
For these conditions we have the following analogue of 6.20. Here we assume

for every n € N that (X,x),en is adapted to [F and that (X,x),cy 1S @ martingale

difference sequence w.r.t. IF for the implication (=*§
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7.2 Conditions in the functional martingale central limit theorem:
(Mz,;) and (N;) = (M) and (R;)

(X U
(CLB,) and (N;) = (CLB,) and (R,) & (T, ,) and (TRq.,)

Note that the implications (M3 ;) = (CLB;) and (M3 ;) = (M; ;) follow from
Proposition 6.15 for k,, = [nt]. Moreover, (CLB;) = (CLB; ;) follows from Propo-
sition 6.17, and (M ;) = (CLBj ;) follows from Proposition 6.18 for k, = [nt].
Under (M2;) and (N;) as well as (CLB;) and (N;) Proposition 6.16 is applicable
to derive (R;) from (N;), again with k,, = [nt]. Thus, the four implications in 7.2
without (x) are true. To establish the implication with (x) note that (T, ;) follows
from (CLB; ;) and (R;) for every a > 0 by Proposition 6.19. To derive (TR, ;) for
every a > 0 from (CLBj ;) we use, for all n € N and ¢ € [0, co), the martingale
difference property of the X, to obtain the inequality

[ns]

sup | D" Xt ix,pi>a) + E (Xuk 1(1x,01<a) | Fi—1)
O=s=<t |,
[ns]
= sup ankl{lxnk|>a} — E (Xl x>} | Fi—1)
0<s<t [y,

[nt]

[n1]
<D 1 Xkl ixrsa) + DO E (1Xnkl Lixpisa) [ Fi-1) -
k=1 k=1

Here, the right-hand side converges to zero in probability as n — oo by (CLB ;)
and Lemma 6.5. Thus, all implications in 7.2 are proven.

The analogue of Proposition 6.21 reads as follows.

Proposition 7.3 Foreveryn € N, let (Xyui)ien be adapted to F = (Fi)ys¢. Assume
that there exists some a > 0 for which the conditions (T, ;) and (TR, ;) are satisfied.
Forallk,n € N set

Xk (@) = Xni 1 (X0 1za) — E (Xnk 1 X 10} | Fr—1)

and foralln € Nandt € [0, 00)

[nt]

Stnay (1) == D Xk (@) + (nt = [nt]) X iy 41 (a) -
k=1

Then for every n € N, (Xux (a))ren is a bounded martingale difference sequence
w.r.t. F which satisfies (M, ;) and (N;) as well as
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sup ’S(n) ) = Sn,a) (s)| — 0 in probability as n — oo forall t € [0, 00) .

0<s<t
Proof Leta > 0 be fixed such that (T, ;) and (TR, ;) hold. Then by (TR, ;) for all
t € [0, 00)

[nt]

Z X2 ok (@) — 77 (t) in probability as n — oo

from which, by monotonicity in ¢ for all ¢ € [0, c0),

[ns]

> Xy @ —n*(s)

k=1

sup — 0 in probability as n — 00.

0<s<t

Put Zy (s) == >0 "S] X2, (a) and let f (s — 0) denote the left-hand limit of f :
[0,00) > Rats € (0 oo) provided the limit exists. By continuity of the paths of
n* we obtain from the last display that

sup |Z) (s —0) — 772 (s)) — 0 in probability as n — 0o

0<s<t
so that for all ¢ € [0, 00)

max X2, (@) < sup |Zg (5) — Zy (s — 0)| — 0 in probability as n — oo

1<k<[nt] 0<s<t

which shows that the array (X (a))1<k<[nr).neN satisfies condition (TM,). There-
fore, Proposition 6.21 implies that conditions (M2 ;) and (N;) are satisfied for
(Xnk (@))ren>n € N.Foralln e Nand 0 < s <t < oo we have

[ns] [ns]
|S(n) (s) — S(n,a) (S)| =< ank - ank (a)| + ’Xn,[ns]+l - Xn,[ns]+l (a)’
k=1 k=1

so that

sup |S(n) (s) — S(n,a) (S)|

0<s<t
[ns] [ns]
< e ;xnk - ank @|+ _max Xk = Xox (@)
[ns]
= sup Z [Xnk 1%, 1>a) + E (Xnk L X 12a) | Fi—1) ]
0<s<t |2

+ _max 1 |Xnk1{\X,1k|>a} +E (Xnkl{|Xnk|§a}|.7Ek_1)| .

1<k=[nt]+
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Both summands on the right-hand side converge to zero in probability as n — oo
by condition (T, ;) (observe that [n¢] + 1 < [ (t 4+ 1)] and note that

Xk Lix,ul>a) + E (Xnk Lix,01 )| Fr—1)
is the jump of the process

[ns]

ankl{\xnkba} + E (Xnk L X,y 12a} | Fi—1) » 5 € [0, 00)
k=1

at time s = k/n and that these processes converge to zero in probability uniformly
on compact intervals by (T, ;)). This completes the proof of the proposition. U

In many applications martingale difference arrays are obtained from a single
martingale difference sequence through renormalization. For this, let (Xy);cn be
a square integrable martingale difference sequence w.r.t. F. For every n € N and
t € [0, o0) we set

[nt]

Su (8) := D" Xp + (nt — [nt]) Xpnij1
k=1

so that (S, (t))s[0,00) 18 @ Tandom process with paths in C (Ry). Its convergence
in distribution requires renormalization. For this, let (a,), cy be a sequence of pos-
itive real numbers with a,, — oo as n — oo. For a nonnegative stochastic process
(1 (t)) 110,00y With paths in C (R ) and square integrable X; we introduce the con-
ditions

[nt]

1
(Ng,.1) — E (X,%lfk_l) — 772 (t) 1in probability as n — oo
-
for all € [0, c0)
and
[n1]
(CLBy,.) 5 D E (X,%luxk‘zmn}l]-"k,]) — 0 in probability as n — oo

k=1
foralle > 0 and all ¢ € [0, c0) .

Note that any process 7> appearing in (Ng,.¢) is nonnegative with almost surely
nondecreasing paths. The following result is a special case of Theorem 7.1.



140 7 Stable Functional Martingale Central Limit Theorems

Theorem 7.4 Let (Xi)ienN be a square integrable martingale difference sequence
wrt. B = (Fi)gso- Under (N, ,) and (CLB, ,),

1
—S, = (W (n2 (t))) Foo-stably as n — 00,
ay tel0,00)

where W = (W (1)),>¢ is a Brownian motion which is independent of Foo.

The conditions (N, ;) and (CLB,, ;) may be replaced by

[n1]
1
) — Z X,% — 172 () in probability as n — oo for all ¢ € [0, c0)
=
and
1
M q,.1) —E| max |Xi|) > 0 asn — ooforallr € [0, 0c0),
ap 1<k<[nt]

which are meaningful for all martingale difference sequences, i.e. without the
assumption of square integrability.

Theorem 7.5 Let (Xy)en be a martingale difference sequence w.r.t. ¥ = (Fi)go0.
Under (Ran,,) and (Ml,am,),

1
—S, = (W (n2 (t))) Foo-stably as n — 0o,
ay tel0,00)

where W = (W (1)),>¢ is a Brownian motion which is independent of Foo.

Proof For all n, k € N set Xy := Xy /ay. Because (M g4, () and (R, ;) are iden-
tical to (M1 ;) and (R,) for the array (X,x)x ,eN, it follows from 7.2 that for every
a > 0 the conditions (T ;) and (TR,,) are satisfied for the array (X,x) ,en. Now
Proposition 7.3 and Theorem 7.1 imply for

Xk (@) = Xl (1 x,01<a) — E (Xur 1(1x,01a)| Fr—1)

and

[nt]
Stnay (1) 1= D X (@) + (nt — [n1]) Xy fur141 (@)
k=1

that

Sn,a) = (W (772 (t))) ) Foo-stably in C (R4) asn — oo.

t€[0,00
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Consequently, for all 0 < T < oo, by Theorem 3.18 (¢) and continuity of the
restriction map,

(Stn.a) (t))te[O!T] — (W (172 (t)))re[o - Foo-stably as n — oo in C ([0, T]) .

For the process

[nt]
1 1
S, = — (Z Xi + (nt — [nt]) X[nt]+1)

T \k=1
[n1]

=" Xk + (nt — [n£]) X purys1 = Sy (©)
k=1

we have, also by Proposition 7.3,

1
_Sn (t) - S(n,a) (t)

dn

sup
0<t<T

— 0 in probability as n — 00.

Theorem 3.18 (a) now implies

1
— S (¢ — (W (n*« Foo-stably as n — oo in C ([0, T]) ,
( ( ))ze[O,T] ( (77 ( )))te[O,T] o yasn 1 ([ D

an
and
1
— S — (W <n2 (t))) Foo-stably as n — ocoin C (Ry)
An teRy
follows from Corollary 3.23. (]

Remark 7.6 Let the sequence (a,),> be regularly varying, that is

d ULV RGN (\) asn — ooforall A € (0, 00)

n

and some positive function W which is necessarily of the form W (\) = \* for some
p € Ry; see [10], Theorem 1.9.5. Assume p > 0.
(a) Condition

1 n
(Ng,) ) Z E (X,%|.7-"k,1) — 772 in probability as n — oo
n k=1
for some real random variable n > 0
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from Sect. 6.4 implies condition (N, ;) with 772 (1) = U2 (1) 772 for all r € [0, 00)
(with ¥ (0) := 0) because

[nr]

—2[2 (X£|fk1)=(“;””)2 > E(XAF) - w0
ai & !

a[m] =1

in probability as n — oo for all ¢ € (0, 00).
(b) Condition

n

1
(CLB,,) — E ( Lxu=ean) | Fi— 1) — 0 in probability as n — oo
al’l
k=1

foralle > 0

implies (CLB,, ;) because

E (Xlzl{lxklzsanﬂfkfl)

2 [nt]
A[nt] 1
g ( ) ZE (Xkl{lxk|>(€an/l/l[m])(l[nl]}|Fk 1) O

a[nr] k=1

in probability as n — oo for all # € (0, 00), taking into account that (a[m]/an)2 is
bounded in n and ea, /aj) — /W (1) > 0asn — oo.
(c) Condition

n
X,% — 772 in probability as n — oo
k=1
for some real random variable n > 0

Rq,)

Q
Sl

implies condition (R, ;) withn? (t) = W? (¢) n* forall ¢ € [0, 0o) (with ¥ (0) := 0)
by the same argument as in (a).
(d) Condition

1
Mi,a,) —E ( max |Xk|) —0 asn — o0
ap 1<k<n

implies (M1 4, /) because

1 nt] 1
—E| max |Xi|)=——E( max |X|) —> 0 asn — o0

an 1<k<[nt] an  Ant) 1<k<[nt]

for all # € (0, o0) in view of the boundedness of (a[n,] /a,,).
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Corollary 7.7 (Classical stable functional central limit theorem) Let (Xy);>; be
an independent sequence such that (|Xy|)g> is an identically distributed sequence,
X € L% (P) and EXy = 0 for every k € N. Then

—8y &> oW Feo-mixing asn — oo in C (R}),

Jn

where o> = Var X1, Foo = 0 (Xg, k= 1) and W is a Brownian motion which is
independent of Foo.

Proof Take a, = /n, Fx = 0 (X1, ..., Xz), n* (t) = o*t in Theorem 7.4, and use
the scaling property of W. (I

Corollary 7.8 (Stationary martingale differences) Let (X)> be a stationary mar-
tingale difference sequence w.r.t. F with X € L* (P). Then

1 1/2
—S, — E (X%|IX) W Fso-stably asn — oo in C (R;),
n

7

where Tx is the invariant o-field of the stationary process (Xp)y>1 and W is a
Brownian motion which is independent of F .

Proof The proof of Corollary 6.26 shows that (Xy);> satisfies (R,) and (My,4,)
for a, = \/n and n*> = E (X?|Zx). Therefore, according to Remark 7.6 (c) and (d),
(Rg,.) and (M 4, ;) are also satisfied. Theorem 7.5 implies

1
NG
with 772 t)=E (X% |IX) tforallr € [0, o0). But, by independence of o (W) and F o,

and Foo-measurability of E (X7|Zx), (W (E (X71Zx) 1)), (0.00) 21d E(X2Zx) "W
have the same conditional distribution w.r.t F,, which yields the assertion. O

Sy — (W (n2 (t)))te[o o) Foo-stably asn — oo in C (Ry)

Corollary 7.9 (Exchangeable processes) Let (Zy)> be an exchangeable sequence
of real random variables with Z1 € L (P) and let Xy, := Zy — E (Z1|T7). Then

1
TSn — Var (Z; |'Z'Z)1/2 W Feo-stably asn — oo in C (Ry),
n

where Tz is the tail-o-field of the sequence (Zy)y> and W is a Brownian motion
which is independent of Foo = 0 (Zy; k > 1).

Proof Corollary 7.8; see also the proof of Corollary 6.27. (]
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For arbitrary stationary sequences (Xj)icn, Corollary 7.8 combined with
martingale approximations of the partial sums (ZZ: 1 X k)n oy Yield, under suitable
conditions, a stable functional central limit theorem (cf. e.g. [38, 66]). Recall that by
Example 5.7, a distributional functional central limit theorem in the ergodic case is
automatically mixing.
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Chapter 8
A Stable Limit Theorem with Exponential
Rate

In this chapter we establish a stable limit theorem for “explosive” processes with
exponential rates. The increments of these processes are not asymptotically negligible
and thus do not satisfy the conditional Lindeberg condition. A simple example is
given by an independent sequence (Z,),=; with P%" = N (0,2"71), Xo := 0,
X, = Zl’-'zl Z; and rate a, := 2"/2. The subsequent limit theorem is suitable
for such situations. In order to formulate this limit theorem we need the following
observation.

Lemma 8.1 Let (Z,),5( be an independent and identically distributed sequence
of real random variables and t € R with |t| > 1. Then

G) t7™"Z, — Oa.s.,
(i) Yoot "Z, converges a.s. in R,
(i) D021t 1Z,] < o0 a.s.,
(iv) Elog™|Zy| < o0
are equivalent assertions.

Proof (iii) = (ii) = (i) are obvious.
(i) = (iv). We have P (lim SUpP,,_, oo {|t‘”Z,,| > 1}) = 0, implying by the
Borel-Cantelli lemma

oo oo o0
00> > P (|t|™"1Zul > 1) = D" P(1Zo| > 11I") = D P (log" |Zo| > nloglt]) .
n=0 n=0 n=0

hence (iv).
(iv) = (iii). Choose 1 < s < |t|. Then

00 00
ZP (|Z,,| > s") = ZP (10g+ | Zo| > nlogs) < 00
n=0 n=0
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and thus again by the Borel-Cantelli lemma, P (liminf,_, » {|Z,| < s"}) = 1. This
gives (iii). O

In the sequel F = (F;),>( denotes a filtration in F and Feo := 0 (e, Fn)-
For a real process X = (X;),>¢ the increments AX,, are defined by AX(y = 0 and
AX,=X,—X,_forn>1.

Theorem 8.2 Let X = (X,),50 and A = (Ap),>0 be F-adapted real processes,
where A is nonnegative with A, > 0 for every n > ng and some ng € N, let (an),>1
be a sequence in (0, 00) with a,, — o0, and let G € Fo, with P (G) > 0. Assume
that the following conditions are satisfied:

(i) There exists a nonnegative real random variable n with P (G N {n2 > O}) >0
and

A
2S5 in Pg-probability as n — oo,

(i) (Xn/an),> is bounded in PGn{,]z>0}-probability,
(iii) there exists a p € (1, 00) such that

2
lim =5~ = — foreveryr €N,
n—oo qz

(iv) there exists a probability distribution p on B (R) with f log™ |x| dp (x) < o0
such that

. AXy
EP exXp ltf/Z
Ap

asn — oo foreveryt € R.

.7:,1_1) — /exp (itx) dp (x) in PGm{nz>0}-probability

Then
o
172 — Z p_J/zlj Foo-mixing under Pgnr,2_ o)
A, =0
and
X

o
a—" - Zp*j/zzj Foo-stably under PG, o)
n .
j=0

as n — 00, where (Z;)._, denotes an independent and identically distributed
J ]ZO P

sequence of real random variables independent of Foo with P%0 = pu.
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Note that the almost sure convergence of the above series follows from
Lemma 8.1. Condition (ii) means

. | Xl
im sup PGafn2>0} )= 0
n

C—)OO

and is equivalent to the tightness of the sequence (PX” / n ) . Typical rates are
Gn{n?>0} n>1

a, = cp™? with p € (1, 00) and ¢ € (0, 00). '

If v e M! (R) denotes the distribution of >iop /2Z;under P,p : QxR —
R, ¢ (w,x) := n(w) x and K (w, -) := v, then the assertions of Theorem 8.2
may be read as

Xy
A1/2 — vV mixing under Porfy=0)

and

Xn
. — K stably under Peafip=o} -

Of course, in this formulation one does not need the P-independence of ( )
and Fo.

For measures 1 which are not symmetric around zero the following variant of
Theorem 8.2 turns out to be useful, for example, for the investigation of autoregressive
processes in Chap. 9. If ¢ is symmetric around zero, both theorems coincide.

j=0

Theorem 8.3 Replace condition (iv) in Theorem 8.2 by
(V) there exists a probability distribution u on B (R) with f log* |x| du (x) < o0
such that

D"AX,
Ep(exp( %)‘an_l)e/exp(itm du (x)

in Pgn{y2-o)-probability as n — oo for everyt € R.
Then

n"Xx .
(= )1/2 z Z( 1/ p=ii2z; Foo-mixing under Pgp,2. )

and

(_l)n Xn

oo
; —7n Z (=1)/ p_j/sz Foo-stably under Pgnry2_o) -
n

j=0

For the proofs, we need the following elementary result.
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Lemma 8.4 For complex numbers by, ..., by, co, ..., cr we have
r r r
[Tei—TT65=2"di(ci—bj).
j=0 j=0 j=0
where

J—1 r
di=Tex [] -

k=0  k=j+1

Proof For —1 < j <rlete; := H£206kH2=j+1 by. Thendjcj =ejandd;b; =
ej—1 for 0 < j < r and therefore

r r r r
Zdj(cj—bj)=2(ej—ej_1)=er—e_1=Hck—ku. O
=0 =0 k=0 k=0

Proof of Theorem 8.2 and Theorem 8.3. Let Q := PGafp=0} and for n > 0 let

_ P(GN{n*>0}1F)
"o r(Gn{n2s0))

Note that (L,),> is the density process of Q with respect to P, thatis, L, =
dQ|F,/dP|F, forevery n > 0.

We may assume without loss of generality that n> is Fa-measurable. Then the
martingale convergence theorem yields

lGﬁ{n2>0} _ @
P(Gn{n2>0}) 4P

L, — in L' (P) asn —> .

Also, (Z j)j>1 and Fy, are independent under Q. Furthermore, let

() = /exp(itx)dy,(x) = Epexp(itZy) = Egexp(itZy),

where the last equation is a consequence of the independence of F, and Zy, and

p = p/? | Theorem 8.2,
~ | =p'/?, Theorem 8.3.
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Then by (iii), for every r € N, we have a,_,/a, — |8|™" and for every n € N

o 0 1 , Theorem 8.2,
by := (sign(B))" = [(_1)” , Theorem 8.3 .

Step 1. For every r € Ny we have
r r
by iAX,_ ;
Z i Rt L AN 2,37] Z; Foo-mixing under Q asn — 00.

1/2
=0 B/ A, j=0

By Corollary 3.19 with G = Fo, and € = UneNo Fn it is enough to show that
exp ztz bu— ]AX"] dQ—)Q(F)HI// asn — 0o
jAl/2 131
j=0 p

foreveryt € R, F € £ and r € Ny. Fixing ¢ € R and using the notation B, ; :=
. i 41/2

exp (ztbn_jAXn_j/ﬂfAn/_]) Cj = v (1/B7) and g := [T)—y Cj — [T}—o Bu.)

this means fF gndQ — 0. Assume F € F,, for some n; € Ny. For0 < j <r,let

D, o= H Ck H By .
k=0 k=j+1
Then |D,,,j‘ <1, Dy jis F,_j_1-measurable and forn > (ng +r) v (ny +r +1)

and 0 < j < r the random variable 1ypL,_,_; is F,_,_1-measurable and hence
Fu—j—1-measurable. In view of Lemma 8.4 and since L, < 1/P (G N {n > 0})

and|CJ—Ep( g1 Fn—j— 1)| < 2,weobtainforn > (ng+r)v @ +r+1)

,
'/F Ln_r_lgndP‘ = Z/FLn_r_an,,- (Cj = Ep (BujlFu—j-1)) dP
j=0
.
< Z/Ln—r—l |Cj — Ep (B j|Fazj1)| dP
j=0
.
=< Z/ iC/ —Ep (Bn,ju:n—j—l)‘ do
j:
+22/ nfrfl dP.

(Gn{n?>0})“
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It follows from (iv) and (v), respectively, that
/|Cj — Ep (By,j|Fa—j—1)| dQ - 0 asn — oco.
Moreover,
Jorgge b= 2((e0 o)) =0
(Gn{n*>0})°

so that fF Ly_y-19,dP — 0 asn — oo. Since |g,| < 2, we get

dQ
‘/ gndQ_/ Ly r_19ndP 52/‘d_ — Ly
F F p

which gives the assertion.
Step 2. For any r € Ny, we have

dP — 0 asn — oo,

Xn — Xp—r— d .
"—1"” — Zﬂ_fZ- Foo-mixing under Q asn — oo
/2 j
by Ay j=0

In fact, for 0 < j < r we obtain

ﬁjAl/z ayby AL ﬂJAl/z 2

: 12

bn—jAXn—j an—r—1AXy—j bn—jAXn—j ( . an—jﬁ] An—j/a"—j )_) 0
. 1/

n—j n—r—1 n—j anbn_"bn An—

r_1/an7r71

in Q-probability as n — o0, since by (i) and (iii) the second factor converges to zero
in Q-probability and the first factor converges by Step 1 with » = 0 in distribution
under Q. Consequently,

r

by—jAXp—; a d
z o Ao A o] ZAX,l,j — 0 in Q-probability asn — oco.

) 12
ﬂ'lAnfj a"b"An—r—l Jj=0

=0
Since Z;‘:o AXu—j =X, — Xu—r_1, Step 1 and Theorem 3.18 (a) imply

an—r—1 Xn — Xn—r— 4 .

nor—1 Zn 5 L E B~/Z; Foo-mixing under Q.
a A2 ;

" by n—r—1 j=0

Using (i) again we have

1/2
An_r_l/an—r—l

7 — 1 in Q-probability,
Ay Jay

so that the assertion follows from Theorem 3.18 (b) and (c).
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>£)=O.

Indeed, for r € Ng,n > ng vV (r +2) and §, ¢ > 0 we obtain the estimate
|Xn7r71|
ol ———— > ¢
AL
8)

|nr1| A |nr1| An
_Q(T>8,Z>5)+Q(T>€,g

0 (1Xn-r- 1|>sfan)+Q(—”<8 n >28)
ai’l

Condition (iii) yields a, /a,_,—1 = p"TD/2/2 for n > n,(r), say. This implies in

view of (i), (ii) and the subadditivity of limsup

Step 3. For every ¢ > 0 we have

Xn X _Xn —r—1
bAl/Z b A1/2

lim limsup Q (

r—-00 pnseco

IA

IA

An

X /b
supQ(| | \/_an)—i-Q(
jeN aj; a,,_,_l a

IA

2
—- —n

n

. . [ Xn—r—1l
lim sup lim sup Q —in e
r—>00 n—>00 Ay
. |X | 1 (r+1)/2 2
< limsup| sup Q > ~ev/sp +0 (’7 = 25)
r—oo \ jeN aj 2

We have Q (172 <2§) - Q (172 =0) = 0as § — 0, hence the assertion.
Step 4. Since

r o0
S BIzi—> > pIZ; Pas.
j=0 j=0

and hence F,-mixing under Q as r — 0o, we obtain

Xn
— Zﬁ /7  Foo-mixing under Q
bA S

from Steps 2 and 3 and Theorem 3.21. By (i), A}/z/an — 1 in Q-probability so that
by Theorem 3.18
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1/2 o0
X X, A i
n n " E B~/ Z; Foo-stably under Q. ]

j=0

bpay, N bnArll/z ap

In the situation of Theorem 8.2 or 8.3 with u # §p the conditional Lindeberg
condition under P or only under Pgny,2. 0} (with rate a,) cannot be satisfied for

L? (P)-processes X. Otherwise, we have AX,/a, — 0 in PGm{nz>0}-pr0bability
(cf. Proposition 6.6) and hence AX,,/ A,l/ 2 5 0in Psn {nz>0}-pr0bability by con-

dition (i), in contradiction to the mixing convergence b, AX,/ A,l/ LN « under

PG fy2=0)> which has been shown in Step 1 of the above proof.

2

Corollary 8.5 (Stable central limit theorem ) Assume u = N (0, 02) for some o~ €
[0, 00) in Theorem 8.2 (iv). Then
Xn .
W — Z  Foo-mixing under P20}
n
and
Xn
— — nZ Foo-stably under PGQ{,72>0}
an '
where Z is P-independent of Foo and P? = N (O, a’p/(p — 1)).
Proof Since Z?io p~/ = p/(p—1), the assertion follows directly from
Theorem 8.2. O

The assertions of Corollary 8.5 may also be read as

Xn Gzp ..
W — N {0, ﬁ mixing under PGa{n2>0}

n

and

Xn a’p )
. —- N (0, Py K stably under Pgnr,2-0) .

For Ez-martingales X and A = (X) the above central limit theorem for G = Q
is a consequence of a limit theorem of Scott [88] (up to a non-trivial improvement
concerning the rate a,), where the quadratic characteristic (X) of X is given by

(X) =0and (X), = X E (X)) 1Fj-1) forn = 1.

Remark 8.6 If in Theorem 8.2 or 8.3 the process X is an £>-martingale and A = (X),
then condition (i) with G = € implies that (X, /a,),>; is bounded in P-probability
and, in particular, condition (ii) holds. In fact, since (X3 + (X),) /a2 — n* in
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P-probability, the sequence ((X§ 4 (X),,) /an), ., is bounded in P-probability. By
the Lenglart inequality (see Theorem A.8 (a)) we have foreveryn > 1l and b, ¢ > 0

X
p(—| x| zb) = P(X,% zbzaﬁ) < l%+P(X3+<X>n >C‘15)
an

so that

X X2+ (X
supP(| ”|zb)§%+supP 0—2(>n>c .
neN An b neN ay

This yields the assertion (cf. Proposition 6.9).

Exercise 8.1 Assume that u = C (0, b) for some b € (0, co) in Theorem 8.2 (iv),
where C (0, b) denotes the Cauchy-distribution with scale parameter b (given by the
A-density x — m x € R). Show that

Xn

W — Z  Foo-mixing under Pgn(,2. ¢} asn — 00
n

and

X
=% = nZ Feo-stably under Pgn,.q) asn — 00,
dn

where Z is P-independent of Fi, and PZ = C (0, b/p/ (P — 1)).

An £?-martingale X = (Xn)ys>o is said to have F-conditional Gaussian incre-
ments if PAXnlFn-1 = N (0, A (X),) forevery n € N.

Corollary 8.7 Let X = (X,),> be an L?-martingale with F-conditional Gaussian
increments and (X ), > 0foreveryn > nyand some ny € N. Assume that conditions
(1) and (iii) in Theorem 8.2 are satisfied with G = Q and A = (X). Then

<X>—r]l/2 — N Foo-mixing under P(,2_ gy asn — 00
n

and

X
NN NN Fso-stably under P{n2>0} asn — 0o,
dn

where N is P-independent of Foo and P = N (0, 1).
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Proof Conditions (i) and (iii) of Theorem 8.2 are fulfilled by assumption and imply,
asn — 00,

— n~ in P-probability

which yields

A(X),
a2

— pn® —n*=(p—1)n* in P-probability .
1

This implies

A (X —1
1A X, 4 n’> in P-probability
a p

and therefore

p—1 . .
— in Py o_gy-probability .
(X), p (=0} :

Furthermore, since (X), is J,,—1-measurable,
p(AXu (X)) Famt — pAXn|Fuoi ® 8(x), = N (0, A (X),) ® 8(x),

(see Lemma A.5 (a)) so that

. AX, r . . X d
Ep| exp LtW n—1 _/exp ”W N (0, A (X),) (dx)

2A(X) ?(p-DY . .
=exp (—W) — exp (_T) in P{,’z>0}-pr0bab1hty

as n — oo for every ¢ € R. The assertion follows from Corollary 8.5 with G = Q
and Remark 8.6. (]

Corollary 8.8 In the situation of Theorem 8.2 with G = K replace condition
(iv) by

(vi) there exist a probability distribution u on B (R) with f log* |x| du (x) < o0
and a real Fo-measurable discrete random variable S such that

AX
Ep (exp (itT;) ‘]—",1_1) — /exp (itSx) du (x) in P{nz>0}—pr0bability
Ap

asn — oo foreveryt € R.
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Then
00 .
Alr/lz - S z p_]/2Zj Foo-stably under Pr20)
n j=0
and
X oo
L Z p 1?7 Fuo-stably under P20
an s
asn — oo.

Proof Let supp (PS) ={sx :k>1}, Gy :={S = s} and

p:{kzlzp(cﬂwh2>obz>q.

Then

. AX,
Ep| exp ztﬁ
An

as n — oo for every k € I. Therefore, by Theorem 8.2

fnl) — /exp (itsgx) dp (x) in PGm{nz>0}—probability

X — .
ﬁ — Sk Z pi?Z; Foo-mixing under PG {n2=0)
Al =
and
X oo
a_” — s Zp—l/zzj Foo-stably under P, n(;2-0} »
n .
Jj=1

which can be read as

X 0 3 2 . .
Alr/lz' — SZP 27 Foo-mixing under PGin{n?>0}
n j=0

and

X —

a—" — Sn Zp_//sz Foo-stably under Pg, ny,2-0)
n .

j=1
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forevery k € I, asn — oo. Using >, ; Pp20y (Go) Pgynfzs0) = P} the
assertion follows from Proposition 3.24. ]

In just the same way, one deduces from Theorem 8.3 the

Corollary 8.9 In the situation of Theorem 8.3 with G = K replace condition
(V) by

(vi) there exist a probability distribution i on B (R) with [log™ |x| du (x) < oo
and a real Foo-measurable discrete random variable S such that

. (=D"AX, .
Ep | exp 1t+/2 ‘]—'n_l —>/exp(zth) du (x)
An

in P{,]z>0}-pr0bability asn — oo foreveryt € R.

Then
(=D" X, N
T — SZ (=) p™'"Z; Foo-stably under Py, o)
n j=0
and
(—1)" X, =i
— = 85y Z(—l)fp 1127 Foo-stably under Prpo)
n /:O
asn — oo.

The Corollaries 8.8 and 8.9 may possibly be extended to more general random
variables S. But for our purposes the results are good enough.
The subsequent example provides an illustration of Corollary 8.7.

Example 8.10 (Explosive Gaussian autoregression of order one) Let (Z,),,>| be an
independent and identically distributed sequence of N (0, 02)-distributed random
variables with 62 € (0,00) and let Xo € £*(P) be independent of (Zn)p>1-
Consider the autoregression defined by -

Xp=0Xy1+2Zy, n>1,

where ¥ € R. The least squares estimator of ¥ on the basis of the observations
Xo, X1, ..., X, is given by

N XX
19":2];1 ]2J L on>2.
21 X5

Note that X 5 > 0 for all n € N because, by the independence of X,,_; and Z,,
the distribution of X, is continuous. We assume || > 1 and derive a stable central
limit theorem for ¥,. Let 7, := o (X0, X1,...,X,) =0 (X9, Z1,...,2Z,), F :=
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(Fu)ns0 and M, := Z?:] Xj,lzj/oz with Mo = 0. Then M is an £>-martingale

w.r.t. the filtration F with quadratic characteristic (M), = Z;l: 1 X?q Jo?. Since

n

n n
DXiXj=> (X +Z)Xj=0> X3 +0°M,,
j=1 j=1 j=1

we obtain ?5,, -9 = M,/ (M), for all n > 2. By induction, X, = 9" Xo +
Z?:] v"~/Z; for all n > 0 so that by Lemma 8.1 (or the martingale convergence
theorem)

o0
"X, = Y = Xo—i—Zz?_ij a.s.asn — oo
j=1

and clearly PY=%0 = N (0,0%/(®* — 1)). In particular, P is continuous. Let
an := 9" / (9% — 1) foralln € N. The discrete rule of de I'Hospital in Lemma 6.28
(b) yields

2
Z’;:l X]—l
S 92D

— Y% as.asn — 00.

Since >j_; 92U~D = (92 — 1) / (97 — 1) ~ a7 (9% — 1), we get

2 2
n o

S

and P (n2 > O) = 1. Furthermore, M obviously has [F-conditional Gaussian incre-
ments. Consequently, by Corollary 8.7

. 1/2

) —~ oM, ..
2 X5 (O —0) = —5 — 0N Foo-mixing,
j=] (M)n

where N is independent of F, (and thus of ¥) and PV = N (0, 1), and using
Theorem 3.18

2
_~ M, N N
an(ﬁn—ﬁ):a—n—n—)—za—l/z foo—stablyasn—>oo.
(M), an (w2 -1)""y

By the symmetry around zero of PY, we obtain, as n — oo,

VAP oN

m ('l?n — l?) — m foo-stably
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or, what is that same in view of Lemma A.4 (c),

.ﬁn

oN
192—1(

3 —9) > —N__
n=?) 2—1)"y

Foo-stably .

If PXo = N (O, 12) with t € [0, 00), then using the independence of ¥ and N we
12 _

get PON/=D)TY = €0, ) with b = (22 (92 — 1) /o2 + 1)/ s0 that

VAP d
ST (9, —9) > C(0,b).
In case t2 = 0, that is, X o = 0, we obtain b = 1. This distributional convergence of
the estimator is a classical result due to White [97]. The distributional convergence
under random norming is contained in [5], Theorem 2.8 and [98]. General (non-
normal) innovations Z,, are treated in the next chapter. (]

Further applications can be found in Chaps.9 and 10.
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Chapter 9
Autoregression of Order One

In this and the subsequent chapter we present concrete applications of previous
stable limit theorems. Here we consider an autoregressive process of order one X =
(Xn)n>0 generated recursively by

Xy =0Xy1+Z,,n>1,

where ¢ € R, (Z,),>; is an independent and identically distributed sequence of
real random variables and X is a real random variable independent of (Z,),> . We
assume that PZ! is continuous. Then X,% > 0 almost surely for all n > 1 since
by independence of X,_; and Z,, PXn is continuous for n > 1. The usual least
squares estimator for the parameter ¥ on the basis of the observations Xo, ..., X,
is given by

R XX
5 o 2z XX

2
2 X5

provided Z; € L' (P)and EZ; = 0. In the explosive case || > 1, the effect of
the mean of Z; disappears asymptotically so that D, is also reasonable in that case
if EZ1 # 0. We prove stable limit theorems for {9\,1 under deterministic and random
norming.

Let 7, := 0 (X0, X1,...,Xp) =0 (X0, Z1,...,Zy) foralln > 0and F :=
(Fn)n>0- Define F-adapted processes by

n
A=Y X5, with Ag=0
j=1

and
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n
B, = ij_lz,- with By =0.
j=1

Since >y XX ;-1 =2 (9Xj-1 + Z;) Xj—1 = 9 A, + By, we obtain
9y — 9 = B,/A, foralln>?2.

Furthermore, by induction, we have X, = 9" Xq + Z’J’: 1 w=iz jforalln > 0.

If Xo,Z, € £L>and EZ; = 0 then B = (Bn)y>o is an £?-martingale w.r.t. F
with (B) = o?A. Therefore, in this setting, the strong law of large numbers for
martingales of Theorem A.9 yields Dy — O almost surely, which says that Dy is

a strongly consistent estimator of ¥ (using Z?il ij <2 (1 + 192) Z?il Xil’ SO
that (B) ., = oo almost surely by Kolmogorov’s strong law of large numbers).

The ergodic case

In the ergodic case || < 1 stable asymptotic normality of 9, holds.

Theorem 9.1 Assume |9| < 1, Xo, Z| € L2 and EZ; = 0. Then
\/ﬁ(ﬁn — 19) — N (0, 1-— 192) mixing

and
12

n
ZX?—I (511 -¥) >N (0, 02) mixing
j=1

asn — oo, where 0% := Var Zi.

Note that 02 > 0 by the continuity of PZ!. The above statements may also be
read as

—~ 12
\/ﬁ(ﬁn — 19) — (1 — 192) N Foo-mixing

and
172

n
ZX§_1 (5,, — 19) — o N Fyo-mixing,
j=1

where N is a real random variable independent of F,, with PV = N (0, 1). Dis-
tributional convergence under deterministic norming was first investigated in [5],
Theorem 4.3.

The main idea of the following proof is taken from [74], p. 174 and p. 186.
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Proof of Theorem 9.1. The process B = (By,),~( is a square integrable [F-martingale
with quadratic characteristic (B) = o2A, where A = (A,) n>n- We apply the stable
central limit theorem of Theorem 6.23.

Step 1. We rely on the fact that X = (X2), _ is uniformly integrable. To prove
this, break Z,, into a sum Z,, = V,, + W,,, where

Vi =Vu (o) ' =Zylyz,<c} — EZy1{z,<¢y and W, =W, (c) :=Z, -V,
for some large truncation level ¢ € (0, co). Define
n n )
Gn =G, (c) = Zﬁ"‘f V; and H, := H,(c):= Zﬁ"_/ W,
j=1 j=1

Then X,, = 9" Xo + G,, + H, for n > 0. Observe that

n n n—1 1_|19|n 2¢
Gl = D01 V[ <20 3 101" =2e 3 91 = 2y = T
j=1 j=1 i=0

for every n > 0 so that G = (G,),> is uniformly bounded. Since the sequence
(Wp),>1 is independent and identically distributed with EW; = EZ; = 0, the
process H = (H,),> satisfies

sl -0 EW?
P1—92 = 1-92

n
EH} = 9*"DEW} = EW
j=1

forevery n > 0. Using Wi = Z11{z,|5¢) + EZ11{z,|<c) and Z; € L2 (P), domi-
nated convergence yields E W (c)2 — (EZl)2 =0asc — oo. Lete > 0. Choose
¢ € (0, 00) such that sup,~o EH, (c)2 < EW; (c)z/ (1 — 192) < ¢&/2 and then
a > 8c%/ (1 — |9)%. Since
[G2+ 12 >a) Gl =2 n?>ap)ulGl = H2.G] > ap2)

we obtain

G2+ H?)1 <2H’1 +2G21 <2H?

n n ) Y{G2+H2>a} = <My H{H2>a/2} n'{G2>a/2} = <M1y

for every n > 0 and hence

sup E (Gﬁ + an) I{G’zlJanzM} < ZSupEHn2 <e.

n>0 n>0
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This gives uniform integrability of G> + H?, which implies uniform integrability of
X2 because X2 < 4 (X% + G2+ an) In particular, X2 is £!-bounded.
Step 2. Now let us verify the assumptions of Theorem 6.23. We have forn > 1

n n
Zx2 ST(0Xj1+2;)° =024, +20B, + D 722
j=1 j=1

and thus by rearranging and dividing by n,

1 -2
o?n

L/os oo 20 1l .,
(B),,:Z(XO—X”)+7B,1+;Z;ZJ.
]:

On the right-hand side, the first term converges in L! to zero, because X2 is £1-
bounded. The middle term converges in £2 to zero, because

1 s 2
—EB=— ZEX 1<6—supEX ~0.
n

n n>0

The third term converges almost surely to o2 by the Kolmogorov strong law of large
numbers. Consequently,

#), o

n 1-—

5 in probability as n — o00.

This is condition (N, ) with a, = /n.
As concerns the conditional Lindeberg condition (CLB,, ), we have for ¢ > 0 and
n>1

IS 2 0
L@ =7 ZE (XJ'—IZJ'1{|Xj712j|28~/ﬁ}|f/—1)

=—ZX 1E( (1212, |zeym} 1 Fi- 1)

I A

_ZX IE( { %_128\/2} +Z?1{Z%zeﬁ}|fj_l)

1
_ZX] 1 { ‘ >af} (B),,Elel{lezgﬁ}.

The first term converges in £! to zero because X? is uniformly integrable by Step 1
and hence
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_ZEX] 1 {X,lzsﬁ} <§1ip0EX I{Xj Eﬁ}—>0 asn — 00.

The second term converges to zero in probability because Z; € £2% and (Ng,) holds.
Consequently, L, (¢) — 0 in probability as n — oo.
Now Theorem 6.23 yields

B, o -
ﬁ — N (0, T—32 mixing .

Using Theorem 3.7 (b), (c), this implies

_ By Bun
ﬁ (ﬁn - l?) = An = (B)n /n02

N (O, 11— 192) mixing

and
1/2
~ B, B, B
ZX] o] @n=9)=—5= . 77 = ’ ,1/«/51/2 — N(0,0%) mixing
Ay (B)n (B)n /1)
asn — 00. O

The explosive case

In the explosive case |¢}| > 1 the asymptotic behavior of I depends on the
distribution of the innovations Z,. Let sign := 1(,00) — 1(—c0,0)-

Theorem 9.2 Assume |¥| > 1 and E log* |Z1| < co. Let Y := Xo—i-z S 0TIZ;
(see Lemma 8.1) and let U be a real random variable independent of Foo Wlth
PU = pY=Xo0_ Then
~ 92— 1)U
" (O — ) —> % Foo-stably,
1/2

o~ 1/2
(sign (9))" ZX] . (9, — 0) — sign (Y) (1?2 - 1) / U Foo-stably
j=1

and, if P%! is symmetric around zero,
172
—~ 5 1/2 .
ZXJ | (19,, — 19) — (19 — 1) U Foo-mixing

asn — OQ.
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Under the stronger assumptions Xg, Z; € L% and EZ; = 0 distributional
convergence was first investigated in [5], and stable convergence has been touched in
[95]. Under the assumptions above, distributional convergence under deterministic
norming has been stated in [54], Lemma 3.11in case Xo = 0 without proof.

In the special case of normal innovations, that is P% = N (0, 02) with 0° €
(0, 00), Theorem 9.2 provides again the results of Example 8.10 (without assuming
Xo € ﬁz).

2

Proof We apply the stable limit Theorems 8.2 and 8.3, or more precisely, the
Corollaries 8.8 and 8.9. We have ¥ 7"X, — Y almost surely as n — oo by
Lemma 8.1 so that the discrete rule of de I’Hospital, Lemma 6.28 (b), yields
A,/ Z?:l 920=D — y?2 almost surely. We may assume that Y is F-measurable.
Leta, :=[#]",n > 1.Since 35, 92U~ = (92" — 1) / (92 — 1) ~ a5/ (97 — 1)
asn — 00, we get

A Y2 )
PIERErY) =
2 92 —1

The distribution PY is continuous, hence P (772 > 0) = 1. This is condition (i) in
Theorem 8.2 with G = . Condition (iii) of Theorem 8.2 holds with p = 2. As
for condition (ii) of Theorem 8.2 with respect to the process B, note first that

] ]|XJ 1HZ|Z] 1|19|] ]|Z|
"9z ER

|B|<—Z|X/ lllzl—

and | X, —1]1Z,| /|15‘|”_l |Z,| — |Y| almost surely as n — oo. Since

o0

oo
Sop(oriza = 1) =2 P (1Zil > 1917) = oo,
n=1

n=

—

the Borel-Cantelli lemma yields P (lim SUP,,_, oo {|1§‘|"_1 |Z,| > l}) = 1 and there-

fore, Zf;l |19|”’1 |Z, | = oo almost surely. Consequently, Lemma 6.28 (b) applies
and gives

PP RTAVAY
I AVAY

Moreover, using Lemma 8.1,

— Y| as.

Z| =tz }—i 12| ii@—>2@<oo a.s
|ﬂ|" ! it T S o |* h

k=1
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This implies that (Z’;’:l |Xj_1Zj| /an) X as a product of an almost surely
n>

convergent sequence and a distributionally convergent sequence of real random vari-
ables, is bounded in probability and thus (B, /ay), > is bounded in probability.

Let ¢ denote the Fourier transform of P21, Since A, is F,_;-measurable, we
obtain forallt e Randn > 2

E| exp 12 ‘.7-"”1 = E| exp itanlzzn ‘.7-',,71
A/ Al

If 9 > 1, then

Xn-1 Xn—l/ﬂni1

A% A

_)L_Y(ﬂz—l)]/z_si y (2 —1)"?
v T egn(Y) ———— as.
n Y| O

and if ¥ < —1,

=D"Xp—1  (=D"Xp /o0 a9 X

Az 1/2/19" L A=) e, o

(192 _ 1)1/2

Y
— — =sign(Y) ————— a.s.
o ign (Y) 5

Let (Wy),>0 denote an independent and identically distributed sequence of real
random variables independent of F,, with PY0 = PZ1 In case ¥ > 1, we obtain

E (LB ‘]—' tXn-1 ¢ sign (V) (2= 1" P
exp 1l=0 — ¢| tsign (V) ~——~"— ) P-as.
A1/2 n— NE 5

as n — oo for every t € R. This is condition (vi) in Corollary 8.8 with u =
172
pO*=1) "2/ ang 5 = sign (Y). From Corollary 8.8 follows

1/2

_ B _ 92— 1)/2 X —j/2
E X/ 1 (19,1 — 19) T"/Z — sign (Y) % E (192) W;
An j=0

Fo-stably. Since
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1/2

2 12 & k d 2
(19—1) Zz?’sz(l‘}—l) U
k=1

(where distributional equality is always meant under P), this can be read as

I~

" 1/2
- 172
S| @ —0) - sign(r) (13‘2 - 1) U Foo-stably
j=1

(see Lemma A.5 (b)). In case ¥ < —1, we obtain

. (=D"AB,
E{ exp IIT ‘fnfl
)" X, 92— 1)?
:(p(t(/‘)]Tl)—)go(tsign(Y)%

P-almost surely as n — oo for every ¢ € R so that condition (vii) in Corollary 8.9
12
is satisfied with u = PO "2/ ang § = sign (Y). Thus Corollary 8.9 yields

1/2

0t DX (Ba-v)
j=1

172 ~
-1)"B 92— 1 ‘ .
- ()IT” — sign (Y) ( ) D (=) @HIPw;
A, =0
Foo-stably. Since
1/2 oo . 2 1/2 oo
(®2-1) : ~j/2 (92 —1) o
~ 7 —1)/ (82 P S —iw. L (9?2 - /2
A Z( D (19) Wj= 9 Zﬁ W; =@ nHVeu,
=0 j=0
this reads as
172

. ~ 1/2
DX @ —9) - sign(Y) (15‘2 - 1) PU Fro-stably.
j=1

In both cases we thus obtain
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. 1/2
(sign@)" [ D X5, (9, — 0) — sign(¥)(@* — D'2U  Foo-stably.

J=1

As for the deterministic norming, we can conclude using Theorem 3.18

~ 9"B, _ (sign(®)"a,B, _ a, (sign(®))"B,
PP =) = —— = A TA Al
n n An A”
) i 172
= 1 Gig@)" [ D XF | (@ —0)
Ay j=1
sign( )|(y| W ( Y ) Foo-stably..

Now assume that PZ! is symmetric around zero. Then PV is also symmetric
: 2 1/2 2 1/2
around zero. Hence, by Lemma A.5 (c), psign)@°—1 PUIFe — p@?-D'2U g
that

1/2
n
(sign(@)" [ D X5, (9, —9) — (% — DV*U  Foo-mixing.
j=1
Thus, again by the symmetry of PY,
; 1/2
ZX§,1 (90 — ) = > = D'2U  Foo-mixing. O
j=1

Exercise 9.1 Assume || > 1and P%! = C(0, b) with scale parameter b € (0, 00).
Show that

1/2
2 5 G e Y
ZXj*l ('l?n — l?) —> C 0, W——l mixing
j=1

as n — 0o. More generally, if P! = S, (b), the symmetric a-stable distribution
with Fourier transform fexp (itx) dSqy (b) (x) = e P o e 0,2), b € (0, 00),
then

1/2

" ~ b (2 —1)?
Z X%—l (9 —9) —> S« ((|1ﬂa——)1 mixing .
=1


http://dx.doi.org/10.1007/978-3-319-18329-9_3
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(Note that C (0, b) = S (b).)

Exercise 9.2 Assume that || > 1 and P?! is symmetric around zero. Show that

5 »2—1HU
91" @0 —9) > T Fstably

with U and Y from Theorem 9.2.
The critical case

Theorem 9.3 Assume |9| =1, Z, € £L? and EZ; = 0. Then

w2 —1
o~ 1 ..
n (19,, — 19) — 191— Foo-mixing
2 [y W2t
and
172
- / ~ w2 —1

ZX;_I (19,1 — 19) — Yo 1 Foo-mixing
j=1

12
2(Jy w2 ar)

asn — 0o, where (W;) 10,17 denotes a Brownian motion independent of F.

Distributional convergence under deterministic norming for ¥ = 1 has already
been observed by [24, 73, 97]. One checks that the numerator and the denominator
of the first limiting random variable are positively correlated so that they are not
independent in both limiting random variables.

Proof of Theorem 9.3. Let 9 = 1. Then X,, = Xo + >_;—; Z; and hence, forn > 1,

n j—1 2 n j—1 n Jj— 2
Anzz X0+Zzi _nXO—i-ZXOZZZ +Z Z
j=1 i=1 j=li=1 j=1 \i=1
2

n—1

_nXO—l—ZXOZ(n—z)Z +Z Zz

and

3
~
|
—
Bl
3
~
|
—_
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Forn € N, let X" = (X ”) re[0.1] denote the normalized (path-continuous) partial

sum process based on (Z,,) from Example 3.14 and let ;" := (z nl 7. ) Jo/n,t €

2 1 2 1 2 2 : :
[0, 1]. The map C ([0, 1) — B2, x > (x (1)2, (fo X (1) dt) is continuous
so that by Example 3.14 (or Corollary 7.7) and Theorem 3.18 (c)

L N - NN N
3 (x71)", / (X])" dt ad AT / W/ dt Foo-mixing .
0 0

We have
1 5 1/2 1 5 1/2 1 5 1/2
(/ (X7 dt) —(/ (Y dt) 5(/ | X7 — v} dt)
0 0 0
<|x" -y ”sup UJ_ ]rgjaign |Zj| — 0 in probability
and moreover,
1 jin /1 ? A R ?
(") / z
/0 : ”Z o ,1 "o |2
Using Theorem 3.18 (a), (c) this implies
2 ) 2
1 [ 1 1 I
2 2 ..
. jz;z,i m; ;z,- ﬁ(zwl, /0 W dt) Foo-mixing.

Since (Z?:l Zj) /n — 0 almost surely, (Z?:l Z?) /20%n — 1/2 almost surely

by the Kolmogorov strong law of large numbers and (Z?:l i Zi) /n* — 0 almost
surely by the Kolmogorov criterion (or Theorem A.9 with B, = n?, p = 2), we
obtain in view of Theorem 3.18 (b), (c)

B, A, 1, 1/t L
2, 92,2 — EWI — 3 A W/ dt Foo-mixing .
Consequently, by Theorem 3.18 (c), using P (fol W,2 dt > 0) =

~ nB, B,,/a2n le—l
n(ﬁ,,—ﬂ):A S A S flun
n n/o<n 2f0 Wedt

Foo-mixing


http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_7
http://dx.doi.org/10.1007/978-3-319-18329-9_3
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http://dx.doi.org/10.1007/978-3-319-18329-9_3
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and

1/2
B, B,/o’n w2 —1

X2 B, — ) = =0 — 0o
Z Jj—1 (n ) A;l/z \/m 2(f0] W,zdt)l/z

Foo-mixing as n — 00.
Incase © = —1, let Z, := (—1)" Z,,. Then X,, = (—1)" (XO +3, Zj) and
hence, forall n > 1,

n j—1 2
=> =0 [ x0+ D07
]:1 i=1
. 2
n j—1
_nX0+2XOZ(n—l)Z +Z ZZi
i=1 j=1 \i=l
and
n . Jj—1 n Jj—1
D X0+ D Zi | | zj=- Xo+ > Zi | z;
i=1

j=1 j=1 i=1

2
n
_—XOZZ — - Z +%ZZ§
j=1

One may apply Corollary 7.7 to the normalized partial sum process based on (Z ,,)n -1

One simply has to observe that now (Z'}:l Z j) /n — 0 almost surely by the
Kolmogorov criterion (or Theorem A.9). U

We see that in the case |¢}| < 1 the limiting distributions of 1/5,, under deterministic
and random norming do not depend on the distribution P#! (and X) while in the
explosive case || > 1 they do.

Notice that in case || = 1 there occurs a singularity in the sense that A, /a,%
does not converge in probability (with a,, = n) in contrast to the case || # 1. This
coincides with the fact that the observation process X is a martingale if ¥ = 1 and
(( n"x ) is a martingale if 9 = —1 (see [63], [89], Chap.5).

Remark 9.4 The preceding result provides a counterexample to Theorem 6.23 of
the type of Example 6.12 for arrays: In condition (N, ) convergence in probability
cannot be replaced by mixing convergence. Assume the setting of Theorem 9.3 with
Xo =0, Z; € L for some p > 2 and ¥ = 1. Then B = (By),>(, Where


http://dx.doi.org/10.1007/978-3-319-18329-9_7
http://dx.doi.org/10.1007/978-3-319-18329-9_5
http://dx.doi.org/10.1007/978-3-319-18329-9_6
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n j—1
By=>|>7|z; with Boy=B1=0

j=1 \i=1

is a square integrable martingale with quadratic characteristic

The proof of Theorem 9.3 shows that

1
—>O’4/ W2 dt  Foo-mixing.
0

Hence, condition (N,,) with a, = n holds with mixing convergence instead of
convergence in probability. Moreover, the conditional Lyapunov condition (CLY,  »)
is satisfied for B which implies (CLB,,) by Remark 6.25. In fact, we have

12 j-1 P Loz P
n—p E ZZ,’ Z; ‘fj] :EZ Zzi E|Z|P .
i=1 i=1 J=1|i=1

Letb := (p — 1) /p. Then b > 1/2 and hence, for example, the strong law of large
numbers of Theorem A.9 (or Example 4.2) for the martingale (>"/_; Z;) _, yields

— 0 a.s.

Since >71_, jPl ~ PP+ (pb + 1) = nP?/p, we obtain

1 n j—1 p
— 2 E >z |z
j=1 i=1

Fi—-1]| = 0 as.



http://dx.doi.org/10.1007/978-3-319-18329-9_6
http://dx.doi.org/10.1007/978-3-319-18329-9_4
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On the other hand, again, for example, by the proof of Theorem 9.3,

By, o? 2 ..
- — > (Wl — 1) Foo-mixing .

The distribution of the limiting random variable is not symmetric around zero and
hence is not a variance mixture of centered Gaussian distributions. (]

Exercise 9.3 Assume v =1, Z; € £? and EZ| = 0. Show that

n 1

n—3/ZZXj — a/ W;dt Foo-mixing asn — 00,
; 0
Jj=1

where (W;),¢[0,17 denotes a Brownian motion independent of F.

Exercise 9.4 (cf. [55]) Assume |9| < 1, Xo, Z; € £2 and EZ; = 0, and let y >0
be fixed. For every ¢ € N, set

n
T, :=min {n EN:ZX%_1 > cy
j=1
Show that 7. is almost surely finite for every ¢ € N and
1/2

Tc
ZX?—I (5& — %) > 0/¥N Foo-mixing as ¢ — 00
j=l

as well as

o2 (’5% _ 19) - %N Foo-mixing as ¢ — 00,
14

where PV = N (0, 1) and N is independent of Fe.

Hint: Apply Corollary 6.4. The proof of X ,% / Z';: 1 X ?71 — 0 almost surely as
n — oo is a crucial step.

Exercise 9.4 shows that sequential sampling with random sample size 7. leads to
the same normal limit for 516 as ¢ — oo for the whole range —1 < ¢ < 1 of the
autoregression parameter, in contrast to the result of Theorem 9.3.


http://dx.doi.org/10.1007/978-3-319-18329-9_6

Chapter 10
Galton-Watson Branching Processes

Let (Yn j)n,jeN be independent and identically distributed random variables with val-
ues in N, and let X be some random variable with values in N which is independent
of (Y,, j)n,jeN’ where all these random variables are defined on the same probability
space (2, F, P). For every n € N we set

Xn—1

Xp:= Z Yyj.
=1

The process X = (X,,),,>¢ is the Galton-Watson branching process.

The process X can be interpreted as follows: In a population of particles (which
may represent people, cells, neutrons, etc., depending on the field of application) each
particle j of the (n — 1)-th generation produces a random number Y,; (which may
be 0) of identical particles in the n-th generation, called the offspring of j, and it does
so independently of all other particles from the (n — 1)-th and all earlier generations.
The offspring distribution, i.e. the distribution of Y,;, is the same for all particles
in all generations. Then X, is the total number of particles in the n-th generation,
with X being the (random) number of particles in the 0-th generation. Note that
excluding the value 0 of X is not an essential restriction because by definition of X,
we would have X,, = 0 for all n € N on the event {X( = 0} so that (X),>o would
be trivial on {Xo = 0}.

For every k € Ny set px:=P (Y11 = k). To exclude trivial cases, we always
assume po < 1 (if po = 1, then X,, = 0 almost surely for all » € N) and p; < 1
@if p1 = 1, then X,, = X almost surely for all n € N). Clearly, if X,, = 0 for some
n € N, then X;, = 0 for all m > n, and the population is said to be extinct at time n.

One of the main features of the process X is the fact that with probability one
either X,, = 0 for all large n or lim,_, 5, X, = 00, thatis, P ({lim,_c X, = 0} U
{lim, 0 X, =00}) = 1; see e.g. [64], Satz 9.1. Whether the probability of
extinction p : =P (lim,_, o, X, = 0) equals 1 or is strictly less than 1 is completely
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174 10 Galton-Watson Branching Processes

determined by the offspring mean o : =E (Y11). If o < 1,then p = I, and if &« > 1,
then p < 1; see e.g. [64], Korollar 9.5. Observe that « > 0 because py < 1.

We are interested here in stable limit theorems motivated by asymptotic statistical
inference about & > 1 for n — oo. This is only meaningful on the event

M+:=[ lim X, =oo}
n—oo
because on the complementary event of extinction {lim,—, o X,, = 0} the number of
available data about the process X stays finite as n gets large. Therefore, we will
restrict ourselves to the case ¢ > 1 in which P (M) > 0 under suitable moment
conditions and in which the process X is called supercritical. In the sequel we will
discuss several different estimators of « in the supercritical case and derive stable
limit theorems for these estimators under deterministic and random norming. For
this, we have to collect a few more basic facts about the process X. We always
assume Y, € £% (P) with o2 : =Var (Y11) > 0and X € L2 (P)aswell asa > 1.
Let /o = 0 (Xp)and F,, = o (Xo, Yij;1<i<n,je N) forall n € N. Clearly,
F = (Fu)y>o is a filtration and X is F-adapted. As usuval, Foo = o (U;.;O:O }",,).
There exists a nonnegative Mo, € L2 (Fno, P) with

M,:=a""X, - My as.andin L2asn — co.

This is a consequence of the fact that (M},),>( is an £?-bounded martingale w.r.t.
[F and the martingale convergence theorem; see e.g. [64], Lemma 9.3 and Satz 9.4.
Moreover, {lim,— oo X;; = 0} = {My, = 0} almost surely so that

M ={My >0} as.
and P (My) > 0; see e.g. [64], Satz 9.4 and the remark following it in combination
with Satz 9.6 and our assumption Y11 € £* (P).

A moment estimator

The first estimator which we will consider here is a simple moment estimator. It
appears in [44]. For all n € N we have

Xn—1

E(Xp|Fa1) = D E (Yj|Fac1) = aXy
j=1

because E (Yuj|Fu—1) = E (Ynj) = o by independence of Y,; and F,_;. Conse-
quently, E (X,) = «E (X,,—1) for all n € N, whence E (X,) = «"E (X¢) and

_EXp'"
T EXY
(Xo)


http://dx.doi.org/10.1007/978-3-319-18329-9_9
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Ignoring the denominator because E (X¢)'/" — 1 as n — oo, the principle of

moments yields the (unconditional) moment estimator

G —x 1/
On M, we have M, > 0 so that « 7" X,, — M, almost surely implies

log X, —nloga — log My a.s.asn — o0.

This yields % log X,, —loga — 0 almost surely so that &,(ZM) — o« almost surely on

M. Thus, &\,(IM) is a strongly consistent estimator for & on M. On the other hand,
on M4 we get

n (log&,(lM) — loga) =logX, —nloga — logMy as.asn — oo
and, by the mean value theorem,

n (log(’x\r(lM) — loga) = fﬁ (&\,(IM) - a)

n

for some &,, between &flM) and «. Therefore, §, — « almost surely as n — oo and

hence
n (&,EM) — a) — alog My as.on M, .

This exhibits a rather unusual asymptotic behavior of the estimator &,EM).

A conditional moment estimator

To motivate the second estimator we apply the principle of moments condition-
ally to

o = E(Xn|-7:n71)
Xn—l

’

provided that X,_; > 1. Replacing the conditional moment E (X, |F,—1) by X,,

we arrive at the estimator

~(LN) , _
o =
" Xn—1

Note that X,, = 0 for some n € N implies X,,, = 0 for all m > n so that we have
X, > 1 for all € Ny on M and hence

~ M Mo
a,gLN) —o0—" > a—==a as.on My asn— o0,
My M
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N)

which says that &,SL is a strongly consistent estimator for « on M. This is the

Lotka-Nagaev estimator considered in [67]. A stable limit theorem for &\,ELN) will be
derived here from the following stability result.

Theorem 10.1 Under the above assumptions,

Xn—1

=12 1)/2 Z nj =) —>0M1/2N Foo-stably as n — oo,

where PN = N (0, 1) and N is P-independent of Fno.

Proof Foralln € Nand j > 0 set
Fji=0 (X0, Y, 1L <m <n— 1,k € N; Yo, ..., Yy))

sothatﬁlo = o (Xp) and}'no =oXo, Y, 1 <m<n—1,keN) = F, 4
for all n > 2. The array (fn j)]>0 4en 18 clearly nondecreasing in j and n so that
it satisfies the nesting condition. For every n € N the Np-valued random variable
X,,_1 18 measurable w.r.t. }'n() and therefore a stopping time w.r.t. (}' )] . More-
over, for every n € N, by independence of Y,; and }",,,J-_l and E (Ynj) = «, the

sequence (Y,, i — a) oy 18 a martingale difference sequence w.r.t. (]—"n f)j>0‘ There-
fore, (o~ =72 (v,; — O‘))jeN is a m:lrtingale difference sequence w.r.t. (7, j)jZO
as well. By independence of Y,; and F;, j_1 again we have

Z E((am 1)/2)2

2Xn—l
an—1

_ 1 Xn—1
]:n,jl) = T Z E ((Ynj _“)2)

j=1

— O'ZMOO a.s.asn — o0

so that condition (Nz,) is satisfied with the finite stopping time 7, = X,—; and
n* = 0> M. Moreover, again by independence of ¥,,; ; and ]-"n j—1

n—1 2
ZE((a(n 1)/2) {|Yn)—a|zeat= 1>/2} Fn,j— 1)

Xn—-1
1 2
= E E((Ynj —ot) 1{|Ynj—a|zaa(”*1)/2})
Jj=1
Xn—1

— 2
= i E ((Yll — o) 1{|Y11—a|28a(”’]>/2}) — 0 as.asn — o©



10 Galton-Watson Branching Processes 177

so that condition (CLB.,) is satisfied with the finite stopping time 7, = X,_;.
Observe that Foo = o (UneN U =0 fnj). Therefore, the assertion follows from
Corollary 6.4 and Remark 6.2 (d). ([l

Corollary 10.2 Under the above assumptions,

x1/2 (A(LN)

X, ) — o N Foo-mixing under Py, as n — 00

and

o =D/2 (&\,ELN) — oz) — cho_ol/zN Foo-stably under Py, as n — oo,

where PN = N (0, 1) and N is P-independent of Fno.

Proof On M. we have almost surely

Xn—1

Z(Ynj_a):Xn—aXn_IZX 1( (LN) _ )

j=1
so that

a(=1)/2 o
1/2 o — 1)/22 nj—a) -

n—1

x1/2 (A(LN) ) _
X

Consequently, the first assertion follows from Theorem 10.1 and «"~1/2/ X 1/: 2 —
—12
M

xy).
On M, we also get almost surely

Py, -almost surely as n — oo via Theorem 3.18 (b) and (c) (use g (x, y)

(n=1)/2
o=D/2 (&’gLN) _ a) o X172 (A(LN) a)

1/2 n—1
anl

so that the second assertion follows from the first one and o~ 1/2/ X ,11/_2 = M2

Py, -almost surely as n — 00, again via Theorem 3.18 (b) and (¢). U

A conditional least squares estimator
The third estimator is a conditional least squares estimator which is defined as the

minimizer of the sum of squares

n

> Xi— EXilFi0) =D (Xi —aX; 1)

i=1


http://dx.doi.org/10.1007/978-3-319-18329-9_6
http://dx.doi.org/10.1007/978-3-319-18329-9_6
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and is given by

SLs), _ it Xi?zfi—l
L8), =l Tl
i1 Xi

Since Z?:l Xizf1 > X% >1, &fZLS) is well-defined. On M we have

X1 Xi .
— = — o as.asi — 00,

3 .
Xiy l
and the Toeplitz Lemma 6.28 (b) implies &\,SLS) — o almost surely on M, as
(LS)

n — oo so that @, °’ is strongly consistent on M. To obtain stable limit theo-
rems for @\", we introduce the process U(LS) = (U,ELS)) . with UéLS) :=0 and
n=

n
U =>" (Xi—IXi —OlXiz—1) forn > 1

i=1

which is an F-martingale because E (X;|F;i—1) = aX;_1. If E (XS') < 00 and
E (Y}}) < oo, then UL is square integrable with quadratic characteristic

(%), = 2 (a0t®) )

i=1

= S i—1X] — 2 ’ i— )

;E ([X X ozXl_l] ‘f |

= Zn:XizflE ([Xi —aXia]’ |-7:i—1)
i=l1

n
= > 7 [E (XAF) — 20X E (1B + X
i=1

n
_ .2 3
=0 z Xi1
i=1

because E (X?|F;—1) = 02X;—1 + a?X? | and E (X;|Fi—1) = aX;_. The fol-
lowing application of Theorem 8.2 and Corollary 8.5 is crucial.

Theorem 10.3 IfE (Xg) < ooand E (Yf‘l) < 00, then

U(LS)
" __ SN Foo-mixing under Py, as n — o0,
NG +

n


http://dx.doi.org/10.1007/978-3-319-18329-9_6
http://dx.doi.org/10.1007/978-3-319-18329-9_8
http://dx.doi.org/10.1007/978-3-319-18329-9_8
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where N is P-independent of Foo with P = N (0, 1).

Proof Here, we are in the setting of Remark 8.6 so that condition (ii) in Theorem 8.2
follows from conditions (i), (iii) and (iv). Consequently, we only have to verify these
conditions.

We verify condition (i) with G = , a, = «>/? and n = 0M3/2/ (
For this, note that ¢ 2@ ~D x i371 - M g’o almost surely asi — 00, so that the Toeplitz
Lemma 6.28 (b) implies

)1/2

S X 3
= > M a.s.asn — o0.
Z?:l Q3G=D 00
Because
-1 1
Za3(1 l) _ ~ 5 ()(3”
-1 o’ —1
we get

) ULs) nox3 2
< - >" :( - )” =0221_1 L Mgo a.s.asn — 00,
a; adn asdn ad—1
which implies (i).
Forall n,r € N we have a?_, /a> = 1/a* which is (ii) with p = o*
Finally, we will verify (iv) for u =N (0,b) withb = (a — 1) /a3, Wthh means

that Corollary 8.5 applies and yields PZ = N (0, 1) because bp/ (p — 1) = 1 in
the present case. For the proof of (iv) we write for every t € R and n € N, using
measurability of X, and (U (LS))n w.rt. Fp_1,

(LS) 2
AU, Xn—1Xn —aX,_,
Ep (exp(it—l)‘}'n_l): Ep (exp(it & Fn-1
/2 172
o) e,
( Ol) Xn 1 2
= exp (l W E €xXp U(LS) 1/2 Yn] fnfl

Xn—1 anl
= exp i(_a) tXn—l ¢ tXn—l
weopt ) Npesyr)

where ¢ denotes the characteristic function of Y71 and we used independence of
o (Y, : j € N) and F,_. Employing the characteristic function

¢(u):exp(i (%a)u)g‘(g), uelk,



http://dx.doi.org/10.1007/978-3-319-18329-9_8
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of the normalized random variable (Y11 — «) /o, we get

(LS) Xn—1
. AU, ‘ otXu_1
Eplexplit———— )| Fo1 | = 0| — .
P( p( <U“S)>3/2) ' 1) ¢((U(”>)3/2)

Note that on M we have

oiX,o1  otX)2 1

((J(LS))rll/2 B (U(LS))rllﬂ Xrll/_2l

with

1/2
01X 2 \7?, v, IR
——— =g —L— o Dx, a3 >t
n

almost surely asn — oo. The classical central limit theorem for sums of independent
and identically distributed random variables yields

X ”_) 1,
¢(ﬁ) exp(—zx) asn — 00

. . . . 1/2
uniformly in x € R on compact intervals. Setting x = (TIXS/_ 21/ (U (LS))n/ and
n = X,_1 and combining the last two facts, we obtain

X
otXy—1 ! 1 2053 -1
¢ W — €Xp —Et a3 a.s. on M+ asn — o0,
n

which implies condition (iv) with b = (oz3 — 1) /o and concludes the proof. O

Corollary 10.4 Under the assumptions of Theorem 10.3,

n 2
21 X (A(Ls)

—_— —a) —> oN Foo-mixing under Py, as n — o0
S (3 -9) * .
(X X7y)

and
(> -1)'” —12
ﬁa"/z ((’)Z,gLS) — a) — Mo ' "N Foo-stably under Py as n — oo,

where PN = N (0, 1) and N is P-independent of Fno.
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Proof For all n € N, we have

2 LS
~(LS) _ Yo (Xic1Xi —aX? ) _ U
a, = TR— o= o
e Xi 2o Xi
so that
2 LS
Z?—l X‘ (A(LS) ) _ Ul’g :
3 1/2 = 12"
(X Xiy) (),

Thus the first statement is immediate from Theorem 10.3. The second statement
follows from the first and

172
(O‘ _1)1/2 n/Z(zt 1X3 )/
_1 Zz l

— MO_Ol/2

as.on My asn — 0o.

For this, use the asymptotic almost sure behavior of >/ | X i371 as n — oo estab-
lished before and

—2n X2 - ! n M — 00
o hi) M a.s.on M, asn

which follows from =~V X;_| — M, almost surely as i — oo and the Toeplitz
Lemma 6.28 (b). O

A weighted conditional least squares estimator

To obtain a fourth estimator for &« we observe that the conditional variance
Var (Xi|Fi-) = E[(X; = E (XiIFi1)? | Fic1 |

=£ (Xf2|fi—1) — E(Xi|Fim1)’ = 0" Xi

of X; given F;_; strongly depends on i. It is therefore reasonable to stabilize this
conditional variance of the summand X; — E (X;|F;—1) = X; — aX;_ in the
conditional least squares approach, that is, to consider the minimizer of the weighted
sum of squares

Z";(&—E(Xim_l» Z(X —aX;_1)?

—  Var(X;|Fi-1) — oXiq
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which is given by

o) . Z? | Xi

on z; IXI 1 -
Since Zz 1 Xi-1 = Xo > 1, a(H) is well-defined. On M we have
Xi _(LN) .
— =0 —a as.asi — 00,
Xi-1

)

and the Toeplitz Lemma 6.28 (b) implies o A( — « almost surely on M so that
~(H) .

o, is strongly consistent on M . This is the Harris estimator introduced in [42];
see also [43].
To derive stable limit theorems for o,

() _, with Ué ). =0 and

") we introduce the process UH) =

n>0

n
Ut = z (X; —aX;_;) forn>1.
i=1

Under our original moment assumptions X, Y1; € £ (P) the process U ) is an
£?-martingale w.r.t. F with quadratic characteristic

i=1 i=1 i=1

Again, an application of Theorem 8.2 and Corollary 8.5 is crucial.
Theorem 10.5 If Xo, Y11 € L2 (P), then

U

——% __ s N Feo-mixing under P - 0,
<U(H)>rll/2 co-mixing unaer M+(1S n

where N is P-independent of Foo with PN =N 0, 1).

Proof We are again in the setting of Remark 8.6 so that we have to verify condi-
tions (i), (iii) and (iv) of Theorem 8.2.

First, we will show that condition (i) holds with G = , a, = a"? and n =
oMo/ (® — 1)1/2. As in the proof of Theorem 10.3, «=¢~DX; | — M, almost
surely as i — oo and the Toeplitz Lemma 6.28 (b) imply

Zz IXll
Zz lOll1

— My, as.asn — o0.
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Because
n n
. o —1 1
zazfl — ~ o
= a—1 a—1
we obtain
U ALY noox. o2
< >"=( )”=022‘—1 Unt N My as.asn — 00,
a? a” ol a—1

n

which gives (i).

Forall n,r € N'we have a2_, /a2 = 1/a" which is (ii) with p = a.

Finally, we verify (iv) for u = N (0,b) with b = (¢ — 1) /&, which means
that Corollary 8.5 applies and yields P = N (0, 1) because bp/ (p — 1) = 1. For
the proof of (iv), as in the proof of Theorem 10.3 let ¢ denote the characteristic

function of the random variable Y; and ¢ that of the normalized random variable
(Y11 — @) /o.Thenforevery t € Randn € N, by the same reasoning as in the proof
(H)
. AU, L X —aX,—g
E t———— )| Fue =F t———————
’ (e"p ( <U<H>>‘/2) 7 ) ’ (e"p ( ) )
n n
Xn—1
an an an
.t (—a) ! ¢ t ! " ot !
=exp| it——— _ = _ .
p (U(H))uz (U(H))1/2 (U(H))1/2
n n n
On M, we have

fn—l

of Theorem 10.3,
]:nl)
(o) X . t
=explit—————— )Ep|lexp|i———= Y,
p( e )T o) g Y

1/2
n—1 1

(U(H))i/2 - (U(H))iﬂ x)2

ot otX

with

1/2 2 1/2 1/2
manlz =ot( (a_(”_l)Xn_l)l/za_l/z —t (a — 1)
(un) (), o

almost surely as n — oo. Using again, as in the proof of Theorem 10.3,

¢ (L)n — exp (—1x2) asn — 0o
N 2
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1/2

uniformly in x € R on compact intervals, now with x = otX,""

n = X,_1, we arrive at

X
" ot : ltzoc —1 M
—_— —exp|—= a.s. on asn — 00,
o) T *

which implies condition (iv) with b = (o« — 1) /a and concludes the proof. [

/(U(H)>rll/2 and

Corollary 10.6 Under the assumptions of Theorem 10.5,

n 172
(Z X,-_l) ('&,(ZH) — a) — 0N Foo-mixing under Py, as n — o0
i=1

and

2
o (A(H>

-1/2
m o, — a) — 0Mu "N Foo-stably under Py, as n — o0,

where PN = N (0, 1) and N is P-independent of Fno.
Proof Foralln e N,

"X —aX_ Uit
a(H)ZZlil( i i—1) o = n +a

" > X > X

so that

n 172 (H)
A(H) Ul’l
ZXH (an —a) =0——7>.
- (u) /
i=1 n

Thus the first statement follows immediately from Theorem 10.5. The second state-
ment follows from the first and

—-1/2 1/2
an/Z n 1 a2 )
(> x - o n M
(O[ _ 1)1/2 (z ! ) ((X _ 1)1/2 ((U(H))n o0

i=1

almost surely on M4 as n — oo. (]

The above stable central limit theorem for the Harris estimator and the stable
central limit theorem of Corollary 10.2 for the Lotka-Nagaev estimator are due to
Dion [25].

The moment estimator &,(,M) converges to « at a linear rate and is therefore
clearly inferior asymptotically to the other three estimators, all of which converge
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exponentially fast. As Corollaries 10.2, 10.4 and 10.6 show, the order of the rate of
convergence is the same for all three of these estimators, namely o*/?. As the limits
of all three estimators are the same, we compare these estimators as in [44] in a
somewhat informal way by comparing the squares of the normalizing factors since
an estimator with a bigger normalizing factor is obviously preferable to a competitor
with a smaller one because, for example, it leads to shorter asymptotic confidence
intervals. As mentioned in [44], this is a concept of asymptotic efficiency in an
obvious, though not albeit standard sense.

Denoting the random normalizers of the three estimators ’a‘,(,LN) &,ELS) and &,EH)
by Nu.Ln, Nu,1s and N, g, respectively, and employing the asymptotic behavior of
X, as well as of Z;’Zl X f_l for k = 1, 2, 3, which was established in the previous
proofs, we get almost surely as n — oo for all ¢ € (1, 00)

2
N:%,LN X > X,-S,l (Ol2 — l) _ B ral—a—1

= = 1,
N,%’LS >, Xl,2_1)2 T (e —1) Bralta
Ny _ X -l <1
N}’%,H B Z?:l Xl'fl o
and
N; Ls _ (= x2)° R (@ =1 @-1 _ @ tatl _
Nl%,H (i X)) (20 Xi1) (o — 1)2 a? +2a+1

These results show that the Harris estimator is asymptotically the best one, which
is not really surprising because this estimator can be viewed as a nonparametric
maximum likelihood estimator; see [40], Sect. 2.4. Of course, the results are the same
if the deterministic normalizers from Corollaries 10.2, 10.4 and 10.6 are considered.

Exercise 10.1 Let X be a supercritical Galton-Watson branching process with
Xo, Y11 € L2 (P) and Var (Y11) > 0, and assume p; < 1 for all k € Ny. If the
complete family tree (Y,- j) up to generation n € N of X is observ-
able, then

n Xi-1

R 1
CHEEE) 35 I

i=1 j=1

with Z, : = Z?zl X;_1 is the nonparametric maximum likelihood estimator of py
for every k € No; see [40, 42]. For every k € Ny, show that

Dkn — Pk as.asn — o0oon My
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and

an/Z

~ “12
m (P — pr) = (o (1 — p)?* M N Foo-stably under Py,

where PV = N (0, 1) and N and F, are P-independent.

Exercise 10.2 In the situation of Exercise 10.1, assume that after the (n — 1)-th
generation of X only the complete next generation (Yn j) I<j <X is observable. For
the estimator

of px show that for all k£ € Ny
Dkn —> Dk as.asn — ooon My

and

x12

n—1

(Pron — px) = (P (1 — )2 N Foo-mixing under Py, asn — o0,

where PV = N (0, 1) and N and F, are P-independent.
Hint: The strong consistency of px , on M can be derived from the strong consis-
tency of p., on My appearing in Exercise 10.1.
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Here we collect some basic facts about the weak topology on M (X), conditional
distributions and martingales.

A.1 Weak Topology and Conditional Distributions

Let X be a separable metrizable topological space equipped with its Borel-o-field
B (X) and M! (X) the set of all probability measures on B (X) equipped with the
weak topology. Let d be a metric on X" that induces the topology and let U, (X, d)
denote the subspace of Cj (X) consisting of all d-uniformly continuous, bounded
real functions.

Theorem A.1 (Portmanteau theorem) Let (v,), be a net in MY (X) and v €
MU (X). Let 3 be the system of all finite intersections of open balls in X. The
following statements are equivalent:

(1) vo — v weakly,
(i) licryn/hdua = /hdufor every h € Up (X, d),
(iii) limainf Vo (O) > v (O) for every open subset O C X,
(iv) lim ‘sup Vo (C) < v (C) for every closed subset C C X,
) licrynaz/a (B) = v (B) for every B € B (X) satisfying v (OB) = 0,
(vi) 11(131 Vo (B) = v (B) for every B € (3 satisfying v (OB) = 0.

Proof For the equivalences (i)—(v) see [69], Theorem I1.6.1.

(v) = (vi) is obvious.

(vi) = (iii). Let 81 := {B € B : v (0B) = 0} and let /3, denote the system of all
finite unions of sets from 3. Using that (3] is closed under finite intersections since
© Springer International Publishing Switzerland 2015 187
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0 (ﬂle Bi) C Uj-;l OB;, the inclusion-exclusion formula yields lim,, v, (G) =
v (G) for every G € [3,. Moreover, we observe that (3] is a base for the topology
on X. In fact, if O C X is any open subset and x € O, then there exists an r > 0
such that B (x, r) := {d (x,-) <r} C O. Since OB (x,s) C {d(x, ) =s}, s > 0,
these boundaries are pairwise disjoint and thus R := {s > 0 : v (0B (x, 5)) > 0} is
countable. Hence, (0, r]NR® #~ @, and for s € (0, r]NR® we obtainx € B (x,s) C O
and B (x, s) € 1. So 3] is a base. The space X having a countable base is strongly
Lindeldf, that is, every open cover of any open subset of X" has a countable subcover.
Consequently, for every open set O C X, there exists a sequence (G,) in 3, such
that G, 1 O. One obtains

liminf v, (O) > limv, (G,) = v (G,) forevery n € N
« «

and lim;,—, « ¥ (G,) = v (O) which yields lim inf,, v, (O) > v (O). U

Lemma A.2 We have
B(MI(X)) =a(u»—>/hdu,her(X)) =ocWwr v(B),BeB(X)).

Proof Let gp () = v (B) and g;, (v) = f hdv. A base (3 of the weak topology on
M (x) belonging to o (gn, h € Cp (X)) is given by the collection of finite intersec-
tions of sets of the form {{g;, € U} : h € Cp (X), U C R open}. The space M! X)
being separable and metrizable and thus having a countable base is strongly Lindelof.
Consequently, every open subset of M! (X) is a countable union of sets from 3. This
implies B (/\/l1 (X)) C o (gn, h € Cp (X)).

The inclusion o (gp, h € Cp (X)) C o (g, B € B(X)) follows from the usual
approximation of & by B (X')-simple functions.

The system D := {B € B(X) : ggis B(M! (X)) -measurable} is a Dynkin-
system which contains every open subset of X by the Portmanteau theorem. Thus
D =B (X) andwededucea(gB,BeB(X))CB(MI(X)). |

Let (2, F, P) be a probability space, G C F a sub-o-field and X : (2, F) —
(X, B (X)) a random variable. The distribution of X is denoted by PX. The condi-
tional distribution PX19 of X given G is the P-almost surely unique Markov kernel
in K! (G, X) such that

PX19 (., B) = P(X € B|G) P-as.forevery B € B(X) .

It is characterized by the Radon-Nikodym equations
/ PX19 (b, B) dP (w) = P (X’l (B)N G) forevery G € G, B € B(X) ,
G

or, what is the same, by measure uniqueness, P ® pPXl9 —p ®dx on G Q B(X).
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For Borel-measurable functions f : X — R such that f (X) € £! (P) we have
E(f(X)19) = /f (x) PXI9 (dx)

provided PX 19 exists ([26], Theorem 10.2.5).
Theorem A.3 Assume that X is polish. Then the conditional distribution PX |9 exists.

Proof [26], Theorem 10.2.2. U

In the sequel we assume that the conditional distribution PX!9 exists.

Lemma A.4 (a) If X is G-measurable, then PX 19 = 5.

(b) PXI9 = pX if and only if o (X) and G are independent.

(c) Let Y be a further separable metrizable topological space and g : X — ) be
Borel-measurable. Then PYX)9 = (PX |g)g.

(d) Let Q be a probability distribution on F with Q < P and dQ/dP be G-measurable.
Then QX 19 — pXIG Q-almost surely.

In particular, Q ® PXI9 = 0 ® 6y on G @ B(X) and QPX'9 = Q6x = 0X.

Proof (a) We have 6y € K' (G, X) and dx clearly satisfies the Radon-Nikodym
equations for PX19.

(b) We have PXI9 = PX if and only if PX (B) P (G) = P (X' (B) N G) for every
G € G, B € B (&), that is, the independence of ¢ (X) and G.

(c) Forevery G € G, C € B()) we have

/ (Px‘g)'q (w, C) dP (w) =/ pXI9 (w, g (C)) dP (w)
G G
=P({g(X) e C}NG) =/ PIDG (. C) dP (W) .
G
(d) Letf :=dQ/dP. Forevery G € G and B € B (X) we obtain

/ PX19 (w, B) dQ (w) = / PXI9 (W, B) f (w) dP (w)
G G
=/EP<IB(X)f|g) dP=/ 0fdP=0 (X BNG). O
G G

Now let )Y be a further separable metrizable topological space and Y : (2, F) —
(Y, B ())) arandom variable. Note that B (X x V) = B (X) ® B ()) ([26], Propo-
sition 4.1.7). For K| € K!' (F, X) and K, € K! (F, ) define the product kernel
Ki®Kre KNF, X xY)by K1 @ K> (w, ) := K| (w, ") ® K2 (w, -).
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Lemma A.5 Let Y be G-measurable.

(2) PEDIG — pXIF & Sy.

(b) Let X : (Q, F) = (X, B(X)) be a random variable with PX = PX. Ifo (X), G
are independent and o ()~(), G are independent, then pEDIG — p(X.V)IG,

(c)Let X =Y = R. If 6(X) and G are independent and PX is symmetric around
zero, then PXIYIG — pXYIG

In particular, if |Y| = 1 P-almost surely, then PXYI9 = pXIG — pX,

Proof (a) Let K := PXI9 @ §y. Then K € K' (G, X x ) and for every G € G,
BeB((X),CeBQ)

/ K@, BxC)dPw) = / PXI9 (w0, B) Gy (€) dP (w)
G G
=/ PX9 (w, B) dP (w) :P(X’l BNy (C)mG)
GNY=1(C)
—p ((x, V)" B xC)N G) .
Measure uniqueness yields the assertion. B B
(b) By (a) and Lemma A.4 (b), P¥NI9 = PX @ §y, = PX @ §y = PG,
(c) Let g, h : R> — R be defined by g(x, y) := xy and h(x, y) := x|y|. Then by
(a) and Lemma A.4 (b) and (c) for every B € B(R)
PG (. By = PEDIG (L1 B)) = PX @ oy (7 (8)
=/PX({x€R:x|y| € B}) ddy (y)
=/ PX ({x e R : xy € B}) ddy (y)
(0,00)
+/ PX ({x e R: 0 € BY) ddy (y)
{0}
+/ PX ({x e R: —xy € B}) déy (y)
(=00,0)
=P @y (7' ®) =P (B
The assertion follows from Lemma 2.1 (b). ([l
Let 1« be a probability distribution on F @ B (X) with ™ =P, 71 : Q x X — Q

being the projection. Then a Markov kernel K € K! (F, X) is called a disintegration
of pw.rt. m if P ® K = p. The kernel K is then P-almost surely unique.

Theorem A.6 Assume that X is polish. Then a disintegration w.r.t. 7| exists for
every probability distribution pon F @ B (X) with u™ = P.
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Proof By Theorem A.3, the conditional distribution K = u’mf ew.xl ¢
KN (F® W, X),X) exists, m : Q x X — X being the projection. Since
F {0, X} = o (m), there exists a K € K!' (F, X) such that K (71 (w, x), B) =
K ((w, x), B) for every w € Q,x € X, B € B(X). We obtain for F € F and
B e B(X)

P®K(F><B)=/K(w,B) dP(w):/ K (71 (w,x),B) du (w, x)
F

FxX

=/ K (w,%),B) dpt(w,x) = (wgl (B) N (F x X))
FxX
— (F X B) .

Measure uniqueness yields P Q@ K = p. ([

In view of the Radon-Nikodym equations for PX!9 we see that PXY is the disinte-
gration of P ® dx|G ® B (X) so that PXI9 = E (x|G) in the sense of Definition 2.4.

Lemma A.7 Assume that X is polish. Let K € K' (F, X) and let Gy C Go C F be
sub-o-fields.

(a) E(E (K|G2) |G1) = E (K|G1).

(b)E (PX|g2|g1) — PX|g].

(©)E (K|G) = f/\/ll @V pKIg (dv), where on the right-hand side K is regarded as an
(Ml X),B (/\/l1 (X )))-valued random variable (see Lemma A.2). In particular,
E(K (-,B)|G) = E (K|G) (-, B) for every B € B (X).

The conditional distribution PX19 in part (c) exists by Theorem A.3 because
M (X) is polish.

Proof (a)LetH := E (K|G>) andJ := E (K|G1).Since PRH = PRK on Gr®B (X)
andPR®J=PRKonG, @ B(X),wegetP®J =P Q®H onG; ® B(X) so that

J = E(H|G1).
(b) Using (a), we obtain

E(PY10:) = E(E (6x162) 161) = E (0x1G1) = P¥9".

(c) The right-hand side, denoted by H, satisfies

H(w,B) = /V(B) P19 (w, dv)
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so that H € K! (G, X'). We obtain for every G € G, B € B(X)

P®H(G><B)://V(B) PKI9 (W, dv) dP (w)
G
2/1G(w)v(B) dP ® PX19 (w, v)
:/lc(w)u(B) dP ® kg (w,v)
=/K(w,B) dP (w)
G
=P®K (G x B)

and measure uniqueness yields P @ H = P ® K on G ® B (X). This implies H =
E (K|G). Furthermore, for B € B (X) let gg : M! (X) = R, g (v) := v (B). Then

E(K (- B)|G) =E (g5 (K)|G) = /gg (v) PX19 (dv) =H (-, B) . 0

A.2 Martingales

Let I = [«, 8] N Z be an integer interval, where « € Z, 3 € Z U {oo} and a < (8
(like {0, ..., k}, N or Np), let F = (F,),; be a filtration in F, that is, a nonde-
creasing family of sub-o-fields of F, and let X = (X},),c; be a real process defined
on (2, F, P). The increments (or differences) of X are given by AX,, = X, — X;,—1
forn e I,n > a+1sothat X;, = X, + Z]’-lzl AX;, n € I. The process [X]
defined by [X], = X7, (AX;) forn € I, n > o+ 1 with [X], = 0 is
called the quadratic variation of X. The process X is called F-adapted if X,, is
JFn-measurable forevery n € I.If X is an F-martingale,i.e. X is integrable, [F-adapted
and E (X,,|Fyn—1) = Xy—1 foreveryn € I,n > a+ 1, then E (AX,|F—1) =0,n € I,
n > a+ 1. Conversely, if Z = (Z,) s n>a+1 18 an F-martingale increment (or mar-
tingale difference) sequence, that is, Z is integrable, F-adapted and E (Z,|F,,—1) = O,
n € I,n > a+1, then for any random variable Z,, € L] (Fa, P) the process X defined
by Xy 1= Zo + 2 ;_, 11 Zj is an F-martingale.
If X is integrable and [F-adapted, then its F-compensator A is defined by

n
Api= Y E(AXj|Fji-1) with A, =0.
Jj=a+1
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The compensated process X — A is an F-martingale. Furthermore, X is an
F-submartingale, that is E (X,|Fy—1) > X,—1 foreveryn € I, n > o+ 1, if
and only if its F-compensator is (almost surely) nondecreasing.

For square integrable martingales X, the process (X) defined by

K= 3 E((%)1F) with (X =0
Jj=a+1

is called the quadratic F-characteristic of X and is the F-compensator of the non-
negative F-submartingale X* = (X7) _, and of [X].

Theorem A.8 (Lenglart’s inequalities) Let X be a nonnegative F-submartingale
with F-compensator A.
(a) For everya,b > 0,

b
P(supX,, za) < ——}—P(XQ—i—Ag >b) ,
a

nel

where Ag = 1lim, . A, if = 00.

(b) If X is nondecreasing, then for every a, b > 0,

1
P(Xo+As>a) <~ |b+E sup AX, | +P(Xs>b),
a
nzngil
where Xg 1= lim,,_, 00 X, if 3 = o0.
Proof [64], Satz 3.9. m

A process (By),¢s is said to be F-predictable if B, is F,-measurable and B, is
Fn—1-measurable for every n € I, n > « + 1. In this sense F-compensators are
F-predictable.

Theorem A.9 (Strong law of large numbers; Chow) Assume 3 = oco. Let X be an
F-martingale, p € (0, 2] and let B be an F-predictable, nonnegative, nondecreasing
process. If
00 4
E (|AX;|" | Fi—
3 E(AX[1751) _ o .,
j=a+1 (1 + Bj)

then X, /B, — 0 almost surely on {Bs, = 00} as n — oo. In particular, if X is
square integrable and a > 1/2, then X,/ (X)s — 0 almost surely on {{X),, = oo}.

Proof [64], Satz 5.4 (a) and Korollar 5.5. O
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Theorem A.10 (Brown’s inequality) Assume 3 = oo. Let X = (Xg)res be a uni-
formly integrable F-martingale. Then for all almost surely finite F-stopping times
7:Q — I U{oo} (that is, T () C I almost surely) and all € > 0,

2
P ( max |X;| > 6) < ZE (IX:| lx,j2c/2) -
a<k<t €

Proof Setting M, := maX,<k<m |Xirr| and observing that (|X;axl)xes 1S @ non-
negative submartingale, by Doob’s maximal inequality we obtain for all m € I and
e>0

2¢eP My > 2¢) <E (|XmAT| 1{M,,lz2e})
=F (|Xm/\7'| 1{Mm22€,|X,,,AT|35}) +E (le/\7—| l{MW,zZE, |Xmm'\<€})
<E (|XmAT| 1{|Xm/\7\25}) +eP My > 2¢)

so that {
P My, > 2¢) < gE (IXimar | Vs 122) -

Using uniform integrability of the sequence (X;;a+),,c; and letting m tend to infinity
implies the assertion. O

In [12] a sharper result is derived from Doob’s upcrossing inequality, but The-
orem A.10 is all that is needed in tightness proofs like that of Theorem 7.1. The
2e-trick to obtain Theorem A.10 from Doob’s maximal inequality may be found for
example in [23], p. 18, or [96], Lemma 2.


http://dx.doi.org/10.1007/978-3-319-18329-9_7
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Solutions of Exercises

2.1. The system D := {B € B(X) : K (-, B) is F-measurable} is a Dynkin-system.
A standard argument yields the assertion.

2.2. If K, — K weakly, then by Theorem 2.3, OK, — QK weakly (in M! (X))

for every probability distribution Q on F such that Q = P. Conversely, if Q is a
probability distribution on F with Q <« P and Q := (Q + P) /2, then Q = P so that

1 1 _
E/thKa+§/thKa:/thKa
1 1
—>/th1(=§/th1(+§/th1(

/thKa—> /thK

forevery h € C (X). Consequently, [ hdQK, — [ hdQK and hence, OK, — QK
weakly. It follows from Theorem 2.3 that K, — K weakly.

and

2.3. Assume Q < P and let g := dQ/dP. Then gf € L! (P) for every f € L' (Q).
The topology 7 (Q) which is generated by the functions

Kr—>/f®th®K=/gf®th®K, fell©Q,heCy(X),

is thus coarser than 7 (P).

2.5. Check the proof of Theorem 2.7.
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2.6. If {PK: K €T} is tight in M' (M! (X)), then for every n € N, there
exists a weakly compact set M,, C M! (X) such that supg. PX (M¢) = supgp
P (K ¢ M,) < 27", Since M, is tight for every n € N, there exist compact sets
A, C X such that sup,, .y, v (AS) < 27"=1 This implies for every K € I', n € N,

PK (AS) =/K(-,A;) dP:/ K (- A5) dP+/ K (-, Ay) dpP
(K¢M,,) {KeM,}

< 2—n—1 + 2—n—1 .

and hence, PT is tight.

Conversely, assume that PT is tight in M! (X). Then for every n € N, there exists
acompact set A, C X such that supg . PK (AZ) < 272" Now for m € N introduce
the set

M, = {l/ eM ) v (A;) < 27 *forevery n > m} .

Clearly M,, is tight and, by the Portmanteau theorem, M,, is weakly closed so that
M,, is a weakly compact subset of M! (X). Using the Markov inequality, we obtain
forevery K e ', m € N,

P (M},) = P (K ¢ My) = P(U (K (- AS) > 2,1})
< ZP(K(«, fl) > 2*") < ZZnPK(Aﬁ) < szn -0

n>m n>m n>m

as m — oo, which shows that PT is tight in M (./\/ll (X)).

2.7. Recall that B(X x )) = B(X) ® B()). Let wy (X x ))) denote the topology
on M (X x ) generated by the maps p +— fh®kdu,h e Cp(X),keCp()).In
order to show that wo (X x ))) coincides with the weak topology on M! (X x ))
we have to show that the map p +— [ gdpu is wo (X x Y)-continuous for every
g € Cp (X x)Y). Let (1a),, be a net in MY (X xY)and p € M (X x ) such
that 1, — p with respect to wo (X x )). Let dy and dy be metrics inducing the
topologies on X" and ), respectively. Let O C X, U C )Y be open subsets and for
neN,letho, (x) = 1Aninf,cocdy (x,2) and ky , (v) := 1 Aninfeye dy (v, 2).
Then hO,n e Cp (X)), kU,n e Cp (), /’lo,n 1 1p and kU,n 1 1y so that ho’n X kU,n 0
lo ® 1y = 1pxy. We obtain

liminf po (O x U) > lim/ho,n R kyndpe = /ho,n ® ky ,dup forevery n e N
« «

and by monotone convergence, lim,,_, s f hon ® ky pdp = 11 (O x U) which yields
liminf, po (O x U) > (0 x U).
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Analogously, if V.C Xand W C ) are closed subsets and fzn =1 — hyep,
kn :=1— kwe ,, then h, | 1y and k,, | 1w so that

lim sup pt, (V x W) Slim/izn(@l;ndua =/}~zn®l~(nd,u forevery n e N
a «

and thus lim sup,, pto (V x W) < u(V x W).
Let 8 := {0 xU:0 C Xopen, UC Yopen}and f) :={G € 8 : n(0G) =
0}. Thenfor G = O x U € fB1,using G =0 x U and G = G \ G,

w(G) < hmlnfua (G) < hmsupua G) < hmsup( ) <u (_) w(G)

so that lim,, o (G) = 1 (G).
The metric d ((x,y), (x1,y1)) = dx (x,x1) V dy (y,y1) induces the product
topology and the corresponding open balls satisfy

B((xv}’),”) Z{d((x»)’)»)<r}={d)((xa)<V}X{dy(y,)<r}

Hence B ((x,y),r) € (. Furthermore, 3 is closed under finite intersections since
ﬂle G; = ﬂ _1(0ixU) = (ﬂ, 10) X (ﬂf.;l Ui). Now the Portmanteau
theorem yields 1, — p weakly, that is, lim, [gdu, = [gdp for every g €
Cp (X x ). This completes the proof of the first assertion.

The second assertion is an immediate consequence of the first one and Theo-
rem 2.3.

2.8. Forevery F € F,h € Cp (X), k € Cp ()), setting f := 1f fk ) K (-, dy), we
have

‘/1F®h®de®(Ha®Ka)—/1F®h®de®(H®K)‘

+ /1F®h®de®(Ha®K)—/1F®h®de®(H®K)‘

5/'1F/h(x) H, (-, d)

+ /f®th®Ha—/f®th®H

’/k(y) Ka<-,dy)—/k<y>1<<~,dy>’ dP

< ||h||sup/ ‘/k(y) Ko (- dy) —/k(y) K«dy)‘ dP

+ /f®th®Ha—/f®th®H


http://dx.doi.org/10.1007/978-3-319-18329-9_2
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which yields
lim‘/1F®h®de®(Ha®Ku)—/1F®h®de®(H®K) =0.
«

The assertion follows from Exercise 2.7.

3.1. Let (Fy),> be nonincreasing. Then for every i € Cp, (X)),

1 1
hdPX = / h(X,) dP + / h(X,) dP
/ B Jp P(F,)  Jr,npe P (Fy)

P(F) 1
= [ hdpXn —~ / h(X,) dP——— .
/ F o T er D ey

Since P (F) /P (F,) — 1 and

/ h(X,) dP| < [llsapP (Fa 0 FC) = 0,
F,NF¢

we obtain

n—oQ

lim [ hdP}" = lim / hdP}" = / hdv
n n—00 n

so that Pﬁ: — v weakly.
Now let (Fy,),> be nondecreasing. Then for & € Cj, (X) and n sufficiently large

1 1
thX”z/th dP —/ h(X,) dP
/ T FAFS )
=/thj§"M—/ h(X,) dP L
P(Fn)  Jrore P (Fy)

Since P (F al F,‘l') — 0, we obtain as above lim,,_, o [ th;(: = [ hdv.

3.2.1f 1p, = K G-stably, G € G and h € Cp, (R) satisfies 1 (0) = Oand (1) = 1,
then by Theorem 3.2,

P(F,,ﬂG):ElGh(lpn)—>/1@®th®K=/adP.
G

Conversely, assume lim,— P (F, N G) = fG adP for every G € G. Then for
G € G with P(G) > 0, using PGK = ([ adPg) 61 + ([ (1 — @) dPg) bo, we get

P (1)) = Pg (Fy) — /adPG — PoK (1))


http://dx.doi.org/10.1007/978-3-319-18329-9_2
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and
P (0D = 1 — PG (Fy) — / (1= a) dPg = PGK (0)) .

This yields weak convergence PIGF” — PgK in M! (R). The assertion 1 r, — K
G-stably follows from Theorem 3.2.

3.3. Clearly, the X,, are identically distributed with PX» = (59 + d1) /2. Let Q =
2t dt. Then dQ/dP is G-measurable and Q%" = (% — an) oo + (a,, + %) 01. Choosing
h € Cp(R) such that h(0) = Oand 2 (1) = 1 (e.g. h(t) = (t A1) v 0) we get
f hdQ*" = a, + }‘. Thus, if (a,) is not convergent, (QX") is not weakly convergent.
Consequently, by Theorem 3.2, (X,) does not converge G-stably. Alternatively, one
can argue that the assertion follows immediately from Example 1.2 and Theorem 3.7.

34. (i) = (ii) Assume X, — K G-stably for some K € K!'(G). Then for
f € L' (G,P)and h € Cp, (X), by Theorem 3.2 and independence of o (X,,) and G,

/fdPEh(X,,) =Efh(X,) — /f®th®K.

In particular, Eh(X,) — [hdPK and thus Efh(X,) — [fdP [hdPK.
Corollary 3.3 yields X, — PK G-mixing.

(i1) = (iii) is clear.

(iii) = (ii). Assume PX» — v weakly. Then for f € £! (G, P) and h € Cp, (X),

th(X,,):/fdPEh(Xn) N /fdP/hdz/.

Corollary 3.3 yields X;,, — v G-mixing.
(i) = (i) is clear.

3.5. The implications (i) = (ii) = (iii) are obvious consequences of Corollary 3.3
and the Portmanteau theorem.
(iii) = (i). Using the Portmanteau theorem again, we have

lim P (X, € B)=v(B)
n—oo

and
nli)ngoP({X,, eBlN{X, eB}) =v(B)P(X; €B)

forevery k € Nand B € B (X') with v (OB) = 0. It remains to show that this implies

lim P ({X, € BYNF) = v (B) P (F)
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for every F € F and B € B (X) with v (0B) = 0. The assertion (i) then follows
from the Portmanteau theorem and Corollary 3.3.

In order to prove the above limiting relation, fix B € B (X)) with v (OB) = 0 and
let F), := {X,, € B}. One checks that

L= [fe,cz(P):ngr&/lpnfdP=v(B)/fdP]

is a closed vector subspace of £ (P) containing 1g and 1 F, for every k € N.
Consequently, the closed linear span of {1 ke N} U {lg} in £2 (P), denoted
by Ly, satisfies £; C L. Now let F € F and let 1 = f] + f> with fj € £; and
f> = 1r — f1 belonging to the orthogonal complement of £ (fi is the P-almost
surely unique best approximation to 1 from £;). Then we obtain

P(FnﬁF)z/anfldP—> z/(B)/flszu(B)P(F).

(i) = (iv) follows from Corollary 3.3.

(iv) = (ii). In view of Proposition 3.4 (c) and P (v ® dx,) = v ® P*k, we have
X, — v o (Xi)-mixing for every k € N. The assertion now follows from Corol-
lary 3.3.

3.6. Assume X,, — X in probability for some (&X', B (X))-valued random variable X.
Then by Corollary 3.6, X;, — Jx stably. This implies ¥ = Jx almost surely, hence,
v is a Dirac measure.

3.7. (a) ([50], Lemma IX.6.5) Let k € N. There exists a compact set A C X such
that P (X ¢ A) < 1/k. Here we use that X" is polish. Choose x, ..., x, € A such
that A C Ule {d (-, xi) < 1/k}. (d is a metric on X inducing the topology.) Since

p
{d(Xn,X) > %] nixea)cl/ id(xi,X) < %,d(xi,X,,) > %I

i=1

and setting /; (x) := k [(d (x;, x) — 1/k)" A 1] we obtain

P(d(Xn,X) > %) <PX ¢A)+P(d(Xn,X) > %X eA)

14
+ D Elage.x) <17k oo X0 >2/k)

i=1

IA

&=

p
+ ZEl{d(x[,X)d/k}hi &) -

i=1

<

| =
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Using h; € Cp (X) and {d (x;, X) < 1/k} € G, the last sum above converges to
Zle Elgx;,x)<1/k0hi (X) = 0, hence, limsup,_, , P (d (X, X) > 3/k) < 1/k.
This yields X,, — X in probability as n — oo.

(b) By assumption and Theorem 3.2 we have (X,,, X) — dx ® dx G-stably so that
Xn, X) < p (0x ® 0x) = PXX) Let d be a metric on X inducing the topology.

Using the continuity of d : X x X — R, thisyields Ed (X,,, X\)Al — Ed (X, X) A
1=0.

3.8. For ¢ > 0, we have

E(d (Xpr Yn) A1) = d (Xn,r. Yn) A1dP

/{d(x,,,,,yn)gg}

+/ d (Xn,r. Yn) A1dP
{d(Xn.r, Yn)>e}

<ec+P(d(Xur Ya) > ¢)

and for e € (0, 1),

P(d (X, Yn) >e) =P (d Xy i) Al>¢) < 'E(d (X Ya) A1) .

This yields the assertion.

Based on this formulation of condition (iii) one can also prove Theorem 3.10 as
follows.

For every bounded Lipschitz function 4 : X — R with Lipschitz constant L € R
and F € G with P (F) > 0, we have

‘/h(Yn) dPF—/thFK

§/|h(Yn)_h(Xn,r)| dPF

+ ‘ / h (Xn.r) dPp — / hdPpK,

+ ’/thpKr—/thFK’

and moreover,

/ I (Yy) — h (X,,)| dPF < / Ld (X, Ya) A2 llgup dPF

L 2| Al


http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_3

202 Appendix B

We obtain
lim ‘/h(Y,,) de—/thpK‘ =0
n— o0

and hence, P?’ — PrK weakly (cf. [26], Theorem 11.3.3).

3.9. (i) = (iii) follows from Theorem 3.2 or Proposition 3.12.
(iii) = (ii). Let F € &£ with P (F) > 0 so that F € o (X)) for some k € N.

Assume (X, Xi) 4 pas n — oo for some 1 € M! (X x X). By Proposition 3.4
(a), (b), there exists a subsequence (X,,) of (X;;) and K € Kl (X%) , P) such that

X,, — K o (X;)-stably. Theorem 3.2 yields (X, X¢) 4p (K ® dx,) as m — o0
so that 1 = P (K ® dx, ). Now it follows from Proposition 3.4 (c) that X, — K
o (Xx)-stably. Consequently, by Theorem 3.2, P;(" — PrK weakly.

(i1) = (i). Assume P;{" — v weakly for some vf € M (X) and every I' €
£ = Uﬁil o (X,) with P (F) > 0. In view of Proposition 3.4 (a), there exists a
subsequence (X,,) of (X,) and K € K such that X, — K stably. This implies
P)F(’” — PrK weakly for every F € F with P (F) > 0 so that vr = PrK for every
F € £ with P (F) > 0. One checks that

L= [f € L2(P): lim Efh(Xy) =/f®th®Kforevery h e Cy(X)
n— o0

is a closed vector subspace of £> (P) containing 1, F € . Consequently, the
closed linear span of {1y : F € £} in £? (P), denoted by L, satisfies £; C L. Now
let F € FwithP(F) >0andletlp = fi +f withfj € Lyand o = I — fj
belonging to the orthogonal complement of £;. Since step functions are dense in
LP-spaces, we have L2 (0 Xx),P) C L1 C L for every k € N. Hence, for every
h e Cp (X),

/1ph(X,1) dP:/flh(Xn) dP—>/f1®th®K.

The assertion follows from Proposition 3.12.

3.10. Let

[n]

1
X > Zi+ (nt = [n1) Zin1 | L 12 0.
j=1

o

By Example 3.14, X" — v = PW mixing in C (R;.), where W = (W;) > denotes a
Brownian motion. Using the continuity of the restriction map C (Ry) — C ([0, 1]),
x — x| [0, 1], we get

(X7 repo.1y = P01 mixing in € ([0, 11) .
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Define g : C ([0, 1]) — R by g(x) := maxeo,1] x (t). Then g is continuous and
hence by Theorem 3.7 (c),

max X7 — PMe0.n W mixing
1€[0,1]

Finally observe that P™@<io.n W — 4, ([51], Proposition 13.13) and

max X;' =

Z;.
1[0, 1] af 051a<xn Z

3.11. The “if” part. By Lemma A.5, we have PXV) = p (PENIG) = p (PXI9 g y).
Consequently, Proposition 3.4 (c) yields X,, — X G-stably.
The “only if” part follows from Theorem 3.17.

3.12. An application of Theorem 3.17 with £ = U/fi] o (Xy, ..., Xr) shows that
X, — X G-stably if and only if X;, — X o (X1, ..., Xi)-stably for every k € N. The
assertion follows from Exercise 3.11.

4.1. Check the proof of Proposition 4.5.
4.2. Let d be a metric on X inducing the topology. For ¢ > 0 and k € N, we have
P(d(X,.X) >¢) <P(ty <k)+P(d(X5,.X) > e, 7 >k)

o
=P <k + D P(d(Xj.X) >, 70 =)
j=k

<P(m < k)—}—ZP(supd(Xm,X) > €, Ty _])

=k m>k

<P(m, <k)—|—P(supd(Xm,X) >5).

m>k

Since limy—oo P (7, < k) = 0 and limg_o0 P (sup,,op d (X, X) > £) = 0, we
obtain lim,—.« P (d (X-,.X) > £) = 0.

4.3. Recall that P|H is purely atomic for a sub-o-field H of F if there exists a
(possibly finite) sequence (F) of P|’H-atoms such that P (U]>1 ) = 1, where

F € H is called a P|H-atom 1fP (F) > 0 and every H € 'H with H C F satisfies
PH)=0o0rP(H)=P(F).If F,G € 'H are P|H-atoms, then P (FN G) = 0 or
P(FAG) =0.
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The “only if” part. Assume X,, — K stably for some K € K. Assume that 7, —
oo in probability and P|'H is purely atomic, where H := o (15,, n > 1). Let (F ( ) - be
asequence of P|H-atoms satisfying P (Uj>1 FJ) = landP (F; N Fy) = Oforj # k.
Since P( ) Zk P (F N{m = k}) there exist k,; € N such that P (FJ) =
P (F N {Tn = k,w}) that is, Fj C {T,, = k,,’j} P-almost surely. Then k,,; — o0 as
n — oo. Consequently, for every F € F, h € Cp, (X) and every j,

/h(XTn) dPsz/h(an_j) dPF,.—>/1F®thF/.®K asn — oo
. . _ _

so that by Theorem 3.2, X, — K stably under Pf;. Using P = Z]>1 P ( )PF ,

Proposition 3.11 yields X, — K stably (under P) and hence, X,, 4y = PK.
The “if’-part follows as in Remark 4.7 (b) because P|H is purely atomic for every
finite sub-o-field H C F.

4.4. By the subsequent Corollary 5.9 (see also Example 4.3) we have X" — PW
mixing in C (R4 ). The assertion follows from Theorem 4.6 and Remark 4.7 (a).

4.5. The classical central limit theorem yields
ZZ>O (XI'>0) = 1—d(0) =

and
n

P> 2<0)=(X<0)— ®0) =
j=1

where X = o ln=1/2 Z]’Ll Z; and @ denotes the distribution function of N (0, 1),

so that 7, /n —d> % (01 + 92) (and % (01 + 072) (0, 00) = 1). On the other hand,

n
P(X["<0)=P[X{"<0.> 7 <0
j=1
1 2n 1 n
P —>z<0—>z=<0
Uﬁj;j_ U\/ﬁ;]_

oIV YI 7 g 2

=l Feei) (¢

where C = {(x,y) € R? : x <0, x 4y < 0}, and hence, by the central limit theorem
and Fubini’s theorem, as n — o0
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—-1,-1/2 n . -1,-1/2 n .
P(X["<0)=p° " "ZmbgpT T2 (C)

- N(©,1)®N(0,1)(C) :/N(O, 1) (Cy) dN (0, 1) (v)

0

@ (y) dN (0, 1) ()

° 1
+/ <1>(—y)dN(0,1)(y)=Z+/
0

1
4
3
g#‘D(O),

where the last equation follows from integration by parts.

4.6. Let wo (X) denote the topology on M! (X) generated by the maps v >
f hpndv,B € B,n € N.In order to show that wy (X’) coincides with the weak topol-
ogy on M! (X), we have to show that the map v > f hdv is wg (X')-continuous
for every h € Cp (X). Let (1,),, be a net in M (X) and v € M (X) such that
Vo — v with respect to wo (X). Let O C X be open. Choose By € B such that
Bi 1 Oask — oo. Then hp, ,, 1 1p, as m — oo for every k € N. Therefore, using
the monotone convergence theorem,

lim inf v, (O) > lim inf/th’m dv, = /thm dv forevery k,m e N,
(03 «

lim hg,.mdv =v (By) and klim v(By) =v(O),
— 00

m— 00

which yields lim inf,, v, (O) > v (O). Consequently, by the Portmanteau theorem,
Vo — v weakly, that is, [‘hdv, — [ hdv forevery h € Cp (X).

4.7. Since (Px")n>1 is tight, (X,,),,> has a stably convergent subsequence by Propo-
sition 3.4 (a). Let (X;) be any subsequence of (X,) with X; — H stably for some
Hek!. By Theorem 4.9, there exists a subsequence (Xj,;) of (Xi) such that almost
surely,

1 r
- Z 0x,,(w) = H (w,-) weaklyasr — co.
-

m=1

Hence, H = K almost surely. Thus all subsequences of (X},) which converge stably,
converge stably to K. So the original sequence must converge stably to K.

5.1. Check the proof of Proposition 5.1.
5.2. Check the proof of Proposition 5.3.

5.3. Apply Proposition 5.3 with f, : 2" — R, fu (21, ..., 20) 1= 21 g (z)-

61 Forn € Nand 0 < k < ky, define Y := > X, with ¥,o = 0.
Then (Yur)o<k<i, 18 @ nonnegative submartingale (with respect to the filtration
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(Fuk)o<k<k,) With compensator Ay, = Z]]-;l E(anl}"n,j,l). For ,6 > 0 the
Lenglart inequality of Theorem A.8 (a) yields

P(Ynk,, > 6) < g+P(Ankn > 5) .

Letting n tend to infinity and then letting ¢ tend to zero gives the assertion.

6.2. One checks that for every n € N there exists an r,, € N, r,, > n such that
Zan — 0 in probability as n — oo
J>rn
and
n
ZE (X,%ﬂ]—'n’j_l) — n* in probability as n — oo
j=1

The o-field G from Theorem 6.1 which takes the form G = o (Uflil g,m),
where Gpoo = 0 (U]?io gn,»), coincides with the o-field o (\U;2| Gnr,, ). Now apply

Theorem 6.1 to the array (Xux)1<k<r, neN and (Fur)o<i<r, .neN and Theorem 3.7 (a)
to get the assertion.

6.3. By Theorem 6.1, Remark 6.2 and Proposition 3.5 we have

kn
ZX"f — N (0, 772) stably asn — 00.
j=1

The assertion follows from Theorem 4.1.

6.4. Let Ay = (N} {Xsx = 1}. Then P (4,) = 1 — % and
1 " 1 -
_ 2 _ _
A, C [1121?;(” | Xk | = EI N LE_IXnk = ;] N [kE_IXnk = 1]

so that maxj<x<y | Xux| — 0 and ZZ:I X,fk — 0 in probability (that is (R) with
n? = 0), but >7_, X,x — 1 in probability.

6.5. We have E (X,|Fu—1) = 1ixg200E (YulFn—1) = O forn > 1 so that M is a

martingale. Moreover,

n n
(M), =D E (X/zl]:j—l) = > 07l (xyz0) = no*lixyz0) = no°X;
j=1 =1
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http://dx.doi.org/10.1007/978-3-319-18329-9_3
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which implies (M), /n = ang and thus condition (N, ) is satisfied with a, = /n.
The conditional Lindeberg condition (CLBy,) is satisfied because

1 n 1 n
2 2
S E (X pgzeyi) 1) = D L0 EY] Ly 2 i)
j=1 j=1
= Lxo20 EY{ Ly, 22 ) = O

on Q as n — oo. Hence, Theorem 6.23 yields M, //n — N (0, 0>X7) stably. In
particular, M,/ /i > PN (0, 0>X3) = P (Xo = 0) 6o + P (Xo # 0) N (0, 02).

6.6. Let Zy :== 0, F, = 0(Zo,Z1,...,Z0), F = (F)p=0, Un = Z/'.':l Zi/j
with Up = 0 and M, = Z]’f:l Uj—1Z; with My = M; = 0. Then U and
M are square integrable F-martingales and U is £>-bounded because EU,% =
27:1 a2/ji? < Zjool 02/j*> < oo. The martingale convergence theorem yields

U, > V= Z] 1 Z;/j almost surely. We have (M), = > | E (U2 Zz|]-' 1) =
o2 ;’zl [ and hence, by the Toeplitz Lemma 6.28 (b), % (M), — a2V? almost

surely. Moreover, the conditional Lyapunov condition (CLY,, ;) with a, = /n and
p > 2 is satisfied because

S B0z 1) =y S U P El
J=1 j=1

E|ZI
nP/le Z|U] if =0 as.

using 27:1 ‘Uj_l |p /n — |V|P almost surely which follows again from the Toeplitz
lemma. The assertion now follows from Theorem 6.23 and Remark 6.25.

6.7. For n, k € N, define X,;; := a,X,+« and forn € N, k € Ng, Fpr := Fy+k. Then
the nesting condition is obviously satisfied. Apply Exercise 6.2.

6.8. The stopping time 7, is almost surely finite because (M), = oo almost surely.
Consider the arrays X, = AMy//n, k,n € N, and F, = Fi, k € Ng, n € N. Then
(X,x) is a square integrable martingale difference array adapted to the nested array
(Fux). We have for every n € N,

Tn

TZHE(X,fklfn,kq) ZE((AMk) Fit) = ().,
k=1

and
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Hence
Tn

ZE (kalfk,l) — 1 as.asn — 00
k=1

and (CLB,) is satisfied because |X,x| < ¢/+/n. Consequently, by Corollary 6.4,

1 M. Tn
-0 + D X — N(0.1) mixingasn — oo.

_Ml'l
NN

6.9. Since (Y, — (r+s+mn)Xs)/s/n = (r+s+mn) (X, —Xeo) /+/n and
(r + s +mn) //n ~ my/n as n — oo, the assertion follows from Example 6.30.

6.10.Let G := 0 (Xp,n > 1) and € := |J;2, o (X1, ..., Xg). Then & is a field with
c()=G. IfheCy(X)and F € 0 (X1, ..., Xy) for some k € N with P (F) > 0,
then forn > k

Elph (Xy) = EE (1rh (Xp) X1, . .., Xk, Tx)
=EFrE (h(Xp) X1, ..., Xk, Tx)) -

Since o (X,,) and o (X1, ..., Xg) are conditionally independent given 7x, we have
E(h(Xn) X1, ..., Xk, ITx) = E (h (Xy) |Tx) = E (h (X1) Tx)

([17], Theorem 7.3.1) so that El1ph (X,,) — E (1pE (h (X)) |Zx)). The assertion
follows from Theorem 3.2 and Proposition 3.5.

8.1. The Cauchy-distribution ;2 = C (0, b) satisfies [log™ [x| dp (x) < co. More-
over, since > 20 p/* = /p/ (P — 1), the distribution of >>°) p™//2Z; for an
independent and identically distributed sequence (Zj)j>0 of C (0, b)-distributed ran-

dom variables is C (0, b/p/ (/P — 1)). Thus the assertion follows from Theo-
rem 8.2.

9.1. We have Elog™ |Z|] < oo and P4 = C(0,b) is symmetric around zero.
Since Zj'il [9]~/ = 1/ (|9] — 1), the distribution of (9 — l)l/2 Zj’il ¥~/ Z; for an
independent and identically distributed sequence (Z/)j> , of C (0, b)-distributed ran-
dom variables is C (O, b (9? — 1)1/2 /(|9 — 1)). The assertion follows from The-

orem 9.2. In the more general case P4 =S, (b), the distribution of (192 — 1) 172
> 077 is S, (b (2 = 1)/ (91 — 1)).
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http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_8
http://dx.doi.org/10.1007/978-3-319-18329-9_9

Appendix B 209

9.2. Since P% is symmetric around zero, the distribution PU is also symmet-
ric around zero. Hence, by Lemma A.5 (c), PUMIFeo = P_(U/Y”foo so that
Theorem 9.2 yields 1" (5,1 — 19) — (192 — 1) U/Y Fxo-stably and —9" (19,, — 19) —
(9? — 1) U/Y Foo-stably. This implies the assertion.

9.3. We have
n n J n—1 J n
ZXJ:Z XO+ZZ,~ =(n+1)X0+Z Zz,» +Zz,».
j=0 j=0 i=1 j=1 \i=l i=1

As in the proof of Theorem 9.3 one shows that

n—1 j 1

n—3/? E E Zi | — a/ W:dt Foo-mixing .
. ; 0
j=1 \i=l1

Using n=%/2 (n + 1) Xo — 0 almost surely, n=3/2>""_, Z; — 0 almost surely and
Theorem 3.18 (a), the assertion follows.

9.4. From Z; = X; — 9X;_| we obtain Zj2 < 2Xj2 + 2192Xj_1 for every j € N so
that 37, Z} < 2 (1 +9%) 37 X} for every n € N which, in view of Z; € £?
with E (Z}) > 0, implies A, = z;?:lsz—l — 00 almost surely as n — 0o by
Kolmogorov’s strong law of large numbers. This yields 7. < oo almost surely for

everyy > 0Oand c € N.
For the proof of
2
-t >0 as.asn— 00
Ap

for all || < 1 we set, forn > 2,

(2Bt X5 2o Sl Xz + X3

el ) +1—92.
" A, SIX7,

Moreover, we set, forn € Nand A > 0

1 1 < .,
T, :=—nln§1]aﬁxn]2j‘ and S, (\) ZEZ‘ZJ —1.

For every A € (0, 0%) and m € N and all sufficiently large n € N we will show that

X2 R, 1
. < S, ) + 3
" n( m(l —an/\/X)
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where S, (\) > 0 and mT,,/ VA < 1is true almost surely for all sufficiently large
n because S, (\) — 02/A\ —1 > 0and T, — 0 almost surely as n — oo by
Kolmogorov’s strong law of large numbers. For the proof of this inequality, note that
X = 0?X? | +20X;-1Z; + Z} for all j € N so that

n n

X2+ Ay — X} =D X} = 0PA, +20B, + > Z}
j=1 j=1
for all n € N, which, by rearranging terms, yields for n > 2
n
RyA, = Zz} - X2,
j=1
IfX,% < \n, then

n
R,A, > ZZJZ —n= S, (\) > ngn \)
j=1
so that
R,

Sn (V)

> |=>[<\)
/\

Therefore, it remains to consider the case X,% > M\n. For every n € N we have,
because [¥] < 1,

IXn—1] = 19 [Xn—1| = 1 X0 — Zy| = |Xp| — |Zy]
which gives, inductively, for all 1 <j <n,
j—1
Xnj| = Xul = D 1204l

k=0

so that, for all m, n € N withn > m

)

m—1 m—
1
min |X,, ]| > | X,| — E |Zn—i| = 1 Xl
<m 1 X P

1<

Moreover, X,% > An implies

ax |7
|X|Z|nk|_\/_0<k< 1Zn—kl < f
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so that
m—1
m
D Zukl = 1= —=T, >0
k=0

VA

| Xl

for all sufficiently large n and therefore

m 2
: 2 2
min =5 (1 5)

This implies
2
A, >m min X2, > mX> 1—£T
L A NV
so that 5
$_o
A, ~

m (1 — mT,,/\/X)2 .

This completes the proof of the inequality

|

X2 R, 1
Zn 5.
A S m (1 — an/«/X)

for all sufficiently large n.
Note that B is a square integrable martingale w.r.t. IF and

(B), = 0%A, — 00 as.asn — oo.

Therefore, R, — 1 — ¥ almost surely as n — oo by the strong law of large
numbers A.9 for martingales. As noted above, S, (\) — a2 /A—1land T, — O
almost surely. Consequently, the right-hand side of the last inequality converges
almost surely to (1 —9?) / (62/A — 1) + 1/m, where X € (0,0?) and m € N are

arbitrary. This implies
2
L —>0 as.asn— 0.

n

Let v > 0 be fixed. Clearly, 7. — oo almost surely as ¢ — oo, and by definition

of 7¢,
Te—1

cy SATC = 2%2_1 +X%71 < C’Y+X%71
=1
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which in view of erl /Ar. — 0 almost surely as ¢ — oo implies

1

;ATC—>7 a.s.asc— 00.

In the next step we will show that

_CBTE — 04/7Z Foo-mixing as ¢ — 00

Je

by an application of Corollary 6.4. For all ¢,j € N we set X, ; := Xj_1Z;/+/c, and
forall c € Nand j € Ny we set Fj := Fj. Then (XCJ)cjeN is a square integrable

martingale difference array w.r.t. the nested array (]—'c, j)C eN,jeNo of o-fields, and for

every ¢ € N the random variable 7. is by construction an almost surely finite stopping
time w.r.t. (.7-'0,.,')]. No* We have

2

T r
c 1 c O_
2 2 2 2
jz_] E (Xc’j|7fc,,~_1) = 5,2_1 X2 \E (Zj |7f,_1) = A > o™

almost surely as ¢ — oo so that condition (N, ) in Corollary 6.4 is satisfied with
T, = 7. and the constant random variable > = o27. To verify the Lindeberg
condition (CLB,) with 7, = 7. we write, forallc e Nand e, M > 0,

Te
D E (Xiﬂ{|xc,j|ze}|fwfl)

j=1

1 Te 5 5
=~ > X E (2 vtz 2w Fim1)
j=1

1 < 2 2
= X (2 gy g evipniiz o1 F-1)
j=1

2 Tec

M 2 1 i 2 2
< DX ey | 7 2 ) E (2 0zin)
j=1 Jj=1

=l M) +1I.M) ,

say. To verify that /. (M) converges to zero in probability as ¢ — oo forevery M > 0,
we first show that

— max X-{l — 0 as.asc— 00.
c1sj=r ’
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For this, let 0 > 0. With probability one there exists an n5; € N with X,% /A, < 6 for
all n > ns and a cs € N with 7. > n; for all ¢ > ¢;. Therefore, with probability one
for all ¢ > ¢5

2
1 1 , 1 X; 1 , 6
- max X;_ | < - max Xi_; + - max —A_1<—maxX1+ ATC.
C 1<j<7e J C 1<j<ns I~ C ng<j<t¢ A] 1 C 1<j<ns J

The first summand on the right-hand side of this inequality converges to zero almost
surely as ¢ — oo and the second one to -y which, since § > 0 is arbitrary, concludes
the proof. Now the inequality

M2 &,
ey = 0| =P (72 max o] = <pm)
=1

which holds for all § > 0, shows that 7. (M) — 0 in probability as ¢ — oo for all
M > 0. Clearly, I, (M) — ~E (lel{|zl|>M}) almost surely as ¢ — oo for every
M > 0 where E (lel{|zl|>M}) — 0as M — oo because Z; € L. This completes
the proof of

Tc
ZE (Xfyjlﬂxﬂﬂzg}|.7-'C,j71) — 0 in probability as ¢ — oo

for every € > 0. Now by Corollary 6.4

1 - .
%BTC = ;Xc,j — 0/7N Foo-mixing as ¢ — 00,
where PN = N (0, 1) and N is independent of F.. For every ¢ € N we have
~ B
O =0 =
A,

c

so that we have shown

A 1
7 ZXZ Uy, — V) = %Bn — o /AN
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Foo-mixing as ¢ — oo, which in view of A;./c — v almost surely as ¢ — oo
implies both
1/2

Te
ZXJ-{I (1’9\% — 19) — oN Foo-mixing as ¢ — 00
j=1

and R o
c\? (07, =) > —N Foo-mixing as ¢ — 00

10.1. For every fixed k € Ny, set

Then (Vk) ”)n N is a martingale difference sequence w.r.t. F = (F,),>: Clearly, Vi ,
is F,,-measurable for all n € N, and |Vk,,,| <X,_1sothat V , € L' (P) and

Xn—1

E (VealFam1) = D E (1ot — el Fact) =0
j=1

because E (1 {¥,=k} |.7-'n_1) = py by independence of Y,; and F,_;. Consequently,
n
M,(lk) = ZV](’,', neN,
i=1

defines an F-martingale M® = (M,(,k)) o (with M(gk) = 0) for which
>

n

n Xi-1

Pkon — Pk = Z_HZZ (1{Yr:/=’<} _p") -z,

i=1 j=1

Since we also assume Yj; € L2, the martingale M ® is square integrable with
quadratic characteristic

), -
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where

2
Xi-1

Z( {¥y=k} _Pk) ‘}—i—l

Jj=1

E(Vk;

Xi—

Z E ((I{Y,-,:k} —Pk) (L¥i=r) — Px) IFH)

1

Xi—l

2
E ((1{Y,-j—k} _Pk) ) = pk (1 — pr) Xi—1
1

by independence of Yj;, Yi, and F;_; and independence of Yj; and Y;, for j # m.
Hence

j=

<M(k)>n =pr (1 —pr) Zy.

If pr = 0, then clearly py, = 0 for all n € N, and both assertions are trivial.
Therefore, assume py > 0 from now on. Then p; (1 — px) > 0 and

n— o0

<M(k)> — 00 a.s.on { lim X, = oo] =My.

n

The strong law of large numbers for £2-martingales of Theorem A.9 implies
— 0 as.asn— ocoon M,

which because
(k)

Pin — Pk =pk (1 — Pk)< (k))

implies pr., — pr almost surely as n — oo on M.

To prove the stable limit theorem for py_,, we will apply Theorem 8.2 in combi-
nation with Corollary 8.5 and Remark 8.6 to X = M® and A = (M (k)) with G = Q
and a,, = a’/?. According to Remark 8.6 we only have to verify conditions (i), (iii),
and (iv) in Theorem 8.2.

As to condition (i), we have

(M®B) e =)
—

My, a.s.asn — 00
an a—1

and P (px (1 — pr) Moo/ (¢ — 1) > 0) = P (M4) > 0, so that the condition is satis-
fied with 1) = (px (1 = pr) Moo/ (v — 1)1/2.
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Clearly, for all n, r € N withn > r,

aﬂ*r l

’

an J
so that condition (iii) of Theorem 8.2 is satisfied with p = o € (1, 00).
It remains to prove condition (iv). For this, we set
W . {ry=k} ~ Pk
T (e (L= p)'?
and note that

Xn—1

(k)
AM, Vin 1 k)
= 172 Z an :
no =1

(MO (1 = pe2 2,2

Let ¢, denote the characteristic function of the (normalized) random variable Wl(]f).
Then

AmP 1= o
EP exXp ZIW ‘an_l :EP exXp it ZW”U ‘fn_l
n j=1

z" =

Xn—1
& t
=\ 77
(d”)

because Z, and X,,_| are measurable w.r.t. F,,_| and the random variables WIEIF) are
independent and identically distributed with characteristic function ¢. The classical
central limit theorem for sums of independent and identically distributed random

variables yields
p x\" 1,
— ) —>exp|—=x asn — 0o
k Jn P\™2

uniformly in x € R on compact intervals. Setting x = tXii 21 /Z,{/ Zandn = X,—1 we

get
X, X,
e ! i’ X1 ‘ ( 1t2a—1)
=) =ol =25 —5) —expl(-3
2, 2, x)% 2«

n

almost surely on M as n — oo because

1/2

X _\12
—'1'/_21 — t(a ) .
Zn «
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Consequently, condition (iv) of Theorem 8.2 is satisfied for x = N (0, b) with b =
(v — 1) /a. Now Corollary 8.5 implies

Pk.n — Pk M
71/2 n - n — N Foo-mixing under Py,

Pe (L =p)'? () 2

and

Z, 1— 1/2
nijz (Prn = ) — (]Llpk)) LN Foo-stably under Py, ,
a o —

where N is independent of F, and PN = N (0, 1), which because Z,/a" —
M/ (a — 1) almost surely is equivalent to

an/Z

(a—1)72

~ —-1/2
(pk’n —pk) — (pr (1 —pk))l/2 My / N Fo-stably under Py, .

10.2. A little algebra gives, with p,, x denoting the estimator from Exercise 10.1,

Zn— 1
Zy

Xn—1
Zn

DPnk — Pkn—1 = ( - 1) (Prn—1 —pr) + (Pron — pr)

which by strong consistency of py. , and

Zn—1
Zn

— a.s.asn — ooon M4

S~

as well as
X1 a—1
—

Z, a

a.s.asn — ooon My

yields px., — pi almost surely as n — oo on M.
Replacing the random variables Y,; — o by l{ym,:k} — pk in Theorem 10.1 we

obtain
1 Xn—1

1/2
—7 2 (V=g —Pr) = 1 (1= p) 2 MCN
j=1

Foo-stably as n — oo, where PN =N (0, 1) and N is P-independent of F,. This
gives
X'

n

(P —pr) = (px (1 —pi)'/? N Fuo-mixing under Py, asn — 00.
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Abbreviations of Formulas

(CLB), (CLB,), (CLB,,), (CLBy), (CLB,,)
(CLBy), (CLBy,/)

(CLY,.p)

(LB), (LBq,)

LYaq,.p)

M), Miq,), Mi,), Miq,.0)
Mz), Ma,1)

(N), (N7,), (Ng, ), (Np), (Na,,1)
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Notation Index

a.s. Almost surely
B(X) Borel o-field
C(0,b) Cauchy distribution, 153
Cp (X) Space of continuous, bounded functions on X, 11
C(Ry) Space of continuous functions on R
Oy Dirac-measure
Ox Dirac-kernel, 21
OB Topological boundary
AX, Increments, 146, 192
% P-density of Q
EX Expectation
E (X|9) Conditional expectation
E (K|G) Conditional expectation, 15
F = (Fu)ner Filtration, 63, 192
Foo 68, 108
FL, 64
f®h Tensor product, 12
Ix Invariant o-field, 111
Ki® K> 189
K!' =K' (F) = K' (F, &) Markov kernels, 12
K'©) =Kk, x) G-measurable Markov kernels, 13
K'(P),K' (G, P) P-equivalence classes of Markov kernels, 18
LP (P) p-integrable functions
LP (G, P) G-measurable, p-integrable functions
A Lebesgue measure
ML (x) Probability measures on B (X), 11
N (0, 02) Normal distributions
N, No Natural numbers, N U {0}
PX Distribution of X, image measure
pXlg Conditional distribution, 21, 188
Pr =530 13
0®K 12
(9]¢ 12
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0 (X),0Xy,n>1)
= (ML)

sign

supp (v)

T
T=17{P)=7(F,P)
TG =71, P)

U (A)

Up (X) = Up (X, d)

Var X

[X]

(X)

X, 5 x,x, %0
x<y

1a

XVY, XNy
Whlsup

B

Notation Index

Absolute continuity

Q«KPandP K Q

{xeR: x>0} =10, 00)

R U {—o00, oo}

Symmetric a-stable distribution, 167
o-field generated by £

o-field generated by random variables
12

163

Support, 40

Tail o-field, 55

Weak topology, 13

Weak topology, 15

Uniform distribution

Space of d-uniformly continuous, bounded
functions on X, 16

Variance

Quadratic variation, 192

Quadratic characteristic, 193

Convergence in distribution
Distributional equality

Indicator function

Maximum and minimum of real numbers
Sup-norm, 11

Topological closure
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Approximation, 29, 35 Convergence determining, 50
Atom, 203
Autoregressive process of order one

critical, 168 D

ergodic, 160 d-method, 51

explosive, 156, 163 Differences, 192

Dirac-kernel, 21

Discrete rule of de I"Hospital, 113
B Disintegration, 190
Borel-Cantelli feature, 43 Distribution, 188
Brown’s inequality, 194

E
gh 's SLLN. 193 Empirical measure theorem, 49
OW. s ’ Ergodic process, 57
Classical

Estimator
adaptive, 113
conditional least squares, 177
conditional moment, 175
least squares, 159
moment, 174

Exchangeable process, 112, 143

Lindeberg condition, 85

Lyapunov condition, 86

stable CLT, 30

stable functional CLT, 31, 143

stable functional random-sum CLT, 48
Compensator, 192

Conditional
distribution, 21, 188
expectation, 15 F
Gaussian increments, 153 Filtration, 192

Lindeberg condition, 68, 70, 123, 139
Lyapunov condition of order p, 85, 110
probability measure, 13

Convergence G
in distribution, 1, 2 Galton-Watson branching process, 173
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H
Harris estimator, 182

I
Increments, 146, 192

L

Lenglart’s inequalities, 193
Limit point, 39
Lotka-Nagaev estimator, 176

M

Markov kernel, 12

Martingale, 192
difference array, 67
difference sequence, 192
increment sequence, 192
tail sums, 119

Mixing with density, 43

N
Nesting condition, 65, 68

(0]

Occupation time, 41
Offspring distribution, 173
Offspring mean, 174

P

Pélya’s urn, 117
Portmanteau theorem, 187
Probability of extinction, 173
Product kernel, 189

Product measure, 12
Purely atomic, 203

Q

Quadratic characteristic, 193
Quadratic variation, 192
Quasi-stationary process, 57

R

Raikov’s condition, 97, 136
Random norming, 110
Random time change, 69, 120

S
Stable with density, 44
Stationary

martingale differences, 111, 143

process, 57
Strongly Lindelof, 188

T

Tail o-field, 55
Tensor product, 12
Tightness, 11, 18
Toeplitz lemma, 113
Triangular array, 67

U
Unspecified limit, 30
U-statistics, 63

W
Weak topology, 11, 13
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