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Preface

It has become customary at many colleges and universities to teach undergraduate
courses in boundary value problems, Fourier series, and integral transforms. These
courses usually emphasize the Fourier series or Laplace transforms, and then treat
some problems in partial differential equations as applications.

In teaching such a course, the author has found two detrimental effects on students.
Those who are mathematically inclined are left with the impression that the solution
of partial differential equations consists of some rather dull manipulations with infinite
series or integrals, and is not worthy of further study. Those students who are primarily
interested in technical applications also get the feeling that all partial differential equa-
tions can be treated by separation of variables or integral transforms. When a problem
arises to which such methods do not apply (and this often happens quite soon), they
either use the only methods they know, arriving at wrong results, or they simply give
up in exasperation. After this, they have a strong feeling that the mathematicians have
cheated them, and tend to distrust all mathematical techniques.

This book is an attempt to present the materials usually covered in such courses
in a framework where the general properties of partial differential equations such as
characteristics, domains of dependence, and maximum principles can be clearly seen.
It is intended for a one-year course in partial differential equations, including the ele-
mentary theory of complex variables. (The first seven chapters, or the first six and the
last chapter form a one-semester course, and the first five chapters a one-quarter
course.)

The book is divided into sections, each of which (with the exception of a very few
especially brief ones) contains material for a fifty-minute lesson. There are just enough
of these sections to fill a one-year course. This means that the teacher does not need
to select or skip material. Instructors who are not specialists in partial differential
equations will find this particularly convenient.

A course based on this book can be given at the advanced undergraduate or begin-
ning graduate level. The student needs no more preparation than that provided in
any course in advanced calculus. A good course in elementary calculus using, for
example, the book of Apostol, of Johnson and Kiokemeister, or of Protter and Morrey
is adequate.

More specifically it is sufficient that the student have a nodding acquaintance with
the following concepts: the €-8 definition of limit, continuity, and derivative; partial
differentiation, chain rule, gradient, divergence, and the divergence (Gauss) theorem;
convergence and uniform convergence of sequences and series; improper integrals;
and the elementary properties of solutions of linear ordinary differential equations,
particularly those with constant coefficients. The course itself helps students to be-
come familiar with these concepts by using them in practical situations.

v



Vi Preface

This book presents many of the techniques of applied mathematics. It also contains
most of the concepts of rigorous analysis that are usually found in a course in advanced
calculus. These techniques and concepts are presented in a setting where their need
is clear and their application immediate. For example, the study of complex power
series is motivated by the Fourier series solution of Laplace’s equation in a circle. The
rigorous definitions of limit and continuity are manipulated in the study of the bound-
ary values of the Poisson integral.

Many colleges and universities find the usual courses in advanced calculus inade-
quate for their students of mathematics, engineering, and the physical sciences. It is
my hope that this text will provide the basis for a course that is more suited to the
needs of these students.

I would like to thank those of my colleagues who have borne with me through ditto
and multilith, and who have made many valuable suggestions. These include D. G.
Aronson, H. B. Jenkins, R. K. Juberg, and W. Littman. I am also grateful to the
editorial reviewers, G. P. Carrier, G. E. Latta, L. E. Payne, and G. Springer, and
particularly to M. H. Protter, for many suggested improvements.

Hans F. WEINBERGER

University of Minnesota
1965
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CHAPTER I

The One-Dimensional
Wave Equation

1. A Physical Problem and Its Mathematical Models: the Vibrating String.

Partial differential equations are of widespread interest because of their connec-
tion with phenomena in the physical world. We begin by examining this connection
in a simple physical problem.

A string is stretched between two fixed pegs a distance / apart. The string has an
equilibrium position in which it lies on the line segment joining the pegs. In this posi-
tion the pegs pull on the string with force 7.

We introduce rectangular coordinates (x, ¥) in such a way that one peg is at the
origin (0, 0) and the other peg is on the x-axis at (/, 0). We shall study the motion of

Y4

/-\ » X

\_/\'/l

the string that is produced by given initial displacements, initial velocity, and body
forces in the y-direction.

Let s be the x-coordinate of a particular point (molecule) when the string is in its
equilibrium position. We assume that the string is so thin that its cross section moves
as a single point. Then the motion of the string can be described by giving the coor-
dinates (x, y) of each point s at each time ¢. That is, it is sufficient to know the two
functions

x=x(s,t),
y=y(s, ).

We assume that the string is so flexible that no effort at all is needed to bend it. We
also assume that the string has a continuous linear density p(s) such that for any s,
and s; with 0 = 5, < s, = [ the mass of the portion of the string for which s; < 5 < s

is given by fs * p(s)ds. This means that we regard the string as a continuum, ignoring
1

the fact that it is composed of individual molecules.
1



2 The One-Dimensional Wave Equation CHAP, I

We formulate our problem as follows. At a certain time, which we take to be =0,
we are given the initial displacement

(1.1) y(s, 0) =f(s)

and the initial velocity
)
(1.2) (5,0)=g(s)

in the y-direction. Since the initial displacement and velocity are in the y-direction,
we have
x(s, 0) = s,
(1.3) dax N
ASE 0) =
For ¢t > 0 there is a given external force F(x, ¢) per unit mass acting in the y-direction
on that portion of the string which is at x at the time ¢.

Because of the fact that the string offers no resistance to bending, the forces that
parts of the string exert on each other must be tangential to the string; that is, we have
only a tension T'{s, r) at the point s at time z. (This involves the additional hypothesis
that molecules only act on their neighbors. In other words, we neglect long-range

forces.)
We now consider an arbitrary portion s; = s =< s, of the string. Taking the com-

T(Sl, I)

T(S% t)

ponents of the tensile force in the x-direction, we find that the total force in the x-
direction acting on this portion is

T (s, t)%f(SQ, 1) T(si, t) (Sl, 1)

G+ G V@)

Setting this force equal to mass times acceleration, we find that

T(Sz,t) (sz,t) T(sl,t) (sl,t) ]Sz 2,

p(s )a —5 (s, t)ds.
SEREANCE - N

This relation is true for all s, and s;. We differentiate both sides with respect to s:. For
convenience, we replace the symbol s; by 5. We obtain the equation

51



CHAP. [ The Vibrating String 3

1.
AT G-

Similarly, if we balance the components of forces in the y-direction, we find

(1.5) %(T%/\/(%f)z + (g—z’)z) = p—g% — pF(x, 1).

We assume that the string is perfectly elastic; that is, that the tension at any point s is
determined by the local stretching per unit length

(1.6) = \/(%)2 + (gii)z 1

of the string with respect to its equilibrium position:
(1.7) T(s, 1) =%(e(s, 1), s).

The function & (e, s) describes the elastic property of the string at s.

Since the position x = s, y = 0 is an equilibrium position, the functions x(s, ) = s,
y(s, t) = 0 must satisfy the equations (1.4} and (1.5) when F=0. We see from (1.4) that
T must be constant. Since ¢ = 0 in this case, we must have

Z(0, s) =T,.

The tension T can be found from the functions x(s, ) and y(s, #) by means of (1.6)
and (1.7). Thus (1.4) and (1.5) constitute a coupled system of two partial differential
equations in the two unknown functions x(s, ¢) and y(s, 7). In gddition we have the
initial conditions (1.1), (1.2), and (1.3), and the boundary conditions

x(0, 1) =0,
(1.8) x(l,t) =1,
y(0, 8 =y(l, 1) =0

These boundary conditions assert that the ends of the string remain fixed.

The above problem is extremely difficult to solve, and so we introduce further sim-
plifying assumptions. We shall consider only “small” vibrations about the equilibrium
position.

We assume that throughout the motion dx/ds =+ 0 (that is, the string is never vertical),
so that we may express s as a function of x and ¢, and hence y as a function of x and :

»

y=v(x,t),

where
vix(s, t), 1) =y(s, t).

By the chain rule
dy _ v ox
as  ax as’
dy _ v ox , dv
at  ax ot ' at’
32y a2v(ax)2 P ?v ax | 8%v | 9v 8%

axor ot o ax aft

orr ox?

dt
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Thus (1.5) becomes

dx ov 2 o*v(ax o*v ax | 9*v | dv 9%x
( as ax/\/( ) ( )) p[ax(ar) + at+at2+ax_a?5}*pp'
Expanding the left-hand side and using (1.4) and (1.6) gives

Lo (03}t o firyoe)t oot o gy ov]
( ) - Yoxor ot T aE T ax 6[2} PE,

e+1 \as) ax  Parax™ PlaxP\at
or
Zl(e, s) (ax>2 (ax) ]azv dx d%v v
26 SOV p( Y S —2p 2 2 S = —pF.
(1.9) [ e+ 1 \as) “P\or) Jod T Paroxar Lo T P

This is a single partial differential equation for the unknown function v. However, the
coefficients depend upon the unknown function x(s, t), since dx/dt appears explicitly
and

2
6’:2{ 1+(QX)—I.
as X

In order to eliminate this dependence we assume that the slope dv/dx is small, that
dx/at is small, and that dx/ds — 1 = 0 so that x = 5. More precisely, we assume that the
dimensionless quantities.

(e, s) [ox\* p (BX) pl{x)
cinnle) b HE) e S5
»
are negligible relative to one. (The first of these hypotheses requires that the function
Z (e, s) be continuous at e = 0, and that

2
e= 5" 1+ ( x) -1
be sufficiently small.)
Then the partial differential equation

(1.10) Tt — p) 2 = —p () F(x, 1

has coefficients and right-hand side close to those of (1.9). Hence we can hope that the
function u(x, ¢) which satisfies (1.10) and the initial and boundary conditions

ulx, 0) = flx),
2 (x, 0) = g(x),
u(0, 1) =0,
u(l, 1) =20

will be close to that solution v{x, ¢} of (1.9) which satisfies the same initial and bound-
ary conditions. That is,
y=u(x,t).
If we define
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To
p(x)

c(x) =

and divide both sides of (1.10) by —p(x), we obtain the equation

Fu 0%
(1.1]) a—t[ Caxz—F(x, t).

The initial-boundary value problem

&2 o2

ol < >
YT Fx, ) for 0 <x<l{, >0,
H(X, 0) :.f(x)a
0
u{0, 1) =0,

u(l, ) =0

for the approximating function « is called the vibrating string problem.

In deriving this problem we have made hypotheses at various levels:

(1} We have defined a string to be a one-dimensional continuum in which the only
interaction between different parts is a tension, which depends continuously upon the
local stretching. This is, of course, an idealization of an actual string. It is called a
mathematical model.

We have made the physical assumption that an actual string acts like this mathe-
matical model. ]

(2) We have assumed that under the given initial conditions and forces the functions
ov/ox, (1/c)ox/or, and dx/ds — 1 turn out to be small. This is a hypothesis upon a
particular solution. Since the solution is v=0, x = s when f= g = F = (, we can expect
that this hypothesis will be true for f, g, and F sufficiently small. This fact can be proved.
But whether or not a particular set of data is “sufficiently small” depends upon the
elastic properties of the material; that is, upon the function Z(e, s). Hence, a physical
hypothesis is also involved.

(3) We have assumed that if # and v satisfy partial differential equations of the form

0%u 0*u %u
A T T e =F
—0%v —a%v 9%
At 2Bt ="F

with corresponding coefficients which are close to each other, together with the same
initial and boundary conditions, then «# and v are near each other. This assumption is
purely mathematical, and can be proved.

Alternatively, we may simply consider the equations (1.12) as another mathe-
matical model, and assume that an actual string obeys these equations, at least approxi-
mately.

The problem (1.12) is removed from the physical problem by several hypotheses.
Therefore, we cannot conclude from the fact that the physical problem has a solution
(that is, that the motion takes place) that the mathematical problem (1.12) has a solu-
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tion. Conversely, while the given data may determine the physical motion uniquely,
we cannot conclude that the problem (1.12) does not have more than one solution.

However, if (1.12) is to give a reasonable approximation to the physical situation,
it must have a unique solution for each set of functions f{(x), g(x), F(x, t) in some
class of physically admissible functions.

In practice the functions f, g, and F cannot be measured with perfect accuracy, but
only within some margin of error. If the mathematical model (1.12) is to be useful, the
solution # must not be affected too much by small errors in these data.

We say that a system of the form (1.12) consisting of a partial differential equation
together with some initial and boundary values is properly posed if it has the following
three properties:

(a) Existence. For any sufficiently smooth data functions f, g, F there is a solution
u(x, 1) of (1.12).

(b) Uniqueness. There is at most one function «(x, ¢) satisfying (1.12).

(c) Continuity. The solutions u(x, t) corresponding to data which differ by small
amounts also differ by small amounts. (Continuity will actually imply uniqueness,
but it is often advantageous to prove uniqueness first.)

The partial differential equation (1.11) serves as a mathematical model for a great
variety of physical problems. These include:

(a) The one-dimensional motion of an elastic solid. Consider a cylindrical bar of elas-
tic material with its axis in the x-direction. This bar is stretched og contracted in such a
way that planes x = constant move together in the x-direction. Let u#(x, 1} be the dis-
placement in the x-direction at time ¢ of the plane whose equilibrium position is at x.

0 /

The tension T at x (that is the force with which the part of the bar to the left of the
point originally at x pulls on the rest of the bar and vice versa) will depend upon the
elongation per unit length du/dx(x, t) at x. This hypothesis is equivalent to the assump-
tions that there are only short-range forces and that the bar is perfectly elastic.

We make the more drastic physical assumption that T is proportional to 9u/dx:

du
T= Ea(x, t).

The elastic constant E is called Young’s modulus. It is a property of the material.
If p(x) is again the mass density and F(x) is a body force per unit mass in the x-
direction, we find from Newton’s second law of motion that for any x; < x;

du du _ [xe [%u
Eax(xg, 1) Eax(xl, 1) _fX1 p[atz F]dx.

Differentiation with respect to x; gives
2u 0%u

a2 Par — PE

Dividing by p gives (1.11) with ¢ = E/p.
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At each end we can prescribe either the displacement « or the force T = E(du/dx).
We remark that ¥ = (T/E)x is an equilibrium solution corresponding to a tension
Ty at the ends and no body force. This solution describes a uniform stretching. If we
have such a tension, which may not be small, we can find a more general motion by
putting u = (T/E}x + v(x, t). Then v, whose gradient is assumed small, satisfies the
same equation
o%v 0%y
-a—ti —C :9;2- =F.
This fact is of interest in the case of a stretched spring or rubber band.
All these elastic problems are mathematically the same as the vibrating string
problem.
(b) The propagation of a small disturbance (sound wave) in a gas. The one-dimen-
sional motion of a gas, when viscosity is neglected, is described by

du , 3p  dp _
pax+”ax+at 0,
ou du  op

p§+pu5;+‘a—x=pF,

(1.13)

where u(x, t) is the velocity in the x-direction at time ¢, p(x, ) is the mass density,
p(x, t) is the pressure, and F(x, t) is a given body force per unit mass. The first of
these equations is conservation of mass; the second is Newton’s second law of motion.

We make the physical assumption that the pressure p is completely determined by
the density: p = p(p), where the function p(p) is continuousty differentiable.

We further suppose that in the motion under consideration « is small, and that,
except for a small disturbance, p is a constant p,. More precisely, we suppose that
the dimensionless quantities

L _ w)———l and | ulNp'{(pe)

po 7 pp) 7
are negligible relative to one.
We eliminate negligible coefficients in the equations (1.13). (That we may do so is a
mathematical assumption.) We thus arrive at the equations
ou , op
P T o = O

(1.14) 9

1o N9
poy,tp (Po)ax poF.

We differentiate p’(po}/po times the first equation with respect to x, and subtract the
result from 1/p, times the derivative of the second equation with respect to ¢. This gives
u_ tu_ oF

o “ax ar
where ¢ = p'(p,).
If we differentiate the first equation with respect to ¢ and subtract the second equa-
tion differentiated with respect to x, we obtain
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¥p 29 0% __ 9F
or ax? Prox’

Both the velocity and the density satisfy equations of the form (1.11) with the same
c®=p'(po).

If the space in which the gas is contained is bounded by rigid walls at x=0and x=1,
we have the boundary conditions # =0 at x=0 and /.

Thus the vibrating string problem (1.12) also serves as a mathematical model for
the propagation of sound.

Remark. The density p is the mass per unit length. If the weight per unit length is
given, it must be divided by the gravitational constant g = 32 ft/sec2 = 980 cm/sec?
to obtain mass per unit length.

EXERCISES

1. Show that if F = 0 and (e, s) is an increasing function of e, the only equilibrium position
of the string described by (1.4), (1.5), and (1.8) (that is, the only solution x(s, ¢}, y(s, #) inde-
pendent of 1) is x = s, y= 0. HINT: Integrate (1.4) and (1.5) when 92x/a¢* = a%y/as2 = 0, and solve
for dy/dx and for & (e, s).

2. Find the equilibrium (time independent) velocity, density, and pressure distributions for
a gas satisfying (1.13) with u(0, t) =0, p(l, t) = po when p = ap” and F =—g, where «, y, and g
are positive constants (y > 1). (This represents a gas in a vertical tube under the action of
gravity.) HINT: Look at the first equation first.

3. Let F(x, t) = eG(s, 1), x(s, 0) = s, y(s, 0) = axfat{s, 0) = gy/ar(s, 0) =0, where e is a
small parameter. That is, we have a string initially at rest, and a small force. Let the solution of
(1.4), (1.5), (1.8) with these conditions be denoted by x(s, 1, €), y(s, £, €). Assuming that these
functions and ¥ (e, s) are continuously differentiable in all their variables and that x(s, £, 0) = s,
v(s, £, 0) = 0, find a differential equation and initial and boundary conditions for the function

u(s, t) = g—%(s, t, 0).

aINT: Differentiate (1.5) with respect to € and set € = 0. (This is an alternative way of linear-
izing a ponlinear equation.)

4, If F(x, 1) =0, u(x, 0) =0, p(x, 0) = ps + en(x), u(0, t) = u(l, t) =0 in (1.13), and if the
corresponding velocity u(x, ¢, €) and density p(x, ¢, €) are continuously differentiable with
u(x, t,0) =0, p(x, t, 0) = p,, find the initial-boundary value problem satisfied by u,(x, ¢) =
dufoe(x, t,0) and p,(x, t) = dp/de(x, t, 0).

2. The One-Dimensional Wave Equation.

We consider the problem

Pu_ i _
S o for 0 <x </, t >0,
u(x, 0) = f(x) for 0=x=1
@2.1) %‘ti(x, 0)=g(x) for 0=x=1
u(0,¢) =0 for =0,

u(l, 1) =0 for ¢ =0,
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where c¢ is a positive constant. The solution of this problem approximates the motion
of a uniform string with no external forces. (In order for the initial and boundary condi-
tions to be compatible, f(0), f(I), g(0), and g(/) must all be zero).

The partial differential equation

Pu  LPu _

(2.2) W C 8x2 =

0

is called the one-dimensional wave equation. It is one of the few partial differential equa-
tions whose general solution can be found explicitly. To do so, we introduce the new
coordinates:

E=x+ct,
n=x—cl.
Then by the chain rule
u _ du Pu | 0u

o o8 “agom | am”
Pu_ alu_pdu
or? 082 Tafam  amrS

Thus, (2.2) becomes

g 0% _
a&am

—4c 0.

Since ¢ # 0, we must have
a*u _
aéam
This equation is satisfied if and only if
u=p(€) +qin),

where p and g are any differentiable functions of one variable.
Therefore, if « is to be a solution of the wave equation it must be of the form

(2.3) ulx, 1) =pkx-+ct) +qglx—ct).

(By p(x + ct) we mean p(§) evaluated at € = x + ct; g(x — ct) is g(n) evaluated at
n = x — ct.) In order that the second partial derivatives appearing in (2.2) exist, p and
g must be twice differentiable functions. It is easily seen that any « of the form (2.3)
satisfies (2.2). Thus (2.3) is the general solution of (2.2). It was found by d’Alembert
in 1747.

If we consider the time 7 as a parameter, the transformation ¢ = x + cf represents a
translation of the coordinate system to the left by the amount ct. Since this transla-
tion is proportional to the time, a point ¢ = constant moves to the left with speed c.
That is, a solution of the form

u(x, ty =p(x+ct)
represents a wave traveling with velocity —c without changing its shape. For example

u(x, t) = sin (x + ct)
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represents a sine wave traveling with velocity ~c. Similarly, u = q(x — ct) represents
a wave traveling with velocity +c without changing its shape.

Equation (2.3) says that any solution of (2.2) is the sum of a wave traveling to the
left with velocity —c and one traveling to the right with velocity c¢. The term wave equa-

tion derives from this fact.
Since the two waves travel in opposite directions, the shape of u«(x, #) will in general

change with time.

In order to solve the initial-boundary value problem (2.1) we must find the proper
functions p and g. We first set t = 0 in (2.3). We then evaluate du/ot from (2.3) by the
chain rule and set ¢ = 0. The initial conditions in (2.1) become

p(x) + qg(x) = f(x) for 0=x=],

(2.4) cp' (x) —¢cq’ (x) = g(x) for 0=x=1[

We differentiate the first of these equations, multiply it by ¢, and add it to the second.
In this way we find that
2cp'(x) = ¢f"(x) + g(x).

Integration of this relation gives
&
25) PO =56 +3 | sDdF+K  for 0=£=1,

where K is a constant of integration. From the first equation in (2.4) with x=7 we then
find that

(2.6) Q(n)Z%f(n)mzl—Cfng(f)df—K for 0=n=L

Therefore
u(lx,t)=plx+ct) +qglx—ct)
3l en +fx—enl+of [ e@di- [

T+l

- %[f(x +ct) +flx—ct)] + zl—c f , 8lx)dx,

ct =\ di
(2.7) &) X:|

provided both 0 = x + ¢t = [ and 0 = x — ¢t = [. (Note that K cancels.) Thus in the
triangular region
,oe=lmx =

c

1=

o I=

the solution #(x, ?) is uniquely determined by the initial data f{x) and g(x), and is
independent of the boundary conditions.

It is easily verified that the function (2.7) satisfies the wave equation if and only if f
is twice differentiable and g(x) is once differentiable, Under these hypotheses, u(x, t)
also satisfies the initial conditions u#(x, 0) = f(x) and du/dt(x, 0) = g(x).

In order to obtain the solution for larger times, we use the boundary conditions at
x =0 and /, which become

plct) + q(—ct) =0 for +r=0,

(28) pll+ct)y+qg(l—ct) =0 for t=0.
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If we set { = —ct, the first of these conditions can be written

(2.9) q(f) =—p(=¢) for (=0
On the other hand, if we let { = [ + ct, the condition at x = [ becomes
(2.10) p() =—q2l =) for (=1

We already have the solution (2.5) for p(¢) with0 = ¢ = [. If - = n = 0, we can ob-
tain g{n) from (2.9) by observing that 0 = —r =/ and using (2.5) with £ = —n;

2.11) q(n)=—%f(—n)—§ﬁ"g(i)df—l< for —<n=0.

We now have g(n) for — = 7 = [. Therefore,if [ = ¢ =3lwecanput{=£¢in(2.10)
to obtain p(£). From (2.6) and (2.11)

o= -8 45 [ e@air K for 1=g=2L
2.12 o
&) =32 +5 [ @K for A=g=3l

Since we now have p(¢) for 0 = ¢ = 3/, (2.9) with { =1 gives g(n) for 3/ =7 = 0.
Then (2.10) gives p(&) up to & = 5l. This process can be repeated to give g(n) for
any n = [ and p(¢) for any ¢ = 0. Thus the solution «(x, t) given by (2.3) is deter-
mined for all 0 = x = [, + = (0. Note that the constant K always cancels when p(¢)
and g(n) are added. Hence we may put K = 0.

Example. Let f{x) = x(I{ — x), g(x) =0 for 0=x=1L
By (2.5) and (2.6) we have

p(£) =2£(— &) + K
g(n) =gn(l—n) — K
for0 = ¢ =<1/ 0<=m =/ From (2.9) with { = n we find
a(n) =—3(n) (1+m) — K
=%n(l+n) - K
for —/ = m = 0. Then from (2.10) with { = £
p&) ==l (= 21— ) + K
——2E—D@-§+K for 1=£=2l,
and

p(&) =—3(I— )1+ 2 — ) + K

(€—=2D0@3BI—§) +K for 2{=¢=3L

BN

Then by (2.9)
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a(n) =2(—n— D (2+n) — K
=—LU+m@+m) —K  for 2A=n=-,
and
a(n) =—2-n— 2D Bl+7) — K
=3@+n)Bl+n) ~K for —31=n=-2
Continuing in this manner we find that if # is the integer such that nl < ¢ =< (n+ 1)/, then
p(&) =" —n((n+ 1)I-8) +K,
while if m is the integer such that —ml < n = —(m — 1)/

g(n) = (1)

To determine u(x, 1), we must determine the integers m and n such that —ml < x — ¢t =
—(m—1)and nl < x4+ ¢t = (n+ 1)l, and then use the appropriate formulas for p(x+ ¢t) and
q(x — ct). For instance, if c=1,1=1, x=1, and 1 =2, we find x + ¢f =% so that n=2, while
x — ¢t =—1 so0 that m = 2. Then the solution u of the problem (2.1) with ¢ = =1 and the initial
‘conditions u(x, 0) = x(1 — x), du/dt(x, 0) = 0 has the value

)40 xR0

m—1 1

(ml+n)((m—1)i+n) — K.

T 16

at the point x = | at time ¢ = 2.

In the preceding discussion we first found p({) and g({) for 0 = { = [, found them for
other values of { by means of the recursion formulas (2.9) and (2.10), and then sub-
stituted in the solution formula (2.3) to find u(x, 7). We now give a shortcut which
works for the present problem and, as we shall see in Section 4, for some other im-
portant problems. It does not always work (see Exercise 10).

We compare (2.6), which holds for 0 = n = [, with (2.11), which holds for—/ = 5 = .
The first terms on the right can be made to agree by defining

(2.13) Slx) =—f(—x)

for negative values of x. Since the function f(x) in the initial conditions is defined only
for 0 = x = [, we are free to define it in any way we like for x < 0. We have extended

f(x) as an odd function about x = 0.
If we also define

(2.14) g(x) = —g(—x)

for negative values of x, we have for n < 0

[emai-—|" s

0

- [T e,

¥
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where we have made the change of variable x = —x. We see then that if we extend f(x)
and g(x) as odd functions about x = 0 (that is, by (2.13) and (2.14)), equation (2.6)
gives g(n) for-I=n=0aswellasfor0 =n=1[

Similarly, we find that if f(x) and g(x) are extended as odd functions about x =/
by means of the formulas '

f(x) = —f(2l - x)
(2.15) 2(x) =—g (20— x)

for | = x = 2{, then the formula (2.5) agrees with (2.12), and hence gives p(¢) for
0=¢=21

If we first use (2.13) and (2.14) to extend fand g to —/ = x = 0 and then use (2.15),
we define f and g for — = x = 3[. Another application of (2.13) and (2.14) then gives
f(x) and g(x) for =3/ = x = 3l The formulas (2.15) then give f and g for x = 5/. Pro-
ceeding in this way, we define f(x) and g(x) for all values of x by means of (2.13),
(2.14), and (2.15).

We can now determine p(£) by (2.5) and g(n) by (2.6) for all values of ¢ and %. For
0 = ¢ = land 0 = 1) = [ they agree with the previous result. Moreover

_€ _ _
—p(—{) = “'%f(“‘(.) - Zic , g(xX)dx—K
— 30 +5; [ s —K
o 2 2¢ 0 glmxiax

@~ 5 | ik
=q(%),

so that (2.9) is satisfied. Similarly, we can verify (2.10). Thus p(¢) and g(n) deter-
mined by (2.5) and (2.6) with f(x) and g(x) extended as odd functions about x= 0 and
x=[ are the same as before.

If the problem (2.1) has a solution, we find as in (2.7) that it must be given by

xT+et

(2.16) ulx, 1) =31+ e+ enl+5: [ e

The functions f(x) and g(x) are given for 0 = x = /, and are to be extended to other
values by the formulas (2.13), (2.14), and (2.15). Note that it is no longer necessary
to determine p(¢) and g(n) separately to find the solution u(x, t).

From (2.13) and (2.15) it follows that for any x

flx+20) =—f21 — (x+21))
=—f(~x)
= f(x).
Similarly,
g(x+2) = g(x).

Thus the extension formulas (2.13), (2.14) and (2.15) lead to odd periodic functions
of period 2/. Conversely, a function which is odd about x = 0 and periodic of period
2/ is automatically odd about x = [
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To determine f(x) and g(x) we need only find the integer n such that nl = x < (n+ 1)1
If n is even, it follows from the periodicity that f(x) = f(x —nl) and g(x) = g(x — nl).
(Note that 0 = x —nl < ) If n is odd, we first use (2.13) and then the periodicity to
find f(x) =—f((n+ 1)l —x) and g(x) =—g((n+ 1)/ —x). Note that the functional form
of f(x) and g(x) may be different in each interval nl = x < (n+ 1)1

Example. We again consider the problem (2.1) with c == 1, f(x) = x(1 — x), g{x) = 0. By
(2.16)

u(x, ) = 3flx+0) + fx = 1)].

The function g(x) = 0 is clearly odd and periodic. The odd periodic extension of f(x) is given
in the interval n/ = x < (n+ 1)/ by

flx) = (D)"(x~n)(n+1—x).

)4~

Here n =2 for f(%) and n = —2 for f(_%).

In particular,

We must still verify that (2.16) actually gives a solution of our problem. We have
verified earlier that it satisfies the initial conditions, provided g(x) is continuous and
f(x) is continuously differentiable. Putting x = 0, we have from (2.13) and (2.14)

(0, 1) =3lf(en) + f=en ] +5; [ g@dx=o0,

Similarly u{l, t) = 0 because of (2.15).

We must still verify that « is twice continnously differentiable and satisfies the wave
equation, This is easily seen to be true if the function f(x) as extended is continuous
and twice continuously differentiable and g(x) as extended is continuous and con-
tinuously differentiable.

Setting x = 0 in (2.13), we see that if the extended function f(x) is to be continuous
at x =0 we must have f(0) = 0. Similarly we must have f({) = g(0) = g(l) =0.

In order for the extended f(x) to be continuous and twice continuously differentiable
and g(x) as extended to be continuous and continuously differentiable it is necessary
and sufficient that (a) these conditions hold for 0 < x < [, that (b) fand g be continuous
for 0 = x = [, that (¢) the one-sided derivatives

' 0) =t LX)
f+ (0)—1211(): ;

" 1 f’(X) _—f+’(0)
f+ (0)_11_2} T

x>0
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aswellas £ (), £" (]), g+’ (0), and g_" (I) exist, and that (d)
fO)=f(1) =g(0) =g(l) =£." (0) =f" () = 0.

Under these conditions, then, we have shown that the problem (2.1) has a unique
solution given by (2.16). We note that a small change in the initial functions f(x) and
g(x) produces a small change in the solution u(x, t). Therefore the solution depends
continuously on the initial data.

It is often of physical interest to look at a limiting case of the formula (2.16), where
f(x) is continuous but not necessarily continuously differentiable, or g(x) is only piece-
wise continuous. The function u(x, ) still satisfies u(x, 0) = f(x), u(0, t) =0, and
u(l, t) = 0. It. can be represented as the limit of a uniformly convergent sequence
un(x, t) of functions satisfying the wave equation and u,(x, 0) = f,(x), du/ot(x, 0)
= g.(x), where f, and g, are continuously differentiable, f, converges uniformly to f,
and

[a@di— [ s@as

uniformly. The function u{x, t) is then called the generalized solution of the problem
2.1).

Example. Let

I—x  for %leSl,

gl{x)=0.

These initial conditions correspond to pulling the string at the point x = 3/ and suddenly re-
leasing it at time = 0. It is an idealization (limit) of a problem where a force per unit length is
applied on a small interval containing x = 4.

We find from (2.16) that

X for OSxS%I
flx) =

u(x, 1) = 3Lf0x+ en) + flx = en)],

where f(x) is the initial function extended as an odd function of period 2/. If for a given x we
define the integer n by

we have

f(x) = (=1)"(x— nl).

The solution u(x, t) can be described by stating that it is a continuous piecewise linear func-
tion with breaks only on lines x + ¢t = (n+ §)land x—ct=—(n—3)In=0,1,2, ..., such
that «(0, t) = u(l, t) =0 and u (i, nllc) = (—1)"%l.
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th
51 u=0
2¢
1
u=21
3/ u=0
2c
) 1,le
=—=]
. Wk
_1_ u=0
2c
/uz%l
1 ) -
~2~1

For a fixed time ¢ with 0 < r < I{2¢ the string looks as follows:

Uuap

1

The points of discontinuity in the derivative travel in opposite directions with speed ¢. At time
{{2c¢ they hit the boundaries and then return, with the sign of # reversed. (Note that for t = I/2¢,
u = 0). At time ¢ = [/c the discontinuities meet in the center.

EXERCISES
1. If f(x) is defined for 0 = x = 1 by
f(x) = e* sinmx

and for other values by the extension

f=x) =—f(x),
f2—x) =—f(x),
find
(a) f(3/2),

® 1-3),

(c) f(14).
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2. Show that if g(x) satisfies (2.14) and (2.15), then
x+21 _
f g(x)dx=0

for any x. (This means that the limits of integration in the integral in (2.16) may be changed by

any multiple of 21.)
3. A string of length ! = 1 is initially fixed in the position ¥ = sin mx, and is released at time
t = 0. Find its subsequent motion.
4. (a) Find u(3, H whenl=1,c=1, flx) =0, g(x) = x(1 — x).
(b) Find u(2,2) whenl=c=1, f(x) =x(1 — x), g(x) = £2(1 — x).
5. (a) Show that the solution (2.16) is an odd periodic function of period 2/ in x.
(b) Show that the solution (2.16) is periodic of period 2//c in r; that is, that

u(x, t+ 2—1) = u(x, t).
c
6. Show that the solution (2.16) satisfies
u(l—x, t+£) =—u(x,t).

7. Find the generalized solution corresponding to the initial data

flx) =0,
0 for OSx<%l
glx)= 11 for %[5)(5%[
0 for d<x=L

4
Sketch the x-# diagram, and draw the shape of the string for t = 4l/c, t = 4l/c, and t = l/c.
8. Derive the solution of the initial-boundary value problem
2
= —Cr==0 for a<x<bh, >0
u{x, 0) = f(x) for a=x=ph,
%L-;-(x, 0)=g(x) for a=<x=hp,

»

u(a, ty =0,
u(b, 1) =0.
9. Derive the solution of the initial-boundary value problem
u _ 0% _
e caxz—o for 0<x<1, >0,

u(x, 0) = f(x) for 0=x=1,
B(x,0)=g(x) for 0=x=1,

u _
ax(o’ t) - 09
u(l, r) =0.
This problem arises when no vertical force is applied at x = 0.
10. Derive the solution of the problem

FPu__ g0%u _

e Caxz—o for 0<x<1, 1t>g,
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u(x, x) = f(x) for 0=x=1],

%%(x,x)zo for 0=x=1,
u(0, t) =0,
u(l, ) =0

when ¢ < 1. {This problem arises when the position and velocity at the various points of the
string are not measured simultaneously, but by an observer moving at speed 1.)

11. A rod of uniform elastic material of length  liés along the x-axis with its left end held
fixed at x = 0. At time r = 0 an identical rod hits the right end of the first rod with speed v, and
the right end of the second rod is thereafter fixed at x= 1. If the Young’s modulus and the density
of the rods are such that ¢ = 1, and if the displacement u is a generalized solution of the wave
equation, find u(x, ) for ¢t > 0. Sketch the x-¢ diagram.

3. Discussion of the Solution: Characteristics.

We now examine the solution (2.16) more closely. Consider a fixed point 0 < x < [.
For a time f such that

R

1< and [ <
C

o=l

the solution at this point depends only upon the initial data on the interval x — ¢f <
x < x+ ct. That is, a change in the initial data at a distance greater than ¢z from x will
have no effect on u(x, ¢). Physically this means that a disturbance on the initial line
is propagated at a speed no greater than c.

It is clear from the formula (2.16) that u(x, f) is changed only if f(x) is changed at
x — cf or x + ¢f. This means that the effect of an initial displacement is propagated at
precisely the speed c.

On the other hand u(x, 7) is affected by a change of g anywhere in the interval
x—ct < x < x+ ct. Thus the effect of a change in the initial velocity is propagated at
all speeds up to c.

The interval [x — cf, X + ci] is cut out of the initial line by the two straight lines
x — ¢t = constant and x + ¢t = constant passing through (x, 7). These lines represent
propagation with the maximum speed c in the positive and negative x-directions. They
are called the characteristics of the wave equation (2.2). A pair of characteristics
passes through each point (x, 7) of the (x, t)-plane. The interval [x — cf, x + ct] on
the initial line is called the domain of dependence of the point (X, 7).

In order to clarify the concept of propagation we consider some particular initial
value problems. We first consider the problem where g(x) = 0, and f(x) = 0 except
in a small neighborhood of some point x, on the initial line, where f(x) is positive.

1

A .

1 t > X
Xo l




CHAP. | 3. Discussion of the Solution: Characteristics 19

If we consider only times so small that
R I .
c
we see from (2.16) that for each fixed 7, u(x, t) = 0 except in small neighborhoods of

x = xo+ ¢t and x = xo — ct. These points lie on the two characteristics x — ¢t = x, and
x + ¢t = x, passing through the initial point (x,, 0). Then for small values of ¢ the set

th

Xo | x+ct=x X =t =X,

Xo [

where u(x, t) is positive is concentrated on the two characteristics through x,. That
is, the disturbance is propagated along these characteristics.

Suppose for convenience that x, < 3. At time ¢t = xo/c the left characteristic will
hit the boundary x = (. Consider a point x < x,. To find u(x, ¢) for a time ¢ > x/c
we must continue f as an odd function of x. This function is zero for — < x < 0 except
in the neighborhood of x = —x,. Therefore, we find that until 7 is approximately equal
to (xo + x)/e, u(x, 1) =3[f(x + ct) + f(x — ¢r)] = 0. However, at a time near ¢ =
(xo + x)/c the term 3f(x — ct) = —4f(ct — x) will give a negative value for u. This
means that we have a negative pulse along the characteristic x — ¢t = —x,. This charac-
teristic hits the boundary x = 0 at ¢ = xo/c, that is, at the same time as the left charac-
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teristic through x,. We can say that the left characteristic has been reflected on the
boundary x = 0 as a right characteristic. After this reflection the pulse 3f(x) is
propagated as a negative pulse. In a similar manner the right characteristic is refiected
from the boundary x = [ as a left characteristic and the sign of the pulse is reversed.
The new left characteristic is again reflected when it hits the boundary x = 0, and the
sign of the pulse is again reversed, restoring its original sign, and so forth. We see,
then, that the influence of a displacement at x, is confined to the characteristics through
%o and their reflections.

Consider now the problem where f(x) = 0, and where g(x) = 0 except in a small

4
neighborhood of x,, and f g(x)dx = 2¢, The solution (2.16) now shows that u(x, t)
0

is constant except in small neighborhoods of the characteristics through x, and their
reflections. It is easily seen that this constant is 1 or —1 inside the parallelograms
formed by the characteristics, and zero in the triangles.

-
> X

2]+X()

Thus a change in the initial velocity at x, affects only the points inside the paral-
lelograms. A change in the initial displacement at x, affects only the boundaries of
these parallelograms. Therefore any disturbance at (x,, 0) influences the solution
u(x, t) only in the parallelograms and on their boundaries. This set is called the do-
main of influence of the point (x,, 0).

To observe another property of characteristics, suppose that a generalized solu-
tion « is continuous, but that it has a discontinuity in its directional derivative

du_ 1ou
ox ¢ ot
in the direction of a characteristic x — ¢f = constant at some point (x, 7).
Since by (2.16)

ou  léu _ 1
ax+c o =f'(x+ct) +Cg(x+ct),
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it follows that the quantity f'(x) + (1/c)g(x) must be discontinuous at x =x + cf. It
then follows that the directional derivative

du 19u
dx ¢ dt

has the same discontinuity along the whole characteristic x + ¢t = x + cf. Thus, a dis-
continuity in a derivative in the direction of a right characteristic is propagated along
a left characteristic. Similarly a discontinuity in a derivative in the direction of a left
characteristic is propagated along a right characteristic. These discontinuities are
reflected when the characteristics are reflected.

A discontinuity in /' (x) + (1/c)g(x) at x, produces a discontinuity in the derivatives
of u on the characteristic x + ¢t = x, and its reflections for all time. The discontinuity
may be cancelled by another discontinuity at some times, but it will always reappear.

Similar results also hold for higher derivatives. Suppose, for instance, that f(x) =
g(x) = 0 for x < xq, and that a jump discontinuity occurs in the kth derivative of f'(x)
or g(x) at x,. Then the “head” of the wave, that is, the point where u ceases to be
zero by virtue of suddenly having some nonzero derivative, travels exactly with speed
¢, and a derivative of order £ + 1 of « has a jump discontinuity whose magnitude re-
mains constant.

EXERCISES

1. Show that if du/dx has a discontinuity at a point (x, 1), then this discontinuity is propagated
along at least one of the characteristics through (x, 7).
2. Show that a discontinuity in §*4/dx? is also propagated along at least one characteristic
through (x, 7).
3. Suppose that
du , 1 ou
ax ' c ot
has a jump discontinuity of magnitude one across a characteristic x + c¢f = x, (that is,
Qufdx(xo—ct+0, 1)+ 1/c oufdt{xo—ct+0, 1) — dufdx(xo—ct—0,t) ~ l/c duldt(x—ct—0, 1) = 1),
while # and du/dx — 1/c u/at are continuous along this characteristic.
(a) Find the magnitudes of the discontinuities in du/éx and dufat across this characteristic.
(b) Find the magnitudes of the discontinuities in du/dx and du/dt across the characteristic
obtained from the original one by reflection in the boundary x = 0 where u = 0.

4. Reflection and the Free Boundary Problem.

It is easily verified that for any function f{x) that is twice continuously differentiable
and any function g(x) that is continuously differentiable for —oo < x < = the formula
(2.16) gives a solution u(x, t) of the wave equation (2.2) satisfying the initial condi-
tions u(x, 0) = f(x), dujat(x, 0) = g(x) for all x. Thus u(x, t) is the solution of the
initial value problem for an infinitely long string. Once we have solved this initial value
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problem and shown the solution to be unique, we can solve the initial-boundary value
problem (2.1) directly in the following manner.

We first note that the wave equation is unchanged in form if we make the change
of variables

x'=—x
That is, the equation simply becomes
u 0% _
or? ¢ ox'2 0.

It follows that if u(x, ¢) is a solution of the wave equation, then so is u(—x, t). Now
suppose we have a solution u(x, t) of the initial value problem for the wave equation
with odd initial data:

u(x, 0) =—u(-x, 0),
o, o
Et—(x: 0) - at( X, 0)'

Then —u(—x, ¢) is a solution of the same problem. Since the solution is unique, we
must have

u(x, t) =—u(—x, t).

That is, the solution is again odd.

In a similar way we show that if the initial data are odd about x = [ [that is, f(x) =
—f(2l — x), g(x) = —g (2l — x) ], the same is true of the solution u(x, f).

If the initial data are odd about both x= 0 and x = [, the same is true of the solution
u(x, t}. In particular, then,

u(0, t) =—u(0, t) =0,
and
u(l, t) =—u(l, t) =0.

Thus the solution of the initial value problem for a very long (infinite) string with data
which are odd about x=0 and x=/ gives a solution of the initial-boundary value problem
(2.1). (Note that for any particular value (x, ), the string need not be infinite, but
only long enough to contain the interval [x — ct, x + ct].) This reasoning again leads
to the extension formulas (2.13), (2.14), and (2.15).

The above reduction of an initial-boundary value problem to an initial value problem
works for a large class of partial differential equations. For example, we may apply
it to the equation

u 0% _

E  Car =0

when ¢ depends on x and possibly also on . We must simply extend ¢ as an even peri-
odic function of x of period 2I. (Of course, it is still necessary to establish the unique-
ness of the solution of the initial value problem and of the initial-boundary value
problem. This will be done later.)

The same idea can also be used 1o solve another type of boundary value problem. In
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the derivation of the string problem we assumed that sufficient vertical force is applied
at the ends to keep the string from moving vertically. This assumption led to the con-
ditions u(0, t) =0and u(/, t) =0. As an alternative, we could say that we apply no force
in the y-direction at x = 0. (We must, of course, still supply the tension 7, in the
x-direction.)

Since the y-component of the force of the string on the end is T (dy/ds), the lack of
vertical force means that dy/ds = 0 or, in our approximate model

Ju _
a(o, ty =0.

This condition is called a free boundary condition in contrast to the condition u = 0,
which is called a fixed boundary condition.

The condition du/dx = 0 also corresponds to the absence of force on the end in the
elastic problem.

Consider now an initial value problem for a long string with initial data f(x) and
g(x) which are even functions:

fl=x) =f(x),
g(—x) =g(x).

If u(x, t) ts the solution of this problem, u(—x, 1) is also a solution, and hence
u(—x,t)=u(x,t}.

That is, u{x, t) is even in x. It follows that
ou _
b—i(o, I) = Q.

Thus we can find a solution of a boundary value problem with a free boundary condi-
tion at x = 0 by extending the functions f(x) and g(x) given for 0 < x < [ as even
functions. If we have ¥ = 0 at x = [, we must extend f and g as odd functions about
x = [, so that

flx) =—f(21—x),
g(x) =—g(2l — x).

These conditions together with the evenness define f and g for all x. If the end x =1
is also free, we extend f and g by the relations

flx) =f2—x),
g(x) =g2l—x).

In either case, we must simply substitute the extended functions f(x) and g(x) in
(2.16) to obtain the solution.

The domain of influence of a point (x,, 0) on the initial line for any of these problems
is on and above the two characteristics through (x,, 0). The domain of dependence of
(x, 7) is on and below the two downward characteristics through (x, 7).

Example. If

2 2
%t—‘;—‘;—x—‘;=o for 0<x<1, t>0,

u(lx,0) =1 for 0=x=1,
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%—?(x,O)zsin:’ﬂx for 0=x=1,
(PN
ax(07 t)_ex(l,[)_ov

find u(4, 2).
By (2.16) we have

(3 2)- oY) 4w

where f(x) and g{x) are the even extensions about x = 0 and x = 1 of the initial functions. They
are clearly given by

flxy=1,
g(x) = |sin® wx|.
Then

(1 2)—1+1f"2 |sind x| d

ulz,2)= 3 |y, Sin® x| dx
1+ 8.
_1+377
EXERCISES

1. Find u(x, t) corresponding to the initial values f(x) = sinx, g{x) = 0, when u(0, t) =0
oulox(wf2,t) =0, ¢ = 1.
2. Find u(x, t) corresponding to
- - du = du — _
flix}=0 g(x) =cosx when ax((), 1) = ax(a-r, t)=20, c=1.

3. Find the domain of influence of a point (x,, 0) when
dufax(0, t) =0, u(l, r) =0.
4. Solve Exercise 11 of Section 2 when the right end x = 1 of the second rod is kept free of

external forces.
5. Show that if f(x) is even about x = 0 and x = [, then f(x) is periodic of period 2/ in x.

6. Show that if du/ox = 0 at x = 0 and x =/, the solution « satisfies the recursion relations
1
u(x, :+%’) = u(x, 1) +3f e (R)d¥
C C Jo
and
l 1 .,
u(l - X, t+—) =ulx,t) + —f g{x)dx.
C C Jo

7. Show that if dufox = O at x=0 and u = 0 at x = [, u is periodic in ¢ of period 4//c.

8. If f(x) = x2(1 — x)2, g(x) =1, du/dx(0, 1) = du/ox(1, 1) =0, c =1, find u(Z, I).

9. If f(x) = (1 —x)3, g(x) = (1 —x)2, oufax(0, 1) = u(1, 1) =0, c= 1, find u($, 3).

10. Sketch the x-t diagram of the solution of the problem where (0, #) = du/fox(l, t) = 0,

1
f(x) =0, and g(x) = 0 except in a small neighborhood of x = x,, with f g(x)dx = 2c.
0

5. The Nonhomogeneous Wave Equation.

In Section 2 we solved the problem (2.1) in which no external forces are applied to
the string. We consider now the pure initial value problem
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0%u 9%u
W—Cz—a—x; F(x,t) for t>0,

(5.1 u(x, 0) = f(x),
L(x, 0) = g (),

which includes the forcing term F(x, ¢), but no boundary conditions.
We again make the change of variables

¢£=x+ ct,
n=x—ck
The differential equation then becomes

u (E+m E—m\_ 1 jé6+mn £€—n
atom\ 2 ° 2¢ )‘ 4c2F( 2’ 2c )

Integrating with respect to £, we have

We integrate this equation from an arbitrary value of n to ¢ to find
_ fE+m f—n) j’[lau 1 du,— ]_
a6, 0 (55T = [ 350G 0 = 5. 5@ 0) o
e, (5 )

In the first integral we note that

j%(— 0)di = u(£, 0) — u(n, 0).

In the second integral we let
E=%+
n=x— ?
=p=¢§Es

The domain of integration 7 £ becomes
CF=Xx

X— =X+ cF=<¢

3
IA

or
ntd=Esg—d, 0=i=s (¢-n).

The Jacobian determinant (3€/ox) (3n/dt) — (9€/31) (9m/dx) of the transformation from
(£, m) to (x, 1) is —2¢. Therefore
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f f (——11 £~ ")dgd‘ e fn “ B &, 7)didr.

+ef

Making these substitutions and transposing, we find
1
(B4, 50 = 1ute, 0) + uln, 0] + 5 [ S 0) a3
1 [&-mize [é-ct
+ = f _F(x, t)dxdt.
2c Jo ntct

We recall that £ = x + cr and n = x — ct. We use the initial values u(x, 0) = f(x),
du/dt(x, 0} = g(x) to obtain the solution formula

x+ct

ulx, ) =glflxte) + flr—en] + 32 [ g

r—ct
2+e(t—1) o
ff _ F(x, t)dxdt.

—c{t—1t)

(5.2)

This expression reduces to (2.16) when F = 0. It gives a solution of the problem
(5.1), provided f is twice continuously differentiable, g is continuously differentiable,
and F and 9F/dx are continuous. The formula (5.2) is known as the d’Alembert solution
of the nonhomogeneous wave equation.

We note that «(x, t) depends only upon the data at points (x, 7) in and on the bound-
ary of the characteristic triangle |x — x| = ¢(¢ — ). This, then, is the domain of de-
pendence of (x, #). This fact again means that disturbances are propagated with speed
no greater than ¢. We may think of the domain of dependence as the “past” relative to
the point (x, 7).

In a similar way, we can speak of the domain of influence of a point (X, 7) as that set
of points in space-time which is affected by a change in F at (X, 7). This domain is
easily seen to be the set on and above the two characteristics going up from (x, 7) in
the positive ¢ direction. It is the “future” relative to (x, 7).

If we wish to solve the initial-boundary value problem

%mczgg—F(x t) for 0 <x </ t >0,
u(x, 0) = f(x) for 0 =x=/
(5.3) %—?—(x, 0) =g for 0=x=1
u(0, 1) =0,
u(l, ) =0,

we use the methods of the preceding section. That is, we extend the functions F (x, ¢),
f(x), and g(x) as odd functions about x = 0 and x = /. Then the solution (5.2) is itself
an odd function about x = 0 and x = [, and hence satisfies the boundary conditions.

Example. Find u (%, 1) when F(x, 1) = 1 sin? 7x, u(0, 1) = u(l, t) =0,
u(x,0)=g—:l(x,0)=0, c=1=1.

The solution (5.2) gives
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1 1 5[4t o
u(—, 1)z—f f F(%. 1) dxd.
4 2 [}] —3/4+1

To compute this integral we must determine the extended function F(x, ). We find

F(x, ty ==t sin® mx,

where the + sign holds for 0 = x = [ while the — sign holds for -1 = x=0and 1 =x = 2.
We split the ¢ integration into subintervals, on each of which the limits of the integrals with
respect to x remain within one of the intervals —1 = x =0,0=x=1,0r1 = x = 2. Then we have

1 1 (14 0 . o 1_ _ M- R
u(z, 1) =5 f [ f (=2 sin? aXx)dx + | T sin® ox dx + (—7 sin® wx)dx]a‘r
0 4 1

e

1 (34 0 . o 5/4—1 . R
-+ §J’ [ f _ (=t sin® 7x) dx +f T sin? 7x a’x]a’t
1/4 —3/4+1

0
1 (v [s/a—r _ | o
+ - J f _ T sin® 7ix dxdr.
2 Jsia —3f4+t
Parts of the integrals cancel, so that the integrals reduce to
1 1 [+ 344t 1 [ 5/4-T _ o
u( 1)=wf f _f51n277xdxdt+wf f _ 1 sin® ox dXdi
2 Jo 2 i

4’ 34—t _ 341

1 1 5/4—t . o
+ = f T sin? wx dxdr
2 3/4 J-3ja4¢
~ 3,1
T 64 +87T2
The above cancellation came about because F(x, ) was extended as an odd function
about both boundaries. At a free boundary where du/dx = 0, F must be extended as

an even function, and no such cancellation will occur.

EXERCISES

1. Find the value at x =%, t = 3§ of the solution of the initial value problem (5.1) when f(x)
=g(x) =0, F(x) = ¢*

2. If
%—g;%=ef for 0<x<1, t >0,
u(x,0)=0 for 0 =x=1,
%, 00=0  for 0=x=1,

ou _
E(Oa t) - 07
ou _
a(ls t) - 03

find u(3, $).
3. Find the solution of

?:—tf—%i—l;=sinnx for 0 <x<1, t>0,
u(x, 0) =0 for 0 =x=1,
%(x,0)=0 for 0=<x=1,
u(0, 1) =0,

u(l, 1) =0.
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4, If
*u _ 62_”=x2 for 0 <x<1 t >0
or? ax? ’ '
u(x,0)=0 for 0=x=1,
%_’:(x,())zo for 0=x=1,
u(0, 1) =0,
ou -
a—x(l,t)—(),
find u(%, 3).
5. 1If
Fu_Pu_ for 0<x<1 1> 0
o ax? ’ '
ulx, 0) =x*(1—x) for 0=x=1,
%(x’())=() for 0 =x=1,
ou .
E(O’ t) =0,
u(l, 1) =0,
find u(4, 2).

6. Show that if the force function F in (3.3) is a function of x only, the solution « is periodic
in ¢ of period 2//c. That is,

u(x, t+ 2?!) =u(x, t).
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CHAPTER 11

Linear Second-Order Partial
Differential Equations
in Two Variables

6. Linearity and Superposition.

The symbol

describes a set of manipulations (differentiation, multiplication, and subtraction) which
assigns to any sufficiently differentiable function u(x, t) a new function of x and .
Such an assignment (or transformation) of one function to another function is called
an operator. Since the basic process is partial differentiation, we call the particular
operator which assigns to each u the function

Pu _ L0%u

ETRRFT"
a partial differential operator. For brevity, we denote such an operator by L, and the
function it assigns to a particular u by L[u].

The above operator L has a very special property. We note that if u{x, ¢} and
v(x, t) are any twice differentiable functions, the same is true of a linear combination
au(x, t) + Bv(x, t), where a and B8 are any constants. Thus, L[au + Bv] is defined. By
the rules of partial differentiation

Liau + Bv] = alL[u] + BL[V].

An operator having these properties is called a linear operator.
By no means all operators are linear. For example the operator L such that

ou\? ou\?
Llul = (ax) * (ay)

is not linear. As a matter of fact, most physical problems involve nonlinear operators.
The simplifying assumptions we made in Section 1 were aimed precisely at replacing
a nonlinear operator by a linear one. This is typical, in the sense that it is possible to
approximate the solutions of many problems by replacing nonlinear by linear opera-
tors. We shall be concerned only with such cases.

29
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An equation which equates L{u], where L is a linear partial differential operator, to
a given function F:

Llul=F

is called a linear partial differential equation. The wave equation is an example of a
linear partial differential equation in which F = 0. A linear equation with F = 0 is called
a homogeneous equation.

As we have seen, the unknown function u(x, ¢) is in general not determined by the
differential equation alone. We must also prescribe initial and/or boundary conditions.
The transformation associating with a function u(x, #) its initial values u(x, 0) is also
a linear operator, which we may denote, say, by L,[u«]: L:[u] = u(x, 0). Similarly,

La{u] = (x, 0)

is a linear operator, as are

Li[u] = u(0, 1),
L4[H] = u(l, t).

The initial-boundary value problem (5.3) may thus be written in the form

Llu)l=F(x, 1),
Ll[”] =f(X),

LZ[”] = g(x)a
L3[”J = 0;
L4[M] =0.

This is a system of linear equations. We call a system consisting of a linear partial
differential equation together with a set of linear subsidiary conditions a linear prob-
lem. We shall deal only with such problems.

We demonstrate some of the simplifications that occur by working with problems
which involve only linear operators.

We consider a linear problem of the form

Llu]=F,
Ll[u] =fh
(6.1) Lo[u] = fa,
Li[u] = fi,

where the first equation is a linear partial differential equation while the others are
linear initial or boundary conditions.
Suppose we can find a particular solution v of the differential equation

Llvl]=F

which need not satisfy any of the other conditions. Then we can define the new inde-
pendent variable

w=u—yV,

By the linearity of L we obtain the equation
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L{w] =L[u] — L[v]=0.

That is, w satisfies a homogeneous differential equation.

We have thus shown that any solution « of the equation L[«] = F can be written as
the sum of any particular solution v of this equation and a solution w of the correspond-
ing homogeneous equation: u = v + w.

Any solution of a homogeneous linear ordinary differential equation of order # is a
linear combination of n linearly independent solutions of this equation. This is no
longer true in the case of partial differential equations. This fact accounts to a large
extent for the vastly greater difficulty of solving linear partial differential equations.

If we have a particular solution v of L[v] = F, we can reduce the problem (6.1) to
a new problem of the same kind, but with F= 0, For putting w=u — v, we have from the
linearity

Liw] =0,
LI[W] = fi — LI[V],

Li[w] =fi — Li[v].

Example. Consider the problem

%—Zig*%=sinwx for 0<x<1, >0,
u(x,0) =190 for 0=x=1,
2 (x, 0)=0 for 0=<x=<I,
u(0,1) =9,
u(l, t}y =0.

A particular solution of the differential equation is
v = — sin 7x.
T

If we put w=u — v, we find that w satisfies

Fw_ow_
ot ox* ?
1 .
wix, 0) = — -z sin 7x,
aw .
at ('xa 0) - 0,
w(0, £) =0,
w(l, t) =0.

Solving by (2.16), we have
wix, t) = —#[sin a(x+1t) +sina(x—1)].

(Note that sin 7x is automatically odd about x = 0 and x = 1). Thus we find the solution

u(x, t) =v(x, t) + wix, t)

= 2—71;3[2 sin wx —sin (x4 ¢) — sin w(x — #)]

= # sin wx(1 — cos wt)

without performing the integration required by the solution formula (5.2).



32 Second-Order Partial Differential Equations CHAP. 11

In a similar manner, we may replace (6.1) by a similar problem where some of the
functions f;, . . . , fi are zero by subtracting from u a function which satisfies some of
the boundary conditions.

Example. In section 5 we solved the initial-boundary value problem (5.3) for a string with
fixed ends. We required that « =0 at x= 0 and x = [. We now wish to move the ends of the string
in the y-direction in a prescribed manner. That is, we give

Fu Cza2u

Yo axZZF for 0<x</{, >0,
ui(x, 0) =flx) for 0=x=1,
Bx, 0)=glx) for 0=x=1

u(Q, 1) = f(1),
u(l, 1) = fi(1),
where f3(¢) and fi(t) are prescribed functions.
A function satisfying the last two conditions is

7 =116 + (1= A,

Putting w = i — v we find that w must satisfy

255 27
By al% — F =LA + (= 0f (0],

w(x, 0) = f(x) — Txf(0) + (1 = (0],

W (r, 0) = gx) — L (0) + U~ 0k O],

w(0, 1) =0,
w(l, 1) =0.

This is in the form (5.3) and hence we can use the solution (5.2). Then u(x, 1) =v(x, 1) +w(x, ).

The linearity of the problem (6.1) can also be used to split it into simpler subprob-
lems. Suppose that u, is the solution of

L[Ll()] - F,
Ll [Ll()] = 0’
Lk[uo] = 0,
that u, solves
L[ul] = 09
Li[u:] = fi,
(62) Lz[uf] = 0,
Lk[ul] = 07
with analogous conditions for us, us, . . . , ux. Each of the functions uy, . . . , ux involves
only one piece of the data F, fi, . . . . fr. By linearity, we find that the function

M=M0+M1‘+' -4y

satisfies (6.1). Thus, u is obtained as a sum of terms each of which represents the effect
of one piece of the data. The solution formula (5.2) represents such a decomposition
~into the effects of initial position, initial velocity, and force.
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Each of the subproblems may itself be decomposed. Suppose we have a set of func-

tions v', v2, . . ., all of which satisfy the same set of homogeneous equations, say
L[vd] =0,
L>[v®] =0,
Li[v®?] =0, i=1,2,....

Then if i can be represented as a finite linear combination of the functions L,[v],
L,[v®], ..., thatis, if

fi=ali[v] + aaLi[v®] + - - - + auLi[v],
the function

= ay+ - - -+ gy

is the solution of the problem (6.2).

This fact is called the principle of superposition. It can frequently still be applied if
fi is the limit of a sequence of such linear combinations. In particular, it could be an
infinite series

fi=3 gL [v"] =1lim S a,L,[v?)].
! n—ov |1
In this case the function

x

(6.3) uy = 3 gt
1

will satisfy (6.2), provided the operators L, L,, . . . , L, may be applied to the series
term by term. Since the operators L, L,, . . . , L, are differential operators, this will
be the case if all the series obtained by applying each of the derivatives that appear
in these operators to each term of (6.3) converge uniformly.¥

Example. The functions

v = gin imx CcoS imt
satisfy

a2v(i) aZV(il 0

ot axt
vid(x, 0) = sin imx,
gty

— =90
5 (£ 0)=0,

Wi(0, 1) = vii(1, 1) = 0.

“Hence the problem

Pu_du_
arr  axt ’
t The series
i. aiL[vi(x)]

is said to converge uniformly on the interval ¢ = x = b if for any € > 0 there is an integer N (¢) independent
of x such that

m

T oalLl[vi(x)]] < €
T ntl

throughout the interval whenever n and m are larger than N(¢).
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o

w(x,0) = X i sinimx,
i=1
du _
E(x, 0) - 09
ul@,H=u(l,n)=0
is solved by

u(x,t)= 2 i*sinimx cosimt.
i=1
A final simplification present in linear but not in nonlinear problems occurs in the
formulation of uniqueness and continuity theorems.
Suppose that u and u are both solutions of the linear problem (6.1). Then by linearity
the function v = u — u satisfies the homogeneous system

Liv] =0,
(6.4) Llv] =0,
L].-[V] =0,

The system (6.4) has the trivial solution v = 0. If this is its only solution, then u — &
must be identically zero. That is, the problem (6.1) has at most one solution. (It could
also have none).

Suppose, on the other hand, that there is a solution v of (6.4) which is not identically
zero. Then if (6.1) has a solution u, the function u + gv where a is any constant is also
a solution. That is, (6.1) cannot possibly have exactly one solution. It may have no
solution, or infinitely many solutions.

Thus the uniqueness problem for {6.1) is reduced to that for the homogeneous
problem (6.4). The latter is independent of the particular data F, fi, . . . , fx appearing
in (6.1).

Similarly the question of continuity of the problem is: Let « be a solution of (6.1)
and let « a solution of the related problem

L[u] =T,
Lifu] = £,
Li[u] = fe.
Isittrue thatif (F—F), (fi—f1), ..., (fx —fx) are small, the difference u — u is also
small? If we let
vV=u-—u,
G=F—F,
g =h —h,
gv = fi ~fr,
we see that v satisfies the problem
Llv] =G,

) 18 ] =
(6.5) iﬂ_&’

L,r‘» [1’] = gnr.
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Our question now becomes: is it true that the solution v of (6.5) is small if the data
G, g1, - - . , g are small? This question is a special case of the original one with u=F =

fi="++=f,=0. For linear problems we need only treat this special case.
EXERCISES
1. If
%2;%—53%=0 for 0<x<1, t>0,
uix,0)=0 for 0=x=1,
%—‘;(x,o)=o for 0=x=1,
u(0, 1) = sin*t,
u(l, t) =0,
find u(%, %)
2. If
‘;2—;—%=0 for 0<x<1, >0,
u(x,0)=20 for 0=x=1,
B, 00=0  for 0=x=1,
u(0,1 =0,
1,1 = re,
find u(~1~, 2).
2

3. Show that if f(0) = f(I) = g(0) = g(I) = 0, the function v = f{x) + tg(x) satisfies all the
initial and boundary conditions of the problem (5.3). Show that if the solution of the problem
for w = u — v is obtained by means of (5.2), the function ¥ = w + v so derived agrees with the

solution by (5.2) of the original problem.
4, Find which of the following operators L are linear

(@ Llu] = g—"t‘ + ngix%

(b) L[u] E%%+u%}%+u

© Lfu = (5] + 58

(d) Llu] = ?;—; — e gixl: + u.

5. Show that the problem

é:—t?—czgi;zl:O for 0<x<|{, t>0
w(®, 1) =fi() for 0=x=1,

3—;‘(1, N=f() for 0=x=I,

u(x, 0) = fz(x),

ou _
‘a—t(X, 0) =fi(x)

has at most one solution.
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7. Uniqueness for the Vibrating String Problem.

We consider the linear initial-boundary value problem

eIt =F(,) for 0<x<l, 1>0,
u(x, 0)——f(x) for 0 =x=],
(7.1 % (x, 0) = g (x) for 0=<x=<I
u(0, 1) = f3(1),
u(l, t) = fu(1),
where

c?(x) = Tolp(x)

with a (possibly) variable positive density function p(x).
Since F is the external force per unit mass, the rate of work being done at time ¢ is

j: F(x, t)p(x)%(x, t)dx.

In order to write a law of conservation of energy, we multiply the first equation by
poufdt, and note that

2 o24]- bl 2] 2
Patlor ~ Caxz| a1l 2P\ar) T 2" Nax ax|  %ax ar |’

The differential equation then becomes

a 1] [ou 2 df..ouou|] _ ou
(7.2) ot z[p(at) T“(ax) ] ax[T"ax at] —Fry
We integrate this equation with respect to x from 0 to /, and with respect to ¢ from
0 to some time 7 > 0. This gives

JC R

(7.3) 2 {p(x)[ (x, 0)] +T0[—(x, O)]2}dx
fT(,—(l t) (l t)dt+f (0 t) (0 t)dt = fpr—dxdt

The first two integrals represent the difference in energy (kinetic plus potential) at
times 7 and 0. The second pair of integrals represents the work done by the y-com-
ponents of the tensile force on the ends. The right-hand side is the work done by the
force F.

If u, and u: are solutions of two problems of the form (7.1) whose data F, f,, f2, f5,
and f; coincide for 7 < 7, the difference v = u; — u. satisfies the same problem, but with
F=f=g=fi=fi=0for0 < x <land 0 <t < t. Then clearly also av/at=0at x=0
and x = [, and dv/dx = 0 at t = 0. The energy balance (7.3) reduces to

(7.4) % f: {p[%(x, E)] +T0[ (x, t)] }a’sz,
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which states that if the string has no energy at time 0 and if no work is done on the
string, the energy remains zero.

We assume that p(x) > 0, T, > 0. Then the integrand can never be negative. Sup-
pose that the integrand is positive on some interval (x;, xz). Then the integral over this
interval is positive. The integrals from 0 to x; and from x; to / cannot be negative,
Therefore the integral from O to [ is positive, contradicting (7.4). This argument shows
that the integrand in (7.4) cannot be positive over any interval. If we assume that the
integrand is continuous, it must actually be identically zero. For if it were positive at
a point, it would be positive in a small interval containing this point.

We have shown that if all the data are zero for ¢ < 1, then dv/dt(x, ) = 0. We can
apply the same argument for any #; < t. Then

g—‘;(x,n)=0 for 0<t, =1, 0<x<l

Since v(x, 0) = 0, it follows that
vix, ) = ui(x, 1) —u2(x, 1) =0 for t=1.

We have proved that the solution wu(x, ) of (7.1) is uniquely determined by the data
for 0 = ¢t = 1. In particular, we have shown that the domain of dependence of a point
(x,7) is contained in the rectangle 0 = x = [, 0=t =<7.

In the case of the wave equation (¢ = constant) we found that the domain of depend-
ence was only that part of this rectangle which lies on and below the characteristics
through (x, 7). This is equivalent to a finite speed of propagation ¢, and we can expect
a similar result when ¢ varies with x.

We consider a curvilinear pentagon P bounded by =0, x =0, x= [, and two curves
C, and C; defined by equations 7 = Q,(x) and 1 = Q.:(x), respectively, with Q,(x) =
Qz (}) =1.

I

0

We integrate the equation (7.2) over P. We integrate the first term on the left first
with respect to ¢ and then with respect to x, and the second term in the opposite order.
We replace u by the difference v of two solutions whose data coincide on P, so that
F=f=g=f;=f;= 0 on P. We obtain the equation

Y11 fav I av v wvav,
f [2"(6:) +2T°( )]d f Tooe ot +j Toge a0 =0

(x,)onC,+ Cs (x, 1) on C; (x,2) on C,
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Since ¢ is given as a function of x on C, and on C-, this equation may be written as

L fovNE | 1. fov)? avovd|,
(7.5) L [-j-p(at) +§T0(5) +T053C-53}]dx—0.

We obtained the uniqueness from (7.4) by noting that the integrand cannot be nega-
tive. This is clearly true in (7.5) when dt/dx = 0; that is, when C, and C. are parts of the
line  =17. We now ask for what other values of dt/dx the integrand must be nonnegative.
Completing the square, we see that the integrand can be written as

1 ([av dt ov]? 1 de\? 1/ ov)?
#ili i s elE (@G
(We recall that ¢2 = Ty/p.) This expression is clearly nonnegative if the factor (1/c*)
— {dt/dx)? is nonnegative. That is, if
(_d_f)z <1
dx/] — ¢

both on C, and C.. Since we wish to find the smallest possible domain of dependence,
we make the curves C,; and C; as steep as possible. We therefore let

d 1

(7.6) a————-c(x) on (C,,
d _ 1
& e oM G

Then the equation (7.5) becomes

1 (v | av)? I (ov  av\*, _
fcl Ep(at + 05;) dit fcz §p(af Cax) dx=0.
We again conclude that the integrands must be identically zero. In particular at
(x, ) we have

ov oV __ v _ v __
ot Tl =0 G G0
and hence
Jv  dv
ox ot 0.

Curves satisfying
(@) ==
dx c?

are called characteristics of the differential equation (7.1). The curves C; and C; are
the characteristics through (x, 7). Their equations can be written in the form

L7 [*_dE
Cut=1 LC(S)’

(7.7)
< [T dE
Cot=1 f_x_ C(f)
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We have shown that if the data of the problem (7.1) vanish on the pentagon P bounded
by the initial and boundary lines and the characteristics through (x, 7), then dv/ot =
0 at (x, 7).

It is clear from (7.7) that for ¢ < ¢ the pentagon P corresponding to (x, ¢) lies inside
that for (x, 7). Hence by the same reasoning dv/dt(x, t) = 0 for all 0 = ¢ = 7. Since
v(x, 0) = 0, we conclude that v(x, 7) = u:(x, 7) —u2(x, 7) = 0.

We have proved:

UNIQUENESS THEOREM. The value x(x, 1) of the solution of (7.1) is uniquely deter-
mined by the part of the data lying on the pentagon P bounded by the initial and boundary
lines and the characteristics (7.7) through (x, 7).

By definition, P is the domain of dependence of (x, 7).

Example. Find the domain of dependence of the point (3, 3) with respect to the problem

2 2
%I‘L;—(4—x2)g}zli=F(x,t) for 0<x<1, t>0,
u(x, 0) =$(x,0) =0 for 0sxs=1,

u(0,t)=u(l,t)=0.
The characteristics are given by:

12
Ci: t=3—f —d§—=3—sin—1l+sin—1lx

vilg 4 27
Cot=3— ) —~—Q§%=3+sin—’l——sin—11

1z V4 — g2 4 7"
Thus the domain of dependence is the pentagon
i

0$t$3—sin‘1%+sin‘1§x for OSxS%,
05t53+sin‘1%—sin-1%x for %—xﬂl.

We remark that one or both of the characteristics through (%, ) may hit the initial
line before hitting the boundary. In these cases the pentagon degenerates to a quad-
rilateral or a triangle. If P is a triangle, we have a pure initial value problem.

td
Domain

of
influence

(x1, 11)
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The domain of influence of a point (x;, ¢;) is simply the set of all points (¥, 7) whose
domains of dependence contain (x;, #;). It is easily seen to be the part of the strip
0 < x <!lon and above the two upward characteristics through (x;,, ;).

It is clear from the equations (7.6) that the characteristics represent propagation with
speed c(x), which may vary from point to point. They are the direct generalizations of
the lines x + ¢t = constant and x — ¢t = constant for the case of constant c.

We can again show that discontinuities in derivatives of u(x, ) are propagated along
characteristics.

The boundary integrals in (7.3), which would otherwise also appear in (7.5), vanish
because v and hence dv/dt = 0 on the boundaries. They will also vanish if dvjox = (0
instead. Therefore the uniqueness theorem also holds for free boundary conditions at
one or both ends.

EXERCISES
1. Find the characteristics through the point (0, 1) for

g_zﬂ —_ ezw@jﬁ.
ar? ax?
2. Find the domain of dependence of the point (7/8, 2) with respect to the problem
Fu o O T
3P cot xaxZ_F(x’ f) for ¢t>0, 0<x<4,

u(x,0)=¥x,00=0 for 0=x=7,
u(0, 1) =fi(2),
u(F 1) =50,

3. Find the domain of dependence of the point (}, 3) with respect to the problem

2 2
%E%‘-—(l+x2)2~g%2‘=F(x,r) for 0<x<1, >0,
u(x,3)) =0 for 0=x=1,
%x,0)=0 for 0=x=I1,
u(0, 1) =0,
(1, 1) =0.
4. Find the domain of influence of the point (3, 0) with respect to the problem
9u _ 2y2 %0 _
T (1+ ) axz““o for 0<x<1, t>0,
ulx,0) =f(x) for 0=x=1,
H(x, 0) = g(x) for 0=x=1,

u(0, ) =wu(l, 1) =0.

5. Show that if A(x, ¢) and C(x, t) are positive continuously differentiable functions and if
A is nondecreasing and C is nonincreasing in f, the initial-boundary value problem

a( ,0u a { ~duy _
E(A-é?) -a(ca) —F(x, 1) for 0<x<1, t>0,
u(x, 0) = f(x) for 0=x=1,
(x,0) = g(x) for 0=x=1,

w0,y =u(l,t) =0
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has at most one solution. Show how to construct the domain of dependence of a point (x, r).
HINT: Multiply the differential equation by du/d¢, integrate, and use integration by parts to elimi-
nate the second derivatives of u.

6. Show that the domain of dependence of a point (x, ) with respect to the problem

612 2() ~—F(x,t) for 0<x<1, t>0,
(x,O)-—O for 0=x=1,
S (x, 0) =0 for 0=x=1,
u(0,1) =0,

du _
E(l’ t)tu(l,)=0

is again bounded by the characteristics C, and C. satisfying (7.7).

8. Classification of Second-order Equations with Constant Coefficients.

The wave equation was solved by introducing new coordinates ¢ and n in which
it reduced to the simple equation
2
u _ 0,
o&dn

whose general solution is easily found to be p(&) + g(n).
We consider now the more general differential equation

2u %u —0
axar + CW Y

2

(8.1) L[u] = ati‘+3

where A, B, and C are given constants. We attempt to find a linear transformation
of coordinates

&=ox+ B,

(8.2) n =yx + &1,

so that the differential operator L{u] in (8.1) becomes a multiple of 8%u/3&€dn. By the
chain rule

Llu] = (AB*+ BaB + Caz)

a.fz aga

+ (A8 + Byd + Cy"')W-

(8.3)

If this is to be of the desired form, we need

AB*+ BaB + Ca2 =0,
A8% + Bys + Cy2 =0,

If A = C =0, the trivial transformation ¢ = x, n =1 gives L in the desired form. We
now suppose that either A or C is not zero. Say A # 0.

Then a # 0 and y # 0, and we may divide the first equation by «? and the second
by ¥2. In this way we obtain two identical quadratic equations for the ratios 8/« and
8/v. Solving, we find
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E=L[-Bi\/82—4AC},
a 24
-8—=i[——B + \/82—4AC].
v 24

In order for the coordinate transformation (8.2) to be nonsingular, the ratios 8/«
and &/y must be different. Hence, we must take the plus sign in the solution in one
case, and the minus sign in the other. Moreover, we must assume that the quantity
B? — 44C is positive. For if it were zero, the two ratios would still coincide, while if
it were negative, neither of them would be real.

Thus we may transform L{«] to a muitiple of 0%u/o¢an if and only if

B*—44C > 0.

Whenever this is true, L is said to be hyperbolic. The transformation in this case is
given by

(8.4) £=24x+ [-B + VB:—44C]t,
‘ n=24x+ [-B — VB2 —44C]t,

and the operator becomes _
0%u
agom

(The case A = 0 can be treated similarly, with é¢=t, n=x—C/B t.)
The general solution of L[u] = 0 is again

u=p(§) +qn).

Initial-boundary value problems for the equation (8.1) can be solved in a manner
similar to the treatment of the wave equation.

The lines ¢ = constant and 1 = constant are the characteristics of L. They again
define domains of dependence and domains of influence, and discontinuities are prop-
agated along them.

In fact, a hyperbolic operator L is simply the wave operator in a coordinate system
moving with velocity —B/24. (See exercise 2.)

If B2 —4A4AC = 0, L is said to be parabolic. In this case there is only one value of
Bla which makes the coefficient of 6%u/0&? in (8.3) vanish. This is

B__B

a 2A4

(8.5) Llu] =—4A4(B* — 44C)

Since B/2A4 = 2C/B, this choice also makes the coefficient of 3%x/3¢dm vanish. Thus
the transformation

& =24Ax — Bt,
(8.6) P
transforms L[u] into
0%u
(8.7) Liu) = 475

This is the standard form for a parabolic operator.
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The choice of 7 is quite arbitrary. We could choose any yx + 8¢ as long as &/y #
—B[2A4. If A =0, we may choose n = x, £ =t to obtain L[u] = Cd*u/on>.
The general solution of L{u] = 0 is now

p(&) +nq(£).

This solution can be interpreted as a wave which has a fixed shape and moves with
velocity B/2A4, together with another wave which grows linearly in time and moves
with the same velocity. A parabolic operator has only one family of characteristics
& = constant. Discontinuities in derivatives propagate along these characteristics.

Finally, if B® — 44 C < 0, the operator L is said to be elliptic. In this case no choice
of B/a or 8/y makes the coefficients of d24/d&® or 8°u/om? in (8.3) vanish. However, the
transformation

£= 2Ax — Bt i
V44C — B?
(8.8) —
n==1t
makes
R*u  u
(8.9) Llu] = [—-g + 8—177}

(Since 44C > B?, A # 0.) A standard form for an elliptic differential equation L[« ] =01is
Pu | FPu
o8 ot 0.

This is called Laplace’s equation. It has no characteristics at all. The partial deriva-

tives of a solution of this equation can have no discontinuities.
Remark. The quadratic equation

Ax*+ Bxt+Crr=Cx+Ar+ A

represents a hyperbola, parabola, or ellipse according as B2 — 44C is positive, zero,
or negative. This accounts for the names of the three classes of partial differential

operators.
We summarize the classification of the operator (8.1):

Hyperbolic __ Parabolic Elliptic

Sign of B2 — 44C + 0 -
Families of characteristics 2 1 0
Standard form du 0u *u " *u
agam on* 9&%  on?
EXERCISES

1. Classify the following operators and find their characteristics (if any) through the point (G, 1).

0*u | %u
(a) arz 6x6t+ax2

du
(© 57 — mﬁ*g
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2. Show that if the operator L[«] in (8.1) is hyperbolic and 4 # 0, the transformation to
moving coordinates

takes L into a muitiple of the wave operator. (That is, the wave operator is another standard

form for a hyperbolic operator.)
3. Using the result of Exercise 2, find the solution of the initial value problem

Aw-l-Bﬁ-l-Caxz—F(x, 1),

u(x, 0) = flx),
i (x, 0) = g(x).

In particular, find the domain of dependence of a point (x, 7).
4. Show that if 4 = 0 so that the line ¢ = 0 is a characteristic, the initial values u(x, 0) and

dufat(x, 0) cannot be specified independently in Exercise 3.

9. Classification of General Second-Order Operators.

We consider the linear partial differential operator

ou

Llul] =A(x, 1) Y

(9.1) ’

at2+B(’ )——+C(’ ) +D( )

+ E(x, t)5;+ F(x, Hu.

This operator L is said to be hyperbolic, parabolic, or elliptic at a point (xo, #o) accord-
ing as B*(xo, fy) — 44 (xy, t0)C(xo, t,) is positive, zero, or negative. It is said to be
hyperbolic, parabolic, or elliptic in a domain, if it has the required property at each
point of the domain.

By one of the linear transformations of the preceding section we can reduce the
second order terms of L to a standard form at any one particular point (xo, fo). We shall
now show that the second order terms may be reduced to a standard form in a whole
domain by means of a more general (nonlinear) coordinate transformation.

We introduce new coordinates (¢, ) which are twice continuously differentiable
functions of x and 7: £ = &(x, 1), n = n(x, 1).

By the chain rule we find

o = [4E) + 8505 <) e

A€ am o o7 o an a¢ an] d%u
+ [ZAat or VB ax T Bax ot T2 Cox ax Jagam

oy P I
+[A(8t) +Bata +Cax an2

+ [L[£] — Ff] + [L[n] —Fn]——+ Fu.

(9.2)

If L is hyperbolic, the coefficients of a2u/‘a§2 and 0*u/om* may be made equal to zero
by putting (assuming 4 # 0)
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9 an

I _—B+ VB —44C 4t _—B— VB —44C
g 2A 6_11 24

Jx dx

Then the curves ¢ = constant are solutions of

9.3) dx _B— VB —44C
(9. dr 24

while the curves » = constant satisfy

(9.4) @=B+\/B2~—4AC_
’ dt 24

In both cases dx/dt satisfies

dx\? dx .
A(G) - 8%+ c=o

(Note the minus sign in front of B.) The speeds of propagation dx/dt at any point
(x, t) are the same as if the coefficients were constant. (See (8.4).)

The ordinary differential equations (9.3) and (9.4) give two families of curves, which
are the characteristics of L. The values of ¢ and » may be prescribed arbitrarily along
the initial line ¢ = 0. They are then propagated along the two families of characteristics.

In other words, if we obtain a one-parameter family of solutions x = f(¢; a) of (9.3)
satisfying the initial conditions f(0; a) = a, we can, in principle, solve for a in terms of
x and ¢. That is, we can find the intercept on the x-axis of the solution curve through
any given point (x, f). Then ¢ can be chosen to be any monotone function of a(x, t).
Similarly, if x = g(¢; b) is the solution of (9.4) with g(0; b) = b, we can solve for
b{x, t) and choose 7 to be any monotone function of b.

Example. Consider

3*u
axadt

2
Llu) = S8+ (5 +222)

(122 (44 ) T

The equations of the characteristics are

ax _ S+ 2x* 3
dt 2 2
For £ = constant, we have
dx
1+ dt

or
x=tan{ s+ tan a].

For n = constant, we have

_ L P |
x =2 tan Z[I + 3 tan Zb]'

Thus we can take
E=tanlx—1t (=tan1a),

" =% tan~! %x —t ( =—;— tan—? %b)



46 Second-Order Partial Differential Equations CHAP. 11

Then

= -9 u 2x 2y204 | 2x 2y204

Llu] —(1+x2)(4+x2)[a§an+ o4+ )2 (1l

We must, of course, consider x as a function of ¢ and 7, given by x = tan'3 (37w + £ — 7))
— cot! ({m + £ — ).

We have shown that if £ and % are characteristic coordinates, that is, if £ = constant
and n = constant are characteristics, then the only second derivative occuring in L[]
is 0%u/9&0m. From this fact follow the properties of characteristics which were derived
for the wave equation. That is, discontinuities propagate along characteristics, and
domains of dependence and influence are determined by the characteristics. (See Sec-
tion 82.) A uniqueness proof very similar to that in Section 7 can be given for the ini-
tial value probiem in this case.

If L is parabolic, the two characteristic equations (9.3) and (9.4) are the same, so
that there is only one family of characteristics. If the coordinate £ is chosen so that it
is constant along the characteristics (that is, the solutions of dx/df = Bj2A4), then the
coeflicients of 8%u/d&? and 8%u/0&dm vanish, so that the only second derivative occurring
in L is #*u/dm®. (Note that 7 is quite arbitrary.) The domain of dependence lies on one
side of and on the characteristic through the point.

Finally, if L is elliptic, one can make the coefficient of 6%u/3£0m in (9.2) vanish by
choosing n arbitrarily and making ¢ constant along solutions of

on
@ Bat+2C |
dt an an
2Aat+Ba

The other two second derivatives of u will then have coefficients with the same sign
as A.

Since an elliptic equation has no characteristics, solutions of L[«] = 0 have no dis-
continuities when L is elliptic. The domain of dependence of a point is the whole
domain in which the equation is given.

EXERCISES
1. Find where the following operators are hyperbolic, parabolic, and elliptic.
3*u 9%u
(@) G7 + baxor T ¥ax
%u
(b) x ﬁ T T

3%u *u . ou
()’aﬁ 2ovor T %o T ox

2. Find the characteristics of

9%u 82
@) aﬁ ax2
3*u du
2. Sufhd "
(b) at2+2 xaxat+elax2+cosxat+smx ® 4 xu

3%u

_ 2
(©) (cos?x — sin x)612 +2c osxaxat + u

EF

through the point (0, 1).
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3. Find characteristic coordinates £, 1 for
#u
ar?

such that £(x, 0) = n(x, 0) = x.
4. Show that if L is hyperbolic, ¢ and n may be chosen so that the second derivative terms in
(9.2) are a multiple of

%u u
X 2 — 20— =
+ (e + ¢ )axat+te Pl

u _ d*u,

o8 on?
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CHAPTER III

Some Properties of Elliptic
and Parabolic Equations

10. Laplace’s Equation

In Section 2 we derived an approximate mathematical model for a vibrating string.
The same method can be applied to the two-dimensional analogue of a string, which is
called a membrane. A membrane is defined as a two-dimensional elastic continuum
such that the only interaction forces between its parts are tangent to it.

The mass per unit area is a continuous function p(x, y). The boundary of the mem-
brane is attached to a rigid frame consisting of a closed curve C which lies in the xy
plane. The membrane has an equilibrium position in which it lies in the xy plane and the
frame exerts a constant tensile force T per unit length along the normal to C in the
xy plane.

Initial displacements and velocities in the z-direction are prescribed at 1 = 0, and a
force F(x, y, t) per unit mass in the z-direction is applied after this time.

We make hypotheses similar to those made in deriving the vibrating string equation
in Section 1 (small displacement gradients and velocities in the x- and y-directions and
small slope). Then the motion is approximately described by

z=u(x,y,1),

where « is a solution of

ofu ?u  Pu
Py 2(x, y)[axz-i-g] F(x,y,1),
with suitable initial and boundary conditions. Here ¢* = Ty/p(x, y).

We consider now the equilibrium shape of the membrane. That is, we give a force
F(x, y) independent of ¢, and prescribe a fixed vertical displacement u = f(x, y} on
the boundary C. We ask for a function u(x, y) independent of t such that

o*u 82 Fo ) ] D
— —F(x, i ,
(10.1) 6x2 ay? Y n

(x,y) = f(x, y) on C,

where D is the domain interior to C. (For convenience, we have taken ¢ = 1.) The func-
tion f need only be defined on the curve C.

By a closed curve C we mean a set of points described in terms of a single parame-
ter 7 by equations of the form

48
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x=x(71), y=y(7) for rn=7tr=nm
with
x(1) = x(70), y(m) :y(To),

where the functions x(7) and y(7) are continuous. We assume that the curve is not
self-intersecting; that is, that for 7y = 7 < 7, no two values of 7 correspond to the same
point (x, ¥). If x and y are continuously differentiable functions of = with x’* 4y > 0
and x'(0)y'(m1) — x'(11)y' (vo) = 0, we say that C is continuously differentiable. If they
are continuous and these conditions hold except at a finite number of values of 7, C is
said to be piecewise continuously differentiable. For instance, the square

T for 0=r=1 0 for 0=7r=1

1 for 1=7=2 _j7—1 for 1=7=<2
MO =130 for 2=7=3 Y =1 for 2=<7=3
0 for 3=7=4 4—7 for 3=71=4

is piecewise continuously differentiable, since x(7) and y(r) have continuous deriva-
tives except at the vertices r =0, 1, 2, 3.

A closed curve C separates the xy plane into an exterior and an interior. The in-
terior D is a bounded set. It does not include the curve C. If C is piecewise continu-
ously differentiable, then D is an open set. That is, for each point (x, ¥) of D, there is
an € > 0 such that every point within distance € of (x, y) is also in D. Such a set D
is called a domain.t

The partial differential equation in (10.1) is called Poisson’s equation. In case F =0,
it is called Laplace’s equation. The operator V2 defined by

2, =24
Viu ox*  9y?

is called the Laplace operator in two dimensions.
Many problems of mathematical physics lead to Poisson’s equation. For instance,
if u 1s an electrostatic potential, the electric field E is given by

= —grad u.

By this we mean that the component of E in any direction is given by minus the direc-
tional derivative of « in that direction. In particular, E; = —oufdx, E, =—ou/dy. If the
dielectric constant is one and the charge density (charge per unit area) is F/2, we find
that
o*u  du
2y = — i —
Viu e + e F.

If we have a two-dimensional domain D (that is, an infinitely long cylinder with
cross section D) bounded by a grounded perfect conductor at C, we have the boundary
condition

u=290 on C.

* Actually any connected open set is called a domain. We restrict ourselves here to simply connected
bounded domains with piecewise continuously differentiable boundaries. By a simply connected domain
we mean one with no holes.
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On the other hand, C may be composed of several conductors at different potentials,
in which case u is a given function fon C.

A slightly different problem concerns conduction of electricity on a conducting
sheet covering the domain D. If E is the electric field and I the current vector, the law
of conservation of charge states that

d

. _ .,

Ohm’s law asserts that
1=0cE,
where o is the (constant) conductivity. Furthermore,
E =—grad u,
where u is again a potential function. Putting these equations together, we have
Viu=10 in D.

On the boundary C we may again specify the potential #. We may also insulate part
of the boundary so that no current goes across it. This means that the directional
derivative du/on of u in the direction perpendicular to the boundary must be zero. In
terms of the functions x(7), y(7) defining C, this condition can be written as

Other problems of equilibrium flow may be formulated in the same way. If u is an
equilibrium temperature, and if we assume that the heat flux is given by a constant times
the gradient of «, the law of conservation of energy gives

iu=20.

Again we may specify u on parts of the boundary and say that du/on = 0 (that is, no
heat flux takes place) on other parts.

The irrotational two-dimensional steady motion of an inviscid incompressible fluid
may be treated in a similar way.

All the above examples except that of the membrane are more naturally formulated
in three dimensions (x, y, z). The closed curve is replaced by a closed surface C
whose interior is a three-dimensional domain D. Poisson’s equation is

u  *u Fu

(10.2) Vi =+ = +

ax2 ay2 “é“ZMf:_F(xs ya Z)-

Again we specify u or du/an on C.

It is clear that all these problems are linear.

Unlike the wave equation, the Laplace equation is usually concerned with states of
equilibrium. Consequently, we cannot expect any kind of propagation in time. The
natural problems are now boundary value problems, where data are given on a closed
curve or surface. This is typical of elliptic differential equations.

If we attempt to apply the uniqueness proof of Section 7 to the initial-boundary
value problem
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0%u | 0*u

Py WIO for 0<x<1, y>0,
(10.3) ulx, 0) = f(x) for 0=x=1,

a—u = =

ay(x,O) 0 for 0=x=1,

u(0,y) =0,

u(l, y) =0,

we find that the integrand in the resulting integral is not nonnegative, so that the proof
does not work. This difficulty suggests that the problem is no longer properly posed.

As a matter of fact, one can still show that this problem has at most one solution.
However, the continuity with respect to the data breaks down, as is easily shown by
the following example due to Hadamard. The function

u(x, y) = e V7 cosh (4n + 1)y sin (4n + 1) mwx,

where n is any positive integer satisfies the problem (10.3) with f=e~V"sin (4n+ 1) mx.
By choosing n sufficiently large we can make not only f but any number of its deriva-
tives arbitrarily small. On the other hand,

u,,(—é—', y) = ¢ V% cosh (4n + 1wy

can be made arbitrarily large for any fixed y > 0 by choosing » sufficiently large. This
shows that the problem (10.3) is not continuous with respect to its initial data, and
hence is not properly posed.

This fact has practical consequences. For example, by the uniqueness theorem
mentioned above, the equilibrium temperature in a rectangle 0 < x < 1,0 <y <A is
determined by the temperature distribution on the part y = 0 of the boundary, if this
part is kept insulated. However, because of the lack of continuity, it is impossible to
compute the temperature at an interior point from measurements subject to error of
the temperature on this part of the boundary alone. For any such measurement, no
matter how accurate, will fail to distinguish between the boundary values of two tem-
perature distributions differing by u, if #n is sufficiently large. As we have seen, these
temperature distributions differ by an arbitrarily large amount at the interior point
(%, v), so that it is senseless even to discuss approximating the temperature theret.

The three-dimensional Laplace operator in (10.2) is the prototype of an elliptic sec-
ond-order operator in three dimensions. We define the operator

*u %u du %u u d%u
=424 g% 4 cZH
Llul = A5+ B+ Con + Do+ Eaz T Favaz

v G gy O gy,
ax ay 0z
where 4, B, C,D,E, F, G, H,J, and K may depend upon x, y, and z, to be elliptic

at a point (X, Yo, 2o) if there is a linear transformation to new coordinates (£, n, {)
such that in these coordinates

+The problem can be made computationally reasonable by adding additional information, such as the
maximum temperature. See L. E. Payne, “Bounds in the Cauchy problem for the Laplace equation,”” Archive
for Rational Mechanics and Analysis, 5 (1960), pp. 35-45.
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[82 Pu | tu

Liu]l = +

B a2+ag2]+ﬂa§ +6——-+Ku

74

at the point (&, mo, {o) corresponding to (xo, Yo, Z0), and a # 0. We say that L is
elliptic in a domain D if it is elliptic at every point of D.

More generally, an operator L in n dimensions (x;, xo, . . ., X,) is said to be elliptic
if at each point it can be reduced to the form
[ 8% | d*u Pu
Llu] = a[6§2+6§2+ +6§ ]—FBIag +Bna§n+Ku

with « # 0 by means of a linear coordinate transformation.
A solution of Laplace’s equation (in any number of dimensions) is called a harmonic
function.

EXERCISES

1. Show that the operator

_ Pu_ Fu_ u
Llu _ax2+ay2 07z*

is not elliptic.
2. Show that the operator

A—+Ba ay+c 2+D

is elliptic if and only if the two-dimensional operator

AW B—‘—axay + C—

is elliptic, and AD > 0.

3. Find the equation satisfied by the potential #(x, y, z) in a three-dimensional conductor if
E = —grad u, I = oE, div I = 0, and the conductivity o(x, y, z) is positive. Show that this equa-
tion is elliptic.

11. Green’s Theorem and Uniqueness for the Laplace Equation.

The uniqueness of the solution of the problem (10.1) may again be proved by energy
considerations. We begin with the identity

2u  u d/( ou 9/ du du\? ou\2
2, — (O H ou o4 o4
uViu = “(aszr 2) ax(”ax)+ ay( ay) [(ax) + (ay)]

or, in vector notation,
(11.1) u div (grad u) = div (u grad u) — |grad «|2.

(This identity can be verified by performing the indicated differentiations.)

We now apply the divergence theorem, which states that for any vector field v
which is continuously differentiable in a domain D inside a piecewise continuously
differentiable curve C and continuous in D + C,
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ffdwvdxdy_-ff(a"“ avy)ddy év n ds,

C

where n is the outward unit normal vector on C and s is the arc length along C.
If C is described by x = x(7) y = ¥(7), we have

dy dx )dT = yzdy — v,dx.

v-nds=(vxd7 g

With the integrand in this form the divergence theorem follows formally by integrat-
ing dv,/ox with respect to x and then with respect to y, and dv,/0y with respect to y
and then x. The divergence theorem with the right-hand side in the form ¢ [v.dy — v dx]
is frequently called Stokes’ theorem.

We now integrate both sides of the identity (11.1) over D and apply the divergence
theorem, By definition of the gradient,

gradu - n= ou
on’
the directional derivative of u# in the outward normal direction. (As a matter of fact,
since u is only defined in D and on C, this directional derivative is a one-sided deriva-
tive.)
We obtain

(11.2) fjuvzu dxdy=§ug—gds—ff |grad u|? dxdy
D C D

for any function « having continuous second partial derivatives in D and continuous
first partial derivatives on D + C. The identity (11.2) is called Green’s theorem.
If u is a solution of the problem (10.1), Green’s theorem gives

f J Fudxdy =—§§ f%f:-ds + f f lgrad ul? dxdy.
D C

The left-hand side may be interpreted as the work done by the force F in bringing
the membrance slowly into its equilibrium position. The two terms on the right repre-
sent the work done by forces on the boundary and the potential energy stored in the
membrane, respectively. Similar interpretations can be given in the other applications.

To prove that the problem (10.1) has at most one solution, we apply the above iden-
tity to the difference v = u, — u. between two solutions of the problem (10.1). The
function v satisfies the same equations, but with = f= 0. Then

(11.3) ”|gradv|2 dxdy—”[( ) )]dxdy 0.

That is, no energy is stored. Since the integrand in (11.3) is nonnegative, we conclude
as before that it must be identically zero. From this it follows that v is a constant.
Since v=0o0n C, v=u; — u: = 0, which proves the uniqueness.

If, as in the case of heat flux, we divide the boundary C into one or more components
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C, where u is given and the remainder C, where du/on = 0, the uniqueness problem
becomes

Viv=10 in D,
(11.4) v=20 on C,,
avion=10 on (..

In this case vov/on =0 all over C and, hence, we still find (11.3). We again conclude
that v is a constant. This constant must then be zero, unless there is no part C; where
u is given. In this case, that is, when only ou/dr is given on C, two solutions may differ
by any constant.

EXERCISES
1. Show that the three-dimensional precblem
Vi = axz+~-»+gz":j —F(x,y,z) in D,
u=f on C,

where C is a closed surface and D its interior, has at most one solution.
2. Show that if C is a piecewise continuously differentiable closed curve bounding D, the

problem

Viu=—F(x,y) in D,
u =f on C],
ou

5-+au—0 on C.,

where C; is a part of C and C; the remainder, and where « is a positive constant, has at most
one solution. (This problem corresponds to attaching an elastic support with spring constant «
to the part C; of the boundary of the membrane.)

3. Show that the problem

Lou ,ou 2
ax( ) + ay(e y) 0 for 2+y*<1
u= xz for 2+ y*=

has at most one solution.
HINT: Use the divergence theorem to derive an energy identity.
4. Show that the problem

i 3 i 2 — Xy —
ax[(1+xz)a] a[(1+x2+ yau ] eu=1 for @+ <2
u=el for x*+y?=2

has at most one solution.
5. Show that if the operator

d d du d
Lla) = 2 a0 )%+ B, )5 + 2 Bae, ) B+ Cx, 0]
is elliptic, then the problem
Llu]l =—F in D
u=f on C

has at most one solution.
HINT: Apply the divergence theorem to uL[u], and show that the integrand of the resulting
integral is nonnegative (if A > 0) by applying the transformation (8.8) at any particular point.
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12. The Maximum Principle.

We have proved the uniqueness of solutions of Poisson’s equation by using the law
of conservation of energy. We shall now prove a property of solutions of Poisson’s and
many other elliptic equations, which gives not only uniqueness but also continuity with
respect to the data. This property is particularly useful in approximating the solution.

Let u be a solution of

(12.1) Viu=—F(x,y) in D,

and suppose that F < 0 in D. Let # be continuous on D + C. Then it attains its maxi-
mum M somehwere on D + C. Suppose it does so at a point (xo, ¥o) in D. By elemen-
tary calculus we know that

u_ ou__

ax oy ’

*u u

—_—=< —_=

axz 09 ay2 0 a‘t (x()’ yO) ¢

This means that V2 =< 0 at (x,, yo), which contradicts the fact that F < 0. Therefore
the maximum of # must occur on C.

Thus if u satisfies (12.1) with F < 0 in D and if ¥ = M on C, we find that ¥ = M in
D. This simply means that a strictly downward force at every point of the membrane
cannot produce an upward bulge.

We now wish to extend this conclusion to the case F = 0, so that in particular, it
will apply to a solution of Laplace’s equation. Suppose, then, that

F=0
in (12.1), and that
u=M on C.

We note that the function x2 4+ y¥* has the two properties xZ + y* = 0 and V(x4 y?)
=4 > 0. Then for any ¢ > 0 the function

v=u-+ e(x*+y?)
satisfies
Viv=—(F — 4¢) in D.

Since F = 0 and € > 0, F — 4¢ < 0. By the above considerations v must attain its
maximum on the boundary. Then

vix,y) = max [u+e(x®+y?)]
= M + €R?,

where R is the radius of a circle containing D. (We assume that D is bounded.) Since
u =< v by definition,

u(x,v) = M+ eR?
for any € > 0. Letting € — 0, we find that
ulx,y) =M in D.
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That is, if « is a solution of (12.1) with F = 0, the value of # in D cannot exceed its

maximum on C.
This is called a maximum principle. It states that if no upward force is applied,

a membrane cannot bulge upward.
If u is a solution of Laplace’s equation

Viu =0,

we can apply this principle both to # and to —u. We find that if m = u = M on C, the

same inequality holds in D.
In particular, if « = 0 on C, then # = 0 in D. This is the uniqueness theorem for the
problem (10.1). We also find continuity with respect to the data for the problem

Viu=-—F in D,
u=f on C.

For

—V2[u +i max |F| (x*+ yz)] =0,

and therefore

u+-1-max |F| (4 y?) = maxf—l—-l—R2 max |F|.
4 D C 4 D

It follows that

u= maxf+lR2 max |F|.
c 4 D

Applying the same considerations to —u, we find that
lu(x, y)| = max |f| + le max |F|.
c 4 D

This inequality states that if the data f and F are uniformly small, the same is true of
the solution.

More refined arguments due to E. Hopf show that if ¥ is a nonconstant solution of
(12.1) with F = 0, then at points of C where « attains its maximum, the outward nor-
mal derivative du/on is positive and not zero. In particular, unless « is a constant it
cannot attain its maximum on a part of the boundary where du/dn = 0 is prescribed.
This allows us to prove uniqueness and continuity for the problem where ou/on = 0
on a part C; of the boundary. See R. Courant and D. Hilbert, Methods of Mathematical
Physics, vol. 2, Interscience, 1962, p. 326.

EXERCISES

1. Show that if
d*u

dx*

then u attains its maximum in the interval 0 = x = 1 eitherat x=0orat x= 1.

+A(x)g—;=0 for 0<x<1,
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2. Show that if « is a solution of
Viu + D(x, y) +E( y)—==—-F(x, y) in D
with F < 0, then u cannot attain its maximum at any point of D.
3. Show that if u is a solution of

L{u] = V*u + D(x, y) + E(x, y)a— = in D,

where D and E are uniformly bounded and « is continuous in D+ C, and if u = M on C, then
u=MinD.
HINT: Show that for sufficiently large « the function €< satisfies

L{e*=] > 0.
4. Show that if
has continuous coefficients and is elliptic in D + C, then any solution u of

Llu]l =

which is continuous in D + C must attain its maximum on C.
HINT: Note the standard form for an elliptic equation. Then show that L[e**] > 0 for « suffi-
ciently large. (Assume that 4 > 0.)

5. Show that a solution u(x, y, z) of

d*u 62 d*u
2, - O " —=+=3
V2u Fyo + + Fy i =0
satisfies a maximum principle.
6. Show that if
o%u 3%u u du | ou
Llu] = A +B 3y +Caz2+Daxay Eaxaz+Fayaz+Gﬁ+Hay+J]§

is elliptic and L{u] = 0, u satisfies a maximum principle.
HINT: Use the definition given in Section 10.
7. Show that if

fx‘;+A(x)d +B(u=0,

with B(x) <O0for0<x<1l,andif ¥(0) =0, u(1) =0, thenu{x) =0for0 =x =1,
HINT: Show that u« cannot have a positive maximum.
8. Show that if & is continuous in D + C and

2
i+ xﬁﬂ—e+uu—o in D,
u=0 on C,

then u = 0in D.
HINT: Show that 4 cannot have a positive maximum in D.
9. Show that if

Llu] = A(x,y)axz+B( Y +C(x,y) +D(x,y) “+E(x, y) +G(x y)u

aay

is elliptic and if A(x, y) > 0 and G (x, y) = 0, then any solution of L[«] =0 in D which is con-
tinuous in D + C and nonpositive on C is also nonpositive in D.
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HINT: First show that if L{v] > 0, v cannot have a positive maximum in D; then note that for
sufficiently large «, L[e**] > 0.

13. The Heat Equation.

We consider the temperature u(x, y, z, t) in a slab of material covering a three-
dimensional domain D bounded by a closed surface C. The material at the point
(x, y, z) has the property that the temperature u is attained by storing the energy
E(x, y, t, u) per unit volume in the form of random molecular motion. It has the fur-
ther property that if # is not constant, heat energy flows in the direction of —grad «
(that is, from hot to cold) with magnitude K{x, y, z, u) |grad u|. (We are assuming here
that the material is isotropic.) The quantity K(x, y, z, u) is called the thermal con-
ductivity of the material.

We write the law of conservation of energy. Let Co be an arbitrary closed surface
with interior D, lying in D. The rate of change of energy in D, must be equal to the
flux of energy into it. That is,

d
(13.1) @ fff E(x,y, z, u(x,y, z, t))dxdydz = ff K(x,y, z, u) grad u-ndS,
Do CO

where n is the unit outward normal vector and dS is the element of area on C,.
The divergence theorem (Gauss’s theorem) states that for any continuously dif-
ferentiable vector field v

ffjdivvdxdydz=ffv-nds.
D() CO

We apply this theorem to the right-hand side of (13.1), and assume that we may
interchange differentiation and integration on the left. This gives

(13.2) f ff [%%f‘[ — div (K grad u)]dxdydz —0
D,

for any D, inside D. We suppose that the integrand is continuous. If there is a point
(xo0, ¥o, 20) in D where the integrand is positive, then the same is true of a sufficiently
small sphere centered at (xo, ¥o, zo). Taking this sphere for D, makes the integrand
positive, thus contradicting (13.2). Therefore the integrand can never be positive, or,
by the same argument, negative. We conclude that it must be zero. That is,

d d .
L (e, v, 2 u(x, v, 2 ) — div [K(x, ¥, 7, ulx, ¥, 2, 1)) grad u] =0.

The quantity dE/du is the specific heat.
If we make the simplifying assumptions that 3E/du and K are constant, and put
k= K/(3E/[du), the equation becomes

au

— 2, —
Y KV2u = 0.

(13.3)

This is known as the heat equation.
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Physically we can expect to prescribe the initial temperature «(x, y, z, 0), and the
temperature on the boundary C as a function of time. Alternatively, we can insulate a
part of the boundary so that du/dn = grad «-n = 0 there, and prescribe u on the re-
mainder of the boundary as well as at r= 0. In either case we are dealing with an initial-
boundary value problem.

The same problem also occurs in a diffusion process, where « represents a concentra-
tion. A concentration is an equilibrium concept, and hence we obtain the equation
(13.3) only if the system is at all times essentially in equilibrium. That is, the rate
of change of ¥ must be slow relative to the time scale of the random motion which pro-
duces equilibrium. Temperature is also an equilibrium concept, so that again (13.3)
only holds if the temperature changes sufficiently slowly. We can expect that, in the
time scale we are using, changes in # are propagated with infinite speed.

If we consider a problem where « is independent of y and z, the heat equation reduces
to

du
(13.4) 3 kax =0.
According to our classification this equation is parabolic. It has the single family of
characteristics + = constant, which corresponds to propagation with infinite speed.

In fact, the equation (13.3) is said to be parabolic, and its characteristics are the
hyperplanes ¢ = constant. More generally, a second-order operator L in n variables

(x1, ..., xn) is said to be parabolic if for each point we can introduce new coordinates
(t, &, &, .. ., &) so that the second derivative part of L at the particular point reduces
to
n 2,
vy J¥
i=2 af i

The fact that the initial surface 1 =0 is characteristic is reflected in the fact that only
u and not du/dt can be specified at #==0. In fact, the initial values of du/d¢ can be found
from those of 4 by means of the differential equation.

We consider the following uniqueness problem: If for some 7> 0

(;—L; —kV*u=0 for (x,y,z) in D for 0 <t<1,
u=10 on C for 0=¢r=1,
u(x,y,2,0)=0 in D,

show that « = 0 for t = 7. (Here D is a three-dimensional domain bounded by the closed
surface C.)
We can prove this property in either of the two ways used for the Laplace equation.
First we multiply the differential equation by « and integrate with respect to x, y,

and z over D, keeping 7 fixed. Using the three-dimensional form of Green’s theorem
(11.2), we have

o= | f [ 55— kv Jady
dtszf 2dxdydz—kff ds+kflf)f1gradu|2dxdydz
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We use the fact that u = 0 on C, and assume that £ > 0. Then we find that

g;fffuz(x, y, Z, t)dxdydz = 0.
D

Since this integral has the value zero at t = 0, we find that
fffuz(x, v, 2, )dxdydz =0 for 0<t=T.
D

The integrand is nonnegative, and we conclude by an argument used previously
that 4 = 0.

The same proof still works if # =0 on a part C, of the boundary, while du/dn =0,
or even dufdn + au = 0, on the remainder of the boundary. (a = 0).

Next we consider the maximum principle. Suppose first that a function v satisfies

%—%*kv2v<0 for (x,y,z) in D 0<1<T,

and that v is continuous on D + C for 0 < = ¢, If v attains its maximum at a point in
D for some 0 < t < t, we must have av/at =0, 32v/ax® < 0, 3%v/dy? < 0, ¢%>v/a® = 0 at
this point. This gives a contradiction, provided £ = 0. If the maximum occurs in D for
t =1, the first condition is replaced by av/at = 0, and we still have a contradiction.
Thus, the maximum of v must occur eitherin D at t=0o0r on C for 0 = ¢ =7, This means
thatifv=Matr=0andonCfor0=<=r=T, thenv=MinDfor0=1=7.

Now consider a solution « of the heat equation

%—l:mkvzu=0 in D for 0=1=7,

with
u=M,att=0 inD andonC for 0=:=<T7
Let
v=u+e(x*+y*+ %) (e>0),
and suppose that C lies in a sphere of radius R. Then

Y =
5, — KV =—6ke <0,

and hence
ux,y,z,t) =v(x,y,2,t) = M+ eR?
for any € > 0. Letting € —* 0, we find that
u=MinDforO0=¢t=7

The same result may be applied to (—u) to show that both the maximum and mini-
mum of u on the cylinder {(x,y, z) on (D +C}, 0 = ¢ =< ¢} lie on its bottom or its side
walls. That is, the material in D cannot get hotter or colder than a temperature either
occurring initially or applied to the walls.
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This fact gives not only uniqueness but also continuity with respect to the data for
the problem

%L; ~ kV*u=F(x,y,2,t) in D,
u(x,y,2,0)=f(x,y,2) in D,

u(x,y,z, ty=g(x,y,2,t) on C.

The problem where du/dn is given instead of u on a portion of C can be handled by
a refinement of the maximum principle, which states that du/érn > 0 at a point on C
where a maximum of « is attained, unless « is constant.

We note that in both proofs the condition £ = 0 is essential. (This case is the physi-
cally interesting one.)

As the example

up(x, y, z, t) = e 3736nt1%t-n gin (4 + 1)7rx sin (4n + )7y sin (4n + 1) 7z

shows, the problem, at least when D is a unit cube, is not properly posed for k£ < 0. For
u, and any number of its derivatives at t = 0 are arbitrarily small for »n sufficiently large,
while u,(3, 3, 3, ) — * as n —>= for any ¢ > 0.

The same example with £ > 0 and ¢ < 0 shows that we cannot determine the temper-
ature at an earlier time from measurements subject to error at t = 0.

EXERCISES
1. Show that a maximum principle holds for solutions of the one-dimensional heat equation
du _ 62—“=0 for 0<x<lI t>0
ot x> ’ ’
2. Show that if
ou  0*u
Y ]‘ax =0 for 0<x <!

and
ou _
ax(oa t) ""Os
the maximumof ufor0=x=Jand0=7=Tmustoccuratr=0oratx=1

HINT: Use reflection as in Section 4.
3. Show that

. d*u
Llu] =57 [A(x Y, t) 4+ 2B(x,, t)a ay+ C(x,y, t)"ayz]
is parabolic if and only if

AE:\?E + 2B—axay + C—“‘

is elliptic. Show that if L is parabolic and A > 0, a solution of L[u] =0for0 <r=T7and (x,y) in D
must attain its maximum either at £ = 0 or on the boundary C of D.
4, Show that a solution of the nonlinear equation

%(x, Y, 2, u(x, y, z, t))%% —div [K(x, y, 2, u(x, y, 2, 1)) grad u] =0

satisfies the same maximum principle as a solution of the heat equation, provided dE/du > 0
and K > 0.
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CHAPTER IV

Separation of Variables
and Fourier Series

14. The Method of Separation of Variables.

So far we have been concerned with questions of uniqueness and continuity. These
could be treated for fairly large classes of problems. We now turn to the question of
the construction of a solution. For this purpose we must restrict our scope considerably.

Since we are dealing with linear problems, we can always use superposition. We can
then hope to find so many solutions of the homogeneous differential equation that any
other solution can be represented as a linear combination of these.

We first consider Laplace’s equation

otv | d%v
(141) ax2+ay2_0-

We look for a very specific type of solution; namely, a product of a function of x
only and a function of y only:

v=X(x)Y(y).
We substitute this function v into the differential equation, and divide by v. This gives
X" Y
? + Y- 0,
or
X'(x) __Y'(y)
14.2 =—
(14.2) X(x) Y

The left-hand side of this equation depends only upon x. The right-hand side is
independent of x. We say that Laplace’s equation (in rectangular coordinates) is
separable.

If we take the partial derivative with respect to x of both sides of the separated
equation, we find that

4rx

dx| X

(Since X"/X depends only on x, the partial derivative ié a total derivative.) It follows
that
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where A is a constant. Then by (14.2)

r_
Y

Thus 4 = X(x)Y(y) is a solution of Laplace’s equation if and only if X and Y satisfy
the two ordinary differential equations

X"+ XX =0

Y'—AY =0

A

{14.3)

for some constant A.

We obtain particular solutions of the partial differential equation (14.1) by solving
the two ordinary differential equations (14.3). For each value of A each of the second
order equations (14.3) has two linearly independent solutions. Their products form
four one-parameter families of solutions of (14.1). They are given by

e=V& cos VIAx, e*YW sin Vax  for A >0,
1, x, y, xy for A =0,
e=VAT cos V—My, eV M ginV—Ay  for A <O.

For most domains D it is a very difficult problem to find a linear combination of these
one-parameter families of solutions which satisfies the right boundary values.

We confine our attention for the moment to the square D: 0 < x < 1,0<y < 1. We
give the equation (14.1) in D and assign v on the boundary. This can be done by putting

vix, 0) =fi(x),
v(l,y) =faly),
vix, 1) =f3(x),
v(0, ¥) = fu(y),

where f1, f2, f3, and f; are given functions.
Since we are dealing with a linear problem, the solution can be found as the sum of

the solution of

?u d*u
(14.4) o T ayr 0,
u(x, 0) = fi(x),
u(l, y) =0,
u(x, 1) =0,
u(0, y) =0,

and three other boundary value problems, in each of which u =0 except on one edge.
It is therefore sufficient to solve problems of this kind.

Since we wish to have ¥ =0 for x =0 and x = 1, we only consider those solutions of
the first equation (14.3) which also satisfy these conditions. We must have

X"+ AX =0,
X0)=X1)=0.

This homogeneous problem always has the trivial solution X = 0, but this is of no
use to us. We are interested in cases where this is not the only solution; that is, where
uniqueness does not hold for the problem (14.5).

If A < 0, the condition X (0) =0 tells us that X (x) must be a multiple of sinh V—\x.

(14.5)
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Since sinh V—\ is never zero, the condition X (1) = 0 shows that this multiple must be

zero. For A = 0, X must be a multiple of x, and the condition X (1) = 0 gives X = 0.

For A > 0, X is a multiple of sin VAx. Then X need not be identically zero if and only if
sin VA =0,

that s, if

(14.6) A = n*m?, where n=1,2,....

We have found an infinite set of discrete values of A for which the problem (14.5)
has a nontrivial solution. These values (14.6) are called the eigenvalues of the problem,
and the functions

(14.7) Xn(x) =sinnmx, n=1,2,..

are the corresponding eigenfunctions.
Having found a sequence of values of A, we can look at the corresponding functions
Y(v). By (14.3) and the homogeneous condition # = 0 at y = 1, we seek solutions of

Y' — n?m?Y =0,
Y(1)=0.

These are easily seen to be multiples of sinh r7(1 — y).
We have constructed the particular solutions

un(x, ¥) = sin nmx sinh nw (1—y),

which satisfy all the homogeneous conditions of the problem (14.4), The same is true
of any finite linear combination. We attempt to represent the solution « of (14.4) as
an infinite series in the functions u,:

u(x,y) = "E_Zl ¢y sin narx sinh nr (1 —y).

We need to determine the coefficients ¢, in such a way that u(x, 0) = fi(x), where
fi(x) is a given function. We must then still check to see whether the convergence of
the series is sufficiently good to ensure the satisfaction of the differential equation

and the homogeneous boundary conditions.
We put y = 0 in each term of the series to obtain the condition

fi(x) = X cn sinh nrr sin nwx.
1
If we let
b, = ¢y sinh nm,

our problem is to determine b;, b2, . . . in such a way that for a given function f;(x)
filx) =3 by sinnmwx.
1

The expansion of an arbitrary function in a series of eigenfunctions is called a Fourier
series. The particular case where the eigenfunctions are all sines is called a Fourier
sine series. We shall deal with such expansions (that is, the determination of the co-
efficients and the question of convergence) in the following sections.
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Other problems in partial differential equations lead to Fourier sine series.
We consider the initial-boundary value problem for the wave equation

d%u 2u _
i ﬁﬁ‘o for 0<x<I/, t>0,
u(x,0)=f(x) for 0=x=]
%(x,0)=0 for 0=x=/|,
u(0, t) =0,

u(l, 1) =0.
We seek solutions of the differential equation of the form v =X (x) T (¢). Substituting
this v in the wave equation, dividing by v, and transposing, we find

T”(t) _ CgX”(x)
T(t) X(x)

The wave equation is separable. By the reasoning we used earlier, we find that both
sides of this equation must equal the same constant A. The homogeneous initial and
boundary conditions give

X"+ A X =0,
X(0)=Xx(l) =0,

T+ AT =0,
T'(0) = 0.

We now find the eigenvalues

n*mc?
A= 2

and the eigenfunctions X, = sin (nmwx/l). Using these values of A, we have

nmc
T,=cos ——l—t

so that we look for a solution of the form

=] . n
u(x, t) =3 b, smn—"lr“’£ cos _,3"_9[_
1
Putting ¢t = 0, we see that we wish to determine the constants b,, b, . . . so that

f(x) =S by sin ﬂ—’l”‘
1
That is, we again seek the Fourier sine series for f(x).

For the heat conduction problem

ou u

Ef_kﬁ_ for 0<x<I, t>0,
u(x, 0) = f(x) for 0=x=1,
u{0, t) =0,

u(l,t) =0,
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we obtain the separated equation

so that
kX" + 22X =0,
X(0)=X(1)=0,
T'+AT=0.
We now have the eigenvalues
A = i’k

with the eigenfunctions sin narx. The particular solutions are
Un = ™"kt gin nmrx,

and we seek a solution in the form
u(x, t) =2 by e sin nwx.
1
Putting ¢t = 0, we find that we again must determine b,, bz, . . . so that

flx) = § bn sin nwx.

In all these cases we not only must find the coefficients b,, but justify the solution
u(x, t). That is, we must show that the limit u(x, ¢) of the series satisfies the differen-
tial equations and all the initial and boundary conditions.

The fact that the eigenfunctions are all sin nmx comes from the boundary condi-
tions u = 0. If, for instance, we put du/dx = 0 at x = 0 and x = 1 in any of our three
problems, the eigenvalue problem for X (x) becomes one of the form

X'+ 21X =0,
X(0)=x'(1) =0.

We now find the eigenvalues
A = n?m?, n=0,1,...

Note that n = 0 is added. The corresponding eigenfunctions are X, = cos nwx. Our
expansion problem then becomes one of Fourier cosine series.
If the series

flx) = § by sin narx
1

is considered for all values of x rather than just for 0 = x = 1, it is an odd periodic

function of period 2. Correspondingly, the solution «(x, ¢) is odd and periodic of period

2 in x. Thus, our expansion in sine series corresponds to the trick mentioned in Sec-

tion 4 of solving problems with # = 0 at x =0 and x = [ by extending the initial values,
., and hence also the solution, as odd periodic functions.
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The cosine series in the case du/dx = 0 at 0 and 1 similarly leads to even periodic
functions.
If we have u = 0 at x = 0 and du/ox = 0 at x = 1, the eigenvalue problem becomes

X'+ A =0,
X(0) =0,
X'(1)=0.

This has the eigenvalues A = (n+ 3)?n%, n=0, 1, . . . with the corresponding eigen-
functions X, = sin (n + 4)mx. The expansion of f(x) into a series of these functions
automatically gives an extension to a function which is odd about x =0 and even about
x=1.
The method of separation of variables is not confined to equations with constant
coefficients. For example, the equation
Pu 5, 0t
o~ ¢ W7a=0
separates into
X)X+ A X =0,
T+ \T = 0.

If we have the boundary conditions ¥ = 0 at x=0 and x = 1, we obtain the eigenvalue
problem

Ax) X"+ XX =0,
X(0)=X(1)=0.

This problem cannot be solved in closed form except for some special functions c(x).
In general, we can approximate the eigenvalues and eigenfunctions, and find Fourier
series for arbitrary functions. (See Chapter VII.)

Whether or not the method of separation of variables can be applied to a particular
problem depends not only on the differential equation but also on the shape of the
boundary and on the form of the boundary conditions. Three things are needed to
apply the method to a problem in two variables x and y:

(a) The differential operator L must be separable. That is, there must be a function
¢(x, y) such that the expression

LIX(x)Y(y)]
d(x, y) X (x)Y (y)

is a sum of a function of x only and a function of y only.

(b) All initial and boundary conditions must be on lines x = constant and y =
constantt.

(¢) The linear operators defining the boundary conditions at x = constant must
involve no partial derivatives of u with respect to y, and their coefficients must be inde-
pendent of y. Those at y = constant must involve no partial derivatives of u with respect
to x, and their coefficients must be independent of x.

T However, as we shall see later, the two variables need not be rectangular coordinates. This means that we
can treat some problems on regions other than rectangles. Also, one or more of the boundaries may be “at
infinity.”
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Any of these conditions is easily violated. Thus the operator

_®u , u | Fu

Liu] = ax? + oxdy  oy*
violates (a). If
_ Pu | Fu
Llul = ax* = ay*

and the domain D is not a rectangle with sides paralle] to the x and y axes, (b} is violated.
Finally, if we have Laplace’s equations on a square but the boundary condition

ou  ou

ax + 5‘)‘; =(
at x = 0, then (c) is violated. Also, if # = 0 on part of the line x = 0 and du/ox = 0 on
another part, (c) is violated. Such conditions do occur in practice.

We see, then, that the method of separation of variables can only be applied to a
special class of problems. However, this class contains many problems of physical
interest, so that a study of the expansion problems created by the method is well
justified.

EXERCISES

1. Reduce to two ordinary differential equations, one an eigenvalue problem, the other having
one initial condition, and find the particular solutions:

Pu  u _
(a) 32 32 u=20 for 0<x<1, >0,

ou _
E(-x, 0) _0’
u(Q, ) =u(l, 1) =0.

9%u |, ou ,0%u _
(b) 3{3"’1‘23}'*4})}34‘!1——0 for 0<x<1, t>0,
u(x,0) =0,
ou - =
a(O,t)«u(l,t) 0.
Pu , d%u , ou _
(C)é—F+ay2+ay u= for a<x<b, 0<y<l,
u(a,y) =0,
u(b,y) =0,
u(x,0) =0
u _ u
(d ot tax2 u==90 for 0<x<1, >0,
u(0, 1) =0, )
u(l, 1) =
du  d*u du _
(e) Frimiey: Zax—O for 1<x<2, t>0,
u(l, ) =0,
u(2,1) =0.
Pu__ u
6y Yo "axz“o for 1 <x<2, t>10,
u(x, 0) =9,
u(l, t) =0,
u(2,1) =0,

HINT: 218 = pia log2,
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b D
) 35“(:“)25?5‘0 for 1<x<2, t>0,
u(x, 0) =90,
u(l, 1) =0,
u2,)=0.
2. Show that if the polar coordinates
r=VET
9=tant¥
X

are introduced in Laplace’s equation, the resulting equation separates. Set up and solve the eigen-
value problem for ©(#), noting that 1 must be periodic of period 27 in 6.
3. Show that the equation
’u , Pu | Pu__

a2 P axay *

oxdy ' 8y: 0

has solutions of the form X(x)Y(y) and find these solutions by applying the separation proc-
ess twice. That is, find an equation for Y"/Y, take the partial derivative with respect to x, and
note that the resulting equation separates.

15. Orthogonality and Least Square Approximation.

We consider the problem of approximating a given function f(x) in an interval
N

[a, b] by a sum sy(x) of the form X c.¢n(x) where ¢:1{x), ¢2(x), . . ., dn(x) are fixed
1

functions of x. The word “approximate’ can have a variety of meanings. Normally,
we wish to choose the coefficients ¢, in such a way that the value of sy(x) is near to
that of f(x) for each value of x in the interval [a, b]. In this case we speak of point-
wise approximation.

N
If we have an infinite sequence ¢1, ¢, . . . , if sy(x) = 3 cngpn, and if
1
lim sy(x) = f(x),
N—0
we say that the series X ca¢dn(x) converges to f(x) pointwise (that is, at each point x).
1

If for each € > 0 there is an N, independent of x such that | f(x) — swv(x)| < € for all x

in [a, b], whenever N = N,, we say that the series 3, caga(x) converges uniformly to
1

f(x), or that sy(x) approximates f(x) uniformly.

Pointwise convergence is usually needed in order to compute the value of a solu-
tion by the method of separation of variables. It is, however, much easier to find
coefficients ¢, in such a way that sy(x) only approximates f(x) in the sense of least
squares or, more briefly, in the mean. By this we mean that for some given positive
weight function p(x) the quantity

f: [f(x) — sw(x) Pp(x)dx
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approaches zero as N — «. The smallness of this integral does not imply that sy(x)
is close to f(x) for all x. It does mean that sy(x) is close to f(x) except for a set of
intervals whose total length is small. If

[/}
lim f (f — sw)2pdx = 0

N—o= Ja

we say that the sequence sy(x) converges in the mean to f(x). The above integral is
called the mean-square deviation of sy from f.

We shall consider the problem of approximating f(x) in the sense of least squares
for a restricted class of functions ¢.{x).

We say that two functions ¢ (x) and ¥(x) are orthogonal on the interval (a, b) with
respect to the positive weight function p(x) if

[} sw@ptax=o

For example, the functions ¢(x) = 1 and (x) = x are orthogonal on the interval
(—1, 1) with respect to p(x) = 1, since

1
]. 1-xdx = 0.
-1

If no weight function p(x) is specified, it is understood that p(x) =
We shall deal only with functions ¢:(x), ¢2(x), . . . which are mutually orthogonal
with respect to a fixed positive weight function p{x). That is,

(15.1) [ #noutxIp =0

whenever m # n. As we shall see in Section 36, functions arising from separation of
variables have this property.
Because of the orthogonality relations (15.1) we find by squaring and integrating that

[ 10 =3 caut o)
(15.2)

b N b N b
— f Fodi—2 3 cn J foupdi + 3. ci? f Su2pds.
a n=1 a n=1 a

If we complete the square, the right-hand side becomes

Fbupilx fbupdx
: oo pdx[c" L ?-de} o~ Uf midxl

The coefficients ¢, occur only in the first sum. Since this is a sum of squares, it is
clearly minimized by making all its terms zero; that is, by choosing

f Fwds

(15.3)
f Gn*pdx
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Therefore, this choice of the coefficients ¢, minimizes the left-hand side of (15.2).
We have shown that the coefficients (15.3) give the best approximation to f(x) in the
sense of least squares. These best coefficients are independent of N. This fact is a con-
sequence of the orthogonality of the ¢,(x). The coefficients ¢, given by (15.3) are
called the Fourier coefficients of f(x) with respect to the orthogonal functions ¢,(x).
The series 2 cndn(x) is called the Fourier series of f{x). Since this series may or may

not converge, we cannot write f(x) = X c,pa(x). We use the notation
1

flx) ~ ? Cngpn(x)

simply to denote the fact that the ¢, are the Fourier coefficients defined by (15.3).
We shall investigate the convergence of such series later,

Example. Find the best approximation in the mean to f(x) = x? by a linear combination of
the two orthogonal functions ¢, = 1, ¢» = x on the interval —1 = x = 1.

We have
1
! x2dx
L= —11 = 3
f dx
-1
1
! x2xdx
=l ={).

Ce = 1 =
f xdx
-1

Thus the function s:(x) = % is the best approximation in the sense of least squares on the in-
terval —1 = x = 1 to x® among all first degree polynomials.

[FSTEN

We remark that the formula (15.3) for the Fourier coefficients can be derived directly
if the series X c.¢.(x) converges to f(x) uniformly. For in this case we may multiply
1

the series by ¢n(x)p(x) and integrate from a to b term by term. Because of the ortho-
gonality, all the integrals are zero except when n = m. Therefore

b b
f fmpdx = cm f Pn’pdx,
which gives (15.3).
EXERCISES

1. Show that the functions sin x, sin 2x, sin 3x, . . . are orthogonal on the interval (0, ) with
respect to p(x) =1,

2. Find the Fourier series for f(x) = x on the interval 0 = x = 7 in terms of the functions
¢n = sin nx.

3. Find the Fourier series in terms of ¢, = sin nx of the step function

0 for 0=x= %ﬂ",
flx) =

1 for %’n’<x57'r.

4. Find the best approximation of the form a + bx in the sense of least squares on the interval
—1 = x = 1 to the function f(x) = e*.
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5. Show that the functions 1, sin x, cos x, sin 2x, cos 2x, . . . are orthogonal on the interval
(—m, ) with respecttop = 1.

6. We define the polynomials po(x), p:(x), p2(x), . . . by requiring that p, be a polynomial
of degree n with the coefficient of x” equal to one, and that p,, p1, p2, . . . be orthogonal on the
interval (0, 1) with respect to p(x) = 1. Find po(x), p:(x), and pz(x).

7. Find the polynomial of degree 2 which best approximates sin x on the interval (0, 1) in
the sense of least squares with p(x) = 1.

HINT: Use the results of Exercise 6.

8. We define the polynomials To(x), T:(x), T2(x), . . . by the following properties: (a) they
are orthogonal with respect to the weight function p = (I — x2)~V2 on the interval =1 < x < 1;
(b) T.is of degree n; (¢) T(1) = 1. Show that this determines the T, and verify that the functions

To(x)=cos (ncos!x)

satisfy the conditions. (The T, are called Tchebysheff polynomials.)

16. Completeness and the Parseval Equation.

By substituting the Fourier coefficients (15.3) in (15.2), we see that

b N b v b
(16.1) [ [fx) = X cuax) Pplx)dr = f fiods— 3 f butods.

Since the left-hand side is nonnegative, we have

N b b
(16.2) 2 ot f dnZpdx = f f*pdx
1 a a

for any N. This is called Bessel’s inequality. The sum on the left is nondecreasing in N
and is bounded above by [ f2pdx. Therefore, it converges if we know that [ f%pdx is
finite. We may allow f(x) or p(x) to be discontinuous or even infinite at some points
as long as this integral (possibly defined as an improper integral) is finite.

The limit of the sum as N — « is denoted, as usual, by

% b

p f bn2pdx.

1 a
Bessel’s inequality now becomes

o b b
(16.3) % Co L ¢ pdx = faﬂpdx.

The convergence of the series means, in particular, that its terms approach zero.
Therefore, if f(x) has the property that [ f2pdx is finite, then

- as n — <o,

(16.4) Cn® f: dnpdx = %ﬁg
P

N
If the sequence X cn.d, converges in the mean to f, the left-hand side of (16.1)
1

approaches zero as N — =, Therefore
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e b 4
(16.5) 3 ol J Pn2pdx mf Fpdx.
1 a a
This is called Parseval’s equation. It holds if and only if

lim (f 2 cndn) 2pdx = 0.

N-= Jq
If this limit is zero for every function ffor which f [2pdx is finite, the set of functions
{1, ¢z, . . . } is said to be complete. ’
We note that if the set {¢1, P2, . . . } is complete, if fis continuous and f bﬁpdx
is finite, and if '

f: fobnpdx =0

(/]
for all n, then f = 0. For in this case ¢, = 0 for all n, and (16.5) gives f fpdx=0

which implies f = 0. This property implies that two continuous functions having the
same Fourier coefficients with respect to a complete set of functions must be equal.
For their difference has the Fourier coefficients zero. In other words, any continuous

b
function f(x) for which f f?pdx is finite is completely determined by the denumerable

sequence of its Fourier coefficients with respect to a complete set of functions.
It can also be shown that, conversely, if the set of functions {¢:, ¢, . . . } has the

b

property that f= 0 is the only function with the properties that j f?pdx is finite and that
a

all its Fourier coefficients are zero, then {¢1, ¢z, . . . } is complete.

(/] [/]
Consider now any two functions f(x) and f*(x) such that f fPpdx and J S 2pdx

are finite. We observe that

L) +*(x) 12 = 2[f(x)% + f*(x)*] — [f(x) —f*(x) I*
= 2{f(x)* + f*(x)*].

[/

Therefore, f (f + f*)2%pdx is also finite. Now let ¢, and c¢»* be the Fourier coefficients
a

of fand f*, respectively:

f Snpdx
T sinas
f f*dapdx

Adding these equations, we find that the Fourier coefficients of f(x) + f*(x) are
Ccn + o,
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Suppose now that the set ¢:, ¢z, . . . is complete. Then by Parseval’s equation
/] » b
[[rode=3 e [} gtpax,
a 1 a
b » b
] fPpdx =2 ca** f $n’pdx,
a 1 a

fb (f + f*)2pdx = g {cn + cn*)* jb dn2pdx.

We subtract the first two equations from the third one. Since the series contain only
positive terms, they converge absolutely, and may be subtracted term by term. After
cancelling a factor 2, we have

b o b
(16.6) L fxX)f*(x)p(x)dx = % CnCn* fa PnPpdx.

This is a more general form of Parseval’s equation. It reduces to (16.5) when f(x)

= f*(x).

If we use the definition of ¢,*, the formula (16.6) becomes

(/7 0 b
(16.7) [ fwr@ewdi=3 a [ sutr s
The right-hand side is what one would obtain by multiplying the Fourier series
;, cupn(x) of f(x) by f*(x)p(x) and integrating it term by term. The Parseval equa-
1

tion (16.7) asserts that even though the series may not converge uniformly or, in
fact, may not converge at all for some values of x, this term-by-term integration gives
the correct answer.

We note a particular case of (16.7). Let z be any number in the interval [a, b]. Let
p(x) be such that

J. e

_L for x=¢
f*(x) = {p(x) ’

0 for x>z,

is finite. We let

b
Then clearly J Sf*?pdx is also finite. Equation (16.7) becomes

(16.8) r flx)dx = E J: Cnn(x)dx.

a 1

Thus the indefinite integral of f(x) can be obtained as a convergent series for each z
by term-by-term integration of its Fourier series.
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EXERCISES

1. Find the Fourier series for f(x) = 1 on the interval 0 =< x =< # in terms of ¢, = sin nx. By
integrating this series, find a convergent series for the function g(x) = x on this interval, assuming
that the set {sin nx} is complete.

2. Assuming that the set {sin nx} is complete, find

ud 1
2 BE—1)E

by applying Parseval's equation to the Fourier series for f(x) = 1. Check this with the result
of evaluating the series for x obtained in Exercise 1 at x = .
3. Show that

lim | log x sin nxdx = 0.

n—ro 0

HINT: Use (16.4).

17. The Riemann-Lebesgue Lemma

b
We have shown in (16.4) that if f(x) is any function for which f [?pdx is finite and

if {¢.} is any orthogonal set of functions with respect to the positive weight function
p, then

b
f f¢npdx
(17.1) ,l,iﬂ ——"—b—~—~— = .
\ f ¢n*pdx
a
We give now a slight extension of this result.
Riemann-Lebesgue lemma
b
If ¢pn{x) / \/ f ¢-2pdx is uniformly bounded:
a
(17.2) [60(x)| = K,

[ #totptoas

and if f(x) is such that the (possibly improper) integral

|} r@lewas

is finite, then

f: Joupdx

(17.3) lim e
' \ f batpdx

=0.
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Proof.
We define the truncated function

flx) if [f(x)] =4,
falx) = { it [f(x)] > 4.

Then by the definition of an improper integral

b
tim [ 1fx) = £ lpdx = .
—reh a
Therefore, given an € > 0, we can find an 4 such that

[0 1 = futo o < S5

Then

oseswar [ pupac) |
(17.4) \[f batpdx \ff deZpdx r
for all n.

Furthermore, since |fi1| = A, we have

[} taltox = a [ Vilods = 4 [ flpas,

which is finite. Therefore we find by (17.1) that for n sufficiently large

f" fabupdx

Y, L ’ dn’pdx

Combining this with (17.4), we have

‘ f Jnpdx

\/ ¢>n pdx

for n sufficiently large. This is the meaning of (17.3).

1

< <€,
26

EXERCISE

13
Show that as n — fo x> sin nxdx approaches zero for « > —1, has a finite limit for a =—1,

and approaches +w« for =2 < a < —1.

18. Convergence of the Trigonometric Fourier Series.

The functions 1, cosx, sinx, cos2x, sin2x, . . . are orthogonal on the interval
—7 = x = g with respect to p = 1. If no other functions ¢,(x) are specified, a Fourier
series means an expansion in these functions.
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We note that
f " 12dx = 2,

m m
f cos? nxdx=f sinfnxdx=mw, n=1,2,..
~—

-7

Therefore, if we define the coefficients

anz;lr- wf(t) cos ntdt, n=0,1,2,...

b, lf" f(t) sinntdt, n=1,2, ..

m J-

(18.1)

the Fourier series of f(x) is

flx) ~ %ao+ a, cosx + by sinx+ as cos 2x + by sin2x + - - -
= %ao + Z (an cos nx + by, sin nx).
1
We shall investigate the convergence of this Fourier series. By (18.1) we have the

partial sum

N

(18.2) sn(x) = %ao + 2 (an cOs nx + b, sin nx)
1

- N

=;1r_f f(z){%+§ (cos nx cos nt + sin nx sin m‘)}dt
—lfﬂ f(t){l+gcos ( —l‘)}dl‘

_7T -7 2 1 e '

To evaluate the sum, we observe that

N N
{% + ? cos ny}sin 3y = %{sin Ty + ? [sin(n+ %)y — sin (n — %)}’]}

L gin (N +1)y.

2
Therefore
1, ¥ cosny— SNV F 1)y
(18.3) p oSy =" Gnty
and
_ 1 sin (N +3){(x—1)
(18.4) sv(x) =5~ f_,, O Gnta—n

If we let 7 = ¢ — x, this formula becomes

_ 1 (== sin (N + )7
sy(x) = el fix+7) Sind7 dr.
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The functions cos nx and sin nx, and therefore sy(x), are periodic of period 27. This
fact makes it natural to extend f(x) outside the interval [—=, 7] as a periodic function
by defining

fix + 2mwn) = f(x) for n=0,=1,x2,....
Then the integrand in the integral for sN(x) is periodic, and the integral is over one
period. Therefore

(18.5) swlx) = 5‘; f_’; Flx+ SN+ 37,

SIlT

Integrating (18.3) from —# to 7 gives

f" sin §N+7)r
2

sin 7[7‘

We multiply this equation by i f(x) and subtract it from (18.5). We find that

(18.6) sw(x) — fx) = f (x 22%f ) Gin (N + $)rdr.

The set of functions sin (N + %)r, where N =0, 1,2, ..., is orthogonal and sat-
isfies the conditions of the Riemann-Lebesgue lemma. Therefore if

f fx+17) f(x){d,r

singr
is finite, the right-hand side of (18.6) approaches zero. That is, sy(x) = f(x).
Since |7/sin 37| is bounded, we can replace the above condition by

" kD) —f@,

= Il

(18.7)

This is known as Dini’s test. The Fourier series converges to f(x) at each point where
it holds.

If f(¢) is absolutely integrable, that is, if f " [f(¢)|dt is finite, this condition is cer-

tainly satisfied if f(¢) has a derivative at x. It is also satisfied if f is Héolder continuous
at x; that is, if there are positive constants M and a such that

) —f(x)| = Mly — x|

forall -w =y = 7.

We have shown that if f(x) is absolutely integrable, its Fourier series converges to
f(x) at those points where f is also Holder continuous or differentiable. (It may converge
to f(x) at some points and not at others,)

The Fourier series may actually diverge at points where f(x) is continuous, provided
(18.7) is violated. [See E. C. Titchmarsh, The Theory of Functions, Oxford, 1939.
p. 416.]

If the function f is discontinuous at x, but has the limits f(x + 0) and f(x — 0) from
the right and left, respectively, we may proceed as follows. Integrating (18.3) from
—qr to 0 and from O to 7 gives



80 Separation of Variables and Fourier Series CHAP. 1V

1n§N+z)—r

sin ‘g'r

=1 j’ smfN+~%!rd

sin 27'

NI'— S

We multiply the first of these by po f(x — 0) and the second by 711_ f(x+ 0), and subtract
them from (18.5). Then we have

s6(x) = 3[flx +0) +f(x = 0)]
=L [" Far D) ZSEZD) Gy (N + e

Sln_'r
277[ f("“:m_,r”()) sin (N + 4)rdr
— 5 [Pt St DS 1) STEZD) Gin (N + e

In this way we obtain the improved Dini test: If

f«r fr+1) —flx+0) +flx=7) =fx=0)| , _
0 T ’

(18.8)

then
lim sy(x) = 3[f0x + 0) +fx = 0)].

That is, the Fourier series converges to the average of the left and right limits.

The condition (18.8) implies that the limits must be approached sufficiently rapidly.
If fis absolutely integrable, a sufficient condition is that f have a uniformly bounded
derivative in an interval (x — €, x + €) except at x. A weaker sufficient condition is that

f(x + 1) —f(x +0)| = Mre,
fx = 1) — f(x — 0)] = Mr

for some M and o > 0, and forall 0 < r < €.

EXERCISES

1. Find the Fourier series for

flx) = e~ for -7 <x<m.
2. Find the Fourier series for

flix)=x% for —m<x<m.
3. Find the Fourier series for

f(x)=x for —w<x <.
4. Find the sum of the Fourier series for

flx)y=¢e" for —w<x<w
alx=m
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5. Find the Fourier series for
flx)=sindx for -w <x <.

6. Show that if f(x), extended as a periodic function, is twice continuously differentiable,
its Fourter series converges uniformly. HINT: Apply integration by parts to the formulas (18.1).

19. Uniform Convergence, Schwarz’s Inequality, and Completeness.

We showed in the preceding section that the Fourier series of f(x) converges
to f(x) at each point x where f satisfies the Dini condition (18.7). However, we found
no way of estimating the error made in replacing f(x) by a particular partial sum
svix) .

We did not determine when the convergence is uniform. That is, when, given an
e > 0, we can choose N so large that | f(x) — sy(x)| < € for all x. This is the kind of
approximation that is most useful if we wish to replace the function f{x) by its Fourier
partial sum sy(x) in a computation.

If f(x) has a jump discontinuity at a point x, it cannot be approximated uniformly
by the continuous functions sy(x). For if we take an e less than half the size of the
jump, sy(xo) cannot be within € of both the limiting values f(x, + 0) and f(x, — 0).
We show in this way that the uniform limit of the sequence sy(x) of continuous func-
tions must be continuous. Since sy(—n) = sy(7), the uniform limit f(x) must not only
be continuous but must also have the property that f(~m) = f(ar).

These conditions are necessary but not sufficient to insure that the Fourier series
converges to f(x) uniformly. We consider now a sufficient condition.

Let f(x) be a continuous periodic function of period 2. Let its derivative f(x)
be continuous except possibly at a finite number of points, where it may not be de-

fined. The function f'(x) need not be bounded, but we require that f " f%dx, possibly

defined as an improper integral, be finite. Furthermore, we require that the integra-
tion formula

) =f-m = [ £ (@rde

hold for all x.
Let the Fourier series of f(x) be

1 L ]
(19.1) flx) ~ 5do 2 (an cos nx + b, sin nx).
1

We consider the Fourier series of f' (x). Integrating by parts, we find

;1; " £'(x) cos nxdx=;1;f(x) cos nxT +2 f" F(x) sin nxdx = nbn,

since f(—m) = f(7r). Also

‘11; f_: f'(x) sin nxdx =;1;f(x) sin nx];r -% f,, f(x) cos nxdx = —nan.
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Thus

(19.2) f'(x) ~ X (nby, cos nx — na, sin nx).
1

This is precisely what would be obtained by differentiating the Fourier series of
f(x) term by term. Thus, even though the Fourier series of f’'(x) may not converge
uniformly or even converge at all, it can still be obtained by differentiating the Fourier
series of f(x) term by term, provided the hypotheses on the preceding page are satisfied.

Bessel’s inequality (16.3) shows that

0 1 v
(19.3) S r¥(an? + ba) = — f f2dx.
1 -7

In particular, the series on the left converges.

We shall now show that the Fourier series for f(x) converges uniformly. For this
purpose we first prove an inequality known as Schwarz’s inequality.

Let ¢ and d be any real numbers, and « any positive number. Then

led| = l[uzc2 —{w]—d2 — (a[cl — ll.dl)z]
2 o o

1 1
-l 2.2 — d2
—z{ac +a2d}.

We consider two sequences of numbers ¢, and d,, and apply the above inequality to
each term of a sum of products c,d..

N N 1 N 1 N
M+ 2

n=M+1

(19.4)

M+1 o? pi1

for any positive number «. We suppose for the moment that
N
2 2 #0,
M+1
and let
N N 1/2
a2:{ 2 dn2 2 Cn_z} .
M+1 M+1

Then the inequality (19.4) becomes

N N e (N 1/2
(19.5) Y Cpdy| = { > cnz} {E d,ﬁ} .
M+1 M+1 M+1
If
N
Z c.t=0,
M+1

all the c, are zero and this inequality still holds. The inequality (19.5) is Schwarz’s
inequality for finite sums. If we deal with infinite series, (19.5) shows that if Z¢,? and
2d,? converge, the same is true for Zc.d,. For the right-hand side can be made less
than any given € > 0 by choosing M and N sufficiently large. Taking limits as N — o,
and putting M = 0, we obtain
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o 2 (= 1/2
={zae)" {zae]"
1 1

This is Schwarz’s inequality for infinite series.
We now consider a difference of partial sums of the Fourier series for f(x).

N
sv(x) —smu(x) = X (an cosnx+ b, sin nx).
M+1

2 Cndn
1

(19.6)

We consider this as a sum of products of corresponding elements of two sequences,
namely the sequence

(M+ 1)(1M+1, (M+ 1)bM+1, (M+ 2)61M+2, v e ey NaN, NbN
and the sequence

cos(M+Dx sin(M+1)x  sinNx
M+1 ’ M+1 N

Then Schwarz’s inequality and (19.3) give the inequality

N vz (N2
[sn(x) — su(x)] = { S n?(a.? + bnz)} { > }
M+1

M+1 nz

1 (= 2y 12 g [ )1/2
= {— ! -
{17 J_"f x} {M+1 n2} )

Since X 1/n? converges, we can find for any € > 0 an N. independent of x such that
1

for N=M = N,

(19.7)

|sw(x) — su{x)| <e.

This means that the Fourier series of f(x) converges uniformly. We must still show
that its limit is f{x). By the results of the preceding section this is true if f(x) is Holder
continuous.

If we apply the inequality

led| = %{azcz + &1—2d2}
to any two functions f(x) and g(x), we have
1 1
702(x)] = 5]atf(0)? + 5o (02,

We integrate both sides of this inequality over some interval x; < x < x», keeping «
fixed. We find

s f;‘f f(x)g(x)| dx = %{oﬁ f;‘f frdx+ f;‘f gzdx}.

f;‘j fx)g(x)dx

If J;fz fidx # 0, we let
1

g _ )} (X2 o X2 1z
o m{fxl gdx/ xlf“‘dx}
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to obtain

(19.8) } fx"f f(x)g(x)dx) < { ];‘2 fzdx}”z { f - gzdx}llz.

x
If ;2 f?dx =0, then ;2 fegdx =0, and the inequality is still true.
1

The inequality (19.8) is Schwarz’s inequality for integrals. It holds for any two func-
tions for which the integrals on the right are finite.
We now return to our periodic function f{x) with f " f'*dx finite. We replace f(x)

by f'(x) and g(x) by 1 in (19.8) to obtain
FGe2) = fln) | = | |7 ()
< b=l { [l
=pu—xl"{ [ roral”

provided |x; — x| < 2. Thus f(x) is Holder continuous with exponent = 3. There-
fore its Fourier series converges to f(x).
We have thus shown that if f(x) is continuous for —7 < x =< 7, f(—n) = f(7r), and

J’ " f'"*dx is finite, then the Fourler series of f(x) converges to f(x) uniformly.

Example. The Fourier series

1_{__4_% cas (2k— Dx
2 mis (2k—1)F

of f(x) = |x| clearly converges uniformly. In this case

vy -1 for —mr<x<0,
f(x)_{l for 0<x<m,

mw X
which is discontiftuous. f f'%dx is finite. Note that df/dx does not exist at x = 0.
-

Uniform convergence implies convergence in the mean. For if N is chosen so large
that | f(x) — sy{x)| < Ve/2mr for all x, then

[ 170 = st dx < e

In particular, then, if f(x) is continuous and f f'%dx is finite, the Fourier series of
Sflx) converges to f{x) in the mean. We shall now show that the Fourier series con-
verges to f(x) in the mean whenever f fdx is finite, so that the set {1, cos x, sin x,
cos 2x, . . . } is complete.

If f(x) is any function such that only f " f?dx is finite, we can for any given € > 0
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find a continuous piecewise continuously differentiable function fi(x) such that £’ (x)
is bounded, and

|| = < ge.

For example if f(x) is continuous except at a finite number of points, we may take
f« equal to f except on sufficiently small intervals containing the points of discontinuity,
where we let it be linear.

Since f " f:"2dx is finite, £.(x) is approximated in the mean by its Fourier partial sums
-

sx(x). Therefore there is an N, such that

4

Recalling the fact that sy{x) gives the best approximation in the mean for f(x) in
terms of sin nx and cos nx with n =< N, we have

f,,, (f—su)dx = fﬁ (f — §x)%dx
xf (f=fe+Fo—sx)%dx

= [ pU=fr+ 20 - 507
< € f_OI' N > N..

fﬂ (fe — sy)2dx < le for N > N..

This means that sy(x) converges to f(x) in the mean for any f(x) with f i f2dx finite.

We have thus shown that the set {1, cosx, sinx, cos2x, sin2x, . .. } is complete
on the interval —7 = x = 7.

In particular we have Parseval’s equation (16.6). That is, if

flx) ~ %ao + = [an, cos nx + b, sin nx],
1

(2]

fE(x) ~ %ao* + Z[a,* cos nx + b,* sinnx],
1

then
(19.9) f " O () dx = w[%aoao* + 3 (auant+ bnbn*)].
— n=1
Example. If we take
flx) =x,
f*(x) =2,

we have

flx) ~—2 § ilriﬁ sin #x,
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f*(x) ~—2 ﬁ? (%—%)(——1)" sin nx.

Parseval’s equation gives the identity
2”5 j xtdx —47r§ 1(1:’2—-6"")

If f is continnous with f(—r) = f(w) and [f'%dx finite, we can apply Parseval’s
equation to f’ to obtain

nt (at+ b)) = 1 fﬂ f2dx.
1 m J-n
Then for any M
% " M
S r2al+ bd) = J' Frdx—3 n(ad + b).
M+1 T )= 1

By Parseval’s equation applied to f(x) = x, we have
« 1
276
If we let N — o in the first inequality in (19.7) we obtain a bound for the error made
in approximating f{x) by its Fourier partial sum sy (x):

M T M2
(19.10) [f(x) — su(x)] = {»] frde— nt(at + b 2)} {E 5 ;ﬁ}
Example. Let f(x) = |x|. Then ﬁr f'%dx = 2m, and
T 4 Jcos(2k—1)x
fo) =52 @k —1e
Taking M = 2, we have (note that a; = b, = 0)

T_ 4 161** (#* 1 _
'lxl—[i—;cosx] {2—"9} {?_1_2} =0.39.

The actual maximum error occurs at x = ¢ and x = =+, and is equal to 0.30.

Putting M = 0 and N = = in (19.7) gives a bound for the deviation at any point of
f(x) from its mean value:

10 -5 [ sede| = {5 [ rr@al”

This inequality is sharp. That is, equality is actually attained for any given point x,
when f(x) is the function

(19.11)

flx) = (70— |x0— x|)? —gﬂz.

EXERCISES

1. Find the Fourier series for f(x) = x4, Find a bound for the error made in replacing x* by
the first three terms of this series.
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2. Find the Fourier series for sinh x. Prove that this series does not converge uniformly for
~-TEX=T.

3. Find a number N such that the partial sum sy(x) of the Fourier series for f(x) = |x| approxi-
mates f(x) with an error of at most 0.1.

4. Show that if p(x) = 0 for —7 = x = 7,

fﬂn— p{X)f(x)}f*(x)dx = {fpfzdx}m {jpf*zdx}uz

for any two functions f and f* such that the right-hand side is finite.
5. Show that the Fourier series of f(x) = x does not converge uniformly. Compare the
graphs of f(x) and sz (x).

20. Sine and Cosine Series.

As we saw in Section 14, the method of separation of variables often leads to ex-
pansions in sine series or cosine series. We shall now derive convergence theorems
for such series from those for Fourier series.

1t follows from the definition (18.1) of the Fourier coefficients that if f{(x) is odd,
that is, if

fl=x) =—f(x),
then a, = 0 for all values of n. In this case the Fourier series for f(x) reduces to a
sine series:
f(x) ~ % by sin nx,
1
Moreover,

(20.1) b, = 2 fr f(x) sin nxdx.
m™ Jo

If we are given a function f(x) only on the interval 0 = x = 7, we can expand it in
a sine series. The functions sin x, sin 2x, . . . are easily seen to be orthogonal on
this interval. The b, given by (20.1) represent the Fourier coefficients for f(x) in terms

of these functions. We extend the function f(x) to the interval [—#, 7] by defining it

to be an odd function. Then the series X b, sin nx is the Fourier series of the extended
1

k12
function. If f |fldx is finite, the results of Section 18 show that the sine series at
0

X = X, converges to f(x,) if fis continuous and differentiable at x,. By Section 19 the
Parseval equation holds. It follows that the functions sin nx are complete on the in-
terval (0, 7). Moreover, if f(x), extended as an odd periodic function, is continuous

w
and f f'*dx is finite, the preceding section shows that its sine series converges to f(x)
0

uniformly. This will be the case if f(x) is continuous, f " f'%dx is finite, and f(0) =
0
flr) = 0.
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In a similar manner, by extending f(x) as an even function we find that the set of
orthogonal functions {1, cos x, cos 2x, . . .} is complete on the interval 0 = x = 7. If

w
f(x) is continuous and f f'%dx is finite, we find that the cosine series
0

=]

1
=ao + 2 a, COS nx
2 1

with
2 T
(20.2) an=— L f(x) cos nxdx

converges uniformly to f(x). Under the weaker hypothesis that j ! | fldx is finite, the
0

cosine series converges to f(x) at points xo where f(x) is continuous and differentiable.

EXERCISES
1. Find the sine and cosine series of
flx)=x for 0=x=m.
2. Find the sine and cosine series of
f(x) = x(m—x) for 0=<x=<m,

3. Show that the set {sin$x, sin $x, sin$x, . . .} is complete on the interval (0, 7).
HINT: Let x = 2t and extend f(2¢) suitably to the interval —m < ¢ < .

4. Using Parseval’s equation, eXpress L i f2dx in terms of its Fourier sine coefficients (20.1).

21. Change of Scale.

We have shown that the set of functions {cos nx, sin nx} is orthogonal and complete
on the interval —w = x = 7. Suppose we are given a function f(x) on any interval
a=x=b.

We introduce the new variable

27r(x _ %(a + b))
(21.1) ¥— .

In other words, we define the new coordinate x to be the distance to the right of the
point at the center of the interval measured with the unit of length (b — a)/27. Then
the interval ¢ = x =< b becomes <7 = x = .
Solving the linear transformation (21.1) for x, we have
b

(21.2) x=2 %%+ 2(a+ b).

The function f(x) gives rise to the function
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b—a-—

_ 1
(21.3) F3) sf(—2~7r—~x+§(a+ b))

on the interval —7 < X =< 7 in the new coordinate system.
This function has the Fourier series

(21.4) F(x) ~ %ao 4 3 (an cos nx + b, sin nx),
1
where
an=L " F&) cos ndz,

(21.5) T
b= 1 f F(%) sin nxdx.
(g -
The Fourier series converges to F(x) in the mean if f " F (x)%dx is finite, and uniformly

if F(x) is continuous, F(—#) = F(w), and F'3dx is finite.

Returning to the variable x by means of (21.1), we find the expansion

(21.6)  f(0) ~ 3a0+3 [an cos T (x — 3(a + B)) + bn sin 2 (x — 3 (a + b))},
where
b
T f f(x) cos bzf”a(x —3a+ b))dx,
(21.7) “

2 . 2enf 1
bn—b_aLf(x) smb__a(x 2(a+b))dx.
2mn
b—a

(The functions cos Z‘ tna(x — %(a + b)) and sin

thogonal on the interval a = x < b).
We immediately find that the Fourier series converges to f(x) in the mean if

(x - %(a + b)) are clearly or-

b
f f(x)%dx is finite, and that it converges uniformly if f(x) is continuous, f(») = f(a),

b
and f f%dx < =, The convergence theorems of Section 18 all hold.

In the same manner, we find that f(x) can be expanded in a sine series:

> . TR
f(x) Ell b, Smb — a(x— a),
where

2 b . TTh
b"_b-—aL f(x) smb&a(x—a)dx,

Or a cosine series

1 - ™
flx)y ~ 340+ 21) Gn COS 7 a(x—— al,
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where

b E a fbf(x) cos b"i”a(x— a)dx.

An =

All the convergence theorems still hold.

Linear transformations of the form (21.1) can be used to normalize the constants in
various problems connected with partial differential equations.

Consider for instance the vibrating string problem

2 2
(21.8) ‘;—r‘;— czg—x%= F(x,1) for a<x<b,t>0,
u(x, 0) = f(x) for a=x=b,
%’f(x, 0) = g(x) for a=<x=b,

u(aa t) =f3(t)a
u(b, t) = fu(1)

on an interval a = x < b, with a constant ¢. We introduce the new variables

_ _x—a
s
. ¢

F=p—t.

That is, we measure the new x-coordinate from x = g and take the length of the string

b — a as the unit of length. We take the quantity (b— a)/c as the unit of time. Then if
we define

7D = ula+ (b—a)F 2= %)
FG. 1) = i”—;“—)zp(a +(b—a)z 2 K “;),
Fx) = fla+ (b — a)3),

P be(a+ (b= a)m),
R0 = (%),

g{x) =

7 = A(24),
C
the problem becomes
(21.9) Su_TU_F®D for 0<X<1, 7>0,
u{x, 0) = f(x) for 0=x=1,
3—‘?‘(3, 0) = 2(x) for 0=%=1,

u(0, 1) = f(1),
u(1,1) = (0.
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In order to solve the problem (21.8) it is thus sufficient to solve the same problem on
the standard interval 0 =< x < 1 with ¢ = 1. If we took the unit of length (b — a)/«# and
the unit of time (b — a)/7c, we would obtain the interval 0 =< x = 7, and c= 1.

The above process of scaling is useful in obtaining experimental information from
scale models. If we wish to determine the axial motion of a cylindrical beam of a cer-
tain length [ with Young’s modulus E and linear density p under a given axial force
F(x, t), we need only impose the force

INVNp E' (I_ 1 |pE'-
() & 5 ew)
at X at time 7 on an experimental model of length !’ with Young’s modulus E’ and den-

sity p’. Then the two problems reduce to the same standard problem (21.9). If the
measured motion of the model is u(x, 7), the motion of the beam will be

AU T Jp'EN,
u(x, t)mu(lx,l pE't>

Considerations of this kind are often called dimensional analysis.
Other problems may be scaled similarly. The heat equation
u_

ar Ko =0

on an interval of length / may be reduced to one on the interval 0 < x < 7 withk=1
by introducing the new unit of length //7 and the new unit of time 2/#%k.
It is not always possible to normalize all the constants of a problem. Consider, for
instance, the Laplace equation
Fu du_

axz | 3y 0

on the rectangle a < x < b, c < y < d. If we let

- _ w(x—a)

YT =g

— _awly—oc)

y “h—a
we obtain Laplace’s equation

s Pu_,

ox?  dy?

on the rectangle 0 < x < 7, 0 <y < w(d~—c)/(b— a). We have chosen the unit of
length (b — a)/«. The new problem still contains the constant (d — c¢)/(b — a). If we
eliminate this constant by choosing a different unit of length (d — ¢)/ in the y-direction,
that is,

- w(x—a)
= Tp—a
§=7T(y_C)

d—c ’
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the domain becomes a square, but the differential equation becomes
d—c\? 0*u , 8*u _
(b——a) a§2+a§2_0’

so that the constant (d — ¢)/(b — a) still appears in the problem. The difficulty may

be summarized by stating that (d — ¢)/(b — a) is dimensionless (that is, it is a ratio
of two lengths), and therefore is invariant under a change of scale.

EXERCISES

1. Reduce the problem (5.3) to the standard form (21.9), solve this problem by means of
(5.2), and show that the solution coincides with the solution (5.2) of (5.3).
2. If the value at (0, 0) of the solution of
9% 92
a—;;+5&—f=x2+y2 for —1<x<l, —1<y<l,
u=0 for x==1, or y==1
is found to be
u(0,0) =a,

find the value at (2, 3) of the solution of

2 2
8—3+§——‘§=(x—2)2+(y*3)2 for 0<x<4, 1<y<S5$,

axt = dy
v=20 for x—~2=%2, or y—3==2.

3. A bar of length / is initially at temperature To. At time zero its ends are put at temperature
7., and the temperature at its center at time ¢ is found to be f(¢).

If a bar of the same material (that is, with the same k) of length { is initially at temperature
T,, and its ends are reduced to T; at time # = 0, find the temperature at its center as a function of
time. HINT: Observe that any constant is a solution of the heat equation.

4. It is found that it takes two hours to cook a five-pound roast initially at 40° in an oven at
350° until a meat thermometer at its center shows that it is done. How long does it take to cook
a ten-pound roast of the same shape under the same conditions? (Assume that the temperature
is governed by the heat equation (13.3).)

5. Show that the differential equation

2 2
g—tf - a%';' - chfé{ =0,

where a and ¢ are constants can be reduced to the same equation witha=c=1.
b
6. Express f f*dx in terms of the Fourier coefficients (21.7). (That is, write the Parseval
a

equation for an arbitrary interval.)

22. The Heat Equation.

We apply separation of variables to the initial-boundary value problem for the heat
equation
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2
(22.1) %——k—gﬁ=0 for 0<x<m, >0,
u(0,1 =0,
u(m, t) =0,
u(x, 0) = f(x)

That is, we seek to express u(x, 1) in a series of the form

(22.2) u(x, t) =$ bn.e ™kt sin nx.

Formally putting 7 = 0 in this series, we find that the initial condition becomes
(22.3) flx) = %o b, sin nx.

Therefore we let b, be the Fourier coefficient
2 (= )
(22.4) bn,= ;J f(x) sin nxdx
o

of the sine series for f(x).

It is easily seen that each term of the series (22.2) satisfies the heat equation. There-
fore, if the series (22.2) converges and can be differentiated term by term, « will satisfy
this equation.

We first note that if we define

=2 ["1rwla,

the coefficients b, are uniformly bounded. Namely, |b.| = c. Therefore the series in
(22.2) is dominated by (that is, each of its terms is bounded in absolute value by the
corresponding term of)

[+:]
3, ce~"kt,
1

This series converges for all 1 > 0, and uniformly in x and ¢ for ¢ = ¢, with any posi-
tive constant f,. Therefore the same is true of the series for u(x, 7).

The series £ (—n%k)b,e~"*t sin nx obtained by differentiating the series for # with
respect to ¢ term by term is dominated by the series X ckn?e-"*** which again converges
uniformly in ¢ for ¢ = 1, with any # > 0. Therefore du/dt exists for any ¢ > 0 and can be
obtained by term-by-term differentiation. Similarly, the series for du/dx and 9%u/ox? are
dominated by X cn?e~"* and therefore converge uniformly in x for any ¢ > 0. Thus

O _ U Sy ekt o (2 4 p2) —
F» kax2 ?bne sin nx(—n%k + n?k) = 0.

This means that the function u(x, ) defined by (22.2) satisfies the heat equation for
t > 0,0 = x = . Moreover, since the sertes converges uniformly in x for > 0, u(x, 1)
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is continuous at x = (0 and x = 7. Hence it satisfies the boundary conditions «(0, ¢)
= y(m, t) = 0 in the sense that lim u(x,?) = Hm u(x, t) =0.
x—0 X

We must still see whether u(x, ¢) is continuous all the way to =0, so that it satisfies
the initial condition u{x, 0) = f(x) in the sense that lim u(x, ) = f(x). For this pur-
i—0

pose we suppose that f(x) is continuous on the interval 0 =< x = &, that f(0) =f(ar) =0,
and that f " f'%dx is finite. Then the Fourier sine series of f(x) converges to f(x) uni-
0

formly.
Let

N
sy(x, 1) =2 bpe~™"* sin nx
1

be the Nth partial sum of the series in (22.2). For any € > 0 there is an N, independent
of x such that

1

|f(x) —sn(x,0)} =<z¢ when N = N..

]

Hence
lsn(x, 0) — su(x, 0)| < e when N = N.and M = N..

The function sy(x, t) — su(x, t) is a solution of the heat equation, and is zero for
x =0 and x = or. Therefore by the maximum principle for the heat equation

[sn(x, 1) —su(x, 1) <€ when N =N.and M = N,

for all 0 = x = 7, t = 0. This means that the sequence sy(x, t) converges uniformly
for 0 = x = 7, t = 0. Since each sy(x, 1) is continuous, the limit function, which we
call u{x, 1), is continuous for 0 = x = 7, t = 0. This shows that u satisfies the initial
and boundary conditions in (22.1).

By continuing the reasoning used above, we can show that u(x, ¢) has continuous
partial derivatives of all orders with respect to x and ¢ for ¢ > 0, even though the
initial values f(x) may have no derivative beyond the first. This means that the process
of heat flow described by the heat equation is a smoothing process.

Similar results are obtained for other boundary conditions. For example, the problem

du 0%u
E_ka_ﬂ—o for 0<x<m, t>0,
u(0,1 =0,
ou _
5}(777 I) - 05
u(x, 0) = f(x)
with f(x) continuously differentiable and f(0) = 0 is solved by
-] . 1
(22.5) u(x, t) =3 cpe-ln-(2)Rkt gin (n — -2-)x,
1
where

Cn = % Lﬂ f(x) sin (n — %)xdx.
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We note that in the solutions (22.2) and (22.5) the variable 7 only occurs in the
product kr. This is simply due to the fact that the scaling 7 = kt replaces k by 1 through-
out the problem.

EXERCISES
1. Solve the problem

u Pu _
a1 kEF—O for O0<x<m, >0,
u(0,t) = u{m, t) =0,

u(x, 0) = sin®x.

2. Solve
du ,Pu_
E_kafﬂo for O0<x<w t>0,
u(0, t) =u(m, t) =0,
u(x, 0) = x(m — x}.
3. Solve
du u
a1 kax2—0 for O<x<mwm, >0,
ou _
30,0 =0,
ou .
Wi, 1) =0,
u(x, 0) = sin x.
4. Solve
ou u
u(a,t) =0,
u(b, t) =0,

ulx, ) =x—a)(b—x)

5. Solve by separation of variables

du _ d*u _
3 axi!+au—0 for 0<x<m, t>0,

u(0,1) =, 1y =,

u(x, 0) = x(m — x).

23. Laplace’s Equation in a Rectangle.
We shall now solve the boundary value problem for Laplace’s equation

Pu | Pu
ax2+ay2“0 for 0<x<m, O<y<A4d,
u(Q,y) =u(m,y) =u(x, 4) =0,

u(x, 0) = f(x).

We seek a solution of the type produced by separation of variables; that is,

(23.1)

(23.2) u{x,y) =% cn sin nx sinh n(4 — y).
1
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If we formally put y = 0 and use the initial condition at y = 0, we find that the ¢, are
to be chosen so that

f(x) = 2 ¢, sin nx sinh nA.
1

We therefore put

by
sinh nA4’

Cn -
where
— f " f(x) sin nxdx
T Jo

is the nth Fourier sine coefficient of f(x). Then (23.2) becomes

&, sinhn(4d—y)
(23.3) ulx,y) = § b =it

sin nx.

Again we find that if ¢ = % Jw | f(x)|dx then |b,] = c.
]

We note that

sinhn(d —y) erd-v) — g-nla-y)

sinh nA4 e — p—nd
1 — e—2n{4-y)
— pAY
I — g2nd
ey
T l—e24

Therefore the series for u(x, y) is dominated by a constant times the series 3 ¢~™.
It converges for y > 0, and uniformly in x and y for y = y, with any positive y,. There-
fore u(x, y) is continuous in x and y for y > 0. In particular, it takes on the boundary
values zero at x = 0, x =7, and y = A continuously.

The series for du/dx, du/dy, 0%u/dx?, and 98%u/dy? are all dominated by a constant
times 3, n%*e~™ and therefore converge uniformly for y = y, with any y, > 0. It follows
that these derivatives of u exist and may be obtained by term-by-term differentiation.
Since each term of the series satisfies Laplace’s equation, the same is true for u(x, y).

We now wish to shown that u(x, y) also is continuous at y =0 and that u(x, 0) = f(x).
For this purpose we make the further assumptions that f(x) is continuous, f(0) = f()

=(), and that f f'?*dx is finite. Then the Fourier sine series converges to f(x) uniformly.
0

We now define

_ ¥ sinhn(4 —y)
vl V) = 2 b

sin nx.

Then snv(x, 0) converges uniformly to f(x). This means that for any € > ( we can find
an N, independent of x such that

Ism(x, 0) —sx(x,0)] <e for M, N = N..
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Clearly sy(x, y) —swv(x,y) =0forx=0, x=m and y =4, and su(x, y) — sy(x, y) is
a solution of Laplace’s equation. Then by the maximum principle for Laplace’s
equation

(23.4) |su(x, ) —sw{x,v)| <€ for M,N=N.,

everywhere in the rectangle 0 < x < 7, 0 = y < A4, This means that the sequence
sy(x,v), and hence the series for u(x, y), converges uniformly for0=x=7,0=y=4.
Since each of its terms is continuous, the limit function «(x, y) is continuous. Putting
y =0, we find

u(x, 0) =§. by sin nx = f(x).

Example. Solve

(23.5) %4»%_ 0 for O<x<m O<y<m,
u(0,y) =ulm y) =u{x, 7) =0,

u(x, 0) =sin’x,

We have
bn=£ﬁ sin® x sinnxdx=—1-fr (1 — cos 2x) sin nxdx

w e wlo
_41=(=)"

=" n =4 for n#12
0 for n=2.

Hence
__83 sinh (24 — 1) (7 — v) i -
uln, ) == % TE=1) (2 — 3) sinh (2% — [z S0 (2k— Dx.

This series clearly converges uniformly for0 = x <= 7,0 =<y < 7.

By the maximum principle
lu(x, ¥) — sv(x, y)| = max |f(x) —sw(x, 0)/.
We can bound the right-hand side as in (19.10) by means of Schwarz’s inequality and
Parseval’s equation. We find the uniform error bound

2w2d N22”2'n'2 ;’11/2

— = }= ' — —— —

lu(x, y) — sw(x, ¥)| {Wﬂf x {lnbn} {6 1 nz} :

This tells us how closely the partial sum sy(x, y) approximates the solution u(x, y).
For instance, if we approximate the solution of the above problem (23.5) by s4(x, ),

we find that

_ [ 8 sinh(r—y) 8 sinh3(m—y) . }
37 31nh1r sift x 157«  sinh 37 sin 3x

| — 12 (ot 1 1 1 1 )12
][ 972 22577} {“6__ "Z_§*T€}
0.

24.

u(x, y)

IA

.h

Hh
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The same bound can also be applied to the solution (22.2) of the heat conduction
problem (22.1). As a matter of fact, all our convergence proofs can be extended to
yield explicit error bounds. In most applications of series solutions such error bounds
are needed. The mere fact that a series converges to the solution does not in itself
mean that a particular partial sum that has been computed is a good approXimation to
the solution.

The more general boundary value problem

2
2 %ﬁo for O<x<m 0<y<Ad,
u(x, 0) = fi(x),
u(m, y) = f2(y),
u(x, A} = fa(x),
M(O, y) :f4(y)

can be treated by solving four problems in each of which all but one of the four func-
tions fi is replaced by zero, and adding the four solutions. Each of these four problems
is done in the same way as the one just treated. Hence we obtain a continuous solu-
tion if all the f; are continuously differentiable and vanish at 0 and .

The last condition, that © must be zero at the corners, is rather artificial. We shall
eliminate it, as well as some of the smoothness conditions on the functions f;, in Section
25.

EXERCISES
1. Solve
2
g;+a =0 for 0<x<B, 0<y<4d,
u(o Y)—U(Bs }’)zu(X,A)z(),
u(x, 0) = f(x).
2. Solve
u |, o%u
ax2+— 0 for 0<x<mwm, O0<y<Ad,
u(0, y) g(y),
u(m,y) =u(x,0) =u(x, A} =0.
3. Solve
Pu . *u
axz+—— 0 for 0<x<ma, 0<y<m,

u('?T y) = u(x’ 77') = u(o, )’) =09
u{x, 0) = x*(w — x).

Find a bound for the error made in approximating u by the partial sum s..
4. Solve

Fu ?u
Pttt L e <
2T 3 0 for O<x<ao, O0<y<l|,

u(x,0) =u(x, 1) =sin’x,
u(0, y) =sinmy,
u(m,y) =
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5. Solve
ax2+_=0 for 0<x<m O<y<m,
u(x,O)
u(x, w) =10

du __ou —

Show that the solution obtained actually satisfies all the conditions of the problem, and find a
bound for the error |u(x, y) — s2(x, y)].

6. Solve
2
gx2 a" =0 for 0<x<l1, O<y<l,
u(x, O)—(l——x)2,
u(x, 1) =0,
ou _
5;(0’);)_0,
u(l, yy=0.

Find a bound for the error |u(x, y) — s2(x, y}|.

7. Solve the problem

2y

ax+gy =0 for 0<x<m, O<y<m,
u(x, 0) =x?

u(x’qr)zxz’

u(0,y) =0,

u(m, y) =2

in terms of a uniformly convergent series by determining constants a, b, ¢, d in such a way that
the boundary values of the harmonic function

vix,y) =u(x,y) — [a+ bx + cy + dxy]
vanish at the four corners, and solving for v by separation of variables.

8. Solve
u 6 N
it oy =0 for O0<x<m 0<y<A4d,
u(0, y)—u(x,A)=0,
au —
5}(7, y) _09
du _
5;(x, 0) = f(x).
9. Solve
*u + +8u 0 fi 0< x < O<y<
Py ax or x<m, y <,
U(X 0) = u(x, 77) = 0’
u(09 y) :0’
u(m, y) =siny.
10. Solve
Pu | u _
5—;2--'[-‘6—?—0 fOI' 0<x+y<1y 0<x“y<1’
u(x$ "‘.X') =05
ulx,1—x)=0,
ulx,x—1)=

u(x, x) = x(l —2x).
HINT: Introduce new coordinates.
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24. Laplace’s Equation in a Circle.

We consider a solution # of Laplace’s equation in the unit circle x* 4+ y* < 1 with
its values given on the boundary x* + y? = 1. It is natural to introduce the polar coor-
dinates r = Vx%+ y? and ¢ = tan~! (y/x). A computation shows that Laplace’s equa-
tion in these coordinates is

u lou 1%
(24.1) 'a—r—z'-i-FEj-i-?W:O.

We seek a solution u(r, 8) of this equation for r < 1 which is continuous for r =< 1
and satisfies

(24.2) u(l, 8) =£(9).

The function f(0) is a given continuously differentiable function which is periodic
of period 27. The solution u(r, #) must also be periodic of period 2 in 6.
We apply separation of variables to (24.1) by seeking solutions of the form R (r)©(6).
Substituting, we have
PR RO

R TR e~ M
where A is a constant. The eigenvalue equation for O is
(24.3) 0"+ 10 =0.

We are interested in functions which are periodic of period 27. We consider (24.3)
in the interval (—w, 7), and pose the boundary conditions

B(—m) — 6(7) =0,
0'(—m) — 0'(7) =0.

(It then follows from (24.3) that 8"(—x) — @"(w) = 0" (—n) — 0" (7)) =+ - - =0.)
It is easily seen that (24.3) has solutions of period 27 if and only if A=#n?, n =0, 1,
2, . ... Corresponding to these eigenvalues n* we have the eigenfunctions cos n6 and
sin nf. There are two eigenfunctions corresponding to each eigenvalue except A = 0.
The eigenvalues A =r2, n=1, 2, ..., are said to be double eigenvalues.
We turn now to the equation for R(r). We have
(24.4) rPR"+ rR' — n*R = 0.
For n = 0 this has the general solution ¢+ blogr. Forn=1,2, ..., the general solu-

tion is ar* + br-". The equation is to be satisfied on the interval 0 < r < 1. In place
of a boundary condition at r = 0 we simply impose the condition that R be finite there.
(Note that r = 0 is a singular point of the equation (24.4).)

We are left with the product solutions r* cos né and r* sin nf. We seek to solve the
problem (24.1), (24.2) by a series

u(r, ) = '21‘61() + % (anr™ cos n@ + b,r" sin nd).

Putting r = 1, we see that the coefficients a, and b, are to be chosen so that



CHAP, 1V 24. Laplace’s Equation in a Circle 101

f8) = —ao + 2 (an cos n@ + b, sin nb).

Therefore a, and b, are to be the Fourier coefficients

an = L[ f((b) cos nedd,

T

(24.5) :
b, = i f(d)) sin node.

We examine the function

(24.6) u(r, 0) = —ao + E r"~% (an cos nd + b, sin nd).

If ¢ =%J’w | f(68)|d®, so that |a.} = ¢, |bx] = ¢, we find that the series for « and its

first and second partial derivatives are dominated by the series X 2cn?r-2. This series
converges uniformly for r = r, for any r, < 1. It follows that u is twice continuously
differentiable for r < 1, and its derivatives may be formed by term-by-term differenti-
ation of its series. Then

1 du

W lou 13w
T

r"(a, cos n@ + b, sin n8) [n(n— 1) + n — n?]

[
Aadial R

so that u(r, 8) is harmonic. (That is, it satisfies Laplace’s equation.)
We now suppose that f(#) is a continuous periodic function with J f'*do finite.

Defining

N
sx(r, 0) = lao + E r*(a, cos né + b, sin nd),

we find that sy (1, 8) converges uniformly to f{8). Then for any € > 0 there is an N inde-
pendent of 8 such that

lsx(1, 0) —su(1, 8)] <€ for M, N > N..

Since sy(r, 8) — su(r, ) satisfies Laplace’s equation for r < 1, it follows from the
maximum principle that |sy(r, ) — su(r, 6)| < € for r = 1. Thus the series for u(r, 6)
converges uniformly for r = 1, Hence u(r, ) is continuous for r = 1. Since u(1, 8)
= f(6), the boundary condition is attained continuously, and u is the solution of our
problem.

Example. Solve

lau 1 6%u
ar2 Yo Trae=0 for r<i,

u(l, ) = cos? 4.
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We find

cos? 9 = % +% cos 26.

Therefore

u(r, 8) = % +%r2 cos 26.

The above convergence proof again leads to a uniform error bound for |u — su|.
The solution (24.6) can be put in the form of an integral by substituting the defini-
tions (24.5) of the Fourier coefficients. The partial sum sy(r, 8) is given by

sn(r, 6) =% f_:f(dl)de + %_ ? rnU:Tf(¢) cos nf cos npdp
+ J:” f(@) sin né sin ndmd)]
=1 [ r@)|3+5 r cosnio—) |das.

For any r < 1 this series converges uniformly, so that we may take the limit as N — o
under the integral. We find

(24.7) u(r, 6) == f_’; f(¢)[% + ? ™ cos n(6 — ¢)]d¢.

To evaluate the series we compute

[P+ 1—2rcos@] X rtcosnd
1

b—-MS

{[r+2 4+ ] cos n® — rrt1[cos (n+ 1)8 + cos (n — 1)6]}

o«

o0 o o0
=3 r*2 cosnf+ 2 r" cos nf — 2, r* cos né — 3 r*+2 cos nb
1 1 2 (1]

=rcos @ — 2.
Then
[r2+l-2rc0s6][%+2r“ cosn6]=%(1—r2),
1
and
1, <., . 1—r2
(24.8) §+§r cos nB“Z[rZ-I—l—Zr cos 6]

Replacing 6 by 8 — ¢ and substituting in (24.7), we find that if []f(6)|d8 is finite,
the series solution (24.6) can be represented as the integral

_1=7 fp)dd
(24.9) u(r, ) = 20 Jp 1+ —2rcos(6—¢)
for r < 1. This is called Poisson’s integral formula.
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It is frequently more convenient (and more accurate) to use this formula rather than
to compute the Fourier coefficients of f{#) and then sum the series (24.6).
The boundary value problem on a circle of radius R

Pu, lou, 1 du_
o rar roaeg?
u(R, 8) = f(8)

can be reduced to the unit circle problem (24.1), (24.2) by means of the change of
scale ¥ = r/R. We immediately find that it has the series solution

0 for r <R,
(24.10)

1 0 n
(24.11) u(r, 8) = o +3 (%) [an cos né + b, sin nd],
1

where a, and b, are the Fourier coefficients of f(#). This series can also be written
in the form (24.9) as

_RE - fld)dd _
(24.12) u(r, 0) ="5-—| FTREZ2/R cos (6= )

for r < R. This is the general form of Poisson’s integral formula.

These formulas again represent a continuous solution when we define u(R, 8)
= f(9) if f(8) is continuous and periodic and [ "*d@ is finite. (The integral is in general
not defined for r = R.)

If we put r =0 in (24.11) or in (24.12), we find that

w0, 0) =5- " is)ds.

That is, the value of u at the center of any circle inside which it is harmonic is equal to
the average of its boundary values. This fact is called the mean-value theorem.

As long as r < R, the formula (24.9) may be differentiated any number of times with
respect to r and 6 or with respect to x and y. Therefore « is infinitely differentiable for
r < R. If u(x, y) is a solution of Laplace’s equation in any domain D, we can surround
any point (xo, yo) of the domain by a circle (x —x0)2 + (y — y0)? = R? which lies in D.
Then u is certainly continuously differentiable on the circle. Hence it may be repre-
sented by Poisson’s formula inside the circle, and is infinitely differentiable there. In
particular, it is infinitely differentiable at the center (x,, ¥o). We have shown that any
solution of Laplace’s equation in a domain D is infinitely differentiable throughout D.
It is, in fact, analytic. That is, « is equal to its Taylor series about (xe, ¥o) in any circle
centered at (xo, yo) and lying in D. The series (24.11) is the Taylor series for » about
x=1y=20. (See Exercise 3.)

EXERCISES

1. Solve

2
e tEgE=0 for r<1,
u(l, 8) = sin® 4.
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2. Solve
ﬂ+ﬂ=0 for x*+y* <4
axz ay2 y y
u=xt for X2+ y*=4d,

Find a bound for |u(r, 8) — s:{r, 8)].

3. Show by induction that the functions #* cos n6 and r* sin nf are polynomials of degree
r in x and y. (They are called harmonic polynomials). Using this fact, show that (24.11) is the
Taylor series for u(x, y) about x=y=0.

4. If

Viu=10 for x*+y*<1,
u=ylog (5+ 4x) for X*+y?=1,

find uat x = —%, y = ( by Poisson’s formula.

5. Solve the problem in a semicircle

Fu  1ou 1 Pu__
F+;5+72—W—0 for t‘<1, O0<o<m,
u(r, 0) =u(r, m) =0,

u(l1,8) =08(w—0).

6. Solve the problem in a quarter-circle

Pu  1lou, 1% _ 1
F—F;g-’r;’im——o for r<1, 0<0<2’ﬂ',
ulr, 0) =0,
2, 1)~
ag\"2") "%
u(l, 8) = 6.
7. If
Viu=0 for x*+y2 <1,

U= xyeT v 42 for x*+y2=1,
find «(0, 0) by the mean value theorem.
8. Solve
Viu=10 for r<1,
ou _
241, 6) = f(6)
when f ! f({08)d# = 0 and u satisfies the normalization «(0, 8) = 0. Show that there is no solution
if f” £(8)d8 # o.
9. Solve
Viu=10 for r <1,
ou = «ind
ar(l’ #) = sin® 4

with the normalization «(0, 9) = 0.
10. Solve by separation of variables

V2u=10 for 1<r<R,
u(1, 8) =0,
U(R, 8) = f(0).

(This is Laplace’s equation on an annulus.)



CHAP. IV 25. An Extension of the Validity of these Solutions 105

25. An Extension of the Validity of these Solutions.

We showed in the preceding section that the series (24.11) gives a continuous solu-
tion of the boundary value problem (24.10), provided f(#) is continuous and " f'3de
is finite. The series already satisfies Laplace’s equation under the much weaker B;poth-
esis that f : |f|d@ is finite.

We shall now show that the solution (24.11) attains its boundary values at all points
where f(6) is continuous in the sense that the limit of u(r, 8) as (r, ) = (R, 6,) is
f(8o).

We begin by assuming only that [ |f(8)|d6@ is finite. Then the series (24.11) converges
for r < R. (The Fourier series for f(#) itself may not converge). For r < R we can write
u(r, #) in the equivalent form of the Poisson integral (24.12).

The solution of the problem (24.10) with f(8) = 1 is u(r, 8) = 1. Therefore (24.12)
gives

_Lige—py [ i
(25.1) I=5,(R ’2)[_,,,2+R2—2chos(9—¢)

For a given function f(#) and a given angle 6, we subtract f{6,) times this formula
from (24.12) to obtain

—Lir_m [ [A¢) — f(6o)]d
ulr, ) =fl) =32 (R=r") | 5 RE— 2R cos (6 — ¢)

We define ¢y = ¢ — 6. Then
o flt 0 =S8
—m—8y P+ R*—2rR cos (6 — 8y — )

1 po i S8 + ) — f(6)
EE(R ) - P+ R?—2rR cos (Bwﬂo—(p)dtp’

u(r, 8) — f(8o) = El;r-(R2 — )

since the integrand is periodic of period 27.
Suppose now that f(8) is continuous at # = 8,. Then for any € > 0 thereis ad > 0
such that

1
(25.2) |f(8) — f(60)] <3¢  when |6— 6] <8.
We consider an angle 6 such that
1
,6 - 90, < 58,

and split the integral as follows:

— 1 p2_ -8 S8 + ¢) — f(6o)

u(r, 6) = f(6) =5 (R ’2)[ W PTR - 2R cos (8 — bo— )Y
> S(60 + &) — f(6)

(25.3) + f_a PP+ R —2rR cos (6 — 6, — w)dd‘
7 S(6o + ¢) — f(6o)

+ 8 P+ R*—2rR cos (6 — 6, — zp)d(p]'




106 Separation of Variables and Fourier Series CHAP. IV

The integrand in (25.1) is positive. Therefore by (25.2)

2 _ J(8o + ¢) — f(60)
‘ (R ’2)[ P+ R*— 2chos(e-eo—ib)d""

1.1 5 dy
<25 B ) | TR 3R cos (8= 60— )
1

= J€.

2
In the other two integrals of (25.3) the denominator is bounded below by 2 + RZ — 2rR

cos %8, because |8 — 6| < :,12-6 while |¢| = 8. Therefore the sum of these integrals is
bounded by

= [ | 16)1dg + 27l (60|

T 2+ R2—2rR cos—z-st -

This expression clearly approaches zero as r —> R. There is, then, an > 0 such that
the above expression is less than € forr > R — .

We have shown that
lu(r, 8) — f(6)| < € for |6 — 6,] <%6, r>R—n.

By definition this means that
lim  u(r, ) =f(6).

(r, 8)—=(R, 6o)

We have assumed only that f " | |8 is finite and that f{8) is continuous at 6.

In particular, if f(6) is continuous, the solution «(r, 6) defined for r < R by the series
(24.11) or the Poisson integral (24.12) and for r = R by u(R, ) = f(8) is continuous
for r = R,

Unless f(#) happens to be zero, the Poisson integral (24.12) is not defined, even as
an improper integral, for r = R. The series (24.11) may or may not converge for r=R,
and certainly need not converge uniformly.

When f(6) is only piecewise continuous (that is, continuous except for a finite num-
ber of discontinuities) the function u(r, 8) defined by (24.11) or (24.12) is a solution
of Laplace’s equation which attains the boundary values f(8) continuously except at
the discontinuities. Moreover, it is clear from (24.12) and (25.1) that

min f(8) = u(r, ) < max f(8)

throughout the circle.

The problem with piecewise continuous boundary values is physically important
as a limiting case. It might be questioned if the solution u is determined by its boundary
values at all but a finite number of pomts and whether the problem so defined is
properly posed.
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An extension of the maximum principle (the Phragmeén-Lindelof theorem) states that
if #(x, y) is harmonic in a domain D and continuous in D together with the boundary
C except at a finite number of points of C, and if « is uniformly bounded in D + C, then
u is bounded above by the least upper bound and bounded below by the greatest lower
bound of its values at the points of continuity on C. [The above inequality is a special
case of this theorem.] For a proof of the theorem see Exercise 5, or M. H. Protter and
H. F. Weinberger, Maximum Principles in Differential Equations, Prentice-Hall,
Englewood Cliffs, New Jersey, 1967, chapter I1.

Applying the Phragmén-Lindelof theorem to differences of solutions gives both
uniqueness and continuity for the boundary value problem with piecewise continuous
data.

We note that the unbounded function

R2—p
R2+ 2 —2Rr cos @

is harmonic for r < R and approaches zero on the boundary r = R except at ¢ = 0.
This shows that a hypothesis of boundedness is essential in the Phragmén-Lindelof
theorem. It can however, be replaced by the weaker hypothesis that u does not ap-
proach infinity too rapidly near the exceptional points.

Suppose now that f{#) has a jump discontinuity at 6,. That is, the limits (8, — 0)
and f(8, + 0) exist, but are not equal. We observe that the bounded function

u(r, 8) =

r sin @

— - T Y
W(r, 8) = cot R—rcos®

where 0 < cot~! a < 27 is harmonic for » < R and has the boundary values

8 for 0 <@ < 2.

BN | —

Y(R, §) =

Extended as a periodic function of 8, ¢ (R, ) has a jump discontinuity at 0: (R, 0+0)
—y(R,0—0)=0—7=—m.
Therefore the function

u(r, 6) +—[f(8 + 0) = (6 — 0)14(r, 6 — )

is harmonic for r < R, and its boundary values are continuous at 6, when u(R, 6o) is
defined to be f(8, + 0). It follows that this function is continuous at (R, 6y), so that
u has the same discontinuity as

]
——Lf(6o + 0) = f(Bo — OV]y(r, & — 60).

This is a fan discontinuity. That is, « is approximately f(6,— 0) plus a constant times
the angle ¢ between the ray from (R, 6,) to (r, @) and the tangent to the circle. In
particular,

lim u(r, 60) = 3L(6 + 0) + (6 = 0)].

In the preceding derivation we used the Poisson integral formula (24.12) to verify
the fact that the solution (24.11) obtained by the method of separation of variables is
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valid for a largér class of boundary values than that which one expects from the Fourier
convergence theorems. The solutions in Sections 22 and 23 have the same property,
and we shall now indicate how to verify this fact.

We first consider the series solution (22.2) of the heat equation problem (22.1).
Using the definition of the Fourier coefficients, we find that

u(x, t) :%%wa(é)e“”z'“ sin né sin nxdé€.

For t > 0 we interchange summation and integration, which is permissible since the
resulting series converges yniformly in £ Then

(25.4) utx, 0 = [ AOK(E %, 0,

where we have defined

3 [0

K¢, x, t) == Z e "k gin n¢ sin nx.
1

The formula (25.4) gives the solution of the heat equation problem (22.1) as an in-

tegral. It is the analogue of the Poisson integral formula.
Since we have given the Fourier sine series of K we easily see that

[ﬂ K(¢, x, 1) sin £dé = e ¥ sin x.

Therefore for 0 < xo < 7

sin ¢
sin x

(25.5) ulx, ) = fl) = || K(&,x, 0] 7€) = foxo)enSinE |

The maximum principle for the heat equation implies that u(x, t) = 0 whenever
f(x) = 0 for all x. We wish to show that K = 0. Suppose that for a fixed (x, ) the
kernel K(¢, x, t) were negative for some value ¢ = &, Since K is the sum of a uni-
formly convergent series of continuous functions, it is continuous. Therefore, there
would be an interval & — 8 < ¢ < & + 8, where K (&, x, t) is negative. We could then
choose a continuously differentiable initial function f(£¢) which is identically zero out-
side this interval and positive inside it. By (25.4) u(x, t) would be negative, contradict-
ing the maximum principle. We have proved that

K, x, 1) =0.
If we consider the particular initial values
nx for x= I,
n
fu) =11 for t=x=nm-L
" n n
n(l—x) for xzw——-’l-lv
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the maximum principle shows that

L" K(&, x, Dfa(€)dE = 1.

Taking the limit as n — «, we find that

(25.6) f K& x, de = 1

uniformly in x and ¢.

Suppose now that f(x) is bounded for 0 = x = #, and continuous at the point x = x,.
Then the function
sin ¢

g€, x, 1) = f(£) — flxo) e~

sSin x

is continuous in £, x, and ¢ at £ = x=x,, t = 0. For any € > 0 there is a 8 > 0 such that
(25.7)  |g(&, x, 1) <~;-e whenever [€—xo| <8, [x—x0| <38, and 0<rt<3.

We take & so small that 0 < x, — 8 and xo + 8 < m, and split the integral (25.5):

wln, 1) = ) = [ K (e, x, 086 % e+ [T Ka(e, x, e

(25.8) A
+ f Kgd¢.

Xo+8
We must show that this can be made arbitrarily small by making (x, t) close to (x, 0).
Since K = 0, we have by (25.6) and (25.7)

(25.9)

20+8 K 1 kg 1
— [,
Lﬂ_s gd«f‘ < Zej; Kd¢é = 7€
when |x — x| < 8,1 < 8.
Since f(x) is bounded, g(&, x, ¢) is uniformly bounded for ¢ < 8, |x — x| < 8. That

is, |g(&, x, t)| = ¢ for some constant ¢. We now consider the function us(x, t) which
is the solution of the initial value problem (22.1) with the initial values

1 for |x— x| < %—8
folx) = 2——2Jx—_8—x—°l for %8<|x-——x0|<8,
0 for |x— x| = 6.

This function is continuous, f3(0} = fs(7) =0, and f f5'%dx is finite. Hence, us(x, t) is
0
continuous at £= 0 and us(x, 0) = 1 for |x—x,| < 8. Therefore, there is an n > 0 such that

£

5 whenever |x — x| < l8 and 0 < < 9.

1= us(x, )] < >

Since K = 0 and f5 = 1 we have by (25.6)
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To+8 »
Kdé =1 —f Kdi

.T()—&

T

Xo—b
[ xts
0

To+8
“1- f " K(x, Ofs(€)dE
=1~ uﬁ(x, t)

€ i
< — o —_
5e for |x— x| < 28, 0<t<m.

Then

.'L‘o—a mw
f Kgd¢ +f Kgde < -l-e for |x—x| < l6 0<t<m.
0 To+d 2 2

This inequality, together with (25.9) and (25.8), shows that

lu(x, 1) —flxo)| <€  for |x— xo <%6, 0<t<m.
We have shown that if f(x) is bounded for 0 < x < 7 and f(x) is continuous at x = x,,
then the solution u(x, 1) defined for r > 0 by (22.2) and for 1 = 0 by u(x, 0) = f(x) is
continuous at x,.

In particular, if f(x) is continuous, but does not satisfy f(0) = f(7) = 0, the series
(22.2) gives a solution of the heat equation which is bounded and satisfies
lim  wu(x, 1) = f(x) for 0 <x <.

(x, 1) (xo, 0)

(The series need not converge for t=0.)

Since if f(0) # 0 or f(7r) # O this solution is not continuous at (0, 0) and (0, =), the
uniqueness theorems of Section 13 no longer can be applied. However, the energy
method of proving uniqueness can be extended to show that «(x, ¢) is the only bounded
solution for which ling u(x, t) = f(x) uniformly on every closed subinterval of (0, ).

1>

If f(x) has a jump discontinuity at x,, (that is, different left and right limits), we can
show that

fim u(xo, 1) = %[ Fxo + 0) + flxo— 0)].
=0

If f(x) has a finite number of jump discontinuities we can show that u(x, ¢) is the only
bounded solution of the heat equation which attains the initial values f(x) uniformly
on each closed interval where f(x) is continuous.

Similar considerations apply to the solution (23.3) of Laplace’s equation on the
rectangle. We can rewrite this solution as

ulx, 0= [ K& x nA@)E,
where now

sinh n{A — y)
sinh nA4

K(¢, x,y) = ;2; %:3 sin nx sin né.
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We can again prove by the maximum principle that K = 0, and that

f Kde = 1.
0
Again we are given the Fourier sine series of K, and hence

™ . _sinh{(4—y) .
L K sin édé = ~enh4 Sinx

By considering the boundary values

1 for |x— x| < %6
fo(x) = 9 — 21’_‘:8_@_[ for %6 < |x— x| < 8,
0 for |x— x| > 8,

we see that for any x, and 8 such that 0 < xo — 8, xp+ 8 < 7 and any € > 0 there is an
7 > 0 such that

Zq—8 T 1
fo Kd¢ + Kd§‘<%e for |[x—x| <8, O0<y<n.

1] To+d 2

Then we can prove in exactly the same way as for the solution of the heat equation
that if f(x) is bounded, the solution (23.3) of the Laplace equation for y > 0 extended by
u(x, 0) = f(x) is continuous at points of continuity of f(x).

In particular we need not assume that f(0) = f(#) = 0.

I f(x) has a jump discontinuity at x,, we have

lim (0, ) =5 [fo + 0) + (0 = 0)].

More generally, we can show that the harmonic function

u(x, 1) = 2Lfx0+0) = f(xa— 0)] tan-t ——

has the limit f{x, + 0) as (x, y) = (xo, 0). _
The uniqueness of the solution u again follows from the Phragmén-Lindelof theorem.

EXERCISES

1. Solve the problem

67+;57+;58—=0 for r<|,
_ 11 for 0<8<m,
u(l, 9) _{0 for =<8 <2m.

In particular, find «(0, ).
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2. Solve the problem

d a2
a—‘t‘—-b—;‘ 0 for 0<x<m, t>0,
u(0,t)=u(m, 1) =0,

u(x, 0) =x.

3. Solve the problem
2

%it‘—g?“:o for 0<x<1, t>0,
ou .

a_x(O’ I) _—01

u(l, t) =0,

uix, 0) = x.

Prove that the solution is valid. HINT: Use extension by symmetry, and scaling.

4. Solve the problem

U _
W_‘_W_O for 0<x<1, O0<y<l,
u(x, 1) =u(0,y) =u(l,y) =
u(x,0)=1.

In particular, find «(3, 3) by using the symmetry.

5. (Phragmén-Lindelof theorem). Let (xo, yo) lie on the boundary C of a domain D, and let
D be contained in the circle of radius R centered at (xo, yo). Let # be harmonic (that is, VZu = 0)
in D, and continuous in D + C except possibly at (xo, yo). Let # = M on C except possibly at
(Xo, yo). Show that if

2
u(x, )’)/108 (x —x, )22_1;‘_, - }’0)2
as (x, ¥) = (xa, yo), then u = M in D. HINT; Write

u(x, y) = ¢(x, y) log (x — xo )22f Oy — vo )2+M

obtain a differential equation satisfied by ¢, and show that ¢ satisfies a maximum principle.
6. Let f(8) be continuous and periodic of period 27. Show that for any € > 0 there is a finite

N
linear combination %‘, [cn cos n@ + d, sin n@] such that
N
| f(8) —% [ca cos n8 + d, sinnf]| < €
for all 9. HINT: Show that there is an r. such that
1
|£(8) — u(re, 0)] <3¢,
where u(r, 8) is defined by (24.6). Then show that u(r., 8) can be approximated to within j€

by a partial sum of its series.

26. The Damped Wave Equation.
We consider the initial value problem

2
ou +2————c2 =0 for 0<x<mw, t>0,

(26.1) or ax
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u(x, 0) =f(x) for 0=x=gq,
g—?(x,())=0 for 0=<x=q,

u(0,t) =0,

u(m, t) =0,

where a and ¢ are positive constants. The solution of this problem gives the approxi-
mate motion of a string when air resistance is taken into account, The differential
equation is called the damped wave equation.

The method of separation of variables gives product solutions of the form

T,(t) sinnx,n=1,2,...,

where T,(t) satisfies
Tn" + ZaTn’ + nZCZTn = 0 fOI‘ t> 0,

T,'(0) =0.
Putting T,(0) = 1, we find that
(26.2)
““‘[cosh Va® — n’c* + ————— sinh mt] for n < -,
a® — n2c?
T.(1) = w e~ *[1+ at] for n=

o8 nia ol

e—“‘[cos Vnic? — a?t + sin Vn?c? — azt] for n>

\/nzcz — a*

The formal solution is given by

(26.3) u(x, ty =% b,T,(1t) sin nx,
I
where
2T
(26.4) by = WL f(x) sin nxdx.

It remains to verify that this is a solution.

Suppose first that f(x) is continuous, f(0) = f(7) = 0, and f " f"*dx finite. Then by
0
Parseval’s equation 3 n*b,*> converges to % f . f'%dx.
1 0

For any finite time interval 0 =< t = t,, T.(#) is bounded uniformly in n. That is,
|Tx(2)| < A. It follows from Schwarz’s inequality that

N 2 1
3 baTasinnx| = A* 2 n’b,* 2 =
M+1 M+1 Ma N

The two series on the right converge. Therefore the series (26.3) for u(x, ¢} con-
verges uniformly for 0 = ¢ = ¢, for any t,. Then u(x, ¢) is continuous for 0 = x = 7,
t = 0 and satisfies «(x, 0) = f(x) and u(0, ¢) = u(mw, t) =0.
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To differentiate the series term by term we must make more hypotheses about
f(x). If we assume that f(x) is twice continuously differentiable, that f(0) = f(7) =£"(0)

o
= f"(w) = 0, and that f f"2%dx is finite, Parseval’s equation shows that %»®h,? is
0

finite. It then follows from Schwarz’s inequality that the series for the first and second
partial derivatives of u converge uniformly. The series for ¥ may therefore be differ-
entiated term by term, so that the differential equation and the condition du/dt(x,0) =0
are verified.

Thus if f(x), extended as an odd function about 0 and =, is twice continuously dif-
ferentiable and f f™dx is finite, (26.3) gives the solution of (26.1). By comparing with
the result for a = 0 obtained in Section 2, we can expect that the continuity of f” is
actually needed to give a twice continuously differentiable function. We shall now show
how to eliminate the condition on f”.

If we let a =0 in (26.2), T.(t) becomes cos nct. Hence the solution (26.3) for the
ordinary wave equation becomes

u(x, t) =2 by 0S8 nct sin nx
1

= % S, ba[sin n(x + ct) + sinn(x —ct)]
=20 flx+ ct) +f(x — en)].
This agrees with the d’Alembert solution (2.16).
When # is large, we find that
T,(t) = e % cos nct.
More precisely, for any interval 0 < ¢ < ¢, there is a constant B such that
|Ty — e~ cos nct| < B/n,

(26.5) l%[Tn — e~ cos nct]| = B,

2
g?[T" — e % cos nct]’ =< Bn

for all n.
We write (26.3) in the form

u(x, t)y =3 bye cosnt sin nx + 3 ba[Tn(t) — 70 cos nt] sin nx
1 1

or

(26.6) u(x,t) = %e—“‘[f(x +ct) +flx—ct)] + 3:1 bu[T,— e cos nt] sin nx.

Here we have extended f(x) as a sine series, that is; as an odd function about 0 and .
We now assume that f(x) and f'(x) are continuous, f(0) =f(#) =0, and that [ i fdx
0

is finite. It follows from the estimates (26.5) together with the convergence of 3, ntb,?
and Schwarz's inequality that the series on the right and the series obtained by taking
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its first and second partial derivatives all converge uniformly. Therefore, the series
may be differentiated term by term, and represents a twice continuously differentiable
function. It follows that if f(x) (extended) is twice continuously differentiable, the same
is true of u(x, ¢). It is easy to show by looking at the resulting series that « satisfies
the problem (26.1).

If the second derivatives of f(x) are only piecewise continuous, a discontinuity in
a second derivative of f at x, causes discontinuities in the second derivatives of « at
(xo+ ct, t) and (xo — ct, t). In other words, discontinuities in the second (and similarly
in higher) derivatives are propagated along the characteristics x = c¢¢ = constant and
their reflections, just as in the ordinary wave equation. That is, the characteristics not
only serve to limit the domain of dependence. (This is true by a uniqueness theorem
like that of Section 7, although it is not at all clear from the series (26.3).) They are
also the carriers of discontinuities. This property of characteristics is true of all hy-
perbolic equations.

The series in (26.6) converges uniformly for 0 < ¢ = ¢, if f(x) is only square integrable
(that is, ff2dx finite). When f(x) is not twice differentiable, we can consider (26.6) as
a generalized solution of the problem.

The series in (26.6) converges more rapidly than that in (26.3), and is therefore better
suited for computing the solution, and especially its derivatives.

EXERCISES

1. Show that as t —> o the solution u(x, t) of (26.1) approaches 0.
2. Solve (26.1) when f(x) = sin? x.
3. Solve by separation of variables

Fu o, B
3t2+2aat+bu caxz—O for 0<x<a, t>0,

u(0, ) =u(m, t) =0,
u(x, 0) =0,

ay _
at (xy 0) - g(x)
(This differential equation arises in the transmission of electrical impulses in a long wire with

distributed capacitance, inductance, and resistance. It is called the telegrapher’s equation.
4. Solve by separation of variables

3u | ou  u
8t2+6t 6x2_0 for 0<x<m, >0,

u(0, ) =0,
ou, |\ _
ax(ﬂ-’ t) - 0’
u(x, 0) = sin’*%x,

du _
E(x, 0)=0.

5. Solve by separation of variables

Pu | 50U LU
8t2+2a6t Caxz--() for 0<x<mm, >0

w(0, 1y =u(m, t) =0,
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u{x,0) =0,
Lz, 0) = g(x).

Show that a solution is obtained if g(0) = g(#) = 0 and g(x) is continuous and continuously
differentiable.
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CHAPTER V

Nonhomogeneous Problems

27. Initial Value Problems for Ordinary Differential Equations.

The method of separation of variables reduces problems in partial differential
equations to problems in ordinary differential equations. We shall study some of the
properties of the second order differential equation.

a(x}u" +b(x)u"+ c(x)u= F(x)

on an interval a < x < 8. We suppose that ¢(x) is a continuously differentiable posi-
tive function on this interval, and that b and ¢ are continuous. If we multiply the equa-
tion by the functiont

T b(£)
1k a
a(x) ’
and define f I
px)=e¢" a) :
_clx
g(x) = ——a(x)p(x),

flx) = ‘;’—g-;—pm,

the differential equation becomes
d{ du
(27.1) dx(pa) + qu = f(x).
We shall consider the equation in this form, called the self-adjoint form. The function
p(x) is again continuously differentiable and positive, and g(x) and f(x) are continuous

fora <x<§B.
The homogeneous second order differential equation

d{ d
(27.2) Zx-(p_d—;) +qgv=0

has exactly two linearly independent solutions v,(x)} and v.{x); any solution of (27.2)
can be written in the form

v(x) = cvi(x) + cave(x),

x
T While a(x) is positive for x > «, it may approach zero as x — «. Then J- szdf may not converge. If it

does not, we simply replace the lower limit of integration by some value between o and 8 in the definition
of p.
117
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where ¢, and c¢. are constants. The functions v;(x) and v.(x) are twice continuously
differentiable for « < x < 8.
We now consider the function

w(x) = (x) ] " v (E)F(€) dE — va(x) f "V E)f(E)d.

(We assume that v, and v, remain bounded as ¢ — a, 30 that these integrals converge.)

Differentiating w, we have

W (x) = v’ (x) f * Ve (Of(E)dE — v’ (x) f " v (E)f(8) de
+ vi(x) v (x}f(x) — va(x)vi(x)f(x)
=@ [ @ — vy (0 [[@nee

Then

d%[p(x)%] [(x)d"l] f va(€)f(£) dt — [p(x)‘ixw] f vi(€)f(£)d¢

+ p(x) [ (0)12(x) — w' () (x)]f(X)
=—q(x)w(x) + p() V1" (X)v2(x) — vo" () v (x) ] (%),

since v; and v, satisfy (27.2). Also

P v = v} = SLpw v = L pw )

+ pvi've’ — pve'vy’
=0

by (27.2). Hence the expression
p(x) [v/ (x)v2(x) = w'(X)n(x)] = K
a constant. We have shown that w satisfies the equation
%(pz—;)) + gw = Kf.
Moreover, if v;’ and v’ remain bounded as x — «,
w(a) =w'(a) =

Dividing by the constant K, we find that the function

(27.3) u(x) = [ " R(x, £)f(€)de,

where we have defined

vi(x)va(§) — va(x)v1(€) ;
p(x) [ (X)valx) — vo' (x)v1(x)]

is the solution of the initial value problem

(27.4) R(x, &) =
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(27.5) %(p%) + qu = f(x) for x> a,
ula) =u'(a) =0.

Since the denominator in the expression (27.4) for R(x, &) is a constant, the func-
tion R(x, ¢) satisfies the homogeneous differential equation (27.2) as either a function
of x or of £. In fact R(x, &) = —R(¢, x).

For a fixed value of £, R(x, ¢) is completely characterized as the solution of the
homogeneous initial value problem

%[p(x)i,—f] +qg(x})R=10 for x> ¢,

Rlx:f = 0,
ar| __1
dx|z-e  p(£)

The function R(x, ¢) describes the influence on the value of « at x of a disturbance
(impulse) concentrated at £. It is sometimes called the influence function, or the one-
sided Green’s function.

Example. Consider the problem

u' +u=f(x) for x>0,
u(0) =u'(0) =0.
For a fixed value of £ the influence function R (x, &) satisfies
d’R _
RIJ’.‘=§ = 0’
dr|  _,
dx r=§¢ ’

Thus
R(x, &) = sin (x — £),
and the solution is

u(x) = f " A(€) sin (x — £)dE.

If the values of u(«) and «’' («) are prescribed to be other than zero, we must simply
add a suitable solution c¢,v; + c:v. of (27.2) to the expression (27.3). (We assume that
vi(x), vi'(x), v2(x), and v;' (x) have limits as x = a + 0.)

Example. Consider the problem

u' +u=f(x) for x>0,
u{0) =1,
u' (0) =-1.

We must have

u(x) = J::f(g) sin (x — £)d£ + ¢1 sinx + ¢» cOs X,

H(O) =Cz= 1,
W (0) =c,=—1.
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Thus

u(x) = L"”f(g) sin (x — £)df — sinx + cos .

The value at a point x of the solution u depends only on f(¢) for ¢ < x. We can say
that the domain of dependence of a point x, consists of the points to the left of it. This
behavior is very much like that of hyperbolic equations.

EXERCISES
1. Solve
W —u=f(x) for x>0,
u(0) =u'(0) =0.
2. Solve
[(x+1)2']) —u=f(x) for x>0,
u(0) =0,
u'(0) =1.
3. Solve
U+u —2u=e* for x>0,
u(0) =1,
u'({0)=0
by finding the influence function and integrating.
4. Solve

XU+ xu' +u=logx for x>1,
u(1) =0,
w(l)=1
HINT: x*# = cos (log x) = i sin (logx).
5. Solve

(1+x2)32y +u=x for x>0,
u(@) =10

by reducing the equation to the form

[p(x)u]’ = f(x).

28. Boundary Value Problems and Green’s Function for Ordinary Differential Equations.

Frequently the constants c¢; and c; in the linear combination ¢;v; + c2v» to be added
to the particular solution (27.3) of (27.1) are to be determined not from two initial
conditions at one end « of the interval («, 8), but from one condition at each end. In
this case we speak of a two-point boundary value problem.

Consider the simplest such problem:

(28.1) %(p%) b qu=—fx) for a<x<§,
u(a) =u(B) =0.
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(We have written the right-hand side as —f(x) rather than f(x) for convenience in
applications.)

Writing the general solution in the form
u(x) == [ RGx, f(©)de + em () + can(x),

we obtain the two equations
civi{a) + cava(a) =0,

B
em(8) + () = | R(B, OFE)de
(We have assumed here that v; and v, have limits as x = « and x — 8.)

These two equations determine a unique pair of constants ¢; and c., provided the
determinant of their coefficients is not zero; that is, provided

D = vi(a)v:(B) — va(a)ni(B) # 0.
We assume this for the moment. Then
e == [ R(p, ()t
-2 ["rig, ferde 42 [" res, o100,
=2 [" rp, )0 de
=2 " ri, ofterae + 252 " Re6, )0 de

The solution can then be written as

ue) == [ [Rex, o 4 2B @R g, ¢) 516 e
Bye(a)vi(x) — vi(a)ve{x)
- ; R(B. £)(£)de.

We recall that the denominator in the definition (27.4) of R is a constant K. We find
after some algebraic manipulation that

R(x, ) + e n(@etp g o) —Lopui@mis) — w(@n(@)

X [vi{xjva(B) —va(x)vi(B)].

We define the function

| 2507 (@) = @ (@] [ ((B) — ()]

(28.2) G(x, f): 1 1 for ¢ = x,
Rl (Eva(@) = ve(2)vi(e) 1 [v1(€)v2(8) = v (&)1 (B)]

L for x=¢&.
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Then the solution of the two-point boundary value problem (28.1) can be written in
the form

(28.3) u(x) = ]f G (x, O)f(€)dE.

The function G(x, £¢) is called the Green’s function of the problem (28.1). It is sym-
metric. That is,

G(x, §) =G (¢, x).

To determine the Green’s function, we note that for each £ it satisfies the following
boundary value problem.

(a) %[p(x)cfl—g] +q(x)G=0 for x# ¢,

(28.4) ®) Gli-e=Glrp=0,
(C) G|-1-'=f+0 - Glnl':f'-ﬂ = 0’
dG ac 1
) R~ .~{ R —
( ) dx r=£+0 dx r=£-0 P(f)

By G|x-¢:0 we mean the limit of G (x, &) as x approaches £ from the right; by G|z—¢-o
the limit from the left. Conditions (¢) and (d) state that G (x, £} is continuous at x = £,
while dG/dx has a jump discontinuity there.

If we interpret « as a displacement and f as a force per unit length, the solution
formula (28.3) shows that G (x, ¢) is the displacement at x due to a force of unit magni-
tude concentrated at £. The symmetry relation G (x, £) = G (&, x) is sometimes called
the reciprocity law.

Example.

Consider the problem
' =—f(x) for 0 <x<1,

u(0) =u(l) =0.
By (a) and (b) of (28.4) we must have
_Ja(&)x for x < &,
G(x, éE)“{az(f)(l—x) for x> ¢&.

(Since ¢ is kept fixed in the problem (28.4), the constants a; and a. may depend upon ¢.) The sym-
metry condition G(x, &) = G(&, x) requires that a,{(£) = A(1 — &), a:(£) = AE, where A is a
constant independent of £. Then the continuity condition (c) is automatically satisfied.
The jump condition (d) gives
AE(—1) —A(1 — &) =—1,
or
A=1
Therefore,

_[(1=8x for x=¢,
G(x’g)_{f(l—x) for x = ¢,

The solution is

wix) = [T 1= xgrede+ [ 501 - o) de,
If f(x) = 1, we find
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u(x) =3(1 — )2 + %x(l — x)?

=%x(1 - x).

It follows from the definition (28.2) of G(x, £) that the function %(x, a) satisfies

[P( )dx( (x, )]+q(x) (x, &) =0 for a<x<8g,
&
8 (B, a) =0,

Fg;(aa a) =

5
c;i[ c;i(af (x, B))]+q(x) (x,8)=0 for a<x<S8,

E(a B} =

while

—1
af p(B)

Hence the boundary value problem

(B B) =

(pu') +qu=—f for a<x<8g,
(28.5) u(a) = a,
u(B)=>

has the solution

u(x) = fG(x OFE)de + ap(e) 523, ) — bp(B1EL(x, B).

Once the Green’s function is known, the general problem (28.5) can be solved ex-
plicitly.
We have had to assume that the determinant

D = vi(a)v2(B) — v2{a)}vi(B)
is not zero. If D =0, the equations

C]Vl(a) —+ CZVZ(a) = 0-)
civi(B) + c2v2(B) =0

have a solution other than ¢; = ¢, = 0. The corresponding function v(x) = ¢;v1(x)
+ cova(x) then satisfies

pv') +qv=0 for a<x<8g,
via) =v(B) =

If « is a solution of the problem (28.5), so is u + cv for any constant ¢. That is, (28.5)
cannot have a unique solution.

If, moreover, we multiply the differential equation in (28.5) by v and integrate from
a to B, we find that
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B B
= f v () f(x)dx = f v(0) [ () + quldx

B (B
= [vpu’ — v’pu] +f uf{pv')' + qvldx

24

=pla)v'(a)a—p(B)v'(B)b.

If (28.5) is to have a solution, the given function f(x) and the given constants a and b
must satisfy the relation

8
Pl (@)a—p(B) (B =— [ vifwax
Otherwise there can be no solution of the problem. Thus if D = 0, the problem (28.5)
may have no solution or many solutions, but never just one solution. This phenomenon
is related to the occurrence of an eigenvalue, which we shall study later.
Two-point boundary value problems with more general boundary conditions can
be treated in the same manner. We consider the problem

(pu') +qu=—f(x) for a<x<§p,
(28.6) —uu' (@) + o) = a,
patt' (B) + oo (B) = b.

The Green’s function G (x, ¢) is derived as before, provided the condition

D= [—}LIVI’(Q) + 0'1V1(a)] [M2v2’ (B) + 0'2V2(B)]
— [—uve (@) + ova(a) ] [pevy' (B) + a2v1(B)] # 0

is satisfied. The Green’s function G (x, &) is the solution of the problem

d dG .
(a) a—[p(x)zg] +g(x)G=0 for x # &,
dG _, dG _
(28.7) (b) _’Lla .r:a+ O-IGI.I'=CK - M2 dx 2=8 + 0’2G|x:ﬁ - 0,
(C) Glx=£+0 - G]xzi—o =0,
dG dg 1
d —— - = =——
D Tl drleeo 2@

It still satisfies the symmetry relation G (x, ¢) = G (¢, x). These conditions are just
like those in (28.4), except for the substitution of the appropriate homogeneous
boundary conditions.

The problem (28.6) has a unique solution given by

(28.8) u(x) = f G (x, £)f(£)dE + ?%ac (x, @) + %—éi)—bs(x, 8),

provided u, and w, are not zero. If u; = 0, we replace MLG (x, @) by UL %(x, a).
1 1

_ 1 _ 193G
If w, = 0, we replace JU«zG(x’ B) by o2 0 (x, B).

(Since D # O we cannot have w; = oy = 0 or w, = g, = 0).
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Again we find that if D = 0 the problem (28.6) will have either no solution or many
solutions. Thus the problem (28.6) is properly posed if and only if D # 0. In this ~ase,
its solution is given by (28.8) in terms of the Green’s function.

Example. Consider the problem U’ = —f(x)

u(0) =0,
u'(l) + owu(l) = 1.

The solution of this problem describes the transverse displacement of a string under tension
fixed at x =0, and connected to a spring with spring constant o at x = 1. A transverse force 1 is
applied at x = 1, and a transverse force f(x) per unit length is applied along the string.

From conditions {a) and (b) of (28.7) we find

_ [ai(&)x for x < ¢,
G(x, g)—{az(f)[1+02(1—x)] for x>§'

for 0<x<1,

By the symmetry

ar= Al + o= (1 — )],
a2=A§9

where A is a constant independent of £.
By condition (d)

Aé(—oz) —A[1 + 02 (1 — )] =1,

or

Hence

(1+02(1 —¢))x
_ 1+ o

G(x, §) = £(1+ crz((lf— x))
1'+'O'2

for x = ¢,

for x = ¢,

and

ue) = =X [ g+ 2 [ (4 - )00 d

+

x 3
1'+'0'2

We note that in a two-point boundary value problem the value of u at x depends on
the values of f(x) in the whole interval @ < x < 8. These problems behave like bound-
ary value problems for elliptic partial differential equations.

Remark. If a particular solution of a problem can be found by inspection, it is, of
course, unnecessary to use Green’s function.

For instance, in the problem

W —u=2% for 0<x<1,
u'(0) =0,
u(l) =0
the function —2x is clearly a particular solution of the differential equation. The general

solution is then
u=-—2x-+ ae* + be-r,
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Adjusting the constants a and b to satisfy the boundary conditions, we find

2(e+1) . 2e(e—1)

U=—2x+=5 2+ 1
EXERCISES
1. Solve
U —u=—f(x) for 0<x<1,
u(0) =u(l) =0.
2. Solve
' — u=—f(x) for 0<x<1,
u(0)=u'(1)=0.
3. Solve
u'—u=e* for 0<x<1,
u(0) =1,
u' (1) = 0.
4, Solve

((1+x)%') —u=f(x) for 0<x <1,
u(0) =u(1) =0.

29. Nonhomogeneous Problems and the Finite Fourier Transform.
The method of separation of variables led us to treat the heat conduction problem

au_9K_o for 0<x<m, >0,

u(©, 1y =u(mw, t) =0,
u(x, 0) = f{x).

by expanding the solution in a Fourier series in terms of the set of orthogonal functions
sin nx. We shall now treat the corresponding nonhomogeneous problem

ou du

—a—t~—axz—F(x,t) for O0<x<m, >0,

u(0, 1) = u{m, t) =0,

u(x,0)=0.

(29.1)

by expanding the solution in a Fourier series in terms of the same set of functions. This
problem arises in the study of the temperature of a slab when heat is produced at
(x, t) at the rate F(x, t) per unit length per unit time.

To solve the above nonhomogeneous problem, we expand the solution (if any) in a
Fourier sine series for each fixed t:

(29.2) w(x, 1) ~ % ba(t) sin nx
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The set of sine coeflicients
b (1) = 2 fﬂ u(x, t) sin nxdx,
T Jo

which is a function of the integer n and of ¢, determines «(x, 7) uniquely. It is called
the finite sine transform of u(x, 7).
If 9%u/dx? is continuous, its finite sine transform is given by

2 (7 2[du . - 2T
= | sgsinnxdx==|_—sinnx—uncosnx| —n*= | wusinnxdx
m Jo dX | dx 0 T Jo

= —n’b, (1),

because (0, t) = u(m, t) = 0. Differentiating u with respect to x twice corresponds
to the simpler operation of multiplying its finite sine transform by —nZ.

If dufot is continuous, we can interchange integration and differentiation to show
that

2 J’ﬂ %% Sin mxdx = 92,
T Jo Ot dt
Taking the finite sine transform of both sides of (29.1) therefore leads to the equation
(29.3) b'n(t) + n2bu(t) = Ba(t),
where
(29.4) Ba(t) == L " F(x, 1) sin nxdx.

The initial condition u(x, 0) = 0 means that

(29.5) bn(0) = 0.

Taking sine transforms has reduced the problem (29.1) for a partial differential
equation to the problem (29.3), (29.5) for an ordinary differential equation. Solving
this by a method like that of Section 27, Exercise 5, we have

[3
bn(t) =J e~ B, (1)dr.
0

If the problem (29.1) has a solution « with du/d¢ and 9%u/ax® continuous, it must have
the Fourier sine series

x t
u(x, t) ~ Ej e ™-1B. (7)dr sin nx.
1 0

By Schwarz’s inequality (19.8) for integrals we find that

ool = { [ eveenarlt [* pocryar]

1 N
=ﬁ(l — g2n?t) L B.2dr

<__...1.__ thdT
_2n2 0 " )
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Then by Schwarz’s inequality for sums and Parseval’s equation

< ls L[S pea
~§{M+1 ?}{ 0 M+l " T}

N t T
3 ij J F(x, 7)%dxdr.
0 Jo

1
T s W

N
E bn(f) sin nx
M+1

IA

t ks
We have proved that if for some 7, > 0 ¢ f F?dxdr converges, the series 25, () sin nx

o Jo
converges uniformly for 0 = x =7, 0 = 1 = 1.
Under this condition
x 4
(29.6) u(x,t) =3 f e~ "B, (1) dr sin nx
1 0

is continuous, and vanishes for t = 0, x = 0, and x = 7. Under suitable hypotheses on
F(x, t) (F and aF/ox continuous, F(0, t) = F(m, t) =0, fr [82F/0x%]2dx uniformly
0

bounded), we can verify that the series (29.6) can be differentiated term by term, so

that u is a solution.
To obtain less restrictive conditions on F, we use the definition (29.4) of B, and

formally interchange integration and summation. This gives

(29.7) u(x. 1) = f ' f " K(x. £ t— 1) F(£ 7)dedr.
Here

K(x, & 1) = 2 5 o= sin nx sin né
w1

is the function introduced in (25.4) to solve the initial value problem (22.1).

Instead of justifying the interchange of integration and summatjon, we only need to
prove that (29.7) gives a solution of the problem (29.1) with du/d¢ and 3%u/9x* contin-
uous. For we have shown that any such solution can be written in the series form (29.6).
This justification can be carried out if F and aF/dx are continuous.

If instead of the homogeneous initial condition u(x, 0) = 0 we have u(x, 0) = f(x)
in (29.1), we must simply replace (29.5) by

ba(0) = 2 f " f(x) sin nxdx.
T Jo
Then
4
ba(t) = ] e 0B, (1) dr + by(0)e ™,
0
and

2] t o0
u(x, t) =2 f e B, (1) dr sin nx + 2 ba(0)e " sin nx.
1 0 1
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The additional series is just the solution (22.2) of the homogeneous initial value prob-
lem (22.1). However, our present derivation leads to the conclusion that if (22.1) has a
solution with du/dt and 8%u/dx® continuous, it must be given by (22.2).

Other nonhomogeneous problems may be treated similarly. Consider for example
the problem

Ru 1du 1 du
52‘-}-"75%-;5——2':*}7(&9) for r <R,

(29.8) a6
u(R, 6) = 0.

This is Poisson’s equation in a circle of radius R.

Separation of variables in the corresponding homogeneous equation leads to prod-
uct solutions of the form r* cos nf and r* sin nf. We therefore expand the solution
u(r, 9), if any, in a trigonometric Fourier series

u(r, 9) ~ %ao(r) +$ [an(r) cos nf + b,(r) sinnd],

where

an(r) =;IT— fw u(r, 0} cos néde,

w

b.(r) =;IT- j_w u(r, 9) sin nédo.

The set of functions {a,(r), b.(r)} is called the finite Fourier transform of . It deter-
mines u uniquely.

Since u is periodic of period 24, integration by parts shows that the finite Fourier
transform of 9%u/d60® is {—n*a,(r), —n®b,(r) }. Therefore taking the finite Fourier trans-
form of both sides of the differential equation (29.8) gives

1, n?
an”—i—;an —%aHZWAn(r),
PR PRNR i R
bn + rbn r2bn_ Bn(r)’

where
w

mmziﬁpvwmmww,

Bﬂﬂzif F(r. 6) sin n6de
is the finite Fourier transform of F.
The boundary condition gives

an(R) = b,(R) = 0.

At the singular point r = 0 we require that a,(r) and b,(r) remain bounded.

The finite Fourier transform has transformed the boundary value problem (29.8)
into a set of boundary value problems for ordinary differential equations. To solve
these equations by the method of Section 28 we write them in the form
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AW nz
(ran’)’ — ~an = —rdp,,

2
(rby')’ — i’r—bn = —rB,,
an(R) = bn(R) =

Constructing the Green’s functions for these problems with the condition that «, and
b, remain bounded at r = 0, we find that

r R R R
29.9) ax(r) = [[ tog R ao(p)pdo + f log X a(p)pdp,

a"(r)=51'ﬁ{ X [( ) - (% )](};‘)A (p)pdp
] f (7%)’1[( ) ( )]A (p)pdp} for n=1,
bt = 2n{fo [( ) ( )]( )Bn(p)pdp
+Jr (R) [(%)n (‘1%) ]Bn(P)Pdp}

The solution, if any, has this finite Fourier transform. By Schwarz’s inequality we
find that

>:1|'°

an() [t = i [ An(o)0d

b = iy [ Bato)ode

R T
for n = 2. It follows that if f j F(r, 0)*rdrd8 is finite, the Fourier series

(29.10) u(r, 0) = —ao(r) + 2 [an(r) cos n + bn(r) sin né]

converges uniformly. Therefore « is continuous and satisfies the boundary condition
u(R, 0) =

The fact that u satisfies the Poisson equation can be verified under suitable conditions
on F by differentiating the series term by term. However, the existence of a solution
will be proved under weaker conditions in the next section. Then the solution must
be representable in the form (29.10).

If instead of the condition «(R, 8) = 0 we prescribe u(R, 0) = f{6), and F = 0, we
again obtain the separation of variables formula (24.11), together with the fact that this
solution is correct if there is a solution at all.

Finite Fourier transforms, then, are simply Fourier coefficients. Whenever a homo-
geneous problem can be solved by separation of variables in the form of a Fourier series
3 cnTn(t)Xn(x), the finite Fourier transform

Julx, ) Xn(x)p(x)dx
) =y, () dx
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reduces the partial differential equation to an infinite system of ordinary differential
equations. These equations can then be solved by the methods of Section 27 or 28.

EXERCISES
1. Solve
Viu=y(l—y) sin®x for 0<x<m O<y<l,
u(x, 0y =u(x, 1) = u(0,y) = u(m, y) = 0.
2. Solve
Viu=-2  for x>+ y2 < R?
u=20 for x2+4 y? = R
3. Solve
fi 32
ﬁ—ﬁ=F(x,t) for 0 <x<m, t>0,
u{x, 0) =0,
_du —
u(0,t) = ax("’ t) =0.
4. Solve
Viu=—F(x,y) for O0<x<mwm, 0<y<A,
u(x, 0) =90,
u(x, 4) =0,
u(0, y) =0,
u(m, y) =0.
5. Solve
Viu=—F(x,y) for 0<x<=w, O0<y<Ad,
u(xp 0) '""Oa
_(x, A) _Oa
(0, y) =0,
(m,y) =0
6. Solve
Viu=—-F(x,y) for 0<x<l1, O0<y<l,
u(x,0) =ulx, 1) =u(l,y) =0,
ou —
E(O’ y) M(O, J’) -
7. Solve
Pu  10u | 1 8%
?a—rz—+;3"+ﬁj—02 —F(r, §) for r <R,
Ju o

R 2w
with the normalization u(0, 8) = 0, provided ﬁ L Frdrd® = 0. Show that the problem has no

solution if this integral is not zero.
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8. Solve

du du 6‘ u
ar +a Yot~ Caxt
ul0,1) =

au _
5}(1, t) - Oa

= fx(1 — x) for 0<x<1, t>0,

u(x, 0) = sin%qrx,

ou _
E('xs 0) =0
when |a| < wc/2.
9. Solve
u +~——*smx—sm3 for 0<x<l~n 0<y<?2
ax2 9y*? Pk >
u(0,y) =0,
duf1 _
ax(2 27 )— 0,
5}(& 0) =19,
du _
E(x, 2)=0.

30. Green’s Function.

If we substitute a,(r) and b.(r) from (29.9) into the solution (29.10) of the problem
(29.8), we obtain

u(r, 8) = Lr %Ao(p) logg pdp +§ L %{(?)n - (_é_)n (ﬁ-)n [4.(p) cos nd
+ Bx(p) sin n8]pdp

f 2A° p) logg pdp +§ L(%)n— (—}%)n (—l%)n [An(p) cosné
+ B, (p) sin nd]pdp.

We recall the definition of the Fourier coefficients 4, and B,, and formally interchange
summation and integration. This leads to the formula

(30.1) wr, )= [ [ G(r, 05 0, 6) F(p, )pdods.
where

1 R 21
G(r, 6;p, ¢) =E{log7+§;

(T
or

(302)  G(r, 0:p, &) = {IogR+E [(R)—(é)](g—) cosn(e_qa)}

2
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for p < r. For p > r, we must merely interchange p and r, so that

(30.3) G(r,0,p,¢)=G(p, ¢;r,0).

The series clearly converges uniformly in ¢ for p < r. In fact, for 0 < z < 1

zac

' coshna= | 2 ("' cosnadl.
0 1

3
1

x| =

Using the identity (24.8) we have

ol N cosa— __l s
(30.4) ?;z COSs na = , 1+§2~2§003ad€_ 2log[1+z -2z cos a].

Therefore we can write G in the form
L R_ 1 rp\* _2rp _ ]
G(r, 0;p, ¢) = log +4 log [1 (RZ) RZ €08 (0 — o)
_ 1 P _2p _ }
4Wlog[l—kr2 . COs (0~ ¢) |,
or

G(r, 6;p, ) = ﬁ{—log [r* +p* = 2rp cos (6 — ¢) ]
(30.5)
+ log [R2 r;2 — 2rp cos (6 — d))}}

This formula was derived for p < r. Interchanging p and r leads to the same formula
for p > r. We define G by (30.5) for p=r.

We have derived the formal solution (30.1) of the Poisson equation problem (29.8),
where G is given by (30.5). It is not necessary to justify the interchanges of integration
and summation involved. It is enough to verify that (30.1) solves the problem. Since
we have shown that any solution « can be represented in the series form (29.10), this
will be another form for the same solution.

It is easily checked by differentiation that as a function of (r, ), G{r, 6; p, ¢) has
continuous second derivatives and satisfies Laplace’s equation except at the point
(p, ¢). Therefore, if F vanishes in a neighborhood of a particular point (ry, 6,), we
easily find that V24 = Q at (r, 6,). This shows that V2u(ro, 6,) depends only on the
values of F in an arbitrarily small neighborhood of (#y, 60).

Since |8G/ar| and |8G /38| have finite (improper) integrals, in spite of their singular-
ities, we can differentiate under the integral sign to write

= ” ~=F(p, ) pdpdd

(30.6)
v ” ~—aF(p, &)pdpd,
provided F(p, ¢) is bounded near (r, 8).

The second derivatives |62G/3r?| and |3°G/d6?| do not have finite integrals. There-
fore we cannot differentiate (30.6) directly. Instead, we use the following artifice.
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If F = 1, its Fourier expansion consists of the single term 1. The passage from the
series (29.10) to the integral (30.1) gives no trouble in this case. Therefore

LR ) = f ] G(r, 6; p, &) pdpde.

“-rm f f ~—pdpdd,

(30.7) o f f WG

Multiplying each of these equations by F(r, #) and subtracting from the correspond-
ing equation (30.6) gives

%~I£+—rF(r 0 ff _(r 9 P, ‘;b) [F(p’ d)) F(l‘, 0)]pdpd¢’

Differentiating, we find that

(30.8)
” ——(r 6; p, &) [F(p, ) — F(r, 6)lpdpde.

If F is continuously differentiable, [F(p, ¢) — F(r, 0)]/[7? + p* —2rp cos (6 —¢) ]2
is bounded. (Note that [ + p? — 2rp cos (6 — ¢) ]2 is the distance from the point
(r, 8) to the point (p, ¢).) It follows that the integrals obtained by differentiating (30.8)
under the integral sign converge uniformly. Therefore we may perform these dif-
ferentiations under the integral sign to find

2 2
Zuplpi Lok “” {%E[F(p, ) —F(r, )] = 2225, 0)}pdpd¢
o [[{2Str o, ) = Fir, 01 =22 2 ) fpdpas.
Then
g—q+%%-r—+%g—li=—F(r 0)—lraF(r 8)

ff [62G E&Jr :2 %252;][F(P’ @) — F(r, 0)1pdpdd
(" 0) jf 5, Pdpdd
(r 0) ﬂ ~—pdpdd

= “F(r, 0)

by (30.7) and the fact that G satisfies Laplace’s equation.

We have shown that if F is continuously differentiable for r < R, u satisfies VZu=—F.
To show that u satisfies the boundary conditions, we assume that F is uniformly
bounded: |F| = M. Then

jutr, 1= M [[1G (7, 6: b, 9)lpdpde
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=MJ’f Gpdpdd
=M (R — ).

(We have used the fact that G is positive.) This inequality immediately shows that

lim u(r, 8) =0.
(r,6)= (R, )

Therefore, if F(r, 8) is bounded and continuously differentiable in the circle r < R,
u is the solution of the boundary value problem (29.8).
Since the function

log l:R2 + r;2 — 2rp cos (0 — d>)}

is a solution of Laplace’s equation throughout the circle, we can conclude from the
above proof that for any bounded domain D the function

v(r, ) =72 [ log [12 + p* — 2rp cos (6 — ) 1F (p, $)pdpdd

D
is a particular solution of Poisson’s equationV2v = —F (7, 6) in D, provided F is con-
tinuously differentiable. We can also write the same integral in rectangular coordinates:

v(x,y) = ;% ” tog [(x — &)2+ (y — )*]F (&, n)dédn,

D
where v(r cos 0, rsin@) = v(r, 8), F(rcos @, rsin8) = F(r, 6).
For any domain D with boundary C the solution of the nonhomogeneous problem

Viu=-F in D,

(30.9) u=70 on C
can be written in the form
(30.10) utx,) = [[ G, v & mF(&, n)dean

The function G(x, y; &, m) is called the Green’s function for the problem. Physically
it represents the potential at (x, y) due to a point charge at (£, n), or the displacement
at (x, y) of a membrane due to a point force at (£, n).

We have shown that the Green’s function for the problem (29.8) where D is a circle
is (in polar coordinates)

G(r,0; p, d) =Z~—7:_log [P+ p>—2rpcos (0 —¢)]
1 r’p?
+E log [R2+ R? — 2rp cos (0 — qb)]

(This could, of course, be expressed in rectangular coordinates.)
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In general, the Green’s function in rectangular coordinates for the problem (30.9)
has the form

~1
(30.11)  G(x,y; 6, m) =g-log [(x—£)*+ (y = m)*] +v(x, y; €, m),
where, for each (¢, n) in D, vy is the solution of the boundary value problem

2 2
(30.12) M

y=3log[(x= &+ (y—m)?]  for (x,7) on C.

It then follows from our previous considerations that the function (30.10) satisfies
V2u = —F in D. The boundary condition ¥ = 0 on C follows from the fact that G =0
onC.

It can be shown that the Green’s function is symmetric in the sense that G (x, y; €, "J)
- G(f ns X, y)

If we are dealing with a domain for which the problem is separable, we may find
the Green’s function by solving the problem (30.9) by means of the finite Fourier
transform and using a formal interchange of integration and summation. This was done
in deriving (30.5).

The same result can also be obtained by solving the homogeneous problem (30.12)
by means of separation of variables.

Example. If we again let D be the circle r < R, the problem (30.12) for v becomes, in polar
coordinates,

Viy=0 for r<RK,
¥(R. 6 p, $) = 2= log [p* + R* — 2pR cos (6— )].

By (30.4) we see that the Fourier series for the boundary value function is

( ) [cos nf cos ng + sin nb sin no].

1 2 pr_ — )= _13slfp
47rlog[p + R?—2pR cos (8 qb)]—z,”lOgR 5o ?n

Therefore,

(%)n(ﬂ)n[cos n@ cos n¢ + sin né sin ng

_1 1 rpt _,1p _
—zwlogR—i—MTlog[l+R4 2R2cos(9 ¢)]

1 Pp?
= am log [R“rﬁ%—zm cos (8 — qb):!.

Thus we again find (30.5).

The introduction of Green’s function reduces the nonhomogeneous problem (30.9)
to a two parameter family (30.12) of homogeneous problems. (Note that (£, n) ranges
over D.)

We can also reduce the problem (30.9) to a homogeneous problem by introducing
a particular solution v of VZv = —F, for example,
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V(x, y) = f f log [(x — &) + (y — m)?]F (£, m)dédn,

D
and letting

w=uy-—y.
Then w satisfies the homogeneous problem

Viw =) in D
Ww=—y on C.

After finding w, we can compute u=1v + w.

Example. Consider the problem

Vay = —] for 0<x<m, 0<y<m,

(30.13) u=>0 for x=0, X =1, y:()v y=m

on the square of side .
We define

v=%x(7r—x),

so that VZv = —1. We let w = u — v. Then
Viw =0 for 0<x<mw, O<y<wm,
w(x, 0) =w(x, w) = "%x('"' — X},
w(0, y) =w(m, y) =0.

Solving by separation of variables, we find

: . _ _ T
4 sin (2k — 1)x cosh (2k l)(y 2)

T K=t (2k — 1)3 cosh (24 — l)g

so that

4 » sin(2k— Dx cosh (2k—1)(y—5)
u(x, y) = x(w x)—— 3
TA 2k~ 1)® cosh (2 — )T

We now show how to compute the Green’s function for the rectangle. For this
purpose we first solve the problem

Viu=-—F for 0<x<m, 0<y<Ai,

(30.13) u=0 for x=0, x=m, y=0, y=A.

Using the sine transforms
ba(y) = 2[ u(x, y) sin nxdx,
0
B,(y) = f F(x, y) sin nxdx,

we reduce the problem (30.13) to
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bn” - n2bn = _Bn fOI’ 0 < X < A,
ba(0) = by(A) = 0.

The solution b, is

1
PR {f sinh n(A — y) sinh nmB,(n)dn

+f sinh ny sinh n(4 — n)Bn(n)dn}.
)

bn(y) =

We write the Fourier series for u, substitute the definition of B,, and interchange
integration and differentiation. This process gives the formal solution

u(x, y) = L”L”G(x, y; €, m)F (€, n)dédn,

where we have defined

o

5 2 sinh n(A — y) sinh n% sin nx sin né

=

G(x,y; &m =1 mn sinh ormE
% 2 sinh ny sinh n(A — m) sin nx sin né -

2 1 sinh nA for = =y.

This series can be expressed in closed form only in terms of elliptic functions.
However, we note that the series can be written as

loo
= _nl_l
C=5n2n { T

e~ nA+ly—m) 4 prn2A-|y-n]) — e-n2A-y-n) — p—nly+n)
1 _ e—ZnA

X {cosn(x—¢&) —cosn{x+ &)}

We can evaluate the part of the series coming from the term e ¥ by means of
(30.4). Then

G(x,y;, ¢, m) ———1— log [1+ e2lv=nl —2e-ly-nl cos (x — &) ]
+21; log [1 + e 2l¥-nl —2e-lv—nl cos (x + £)]
® e~n2A+|y—nl) 4 g—n24-|y-nl) — g—n24-y-m) — p—nly+n) .
> (1 — e-2n) sin nx sin né.

The series in this formula converges uniformly in x and y for any fixed (£, n) in D,
as do all its derivatives. Expanding the argument of the first logarithm in a power series
in (x—§) and (y —m), we see that G is, indeed, of the form (30.11), with -y the solution
of (30.12). Hence G is the Green’s function for the problem (30.13).

Just as we have reduced the nonhomogeneous to the homogeneous problem, we can
go in the opposite direction to solve the boundary value problem

(30.14) Viu=20 in D,
u=f on C

in terms of Green’s function.
Choose any point (x, yo) in D. Let g(x, y) be any twice continuously differentiable
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function in D such that g = fon C, and ¢ = 0 near (x,, o). Let w=u —q. Then w
satisfies

Viw =—V?q in D,
w=10 on C.

Therefore,
w(xo, o) = f f G (xo, yo; £, 1) V?q(£, m)dédn.
D

Since g = 0 near the singularity (x,, ¥o) of G, we can apply the divergence theorem
to the identity

div [G grad g — g grad G| = GV2q — qV3G
= GVig

ff GViqdédn = § [Gg—ﬁ- — q%g]ds.
D C

On C, G =0 and g = f. Therefore

to find that

wio, ) = —$ 52 (x0, u; &, IfE, m) .
C

But g(xo, yo) = 0, so that w(x,, yo) = u(xo, ). Since {xy, yo) was any point of D, we
find that the solution u(x, y) of (30.14) can be represented by the formula

(30.15) utx, ) = —p & (x, s &, mifte, mds
C

Here 8G/an is the directional derivative of G in the direction perpendicular to C and
outward from D. It is taken with respect to the variables (£, ).

Example. For the circle r < R, GG is given by (30.5). Then 0G/an is just
27

B_G_(r 0 R, ¢) = 1 2R — 2r cos ( — ¢) +L F‘—ZrCOS(G"(f))
ap 1 O 1% 4r R+ P —2rRcos (0—¢)  4r RE+ P —2rR cos (6 — &)
1 R — 2

27R R*+ r*—2rR cos (6 — ¢)
Thus, (30.15) reduces to the Poisson integral formula (24.12).

Remark. The term Green’s function is often used in an extended sense to denote a
function G (x, y; &€, ) having the property that the solution of a given problem involv-
ing an elliptic (or parabolic) differential equation with right-hand side —F (x, y) (or
F{x,y)) and with its boundary (and possibly initial) data zero has the solution

u(x, y) =ffG(x,y; &, m)F (&, n)dédn.

G is then called the Green’s function for the particular problem.
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For instance, the solution formula (29.7) shows that the function K(x, &, r — ,,.)" is
the Green’s function for the problem (29.1).
The term Green’s function is also generalized to problems in higher dimensions.

EXERCISES

1. Find Green’s function for the semicircle
0<r<R, 0<e<n

in closed form.
2. Find Green’s function for the annular ring

l1<r<R

in series form.
3. Find Green’s function for the sector

0<r<R, 0<e<=/3

in closed form.
4. Find Green’s function for the domain 1 < r < R, 0 < § < 7 in the form of a series.
5. Find the Green’s function for the problem

Viu=—F for r<R,
0 4 =0 for r=R
or

in series form.
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CHAPTER VI

Problems in
Higher Dimensions and
Multiple Fourier Series

31. Multiple Fourier Series.

We have shown that a function f(x) which is pertodic of period 27 and for which

2
f f?dx is finite has a Fourier series
0

flx) ~ -12-a0 + 2 [an cos nx + b, sin nx]
1

which converges to f{x) in the mean. If, moreover, f(x) is continuously differentiable,
its Fourier series converges uniformly.

We now consider a continuously differentiable function f(x, y) of two variables,
periodic of period 2« in both of these variables:

flx+2m, y) =flx, y+ 2m) = flx, y).

For each fixed value of y we can expand f(x, y} in a uniformly convergent Fourier
series

flx, y) = %ao()’) -+ %Q« [an(y) cos nx + by(y) sinnx].
The coefficients
an(y) :% _:f(x, y) cos nxdx,
ba(y) = % f:f(x, y) sin nxdx

are continuously differentiable in y. Therefore, they can be expanded in uniformly
convergent Fourier series

1 = .
an(y) = 5ano + ? (@rm cos my + bum sin my),

bu(y) = %cno +32 (Com €OS My + dum sin my),
141
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where
nm = —3 fﬁ f(x, ¥) cos nx cos mydxdy,
bum = _1 f f(x, y) cos nx sin mydxdy,
(31.1) 1 T
Crm = —5 f_.,, _ﬂf(x y) sin nx cos mydxdy,
dnm —13 f_ﬂ _wf(x y) sin nx sin mydxdy.

Putting the series for the coefficients into the series for f(x, y), we have

flx,y) = “aoo +1 2 [@om cOS my + bom sin my]

8

B | —

+= X [ano €08 nx + cno Sin nx]
(31.2) ik

20 e}

+ £ Z [awm cOs nx cos my + bnm cOs nx sin my

n=1 m=1

+ Cum SID BX COS MY + dypm Sin nx sin ny].

The Parseval equation (19.9) gives
[ fx, e =Fa? + 73 [an)? + 5201,

The series on the right converges uniformly in y. Hence we may integrate with respect
to y term by term:

fﬂ i flx, ¥)2dxdy =—723-fﬂ ac’dy += wa [an® + b.?]dy.

gt J - —7 1 J—m

We now apply the Parseval equation to the functions a.(y) and b,(y):
fﬁ an(y)zdy_‘ Eanoz + 2 (anm + bnm )

f bn(y)zdy__cno +7T 2 (Cnm +dnm ).

Thus
fﬂ f(x y)dedy = Zﬂooz + %‘ 2 (aom + b0m2) + T 2 (ano -+ Cnoz)
(313) +m 2 I (anm2 + bum® + Cam® + dnmz)
n=1 n=1

This is the Parseval equation for double Fourier series. It has been derived under the
hypothesis that f(x, y) is continuously differentiable. However, if we simply assume

that f is such that f " f " [ftdxdy is finite, f can be approximated in the mean by con-
-r J-n

tinuously differentiable functions. It follows that the Parseval equation remains valid
for such functions.
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We note that the functions cos nx cos my, cOs nx sinmy, sin #x COs my, sinxx
sin my are orthogonal in the sense that

f f cos nx cos my cos kx cos lydxdy =0 unlessn=k, m=1,
f f cos nx cos my cos kx sin lydxdy = 0,

and so forth.
Therefore we find as in the derivation of (16.1) that

ﬁ; ﬁ:, {f(x, ) — G“"" n

M

2 [aom cos my + bom sin my |
N

Z [ano €Os nx + cpo sin nx|

N M
+ 2 Z [awn COS nX COS MY + bpm COS nX sin my
n=

2
+ Cam SIN HX COS MY + dym SID AX SID my])} dxdy

2

T T 2 M 2 N
= f f fx, y)idxdy — (7%‘55002 + g 2 [a()mz + bom?] + % 2 [ano® + cno?]
-7 J-7 1 1

N M
47 S 3 [dun®+ bt + Can? + dnmz]).
n=1 m=1

By the Parseval equation the right-hand side approaches zero as N and M — .
Hence, the Fourier series converges to f(x, ¥) in the mean as N and M — o,

We have shown that if f{x, y) is continuously differentiable, the series in (31.2)
converges pointwise. However, this convergence is not as a double series but as an
iterated series. That is, we have a sum of terms of the form

ool

2 [anm cos nx cos my + buym €OS nx sin my

m=1

+ Cpm 8iNn nX COS MY + dpm Sin kX sin my],

each of which is already the sum of an infinite series. We must let M — « and then
N — « in the partial sums.

In practice one usually only computes a finite number of terms. Therefore, we need
to know that the series in (31.2) converges to f(x, y) as a double series, so that partial
sums with large M and N give a good approximation to f(x, y).

Computing the Fourier coefficients of 4f/dx from (31.1) and integrating by parts,
we find that

af 1 & .
= ~ = 3 [—nan sin nx + neawp €Os nx|
ax 2 n=1
=] oK
+ X 3 [—hnawm sin ax cos my — nbum sin nx sin my
n=1 m=1

~+ HCpm COS X COS MY + Rdym COS nX SN MYy ].

That is, multiple Fourier series may be differentiated term by term.
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Suppose now that f and its first partial derivatives are continuous, and that the
second partial derivatives are such that

| LGS +2G) + G Jew

is finite. Then by Parseval’s equation

oo [N o) + (53 Jes

2 o0
—1 Z m*(aom® + bom?®) +7—72— Z n*(ane? + Cno?)

+ 772 z 2 (m2 + nz)z(anmz "+' bnm2 + Cnn:_z + dnm2)

m=1 n=1

Since this is a series of positive terms, it may be summed in any order. For example,
we may arrange the terms in increasing order of m?® + nZ.

We consider the partial sum

M
Sun(x,y) = aoo —l— 1 3 [aom cos my + bom sin my]

m=1
N
+3 3, [ano cOs nx + cyo sin nx]

n=1

_+_

M=
TMx

[anm cOS nx cos my + bpy €OS hX sin my

1 1

+ Cnm SIN nX COS My + dnm Sin nx sin my].
By Schwarz’s inequality (19.5)

Nz
1SMzNz(xa Y) - SMlNl(x’ y) |2 = {l 2 m4(a0m + bOmZ) + l 2 n4(an02 + Cﬂoz)
2 m=M,+1 2 n=N+1
N2 M,

n=Ni+1 m=1

m=M;+1 n=1

2 N2
(315) + 3 b (I’l2 + 77’112)2((Jnm2 + bnm2 + Cnm2 + dan)}

1 e I 1 N2 M

1 N
X{jm_%,+1a—+§ 5; n—|— 2 2 (mP+ nP)-?

n=N;+1 m=1

My Ny
+ 3 3 (m2+n2)-2}.
m=M;+1 n=1

The first factor is the difference of two partial sums for 72 times the (convergent)
series in the Parseval equation (31.4). It approaches zero as M, M,, N;, and N, — =

independently. The second factor is also the difference of two partial sums for the
convergent double series.

+

||M8
uM8

2 2(m+n)

_1_
r 1A n=1 n=1

I —

L
y mt

B —
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It also approaches zero as M;, N, M., and N, — «. Therefore, Sy,~, — Su,~, ap-
proaches zero. It follows that the partial sum Syy(x, y) converges as a double series
as M - =, N — «. By (31.2) it converges to f(x, y). Since the right-hand side of
(31.5) is independent of x and y, the convergence is uniform.

We have shown that if f(x, y) is continuous and continuously differentiable and if the
squares of its second partial derivatives have finite integrals, then the double Fourier
series converges absolutely and uniformly to f(x, y) as a double series.

The inequality (31.5) can again be used to bound the error made in approximating
f(x, y) by its Fourier series. We note that

M, @

2 _l__ < d_x:_l__

Myt T8 M, X 3M»®

%2 j;,l (m? + n%)-2 + 22 Z(m +n2)2<ﬂfw rdr = '
M=N,+1 m=1 m=My+1 n=1 2 Jminoa, ap Pt 4[min (M, N1)]?

Setting M, and N, = « in (31.5) and using (31.4) we have

(31.6) [ fx, ) — San(x, y)|* = {%(K}f*’l) +4[min (7;/1 N)]? }

L f-w [( f) (ang;vz) + (ayf) ]dxdy

M
2 m4(a0m + bOmz) _% 2 n4(an0 + Cnoz)
= n=1

m=1

x93

[\J|r—mr——"—ﬁ

M N
— E 2 (m2 + nz)z(anmz + bnm2 + Cnm2 + dnmz)}-
m=1 n=1

This bound can be used to see how close the partial sum Sy~(x, ¥) is to f(x, y).

The analogous bound (19.10) in one dimension used only a first derivative of f,
while (31.6) contains second derivatives. A bound like (31.6) involving first derivatives
cannot be found because the double series 32 (m® + n?)-! diverges.

If f(x, y) is an odd function of x and y, all the Fourier coeflicients except the dum
vanish. The resulting series is a double sine series. Similarly if f is even in x and odd
in y, only the b,, are nonzero. If fis prescribed only for 0 < x < 7,0 <y <, it may
be continued as either an odd or an even function of each of the variables. Thus it
may be expressed as a double sine series, a double cosine series, a sine-cosine series,
Or a cosine-sine series.

The above results are easily extended to higher dimensions. We may have triple
Fourier series, quadruple sine series, and so forth.

EXERCISES
1. Find the double Fourier series for
f,y)=x* for —n<x<aw, —w<y<m.
2. Find the double sine series for
flx,y)=x%* for 0<x<mw, O<y<m.
3. Find the double sine series for
fx,yY)=(0—y)sinx for O0<x<m 0<y<m.
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4. Find the double series in terms of sin nx cos my of
flx,y)=y for 0<x<m, 0<y<m.

32. Laplace’s Equation in a Cube.

We consider the problem

(32.1)
u  0*u  du
2= o _— =
v uhax2+8y2 972
u=>0 for x=0, x=w, y=0, y=#, and z=r,

u(x,y, 0) =g(x,y).

+ 0 for O0<x<w, O<y<w, O<z<m,

This problem arises in electrostatics when u is the potential whose value g is given on
the face z = 0, while the other faces are perfect conductors kept at zero potential.
u can also be interpreted as an equilibrium temperature distribution when the faces
are kept at temperatures (0 and g, respectively.

The maximum principle holds for Laplace’s equation in three as well as in two
dimensions. From this it follows that a three-dimensional boundary value problem for
Laplace’s equation has at most one solution, and that this solution varies continuously
with the boundary values. We proceed to find the solution of (32.1).

We apply the method of separation of variables. Consider a product function
v = X(x)Y(y)Z(z) which solves Laplace’s equation. We substitute in the equation,
divide by v and transpose one term. The result is

X' Y Z"

FAR A
Since the left-hand side is independent of z and the right can depend only on z, both
sides must be constant:

Xﬂ Yll _ Z” _

xtTy="z - ¢
Again,

XII YH

X - Ty =0

another constant, by the same reasoning. We must have

X"— C.X =0,
Y"— (C,—C:)Y =0,
Z"+ C,.Z =0.

The homogeneous boundary conditions give

X0)=X(m) =0,
Y0O)=Y(m) =0,
Z(m)=0.
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The problem for X is an eigenvalue problem of the type considered in Section 14. We
must have C; =—n2, where n is a positive integer, with the corresponding eigenfunction

X = sin nx.
From the problem for Y we find that C; — C, = —m?, where m is another integer, and
Y = sin my.
Then C, = —m?® — n?, so that Z is a multiple of
sinh Vm? + n?(m ~ z).

We seek a solution of the form

U =3 3 anm sinh Vm? + n?(m — z) sin nx sin my.
1

-Mzs

Putting z = 0, we formally obtain
g(x, v) =3 3 apy sinh Vm? + rq sin nx sin my.
1 1
Therefore we make

m k2
onpm SINh VA2 + P =dpm = % f f g(x, y) sin nx sin mydxdy.
0 0

Then

x inh V2 +m?(m—2) . .
32.2 u(x,y,z) =22 Ay sin nx sin my.
( ) (*, 7, 2) 11 sinh Vn? + mitsr Y

We must verify that this gives a solution to the problem (31.1). If f i fw |g|dxdy is
0 0

finite, the dn» are uniformly bounded. Then the series (32.2) and all its derivatives
converge absolutely and uniformly for zp < z < w7, 0 =< x < w, 0 = y < 7 for any con-
stant zo > 0. It follows.that u(x, y, z) is infinitely differentiable for z > 0 and satisfies
Laplace’s equation. It also vanishes on all the faces of the cube except z=0.

In order to be sure that u satisfies the boundary condition at z = (0 we assume that
g, extended as an odd periodic function of x and y, is continuous and continuously
differentiable, and that

a2g 2 a2g 2 aZg 2
JI1GE) + () + (58) Jxe
is finite. Then the Fourier series for g(x, y) converges uniformly. Since the partial
sums of the series (32.2) vanish on the other faces of the cube, it follows from the
maximum principle for Laplace’s equation that the series for u converges uniformly
for z = 0. Therefore, u is continuous at z =0 and u(x, y, 0) = g(x, y).
As in Section 25, we can extend this result to show that if g is bounded, the function

defined for z > 0 by (31.2) has the limit g(xo, vo) at each point (x,, yo, 0) Where g(x, y)
is continuous.
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EXERCISES

1. Solve the problem

Vig=1( for O0<x<m, O<y<mw, O0<z<m,
u=190 for x=0, x=m, y=0, y=a, and z=m,
u(x,y,0) =sinxsindy.

2. Solve the problem
Viu=0 for 0<x<=, O<y<w O0<z<]1,
u=10 for x=0, x=ma, and z=1,

ou _ - —
ay~—0 for y=0, y=m,
u(x,y, 0) =x.

3. Solve the problem

Vig—u=0 for 0<x<m, 0<y<%w, 0<z<1,
u=10 for x=0, y=0, z=1,

g—u'——O for x=umn,
x

du _ =1
3y 0 for y =5,

1] . _
P (x,y,0) =2x — .
4. Solve the problem of heat conduction on a square

for O0<x<w=, O<y<a, t>0,

u=90 for x=0, x=u«, y=0, y=m,
u(x, y, 0} = flx, y).
5. Solve the problem of the vibrating rectangular membrane

Pu  Pu  u
3 a2 2_—6};2_0 for O0<x<a, 0<y<A, t>0,

u=y0 for x=0, x=a, y=0, y=A4,
u(x,y, 0) =f(x,y)),

du _
(% ¥, 0) = g(x, y).
6. Solve the problem of heat conduction in a cube with insulated faces:

L2 222 2=0 for O0<x<m O<y<m O<z<m >0,

u_ _
Fri for x=0,m,
du _ _
= for y=0,,
ou _ .
Frhe for z=0, 7,

u(x,y, z,0)=f(x,y,2).

7. Solve problem 6 when f{(x, v, z} = xyz.
8. A cube of side = initially at constant temperature T, is put at time O into a constant
temperature bath at temperature T.. If the equation of heat conduction is

find the temperature distribution at any time ¢ > 0.
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33. Laplace’s Equation in a Cylinder.

We constder Laplace’s equation in c¢ylindrical coordinates

2u 1ou 10%u  o2u
—t -t st == < F < < 7
ar2+rar+r2a02+az2 0 for 0<r<R,, 0<z<m,

(33.1) u(r, 0,0) =u(r, 8, 7w) =0,
u(R,, 8, z) = g(0, z).

By separation of variables we obtain

R"+ <R’ ez,
R RG] z
Multiplying by #? and transposing gives
PRAR e, =-Z =
We have
Z"+ CZ=0,

Z(0) = Z(m} =0,
which again gives C1=n?, n=1,2,. ..,
Z, = sin nz.
Next,
0"+ C,O=0

with the condition that © be periodic of period 2#w. This requires ©(0) = 6(27),
O'(0)=0'(27). Then C:=m?, m=0, 1, 2, . . . with the corresponding eigenfunctions

Op=1, O, =sinmh, cosmb.

{(m=1, 2, ... are double eigenvalues).
Finally, we obtain the differential equation
" l La— ln_i 2 o

This equation is singular at r = 0. In place of a boundary condition we impose the
condition that R remain finite at r = (. The solution which is one at r = R; is then

_ Im(nr)
Ronr) = 1a(nRyy
In is the Bessel function with imaginary argument:
33.3 In(r) = 3 (L)
(33.3) )= 2 q iy

which converges for all . (See G. N. Watson, The Theory of Bessel Functions.)
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We write the solution « in the form

13 I
u(r, 8,z) = 5% Cnoloz(r‘;{)) sin nz
(33.4)
w© ® Im( ) )
+ % ? Tn (R sin nZ(Cpm cOS MO + dum sin mo),
where

T {27
Cnm = -%2- f f g(8, z) sin nz cos mdodz,
T Jo Jo

2 T (2w . .
dwm = 7] f g(8, z) sin nz sin mododz.
T Jo Jo
To see when this series converges we let
Smn(r) = (—I%) "B R (1)

Then Snmn satisfies the problem

2 —
Smn” + (Ln'_':_—'_l + n)Smn’ - l:_:i(ﬂ - n) "' M]Smn == 0,

4\ r 2r
(33.5) Smn(0) =0,
Smn(Rl) = 1

for m = 1. The coefficient of Sn, is negative. If Sn.(r) were ever greater than one for
0 < r < R4, it would have a positive maximum for some r in the interval. At this value
of r, Sy > 0, Smn’ = 0, and S»x" = 0, which contradicts (33.5). It follows that Sy, (r)
= 1. Then

4]

im
r —in(R—
Ron(r) = (—) "R for 0=r=R;, m=1.
1

33

R
It is clear from the series (33.3) for i, that Ry, = 0.
For #i = ), we note that 24! = 2/(2]~2)(2]—4) - - - 2, and that therefore
2h!'= UH: < 21+ D!
We then see from (33.3) that

sinh r

< Iy(r) = coshr,

Therefore,

Io(nr) nR, cosh nr
Io(l’lR1) sinh nR,

R(m(l‘) =

Both the single series

nR; cosh nr
. sinh nR,

:

n
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and the double series

) P im (Ri=r)
> (——) g iR
11 Rl

converge uniformly for r = r,, where r, is any constant less than R,. Therefore, if
{ J |g(8, z)|dédz is finite so that the cy» and d,. are bounded, the series (33.4) con-
verges uniformly for r = r, for any r, < R;. Similarly, we can show that the series
obtained by differentiating (33.4) any number of times still converge uniformly for
r = ro with any ry < R;. It follows that the function u is infinitely differentiable with
respect to all its variables for r < R, 0 = z < 7. It satisfies Laplace’s equation and the
boundary conditions at z=0 and z = 7.

To show that the boundary condition at r = R, is satisfied we first assume that g
is continuously differentiable, and that

ﬁ)z aZg 2 azg 2

/] |G5) o) + (58) Jaxar

is finite. Then the Fourier series for g converges uniformly. Since the partial sums of
the series (33.4) are harmonic, their differences satisfy the maximum principle. Hence
the Fourier series (33.4) for u again converges uniformly, and # is continuous for
r = R, and equal to g for r = R,.

As in Section 25 we can show that « actually attains its boundary values at all points
where g is continuous whenever g is a bounded function.

EXERCISES
1. Solve
Viu=0 for r<l1, 0<z<m,
u(r, 0,0) =u(r, 0, 7) =0,
u(l, 6, z) = z(w — z) cos? 8.
2. Solve
Viu=190 for r<1, 0<z<m,
u{r, 6,0) =0,
du o
5;(1‘, Ba 1"") 0!
u(l, 0, z) = z cos® 6.
3. Solve
Viu=20 for r<1, 0<z<1,
u(r,8,0)=u(r,6,1)=0,
"(3;_’;(1, 9, z) +u(l, 8, z) = sin® 7z sin? 6.
4. Solve

Viu=90
on the halif-cylinder
r<l, O0<t<m, O0<z<m,
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when

u(r, ,0) =u(r, 6, 7) =0,
u(r,0,z)=ulr,m z) =20,
u(l, 8, z) =z(wr — z2).

34. The Three-Dimensional Wave Equation in a Cube.
We consider the problem

2 2 2 2
(34.1) %—g—cz(gx—z+gy—Z+g?Z):0 for0<x<m 0<y<m O0<z<m t>0,
u(0,y,z,t)=ulm, y, z,t) =0,
u(x9 09 Z9 t) = u(x! Tr’ Z? t) = 09
u(x,y,0,t)=ulx,y,m t)=0,
ulx,y, z,0) = flx,y, z),

ou
E(x, ¥, 2,0)=g(x,y, 2).

The solution of this problem describes the propagation of sound waves from an initial
disturbance in a cubical room.

The differential equation, which is called the three-dimensional wave equation, is
hyperbolic. We can apply the same uniqueness proof as that which we used in one
dimension. We multiply the equation by du/ot and note that

uldu __ 5 4 B BYCA 2]_-[2,‘2& ]
ar[aﬁ ¢ div grad u] = ar[z(a:) + 5¢ |grad u| div | ¢ P grad u|.

We integrate this identity over a four-dimensional domain bounded by the sides
of the cube, the initial plane ¢ = 0, and a three-dimensional surface § which passes
through a given point (xo, yo, Zs, fo). Applying the divergence theorem and using the
conditions in (34.1), we find that if f= g =0,

t f (x(]!yﬁ,z[)a r0)
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o, OUf U ou ou
2 2 ottt Rt —_—
(34.2) fff{ [( ) + ¢? |grad u| ]m c? ar(a nx+ayny+az )}dS 0.

Here (ns, ny, n., n;) are the components of the upward unit normal vector on S.
(We suppose that n, > 0 on §.)
Completing squares, we can write the integrand of the above integral as

1 [au z(au)]z
— C —
2nm:| ot an
[ fou 1 du \? ou 1 du_ \? ou 1 du
+ Zm[(ax n? an'“) + (ay nton ”) + (az n? ann,_z)z]
e e 2
+ 2m(n: c?n?) |grad u|?,

where we have defined

ou Ju ou ou
an_ax=t ay v + 9z

Fz,
and

n? = ng% + ny® + nt.
This integrand is nonnegative if
(34.3) né — c*(nz* + ny® + n?) = 0.

If we use a surface § with this property, we can conclude from (34.2) that the integrand
vanishes.

To obtain the steepest surface S with the property (34.3) through the given point
(x0, Yo, 2o, fo), WE set

(34.4) né—c(n2+nt+n?) =0

except at the point (xo, Yo, zo, fo). Then § is the right circular cone with slope 1/c

(34.5) t=to— VG2t (=3 F (2= w)*

It is called the characteristic cone through the point (xo, Yo, 2o, o). Its cross section
with a plane t = constant is the sphere of radius c(# — t) centered at (xs, Yo, 2o).
For this cone S (34.2) becomes

U ou nzou ou nyou\? [ou n,ou\?
Ly, — 2] (22 22X g _ Ay >r” e _ =z
fff Zm{[ e c an] +oin [(ax n? an) + (ay n* an) + (az n® an) ]}dS

Since the integrand is a sum of continuous nonnegative functions, each term must
vanish everywhere on S. Since n? — ¢?n% = 0 and n® + n® = 1, we find from the fact
that the first square vanishes that

au = V (_—nx uny + élinz)
oy 0z
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on S. At the tip (xo, Yo, 20, to) Of S the spatial part (n;, n,, n;) of the normal vector
has all possible limiting directions. It follows that du/dx = du/dy = dufdz = dufot =0
at (xo, Yo, Zo» fo). We repeat this argument at each point (xo, Yo, 20, £) With ¢ = £y to
show that du/at = 0. Since u(xo, Yo, 20, 0) = 0 we find that u(xo, yo, 2o, ts) = 0.

We have proved that the solution at (xo, Yo, Zo, fo) of the equation is uniquely de-
termined by the data lying below and on the characteristic cone through (xo, Yo, Zo, fo).
This cone corresponds to propagation at maximum speed ¢ in any direction. (This
uniqueness theorem is true for any initial-boundary value or pure initial value problem
for the wave equation.)

Any surface whose normal satisfies (34.4) is called a characteristic surface. It can
be shown that discontinuities of solutions of the wave equation travel along charac-
teristic surfaces.

By separation of variables we find the formal solution of (34.1)

u(x,y, z, t) =333 (dmm cosVIEE+m?2+ nct

(34.6) ~ sinVP2+m2+n?ct\ . : )
+ dymn sin Ix sin my sin nz,
BP+m+nrtc
where
dimn = ;ng J’Wf fx, v, z) sin Ix sin my sin nzdxdydz,
(34.7) 0 Jo o Jo

- 8 T (7 (@ . . .
dimn = o f f J g{x, y, z) sinlx sin my sin nzdxdydz.
0 0 0

In order to obtain uniform convergence of the series for x and its first and second
derivatives we must assume that f (continued as an odd function) and its partial de-
rivatives up to the third order are continuous, while the squares of its fourth partial
derivatives have finite integrals. Also g and its derivatives up to the second order must
be continuous, and the squares of its third derivatives must have finite integrals. While
this condition is somewhat too strong, it is known that a discontinuity in the third
derivative of f can produce a discontinuity in the second derivative of u. Discontinuities
are propagated along characteristic surfaces. These can degenerate, producing a loss
of derivatives (focussing). {See R. Courant and D. Hilbert, Methods of Mathematical
Physics, Vol. 2, Interscience, New York, 1962, p. 673.)

By our uniqueness theorem u(x, y, z, t) depends only on the part of the data in and
on the sphere of radius ¢r centered at (x, y, z). However, this is not at all clear from
the form (34.6) of the solution.

The formula (34.6) expresses the solution as a sum of simple harmonic motions, in
each of which u is a product of a sinusoidal function of ¢ with a function of x, y, and z
only. These motions are called the normal modes of the problem. Their frequencies
V12 + m?* + n®c[27 are called the characteristic frequencies.

EXERCISES
1. Solve
Pu Py, Pu , Pu\ _
5?2' (@+a—y2+a—z2)~0 for 0<x<m, 0<y<mwm O0<z<m,
u=20 for x=0,#, y=0,w, z=0, 7,
u(x,y, z, 0) = xyz(m — x)(m — y)(w — 2),

du _
E(xQ Y, <, 0) - 0'
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2. Solve
?;—;;“(g-%-i-%zy—g-t-%)=0 for 0<x<d4, 0<y<B, 0<z<C,
=0 for x=0,4, y=0,8 g—‘z‘=0 for z=0, C,
u(x,y, z,0)=0,
%—L;(x, v,2,0)= sinzrjE sin-%z sin® %Z

3. Show that the value at (x,, Yo, 2o, fo) Of a solution u of the damped wave equation

RPu . ou  ofFu  Fu 62_u)
6t2+aat c( +

T T oz =1{, a>0

is uniquely determined by the part of the data below and on the characteristic cone (34.5).

4, Solve

Pu | u  Fu

7 RALANEPN | Bl Rl il
+a C (ax2 + oyt T o
u=20 for x=0,7, y=0,w, z=0,m,

ulx,y, z,0) = flx, y, z},
%%(x, v, 2,0)=g(x,y, z).

)=0 for O0<x<m O<y<aw O0<z<m,

35. Poisson’s Equation in a Cube.

We consider the problem

0% *u | d*u
V2u=5};+~a?+gz—2=—F(x,y,z) for O0<x<mwm0<y<wm0<z<m,
u(0,y,z)=u(m,y, z) =0,
G5 uix, 0, 2) = u(x, m, 2) =0,

u(x,y,0) =u(x,y, 7)=0.
We could proceed as in Section 29 to expand « and F in double sine series in x and

y (that is, take finite sine transforms) and obtain a set of ordinary differential equa-
tions in z. Instead, we expand « and F in triple sine series:

u(x, y, z2) = XX dimn sin Ix sin my sin nz,
F(x, vy, z) = XXX Dy, sin Ix sin my sin nz.

Putting these series into the differential equation (35.1) and assuming u is twice
continuously differentiable, we see that

d —_ Dlmn .
Rt m+n?
Thus
Dlmn . . .
(35.2) u(x,y, z) =233 g5 2 it Ix sin my sin nz.

This series and its first and second partial derivatives converge absolutely and uni-
formly, provided the series for F does so. This is the case if F extended as an odd
function is continuously differentiable, and if the squares of its second derivatives
have finite integrals. In this case, then, u is the solution of (35.1).
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By Parseval’s equation we can write the solution (35.2) as

(35.3)  u(x,y,2) = f f f G(x, v, 2 & m, DF (€, 7, {)dedndL,

provided G is a function such that

8 sin Ix sin my sin nz sin I¢ sin mn sin n{
(354) G(x,y,z:€m, ) ~ 73 33T i

To find this function we let

r=VE=0 F ="+ -2

and choose a constant a depending upon the fixed point (x, y, z) in such a way that
the sphere r = a is inside our cube, We define the function

o[

Then ¥(r) — % has continuous second partial derivatives, bounded third derivatives,

and square integrable fourth derivatives.
We expand ¥ (r) in a triple sine series. Making the change of variable

E=&—x, n'=n-—y, '={—1z,

we let

stAimn= f" F F WOV E =)+ (n —y)° + (L= 2)?) sinlé sin mn sin n{dEdndt
(1] (1] 0

_ ”f S(VEET 921 0% sinl(& + x) sinm(n’ + y) sin (L + 2)de'dn'dy

flzﬂ’2+{’2<ﬂ2
= fff Y[sin l¢' cos Ix + cos [¢' sin Ix] [sin mm' cos my + cos mm’ sin my]
[sin n{' cos nz + cos n{’ sin nz|d¢ dn'dl’
= sin Ix sin my sin nz ff P cos ¢’ cos mm' cosnl'dé'dn'dl’.
(Since ¢ is even in &', 0, and ¢, integrals of ¢ sin&’, ¢ sinmn’, and ¢ sin {’ are zevo.)
Now
cos I¢' cos mm' cos ni' =%[cos (Il +mn' +nt') +cos (I +mn' —nl’)
+cos (&' —mm' +nl’) + cos (I¢' —mn' —ni')].

Since ¢ is even in ¢£', n', and ', we find that the integral of  times each of these
cosines gives the same result. Then

3
e J J | o aTE gocos g+’ + ng')de d' dy'.

8 sin [x sin my sin nz

et eplad?
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We now introduce the spherical coordinates (r, 8, ¢) with origin at (x, y, z) and
the polar axis in the direction of the vector with ¢omponents (I, m, n). Then

VI e,
'+ mn' +nl =rVI2+ m?+ n? cosd,

and hence
7r3Almn
8 sin Ix sin my sin nz

a ra o2

= j f f Y(r) cos (r/I2 + m? + n2cos 9)r? sin 0drd0dé.
0Y0 Y0

We integrate first with respect to ¢, then with respect to 6.

3 a —sin (r/I* + m? + n% cos @)~
LA Y P e rdr
rJF + m? +n 0

8 sin Ix sin my sin nz

4
\/12+m + n®

f Y(r)r sin (r/I* + m*> + n?)dr.
Using the definition of ¥, we find
32 ]'1_60(2—+-cosa\/12+ m* + n*)

Almn =

(T e T B a (I m* o+ rf)?
+ 180 sin am} sin Ix sin my sinn
a® (12 + m? + n?)s/2 g -
Thus

1 _60(2+ cosaViit+ m*+ n?)
[*+ m?+ n? a*(l*+ m? + n?)3

180 sin aVI*+ m® + n?
as(I*+ m? + n*)72

1 8

+ ] sin Ix sin my sin sz sin £ sin m7) sin ng. .

Comparing with (35.4), we see that

24+ cosaVii+m?+ n?

a*(12+ m? -+ n?)3

(35.5) G(x,5,2; &, m, C)——ab( )+ 22 5:5313?[

__3sinaVIi*+ m* + n?

@ (I*+ m* + n?)7?

] sin Ix sin my sin nz sin I¢ sin mm sin nl.

The series on the right and its first and second partial derivatives converge uni-
formly. This means that G — 1/(4wr) is twice continuously differentiable, and that
G vanishes on the faces of the cube. It can be verified by direct differentiation that

vz(%) —0  for r#0,

and that

1

V[y(r)] = ‘ér‘zrl’l) for r#0.



158 Problems in Higher Dimensions and Multiple Fourier Series CHAP. VI

L
4WV . Hence,

From this it follows that the Laplacian of the series is the series of —
vViG = 0.
The function G is again called the Green’s function. For a general domain D the

Green’s function G is characterized by the properties

(a) VEG =0 in D,
(b) G=0 on the boundary,
1
© Glx,y,z6m,0) =
4V (x— 62+ (y—m)*+ (2= Q)
where 7y is a regular solution of Laplace’s equation. Such a Green’s function exists

for any sufficiently regular bounded domain. However, it can usually not be found
explicitly. As in two dimensions, G is symmetric:

Gx,y,2;6,m, 0 =G, m, 8 x,y, 2).

Physically, G is the potential at (x, y, z) due to a charge at (£, n, ¢) inside a cubical
box whose sides are kept at zero potential.
The function vy in condition (c) is the solution of the boundary value problem

Viy =10 in D,
1
T e Oy P

It is infinitely differentiable in D. Hence the same is true of G except at (x, y, z).

By using the form (35.5) of the Green’s function we can show that the function (35.3)
satisfies the Poisson equation (35.1) if F is continuous and continuously differentiable.
Under these hypotheses we see from Schwarz’s inequality and Parseval’s equation
that the series (35.2) converges uniformly, so that « also satisfies the boundary condi-
tions of the problem (35.1).

—y(x, ¥, 26 m, 0,

y= on the boundary.

EXERCISES

1. Solve (35.1) when F(x, y, z) = e”.
2. Solve (35.1) when F(x, vy, z) = sin® x.
3. Find Green'’s function for the parallelepiped 0 < x < A4, 0 <y < B, 0<z < C,
4. Solve
Viu=—F(x,y,z) for O<x<m O<y<m O<z<m,
u=20 for x=0,7, y=0,w, z=0,
du_ 0 for z=m.
0z

Verify that your formula gives a solution.

5. Solve the problem (35.1) by taking the sine transforms of 1 with respect to x and y to ob-
tain an ordinary differential equation in z.
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CHAPTER VII

Sturm-Liouville Theory and
General Fourier Expansions

36. Eigenfunction Expansions for Regular Second-Order Ordinary Differential Equations.

The trigonometric functions arose from separation of variables as the eigenfunctions
of boundary value problems for the second-order equation

w+a=0,

Separation of variables often leads to other eigenvalue problems.

As we have shown in Section 27, we can put any second-order differential equation
whose highest order coefficient is positive into the self-adjoint form (27.1) by a simple
multiplication of the equation.

We consider now the differential equation

(36.1) %(p(x)%)—q(x)u+hp(x)u=0 for 0<x<1,

where p and g are continuous, and p is continuously differentiable. We suppose that
p and p are positive and that g is nonnegative for 0 = x = 1.

In addition to the homogeneous differential equation we are given the homogeneous
boundary conditions

(36.2) u(0) =u(l) =0,

The values of A for which the problem (36.1), (36.2) has a nontrivial solution (that
is, a solution other than « = 0) are called the eigenvalues. The corresponding solutions
are the eigenfunctions.

A solution u of (36.1) is uniquely determined by requiring #(0) = 0, ¥’ (0) = 1. The
eigenvalues are those values of A for which u(1) = 0. The eigenfunction is then any
constant multiple of u. The eigenfunction corresponding to an eigenvalue A is deter-
mined within a constant multiplier.

Let A and u be two different eigenvalues with the corresponding eigenfunctions «
and v. Then

(pu')' — qu+ Apu =0,
(pv') —qv+ ppv=0.
160
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We subtract u times the second equation from v times the first, and integrate from
0to 1.

| oy —uevy + 00— woulax=o.

Since v(pu')' — u(pv')' = (vpu’ — upv')’, and since u and v vanish at both ends, the
first two terms integrate to zero. We are left with

1
(A—p) f puvdx = 0.
0
Since A and u are different, we conclude that

1
(36.3) f puvdx = 0.
0

That is, eigenfunctions corresponding to different eigenvalues are orthogonal with respect
to the weight function p.

1
This suggests that one can expand any function f(x) for which f pf%dx is finite in a
0

Fourier series in terms of the eigenfunctions. We shall show that this is indeed the case.
That is, the eigenfunctions of the problem (36.1), (36.2) are not only orthogonal, but

also complete.

We first show that all the eigenvalues are positive. Let A be an eigenvalue. We mul-
tiply (36.1) by the corresponding eigenfunction # and integrate from O to 1. Applying
integration by parts, we have

1 1 1
0= f ul (pu')' — qu + Apuldx = puu’:| + J’ [—pu'? — qu® + Apu?)dx.
0 0 0
Since u = 0 at 0 and 1, we find that
1
J’ [pu'? + qu*)dx
A==

1
[ putdx

0

(36.4)

Since p and p are positive, g is nonnegative, and « is not constant (otherwise it would
be zero) we conclude that A > (. That is, all the eigenvalues are positive. In particular,
A = 0 is not an eigenvalue,

According to Section 28 the problem

(36.5) (pw')’ — gw + Apw = —F(x),
w(0)=w(l)=0

has a unique solution if and only if the problem (36.1) (36.2) has no solution other
than u = 0. That is, the eigenvalues are exactly those values of A where the Green’s

function of (36.5) fails to exist.
Since A = 0 is not an eigenvalue, there is a Green’s function G (x, ¢) for the problem

(36.6) (pw') —gqw=—F,
w{0) = w(l) =0.
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That is, the solution of this problem is
1
w0 = [ Gx, OF ©)de

If we transpose the term Apu in (36.1), we find that an eigenfunction u satisfies a
problem of the form (36.6) with F = Apu. The eigenfunction u must therefore satisfy
the integral equation

(36.7) w0 =1 [ Gx, Op@uerde.

Conversely, if u satisfies (36.7), it is an eigenfunction and A is an eigenvalue.
We can think of (36.7) as a formula for a Fourier coefficient in the expansion of

G (x, &) for fixed x in terms of the eigenfunctions. Let \,, . . ., \; be eigenvalues, and
u,, . . ., u the corresponding eigenfunctions. Then by Bessel’s inequality (16.2)
1 2
([ 6w op@umewE) r
3 0 - = | G%od¢.
[ ey :

By (36.7) this becomes

s ELET [ G (x; )% (£)dE.
=l )\HZJ(‘) pun(f)zdf 1]

We multiply both sides by p(x) and integrate from 0 to 1. Then

s L« f 1 f G (x; £)%(x)p(&)dédx.

n=1 )\nz

Since G (x, £) is continuous in x and &, the right-hand side is certainly finite. Since
A, .. ., A were any eigenvalues of the problem (36.1), (36.2), it follows that if there

are infinitely many eigenvalues, the infinite series 3 —5 must converge. In particular,

1 n
A — @ with k. For the sake of convenience, we arrange the eigenvalues in increasing
order:

M< << —ow,

(It is, of course, conceivable that there are only a finite number of eigenvalues, but we
shall soon see that this is not the case.)

Let ¢(x) be a twice continuously differentiable function vanishing at 0 and 1. We
write its Fourier expansion in terms of the eigenfunctions u,, u,, . . .

$(x) ~ 3 cunn(x),

where

1
f poudx
0

Cn — T—**'
f pu,2dx
0
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We expand %[ (pd’)’ — q¢] in a Fourier series. By integration by parts we find
1 1
fo [(pg")" — q!cb]undx=f0 ¢[(pun')’ — qualdx,

1
= —\n f pdundx,

0
so that

L8 = ad] ~ =3 catn
Suppose for the moment that the u, are complete. Then by Parseval’s equation
J: pdidx =3 ¢? Ll plndx,
| o+ ag1as == 6L")" — alax =3 et [ putax
Since the A, are arranged in increasing order, these equations imply that
| o+ agrax =, [ pga

with equality if and only if ¢ = ¢y = + - - = 0; that is, if and only if ¢ = c.u,.
We now reverse this process and seek to minimize the ratio

|| wor+ agrrax

(36.8) -
f pddx
0
among continuous, piecewise continuously differentiabie functions ¢(x) such that
$(0) =¢(1)=0.

If the eigenfunctions are complete, the minimum of (36.8) must be A;.

The ratio (36.8) is called the Rayleigh quotient. It is certainly nonnegative. Therefore
it has a greatest lower bound . Suppose that this value is actually attained for an ad-
missible function . Then if ¢ is any other admissible function and T any constant, we
must have

[ o+ moy+a+rorax [ owe+ qulas
i = = .
J; p(y+ 1) 2dx fo pyrPdx

The left-hand side is a continuously differentiable function of 7 (in fact, it is the ratio
of two quadratic polynomials), which attains its minimum at 7= 0. Therefore its deriva-
tive with respect to 7 must vanish at 7= 0:

2 [ v+ aue)ds 2 [ pwpax [ v+ qwras :
L ' pitdsx ( fo 1 ptbde)z o
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or
(36.9) || towe’ + avs — wowglax=o.

If ¢ is twice continuously differentiable, we integrate by parts to obtain

—E SL(pY' ) —q+ upldx=0.

Since this is true for every admissible function ¢, the expression in the bracket must
be zero. For if it were positive (or negative) in an interval x, — € = x =< x, + ¢, and if
we chose ¢ to be positive for x; — € < x < xo+ € and zero elsewhere, we would find
that the integral could not be zero.

Thus, ¢ satisfies

(pY') — q + pupp =0,
$(0) =¢(1) =0.

That is, u is an eigenvalue, and ¢ is the corresponding eigenfunction.

If we put ¢ = u, into (36.8) we obtain the value A,. Since y is the minimum of (36.8),
it must be the lowest of the eigenvalues.

We have shown that if there is a twice continuously differentiable function ¢ for
which the ratio (36.8) attains its greatest lower bound, then

1
[ 1pe + ag1ax
(36.10) M= min 0
8(0)=¢(1) =0 fﬂ(bzdx
0

Moreover, the minimizing function ¢ is a multiple of the first eigenfunction u,.

The proof of the existence of a minimizing ¢ is somewhat more difficult. We simply
state here that such a ¢ exists, and refer the interested reader to R. Courant and
D. Hilbert, Methods of Mathematical Physics, Vol. 1, Interscience, New York, 1953,
p. 122, where its existence is established on the basis of the integral equation (36.7).

We now seek to minimize the ratio (36.8) among continuous, piecewise continuously
differentiable ¢ which are orthogonal to u,. That is,

1
f pdudx =0,
0

By the preceding method we can show that the minimum is equal to A, and is attained
when ¢ is a multiple of u,. Proceeding in this way, we can define all the eigenvalues
and eigenfunctions recursively:

01 [P + qd*1dx
(36.11) A= min f

' 1
f., pduy dx=0 j pdidx
: 0

f pd;u;;qu =0
s (0 =¢(l) =0

L
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where the minimum is taken over continuous piecewise continuously differentiable
functions ¢ satisfying the orthogonality conditions and the boundary conditions. The
minimizing ¢ is a multiple of u,.

For any k there is a polynomial ¢ of degree k + 1 whose k + 2 coefficients satisfy the
k + 1 linear homogeneous equations ¢(0) = ¢ (1) = [ pdurdx= - - - = [ pdux-1dx=0.
Therefore the recursion (36.11) does not end. That is, the number of eigenvalues is
infinite.

The characterizations (36.10) and (36.11) of the eigenvalues as minima of the Ray-
leigh quotient are called minimum principles for the eigenvalues.

Let f(x) be any continuous piecewise continuously differentiable furction with
J(0) = f(1) = 0. We expand it in a Fourier series

f~ 2 calin,
1
where

1

[ ofind

cn - m()l.——-—.

f purdx
0

We observe that by the definition of ¢,
1

f p(f— ki cnun)uidx =0

0 1

fori=1,2,...,k—1. Therefore by (36.11)
1 k-1 2 1 M k-1 2 k-1 g
f p(f— b3 Cnun) dx = )\_f [p(f’ -3 cnun’) -+ q(f— p3 Cnun) }dx
0 1 k Jo 1 1
1 1 k-1 1
(36.12) :A_k{f (pf*+qf*)dx—2 3 cnj (pf'un’ + qfun)dx
0 1 0

k-1 k-1

+ % % CnCm Ll (pun'um’ + qunum)dx}.
We find by integration by parts that
[ eraw + afimy s = [ f=pur'y" + qude
= \n fo 1 pfundx

1
= AnCn f punidx.

0

Also,

1

1
f (pun'um’ + quntin)dx = Ay f PUnlmdx
0

0

1
An f putdx  for m=n

0

{0 for m # n.
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Then (36.12) becomes

1 k-1 2 [ 1 k-1 L

f P(f_ 2 Cnu") dx = X— { f (pffz + qu)dx_ 2 )\ncn2f punde}-

(1] 1 k 0 1 0
Since we have shown earlier that A, — ® as kK — o, the right-hand side approaches
zero as k — o, This means that the Fourier series X cyu,(x) converges to f(x) in the

1

mean.

1
Any f(x) for which j pftdx is finite can be approximated in the mean by a continu-
0

ously differentiable function f(x) which, in turn, can be approximated in the mean by
its Fourier series. Therefore the eigenfunctions of the problem (36.1), (36.2) are com-

1 .
plete. That is, any f for which ( pf?dx is finite is the limit in the mean of its Fourier
Jo

series. In particular, Parseval’s equation

% 1 1
2ot f Pun2dx = f pf2dx
1 0 0

holds.
If fis twice continuously differentiable and f(0) =f(1) =0, we have already seen that

%)[ (Pf’)’ —qf] ~ —Z AMuCnltn.

Then by Parseval’s equation
1 1
2 et || pwids == | fLor) — afldx
0 0
1
= [" ter + arlas.
0

By approximating with twice continuously differentiable functions we can see that
the equation

«© 1 1
3 AnCn® f pURtdx = f (pf'?+ qf*)dx
1 (1] 0

1
holds for any continuous f(x) such that f pf'%dx is finite and f(0) = f(1) = 0. This is
another kind of Parseval equation. >
By applying this equation to f+ g and f — g and subtracting, we find that if

f~ 2 C.’r’luﬂa
1

g~ b dnun,
1
then

o 1 1
(36.13) §Ancndn L puntdx = fo (pf'g" + afg)dx.
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For fixed x and y, we now put f(£) =G (x, &), g(é) =G (y, £). By (36.7)

Cn = )\1 Hn (X) ?
" f pudé
dy= l Un (y) -

1
Aﬂf pun2d§
0

Then (36.13) becomes

5 —tnlx)in(y) =f p©3 w0 o, 6 + a6, §)G(y,§)]§
[ prerae

= p(6)G(x, g)%?(y, E)]y-!rp(f)G(x 0320, s)]

+ [ 6w 0|30, 0)+ a6 0. 0 |ag
=G(x,y)

by the properties (28.4) of Green’s function. Thus we have the convergent expansion

(36.14) G(x,y) =3 @)

' M f puy*dE
0

For x = y we obtain

®

Gz, x) =3 —talx)’
W f pudé
0

Consider now the Fourier expansion ¥ cuu,(x) of a continuous function f(x) with
f0)=f(1)=0and such that [ (pf'?2+ qf?)dxis finite. By Schwarz’s inequality we have

N 2 N 1 N u 2(x)
(36.15) (2 cnun(x)) = (2 Ancnzf punzdx) 3
M+1 Ml 0 M+1 )\nf pudx
(1]

N 1
= G(x, x) M%l )\nc,f_L puridx.

1
Since G (x, x) is uniformly bounded, and since % Anc,? f puxdx converges by (36.13),
0

the right-hand side approaches zero uniformly in x as M, N — o,
We have shown that if f(x) is continuous, f(0) = f(1) =0, and [ (pf'? + qf?*)dx is
finite, the Fourier series X c,u,(x) converges to f(x) uniformly.
In particular, the expansion (36.14) of G (x, y} converges absolutely and uniformly
in x and y. Therefore if [ |F|dx is finite and
Fx) 5

p(x) -~ % Cnun(x)’
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the problem

(pw')" — qw=—F(x)
w(0) =w(1) =0

has the solution

%lun(x) 2

wx) =2
and the series converges absolutely and uniformly. That is, a knowledge of the eigen-
functions and eigenvalues gives a convergent series solution for the nonhomogeneous
equation.

If we have the eigenvalue problem (36.1) on an interval « < x < 8 with the boundary
conditions u(a) = u(B8) = 0, all our results remain unchanged when the integrals from
0 to 1 are replaced by integrals from a to 8. This can be seen by a simple change of
scale.

Other boundary conditions may occur in practice. If we have the eigenvalue problem

(pu')' — qu + hpu =0,
u(0) =0,
p{Du' (1) +au(l) =0, a=0,

we find that the eigenvalues are defined by the minimum principles
1
|| o+ agt)ax + ag(1:
A= min 2

f ?;lkﬂdX:O 0
AORE

s

where the admissible functions ¢ (x) are again continuous and piecewise continuously
differentiable and vanish at x = 0, but need not satisfy any condition at x=1.
The completeness of the eigenfunctions and the uniform convergence of the Fourier

1
series for f(x) such that j pf'%dx is finite and f(0) (but not f(1)) vanishes follow as
(1]

before.

EXERCISES
1. Find the eigenvalues and eigenfunctions of the problem

((1+x)%') + =0 for 0<x<1i,
u(0) = u(l) =0.
HINT: (1 4 x)ie = ¢lalosi+2) = cos (q log (1 + x)}) + i sin {a log (1 + x)).

2. Find the eigenvalues and eigenfunctions of the problem
u' + Au =0,
u(0) =0,
u' (1) +u(l) =0.

That is, obtain the eigenfunctions in terms of A and find an equation to be satisfied by A. Show
that this equation has infinitely many solutions.
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3. Find the eigenvalues and eigenfunctions of the problem

W+ Au=0,
u(l) —u(0) =0,
w(l) —u' (0) =0,

37. Vibration of a Variable String.

We consider the problem

2 2
Trapar =0 for 0<x<i >0,

u(x, 0) = f(x),
Ju
E(x9 0) = 09

u(0, 1) =0,
u(l, r) =0.

(37.1)

The solution of this problem approximates the motion of a string whose linear density
is proportional to (1 + x)~2. (See Section 1.)
Separation of variables (z = X (x)T(z)) gives the two equations

" A’ =
(37.2) X"+ —-—b—(l T x)2X 0,
and
(37.3) T"+ AT =0.

For X (x) we obtain the boundary conditions
X(0)=X(1)=0.

Thus we have an eigenvalue problem of the type discussed in the preceding section.
To find the eigenvalues, we note that (37.2) has solutions of the form (14 x)¢, where

ala—1)+Ar=0,
That is,
a=%(l +=V1—4\).

To satisfy X(0) = 0, we choose
X = (14 x4 x) V)

The condition X(1) = 0 then becomes
2§(I+\/1—4A) — ot =Vima) 0

?

or
2\/l=4)\ = 1.

If A < ¢ sothat V1 — 4 is real, this equation clearly has no solution. If A =2, our two
solutions are no longer independent. In fact, for A = % two independent sohitions are
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(1+x)2and (1+x)"2log (1 + x). The condition at x= 0 is satisfied by the latter, but
it does not vanish at x = 1. Thus A = % is not an eigenvalue.

For A > 4, the square root becomes imaginary. We can still obtain two solutions by
the formalism of setting

HI+HVE) Var—1 log (1+x)

(1+x) = (1+ x)12¢"

= (1 +x)‘/2[cos( A—%log (1 +x))

+isin( )\u%log (1 +x))].

Two independent solutions of (37.2) are given by the real and imaginary parts of this
expression; that is, by

(1+x)1/2cos( A—%log(ux)) and (1+x)1f2sin( /\—%log(l-i-x)).
To make X(0) = 0 we put
X(x)=(14+x)12 sin( )\—%log(l—kx)).
Then the condition X (1) = 0 gives

21/2 sin( A —«}I log 2) =0.

Thus, /A —% log 2 must be an integral multiple of 7: /A —% log2 = nm, or
_ nat 1

“Tog2) 4
These, then, are the eigenvalues. The corresponding eigenfunctions are

. log(1+x))
= 1/2 —
Xn=(14+x) sm(m'r Tos 2 .

An n=123....

By the results of the preceding section these eigenfunctions are complete. We have
the Fourier series

f5) ~ 3 eaa(x),

where

— J: f(x) (1 + x)=%% sin (”Wb—g&;—’t))d’c

- r (14 x)~1sin? (nww)dx
0 log2

L o log (14 x)
[ J— f — N 7
o3 L F(6) (1 + x)%2 sin (mr g2 )dx.

(Note that p(x) = (1 + x)~2.) The Fourier series converges absolutely and uniformly if
1

£(0) = f(1) = 0 and j 7y is finite,
0

Cn
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Since the equation (37.3) with T(0) = 1, T'(0) = 0 has the solution cos VA 1, the
problem (37.1) has the formal solution

2z n*m? 1 Y2 o ( log(]+x))
ux, 1) = 3 cn cos (\/(10g2)2+4r)(1+x) sin (nr 2802,

n=

This series converges uniformly, and hence satisfies the initial and boundary condi-
tions, when the series for f(x) converges uniformly. However, to assure continuous
derivatives and satisfaction of the differential equation, we need to assume that the
series for f” converges uniformly. That is, we must suppose that fand its first two de-

1
rivatives are continuous, that f(0) = f(1) =0, f"(0) =f"(1) = 0, and that f Sf"dx is
0

finite.

EXERCISES

1. Solve (37.1) when f(x) = V1 + x x(1 — x).
2. Solve the problem

W%*%ﬁc—g= for 0<x<1, t>0,
u(0,t) =0,
u(l, 1) =0,
u(x,0) =0,

% (x, 0) = g(x).

3. Solve the heat conduction problem

2
§—"—(1+x)%=0 for 0<x<1, t>0,

at
u(0, ) =0,
u(l, t)y=0,
u(x, 0) = f(x).

4. Solve the problem
1 Fu df 1 ouy
WW‘E(H—;:&)—O for 0<x<1, t>0,
u(0, 1) = u(l, 1) =0,
u(x, 0) = f(x),

du —
6t(x, 0) =0.

38. Some Properties of Eigenvalues and Eigenfunctions.

Let u, be the eigenfunction corresponding to the lowest eigenvalue A, of the eigen-
value problem (36.1) on an interval a < x < 8 with u{a) = u(8) = 0. Then

B
f (pui'? + qu,®)dx

B
f pu>dx

a

A1
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Since u; is continuous and continuously differentiable, its absolute value |u,(x)| is
continuous and at least piecewise continuously differentiable. Moreover, since u,®> =
|tz |? and |u;]"2 = u,'?, the function |u;| still minimizes the Rayleigh quotient. Therefore
it must be a constant multiple of ;. This means that either |u;| = u, so that u; = 0, or
lur] = —u,y so that u; < 0. In either case, we have shown that the eigenfunction u; does
not change sign. If 4, were to vanish at an interior point y, we would have u;(y) =
' (y) = 0. It would follow from the uniqueness of the solution of the initial value
problem that #; = 0. We have shown that the first eigenfunction i, (x) does not vanish
fora < x < 8.

Since all other eigenfunctions are orthogonal to u;, they must change sign. Therefore
if « and B8 are consecutive zeros of any solution of the differential equation (36.1), A
must be the lowest eigenvalue for the interval (a, B).

We shall now compare the lowest eigenvalue A; of the problem

(pu') —qu—+ Apu=20 for a<x <8,

38.1 _
( ) u{a) =u(B) =0
on the interval (a, 8) with the lowest eigenvalue A; of a second eigenvalue problem
(38.2) PX)u'Y —qu+ rpu=10 for a<x<§B,
u(a) =u(B)=0

on the subinterval (e, B). (Thatis,a = a < g = .
The functions p, g, and p satisfy the same hypotheses as p, g, and p. In addition we
suppose that

p(x) = p(x),
(38.3) q(x) = q(x),
p(x) = p(x).

Let X; be the lowest eigenvalue and u; the corresponding eigenfunction of this
second problem. In the minimum principle

o

j ® (¢ + qt) d

)\1 = min B
Sla)=$(B)=0 J pdb?dx
(14

k]

we choose the trial function

0 for a<x=a,
d(x) =1 wm(x) for a<=x=g,
0 for B=x=4.

This function is clearly continuous and piecewise continuously differentiable. Using
(38.3), we find that

B B ____. —
f (P + q¢*) dx f(pu’12+qu12)dx B
o 5 = J@ - — A]-
j ptdx f B
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Therefore by the minimum principle
Ay = AL

Moreover, ¢(x} cannot be the eigenfunction which minimizes this ratio uniess the
two problems are identical. Hence, unless the two problems are identical,

A > AL

We have shown that reducing the interval («, 8), increasing p(x) or g(x), or decreas-
ing p(x) increases the lowest eigenvalue of the problem (38.1).
Now let u be any solution of the differential equation

(38.4) (pu') —qu+ Apu=20,
and v any solution of
(38.5) (pv')' — gqv + Apv =0,

Let « and 8 be two consecutive zeros of #(x). Then A is the lowest eigenvalue for
the problem (38.1). Let v(x) have two consecutive zeros «, B in the interval ¢ = x = 8.
Then A is the lowest eigenvalue for the subinterval (o, B), and it follows that X > A
unless a = a, B= @, and v is a multiple of #. Thus we have shown:

SEPARATION THEOREM. If « and v are solutions of (38.4) and (38.5), respectively,
with A < A, and if « and § are consecutive zeros of v, there must be at least one zero of
u(x) in the open interval o < x < 8, unless A = A\ and v is a multiple of u.

If we apply this theorem to the eigenvalue problem (38.1), we find that since Ag.1 >
Ak, Uxsy must have at least one more zero than uz. That is, ux must have at [east k— 1
zeros for a < x < 8. We shall now show that u, has exactly k— 1 zeros.

Suppose that u; has zeros at

0= Xg, X1, X2y « « o 5 X1-1, X1 = 8.
Then each of the functions

oy — | Hie(x) for Xm-i = x = x,,
um(x) { 0 elsewhere

is continuous and piecewise continuously differentiable. Therefore the same is true of

14

d(x) =2 cmt™(x).

We choose the [ constants ¢i1, . . ., ¢; to satisfy the ] — 1 conditions
8
J pd)uldx = 0,

] .
J p(i)mwldx = (.

(This gives [ — 1 linear equations in / unknowns, and hence has a nontrivial solution.)
We note that for m # n, t™(x)u™(x) = 0. Since ur(xn) =0,
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B l T
[ o7+ aprar = 3 et [ (o + quityax

Tm—1

i
2 sz {pukuk’ :I
m=1

L

- frm ue[ (pur')’ — quk}dx},
Trm—1

Tm—1
l g
g |77 2
A 2 Cm puidx
m=1

Tm—1

I

B8
= )\RJ p¢2dx.

Thus by the minimum principle (36.11) we have A, = \.. Therefore, / =< k. In other
words, u; also has at most & — 1 zeros for a < x < 8. We have proved the following
theorem:

OSCILLATION THEOREM. The kth eigenfunction u; of the problem (38.1) has exactly
k — 1 zeros in the open interval o < x < 8.

Example. In the problem
WH+iu=90 for O0<x<],

u(0y=u(1)=0
we have
ux(x) = sin kmx,
which vanishes at x = 1/k, 2/k, . .., (k— 1)/k, as well as at the endpoints.

We return to the comparison of the two eigenvalue problems (38.1) and (38.2) when
the inequalities (38.3) hold.

Suppose that Ax = Ax. Then if a; and B8, are two consecutive zeros of ux(x), Az is
the lowest eigenvalue for the first equation in the interval (o, 81 ). Since we have shown
that the lowest eigenvalue for the second equation on a subinterval of (a;, 81), must
be higher, u, cannot vanish twice in (au, 8:). Thus, there is at least one zero of uy
between every two zeros of u;. Since u; vanishes at k + 1 points (including the end-
points «, B), ux must vanish at least k times for @ < x < 8 which contradicts the oscil-
lation theorem. Therefore, Ax > Ax. We have proved the following:

MONOTONICITY THEOREM. Reducing the interval (a, 8), increasing p or g, or
decreasing p increases all the eigenvalues of the problem (38.1).

Example. The problem
W — au+ Au=20,
u(a) = u(p) =0,
where a is a constant, has the eigenvalues
k*m?
(B—a)”

which clearly increase with a and decrease with (8 — a).

)\k=a+
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The eigenvalues of the problem

(38.6) (pv') —gqv+upr=0 for a<x<§g,
vie) =0,
p(BV'(B) +bv(B) =0

can be characterized by the minimum principle

B
|7 0o+ agrax + bs o)
(38.7) pe= min = .
2
f{dek;,dx—'__:% fpd) dx

The oscillation theorem for this problem is proved exactly as before. The kth eigen-
function has £ — 1 zeros in the interval a < x < 8.

We can prove a monotonicity theorem like that given above for this problem. It
can also be shown that the eigenvalues increase with b.

If v(x) is a solution of the differential equation in (38.6) with v(a) =0, and if A;-; =
1 < A;, where A; is the /th eigenvalue of (38.1), then by the oscillation and separation
theorems v(x) must have exactly [ — 1 zeros for ¢ < x < 8. Therefore, by the oscilla-
tion thgorem

A1 < e < Ag

That is, the eigenvalues of problem (38.6) separate those of problem (38.1) and vice
versa. This is called the separation theorem for eigenvalues.

Example. The eigenvalues of

Vi4+ur=20 for 0<x <1,
v(0) =0,
vi(1)=0

are
o = (k - —2-) .

These clearly separate the eigenvalues A, = k%m2.

EXERCISES

1. Find upper and lower bounds for the kth eigenvalue A\ of the problem

(A+xDu)Y —xu+ A1+ xHDu=0 for 0<x<1,
u{0) =u(1) =0,

by comparing with two problems with constant coefficients.
2. Find a lower bound for the lowest eigenvalue of the problem

(A+ )’y + 21+ xB)u=0 for 0<x<1,
u(0) =0,
u'(1)=0.

by comparing it with a problem with constant coefficients.
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3. Show that if \x is the kth eigenvalue of

W—qg(x)u+xu=20 for 0<x <1,
u(0) = u(l) =0,

where ¢ is a bounded function, then

fim 7’:% — .

k=

39. Equations with Singular Endpoints.

In proving the completeness of the eigenfunctions of (36.1) we assumed that the
functions p, g, and p are continuous in the closed interval 0 = x = 1, and that p and p
are positive there. In many cases of physical interest these conditions are satisfied in
the open interval 0 < x < 1, but not at one or both of the ends. The functions p and p
may approach zero or infinity, and g may become infinite, say at x = 0.

We shall first study the particular case of Bessel’s equation

m
(39.1) (xu’)'——;u-i—)ucu =(),

where m is a nonnegative constant. We shall be concerned with the interval 0 < x < 1,
so that p and p become zero and q infinite at the left end. )

By the method of power series, we find that for m # 0 equation (39.1) has two lin-
early independent solutions which behave like x™ and x~™ near x = 0 (see Section 40),
The solution which behaves like x™ is singled out by requiring u# to remain bounded.
If m = 0, the solutions behave like 1 and log x, respectively. We single out the former
by a boundedness condition.

In lieu of a boundary condition at x = 0, then, we require that ¥ remain bounded,
and that xu’ — 0. At x=1 we put

(39.2) u(l) =0.

We now examine the proof of completeness in Section 36. We used the following
two properties:

(a) For any continuous piecewise continuously differentiable functions v and w
satisfying the boundary conditions of the problem the integration by parts formula

(39.3) f vix)[(pw') — gqw]dx =— f [pv'w' + gqvw]dx

1
holds. This was true because the boundary terms pvw’ ] vanished.
0

In the present problem we require v(1) = 0 so that the upper limit is zero. On the
other hand, we require that v remain bounded, while pw’' = xw’ — 0 as x — 0. Hence
the lower limit is also zero, and the formula is true.

(b) The double integral

fo! Jol G (x, £)*p(x)p(£)dxd

is finite. This was true because G (x, £) was continuous in x and § for 0 = x, £ = 1.
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Putting A = 0 in (39.1) we see that the equation has the two solutions x™ and x™™

when m > 0. The Green’s function subject to the conditions G bounded, xG' — 0 at
x=0and u(1) =0is

§m ( MM )

for £ =ux,

G &) =1 pin
’ xm( mm_gm) fOr g > x
2m )

Thus,

L "G (x, £)p(&)dt = (x‘;;f'")z f T g 4 (g%) f (&-meem)2ede
1

x2
-————[——(1 — x2m) — x?m(1 —xz)] for m 1,

] Am*=1)|m
11 1 _ =
§[2x2 lOg; x2(1 xz)] for m 1.

Multiplying by p{x) = x and integrating, we see that

1 1
jo f G (x, £)%(£)p (x) dedx
is finite. For m = 0 we have

log;lc- for ¢ = x,
G =1
ogg for £ = x,

and we reach the same conclusion.

From the finiteness of | [ G2p(¢)p(x)dédx and Bessel’s inequality follows the fact
that A, — % with k. From this, in turn, follows the completeness of the eigenfunctions
and Parseval’s equation.

Since the integration formula (39.3) holds, we again obtain the second Parseval
equation (36.13). From this, in turn follows the expansion (36.14) of Green’s function.

We can again prove the pointwise convergence of the Fourier series of a function
f(x) for which [ pf3dx and [ (pf'* +q/?)dx are finite by means of the inequality (36.15).
The convergence is uniform when m > 0. For m = 0, G (x, x) is not bounded, but
approaches infinity as x — 0. Hence the convergence is uniform in every interval
€ = x = 1 with € > 0, but not in the whole interval 0 = x = 1. However, the Fourier

series divided by VG (x, x) = log-}c converges uniformly to f(x) / \/log %c

We can obtain the same results for the case when the boundary condition at 1 is
replaced by u'(1) + bu{l) = 0, or when the endpoint 1 is replaced by any 8 > 0.
More generally, we can consider any problem for an equation of the form

(pu') —qu + Apu=0,

where p is continuously differentiable and positive, g is continuous and nonnegative,
and p is continuous and positive on the open interval 0 < x < 1. Boundary or bounded-
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ness conditions are given at the ends. These conditions must be such that (39.3) holds
and that [ pyv?dx is finite when v and w satisfy them. Then if the problem

(pw)'—gqw =—F

with these end conditions has a Green’s function such that

f Jol G(x, £)*p(x)p(§)dédx

is finite, the eigenfunctions are complete, and the properties of eigenfunction ex-
pansions proved in Section 36 hold. In general, we can only say that if [ pf2dx and
I [pf® + qf*]dx are finite, then 1/V G (x, x) times the Fourier series of f converges
uniformly to f(x)/V G (x, x).

Note that G(x, £) isindependent of p(x). We remark that the finiteness of [ [ G2ppdédx
is sufficient but not necessary for completeness. However, if this condition is violated,
there may be no eigenfunctions at all.

Example. Consider the problem
(2') +Au=0 for 0<x<1,
u(l) =0,
u bounded.
The Green’s function is
[ 1x for £ =x,
Gx, &) ““{ ¢ for £=x.
Since p(x) =1, [ [ G*p(x)p(¢)dédx = =.
The solutions of the differential equation which vanish at x = 1 are x™ 2 sin( A— % log x).

These functions are unbounded, and [ pu®dx is not finite. Hence this problem has no eigen-
functions.

EXERCISES

1. Show that the eigenfunctions of the problem

(x%u') +Ax%y =0 for O0<x<1,
u(l) =0,
# and ' bounded

are complete when @ > 1.
2. Show that the eigenfunctions of

[A=x))u'} + =0 for 0<x<1,
u(0) =90,
u and 1’ bounded

are complete.
3. Show that the eigenfunctions of the problem
2
(xu')’—mTu+)\.xu=O for 0<x<1,

(1) +u(l)=0,
u and u' bounded

are complete.
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40. Some Properties of Bessel Functions.

We showed in the preceding section that the eigenfunctions of the problem

2
(40.1) (xu')'_mx—u+xxu=o for 0<x<I,
(40.2) u(1) =0,

i bounded,

xu' — 0, as x—>0

are complete.
If we let 1 = xV/A, (40.1) becomes

d{ du\ m? .
(40.3) E(IE) - —;—u + tu=20.

This is just (40.1) with A = 1. It is called Bessel’s equation of order m.
We obtain the solution which is regular at t = 0 by the method of power series
(Frobenius method). That is, we seek a solution of the form

u(t) =1 3 ant®, ap # 0.

n=0

Differentiating term by term, substituting in (40.3), and collecting like powers of ¢,
we find

ot { (= m)a+ [(a+ D= mtlan+ 3 ([atn) = mlan+ an2)in =0,

Since a power series is identically zero only if all its coefficients vanish, we find
a == m, a; =0, and the recursion formula

_ dn—2
@+ n)?—n

an —

for the remaining coefficients. Choosing o = m and a,=2-"/m!, we obtain the solutiont

1

(40.4) In(t) = é@ ACE I

which is bounded at 7 == 0. This solution is called the Bessel function of the first kind of
order m. Jn(t) behaves like #™ as t — 0. It follows from the ratio test that the series con-

verges for all values of .
If we multiply the series by ™, differentiate term by term, and multiply by #”, we
find the recursion formula

(40.5) Lt (1)] = 1" s (1)

t If m is not an integer, we define m! = I'(m + 1) in terms of the Gamma function.
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If we multiply by ™, differentiate, and divide by #", we find
(406) g;[tm-]m(t)] = tm-]m—l(t)-

Recalling that the transformation t = xVA leads from (40.1) to (40.3), we see that
the solution of (40.1) which is bounded at x = 0 is J.( VX x).
The eigenvalues of the problem (40.1), (40.2) are the roots of the equation

Jn(VX) = 0.

Many of the positive zeros j,™), ™, . ., of J,,(¢) are tabulated (See Jahnke and Emde,
pp. 165-168). The eigenvalues A, are then given by

(40.7) A = [ m]2,

We shall derive some inequalities for these eigenvalues. The only function that de-
pends upon m in (40.1) is g(x) = m?/x, which is increasing in m. It follows that A, ™
is increasing in m.

Since the derivative of +™J, must vanish between two zeros of this function, it
follows from (40.5) and (40.6) that the zeros of J., and Jn,, separate each other. By
(40.7) the same is true of the eigenvalues:

(40‘8) )\k(’") < )\k(m“) < 7\k+1(m).

(This is also a consequence of the separation theorem for eigenvalues and (40.6).)
If we introduce the new dependent variable

w(x) = u(x)Vx,

the eigenvalue problem becomes

(40.9) w' — (m2 — %)x‘2w+ Aw=0,
w(0) =w(l) =0.
The eigenvalues are still seen to be increasing in m by the monotonicity theorem. For
m =% we obtain an eigenvalue problem whose eigenvalues are known to be 7%k%. Thus
we find
MO < 22, A > 2k
By the separation theorem (40.8)
A0 < k2 < Al
Turning this result around, we see that
w2k — 1)? < MO < 73,
Again using (40.8), we find that when m is an integer,
7 (k — 1) < A0 < 72 (k + m)2.

Thus for fixed m and large k, A behaves like 72k>.
If we put t = xV\ in (40.9) the equation becomes

CALUY (AP -
(40.10) T (m 4)1 w+w=0.
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For large values of ¢ the term in #-2 is small. Hence, we can expect that for large ¢ the
function w behaves like a sint + b cos¢. Transforming back, we can expect that the
eigenfunction J,,(V A:™)x), which vanishes for x = 1, will, for large &, behave like

Tl VA x) ~-—?\f— sin VAL™ (x — 1)
X

c

N sinwk{x —1).

This asymptotic form can, indeed, be justified. Of course, it only works for VA, x
large. That is, x must be bounded away from zero for any particular size of A.
In expanding functions in a Fourier series we need to know

fl X (VA x)2dx.
0
Using (40.5) and (40.6), we can verify that
ST = Tna (Dt () H] = 2002200,

Hence,

VA

1
f xJ (VA x)2dx = 1 tIm(2)2dt
0

Ay

- ﬂ%@[tz{Jm(t)z — Jnsr (DI ms (D}

\/M;‘"')

By definition, J»(VA{™) = 0. Then by (40.5) and (40.6) Jn_1 (VA™) = [,/ (VA™) =
‘_Jm+1( V )\k(m)) . Thus

c
1
L K (VAT 32 = 2 oy (VAR

EXERCISES

2\12 |
1. Xf Jue(t) = (—) sin 1, find J2 (1),

Tt
2. Show that

I (0) = 3 s (1) = Jar (D],
3. Find the expansion of 1 — x? on the interval 0 < x < 1 in terms of the eigenfunctions

Jo(V AL x) of

(x') +u=0 for 0<x<1,
u(l) =0,
u and ' bounded.

HINT: Use integration by parts and (40.6).
4. Find the expansion of x™*2 in terms of the eigenfunctions

Jm( A% Ak(m) x).
HINT: Use integration by parts and (40.6).
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41. Vibration of a Circular Membrane.

We consider the problem

2 2 2

u(r, 8,0) =f(r, 9),
du .
—a-f_(r, B, 0) - 05
u(l,6,1t)=0.

The solution of this problem represents the small transverse motion of a stretched
circular membrane fixed on its boundary. For example, it may be the motion of a drum
head.

Applying separation of variables, we find solutions of the form R (r) cos m# cos cV At
and R(r) sin n# cos cV\t, where m=0, 1,2, . . ., and R is a solution of the eigenvalue
problem

(41.1)

2
(rR')’ ——'Z:—R + MR =0,

R(1)=0,
R and R’ bounded.

(41.2)

We have already examined this problem in the preceding section. Its eigenfunctions
are Jn(VA:™r), where the eigenvalues A™ are determined by the equation

Jm( Vv )\k(m)) = 0

We write the series

u(r, 8,1) = ;— 3 crodo (VMO 1) cos (cV MO 1)
1
(41.3) -
+ 2 2 (ckm c0s mO + dim Sin mO) T (VAL™ r) cos (cVA™ 1),
1 i
where
1 w
Crem = 1 1 f f f(r, 8) cos mOJm(V AL™ r) rdrd8,
m J Jm (VN P 2rdr 7 777
0
1 T
dy . f f f(r, 8) sin mOJ o (V N™ r)rdrd®.
0 J—7

m = 1
T j I (VA ) 2rdr
0

We must verify that the series actually converges to a solution. Suppose first that f
is twice continuously differentiable, and that f(1, ) = 0. Integration by parts shows that

Fr Yof (L& Ls, o T
ar Ty or TR ag T 2 2 MUk o(VALT)
— 232 M™{Ciem cOS MO + dim, Sin MO) T (V N™ r).

By the argument of Section 31 we see that since the functions sin m#, cos m# are
complete for —7 = # < 7r and for each fixed m the functions J(V A\:™ r) are complete
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for 0 = r = 1, the product functions J,» (VA" r) cos m# and J,(V A r) sin m#@ are
complete on the circle —7 = 6 = 7, r = 1. Hence we have the Parseval equation

1
g E ckOZAk(O)Z L J()( Y )\k(o) r)zrdr
1

(41.4) + 7 Z2 (Crm® + diem®) NP L Jn (VNS ) 2rdr

B A R A Y WA

—f_wJO (aﬁ+ p ar+r2 aej;) rdrd®.
In particular, the series on the left converges.

We now apply Schwarz’s inequality to a finite set of terms in the series (41.3) for w.

We find

{% 2 crodo (VALY r) cos (cVALD 1)
2
+ Z'2' (ckm €08 mO + dim sin mB) J( VA r) cos (VN t)}

1
@) =[T e f Jo(VA® p)2pdp
1
+ 23 (Ckm2 + dﬂ.‘mz)NC(m)2 f Jm( v AJ'f(m)P)ZPdP}
(1]

x {1 5 SV n)* Jn (VAL 1)? }
1 1
2 Ak(O)z f JO(\/)\k(o)p)zpdp )\k(m)z j Jm(-‘ /)u.-(m)p)zpdp
0 0

+ 22

The symbol ' means that we sum only over a finite set of values of £ and m.

Since the series (41.4) converges, we can make the first factor on the right arbi-
trarily small by requiring that all terms with k = K and m = M for sufficiently large
K and M are absent. Therefore if the second factor on the right is bounded, the series
(41.3) for u converges uniformly as a double series.

To examine this second factor, we first consider the series of positive terms

; T (VA p)2

: .
L £me f Jn(V N p)2pdp
0

This looks like the expansion (36.14) for G, (r, r), except that A is replaced by
A2 Here

errt =) p=r

2m
Gulr, =
(r )= pmgom — gy for p=r
2m

when m = 1, and
log% for p=r

log=~ for =r
g, p
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when m = 0. It is the Green’s function for the problem

m2
(rw’)'——;_—wz—F(r) for 0 <r<l,

w(l) =0,
w and w’ bounded.

For the eigenfunction J,(V A™ r) we have the identity
1
T (VAL ) = Ay lm) f G(r, p)In(VN™ p)pdp,
0

so that

Gutr, ) ~ 5 LA

k=1 )\k"")f-]m(\’)\k‘m’p)zpdp

Then by Parseval’s equation

1 ® (m) y)2
| Gutr, pypdp = 3 e
0 k=1 Ak(m)zJJm(\/kk(m)p)zpdp

By explicit computation (see Section 39) we find that

1 . . P—rm) (=g
Jo Gu(r, p)’pdp = 20 ey ~ 4 = 1)

for m = 2, while

1

;a

1
|| G0 Yoo =—gr2 (1 =) + 37 log
0 8 4
and
fl Go(r, p)ipdp = l(1 —r?) —lr'2 logl—'
o O 4 2" °8;
Thus
1 1 o 1
! f Golr, p)ipdp + 3 f Gu(r, p)pdp

converges uniformly to a bounded function. It follows that

13 Jo(VN® )2 L33 T (VN )2
1 1

2 k=1 ) o f Jo(VM©@ p)2pdp ™71 T\ lm J Jo(V ™ p)2pdp
0 0

converges absolutely and uniformly. Hence the second factor on the right of (41.5) is
uniformly bounded, and the series (41.3) converges uniformly. Therefore u is continu-
ous, and u(r, 6, 0) = f(r, 6).

If f(r, 8) is four times continuously differentiable, and if f and 8%f/or? + (1/r)af/or
vanish at r = 1, we can conclude by an extension of the above argument that u is twice
continuously differentiable, and solves the problem (41.1).

Again we find that ¥ will, in general, have fewer derivatives than f.
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EXERCISES

1. Find the solution of (41.1) when
(@) f(r, 6) = (1 —r?)®
) f(r, 8) =L (VXWr) cosb.

CHAP. VII

2. Find a series solution for the problem

2 2 2
ou_ 2[au+}_ﬂ+l§__g] 0 for r<1, >0

Sl Trar TR o
u(l, 8,1 =0,
u(r, 6,0)=0,

% (r, 6,0)=2(r, 6).

3. Find a series solution for the problem

d%u Pu , 1au , 1 3% , d%u
zZ = —_— fridhad - = —_— = <<
Cz[ar2+r6r+r2602+azz] 0 for r<1, 0<z<L, t>0,

u(l,0,z,)=0,
u(r, 09 0, t):()’

ou —_
5},’(” o, L, 1)=0,
u(r, 8,z,0)=f(r,8,2z),
(r,0,2,0)=0.
This problem represents the acoustic motion of a cylinder (for example, an organ pipe) fixed
at one end and free at the other.
4, Solve the heat conduction problem on an infinite circular cylinder

ou_ [0 1ou | 10%) _
Y, [ar2+rar+r2302] 0 for r<i, t>0,
u(l, 8,1) =0,
u(r, 6,0) =f(r, 9).
5. Solve the heat conduction problem on a finite cylinder

du_[d%u_1du 1du_ ul-g for r<1, 0<z<L, t>0
at [arz+rar P o6 azz] rrsa eeh ’
u(l,8,z,1)=0,
ou _
52—(1",0,0,!) 0,

u(r, 8, L, t)=0,
u(r, 8,z,0)=f(r,8,z).

6. Solve the heat conduction problem on the infinite cylinder

du _ [ 19w 1 d%|_
a1 [6r2+r6r+r2692:| 0 for r<i, >0,
du _
ar(l,eao)_os

u(r, 6,0) =f(r, 6).

42. Forced Vibration of a Circular Membrane: Natural Frequencies and Resonance.

The series (41.3) represents the solution of the initial value problem (41.1) as a sum
of sinusoidal vibrations with fixed shape. These sinusoidal motions, described by

Jn(VA™ ) cos m@ cos (¢ VA 1) and J{(VAd™ ) sinm6 cos (¢V A™ 1)
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are called the normal modes of the system. The natural or characteristic frequencies
of vibration are ¢V A2, They are determined by the eigenvalues of the problems
(41.2). The shapes of the normal modes are determined by the corresponding eigen-
functions.

I we are given initial velocity rather than initial position, the functions cos (cV \.™ 1)
are replaced by sin (¢cV A t), so that we have the same frequencies, but a different
phase.

We have already found the normal modes sin nx cos nct for the vibration of a string
and sin Ix sin my sin nz cos cVE + m? + n?t for the vibration of a cube. In each case
we have a sequence of natural frequencies (nc/2mw or ¢VI2+ m? + n?/2m) depending
upon the eigenvalues of a certain eigenvalue problem. The shape depends upon the
corresponding eigenfunctions.

We now consider the nonhomogeneous problem

ar “lor T r ar+ r? 362
u(l, 8, 1)=0,

u(r, 8,0) =0,
ou _
E(I‘, 0, 0) = 0.

ou [62u+la_u 1 au] F(r,8) coswt for r<l1, t>0,

(42.1)

The solution of this problem represents the motion of a membrane driven by an arbi-
trarily distributed sinusoidal force.
We expand F as a double series in J,,(V ™ r) cos m8 and J,,(V A" r) sin m#:

1 oo o0 oo
F(r, 8) ~ 3 2 Crodo (VMO r) + 33 (Crm cos mB + Dy sin m8)J o (VA ).
1 11
For a fixed ¢ we also expand u to obtain its finite Fourier transform:
1 [+ <) o e .
u(r,0,1) ~ 3 2 cro(DJo(VAO F) + 33 (ckm(t) cos mb + dim(t) sin m@)Jm( VA £).
1 11
Multiplying (42.1) by rJu(V A:(™r) cos m# and integrating, we find after an integra-
tion by parts that

(42.2) Crm(1)" + AEN™erm () = Crm COS wt.,

(We have assumed that « is twice continuously differentiable with respect to t.) Our
initial conditions give

Ckm(o) = C!cm’(o) =
This initial value problem has the solution

= —H—Ci'"—wé[cos wl — cos VAL ct]

Cicm(t) )\];(m)Cz —

provided @ # VX, c. A similar result holds for di(¢). Thus we have the formal solu-
tion

0)
u(r,8,1) =5 2 C";I(ig)czh r) [cos wf — cos VA ct]
k
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W)C—i—wi[ckm cos m0 + Dy sin mO]Jm( A r)
R —
X [cos wt — cos VAL™ ct].

+ 22

We see that if w is different from all the numbers VA ™ ¢, u is a function of r and #
times cos wt plus a sum of normal modes.

If M™e? — w? is small, that is, if /27 is close to a natural frequency, the coefficient
of the corresponding normal mode will be large unless Cxn happens to be zero. A
sinusoidal driving force with frequency w/27 tends to excite normal modes whose
natural frequencies are close to w/2n. In fact, since

cos wt — cos V™ ct =2 sin%('\/ A e — w)t siné—( AN+ w)t,

we find that for @ = V A\, ("™ ¢ we have a large oscillation of frequency (w+ VA\i'™ ¢) /47
modulated by the beat frequency (VA" ¢ — w)/4#x. This phenomenon is known as
resonance.

In the limiting case w = VA™ ¢, we find
C .
cem(t) = —ign-t sin wt,
D .
dim(t) = ft sin wt.

Unless Cim = Dim = 0, these coefficients, and hence also the solution, are unbounded
as t— o,

The phenomenon of resonance occurs for any initial-boundary value problem for a
nonhomogeneous wave equation in a bounded domain with a sinusoidal driving term.
The resonant frequencies are in general determined by the eigenvalues of a problem
involving an elliptic partial differential operator.

EXERCISES
1. Solve the problem
2
%t%-cg-;%=F(x)coswt for 0<x<m, t>0,
u(0,#) =0,
ou -
ax(ﬂ" t) h_O,
u(x, 0) =0,
ou
at(xs 0) =0.

2. Solve the problem

2 2

%;Lé“ (g;;+i—l£) F(x,y) coswt for 0<x<m,
0<y<m,
t>0,

u(0,y,t)=ulx,m, 1) =0
du = ou =
ax(ﬂ” y, )= 3y (x,0,1) =0,

u(x, y, 0)= %—l,‘(x, y,0)=0
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3. Solve
2 2
%t—?—‘%;‘-:e”cost for o<x<m, >0,
u(0,t) =u(m, t) =0,
_ ou -
u(x, 0) = at()«:, 0) =0.
4. Solve
2
%i—';—gﬁ=sin2xcost for O0<x<m, t>0,
u(0, t) = u(m, t) =0,
. ou —
u(x, 0) = m (x,0)=0.
5. Solve

Fu_ (Fu  u  Fu
ar

6x2+§)7 ﬁ)“:e“ﬂcosh for O<x<w, Oo<y<m O0<z<m t>0,
u=20 for x=0,w7, y=0, m,
du

Fr i for ’z=0, m,

u(x, 3,2, 0) = 2(x, y, 2, 0) =0.

43. The Legendre Polynomials and Associated Legendre Functions.

If we introduce spherical coordinates r, 8, ¢ such that

x=r sin# cos ¢,
y=r sin # sin ¢,
Z=rcosé,

Laplace’s equation becomes

0%u , 2 ou 1 d (. ou 1 u
(3.0 a2 T ror T Esino aa(sm Bae) e gt O

Applying separation of variables, we find that the equation (43.1) has solutions of
the form R(r)©(8)®(4), provided

" 2_ [
KA R Ginoery | o o
R Orrsinf  ®F sin?f

Multiplying by * sin? # and transposing the last term, we see that ®"/® must be con-
stant. Since ® must be periodic of period 27, we have ® = cos md¢ or sin md, where
m=20,1,.... Then

" 2 '
R +rR (sin#O")’ m?

R 07 sinf Psintf
Multiplying by #* and transposing the first term, we have the two equations

0.
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(43.2) rZ(R” +§~R’) AR =0

and

(43.3) ineo") — ™ g ' 0
) (sin ) ~Sind + A\ sinpO =0,

where \ is a constant.

The equation (43.3) for ©(4) is singular at its two endpoints # =0 and 6 = 7. In lieu
of boundary conditions we impose the condition that © and O’ remain bounded at both
ends. This gives an eigenvalue problem with two singular endpoints.

We introduce the new variable

1=cos@f,
and let
0(60) = P(cosh).

Then (43.3) becomes

2
(43.4) %[(l—tz)%?]MITIZP+AP=O for ~1 <t<1.
We still have an eigenvalue problem with two singular ends. We seek values of \ for
which there is a solution P of (43.4) such that P and (1 — 2)2 P’ remain bounded at
t=—landt=1.

If m # 0, the equation (43.4) with A = 0 is easily seen to have the two solutions
(1+)m2(1 —¢)~™2 and (1 —¢)™2(1 + ¢)-™2. Its Green’s function is

1IfTU+7n(~1)
2m| (1 —7)(1 + 1)
11+ —=1)
2m (1 —16)(1+7)

mi2
] for r=1,
G(t,7)=

mi2 '
} for = 1.

1 1
Then G(¢, ) = 1/(2m), so that f J G2dtdr is certainly finite. Therefore the eigen-
-1 J-1

functions are complete for m # 0. Moreover, since G (¢, t) is uniformly bounded,
eigenfunction expansions converge uniformly for functions f(z) such that

1 m2f‘2
2
f—l (f + 1~ tz)dt
is finite.

If m =0 and we put A = 0 in (43.4), we find the solution P = 1 which is continuously
differentiable for —1 = ¢ = 1. Hence A = ( is an eigenvalue. In the proof of the fact that
all the eigenvalues are positive given in Section 36 we assumed that the boundary con-
ditions excluded the eigenfunction u# = constant. This is not the case here, but the proof
still shows that all the eigenvalues are nonnegative.

Therefore A = —1 is not an eigenvalue. There is a Green’s function G, (¢, 7) for the
problem

[(1=2)w']l'—w=—=F for —1<t<1,
w and w’ bounded.
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We cannot express G, in closed form. However, as we will shortly see, the solutions
of the homogeneous differential equation

[(A—®)u') —u=0

have only logarithmic singularities at the ends. It follows that f f Goldtdr is finite.

Proceeding as in Section 36, we see that Go(z, ) has the Fourier series.

GO(t9 T) -~ E uk’(t) ukl(T) )
! (Ak+1)f wkdt
-1

and that the eigenfunctions are complete.
1
If {[(1—#)f'2 + f%]dx is finite, the Fourier series divided by VG (¢, t) converges
-1
uniformly to f(1)/VG(t, t).

We now examine the eigenfunctions of (43.4). We first consider the case m = 0,
We have

(43.5) dit[u - :2)%] + AP =0.

We seek a solution in the neighborhood of 7= 1 as a power series in (¢ — 1):

=<}

P=(1=1) 3 cx(t— D).

Substituting in (43.5), we obtain a power series which is to be identically zero:
—c2a(t—1)Y1— I {2(k+a+1)Ycxi+[-A+Hk+a+ 1)(k+a)]cr} (t—1)F+e=0.
k=0

If ¢, is to be different from zero, we must have o = 0. The fact that this is a double
root indicates that there is a second solution which behaves like log (1 —¢) at = 1.
Since we are seeking a bounded solution, we discard the second solution.

Setting the coefficient of (f — 1)* equal to zero, we obtain the recursion formula

S [k(k+1) —A]
k+1 20k +1)? Ck.
Thus
or= LKk= 1) = M[(k=1)(k—2) —A) - - - [2 = A [FAJ(=1)*
* 2 (k)2 o
By the ratio test we find that
T cer(t—1)*

converges for |t — 1| < 2. Moreover, the same is true for any derivative of this series.
On the other hand, for £ + 1 > A we have
_Ck-{-] ]. k - 1

Ck >§k+1
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Hence the function will in general approach =xas r — —1. The only exception occurs
if the series terminates. That is, if for some integer nc, # 0 but cpi1 = Cavz = Cpiz =
-« + = (. Because of the recursion formula, this is true if and only if

A=n(n+1), n=0,1,....

Thus we obtain a function which is bounded for—1 =t =l ifand only if A=n(n+1)
for some nonnegative integer n. These, then, are the eigenvalues. Setting ¢, = 1, we
obtain the eigenfunction P,(t) corresponding to the eigenvalue A, = rn(n + 1):

. (n+k)! _
P.(t) = = = DIk (rt—1)*x

P.(t) is a polynomial of degree n in ¢. It is called a Legendre polynomial. The first few
of these polynomiais are

P()(t) = 1,

P](t) - t,
3.1

Pz(f)—zl ok
_3s_3

Ps(1) —2t3 2t.

Since P, (#) is of exactly degree n (that is, ¢, # 0), any polynomial of degree & can be
expressed as a linear combination of P, (¢) withn=0, 1, . . ., k. This fact can be proved
by induction, since t* = (1/cx) Px(¢t) plus a polynomial of degree k — 1. Since the P, are
orthogonal, each P,(¢t) must therefore be orthogonal to all powers of ¢ less than n:

1
(43.6) ] P {t)dt =0 for k=0,1,...,n—1
~1

These n — 1 linear conditions, together with the fact that P,(f) is of degree n and the
normalization P,(1) = 1 determine P, uniquely.
From this characterization we can verify the identity

1 a

Pu(t) = Yanl di*

(2= 1)n,

which is called the Rodrigues formula.

It is clear from this formula that P,(¢) is even in ¢ (that is, contains only even powers
of ¢) if n is even, and odd if n is odd. It follows from the oscillation theorem that P, (¢)
has » real zeros, all in the interval —1 < ¢t < 1.

We now wish to consider the equation (43.4) with a positive integer m. For this
purpose we first differentiate the equation (43.5) m times with respect to ¢. This gives

(1 =2)Pm+2l —2(m + 1)tPm+ + [N —m(m + 1) Pm = 0.
We now introduce the new dependent variable
Q(1) = (1 — )" Pin(y).
The above equation becomes

m2
J— tZ

[(1-2)Q') — 72+ =0
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Thus any solution P(r) of (43.5) leads to a solution (1 — s2)™2Ptml(t) of (43.4), unless
P is a polynomial of degree less than m.

Suppose that A is not of the form n(n + 1). Then the equation (43.5) has a solution
P(t) which is regular at ¢ = 1, but behaves like log (1 + ) at —1. The corresponding
function Q(t) then behaves like (14 ¢)-™?2 at t =—1 and is regular at 1, The second
solution Q(—t) is singular at 1. Clearly no linear combination of these two linearly
independent solutions can be regular at both —1 and 1. Hence X is not an eigenvalue
of (43.4) for any m. Thus we have shown that all eigenvalues of this problem are of
the form n(n + 1), where n is a nonnegative integer.

If n = m, the function (1 —72)™2 (d™[df") P.(t) and (1 —r*)V2 times its derivative are
bounded. Hence, A = n(n + 1) is an eigenvalue. Since P, is a polynomial of degree n,
(dm/dr™) P, = 0for n < m, and we get no eigenfunction. By the monotonicity theorem
the lowest eigenvalue must increase with m. Therefore, the eigenvalues are precisely
nin+ 1) withn=m, m+1, ..

The eigenfunctions

(43.7) P (1) = (1 — tz)'"/zdtm[Pn(t)]
2 mzdm 2 n
2n !(l_t) /dtm+n(t 1)

are called the associated Legendre functions. P, corresponds to the eigenvalue n(n+1),
and n = m.

P,”(1) is a polynomial if and only if m is even. However, we note that P,”(cos 6)
is a homogeneous polynomial of degree » in sin # and cos 6.

Putting A = n(n + 1) in the equation (43.2) for R(r), we obtain the two solutions
r* and r=""1. Only the first of these is bounded at r = 0.

The method of separation of variables thus gives the harmomc functions (that is,
solutions of Laplace’s equation)

rPy"(cos 8) cos mo,
rP,"(cos 8) sin md,

which are regular in the whole (r, 0, ¢) space.

We note that P,™(cos 0) is sin™ @ times a polynomial of degree » — m in cos @ which
is even or odd according as » — m is even or odd. Since r cos 8 = z, it follows that
r~=m times this polynomial is a polynomial in /2 and z, and hence in x, y, and z.

By definition, r sin 8 = V% + y2. Thus r™ sin™ § cos md¢ and r™ sin™ 6 sin m¢ are the
polynomial solutions in x and y of Laplace’s equation obtained in Section 24 by sep-
arating the two-dimensional Laplace’s equation in polar coordinates. We see then that
the functions r"P,"(cos 0) cos m¢ and r"P,"(cos 8) sin m¢ are homogeneous poly-
nomials of degree »n in x, y, and z. They are of degree n —m in z. These polynomials are
called spherical harmonics.

In Fourier expansions it is useful to know the integrals of (P,™)2.

It follows from the Rodrigues formula and » integrations by parts that

4 . 1 1 1 d
2 — 2 —_ 42
(43.8) J; P.(cos 6) smﬁdﬂ—f P, (1) dt_22"n!2j [dt"(l )" ]
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1 1
= W(Zn)! f_l (1 — &)ndt

2 .
2n+1

Similarly,

(43.9) f" P,(cos 8)? sin 69 = f " pn(e)d
0 -1
1 FOAE
p—r p—— m/ ._._,_,_n
L {(1 2ymie dtm}dt

= [—1)m ! ﬂ. _Zmde"
~ (1) jlp,,dtm{(l ) dtm}d:

_(n+m)! .
—m]_l Pacatm dt

_(n+m N
B (n—m)! ),

__2 (n+ m)!
2n+1(n—m)!

We have denoted the coefficient of * in P,(t) by c», and used (43.6) and (43.8).

P2 dt

EXERCISES
1. Express the following spherical harmonics as polynomials in x, y, and z:

(a) rPy(cos @)
(b) rPi'(cos @) cosg
(c) rPPs*(cos 0) sin2¢.

2. Find Ps(t) by using the facts that it is of degree 3, that it is orthogonal to 1, ¢, and 2, and
that P, (1) = 1.
3. Find the best approximation in the sense of least squares to cos ¢ on the interval (—1, 1)

in terms of a polynomial of degree two. HINT: Express your result in terms of Py, Py, and P,.
4, Show that the introduction of elliptic coordinates &, n such that

=qa cosh £ cosy
y =« sinh £ sin7)

renders the problem

u  o*u  du 2y
gus ok ou__ il <
it o ap 0 for Etmp<l
2 2
u=0  for -z;+§=1,

ulx, ¥, 0) = f(x, y),
S(x,y,0) =0

separable. Write the eigenvalue problems associated with the separating functions X(£) and
Y(n).
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44. Laplace’s Equation in the Sphere.

We consider the boundary value problem

2 du 1 d ou 1 du
(44.1) ar2 o+ ror +r2 sin 6 60(81 9_) £ sin? @ a¢?

u(R, 0, ) =£(6, ¢)

— =0 for r <R,

in a sphere of radius R.
To solve this problem by separation of variables we expand f(8, ¢) in a double
Fourier series:

f(a d)) - 2 [ZanOPn(COS 9) + 2 (anm cOS mqb + bnm sin md))an(COS 9)]

where
g = (2”2: (ln)i”‘m)' J f £(8, $)Pr"(cos 8) cos me sin 6dfddp,
bum = (2"2:(1”)3_”":)71) L fo f(8, ¢)Py™(cos 0) sin m¢ sin 6dfdep.

[We have used (43.9).]
The formal solution of the problem is then

44.2)  u(r, 0, ¢)

-3 ( ) B—anoPn(cos 8) + X (awn cos méd + by sin mep) P, (cos 9)]-
m=1

n=0

Instead of trying to justify (44.2) directly, we shall derive and justify the correspond-
ing integral formula. By Parseval’s equation we can write (44.2) as

2m o - — —_ — —_ — —
44.3) u(r, 6, &) = fo L K(r, 8, ¢ R, 0, $)f(8, $) sin 0404,

where

K(r,0,¢; R,6,d)= X r\'(2nt an(cos 6) P.(cos 8)
n=0 R 47T

4 o 2n+1)(n—

2 (n + m) !m) !an(cos 6)P."(cos )

cos m(¢p — E)],
provided this series converges in the mean. For a fixed » the function
2n + 1

(44.4)

m=1

K.(0,¢;0,¢) = Pn(COS 6)P,(cos B)

(44.5) o @2n+1D)(n—m)!
+ m‘si, 3 (n+ m)]

Py (cos 0) P, (cos 8) cos m(d — @)
has the property that

27 [
J; JO K. (8, ¢; 8, )r' Pr"(cos 8) (a cos md + b sin mp) sin 8dddd
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_ { P, (cos 0) (a cos me + b sin me) for I=n
0 for [ # n.

(This relation follows from the orthogonality of the functions {P,”™(cos @) sin ma,
Pn"(cos 8) cos mo}, and (43.9).)

Laplace’s equation gives $/(! — 1) linear relations between the $(I+ 1) (I + 2) ¢o-
efficients of a homogeneous polynomial of degree /. Therefore, there are 2/ + 1 linearly
independent harmonic polynomials of degree [. This means that any homogeneous
polynomial of degree / which is a solution of Laplace’s equation can be written as
a linear combination of the 2/ + 1 spherical harmonics r!P/(cos 8) cos m¢ and
rP™(cos 0) sin m¢. The kernel K,.(6, ¢; 6, ¢) has the property that it reproduces all
homogeneous harmonic polynomials of degree n, and reduces those of other degrees
to zero. Since rotation of the coordinates axes takes a homogeneous harmonic poly-
nomial of degree [/ into another such polynomial in the new variables, the kernel K,
must be unchanged by such a rotation That is, if the new polar coordinates are ', 8, ¢’,
we have K. (8, ¢; 0, ¢) = Ka(6', ¢'; ', ¢'). In particular, we can rotate our coordl-
nates so that the new z-axis passes through (r, 6, ¢); that is, so that 8’ = 0.

By definition P,(1) = 1. On the other hand P, (¢) with m = 1 has afactor (1 — 2)™?2,
so that P,m(1) =0, for m = 1. Therefore K,(0, ¢’; 8, ¢') = (2n+ 1) P, (cos 8’)/4ar, and

2n+1

(446) Kn(g ¢ 9 a) Pn(COSH’)

where 8’ is the angle between the directions (6, ¢) and (6, ¢):
cos 0’ = cos 0 cos B + sin 0 sin 0 cos (p — ).

Substituting the identity (44.6) in (44.4), we find

K(r, 6, $: R, 8, §) = Z‘— S (2n+ 1)(§)nPn(cos )

(44.7)
~1(39 s (13" :
w4w(2r~ar+ l) 20 (R) P,(cos@').

To evaluate the series, we consider a special case of the solution (44.2). We have
already remarked that the expression

[(x —x0)2+ (¥ = 30)% + (2 = 20)%] 112

is a solution of Laplace’s equation except at (xo, Yo, Z0). In particular, if we let x, =
yo =0 and z,= p > R, we have a solution of Laplace’s equation in the sphere r = R.
In polar coordinates it is given by

(r2 + p* — 2rp cos 6) 12

This function, and therefore also its values on the boundary r = R, are independent
of ¢. Thus we obtain the series solution

(7 + p?> —2rp cos 0) 112 :% z &no(}%)nP.n(cos f).

n=0
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In order to find the coefficients d.o, We set 8 = 0 in the left-hand side. We obtain
(P4 p2—2rp) 2= (p— )1 = —1[1 +L4 (5)2 + (5)3 + ]
P P p \p) " \p ’

which is valid for » < p. Recalling that P,(1) = 1 and comparing coefficients, we find
that

- _2R»
Qnp = pn+1'
Thus we have the identity
(44.8) (PP =+ p?>—2rp cos 6)-12 =:72 (z—)nPn(cos 0),
0

which is valid for r < p. (This identity can be used to generate the spherical harmonics
r'P,(cos @) by expanding the left-hand side in a Taylor series in r.) Since

(2;«5”7 + 1)(r2 + R?—2rR cos §')~12 = (R® — r2) (r* + R* — 2Rr cos §') 3",

we find from (44.7) and (44.8) that

(R?

K(r,0,¢;R, 0, ¢) = 8—1—7:—’2)(1‘2 + R*—2rR cos §') 32,

Thus, the solution formula (44.2) is equivalent to the integral formula

_RR*—1) [ [ _ f(F, @) sinbdfdp
(44.9) u(r, 8, ¢) = 47 ,[0 o (P4 R*—2rR cos§')32

where
cos 8’ = cos @ cos @ + sin 6 sin 0 cos (¢ — &),

so that {r* + R* — rR cos 0"} is the distance from the point (7, 6, ¢) to the point
(R, 8, ¢). This is Poisson’s integral formula in three dimensions.
It is easily verified by substituting in the differential equation (44.1) that

R —p2
(r*+ R®>—2rR cos §")3?

satisfies Laplace’s equation for r < R. Moreover its first and second derivatives with
respect to r, 6, and ¢ are continuous in # and ¢ as long as r < R. It follows that if
f(8, &) is any absolutely integrable function, (44.9) gives a solution of Laplace’s equa-
tion.

By the argument used in Section 25 we can show that if fis absolutely integrable,
the function u(r, 0, ¢) defined by (44.9) for r < R and by f(6, ¢) for r= R is continuous
at all boundary points where (8, ¢) is continuous. Therefore the function u defined for
r < R either by the integral (44.9) or the equivalent series (44.2) is the solution of the
boundary value problem if f{8, ¢) is continuous.

By setting r = 0in (44.2) or (44.9) we find that the value of u« at the center of a sphere
is the mean value of u(R, 0, ¢) over the surface of the sphere. Thus we have a mean-
value theorem for three-dimensional harmonic functions.
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EXERCISES
1. Find the solution of Laplace’s equation {(44.1) for r < 1 such that
u=x>+y*? for r=1.
2. Find the solution of Laplace’s equation (44.1) for r < 1 for which
u=x° for r=1.
3. Find the solution of Laplace’s equation (44.1) for r < 1 for which
u=e* for r=1.

4. Solve the heat conduction problem in the sphere

%%—vzu=o for r<1, >0
au _
ar—O for r=1,

u(r, 9, ¢,0)=f(r, 0, ¢).

HINT: Separate variables, and let R(r} = r~"28(r).
5. Solve the vibration problem in the sphere
U _gry=g
W—‘ u= or r<1, >0,
u=10 for r=1,

u(r, 8, 6, 0) =£(r, 0, $),
%(r, 0, ¢, 0) = 0.

(See Hint in problem 4.)

6. Solve
Viu=90 for r <1,
%Lr—l=g(6, é) for r=1,
where

f" joﬂ g(8, ¢) sin 6ded¢ = 0,

Let # = 0 at r = 0. What happens if this integral is not zero?

45. Poisson’s Equation and Green’s Function for the Sphere.

We consider the problem

(45.1)
0%u 26u 1 af. u 1 8214___
a2 " rar  rsing 69(1n039)+ 7% Sin? 0 0t F(r, 0, ¢)
M(Ra 97 d)) = (.

for r< R,

We expand u# and F in Fourier series in P,™(cos 8) cos m¢ and P, (cos 0) sin me.
That is, we take their finite Fourier transforms:

(45.2)

dum(r) = 2n+1)(n —m)!

27(n+ m)!

J'ﬂ J’” u(r, 6, )P, (cos 0) cos me sin 0dbdo,
- JO
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2n+1)(n—m)!

bum(r) = S (n + m)1 fj Lﬂ u(r, 8, )Pr,™(cos 0) sin me¢ sin fdode,
Awn(r) = (an;:(}?)_ﬁ_n';) ;n) ! _: LHF(r, 0, ¢) P, (cos ) cos me sin 0dodd,
Bum(r) = (2n2-71;(1n)$1;n~)r;n)! :T Lﬁ F(r, 0, )P, (cos ) sin mep sin 0dode.

Taking finite Fourier transforms of the differential equation and integrating by parts
leads to the system

Anm” + %anm’ - n(_nr:"ﬁanm = _Anm,
anm(R) = 0, ann bounded,
bnm" + %bnm' - "n(ir_gt’"l“)'bnm = _Bnm,

bun(R) =0, bam bounded.

These problems have the solutions
R

(45.3) Anm (1) =J Gu(r, r)Anm(r)ridr,
0

R —_ — — —
bum(r) =J; Gu(r, r)Bun(r)3dr,

e &) -@&)]

(2n+ DR\R) [\R R ot

aera) (&) @] e

2n+ DR\R/ [\R R r -

If the problem (45.1) has a solution, it is

(45.4) u= 2% {1anoPn(cos 0) + = (anm cos md + by sin me) Pym{cos 6) },
m=1

where

~|
IA
~
-

Ga(r,r) =

~|
v

n=o (2

where the an, and b.m are given by (45.3). The series converges uniformly if [ [ [ F?r2
sin @drdfd¢ is finite.

Instead of investigating the convergence of the differentiated series, we substitute
the definitions of 4.m(r) and Ban(r) in (45.3), and formally interchange integration
and summation in (45.4). This process gives the formal solution

(5.5 ur0.9)=[" [7[" G 0.0 8. 9)FG. 0. sinberadd,

where for r < r
(45.6)

with K.(0, &; 8, ) defined by (44.5). Thus by (44.6) '

@ 606500 - 2 (B|(F) - (&) ]Patcosd,

™M
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where-
(45.8) cos @’ = cos 0 cos B + sin 0 sin @ cos (p — ).

For r > r, we must only interchange r and r in this formula.
To evaluate the series in (45.7) we use the identity (44.8). We first replace r by r
and p by r. Then we replace r by rr/R and p by R. We obtain the formula

. _ 1 _
G(r,0,0;7,0,¢)=-—{rr+7P—2rFcos§ }-12
459) (0 8 R0E) =gl P Mo
_Z_{R +-R7—2rr cosU} .
This, then, is the Green’s function for r < r. It is already symmetric in r and r, so
that the same formula holds for r > r, and even for r=r. We note that G =0 for r=R.
To verify that G is, indeed, a Green’s function, we use the definition (45.8) of
cos #'. Introducing rectangular coordinates, (x, y, z) and (x,y, z), we find that rrcos &'
= xx' + yy + zz. Thus

(45.10) G=p{x =)+ (y =)+ (=D}
Y oY

It is easily verified that G is harmonic except when (x, y, z) coincides with (x y, z)
The first term represents a point charge at (x, y, z). The second term is an “‘image
charge” at the point

_R2 -R? _R?

(7 ¥ %)
which is outside the sphere. By an argument like that of Section 30 we see that if F is
continuously differentiable, the integral (45.5) and hence also the series (45.4) give a
solution of the problem (45.1).

Just as in two dimensions, we find that the solution of the boundary value problem

Vig=10 for r <R,
u=f for r=R

can be written in terms of the Green’s function as

o[22

This formula is the Poisson integral formula (44.9).

EXERCISES

1. Solve (45.1) when F =1,
2. Solve (45.1) when F = x2 + y2.
3. Show that if F is independent of ¢, (that is, axially symmetric) the same is true of u.
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4. Solve
Vig=—F for r<1,
QE—f—u:O for r=1.
or
5. Solve
Viu=—-F for Rl <I‘<R2,
=10 for r=R,, r=R..
6. Solve
Vu=—F for r> R,
u=10 for r=R,
u— 0 as r-—> o

by letting R, — = in Exercise 5.
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CHAPTER VIII

Analytic Functions of a
Complex Variable

46. Complex Numbers.

We consider numbers of the form x + iy, where x and y are real numbers and i is
the usual symbol for V—1. We look upon i as a symbol, so that the complex number
z=x+ iy is simply an ordered pair of real numbers.

The number x, which does not have an i next to it, is called the real part of z: x =
Re(z); the number y is called the imaginary part of z: y=1Im(z). We emphasize that the
imaginary part is also a real number. It just happens to be next to the symbol i.

Just as we can think of a real number x as a point on a line, so we can think of the
complex number as a point in a plane. We simply take x and y as the rectangular

coordinates of z= x + iy. This representation of complex numbers is called the Argand
diagram.

Example.
yi
3p————- 1243
|
|
i
|
—34 |
e 1 |
! [
i 1 |
+ } } > X
-3 : 2
1
[
!
t
|
—24--—4
1-2i

We agree to omit either x or y if it is zero. That is, x is the same as x + 07 and iy is
the same as 0 + iy. We write 0 for the complex number O + 0.

201
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We say that two complex numbers are equal if and only if both their real and imagi-
nary parts agree:

x+iy=a+ib
means
x=a,
y=b.

Thus a complex equation is equivalent to two real equations.

We can also associate the complex number z = x + iy with the vector going from the
origin to the point (x, y) in the Argand diagram. This is simply the vector with com-
ponents x and y. |

We define the sum of two complex numbers z; = x; + iy; and z2 = x2 + iy as the com-
plex number whose associated vector is the sum of the vectors associated with z;
and z;. Then

(46.1) Dt =x1+x+i(y.+y2).

In other words, we add real and imaginary parts separately.
To define the product, we require the usual rules of addition and multiplication to
hold, and let # = —1. Then

(x1 4 iy1) (x2 -+ iys) = x1X2 + iyixe + ix1y2 + Pyiye,

or

(46.2) (x1 +iy1) (e + iy2) = xixe — yiyz + i(x1y2 + ViXa).

This is our definition of multiplication. The product (x; + iy:) {(x2 + iy2) is that complex
number whose real part is x:x2 — y1y. and whose imaginary part is x1ys + yixz. It is
easily verifiedthat this definition makes multiplication commutative (that is, 7122 = z221),
and associative (that is, zi(z223) = (2122)23)-

These same rules clearly also hold for addition: z; + 2=z + 71, 21 + (2 + 2z3) =
(z1 + z2) + z3. Furthermore we can verify the distributive (factoring) law

z1(z2 + 23) = 7122 + 21230
According to our definitions
x+iy=(x+i0) + (0+il)(y +i0),

so that x + iy is actually the real number x plus i times the real number y, as our nota-
tion implies.
We define subtraction by

n—z=u+ (D =x—x +i(yi—y).
Then z = z; — z» is the (unique) solution of

Z+ 2= 21.

Similarly, we wish to define the quotient z = z,/z; as the unique solution of

(46.3) 222=21.
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Writing z; = x1 +iy1. 2z = X2 + i z=x-+ iy, we find the equation
XoX == yay + [(y2x + X2y) = x1 + iy1.
This complex equation is equivalent to the two real equations

XoX — Y2V = X1,
Vax + X2y = y;.

This is a system of two linear equations in the two unknowns x and y. It has the unique
solution
= X1X2 + Y1y ,
X2+ y)t
_ YiX2 — X1)y2 ,
o )C22 + yzz

unless x;2 + y.2 = 0. Since x; and y; are real, this can only happen when x; =y, = 0,
that is, when z2 = 0. When z: # 0, the equation (46.3) has the unique solution z, which
we call z;/z,:

2 _ (axe +yiye) + i(yixy — x1ys)
22 X22 -+ y22

(46.4)

We thus find that the complex numbers allow all the algebraic operations. We may
manipulate them just like real numbers.
If we put z; = 1{= 1+ i0) in (46.4), we find

1_X—
2 X2+ y?
We can then write

0 1
2=z
22 {2

The number z = x ~ iy is called the complex conjugate of z = x + iy. In the Argand
diagram it is the reflection of z in the x-axis.

J’Jr

e Z

® Zo

We find that
zZ={(x+iy)(x—iy) =x2+y*

which is a real nonnegative number.
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If we introduce polar coordinates (r, ) in the Argand diagram, we have

xX=rcosé,
y=r siné,

so that

(46.5) z=r(cosf+isinf).

This is called the polar representation of z.
The radius vector r is the length of the vector represented by z:

r=vVa+y.
It is called the absolute value of z and is denoted by |z]:
lz| = Va2 +
Then
(46.6) z=x2+y*=|z|%
Therefore
1_z_ z.
z =z |Zf?

The angle # in the polar representation is called the argument of z and denoted by
arg (z). It is the angle between the vector associated with z and the positive x-axis.
Of course arg (z) is only determined to within an additive multiple of 2.

We can now write (46.5) as

(46.7) z=|z| [cos (arg (z)) + i sin (arg (z))].
Since
zZ=r(cos@—isin@)
= r{cos (—@)+isin(—8)),
we find that |z] = |z|, and arg (z) = —arg (z). It is easily seen from the definitions that
(z1+ 22) =71 + 22,
(2122) = 2120,

(z) =z.

The polar representation is useful in multiplication. If

z1=ri{cos 8, +isiné,),
Zo = r2{(COS @z + i sin @),
we have
2122 = Hre (COS 65 cos @, — sin &, sin 6:)
+ irir2(cos @, sin 6 + sin 6, cos 6.)
= rirz[cos (6, + 8,) + i sin (6, + ) ].

Thus the absolute values multiply:
(46.8) lz122} = |zi||z2),

while the arguments add:
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(46.9) arg (z:z2) = arg (z1) + arg (z).
Clearly also

| _ |zl
<2 ’Zz”

arg (2) =arg (z:) — arg (z).

We reiterate that the arguments are only defined to within multiples of 2#. For
instance if we choose 0 = arg (z;) < 27 and 0 =< arg (z) < 2w, it may well happen
that arg (z;) + arg (z2) > 2. Then the formula (46.9) is not true if we take that value
of arg (z1z2) which lies between 0 and 2.

Example. If z; =—1, 7o = —i, arg {z;) = 7, arg (z2) = 7. Now (—1)(—i) =i, whose argument
would normally be written as 3. However, to make (46.9) true, we must write it as 3n + 2m =27

We now consider the absolute value of a sum of two complex numbers. Putting

z1=ri(cos @y +isind,),
Zz=rs(cos @ +isiné:),

we find that

|Z1 + Z2|2 = (Z1 + Zz) (21 +_Zz)
= 2121 + 2221 + 2122 + 2222
=r2+ rirz[cos (@ — 61) +isin (6: — 6)]
+ rirz[cos (61— G2) +isin (60, — &) ] + r22
= ."12 + 2ryr: cOS (01 - 02) + r22.

We have used the fact that the cosine is even and the sine is odd. Since

~l =cos(6;,—6:) =1,

we find that

(hn—r=la+z?=(n+r)
Hence
(46.10) 121 — |z2| = |21 + 22| = 2] + |ze).

The second inequality is known as the triangle inequality. If we construct the vector

v

zZy 2z,

Zy

Zy
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addition geometrically, this inequality states that any side of a triangle is no longer
than the sum of the lengths of the other two sides. Briefly stated, the shortest distance
between two points is a straight line.

The first inequality in (46.10) is the same inequality for the side z;(|z:| = |21 + z2| +
|z2|) with the length |z2| transposed.

The multiplication formulas (46.8), (46.9) give us an easy way to take powers of a
complex number. If we write z in its polar form

z=r(cos @+ isin@),

we have

2Z2=r*(cos20 +isin26),

z8 = r(cos 30 + i sin 38) ,

= r*(cos n# + i sin né).

We can also extract roots. We seek the solution w of

(46.11) wh = Z.
If

z=r{cosf+isinb),
w=p(cos¢ +ising),

we must have

pt=r,
cos nd = cos 0,
sin n¢ = sin 6.

A solution of this set of equations is given by p = r1/» (the real ath root of a positive
number), ¢ = 6/n. That is,
w= rl/"(cos 9 + i sin Q).
n n
However, n¢ is only determined to within a multiple of 27 by its sine and cosine.
We may equally well let
ne = 6 + 2wk,

where k can be any positive or negative integer or 0. This is equivalent to the fact
that arg z is only determined to within a multiple of 2.
Thus our equation is satisfied if ¢ = (¢ + 27k)/n, where k=0, = 1,+2,.... Then

0+ 2wk . 0+21Tk)
n n :

(46.12) w= r”"(cos + i sin
Increasing k& by n increases the argument of w by 27 and hence does not affect the
value of w. Therefore we get all the possible solutions of (46.11) by takingk=0,1, ...,
n—1in (46.12).

We have shown that a complex number z # 0 has » distinct nth roots. A well known
special case is n = 2. In this case we always have =V, so that there are two distinct
roots.



CHAP. VIII 47. Complex Power Series and Harmonic Functions 207

Example, Find all the cube roots of 1;
Since |1] =1, arg (1) =0, we find

w=cos;§—-k+isin2§—k k=0,1,2.

I U P DI G A
Thus w=1, 2+2\/§;, 5 2\/§z.

EXERCISES
1. Find all solutions of
==l
2. Find all solutions of
=i
3. Find all solutions of
(z—1)3=—-1L

4. Show that the equal sign in the second inequality (46.10) holds if and only if the vectors
z: and zz have the same direction. When does the equal sign hold in the first inequality?
5. Find

(@ (3+i)+(7-2i)

(b) (2410)(6+3i)

(©) (1= (5+i)
3+i

(d) —
—3+2i
© 5

6. Find (1 + ).
7. Verify that z:{ze + z3) = 2122 + z1z3 for any complex numbers z,, zz, and z3.
8. Verify that z:(z223) = (z1z2) z3 for any complex numbers z;, zz, and z3.

47. Complex Power Series and Harmonic Functions.

We have seen that if
z=r(cos § + i sin §),
then
7t = r(cos nd + i sin nd).
Putting x = r cos 8, y = r sin 8 so that z = x + iy, we have the identity
(x+iy)n=#"cos n@+ir"sin né.

Thus r* cos nf and r* sin nf can be obtained as homogeneous polynomials of degree
n in x and y by expanding (x + iy)* by the binomial theorem, and separating real and
imaginary parts. For instance

(x + iy)3 = x3 + 3ixty — 3xy* — iy3,
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and hence

3 cos 30 = x3 — 3xy?,

r8 sin 36 = 3x%y — y3.
The functions r* cos n# and r* sin n@ are the solutions of the two-dimensional
Laplace’s equation which we obtained in Section 24 by separation of variables. We
showed in Section 24 that if u(r, 6) is a harmonic function (that is, a solution of La-

place’s equation) in the circle r = p, it can be represented in terms of its boundary
values u(p, #) by means of the series

u(r, ) = %a{, + 3 (é)n(an cos nf + b, sin ng).
1

If we define the complex numbers

Co = 0o,

2
anan_ibn fOI' n"—~’1,2,...,

we find that

(—g)n(an cos ng + b, sin nd) = Re [cn(i)n] for n=1,2,....

(The symbol Re denotes the real part.)
We examine the complex series
afy)
o \p

In order to assign a meaning to such an infinite series, we must first define the limit
of a sequence w, of complex numbers. We say that

Iim w,=w
if

n—> o«

Since |w — wy| is a sequence of real numbers, this limit is already defined.
We separate w and the w, into real and imaginary parts: w = u + iv, wn, = U + vy
Since

[w— wal =V (0 —un)2+ (v — va)?,

we see that |w — wy| approaches zero if and only if ¥ — u, and v — v, approach zero.
Thus,

lim w,=w

n->x

if and only if

lim u,=u and lim v, =v.

i % H—> %
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We know that a sequence of real numbers u, has a limit if and only if it satisfies the
Cauchy criterion. That is, if for any € > 0 there is an integer N, such that

|t — un| < €
whenever m = n = N,. Similarly v, converges if and only if
|V — va| < €

whenever m = n = N, provided we choose N, sufficiently large. If these two in-
equalities are satisfied,

W — wn| < V2e.

Thus if w, converges, |wn» — wy| can be made arbitrarily small by choosing m and n
sufficiently large. Conversely, if

IWm'_' Wnl < €

whenever m = n = N, the same is true of |u, — u,| and |vim — v,/, and hence the se-
quences u, and v, converge. We see, then, that the Cauchy criterion is true for com-
plex sequences: The sequence w, converges if and only if for any € > O there is an
integer N, such that

W — wy| < €

whenever m = n = N..
We now define

" 0 N
2 cn(é) = lim % cn(é)n,
0 p N30 ( p

if this limit exists. To see whether this is the case, we apply the Cauchy criterion.

Since u(p, #) is bounded, its Fourier coefficients a, and b, are bounded. Hence the
numbers ¢, = a» — ib, are bounded: |c,| = ¢. By the triangle inequality

Na Z n
fof)
¥oO\p

Choosing |z] < p and noting that X E
0

N2

=c3

N

n

<

p

n
converges, we see that the Cauchy criterion

© n
is satisfied. Hence % cn(ﬁ) converges for |z| < p. Its real and imaginary parts con-
0

verge separately, and

, 8) =R mﬁ’i"}
u(r, 6) e[zpnz

0

for |z| < p. Thus, if « is a harmonic function in some circle centered at the origin, it
can be represented as the real part of a convergent power series in z inside this circle.
Suppose that u(x, y) is harmonic in the circle

(x = x0)* + (y — y0)* = p%.
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Then we can make a change of variables x’ = x — xp, ¥’ = y — y, to translate the center
(X0, Yo) to the origin. Putting zo = xo + iye, we find that

o0

u(x,y) =Re |3 Z(z—z)"|.
o P

Thus u is the real part of a convergent power series in z — 2.
We now study some properties of power series.

Suppose that the series £ dn.(z — z)® converges at a point z;. By the Cauchy cri-
0

terion we see that |d.(z1 — zo)"| must approach zero. In particular, |dn||z: — zo|” is
bounded by some number K independent of n. Now let [z — zo| = a]zi — zo| with
0 < « < 1. Then by the triangle inequality

Na alo .~ n
55 || |21 — 2ol |z — 2|
1

Ny
% dn(z = 20) |21 — zo|™

2 N1 — yNa2+1
o™ ot
=KX a=KE %
Ny l—-«
KaNl
< .
1—«

For any e > 0 there is an N, independent of z such that for N, = N, = N, the right-
hand side is less than e. Therefore the series converges absolutely and uniformly for
|z — zo| = a|z1 — z0|. Since « is any number less than 1, the series converges absolutely
everywhere in the circle |z — zo| < |z1 — z2|.

It follows from the above statement that if the series diverges at a point z, it must
diverge for all z such that |z — z4| > |z2 — zo|. For if it converged at such a z, it would
converge at zz. Therefore there is a radius R (possibly zero or infinite) such that the
series converges absolutely for |z — zo] < R and diverges for |z— z| > R. R is called the
radins of convergence of the series. The series converges uniformly in any smaller
circle |z — 20| = aR with « < 1. It may or may not converge at points on the circle
|Z — 2o | =R.

Examples. (a) The series 2 z* converges for |z| < 1 but diverges for |z| = 1.
0

® n
(b) The series & % converges at z = —1 but diverges at z= 1.
1

® n
(c) The series 2 %converges for |z] = 1, and diverges for |z| > 1.
1

A power series 2 dn(z — z0)}* defines a complex-valued function of the complex
0

variable z, which we denote by f(z), in its circle of convergence |z — zo| < R. Since
each term of the series is continucus, and since the series converges uniformly for
|z — zo| = aR with any « < 1, we find that f(z) is continuous for |z — zs| < R.

We separate f(z) into its real and imaginary parts

f2) =ulx,y) +iv(x, y),
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and define

af _ou, dv
ox ox ox

if these derivatives exist. We differentiate the series with respect to x term by term.

. a _,_ 9 . :
—z" = —(x + iy)"* = nz"!, we obtain
Since % ax ( y) Z

? ndn(z — zo)" 1.

We must show that the real and imaginary parts of this series converge uniformly,
so that term-by-term differentiation is permissible. To prove the uniform convergence,
we choose any positive o < 1, and let z; = z,+ aR. Then the series for f(z) converges at
z= 7. Hence |dy| |21 — zo|* = K for some K. For any z such that |z — zo| = o?R =
alzi — zo| we find

|Z—Zo

n-1 N
) <K s o
|21 — zo aR y,

Nz No

T ndu(z—20)"Y = Klza — 20|t = n(

Ny Ny
Since Zna" converges for |a] < 1, this series converges uniformly for |z — zo| = o?R
whenever 0 < a < 1. Hence, the same is true of its real and imaginary parts. Thus
term-by-term differentiation gives affax for |z — zo| = «*R whenever 0 < a < 1. Thus,
we obtain dfjax for |z — zo| < R.

We have shown that 9f/dx exists everywhere within the circle of convergence of the

series. In a similar manner we show that

af _du | v
ay ay 'ay
exists, and can be obtained by term-by-term differentiation. Therefore,
du  0v_ — -1
ax+ = 2 ndn(z — z20)" 1,
u_ v _ <. — , ynt
3y -+ lay 2 indn(z — zo)" 1.
Hence,
du | .Av_ (ou  .av\_ dv  .du
6y+lay_l(ax+lax) ox | Tox
This complex equation is equivalent to the pair of real equations
ou _ ov,
dx oy
(47.1) du__av.
ay ax

These are called the Cauchy-Riemann equations. They must be satisfied by the real
and imaginary parts of a power series.
Since dffdx = dufdx + idv/dx and 3f/ dy = ou/dy + idv/dy are again represented by
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power series, they may be differentiated again. Continuing in this way we find that «
and v are infinitely differentiable for [z — zo| < R.

Differentiating the first equation (47.1) with respect to x and the second with respect
to y, we find

O

o Ty O

The real part of a power series must be harmonic. Since v{x, y) is the real part of
—if(z), it is also harmonic.

We have shown that u(x, y) is harmonic in a circle centered at the point (x,, yo)
if and only if it can be represented as the real part of a convergent power series in (z —z,)
in this circle. (Here z=x + iy, zo = Xo + iyo.)

The function v such that u + iv is a power series is called the conjugate harmonic
function (or harmonic conjugate) of u. It can be determined to within an arbitrary func-
tion of x by integrating the first of the Cauchy-Riemann equations (47.1) with respect
to y. This arbitrary function can then be determined to within a constant by the second
equation. Thus v is determined to within an additive constant by u. Therefore f(z) is
determined to within an imaginary constant by the fact that w = Re[f(z)].

Example. Find the conjugate harmonic function of u = xy.

We have
ov__ du _
ay ax
Hence
1
v=259" + ¢ (x).
Then
awv__ ., _du_
Hence
b= —%xz +c
Thaus,
v=a(r—2) +c.
Then

f2)=u+iv =—%iz2+ ic
= —%izO2 +ic —izo(z — 20) — %—i(z — Z0)*

This is a very simple power series in z — Zo.

EXERCISES

1. Find the conjugate harmonic function of @+ )
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2. Find the conjugate harmonic function of
er v cos 2xy.
3. Show that the radius of convergence R of the series d,(z — zo)" is given by the formula
R = lim inf |d,|-Y/.
By limit inferior we mean the largest value of R such that for any € > 0 there is an N (¢) such

that |d,]"¥" > R — € whenever n > N (€).
4. Show that if lim |dy|/|dn+1| exists, it is equal to R. (This is called the ratio test.)

H > 0
5. Find the radius of convergence of

0

@ X ngr
n=g¢

(b) 3 2-ngn
n=49

o
() 3 emgn,
n=0

48. Analytic Functions.

Let the power series
flz) = % dn (z — 70)™

converge for |z— zo] < R. Then u(x, y) =Re [f(z)] is harmonic there. If z, is any point
in the circle of convergence, the small circle |z — z:] < R — |z1 — 20| is contained in
|z — zo] < R. Therefore, u(x, y) is harmonic in the circle |z — z:} < R—|z—z0|. Hence
u(x, y) may be represented as the real part of a power series in (z — z;) in this circle.

Since the conjugate function v is determined to within a constant by the Cauchy-
Riemann equations, we find that f(z) = £ d,(z — z)" differs only by an imaginary
constant from the power series in (z — z;). Therefore f(z) may be represented in the
circle |z~ z1] < R — |z1 — 20| as a convergent power series in z — z::

f(z) = § d:V(z — z)"

A complex-valued function f(z) = u(x, y) + iv(x, y) of the complex variable z is
said to be analytic in a domain D if in every circle |z — z1| < p lying in D it can be
represented as a power series in z — z;.7

We have shown that a function

D) =3 dy(z— 20)7

defined by a power series is analytic in the circle of convergence |z — zo| < R of the

series.
If f(z) is analytic, its real and imaginary parts satisfy the Cauchy-Riemann equa-

tions (47.1).

+The word holomerphic is sometimes used in place of analytic.
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For the analytic function
f(2) =2 dp(z— zo)"
the common value of df/ox and —idf/dy is given by 2 nd,(z — z¢)" 1. This series can
be obtained by applying the formal differentiation rule

diz(z —z0)"=n(z—z0)" .

We define the derivative of f with respect to the complex variable z to be the common
value of 9f]/ox and —idf]dy:
d
fl(z) = ZZE(Z) = 2 ndn(z— 20)" L.
f'(z) is an analytic function in the same domain. It can be shown that

df _ . flz+Az) —f(z)
dz Alzlg»lo Az

(See Exercise 8.)
Since df/dz = af/dx, the usual rules of differentiation hold. That is,

d. o _
Ez_(af) - af 9

d I

LSt =r+ég,
d _ 1 [
V&) =rfgtfe,
1(1) _f'g—/g
dz\g g

We can also define derivatives of higher order of an analyiic function. If
fl) =3 du(z—20)* for |z—2z| <R,
0
we have
f¥@) = 3 din(n=1) - (n—k+ 1) (z—2)"*

for any positive integer k. All these series have the same radius of convergence.
In particular, we have

S¥(zo) = kld
or

1
dy = Efm(Zo) .

The coefficients di are thus uniquely defined by f(z). The power series for f can be
written

flz) = gﬂnln(!io)(z — zo)™
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The power series in (z — zo) for f(z) is its Taylor series about the point z = zo.
Since £’ (z) = (u/dx) — i(du/dy), we can write

o'u . o'u
[n] = — .
S"@) =95 Taxn-1gy

Therefore, we can express all but the first term in the Taylor series for f(z) in terms
of derivatives of u alone. Thus, f(z) is determined to within an imaginary constant by
u and all its partial derivatives at the single point {x,, yo).

Alternatively, since

a"u aty
[n] e e
f (Z) axn + laxn’
f(z) is determined from its values along any segment y = constant. In particular, if

we have a real function ¢(x) of a real variable x which is equal to its Taylor series
about x, in some interval containing the point x,:

o [ﬂ]
¢{x) ﬁESb—ggl(x—xo)" for |x— x| <R,
o !
then there is a unique analytic function

f(z)zggbl%(!xo)(z—xo)" for |z— 2z <R,

such that
fx) = é(x),
when z is real and |x — xo| < R.
Example. We have the Taylor series
s s X
€ néo n!
We define the analytic extension
et = 3 i,
n=0 M.

It is easily seen that this series converges for all z (R = =),

To find the real and imaginary parts of ¢*, we use the binomial expansion

n

!
= (x+iy)n=3 &

R ey AL GO

Then
ef= 3
_ 5 g X"(y)rm
m2=0 ngm m'(l’l — m)'

R R ()

m=0 m' 1=0 l' ?
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where we have put / = n— m. We note that (iy)!is real if [ is even and imaginary if / is

odd. Thus

oo

. xm ( I) y2]c (_l)ky2k+l:|
¢ mzo m'l:l\zo (2k)! +i AE() k+ 1D
We recognize these series as the Taylor series for e%, cosy, and siny, respectively.

Hence
e? = e*(cosy+ isiny).
It is easily checked that the real and imaginary parts of this function satisfy the Cauchy-

Riemann equations. Also e* reduces to e* for z = x.
If 21 = x1 + iv1, 22 = x2 + iy, we find that

e*17% = eT1*+Ta[cos (y; + y2) + i sin (31 + y2) ]
= e t® [cos y, COS ¥ — Siny; sin y» + i(sin y; cOS y2 + COS y; sinyy) ]

= ef1e%2,
The exponential function thus satisfies the usual rule for multiplication of exponentials.

By our definition,
el =cosf+isind,

so that the polar form of z can be written
z = re',
Since f'(z) = df]ax, differential relations between analytic functions that hold for
real z also hold for complex z.
Example. We know that (d/dx)(e*) = e*. It follows that (d/dz)(e*} = e*.

Let the radius of convergence of the Taylor series of f(z) about z, be R. Then if
|z1 — 20| < R, the Taylor series for f(z) about z; certainly converges for [z —z:| < R —
|z1 — zo|. However, it may have a larger radius of convergence R;. Then we have the

analytic function f(z) defined in the union of the two circles |z — z)| < Rand |z —z:| <
R,. We have extended f(z) as an analytic function in a larger domain. This process

is known as analytic continuation.
Example. If we solve the initial value problem
(1+x)%+u=0 for x>0,
u(0)=1

by power series, we obtain u(x) = X (—x)".
0
We have the analytic extension of this function

fl) = 3 (=2,

Its radius of convergence is easily seen to be 1. So f(z) is defined for |z| < 1, and in particular
u(x) is known for 0 = x < 1. By summing the series for f(%), f'(3), , we find the Taylor

<3464

series
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Its radius of convergence is 3. Thus we have continued f(z) to the circle |z —%| < 2. This circle
goes outside the original circle |z] < 1. In particular, we now have the solution u(x} = f(x)
for 0= x < 2.

By a sequence of circles we can cover any point in the z-plane other than z = —1. Thus f(z)
is defined as an analytic function for z # —1. In fact, f(z) = 1/(1 + z). In particular, u(x) =
1/(1 + x) forall x = 0.

Let R be the radius of convergence of the Taylor series for a function f(z) about
7 = zo. Then f(z) is analytic for |z — zo| < R. Suppose it is possible to continue f(z)
as an analytic function to a larger circle [z — zo| < p with p > R. Then u = Re f(z) is
harmonic for |z — zo| < p. Hence it is possible to write u as the real part of a power
series in (z — zo) for |z — zo| < p. This power series is determined by u to within an
imaginary constant. Therefore except for d, it is the Taylor series for f(z). Thus the
Taylor series for f(z) converges for |z — 2| < p, which contradicts the definition of
its radius of convergence R.

We have shown that £ (z) can not be continued analytically to a larger circle centered
at zo than |z — zo| < R. It follows that somewhere on the circumference |z — zo| = R
there is a point at which no continuation of f(z) is analytic. Such a point is called a
singularity of f(z).

The radius of convergence R of the Taylor series of f(z) about z, is equal to the dis-
tance from z, to the nearest singularity of f(z).

Example. The Taylor series
E (_l)nx2n
n=0
for the real function 1/(1 4+ x?) converges for |x| < 1 but diverges for x=1, even though 1/(1 + x?)
is infinitely differentiable for all x. The explanation lies in the analytic extension f(z) = 1/(1+z?).
This function is singular at z==i. Hence its Taylor series 2 {—1)"z2" about z=0 has the radius
n=0 .
of convergence |i — 0] = 1.

If R = =, the function f(z) is analytic for all z. Such a function is said to be entire.

EXERCISES

1. Find analytic functions sin z and cos z having the property that they reduce to sin x and
cos x for y = 0. Show that sin? z + cos? z = 1.
2. Determine whether or not the following are analytic functions

(@ flz) =z
M) flz) =2
(¢} flz) = ze®.

HINT: Use the Cauchy-Riemann equations (47.1).
3. Show that

(z+ Az—zlgz— E /3 L

lim
A0

4. Show that if f(z) is analytic,

lim f(z + AZ) —f(z) :f’(Z).

Az—0 Az
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5. Show that if

lim fz+ AZ) —f(z)
Az—>( 4

exists, the Cauchy-Riemann equations must hold. HinT: Take Az pure real, then pure imaginary.

6. Assuming that a ratio of polynomials is analytic except when the denominator vanishes
(See Section 50, Theorem 1) find the radius of convergence of the series for

(@) f(2) =m about z=0
(b) f(Z)mm about z=i+1.

7. Show that the Taylor series for about z=01is

1—-z
P4
n=0
Hence find the Taylor series for e about zp # a. Find the radius of convergence of this series.
HINT: Note that
11 1
a—z a—2y_2-2

. a— 2o
8. Write the following harmonic functions as the real parts of power series in z= x + iy:
(a) e* cosy
(b) coshx siny
(c) e**~¥° cos 2xy.

HINT: Find the conjugate harmonic function, and consider the power series when y = 0.

49. Contour Integrals and Cauchy’s Theorem.

A point set D is said to be connected if any two points z; and z: in D can be joined
by a piecewise smooth curve lying in D. It is said to be open if to each point zo in D
there corresponds a disk |z — zo| < p centered at z, all of whose points are also in D.
The radius p may depend upon z,. A connected open set is called a domain.

Examples. The set |z| < 1 is open. Forif |z0| < 1, all points of the disk |z — zo| < % (1 —}z0|)
also satisfy |z| < 1. Thus |z| < 1 is a domain.

The set |z] = 1 is not open. For if |z| = 1, then for any p > 0 the point z= (1 +%p)z, satisfies
|z— 20| < p, but not |z} = 1. Thus |z| = 1 is not a domain.

The set |22 — 1| < 1is open. However, it contains the points z=—1 and z= 1 but no point on the
line Re [z] = 0. Therefore it is not connected, and hence is not a domain.

Let u(x, y) and v(x, ¥) be continuous functions in a domain D. Let I" be a piece-
wise smooth curve in D given in the parametric form
x=x(1),
y=y), tw=t=1,
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where x{(¢) and y(t) are continuous piecewise continuously differentiable functions
of the parameter ¢.
We define the complex path integral

f (u+tv)dz—J [u(x(t), y()) + iv(x(t), y(t))][ +l%]d
(49.1) zf [u(x(t), y(1) )E —v(x(s), y(¥) )E]dt
i ,-f' [u(x(t), y(t))%-i— v(x(t),y(t))%]dt-

This integral gives a complex number for any complex function (« + iv) and any
path T. Its value is independent of any particular parametric representation of I'. For
if we introduce a new parameter 7= 7(¢), we simply replace (dx/dt)dt by

dx dx dr dx
E;d'r dT Ed t= E‘d t

and (dy/dt)dt by
dy , _dy
d'rdT i —=dt.

The path integral is linear in the sense that if fi(z)} = u,(x, ¥) + ivi(x, ¥), f2(2) =
u:(x, y} + ive(x, y), then for any complex constants «; and a»

J; (aufi +oafe)dz=au Lfldz+ a2 szdz.

In particular, if we let

o —arg( | fi2)az)

we find that

fr e 9f(z)dz = €@ fr A2)dz

is real and nonnegative, because its argument is zero. (If the integral is zero, we let
g = 0.) Thus

‘ fr f(z)dz1 = jr e-0f(z)dz = f Re (e—ifyf(z)‘;—f)df
= [ leonta) d‘dt

[ ot

a =G (3 -4

We note that
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where s is the arc length along the curve I'. Thus we have the inequality

(9.2) [ sde] = | 12 ias

for complex path integrals. The right-hand side is a real integral.
Finally we note that if we reverse the direction of integration along I", we interchange
the limits of integration #, and ¢, in (49.1). Therefore we multiply the integral by (—1).
A path C is called a simple closed contour if the beginning and end points of C
coincide, but no other pair of points of C coincides. That is, C does not cross itself.
We take the arc length s along C as the parameter. Then

b
dS Yo
ay _

ds

where (n,, ny) are the components of a unit normal vector pointing to the right from
the curve in the sense it is traversed. If we make a counterclockwise circuit, it points
outward. The path integral around such a simple closed contour C in the counter-
clockwise direction is

é (u+iv)dz= i (—uny, — vaz)ds + i}g (ung — vny)ds.
C C

We apply the divergence theorem to find that

[ (o oy ([ (ou_av
ﬁ' (u +iv)dz= j[m (3}’ * aJC)dXdy i an. (ax 3)’)dXdy’

where D, is the interior of C.
Suppose now that # and v are continuously differentiable and satisfy the Cauchy-
Riemann equations

au_av
dx 0
(49.3) Y
u__ _dv
dy ax

in a domain D containing C and D,. Then the right-hand side is zero. We have shown:

THEOREM 1. Cauchy’s theorem. If #(x, y) and v(x, y) are continuously differentiable
functions in a domain D and satisfy the Cauchy-Riemann equations (49.3) there, then
for every simple closed contour C in D whose interior is also in D,

(49.4) § (u+iv)dz =0,
C
A domain D is said to be simply connected if the interior of every closed curve C

which lies in D is also in D. Otherwise D is said to be multiply connected.

Examples. The annulus 4 < |z] < 1 is multiply connected. For the curve |z| = lies in this
annulus, but the part z = % of its interior does not. Even the pierced disk 0 < |z] < 1 is multiply
connected, but |z| < 1 is simply connected.
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Suppose now that D is simply connected, and that u« + iv satisfies the Cauchy-
Riemann equations in D, Let I" be a piecewise smooth curve in D connecting the
two points z, and z:

I:x=x(t), y=y(2) for fH <t <,
x(to) + iy(to) = zo,
x(t) +iy(t) = z.

We shall show that the integral

j (u+iv)dz
r

depends on z and z,, but not on the particular path I' connecting them. If "’ is another
path in D connecting 2o to z, let C be the closed contour obtained by going from z,
to zon I" and returning on "',

Z

(C .

I\I

Zy

The closed contour C may intersect itself one or more times. It can, however,
be decomposed into a number of simple closed contours Cy, Cs, . . ., Cr in such a
way that the integral around C is the sum of the integrals around Cy, Cs, . . . , Cx.
Since by Cauchy’s theorem each of these integrals is zero, we find that

| wrimd— [ wide=9¢ w+mda=o,

and hencet

fr (u+iv)dz= J; (u + iv)dz.
If we keep z, fixed, we can therefore define the function of z
F(z)=U(x,y) +iV(x,y) = fz (u+iv)dz,

where the integral is along any path I" in D going from z, to z. If we choose the path I" so
that its final part is in the x-direction, we find that
oF  oU oV

“é;za“;-i-l-g;:u'i—lv.

+ By an approximation process we can prove this result even if " and [" intersect infinitely often.
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If we choose the last part of the path in the y-direction, we find
oF _oU | oV

5;'—"@4‘15:[“44‘11?).
Thus
W _av_
ax ady ’
(49.5) ﬂ:_ﬂz_v
oy dx '
Since u and v satisfy the Cauchy-Riemann equations (49.3), we find that
U | a?U
Py + Pl 0.

Hence U must be the real part of an analytic function. Since U and V satisfy the
Cauchy-Riemann equations (49.5), we conclude that

F(z) =U+1iVv
1s analytic.

We have proved the following theorem.

THEOREM 2. If f(z) = u + iv is analytic in a simply connected domain D, then
Flo = [ fod

is also analytic, and F'(z) = f(z).

Note the similarity of Theorem 2 to the fundamental theorem of calculus.

We remark that the equation F'(z) = f(z) defines F(z) to within a constant. For if
we have a second function G (z) such that G’ (z) = f(z), then the power series of F
and G coincide except for the constant term.

Moreover, we have seen that the power series of an analytic function may be dif-
ferentiated term by term. It follows that if

x S
)= % du(z — 20)",
its integral must have a power series of the form

_ < dn
F(z)=a+2 -7

(z — ZO )TH-I.

That is, power series may also be integrated term by term.

In deducing the fact that F(z) is analytic we only assumed that « and v are continu-
ously differentiabie and satisfy the Cauchy-Riemann equations. Under these conditions,
then, F(z), and hence also F’'(z) = u + iv, is analytic. It follows from the definition of
analyticity that # + iv is analytic in a multiply connected domain D if it is analytic in
every simply connected subdomain of D. Therefore we have the following criterion
for analyticity:
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THEOREM 3. The function f(z) = u(x, y) + iv(x, y) is analytic in a domain D if and
only if # and v are continuously differentiable and satisfy the Cauchy-Riemann equa-
tions (49.3) there.

Remark: The assumption that © and v are continuously differentiable is essential.
The real and imaginary parts of the function f(z) = e ¥#* with f(0) = 0 have partial
derivatives and satisfy the Cauchy-Riemann equations everywhere. However, f(z)
is not continuous, and hence not analytic, at z = 0.

The Cauchy-Riemann equations (49.5) for U + il were derived from the assumptions
that # and v are continuous and that (49.4) holds for all C in D. We then see from
Theorem 3 that F(z) = U + iV is analytic. Hence F’(z) = u + iv is also analytic.

If D is multiply connected, we only need to show that # + iv is analytic in its simply
connected subdomains. Therefore we only need (49.4) for those contours C whose
interior is also in . We have proved the following converse of Cauchy’s theorem:

THEOREM 4 —-Morera’s Theorem. Let «(x, v) and v(x, y) be continuous in 2 domain
D If

ﬁ“ (u+iv)dz=0

for every simple closed contour C in D whose interior lies in D, then f(z) = u(x, y) -+
iv(x, y) is analytic in D.

If « is harmonic, the function

du_ou
ax Iay
is analytic. Then we see by Theorem 2 that in a simply connected domain D there is
an analytic function f(z) such that

__du  .du

f(2) “ox oy

and f= u at a point z, of D. It follows that
u=Refl(z).

THEOREM 5. A function u(x, y) is harmonic in a simply connected domain D if and
only if it is the real part of an analytic function.

If D is multiply connected, we can no longer conclude that

| oz

is independent of path. However, this is still true in any simply connected subdomain
of D. In general, then, we obtain functions F (z), each of which is analytic on a simply
connected subdomain, and which are continuations of each other. We can consider
this collection of continuations as a single multiple-valued function F(z).
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Example. The function
1
flz) =7

is analytic in the domain |z] > 0. This domain is multiply connected, since the circle |z| = 1
lies in D but the point z = 0 in its interior does not.
To find the indefinite integral of f, we start at z = 1. Then

Flz) = fr édc,

where we take for I’ a path starting at { = 1 going radially to { = |z|, and then along the circle
|¢] = |z| from arg { = 0 to arg { = arg z. We have

El arg z iﬁdg
o[ 5 [ g
1 0 Z|€
=loglz| +iargz.
Thus
F(z) =logz=Ilog|z| +iargz.

Since arg z is only determined to within a constant muitiple of 2#, this function is not single-
valued. In fact, its value depends on how many times the path I" from 1 to z winds around the
origin. If we make a cut extending from z=0 to infinity to prevent any winding, F'(z) is analytic
in the remainder of the z-plane.

If we allow multiple-valued functions, we can say that u is harmonic in any domain
D if and only if it is the real part of an analytic function in D.

Example. u = log (x2 + y?) is harmonic for z # 0.

If
u = Re f(z),
we find that
PSR VR /"
f@) = 9x lay
_2(x—iy) _ 2
x4y oz
Hence

u=Re (2 logz),

and 2 log z is multiple valued. This fact simply means that the conjugate function v =2 arg z
1s multiple-valued, even though u is single-valued.

EXERCISES

1. Determine whether or not the following are analytic:

(a) e
(b) e
(c) e
(d) x® sinxy + b® cosxy.

2. Find the indefinite integrals of

@ f(2) =%

(b) f(z) =e¢*
(c) f(z) =sinz.
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3. Compute
fr (x —y+iy*)dz

(a) when T is the straight-line segment from O to 1 + i
(b) when I'is along the x-axis from x=0to x= 1, then along the line x=1fromy=0to y=1.

§ &
e Z

(a) when C is the circle |z] =1
(b) when C is the square bounding |x| < 1, |y| < I
(c) when C is the circle [z + 2| = 1.

4. Compute

The contours are traversed counterclockwise.

5. Show that if u is harmonic in a doubly connected domain D (that is, a domain contain-
ing one hole) and if z, is a point in the hole, there is a function f(z) analytic in D and a real
constant « such that

u=Re [f(z) + alog (z— )]

HINT: Show that the integral from any point z around the hole and back to z of = —1 g—% is inde-

pendent of z. What would the result be for a domain with two holes?

50. Composition of Analytic Functions.

We have shown that analytic functions f= u + iv are characterized by the Cauchy-
Riemann equatlons (49.3).

We now give several processes for generating analytic functions from analytic func-
tions. If 1 = u, + iv; and f2 = us + iv; satisfy the Cauchy-Riemann equations, it is clear
that the same is true of any linear combination «;f1(z) + asf2(2).

By differentiation we can verify the fact that the product f,(z)f:(z) is also analytic.
For

f,fz = U ls — V1Vo + l'(uﬂ/z -+ Ll2V1)-

Since u;, + ivy and u: + iv, satisfy the Cauchy-Riemann equations,

L PN _du Bup vy 8w
ax(u1u2 V1V2) ay(u1V2+u2V1)—- ax uz+ulax ox Vo — Y” Vi
Do, B By 0
+ “rox T T M 0,

and similarly,

J
5}7(111112 - V]Vg) -+ a(ul\h -+ M2V1) = (.

Hence, fi(z)f2(z) is analytic.
We can also verify that if f(z) = « + iv is analytic, the same is true of

1 =u—iv
flz) w4+ v
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whenever f(z) # 0. Thus the quotient of two analytic functions is analytic wherever
the denominator is not zero.
We summarize our results in the following theorem.

THEOREM 1. If f,(z) and f>(z) are analytic functions in a domain D, then
(@) aifi(z) + asfz(z) is analytic in D for any (complex) constants «; and as.
) fi(z) f2(z) is analytic in D.
(c) f1(z)/f2(2) is analytic in D except where f;(z) = 0.

Examples. Since we know that polynomials are analytic, we can immediately conclude that
a ratio of polynomials is analytic except where the denominator vanishes. For instance
_Ztz+l
(z—1)(z—3)
is analytic except at z= 1 and z = 3.
If we define log z = log |z| + i arg z in the cut domain —7 < arg z < 7, then f(z) = 1/log zis
analytic in the same cut domain, except at z = 1, where log z= 0.
Also by Theorem 1 the function f(z) = (z2 + 1)/(e* — 1) is analytic except at z = 2anmi, where
n=0,=1,+2,....

Remark. Since analytic functions are the solutions of the linear Cauchy-Riemann
equations, it is not surprising that linear combinations of analytic functions are ana-
lytic. The remarkable result is that products and quotients of analytic functions are
analytic.

Suppose now that fi(z) = wi(x, ¥) + ivi(x, ¥) is analytic in a domain D, and that
() = u (&, m) +ive (€, m) is an analytic function of { = ¢ + in in a domain D* consist-
ing of all points of the form { = f,(z) with zin D. We consider the composite function

F(z) =£[A(D] = wlulx, y), vi(x, ¥)] +ive[ui(x, ¥), vi(x, y)]
=U(x,y) +iV(x, y).
By the chain rule
& ﬂ_ % % ale avl 6V2 aul 6v2 avy

ox dy 9F d9x ' om ox of 3y om ay
_ iu_(ﬂt_a _ m) + a_uz:(m " 6ux)

~oE\ax  ay am\ox | ay
(%_%)%_(%+m)%:o
¢  dm/dy an o8&/ ay ’

since both u, + iv, and u, + iv, satisfy the Cauchy-Riemann equations. Similarly we
find that

oU oV
ay + ax_O

Hence F(z) is analytic in D. We have proved:
THEOREM 2. An analytic function of an analytic function is analytic.

Examples. Since e® is analytic and *iz are analytic, e*#* are analytic. The linear combinations
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(501) cOos 7= %—(eiz + eviz)
and

i —_.l.. iz — p—iz
(50.2) sinz = 5:(e — e %)

are analytic. For y = 0, these formulas give the usual definitions of cos x and sin x. Hence their
Taylor series about z= 0 are

_ * (_12nz2n

COSZ_% (2’2)' s
. _ w (‘—1)"22"+1_
sinz =27 TN

We can also extend the other trigonometric functions. For instance, we define

sin z

tan z =
£= Cos z’

which is analytic except when cos z = (. The cosine vanishes when
eiz + eviz =
ki
or
ez = —],

Taking absolute values, we see that y must be zero. Thus cos z=0 only when zis real, and equal

to (n + 12)17, where n =0, =1, 2, . . . . Hence tan z is analytic except at these points.

We also define the hyperbolic functions

sinhz = %(ez — ),
(50.3) 1
coshz= i(ez + e-%),

We now define the power function z¢ for any complex constant a by
(50.4) 70 = palog 2,

The function log z is analytic for z # 0, but it is multiple-valued unless we restrict z
to a simply connected domain D not containing z = 0. This restriction can be made by
means of a cut. For example, if we agree that —r < arg z < # in the formula log z =
log |z| + i arg z, we cut out the negative real axis. If we let 0 < arg z < 27, we cut out the
positive real axis. Other cuts are, of course, possible.

Thus z¢ is in general analytic in the plane when a cut is made from z =0 to z = o,
If a is an integer n, we note that ¢27" = 1, Therefore z* has the same limits as z ap-
proaches the cut from either side. The function can be made continuous by defining
2" to have these limiting values on the cut. Then it follows from Morera’s theorem that
z" is actually analytic across the cut.

Example.
f(Z) — 22 = 208 |2{+i arg 2) = ,zlzezi arg 2,

We take — < arg z < m so that there is a cut along the negative real axis.
We note that as z = x < 0 either from above or from below, f(z) — x2. We define f(z) to be

x? for z = x < 0. If we consider 3€ f{z)dz along a contour C crossing the cut, we can write
"
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i |

G

&

G,

§fd=¢ f@dz+§ S

where C, consists of the upper part of C closed by a segment of the x-axis going to the right.
C. is the lower part of C, closed by the same segment of the x-axis traversed to the left. Since
f(=) is analytic above and below the cut,

§ rad=§ fardz=o,

and therefore
9€ Az)dz= 0.
C

We conclude by Morera’s theorem that f(z} is analytic everywhere.

Similarly if a = —n, a negative integer, we find that.

f(z) fed Z—Tl f— e—?’l log 2

is analytic everywhere except at z = 0.

Finally, if a = 1/n, we have

Zl/n o el/n log z
— ’zjlfnei arg {(2)/n_

This coincides with the definition of nth root of Section 46. There are n possible
values of z'/* depending on the choice of the argument.

An analytic function f(z) = u{x, y) + iv(x, y) consists of two real-valued functions
u and v of two variables x and y. We can consider it as a transformation from the
coordinates (x, y} to curvilinear coordinates (u, v):

u=u(x,y),

v=v(x, y).
If we define the complex variable

w=uy-+iv,

the transformation can be written as

w=f(z).
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We suppose that in some domain D this coordinate transformation is proper in
the sense that no pair (u, v) corresponds to two different points (x;, ¥1) and (xz, y2).
That is, we assume that f(z,) » f(z2) whenever z; # z;. Then x and y are determined
by (u, v). We can write x = x(u, v), y=y(u, v), or

z=gw)=x(u, v) +iv(u,v).

This is called the inverse transformation. The inverse function g(w) is defined by the
relation

g(f(z)) =z,

which is to hold for all z in D. This complex equation is equivalent to the two real
equations

x[u(x, y}, v(x, y)] =x,

ylu(x, y), v(x, y)] =y.
If the functions x(u, v) and y(u, v) are continuously differentiable, we can differ-
entiate each of these equations with respect to x and to y by means of the chain rule:

dxdu | 9x av_
ouodx  avex
9x ou | ox ov_
udy  ovay

dy du 9y v_
du 9x ov ox '
ay du _ ay #v _
dudy  ovay

The first two hnear equations are solved for 9x/éu and dx/av by

v

dx_ oy
ou  dudv_ v ou’
dx 8y dx ay

_du

0x _ dy
v dudv_ v o
adx dy dx ay

provided the denominator is not zero. Similarly the second pair of equations gives

_dv

a9y _ ax
du  dudv_ o ou’
dx 8y dx gy

du

ay 9x
8V dudv _ v ow
dx gy Odx ay

if the denominator is not zero.
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Since u and v satisfy the Cauchy-Riemann equations, we find that ax/¢u = ay/ov,
dx/0v = —ay/du. Therefore, if the denominator is not zero, g(w) = x{(u, v) + iv(u, v)
is an analytic function of w = u + iv.

Also because of the Cauchy-Riemann equations,

Quadv  avou _ [(duNE | [OuN' L i is

dx dy dx dy (ax) * (ay) =1f @
Thus the denominator vanishes if and only if f'(z) = 0. This denominator is the
Jacobian determinant of the transformation. The fact that the functions x(u, v) and
y(u, v) are continuously differentiable if this determinant is not zero is contained in

the implicit function theorem (see any book on advanced calculus).
We note that

, _ox ey 1 v _avy _ f'(z) _ 1
g W) =t o™ If’(z)lz(ay ’ax)‘|f'(z)|2‘f'(z)

We have proved

THEOREM 3. If f(z) is analytic and /' (z) # 0 in D, and if £ (z,) # f(z2) for z; # 2z, the
inverse function g(w) is also analytic and

g’ (w) zf_’zz_)’ where w = f(z).

Remark. The implicit function theorem also states that if f'(z,) # 0, there is a circle
|2 — 20| < p in which the condition f(z,) # f(z:) for z; # z» is satisfied. Thus the inverse
function g(w) is defined and analytic in some neighborhood of f(z,). However, the
fact that f"(z) # 0 in a domain D does not prevent f(z) from having the same value
at two distinct points z; and z.. When this happens, we obtain a multiple-valued anal-
ytic inverse function g (w).

Example. f(z) = €% is analytic for all z, and f'(z) = ¢* # 0. However, two points z; and z»
differing by a multiple of 27 give the same value of f(z).
We define the inverse function g{w) = log w by

log (e*) = z.
We can write any w # 0, in the polar form
w= |w|ei argw — plog [w|+i argw
Setting z = log |w| + i arg w, we find
log w = log (e'elwl+i arew) = og |w| + i argw.

This agrees with our previous definitions of log w found on the basis of power series and by
integration. We note again that this function is multiple-valued, so that we obtain a singie-
valued analytic function only by restricting the domain D in such a way that it does not contain
any two points z; and z differing by a multiple of 2.

EXERCISES

1. Show thatf(z) = (z%2 — 1)*2 can be defined so that it is analytic in any given simply con-
nected domain not containing the points z=1 and z =—1.
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2. Show that a solution z = g(w) of
B2+ +z=w
is analytic in any simply connected domain not containing the points w = #'7 (—7 %= 4i\/§).
3. Show that the function f(z) = (22 — 1)12 defined by f{z) = etllog z— 1) +log (z+ D] with —7

<arg{z—1) <, —m < arg (z + 1) < 7 can be extended as au analyuc function to the whole
exterior of the line segment —1 = x = 1, y = (.

4. Find Re (z%).

5. Find the domain of analyticity of cot z.

6. Find the real and imaginary parts of z=.

7. Find all solutions of the equation sinz = 2.
HINT: Obtain a quadratic equation for €.

8. Find all solutions of the equation sinz + cos z = 1.

9. Express the inverse function w = sin~! z in terms of a logarithm.

51. Taylor Series of Composite Functions.

We have shown in the preceding section that sums, products, and quotients of ana-
Iytic functions are analytic, and that analytic functions and inverse functions of analytic
functions are analytic. We shall now show how to compute the Taylor series of the
composite functions in terms of those of the original functions.

Let

A =3 anlz— )",

£i2) = 3:; bu(z — 20)"

be the Taylor series of fi(z) and fi(z). We suppose that both series converge for
|z — 20| < R. Then clearly

(=~}

afi(2) + axfo(2) = % (anay + azby) (2 — 20)™,

since the series converge absolutely.
We consider now

g(2) = fi(2)fa(2).

It has a Taylor series
g(z) = % cnlz — 20)",
where
_1 7](z,)
Ca= n|g Z0) -
The product rule for differentiation gives

3 i ) i 20)

- n! m=0 m!(n -
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or, since a» = fil"(zo)/n! and b, = £ (z0}/n!,
n
(51.1) = 2 ambn_m.
m=0

Thus the nth coefficient in the Taylor series for f,(z)f>(z) is simply the sum of all
those products of ax and b, whose subscripts add up to #. For example,

Co = anbo,
¢1 = aoby + aiby,
Cyp = aobz -4 a]‘b1 -+ azbo.

We observe that ¢, depends only on those a; and b, with k = n. Therefore if we wish

N
to compute the partial sum 2 c¢,(z — z0)", it is sufficient to multiply the two polyno-
n=0

N N
mials 2 a.(z — 2)" and 2 b,(z — z0)", and to keep the terms having powers of z — z, at
0 0

most N.

Example. Find the Taylor series for ¢ log (1 + z) about z = 0 correct to terms in z2.
We have
2 2z
ez=1+2+ﬁ+3—!+' SR
Z3

=, 2.2 .,
log(l+z)=1z 2+3

when —7 < arg (1 + z) < . Multiplying the two series correct to terms in z2, we have

2\, _2\_, 2 _2
(1+z+2)(z 2)—z+ 4

Correct to terms in z%, then,

2
ezIog(1+z)=z+-22—+----

The function is analytic except for the cut at y = 0, x = —1. Therefore the singularity nearest
z=0is at z=—1], It follows that the series converges for |z| = 1.

We now consider the quotient

h(z) mj—%%= % d(z ~ z0)™

By definition
fi(z) = fo(2)h(z2).

By (51.1) we obtain the set of linear equations
(51.2) 2 bn_mdm — dn
m=0

in the unknowns d,.. The first few of these are

body = ay,
bodl + bldO = di,
bodz -+ b1d1 + bzd() = ds3.
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Since we wish fi(z)/fz(z) to be analytic at zo, we must assume that by = f2(zo) # 0.
Then we can solve the first equation for dj:

_ %
dO bo,
the second for d;:

a,— b]dg - b0a1 - b1a0
bo boz ?

d1=

and so forth. The nth equation gives d_, in terms of ax and by with k = n — 1.
Thus we can find the Taylor series for fi/f: correct to terms in (z — z0)" by replacing
the Taylor series for f; and f; by the polynomials

N N
2 an{z — Zo)n and % by (z — Zo)n-
0 0

The problem is reduced to the division of two polynomials of degree N. The quo-
tient is written in ascending powers of z — zo, and the terms up to (z — z,)" yield the
desired result.

Example. Find the Taylor series for tan z = sin z/cos z about z = 0, correct to terms in 25
We have
sinz=z—%+- RN
2
cosz=1— % + % -

We divide the series correct to z%:

ZB
z—%
6 _ ., 2.2 .. ..
lﬁﬁ_z+3+6+
2
Hence
z3

tanz=z+3+----
Since tan z is analytic except when cos z = 0, this series converges for |z] < 7.

We now consider an analytic function of an analytic function. We have

F(z) =f(fi(z))
= Uz (i1 {x, y), vi(x, ¥)) + ive(ur(x, y), vi(x, y)).

We compute the derivative by means of the chain rule.

, oF
F(z)-——a
_ duy duy %%+i[%iﬂ+§_ﬁ%
3 ox | am ax 0§ ox = am ox ]

Using the Cauchy-Riemann equations for f;({) gives

) = (Y2 | .9Ve\(dUr | Ovi)
F(Z)_(a§+’a§)(ax +18x)
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or

(51.2) RG] = £ G@IA ().

This identity is the chain rule for analytic functions.
Suppose now that we have the Taylor series

filz) = % an(z = 20)"
about z = 20, and
(O =2 bull = f(z)"
about { = f(z0). We wish to expand F(z) = £:(fi(z)) about z = z,:
F(z) = % ca(z2 — 2o)™

By the chain rule and the product rule

co= F(20) = f2(fi(20)) = bo,
c1=F'(20) = f2' (f1 (20) /1" (20) = b1a1,

¢ = 3F"(z) = 314" (i (2o (@) + £ (ila) " (20)]
= b2a12 + blaz,

with similar formulas for higher derivatives. We see that ¢, depends only on ax and
b, with k = n. Thus we can again compute the Taylor series for F(z) correct to terms
in (z — zo)¥ by replacing fi(z) and f2({) by the first (N + 1) terms of their Taylor
sertes, and simply substituting the one in the other.

Example. Compute the Taylor series for ¢<s# about z = 0, correct to terms in z°.
We have
z2
fiR) =cosz=1—-%5+"""»
fl)=e=e+e((—1 +5({— 12 +57({— 13+

o W O <A LD VA A N
1+ (-5) #al-5) +4l ) =)
Thus, correct to terms in 23,
ez’

ecosz=e__§_.+....

Since both ¢ and cos z are entire functions, this series will converge for all z.

Substituting, we find

[\

Finally we consider the inverse function g(w) of a given function f(z). The inverse
function is defined by

(51.3) glfz)] =z
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We start with the Taylor series
f&) =3 anle~z)"
We wish to expand g(w) about w = f(z0) in the Taylor series
§0) =3 balw = f(z)"

By definition

bo = g(f(20)) = zo.
By the complex chain rule (51.2)

g (f(z0))f " (20) = 1,

or

(We must assume that a, = f'(z0) # 0.)
Again applying the chain rule, we have

g"(f(20))f"(20)* + &' (f(20))f" (20) =0,

or
b26112 + blaz =0,
Thus,
— G,
be = a’
Proceeding in this fashion, we can find each coefficient b, in terms of aqy, a, . . . , an.
To find

2 bn(w = f(20))",

it is only necessary to substitute the polynomial

N
% an(z - Zo)n
for w in the polynomial

2 bnlw = f(z0))",

and choose by, b1, . . . , by to make the resulting polynomial in z— z, coincide with z up
to terms involving (z — zo)¥.

Example. Find the Taylor series for sin-! w about w = (), correct to terms in w3. We select
the branch of sin—! w for which sin-t10 = 0.
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Expanding sin z about z = 0, we have
sinzg=z— ? +

Letting
sin~!w = by + byw + baw? + baw? + - -
we substitute to find

3 3\ 2 3\3
m+b{z—%)+b%r—%)+b{ —%)
=bo+b1z+b2z2+(—%b1+bs)z“+- e

To make this coincide with z we must take

b0=O7
b1= 1’
b2=0,
b3="é"

Thus, correct to terms in w3,

. wi
sm—1w=w+*g+----

The function sin~! w is analytic as long as (d/dz) sinz = cos z # 0. The above series there-
fore converges for |w| < 1 and diverges for [w]| > 1.

EXERCISES

Find the Taylor series correct to terms in z3 for 1/{1 — z) (2 — z) about z = 0.

Find the Taylor series correct to terms in z* for sin2 z about z = 0.

Find the Taylor series correct to terms in (z — 1) for e** about 7 = 1.

Find the Taylor series correct to terms in (z — 1)3 for e*/(z — 2) about z= 1.

Find the Taylor series correct to terms in 22 for sin z/(1 + e*) about z= 0.

Find the Taylor series correct to terms in w? for cos~! w about w =0 when cos~1 0 =7/2.
. Find the Taylor series correct to terms in w* for the branch of the solution z = g(w) of
22 + 72 — z = w for which g(0) = 0. Find the radius of convergence of the series for g{(w).

LN PR e

52. Conformal Mapping and Laplace’s Equation.

Let u(x, y) be a harmonic function. We wish to introduce new coordinates £, n by
the transformation

x=x(£&m),
y=y(, n)

in such a way that whenever u(x, y) is a harmonic function of x and y, the transformed
function

U(¢,m) =ulx(&,m), y(&, )]

is a harmonic function of € and 7.
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By the chain rule we find that

PU | #U _ d*uf (x| [(x u [9x dy | ox ay]
e o [(66) +(5 ”+28x8y[6§ o€ " am am

w5 ) (o) ]+ ailie )

%fzﬂﬂ.
* ay[afz o

The right-hand side must vanish whenever

Fu | Cu
e + o 0.

At a particular point, the derivatives du/dx, du/dy, d*uf3x*, and 6*u/oxdy may have
any values. Therefore, we must have

5 + (3 = G+ (2

ML E
(52.1) > 05 omen
e B
&2 ’
fxéﬂ_
Y + e 0.
Solving the first two equations for dx/d¢ and dx/dn, we find that
%=+ﬂ
a¢ T an’
(52.2) ax_ ay
an ag

If we choose the + sign in the first equation and the — sign in the second, we have
the Cauchy-Riemann equations, which state that z = x + jy is analytic in { = & + in. If
we reverse the signs, we again find the Cauchy-Riemann equations, but with y replaced
by —y. In either case, the last two equations of (52.1) are consequences of (52.2). We
have shown: The transformation

z2=f({)

takes all harmonic functions of x and y into harmonic functions of ¢ and 7 if and only
if either f({) or f({) is an analytic function of { = ¢ + in.

Since the change from y to —y is not very interesting, we shall only consider the
transformations z = f({), where f({) is analytic in {. If we wish to have the additional
property that every harmonic function U (¢, ) comes from a harmonic function u(x, y)
by means of our transformation z= f({), then f({) must have an analytic inverse func-
tion g(z). We then need to assume that f'({) # 0, and that f({;) # f({.) whenever
& # b

We have considered z = f{{) as a transformation of coordinates. We can alterna-
tively consider both (¢, n) and (x, y) as Cartesian coordinates. Then z=f{{) associates
a point z = x + iy in the z-plane with another point {= £+ in in the {-plane. The process
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of associating points on a piece of paper with points on the earth is known as mapping.
For this reason, the association of points z = f({) is called a mapping from the {-plane
to the z-plane. We shall study such a mapping by an analytic function.

We consider two curves in the {-plane I';: { = a(¢) and I';: { = b(¢), a and b being
complex-valued differentiable functions of the real variable ¢. Suppose that I'; and I',
intersect at the point {, = a(#) = b(t,). The angle between the curve I'; and the ¢-
direction is arg [a’(#)]. That between I'; and the £-direction is arg [b’(1)]. Hence the
angle of intersection between I'; and I'; at { is

0 =arg [a’'(t)] — arg [b'(t0)]
= arg [a’'(t)b' (1) ].

Let f({) be an analytic function. Under the mapping z = f({) the curves I'; and I'> go
into the curves I'y: z= f(a(t)) and T z= f(b(t)). The angle of intersection between
these curves at the point zo = f{{) is

7—arg [ 4 a() VB0

=arg (f'[a(te) 1a'(to)f' [b(t:)]b' (2,) ]
= arg [|f' (L) ]2a’(t0) b’ (t0) ]
=9,

provided f' (£,) # 0. Thus a mapping z=f({) with f({) analytic and f' ({) # 0 preserves
angles between curves. For this reason such a mapping is called a confermal mapping.

In particular, since the level curves x(&, m) = constant and y(&, ) = constant in
the {-plane go into the orthogonal lines x = constant and y = constant, they intersect
at right angles. Also the images in the z-plane of the lines ¢ = constant and the lines
mn = constant intersect at right angles.

We have already shown that harmonic functions go into harmonic functions under
a conformal mapping.

Suppose now that we have a conformal mapping z = f({) which takes a domain D*
in the {-plane into a domain D in the z-plane, and the boundary C* of D* into the
boundary C of D. That is, if { is in D*, f({) is in D, and every point in D is of the
form f({) with £ in D*; a similar correspondence holds for C and C*.

We further suppose that the mapping z = f({) is one-to-one. That is, no point of D
comes from more than one point of D*: f({,) # f{{) when {; # .

Let D* be a domain such that the problem of finding a harmonic function U (¢, n)
in D* with given values on C* can be solved explicitly. For example, D* might be
a circle or a rectangle.

We wish to solve the problem

% -g;f—;—= 0 in D
with u(x, y) prescribed on C.
We let
Ué, ) =ulx(&m), y(& )],
where

fO) =x(&,m) +iy(€, m)
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is the conformal mapping. Then
*lU  d*U _ .
o2 T g 0 in D.

When (&, ) is on C* the point (x(£, m), y(£,m)) is on C, and hence U is prescribed
on C*. By hypothesis, we can solve for U (¢, n).

By Theorem 3 of Section 50 there is an analytic inverse function g(z) such that

flg()] ==z

We are using here the fact that f({) is not only analytic, but that also f’ (£) = 0 and that
the mapping is one-to-one.
Then

u(x, y) = UL&(x, y), n(x, »}],
where
g(z) = &(x, y) +in(x, y).
'We have found the solution # by means of the conformal mapping z = f({) and the
inverse mapping { = g(z), which is also conformal.

Example. The conformal mapping
z=éb
takes the rectangle 0 < ¢ < a, 0 < n < # into the annular sector D:

1 <lz| < e,
O0<argz <.

CINY

—
N

We wish to solve the problem

u | u .
5?‘!'5?:0 in D,

with « prescribed on C.
Defining

U(¢, n) = u(ef cosm, ef siny),
we find a problem on the rectangle to which separation of variables can be applied.
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We note that
&=1log|z],
n = arg z.

Thus, ¢ and 7 are essentially polar coordinates. The fact that D is mapped into a rectangle means
that in the coordinates (£, n) separation of variables applies to the boundary conditions as well as
the differential equation. (Since the transformed function U obtained by any conformal mapping
satisfies Laplace’s equation, the differential equation always separates in the coordinates (£, n).

The Green’s function for the circle || < 1 was found in Section 30. It can be written
in complex notation as

—1 1
Q‘EIOEIC_CJ +§—7;10g]1 — .

Let { = g(z) be a one-to-one conformal mapping from a simply connected domain
D in the z-plane to the circle |{] < 1. We consider the function

1 1 -
(52.3)  G(x,y xi, 1) =—5—log|g(z) — g(z)| +5_log |1 — g(2)g(z1)],
where z = x + iy, z: = x; + iy:. Expanding g(z) in a Taylor series, we have

2 glnl
g(z) —glz) = 151 g—n(!z—l)(z — )"
= (z— 1) él g[n;(zZI)‘(Z — )

The latter series has the same radius of convergence as that for g(z). Hence it repre-
sents an analytic function. Thus the function [g(z) — g(z1) }/[z — z1], defined to be
g'(z1) for z = zy, is analytic in D. Moreover, since g is e one-to-one mapping,
[g(z) —g(z)]/[z— 2] # 0 in D.

Thus we can write

1
G(x,y; xi, 1) =—5_log |z — zi

1

+ Re {277 log[1—g(z)g(z1)] —-% log&m@}

i 2
1
=—z-log [(x —x)* + (y —y»)*] + .
The function vy is the real part of an analytic function. (Note that |g(z:)| <1, lg(z)| =1,

so that neither of the arguments of the logarithms vanishes.) Hence V*y = 0.
If z is on the boundary C, |g(z}| = 1, and hence

11— g(2)g(z)| = g(2)]

= IR{Y — g(11)|
= {g(z) — g(z)|.

1 —
g@—g(zl)‘

(We have used the fact that (1/e¥) = ¢~ = ¢ ) Therefore G =0 for (x,y) on C. Thus
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Viy=0 in D,
1
TZEIOg[(Xﬂx0)2+()’“)’0)2] on C.

By definition, the function G defined by (52.3) is the Green’s function for D.

Thus if we know the one-to-one conformal mapping { = g(z) from D to the unit
circle, we can easily find Green’s function for D. We can therefore solve boundary
value problems for either Laplace’s or Poisson’s equation.

Remark. The mapping z = f({) must be conformal (that is, f({) analytic, f' () # 0)
in D*, but not on C*. It must be continuous on D* + C*.

Example. We consider the mapping
z=({+1)*
and its inverse
{=z2-1,

where we choose — < argz < ar. Then f'({) =2({+ 1) # Ofor [{| < 1, but f'(—1) =0.
The circle |{| < 1 goes into the domain

D: |zi2 - 12 < 1.
In polar coordinates D is described by

1 =202 cos;—O <1,

r<4 0032;—0,

or
D:r < 2(1+ cos 8).

y

D is the interior of a cardioid. We note that the boundary C has a cusp at the point z= 0 which
corresponds to { = —1, where f' = (.
We find the Green’s function

G= "2—17; log |z — z;12] +ﬁ log [1 — (212 ~ 1) (%2 — 1)|.
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In polar coordinates, this formula becomes

G(r, 0; 1, 01) ="11; log (r+ r—2Vry cosz(() 01))

+31'E; log [H- o 2\/rr;{cos%(9 +8,) — Vr 005%01 — \/:Tcos%ﬂ}].

This, then, is the Green’s function for the cardioid.
The solution of the boundary value problem

(52.4) Viu=10 for r<2(1+4+cos®)
u(2(1+cos 89), 8) = f(6)

is given, according to (30.15), by
_ 2m aG .
u(r, 0)__ E) (r’ 6’ ri, el)f(el)dsl-
o n

The components of the unit normal vector on the cardioid r — 2(1 4+ cos 8) = 0 in the » and 6

directions are
L = sing) = /1 Sin 6 )

4 . ‘51[120 \’1+COSB
\/1+,33m20 \/1+ (1 + cos §)?

= 1 (14 cos 8, sin®).

2 cos 20
Then
%_sz____l [(l«f-cos Gl)aG “: % —‘:’;WG]
n 7 cos 2_01 1 11r =201+ cos6;)
\/?(\/; — 2 cos %6‘)
8| r+ 4 cos? 1—91 — 4V'r cos 101 cos l((9 — 8,) | cos 19,
2 2 2 2
Also,
ds? — dr\? > _
s*=1{7g + 2 |d6* = 8(1 + cos 6)d6?
= 16 cos? %Gdﬂz.
Thus the solution of the boundary value probiem (52.4) is
Vr(2 0 Vr
r, 0y =T [ _ fiegde,
™ " r+4 cos? 501 — 4V'r cos 501 cos :*2-(9 —8:)

We note that the conformal mapping { = z!/2 — 1 is equivalent to the introduction
of the new coordinates

1/2
=] = (1 + r— 272 cos;—e) ,
Wsin%@

2’
(1 +r—2Vr cos -;—0)

v=arg{=sin"!
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in which both the differential equation and the boundary conditions are separable.
Any conformal mapping into the unit circle is equivalent to such a coordinate trans-
formation.

Remark. If /() # 0 in D* but there are distinct points {; and . such that f({) =
f(&), the inverse function g(z) is multiple-valued. It is easily seen that this can only
happen if the image D is multiply connected, so that the value of g(z) can change
when z goes around a hole. Therefore if D is simply connected, any conformal mapping
that takes D* into D is one-to-one. (It is easy to show that D* must then also be simply
connected.)

A boundary condition of the form du/on = h can also be transferred by a con-
formal mapping. If the curve C in the z-plane is written z = z(¢), we have the identity

oL [(2 2]
an dz ox dy/dt

dt
(Note that
(24— Y] gy d_ g au )
0x ay dt dx dr dydr  |dt|an

Under the conformal mapping { = g(z), C goes into the curve C*; { = g(z(t)). By
the chain rule we find that if U(&, n) = u[x(&, n), y(&, )],

%) =[5 - 5 )a ] = m [ - )+ S )
du_ou\dz di
m[(ax ay)zc dr]
‘Id [(31 g;)dﬂ
o

[
| v

Then the normal derivative of U on C* is given in terms of the normal derivative of
u at the corresponding point of C by

oU _

on

dz
g

If du/on is given, we can find aU/an. In particular, the condition du/on = 0 goes into
oU/on = 0.

ou 1 ou
an Ig | on

Example. We consider the problem

Pu 1ou 13

6‘r2+rar-f_rzaﬁ2
VPR VIS
57(11 8) - ar(e ’ 9) -
ufr, 0) =1,

u(r, m) =

={ for l<r<er, 0<@<m,
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4

£

1} e”

b

The solution of this problem describes the equilibrium heat flow through a curved beam whose
sides are insulated, and whose ends are subjected to two different temperatures. The mapping

{=logz=Ilogr+if
takes this problem into the problem on the rectangle
*U | 32U _

a§2+"é—'n'—2—0 fOr O<E<a, 0<Ti<’n-s
aU _au -

—B?(O, ‘f])— ag (a9 7})_09

U(¢,0) =1,

U(g, m) = 0.

The new probiem clearly has the solution
U(€, n) = (m—n)/a.
Returning to the original coordinates, we have the solution
u(r, 8) = (7 —8)/7.

Remark. If a conformal mapping z = f({) from D* to D is continuous on D* and its
boundary C*, it takes the latter into the boundary C of D. Usually the easiest way of
finding the image D of D* under the mapping z = f({) is to determine its boundary C
as the image of C*. It is then still necessary to find the image of one interior point of
D* to see on which side of C the domain D lies.

Example. Find the image of the rectangle 0 < ¢ < 1, 0 < < 7 under the mapping z = e~

Vv

L/
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The boundary consists of segments of the lines £ =0, £ =1, n =0, n =. These go into
z=e M thatis, |z] =1, —7 < argz < 0,
z=e 17! thatis, |z| = %, - <argz <,
z=e¥¢ thatis, Imz=0, 1/e < Rez < 1,
z=e 7 thatis,Imz=0,—1 < Rez < —1/e.

The boundary C is as shown. We now note that the point { = 4 + 4 goes into z = —ie—1/2 which
is inside this boundary. Thus the image is the annular sector inside C.

EXERCISES
1. Solve the problem

Viu=0 for 1 <r<ery, 0<6<m,
u(l, 9) =u(e*, 6) =0,
u(r,0) =1,
ulr, w) = 0.

2. Solve the problem
Vig =9 for 1<r<e, 0<6<m,

ou _
5’;(1, 0) _07

o, . —
ﬁ(e , 6) =sin@,

u(r,0) =90,
u(r,m)=0.

3. Find the image D of the unit circle |{| < 1 under the mapping z = ({ + 2)?, and find the
Green’s function for D, Write an integral formula for the solution of a boundary value problem
in D for Laplace’s equation.

4. Find the image of the rectangle —#r/2 < £ < #/2, 0 < m < | under the mapping z= sin .
HINT: Use the identity sin? £ 4+ cosz £ = 1.

5. Find the image of the rectangle —w/4 < £ < @/4, —1 < m < 1 under the mapping z = sin £.
HINT: Use the identities sin®? £ + cos? £ = 1, cosh® — sinh?n =1,

6. Show that if f({} is analytic and f* (%) = 0 but f"({) # 0, the mapping z = f({) doubles
the angle of intersection between curves intersecting at {,. What happens if f' () = f" (L) =
- = fI1(g) = 0 but fW(g) # 07
HINT: Since (d/dt) [fla(2)]1]1(d/dt){f(b(t))] vanishes at #,, the limit of its argument as 7 — /
must be found by taking its derivatives with respect to 7 until a quantity is obtained that does
not vanish at #,.

7. If G(x, y; x1, y1) is the Green’s function for a simply connected domain D with singularity
at (x;, y;), show how to construct the conformal mapping { = g(z) from D to [{| < 1| with
g(z1) = 0. Assume that grad G # 0.

HINT: Write the correcting function +y as the real part of an analytic function.

8. If { = g(z) maps a doubly connected domain D conformally into the annulus 1 < |{| <R,
and if G*(&, n; &, m) is the Green’s function for the annulus, find the Green’s function G (x,
y; x1, y1) of D. Prove that it is the Green’s function,

9. If the one-to-one conformal mapping { = g(z) takes the domain D into |{| < 1, find the
function K(x, y; x;, y1) such that a harmonic function with prescribed values on the boundary
C of D is given by

u(x,y) =fc K (x, y; Xy, yu(xs, y1)ds,.
HINT: Use (30.15) and (52.3). Note that —9 G/on = |grad G|.
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53. The Bilinear Transformation.

We have seen in the preceding section that conformal mapping allows us to solve
boundary value problems for Laplace’s equation on any domain that can be mapped
conformally onto one of several standard domains. It is therefore important to know
the geometric effect of various special mappings.

We first note that the linear transformation

(53.1) {=az+b

takes the line segment S connecting any two points z; and z; into the line segment S’
connecting

Li=au+b
and

{o=azs + b.
The slope of S is arg (zz — z;). That of S’ is

arg (L — &) = arga(z: — z1)
= arga + arg (2. — z1).

The constant value arga is added. In other words, the mapping rotates every line
segment § through the angle arga.
The length of §’ is

18— &) = la] |2 — 2],

so that § is stretched by the constant factor |a|.

Every line segment is rotated by the same angle and stretched by the same factor.
Hence every triangle goes into a similar triangle. More generally, any geometric
figure goes into a similar figure. That is, circles go into circles, squares go into squares,
and so forth.

If |a| = 1, there is no stretching, and hence figures go into congruent figures.

The mapping

1
(53.2) {= .
is called an inversion. It is clearly conformal except at z= 0.

It is a useful convention to append to the {-plane an additional point called the
point at infinity, and to consider this point as the image of z =0 under the inversion
(53.2). The {-plane with this addition is called the extended {-plane. An inversion estab-
lishes a one-to-one relation between the unit circle |z} = 1 and the exterior |{| = 1 of
the unit circle in the extended {-plane. Thus, the extended {-plane consists of two
halves in one-to-one correspondence which meet on the circle |{| = 1. We may think
of the extended {-plane as a sphere, the lower half corresponding to |{| < 1, the upper
half to |¢| > 1, and the equator to |§| = 1.

If we let the image of the point at infinity in the z-plane be { = 0, the inversion gives
a one-to-one mapping from the extended z-plane onto the extended {-plane.
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Let p be any complex number and o and 8 two real numbers, with o8 < [p[2. If
a # 0, the equation

‘ _pP_lpP_B
< =72
o (84 o
represents a circle of radius
lp> _ B\~
(5 2)

centered at p/a. By squaring out the left-hand side and multiplying both sides by «,
we can write the above equation in the form

(53.3) alz|*-pz—pz+B=0.

We observe that multiplying «, 8, and p by the same real number does not alter the
circle (53.3).

In the special case a = 0 (53.3) represents a straight line. We shall speak of lines
and circles as generalized circles. A line is a generalized circle that passes through
the point at infinity.

Under the inversion { = 1/z the generalized circle (53.3) goes into

(53.4) BILP* —pL —pl+a=0,

which is a generalized circle in the {-plane. It is a line when 8 = 0 so that the circle
(53.3) passes through z = 0. It passes through { =0 when a = 0 so that (53.3) is a line.

We see, then, that inversion takes generalized circles into generalized circles. In
particular, it takes lines through z = 0 (that is, & = 8 = 0) into lines through {= 0 and
circles centered at z=0 (that is, p = 0) into circles centered at { =0.

Let z; be any point in the z-plane. The point z: is said to be inverse to z; with respect
to a circle if it lies on the same ray from the center of the circle as z;, and the product
of the distances of z; and z; from the center is the square of the radius of the circle.

Vi

Zz

R i

23

If the circle is described by the equation (53.3), the inverse point z; must satisfy the
two real equations
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arg(z, - g) = arg(zg - ‘;—))

These two equations are equivalent to the complex equation

(2= 2

Multiplying by «, we see that z; and z. are inverse points with respect to the circle
(53.3) if and only if

(53.5) o132 — P — PTa + B=0.

and

If z, is inverse to z;, z; is inverse to z; as can be seen by taking the complex conjugate
of this equation. We say that z; and z; are inverse points with respect to the circle
(53.3) if they satisfy Equation (53.5).

We now apply the inversion { = 1/z, and let {; = 1/z;, {» = 1/z,. Then (53.5) goes into

BLL: — pli—p L+ a=0.

We see that {; and { are inverse with respect to the image circle (53.4).

Inversion takes inverse points with respect to any circle into inverse points with respect
to the image circle.

We remark that if z; = 0, then z: = 8/p. Hence, we formally find that the point inverse
to {, = = is {; = p/B, which is the center of the circle (53.4). The center of a circle and
the point at infinity may be considered as inverse points.

If «=0so that (53.3) is a line, the relation (53.5) for inverse points is

—pz1—pz +B=0.

Subtracting this relation from (53.3) with & = 0, we have

=2 =_%(z~ Z2),

A\
o

so that
|z — 21| = |z — z2].

Thus z; and ze are equidistant from all points of the line (53.3). That is, they are mirror
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images in this line. This, then, is the proper definition of inverse points with respect to
a line.

It is clear that the linear transformation { = az + b takes generalized circles into
generalized circles and inverse points into inverse points. If we combine linear trans-
formations with inversions, these properties are preserved.

The mapping

:az—i—b

(33.6) ¢ cz+d

is called a bilinear (or linear fractional or Moebius) transformation. If ¢ = 0, it is just
a linear transformation. If ¢ # 0, we have

. %
=t ard

Thus the bilinear transformation may be obtained by making the linear transformation
L=cz+d,

then the inversion

and then a second linear transformation
=(p— ad aq,
¢ ( - )Cz + c

We see from the last transformation that the whole z-plane goes into a single point
if bc — ad = 0. We shall always assume that

(53.7) ad — bc # 0.

Then we find that the bilinear transformation (53.6) is a one-to-one conformal mapping
of the extended z-plane onto the extended {-plane. It takes generalized circles into gener-
alized circles and inverse points into inverse points.

The composition of two bilinear transformations gives another bilinear transforma-
tion. For if

, _az+b
G = cz+d
a’€1+b’
g C’g} +d’7

we have

_(da+b'c)z+ (¢'b+ b'd)
(cla+dciz+ (¢'b+d'd)
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If the coefficients of the first mapping are represented as the matrix

(€ d

(a' b')
c d)

the coefficient matrix for the composed mapping is the matrix product

a’ b') (a b)

¢ d/\¢ dJ
Since the determinant of a matrix product is the product of the determinants, the con-
dition (53.7) is preserved under composition.

If we wish to solve (53.6) for z in terms of {, we need a mapping whose composition
with (53.6) gives the identity map z = z. Thus its matrix is the inverse

1 (d —b)
ad — bc\—c a/)’
Multiplying all the coefficients by the same constant does not change the mapping.

Hence we can ignore the factor in front, and write

_ d—b
z —c{+a

and those of the second as

It is easily verified that this is the equation (53.6) solved for z.

Since the mapping (53.6) depends only on the ratio of the coefficients a, b, ¢, and d,
it is determined by three complex parameters. We can therefore expect to be able
to prescribe its value at three points. That is, we can prescribe the images {;, {;, and
{5 of any three distinct points z;, z», and zz. Such a mapping may be obtained by solving
the equations

(53.8) C—=C)(L—8)_ (z2—2z1) (22— 23)

(E=8) (61— 0 (z2—z2) (2 — )
for { in terms of z. It is easily seen that this procedure gives a bilinear transformation
satisfying (53.7), provided the points ¢, {;, and {; as well as the points z,, z2, and z; are
distinct. It can, moreover, be shown that the mapping so obtained is the only bilinear
transformation taking zi, z2, and zz into i, {s, and {s, respectively.

Since three points determine a generalized circle, one can find a bilinear transfor-
mation taking any prescribed circle in the z-plane into a prescribed circle in the {-plane
by choosing three points z;, z2, and z3; on the first circle and making them go into
points {;, {2, and {3 on the second circle.

Example. Find a bilinear transformation that takes the circle |z| = 1 into the line Im { = 0.
We choose the three points z; = 1, zz = i, z3=—1 on |z| = 1, and make them go into {; =1,
L=0,%L=—1 onIm{=0. Then (53.8) becomes

C-D)_(z=—D@E+1)
£(2) (z—9(2)
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Solving for £ gives

_z—i
C=iF1

We are normally interested not in mapping curves into curves, but domains into
domains. We now exhibit an easy method of making domains bounded by circles go
into other such domains. A conformal mapping preserves angles between curves. In
particular, a bilinear mapping preserves the angle between the boundary curve and a
perpendicular ray going into the domain.

The three points z,, z2, z3 on the original boundary curve C define a direction of
traversing C. Namely we go from z; to z3 in such a way that we pass through z.. Sup-
pose that D lies to the left of this motion. That is, the ray into D makes an angle 4+
with the directed boundary curve C. We map C into C*. The image points i, {2, {3
will define the corresponding direction on C*, and D* will be to the left of this direc-
tion.

For instance in the above example we mapped the points z; =1, zz =i, z =—1 of
|z| = 1. These define the counterclockwise direction on the circle, and the disk |z| < 1
is to the left of C. The image points ¢, =1, {2=0, {&z3=—1 on Im { = 0 define a motion
from right to left on this line. The domain to the left is the lower half plane. Hence
the mapping

z—1i
G
maps |z] < 1 into Im¢ < 0.

If we wish to make |z| < I go into Im { > 0, we can choose the same zi, z2, z3, but
L1=—1,L=0, {=1.

A circle is also determined by one point on it and a pair of inverse points with respect
to it. Thus we may choose z; and z» to be inverse points with respect to the circle in
the z-plane and {; and {; inverse points with respect to the circle in the {-plane. This
often gives the transformation directly without solving the equation (53.8).

Example. Find a bilinear transformation that takes the disk |z| < 1 into the half-plane Im ¢ > 0.
We take the inverse points z, = 0, ze = = with respect to the circle |z| = 1, and the point z; =1
on the circle. We make z; and z» go into the inverse points {; = i, { = —i with respect to the
line Im { = 0. We make z; go into the point {3 = =, which lies on the line. Note that z; lies in D
and ¢ in D*, Since z = 1 goes into { = o, the denominator of the bilinear transformation must

be z — 1. Since z =0 goes into { = i, we must have b= id =—i, Since z= ® goesinto {=—1i, we
must have a =—ic =—i. Hence the transformation is
_ iz — i
C - z— 1

This transformation is different from the one we obtained in the earlier example. We
conclude that the transformation is not uniquely determined by the two circles. To in-
vestigate this nonuniqueness, we construct the most general bilinear transformation
from |z| =1to Im{ = 0.

The inverse points z; = (0 and z; = % must go into a pair {; = a, {» = a of inverse points.
Some point z; = € on |z| == 1 must go into {3 =%. Thus we find that the transformation
must be of the form
az — az
7 — e® ‘

§=
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The choice of the complex number a and the real number 6 is arbitrary.

If we wish the disk |z| < 1 to go into the upper half-plane Im £ > 0, we must make the
interior point z = 0 of |z| < 1 go into a point with Im { > 0. Since « is the image of
the interior point z=0, it is only necessary to require that Ima > 0.

As an application we give a simple derivation of Poisson’s formula. We wish to solve
a boundary value problem

Viu=20 for x4+ y* < R?

with u prescribed on the circle |z|> = x® + y* = R2.

Let z, be the point at which we wish to find «. We map the circle |z| < R into the unit
circle |{| < 1 in such a way that z, goes into { = 0. Then the inverse point z, = R?/ 7,
goes into { = . Let z; = R go into {; = 1. These conditions determine the mapping

R2
C:Z—Zl _—Z-_l
R? R—1z

Z— =
21

— I— 2 R(Zl__R).
7z — R? R—z

The function

U(g) = ulz(f)]

is again harmonic. Hence by the mean value theorem

1
) =3¢ U@l

_ 1 dg

=" 9(;'2|=R u(z) e |dz|.
Since |z, — R| = |z1 — R|, we find that

df| _R(R*—|u|?)

dz |zz1 — R?|?

In polar coordinates z = Re®, z; = pe', |dz| = Rd§. Then

_R(R~ |z,?) f u(R, 0)
M(ZI) - 2t 0 |Rei0 Zl - Rg'szga

or

=R2_22 2 u(R,G)
u(p, ¢) 2r o R4+ p?>—2Rp cos (0 — qb)de'

This is Poisson’s integral formula (24.12).

EXERCISES

1. Find the image of the circle |z— 1| = 1 under the inversion
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2. Find the image of the line x + y = 1 under the mapping
[ = z+1

=i
3. Find the image of the wedge 0 < y < x — 1 under the inversion

_1
Z—z

Draw diagrams of the domains in the z and { planes.
4. Find the image of the domain 4 — (y + 1)? < x* < 4 — (y — 1)? under the mapping { =
(z — 3i)/(z + 3i). Draw diagrams of the domains in the z and ¢ planes.
5. Find a bilinear mapping which takes the half-plane x + y > 0 into the circle |~ 1] < 1.
6. Find a bilinear mapping that takes the circle |z—2| < 1 into the half-plane Im ¢ < 0.
7. Find the most general bilinear mapping that takes the unit circle |z| < 1 into the unit

circle [¢| < 1.
8. Find a bilinear mapping that takes the circle |z + 2| < 2 into |¢| < 1 and the point z =—1

into = 0.

54. Laplace’s Equation on Unbounded Domains.

It is frequently of physical interest to consider Laplace’s equation on a domain
which extends to infinity. For example, we may consider two-dimensional potential
flow past a finite object in a tank which is so large that it may be considered to be
infinite. In this case the point at infinity is a part of the domain D.

On the other hand, we can consider the flow in a long channel. In this case, we
idealize by saying that the ends of the channel are at infinity. Then the point at infinity
is on the boundary of the domain D.

In either case, if zo is a point lying neither in D nor on its boundary, the bilinear
mapping
az+b
<™ 2o




254 Analytic Functions of a Complex Variable CHAP. VIII

takes z, into infinity, and hence maps D into a bounded domain D*. The boundary
value problem for Laplace’s equation in D is reduced to a boundary value problem
in the bounded domain D*, which can then be solved. The solution is uniquely deter-
mined if we require it to remain bounded at the point { = a which corresponds to z=r.

If z= = is an interior point of D, (that is, if D contains the exterior of some circle)
the image point { = a will be an interior point of D*. Hence the solution U is con-
tinuous there. It follows that the solution # in the z-plane has a limit as |z| — o, which
is uniquely determined by its boundary values.

Example. Consider the boundary value problem for the exterior of a circle

u 8"14

- =z = 2
e + =0 for x2+4+y2> 1,
u—x+1 for x2+y*=
|| bounded.
The inversion
_1
6= 7
transforms this problem into
2
L) U =0 for &+n2<1,

PE o
U E+1 for £+ n*=
where
U(€,m) = u[x(€,m), y(€,m) ].

This new problem has the unique solution U = ¢ + 1. Hence

u= + 1.

x2+y

This function clearly solves the original problem. The function ¥ = x 4+ 1 is also harmonic, and
satisfies the boundary conditions, but it is unbounded. The solution

xz-i-y"'_*—1

is the only bounded solution of our problem. It has the limit 1 as x2 +y* — o,

If z == is a boundary point of D, its image { = a will be a boundary point of D*.
The boundary values will be continuous at this point only if the given boundary values
have the same limit on all parts of the boundary that go to infinity. In this case u will
have the same limit as |z| — « in D. Otherwise, ¥ will not have such a limit, but will
still satisfy a maximum principle.

Examples. Consider the boundary value problem for the half-plane

u a u
P + =0 for y>0,
_xx2—1
u(x, 0) T xEF1
u bounded.
The bilinear mapping
z—i
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takes this problem into

2 2
aé_g-i-au 0 for E+n* <,

U=¢ for &+n*=1.

_ 7—i\ _ xX2+y*—1
u=Re (z+i)"—x2+ (1+y)2
We note that u(x, 0) has the limit 1 as x approaches either + ® or —». Correspondingly, the
solution u(x, y) has the limit 1 as x* + y* = «,
On the other hand, the problem

Hence U = ¢, or

=0 for y >0,
for x=0
u(x, 0) = mc for x=0

has the solution

2
o=ty ose
_ (x2 4+ y2)2 + x* — 32 tan-1 y N xy
(Z2+yH)2+202—y) + 1 x (XB+y5)E4+2(2—y)+1

log (x® + ¥?).

Here u(x, 0) has the limits 0 at +o0 and 7 at —«. The solution has a different radial limit tan~! y/x
along each radial line y/x = constant.

In three dimensions, there are very few conformal mappings. However, we can
verify that if the function U (£, 1, {) is a solution of

U |, *U | U

& T tag

=0,
then the function

u(x,y,2)

( X — Xo ¥ — Yo Z— 20 )
r—x0) 2+ (Y —yo) '+ (2= 202 (X—%0)2+ (Y —Yo) 2+ (2—20)% (x—X0)2 + (y—yo)° + (Z— 20)2
Vi{x—x0)2+ (y~yo)2+ (z—20)*

is a solution of

Pu  u  d'u

ax? + 57 +— 922 = (.
Thus the inversion
_ X — Xo
T O G-
n = Yy~ Yo
(x— %02+ (y — yo)? + (2— 20)%
[= L= 2o

(x— %)+ (—y0)* + (2— 20)?

reduces a boundary value problem for Laplace’s equation in a domain D to a boundary
value problem for Laplace’s equation in another domain D*. If the point (xo, Yo, Z0)
is neither in D nor on its boundary, then D* is bounded.
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If U is to be a bounded solution, ¥ must approach zero like 1/Vx*+ y2+ z? at in-
finity. The solution u will be uniquely determined if this condition is added to the
boundary conditions. It is, in fact, sufficient for uniqueness to require that » approach
zero as x> + y? + z2 — «. If the boundary extends to infinity, V x2 + y% + z2 times the
boundary values of 1 must be bounded, so that the boundary values for U remain
bounded.

Example. The conducting sphere x* + y* + z* = 1 is raised to electrostatic potential one rela-
tive to the earth. If we consider the earth far away, we may approximate the potential function
by the solution of the problem

2 2 2
a_u+a_u+aa%=0 for x*+y*+22> 1,

ax: = 0y?
u=1 for *+y*+22=1,
u—>0 as x2+yr+72—> o
Introducing the inversion

&= ___*
X2+ y 4
’r’ == —-————X—-———. A
X +y: 4+
(=S5
x2 4 y? g2
we obtain the problem

2 2 2
U |9 ‘;’+%€‘;'=o for  E+n+ <,

a&r  an
U=1 for &+q+0=1

Its solution is U (¢, n, {) = 1. Hence the potential function u is

u(x, y. ) = e

The function ¥ = 1 satisfies the first two conditions of our problem, but does not approach zero
at infinity.

EXERCISES
t. Solve
Pu | Fu _ 2 2
ax2+ay2_0 for x4+ y2>1,
U=x for x*+y2=1,
u bounded.
2. Solve
Pu PU_g for y >0
ax2 ayz y )
X
u(x, 0) =57,
u bounded

by a mapping into the unit circle.
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3. Solve
Pu | Pu _
6x2+6y2_0 for x>0, y>0,
__r
H(O, Y) y4_+_1
—_ x2
ulx, 0) ==
u bounded
by using the mapping £ = z2 followed by a bilinear mapping.
4. Solve
2 2 2
%+§-§%+%=0 for x*A4+y*+22> 1,
u=2x for xX®2+y?+22=1,
u—>0 as x*+yP+72>
5. Solve
2 2 2
u=f{x, vy, z) for ®+y*+22=1,
U~ oc as X+ y'+ 72> w

by using inversion and the Poisson integral formula (44.9).
6. Solve

Fu | Fu | Pu_

5;2'-% (')y2 Py 0 for z > 0,

_ X
u(x, Y, 0) - (x2+y2+ 1)3/2’
u—0 as x>+ y?+ 72— o,

HINT: Invert about (0, 0, —1).
55. Some Special Conformal Mappings.

We present here a few commonly used conformal mappings and their effects on
certain domains. A large collection of such mappings and their effects is found in
H. Kober, Dictionary of Conformal Representations, Dover, 1957.

The exponential function e* gives a mapping

(55.1) {=e*.

Since d{/dz = e* # 0, it is conformal. It is one-to-one in any domain which does not
contain two points differing by a multiple of 2. Since

£l = e,

the vertical lines x = constant go into circles centered at the origin and of radius e”.
Since

arg { =y,

horizontal lines y = constant go into radial lines arg { = constant. If y increases by 2+«
while x is fixed, we return to the same point in the {-plane. The mapping (55.1) takes
the semi-infinite strip —° < x < 0, 0 < y < 7 into the semicircle |{| < 1, Im{ > 0, and
the infinite strip — < x < ®©, 0 < y < 7 into the half-plane Im{ > 0.
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The transformation
(55.2) {= coshz= ;—(ez +e?) =coshx cosy + i sinhx siny

has the property that d{/dz = 0 for z = nwi, where n =0, £1, +2, . . . . It is conformal
only in domains not containing these points. It is periodic of period 27 in y. Moreover
cosh {—z) = cosh z. Hence the mapping is one-to-one on a domain that does not con-
tain two points z; and z» for which either z; — z2 = 2nmi withn=1,2...,0r 21+ 2=
2nmi, withn=20,1,2,....
We note that

2 2

Loy L
cosh®x ~ sinh®x

= sin?y 4+ cos?y = 1.

Thus each line x = constant goes into an ellipse with major axis cosh x in the ¢-direction
and minor axis |sinh x| in the »-direction.
Similarly,
& U
costy sin’y

Therefore the image of the line y = constant lies on a hyperbola crossing the &-axis
at + cos y and having asymptotes £ = = (tan y)7.

n4

X =constant

y =constant

If x > 0, cosh x and sinh x are positive. Hence { lies in the same quadrant as e,
As y goes from 0 to 2, { goes around an ellipse starting at cosh x and returning there.

If 0 < y < 4w, cosy and siny are positive. Hence ¢ > 0, while n h = the same sign
as x. As x goes from — to %, { goes along the right branch of a hyperb :from bottom
to top.

For y = 0 the hyperbola degenerates to the line segment » =0, £ = 1 covered twice:
once for —o < x = () and once for 0 = x < . For y = /2 the hyperbola becomes the
n-axis, and for y = 7 we obtain the segment n = 0, £ = —1 covered twice.
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For x = 0 the ellipse degenerates to the segment n =0, —1 = £ = 1 covered twice.

Thus, the transformation (55.2) takes the half-strip 0 < x < «, 0 <y < 7 into the
half-plane n > 0. (Note that a half-plane can always be taken into a circle by a bi-
linear mapping.)

It takes the rectangle 0 < x < xo, 0 < y < 7r into the upper half of the interior of the
ellipse

& " _
cosh? xo t Sinh? Xo L

and the rectangle 0 < x < xo, 0 < y < 7/2 into the upper right quarter of this ellipse.

We have seen that the mapping {= e? takes the semi-infinite strip—o <x < 0,0 <y <mw
into the semicircle |{| < 1, Im { > 0. If we compound it with the linear mapping
z=mi— w, we find that

g j— em‘—w = —pg W

takes the strip 0 < v < ®, 0 < v < 7, where w = u + iv, into the same semicircle. On
the other hand, we have seen that the mapping

z=coshw

takes the same strip 0 < u < », 0 < v < 7 into the upper half plane Im z > 0. If we
compound the inverse of the first transformation with the second, we obtain

(55.3) z =—%(;+%).

This mapping, then, takes the semicircle |{| < 1, Im ¢ > 0 into the upper half-plane
Imz > 0.

The mapping (55.3) is conformal on any domain which does not contain { = 0, or
{ ==1. It is one-to-one if the domain does not contain a pair of inverse points {; and
1/¢;. It takes the unit circle || = 1 into the line segment y =0, —1 = x = 1, covered
twice. In fact for £ = e¥, z =—cos 0. The interior of the unit circle || < 1 is mapped
into the exterior of the line segment y =0, —I = x = 1. The potential problem for this
domain in the z-plane is useful in approximating potential flow around a thin airfoil,
or an electrostatic potential around a thin conductor.

The exterior |{| > 1 is also mapped into the exterior of the slit y =0, —1 =< x < 1.

We consider now a circle of radius R < 1 in the {-plane. The boundary ¢ = Rei®
goes into

__I/1 il :
z= 2(R+R)cost9+2(R R)smB.

Thus
4x3 4y?

1 2 + 1 2
&7 ")
The interior |{| < R goes into the exterior of this ellipse. The ratio of the axes of the

ellipse is (1 — R?)/(1 + R?), which may be made equal to any given number between
zero and one by a suitable choice of R.

= L.
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If we solve (55.3) for £, we obtain the inverse mapping
(55.4) {=—2+ (22— 1)~

As might be expected from the above considerations, this function is double-valued,
and we must make a branch cut. We first cut along the segment y=0, —1 = x=1. One
choice of the square root, that for which {=—x+ Vx* — 1 for z=x > 1 leads to a map-
ping of the exterior of this cut into |{| < 1. The choice which makes { =—x— V% — 1
for z=x > 1 leads to a mapping into [{| > 1.

We may also take the two branchcuts y=0,~ <x=-—-landy=0, | = x < », and
define (55.4) as a single-valued function by specifying that { = —x 4+ V1 — x2 for
z=x,—1 < x < 1. The corresponding physical problem is that of a plane wall with a
slot. The mapping (55.4) maps the domain into the half-plane Im ¢ > 0. This fact can
also be verified by examining the image of the boundary Im { = 0 under the inverse
mapping (55.3).

We remark that by compounding linear transformations with { = cosh z, we can ob-
tain the mappings

{ = sinh z = —i cosh (z + %m'),
= cos z = cosh iz,

and

{ = sin z = —cosh i(z + g)

As a final example we consider the power transformation

(55.5) { = z%,
where « is a positive real constant. The mapping is defined by the relations
&} = {2l

arg{ = a arg z.

Thus radial lines go into radial lines and circular arcs centered at the origin go into
circular arcs centered at the origin.

The angle between radial lines is multiplied by a.

The transformation (55.5) is conformal for z # 0. However, unless « is an integer,
it is multiple-valued, so that a branch cut must be introduced. If « > 1, several points
in the z-plane may go into the same point £, so that the domain in the z-plane must be
restricted to make the mapping one-to-one.

The most important properties of the mapping (55.5) are that it takes the wedge
0 < arg z < w/a into the half-plane Im ¢ > 0 and the sector 0 < arg z < w/a, 0 < |z| < 1
into the semicircle [{| < 1, Im { > 0. We have already shown that the mapping (55.3)
takes the semicircle into a half-plane, so that the composition of these two trans-
formations takes any sector into a half-plane. From there the domain can be trans-
formed into a circle by a bilinear transformation.

The particular mapping

C — 21[2
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with 0 < arg z << 27 takes the exterior of the ray y =10, x = 0 into the half-plane Im { > 0.
The domain in the z-plane is of interest in studying the electrostatic potential near the
edge of a plane conductor, or potential flow past a plane semi-infinite wall.

The mapping { = z!/2 also takes the circle |z] < 1 with a cut along the real positive
axis into a semicircle. It is important to distinguish a circle with a cut from a circle
without a cut. For example, in electrostatics the circle with a cut represents a cy-
lindrical conductor with an extra plane conductor inserted.

EXERCISES

1. Find the image of the disk |z| < 1 under the mapping
f{z— ] 1/2
6= (z + 1)
when 0 <arg(z—1) <27, —w <arg(z+1) <
2. Find the image of the half-strip 0 < x < #/2, ¥ > 0 under the mapping { = sin® z.
3. Find the image of the right triangle —x < y < x, 0 < x < 1 under the mapping { = 2.
4. Find the image of the rectangle 0 < x < w/4, —1 < y < 1 under the mapping { = sin z.
5. Find a conformal mapping which takes the semicircle |z| < 1, Imz > 0 into the circle

[£] < 1 in such a way that —1, i, and | remain fixed.
6. Using the result of Exercise 3, solve the problem

Pu  1ou | 1 0%u_ .
ar2+rar+r2662_0 for r<1,

u(l, 8) =sind/(1 4+ sin@) for 0 <8<,
%(1,@)=0 for =< @ < 2ar.

HINT: Note that the condition 6U/dy = 0 at y = 0 on a semicircle can be satisfied by extending
U as an even function across this line.
7. Show that the image of the half-plane Im z > 0 under the mapping

(=i J’ 2 dw
o Vw(w?—1)
is a square. The path of integration lies in Imw = 0, and the arguments of w, w — 1, and w + 1
are taken to be between 0 and 7. (This is a special case of the Schwarz-Christoffel mapping.)
HINT: Consider the argument of df/dz when z lies on the boundary Imz=0.
8. Using the result of the preceding exercise, find a conformal mapping from the unit disk
fz] < 1tothe square 0 < Re{< 1,0 <Im{< 1.

56. The Cauchy Integral Representation and Liouville’s Theorem.

We have shown in Section 49 that if f(z) is analytic inside and on a simple closed
contour C, then

$ fla)dz=0.

Suppose now that f(z) is analytic in the domain between two simple closed contours
C and C’, with C’ inside C, as well as on C and C’'. However, f(z) is not necessarily
analytic inside C’. That is, the domain where f(z) is analytic may be multiply con-
nected. We cut the domain D between C and C' into two simply connected domains
D, and D; by means of line segments ['; and I%.



262 Analytic Functions of a Complex Variable CHAP. VIII

C

Let C, be the boundary of D,. Then
$ fyaz=o
€y
Similarly if C, is the boundary of D,

ﬁz fz)dz=0.

If both of these contours are traversed in the counterclockwise direction, we find
that the integral over C, consists of line integrals to the right along I';, clockwise around
the upper part of C’, to the right along I';, and counterclockwise along the upper part
of C. Similarly, the integral over C: consists of integrals counterclockwise along the
lower part of C, to the left along I',, clockwise along the lower part of C’, and to the
left along I'y. If we add these two integrals, the contributions of I', and I'; cancel, and
we are left with the integrals clockwise around C' and counterclockwise around C.
Thus we have

(56.1) b Fad=§ f2)de

where both integrals are taken in the counterclockwise direction.
In other words, the value of a contour integral is not changed if the contour C is re-
placed by a second contour C’ such that f(z) is analytic in the domain between C and C'.
This fact allows us to simplify the evaluation of some contour integrals.

Example. Find

27 dg )
o a?cos?@+ b?sin@
We observe that if C is the ellipse

X=qcosb,
y=Dbsin@,
then
ld _ [* (zasin @ + ib cos 8)do
czz o acos@+ibsiné
_ [ (b*—d*) sinBcosd + iabd()
0 a® cos? 6 + b? sin2 0 ’

whose imaginary part is the desired integral times ab.
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We let C’ be the circle

X =p cos @,
y=psiné,

where p is smaller than ¢ and b. Then

3g ldz—f —psm6+tpcos6a,0
0

' Z p cos @+ ipsing

J’Z'n‘
= 27ri.

Since 1/z is analytic except at z = 0, we have

I, _ 1, ..
ﬁ Za’z = fﬁC’ Za’z = 27ri.

Equating real and imaginary parts gives

2 sin # cos 6d6 _
o a’cos®f+ b®sin?d !
f 2m dé 27

o a*cCostO+ bsin 20 ab
The latter is the desired result.

Suppose now that f{z) is analytic inside and on a simple closed contour C. If z, is any
point inside C, the function

F(z) = Sz

Z— 2
is analytic inside and on C, except at Z,.
Since f(z) is analytic, its Taylor series
° fln]
floy =3 L@ gy
0 n.
converges uniformly on any disk |z —z,| = p lying inside C. Let C’ be a circle |z —z] =

p lying inside C.
Then on C’

f(z) - f(z0) + ;, f[h]n(!ZO)(Z—ZO)"ql-

Z— 20 Z— 20 n=1

This divided series still converges uniformly on |z — zo| = p. Therefore we may inte-
grate it term by term. Since (z — zo)™ ! with n = 1 is analytic, its integral around C'
is zero. Only the first term contributes to the integral, and we find that

Sf@ dz = F(z0) §

¢ Z— 2o

™ 2o

We shall always use the convention that the integral around a simple closed contour
is to be integrated in the counterclockwise direction.
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We introduce the angle 8 as the parameter on the circle, so that

7=2¢+ pe?,
Z id
do P
Then
2T {pif
§ dz_ _ f e 40
¢ Z— 20 0o €
= 2.
Thus
é, Zf(—Z) dz = 2mif(z0).
Hence also

jﬁc fz) FE e = 2mif(z).

77—z

We have shown:

THEOREM. (Cauchy integral representation) If z, is a point inside a closed contour C
such that /(z) is apalytic inside and on C, then

1 f(z)
56.2 =_— P =—dz.
(56.2) o) =5 ¢ LEdz
A consequence of this theorem is that | f(z)| cannot attain its maximum in a domain
D where f(z) is analytic unless f(z) is a constant. To prove this assertion we first show
that if |f(z)| is constant, then f(z) is constant. If | f(z)| is constant,

Zirar =2+ ) =0
S =2( e =0
Hence by the Cauchy-Riemann equations
ug% + v% =0

This is a set of two linear homogeneous equations in du/dx and du/dy. At each point
either the determinant —(z® + v2) = 0 in which case f(z) = 0; or du/ox = dv/dx =0, and
then by the Cauchy-Riemann equations du/dy = av/dy = 0. Since f(z) and f'(z) are
continuous, both of these possibilities imply that f(z) is constant.

We now suppose that |f(z}| attains its maximum in D and is not identically constant.
Then there must be a point z, in D where |f(z)| attains its maximum, and a circle
|z — zo]| = p in D whose interior |z — zo| < p is in D, and on which there is a point
21 = z0 + pei®r, where |f(z:)| < |f(z0)|. Since |f(z)| is continuous, |f(z, + pe®?)| <
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|f(z0)] for a whole interval a << 6 < b containing 6;,. Now

f(Za) — 5 _: ﬁ Mdz

Zm 2—zol=p T 20

o f Fz0 + pei®)do.

Since by hypothesis [f(z)] = |f(z0)] in D and |f{zo + pe®)| < |f(zo)] for a < 6 < b,
we find that

flzo)| = 5- f | flzo+ pei®)|dB

” | f(2o +p€“’)ld0+f £ Zo+pe"’)]a’9+f [f(z[)+pe‘9)|d9}
< 'f(ZO)’

This is a contradiction, so that our hypotheses cannot hold. That is, either |f(z)|
does not attain its maximum in D, or | f(z)|, and hence also f(z), is constant.

This fact is known as the maximum principle for analytic functions. If f(z) is analytic
in a domain D and continuous in the set consisting of D and its boundary C, and if
lf(z}| = M on C, then we must have | f(z)] < M in D unless f(z) is a constant.

If u is harmonic in a simply connected domain D, there exists an analytic function
f(z) such that

u=Ref(z).
Then

et = e/,

The maximum principle for analytic functions now implies that if #, and hence also
e*, attains its maximum in D, then # must be constant. If D is multiply connected, we
reach the same conclusion by observing that a nonconstant harmonic function cannot
attain its maximum in any simply connected subdomain of D. Thus unless u is constant,
it is strictly less in D than the maximum of its boundary values. This fact is called the
strong maximum principle for harmonic functions. By considering —u in place of u,
we obtain an analogous strong minimum principle.

We now again suppose that C is a simple closed contour in a domain D where f(z)
is analytic. Let zo be inside C. Then near z,

flz) Az _{_f’(Zo) + § f["]n(!ZO) (z — z0)"2.

(z—20)2 (z2—20)2 2= 20  nee

If p is so small that C’: |z — zo| = p and its interior lie inside C, the series converges
uniformly on C’. Integrating term by term, we find that

§ L= § L+ § L

Now

__‘li__zifaw 010 —
%f =2 plo edo =0,
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while

Hence by (56.1)
f(z) i
fﬁc (z— Zo)zdZ = 2mif' ()

when f(z) is analytic inside and on C. Similarly we can show that for any derivative
flnl(zy), the representation

(56.3) finl(zo) = 2m§ v f(;))nn Z

holds. Thus every derivative can be written as an integral of a multiple of f(z). Note
that (56.3) is the result of differentiating the representation (56.2) under the integral

sign.
If f(z) is analytic for |z — zo| = p, it must also be uniformly bounded in this circle:

[fz)| =M.
If we let C be the circle |z — zo| = p in (56.3), we find that
(20| = f Lﬂz—;—pe)—el edt
(56.4) _ M
p"

If we now consider a smaller circle |z — zo| = ap, @ < 1, we find that

SRS TR
N+1

N n
fla) - 3 £l — gy

=3 M(amn

MaNH
1l —«

Thus we have a bound involving only M and « for the error made in approximating
f(z) by a partial sum of its Taylor series.

We remark that if f(z) is analytic in a domain D, if |f(z)| = M in D, and if the
distance from z, to the boundary is R, the inequality (56.4) holds for all p < R, and
hence also for p = R. Then the above error bound holds with a = |z — z0|/R.

Suppose now that f(z) is entire (that is, R = =), and that f(z} is uniformly bounded
for all z: | f(z)| = M. Then (56.4) holds for any z, and any p. Taking n= 1 and letting
p —> = we find that ' (z,) = 0 for every z,. Thus we have proved:

LIOUVILLE’S THEOREM. If f(z) is entire and [f(z)| is uniformly bounded for all z,
then f(z) is a constant.



CHAP. vi11  56. Cauchy Integral Representation and Liouville’s Theorem 267

In other words, the absolute value of a nonconstant entire function must approach
infinity on some sequence of points.

Since e*f1?) are also entire, we can apply Liouville’s theorem to |e=/¥)| = e*Re((2),
Thus if f(z) is not constant, the real part of f(z) must approach both 4+ and — on

some sequences of points.
Therefore, a nonconstant harmonic function defined for all x and y must approach

both -+ and ~—« on some sequences of points.

EXERCISES

1. Evaluate by the Cauchy integral representation theorem

Z
lz]l=1 Z

By splitting the integral into real and imaginary parts, evaluate two real integrals.
2. Evaluate
e
ﬁ z— 1dz,

where C is the rectangle bounded by x =0, x =3, y=—1, and y == 1. Use this result to evaluate
two real integrals.

3. Evaluate
ez
dz.
ﬁﬂ:z - Dz-3%
4. Evaluate
z+1
ﬁzi=2 (z—1)3(z— 4)dz.
5. Evaluate
sin z
ﬁzh] == dz.

6. Show that if f(z) is entire and if for some integer &, -ffzzl" = M, then f(z) is a polynomial
of degree at most k.
HINT: Use (56.4).

7. By applying {(56.4) to ¢®) show that if V2« = 0 and m < # < M in a domain D, and if R
is the distance from (xe, yo) to the boundary of D, then

M-m
lgrad u(xo, yo)| = eR .

8. Obtain the Taylor series for (1 + z)'/3 about z =0 correct to terms in z, and bound the
error made in this approximation when |z| < $-

9. (Fundamental theorem of algebra). Show that any polynomial P(z) = a2 + a:z2* 1+ - -
+ a, of degree n = 1 (g, # 0) has at least one zero.
HINT: Apply Liouville’s theorem to f(z) = 1/P(z).
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CHAPTER IX

Evaluation of Integrals by
Complex Variable Methods

57. Singularities of Analytic Functions.

If z, is a limit point of points z where f(z) is analytic, but if f(z) is not analytic at
20, then z, is called a singularity of f(z). In order to be analytic at zo, f(z) must be defined
in a neighborhood |z — zo| < p of zo and equal to its Taylor series there. If f(z) is not
defined in any neighborhood of z, but if it can_be made analytic at z, simply be defining
it at some additional points, z, is said to be a removable singularity.

Example. The quotient

Z—1
fla) ="
is defined and analytic everywhere except at z = 1. If we define f(1) = 2, we have f(z) = z+ 1,
which is analytic everywhere. Therefore the singularity at z= 1 is removable.

Example. Let f(z)} = (2'?)* The function z'/? is multiple-valued, unless we introduce a branch
cut. If we let —7 < argz < a, then z'2 is undefined on the negative real axis. f(z) = z* except
on the negative real axis. If we define f(—a) = a® for a = 0, we have f(z) = 72, which is analytic
everywhere. Thus (zV2)* has removable singularities on the whole axis Imz=0, Rez = 0.

If z, is a singularity of f(z) but f(z) is analytic for 0 < |z — zo| < p for some p > 0,
then z, is called an isolated singularity of f(z).

Examples. 1/z has an isolated singularity at z=0. On the other hand, if we take —» < arg z < =,
742 is undefined (that is, has a branch cut) on the negative real axis. Hence its singularity at
z = 01is not isolated.

We consider a function f(z) which is defined in a domain D as the quotient of two
analytic functions:

_8(z)
f(2) H(z)’
where h(z} is not identically zero. Then f(z) is analytic in D except where h(z) = 0.
Suppose that h(z,) = 0. We have already shown that an analytic function %(z) is
determined by the values of 4 and all its derivatives at a single point z,. Since /(z) is
not identically zero, at least one of its derivatives at zo must differ from zero. Let the
269
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first such derivative be Al*!, so that

h(ZO) = h’(ZO) = e e e = h[k‘l](zo) —_— 0’ h[k](zo) 7& 0.
Then h(z) is said to have a zero of order k at z,. Its Taylor series can be written
{n ]
h(z) = (z — z)% gk h ZO)( — Zo)" k.
Thus
h(z) = (2 — 20)*n(2),
where
< hln )
n(@) = 3 Bz

is analytic in any circle centered at z, and lying in D. Moreover,

hlx J(ZO) = Q.

(20) =
Since n(z) is continuous, there is a positive number p such that 7 (z) # 0 for |z—z,| < p.
Hence k(z) # 0, for 0 < |z — zo| < p.
We have shown that the zeros of an analytic function are isolated.
It follows that

g(z)
flz) = 7(2)

is analytic for 0 < |z —z,| < p. That is, the singularities of a quotient of analytic functions

are isolated.t
Moreover, we have

L)k 8(z2),
(Z ZO) f (Z) 7 ( Z)
The right-hand side is analytic for z = z,. Hence (z — z0)*f(z) has a removable singu-
larity at z = z,.
We define:
f(2) has a pole of order k = 1 at z = 2, if (z— 20)*f(z) has a removable singularity at
20, While (z — 20)*~1f(z) has an unremovable isolated singularity at z,.
We have shown that all the singularities of a quotient of two analytic functions are

poles.t
If h(z) has a zero of order k at zo, f(z) has a pole of at most order & there. However,

its order may be smaller if g(z,) = 0. In fact, if g(z) has a zero of order m at zy, we can
write

g(z) = (z—z0)™y(2),
where y(z) is analytic in D and y(z,) # 0. Then

L Vkem (@),
(z—zo)*™f(z) = n(2)

tThese statements apply only to the common domain of analyticity of g and h, and may be violated on
its boundary, where g and h can have singularities of any kind.
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Thus, if kK > m, f(z) has a pole of order k — m at zo. If kK = m, f(z) has a removable
singularity at z,. If & < m and we define f(zo) = 0, f(z) is analytic and has a zero of
order m — k at z,.

Examples. (—z:{l—)z has a pole of order two (double pole) at z = 1.
sin z/(1 — cos z)} has poles of order one (simple poles) at z=2nmw, n=10,=1,%2, .. ..

Not all isolated singularities are poles. An isolated singularity that is not a pole or a
removable singularity is called an essential singularity.

Example. sin(1/z) is clearly analytic for z # 0. It has zeros at z=1/(n7) n==x1,%2,%3,.. .50
that z =0 is a limit point of these zeros. If there were a k such that z* sin (1/z) has a removable
singularity, then g(z) = z%*! sin(1/z) with g{0) = 0 would be analytic everywhere. However its
zero at z= 0 would not be isolated, which contradicts what we proved earlier. Hence z* sin (1/z)
has an unremovable singularity at z = 0 for all k. That is, sin(1/z) has an essential singularity
at z=0.

EXERCISES
1. Find the order of the zero of
(a) sinz at z=1
(b) 14+cosz at z=7
(c) sinz—z at z=0.

2. Find the order of the pole of

(a) secz at

(&
1l
=] [\gv—s

o]

sin z
(b) 1 —cosz? t
er" — 1
© g at z
3. Show that if f(z) has a pole at z,

Him | f(2)] =+ .

&
Il

I
e

4. Show that if
lim |£(2)] =+,

then f(z) has a pole at z,. HINT: Consider g(z) = 1/f(z), and use Morera’s theorem.

5. Show that '+ has an essential singularity at z= 0.
HINT: Use the result of Exercise 3.

6. Prove I'Hopital’s rule for analytic functions: if A(z) has a zero of order k at z, and g(z)
has a zero of order m = k there, then

. g(2) _ g™(zo)
lim h(i) = h(zy)

58. The Calculus of Residues.

We have shown in Section 56 that if f(z) is analytic on and between two simple
closed contours C and C’, then

i‘f(z)dz = i’ f(z)dz.



272 Evaluation of Integrals by Complex Variable Methods CHAP. IX

Suppose now that f(z) is analytic in a domain D except for an isolated singularity
at a point z, in D. Then if C and C’ are any simple closed contours in D such that z,
is inside both of them, we have

$ fade=§ fa)dz

Since C' may be taken to lie arbitrarily close to z;, the value

3§Cf(z)dz

depends only on the behavior of f(z) in an arbitrarily small neighorhood of z,.
We shall show how to evaluate this integral easily when the singularity is a pole.
Suppose first that f{z) has a simple pole at z;. By definition, the function

d(2) = {z—21)f(2)

has a removably singularity at z;. We define

¢(z1) = E? (z— z1)f(2).

Then ¢(z) is analytic inside and on C. Hence by the Cauchy integral representation
(56.2)

62
b =504 =5 $ f(2)dz.

zZ— Z
Thus we find that if f(z) has a simple pole at z;,
(58.1) 3§ Az)dz = 2mi tim [ (z — z)f(2)].

=

We recall that contour integrals are always to be integrated in the counterclockwise
direction.

Example. Let f(z) = 1/sin z, and let C be the the circle |z| =%7. Then f(z) is analytic inside and
on C except at z =0, where it has a simple pole. Since

we have

Using the definition of a path integral, we find

i (27 € [sm (—ar cos @) cosh L 7 sin HL i Coifﬂ cos 0) sinh (—'n' sin 6)]d

5 = 2q7i.
sin? (E‘Tr cos 9) + sinh? (217 sin 0)

Equating real and imaginary parts, we obtain

.y COS 0 sin (Ln' COoS 0) cosh (‘1—11' sin 8 } + sin @ cos 1 cos @) sinh ‘1-11' sin §
f 2 2 2 2 0= 4
0

sin2 (%*n' cos 0) -+ sinh? (%17 sin 6)
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and

2 )do —o.

o $10 6 sin (%77 cos 6) cosh (%w sin 0) — cos § cos (%‘n cos 6) sinh (l'n' sin #
f" sin? (%’F cos 8) + sinh? (%'n" sin 0)
The second result is obvious since the integrand is odd about 8 = #. However, the value of the
first integral would be most difficult to obtain in any other manner.
If /(z) has a pole of order k at z;, we define

é(2) = (z— z21)¥(2) for z # zi,
d(z;) = lim (z — z1)%f(2).

Fand 4|

Then, ¢(z) is analytic in D. By (56.3) we have
(;b[kwl](zl) — (k — 1) ¢(Z) dZ (k 1) § f( )dZ

2ari ¢ (Z_Zl)k

That 1s,
z1)
§ farde = 2mit =)
or
(58.2) § Fo)de = 2 lim S 2= ) ()],

Example. Let f(z) = 1/sin? z, C: |z| = #m. Then

dz d{ z
§c sin®z = 2mi ltlu)n(} dz(sm2 z)

= i lim 24 8inz — 2 c057)
=0 sin® z

Using the Taylor series, we find that

1 1
2(zsinz — 2 c0szl=2(§i4“§ﬁzﬁ+- . )

sind z 3 l 5 .
=52+
Hence the limit is 0. Therefore,
dz
¢ sin? z
In general, the value
ot TOL

where C is any closed contour such that f(z) is analytic inside and on C except at the
point z; inside C is called the residue of f(z) at z;,. It is denoted by R.,[f]. We have
shown that if f(z) has a pole of order £ at z;,

(58.3) ., L1) = gy i [ (e — 20 |
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There is no such formula for the residue at an essential singularity. If f(z) is the ratio
of two analytic functions

7o) =4

and if 4(z) has a simple zero at z;, we have
h(z) = (z—z)n(2).
Then

(z— z)f(2) =52

—_—
o]
S [
-

and therefore by (58.1)

_ 2(z1)
L] n(z)’
or
_ 8(21),
(58-4) snzl[f] ‘—hr(zl)

Thus, the residue of f{z) at a simple zero of h(z) is just g(z.1)/h' (z1).
Example. If f(z)} = 1/sin gz,

R[] = =1

At a pole of multiplicity k, the residue (58.3) is the coefficient of (z — z,)*~" in the
Taylor series for ¢(z) = (z — z)*f(2). If f(z) = g(2)/h(2), and k(z) = (z — 21)*n(2),
this Taylor series can be found by dividing the Taylor series for g(z) by that for n(z).
The coefficient of (z — z:}*~" in this series is the residue, even if g{z,) happens to be
zero. We recall that it is only necessary to use the terms, of the Taylor series of g(z)
and n(z) up to the power (z—z:)* ! in order to find this coefficient.

Example. Find the residue at z =0 of f(z) = ¢*/(1 — cos z). We have

cos 0

e"—1+z+2,+

The residue is the coefficient of z in the Taylor series for é2/n(z).

e* I+z+---
= =2+27+-
2@ 1_ . et
21

Thus

m[‘:‘csg‘z] —2.
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The same method will also give the residue of sin z/(1 — cos z) at z = 0, even though this
function has only a simple pole there.

Suppose now that f(z) is analytic inside and on the contour C except for isolated
singularities at points z;, z2, . . . , Z». We cut the interior of C into n pieces bounded
by simple closed contours C,, Cs, . . . , C, in such a way that the point z; is inside
C\, z2 is inside C,, and so on.

By the definition of a residue,
§ fde=2aiBelfl,  1=1,.. . n
3

where the integrals are all taken in the counterclockwise direction. It is easily seen from
the picture that each cutting segment I';, is traversed once in one direction and once
in the other. Therefore, the integrals along these segments cancel, and

b f@de+d fde+ - +$ fde=$ fl2)de
Cy Cy G C
We have proved the following theorem:

THEOREM. (Residue theorem). If f(z) is analytic inside and on C except for the points
21, 22, - . . , 2n inside C, then

(58.5) 3§Cf(z>dz = 2 R[] + R[] + - - -+ R (11,

The importance of this theorem lies in the fact that if f(z) has only poles, the process
of integration may be replaced by the simpler limiting process (58.3) or, in the case
of a quotient with a simple zero in the denominator, by (58.4)

Buae T 2 Reanl | el g e

PSP S S |
——27rl{1+1+1}

= Oi.

Example.

Writing this result in real form, we have
Fw 3mieifdy

= 67ri.
0 e3ﬂ.ei9__ 1
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Taking real and imaginary parts gives the two integral identities
f” e? c0s? 05 (@ — 37 sin @) — cos 6

o 1—2e37cosb cos (3 sin ) + e 80 = 2,
F"’ e’ 058 gin (@ — 37 sinB) — sin @

o 1—2ecos¥ cos (3 sin ) + 57 cored0 = 0.

The second result is obvious, since we: are integrating an odd function of 6 around the circle.
However, the first integral would be very difficult to evaluate in any other way.

We can always evaluate the integral from 0 to 2zr(or — to o) of a quotient of poly-
nomials in sin # and in cos & by letting z = cos # + i sin # and considering the integral
as a contour integral over the unit circle |z| = 1.

Then
1
cose—2(2+2),
a1 1
sm@—zl.(z Z)’
d9=-.1—dz.
iz

Making these substitutions, we obtain an integral over the contour |z] = 1 of a ratio of
two polynomials in z, which may be evaluated by the residue theorem.

o df
o 1+ sin®@

Making the indicated substitutions, we have
f mode 1 dz
o 1+sin28  Ji= 1/ NW\]Piz
e 3)]
-4 35 __wdr
i lz]=1 —62+ |

The polynomial in the denominator has simple zeros at

z=%+y/3—VB, +/3+VE.

The first two of these are inside the contour |z| = 1, the last two are outside. Using (58.4) and
the residue theorem (58.5), we find

_zdz z [ =z
lo]=1 2" — 622 + 1 2 {[4? - 12z] +L4z3 - 121]

Example. Evaluate

Z

SH

Thus
f . ~———--—d8 17\/5.

0 1+ sin?g

Because of the symmetry of the integrand we can write

o de 1 de 1
J:, 1+sin20_2jo 1+sin20_§7ﬂ/§’
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or even
2 do dé
fo 1+sin?0 4 1+sm26‘ 477\/—
EXERCISES
1. Evaluate

#; _dz
2=z 2(22— 1)

Write the resuit as two real integral identities,

2. Evaluate
§ e*dz
|z—1]=2 2z~ 1)
3. Evaluate
_dz
iz]=6 | —COs 2z
4. Evaluate

log z
ﬁzﬂ:l (Z - Z)Zdz’

where the branch —7 < Im (log z) < « is used.
5. Evaluate

9€ dz
cz(z— 1 (z—3)*

where C is the boundary of the square |x| = 2, |y| = 2.
6. Evaluate

27 dﬂ
o (a® cos? @+ b® sin? )%’

where b = a > 0.

7. Evaluate
I cos26
o 5+4cos 6d0
8. Evaluate
T ¢Os 6
o 3+ cos 0d0

9. If f(z) = [g(z)/h(z)] and h(z) has a double zero at z;, find R, [f] in terms of g(z1),

g'(z1), h''(z:), and K" (z1).

HINT: Let A(z) = (z — z1)*n(z).
10. If f(z) is analytic inside and on C and does not vanish on C, show that

1 L@,
2mi Jo f(z)

where N is the number of zeros of f(z) inside C, with zeros of order k counted k times.

HINT: Find the residue at a zero of order k.
11. Using the result of Exercise 10, show that a polynomial of degree n has n zeros if zeros

of order k are counted k times.
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12. Using the result of Exercise 10, show that if f(z) and g(z) are analytic inside and on a
contour C and if

lg(z) — fl2)| < | f(2)]

on C, then f and g have the same number of zeros inside C. (This is Rouché’s theorem.)
HINT: Prove and use the identity

e il wa | U A G B

on C. Note that if h(z) is analytic on C, § h'(z)dz = 0.
¢

59. Laurent Series.

The Taylor series is the series in nonnegative powers of z — zo which represents an
analytic function in a circle centered at zo. If f(z) is defined and analytic in the ex-
terior |z — zo| > R of a circle, and if the function

g({) =f(Zo + ‘2‘)

obtained by the inversion

1
Z—20

C:

has a removable singularity at { = 0, we say that f(z) is analytic at infinity. In this case
g({) (with g(0) = gg} g () is analytic for |} < 1/R. It has the Taylor series

g() = % bxt",

where

g(C)

bn = 2171 Cn+1

If we return to the variable z, we find that
flz) = % ba(z — 20) 7",

where

ba 2m§ (z—~ za)" f(2)dz.

The contour C is such that the circle |z — 2| = R is inside it. The series converges in
the exterior domain |z — z¢| > R.

Thus a function which is analytic at infinity can be represented as a series of non-
positive powers of z — zo. We now seek to represent an analytic function f(z) in some
domain D as a series involving both positive and negative powers of z — zo:

(59.1) flzy = % an(z — 20)" + ? ba(z— 20) ™™
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Such a series is called a Laurent series.
As before, we find that if the first series converges at a point zy, it converges for all
z such that |z — ze| < |z1 — zo|. That is, the first series, if it ever converges, converges
inside a circle |z — zo| < R, and diverges outside it. Similarly, we find that the second
series converges in the exterior of a circle of convergence; that is, for |z — zo| > R..
If R, = R,, the right-hand side of (59.1) is not defined in any domain. We therefore
suppose that R; < R,. Then the right-hand side of (59.1) converges for

(59.2) R; < |z— 2| < Ry,

and uniformly in any closed subset of this domain. It follows from Morera’s theorem
that f(z) is analytic in the annulus defined by the inequalities (59.2). (R: may be zero,
and R, may be infinite.)

To evaluate the coefficients a, we multiply (59.1) by (z — zo) %! and integrate over
the circle |z — zo| = R with R; < R < R,. Since the series converges uniformly on this
contour, we may integrate term by term. Let [/ be any integer (positive, zero, or nega-
tive). Then

2w
9% - (z— 20)dz =J0 Rlei% Re® dp

= R+ f” [cos (I+1)8 + i sin (I+ 1)8]d6
0

_ { 2 for I=-—1
0 otherwise,
Therefore
_ 1 [ Az
(59.3) Ak = 5 3g (z — Zo)k+l

Similarly, if we multiply f(z) by (z — zo)*-1 and integrate, we find that

(59.4) b= 35 (2= 20)* (D) dz.

i

The contour C may be the circle |z — zo] = R or, by Cauchy’s theorem, any other
simple closed contour in R < |z — 2} < R; going around |z — 2| = R..
The formula for a, has the same form as in the case of the Taylor series, However,

the coefficients will in general be different from % f1¥1(zo) unless f(z) is analytic inside

the contour C. In this case the by are all zero, and the Laurent series reduces to the
Taylor series.

If f(z) is an analytic function for R, < |z — zy| < R, the function f(z, + re®) is an
infinitely differentiable periodic function of 0 for any r between R, and R;. Therefore
it has the convergent Fourier series

f(2) = flzo + re®)
(59.5) 3= [ S+ reydp+ = L [7 fiag+red)

X [cos nd cos n@ + sin ne sin n@ldd
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- iw ﬁ#f(zO + re'®)d¢ + % % J:ﬂf(z(» + rei) cos n (0 — ¢)do

2m hod 277
- j fzo+ reit)de + L j Azo + reit) [ein¥-04e-in0-0)]dg
m Jo 1 27 Jo

L+ 3 (L4 IO ez

_2m cl— 2 27 J (C—z)"“

t i % {(L— zo)" L)AL}z — 20)~ n]

Here we have put { = zo + re¢, z =z, + re®®, and C is the circle |{ — zo| = r.

This Fourier series is a rearrangement of the Laurent series (59.1) with the coeffi-
cients defined by (59.3) and (59.4). To justify this rearrangement we note that since
f(¢) is analytic, C can be taken to be any circle |z — zo| = p in the annulus R, < |z~ z|
< Ry. If in evaluating a, we take for C the circle |z — zo| = ps with R: < p; < R;, we
find that

|ak| = Mip, %,

where M, is the maximum of |f| on |z — zo| = p1.
Similarly

|be] = Mqp.¥,

where |f(z)| = M. on |z — zo| = p.. Thus the series = a.(z — z0)" converges absolutely
for |z — zo| < p1. £ bn(z — 20) ™" converges absolutely for |z — zo| > p2. Given a z such
that R, < |z — zo| < R,, we can choose p; and p; so that R, < p» < |z— zo| < p1 < R..
Then the two series in (59.1) converge absolutely, and hence may be rearranged into
the Fourier series (59.5).

We have shown that f{z) is equal to its Laurent series in any annulus R, < |7 — zo|
< R,, where it is analytic. The series ceases to converge at circles passing through
singularities of f{z). The singularities of f(z) determine various annular domains, in
each of which f(z) has a different Laurent series.

Example. Let

f(z) =EG1_—_1)’ =1

The singularities at z=0, 1, —1 divide the z-plane into the annuli 0 < |z—1| <1, 1 <|z—1| <2,
and |z — 1| > 2. For [z — 1| < 1, we have, using the residue theorem,
A )k -
G2l AT (z—1) {(z+ 1)-1z71dz
. 1 a1 T 1
T (k+ 1)V d z(z + I)L 1
_ 1 dk+t "_1_ B 1
(k+1)1dek+tz z+ 1)

dpy =

= (—1)* [z"+2 (z +11)k+2]z=1
= (D1 —27%2),

L (z—1)k2(z + 1) 17y

lz—1|=1/2
for k=1
for k> 1.

b"z

i
1
2
0
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Thus

L % o1 — L)k bz 1)- _
DT & (O g e D g for 0<fz=l <

This is simply (z — 1) ! times the Taylor series for z7'(z + 1)~
For 1 < |z — 1| < 2, we must include the pole at z =0 inside the contour of integration. Then

=L T e
%= 2 ﬁbll=3/2 (z—1)**z+1)"zdz

= (*1)k+1(1 — 2—k—2) + (_1)—k—2
= (-1)k2-k~2’

br =5 (z—1)2(z+ 1)"'z7'dz

1 Jlz-1]=3/2

1+ for k=1
(—1)k-2 for k> 1.
Thus

1 —y =DF 1 a5 (- — - —
z(z%—l)(z—l)“é0 (—ymz —3(2— 1) + 2 (DFz-1* for 1<|z—1] <2

This series can also be obtained by multiplying (z — 1) ! by the series for
1 1 1

2z+ 1)z z+1

obtained by expanding-zl-in powers of (z —1)-! andz_’l_lin powers of z — 1:
1 i __1 1 _ 1 1 1 .
z z—1+1 z—-1 { 1 —z—l[l z——1+(z—1)2 ]
+z—l
e T G .
z+1 24z-1 21 z—1 2 2 2
55—

Finally for |z — 1| > 2, we must include the pole at z=—1. Then
ap = (—1)k2-%-2 — (=2) k-2 =,
l-%—(ﬂ)—eo for k=1
b= 1 Gk — (22 for k>1,
and

1 P ~
G D=0 =S D@ =DE-D* for fz—1]>2.

The absence of the ax means that f(z) is analytic and has the limit zero at infinity. The fact that
b, = b, = 0 means that |f(z)| is of order |z|-3 at infinity.

Remark. The Laurent series (59.1) can also be written in the form

f= I az—zn,

0
where we define

__1
27Ti C

(z — z0) " 'f(2)dz

a?l

for all n, positive, negative, or zero.
Note that if R, = 0, a_, = by =R [f].
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EXERCISES

1. Find the Laurent series for 1/(z> — 1) about z = 0 which converges for |z| > 1.

2. Find the Laurent series for 1/(z — 1){z — 2) about z = 0 which converges forz=1+i.
Find the domain of convergence of this series.

3. Find the Laurent series for z3/(z — 1)} (z — 2) about z = 0 which converges at z =3, Find
its domain of convergence.

4. Find the Laurent series for tan z about z = Q which converges at z = w, correct to terms
in z2 and z~2. Find its domain of convergence.

5. Find the Laurent series for e%/z3 about z = 0. Find its domain of convergence.

6. Show that if f(z) has a pole of order & at z, it has a Laurent series about z, converging
for 0 < |z — zo| < Ry, with by # 0 and b, = 0 for n > k.

7. Show that if, in a Laurent series about zp, bx ¥ 0 but b, = 0 for n > %, then R, = (), and
f(z) has a pole of order & at z,.

60. Infinite Integrals.
The calculus of residues is a very useful tool for evaluating integrals of the form

| fax,

where f(z) is an analytic function either for Im z = 0 or Im z = 0 except for some poles.
Suppose that f(z) is analytic in the upper half-plane Im z = 0 except for poles

at the n points zi, z», . . . , Zn With Im (zx) > 0. Let R be a real number so large that
lzs) < R, |z2| <R, ..., |z < R. We consider the contour Cx consisting of the line
y 1\

segment —R = x = R and the upper half ['z of the circle |z| = R. By the residue theorem
}QC A2)de = 2mri{Ra [f] + Re [f] + - - - + R [F1).
Fid
Transposing, we have

|| =m0+ -+ RN - | A2
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We are interested in the limit as R — « of the left-hand side. Since the residues are
independent of R, this limit will exist if and only if the integral over I'; has a limit.
A sufficient condition is that this integral approach zero as R — «, We have the bound

j fl2)dz] = f A2)ldz]
Iy Iy

= 7R max |f(2)].
Tp

Therefore, if f(z) has the property that R max |f(z)| approaches zero as R — =, we
Fr

find that f f(2)dz approaches zero. We then obtain the generalized residue theorem
Tg

im [ for)de=2mi{ R [f] + - - + R [A).

R ~R

We have set out to find f ) f(x)dx. Such an infinite integral is usually defined as the

result of two independent limiting processes:
oo L 0
f f(x)dx = lim f f(x)dx + lim f(x)dx.
— [—w JO Mo J—M
If these limits exist, then

f; fx)dx — fR fx)dx = [lim LLf(x)dx — LRf(x)dx]

L—x

+ [lim OMf(x)dx — J_OR f(x)dx].

M- -

By definition, each of the terms in brackets approaches zero as R —> o, and hence

R

lim Rf(x)dxﬂj_w f(x)dx.

R—x -

R L
It may happen that f f(x)dx has a limit, while neither f f(x)dx nor J ’ f(x)dx
—R 0 —-M

has a limit. For instance, if f(x) = x,

f; fix)dx=10

for all R, and hence has the limit 0. On the other hand,

L 1
L xdx = ELz,
which diverges as L — «, and ﬁM xdx = —%Mz, which diverges as M — <,
Thus the limit
(@) lim [ fx)dx

Rox J—R
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is a proper generalization of the usual infinite integral

® |” Fxran

That is, (a) coincides with (b) whenever (b) is defined, but (a) is defined for other
functions as well. We call the generalization (a) the Cauchy principal value:
R

(60.1) PVJ_m fxydx=lim | fx)dx.

R—x -

We have proved the following generalization of the residue theorem:

THEOREM 1. Let f(z) be analytic for Im z = ( except at the points z,, . . . , z, with posi-
tive imaginary parts. If f(z) approaches zero in such a way that

(60.2) lim [R max ()] =0,
then
(60.3) Pvf_“’ Fxydx = 2ai{R o [f] +R o[ +- -+ R (1),

Example. Let f(z) = 1/(1 + z2). This function clearly satisfies the condition (60.2). It has
simple poles at z = =i, Only z =i has positive imaginary part. By (58.4) we have

|1l -1
Thus

* _dx 4 .1
PVJ‘AOO1+X2_27TIZI-‘—7T-
©  dx
P B
= dx _

e 1+ x? .

> dx P dx
Axl+x2 0 1+x2’

= dx

o 1+x27 2

(This reasoning always allows us to replace an integral from 0 to o of an even function by half
of its integral from —o to .)

It is easily seen that

exists in the ordinary sense. Hence

Since 1/(1 + x*) is even,

so that

If f(z) is analytic except for a finite number of isolated singularities in the lower
half plane, we can proceed as before, but with the contour C’g consisting of the seg-
ment Im z=0, —R = Re (2) = R and the lower half I''; of the circle |z] = R. If we go
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around C'g in a counterclockwise direction, we traverse the real axis from right to
left, so that we obtain

- [* fwdr= 2w+ + RN - | A2

We find as before:

THEOREM 2. If f(z) is analytic for Im z = 0 except at the points z;, . . . , z, with negative
imaginary parts, and if
(60.4) lim [R max | (z)] =0,
) Imz=0
Then
(60.5) PV F fx)dx = —2mi{Ra [ £] + - - - + Re [£1).

Example. We note that f(z) = 1/(1 + z?) satisfies (60.4) as well as (60.2). The only singularity
of f(z) with negative imaginary part is at —i.

|} —_L

ni=5]_ =

=1

Thus

= dx L S 1N
P [ 5= 2mi(—g) =,

which agrees with the result we obtained earlier.

For any f(z) satisfying both (60.2) and (60.4) we can obtain

PV f“; f(x)dx

by either (60.3) or (60.5). It follows that for such a function the sum of all the resi-
dues is zero.

The function f(x) may in general be complex. However, we are usually concerned
with evaluating an infinite integral of a real function. If we are to evaluate the real
integral

JZ u(x)dx,

we can often find an analytic function f(z) such that f{x) = u(x) for real z. This was
done, for example, in the case of the integral

f = _dx

o 1+ X%

We simply let f(z) = 1/(1+ z2), which is equal to 1/(1 + x*) when z is real.
It is, however, sufficient to find f(z) so that

u(x) =Re [f(x)].
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For in this case,
PV j” u(x)dx = Re {PV f” f(x)dx}.

If the integral on the right is evaluated by the residue theorem, we can find the desired
integral by taking its real part.

Example. Evaluate

® COS x
f_m x2 4+ 2x + de'
If we let
f(z) _ cOS 2 _ elr 4 iz

2+2z+2 2{22+2z+2)

we find that | f(z)| — « as Im z — * so0 that f(z) satisfies neither (60.2) nor (60.4).
However, if we let

o eiz
& =zrn+7

we find that for Imz = 0

1
=
DI = pr=2 =21
so that (60.2) is satisfied. Hence

P elr . ) . . Qmriet-1+9) .
f_m FT o= mBoaulf] ==

Then

© cos X _ © eir _T
Jﬁw M+ 2x 2 =Re ﬁw A axrar=gcosl

In general, integrals of the form

=]

f ) g(x) cos axdx or f g(x) sin axdx

— —c0

are more easily treated by writing them as the real and imaginary parts of

fw g(x}er dx.

o

If ¢(z) has a simple pole on the real axis, it is still possible to treat the problem by
replacing the part of the real axis within distance € of the pole by a semicircle (iden-
tation) of radius € and letting € — 0.

Example. Evaluate

= _sinxdx
—e X(1 + x%)

We write

= sinxdx _ » _e%dx ]
Lo e [P v f (T xﬂ)]
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By the residue theorem
ez T el?
fﬁc z(1+ z"’)dZ h 2#19%,[1(1 + zz)]’

Yy

A

where C is the contour consisting of the semicircle [y of radius R, the segment —R = x < —¢
of the x-axis, the semicircle I'. of radius ¢, and the segment € = x = R of the x-axis. Thus

eiz —€ eir eiz R ei.r _ 11
frk A% f X1+t fr 20T zZ)d”ﬁ RS i

As R — » the integral over 'z approaches 0. On I'¢, we have

ol dz = 0 pieei®igg
r.z(1+22)7°  J7 (14 %)

!
|
f which approaches —mi as ¢ — 0. (Note that this is just half of the integral around a circle sur-
rounding the pole. This rule is always correct for a simple pole.)
We find, then,

. —€ ei.t R ei.r N i .
Rll_r{)la0 [I_R (1 +x2)dx+£ *(1 +x2)dx]—~ - + ri.
[acd
We define the left-hand side as the Cauchy principal value. As an ordinary improper integral,
] ei.l‘dx
oo X(1 4+ x%)
diverges at 0, although it converges at = «. Thus we have found

= er _ 1y,
PV N x(1+x2)dx—1r(l e)l'

Taking real and imaginary parts, we find

®  CcOSX _
PVJ:(m X1+ ) +x2)dx 0,

®  sinx _ _1
PV [_m mdx = 17(1 e).

Since the second integral converges as an ordinary improper integral, we have the desired result
® _ sinx _ _1

The calculus of residues may also be used to evaluate one infinite integral in terms
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of another infinite integral which is more easily evaluated. We illustrate with an ex-
ample.

Example. Evaluate
f e~ cos xdx.

We note that

e cos x = ¢~ iRe e~ txt:i?,

é e ?dz,
-

where C is the boundary of the rectangle —R = x = R, 0=y = 4.

We consider

) )

Y2

A

Y
4
o

Then
.‘ﬁ e #dz=0,
or
(] 12 ) —R e 0
f e—xzdxﬂ—f e~ R+iyPidy +J e~ gy j e~ (R+iylidy = (.
-R 0 R 1/2

We note that

12
f e(R+iy)2idy‘ < %e—(Rz—%) 0
0

as R — o, and that

jo e—(—R-I-iy)zidyl = le_(Rﬂ—i') — 0
1/2 2

as R — «. Letting R — « we then find that
f s L j " ey,
The integral on the right is known to have the value V/xr. Taking real parts, we find that

-] ]
f e~ % cos xdx = elft f e~ Fdx = eligli2,

EXERCISES

oo

x2
1. Evaluate j_m H——x"dx

dx
14+ xt

2. Evaluate f "
1]
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dx
(1+x%) (1 +2x%)

® dx
4, Evaluate f_w m

3. Evaluate j B
(1]

© x% cos x
5. Evaluate i ey dx.

® cOsS x dx
e X2+ x+ 1

7. Evaluate j B L1——-1_—xwx—.:ix.

*+x+1

6. Evaluate

* sin x
8. Evaluate f_m m)'dx

® | ~cosx
9. Evaluate j_m mdx

© |—cosx
10. Evaluate . mdx.

11. Evaluate f P cos 4xdx.

—an

12. Show that
PV[" fxidx= [ L) + f(-x)la.

61. Infinite Series of Residues.

In the preceding section we found a formula for

f:o Fix)dx

as a sum of residues at a finite number of singularities. We might expect that this result
could be extended to at least some cases where f(z) has an infinite number of singu-
larities. Of course, the finite sum of residues must be replaced by an infinite series. We
shall now investigate this generalization.

Let f(z) be analytic in the upper half-plane Im z = 0 except at a sequence of points
Z1, 22, Z3 . . - With Im z > 0. We order these points so that |z,| = |z| = |zs| =...,and
we suppose that |z — » as k — «. Let Ry, R, . . . be a sequence of radii different
from all the values |z1{, [z[, . . . and such that R; — = as [ — «. Let C, be the contour
consisting of the segment [—R,, R,] of the real axis and the upper half I'z, of the circle

|z| = Ri. Let k; be the integer such that |zx,| < R; < |zi,+1|. Then by the residue theorem
ky
b flordz=1mi 3 R.,I5),
ol k=1
or

[ s = 2mi 3 w00~ [ Ao
=1 Rl
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If
(61.1) lim [R, max |f(z)|] =0,
e R
we find as before that
f2)dz — 0.
Ry

However, the sum now also depends upon [. If we wish to be sure that the integral
converges, we must know that the sum converges. We therefore suppose that

2 mzk [f']
k=1
converges. Then we find that

lim | fx)dx=2mi S R.[f].
. k=1

— -R

Since we are taking the limit over the sequence R, rather than over all R, the left-
hand side is a generalization of the Cauchy Principal Value. If the latter exists, the
limit on the left-hand side is certainly equal to it.

We have thus shown:

THEOREM 1. If f( z) is analytic for Im z = () except at asequence z,, zz, . . . with Im zx > 0,

|zie| —> oo, if 3 R, [f] converges, and if there is a sequence of radii R, — > such that
1

(61.1) holds, then

(61.2) lim R; flxydx=2mi 3 Beylf].
Example. Let f(z) = 1/[ (1 + z2) cosh z].
This function has poles in the upper half-plane at z = i, gi, %m‘, %m', ....Let
R, = Im, 1=1,2,3,....
We note that
|cosh z|? = cos?y + sinh? x.

For (l—%)ﬂ-ﬂyﬁlﬂ-

1%

£

cos?y
while for y < (1 _ 1)77 and |z = b

4
Y PR A P \/l_i ™
|)c|>\[l22 (l 4)77 T 2[ 16>4\/7’

so that sinh®x > % Thus on Iy,

cos’y + sinh? x =

DI f—
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Then
]
rpax I =Rz =Tp

and hence {61.1) is satisfied.
We have

1
Rlf1= 20 coshz = 2icosl

§R(fhﬁ)ﬂri A= [1 — (n - %)27721] sinh (” - %)ﬂ-i i i[(n —(;-)12);2 - 1]

= dx (=)~
]_w (1+x%) coshx cos 1 + 27 nE ( 1)2 2
n—i mt—1

Then

The integral on the left can be computed by summing the series on the right.

The analogous theorem for the lower half-plane is immediate.

THEOREM 2. If f(z) is analytic for Im z < 0 except at z,", z2’, . . . with Imz’ < 0,
|zx'| — o, if there is a sequence R; — o such that
(61.3) lim [R; max | f(z)[] =0,
oo |z2[=R;
Imz=0
and if
’2 SRzk' [f]

=1

converges, then

(61.4) lim f(x)dx = 2mi E R..[f]

] —R

if both (61.1) and (61.3) hold for the same sequence R;, we can eliminate the in-
tegral to find that the sum of all the residues is zero. Thus, if f(z) is analytic every-

where except at the sequence of points z:, 72, z3, . . . With |zx| — o, and if there is a
sequence R; — c¢ such that

(61.5) hm R, max A2 =

then

%mzk [f ] =0
This fact can often be used to find sums of infinite series. The proof can clearly be
carried out even when some of the z; are real.
Example. Evaluate

_21___, a > 0.
n=—mx n +a2
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We note that the function

f(2) = 2+ 3z cotmz

has poles at z==iaand at z=n, n=0, =1, £2, . . . We find that
g:l‘-m[f] = 2ia COt mia = -‘51— coth 7a,
R_ilf]= cot (—mia) = v—il— coth ma,

1
%n[f] = (¥ aZ)'
We let

-1 -
R;—l+2 i=1,2,...

and suppose that these radii are all different from |a|. (Otherwise, we skip one.) We note that

cos? wx + sinh? 7y
sin? wx + sinh? 7y

|cot mz|2 =

Forl+ 1 = |x| = |+ %, cos? wx = sin? 7x, so that |[cothwz| =
On the other hand, for |x| <[+ fand |z|=!+ %

1 12_\/1 321
wp>JO+J O+J._ i+ = VI,

so that

1 + sinh? %\/11

lcot wz|? = po = K2
sinh? Z‘V 11
Thus for |z[ = R,,
K
D) = e =2

so that {61.5) holds. Hence

—lcmhwa+ o 1o,

nmw T(NE + a?)
or

it 1
,,Em n: + a*

=T coth ma.
a
By symmetry we can write this result in the form

s 1 __7 _ 1.
o s TR 7
In evaluating the series we have used the fact that the function # cot wz has poles

with residues one at all the integers. We can sum alternating series by noting that
7 ¢sc 72 has poles at the integers n with residues (—1)~.
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EXERCISES

1. Evaluate

[” dx
—w (2+ cosx)(1+ x?)

as an infinite series.
2. Evaluate

J‘W xdx
—« (1 +x%) sinh x

as an infinite series.

3. Evaluate
?’ 1 -+1-n4
by considering contour integrals of
cot w2
(1+z%
4. Evaluate
21 +1 )n4'
S. Evaluate
- 1
.t —a’
for 0 < a < 1 by considering an integral of
cothwz
(% +a?)

62. Integrals Along Branch Cuts.

We consider the function

Zlf2
f(Z)EH-zZ 0 <argz<2m,

which has a branch cut along the positive real axis. By the residue theorem
(62.1) § fle)de=2mi L1 +B011),

where C is a contour containing only the poles of f(z). We take for C the contour con-
sisting of the circle

Cr: z=Re!?, 0 < 0 < 27,

the line segment
T_:argz=2m R>|z| > ¢,
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1

Cr

N
T

™
)

the circle
Cez=e€e?, 20 >0>0,
and the line segment
I,:argz=0,€ < |z] <R.

We define f(z) on I', as the limit of f(rei?) as 8 —> 0, and on I'_ as the limit as
0— 27 Thenon T, f(z) =x"2/(1+x*), whileonT_ f(z) =—x¥2/(1+ x?).
Writing out {(62.1), we have

2T
f f(Re®)Rie*do + L dx+ j’ flee®)eie®dl
0

1+ 2
R yl/2 .
+ | Tt =2mi{Rlf] + RLAD

We now note that

Rt’nlaxlf(z)l“)O as R -
Z|=R

(62.2) € Ilnf—lx [f(2)[=0 as e~ 0.

The integrals along I', and I'- add instead of cancelling. This failure to cancel is due to
the discontinuity of f(z) at the branch cut. Letting e — 0 and R — o, we find that

1/2 _ em/4 es‘n-i/4 .
2[ T+ dx 2771{ 2 +_2i}~—1r\/5..

Thus we obtain the result
] xl/‘Z T
dx =
o 1+ V2

Other integrals along branch cuts can be evaluated similarly, provided conditions
analogous to (62.2) hold to make the extraneous integrals disappear.,
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If the branch cut along which f(z) is discontinuous is finite, we can evaluate a finite
integral by means of contour integration.

Example. We consider the function

_ 1
fl= (z+2)(Z—1)17

We take the branch cut by making

O<arg(z—1) <27
0 <arg(z+1) <2m.

b )

Cr

This cut extends along the x-axis to the right from z = —1. However, it is easily seen that f(z)
is continuous across the part of the cut to the right of z = 1. Hence by Morera’s theorem, its
singularities are removable there. Thus the branch cut is the segment y =0, —1 = x =< 1. We
take the contour C as pictured. It consists of the outer circle Cr: |z) =R, 0 < arg z < 27, the
segment

T:R>x>1+¢y=0, arg (z— 1) =arg (z+ 1) = 2w,
the lower half of the circle

Colz—1|=¢,
the segment
F:1—e=zxz—-l+ey=0arg{z—1)=m, arg (z+ 1) = 2,
the circle
Ce ljz+ 1] =,
the segment

Iyi—ld+e=x=1l-—ey=0,arg(z—1)=mw,arg(z+1) =0,

the upper half of C,, and the segment

—~—

IlN:l+e<x<R,y=0,arg(z—1)=arg(z+1)=0.
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By the residue theorem
ﬁ AR de=2miR 1[f] = ai—%—
Since f(z) has the same limiting values on T, and T_, the integrals over these segments cancel.
Moreover,
R max |fiz)| >0 as R~—>,
€ max | f(z)] =0 as e€— 0,

emjix |f(z) >0 as e€—0.

Ce

When we let R ~> « and € - 0, we are left only with the integralsonI', and I'_. On T,

_ 1
o= T =
while on I'-
B —1
o = ==

Since the integral on I', goes to the right and that on ['_ to the left, we find that the integrals
add, The above equation becomes

zjl dx — Zm',
-1 (x4 2)ivV1—x2 V3

or

f 1 dx _m
1 (x+2)VI—2 V3
Thus we have evaluated a finite integral involving a square root.

Integrals involving other multiple-valued functions can be treated in the same way.

EXERCISES
1. Evaluate
[
-t (14 25)V1—x2
2. Evaluate
©  xodx
o B+ x¥ where -1 <a<1,b>0,a#0.
3. Evaluate
o x1/3
o 1+ x+x2
4, Evaluate

Jm £ dx
o 1+ x3 where ~1 <a <2, a#0orl.
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= dx
0 2+x+1
log z

by considering an integral of ?iTg{ﬁ with 0 < arg z < 27 over a suitable contour.

5. Evaluoate

ADDITIONAL READING FOR CHAPTER IX

R. V. CHURCHILL, Complex Variables and Applications, McGraw-Hill, 1960, chapter 7.
L. L. PENNIsI, Elements of Complex Variables, Holt, Rhinehart, and Winston, 1963, chapter 7.
E. G. Puirvips, Functions of a Complex Variable with Applications, Oliver and Boyd, 1949.



CHAPTER X

The Fourier Transform

63. The Fourier Transform.

A periodic function f(x) on the interval —7 < x < & can be expanded in a Fourier
series

flx) ~ %ao + X (a, cos nx + b, sin nx),
n=1

where
dn =% " f(x) cos nxdx,
by = i f.: F(x) sin nxdx.
Since

1, . ) . 1. . ,
cos nx = (e"* + e7MT),  sinnx = z—i(em — e-inz),

we can write the Fourier series as

oc

fx) ~ % cpem®,

n=—-00

where we define

%(an + ib,) for n=0
Cn =

%(a_n —ib_,) for n=0.
Then

o= %T fﬂ F(x)einadx.

(Note that if f(x) is real, c_n = ¢x.)

Fourier series arise from separation of variables. The most important property of
the Fourier coefficients is the fact that if f(x), extended as a periodic function of period
2, is twice continuously differentiable, then

f'(x) ~ 2 (—n*)cne®,
298
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That is, differentiating f{x) twice corresponds to multiplying its Fourier coefficient
¢, by —nr®. It is this fact which enables us to reduce partial to ordinary differential

equations by means of the finite Fourier transform.
As a matter of fact, we see that if f{x) is continuous and piecewise continuously

differentiable for —7 = x = 7, and if f{—=) = f(#), then

f_: f' (x)emzdx = f(x)ginx]; —in f_’; Flx)enedx

== inCn.

Thus differentiating a periodic function corresponds to multiplying each Fourier co-
efficient ¢, by —in:

o0

f(x) ~ 2 (= incae r).

By using this fact, we can reduce various partial differential equations whose coeffi-
cients are independent of x to ordinary differential equations.

Example. We consider the problem

du _ du
ou _ ou = < x < >
3 3 u =0 for x<a, t>0,

u(x, 0) = flx),

u(—m, t) = ulr, t).

For fixed r we let

wlx, 1) ~ 3 cn(t)e—inr.

-

1If oufox and ou/dt are continuous, we have

du < ;

?t_ ~ -zm C"'evm.r’

Ju < . .

ax = InCge ™.
—e

Hence the function c¢.{?) must satisfy

¢’ + (in—1)c, =0,
If

flx) ~ 3 Cretne,
the initial condition is

cn(0) = C,.
The solution of this initial value problem is
cnlt) = Cpe-tin-1),

Thus we have the formal solution
u(x, t) ~ 3 Cpe irlzroel,
Recalling the definition of C,, we find that

ulx, t) =e'f(x+¢),
where f(x) is extended as a function of period 2 f(x + 27) = f(x).
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If f(x), as extended, is continuous and continuously differentiable, u = e!f(x + t) is clearly the
solution of the problem.

If we wish to represent a function f(x) on an interval —L = x =< L as a Fourier series,

we simply introduce the new variable x’ = %x. Then

—o0

Cn= l [ﬂ f(éxl)einaﬂdx:.
27 o\

Returning to the variable x, we have

L\_s iz
f(;x) ~ 2 cpei,

where

f(x) ~ 2 Cn(L)e—in‘lrx/L
where
(L) = 1 [t —
env =g [ fwyemsvax

The coefficients ¢,/*) define the function f(x) uniquely on the interval (—L, L).
They have the property that
£ ~ 3 (=infes + UL = for)] et
L™" 2L ?
so that if f(L) = f(—L), differentiation of f corresponds to multiplication of c,) by
—inir/L.
Suppose now that f(x) is defined for —o < x < «, We can determine f{x) on any
sub-interval (—L, L) in terms of the coefficients c¢,¥). We shall attempt to determine

f(x) on the whole interval (—o, ) by taking limits as L — o,
Suppose that f(x) is absolutely integrable; that is, that the integral

[ 1o 1ax

converges. Then

1 |t )
L) = -— inmTx/L
lcnD)| 3L U‘Lf(x)e dx

=5r | 1fwlas,

which approaches zero as L — «. Thus, the limit of each coefficient ¢," is zero. We
consider, instead, the limit of 2Lc,\Y. If we fix n, n/L — 0, and hence

L
lim 2Lc, ) = lLim f f(x)einm=ildx
~»x J—L

e
= ‘[:0 f(x)dx.
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This limit is a single constant, and hence cannot determine f(x).

We observe that as L — « the set of numbers of the form nn/L withn=0,+1,+2, . ..
becomes more and more dense on the real line. This motivates us to replace the quan-
tity nm/L by a continuous variable , and to keep w fixed as L — «. We obtain the

limiting function

Hw) = lim 2LcoyP,
l—x

or

(63.1) Flw) = f“; Flx)eivzds.

Instead of a function c,* defined for integers n, we now have the function f(w) for

all real values of w.
If the integral in (63.1) converges, it is called the Fourier transform of f(x). It is some-

times denoted by & [ f]. The integral certainly converges if f ) | f(x)]dx does.

In order to be useful, the Fourier transform should have the same basic properties
as the Fourier coefficients. The first of these properties is the fact that differentiation of

F(x) corresponds to multiplication of f(w) by —iw.
Suppose that f(x) is continuous and piecewise continuously differentiable, that

J ” f(x)e'»zdx converges for each w, and that

lim f(x) =0.

X

Integrating by parts, we find
L2 . Lz Lz
J fr (x) eioxdy =f(x)e“"‘"“ ] —_ iwj' f(x) oty
L =11 1

Letting L, and L, approach infinity, we see that the right-hand side has the limit
—iwf(w). Hence f'(x) has the Fourier transform —iwf(w):
(63.2) SLf] =—iw&[f].

The second important property is the fact that f(w) determines f(x) uniquely. We
shall prove this property in Section 67 by showing how to compute f(x) from f(w).

We note that if f(x) is real, f(—w) =f(w). That is, the real part is an even function of
w, and the imaginary part is an odd function of w.

EXERCISES
1. Find the Fourier transform of
(a) e-1=,
(b) ;2%1_—1 HINT: Use the Cauchy integral theorem.

(C) emaﬂ.
HINT: Use the Cauchy integral theorem to change the Fourier integral from Im z = 0 to the
parallel line Im z = w/f2a.
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-ar >0

@ s =157 o i 2
0 for x<—A
1

(e) flx) = for —A<x<Ad
0 for x> A.
2. Find the solution of the heat conduction problem in an infinite slab
u_ o%u _
YR 0 for >0,

u(x, 0) =e =
by means of the Fourier transform.

HINT: The Fourier transform of e—2#* is /—e~**4¢ (see Exercise 1¢).

NE)

64. Jordan’s Lemma.

Since the Fourier transform is defined as the infinite integral
fm f(x)etozdx,

we shall investigate the computation of such integrals by contour integration.
Suppose there is a function f(z) analytic for Im z = 0 except for poles at z;, 22, . . . ,
zn (Imz; > 0) such that f(z) agrees with f(x) on the real axis.
For o = 0 and Im z = 0, we observe that |¢i“?| = 1. Hence if

(64.1) lim R max [f(z)]| =0,
e

the same is true of f(z)ei** for @ = 0. Therefore by Theorem 1 of Section 60 we find
the expression

PV f“ flx)eady = 2mi {mzl [Fz)ei] + - - - + %zn[f(z)ei‘"z]}

for the Fourier transform when o = 0.

We recall that this result is obtained by applying the Cauchy integral theorem to a
semicircle of radius R and letting R — «. The hypothesis R max | f(z)| — 0 is used only
to show that

L f(z)eiwzdz — 0

as R — », Here I} is the upper half of the circle |z] = R.
Now

frﬂf(z)ei“’zdz = fr 1) e

= max | £(2)] f o] de].
Tr Tk
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Only z=Re¥ 0= 0 =< Thus |dz| = Rdf, and
|eiwz| = lein(cos 0+i sin H)I

= p~wR sin 6

Then

f |eimz||dZI =R f‘” e_wR sin 8,49
I'g 0 /2
= 2R f g—wRsinéJg
0

We now note that

sin @

0

is a nonincreasing function of 8 for 0 = 8 = /2. Therefore

sin -~ g_
6 T
Then if @ > 0,
T2
f |eiwz||dz| =2R f e—-ZwRG/-trde
FR 0
— 2R — p—wR
= JoRjm 1 e )
<7
w
Thus
w2 = m
(64.2) J f(z)eords) = 7 max |()].

Therefore, the integral over I'r approaches zero if only r}lax | f(z) | approaches zero
R

as R — . This fact is known as Jordan’s Lemma.
We have proved the following:

THEOREM 1. If f(z) is analytic for Im z = 0 except at points z;, 2z, . . . , Z, with positive
imaginary parts, if

(64.3) lim [mgﬁ | f(2) I] =0,

R L2l
Im 2=0

and if o > 0, then

(64.4) PV f_m f(x)ewrdx = 2mi é R [flz)ew].

Proceeding similarly in the lower half plane we find:
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THEOREM 2. If f(z) is analytic for Im z = 0 except at points z,’, z2', . . . , 2,' with nega-
tive imaginary parts, if
(64.5) lim [max | f(2) I]

o

and if » < 0, then
(64.6) PV f i flx)eierdx = 2mi 3 R..[ flz)evz].
- =1
R
It follows from the bound (64.2) that if (64.3) holds, [ f(x)ei“Tdx converges to
—~R

w R
PV f f(x)ei“rdx uniformly in @ for any set @ = wo > 0. Since f f(x)eivrdx is con-
e -R
tinuous in w, we find that the limit is also continuous in w.
Thus, under the conditions of Theorem 1, f(w) =PV | f(x)ei**dx is a continuous

function of w for w > 0. Similarly, under the conditions of Theorem 2 it is continuous
for @ < 0. In general, there will be a discontinuity at w = 0. If f(z) satisfies (64.1),
f(w) will be continuous from the right at w = 0. If f(z) satisfies the analogous condi-
tion (60.4) for Im (z) < 0, f(w) will be continuous from the left.

Example. Let
f(w)“PVf lxi sdx.

Then f(z) = z/(1 + z2), which satisfies both (64.3) and (64.5), but neither (64.1) nor (60.4). By
Theorem 1 we have

flw) = 2mi R, [1 +°’Z } mie=s  for @ > 0.
By Theorem 2

iwz

flw) = —2m9{-{fj_ Zz] = —miev  for o < 0.

Clearly,
f(0)=0.
Note that f(w) is discontinuous at @ = 0.
Example. Let

- _ o eiwl‘
Flw) _-fw L& .

Now f(z) = 1/(1 + z?), which satisfies (64.1) and (60.4). We have
flw) = Zﬂ'i%= mee  for >0,
and
flw) = —Zm':e%= me*  for w >0.
Thus
Hlw) =meb,

which is continuous everywhere.
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EXERCISES

= x3eiw.1‘

e 1+ X477

2 xeiw.r d
=  —, 7ax.

e e

Y x3€im.1‘
3. Evaluate PV J;x (1_-|:_x2_)2dx

1. Evaluate PV
2. Evaluate PV
sin x

4. Evaluate f ) de by means of an integral over a contour indented around z = 0.

-0

iy |

N .

€ L

N

5. Evaluate PV f ? %‘éﬁe“’%dx, where A > 0,

HINT: See Problem 4.

65. Schwarz’s Inequality and the Triangle Inequality for Infinite Integrals.

We have shown in section 19 that if f(x) and g(x) are real-valued functions on a
finite interval a < x < b, Schwarz’s inequality

2 b b
< [" 100 s [ lgtopax

holds. If f(x) and g(x) are complex-valued, this inequality still holds, since

= f: | f(x)||g () |dx,

(65.1)

fa " g (x)dx

fu " fx)g(x)dx

and |f(x)| and |g(x)]| are real-valued.
We shall now extend Schwarz’s inequality to infinite integrals.
A function f(x) is said to be absolutely integrable if the improper integral

[ 1fwas

has a finite value. It follows immediately that the improper integral f ) f(x)dx also

converges.
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The function f(x) is said to be square integrable if

[ 1seoleas

has a finite value.
We first observe that if f(x) and g(x) are square integrable, the product f{x)g(x)
is absolutely integrable. For by definition there is for every € > 0 an A, such that

b
f |fl2dx < €

b
[ lg|?dx < €
a

whenever b > a = A or a < b < —A.. It follows from (65.1) applied to | f(x)| and |g(x) |
that

[} 17 llgolar < e

whenever b > a > A. or a < b = —A.. Therefore,
o0 [/]
[ 1sellgtalas = tim [ 1001 g(x) s

exists. It follows that

o b
| fngwar=tim [ fg(x)ds
exists. Taking these limits in (65.1), we find Schwarz’s inequality for infinite integrals:

[ rwswar = [ Iswrax [ lepax

(65.2)

By setting g(x) = 1 in (65.1), we find that on a finite interval a square integrable
function f(x) is also absolutely integrable. For

[ 1rotac={o-a [ 1r0ora]™

This statement is no longer true on an infinite interval. In fact, there are square in-
tegrable functions which are not absolutely integrable because they do not approach
zero sufficiently rapidly. On the other hand, an absolutely integrable function need not
be square integrable.

Examples: f(x) = (1+ x?) ~¥2 is square integrable, but not absolutely integrable for —o < x < o0;
f(x) = |x|~¥2(1 + x?)~! is absolutely integrable, but not square integrable on any interval con-
taining x = 0.

An immediate consequence of Schwarz’s inequality is that

f_: |f+ gi%dx = J_: | fl2dx + f:, fedx + fw fedx + fw |g|2dx
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o S w0 1/2 o
o S I T e

or

(65.3) ([ 1r+aiadd™ {7 irpa] ™+ {[7 toparf™

This is known as the triangle inequality. It is of particular importance in studying
convergence in the mean.

We say that the sequence of square integrable functions f,(x) converges in the mean
to the square integrable function f(x) if

(65.4) lim | [f(x) — fulx) |2dx = 0.

oo J—ow

(The fact that f(x) —f,.(x) is also square integrable follows from the triangle inequality.)
By the triangle inequality we see that

{J’io ’f|2dx}”2 = {[_o; ‘fn|2dx}1/2 + {[:o If“fnlzdx}lfz
U—Z |fn|2dx}"2 < {f: |f|2dx}m N {f: " _fIde}l/Z.

Combining these, we have

{ fz |f |2dx}”2 _ { f: | fandx}uzl - { fz =l dx}”z,

Hence, if the sequence f,(x) converges in the mean to f(x),

and

(65.5) lim | |f(x)|2dx = f_’; | F(x) [2dx.

n—re —oe

We also note that since f, — fu=fo —f+f— fm,
U [ fo —fmlzdx}m = { f &f—fnde}"z + { f f— fm|2dx}1/2.

Hence, if the sequence f,(x) converges in the mean to a function f(x), it satisfies the
Cauchy criterion

(65.6) lim | |fy = ful?dx =0.

The following theorem relates uniform convergence to convergence in the mean
when the Cauchy criterion holds.

THEOREM 1. If the sequence of square integrable functions f,(x) converges to a func-
tion f(x) uniformly on every finite interval a = x = b, and if it satisfies the Cauchy
criterion (65.6) then f(x) is also square integrable, and f,(x) converges to f(x) in the
mean.
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Proof. By the triangle inequality we have for any finite intervala = x < b

N
= |b— a1 max | f(x) = fulx)] + {f: Ifa _fm|2dx}1/2-

By the Cauchy criterion (65.6) we can make the second term on the right less than
any € > 0 by choosing n > m > N.. Letting n — < and using the fact that f,(x) — f(x)
uniformly for a = x = b, we obtain the inequality

[ 1= falrax < &

for m > N.. Since N¢ is independent of ¢ and b, we may let a — —c and b — = to find
that

(65.7) [j | f(x) — fu(x)|?dx < € for m > N..

By definition f,(x) — f(x) in the mean. The inequality (65.7) together with the triangle
inequality implies that f(x) is square integrable.

Remark. The Cauchy criterion is essential in this theorem. A sequence may converge
uniformly without converging in the mean. (This cannot happen on a finite interval.)

Example. The sequence

fa(x) = p~12em=tmt

clearly converges uniformly to f(x) = 0. However,

nte—2xinidy = \/q[2,

[ 150 = fuwpax= [

so that f,(x) does not converge to 0 in the mean.

The Cauchy criterion alone is sufficient for convergence in the mean. This is the
cohtent of the Riesz-Fischer theorem, which we state without proof. For a proof see,
e.g., E. C. Titchmarsh, The Theory of Functions, Oxford (1939), pp. 386-388.

THEOREM 2. (Riesz-Fischer theorem). To every sequence of square integrable functions
fr(x) which satisfies the Cauchy criterion (65.6) there corresponds a square integrablet
function f(x) such that f,(x) converges to f(x) in the mean.

We define a function #{x) to be a null function if it is identically zero with the excep-
tion of such a small set of points that

f:, In(x) Pdx = 0.

It can be shown that this condition is equivalent to the requirement that
T'o
f n(x)dx=0
13

for all xo. (See Exercise 8).

t The Riesz-Fischer thecrem reguires the introduction of the Lebesgue integral, because the limit function
f(x) may be so highly discontinuous that the concept of Riemann integral cannot be applied to it.



CHAP. X 65. Schwarz's Inequality for Infinite Integrals 309

Example. The function
(x) = 1 when x==1,
=10 otherwise
is a null function.

If the sequence f(x) converges in the mean to f(x), we find by the triangle in-
equality that

lim | )f(x) + n(x) = fu(x)|2dx < lim HJ: |£(x) ~f"’(x)12dx}llz * U:o Iandx}mT

m— J—0 Figal

= lim | | £(x) — fulx) Px

H—rao

= (.

Thus the sequence f,(x) also converges in the mean to f(x) + n(x).
Suppose, on the other hand that the sequence fn(x) converges in the mean to two
different functions f(x) and g(x). Then by the triangle inequality

{ f |£x) — g(x) |2dx}”2 = { f |£(x) = fnl) |2dx}”2 + { [ " 180 = fal) |2dx}”2,

Letting m —> «, we see that f(x) — g(x) is a null function.
Thus, the limit in the mean of a sequence of functions is defined to within a null function.

EXERCISES

1. Show that if p(x) is a real nonnegative weight function, then
o 2 £ o
[ rwstipmas| = [ 10 redx [ leiptax

2. Prove the following form of the triangle inequality

U—Z |f|2dx}1/2 B {f:o |<€'|“"dx}1/2 < U_“; If— g|2dx} ti2

3. Show that the sequence of functions f,(x) = n'4e~"l%l converges in the mean to f(x) = 0.
What is the limit of f,(0)?

4. Show that if the sequence fr.(x) converges to f(x) in the mean and g.{x) converges to
g(x) in the mean, then the sequence f»(x) + gn(x) converges to f(x) + g(x) in the mean.

5. Show that if f»(x) — f(x) in the mean, then FO Su(x)dx —> fxo f(x)dx uniformly in x, on
0 (1]
any finite interval —L =< x, = L.
6. Show that if f,(x) —> f(x) in the mean and g(x) is square integrable, then

[ fiwewar— [ fmgmas,

7. Show that if {a,} and {b,} are any sequences of numbers such that = {|a.|? + |b.|?} con-
1

verges, then there is a square integrable function f(x) on the interval —r < x < 7 whose Fourier

series is 3ap+ = {ax cos nx + b, sin nx}. HINT: Consider the sequence of functions fv(x) defined

n=1
to be 2a, + £ {a, cos nx + b, sin nx} for |x| < w and O for |x| > =, and use the Riesz-Fischer
1

theorem.
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8. Show that a square integrable function n{x) is a null function if and only if
L " n(x)dx=20

for all xo. HINT: Use Schwarz’s inequality. Then expand n(x) on any finite interval —=M <x < M
in a Fourier series, and use Parseval’s equation (16.5).

66. Fourier Transforms of Square Integrable Functions: the Parseval Equation.
We shall now study the class of square integrable functions f(x). A function f(x)
is said to be square integrable if f - | f(x)|*dx is finite. We shall show that if f(x) is both

absolutely integrable and square integrable, its Fourier transform is square integrable.
We shall then extend the definition of the Fourier transform in such a way that every
square integrable function has a square integrable Fourier transform.

Let f(x) be a square integrable function. For any integer M > 0 we define

R M
(66.1) fuw) = [ fxyetds.

For a fixed M we expand f(x) on the interval =M = x = M in a Fourier series. We
write this series in the complex form:

f(x) ~ 2 Cne-imr.r/M

—oe

where

%(an + ib,) for n=0

M
Cp = %4 J’ f(x)ein-n'r/de —
™ E(a_,, —ib_n) for n=0.

We also expand the function ¢* on the same interval in a Fourier series:

a0
eglox ~ 2 cn*e—imr.r/M,

where

1 (M . ( sin (Mw + nir)
* — ix| wt f—
T M f-—M (o) dx Mo + nw

(For Mw + nm = 0 we obtain the limiting value 1.}
Applying the Parseval equation (16.6) to the integral in (66.1), we find that

fulw) = M[%aoao* + 3 {aaa.* + bﬂbn*}]
1

(66.2)
= M[Zcoco* +5;‘ {(cn +c-n) (ca* + cn®) — (cn— C—p) (cn* — C—n*)}]
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=2M 2 cac-n*

<}

sin (Mw — nir)

=M .Zm Cn Mo — nmw
Also by Parseval’s equation
. 2 =7 2 dx,
(6.3) 3 fet= g7 [, 11 s

and

< sin® (Mw — nm) _ oz l2 1
2 " (Mo — nm)? 2M[ letvr|dx = 1.

Hence we see by applying Schwarz’s inequality for series to (66.2) that

2<4M2{_LIM ]flzdx—-g E |2}
- 2M | u B

which approaches zero as N — oo, uniformly in w. That is, the series in (66.2) converges
uniformly.
By means of contour integration we find that

Jul(w) —2M 2

" (Ma — nm)

f“ sin (Mw — nw) sin (Mw—h-r)d

cw  Mw—nm Mo — Ir s

i for [ =n.

[ 0 for [#n
Thus (66.2) represents the function fi(w) as a uniformly convergent series of orthog-
onal functions on the interval —c < @ < o,
We consider the sequence of partial sums
1

oi(w) = 2M = Cnsin (Mw — nr)
-1

Mw — nm

By the orthogonality we have for / > m > 0
-m—1
f lo(w) — on(w)|?de = 471-M{ =z eal?+ E lcnlz}

Since E |ca]? converges, the right-hand side approaches zero as / and m — «. Therefore

the sequence o1(w) satisfies the Cauchy criterion. We have already shown that o;(w)
—> fu(w) uniformly. Hence by Theorem 1 of the preceding section oy(w) — fu(w) in
the mean. Then by (65.5)
f " | fu(w) 2do = lim f " it de
-0 J—»0 —o0
=47M = |ca|®

We now use the relation (66.3) to obtain the identity

(66.4) f | furl @) I2de = 207 f L£Cx) [Pdx.
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For any M, > M, > 0 we can write the difference fy,(®) — fu, (w) as
o) = fi () = [ fin(x) e,
M,

where we have put

[0 for |x] < M,
S (x) = {[(x) for |x] = M,.

Thus by (66.4)
[ i) = fin o) 2o =2 [ |
o K s
p j |fI2dx + 27 fM | f|2dx.

Since f(x) is square integrable, the right-hand side approaches zero as M, and M.
approach infinity. That is, the sequence fi(w) satisfies the Cauchy criterion for con-
vergence in the mean.

If f(x) is absolutely integrable as well as square integrable, the integral defining its
Fourier transform f(w) converges uniformly. That is, fM(w) — f(w) uniformly. Hence
by Theorem 1 of the preceding section fM(w) — f(w) in the mean.

If f(x) is not absolutely integrable, the integral defining its Fourier transform may
not converge as an improper integral. We then define the Fourier transform f(w) of
f(x) to be the limit in the mean of the sequence fi(w):

N M
(66.5) flw) =limin meanf f(x)éordx.
M-rx -M
The existence of this limit is assured by the Riesz-Fischer theorem.
In many cases where f(x) is not absolutely integrable the Fourier transform can be
computed as a Cauchy principal value of the Fourier integral. (See Exercise 2.)
Letting M — o« in (66.4) and using (65.5), we find that

(66.6) [ 1ft@pdo=2m [ |0 pax.

This is called Parseval’s equation. It is clearly the analog of the Parseval equation for
Fourier series.

The Parseval equation shows that f(x) determines f{w) to within a null function,
and that f(w) determines f(x) to within a null function. It is clear that two functions
differing only by a null function have the same Fourier transform.

Example. The functions

0 when [x|>1
fix)={%+  when x| =1
1 when |x| <1

and

when —1=x<1

0 when x <—1
g(x)
when x=1
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both have the Fourier transform
f ! ey = 2sinw,
-1 ()]
If f(x) and g(x) are any two square integrable (possibly complex-valued) functions,

we see from the triangle inequality that f(x) = g(x) and f(x) % ig(x) are also square
integrable. The Parseval equation (66.6) shows that

[7 1+ gldo=2m [7 15+ glta,
|7 17— apdw=2m [ 1/~ gltas,
f: \f+ ig|2dw = 27 jl | f+ ig|%dx,
[ 1f=igpdo=2m [ 15~ ighas.
We multiply the first of these identities by 1/4, the second by —1/4, the third by i/4,

and the fourth by —i/4, and add the resulting equations. Performing the squaring opera-
tions, we find after some cancellation that

(66.7) [ fF@rdo=2n | fix)g@a.

This is the general form of the Parseval equation. It holds for any square integrable
functions f(x) and g(x), either real or complex-valued, and reduces to (66.6) when

g=1

EXERCISES

1. Find the Fourier transform of f(x) = x/ (x? + 1). HINT: Use contour integration to find
fu(w), find the limit in the ordinary sense of fj;(w), and show that this is also its limit in the mean.
2. Show that if f(x) is square integrable and if the Cauchy principal value

3 M iwx
ﬂldx_zgﬁMf(x)e dx

converges uniformly to a function g(w) for a = w = b, then f(w) — g(w) is a null function for
a=w=h

3. Find the Fourier transform of sin x/x.

) n2
4. Find %ﬁdx by means of the Parseval equality (66.6).

] _— e-—im:co eiwl‘o — 1

iw
6. Find Jw s—mam%gﬂdm by means of (66.7).

a 2 sin aw
HINT: f elurdy = —

5. Find F

2dou by means of (66.6). HINT: rﬂ elordy =
0

iw

-

67. Fourier Inversion Theorems.

In many cases a problem involving a partial differential equation for a function u
may be reduced to a problem involving an ordinary differential equation for the Fourier
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transform 4 of u. It is then possible to use the essentially simpler methods of ordinary
differential equations to solve for 4. We must then determine the solution u from its
Fourier transform. The latter process is known as finding the inverse Fourier transform.
Let f(w) be the Fourier transform of a square integrable function f(x).
For an arbitrary fixed x, > 0, we define the function

0 for x<0
(67.1) g(x) =11 for 0=x=<ux
0 for x > x,.
Then
euu.ro — 1
#lw) ==

By the Parseval equation (66.7) we find that

(67.2) o f Flx)dx = f O it —
For x, < 0 we define
0 for x < x
(67.3) g(x) =1—1 for x=x=0
0 for x> 0.

Then we find that (67.2) also holds for xo < 0. For x,=0, (67.2) reduces to the identity
0=0.
By the fundamental theorem of calculus we find from (67.2) that

(67.4) Fle) = [ f =L

at each point x, where f is continuous. This is an inversion theorem. However, it is
inconvenient for computation.
To derive a better formula we let

fo) = |yt

be the Fourier transform of f(m). The Fourier transform of the function 2(w) =
(eiwr® — 1}/iw is easily found to be 2wg(—y), where g(x) is defined by (67.1) if xo > 0
and by (67.3) if x, < 0. X

The Parseval equality (66.7) applied tof(w) and g(w) and their Fourier transforms
gives

e —iwly — 1

2n [1 frdy=2m [ ) e,

Then by (67.2)
[ fyds =27 [* finyas

for all x,. Making the change of variable x = —y, we find that



CHAP. X 67. Fourier Inversion Theorems 315

L " [f=x) — 2mf(x) Jdx = 0

for all x,. By Exercise 8 of Section 65 f(—x) — 2f(x) is a null function. Since we must
neglect such functions in considering Fourier transforms, we can say that

fx) = 5f(—x),
or

(67.5) fl=x) = 5= BL8 [£11.
We have proved:

INVERSION THEOREM 1. If f(x) is square integrable, then the Fourier transform of
its Fourier transform is 27f(—x):

(67.6) f(x) = 21; f_“; Aw)e-vrdo.

This improper integral in general converges to f(x) only in the mean. However, if
f (w) is absolutely integrable, it converges uniformly as an ordinary improper integral.
In most applications the inversion integral (67.6) can be evaluated as a Cauchy principal
value.

) Inversion Theorem 1 applied to f(w) shows that every square integrable function
f(w) is the Fourier transform of some square integrable function f(x) given by (67.6).

For the purpose of computation it is useful to know when the inverse transform
(67.6) can be obtained as a Cauchy principal value. Moreover, we wish to extend
the inversion formula to functions f(x) that are absolutely integrable but not neces-
sarily square integrable.

If f(x) is square integrable, we apply the Parseval equality (66.7) with the function

_sin L{x — xy)
D

g(x)

’

whose Fourier transform is

— {em for |w| <L
=10  for o> L.
We obtain the equation
Lo © . _
(67.7) f Flw)e-wtoda = f RSl =5
~-L -0 X Xo

If f(x) is absolutely integrable but not nec.ssarily square integrable, its Fourier
integral converges uniformly, and we can der ve (67.7) by multiplying both sides of
the defining equation

flw) = [ fixreinrds
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by e—i»To integrating with respect to w from —L to L, and changing the order of integra-
tion. Thus (67.7) holds if f(x) is either square integrable or absolutely integrable.

To derive the inversion formula we need the following lemma, which is an exten-
sion of the Riemann-Lebesgue lemma of Section 17,

LEMMA (Riemann-Lebesgue Lemma). If f ) | f(x)}dx converges, then

00

lim flw) = lim | f(x)el*edx = 0.

oo w3 J—

Proof. Since the Fourier integral converges uniformly and e is continuous, f(w)
is uniformly continuous in . If f{x) is also square integrable, f | /|2dw converges.
This, together with the uniform continuity of £, implies that f(w) — 0 as w —> =%,

If fis not square integrable, we consider the sequence of “truncated” functions

Fulx) = {j(;(x) whenever |f(x)| = n

whenever |f(x)| > n.

The function f, is square integrable, since

ﬁ; | ful?dx < n J’: | fuldx = n J:Z | £ldx.

Hence, its Fourier transform f,(w) approaches zero as |o| — «.
It follows from the definition of an improper integral that

f” \f—fildx—>0  asn— o,
If we choose an # so large that
= 1
|7 15 fildx < 3,

we find that

(@) =n(@)] = | [ [5x) = ) Jeimmds| < e

We now choose |w| so large that |f.{(w)| < te. Then |f(w)| < te + te = € for |w
sufficiently large. This proves the lemma.

We now return to (67.7). We suppose that f(x) is continuzous at x,, and define the
two functions

(67.8) ) =17 for |zl =1
Sx)_ for |x— x| > 1,
X— X
and
0 for |x - X()l > 1.
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The right-hand side of equation (67.7) can now be written in the form

f " fx)? S‘“xL_("x— %) gy = f " 2[h(x) + he(x)] sin L{x — xo)dx
— 1] —co
zo+1 gin L{x — xo)
+ 2f(x0) Lo_l E— dx.
Welet y=x— x, and z= L(x — xy). Then

2 sin L(x — xp) B

" S T dr=—i | hi(x+y) (el — emiti)dy

—0

—i jm ha(xo + y) (€'¥ — e~iL¥)dy

L
+ 2f(x0) I_L ﬂl-]—za'z.

Z

If f(x) is either absolutely integrable or square integrable, then A,(x) is absolutely
integrable, and hence the first integral on the right approaches zero as L — « by the
Riemann-Lebesgue lemma.

If f(x) is sufficiently smooth (for example, differentiable or Hoélder continuous)
at x = x,, he will be absolutely integrable. Then the second integral also approaches
Zero as L. — oo,

Finally, it is easily found by contour integration that the last integral approaches
 as L — o, Thus, the integral on the left has the limit 27f(x,).

Using (67.7), we have the theorem:

INVERSION THEOREM 2. If f(x) is either absolutely integrable or square integrable,
and if f(x) is so smooth at x, that the function /.(x) defined by (67.9) is absolutely
integrable, then

(67.10) Flx) = 1im | flw)e-vrode,

277 [0 J—L

If f{x) has a jump discontinuity at x,, we find in a similar manner that if the function

f(x) = f(% —0)

for xo—1=x<xp

X — Xo
ha(x) = fx) = f(x +0) for xo<x=x+1
X — Xo
0 for |x— x| > 1
is absolutely integrable, then "
| b .. L . )
(67.11) S[fxo+0) +fxo—0)] =z—1lim | flw)e“dw.
2 27 I—e J-L

Note that the above conditions for the inversion formulas are the same as in the case
of Fourier series.

As we have mentioned earlier, the Fourier transform f(w) determines f(x) only
to within a null function. However, in the solution of differential equations we are
usually only concerned with continuously differentiable functions, which are com-
pletely determined by (67.10).
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Example. Solve the heat conduction problem in an infinite slab:

du  u_
(67.12) “é?—'a—xz—- for —o<x <o, t>0,
u(x, 0) = f(x),

u(x, t) bounded.

It is easily seen that the maximum principle |#(x, )| = max |f(x)| holds. (See Exercise 7.)
It follows that the problem has at most one solution, and that this solution depends continuously
on f(x).

We suppose that f(x) is absolutely integrable. We make the hypothesis that u, du/dt, du/dx,
and #%u/ax? are continuous in x and ¢, and absolutely integrable in x, uniformly in 7. Then # and
du/dt approach zero as x — + o,

If our hypotheses are valid, # has a Fourier transform

ilw, t) = fw u(x, r)eierdx,

and
8 [aulat] = oa/ot,
& [9%ufox?] = —w?i.
Taking Fourier transforms with respect to x in (67.12), we obtain the initial value problem

04 | ,.
T + *l = 9,
i(w, 0} =f(w)
whose solution is
i(w, 1) =Fflw)e-o.

Then
N LI .
u(x, 1) =5 lim L e-07f (o) e~ dio.
This is the solution formula.

We remark that the Fourier transform of an absolutely integrable function need not
be absolutely integrable. For this reason the inversion integral (67.10) is a Cauchy
principal value.

Example. The Fourier transform of the absolutely integrable function

1 for x| =1
fx) = {O for |x| >1
1s
2sinw,
@

which is not absolutely integrable.

Since the Fourier integral of an absolutely integrable function converges uniformly
in w, f(w) must be a continuous function of w, even if f(x) is discontinuous. Moreover,
by the Riemann-Lebesgue lemma f(w) — 0 as  — %, We saw that a given function
g(w) is the Fourier transform of a square integrable function f(x) if and only if g is
square integrable. There is no such simple characterization of the Fourier transform
of an absolutely integrable function.
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The computation of a Fourier transform or its inverse, like the computation of any
integral, can often be done with the aid of an integral table. Because of the many ap-
plications of Fourier transforms there are special tables, called Fourier transform

tables, which list only integrals of the form f ) f(x)e**dx. By simply replacing x by o

and w by —x, one can also find inverse transforms with the same table.

The use of Fourier transforms is analogous to that of logarithms, A problem involving
multiplication or division can be reduced to one involving the simpler processes of addi-
tion or subtraction by taking logarithms and then finding an antilogarithm.

In the same way, a problem involving derivatives with respect to x can be reduced to
a simpler problem involving only multiplication by polynomials in w by taking Fourier
transforms and then finding an inverse transform.

However, while it is possible to tabulate the logarithms of all numbers to within a
certain accuracy, it is not possible to tabulate the Fourier transforms of all functions.
Therefore the inversion integral (67.10) for a particular problem must frequently be
evaluated by special means such as contour integration or even numerical integration.

EXERCISES

1. Find the inverse transform by means of (67.10) for

sin aw
@ =, —
1 —cosaw
b) ————
@
) e,

w
(d) o F1
2. Verify (67.10) when

_ 1 for |x} <a
flx) = {0 for |x| = a.

3. Solve
0%u , *u
a—x2+§)ﬁ=0 for —e<x <o, O0<y<l,
u(x, 0) = e-2lxl,
u(x, 1) =0,
u(x,y)—0 uniformly in y, as x — =oc,
4, Solve
ou Pu _ _
3% 9 for —o < x <o, >0,

u(x, 0) = e,
u(x, t) bounded.

HINT: §[e-22*] = \/—E—e—wﬁ“

5. Solve
2
%_%:'F(x,t) for —»<x<w®, >0,
u(x, 0) =0,

u{x, 1) bounded.
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6. Show that if

ou  o*u _
"é-E—E'xﬂng for e <x<», >0,
u(x, 0) = f(x),

ulx,t) >0 uniformly in ¢, as x — =,
then
|lu(x, )| = max | f(x)]
HINT: Apply the maximum principle of Section 13 to the strip
—L=x=L,t=0, and let L — oo,
7. By making the change of dependent variables
erlalty—1)
Vie—1’
show that there is at most one solution of the problem

2
%—%=0 for 0 <1t <1y,

u(x, 0) = f(x)

ul(x, ty =v(x, 1)

which satisfies
u(x, t)ye =" — uniformly in f, as x ~—> =0,

and that this solution depends continuously on f(x). In particular show that if f and u are
bounded, |u| = max |f]|

HINT: Derive a maximum principle for v. Then let 1, — .

8. Solve
Pu | Fu
5‘x—2+a—y2—u=0 for —o0 < x < ™, 0<y<1,
ou .
3y (5. 0 =0,
u(x, 1) = e,
u(x,y)—=0 uniformly in y, as x — =,
9. Solve
u |, d*u 2
F-‘-—é}?:el for —oo<x<°0, 0<y<1,
u{x, 0) =0,
u(x, 1) =0,
u(x,y)—>0 uniformly in y, as x — =,

68. Sine and Cosine Transforms.

If f(x) is an odd function, so that

(68.1) flx) =—f(),

we see by symmetry that

ﬁo f(x) cos wxdx = 0.
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Hence, the Fourier transform reduces to
Aw)=i J:f(x) sin wxdx
= 2i fo " f(x) sin wxdx.
If f(x) is given for 0 < x < =, its sine transform is defined as

(68.2) S.[f] = L " f(x) sin wxdx.

If we extend f(x) to —= < x < « as an odd function by (68.1), we have
o) =2i8,[f].

Hence, the inversion theorem becomes

flx) = 51; }me f_’: e~ 0r2i5,[ fldw.

The sine transform is clearly an odd function of w. Hence the integral on the right

L
becomes 4 f sin wx 3 ;[ f]dw. Thus the inversion theorem is
0

(68.3) fy =2 L ® sin wx®,[ f]do,
or
(68.4) flx) = 28,[8.011]

for a function f{x) defined for 0 < x < «. (Note that we only need to know & [ f] for
0 < w < =, and that the Cauchy principal value is replaced by an ordinary improper
integral.)

Similarly, we can define the cosine transform

(68.5) S.[f] = L " f(x) cos wxdx

for a function f defined for 0 < x < o=,
If we extend f(x) to —= < x < = as an even function (that is, f(—x) = f(x)), we have

Flw) =2F.[F].

The function & [ f] is even in w. Hence the inversion theorem becomes

(68.6) f(x) = % L " cos wxS.[ f]dw,
or
(68.7) flx) = %&-[‘Sc[f]]

for a function f(x) defined for 0 < x < .
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If f(x) is square integrable, the integrals from zero to infinity used in defining the
sine and cosine transforms may not converge as improper integrals. They are then to
be defined as limits in the mean of integrals from 0 to M. Then & ;[ f] and & [ f] are
square integrable, the inversion formulas (68.4) and (68.7) are valid, and the Parseval
equations

[ 1rrac=2 [T 1500 =2 [7 15051 o

0 m Jo ™

hold.
Sine and cosine transforms are often useful in treating problems with boundary

conditions only at x = 0.
However, we note that

S f] =E°f’(x) sin wxdx = f(x) sin wx ]: —w mecos wxdx
z—w%c'[f],

provided f(x) — 0 as x = «, Thus differentiation interchanges sine and cosine trans-
forms. Therefore, sine transforms, like sine series, are used for problems involving
only derivatives of even order. After two integrations by parts, we find that

Tl ] =F0)e — &?Ts[ f],
Se[f]=—(0) — *T[f],

provided f(x) and f'(x) — 0 as x — «. Thus, the sine transform is particularly useful
when f(0) is given, while the cosine transform is useful when f’(0) is known.

(68.8)

Example. Solve the heat conduction problem in a semi-infinite slab

2
%—%ZO for 0 <x<ow, >0,
M(O, [)___09

u(x, 0) =f(x),

u(x, t) bounded.

We suppose that fis absolutely integrable, and that u, du/d¢, du/dx, and 9°u/dx* are continuous
and absolutely integrable in x for each fixed ¢. Taking sine transforms with respect to x, and

putting U(w, t) = &[u], we find
aUu

¥ + ?U =90,
U(w, 0) =8 [f].
Thus
Ulw, 1) = B[ Fl(w)e™,
and

u(x, t) =%Lm B[ fl{w)e ™ sin wxdw.

This solution coincides with the solution of the problem (67.12) of heat conduction
in an infinite slab that was found in Section 67, provided we extend f(x) to—© < x <
as an odd function. The corresponding solution u(x, ¢) of the problem (67.12) is then
also odd about x = 0, and hence «(0, t) = 0.
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EXERCISES

1. Find the sine transforms of
@ e”
(b) xe~.
2. Find the cosine transforms of 1{a) and (b).
3. Solve the problem of variable end temperature on a semi-infinite slab

2
QL—‘~6—M 0 for 0<x<o, >0,

ar  ox?
u(0, 1) = g(1),
ulx, 0y =0,

u(x, t) bounded.
4. Solve Laplace’s equation on a half-strip
Pu | Pu

ax2+5y——0 for 0 <x<oewo, <y<l,
u(0, y) =
u—0 uniformly in y, as x — o,
u(x, 1) =0,
u(x, 0) = f(x).

5. Solve

2

gx +g;;—0 for 0<x<ow, 0<y<lI,
u(0,y) =y(l—y),
u—0 uniformly in y, as x — o,
u(x, 0) =0,
u(x, 1) =0.

6. Evaluate the sine and cosine transforms of x—#, 0 < a < 1 in terms of the gamma function
I'Nl—a)= J ” e ¥y-°dy by means of an integral over a contour consisting of a quarter circle
0

with an indentation.
Y

\

€ L
7. Solve
2
%’;—SF”Jru:O for 0 <x<e, >0,
du —
S0, 0 =£(0),
u(x,0) =0,

u(x, t) bounded

for u as a single integral involving f(¢). HINT: f " e cos wxdx = %@e—aﬂ/m .
1]
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8. Solve

du  du _
3 5;5+tu~0 for x>0, t>0,

u(x, 0) = ¢-x,
u _
ax(o’ [) - 0,

u(x, ) =0 uniformly in ¢, as x — «,

69. Some Operational Formulas.

We have already shown in Section 63 that if f(x) is absolutely integrable, approaches
zero as x — =, and has a derivative f'{x), then

(69.1) S[f]=—iwS[f].

In particular, this formula is true if both f(x) and f’ (x)} are absolutely integrable.

Since the inverse of the Fourier transformation is again a Fourier transformation,
we can expect the analogous formula in the opposite direction. That is, the derivative
of the Fourier transform of f(x) is the Fourier transform of ixf(x):

(69.2) Blinf(x)] = - BL11.

This formula states nothing but the fact that the Fourier transformation can be differ-
entiated under the integral sign. It is certainly correct if the resulting integral converges
uniformly in . Thus, if xf(x) is absolutely integrable, &[f] is continuously dif-
ferentiable, and the operational formula (69.2) holds.

We consider now the function

g(x} = flax — b)

obtained by replacing the variable x by ax — b, where a and b are real constants.
This is a linear change of variable. If f(x) is absolutely integrable, so is g(x), and

flw) = [ erflax— byds.
Putting £ = ax — b, we have fora > 0
dw) =5 [ emewrnr(e)de.

If a < 0, the limits of integration are reversed, which introduces a minus sign. Thus
we have the shift formula

(69.3) S flax — b)] = T}I-Ie“"”f”f(%).

In particular, if = 1 we see that translation to the right by b corresponds to multiply-
ing the Fourier transform by e, If b = (), we see that multiplying x by a constant a
corresponds to dividing » by a and dividing the Fourier transform by |a|.
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Applying the formula to f instead of f and using the fact that §[f] = 2nf(—x), we
formally find

(69.4) Fleerf(x)] = flw + ¢).

That this formula is true for any absolutely integrable f(x) is clear from the fact that
%[eicxf] — Jm ei(w+c)1‘f(x)dx_
Since the Fourier transform is linear, we find from (69.4) that

Blcos exf()] = Blew(x)] +3 Ble-oof(x)]

(62 = 1w+ o) +fw—o,
and
(69.6) S[sin cxf(x)] = %[f(w te)—flw—a)].

The above rules allow us to compute new Fourier transforms or inverse transforms
from known ones without further integration. They greatly extend the usefulness of a
table of Fourier transforms, since each entry leads to many other transform pairs.

Example. The Fourier transform of the function
_ [0 for |x]>1
flx) = {1 for |x| =1

is

foy__28inw
flo) =>="——
The shift formula (69.3) shows that the Fourier transform of the function
0 for x<c
g(x) =11 for c=x=d
0 for x>d

)/sm%d—dw
& e d+0)w/2 .
glw)=2e -

The Fourier transform of the single sine wave
0 for x=90
h(x) ={sinx for 0=x=n
0 for x m
= sin x f(%x* 1)
is then found by (69.6) to be

2 ; 1
€702 cos ST,
- 2

h{w) =1
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EXERCISES

L If & [e-**] = \/ar e-*1, find the Fourier transform of e-#(=-b»,
2. Find the Fourier transform of

e~ sin cx.

3. Find the solution (in the form of an integral) of the difference-differential equation

ux+1,0) = 2u(x, ) +u(x—1,0) =2(x, 1),
u(x, 0) = f(x),
for which fi |u|dx is finite.
HINT: Use the shift formula (69.3).

4. Find the solution (in the form of an integral) of the ordinary differential equation

x'+u —xu=0

for which |~ juldx is finite.

HINT: Use (69.1) and (69.2). NOTE: The solution is a Bessel function with imaginary argument
K0(|x|).

70. The Convolution Product.

Let f(x) and g(x) be any functions that are both absolutely integrable and square
integrable. Then their Fourier transforms f(w) and §(w) are square integrable.

By the shift formula (69.3) we see that for a fixed x, the function ei*=of(—w) is the
Fourier transform of f{x, — x). These functions are again square integrable. There-
fore by the Parseval equation (66.7)

2 | oo ET@ldo = [ fi— x)gTds

It is easily seen that if we let

h(x) =g(x),
then
hw) = f " etorg(x)dx
= fw e~oZo(x)dx
=7,
Thus the Parseval equation can be written
(70.1) L f " etosof(—) h (—w) doo = f " flxo — x)h(x)dx.

The function of xy, which appears on the right-hand side of this equation is called the
convolution product of the functions f and A. It is denoted by fxh:
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(10.2) fehtan) = [~ fixa—x)h(x)ds.
The convolution product has many of the properties of an ordinary product. It is
linear in f and A:

(afi + bfs)*h = afixh + bfyxh,
f* (ah1 + bhz) = af*h1 + bf*hz,

and it is commutative:
feh = hf.

The latter identity can be seen by making the change of variables y = x, — x in (70.2).
It is also associative:

fr(g=h) = (fxg)*h.

It follows from Schwarz’s inequality that the defining integral (70.2) converges
uniformly, and that the function fxh is bounded:

|foh] = \/ [ tppeax [ s

Since f and h are absolutely integrable as well as square integrable, we find that for
any finite interval (4, B)

r

ﬁo f(xo— x)h(x)dx

do= [* [ 15— 0o
= [ [" 1= wldnlh(o s
= [T 7 1ta— w)ldlhtn]ax
= fw | fdx f“’w \h|dx.

Thus we can let B — «, A — —o to find that f*h is absolutely integrable, and

(70.3) fm | k| dx, < ﬁ; \f|dx f:, \h|dx.

The formula (70.1) states that the absolutely integrable function f*h is 27 times
the Fourier transform of the absolutely integrable functionf (—w)h(—w).

Therefore by the Inversion Theorem 2, the product f(w)fz(w) is the Fourier trans-
form of fxh. We have proved:

CONVOLUTION :I‘HEORF:M. If f(x) and h(x) are both absolutely integrable and square
integrable, and if f(w) and /() are their Fourier transforms, then the product f (o)A ()
is the Fourier transform of the convolution product fxh.

Example. We again consider the heat flow problem

du  u
‘E—gx—z—o for —o0 < X < oo, I>0,
u(x, 0) =f(x),

u(x, t) bounded.
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Taking Fourier transforms, we obtain the problem

M | o
at+wu 0,

2w, 0) = f(w),
whose solution is
i =fe".

If we write the inversion formula
— 1_ * —-im.ra —w?
ulx, 1) = o fvx e rf () e " dw,

and if f is absolutely integrable so that f(w) is bounded, the integral may be differentiated under
the integral sign any number of times for ¢ > 0. In particular, we see that « satisfies the heat
equation. However, it is not easy to show that u satisfies the initial conditions, since the in-
tegral may not converge uniformly near ¢t = 0.

Now e~«* s the Fourier transform of

1
V dart

_24.‘
e T,

which is absolutely integrable, square integrable, and bounded for ¢ > 0. Hence,

1 j” ey
e\ r-yrlidy
Vi )TV ?

provided f(x) is absolutely integrable and square integrable. The fact that u(x, t) approaches
f(xo) as (x, t) — (xo, 0) at points x, where f(x) is continuous follows from the facts that for
t>0

(70.4) ulx, t) =

L[ etwmgy = 1,

e (r-urat > (),

Vit |-
and that
lim e (r it = whenever y # xo.
=0 At

b o 7

In general, it is easier to evaluate the convolution integral (70.4) than it is to find the
Fourier transform f(w) and the inverse transform of fe-«, Moreover, the solution
(70.4) can be shown to satisfy the differential equation and the initial condition under
the much weaker hypothesis that f(x)e~2*! is continuous and bounded for some « > 0.
The function f(x) need not even have a Fourier transform at all. In particular, the
temperature need not approach the same value when x — —« as when x — o,

It is very often true that a formula found by the formalism of the Fourier transform
gives a solution under much weaker hypotheses than those necessary to justify the
derivation of the solution formula itself.

The integral (70.4) expresses the solution as a sum of the effects of f(y) at various
points. The heat kernel

1
4t

e*(-r—y)zltu

represents the temperature at x at time ¢ due to a concentrated *‘hot spot” at y at time
zero. This temperature depends only on the difference x — y, because of the fact that
the medium is homogeneous; that is, that the coefficients in the heat equation do not
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depend on x. It is this fact which enables us to use the Fourier transform and allows
us to write the solution as a convolution product.

EXERCISES

1. Find the inverse Fourier transform of

o 1
glw) = F T

by using the convolution theorem. HINT: &[e 1*!] = 2/(w? + 1).
2. Find the Fourier transform of

F) = [* e eigay,

in terms of g(w).

3. Solve
P*u | Fu
ok T a2 =0 for o <x<ow (0<y<om,
u(x, 0) = f(x),

u(x,y)— 0 as x> +y?— o

as an integral involving f(x).
4. Solve

2
%~%+lu=0 for —e <x <o, 1>0,

u(x, 0) = f(x),
u(x, t) bounded.

5. Show that if f(x) and #(x) both vanish for |x| > M, the convolution theorem can be
obtained by change of the order of integration and a change of variables.

71. Multiple Fourier Transforms: The Heat Equation in Three Dimensions.

Consider the initial value probiem

ou [0%u | d%u ¢azu]

— | =t = >
a1 [ax2+ay o2 =0 for 1>0,
u(x,y, z,0) =flx, y, 2),

u(x, y, z, t) bounded.

(71.1)

The solution of this problem gives the temperature distribution in a three-dimensional
medium of infinite extent whose initial temperature at the point (x, y, 2) is f(x, y, z).

We suppose that the problem (71.1) has a solution « such that u, du/dt, 8%u/ox2,
d*ufoy?, and 9*u/dz® are continuous and absolutely integrable with respect to x, uni-
formly in y, z, and ¢. Taking Fourier transforms with respect to x in (71.1), we obtain
the problem

did iy i 6%4}
—_— — + .
ot [ Jy? + 0z 0,

i, ¥, 2, 0) = flo, ¥, 2).
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This procedure reduces by one the number of variables with respect to which differ-
entiation occurs, but still leaves a partial differential equation. We can remove the
partial derivative with respect to y by taking Fourier transforms with respect to y,
and then the partial derivative with respect to z by taking Fourier transforms with
respect to z. We are led to the following procedure:

Let

U (@, @n, @3, 1) = f f f el vroly (x, y, 7, 1) dxdydz,

(71.2) X PR
F(O)l, w2, wg) =f f ] ei(w1r+w2y+mszy‘(x’ v, z)dxdydz.

Multiply the equation (71.1) by eilewr+ev+az) and integrate with respect to x, y, z.

Assuming that the partial derivatives of « occurring in the equation are absolutely
integrable, and that u, du/ox, du/dy, and du/oz approach zero sufficiently rapidly at
infinity, we can show that

m fo o du al
w1 r+wey+waz) —
Lo f_m j_m ¢ pr Xy ="5r,
£ 0 © . azu N
f f f et(w1x+w2y+w32)a_x_2_dxdydz — ‘—(1)12 U,

and so forth. Then U must satisfy

%f-]-+(w12+w22+w32)f/=0 for t>0,

(w1, w2, 3, 0) = Flwr, s, w3).

This is an initial value problem for an ordinary differential equation, and has the solu-
tion

~

(71.3) Ulw,, ws, w3, 1) = F(w1, w2, w3)e-@>ro+odt
We wish to return from [/ to the function . If we define the intermediate transforms

ﬁl (0.)1, Y, %, t) = f eiwlru(xv Y, Z, I)dx,

-

ﬁ?.(wly w2, Z, t) =J’ Eimzyﬁl ((1)1, y, z, I)d}’,

we see that U is the Fourier transform of i with respect to z. Similarly, if we define

fl(wla y. g, t) :f eiwle(xa Yy, g, t)dx’

-0

fZ(wl’ w2, Z, t) =] eiwﬂ.’fl(a’h Y, Z, t)dy,
then F is the Fourier transform of f; with respect to the variable z. The function
e~lwi*tw?+o)t g the Fourier transform with respect to the variable z of
1
e‘(ﬂ)12+wzz)t—e_‘22[‘4t
Vit
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If we keep w1, we, and # fixed and apply the convolution theorem to (71.3), we find that

“ 1 o ~ R ( C)z
Us (wl, w2, Z, t) = ————m[ fZ(wI, w2, C)e—(mf‘h&)z )t——-"—z;t dC.
w —ot

We compute the inverse Fourier transforms of both sides of this equation with
respect to the variable w.. The left-hand side is the Fourier transform of (w1, y, 2, ¢)
with respect to the variable y. The right hand side is an integral with respect to { of
the Fourier transform of a convolution in the variable y. Interchanging the {-integral
with the inverse Fourier transform, we find that

1

S R 2, () Hz-0)®
Z{r?[_  filon m, e T dndl,

121(0)1, y, Z, t) =

We now take the inverse Fourier transform with respect to the variable w;. By the
same reasoning, we find after changing the order of integration that

1 @20 o9 o0 X 2
T14) ulx,y, 20 =g | [ [ 6 m, 9e IV dganay

This, then, is the formal solution of the initial value problem (71.1) for the heat equa-
tion. Instead of justifying the various steps of its derivation, we must only verify that
the formula (71.4) actually solves the problem. This is done in the same way as in the
one-dimensional case of Section 70.
The formula (71.4) solves the heat equation and the prescribed initial condition if
only
f(x,y, z) e eVEE

is continuous and bounded for some « > 0. The Fourier transform F (w1, w2, w3)
need not even be defined.

The solution (71.4) was discovered by Laplace.

In the process of deriving (71.4) we have implicitly proved the convolution theorem

(71.5)

Alor, o2, 03)g (01, w2, ws)
= ]_ f_ f_ ei(m1x+wzy+waz){‘l"°° f‘w f_w f('fa N, g)g(x - f, y—m zZ— C) dfdnd{}dxdydz
for multiple Fourier transforms

flwy, w2, w3) =f ) f . j ) flx, y, z) eilerrtwyredldxdydz,

—w

(71.6) 2wy, 0, w3) = J’“’ f“’ J'“" g(x,y, z)ellas+rem+wldydydy,

We have also observed the operational formulas
(717) foo foo fm g'_f;(x, y, Z) ei(w1x+w2y+w32)dxdydz = "iﬂ)Lf(ﬂ)], wa, ﬂ)g) s

and so on.
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_ We can also show that if f(x, y, z) is square integrable, then the same is true of
f(wi, w2, w;), and the Parseval equality

(71.8)

J'_w fj J'_w | (@1, w2, ws) |2dwidwrdws = (21)3 f_w f’ ﬁ” |£(x, v, 2) [2dxdydz

holds.
If fis absolutely integrable, it can be shown by methods like those of Section 67
that the inversion theorems

(71.9) flx,y,2) = (2 2n)? lL‘_En ﬁ f [ e-tonzrorod)f(, | wy, w3)dwdw,dws

and

(TL10)  fix,3,2) = Gags lim [ [ [ ertssomm-onsian, ws, a) dondanday

11—
Wt wg? < L2
are valid at points (x, y, z) where f has continuous partial derivatives up to order three.
Note that we have here two different notions of the Cauchy principal value.
Because of the operational formula (71.7) the multiple Fourier transform is useful
in solving various problems in partial differential equations in which the coefficients are
independent of x, y, and z. The coefficients may depend upon 1.

EXERCISES
1. Solve the problem of heat flow in two dimensions
du d%u
i [ax2+ay] 0 for t>0,

ulx, y, 0) = f(x, y),
u(x, y, t) bounded.

2. Solve the problem of heat flow with heat production

ou_ | du d%u
at [ax2 t o5 3y? s+ 972 ] F(x,y,z1) for ¢t>0,
u(x,y,z,0)=0,

u(x, v, z, t) bounded.
3. Solve the problem

2 2 2
%?—[-g—)—c%+%;%+%ﬁ]—aum0 for >0,
u(x,y,z,0)=flx,y, 2),

u(x, y, z, t) bounded.

4. Find the Fourier transform of the Green’s function for the slab —0 < x < %0, —0 <y < 0,
0 < z < 1 by considering the problem

u a2 u
ax? +5i 3}’ 5+ oz 9z
u(x1 Yy, 0)—"()(, y, )20’

u(x,y,z) >0 uniformly in z as x2+ 32— oo,

—F(x,y,z) for 0<z<1,
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72. The Three-Dimensional Wave Equation.

We consider the pure initial value problem for the three-dimensional wave equation

u u | *u | *u

—_— —_— — >
F c[ax2+ay + Z]~0 for >0,
(72.1) u(x,y, z,0) =0,

%(x, ¥, z, 0) = flx, y, 2).
Let
i, w2, w3, 1) = J:m jj J:m u(x,y, z, t)eferxroroidydydz,
f(wl, w2, W3) = J:x f_w _@ f(x, v, 7)ellerrrewresddydydz.

Then under the usual hypotheses (f absolutely integrable, # and its first and second
partial derivatives absolutely integrable in x, y, z for each ¢) we find that
0%
art

+ Mo+ @ + wf)i =0

&(0)1, w2, W3, 0) = 0
ail

at(wl, @y, w3, 0) =f(w), @, ws3).

This problem has the solution

sin \[0)12 + OJ22 + (JJ32Ct
V2 + w? + wslc

(72.2) a(wy, w2, ws, 1) =f(w1, Wz, W3)

We can then write the formal solution of the problem (72.1) in the form

2 2 2
u(x,y, z, 1) = 5 lim ] f ff(wx, ws, wUsm Vi + @? + wict
(723) (2 ) L—‘;‘;ﬂ' e \/0-'1 -+ (.022 + 0)320

e~ lnx+wy+ostldy, das daws.

If we let P = \/w12 + wo? + ws?, and note that
sin pct = -%—i(eipct — e~ipet)

we can write this formula in the form

u(xs Y, Z, t) 16m3i Eggf f ff(wl’ Wz, w3)

(72.4) p<L
: g _ W Wy, O
{e;p[chpx—py—-pz]__ 'P[“’“p"*"p”pz]}dwldwzdm.

The function /72522 is a solution of the wave equation of the type obtained
by separation of variables. For fixed ¢ it is constant along planes perpendicular to the

"-Ulw2w3)

unit vector (p In space-time it is constant on each characteristic hyperplane



334 The Fourier Transform CHAP. X

ct— %x — %y — %z = constant. Such a hyperplane represents a plane perpendicular
to the unit vector (?’ %2"’ %3) moving with speed c in the direction of this normal
vector. Thus the function ¢?“~%%%] describes a plane wave propagated with
speed c. For fixed (x, y, z), it varies sinusoidally in time with frequency pc/2w.

The function ¢ [”’* P 32]13 a plane wave with frequency pc/2w travelling with
speed c in the direction (— @, %a - ;) Thus the solution (72.4) represents u as a
P

superposition of plane waves in various directions and with various frequencies.

While this form of the solution is useful in understanding the motion, it is not well
suited for computation. It follows from the uniqueness theorem of Section 34 that the
solution at (x, y, z, £) depends only on the values of f(£, 0, {) in the sphere (£ —x)*+
(p —y)2+ ({—2)? = %> However f depends on all of £. The formula (72.4) obscures
the fact that the solution of the problem (72.1) has finite domains of dependence.

In order to obtain a better formula we substitute the definition of £ into the formula
(72.3). Then

(72.5)
u(x,y,z,t)

sin Vw2 + w:? + wict
llm f f J' f f J' , el [wilf—x)+we(n—y)+ws({—2)]
(2’“')3 Lo —x Jo fl&m. 0 Vw2 + wg? + wgtc

witHwlttwgt<L?
dfdﬂd;dwldwgd(d:; .

We interchange the order of integration in this sixfold integral. We introduce spherical
coordinates (p, ¥, 7) in the (@, w2, ws) space with the north pole = 0 in the direction
of the vector (¢ — x, n — vy, { — z), and let

r=Vx—§&*+ (y —m)*+ (z— =

Then the (w:, we, w3) integral, which we integrate first, becomes

1 2 2 2
f f f ei[w‘(f—.l‘)+wz(n—y)-(-wa((—z)ﬂn \/OJ1 T o’ + s Ctdwldwzdwa
Vo + w? + wyic

et tw?<l?

L ™ (2w :
= f f ] 7o cos v Mpﬂ sin ydrdydp
¢ Jo Jo pc

2 f L [ girp cos lbjl‘n' .
= — sin pct pd
c Jo ip  ly=o pet pap

4 [+ .
=— tdp.
= fo sin rp sin pctdp

To treat the integration with respect to £, n, and { we introduce spherical coordinates
(r, 6, ¢) in the (£, n, {) space with their origin at (x, y, 7), so that

E—x=rsinf cos¢

n—y=rsinfsing

{—z=rcos8.
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Then (72.5) becomes (after the order of integration has been changed)

%0 [ 29T
u(x,y, z, t)ﬂ--ﬂ lim] f ] fx+rsinfcos¢,y+ rsinésing, z+ r cos )
QaPc 1= Jo Jo Jo

L
{ ] sin pr sin pctdp}r sin 8ddodr

0

Another change in the order of integration gives

lim * sin pct[f) sin ponTr J;Zﬂ f(&, m, O rsin Odqbde}dr]dp.

27T 2C L—o o

ulx,y, z, t)=

The right-hand side is a multiple of the formula (68.3) for the inversion of a sine trans-
form. Hence by (68.3)

(72.6)

u(x,y,z,1)

AL
= # f f Sf(x+ ct sinf cos ¢, y + ct sin @ sin ¢, 7+ ct cos @) sin Odpdh.
0 0

This solution is ¢ times the average value of f over a sphere of radius ct centered at
{x, ¥, z). This solution formula is due to Poisson, but it is usually called Kirchhoff’s
formula.

We have made various assumptions in the derivation of (72.6). Instead of justifying
them, we shall show directly that the function « defined by (72.6) is the solution of
the problem (72.1).

If fis bounded in a neighborhood of (x, v, z): | f| = M, then

u(x, y, z, 1)| =M

for ¢ sufficiently small, and hence u — 0 as ¢ — 0. To compute du/dt we suppose that
f has continuous partial derivatives, so that we may differentiate (72.6) under the
integral sign. Then

(72.7)
™ (27
%‘2‘34%‘[ f flx + ct sinf cos ¢, y + ct sin 0 sin ¢, z + ct cos ) sin dpdo
0 Jo

ct (7[> (. of | . . of af).
+ - L L (smﬂcos ¢ax+smﬂsm ¢ay+cos(9£ sin 8dede.

As t — 0, the first integral approaches f(x, y, z), and the second approaches zero.
Therefore

d
—é%(x, ¥,2,0)=f(x,y,2).

To verify that u satisfies the wave equation we suppose that f has continuous
second derivatives. By (72.7) and the divergence theorem

ou _u 1 ]
(72.8) FTil +4——wct jj grad f - ndS

(E=) () (L—2) =
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= % 4L f [ f V2fdedndy

dmct

(£ =) Hly) =) <
ct {m (2w
== L ] f Vi{x +rsinf cos¢,y+rsinfsing, z+ rcosf)
4arct 0 o Jo
r* sin Od¢dodr.

Hence
Qf_"_L_l_ u 1 du 1 ct {m [2m ) .
a2 = +t ot 47TCt2f f f \Y fr2 sin Bd(bdﬂdr

2
+C_’f J’ V3f(x + ct sin @ cos ¢, y + ct 8in @ sin ¢, z + ¢t cos 0) sin 0dddb.

By (72.8) the first three terms cancel, and

2 2
?31‘2 —Ctj ] VEf(x + ct sin@ cos ¢, y + ct sin 6 sin ¢, z + ¢t cos ) sin Odpdo

= ¢N*u.

Thus we have shown that if f is twice continuously differentiable, Kirchhoff's
formula (72.6) provides the solution of the problem (72.1). The behavior of f at in-
finity is immaterial, so that f need not even exist.

We note that the solution (72.6) is not only independent of the behavior of f(&, 0, {)
outside the domain of dependence (£ — x)2 + (n —y)2+ {{—z)% = %, but also of its
behavior in the interior of this sphere. It depends only on the values of f on the surface
of the sphere. This fact is known as Huyghen’s principle. Huyghen’s principle asserts
that a signal concentrated in the neighborhood of a point P at time zero is concentrated
at time  near a sphere of radius ct centered at P. In particular, a listener at distance d
from a musical instrument hears exactly what has been played at time ¢ — dJc, rather
than a mixture of all the notes played up to this time.

EXERCISES

1. Show that if f(x, y, z) is independent of z in the problem (72.1), the same is true of its
solution (72.6). Hence find a sotution of the initial value problem for the two-dimensional wave
equation

d0*u 0%u . d*u
ou_ U >
T [ax +ay] 0 for >0,
u(x,y,0) =
ou
57 (% 3, 0) =flx, ¥).
(This method of solving another problem in lower dimensions is called the methed of descent).

2. Show that if « is the solution of (72.1), then v = du/d¢ satisfies the wave equation and the
initial conditions v(x, v, z, 0) = f(x, ¥, 2), av/ot(x, ¥, z, 0) = 0. Hence find the solution of the
initial value problem '

2 2
o u [a“ Fu 0 for r>0,

TR ax2+ay2+_]
u(x,y, z,0)=f(x,y,2),

9
S (7,200 =g(x, ¥, 2).
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3. Solve the nonhomogeneous problem

Fu 3tu
o [ax2 oy ay? 7+ azz] F(x,y, z,1) for t>0,

u{x, y, z,0) =0,
du _
'E;(x, y, Z, 0) -

4. Solve the initial value problem for the damped wave equation

Pu Gl 0%u
at2 [ 2 +

2
ayz'*'““] 0 for +>0,
u(x,y, 0) =0,
du -
—67(x’ Y, 0) '“f(xv y)
by considering the problem satisfied by v(x, y, z, {) = u(x, y, r)e®.
5. Solve the problem in the parallelepiped

*u _ L|0*u | du
SE T [ax2+ay2+az2] 0 for 0<x<A4, 0<y<B, 0<z<C,

u=0 for x=0, x=A4, y=0, y=B, z=0, z=0C,
u(x,y,z,0) =0,

d
=, y, 2, 0) = f(x, y, 2)
by means of (72.6) and a suitable extension of f. State conditions under which the solution is
valid.
6. If

Fu  u  Pu  Fu
o “aw oy a0 for >0

u(x, y,z,0)=0,
g—?(x, ¥, 2, 0) =2 +y* + 2,
find u(0, 0,0, 1).
7. If
92 9% Pu  *u
T aE T a ea=0  for >0,
u(x, y,z,0) =0,
du _
E(x’ y, 2, 0) = X,
find u(x, y, z, £).

73. The Fourier Transform with Compiex Argument.

Let f(x) be a function and s a real number such that e~*f(x) is absolutely integrable.
Then

§le-af(x)] = f " gtwozf(x) dx,
The right-hand side looks like an ordinary Fourier transform of f, with w replaced by

the complex variable { = w + is. For such an s and all real w, we define the Fourier
transform with complex argument
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(73.1) Flo+is) = f T gitorizf(x) dx.

—x0

If there are two real numbers s; < s: such that both e=*%f(x) and e—%%f(x) are
absolutely integrable, we find that for 5;, = s =< 52

[ tesaptan= [

=00

sl f()lde + |7 o (),

so that e~s2f(x) is absolutely integrable. Hence f(w + is) is defined for —» < @ < o
and s; = s = s5,. Moreover the Fourier integral converges uniformly in @ and s in this

strip. Therefore, if C is any simple closed contour in the strip 5; < Im £ < s, we find
that

b Fdr=¢ |7 efimdu

- ﬁ; £x) 5£C et drds
=0,

since e~ is an analytic function of £. Then by Morera's theorem, 7({) is an analytic
function of { for s, < Im ¢ < s,

Example. If f(x) = e~%lzl g > 0, we can take any s, and s, such that —a < s; < s, < a. Hence
f(L) is analytic for —a < Im { < a. In fact,

flw+ is) =fw glio-s)x-alzldy

= fﬂ e(im+a—s).rdx —+ fw e(im-—a——s).rdx
— 0
1 . 1
iw+a—s iw—a—s
- _2a
a’+ (o +is)?

Thus

fO =725,

which is, indeed, analytic for —a < Im { < a.

As in this example, it frequently happens that there is an obvious analytic continua-
tion of f({) to a function which is analytic in a larger set. The inversion integral can
then be altered and possibly evaluated explicitly by applying contour integration and
the residue theorem.

P 1
Example. Let f({) = P
tegrable for --a¢ < s < g, the inversion theorem gives

e-s2f(x) = = lim f R

— e 4
277 Uoe )L @+ (w+is)2 "

, Where g is a real positive constant. If e—%%f(x) is absolutely in-

or

1 -1(m+1s)1'
m
flx) = 277 Ll—w L@+ (w+ ls)2
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We first suppose that x > 0, and consider the contour C composed of the line Im { = s,
—I, < Re ¢ = L and the part of the circle |{|?> = L? + s* for which Im { < s. By Cauchy’s theorem
we find that for L? + s? > 4*

e~i{.r _ N - e~i{.z'
i, a + Czdl = 2771%—101[‘12 ¥ Cz]9
where R _i. is the residue at the pole { = —ia. (We recall that s < a, so that the pole at ia is
outside the contour.) We find that

e‘ﬂl‘
—2ia

sR—ia =

On the circular part of the contour we have Im { < s, and hence
e €T s TR R
H a2+§2dg <L2+sz—a22n L*+ s,

which approaches zero as L — «. Therefore

L e—i(m+is) . mTe—ax

{l—rgc o a?+ (w+is)? =y
Then
e
flx) = o for x> 0.

If x < 0, the integrand approaches infinity on the lower part of the circle. Hence, we must
close the contour with the upper part Im { > s of the circle. In this way we find that

f(x) =%: for x < 0.
Thus

1
= —p—a|x|
flx) 558 "

When prescribing an analytic function f (£), we must also specify for what values of
Im £ it is to be a Fourier transform. Different ranges of Im { may give different inverse
transforms.

Example. We again let A = a > 0, but specify that e~**f(x) is absolutely integrable

for s > a. We find

_1

@+ &
. 1 i J’L e Hlwtis)r

R =520m | @ (e T )29

where now s > a.
We use the same general contours as before. However, both of the poles are now below the
line Im{=s. Hence if x > Q,

1 lim [ g ilwrislz g i e‘””]
N er
2 1w j_L &+ (w+is)E ’[—m 2ia

-1 .
= — sinh ax.
a

On the other hand, there are no poles for Im ¢ > s, so that if x < 0, f(x) = 0. Thus

Flx) = —211— sinh ax for x>0
0 for x=0.
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It is easily verified that the operational rules of Section 69 hold for complex values
of {. For example, if es%f(x) is absolutely integrable and continuous, and if e~5*f" (x)
is absolutely integrable, we have by (69.1)

ﬁo —g)—c[e—”f(x)]eiwrdx = —i@ Jiw e *If(x) et dx.
Performing the differentiation and transposing gives
fw eitrinef (x)dx = —i(a + is) fm eitorioaf(x) dx,

that is,
(73.2) ST ==l S f].

Similarly we find that for complex

(73.3) Sixf(x)1(0) = d%%[f],

provided xf(x)e** is absolutely integrable.
We also have the shift rule

a

(73.4) S flax—b)] = ’_611_|eib§faf‘(£).

for real constants ¢ and b. However, we must keep in mind that if £ (¢) is analytic in
the range s, < Im{ < sz, &[f(ax — b)] is analytic for {/a in this range.
We find that

(73.5) Sle=f(x)] =L+ ),

where -y is now any complex constant.
Finally, the convolution formula

(73.6) Sl =f(0)&(D

holds when e#%f(x) and eft=g(x) are both absolutely integrable and square integrable.
Note that formally [e-5*f(x)]*[e5*g(x)] = e~5*[ fxg].
We can apply these rules to solve ordinary or partial differential equations.

Example. We consider the differential equation
(73.7) X5+ 5 —xu=0.
Taking Fourier transforms and applying the operational rules (73.2) and (73.3), we obtain

—idic(—gza) —ia + id%ﬁ =0,
or
(1+@a" +ta=0.
Solving this ordinary differential equation, we find that

i) =c(+ 1712,
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where c¢ is any complex constant. This function is, of course, multiple-valued and we must choose
a particular branch. We write

(73.8) (0 = clg® + 1|12e-Hlars@+i)+are-Dy2z_

If we wish u(x) to be absolutely integrable, we must choose the branch # which is analytic for
Im {= 0. We obtain this branch by specifying that

—%E<arg(c—i) <3

37

(73.9)
—% <arg (L+1i) < 5

Then #4(Z) is analytic except on the line segments Re {=0,Im{= land Re {=0, Im { = —1,
which are the branch cuts of the function. For convenience we put ¢ = 7.
We consider the inversion integral

— llmJ’ e T (w)dw.

29 L=

If x > 0, we consider the contour C shown, inside which 4({) is analytic.

51\

Then
ﬁ a(D)e-tedg =0,

or -L . 3m/2 . ) .
J; i{w)e-iordey +f G(Le®) e iwLe [ ot g
—-1—¢ . . {2 . . ) T
+ i i(is — 0)esvids + f / i{—i + ee®)e v icei®dh

- Imi2

-L 2w .
+ f fi(is + 0)es*ids + f / i (Le®®) e—iee® [ o8 = .

—1—¢ 3mf2

We first note that

mell2elxle

=G g

-mEoL A ireei®s
i(—i + ee®)e~ ¥ jgeifdl
3

2

If we let € — 0, this integral approaches zero.
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By Jordan’s lemma we find that the second and last integrals on the left of the above identity
approach zero as L — o if x > 0. Therefore for x > 0
L 1 e
lim § i{w)e-rdy =f i(is — 0)es*ids + f . i(is + 0)eszids.

Lo= f -

By (73.8) and (73.9)

ale =T
f(is —0) = o
a . m
Glis+0)= V=1

Thus for x > 0

. L, ior _ -1 P _ ® ST
I!l_lllo u(w)e dw = Zﬂﬁm —ﬁds =27 fl W.—;—lds

-L

Since 4(w) is square integrable, this formula actually gives 27 times the inverse Fourier trans-
form. In order to apply Jordan’s lemma in the evaluation of the inverse Fourier transform for
X < 0 we must use a contour in the upper haif plane. We obtain the same formula, but with x re-
placed by ~x. We thus have the solution

_ [ e—sl.rl
u(x) = J‘l mmds.
This solution of the equation (73.7) is clearly bounded and approaches zero as |x| — =. Itis

a Bessel function with imaginary argument, and is usually denoted by K,(|x|). If we let s =
cosh ¢, we obtain the formula

(13.10) Ko(Jx) = L ool cosh i

Since ii(w + is) is square integrable in w for —1 < s < 1, we find that e~**K,(|x|) is square
integrable for —1 < s < 1. However, K,(]x|) is not bounded, but approaches infinity like log 1/|x|
as |x| = 0. In particular, u(x) is not continuous and its derivative is neither absolutely integrable
nor square integrable. Thus, the hypotheses used in deriving (73.2) are not satisfied.

However, once we have obtained the formula (73.10), we can verify that K,(x) satisfies the
differential equation for x > 0. Clearly the integrals obtained by differentiating (73.10) con-
verge uniformly in any closed interval excluding x = 0. Hence for x > 0

xK" + Ko' ~ xKo = j:n (x cosh? ¢ — cosh ¢ — x)e~Tcoshdgg

= (j);m —&%(—sinh e T eoshd)ddy

The Fourier inversion formula from which we started also gives a formula for K,(|x|):

—twx

K 1. L ¢
o(Jx]) =7 lim VT

_ [* cosex .
¢ Vo?+1

If we let @ = sinh ¢, we find
Ko(|x|) = J;m cos (x sinh ¢)dé¢.

This integral only converges conditionally, and it does so quite stowly. Thus the formula (73.10)
is more useful for computing Ko |x|).
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An entirely different solution of (73.7) results if we change the location of the branch
cut for #(L). We now define 4(Z) by (73.8), but with

T <ag-n=7,
(73.11) 3 -

—7<arg(é+t) 55,
and ¢ = 1.

Then #({) is analytic except on the segment Re { =10, —~1 = Im{ = 1. We let & be
the Fourier transform of the solution for Im { > 1, where # is analytic. The correspond-
ing solution is given by the inversion formula

L
u(x) = 51'1; 1133 _Le"'(“’*is)”ﬁ(w +is)de

where s > 1. Again éi(w+ is) is square integrable, so that this will actually give u{x).
If x < 0, we consider the contour integral

§ a@)ewdy
along the boundary of a semicircle in the upper half-plane. By Jordan’s lemma the

S

Y

—L+is . L+is

-

integral along the circular arc approaches zero. Since i# is analytic inside the contour,
we find that

u(x)=20 for x <.

If x > 0, we must take a semicircle with the circular part downward in order to make
the integral on the circular arc approach zero. Now the branch cut is inside C, and
Jordan’s lemma gives

L

lim i{w + is)e iw+dzde = f
L—w J-—L —_

1 -1
i(is — 0)e*~ids + f a{is + 0)es=ids.
1

1
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S‘P
—LA41is L+is
!

With our choice of arguments

—i

ilis —0) = ———=
( ) V1-— st
i
i(is +0) = ———
il ) 1—s*

Hence we find that for x > 0

_l 1 es:c
ul(x) = po LI ——d1 — s.
If we let s = cos ¢, this becomes
] w
= = r cosd
u(x) - L e do.

This solution of Bessel’s equation is called I,(x). Since cos (7 — @) = —cos ¢, we can
also write I,(x) in the form

Io(x) = % L " cosh (x cos &) dé.

This solution is characterized by the property that it remains bounded at x=0. How-
ever, it behaves like x~2¢* as x — o, 50 that e« is integrable only for s > 1. Cor-
respondingly, #({) is analytic only for Im { > 1.

The function #(x) we have now obtained is discontinuous at x = 0 since # = 0 for
x < 0 while #(0+) = 1. Therefore the hypotheses used in deriving the equation for &
are violated. However, we can again verify directly that /,(x) satisfies the equation
(73.7) for x > 0.

EXERCISES

1. Find the inverse Fourier transform f{x) of C3—-1{—~1— such that e~5%f(x) is square integrable

(a) for 0 < Im§<%\/§
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(b) for —%\/i <Im{<0
(¢} for Im¢ > %\/5

2. Find integral representations for two solutions of

xu" + %u’ —xu = 0.

3. Find an integral representation for a solution of Bessel’'s equation
xil' +u' + xu=0.

4. Show that if e **f(x) and e %*f(x) are bounded, then A is analytic for s; < Im g < s,.
5. Show that if e~=7f(x) and e~*:*f(x) are square integrable, then f({) is analytic for s, <
Im { < s,. HINT: Use Schwarz’s inequality.
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CHAPTER XI

The Laplace Transform

74. The Laplace Transform.

We consider a function f{x) which vanishes for negative values of x:
fix)=0 for x <0.

Then if e=17f(x) is absolutely integrable, so is e—3%f(x) for s = s,. It follows that the
Fourier transform £({) of such a function (if it ever exists) is analytic in a half-plane
Im{ > s,.

An analytic function is uniquely determined by its values on any line segment. In
particular, 7({) is determined by its values on any portion s > s, of the imaginary axis
{=is.

We define the Laplace transform

2LF1(s) = S[f1s),

or

(74.1) &[f]) = L " e-sf(x) dx.

By integration by parts we find that

J:o e %f' (x)dx = e~5*f(x) ]: + s Lw e f(x)dx
=s8[f] —£0),

provided e—s*f{(x) is absolutely integrable and continuous for x > 0, and approaches
zero as x — o, Thus we have the operational formula

(74.2) RLf'] = s8Lf1 = £(0).

If £(0) = 0 so that the function f(x}, defined to be zero for x < 0, is continuous at
x =0, this formula is a special case of the operational formula (73.2) with { =is. The
other operational formulas of Section 73 can also be applied here. Thus we find that

xf(x)] =~ 8[f]

(74.3) Lf(ax — b)](s) = Ele-bs/a 2 [f](—Z—) if a>0,b=0,

Qlecmf(x)1(s) =8 [f(x)] (s —¢).
346
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In applying the second formula in (74.3) we must keep in mind that, by definition,
Sf(x) = 0 for x < 0. For instance, since

% » ——1
Le ”dx—-E,

1/s is the Laplace transform of the function

{0 when x <0
H(x) = {1 when x = (.

This is called the Heaviside function. By the shift formula we see that e /s is the
Laplace transform of

_ {0 when x <b

Hix—b) —{1 when x = b.
If f(x) and g(x) vanish for x < 0, their convolution becomes
(14.4) frala) — { [[rig=dy  for x=o0.
0 for x=0.

The convolution theorem

QLfg]l = Lf]8lg]
follows from that for the Fourier transform.

Example. Since the Laplace transform of the Heaviside function H(x) is 1/s, we have

8| [ oy |= 2 LpemT = {171,

In order to invert the Laplace transform (i.e., to retrieve f(x) from & [f]) we intro-
duce the analytic extension

F(o) = ﬁo e " f(x}dx

where o = s + in. If e~*%f(x) is absolutely integrable, F (o) is analytic for Re o > s;.
For o = s (real)

F(s)=2[f](s).
Clearly
F(Q) = F(=iY).
Inversion Theorem 2 for the Fourier transform, which appears on page 317, shows that
L+is
Fx) === lim f F(—if)e-%edy
27 L—>w J_Ltis

when s > s; and the path of integration is a horizontal line.

We make the change of variable o =—i{, which is a 90° clockwise rotation about the
origin. The inversion integral now goes down a vertical line. By introducing a minus
sign we reverse the direction of integration.
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Thus

1 . S+iL
(74.5) flx) = 5o lim F(o)e ™ do,

7Tl L—> Jg il

where s > s, so that F (o) is analytic for Re o = s,, and the path is vertical. This formula
i1s known as the Mellin inversion theorem. It holds whenever ¢ 5*f(x) satisfies the con-
ditions of the Inversion Theorem 2 of Section 67.

The function f(x) whose Laplace transform is F(s) is called the inverse Laplace
transform of F (s), and is denoted by & 1[F].

Let F(o) be analytic except for a finite or denumerably infinite set of poles o, o,
... with Re o, < s;. If F(o) — 0 uniformly on a sequence of semicircles |o—s:| = Rx,
Re o = s, where Ry, — « as k —> «, we find by the residue theorem and Jordan’s lemma
that

(74.6) f(x) =Z R, [F(o)es],

provided the series on the right converges.

Example. Find the inverse Laplace transform £ —1[?}—:1—135].
Clearly F(o) = ﬁ- Its only singularity is a double pole at o = 1, and

IF(U)f=-lU_1_—1|2—->0as o — 2| > .

Therefore,

f) =R [Twﬁ_-ﬁ—] — xer,

o

That is,
1
ety = e

If e-5%f(x) is absolutely integrable,

|F(o)] = Lm e T fx)|[dx  for Reo = s,

so that |F(o)| is bounded.
The bilinear transformation

(s;i—Dw+s;+1
w1

0’=

maps the unit circle |w| = 1 onto the half-plane Re o = s,.
(S1“ 1)W+S1+1
w1
tions in this circle. By the Riemann-Lebesgue lemma F(s, + in) — 0 as 5 —> =+,
(si—Dw+s+1
w+ 1
w —> —1. It follows from the Poisson integral formula (24.8) as in Section 25 that

The real and imaginary parts of F ( ) are bounded harmonic func-

Hence the boundary values of F ( ) on |w| = 1 approach zero as
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F((s1 — lu))vit Nt 1) is continuous and approaches zero as w — —1. Thus we have

shown:

If e1*f(x) is absolutely integrable, its Laplace transform F(o) is analytic for
Re o > s,, and

lim F(g) =0

for Re o = s,.

We now restrict ourselves to real values of o, and write ¢ = 5. For s > 5,

sF'(s) =— ﬁo sxe~*f(x)dx,

and hence if s > 0

[sF'(s)| = Lm sxe=sz| f(x)|dx.

Noting that the function fe~¢ attains its maximum at { = 1 and putting f = 4sx, we find
that

%sxe‘”/2 = e,
so that

|sF'(s)] = 2! Lx e=s*12| f(x) |dx

= 4e-! fm e~Y|f(2y)|dy.
[
The right-hand side is the Laplace transform of 4e1| f(2y)|, and e 25wde-1| f(2y)| is

absolutely integrable. Hence the right-hand side approaches zero as s — 0, and so also

lim sF'(s) =0.

S0

Suppose now that f(x) is continuous from the right at x =0, and that f(x) approaches
f(0) so rapidly that for some s; the function

fx) —f0) o

X

is absolutely integrable in the interval 0 < x < . Then the function [ f(x) —f{0) ]/x has
a Laplace transform G (s). By the first formula in (74.3)

JD " LA(x) = f(0) Je=sedx = —G' (s),

or

211 -0 =)
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Applying the above result to G (s), we see that sG'(s) — 0 as s — . Therefore,
s@[f] —f(0) =0, or
lim s2[f] = f(0).
That is, the Laplace transform & (f] behaves like f(0)/s for large s. By using this fact
we can find f{0) from & [f] without integrating.
In a similar manner, we can show that if F (s) is the Laplace transform of any func-

tion f(x) with the property that f(x)e—** is absolutely integrable for some s,, then for
any nonnegative integer k

lim stFlkl(s) = 0.
>0
From this fact it follows that if f(x) is & times differentiable from the right at x =0, and
if f*1(x) approaches f¥1(0} so rapidly that
ko fin)
x—k—l[f(x) — 2 figo)xn]e—sax
n=0 n:
is absolutely integrable on the interval 0 < x < o for some s, then

k n
(74.7) lim skﬂ[ss[ £1- zof[s,]#] 0,
This formula asserts that for large values of s the Laplace transform F(s) behaves like
the series obtained by term-by-term integration of the Taylor series of f(x). (Note that
Q [x*/n!] = s~*1.) However, neither the Taylor series of f(x) nor the corresponding
power series for F(s) need converge. In fact, f(x) need not even be differentiable
except at x = 0.

Example. Let

0 for x<0
f(x) =1e° for 0=x=1

0 for x> 1.

Then
_ 1 _ el
g[f]_SMl s—1

The Laurent series for the first term in powers of 1/s. corresponds to the Taylor series about
x = 0 for f(x). The factor e~* makes any power of s times the second term approach zero.
The analytic continuation
—(o-1)
F(o) = 1 _e

a—1 o—1

has an essential singularity at o = », and hence it cannot be expanded in only positive powers
of 1/o.

As in the case of the Fourier transform, there are special integral tables listing func-
tions and their Laplace transforms. (See the bibliography at the end of this chapter.)
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EXERCISES

1. Find the Laplace transforms of
(a) sinx
(b)
() (x+b)?

(d) x*1, g > 0 (By definition, I'(g) = J;w y*tevdy).

2. If for x > 0 f(x) is periodic of period a: f(x + a) = f(x), write the Laplace transform as
an integral from 0 to a. HINT: Write the Laplace transform as a sum of integrals and interchange
summation and integration.

3. Find the inverse Laplace transform of

1 1

@ @ Sy
1 e

(b) = © ‘7

© 52— (p t2ghs.

4. Find a formula for [ /"] in terms of £[f] when f(x) is three times continuously differ-
entiable for x = 0.
5. Show that if F{o) is analytic at infinity so that

F(o) =$ bur  for |o| > R,
then

HINT: Use Jordan’s lemma to compute the inversion by integrating over a sequence of contours
containing the circle |o] = R.
6. If

BUf1 =,

find £(0) and f'(0).

75. Initial Value Problems for Ordinary Differential Equations.

Before applying the Laplace transform to the solution of problems in partial differen-
tial equations, we shall indicate its great utility in the study of ordinary differential
equations.

If we apply the operational formula (74.2) twice, we obtain

(75.1) SLf"] = s{s8[f] — f(0)} —£'(0)
' = R[] — sf(0) — £ (0).

This formula involves both the values of fand f' at zero, in contrast with the formulas
(68.8) for the sine and cosine transforms which involve only one of the quantities each.
On the other hand, the formulas for the sine and cosine transforms apply only if f(x)
and f'(x) approach zero as x — . The formula (75.1) for the Laplace transform holds
if only e~3*f(x) and e~5*f'(x) approach zero as x — o« for sufficiently large s.
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We see, then, that in order to use the Laplace transform in solving a second order
differential equation we need complete initial data at x = 0, but almost nothing at
x = «, Therefore the Laplace transform is particularly suitable for solving initial value
problems. The sine and cosine transforms are better suited for solving boundary value
problems on the interval 0 < x < o,

Consider for example the initial value problem

Wx)+2u'(x) + 2u(x) = f(x) for x>0,

(75.2) u(0) =0,
u' (0) =0.
Let
U(s) = &[ul,
F(s)=&[f].

Taking Laplace transforms and using (74.2) and (75.1), we obtain the algebraic
equation

(s+2s+2)U=F.
Then

U(s) = F(s).

1
s+ 25+ 2
We have obtained the Laplace transform of the solution in the form of a product. By
the convolution theorem

(75.3) u(x) = f " ) (x — y)dy,

where &[] = 1/(s* + 25 + 2). Note that the polynomial in the denominator can be
obtained by replacing each derivative on the left of (75.2) by the corresponding power
of s. For this reason, the variable D (for derivative) is sometimes used in place of s.
The function  can easily be obtained by the inversion theorem. &[] has simple
poles at —1 + . Hence by (74.6)
el—1+ix el—1-dx

U(x) = 2 + —5; = ¢~* sin x.

The function (x) satisfies the homogeneous differential equation
W42 +20=0
and the initial conditions
P(0) =0
v (0)=1.
Thus the solution (75.3) coincides with that derived in Section 27, with R{x, y) =

Y (x—y). The Laplace transform simply gives a systematic way of finding the influence

function.
The Laplace transform also gives a solution for an initial value problem with nonzero

initial conditions.
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Example. Consider the problem
W+2u' +2u=0 for x>0,

u(0) =1,
uw' (0) =2.
Let U(s) = 2[u]. Then by (74.2) and (75.1)
iu])=5U—-1

Qu'] =s*U — s — 2.
Taking Laplace transforms of both sides of the equation, we obtain
U —5—2+42(sU— 1) +2U =0,

or
($$+2s+2)U=s5+4.
Then
—___sj__.4__.
U_sz+2s+2

Taking the inverse transform by means of (74.6), we find the solution

- (3 + l‘)e(71+i).r (3 —_ l')e(ﬂ—t’).r
T

= ¢-*[3 sin x + cos x].

Application of the Laplace transform thus gives an easy means of computing that linear com-
bination of the two solutions e~ sin x and ¢~ cos x of the homogeneous differential equation

which satisfies the given initial conditions.

The Laplace transform is most frequently applied to ordinary differential equations
with constant coefficients, which can also be solved in other ways. However, it can
also be profitably applied to certain differential equations with coefficients that are

polynomials in x.

Example. To solve
ot xu +u=290 for x>0,

(75.4) u(0) =1,
u'(0) =0,
we let
U(s) = 8[u].
Then
Qlu']=sU—1
Ru"] = s?U — s.

By the first operational formula in (74.3),
Rxu') = =S [sU — 1] =—sU'(s) = U(s).
Thus, the Laplace transform of the differential equation is
—sU'+ 32U —~5=0,
or
U —sU=—1.
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Multiplying this equation by e**2, we have
(e=s*2U)" = —e#%2,

Hence
U(s) = esz/z[-”: e~ 2do + c],
where c is a constant of integration. Since {J must approach zero as s —> o, we conclude that ¢ =90.
Thus
U(s) = fm e @ -2y,
s

Instead of applying the inversion formula, we obtain u(x) by a special trick. We define the new
variable x = o- — 5. The integral becomes

U(s)= fm e~sre= 22 gly,
0
Thus U(s) is Laplace transform of ¢-**2, and hence
u(x) = e

is the solution of the problem (75.4).

EXERCISES
1. Solve
@ +u' +u=sinx for x>0,
u(0) =0,
u'(0) = 1.
2. Solve
U du' tu=e-* for x>0,
u{0) =u'(0) =0.
3. Solve
"+ u 4w = xe* for x>0,
u{0) = ' (0) = u"(0) = 0.
4. Solve
W'+ 20"+ u = f(x) for x>0,
u(0) =u'(0) = u"(0) =0,
5. Solve
W—u ~u=0 for x>0,
u(0) =1,
u' (0) =—1.
6. Solve
xi' +u +xu=90 for x>0,
u(0) =1,
u'(0)=0

to find the Laplace transform of the Bessel function Jy(x).
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7. Solve
X+ xu + (2 —=1Du=0 for x>0,
u(0) =0,
u'(0) =4

to find the Laplace transform of the Bessel function J,(x).
diNT: Use (74.7).

76. Initial Value Problems for the One-Dimensional Heat Equauon.

We consider the problem of heat conduction on an infinite slab

du u
E“é}gﬂ—o for —e<< x <0, >0,
(76.1) u(x, 0) = f(x),

u(x, 1) bounded.

This problem was solved in Section 70 by means of the Fourier transform with respect
to x. We shall now derive the solution by means of the Laplace transform with respect
to 1.

Let

Ux, s) = f " etu(x, 1)dt.
0
Then
fw e“sgl—ldt =sU(x, s) —u(x, 0)
0 at
= sU — f(x).
2
We suppose that %E and g—x% are bounded and continuous, so that we may differentiate

under the integral sign to obtain

» 0%u 02U
—Is —
fo ¢ R = G
Taking the Laplace transform of the differential equation in (76.1) with respect to ¢
thus gives

(76.2) sU — f(x) — %ZQ —o.

For each fixed s this is an ordinary differential equation for U(x, s) considered as a
function of x. In place of boundary conditions we impose the condition that U remain
bounded for all x.

The solution of this problem is given by

1

76.3 =—— |7 e~Vilel
{76.3) Ulx, s) )€ f(y)dy,

as can be seen by solving (76.2) by means of the Fourier transform.
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. 1 . .
To find u(x, ¢), we need the inverse Laplace transform of —=e~V*l=. This function
§

has an obvious extension as an analytic function of the complex variable o

g(o-) = 0-—’:"3—0'”2’/"'“)” .

This function is multiple-valued, and we must choose a particular branch of it.
We choose that branch of ¢* which is positive on the positive real axis and cut along
the negative real axis: —7 < arg o < . Then g(o) is analytic for Re ¢ > (.

The Mellin inversion formula gives

e-—\/—lev{ s+iL .
. -.:——— Y > .
(76.4) a- [ e ] 3 lLliIlL N evig(a)do, s > 0

We apply Cauchy’s theorem to the integral of e?’g(a) over the contour shown. Since
g (o) is analytic inside this contour,

~—_iL

iL, s—L —€
[H e"‘g(o-)do-+[ e“‘g(o*)a'0~+f e”‘g(o)do

$—il s+il, —L

lo—s|=L arg o=1
8§—L s—iL
+ [I e'g(o)do + J e?g(o)do + f ev‘g(o)do = 0.
(r[:ﬁ —€ s—L
arg r=—mnu lo—sl=L

We let € — 0. Since

f e‘”g(a)dal = 2meete?,
lor|=¢

this integral approaches zero.

We let L — . On the branch we have chosen, Re o2 = 0, so that |g(0)]| = |of| 12
Hence |g(o)| = (L — s)~'2 on the semicircle [¢ — s| = L, Re o = 5. Therefore by
Jordan’s lemma the integrals over this contour approach zero. The two integrals over
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the negative real axis can be combined. Putting oo = —u?, we have

T .
= — p—ip|zr—y| =
glo) i‘ue for argo=a
glo) = :—ll.zei““‘y’ for argo = —m.
Thus we find

. s+iL 0 p—u-ip r—y| w0 @— MLt +iplo-y| )
Iim e"‘g(o-)do-=—f ——(2udup) ﬂf ————(—2udu)
- J3—ilL = l,u/ ] '——l“

=:iﬂ F e~ cos u(x — y)du.
0

Hence by the inversion formula (76.4)

(76.5) Q ][e\/ﬂryl] y) J‘ao - ( y
. - == e cospu(x— .
\/.ST 7 o [ yrap
By means of contour integration we have replaced the slowly convergent inversion
integral (76.4) by a rapidly convergent integral (76.5). In the present case we can
simplify the computation even more. Recalling that the Fourier transform of ¢ ¢ is
Vm/ae—** 42, we see that

2 fm e " cos u(x —y)du = fw e~ cos w(x — y)dp
Q0 —ao

e =

= f g—u2t+iu|$“y|dM

= W/te_(x—y)2/4f.

Substituting this identity in (76.5), we see that

1 1 .
76.6 53;1{___ —\/Etx"yl} = (XY
76.6) N Vit
We return to the formula (76.3) for the Laplace transform of the solution of (76.1).
If we can interchange the integration occurring in the formula with the inversion of
the Laplace transform, we find the solution formula

1 o
76.7 1) = —— J —l-ypjat dy.
(76.7) u(x, 1) )€ f(y)dy

This agrees with the solution (70.4) obtained by means of the Fourier transform.
Rather than justify the interchange of integration and the preceding steps, we can verify
as in Section 70 that this formula does indeed give a solution of the problem (76.1) for
a very wide class of initial functions f{x). For some f the solution may not even have a
Laplace transform, so that the derivation of the formula (76.7) by means of the Laplace
transform, like that by means of the Fourier transform, is to be regarded as a formalism.

The above problem can be solved with equal ease by either the Fourier or the
Laplace transform. We now turn to a problem that is done more easily by means of the
Laplace transform. Consider the problem
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2
%“%: for t> 0, x>0,

u{x, 0) = f(x) for x>0,
g—;‘(o, 1) — u(0, 1) =0,

u(x, t) bounded.

(76.8)

The solution of this problem describes heat conduction in a semi-infinite slab when heat
is removed at a rate proportional to the temperature at the end. This boundary condi-
tion approximates conductive, convective, or radiative heat loss.

Letting

Ulx, 5) = J " ety (x, 1)dt,

0
we find as before that U satisfies the ordinary differential equation

U _

ox? 0

sU(x, s) — f(x) —

for each fixed value of s.
At x = 0 we have the boundary condition

aU B
_é;(os S) - U(()! S) — 0’

while at x = « we require U to remain bounded.
The appropriate Green’s function for this problem is

1 Vs —1
Gz, y) = —-—[e*"31”1 N ——-—e—ﬁtm)].
(%, ) 2Vs|

Vs+ 1
Hence
=_1— * — Vx| \/E"""l z —Vs{xty
(769) Utx, ) =5z [ ey + 52 s |7 e iensiy)ay,

The first integral is the same as that in (76.3), with f(x) = 0 for x < 0. Its inverse trans-
form is
1

2Vt

This function satisfies the heat equation and the prescribed initial condition, but not
the boundary condition. The second part of U(x, s) in (76.9) gives the correction
needed to satisfy the boundary condition. We note that the correcting term involves
x +y rather than x —y. Thus the solution of the problem (76.8) is not a convolution in x,
as is to be expected, since the problem is changed when x is replaced by x + a. (The
coordinate of the boundary is altered.)

By a contour integration of the type used in deriving (76.5) we find that

[ eerapiyyay
0

1 Vs—1
76.10) Q-1 Vil Vit )]
( ) & [2\/Ee m+2\/§(\/3+1) ’

2 [ e ) .
=;L u?+ 7(k cos px + sin px) (u cos py + sin py)du.
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Applying the same contour integration to (76.9) gives the formal solution
(76.11)

2 (= p-u . % .
u(x, t) = EJ:) o 7 (1 cos px + sin pux) fo (i cos py + sin wy)f(y)dydy.

This expression looks very much like a solution obtained by means of an integral
transform. The transformation is not with respect to sin px or cos ux, but with respect
to the linear combination (u cos ux + sin ux), which satisfies the boundary condition
at x = 0 for each u. For each u the function e=#* (u cos px + sin ux) is a solution of
the differential equation and the boundary conditions. For an f(x) which is twice
continuously differentiable and approaches zero together with its first derivative at
infinity, we can show that the integral in (76.11) converges uniformly in ¢ for = 0.
Hence if, as we shall show, u(x, 0) = f{x), we have the formula

(76.12)  flx) == f B.5O8 £ :13“’ £2 f (4 cos uy + sin uy)f(y) dydp.
This identity is an inversion formula for such a transform.

To verify that the function (76.11) satisfies the heat equation we need only be able
to differentiate under the integral sign. This is certainly permissible for ¢+ > 0 even if
f(x) is only absolutely integrable, since both integrals converge uniformly for t = ¢,
with any ¢, > 0. Similarly, u satisfies the boundary condition du/ax (0, t) —u(0, t) =0
for t > 0.

To show that u satisfies the initial condition, we interchange the order of integration.
This is permissible for + > 0 because of the uniform convergence of the integrals,
provided f(x) is absolutely integrable. We obtain the formula

(76.13) u(x, 1) = j K(x, y, 0f(y)dy,
where
K _ 2 (» eu e ) d
(x,y, ) = ;L T 1(” cos ux + sin px) (u cos py + sin wy)du
1 [» e

=— . 2+1[(M +1) cosu(x—y) + (u>— 1) cos u(x +y)
+ Zy, sin u(x + y)ldu

1 e #2t+m(x+y)d# . fm _&__ —,,,zt+ip.(x+y)du.

= 1 %
_= p2ttip(r—y) —_—
2w |- e dp + 27 f _

The first two integrals on the right are Fourier transforms whose values we know.
We simplify the last integral by applying Cauchy’s theorem to move the path of
integration from the real axis to the parallel line Im pu= (x+ y)/2t. Introducing the new
variable v = V[ — i(x + y)/2t], we obtain the formula

x+y ) L,
+ Vi)ev
(76.14) K(x, y, 1) =€——(m—_gf'4—t+e4x+y)2/4t 1 A (2\/_ zdv ]
2Vt 2\/1rt T ~oev2+(x+y+\/2)
2Vt

The last integral converges uniformly in x and ¢. Therefore for x + y > 0 the second
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term approaches zero as t — 0. Thus for x > 0

. ® . 1 ® )t
l K t dy = lim ——= - d
im | K(x, 3, 0f)dy =lim —== | * 45 Ay

—0 Jo - 2

= flx)

at points x where f is continuous, as we have verified in Section 70. It is not even
necessary to suppose that f(x) is absolutely integrable. It is sufficient that f(x)e—o*
be absolutely integrable for some a > 0.

The function K(x, y, t) represents the solution of the problem (76.8) at (x, ) when
the initial temperature is zero except for a “‘hot spot™ (8-function) at y. Once K{(x, y, t)
has been computed, the solution for any other initial function f(x) can be found from
the single integral (76.13) rather than by integrating (76.9) and taking its inverse
Laplace transform. To find K(x, y, t) explicitly, we need to integrate the last part.
This integration could be done numerically. However, the integral can be reduced to
an integral that is already tabulated. We consider the function

» —p2 ®  p—OAZ
F(a) = J'_w \/Evze+ adv= f_w A—z‘;—]dh,

where we have put v = Va\. Then

o )\2e-a)\'-’-
F'(a) =——f_ T ldh

w0 ~ah2d %0 e—a)\z d)t
_—L ¢ HL A+ 1

=-~\/§+F(a).

Solving this differential equation with the condition

= _d\
F(O)IJ_ e

™,

we find

a sla-b)
Fl(a =wea——\/?rf £ b
) o Vb

va
= et ~ 2 Vet f e "dn
0
= zre® erfc (Va).
The complementary error function

erfc (&) = e dn=1—erf (£

2 f »
Va Je
is tabulated. (See E. Jahnke and F. Emde, Tables of Functions, Dover 1945, p. 24
and bibliography on p. 40.)
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2
Putting a = (-X—"FIX + \/}) , we find

2Vt
i"_j—/l’ + Vi
[y e ente (55212,
S (m+ \/;)2 2Vt
2V

Hence we see from (76.14) that

(e(xfy)2/4r + e—(r+y)2/4!> — elr+y+0 arfe (x ty + \/;) .
2Vt

The solution is given by (76.13). We can compute any needed physical properties
from this solution. For instance, we can see from the formula (76.14) that

lim K(x,y,7) =0

>

(76.15) K(x,y,t)=

2Vt

uniformly in x and y. Hence if f(x) is absolutely integrable,

lim u(x,t) =0

t—> oo
uniformly in x. In fact a closer study of K shows that 32K {x, y, t) is uniformly bounded.
Hence u(x, tr) approaches zero like 132 as t — o,

Remark. The computation given here is somewhat involved because we have
derived the formula for K (x, y, t) from its Laplace transform. We could have looked up
this inverse Laplace transform in a table. We have chosen to present the derivation
because it is needed for more difficult problems.

EXERCISES
1. Solve the problem
du__ Fu _
"a_t“axf'o for x>0, >0,
u(x, 0) = f(x),
u(0,1) =0

u{x, t) bounded

by means of the Laplace transform.
2. Solve the problem (76.8) by observing that the function

= U _
vix, 1) = Py
satisfies
gy 9%v _
a  Ixt 0,

vix, 0) =f"(x) — f(x),
v(0, 1) = 0.
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3. Solve the problem

ou  Fu
-a-;—-—é—x—z—o for 0<x<1, t>0,
u(x, 0) = f(x)

u(0, 1) = u(1, £) =0,

by means of the Laplace transform. Obtain the inverse Laplace transform
(a) by means of the infinite series formula

1 o

—————=2¢ Vo 3 6*2"\/;,

sinh Vo n=0
which converges uniformly for Re o = 5, > 0, together with (76.6). Show that this solution coin-
cides with that obtained by extending f(x) as an odd periodic function and applying the formula
(76.7).

(b) by obtaining a series of residues, using Jordan’s lemma.
(Note that no branch cut is needed.) Show that the solution obtained in this way coincides with
the solution obtained by separation of variables.
4. Solve the problem

ou _ 4% _
T 4ax2_0 for 0<x<1, >0,
u(x, 0) = x,

ou _
5—;(0, 1) =3u(0,)=1,
u(l, ) =0

by means of the Laplace transform.

77. A Diffraction Problem.

In an initial value problem in more than one space dimension the Laplace transform
eliminates the time variable but still leaves a partial differential equation in the space
variables. To solve this new problem, it may be useful to employ Fourier series and
Fourier transforms, so that the various transform methods are used in combination.

As an example we consider the following initial-boundary value problem for the
two-dimensional wave equation in polar coordinates.

Pu u lou 1 d*u
gu_ou lou_ 1ou_ >
a2 arr _ror roo? =0 for r>0, 0<6<2m, >0,

ol _ du _
(77.1) Ea(ra 0, t)_ae(rv 2777 t)_O,
u(r, 0,0) =0,

ou
3?('3 01 0) :f(ra 0)

This problem concerns the motion of sound waves in the presence of a rigid semi-
infinite wall at § = 0. We assume that everything is independent of the coordinate z.

We first take the Laplace transform of the differential equation in (77.1) with respect
to ¢ to obtain the elliptic boundary value problem
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U 19U 182U
c?r2+r ar-!_r2 36> $*U =—fr, 6),

(77.2) au _9u _
68 (r’ 0, S) 60 (r’ 2777 S)—O,
U bounded,
where
(77.3) Ur, 0, s) = F e~ u(r, 0, 1)dt.
0

In place of boundary conditions we impose regularity conditions on U at the singular
point r =0 and at r = .

Applying separation of variables to the homogeneous differential equation (that is,
the equation in (77.2) with f= 0) and the boundary conditions at ¢ =0 and 6 = 2«
gives solutions of the form J, (irs) cos Eln(), n=0,1,2,....Consequently, we expand

2
U and f in the cosine series

U~ %Ao(r, s) + E An(r, s) coslnﬂ
n=1

(77.4) 2
f~ 1 ao(r) + X an(r) coslno,
2 n=1 2
where
1 (* 1
A, (r, s) =— Ulr, 8, s) cos—2—n0d0
(77.5) ™ Jo

27
an(r) =;T1—L f(r, 6) cos%n()d@.

Multiplying the differential equation in (77.2) by cos $n0, integrating, and applying
integration by parts gives the ordinary differential equation

&£A,  1dA, n* _
ar +-': ar —(272+S2)An— an(r).

The corresponding homogeneous differential equation is satisfied by the Bessel
functions with imaginary arguments I,2(rs) and Kz (rs) of the first and third kinds,
respectively. In:(x) is regular at x = 0, while K2 (x) decays like e-%/Vx as x — .
We find by the method presented in Section 28 that the solution of the above differential
equation which is regular at r = 0 and « (assuming a, is regular and vanishes at in-
finity) is

(77.6) An(r, s) =f0 Ga(r, p, s)ax(p)p dp,
where

_ [ In2(ps) Knp2(rs) for p=r
(77.7) Galr, p, 5) {Infz(rS)Knﬂ(pS) for p=r.

We have found the finite cosine transform of the Laplace transform of the solution
u of (77.1). We shall now construct the solution itself. By using the definition of the
coefficients a,(r) we can write the series for U as
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U, 0,5) ~ 5 [ [ Gutr, 0, )1 (o, )0 dpdo

® x (27
+2 317 [T Gutr, p, 5)f(p. ) cos g pdpdt| cos 3.
m 4 Lo Jo

We assume that we may interchange summation and integration. Then

(77.8)

Ur, 0, s) = o F f” {GO s Gn[cos L0+ ) +costn(o— ¢)]}f(p, ) pdpdd.
24 0 0 1 2 2

We write this integral in the form
(77.9)
0 21
Ur,0,5) =5= | [ @100, 0, 0+ 8,5) +@u(r, p, 0+ 6,9) + Bilr, 0,06, 5)
0 0

+ ®o(r, p, 6 — ¢, 5)1f(p, ¢)pdpdd,
where we have defined

Oy(r, p, a, 5) = % Golr, p, 8) +mE:1 Gam(r, p, s) COs ma,

D:(r, p, @, 8) = Z Gamn(r, p, §) COs (m +%)a.
m=0
Thenforp <r

(77.10) D, (r, p, a, 5) = %Io(ps)Ko(rs) + 2 Ln(ps)Ku(rs) cos ma,
m=1

(77.1D) O(r,p,a,5)= 2 I,.1(ps)K .1 (rs) cos (m +1)a.
m=0 2 2 2
For p > r, we must simply interchange p and r.

If there were no wall at 8§ =0 or 6 =27, we would obtain a solution of the form (77.9),
but with the single multiplier 2®,(r, p, 6 — ¢, s) replacing the four terms in the bracket.
This pure initial value problem can be solved by the method of section 72. Comparing
the solutions, we find that

] efst

1
77.12)  ®u(r, p, . s ='f “
( ) i(r, p ) 2 ) mgamama VEE— (P +p*—2rpcosa)

In order to find the function ®, we use the representation formulas (G. N. Watson,
A Treatise on the Theory of Bessel Functions, p. 172).

1(z) = (% ]Z)V ] fl e~ (1 — 72)r-uR)dr
F(V + E)F(E) -1
T _1_1 (2z)" [~

_— ré)) | j S
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Here I'(«) is the usual gamma function. In particular, F(%) =\r.

Putting these representations into the definition (77.11) of &, and interchanging
integration with summation, we find

M &

_ Lt (= e P cosu
CI)Q(I", P, &, S)_TTJ:I 0 prs u2+r252 {

To sum the series we note that for |x| < 1

P"Sz(l —_ TE))m ( _1_
, (—“———"—u2+rzsz cos ‘m+2)a dudr.

n

x

© ilm+ o % ﬂmla
> xm COS(m—i—l)a:l{Exme( +2)+2x’”e (+2) }
0 2 2 0 0

1 el o—inl2
2 {l — xelo + 1 wxei“}

_ _(I1—=x)cos ge
I+ x*—2xcos «

Hence

2 1 1

(77.13)  dy(r, p, a, s):”‘;:A cos yor | e
-1

{fm [t? + s — rps?(1 — %) ] cos udu d
o (2 + 2% + prrsi(1 — )2 —2prs?(1 — 1) (2 + rs?) cosaf O

We evaluate the u-integral by contour integration:

f“’ [t + rPs® — rps?(1 — %) ] cos udu
o (% + 2% + p*rst(1 — 72)2 —2prs*(1 — %) (12 + ¥s?) cos «

:lfa [t + rs® — prs?(1 ~ 72) ] €™ du
2 ). (1 r2sh)2 4 pir2si(1 — 72)2 =2prs* (1 — 72) (1® + s?) cos
=7Tl z%+,

where Z%. means the sum of the residues at the poles in the upper half-plane of the
last integrand, considered as an analytic function of the complex variable u. The
integrand has poles when u? + 25> = prs? (1 —71%) e*ie, We assume that « is not a multiple
of 7 so that the quantity pr(1 —7?)e* — r?is not real when — [ <7 < 1. Then the square
root of this quantity is neither real nor pure imaginary. We define

v={pr(l — 12)eic — P2}12

to be that square root whose imaginary part is positive. Then the poles in the upper
half-plane of the integrand in the above integral occur at u = sv and u =—sv. We find
the residues at these poles to be e/ ¢is¥/[4sv cos (a/2)] and e~i2 e—is7/[—4sv cos (a/2)],
respectively. Thus we find that the value of the u-integral in (77.13) is Re {2mieio? ¢57/
[4sv cos (af2) ]}, so that

—slpr—iv
CIJQZ%VPr Re {ieiaf? Jl e’ )df}.

-1 v

We recall that
v={pr (1 —72)eix — P2}112,

so that v is a function of 7.
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We now define the new complex variable

nm=pr—iv
= pt — i{pr(1 — 72)ele—r?}12,

Then

1 —s(pr—iv) 1 d

. s e . g T

lemfZ J g dT _ ze“"fz J; e~ — d.n,
-1

where the path I in the n-plane is defined by —1 =7 < 1. It goes fromn=r—ptor+p.

We need to express ‘—ljj—; in terms of n. We compute

v ‘;—:’ = plpr(1 — 1) ele—2]12 + iprrete,

Then
dng\2 L, » ; .
) = prei{p*(1 — 72) — pre— — prr2eie 4 2iprv}

= —prei{p’7* — pre**(1 — 72) + r* + 2iprv
— — p*+ 2rp cos }
= —preie{n? — (r + p* — 2rp cos a) }.

Thus
1 dr

1
lelal‘Z —— e — 2 ’-2 + 2 2r COS ¢ 71/2,
v dn = f—pr {n ( P P )}

with a suitable choice of the branch, and

= + {J e-s’?dn }.
- {n?—(rP+ p* —2rp cosa)}!?

The path T runs from n=r—p to n=r+ p and remains either above or below the real
axis. The integrand is analytic except for a branch cut along the real axis from
~(P+ p?—2rp cosa)V? to (r?+ p®—2r cos «) V2. Hence by Cauchy’s theorem we may
replace T" by the line segment along the real axis, say n = ¢:

e-stdy
®-xgRe{] ] }
’ Vi — (P + p?—2rp cos a)

The integrand is pure imaginary for ¢ < (2 4+ p? — 2rp cos a)'2 and real beyond this.
Thus we can immediately find the real part in question:

1 [ et di
~ 2 e VE— (P4 p*— 2rp cos a)

(77.14) P, =

Since ®, is a continuous function of «, its sign can only change when ®, = (. This
occurs when a== (2n+ 1) so that cos a———l When a=2n7 so that v=i{Vr—pr(1—7%),
®, is a positive multiple of Re {e~"*"} = (—1)". Therefore we have the representation

r

(77.15) 1 (ree ot dy ] {—517 < a = =3,
Qor

- —77504571-,
Z‘W\/tz—(ﬂ-l—pz——ercos:x) I < a = 5o

L e~ di {—377 =a =T,
2 Jvrrprrema Vit — (P + p* — 2rp cos @) < a=< 3.

d)z(r, P &, S) =3
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We note that the formulas (77.12) and (77.15) for ®, and &, are symmetric in r and
p. Therefore, even though they were derived for p < r, they apply for all p and r. Of
course, @, has a singularity for r = p, a = 0.

We now substitute ®; and @ in the formula (77.9) for U. Since @, and ®; are given
by (77.12) and (77.15) as Laplace transforms, an interchange of integration gives
Uf(r, 6, s) as a Laplace transform:

(77.16)  U(r, 0, s) = j: st L“’ Lz" L(r, 0, p, &, )f(p, b)p dpdedt,

where we have defined

| Hlcos5(0— )]
20V — (P + p? — 2rp cos (6 — ¢))

(77.17) :
H[cos-2-(6+ )]
+ for t<r+p
I'(r, 0, p, b, t) = 20V — (PP + p? — 2rp cos (0 + ¢))
1
drVe — (P +p?—2rpcos (8 —¢))

1
4
drVeE— (R4 p*—2rpcos (0 + ¢))

for t>r+p.

The Heaviside step function H[n] is defined by

_ 1 if =0
H[n]—_{O if n<0,

and we have used the convention that 1/V 2 — R?= 0 for t < R. (Note that the inverse
Laplace transform of @, is zero except for V2 + p2 —2rp cosa < £ < r+ p.)

Recalling that U(r, 6, s) is the Laplace transform of «(r, 6, ¢), we obtain the formal
solution

(77.18) u(r, 0, 1) = f " f T T(r, 6, p, 6, Df(p, $)pdpdd

of the problem (77.1).

As usual, it is easier to verify that this formula gives a solution than to justify its
derivation. We leave the verification to the exercises. We shall now examine some of
the features of the solution.

We first note that I'(r, 6, p, ¢, ) is the limiting solution of the problem when the
initial disturbance fis concentrated at a single point (p, ¢). We suppose for the sake of
definiteness that this point is above the wall, so that 0 < ¢ < .

The discontinuities of H{[cos %—(6 — ¢)] and H{cos %(0 + ¢)] divide the x-y plane
into three regions:
L0O< 0 <7m— ¢,

Im—¢ <0<7m+¢,
IHI: m+ ¢ < 6 < 2.
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N I

\\ /‘. (ps Q!))

1 e

I 1

For t < r+ p we have in region I

1 1

(77.19) r:2ﬂ-\/?2“— (FP+p*—2rpcos (6—¢)) Ve (r*+p*—2rp cos (6+¢))

The first term represents the solution in free space (that is, without an obstacle). This
solution becomes nonzero at any point (r, 8) at time V2 + p* — 2rp cos (6 — ¢), which
is just the distance from (p, ¢) to (r, 8). Thus, we have propagation at speed 1. Since
the problem is two-dimensional, Huyghen’s principle is not valid. That is, the disturb-
ance continues after the wave front has passed. This is not too surprising if we recall
that from the point of view of three-dimensional space we are dealing with functions
independent of z, so that the initial disturbance is not at a single point, but along an
infinite line.

The second term on the right of (77.19) is the solution due to the same disturb-
ance at the image point (p, —¢). It can be interpreted as a term due to reflection.
V2 + p?—2rp cos (6 + ¢) is the length of the broken line path which corresponds to
a reflection on the plane § = 0 with equal angles of incidence and reflection (Snell’s
law). Region I is exactly the set of points reached by rays starting at (p, ¢) and re-
flected from the wall.

Region I consists of points which can be connected with (p, ¢) by a straight line

not passing through the wall, but not by a reflected path. In this region cos —;( 6—¢) >0,
but cos %(0 +¢) < 0. Accordingly, forr <r-+p

1
20VeE— (2 + p? — 2rp cos (6 — ¢)

I(r,0,p, ¢, )=

This is just the solution that would apply if there were no wall. That is, the wall has no
effect on the solution in region II for r < r + p.
In region I1I we have

=0

for t < r + p. That is, the wall completely blocks the disturbance. Region I1I is the
shadow region.

For t < r+ p we thus have incident and reflected radiation, as described by geomet-
rical optics.



CHAP. XI 77. A Diffraction Problem 369

The time ¢ = r + p is the time it takes for the disturbance at {(p, ¢) to reach the edge of
the barrier, r = 0, and then go to (r, 6). After this time there is an additional effect,
called diffraction, due to the edge. This effect results in the solution

1 1
[= +
daVeE— (r+pt—2rpcos (0 — @) 4aVE— (R +p2—2rpcos(8+¢))

in all three regions. In particular the disturbance penetrates the shadow region I11.
We observe that the Green’s function [ becomes infinite at

1=V +p2—2rpcos (0 ¢),

and is discontinuous at ¢t = r + p.
For a more detailed discussion and related problems, see F. G. Friedldnder, Sound
Pulses, Cambridge, 1958.

EXERCISES

1. Find some conditions on f under which (77.18) gives a solution of the problem (77.1),
and verify this fact.
2. Solve

o a_ri+;gtj+-?:2_£2- 0 for r>0, 0<0<2m, >0,

w(r,0,t) =ulr,2m, t) =0,
u(r, 8,0) =0,

S (r,0,0) = f(r, 0).

Fu [62.',4 1du , 1 azu]

3. Solve the problem of sound in a corner

Pu_[u, 1ou_ 1 i

or* orr " ror  rt e
du _
ae(rs 07 t) - 0,

duf 1 _
ag(r, 37 I) =0,

u(r, 8,0) =0,
&(r, 6, 0) = fir. 6).

]=0 for r> 0, 0<9<%‘n’, t >0,

4. Solve

% —Tz—w5=0 for 0<x<mw, y>0, t>0,

art ax®  dy
u(x,y, 0) =0,
ou -
"5?(1‘! Yy, 0) - 0,
u(0,y, 1) =0,
u(m,y, 1) =0,

%(xa 0, 1) +2u(x, 0, 1) = sinx.

by means of a finite sine transform and a Laplace transform.
Express the solution in terms of a finite integral by deforming the contour in computing the
inverse Laplace transform. HINT: Use an indented contour around the branch cut.
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78. The Stokes Rule and Duhamel’s Principle.

In the preceding section we obtained a solution of an initial value problem for the
wave equation when u = 0 and du/dr is given at t = 0. Suppose we wish to solve the
problem

%u [aZu 1 du lazu

# et TR

i ]zo for r>0, 0<6<2m, t>0,

ae(ra 0, t)“_ae(rv 277’ t) 09

(78.1)
u(r, 9,0) =g(r, 9),
ou, ' _
at(r, 6,0) =0.

Once we have solved this problem, we can prescribe both u(r, 6, 0) = g(r, 6) and
dufdt(r, 0, 0) = f(r, 0) by taking linear combinations of solutions of (77.1) and (78.1).
Taking the Laplace transform of the above differential equation with respect to ¢,

we now obtain
oU 13U 18U

79—13+r ar+:—2 00

oU _dU _
—-5~9-(r, 0,1 = 30 {r,2m,t) =0,

— s2U =msg(r, 0)9
(78.2)

This is simply the problem (77.2) with f replaced by sg. Its solution is given by the
formula (77.16) with f replaced by sg. Since multiplying U by s corresponds to differ-
entiating ¥ with respect to ¢, we obtain the solution

(78.3) u(r, 0,1 =2 J f T, 0, p, &, 1) 2(p, d)p dpd,

where I' is the function defined by (77.17).

Thus to solve the problem (78.1) we simply must take the z-derivative of the solution
of (77.1) with freplaced by g. This is a special case of the Stokes rule, which we now
state.

STOKES RULE. Let u be the solution of an initial value problem of the form

’u
3z — Mlu] =0,
(78.4) w(x,, ..., xp, 0)=0,
ou
‘é—t‘(xla <oy Xny O) :f(xla L) x?’l),
together with some homogeneous boundary conditions independent of s. M is a linear
partial differential operator involving only differentiation with respect to x;, . . . , Xn
whose coefficients do not depend on . Then the function
__ du
v =

ar
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satisfies

a%v .
EF M[V] - 09

(785) V()C1, ey Xny 0) zf(-xl, e, xn)a

av
B?(xl, eoe oy Xny 0) :07
together with the same boundary conditions.

It is obvious that v satisfies the first initial condition. By differentiating the differ-
ential equation for # with respect to + we see that v satisfies the same differential equa-
tion as u. Finally, dv/or = d%u/at? = M{u]. Since u = 0 at =0 and since the operator M
involves no derivatives with respect to ¢, we find that at r = 0, M{u] = 0 and hence
av/af = 0. Thus v solves the problem (78.5).

The Stokes rule means that in order to solve the general initial value problem it is
sufficient to solve the problem with u =0 at r = 0.

We now consider the problem with nonhomogeneous differential equation and
homogeneous initial and boundary conditions.

Pu_[fu, 1ou, Lo
or? orr  rar 1 af?
(0, 1) =S8 (r, 2m, 1) =0,

u(r, 6,0) =0,

du .
” {r,0,0)=0.

:|=h(r,0,t) for r>0, 0<60<2m, t>0,

(78.6)

Taking Laplace transforms, we find

U 19U 13U o)
o2 Tror TRae SUSTHE 69,

oU _ou _
T3 (r,0,s)= 36 (r,2m, 5) =0.

This is the same problem as (77.2), but with f(r, 8) replaced by H(r, 0, s), the Laplace
transform of % (r, 0, 1). Hence we arrive at the solution formula (77.16), which we write
in the form

UM&ﬂffﬁbmHmﬁﬁw@M-

R [T'] denotes the Laplace transform with respect to ¢z of I'(r, 8, p, ¢, 1). Wc take the
inverse Laplace transform under the integral sign and apply the convolution theorem.
Then the solution of (78.4) becomes

3 2w I3
(78.7) u(r, 6, 1) =f f J:) I(r,0,p,d,t— 1) hip, b, 7) pdrdpdp.

To obtain the solution of (78.6) we have replaced the product [f in the solution of
(77.1) by the convolution product I' * /. This is a special case of Duhamel’s principle:
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DUHAMEL’S PRINCIPLE. Let the solution of the problem (78.4) with u subject to some
homogeneous boundary conditions independent of ¢ be given by a formula

H(X], X2y o o oy Xay t) = Tl—.f(gh 62’ LI Y fn)](xl, X2y o v oy Xn, t)a

so that T is the linear operator which transforms the initial velocity f into the solution u.
Then the function

[
(78.8)  wixy, ..., xn,t) E[ Thi&, ... & 1)) (x1, ..., Xp, I —T)dT
0
solves the nonhomogeneous problem
az
5E —M[w]l=h{(x;, ..., xu 1),
(78.9) wixi, ...,%;, 0)=0
aw

a1 (X],.. .,xn,O):O.

with w subject to the same boundary conditions as u.

Duhamel’s principle is easily verified. Thus the solution of the special problem
(78.4) supplies the solution for the general nonhomogeneous initial-boundary value
problem.

EXERCISES

1. Verify that the function (78.3) satisfies the problem (78.1).
2. Verify that the function (78.7) satisfies the problem (78.6).
3. Verify that if u = T{f] solves (78.4) with u = 0 on the boundary, then the function w
defined by (78.8) satisfies the problem (78.9) with w = 0 on the boundary.
4. Solve
g}‘—[g; +—+ ] h(x, v,z 1)  for £>0
u(x, ¥, 2, 0) =,

dit _
;'j—t_(x’ Y. Z, 0) -
by applying Duhamel’s principle to the solution (72.6) of the problem (72.1).
5. Derive the solution of the nonhomogeneous initial-boundary value problem (5.1} from
the formula (2.16) for the homogeneous problem by means of Duhamel’s principle.
6. Find a Duhamel principle for the heat equation giving a solution of

W Trw=h(x,y.z,) inD for £>0,

w(x’ y7 ZQ 0) - 07
w=10 on the boundary C of D

in terms of the solution of the problem

—=—Vu=90 in D for >0,

u(x, y, z, 0) =f(x, y, z),
u=2~0 on C.



CHAP. X1 78. The Stokes Rule and Duhamel’s Principle 373

7. Solve
%?-VZth(x’ ¥s 2y 1) for t>0,

w(x,y, z, 0) =0,
w bounded

by using the solution in (71.4) of the problem (71.1) and the result of Exercise 6.
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CHAPTER XII

Approximation Methods

79. “Exact” and Approximate Solutions,

The transform and separation of variables methods which have been discussed can
only be applied to a very special class of problems. The solutions which we obtained
have the appearance of being exact. However, in general, they require limiting proc-
esses which cannot usually be carried out, so that an error occurs in an actual computa-
tion.

For instance a Fourier series solution involves finding the Fourier coefficients of a
given function (for example, the initial values). This means that an infinity of inte-
grals must be evaluated. Unless the function is particularly simple (consisting, for
example, of polynomials, exponentials, or trigonometric functions) only a finite number
of these integrations can be carried out in a finite time. It may not even be possible to
compute these integrals exactly, but only to approximate them by numerical methods.
We can then find only an approximation to the Fourier series of the solution, and hence
only an approximate solution. Even if all the Fourier coefficients of the solution can be
found, it is only possible in very exceptional cases to find the sum of the resulting
series in closed form. In general, the solution must be approximated by a partial sum of
its Fourier series.

Similar comments apply to the transform methods, which involve infinite integrals
containing parameters.

Even the exact integral formulas we have derived (and there are relatively few of
these) still involve very difficult integrations which must often be approximated.

In the present chapter we present some methods which can be applied to a very
wide class of problems, but which inherently give only approximate values for the
solution. They simply give the solution by different limiting processes whose difficulty
is not hidden by elegant notations like 3 and J.

The first of these is the finite difference method, which gives the solution as a limit
of solutions of a system of algebraic equations when the “mesh size” approaches zero.
In practice, a particular mesh size is used, and hence we can never expect an exact
solution.

The second method is that of successive approximations. This is an iterative process.
The solution is the limit after infinitely many iterations. In practice, one must, of
course, stop after a finite number of iterations, so that only an approximate solution is
obtained.

Finally, we will sketch some variational approximation methods.

374
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EXERCISE

Find three functions f(#) for which the Poisson integral (24.12) can be evaluated in closed
form.

80. The Method of Finite Differences for Initial-Boundary Value Problems.

The partial derivative ou/dx is defined as the limit of a difference quotient:

du _ o uxt+h y) —ulx, y)
ax(x9 y)_];}il(l) h

By Taylor’s theorem with remainder, we know that if «, du/dx, and 6*u/ox* are con-
tinuous,

du _ulxt+hy)—ulx,y) __, Pu
ax(xa y) h - haxz(x+ Ghs y),

where 0 < 6 < 1. If h is small, the right-hand side is small.

If, then, we replace the derivatives in a linear differential equation by the corre-
sponding difference quotients, the resulting equation will almost be satisfied by a solu-
tion of the differential equation, provided 4 is small enough.

Consider for example the initial value problem

du du

Llul =———=+ (sinxt)u=0 for 0<x<1, t>0,
80.1) of odx
' u(0,1) = u(l,t) =0,
u(x, 0) = f(x).

This problem cannot be solved by separation of variables or by means of integral
transforms.
The difference quotients

u(x, t+ k) —u(x,t)
k

and

u(x+h, t) —2u(x, ) +ulx—h, 1
h? ’

where k and / are small constants, are approximations to dufat and 4%u/dx2, respec-
tively. We find from Taylor’s theorem that if L[«] = 0,

_ulx, t+k)—ulx, ) ulx+h,t)—2u(x,t) +ulx—h,t)
k h?

(80.2) + sinxz u(x, )

k d* 34
=§3}£2“ (x, t + 6:k) “E'é“x'g" (x + 62h, t),
where 0 < 6, < 1,—1 < 8, < 1. The right hand side is certainly small if 4 and & are

small and « has bounded partial derivatives up to order four.
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-1
Weleth——N

dinates x =0, h, 2h, ... , Nh=1,and t=0, k, 2k, . . . . Let v(nh, mk) be a function
defined only at these mesh points x = nh, 1= mk. Let it satisfy the equation

(80.3) An[v] =0

at those points where 0 < nh < 1. This equation approximates the partial differential
equation for u. We replace the boundary conditions by

for some integer N, and restrict our attention to the points with coor-

(80.4) v(0, mk) =v(1, mk) =0,
and the initial condition by
(80.5) v{nh, 0) = f(rh).

In view of the definition (80.2) of A, we can solve the difference equation (80.3)
for v(nh, (m+ 1)k) in terms of the values of v at the time mk:

(80.6) v(nh, (m+ 1)k) =%[v((n + Dh, mk) +v({(n—1)h, mk)]

+ [1— %’25 — k sin nmhk]v(nh, mk).
Thus we can compute v(rh, k) in terms of the given initial values, v at time 2k in
terms of its values at k, and so on. This process eventually gives v{nh, mk) for any n

and m.

We hope that v{nh, mk) is a good approximation to u(nh, mk). To investigate
whether or not this is the case, we define the error w as the difference between the exact
solution « and the approximate solution v:

w(nh, mk} = u(nh, mk) ~ v(nh, mk).
By (80.2) and (80.3)

k 0%u h? o%u

Ar[w] = 3 W(rzh, mk + 6:k) - w(nh + 8:h, mk).

If the constants 4 and B are bounds for 15|0%u/ax*| and $}9%u/ar?|, respectively, we see
that

(80.7) |An[w]| = Ah® + Bk,

Since both « and v vanish on the boundary and since u(nh, 0) = v(nh, 0) = f(nh),
we have

w(0, mk) =w(l, mk) =0,
w(nh, 0) =0,

We wish to show that w is small as a consequence of the fact that it satisfies the
initial-boundary value problem (80.7), (80.8) with the right-hand side of (80.7) small.
For this purpose we need to show exactly that this initial-boundary value problem is
properly posed.

Sin.e 0 get to any point (#h, mk) we must only apply the recursion formula (80.6)
» — 1 times, the value w(nh, mk) for fixed m is certainly small if the data are small.

(80.8)
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However, to get to a particular time 7 we must take m = T/k, which becomes large if £
becomes small. Thus we define the problem to be properly posed if the smalilness of
Ar[w] implies that w(x, T) for fixed (x, T) is small, provided / and & are small enough.
We suppose that
<
24+ kR

so that the coefficient of v(#nh, mk) in (80.6) is nonnegative.
The inequality (80.7) can be written in the form

w(nh, (m—+ 1)k) — {%[W((n + Dh, mk) + w((n— 1)h, mk)]

(80.9) k

+ [1 —%é — k sin nmhk]w(nh, mk)HS(Ah2 + Bk)k.

For each time level t = mk we define
(80.10) M, = max |w(nh, mk)|.
We transpose all but the first term in the above inequality, and note that by (80.9)
the coefficient of w(nh, mk) is nonnegative. We find that

w(nh, (m+ k)| = i—lng . i—’z‘ — k sin nmhk] M + (AR + Bk)k
~ [1 = k sin nhmk]Mn + (Ah® + BR)k.

In particular, this inequality is true at that value of n for which the maximum M., of
|w(nh, (m+ 1)k)| is attained. Therefore

We multiply this inequality by (1 + k) -+ and transpose:
A+ k)OI — (1 + k) "My < (AR2+ BkYk(1 + k)-(m+D,

We sum both sides from m = 0 to % — 1. (We suppose that T/k is an integer.)

L (14 k)t — (1 + k)-@o-1

(1+&)*Ma — Mo < (AR + BK) = (1 ¥4

Since w(nh, 0) = 0, we see that M, = 0. Hence

(80.11) wnh, T)| = (AR + BOL(1+ k)" = 1]
= eT(Ah? + Bk).

Thus for a fixed T, |u{nh, T) — v(nh, T)| — 0 uniformly in x as h — 0 and k — 0,
provided the inequality (80.9) is satisfied. This inequality states that the time step &
must be very small relative to A.

We note that repeated application of the recursion formuia (80.6) gives v(nh, mk)
in terms of v(lh, (im —q)k withI=n—q,n—q+ 1, ..., n+g. Thus the domain of

dependence of a mesh point (X, T') is the set of mesh points (x, t) witht < T—% lx— X|.
In particular the computation of v(X, 7T) uses only the fact that v(0, ¢) = 0 for
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t< T—%X and that v(1,¢) =0 for¢ < T—% (1—X). Since the domain of dependence

of (X, T) for the parabolic problem (80.1) is the whole set t = T, we cannot expect
v to converge to u unless k/h — 0.

It can in fact be shown that an inequality of the form (80.9) must indeed be satisfied
to make the finite difference initial-boundary value problem (80.3), (80.4), (80.5)
properly posed. If this problem is not properly posed, we cannot prove that the error
approaches zero; moreover, we are unable to compute v effectively, since the error due
to roundoff in the various computations piles up and makes the final result meaningless.

An inequality of the type (80.9) is called a stability condition for the problem. Such
conditions were introduced by Courant, Friedrichs, and Lewy [Mathematische
Annalen 100(1929) pp. 32-74].

The finite difference method can be applied to hyperbolic as well as parabolic prob-
lems in any number of dimensions.

Example: Consider the problem for the wave equation

(80.12) EF_W_E?=0 in D,
=0 on C,
VA
11
C
D
‘ - X
1

u(x,y, 0) =flx,y) in D,
ou . .
é?(xyys 0)—0 m D’

where D is the right isoceles triangle x > 0,y > 0, x +y < 1.

We introduce the mesh parameters h = Jﬁ and k, and consider a mesh function
v(lh, mh, nk).
We replace the problem (80.12) by the problem

(80.13) Aulv] = 5 [v(h, mh, (n+ 1K) — 2v(th, mh, nk) + v(lh, rh, (n=1)k)]
— & (U + Db, mh, nk) = 2v(ih, mh, nk) + v((I= 1), mh, nk)]

-711—2 [v(lh, (m+ 1)h, nk) —2v(Ih, mh, nh) +v(lh, (m— 1)k, nk)]
=0 for [>0 m>0, and [+m <N,
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v(lth, mh, nk) =0 for I=0,m=0,orl+m=N,
v(lh, mh, 0) = f(lh, mh),
v{lh, mh, k) — v({h, mh, 0) _ 0-
k

The difference equation leads to the recursion formuia

v(ih, mh, (n+ 1)k) = fl—i [v(( + 1)k, mh, nk) + v((l — 1)k, mh, nk)

+v(th, (m+ 1)k, nk) + v({lh, (m— 1)h, nk)]

+ (2 -~ ﬁ*}f—:) v(th, mh, nk) — v(lh, mh, (n—1)k),
which gives v at the time (n+ 1)k in terms of v at the two preceding times nk and {n — 1)k. The
initial conditions give

v(lh, mh, k) = v(lh, mh, 0) = f(lh, mh).

Thus we can obtain v at time 2k, then at 3%, and so on.
The Courant-Friedrichs-Lewy condition of convergence and stability can now be shown to be

(80.14) £,

This is just the condition that the domain of dependence of a point with respect to the difference
equation contain its domain of dependence with respect to the differential equation. That is, at
least as much information must be used in computing the value of v at a point (x, y, £) as is neces-
sary to determine u(x, y, t).

For details and other finite difference methods we refer to G. E. Forsythe and
W. Wasow, Finite Difference Methods for Partial Differential Equations, Wiley,
New York (1960).

EXERCISES

1. Find an approximation to the solution u(3, 3%) of the problem (80.1) with the initial values
f(x) = x(1 — x) by means of a finite difference mesh with #= . Choose & to satisfy the stability
condition.

2. (a) Set up a finite difference problem to approximate the heat equation problem

du _ *u _

3}——5?—0 for 0<x<1, t>0’
u(,1)=u(l,1) =0,
u(x, 0) = f(x).

(b) Show that the finite difference problem can be solved by separation of variabies. That
is, that the solution v(nh, mk) of the finite difference problem can be written as a sum of products
of the form X;(nh) T:(mk), each of which satisfies the finite difference equation and the boundary
conditions.

(c) Show that if k < + h?, the approximation v converges to u as h— 0.

(d) Show that if £ > 4 h2, some of the product solutions increase exponentially in f = mk,
so that the problem is unstable.

3, Find a finite difference approximation to u(4, 4, 1) where u is the solution of (80.12). Let
h = 1. Choose k to satisfy the stability condition.
4. Set up a finite difference problem corresponding to the pure initial value problem,

2 2
%—tg-—vg%;—xuzo for >0,
u(x,0) =0,
du -
T (x,0) =x.

Approximate #(0, 1) with the mesh parameters h=1, k=%
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81. The Finite Difference Method for Laplace’s Equation.

We consider the boundary value problem

a*u | 0%u __ .
(81.D) a?+ay2—0 in D,

u=f on C

in a bounded domain D with boundary C. We introduce the square grid x =mh, y =nh

yﬂl

o9 I I I

2h1

h

—3h

in the x-y plane. We replace the Laplace equation (81.1) by the finite difference equa-
tion

An[v] = % [v((m + 1)k, nh) — 2v(mh, nh) + v((m — Dk, nh)]

+ L [v(mh, (n+ D)) = 20(mh, nk) + v(mh, (n—1)h)]
(81.2) 1 h
=7z v((m + 1}k, nh) + v((m =Dk, nh) +v(mh, (n+ 1)k)

+v(mh, (n— 1Yh) —4v(mh, nh)]
=0.

The mesh function v(mh, nh) is defined at all mesh points in D and C. We split these
mesh points into two classes:

We call the points ((m + 1)k, nh), ((m — 1)h, nh), (mh, (n + 1)h), and (mh,
(n — 1)h) the nearest neighbors of the mesh point (mh, nh). If (mh, nh) and all its
nearest neighbors lie in D + C, we call (mh, rh) an interior point. If (mh, nh) is in
D + C, but one of its nearest neighbors is not, we call it a boundary point.

At a boundary point we let v have the given value f of « at the nearest point of C.
At an interior point we require that v satisfy the difference equation (81.2).
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Thus the number of unknown values of v, as well as the number of equations (81.2),
is the number (say N) of interior points. We have a system of N linear equations in N
unknowns.

We wish to show that the solution v of this system is a good approximation to u. As
in the preceding section, we find by Taylor’s theorem that
h? [am

0%u
T3l 3 ((m + 00k, nk) + W(mk, (n+ Gz)h)],

where —1 = 8, = 1, ~1 = 6; = 1. At boundary points

Ah[u] =

u= v—!—h[agﬁ—!—ba—ti],
ox ay
where (ah, bh) is the vector from the nearest point of C to the mesh boundary point.
By definition
a+ b =1,

and %;i and % are to be evaluated at intermediate points.
Thus, if we define the error function
w=u—v,

we find that if B is a bound for the fourth derivatives and 4 is a bound for the gradient
of u, then w satisfies

|Ar[w]| = Bh®*  at interior points
(w| = Ah at boundary points.

(81.3)
We define the mesh function
q(mh, nh) = th*(m? + n?) = +(«% + y?).
By direct computation we find that
Arlgl =1.
Thus by (81.3)
An[w + 1Bh2q] = 0.

We then see from the definition of A, that the value of w + +BA2g at an interior point is
bounded by the average of its values at the nearest neighbors. Therefore, w + §Bh2q
cannot attain a maximum at an interior point unless it is constant. In other words, the
finite difference operator Ay, like the Laplace operator, has a maximum principle.

We have shown that w +4Bh?q attains its maximum at a boundary point. But at these
points

w + §Bh*q = hA + 4sh*BR?,

where R is the maximum distance from the origin to any point of C. Hence by our
maximum principle

w = w+$Bh*q = h4 + 31h*BR?,
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at all mesh points in D. Similarly,

An[—w + §Bh*q] = 0,
and consequently

—w = h4 + 47h*BR®.
We have shown that if w satisfies (81.3),
(81.4) |w| = hA + 3sh*BR®.

The boundary value problem for v is therefore properly posed. As &7 — 0 the error
w = u — v approaches zero. That is, v converges to u.

We have derived (81.4) from (81.3) without regard to the meaning of 4 and B. If
we let A = B =0, we see that the only solution of the set of linear equations with zero
right-hand side is w = 0. This means that the determinant of the coefficients in the
linear equations for v does not vanish. Therefore the finite difference problem for v has
exactly one solution v, and v —> u as h— 0.

The convergence proof for this elliptic problem is much simpler than that for the
hyperbolic and parabolic problems of the preceding section.

On the other hand, the finite difference equations of the previous section could be
written as recursion formulas, whose numerical solution is easy. In the present case
we are presented with a system of N simultaneous linear equations which do not re-
duce to recursion formulas. Since for small 4z, N =% 42 where ¥ is the area of D,
the resulting algebraic problem is formidable. It can, in general, not be solved explicitly.

To obtain an approximate solution of the finite difference equation (81.2) with the
given boundary values, we first consider the related parabolic problem

*U |, *U _3U .
et 5 = o for (x,y)inD,t>0,

Ulx,y, 0) =f on C,

with any given initial values U (x, y, 0). It can be shown by means of Laplace trans-
forms that

lim U(x, y,t) = u(x,y),
>
where u is the solution of (81.1).
We keep the mesh that we introduced for the elliptic problem in the x-y plane, and

introduce a t-mesh =1k, [=0, 1, 2, . . . . We now introduce the analogous finite differ-
ence equation.

AnVi} = 55 LVil(m+ Db, nh) + Vi (m = D, nk) + Vilmh, (n+ D),
+ Vi(mh, (n = 1)h) =4 Vi(mh, nh)],
= 2 (Vesr (mh, nh) = Vilmh, nh)],

where we have written V; for the value of the mesh function at time /k. This equation
is to apply at interior points. At boundary points we put

Vi(mh, nh) = v(mh, nh),
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where v is the mesh function introduced in the finite difference equation (81.2). The
initial values are

Vo(mh, nh) = U(mh, nh, 0),

which is an arbitrary function.
The difference equation can be written as a recursion formula

Vien(rh, nh) = o[Vi((m+ DA, nk) + V,((m — 1)k, nh)
(81.5) + Vi(mh, (n+ 1}h) + Vi(mh, (n—1)h)]
+ (1 —40) V' (mh, nh),

where we have defined o = k2. We can expect that
lim ¥V (mh, nh) = v(mh, nh).

sl
This can indeed be proved, provided the stability condition 0 < o < ¥ is satisfied.

Since Vo(mh, nh) = U(mh, nh, 0) 1s arbitrary, the above method of approximating v
may be described as follows: We start with an initial guess V, for v. We improve this
guess at each interior point by replacing the value V,(mh, rnh) by the linear combina-
tion (81.5) of V,(mh, nh) and the average value of V, at the nearest neighbors of
(mh, nh). We improve this function V; in the same way to obtain V,, and so forth. A
particularly simple case occurs when o = 1. In this case V,(mh, nh) is just replaced by
its average at the nearest neighbors. The result V;(mh, nh) of the lth iteration con-
verges to the solution v(mh, nk) of the finite difference problem (81.2) with boundary
conditions as [ — .

The above iterative method of solving the finite difference problem (81.2) is only one
of several possible methods of this type. For others we refer to the books of Forsythe
and Wasow and of Varga in the bibliography.

Finite difference methods can also be used to solve other elliptic boundary value
problems, as well as problems connected with other boundary conditions, systems of
equations, and nonlinear equations. In general, the solution of the finite difference
problem itself cannot be computed explicitly, but must be approximated by iteration.

The solution of the original problem, then, is the result of two limiting processes:
one of letting a mesh parameter h approach 0, and the other of making the number of
iterations [ approach ,

In an actual computation we work with finite % and [/, so that two errors are intro-
duced. In order to know the relation between that which is computed and the desired
solution we need bounds for both errors.

EXERCISES
1. Set up a finite difference problem corresponding to
Pu , Pu
ax2+ay2—0 for x>0,y>0,x+y<1,
u(0,y) =0,
u(x,1—x)=20,

u(x,0) =x(1—1x)
with h=1.
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(a) Solve the finite difference problem exactly.
(b) Start with the initial guess V, = 0 at interior points, and do three iterations. Compare
with the solution obtained in (a).
2. Set up a finite difference problem corresponding to
2 2
%ﬁ-+g—yg——x2u=0 for -1 <x<l,—-1<y<l,
u(—=ty)=u(l,y) =0,
u(x,—1)=(1-x2),
ulx, 1) =—(1-—x?)
with h =1,
(a) Solve the finite difference problem exactly, using the symmetry to reduce the number of
unknowns.
(b) Find an approximate solution of the finite difference problem by three iterations, start-
ing with ¥, = 0 at interior points.
3. Set up a finite difference problem corresponding to
dtu

2
:9';2“#*2%'}]—1::0 for X*+y* <1,

u=x* for x*+y?=1

with & = . Soive, using the symmetry of the problem.
4. Set up a finite difference problem corresponding to

*u  *u .
67+W:_F(x’ y) in D,
=20 on C.

Show that the solution of this problem converges to u as & —> 0, provided u is sufficiently differ-
entiable.

82. The Method of Successive Approximations.

We consider the initial value problem

2 2
a_u_a_u_"b(x’t)u::F(x,t) for —DO<x<00,t>0,

(82.1) u(x, 0) =0,
ou _
of (xa 0) - 07
where ¢ (x, ) is a given continuous function of x and ¢.
If we transpose the last term on the left, the differential equation becomes

Pu  u
(82.2) Yo ‘-a—x—sz(x, 1) + du.

We know how to solve the initial value problem

Pu  Fu
—(aF-éF—G(x,t) for t>0,
u(x, 0) =0,

ou _
'a—t(x, 0) = 0.



CHAP. XII 82. The Method of Successive Approximations 385

Namely, according to (5.2),

1t x+(t—1) o
(82.3) u(x, 1) =3 f f " G (%, ) did.
0 Jx—(t-0)
In (83.2) G = F + ¢u. We obtain

1 ft [x+-D o o
(82.4) u(x, 1) =1 f f IFG, D + (X, DuR, 7)]dxdr.
2 Jo Ja—t-p

Since the unknown function u appears in the integral, this is not a solution formula,
but an integral equation for «. It can be shown that the only continuous solution of the
integral equation (82.4) is the solution of the problem (82.1).

To solve the integral equation (82.4) we choose an initial guess uo(x, t) for the solu-
tion. We then compute a second approximation u,; as the solution of

u *u
at2l _ ax; = F(x, t) + d(x, Huolx, t),
U (x, 0) = 0’
dus, o _
o 0) =0.

That is,

i (x, 1) =% f: [ T EG T + 6(E Duo(E, )| didr.

x—(t~1)

We hope that u; is a better approximation than u, to the solution u of (82.1) or the
equivalent problem (82.4).
We can further “‘improve” u, by defining u. as the solution of

azuz azuz .
or ow L o,
Mz(x, 0) - 0,
auz .
o (x, 0) =0.

We continue this process by defining u,.: as the solution of

%uy d%uy
6[2“ - {;)x;1 =F + ¢un,

un+1(x9 0) = 05

Olniy _
SrTe (x,0)=0

forn=1,2,3,.... By the solution formuia (82.3)

1 [t [x+=0 _ o o o
(82.5) tnsa (5, 1) = J' f IFR D) + 6(F, Dun(F, 7)) didi.

T—(t—1)

We wish to show that the sequence u, converges to the solution u. We consider the
difference

Vn = Unp — Up—1.
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We subtract (82.5) with n replaced by # — 1 from (82.5) to find that
T+(E-1)
(82.6) Vn+1(x t) —zfj " d)(x t)vn(x t)dxdi.

—@-t)

For some T > 0 we define
M = maTx ld(x, )],
1=

K = max |wn(x, 1)].
Then by (82.6) with n = 1 =T

( g
lve(x, £)] = sz :_;MK dxdt = —MKt2 for +r=T.

Again by (82.6), but with n =

D ]
|va(x, )| = = 5 f[ ed iMzK?dxdt mMth‘*

Continuing in this fashion, we see that

82.7 — = < _M"K e f =T
(82.7) |un(x, ) = un—1(x, t)| = |valx, 8)| [2(n= l)]!t or ¢ .
Thus forany m > nandt =T
(82.8) Ium(x, t) - un(x, t)l = |Vm + Vm-1 + -4 VrH.Il
= IVm| + IVm—l' +o- +|Vn+1|
m—1
Mkt2k
= ELCLIN
K 2 @i
@ Mkt2k

The series E converges uniformly for r =T to cosh VM. Hence um — un — 0

(2k)!
uniformly in t This is the Cauchy criterion. Hence the sequence u,(x, ) converges uni-
formly in x and ¢ (for r = T) to a function u(x, £}. Letting n — « in the recursion rela-
tion (82.5) gives the integral equation (82.4). The limiting function u(x, t) solves (82.4)
and hence the problem (82.1).

The uniqueness of the solution follows from the same considerations. For if v is
the difference of two solutions of (82.1), we have

x+(t-0 _ o

vix, 1) = [ f b (x, Hv(x, )dxds.
2 —{t-9)

The derivation of (82.7) leads to the inequality

- 'nt2n
|v(x9 t)| - max|v| (2 )'

for all n. Letting n — =, we find that v = 0.
Letting m — < in (82.8) leads to the inequality.

(82.9) lu(x, t) —un(x, )] = K ?n ](\/‘12’;:)2’

MktZk
[cosh VM kEO ) ,]
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This is a bound for the error |u — uy| in terms of the maximum K of the difference
|r — uo| between the first and second approximations. For fixed r the error bound
approaches zero quite rapidly as n — o,

Example. Consider the problem
2 2
%t%—g—;;—(sinx)u-tsinx for >0,

u(x, 0) =%—‘t‘~ (x, 0) = 0.

We choose the first approximation i, = 0. Then

1 ft feve- | — . _
w{x, t) =-2-f f _ sin x dxdt
Mo Jx-(t-t)
= sin x(1 — cos 1).
Thus we have M = max |sin x| = 1, K = max |sin x(1 — cos ¢)| =2 for all 7. Hence we find that

n-1 t2k
(x, 1) — ua(x, £)] < 2(cosh ('3 “(T)')
Putting n = 0, we have

{u(x, £){ = 2 cosh ¢.

Putting n = 1, we find
[u(x, t) — sinx(1 — cost)| = 2(cosht—1).
We note that for T = 7 we may take X = 1 —cos 7. Then we find that for ¢ = =
lu(x, £) — sinx(1 — cost)| = (1 —cost) (coshs—1),

which is better than the above bound, particularty for small ¢.
If we want a better approximation, we compute

1 v fes@-00 _  _ . - -
u(x, t) =-2-f f h [sinx + sin x(1 — cos ¢) ]dxd!
o Jr-@z-
— _ lo. (1.1 —
= gin x(1 — cos t)+412 (2+ §Cos 2x)(1 cos 1)
+ 5 c0s 2x(1 = cos 21).

Then we have

2
lu(x, 1) —uz(x, 1)] = 2(cosh r—1 —%)

for all ¢, or

lu(x, t) — w2 (x, )| =< (1 —cos 1) (cosh t—1 —523)

fort = m.

We remark that since the integrals are over characteristic triangles, all the above con-
siderations may be conducted on a characteristic triangle 0 < ¢t = T — |X—x| rather
than the whole strip 0 = ¢r = T.

In particular, the uniqueness theorem we have proved states that u(xg, o) is uniquely
.determined by ¢ and F in the triangle |x — xo| = f, — t. That is, the characteristics of
the problem (82.1) determine its domain of dependence.

The maxima in the definitions of K and M need only be taken over this triangle.
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Therefore ¢ and u, need not be uniformly bounded, We can, for instance, treat the
equation

*u 3w
Frrr i et
by successive approximations.
By computing al(; and alg’;“ from the recursion formula (82.5), we can derive a
dva
bound similar to (82.7) for I and az a t

converge uniformly to %—— and 37 as n —> o, This fact enables us to solve the more

general initial value problem

2 2
37——37—(1( X, )—?—b(x, t}g%—qS(x, Nu=F(x,1) for >0,
(82.10) u(x, 0) =0,
3
5 (6 0) =
by successive approximations:
r+(t-D
tnan(x, 1) = f [F&E ) +a( 5% 1)+ b )23, 1)
—(t-0 Bt a

+ ¢ (x, 1) un(x, 1)1dxd.

Any linear hyperbolic equation of second order in two variables can be brought into
the form (82.10) by introducing new coordinates. (See Section 9, Exercise 4.) We find
in this way that domains of dependence are always determined by the characteristics.

The initial value problem for the parabolic equation

2
(82.11) QE__Q__ d{x, Hu=0 for —o<x <o >0,

ot
u(x, 0) = f(x),
u(x, t) bounded

can be treated by using the solution of the nonhomogeneous heat equation. (This
problem arises as a first approximation to chemical heat production.) Solving the
initial value problem for the nonhomogeneous heat equation by means of the Laplace
transform, we obtain the integral equation

(82.12) u(x, 1) = | EZ f(wydi + f f el o ’”¢(3c, Du(%, 1) didi.

v 2V 2V (t —
We start with an initial guess u, and successively define
(82.13)

(e, 1) = | ;\‘j_ Fx)dx + f f 92\(;:();’““ e I % B un(R, T)didi.
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Setting vr = up — Un—;, we have

‘ e (x-TR4(t-1)
Voo (x, :):LJ_ T b DR, Ddidi

Then if again
M =max |¢(x, )]
t=T

K = max |vi(x, £)| = max |u; — u|,
=T =T

we find that
Iva(x, 1)| < KMt
lvs(x, t)l = lK(Mt)2
Vi (x, f)l = K(Mt)
Thus
(82.14) lttm — 1] = K E (—]‘%)—
. . a (M) .
Since the series X 1~ converges uniformly for = T, we find that the sequence
0 .

un(x, t) converges uniformly to a function u(x, #). Letting n — <« in the recursion
formula (82.13), we see that u is the solution of the integral equation (82.12), and hence
of the problem (82.11).

Letting m — = in (82.14) gives the error bound

utx, 1) =z, )] = K 3 A5 gl o (AZf)k]

The initial-boundary value problem

2
%Lf~g}%—~¢(x,t)u=0 for 0<x<1,t>0,

u(x, 0) = f(x),
u(0, 1)y =u(l,t) =0

can be treated by extending f(x) as an odd function and ¢(x, 7} as an even function
about x=0and x=1:

f=x) = —f(x), f2—x) =~f(x)
d(—x, 1) = ¢(x, 1), ¢(2—x,1) = ¢(x,1).

The solution u of the initial value problem (82.11) with such fand ¢ is automatically
odd about x = 0 and x = 1, and hence satisfies the boundary conditions. If the initial
guess uo(x, £) is chosen so that uo(—x, t) = — uo(x, 1), uo(2 — x, £) = —ue(x, ¢}, the
formula (82.13) shows that all the approximating functions u. have these properties.
Therefore, the approximating functions u, satisfy the boundary conditions.

Similar comments apply to the initial-boundary value problems corresponding to the
hyperbolic problems (82.1) and (82.10).
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The above method of successive approximations, also known as iteration, can be
applied to a large class of initial or initial-boundary value problems in two or more
dimensions. Roughly speaking, it can be used to solve such problems for the partial
differential equation

(82.15) Llul + M[ul=F
if the corresponding problem
Llul=G

is properly posed and can be solved explicitly, and if M[u«] is an operator involving
only derivatives of lower order than those that occurin L[«].

A boundary value problem for the equation (82.15) where L is elliptic can in general
only be solved when M is sufficiently small. To see the necessity for such a restriction
we consider the one-dimensional boundary value problem

2
(82.16) %}%+)‘(1+x2)“=“F(x) for 0<x<1,

u(0) = u(1) =0.

_du
Here L[u] =——, and the problem

27

d*u
o Gx),

u(0) =u(l) =0

can be solved explicitly:
u(x) = L’ (1 — x)%G (F)d5 + L‘ (1 — %G (%) dx.
Thus (82.16) is equivalent to the integral equation
u(x) = E (1= 0F[FGE) + Al + ) u(®)]dr
+ ﬁ (1= F)[FE + M1 + 7)) ]d.
We now define the iteration process
tiner () =f (1 = )X[F + A(1 + ) un] d
+ Ll 2(1 =) [F + A1 + ) u] di.
Then if v, = u, — us—1, we have
Vay1 = A f: (1= x)%(1 + %) vadi + A L‘ (1 = %) (1 + %) vudx.

If |V1| = K,

|ve| = AKU: (1 —0)Z(1 + %) di + E x(1=%)(1 +E2)df}
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= %x(l —x)(7+ x+ x?)
=
=

Then

m-1 k
=l = K3 ()

k
The series X (%) converges if and only if
(82.17) A| < 6.

Thus for sufficiently small \ the iteration converges to a solution.

According to the results of Section 36 there are eigenvalues \, for which the problem
(82.16) has in general no solution. Hence the iteration cannot converge for all . An
inequality like (82.17) is necessary. Comparison with the equations «” + Au = 0 and
u" + 2 u = 0 shows that the lowest eigenvalue of (82.16) satisfies 7% < \; < w2. The
inequality (82.17) shows that actually A, = 6. Thus 6 = \; < 72,

Generally speaking, eigenvalues occur in boundary value problems of the form

Llu]l] +\M[u]l=0

associated with an elliptic operator L. For this reason the perturbation operator M
in (82.15) must be restricted in size.

EXERCISES
1. Solve the problem
32 d?
st—?-—a%—xzu=x for ¢t>0,
u(x, 0) =0,

Bu _
S;(xv 0) - 0

by successive approximations, using u, = 0 and obtaining .. Find the maximum error made in
approximating u(1, 1) by u,(1, 1).
2. Solve

2
————x——(cos2x)uzsm3x for 0<x<m, t>0,

u(0, ) =u(m, 1) =0,
u(x,0)=20

by successive approximations for u,, starting with w, = 0.
HINT: Instead of using the integral formula, solve the nonhomogeneous heat equation occur-
ring in each iteration by means of the finite sine transform,
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3. Set up a successive approximation scheme for the initial value problem
2 2
%ﬁq“g“xyf—'b(x,f)FF(L t) for t>0,
u(x’ 0) =f(x)7

L, 0) = g(x).

4. Solve by successive approximations

2 2
Bu_g_g_ég+xu=0 for 1+ >0,

2 axt ot
u(x, 0) =0,
Ju _

ot (x7 O) - x2

for u; starting with u, = x%¢. Find a bound for the error

o 1) _ 8

made in approximating %?(0, 1).

83. The Rayleigh-Ritz Method.

We shall briefly sketch a method that can be used to approximate the solution of a
boundary value problem for an elliptic equation.
Let u be the solution of the problem
Viu = TE T T 0 in D,
(83.1) u= on C.

Let v(x, y) be any continuously differentiable function in D which is continuous to
the boundary and has the boundary values

(83.2) v=f on C.
We integrate both sides of the identity
2div[(u—v) gradu] + |grad v|?> = |grad u|* + |grad (v — ) |* + 2(u — v)Vu.

over D. Since u — v =0 on C, the integral of the first term is zero by the divergence
theorem. Therefore,

(83.3) ff |grad v|? dxdy = J J |grad u|?® dxdy + ff lgrad (v — u)}|? dxdy.

D D D

Since |grad (u — v}|? = 0, it follows that

(83.4) jf |grad v|? dxdysz |grad «|? dxdy
D D

for any function v having the same boundary values as . We thus have the following
characterization of a harmonic function.
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DIRICHLET’S PRINCIPLE. Among all continuously differentiable functions v in D
with given boundary values f, the harmonic function # minimizes the integral

J J lgrad v|? dxdy.

We see from the equation (83.3) that only « gives this minimum value. For if v — « is
not identically equal to a constant, [ [ |grad (v — u)|? dxdy is positive. Since v — u is
zero on the boundary, the only constant value that v — « can have is zero.

The difference between [ [ |grad v|? dxdy for a particular function v and the mini-
mum value [ [ |grad u|?® dxdy is, according to (82.3), equal to [ [ |grad (v—u)|? dxdy.
Thus a function v for which [ [ |grad v|® dxdy — [ [ |grad u|? dxdy is small is, in the
sense of a certain mean, close to the solution # of (83.1). This property suggests looking
for a function v which makes [ [ |grad v|? dxdy as small as possible.

Let v, be any continuously differentiable function satisfying the boundary condition

(83.5) vw=f on C.

It is an initial guess for the solution «. To improve this guess, we choose a function v,
satisfying the homogeneous boundary condition

Vv = 0 on C.
Then if a; is any constant, the function
(83.6) V= + a1

satisfies v=f on C.

To find the best approximation to u in the sense of the mean f[ |grad (v — «)|?
dxdy we choose a; so that { [ |grad v|? dxdy is as small as it can be for any v of the
form (83.6). We compute

ff lgrad (vo + a1v1)|? dxdy = ][ |grad vo|? dxdy

D D

+ 2a, J J grad v, - grad v, dxdy
D

+ ay? JJ |grad v,|? dxdy.

D
This is a quadratic polynomial in a,. To minimize it, we simply set the derivative with
respect to a; equal to zero:

ZJJgrad vo - grad v dxdy+2a1jj |grad v,|? dxdy = 0.
D D

The minimizing a, is given by

f f grad v, - grad v, dxdy

D

a, = —

ff |grad v, |* dxdy
D
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Example. Approximate the solution of the problem

2 2
g—x;‘+-37‘;=0 for x>0,y>0,x+2y<2,
u(x, 0) =x(2—-x),
(83.7) u(0, y) =0,

u(2—2y,y)=0.
To satisfy the boundary conditions we choose
vo=x(2 —x—2y).
We then pick
vi=xy(2—x—2y),
which vanishes on the boundary, and seek the best v of the form v, + a,v:. The minimizing a,
is given by

Ll ny [4y(1 —x —y)* — 2x*(2 — x — 4y) ] dxdy

0

= m ey
f f [4y%(1 —x — y)2 4+ x*(2 — x — 4y)?*]dxdy
0 0

Thus
_ 3
v = x(l —-gy)(Z —x—2y)
is the best approximation of the form x(1 + a;y) (2 — x — 2y) to the solution u in the sense of the

mean [ [ |grad (v — u)|? dxdy.

We can decrease [ [ |grad v|* dxdy and hence [f |grad (v — u)|? dxdy further by
introducing other functions v., vs, . . . , v, Which satisfy the homogeneous boundary
condition

(83.8) vi=0 on C for i=1,...n,
and putting
(83.9) v=vet+avi+ o+ e
Then
J J |grad v|* dxdy = J’ J |grad vo|? dxdy
D

b

+ 2a, f fgrad vo * grad vy dxdy +- - - + 2an f J grad v, - grad v, dxdy
D D

+ a,® Jf |grad v,|? dxdy + - - -+an2fJ \grad v, |? dxdy

D D

+ 2a,a: f f grad v, » grad v. dxdy + - - -
D

+ 20, -1an f f grad v,—; - grad v, dxdy.
D
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This is a polynomial of degree two in the variables a,, . . ., an. To find its minimum
we set the partial derivatives with respect to all the a; equal to zero. We thus obtain the
system of » linear equations in » unknowns

(83.10)
alf] |grad V1|2dxdy+a2JJgrad vi - grad ve dxdy +- - -+anf]grad vy« grad v dxdy
D D D

=— f f grad v, - grad v, dxdy
. D

a f f grad v, - grad v; dxdy + a, f f grad v, - grad vs dxdy + - - -
D D

+ ay j[ |grad v,|?* dxdy

D
=— j J grad v, - grad v, dxdy.
D
The solution of this system of equations gives the best approximation to « of the form
(83.9) in the sense that [ [ |grad (v — u)|? dxdy is as small as possible. This method of
D

approximating the solution « is called the Rayleigh-Ritz method.

Example. We again consider the problem (83.7). We choose vo = x(2 —x— 2y}, but we now seek
a better approximation by taking the two functions

v =xy(2 —x—2y),
v =xy2(2 — x—2y).

We seek the best approximation to u of the form v = vy + a,v; + azv.. The minimizing conditions
(83.10) are

1g T 2315 75
22 1 2

G35t 2357 55

Solving, we find

a, = —"1““3"
28
2 143

Thus the Rayleigh-Ritz approximation to u is

- _1 ., 28 oy
v—x(l 13y—143yz)(2 x—2y).

The Rayleigh-Ritz method can be used to approximate the solutions of a large class
of boundary value problems with constant or variable coefficients, in one or more
dimensions. It can also be used to approximate eigenvalues and eigenfunctions of ordi-
nary and partial differential equations.

For further details we refer to the books of Collatz, Polya and Szego, and Synge in
the bibliography.
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EXERCISES

1. Find the best approximation of the form
v=x(1—x)(1=y) +x(1=x)y(1 —y) (a1 + ay)

1 1
in the sense of the mean f f |grad (v — u)|? dxdy to the solution u of
o Jo

0%u | 0%u _
ax2+6y2_0 for 0<x<l1, 0<y<l,

u(0,y)=u(l,y) =0,
u(x, 1) =0,
u(x, 0) =x(1—x).

2. Find the best approximation of the form
2
v=xT+ (x*+ );— —1) (a; + ax® + azy?)

in the sense of the mean [ [ [grad (v — u)!|? dxdy to the solution u of

Pu | Pu_ s Y
ax2+ay2~0 for x+4<1,

2
u=x* for x2+'%“_‘1-

Show that the resulting function v is the exact solution u.
3. Show that Dirichlet’s principle holds for a three-dimensional problem of the form
*u | *u, *u_ .
Py + 3 0 in D,
u=f on C.
Hence find the Rayleigh-Ritz approximation of the form
v=x(1—-x)y(1=y}(1-2)(1 + aiz)
to the solution of
o*u  8®u | u _

52—-*_6—))24“@ 0 for 0<x<1, 0<)’<], 0<z<1’

u=20 for x=0, x=1, y=0, y=1, z=1,
u(x,y,0) =x(1—-x)y(1 —y).

4. Let D be a two-dimensional domain with boundary C and ¢(x, y) a given nonnegative

function. Show that among all continuously differentiable functions v such that

v=f on C
the solution u of the problem
%u |, o*u _ .
W+5§g—¢(x,y)u—0 in D,
u=f on C

minimizes the integral f f {|grad v|* + ¢ v?} dxdy.
D
Hence find the Rayleigh-Ritz approximation of the form

. w . «
V = SIn mx COS 5 y + a