


LONDON MATHEMATICAL SOCIETY LECTURE NOTE SERIES

Managing Editor: Professor J.W.S. Cassels, Department of Pure Mathematics and Mathematical Statistics,
University of Cambridge, 16 Mill Lane, Cambridge CB2 1SB, England

The books in the series listed below are available from booksellers, or, in case of difficulty,
from Cambridge University Press.

34 Representation theory of Lie groups, M.F. ATIYAH et al
36 Homological group theory, C.T.C. WALL (ed)
39 Affine sets and affine groups, D.G. NORTHCOTT
46 p-adic analysis: a short course on recent work, N. KOBLITZ
50 Commutator calculus and groups of homotopy classes, H.J. BAUES
59 Applicable differential geometry, M. CRAMPIN & F.A.E. PIRANI
66 Several complex variables and complex manifolds II, M.J. FIELD
69 Representation theory, I.M. GELFAND et al
74 Symmetric designs: an algebraic approach, E.S. LANDER
76 Spectral theory of linear differential operators and comparison algebras, H.O. CORDES
77 Isolated singular points on complete intersections, E.J.N. LOOIJENGA
79 Probability, statistics and analysis, J.F.C. KINGMAN & G.E.H. REUTER (eds)
83 Homogeneous structures on Riemannian manifolds, F. TRICERRI & L. VANHECKE
86 Topological topics, I.M. JAMES (ed)
87 Surveys in set theory, A.R.D. MATHIAS (ed)
88 FPF ring theory, C. FAITH & S. PAGE
89 An F-space sampler, N.J. KALTON, N.T. PECK & J.W. ROBERTS
90 Polytopes and symmetry, S.A. ROBERTSON
92 Representation of rings over skew fields, A.H. SCHOFIELD
93 Aspects of topology, I.M. JAMES & E.H. KRONHEIMER (eds)
94 Representations of general linear groups, G.D. JAMES
95 Low-dimensional topology 1982, R.A. FENN (ed)
96 Diophantine equations over function fields, R.C. MASON
97 Varieties of constructive mathematics, D.S. BRIDGES & F. RICHMAN
98 Localization in Noetherian rings, A.V. JATEGAONKAR
99 Methods of differential geometry in algebraic topology, M. KAROUBI & C. LERUSTE

100 Stopping time techniques for analysts and probabilists, L. EGGHE
101 Groups and geometry, ROGER C. LYNDON
103 Surveys in combinatorics 1985, I. ANDERSON (ed)
104 Elliptic structures on 3-manifolds, C.B. THOMAS
105 A local spectral theory for closed operators, I. ERDELYI & WANG SHENGWANG
106 Syzygies, E.G. EVANS & P. GRIFFITH
1 07 Compactification of Siegel moduli schemes, C-L. CHAI
108 Some topics in graph theory, H.P. YAP
1 09 Diophantine analysis, J. LOXTON & A. VAN DER POORTEN (eds)
110 An introduction to surreal numbers, H. GONSHOR
1 13 Lectures on the asymptotic theory of ideals, D. REES
1 14 Lectures on Bochner-Riesz means, K.M. DAVIS & Y-C. CHANG
115 An introduction to independence for analysts, H.G. DALES & W.H. WOODIN
116 Representations of algebras, P.J. WEBB (ed)
1 1 7 Homotopy theory, E. REES & J.D.S. JONES (eds)
118 Skew linear groups, M. SHIRVANI & B. WEHRFRITZ
119 Triangulated categories in the representation theory of finite-dimensional algebras, D. HAPPEL
1 2 1 Proceedings of Groups - St Andrews 1985, E. ROBERTSON & C. CAMPBELL (eds)
1 22 Non-classical continuum mechanics, R.J. KNOPS & A.A. LACEY (eds)
1 25 Commutator theory for congruence modular varieties, R. FREESE & R. MCKENZIE
126 Van der Corput's method of exponential sums, S.W. GRAHAM & G. KOLESNIK
1 27 New directions in dynamical systems, T.J. BEDFORD & J.W. SWIFT (eds)
1 28 Descriptive set theory and the structure of sets of uniqueness, A.S. KECHRIS & A. LOUVEAU
1 29 The subgroup structure of the finite classical groups, P.B. KLEIDMAN & M.W.LIEBECK
1 30 Model theory and modules, M. PREST
1 3 1 Algebraic, extremal & metric combinatorics, M-M. DEZA, P. FRANKL & I.G. ROSENBERG (eds)
1 32 Whitehead groups of finite groups, ROBERT OLIVER
1 33 Linear algebraic monoids, MOHAN S. PUTCHA
1 34 Number theory and dynamical systems, M. DODSON & J. VICKERS (eds)
1 35 Operator algebras and applications, 1, D. EVANS & M. TAKESAKI (eds)
1 36 Operator algebras and applications, 2, D. EVANS & M. TAKES AKI (eds)
137 Analysis at Urbana, I, E. BERKSON, T. PECK, & J. UHL (eds)
1 38 Analysis at Urbana, II, E. BERKSON, T. PECK, & J. UHL (eds)
1 39 Advances in homotopy theory, S. SALAMON, B. STEER & W. SUTHERLAND (eds)
140 Geometric aspects of Banach spaces, E.M. PEINADOR and A. RODES (eds)



141 Surveys in combinatorics 1989, J. SIEMONS (ed)
142 The geometry of jet bundles, D.J. SAUNDERS
143 The ergodic theory of discrete groups, PETER J. NICHOLLS
1 44 Introduction to uniform spaces, I.M. JAMES
145 Homological questions in local algebra, JAN R. STROOKER
146 Cohen-Macaulay modules over Cohen-Macaulay rings, Y. YOSHINO
147 Continuous and discrete modules, S.H. MOHAMED & B.J. MULLER
148 Helices and vector bundles, A.N. RUDAKOV et al
1 49 Solitons, nonlinear evolution equations and inverse scattering, M.A. ABLOWITZ &

P.A. CLARKSON
150 Geometry of low-dimensional manifolds 1, S. DONALDSON & C.B. THOMAS (eds)
1 51 Geometry of low-dimensional manifolds 2, S. DONALDSON & C.B. THOMAS (eds)
152 Oligomorphic permutation groups, P.CAMERON
1 53 L-functions and arithmetic, J. COATES & M.J. TAYLOR (eds)
1 54 Number theory and cryptography, J. LOXTON (ed)
155 Classification theories of polarized varieties, TAKAO FUJITA
156 Twistors in mathematics and physics, T.N. BAILEY & R.J. BASTON (eds)
1 57 Analytic pro-/; groups, J.D. DIXON, M.P.F. DU SAUTOY, A. MANN & D. SEGAL
1 58 Geometry of Banach spaces, P.F.X. MULLER & W. SCHACHERMAYER (eds)
1 59 Groups St Andrews 1989 Volume 1, CM. CAMPBELL & E.F. ROBERTSON (eds)
1 60 Groups St Andrews 1989 Volume 2, CM. CAMPBELL & E.F. ROBERTSON (eds)
1 61 Lectures on block theory, BURKHARD KULSHAMMER
1 62 Harmonic analysis and representation theory for groups acting on homogeneous trees,

A. FIGA-TALAMANCA & C NEBBIA
1 63 Topics in varieties of group representations, S.M. VOVSI
1 64 Quasi-symmetric designs, M.S. SHRIKANDE & S.S. SANE
165 Groups, combinatorics & geometry, M.W. LIEBECK & J. SAXL (eds)
1 66 Surveys in combinatorics, 1991, A.D. KEEDWELL (ed)
1 67 Stochastic analysis, M.T. BARLOW & N.H. BINGHAM (eds)
1 68 Representations of algebras, H. TACHIKAWA & S. BRENNER (eds)
169 Boolean function complexity, M.S. PATERSON (ed)
170 Manifolds with singularities and the Adams-Novikov spectral sequence, B. BOTVINNIK
1 71 Squares, A.R. RAJWADE
172 Algebraic varieties, GEORGE R. KEMPF
1 73 Discrete groups and geometry, W.J. HARVEY & C MACLACHLAN (eds)
1 74 Lectures on mechanics, J.E. MARSDEN
175 Adams memorial symposium on algebraic topology 1, N. RAY & G. WALKER (eds)
1 76 Adams memorial symposium on algebraic topology 2, N. RAY & G. WALKER (eds)
1 77 Applications of categories in computer science, M. FOURMAN, P. JOHNSTONE, & A. PITTS (eds)
178 Lower K-and L-theory, A. RANICKI
179 Complex projective geometry, G. ELLDSfGSRUD et al
1 80 Lectures on ergodic theory and Pesin theory on compact manifolds, M. POLLICOTT
1 81 Geometric group theory I, G.A. NIBLO & M.A. ROLLIER (eds)
182 Geometric group theory II, G.A. NIBLO & M.A. ROLLIER (eds)
1 83 Shintani zeta functions, A. YUKIE
184 Arithmetical functions, W. SCHWARZ & J. SPILKER
1 85 Representations of solvable groups, O. MANZ & T.R. WOLF
186 Complexity: knots, colourings and counting, D.J.A. WELSH
1 87 Surveys in combinatorics, 1993, K. WALKER (ed)
1 88 Local analysis for the odd order theorem, H. BENDER & G. GLAUBERMAN
1 89 Locally presentable and accessible categories, J. ADAMEK & J. ROSICKY
1 90 Polynomial invariants of finite groups, D.J. BENSON
1 91 Finite geometry and combinatorics, F. DE CLERK et al
1 92 Symplectic geometry, D. SALAMON (ed)
1 93 Computer algebra and differential equations, E. TOURNIER (ed)
1 94 Independent random variables and rearrangement invariant spaces, M. BRAVERMAN
195 Arithmetic of blowup algebras, WOLMER VASCONCELOS
1 96 Microlocal analysis for differential operators, A. GRIGIS & J. SJOSTRAND
1 97 Two-dimensional homotopy and combinatorial group theory, C HOG-ANGELONI, W. METZLER & A.J.

SIERADSKI (eds)
1 98 The algebraic characterization of geometric 4-manifolds, J.A. HILLMAN
1 99 Invariant potential theory in the unit ball of Cn, MANFRED STOLL
200 The Grothendieck theory of dessins d'enfant, L. SCHNEPS (ed)
201 Singularities, JEAN-PAUL BRASSELET (ed)
202 The technique of pseudodifferential operators, H.O. CORDES
203 Hochschild cohomology, A. SINCLAIR & R. SMITH
204 Combinatorial and geometric group theory, A.J. DUNCAN, N.D. GILBERT, J. HOWIE (eds)
205 Ergodic theory and its connections with harmonic analysis, K.E. PETERSEN & I. SALAMA (eds)
207 Groups of Lie type and their geometries, W.M. KANTOR & L. DI MARTINO (eds)



London Mathematical Society Lecture Note Series. 188

Local Analysis for the
Odd Order Theorem

Helmut Bender
Universitdt Kiel

and

George Glauberman
University of Chicago

with the assistance of
Walter Carlip
Ohio University

CAMBRIDGE
UNIVERSITY PRESS



Published by the Press Syndicate of the University of Cambridge
The Pitt Building, Trumpington Street, Cambridge CB2 1RP
40 West 20th Street, New York, NY 10011, USA
10, Stamford Road, Oakleigh, Melbourne 3166, Australia

© Cambridge University Press 1994

First published 1994

Library of Congress cataloging-in-publication data available

British Library cataloguing in publication data available

ISBN 0 52145716 5 paperback

Transferred to digital printing 2005



In memory of R. H. Bruck





Contents

Preface ix

Chapter I. Preliminary Results 1

1. Elementary Properties of Solvable Groups 1

2. General Results on Representations 9

3. Actions of Probenius Groups and Related Results 17

4. p-Groups of Small Rank 33

5. Narrow p- Groups 44

6. Additional Results 49

Chapter II. The Uniqueness Theorem 55

7. The Transitivity Theorem 55

8. The Fitting Subgroup of a Maximal Subgroup 61

9. The Uniqueness Theorem 64

Chapter III. Maximal Subgroups 69

10. The Subgroups Ma and Ma 69

11. Exceptional Maximal Subgroups 80

12. The Subgroup E 83

13. Prime Action 97

Chapter IV. The Family of All Maximal Subgroups of G 105

14. Maximal Subgroups of Type £? and Counting Arguments 105

15. The Subgroup MF 117



viii Contents

16. The Main Results 123

Appendix A. Prerequisites and p-Stability 135

Appendix B. The Puig Subgroup 139

Appendix C. The Final Contradiction 145

Appendix D. CiV-Groups of Odd Order 153

Appendix E. Further Results of Feit and Thompson 157

Bibliography 167

List of Symbols 169

Index 172



Preface

About 30 years ago, Walter Feit and John G. Thompson [8] proved the
Odd Order Theorem, which states that all finite groups of odd order

are solvable. In the words of Daniel Gorenstein [15, p. 14], "it is not pos-
sible to overemphasize the importance of the Feit-Thompson Theorem for
simple group theory." Their proof consists of a set of preliminary results
followed by three parts-local analysis, characters, and generators and rela-
tions-corresponding to Chapters IV, V, and VI of their paper (denoted by
F T here). Local analysis of a finite group G means the study of the struc-
ture of, and the interaction between, the centralizers and normalizers of
nonidentity p-subgroups of G. Here Sylow's Theorem is the first main tool.
The main purpose of this book is to present a new version of the local anal-
ysis of a minimal counterexample G to the Feit-Thompson Theorem, that
is, of Chapter IV and its preliminaries. We also include a remarkably short
and elegant revision of Chapter VI by Thomas Peterfalvi in Appendix C.

What we would ideally like to prove, but cannot, is that each maximal
subgroup M of G has a nonidentity proper normal subgroup MQ such that

(1) CMQ{O) = 1, for all elements a G M — Mo,
(2) Mo fi M0

9 = 1, for all elements g eG- M,
(3) Mo is nilpotent,
(4) M/M o is cyclic,

and such that the totality of these subgroups Mo, with M ranging over all
of the maximal subgroups of <?, forms a partition of G:

(5) each nonidentity element of G lies in exactly one of the subgroups
Mo.

Relating each step in our procedure (as well as the main results, given
in Section 16) to this hypothetical goal will help give the reader a sense
of direction and motivation: after the normal Hall subgroup Ma has been
introduced in Section 10, it can be read as MQ. (Section 16 is self-contained,
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except for notation from Section 1, and can be read as a supplement to this
introduction.)

In addition, we strongly recommend first studying a theorem of Feit,
Thompson, and Marshall Hall [7], the immediate predecessor of FT, which
proved solvability under the additional CiV-condition: the centralizer of
every nonidentity element of G is nilpotent. The local analysis part of
its proof leads to conditions (l)-(5) for a minimal counterexample G. A
guide to reading this miniature model for FT and our work is given in
Appendix D. This theorem is actually needed in FT [8, p. 983], although
not for the part covered by this book. Incidently, the conditions (l)-(5)
above clearly imply the CW-condition. Furthermore, (1) means that M is
a Frobenius group with kernel Mo, and thus implies (3) by a very special
case of a theorem of Thompson (Theorem 3.7).

The Odd Order Theorem was originally conjectured in the nineteenth
century. The first essential step toward its proof was taken by Michio Suzuki
[25] in 1957. He showed that CM-groups of odd order are solvable; here CA
means that all centralizers are abelian. In this case it is a routine matter to
derive (l)-(5), with all Mo abelian. Suzuki's contribution, a model for the
later CiV-paper, was mainly character-theoretic. Conditions (l)-(2) and
variations thereof occur in much more general situations as the end result
of local analysis, and it is therefore of fundamental importance for finite
group theory that they have strong character theoretic implications. See
[14, pp. 139-148], [17, pp. 195-205], or [26, pp. 281-294] for details.

It is the purpose of this book to make the Feit-Thompson Theorem
more accessible to a reader familiar with some standard topics in finite
group theory, such as Chapters 1-8 of Gorenstein's first book [14] (hence-
forth denoted by G). However it is possible to manage comfortably with
considerably less reading. We give information about prerequisites in Ap-
pendix A. For the convenience of the reader, strictly necessary references
to other works appear only in Chapter I, and refer only to G. Further in-
formation about the influence of the theorem and its proof, together with
a detailed description of the proof, may be found in G, pp. 450-461, and in
[15, pp. 13-39].

As stated above, our main text and Appendix C correspond to Chap-
ters IV and VI of FT and the necessary preliminaries. As to the missing
link, the necessary character theory, we must refer the reader to Chapter V
of FT or to some unpublished work of David Sibley, who has obtained very
interesting improvements [23, pp. 385-388]. Fortunately, Chapter V of the
original paper is somewhat less complicated than Chapter IV.

We hope that in the not too distant future there will be a unified revised
proof of the Feit-Thompson Theorem. In addition, we and others have some
thoughts now for further improving this work; in this spirit, we include a
few results that are not needed for Chapter V of FT or for Sibley's work.
However, in view of the considerable interest expressed in this work and the
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improvements and corrections sent to us by readers of preliminary versions,
we have decided to publish the work now as a set of lecture notes.

In a sense, the first steps toward the writing of this book were taken
in 1962, when the second author began to study a preprint of the Odd
Order Paper, with the encouragement and assistance of his Ph. D. advisor,
R. H. Bruck. However, the actual writing of a revision started with a class
at the University of Chicago in the Winter and Spring Quarters of 1975.

We wish to thank the members of the 1975 class (particularly David
Burry, Noboru Ito, Richard Niles, David T. Price and Jeffrey D. Smith)
and of a similar class given in Winter, 1986 (particularly Curtis Bennett,
Walter Carlip, Diane Herrmann, Arunas Liulevicius, Peter Sin, and Wayne
W. Wheeler). In addition, preliminary versions of this work were read by
Paul Lescot, Thomas Peterfalvi, and David Sibley, and studied in seminars
at the University of Florida and Wayne State University, led by Laszlo
Hethelyi (of Technical University, Budapest) and by Daniel Frohardt, David
Gluck and Kay Magaard, respectively. We thank each of these individuals
and the members of these seminars for their corrections and suggestions.

For permission to include unpublished work, we thank David Sibley
(Theorem 14.4, Corollary 15.9); I. Martin Isaacs (Appendix B); Walter
Carlip and Wayne W. Wheeler (Appendix C); and especially Walter Feit
and John G. Thompson (Theorem 15.8, Corollary 15.9, Appendix E). Ap-
pendix C is based on a beautiful revision [22] of Chapter VI of FT, for
which we thank the author, Thomas Peterfalvi.

We are particularly indebted to Professors Feit and Thompson for their
help and encouragement throughout the preparation of this work.

We note with great sadness the deaths of two individuals who also played
instrumental roles: R. H. Bruck and Daniel Gorenstein. Without them this
work might never have been started nor ever have been completed.

As this book has gone through many stages and vicissitudes in twenty
years, there is a danger that we have inadvertently overlooked some indi-
viduals to whom thanks are due. To them we sincerely apologize.

During the preparation of parts of this work the second author enjoyed
the support of the Guggenheim Foundation and the National Science Foun-
dation, and the hospitality of the Mathematical Institute, Oxford; Jesus
College, Oxford; Kansas State University; and Universitat Kiel. He thanks
each of these institutions. He also thanks the members of his family for
their helpful patience, forbearance, or nagging.

An earlier, complete version of this work was prepared by the second
author with the assistance of Alexandre Turull in 1979. The present version
was prepared with the assistance of Walter Carlip. Both have made valuable
corrections and improvements in the mathematical content and the wording
of the texts, particularly Dr. Carlip, who has also worked assiduously, over
the course of many years to put preliminary drafts into T^X and to produce
the final camera-ready copy printed here. We thank both for their efforts.





CHAPTER I

Preliminary Results

Here we give general results about finite groups, mainly solvable groups
and p-groups, including some special properties of groups of odd order.

In Chapters II-IV we will apply the results of this section to a hypothetical
minimal counterexample to the Odd Order Theorem. As mentioned in the
preface, all necessary references in this chapter are taken from G.

1. Elementary Properties of Solvable Groups

Suppose G is a group. We say that a group A operates on G, or A is
an operator group on G, if there is given a homomorphism </> from A into
AutG. In this case we usually write xa instead of <ft(a)(x) for x G G and
a G A. We say that A fixes an element x of G, or that x is A-invariant,
if xa = x for every a G A. We say that A fixes a nonempty subset 5 of
G, or that S is A-invariant, if each element of A fixes S as a set. As in G,
pp. 30, 33, the set (group) of all A-invariant elements of G will be denoted
by CG(A). Similarly, if 5 is a nonempty subset of G, CA(S) will denote
the set of all elements of A that fix every element of S.

We will frequently use the fact (G, p. 18) that if H and K are subgroups
of a group G, then

By applying this fact to the semidirect product of a group G by an operator
group A, we see that [G, A] is a normal subgroup of G fixed by A. As in G,
p. 19, [G, A, A] will denote [[G, A], A}. Also, we say A stabilizes a normal
series

G = Go D Gi D • • • D Gn = 1

of G if each Gi is A-invariant and A acts trivially on each factor G;_i/Gi,
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Suppose that A is an operator group on a group G. As in FT, p. 840,
we say that A acts in a 'prime manner on G if

CG(a) = CG(A) for all a G A*.

(Note that this must occur if \A\ is prime and that we allow A = 1.) We
say that A acts regularly, or in a regular manner on G if

CG(a) = 1 for all a G A#.

(Thus, if A acts regularly, then A C Aut G and 4̂ acts in a prime manner
on G. This disagrees slightly with the definition in G, p. 39, which requires
also that A ^ 1.)

In the subsequent text we will write if « G to mean that if is a
subnormal subgroup of G. This means that if is a member of a normal
series of G (G, Exercise 1.5, p. 13). Equivalently, there exists a series

We use the property that every subgroup of a nilpotent group G is subnor-
mal in G. This follows immediately from the fact that proper subgroups
of a nilpotent group are properly contained in their normalizers (G, Theo-
rem 2.3.4, p. 22).

All groups considered in this work will be finite except when explicitly
stated otherwise.

For later use we make the following definition. Given a prime p and a
group G, we say that G has p-length one if G = Op'iPiP/(G). (This differs
slightly from the definition in G, p. 227, in that our definition includes
groups of p'-order, that is, groups that, according to the usual definition,
would have p-length zero.)

A group G is called a Z-group if all of its Sylow subgroups are cyclic.
For any subset T of G we define

<jfG(T) = {t9 \t G T and g G G } .

A nonempty subset X of G is a Tl-subset of G if X fl X9 C 1 for all
x G G — N(X). In particular, a nonidentity proper subgroup H of G is a
TI-subgroup of G if H n H9 = 1 for all g G G - N(H).

In the text that follows we will denote by £P(G) the set of all elementary
abelian p-subgroups of G; £P*(G) the set of all maximal elementary abelian
p-subgroups of G; and £P{G) the set of all elementary abelian subgroups
of order p1 in G (where i is a positive integer). We let £(G) be the union
of the sets £q(G) for all primes q. We define £*(G) and £1{G) analogously.

For a prime p, a p-group R will be called narrow if it contains no elemen-
tary abelian subgroup of order p3 or if it contains a subgroup RQ of order p
and a cyclic subgroup R± such that CR(R0) = Ro x Rlm (This definition is
not standard and is used only in this book. It corresponds to the definition
of 7T* on p. 845 of FT.)
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Lemma 1.1. Suppose that M is a minimal normal subgroup of a finite
group G. If M is solvable, then M C Z(F(G)) and is elementary abelian.

Proof. Elementary. •

Proposition 1.2 (P. Hall). Suppose that G is a solvable group and that
G* < G. Let & be the set of all chief factors U/V of G. Let ^ * be the set
of all chief factors U/V of G for which U C F(G*). Then

CG.{U/V)= ft CG*(U/V).
u/ve®*

Proof. Let

ff = f| CG*(U/V) and ff*= p | CG*(U/V).

Take E//V G 0 . Then £7/V is a minimal normal subgroup of G/V. By
Lemma 1.1,

U/V C Z(F(G/V)).

Since F(G*)F/y is nilpotent and is also normal in G/V, we know that
F{G*)V/V C F(G/V). Hence F(G*)V/y centralizes £7/y. As C//F was
taken arbitrarily, F(G*) C H.

Clearly H C ff*. To complete the proof, we assume that #* g F(G*)
and obtain a contradiction. Let X be a normal subgroup of G minimal
with respect to the property that K C H* and K g F(G*). Take a chief
series for G that includes K, and let

(1.1) K = K0DK1D'"DKn = l

be the part of the chief series from If to 1. By the choice of K, we have
K\ C F(G*). Hence, for i = 2,.. .,n, we have Ki-i/Ki G ^ * and, since
K C U*, we have [lf;_i,lf] C If̂ . Since K is solvable, K/Ki is abelian
and [lfo,lf] = [K>>K] S ^ i - Thus the series (1.1) is a central series for K.
Hence K is nilpotent. Therefore K C F(G*), a contradiction. •

Proposition 1.3 (P. Hall). Suppose that G is a solvable group. Then
CG(F(G)) C

Proof. Let G* = G in Proposition 1.2. •

Proposition 1.4. Suppose that G is a solvable group, A is a group of
automorphisms of G, and (|A|, |G|) = 1. Then A acts faithfully on F(G).
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Proof. We may assume that A is cyclic. Let X be the semidirect product
of G by A. Then X is solvable. We embed A and G in X. Let a = TT(A)
and F = F(X).

Since A is certainly a Hall cr-subgroup of X and AOa(F) is a cr-group,
A = AOa(GF) D Oa{F). As AC AutG and

we have Oa(F) = 1. Thus

F = Oa(F) x Oa,{F) = CV(F) C CV(X) = G.

Clearly F = F(G). By Proposition 1.3,

= Ar\Cx(F(X))C AnF(X)C AnG = l. D

Proposition 1.5. Suppose that G is a solvable group, A is an operator
group on G, and (|A|, |G|) = 1. Let TT be a set of primes. Then:

(a) A fixes some Hall ?r-subgroup of G;
(b) every A-invariant 7r-subgroup of G is contained in an A-invariant

Hall 7r-subgroup of G;
(c) if Hi and #2 are A-invariant Hall ?r-subgroups of G, then Hi and

Hi are conjugate by an element of Co (A);
(d) if H is any A-invariant normal subgroup of G, then CQ/H(A) is the

image of GG(A) in G/H; and
(e) if GG(A) contains a Hall Tr'-subgroup of G, then [G, A] C (^(G).

Proof. Statements (a), (c), and (d) follow from P. Hall's theorem on solv-
able groups (G, Theorem 6.4.1, p. 231) and from the proof of Theorem 6.2.2,
pp. 224-5 of G.

To prove (b) we proceed by induction on |G|. Let K be an A-invariant
7T-subgroup of G and M a minimal A-invariant normal subgroup of G. If
G itself is a ?r-group, there is nothing to prove, and so we may assume G
is not a ?r-group. Now KM/M is an A-invariant 7r-subgroup of G/M so,
by induction, there exists an A-invariant Hall 7r-subgroup H/M of G/M
that contains KM/M. Thus H is an A-invariant subgroup of G such that
K C H C G and \H\* = \G\*. If H # G, we can apply induction to H to
conclude that if is contained in an A-invariant Hall 7r-subgroup of H and
we are done. If H = G, then M is a normal Sylow p-subgroup of G for
some prime p outside TT. By (a), G has an A-invariant Hall 7r-subgroup Q
and clearly G = QM with Q n M = l. Now |QnKM\ = \K\, and hence K
and Q n KM are both A-invariant Hall 7r-subgroups of KM. By (c), there
exists an element x G CKM(A) such that if = (Q D KM)X C Q*. Clearly
<3X is an A-invariant Hall 7r-subgroup of G.

To prove (e), let H be an A-invariant Hall ?r-subgroup and let if be a
Hall Tr'-subgroup of G contained in CQ{A). Then G = KH. Therefore

[G, A] = (h^k-^h01 \keK,heH,aeA)CH.
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Since [G, A] < G, we have [G, A] C ^ ( G ) . D

Proposition 1.6. Suppose that G is a solvable group, A is an operator
group on G, and (|A|, \G\) = 1. Then:

(a) G = CG(A)[G,A] = [G,A]CG(A);
(b) [G,A,A] = [G,A];
(c) if [G, A, A] = 1, then A acts trivially on G;
(d) if G is abelian, then G = CG(A) x [G, A]; and
(e) if G is abelian and CG(A) contains every element of prime order in

G, then A acts trivially on G.

Proof. For (a), let H = [G,A] in Proposition 1.5(d). For (b) and (c),
see the proof of G, Theorem 5.3.6, p. 181. For (d), see the proof of G,
Theorem 5.2.3, p. 177. Finally, note that (e) follows from (d). •

In the following lemma we list some of the basic properties of the Frattini
subgroup of a finite group.

Lemma 1.7. Suppose that G is a group and R is a p-group for some prime
p. Then:

(a) if if is a subgroup of G and G = #$(G), then G = H;
(b) R/<&(R) is elementary abelian;
(c) $(R) = 1 if and only if R is elementary abelian; and
(d)

Proof, (a) G, Theorem 5.1.1, p. 173. (b) G, Theorem 5.1.3, p. 174. (c) G,
Theorem 5.1.3, p. 174. (d) Let S = (R',x*> \ x € R). By (b), S C $(#).
Since R/S is elementary abelian and $(R/S) = $(R)/S, (c) yields (d). •

Theorem 1.8 (Burnside). Suppose that A is an operator group onap-
group R and (|A|, \R\) = 1. Assume that A centralizes R/$(R). Then A
centralizes R.

Proof. By Proposition 1.5(d), R = CR(A)$(R). By Lemma 1.7(a), R =
CR(A). (This is G, Theorem 5.1.4, p. 174.) •

Lemma 1.9. Suppose that TT is a set of primes, G is a finite solvable n-
group, and A is an operator group on G that stabilizes a normal series of
G. Then A/CA(G) is a 7r-group.

Proof. It suffices to show that A acts trivially on G if A is a Tr'-group. This
follows from Proposition 1.5(d) by induction on the length of the normal
series. •

Proposition 1.10. Suppose that A is an operator group on a nilpotent
group G and (|A|, \G\) = 1. Let C = CG(A). If CG(C) C C, then A acts
trivially on G.
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Proof. Assume CG(C) C C. Take x G NG(C). For each a G A and
2/ G G, we know that x~1yx = (x"1^)01 = ( x 0 ) " 1 ^ 0 and x0^"1 centralizes
y. Thus xax~1 G CG(C) C C. AS X and a are arbitrary, A centralizes
NG(C)/C. Thus A stabilizes the normal series

iVG(G) D C D 1 ,

and hence, by Lemma 1.9, A acts trivially on NG(C). Thus NG(C) C C
As G is nilpotent, C — G. Hence A acts trivially on G. •

Theorem 1.11. Suppose that p is an odd prime, G is a p-group, and A
is a //-group of operators on G that acts trivially on fii(G). Then A acts
trivially on G.

Proof. G, Theorem 5.3.10, p. 184. •

Corollary 1.12. Suppose that p is an odd prime, G is a p-group, E is
an elementary abelian subgroup of G, and A is a //-group of operators on
G. Assume that A fixes every element of order p in CG(E). Then A acts
trivially on G.

Proof. Let C = CG(A). Since E C GG(£), we know that E C G. There-
fore GG(G) C CG(E) and A fixes every element of £2I(GG(G)). Since p
is odd, A fixes every element of CG(C) by Theorem 1.11. Consequently
GG(C) C G. By Proposition 1.10, A acts trivially on G. •

Theorem 1.13 (J. G. Thompson). Suppose that p is an odd prime and
G is a nontrivial p-group. Then G contains a characteristic subgroup H
that enjoys the following properties:

(a) [H,G]CZ(H);
(b) H has nilpotence class at most two;
(c) H has exponent p; and
(d) GAutG(#) is a p-group.

Proof. This follows from Thompson's Critical Subgroup Theorem (G,
Theorem 5.3.11, p. 185). As in Theorem 5.3.13 of G (p. 186), we let C
be a critical subgroup of G and examine the properties of fli(C). Let
H = fti(C). Then (b), (c), and (d) are proven in G (Theorem 5.3.13,
p.186). Since C is a critical subgroup of G, [G,C] C Z(C). Thus

[G, ff] - [G, fti(G)] C [G, G] n H C Z(G) n ff C

This yields (a). D

Lemma 1.14. Suppose that p is a prime, T is a p-subgroup of a group G,
and M is a normal p'-subgroup of G. Let C = CG(T) and iV = NG{T).
Then

CG/M(TM/M) = GM/M and NG/M{TM/M) = NM/M.
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Proof. Let

C*/M = CG/M(TM/M) and N*/M = NG/M(TM/M).

Clearly NM C N*. On the other hand, take x G N*. Then x normalizes
TM, so Tx is a Sylow p-subgroup of TM, and there exists y G M such that
Tx = Ty T h e n ^ - i n o r m a l i z e s T Hence

xy"1 G iV and x = (xy~1)y G AfM.

Thus iV* = NM. Now CM C C* C AT* = JVM. Since TDM = 1, we have
C*niV = C. Hence

C* - (C* n AQM = CM. •

Proposition 1.15. Suppose that G is a solvable group and p is a prime.
(a) (P. Hall & G. Higman, "Lemma 1.2.3") Assume that T is a

Sylow p-subgroup of Op>iP(G). Then CG{T) C OP>,P(G).
(b) (D. Goldschmidt) Assume that R is a p-subgroup of G. Then

Proof, (a) G, Theorem 6.3.3, p. 228. (b) By Lemma 1.14, we may assume
Opl(G) = 1. Let M = Opf(CG(R)) and T = OP(G). Then RM = Rx M
and M is an operator group on the p-group RT. Since CRT(R) normalizes
M,

[CRT(R),M] CRTnM = l.
Therefore CRT{R) centralizes M. Let C = CRT(M). Then we have
CRT(C) C CRT(R) C C. By Proposition 1.10, M centralizes T. As
T = F(C), we know CG(T) C T. Thus M = M n T = 1. D

Proposition 1.16. Suppose that p is a prime, C is a p'-group, and A is a
noncyclic abelian p-group of automorphisms of G. Then

G= (CG(x) \xeA*) and

G = (CG(Y) | Y C A and A/F is cyclic).

Proof. The first assertion is G, Theorem 6.2.4, p. 225. The second then
follows by induction on \G\. •

Theorem 1.17 (D. G. Higman, "Focal Subgroup Theorem").
Suppose that G is a group, p is a prime, and S is a Sylow p-subgroup of G.
Then

5 D G' = ( x~xy \ x, y £ S and x is conjugate to y in C ) .

Proof. G, Theorem 7.3.4, p. 250. •

Theorem 1.18 (Burnside). Suppose that G is a group, p is a prime, and
5 is a Sylow p-subgroup of C. Assume that S C Z(NG(S)). Then G has a
normal p-complement.
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Proof. Here 5 is abelian. Suppose x, y G S and xu = y for some u G G.
Then

S C GG(z), S C GG(y), and 5n C CG(z)tt = GG(y).

By Sylow's Theorem, there exists v G CG(y) such that (5U)V = S. Then

m; G NG(S) and a;™ = (a;")" = yv = y.

Since 5 C Z(NG(S)), we know xuv = x. Thus x = y and ar1^ = 1.
By Theorem 1.17 and the argument above S fi G' = 1, and hence G' is

a //-subgroup of G. Define a normal subgroup K of G by

KDG' and K/G1 = Op,(G/G').

It is easy to see that if S = (7 and if n 5 = 1. Thus if is a normal
p-complement in G. •

Corollary 1.19. Suppose that G is a group.
(a) If 5 is a cyclic Sylow subgroup of G, then either 5 D G = 1 or

SCG'.
(b) If G is a Z-group, then G' is a Hall subgroup of G.

Proof. Since (b) follows from (a), we will prove only (a).
Let if be a complement to 5 in NQ(S). By Proposition 1.6(d), we know

that S = CS(K) x [5, if]. Since S is cyclic, either S = [5, if] C G', or 5 =
CS(K) C Z(NG(S)). In the latter case, S n G7 = 1 by Theorem 1.18. •

Theorem 1.20 (Maschke). Suppose that G is represented by linear trans-
formations on a vector space V over a field F. Assume that the character-
istic of F is zero or is a prime that does not divide \G\.

Then V is completely reducible under G.

Proof. G, Theorem 3.3.2, p. 66. D

For later reference we gather together some elementary properties of
p-length.

Lemma 1.21. Suppose that G is a finite group. Then:
(a) if G has p-length one and H is a subgroup of G, then H has p-length

one;
(b) if H is a normal p'-subgroup of G and G/H has p-length one, then

G has p-length one;
(c) if H is a normal p-subgroup of G such that Ov> (G/H) = 1 and if

G/H has p-length one, then G has p-length one;
(d) G has p-length one if and only if the subgroup of G generated by

all p-elements of G has a normal p-complement; and
(e) if H and N are normal subgroups of G such that H n N = 1 and

G/H and G/N both have p-length one, then G has jp-length one.
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Proof, (a), (b), and (c) are easily verified from the definition. For (d),
let U < G be generated by all p-elements of G. If U has a normal p-
complement K, then Kchart/, so K < G and K C Op/(G). Clearly
UOP'(G) = OP>,P(G) and G = 0p/,p,p/(G), as desired. Conversely, if G =
0P',P,P'(<2), then £7 C Op>iP(G). Thus Op/(G) n 17 <3 17 and

U/(Opt(G) HU) = UOpf(G)/Opl(G) C CV

which is a p-group. Thus 0p/ (G) fi £/ is a normal p-complement in [/.
For (e), suppose G/H and G/N have p-length one, and let U be gen-

erated by all elements of p-power order in G. Applying (d) to G/H and
G/N, we can find subgroups A and B of G such that F C A < f/ff and
such that N C B < UN and A/i? and S/JV are normal p-complements
in UH/H and UN/N, respectively. Clearly AnBnU contains all of the
p'-elements of U. On the other hand, if g G A n B is a p-element, then
g £ H and g £ N. Thus # = 1 and we conclude that A D 5 D U is a normal
p-complement in U. Now (d) yields (e). •

Lemma 1.22. Suppose that p is a prime, G is a p-group, and N < G.
Let |iV| = pfc. Then, for every nonnegative integer r such that r < k, N
contains a normal subgroup of G having order pr .

Proof. We use induction on |G|. The result is trivial if N = 1 or r = 0.
Hence we assume that iV ^ 1 and r > 1. Thus iV n Z(G) # 1.

Take a subgroup Z of order p'mNn Z(G). By induction, N/Z contains
a normal subgroup L/Z of G/Z having order pr~1. Then |L| = pr , L C AT,
and L <\G. D

2. General Results on Representations

In this section, we consider representations of groups by matrices of
finite degree or by finite-dimensional linear transformations. Assume G is
a group. If G acts faithfully on a vector space V over a field F, we denote
the enveloping algebra of G over F by E(G) (as in G, p. 82). This is the
smallest F-subalgebra of Homr(V, V) that contains G. As usual, we embed
F in HOIHF(V, V) by identifying field elements with scalar multiplications.

By module we will always mean finite-dimensional right module.
Suppose H is a subgroup of G. If L is an FG-module, we denote the

restriction of L to H by L\H or LH• If M is an FH-module, we denote by
MG the FG-module induced from M. We consider MG to be the tensor
product M (g)FH FG. If, in addition, H < G and x G G, we denote by Mx

the FiJ-module with underlying F-module M and iJ-action (temporarily
denoted by *) defined by

m* h = m(xhx~1),

for all m G M and h e H. The module Mx is called a conjugate FH-module
and is clearly isomorphic to the Fif-submodule M (g) x of MG.
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Proposition 2.1. Suppose that G is a group, F is a field, and M is an
irreducible FG-module. Then:

(a) M is absolutely irreducible if and only if HomFG(M, M) = F;
(b) if G is faithful on M and HomFG(M, M) = F, then HomF(M, M) =

E(G); and
(c) if F is a finite field and K = HomFG(M, M), then K is a finite field

and we can regard M as an absolutely irreducible KG-module.

Proof, (a) If F has characteristic zero or relatively prime to |G|, this is
G, Theorem 3.5.7, p. 80. The general case can be deduced in one direction
from the final paragraph of the proof in G (where one assumes that D / F)
and in the other from the Jacobson Density Theorem (G, Theorem 3.6.2,
p. 86). For a nice proof of the general case, see [3, Theorem 29.13, p. 202].

(b) follows from the Jacobson Density Theorem (G, Theorem 3.6.2,
p. 86) and the fact that HomFG(M, M) = HomE(G)(M, M).

(c) By Schur's Lemma (G, Theorem 3.5.2, p. 76), K is a division algebra
with F in its center. Since F is finite and M has finite dimension, M is
actually finite. Therefore K is also finite and, by Wedderburn's well-known
theorem on finite division rings [16, Theorem 7.2.1, p. 361], K is a field.
Since K = HoniFG(M, M), we can regard M as a vector space over K and
the elements of G as linear transformations of M over K. Clearly

K C HomKG(M, M) C HomFG(M, M) = K.

By (a), M is an absolutely irreducible KG-module. •

Proposition 2.2. Suppose that G is a group, H < G, and G/H is cyclic.
Assume that F is an algebraically closed field and M is an irreducible FH-
module such that M ^ Mx for all x G G.

(a) If L is an irreducible FG-module and M is isomorphic to a sub-
module of L#, then LH — M.

(b) The representation of H on M can be extended to a representation
ofG.

Proof, (a) We can assume that G acts faithfully on L. By Clifford's Theo-
rem (G, Theorem 3.4.1, p. 70), there exists an integer k such that

(2.1) LH = Mi e M 2 e • • • e Mk,

where M = M{ for each i. Since G acts faithfully on L, H acts faithfully
on M.

Consider, for a moment, the action of H on M. Since F is algebraically
closed, HomF#(M, M) = F and, by Proposition 2.1, E(H) = HomF(M, M).
Take x e G such that G = (H,x). Then, by hypothesis, M = Mx~\ and
therefore there is an F-isomorphism r G HomF (M,M) = E(if) such that
for all m G M and h G H,

(2.2) (mh)r = (mr)xhx- l
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On the other hand, H C G, and H acts on the module L. By (2.1)
and (2.2), there exists an F-isomorphism (which we also call r) such that
r G E(H) C E(G) C HomF(L, L) and, for all £ e L and ft G # ,

{£h)r = (ir)xhx-1.

Extending linearly, we see that, for any £ e L and any 0 G E(H) C E(G),

Thus

(2.3) (£0)TZ = (£TX)0.

In particular, since r~x e E(iJ), we have

and therefore

(2.4) (&z)rz = ( f rx r " 1 )^ = (£rx)x.

Since if and x generate G, (2.3) and (2.4) imply that rx G HompG (£?£)•
Since F is algebraically closed and L is irreducible, Proposition 2.1 implies
that H.om-FG(L,L) = F. Thus rx is a scalar. Since r G E(iJ), we have
Mir = Mi. Hence

Mi = Mi-nr = Mix.

Thus Mi is a G-submodule of L and consequently L = M\.
(b) Let L be an irreducible FG-submodule of MG. Then LH is a direct

sum of copies of M. By (a), LH = M. •

Lemma 2.3. Suppose that G is a solvable group, F is a field, and M is an
absolutely irreducible FG-module. Then dimM divides |G|.

Remark. This lemma is a corollary of a well-known theorem of Fong and
Swan [5, Theorem 72.1, p. 473].

Proof. Use induction on |G|. We may assume that \G\ > 1 and F is
algebraically closed. Take H < G of some prime index p. Let L be an
irreducible submodule of M#. By induction,

(2.5) dimL divides \H\.

Take x eG-H. If L ^ Lx, then, by Proposition 2.2, L = MH, and we are
done. Otherwise

(2.6) MH = L + Lx + • • • + L z p - \

and the FiJ-submodules L, Lx,. . . , Lxp~l are pair wise nonisomorphic. In
this case the sum in (2.6) is direct and dimM = p(dimL). Then we are
done by (2.5). •
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The next proposition uses only elementary techniques of linear algebra.

Proposition 2.4. Suppose that V is a vector space over a field F and
dim V = q > 2. Let g be an invertible linear transformation of V of finite
order ft > 2 and assume that F contains a primitive ftth root of unity e.
For all integers i and t define

£ = End F ( t0 ,

U» = { e G E | ep = y~1eflf = ele } , and

M = { e e E | VJe C V* and Vje = 0 for all j / i } .

Then:
(a) v = Voevie-.-
(b) rii = rii+h for all i;

(c) £ =

(d) dim E{j = riirit for all i and t;

(e) E{jt C £"t_i for all i and £;

(f) ^m = 0 Eiit for all m;
t—i=m (mod /i)

(g) d i m ^ = y^nirii+m for all m;
i=0 h-l

(h) 2dim2£0 - 2dim£'m = ^ ( ^ ; - n;_j_m)2 for all m;
i=0

(j) if dimE'o = dimi£m + 1 for all m ^ 0 (mod ft), then there exist
integers i, n, and 6 = dzl such that q = hn + 6, rii = n + 8, and
7ij = n for all j ^ i (mod ft); and

(k) under the same assumptions as (j), dimVb = n0 > 0 unless n = 1,
i = 0, 0 = - 1 , and ft = g + l.

Proof. The assumption that F contains a primitive ftth root of unity forces
F to have characteristic not dividing ft.

Statements (a) and (b) are clear. For (c) and (d), it may help to consider
the matrices of elements of HOIIIF(V, V) with respect to a basis that is the
union of bases of the subspaces V{. Each such matrix A can be viewed
naturally as a matrix of ft x ft submatrices An with rii rows and nt columns.

For (e), take e G Eiyt and v G VJ. Clearly e9 = g~xeg G Eitt and ve9 =
vg~1eg = (e~iv)eg = e~i(ve)g = e~*e*(i;e) = v{et~ie). Thus e5 = c*"*e.
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Now (f) follows from (c) and (e); (g) from (d) and (f); and (h) from (b)
and (g).

To prove (j), assume that dimEo = dimEVn+1 for every m ^ 0 (mod ft).
Let

51 = {i\O<i<h — 1 and rii = n0 } and

52 = { i | 0 < i < f t — 1 and rii / n0 } .

By (h) with m = 1, £2 is not empty. Let j and k be the smallest and
largest elements of S2, respectively. (They may be equal.) Then n; = ^o
for i = 1,2,.. . , j - 1 and for i = k + 1 , . . . , ft — 1. By (b), rih = n0.
Therefore, by (h) with m = 1,

2 = (rij-i - rtj)2 + (rij - rij+i)2 + • • • + (nk -

which yields: |no — rtj\ = \rik — n$\ = 1 and rij =
Consequently, | 5 2 | = k + 1 - j and |5i | = ft — (A; + 1 — j ) = ft + j — 1 — fc.

If |Si| = 1, we may take i = 0, n = ni , and ^ = n0 — n; and similarly if
\S2\ = 1. But, suppose |5i| , | 5 2 | > 2. Then ft > 4 and j + l <k< ft+j-3.
Hence, by (b), n^-i-i = rik+2 — ^o- Therefore, by (h) with m = 2,

2 > (n^-i - n J + i ) 2 + (rifc-i - ^fc+i)2 + (nk - nk+2)
2 = 3(n0 - rij)2 = 3,

a contradiction.
Finally, under the assumptions for (j), we have n > 1, because hn + 6 =

q>2. Thus (k) follows from (j). •

Remark. We thank Curtis Bennett for suggesting a simplification of our
original proof of Proposition 2.4.

Theorem 2.5. Suppose that P is an extraspecial p-group of order p 2 n + 1

for some prime p. Let G be the semidirect product of P (with P < G) and
a cyclic group iJ of order \H\ = ft such that ft is relatively prime to p and
for all x €

Suppose F is a field whose characteristic does not divide \G\. Then ft
divides p n + 1 or pn — 1 and, if ft / pn + 1, then every faithful, irreducible
FG-module V satisfies

CV(H) # 0.

Remark. The last part of the theorem fails if one allows ft = pn + 1 . There
are counterexamples in which p n = 2, ft = 3, G = SL(2,3), and F is an
arbitrary field of prime characteristic not dividing |G|, or an algebraically
closed field of characteristic zero.
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Proof. Since the characteristic of F does not divide |G|, it is easy to see
that there exists an irreducible FG-module on which Z(P) acts nontriv-
ially. Suppose V is any such module (e.g., a faithful FG-module). Since
Cy(Z(P)) is invariant under G,

(2.7) CV(Z(P)) = O.

Let F* be the algebraic closure of F and V* = F* ®F V. Take a generator
x of H. Then

CV(H) = Cv{x) and
dimCV(x) = dim V - rank(x - 1),

where x—1 denotes the linear transformation of V given by v(x—1) = vx—v
for all v G V. Since extending F to F* does not change the rank of x — 1,
we have

(2.8) dimF* Cy* (H) = dimF CV(H).

A similar argument, together with (2.7), shows that

(2.9) CV*(Z(P)) = O.

Let W be an irreducible G-submodule of V* and M an irreducible P-
submodule of V*. Since P is extraspecial, |Z(P)| = p. Therefore every
nonidentity normal subgroup of P contains Z(P). Consequently (2.9) im-
plies that

(2.10) P acts faithfully on M and on W.

This shows that [CG(W), P] C CG(W) n P = 1. Hence

cG{W) = cG(W) n cG(P) = cG{w) n z(P) = 1.

Thus G acts faithfully and irreducibly on W. Clearly it suffices to prove
that h divides pn ± 1 and that if ft # pn +1 , then CV(#) ^ 0, for, by (2.8),

dimF CV(H) = dimF* Cy*(H) > dimF* CW{H).

Thus we may assume that F = F* and W = V. Then M is an irreducible
P-submodule of V.

By (2.10), P is faithful on M. Furthermore, by G, Theorem 5.5.4, p. 206
and the discussion following the theorem, a faithful, irreducible represen-
tation of an extraspecial group is determined by the action of its center.
It follows that, for any g G G, the P-submodules M and M9 are isomor-
phic. By Proposition 2.2(a), VP = M and, by G, Theorem 5.5.5, p. 208,
dimM = dimF = pn. Let q = pn.
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By Proposition 2.1, E(P) = HOIIIF(V, V). Identifying elements of P with
their images in E(P), we obtain

geP

and, since elements of Z(P) act as scalars,

(2.11)
gER

where R is a set of coset representatives of Z(P) in P. Taking E = E(P)
and Z = Z(P), we have |iJ| = \P/Z\ = p2n = q2 = dim(E). Thus the sum
(2.11) is direct, and R is a basis of E.

By Proposition 1.5, CP/Z(x) = Cp(x)Z/Z = 1 for every x G H*. Hence,
for each element a G P — Z, we know that a and all of its if-conjugates lie
in different cosets of Z. Thus we can fix a set of coset representatives R
consisting of the element 1 and (q2 — l)/h if-classes of P.

If we consider E as an if-module under conjugation, the direct decom-
position (2.11) shows that E is the direct sum of the principal module and
(q2 — l)/h copies of the regular module. Since H is abelian, each irre-
ducible if-module occurs with multiplicity one in the regular module, and
hence the multiplicity of the principal module in E is one more than the
multiplicity of any nontrivial irreducible module.

Taking g to be any generator of H, we see that the hypothesis of Propo-
sition 2.4(j) is satisfied. Therefore, for some 6 = ±1 and some integer n',
pn = q = hnf + 6, so that h divides pn - 6. Moreover, by Proposition 2.4(k),
if CV(H) = 0, then h = q + l=pn + l. •

Theorem 2.6. Suppose that G is a finite group of odd order, F is a field,
and V is an FG-module of dimension two over F on which G acts faithfully.
Then:

(a) if the characteristic of F does not divide |G|, then G is abelian; and
(b) if the characteristic of F is a prime divisor p of |G|, then G has an

abelian Sylow p-subgroup that contains G'.

Proof. We use induction on \G\. We may regard G as a subgroup of
GL(V,F). Let G* = G n SL(V,P). By considering the tensor product of
V with the algebraic closure of F, we may assume that F is algebraically
closed. Let p be the characteristic of F.

Suppose Oq{G*) / 1 for some prime q. Let K = fti(Z(0g(G*))). Then
K is an elementary abelian g-group and K < G. We consider separately
the cases in which q = p and q / p.

Suppose q = p. Let W = CV(K). By G, Lemma 2.6.3, p. 31, W / 0.
Since V is 2-dimensional and G is faithful on V,

(2.12) dimW = dhnV/W = 1.
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Now W is invariant under G. Let C = CG{W) nCG(V/W). Simple matrix
calculations show that C is an elementary abelian p-group. Since F has
characteristic p, the only element of the multiplicative group F - {0} of
p-power order is 1. Thus C contains every p-element of G. Similarly, C
contains G' because F - {0} is abelian. Hence in this case we have (b).

Now suppose q ^ p. Then V is a direct sum of irreducible YK-modules
(by Theorem 1.20). Since K is abelian and F is algebraically closed, by
G, Theorem 3.2.4, p. 65, all irreducible F If-modules are one-dimensional.
Thus V = W\ 0 W2 for two one-dimensional FK-modules W\ and W2.
Take x G K#, wx G Wf, and w2 G Wf. Then

wix = X\Wi and w2x = X2w2 for some Ai, A2 G F.

Moreover, AiA2 = detx = 1, because x G G* = G D SL(V,F). Since x
has odd order, Ai ^ A2. Now an easy calculation (or elementary result on
modules) shows that W\ and W2 are the only one-dimensional subspaces
of V fixed by x and thus the only one-dimensional Fif-submodules of V.
Since K < G, every element of G fixes or interchanges W\ and W2. As
\G\ is odd, every element of G fixes W\ and W2. Therefore G is an abelian
//-group. Thus (a) applies here.

Now assume more generally that G* ^ 1. If G* is a p-group, then
£>p(G*) = G* ^ 1. On the other hand, assume that \G*\ is divisible by
some prime q different from p. Let Q be a Sylow ^-subgroup of G* and
H = NG*(Q). Then Oq(H) # 1. The previous paragraph shows that H
is an abelian group, so that Q is in the center of its normalizer in G*. By
a theorem of Burnside (Theorem 1.18), G* has a normal complement N
to Q. If N = 1, then G* = Q and 1 C (^(G*) = Q. If N / 1, then by
induction, Or(N) ^ 1 for some prime r, and then 1 C Or(N) C Or(G*).
Either way, by the previous arguments, we are done.

Finally, assume that G* = 1. Since GL(V, F)/ SL(V, F) ^ F-{0} under
multiplication and G* = GnSL(V, F), we see that G is an abelian p'-group.

D

Lemma 2.7. Suppose that p and q are distinct primes, P and Q are ele-
mentary abelian groups of order p2 and q2 respectively, and Q C Aut(P).
Then

(a) (/ divides (p — 1), and
(b) there exists an element a £ Q^ and an integer r such that

xa = xr for every x G P, rq = 1 (mod p), and r ^ 1 (mod p).

Proof. We may regard P as a 2-dimensional vector space over Fp and Q
as a group of linear transformations of P over Fp. Since Q is abelian but
not cyclic, Q is not irreducible on P (by G, Theorem 3.2.3). Therefore P
is the direct sum of two 1-dimensional Q-submodules P\ and P2.
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Take 0 ^ ^ G Pi, i = 1, 2. Now an easy argument shows that Q is the
set of all linear transformations (3 of P with the property that

v@ = Ai^i and v% = A2V2 for some Ai, A2 £ Fp such that X\ = \\ = 1,

and then (a) and (b) follow. •

3. Actions of Probenius Groups and Related Results

Lemma 3.1. Suppose that K and R are nonidentity subgroups of a group
G such that K <3 G, KR = G, and K D R = 1. Then the following are
equivalent:

(a) G is a Frobenius group with Frobenius complement R and Frobe-
nius kernel K;

(b)

Proof. By G, Theorem 2.7.6, p. 38, (a) yields (b). Now assume (b). Take
any y e G such that R n Ry ^ 1. Let he (Rn Ry)#. Choose u e R and
v G K such that uv = y. Then

heRnRy = Rr\Ruv = RnRv.

Thus h = /iO
v = v~1hov for some /i0 € -R« Since K < G, it follows that

hovhQ1 e K, and therefore

/ifc-1 = v^hovh^1 € i? H K = 1.

Hence /i = /i0- Now v G Cx(h) so, by (b), v = 1 and y = uv = u € R.
Thus we have shown that

R n Ry = 1 whenever y e G - R.

Therefore NQ(R) = R, and i? is disjoint from its distinct conjugates in
G. By G, Theorem 2.7.7, p. 39, G is a Frobenius group with Frobenius
complement R. By hypothesis,

KDR9 = K9DR9 = (KnR)9 = 1 for all 0 e G.

Thus If is contained in the Frobenius kernel of G, which has order \G : R\.
Since \K\ = \G : R\, K is the Frobenius kernel of G. •

Lemma 3.2. Let G = KR be a Frobenius group with solvable Frobenius
kernel K and Frobenius complement R and suppose that N < G. Assume
that K %N. For each subgroup H of G let ~H = HN/N. Then:

(a) NcK; and _
(b) G is a Frobenius group with Frobenius kernel K and Frobenius

complement R.

Note. Since Thompson's Thesis (G, Theorem 10.2.1, p. 337) implies that
the kernel of a Frobenius group is nilpotent (G, Theorem 10.3.1(iii), p. 339),
the assumption that K is solvable is unnecessary.
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Proof. Since G is a Frobenius group with kernel K and complement R,
the conjugates Rx for x £ K are pairwise disjoint (except for the identity)
and

(3.1) G = KU (J Rx.

First suppose that N C K. Since K % N, we know that TV C K, which
is (a). Since G is a Frobenius group, by Lemma 3.1, CK(X) = 1 for every
x £ R*. By Proposition 1.5(d),

and a second application of Lemma 3.1 implies that G is a Frobenius group
with kernel K and complement R, as desired.

Now let N be an arbitrary normal subgroup of G such that K % N.
By the previous paragraph, it suffices to show that N C. K. Set H —
N D K, G = G/H and, for every subgroup L C G, let L = LH/H. By the
argument above, G is a Frobenius jpoup^with kernel K and complement
.R. By G, Theorem 2.7.7, p. 39, Rx n B = 1 for every ar € ^ # . Thus
(N?)~R)X D (NT}~R) = 1 for every x £ K*.

On the other hand, [iV n R, K] C Â  n X = if and so [JVTTR, K] = 1.
Therefore {N7^R)X C (N7)~R) for all x G A". Since K ^ 1, this implies
that JVTTR = 1. Thus (TV n ii) C H C K and consequently N HR= 1.
But N < G, so, for every a: G K,

Finally (3.1) implies that N C K. •

Lemma 3.3. Let G1 = Ki? be a Frobenius group with Frobenius kernel K
and Frobenius complement R. Suppose that G is represented on a vector
space V over a field F of characteristic not dividing \K\. UK does not act
trivially on V, then CV(R) ^ 0.

Proof (Wielandt). The representation of G on V induces a unique rep-
resentation of the group algebra FG on V. For any subgroup H of G,
consider the element H = ^ h G FG. Clearly, for any v G V, we have

Suppose that CV(#) = 0. We will show that the action of K on V is
trivial. For any g G G we jiave Cy_{R9) = 0 and CV(G) C Gv(#) = 0.
Thus, for all v eV,vR = vR9 = vG = 0.

Since G is a Frobenius group with kernel K and complement R, the
conjugates Rx for x £ K are pairwise disjoint (except for the identity) and

G = K U (J Rx
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where, except for the identity, the union is disjoint. Thus

x<EK

and hence, for any v G V,

0 = vK-\K\v.

But then \K\v = vK G CV(K) for all v G V. Since \K\ ^ 0 in F, this
implies that V C Cy(K), and hence K acts trivially on V. D

Theorem 3.4. Let G be a solvable group of odd order that has a normal
Hall subgroup K with a complement R of prime order. Suppose that G
acts on a vector space V over a field F whose characteristic does not divide
|G|. If CV{R) = 0, then [R,K] C CK(V).

Remark. The counterexamples for F finite mentioned in the remark fol-
lowing Theorem 2.5 yield counterexamples here if one allows G to have
even order. In particular, for every prime p greater than three, there is a
counterexample in which G = SL(2,3) and F = Fp.

Proof. Suppose false and let G be a minimal counterexample. Let C =
CG(Y)' If H is any proper ^-invariant subgroup of K, the group HR
satisfies the hypotheses of the theorem and \HR\ < \G\. By minimality of
G, we have [H, R] C C. Therefore, since, by assumption, [R, K] % C,

(3.2) K is not generated by its proper i?-invariant subgroups.

Since the characteristic of F does not divide |G|, by Maschke's Theorem
(Theorem 1.20), we know that V is the direct sum of irreducible submod-
ules. Then, since [K, R] % C, we can choose an irreducible G-submodule M
such that [K, R] does not act trivially on M. Let iV = CQ{M) and p = \R\.
Since we know that CM(R) Q CV(R) = 0, we obtain N n R = 1. Thus
\NR\ = \N\\R\ = p\N\ and \G\ = p\K\. Hence TV is a normal p'-subgroup
of G and iV c K = Op,(G). _ _

Let G = G/N, K = K/N, andjR = RN/N. Then K is a normal Hall
subgroup of G with complement R and CM{R) — 0- Furthermore, G acts
faithfully on Af^I^iV # 1, then \G\ < \G\ and, by minimality of G, we
conclude that [K,R] = 1. But then [K,R] C TV, which contradicts the
choice of M. Thus TV = 1, and we conclude that G acts faithfully and
irreducibly on M, and hence faithfully on V. By G, Theorem 3.2.2, p. 64,

Z(G) is cyclic.

Suppose that \K\ is divisible by two or more distinct primes. By Propo-
sition 1.5(a), K has /^-invariant Sylow p-subgroups for every prime p divid-
ing \K\. But then K is generated by proper ^-invariant subgroups, which
contradicts (3.2). Thus \K\ = qn for some integer n and prime q.
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By G, Theorem 5.3.7, p. 181, K is either an elementary abelian group
or a nonabelian special group, and

(3.3) R acts irreducibly on K/K' and centralizes K'.

Suppose K is elementary abelian. Then Kf = 1. Furthermore, since
[R,K] ^ 1, we have CK(R) C K. Therefore, by (3.3), CK{R) = 1. But
now, by Lemma 3.1, G is a Frobenius group with kernel K and complement
R. Since G acts faithfully on V, the action of K is nontrivial and Lemma 3.3
implies that Cy(R) # 0, which contradicts our original assumption. Thus
K is a nonabelian special group.

Now, since K is a nonabelian special group, Z(K) = Kf, and therefore,
by (3.3), R centralizes Z(K). Thus Z(K) C Z(G), and hence Z(K) is
cyclic. Consequently K is extraspecial.

By (3.3), R acts irreducibly on K/K1 = K/Z(K) and Z(K) is a maximal
^-invariant subgroup of K. Thus Z(K) = CK{R) = CK(x) for all x G R*.
We can now apply Theorem 2.5 to obtain a final contradiction. •

Theorem 3.5. Let G = KR be a Frobenius group with solvable Frobenius
kernel K and cyclic Frobenius complement R of prime order. Suppose that
G acts on a vector space V over a field F whose characteristic does not
divide \G\. If CV(R) is one-dimensional, then K' C

Note. Just as for Lemma 3.2, Thompson's Thesis implies that K is actually
nilpotent, so the assumption that K is solvable is not necessary.

Proof. Proceed by induction on \G\. Suppose G satisfies the hypotheses of
the theorem. The hypotheses remain intact if we replace F by its algebraic
closure F and V by V 0 F P, SO, without loss of generality, we can assume
that F is algebraically closed.

Suppose that G does not act faithfully on V. Let C — CG(V). Then
ICC <G. If K C C, then K' C C, as desired. Assume then that K%G.
By Lemma 3.2, C C K and G/C is a Frobenius group with Frobenius com-
plement RC/C and Frobenius kernel K/C. Since CV(RC/C) = CV(R),
induction yields

K'C/C = (K/C)f C CG / C(y) = C/C.

Thus K' C C, as desired.
For the rest of the proof assume that G acts faithfully on V.
Suppose N is a proper jR-invariant subgroup of K. Then NR satisfies

the hypotheses of the theorem and \NR\ < \G\. By induction, N is abelian.
Hence

(3.4) every proper i?-invariant subgroup of K is abelian.

Since K is solvable, K' is a proper characteristic subgroup of K. By
(3.4), K' is abelian.
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Suppose N C K is an ^-invariant subgroup of K and U 0 W C V
is an iVi?-submodule of V with U and W both iVi?-invariant. If N acts
nontrivially on U, then, by Lemma 3.3, Cu(R) i1 0. But then, since Cy{R)
is one-dimensional, Cy(R) = Cu(R) Q U. On the other hand, Cw(R) =
Cy(R) f)W C U C)W = 0, so a second application of Lemma 3.3 implies
that N acts trivially on W. Thus, for U, W, and N as in the first sentence
of this paragraph,

(3.5) either U C CV(N) or W C CV(JV).

Since G acts faithfully on V, there exists an irreducible G-submodule
U of V on which K acts nontrivially. Since the characteristic of F does
not divide \G\, by Maschke's Theorem (Theorem 1.20), V is completely
reducible and U has a G-invariant complement W in V. By (3.5), we have
W CCV(K) CCv(K').

Suppose that Cu(Kf) ^ 0. Since Kf <3 G, Cu(K') is a submodule of
U. Since £/ is irreducible, this implies U = Cu(K') C C v ^ ) - B u t t h e n

y = U © VF C Cv(K') and, since G is faithful on V, we have Kf = 1, as
desired. Thus it suffices to prove that Cu(K') / 0.

Consider the structure of U as a if-module. Let M be an irreducible K-
submodule of U and suppose R = (x) with \R\ = p. Now Clifford's Theorem
(G, Theorem 3.4.1, p. 70) implies that U is the direct sum of conjugates of
M and R permutes the Wedderburn components of U transitively. Thus
either U has only one Wedderburn component (in which case the conjugates
of M are all isomorphic) or U has p Wedderburn components (in which
case the conjugates of M are all distinct). In the latter case, we can write
U = M © Mx 0 • • • 0 MxP . Let TTI : U —• M be projection onto M. For
any m € M, the element m + mx-\ hm^" 1 is fixed by R. Thus TTI takes
CJJ(R) onto M. But Cu(R) is one-dimensional, so M is a one-dimensional
K-module. Therefore 0 C M C C c / ^ ) and consequently CV{K') # 0.
Thus we can assume the conjugates of M are all isomorphic. In this case,
Proposition 2.2 implies that UK — Af, so (7 is an irreducible if-module.

Now consider the structure of U as a K'R-module. If U is reducible,
(3.5) implies Cu(K') ^ 0, so we can assume that U is irreducible as a
K'iZ-module.

Finally, we consider the structure of U as a li^-module. By Clifford's
Theorem, U is the direct sum of Wedderburn components with respect
to K'. On the one hand, R permutes these components transitively, so
the number of Wedderburn components divides p. On the other hand, K
permutes these Wedderburn components transitively and the number of
components divides \K\. Since p is relatively prime to |if |, this implies
that there is only one Wedderburn component. A second application of
Proposition 2.2 implies that U is an irreducible If'-module.

Since F is algebraically closed and Kf is abelian, U is one-dimensional.
Consequently U C Cu(K'), and Cu(K') / 0, as desired. •
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Recall that a group G is called a Z-group if all of its Sylow subgroups
are cyclic.

Theorem 3.6. Let G b e a solvable group of odd order and suppose that
if is a normal Hall subgroup of G. Let R be a complement of H in G and
suppose that RQ is a subgroup of R of prime order such that CH(RQ) is a
Z-group. Let p be a prime. Then [if, R] has p-length one.

Proof. Suppose otherwise and let G be a counterexample of minimal order.
Let r = \R0\. Then [H, R] does not have p-length one and clearly p / r.
We claim:

(3.6) H = [H,R}.

Suppose that [H, R] / H. Recall that [H, R] < (H, R) = G, and there-
fore [H,R] is a normal Hall subgroup of [H,R]R. The group [H,R]R has
smaller order than G, and so, by minimality of |G|, [[if, R], R] has p-length
one. But, by Proposition 1.6(b), [H,R] = [[H,R],R], which, by assump-
tion, does not have p-length one. This proves (3.6).

Suppose X < H is a nontrivial i^-invariant subgroup of H. Then R
is an operator group on H/X and \H/X\ < \H\. By Proposition 1.5(d),
CH/x(Ro) = CH(Ro)X/X. Therefore, by minimality of G, [H/X,R] has
p-length one. But, by (3.6), [H/X,R] = [H,R]/X = H/X, so we have:

(3.7) H/X has p-length one whenever 1 ̂  X < H and XR = X.

In particular, if OP>{H) ^ 1, then H/Opr(H) has p-length one, and hence,
by Lemma 1.21(b), H has p-length one, a contradiction. Thus

(3.8) Op/(H) = 1.

Let V = F(H). Our first main goal is to show that V is elementary
abelian.

Since Opr(H) = 1, F(H) is a p-group, so

V = F(H) = OP(H).

Let W be the preimage in H of OP*(H/$(V)). Now W/$(V) and V/$(V)
are normal subgroups of H/$(V) of relatively prime orders and hence cen-
tralize each other. Thus [W, V] C $(V). Therefore every p'-element of W
centralizes V/$(V) and, by Theorem 1.8, centralizes V. But, by Proposi-
tion 1.3, CH(V) C V and hence W is a p-group. Thus OP>(H/$(V)) = 1.

Suppose that $(V) 7̂  1. As $(V) char V char H < G, we know that
&(V) < G and, by (3.7) (with X = ^(F)), H/$(V) has p-length one. But,
since OP'(H/$(V)) = 1, Lemma 1.21(c) implies that H has p-length one,
contrary to our hypothesis. Thus $(V) = 1 and, by Lemma 1.7,

V F(H) OP(H) and
V is an elementary abelian p-group.
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By (3.9) and Proposition 1.3,

(3.10) CH(V) = V.

If H contains two minimal normal subgroups of G, then, by (3.7) and
Lemma 1.21(e), H has p-length one, a contradiction. Hence

(3.11) V contains only one minimal normal subgroup of G.

Now let U be the preimage of F(H/V) in H. Since F(H/V) is a p'-
group, V is a Sylow p-subgroup of U and so, by Proposition 1.5(a), V has
an /^-invariant complement K in U, Our next main goal is to show that
NH(K) is a complement to V in H and CH(K) C K.

Since NJJ{K) is i?-invariant, there exists an R-invariant Sylow p-subgroup
P of NH(K). By the Schur-Zassenhaus Theorem (G, Theorem 6.2.1,
p. 221), any two complements of V in U are conjugate in U. Applying
the Frattini argument, we have

(3.12) H = UNH(K) = VNH(K),

and clearly VP is a Sylow p-subgroup of H.
Suppose that [K,P] = 1. Then the image of P in H/V centralizes the

image of K in H/V. Thus, by Proposition 1.3,

PV/V C CH/V(F(H/V)) C F(H/V) = KV/V,

which implies that P C V, and hence V is a Sylow p-subgroup of H.
Consequently H has p-length one, a contradiction. Thus

(3.13) [K,P]?1.

By Proposition 1.6(d), V = Cy{K) x [V, K] and, since K is i2-invariant,
both CV{K) < G and [V,K] < G. Therefore (3.11) implies that one of
these subgroups is trivial. But, by (3.10), CV(K) ̂  V. Thus

(3.14) [V, K] = V, CV{K) = 1, and V n NH(K) = 1.

Consequently P n V = 1. Moreover, NH(K) ^ £T/y and if ^ F(H/V),
and therefore

(3.15) K - F(NH(K)).

Furthermore, by Proposition 1.3,

(3.16) CH(K)CCNH(K)(K)CK.

Next we study the action of Ro on H. We show that [K, RQ] / 1,
\Cv(Ro)\ = P, and CP(R0) = 1. Assume first that [K,i?0] = 1. By
(3.15) and Proposition 1.4, [NH(K),Ro] = 1. Thus NH(K) C CH(Ro),
and therefore, by hypothesis, IT is cyclic. By (3.16), since K is abelian,
CH{K) = CNH(K){K) = if. Also, since if is cyclic, Aut K is abelian. Since
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the elements of NH(K) and R induce automorphisms of K, this implies
[NH(K),R] C CH(K) C K. Moreover, since

[NH(K), R] * [H/V, R] = [ff, R]/V = H/V * NH(K),

we have
PCNH(K) = [NH(K),R]CK.

But (|P|, \K\) = 1, so this implies P = 1, contrary to (3.13). Thus we
can conclude that

(3.17) [K,Ro]*l.

Consider the action of KRo on V. Since CKRO{V) < KR0, we know
that CK(V) = KD CKRO(V) and CRo(V) = Ro n C ^ V ) are Hall TT(*>

and Hall 7r(i2o)-subgroups of CKRO(V), respectively. By (3.10),

CK(V) = KO CH(V) CKHV = 1,

so CKRQ{V) = CRO(V). Since Ro is cyclic of prime order, we know that
either CRo(V) = 1 or CKRo(V) = Ro. But in the latter case Ro < KR0

and hence [K, Ro] = 1, contrary to (3.17). Thus

(3.18) CKRo(V) = l.

Now suppose that Cv(Ro) = 1. By (3.18), KR0 acts faithfully on V.
Consequently, by Theorem 3.4, [K, Ro] = 1, contrary to (3.17). Therefore
\Cv(Ro)\ > 1.

Since V is elementary abelian and Cy(Ro) £ CH(RO)> which, by hy-
pothesis, is a Z-group,

(3.19) \Cv(R0)\=p.

Now Cp(R0) C CH(Ro) and Cv(i2o) < CH(R0). Since Cv(flo) is
cyclic of order p, C7v(i2o) n a s n o automorphisms of p-power order. But
Cp(Ro) is a p-group, and therefore CP(RQ) centralizes Cy(Ro). Further-
more, Cp(R0) n Cv(Ro) C P n V = 1, so CP(R0) x Cv(Ro) Q CH(R0).
Since CH(RO) is a Z-group,

(3.20) Cp(Ro) = 1.

Moreover, by Proposition 1.6(a),

(3.21) P=[

Our next main goal is to determine the structure of G more precisely by
showing that H = VKP and R = Ro and determining the structure of K.
Suppose that X = XPR° C K and VXPP0 # G. Then ^p,(VXP) and V
are both normal subgroups of VXP and have relatively prime orders. Thus
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Op,(VXP) centralizes V. By (3.10), OP>{VXP) = 1 and, by minimality of
G, we know that [VXP, Ro] has p-length one. Clearly

Op>([VXP, Ro]) char [VXP, Ro] < VXP.

Therefore Op>([VXP,R0]) C Op,{VXP) = 1, and hence [VXP,R0] has a
normal Sylow p-subgroup, OP([VXP, i?0]). By (3.21), P C e>p([yXP,#0]),
and consequently

[X,P] C [X,Op([FXP,Bo])] C Op([VXP,R0]).

But [X, F ] C I and p does not divide the order of X, so [X, P] = 1.
If G ^ VKPR0 then the case of X = K yields [if, P] = 1, contrary to

(3.13). Thus G = VKPRo and hence

(3.22) H = VKP, RF = Ro, and

(3.23) [X, P] = 1 whenever X = XPR C # .

Suppose that K ^ [if, P]. Since if and P are both Pi?-invariant, [if, P]
is also Pi^invariant. Thus, by (3.23), we have [[if,P],P] = 1. By Propo-
sition 1.6(b), however, [K,P] = [[K,P),P] = 1, contrary to (3.13). Thus

(3.24) K=[K,P].

Since K = F(NH(K)), we know that K is nilpotent. If \K\ is divisible
by more than one prime, then, by (3.23), each Sylow subgroup of K is
centralized by P. Thus [K,P] = 1, which contradicts (3.13). Therefore K
is a q-group for some prime q different from both p and r.

Now, by equations (3.16) and (3.23) and G, Theorem 5.3.7, p. 181,
(taking A = PR, 1 / tp e P, and letting P be K), we have

(3.25) if is a special #-group and CK/K'{P) — 1-

(The second statement follows because PR is irreducible on if/if' and
CK/K>(P) + K/K1.) Furthermore, by Theorem 1.13,

(3.26) if has exponent q.

Now consider the action of PR on if. We wish to show that CK{R) has
order q and intersects if' and [if, R] trivially. Since CPR(K) < PR, we
know that CP(K) = P n CPR(K) and CR(K) = R n CPR(K) are Sylow p-
and Sylow r-subgroups of CPR(K), respectively. But, by (3.16),

(3.27) CP(K) = P n CH(if) C P n if = 1.

Furthermore, since R is cyclic of prime order and [if, R] / 1, by (3.17), we
have CR(K) = 1. Thus

(3.28) CPR(K) = 1.



26 I. Preliminary Results

Now K is special, by (3.25), so K' = $(K) and hence, by (3.28) and
Theorem 1.8,

(3.29) CPR(K/K') = 1.

Suppose as well that CKJKI(R) = 1. Since PR acts faithfully on
Theorem 3.4 and equation (3.29) yield

contrary to (3.20). Hence

(3.30) CK/K,{R)^l

and, by Proposition 1.5(d), CK(R) £ K1'.
Suppose q2 divides \CK{R)\> Then CK(R) has an abelian subgroup of

order q2. By (3.26), K has exponent q, so this subgroup must be elementary
abelian, contrary to the hypothesis that CH(R) is a Z-group. Consequently

(3.31) \CK(R)\ = q and CK(R) n K' = 1.

By Proposition 1.5(d) and Proposition 1.6(d),

KjK' = CK/K,(R) x [K/Kf,R] = CK(R)K'/Kf x [if,R]K'/K'.

Therefore

(3.32) A"^[A",i2].

Furthermore, C^(i?) n [/f, fl] C K', so, by (3.31)

(3.33) C[K<R](R) - Cjf (J?) n [/iC, R] = 1.

Our next goal is to show that K is elementary abelian. First note that,
by Lemma 3.1, [K, R]R is a Frobenius group with kernel [K, R] and com-
plement R.

Now, by (3.18), [K,R]R acts faithfully on V and, by (3.19), CV(R) is
one-dimensional. Thus we can now apply Theorem 3.5 to the group [K, R]R
to conclude that

(3.34) [K, R] is abelian.

Suppose that [K,R] is P-invariant. Since, by (3.32), [K,R] is a proper
subgroup of K, we know from (3.23) that [[if, R],P] = 1 and therefore
[K,R] C CA-(P). But, by (3.25) and Proposition 1.5(d),

CK(P)K'/K' =

Thus [#,#] C CK{P) C if'. This implies that [if/iif7,^] = 1. By (3.25)
and Theorem 1.8, this yields [K,R] = 1, contrary to (3.17). Hence [K,R]
is not P-invariant. Therefore there exists an x G P such that

(3.35) [K,R]±[K,R\*.
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Now, by Proposition 1.6(a), K = CK(R)[K,R], so the subgroup [K,R]
and its conjugates are abelian subgroups each of prime index q in K. Let
x be as in (3.35). Then K = [K,R][K,R]X, [K,R] n [K,R]X C Z{K), and
\K : [K,R] n [K,R]X\ = q2. Thus |if : Z(if)| < q2. If |jff : Z(K)\ = q2,
then Z(K) = K' — $(K) and PR acts faithfully on the two-dimensional
vector space K/K' over Fq. Hence, by Theorem 2.6(a), PR is abelian.
Thus [P,R] = 1, contrary to (3.21). Therefore \K : Z(K)\ < q and K is
abelian. By (3.26),

(3.36) K is elementary abelian.

Now we will obtain a contradiction by studying the action of K on V.
By (3.28), PR acts faithfully on K. Again, applying Theorem 2.6, we can
conclude that

(3.37) \K\ > q2.

Let K±, K2,..., Kn be all of the subgroups of index q in K such that
Cy(Ki) = V{ / 1. Since K is abelian and not cyclic, by Proposition 1.16,
the subgroups V{ generate V. We claim:

Suppose (renumbering if necessary) that W = V\ x V2 x • • • x V^ is a
maximal direct product. Then V{ C\ W ^ 1 for any i, 1 < i < n. Thus

(3.38) Cw(Ki) = CvAKi) x Cv3(Ki) x ••• x CVm(#0 7̂  1.

Take j ^ i. Then Kj U Kj generates K and hence, by (3.14),

CVi(Kj) = ViH Cv(Kj) = Cv(Ki) n Cv(Kj) C CVC*O = 1.

This, together with (3.38), implies that 1 < i < m. Hence m = n and
VF = V, as desired.

By (3.11), V contains only one minimal normal subgroup of G. Clearly
RP permutes the subgroups Vi by conjugation. Since distinct orbits of
RP on { Vi, V2,..., Vn } would generate normal subgroups of G contain-
ing distinct minimal normal subgroups of G, RP must be transitive on
{VuV2i...,Vn}.

Suppose that V{
R = V{ for all z, 1 < i < n. Then R C NPR(Vi) for every

i, and the intersection of all these normalizers is normal in PR. Thus, by
(3.21), for every j ,

P=[P,R]C C fl NPR(Vi) C NPR(Yj).

Thus ViP = Vi for all i. But then V* is G-invariant and hence n = 1.
But this contradicts the fact that K acts faithfully on V and |if | > q2 (so
#i ^ 1).
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Let { Vi, V2,..., Vr } be a nontrivial i?-orbit, and suppose that x is a
generator of R. Then for any element v E Vi, writing the operation in V
additively, we have

v + vx + vx2 + -- + vxr~1 G CVlXv2x-xVr(R),

and hence the projection map

TTi I Vi X V2 X • • • X Vr -* Vi

takes Cv1xV2X''xVr(R) onto Vi. But now (3.19) implies that \V\\ — p and

It follows that the action of R on {Vi, V2,..., V^} cannot have a second
orbit of length r, and hence ViR = Vi for alii, r + 1 < i < n.

Suppose that i > r. Both K and i? induce automorphisms of Vi and,
since Vi is cyclic of prime order, its automorphism group is abelian. Thus
[K,R] C CjciVi) = Ki for each i > r and, since [K,R] has index # in K,
this implies [if, ii] = Ki for all i > r. Thus either n = r or n = r + l.

Now suppose n = r. Since P permutes the subgroups Vi and the order
of P is relatively prime to r, some orbit of P has length one. Thus, for
some i, P fixes Vi. But then K and P induce automorphisms of Vi and,
since |V;| = |Vi| = p, this implies [K,P] centralizes Vi. But, by (3.24),
K = [K,P], so K centralizes V{. This contradicts (3.14).

Finally, suppose that n = r + 1. Then n is even. But, since PR acts
transitively on the set of subgroups { Vi }, n = \PR : NpR(Vr+i)\, which is
odd. This final contradiction concludes the proof. •

The following theorem (without restriction to groups of odd order) was
published by G. Higman in 1957. In his doctoral dissertation, J. G. Thomp-
son generalized the theorem to encompass all finite groups. This more
general result is proven in G, Theorem 10.2.1, p. 337.

Theorem 3.7. Let G = KR be a solvable group of odd order such that
K < G and R is a complement of K of prime order p. Suppose that
CK(R) = 1. Then K is nilpotent.

Proof. Let 5 be a Sylow p-subgroup of G that contains R and set P =
S n K. Up divides \K\, then P / 1, and hence P n Z(S) / 1, which
contradicts the hypothesis that CK(R) = 1- Therefore

(3.39) (\K\,\R\) = 1.

We may assume that K ^ 1. Take L < G maximal subject to L C K.
Then CL(R) C CK(R) = 1. Applying induction to LR in place of G, we
see that L is nilpotent. Since L < G, it follows that L <\ K and

(3.40) L C F(K).
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Let G = G/L, ~K = K/L, and ~R = RL/L. By Lemmas 3.1 and 3.2,

G and G are Frobenius groups with kernels K and K
(3.41) _

and complements R and R, respectively.

We wish to show that K is nilpotent or, equivalently, that K C F(K).
By Proposition 1.2, it suffices to show that K centralizes every chief factor
X/Y of G for which X C K. Take any such chief factor V = X/Y of G.
By (3.40) and Proposition 1.2, L centralizes V, whence conjugation by G
on X induces irreducible actions of G and of G on V. Thus we must show
that K centralizes V.

Since G is solvable, if and V are elementary abelian groups. If K and
V are #-groups for the same prime q, then K centralizes V, as desired,
because G acts irreducibly on V and * QOq(G) (G, Theorem 3.1.3, p. 62).
Therefore we may assume that |* | and |V| are relatively prime. Then, by
(3.39), \V\is relatively prime to \G\. Since

CV(R) = CV(R) = CX/Y(R) = Cx(^)F/r = 1,

(3.41) and Lemma 3.3 imply that K acts trivially on V, as desired.
This completes the proof of Theorem 3.7. •

Theorem 3.8. Let G = if i? be a solvable group of odd order with K < G
and suppose that

(1) (1*1,1*1) = 1;
(2) CK(x) = CK(R) for all x e R#; and
(3) CF{K)(R) = l.

Then [K,R] Q F(K).

Remark. The counterexamples for F = Fp mentioned in the remark fol-
lowing Theorem 3.4 yield counterexamples here if one allows KR to have
even order. Let KR be the semidirect product of V by G, K =
and take R to be any group of order three in G. Here, F(K) = V.

Proof. Proceed by induction on
Let * = K/F(K). Suppose that R centralizes every Sylow subgroup

of F(K). Then clearly R centralizes F(K), and hence, by Proposition 1.4,
R centralizes * . But then [*, R] C F(K) and we are done. Thus we can
assume that R does not centralize a Sylow p-subgroup P of F(K) for some
prime p.

Let P be the preimage in * of P. Since F(K) char * and P char F(*) ,
we know that P < K. Thus F(P) C F(K). On the other hand, F{K) C P
and F (* )cha r* imply that F(K) C F(P). Thus F(P) = F (* ) . Then
CF(P)(R) = CF{K)(R) = 1, and hence (3) holds with * replaced by P.
Clearly (1) and (2) also hold with * replaced by P and, consequently, if
P / * , by induction, [P,R] C F(P) = F(*)._But then R centralizes P,
contrary to our choice of P. Thus K = P and * is a p-group.
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Now suppose that RQ is a subgroup of R of prime order. Clearly (1) and
(2) hold with R replaced by Ro. Furthermore,

CF(K){Ro) = F(K) n CK(Ro) = F(K) n CK{R) = CF{K){R) = 1,

so (3) also holds with R replaced by Ro. If Ro ^ R, induction yields
[K,Ro] C F(K). But then, by Proposition 1.5(d) and (2), we have

K = CK(RO) = CK(R0)F(K)/F(K) = CK(R)F(K)/F(K) = CW(R).

In this case [K, R] C F(K) and we are done. Thus we can assume that
R = Ro, i.e., R has prime order.

Now let W = U/V be any chief factor of KR with U C F(K). Since
F(K) is nilpotent, W is an elementary abelian g-group for some prime
q, and we can consider W as a vector space over ¥q. Furthermore, W
is irreducible as a module for KR and hence an irreducible and faithful
module for KR/CKR(W).

By Proposition 1.5(d),

CW(R) = CV(R)V/V C CF(K)(R)V/V = 1.

Since (\K\, \R\) = 1 and CKR(W) < KR, it follows that CKR{W) C if and
therefore CKH(VF) = CK(W). Furthermore, by Proposition 1.2, F(K) C
C^(lf), and hence K/CK(W) is a p-group.

If <? = p, then C W ^ / C K C W ) ) / 1 by G, Lemma 2.6.3, p. 31. Since
CW(K/CK(W)) is a submodule of W, the irreducibility of W implies that
W = CW(K/CK(W)) or, in other words, K = CK(W) and, in this case,
[K,R]CCK(W).

liq^p, then, by Theorem 3.4, [RK/CK(W), K/CK(W)] = 1 and hence
[K,R]CCK(W).

Thus, in either case, we have [K,R] C CK(W). Finally, by Proposi-
tion 1.2, [K, R] C F(K), as desired. D

Recall from Section 1 that an operator group A acts regularly on a group
GiiCG(a) = l for alia eA*.

Proposition 3.9. Suppose that p is an odd prime, if is a //-group, and R
is a p-group that acts regularly on H. Then R is cyclic.

Proof. We can assume that H ^ 1. Let g be a prime divisor of \H\.
By Proposition 1.5(a), R fixes, and hence acts regularly on, some Sylow
g-subgroup of H. By G, Theorem 5.3.14, p. 186, R is cyclic. •

Theorem 3.10. Let G = KR be a solvable Frobenius group with Frobe-
nius kernel K and Frobenius complement R. Suppose that G acts on a
nonidentity nilpotent group M such that

(1) (|G|,|M|) = 1;
(2) CM{K) = 1; and
(3) CM(x) = CM(R) for all x € R*.
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Then:
(a) R is cyclic of prime order, say, p;
(b) \M\ = \CM(R)\P; and
(c) if CM(R) is cyclic, then K' C CK(M).

Proof. We proceed by induction on \G\ + \M\.
If Ro is a proper subgroup of R, then KRQ is still a Frobenius group

and (1), (2), and (3) follow with G replaced by KRQ. Hence, by induction,
#0 is cyclic of prime order. Since R is solvable, P. Hall's Theorem (G,
Theorem 6.4.1, p. 231) guarantees that R has a Hall 7r-subgroup for every
set of primes TT. Consequently, either \R\ = p, \R\ = p2, or \R\ = pq for
distinct primes p and q. Since KR is a Frobenius group, R acts regularly
by conjugation on K. Thus, by Proposition 3.9,

R is cyclic.

We finish the proof by dividing it into two cases.

Case 1. M contains a proper G-invariant normal subgroup.
Let Mo be a normal subgroup of M chosen to be maximal subject to

being G-invariant. Clearly CMO(K) = Mo fi CM(K) = 1 and CMO(X) =
Mo D CM{x) = Mo n CM(R) = CMo{

R) for a11 x e R*, and hence KR
satisfies (1), (2), and (3), with M replaced by Mo. Thus, by induction,

| f l | p , | 0 |

^ ' ^ if CM(R) is cyclic, then K' C CK(M0).

This yields (a).
Now KR acts on M/Mo and (|G|, |M/M0|) = 1. Furthermore, by Propo-

sition 1.5(d),

CM/M0(K) = CM(K)M0/M0 = Mo/Mo = 1, and
x) = CM(x)M0/M0 = CM(R)M0/M0 = CM/Mo(R),

for all x e R*. Thus KR satisfies (1), (2), and (3), with M replaced by
M/Mo. By induction, we get

if CM(R) is cyclic, then K' C CK(M/M0).

Now Proposition 1.5(d) yields

\M/M0\ = \CM/Mo{R)\p = \CM(R)M0/M0\P = ^

Therefore, by (3.42),
\M\ - \CM(R)\P.

Thus we have (b).
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Finally, combining (3.42) and (3.43) with Lemma 1.9, we see that if
CM(R) is cyclic, then

Kf C CK(M/M0) fl CK{M0) C CK(M).

This is (c).

Case 2. M contains no proper G-invariant normal subgroups.
Since M is a minimal normal subgroup of the solvable group MG, M

is an elementary abelian r-group for some prime r. Hence we can regard
M as a vector space over F r . Thus (c) follows from (a) and Theorem 3.5.
Therefore it suffices to prove (a) and (b).

By hypothesis, M is irreducible as a FrG-module. By Proposition 2.1,
V = M 0 K K is an irreducible KG-module for the algebraic closure K of
K = HomFrG(M,M).

Suppose that KQ < KR is chosen to be minimal subject to 1 C Ko C K.
Since CM(KO) is a G-invariant subgroup of M, either CM(KO) = 1 or
CM(KO) — M. In the first case, (1), (2), and (3) are satisfied with G
replaced by KQR. In the second case, (1), (2), and (3) are satisfied with G
replaced by KR/KQ. Thus, if Ko / K, induction yields (a) and (b).

Therefore we can assume that K is a minimal normal subgroup of KR.
Since KR is solvable, this implies that K is an elementary abelian g-group
for some prime q.

Since KR is a Frobenius group and CKR(V) < KR, we have, by (2) and
Lemma 3.2, CKR(V) = CK(V) = 1. Thus KR acts faithfully on V.

We are now in a position to apply G, Theorem 3.4.3, p. 73 and Clifford's
Theorem (G, Theorem 3.4.1, p. 70) to conclude that

xeR

where W is a Wedderburn component of V with respect to K. Consequently

CV(R) = | ]T wx | w € W I and
(3.43) l^R

 i

dim(Gy(JR)) = dim(W) = —r dim(Vr).
|ie|

Thus

(3.44) \CM(R)\lRl = \W\W = |M|.

Now let P be a subgroup of R of order p and let #i, #2, • • •, xs be a set
of left coset representatives for P in R. Then

V =

l<i<s
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and hence

Ki<s

which implies that

dimCv(P) = dim ® Wxi = \R:P\ dim W.

But, by (3), dimCV(P) = dimCV(#). Thus (3.43) implies \R : P\ = 1.
This gives us (a). Finally, (3.44) now yields

\CM(R)\'=\M\,

and we have (b). •

4. p-Groups of Small Rank

The main purpose of this section is to investigate solvable groups G of
odd order that contain no elementary abelian p-subgroups of rank three,
either for a single prime p or for all primes p. The general structure of these
groups is described in Theorem 4.18 and Theorem 4.20, respectively. The
p-groups in this family that are most important for our purposes are those
that are determined in a result of Blackburn, Theorem 4.16. We shall see
later that every Sylow p-subgroup of rank two in a minimal counterexample
to the Odd Order Theorem is a p-group of this type.

If A is an abelian p-group, let m( A) be the minimal number of generators
of A (as in G, p. 8). Thus, if A is a p-group for some prime p, then

= pm(AK For each prime q, define the q-rank of G by

iq(G) = max{ m(A) \ A is an abelian g-subgroup of G } .

Define the rank of G by

r(G) = max { rq(G) \ q is a prime } .

These are called the q-depth and depth of G in G, pp. 188-189.
For any prime p, natural number n, and p-subgroup R of G, define (as

in G, p. 17 and pp. 288-289)

Un(R) =

SCN(R) = { A | A < R and CR(A) = A}, and

SCNn(iJ) = { A | A e SCN(R) and m(A) >n}.

We say that a group G is metacyclic if G possesses a cyclic normal sub-
group iV with G/N cyclic. We say that G is a central product of subgroups
Gi, . . . , Gn and write

G = Gio.- .oGn,
if G{ < G for each i, Gi centralizes Gj for each i ^ j , and G = G\ • • • Gn.
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We will use the symbol cl(G) to denote the nilpotence class of G.

Lemma-4.1. If G is a group and G/Z(G) is cyclic, then G is abelian.

Proof. G, Theorem 1.3.4, p. 11. •

Lemma 4.2. Suppose that G is a group, x, y e G, and [x,y] G Z(G).
Then for all n > 1,

(a) [xn,y) = [x,y]n = [x,y% and
(b) (xy)n = xnyn[y,x](*),

where Q) denotes the usual binomial coefficient.

Proof. G, Lemma 2.2.2, p. 19. •

Proposition 4.3. Suppose that p is an odd prime and R is a p-group.
Assume

(1) cl(i2) < 2, or
(2) p > 3 and cl(R) < 3.

Define a mapping </> of R into R by <j>{x) = xp. Then
(a) tti(R) has exponent 1 or p, and
(b) if R' C Qi(R), then 0 is a homomorphism.

Proof. This result follows immediately from Philip Hall's theory of regular
p-groups, since the class of R is less than p. (See [19, pp. 183-187] or [17,
pp. 321-326].) However, since this topic is not treated in G, we provide a
proof.

For any elements u, v, and w of a group,

(4.1) [iw,w] = [u, w][u, w,v][v,w] and [u,vw] = [u,w][u,v][u,v,w],

as can be verified by direct calculation. In particular, for any natural
number n,

[un+1,w] = [u,w][u,w,un}[un,w\.

Let u,w e R. Since cl(jR) < 3, we know [R, R, R] C Z(R), and therefore,
by Lemma 4.2, [u, w, un] = [u, w, u]n for all n, and, by induction on n,

(4.2) [un,w] = [u,w]n[u,w,u](*).

For each natural number n, define

Note that for each n,

(4.3) /(n + l)= Q +/(n)andfl(n+l) = 2 ^ ) + (") + g(n).
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This follows easily from the Pascal triangle identity

(n\ ( n \ _ (n + 1N

/ + \i + lj " \i +

Let u, v e R. We claim that for each natural number n

1 T̂* . ^T I I f#/ f / J • IJi f/ I f/ _ f#/ I > ' I 1 / « f j / . IMi I I f/ a l>t/ • 1 / I •

V / \ / L ' J L " " J L ' 7 J

We use induction. The result is obvious for n = 1. Assume it is true for
n = k. Then

(uv)k+1 = (uv)k(uv) = ukvk[v,up)[v,u

= UkVk(uv)[v, W]va) [[v, w](a), tzv][i;, IX, l/

By (4.1) and the previous lemma,

Let
ti; = [t;,ti](5)[t;,ti,ii]

Then
(w^)fc+1 = ukvk(uv)w.

Now, by (4.2),

= uvk+1[v, u]k[[v, u]k, v][v, u, v}(2'

= uvk+1[v,u]k[v,u,v)kJt&\

Hence

(uv)k+1 = uk(vkuv)w = uk+1vk+1[v,u]k[v,u,v]

By (4.3),

(uv)k+l = uh+1vk+1[v, uf*1) [v, u,

This completes the proof of (4.4).
We prove (a) by induction on \R\. Take elements x, y £ R such that

xp = yP = 1. It is sufficient to show that for any such x and y, we have
(xy)p = 1. This is obvious if (x) = R, so assume that (x) / R.

Let 5 be a maximal subgroup of R that contains (x). Then 5 < R and
fii(S') < R. By induction, fii(S') has exponent 1 or p. Since x e tti(S),

(4.5) b,a;]p = [j/,x,a:]p=[y,a:,i/]p = l.

Since p is odd, p divides (£). If p > 3, then p divides /(p) and p(p) and,
if p = 3, then [#,#,#] = 1. Hence, by (4.4) and (4.5), (xy)*> = 1. This
proves (a), and (b) follows similarly from (4.4). •



36 I. Preliminary Results

Proposition 4.4. Suppose p is a prime and R is a p-group. Then
(a) SCN(R) is the set of all normal subgroups of R that are maximal

with respect to the property of being abelian, and
(b) if R is a Sylow p-subgroup of a group G and A e SCN(iZ), then

CG(A) — A x H for some p'-subgroup H of G.

Proof, (a) G, Theorem 5.3.12, p. 185. (b) G, Theorem 7.6.5, p. 259. •

Lemma 4.5. Suppose p is an odd prime and R is a noncyclic p-group.
Then

(a) R possesses a normal elementary abelian subgroup of order p2,
(b) if R possesses a cyclic subgroup of index p, then ili(R) is elemen-

tary abelian of order p2, and
(c) fti(Z2{R)) is a noncyclic group of exponent p.

Proof, (a) G, Theorem 5.4.10, p. 199. (b) G, Theorem 5.4.4, p. 193 and
G, Theorem 5.4.3, p. 191. (c) Let Z = n1(Z2(R)). By (a), R possesses a
normal elementary abelian subgroup S of order p2. Since R is nilpotent

[S,R]CS.

Similarly
[S,R,R]c[S,R]i£[S,R]?l.

Consequently

[5, R, R] = 1, [5, R] C Z(R), and S C Z2(R).

So S C Z. Hence Z is not cyclic. Since cl(Z2(i?)) < 2, Z has exponent p
by Proposition 4.3(a). •

Proposition 4.6. Suppose p is an odd prime, R is a p-group, and 5 is
a noncyclic normal subgroup of R. Then S contains a normal elementary
abelian subgroup of R that has order p2.

Proof. Let Z = ni(Z2(5)). By Lemma 4.5, Z has exponent p and order
at least p2. Since Z < R and R is a p-group, Z contains a normal subgroup
of R of order p2 by Lemma 1.22. This subgroup satisfies the conclusion. •

Lemma 4.7. Suppose p is an odd prime and R is a p-group. Then SCN3(JR)
is empty if and only if r(R) < 2.

Proof. Obviously, SCN3(i?) is empty if r(R) < 2. The converse is proved
in G, Theorem 5.4.15, p. 202. •

Remark. Proposition 4.6 and Lemma 4.7 prove the following about a p-
group R for an odd prime p: R has an elementary abelian subgroup of order
p2 if and only if R has a normal elementary abelian subgroup of order p2,
and likewise for p3. The dihedral group Di 6 and the group Die x ^2 are
counterexamples to the corresponding statements for p = 2.
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Proposition 4.8. Suppose p is a prime, R is a p-group, and r(R) < 2.
(a) If R has exponent p, then \R\ < p3.
(b) If p > 3, then Qi(R) has exponent one or p.

Proof, (a) Assume that R has exponent p. Take A G SCN(R). Since
Y(R) < 2, we have \A\ < p2. Hence

\R/A\ = |i?/Cfl(i4)| < | AutA|p < |GL(2,p)|p = p.

(b) Assume this is false and let R be a minimal counterexample. By
Proposition 4.3 it suffices to show that c\(R) < 3 to obtain a contradiction.
By the minimality of R, there exist elements x,y G R such that xp = yp = 1,
(x) / R, and (x,y) = R. Let S be a maximal subgroup of R that contains
(x). Then 5 < #, x G fii(S) < #, and R = (il^S)^). By minimality of
R, Sl^S) has exponent 1 or p. By (a), |fti(S)| < p3. Thus |B| < p4. This
implies that cl(R) < 3, as desired. •

Lemma 4.9. Suppose p is a prime, p > 3, and R is a p-group. Assume
that |fii(#)| < p2. Then |fii(J?/T)| < p2 for every subgroup T < R.

Proof. Suppose R is a minimal counterexample to the lemma and T is a
normal subgroup of R chosen to be minimal subject to \Qi(R/T)\ > p2.

Suppose \T\ > p. Let Z be a subgroup of T n Z(R) of order p. By the
minimality of T, we then have \Q,i(R/Z)\ < p2. But \R/Z\ < \R\ and

R/T*{R/Z)/(T/Z),

so, by the minimality of R,

= \£l1((R/Z)/(T/Z))\<p2,

which contradicts the choice of T. Thus \T\ = p.
If T(R/T) > 2, then, by the minimality of i?, we know that R/T is

elementary abelian of order p3. If i(R/T) < 2, then, by Proposition 4.8
and the minimality of R, we know R/T has exponent p and order p3.
Consequently, in both cases,

(4.6) \R\ = p4 and R/T has exponent p.

By Lemma 4.5 and the hypotheses, |fti(i?)| = p2. Hence R/tti(R) has
order p2 and is therefore abelian. Define a mapping (/>: R —• R by 0(rc) =
#p. By (4.6), c\(R) < 3 and <f> maps .R into T. By Proposition 4.3, 0 is a
homomorphism. Hence

p= \T\ > \R/Ker{tf>)\ = \R/S11(R)\= P
4/p2 = p2,

a contradiction. D

Lemma 4.10. Suppose that p is an odd prime and R is a metacyclic p-
group that is not cyclic. Then fli(R) is elementary abelian of order p2.
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Proof. Take S < R such that S and R/S are cyclic. Let T be the preimage
in R of fti(R/S), so that

Then Sli(R) = fti(T). Now apply Lemma 4.5(b) to the group T. •

Proposition 4.11 (Huppert). Suppose that p is a prime and R is a p-
group. Assume p > 3 and |fii(i2)| < p2. Then R is metacyclic.

Proof. This is part of a result of Huppert [17, Satz III.11.6, p. 338]. We
prove it by using induction on \R\ and applying the previous lemmas.

The result is obvious if R is abelian, so we assume that R is not abelian.
Then 1 C Rf < R and hence R1 n Z(R) # 1. Let T be a subgroup of order
pmR1 r\ Z(R), chosen so that T C Ux(Rf) n Z(R) if V^B!) / 1.

Now T = (z) for some element z of order p. Also, by Lemma 4.9,
\Qi(R/T)\ < p2. Therefore, by induction, R/T is metacyclic. Hence there
exist a, b G R such that

(4.7) (a, z) < R and R = (a, 6,2).

Then # ' C (a, z) . If R/T is cyclic, then R/Z(R) is cyclic and R is abelian
by Lemma 4.1. Thus i?/T is not cyclic. Therefore (a,z) /(z) ^ 1. Since
( a , z ) / ( a p , z ) i s a normal subgroup of order p in i2/ (ap, z), it is contained
in the center of R/ (ap,z). Thus [a,b] = aipzj for some integers i, j .

If 1

<*> = T C U1^7) C ^ ( ( a , * ) ) = ^((a)) C (a).

In this case, R is metacyclic by (4.7). Therefore we will assume that
U 1 ^ ) = 1. Since \Sli(R)\ < p2, R' is elementary abelian.

Now

ab = b~xab = aa-^ab = a[a, b] = a1+ipzj.

Hence a and z centralize ab and [a, 6], and

[a,b}b = (aipzj)b = (ab)ipzj = aip[a,b]ipzj = aipzj = [a, 6].

Thus [a, b] G Z(R). Since a, 6, and z centralize each other modulo ([a, b]),

Let 5 be a cyclic subgroup of R that is maximal subject to R' C 5.
Since R' C 5, we know S < R and, since i? is not cyclic, S ^ R. Let Si
be any subgroup of i? that contains S and such that |Si/S| = p. By the
maximality of S, Si is not cyclic and hence, by Lemma 4.5(b), we know
|fti(Si)| = p2. Thus fii(Si) = fii(i?) and
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Therefore the subgroup S\ is uniquely determined and R/S has a unique
subgroup of order p. Again, by Lemma 4.5, we can conclude that R/S is
cyclic, and hence R is metacyclic, as desired. •

Theorem 4.12 (Huppert). Suppose p is an odd prime, R is a metacyclic
p-group, and A is a p'-group of operators on R. Then

(a) [R, A] is abelian,
(b) R = [R, A]CR(A) and [R, A] 0 CR(A) = 1, and
(c) if R is not abelian and A does not act trivially on R, then [R, A]

and CR(A) are nonidentity cyclic groups and R' C [R, A).

Proof, (a) We use induction on |,R|. By Proposition 1.6(b), [R,A] —
[R, A, A]. Therefore we can assume that

(4.8) R=[R,A].

Since R is metacyclic, R' is cyclic. Take a cyclic A-invariant subgroup 5 of
R that is maximal subject to containing R'. Then 5 is a normal subgroup
of R and of the semidirect product RA. Since S is cyclic, Aut 5 is abelian.
Therefore, by (4.8),

R=[R,A]C(RA)'CCRA(<S).

Thus

(4.9) S C Z(R).

Since Rf C S, the group R/S is abelian. Therefore we can regard
ili(R/S) as a vector space over Fp and as an A-module. By Maschke's
Theorem (Theorem 1.20), there exists an A-invariant complement X/S to
the A-submodule nx(R)S/S of Sl^R/S). By Lemma 4.10, Sli(R) is ele-
mentary abelian. Thus

X n fii(fl) = xn fii(jR) n s = fii(5).

Hence |fti(X)| < |^i(5)| = p. Consequently, by Lemma 4.5, X is cyclic.
By our maximal choice of S, we have X = S. Thus

By Lemma 4.10, |J2i(ii)| < p2, so, by (4.10),

n s\ <

Again, by Lemma 4.5, 22/5 is cyclic. Thus, by (4.9), we know R/Z(R) is
cyclic, and hence R is abelian, as desired.

(b) Let T = [R,A]. By (a) and Proposition 1.6, [T,A] = T, R =
TCR(A), and T = [T, A] xCT(A) = Tx (TnCH(A)). Hence TnCR(A) = 1.
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(c) Let T = [R,A]. By (a), 1 C T C R, so CR(A) ? 1. By (b),
T n CR(A) = 1, and therefore

By Lemma 4.10, ^ ( f l ) ! < p2. Thus ^ ( T ) ! = ^ ( C ^ A ) ) ! = p.
By Lemma 4.5, T and Cfl(A) are cyclic. Since T <R and i? = TCR(A),

we obtain i?' C T. This completes the proof of (c) and of the theorem. •

Lemma 4.13. Suppose p is an odd prime, R is a p-group, and q is a prime
divisor of |Auti?|. Assume that SCNs(R) is empty and q ^ p. Then q
divides (p2 — 1) and q < p.

Proof. Lemma 4.7 and G, Theorem 5.4.15, p. 202. •

Lemma 4.14. In Lemma 4.13, q divides \{p + 1) or ^(p — 1).

Proof. If q is odd use the fact that p2 - 1 = l(\(p - l)){\{p + 1)). •

Lemma 4.15. Suppose S is an extraspecial subgroup of a p-group R and
[5, R] C S'. Then i? = SCR(S).

Proof. G, Lemma 5.4.6, p. 195. •

Theorem 4.16 (Blackburn). Suppose p is an odd prime, R is a non-
identity p-group, and A is a //-group of automorphisms of R. Assume that
r(jR) < 2, [R, A] = R, and \A\ is odd. Then p > 3 and # satisfies one of the
following two conditions:

(1) R is abelian, or
(2) R = R\oR2 for some nonabelian group R\ of order p3 and exponent

p and some cyclic group R2 such that r2i(i?2) = R[>

Proof. Proceed by induction on \R\. Clearly SCNs(i^) is empty and each
prime divisor of \A\ is odd. By Lemma 4.13, p > 3. If |12i(#)| < p2, then
Proposition 4.11, Theorem 4.12 and the assumption that [R,A] = R, show
that R is met acyclic and abelian. In this case R satisfies (1).

For the remainder of the proof, assume that |fli(ii)| > p2. By Propo-
sition 4.8, Qi(R) has exponent p and order p3. Let 5 = Qi(R) and
C = CR(S). Since Y(R) = 2, S is not abelian. Thus 5 is extraspecial.
Furthermore,

5' C fti(C) C il^R) n C = S n C = Z(S) = S'.

Thus |fti(C)| = p and, by Lemma 4.5, we have

(4.11) C is cyclic.

Suppose that R centralizes 5/5'. Then, by Lemma 4.15,

R = CS = SC.

By (4.11), C is cyclic and fti(C) = 5'. Thus, in this case, (2) holds.
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We are left with the case in which R does not centralize S/Sf. In this
case, let T = [jR, 5]. Then 5' C T and, since # is nilpotent,

T = [R, 5] C 5.

Hence \T\ = p2. Consequently | AutT| = |GL(2,p)| = p(p2 - l)(p - 1).
Since T < R and T % Z(5),

(4.12) \R/CR(T)\ =pandR= SCR(T).

Take y £ S - T. Let B be the group of all automorphisms of 5 that
centralize T and S/T. Suppose /J, 7 G B. Let y13 = ?/t and ^/7 = yu. Then
t, u E T, and

(4.13) / 7 = {yty = yut = ytu = yl(3 and

(4.14) y? = ytl for each i = 1,2,3,

Since 5 = (y,T), we have ^7 = 7/? and (3P = 1. Thus 5 is an elementary
abelian p-group. Since CR(T)/C is isomorphic to a subgroup of J5,

CR(T)/C is an elementary abelian p-group.

By Maschke's Theorem (Theorem 1.20), TC/C has an A-invariant com-
plement X/C in CR(T)/C. Since r(R) < 2, we have fti(C#(T)) = T, and
thus

c
Since C is cyclic by (4.11), |Oi(X)| = p and, by Lemma 4.5, X is cyclic.
Let X = (x).

By (4.12), # = SCR(T) = SX. Since both S and T centralize S/Sf, we
know that X does not centralize 5/5". That is,

(4.15) [X,S\£Sf.

Now \S/T\ = \T/Sf\ = p. Therefore, by taking any elements y e 5 -T
and z e T - 5', we get

S/T={yT) and T/S' = (zS').

By (4.12) and the hypothesis that [R,A] = R, we know [5, A] g T.
Choose a € A such that [S,a] % T. Then there exist integers i, j , and k
such that

2/a = yj (mod T), and

za = zk (mod 5')

and

ya* = / (mod T).
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Since a has odd order, a2 does not act trivially on S/T, and hence

j 2 ^ 1 (modp).

Note that i ^ 0 (mod p), because ( x* ) = (xa ) = (x ) .
Now clearly 1 ̂  [j/, 2] € S' C (x) and [x, y] G [i2, 5] = T. Furthermore,

[x,y] £ S', for otherwise [X, 5] C S", contrary to (4.15). Consequently
[x, y] €T — Sf. Two applications of Lemma 4.2 now yield

[y,zY = [y,z]tt = [i/ t t,^] = [yj,zk] = [y,Zyk, and

[x,y]k = [x,y)« = [xa,j/a] = [x*,^] = [x,yp (mod S').

(In the second equation we have used the fact that T C Z(R/S'), i.e.,
[#,T] C57.) Thus

jA: = i (mod p),

ij = k (mod p),

i j 2 = i (mod p), and

j 2 = 1 (mod p),

a contradiction. •

Lemma 4.17. Suppose p is an odd prime, R is a p-group, and A is a
solvable group of automorphisms of R. Assume that

T(R) < 2 and \A\ is odd.

Then A' is a p-group.

Proof. We may assume that R ^ 1. Take a characteristic subgroup iJ of
# as in Theorem 1.13. Then

(4.16) CA{H) is a p-group.

Furthermore, if has exponent p and r(if) < T(R) < 2. Consequently, by
Proposition 4.8,

(4.17) \H\<p3.

Let V = H/$(H) and C = CA(V). Then CA(#) C C, and C/CA(H)
is isomorphic to a group of automorphisms of H that acts trivially on V.
Hence, by Theorem 1.8, C/CA(H) is a p-group. By (4.16),

(4.18) C is a p-group.

Now

(4.19) A/C is isomorphic to a group of automorphisms of V.
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By (4.17), m(V) < 3. If m(V) = 3, then $(H) = 1, H is elementary
abelian, and

3 = m(H) < T(R) = 2,

a contradiction. If m(V) = 1, then, by (4.19), A/C is abelian, and therefore,
by (4.18), A' is a p-group.

We are left with the case in which m(V) = 2. Here Aut V = GL(2,p).
By (4.19) and Theorem 2.6, (A/C)' is a p-group. Since (A/C)f = A'C/C,
it follows from (4.18) that A'C is a p-group. Hence A' is a p-group, as
desired. •

Theorem 4.18. Suppose that G is a solvable group of odd order, p G K{
and rp(G) < 2. Then:

(a) p is the largest prime divisor of |G/0p/(G)|;
(b) if p = 3 or p is the smallest prime divisor of |G|, then G has a

normal p-complement;
(c) Gf has a normal p-complement;
(d) every //-subgroup of Gf is contained in OP>(G')\ and
(e) G/OP^P(G) is an abelian p'-group.

Proof. Note that each desired conclusion is valid for G if it is valid for
G/OP'(G). Therefore we will assume that OP>{G) = 1.

Let R = OP(G) and C = CG{R). Then, by G, Theorem 6.3.2, p. 228,

C C R and i(R) < rp(G) < 2.

By Lemma 4.17, (G/C)f is ap-group. Since (G/C)' = G'C/C and C is itself
a p-group, G'C is also a p-group. Hence G'C C OP(G) = R. Thus G/.R
is abelian. As OP(G/R) = 1, we know G/J? is a p'-group. By Lemma 4.7,
SCNs(R) is empty and therefore, by Lemma 4.13, p is the largest prime
divisor of |G|. Now all parts of the theorem follow easily. •

Corollary 4.19. Suppose that p is a prime, G is a solvable group, and G*
is a normal subgroup of G. Assume that

rp(G*) < 2 and \G\ is odd.

Then G' centralizes every chief factor U/V of G such that U/V is a p-group
and UCG*.

Proof. Clearly, as in the proof of Theorem 4.18, we can assume that
OP/(G*) = 1. Let R = OP(G*). By Theorem 4.18, R is a Sylow p-subgroup
of G*. Hence UCRV.

Let C = CG(U/V). By Lemma 4.17, (G/CG(R))f is a p-group. Thus
y is a p-group. As G/C acts faithfully and irreducibly on U/V,

1 = OP(G/C) 2 (G/C)' = G'C/C.

Therefore G' C G, as desired. •
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Theorem 4.20. Suppose that G is a solvable group of odd order and
r(G) < 2 or T(F(G)) < 2. Then:

(a) G' is nilpotent; and
(b) if S is a Sylow subgroup of G, T is a characteristic subgroup of 5,

and T C S', then T < G.

Assume G ^ 1. Let TT(G) = {p±,... ,pn }, where p\ < p2 < • • • < pn-
Then

(c) G possesses a series of characteristic subgroups

G = Go D Gi D • • • D Gn = 1

such that Gi-i/Gi is isomorphic to a Sylow ^-subgroup of G for
i = 1,2, . . . ,n .

Proof. Let F = F(G).
(a) By Corollary 4.19, G' centralizes every chief factor U/V of G for

which U C F. By Proposition 1.2, G' C F.
(b) By (a), G/F is abelian. Hence FS <G and

G = F5iVG(5) = FNG(S).

Clearly T < A^G(^). By (a), T C F = (F n 5) x Op/(F). Therefore T is
centralized by Ov< (F) and normalized by F. Thus T is normalized by G.

(c) We use induction on |G|. Take H C G such that

F C jff and ff/F = OPl>(G/F).

Then F contains a Sylow pi-subgroup of # . By (a), G/H is a is a pi-group.
By Theorem 4.18(b), H has a normal pi-complement K, which is then a
normal pi-complement of G. Since F(K) C F(G), the result follows by
induction. •

5. Narrow p-Groups

In Section 1 we defined a p-group R to be narrow if i(R) < 2 or if R
contains a subgroup Ro of order p such that CR(RO) = Ro x RI for some
cyclic subgroup Ri of R. Narrow Sylow subgroups play an important role
in the proof of the Feit-Thompson Theorem. In this section we will be
concerned mainly with narrow p-groups that have rank greater than two.
We show that these groups are almost as well behaved as p-groups of smaller
rank.

Remark. For every odd prime p, there exists a narrow j9-group R for which
r(i?) = p > 3, namely the wreath product Zpl Zp. These are discussed in
[17, p. 324] and in [19, p. 82].
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Lemma 5.1. Suppose p is an odd prime, R is a p-group, and i(R) > 3.
Then

(a) SCN3(i?) is not empty, and
(b) if E G £2(R) and E < R, then E is contained in an element of

Proof. Part (a) follows from Lemma 4.7. Take E as in (b). By (a) and
Lemma 1.22, there exists a normal elementary abelian subgroup B of order
p3 in R. Let £* = ECB(E). Then £* is elementary abelian and B* < R.
If \B*\ > p3, then, by Proposition 4.4, B* is contained in an element of
SCNs(R) and we are done.

Assume that \B*\ < p3. Then B* = E and E D CB(E). Since \E\ = p2,

\B/CB(E)\ < p, \CB(E)\ > p2, and E = Cfl(E) C B.

But then, since 5 is abelian, B — CB{E). This contradicts the previous
sentence and completes the proof of Lemma 5.1. •

Lemma 5.2. Suppose p is an odd prime, R is a p-group, i(R) > 3, and
E e S2(R). Let T = CR(n1(Z2(R))). Assume further that E G £*(R),
that is, E is contained in no larger elementary abelian subgroup of R. Then

(a) E is not contained in T,
(b) |fii(Z(ii))| = p and fii(Z2(fl)) € £2(R), and
(c) T is a characteristic subgroup of index p in R.

Proof. Let Z = «i(Z(i?)) and VF = fii(Z2(iJ)). Since £ G £*(#) and EZ
is elementary abelian, we have EZ = E. Thus Z C E. A similar argument
shows that T(CR(E)) = 2. Therefore

(5.1) Z c E a n d \Z\ = p.

By Lemma 4.5(c), W is a noncyclic group of exponent p. Consequently

(5.2) Z C W and [W, fl] = [HI(Z2(JR)), i ? ]n! fC fii(Z(B)) = Z.

Hence, by (5.1), [£, W] C [fl, W] C Z C £. It follows that W normalizes
E. Since Cw(-B) has exponent p and E G f *(ii), we have CW(E) C £. In
fact,

ZCCW(E) CE.

If CV(£) = £, then [£,i?] C E by (5.2) and (5.1). But then E < R,
and hence E £ £*(R) by Lemma 5.1. Thus CW(E) ^ E, so Cv^(^) = Z.
By (5.2),

As |JE7| = p2 and W/Cvy(^) is isomorphic to a p-subgroup of Aut E,

\W\=p2.
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We now have (a) and (b). Repeating our last argument, we see that

\R/T\ = \R/CR(W)\=p.

Clearly, T char R. This proves (c) and completes the proof of the lemma. •

Theorem 5.3. Suppose p is an odd prime, R is a p-group, and T(R) > 3.
Then R is narrow if and only if £2(R) H £*(R) is not empty (i.e., some
elementary abelian subgroup of order p2 in R is contained in no elementary
abelian subgroup of order p3 in R).

Suppose that R is narrow. Let T = CR(9ll(Z2(R))). Then
(a) no element of £2(R) fl S*(R) is contained in T,
(b) |fii(Z(fl))| = p and n1(Z2(R)) G £2{R),
(c) T is a characteristic subgroup of index p in R, and
(d) if S is a subgroup of order p in R and T(CR(S)) < 2, then CT(S)

is cyclic, 5 H Rf = S n T = 1, and CR(S) = S x CT(S).

Proof. Let Z = fii(Z(ii)) and T =
First assume that i2 is narrow. Take a subgroup RQ of order p such that

CR(RO) = Ro x RI for some cyclic group Ri. Since

r(Cfl(flo)) < 2 < 3 < r(#),

#o 2 Z, and so Ro n Z = 1. Hence i?0 C i?0 x Z C
Thus JRI / 1. Let

Clearly JS G S2(R) n 5*(B). Thus ^2(i^) n f*(fl) is not empty. By
Lemma 5.2, we obtain (a), (b), and (c).

Continuing to assume that R is narrow, we take any subgroup 5 of
order p in R such that T(CR(S)) < 2. The previous argument shows that
5 D Z = 1 and hence that SZ e £2(R). Since

(5.3) T(SZ) < v(CR(S)) < 2,

SZ e £*(R). By (a), SZ g T. As Z C T and R! C T, we have 5 n T = 1
and 5 fi Rf = 1. Consequently

JR = ST and CH(5) = SCT(S) = Sx CT(S).

By (5.3), T(CT(S)) = 1 and, by Lemma 4.5, Cr(5) is cyclic. Thus we
obtain (d).

Now we assume that £2(R) n £*(R) is not empty and show that R is
narrow. Take E G £2(#) n £*(R). Clearly Z C J5. Hence E = Z x 5 for
some subgroup 5 of order p in J5. Since E G £*(R),

2 = r(CR(£)) = r(Cfl(5)).

Now, by the argument of the previous paragraph, CR(S) = S x CT(S) and
CT(S) is cyclic. Therefore i? is narrow. •
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Corollary 5.4. Suppose p is an odd prime, R is a p-group, and i(R) > 3.
Then R is narrow if and only if T(CR(S)) < 2 for some subgroup S of order
p in R.

Proof. If R is narrow, take RQ as in the definition of a narrow p-group.
Then T(CR(RO)) < 2.

Conversely, suppose 5 is a subgroup of order p in R and T(CR(S)) < 2.
Let Z = fii(Z(fl)). Then 5 £ Z and hence i(SZ) > r(5) = 1. It follows
that SZ e S2((R) H £*(R). Therefore, by Theorem 5.3, R is narrow. •

Theorem 5.5. Suppose that p is an odd prime, R is a narrow p-group,
and A is a solvable subgroup of Aut R having odd order. Then A has the
following properties.

(a) The factor group A/OP(A) is an abelian j/-group.
(b) If T(R) > 3, then the order of every p'-element of A divides p—1.
(c) If |A | is a prime that does not divide p(p — 1) then \A\ divides

\{p + 1). If, in addition, R = [R,A] and R is not abelian, then
\R\=P3.

Proof. By Theorem 1.13, R has a characteristic subgroup H of class at
most two and of exponent p such that

(5.4) [R,H]CZ(H)

and CA(H) is a p-group. In particular, since CA(H) <\ A, it follows that
CA{H) C OP(A). Therefore we can assume that H / 1.

We consider first the case in which r(i?) > 3. Take cyclic subgroups Ro
and JSi such that \R0\ = p and CR(R0) = Ro x Ru and let U = RQZ(H).

If Ro C # , then [/ is elementary abelian because H has exponent p, and
U < H because of (5.4). Thus m(U) < T(CR(R0)) < 2. But this implies
that either

m(U) = 1, Ro = U < ff, and hence i?0 C Z(fl), or

m(U) = 2 and, by Lemma 5.1, r(C^(.Ro)) > T(CR(U)) > 3.

Both are impossible. Therefore Ro 2 H.
Now

Since if < R, we have if Pi Z(i2) ^ 1. Consequently

(5.5) \CH(Ro)\=P-

For each nonnegative integer i, define inductively subgroups Hi of i? by

Ho = H and

if; = [i?,ifi_i], for i > 0.



48 I. Preliminary Results

Then, for each i, Hi char R and hence Hi < R. Let v G IZjf and suppose
that pn = \H\. A short argument using the mapping H —> [i?, H] given by
x H-> [v,x] = v~1x~1vx shows that, for each i,

\Hi+1\ > \[Ro,Hi]\ > \Hi : CHi{v)\ > p " 1 ^ .

On the other hand, since R is nilpotent, Hi — 1 or Hi+i C Hi, for each i.
Therefore we obtain an A-invariant chain

H = Ho D Hx D - • • D Hn = 1

in which each factor group Hi/Hi+i has order p. Clearly the chain is
stabilized (in the sense of Lemma 1.9) by A' and by ap~1 for each a G A.
Recall that CA(H) is a p-group. Thus, by Lemma 1.9, we obtain (a), (b),
and (c) in the case when i(R) > 3. (The hypotheses of (c) cannot occur in
this case.)

We are left with the case in which r(R) < 2. Here (b) does not occur,
and (a) follows from Lemma 4.17. To complete the proof, assume that \A\
is a prime that does not divide p(p - 1). Let q = |A|.

By Lemma 4.7, SCNz(R) is empty and, since q does not divide p — 1,
Lemma 4.14 implies that q divides \{p + 1).

Now suppose that R = [R,A] and R is not abelian. By Theorem 4.16,

|fti(iJ)| = p3 and R/ili(R) is cyclic.

As q does not divide p — 1, by G, Theorem 5.4.1, p. 189, A centralizes
iJ/J2i(iJ). Since [R,A] = R, it follows that R = fii(B). Thus \R\ = p3,
which completes the proof of (c) and of the theorem. •

Recall that a group G has p-length one if G = OpiiPjP>(G).

Theorem 5.6. Suppose G is a solvable group of odd order, p G TT(G), and
5 is a narrow Sylow p-subgroup of G. If v(S) > 3, assume as well that G
has p-length one. Then:

(a) p is the largest prime divisor of |G/Op/(G)|;
(b) if p = 3 or p is the smallest prime divisor of |G|, then G has a

normal p-complement;
(c) G' has a normal p-complement;
(d) every p'-subgroup of G is contained in Op'(G

f); and
(e) G/OP^P(G) is an abelian p'-group.

Proof. If r(5) < 2, use Theorem 4.18. If r(5) > 3, use Theorem 5.5 and
the method of proof of Theorem 4.18. •

Theorem 5.7. Suppose G is a solvable group of odd order, p G ft(G),
and E is an elementary abelian p-subgroup of F(G). Assume as well that
v(CF{G)(E)) < 2. Then G' C F{G).
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Proof. By Proposition 1.2, it suffices to show that G' centralizes every
chief factor U/V of G for which U C F(G). Take such a chief factor U/V.
Then U/V is a g-group for some prime q. We may assume that U C Oq(G).

Let R = Og(G), Z = fii(Z(i?)), and C = G#(£). Then r(C) < 2. We
claim that R is narrow. To prove this, we can assume that r(i?) > 3. Then
R%C. Hence g = p and E % Z. Therefore

1 C Z C £Z and i(CR(EZ)) = r(C) < 2.

It follows that m(EZ) = 2 and £Z G £2(R) fl £*(#). By Theorem 5.3, i?
is narrow.

Let C\ = CG(U/V). Since # is narrow, Theorem 5.5 implies that G'
induces a g-group of automorphisms on R by conjugation. Hence G' in-
duces a g-group of automorphisms on U/V, that is, G'C\/C\ is a q-group.
However, Oq(G/C\) = 1 because G acts irreducibly on U/V. Therefore
G' C Ci, as desired. D

6. Additional Results

Theorem 6.1 (P. Hall &: G. Higman). Suppose G is a solvable group
of odd order, p is a prime, and 5 is a Sylow p-subgroup of G. Then OP>,P(G)
contains every abelian normal subgroup of S.

Proof. G, Theorem 6.5.2, p. 234. •

Theorem 6.2. Suppose that G is a solvable group of odd order, p is a
prime, and S is a Sylow p-subgroup of G. Then Z(J(S))OP>{G) < G.

Proof. G, Theorem 6.5.1, p. 234 and Theorem 8.2.11, p. 279. •

Remark. A substitute for this result (Theorem B.4) is proved in Ap-
pendix B, using the characteristic subgroup L(S) of Puig instead of J(S).
Note that for 5 ^ 1 , one has L(S) ^ 1 (Lemma B.l(f)).

Lemma 6.3. Let G be a solvable group.

(a) Suppose that H is a normal Hall subgroup of G and K is a com-
plement of H in G. Assume that H C G'. Then H = [H,K] and
CH(K) C if'.

(b) Suppose that G' is nilpotent and \G/G'\ is prime. Then G1 is a
Hall subgroup of G and G' = [G, K] for every complement if of G'
in G.

Proof, (a) Let iJ* = [H,K]. Then H* < HK = G. Let G = G/#*,
I f = H / H * , a n d T f = K H / H * . T h e n G = I x / f /
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Hence H = H . Since G is solvable, we have H = 1, that is, H = H*.
Therefore, by Proposition 1.6(d) and Proposition 1.5(d),

H/H' = [H/H',KH'/Hf] x CH/H,(KH'/H')

= [H,K]Hf/Hf x CH(K)H'/H'

= H/Hf x CH(K)Hf/H'.

This shows that CH(K)H'/H' = 1. Thus CH(K) C # ' , as desired.
(b) Let p = |G/G'|. Then G/OP>(G') is a p-group whose derived group

has index p. Hence G/Op> (Gf) is a cyclic group of order p and G1 = Op> (G;).
The rest of (b) follows from (a). •

Theorem 6.4. Suppose G is a group, TT is a set of primes, H is a TT'-
subgroup of G, and Go is a normal Hall subgroup of G. Assume that
G0/F(G0) and (G/G0)/F(G/G0) are nilpotent. Assume further that H
normalizes two 7r-subgroups J\ and J2 of G.

Then there exists an element x G (Ji, J2) such that (J ix , J2) is a TT-
group and x centralizes H.

Proof. We use induction on \G\ + |i?|.
We can assume that G / 1. Let M = <30 if Go / 1 and M = G

otherwise. Let L = ( J1? J2 ). Then

M is a nonidentity normal Hall subgroup of G and
^ M/F(M) is nilpotent.

Since i7 normalizes Ji and J2, # normalizes L. We can assume that
G = LH. Then G/L is a Tr'-group, and

(6.2) L contains every 7r-subgroup of G.

Suppose TT(F(G)) % TT(H). Take p G TT(F(G)) such that p £ ir(H).
Let A7" be a minimal normal subgroup of G contained in OP(F(G)). Since
G/L = LH/L = H/(H n L), we have N C L. By induction, there exists
2/ G L such that

(6.3) ( Jiy, J2 ) Af/N is a ?r-group and y centralizes HN/N.

In this case, H is a Hall p'-subgroup of HN. Take z e N such that
(Hy)z = H. Let L* = ( Jiy, J2) N. Then p G L and

Thus 2/z centralizes if. Hence H normalizes J\yz and L*. By (6.3), L* has
order relatively prime to the order of H. By Proposition 1.5, there exists
w G CL* (H) such that ( Jx

yzw, J2 ) is a 7r-group. Since

yzw e (L,N,L*) = L and yzw = (2/2)11; G CG(H),

we obtain the conclusion in this case.
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Now assume that TT(F(G)) C TT(H). Then

(6.4) OV(G) = 1 and ir(F(M)) C ir(H).

By (6.1), M is a nonidentity normal Hall subgroup of G. Therefore M
contains a Hall ?r(F(M))-subgroup of H that is not trivial. Let B — HnM
and let H* be a complement of B in H. Then £ / 1 and \H*\ < \H\. By
induction, there exists an element y G L such that

(Jiy, J2) is a 7r-group and y centralizes H*.

Let Kx = [Ji, J5] and F = F(M). Since Kx C Jl5

(6.5) ifi is a 7r-group.

By (6.1), M/F is nilpotent. Since J3 is a 7r;-group,

BF/F C Ovi(M/F) and l ^ F / F = [BF/F, JiF/F] C OV>(M/F).

By (6.5), KxF/F is a ?r-group. Therefore # i F / F = 1 and ^ C F. Since
F is nilpotent, (6.4) yields

Thus 5 centralizes Ji. By symmetry, B centralizes J2. Hence B centralizes
L and y. Finally, since y centralizes H* and H = H*B, we see that y
centralizes H. •

Remark. If one weakens the hypothesis of Theorem 6.4 slightly, the con-
clusion need not hold. For example, one can have ir = {3}, G = GL(2,3),
H ^ Z2 x Z2, Ji ^ J2 = Z3, and J2 = Jf for some y € NG(H) - H.

Lemma 6.5. Suppose K, U, and H are subgroups of a solvable group G
and

# < G, G = #t/ , if C C7, and |ff | is relatively prime to \K\.

Then
(a) HHG' = HH Uf,
(b) iVG(ff) - CK(H)Nu(H), and
(c) if # G G and iJp C [7, then g = cu for some c G CK(H) and u E U.

Proof, (a) Let TT = TT(#). Since if < G = KU, we know that if U' < G
and G/KU' is abelian. Therefore

G' C if*7; and ff n G1 C £/ n G7 C C7 n iff/' = (U n if)t/;.

Hence
(£/ n G')/u' c (t/ n K)ur/u' ^(un K)/(u' n if),

which is a Tr'-group. As (if n G')U'/Uf is a ?r-subgroup of (U n G7)/^', it
follows that (HnG')U' = U' and thus
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Consequently HnG' C Hf)Uf. Since the opposite containment is obvious,
H n G' = H n V.

(b), (c) It is easy to derive (b) from (c), so we will prove only (c).
Suppose g e G and H9 C U. Take k e K and v G U such that kv = g.
Then

k~xHk = Hk = H9V~l C IT"1 = 17.

Now fc^i? jfc C HK. Therefore Hk C HK n U. Clearly if is a Hall
7r-subgroup of HK and hence of HK D U. Consequently H and Hk are
Hall 7r-subgroups of HK n £/. Thus there exists an element it; G HK n J7
such that Hw = Hk. Since

we can assume that w G if fl t/.
Let c = fcw"1 and w = w;̂ . Then c e K, u e U, g = kv = cu, and

rjC Tjkw~1 / TTW\W~1 TT

For each h G H we know that hc E H and

/ic = c " 1 ^ = ft (mod K).

Therefore / i c / i - 1 G Hf)K = 1, and hence c centralizes ft. Thus c G CK(H).

This completes the proof of (c) and of the lemma. •

Lemma 6.6. Suppose that G is a solvable group, p is a prime, and 5 is a
Sylow p-subgroup of G. Assume that G has p-length one. Then:

(a) S C SOP,{G) = Op>tP(G) and G = Opf{G)NG(S);
(b) if 5 C G;, then S C (iVG(5));;
(c) if y is a nonempty subset of S and x £ G satisfies Yx C 5, then

there exist c G Ccf(y) and g G NQ(S) such that c# = x; and
(d) if Q is a p-subgroup of G, then there exists x G CQ{Q ̂  S) such

that Q* C 5.

Proof. Let M = Op,(G) and U = NG(S).
(a) Since G has p-length one, G = CViP>p/(G). Therefore 5 C Op/,P(G).

It follows that 5 is a Sylow p-subgroup of Op>iP(G) and OP^P(G) = MS.
By the Frattini argument,

G = Op,tP(G)NG(S) = MSU = MU = OP>(G)NG(S).

(b) Apply Lemma 6.5(a) with H = S and K = OP>(G).
(c) Since (Y) and (Yx) are contained in 5, we can apply Lemma 6.5(c)

with K = M and H = (Y).
(d) By (a) and its proof, Q C OP>,P(G) = MS, and clearly 5 is a Sylow

p-subgroup of MS. Hence there exist elements x G M and y £ S such that
(2*2/ c 5. Clearly Qx CS.For zeQn 5, we have

zxz~1 G 5 and zx = x~xzx = ^ (mod M).
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Hence zxz~x e S n M = 1. Thus x eCG(Qn S). This completes the proof
of (d) and of the lemma. •

Theorem 6.7. Suppose that G is a solvable group, p is an odd prime,
E e £P*(G), and L is a p'-subgroup of G normalized by E. Assume that G
has p-length one. Then L C OP*(G).

Remark. The assumption of p-length one is unnecessary by a theorem of
J. G. Thompson [18, Theorem X.I.12, p. 9]. However, the assumption that
p is odd is necessary. For an example, let G = SL(2,3), E = Z(G), and let
L be any subgroup of order three in G.

Proof. Set K = Ov> (G) and let S be a Sylow p-subgroup of G that contains
E. Then E G £*(S). Thus

(6.6) E = SlxiCsiE)) and EK/K e £*(SK/K).

Hence
EK/Ke£p*{G/K).

Now if LK/K C OP>(G/K) = 1, then LCK. Therefore it suffices to prove
the result for G/K, so we can assume that

K = OP,(G) = 1.

By Lemma 6.6, Op>iP(G) = KS = 5, so S < G. Now L acts on S by
conjugation, and L centralizes E because [L,E] C L n S = 1. Hence, by
(6.6) and Corollary 1.12, L centralizes S.

Obviously 5 is a Sylow p-subgroup of Op/>P(G). Therefore, by Proposi-
tion 1.15(a),

L C CG(5) C O^iP(G) = 5.

Since L is a //-group, L = 1C OP>{G), as desired. •





CHAPTER II

The Uniqueness Theorem

In this chapter we introduce the minimal counterexample and begin to
study it. As in the proof of the Feit-Hall-Thompson CiV-group theo-

rem, the major results concern the maximal subgroups of the minimal
counterexample-their structure and the relationships between them. The
first major result is known as the Uniqueness Theorem (Theorem 9.6).

Midway through the proof of the CiV-group theorem, (e.g., after G,
Theorem 14.2.3, p. 406), one can easily show that a subgroup of the form
Zp x Zp is contained in a unique maximal subgroup of the minimal coun-
terexample. In our case, the Uniqueness Theorem includes an analogous
result for a subgroup of the form Zp x Zp x Zp. It depends upon a deep
preliminary result, the Thompson Transitivity Theorem (Theorem 7.6).

The other main ideas of the proof come from a paper of the first author
[1], which makes essential use of the second author's ZJ-Theorem [11].
However, Thompson's Factorization Theorem [27], involving his J-subgroup
and a variation thereof, already had strong applications to local analysis in
FT.

7. The Transitivity Theorem

We now assume that the main theorem is false. Henceforth in these
notes we let G denote a fixed counterexample of minimal order. Of course
G is a nonabelian simple group. We also fix the following notation:

Jt — the set of all maximal subgroups of G,
JK{H) = the set of all maximal subgroups of G that contain H

(for each proper subgroup H of G),
9/ = the set of all proper subgroups H of G for which Jt{H)

has a unique element.

(The set W is not related to the sets W(P) and <&(p) defined in FT.)

55
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For each prime p, recall that pf is the set of all primes other than p. Let
SCN3(p) be the set of all subgroups A of G for which A G SCN3(P) for
some Sylow p-subgroup P of G.

For a set of primes TT, recall that TT' is the set of all primes not contained in
7T. We also introduce the following notation. Whenever A is a Tr'-subgroup
of G and H is a subgroup of G, HH(A; TT) denotes the set of all ?r-subgroups
of H normalized by A and HH*(A; TT) denotes the set of all maximal ele-
ments of HH{A\ TT) under inclusion. If TT = {q} for some prime q, we also
write Hn{A',q) and Hn*(A;q) for HH(A;TT) and HH*(A;TT), respectively.

Hypothesis 7.1.

(1) The group A is a nonidentity proper subgroup of G, TT = TT(A), and
K = O«,(CG(A)).

(2) Whenever X is a proper subgroup of G that contains A, we have

Note that in Hypothesis 7.1, K is the set of all Tr'-elements in CQ{A).

Clearly, for every q G TT7, K acts upon i^o*(A;g) by conjugation. In this
section we will give some sufficient conditions for the action to be transitive.

L e m m a 7.1. Assume Hypothesis 7.1. Suppose, for some prime g G 7r',
that Qi, Q2 € HG*(A;q), and that there exists a proper subgroup H of G
such that

A C if, ff n Qi ^ 1, and if n Q2 ^ 1.

Then Q2 = <3ifc for some k€ K.

Proof. We proceed by induction on |G|g/ |Qi n Q2|- Since A C H, A
normalizes HnQi and HnQ2- By Hypothesis 7.1, O^>(H) contains HnQi
and H D Q2- By Proposition 1.5, H fi Qi is contained in an A-invariant
Sylow g-subgroup Ri of O^'{H) (for i = 1, 2), and i^i'1 = i?2 for some
h G CG(A) n On'(H). Since ft is a Tr'-element of CG(A), we know h e K.
Take Q3 e HG*(A; q) such that R2 C Q3. Then

1 C Qifc n H and Q2 n ff C R2 C Q3.

Therefore

(7.1) 1 c Qi'1 n H C Qi^1 n Q3 and 1 c Q2 n H C Q2 n Q3-

Now suppose Qi fi Q2 = 1. By (7.1), \Q± n Q2| < IQi'1 H Q3|. Hence, by
induction, there exists f £ K such that {Qihy = Q3. Similarly, Q39 = Q2

for some g e K. Since ft G K, we have

ft/<? G # and Q x
h ^ = Q3

9 = Q2.

Now suppose Qi n Q2 7̂  1. Let <2 = Qi nQ 2 - Then our hypothesis is
satisfied with NG(Q) in place of H, and we can assume that H = NG(Q)-
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The argument of the previous paragraph shows that we can assume further
that \Q\ > \Qih H Q3\ or \Q\ > \Q2 n Q3|. Since (7.1) yields

\Qih n Q3\ > |Qih n H\ = \QX nH\ = \NQl(Q)\

and likewise |Q 2 nQ 3 | > \NQ2(Q)\, it follows that \Q\ > \NQ.(Q)\ for some
i = 1 or 2. As <3i is a p-group,

Since Q; G # G * ( ^ ; «), we have Q{ = Q3_i. Thus Q2 = Qik for A; = 1. This
completes the proof of Lemma 7.1. •

Theorem 7.2. Assume Hypothesis 7.1 and let q £ TT'. Suppose m(Z(A)) >
3. Then K acts transitively on HG*(A;q).

Proof. By hypothesis, Z(A) contains an elementary abelian subgroup B
of order p3 for some prime p. Clearly q ^ p. Take Qi, Q2 £ #G*(^4; ̂ )- We
wish to prove that <2ifc = Q2 for some k £ K. If Qi = 1, then Q2 = 1, and
we can take k = 1. Assume that Qi ^ 1.

By Proposition 1.16,

Qx = (CQ l (C) I C C B and B/C is cyclic).

Thus CQ1 (C) ^ 1 for some subgroup C of order p2 in 5 . Similarly, since
C is not cyclic, CQ 2 (^) ^ 1 for some z £ C # . As CQl(C) C CG(^), the
desired conclusion follows from Lemma 7.1 with H = CG(Z). •

Theorem 7.3. Assume Hypothesis 7.1 and let g G TT'. Suppose m(Z(A)) >
2 and q G TT(CG(A)). Then if acts transitively on i^G*(^;^)«

Proof. Take B G £P
2(Z(A)) and Qi, Q2 G HG*(A; q). Let # be an element

of HG*(A; q) that contains a Sylow (/-subgroup of CQ{A). Then CR(A) ^ 1
and hence Qi, Q2 ^ 1.

By Proposition 1.16, CQX(X) / 1 for some x G i?#. By Lemma 7.1 with
H = CG(x), we have Qx

f = R for some f € K. Similarly, R9 = Q2 for
some g G K. Thus

/# G K and Qif9 = Q2.

Since Qi and Q2 are arbitrary elements of Ho*(A; q), we are done. D

Theorem 7.4. Assume Hypothesis 7.1 and let q G TT'. Suppose that P is
a proper ?r-subgroup of G that contains A as a subnormal subgroup and
that K acts transitively on HG*(A;q). Then

(a) CK{P) = OACa{P)),
(b) OT-(CG(P)) acts transitively on HG*(P;q),
(c) /fc*(P;9)Clfc*(^;g),aiid
(d) for every Q € HG*(P;q) we have P n NG(P)' C ATG(Q)' and

- O*,(CG(P))(NG(P) n iVG(Q)).
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Proof. Recall that K equals On'(CG(A)) and contains every 7r'-element of
CG(A). Since A C P, we have CG(P) C CG(A). This proves (a).

To prove the other parts of the theorem we use induction on \P : A\. By
the definition of a subnormal subgroup, there exists a normal series of P
that contains A. We can refine such a series to a composition series

1 = P0 < Pi < • • • < Pn-1 <Pn=P,

where Pk — A and 1 < k < n.
Assume first that k < n—2. Let B = Pn-i- Clearly B is a 7r-group. Since

\B : A\ < \P : A\, by induction, O^(CG(B)) is transitive on HG*(B;q).
Moreover, since Hx{B',7rf) C ifx^l^r')? Hypothesis 7.1 is satisfied with B
and CV(CG(#)) in place of A and X. As \P : B\ < \P : A\, (b), (c), and
(d) follow by induction.

For the remainder of the proof we assume that k > n—2. Then A = Pn-i
or A = Pn = P. Thus A < P, and

(7.2) either A = P or \P/A\ is a prime in TT.

Let fJ = HG*(A; q). Then P acts on £1 by conjugation and hence P/A acts
on 12. By hypothesis, the vr'-group K acts transitively on Q, by conjugation.
Therefore |fi| divides \K\. Consequently, by (7.2), P/A fixes some element
of ft. Thus

(7.3) P normalizes some element of HG*(A; q).

Suppose first that 1 G HG*(P\q). Then {1} = HG*(P\q) = MG(P;q).
Therefore (b) and (d) are trivial. Moreover, (7.3) shows that 1 G HG*(A; q)
and thus yields (c).

Now assume that 1 ̂  HG*(P; q). To prove (c), take any Q G HG*(P; q).
Then A normalizes Q, so Q is contained in some element Q\ of HG*(A; q).
Now NG(Q) contains P and NQl(Q). By Hypothesis 7.1,

NQl(Q)QOv,(NG(Q)).

By Proposition 1.5, Q is contained in a P-invariant Sylow ^-subgroup Q2

of O*>(NG(Q)). Since Q G HG*(P',q), we know Q = Q2. Therefore

|Q| = |Q2| = |CV(tfG(Q))|g > |7VQl(Q)| > |Q|.

It follows that Q = NQl(Q) and hence that Q = <?i G ifG*(^;«). This
proves (c).

To prove (b), let us take any Qi, Q2 G HG*(P;q). First notice that
if = O^{CG{A)) < iVG(A), so that ifP is a group. By (c) and the
hypotheses, Q2 = Qik for some k e K. Therefore

and Pfc
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Since PK is solvable, P is a 7r-group, and K is a Tr'-group, it follows that
P and Pk are Hall 7r-subgroups of NKP(Q2) and hence are conjugate in
NKp(Q2). As

NKp{Q2) = KPn NG(Q2) = (Kn NG(Q2))P,

(Pk)9 = p for some g G K n NG{Q2). Thus

Qifc* = Q2* = Q2 and % G NK(P) = CK(P).

This proves (b).
To prove (d), take any Q G HG*(P; q) and let L = NG(P) n iVG(Q). By

(a) and (b), NG(P) = LCK(P) = CK(P)L. Therefore, by Lemma 6.5,

pn(A
This proves (d) and completes the proof of the theorem. •

Proposition 7.5. Suppose p G ?r(G0 and A is an abelian p-subgroup of G.
Assume that either

(1) A = {xG CG(A) | xp = 1} and every proper subgroup of G has
p-length one, or

(2) A G SCN2(P) for some Sylow p-subgroup P of G.
Then A satisfies Hypothesis 7.1.

Remark. For A G SCN2(P) this result is a special case of Theorem 8.5.1
of G, from which our proof is derived.

Proof. For case (1), Hypothesis 7.1 follows easily from Theorem 6.7. There-
fore we will assume case (2) for the remainder of this proof.

To conform with the notation of Hypothesis 7.1, let ?r = IT (A) = {p} and
K = Opl(CG(A)). In addition, let Z = fti(Z(P)).

Since A < P, we have fti(A) < P. Now Z(P) C A. If Z(P) is not cyclic,
take B G £P

2{Z). If Z(P) is cyclic, then \Z\ = p and

by G, Theorem 2.6.4, p. 31. Thus the intersection contains a subgroup
B/Z of order p. Either way

(7.4) B G £P
2(A) and B < P.

Now suppose that X is an arbitrary proper subgroup of G that contains
A and that y G i^x(^;p')- To prove our conclusion, it suffices to show
that Y C Op'(X). We will verify two special cases and then the general
case.

First suppose that X = CG(b) for some b G B* n Z. Then P is a Sylow
p-subgroup of X. Since A is an abelian normal subgroup of P, Theorem 6.1
yields

A C CV>P(X).
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Let F = HOpl{X)IOp.{X) for every subgroup H of X. Then

[A, Y] C OP(X) n Y = 1, and so,

Since Cp(A) C A, we have C o (X)(^) - ^* ^ v Proposition 1.10 (with Y
and (9P(X) in place of A and G), Y centralizes OP(X). Next, by Proposi-
tion 1.15(a),

cY(op(X)) c ev
Consequently, as Y is a p'-group, y = 1. This shows that Y C 0 P

Now suppose X = Co(b) for any 6 G B#. By the paragraph above, we
can assume that \Z\ = p and B — (b) x Z. Let Pi = Cp(b) and take a
Sylow p-subgroup P2 of X that contains P\. By (7.4),

P/Pi = P/CP(B) ^ Zp.

Therefore \P2 : Pi| < p and Px < P2. Hence Z C Z(Pi) and Z(Pi) < P2.
By Theorem 6.1,

^ C Z(Pi) C (PP',P(X).

Thus [F,Z] C y n Op',p(X) C OP/(X). Since A normalizes CY{Z), the
previous paragraph shows that Cy{Z) C OP>(CG(Z)). Consequently we
have CY(Z) C Opi{Cx(Z)) and, by Proposition 1.15(b), Cy(Z) C
Thus

Assume once again that X is arbitrary. By Proposition 1.16,

(7.5) Y = (CY(b)\beB#).

For each b € B#, A normalizes Cyib) and the special cases above show
that CY(b) C OP/(CG(6)). Hence

by Proposition 1.15(b). Finally, Y C £>p/(X) by (7.5), which completes the
proof of the proposition. •

The following result is a special case of the Thompson Transitivity Theo-
rem (G, Theorem 8.5.4, p. 292).

Theorem 7.6 (Thompson Transitivity Theorem). Suppose that
p e TT(G), A e SCN3(p), and q € p;. Then OP>(CG(A)) acts transitively on
HG*(A;q) by conjugation.

Proof. This follows from Proposition 7.5 and Theorem 7.2. •
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8. The Fitting Subgroup of a Maximal Subgroup

Having proved the Transitivity Theorem, we now embark on the proof of
the Uniqueness Theorem. In this section, we prove (Theorem 8.1) that if a
maximal subgroup M is large in the sense that r(F(M)) > 3, then certain
large subgroups of F(M) lie in 9/. Here and later we will frequently use
the simplicity of G to assert that if L is a nonidentity normal subgroup of
a maximal subgroup M, then NQ(L) = M.

Theorem 8.1. Suppose M G Jt, p G TT(F(M)), and Ao G £P*(F(M)).
Assume that m(Ao) > 3. Let P be a Sylow p-subgroup of M.

(a) If F(M) is not a p-group, then CF(M)(^O) G ^ .
(b) If F(M) is a p-group, then P is a Sylow p-subgroup of G and every

element of SCN3(P) is contained in F(M) and belongs to *%.

Remark. Recall that, by Lemma 5.1, SCNs(P) is not empty.

Proof. Let F = F(M). For each nilpotent subgroup K of G and each
prime </, let Kq = Oq(K). We handle parts (a) and (b) separately.

Proof of (a). Let ft = ft(F) and A = Cp(Ao). Then ft (A) = ft because

(8.1) Z(F) C CF(A0) = ACF.

Note that, for every q G ft,

(8.2) CG{A) C CG(Aq) C CG(Z(F),) C iVG(Z(F)9) = M.

Suppose x is a Tr'-element of CG(A) . Let C = Cp(x) = CF((X)). By
(8.2), x G M, so x operates on F by conjugation. Thus

CF(C) C CF(A) C CF(A0) = A C C.

By Propositions 1.10 and 1.3,

xeCM(F) = CM(F(M))CF

Since x is a Tr'-element, x = 1. Thus, by (8.2),

(8.3) CG(A) is a 7r-subgroup of M.

Now we verify Hypothesis 7.1 for A. Take an arbitrary proper subgroup
X of G that contains A and an A-invariant Tr'-subgroup 7 of 1 . It will
suffice to show that Y C CV(X).

Take any </ G TT. By (8.2), Cy(Ag) C M. Then, since y is a Tr'-group,

[CY(Aq), A] C y n [M, A] C Y n F(M) = 1.

Consequently Cy(Aq) centralizes A. By (8.3), CY{Aq) = 1. Thus, by
Proposition 1.6(a),

(8.4) Y
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Since, by hypothesis, |TT| > 2, there exists r / q in TT. Since, by (8.2),
NG(Z(F)q) = M, we have

ArCFrC Oq,{M) = Oq,(NG(Z(F)q)).

Therefore Ar C Oqi(Nx(Z(F)q)). Moreover,

[Oq,(Nx(Z(F)q)),Z(F)q] C Oq,(Nx(Z(F)q))nZ(F)q = 1,

so Oq.{Nx{Z{F)q)) = Oql(Cx(Z(F)q)). Hence, by Proposition 1.15(b),

(8.5) Ar C Oq,{Cx{Z{F)q)) C Oq,(X) (for q ± r in TT).

Consequently, by (8.4), with r in place of g,

Since q was chosen arbitrarily in TT,

This proves Hypothesis 7.1 for A.
Now take q to be some prime in irf. Since m(Z(A)) > m(Ao) > 3, we can

conclude from Theorem 7.2 that O^'{CG{A)) acts transitively on HG*(A; q)
by conjugation. By (8.3), O^(CG(A)) = 1. Thus

HG*(A] q) = {Q} for some g-subgroup Q of G.

Since F is nilpotent, A « F. By Theorem 7.4,

Therefore HG*(F;q) = {Q} and M normalizes Q. As M is a maximal
subgroup of G, MQ = M and Q C M. Hence Q < M and Q C F(M) = F.
Since ?r = TT(F) and q e TT', we have Q = 1. Thus

(8.6) #G*(A;g) = {1}, for every q <E TT'.

To prove that A G ^ , take if G JK(A). We will show that H = M.
Let D = F(iJ) and cr = TT(D). By (8.6), we have a C TT. Since

F(Oa>(H)) C Oa/(F(ff)) = 1, we have CVC&) = 1. By (8.1) and (8.5) for

Oai(A) = (Ar I r G Trna') C

As F is nilpotent, Oa>(F) = 1, so TT = TT(F) C cr. Since <r C TT, we have
a = 7T.

Recall that |TT| > 2. For each q G TT,

(8.7) [239, Og,(A)] C [Og(ff), Oq,(H)] = 1, by (8.5) for X = H,

and Dq C CG(Oq/(A)) C M by (8.2). Hence D C M .
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By (8.7), Ap centralizes OP>(D). Since

Proposition 1.4 implies that Ap centralizes OP>(H). By (8.2), OP>{H) C M.
Since

D C M and 0p,(fT) = Op,{NG{Dp)),
we have OP>{H) C Opi{NM(Dp)). Furthermore, since

[ ^ ( i V M p p ) ) , ^ ] C Op,(NM(Dp))nDp - 1,

it follows that Op>{NM(Dp)) C O P / ( C M ( ^ P ) ) . Thus Proposition 1.15(b)
yields

(8.8) Op.(ff)COp,(M).

Since Ao is a p-subgroup of F, we have £V(F) C CF(A0) = A. Thus
Opi(F) = Op>(A). By (8.7), Dp centralizes OP>(F). Since

D p C D C M a n d Op/(F) = Op/(F(M)) = F(Opi(M)),

Proposition 1.4 shows that Dp centralizes OP'(M). Thus it follows that
Op>(M)CCG(Dp)CH.

By (8.2), NG(Z(F)p) = M. Therefore (9p,(M) C Op,(NH(Z(F)p)). By
(8.5), with X = H and ^ = p, we have Op/(M) C OP>{H). Hence, by (8.8),

V ( ) ^ ( ) and ff - iVG(Op/(ff)) - iVG(Op/(M)) = M,

which completes the proof of (a). •

Proof of (b). Take A e SCN3(P). Since F(OP>(M)) C OP>{F) = 1, we
have

(8.9) CV(M) = 1 and F = OP(M) = OP>,P{M).

By Theorem 6.1, AC F. Hence Z(F) C OP(M) n CG(A) C CP(A) = A.
As Z(F) < M,

(8.10) CG(A) C CG(Z(F)) C ATG(Z(F)) = M.

By (8.9) and Theorem 6.2, we know that Z(J(P)) < M. Consequently
NG(P) C NG(Z(J(P))) = M. Hence P is a Sylow p-subgroup of G and
A G SCN3(p).

Let A* = OP>(CG(A)). By (8.10), A* C M. Since

CF(CF(A*)) C CF(A) = A C CF(A*),

Propositions 1.10 and 1.3 imply that A* C CM{F) C F. AS F is p-group,

(8.11) 1 = A* = OP,(C

Take any prime q G p'. By (8.11) and the Thompson Transitivity Theo-
rem (Theorem 7.6), HG*(A;q) contains a unique element, say, Q. Thus
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NG(A) normalizes Q, and hence F normalizes Q. Since AC. F and F < M,
it follows that Q is the unique element of HG*(F; q) and that M normalizes
Q. As M is a maximal subgroup of G,

MQ = M and Q C Oq(M) = 1.

Thus HG*(A;q) = {1} = MG(A;q). Take any Y G JfG(4;p')- F o r e a c h

q G p', we have Oq(Y) G #G(-4;<?) = {1}. Therefore F(Y) = 1. Since Y is
solvable, y = 1. Thus

(8.12) HG(A;pf) = {l}.

To complete the proof of (b) we must show that A G ^ . Suppose that
A <£ ty. Take ff G JK{A) such that |ff n M |p is maximal subject to ff / M.
Let i? be a Sylow p-subgroup of H f) M containing A. If \R\ < |P|, then

|ff n M\p = \R\ < \NM(R)\P = \NG(R) n M\p

and {M} = ^(NQ(R)) by our choice of i7. Therefore we know that
\NH(R)\P = \H n iVG(iJ)|p < |ff H M|p = \R\, and so B is a Sylow p-
subgroup of H regardless of whether \R\ < \P\ or \R\ = \P\. By (8.12) and
Theorem 6.2,

(8.13) Opl(H) = 1 and Z(J{R)) < H.

Thus NG(R) C NG(Z(J(R))) = ff, so ii is a Sylow p-subgroup of G and
of M. By (8.9), (8.13), and Theorem 6.2, M = NG(Z(J(R))) = H. This
contradicts our choice of ff and completes the proof of Theorem 8.1. •

Remark. The theorem above has slightly different conclusions, but very
different arguments according to whether (a) F(M) is not a p-group or
(b) F(M) is a p-group. Similarly, there are slightly different arguments
for these two cases in the proof of Theorem 9.1. This dichotomy reflects a
division of TT(G) in FT. In FT, Feit and Thompson defined TT3 to be the
set of all primes p for which rp(G) > 3 and some Sylow p-subgroup of G
normalizes some nonidentity p'-subgroup of G. They defined TT4 to consist
of all other primes p for which rp(G) > 3. Our arguments for cases (a) and
(b) reflect the arguments in FT involving primes in TTS and TT4.

9. The Uniqueness Theorem

In this section we complete the Uniqueness Theorem (Theorem 9.6).
Note that whenever Y CX CG and X £ <% we have Y £ <%.

Theorem 9.1. Suppose that p is a prime, M G J%, B G £P(M), and B is
not cyclic. Assume that

(a) CG(b) C M for all b G B* or
(b) (HG(B;p'))CM.

Then B G W.
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Proof. If (a) holds, then for each K e HG(B;pf)

K = (CK(b) \beB*)CM

by Proposition 1.16. Therefore (b) also holds and it suffices to prove (a).
We will assume that B £ fy and obtain a contradiction. Take any

H e Jt(B) such that \H n M\p is maximal subject to H / M. Let R
be a Sylow p-subgroup of H D M that contains B and let P be a Sylow
p-subgroup of M that contains R.

Suppose K e HG(P;pf). As B C P, we know from (b) that K C M.
Since [K,P] C K, it follows that if centralizes OP>^(M)/OP>{M). Hence
it follows from Proposition 1.15(a), with G and T replaced by M/OP>{M)
and Op>iP(M)/Op>(M), that X C OP*(M). Since O^(M) itself belongs to
MG{P',P'), this shows that

(9.1) (HG(P;p')) = Op,(M).

By Theorem 6.2, £>P'(M)Z(J(P)) < M. Therefore, by the Frattini
argument,

(9.2) M - O'p(M)Z(J(P))NM(Z(J(P)) = O'p(M)NM(Z(J(P)).

It follows that if OP»(M) = 1, then NG(P) C NG(Z(J(P))) = M. On the
other hand, if OP>(M) ^ 1, then, by (9.1), NG(P) normalizes Op,(M) and
hence NG(P) C iVG(Op/(M)) = M. Thus, in both cases,

(9.3) NG(P) C M.

Consequently P is a Sylow p-subgroup of G.
H R = P, then i? is a Sylow p-subgroup of G and of iJ, and, by (9.3),

NG(R)CM. I f f l c P , then

|ff n M|p = |fl| < |iVP(B)| < |iVG(B) n M|p,

and hence, by the choice of H, we know that {M} = ^{NG(R)) and
\NH(R)\p = \HnNG(R)\p < \HC\M\P = \R\. Consequently, in both cases,
R is a Sylow p-subgroup of H and

(9.4) NG(R) C M.

Since, by (b), OP<(H) C M, we have

(9.5) F(H) C Op(ff) x Opf(F(H)) C .ROp/(ff) C M.

Hence F(ff) ^ ^ and no subgroup of F(ff) lies in ^ . By Theorem 8.1,
r(F(ff)) < 2. Therefore, by Theorem 4.20, ff; C F(ff). By (9.5),

Hf CF(H) CROpf(H) Cff.

Consequently ROP>(H) < ff, and, by the Frattini argument and (9.4),

H = ROpf(H)NH(R) C (Op/(ff),JVG(fl)> C M,
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which is false. This contradiction completes the proof of the theorem. •

Corollary 9.2. Suppose that L G ^ , K is a subgroup of CG(L), and
r(K) > 2. Then K e%.

Proof. Let JV(L) = {H}. Take B G SP
2(K) for some prime p. For each

b G B* we have CG(b) D L and hence CG(b) C H. By Theorem 9.1,
JK{B) = {H}. Therefore Jl{K) = {H}. D

Corollary 9.3. Suppose p is a prime, A is an abelian p-subgroup of G,
and B is a noncyclic p-subgroup of G. Assume that A e ^ , m(A) > 3, and
TP(CG(B)) > 3. Then B e&.

Proof. Let P be a Sylow p-subgroup of G that contains A and take any
B* e SP

3(CG(B)). Replacing A and B* by conjugates, if necessary, we can
assume that £?* C P.

By Lemma 4.5, P contains a noncyclic normal subgroup D of order p2.
Therefore A/CA(D) and B*/CB*(D) are cyclic. Hence

m(CA(D)) > 2 and m{CB*(D) > 2.

By hypothesis, A G 9/. By successive applications of Corollary 9.2, ^
contains CA{D), D, CB*(D), B* and 5 . •

Lemma 9.4. Suppose that p is a prime, M G ^ , and rp(F(M)) > 3.
Then ^ contains every abelian p-group of rank at least three.

Proof. If F(M) is a p-group, then the conclusion follows from Theorem 8.1
and Corollary 9.3. Assume that F{M) is not a p-group. Take any subgroup
^o G £P*(F(M)) such that m(A0) > 3. By Theorem 8.1 and Corollary 9.2,
Ao G W. The conclusion now follows from Corollary 9.3. •

Lemma 9.5. Suppose p is a prime and A G SCN3(p). Then A G ^ .

Proof. Assume that A £ 9/. We will obtain a contradiction.
Take M G JZ{CG(A)) and let F = F(M). By Lemma 9.4,

(9.6) TP(F) < 2.

Choose a prime q as follows: if r(F) < 2, let q be the largest prime
divisor of |M|; if r(F) > 3, let q be some prime for which iq(F) > 3. By
Theorem 4.20(c), Oq(M) is a Sylow ^-subgroup of M if r(F) < 2. Since
M =

(9.7) O9(M) is a Sylow ^-subgroup of G if r(F) < 2.

Hence, by (9.6), q^p\i r(F) < 2. Moreover, by (9.6) and our choice of q,
we have q / p if r(F) > 3. Thus </ 7̂  p in both cases.
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Let P be a Sylow p-subgroup of NQ{A) and let R be a subgroup of P n M
that contains A. Then R normalizes Oq(M). Choose x G NQ(R) and take
Q G HG*(R; q) such that Oq(M) C Q. If r(F) > 3, then, by Lemma 9.4,

(9.8) Q C 7VG(Q) C M.

On the other hand, if r(F) < 2, then (9.7) implies that Q = Oq(M) < M
and hence (9.8) is valid in both cases.

Since R is a p-group, A « R. By Theorems 7.6 and 7.4, OP>(CG{R))

acts transitively on Hc*(R',q) by conjugation. Since

Q* G HG*(R;q) and CG(i?) C CG(A) C M,

x = Q^ for some y G M. By (9.8),

xy"1 G NQ(Q) C M and x = (xy~1)y G M.

Thus A^G(^) C M. By taking i^ = A, we have P C NG(A) C M. By
taking J? = P , we have

(9.9) A^G(P) C M.

Let Po = [P, A^G(^P)] and D = Op/(F). Since G does not have a normal
p-complement, Theorem 1.18 implies that Po ^ 1.

Suppose that Po does not centralize D. By Proposition 1.16,

D = {CD(B)\BC ft^A) and « i (A) /B is cyclic.)

Take 5 C fii(A) such that £li(A)/B is cyclic and Po does not centralize
CD(B). Since A G SCN3(p), 5 is not cyclic. Since A$W,it follows that
B £ 9/. By Theorem 9.1, there exist y G B# and L e ^ such that

CG(2/) C L and L / M.

Note that we chose M to be an arbitrary element of JZ(CG(A)). Since
CG(A) C CG(V) Q L, we can apply (9.9), with L in place of M, to conclude
that A^G(P) Q L. Hence

(9.10) A^G(P) C L n M and P O C (NG(P))' C ( L n M); .

Since D n L C M f l L , n o subgroup of £>nL lies in ^ . As D = Op>(F(M)),
Lemma 9.4 implies that r(£> n L) < 2. Thus, by (9.10) and Corollary 4.19,
Po centralizes every chief factor U/V of L n M for which U C D n L.
Therefore, as D n L is a p'-group, Lemma 1.9 shows that Po centralizes
D C\ L. However

DnLDDnCG{y)2CD(B),

which is not centralized by Po- This contradiction shows that Po centralizes
D, that is,

(9.11) Po centralizes OP>(F).
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We claim that

(9.12) {M} = ^(NG(P0)).

If r(F) > 3, this follows from (9.11), (9.6), and Lemma 9.4. Suppose that
r(F) < 2. By Theorem 4.20, M' C F. By (9.9), PCM. Since MjW is
abelian,

FP < M and M = FPNM(P) = OP>{F)PNM{P) = Opt(F)NM(P)-

Since Po = [-P, iVG(P)] < NG(P), (9.11) implies that Fo < M, which yields
(9.12). Thus (9.12) holds in all cases.

Since A £ <&% it follows that fii(A) ^ ^ . By Theorem 9.1, there exists
x e fti(A)* such that CG(x) % M. Take M* G ^(C G(z)) . Since M was
chosen arbitrarily from ^(CG(A)), (9.12) yields

a contradiction. This completes the proof of Lemma 9.5. •

Theorem 9.6 (The Uniqueness Theorem). Suppose that K C G and
T(K) > 2. Assume that r(K) > 3 or i(CG(K)) > 3. Then K G ^ . In
particular, if A G E2(G) - £*{G), then A G ̂ .

Proof. By Corollary 9.2, it suffices to prove the result when v(K) > 3.
Then rp(K) > 3 for some prime p. Take B G SP

3{K) of order p3. Let P
be a Sylow p-subgroup of G that contains 5 . By Lemma 5.1, there exists
A G SCN3(P). By Lemma 9.5, A G I Since B C CG(B), Corollary 9.3
implies that 5 G 1 Therefore K G ^ , as desired. •



CHAPTER III

Maximal Subgroups

A s mentioned in the preface, the proof of the Feit-Thompson Theorem is
iYsimilar in broad outline to the proof for the special case of CiV-groups.
There, the C TV-group hypothesis yields immediately that the maximal sub-
groups are Frobenius groups or "three step groups" under a definition dif-
ferent from our definition of three step groups (given in a remark before
Proposition 16.1). In contrast, here we have no preliminary restrictions
on a maximal subgroup M other than its being solvable. However, having
proved the Uniqueness Theorem, we are able to show in fairly short order
that M has p-length one for every prime p (Theorem 10.6). Eventually we
show that either M is "of Frobenius type" ("almost" a Frobenius group),
or M is a three step group (as defined in these notes) (Theorem I). (Inci-
dently, we can obtain Burnside's paqb theorem for odd primes p and q very
easily now, as shown in the remark after the proof of Theorem 10.2).

In this chapter we attain part of our final goal by focusing our attention
on a single maximal subgroup M. We introduce two normal Hall subgroups
Ma and Ma of M and study their properties in Section 10. The subgroup
Ma plays a role analogous to that of the Fitting subgroup (i.e., the Frobe-
nius kernel) in a Frobenius group. Indeed, if M is a Frobenius group, then
Ma = F(M) and r(M/Ma) = 1. In Section 11 we study the structure of
M under a particular restriction. In Sections 12 and 13 we again allow M
to be arbitrary and we study the structure of a complement E to Ma in M
and the embedding of E in M and G.

10. The Subgroups Ma and M(a

Although the Uniqueness Theorem gives information only about inter-
sections of distinct maximal subgroups, it has powerful consequences for
the internal structure of a single maximal subgroup M, as we will see in
this section. Among other things, we will show that M contains a normal
subgroup Ma that is a Hall subgroup of G (and thus of M) and has quotient
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MjMG of rank at most 2 (Theorem 10.2). We will also prove that M has
p-length one for all primes p (Theorem 10.6) and determine the possible
structures of Sylow p-subgroups of rank at most 2 (Corollary 10.7(b)).

We begin with some notation to be used for the remainder of the proof.
We say that a prime p is ideal if rp(G) > 3 and £2{P) n £*(P) is empty

for every Sylow p-subgroup of G. Equivalently, by Theorem 5.3, for p an
ideal prime, the Sylow p-subgroups of G are not narrow. Note that this
forces SP

2(G) n SP*{G) to be empty.
For a maximal subgroup M of G let

= {pG7r(M)|rp(M)>3},
/3(M) = {p E a(M) | p is ideal} ,
cr(M) = {pe TT(M) I NG(P) C M for some

Sylow p-subgroup P of M},

MP = O(3{M)(M),
Ma = Oa{M)(M),

Fa(M) = Oa(M){F{M)), and

Clearly, by the Uniqueness Theorem (Theorem 9.6),

0(M) C a(M) C a(M) and Mp C Ma Q Ma.

In some sense the primes in fi(M), if any, are the best primes in TT(M). We
will show that MG is a Hall <r(M)-subgroup of M and of G and likewise
for Ma and Mp (Theorem 10.2 and Lemma 10.8). Moreover, Ma / 1
and, unless M is "small" in the sense that r(M) < 2, we have Ma / 1
(Theorem 10.2). Eventually we will see that Ma is close to being nilpotent
in the sense that Ma/F(Ma) is abelian (Theorem 15.2(g)). We will make
relatively little use of Mp.

Note that for p e a(M) and P any Sylow p-subgroup of M, we have
NG(P) Q M, and hence P is a Sylow p-subgroup of G.

Theorem 10.1. Suppose M e Jt', p G cr(M), and X is a nonidentity
p-subgroup of G.

(a) I f l C M ^ e G , and X^ C M, then # = cm for some c G CG(X)
and m G M.

(b) The subgroup CQ{X) acts transitively by conjugation on the set

(c) I f l C M , then NG(X) = NM(X)CG(X).
(d) If X is a Sylow p-subgroup of M, # G G, and X^ C M, then g G M.
(e) If CG(X) C M ^ G G , and X^ C M, then ^ G M.
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Proof. We first consider (d). Here both X and X9 are Sylow p-subgroups
of M. Hence (X9)h = X for some heM. Then

gh G NG(X) CMand(/ = (gh)^1 G M,

as desired.
Now assume (b) temporarily. Then, under the hypothesis of (a),

9~\X C M9~\ M9'1 = Mc for some c G CG(X), and eg G NG(M) = M.

Hence g = c~x(cg), c"1 G CG(X), and eg G M. This proves (a).
Clearly (a) and (b) yield (c) and (e), respectively, as corollaries.
The discussion above shows that (d) is valid and that the remainder of

the theorem will follow from (b). We prove (b) by contradiction.
Assume (b) is false and take X to be a counterexample of maximal order.

Let L = NG(X) and take

Mi, M2 G { M9 | g G G and X C M9 }

such that

(10.1) Mx
c ^ M2 for every c G CG(X).

We describe the subgroups to be used in our proof by a diagram:

Mi M M* M2

Now M2
fif = Mi for some g G G. Thus X, P C Mi. If X is a Sylow

p-subgroup of Mi, then, by (d), g G Mi, which is impossible. Therefore X
is not a Sylow p-subgroup of Mi. It follows that X C X± for some Sylow
p-subgroup X\ of L n Mi. Similarly X C X2 for some Sylow p-subgroup
X2 of LnM 2 .

Let P be a Sylow p-subgroup of L that contains X\. Take t G L such that
X2 C P*. As p G cr(M), M contains a Sylow p-subgroup of G. Replacing
M by a conjugate if necessary, we can assume that PCM. Now we have
introduced all the subgroups and verified all the containments indicated in
the diagram.

Since X C Xi C MiC)M, our maximal choice of X implies that Mi and
M are conjugate under CG(Xi) and hence under CG(X). Similarly, Ml

and M2 are conjugate under CG(X). Therefore, by (10.1),

(10.2) M and Ml are not conjugate under CG(X).
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Suppose r(P) > 3. Then by the Uniqueness Theorem (Theorem 9.6),
P G %. Since P C L n M, it follows that L C M. As t G L, this
contradicts (10.2). Thus r(P) < 2. Since P is a Sylow p-subgroup of L,
we can conclude from Theorem 4.18(e) that P is a Sylow p-subgroup of
OP'iP(L). Thus

L = NL(P)Op,,p{L) = NL(P)POpf(L) = NL(P)OP,(L).

Hence t = uv for some u G NL(P) and v G Opr(L).
Since L = NG(X) and OP>(L) n X = 1, we have v G OP'(L) C CG(X).

Since I c P , the maximal choice of X yields (b) and hence (c) with P in
place of X. Thus

NG(P) = NM(P)CG(P).
Therefore u = wx for some w G NM(P) and x G CG(P) Q CG(X). Now

« ; G M , C T G CG(X), t = uv = wxv, and M* = Mwxv = Mxv,

contrary to (10.2). This completes the proof of Theorem 10.1. •

Theorem 10.2. Let M G Jt'. Then
(a) Ma is a Hall a(M)-subgroup of M and of G,
(b) Ma is a Hall cr(M)-subgroup of M and of G,
(c) MaCMaC M',
(d) i(M/Ma) < 2 and M'/Ma is nilpotent, and
(e) Ma / 1.

Proof. Let M(a) be a Hall a(M)-subgroup of M. For every nontrivial
Sylow subgroup P of M(a), we have r(P) > 3. Hence, by the Uniqueness
Theorem (Theorem 9.6), P is a Sylow subgroup of G and N(P) C M. Thus
a(M) C <T(M) and M(a) is contained in some Hall <r(M)-subgroup M(a)
of G.

Now take any p G cr(M) and let P be a Sylow p-subgroup of M. Then
NG(P) C M. Therefore P is a Sylow p-subgroup of G. Clearly PnGf = P.
By the Focal Subgroup Theorem (Theorem 1.17),

P = ( x"1!/ | #, y G P and x is conjugate to y in G ) , and

P n M ' = ( a?-"1^ | x, y G P and x is conjugate to y in M ) .

However, whenever x € P, g £ G, and x9 € P, we have a;3' = #m for some
m G M by Theorem 10.1 (with X = (#)). Hence P = P n M ' C M ' . As p
was chosen arbitrarily in cr(M),

(10.3) M(a) C M(a) C M;.

Since Ma = ^a(M)(^)5 the section F(M/Ma) is an a(M)/-group and is
isomorphic to a subgroup of M. Hence, by the definition of a(M), we have
i(F(M/Ma)) < 2. Clearly Ma C M(a). By (10.3) and Theorem 4.20,

M(a)/Ma C M;/Ma = (M/Ma/ C F(M/Ma).
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Thus M(a)/Ma is an a(M)'-group. By (10.3), this proves that M(a) =
Ma, which yields (a). Since M(a) is a Hall subgroup of M, it follows
that M(a)/Ma is a Hall subgroup of F(M/Ma) and is normal in M/Ma.
Consequently M(a) < M, which shows that M(a) = MG. Thus (b) holds,
and (10.3) yields (c).

By the definition of M(a),

r(M/Ma) = r(M/M(a)) < 2.

As mentioned above, Mf/Ma C F(M/Ma), so we obtain (d).
Now we have proved all parts of the conclusion except (e). To obtain (e),

we may assume that Ma = 1. Then r(M) < 2. Let q be the largest prime
divisor of \M\. By Theorem 4.20, Oq(M) is a Sylow ^-subgroup of M.
Clearly NG(Oq(M)) = M. Hence q G a(M) and Ma ^ 1. This completes
the proof of the theorem. •

Remark. A famous theorem of Burnside asserts that all groups of order
paqb (for some primes p and q) are solvable. Burnside's original proof relies
heavily on character theory. In 1970, David Goldschmidt published a short
character-free proof for the case when p and q are both odd [13]. During
the 1975 class mentioned in the preface, David T. Price pointed out that
at this stage of our proof we can easily verify Burnside's result for p and q
odd by using some of Goldschmidt's methods. We do so now.

Assume TT(G) = (p,q) for some primes p and q. Since p-groups are
nilpotent, p ^ q. As \G\P ̂  \G\q, we can assume that \G\P > \G\q. Let P
and Pi be two distinct Sylow p-subgroups of G, chosen such that \P D Pi\
is as large as possible. Let R = P D P±. Since

\P:R\<\G:P1\ = \G\q<\P\,

we know R ^ 1. Take M G J?(NG(R)). By Theorem 10.2, Ma is a
nonidentity Hall subgroup of M and of G and is normal in M. Hence Ma

is a Sylow p-subgroup or a Sylow ^-subgroup of G.
Suppose Ma is a Sylow p-subgroup of G. Since R C Np(R) C Ma D P,

we know, by our choice of P and Pi, that Ma = P. But then, similarly,
Ma = Pi, a contradiction. Hence Ma must be a Sylow (/-subgroup of G.

Now G = MaP = MP. Let

N= f]Mx.
xec

Then N < G and N CM. Therefore N = 1. However,

a contradiction. This completes the proof.
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The interested reader can also find a complete character-free proof of
Burnside's Theorem, based on ideas of Bender, Goldschmidt, and Mat-
suyama, in [21, pp. 121-130] and in [18, pp. 11-19].

Lemma 10.3. Suppose M G ^#, X is an a(M)'-subgroup of M, and
i(CMa(

x)) > 2- T h e n CM(X) G W.

Remark. The Uniqueness Theorem (Theorem 9.6) immediately shows that
CM(X) G & if T(CMa(X)) > 3. The point of this lemma is to do a little
better.

Proof. Take a prime p for which vp(CMa{X)) > 2 and choose a group
B G £p(CMa(X)) of maximal order. Now X normalizes Ma and has order
relatively prime to \Ma\. By Proposition 1.5, X normalizes some Sylow
p-subgroup P of Ma that contains B. Clearly we can assume that B £ °l/.

By the Uniqueness Theorem, v(Cp(B)) < 2. Hence

|J5| = p2 and fti(CP(£)) = BC CP{X).

By Corollary 1.12, CP(X) = P. Therefore r(CM(X)) > r(P) > 3 because
p e a(M). By the Uniqueness Theorem, CM(X) € W. •

Lemma 10.4. Suppose M G Jl% p G TT(M), and P is a Sylow p-subgroup
of Af.

(a) If p divides |M/M'|, then p £ a(M).
(b) Assume p £ cr(M) and Ma ^ 1. Then there exists x G fti(Z(P))#

such that {M} ^ JZ(CG{X)) and CMa(
x) 1S a Z-group.

(c) Assume p £ a(M) and rp(M) = 2. Then p is not ideal and
ep

2(M) c v(G).
Proof, (a) This follows immediately from Theorem 10.2(c).

(b) Assume that we have a counterexample. Choose u G NQ(P) — M
and y G fli(Z(P))*. Then either CM<x(y) is not a Z-group or {M} =
J£{CG{V)Y

 BY Lemma 10.3, {M} = J({CG{y)) in either case. Similarly,
{M} = ^(CG(2/-"1)) because t/^"1 G Z#. Since ( C G ^ " 1 ) ) " = CG(y),
we have Mu = M. Thus w G NQ(M) = M, contrary to our choice of u.

(c) Suppose A G £P
2(M) and A ^ £P*(G). Then, by the Uniqueness

Theorem, A G ^ . Let P be a Sylow p-subgroup of G that contains A. Then
NG(P) C M because A C NG(P). However, we assumed that p £ a(M).
This contradiction shows that £P

2(M) C £p*(G).
Since rp(M) = 2, £P

2(M) is not empty. Hence £p
2(M)n£p*(G) is also not

empty. By the definition of an ideal prime, p is not ideal. This completes
the proof of the lemma. •

Lemma 10.5. Suppose that M G Jt, p G cr(M)', X G £P
1(G), and

ATG(X) C M. Then rp(M) = 2, p is not ideal, and there exists A G £P
2(G)

containing X.
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Proof. Since a(M) C <r(M), it follows that p £ a(M), i.e., rp(M) < 2.
Let P be a Sylow p-subgroup of M that contains X.

Suppose TP(M) = 1. Then, by Lemma 4.5, P is cyclic. Therefore

X = fii(P) and A^G(^) £ NG(A") C M,

contrary to the assumption that p £ a(M). Thus r(P) = rp(M) = 2.
Similarly X / fii(Z(P)), and hence XSli(Z(P)) G £2(P). By Lemma 10.4,
p is not ideal. •

So far, we have obtained only mild restrictions on the structure of the
proper subgroups of G. It is conceivable that they may be extremely com-
plicated, subject only to being solvable. The following important result
shows that this is not the case.

Recall that a group H has p-length one for a given prime p if H/OP^P(H)
is a p1-group.

Theorem 10.6. Suppose p is a prime and H is a proper subgroup of G.
Then H has p-length one.

Proof. Take M G Ji{H). It will suffice to prove that M has p-length
one. If rp(M) < 2, this is a consequence of Theorem 4.18, so assume that
ip(M) > 3.

Let K b e a complement to Ma in M. By Theorem 10.2, Ma C M'. By
Lemma 6.3(a), Ma = [Ma,K]. Take q G ir(K/Kf) and let Q be a Sylow
g-subgroup of K. By Lemma 10.4, there exists x G Q such that x has
order q and CMQ(^) is a Z-group. Therefore, by Theorem 3.6, [MQ, K] has
p-length one. Since Ma = [Ma, K], the result follows. •

The theorem above will be convenient for many applications, although
its use could be avoided in some of them.

Corollary 10.7. Suppose that p is a prime and P is a Sylow p-subgroup
of G.

(a) Take V to be any complement of P in NG{P). Then we have

(b) Suppose r(P) < 2. Then either P is abelian or P is the central
product of a nonabelian subgroup Pi of order p3 and exponent p
and a cyclic subgroup P2 for which fii(P2) = Z(P\).

(c) Suppose Q C P, x G G, and Qx C P. Then Q* = Qy for some
2/ e NG(P).

(d) For every subgroup Q of P, the group Np(Q) is a Sylow p-subgroup
oiNG(Q).

(e) Suppose i? is a p-subgroup of G and Q C P n R and Q < NG(P).
Then Q <
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Proof. Take M G ̂ (NG(P)). Then p G <r(M). By the previous result,
P Q Op>iP(M). We will apply Lemma 6.6.

(a) By Theorem 10.2, P C Ma C M'. Therefore, by Lemma 6.6, we
know that P C (iVM(P))' = (NG(P))'. By Lemma 6.3, [P, V] = P.

(b) This follows from (a) and Theorem 4.16.
(c) By Theorem 10.1, there exists u e M such that Qu = Qx. By

Lemma 6.6(c), there exists y G NM(P) such that Qy = QU.
(d) Let S be a Sylow p-subgroup of NG(Q). Take x G G such that

Sx C P. Then Q* C P. Take y as in (c). Then Qxy~X = Q, Sxy~X C P,
and 5x y is a Sylow p-subgroup of NG(Q)-

(e) Take x e G such that Rx C P. Take any j / G NG(R). Then P
contains Qx and (5^x. By (c) and the assumption that Q < NQ(P), we
have Qx = Q = Qyx. Hence Q = Qy. •

Recall that in the beginning of this section we denned /3(M) to be the
set of all ideal primes in a(M) and Mp to be Op(M)(M). We also noted
that a prime p is ideal if and only if the Sylow p-subgroups of G are not
narrow.

Lemma 10.8. Let M G Jt. Then
(a) Mp is a Hall /^(M)-subgroup of M and of G,
(b) M' and MCT have nilpotent Hall f3(M)'-subgroups, and
(c) for each prime p G TT(M) — /?(M), both M7 and Ma have normal

p-complements and p is the largest prime divisor of \M/OP'(M)\.

Proof. Let M((3) be a Hall ^(M)-subgroup of M.
Suppose p G TT(M) — P(M). Let P be a Sylow p-subgroup of M. Then

P is narrow. By Theorem 10.6, M has p-length one. Consequently, by
Theorem 5.6, M' has a normal p-complement, which must contain M(/3),
and p is the largest prime divisor of \M/OP'(M)\.

The intersection of the normal p-complements above, as p varies over
TT(M) — /?(M), is a normal /?(M)-subgroup of M'. It contains M(/3) and
hence must be equal to M(/3). Therefore

M(p) = ©^(^(M') < M and M(/3) = OP{M)(M) = M0.

This proves (a) and (c). Since M1/Mp has a normal p-complement for every
prime divisor p of \M*/Mp\, Mr/Mp is nilpotent. As Mp C Ma C M', we
obtain (b). D

Corollary 10.9. Let M e J£.
(a) Suppose p and q are distinct primes in (3{M)' and X is a g-subgroup

of M. Assume l C M ' o r p < g . Then
(1) X centralizes a Sylow p-subgroup of Ma,
(2) if p G a(M), then CM(X) G ^ ,
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(3) if X is a Sylow ^-subgroup of M', then NM(X)' contains a
Sylow p-subgroup of M'.

(b) If H e Jt - {M} and NG(S) C H n M for some Sylow subgroup
S of G, then M = (if n M)M^ and a(M) = /?(M).

Proof, (a) Let VF be a Hall {p, <?}-subgroup of XM' that contains X.
Then VF is contained in a Hall /?(M)'-subgroup W* of XM'. Consequently,
by Lemma 10.8(b), W* D M' is nilpotent, so W fi M' is nilpotent.

We claim that W is nilpotent. This is clear if X C M', for then VF =
VF n M'. Now assume X g M1. Then, by hypothesis, p < q. Therefore,
by Lemma 10.8(c), Opt(M) contains all the g-elements of M. In particular,
WnOp'(M) is a normal Sylow (/-subgroup of W. Since WnMf is nilpotent
and W/(WnMf) ^ WM'/M' C XM'/M', which is a g-group, ^ ( l ^ n M ' )
is a normal Sylow p-subgroup of W. Consequently W is nilpotent.

Since Ma <3 M;, the intersection W 0 Ma is a Hall {p, gj-subgroup of
Ma. Thus we obtain (1). Clearly (2) follows from (1) by the Uniqueness
Theorem.

To obtain (3), assume that X is a Sylow g-subgroup of Mf. Then X =
Oq(W*). Since Mf = MpW*,

MpX = Om)u{q}(M
f) < M.

Let U = NM(X). By the Frattini argument, M = (MpX)U = MpU. Now
OP(W) is a Sylow subgroup of M' contained in U and (|OP(W)|, \Mp\) = 1.
Therefore, by Lemma 6.5, OP(W) C £/'. This completes the proof of (3)
and of (a).

(b) In this situation, 5 ^ 1 . Let q be the unique prime divisor of \S\.
Then q e <r(M) - (3(M) and S C Ma C Mf. Hence, by Lemma 10.8(b),
MpS < M. The proof of (a) shows that M = MpNM(S). Therefore
M = Mp(H n M). Clearly NM(S) i <&. By (a)(2), a(M) = /?(M). D

Proposition 10.10. Suppose that p and <? are distinct prime numbers,
A e £P

2(G) n £P*(G), and Q e HG*(A;q). Assume that q G ir(CG(A)).
Then for some Sylow p-subgroup P of G that contains A,

(a) NG(P) = Op,(CG(P))(NG(P)nNG(Q)),
(b) P C 7VG(Q/, and
(c) if Q is cyclic or £2(Q) fi £*(Q) is not empty, then P centralizes Q.

Proof. By Proposition 7.5, A satisfies Hypothesis 7.1. Therefore Theo-
rem 7.3 and Theorem 7.4 yield a Sylow p-subgroup P of G that contains A
and satisfies (a).

By Corollary 10.7, P C NG(P)f. Thus (b) follows from (a) by Lemma 6.5.
Under the hypothesis of (c), NG(Q)'/CNG{Q)'{Q) is a #-group by Theo-

rem 5.5(a). Thus P lies in CG(Q). •
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Proposition 10.11. Suppose M G M and K is a <J(M/-subgroup of M.
Then

(a) K i «T,
(b) r ( ^ ( M , ) ) < 1,
(c) Cx(Mcr) n M; is a cyclic normal subgroup of M, and
(d) if p G <r(M)', P G SP\NM{K)\ CMAp) = 1, a n d # i s a n abelian

p'-group, then [K, P] centralizes Ma and is a cyclic normal sub-
group of M.

Proof, (a) Let E be a Hall a(M)'-subgroup of M that contains K. Let
p be the largest prime divisor of \E\. Since a(M) C cr(M), r(i£) < 2. By
Theorem 4.20, P = OP(E) is a Sylow p-subgroup of E and hence of M.
Since p ^ <r(M), we know NG(P) g M. Therefore K £ W because

(b) Suppose rp(CK(Ma)) > 2 for some prime p. Take A G £p
2(CK(Ma))

and g' G a(M). Let Q be a Sylow ^-subgroup of Ma. Then Q G HG*(A; q),
q G TT(CG(A)), and NG(Q) C M.

By (a), A ^ ^ . Thus, by the Uniqueness Theorem, v(CG(A)) < 2 and
A G £P*(G)- A s M a C Ma C CG(A), we have Ma = 1. By Theorem 10.2,
M'/Ma is nilpotent and hence M' is nilpotent.

By Proposition 10.10, some Sylow p-subgroup P of G lies in NG{Q)'

and therefore in M'. Consequently P = OP(M') <\ M, M = NG(P), and
p G <J(M). However p G cr(K) C a(M)f. This contradiction completes the
proof of (b).

(c) We can apply (b) to Z = Oa<iMy(F(M)) since [Z, Ma] C ZnMa = 1,
and it follows that Z is cyclic. Therefore M' C CM(Z) and

C^(Ma) n M ' C CM(MaZ) C CM(F(M)) C F(M).

Thus CK{MG) n M' is contained in Z and is normal in M because Z is a
cyclic normal subgroup of M.

(d) With Ko = [K,P], we have KQ
P = Ko and K = Ko x CK(P)

because K is an abelian p'-group. Thus P acts on KoMa and satisfies

Therefore, by Theorem 3.7, KQMG is nilpotent. Hence Ko centralizes Ma,
and (c) shows that Ko is a cyclic normal subgroup of M. •

Lemma 10.12. Suppose M, H G M and H is not conjugate to M in G.
Then

(a) Ma D Ha = 1 and a(M) is disjoint from cr(H), and
(b) if Ma is nilpotent, then Ma fi Ha = 1 and a(M) is disjoint from
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Proof. Suppose p G cr(M) n cr(H). Then some Sylow p-subgroup S of G
lies in M and in some conjugate H9 of H.

By the Uniqueness Theorem, r(5) < 2 because iiP / M. Furthermore,
5 is not normal in M because NQ(S) C H9. This shows that p £ a(M)
and that Ma is not nilpotent.

Now we are done because 7r(Ma fl Ha) C a(M) fl cr(H) C <j(M) D cr(H)
and ?r(Ma n iJa) C a(M) n <r(iJ). D

Lemma 10.13. Suppose p G TT(G), A G £P
2(G) n £P*(G), and P is a

nonabelian p-subgroup of G that contains A. Let Zo = ili(Z(P)) and
Ao eS1(A) such that Ao / Zo. Then

(a) Z Q G ^ 1 ^ ) ,

(b) Cp(A) = Ao x Z with Z a cyclic subgroup that contains Zo, and
(c) Np(A) acts transitively by conjugation on S1(A) — {Zo}.

Proof. Let 5 be a Sylow p-subgroup of G that contains P and let Z\ =
Sli(Z(S)). Then

(10.4) A G S2(S) H £*(£), A = fi^Cs^)), and r(C5(A)) = 2.

Therefore Zo, Z± C A. Clearly Zi C Zo. Thus Zx C Zo C A. In particular,
^0 = Z\ unless A = ZQ C Z(P). AS P is not abelian, it follows that

(10.5) if C5(A) is abelian, then Zx = Zo G £X(A

We claim that

(10.6) Zo = Zi G E1{A) and C5(A) = Ao x Y

for some cyclic subgroup Y of 5 such that ili(Y) — Z\.
Assume first that r(5) = 2. Then, by Corollary 10.7(b), Z(S) is cyclic

and 5 = S\Z(S) for some subgroup S\ of S having order p3 and exponent
p such that Z(S\) = £li(Z(S)) = Z\. It is easy to see that

A c Oi(5) = Si.

By the structure of S±, we have Cs(A) = AZ(5f), which is abelian. Hence,
by (10.5), A = Ao x Zo, and we obtain (10.6) for Y = Z(5).

Now assume that r(5) > 3. By (10.4) and Theorem 5.3, 5 is narrow
and |Zi| = p. Let T = Cs{£li(Z2(S))) and take any Ax G S1(A) - {ZJ.
Then A = Ax x Zi and C5(Ai) = C^(A), which has rank two by (10.4).
Therefore, by Theorem 5.3, CT(A) is cyclic and Cs(A) = A± x CT(^4),
which is abelian. By (10.5), Zo = Z\. Clearly Zx = fti(CT(A)) because
Z\ C CT(A). By hypothesis, Ao / Zo. Hence we can assume that A\ was
chosen to be Ao. Now (10.6) follows with Y = CT(A).

Since (10.6) holds in both cases, we obtain (a) and (b). Moreover,
CP(A) C P because CP(A) is abelian. By (10.4), A = fti(CP(A)). Thus

CP(A) C NP(CP(A)) C iVp(fii(Cp(A))) =
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Take x G Np(A) — Cp(A). Then x induces an automorphism of order p on
A by conjugation, and this automorphism centralizes Zo. By the structure
of A, this forces (x) to permute transitively all of the p-subgroups of order
p in A other than Z$. This proves (c) and completes the proof of the
lemma. •

Proposition 10.14. Suppose that p G (3(G) and P is a Sylow p-subgroup
of G.

(a) The sets £2{P) n £*(P) and £P
2(G) n £*(G) are empty.

(b) Every p-subgroup R of G such that v(R) > 2 lies in fy.
(c) If X is a subgroup of P, then iVP(X) G ^ .
(d) For every nonidentity /^(M)-subgroup Y of M, -/VGOO C M.

Proof, (a) By the definition of /3(G), we know that £2(P)n£*(P) is empty.
We noted earlier that this easily forces £P

2(G) n £*(G) to be empty.
(b) We can assume that R C P. Take A G f 2(iJ). By (a), A C 5

for some elementary abelian subgroup B of P. Then B C Gc?(i4) and
m(S) > 3. By the Uniqueness Theorem, A G <2f. Hence P G ^ .

(c) Let Q = NP(X). If r(Q) > 2, then Q G ^ , by (b). Therefore assume
that r(<2) = 1. Then Q is cyclic, XcharQ, and NP(Q) C NP(X) = Q.
Since P is nilpotent, this forces Q = P, contrary to the assumption that
r(P) > 3.

(d) Let q G TT(F(Y)) and X = Og(y). We can assume that q = p and
I C P C M . Then A^P(X) C M and, by (c),

Y C A^G(^) C M.

This completes the proof of the proposition. •

11. Exceptional Maximal Subgroups

Throughout this section we assume the following notation and condi-
tions.

Hypothesis 11.1. Suppose M G Jt, p G <J(M);, Ao G £P
1(M), and

NG(A0) C M.

By Lemma 10.5, rp(M) = 2 and Ao C A for some A G £P
2(M). Then

A C P for some Sylow p-subgroup P of M. As p £ cr(M),

NG(P) % M,

and since CG(A) C CG(A0) C M,

We will use this choice of A and P and these facts throughout Section 11.
Since we would expect that p G a(M) whenever NG(A0) C M with

^o £ ^p1!^) and, since maximal subgroups H such that v(H/Ha) = 1 seem



11. Exceptional Maximal Subgroups 81

more natural and easier to work with, we consider M to be an exceptional
maximal subgroup.

We will show that Ma is nilpotent, M has abelian Sylow p-subgroups,
and AMa < M (Theorems 11.3, 11.5, and 11.7). In Section 12, we will
see that all maximal subgroups H for which r(H/Ha) = 2 are exceptional
(Proposition 12.4). In the proof of this proposition and very often thereafter
we will consider maximal subgroups M* G <JZ{NG{X)) for X G £P

1(M)
and, in the exceptional case when X g M*a, we will have the situation
described above (with M* and X in place of M and Ao). This is the reason
for studying exceptional maximal subgroups.

The main results of this section will be generalized in Theorem 12.5 and
there will be no reference to Section 11 thereafter.

Finally, we note that the following proofs depend heavily on the ideas
underlying the fundamental Thompson Transitivity Theorem (Theorem 7.6).

Lemma 11.1. Suppose that g G G — M, A C M9, q G cr(M), and that Qi
and Q2 are A-invariant Sylow g-subgroups of Ma and Ma

9, respectively.
Then

(a) Q1P1Q2 = 1, and
(b) if X G S\A), then CQl(X) = 1 or CQ2(X) = 1.

Proof. By Proposition 7.5, the subgroup A satisfies Hypothesis 7.1 because
A G £P*{G). Thus, if (a) or (b) is false, Lemma 7.1 shows that Q2 = Qik for
some element k G CQ{A). Then Q2 C M because CQ(A) C M. Therefore,
by Theorem 10.1(d), g G M, a contradiction. •

Corollary 11.2. Suppose g eG- M and ACM9. Then

(a) Mar\M9 = 1, and
(b) ManCG(AQ

9) = l.

Proof. Suppose (a) is false. Take q G 7r(ManM9). Then q G a(M). Since
Ma n M9 = Ma n Ma

9 and A normalizes Ma and Ma
9, Proposition 1.5

shows that A normalizes Sylow g-subgroups Qo, Qi, and Q2 of Ma D M9,
Ma, and Ma

9, respectively, such that Qo C Q1n Q2.
By Lemma 11.1, Q\ nQ2 = 1, a contradiction. This proves (a). For (b),

note that CG(A0
9) CM9. •

Theorem 11.3. The group MG is nilpotent.

Proof. Take g G NG{P) - NM(P). Then A0
9 C P C M, and AQ

9 acts
in a fixed-point free manner on Ma by Corollary 11.2(b). Therefore, by
Theorem 3.7, Ma is nilpotent. •

Corollary 11.4. Suppose H G ^f(A) and ManHa^l. Then M = H.

Proof. Since Ma is nilpotent, Lemma 10.12(b) shows that H is conjugate
to M, say if = M9 for g € G. Then, by Corollary 11.2(a), # G M because
MffnM9/l, •
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Theorem 11.5. The Sylow p-subgroups of M are abelian.

Proof. Suppose P is not abelian. Take g G NG(P)-NM(P) and q G <r(M),
and let Qi be a P-invariant Sylow (/-subgroup of Ma. By Proposition 1.16,

Q1 = (CQl(X)\XeS1(A))

and similarly for Q2 — Qig -
Thus there exist subgroups Xi, X2 G ^1(A) such that CQ1(XI) ^ 1 and

By Lemma ll.l(b), each subgroup X G £1{A) satisfies CQ1(X) = 1 or
CQ2(X) = 1. Therefore C Q ^ ^ ) = 1, and hence X2 is not conjugate to
X1 in P.

By Lemma 10.13(c), all of the subgroups in SX{A) — {X}, where X =
fii(Z(P)), are conjugate in P. Consequently X = Xi or X = X2. However,
because X = X^ and hence CQ2(X) = Cgi(X)^, we have CQl(X) =
CQ 2 (X) = 1, a contradiction. •

Corollary 11.6. We have
(a) A = n1(P\
(b) CMAA) = 1, and

(c) there exist subgroups Ai, A2 G ^P
1(^4) such that Ai ^ A2 and

Proof. Since A G £2(P) and P is abelian of rank two,

A = S11(P)<NG(P).

As NG(P) g M and G has odd order,

Thus we can find elements #1, #2 € NQ(P) — NM(P) such that
Then ^ i ^ 1 ^ A^GC^O) because A^G(^O) C M. Therefore A0

51 7̂  A0
52.

Since Ao C A < NG(P), it follows that A± = A0
91 and A2 = A0

92 lie
in A. By Corollary 11.2(b), C M ^ ^ I ) = CM<7{A2) = 1. In particular,

A) = l. D

Now we can prove the main result on exceptional maximal subgroups. It
will enable us to generalize many results that are valid for primes in a(M).

Theorem 11.7. We have MaA <\ M.

Proof. Assume this is false. Let E be a complement to Ma in M that
contains A. Then r(E) = 2. Let

T = {qe7r(E)\q>p},

and let K = OT(E). By Theorem 4.20, K is a Hall r-subgroup of E and
KP is a normal Hall r U {p}-subgroup of E.



12. The Subgroup E 83

By Corollary 11.6(a), A = fii(P). If A centralized K, we would have
KA = K x A, A = ni(Op(KP)) < E, and MaA < MaE = M, which we
have assumed false.

Thus A does not centralize K. Take a prime divisor 5 of \K : C#(A)|,
and let Q be an A-invariant Sylow g-subgroup of K. Then A does not
centralize Q.

Suppose CQ(A) 7̂  1. Then Q is not cyclic. Consequently v(Q) = 2. Let
B G S2(Q). By Lemma 10.4(c), A and B lie in £P*(G) a n d V( G )» respec-
tively. Moreover, g G 7T(CQ(A)) £ 7r(CG(A)). Let Q C Q* G lfc*(^;^).
By Proposition 10.10(c), [A,Q*] = 1, contrary to the fact that [A,Q] ̂  1.
This contradiction shows that

CQ(A) = 1.

Let Qo = Z(Q). By Proposition 1.6(d),

With A\ and A2 as in Corollary 11.6(c), A = A\ x A2 and hence

Qo = [A,Q0] = [AuQo}[A2,Qo}.

By Proposition 10.11(d), with K — Qo and P being A\ and then A2,
both subgroups [A±, Qo] and [A2, Qo] are normal in M. Hence Qo < ^ and
NG(Q) Q NG(QO) = M. But Q is a Sylow g-subgroup of M and <? ^ a(M).
This contradiction completes the proof of the theorem. •

12. The Subgroup E

In this section we return to the study of an arbitrary maximal subgroup
M of G. Let E denote a complement of Ma in M. We will analyze the
structure of E and the way E is embedded in M and in G. Of course,
E = M/Ma. We will see that r(E) < 2, E1 is nilpotent, and every Sylow
subgroup of E is abelian (Lemma 12.1 and Corollary 12.10(a)). Moreover,
the hypothesis of the preceding section is satisfied if r(E) = 2 (Proposi-
tion 12.4).

We introduce the following notation:

ri(M) = {p G a(M)f | p i TT(M') and rp(M) = 1}

rs(M) = {pe a(M)' | p G TT(M') and rp(M) = 1}

Ei2 = some Hall TI(M) U r2(M)-subgroup of E
Ei = some Hall Tj(M)-subgroup of Ei2, (i = 1, 2)
E3 = some Hall r3(M)-subgroup of E.
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Since a(M) contains a(M) = {p G ir(M) \ TP(M) > 3}, ir(M) is the
disjoint union of <r(M), ri(M), T2(M), and T3(M). Whereas a(M) is not
empty, by Theorem 10.2(e), each (but not all) of the sets Ti(M) could be
empty. Since E is a complement to MG in M, we have E D Mf = Ef and
hence

TT{E) = ri(M) U r2(M) U r3(Af)

= {pe*(E)-*(E')\ip{E) = l}

In the following lemma we collect some easy consequences of our defini-
tions.

Lemma 12.1. (a) Ef is nilpotent.
(b) E3 C E' and £ 3 < £.
(c) If E2 = 1, then Ex ^ 1.
(d) Ei and E3 are cyclic.
(e) E = EiE2E3, E12 = # i£ 2 and £2#3 < E and £2 < £12.
(f) CE3(E) = 1.
(g) If p G r2(Af) and A e SP

2(M), then A e EP*{G) and p i (3(G).

Proof. By Theorem 10.2, M'jMa is nilpotent. Thus, since Ma n E = 1,
we know I?' is nilpotent, which is (a).

Take p £ T\(M) U T3{M) and let P be a Sylow p-subgroup of E.
Since r(P) = rp(£

l) = 1 and p is odd, P is cyclic by Lemma 4.5. Thus
Ei is cyclic because E\ C £"i Pi M' = 1 by definition of T\(M) and £"i.

By (a), OP'(E)P < E. The Frattini argument now yields

(12.1) £ = OP*(E)NE(P) = OP>(E)PK,

where K is a complement to P in NE{P)>
If p G r3(Af), then P n £ ; ^ 1 and, by (12.1), this implies that [P, K] ^ 1.

By Proposition 1.6(d), P = [P,K] x CP(K). Therefore [P,K] = P and
Cp(K) = 1 because P is cyclic.

This proves that £3 C E'. Since E' is nilpotent, E$ is cyclic and is
normal in E. Now we have (b) and (d). Moreover, we have shown that
CE3(E) = 1, because Cp{K) = 1 in the argument above. This yields (f).

For (e), recall that E3 < E and Ei n £" = 1, and then (c) follows from
the fact that E3 C Ef C E. Finally, (g) is just Lemma 10.4(c). •

Lemma 12.2. Suppose p is a prime, X is a nonidentity p-subgroup of M,
and M* G JK{NG(X)). Then

(a) p G <r(M*) U T2(M*), and
(b) if p G a(M) and M ^ M* or if p G rx(M) Ur3(M), then M* is not

conjugate to M in G.
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Proof, (a) Suppose that p $ a(M*). Then rp(M*) = 2 by Lemma 10.5.
ThuspG T2{M).

(b) Suppose that M* is conjugate to M. Then it follows that T{(M) =
Ti(M*) for i = 1, 2,3. Thus, by (a), p G <r(M). Hence, by Theorem 10.1(b),
C G ( X ) acts transitively on the set { M9 \ g G G and X CM9}. This set
contains M and M*, but consists of M* alone because CQ(X) C NQ(X) C
M*. In particular, M = M*. D

Lemma 12.3. Suppose M* G Jt - {M}, p is a prime, A G £P
2(M n M*),

and iVa(^o) £ M* for some Ao G
 X

(a) If p $ <J(M), then A centralizes Ma n M*.
(b) If p G o-(M) - a(M), then A centralizes Ma n M*.

Proof. If p G cr(M*), then A C M*a. If p (£ tr(M*), then M*, A, and
Ao satisfy the hypotheses on M, A, and Ao stated at the beginning of
Section 11, and it follows from Theorem 11.7 that M*aA < M*.

Therefore, in either case, every A-invariant p'-subgroup K of M* satisfies

[K, A]CKn M*aA a n M*a.

If p G a(M) — a(M), we apply this to K = Ma D M*. In this case, M*
is not conjugate to M by Lemma 12.2(b). Then [if, A] C Ma n M*a = 1 by
Lemma 10.12(a). This proves (b).

For the proof of (a), suppose that p £ a(M) and [if, A] ^ 1, where
K = Ma nM*. Then M . n M ^ l . Consequently, by Corollary 11.4, M*
does not satisfy the hypotheses of Section 11.

It follows that p G a(M*). In particular, M* is not conjugate to M in G
because p £ a(M). Let S be a Sylow p-subgroup of M*a that contains A.
Then M*a5 < M* because M*a/M*a is nilpotent by Theorem 10.2. Thus

l c [if, A] c K n M*aS c if n M*a c Ma n M*a,

contrary to Lemma 10.12(a).
This contradiction completes the proof of (a) and of the lemma. •

Proposition 12.4. Suppose p is a prime and A G £P
2(M). Then

(a) CG(A) C M, and
(b) if ^(iVG(A0)) ^ {M} for every Ao G ^(A), then p G cr(Af),

Ma = 1, and Ma is nilpotent.

Proof. We can assume that the hypothesis of (b) holds since otherwise
(a) holds. Take any subgroup X G £X(A). Then there exists a subgroup
M* G JK{NG{X)) - {M}. By the Uniqueness Theorem,

Assume first that p £ a(M). Then, by Lemma 12.3(a),
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Thus, by Proposition 1.16,

Ma = (CMaiX) I Y G S\A)) C CM(A),

contrary to Proposition 10.11(b). This proves that p G a(M). Let P be
a Sylow p-subgroup of Ma that contains A. Then Z — £li(Z(P)) C A
because AZ G SP(CM{A)) and v(CM(A)) < 2.

Note that Z / 1 because P / l . Thus we can choose our subgroup X
in Z and get

r(P) < r(CM(X)) < 2.

Thus p G a(M) - a(M). Now, using Lemma 12.3(b), we see that

Ma = (CMAY) I Y e S\A) ) C CM{A).

It follows that MQ = 1 because v(CM(A)) < 2, and then Ma = Ma/Ma

is nilpotent by Theorem 10.2. Therefore P < M and

C CG(Z) C iVG(Z) - M,

which completes the proof of the proposition. •

Now we are in a position to obtain substantial information about the
unpleasant case when T2(M) is not empty.

Theorem 12.5. Suppose that T2(M) is not empty. Let p G T2(M) and
A e SP

2(M). Then

(a) Ma is nilpotent,
(b) M has abelian Sylow p-subgroups and every Sylow p-subgroup P

of M such that A C P satisfies fti(P) = A and
(c) MaA < M,
(d) CAfff(A) = l,
(e) Ma H M* = 1 for every M* G ^T(A) - {M}, and
(f) there exists Ax G ^1(A) such that CMA-^I) = 1-

Proof. By Proposition 12.4, NG(A0) C M for some subgroup Ao G
because p ^ a(M). Thus we have Hypothesis 11.1, and everything except
(e) follows from Theorems 11.3, 11.5, 11.7, and Corollary 11.6.

Suppose that M* G JK{A) - {M}.
If NG(A0) C M* for some Ao G ^x(^)^ t t i e n (d) a n d Lemma 12.3(a)

yield

Otherwise, Proposition 12.4(b) shows that A C OP(M*), and we reach
the same conclusion because

[Ma n AT, A]cMan op(M*) = i. n
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Recall our choice of E, E\, E2, and E3 at the beginning of this section.

Corollary 12.6. Suppose that T2{M) is not empty. Let p G T2(M) and
A G £P

2(E). Then

(a) A < E and £P
1(E) = £X{A),

(b) CG(A) C NM(A) = E and NG(A) £ M,
(c) JK{CG{X)) = {M} for each X G £\A) = £ / ( £ ) such that

(d) CMA%) = 1 for each xeE3#,
(e) CM^OE) = 1 for each x G Cj^A)^, and
(f) if M* G Jt is not conjugate to M, then Ma fl M*a = 1 and a(M)

is disjoint from a(M*).

Proof. Recall that M = MaE and Ma n E = 1. Thus A < £ because
MaA < M by Theorem 12.5(c). Hence A is contained in every Sylow
p-subgroup P of E and, for each such P, Theorem 12.5(b) asserts that

(12.2) fix(P) = A and

This proves (a) and shows that Ng(P) C A^G(^) and

CM(A) C iVM(A) = 7VM(A) n M a £ = (iVM(A) n Ma)E =

By Theorem 12.5(d), CM(T(A) = 1. Therefore, by (12.2), we obtain (b).
By Theorem 12.5(e), Ma n M* = 1 for every M* G ^ ( A ) - {M}. This

yields (c) immediately. It also yields (d) and (e) because we can assume x
has prime order and apply Lemma 12.2(b) to deduce that NQ((X)) 2 M.
Since MG is nilpotent, by Theorem 12.5 (a), Lemma 10.12(b) yields (f). •

Theorem 12.7. Suppose that p G T2(M), A G £P
2(E), and assume that

G has nonabelian Sylow p-subgroups. Then

(a) T2(M) = M ,
(b) AQ = CA(MG) has order p and satisfies F(M) = Ma x Ao,
(c) every X G £P\E) - {Ao} satisfies CMAX) = 1 a n d CG{X) % M,
(d) Ao has a complement £Jo m E, and
(e) 7r(C£;0(x)) C ri(M) for every x G M a

# .

Proof. Choose Sylow p-subgroups P oi E and S oi G such that

A C P C 5.

Since we have P abelian and CQ(A) C. Ehy Theorem 12.5(b) and Corol-
lary 12.6(b),

CS(A) = PCS.

Suppose that q G r2(M) - {p}. Take B G £q
2(E). Then A centralizes B

because, by Corollary 12.6(a), both A and B are normal in E. Furthermore,
CG(B) C E by Corollary 12.6(b), and both A and 5 lie in £*(G) by
Lemma 12.1(g). Therefore, by Proposition 10.10(c), CQ{B) contains a
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Sylow p-subgroup of G, contrary to the fact that P C S and CG(B) Q E.
This proves (a).

By Proposition 1.16,

Ma = (CMa{X)\Xe£p\A)),

and therefore there exists a subgroup A$ G £1{A) such that CM0.(^.O) 7̂  1-
By Corollary 12.6(c), this implies that

^(CG(A0)) = {M}.

We know that S % M and AQ % Z(S) because P is a Sylow p-subgroup
of M.

Suppose that X G SP
1(E) - {Ao}. By Corollary 12.6(a), X C A If

X C Z(S), then CG(X) 2 M and hence CM<7PO = 1. If X £ Z(S), then,
by Lemma 10.13(c), X = A0

9 for some g £ S. Then # lies outside P and
hence outside M because P is abelian. Then JZ{CG(X)) = {M^} 7̂  {M},
and therefore CMAX) = x a n d C G ( ^ ) 2 M. Now

Ma = (CMAX) I X G £P\A)) = CM.(A0),

and the proof of (c) is complete.
By Lemma 10.13(b),

P = CS(A) = AoxZ

for some cyclic subgroup Z. By (c), Cz{Ma) = 1 and hence Cp(Ma) = Ao.
Thus Ao is a Sylow p-subgroup of CM(M<J). Moreover, Ao = CA{Ma) < M
because A < E and M = M^E. By (a) and Lemma 12.2(a),

TT(F(M)) C a(M) U r2(M) = a(M) U {p}.

This shows that F(M) = Ma x Ao because MG is nilpotent. Now we
have (b).

Next we prove (d); then (e) follows from (a), (c), and Corollary 12.6(d).
By (a), P is a Hall r2(M)-subgroup of E, say P = E^ Recall that, by

Lemma 12.1, E3 < E, E2E3 < E, E = EiE2E3, and E2 < E12 = E1E2.
Clearly Y = {xp \ x G P} is the subgroup of index pin Z and is invariant

under NE(P) and hence under E\. Thus E\ acts on the elementary abelian
p-group P/Y, and Maschke's Theorem (or Theorem 1.6(d)) yields an E\-
invariant complement PQ/Y to A0Y/Y in P/Y. Therefore P — Ao x Fo,
and Eo = E\PQE3 is a complement of Ao in E. This completes the proof
of (d) and of the theorem. •
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Our next result is, in a sense, a complement to the theorem just proved.

Lemma 12.8. Suppose that p £ T2(M), A £ £P
2(E), and 5 is a Sylow

p-subgroup of G that contains A. Assume that S is abelian. Then

(a) Ei is an abelian normal subgroup of E,
(b) E2 is a Hall T2(M)-subgroup of G,
(c) S C NG(S)' C F(E) C CG(S) C £,
(d) JVG(A) = JVG(S) = NG(E2) = NG(E2E3) = NG(F(E)),
(e) every X £ ^(JSi) for which CM<7(^) = 1 lies in Z(£), and
(f) for every subgroup X of iVG(5), we have Cs(X) < NG(S) and

Proof. By Theorem 12.7(a), each p £ T2(M) satisfies our assumption that
G has abelian Sylow p-subgroups. Since

S C CG(A) C B,

it follows that E2 is a Hall subgroup of G, which proves (b).
Since A < E, CG(A) C E, and 5 is abelian,

= F(E).

In particular, r(F(iVG(A))) < 2. Therefore, by Theorem 4.20(a),

NG(A)' C F(iVG(A)).

Moreover, NG(S) C A Ĝ(A) because A = fti(S') and, by Corollary 10.7(a),

5 C iVG(5);.

This yields (c) and shows that S < E. By our remark at the beginning of
the proof, E2 is abelian, and it follows that E2 < E. Now (a) holds and
each subgroup in the series

ACSCE2C E2E3 C F(E)

is characteristic in its successor. Therefore, because NG(A) C NG(F(E)),
(d) holds.

For (f), note that CG(S)X < NG(S) because iVG(S)' C CG(5). Clearly
CS(X) = CS(CG(S)X) < NG(S) and similarly [5,X] < iVG(5).

Finally, let K = E2E3 = E2 x E3 for the proof of (e). By (c) and (d),
NG(S)f C CG(X) and K < iVG(5). Hence, as in (f), [K,X] < NG(S).
Therefore, because p £ <r(M), we know that NG([K,X]) 2 M. However
[K,X] < M by Proposition 10.11(d). Therefore [K,X] = 1, and hence
E = KEi C Cj5(X) because £1 is cyclic. •
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Corollary 12.9. Supposep G T2{M), A G £P
2{E), q G TL(M), Q G Sq

1(E),
AQ) = 1» an<* [̂ > Q] ^ 1- Let Ao = [A, Q] and Ai = CA(Q). Then
(a) Ao G £\A) and Ao = C^(Ma) < M,
(b) Ao is not conjugate to Ai in G, and
(c) Ai G £\A) and CG(Ai) 2 M.

Proof. Since A < E, we have A = Ao x A\ and Proposition 10.11(d)
yields (a). Thus Ax G S1(A) and A^G(^O) = M. Since iq(M) = 1 and
Q 2 ^M(AO) = CG(AO), we know that CQ(AO) is a g'-group. In particular,
(b) holds.

By Lemma 12.8(e) for X = Q, we are in the situation of Theorem 12.7,
and Theorem 12.7(c) yields (c). •

Corollary 12.10. (a) Every nilpotent a(M)'-subgroup of M is abelian.
(b) The groups E2 and E' are abelian.
(c) Suppose p G r2{M) and A G £P

2(E). Then £ 2 £ 3 C CJS(A) < E
and 7r(E/C£;(A)) C ri(M).

(d) Suppose p G cr(M) and P is a noncyclic p-subgroup of M. Then
ATG(P) C M.

(e) Suppose rr G M # , TT((X» C T 2 (M), and CMAX) ^ !• T h e n

JK{CG{x)) = {M}.

Proof. By Lemma 12.1(d) and Theorem 12.5(b), M has abelian Sylow p-
subgroups for every prime p in T\(M) U T2(M) U T3(M). Thus (a) holds.
Moreover, E' is abelian because E' is nilpotent by Lemma 12.1 (a). Fur-
thermore, Theorems 12.5(b), 12.7(a), and Lemma 12.8(a) show that E2 is
abelian. Thus Theorem 12.5(e) yields (e) because we can assume that x
lies in E2. For (c), recall that A, E3 < E and E = EiE2E3. Finally,
in the situation of (d), there exists A G £P

2(P) because p is odd and, by
Theorem 10.1(c) and Proposition 12.4(a),

NG(P) = NM(P)CG{P) and CG(P) C CG(A) C M. D

Lemma 12.11. Suppose p G r2(M), A G ^p
2(^), and M* G

Then
(a) T 2 ( M ) C ( T ( M * ) - / ? ( M * ) ,
(b) ir(E/CE(A)) C n(Af) U r2(M*), and
(c) if g G V(E/CE(A)) H 7T(CE(A)), then g G r2(M*), some Sylow p-

subgroup of G is normal in M*, and M* contains an abelian Sylow
g-subgroup of G.

Proof. Since NG(A) C M*, Corollary 12.6(b) shows that p £ T2(M*).
Thus p lies in <r(M*). Takep* G r2(M) and A* G £P*2(E). Up* = p, choose
A* = A. By Corollary 12.6(a), both A and A* are normal in E. Conse-
quently A* C M* and 1 C A C CM*AA*)- Therefore, by Theorem 12.5(d),
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p* £ r2(M*). Thus p* lies in cr(M*) but not in 0(M*) because p* £ (3(G)
by Lemma 12.1(g). This proves (a).

Suppose that q G TT(E/CE(A)) and Q is a Sylow ^-subgroup of i£. Then
Q C M* and 1 C [A, Q] C A because A < £ . By Theorem 10.2(c) and
Lemma 12.1(b), M*' contains Hall a(M*)- and T3(M*)-subgroups of M*.
Thus, if (b) is false for q, then Q lies in Af *'. It follows that [A, Q] C M*̂
because A C M*a C M*;, and M*'/M*p is nilpotent by Lemma 10.8. But
this contradicts the fact that 1 C [A, Q] C A and p £ /?(M*).

It remains to prove (c), so assume that Qo £ ^HQ) a n d centralizes
A. By Corollary 12.10(c), g G ri(M). By Corollary 12.6(b), CG(A) C £ .
Thus Q and a Sylow g-subgroup of CG(A) are cyclic, Qo = ^i(Q), and the
Frattini argument yields

NG(A) = CG(A)NNG{A)(Q0)

because Qo Q CG(A) < E. Thus rq(CG(A)) = 1.
Take M** G JK{NG{QQ)). Then ATG(A) C M** because CG(A) C M**

by Proposition 12.4(a). By (b) and Lemma 12.2(a), both applied to M**
in place of M*, q lies in cr(M**) U T2(M**) and in ri(M**) U T2(M**).

Therefore q G r2(M**) and, since p G cr(M**) Pi a(M**) by (a), it
follows from Corollary 12.6(f) that M** is conjugate to M* in G. Now
Theorem 10.1(b) shows that M* = M** because A C M* n M** and
CG(A) C M*.

Since </ G T2(M*), it follows from Theorem 12.5(a) that M*a is nilpotent.
Hence OP(M*) is a Sylow p-subgroup of G. Since Qo = fii(Q) C Q C M*,
it follows that Qo does not have a complement in M*. Consequently, by
Theorem 12.7(d), G has abelian Sylow g-subgroups and one of them lies in

() (Qo). D

Theorem 12.12. Suppose CMa(e) = 1 for each (TI (M) U T3(M))-element
e G E#. Then

(a) E contains an abelian normal subgroup Ao such that CE(X) C AO

for every x G M a ^ , and
(b) .E contains a subgroup .Eo of the same exponent as E such that

E0Ma is a Frobenius group with Frobenius kernel Ma.

Proof. If E = EXE3, then (a) and (b) hold with Ao = 1 and £ 0 = E.
Hence we can assume that T2(M) is not empty.

If G has nonabelian Sylow p-subgroups, then Theorem 12.7 provides
subgroups AQ and Ĵ o as required. Therefore we can assume the hypotheses,
notation, and conclusions of the complementary result Lemma 12.8.

Obviously Ao = E2 satisfies (a) and, to get (b), it suffices to find a
cyclic normal subgroup Z = Zp of E having the same exponent as S and
satisfying GMAZ) — 1 f°r every z G Z#, i.e., CMa(^i(Z)) = 1, for then we
can let Eo be the product of EiE3 and all these Zp, one for each p G T2(M).
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Since p <£ <T(M), it follows that NG(S) % M. Thus every NG(S)-
invariant nonidentity cyclic subgroup Z of S satisfies CMff(^i(Z)) = 1
because otherwise, by Corollary 12.6(c),

NG(S) C wG(ni(z)) c M.

Assume first that CE(S) = E. Since S is abelian of rank two,

S = Y x Z,

for some cyclic subgroups Y and Z such that

\Y\ < \Z\.

If |V| < |Z|, then fii(Z) is characteristic in 5, and the discussion above
shows that Z is as required. If \Y\ = |Z|, then y and Z can be chosen in
such a way that fii(Z) is equal to any given A\ e £1(A) and, by Theo-
rem 12.5(f), at least one such A\ satisfies CMA^-I) = 1.

Therefore, for the remainder of the proof, we can assume that CE{S) /
E. Take q G 7r(E/CE(S)) and let Q be a Sylow g-subgroup of NG(S) that
contains a Sylow (/-subgroup Q\ of E. Since Cs(Qi) C 5, it follows from
Proposition 1.6(e) that Q± % CE(A). Therefore, by Corollary 12.10(c),
q e TI (M) and Qx is cyclic. Since CG(S) C E1,

Qo = CQ(5) C QI .

Suppose Q/Qo acts regularly on S. Then Proposition 3.9 shows that
Q/Qo is cyclic. Hence fii(Q/Q0) ^ Qi/Qo and fii(Q) C Q1B Therefore
*q(NG(S)) = T(Q) = 1 because Qi is cyclic. However, by Lemma 12.8(e),
fii(Qi) centralizes A, and therefore Lemma 12.11(c) yields rq(NG(S)) = 2.
This contradiction shows that

1 C CS{X) C 5

for some subgroup X of Q.
Now So = Cs{X) and Si = [S,X] are cyclic because

S = So x Si.

Moreover, by Lemma 12.8(f), both So and Si are normal in NG(S) and
hence act regularly on MG. Now define Z = So if |S0| > |Si| and Z = Si
if |So| < |Si|. Then Z is as required, and the proof of Theorem 12.12 is
complete. •

Now we leave T2(M) and turn to a(M). First we derive an important
uniqueness result from our basic Proposition 12.4.

Theorem 12.13. Every nonabelian p-subgroup of G (for every prime p)
lies in <2r.
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Proof. Suppose p G ft(G) and P is a nonabelian P-subgroup of G that lies
in two distinct maximal subgroups M and M* of G. Then

p G <T(M) n <T(M*) and NG(P) C M n M*

by Corollary 12.10(a) and (d).
We can assume that P is a Sylow p-subgroup of M n M*. Then P is

a Sylow p-subgroup of M and of M* and hence of G. By the Uniqueness
Theorem, r(P) < 2. Therefore, since P is not cyclic and p is odd, we know
that r(P) = 2 and, by Corollary 10.7(b), there exists a nonabelian subgroup
Q C P of order p3 and exponent p.

Now Z = Z(Q) = Qf has order p, Q/Z acts on K = CMa{
z) = NMa(

z)i
and Proposition 1.16 yields

K=(CK(A)\AeS1(Q/Z)).

Clearly, if A/Z G £1(Q/Z), then A G £2(Q) and, furthermore, we have
CK(A/Z) = CW(A) C M* by Proposition 12.4(a). Thus K C M* and,
since

M = (MnM*)Ma

by Corollary 10.9(b), it follows from Lemma 6.5(b) that NM(Z) C M*. In
particular, JK{NQ{Z)) / {M}. Furthermore, Ma ^ 1.

Thus, for any A G ̂ 2(Q), Proposition 12.4(b) provides a subgroup
Ao G f 1 ^ ) - {Z} such that ^(NG(A0)) = {M}. Similarly, there ex-
ists a subgroup Ao* G S1(A) - {Z} which satisfies ^(NG(A0*)) = {M*}.
Now AQ* is not conjugate to Ao in M n M* and hence not in Q, contrary
to the structure of Q. This contradiction completes the proof of Theo-
rem 12.13. •

Corollary 12.14. Suppose p G cr(M), X G £P
1(M), and P is a Sylow

p-subgroup of Ma. Assume p G /?(M) o r I C Ma
;. Then

JK{CG(X)) = Jt{P) = {M}.

Proof. We can assume that X C P and, by the Uniqueness Theorem, that
i(Cp(X)) < 2. By Corollary 5.4 and the definition of a narrow p-group
(Section 5), P is narrow if r(P) > 3. Thus p £ /3(G).

By Lemma 10.8(c), Ma = POP>{MG). Therefore

ICX CPnMa' = P'.

Since i(CP(X)) < 2, Theorem 5.3(d) shows r(P) < 2. Then, by Corol-
lary 10.7(b),

ICP 'C z(P).

Hence P C CM(^) . Since P is not abelian, P G <2f by Theorem 12.13.
This concludes the proof of the corollary. •

The next result gives some control over the embedding of Ma in G. We
shall see later (Theorem 13.9) that case (d) cannot occur.
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Proposition 12.15. Suppose q G <r(M), X is a nonidentity g-subgroup of
M, and M* G JK(NG(X)) - {M}. Let S be a Sylow g-subgroup of MnM*
that contains X. Then 5, M, and M* satisfy the following conditions.

(a) M* is not conjugate to M in G.
(b) JVG(5) C M.
(c) 5 is a Sylow g-subgroup of M*.
(d) If gGo"(M*), then

(1) M* = (AfnM*)M>,
(2) n(M*) C n{M) U a(M), and
(3) Mp = Mot± 1.

(e) If q$a(M*), then
(1) gGr2(M*),
(2) TT(M) n flr(M*) C /?(Af *), and
(3) M n M* is a complement to M*a in M*.

Proof. Let T be a Sylow g-subgroup of M that contains 5. If S is not
cyclic, then, by Corollary 12.10(d), NG(S) CM. If 5 is cyclic, then
NG(S) C NG(X) CM*,SC NT(S) C M n M*, and S = NT(S). There-
fore S = T, and NG(S) C M because p G a(M). This proves (b), and (a)
follows from Lemma 12.2(b). Clearly (b) implies (c). Now

NG(S) C M* if and only if q G <r(M*).

By Lemma 12.2(a), q G <r(M*) U T2(M*).
Assume first that q G T2{M*). Take A G £2(£) and let E* be a com-

plement of M*a in M* that contains A. Then, by Theorem 12.5(e) and
Corollary 12.6(a), M*a n M = 1 and A <3 £*. By Corollary 12.10(d),
E* C ATG(A) C M. Thus M n M * = M n M*aE* = (Af n M*a)E* = E*.

Suppose that p is a prime in TT(M) n cr(M*) not lying in f3(M*). Then

p G a(M*) - /?(M*) and g G ?r(M*) - cr(M*).

Furthermore, since q £ P(G) by Lemma 12.1(g), and a(M) is disjoint from
a(M*) by Corollary 12.6(f),

q G (T(M) - /3(M) and p G TT(M) - cr(M).

As p e a(M*) and CG(A) C E* by Corollary 12.6(b), the group CG(A)
is a //-group. Therefore A does not centralize a Sylow p-subgroup of M*a

and no Sylow p-subgroup of M centralizes a Sylow g-subgroup of Ma. By
Corollary 10.9(a), p > q and q > p. This contradiction completes the proof
of (e).

It remains to discuss the case when q G cr(M*). Here NG(S) C M* and
5 is a Sylow g-subgroup of G. By Corollary 10.9(b),

M = (M n M*)Ma and a(M) = 0(M)

and similarly for M*. Thus Ma, M*a / 1.
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Suppose that r G T±(M*) and R is a Sylow r-subgroup of M n M*.
Then R is a Sylow r-subgroup of M* = (M n M*)M*Q and has a normal
complement in M* and in M n M*. Thus, if r ^ a(M), the same holds for
M = (MnM*)Ma.

This proves that ri(M*) C ri(M) U a(M). D

Corollary 12.16. Suppose Y is a nonidentity a(M)-subgroup of G. Then
Y is conjugate to a subgroup of Ma and for every p G 7r(l£) fi P(G)f and
every if G ^(Y) not conjugate to M,

(a) ip(NH(Y)) < 1, and
(b) if p G nfM), then p £ ^(A

Proof. Since Y is solvable, y must have a nonidentity characteristic q-
subgroup X for some prime q. Then q G a(M) and Ma contains a Sylow
q-subgroup of G. Replacing Y by some conjugate if necessary, we can
therefore assume that X C Ma.

As part of the proof of (a), note that if M contains some A G £P
2(H),

then p G r2{M)^ and MG D if = 1 by Theorem 12.5(e), contrary to the fact
tha t lcX CManH.

So, if NG(X) C M, then everything is clear because

NG(Y) C A^G(^) £ M and hence (NG(Y))' C M;.

Hence we can assume that NG(X) % M. Take M* G ̂ (ATG(X)). By
Proposition 12.15(a) and (e), we know that q G cr(M*) U r2(M*) and

M* is not conjugate to M in G and
if q G r2(Af *), then ir(M) n a(M*) C /3(M*).

We define K = M*̂  oi K = M*a according as q G cr(M*) or g' G T2(M*).
By Lemma 10.12(a) and Corollary 12.6(f), K is a a(M)/-group. By Propo-
sition 12.15,

(12.4) M* = (MHM*)K.

It follows that y is conjugate to a subgroup of M n M* in M*. Thus, since
MjMa is a cr(M)/-group, Y is conjugate to a subgroup of Ma.

To complete the proof, note first that K is a p'-group by (12.3) because
p <£ f3(G). Furthermore, we can assume that H = M* because M* contains
NG(Y) and is not conjugate to M in G. Then, by (12.4), H = (M n #)if,
so the very first argument gives (a). If p G TI(M), then p £ TT(M') and
(M n #y i f is a normal p'-subgroup of H = (M n i^)K that contains H1.
Thus (b) follows. D

Lemma 12.17. We have CMAE) £ M° •> [M<r,E] = Ma and, for every
g G G — M, the group Ma Pi Mp is a cyclic /?(M)'-group intersecting Ma'
trivially.
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Proof. The first assertion follows from Lemma 6.3(a) because the orders
of Ma and E are relatively prime, Ma C M', and M = EMa.

Let g G G - M, p G 7r(Ma n M*), and X G £p*(Ma n M*). By Theo-
rem 10.1(b), CG(X) 2 M. Therefore, by Corollaries 12.10(d) and 12.14,
|X| = p, p <£ /?(M), and X 2 Mr'- In particular, this proves that MG D M9

is abelian of rank at most one, which means that Ma n M5 is cyclic. D

Lemma 12.18. Suppose p G ri(Af), P G fp
1(M), g G p', and Q is

a nonidentity P-invariant g-subgroup of M such that CQ(P) = 1 and
^(NG(Q)) / {M}.

(a) If Ma ^ 1 and ^ g a(M), then C M Q ( P ) 7̂  1 and CMa(
pQ) = 1-

(b) If Q is a Sylow g-subgroup of M, then a(M) = /3(M) and we have
the situation of (a).

Proof, (a) As JZ{NG(Q)) ^ {M} by Lemma 12.2(a),

(12.5) r(CMa(Q))<l.

Similarly, since Jt{NG(P)) ^ {M} by Lemma 12.2(a),

(12.6) r(CAftt(P))<l.

We have assumed that Ma ^ 1 and q £ a(M). Take r G a(M) and
let R be a PQ-invariant Sylow r-subgroup of Ma. Then Q does not cen-
tralize R because v(R) > 3. Thus Theorem 1.13 yields a characteristic
subgroup Ri of R that has exponent r and is not centralized by Q. Let
Ro = CR1 (Q) and iV = iVfli (RQ). Then QR\ is not nilpotent and neither is
QN/RQ. If CRl(P) = 1, then CQRl(P) = 1, and QPi would be nilpotent
by Theorem 3.7, a contradiction. Hence, by (12.6), since Ri has exponent
r,

(12.7) CRl(P) has order r and is equal to ili(CR(P)).

Suppose CMa (PQ) ¥" 1- Then we can choose r and R in such a way that
CR(PQ) / 1. By (12.7) and (12.5),

CRl(P) = il!(CR(Q)) = CRl(Q) = Ro.

Therefore CQN/R0(P) = 1 and so QN/R0 is nilpotent by Theorem 3.7, a
contradiction.

(b) We have Q C M' because CQ(P) = 1. As JK{NG{Q)) ^ {M},
Q ji M. Therefore M1 is not nilpotent and Ma ^ 1 by Theorem 10.2(d).
Moreover, by the Uniqueness Theorem (Theorem 9.6), q £ a(M). If there
exists a prime r G a(M) — /?(M), then Corollary 10.9(a)(2) shows that
CM(Q) e &, which is false. •

Lemma 12.19. The group Ef centralizes a Hall /3(M);-subgroup of Ma.
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Proof. By Corollary 10.9(a), every Sylow subgroup of E' centralizes a Hall
(3{M)'-subgroup of Ma, and this implies our assertion because the orders
of Mfj and E1 are relatively prime. •

13. Prime Action

In this section we consider how, in a maximal subgroup M, a complement
of Ma acts upon Ma. We establish conditions under which some subgroup
X of the complement acts in a prime manner on Ma. Recall that this
means that

or, equivalently,

P) C CMAX) for all P € E\X),

Recall also that X acts regularly on Ma if CM^GZ) = 1 for all g G
Throughout this section we let M denote an arbitrary maximal subgroup

of G. As in Section 12 we also let E be a complement of Ma in M, and,
for i = 1,2,3, let Ei be Hall r;(M)-subgroups of M lying in E such that
E\2 is a Hall T\{M) U r2(M)-subgroup of E. The basic properties of these
subgroups are described at the beginning of Section 12.

Lemma 13.1. Suppose that M* G JX, p G TT(E) n TT(M*), p £ ri(M*),
[MffnM*,Mfl M*] / 1, and M* is not conjugate to M in G. Then

(a) every p-subgroup of M 0 M* centralizes Ma n M*,
(b) p ^ T2(M*), and
(c) if p G ri(M), then p e (3(G).

Proof. Since [Ma fi M*, M Pi M*] C M^ n M*;, there exists a prime q in
cr(M) n 7r(M*;). Let Y be a Sylow g-subgroup of M*;. Since M*'/M*p is
nilpotent by Lemma 10.8, we have M^F < M*, and the Frattini argument
yields

M* = NM*(Y)M%

If p e T2(M*), then rp(NM*(Y)) = 2 and p $ /3(G) by Lemma 12.1(g).
This contradicts Corollary 12.16(a) and hence proves (b).

Now p G <T(M*) U T3(M*). Therefore M*; contains a Sylow p-subgroup
5 of M*. In particular, p e 7r(NM*(Y)f) if p (£ /?(M*). Therefore Corol-
lary 12.16(b) yields (c).

Now let P be any p-subgroup of M n M*. Since M*f/M*a is nilpotent,
M*a5 < M*. Therefore P C M*a5. Moreover, M*aS is a a(M)/-group
because p G ?r(E) and cr(M) is disjoint from a(M*) by Lemma 10.12(a).
Thus

[Ma n AT, P] c M*a5 n Ma = l,

and this completes the proof of the lemma. •
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Corollary 13.2. Suppose that p G Ti(M)UT3(M), P is a nonidentity
p-subgroup of M, and M* G JK(NG(P)). Then

(a) every p-subgroup of M D M* centralizes Ma n M*,
(b) every Ti(M*/-subgroup of E fi M* centralizes MCT n M*, and
(c) if [Ma n M*, M n M*] / 1, then p G a(M*) and in case p G TI(M)

we even have p G /3(M*).

Proof. Since p G <r(M*) Ur2(M*) by Lemma 12.2(a), M* is not conjugate
to M in G. Now our assertions follow directly from Lemma 13.1. •

Corollary 13.3.
(a) Every nontrivial cyclic Sylow subgroup of E acts in a prime manner

on Ma.
(b) The group E3 acts in a prime manner on Ma.

Proof. Take p G TI(M) U T3(M) and let P be any nontrivial p-subgroup of
E. Take M* G JK(NG(P)).

By Corollary 13.2(a), every p-subgroup of NE(P) centralizes CM<T(^>),
and this proves (a).

For (b), we can assume that E$ ^ 1 and p G Ts(M) and recall that
Es lies in Ef and is a cyclic normal subgroup of E (Lemma 12.1). Thus
E C NG(P) C M* and E3 C Ef C M* and E3 C E' C M*'. Therefore
7r(£?3) C 7r(M*;) C (n(M*))'. Hence Corollary 13.2(b) shows that E3

centralizes CMa(P), and this proves (b). •

The next result is the main step in our investigation of the action of E
on Ma.

Theorem 13.4. Suppose that p G TL(M), P G SP
1(E), r G TT(£), and

R e Sr^CEiP)). Then CM.(P) C CMff(iJ).

Proof. Take # G cr(M) and let S be a Pi?-invariant Sylow g-subgroup of
P)' We have to show that R centralizes 5, so assume that

Take M* G JK(NG(P)). Then

l c Q = [5 , f l ]c [M f f nM*,4

and it follows from Corollary 13.2 that

pe (3(M*) andrGri(M*).

Now l c P C CM*p(RQ), and 5 = CS(R) x Q because 5 is abelian by
Theorem 12.13. Thus we can apply Lemma 12.18(a) with r, i?, and M* in
place of p, P, and M, to get

= {M*}.
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We cannot have case (e) of Proposition 12.15 (with X = Q) because
l c P C M n M*a. Therefore q G a(M*) by Lemma 10.12(a), and Propo-
sition 12.15(d) shows that Ma / 1 and

r G7r(E)nn(M*) C n(M).

Since our assumption that [S,R] ^ 1 yields q £ a(M), we can conclude
that

and similarly, since r G TI(M),

CMa(R)cCMa(P).

It follows that CMa(P) = CMa(R)- This subgroup is normalized by 5
because 5 C CM(P), and therefore is centralized by Q = [£,#]. Thus

Now recall that JZ(NG(Q)) / {M}. Then Lemma 12.18(a) shows that
R) 7̂  CMa(RQ)- This contradiction completes the proof of Theo-

rem 13.4. •

Theorem 13.5. Suppose that E\ ^ \. Then E\ acts in a prime manner
on Ma.

Proof. Since E\ is cyclic, this theorem follows from Corollary 13.3 and
Theorem 13.4. •

Lemma 13.6. Suppose 1 C P C Eu q G cr(M), and X G Sq
1(CMAp))^

and let 5 be a Sylow g-subgroup of Ma. Then

Jl{CG{X)) = JZ{S) = {M}.

Proof. By Corollary 12.14, we can assume that

q i P(M) and X % Mj.

We can also assume that P = E\ because CMa(P) = ^ ( ^ l ) by Theo-
rem 13.5.

Since q £ /?(M), by Theorem 12.13, Ef centralizes some Sylow g-subgroup
of Mo-, and, by Proposition 1.5, we can assume that E normalizes S and
that

Moreover, since, by Lemma 12.17, CM<T{E) C Ma', we know X g CM(T(E)
and hence EXE' / JS. Therefore E2 / 1 because E3 C E; and £ = EiE2E3.

Take p G r2(M) and Q G £p
2(£). Then

(13.1) A <3 E and CM<7 (A) = 1

by Corollary 12.6(a) and Theorem 12.5(d). Furthermore, Theorem 13.4
shows that Ao = CA{E\) centralizes X. Thus A = Ao x [A, E\] centralizes
X\ contrary to (13.1). •
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Lemma 13.7. Suppose that E\^\ and that E\ does not act regularly on
£3. Then E\E^ acts in a prime manner on Ma.

Proof. By assumption, there exist primes p and r such that P G Sp
1(Ei)

centralizes R G £r
l(E3). By Theorem 13.4,

By Theorem 13.5 and Corollary 13.3(b),

(13.2) E\ and E3 act in a prime manner on Ma.

Moreover, E\ and E% have relatively prime orders. Thus, if C
CMO.(-R)? then E\E% acts in a prime manner on Ma, as desired.

Henceforth we assume that

(13.3) CMAP)CCM^(R).

We will obtain a contradiction.
Since 1 C R C E3 and CMa{

R) ^ 1, Corollary 12.6(d) shows that T2(M)
is empty. Thus

(13.4) E = E1E2E3 = EiE3.

As E3 is a cyclic normal subgroup of E, we know that R < E. Take
M* € JK(NG{R)). Then

E C M* and 1 C [CM(r(fl), P] C [Ma n M*, EJ .

By (13.2), CEl(Ma n M*) = 1. Thus, by Corollary 13.2(b), TT(£I) C
ri(M*).

Now Ei is contained in some Hall ri(M*)-subgroup E±* of M*. By
Corollary 13.2(c), R C M*a. Therefore

Since E1!* is prime on M*a by Theorem 13.5, E±* centralizes R. In par-
ticular, Ei centralizes R. By (13.4), R C Z(E), but, by Lemma 12.1,
CE3(E) = 1, a contradiction. This completes the proof of Lemma 13.7. •

Lemma 13.8. The following configuration is impossible:

(1) M* G Jt and M* is not conjugate to M in G,
(2) p G ri(M) H ri(M*) and P G fp

x(M n M*),
(3) Q and Q* are P-invariant Sylow subgroups (possibly for different

primes) of M D M*,
(4) CQ(P) = landC Q *(P) = l,
(5) JVG(Q) C M* and iVG(Q*) C M.
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Proof. Assume this configuration and note the symmetry between M and
M*.

By (3), (5), and the Uniqueness Theorem, Q is a nonidentity Sylow
subgroup of M for a prime q (fc a(M). Since P C M f) M* and CQ(P) = 1,

Q = [Q,P]cM'nM*f.

Thus QMa < M, and M = NM(Q)Ma because M'/Ma is nilpotent by
Theorem 10.2.

By Lemma 12.18, CMf3(P) / 1 and CM^(P) # 1. Furthermore, by
Proposition 10.14(d), NG(X) C M for every nonidentity /?(M)-subgroup
X of CM(P), and similarly for M* and every conjugate M9 of M.

Let if be a Hall (/?(M) U /?(M*))-subgroup of CG(P) and take any
s G TT(F(H)) and £ G 7r(F(CM/3(P))). By the symmetry between M and
M*, we can assume that s G (3(M) and then that H ~D CMP{P)- Let
X = OS(H) and Y = Ot(CM(3(P)). Then X C M9 for some 0 G G. It
follows that M9 D NG(X) D H D Y and M D NG(Y) D CG{Y). Since
F C M f l M " , Theorem 10.1(b) yields

M9 = Mh for some H G CG(Y) C M.

Thus M = M9 DH.
Take r G /?(M*) n TT(#). Then r divides |CM(^)|. By Lemma 10.12(a),

r $ a(M).
Since M = NM(Q)Ma and r G TT(CMCP)), some subgroup R C NM(Q)

of order r is centralized by P. Then i? C NG(Q) C M* and consequently
NG(R) C M* by Proposition 10.14(d). Now, since Pi? is conjugate in M
to an abelian subgroup of E, Theorem 13.4 yields

lcXCCMa(P)CCM(r(R)CM\

Then [X,Q] C [Ma n M*,Q] C M*a because Q C M*;, M*f/M*a is
nilpotent and Ma n M* is a Q-invariant ^'-subgroup of M*. On the
other hand, [X,Q] C Ma and Ma n M*a = 1 by Lemma 10.12. Thus
[X,Q] = 1 and I C CMot(

pQ)i contrary to the fact that CMa(
pQ) = lhY

Lemma 12.18. •

Theorem 13.9. Suppose M* G Ji and M* is not conjugate to M in G.
Then a(M) is disjoint from cr(M*).

Proof. Suppose q G <r(M) fi a(M*). Let S be an ^-invariant Sylow q-
subgroup of Ma. Replacing M* by some conjugate if necessary, we can
assume that S is also a Sylow (/-subgroup of M*. Then

NG(S) C M n M * .

By Corollary 12.6(f), r2(M) is empty. Therefore, by Lemma 12.1(c), T\(M)
is not empty.
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Take p G r i (M) and P G SP
1(E1). By Lemma 13.6, CS(P) = 1. There-

fore, by Lemma 13.1 (a), p G T I ( M * ) . NOW Lemma 13.8, applied with
Q = Q* = S, yields a contradiction. •

Theorem 13.10. Suppose some P G Sp
1(Ei) does not centralize E3. Then

(a) Ei acts regularly on £3,
(b) E3 acts regularly on Ma, and
(c)

Proof. Since E% is a cyclic normal Hall subgroup of E, there exists q G
rs(M) such that P acts regularly on the Sylow g-subgroup Q of £3. Thus

(13.5) Q

Take M* € ^(NG(Q)). By Lemma 12.2(b), M* is not conjugate to M
in G. In particular, M* ^ M. Consequently, by Lemma 12.18,

Since Ma C M^, this proves (c) and shows that £1^3 is not prime on
MG. Therefore (a) follows from Lemma 13.7.

Now assume that (b) is false. Then ^ ( ^ 3 ) 7̂  1 because E 3 is prime
on Ma by Corollary 13.3(b). Take q* G 7r(CMAEs)) a n d l e t Q* b e a n

E'-invariant Sylow g*-subgroup of CMa(Es) = CMa(Q)> Since Q centralizes
Ma D M* by Corollary 13.2(a), Q* is a Sylow g*-subgroup of MG n M* and
hence of M n M*.

By (13.5) and Lemma 12.19, q* G /3(M) or Q* is a Sylow #*-subgroup
of Ma. Hence, by Proposition 10.14(d) and the definition of cr(M),

NG{Q*) C M.

If g* G/?(M), then

and, on the other hand, if g* ^ /?(M), then CQ*(P) = 1 by Lemma 13.6
because ^T(Q*) / {M}. In particular, [MCT n M*,P] / 1. Therefore, by
Lemma 13.1 (a), p G Ti(M*). NOW Lemma 13.8 yields a contradiction. •

Corollary 13.11. Suppose E 3 ^ l and E3 does not act regularly on Ma.
Then

(a) £1 / 1,
(b) E = E1JS3,
(c) ^ acts in a prime manner on Ma , and
(d) every X e S1(E) is normal in £ .

Proof. By Corollary 12.6(d), T2(M) is empty. By Lemma 12.1, this implies
(b) and (a). Moreover Theorem 13.10(b) shows that every P G 8p

1(Ei)
centralizes E3. By (b), this implies (d) because E% < E and both E\
and E% are cyclic. Furthermore, Ei does not act regularly on E%. Hence
Lemma 13.7 yields (c). •
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Finally we turn to the primes in T2(M).

Lemma 13.12. Suppose p G n(M), P G SP
1(E), q G T2(M), A G £q

2(E),
and CA{P) / 1. Then CM.(P) = 1.

Proof. Suppose that CMo(P) ^ 1. Then A < E and P £ CE(A) by Corol-
lary 12.6(a) and (e). Therefore Y = CA(P) has order q. By Theorem 13.4,

1C CM9(P)CCM9(Y).

Therefore, by Corollary 12.6(c),

= {M}.

For M* G JK(NG(A)) we have g G <r(M*) and p G Ti(M*) U r2(M*) by
Lemma 12.11.

Suppose that p G T2(M*). Then, by Corollary 12.6(c) applied to M*,
JZ{CG(P)) = {M*} because 1 c CA(P) C CM*a(P). Hence

contrary to Theorem 12.5(e). Thus p G TI(M*).
Since F G ^ ( C M * ^ ) ) , it follows from Lemma 13.6 applied to M* that

JK{CG{Y)) = {M*}, a contradiction. D

Lemma 13.13. Suppose p G ri(M) U r3(M), P G fp1^)^ a n d cMa(
p) ^

1. Then for every M* G JC(NG(P)) we have p G a(M*) .

Proof. By Lemma 12.2, P G cr(M*) U T2(M*). Suppose p G T2(M*). We
will obtain a contradiction.

Choose q G TT(CM<T(P)) and Q G ^ ( C M ^ P ) ) . By Theorem 13.9, we
know that q £ a(M*). Let E* be a complement of M*a in M* that contains
PQ. Take A G £P

2(E*). By Corollary 12.6(a), A < E* and P C A.
We can assume that P lies in Ei or in E3. If P C E3, then parts (a)

and (c) of Corollary 13.11 show that E1 ^ 1 and CMAP) = CMa{
Ei)

because 1 C Q C CMa{P)' Therefore, in any case, we have CQ{Q) £ M
by Lemma 13.6, and this implies that A % CE*(Q) because rp(M) = 1.
Therefore, by Corollary 12.10(c), q G TI(M*). Furthermore,

1C P = CA(Q).

Consequently, by Lemma 13.12 applied to M*,

CM*,(Q) = 1.

However P = CA(Q), and Corollary 12.9(c) shows that if CM*AQ) = 1,
then NG(P) % M*, a contradiction. •





CHAPTER IV

The Family of All Maximal Subgroups of G

In the previous chapter we considered mainly a single maximal subgroup
of G in isolation. In this chapter we exploit also the interrelationships

among the maximal subgroups of G. Our first main application of these
interrelationships shows that a particular family of maximal subgroups of
G is either empty or consists of precisely two conjugacy classes of maximal
subgroups of G (Theorem 14.7). Eventually, we obtain our main results in
Section 16.

14. Maximal Subgroups of Type £? and Counting Arguments

As a consequence of the preceding section, a(M) Pi cr(H) is empty and
MaC\Ha is trivial for nonconjugate subgroups M, H G JM (Theorem 13.9).
Clearly every p G ir(G) appears in some set a(M) because some M G Jt
contains the normalizer of a Sylow p-subgroup of G. Therefore the sets
<r(M), where M ranges over a set of representatives of the conjugacy classes
of */# under (3, form a partition of 7r(G).

Let <7i,... ,<rs denote the sets cr(M) for M G Jl'. Then every element
g G G can be written uniquely as a product

9 = 9i'"9s

of pairwise commuting ^-elements gi. Disregarding the ordering and fac-
tors gi = 1, we call this the a-decomposition of g, and the number £a(g)
of nonidentity factors gi may be called the a-length of g. Clearly each
subgroup containing g contains all the gi because gi G (g) for each i.

For every subset X of G, define

= {M e^\X CMa}.

For g e G, let JZa(g) be ^({g}). By Corollary 12.16, every a(M)-
element, where M G Jt', is conjugate to an element of Ma. Thus £a(g) < 1

105
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means that Ma{!9) is not empty. In Theorem 14.4 we will show that Cc{g)
acts transitively on JZ<j(g) if £a(g) = 1.

Now we define a further subset of TT(M) for M G ^ and several families
of maximal subgroups of G:

K(M) = {pe n(M) U T3(M) | CMAP) ? 1 for some P G £P\M) } ,
= { M G M | K(M) is empty },
= {M G ~# | «(M) is not empty },

i ={M eJZ& |«(M) = 7r(M)-a(M)},
TT(M) - <T(M) } .

Note that for p G «(M) we know rp(M) = 1, and every P G Sp
1(M) satisfies

CMCT (P) 7̂  1 because all these P are conjugate in M.
Though not explicitly, the family Jt&> has already been the subject of

Section 13 ( ^ stands for proper prime action). It will be investigated
more closely in this section. Maximal subgroups in the complementary
family ^#j?- will turn out to be of Frobenius type in the sense of Section 16.
Actually, this will follow immediately from Theorem 12.12 and the last
assertion of the following lemma.

Lemma 14.1. Suppose that M G *M — ̂ t&>x. Take any prime p G TT(M) —
(cr(M) U Av(M)), let S be a Sylow p-subgroup of M, and let A = tti(S).
Then |A| < p2, CMa(̂ 4) — 1, and Ma is nilpotent.

Proof. If p G T2(M), then the assertions of the lemma follow directly from
Theorem 12.5(a), (b), and (d).

If p G TI(M) n rs(M), then |A| = p and CMa(A) = 1 because p £ K(M).
Now Theorem 3.7 shows that Ma is nilpotent. •

Recall that a group in which all of the Sylow subgroups are cyclic is
called a Z-group, and that a nonempty subset X of G is a Tl-subset of G
if X fl X9 C 1 for all x G G — N(X). In particular, a nonidentity proper
subgroup H of G is a TI-subgroup of G if HnH9 = 1 for all g G G-N(H).

The following proposition contains nearly everything that we have proved
in Section 13.

Proposition 14.2. Suppose M G ^K&>. Let K be a Hall /^(M)-subgroup
of M and define K* = CM^ (K). Then the following conditions are satisfied.

(a) The group K acts in a prime manner on Ma and acts regularly on
some abelian Hall (/c(M) U a(M)/-subgroup U of M. (Thus UMa

is a normal complement of K in M).
(b) For every X G ^ ( i f ) ,

(1) NM{X) = NM(K) = KXK*, and
(2) X C M*a for each M* G JK(NG(X)).

(c) #* ^ 1 and every X G f 1 ^ * ) satisfies JK(CG(X)) = {M}.
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(d) Every g G G-M satisfies K*C\M9 = 1 and every g G M-(KxK*)
satisfies K n K** = 1.

(e) For every prime p G TT(K*) and every Sylow p-subgroup 5 of Ma,

(f) Every <r(M)-subgroup Y of G satisfying Y fi K* ^ 1 lies in Ma.
(g) If M G ^ > 2 , i.e., U ^ 1, then <r(M) = /?(M), K has prime order,

and MCT is a nilpotent TJ-subgroup of G.

Proof. Take E, Ex, E2, and £3, as in Section 12, such that ED K. Thus
£ is a complement of Ma in M and ^ is a Hall r;(M)-subgroup of E (and
of M) for i = l,2,3. By Lemma 12.1,

£2#3 < E = EiE2Ez and E± is cyclic.

We first prove parts (a) and (bl).
If K(M) fi Ts(M) is not empty, which means that E3 ^ 1 and ^3 does

not act regularly on MCT, then Corollary 13.11 yields Ei ^ 1, E = E1E3,
E is prime on Ma, and every X G SX(E) is normal in Z£. Then K = E,
and (a) and (bl) are clear (let U = 1).

If K(M) C TI(M) , then /^(M) = TI(M) because ^1 is prime on Ma by
Theorem 13.5, and thus we may (and shall) assume that K = E\. Then
K = Ei acts regularly on U = E2Es by Lemma 13.12 and Lemma 13.7.
Now U = [U,K] = E', and E' is abelian by Corollary 12.10(b). Again (a)
and (bl) hold.

Now, in any case, since K acts in a prime manner, but not regularly, on
M<j, K* is not trivial. Hence (b2) and (c) follow from Lemma 13.13 and
Lemma 13.6.

Suppose g G G and X G £\K* n M*). By (c), CG(X) C M. Therefore,
by Theorem 10.1(a), g G M. This proves the first assertion of (d), and the
second assertion follows easily from (bl) since K is a Z-group.

For X G SX{K), NG(X) % M by (b2). In particular, JK(K*) ± {M},
and then (e) follows directly from Lemma 13.6.

For Y as in (f), Corollary 12.16 yields an element g G G such that
Y C Ms. By (d), g£M. Therefore Y C Ma.

Finally assume £/ 7̂  1 with U as above. Then E is a Frobenius group with
Frobenius kernel U. By Lemma 14.1, CM^iU) = 1 and Ma is nilpotent.
Since K is prime on MCT, it follows from Theorem 3.10(a) that K has prime
order. Clearly U = [U,K] = Ef. Therefore, by Lemma 12.19, U centralizes
a Hall ^(M)'-subgroup of Ma. Consequently, since (3(M) C a(M) and
CMAU) = 1» we have f3(M) = <r(M). By Lemma 12.17, Ma n MG

9 is a
/3(M)'-group for every g G G-M. Thus ManMa

9 = 1 for every # G G-M.
This proves (g). •
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Corollary 14.3. Suppose M G Jt', x G Ma#, and x' is a nonidentity
cr(M)'-element of CM(x). Then

(1) ir((x')) C K(M) and CG(x) C M, or
(2) 7r«a;')) C r2(M), C(x') = 1, and JV{CG(x?)) = {M}.

Proof. Suppose that TT((X')) contains a prime number p G T2(M)'. Then
p G ri(M) U T3(M) and X G ^ ( ( z ' ) ) satisfies

Thus p G K(M) and X lies in some Hall /c(M)-subgroup K of M. Therefore,
by Lemma 14.1(b),

CM(x')CCM(X)CKxCMa(K).

Consequently xf G K, x G CMa(K), and then Proposition 14.2(c) yields
<?G(*) C M.

Assume next that x' is a r2(M)-element. Since CM^X' ) ^ 1, Corol-
lary 12.10(e) shows that ^(CG(V)) = {M} and, by Lemma 12.11(a),
£a(x

f) = 1 because T2{M) C <T(M*) for some M* G Ji. D

Theorem 14.4. Suppose x G G# and ^^(rr) is not empty. Then CQ{X)
has a normal Hall subgroup R(x) that acts sharply transitively on JKG(x).

Furthermore, if \^fa(x)\ > 1, then CQ(X) lies in a unique subgroup
N = N(x) G Jt and, for every M G ^ - ( x ) ,

(a) R(x) = CNt,(x) D 1,
(b) CG(x) = CMnN{x)R(x),
(c) 7r«x» C r2(iV) C a(M),
(d) 7r(M)na(AT)C/?(iV)5

(e) MnA^isa complement of Na in A7", and
(f) (D. Sibley) N e^F

Proof. If \^ta(x)\ = 1, we can let R(x) = 1. So henceforth we assume that

Take M G ^ ( x ) , g G TT((X)), X G fgH^)). a n d N e ^(NG(X)). Let
R(x) = CNa(x), as in (a). Then

CG(x) C iVG((x)) C iVG(X) C iV

and

Thus i?(a;) is a normal Hall subgroup of CQ(X).
By Theorem 13.9 and Theorem 10.1(b), CG(X) acts transitively on

JKG{X). In particular, CG(X) g M a n d i V / M .
Thus we can apply Proposition 12.15 because a{M) is disjoint from

<T(M*) by Theorem 13.9. It follows that q G r2(N) and that (d) and (e)
of the present proposition hold. Since r2(N) is not empty and, by the
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definition of K(N\ K(N) C TI(N) n T3(N), we know N £ Jt&x. Thus (f)
holds.

If L G ^cr(x), then, by the previous paragraph, L = Mu for some
u G CG(X) = CN(X), and we can choose u in Na because N = (MnN)Na.
Then

However, if Mu = Mu for any element u' G Na>, then it follows that
u'u'1 G NG(M)nNa = MnNa = 1. Thus ux = w and u G CNa(x) = R(x).
Moreover, R(x) = CNa(x) acts sharply transitively on Jta(x). Therefore
CG(x) = (CG(x) n NG(M))R(x) = CM(x)R(x) and R(x) = CN,(x) D 1.
This proves (b) because CG(x) C AT.

Since «(iV) C ri(iV) U T3(N) and ^ G TT((X)) PI T2(N), X is not a K(N)-

element. By Corollary 14.3, TT((X)) C r2(A^), and Ji{CG{x)) = {N} be-
cause CNa(x) / 1.

For each p G r2(iV), (e) and Corollary 12.6(a) yield some A G SP
2(N)

that is normal in M ft AT. It follows that ATMff(A) 5 W )̂ 1- Since
rp{M) > 2, p G (j(M) n r 2 ( M ) . If p G r2(M), then ATM^(A) = CMo(A) = 1

by Corollary 12.6(b). Thus p G cr(M), and this yields (c) and completes
the proof of the theorem. •

In the following we use the groups R(x) defined in Theorem 14.4 for
every x G G o f cr-length 1.

Furthermore, for each M G M we let

M = { xx1 | x G Ma# and x' G R(x) } .

Note that g = xx' is the ^-decomposition of such a product g e M. In
particular, C(<?) < 2 for each g G M.

Recall, as in Section 1, for any subset T of G we define

«b(T) = {t* | t eT and <?GG}.

L e m m a 14.5.

(a) If x and y are distinct elements of G of cr-length one, then xR{x)
is disjoint from yR(y).

(b) If Mi, M2 G *M and M2 is not conjugate to M\ in G, then M2 is
disjoint from M\. _

(c) If Af G ̂ T, then |«b(M)| = (\Ma\ - 1)\G : M|.

Proof, (a) Suppose g = xxf e yR(y) with #' G fl(a?) and x ^ y. Then
x1 — y and x G -R(y) because y is a factor of the cr-decomposition of g. Take
N G JK{CG{x)) and M G J?(CG(y)). By Theorem 14.4, x G i?(j/) C M a ,
y G i?(x) C A^a, and 2/GATanM = l , a contradiction.

(b) By Theorem 13.9, Mla n M2 a = 1. Thus, by (a), Mx n M2 is empty.
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(c) With x ranging over ^ ( M ^ ) , we have

<ifG(M) = (J xR(x)

and therefore, by (a),

l«b(M)l =

Next we count the number n of all pairs (#, Mg) with g G G and x G M a
5 .

By Theorem 14.4, each x G %!(Ma#) belongs to exactly \R(x)\ subgroups
M9. Thus

n =

On the other hand

n = |MCT#|| {M9 \geG}\ = \Ma*\\G : iV G(M)| = \Ma*\\G : M\. D

Lemma 14.6. Each element g G G# satisfies exactly one of the following
two conditions:

(1) g = xx1 with £a(x) = 1 and x' G R(x),
(2) g = yy' with £a(y) = 1 and y' a nonidentity «:(M)-element of

CM(V) for some M G Jta{y).

Proof. Suppose (1) and (2) hold. Since y' is a <j(M)/-element of Co(y), y
is a factor of the cr-decomposition of g. Thus y = x or y = xf. In particular,
x; ^ 1. By Corollary 14.3, M G JK(CG{y)), and, by Theorem 14.4(c), x is
a r2(A^)-element for the unique N G ^ # ( C G ( X ) ) . Thus y ^ x. Therefore
y = x' and y' = x. Now x' G i?(x) = CNtr (x) C iVa and 2/ = #' G MCT n A^̂ .
Then M and N are conjugate in G by Theorem 13.9, contrary to the fact
that y1 = x is a /^(M)-element and a r2(iV)-element.

Assume next that g satisfies neither of our two conditions. It follows
that £a(g) > 1 because (1) is false. Let x be a factor (of cr-length 1) of the
cr-decomposition of g. Take M G ^a(x) and TV G ^#(Cc(a;)), and write
g = xxf.

If g G M, then x' is a <r(M)'-element of M, but not a ^(M)-element be-
cause (2) is false. Then Corollary 14.3 yields £a(x

f) = 1 and Jt{CG{x')) =
{M}. Therefore x G CMa(x

f) = R(xf), contrary to our assumption that (1)
is false.

This proves that g £ M, hence CG(x) % M and, by the same argument,
no factor of the cr-decomposition of g lies in Na. Therefore g is a a(N)f-
element of N. Consequently, because M n iV is a complement of Na in N
by Theorem 14.4(e), g G (M fl N)a for some a e N. Then g e Ma and
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x G M<ja, and we might have chosen Ma instead of M, contrary to the fact
that g £ M. This completes the proof of the lemma. •

In the remainder of this section we will extend our results on individual
members of ^K&>, but we also gain very explicit information on the family

as a whole and the role it plays for the global structure of G.

Theorem 14.7. Suppose M G ~rfig» and K is a Hall «(M)-subgroup of M.
Let K* = CMo(K), k = \K\, A:* = \K% Z = KxK\ and Z = Z-(K\JK*).
Then, for some other M* E ̂ t& not conjugate to M,

(a) JK{CG(X)) = {M*} for every X G S\K),
(b) K* is a Hall «(M*)-subgroup of M* and a Hall <r(M)-subgroup of

M*,
(c) K = CM*,(K*) and «(M) = T^M),
(d) Z is cyclic and for every x G K* and y G K*#, M n M* = Z =

(e) Z is a TJ-subset of G with NG(Z) = Z, Z n M^ empty for all
g e G - M, and

(f) M or M* lies in ^ ^ 2 and, accordingly, KorK* has prime order,
(g) every H G Jt&> is conjugate to M or M* in G, and
(h) M; is a complement of K in M.

Proof. Let Mi , . . . , Mn be the distinct maximal subgroups of G containing
NG(X) for some X G f 1 ^ ) * say,

Mi G JK(NG(Xi)) for each X< G ^

Now we will examine Mi for some arbitrary choice of i. By Proposi-
tion 14.2(b),

Z = K x K* C Mi and X* C Mi<T.

In particular, Mi is not conjugate to M in G because ir(Xi) C AC(M) C
^(M)'. Therefore, by Theorem 13.9, a(M) is disjoint from a(Mi). In
particular, K* is a <r(Mi)'-subgroup of M{.

Take X* G f 1 ^ * ) . By Proposition 14.2(c),

^(CG(X*)) = {M} / {MJ.

Thus, by Corollary 14.3, TT(X*) C /C(M») because CMiA
x*) 2 ^ D 1.

Therefore, because X* is an arbitrary element of 51(K*),

7r(iT) C «(Mi).

Moreover, M D NG(X*).
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Let if; be a Hall «(M;)-subgroup of M; that contains X* and define
K* = CMi<T(Ki). By Proposition 14.2(b),

and it follows that X{ C K* and if C if; x if *.
Since we could have chosen if; subject to if* C Ki, we know if* lies in

NMi (X*). Thus if x if * C if; x if *. Similarly, with (Mu if;, X*, M, if, X;)
in place of (M, if, X;, M;,if;,X*), we have if; x if * C if x K* because
M D NG(X*) above. Thus

Z = if xif* = if;xif*.

Now let Mo = M, Ko = if, and if£ = if*. By Proposition 14.2(c),
applied to each Mi (i = 0 ,1 , . . . , n),

if* n if * = 1 for i ^ j .

Since if* is a Hall subgroup of Z and each X G £l(Z) lies in some if*,

Z = K 0* x if * x . . . x if;

and

Furthermore, if* is a Hall cr(Mj)-subgroup of Z, the subgroups M̂  are
pairwise not conjugate in G, and, for every element z e Z, the factorization
z = Iir=o xt w ^ n ^̂  ^ ^* ls ^ e cr-decomposition of z.

Define
n

T = Z - (J if *

and note that t e Z lies in T if and only if z — yy' with y e if *# and
y G if^ for some index i. Therefore, by Lemma 14.6,

T fl if is empty for each H G ^ .

In particular, ^G(T) is disjoint from each of the sets
Suppose t €T, g e G, and ^ G Z. With y and yf as above, ^ G if*

and y'g £ Ki# because Z — Ki x if* and the orders of if; and if* are
relatively prime. Therefore, by Proposition 14.2(d), g G if̂  x if*.

This proves that T is a Ti-subset of G with NG(T) = Z. Consequently,
with ki = \Kil A£ = \K?I, and z = \Z\ = k{k^

= \T\\G:NG(T)\ =
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Suppose all the M{ lie in JM&>X, which means that K{ always complements
Mia in Mi. Then, by Lemma 14.5,

( = (\Miff\-l)\G:Mi\

1 '\Mi\J1 ] - \ h 2z

and the sets ^G(-W») are pairwise disjoint. Now

and this contradiction proves that some Mi is of type <̂ 2-
For Mi of type «^2, by Proposition 14.2(g), K{ = Ylj&Kj n a s Prim e

order and MiG is nilpotent. Therefore Ki = Kj for j / i, and n = 1.
Furthermore, Z = Ki x K* = Kj x Xj is cyclic because if* C Mia and
r(Kf) = r ( ^ ) = 1.

For our TJ-subset T we now have T = Z - (K U K*) = Z and

1
" 5

Furthermore, Proposition 14.2(d) implies that Z D M9 is empty for all
geG-M.

Suppose H £ Jt&>. Let L be a Hall «(iJ)-subgroup of if, L* = CHa{L),
and S = L x L* - (L U L*). Then we also have

and it follows that % ( r ) D ^ G ( ^ ) is not empty.
We want to prove that H is conjugate to Mo or Mi in G, and for this

we can assume that T fi S is not empty. Then L* DK* ^1 for some i, and,
by Proposition 14.2(c), F G £X(L* n if*) satisfies

{if} = JK{CG{Y)) = {Mi},

as desired.
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Since Ma C M', the normal complement UMa of K in M, obtained in
Proposition 14.2(a), is contained in M', and, since K is cyclic, UMa must
be equal to M'. Then, by definition of Ti(M), if is a Hall ri(M)-subgroup
of M. Thus /c(M) = n(M).

Next let Y be a Hall (j(M)-subgroup of Mi that contains if*. By
Proposition 14.2(f), y C Ma. Then [y,Xj C Ma n Mla = 1. There-
fore y C CM<7 (Xi) = if *. It follows that if * = Ma n Mi < M n M n Mi,
and, by Proposition 14.2(bl) applied to Mi and if* in place of M and if,
NMl(K*) = K* x if. Thus M n Mx = if* x if = Z, and this completes
the proof of the theorem. •

Corollary 14.8. The maximal subgroups in ^#^1, if any, are all conjugate
in G and, if jftgt is not empty, then J&& contains exactly two classes of
maximal subgroups conjugate in G.

Proof. This follows directly from Theorem 14.7(f) and (g). •

Corollary 14.9. Choose Mi, . . . , Mn G Jt in such a way that each sub-
group H G </# is conjugate in G to exactly one M{.

(a) If JM& is empty, then G# is the disjoint union of the sets

(b) If Jt&> is not empty, then, with Z as in Theorem 14.7(e), G# is
the disjoint union of ^G(Z) and the sets %(M;), i = 1,..., n.

Proof. By Lemma 14.5(b), the sets ^(M;) are pairwise disjoint. By defi-
nition of M for M G ^#, their union is the set G of all elements of xx' with
la[x) = 1 and x1 G R(x).

If j&& is empty, which means that K(M) is empty for each M G ^ ,
then case (2) of Lemma 14.6 does not occur, and it follows that G^ = G.
This proves (a).

For the proof of (b), assume the notation of Theorem 14.7. Clearly, every
g G Z satisfies condition (2) of Lemma 14.6, and it remains to show that
every element g = yyf', with y G Ha# for some H G Jt and y' a nonidentity
ft(M)-element of C//(y), is conjugate to an element of Z. Since K(H) is not
empty, H G Jt&> and H is conjugate to M or M* by Theorem 14.7(g). So
we may assume that H = M. Then y1 is conjugate in M to an element of if.
We may assume yf G if, and then y G CM<T(y') = K* by Theorem 14.7(d).
Thus g G Z. Q

< 2.

us g G Z. Q

Corollary 14.10. For every element g € G we have

Proof. If $ e M with M e ^ , then 4(#) < 2 by definition of M. If
£ G Z = K x if * in the situation of Theorem 14.7, then £a(t) = 2 because
if* C Ma and if C M*a. Now apply Corollary 14.9. •



14. Maximal Subgroups of Type £? and Counting Arguments 115

The next lemma might be of independent interest, but we need it here
only as a convenient tool for the investigation of certain maximal subgroups
related to those of type ^ 2 -

Lemma 14.11. Suppose that M G ^ j r , E is a complement of MG in M,
q G TT(JS), Q G £q

1(E), and Q £ F(E). Then there exists M* G Ji such
that either

(1) q G T2(M*) and JK(CG{Q)) = {M*}, or
(2) q G «(M*) and M* G < ^ v

Actually, we have the situation of both Theorem 12.7 and Corollary 12.9,
with Ao = [E, Q], E = CE(Q)A0, and M* G JC{NG(A)).

Proof. By Corollary 12.6(a), every A G £2(E) is normal in E and thus
contained in F(E). Hence q £ T2(M). By Lemma 12.1(b) and (d), E has a
cyclic normal Hall r3(M)-subgroup. Hence q £ Ts(M).

This shows that q G T\(M). In particular, E has cyclic Sylow (/-subgroups.
Consequently, since Q % F(E), F(E) is a g'-group. By Corollary 12.10(b),
Ef is abelian.

It follows that K = [E, Q] is an abelian g'-group. Therefore, because
KQ < E, the Frattini argument yields E = KNE(Q) = KCE{Q)> Hence
K = [E,Q] = [K,Q].

Now it follows from Proposition 10.11(d) that [K,Q] = K is a cyclic
normal subgroup of M. By Lemma 10.5, this implies that TT(K) C T2(M).
Take p G r2(M) and A G SP

2(E). By Lemma 12.8(e), because <? 2 (̂-S)>
we have the situation of Theorem 12.7 with Ao = CA(Ma) = CE{Ma) equal
toK.

Take M* G ̂ (iVG(A)). By Lemma 12.11, p G er(M*) - /?(M*) and q
lies in Ti(M*) or T2{M*) because Q <£ CE(A).

If q G ri(M*), then g G AC(M*) because CM*AQ) 2 CA(Q) 3 1,
and if q G T2(M*), then, for the same reason, Corollary 12.10(e) yields
^(CG(Q)) = {M*}.

In case q G K(M*), M* G ^#^. Then we have M* G ^ ^ by Proposi-
tion 14.2(g) because a(M*) ^ /?(M*). D

Corollary 14.12. Suppose M G ^^»2. Let K, M*, and K* be as in
Theorem 14.7 and U as in Proposition 14.2(a). Suppose r G TT(U) and R is
the Sylow r-subgroup of the abelian group U. Take H G J%(NG{R))>

Then if G ^f>, £/ C Ha, MnH = UK, NH(U) £M,K<Z F(iJnM*),
and H D M* is a complement of Ha in if.

Proof. If H is conjugate to M in G, then i? is a Sylow r-subgroup of iJ,
and it follows that r G a(H) because NG(R) C .fi. But r ^ <r(M), and
hence if is not conjugate to M in G.

By Proposition 14.2(d), applied to M* and K in place of M and if*, M*
is the only conjugate of M* in G that contains K. For some application
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below, note that this forces every subgroup of G in which K is subnormal
to lie in M*.

Now if H is conjugate to M*, then U C H = M*, contrary to the fact
that M n M* = K x K* by Theorem 14.7(d). Since every element of Jt&>
is conjugate to M or M* by Theorem 14.7(g), this proves that H G Jt&.

By Theorem 13.9, Ha D M*a = 1. Hence K lies in some complement D
of i / a in i7. By Proposition 14.2(g), K has prime order, say q.

Suppose K 2 F(D). Then Lemma 14.11 yields some H* G Jt such that
either g G r2(H*) and JK(CG(K)) = {H*} or g € *(#*) and if* G ^ ^ .
Then H* is not conjugate to M* in G because g G cr(M*). Therefore
if* ^ Jt&x by Theorem 14.7(g) since M G */^ 2 . On the other hand, M*
lies in Jt{CG{K)). This contradiction shows that K C F(,D).

Now K is subnormal in D. Therefore D C M*. Recall that U sat-
isfies Proposition 14.2(a), so that U = [f/,K]Cc/(K) = [£/,#]. Since
K C Oq(D)Ha < ^T, it follows that

£/ = [£/,/if] C Oq(D)Ha f)UCHa.

By Lemma 14.1, NM(U) = UK and Ea Q F(H). Consequently, because
U C ifa, we obtain M n if = I/if and A^H(^) 2 M.

Finally suppose D±HCiM*. Then ^ n M * / l and [iJCT n M*, if] C
Ha n M*a = 1 because K C M*a. Thus CH<r(K) ̂  1, and this implies that
g G r2(if) because «(fl") is empty. Then, by Theorem 12.5(e), iJCTDM* = 1
because D C M* and Sq

2(D) is not empty. This contradiction completes
the proof of the corollary. Q

As a last application of Theorem 14.7 in this section, we obtain some
more information on the situation of Theorem 14.4.

Lemma 14.13. Assume the situation of Theorem 14.4 in the case for
which \Jta{x)\ > 1.

(a) If <T(N) is not disjoint from TT(M), then M G M& and r2{M) is
empty, i.e., M is a Frobenius group with kernel Ma.

(b) If y G M a
# , CG(y) %M,g G G, and N(y)9 = N, then M contains

an element m such that N(y)rn = N.

Proof, (a) Take q G TT(M) n *(N), Q G Sq\M), and M* G JK(NG{Q)).
Since <J(M) is disjoint from cr(iV) by Theorem 13.9, Q lies in some comple-
ment E of Ma in M. By Theorem 14.4(d),

q G TT(M) fl cr(A )̂ C 0(N) C /?(G).

For some g e G, Q <Z N9. By Corollary 12.14, M* = iV9' because
q G /?(iVp). By Theorem 14.4(c) and Lemma 12.1(g),

*((x)) C r2(AT) C (J(M) - /?(M).

In particular, <J(M) / /3(M) and a(M n TT(M*) 2 «(M*). Hence Propo-
sition 14.2(g) yields M £ Jt&>2. If M G ^^»1, then <? € «(M), and, by
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Theorem 14.7(a) and (b), a(M) n ?r(M*) C /c(M*), which is false. Thus
M ^ JM^ , whence M G JM&.

Suppose T2(M) is not empty. Take any p G TZ(M). By Lemma 12.1(g),
p £ (3(G). Hence the inclusions above show that p £ a(N) U T2(N). It
then follows that all the elements of £P

1(N) are conjugate in N because
rP(N) < 1.

Now take A G SP
2(E). Since CG(Q) C N9, we have [A,Q] / 1. By

Corollary 12.10(c), q G T\(M). Then Corollary 12.9 yields subgroups Ao,
A\ G SP

1(A), not conjugate in G, such that

Ao C CG(Ma) C CG(x) C iV and Ax C CG(Q) C iV .̂

Obviously this contradicts the above statement about £P
1(N). Therefore

T2(M) is empty and the proof of (a) is complete.
(b) Since Co(y) % M, Theorem 14.4 shows that \JKa{y)\ > 1 and then

that N(y) is denned. By Theorem 14.4, both MniV and (M Pi N(y))9

complement Na in N. Hence there exists n G N such that (MnN(y))9n =
M D N. Then x G M9n and Theorem 14.4 yields an element c G CN(X)
such that M9nc = M.

Now m = gnc lies in NQ{M) = M and satisfies N(y)rn = N(y)9nc =
Nnc = JV\ D

15. The Subgroup MF

In this section we will prove some results about the Fitting subgroup
F(M) and the largest normal nilpotent Hall subgroup Mp of a maximal
subgroup M of G. It is easy to see that Mp is the product of the normal
Sylow subgroups of M and so is well defined and lies in Ma.

Throughout this section we use the following notation:

M is a maximal subgroup of G,
K is a Hall «(M)-subgroup of M,
U is a complement of KMa in M for which

KU is a complement to Ma in M.

Lemma 15.1. The following conditions hold.

(a) UMa < M = KUMa, K is cyclic, Ma C M', and Mf/Ma is
abelian.

(b) If K / 1, then M' = [/Mff and 17 is abelian.
(c) If X is a nonidentity subgroup of U such that CM<T(-^) / 1, then

^ ( C G ( X ) ) = {M} and X is a cyclic r2(M)-subgroup.
(d) The group (Cu(x) \ x G M# ) is abelian.
(e) If U / 1, then £/ contains a subgroup UQ, of the same exponent as

U, such that U$Ma is a Frobenius group with kernel Ma.
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Proof. By Theorem 14.7(d) and (h), K is cyclic and if if 7̂  1, then M' =
UMa. By Corollary 12.10(b), (M/Ma)' is abelian and, by Theorem 10.2(c),
Ma C M'. This proves (a) and (b).

By Corollary 14.3, the group X in (c) must be a T2(M)-group and we
have ^(CG(X)) = {M} if X is cyclic. Since M has an abelian Hall
r2(M)-subgroup by Corollary 12.10(b) and, because CMa(A) = 1 for every
A e £P

2(U) by Theorem 12.5(d), X is indeed cyclic.
In Theorem 12.12, (d) and (e) have been proved under the assumption

that K{M) is empty, i.e., K = 1. If if ^ 1, then U is abelian by (b). In this
case (d) is trivial and (e) is obvious from the very short and easy argument
in the proof of Theorem 12.12 that deals with the case that CE(S) — E. •

Theorem 15.2. For every M e Jt, 1 C MF C Ma C M' C M. Suppose
MF / Ma and let p = |if |, if* = CMa(K), and q = |if*|. Then

(a) M is of type <^i, i.e., M = KMa,
(b) p and q are primes and q G 7r(Mi?) fi /3(M),
(c) M has a normal Sylow ^-subgroup Q (contained in M/r),
(d) a complement D of Q in Ma = M' is nilpotent,
(e) Qo — CQ(D) is a normal subgroup of M,
(f) Q = Q/QQ is a minimal normal subgroup of M/QQ and is elemen-

tary abelian of order </p, and
(g) M" = Ma' C F(M) = QCM(Q) = CM(Q) = ^ ( i f 7 ) C Mff,

and Ma = M'.

Proof. As mentioned earlier in this section, Mp Q Ma and Ma C M'.
Clearly 1 C Ma and M' C M. We must show that Mp 7̂  1. So assume
that MF C Ma, i.e., Ma is not nilpotent. By Lemma 14.1, this implies (a)
and, by Theorem 14.7(f), (a) implies that q = |if*| is a prime.

Let ifi be a subgroup of if having prime order. By Proposition 14.2(a),
if acts in a prime manner on Ma. By Lemma 6.3(a), Ma = [Ma,K].
Thus [Ma,K] 2 F(Ma). Therefore, by Theorem 3.8, if* n F{M) / 1.
Thus if* lies in Q = Oq{M). It follows from Proposition 1.5(d) that if
acts regularly on Ma/Q. Therefore, by Theorem 3.7 (applied to the group
KiMa/Q), Mfj/Q is nilpotent. This proves (c) and (d).

By Proposition 1.5(a), we may choose a if-invariant complement D of
Q in Ma. Then Qo = CQ(D) is a if jD-invariant proper subgroup of Q
because Ma is not nilpotent. Then NQ(Q0) D QO and NM{QO)/QO has
a minimal normal subgroup Q1/Q0 such that Q\ C Q. If if* C Qo or
if* 2 Qi, then if acts regularly on DQ1/Q0, and therefore Theorem 3.7
implies that D centralizes Qi/Qo- But, by Proposition 1.5, this implies
that Qi = CQ1(D)QO = Qo, a contradiction. This proves that Qi D if*
and Qo 2 if*- The same argument, with Qi in place of Qo, would show
that Qi 2 if* if Qi C Q. Thus Qi = Q. This proves (e) and the first two
assertions of (f).
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Since D is nilpotent, but Ma is not, Proposition 1.5(d) yields

F(M) = QCM(Q) = CMa{Q) c MG.

In particular, C-Q(D) ^ Q. Therefore, by minimality of Q, C-Q(D) = 1.
Hence we can apply Theorem 3.10 to the action of the Frobenius group
KD on Q and deduce that p=\K\ is a_prime, \Q\=jp, and D' C CD(Q).
It follows that MJ C QD1 C CMAQ) Q CM<T{K*), whence the latter
subgroup is normal in Ma and therefore in KMa = M. Then minimality
of Q forces CMO (K*) to centralize Q and this completes the proof of (g).

Finally, if q £ /?(Af), then Theorem 5.5(a) shows that (DK)' = D cen-
tralizes Q, a contradiction. Thus q G /9(M) and the proof is complete. •

Corollary 15.3. Suppose H is a nonidentity Hall subgroup of Ma. Then

(a) CM(H) = CM^i^X with X a cyclic T2(M)-subgroup, and
(b) any two elements of H conjugate in G are already conjugate in

NM(H).

Proof. By Proposition 14.2(bl) and (e), CM(H) is a K(M);-group. Hence
CM(H) = CM<7(H)X with X conjugate in M to a subgroup of U and
Lemma 15.1(c) yields (a).

Suppose x, y £ H, g e G, and x = y9. Then x G M9, and Theorem 14.4
yields an element c G CQ{X) such that Mgc = M. Then gc G M and
y9C = x.

So assume that H is not normal in M. Then MG is not nilpotent and,
with Q as in Theorem 15.2, we have QH < M because Ma/Q is nilpotent.
It follows that Q f) H = 1 and M = NM{H)Q by the Frattini argument.
Write gc = na with n G NM{H) and a e Q. Then yna = x and arra-1:*;"1 =
j ^ x " 1 G Q n H = 1 because Q < M. Thus a G CM 0*0 and f = x as
required. •

Corollary 15.4. Suppose if is a nonidentity nilpotent Hall subgroup of G.
Then our maximal subgroup M can be chosen in such a way that H C Ma.

Proof. Let 5 be a nonidentity Sylow subgroup of H and M G JZ(NG{S)).

Then S C Ma and Corollary 15.3(a), applied with 5 in place of H, shows
that Ma contains every Sylow subgroup of M that lies in CM(S)- Thus
-H" Q Ma because H is nilpotent. •

Corollary 15.5. Let H = MF and Y = 0a ( M )/(F(M)). Then

(a) y is a cyclic r2(M)-subgroup of F(M),
(b) M" C F(M) = CM(H)H = F(Ma) x y,
(c) if C M; and M' /# is nilpotent, and
(d) if K / 1, then F(M) C M;.
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Proof. Parts (a), (b), and (c) follow directly from Lemma 15.1(a) if H =
Ma and from Theorem 15.2(g) and Corollary 15.3(a) if H ^ Ma. If K ^ 1,
then Ma C M' and M/Mf ^ K by Lemma 15.1(a) and (b). Since K is
a T2(M)'-group by definition (see Section 14), M1 contains Y. Thus (d)
follows. •

Corollary 15.6. Suppose M G Jt& (i.e., K / 1). Then K* = CMAK)
is a nonidentity cyclic subgroup of both Mp and M". Furthermore, MF is
not cyclic.

Proof. By Theorem 14.7(h), M = KM' and K C\ M' = 1. Therefore,
by Lemma 6.3, K* C M". By Proposition 14.2(c) and Theorem 14.7(d),
K* / 1 and K* is cyclic. By Theorem 15.2(b) and (c), K* C MF.

Finally, if MF is cyclic, then F(M) is cyclic by Corollary 15.5, and we
have Mf C CM(F(M)) C F(M) and if" C M" = 1, a contradiction. Q

Theorem 15.7. Suppose F(M) is not a T7-subgroup of G. Let H =
and choose g eG- M such that X = F(M) n F(M)5 is not trivial. Take
E, ^1,^2, E3 as in Sections 12-13. Then

(a) M G ^ > U Jtg>x and F = Ma,
(b) X C. H and X is cyclic,
(c) M' = F(M) = Max Oa(My(F(M)),
(d) E3 = 1, E2 < E, and E/E2 = E\, which is cyclic, and
(e) one of the following conditions holds:

(1) ME JM$; and H is abelian of rank two,
(2) p = \X\ is a prime in a(M) - /3(M), OP(H) is not abelian,

Op'(H) is cyclic, and the exponent of M/H divides q — 1 for
every q € n(H),

(3) p = \X\ is a prime in a(M) -/?(M), Op/(ff) is cyclic,
has order p3 and is not abelian, M G Jl&x, and
divides p + 1.

Proof. Take p G ic(X) and Xi G fp1 W - If OP{M) is cyclic, then X1

is normal in both M and Mp, which is impossible. Thus OP(M) is not
cyclic and, by Corollary 15.5, p G a(M). Hence X C Ma. Consequently,
by Theorem 10.1(a) and Lemma 12.17, CG(Xi) % M and X is cyclic.

Since JV(CH(X{)) # {M}, Theorem 12.13 and the Uniqueness Theorem
show that CH(XI) is abelian of rank less than 3. Thus TT(H) is disjoint from
(3(M) and, by Proposition 14.2(g) and Theorem 15.2(b), M £ Jt&2 and
H = Ma. This proves (a). Since X C Ma, we also obtain (b).

Now if is a Hall (3(M)'-subgroup of itself, and hence is centralized by
E' because of Lemma 12.19. By Corollary 12.6(d), CM<T(^) = 1 for every
x G E3#. But E3CEf. Therefore E3 = 1. Consequently (c) and (d) follow
from Corollary 15.5 and Lemma 12.1.

Suppose H is abelian. If M G ^^x, i.e., K ^ 1 and U = 1, then
Lemma 15.1(b) shows that if = Ma = M', contrary to Corollary 15.6,
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which implies that M" ^ 1. Therefore M G Jt& and condition (1) of (e)
holds.

So assume that H is not abelian. Then OP>{H) is abelian because
CH{X\) is abelian. Hence P = OP(H) is not abelian and X is a p-group.

Let Zo = J2i(Z(P)). Clearly Xi ^ Zo. Let B = X1 x Zo. Now we know
5 G £2(P)n£*(P) because C#(Xi) has rank less than 3. Thus \Z0\ = p and
Z(P) is cyclic. Moreover, by Lemma 10.13(b), CP(X1) = CP(B) = X± x Z
with Z cyclic. Thus X = Xi.

Since P G <2f by Theorem 12.13, Corollary 9.2 shows that OP>(H) G <2f
if r(Op/(ff)) > 2. However we have Op/(ff) £ ^ because CH(X) £ 9/.
Consequently the abelian group OV\E) must be cyclic. It follows that
Z(H) is cyclic. Therefore, if A is any subgroup of M that acts regularly on
Z(H), then \A\ divides q - 1 for all q G ir(H).

It follows that condition (2) of (e) holds if M G Jt& because, in that
case, Lemma 15.1(e) yields a subgroup of the same exponent as M/H,
which acts regularly on H.

So we may assume that M G J0t&>x. By Theorem 14.7(f) and Corol-
lary 15.6, K* = CH(K) has prime order and is contained in M". Since
M = HK, K is cyclic, and OP>(H) is abelian, we have K* C M" C P.

By Proposition 14.2, CH(k) = K* for every k G K*. Thus, if (c2) is
false, then K* = fli(Z(P)) and \K\ does not divide p — 1. Consequently
Z(P) C C H (^ ) = K* and, by Theorem 5.5(b), r(P) = 2. Hence Corol-
lary 10.7(b) shows that P has order p3. Then |if| divides p + 1 by Theo-
rem 2.5. Thus condition (3) of (e) holds and the proof of the theorem is
complete. •

As a last application of Theorem 15.2, we obtain some more information
on the situation of Corollary 14.12.

Theorem 15.8 (Feit-Thompson, 1991 [9]). Assume the situation of
Corollary 14.12 and suppose T2(H) is not empty. Let q G TT(K). Then
q = \K\, q is the unique prime in T2(H), and T2(M) is empty.

Proof. By Theorem 14.7(f), \K\ = q. Let D = H n M*, a complement of
Ha in H. There exists A in S2(D). By Lemma 12.1(g), A G £*(G). Since
K lies in F(D) by Corollary 14.12, Corollary 12.6(a) yields

(15.1) A C CG(K) C M*.

As g G <J(M*), Corollary 12.6(b) shows that A C M*a. If M*a / M£, then

(15.2) F(M*) contains A and a Sylow g-subgroup Q of M*

by (g) and (c) of Theorem 15.2. Since (15.2) is obvious if M*a = M£, it is
always valid.

By (15.2), A centralizes Q if A is not a g-group, and then Corollary 9.2
shows that Q £ % because A £ <%. If A is a (/-group, A G £q*(G). In
either case, it now follows from the Uniqueness Theorem (Theorem 9.6)
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that q $ (3(G). Therefore, by Proposition 14.2(g) and Theorem 15.2(b),
M* is of type £?\ and M*a is nilpotent. Since, by Lemma 12.17,

KCCMV(K*)CM*a',

Q is not abelian. So Q G $/ by Theorem 12.13. As noted above, this forces
A to be a g-group. Since A was chosen arbitrarily in £2(D),

T2(H) = {q}.

Now, by Theorem 12.7(b), A contains a subgroup X of order q that
centralizes Ha. If X = K, then, by (15.1),

H = Ha(H H M*) C (CG(K), M* ) C M*,

a contradiction. Thus X ^ K. As K is a Sylow g-subgroup of M, we have
X % M. For U as in Corollary 14.12, UK is a complement to Ma in M
and U C Ha. Therefore U centralizes X and

CG(U) 2 M.

If there exists r G r2(M), then Corollary 12.6(b) (applied to fii(Or(£7)) in
place of A) yields

CG(U) C CG(ni(Or(^))) C M,

a contradiction. Thus T2(M) is empty, as desired. D

Corollary 15.9. Let x G Ma# and N G JX{CG{X)). Assume that

CG{x) % M and N $ Jt*.

Take r G 7r((a;)) and xr of order r in (x). Then, for a suitable choice of a
complement E to Ma in M,

(a) (D. Sibley [24]) M G ^f> and N G ^ ^ 2 ,
(b) (Feit and Thompson, 1991 [9]) E is cyclic and M is a Frobenius

group, and
(c) r G r2(A0, NE((xr)) CEniV, and |£ n iV| = \N/Nf\.

Proof. Take j / G CG(x) - M. Then M, M^ G ̂ ( a ; ) and M
Hence we are in the situation of Theorem 14.4 with \^K(T{x)\ > 2. Therefore

{N} = Jt{CG{x)\ Ne^^re r2(N) n a(M),
and M n N is a complement to Na in N.

Let if i be a Hall /c(iV)-subgroup of M D N. By Proposition 14.2(g) and
(a), |JKI| is prime and there exists an abelian normal complement U\ to K\
inMfliV for which

(15.4) C^ (#!) = !.
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Let R be a Sylow r-subgroup of M n N (and therefore also of N). Since
rer2(N)na(M),

(15.5) RQUn also NG(R) C M,

by Corollary 12.10(d). Moreover, by Corollary 14.12, with N and M in
place of M and # , respectively, M G ̂ j r . This proves (a) and shows
that Ma is nilpotent. Hence Ma C F(M). Since Kii? is not nilpotent, by
(15.2), Ki % Ma. Thus Kx n Ma = 1. We choose £ to contain ifi.

Now x G Ma C F(M) and CG(z) g M. Hence F(M) is not a T/-
subgroup of G. Since T2(N) is not empty, T2(M) is empty by Theorem 15.8.
Thus E2 = 1. By Theorem 15.7(d), E is cyclic. Moreover, K(M) is empty
because M G ^j?-. Therefore M is a Frobenius group and (b) follows.

As NG((xr)) D CG(x), we have NG((xr)) C iV by (15.1). Consequently
EnN D NE((xr)). Since

i f iQ£n iVCMnJV = i ^ and C^ (if i) = 1,

K\ = CEHN(KI). But then E n N = K because E is cyclic. Now (c)
follows from (15.1). •

16. The Main Results

Here we obtain our main results on the structure and embedding of the
maximal subgroups of G. These are Theorems A-E and, more or less equiv-
alently, Theorems I and II. We state them together with the prerequisite
definitions and notation not given in Section 1. The latter allow the reader
to compare conveniently what we have achieved here with the main results
of Chapter IV in FT, Theorems 14.1 and 14.2. As mentioned earlier, they
are best understood as generalizations of intermediate theorems in the proof
of the Feit-Hall-Thompson CiV-theorem. Specifically, Theorem I is anal-
ogous to Theorem 14.1.5 of G, which asserts that a nonnilpotent solvable
CAT-group is either a Frobenius group or a three step group (as defined in
G, p. 401, not as defined here). Theorem II is analogous to Theorem 14.2.3
of G, which asserts that in a minimal counterexample G to the CiV-theorem
every maximal nilpotent subgroup H is disjoint from its conjugates (so it
is a trivial intersection set in G with normalizer NG(H)).

Like the analogous results in the proof of the CiV-theorem our main
results lay the basis for the character theoretic part of the proof.

Throughout this section let M denote an arbitrary maximal subgroup
of G and let Mp denote the largest nilpotent normal Hall subgroup of M.
In FT the group Mp somehow plays the role of the Frobenius kernel of M
and is used in the statement of the main results in an essential way. So far
in these notes most arguments and results have centered around a certain
normal Hall subgroup Ma of M (equal to MF in the CiV-case). Actually
Ma and Mp are closely related and nearly always coincide.
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For the statement of the main results it is convenient to use the two
prime sets a(M) C TT(M) and K(M) C TT(M) -cr(M). Although their exact
definitions are not of importance for this purpose, we repeat them here for
the sake of clarity:

a(M) = {p e TT(M) I NG(P) C M for some
(and hence every) Sylow p-subgroup P of M} ,

K(M) = {pG TT(M) - cr(M) | every Sylow p-subgroup P of M is cyclic
and contains a nonidentity element x such that CM^X) ^ 1} •

For any subset X of G, ./#(X) denotes the set of all maximal subgroups of
G that contain X. For arbitrary subsets X and V of G, we have defined

xeX y }

We now state Theorems A-E and give their proof afterwards.

Theorem A. The following conditions are satisfied by M.

(1) M has a unique normal Hall cr(M)-subgroup Ma and Ma is also a
cr(M)-Hall subgroup of G.

(2) M has a cyclic Hall /^(M)-subgroup K.
(3) KMa has a K-invariant complement (7 in M and thus

EfM* < M = KUMa and [7 < UK.

(4) Cc/(fc) = 1 for every keK*.
(5) K* = CMAK) i s n o t t r i v i a l a n d if K # 1> t h e n ^ M ( ^ ) = K X K*

for every A: G K # .
(6) 1 C MF C Ma C M' C M and M'/MF is nilpotent.
(7) M;/ C F(M) = CM{MF)MF and if K / 1, then F(M) C M'.
(8) If MF ^ Ma, then £7 = 1, F(M) is a T/-subset of G, and K has

prime order.

For Theorems B-E we introduce some further notation:

Z = K xK*,

Z = Z -(KUK*),

Since Ma C M' C M = KUMa, each of the groups K and U can be trivial,
but not both. There are three cases. In accord with previous notation
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they are:

(&) K = 1 and U ^ 1,

(^i) K / 1 and U = 1,

(5*2) if ^ 1 and £/ ^ 1.

We have defined Mg^ = the set of all maximal subgroups of type @*\ or ^2-

Theorem B. The following conditions are satisfied by M.
(1) Every Sylow subgroup of U is abelian of rank at most two.
(2) (UnMa) is abelian.
(3) U has a subgroup U$ that has the same exponent as U and satisfies

UonMa = l.
(4) ^K(CG{X)) = {M} for every nonidentity subgroup X of U such

that CMAX) ± 1-
(5) The set A(M) - MG is a T/-subset of G.

Theorem C. Suppose K ^ 1. Then the following conditions hold.
(1) U is abelian and NG(U) % M.
(2) K* is cyclic, 1 C K* C M F , but Mp is not cyclic.
(3) M' = UMa and if* C M".
(4) There exists a unique M* G ^^2 such that K = CM*CT(if*) and

if* is a Hall /<M*)-subgroup of M*.
(5) JK{CG{X)) = {M} and ^ (C G (F) ) = {M*} for all subgroups

X C if* and Y C if of prime order.
(6) M D M* = Z = if x if *, which is a cyclic group.
(7) M or M* is of type ^2 and every H e Jtg> is conjugate to M or

M* in G.
(8) Z is a Ti-subset of G with iVG(Z) = Z.
(9) ^M(Z) is equal to A0(M) - A(M) and is a Ti-subset of G.

(10) If [/ / 1, then if has prime order and F(M) is a Ti-subset of G
containing Ma.

(11) If U = 1, then if* has prime order.

Theorem D. The following conditions are satisfied by M.

(1) Whenever two elements of Ma are conjugate in G, they are conju-
gate in M.

(2) For every g € G — M, the group Ma n M9 = Ma n Ma
s is cyclic.

(3) For every x € Ma#, CM(^) is a Hall subgroup of CG(x) and has
a normal complement R(x) in CG(x) that acts sharply transitively
by conjugation on the set { M9 \ g € G, x e M9 }.

(4) If x G Ma# and CG(#) 2 ^5 then GG(^) lies in a unique maximal
subgroup N = N(x) of G. Furthermore,

R(x) = CNa{x), Na = NF,xe A(N) -Na,N
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and M (1 iV is a complement of Na in TV. Also, if N G
then M G ^#jr, M is a Frobenius group with cyclic Frobenius
complement, and Mp is not a T/-subgroup of G.

Theorem E. For each x G M a ^ , take R(x) as in Theorem D. Define

M= (J

Then

(1) |«

Let M i , . . . , Mn be maximal subgroups of G such that every maximal
subgroup of G is conjugate in G to exactly one M;. Then

(2) TT(G) is the disjoint union of the sets a(Mi).

Let G be the union of the sets ^ ( M ; ) . Then

(3) G is the disjoint union of the sets ^oiMi)^ G^ = G if JM& is
empty, and G# is the disjoint union of G and % ( Z ) if -#<^ is not
empty and M G

The cosets xR(x) appearing in Theorem E are denoted by Ax in FT .
They are used in the study of so-called tamely imbedded subsets of G
(defined in Section 13 of F T and later in this section). In Lemma 14.5(a)
we have shown that xR(x) D yR(y) is empty whenever x and y are distinct
elements of G for which these sets are defined.

All these results have already appeared elsewhere in this book or are a
direct consequence of previous results. Consequently their "proof" can be
given schematically.

Theorem A

Theorem 10.2(b) -+ (1)

Lemma 15.1(a) -> (2)

Proposition 14.2(a)(b)(c) -> (3)(4)(5)

Theorem 15.2(a)

Corollary 15.5 } -+ (6) (7)(8)

Theorem 15.7(a)(b)
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Theorem B

Lemma 12.1(d)
(1)

Theorem 12.5(b)

Lemma 15.1(d)(e)(c) -> (2)(3)(4)(5)

Theorem C

Corollary 14.12
Corollary 15.6 } -> (1) (2)(3)

Lemma 15.1(b)

Theorem 10.1(b)

Theorem 14.7(a)(b)(c) } -> (4) (5)

Proposition 14.2(c)

Theorem 14.7(d)(f)(g)(e) -> (6)(7)(11)(8)

Proposition 14.2(d)
(9)

Theorem A(3)(5)

Proposition 14.2(g)

Theorem 15.7(a)

Theorem D

Corollary 15.3(b) -* (1)

Lemma 12.17 -> (2)

Theorem 14.4(b)

Theorem A(8) } -+ (3)(4)

Corollary 15.9

Theorem E

Lemma 14.5(c) -+ (1)

Theorem 13.9 -> (2)

Corollary 14.9 -* (3)
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Now we present the definition of the five types of maximal subgroups
(essentially) as in FT . Some differences between them and between Theo-
rem II below and Theorem 14.2 of F T will be discussed at the end of this
section. We shall see that Type I corresponds to case ^", Type II to case
&2>> and that Types III, IV, and V constitute a refinement of case £?\.

Let 7T* be the set of all primes p G TT(G) such that a Sylow p-subgroup P
of G is cyclic or contains a subgroup A of order p such that Cp(A) = Ax B
with B cyclic. (By Lemma 10.13, the latter condition holds if P is not
abelian and has a maximal elementary abelian subgroup of order p2.) For
the definition of Types I-V, let H = Mp. (As above, Mp denotes the
maximal nilpotent normal Hall subgroup of M.) We say that M is of
Type I if M enjoys the following properties:

(Ii) 1 C H C M,
(Iii) each complement E to H in M contains a normal abelian subgroup

A such that CE(x) C A for all x G H*,
(Iiii) each complement E to H in M contains a subgroup EQ of the same

exponent as E such that HEo is a Frobenius group with Frobenius
kernel iJ,

(Iiv) every Sylow subgroup of M/H is abelian of rank at most 2,
(Iv) M satisfies at least one of the following conditions:

(a) H is a TJ-subset in G,
(b) H is abelian of rank 2,
(c) for every p G n(H), p G TT* and the exponent of M/H

divides p — 1; for some such prime p, we have OP>(M) is
cyclic.

Remark. In general a group M satisfying conditions (Ii)—(Iiii) with H =
Mp is called a group of Frobenius type, and H is called the Frobenius kernel
of Af.

We say that M is of Type II, III, IV, or V, if

(Tl) M' is a Hall subgroup of M that contains if,
(T2) a complement V of H in Mf is nilpotent, and NM(V) has a cyclic

subgroup W\ of order |M/M;| ,
(T3) H is not cyclic and M" C HCM(H) = F(M) C M',
(T4) H contains a nonidentity cyclic subgroup W^ such that CM1 (#) =

W2 for all x G W*, _
(T5) if Wo is any nonempty subset of the set W = WXW2 - (W1 U W2),

then NG(W0) = W{W2,
(T6) if AQ and A\ are any two subgroups of prime order in V that are

conjugate in G but not in M, then CH(AQ) = 1 or CJJ(AI) = 1,
(T7) for Type II-IV:

(i) W\ has prime order, and
(ii) F(M) = CM(H)H is a T/-subset in G,
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for Type II:
(Iliii) V is abelian of rank at most 2,
(Iliv) V ^ 1 and NG(V) £ M,
(IIv) NQ(A) C M for every nonempty subset A of M' such that

CH(A) # 1,

for Type III:
(IIHii) V is abelian and NG(V) C M,

for Type IV:
(IViii) V is not abelian and NG(V) C M,

for Type V:
(V) V = 1 and M satisfies at least one of the following conditions:

(a) M' = H is a TJ-subset in G,
(b) for some prime p G 7r(i7) D ?r*, OP>{H) is cyclic and

|Wi| = |M/M' | divides p - 1 ,
(c) for some prime p G 7r(iJ) fl TT*, OP>(H) is cyclic, and

= p3, and \Wi\ divides p 4-1.

Remark. By using the existence of Hall subgroups in solvable groups and
the nilpotence of solvable groups possessing fixed-point free automorphisms
(Theorem 3.7), one can easily show that conditions (T1)-(T4) (for H =
Mp) are equivalent to the definition of a three step group in F T (p. 780).

For the sake of clarity we prepare the proofs of the two main theorems
(stated below) by the following proposition.

Proposition 16.1. (a) M is of Type I if and only if M G
(b) M is of Type II if and only if M G Jt&2.
(c) M is of Type III or IV if and only if M G Ji&x and
(d) M is of Type V if and only if M G JM&X and MF =
(e) M' = UMa if and only if M is not of Type I.
(f) MF = Ma if and only if M is of Type I, II, or V.

Proof. Let H = MF. By Theorem A(6),

1CH CMaCMf CM.

Suppose M G ̂ > , i.e., K = 1 and U ^ 1. By Theorem A(8), H = Ma.
Thus U complements H in M. Therefore Theorem B(l), (2), and (3)
show that M satisfies conditions (Ii)-(Iiv), and Theorem 15.7(c) yields
condition (Iv). Thus M is of Type I.

Conversely, if M is of Type I, but not of type ^", then K ^ 1 and
1 C F = CH(K) by Theorem C(2). On the other hand, since we know that
K n ^ C i ^ n Ma = 1 and that K is a nonidentity cyclic Hall subgroup of
M, condition (Iiii) implies that CH(K) = 1. This contradiction completes
the proof of (a).
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Now we may assume that M G Jlg>, i.e., K ^ 1. By Theorem C(3),
M' = UMa. Thus Mf is a Hall subgroup of M that contains H and
complements the cyclic subgroup K. Define

W± = K and W2 = K* {= CM(T (K))

and let V be a if-invariant complement of H in M'. We may let V = U if

By Theorem A(6) and (7), V is nilpotent and

M" C F(M) = CM(H)H C Af'.

By Theorem C(2), W2 = K* is cyclic, 1 C K* C H, and MF is not cyclic.
Thus M satisfies conditions (T1)-(T3) in the definition of Types II-V,
and (T4) and (T5) follow directly from Theorem A(5) and Theorem C(8),
respectively.

Suppose Ao and Ax = Ao
9 (g e G) are as in (T6), with CH(Ai) / 1

(i = 1,2). If H = Ma, then V -U and Theorem B(4) shows that {M} =
J({CG{A1)) = ^(CG(A0)y = {M}^, and hence g e NG(M) = M, a
contradiction. Therefore H ^ Ma. By Theorem A(8),

[/ = l a n d i i C F C M ' = UMa = Ma.

Now Theorem D(l) shows that Ao and A\ are conjugate in M, again a
contradiction.

This completes the proof of conditions (T1)-(T6).
Assume K ^ 1 and U ^ 1, i.e., M G -#̂ z>2. Then V = U because

Ma - H by Theorem A(8), and conditions (i)-(IIv) in (T7) follow directly
from Theorem C(l) and (10) and Theorem B(l) and (4). Thus M is of
Type II.

Assume next that K ^ 1 and £7 = 1, i.e., M G Jtg>x. Then V C
M7 = Ma. Suppose F / l , i.e., H ^ Ma. Then, again by Theorem A(8),
W\ = K has prime order and F(M) is a T/-subset of G. Furthermore,
there exists a prime p G TT(V) fi <J(M) and V contains a Sylow p-subgroup
P of M because V̂  is a Hall subgroup of M. By the Frattini argument and
the definition of cr(M),

NG(V) C yiVG(^) C M.

This proves that M is of Type III or IV if M G JK^ and H ^ Ma.
Finally, if K ^ 1 and ^ = V = 1, then Theorem 15.7(c) yields condi-

tion (T7)(V), and M is of Type V.
In order to complete the proof of (b), (c), and (d), note that if M is of

Type II, III, IV, or V, then TT(VI) C K(M) because WxCsM^ C WxnM' = 1,
Wi is cyclic, and 1 C CH(Wi) C CM9(

WI)-
 T n u s K(M) i s n o t e m P t ^

and this means that M G jtft&>. Now (b), (c), and (d) follow from the
implications proved above and from the obvious fact that M cannot belong
to two of the Types II-V.
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Since M' = UMa if M e Jl&% and UMa = M D M1 if M G JK&, (e)
holds.

If H / Ma, then M e M&x by Theorem 15.2(a), and thus (c) and (d)
yield (f). D

Now this proposition together with Theorem C(4), (6), and (7) yield the
following first main theorem of FT, except the first assertion, which follows
directly from Corollaries 15.4 and 15.3(b).

Theorem I. Two elements of a nilpotent Hall subgroup H of G are con-
jugate in G if and only if they are conjugate in NQ{H).

Either every maximal subgroup of G is of Type I or all of the following
conditions are true.

(a) G contains a cyclic subgroup W — W\ x W2 with the property that
NG(WQ) = W for every nonempty subset Wo of W — W\ — W2.
Also, Wi / I (t = l,2).

(b) G contains maximal subgroups 5 and T not of Type I such that
5 = WiS', T = W2T', S'nW1 = 1, V n W2 = 1, and S n T = W.

(c) Every maximal subgroup of G is either conjugate to S or T or is
of Type I.

(d) S or T is of Type II.
(e) Both S and T are of Type II, III, IV or V (they are not necessarily

of the same type).

The following characterization of the sets A(M) and A0(M), which uses
the notation of the definition of the Types I-V, is a direct consequence of
Proposition 16.1 and Theorem C(9). Actually, it is the original definition
of A(M) and A0(M) on p. 847 of FT, where they are called M and Mi,
respectively. Recall that H =

A{M) = A0(M) = [j CM(x) if M is of Type I,
xeH*

A(M) = [j CM' (x) if M is of Type II,
xeH*

A(M) = Mf if M is of Type III, IV, or V,

A0(M) = A(M) \J <#M(W) if M is of Type II, III, IV, or V.
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The next theorem is concerned with the embedding of A(M) and AQ(M)
in G.

Theorem II. For an arbitrary maximal subgroup M of G, let X = A(M)
or X = A0(M), and let D = { x G X* \ CG(x) £ M }.

Then D C A(M), |^ (CG (x)) | = 1 for all x e D, and the following
conditions are satisfied:

(Ti) Whenever two elements of X are conjugate in G, they are conjugate
in M.

(Tii) If D is not empty, then there are maximal subgroups M±,..., Mn

of G of Type I or II such that, with Hi = MiF (and therefore
Hi C M/).

(a) {\Hi\9\Hj\) = ltori^j9

(b) Mi = Hi(M n Mi) and M n Hi = 1,
(c) ( |^ | , |CM(x) |) = l f o r a l l x G ^ ,
(d) A0(Mi) — Hi is a nonempty Ti-subset in (7 with normalizer

Mi, and
(e) if x G -D, then there is a conjugate y of x in Z) and an index

i such that CG(y) = CHi(y)CM(y) Q M{.
(Tiii) If some Mi in (Tii) has Type II, then M is a Frobenius group (thus

of Type I) with cyclic Frobenius complement, and Mp is not a
TJ-subset in G.

Proof. The set A0(M) is the disjoint union of the sets Ma, A(M) - MCT,
and AQ(M) — A(M). An element of any of these sets is not conjugate to an
element of one of the other two sets because the orders of these two elements
are distinct. Moreover, by Theorem B(5) and Theorem C(9), the latter two
sets are T/-subsets of G (with normalizer M if not empty). Therefore

D = { x G Mf | CG(x) £ M } C Mff,

and (Ti) reduces to the statement that any two elements of MG conjugate
in G are already conjugate in M, which is true by Theorem D(l).

So assume that D is not empty. If x G D, then CQ(X) lies in a unique
maximal subgroup N(x) of G, and N(x) is of Type I or Type II by Theo-
rem D(4). Let stf be the collection of all such subgroups N(x) and let
{ Mi , . . . , Mn } be a subset of si such that each iV G &f is conjugate in G
to exactly one M .̂ Now (Tiii) follows from Theorem D(4). So we must
prove (Tii).

Take some M». By Theorem D(4), H{ - MiF = Mia and (b) holds.
By Theorem E(2), the sets a(Mi) are pairwise disjoint, which implies (a)
because or (Mi) = 7r(Mi(7). Also, by Theorem D(4), A(Mi) - Mi(J is not
empty and, by Theorem B(5), this is a T7-subset of G (with normalizer
Mi). If Mi is of Type I, this gives us (d). Otherwise, by Theorem C(5) and
a short argument, A0(Mi) — A(Mi) and A0(Mi) are T/-subsets of G with
normalizer Mi.
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If x G D, then there exists an element g G G and an index i such
that N(x)9 = M{. By Lemma 14.13(b), we can choose g in M. Then
y = x9 eD,M{ = N(y), and CG(l/) = CHMCMHMM by Theorem D(3)
and (4).

It remains to prove (c). Suppose x G X# and (|#i|, |CM(#) |) / 1- Then
a(Mi) n TT(M) is not empty. By Lemma 14.13(a), M is a Frobenius group
with kernel MCT. This means that AQ(M) = Ma. Therefore x G Ma and
Cjif(a;) C AQ(M) = Ma. Consequently cr(Mj) fi cr(M) is not empty. By
Theorem E(2), this implies that Mi is conjugate to M in G, a contradiction
(since T2(M) is empty, while T2(N) D ir((x)) by Theorem 14.4(c)). D

Remark. A subset X of G satisfying conditions (Ti)-(Tiii) of Theorem II
is here called a tamely imbedded subset of G and the subgroups Hi are said
to form a system of supporting subgroups for X. The realization that the
concept of a T/-subset could be fruitfully extended to the more general
concept of a tamely imbedded subset was one of the major achievements
of Feit and Thompson. As the proof shows, the essence of Theorem II is
that Ma is tamely imbedded in G. Note that if D is empty, then X is a
Tl-subset in G.

Theorem II above corresponds to Theorem 14.2 of FT and differs from
it in two significant respects. First, Theorem II includes (Tiii) and the
condition that each Mi in (Tii) be of Type I or II. These conditions were
kindly communicated to us by Feit and Thompson and by David Sibley,
respectively. Second, condition (Tii)(d) replaces a stronger condition (Def-
inition 9.1(ii)(e), pp. 803-804) in the definition of a tamely imbedded subset
in FT, which states that

for M; = | \JCMi(x)\-Hi,
{ )

Mi is a nonempty T/-subset in G with normalizer Mj.

This amounts to Mi being of Type I, a fact we cannot prove. How-
ever, Feit and Thompson have informed us that condition (Tiii) suffices for
Chapter V (specifically Section 33) in FT.

As to the definition of Types I-V, conditions (Iv)(c) and (T7)(V)(b)
and (c) are a little more explicit than the corresponding conditions in FT.
Second, condition (T7)(IIv) is also included in the definition of Types III
and IV in FT, but is apparently not used later. Furthermore, there is also
a slight difference between our definition of Type I (and of Frobenius type)
and that in FT. There we find the stability groups /#(#) of the nontrivial
irreducible characters 0 of H in place of the centralizers CE(X) for x G H&.
However it is well known and an easy exercise in elementary character
theory that if H is a normal Hall subgroup of a finite group M, then an
element x G M fixes some nontrivial irreducible character of H if and only





APPENDIX A

Prerequisites and p-Stability

Among the main tools for shortening the first half of the proof of FT
are Theorems 6.1 and 6.2, which are obtained by use of the concept of

p-stability. In Section 6 these are obtained from theorems in G, which have
shorter proofs if one restricts to groups of odd order and uses a different
characteristic subgroup in place of J(S). In this appendix and Appendix B
we outline these shorter proofs. Although we use some results from Chap-
ters 1-6 of G, this makes it unnecessary to use some other results from G,
as described below.

This appendix is devoted mainly to proving Theorem 6.1 and a spe-
cial case of Theorem 6.5.3 of G that will be applied in Appendix B. For
those who wish to read both this appendix and Appendix B, the prerequi-
sites for this book may be reduced and handled as follows. One first reads
Chapters 1-6 and Section 7.3 of G, except for Theorems 2.8.3 and 2.8.4
(pp. 42-55) and Sections 3.8 and 6.5. Next one reads Sections 1 and 2 in
Chapter I of this book, followed by this appendix and Appendix B (includ-
ing parts of Sections 3.8 and 6.5 of G mentioned later in this appendix).
In particular, one does not need to read Chapter 8 and most of Chapter 7
of G.

Additional prerequisites for the proof of the CiV-theorem are described
in Appendix D.

To begin, we refer the reader to pages 39-40 of G, which introduce the
groups GL(2, q) and several related families of groups. This is followed
in G by an important theorem of Dickson (Theorem 2.8.4) with a rather
long, complicated proof. Fortunately, we require only an easy corollary of
Dickson's Theorem, which we prove directly.

Theorem A.I. Suppose V is a 2-dimensional vector space over a field F
of odd characteristic p and G is a finite, irreducible group of linear trans-
formations of V over F such that \G\ is odd.

Then p does not divide \G\.

135
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Proof. By Theorem 2.6 of this book, G has an abelian Sylow p-subgroup
N that contains G'. Then N < G. By G, Theorem 3.1.3, p. 62, N = 1. Q

Now we move to Section 3.8 of G. In place of Theorem 3.8.1 there,
we use the following result, which has the same hypothesis, but a weaker
conclusion.

Theorem A.2. Let p be an odd prime. Let G be a group of linear trans-
formations acting faithfully and irreducibly on a vector space V over an
algebraic closure of Fp . Assume that G is generated by two p-elements
which have a quadratic minimal polynomial on V.

Then G has even order.

Proof. Follow the proof of Theorem 3.8.1 of G up to the point, on page 105,
where V is shown to have dimension 2. Since G is generated by two p-
elements, Theorem A.I shows that \G\ is even. •

By continuing to the top of page 109 of G, but using Theorem A.2
in place of Theorem 3.8.1 of G, we obtain the following substitute for
Theorem 3.8.3 of G. (Incidentally, some very short proofs of Theorem 3.8.2
of G are given in [10, pp. 4-5].)

Theorem A.3. Let p be an odd prime and G be a group with no nontrivial
p-subgroups. If G is not p-stable, then G has even order.

We now move to Section 6.5 of G. By using Theorem A.3 instead of
Theorem 3.8.4(e), we obtain special cases of Theorems 6.5.1-6.5.3, which
we state as follows.

Theorem A.4. Let p be an odd prime and G be a solvable group of odd
order. Let P be a p-subgroup of G.

(a) If OP(G) = 1, then G is p-stable.
(b) If P is a Sylow p-subgroup of G, then every normal abelian sub-

group of P is contained in OP^P(G).
(c) Suppose Opt(G)P < G and A is a p-subgroup of NG(P) for which

[P,A,A] = 1. Then ACG(P)/CG(P) C OP(NG(P)/CG(P)).

Note that Theorem A.4(b) is just Theorem 6.1. We now apply (c).

Theorem A.5. Suppose p is an odd prime, G is a solvable group of odd
order, P is a normal p-subgroup of G, and X is a subgroup of G that is
generated by abelian p-groups, each of which is normalized by P. Then

(1) XCG(P)/CG(P) C OP(G/CG(P)), and
(2) if OP>(G) = 1 and COp(G)(P) Q P , then X C OP{G).
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Proof. Note that G = NG(P). Let C = CG(P). For each abelian p-
subgroup A of G normalized by P we have

AC/C C OP(G/C),

by Theorem A.4(c) (since [P, A, A] C [A, A] = 1). Therefore

XC/C C OP(G/C),

which is (1).
Next let Q = OP(G) and assume that OP>(G) = 1 and CnQ C P. Then

P C Q and Q = Op/,P(G). By Proposition 1.15(b), CG(Q) C Op/jP(G) = Q.
For every p'-element w inC,

CQ{CQ{U)) C C Q ( P ) = C n Q C P C CQ(u),

so that ^ centralizes Q by Proposition 1.8. As CQ{Q) Q Q, it follows that
u = 1. Thus G is a p-group. Moreover, C C C P̂(G) = Q because C < G.

Since G C OP(G) we have OP(G/C) = OP{G)/C. By (1),

XC/C C OP(G/C) = OP{G)/C,

which yields (2). D





APPENDIX B

The Puig Subgroup

In this appendix we will define an important characteristic subgroup of
a finite group G and derive some of its remarkable properties (some of

which are similar to the properties of the Thompson J-subgroup described
in G, Chapter 8).

Our main goal is a result of L. Puig (analogous to G, Theorem 8.2.11,
p. 279 about Z(J(5))), which we present using a short, unpublished proof
of I. M. Isaacs.

Throughout this appendix we will assume that G is a finite group and p
is a prime. We will use the fact that solvable groups of odd order have the
nice properties described in the following theorem from Appendix A.

Theorem A.5. Suppose p is an odd prime, G is a solvable group of odd
order, P is a normal p-subgroup of G, and X is a subgroup of G that is
generated by abelian p-groups each of which is normalized by P. Then

(1) XCG(P)/CG(P) C OP(G/CG(P)), and
(2) if OP,{G) = 1 and COp(G)(P) Q ?, then X C OP(G).

Remark. By using the original theorems in G rather than the theorems
in Appendix A, one can generalize this theorem by substituting for the
odd order condition the requirement that G have abelian or dihedral Sylow
2-subgroups or more generally that SL(2,p) not be involved in G.

Notation. For subgroups X and Y of any group G, we write X —• Y if
Y is generated by abelian subgroups of G that are all normalized by X.
Clearly, given a subgroup X of G, there is a unique largest subgroup Y of
G such that X —> Y. We will denote this subgroup by LG(X).

We define recursively the following sequence of subgroups of an arbitrary
group G:

139
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Thus we have

L0(G) - Lx

Finally, define

L(G) = f)L2
n > 0

L2(G) -

n+l(G)

- • • • - L n ( G )

and L*(G)

-*Ln+1(G)

= U L ^
n > 0

Lemma B.I. Let G be any finite group. Then the subgroups Li(G) have
the following properties.

(a) I f i c y c G, then LG(X) D LG(Y).
(b)

1 = L0(G) C L2(G) C L4{G) C ...

. . .CI 5 (G)CL 3 (G)CL 1 (G) = G

(c) For some A; > 0,

L2n(G) = L*(G) for all n > jfc, and
= i(G) for all n > k.

(d) The set L*(G) is a subgroup of G and is contained in L(G).
(e) Every abelian normal subgroup of G is contained in Li(G) for all

positive integers i.
(f) If G is a p-group, then, for all i > 0,

D Z(G); and

In particular, if G ^ 1, then L»(G) ^ 1 and L(G) ^ 1.
(g) LG(L,(G)) = L(G) and

Proof, (a) Suppose that X C Y. Then clearly X —• LG(50
 an<i hence

(b) By definition, L0(G) = 1. Since every element of G lies in a cyclic
group, Li(G) = G. Trivially,

L0(G) C I2(G) C i!(G).

By (a),
C L3(G) C IX(G).

Thus an easy induction argument yields, for all integers n > 0,

W G ) C L2re+2(G) C L2n+i(G) and
i2n+2(G) C I2n+3(G) C L2n+1(G).

Combining these results yields (b).
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(c), (d) Since G is a finite group, the increasing sequence of subgroups
{L2i(G)} must stabilize at some integer fci. For this k\ we have

L2n(G) = L*(G) for all n > kx.

Similarly, the decreasing sequence {L2i+i(G)} must stabilize at some in-
teger &2, and

L2n+i(G) = L(G) for all n > k2.
Choosing k = maxjfci, Â } clearly gives us (c) and (d).

(e) In fact, if A is an abelian normal subgroup of G and if H is any
subgroup of G, then H —• A and hence A C LG(H). Since Li(G) =
Lo{Li-i(G)) for all positive integers i, we have (e).

(f) In view of (c), we need only prove the first statement of (f). Clearly
Z(G) C CG(Li{G)). Take any i > 1 and let M be a normal subgroup of G
maximal subject to being abelian. Then, by (e), M C L{(G). Furthermore,
since G is a p-group, by G, Theorem 5.3.12, p. 185, CG{M) C M. Thus

CG(Li(G)) C CG(M) C M C L,(G).

This yields (f).
(g) This follows immediately from (c). •

Lemma B.2. Suppose H is a subgroup of G that contains L(G). Then
L(G) = L{H).

Proof.

Step 1. (a) L2n+i(H) C L2n+i(G) for all n > 0;
(b) L(H) C

Proof. We will use induction on n to prove (a). For n = 0 we have

ff = Li(if) C Li(G) = G.

Assume now that n > 0 and L2n-i(H) C I/2n-i(G). Then

L2n_i(ff) -> LG(L2n_!(G)) = L2n(G) C L(G) C ff.

Thus

Therefore

Consequently

This yields (a). Now Lemma B.l(c) gives us (b). •

Step 2. (a) L{G) C L2n+i(-ff) for all n > 0;
(b) L(G) C
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Proof. Again we use induction for (a). For n = 0 we know L\(H) = H, so
(a) is true by hypothesis. Now suppose that n > 0 and L(G) C L2n-i(H).
Then

L(G) - L2n(H).
Hence

L2n(H) C LG(L(G)) = L,(G).
Furthermore,

L2n(tf) - LG(L*(G)) = L(G) C ff.
Thus

L(G) C L2n+i(ff).
Again, (b) follows from Lemma B.l(c). D

By Step 1 and Step 2 we can now conclude that L(G) = L(H) as de-
sired. •

Lemma B.3. Assume p is odd, G is solvable of odd order, and Ov< (G) = 1.
Suppose that 5 is a Sylow p-subgroup of G and T = OP(G). Then

Proof. First we show by induction on n that for all n > 0,

(B.I) L2n(S) C L2n(T) C L2n+1(T) C L2n+1(S).

For n = 0 the statement reduces to

1 C 1 C T C 5 ,

which is trivial.

Assume (B.I) holds for some n. Since L2n+i(£) -* ^2n+2(^)5 we get

(B.2) L2n+1{T) -+ L2n+2(S).

Now L2n+\(T) is a normal p-subgroup of G and, by Lemma B.l(f),

L2n+1(T) D CT(L2n+1(T)).

Thus, by (B.2) and Theorem A.5,

L2n+2{S) C T.

Hence, by (B.2),
(B.3) L2n+2{S) C LT(L2n+1(T)) = L2n+2(T).

Consequently, by Lemma B.I (a),

(B.4) L2n+3(T) - LT(L2n+2(T)) C LT(L2n+2(5))
C L5(L2n+2(5)) = L2n+3(5).

By Lemma B.l(b),
L2n+2(T) C L2n+3(T)
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so, by (B.3) and (B.4),

L2n+2(S) C L2n+2(T) C L2n+3(T) C L2n+3(5).

Thus we have (B.I) for n + 1 in place of n. Now, by Lemma B.l(c), we
have the conclusion of the lemma. •

Theorem B.4 (L. Puig, 1976). Assume that p is odd, G is solvable of
odd order, and 5 is a Sylow p-subgroup of G. Then

(a) G = OP,(G)NG(Z(L(S)));
(b) if OP,(G) = 1, then Z(L(S)) < G.

Remark. Note that Theorem B.4(a) serves as a substitute for Theorem 6.2
of this work.

Proof. Let L = L(5), T = OP(G), and Y = Z(L(T)).

Step 1. Part (b) implies part (a).

Proof. Let G = G/Opf(G) and 5 = SOp>{G)/Opl{G). Then, by G, Theo-
rem 6.3.1(iv), p. 227,

Let Z = Z(L(S)) and Z = ZOp>(G)jOp\G). Then Z = Z(L(S)) because
S = S. Thus, assuming (b), we know that Z <G and hence ZOP\G) < G.
Clearly Z is a Sylow p-subgroup of ZOP\G). Consequently, by the Frattini
argument, we have

G = ZOP>(G)NG(Z) = OP,{G)ZNG(Z) = Op,{G)NG{Z). U

We will henceforth assume that OP>{G) = 1.

Step 2. Z{L(S)) C y.

Proof. By Lemma B.3,

(B.5) L*(S) C L,.(r) C L(T) C L(5).

Thus, by Lemma B.l(f),

L(T) D L*(S) D CS(L*(S)) D Z{L{S)).

Consequently, by (B.5),

Z(L(S))CZ(L(T)) = Y D

Step 3. Let C C G be taken such that C/CG{Y) = OP(G/CG(Y)). Then
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Proof. Since YcharT, we know that CG{Y) < G and C < G. As Y is
abelian and Y < 5, Lemma B.I yields

Now L(S), L*(S)charS and L(T), L*(T) < G. Since Lemma B.l(g) tells
us that L = LG{L*(S)), we have

and hence

By Theorem A.5,

LGG(Y)/GG(Y) C £>p(G/GG(r)) = C/CG(Y).

Therefore LCC and L C C n 5. Finally, by Lemma B.2,

5). D

Step 4. Conclusion.

Proof. Take C as in the previous step. Then C n 5 is a Sylow p-subgroup
of C and (C n 5)CG(F)/CG(r) is a Sylow p-subgroup of C/CG(Y). But
C/CG(Y) is a p-group, so (C O 5)CG(y)/CG(y) - C/CG(Y) and we can
conclude that

c = (c n s)cG(y) = cG(F)(c n s).
By the Frattini argument,

G = G7VG(G n 5) = CG(V)(C7 n S)NG(C n 5)
( R 6 ) = G G ( F ) i V G ( C n S ) .

Since, by Step 2, Z(L) C F , we have Z(L) C Z(C G(y)) . By Step 3,
L < NG(C Pi 5), and consequently

Now, by (B.6), we can conclude that Z(L) < G as desired. D



APPENDIX C

The Final Contradiction

In the original paper of Feit and Thompson, the minimal counterexample
is studied by means of local analysis (as in the present work), then by

character theory, and finally by a relatively short (17 page) argument using
generators and relations which produces a contradiction. This last argu-
ment was substantially simplified by Thomas Peterfalvi in [22] (using also
some previous reductions of R. Howlett, L. G. Kovacs, M. F. Newman, and
the second author). In this appendix we present, with slight changes, an ac-
count of Peterfalvi's work written by Walter Carlip and Wayne W. Wheeler
at the University of Chicago for the Junior Group Theory Seminar [2].

1. The Main Theorem

Theorem C. Let p and q be two primes satisfying the following condition:

Let P be the additive group of the field Fpg and U the subgroup of the
multiplicative group (Fpq )* consisting of the elements of norm one over Fp.
The subgroup U acts on P by multiplication and we can form the semidirect
product H = PU. Let Po be the image in P of the additive group of Fp.
Furthermore, suppose that there is a group G such that hypothesis (B)
below holds.

(B) There is a monomorphism a: H —> G, a finite abelian //-subgroup
Q of G, and an element y € Q such that CT(PQ) normalizes Q and
a(Po)y normalizes U.

Then p < q.
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2. Preliminary Remarks and Results

(I) Condition (A) for primes p and q is equivalent to the condition
that q not divide p — 1. To see this, let r = p — 1. Then

pq - 1 = (r + l)q - 1 = {rq + qr*'1 + • • • + qr + 1) - 1 = qr (mod r2)

and hence (pq — l ) / r = q (mod r).
(II) (T. Peterfalvi) Take any prime q. A short argument shows that

the hypothesis of the theorem is satisfied by taking p = 2, G — SL(2, 29),
and

a(P) = 1 a
0 1

a G F

cr(U) =

pq

a 0
0 a"1

1 1
0 1

y =
0 1
1 1

and

(III) If G is a minimal counterexample to the Feit-Thompson Theorem,
then there are primes p and q such that p and q satisfy (A), G satisfies
(B), and p > q. (This can be derived from Theorem 27.1 and Lemma 38.1,
pp. 943 and 1101 of FT.)

(IV) In [12], S. P. Norton and the second author have extended Theo-
rem C to show that p < 3. Example (II) above shows that p may be equal
to 2. It is not yet known whether p may be equal to 3.

(V) By (A), we can assume that p and q are odd.
(VI) We will identify H with its image in G and write the operation in

P multiplicatively.
(VII) The following facts from Galois theory can be found in Theorem 38,

p. 46 and Theorem 33, p. 42 of [20]. The second of these is Hilbert's famous
Satz 90.

Gal(Fp«/Fp) = (a), where xa = xp and

f x 1 pq — 1
U = < — x G FL > so U is cyclic of order .

[xa p J p—1

(viii) F;9 = F ; x u by (A).
(IX) H is a Frobenius group with kernel P and complement U.
(X) Q = CQ(P0) x [Q, Po] by an extension of G, Theorem 5.2.3, p. 177.

(XI) By (X) we may assume that y G [Q, Po]-

Notation. We will denote the norm of an element a G Fpq over Fp by
N(a). Also we will denote by E the following set:

E = { a G Fp 9 | N(a) = N(2 - a) = 1 } .
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3. Proof of the Main Theorem

Here we begin the proof of Theorem C. Assume the hypotheses of Theo-
rem C and, as in (V), assume that p and q are odd.

Lemma C.I. If E = E'1 and \E\ > 2 then p < q.

Proof. Let a G E*. Then 2 - a G E and r(a) = 1/(2 - a) G E since
E = E-1. By induction, rk(a) G E and rk(a) = [k-(k-l)a]/[(k + l)-ka]
for every natural number k. Applying this formula for rk(a) we have

for all k G Fp. Now, for x G Fp, Remark (VII) yields

q-\

- a)x + 1) - 1 =
z=0

i=0

= N( l - a)x9 + • • • + Tr(l - a)x

and every element fc G F p is a solution to this polynomial. Since a / 1 we
know N( l — a) ^ 0. Thus the polynomial above is of degree q and has p
distinct solutions. This yields p < q. •

Lemma C.2. \E\ > 2.

Note. The proof requires only that p and q be odd primes that satisfy (A).

Proof. First suppose that q > 5 and let s G P&. Since P is abelian, the
conjugacy class in H of any element s G P is simply {su | wG 17}. Let ii^
be the conjugacy class of sl in # and Ki the corresponding class sum. The
conjugacy class sums form a basis of the center of the group algebra of if,
so we can define e to be the coefficient of K% in the product K\K\. It is
easy to check (see the discussion in G on pages 126-7) that,

e = c a r d { (su,sv) \u,veU and susv = s2 } .

The condition susv = s2 means that us + vs = 2s in Fpq, so u = 2 — v and
hence v G E. As a result e = \E\.

Now, as noted in (IX), H is a Probenius group. By Theorem 13.8, p. 68 of
[4] (or by applying G, Theorem 4.2.l(i), p. 119 and Theorem 4.5.3, p. 143),
the irreducible characters of H consist of \U\ linear characters with P in
their kernel and (|P| - 1)/|C/| characters of degree \U\ induced from P.
Therefore

\u\
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Denote by \i the p — 1 characters of degree \U\.
By G, Theorem 4.2.12, p. 128,

(C.I)
2 s ? W ) \u\

x ( D - p « ^
By the orthogonality relations, for every natural number j not divisible by
P,

Rewriting (C.I), we obtain

P-I

\pqe-\U\2\ =
i=l Ki=l

Thus
( )

Vq — 1

But |t/| = — > p9"1 and we have assumed q > 5, so finally

It remains to show that \E\ > 2 when g = 3. Suppose for any c e Fp

that the polynomial

fc(x) = x(x - 2)(x - c) + (x - 1)

has a root in Fp. Clearly, for every c, we have /c(0) ^ 0 and /c(2) ^ 0. Thus
there must exist distinct elements a and b G Fp such that /a(#) and /6(#)
have a common root d ̂  0, 2. But then d(d - 2)(d - a) = d(d - 2)(d — 6),
which implies that a = 6, a contradiction.

Thus there is an element c € Fp such that /c(#) has no root in Fp.
Suppose a is a root of fc(x) in Fp3 and let Gal(Fp3/Fp) = (a). Then

fc(x) = x(x - 2){x - c) + (x - 1) = (* - a)(x - aa)(x - a*2)

/c(0) = -1 = (-a)(-a")(-a"2) = -N(a)

= (2 - a)(2 - a)a(2 - a) a ' = N(2 - a).

It follows that a e E and, since 1 € E as well, we have |2?| > 2. •
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By Lemmas C.I and C.2, to prove Theorem C it suffices to show that
E = E'1. We do this now.

L e m m a C.3. E = E"1.

Note . Lemma C.3 is easy to prove for p = 3. If N(a) = N(2 - a) = 1,
then N(a" 1) = 1 and N(2 - a"1) = N(a"1(2a - 1)) = N(a"1(2 - a)) = 1.
The work mentioned in (IV) shows that whenever p and q are primes that
satisfy (A) and E = E"1, then p < 3.

Proof. Let s G Po
#, t = sy, and Px = P$.

Step 1. For every x G PU there exist u, v G U and sx G Po such that
X = US\V.

Proof. If x G PU, then x = s'u', for some elements s' G P and v! G U.
If s' / 1, then s' G F£q = F* x U by (VIII). Hence there is an sx G Po

and u e U such that $' = t/^i^"1, so x = s'u' = usiu'1^ — us\v for
v = u~xu' G U. O

Step 2. Let si, 52 G Po and u e U. Then S1WS2 € [/ implies either

(1) si = 52 = 1 or
(2) it = 1 and sis2 = 1.

Proof. If si / 1, then s2 7̂  1. Since S1US2 = S1S2 u G U, we have
51^2 = 1, or si + 5 2 / ^ = 0 when considered as elements of F p 9 . Then
u = —S2/S1, so u € U D F* = 1 and s\ + s2 = 0 in F p 9 , i.e., 5i52 = 1 in
Po. •

Step 3. If tx G Pf , then (PU) n (Pt/)*1 = (7.

Proof. Let X = (PC/) n (PC/)*1. Since Pi normalizes C/, we have C / C I
If x = s'u', where s; G P and v! G C/, then s' = x^')'1 G P f l l . Thus
X C (P n X)U and hence X = (P n X)C/.

Suppose that X ^ U. Since C/ operates irreducibly on P by (VIII), it
follows that X = PU and hence t\ normalizes PU. Since P char PC/, we
know £1 normalizes P and therefore (£1) = Pi also normalizes P . Thus Pi
normalizes P D QPo = Po. Since |QPo|P = p, it follows that Po and Pi are
Sylow p-subgroups of QPo and hence Po = Pi. But then Po normalizes U
and [Po, U] C U H P = 1, and finally C/ centralizes Po, a contradiction. •

Step 4. Conclusion.

Proof. Let a G E* and let b be the element of E such that a + b = 2 in
F p 9 . Then as + 65 = 25 so in G we have sasb = s2, and

(C.2) s-2a-1sab~1sb=l.
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Thus, if k G F p and i = k-2, after multiplying on the left by t~k+2 = t~e

and on the right by tk~2 = te we have

(C.3)
s~2 a'1 s ab'1 s b

s-ktkt-£si s-k+1tk~1t-ksk s-H

Now observe that

s-H1 = s-'isyy = s-'iy-hyY = [s\y] G Q.

Since Q is commutative, (C.3) becomes

(C.4)

s-kt2sk-2(a-1)tks-k+\t-1sk(ab-1)tk~1s-k+2t-1
S
k-1btk-2s-ksk = 1.

By Step 1, there are elements Ui, and V{ G U and s; G Po> (1 < i < 3), such
that

(C.5)

and by Steps 2 and 3

(C.6) si^l (i = 1, 2, 3).

If we multiply equation (C.4) on the left by sk and on the right by s~k and
use equation (C.5) we have

U3S3V3 = 1, and hence
• - 1 + - 2 , _1x+-2

W3 Wi W2

If we set

• -1 t - 2 i

wi = v2 us, w2 = V3UX , and ^ 3

then Wi G U and

(C.7) f W " 1 = (wis3w2t
2s1w3)-

1.

Next we show that (C.5) holds with a, 6, w;, and Vi replaced by ap, 6P,
u\, and vf, respectively. We prove only the first equation since the proofs of
all three are similar. First observe that in Fp 9 , ap + bp = (a + b)p = 2P = 2
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so that ap G E. Regarding the first equation of (C.5) modulo P, since
U n P = 1 we see that (a"1)* = uiV\. Hence

and so

It is enough to show that this equation holds with u\ and v\ replaced by
u\ and vj, respectively.

Writing (C.8) in Fp9 gives s1 = (k - 2)sui + (-k + l)s/vi. Taking pth

powers, we get s± = (k — 2)su\ + (—k + l)s/v\, which implies that in G

as desired.
It now follows that (C.6) is still true with wf in place of wi for (i =

1, 2, 3). Hence

which implies

(C.9) t-2W2PS31w\-ps3w2t
2 = suv^Si1 e (PU) n (PUy\

Hence, by Step 3, siwf-1^1 G U. Since S\ / 1, it follows from Step 2
that Wcp1 = 1 and hence w3 = 1 by (A). Equation (C.9) then shows that
s^1w\~pss = Wcp1 G C/, so Step 2 gives w\~p = 1 = w^1 and hence
wi = W2 = ws = 1. Then (C.7) becomes t~1S2t~1 = Si1t~2s^1

1 i.e.,

(CIO) t25i^~152^"153 = 1

Regarding (CIO) modulo Q, since Po n Q = 1 we see that 5i52^3 = 1.
Hence (CIO) becomes

1 2 2 2 1 l 2 1 s ~ 1 s s 3 1 y ~ 1 s 3 s ~ 1 S 3 1 y s3 = 1.

Identifying Po with its image in End([Q, Po]) and regrouping, we have

y-y~V'rl'~Vrla~Vw~V8 = i-
Thus we see that y is in the kernel of the map

-5]"15"2 + 5]"15~1-S35"1 + 53 = (s"1 + 1 - S^S'1 - S3)(s~1 - 1).
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If x G [<2, Po] is chosen such that xs = x, then x centralizes s and hence
centralizes Po. Then x G CQ(P0) n [Q,Po] = 1 by (X). Thus s'1 operates
without fixed points on [Q, Po], s o V is m the kernel of s"1 +1 — s ^ s " 1 - s3.
Therefore we have

Setting t{ = y~1siy for i = 1, 2, and 3, it follows that

so sit^t"1 = "̂̂ t̂̂ ^̂ sa.
It now follows that if u G U#, then

n

If ti 7̂  t"1, then by Step 3, u^r1*"1 G [/, and so ^Sl G I/"1 = £/ since
tti G Pi. But then wSl = s^1us\ G J7 implies, by Step 2, that si = 1,
contradicting (C.6). Hence t± = t-1 and si = s"1.

For A: = 3 the first equation of (C.5) gives us

* s~2 = u\s~1v\, and hence

Regarding this equation modulo P, we get ^ i " 1 ^ 1 ^ " 1 ) * = 1? i-e-' vi =

M^^a-1)*8. Then

and so (v± + (a"1)* )s = 2s in Fpq. This yields v\ = 2 — (a *)* , and
N(2-(a"1) t 3) = N(vi) = 1. Since (a"1)*3 G U, it follows that (a"1)*3 G E.

We have now shown that if a G E then (a"1)* G i£. By induction it
follows that

for any natural number n. Taking n = p, we get a"1 G£?as desired. •

Problem 1. (See (IV).) Can p = 3 in Theorem C?
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CTV-Groups of Odd Order

rTlhe proof in G that every CN-group of odd order is solvable requires
-L extensive passages in Chapters 7, 8, and 10 of G. While this material

is worthwhile for a deeper understanding of group theory, most of it is
unnecessary for the CiV-theorem if one combines ideas from Gorenstein's
proof with ideas from the proof in W. Feit's Characters of Finite Groups
[6]. We indicate how to do this now.

One first reads Chapters 1-8 of G or the substitute prerequisites that
are described in Appendix A, as well as Sections 1-4 of this work and
Lemma 10.1.3 of G. Then one notes that for G solvable of odd order,
Theorems 7.6.1 and 10.2.1 of G follow from our Theorems 4.18(b) and 3.7,
while the proofs of Theorems 7.6.2 and 10.3.1 reduce to one paragraph and
one sentence respectively. One proceeds to the introduction of Chapter 14
and to Section 14.1, which is slightly easier for G of odd order (but not
necessarily solvable). Lemma 14.2.1 is easy, but then it is useful to insert
the following lemma, suggested by the proof of (27.6) in [6].

Lemma D.I. Suppose G is a minimal simple CiV-group of odd order, p
is a prime, P and Q are Sylow p-subgroups of G, and P n Q / 1. Then
P = Q.

Proof. Assume the result is false. We will obtain a contradiction. Take
P to violate the conclusion for some Q. Let N = NG(Z(J(P))). (One
may substitute L(P) for J(P) throughout this proof if one prefers to use
Theorem B.4 instead of Theorem 6.2.)

Take any Q such that P n Q is maximal subject to P and Q violating
the conclusion of the theorem. Let M be a subgroup of G maximal subject
to containing NQ(P n Q) and satisfying OP(M) ^ 1. Let Pi and Q\ be
Sylow p-subgroups of G containing Np(P fi Q) and NQ(P n Q), and let P2

be a Sylow p-subgroup of G containing Pi. Since P fi Q C P,

P n Q c NP(P n Q) c p n Pi c p n P2.
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By the choice of P and Q, we have P<i = P , and hence Pi C P. Similarly,
Qi C Q. Thus

P D Q C P D M and

P n M and Q n M are Sylow p-subgroups of M.

Since M C G, we have M solvable. Moreover, OP(M) ^ 1. By (D.I),

(P n M) n (Q n M) = P n Q C P n M, and hence P n M / Q n M .

Therefore P n M / OP(*f) o r Q f l M / <9P(M) (actually both). By
Corollary 14.1.6 of G, M is a 3-step group with respect to p. From the
definition of a 3-step group and a short argument Op> (M) = 1 and

(D.2) PnQ = Op(M).

Hence, by Theorem 6.2,

Z(J(P)) = Z(J(P))OP,(M) < M.

So M C N. By the maximal choice of M, we have M = N. Furthermore,
by the definition of a 3-step group,

N/OPtP'(N) is a nonidentity p-group.

Let K = OPiP'(N). Then A^/K D (iV/if)' = N'K/K, and the quotient
is an abelian p-group. So

(D.3) P n N'K C P.

We wish to apply the Focal Subgroup Theorem (Theorem 1.17) to P and
G. Suppose x, y £ P and x is conjugate to y in (7. We claim that x~ly G
P fi iV'if. We may assume that x, y ̂  1. Take t € ( ? such that xf = y. If
P* = P , then

< G N(P) C N(Z(J(P))) C iV and

x-1^ = x-H^xt ePnN' cpnN'K,

as desired. If P* 7̂  P, take a Sylow p-subgroup Q oi G such that Q is
maximal subject to

Q / P and Q n P D P* n P.

Then y ePnQ and, by (D.2),

Similarly, since x = yf~\ x G K. Thus x~xy e Pn K C P n N'K, as
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desired. This proves the claim, and (D.3) and the Focal Subgroup Theorem
yield

P n G ' = (x~1y | x,y G G and x and y are conjugate in G)

CPn N'K C P.

But G' = G, because G is simple, a contradiction. •

Lemma D.I has some easy consequences.

Lemma D.2. Suppose P is a nonidentity Sylow subgroup of a minimal
simple GN-group G of odd order and N = NG(P). Then P C N'.

Proof. Suppose x, y e P and t e G and x* = y. li x = y = I, then
x"1?/ G iV7. Otherwise, P n P * ^ l , and then P = Pt by Lemma D.I,
whence

* G iV and z"1?/ = x'H^xt e P n N'.
By the Focal Subgroup Theorem, PnG' C PnNf. Since G; = G, we have
PCJV'. •

It is easy to see from Lemma D.I that a minimal simple CN-group
of odd order cannot contain a 3-step group as a subgroup, which yields
Theorem 14.2.2. In addition, Lemmas D.I and D.2 simplify the proof of
Theorem 14.2.3; one may use NG(P) in place of NG(Z(J(P))), since NG(P)
is not nilpotent by Lemma D.2. The rest of the proof of the CN-theorem
may be read as in G without change.





APPENDIX E

Further Results of Feit and Thompson

In Theorem 15.8 and Corollary 15.9, we presented some new results of
Feit and Thompson about the situation in which

xeMa, CG(x)£M, N G JK{CG{x)), and N G M&2.

Here we present some additional results of theirs and some applications that
shed further light on this situation and could lead to further reductions in
the proof of the Odd Order Theorem.

The following result was proved by Philip Hall for applications to his
theory of regular p-groups, using his commutator collecting process. It
may be found on pp. 37-41 of [26] and in many other books (e.g., [17,
pp. 315-318]).

Theorem E.I. Let

be the lower central series of a group G. Take x, y e G and a positive
integer n. For r = 2 , 3 , . . . , n, let er be the usual binomial coefficient

n\ n(n - l)(n - 2) • • • (n - r + 1)
r\

Then there exist elements cr G Gr for r = 2 , 3 , . . . , n such that

Proposition E.2. Suppose p is a prime and R is a p-group of nilpotence
class at most p — 1. Define a mapping <j> of R into R by <j>(x) = xp. Then

(a) £li(R) has exponent 1 or p, and
(b) if R' C f2i(R), then <j> is a homomorphism.
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Proof. This result follows immediately from Philip Hall's theory of regular
p-groups (e.g., [26, pp. 41-49]). Since it is easy to derive from Theorem E.I,
we will do so.

Step 1. Suppose R' has exponent 1 or p. Then 0 is a homomorphism.

Proof. Take any x, y e R. We want to show that (xy)p = xpyp. Apply
Theorem E.I with n = p. Since G has nilpotence class at most p — 1, we
have cp e Gp = 1. For r = 2, . . . ,p - 1, cr G R1 and er = (£), which is
divisible by p, whence c%r = 1. Therefore, xpyp = (xy)p. •

Step 2. Conclusion.

Proof. Clearly, (b) will follow from (a) and Step 1. We prove (a).
Use induction on \R\. It is sufficient to show that (xy)p = 1 for any x,

y G R of order 1 or p.
We may assume that (y) C R = (x, y). Take a maximal subgroup M of

R that contains (y). Then M < R. By induction fii(M) has exponent p.
Since

fti(M) < fl and R = (x, y) = (x, fti(M)),

is cyclic and fl; C ft^M). Then, by Step 1,

* V = 1. D

Recall (from Section 1) an operator group A acts regularly on (2 if
CG(a) = 1 for all a G A#.

Theorem E.3 (Feit and Thompson, 1991). Suppose p and q are dis-
tinct odd primes, R is a p-group, RQ and i?i are nonidentity subgroups of
R, B is an operator group on R, and A is a subgroup of B. Assume that p
does not divide \B\ and

\A\ = g, |#o| = p, # i is cyclic,

and A fixes RQ and acts regularly on R. Then

(a) g divides \{p- 1),\
(b) fii(ii) has exponent p, .Ro g (fii^))7, and |fii(i?)/(ni(iJ));| = p2,
(c) |ni(iJ)| <p 9 , and
(d) if B fixes i2o$(fii(J?)), then .B fixes RQ.

Proof. Step 1. Part (a) is valid and p > 7.

Proof. Since A acts regularly on J?, it acts regularly on RQ. Consequently
q | (p — 1). Since p and q are odd, we obtain (a), and p > 2q + 1 > 7. •

Step 2. Let S be any A-invariant subgroup of R of exponent p that prop-
erly contains Ro. Then i?0 2 Sf, \S\ < p*, and |5/5 ; | = p2.
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Proof. Since q > 3, an examination of the p-groups of order at most p3

yields the conclusion when \S\ < p3, so we will assume that

(E.I) | 5 |>p 4 .

Take V e SCN(S). Then

(E.2) \S/V\ divides | Aut(V)| and |5| = | S / ^ | | H

Since 5 has exponent p, V is elementary abelian. If |V| < p2, then (E.2)
gives

\S/V\ < p and p4 < |5| < pp2 = p3,

a contradiction. Thus |V| > p3 and

(E.3) r(5) > m(V) > 3.

Let Z = fti(Z(S)). Since CR(R0) = Ro x Ru we have i?0 n Z = 1.
Clearly,

RoxZC Cs(Ro) CRox Oi(fli),

so that

(E.4) |Z| = p and CS(RO) = RoxZ.

Note that 5 is narrow. Let E = Cs(Ro) a nd take T as in Lemma 5.2
(with 5 in place of R). Then, by Lemma 5.2 and Theorem 5.3(d),

(E.5) Tchar5, \S : T\ = \CT{Ro)\ = P, &ndRonT = l.

Since S7 C T, we have î o 2 Sf and 5 = .Ro^. We now follow the part of
the proof of Theorem 5.5 that comes after (5.5). We have an A-invariant
series of subgroups

for which

Hi = [iJ,ffi_i] = [flo,#i-i] and Iff,.! : ff,| = p,
^ ' ^ for i = 1,2, . . . ,n .

Thus |T| = p n .
Let

S = S1DS2DS3D...

be the lower central series of 5. Since

|ffo/ffi| = P and ffx = [/Jo, ff0] = [/2o,T] < R0T = 5,

we have |5/ffi| = p2 and S2 = [5,5] C ffx = [i?0, T\ C 52. Thus

(E.7) ffx = 52 and |5/5"| = \S/S2\ = p2.
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Similarly, by induction, we see that

(E.8) Hi = 5 i + 1 < 5, for i = 1, 2 , . . . , n.

Let v G jRjf, a G A#, and w e Ho — Hi and define

wo = w and W{ — [i^_i,i;], for i = 1,2,.. . ,n - 1.

Then t;a = vr for some integer r such that rq = 1 (mod p). Similarly, by
(E.6), for z = 0, l , . . . , n - 1,

W;a = wp (mod ffi+i)

for some integers T{ such that riq = 1 (mod p).

Moreover, if r* = 1 (mod p) for some i, then A centralizes Hi/Hi+i and,
by Proposition 1.5(d),

contrary to the regular action of A on R. Thus

(E.10) n^l (mod p), for i = 0 ,1 , . . . , n - 1.

Similarly

(E.ll) r ^ 1 (modp).

Now take any integer i such that 1 < i < n - 1. Let S = S/Hi+i and
apply the bar convention. Then \H{\ = p and Hi < S. So

(Wi)=7liC Z(S) and

By (E.9), Wi-ia = wi-i
Vi-1u for some u G if;. By Lemma 4.2(a) (applied

to ( i?o, Hi-i )), we have

= K_i a , ^ a ] = [wi-uv]a = Wia = Wi
ri (mod Hi+1).

Hence
r» = ri-ir (modp).

We now see by induction that, for i = 0 ,1 , . . . , n — 1,

(E.12) n = rorl (modp).
Recall that the nonzero integers (mod p) form a cyclic group of order

p— 1 and rq = 1 (mod p). Therefore, by (E.10) and (E.ll), there exists an
integer j such that 1 < j' < q — 1 and rJ = ro (mod p). By (E.12), none of
the integers r^r^1,..., r3+n~1 j s congruent to 1 (mod p). Therefore

q ~ 1 > j + n - 1 > n and |5| = |i?0T| = ppn < p9.

This completes the proof of Step 2. •
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Step 3. Parts (b) and (c) are valid.

Proof. Take an A-invariant subgroup S of R of exponent p that is maximal
subject to containing Ro x fti(-Ri). Then S C tti(R). By Step 2,

(E.13) Ro £ S', \S\ < pq and \S/S'\ = p2.

Let P = fii(fl) and T = NP(S). If 5 = fii(T), then

C Nptfl^T)) = NP(S) = T,

whence T = P and 5 = fii(P) = fti(fti(^)) = fti(i?), which, by (E.13),
yields (b) and (c). So, we assume that

Clearly, 5 D fii(Z(#)) and

C5(#o) = 5 n (i?o x iix) = i?o x

Let v E Ro* and let K be the conjugacy class of v in 5. Then

(E.15) \K\ = \S : Cs(v)\ = \S : Cs(i2o)| 2

Let Ti be the normalizer of the set K in T. Then S C.T\ and the conjugacy
class of v in T is the union of \T : Xi| conjugacy classes of 5, each having
|5|/p2 elements. Since none contains the identity element,

(E.16) \T : TxWSl/p2 < \S\ - 1< |5| and \T : Tx\ < p2.

By an easy variation of the Frattini argument,

Tl(t;) = 5(Ti n iJoiJi) = 5,Ro(Ti n fli) - 5(Ti n iJi),

and Ti/5 ^ (Tx n iJi)/(Ti D fli n 5). As iJi is cyclic, so is Ti/5.
By (E.16), Ti/S is a cyclic subgroup of index 1 or p in T/S. Hence, by

Lemma 4.5, |fii(T/5)| < p2. Now, by (E.13) and (E.14),

|fii(T)/5| < |fii(T/5)| <p 2 and | ^ (T) | < P
2\S\ < p^2.

Since p > 7 and q < (p - l)/2, by Step 1,

Therefore fii(T) has nilpotence class at most p - 1. By Proposition E.2,
fii(fti(T)) has exponent p. Since fti(fii(T)) = fli(T), this contradicts the
maximal choice of 5, by (E.14). •

Step 4. Part (d) is valid.
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Proof. Let S = &i(R) and let G be the semidirect product of S by B. By
(b),

(E.17) |S/S'| = p2 and \S'\ = \S\/p2.

Note that <&(S) = S", because S has exponent p.
Assume that B fixes RQS'. Let v G RQ^. For each x G S,

x~xvx = vv~1x~1vx = v (mod S'),

so the conjugacy class of v in S is contained in vSf. By (E.15) (in Step 3),
it has \S\/p2 elements, and hence is equal to vSf, by (E.17). The same is
true of v2, v3,..., vp-x. Thus

every element of the set RoSf — Sf is conjugate to an element of Ro*.

Since B fixes RoS\ it follows that, for each f3 e B,

R^ = Ro
x for some x G S.

By a variation of the Frattini argument (similar to that used in the proof
of Step 3),

SB = SNG{R0).

By the Schur-Zassenhaus Theorem, NQ(RO) contains a complement J5*
to NG(R0) n 5, and B* = By for some y G S. Therefore

B normalizes i ^ •

Then A normalizes Ro and Roy . Therefore

y*)-^ G Ns(Ro), yaNs(R0) = yNs(R0),

and a (and A) fix the coset yNs(Ro). Now, |A| = g, while \yNs(Ro)\ =
|-Ns(-Ro)|> which is a power of p and hence not divisible by q. Therefore
A fixes at least one element, z, of yNs(Ro). Since A acts regularly on R,
2 = 1. Therefore

Vy G 2/iV5(̂ o) and i ^ " ' = i*o-

This completes the proof of Step 4 and of Theorem E.3. •

Proposition E.4. Assume the situation of Theorem E.3 and let S =
Q,i(R). Suppose |5| > p4, B acts regularly on R, and B does not fix

Then Cs(Z2(£)) is abelian and has index p in S.
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Proof. By Theorem E.3,

5 has exponent p, \S/S'\ = p2, |5| < pq,
^ and B does not fix R0$(S)

Hence $(S) = Sf, and S/Sf is elementary abelian.
Now take n, T, Hi, Hn, v, a, wi r, and r;, for alH = 0 ,1 , . . . , n — 1, as

in Step 2 of the proof of Theorem E.3. Then

T = CS(Z2(S)) char5, | S : T | = p ,

T = ifoDifi>'OifB = l,

(E.19) #* = [#,#i-i] , |#*-i : #; | = P, and

Hi_i = (Wi-i,ffi>,fori = l ,2, . . . ,n,

v G i?o#, («) = A, and i;a = vr', and K;O = ^S° (mod i^i).

Therefore

|T| = p n , |5| = p n + 1 , and H{ char 5, for i = 0,1, . . .,n.
Assume that T is not abelian. We will work toward a contradiction. Now

Aut(5/T) is abelian because |5/T| = p. So £ ' centralizes 5/T. By Propo-
sition 1.5(d), B' centralizes an element of S — T. Since B acts regularly on
R, we have B' = 1 and

(E.20) B is abelian.

By (E.18), there exists (3 e B such that f3 does not fix i?o$- Let us regard
5/5 ' as a 2-dimensional vector space over Fp. Then a has eigenvalues r
and ro on RQS'/Sf and T/Sf, respectively. Since (3 centralizes a, /? fixes
both subspaces if r ̂  ro. Therefore r = VQ. Since B fixes T/57 and p does
not divide \B\, B fixes some complement Q/S' oiT/S' in 5/5'. Let (3 have
eigenvalues t and £0 on Q/S' and T/57, respectively, lit = to, then /? fixes
every 1-dimensional subspace of 5/5', including R$S'/Sf. Thus

t ^ t0.

By (E.16) and (E.19) in Step 2 of the proof of Theorem E.3,

Wia = wp (mod Hi+i)
(E.22)

for r\ = ror1 and i = 0 ,1 , . . . , n — 1.
Similarly one can show that

(E.23) Wi" S " ^ ( m ° d " i + l )

for t{ = tot1 and i = 0 ,1 , . . . , n — 1.

Take k minimal such that T/Hk is not abelian. Then

(E.24) [Ho, H0]Hk = T'Hk = Hk.±.
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(Actually Tf = Hk-i, but we do not need this.)
Now take i maximal such that [H{,T] % Hk and j maximal such that

[HuHAZHk. Then, by (E.19),

(E.25) 0 < j < i < A : - 2 and [wu Wj] G # f c- i - Hk.

By (E.22), there exist x G Hi+i and x' G #j+i such that

W{a = W{Vi and Wja = Wjrjx',

and similarly
[wuwj]

a = [wi,wj]
r'-i (modHk).

,Wj]riVj (mod fffc).

By Lemma 4.2,

Therefore, by (E.25), r{r
By (E.22), rorWori =

(E.26)

By using (3 instead of a,

(E.27)

rork 1, so

i+j — k—1

we obtain similarly

tQti+j = t k - \

Now pk = \T/Hk\ < \T\ = pn = \S\/p < pq~l by Theorem E.3(c), so
k < q — 1. Recalling that r0 = r, we obtain from (E.26)

ri+;+j = ^fc-i? rj+2 = rk-i^ a n d j + 2 = A: - i (mod g).

Since 0 < j < i < k - 2 < q - 3 , we have 0 < j + 2 < g - l and
0<fc — i < k < q — 1, so

j + 2 = fc - i.

Now, by (E.27), to = t^"1"*"-7 = t, a contradiction. This completes the
proof of the proposition. •

Corollary E.5. Suppose that M is a maximal subgroup of G, x is an
element of Ma of prime order p, CQ{X) % M, and iV G M(CG(X)). Assume
that N £ MT and that

(i) \M/M'\ is prime, or
(ii) ili(Op(M)) has no normal abelian subgroup of index p.

Then every maximal subgroup of G is of Type I or Type II.

Proof. Note that we are in the situation of Corollary 15.9, with r = p.
Therefore M is a Frobenius group possessing a cyclic Frobenius complement
E such that

, E , \EnN\ = \N/N'\,NE((x))CEnN,
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Hence OP(M) is a Sylow p-subgroup of Ma and of G. By Proposition 16.1,
M and N are of Types I and II, respectively.

Let Ki be a Hall K(N)-subgroup of Mfi N and R be a Sylow p-subgroup
of M n N. As in the proof of Corollary 15.9, we see that

CNa (x) > 1, M H iV is a complement to Na in AT,
(E.29) |-K"i| is prime, and i? is contained in an abelian

normal complement U\ to K\ in M n N.

Hence

(E.30) R = OP(M) H(MnN) = OP(M) nN = COv{M)(x).

Now we show that (ii) yields (i). Assume (ii), and let S = fti(Op(M))
and # 0 = CR(Na). Since p G r2(M), r(R) = 2. By (ii), OP(M) is not
abelian. Therefore, by Theorem 12.7 and (E.30),

Ro = OP(F(N)) < JV, |flo|=p,

(E.31) COp(M)(x) = R = Ro*(Rn Eo),
for some complement Eo to Ro in M n N,

and Rn EQ acts regularly on A^. By Proposition 3.9, Rn EQ is cyclic. By
(E.29), CNo(x)±l. Hence

(E.32) (x) = CR(Na) = Ro< N and Kx normalizes Ro.

Since M is a Frobenius group, E acts regularly on 0p(M). Now, by (E.31)
and (E.32), and Theorem E.3, with OP(M), K^ and E in place of R, A,
and B,

S has exponent p.

Hence, by (ii), \S\ > p4. Furthermore, by Proposition E.4, E — K\, which
proves (i).

To complete the proof of the corollary, we can now assume (i) and assume
that G contains a maximal subgroup Af* that is neither of Type I nor
of Type II. Let K* = CN<r(Ki), Z = K±K* - K±U K*, k = |Ki|, and
k* = \K*\. For each maximal subgroup L of G and each subset T of G,
define the sets L and ^G(T) as in Section 14, p. 109. By Lemma 14.5,

(E.33) \VG(L)\ = (\La\ - 1)\G : L\ = \G\

and the sets ^G(L) are disjoint for nonconjugate maximal subgroups L. By
Theorem 14.7(e), (a), and a short argument,

(E.34) |

and ^ G ( Z ) is disjoint from %(-^) f°r every maximal subgroup L.
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Now let

s = p ( |%(M) | + \*G(N*)\ + \^G(N)\ + \VG{Z)\).

Then s < 1. By Theorem 14.7, AT* is conjugate to the unique maximal
subgroup containing CG(KI). By Proposition 14.2(a) and (g), we know
that \N/Na\ = \KiVxl < \M\ and \N*/N*a\ = \K*\. Therefore, by (E.33)
and (E.34),

Since ifif* is a proper subgroup of N, \N\ > 3kk*. Similarly |iV*| > 3kk*.
Since |-K"if/i| < |M|, we obtain

a contradiction. •
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