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Preface

bout 30 years ago, Walter Feit and John G. Thompson [8] proved the
0Odd Order Theorem, which states that all finite groups of odd order
are solvable. In the words of Daniel Gorenstein [15, p. 14], “it is not pos-
sible to overemphasize the importance of the Feit-Thompson Theorem for
simple group theory.” Their proof consists of a set of preliminary results
followed by three parts-local analysis, characters, and generators and rela-
tions—corresponding to Chapters IV, V, and VI of their paper (denoted by
FT here). Local analysis of a finite group G means the study of the struc-
ture of, and the interaction between, the centralizers and normalizers of
nonidentity p-subgroups of G. Here Sylow’s Theorem is the first main tool.
The main purpose of this book is to present a new version of the local anal-
ysis of a minimal counterexample G to the Feit-Thompson Theorem, that
is, of Chapter IV and its preliminaries. We also include a remarkably short
and elegant revision of Chapter VI by Thomas Peterfalvi in Appendix C.
What we would ideally like to prove, but cannot, is that each maximal
subgroup M of G has a nonidentity proper normal subgroup My such that

(1) Cpr,(a) =1, for all elements a € M — M,
(2) Myn My?9 =1, for all elements g € G — M,
(3) Mp is nilpotent,

(4) M/My is cyclic,

and such that the totality of these subgroups My, with M ranging over all
of the maximal subgroups of G, forms a partition of G:

(5) each nonidentity element of G lies in exactly one of the subgroups
Mo.

Relating each step in our procedure (as well as the main results, given
in Section 16) to this hypothetical goal will help give the reader a sense
of direction and motivation: after the normal Hall subgroup M, has been
introduced in Section 10, it can be read as My. (Section 16 is self-contained,
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except for notation from Section 1, and can be read as a supplement to this
introduction.)

In addition, we strongly recommend first studying a theorem of Feit,
Thompson, and Marshall Hall 7], the immediate predecessor of FT, which
proved solvability under the additional C N-condition: the centralizer of
every nonidentity element of G is nilpotent. The local analysis part of
its proof leads to conditions (1)-(5) for a minimal counterexample G. A
guide to reading this miniature model for FT and our work is given in
Appendix D. This theorem is actually needed in FT [8, p. 983], although
not for the part covered by this book. Incidently, the conditions (1)—(5)
above clearly imply the C'N-condition. Furthermore, (1) means that M is
a Frobenius group with kernel My, and thus implies (3) by a very special
case of a theorem of Thompson (Theorem 3.7).

The Odd Order Theorem was originally conjectured in the nineteenth
century. The first essential step toward its proof was taken by Michio Suzuki
[25] in 1957. He showed that C A-groups of odd order are solvable; here C A
means that all centralizers are abelian. In this case it is a routine matter to
derive (1)—(5), with all My abelian. Suzuki’s contribution, a model for the
later CN-paper, was mainly character-theoretic. Conditions (1)-(2) and
variations thereof occur in much more general situations as the end result
of local analysis, and it is therefore of fundamental importance for finite
group theory that they have strong character theoretic implications. See
[14, pp. 139-148], [17, pp. 195-205], or [26, pp. 281-294] for details.

It is the purpose of this book to make the Feit-Thompson Theorem
more accessible to a reader familiar with some standard topics in finite
group theory, such as Chapters 1-8 of Gorenstein’s first book [14] (hence-
forth denoted by G). However it is possible to manage comfortably with
considerably less reading. We give information about prerequisites in Ap-
pendix A. For the convenience of the reader, strictly necessary references
to other works appear only in Chapter I, and refer only to G. Further in-
formation about the influence of the theorem and its proof, together with
a detailed description of the proof, may be found in G, pp. 450-461, and in
[15, pp. 13-39].

As stated above, our main text and Appendix C correspond to Chap-
ters IV and VI of FT and the necessary preliminaries. As to the missing
link, the necessary character theory, we must refer the reader to Chapter V
of FT or to some unpublished work of David Sibley, who has obtained very
interesting improvements [23, pp. 385-388]. Fortunately, Chapter V of the
original paper is somewhat less complicated than Chapter IV.

We hope that in the not too distant future there will be a unified revised
proof of the Feit-Thompson Theorem. In addition, we and others have some
thoughts now for further improving this work; in this spirit, we include a
few results that are not needed for Chapter V of FT or for Sibley’s work.
However, in view of the considerable interest expressed in this work and the
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improvements and corrections sent to us by readers of preliminary versions,
we have decided to publish the work now as a set of lecture notes.

In a sense, the first steps toward the writing of this book were taken
in 1962, when the second author began to study a preprint of the Odd
Order Paper, with the encouragement and assistance of his Ph. D. advisor,
R. H. Bruck. However, the actual writing of a revision started with a class
at the University of Chicago in the Winter and Spring Quarters of 1975.

We wish to thank the members of the 1975 class (particularly David
Burry, Noboru Ito, Richard Niles, David T. Price and Jeffrey D. Smith)
and of a similar class given in Winter, 1986 (particularly Curtis Bennett,
Walter Carlip, Diane Herrmann, Arunas Liulevicius, Peter Sin, and Wayne
W. Wheeler). In addition, preliminary versions of this work were read by
Paul Lescot, Thomas Peterfalvi, and David Sibley, and studied in seminars
at the University of Florida and Wayne State University, led by Laszlé
Héthelyi (of Technical University, Budapest) and by Daniel Frohardt, David
Gluck and Kay Magaard, respectively. We thank each of these individuals
and the members of these seminars for their corrections and suggestions.

For permission to include unpublished work, we thank David Sibley
(Theorem 14.4, Corollary 15.9); I. Martin Isaacs (Appendix B); Walter
Carlip and Wayne W. Wheeler (Appendix C); and especially Walter Feit
and John G. Thompson (Theorem 15.8, Corollary 15.9, Appendix E). Ap-
pendix C is based on a beautiful revision [22] of Chapter VI of FT, for
which we thank the author, Thomas Peterfalvi.

We are particularly indebted to Professors Feit and Thompson for their
help and encouragement throughout the preparation of this work.

We note with great sadness the deaths of two individuals who also played
instrumental roles: R. H. Bruck and Daniel Gorenstein. Without them this
work might never have been started nor ever have been completed.

As this book has gone through many stages and vicissitudes in twenty
years, there is a danger that we have inadvertently overlooked some indi-
viduals to whom thanks are due. To them we sincerely apologize.

During the preparation of parts of this work the second author enjoyed
the support of the Guggenheim Foundation and the National Science Foun-
dation, and the hospitality of the Mathematical Institute, Oxford; Jesus
College, Oxford; Kansas State University; and Universitat Kiel. He thanks
each of these institutions. He also thanks the members of his family for
their helpful patience, forbearance, or nagging.

An earlier, complete version of this work was prepared by the second
author with the assistance of Alexandre Turull in 1979. The present version
was prepared with the assistance of Walter Carlip. Both have made valuable
corrections and improvements in the mathematical content and the wording
of the texts, particularly Dr. Carlip, who has also worked assiduously, over
the course of many years to put preliminary drafts into TEX and to produce
the final camera-ready copy printed here. We thank both for their efforts.






CHAPTER 1

Preliminary Results

Here we give general results about finite groups, mainly solvable groups
and p-groups, including some special properties of groups of odd order.
In Chapters II-IV we will apply the results of this section to a hypothetical
minimal counterexample to the Odd Order Theorem. As mentioned in the
preface, all necessary references in this chapter are taken from G.

1. Elementary Properties of Solvable Groups

Suppose G is a group. We say that a group A operates on G, or A is
an operator group on G, if there is given a homomorphism ¢ from A into
Aut G. In this case we usually write z* instead of ¢(a)(z) for z € G and
a € A. We say that A fizes an element x of G, or that z is A-invariant,
if z* = x for every a« € A. We say that A fizes a nonempty subset S of
G, or that S is A-invariant, if each element of A fixes S as a set. As in G,
pp- 30, 33, the set (group) of all A-invariant elements of G will be denoted
by Cg(A). Similarly, if S is a nonempty subset of G, C4(S) will denote
the set of all elements of A that fix every element of S.

We will frequently use the fact (G, p. 18) that if H and K are subgroups
of a group G, then

[H,K] < (H, K).

By applying this fact to the semidirect product of a group G by an operator
group A, we see that [G, A] is a normal subgroup of G fixed by A. Asin G,
p. 19, [G, A, A] will denote [[G, A], A]. Also, we say A stabilizes a normal
series

G=Gy2G;2---2G, =1

of G if each G; is A-invariant and A acts trivially on each factor G;_1/G;,
1<i<n.
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Suppose that A is an operator group on a group G. As in FT, p. 840,
we say that A acts in a prime manner on G if

Cg(a) = Cg(A) for all a € A%,

(Note that this must occur if |A] is prime and that we allow A = 1.) We
say that A acts regularly, or in a regular manner on G if

Cg(a) =1 for all a € A*.

(Thus, if A acts regularly, then A C Aut G and A acts in a prime manner
on G. This disagrees slightly with the definition in G, p. 39, which requires
also that A # 1.)

In the subsequent text we will write H << G to mean that H is a
subnormal subgroup of G. This means that H is a member of a normal
series of G (G, Exercise 1.5, p. 13). Equivalently, there exists a series

H=Hy<xH < ---<a4H,=@G.

We use the property that every subgroup of a nilpotent group G is subnor-
mal in G. This follows immediately from the fact that proper subgroups
of a nilpotent group are properly contained in their normalizers (G, Theo-
rem 2.3.4, p. 22).

All groups considered in this work will be finite except when explicitly
stated otherwise.

For later use we make the following definition. Given a prime p and a
group G, we say that G has p-length one if G = Op  »(G). (This differs
slightly from the definition in G, p. 227, in that our definition includes
groups of p’-order, that is, groups that, according to the usual definition,
would have p-length zero.)

A group G is called a Z-group if all of its Sylow subgroups are cyclic.

For any subset T of G we define

6c(T)={t!|teTandgec G}.

A nonempty subset X of G is a T1I-subset of G if X N X9 C 1 for all
z € G — N(X). In particular, a nonidentity proper subgroup H of G is a
TI-subgroup of Gif HNHY =1 for all g € G — N(H).

In the text that follows we will denote by £,(G) the set of all elementary
abelian p-subgroups of G; £,*(G) the set of all maximal elementary abelian
p-subgroups of G; and Epi(G) the set of all elementary abelian subgroups
of order p* in G (where i is a positive integer). We let £(G) be the union
of the sets £,(G) for all primes g. We define £*(G) and £(G) analogously.

For a prime p, a p-group R will be called narrow if it contains no elemen-
tary abelian subgroup of order p? or if it contains a subgroup Ry of order p
and a cyclic subgroup R; such that Cr(Ro) = Ry X R;. (This definition is
not standard and is used only in this book. It corresponds to the definition
of 7* on p. 845 of FT.)
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Lemma 1.1. Suppose that M is a minimal normal subgroup of a finite
group G. If M is solvable, then M C Z(F(G)) and is elementary abelian.

Proof. Elementary. O

Proposition 1.2 (P. Hall). Suppose that G is a solvable group and that
G* < G. Let 2 be the set of all chief factors U/V of G. Let 2* be the set
of all chief factors U/V of G for which U C F(G*). Then

F(G*) = () Co-(U/V) = [ Co-(U/V).

U/vez u/vea*
Proof. Let

H= () Ce-(U/V) and H*= [ Co-(U/V).
U/vez U/vVeo*

Take U/V € 2. Then U/V is a minimal normal subgroup of G/V. By
Lemma 1.1,

U/V C Z(F(G/V)).

Since F(G*)V/V is nilpotent and is also normal in G/V, we know that
F(G*)V/V C F(G/V). Hence F(G*)V/V centralizes U/V. As U/V was
taken arbitrarily, F(G*) C H.

Clearly H C H*. To complete the proof, we assume that H* ¢ F(G*)
and obtain a contradiction. Let K be a normal subgroup of G minimal
with respect to the property that K C H* and K € F(G*). Take a chief
series for G that includes K, and let

(l.l) K=Ky>DKiD>---DK,=1

be the part of the chief series from K to 1. By the choice of K, we have
K; C F(G*). Hence, for ¢ = 2,...,n, we have K;_;/K; € 9* and, since
K C H*, we have [K;_1, K] C K;. Since K is solvable, K/K is abelian
and [Ko, K] = [K, K] C K;. Thus the series (1.1) is a central series for K.
Hence K is nilpotent. Therefore K C F(G*), a contradiction. [

Proposition 1.3 (P. Hall). Suppose that G is a solvable group. Then
Ce(F(G)) C F(G).

Proof. Let G* = G in Proposition 1.2. [

Proposition 1.4. Suppose that G is a solvable group, A is a group of
automorphisms of G, and (|A4|,|G|) = 1. Then A acts faithfully on F(G).
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Proof. We may assume that A is cyclic. Let X be the semidirect product
of G by A. Then X is solvable. We embed A and G in X. Let ¢ = w(A)
and F = F(X).

Since A is certainly a Hall o-subgroup of X and AO,(F) is a o-group,
A=AO,(GF) D O,(F). As AC AutG and

[0s(F),G] C O,(F)nG =1,
we have O, (F) = 1. Thus
F = 0y (F) X O(F) = 0ps(F) C 0p:(X) = G.
Clearly F = F(G). By Proposition 1.3,
Ca(F)=ANCx(F(X))CANF(X)CANG=1. 0O

Proposition 1.5. Suppose that G is a solvable group, A is an operator
group on G, and (|A|,|G|) = 1. Let 7 be a set of primes. Then:

(a) A fixes some Hall w-subgroup of G;

(b) every A-invariant m-subgroup of G is contained in an A-invariant
Hall 7-subgroup of G;

(¢) if H, and H, are A-invariant Hall m-subgroups of G, then H; and
H; are conjugate by an element of Cg(A);

(d) if H is any A-invariant normal subgroup of G, then Cg/p(A) is the
image of Cg(A) in G/H; and

(e) if Cg(A) contains a Hall 7’-subgroup of G, then |G, A] C O,(G).

Proof. Statements (a), (c), and (d) follow from P. Hall’s theorem on solv-
able groups (G, Theorem 6.4.1, p. 231) and from the proof of Theorem 6.2.2,
pp. 224-5 of G.

To prove (b) we proceed by induction on |G|. Let K be an A-invariant
m-subgroup of G and M a minimal A-invariant normal subgroup of G. If
G itself is a w-group, there is nothing to prove, and so we may assume G
is not a w-group. Now KM/M is an A-invariant w-subgroup of G/M so,
by induction, there exists an A-invariant Hall w-subgroup H/M of G/M
that contains KM /M. Thus H is an A-invariant subgroup of G such that
K CHCGand |H|; =|G|;. If H# G, we can apply induction to H to
conclude that K is contained in an A-invariant Hall w-subgroup of H and
we are done. If H = G, then M is a normal Sylow p-subgroup of G for
some prime p outside 7. By (a), G has an A-invariant Hall w-subgroup @
and clearly G = QM with QNM = 1. Now |QNKM| = |K|, and hence K
and @ N KM are both A-invariant Hall w-subgroups of KM. By (c), there
exists an element x € Ckpr(A) such that K = (Q N KM)* C @Q*. Clearly
Q® is an A-invariant Hall n-subgroup of G.

To prove (e), let H be an A-invariant Hall 7-subgroup and let K be a
Hall #’-subgroup of G contained in Cg(A). Then G = K H. Therefore

[G,A] = (A% %*h® |ke K, he H,a € A) C H.
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Since [G, A] < G, we have [G,A] C O,(G). O

Proposition 1.6. Suppose that G is a solvable group, A is an operator
group on G, and (JA],|G|) = 1. Then:

(8) G = Co(A)[G, 4] = [G, A|Ca(A);

(b) G, 4, 4] = (G, ]

(c) if [G, A, A] = 1, then A acts trivially on G;

(d) if G is abelian, then G = Cg(A) x [G, A]; and

(e) if G is abelian and C(A) contains every element of prime order in

G, then A acts trivially on G.

Proof. For (a), let H = [G, A] in Proposition 1.5(d). For (b) and (c),
see the proof of G, Theorem 5.3.6, p. 181. For (d), see the proof of G,
Theorem 5.2.3, p. 177. Finally, note that (e) follows from (d). O

In the following lemma we list some of the basic properties of the Frattini
subgroup of a finite group.

Lemma 1.7. Suppose that G is a group and R is a p-group for some prime
p. Then:

(a) if H is a subgroup of G and G = H®(G), then G = H;
(b) R/®(R) is elementary abelian,;

(¢) ®(R) =1 if and only if R is elementary abelian; and
(d) ®(R)=(R',2? |z € R).

Proof. (a) G, Theorem 5.1.1, p. 173. (b) G, Theorem 5.1.3, p. 174. (¢) G,
Theorem 5.1.3, p. 174. (d) Let S = (R/,2P |z € R). By (b), S C ®(R).
Since R/S is elementary abelian and ®(R/S) = ®(R)/S, (c) yields (d). O

Theorem 1.8 (Burnside). Suppose that A is an operator group on a p-
group R and ({A],|R]) = 1. Assume that A centralizes R/®(R). Then A
centralizes R.

Proof. By Proposition 1.5(d), R = Cr(A)®(R). By Lemma 1.7(a), R =
Cr(A). (This is G, Theorem 5.1.4, p. 174.) [

Lemma 1.9. Suppose that 7 is a set of primes, G is a finite solvable -
group, and A is an operator group on G that stabilizes a normal series of
G. Then A/C4(G) is a 7-group.

Proof. It suffices to show that A acts trivially on G if A is a 7’-group. This
follows from Proposition 1.5(d) by induction on the length of the normal
series. [

Proposition 1.10. Suppose that A is an operator group on a nilpotent
group G and (|A|,|G|) = 1. Let C = Cg(A). If Ca(C) C C, then A acts
trivially on G.
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Proof. Assume Cg(C) C C. Take z € Ng(C). For each a € A and
y € C, we know that 2~ Yyz = (z~lyx)® = (%)~ !yz® and 22! centralizes
y. Thus 2°27! € Cg(C) C C. As z and a are arbitrary, A centralizes
Ng(C)/C. Thus A stabilizes the normal series

and hence, by Lemma 1.9, A acts trivially on Ng(C). Thus Ng(C) C C.
As G is nilpotent, C = G. Hence A acts trivially on G. O

Theorem 1.11. Suppose that p is an odd prime, G is a p-group, and A
is a p’-group of operators on G that acts trivially on £;(G). Then A acts
trivially on G.

Proof. G, Theorem 5.3.10, p. 184. (O

Corollary 1.12. Suppose that p is an odd prime, G is a p-group, F is
an elementary abelian subgroup of G, and A is a p/-group of operators on
G. Assume that A fixes every element of order p in Cg(E). Then A acts
trivially on G.

Proof. Let C = Cg(A). Since E C Cg(E), we know that E C C. There-
fore C(C) C Cu(E) and A fixes every element of Q,(Cg(C)). Since p
is odd, A fixes every element of Cg(C) by Theorem 1.11. Consequently
C¢(C) € C. By Proposition 1.10, A acts trivially on G. O

Theorem 1.13 (J. G. Thompson). Suppose that p is an odd prime and
G is a nontrivial p-group. Then G contains a characteristic subgroup H
that enjoys the following properties:

(a) [H,G] C Z(H);

(b) H has nilpotence class at most two;

(c) H has exponent p; and

(d) Cauwg(H) is a p-group.

Proof. This follows from Thompson’s Critical Subgroup Theorem (G,
Theorem 5.3.11, p. 185). As in Theorem 5.3.13 of G (p. 186), we let C
be a critical subgroup of G and examine the properties of Q;(C). Let
H = Q,(C). Then (b), (c), and (d) are proven in G (Theorem 5.3.13,
p.186). Since C is a critical subgroup of G, [G,C] C Z(C). Thus

(G, H] = [G,(C)] C[G,CINH C Z(C)NH C Z(H).
This yields (a). O

Lemma 1.14. Suppose that p is a prime, T is a p-subgroup of a group G,
and M is a normal p’-subgroup of G. Let C = Cg(T) and N = Ng(T).
Then

Ca/m(TM/M) = CM/M and Ng/p(TM/M) = NM/M.
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Proof. Let
C*/M = Cg/M(TM/M) and N*/M = NG/M(TM/M).

Clearly NM C N*. On the other hand, take x € N*. Then x normalizes
TM, so T? is a Sylow p-subgroup of TM, and there exists y € M such that
T% = TY. Then xy~! normalizes 7. Hence

rzy '€ Nand z = (zy 1)y € NM.

Thus N*=NM. Now CM C C* C N*= NM. Since TNM =1, we have
C*N N =C. Hence
C*=(C*nN)M=CM. O
Proposition 1.15. Suppose that G is a solvable group and p is a prime.
(a) (P. Hall & G. Higman, “Lemma 1.2.3”) Assume that T is a
Sylow p-subgroup of Op ,(G). Then Cq(T) C Op (G).
(b) (D. Goldschmidt) Assume that R is a p-subgroup of G. Then
Op(Ca(R)) € Op(G).
Proof. (a) G, Theorem 6.3.3, p. 228. (b) By Lemma 1.14, we may assume
Op(G) =1. Let M = Op(Cg(R)) and T = Op(G). Then RM = Rx M
and M is an operator group on the p-group RT. Since Crr(R) normalizes
M,
[Crr(R),M]CRTNM=1.
Therefore Crr(R) centralizes M. Let C = Cgrr(M). Then we have

Crr(C) C Cgrr(R) C C. By Proposition 1.10, M centralizes T. As
T=F(G),weknow Co(T)CT. Tus M =MnT=1. O

Proposition 1.16. Suppose that p is a prime, G is a p’-group, and A is a
noncyclic abelian p-group of automorphisms of G. Then

G={Cg(z) |z € A*) and

G=(Ce(Y)|Y C Aand A/Y is cyclic).

Proof. The first assertion is G, Theorem 6.2.4, p. 225. The second then
follows by induction on |G|. O

Theorem 1.17 (D. G. Higman, “Focal Subgroup Theorem”).
Suppose that G is a group, p is a prime, and S is a Sylow p-subgroup of G.
Then

SNG' = (w_ly | z, y € S and x is conjugate to y in G).
Proof. G, Theorem 7.3.4, p. 250. O
Theorem 1.18 (Burnside). Suppose that G is a group, p is a prime, and

S is a Sylow p-subgroup of G. Assume that S C Z(Ng(S)). Then G has a
normal p-complement.
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Proof. Here S is abelian. Suppose z, y € S and z* = y for some u € G.
Then
S C Cg(z), S C Ca(y), and S* C Cg(z)* = Ce(y).

By Sylow’s Theorem, there exists v € Cg(y) such that (S*)” = S. Then
wv € Ng(S) and z** = (2*)' =y = y.

Since S C Z(Ng(S)), we know z*¥ = z. Thus x = y and 271y = L.
By Theorem 1.17 and the argument above S NG’ = 1, and hence G’ is
a p’-subgroup of G. Define a normal subgroup K of G by

K 2 G and K/G' = 0,(G/G).

It is easy to see that KS = G and KNS = 1. Thus K is a normal
p-complement in G.

Corollary 1.19. Suppose that G is a group.

(a) If S is a cyclic Sylow subgroup of G, then either SNG' =1 or
SCG.
(b) If G is a Z-group, then G’ is a Hall subgroup of G.

Proof. Since (b) follows from (a), we will prove only (a).

Let K be a complement to S in Ng(S). By Proposition 1.6(d), we know
that § = Cs(K) x [S, K|. Since S is cyclic, either § = [$, K] C G', or § =
Cs(K) C Z(Ng(S5)). In the latter case, SN G’ =1 by Theorem 1.18. O

Theorem 1.20 (Maschke). Suppose that G is represented by linear trans-
formations on a vector space V over a field F. Assume that the character-
istic of F is zero or is a prime that does not divide |G|.

Then V is completely reducible under G.

Proof. G, Theorem 3.3.2, p. 66. O

For later reference we gather together some elementary properties of
p-length.

Lemma 1.21. Suppose that G is a finite group. Then:

(a) if G has p-length one and H is a subgroup of G, then H has p-length
one;

(b) if H is a normal p’-subgroup of G and G/H has p-length one, then
G has p-length one;

(c) if H is a normal p-subgroup of G such that Oy (G/H) =1 and if
G/H has p-length one, then G has p-length one;

(d) G has p-length one if and only if the subgroup of G generated by
all p-elements of G has a normal p-complement; and

(e) if H and N are normal subgroups of G such that HN N = 1 and
G/H and G/N both have p-length one, then G has p-length one.
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Proof. (a), (b), and (c) are easily verified from the definition. For (d),
let U <« G be generated by all p-elements of G. If U has a normal p-
complement K, then KcharU, so K 4 G and K C Op(G). Clearly
UOp (G) = Op p(G) and G = Op p (G), as desired. Conversely, if G =
Op pp(G), then U C Op 5(G). Thus Op(G)NU < U and

(
U/(Op'(G)ﬂU) U0, (G) /0 ( COP:,,,( /Op’(G

which is a p-group. Thus Op(G) N U is a normal p-complement in U.

For (e), suppose G/H and G/N have p-length one, and let U be gen-
erated by all elements of p-power order in G. Applying (d) to G/H and
G/N, we can find subgroups A and B of G such that H C A < UH and
such that N C B <« UN and A/H and B/N are normal p-complements
in UH/H and UN/N, respectively. Clearly AN B NU contains all of the
p’-elements of U. On the other hand, if g € AN B is a p-element, then
g € Hand g € N. Thus g = 1 and we conclude that AN BNU is a normal
p-complement in U. Now (d) yields (e). O

Lemma 1.22. Suppose that p is a prime, G is a p-group, and N < G.
Let |N| = p*. Then, for every nonnegative integer r such that r < k, N
contains a normal subgroup of G having order p".

Proof. We use induction on |G|. The result is trivial if N =1 or r = 0.
Hence we assume that N # 1 and r > 1. Thus NN Z(G) # 1.

Take a subgroup Z of order p in N N Z(G). By induction, N/Z contains
a normal subgroup L/Z of G/Z having order p"~!. Then |L| = p", L C N,
and L G. O

2. General Results on Representations

In this section, we consider representations of groups by matrices of
finite degree or by finite-dimensional linear transformations. Assume G is
a group. If G acts faithfully on a vector space V over a field F, we denote
the enveloping algebra of G over F by E(G) (as in G, p. 82). This is the
smallest F-subalgebra of Homg(V, V') that contains G. As usual, we embed
F in Homg(V, V') by identifying field elements with scalar multiplications.

By module we will always mean finite-dimensional right module.

Suppose H is a subgroup of G. If L is an FG-module, we denote the
restriction of L to H by L|y or Ly. If M is an FH-module, we denote by
M€ the FG-module induced from M. We consider M€ to be the tensor
product M @py FG. If, in addition, H <t G and z € G, we denote by M*
the F H-module with underlying F-module M and H-action (temporarily
denoted by *) defined by

m % h = m(zhz™!),

for allm € M and h € H. The module M? is called a conjugate F H-module
and is clearly isomorphic to the FH-submodule M ® z of MC.
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Proposition 2.1. Suppose that G is a group, F is a field, and M is an
irreducible FG-module. Then:

(a) M is absolutely irreducible if and only if Hompg (M, M) = F;

(b) if G is faithful on M and Homgg (M, M) = F, then Homp (M, M) =
E(G); and

(c) if F is a finite field and K = Hompg (M, M), then K is a finite field
and we can regard M as an absolutely irreducible KG-module.

Proof. (a) If F has characteristic zero or relatively prime to |G|, this is
G, Theorem 3.5.7, p. 80. The general case can be deduced in one direction
from the final paragraph of the proof in G (where one assumes that D # F)
and in the other from the Jacobson Density Theorem (G, Theorem 3.6.2,
p. 86). For a nice proof of the general case, see [3, Theorem 29.13, p. 202].

(b) follows from the Jacobson Density Theorem (G, Theorem 3.6.2,
p. 86) and the fact that Hompg(M, M) = Homg) (M, M).

(c) By Schur’s Lemma (G, Theorem 3.5.2, p. 76), K is a division algebra
with F in its center. Since F is finite and M has finite dimension, M is
actually finite. Therefore K is also finite and, by Wedderburn’s well-known
theorem on finite division rings [16, Theorem 7.2.1, p. 361], K is a field.
Since K = Hompg (M, M), we can regard M as a vector space over K and
the elements of G as linear transformations of M over K. Clearly

K g Homxg(M, M) g Hompg(M, M) =K.
By (a), M is an absolutely irreducible KG-module. O

Proposition 2.2. Suppose that G is a group, H < G, and G/H is cyclic.
Assume that F is an algebraically closed field and M is an irreducible FH-
module such that M = M* for all x € G.

(a) If L is an irreducible FG-module and M is isomorphic to a sub-
module of Ly, then Ly & M.

(b) The representation of H on M can be extended to a representation
of G.

Proof. (a) We can assume that G acts faithfully on L. By Clifford’s Theo-
rem (G, Theorem 3.4.1, p. 70), there exists an integer k such that

(2.1) Ly=Mi®M:® - O My,

where M =2 M; for each i. Since G acts faithfully on L, H acts faithfully
on M.

Consider, for a moment, the action of H on M. Since F is algebraically
closed, Homg g (M, M) = F and, by Proposition 2.1, E(H) = Homg (M, M).
Take z € G such that G = (H,z). Then, by hypothesis, M = M’”_l, and
therefore there is an F-isomorphism 7 € Homg (M, M) = E(H) such that
forallme M and he H,

(2.2) (mh)T = (m7)zchz™L.
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On the other hand, H C G, and H acts on the module L. By (2.1)
and (2.2}, there exists an F-isomorphism (which we also call 7) such that
7 € E(H) CE(G) C Homp(L,L) and, for all £ € L and h € H,

(¢R)T = (1)zha~t.
Extending linearly, we see that, for any £ € L and any 6 € E(H) C E(G),

(€0)r = (br)zfz~L.
Thus
(2.3) (60)rz = (brz)0.
In particular, since 7=! € E(H), we have

e = eT;lTI‘ = lrer!

and therefore
(2.4) (bx)rx = (brzr™ Y1z = (bro)2.

Since H and x generate G, (2.3) and (2.4) imply that 7o € Hompg(L, L).
Since F is algebraically closed and L is irreducible, Proposition 2.1 implies
that Hompg(L, L) = F. Thus 7z is a scalar. Since 7 € E(H), we have
MT = M;. Hence
M, = Mitx = Mix.

Thus M, is a G-submodule of L and consequently L = M;.

(b) Let L be an irreducible FG-submodule of M€, Then Ly is a direct
sum of copies of M. By (a), Ly =2 M. O

Lemma 2.3. Suppose that G is a solvable group, F is a field, and M is an
absolutely irreducible FG-module. Then dim M divides |G].

Remark. This lemma is a corollary of a well-known theorem of Fong and
Swan [5, Theorem 72.1, p. 473].

Proof. Use induction on |G|. We may assume that |G| > 1 and F is
algebraically closed. Take H < G of some prime index p. Let L be an
irreducible submodule of My. By induction,

(2.5) dim L divides |H|.

Take ¢ € G- H. If L & L*, then, by Proposition 2.2, L = Mg, and we are
done. Otherwise

(2.6) My=L+Lx+---+ LaP™!,

and the FH-submodules L, Lz, ..., LzP~! are pairwise nonisomorphic. In
this case the sum in (2.6) is direct and dim M = p(dim L). Then we are
done by (2.5). [
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The next proposition uses only elementary techniques of linear algebra.

Proposition 2.4. Suppose that V is a vector space over a field F and
dimV = ¢ > 2. Let g be an invertible linear transformation of V' of finite
order h > 2 and assume that F contains a primitive A*" root of unity e.
For all integers ¢ and ¢ define

E=EndF(V),
V,-:{veV|vg=e’b},
n; = dimV,,

Ei={eeE|69=g_leg=eie}, and
Eys={e€E|VieCV,and Vije=0forall j #i}.

Then:
@ V=VeVe oV
(b) n; = niqp for all 4;
(c) E= P Ei.
0<i t<h—1
(d) dim E;; = n;n, for all { and t;
(e) E;y C Ey—; for all ¢ and ¢
(f) Em= @D Ei, forall m;

t—i=m (mod h)

0<4,t<h—1
h—1
(g) dimE,, = ani.,.m for all m;
i=0 h—1
(h) 2dim Ey — 2dim E,,, = Z(n, —Niym)? for all m;

=0
(§) if dim Ey = dimE,, + 1 for all m # 0 (mod h), then there exist
integers i, n, and § = %1 such that ¢ = hn 4+ 6, n; = n + §, and
n; =n for all j £ ¢ (mod h); and
(k) under the same assumptions as (j), dimVy = no > 0 unless n = 1,
i=0,=—-1l,andh=q+1.

Proof. The assumption that F contains a primitive h** root of unity forces
F to have characteristic not dividing h.

Statements (a) and (b) are clear. For (c) and (d), it may help to consider
the matrices of elements of Homp(V, V) with respect to a basis that is the
union of bases of the subspaces V;. Each such matrix A can be viewed
naturally as a matrix of k x h submatrices A;; with n; rows and n; columns.

For (e), take e € E;; and v € V;. Clearly e9 = g~leg € E;; and ved =
vg~leg = (e 7*v)eg = €7 (ve)g = e et (ve) = v(et~%e). Thus eI = et e,
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Now (f) follows from (c) and (e); (g) from (d) and (f); and (h) from (b)
and (g).

To prove (j), assume that dim Fy = dim E,,,+1 for every m # 0 (mod k).
Let

S1={i|0<i<h—-1landn;=ng} and
Se={i|0<i<h-landn;#no}.

By (h) with m = 1, S is not empty. Let j and k be the smallest and
largest elements of Ss, respectively. (They may be equal.) Then n; = ng
fori = 1,2,...,j—1and for i = k+1,...,h — 1. By (b), np = ny.
Therefore, by (h) with m =1,

2= (nj._l - nj)2 + (nj - nj+1)2 +e (nk - nk+1)2’

which yields: |ng —nj| = |nxk —no| = 1 and n; = nj4 = -+ = ng.
Consequently, [S2| =k+1—jand [Si|=h—-(k+1—-j)=h+j—-1-k.

If |S1| = 1, we may take i = 0, n = n;, and § = ng — n; and similarly if
|S2] = 1. But, suppose |S1|, |S2} > 2. Then h > 4and j+1< k< h+j5-3.
Hence, by (b), nry1 = ng4+2 = ne. Therefore, by (h) with m = 2,

2> (nj1 — nj41)? + (k=1 — Met1)? + (M = nig2)® = 3(ng — n;)? = 3,

a contradiction.
Finally, under the assumptions for (j), we have n > 1, because hn + § =
g > 2. Thus (k) follows from (j). O

Remark. We thank Curtis Bennett for suggesting a simplification of our
original proof of Proposition 2.4.

Theorem 2.5. Suppose that P is an extraspecial p-group of order p?*+!

for some prime p. Let G be the semidirect product of P (with P < G) and
a cyclic group H of order |H| = h such that h is relatively prime to p and
for all x € H#,

Cp(z) = Z(P).

Suppose F is a field whose characteristic does not divide |G|. Then h
divides p™ 4+ 1 or p™ — 1 and, if h # p™ + 1, then every faithful, irreducible
FG-module V satisfies

Cv(H) #0.

Remark. The last part of the theorem fails if one allows h = p™+1. There
are counterexamples in which p* = 2, h = 3, G = SL(2,3), and F is an
arbitrary field of prime characteristic not dividing |G|, or an algebraically
closed field of characteristic zero.
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Proof. Since the characteristic of F does not divide |G|, it is easy to see
that there exists an irreducible FG-module on which Z(P) acts nontriv-
ially. Suppose V is any such module (e.g., a faithful FG-module). Since
Cv(Z(P)) is invariant under G,

(2.7) Cv(Z(P)) = 0.

Let F* be the algebraic closure of F and V* = F*®p V. Take a generator
z of H. Then

Cy(H) = Cy{zx) and
dim Cy(z) = dimV — rank(z — 1),

where £—1 denotes the linear transformation of V given by v(z—1) = vz —v
for all v € V. Since extending F to F* does not change the rank of x — 1,
we have

(2.8) dimp« Cy«(H) = dimg Cy (H).
A similar argument, together with (2.7), shows that
(2.9) Cy«(Z(P))=0.

Let W be an irreducible G-submodule of V* and M an irreducible P-
submodule of V*. Since P is extraspecial, |Z(P)| = p. Therefore every
nonidentity normal subgroup of P contains Z(P). Consequently (2.9) im-
plies that

(2.10) P acts faithfully on M and on W.
This shows that [Ce(W), P] C Ca(W)N P = 1. Hence
Co(W)=Ce(W)nCg(P)=Ce(W)NnZ(P)=1.

Thus G acts faithfully and irreducibly on W. Clearly it suffices to prove
that h divides p™ £1 and that if h # p™ +1, then Cyw (H) # 0, for, by (2.8),

dimgp Cv(H) = dimg- Cy«(H) > dimg« Cw (H).

Thus we may assume that F = F* and W = V. Then M is an irreducible
P-submodule of V.

By (2.10), P is faithful on M. Furthermore, by G, Theorem 5.5.4, p. 206
and the discussion following the theorem, a faithful, irreducible represen-
tation of an extraspecial group is determined by the action of its center.
It follows that, for any g € G, the P-submodules M and M9 are isomor-
phic. By Proposition 2.2(a), Vp = M and, by G, Theorem 5.5.5, p. 208,
dimM = dimV = p™. Let ¢ = p".
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By Proposition 2.1, E(P) = Homp(V, V). Identifying elements of P with
their images in E(P), we obtain

E(P)= ) Fg

geP

and, since elements of Z(P) act as scalars,

(2.11) E(P) =) ¥y,

geR

where R is a set of coset representatives of Z(P) in P. Taking E = E(P)
and Z = Z(P), we have |R| = |P/Z| = p*>" = ¢> = dim(E). Thus the sum
(2.11) is direct, and R is a basis of E.

By Proposition 1.5, Cp/z(z) = Cp(x)Z/Z = 1 forevery z € H#, Hence,
for each element a € P — Z, we know that a and all of its H-conjugates lie
in different cosets of Z. Thus we can fix a set of coset representatives R
consisting of the element 1 and (g2 — 1)/h H-classes of P.

If we consider E as an H-module under conjugation, the direct decom-
position (2.11) shows that E is the direct sum of the principal module and
(¢%> — 1)/h copies of the regular module. Since H is abelian, each irre-
ducible H-module occurs with multiplicity one in the regular module, and
hence the multiplicity of the principal module in E is one more than the
multiplicity of any nontrivial irreducible module.

Taking g to be any generator of H, we see that the hypothesis of Propo-
sition 2.4(j) is satisfied. Therefore, for some § = +1 and some integer n’,
p" = q = hn' 46, so that h divides p™ — 6. Moreover, by Proposition 2.4(k),
ifCy(H)=0,thenh=q+1=p"+1. O

Theorem 2.6. Suppose that G is a finite group of odd order, F is a field,
and V is an FG-module of dimension two over F on which G acts faithfully.
Then:

(a) if the characteristic of F does not divide |G|, then G is abelian; and
(b) if the characteristic of F is a prime divisor p of |G|, then G has an
abelian Sylow p-subgroup that contains G'.

Proof. We use induction on |G|. We may regard G as a subgroup of
GL(V,F). Let G* = G N SL(V,F). By considering the tensor product of
V with the algebraic closure of F, we may assume that F is algebraically
closed. Let p be the characteristic of F.

Suppose O (G*) # 1 for some prime g. Let K = Q,(Z(04(G*))). Then
K is an elementary abelian ¢g-group and K < G. We consider separately
the cases in which ¢ = p and q # p.

Suppose ¢ = p. Let W = Cy(K). By G, Lemma 2.6.3, p. 31, W # 0.
Since V is 2-dimensional and G is faithful on V,

(2.12) dimW = dimV/W = 1.
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Now W is invariant under G. Let C = Cag(W)NCq(V/W). Simple matrix
calculations show that C is an elementary abelian p-group. Since F has
characteristic p, the only element of the multiplicative group F — {0} of
p-power order is 1. Thus C contains every p-element of G. Similarly, C
contains G’ because F — {0} is abelian. Hence in this case we have (b).

Now suppose ¢ # p. Then V is a direct sum of irreducible F K-modules
(by Theorem 1.20). Since K is abelian and F is algebraically closed, by
G, Theorem 3.2.4, p. 65, all irreducible FK-modules are one-dimensional.
Thus V = W; & W, for two one-dimensional FK-modules W; and Ws.
Take € K*, w; € W¥, and w, € W¥. Then

w1z = Aywy and wox = Asws for some Aq, A; € F.

Moreover, A A2 = detz = 1, because x € G* = G N SL(V,F). Since z
has odd order, A; # Ag. Now an easy calculation (or elementary result on
modules) shows that W; and W, are the only one-dimensional subspaces
of V fixed by x and thus the only one-dimensional F K-submodules of V.
Since K < G, every element of G fixes or interchanges W; and W,. As
|G| is odd, every element of G fixes W, and Wa. Therefore G is an abelian
p’-group. Thus (a) applies here.

Now assume more generally that G* # 1. If G* is a p-group, then
Op(G*) = G* # 1. On the other hand, assume that |G*| is divisible by
some prime q different from p. Let @ be a Sylow g-subgroup of G* and
H = Ng-(Q). Then O4(H) # 1. The previous paragraph shows that H
is an abelian group, so that @ is in the center of its normalizer in G*. By
a theorem of Burnside (Theorem 1.18), G* has a normal complement N
to Q. If N =1, then G* = Q and 1 C O,(G*) = Q. If N # 1, then by
induction, O,.(N) # 1 for some prime r, and then 1 C O,.(N) C O,.(G*).
Either way, by the previous arguments, we are done.

Finally, assume that G* = 1. Since GL(V,F)/SL(V,F) & F— {0} under
multiplication and G* = GNSL(V, F), we see that G is an abelian p’-group.

O

Lemma 2.7. Suppose that p and ¢ are distinct primes, P and @ are ele-
mentary abelian groups of order p? and ¢? respectively, and @ C Aut(P).
Then

(a) ¢ divides (p — 1), and

(b) there exists an element a € Q¥ and an integer r such that

z% =z" for every z € P, r? =1 (mod p), and r # 1 (mod p).

Proof. We may regard P as a 2-dimensional vector space over F, and Q
as a group of linear transformations of P over F,. Since Q is abelian but
not cyclic, @ is not irreducible on P (by G, Theorem 3.2.3). Therefore P
is the direct sum of two 1-dimensional @-submodules P; and P;.
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Take 0 # v; € P;, i = 1, 2. Now an easy argument shows that @ is the
set of all linear transformations 8 of P with the property that

v? = Ajv; and v5 = A, for some Aj, Ay € Fy, such that A{ = A =

and then (a) and (b) follow. O

3. Actions of Frobenius Groups and Related Results

Lemma 3.1. Suppose that K and R are nonidentity subgroups of a group
G such that K 4 G, KR = G, and KN R = 1. Then the following are
equivalent:

(a) G is a Frobenius group with Frobenius complement R and Frobe-
nius kernel K;
(b) Ck(x) =1 for all x € R¥.

Proof. By G, Theorem 2.7.6, p. 38, (a) yields (b). Now assume (b). Take
any y € G such that RN RY # 1. Let h € (RN RY)#. Choose u € R and
v € K such that uv = y. Then

he RNRY=RNR* =RNR".
Thus h = hg” = v~ lhgv for some hg € R. Since K < G, it follows that
hovhy! € K, and therefore

hhg! = v thovhy' € RNK =1.
Hence h = hg. Now v € Ck(h) so, by (b), v =1and y = wv = u € R.
Thus we have shown that

RN RY =1 whenever y € G- R.

Therefore Ng(R) = R, and R is disjoint from its distinct conjugates in
G. By G, Theorem 2.7.7, p. 39, G is a Frobenius group with Frobenius
complement R. By hypothesis,

KNnRI=KINRI=(KNnR)Y!=1forallgegG.

Thus K is contained in the Frobenius kernel of G, which has order |G : R)|.
Since |K| = |G : R|, K is the Frobenius kernel of G. [

Lemma 3.2. Let G = KR be a Frobenius group with solvable Frobenius
kernel K and Frobenius complement R and suppose that N < G. Assume
that K € N. For each subgroup H of G let H = HN/N. Then:

(a) N C K; and .
(b) G is a Frobenius group with Frobenius kernel K and Frobenius
complement R.

Note. Since Thompson’s Thesis (G, Theorem 10.2.1, p. 337) implies that
the kernel of a Frobenius group is nilpotent (G, Theorem 10.3.1(iii), p. 339),
the assumption that K is solvable is unnecessary.
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Proof. Since G is a Frobenius group with kernel K and complement R,
the conjugates R* for x € K are pairwise disjoint (except for the identity)
and

(3.1) G=Ku | R~
z€K

First suppose that N C K. Since K € N, we know that N C K, which
is (a). Since G is a Frobenius group, by Lemma 3.1, Cg(z) = 1 for every
x € R¥. By Proposition 1.5(d),

Cxl@) = Ck(@)N/N = 1,

and a second application of Lemma 3.1 implies that G is a Frobenius group
with kernel K and complement R, as desired.

Now let N be an arbitrary normal subgroup of G such that K € N.
By the previous paragraph, it suffices to show that N C K. Set H =
NNnK,G= G/H and, for every subgroup L C G, let L LH/H. By the
argument above, G is a Frobenius group with kernel K and complement
R. . By G, Theorem 2.7.7, p. 39, R* N R = 1 for every z € K#. Thus
(NARFN(NNR) =1 for every x € K#,

On the other hand, [NNR,K] C NNK = H and so [NO R, K] = 1.
Therefore (N/I’W%)““’ C (m) for all # € K. Since K # 1, this implies
that NAOR = 1. Thus (NNR)C HC K and consequently NN R = 1.
But N < G, so, for every x € K,

NNR*=(NNnR)*=1.
Finally (3.1) implies that N C K. O

Lemma 3.3. Let G = KR be a Frobenius group with Frobenius kernel K
and Frobenius complement R. Suppose that G is represented on a vector
space V over a field F of characteristic not dividing |K|. If K does not act
trivially on V, then Cy(R) # 0.

Proof (Wielandt). The representation of G on V induces a unique rep-
resentation of the group algebra FG on V. For any subgroup H of G,
consider the element H = Y h € FG. Clearly, for any v € V, we have
vHeC v{(H). heH

Suppose that Cy(R) = 0. We will show that the action of K on V is
trivial. For any ¢ € G we have Cy(RY) = 0 and Cy(G) C Cy(R) = 0.
Thus, for all v € V, vR = vRY = vG = 0.

Since G is a Frobenius group with kernel K and complement R, the
conjugates R® for « € K are pairwise disjoint (except for the identity) and

G=Ku|J R
zeK
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where, except for the identity, the union is disjoint. Thus

G=K+)> R -|K
€K

and hence, for any v € V,
0=vK — |K|v.

But then |K|jv = vK € Cy(K) for all v € V. Since |K| # 0 in F, this
implies that V C Cy(K), and hence K acts trivially on V. O

Theorem 3.4. Let G be a solvable group of odd order that has a normal
Hall subgroup K with a complement R of prime order. Suppose that G
acts on a vector space V over a field F whose characteristic does not divide
|G|. If Cy(R) = 0, then [R, K] C Ck (V).

Remark. The counterexamples for F finite mentioned in the remark fol-
lowing Theorem 2.5 yield counterexamples here if one allows G to have
even order. In particular, for every prime p greater than three, there is a
counterexample in which G = SL(2,3) and F = F,.

Proof. Suppose false and let G be a minimal counterexample. Let C =
Ce(V). If H is any proper R-invariant subgroup of K, the group HR
satisfies the hypotheses of the theorem and |HR| < |G|. By minimality of
G, we have [H, R] C C. Therefore, since, by assumption, [R, K] Z C,

(3.2) K is not generated by its proper R-invariant subgroups.

Since the characteristic of F does not divide |G|, by Maschke’s Theorem
(Theorem 1.20), we know that V' is the direct sum of irreducible submod-
ules. Then, since [K, R] € C, we can choose an irreducible G-submodule M
such that [K, R] does not act trivially on M. Let N = Cg(M) and p = |R].
Since we know that Cp(R) C Cy(R) = 0, we obtain NN R = 1. Thus
|NR| = |N||R| = p|N| and |G| = p|K|. Hence N is a normal p’-subgroup
of Gand N C K = Oy(G).

Let G = G/N, K = K/N, and R = RN/N. Then K is a normal Hall
subgroup of G with complement R and Cps(R) = 0. Furthermore, G acts
faithfully on M. If N # 1, then |G| < |G| and, by minimality of G, we
conclude that [K,R] = 1. But then [K,R] C N, which contradicts the
choice of M. Thus N = 1, and we conclude that G acts faithfully and
irreducibly on M, and hence faithfully on V. By G, Theorem 3.2.2, p. 64,

Z(G) is cyclic,

Suppose that {K| is divisible by two or more distinct primes. By Propo-
sition 1.5(a), K has R-invariant Sylow p-subgroups for every prime p divid-
ing |K|. But then K is generated by proper R-invariant subgroups, which
contradicts (3.2). Thus |K| = ¢™ for some integer n and prime q.
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By G, Theorem 5.3.7, p. 181, K is either an elementary abelian group
or a nonabelian special group, and

(3.3) R acts irreducibly on K/K' and centralizes K’.

Suppose K is elementary abelian. Then K’ = 1. Furthermore, since
[R,K] # 1, we have Cx(R) C K. Therefore, by (3.3), Cx(R) = 1. But
now, by Lemma 3.1, G is a Frobenius group with kernel K and complement
R. Since G acts faithfully on V', the action of K is nontrivial and Lemma 3.3
implies that Cy(R) # 0, which contradicts our original assumption. Thus
K is a nonabelian special group.

Now, since K is a nonabelian special group, Z(K) = K’, and therefore,
by (3.3), R centralizes Z(K). Thus Z(K) C Z(G), and hence Z(K) is
cyclic. Consequently K is extraspecial.

By (3.3), R acts irreducibly on K/K' = K/Z(K) and Z(K) is a maximal
R-invariant subgroup of K. Thus Z(K) = Ck(R) = Ck(z) for all z € R¥.
We can now apply Theorem 2.5 to obtain a final contradiction.

Theorem 3.5. Let G = KR be a Frobenius group with solvable Frobenius
kernel K and cyclic Frobenius complement R of prime order. Suppose that

G acts on a vector space V over a field F whose characteristic does not
divide |G|. If Cv(R) is one-dimensional, then K’ C Cg (V).

Note. Just as for Lemma 3.2, Thompson’s Thesis implies that K is actually
nilpotent, so the assumption that K is solvable is not necessary.

Proof. Proceed by induction on |G|. Suppose G satisfies the hypotheses of
the theorem. The hypotheses remain intact if we replace F by its algebraic
closure F and V by V ®F F, so, without loss of generality, we can assume
that F is algebraically closed.

Suppose that G does not act faithfully on V. Let C = Cg(V). Then
1CcC«aG. If KCC,then K’ C C, as desired. Assume then that K € C.
By Lemma 3.2, C C K and G/C is a Frobenius group with Frobenius com-
plement RC/C and Frobenius kernel K/C. Since Cy(RC/C) = Cy(R),
induction yields

K'C/C = (K/C) C Cg/c(V)=C/C.

Thus K’ C C, as desired.

For the rest of the proof assume that G acts faithfully on V.

Suppose N is a proper R-invariant subgroup of K. Then NR satisfies
the hypotheses of the theorem and |VR| < |G|. By induction, N is abelian.
Hence

(3.4) every proper R-invariant subgroup of K is abelian.

Since K is solvable, K’ is a proper characteristic subgroup of K. By
(3.4), K’ is abelian.
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Suppose N C K is an R-invariant subgroup of K and U W C V
is an N R-submodule of V with U and W both N R-invariant. If N acts
nontrivially on U, then, by Lemma 3.3, Ciy(R) # 0. But then, since Cy(R)
is one-dimensional, Cy(R) = Cy(R) C U. On the other hand, Cw(R) =
Cy(R)NW CUNW =0, so a second application of Lemma 3.3 implies
that N acts trivially on W. Thus, for U, W, and N as in the first sentence
of this paragraph,

(3.5) either U C Cy(N) or W C Cy(N).

Since G acts faithfully on V, there exists an irreducible G-submodule
U of V on which K acts nontrivially. Since the characteristic of F does
not divide |G|, by Maschke’s Theorem (Theorem 1.20), V is completely
reducible and U has a G-invariant complement W in V. By (3.5), we have
W C Cv(K) C Cy(K').

Suppose that Cy(K') # 0. Since K' < G, Cy(K') is a submodule of
U. Since U is irreducible, this implies U = Cy(K') C Cy(K'). But then
V=Ua&W C Cy(K') and, since G is faithful on V, we have K’ = 1, as
desired. Thus it suffices to prove that Cy(K') # 0.

Consider the structure of U as a K-module. Let M be an irreducible K-
submodule of U and suppose R = (x) with |R| = p. Now Clifford’s Theorem
(G, Theorem 3.4.1, p. 70) implies that U is the direct sum of conjugates of
M and R permutes the Wedderburn components of U transitively. Thus
either U has only one Wedderburn component (in which case the conjugates
of M are all isomorphic) or U has p Wedderburn components (in which
case the conjugates of M are all distinct). In the latter case, we can write
U=Mo&M*® - &M""". Let m1: U — M be projection onto M. For
any m € M, the element m+ma+- - - +maP~! is fixed by R. Thus 7, takes
Cuy(R) onto M. But Cy(R) is one-dimensional, so M is a one-dimensional
K-module. Therefore 0 C M C Cy(K') and consequently Cy(K') # 0.
Thus we can assume the conjugates of M are all isomorphic. In this case,
Proposition 2.2 implies that Ug = M, so U is an irreducible K-module.

Now consider the structure of U as a K'R-module. If U is reducible,
(3.5) implies Cy(K') # 0, so we can assume that U is irreducible as a
K’ R-module.

Finally, we consider the structure of U as a K'-module. By Clifford’s
Theorem, U is the direct sum of Wedderburn components with respect
to K’. On the one hand, R permutes these components transitively, so
the number of Wedderburn components divides p. On the other hand, K
permutes these Wedderburn components transitively and the number of
components divides |K|. Since p is relatively prime to |K|, this implies
that there is only one Wedderburn component. A second application of
Proposition 2.2 implies that U is an irreducible K’-module.

Since F is algebraically closed and K’ is abelian, U is one-dimensional.
Consequently U C Cy(K'), and Cy(K') # 0, as desired. O



22 I. Preliminary Results

Recall that a group G is called a Z-group if all of its Sylow subgroups
are cyclic.

Theorem 3.6. Let G be a solvable group of odd order and suppose that
H is a normal Hall subgroup of G. Let R be a complement of H in G and
suppose that Ry is a subgroup of R of prime order such that Cy(Ry) is a
Z-group. Let p be a prime. Then [H, R] has p-length one.

Proof. Suppose otherwise and let G be a counterexample of minimal order.
Let r = |Ro|- Then [H, R] does not have p-length one and clearly p # r.
We claim:

(3.6) H = [H,R].

Suppose that [H, R] # H. Recall that [H, R] < (H, R) = G, and there-
fore [H, R] is a normal Hall subgroup of [H, R]|R. The group [H, R|R has
smaller order than G, and so, by minimality of |G|, [[H, R], R] has p-length
one. But, by Proposition 1.6(b), [H, R] = [[H, R], R], which, by assump-
tion, does not have p-length one. This proves (3.6).

Suppose X <« H is a nontrivial R-invariant subgroup of H. Then R
is an operator group on H/X and |H/X| < |H|. By Proposition 1.5(d),
Cr/x(Ro) = Cu(Ro)X/X. Therefore, by minimality of G, [H/X, R] has
p-length one. But, by (3.6), [H/X,R]) = [H,R]/X = H/X, so we have:

(3.7) H/X has p-length one whenever 1 # X < H and X = X.

In particular, if Op (H) # 1, then H/Op/(H) has p-length one, and hence,
by Lemma 1.21(b), H has p-length one, a contradiction. Thus

(3.8) O, (H) = 1.

Let V = F(H). Our first main goal is to show that V is elementary
abelian.
Since Oy (H) =1, F(H) is a p-group, so

V = F(H) = O,(H).

Let W be the preimage in H of Op/(H/®(V)). Now W/®(V) and V/®(V)
are normal subgroups of H/®(V) of relatively prime orders and hence cen-
tralize each other. Thus [W,V] C ®(V). Therefore every p’-element of W
centralizes V/®(V') and, by Theorem 1.8, centralizes V. But, by Proposi-
tion 1.3, Cy(V) C V and hence W is a p-group. Thus Oy (H/®(V)) = 1.

Suppose that ®(V) # 1. As ®(V)charV char H < G, we know that
®(V) < G and, by (3.7) (with X = &(V)), H/®(V) has p-length one. But,
since Op (H/®(V)) = 1, Lemma 1.21(c) implies that H has p-length one,
contrary to our hypothesis. Thus ®(V) =1 and, by Lemma 1.7,

V = F(H) = O,(H) and

3.9 . .
(3.9) V is an elementary abelian p-group.
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By (3.9) and Proposition 1.3,
(3.10) Cy(V)=V.

If H contains two minimal normal subgroups of G, then, by (3.7) and
Lemma 1.21(e), H has p-length one, a contradiction. Hence

(3.11) V' contains only one minimal normal subgroup of G.

Now let U be the preimage of F(H/V) in H. Since F(H/V) is a p'-
group, V is a Sylow p-subgroup of U and so, by Proposition 1.5(a), V has
an R-invariant complement K in U. Our next main goal is to show that
Ny (K) is a complement to V in H and Cy(K) C K.

Since Ny (K) is R-invariant, there exists an R-invariant Sylow p-subgroup
P of Ny(K). By the Schur-Zassenhaus Theorem (G, Theorem 6.2.1,
p. 221), any two complements of V' in U are conjugate in U. Applying
the Frattini argument, we have

(3.12) H =UNy(K) = VNg(K),

and clearly V P is a Sylow p-subgroup of H.
Suppose that [K, P] = 1. Then the image of P in H/V centralizes the
image of K in H/V. Thus, by Proposition 1.3,

PV|V C Cuyv(F(H/V)) C F(H/V) = KV/V,

which implies that P C V, and hence V is a Sylow p-subgroup of H.
Consequently H has p-length one, a contradiction. Thus

(3.13) [K,P]#1.

By Proposition 1.6(d), V = Cy(K) x [V, K] and, since K is R-invariant,
both Cy(K) < G and [V, K] < G. Therefore (3.11) implies that one of
these subgroups is trivial. But, by (3.10), Cv(K) # V. Thus
(3.14) V,K|=V, Cy(K)=1, and VN Nyg(K) =1.
Consequently PNV = 1. Moreover, Ny(K) =2 H/V and K = F(H/V),
and therefore
(3.15) K = F(Nu(K)).

Furthermore, by Proposition 1.3,
(3.16) Cu(K) C Cnyx)(K) C K.

Next we study the action of Ryp on H. We show that [K,Ro] # 1,
|Cv(Ro)| = p, and Cp(Ry) = 1. Assume first that [K,Ro] = 1. By
(3.15) and Proposition 1.4, [Ng(K), Rg) = 1. Thus Ng(K) C Cu(Ry),
and therefore, by hypothesis, K is cyclic. By (3.16), since K is abelian,
Cu(K) = Cnyk)(K) = K. Also, since K is cyclic, Aut K is abelian. Since
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the elements of Ny(K) and R induce automorphisms of K, this implies
[Ng(K),R] C Cy(K) C K. Moreover, since

[Nu(K),R| = [H/V,R] = [H,R]/V = H/V 2 Ng(K),

we have
P C Ny(K)=[Nu(K),R]C K.

But (|P|,|K|) = 1, so this implies P = 1, contrary to (3.13). Thus we
can conclude that

(3.17) [K, Ro] # 1.

Consider the action of KRy on V. Since Cip,(V) < KRy, we know
that Cx (V) = K NCkg,(V) and Cg,(V) = RoN Ckg, (V) are Hall 7(K)-
and Hall n(Rp)-subgroups of Cxg,{(V'), respectively. By (3.10),

Cxk(V)=KnCy(V)CKNV =1,

$0 Ck Ry (V) = Cgr,(V). Since Ry is cyclic of prime order, we know that
either Cr,(V) = 1 or Ckpg,(V) = Ry. But in the latter case Ry < KRy
and hence [K, Rg] = 1, contrary to (3.17). Thus

(3.18) Ckpr,(V) =1

Now suppose that Cy(Ro) = 1. By (3.18), KRy acts faithfully on V.
Consequently, by Theorem 3.4, [K, Rg] = 1, contrary to (3.17). Therefore
ICv(Ro)| > 1.

Since V is elementary abelian and Cy(Rg) € Ch(Rp), which, by hy-
pothesis, is a Z-group,

(3.19) |Cv (Ro)| = p.

Now CP(R()) - CH(R()) and Cv(Ro) <« CH(R()). Since Cy(Ry) is
cyclic of order p, Cy(Rp) has no automorphisms of p-power order. But
Cp(Ryp) is a p-group, and therefore Cp(Rp) centralizes Cy (Ryg). Further-
more, Cp(Rp) N Cy(Ro) € PNV =1, so Cp(Ry) x Cy(Ro) C Cu(Ro).
Since Cy{(Ro) is a Z-group,

(3.20) Cp(Ro) = 1.
Moreover, by Proposition 1.6(a),
(3.21) P = {P, Ry]Cp(Ry) = [P, Ry).

Our next main goal is to determine the structure of G more precisely by
showing that H = VK P and R = Ry and determining the structure of K.
Suppose that X = XPRe C K and VXPRy # G. Then Oy (VXP) and V
are both normal subgroups of V X P and have relatively prime orders. Thus
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O, (VX P) centralizes V. By (3.10), Op (VX P) = 1 and, by minimality of
G, we know that [VX P, Ro] has p-length one. Clearly

Oy ([VXP, Ry)) char [VXP, Ry} < VXP.

Therefore Op ([VXP, Ro]) C Op(VXP) =1, and hence [VXP, Rg] has a
normal Sylow p-subgroup, O,([V X P, Ro]). By (3.21), P C O,([VX P, Ry)),
and consequently

[X, P] € [X, O,([VXP, Ro])] € O,([VXP, Ra]).

But [X, P] C X and p does not divide the order of X, so [X,P] = 1.
If G # VKPR, then the case of X = K yields [K, P] = 1, contrary to
(3.13). Thus G = VKPR and hence

(3.22) H=VKP, RF = Ry, and
(3.23) [X, P] = 1 whenever X = XPR c K.
Suppose that K # [K, P). Since K and P are both PR-invariant, [K, P]

is also PR-invariant. Thus, by (3.23), we have [[K, P], P] = 1. By Propo-
sition 1.6(b), however, [K, P] = [[K, P], P] = 1, contrary to (3.13). Thus

(3.24) K =[K, P).

Since K = F(Ng(K)), we know that K is nilpotent. If | K| is divisible
by more than one prime, then, by (3.23), each Sylow subgroup of K is
centralized by P. Thus [K, P] = 1, which contradicts (3.13). Therefore K
is a g-group for some prime ¢ different from both p and r.

Now, by equations (3.16) and (3.23) and G, Theorem 5.3.7, p. 181,
(taking A = PR, 1 # ¢ € P, and letting P be K'), we have

(3.25) K is a special g-group and Ck/k/(P) = 1.

(The second statement follows because PR is irreducible on K/K' and
Ck/k'(P) # K/K'.) Furthermore, by Theorem 1.13,

(3.26) K has exponent q.

Now consider the action of PR on K. We wish to show that Ck(R) has
order ¢ and intersects K’ and [K, R] trivially. Since Cpgr(K) < PR, we
know that Cp(K) = PN Cpgr(K) and Cgr(K) = RN Cpr(K) are Sylow p-
and Sylow r-subgroups of Cpg(K), respectively. But, by (3.16),

(3.27) Cp(K)=PNCy(K)CPNK =1.

Furthermore, since R is cyclic of prime order and [K, R] # 1, by (3.17), we
have Cr(K) = 1. Thus

(3.28) Cpr(K) = 1.
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Now K is special, by (3.25), so K' = ®(K) and hence, by (3.28) and
Theorem 1.8,
(3.29) Cpr(K/K') = 1.

Suppose as well that Ck/x/(R) = 1. Since PR acts faithfully on K/K’,
Theorem 3.4 and equation (3.29) yield

[P,R] =1,
contrary to (3.20). Hence
(3.30) Crepro(R) # 1

and, by Proposition 1.5(d), Cx(R) € K'.

Suppose ¢? divides |Ck(R)|. Then Ck(R) has an abelian subgroup of
order ¢2. By (3.26), K has exponent g, so this subgroup must be elementary
abelian, contrary to the hypothesis that Cy(R) is a Z-group. Consequently

(3.31) |Ck(R)| = ¢ and Cxk(R)NK' =1.
By Proposition 1.5(d) and Proposition 1.6(d),
K/K'=Cg/x/(R) x [K/K',R] = Cx(R)K'/K' x [K,R|K'/K".

Therefore

(3.32) K # K, R).
Furthermore, Cx(R) N [K, R] C K', so, by (3.31)
(3.33) Cix,r)(R) = Ck(R)N[K,R] = 1.

Our next goal is to show that K is elementary abelian. First note that,
by Lemma 3.1, [K, R|R is a Frobenius group with kernel [K, R] and com-
plement R.

Now, by (3.18), [K, R]R acts faithfully on V and, by (3.19), Cv(R) is
one-dimensional. Thus we can now apply Theorem 3.5 to the group [K, R|R
to conclude that

(3.34) [K, R] is abelian.

Suppose that [K, R] is P-invariant. Since, by (3.32), [K, R] is a proper
subgroup of K, we know from (3.23) that [[K, R],P] = 1 and therefore
[K, R] C Ck(P). But, by (3.25) and Proposition 1.5(d),

Ck(P)K'|K' = Cg/k/(P) =1.

Thus [K, R] C Cx(P) C K’. This implies that [K/K’, R] = 1. By (3.25)
and Theorem 1.8, this yields [K, R] = 1, contrary to (3.17). Hence [K, R]
is not P-invariant. Therefore there exists an x € P such that

(3.35) [K, R] # K, R]®.
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Now, by Proposition 1.6(a), K = Ck(R)[K, R], so the subgroup [K, R]
and its conjugates are abelian subgroups each of prime index ¢ in K. Let
z be as in (3.35). Then K = [K, R][K, R)*, [K,R] N [K,R|* C Z(K), and
|K : [K,R]n[K,R]*| = ¢*>. Thus |[K : Z(K)| < ¢%. If |K : Z(K)| = ¢?,
then Z(K) = K' = ®(K) and PR acts faithfully on the two-dimensional
vector space K/K' over F,. Hence, by Theorem 2.6(a), PR is abelian.
Thus [P, R] = 1, contrary to (3.21). Therefore |K : Z(K)| < q and K is
abelian. By (3.26),

(3.36) K is elementary abelian.

Now we will obtain a contradiction by studying the action of K on V.
By (3.28), PR acts faithfully on K. Again, applying Theorem 2.6, we can
conclude that

(3.37) |K| > ¢%
Let Ky, Ka,..., K, be all of the subgroups of index ¢ in K such that

Cyv(K;) = V; # 1. Since K is abelian and not cyclic, by Proposition 1.16,
the subgroups V; generate V. We claim:

V=VixVex...xV,.

Suppose (renumbering if necessary) that W = Vj; x Vo x --- x V,,, is a
maximal direct product. Then V, "W # 1 for any ¢, 1 <7 < n. Thus

(3.38) Cw(K,) = CV1 (Kz) X CV2(Ki) X oo X Cvm (Kl) 7& 1.
Take j # i. Then K; U K generates K and hence, by (3.14),
CVi(K]‘) =V;n Cv(Kj) =Cy(K;)N Cv(Kj) CCy(K)=1.

This, together with (3.38), implies that 1 < ¢ < m. Hence m = n and
W =V, as desired.

By (3.11), V contains only one minimal normal subgroup of G. Clearly
RP permutes the subgroups V; by conjugation. Since distinct orbits of
RP on {V1,V,,...,V, } would generate normal subgroups of G contain-
ing distinct minimal normal subgroups of G, RP must be transitive on
{Vla%w“avn}'

Suppose that VB =V, for all i,1 < i <n. Then R C Npg(V;) for every
t, and the intersection of all these normalizers is normal in PR. Thus, by
(3.21), for every 7,

c ﬁ Npr(Vi) € Npr(V;).

=1

P, n Npr(V3)

=1

P=[P,R|C

Thus ViP = V; for all i. But then V; is G-invariant and hence n = 1.
But this contradicts the fact that K acts faithfully on V and |K| > ¢2 (so

Ki#1).
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Let {V4,V3,...,V, } be a nontrivial R-orbit, and suppose that z is a
generator of R. Then for any element v € Vi, writing the operation in V'
additively, we have

v+vr+vz? + -+ 02" € Oy xvax..xv. (R),
and hence the projection map
m:VixVex. . xV.—-W
takes Cv, xvyx..-xv. (R) onto V;. But now (3.19) implies that |V3| = p and

CV1~+1 XV7+2X~“XVn (R) = 1'

It follows that the action of R on {V},Va,...,V,} cannot have a second
orbit of length 7, and hence ViBE=V,foralli,r+1<i<n.

Suppose that ¢ > r. Both K and R induce automorphisms of V; and,
since V; is cyclic of prime order, its automorphism group is abelian. Thus
[K,R] C Ck(V;) = K for each ¢ > r and, since [K, R] has index ¢ in K,
this implies [K, R] = K; for all ¢ > r. Thus either n=rorn=7r+1.

Now suppose n = r. Since P permutes the subgroups V; and the order
of P is relatively prime to r, some orbit of P has length one. Thus, for
some ¢, P fixes V;. But then K and P induce automorphisms of V; and,
since |V;| = |Vi| = p, this implies [K, P] centralizes V;. But, by (3.24),
K = [K, P], so K centralizes V;. This contradicts (3.14).

Finally, suppose that n = r + 1. Then n is even. But, since PR acts
transitively on the set of subgroups {V; }, n = |PR: Npg(V;+1)|, which is
odd. This final contradiction concludes the proof. O

The following theorem (without restriction to groups of odd order) was
published by G. Higman in 1957. In his doctoral dissertation, J. G. Thomp-
son generalized the theorem to encompass all finite groups. This more
general result is proven in G, Theorem 10.2.1, p. 337.

Theorem 3.7. Let G = KR be a solvable group of odd order such that
K < G and R is a complement of K of prime order p. Suppose that
Ck(R) = 1. Then K is nilpotent.

Proof. Let § be a Sylow p-subgroup of G that contains R and set P =
SN K. If p divides |K|, then P # 1, and hence P N Z(S) # 1, which
contradicts the hypothesis that Cx(R) = 1. Therefore

(3.39) (K1, 1Rl = 1.

We may assume that K # 1. Take L < G maximal subject to L C K.
Then Cr(R) C Ckx(R) = 1. Applying induction to LR in place of G, we
see that L is nilpotent. Since L < G, it follows that L < K and

(3.40) L C F(K).



3. Actions of Frobenius Groups and Related Results 29

Let G=G/L, K = K/L,and R = RL/L. By Lemmas 3.1 and 3.2,

(3.41) G and G are Frobenius groups with kernels K and K
’ and complements R and R, respectively.

We wish to show that K is nilpotent or, equivalently, that K C F(K).
By Proposition 1.2, it suffices to show that K centralizes every chief factor
X/Y of G for which X C K. Take any such chief factor V = X/Y of G.
By (3.40) and Proposition 1.2, L centralizes V', whence conjugation by G
on X induces irreducible actions of G and of G on V. Thus we must show
that K centralizes V.

Since G is solvable, K and V are elementary abelian groups. If K and
V are g-groups for the same prime ¢, then K centralizes V, as desired,
because G acts irreducibly on V and K C O4(G) (G, Theorem 3.1.3, p. 62).
Therefore we may assume that [K| and {V| are relatively prime. Then, by
(3.39), |V| is relatively prime to |G|. Since

Cv(B) = Cy(R) = Cxyy(R) = Cx (R)Y/Y =1,

(3.41) and Lemma 3.3 imply that K acts trivially on V, as desired.
This completes the proof of Theorem 3.7. O

Theorem 3.8. Let G = K R be a solvable group of odd order with K <4 G
and suppose that

(1) (IR, 1K) =15

(2) Ck(x) = Ck(R) for all x € R#; and

(3) Cru)(R)=1.
Then [K, R] C F(K).

Remark. The counterexamples for F = F, mentioned in the remark fol-
lowing Theorem 3.4 yield counterexamples here if one allows KR to have
even order. Let KR be the semidirect product of V by G, K = VO3(G),
and take R to be any group of order three in G. Here, F(K) =V,

Proof. Proceed by induction on |RK]|.

Let K = K/F(K). Suppose that R centralizes every Sylow subgroup
of F(K). Then clearly R centralizes F(K), and hence, by Proposition 1.4,
R centralizes K. But then [K, R] C F(K) and we are done. Thus we can
assume that R does not centralize a Sylow p-subgroup P of F(K) for some
prime p.

Let P be the preimage in K of P. Since F(K)char K and P char F(K),
we know that P < K. Thus F(P) C F(K). On the other hand, F(K) C P
and F(K)char K imply that F(K) C F(P). Thus F(P) = F(K). Then
Crp)(R) = Cpk)(R) = 1, and hence (3) holds with K replaced by P.
Clearly (1) and (2) also hold with K replaced by P and, consequently, if
P # K, by induction, [P, R] C F(P) = F(K). But then R centralizes P,
contrary to our choice of P. Thus K = P and K is a p-group.



30 I. Preliminary Results

Now suppose that Ry is a subgroup of R of prime order. Clearly (1) and
(2) hold with R replaced by Ry. Furthermore,

Crx)(Ro) = F(K) N Ck(Ro) = F(K) N Ck(R) = Cpi)(R) = 1,

so (3) also holds with R replaced by Ro. If Ry # R, induction yields
[K, Ry] C F(K). But then, by Proposition 1.5(d) and (2), we have

K = Cg(Ro) = Ck(Ro)F(K)/F(K) = Ck(R)F(K)/F(K) = Cx(R).

In this case [K,R] C F(K) and we are done. Thus we can assume that
R = Ry, i.e., R has prime order.

Now let W = U/V be any chief factor of KR with U C F(K). Since
F(K) is nilpotent, W is an elementary abelian ¢-group for some prime
¢, and we can consider W as a vector space over F,. Furthermore, W
is irreducible as a module for KR and hence an irreducible and faithful
module for KR/Cgr(W).

By Proposition 1.5(d),

Cw(R) = Cu(R)V/V € Cruo(R)V/V = 1.

Since (|K|,|R|) = 1 and Cxr(W) < KR, it follows that Cxr(W) C K and
therefore Cgr(W) = Cg(W). Furthermore, by Proposition 1.2, F(K) C
Ck (W), and hence K/Cg(W) is a p-group.

If ¢ = p, then Cw(K/Cg(W)) # 1 by G, Lemma 2.6.3, p. 31. Since
Cw(K/Cg(W)) is a submodule of W, the irreducibility of W implies that
W = Cw(K/Ck(W)) or, in other words, K = Cg(W) and, in this case,

If ¢ # p, then, by Theorem 3.4, [RK/Ck (W), K/Ck(W)] = 1 and hence

Thus, in either case, we have [K, R] C Ck(W). Finally, by Proposi-
tion 1.2, [K, R] C F(K), as desired. O

Recall from Section 1 that an operator group A acts regularly on a group
G if Cg(a) =1 for all a € A%,

Proposition 3.9. Suppose that p is an odd prime, H is a p’-group, and R
is a p-group that acts regularly on H. Then R is cyclic.

Proof. We can assume that H # 1. Let ¢ be a prime divisor of |H]|.
By Proposition 1.5(a), R fixes, and hence acts regularly on, some Sylow
g-subgroup of H. By G, Theorem 5.3.14, p. 186, R is cyclic. []

Theorem 3.10. Let G = KR be a solvable Frobenius group with Frobe-
nius kernel K and Frobenius complement R. Suppose that G acts on a
nonidentity nilpotent group M such that

(1) (G, |M) =1

(2) Cpq(K)=1; and

(3) Cum(x) = Cpy(R) for all z € R*.
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Then:
(a) R is cyclic of prime order, say, p;
(b) |M|=|Cm(R)P; and
(c) if Cy(R) is cyclic, then K’ C Ck(M).

Proof. We proceed by induction on |G| + |M]|.

If Ry is a proper subgroup of R, then K Ry is still a Frobenius group
and (1), (2), and (3) follow with G replaced by K Ry. Hence, by induction,
Ry is cyclic of prime order. Since R is solvable, P. Hall’'s Theorem (G,
Theorem 6.4.1, p. 231) guarantees that R has a Hall m-subgroup for every
set of primes 7. Consequently, either |R| = p, |R| = p?, or |R| = pq for
distinct primes p and ¢. Since KR is a Frobenius group, R acts regularly
by conjugation on K. Thus, by Proposition 3.9,

R is cyclic.
We finish the proof by dividing it into two cases.

Case 1. M contains a proper G-invariant normal subgroup.

Let My be a normal subgroup of M chosen to be maximal subject to
being G-invariant. Clearly Cp, (K) = Mo N Cpy(K) = 1 and Cpy,(2) =
Mo N Cup(z) = Mo N Cy(R) = Cupy(R) for all z € R¥, and hence KR
satisfies (1), (2), and (3), with M replaced by My. Thus, by induction,

|R| =b |M0| = |CM0(R)IP’ and

3.42
(3:42) if Cpr(R) is cyclic, then K’ C Cg (Mp).

This yields (a).

Now K R acts on M /M, and (|G|, |M/My|) = 1. Furthermore, by Propo-
sition 1.5(d),

CM/MO(K) = CM(K)M()/MO = Mo/MO = 1, and
CM/MO(‘T) = CM(:E)MO/MO = CM(R)MO/MO = CM/MO (R)v
for all x € R¥. Thus KR satisfies (1), (2), and (3), with M replaced by
M /M,. By induction, we get
|M/Mol| = |Crym(R)|P and
if Cps(R) is cyclic, then K' C Cx(M/My).

Now Proposition 1.5(d) yields

|M/Mo| = |Cotjpty (R)IP = |Cae (R)Mo/Mo [P = —||CCAZ((I;))I;'

Therefore, by (3.42),
|M| = |Cu(R)IP.
Thus we have (b).
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Finally, combining (3.42) and (3.43) with Lemma 1.9, we see that if
Cu(R) is cyclic, then

K' C CK(M/M()) N CK(Mo) - CK(M)
This is (c).

Case 2. M contains no proper G-invariant normal subgroups.

Since M is a minimal normal subgroup of the solvable group MG, M
is an elementary abelian r-group for some prime r. Hence we can regard
M as a vector space over F,.. Thus (c) follows from (a) and Theorem 3.5.
Therefore it suffices to prove (a) and (b).

By hypothesis, M is irreducible as a F.G-module. By Proposition 2.1,
V = M ®k K is an irreducible KG-module for the algebraic closure K of
K = Homp (M, M).

Suppose that Ko < KR is chosen to be minimal subject to 1 C Ko C K.
Since Cp(Kjp) is a G-invariant subgroup of M, either Cp(Kp) = 1 or
Cu(Ko) = M. In the first case, (1), (2), and (3) are satisfied with G
replaced by KoR. In the second case, (1), (2), and (3) are satisfied with G
replaced by KR/Ky. Thus, if K¢ # K, induction yields (a) and (b).

Therefore we can assume that K is a minimal normal subgroup of K R.
Since K R is solvable, this implies that K is an elementary abelian g-group
for some prime gq.

Since KR is a Frobenius group and Ckr(V) < KR, we have, by (2) and
Lemma 3.2, Cxr(V) = Cx(V) = 1. Thus KR acts faithfully on V.

We are now in a position to apply G, Theorem 3.4.3, p. 73 and Clifford’s
Theorem (G, Theorem 3.4.1, p. 70) to conclude that

V=W,
T€ER

where W is a Wedderburn component of V with respect to K. Consequently

Cv(R) = {wa|w€W} and
(3.43) z€R

dim(Cy (R)) = dim(W) = ﬁ dim(V).
Thus
(3.44) [Cu(R)|F! = |W|I® = |M].
Now let P be a subgroup of R of order p and let xy,xs,...,, be a set

of left coset representatives for P in R. Then

V=@ Waig)= P (P wai)g

geP gEP 1<i<s
1<i<s
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and hence
Cy(P) = { ng ’ wE @Wxi},
geEP 1<i<s
which implies that
dim Cy (P) = dim @ Wz; = |R: P|dimW.
1<i<s
But, by (3), dimCy(P) = dimCy(R). Thus (3.43) implies |R : P| = 1.
This gives us (a). Finally, (3.44) now yields

ICu(R)P = |M],
and we have (b). O

4. p-Groups of Small Rank

The main purpose of this section is to investigate solvable groups G of
odd order that contain no elementary abelian p-subgroups of rank three,
either for a single prime p or for all primes p. The general structure of these
groups is described in Theorem 4.18 and Theorem 4.20, respectively. The
p-groups in this family that are most important for our purposes are those
that are determined in a result of Blackburn, Theorem 4.16. We shall see
later that every Sylow p-subgroup of rank two in a minimal counterexample
to the Odd Order Theorem is a p-group of this type.

If A is an abelian p-group, let m(A) be the minimal number of generators
of A (as in G, p. 8). Thus, if A is a p-group for some prime p, then
|1 (A)| = p™A). For each prime g, define the g-rank of G by

r4(G) = max{m(A) | A is an abelian g-subgroup of G } .
Define the rank of G by
r(G) = max{ry(G) | ¢ is a prime }.

These are called the q-depth and depth of G in G, pp. 188-189.
For any prime p, natural number n, and p-subgroup R of G, define (as
in G, p. 17 and pp. 288-289)

U™(R) = <xp" |z e R>,
SCN(R)={A| A< Rand Cr(A)=A}, and
SCN,(R)={A| A€ SCN(R) and m(A)>n}.
We say that a group G is metacyclic if G possesses a cyclic normal sub-
group N with G/N cyclic. We say that G is a central product of subgroups

G1, ..., G, and write
G=G0--0Gy,

if G; < G for each 1, G; centralizes G; for each i # j, and G = Gy -+ - G,
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We will use the symbol cl(G) to denote the nilpotence class of G.
Lemma 4.1. If G is a group and G/Z(G) is cyclic, then G is abelian.
Proof. G, Theorem 1.3.4, p. 11. O

Lemma 4.2. Suppose that G is a group, x, y € G, and [z,y] € Z(G).
Then for all n > 1,

(a) [xn,y] = [.17, y]n = [x»yn]a and

(b) (zy)" = 2"y"[y,2](),
where (%) denotes the usual binomial coefficient.

Proof. G, Lemma 2.2.2,p. 19. O

Proposition 4.3. Suppose that p is an odd prime and R is a p-group.
Assume

(1) cl(R) €2, or

(2) p> 3 and cl(R) <3.

Define a mapping ¢ of R into R by ¢(z) = 2P. Then

(a) ©Q1(R) has exponent 1 or p, and
(b) if R’ C 4(R), then ¢ is a homomorphism.

Proof. This result follows immediately from Philip Hall’s theory of regular
p-groups, since the class of R is less than p. (See [19, pp. 183-187] or [17,
pp. 321-326].) However, since this topic is not treated in G, we provide a
proof.

For any elements u, v, and w of a group,

(4.1) [uv,w] = [u, w][u, w,v][v,w] and [u, vw] = [u, w][u, v]{u, v, w],

as can be verified by direct calculation. In particular, for any natural

number 7,

n+1

[w™ w] = [u, w]u, w, w"][u™, w].

Let u, w € R. Since cl(R) < 3, we know [R, R, R] C Z(R), and therefore,
by Lemma 4.2, [u, w,u"] = [u,w,u]|" for all n, and, by induction on n,

(4.2) [u™ w] = [u, w]" [y, w, u](;)

For each natural number n, define

f(n) = (’;) and g(n) = 2(2) + (Z)

Note that for each n,

n

(4.3) f(n+1)= (2) + f(n) and g(n+1) = 2(’2‘) + (’f) +g(n).
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This follows easily from the Pascal triangle identity

n + n _(n+1
i i+1) \i+1)’
Let u, v € R. We claim that for each natural number n

(4.4) (wv)™ = u"v"[v,u](g)[v, u, u)f ™v, u, v)9,

We use induction. The result is obvious for n = 1. Assume it is true for
n = k. Then

(uv)F ! = (uw)*(uv) = b o*[v, u] &) [v, u, u] B[, u, v]9® (uv)
= ub o (wo)[v, u) O [Jv, u] &), wolfo, u, u) B o, u, v},

By (4.1) and the previous lemma,

[[’U, u](;), uv] = [’U, u, uv](’ze) = [v, U, U](Z) [’U, u, ’U](;)
Let
w = [’U, U](g) [’U, U, u](é)"‘f(k) [U, u, U](§)+g(k).
Then
(uv)**! = vk ok (uv)w.
Now, by (4.2),
vFup = wk o, ulo = uetfo, o, u, o] G
= w1 v, u)*[[v, u]*, v][v, u, v](g)
= wo* v, u)*[v, u, v]k+(;).
Hence
(uv)k+1 — uk(vkuv)w _ uk+1vk+1[v’u]k[v’u’ v]k+(’;)w_
By (4.3),

(uv)F+t = uk+1vk+1[v,u](k-§l)[v,u,u]f(k-kl)[v,u, p]gtk+D),

This completes the proof of (4.4).

We prove (a) by induction on |R|. Take elements z, ¥ € R such that
P = yP = 1. It is sufficient to show that for any such z and y, we have
(xy)P = 1. This is obvious if (x) = R, so assume that (z) # R.

Let S be a maximal subgroup of R that contains (z). Then S < R and
21(S) < R. By induction, £;(S) has exponent 1 or p. Since z € ,(5),

(4'5) [y» x]p = [ya z, x]p = [ya z, y]p =1

Since p is odd, p divides (5). If p > 3, then p divides f(p) and g(p) and,
if p = 3, then [R, R, R] = 1. Hence, by (4.4) and (4.5), (zy)? = 1. This
proves (a), and (b) follows similarly from (4.4). 0O
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Proposition 4.4. Suppose p is a prime and R is a p-group. Then

(a) SCN(R) is the set of all normal subgroups of R that are maximal
with respect to the property of being abelian, and

(b) if R is a Sylow p-subgroup of a group G and A € SCN(R), then
Cg(A) = A x H for some p'-subgroup H of G.

Proof. (a) G, Theorem 5.3.12, p. 185. (b) G, Theorem 7.6.5, p. 259. O

Lemma 4.5. Suppose p is an odd prime and R is a noncyclic p-group.
Then

(a) R possesses a normal elementary abelian subgroup of order p?,

(b) if R possesses a cyclic subgroup of index p, then Q;(R) is elemen-
tary abelian of order p?, and

(¢) Q1(Z2(R)) is a noncyclic group of exponent p.

Proof. (a) G, Theorem 5.4.10, p. 199. (b) G, Theorem 5.4.4, p. 193 and
G, Theorem 5.4.3, p. 191. (c) Let Z = Q;(Z2(R)). By (a), R possesses a
normal elementary abelian subgroup S of order p?. Since R is nilpotent

[S,R] C S.

Similarly
[S,R,R] C [S,R] if [S,R] # 1.
Consequently
[S,R,R] =1, [S,R] C Z(R), and S C Z2(R).

So § C Z. Hence Z is not cyclic. Since cl(Z2(R)) < 2, Z has exponent p
by Proposition 4.3(a). O

Proposition 4.6. Suppose p is an odd prime, R is a p-group, and S is
a noncyclic normal subgroup of R. Then S contains a normal elementary
abelian subgroup of R that has order p2.

Proof. Let Z = Q1(Z3(S)). By Lemma 4.5, Z has exponent p and order
at least p?. Since Z < R and R is a p-group, Z contains a normal subgroup
of R of order p? by Lemma 1.22. This subgroup satisfies the conclusion. [J

Lemma 4.7. Suppose p is an odd prime and R is a p-group. Then SCN3(R)
is empty if and only if r(R) < 2.

Proof. Obviously, SCN3(R) is empty if r(R) < 2. The converse is proved
in G, Theorem 5.4.15, p. 202. O

Remark. Proposition 4.6 and Lemma 4.7 prove the following about a p-
group R for an odd prime p: R has an elementary abelian subgroup of order
p? if and only if R has a normal elementary abelian subgroup of order p?,
and likewise for p°. The dihedral group D;g and the group D x Z, are
counterexamples to the corresponding statements for p = 2.
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Proposition 4.8. Suppose p is a prime, R is a p-group, and r(R) < 2.

(a) If R has exponent p, then |R| < p3.
(b) If p > 3, then Q;(R) has exponent one or p.

Proof. (a) Assume that R has exponent p. Take A € SCN(R). Since
r(R) < 2, we have |A| < p?. Hence

|R/A| = |R/Cr(A)| < [Aut Al, < |GL(2,p)lp = p-

(b) Assume this is false and let R be a minimal counterexample. By
Proposition 4.3 it suffices to show that cl(R) < 3 to obtain a contradiction.
By the minimality of R, there exist elements z, y € R such that 2P = y? = 1,
(x) # R, and {x,y) = R. Let S be a maximal subgroup of R that contains
(x). Then S < R, z € Q,(S) < R, and R = (£;(S),y). By minimality of
R, ©1(5) has exponent 1 or p. By (a), |21(S)| < p. Thus |R| < p*. This
implies that cl(R) < 3, as desired. O

Lemma 4.9. Suppose p is a prime, p > 3, and R is a p-group. Assume
that |Q1(R)| < p2. Then |Q;(R/T)| < p? for every subgroup T < R.

Proof. Suppose R is a minimal counterexample to the lemma and T is a

normal subgroup of R chosen to be minimal subject to |Q2;(R/T)| > p°.
Suppose |T'| > p. Let Z be a subgroup of T N Z(R) of order p. By the

minimality of T, we then have |Q;(R/Z)| < p?. But |R/Z| < |R| and

R/T = (R/Z)/(T/2),
so, by the minimality of R,
12:(R/T)| = [((R/2)/(T/2))] < p?,

which contradicts the choice of T. Thus |T| = p.

If v(R/T) > 2, then, by the minimality of R, we know that R/T is
elementary abelian of order p3. If r(R/T) < 2, then, by Proposition 4.8
and the minimality of R, we know R/T has exponent p and order p3.
Consequently, in both cases,

(4.6) |R| = p* and R/T has exponent p.

By Lemma 4.5 and the hypotheses, |2;(R)| = p?. Hence R/Q;(R) has
order p? and is therefore abelian. Define a mapping ¢: R — R by ¢(z) =
xP. By (4.6), cl(R) < 3 and ¢ maps R into T. By Proposition 4.3, ¢ is a
homomorphism. Hence

p=IT| > |R/Ker(¢)| = |IR/Qu(R)| = p*/p* = p*,
a contradiction. [

Lemma 4.10. Suppose that p is an odd prime and R is a metacyclic p-
group that is not cyclic. Then Q;(R) is elementary abelian of order p2.
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Proof. Take S < R such that S and R/S are cyclic. Let T be the preimage
in R of Q;(R/S), so that

T/S =Q(R/S).
Then Q;(R) = Q1(T). Now apply Lemma 4.5(b) to the group T. O

Proposition 4.11 (Huppert). Suppose that p is a prime and R is a p-
group. Assume p > 3 and |[Q;(R)| < p%. Then R is metacyclic.

Proof. This is part of a result of Huppert [17, Satz II1.11.6, p. 338]. We
prove it by using induction on |R| and applying the previous lemmas.

The result is obvious if R is abelian, so we assume that R is not abelian.
Then 1 C R’ < R and hence R' N Z(R) # 1. Let T be a subgroup of order
pin R' N Z(R), chosen so that T C G} (R')n Z(R) if B}(R') # 1.

Now T = {(z) for some element z of order p. Also, by Lemma 4.9,
|0 (R/T)| < p?. Therefore, by induction, R/T is metacyclic. Hence there
exist a, b € R such that

(4.7 {a,z) <Rand R=(a,b,z).

Then R’ C (a,z). If R/T is cyclic, then R/Z(R) is cyclic and R is abelian
by Lemma 4.1. Thus R/T is not cyclic. Therefore (a,z) /(z) # 1. Since
(a,z)/{aP,z) is a normal subgroup of order p in R/ (a?, 2}, it is contained
in the center of R/ (aP, z). Thus [a,b] = a2’ for some integers i, j.

If 1 C BY(R’'), then

() =T CUYR') CU'((a,2)) = U'({a)) C (a).

In this case, R is metacyclic by (4.7). Therefore we will assume that
UY(R')y = 1. Since |©21(R)| < p?, R’ is elementary abelian.
Now
a® = b7 lab = aa b~ 'ab = ala,b] = a* P27,
Hence @ and z centralize a® and [a, b], and
[a,b]° = (aP29)® = (a®)P27 = a™P[a,b]"P2? = a'P2? = [a, ).
Thus [a,b] € Z(R). Since a, b, and z centralize each other modulo ({a, b] ),
R = ([a,0]).

Let S be a cyclic subgroup of R that is maximal subject to R’ C S.
Since R’ C S, we know S < R and, since R is not cyclic, $ # R. Let S}
be any subgroup of R that contains S and such that [S1/S| = p. By the
maximality of S, S is not cyclic and hence, by Lemma 4.5(b), we know
|€1(S1)| = p®. Thus Q,(S1) = Qu(R) and

Sy = 2(51)S = Qi (R)S.



4. p-Groups of Small Rank 39

Therefore the subgroup S; is uniquely determined and R/S has a unique
subgroup of order p. Again, by Lemma 4.5, we can conclude that R/S is
cyclic, and hence R is metacyclic, as desired. O

Theorem 4.12 (Huppert). Suppose p is an odd prime, R is a metacyclic
p-group, and A is a p'-group of operators on R. Then
(a) [R,A] is abelian,
(b) R=|[R,A]Cgr(A) and [R,A]NCg(A) =1, and
(c) if R is not abelian and A does not act trivially on R, then [R, A]
and Cr(A) are nonidentity cyclic groups and R’ C [R, A].

Proof. (a) We use induction on |R|. By Proposition 1.6(b), [R, A] =
[R, A, A]. Therefore we can assume that

(4.8) R=[R, A

Since R is metacyclic, R’ is cyclic. Take a cyclic A-invariant subgroup S of
R that is maximal subject to containing R’. Then S is a normal subgroup
of R and of the semidirect product RA. Since S is cyclic, Aut S is abelian.
Therefore, by (4.8),

R=[R,A| C (RA) C Cra(S).
Thus
(4.9) S5 C Z(R).

Since R’ C S, the group R/S is abelian. Therefore we can regard
Q1(R/S) as a vector space over F,, and as an A-module. By Maschke’s
Theorem (Theorem 1.20), there exists an A-invariant complement X/S to
the A-submodule 2;(R)S/S of Q;(R/S). By Lemma 4.10, Q;(R) is ele-
mentary abelian. Thus

X an(R) = Xﬂﬂl(R) ns= Ql(S)

Hence |Q;(X)] < |€(S)] = p. Consequently, by Lemma 4.5, X is cyclic.
By our maximal choice of S, we have X = S. Thus

(4.10) Q1(R/S) = Q4(R)S/S.
By Lemma 4.10, |[Q;(R)| < p?, so, by (4.10),
Q1(R/S)| = [(R)S/S| = |Q(R)/Qu(R) N S| < [Q1(R)/Qu(S)| < p.

Again, by Lemma 4.5, R/S is cyclic. Thus, by (4.9), we know R/Z(R) is
cyclic, and hence R is abelian, as desired.

(b) Let T = [R,A]. By (a) and Proposition 1.6, [T,A] = T, R =
TCgr(A),and T = [T, A]xCr(A) = Tx(TNCg(A)). Hence TNCgr(A) = 1.
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(c) Let T = [R,A]. By (a), 1 C T C R, so Cr(A) # 1. By (b),
T NCr(A) =1, and therefore

Q1(R)] 2 [Q1(T)(Cr(4))| = [2(T)]|Q1(Cr(A)] 2 p°.

By Lemma 4.10, |[Q1(R)| < p®. Thus [ (T)| = [ (Cr(A4))| = p.
By Lemma 4.5, T and Cg(A) are cyclic. Since T < R and R = TCg(A),
we obtain R’ C T. This completes the proof of (c) and of the theorem. O

Lemma 4.13. Suppose p is an odd prime, R is a p-group, and ¢ is a prime
divisor of | Aut R|. Assume that SCN3(R) is empty and ¢ # p. Then ¢
divides (p? — 1) and ¢ < p.

Proof. Lemma 4.7 and G, Theorem 5.4.15, p. 202. [J
Lemma 4.14. In Lemma 4.13, ¢ divides 1(p + 1) or 3(p — 1).
Proof. If ¢ is odd use the fact that p> ~ 1 =4(3(p—1))((p+1)). O

Lemma 4.15. Suppose S is an extraspecial subgroup of a p-group R and
[S,R) C §’. Then R = SCg(S).

Proof. G, Lemma 5.4.6, p. 195. O

Theorem 4.16 (Blackburn). Suppose p is an odd prime, R is a non-
identity p-group, and A is a p’-group of automorphisms of R. Assume that
r(R) <2, [R,A] = R, and |A| is odd. Then p > 3 and R satisfies one of the
following two conditions:
(1) R is abelian, or
(2) R = R;oR; for some nonabelian group R; of order p3 and exponent
p and some cyclic group Ry such that Q;(R2) = R].

Proof. Proceed by induction on |R|. Clearly SCN3(R) is empty and each
prime divisor of |A| is odd. By Lemma 4.13, p > 3. If |2;(R)| < p?, then
Proposition 4.11, Theorem 4.12 and the assumption that [R, A] = R, show
that R is metacyclic and abelian. In this case R satisfies (1).

For the remainder of the proof, assume that |Q;(R)| > p?>. By Propo-
sition 4.8, £;(R) has exponent p and order p®. Let S = Q;(R) and
C = Cg(S). Since r(R) = 2, S is not abelian. Thus § is extraspecial.
Furthermore,

S CQ(C) S U(R)NC =8NC = Z(S) =S,
Thus |2;(C)| = p and, by Lemma 4.5, we have

(4.11) C is cyclic.
Suppose that R centralizes §/S’. Then, by Lemma 4.15,
R=CS5=5C.

By (4.11), C is cyclic and Q;(C) = §’. Thus, in this case, (2) holds.
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We are left with the case in which R does not centralize S/S’. In this
case, let T = [R, S]. Then S’ C T and, since R is nilpotent,

T=[R,S|CS.
Hence |T| = p?. Consequently |AutT| = |GL(2,p)| = p(p? — 1)(p — 1).
Since Tt Rand T € Z(S),
(4.12) |R/Cgr(T)| = p and R = SCg(T).

Take y € S — T. Let B be the group of all automorphisms of S that
centralize T and S/T. Suppose 3, v € B. Let y® = yt and y” = yu. Then
t,u €T, and

(4.13) yP7 = (yt)? = yut = ytu = y"® and
(4.14) yﬁi =yt foreach i = 1,2,3,....

Since S = (y,T'), we have By = 3 and P = 1. Thus B is an elementary
abelian p-group. Since Cg(T)/C is isomorphic to a subgroup of B,

CRr(T)/C is an elementary abelian p-group.

By Maschke’s Theorem (Theorem 1.20), TC/C has an A-invariant com-
plement X/C in Cgr(T)/C. Since r(R) < 2, we have Q1(Cr(T)) = T, and
thus

2(X) CU(CrTNNXCTNXCC.

Since C is cyclic by (4.11), |©2:(X)] = p and, by Lemma 4.5, X is cyclic.
Let X = (z).

By (4.12), R = SCgr(T) = SX. Since both S and T centralize S/S’, we
know that X does not centralize 5/5’. That is,

(4.15) [X,5]¢ S

Now |S/T| = |T/S’| = p. Therefore, by taking any elements y € S — T
and z € T — 5, we get

S/T ={yT) and T/S' = (25").

By (4.12) and the hypothesis that [R, A] = R, we know [S, 4] € T.
Choose o € A such that [S,a] € T. Then there exist integers 7, j, and k
such that

% =z,

y* =%’ (mod T), and
2% = 2* (mod §')

and

y* = yj2 (mod T).
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Since o has odd order, o does not act trivially on S/T, and hence

5 #1 (mod p).

Note that i # 0 (mod p), because (') = (2*) = (z).

Now clearly 1 # [y, 2] € S’ C (z) and [z,y] € [R, S] = T. Furthermore,
[x,y] € S’, for otherwise [X,S] C S’, contrary to (4.15). Consequently
[z,y] € T — S’. Two applications of Lemma 4.2 now yield

v, 2] = [y, 2]* = [v*,2%] = ¢, 2*] = [y, 2)"*, and
[z,9]* = [z,9]* = [*,9°] = [2%, 9] = [z, 9]7 (mod 5').

(In the second equation we have used the fact that T C Z(R/S’'), i.e.,
[R,T] C §'.) Thus

jk =1 (mod p),
ij =k (mod p),
ij%2 =4 (mod p), and
=1 (mod p),
a contradiction. O

Lemma 4.17. Suppose p is an odd prime, R is a p-group, and A is a
solvable group of automorphisms of R. Assume that

r(R) < 2 and |4| is odd.
Then A’ is a p-group.

Proof. We may assume that R # 1. Take a characteristic subgroup H of
R as in Theorem 1.13. Then

(4.16) C4(H) is a p-group.

Furthermore, H has exponent p and r(H) < r(R) < 2. Consequently, by
Proposition 4.8,

(4.17) |H| < p°.

Let V = H/®(H) and C = Ca(V). Then C4(H) C C, and C/C4(H)
is isomorphic to a group of automorphisms of H that acts trivially on V.
Hence, by Theorem 1.8, C/C4(H) is a p-group. By (4.16),

(4.18) C is a p-group.
Now

(4.19) A/C is isomorphic to a group of automorphisms of V.
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By (4.17), m(V) < 3. If m(V) = 3, then ®(H) = 1, H is elementary
abelian, and
3=m(H)<r(R)=2,

a contradiction. If m(V') = 1, then, by (4.19), A/C is abelian, and therefore,
by (4.18), A’ is a p-group.

We are left with the case in which m(V') = 2. Here AutV = GL(2,p).
By (4.19) and Theorem 2.6, (A/C)’ is a p-group. Since (A/C) = A'C/C,
it follows from (4.18) that A’C is a p-group. Hence A’ is a p-group, as
desired. O

Theorem 4.18. Suppose that G is a solvable group of odd order, p € 7(G),
and rp(G) < 2. Then:

(a) p is the largest prime divisor of |G/Op (G)|;

(b) if p = 3 or p is the smallest prime divisor of |G|, then G has a

normal p-complement;

{c) G’ has a normal p-complement;

(d) every p’-subgroup of G’ is contained in Op (G'); and

(e) G/Op »(G) is an abelian p’-group.

Proof. Note that each desired conclusion is valid for G if it is valid for
G/Op(G). Therefore we will assume that O (G) = 1.
Let R = O,(G) and C = Cg(R). Then, by G, Theorem 6.3.2, p. 228,

C CRand r(R) <1,(G) L 2.

By Lemma 4.17, (G/C)’ is a p-group. Since (G/C)' = G'C/C and C is itself
a p-group, G'C is also a p-group. Hence G'C C 0,(G) = R. Thus G/R
is abelian. As O,(G/R) =1, we know G/R is a p’-group. By Lemma 4.7,
SCN3(R) is empty and therefore, by Lemma 4.13, p is the largest prime
divisor of |G|. Now all parts of the theorem follow easily. 0O

Corollary 4.19. Suppose that p is a prime, G is a solvable group, and G*
is a normal subgroup of G. Assume that

r,(G*) < 2 and |G| is odd.

Then G’ centralizes every chief factor U/V of G such that U/V is a p-group
and U C G*.

Proof. Clearly, as in the proof of Theorem 4.18, we can assume that
Op(G*) = 1. Let R = O,(G*). By Theorem 4.18, R is a Sylow p-subgroup
of G*. Hence U C RV.

Let C = Cg(U/V). By Lemma 4.17, (G/Cs(R)) is a p-group. Thus
(G/C) is a p-group. As G/C acts faithfully and irreducibly on U/V,

1=0,(G/C) 2 (G/CY =G'C/C.
Therefore G’ C C, as desired. O
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Theorem 4.20. Suppose that G is a solvable group of odd order and
r(G) < 2 or r(F(G)) < 2. Then:
(a) G’ is nilpotent; and
(b) if S is a Sylow subgroup of G, T is a characteristic subgroup of S,
and T C 5, then T < G.

Assume G # 1. Let n(G) = {p1,...,pn }, where p1 < p < -+ < pp.
Then

(c) G possesses a series of characteristic subgroups
G=GyDG1D---DG,=1

such that G;_;/G; is isomorphic to a Sylow p;-subgroup of G for
1=1,2,...,n.

Proof. Let F = F(G).

(a) By Corollary 4.19, G’ centralizes every chief factor U/V of G for
which U C F. By Proposition 1.2, G’ C F.

(b) By (a), G/F is abelian. Hence F'S < G and

G = FSNg(S) = FNg(S).

Clearly T < Ng(S). By (a), T C F = (FNS) x Oy (F). Therefore T is
centralized by O (F') and normalized by F. Thus T is normalized by G.
(c) We use induction on |G|. Take H C G such that

F C H and H/F = 0,,,(G/F).

Then F contains a Sylow p;-subgroup of H. By (a), G/H is a is a p;-group.
By Theorem 4.18(b), H has a normal p;-complement K, which is then a
normal p;-complement of G. Since F(K) C F(G), the result follows by
induction. O

5. Narrow p-Groups

In Section 1 we defined a p-group R to be narrow if r(R) < 2 or if R
contains a subgroup Rg of order p such that Cgr(Ry) = Ry X R for some
cyclic subgroup R; of R. Narrow Sylow subgroups play an important role
in the proof of the Feit-Thompson Theorem. In this section we will be
concerned mainly with narrow p-groups that have rank greater than two.
We show that these groups are almost as well behaved as p-groups of smaller
rank.

Remark. For every odd prime p, there exists a narrow p-group R for which
r(R) = p > 3, namely the wreath product Z, 1 Z,. These are discussed in
(17, p. 324] and in [19, p. 82].
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Lemma 5.1. Suppose p is an odd prime, R is a p-group, and r(R) > 3.
Then
(a) SCN3(R) is not empty, and
(b) if E € £%(R) and E < R, then E is contained in an element of
SCN3(R).

Proof. Part (a) follows from Lemma 4.7. Take E as in (b). By (a) and
Lemma, 1.22, there exists a normal elementary abelian subgroup B of order
p® in R. Let B* = ECp(E). Then B* is elementary abelian and B* <1 R.
If |[B*| > p?, then, by Proposition 4.4, B* is contained in an element of
SCN3(R) and we are done.

Assume that |B*| < p3. Then B* = E and E D Cg(E). Since |E| = p?,

|B/CB(E)| < p, |CB(E)| > p?, and E = Cp(E) C B.

But then, since B is abelian, B = Cg{FE). This contradicts the previous
sentence and completes the proof of Lemma 5.1. 0O

Lemma 5.2. Suppose p is an odd prime, R is a p-group, r(R) > 3, and
E € €¥(R). Let T = Cr(1(Z2(R))). Assume further that E € £*(R),
that is, E is contained in no larger elementary abelian subgroup of R. Then

(a) E is not contained in T,
(b) |Q21(Z(R))| = p and 1(Z2(R)) € £%(R), and
(c) T is a characteristic subgroup of index p in R.

Proof. Let Z = Q1(Z(R)) and W = Q;(Z,(R)). Since E € £*(R) and EZ
is elementary abelian, we have FZ = E. Thus Z C E. A similar argument
shows that r(Cr(E)) = 2. Therefore

(5.1) Z C E and |Z| =p.
By Lemma 4.5(c), W is a noncyclic group of exponent p. Consequently
(5.2) ZcWand [W,R]=[Q(Z2(R)),RjnW C 0 (Z(R)) = Z.

Hence, by (5.1), [E,W] C [R,W] C Z C E. L follows that W normalizes
E. Since Cw(FE) has exponent p and E € £*(R), we have Cw(E)C E. In
fact,

Z CCw(E)CE.

If Cw(E) = E, then [E,R] C E by (5.2) and (5.1). But then F < R,
and hence F ¢ £*(R) by Lemma 5.1. Thus Cw(E) # E, so Cw(E) = Z.
By (5.2),

1< |W/Z| = |W/Cw(E)|.
As |E| = p? and W/Cw (E) is isomorphic to a p-subgroup of Aut E,

|W/Z| = p and [W| = p*.
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We now have (a) and (b). Repeating our last argument, we see that
|R/T| = |R/Cr(W)| = p.
Clearly, T char R. This proves (c) and completes the proof of the lemma. [

Theorem 5.3. Suppose p is an odd prime, R is a p-group, and r(R) > 3.
Then R is narrow if and only if £2(R) N £*(R) is not empty (i.e., some
elementary abelian subgroup of order p? in R is contained in no elementary
abelian subgroup of order p? in R).
Suppose that R is narrow. Let T = Cg(£21(Z2(R))). Then
(a) no element of £2(R) N £*(R) is contained in T,
(b) |2:(Z(R))| = p and Q1(Z2(R)) € £*(R),
(c) T is a characteristic subgroup of index p in R, and
(d) if S is a subgroup of order p in R and r(Cg(S)) < 2, then Cr(S)
is cyclic, SNR' =SNT =1, and Cgr(S) = S x Cp(95).
Proof. Let Z = 21(Z(R)) and T = Cr(21(Z2(R)).
First assume that R is narrow. Take a subgroup Ry of order p such that
Cr(Rp) = Ry x R; for some cyclic group R;. Since

1(Cr(Ro)) <2 <3 <1(R),

Ry € Z,and so Ry Z = 1. Hence Ry C Ry x Z C Cr(Rp) = Ry x R;.
Thus R; # 1. Let

E = Ql(CR(Ro)) = Ro X Ql(Rl)
Clearly E € £2(R) N £*(R). Thus £%(R) N £*(R) is not empty. By
Lemma 5.2, we obtain (a), (b), and (c).
Continuing to assume that R is narrow, we take any subgroup S of

order p in R such that r(Cg(S5)) < 2. The previous argument shows that
SN Z =1 and hence that SZ € £2(R). Since

(5.3) 1(52) <r(Cr(5)) <2,

SZe€€&*(R). By (a),SZZT. AsZCT and R" CT,wehave SNT =1
and $ N R’ = 1. Consequently

R = ST and Cg(S) = SCr(S) = S x Cr(S).
By (5.3), r(Cr(S)) = 1 and, by Lemma 4.5, Cr(S) is cyclic. Thus we
obtain (d).
Now we assume that £2(R) N £*(R) is not empty and show that R is

narrow. Take E € £2(R) N E*(R). Clearly Z C E. Hence E = Z x § for
some subgroup S of order p in E. Since E € £*(R),

2 =r(Cr(E)) = 1(Cr(S5)).

Now, by the argument of the previous paragraph, Cr(S) = S x Cr(S) and
Cr(S) is cyclic. Therefore R is narrow. [0
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Corollary 5.4. Suppose p is an odd prime, R is a p-group, and r(R) > 3.
Then R is narrow if and only if r(Cg(S)) < 2 for some subgroup S of order
pin R.

Proof. If R is narrow, take Ry as in the definition of a narrow p-group.
Then r(Cr(Ro)) < 2.

Conversely, suppose S is a subgroup of order p in R and r(Cgr(S)) < 2.
Let Z = Q1(Z(R)). Then S € Z and hence 1(SZ) > r(S) = 1. It follows
that SZ € £2((R) N £*(R). Therefore, by Theorem 5.3, R is narrow. [J

Theorem 5.5. Suppose that p is an odd prime, R is a narrow p-group,
and A is a solvable subgroup of Aut R having odd order. Then A has the
following properties.
(a) The factor group A/Oy(A) is an abelian p’-group.
(b) If r(R) > 3, then the order of every p’-element of A divides p — 1.
(c) If |A] is a prime that does not divide p(p — 1) then |A| divides
ip+ 13). If, in addition, R = [R, A] and R is not abelian, then
|R| = p°.

Proof. By Theorem 1.13, R has a characteristic subgroup H of class at
most two and of exponent p such that

(5.4) (R, H] C Z(H)

and C4(H) is a p-group. In particular, since C4(H) < A, it follows that
Ca(H) C Oy(A). Therefore we can assume that H # 1.

We consider first the case in which r(R) > 3. Take cyclic subgroups Ry
and R; such that |Rg| = p and Cgr(Ry) = Ro X Ry, and let U = RyZ(H).
If Ry C H, then U is elementary abelian because H has exponent p, and
U < H because of (5.4). Thus m(U) < r{Cr(Rp)) < 2. But this implies
that either

m(U) =1, Ro =U < H, and hence Ry C Z(R), or
m(U) = 2 and, by Lemma 5.1, r(Cr(Rg)) > r(Cr(U)) > 3.

Both are impossible. Therefore Ry € H.
Now

CH(R()) C QI(CR(RQ)) = Ro X Ql(Rl)
Since H < R, we have H N Z(R) # 1. Consequently
(5.5) |Cr(Ro)| = p.
For each nonnegative integer 4, define inductively subgroups H; of R by

Hy = H and
Hi = [R, Hi—-l]a for i > 0.
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Then, for each i, H;char R and hence H; <« R. Let v € R# and suppose
that p™ = |H|. A short argument using the mapping H — [R, H] given by
z — [v,z] = vz~ lvz shows that, for each i,

|Hit1] 2 |[Ro, Hi]| > |H; : Cp;(v)] 2 p~ ' |Hil-

On the other hand, since R is nilpotent, H; = 1 or H;;, C H;, for each 1.
Therefore we obtain an A-invariant chain

H=Hy,>DH,>---DH,=1

in which each factor group H;/H;y; has order p. Clearly the chain is
stabilized (in the sense of Lemma 1.9) by A’ and by a?~! for each a € A.
Recall that C4(H) is a p-group. Thus, by Lemma 1.9, we obsain (a), (b),
and (c) in the case when r(R) > 3. (The hypotheses of (c¢) catnot occur in
this case.)

We are left with the case in which r(R) < 2. Here (b} does not occur,
and (a) follows from Lemma 4.17. To complete the proof, assume that |A|
is a prime that does not divide p(p — 1). Let ¢ = |A}.

By Lemma 4.7, SCN3(R) is empty and, since ¢ does not divide p — 1,
Lemma 4.14 implies that ¢ divides (p + 1).

Now suppose that R = [R, A] and R is not abelian. By Theorem 4.16,

19 (R)| = p® and R/Q:(R) is cyclic.

As ¢ does not divide p — 1, by G, Theorem 5.4.1, p. 189, A centralizes
R/Q4(R). Since [R, A] = R, it follows that R = Q;(R). Thus |R| = p?,
which completes the proof of (c) and of the theorem. O

Recall that a group G has p-length one if G = Op , »(G).

Theorem 5.6. Suppose G is a solvable group of odd order, p € 7(G), and
S is a narrow Sylow p-subgroup of G. If r(S) > 3, assume as well that G
has p-length one. Then:

(a) p is the largest prime divisor of |G/Op(G)|;

(b) if p = 3 or p is the smallest prime divisor of |G|, then G has a
normal p-complement;

(¢) G’ has a normal p-complement;

(d) every p’-subgroup of G’ is contained in O, (G’); and

(e) G/Op (@) is an abelian p’-group.

Proof. If r(S) < 2, use Theorem 4.18. If r(S) > 3, use Theorem 5.5 and
the method of proof of Theorem 4.18. [

Theorem 5.7. Suppose G is a solvable group of odd order, p € =(G),
and E is an elementary abelian p-subgroup of F(G). Assume as well that
1(Cr(g)(E)) < 2. Then G’ C F(G).
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Proof. By Proposition 1.2, it suffices to show that G’ centralizes every
chief factor U/V of G for which U C F(G). Take such a chief factor U/V.
Then U/V is a g-group for some prime g. We may assume that U C Oy(G).

Let R = O4(G), Z = Q1(Z(R)), and C = Cr(E). Then r(C) < 2. We
claim that R is narrow. To prove this, we can assume that r(R) > 3. Then
R Z C. Hence g =p and E € Z. Therefore

1CZCEZand r(Cr(EZ))=1(C) < 2.

It follows that m(EZ) = 2 and EZ € £2(R) N £*(R). By Theorem 5.3, R
is narrow.

Let C; = Cg(U/V). Since R is narrow, Theorem 5.5 implies that G’
induces a g-group of automorphisms on R by conjugation. Hence G’ in-
duces a g-group of automorphisms on U/V, that is, G'C;/C; is a g-group.
However, O4(G/Cy) = 1 because G acts irreducibly on U/V. Therefore
G' C Cq, as desired. (O

6. Additional Results

Theorem 6.1 (P. Hall & G. Higman). Suppose G is a solvable group
of odd order, p is a prime, and S is a Sylow p-subgroup of G. Then O ,(G)
contains every abelian normal subgroup of S.

Proof. G, Theorem 6.5.2, p. 234. O

Theorem 6.2. Suppose that G is a solvable group of odd order, p is a
prime, and S is a Sylow p-subgroup of G. Then Z(J(S))Oy(G) < G.

Proof. G, Theorem 6.5.1, p. 234 and Theorem 8.2.11, p. 279. O

Remark. A substitute for this result (Theorem B.4) is proved in Ap-
pendix B, using the characteristic subgroup L(S)} of Puig instead of J(S).
Note that for S # 1, one has L(S) # 1 (Lemma B.1(f)).

Lemma 6.3. Let G be a solvable group.

(a) Suppose that H is a normal Hall subgroup of G and K is a com-
plement of H in G. Assume that H C G'. Then H = [H, K] and
Cu(K)C H'.

(b) Suppose that G’ is nilpotent and |G/G’| is prime. Then G’ is a
Hall subgroup of G and G’ = [G, K] for every complement K of G’
in G.

Proof. (a) Let H* = [H,K]. Then H* <« HK = G. Let G = G/H*,
H=H/H*,and K = KH/H*. Then G=HxKand HCG =H x K.
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Hence H = H'. Since G is solvable, we have H = 1, that is, H = H*.
Therefore, by Proposition 1.6(d) and Proposition 1.5(d),

H/H'=[H/H',KH'|H'| x Cy;p(KH'[H')
=[H,K|H'/H' x Cy(K)H'/H'
=H/H' x Cy(K)H'/H'.
This shows that Cy(K)H'/H' = 1. Thus Cy(K) C H', as desired.
(b) Let p = |G/G’'|. Then G/O,(G’) is a p-group whose derived group
has index p. Hence G/O,(G’) is a cyclic group of order p and G’ = O, (G").
The rest of (b) follows from (a). O

Theorem 6.4. Suppose G is a group, 7 is a set of primes, H is a =’-
subgroup of G, and Gy is a normal Hall subgroup of G. Assume that
Go/F(Gy) and (G/Go)/F(G/Gy) are nilpotent. Assume further that H
normalizes two w-subgroups J; and J; of G.

Then there exists an element x € (Jq, J2) such that (J1%,J2) is a #-
group and x centralizes H.

Proof. We use induction on |G| + |H|.
We can assume that G # 1. Let M = Go if Gog # L and M = G
otherwise. Let L = (Jy,J2). Then

M is a nonidentity normal Hall subgroup of G and

(6-1) M /F(M) is nilpotent.

Since H normalizes J; and J, H normalizes L. We can assume that
G = LH. Then G/L is a n'-group, and

(6.2) L contains every w-subgroup of G.

Suppose 7(F(G)) € w(H). Take p € n(F(Q)) such that p ¢ n(H).
Let N be a minimal normal subgroup of G contained in O, (F(G)). Since
G/L=LH/L= H/(HNL), we have N C L. By induction, there exists
y € L such that

(6.3) (¥, J2) N/N is a m-group and y centralizes HN/N.

In this case, H is a Hall p'-subgroup of HN. Take z € N such that
(HY)* = H. Let L* = (J;Y,J2) N. Then yz € L and

[Hyyzl CHNL=1.

Thus yz centralizes H. Hence H normalizes J1¥* and L*. By (6.3), L* has
order relatively prime to the order of H. By Proposition 1.5, there exists
w € Cr«(H) such that ( J;¥**, J2) is a 7-group. Since

yzw € (L,N,L*) = L and yzw = (yz)w € Cg(H),

we obtain the conclusion in this case.
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Now assume that 7(F(G)) C 7(H). Then
(6.4) 0.(G) =1 and 7(F(M)) C n(H).

By (6.1), M is a nonidentity normal Hall subgroup of G. Therefore M
contains a Hall #( F(M))-subgroup of H that is not trivial. Let B = HNM
and let H* be a complement of B in H. Then B # 1 and |H*| < |H|. By
induction, there exists an element y € L such that

(J1¥, J2) is a w-group and y centralizes H*.
Let Ky = [Jy, B] and F = F(M). Since K; C Jy,
(6.5) K, is a w-group.
By (6.1), M/F is nilpotent. Since B is a #’-group,
BF/F C Op(M/F) and K,F/F = [BF/F, J,F/F] C Op(M/F).

By (6.5), K1 F/F is a m-group. Therefore K1 F/F =1 and K; C F. Since
F is nilpotent, (6.4) yields

K1 C Ox(F) C 04(G) = 1.

Thus B centralizes J;. By symmetry, B centralizes J;. Hence B centralizes
L and y. Finally, since y centralizes H* and H = H*B, we see that y
centralizes H. O

Remark. If one weakens the hypothesis of Theorem 6.4 slightly, the con-
clusion need not hold. For example, one can have = = {3}, G = GL(2, 3),
H S ZyX Zy, J1 2 Jp 2 73, and Jo = J} for some y € Ng(H) — H.

Lemma 6.5. Suppose K, U, and H are subgroups of a solvable group G
and
K 4G, G=KU, HCU, and |H| is relatively prime to |K]|.

Then

(a) HnG' =HNU',

(b) Ng(H) = Ck(H)Ny(H), and

(c) if g € G and H9 C U, then g = cu for some ¢ € Cx(H) and u € U.
Proof. (a) Let # = n(H). Since K <4 G = KU, we know that KU’ < G
and G/KU’ is abelian. Therefore

G'CKU and HNG'CUNG CUNKU' =UNnK)U'
Hence
UnGYU' CUnNKU' /U 2UnK)/(U' NK),

which is a 7’-group. As (HNG')U'/U’ is a m-subgroup of (U N G')/U, it
follows that (H N G')U’ = U’ and thus

HnG cU'.
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Consequently HNG' € HNU'. Since the opposite containment is obvious,
HnG' =HNU.

(b), (c) It is easy to derive (b) from (c), so we will prove only (c).
Suppose g € G and H9 C U. Take k € K and v € U such that kv = g.
Then

kT Hk=H* = H CcU* =U.
Now k~'Hk C HK. Therefore H* C HK nU. Clearly H is a Hall
w-subgroup of HK and hence of HK N U. Consequently H and H* are

Hall w-subgroups of HK N U. Thus there exists an element w € HKNU
such that H* = H*. Since

we HKNU = HEKNU),

we can assume that we K NU.
Let c= kw~! and u = wv. Thenc€ K, u € U, g = kv = cu, and

HE = ‘chw‘1 — (‘Hw)w'1 - H.
For each h € H we know that h¢ € H and
h®=c'he=h (mod K).

Therefore h°h~! € HNK = 1, and hence c centralizes h. Thus ¢ € Cx(H).
This completes the proof of (¢) and of the lemma. O

Lemma 6.6. Suppose that G is a solvable group, p is a prime, and S is a
Sylow p-subgroup of G. Assume that G has p-length one. Then:
(a) §C SOy (G) = Op ,(G) and G = Oy (G)Ng(S);
(b) if S C G, then S C (Ng(S))';
(¢) if Y is a nonempty subset of S and x € G satisfies Y* C S, then
there exist ¢ € Cg(Y) and g € Ng(S) such that cg = x; and

(d) if Q is a p-subgroup of G, then there exists € Ce(Q N S) such
that @* C S.

Proof. Let M = Oy (G) and U = Ng(S).

(a) Since G has p-length one, G = Op , ,»(G). Therefore S C Op ,(G).
It follows that S is a Sylow p-subgroup of Oy ,(G) and Op ,(G) = MS.
By the Frattini argument,

G = Op ,(G)Ng(S) = MSU = MU = Oy (G)Ng(S).

(b) Apply Lemma 6.5(a) with H = S and K = Oy (G).

(c) Since (Y) and (Y'®) are contained in S, we can apply Lemma 6.5(c)
with K = M and H = (Y).

(d) By (a) and its proof, Q C Oy ,(G) = M S, and clearly S is a Sylow
p-subgroup of M'S. Hence there exist elements 2 € M and y € S such that
QY C S. Clearly Q© C S. For z € @ NS, we have

FzleSand 2" =272 =2 (mod M).
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Hence 2271 € SN M = 1. Thus z € Cg(@NS). This completes the proof
of (d) and of the lemma. O

Theorem 6.7. Suppose that G is a solvable group, p is an odd prime,
E € £,*(G), and L is a p'-subgroup of G normalized by E. Assume that G
has p-length one. Then L C O(G).

Remark. The assumption of p-length one is unnecessary by a theorem of
J. G. Thompson [18, Theorem X.1.12, p. 9]. However, the assumption that
p is odd is necessary. For an example, let G = SL(2,3), E = Z(G), and let
L be any subgroup of order three in G.

Proof. Set K = O,/(G) and let S be a Sylow p-subgroup of G that contains
E. Then E € £*(S). Thus

(6.6) E =9Q;(Cs(E)) and EK/K € £*(SK/K).
Hence
EK/K € £&,*(G/K).
Now if LK/K C O,(G/K) =1, then L C K. Therefore it suffices to prove
the result for G/K, so we can assume that
K=0,(G)=1

By Lemma 6.6, Op ,(G) = KS = S, 50 § < G. Now L acts on S by
conjugation, and L centralizes E because [L,E] C LN S = 1. Hence, by
(6.6) and Corollary 1.12, L centralizes S.

Obviously S is a Sylow p-subgroup of Op ,(G). Therefore, by Proposi-
tion 1.15(a),

L € Ca(S) € Op p(G) = 5.
Since L is a p’-group, L = 1 C Op(G), as desired. O






CHAPTER II

The Uniqueness Theorem

In this chapter we introduce the minimal counterexample and begin to
study it. As in the proof of the Feit-Hall-Thompson CN-group theo-
rem, the major results concern the maximal subgroups of the minimal
counterexample—their structure and the relationships between them. The
first major result is known as the Uniqueness Theorem (Theorem 9.6).
Midway through the proof of the CN-group theorem, (e.g., after G,
Theorem 14.2.3, p. 406), one can easily show that a subgroup of the form
Zp X Zy, is contained in a unique maximal subgroup of the minimal coun-
terexample. In our case, the Uniqueness Theorem includes an analogous
result for a subgroup of the form Z, x Z, x Z,. It depends upon a deep
preliminary result, the Thompson Transitivity Theorem (Theorem 7.6).
The other main ideas of the proof come from a paper of the first author
[1], which makes essential use of the second author’s Z.J-Theorem [11].
However, Thompson’s Factorization Theorem [27], involving his J-subgroup

and a variation thereof, already had strong applications to local analysis in
FT.

7. The Transitivity Theorem

We now assume that the main theorem is false. Henceforth in these
notes we let G denote a fixed counterexample of minimal order. Of course
G is a nonabelian simple group. We also fix the following notation:

# = the set of all maximal subgroups of G,

A (H) = the set of all maximal subgroups of G that contain H
(for each proper subgroup H of G),

% = the set of all proper subgroups H of G for which .# (H)
has a unique element.

(The set % is not related to the sets % (P) and % (p) defined in FT.)

55
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For each prime p, recall that p’ is the set of all primes other than p. Let
SCN3(p) be the set of all subgroups A of G for which A € SCN3(P) for
some Sylow p-subgroup P of G.

For a set of primes 7, recall that =’ is the set of all primes not contained in
. We also introduce the following notation. Whenever A is a n’-subgroup
of G and H is a subgroup of G, Hy(A; ) denotes the set of all m-subgroups
of H normalized by A and Hy*(A;r) denotes the set of all maximal ele-
ments of Hy(A; ) under inclusion. If 7 = {¢} for some prime ¢, we also
write My (A;q) and Hg*(A;q) for Hy(A; ) and Hy*(A; ), respectively.
Hypothesis 7.1.

(1) The group A is a nonidentity proper subgroup of G, = = 7(A4), and
K = On(Cs(A)).

(2) Whenever X is a proper subgroup of GG that contains A, we have
(Hx(A;7)) = On (X).

Note that in Hypothesis 7.1, K is the set of all n'-elements in Cg(A4).
Clearly, for every ¢ € 7', K acts upon Hg"(A;q) by conjugation. In this
section we will give some sufficient conditions for the action to be transitive.

Lemma 7.1. Assume Hypothesis 7.1. Suppose, for some prime ¢ € #’,
that Q1, Q2 € He*(A;q), and that there exists a proper subgroup H of G
such that

ACH, HN@Qy #1, and HN Qs # 1.

Then Q4 = Q1" for some k € K.

Proof. We proceed by induction on |Gl,/|@1 N Q2|. Since A C H, A
normalizes HNQ, and HNQ2. By Hypothesis 7.1, O (H) contains HN Q4
and H N Q2. By Proposition 1.5, H N @; is contained in an A-invariant
Sylow g-subgroup R; of O./(H) (for i = 1, 2), and R;® = R, for some
h € Ca(A) N Opn(H). Since h is a n'-element of Cg(A), we know h € K.
Take Q3 € Ug*(A;q) such that Ry C @3. Then

Q1" € He*(4;9),
1c@:"NnHand Q;NHC Ry C Q.
Therefore
(7.1) 1CQ"NnHCQ1"NQ3and 1 CQ2NHCQynQs.

Now suppose @; N Q2 = 1. By (7.1), |Q1 N Q2| < |@1* N Q3|. Hence, by
induction, there exists f € K such that (Q;"*)f = Q3. Similarly, Q39 = Q-
for some g € K. Since h € K, we have

hfg € K and Q"9 = Q39 = Q..

Now suppose @1 N Q2 # 1. Let @ = @1 N Q2. Then our hypothesis is
satisfied with Ng(Q) in place of H, and we can assume that H = Ng(Q).
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The argument of the previous paragraph shows that we can assume further
that |Q| > |Q1* N Q3] or |Q| > |Q2 N Qal. Since (7.1) yields

11" N Qs 2 Q" N H| = Q1 N H| = |Ng,(Q)|

and likewise |Q2 N Q3| > |Ng,(Q)|, it follows that |Q| > |Ng,(Q)| for some
t=1or 2. As Q; is a p-group,

Qi=Q=0Q11Q2C Qs.;.

Since Q; € Hg*(A;q), we have Q; = Qas_;. Thus Q; = Q,* for k = 1. This
completes the proof of Lemma 7.1. [J

Theorem 7.2. Assume Hypothesis 7.1 and let ¢ € 7', Suppose m(Z(A4)) >
3. Then K acts transitively on Hg*(A4;q).

Proof. By hypothesis, Z(A) contains an elementary abelian subgroup B
of order p® for some prime p. Clearly ¢ # p. Take Q1, Q2 € Hg*(A;q). We
wish to prove that Q.* = Q, for some k € K. If Q; = 1, then Q, = 1, and
we can take k = 1. Assume that @, # 1.

By Proposition 1.16,

Q1=(Co,(C)|C C Band B/C is cyclic) .

Thus Cg, (C) # 1 for some subgroup C of order p? in B. Similarly, since
C is not cyclic, Cg,(2) # 1 for some z € C¥. As Cg,(C) C Cg(z), the
desired conclusion follows from Lemma 7.1 with H = Cg(z). O

Theorem 7.3. Assume Hypothesis 7.1 and let ¢ € 7’. Suppose m(Z(A)) >
2 and g € 7(Cs(A)). Then K acts transitively on Hg*(4;q).

Proof. Take B € £,2(Z(A)) and Q1, Q2 € Hg*(A;q). Let R be an element
of Hs*(A;q) that contains a Sylow g-subgroup of C(A). Then Cg(A) # 1
and hence @,, Q2 # 1.

By Proposition 1.16, Cg, (z) # 1 for some z € B¥. By Lemma 7.1 with
H = Cg(zx), we have Q;f = R for some f € K. Similarly, R = Q; for
some g € K. Thus

fg € K and Q179 = Qa.

Since Qi and Q2 are arbitrary elements of Hz*(A;q), we are done. [

Theorem 7.4. Assume Hypothesis 7.1 and let ¢ € 7. Suppose that P is
a proper m-subgroup of G that contains A as a subnormal subgroup and
that K acts transitively on Mg*(A;¢q). Then

(a) Ck(P) = Ox(Ca(P)),

(b) O (Ca(P)) acts transitively on Hg*(P;q),

(c) Hg*(P;q) C Hs*(4A;q), and

(d) for every Q € Hg*(P;q) we have P N Ng(P) C Ng(Q) and

Ng(P) = On(Cg(P))(NG(P) N Ng(Q)).
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Proof. Recall that K equals O,/ (Cg(A)) and contains every 7'-element of
Cc(A). Since A C P, we have Cq(P) C Cg(A). This proves (a).

To prove the other parts of the theorem we use induction on |P : A|. By
the definition of a subnormal subgroup, there exists a normal series of P
that contains A. We can refine such a series to a composition series

1=P<aPy<---<dP_1 <P, =P,

where P, =Aand 1<k <n.

Assume first that k < n—2. Let B = P,_;. Clearly B is a m-group. Since
|B : A| < |P : A}, by induction, O,(Cg(B)) is transitive on Hg*(B;q).
Moreover, since Hx(B; ') C Hx(A;#"), Hypothesis 7.1 is satisfied with B
and O,/ (Cg(B)) in place of A and K. As |P: B| < |P: A|, (b), (c), and
(d) follow by induction.

For the remainder of the proof we assume that £ > n—2. Then A = P,,_,
or A= P, = P. Thus A < P, and

(7.2) either A = P or |P/A| is a prime in .

Let Q = Hg*(A;q). Then P acts on Q by conjugation and hence P/A acts
on Q. By hypothesis, the 7'-group K acts transitively on §2 by conjugation.
Therefore |Q] divides |K|. Consequently, by (7.2), P/A fixes some element
of . Thus

(7.3) P normalizes some element of Hg*(A;q).

Suppose first that 1 € Hg*(P;q). Then {1} = Hg*(P;q) = Hg(P;q).
Therefore (b) and (d) are trivial. Moreover, (7.3) shows that 1 € Hg*(4;q)
and thus yields (c).

Now assume that 1 ¢ Hgs*(P;¢q). To prove (c), take any Q@ € Hg*(P;q).
Then A normalizes @, so Q is contained in some element Q1 of Hg*(A4; q).
Now N¢(Q) contains P and Ng, (Q). By Hypothesis 7.1,

NQ1 (Q) g Ow’(NG(Q))‘

By Proposition 1.5, @ is contained in a P-invariant Sylow g-subgroup Qs
of O(Ng(Q)). Since Q € Hg*(P;q), we know Q = Q2. Therefore

QI = Q2| = |0 (Na(@))ls 2 N, (@)] 2 1@

It follows that Q = Np,(Q) and hence that Q = Q; € Hg*(A;¢q). This
proves (c).

To prove (b), let us take any @y, Q2 € Hg*(P;q). First notice that
K = 0,(Cs(A)) <« Ng(A), so that KP is a group. By (c) and the
hypotheses, Q2 = Q,* for some k € K. Therefore

P C Nkp(Q2) and P* C Nkp(Q2).
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Since PK is solvable, P is a w-group, and K is a «’-group, it follows that
P and P* are Hall 7-subgroups of Ngp(Q2) and hence are conjugate in

Nkp(Q2). As
Nkp(Q2) = KP N Ng(Q2) = (K N Ne(Q2))P,
(P*)9 = P for some g € K N Ng(Q2). Thus

Q1% = Q39 = Q, and kg € Nk (P) = Ck(P).

This proves (b).
To prove (d), take any @ € Hg*(P;q) and let L = Ng(P) N Ng(Q). By
(a) and (b), Ng(P) = LCk(P) = Ckg(P)L. Therefore, by Lemma 6.5,

PN(Ng(P))=PnL CL C(Ng(Q)).
This proves (d) and completes the proof of the theorem. [J

Proposition 7.5. Suppose p € #(G) and A is an abelian p-subgroup of G.
Assume that either
(1) A = {z € Cs(A)|xP =1} and every proper subgroup of G has
p-length one, or
(2) A € SCNo(P) for some Sylow p-subgroup P of G.

Then A satisfies Hypothesis 7.1.

Remark. For A € SCN(P) this result is a special case of Theorem 8.5.1
of G, from which our proof is derived.

Proof. For case (1), Hypothesis 7.1 follows easily from Theorem 6.7. There-
fore we will assume case (2) for the remainder of this proof.

To conform with the notation of Hypothesis 7.1, let 7 = 7(A) = {p} and
K = 0y (Cg(A)). In addition, let Z = Q;(Z(P)).

Since A < P, we have Q;(A) < P. Now Z(P) C A. If Z(P) is not cyclic,
take B € £,2(Z). If Z(P) is cyclic, then |Z| = p and

(@:(A4)/2) N 2(P/Z) # 1,

by G, Theorem 2.6.4, p. 31. Thus the intersection contains a subgroup
B/Z of order p. Either way

(7.4) Be&*(A)and B« P.

Now suppose that X is an arbitrary proper subgroup of G that contains
A and that Y € Hx(A;p'). To prove our conclusion, it suffices to show
that Y C O, (X). We will verify two special cases and then the general
case.

First suppose that X = Cg(b) for some b € B¥ N Z. Then P is a Sylow
p-subgroup of X. Since A is an abelian normal subgroup of P, Theorem 6.1
yields

AC Oy p(X).
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Let H = HO,(X)/Op(X) for every subgroup H of X. Then

[4,Y] C 0,(X)NY =1, and so,
AC Co,,(i(‘) Y).

Since Cp(A) C A, we have C,, % (A) C A. By Proposition 1.10 (with Y’

and O,(X) in place of A and G), Y centralizes O,(X). Next, by Proposi-
tion 1.15(a),

CY(OP(Y)) c Op',p(y) = OP(X_)'
Consequently, as Y is a p’-group, Y = 1. This shows that Y C Op (X).
Now suppose X = Cg(b) for any b € B¥. By the paragraph above, we

can assume that |Z| = p and B = (b) x Z. Let P; = Cp(b) and take a
Sylow p-subgroup P, of X that contains P;. By (7.4),

P/P, = P/Cp(B) & Z,.

Therefore |Py : Pi| < pand Py < P,. Hence Z C Z(Py) and Z(P;) < Ps.
By Theorem 6.1,

ZC Z(Pl) c Op’,p(X)-
Thus [Y,Z] C Y NOp ,(X) C Op(X). Since A normalizes Cy(Z), the
previous paragraph shows that Cy(Z) C O, (Cg(Z)). Consequently we
have Cy(Z) C Op(Cx(Z)) and, by Proposition 1.15(b), Cy(Z) C Op(X).
Thus

Y =Cy(2)[Y, Z] C Op(X).
Assume once again that X is arbitrary. By Proposition 1.16,

(7.5) Y =(Cy(b)|be B*).

For each b € B#, A normalizes Cy (b) and the special cases above show
that Cy (b) C Op(Cg(b)). Hence

Oy (b) € Oy (Cx (b)) € Op (X)

by Proposition 1.15(b). Finally, Y C O, (X) by (7.5), which completes the
proof of the proposition. O

The following result is a special case of the Thompson Transitivity Theo-
rem (G, Theorem 8.5.4, p. 292).

Theorem 7.6 (Thompson Transitivity Theorem). Suppose that
p € 7(G), A € SCN3(p), and ¢ € p’. Then O, (Ci(A)) acts transitively on
Hs*(A; q) by conjugation.

Proof. This follows from Proposition 7.5 and Theorem 7.2. [
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8. The Fitting Subgroup of a Maximal Subgroup

Having proved the Transitivity Theorem, we now embark on the proof of
the Uniqueness Theorem. In this section, we prove (Theorem 8.1) that if a
maximal subgroup M is large in the sense that r(F(M)) > 3, then certain
large subgroups of F(M) lie in %. Here and later we will frequently use
the simplicity of G to assert that if L is a nonidentity normal subgroup of
a maximal subgroup M, then Ng(L) = M.

Theorem 8.1. Suppose M € #, p € n(F(M)), and Ay € E*(F(M)).
Assume that m(Ag) > 3. Let P be a Sylow p-subgroup of M.

(a) If F(M) is not a p-group, then Cr(a(Ao) € %.
(b) If F(M) is a p-group, then P is a Sylow p-subgroup of G and every
element of SCN3(P) is contained in F(M) and belongs to % .

Remark. Recall that, by Lemma 5.1, SCN3(P) is not empty.

Proof. Let FF = F(M). For each nilpotent subgroup K of G and each
prime g, let K, = O4(K). We handle parts (a) and (b) separately.

Proof of (a). Let 7 = n(F) and A = Cp(Ap). Then n(A) = 7 because
(8.1) Z(F)C Cr(Ag)=ACF.

Note that, for every ¢ € ,

(3.2) Ca(A) € Ca(Ag) € Ca(Z(F)q) € Na(Z(F)q) = M.

Suppose z is a n'-element of Cg(A4). Let C = Cr(z) = Cr({x)). By
(8.2), x € M, so x operates on F by conjugation. Thus

Cp(C) CCr(A) C Cr(Ag)=ACC.
By Propositions 1.10 and 1.3,
z€ Cy(F)=Cy(F(M))CF.
Since z is a #’-element, = 1. Thus, by (8.2),
(8.3) Cg(A) is a w-subgroup of M.

Now we verify Hypothesis 7.1 for A. Take an arbitrary proper subgroup
X of G that contains A and an A-invariant 7'-subgroup Y of X. It will
suffice to show that Y C O/ (X).
Take any ¢ € 7. By (8.2), Cy(Aq) € M. Then, since Y is a 7’-group,
[CY(AQ)7A] CYN[M,A|[CYNF(M)=1.
Consequently Cy(Ag) centralizes A. By (8.3), Cy(4y) = 1. Thus, by
Proposition 1.6(a),

(8.4) Y = Cy (A Y, A = [V, 4,).
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Since, by hypothesis, |7] > 2, there exists r # ¢ in . Since, by (8.2),
Ng(Z(F)q) = M, we have
A C Fr C 0y(M) = 04 (NG(Z(F),)).
Therefore A, C Oy (Nx(Z(F)q)). Moreover,
[0y (Nx(Z(F)g), Z(F)g] € O (Nx(Z(F))) N Z(F)g = 1,
50 O (Nx(Z(F)q)) = Og(Cx(Z(F),)). Hence, by Proposition 1.15(b),
(8.5) A, C Oy (Cx(Z(F)q)) C Op(X) (for ¢ # rin 7).
Consequently, by (8.4), with r in place of g,
Y = [V, A;] C Og(X).
Since g was chosen arbitrarily in ,

Y C [ 0p(X) = On(X).
q€m
This proves Hypothesis 7.1 for A.

Now take ¢ to be some prime in 7'. Since m(Z(A)) > m(Ag) > 3, we can
conclude from Theorem 7.2 that O, (Cg(A)) acts transitively on Hg*(A4; q)
by conjugation. By (8.3), On(Cg(A)) = 1. Thus

Hg*(A;q) = {Q} for some ¢g-subgroup @ of G.
Since F' is nilpotent, A <{<t F'. By Theorem 7.4,
Hg*(F;q) C Hg*(4;9) = {Q}.

Therefore Hg*(F;q) = {Q} and M normalizes Q. As M is a maximal
subgroup of G, MQ = M and Q C M. Hence @ < M and Q C F(M) = F.
Since 7 = 7(F') and q € 7', we have @ = 1. Thus

(8.6) Hg*(A;q) = {1}, for every g € '

To prove that A € %, take H € .#(A). We will show that H = M.
Let D = F(H) and ¢ = w(D). By (8.6), we have ¢ C m. Since
F(Oy,(H)) C On(F(H)) =1, we have O,-(H) = 1. By (8.1) and (8.5) for

O (2(F)) S O (A) = (A, | T €70 0") C () Op(X) = Opr(H) = 1.
q€o

As F' is nilpotent, O,/ (F) = 1, so 7 = #(F) C 0. Since ¢ C 7, we have
o=m.
Recall that |x| > 2. For each g € ,

(8.7)  [Day O (A)] C [O4(H), Oy ()] =1, by (8:5) for X = H,
and D, C Ce(0Oy(A)) C M by (8.2). Hence D C M.
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By (8.7), A, centralizes Op (D). Since
Op (D) = Op(F(H)) = F(Op (H)),

Proposition 1.4 implies that A,, centralizes O, (H). By (8.2), Op(H) C M.
Since

D C M and O, (H) = Op(Ng(Dy)),
we have O, (H) C Op (Np(Dp)). Furthermore, since
(Op (N1 (Dp)), D] € Op (Nu(Dp)) N Dy = 1,

it follows that Op (Na(Dp)) € Op(Cm(Dp)). Thus Proposition 1.15(b)
yields

(8.8) Op (H) € Oy (M).

Since Ap is a p-subgroup of F, we have O, (F) C Cr(Ag) = A. Thus
Op (F) = Op(A). By (8.7), D, centralizes O, (F). Since

D, C D C M and Oy (F) = 0, (F(M)) = F(O, (M),

Proposition 1.4 shows that D, centralizes Op(M). Thus it follows that
OPI(M) - C(;(Dp) CH.

By (8.2), Ng(Z(F)p) = M. Therefore Oy (M) C Op(Ny(Z(F),)). By
(8.5), with X = H and ¢ = p, we have Op (M) C O, (H). Hence, by (8.8),

Op (H) = Op(M) and H = Ng(Op(H)) = Ng(Op(M)) = M,
which completes the proof of (a). O

Proof of (b). Take A € SCN3(P). Since F(Op(M)) C Op(F) =1, we
have

(8.9) Op(M)=1and F = O,(M) = Op ,(M).

By Theorem 6.1, A C F. Hence Z(F) C O,(M)N Cg(A) C Cp(A) = A.
As Z(Fya M,

(8.10) Cc(A) € Ca(Z(F)) € Ng(Z(F)) = M.

By (8.9) and Theorem 6.2, we know that Z(J(P)) < M. Consequently
Ng(P) C Ng(Z(J(P))) = M. Hence P is a Sylow p-subgroup of G and
A € SCN3(p).

Let A* = Op(Cg(A)). By (8.10), A* € M. Since

Cr(Cr(A")) C Cp(4) = AC Cp(47),
Propositions 1.10 and 1.3 imply that A* C Cp(F) C F. As F is p-group,
(8.11) 1= A" = Oy (Ca(A)).

Take any prime ¢q € p’. By (8.11) and the Thompson Transitivity Theo-
rem (Theorem 7.6), Hz*(A;q) contains a unique element, say, @. Thus
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N¢g(A) normalizes @, and hence F normalizes Q. Since AC Fand F < M,
it follows that @ is the unique element of Hg*(F'; ¢) and that M normalizes
Q. As M is a maximal subgroup of G,

MQ=Mand Q C O, (M)=1.

Thus Hg*(A;q) = {1} = Hg(A;q). Take any Y € Hg(A;p'). For each
g € p', we have Oy(Y) € Hg(A;q) = {1}. Therefore F(Y) = 1. Since Y is
solvable, Y = 1. Thus

(8.12) Ho(43p) = {1},

To complete the proof of (b) we must show that A € %. Suppose that
A ¢ %. Take H € .#(A) such that |HNM |, is maximal subject to H # M.
Let R be a Sylow p-subgroup of H N M containing A. If |R| < |P], then

|H N M|, = |R| < |Num(R)l, = INa(R) 0 M|,

and {M} = #(Ng(R)) by our choice of H. Therefore we know that
|INu(R)|, = |HN Ng(R)|, < |[HN M|, = |R|, and so R is a Sylow p-
subgroup of H regardless of whether |R| < |P| or |R| = |P|. By (8.12) and
Theorem 6.2,

(8.13) O, (H) =1 and Z(J(R)) < H.

Thus Ng(R) C Ng{Z(J(R))) = H, so R is a Sylow p-subgroup of G and
of M. By (8.9), (8.13), and Theorem 6.2, M = Ng(Z(J(R))) = H. This
contradicts our choice of H and completes the proof of Theorem 8.1. [

Remark. The theorem above has slightly different conclusions, but very
different arguments according to whether (a) F(M) is not a p-group or
(b) F(M) is a p-group. Similarly, there are slightly different arguments
for these two cases in the proof of Theorem 9.1. This dichotomy reflects a
division of 7(G) in FT. In FT, Feit and Thompson defined 75 to be the
set of all primes p for which r,(G) > 3 and some Sylow p-subgroup of G
normalizes some nonidentity p’-subgroup of G. They defined 74 to consist
of all other primes p for which r,(G) > 3. Our arguments for cases (a) and
(b) reflect the arguments in FT involving primes in 73 and 7.

9. The Uniqueness Theorem

In this section we complete the Uniqueness Theorem (Theorem 9.6).
Note that whenever Y C X C G and X ¢ % we have Y ¢ .

Theorem 9.1. Suppose that p is a prime, M € #, B € ,(M), and B is
not cyclic. Assume that

(a) Cg(b) C M for all b € B¥ or

(b) (Ha(B;p')) C M.
Then Be %.
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Proof. If (a) holds, then for each K € Hg(B;p')
K={(Ck()|beB*)C M

by Proposition 1.16. Therefore (b) also holds and it suffices to prove (a).

We will assume that B ¢ % and obtain a contradiction. Take any
H € .#(B) such that |H N M|, is maximal subject to H # M. Let R
be a Sylow p-subgroup of H N M that contains B and let P be a Sylow
p-subgroup of M that contains R.

Suppose K € Ug(P;p'). As B C P, we know from (b) that K C M.
Since [K, P] C K, it follows that K centralizes Op ,(M)/Op(M). Hence
it follows from Proposition 1.15(a), with G and T replaced by M/Op (M)
and Op ,(M)/Op (M), that K C Op(M). Since O,(M) itself belongs to
Hg(P;yp'), this shows that

(9.1) (Ha(P;p)) = Oy (M).

By Theorem 6.2, O, (M)Z(J(P)) < M. Therefore, by the Frattini
argument,
(9-2) M = O,(M)Z(J(P))Nu(Z(J(P)) = Op,(M)Ny(Z(J(P)).

It follows that if O, (M) = 1, then Ng(P) C Ng(Z(J(P))) = M. On the
other hand, if Op (M) # 1, then, by (9.1), Ng(P) normalizes O, (M) and
hence Ng(P) C Ng(Op(M)) = M. Thus, in both cases,

(9.3) Ng(P)C M.

Consequently P is a Sylow p-subgroup of G.
If R = P, then R is a Sylow p-subgroup of G and of H, and, by (9.3),
Ng(R)C M. If R C P, then

|\H N M|, = |R| < |Np(R)| < [Na(R) N M,

and hence, by the choice of H, we know that {M} = #(Ng(R)) and
|Na(R)|p = |HN Ng(R)|, < |HN M|, = |R|. Consequently, in both cases,
R is a Sylow p-subgroup of H and

(9.4) Ng(R) C M.
Since, by (b), Op(H) C M, we have
(9.5) F(H) C O,(H) x Op (F(H)) C RO, (H) € M.

Hence F(H) ¢ % and no subgroup of F(H) lies in %. By Theorem 8.1,
r(F(H)) < 2. Therefore, by Theorem 4.20, H' C F(H). By (9.5),

H' C F(H)C ROy(H)CH.
Consequently RO,/ (H) < H, and, by the Frattini argument and (9.4),
H = RO, (H)Nu(R) C (O (H), No(R)) C M,
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which is false. This contradiction completes the proof of the theorem. O

Corollary 9.2. Suppose that L € %, K is a subgroup of Cg(L), and
r(K)>2. Then K € %.

Proof. Let .#(L) = {H}. Take B € &,%(K) for some prime p. For each
b € B¥ we have Cg(b) O L and hence Cg(b) C H. By Theorem 9.1,
A (B) = {H}. Therefore #(K)={H}. O

Corollary 9.3. Suppose p is a prime, A is an abelian p-subgroup of G,
and B is a noncyclic p-subgroup of G. Assume that A € %, m(A) > 3, and
rp(C(B)) > 3. Then Be %.

Proof. Let P be a Sylow p-subgroup of G that contains A and take any
B* € £,3(C(B)). Replacing A and B* by conjugates, if necessary, we can
assume that B* C P.

By Lemma 4.5, P contains a noncyclic normal subgroup D of order p?.
Therefore A/C4(D) and B*/Cp«(D) are cyclic. Hence

m(C4(D)) > 2 and m(Cp-(D) > 2.

By hypothesis, A € %. By successive applications of Corollary 9.2, %
contains C4(D), D, Cp«(D), B* and B. O

Lemma 9.4. Suppose that p is a prime, M € #, and r,(F(M)) > 3.
Then % contains every abelian p-group of rank at least three.

Proof. If F(M) is a p-group, then the conclusion follows from Theorem 8.1
and Corollary 9.3. Assume that F(M) is not a p-group. Take any subgroup
Ap € £,*(F(M)) such that m(Ag) > 3. By Theorem 8.1 and Corollary 9.2,
Ap € % . The conclusion now follows from Corollary 9.3.

Lemma 9.5. Suppose p is a prime and A € SCN3(p). Then A € %.

Proof. Assume that A ¢ %. We will obtain a contradiction.
Take M € .#(C(A)) and let F = F(M). By Lemma 9.4,

(9.6) ,(F) < 2.

Choose a prime ¢ as follows: if r(F) < 2, let ¢ be the largest prime
divisor of |M|; if r(F) > 3, let ¢ be some prime for which ry(F) > 3. By
Theorem 4.20(c), O4(M) is a Sylow g-subgroup of M if r(F) < 2. Since
M = No(0y(M)),

(9.7) 04(M) is a Sylow g-subgroup of G if r(F) < 2.

Hence, by (9.6), ¢ # p if r(F) < 2. Moreover, by (9.6) and our choice of g,
we have g # p if r(F) > 3. Thus ¢ # p in both cases.
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Let P be a Sylow p-subgroup of Nz(A) and let R be a subgroup of PNM
that contains A. Then R normalizes O4(M). Choose © € Ng(R) and take
Q € Hg*(R; q) such that Oy(M) C Q. If r(F) > 3, then, by Lemma 9.4,

(9.8) Q€ Ne(Q) € M.

On the other hand, if r(F) < 2, then (9.7) implies that @ = Oy(M) <« M
and hence (9.8) is valid in both cases.

Since R is a p-group, A << R. By Theorems 7.6 and 7.4, Op(Cg(R))
acts transitively on Hg*(R;q) by conjugation. Since

Q" € Hg*(R;q) and Cg(R) C Cs(A4) C M,
Q* = QY for some y € M. By (9.8),
2y 1 € Ng(Q)C M and z = (zy~ ')y € M.
Thus Ng(R) € M. By taking R = A, we have P C Ng(A) C M. By
taking R = P, we have
(9.9) Ng(P) C M.

Let Py = [P, Ng(P)] and D = Op(F). Since G does not have a normal
p-complement, Theorem 1.18 implies that Py # 1.
Suppose that Py does not centralize D. By Proposition 1.16,

D = {Cp(B) | B C Q(A) and Q,(A)/B is cyclic.)

Take B C Q;(A) such that Q,(A)/B is cyclic and Py does not centralize
Cp(B). Since A € SCN3(p), B is not cyclic. Since A ¢ %, it follows that
B ¢ % . By Theorem 9.1, there exist y € B¥ and L € .# such that

Co{y) C Land L £ M.

Note that we chose M to be an arbitrary element of #(Cg(A}). Since
Ca(A) C Ce(y) C L, we can apply (9.9), with L in place of M, to conclude
that Ng(P) C L. Hence

(9.10) Ng(P)C LM and Py C (Ng(P))' C (LN MY.

Since DNL C M NL, no subgroup of DN L liesin %. As D = Op (F(M)),
Lemma 9.4 implies that r(D N L) < 2. Thus, by (9.10) and Corollary 4.19,
Py centralizes every chief factor U/V of L N M for which U C Dn L.
Therefore, as D N L is a p’-group, Lemma 1.9 shows that Py centralizes
DN L. However

DNL2DNCg(y) 2 Cp(B),

which is not centralized by Fy. This contradiction shows that Py, centralizes
D, that is,

(9.11) Py centralizes Oy (F).
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We claim that
(9.12) (M} = A (Ns(Py).

If r(F) > 3, this follows from (9.11), {9.6), and Lemma 9.4. Suppose that
r(F) < 2. By Theorem 4.20, M’ C F. By (9.9), P C M. Since M/M’' is
abelian,

FP 4 M and M = FPNy(P) = Oy (F)PNy(P) = O (F)Nu(P).

Since Py = [P, Ng(P)] < Ng(P), (9.11) implies that Py < M, which yields
(9.12). Thus (9.12) holds in all cases.

Since A ¢ %, it follows that Q,(A) ¢ % . By Theorem 9.1, there exists
x € Q1(A)* such that Cg(x) € M. Take M* € #(Cg(x)). Since M was
chosen arbitrarily from .#(Cg(A)), (9.12) yields

{M*} = A (Ng(Po)) = {M},
a contradiction. This completes the proof of Lemuma 9.5. 0O

Theorem 9.6 (The Uniqueness Theorem). Suppose that K C G and
r(K) > 2. Assume that r(K) > 3 or 1{(Cg(K)) > 3. Then K € . In
particular, if A € £2(G) — £*(G), then A€ %.

Proof. By Corollary 9.2, it suffices to prove the result when r(K) > 3.
Then 1,(K) > 3 for some prime p. Take B € £,3(K) of order p3. Let P
be a Sylow p-subgroup of G that contains B. By Lemma 5.1, there exists
A € SCN3(P). By Lemma 9.5, A € %. Since B C Cg(B), Corollary 9.3
implies that B € % . Therefore K € %, as desired. 0O



CHAPTER III

Maximal Subgroups

As mentioned in the preface, the proof of the Feit-Thompson Theorem is
similar in broad outline to the proof for the special case of C N-groups.
There, the C N-group hypothesis yields immediately that the maximal sub-
groups are Frobenius groups or “three step groups” under a definition dif-
ferent from our definition of three step groups (given in a remark before
Proposition 16.1). In contrast, here we have no preliminary restrictions
on a maximal subgroup M other than its being solvable. However, having
proved the Uniqueness Theorem, we are able to show in fairly short order
that M has p-length one for every prime p (Theorem 10.6). Eventually we
show that either M is “of Frobenius type” (“almost” a Frobenius group),
or M is a three step group (as defined in these notes) (Theorem I). (Inci-
dently, we can obtain Burnside’s p®¢® theorem for odd primes p and ¢ very
easily now, as shown in the remark after the proof of Theorem 10.2).

In this chapter we attain part of our final goal by focusing our attention
on a single maximal subgroup M. We introduce two normal Hall subgroups
M, and M, of M and study their properties in Section 10. The subgroup
M, plays a role analogous to that of the Fitting subgroup (i.e., the Frobe-
nius kernel) in a Frobenius group. Indeed, if M is a Frobenius group, then
M, = F(M) and r(M/M,) = 1. In Section 11 we study the structure of
M under a particular restriction. In Sections 12 and 13 we again allow M
to be arbitrary and we study the structure of a complement E to M, in M
and the embedding of £ in M and G.

10. The Subgroups M, and M,

Although the Uniqueness Theorem gives information only about inter-
sections of distinct maximal subgroups, it has powerful consequences for
the internal structure of a single maximal subgroup M, as we will see in
this section. Among other things, we will show that M contains a normal
subgroup M, that is a Hall subgroup of G (and thus of M) and has quotient

69
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M/M, of rank at most 2 (Theorem 10.2). We will also prove that M has
p-length one for all primes p (Theorem 10.6) and determine the possible
structures of Sylow p-subgroups of rank at most 2 (Corollary 10.7(b)).

We begin with some notation to be used for the remainder of the proof.

We say that a prime p is ideal if 1,(G) > 3 and £2(P) N £*(P) is empty
for every Sylow p-subgroup of G. Equivalently, by Theorem 5.3, for p an
ideal prime, the Sylow p-subgroups of G are not narrow. Note that this
forces £,2(G) N £,*(G) to be empty.

For a maximal subgroup M of G let

a(M)={pen(M)|1,(M) >3},
B(M) ={pe a(M)|pisideal},
o(M)={pen(M)| Ng(P)C M for some

Sylow p-subgroup P of M},

M, = Oa(M)(M)v
Mp = Opany (M),
M, = Oa(M)(M)a

FU(M) = OU(M)(F(M)), and
For(M) = Og(rmy (F(M)).

Clearly, by the Uniqueness Theorem (Theorem 9.6),
B(M) C a(M) Co(M) and Mg C M, C M,.

In some sense the primes in 3(M), if any, are the best primes in 7(M). We
will show that M, is a Hall o(M)-subgroup of M and of G and likewise
for M, and Mps (Theorem 10.2 and Lemma 10.8). Moreover, M, # 1
and, unless M is “small” in the sense that r(M) < 2, we have M, # 1
(Theorem 10.2). Eventually we will see that M, is close to being nilpotent
in the sense that M,/F(M,) is abelian (Theorem 15.2(g)). We will make
relatively little use of Mp.

Note that for p € o(M) and P any Sylow p-subgroup of M, we have
Ng(P) € M, and hence P is a Sylow p-subgroup of G.

Theorem 10.1. Suppose M € #, p € o(M), and X is a nonidentity
p-subgroup of G.

(a) f X C M, geG,and X9 C M, then g = cm for some ¢ € Ca(X)
and m e M.

(b) The subgroup C(X) acts transitively by conjugation on the set
{M9|geGand X C MI}.

(c} If X C M, then Ng(X) = Ny(X)Ca(X).

(d) If X is a Sylow p-subgroup of M, g € G, and X9 C M, theng € M.

() fCq(X)C M, g€ G,and X9 C M, then g € M.
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Proof. We first consider (d). Here both X and X¢ are Sylow p-subgroups
of M. Hence (X9)" = X for some h € M. Then

gh € Ng(X) C M and g = (gh)h™! € M,

as desired.

Now assume (b) temporarily. Then, under the hypothesis of (a),

X C MY, M = M° for some c € Cg(X),and cg € Nag(M) =M.
Hence g = ¢ (eg), ¢ € Ce(X), and cg € M. This proves (a).

Clearly (a) and (b) yield (c) and (e), respectively, as corollaries.

The discussion above shows that (d) is valid and that the remainder of
the theorem will follow from (b). We prove (b) by contradiction.

Assume (b) is false and take X to be a counterexample of maximal order.
Let L = Ng(X) and take

My, My e {M?|geGand X C M}

such that
(10.1) M€ # M for every ¢ € Cg(X).
We describe the subgroups to be used in our proof by a diagram:
M, /M ]\<t M,
SN
X1 2
X

Now M59 = M, for some g € G. Thus X, X9 C M,. If X is a Sylow
p-subgroup of My, then, by (d), g € M;, which is impossible. Therefore X
is not a Sylow p-subgroup of M;. It follows that X C X; for some Sylow
p-subgroup X; of L N M;. Similarly X C X5 for some Sylow p-subgroup
Xy of LN M,.

Let P be a Sylow p-subgroup of L that contains X;. Take ¢t € L such that
X, C Pt As p € (M), M contains a Sylow p-subgroup of G. Replacing
M by a conjugate if necessary, we can assume that P C M. Now we have
introduced all the subgroups and verified all the containments indicated in
the diagram.

Since X C X, C M, N M, our maximal choice of X implies that M; and
M are conjugate under C(X;) and hence under Cg(X). Similarly, M?
and M, are conjugate under Cg(X). Therefore, by (10.1),

(10.2) M and M! are not conjugate under Cg(X).
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Suppose r{P) > 3. Then by the Uniqueness Theorem (Theorem 9.6),
P e %. Since P C LN M, it follows that L C M. Ast € L, this
contradicts (10.2). Thus r(P) < 2. Since P is a Sylow p-subgroup of L,
we can conclude from Theorem 4.18(e) that P is a Sylow p-subgroup of
Opl,p(L). Thus

L = Np(P)Op (L) = NL(P)POp (L) = NL(P)Op (L).
Hence t = uv for some u € N (P) and v € Oy (L).

Since L = Ng(X) and Op(L)N X =1, we have v € Op(L) C Ca(X).
Since X C P, the maximal choice of X yields (b) and hence (¢) with P in
place of X. Thus

No(P) = Nu(P)Cal(P).
Therefore u = wx for some w € Np(P) and z € Cg(P) C Ca(X). Now

we M, zv € Cg(X), t = uv = wrv, and M* = M™™ = M*,
contrary to (10.2). This completes the proof of Theorem 10.1. O

Theorem 10.2. Let M € .#. Then

(a) M, is a Hall a{M )-subgroup of M and of G,
(b) M, is a Hall (M )-subgroup of M and of G,
(c) Mo C M, C M,

(d) r(M/M,) <2 and M’'/M, is nilpotent, and
(e) My # 1.

Proof. Let M{a) be a Hall a(M)-subgroup of M. For every nontrivial
Sylow subgroup P of M{a), we have r(P) > 3. Hence, by the Uniqueness
Theorem (Theorem 9.6), P is a Sylow subgroup of G and N(P)} C M. Thus
a(M) C o(M) and M(«) is contained in some Hall o (M )-subgroup M (o)
of G.

Now take any p € o(M) and let P be a Sylow p-subgroup of M. Then
Ng(P) C M. Therefore P is a Sylow p-subgroup of G. Clearly PNG’ = P.
By the Focal Subgroup Theorem (Theorem 1.17),

P = (:c"ly | z,y € P and z is conjugate to y in G), and
PNM' = (z7'y|z,y € P and z is conjugate to y in M ).

However, whenever x € P, g € G, and 29 € P, we have 29 = ™ for some
m € M by Theorem 10.1 (with X = (z)). Hence P=PNM' C M'. Asp
was chosen arbitrarily in o(M),

(10.3) M(a) C M(o)C M'.

Since My = Oy (ary(M), the section F(M/M,) is an a(M)'-group and is
isomorphic to a subgroup of M. Hence, by the definition of a(M), we have
r(F(M/M,)) < 2. Clearly M, C M(a). By (10.3) and Theorem 4.20,

M(o)/Mo C M'[Mo = (M/Ma) C F(M/M,).
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Thus M(o)/M, is an a(M)'-group. By (10.3), this proves that M(a) =
M., which yields (a). Since M(c) is a Hall subgroup of M, it follows
that M(o)/M, is a Hall subgroup of F(M/M,) and is normal in M/M,,.
Consequently M (o) <« M, which shows that M (o) = M,. Thus (b) holds,
and (10.3) yields (c).

By the definition of M(«),

1(M/Ma) = r(M/M(a)) < 2.

As mentioned above, M'/M, C F(M/M,), so we obtain (d).

Now we have proved all parts of the conclusion except (e). To obtain (e),
we may assume that M, = 1. Then r{M) < 2. Let ¢ be the largest prime
divisor of |M|. By Theorem 4.20, Oy(M) is a Sylow g-subgroup of M.
Clearly Ng(O4(M)) = M. Hence g € o(M) and M, # 1. This completes
the proof of the theorem. O

Remark. A famous theorem of Burnside asserts that all groups of order
p®g® (for some primes p and ¢) are solvable. Burnside’s original proof relies
heavily on character theory. In 1970, David Goldschmidt published a short
character-free proof for the case when p and ¢ are both odd [13]. During
the 1975 class mentioned in the preface, David T. Price pointed out that
at this stage of our proof we can easily verify Burnside’s result for p and ¢
odd by using some of Goldschmidt’s methods. We do so now.

Assume 7(G) = {p,q) for some primes p and ¢. Since p-groups are
nilpotent, p # ¢. As |G|, # |G|q, We can assume that |G|, > |G|s. Let P
and P; be two distinct Sylow p-subgroups of G, chosen such that |P N Py|
is as large as possible. Let R = PN P;. Since

|P:R|<|G: P|=|Gl, <|P|,

we know R # 1. Take M € .#(Ng(R)). By Theorem 10.2, M, is a
nonidentity Hall subgroup of M and of G and is normal in M. Hence M,
is a Sylow p-subgroup or a Sylow g-subgroup of G.

Suppose M, is a Sylow p-subgroup of G. Since R C Np(R) C M, NP,
we know, by our choice of P and P;, that M, = P. But then, similarly,
M, = Py, a contradiction. Hence M, must be a Sylow ¢-subgroup of G.

Now G = M,P = MP. Let

N= () M®.
z€G
Then N <« G and N C M. Therefore N = 1. However,
N= () M= (M2 () Np(R)22Z(P)D1,
yeEM, zeP zE€EP zeP

a contradiction. This completes the proof.
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The interested reader can also find a complete character-free proof of
Burnside’s Theorem, based on ideas of Bender, Goldschmidt, and Mat-
suyama, in [21, pp. 121-130] and in [18, pp. 11-19].

Lemma 10.3. Suppose M € #, X is an «(M)-subgroup of M, and
I‘(CMQ(X)) > 2. Then CM(X) EX.

Remark. The Uniqueness Theorem (Theorem 9.6) immediately shows that
Cm(X) € % if r(Cp (X)) > 3. The point of this lemma is to do a little
better.

Proof. Take a prime p for which r,(Cas, (X)) > 2 and choose a group

B € £,(Cum (X)) of maximal order. Now X normalizes M, and has order

relatively prime to |M,|. By Proposition 1.5, X normalizes some Sylow

p-subgroup P of M, that contains B. Clearly we can assume that B ¢ %.
By the Uniqueness Theorem, r(Cp(B)) < 2. Hence

|B| = p* and Q:(Cp(B)) = B C Cp(X).

By Corollary 1.12, Cp(X) = P. Therefore r(Cp (X)) > r(P) > 3 because
p € a{M). By the Uniqueness Theorem, Cpy(X) € . O

Lemma 10.4. Suppose M € #, p € n(M), and P is a Sylow p-subgroup
of M.

(a) If p divides |M/M’|, then p ¢ o(M).

(b) Assume p ¢ o(M) and M, # 1. Then there exists x € Q(Z(P))#
such that {M} # #(Ca(x)) and Cyr (z) is a Z-group.

(c) Assume p ¢ o(M) and rp(M) = 2. Then p is not ideal and
£2(M) C £,*(G).

Proof. (a) This follows immediately from Theorem 10.2(c).

(b) Assume that we have a counterexample. Choose u € Ng(P) — M
and y € Q;(Z(P))#. Then either Cys (y) is not a Z-group or {M} =
#(Ca(y)). By Lemma 10.3, {M} = .#(Cg(y)) in either case. Similarly,
{M} = #(Ca(y* ")) because y* = € Z#. Since (Ca(y* ))* = Ca(y),
we have M* = M. Thus u € Ng(M) = M, contrary to our choice of u.

(c) Suppose A € £,2(M) and A ¢ £,"(G). Then, by the Uniqueness
Theorem, A € % . Let P be a Sylow p-subgroup of G that contains A. Then
Ng(P) C M because A C Ng(P). However, we assumed that p ¢ o(M).
This contradiction shows that £,2(M) C £,*(G).

Since r,(M) = 2, £,2(M) is not empty. Hence £,2(M)NE,*(G) is also not
empty. By the definition of an ideal prime, p is not ideal. This completes
the proof of the lemma. O

Lemma 10.5. Suppose that M € .#, p € o(M)', X € &Y(G), and
Ng(X) C M. Then 1,(M) = 2, p is not ideal, and there exists A € £,%(G)
containing X.
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Proof. Since a(M) C o(M), it follows that p ¢ a(M), ie., (M) < 2.
Let P be a Sylow p-subgroup of M that contains X.
Suppose rp(M) = 1. Then, by Lemma 4.5, P is cyclic. Therefore

X = Q1(P) and Ng(P) € Ng(X) C M,

contrary to the assumption that p ¢ o(M). Thus r(P) = rp(M) = 2.
Similarly X # Q,(Z(P)), and hence XQ,(Z(P)) € £2(P). By Lemma 10.4,
pis not ideal. OO

So far, we have obtained only mild restrictions on the structure of the
proper subgroups of G. It is conceivable that they may be extremely com-
plicated, subject only to being solvable. The following important result
shows that this is not the case.

Recall that a group H has p-length one for a given prime p if H/Op (H)
is a p'-group.

Theorem 10.6. Suppose p is a prime and H is a proper subgroup of G.
Then H has p-length one.

Proof. Take M € .#(H). It will suffice to prove that M has p-length
one. If r,(M) < 2, this is a consequence of Theorem 4.18, so assume that
rp(M) > 3.

Let K be a complement to M, in M. By Theorem 10.2, M, C M’. By
Lemma 6.3(a), My = [My, K]. Take ¢ € n(K/K') and let Q be a Sylow
g-subgroup of K. By Lemma 10.4, there exists £ € @ such that = has
order ¢ and Cpy_(x) is a Z-group. Therefore, by Theorem 3.6, [M,, K] has
p-length one. Since M, = [M,, K], the result follows. O

The theorem above will be convenient for many applications, although
its use could be avoided in some of them.

Corollary 10.7. Suppose that p is a prime and P is a Sylow p-subgroup
of G.

(a) Take V to be any complement of P in Ng(P). Then we have
P =[P,V] € Na(PY.

(b) Suppose r(P) < 2. Then either P is abelian or P is the central
product of a nonabelian subgroup P; of order p? and exponent p
and a cyclic subgroup P, for which Q(P;) = Z(P).

(c) Suppose Q C P,z € G, and Q® C P. Then Q* = Q¥ for some
Yy E Ng(P ).

(d) For every subgroup Q of P, the group Np(Q) is a Sylow p-subgroup
of Na(Q).

(e) Suppose R is a p-subgroup of G and @ C PN R and Q < Ng(P).
Then Q@ < Ng(R).
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Proof. Take M € .#(Ng(P)). Then p € o(M). By the previous result,
P C Oy ,(M). We will apply Lemma 6.6.

(a) By Theorem 10.2, P C M, C M'. Therefore, by Lemma 6.6, we
know that P C (Ny(P)) = (Ng(P)). By Lemma 6.3, [P, V] = P.

(b) This follows from (a) and Theorem 4.16.

(¢) By Theorem 10.1, there exists u € M such that Q* = Q®. By
Lemma 6.6(c), there exists y € Nps(P) such that Q¥ = Q*.

(d) Let S be a Sylow p-subgroup of Ng(Q). Take z € G such that
5% C P. Then Q° C P. Take y as in (c). Then Q*¥~ = Q, §*¥"" C P,
and S=¥" is a Sylow p-subgroup of Ng(Q).

(e) Take x € G such that R* C P. Take any y € Ng(R). Then P
contains @* and Q¥*. By (c) and the assumption that @ < Ng(P), we
have Q* = Q = Q¥*. Hence @ = QY. O

Recall that in the beginning of this section we defined 8(M) to be the
set of all ideal primes in a(M) and Mg to be Og(ary(M). We also noted
that a prime p is ideal if and only if the Sylow p-subgroups of G are not
Narrow.

Lemma 10.8. Let M € .#. Then

(a) Mg is a Hall 8(M)-subgroup of M and of G,

(b) M’ and M, have nilpotent Hall 3(M )'-subgroups, and

(c) for each prime p € n(M) — (M), both M’ and M, have normal
p-complements and p is the largest prime divisor of |M/O,(M)|.

Proof. Let M () be a Hall 8(M)-subgroup of M.

Suppose p € 1(M) — B(M). Let P be a Sylow p-subgroup of M. Then
P is narrow. By Theorem 10.6, M has p-length one. Consequently, by
Theorem 5.6, M’ has a normal p-complement, which must contain M(j3),
and p is the largest prime divisor of |M /O (M)|.

The intersection of the normal p-complements above, as p varies over
m(M) — B(M), is a normal B(M)-subgroup of M’. It contains M(3) and
hence must be equal to M(3). Therefore

M(ﬁ) = Oﬂ(M)(M/) < M and M(,@) = Oﬁ(M)(M) = Mﬁ.
This proves (a) and (c). Since M’/Mp has a normal p-complement for every

prime divisor p of |M'/Mg|, M’ /Mg is nilpotent. As Mg C M, C M', we
obtain (b). 0O

Corollary 10.9. Let M € .#.
(a) Suppose p and q are distinct primes in S(M)’ and X is a g-subgroup
of M. Assume X C M’ or p < q. Then

(1) X centralizes a Sylow p-subgroup of M,,
(2) if p€ a(M), then Cy(X) € %,
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(3) if X is a Sylow g-subgroup of M’, then N (X)' contains a
Sylow p-subgroup of M’.
(b) If H e A4 — {M} and Ng(S) C HN M for some Sylow subgroup
S of G, then M = (H N M)Mg and a(M) = B(M).

Proof. (a) Let W be a Hall {p, ¢}-subgroup of XM’ that contains X.
Then W is contained in a Hall (M) -subgroup W* of X M’. Consequently,
by Lemma 10.8(b), W* N M’ is nilpotent, so W N M’ is nilpotent.

We claim that W is nilpotent. This is clear if X C M’, for then W =
W M'. Now assume X € M’'. Then, by hypothesis, p < ¢g. Therefore,
by Lemma 10.8(c), Oy (M) contains all the g-elements of M. In particular,
WNO, (M) is a normal Sylow g-subgroup of W. Since WN M’ is nilpotent
and W/ (WnM"y=2WM'/M' C XM'/M', which is a ¢g-group, Op,(WNM')
is a normal Sylow p-subgroup of W. Consequently W is nilpotent.

Since M, < M’, the intersection W N M, is a Hall {p, ¢}-subgroup of
M,. Thus we obtain (1). Clearly (2) follows from (1) by the Uniqueness
Theorem.

To obtain (3), assume that X is a Sylow g-subgroup of M’. Then X =
O4(W™*). Since M’ = MpW™,

MgX = Oﬁ(M)U{q}(MI) < M.

Let U = Ny (X). By the Frattini argument, M = (MgX)U = MgU. Now
O,(W) is a Sylow subgroup of M’ contained in U and (|O,(W)|, |Mp]|) = 1.
Therefore, by Lemma 6.5, O,(W) C U’. This completes the proof of (3)
and of (a).

(b) In this situation, S # 1. Let ¢ be the unique prime divisor of |S|.
Then q € (M) — B(M) and S C M, C M'. Hence, by Lemma 10.8(b),
MgS < M. The proof of (a) shows that M = MgNp(S). Therefore
M = Mg(H N M). Clearly Ny (S) ¢ %. By (a)(2), a(M) = B(M). O

Proposition 10.10. Suppose that p and ¢ are distinct prime numbers,
A € £XG)NEH(Q), and Q € Hg*(A;q). Assume that ¢ € 7(Cg(A)).
Then for some Sylow p-subgroup P of G that contains A,

(a) No(P) = Op(Ca(P))(Na(P)N Na(Q)),

(b) P C Ng(Q)', and

(c) if Q is cyclic or £2(Q) N £*(Q) is not empty, then P centralizes Q.

Proof. By Proposition 7.5, A satisfies Hypothesis 7.1. Therefore Theo-
rem 7.3 and Theorem 7.4 yield a Sylow p-subgroup P of G that contains A
and satisfies (a).
By Corollary 10.7, P C Ng(P)'. Thus (b) follows from (a) by Lemma 6.5.
Under the hypothesis of (c), Na(Q)'/Cng(gy (Q) is a g-group by Theo-
rem 5.5(a). Thus P lies in Cg(Q). O
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Proposition 10.11. Suppose M € .# and K is a o(M)'-subgroup of M.
Then

(a) K¢,

(b) r(Ck(Ms)) <1,

(¢) Ckx(M,)N M’ is a cyclic normal subgroup of M, and

(d) if pe (M), P € &Ny (K)), Cu,(P) =1, and K is an abelian
p/-group, then [K, P] centralizes M, and is a cyclic normal sub-
group of M.

Proof. (a) Let E be a Hall o(M)’-subgroup of M that contains K. Let
p be the largest prime divisor of |E|. Since a(M) C o(M), r(E) < 2. By
Theorem 4.20, P = O,(FE) is a Sylow p-subgroup of E and hence of M.
Since p ¢ o(M), we know Ng(P) € M. Therefore K ¢ % because

K C EC Mn Ng(P).

(b) Suppose r,(Ck(M,)) > 2 for some prime p. Take A € £,%(Ck(M,))
and q € o(M). Let Q be a Sylow g-subgroup of M,. Then Q € Hg*(A;q),
q € 7(Cg(A)), and Ng(Q) € M.

By (a), A ¢ %. Thus, by the Uniqueness Theorem, r(Cs(A4)) < 2 and
A€ &X(G). As M, C M, C Cg(A), we have M, = 1. By Theorem 10.2,
M'/M, is nilpotent and hence M’ is nilpotent.

By Proposition 10.10, some Sylow p-subgroup P of G lies in Ng(Q)
and therefore in M’. Consequently P = Op(M') <« M, M = Ng(P), and
p € o(M). However p € o(K) C o(M)'. This contradiction completes the
proof of (b).

(c) We can apply (b) to Z = Ogmy (F(M)) since [Z, M,] € ZNM, =1,
and it follows that Z is cyclic. Therefore M’ C Cp(Z) and

Crx(M,) N M' C Cr(M,2Z) C Cy(F(M)) C F(M).

Thus Ckg(M,) N M’ is contained in Z and is normal in M because Z is a
cyclic normal subgroup of M.

(d) With Ko = [K, P], we have Ko = K and K = K x Cx(P)
because K is an abelian p’-group. Thus P acts on KoM, and satisfies

Crom,(P) = Ck,(P)Ch, (P) = 1.

Therefore, by Theorem 3.7, KgM, is nilpotent. Hence K centralizes M,
and (c) shows that Kj is a cyclic normal subgroup of M. [

Lemma 10.12. Suppose M, H € .# and H is not conjugate to M in G.
Then

(a) MayNH, =1 and a(M) is disjoint from o(H), and
(b) if M, is nilpotent, then M, N H, = 1 and o(M) is disjoint from
o(H).
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Proof. Suppose p € (M) No(H). Then some Sylow p-subgroup S of G
lies in M and in some conjugate H9 of H.

By the Uniqueness Theorem, r(S) < 2 because HY # M. Furthermore,
S is not normal in M because Ng(S) C HY. This shows that p ¢ a(M)
and that M, is not nilpotent.

Now we are done because 7(M,NH,) Ca(M)No(H)Co(M)No(H)
and 7(M, N H,) Co(M)na(H). O

Lemma 10.13. Suppose p € 7(G), A € £(G) N EX(G), and P is a
nonabelian p-subgroup of G that contains A. Let Zy = ;(Z(P)) and
Ag € £Y(A) such that Ag # Zg. Then

(a) Zo € £X(A),

(b) Cp(A) = Ap x Z with Z a cyclic subgroup that contains Zy, and

(c) Np(A) acts transitively by conjugation on £1(A) — {Zo}.

Proof. Let S be a Sylow p-subgroup of G that contains P and let Z; =
2,(Z(S)). Then

(10.4) A€ EXS)NE*(S), A= Q(Cs(4)), and r(Cs(A)) = 2.

Therefore Zg, Z; C A. Clearly Z, C Zy. Thus Z; C Zy C A. In particular,
Zo = Zy unless A = Zy C Z(P). As P is not abelian, it follows that

(10.5) if Cs(A) is abelian, then Z; = Zo € £1(A).
We claim that
(10.6) Zo=2, € EYA) and Cs(A) = 4o x Y

for some cyclic subgroup Y of S such that :(Y) = Z;.

Assume first that r(S) = 2. Then, by Corollary 10.7(b), Z(S) is cyclic
and S = §;Z(S) for some subgroup S; of S having order p® and exponent
p such that Z(S) = Q,(Z(S)) = Z;. It is easy to see that

AC Ql(S) = 5.

By the structure of S;, we have Cs(A) = AZ(S), which is abelian. Hence,
by (10.5), A = Ag x Zy, and we obtain (10.6) for Y = Z(S).

Now assume that r(S) > 3. By (10.4) and Theorem 5.3, S is narrow
and |Z;| = p. Let T = C5(21(Z2(S))) and take any A; € £Y(A) — {Z1}.
Then A = A; x Z; and Cs(A4;) = Cs(A), which has rank two by (10.4).
Therefore, by Theorem 5.3, Cr(A) is cyclic and Cs(A4) = A; x Cr(A),
which is abelian. By (10.5), Zo = Z;. Clearly Z; = Q1(Cr(A)) because
Zy C Cr(A). By hypothesis, Ag # Zy. Hence we can assume that A; was
chosen to be Ajy. Now (10.6) follows with Y = Cr(A4).

Since (10.6) holds in both cases, we obtain (a) and (b). Moreover,
Cp(A) C P because Cp(A) is abelian. By (10.4), A = 2;(Cp(A)). Thus

Cp(A) C Np(Cp(4)) € Np(u(Cp(A))) = Np(A).
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Take x € Np(A) — Cp(A). Then z induces an automorphism of order p on
A by conjugation, and this automorphism centralizes Zg. By the structure
of A, this forces (z) to permute transitively all of the p-subgroups of order
p in A other than Z;. This proves (¢) and completes the proof of the
lemma. O

Proposition 10.14. Suppose that p € 3(G) and P is a Sylow p-subgroup
of G.

(a) The sets £2(P) N £*(P) and &,%(G) N £*(G) are empty.

(b) Every p-subgroup R of G such that r(R) > 2 lies in %.

(c) If X is a subgroup of P, then Np(X) e %.

(d) For every nonidentity 8(M)-subgroup Y of M, Ng(Y) C M.

Proof. (a) By the definition of 3(G), we know that £2(P)NE*(P) is empty.
We noted earlier that this easily forces £,2(G) N £*(G) to be empty.

(b) We can assume that R C P. Take A € £2(R). By (a), A C B
for some elementary abelian subgroup B of P. Then B C Cg(A) and
m(B) > 3. By the Uniqueness Theorem, A € %. Hence R€ % .

(c) Let @ = Np(X). Ifr(Q) > 2, then Q € %, by (b). Therefore assume
that r(Q) = 1. Then Q is cyclic, X char @, and Np(Q) C Np(X) = Q.
Since P is nilpotent, this forces @ = P, contrary to the assumption that
(P) > 3.

(d) Let ¢ € w(F(Y)) and X = Oy(Y). We can assume that ¢ = p and
X CPC M. Then Np(X) C M and, by (c),

Y C Ng(X)C M.
This completes the proof of the proposition. O

11. Exceptional Maximal Subgroups

Throughout this section we assume the following notation and condi-
tions.

Hypothesis 11.1. Suppose M € #, p € o(M)', Ao € £, (M), and
Ng(Ap) C M.

By Lemma 10.5, r,(M) = 2 and Ag C A for some A € £,2(M). Then
A C P for some Sylow p-subgroup P of M. As p ¢ o(M),

NG(P) g M7
and since Cg(A4) C Ca(A4p) C M,
A € &(G).

We will use this choice of A and P and these facts throughout Section 11.
Since we would expect that p € o(M) whenever Ng(Ao) € M with
Ap € £,'(G) and, since maximal subgroups H such that r(H/H,) = 1 seem
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more natural and easier to work with, we consider M to be an exceptional
mazximal subgroup.

We will show that M, is nilpotent, M has abelian Sylow p-subgroups,
and AM, << M (Theorems 11.3, 11.5, and 11.7). In Section 12, we will
see that all maximal subgroups H for which r(H/H,) = 2 are exceptional
(Proposition 12.4). In the proof of this proposition and very often thereafter
we will consider maximal subgroups M* € #(Ng(X)) for X € £,1(M)
and, in the exceptional case when X € M?%, we will have the situation
described above (with M* and X in place of M and Ag). This is the reason
for studying exceptional maximal subgroups.

The main results of this section will be generalized in Theorem 12.5 and
there will be no reference to Section 11 thereafter.

Finally, we note that the following proofs depend heavily on the ideas
underlying the fundamental Thompson Transitivity Theorem (Theorem 7.6).

Lemma 11.1. Suppose that g € G— M, A C M9, g € o(M), and that @,
and Q, are A-invariant Sylow g-subgroups of M, and M,9, respectively.
Then

(a) @1NQ2=1, and
(b) if X € £1(A), then Cg,(X) =1 or Cg,(X) = 1.

Proof. By Proposition 7.5, the subgroup A satisfies Hypothesis 7.1 because
A € £,*(G). Thus, if (a) or (b) is false, Lemma 7.1 shows that Q = Q1* for
some element k € Cg(A). Then Q2 C M because Cg(A) C M. Therefore,
by Theorem 10.1(d), g € M, a contradiction. O

Corollary 11.2. Suppose g € G — M and A C M¥9. Then
(a) M,Nn M9 =1, and
(b) MynNCg(Ap9) =1.

Proof. Suppose (a) is false. Take ¢ € 7(M,NM?). Then q € o(M). Since
M,N M9 = M, N M,9 and A normalizes M, and M,9, Proposition 1.5
shows that A normalizes Sylow g-subgroups Qg, @1, and Q2 of M, N M9,
M,, and M,9, respectively, such that Q¢ C Q1 N Q2.

By Lemma 11.1, @, N Q> = 1, a contradiction. This proves (a). For (b),
note that Cq(A4¢9) C M9. 0O

Theorem 11.3. The group M, is nilpotent.

Proof. Take g € Ng(P) — Ny(P). Then Ap9 C P C M, and Ao? acts
in a fixed-point free manner on M, by Corollary 11.2(b). Therefore, by
Theorem 3.7, M, is nilpotent. [J

Corollary 11.4. Suppose H € .#(A) and M, N H; #1. Then M = H.

Proof. Since M, is nilpotent, Lemma 10.12(b) shows that H is conjugate
to M, say H = M9 for g € G. Then, by Corollary 11.2(a), g € M because
M, NMI#1. O
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Theorem 11.5. The Sylow p-subgroups of M are abelian.

Proof. Suppose P is not abelian. Take g € Ng(P)—Npy(P) and g € o(M),
and let @1 be a P-invariant Sylow g-subgroup of M,. By Proposition 1.16,

Q1=(Cq,(X)| X € £'(4))

and similarly for Q9 = Q,9.

Thus there exist subgroups X1, X, € £}(A) such that Cg, (X;) # 1 and
Cq, (X2) # 1.

By Lemma 11.1(b), each subgroup X € £!(A) satisfies Cg,(X) =1 or
Cg,(X) = 1. Therefore Cg,(X2) = 1, and hence X, is not conjugate to
X; in P.

By Lemma 10.13(c), all of the subgroups in £}(A4) — {X}, where X =
Q1(Z(P)), are conjugate in P. Consequently X = X; or X = X,. However,
because X = X9 and hence Cg,(X) = Cq,(X)9, we have Cg,(X) =
Cg,(X) =1, a contradiction. O

Corollary 11.6. We have

(a') A= QI(P)a

(b) Cum,(A) =1, and

(c) there exist subgroups A;, As € £,'(A4) such that A; # A, and
Cu, (A1) =Chp,(42) = 1.

Proof. Since A € £2(P) and P is abelian of rank two,
A= 0(P) < Ng(P).

As Ng(P) € M and G has odd order,
INg(P): Nu(P)| = 3.

Thus we can find elements ¢y, g2 € Ng(P)— N (P) such that g1g2_1 ¢ M.
Then glg{1 ¢ Ng(Ap) because Ng(Ap) C M. Therefore Ag9t # Ag%.
Since Ag C A < Ng(P), it follows that A; = Ap9 and Ax = A9 lie
in A. By Corollary 11.2(b), Cp, (A1) = Cu,(A2) = 1. In particular,
Cy,(AY=1. O

Now we can prove the main result on exceptional maximal subgroups. It
will enable us to generalize many results that are valid for primes in o(M).

Theorem 11.7. We have M, A < M.

Proof. Assume this is false. Let F be a complement to M, in M that
contains A. Then r(F) = 2. Let

r={qen(E)|q¢>p},

and let K = O,(F). By Theorem 4.20, K is a Hall 7-subgroup of E and
KP is a normal Hall 7 U {p}-subgroup of E.
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By Corollary 11.6(a), A = Q,(P). If A centralized K, we would have
KA=Kx A, A=Q(0,(KP)) < E, and M;A 4 M,E = M, which we
have assumed false.

Thus A does not centralize K. Take a prime divisor ¢ of |K : Ck(A)|,
and let @ be an A-invariant Sylow ¢-subgroup of K. Then A does not
centralize Q.

Suppose Cg(A) # 1. Then Q is not cyclic. Consequently r(Q) = 2. Let
B € £%(Q). By Lemma 10.4(c), 4 and B lie in £,*(G) and &,*(G), respec-
tively. Moreover, ¢ € 7(Cg(A)) C m(C(A)). Let Q C Q* € Hg*(A;q).
By Proposition 10.10(c), [4, Q*] = 1, contrary to the fact that [A4, Q] # 1.
This contradiction shows that

Co(A) =1
Let Q¢ = Z(Q). By Proposition 1.6(d),
Qo = [4,Q0]Cq,(4) = [4, Qo]
With A; and A, as in Corollary 11.6(c), A = A; x Ay and hence
Qo = [A, Qo] = [A1, Qo][A2, Qo)

By Proposition 10.11(d), with K = Q¢ and P being A; and then A,
both subgroups [A;, Qo] and [A2, Qo] are normal in M. Hence Q¢ < M and
Ng(Q) € Ng(Qo) = M. But Q is a Sylow g-subgroup of M and ¢ ¢ o(M).
This contradiction completes the proof of the theorem. [

12. The Subgroup FE

In this section we return to the study of an arbitrary maximal subgroup
M of G. Let E denote a complement of M, in M. We will analyze the
structure of E and the way E is embedded in M and in G. Of course,
E = M/M,. We will see that r(F) < 2, E’ is nilpotent, and every Sylow
subgroup of E is abelian (Lemma 12.1 and Corollary 12.10(a)). Moreover,
the hypothesis of the preceding section is satisfied if #(E) = 2 (Proposi-
tion 12.4).

We introduce the following notation:

n(M)y={peo(M) |p¢n(M')and r,(M)=1}
(M) = {p€a(M) |rp(M) =2}
(M)={pea(M) |pen(M')and r,(M)=1}
Ei2 = some Hall (M) U mo(M)-subgroup of E
E; = some Hall ;(M)-subgroup of Eis, (i =1, 2)
E3 = some Hall 75(M)-subgroup of E.
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Since o(M) contains a(M) = {p € n(M) |rp,(M) >3}, n(M) is the
disjoint union of o(M), m1(M), 72(M), and 73(M). Whereas o(M) is not
empty, by Theorem 10.2(e), each (but not all) of the sets 7;(M) could be
empty. Since E is a complement to M, in M, we have EN M’ = E' and
hence

m(E) = 1(M) U ro(M) U 13(M)
(M) ={pen(E)-n(E') |r,(E) =1}
m2(M) = {p € n(E) | rp(E) =2}
m3(M)={pen(E)|rp(E)=1}.

In the following lemma we collect some easy consequences of our defini-
tions.

Lemma 12.1. (a) F’ is nilpotent.
(b) E3C E'" and E3< E.
(C) If E2 = 1, then E1 -‘,é 1.
(d) E; and Ej are cyclic.
(e) F= E1E2E3, Eyp = E1E2 and E2E3 < F and E; < Eo.
(f) CEa (E) =1
(g) If p€ To(M) and A € £,2(M), then A € £,*(G) and p ¢ B(G).

Proof. By Theorem 10.2, M'/M, is nilpotent. Thus, since M, N E =1,
we know E’ is nilpotent, which is (a).

Take p € 1 (M) U 13(M) and let P be a Sylow p-subgroup of E.

Since r(P) = rp(E) = 1 and p is odd, P is cyclic by Lemma 4.5. Thus
E; is cyclic because Fy' C E; N M’ =1 by definition of 7(M) and E;.

By (a), Op(E)P < E. The Frattini argument now yields

(12.1) E = 0,,(E)Ng(P) = 0,(E)PK,

where K is a complement to P in Ng(P).

If p € 73(M), then PNE’ # 1 and, by (12.1), this implies that [P, K] # 1.
By Proposition 1.6(d), P = [P, K] x Cp(K). Therefore [P,K] = P and
Cp(K) =1 because P is cyclic.

This proves that E3 C E’. Since E’ is nilpotent, E3 is cyclic and is
normal in E. Now we have (b) and (d). Moreover, we have shown that
Cg,(E) =1, because Cp(K) =1 in the argument above. This yields (f).

For (e), recall that E5 < E and E; N E’' = 1, and then (c¢) follows from
the fact that E5 C E/ C E. Finally, (g) is just Lemma 10.4(c). O

Lemma 12.2. Suppose p is a prime, X is a nonidentity p-subgroup of M,
and M* € .#(Ng(X)). Then

(a) pe€a(M*)Ur(M*), and
(b) ifpeo(M)and M # M* or if p € (M) UTs(M), then M* is not
conjugate to M in G.
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Proof. (a) Suppose that p ¢ o(M*). Then r,(M*) = 2 by Lemma 10.5.
Thus p € 72(M).

(b) Suppose that M* is conjugate to M. Then it follows that 7;,(M) =
7{M*) for i = 1,2, 3. Thus, by (a), p € ¢(M). Hence, by Theorem 10.1(b),
Cs(X) acts transitively on the set { M9 |g € G and X C M9}. This set
contains M and M™, but consists of M* alone because Cg(X) C Ng(X) C
M*. In particular, M = M*. O

Lemma 12.3. Suppose M* € .# — {M}, p is a prime, A € £,2(M N M*),
and Ng(Ag) € M* for some Ag € E1(A).

(a) If p ¢ o(M), then A centralizes M, N M*.

(b) If p € o(M) — (M), then A centralizes M, N M*.

Proof. If p € o(M*), then A C M*%. If p ¢ o(M*), then M*, A, and

Ag satisfy the hypotheses on M, A, and Ay stated at the beginning of

Section 11, and it follows from Theorem 11.7 that M, A < M*.
Therefore, in either case, every A-invariant p’-subgroup K of M* satisfies

[K,AJCKNMACKNMY%.

If p € o(M) — a(M), we apply this to K = M, N M*. In this case, M*
is not conjugate to M by Lemma 12.2(b). Then [K,A] C MaNM% =1by
Lemma 10.12(a). This proves (b).

For the proof of (a), suppose that p ¢ o(M) and [K, A] # 1, where
K = M,nNM*. Then M, N M?% # 1. Consequently, by Corollary 11.4, M*
does not satisfy the hypotheses of Section 11.

It follows that p € o(M*). In particular, M* is not conjugate to M in G
because p ¢ o(M). Let S be a Sylow p-subgroup of M% that contains A.
Then M*%,S < M* because M% /M?, is nilpotent by Theorem 10.2. Thus

1C[K,A]CKnNM%SCKnNM:CM,nM,,

contrary to Lemma 10.12(a).
This contradiction completes the proof of (a) and of the lemma. [

Proposition 12.4. Suppose p is a prime and A € £,2(M). Then
(a) Cg(A) € M, and
(b) if A (Ng(Ag)) # {M} for every A9 € E(A), then p € (M),
M, =1, and M, is nilpotent.

Proof. We can assume that the hypothesis of (b) holds since otherwise
(a) holds. Take any subgroup X € £1(A). Then there exists a subgroup
M* € #(Ng(X)) — {M}. By the Uniqueness Theorem,

r(Cu(A4)) S1(Cm(X)) < 2.
Assume first that p ¢ o(M). Then, by Lemma 12.3(a),
Cum, (X) C My N M* C Cy(A).
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Thus, by Proposition 1.16,
M, = {Cu, (Y)Y € £1(4)) C Cu(A),

contrary to Proposition 10.11(b). This proves that p € o(M). Let P be
a Sylow p-subgroup of M, that contains A. Then Z = Q(Z(P)) C A
because AZ € £,(Cp(A)) and r(Cu(A)) <2

Note that Z # 1 because P # 1. Thus we can choose our subgroup X
in Z and get

r(P) <1(Cum(X)) <2
Thus p € 6(M) — a(M). Now, using Lemma 12.3(b), we see that
= <CMQ(Y) |Y € Sl(A)> C Cpm(A4).
It follows that M, = 1 because r(Cp(A)) < 2, and then M, = M, /M,
is nilpotent by Theorem 10.2. Therefore P <« M and
Cc(A) € Cg(Z) C Ne(Z) =M
which completes the proof of the proposition. O

Now we are in a position to obtain substantial information about the
unpleasant case when 72(M) is not empty.

Theorem 12.5. Suppose that 72(M) is not empty. Let p € 7(M) and
A € £,%(M). Then
(a) M, is nilpotent,
(b) M has abelian Sylow p-subgroups and every Sylow p-subgroup P
of M such that A C P satisfies Q;(P) = A and Ng(P) € M,

()MA<1M
(d) Cm,(4) =1,
(e) M ﬂM*=1forevery M* e #(A) - {M}, and

(f) there exists A; € £1(A) such that Cpr, (A1) = L.

Proof. By Proposition 12.4, Ng(Ag) C M for some subgroup Ao € £(A)
because p ¢ o(M). Thus we have Hypothesis 11.1, and everything except
(e) follows from Theorems 11.3, 11.5, 11.7, and Corollary 11.6.

Suppose that M* € #(A) — {M}.

If Ng(Ag) C M* for some Ag € £1(A), then (d) and Lemma 12.3(a)
yield

M, N M*CCy,(A)=1.

Otherwise, Proposition 12.4(b) shows that A C O,(M*), and we reach

the same conclusion because

[My nM*, A C M, N O,(M*)=1. O
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Recall our choice of E, E;, E5, and E3 at the beginning of this section.

Corollary 12.6. Suppose that m2(M) is not empty. Let p € o(M) and
A€ £,2(E). Then
(a) A< E and EHE) = £1(A),
(b) Cg(A) € Ny(A) = E and Ng(4) € M,
(¢) #(Cx(X)) = {M} for each X € EYA) = E,}(E) such that
Cm,(X) # 1,
(d) Cp,(x) =1 for each x € E3#,
(e) Cm,(z) =1 for each x € Cg, (A)#, and
(f) if M* € A is not conjugate to M, then M, N M?% =1 and o(M)
is disjoint from o(M*).

Proof. Recall that M = M,E and M, N E = 1. Thus A < E because
M,;A < M by Theorem 12.5(c). Hence A is contained in every Sylow
p-subgroup P of E and, for each such P, Theorem 12.5(b) asserts that

(12.2) Q1(P) = A and Ng(P) Z M.
This proves (a) and shows that Ny(P) C Ng(A) and
Cr(A) C Nas(A) = Npg(A) N Mo E = (Nag(A) N M,)E = Cur, (A)E.

By Theorem 12.5(d), Cps, (A) = 1. Therefore, by (12.2), we obtain (b).
By Theorem 12.5(e), M, N M* =1 for every M* € .#(A) — {M}. This
yields (¢) immediately. It also yields (d) and (e) because we can assume z
has prime order and apply Lemma 12.2(b) to deduce that Ng({(z)) € M.
Since M, is nilpotent, by Theorem 12.5 (a), Lemma 10.12(b) yields (f). O

Theorem 12.7. Suppose that p € 7(M), A € £,%(E), and assume that
G has nonabelian Sylow p-subgroups. Then
(a) 72(M) = {p},
(b) Ap = C4(M,) has order p and satisfies F(M) = M, x Ag,
(c) every X € £,1(E) — {Ap} satisfies Cpr, (X) =1 and Ca(X) € M,
(d) Ao has a complement Fy in F, and
(e) (CE,(x)) C T1(M) for every x € M,*.

Proof. Choose Sylow p-subgroups P of E and S of G such that
ACPCS.
Since we have P abelian and Cg(A) C E by Theorem 12.5(b) and Corol-
lary 12.6(b),
Cs(A)=PcCS.
Suppose that g € 7o(M) — {p}. Take B € £,2(E). Then A centralizes B
because, by Corollary 12.6(a), both A and B are normal in E. Furthermore,

Ca(B) C E by Corollary 12.6(b), and both A and B lie in £*(G) by
Lemma 12.1(g). Therefore, by Proposition 10.10(c), C(B) contains a
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Sylow p-subgroup of G, contrary to the fact that P C S and Cq(B) C E.
This proves (a).
By Proposition 1.16,

M, ={(Cp,(X)| X € §1(A)),

and therefore there exists a subgroup Ag € £}(A) such that Cyy, (Ao) # 1.
By Corollary 12.6(c), this implies that

M (Cc(Ao)) = {M}.

We know that S € M and Ag € Z(S) because P is a Sylow p-subgroup
of M.

Suppose that X € &,}(E) — {Ao}. By Corollary 12.6(a), X C A. If
X C Z(S), then Cg(X) € M and hence Cpg, (X) =1. If X € Z(S), then,
by Lemma 10.13(c), X = A9 for some g € S. Then g lies outside P and
hence outside M because P is abelian. Then #(Ce(X)) = {M9} # {M},
and therefore Cpr, (X) =1 and Cq(X) € M. Now

M, = (Cy,(X) | X € £'(4)) = Cur, (40),

and the proof of (c) is complete.
By Lemma 10.13(b),

P=Cs(A)=Agx Z

for some cyclic subgroup Z. By (c), Cz(M,) = 1 and hence Cp(M, ) = A,.
Thus Ay is a Sylow p-subgroup of Cps(M,). Moreover, Ag = Ca(M,) < M
because A < E and M = M,E. By (a) and Lemma 12.2(a),

m(F(M)) C o(M)U (M) = o(M)U {p}.

This shows that F(M) = M, x Ag because M, is nilpotent. Now we
have (b).

Next we prove (d); then (e) follows from (a), (¢), and Corollary 12.6(d).

By (a), P is a Hall m(M)-subgroup of E, say P = E,. Recall that, by
Lemma 12.1, Es < E, FsEs Q E, FE = FE(EsFE3, and Es < E15 = E 1 Es.

Clearly Y = {2 | z € P} is the subgroup of index p in Z and is invariant
under Ng(P) and hence under E;. Thus E; acts on the elementary abelian
p-group P/Y, and Maschke’s Theorem (or Theorem 1.6(d)) yields an E;-
invariant complement Py/Y to AgY/Y in P/Y. Therefore P = Ag X Py,
and Eqg = F1PyE;3 is a complement of Ay in E. This completes the proof
of (d) and of the theorem. [
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Our next result is, in a sense, a complement to the theorem just proved.

Lemma 12.8. Suppose that p € 7(M), A € £,2(E), and S is a Sylow
p-subgroup of G that contains A. Assume that S is abelian. Then

(a) Fs is an abelian normal subgroup of E,

(b) E; is a Hall 75(M)-subgroup of G,

(c) S S Ne(S) € F(E)C Ce(S)C E,

(d) Ng(A) = Ng(S) = Ng(E2) = Ng(E2E3) = Ng(F(E)),

(e) every X € £Y(E;) for which Cpy, (X) =1 lies in Z(E), and

(f) for every subgroup X of Ng(S), we have Cs(X) < Ng(S) and
[S, X] < Ng(S).

Proof. By Theorem 12.7(a), each p € (M) satisfies our assumption that
G has abelian Sylow p-subgroups. Since

S C Ca(A) C E,

it follows that E> is a Hall subgroup of G, which proves (b).
Since A < E, Cg(A) C E, and S is abelian,

F(Ng(A)) = F(Cg(A)) = F(E).
In particular, r{F(Ng(A4))) < 2. Therefore, by Theorem 4.20(a),
No(4) € F(No(4)).
Moreover, Ng(S) C Ng(A) because A = Q4(S) and, by Corollary 10.7(a),
S C Ng(S)'.

This yields (c) and shows that S < E. By our remark at the beginning of
the proof, E, is abelian, and it follows that E; < E. Now (a) holds and
each subgroup in the series

ACSCE;CEE3C F(E)

is characteristic in its successor. Therefore, because Ng(A) C Ng(F(E)),
(d) holds.

For (f), note that Cg(S)X < Ng(S) because Ng(S)' C Cg(S). Clearly
Cs(X) = Cs(Ce(S)X) < Ng(S) and similarly [S, X] < Ng(S).

Finally, let K = E5Es = E5 x Ej for the proof of (e). By (¢) and (d),
Ng(SY C Cg(K) and K <4 Ng(S). Hence, as in (f), [K, X] < Ng(S).
Therefore, because p ¢ o(M), we know that Ng([K, X]) € M. However
[K,X] <« M by Proposition 10.11(d). Therefore [K,X] = 1, and hence
E = KE; C Cg(X) because E; is cyclic. [
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Corollary 12.9. Supposep € 2(M), A € £,2(E), g € (M), Q € £,1(E),
Owm,(Q) =1, and [4,Q] # 1. Let Ao = [4,Q] and A; = C4(Q). Then

(a) Ao € £Y(A) and Ap = Ca(M,) < M,

(b) Ap is not conjugate to A; in G, and

(c) A; € £(A) and Cg(A;) Z M.

Proof. Since A < E, we have A = Ap x A; and Proposition 10.11(d)
yields (a). Thus A; € £}(A) and Ng(Ag) = M. Since r(M) = 1 and
Q € Cum{Ag) = Ce(Ap), we know that Ce(Ap) is a ¢’-group. In particular,
(b) holds.

By Lemma 12.8(e) for X = Q, we are in the situation of Theorem 12.7,
and Theorem 12.7(c) yields (¢). O

Corollary 12.10. (a) Every nilpotent o(M)’-subgroup of M is abelian.

(b) The groups E; and E’ are abelian.

(c) Suppose p € To(M) and A € E,%(E). Then E3E3 C Cp(A) 9 E
and n(E/Cg(4)) C ni(M).

(d) Suppose p € o(M) and P is a noncyclic p-subgroup of M. Then
Ne(P)C M.

(e) Suppose z € M#*, n((z)) C 7o(M), and Cp(z) # 1. Then
M (Cala)) = {M).

Proof. By Lemma 12.1(d) and Theorem 12.5(b), M has abelian Sylow p-
subgroups for every prime p in 7(M) U 72(M) U 73(M). Thus (a) holds.
Moreover, E’ is abelian because E' is nilpotent by Lemma 12.1(a). Fur-
thermore, Theorems 12.5(b), 12.7(a), and Lemma 12.8(a) show that E3 is
abelian. Thus Theorem 12.5(e) yields (e) because we can assume that z
lies in Es. For (c), recall that A, E3 <« E and E = E;E2FE;3. Finally,
in the situation of (d), there exists A € £,2(P) because p is odd and, by
Theorem 10.1(c) and Proposition 12.4(a),

N&(P) = Npg(P)Ce(P) and Co(P) € Co(A) S M. D

Lemma 12.11. Suppose p € 12(M), A € £,2(E), and M* € 4 (Ng(A)).
Then

(a) m2(M) C o(M*) — B(M*),

(b) 7(E/CEg(A)) C m(M*)Uro(M*), and

(c) if ¢ € 7(E/CEg(A)) N w(CE(A)), then q € To(M*), some Sylow p-
subgroup of G is normal in M*, and M* contains an abelian Sylow
g-subgroup of G.

Proof. Since Ng(A) C M*, Corollary 12.6(b) shows that p ¢ mo(M*).
Thus p lies in o (M*). Take p* € T5(M) and A* € E,+2(E). If p* = p, choose
A* = A. By Corollary 12.6(a), both A and A* are normal in E. Conse-
quently A* C M* and 1 C A C Cpy+, (A*). Therefore, by Theorem 12.5(d),
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p* & 7o(M*). Thus p* lies in o(M*) but not in S(M*) because p* ¢ 3(G)
by Lemma 12.1(g). This proves (a).

Suppose that ¢ € 7(E/Cg(A)) and Q is a Sylow g-subgroup of E. Then
Q C M*and 1 C [A,Q] C A because A < E. By Theorem 10.2(c) and
Lemma 12.1(b), M* contains Hall o(M*)- and 73(M*)-subgroups of M*.
Thus, if (b) is false for ¢, then Q lies in M™*'. It follows that [A,Q] C M’
because A C M*% C M*'| and M*' /M is nilpotent by Lemma 10.8. But
this contradicts the fact that 1 C [A,Q] C A and p ¢ B(M™).

It remains to prove (c), so assume that Qo € &£,(Q) and centralizes
A. By Corollary 12.10(c), ¢ € m1(M). By Corollary 12.6(b), Cc(A) C E.
Thus @ and a Sylow g-subgroup of Cg(A) are cyclic, Qo = 21(Q), and the
Frattini argument yields

Ng(A4) = Ca(A)Nng(4)(Qo)

because Qo C Cz(A) < E. Thus ry(Cg(A)) = 1.

Take M** € . #(Ng(Qop)). Then Ng(A) C M™** because Cg(A) C M**
by Proposition 12.4(a). By (b) and Lemma 12.2(a), both applied to M**
in place of M*, g lies in o(M™**) U 7o(M**) and in 71 (M**) U 7o( M**).

Therefore ¢ € 7o(M**) and, since p € o(M**) N o(M**) by (a), it
follows from Corollary 12.6(f) that M** is conjugate to M* in G. Now
Theorem 10.1(b) shows that M* = M** because A C M* N M** and
Ca(A) C M*.

Since g € To(M*), it follows from Theorem 12.5(a) that M% is nilpotent.
Hence O,(M*) is a Sylow p-subgroup of G. Since Qo = 2,(Q) C Q € M*,
it follows that Qg does not have a complement in M*. Consequently, by
Theorem 12.7(d), G has abelian Sylow ¢-subgroups and one of them lies in
Ne(Qo) = Nu+(Qo)- O

Theorem 12.12. Suppose Cyy, (¢) = 1 for each (1 (M) U m5(M))-element
e € E¥. Then

(a) E contains an abelian normal subgroup Ag such that Cg(z) C Ay
for every z € M, #, and

(b) E contains a subgroup Eg of the same exponent as F such that
EoM, is a Frobenius group with Frobenius kernel M, .

Proof. If E = E,Ej3, then (a) and (b) hold with 49 = 1 and Ey = E.
Hence we can assume that 7o(M) is not empty.

If G has nonabelian Sylow p-subgroups, then Theorem 12.7 provides
subgroups Ag and Ejy as required. Therefore we can assume the hypotheses,
notation, and conclusions of the complementary result Lemma 12.8.

Obviously A9 = E, satisfies (a) and, to get (b), it suffices to find a
cyclic normal subgroup Z = Z, of E having the same exponent as S and
satisfying Cyr, (2) = 1 for every z € Z#, i.e., Cpr, (Q1(Z)) = 1, for then we
can let Eg be the product of F1 E3 and all these Z,, one for each p € m(M).
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Since p ¢ o(M), it follows that Ng(S) € M. Thus every Ng(S)-
invariant nonidentity cyclic subgroup Z of S satisfies Cp, (21(2)) = 1
because otherwise, by Corollary 12.6(c),

Ng($) € Na(fu(2)) € M.
Assume first that Cg(S) = E. Since S is abelian of rank two,
S=Y x Z,
for some cyclic subgroups Y and Z such that
Y| <12|.

If Y| < |Z], then Q,(Z) is characteristic in S, and the discussion above
shows that Z is as required. If |Y| = |Z|, then Y and Z can be chosen in
such a way that Q;(Z) is equal to any given 4; € £}(A) and, by Theo-
rem 12.5(f), at least one such A; satisfies Cps, (A1) = 1.

Therefore, for the remainder of the proof, we can assume that Cg(5) #
E. Take ¢ € 7(E/Cg(S)) and let Q be a Sylow g-subgroup of Ng(S) that
contains a Sylow ¢-subgroup @; of E. Since Cs(Q;) C S, it follows from
Proposition 1.6(e) that @; € Cg(A). Therefore, by Corollary 12.10(c),
g € 11 (M) and @, is cyclic. Since Cg(S) C E,

Qo = Cq(S) C @h.

Suppose Q/Qq acts regularly on S. Then Proposition 3.9 shows that
Q/Qq is cyclic. Hence 21(Q/Qo) C Q1/Qo and 2,(Q) € @;. Therefore
r4(Ng(S)) = r(Q) = 1 because Q, is cyclic. However, by Lemma 12.8(e),
Q1(Q1) centralizes A, and therefore Lemma. 12.11(c) yields ry(Ng(S)) = 2.
This contradiction shows that

1cCs(X)C S

for some subgroup X of Q.
Now Sp = Cs(X) and S; = [S, X] are cyclic because

S=SoXSl.

Moreover, by Lemma 12.8(f), both Sy and S; are normal in Ng(S) and
hence act regularly on M,. Now define Z = Sy if |So| > |S1} and Z = 53
if |So| < |S1|- Then Z is as required, and the proof of Theorem 12.12 is
complete. [

Now we leave 72(M) and turn to (M ). First we derive an important
uniqueness result from our basic Proposition 12.4.

Theorem 12.13. Every nonabelian p-subgroup of G (for every prime p)
lies in % .
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Proof. Suppose p € 7(G) and P is a nonabelian P-subgroup of G that lies
in two distinct maximal subgroups M and M* of G. Then

peo(M)No(M*)and Ng(P)C MNnM*

by Corollary 12.10(a) and (d).

We can assume that P is a Sylow p-subgroup of M N M*. Then P is
a Sylow p-subgroup of M and of M* and hence of G. By the Uniqueness
Theorem, r(P) < 2. Therefore, since P is not cyclic and p is odd, we know
that r(P) = 2 and, by Corollary 10.7(b), there exists a nonabelian subgroup
Q C P of order p® and exponent p.

Now Z = Z(Q) = Q' has order p, Q/Z actson K = Cpy,(Z) = Nm (Z),
and Proposition 1.16 yields

K={(Ck(A) | A€EXQ/2)).

Clearly, if A/Z € £Y(Q/Z), then A € £2(Q) and, furthermore, we have
Ck(A/Z) = Cx(A) C M* by Proposition 12.4(a). Thus K C M* and,
since

M=(MnM*)M,
by Corollary 10.9(b), it follows from Lemma 6.5(b) that Ny(Z) C M*. In
particular, .# (Ng(Z)) # {M}. Furthermore, M, # 1.

Thus, for any A € £2(Q), Proposition 12.4(b) provides a subgroup
Ag € EY(A) — {Z} such that .#(Ng(Ao)) = {M}. Similarly, there ex-
ists a subgroup Ao* € £1(A) — {Z} which satisfies # (Ng(Ao*)) = {M*}.
Now Ag* is not conjugate to Ag in M N M* and hence not in @, contrary
to the structure of Q. This contradiction completes the proof of Theo-
rem 12.13. O

Corollary 12.14. Suppose p € (M), X € £,'(M), and P is a Sylow
p-subgroup of M,. Assume p € S(M) or X C M,’'. Then

M (Co(X)) = A (P) = {M}.

Proof. We can assume that X C P and, by the Uniqueness Theorem, that
r(Cp(X)) < 2. By Corollary 5.4 and the definition of a narrow p-group
(Section 5), P is narrow if r(P) > 3. Thus p ¢ 3(G).

By Lemma 10.8(c), M, = PO, (M,). Therefore

1cXCPnM, =P,

Since r(Cp(X)) < 2, Theorem 5.3(d) shows r(P) < 2. Then, by Corol-
lary 10.7(b),

X CP CZzZ(P).
Hence P C Cp(X). Since P is not abelian, P € % by Theorem 12.13.
This concludes the proof of the corollary. O

The next result gives some control over the embedding of M, in G. We
shall see later (Theorem 13.9) that case (d) cannot occur.
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Proposition 12.15. Suppose q € (M), X is a nonidentity g-subgroup of
M, and M* € #(Ng(X))—{M}. Let S be a Sylow g-subgroup of M NAM*
that contains X. Then S, M, and M™* satisfy the following conditions.
(a) M* is not conjugate to M in G.
(b) Ng(S) < M.
(c) S is a Sylow g-subgroup of M*.
(d) If ¢ € o(M*), then
(1) M* = (MnM*)M},
(2) n(M*) C (M) U (M), and
(3) My = Mo #1.
(e) If g ¢ o(M*), then
(1) q € na(M*),
(2) #(M)No(M*) C B(M*), and
(3) M N M* is a complement to M*% in M™*.

Proof. Let T be a Sylow g-subgroup of M that contains S. If S is not
cyclic, then, by Corollary 12.10(d), Ng(S) € M. If S is cyclic, then
Ng(S) € Ne(X) C M*, S C Np(S) C MnM* and S = Nr(S). There-
fore S =T, and Ng(S) C M because p € o(M). This proves (b), and (a)
follows from Lemma 12.2(b). Clearly (b) implies (c). Now

Ng(S) C M™ if and only if g € o(M™).

By Lemma 12.2(a), ¢ € o(M*) U 12(M™).

Assume first that g € 72(M*). Take A € £%(S) and let E* be a com-
plement of M*% in M* that contains A. Then, by Theorem 12.5(e) and
Corollary 12.6(a), M%» N M =1 and A < E*. By Corollary 12.10(d),
E*CNg(A)C M. Tus MNM*=MnNMWE*=(MnNM%,)E* = E*.

Suppose that p is a prime in 7(M) N o(M*) not lying in S(M™*). Then

pEo(M*)—B(M*)and q € 7(M*) — o(M™).
Furthermore, since g ¢ 8(G) by Lemma 12.1(g), and ¢(M) is disjoint from
o{M*) by Corollary 12.6(f),
g€ o(M)—pB(M)and p € n(M)—o(M).

As p € o(M*) and Cg(A) C E* by Corollary 12.6(b), the group Cg(A)
is a p’-group. Therefore A does not centralize a Sylow p-subgroup of M?%
and no Sylow p-subgroup of M centralizes a Sylow g-subgroup of M,. By
Corollary 10.9(a), p > ¢ and q > p. This contradiction completes the proof
of (e).

It remains to discuss the case when q € o(M*). Here Ng(S) C M* and
S is a Sylow g-subgroup of G. By Corollary 10.9(b),

M=(MnM*)M, and a(M) = (M)
and similarly for M*. Thus M,, M%, # 1.
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Suppose that r € 7 (M*) and R is a Sylow r-subgroup of M N M*.
Then R is a Sylow r-subgroup of M* = (M N M*)M?*, and has a normal
complement in M* and in M N M*. Thus, if r ¢ a(M), the same holds for
M=MnMM,.

This proves that 7 (M*) C nn(M)U a(M). O

Corollary 12.16. Suppose Y is a nonidentity (M )-subgroup of G. Then
Y is conjugate to a subgroup of M, and for every p € n(E) N B(G)’ and
every H € .#(Y) not conjugate to M,

(a) rp(Nu(Y)) <1, and

(b) if p € (M), then p ¢ n(Nu(Y)').

Proof. Since Y is solvable, Y must have a nonidentity characteristic g¢-
subgroup X for some prime ¢q. Then ¢ € o(M) and M, contains a Sylow
g-subgroup of G. Replacing Y by some conjugate if necessary, we can
therefore assume that X C M,.

As part of the proof of (a), note that if M contains some A € £,2(H),
then p € 75(M), and M, N H = 1 by Theorem 12.5(e), contrary to the fact
that 1 C X C M, N H.

So, if Ng(X) C M, then everything is clear because

Ng(Y) € Ng(X) € M and hence (Ng(Y)) C M'.

Hence we can assume that Ng(X) € M. Take M* € #(Ng(X)). By
Proposition 12.15(a) and (e), we know that ¢ € o(M*) U 7(M*) and
M™ is not conjugate to M in G and
if ¢ € o(M™), then 7{M)No(M*) C B(M*).
We define K = M% or K = M?% according as ¢ € o(M™*) or ¢ € mo(M*).

By Lemma 10.12(a) and Corollary 12.6(f), K is a (M )'-group. By Propo-
sition 12.15,

(12.3)

(12.4) M* = (MnM"K.

It follows that Y is conjugate to a subgroup of M N M* in M*. Thus, since
M/M, is a o(M)'-group, Y is conjugate to a subgroup of M,.

To complete the proof, note first that K is a p’-group by (12.3) because
p ¢ B(G). Furthermore, we can assume that H = M™* because M* contains
Ng(Y) and is not conjugate to M in G. Then, by (12.4), H = (M NH)K,
so the very first argument gives (a). If p € 71(M), then p ¢ 7(M’) and
(M NHYK is a normal p’-subgroup of H = (M N H)K that contains H'.
Thus (b) follows. O

Lemma 12.17. We have Cy, (E) C M,', [M,,E] = M, and, for every
g € G — M, the group M, N M9 is a cyclic S(M ) -group intersecting M,’
trivially.
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Proof. The first assertion follows from Lemma 6.3(a) because the orders
of M, and E are relatively prime, M, C M’, and M = EM,.

Let g€ G- M, p e n(M,NM9), and X € £,*(M, N M9). By Theo-
rem 10.1(b), Ce(X) € M. Therefore, by Corollaries 12.10(d) and 12.14,
| X|=p,p ¢ B(M), and X € M,’. In particular, this proves that M, N M?
is abelian of rank at most one, which means that M, N M9 is cyclic. O

Lemma 12.18. Suppose p € 7(M), P € (M), ¢ € p/, and Q is
a nonidentity P-invariant g-subgroup of M such that Co(P) = 1 and
M (N(Q)) # {M}.

(a) If M, # 1 and ¢ ¢ (M), then Cpr, (P) # 1 and Cyy, (PQ) = 1.
(b) If Q is a Sylow g-subgroup of M, then (M) = B(M) and we have
the situation of (a).

Proof. (a) As #(Ng(Q)) # {M} by Lemma 12.2(a),

(12.5) r(Cu. (@) <1
Similarly, since .#(Ng(P)) # {M} by Lemma 12.2(a),
(12.6) H(C, (P)) <1

We have assumed that M, # 1 and ¢ ¢ a(M). Take r € (M) and
let R be a PQ-invariant Sylow r-subgroup of M,. Then @ does not cen-
tralize R because r(R) > 3. Thus Theorem 1.13 yields a characteristic
subgroup R; of R that has exponent r and is not centralized by Q. Let
Ry = Cg,(Q) and N = Ng,(Ry). Then QR; is not nilpotent and neither is
QN/Ry. If Cg,(P) = 1, then Cgg,(P) =1, and QR; would be nilpotent
by Theorem 3.7, a contradiction. Hence, by (12.6), since R; has exponent
T,

(12.7) Cr, (P) has order r and is equal to Q;(Cg(P)).

Suppose Cyr, (PQ) # 1. Then we can choose r and R in such a way that
Cr(PQ) # 1. By (12.7) and (12.5),

Cr,(P) = U(Cr(Q)) = Cr, (Q) =

Therefore Con/r,(P) = 1 and so QN/Ry is nilpotent by Theorem 3.7, a
contradiction.

(b) We have Q@ C M’ because Co(P) = 1. As M (Ng(Q)) # {M},
Q #4 M. Therefore M’ is not nilpotent and M, # 1 by Theorem 10.2(d).
Moreover, by the Uniqueness Theorem (Theorem 9.6), ¢ ¢ a(M). If there
exists a prime r € a(M) — B(M), then Corollary 10.9(a)(2) shows that
Cu(Q) € %, which is false. [

Lemma 12.19. The group E’ centralizes a Hall (M )-subgroup of M,.
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Proof. By Corollary 10.9(a), every Sylow subgroup of E' centralizes a Hall
B(M) -subgroup of M,, and this implies our assertion because the orders
of M, and E’ are relatively prime. O

13. Prime Action

In this section we consider how, in a maximal subgroup M, a complement
of M, acts upon M,. We establish conditions under which some subgroup
X of the complement acts in a prime manner on M,. Recall that this
means that

Cwm,(9) = C, (X) for all g € X#

or, equivalently,
Cu,(P) C Cu, (X) for all P € £Y(X),

Recall also that X acts regularly on M, if Cp,(g) = 1 for all g € X#.

Throughout this section we let M denote an arbitrary maximal subgroup
of G. As in Section 12 we also let E be a complement of M, in M, and,
for i = 1,2,3, let E; be Hall 7;(M)-subgroups of M lying in E such that
E)5 is a Hall 71(M) U 75(M)-subgroup of E. The basic properties of these
subgroups are described at the beginning of Section 12.

Lemma 13.1. Suppose that M* € .#, p € n(E) N n(M*), p ¢ m1(M*),
My, " M*, M N M*|#1, and M* is not conjugate to M in G. Then

(a) every p-subgroup of M N M* centralizes M, N M*,
(b) p ¢ m2(M"), and
(c) if p € 11 (M), then p € B(G).

Proof. Since [M, N M*, M n M*] C M, N M*', there exists a prime ¢ in
a(M)N=n(M*'). Let Y be a Sylow g-subgroup of M*'. Since M*' /M7 is
nilpotent by Lemma 10.8, we have MY < M*, and the Frattini argument
yields

M* = Np-(Y)M .

If p € To(M*), then rp(Ny-(Y)) = 2 and p ¢ B(G) by Lemma 12.1(g).
This contradicts Corollary 12.16(a) and hence proves (b).

Now p € o(M*) U r3(M*). Therefore M*' contains a Sylow p-subgroup
S of M*. In particular, p € 7(Npy-(Y)') if p ¢ B(M*). Therefore Corol-
lary 12.16(b) yields (c).

Now let P be any p-subgroup of M N M*. Since M*'/M?*, is nilpotent,
M*%S < M*. Therefore P C M*S. Moreover, M*%S is a o(M)'-group
because p € n(E) and o(M) is disjoint from a(M*) by Lemma 10.12(a).
Thus

M,NnM*,P]C MoSNM, =1,

and this completes the proof of the lemma. O
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Corollary 13.2. Suppose that p € 71(M) U 73(M), P is a nonidentity
p-subgroup of M, and M* € #(Ng(P)). Then
(a) every p-subgroup of M N M* centralizes M, N M*,
(b) every T1(M*)'-subgroup of E N M* centralizes M, N M*, and
(c) if [Mo N M*,M N M*] #1, then p € o(M*) and in case p € 71(M)
we even have p € B(M*).

Proof. Since p € o(M*)Ur(M*) by Lemma 12.2(a), M* is not conjugate
to M in G. Now our assertions follow directly from Lemma 13.1. O

Corollary 13.3.
(a) Every nontrivial cyclic Sylow subgroup of E acts in a prime manner
on M,.
(b) The group Ej3 acts in a prime manner on M,.

Proof. Take p € 71(M)U73(M) and let P be any nontrivial p-subgroup of
E. Take M* € .#(Ng(P)).

By Corollary 13.2(a), every p-subgroup of Ng(P) centralizes Cyy, (P),
and this proves (a).

For (b), we can assume that E3 # 1 and p € 73(M) and recall that
Ej5 lies in E and is a cyclic normal subgroup of E (Lemma 12.1). Thus
E C Ng(P)C M* and E3 C E/ C M* and E5 C E' C M*. Therefore
7(E3) C m(M*) C (ni(M*))'. Hence Corollary 13.2(b) shows that E3
centralizes C)y, (P), and this proves (b). O

The next result is the main step in our investigation of the action of E
on M,.

Theorem 13.4. Suppose that p € (M), P € &,1(E), r € n(E), and
R € £,1(Cg(P)). Then Cay, (P) € Car.(R).

Proof. Take ¢ € o(M) and let S be a PR-invariant Sylow g-subgroup of
Ch, (P). We have to show that R centralizes S, so assume that

Q =[S, R] # L.
Take M* € #(Ng(P)). Then
1c@Q=I[S,R|C[M,nM* R]
and it follows from Corollary 13.2 that
p € B(M*) and r € i (M™).

Now 1 C P C Cpy+(RQ), and S = Cs(R) x Q because S is abelian by
Theorem 12.13. Thus we can apply Lemma 12.18(a) with r, R, and M* in
place of p, P, and M, to get

#(Ne(Q)) = {M"}.
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We cannot have case (e) of Proposition 12.15 (with X = Q) because
1C P C MnM?%. Therefore q € o(M*) by Lemma 10.12(a), and Propo-
sition 12.15(d) shows that M, # 1 and

re W(E) ﬂﬁ(M*) - Tl(M).
Since our assumption that [S, R] # 1 yields ¢ ¢ a(M), we can conclude
that
Cm,.(P) € Cum (R)
and similarly, since r € 7 (M),

Cum,(R) C Cpm, (P).

It follows that Cpr (P) = Cp (R). This subgroup is normalized by S
because S C Cp(P), and therefore is centralized by @ = [S,R]. Thus
Cm.(R) = Cum, (RQ).

Now recall that #(Ng(Q)) # {M}. Then Lemma 12.18(a) shows that
Cum, (R) # Cp (RQ). This contradiction completes the proof of Theo-
rem 13.4. O

Theorem 13.5. Suppose that F; # 1. Then F; acts in a prime manner
on M,.

Proof. Since E; is cyclic, this theorem follows from Corollary 13.3 and
Theorem 13.4. O

Lemma 13.6. Suppose 1 C P C Ej, q € o(M), and X € £(Cum,(P)),
and let S be a Sylow g-subgroup of M,. Then

M (Ce(X)) = #(5) ={M}.
Proof. By Corollary 12.14, we can assume that
g ¢ A(M) and X Z M.
We can also assume that P = E; because Cy, (P) = Cup, (E1) by Theo-
rem 13.5.
Since ¢ ¢ 3(M), by Theorem 12.13, E’ centralizes some Sylow g-subgroup

of M,, and, by Proposition 1.5, we can assume that E normalizes S and
that

X CSCCu(E)
Moreover, since, by Lemma 12.17, Cp, (E) € M,’, we know X Z Cy, (E)
and hence E1E’ # E. Therefore E5 # 1 because E3 C E' and E = E1 EoF3.
Take p € (M) and Q € £,%(E). Then

(13.1) A< Eand Cp,(A)=1

by Corollary 12.6(a) and Theorem 12.5(d). Furthermore, Theorem 13.4
shows that Ag = Ca(E;) centralizes X. Thus A = Ag x [A, E1] centralizes
X, contrary to (13.1). O
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Lemma 13.7. Suppose that E; # 1 and that E, does not act regularly on
E3. Then E,E3 acts in a prime manner on M,.

Proof. By assumption, there exist primes p and r such that P € £,!(E;)
centralizes R € £,1(E3). By Theorem 13.4,

Cum, (P) C Cu, (R).
By Theorem 13.5 and Corollary 13.3(b),
(13.2) E; and E3 act in a prime manner on M,.

Moreover, E; and Ej3 have relatively prime orders. Thus, if Cp (P) =
Cu, (R), then E; E5 acts in a prime manner on M,, as desired.
Henceforth we assume that

(13.3) Cum, (P) C Cp, (R).

We will obtain a contradiction.
Since 1 C R C E5 and Cyy, (R) # 1, Corollary 12.6(d) shows that mo(M)
is empty. Thus

(13.4) E = E\E,E; = EyEs.

As FEj3 is a cyclic normal subgroup of E, we know that R < E. Take
M* € #(Ng(R)). Then

EC M* and 1C [Cum, (R), P] C [M, 0 M*, Ey).

By (13.2), Cg,(My N M*) = 1. Thus, by Corollary 13.2(b), n(E;) C
Tl(M*).

Now E; is contained in some Hall 7 (M™*)-subgroup F41* of M*. By
Corollary 13.2(c), R € M*,. Therefore

1C P C Cg,~(R).

Since E1* is prime on M?% by Theorem 13.5, E1* centralizes R. In par-
ticular, E; centralizes R. By (13.4), R C Z(E), but, by Lemma 12.1,
Cg,(E) = 1, a contradiction. This completes the proof of Lemma 13.7. O

Lemma 13.8. The following configuration is impossible:

(1) M* € # and M* is not conjugate to M in G,

(2) pe n(M)Nn7(M*) and P € £,H(M N M*),

(3) Q and Q* are P-invariant Sylow subgroups (possibly for different
primes) of M N M*,

(4) Co(P)=1and Cy-(P) =1,

(5) Ne(Q) € M* and Ng(Q*) € M.
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Proof. Assume this configuration and note the symmetry between M and
M*.

By (3), (5), and the Uniqueness Theorem, @ is a nonidentity Sylow
subgroup of M for a prime ¢ ¢ «(M). Since P C M N M* and Co(P) =1,

Q=[Q,PlC M nM*.

Thus QM, < M, and M = Ny (Q)M, because M'/M,, is nilpotent by
Theorem 10.2.

By Lemma 12.18, Cp,(P) # 1 and Cp5(P) # 1. Furthermore, by
Proposition 10.14(d), Ng(X) € M for every nonidentity (M )-subgroup
X of Cps(P), and similarly for M* and every conjugate M9 of M.

Let H be a Hall (3(M) U B(M*))-subgroup of Cg(P) and take any
s € m(F(H)) and t € w(F(Cp,(P))). By the symmetry between M and
M*, we can assume that s € (M) and then that H O Cp,(P). Let
X = Os(H) and Y = Oy(Cp,(P)). Then X C M? for some g € G. It
follows that M9 D Ng(X) D H 2 Y and M D Ng(Y) D Ca(Y). Since
Y C M n M9, Theorem 10.1(b) yields

M9 = M" for some H € Cg(Y) C M.

Thus M = M9 D H.

Take r € B(M*)Nn(H). Then r divides |Cp(P)|. By Lemma 10.12(a),
r ¢ o(M).

Since M = Np(Q)M, and r € 7(Cp(P)), some subgroup R C Ny (Q)
of order r is centralized by P. Then R C Ng(Q) C M* and consequently
Ng(R) € M* by Proposition 10.14(d). Now, since PR is conjugate in M
to an abelian subgroup of E, Theorem 13.4 yields

1C X C Cp,(P) C Cur, (R)C M™.

Then [X,Q] C [M, N M*,Q] C M% because Q C M*, M*/M%, is
nilpotent and M, N M* is a Q-invariant ¢'-subgroup of M*. On the
other hand, [X,Q] C M, and M, N M% = 1 by Lemma 10.12. Thus
[X,Q] =1and X C Ca, (PQ), contrary to the fact that Car, (PQ) =1 by
Lemma 12.18. [J

Theorem 13.9. Suppose M* € .# and M* is not conjugate to M in G.
Then o(M) is disjoint from o(M*).

Proof. Suppose ¢ € (M) N o(M*). Let S be an E-invariant Sylow g-
subgroup of M,. Replacing M* by some conjugate if necessary, we can
assume that S is also a Sylow ¢-subgroup of M*. Then

Ng(S) S MnM*.

By Corollary 12.6(f), 72(M) is empty. Therefore, by Lemma 12.1(c), 71 (M)
is not empty.
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Take p € 71(M) and P € &, (E;). By Lemma 13.6, Cs(P) = 1. There-
fore, by Lemma 13.1(a), p € m(M*). Now Lemma 13.8, applied with
Q = Q* = S, yields a contradiction. [

Theorem 13.10. Suppose some P € £,'(E}) does not centralize E5. Then
(a) FE; acts regularly on Ej,
(b) Ej5 acts regularly on M,, and
(c) Cm, (P) # 1.

Proof. Since Ej3 is a cyclic normal Hall subgroup of E, there exists ¢ €
73(M) such that P acts regularly on the Sylow g-subgroup @ of E3. Thus

(13.5) Q=Co(P)Q,PI=[Q,PICE".

Take M* € #(Ng(Q)). By Lemma 12.2(b), M* is not conjugate to M
in G. In particular, M* # M. Consequently, by Lemma 12.18,

Ch.(P) # 1 and Ci, (PQ) = 1.

Since M, C M,, this proves (c) and shows that FE;FE3 is not prime on
M,. Therefore (a) follows from Lemma 13.7.

Now assume that (b) is false. Then Cps, (E3) # 1 because F3 is prime
on M, by Corollary 13.3(b). Take ¢* € n(Cn, (F3)) and let @* be an
E-invariant Sylow g*-subgroup of C, (E3) = Cp, (Q). Since Q centralizes
M, N M* by Corollary 13.2(a), Q* is a Sylow ¢*-subgroup of M, N M* and
hence of M N M*.

By (13.5) and Lemma 12.19, ¢* € (M) or Q* is a Sylow g*-subgroup
of M,. Hence, by Proposition 10.14(d) and the definition of o(M),

Na(Q") € M.

If ¢* € B(M), then
Cq~(P) C Cpm, (PQ) =1,
and, on the other hand, if ¢* ¢ B(M), then Co+«(P) = 1 by Lemma 13.6

because #(Q*) # {M}. In particular, [M, N M*, P] # 1. Therefore, by
Lemma 13.1(a), p € 1 (M*). Now Lemma 13.8 yields a contradiction. O

Corollary 13.11. Suppose E3 # 1 and E3 does not act regularly on M,.
Then
(a') El 75 ]-a
(b) E= E1E31
(c¢) E acts in a prime manner on M, and
(d) every X € £Y(F) is normal in E.

Proof. By Corollary 12.6(d), 7o(M) is empty. By Lemma 12.1, this implies
(b) and (a). Moreover Theorem 13.10(b) shows that every P € &,'(E;)
centralizes E3. By (b), this implies (d) because F3 < E and both E;
and Ej are cyclic. Furthermore, E; does not act regularly on E3. Hence
Lemma 13.7 yields (c). O
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Finally we turn to the primes in m(M).

Lemma 13.12. Suppose p € 71(M), P € £,(E), g € 2(M), A € £(E),
and C4(P) # 1. Then Cy (P) =1.

Proof. Suppose that Cpy, (P) # 1. Then A < E and P € Cg(A) by Corol-
lary 12.6(a) and (e). Therefore Y = C4(P) has order q. By Theorem 13.4,

1CCpr, (P)CCr, (V).
Therefore, by Corollary 12.6(c),
M(Cs(Y)) ={M}.
For M* € .#(Ng(A)) we have ¢ € o(M*) and p € T (M*) U mo(M*) by
Lemma 12.11.

Suppose that p € m2(M*). Then, by Corollary 12.6(c) applied to M*,
M (Cq(P)) = {M*} because 1 C C4(P) C Cpr+ (P). Hence

1C Ce(P)NM, C M* 0 M,,

contrary to Theorem 12.5(e). Thus p € 7 (M*).
Since Y € £, (Cpys, (P)), it follows from Lemma 13.6 applied to M* that
M (Ca(Y)) = {M*}, a contradiction. O

Lemma 13.13. Suppose p € 11(M)U3(M), P € £,}(E), and Cp, (P) #
1. Then for every M* € #(Ng(P)) we have p € o(M*) .

Proof. By Lemma 12.2, P € o(M*) U 7o(M*). Suppose p € To(M*). We
will obtain a contradiction.

Choose q € m(Cp, (P)) and Q € &'(Cp, (P)). By Theorem 13.9, we
know that ¢ ¢ o(M*). Let E* be a complement of M* in M* that contains
PQ. Take A € £,2(E*). By Corollary 12.6(a), A < E* and P C A.

We can assume that P lies in E; or in E3. If P C Ejs, then parts (a)
and (c) of Corollary 13.11 show that E; # 1 and Cp, (P) = Cu, (E4)
because 1 C Q@ C Cup, (P). Therefore, in any case, we have Cg(Q) C M
by Lemma 13.6, and this implies that A € Cg«(Q) because r,(M) = 1.
Therefore, by Corollary 12.10(c), ¢ € 71(M*). Furthermore,

1C P=Ca(Q).
Consequently, by Lemma 13.12 applied to M*,
Cm3(Q) =1

However P = C4(Q), and Corollary 12.9(c) shows that if Cpy+ (Q) = 1,
then Ng(P) € M*, a contradiction. [






CHAPTER IV

The Family of All Maximal Subgroups of G

In the previous chapter we considered mainly a single maximal subgroup
of G in isolation. In this chapter we exploit also the interrelationships
among the maximal subgroups of G. Our first main application of these
interrelationships shows that a particular family of maximal subgroups of
G is either empty or consists of precisely two conjugacy classes of maximal
subgroups of G (Theorem 14.7). Eventually, we obtain our main results in
Section 16.

14. Maximal Subgroups of Type &% and Counting Arguments

As a consequence of the preceding section, o(M) N o(H) is empty and
M, N H, is trivial for nonconjugate subgroups M, H € .# (Theorem 13.9).
Clearly every p € n(G) appears in some set o(M) because some M € 4
contains the normalizer of a Sylow p-subgroup of G. Therefore the sets
o (M), where M ranges over a set of representatives of the conjugacy classes
of A under G, form a partition of 7(G).

Let 04,...,05 denote the sets o(M) for M € .#. Then every element
g € G can be written uniquely as a product

g9=9gi---gs

of pairwise commuting o;-elements g;. Disregarding the ordering and fac-
tors g; = 1, we call this the o-decomposition of g, and the number £,(g)
of nonidentity factors g; may be called the o-length of g. Clearly each
subgroup containing g contains all the g; because g; € {g) for each 1.

For every subset X of G, define

M (X)={Me#|XCM}.

For g € G, let .#,(g9) be #,({g}). By Corollary 12.16, every o(M)-
element, where M € .#, is conjugate to an element of M,. Thus ¢,(g) <1
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means that .#,(g) is not empty. In Theorem 14.4 we will show that Cg(g)
acts transitively on .#,(g) if £,(g) = 1.

Now we define a further subset of 7(M) for M € # and several families
of maximal subgroups of G:

k(M) = {pen(M)Urs(M)|Cum,(P) #1 for some P € ,}(M) },
Mg ={M € A | k(M) is empty },

Me» ={M e A | k(M) is not empty },

Mp, ={M € Ma | (M) =r(M)-0c(M)},

Mo, ={M € Mp | c(M)#n(M)—0c(M)}.

Note that for p € x(M) we know 1,(M) = 1, and every P € £, (M) satisfies
Chr,(P) # 1 because all these P are conjugate in M.

Though not explicitly, the family .# & has already been the subject of
Section 13 (42 stands for proper prime action). It will be investigated
more closely in this section. Maximal subgroups in the complementary
family # & will turn out to be of Frobenius type in the sense of Section 16.
Actually, this will follow immediately from Theorem 12.12 and the last
assertion of the following lemma.

Lemma 14.1. Suppose that M € .# — .# »,. Take any prime p € 7(M) —
(o(M) U &(M)), let S be a Sylow p-subgroup of M, and let A = Q;(S5).
Then |A| < p?, Cup,(A) = 1, and M, is nilpotent.

Proof. If p € 7o(M), then the assertions of the lemma follow directly from
Theorem 12.5(a), (b), and (d).

If pe m(M)N73(M), then |A| = p and Cpr, (A) = 1 because p ¢ x(M).
Now Theorem 3.7 shows that M, is nilpotent. O

Recall that a group in which all of the Sylow subgroups are cyclic is
called a Z-group, and that a nonempty subset X of G is a T'I-subset of G
if XNX9Cl1foral x € G— N(X). In particular, a nonidentity proper
subgroup H of G is a TI-subgroup of Gif HNHY9 = 1forallg € G— N(H).

The following proposition contains nearly everything that we have proved
in Section 13.

Proposition 14.2. Suppose M € .#». Let K be a Hall k(M )-subgroup
of M and define K* = Cjy, (K). Then the following conditions are satisfied.

(a) The group K acts in a prime manner on M, and acts regularly on
some abelian Hall (k(M)U o(M))-subgroup U of M. (Thus UM,
is a normal complement of K in M).
(b) For every X € £1(K),
(1) Npr(X) = Nyr(K) = K x K*, and
(2) X € M*% for each M* € A (Ng(X)).
() K* #1 and every X € £1(K*) satisfies #(Ce(X)) = {M}.
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(d) Every g € G—M satisfies K*NM9 = 1 and every g € M —(K x K*)
satisfies K N K9 = 1.

(e) For every prime p € m(K*) and every Sylow p-subgroup S of M,,
AM(S)={M}and S Z K*.

(f) Every o(M)-subgroup Y of G satisfying Y’ N K* # 1 lies in M,.

(g) U M € Mp,,ie.,U+#1, then 6(M) = 3(M), K has prime order,
and M, is a nilpotent TI-subgroup of G.

Proof. Take E, E,, E;, and Ej3, as in Section 12, such that £ D K. Thus
E is a complement of M, in M and E; is a Hall 7;(M )-subgroup of E (and
of M) for i = 1,2,3. By Lemma 12.1,

EsEs <« E = E1EsFE3 and Ey is CyCliC.

We first prove parts (a) and (b1).

If k(M) N 13(M) is not empty, which means that E3 # 1 and E3 does
not act regularly on M,, then Corollary 13.11 yields F;, # 1, £ = E Fj,
E is prime on M,, and every X € £'(FE) is normal in E. Then K = E,
and (a) and (bl) are clear (let U = 1).

If k(M) C 71(M), then k(M) = 71(M) because F; is prime on M, by
Theorem 13.5, and thus we may (and shall) assume that K = E;. Then
K = E; acts regularly on U = E3E3 by Lemma 13.12 and Lemma 13.7.
Now U = [U,K] = E’, and E’ is abelian by Corollary 12.10(b). Again (a)
and (b1) hold.

Now, in any case, since K acts in a prime manner, but not regularly, on
M,, K* is not trivial. Hence (b2) and (c) follow from Lemma 13.13 and
Lemma 13.6.

Suppose g € G and X € £Y(K*NM?9). By (c), Ce(X) C M. Therefore,
by Theorem 10.1(a), g € M. This proves the first assertion of (d), and the
second assertion follows easily from (bl) since K is a Z-group.

For X € £YK), Ng(X) € M by (b2). In particular, .#(K*) # {M},
and then (e) follows directly from Lemma 13.6.

For Y as in (f), Corollary 12.16 yields an element g € G such that
Y C M9. By (d), g € M. Therefore Y C M,.

Finally assume U # 1 with U as above. Then F is a Frobenius group with
Frobenius kernel U. By Lemma 14.1, Cp, (U) = 1 and M, is nilpotent.
Since K is prime on My, it follows from Theorem 3.10(a) that K has prime
order. Clearly U = [U, K| = E’. Therefore, by Lemma 12.19, U centralizes
a Hall S(M)-subgroup of M,. Consequently, since S(M) C o(M) and
Cum, (U) = 1, we have (M) = o(M). By Lemma 12.17, M, N M,9 is a
B(M)'-group for every g € G—M. Thus M,NM,9 = 1for every g € G—M.
This proves (g). O
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Corollary 14.3. Suppose M € #, x € M,#, and 2’ is a nonidentity
o(M) -element of Cps(x). Then

(1) =({z')) € #(M) and Ca(z) € M, or

(2) 7({z')) C r2(M), £o(2') =1, and A (Ce(a')) = {M}.

Proof. Suppose that 7({z’)) contains a prime number p € 7o(M)’. Then
p € (M)Urs(M) and X € &,1({z')) satisfies

Cm,(X) 2Cp, (') 2 (2) D 1.

Thus p € k(M) and X lies in some Hall k(M )-subgroup K of M. Therefore,
by Lemma 14.1(b),

Cu(z') C Cu(X) C K x Cu, (K).

Consequently 2’ € K, x € Cy, (K), and then Proposition 14.2(c) yields
Cg(z) S M.

Assume next that z' is a 72(M)-element. Since Cyy, (') # 1, Corol-
lary 12.10(e) shows that #(Cg(z')) = {M} and, by Lemma 12.11(a),
£,(x') = 1 because 12(M) C o(M*) for some M* € #. O

Theorem 14.4. Suppose z € G¥* and #,(z) is not empty. Then Cg(z)
has a normal Hall subgroup R(z) that acts sharply transitively on .#,(z).
Furthermore, if |#,(x)| > 1, then Cg(z) lies in a unique subgroup

N = N(z) € # and, for every M € #,(z),

(a) R(z) =Cp,(z) D1,

(b) Cg(z) = Cunn(z)R(z),

(c) m((z)) C ma(N) C o(M),

(d) m(M)na(N) S B(N),

() M NN is a complement of N, in N, and

(f) (D. Sibley) N € #£r U M p,.

Proof. If |.#,(x)| = 1, we can let R(x) = 1. So henceforth we assume that
| A5 ()] 2 2.

Take M € #,(2), g € n({z)), X € £, ((z)), and N € #(Ng(X)). Let
R(z) = Cp,(z), as in (a). The

Cg(z) € Ng((z)) S Ng(X)C N

and
My (x) C M (X).

Thus R(z) is a normal Hall subgroup of Cg(x).

By Theorem 13.9 and Theorem 10.1(b), Cg(X) acts transitively on
M(X). In particular, Cqg(X)Z M and N # M.

Thus we can apply Proposition 12.15 because o(M) is disjoint from
o(M*) by Theorem 13.9. It follows that ¢ € 72(N) and that (d) and (e)
of the present proposition hold. Since 7o(N) is not empty and, by the
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definition of k(N), k(N) C 7(N) N 13(N), we know N ¢ #xp,. Thus (f)
holds.
If L € #,(z), then, by the previous paragraph, L = M* for some
u € Cq(X) = Cn(X), and we can choose u in N, because N = (MNN)N,.
Then
M'u,’ — M:c'lua: = M¥ = [® = [ = M*™.

However, if M v = MY for any element v’ € N,, then it follows that
wu~l € Ng(M)NN, = MNN, = 1. Thusu® = uand u € Cp, (z) = R(z).
Moreover, R(x) = Cn,(x) acts sharply transitively on .#,(x). Therefore
Ca(z) = (Ca(z) N Ng(M))R(x) = Cy(x)R(x) and R(z) = Cn,(z) D 1.
This proves (b) because Cg(x) C N.

Since k(N) € m(N)U 73(N) and ¢ € n({(z)) N 7=2(N),  is not a &k(N)-
element. By Corollary 14.3, 7((z)) C 72(N), and #(Cg(x)) = {N} be-
cause Cn, () # 1.

For each p € 75(IV), (e) and Corollary 12.6(a) yield some A € £,%(N)
that is normal in M N N. It follows that Ny (A) D (z) D 1. Since
rp(M)>2,p€o(M)NT(M). If p € 19(M), then Ny, (A) = Cp,(A) =1
by Corollary 12.6(b). Thus p € o(M), and this yields (c¢) and completes
the proof of the theorem. [

In the following we use the groups R(z) defined in Theorem 14.4 for
every x € G of o-length 1.
Furthermore, for each M € .# we let

M:{xx'|x€Ma# and ' € R(z) }.

Note that g = zz’ is the o-decomposition of such a product g € M. In
particular, £,(g) < 2 for each g € M.
Recall, as in Section 1, for any subset T' of G we define

€c(T)={t?|tecTandge G}.

Lemma 14.5.

(a) If z and y are distinct elements of G of o-length one, then zR(x)
is disjoint from yR(y).

(b) If My, My € # and M- is not conjugate to M; in G, then MQ is
disjoint from M. .

(c¢) If M € A, then |€c(M)| = (|Ms| - 1)|G: M]|.

Proof. (a) Suppose g = zz' € yR(y) with ' € R(z) and ¢ # y. Then
2’ = y and « € R(y) because y is a factor of the o-decomposition of g. Take
N € #(Cq(z)) and M € #(Cg(y)). By Theorem 14.4, z € R(y) C M,,
y € R(z) € N,, and y € N, N M = 1, a contradiction.

(b) By Theorem 13.9, M;, N M2, = 1. Thus, by (a), Ml ﬂﬁg is empty.
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(c) With x ranging over G5 (M,#), we have

€a(M) = | ) zR(z)
EE‘KG(Ma#)

and therefore, by (a),

[a(M)| = > |R().

z€€G (M. *)

Next we count the number n of all pairs (x, M9) with g € G and z € M, 9.
By Theorem 14.4, each x € €g(M,#) belongs to exactly |R(x)| subgroups

M9, Thus
n= Z |R(z)|-
ﬁech (Ma#)
On the other hand

n = |M*|[{M?|g€G}|=|M#|G: Na(M)| = MH||G: M|. O

Lemma 14.6. Each element g € G¥ satisfies exactly one of the following
two conditions:

(1) g = za’ with £,(z) =1 and 2’ € R(z),
(2) ¢ = yy' with £,(y) = 1 and y' a nonidentity x(M)-element of
C(y) for some M € 4, (y).

Proof. Suppose (1) and (2) hold. Since 3’ is a o(M)'-element of Ci(y), y
is a factor of the o-decomposition of g. Thus ¥y = x or y = z’. In particular,
z’ # 1. By Corollary 14.3, M € .#(Cg(y)), and, by Theorem 14.4(c), = is
a 7To(N)-element for the unique N € #(Cg(x)). Thus y # x. Therefore
y=x'and ¥y’ = x. Now 2’ € R(z) = Cn,(x) C N, and y = 2’ € M, N N,.
Then M and N are conjugate in G by Theorem 13.9, contrary to the fact
that y' = z is a k(M )-element and a 75(N)-element.

Assume next that ¢ satisfies neither of our two conditions. It follows
that £,(g) > 1 because (1) is false. Let z be a factor (of o-length 1) of the
o-decomposition of g. Take M € #,(x) and N € .#(Cq(x)), and write
g=zx.

If g € M, then x' is a o(M ) -element of M, but not a k(M )-element be-
cause (2) is false. Then Corollary 14.3 yields 4,(z') = 1 and #(Cg(z')) =
{M}. Therefore x € Ciy, (2') = R(z'), contrary to our assumption that (1)
is false.

This proves that g ¢ M, hence Cg(z) € M and, by the same argument,
no factor of the o-decomposition of g lies in N,. Therefore g is a o(N)'-
element of N. Consequently, because M N N is a complement of N, in N
by Theorem 14.4(e), g € (M N N)* for some a € N. Then g € M?* and
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x € M,*, and we might have chosen M ¢ instead of M, contrary to the fact
that ¢ ¢ M. This completes the proof of the lemma. O

In the remainder of this section we will extend our results on individual
members of .# =, but we also gain very explicit information on the family
M » as a whole and the role it plays for the global structure of G.

Theorem 14.7. Suppose M € #» and K is a Hall k(M )-subgroup of M.
Let K* = Cp, (K), k = |K|, k* = |[K*|, Z = KxK*,and Z = Z—(KUK™).
Then, for some other M* € .# % not conjugate to M,
(a) A(Cq(X)) = {M*} for every X € £1(K),
(b) K* is a Hall k(M*)-subgroup of M* and a Hall ¢(M )-subgroup of
M*,
(¢} K =Cp+(K*) and (M) = 11(M),
(d) Z is cyclic and for every z € K# andy € K**, MNM* = Z =
Cum(z) = Cum-(y) = Ca(zy), ~
(e) Z is a TI-subset of G with Ng(Z) = Z, Z N M9 empty for all
g€ G— M, and

@)= (1-§ - + 5 ) 161> 3161

(f) M or M* lies in # », and, accordingly, K or K* has prime order,
(g) every H € .# % is conjugate to M or M* in G, and
(h) M’ is a complement of K in M.

Proof. Let My,..., M, be the distinct maximal subgroups of G containing
Ng(X) for some X € £Y(K), say,

M; € #(Ng(X;)) for each X; € £X(K).

Now we will examine M; for some arbitrary choice of i. By Proposi-
tion 14.2(b),

Z=K><K*C_IM¢andX,~§Mig.

In particular, M; is not conjugate to M in G because 7{X;) C k(M) C
o(M). Therefore, by Theorem 13.9, ¢(M) is disjoint from o¢(M;). In
particular, K* is a o(M;)-subgroup of M;.

Take X* € £1(K*). By Proposition 14.2(c),

M(Ca(X™)) = {M} # {M}.

Thus, by Corollary 14.3, n(X*)} C &(M;) because Ciy,,(X*) 2 X; D 1.
Therefore, because X* is an arbitrary element of £}(K*),

n(K*) C x(M;).
Moreover, M D Ng(X™*).
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Let K; be a Hall k(M;)-subgroup of M; that contains X* and define
K} = Cpu,,(K;). By Proposition 14.2(b),
Ny, (X*)=K; x K},

and it follows that X; C K} and K C K; x K}.

Since we could have chosen K; subject to K* C K, we know K* lies in
Ny, (X*). Thus K x K* C K; x K}. Similarly, with (M;, K;, X*, M, K, X;)
in place of (M, K, X;, M;, K;, X*), we have K; x K} C K x K* because
M D Ng(X*) above. Thus

Z=KxK*=K;xK}.

Now let My = M, Ky = K, and K§ = K*. By Proposition 14.2(c),
applied to each M; (i =0,1,...,n),

K!NK;=1fori#j.
Since K} is a Hall subgroup of Z and each X € £}(Z) lies in some K,
Z=Kyx K x...xK,
and

K;=][K; (i=0,1,...,n).
J#i
Furthermore, K} is a Hall o(M;)-subgroup of Z, the subgroups M; are
pairwise not conjugate in G, and, for every element z € Z, the factorization

z = [I;_o x: with x; € K} is the o-decomposition of z.
Define

n
T=2-|JK;
=0
and note that ¢ € Z lies in T if and only if z = yy’ with y € K;‘# and
y € Kl# for some index i. Therefore, by Lemma 14.6,

TNHis empty for each H € .#.

In particular, €¢(T) is disjoint from each of the sets %G(J\Z).

Suppose t € T, g € G, and t9 € Z. With y and 3’ as above, y9 € K}
and y'? € K;# because Z = K; x K} and the orders of K; and K; are
relatively prime. Therefore, by Proposition 14.2(d), g € K; x K}.

This proves that T is a TI-subset of G with Ng(T') = Z. Consequently,
with k; = |K;|, k} = |K}|, and 2z = |Z| = k:k],

|66(T)| = IT||G : No(T)| = |T||G : Z|

= (z+n—zk;> IG:Z| = (1+§—Z%) IGI.

=0 =0
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Suppose all the M; lie in .# %, , which means that K; always complements
M;, in M;. Then, by Lemma 14.5,

|6 (M;)| = (M;o] — 1)IG : M|

= (&) ez (5-5) 100

and the sets %G(AZ) are pairwise disjoint. Now

G| 2 [€a(T)| + D 16c(M)|

=0
1+ 2oy Y- 2o+ (X 1) ol
z—Ok i=0ki
=O+&:ﬁﬁjgkﬂzmh
2z

and this contradiction proves that some M; is of type J7,.

For M; of type %, by Proposition 14.2(g), K; = [[,; K; has prime
order and M, is nilpotent. Therefore K; = K7 for j # i, and n = 1.
Furthermore, Z = K; x K} = K;‘ x Kj; is cyclic because K} C M;, and
r(K;) =r(K;) = R

For our TI-subset T we now have T = Z — (K UK*) = Z and

(0l = (1- - £+ 1) 16l
(L Eed)a- (-
> (1- %) (1— —> G| = 5|G| > §|G|.

Furthermore, Proposition 14.2(d) implies that Z 0 M9 is empty for all
geG— M.

Suppose H € #». Let L be a Hall x(H)-subgroup of H, L* = Cy_(L),
and S =L x L* — (LU L*). Then we also have

1
[5(5)| > 316,

and it follows that €¢(T) N €¢(S) is not empty.

We want to prove that H is conjugate to My or M; in G, and for this
we can assume that TN .S is not empty. Then L* N K} # 1 for some ¢, and,
by Proposition 14.2(c), Y € £}(L* N K}) satisfies

{H} = #(Ce(Y)) = {M},

as desired.



114 1V. The Family of Al Maximal Subgroups of G

Since M, C M’, the normal complement UM, of K in M, obtained in
Proposition 14.2(a), is contained in M’, and, since K is cyclic, UM, must
be equal to M'. Then, by definition of 7 (M), K is a Hall 71(M)-subgroup
of M. Thus k(M) = 11 (M).

Next let Y be a Hall o(M)-subgroup of M; that contains K*. By
Proposition 14.2(f), Y € M,. Then [Y,X;] C M, N My, = 1. There-
fore Y C Cp, (X1) = K*. Tt follows that K* = M, " M; <« M N M N M,
and, by Proposition 14.2(b1) applied to M; and K* in place of M and K,
Ny (K*) = K* x K. Thus M nM; = K* x K = Z, and this completes
the proof of the theorem. O

Corollary 14.8. The maximal subgroups in .# 4, , if any, are all conjugate
in G and, if #Z% is not empty, then .#» contains exactly two classes of
maximal subgroups conjugate in G.

Proof. This follows directly from Theorem 14.7(f) and (g). O

Corollary 14.9. Choose My,..., M, € .# in such a way that each sub-
group H € .# is conjugate in G to exactly one M;.

(a) If A5 is empty, then G# is the disjoint union of the sets c5’5;(]%),
t=1,...,n.
(b) If Az is not empty, then, with Z as in Theorem 14.7(e), G¥ is

—~ —

the disjoint union of ¥(Z) and the sets €(M;), i =1,...,n.
Proof. By Lemma 14.5(b), the sets €(M;) are pairwise disjoint. By defi-
nition of M for M € .# , their union is the set G of all elements of zz’ with
¢;(x) =1 and =’ € R().

If #% is empty, which means that «(M) is empty for each M € #,
then case (2) of Lemma 14.6 does not occur, and it follows that G* = G.
This proves (a).

For the proof of (b), assume the notation of Theorem 14.7. Clearly, every
g € Z satisfies condition (2) of Lemma 14.6, and it remains to show that
every element g = yy', with y € H,# for some H € .# and 3’ a nonidentity
(M )-element of C;(y), is conjugate to an element of Z. Since x(H) is not
empty, H € .#» and H is conjugate to M or M* by Theorem 14.7(g). So
we may assume that H = M. Then /' is conjugate in M to an element of K.
We may assume y’ € K, and then y € Cjpy, (y') = K* by Theorem 14.7(d).
Thus g € Z. O

Corollary 14.10. For every element g € G we have {,(g) < 2.

Proof. If g € M with M € .#, then £,(g) < 2 by definition of M. If
t € Z = K x K* in the situation of Theorem 14.7, then £,(¢) = 2 because
K* C M, and K C M*. Now apply Corollary 14.9. O



14. Maximal Subgroups of Type &2 and Counting Arguments 115

The next lemma might be of independent interest, but we need it here
only as a convenient tool for the investigation of certain maximal subgroups
related to those of type £,.

Lemma 14.11. Suppose that M € #g, E is a complement of M, in M,
g € n(E), Q € E(E), and Q € F(E). Then there exists M* € .# such
that either

(1) q € 2(M*) and #(C(Q)) = {M*}, or

(2) g € K(M*) and M* € #»,.
Actually, we have the situation of both Theorem 12.7 and Corollary 12.9,
with Ag = [E, @], E = Cp(Q)Ao, and M* € #(Ng(A)).

Proof. By Corollary 12.6(a), every A € £2(E) is normal in E and thus
contained in F(F). Hence q ¢ m2(M). By Lemma 12.1(b) and (d), F has a
cyclic normal Hall 75(M)-subgroup. Hence g ¢ m3(M).

This shows that ¢ € 7,(M). In particular, E has cyclic Sylow g-subgroups.
Consequently, since Q  F(E), F(E) is a ¢’-group. By Corollary 12.10(b),
E’ is abelian.

It follows that K = [E, Q] is an abelian ¢'-group. Therefore, because
KQ <« E, the Frattini argument yields E = KNg(Q) = KCg(Q). Hence
K = [E,Q] = K, Q).

Now it follows from Proposition 10.11(d) that [K,Q] = K is a cyclic
normal subgroup of M. By Lemma 10.5, this implies that #(K) C m2(M).
Take p € 75(M) and A € £,2(F). By Lemma 12.8(e), because @ Z Z(E),
we have the situation of Theorem 12.7 with Ag = C4(M,) = Cg(M,) equal
to K.

Take M* € #(Ng(A)). By Lemma 12.11, p € o(M*) — B(M*) and ¢
lies in 71 (M™) or 72(M*) because Q@ € Cr(A4).

If ¢ € 1i(M*), then ¢ € k(M*) because Cp (Q) 2 Ca(Q) D 1,
and if ¢ € 7(M*), then, for the same reason, Corollary 12.10(e) yields
#(Ce(Q)) = (M},

In case ¢ € k(M*), M* € Mg. Then we have M* € .#», by Proposi-
tion 14.2(g) because o(M*) # S(M*). O

Corollary 14.12. Suppose M € #gp,. Let K, M*, and K* be as in
Theorem 14.7 and U as in Proposition 14.2(a). Suppose r € 7(U) and R is
the Sylow r-subgroup of the abelian group U. Take H € .#(Ng(R)).

Then H € Mg, U C H,, MNH = UK, Ny(U) ¢ M, K C F(HNM*),
and H N M* is a complement of H, in H.

Proof. If H is conjugate to M in G, then R is a Sylow r-subgroup of H,
and it follows that r € o(H) because Ng(R) C H. But r # (M), and
hence H is not conjugate to M in G.

By Proposition 14.2(d), applied to M* and K in place of M and K*, M*
is the only conjugate of M* in G that contains K. For some application
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below, note that this forces every subgroup of G in which K is subnormal
to lie in M™*.

Now if H is conjugate to M*, then U C H = M™*, contrary to the fact
that M N M* = K x K* by Theorem 14.7(d). Since every element of .# 5
is conjugate to M or M* by Theorem 14.7(g), this proves that H € #x.

By Theorem 13.9, H, N M% = 1. Hence K lies in some complement D
of H, in H. By Proposition 14.2(g), K has prime order, say q.

Suppose K € F(D). Then Lemma 14.11 yields some H* € . such that
either ¢ € 7o(H*) and #(C(K)) = {H*} or ¢ € k(H*) and H* € M »,.
Then H* is not conjugate to M* in G because ¢ € o(M™*). Therefore
H* ¢ .# 5, by Theorem 14.7(g) since M € #x,. On the other hand, M*
lies in #(Cg(K)). This contradiction shows that K C F(D).

Now K is subnormal in D. Therefore D C M*. Recall that U sat-
isfies Proposition 14.2(a), so that U = [U,K|Cy(K) = [U,K]. Since
K C O,(D)H, < H, it follows that

U =[U, K| C O D)H,nU C H,.

By Lemma 14.1, Ny (U) = UK and H, C F(H). Consequently, because
UC H,, weobtain M NH =UK and Ng(U) € M.

Finally suppose D # HN M*. Then H, " M* # 1 and [H, " M*, K] C
H, N M% =1 because K C M*%. Thus Cy,(K) # 1, and this implies that
q € 75(H) because x(H) is empty. Then, by Theorem 12.5(e), H,NM* =1
because D C M* and £,%(D) is not empty. This contradiction completes
the proof of the corollary. [J

As a last application of Theorem 14.7 in this section, we obtain some
more information on the situation of Theorem 14.4.

Lemma 14.13. Assume the situation of Theorem 14.4 in the case for
which |.#,(z)| > 1.
(a) If o(N) is not disjoint from w(M), then M € Az and (M) is
empty, i.e., M is a Frobenius group with kernel M,.
(b) Ify € M,#, Cq(y) £ M, g € G, and N(y)? = N, then M contains
an element m such that N(y)™ = N.
Proof. (a) Take g € 7(M)Na(N), Q € £,1(M), and M* € .#(Ng(Q)).
Since o (M) is disjoint from a(N) by Theorem 13.9, @ lies in some comple-
ment E of M, in M. By Theorem 14.4(d),
g€ n(M)na(N)C B(N) C B(G).

For some g € G, Q € N9. By Corollary 12.14, M* = N9 because
¢ € B(N9). By Theorem 14.4(c) and Lemma 12.1(g),

7((x)) € 2(N) € o(M) - B(M).

In particular, o(M) # B(M) and o(M N7 (M*) € x(M*). Hence Propo-
sition 14.2(g) yields M ¢ #»,. If M € #»,, then ¢ € k(M), and, by
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Theorem 14.7(a) and (b), o(M) N 7(M*) C k(M*), which is false. Thus
M ¢ A, , whence M € Mg.

Suppose 72(M) is not empty. Take any p € (M ). By Lemma 12.1(g),
p ¢ B(G). Hence the inclusions above show that p ¢ o(N) U o(N). It
then follows that all the elements of £,(N) are conjugate in N because
rp(N) < 1.

Now take A € £,2(E). Since Cg(Q) C N9, we have [4,Q] # 1. By
Corollary 12.10(c), ¢ € 71(M). Then Corollary 12.9 yields subgroups Ao,
A; € £,'(A), not conjugate in G, such that

Ao € Co(M,) € Co(x) € N and 4, C Ca(Q) € N9.

Obviously this contradicts the above statement about £,'(N). Therefore
T2(M) is empty and the proof of (a) is complete.

(b) Since Cg(y) € M, Theorem 14.4 shows that |.#,(y)| > 1 and then
that N(y) is defined. By Theorem 14.4, both M N N and (M N N(y))¢
complement N, in N. Hence there exists n € N such that (M NN(y))9" =
M NN. Then z € M9 and Theorem 14.4 yields an element ¢ € Cn(x)
such that M9"¢ = M.

Now m = gnc lies in Ng(M) = M and satisfies N(y)™ = N(y)° =
N*“=N. O

15. The Subgroup My

In this section we will prove some results about the Fitting subgroup
F(M) and the largest normal nilpotent Hall subgroup Mr of a maximal
subgroup M of G. It is easy to see that My is the product of the normal
Sylow subgroups of M and so is well defined and lies in M,.

Throughout this section we use the following notation:

M is a maximal subgroup of G,

K is a Hall k(M )-subgroup of M,

U is a complement of KM, in M for which
KU is a complement to M, in M.

Lemma 15.1. The following conditions hold.

(a) UM, « M = KUM,, K is cyclic, M, C M’, and M'/M, is
abelian.

(b) If K # 1, then M’ = UM, and U is abelian.

(c) If X is a nonidentity subgroup of U such that Cjps, (X) # 1, then
M (Ce(X)) ={M} and X is a cyclic ro(M)-subgroup.

(d) The group { Cy(z) | z € M# ) is abelian.

(e) If U # 1, then U contains a subgroup Uy, of the same exponent as
U, such that UpM, is a Frobenius group with kernel M,.
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Proof. By Theorem 14.7(d) and (h), K is cyclic and if K # 1, then M’ =
UM,. By Corollary 12.10(b), (M/M,)' is abelian and, by Theorem 10.2(c),
M, C M’. This proves (a) and (b).

By Corollary 14.3, the group X in (c) must be a 72(M)-group and we
have #(Cg(X)) = {M} if X is cyclic. Since M has an abelian Hall
To(M)-subgroup by Corollary 12.10(b) and, because Cys, (A) = 1 for every
A € £,%(U) by Theorem 12.5(d), X is indeed cyclic.

In Theorem 12.12, (d) and (e) have been proved under the assumption
that k(M) is empty, i.e., K = 1. If K # 1, then U is abelian by (b). In this
case (d) is trivial and (e) is obvious from the very short and easy argument
in the proof of Theorem 12.12 that deals with the case that Cg(S) = E. O

Theorem 15.2. For every M € . #,1 C Mp C M, C M' C M. Suppose
Mp # M, and let p = |K|, K* = Cp, (K), and ¢ = |K*|. Then

(a) M is of type £y, i.e., M = KM,,

(b) p and q are primes and g € 7(Mp) N F(M),

(c) M has a normal Sylow ¢-subgroup @ (contained in Mr),

(d) a complement D of Q in M, = M’ is nilpotent,

(e) Qo = Cq(D) is a normal subgroup of M,

(f) @ = Q/Qo is a minimal normal subgroup of M/Qg and is elemen-
tary abelian of order ¢P, and

(8) M" = M, C F(M) = QCu(Q) = Cu(Q) = Cum,(K*) C Mo,
and M, = M'.

Q
Q

Proof. As mentioned earlier in this section, Mp C M, and M, C M’
Clearly 1 C M, and M’ C M. We must show that Mg # 1. So assume
that Mg C M,, i.e., M, is not nilpotent. By Lemma, 14.1, this implies (a)
and, by Theorem 14.7(f), (a) implies that ¢ = |K*| is a prime.

Let K be a subgroup of K having prime order. By Proposition 14.2(a),
K acts in a prime manner on M,. By Lemma 6.3(a), M, = [M,, K].
Thus [M,, K] € F(M,). Therefore, by Theorem 3.8, K* n F(M) # 1.
Thus K* lies in Q@ = Og(M). It follows from Proposition 1.5(d) that K
acts regularly on M, /Q. Therefore, by Theorem 3.7 (applied to the group
K1M,;/Q), M,/Q is nilpotent. This proves (¢) and (d).

By Proposition 1.5(a), we may choose a K-invariant complement D of
Q in M,. Then Q¢ = Cgo(D) is a KD-invariant proper subgroup of Q
because M, is not nilpotent. Then Ng(Qo) D Qo and N (Qo)/Qo has
a minimal normal subgroup Q;/Q¢ such that @; C Q. If K* C Qg or
K* € Qq, then K acts regularly on D@;/Qo, and therefore Theorem 3.7
implies that D centralizes Q;/Qo. But, by Proposition 1.5, this implies
that @1 = Cg,(D)Qo = Qo, a contradiction. This proves that @; 2 K*
and Qo 2 K*. The same argument, with ¢; in place of ¢, would show
that @, 2 K* if @1 C Q. Thus @1 = Q. This proves (e) and the first two
assertions of (f).



15. The Subgroup Mg 119

Since D is nilpotent, but M, is not, Proposition 1.5(d) yields

F(M)=QCMm(Q) =Cp,(Q) C M,.

In particular, C5(D) # Q. Therefore, by minimality of Q, Ca(D) = 1.
Hence we can apply Theorem 3.10 to the action of the Frobenius group
KD on Q and deduce that p = | K| is a prime, |Q| = ¢?, and D' C Cp(Q).
It follows that M,’ C QD' C Cp,(Q) C Cu,(K*), whence the latter
subgroup is normal in M, and therefore in KM, = M. Then minimality
of Q forces Cpr, (K*) to centralize Q and this completes the proof of (g).
Finally, if ¢ ¢ 3(M), then Theorem 5.5(a) shows that (DK) = D cen-
tralizes @, a contradiction. Thus ¢ € (M) and the proof is complete. [

Corollary 15.3. Suppose H is a nonidentity Hall subgroup of M,,. Then

(a) Cum(H) = Cp, (H)X with X a cyclic 7o(M )-subgroup, and
(b) any two elements of H conjugate in G are already conjugate in
Ny (H).

Proof. By Proposition 14.2(b1) and (e), Cpr(H) is a (M )'-group. Hence
Cu(H) = Cp,(H)X with X conjugate in M to a subgroup of U and
Lemma 15.1(c) yields (a).

Suppose x, y € H, g € G, and x = y9. Then x € M9, and Theorem 14.4
yields an element ¢ € Cg(x) such that M9 = M. Then gc € M and
yI° = z.

So assume that H is not normal in M. Then M, is not nilpotent and,
with @ as in Theorem 15.2, we have QH <1 M because M, /Q is nilpotent.
It follows that Q N H = 1 and M = Nj(H)Q by the Frattini argument.
Write gc = na withn € Njy(H) and @ € Q. Then y™® = z and axa™lz7! =
y"r7! € QN H = 1 because Q <« M. Thus a € Cp(x) and y™ = z as
required. O

Corollary 15.4. Suppose H is a nonidentity nilpotent Hall subgroup of G.
Then our maximal subgroup M can be chosen in such a way that H C M,.

Proof. Let S be a nonidentity Sylow subgroup of H and M € .#(Ng(5)).
Then S C M, and Corollary 15.3(a), applied with S in place of H, shows
that M, contains every Sylow subgroup of M that lies in Cp(S). Thus
H C M, because H is nilpotent. O

Corollary 15.5. Let H = Mp and Y = O, py (F(M)). Then

(a) Y is a cyclic 7o(M)-subgroup of F(M),
(b) M C F(M) = Cor (H)H = F(M,) x Y,
(¢) HC M' and M'/H is nilpotent, and
(d) if K # 1, then F(M) C M.
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Proof. Parts (a), (b), and (c) follow directly from Lemma 15.1(a) if H =
M, and from Theorem 15.2(g) and Corollary 15.3(a) if H # M,. If K # 1,
then M, C M’ and M/M' &2 K by Lemma 15.1(a) and (b). Since K is
a To(M)'-group by definition (see Section 14), M’ contains Y. Thus (d)
follows. O

Corollary 15.6. Suppose M € #» (i.e., K # 1). Then K* = Cpy, (K)
is a nonidentity cyclic subgroup of both M and M”. Furthermore, M is
not cyclic.

Proof. By Theorem 14.7(h), M = KM’ and K N M’ = 1. Therefore,
by Lemma 6.3, K* C M"”. By Proposition 14.2(c) and Theorem 14.7(d),
K* #1 and K* is cyclic. By Theorem 15.2(b) and (c), K* C Mp.
Finally, if MF is cyclic, then F(M) is cyclic by Corollary 15.5, and we
have M' C Cy(F(M)) C F(M) and K* C M"” =1, a contradiction. []

Theorem 15.7. Suppose F'(M) is not a TI-subgroup of G. Let H = M
and choose g € G — M such that X = F(M) N F(M)9 is not trivial. Take
E, E,, E,, E3 as in Sections 12-13. Then

(a) M € #5 U Mp, and H = M,,
(b) X C H and X is cyclic,
() M'=F(M) = M, x Ogpy (F(M)),
(d) E3=1, Es < E, and E/E; = E,, which is cyclic, and
(e) one of the following conditions holds:
(1) M € #g and H is abelian of rank two,
(2) p = |X]| is a prime in (M) — B(M), Op(H) is not abelian,
O, (H) is cyclic, and the exponent of M/H divides ¢ — 1 for
every ¢ € m(H),
(3) p=|X|isaprimein (M) - B(M), Op(H) is cyclic, Op(H)
has order p? and is not abelian, M € #»,, and |M/H|
divides p + 1.

Proof. Take p € n(X) and X; € &,1(X). If Op(M) is cyclic, then X,
is normal in both M and MY, which is impossible. Thus O,(M) is not
cyclic and, by Corollary 15.5, p € o(M). Hence X C M,. Consequently,
by Theorem 10.1(a) and Lemma 12.17, Cq(X;) € M and X is cyclic.

Since #(Cy(X1)) # {M}, Theorem 12.13 and the Uniqueness Theorem
show that Cy (X)) is abelian of rank less than 3. Thus 7 (H) is disjoint from
B(M) and, by Proposition 14.2(g) and Theorem 15.2(b), M ¢ .#», and
H = M,. This proves (a). Since X C M,, we also obtain (b).

Now H is a Hall B(M)'-subgroup of itself, and hence is centralized by
E’ because of Lemma 12.19. By Corollary 12.6(d), Cps, (x) = 1 for every
x € Es*. But E3 C E'. Therefore E3 = 1. Consequently (c) and (d) follow
from Corollary 15.5 and Lemma 12.1.

Suppose H is abelian. If M € A5, , ie, K # 1 and U = 1, then
Lemma 15.1(b) shows that H = M, = M’, contrary to Corollary 15.6,
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which implies that M" # 1. Therefore M € #g and condition (1) of (e)
holds.

So assume that H is not abelian. Then O, (H) is abelian because
Cu(X1) is abelian. Hence P = O,(H) is not abelian and X is a p-group.

Let Zg = Q1(Z(P)). Clearly X; # Zy. Let B = X1 x Zy. Now we know
B € £%(P)NE*(P) because Cy (X ) has rank less than 3. Thus |Zo| = p and
Z(P) is cyclic. Moreover, by Lemma 10.13(b), Cp(X;) = Cp(B) = X1 X Z
with Z cyclic. Thus X = Xj.

Since P € % by Theorem 12.13, Corollary 9.2 shows that O, (H) €
if 1(Op(H)) > 2. However we have Oy (H) ¢ % because Cy(X) ¢ %.
Consequently the abelian group O, (H) must be cyclic. It follows that
Z{H) is cyclic. Therefore, if A is any subgroup of M that acts regularly on
Z(H), then |A| divides ¢ — 1 for all ¢ € n(H).

It follows that condition (2) of (e) holds if M € .#g because, in that
case, Lemma 15.1(e) yields a subgroup of the same exponent as M/H,
which acts regularly on H.

So we may assume that M € #»,. By Theorem 14.7(f) and Corol-
lary 15.6, K* = Cy(K) has prime order and is contained in M"”. Since
M = HK, K is cyclic, and O,/ (H) is abelian, we have K* C M" C P.

By Proposition 14.2, Cyx(k) = K* for every k € K#. Thus, if (c2) is
false, then K* = Q,(Z(P)) and |K| does not divide p — 1. Consequently
Z(P) C Cy(K) = K* and, by Theorem 5.5(b), r(P) = 2. Hence Corol-
lary 10.7(b) shows that P has order p3. Then |K| divides p + 1 by Theo-
rem 2.5. Thus condition (3) of (e) holds and the proof of the theorem is
complete. O

As a last application of Theorem 15.2, we obtain some more information
on the situation of Corollary 14.12.

Theorem 15.8 (Feit-Thompson, 1991 [9]). Assume the situation of
Corollary 14.12 and suppose 72(H) is not empty. Let ¢ € 7w(K). Then
g = |K|, q is the unique prime in 2(H), and 72(M) is empty.

Proof. By Theorem 14.7(f), |K| = q. Let D = H N M*, a complement of

H, in H. There exists A in £2(D). By Lemma 12.1(g), A € £*(G). Since
K lies in F(D) by Corollary 14.12, Corollary 12.6(a) yields

(15.1) AC Cg(K)C M*.
As g € o(M*), Corollary 12.6(b) shows that A C M%. If M?% # M}, then
(15.2) F(M*) contains A and a Sylow g-subgroup @ of M*

by (g) and (c) of Theorem 15.2. Since (15.2) is obvious if M*% = M3, it is
always valid.

By (15.2), A centralizes Q if A is not a g-group, and then Corollary 9.2
shows that Q ¢ % because A ¢ %. If A is a g-group, A € £,*(G). In
either case, it now follows from the Uniqueness Theorem (Theorem 9.6)
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that ¢ ¢ B(G). Therefore, by Proposition 14.2(g) and Theorem 15.2(b),
M* is of type & and M*% is nilpotent. Since, by Lemma 12.17,

K C Cumy(K*) S MY,

Q is not abelian. So @ € % by Theorem 12.13. As noted above, this forces
A to be a g-group. Since A was chosen arbitrarily in £2(D),

m2(H) = {¢}.

Now, by Theorem 12.7(b), A contains a subgroup X of order ¢ that
centralizes H,. If X = K, then, by (15.1),

H=H,(HNM")C (Cg(K),M*) C M*,

a contradiction. Thus X # K. As K is a Sylow g-subgroup of M, we have
X € M. For U as in Corollary 14.12, UK is a complement to M, in M
and U C H,. Therefore U centralizes X and

Ce(U) Z M.

If there exists r € T2(M), then Corollary 12.6(b) (applied to 2;(O,(U)) in
place of A) yields

Cg(U) € Ca((0-(U))) € M,
a contradiction. Thus 79(M) is empty, as desired. O
Corollary 15.9. Let x € M,# and N € .#(Cg(x)). Assume that
Co(z)ZMand N ¢ Az
Take r € n((z)) and z, of order r in (z). Then, for a suitable choice of a

complement E to M, in M,

(a) (D. Sibley [24]) M € #g and N € A »,,

(b) (Feit and Thompson, 1991 [9]) E is cyclic and M is a Frobenius
group, and

(C) e T2(N)a NE((xr» CENN,and |EﬂN| = |N/N,|

Proof. Take y € Cg(x) — M. Then M, MY € .#,(x) and M # MVY.
Hence we are in the situation of Theorem 14.4 with |.#,(x)| > 2. Therefore
Cn,(z) #1 and

{N} = #(Cs(z)), N € M, € 15(N) N (M),

15.
(15.3) and M N N is a complement to N, in N.

Let K be a Hall (N)-subgroup of M N N. By Proposition 14.2(g) and
(a), | K1] is prime and there exists an abelian normal complement U; to K
in M N N for which

(15.4) Cy, (K1) = 1.
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Let R be a Sylow r-subgroup of M N N (and therefore also of N). Since
r € o(N)No(M),

(15.5) R C Uy; also Ng(R) C M,

by Corollary 12.10(d). Moreover, by Corollary 14.12, with N and M in
place of M and H, respectively, M € .#%. This proves (a) and shows
that M, is nilpotent. Hence M, C F(M). Since KR is not nilpotent, by
(15.2), K3 € M,. Thus K; N M, = 1. We choose FE to contain K;.

Now z € M, C F(M) and Cg(z) € M. Hence F(M) is not a TI-
subgroup of G. Since 72(N) is not empty, 72(M) is empty by Theorem 15.8.
Thus E; = 1. By Theorem 15.7(d), F is cyclic. Moreover, £(M) is empty
because M € .#g. Therefore M is a Frobenius group and (b) follows.

As Ng({z+)) 2 Cg(x), we have Ng({z.)) C N by (15.1). Consequently
EnNN 2 Ng({z,)). Since

K1§E0N§M0N=K1U1 and CUl(K1)=1,

K); = Cgnn(K1). But then EN N = K because E is cyclic. Now (c)
follows from (15.1). O

16. The Main Results

Here we obtain our main results on the structure and embedding of the
maximal subgroups of G. These are Theorems A-E and, more or less equiv-
alently, Theorems I and II. We state them together with the prerequisite
definitions and notation not given in Section 1. The latter allow the reader
to compare conveniently what we have achieved here with the main results
of Chapter IV in FT, Theorems 14.1 and 14.2. As mentioned earlier, they
are best understood as generalizations of intermediate theorems in the proof
of the Feit-Hall-Thompson C N-theorem. Specifically, Theorem I is anal-
ogous to Theorem 14.1.5 of G, which asserts that a nonnilpotent solvable
C N-group is either a Frobenius group or a three step group (as defined in
G, p. 401, not as defined here). Theorem II is analogous to Theorem 14.2.3
of G, which asserts that in a minimal counterexample G to the C N-theorem
every maximal nilpotent subgroup H is disjoint from its conjugates (so it
is a trivial intersection set in G with normalizer Ng(H)).

Like the analogous results in the proof of the CN-theorem our main
results lay the basis for the character theoretic part of the proof.

Throughout this section let M denote an arbitrary maximal subgroup
of G and let Mp denote the largest nilpotent normal Hall subgroup of M.
In FT the group Mr somehow plays the role of the Frobenius kernel of M
and is used in the statement of the main results in an essential way. So far
in these notes most arguments and results have centered around a certain
normal Hall subgroup M, of M (equal to Mp in the CN-case). Actually
M, and Mp are closely related and nearly always coincide.
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For the statement of the main results it is convenient to use the two
prime sets (M) C (M) and k(M) C n#(M)—o(M). Although their exact
definitions are not of importance for this purpose, we repeat them here for
the sake of clarity:

o(M) = {pen(M)| Ng(P) C M for some
(and hence every) Sylow p-subgroup P of M},
k(M)={pern(M)—o(M)| every Sylow p-subgroup P of M is cyclic
and contains a nonidentity element x such that Cyy (x) # 1}.

For any subset X of G, #(X) denotes the set of all maximal subgroups of
G that contain X. For arbitrary subsets X and Y of G, we have defined

Cy(X)={z¥|zeXandyeY}.
We now state Theorems A-E and give their proof afterwards.

Theorem A. The following conditions are satisfied by M.

(1) M has a unique normal Hall (M )-subgroup M, and M, is also a
o(M)-Hall subgroup of G.

(2) M has a cyclic Hall k(M )-subgroup K.

(3) KM, has a K-invariant complement U in M and thus

UM, <M =KUM, and U < UK.

(4) Cy(k) =1 for every k € K¥.

(5) K* = Cp, (K) is not trivial and if K # 1, then Cp(k) = K x K*
for every k € K#.

(6) 1C Mp C M, C M'C M and M'/MF is nilpotent.

(7) M" C F(M) = Cpy(Mp)Mp and if K # 1, then F(M) C M".

(8) If Mp # M,, then U = 1, F(M) is a TI-subset of G, and K has
prime order.

For Theorems B-E we introduce some further notation:

Z=KxK*,
Z=27-(KUK*),
M,={acM|Cy,(a)#1},
AM) =M, nUM,,
Ao(M) = M, — €u(K*).

Since M, C M’ ¢ M = KUM,, each of the groups K and U can be trivial,
but not both. There are three cases. In accord with previous notation
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they are:

() K=1landU #1,
(#) K#landU =1,
(P3) K#landU #1.

We have defined #» = the set of all maximal subgroups of type &2, or &2,.

Theorem B. The following conditions are satisfied by M.

(1) Every Sylow subgroup of U is abelian of rank at most two.

(2) (Un ]\76) is abelian.

(3) U has a subgroup Up that has the same exponent as U and satisfies
Ug N M\g =1.

(4) A (Ce(X)) = {M} for every nonidentity subgroup X of U such
that Cp, (X)) # 1.

(5) The set A(M) — M, is a TI-subset of G.

Theorem C. Suppose K # 1. Then the following conditions hold.

(1) U is abelian and Ng(U) € M.
(2) K* is cyclic, 1 C K* C Mg, but MF is not cyclic.
3) M'=UM, and K* C M".
(4) There exists a unique M* € .#p such that K = Cp. (K*) and
K* is a Hall k(M™*)-subgroup of M*.
(5) A (Ce(X)) = {M} and A (Cs(Y)) = {M*} for all subgroups
X C K*and Y C K of prime order.
(6) MNM*=Z =K x K*, which is a cyclic group.
(7) M or M* is of type &, and every H € .#» is conjugate to M or
M*in G. ~
(8) Z is a TI-subset of G with Ng(Z) = Z.
(9) €um(Z2) is equal to Ag(M) — A(M) and is a TI-subset of G.
(10) If U # 1, then K has prime order and F(M) is a TI-subset of G
containing M,.
(11) I U = 1, then K* has prime order.

Theorem D. The following conditions are satisfied by M.

(1) Whenever two elements of M, are conjugate in G, they are conju-
gate in M.

(2) For every g € G — M, the group M, N M9 = M, N M,9 is cyclic.

(3) For every x € M,#, Cy(z) is a Hall subgroup of Cg(z) and has
a normal complement R(x) in Cg(x) that acts sharply transitively
by conjugation on the set { M9 | g€ G,z € M9}.

(4) fz € M,# and Cg(z) € M, then C(x) lies in a unique maximal
subgroup N = N(z) of G. Furthermore,

R(z) = Cn,(z), No=Np,z€ A(N)-N,, N€ H#g UAm,,
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and M N N is a complement of N, in N. Also, if N € #g,,

then M € #g, M is a Frobenius group with cyclic Frobenius
complement, and Mp is not a TI-subgroup of G.

Theorem E. For each z € M,#, take R(z) as in Theorem D. Define

M= U zR(x)
TEM,#
Then
(1) |€a(M)| = (IM,| - 1)|G : M|.
Let M,,..., M, be maximal subgroups of G such that every maximal

subgroup of G is conjugate in G to exactly one M;. Then
(2) 7(G) is the disjoint union of the sets o(M;).
Let G be the union of the sets ‘Kg( ;). Then

(3) G is the disjoint union of the sets CKG( ), G* = G if Mp is

empty, and G# is the disjoint union of G and Cc(Z ) if # % is not
empty and M € Z».

The cosets xR(x) appearing in Theorem E are denoted by A, in FT.
They are used in the study of so-called tamely imbedded subsets of G
(defined in Section 13 of FT and later in this section). In Lemma 14.5(a)
we have shown that tR(x) NyR(y) is empty whenever x and y are distinct
elements of G for which these sets are defined.

All these results have already appeared elsewhere in this book or are a
direct consequence of previous results. Consequently their “proof” can be
given schematically.

Theorem A
Theorem 10.2(b) — (1)
Lemma 15.1(a) - (2)
Proposition 14.2(a)(b)(c) — (3)(4)(5)

Theorem 15.2(a)
Corollary 15.5 - (6) (7)(8)
Theorem 15.7(a)(b)
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Theorem B

Lemma 12.1(d) }

Theorem 12.5(b)
Lemma 15.1(d)(e)(c) —

Theorem C

Corollary 14.12
Corollary 15.6 —
Lemma 15.1(b)

Theorem 10.1(b)
Theorem 14.7(a)(b)(c) —
Proposition 14.2(c)

7

Theorem 14.7(d)(f)(g)(e) —
Proposition 14.2(d) }

-
Theorem A(3)(5)
Proposition 14.2(g)
Theorem 15.7(a)

Theorem D
Corollary 15.3(b) —
Lemma 12.17 —

Theorem 14.4(b)
Theorem A(8) -
Corollary 15.9

Theorem E
Lemma 14.5(c) -
Theorem 13.9 —
Corollary 14.9 —

(1)
(2)(3)(4)(5)

(4) (5)

(6)(1)(11)(8)

e S
W DN =
~ —
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Now we present the definition of the five types of maximal subgroups
(essentially) as in FT. Some differences between them and between Theo-
rem II below and Theorem 14.2 of FT will be discussed at the end of this
section. We shall see that Type I corresponds to case #, Type II to case
Py, and that Types III, IV, and V constitute a refinement of case 4.

Let m* be the set of all primes p € 7(G) such that a Sylow p-subgroup P
of G is cyclic or contains a subgroup A of order p such that Cp(A) = Ax B
with B cyclic. (By Lemma 10.13, the latter condition holds if P is not
abelian and has a maximal elementary abelian subgroup of order p®.) For
the definition of Types I-V, let H = Mp. (As above, Mg denotes the
maximal nilpotent normal Hall subgroup of M.) We say that M is of
Type I if M enjoys the following properties:

(Ii)) 1C HC M,

(1ii) each complement E to H in M contains a normal abelian subgroup
A such that Cg(z) C A for all z € H¥#,

(1iii) each complement E to H in M contains a subgroup Eq of the same
exponent as E such that HEj is a Frobenius group with Frobenius
kernel H,

(Iiv) every Sylow subgroup of M/H is abelian of rank at most 2,

(Iv) M satisfies at least one of the following conditions:
(a) H is a TI-subset in G,
(b) H is abelian of rank 2,
(c) for every p € n(H), p € n* and the exponent of M/H
divides p — 1; for some such prime p, we have O, (M) is
cyclic.

Remark. In general a group M satisfying conditions (Ii)-(liii) with H =
M is called a group of Frobenius type, and H is called the Frobenius kernel
of M.

We say that M is of Type II, II1, IV, or V, if

(T1) M' is a Hall subgroup of M that contains H,
(T2) a complement V of H in M’ is nilpotent, and Nps(V') has a cyclic
subgroup Wy of order |M/M’|,
(T3) H is not cyclic and M” C HCy(H) = F(M) C M',
(T4) H contains a nonidentity cyclic subgroup Wy such that Cpp () =
W, for all z € W,
(T5) if Wy is any nonempty subset of the set W =W Wy~ (W1 U Wy),
then Ng(Wo) = W1 Ws,
(T6) if Ag and A; are any two subgroups of prime order in V that are
conjugate in G but not in M, then Cy(A4p) =1 or Cy(4;) =1,
(T7) for Type II-IV:
(i) Wi has prime order, and
(i) F(M) = Cpn(H)H is a TI-subset in G,
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for Type II:

(I1iii) V is abelian of rank at most 2,

(Iliv) V # 1 and Ng(V) € M,

(IIv) Ng(A) € M for every nonempty subset A of M’ such that
Cu(4) # 1,

for Type III:
(ILiii) V is abelian and Ng(V) C M,

for Type IV:
(IViii) V is not abelian and Ng(V) C M,

for Type V:
(V) V =1 and M satisfies at least one of the following conditions:
(a) M' = H is a TI-subset in G,
(b) for some prime p € w(H) N 7*, Op(H) is cyclic and
|[Wi| = |M/M'| divides p — 1,
(c) for some prime p € n(H) N 7*, Op(H) is cyclic, and
|Op(H)| = p?, and |W,| divides p + 1.

Remark. By using the existence of Hall subgroups in solvable groups and
the nilpotence of solvable groups possessing fixed-point free automorphisms
(Theorem 3.7), one can easily show that conditions (T1)-(T4) (for H =
MfF) are equivalent to the definition of a three step group in FT (p. 780).

For the sake of clarity we prepare the proofs of the two main theorems
(stated below) by the following proposition.

Proposition 16.1. (a) M is of Type I if and only if M € #z.
(b) M is of Type Il if and only if M € A »,.
(¢) M is of Type Il or IV if and only if M € A », and Mr # M,.
(d) M is of Type V if and only if M € #p», and Mp = M,.
(e) M' =UM, if and only if M is not of Type L.
(f) Mrp =M, if and only if M is of Type I, II, or V.

Proof. Let H = Mp. By Theorem A(6),
l1cHCM,CM CM.

Suppose M € Mg, ie., K =1and U # 1. By Theorem A(8), H = M,.
Thus U complements H in M. Therefore Theorem B(1), (2), and (3)
show that M satisfies conditions (Ii)—(Iiv), and Theorem 15.7(c) yields
condition (Iv). Thus M is of Type L

Conversely, if M is of Type I, but not of type &, then K # 1 and
1 C K* = Cy(K) by Theorem C(2). On the other hand, since we know that
KNnHCKnNM, =1 and that K is a nonidentity cyclic Hall subgroup of
M, condition (Iiii) implies that Cy(K) = 1. This contradiction completes
the proof of (a).
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Now we may assume that M € #p, i.e., K # 1. By Theorem C(3),
M’ = UM,. Thus M’ is a Hall subgroup of M that contains H and
complements the cyclic subgroup K. Define

Wy =K and Wy = K* (= Cy, (K))

and let V be a K-invariant complement of H in M’. We may let V = U if
M,=H.
By Theorem A(6) and (7), V is nilpotent and

M" C F(M)=Cy(H)H C M.

By Theorem C(2), Wy = K* is cyclic, 1 C K* C H, and MF is not cyclic.
Thus M satisfies conditions (T1)—(T3) in the definition of Types II-V,
and (T4) and (T5) follow directly from Theorem A(5) and Theorem C(8),
respectively.

Suppose Ap and A; = Ag? (¢ € G) are as in (T6), with Cy(A;) # 1
(i=1,2). I H=M,, then V = U and Theorem B(4) shows that {M} =
M(C(A1) = H(Cg(Ag)) = {M}9, and hence g € Ng(M) = M, a
contradiction. Therefore H # M,. By Theorem A(8),

U=1land A;,CVCM=UM,=M,.

Now Theorem D(1) shows that Ag and A; are conjugate in M, again a
contradiction.

This completes the proof of conditions (T1)-(T6).

Assume K # 1 and U # 1, i.e., M € M#p,. Then V = U because
M, = H by Theorem A(8), and conditions (i)-(IIv) in (T7) follow directly
from Theorem C(1) and (10) and Theorem B(1) and (4). Thus M is of
Type II.

Assume next that K # land U = 1, ie., M € M#p,. Then V C
M’ = M,. Suppose V # 1, i.e., H # M,. Then, again by Theorem A(8),
Wi = K has prime order and F(M) is a TI-subset of G. Furthermore,
there exists a prime p € 7(V) No(M) and V' contains a Sylow p-subgroup
P of M because V is a Hall subgroup of M. By the Frattini argument and
the definition of o (M),

Ng(V) € VNg(P) C M.

This proves that M is of Type Ill or IV if M € #», and H # M,.

Finally, if K # 1 and U = V = 1, then Theorem 15.7(c) yields condi-
tion (T7)(V), and M is of Type V.

In order to complete the proof of (b}, (c), and (d), note that if M is of
Type IL IIL, IV, or V, then n(W;) C k(M) because WiNM, C WinM’' =1,
W, is cyclic, and 1 € Cy(W1) C Cpm,(Wy). Thus k(M) is not empty,
and this means that M € #». Now (b), (c), and (d) follow from the
implications proved above and from the obvious fact that M cannot belong
to two of the Types II-V.
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Since M' = UM, if M € #p, and UM, = M D M'if M € Hgz, (e)
holds.

If H# M,, then M € Mg, by Theorem 15.2(a), and thus (c) and (d)
vield (f). O

Now this proposition together with Theorem C(4), (6), and (7) yield the
following first main theorem of F'T, except the first assertion, which follows
directly from Corollaries 15.4 and 15.3(b).

Theorem I. Two elements of a nilpotent Hall subgroup H of G are con-
jugate in G if and only if they are conjugate in Ng(H).

Either every maximal subgroup of G is of Type I or all of the following
conditions are true.

{(a) G contains a cyclic subgroup W = W) x Wy with the property that
Ng(Wy) = W for every nonempty subset Wy of W — W; — Wa.
Also, W; #1 (1 = 1,2).

(b) G contains maximal subgroups S and T not of Type I such that
S=WS, T=WT", NnW=1,T"NnWy=1,and SNT =W.

(c) Every maximal subgroup of G is either conjugate to S or T or is
of Type L.

(d) S or T is of Type IL

{e) Both S and T are of Type I, III, IV or V (they are not necessarily
of the same type).

The following characterization of the sets A(M) and Aq(M ), which uses
the notation of the definition of the Types I-V, is a direct consequence of
Proposition 16.1 and Theorem C(9). Actually, it is the original definition
of A(M) and Ag(M) on p. 847 of FT, where they are called M and M,
respectively. Recall that H = Mp.

AM) = Aog(M) = | JCum(zx)  if M is of Type],

c€H#
AM) =] Cmi () if M is of Type II,
c€EH#
AM)=M' if M is of Type IIL, IV, or V,

Ao(M) = A(M)| J&u(W) if M is of Type II, III, IV, or V.



132 IV. The Family of All Maximal Subgroups of G

The next theorem is concerned with the embedding of A(M) and Ao(M)
in G.

Theorem II. For an arbitrary maximal subgroup M of G, let X = A(M)
or X = Ag(M), and let D = {z € X# | Ce(z) Z M }.

Then D C A(M), |.#(Cg(x))| = 1 for all z € D, and the following
conditions are satisfied:

(Ti) Whenever two elements of X are conjugate in G, they are conjugate
in M.
(Tii) If D is not empty, then there are maximal subgroups My,..., M,
of G of Type I or II such that, with H; = M;r (and therefore
H; C Mj).
(a) (Hil, |Hyl) =1 for i # j,
(b) M;=H,(MnM;)and M H; =1,
(c) (|Hi|,|Cm(z)|) =1 for all z € X#,
(d) Ao(M;)— H; is a nonempty TI-subset in G with normalizer
M;, and
(e) if z € D, then there is a conjugate y of z in D and an index
i such that Cg(y) = Cn,(y)Cum(y) C M.
(Tiii) If some M; in (Tii) has Type II, then M is a Frobenius group (thus
of Type I) with cyclic Frobenius complement, and Mg is not a
TI-subset in G.

Proof. The set Ag(M) is the disjoint union of the sets M,, A(M) — M,,
and Ag(M) — A(M). An element of any of these sets is not conjugate to an
element of one of the other two sets because the orders of these two elements
are distinct. Moreover, by Theorem B(5) and Theorem C(9), the latter two
sets are TI-subsets of G (with normalizer M if not empty). Therefore

D={zeM¥|Ce(x) M} C M,

and (Ti) reduces to the statement that any two elements of M, conjugate
in G are already conjugate in M, which is true by Theorem D(1).

So assume that D is not empty. If x € D, then Cg(x) lies in a unique
maximal subgroup N(z) of G, and N(z) is of Type I or Type II by Theo-
rem D(4). Let & be the collection of all such subgroups N(z) and let
{M,...,M,} be a subset of & such that each N € & is conjugate in G
to exactly one M;. Now (Tiii) follows from Theorem D(4). So we must
prove (Tii).

Take some M;. By Theorem D(4), H; = M;r = M,, and (b) holds.
By Theorem E(2), the sets o(M;) are pairwise disjoint, which implies (a)
because o(M;) = w(M;,). Also, by Theorem D(4), A(M;) — M, is not
empty and, by Theorem B(5), this is a TI-subset of G (with normalizer
M;). If M; is of Type I, this gives us (d). Otherwise, by Theorem C(5) and
a short argument, Ao(M;) — A(M;) and Ao(M;) are TI-subsets of G with
normalizer M;.
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If x € D, then there exists an element ¢ € G and an index ¢ such
that N(x)9 = M;. By Lemma 14.13(b), we can choose g in M. Then
y=29 € D, M; = N(y), and C(y) = Cn,(y)Cmnm,(y) by Theorem D(3)
and (4).

It remains to prove (c). Suppose x € X# and (|H;|, |Cpm(z)|) # 1. Then
o(M;) N w(M) is not empty. By Lemma 14.13(a), M is a Frobenius group
with kernel M,. This means that Ag(M) = M,. Therefore z € M, and
Cu(z) C Ao(M) = M,. Consequently o(M;) N o(M) is not empty. By
Theorem E(2), this implies that M; is conjugate to M in G, a contradiction
(since T2(M) is empty, while 72(N) D 7({z)) by Theorem 14.4(c)). O

Remark. A subset X of G satisfying conditions (Ti)—(Tiii) of Theorem II
is here called a tamely imbedded subset of G and the subgroups H; are said
to form a system of supporting subgroups for X. The realization that the
concept of a T'I-subset could be fruitfully extended to the more general
concept of a tamely imbedded subset was one of the major achievements
of Feit and Thompson. As the proof shows, the essence of Theorem II is
that M, is tamely imbedded in G. Note that if D is empty, then X is a
TI-subset in G.

Theorem II above corresponds to Theorem 14.2 of FT and differs from
it in two significant respects. First, Theorem II includes (Tiii) and the
condition that each M; in (Tii) be of Type I or II. These conditions were
kindly communicated to us by Feit and Thompson and by David Sibley,
respectively. Second, condition (Tii)(d) replaces a stronger condition (Def-
inition 9.1(ii)(e), pp. 803-804) in the definition of a tamely imbedded subset
in FT, which states that

for M; = U Cu,(z) p — H;

(16.1) T

——

M; is a nonempty TI-subset in G with normalizer M;.

This amounts to M; being of Type I, a fact we cannot prove. How-
ever, Feit and Thompson have informed us that condition (Tiii) suffices for
Chapter V (specifically Section 33) in FT.

As to the definition of Types I-V, conditions (Iv)(c) and (T7)(V)(b)
and (c) are a little more explicit than the corresponding conditions in FT.
Second, condition (T7)(IIv) is also included in the definition of Types III
and IV in FT, but is apparently not used later. Furthermore, there is also
a slight difference between our definition of Type I (and of Frobenius type)
and that in F'T. There we find the stability groups Ir(8) of the nontrivial
irreducible characters 8 of H in place of the centralizers Cg(z) for x € H¥.
However it is well known and an easy exercise in elementary character
theory that if H is a normal Hall subgroup of a finite group M, then an
element x € M fixes some nontrivial irreducible character of H if and only
if Cy(x) # 1.






APPENDIX A

Prerequisites and p-Stability

mong the main tools for shortening the first half of the proof of FT

are Theorems 6.1 and 6.2, which are obtained by use of the concept of
p-stability. In Section 6 these are obtained from theorems in G, which have
shorter proofs if one restricts to groups of odd order and uses a different
characteristic subgroup in place of J(S). In this appendix and Appendix B
we outline these shorter proofs. Although we use some results from Chap-
ters 1-6 of G, this makes it unnecessary to use some other results from G,
as described below.

This appendix is devoted mainly to proving Theorem 6.1 and a spe-
cial case of Theorem 6.5.3 of G that will be applied in Appendix B. For
those who wish to read both this appendix and Appendix B, the prerequi-
sites for this book may be reduced and handled as follows. One first reads
Chapters 1-6 and Section 7.3 of G, except for Theorems 2.8.3 and 2.8.4
(pp. 42-55) and Sections 3.8 and 6.5. Next one reads Sections 1 and 2 in
Chapter I of this book, followed by this appendix and Appendix B (includ-
ing parts of Sections 3.8 and 6.5 of G mentioned later in this appendix).
In particular, one does not need to read Chapter 8 and most of Chapter 7
of G.

Additional prerequisites for the proof of the C N-theorem are described
in Appendix D.

To begin, we refer the reader to pages 3940 of G, which introduce the
groups GL(2,q) and several related families of groups. This is followed
in G by an important theorem of Dickson (Theorem 2.8.4) with a rather
long, complicated proof. Fortunately, we require only an easy corollary of
Dickson’s Theorem, which we prove directly.

Theorem A.l. Suppose V is a 2-dimensional vector space over a field F
of odd characteristic p and G is a finite, irreducible group of linear trans-
formations of V over F such that |G| is odd.

Then p does not divide |G|.
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Proof. By Theorem 2.6 of this book, G has an abelian Sylow p-subgroup
N that contains G’. Then N < G. By G, Theorem 3.1.3,p. 62, N=1. O

Now we move to Section 3.8 of G. In place of Theorem 3.8.1 there,
we use the following result, which has the same hypothesis, but a weaker
conclusion.

Theorem A.2. Let p be an odd prime. Let G be a group of linear trans-
formations acting faithfully and irreducibly on a vector space V over an
algebraic closure of F,. Assume that G is generated by two p-elements
which have a quadratic minimal polynomial on V.

Then G has even order.

Proof. Follow the proof of Theorem 3.8.1 of G up to the point, on page 105,
where V is shown to have dimension 2. Since G is generated by two p-
elements, Theorem A.1 shows that |G| is even. O

By continuing to the top of page 109 of G, but using Theorem A.2
in place of Theorem 3.8.1 of G, we obtain the following substitute for
Theorem 3.8.3 of G. (Incidentally, some very short proofs of Theorem 3.8.2
of G are given in [10, pp. 4-5].)

Theorem A.3. Let p be an odd prime and G be a group with no nontrivial
p-subgroups. If G is not p-stable, then G has even order.

We now move to Section 6.5 of G. By using Theorem A.3 instead of
Theorem 3.8.4(e), we obtain special cases of Theorems 6.5.1-6.5.3, which
we state as follows.

Theorem A.4. Let p be an odd prime and G be a solvable group of odd
order. Let P be a p-subgroup of G.

(a) If O,(G) =1, then G is p-stable.

(b) If P is a Sylow p-subgroup of G, then every normal abelian sub-
group of P is contained in Oy p(G).

(c) Suppose O, (G)P <1 G and A is a p-subgroup of Ng(P) for which
[P, A, A] = 1. Then AC¢(P)/Ca(P) C O,(Ng(P)/Ca(P)).

Note that Theorem A.4(b) is just Theorem 6.1. We now apply (c).

Theorem A.5. Suppose p is an odd prime, G is a solvable group of odd
order, P is a normal p-subgroup of G, and X is a subgroup of G that is
generated by abelian p-groups, each of which is normalized by P. Then

(1) XCa(P)/Ca(P) € 0,(G/Ca(P)), and
(2) if Op(G) =1 and Co()(P) C P, then X C 0,(G).
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Proof. Note that G = Ng(P). Let C = Cg(P). For each abelian p-
subgroup A of G normalized by P we have

AC/C C O,(G/C),
by Theorem A.4(c) (since [P, A, A] C [A, A] = 1). Therefore
XC/[C C O,(G/C),

which is (1).
Next let Q@ = Op(G) and assume that Op(G) =1 and CNQ C P. Then
P C Q and Q = O, ,(G). By Proposition 1.15(b), Cs(Q) C Op »(G) = Q.
For every p’-element u in C,
Co(Cq(u)) € Co(P)=CNQ S P S Colu),

so that u centralizes @ by Proposition 1.8. As Ce(Q) C @Q, it follows that
u = 1. Thus C is a p-group. Moreover, C C O,(G) = Q because C < G.
Since C C O,(G) we have O,(G/C) = 0,(G)/C. By (1),

XC/C C 0,(G/C) = 0,(G)/C,
which yields (2). OO






APPENDIX B

The Puig Subgroup

In this appendix we will define an important characteristic subgroup of
a finite group G and derive some of its remarkable properties (some of
which are similar to the properties of the Thompson J-subgroup described
in G, Chapter 8).

Our main goal is a result of L. Puig (analogous to G, Theorem 8.2.11,
p. 279 about Z(J(S))), which we present using a short, unpublished proof
of I. M. Isaacs.

Throughout this appendix we will assume that G is a finite group and p
is a prime. We will use the fact that solvable groups of odd order have the
nice properties described in the following theorem from Appendix A.

Theorem A.5. Suppose p is an odd prime, G is a solvable group of odd
order, P is a normal p-subgroup of G, and X is a subgroup of G that is
generated by abelian p-groups each of which is normalized by P. Then
(1) XCa(P)/Cs(P) € Op(G/Cs(P)), and
(2) if Oy (G) =1 and Cop,(¢)(P) C P, then X C O,(G).

Remark. By using the original theorems in G rather than the theorems
in Appendix A, one can generalize this theorem by substituting for the
odd order condition the requirement that G have abelian or dihedral Sylow
2-subgroups or more generally that SL(2, p) not be involved in G.

Notation. For subgroups X and Y of any group G, we write X — Y if
Y is generated by abelian subgroups of G that are all normalized by X.
Clearly, given a subgroup X of G, there is a unique largest subgroup Y of
G such that X — Y. We will denote this subgroup by Lg(X).

We define recursively the following sequence of subgroups of an arbitrary
group G:

1, fn=0

La(G) = {Lg(Ln_1(G))’ ifn>0.

139



140 B. The Puig Subgroup

Thus we have
Lo(G) — Li(G) — La(G) = -+ = La(G) = Ln4a(G) —
Finally, define
= () Lans1(G)  and  L.(G) = | L2n(G
n>0 n>0

Lemma B.1. Let G be any finite group. Then the subgroups L;(G) have
the following properties.

(a) f X CY C G, then La(X) 2 Le(Y).
(b)

1= Lo(G) C La(G) C Ly(G) C ...
Ls(G) C L3(G) C Li(G) =

N Iﬂ

(c¢) For some k > 0,

L2y (G) = L.(G) for all n > k, and
Lont1(G) = L(G) for all n > k.
(d) The set L.(G) is a subgroup of G and is contained in L(G).
(e) Every abelian normal subgroup of G is contained in L;(G) for all
positive integers q.
(f) If G is a p-group, then, for all i > 0,

Li(G) 2 Ca(Li(G)) 2 Z
L.(G) 2 Ca(L«(G)) 2 Z(G); and
L(G) 2 C&(L(G)) 2 Z(G).

In particular, if G # 1, then L. (G) # 1 and L(G) # 1

(&) La(L.(G)) = L(G) and La(L(G)) = L.(G).
Proof. (a) Suppose that X C Y. Then clearly X — Lg(Y) and hence
Lo(X) 2 La(Y).
(b) By definition, Lo(G) = 1. Since every element of G lies in a cyclic
group, L1(G) = G. Trivially,

Lo(G) € Lao(G) C Li(G).

(@);

By (a),
Ly(G) € L3(G) C L1(G).

Thus an easy induction argument yields, for all integers n > 0,
L2n(G) C Lant2(G) € Lan+1(G) and
Lony2(G) C Lany3(G) C Lon41(G).
Combining these results yields (b).
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(¢), (d) Since G is a finite group, the increasing sequence of subgroups
{L2;(G)} must stabilize at some integer k;. For this k; we have

L2, (G) = L,(G) for all n > k;.

Similarly, the decreasing sequence { Lq;4+1(G) } must stabilize at some in-
teger ko, and

Loy 11(G) = L(G) for all n > k.
Choosing k = max{k;, k2} clearly gives us (c) and (d).

(e) In fact, if A is an abelian normal subgroup of G and if H is any
subgroup of G, then H — A and hence A C Lg(H). Since L;(G) =
Le(Li—1(G)) for all positive integers i, we have (e).

(f) In view of (c), we need only prove the first statement of (f). Clearly
Z(G) C Cg(Li(G)). Take any ¢ > 1 and let M be a normal subgroup of G
maximal subject to being abelian. Then, by (e), M C L;(G). Furthermore,
since G is a p-group, by G, Theorem 5.3.12, p. 185, C¢(M) C M. Thus

Ca(Li(G)) € Ca(M) C M C Li(G).
This yields (f).

(g) This follows immediately from (c). O
Lemma B.2. Suppose H is a subgroup of G that contains L(G). Then
L(G) = L(H).

Proof.

Step 1. (a) Loy41(H) C Loy 41 (G) for all n > 0
(b) L(H) C L(G).

Proof. We will use induction on n to prove (a). For n = 0 we have
H=1L,(H) € Li(G)=G.
Assume now that n > 0 and Lo,_1(H) C Lgy,—1(G). Then
Lon-1(H) — La(L2n-1(G)) = L2a(G) € L(G) € H.

Thus
LG(G) - LH(L2n—l(H)) = L2n(H)
Therefore
Lon(G) — Lon41(H).
Consequently

Lont1(H) C Lan+1(G).
This yields (a). Now Lemma B.1(c) gives us (b). O

Step 2. (a) L(G) C Lop41(H) for all n > 0;
(b) L(G) € L(H).
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Proof. Again we use induction for (a). For n = 0 we know L,(H) = H, so
(a) is true by hypothesis. Now suppose that n > 0 and L(G) C Lop1(H).
Then

L(G) — Lo, (H).

Hence
Lan(H) C Lo(L(G)) = L.(G).
Furthermore,
Lon(H) = Lo(L4(G)) = L(G) C H.
Thus

L(G) C Lon41(H).
Again, (b) follows from Lemma B.1(c). ]

By Step 1 and Step 2 we can now conclude that L(G) = L(H) as de-
sired. O

Lemma B.3. Assume pis odd, G is solvable of odd order, and O, (G) = 1.
Suppose that S is a Sylow p-subgroup of G and T' = O,(G). Then

L.(8) € L.(T) € L(T) € L(S).

Proof. First we show by induction on n that for all n > 0,

(B.1) L3n(S) C Lon(T) C Lon41(T) € Lan41(S).
For n = 0 the statement reduces to
1C1CTCS,

which is trivial.
Assume (B.1) holds for some n. Since Lan1(S) — Lant2(S), we get

(B.2) L3n41(T) — Lan42(5).
Now Lo, +1(T) is a normal p-subgroup of G and, by Lemma B.1(f),

Lony1(T) 2 Cr(Lan41(T)).
Thus, by (B.2) and Theorem A.5,

Lont2(S)CT.
Hence, by (B.2),
(B.3) Lan+2(S) C Lr(L2n+1(T)) = Lant2(T).
Consequently, by Lemma B.1(a),
(B.4) Lan43(T) = Lr(Lon+2(T)) € Lr(L2n42(S))
€ Ls(Lan+2(5)) = Lon4s(S)-

By Lemma B.1(b),
Lon42(T) € Lon43(T)
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so, by (B.3) and (B.4),
Lon42(S) € Lang2(T) € Langs(T) € Lanss(S).

Thus we have (B.1) for n + 1 in place of n. Now, by Lemma B.1(c), we
have the conclusion of the lemma. [

Theorem B.4 (L. Puig, 1976). Assume that p is odd, G is solvable of
odd order, and S is a Sylow p-subgroup of G. Then

(a) G = Oy (G)Na(Z(L(S)));
(b) if O, (G) = 1, then Z(L(S)) < G.

Remark. Note that Theorem B.4(a) serves as a substitute for Theorem 6.2
of this work.

Proof. Let L = L(S), T = Op(G), and Y = Z(L(T)).
Step 1. Part (b) implies part (a).

Proof. Let G = G/Oy(G) and S = SO, (G)/Op(G). Then, by G, Theo-
rem 6.3.1(iv), p. 227,

Op (6) = 0p(G/0y(G)) = 1.

Let Z = Z(L(S)) and Z = ZOp(G)/Op(G). Then Z = Z(L(S)) because
S 2 S. Thus, assuming (b), we know that Z < G and hence ZO, (G) < G.
Clearly Z is a Sylow p-subgroup of ZO,(G). Consequently, by the Frattini
argument, we have

G = Z0y(G)N6(Z) = Oy (G)ZNs(Z) = Oy (G)N6(Z). O

We will henceforth assume that O, (G) = 1.

Step 2. Z(L(S)) CY.

Proof. By Lemma B.3,

(B.5) L.(S)C L(T)C L(T) C L(S).
Thus, by Lemma B.1(f),

L(T) 2 L.(S) 2 Cs(L«(85)) 2 Z(L(S)).
Consequently, by (B.5),
Z(L(S) C ZL@) =Y. O

Step 3. Let C C G be taken such that C/Cg(Y) = 0p(G/Cs(Y)). Then
L(S) a4 Ng(C N S).
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Proof. Since Y charT, we know that Cg(Y) < G and C 9 G. AsY is
abelian and Y < S, Lemma B.1 yields

Y C L.(S).

Now L(S), L.(S)char S and L(T), L.(T) < G. Since Lemma B.1(g) tells
us that L = Lg(L.(S)), we have

L.(S)—1L
and hence
Y — L.
By Theorem A.5,
LCo(Y)/Ca(Y) € 0,(G/Co(Y)) = C/Ca(Y).
Therefore L C C and L C C N S. Finally, by Lemma B.2,
L=L{CNS)<aNg(CNnS). O

Step 4. Conclusion.

Proof. Take C as in the previous step. Then C'N S is a Sylow p-subgroup
of C and (C N S)Cq(Y)/Ca(Y) is a Sylow p-subgroup of C/C(Y). But
C/Cs(Y) is a p-group, so (C N S)Cq(Y)/Ce(Y) = C/Cs(Y) and we can
conclude that

C=(CnS)Cs(Y)=Cg(Y)(CNS).
By the Frattini argument,
G= CNG(C N S) = Cg(Y)(C N S)NG(C n.s)

= Cg(Y)NG(C n.Ss).
Since, by Step 2, Z(L) C Y, we have Z(L) C Z(Cs(Y)). By Step 3,
L < Ng(C N S), and consequently

Z(LYy <9 Ng(C'n S).

Now, by (B.6), we can conclude that Z(L) < G as desired. O

(B.6)



APPENDIX C

The Final Contradiction

In the original paper of Feit and Thompson, the minimal counterexample
is studied by means of local analysis (as in the present work), then by
character theory, and finally by a relatively short (17 page) argument using
generators and relations which produces a contradiction. This last argu-
ment was substantially simplified by Thomas Peterfalvi in [22] (using also
some previous reductions of R. Howlett, L. G. Kovacs, M. F. Newman, and
the second author). In this appendix we present, with slight changes, an ac-
count of Peterfalvi’s work written by Walter Carlip and Wayne W. Wheeler
at the University of Chicago for the Junior Group Theory Seminar [2].

1. The Main Theorem

Theorem C. Let p and g be two primes satisfying the following condition:

p?—1
A —,p—-1) =1
@ (E=fp-1)
Let P be the additive group of the field F, and U the subgroup of the
multiplicative group (Fpe)* consisting of the elements of norm one over F,,.
The subgroup U acts on P by multiplication and we can form the semidirect

product H = PU. Let P, be the image in P of the additive group of F,,.

Furthermore, suppose that there is a group G such that hypothesis (B)
below holds.

(B) There is a monomorphism o: H — G, a finite abelian p’-subgroup
Q of G, and an element y € @ such that o(Pp) normalizes Q and
o(Pp)¥ normalizes U.

Then p < gq.
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2. Preliminary Remarks and Results

(I) Condition (A) for primes p and ¢ is equivalent to the condition
that ¢ not divide p — 1. To see this, let r = p — 1. Then

P! =1=(r+1)1-1=(@%4¢g?7 4. 4gr+1)—1=¢gr (modr?)

and hence (p? — 1)/r = ¢ (mod r).
(II) (T. Peterfalvi) Take any prime ¢g. A short argument shows that
the hypothesis of the theorem is satisfied by taking p = 2, G = SL(2,29),

and
U(P)z{((l) ‘;)’aeFPq}, 0(P0)=<((1) })>
@ ={(5 ) ecmr}

(D). wi st

(III) If G is a minimal counterexample to the Feit-Thompson Theorem,
then there are primes p and ¢ such that p and ¢ satisfy (A), G satisfies
(B), and p > ¢. (This can be derived from Theorem 27.1 and Lemma 38.1,
pp- 943 and 1101 of FT.)

(IV) In [12], S. P. Norton and the second author have extended Theo-
rem C to show that p < 3. Example (II) above shows that p may be equal
to 2. It is not yet known whether p may be equal to 3.

(V) By (A), we can assume that p and ¢ are odd.

(VI) We will identify H with its image in G and write the operation in
P multiplicatively.

(VII) The following facts from Galois theory can be found in Theorem 38,
p. 46 and Theorem 33, p. 42 of {20]. The second of these is Hilbert’s famous
Satz 90.

Gal(Fpe /F;,) = (), where % = 2P and
p?-1

U= {f&— l T € F;‘,q} so U is cyclic of order

(VII) Fy, = F; x U by (A).
(IX) H is a Frobenius group with kernel P and complement U.
(X) Q = Co(Po)x|[Q, Po] by an extension of G, Theorem 5.2.3, p. 177.
(XI) By (X) we may assume that y € [Q, Po).

Notation. We will denote the norm of an element a € F,. over F,, by
N(a). Also we will denote by E the following set:

E={a€Fu |N(@)=N2-a)=1}.
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3. Proof of the Main Theorem

Here we begin the proof of Theorem C. Assume the hypotheses of Theo-
rem C and, as in (V), assume that p and ¢ are odd.

Lemma C.1. f E=E~! and |E| > 2 then p < q.

Proof. Let a € E#. Then 2—a € E and 7(a) = 1/(2 — a) € E since
E = E~1. By induction, 7%(a) € E and 7*(a) = [k— (k—1)a]/[(k+1) — ka]
for every natural number k. Applying this formula for 7%(a) we have

1
N
<T(a)72(a) reerk
for all k € F,,. Now, for x € F;,, Remark (VII) yields

1=

(a)> = N((k+1) — ka) = N((1 — a)k + 1)

q—1

N(1-az+1)-1=[[(1-a)z+1)? -1
=0

g—1 )
=[[(-af'z+1)-1
i=0

=N1-a)z?+ -+ Tr(l —a)z

and every element k € F, is a solution to this polynomial. Since a # 1 we
know N(1 — @) # 0. Thus the polynomial above is of degree ¢ and has p
distinct solutions. This yields p < ¢. O

Lemma C.2. |E| > 2.
Note. The proof requires only that p and ¢ be odd primes that satisfy (A).

Proof. First suppose that ¢ > 5 and let s € P#. Since P is abelian, the
conjugacy class in H of any element s € P is simply {s* |u € U}. Let K;
be the conjugacy class of s* in H and K; the corresponding class sum. The
conjugacy class sums form a basis of the center of the group algebra of H,
so we can define e to be the coefficient of Kg in the product K K;. It is
easy to check (see the discussion in G on pages 126-7) that,

e =card { (s*,s") |u,v € U and s*s” = s* }.

The condition s*s = s? means that us + vs = 25 in Fye, so u = 2 — v and
hence v € E. As a result e = |E|.

Now, as noted in (IX), H is a Frobenius group. By Theorem 13.8, p. 68 of
[4] (or by applying G, Theorem 4.2.1(i), p. 119 and Theorem 4.5.3, p. 143},
the irreducible characters of H consist of |U| linear characters with P in
their kernel and (|P| — 1)/|U| characters of degree |U| induced from P.

Therefore
|Pj—1 p?—1

o T ei-D/e-n Pt
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Denote by x; the p — 1 characters of degree |U|.
By G, Theorem 4.2.12, p. 128,
(C.1)
K| x(s3) U
=g T X |<|U|+IUIZX’ ),
x€Irr(H) X
By the orthogonality relations, for every natural number j not divisible by
b,

p—1

Y < Y )P = (Cu(s)l = 1P| =
=1 x€Irr(H)

Rewriting (C.1), we obtain

1
lpe - |U|*| = sz Xi(s?)| < (max|x:(s* (Z Ixi(s)] )
1
p—1 1/2 p—1
< (Z|Xi(32)|2) (ZlXi(s)l2> <p*/2
Thus
e>p? (|U|2 _ p3q/2) )

But |U} = > p?~! and we have assumed ¢ > 5, so finally

|E|=e>p"2-p?/? > 1.

It remains to show that |E| > 2 when ¢ = 3. Suppose for any ¢ € F,,
that the polynomial

fe@)=z(z-2)(x—c)+(x —1)
has aroot in F,,. Clearly, for every ¢, we have f.(0) # 0 and f.(2) # 0. Thus
there must exist distinct elements a and b € F,, such that f,(z) and fy(x)
have a common root d # 0, 2. But then d(d — 2)(d — a) = d(d — 2)(d — b),
which implies that a = b, a contradiction.
Thus there is an element ¢ € F, such that f.(z) has no root in F,.
Suppose a is a root of fc(x) in Fps and let Gal(Fys /F,) = (). Then
2
fe(@)=x(z-2)(z - )+ (z - 1) = (x — a)(z — a®)(x — a® )
2
fe(0) = -1 = (—a)(—a*)(-a* ) = —N(a)
fo2) =1=(-a)2=0")(2-a")
=(2-a)(2-a)*(2—-a)* =N(2—a).

It follows that a € E and, since 1 € F as well, we have |E| > 2. O
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By Lemmas C.1 and C.2, to prove Theorem C it suffices to show that
E = E~1. We do this now.

Lemma C.3. E = E~L

Note. Lemma C.3 is easy to prove for p = 3. If N(a) = N(2 — a) = 1,
then N(¢7!) =1 and N(2—-a7!) =N(a7}(2a - 1)) =N(a"1(2-a)) = 1.
The work mentioned in (IV) shows that whenever p and ¢ are primes that
satisfy (A) and E = E~!, then p < 3.

Proof. Let s € Pg%, t=sY and P, = P§.

Step 1. For every x € PU there exist u, v € U and s; € Py such that
T = usiv.

Proof. If x € PU, then ¢ = s'u’, for some elements s’ € P and v’ € U.
If s # 1, then s’ € Fy, = F; x U by (VIII). Hence there is an 53 € Py
and u € U such that s’ = usju™1, so x = §'u' = usju~' = usyv for
v=u"lv eU. O

Step 2. Let sy, s2 € Py and u € U. Then syuss € U implies either

(1) sy =s2=1or
(2) u=1and s;s2 =1.

Proof. If s; # 1, then so # 1. Since sjusy = slsg_lu € U, we have
slsg_l =1, or 81 + s3/u = 0 when considered as elements of Fpe. Then
u = —83/81, S0 u € UﬁFI;k =1 and s; + 52 =0 in Fpq, ie., 5350 = 1 in
P. O

Step 3. If t; € P¥, then (PU)N (PU)1 = U.

Proof. Let X = (PU) N (PU)%. Since P, normalizes U, we have U C X.
If x = s'v/, where s’ € P and «' € U, then s’ = z(v/)"! € PN X. Thus
X C (PN X)U and hence X = (PN X)U.

Suppose that X # U. Since U operates irreducibly on P by (VIII), it
follows that X = PU and hence t; normalizes PU. Since P char PU, we
know t; normalizes P and therefore {t;) = P; also normalizes P. Thus P;
normalizes P N QP, = Py. Since |QFy|, = p, it follows that Py and P, are
Sylow p-subgroups of Q Py and hence Py = P;. But then Py normalizes U
and [Py, U] CUN P =1, and finally U centralizes Py, a contradiction. O

Step 4. Conclusion.

Proof. Let a € E# and let b be the element of E such that a + b = 2 in
Fpe. Then as+ bs = 25 so in G we have s°s® = s2, and

(C.2) s 207 lsab s = 1.
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Thus, if k € F, and £ = k — 2, after multiplying on the left by ¢t=%+2 = ¢=*
and on the right by t*=2 = t¢ we have

(C.3)
72 ot s ab~! s b
A/-_/kﬁr—"ﬂr ’; " xFM/—tM
t=tsbs TRtk (am 1)t R sk s TR kTl (qp )T Rl gR gttt — 1.,
| — Nre—  — N —
s—ktkt—Lge s—ktltk—1t—kgk s—ftle—k+1lgk—1

Now observe that
s =57 (sY) = 5Ty rey) = [s%,9] € Q.
Since Q is commutative, (C.3) becomes

(C.4)
s—k42 sk—Z(a—l)tks—k+1 -1 sk(ab—l)t"-ls—kn 4=l gh=1pt* 2=k ok _ 1

J

g v~ v~
u1s1v1 U282V U3 s3v3

By Step 1, there are elements u;, and v; € U and s; € Py, (1 <7 < 3), such
that

k—2(a-—1)t"s—k+1

U811 =8
k-1
(C.5) Ug8qvg = s¥(ab1)t sThRF2
k—2
ugszvg = s*TIpt sk

and by Steps 2 and 3
(C.6) 8; #1 (i=1,2,3).

If we multiply equation (C.4) on the left by s* and on the right by s~* and
use equation (C.5) we have

t2uy s1v1t " Lugsqvat tugssvs = 1, and hence

-2 _ 1 4t —2, _q1.4-2
ub t2sy v tTlsot T ol uzszvaul (uph)t =1
—— e N e

w3 wiy wa
If we set
_ 7t _ =2 _ t
w] = Vg U3, we =vzu; , and w3 = viuy,
then w; € U and
(C.7) tlset™l = (w153w2t251w3)‘1.

Next we show that (C.5) holds with a, b, u;, and v; replaced by a?, b7,

u?, and v, respectively. We prove only the first equation since the proofs of
79 )

all three are similar. First observe that in Fpe, a? + b = (a + b)F = 2P = 2
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so that a? € E. Regarding the first equation of (C.5) modulo P, since
UN P =1 we see that (a=1)*" = u;v;. Hence

-1
1

u - —IntE -
510 wvy = us1v; = s¥7 (a7 sTRHL

k—2

= 52y v s7F !

-1, -1
=Skz—2(3—k+1)v1 ug uLvy
and so

up! k=2 ~k+1yo tu"?!
s =8 s 1 %1 and
(C.8) ! ( ) ’

s1 = (sk—2)u1 (S_k+1)v;1.

It is enough to show that this equation holds with u; and wv; replaced by
u? and o7, respectively.

Writing (C.8) in Fpe gives s1 = (k — 2)suj + (—k + 1)s/v;. Taking p*t
powers, we get s; = (k — 2)suf + (—k + 1)s/v}, which implies that in G

51 = (s (s~RHyur”,

as desired.
It now follows that (C.6) is still true with w? in place of w; for (i =
1, 2, 3). Hence
wys3wats ws = whszwht?s wh,

which implies

(C.9)  t2wyPsy wl Psswyt? = sywl syt € (PU) N (PU)Y.

Hence, by Step 3, slwg"lsl_l € U. Since sy # 1, it follows from Step 2
that w§™! = 1 and hence w3 = 1 by (A). Equation (C.9) then shows that
53wl sy = wh™! € U, so Step 2 gives w;? = 1 = wh™' and hence
w; = wy = wg = 1. Then (C.7) becomes t~1s5t~! = s7't72557, i.e.,

(C.10) 1251t sat sz = 1

Regarding (C.10) modulo Q, since Py N @ = 1 we see that s3s283 = 1.
Hence (C.10) becomes

y_132y s72s2%s, y_lsl_ls_stly sl_ls_lssgl y_133s_1s§1y s3 =1.
h\,_dw—l\ > 7N\ /o ~ o N
t2 51 t-1 s2 -1 83

Identifying Py with its image in End([Q, Po]) and regrouping, we have

y—lys_2y—sl_ls_zysl_ls_ly—sas_lys3 =1.
Thus we see that y is in the kernel of the map

~14+s2—s7 s 2 45T s —sas T b sy = (5T 1~ s7 s —s3) (s - 1).
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If x € [Q, Py] is chosen such that z°” = z, then z centralizes s and hence
centralizes Py. Then z € Co(Pp) N [Q, Po) = 1 by (X). Thus s~! operates
without fixed points on [Q, Py], so  is in the kernel of s71 +1—s7 s~ —s3.
Therefore we have

y—sa+s_l-sl_13_1+1 —83 st —.‘;l_ls_1

=y Yy oy
Setting t; = y~1s;y for ¢ = 1, 2, and 3, it follows that

y=1.

tat 81 tl_lt_l
1 1,-1 1,,-1 1 1,-1,.-1
83 tatsit] U7 =83 Y "835YyS "S8s1Yy 81 8y
=y Y Ty =1

so sit7 it~ =t~ s,
It now follows that if u € U#, then

wtti T =t s e (PUY N (PUYE Y

If t; # t~1, then by Step 3, utti 't € U, and so u®* € Ut = U since
tt; € P;. But then u® = sl_lusl € U implies, by Step 2, that s; = 1,
contradicting (C.6). Hence ¢; = t~1 and s; = s71.

For k = 3 the first equation of (C.5) gives us

3
s(a™1)" 572 = u3s~ vy, and hence

2 = v tsurts(a™ e,
Regarding this equation modulo P, we get vl_lul_l(a‘l)ta =1, ie, v =
—1(,-1)t
uy (@™1)*. Then
-1)t3 —1)13

_ _ - 3
32 = ] 18U1 l(a l)t s(a — svls(a

and so (v; + (a=1)**)s = 2s in Fpe. This yields v; = 2 — (a~1)°, and
N(2—(a™1)*") = N(v;) = 1. Since (a™1)%* € U, it follows that (a=1)*" € E.

We have now shown that if a € E then (a‘l)ta € E. By induction it
follows that

t3n

(@) e
for any natural number n. Taking n = p, we get a! € E as desired. []

Problem 1. (See (IV).) Can p = 3 in Theorem C?



APPENDIX D

CN-Groups of Odd Order

he proof in G that every CN-group of odd order is solvable requires

extensive passages in Chapters 7, 8, and 10 of G. While this material
is worthwhile for a deeper understanding of group theory, most of it is
unnecessary for the C N-theorem if one combines ideas from Gorenstein’s
proof with ideas from the proof in W. Feit’s Characters of Finite Groups
[6]. We indicate how to do this now.

One first reads Chapters 1-8 of G or the substitute prerequisites that
are described in Appendix A, as well as Sections 1-4 of this work and
Lemma 10.1.3 of G. Then one notes that for G solvable of odd order,
Theorems 7.6.1 and 10.2.1 of G follow from our Theorems 4.18(b) and 3.7,
while the proofs of Theorems 7.6.2 and 10.3.1 reduce to one paragraph and
one sentence respectively. One proceeds to the introduction of Chapter 14
and to Section 14.1, which is slightly easier for G of odd order (but not
necessarily solvable). Lemma 14.2.1 is easy, but then it is useful to insert
the following lemma, suggested by the proof of (27.6) in [6].

Lemma D.1. Suppose G is a minimal simple C N-group of odd order, p
is a prime, P and @ are Sylow p-subgroups of G, and PN @ # 1. Then
P=q.

Proof. Assume the result is false. We will obtain a contradiction. Take
P to violate the conclusion for some Q. Let N = Ng(Z(J(P))). (One
may substitute L(P) for J(P) throughout this proof if one prefers to use
Theorem B.4 instead of Theorem 6.2.)

Take any @ such that P N @ is maximal subject to P and @ violating
the conclusion of the theorem. Let M be a subgroup of G maximal subject
to containing Ng(P N Q) and satisfying Op(M) # 1. Let P; and @ be
Sylow p-subgroups of G containing Np(P N Q) and Ng(P N Q), and let P,
be a Sylow p-subgroup of G containing P;. Since PN Q C P,

PnQCNp(PNQ)CPNPCPNP.

153
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By the choice of P and @, we have P, = P, and hence P, C P. Similarly,
@1 € Q. Thus

D PNn@QcCcPNM and
(D-1) PN M and Q@ N M are Sylow p-subgroups of M.

Since M C G, we have M solvable. Moreover, O,(M) # 1. By (D.1),
(PNMN(QNM)=PNnQCPNM, and hence PN M # QN M.

Therefore P N M # Op(M) or Q N M # Op(M) (actually both). By
Corollary 14.1.6 of G, M is a 3-step group with respect to p. From the
definition of a 3-step group and a short argument Op (M) =1 and

(D.2) PNQ=0,(M).
Hence, by Theorem 6.2,
Z(J(P)) = Z(J(P))Op (M) < M.

So M C N. By the maximal choice of M, we have M = N. Furthermore,
by the definition of a 3-step group,

N/Op ' (N) is a nonidentity p-group.

Let K = O, ,»(N). Then N/K D (N/K)' = N'K/K, and the quotient
is an abelian p-group. So

(D.3) PAN'KCP.

We wish to apply the Focal Subgroup Theorem (Theorem 1.17) to P and
G. Suppose z, y € P and z is conjugate to y in G. We claim that z7 !y €
PN N'K. We may assume that , y # 1. Take t € G such that z* = y. If
Pt = P, then

t € N(P) C N(Z(J(P))) C N and
zly=c"H 2t e PNN' C PN N'K,

as desired. If P* # P, take a Sylow p-subgroup @ of G such that Q is
maximal subject to

Q#Pand QNPDOP'NP.
Then y € PN Q and, by (D.2),
YEPNQR=0,(N)COpp(N)=K.

Similarly, since & = yt_l, re€K Thuszrlye PNnK C PNnN'K, as
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desired. This proves the claim, and (D.3) and the Focal Subgroup Theorem
yield

PNnG = (a:’ly | z,y € G and z and y are conjugate in G>
CPNN'KCP
But G’ = G, because G is simple, a contradiction. O
Lemma D.1 has some easy consequences.

Lemma D.2. Suppose P is a nonidentity Sylow subgroup of a minimal
simple CN-group G of odd order and N = Ng(P). Then P C N'.

Proof. Suppose z, y € Pandt € Gand z* = y. If z = y = 1, then
1y € N'. Otherwise, PN P* # 1, and then P = P! by Lemma D.1,
whence

te Nandz ly=z"Y"lzte PN N
By the Focal Subgroup Theorem, PNG’ C PN N’. Since G' = G, we have
PCN'. O

It is easy to see from Lemma D.1 that a minimal simple CN-group
of odd order cannot contain a 3-step group as a subgroup, which yields
Theorem 14.2.2. In addition, Lemmas D.1 and D.2 simplify the proof of
Theorem 14.2.3; one may use Ng(P) in place of Ng(Z(J(P))), since Ng(P)
is not nilpotent by Lemma D.2. The rest of the proof of the C'N-theorem
may be read as in G without change.






APPENDIX E

Further Results of Feit and Thompson

n Theorem 15.8 and Corollary 15.9, we presented some new results of
Feit and Thompson about the situation in which

T€ M, Cqglz)ZM, Ne #(Csx)), and N e Mgp,.

Here we present some additional results of theirs and some applications that
shed further light on this situation and could lead to further reductions in
the proof of the Odd Order Theorem.

The following result was proved by Philip Hall for applications to his
theory of regular p-groups, using his commutator collecting process. It
may be found on pp. 3741 of [26] and in many other books (e.g., [17,
pp. 315-318}).

Theorem E.1. Let
G=G12G,2G3D...

be the lower central series of a group G. Take x, y € G and a positive

integer n. For r = 2,3,...,n, let e, be the usual binomial coefficient
n\ nn-1)n-2)---(n—r+1)
r) r! '

Then there exist elements ¢, € G, for r = 2,3,...,n such that

2y = (o) e

Proposition E.2. Suppose p is a prime and R is a p-group of nilpotence
class at most p — 1. Define a mapping ¢ of R into R by ¢(z) = z?. Then

(a) ©1(R) has exponent 1 or p, and
(b) if R C ;(R), then ¢ is a homomorphism.
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Proof. This result follows immediately from Philip Hall’s theory of regular
p-groups (e.g., [26, pp. 41-49]). Since it is easy to derive from Theorem E.1,
we will do so.

Step 1. Suppose R’ has exponent 1 or p. Then ¢ is a homomorphism.

Proof. Take any z, y € R. We want to show that (zy)? = 2PyP. Apply
Theorem E.1 with n = p. Since G has nilpotence class at most p — 1, we
have ¢, € G, =1. Forr =2,...,p—1,¢, € R and e, = (’T’), which is
divisible by p, whence c& = 1. Therefore, zPy? = (zy)?. O

Step 2. Conclusion.

Proof. Clearly, (b) will follow from (a) and Step 1. We prove (a).
Use induction on |R|. It is sufficient to show that (zy)? = 1 for any =z,
y € R of order 1 or p.
We may assume that {(y) C R = (x,y). Take a maximal subgroup M of
R that contains (y). Then M <« R. By induction £;(M) has exponent p.
Since
QM) Rand R=(z,y) = (z,U(M)),

R/Q(M) is cyclic and R’ C Q;(M). Then, by Step 1,
(xy)? = ¢(zy) = d(x)p(y) = 2PyP =1. O

Recall (from Section 1) an operator group A acts regularly on G if
Cg(a) =1 for all a € A#.

Theorem E.3 (Feit and Thompson, 1991). Suppose p and ¢ are dis-
tinct odd primes, R is a p-group, Ry and R; are nonidentity subgroups of
R, B is an operator group on R, and A is a subgroup of B. Assume that p
does not divide |B} and

|A| =q, |R0| =Dp, R1 is cyclic, CR(R()) = Ro X Rl,

and A fixes Ry and acts regularly on R. Then
(a) g divides (p— 1),
(b) Q1(R) has exponent p, Ry Z (Q1(R))’, and |Q;1(R)/(Q:1(R))'| = p?,
(c) |21(R)] < p?, and
(d) if B fixes Rg®(Q;(R)), then B fixes Ry.

Proof. Step 1. Part (a) is valid and p > 7.

Proof. Since A acts regularly on R, it acts regularly on Ry. Consequently
q | (p —1). Since p and q are odd, we obtain (a),and p>2¢+1>7. O

Step 2. Let S be any A-invariant subgroup of R of exponent p that prop-
erly contains Ro. Then Ry Z §’, |S] < p?, and |S/S'| = p?.
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Proof. Since ¢ > 3, an examination of the p-groups of order at most p*
yields the conclusion when |S| < p?, so we will assume that

(E.1) S| > p*.
Take V € SCN(S). Then
(E.2) |S/V| divides | Aut(V)| and |S| = |S/V||V].

Since S has exponent p, V is elementary abelian. If |[V| < p?, then (E.2)
gives
|S/V| < pand p* <|S| < pp* = p°,
a contradiction. Thus |V| > p3 and

(E.3) r(S) > m(V) > 3.

Let Z = Q(Z(S)). Since Cr(Rg) = Ry x Ri, we have RgyNZ = 1.
Clearly,

Ro x Z C Cs(Ro) C Rp x Q1(R1),
so that
(E.4) |Z| = p and Cs(Rg) = Ro x Z.

Note that S is narrow. Let E = Cg(Ro) and take T as in Lemma 5.2
(with S in place of R). Then, by Lemma 5.2 and Theorem 5.3(d),

(E.5) Tchar S, |S:T|=|Cr(Ro)| =p, and RoNT =1.

Since S’ C T, we have Ry € S’ and S = RyT. We now follow the part of
the proof of Theorem 5.5 that comes after (5.5). We have an A-invariant
series of subgroups

T=HODH13"'DHn=17

for which

(E6) H; = [R,H;_1] = [Ro, H;—1) and |H;_, : H| = p,
' fori=1,2,...,n.

Thus |T| = p™.
Let

S=8128%228%>...
be the lower central series of S. Since
|Ho/H1| = p and Hy = [Ry, Ho] = [Ro, T} < RyT = S,
we have |S/Hy| = p? and $? =[S, 5] C H; = [Ry,T] C $?. Thus
(E.7) Hy = 58% and |5/8'| = |S/S?| = p°.
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Similarly, by induction, we see that
(E.8) Hy=5% g8, fori=1,2,...,n.
Let v € R#, o € A*, and w € Hy — H; and define
wo = w and w; = [wi_1,v], fori=1,2,...,.n—1.

Then v* = v" for some integer r such that ¢ = 1 (mod p). Similarly, by
(E.6), for i =0,1,...,n—1,
(E9) w;® = w;" (mod H;y)
' for some integers r; such that 7,9 =1 (mod p).
Moreover, if r; = 1 (mod p) for some i, then A centralizes H;/H;,; and,
by Proposition 1.5(d),
H; = Cy,(A)Hia,
contrary to the regular action of A on R. Thus

(E.10) r; #1 (mod p), fori =0,1,...,n—1,
Similarly
(E.11) r Z1 (mod p).

Now take any integer ¢ such that 1 < ¢ <n—1. Let § = §/H;y; and
apply the bar convention. Then |H;| =pand H; 9 S. So

(w;) = H; C Z(g) and
H; = [Ro,Hi—1) = [(T),(Wi-1, H: )] = [(T) , (Wi-1)]-

By (E.Q);wi_lo‘ = w;_1"-1u for some u € H;. By Lemma 4.2(a) (applied
to ( Ro, H;—1)), we have

w; T = [wim1, ] = [wim1 ™, 0] = [wimr T w07
= [wi1%,v%] = [wi—1,v]* = w® = w™ (mod Hiqq).
Hence

r; =ri—1r (mod p).
We now see by induction that, for i =0,1,...,n -1,
(E.12) r; = ror’ (mod p).

Recall that the nonzero integers (mod p) form a cyclic group of order
p—1and r? =1 (mod p). Therefore, by (E.10) and (E.11), there exists an
integer j such that 1 < j < ¢g—1and 1’ =7 (mod p). By (E.12), none of
the integers 74,79+ . ri*"~1 is congruent to 1 (mod p). Therefore

g—12j+n-12nand|S|=|RT|=pp" < p’

This completes the proof of Step 2. O
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Step 3. Parts (b) and (c) are valid.

Proof. Take an A-invariant subgroup S of R of exponent p that is maximal
subject to containing Ry x € (R;). Then S C Q;(R). By Step 2,

(E.13) Ro Z 5, |S| < p? and |5/S'| = p*.
Let P =Q;(R) and T = Np(S5). If § = Q1(T), then
Np(T) € Np(Qu(T)) = Np(S) =T,

whence T = P and S = Q1(P) = Q1 (Q(R)) = Q1(R), which, by (E.13),
yields (b) and (c). So, we assume that

(E.14) S C Q(T).
Clearly, S 2 Q;(Z(R)) and
Cs(Ro) = SN (Ro x R1) = Ry x Qu(Z(R)).
Let v € Ro* and let K be the conjugacy class of v in S. Then
(E.15) K| = IS : Cs(v)] = |5 : Cs(Ro)| = |51/p%

Let T3 be the normalizer of the set K in T'. Then S C T; and the conjugacy
class of v in T is the union of |T : T1| conjugacy classes of S, each having
|S|/p? elements. Since none contains the identity element,

(E.16) T : Ty||S|/p® < |S| =1 < |S| and |T : Ty| < p?.
By an easy variation of the Frattini argument,
Ty =5Cp (v) =S(T1 N RyRy) = SRo(Tl N Ry) = S(Ty N Ry),

and T1/S = (Tyn Ry)/(Th N Ry N S). As Ry is cyclic, so is T1/S.
By (E.16), T1/S is a cyclic subgroup of index 1 or p in T/S. Hence, by
Lemma 4.5, |Q,(T/S)| < p*. Now, by (E.13) and (E.14),

19.(T)/S| < [Q(T/S)] < p? and [Q1(T)| < p*|S| < p?*2.
Since p > 7 and ¢ < (p — 1)/2, by Step 1,
g+2<2+((p-1)/2)=(p+3)/2<(p+p-2)/2=p-1.

Therefore Q1(T") has nilpotence class at most p — 1. By Proposition E.2,
Q1(21(T)) has exponent p. Since Q1(21(T)) = Q1(T), this contradicts the
maximal choice of S, by (E.14). O

Step 4. Part (d) is valid.
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Proof. Let S = Q,(R) and let G be the semidirect product of S by B. By
(b),
(E.17) 5/8"| = p* and |S'| = |S|/p".

Note that &(S) = 57, because S has exponent p.
Assume that B fixes RyS’. Let v € Ro*. Foreach z € S,

r vz =vw ez =v  (mod '),

so the conjugacy class of v in S is contained in v5’. By (E.15) (in Step 3),
it has |S|/p? elements, and hence is equal to vS’, by (E.17). The same is
true of v2,v3,...,vP~1, Thus

every element of the set RoS’ — S’ is conjugate to an element of Ro¥.
Since B fixes RyS’, it follows that, for each 8 € B,
Ro®? = Ry® for some z € S.

By a variation of the Frattini argument (similar to that used in the proof
of Step 3),
SB = SNg(Rp).

By the Schur-Zassenhaus Theorem, Ng(Rg) contains a complement B*
to Ng(Ro) N S, and B* = BY for some y € S. Therefore

. -1
B normalizes RgY .

Then A normalizes Ry and Roy_l. Therefore

1

R’ = (R ™) = R,

(¥*)"'y € Ns(Ro), y*Ns(Ro) = yNs(Ro),
and a (and A) fix the coset yNs(Ry). Now, |A| = ¢, while |[yNs(Ryp)| =
|Ns(Rg)|, which is a power of p and hence not divisible by g. Therefore

A fixes at least one element, z, of yNgs(Rp). Since A acts regularly on R,
z = 1. Therefore

Vy € yNs(Ro) and Ro?” = Ro.
This completes the proof of Step 4 and of Theorem E.3. O

Proposition E.4. Assume the situation of Theorem E.3 and let S =
Q(R). Suppose |S| > p*, B acts regularly on R, and B does not fix
Ry.

Then Cg(Z2(S)) is abelian and has index p in S.
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Proof. By Theorem E.3,

S has exponent p, |S/5'| = p?, |S| < pY,

and B does not fix Rg®(S)
Hence ®(S) = 5’, and S/’ is elementary abelian.

Now taken, T, H;, H,, v, o, w; 7, and r;, for all i = 0,1,...,n — 1, as
in Step 2 of the proof of Theorem E.3. Then
T = Cg(Z2(S))char S, |S: T| = p,
T=HyD>DH,D---DH,=1,

(E.19) H; = [R,H;_1}, |Hi—1 : Hi| = p, and
H,‘_l = <Wi_1,H¢), for i = 1,2,...,n,

v € Ro*, (a) = A, and v* = v", and w§ = wy® (mod H,).

(E.18)

Therefore
|T| = p™, |S| = p™*!, and H;char S, for i = 0,1,...,n.

Assume that T is not abelian. We will work toward a contradiction. Now
Aut(S/T) is abelian because |S/T| = p. So B’ centralizes S/T. By Propo-
sition 1.5(d), B’ centralizes an element of S —T'. Since B acts regularly on
R, we have B’ = 1 and

(E.20) B is abelian.

By (E.18), there exists 8 € B such that 3 does not fix Rg®. Let us regard
S$/S5' as a 2-dimensional vector space over F,. Then « has eigenvalues r
and rg on RyS'/S’ and T/S’, respectively. Since [ centralizes a, 3 fixes
both subspaces if © # ro. Therefore r = r¢. Since B fixes T'/S’ and p does
not divide |B|, B fixes some complement Q/S’ of T/S" in §/5’. Let 8 have
eigenvalues ¢ and ¢¢ on Q/S’ and T/S’, respectively. If t = to, then [ fixes
every 1-dimensional subspace of S/S’, including R¢S’/S’. Thus

(E.21) t # to.
By (E.16) and (E.19) in Step 2 of the proof of Theorem E.3,

w;® = wr™ (mod H;q)
(E.22) . .( *
for r; = ror* and 1 = 0,1,...,n — 1.
Similarly one can show that

B — ,,.t

w;” = wg mod H»i
(E.23) i +)
for t; =tot* and ¢ =0,1,...,n — 1.
Take k minimal such that T/H}, is not abelian. Then

(E.24) (Ho, Ho)Hy = T'Hy, = Hy_;.
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(Actually T' = Hy_1, but we do not need this.)
Now take ¢ maximal such that [H;,T] € Hj and j maximal such that
[Hi,Hj] Z H. Then, by (E.lg),

(E.25) 0<j<i<k-2and [wi,wj]er_l—Hk.
By (E.22), there exist « € H;11 and ¢’ € Hjy; such that
w;* = w;" and w;* = wjrfx',
and similarly
[wi, w;]* = [ws, w;]™ -t (mod Hy).
By Lemma 4.2,
[wi, w;]* = [wi*z, w; &) = [w]*, w}’] = [wi, w;]™"7  (mod Hy).
Therefore, by (E.25), r;rj = ri_1.
By (E.22), rorirord = ror*~1, so
(E.26) ror' T =kt
By using 3 instead of «, we obtain similarly
(E.27) tottd = k-1,

Now p* = |T/Hi| < |T| = p* = |S|/p < p?~! by Theorem E.3(c), so
k < g — 1. Recalling that rq = r, we obtain from (E.26)

pI¥iHd = ph=l pi 42 — k=i and j+ 2=k — i (mod g).
Since 0 € j <i<k-2<¢g—-—3, wehave 0 < 74+2 < ¢g—1 and
0<k—-i<k<g¢g-1,s0
j+2=Fk—i
Now, by (E.27), to = t*~17%=J = ¢, a contradiction. This completes the
proof of the proposition. O

Corollary E.5. Suppose that M is a maximal subgroup of G, = is an
element of M, of prime order p, Ca(z) € M, and N € M(Cg(x)). Assume
that N ¢ My and that

(i) |M/M'| is prime, or
(i) ©1(0p(M)) has no normal abelian subgroup of index p.
Then every maximal subgroup of G is of Type I or Type IL

Proof. Note that we are in the situation of Corollary 15.9, with r = p.

Therefore M is a Frobenius group possessing a cyclic Frobenius complement
E such that

|[ENN|=|N/N'|, Ne({z)) S ENN,

E.2
(E.28) N e Mg,, and p € 12(N)
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Hence O, (M) is a Sylow p-subgroup of M, and of G. By Proposition 16.1,
M and N are of Types I and II, respectively.

Let K; be a Hall k(NN )-subgroup of M NN and R be a Sylow p-subgroup
of M N N. As in the proof of Corollary 15.9, we see that

Cn,(z) >1, M N N is a complement to N, in N,

(E.29) |K1| is prime, and R is contained in an abelian
normal complement U; to K; in M N N.

Hence
(E.30) R=0,(M)N(MNN)=0,(M)NN = COP(M)(IL').

Now we show that (ii) yields (i). Assume (ii), and let S = Q;(0,(M))
and Ry = Cgr(N,). Since p € 12(M), r(R) = 2. By (i), Op(M) is not
abelian. Therefore, by Theorem 12.7 and (E.30),

Ry =Op(F(N)) 9N, |Ro|=p,
(E.31) CO,,(M)(x) =R=Ryx (R N Eo),
for some complement Fg to Rg in M N N,

and RN Ey acts regularly on N,. By Proposition 3.9, RN Ey is cyclic. By
(E.29), Cn,(x) # 1. Hence

(E.32) (x} = Cgr(N,) = Ry < N and K normalizes Rp.

Since M is a Frobenius group, E acts regularly on O,(M). Now, by (E.31)
and (E.32), and Theorem E.3, with O,(M), K;, and E in place of R, A,
and B,

S has exponent p.
Hence, by (ii), |S| > p*. Furthermore, by Proposition E.4, E = K, which
proves (i).

To complete the proof of the corollary, we can now assume (i) and assume
that G contains a maximal subgroup N* that is neither of Type I nor
of Type II. Let K* = Cn,(K,), Z = K1K* — K;UK*, k = |K;|, and
k* = |K*|. For each maximal subgroup L of G and each subset T of G,
define the sets L and %c(T) as in Section 14, p. 109. By Lemma 14.5,

(B:33)  |9(D) = (Lol - DIG: L| = |G| <|L :lLal - I_i_|> ’

and the sets %G(E) are disjoint for nonconjugate maximal subgroups L. By
Theorem 14.7(e), (a), and a short argument,

_ 1 1 1
(E.34) |%c(2)| = (1 st kk*) Gl

and %5(Z) is disjoint from (L) for every maximal subgroup L.
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Now let

s ﬁ"%@' +16a(N*)] + [€a(N)| + |%:(2))).

Then s < 1. By Theorem 14.7, N* is conjugate to the unique maximal
subgroup containing C(K;). By Proposition 14.2(a) and (g), we know
that |N/N,| = |KiV1| < |M| and |[N*/N%| = |K*|. Therefore, by (E.33)
and (E.34),

ao(l_ 1) (1 1N, 1 1N,/ 1 1 1
“\E )T\ TN TR TN b kR )

Since K K* is a proper subgroup of N, |N| > 3kk*. Similarly |N*| > 3kk*.
Since |K1Uy| < |M|, we obtain

14 (L 2 )y
s kk*  3kk* ’

a contradiction. [
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