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PREFACE

Nonlinear equations come to us in tremendous variety, each with its own
questions and its own difficulties. At one extreme are the completely integrable
equations, with constants of the motion and a rich algebraic structure. At the
other extreme is chaos, with turbulent solutions and statistical averages.
Between these two possibilities, algebraic and ergodic, lies the full range of
nonlinear phenomena. There are smooth solutions which develop shocks, or
bifurcate, or maintain slow and nearly periodic variations that imitate the linear
theory. Each of these questions requires a separate treatment, and the subject
would be simpler if we know for every equation which behavior to expect.

Nevertheless these equations, the nonlinear partial differential equations
which arise in applications, share one crucial property. They are all vulnerable
when the right pattern in found. It is a slow process, to uncover and reveal their
structure, but it is moving forward.

The papers in this volume reflect a part of that progress. They were
presented at the U.S.-Japan Seminar in Tokyo in July 1982.

One goal of the seminar was to establish personal contact among those
mathematicians who are actively working for these difficult but fascinating
equations in the U.S. and in Japan. The other goal was a wider one, that is, to
invoke most advanced scientific talks and discussions on major topics in this
developing field of applied analysis.

Thanks to the cooperation of all participants from the U.S., Japan, and
some third countries including China, the seminar was successful in both sense
mentioned above and we believe that these proceedings of the seminar which
contain all papers delivered there will contribute much to the progress of the
study of nonlinear problems.

Finally, we, who served also as the coordinators of the seminar, wish to
express our gratitude to the governmental agencies, i.e., National Science
Foundation and Japan Society for the Promotion of Science, for their support
and to industrial companies in Japan for practical assistances which they gave as
institutional participants. Last but not least, our gratitudes go to all of our
committee members and staff members of the secretariat of the seminar for their
enthusiasm and devotion.

September 15, 1983
H. FUJITA

P. D. LAX
G. STRANG
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Lecture Notes in Num. Appl. Anal., 5, 1-15 (1982)
Nonlinear PDE in Applied Science. U.S.-Japan Seminar, Tokvo, 1982

CONSERVATION LAWS AND THE WEAK TOPOLOGY

Ronald J. DiPerna

Duke University
Durham, North Carolina 27706

We shall discuss some results concerning the convergence of
approximate solutions to hyperbolic systems of conservation laws.
The general setting is provided by a system of n conservation
laws in one space dimension,

(1) gt f(u)x =0

where u = u(x,t) € R® and f is a smooth nonlinear map from rR?

to R". We assume that f is strictly hyperbolic in the sense

that its Jacobian has n real and distinct eigenvalues
Xl(u) < xz(u) < .. < An(u).

With regard to approximation, one is interested in sequences of

approximate solutions generated by parabolic systems

& + f(u)X = e D Ugyr U= uE(x,t)

and by finite difference schemes

d.u + axf(u) =0, u-= qu(x,t),

t

which are conservative in the sense of Lax and Wendroff [8]. A

1



2 Ronald J. DIPERNA

standard strategy for convergence seeks to establish uniform esti-
mates on both the amplitude and derivatives of the approximate solu-
tions in appropriate metrics and then appeal to a compactness argu-
ment to produce a subsequence that converges in the strong topology.
One may regard convergence of the entire sequence as a question of
uniqueness of the limit. We recall that in the setting of hyper-
bolic conservation laws the maximum norm and the total variation
norm yield a natural pair of metrics in which to investigate the
stability of the solution. The L” norm measures the solution
amplitude and the total variation norm measures the solution grad-
ient. Their relevance for conservation laws is established by the
following theorem of Glimm {5] dealing with the stability and con-
vergence of the approximate solutions generated by his random

choice method applied to the Cauchy problem.

Theorem 1. If the total variation of the initial data uo(x) is
sufficiently small then a sequence of random choice approximations
u,, converges pointwise almost everywhere to a globally defined

distributional solution u maintaining uniform contrcl on the am-

plitude and spatial variation:
Juy Coot) ], < const. ugl,

v qu(',t) < const. TV u, .

The constants are independent of the mesh length and depend only on
the flux function f.

The proof is based on a general study elementary wave inter-
actions in the exact solution and in the random choice approxima-

tions u It remains an open problem to prove or disprove the

Ax”

corresponding estimates for conservative finite difference schemes

and parabolic systems. In the latter direction we refer the reader
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to [3] which contains an analysis of discrete wave interactions in
conservative schemes together with a stability and convergence
theorem for a class of methods involving the hybridization of the
random choice method with first order accurate conservative methods.

Here we shall discuss new compactness theorems for sequences
of approximate solutions generated by diffusive systems and conser-
vative difference schemes. The proof involves the theory of com-
pensated compactness which originates in the work of Tartar [11] and
Murat [9,10] and the main step provides a proof of a conjecture of
Tartar [11]. The analysis appeals to the weak topology and aver-
aged quantities rather than the strong topology and the fine scale
features. Regarding the weak topology and the elliptic conserva-
tion laws of elasticity we refer the reader to the work of Ball [1].
The principle statement is that for a class of approximation
methods, which respect the entropy condition, L” stability alone
implies convergence. Gradient estimates are not required to pass
to the limit in the nonlinear functions.

We shall first recall some background involving Tartar's work
on weak convergence and compensated compactness. Consider a se-

quence of functions

m n

un(y): R + R

which is uniformly bounded in LY. It is well-known that one may
extract a subsequence which converges in the weak-star topology of

-]

L :
lim [p u (y)dy = [p u(y)dy

for all bounded B c R". We recall that in general the sequence

u, need not contain a strongly convergent subsequence, i.e. a sub-

sequence converging pointwise a.e. to u. In particular, if g is
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a real-valued map on R™
lim glu (y)) # g(u).

However, after passing to subsequence, composite weak limits may be
represented as expected values of associated probability measures

in the following sense. There exists a subsequence of uy (still
denoted here by un) and a family of probability measures over the

range space Rn,
{v.: y e &
vy Y !

such that for all continucus g: ™ - R,

113 = A d A .
ni{: g(u_(y)) fRn g()) vy( )

The limit on the left hand side is taken in the weak-star topology
of L° and equality holds for almost all y in R". Here ) de-
notes a generic point in the range space R". This result stems
from the work of L. C. Young and was first used in the setting of
conservation laws by Tartar [11]. It is not difficult to show that

strong convergence corresponds to the case where the representing

measure vy reduces to a point mass concentrated at uly):

vy = 6u(y)

More generally, the deviation between weak and strong convergence
is measured by the spreading of the support of vy. If g |is
Lipschitz then

lg(lim un) - lim g(un)|oo < const. max diam spt vy
Y

In the framework of conservation laws, the goal is to show that the

representing measures associated with a family of exact or approxi-
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mate solutions reduces to a point mass or is contained in a set
whose geometry allows one to deduce the continuity of the special
nonlinear maps appearing in the equations. In the case of a scalar
conservation law Tartar [1l1] has shown that vy reduces to a point
mass if f is convex and that, in general, vy is supported on an
interval where f is affine. Here we shall discuss the reduction
of v for strictly hyperbolic systems of two egquations with non-
degenerate eigenvalues. The analysis is based on a study of the
Lax progressing entropy waves in state space [7], specifically on
connections between their structure and the structure of wave pat-
terns in the physical space, cf. [2] for details and additional
references. We also refer the reader to Lax [6] which contains a
discussion of the scalar conservation law and the viscosity method
in the setting of the weak topology.

Before discussing the general case we shall cite an example.
Consider the equations of elasticity in Lagrangian form with arti-

ficial viscosity

t X XX

t X XX

"

and assume that o¢' > 0 while sgn v ¢" > 0. Given initial data
in Lm, there exists for each fixed ¢ a globally defined solution
the amplitude of which remains uniformly bounded as the viscosity

parameter ¢ vanishes,
[u-,t)} + lv(-,t) | < const.

Here the constant depends only on ¢ and in the L® norm of the
data. The bound follows from the presence of invariant regions in
the state space [14]. We claim that by appealing only to the L’

stability and the entropy condition, one may extract a subsequence
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(uE 1Ug } which converges pointwise a.e. to a globally defined
k k

distributional solution of the associated hyperbolic system

I
o

u, - o(v)x

A similar result can be established for a class of first order
finite difference schemes which are based on averaging the Riemann
problem, e.g. the Lax-Friedrichs scheme and Godunov's scheme.

The source of the compactness in the strong topology lies in
the nonlinear structure of the wave speeds and in the dissipation
of generalized entropy along propagating shocks. We shall first
recall the notion and some basic properties of generalized entropy
as for mulated by Lax [7]. Consider a system of n conservation

laws (1). A pair of real-valued mappings on the state space rR"

n: R" » R; qg: R” » R

is called an entropy pair if all smooth solutions of (1) satisfy an

addition conservation law of the form
(3) n(u)t+q(u)x=0 .

For the purposes at hand we shall restrict our attention to the
class of systems having an entropy pair with n strictly convex.
As observed by Lax and Friedrichs [15] this class includes the
basic systems of continuum mechanics. Furthermore, Lax ([7] showed
that all strictly hyperbolic systems of two equations has at least
a locally defined strictly convex entropy and that a broad class
has a globally defined strictly convex entropy. The basic compati-
bility condition which links the entropy n to its flux g may

be derived as follows. Suppose u{x,t) is a Cl solution and
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consider the quasilinear forms of the systems of conservation laws

(1) together with the extension (3):

it
o

ut + Vf(u)uX

Vn(u)ut + Vq(u)uX =0

By replacing the time derivative of u by the spatial derivative

we find that (3) is equivalent to
{=Yn(u) VE(u) + Vq(u)}uX =0 .

Hence the condition

(5) Yn(u) VE(u) = Vgfu), u € R"

is a necessary and sufficient for the existence of an entropy pair.
We observe that (5) represents a system of n 1linear, variable
coefficient partial differential equations in two unknowns n and
g. If n > 2 it is formally over determined but fortunately has
a (convex) solution in the setting of mechanics. Concerning the
structure of (5) we recall the observation of Loewner that the
compatibility condition (5) retains the same classification as the
original system (1). In our setting the demonstration that (5) is
hyperbolic is straightforward: consider the right eigenvectors of

the Jacobian of £

v . = . . .
f(u) rj(u) A](u) rj(u)

Taking the inner product of (5) with rj immediately yields the

characteristic form of (4):

A, Vn =V '.=O"=’
(]n q) Ty 3j 1,2

In the following discussion we shall be mainly interested in the

determinate case n = 2 which can be illustrated with a variety of
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examples. In particular, it is useful to keep in mind that the
smooth motion of an elastic medium which conserves mass and momen-

tum also conserves mechanical energy. For system (2) one may take

Wl s Iv), ') = o(v) .

=
I}
N

The convex function n serves as a generalized entropy for (2)

with generalized entropy flux
g = u I(v)

The identity (5) states the time rate of change of mechanical ener-
gy is balanced by the rate at which the stress tensor performs work.
Within the class of conservation laws with a convex extension

it is standard to impose the Lax entropy inegquality
(6) n(u), + qlw), <0

on weak solutions wu(x,t) for the purpose of distinguishing the
physically relevant weak solutions from the set of all possible weak
solutions. Solutions satisfying (6) are called admissible. We note
that the distributional inequality is meaningful if u is merely a
locally bounded function. For our current purposes we shall re-
strict our attention to weak solutions which lie in the space

1.” N BV. Here BV denotes the class of functions of several vari-
ables which have bounded variation in the sense of Cesari, i.e.
first order partial derivatives representable as locally bounded
Borel measures [4,12]. Experience with conservation laws has shown
that L~ N BV is a natural function space for the solution opera-
tor. In this connection we note that solutions constructed by the
random choice method lie in the space L N BY by virtue of the
stability estimates of theorem 1. Within L” N BV one can demon-

strate that the measure
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def.

5, = n(u)t + cz[(u)X

is concentrated on the shock set of T (u) the solution u, i.e.
the set of points of discontinuity and consequently that the entropy
inequality (5) holds if and only if all shock waves in u dissipate

generalized entropy:

8,(E) <0

for all Borel E C I'(u). This inequality reduces to the second law
of thermodynamics in the setting of fluid flow. Finally, we shall
restrict attention to systems with non-degenerate eigenvalues, i.e.
systems for which the wave speeds are monotone functions of the
wave amplitudes. Technically we assume that Aj is monotone in

the corresponding eigendirection:

.o VAL
(7 Ty v VA # 0

We note that the genuine nonlinearity condition (7) introduced by
Lax [16] is satisfied by several systems of interest: the isentro-
pic equations of gas dynamics for a polytropic gas, the equations

of shallow water waves, the equations of elasticity if o" # 0.

Theorem 2. Consider a strictly hyperbolic genuinely nonlinear sys-
tem of two conservation laws with a strictly convex entropy. Sup-

pose ug is a sequence of admissible solutions in L” N BV, If

IunlOo < M

where the constant M 1is independent of n, there exists a sub-
sequence that converges pointwise a.e. to an admissible solution.

Thus the exact solution operator restricted to admissible

1

Lloc‘ The source

solutions forms a compact mapping from L to
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of the compactness lies in the loss of information associated with
admissible shock waves and in the nonlinear structure of the eigen-
values. We emphasize that the compactness is established without
derivative estimates.

Next, we shall discuss the compactness of solution sequences

generated by diffusion processes

(8) u + £(u) =€ Du__ -

t X

where for simplicity D 1is a constant n *x n matrix. In order to
ensure correct entropy production in the limit as € vanishes, it
is sufficient (and nearly necessary) to reguire that the diffusion
matrix D be non-negative with respect to the second derivative of

n, i.e.
vVin D > 0 .

With regard to the general question of admissibility shock struc-
ture and proper diffusion matrices we refer the reader to R. Pego

[17,18].

Theorem 3. Suppose f 1is a strictly hyperbolic genuinely non-
linear map on R2 with a strictly convex entropy n and suppose
that the diffusion matrix D 1is positive definite with respect to
2

von. 1f u, is a sequence of smooth solutions to (8) satisfying

there exists a subsequence which converges pointwise a.e. to an
admissible solution u of the associated hyperbolic system (1).

Hence the solution operators Se of the parabolic system (8)

provide a family of mappings which is compact from L” to L%oc
uniformly with to €. The compactness present at the hyperbolic

level is preserved uniformly in ¢ provided that the diffusion
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matrix enduces favorable entropy production in the limit.

In the setting of continuum mechanics we recall that the stan-
dard diffusion matrices are merely positive semi-definite because
mass diffusion is neglected. However with additional work one can

establish the corresponding result.

Theorem 4. Suppose that (pg,ug) is a seqguence of smooth solu-

tions of compressible Navier-Stokes

pe * (pu)X =0

(pu) + (pu2 + plp)), = eu

XX

for a polytropic gas p = ApY, y > 1. If the flow is uniformly

bounded and avoids the vacuum state, i.e.

0 <m<p <M and |uF| <M,
" . [ee]

then there exists a subsequence which converges pointwise a.e. to
an admissible solution of the compressible Euler equations. We note
that the compressible Euler equations losses its strict hyperboli-
city at the vacuum state. It is an interesting open problem to
establish the corresponding result without the hypothesized uniform
lower bound on the density p. At a more fundamental level, it re-
mains an open problem to prove uniform 1.” estimates in general
circumstances. For example in the case of hyperbolic systems (1),

it remains an open problem to prove that

(9} lut-,t) | < const. ]uol00

for admissible solutions in L~ A BV with small data. The esti-
mate (9) is motivated by physical considerations but has only been
verified for solutions constructed by the random choice method.

The proof of the theorems described above utilizes the theory
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of compensated compactness. In this connection we refer the reader
to the work of Tartar [l11] and Murat [9,10] and to the forthcoming
Proceedings of the NATO/LMS Advanced Study Institute on Systems of
Nonlinear Partial Differential Equations held at Oxford 1982 and
organized by J. Ball et al. Here we shall simply mention one of

the problems which the theory addresses: characterize the nonlinear

n

functions g{u): R° - R which are continuous in the weak topology

M . R™ which

when restricted to sequences of functions un(y): R
satisfy linear constant coefficient partial differential con-
straints. As an example we mention a result from electrostatics

which historically motivated the general theory. Consider vector

fields

converging weakly in L2

Suppose that the expansion in Z, is controlled as well as the
rotation in w, to the extent that both the sequences of distri-

butions
div z and curl w
n n

lie in a compact subset of the negative Sobolev space Here

H,~ .

loc
distinguished linear combinations of partial derivatives are com-
pact after the loss of one derivative. Under these circumstances

there is precisely one smooth real-valued function ¢(z,w) which

is continuous in the weak topology, i.e. satisfies

¢(z,w) = 1lim ¢(Zn,wn) ,

and its given by the inner product
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¢(z,w) = <z,w>.

Although, in general, the individual terms zJw)  of the inner pro-
duct are not weakly continuous, there exists compensation among the

terms of the sum

which allows for weak continuity. From the point of view of elec-
trostatics, there is precisely one quantity, the electrostatic
energy density which can be measured, provided one agrees that the
process of measurement is modeled by averaged quantities.

For the purpose of applications to conservation laws, let us

recall the duality between the divergence and the curl in the plane,
div z = curl z*

where 2z* denotes the orthogonal complement of 2z and consider
the basic entropy inequality formulated with respect to two dis-

tinct entropy pairs (n ,qj) j =1,2. If, for example, u is a

J n

sequence of admissible weak solutions in 1” N BV it can be shown,

by appealing to Sobolev embedding, that the sequence of distribu-

tions

n(un) + q(un)

t X

lies in a compact subset of H;éc if n 1is convex and consequent-
ly that

n.(u) + g.(u)

jtn'y jinTy
lies in a compact subset of Hiéc for arbitrary (nj,qj). Thus
the divergence of the entropy field (nl,ql) and the curl of the
entropy field (—qz,n2) both lie in a compact subset of Hiic.
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The continuity of the inner product yields a commutativity relation
for the representing measure v. For all entropy pairs (nj,qj),
j = 1,2 we have

(9) VM dy T Npqy> = <YM P<Vegy> = <v,ng><y, gy

where Vv denotes representing measure at an arbitrary point, i.e.
V= Vi) Tartar showed that (9) implies v 1is a Dirac measure
for a genuinely nonlinear scalar conservation law. In [2] it is
shown using the Lax progressing entropy waves that (9) implies that
v 1s a point mass for general genuinely nonlinear systems of two
equations and for the special case of elasticity which has a linear

degeneracy alone an isolated curve.
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§1. Introduction

Global phenomena of pattern formation in systems of reaction-diffusion equa-

tions is the main theme of the present paper. The system is written as

u =du o+ f(u,v)

£ in (t,0) ¢ (0,%) x I,
(P) ve = dyv o+ gwy)

ux = V‘( =0 on (t,X) € (()’4.00) x aI;

where I = (0,m), and 3I its boundary. The system (P) is assumed to possess

Turing's diffusion induced instability, which appears typically in mathematical bi-

ology [7]. In other words, we are interested in the structure of global bifurca-
2

tion diagram - ''global" with respect to the two diffusion parameters (d1’d2) e R, -

of the following stationary system :

du _ + f(u,v) 0,
(SP) Ixx in I,

0,

"

1
T Vex t V)

with the boundary conditions (P)3 on 3I; here, we put d2 = 1/a.
The system (P) has been studied by a number of authors from various kind of
viewpoints. In particular, the bifurcation theoretic work of Mimura, Nishiura and

Yamaguti [ 3] has motivated the studies which succeed, such as Mimura, Tabata and

Hosono [ 4] who studied the singular limit dl + 0 of (SP) using the singular perturbation

17
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technique; the second author [ 5] has obtained a complete bifurcation diagram with
respect to d1 of (SP) in the limit case d2 t +®(i.e,, @ ¥ 0). His limit system 1is
called the shadow system. The first author has developed a new numerical algorithm
to detect and trace all bifurcating branches using a group theoreticmethod [ 2].
Fujii, Mimura and Nishiura { 1] studied local structures of (SP) near double bifur-
cation points (adopting a group theoretic argument), and drew a global picture of
bifurcation diagram, integrating the above analytical and numerical results.
The purpose of this paper is, in part, to give a survey of those works, and
in part, to describe new results which have been obtained after the publication of
{1]. Our method is based on the study of:
(1) local structure at double bifurcation points introducing the Lie group D_[1],
(2) the complete bifurcation analysis of the shadow system [5],
(3) the singular-shadow limit of d2 1 oo, d1 v 0 - which we call the singular-
shadow edge,
(4) the structure of "singular solutions' at the singular limit d1 v 0, and
(5) an integration of these analytical results to have a global picture of bifur-

cating branches.

A key in our paper is the discovery of singular branches which possess both
boundary and interior transition layers, and of singular limit points as its con-
sequence. We shall see in the present paper that the structure of solutions at the
singular-shadow edge seems to play the role of "organizing centre’ of the whole

global structure.

The solution space for the system (SP) will be Ri x X {2 ((dl,a),U), where

X is the Hilbert space Hé = (H]i)2 = (HZ(I) 1 (the boundary conditions (P)S))'

We state the assumptions on the nonlinearities f and g.

(A.1)( i ) There exists a unique constant solution U = U = (u,v) >0 of (SP). See,
Fig. 0.1.
(ii) U is a stable solution of the kinetic system of (P). 1I.e., the Jacobian
matrix at U, B = {3(f,g)/3(u,v)}|0, satisfies tr(B) < 0 and det(B) > 0.

(iii) (P) is an activator-inhibitor system, i.e., the elements of B have the
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b b + -
B=[ 11 12]:[ ]
b21 b22 + -

(A.2) The zero level curve of f(u,v) is S-shaped and f < 0 in the upper region

sign

of the sigmoidal curve. Fig.0.1; f = 0 has three real roots u_l(v) < uo(v) <

u+1(v) for v e A. When it is solved with respect to u, it has three branches

h_l(v) gzho(v) §:h+1(v).
(A.3) Define J(v) by
u,, (V)
(0.1) J(v) = f(s,v)ds.
u_ v

Then, J(v) = 0 holds if and only if v = n* ¢\, and d(J(v))/dv < 0 at v = n*.

(A.4) Let G+(v) = g(h+ (v),v) € Cl(A). Then, dG+(v)/dv < 0 for all v ¢ A.
il 71

There are a number of examples within the setting (A.1)-(A.4). See, [1].

The May-Mimura model for diffusive prey and predator system is an example, in which
flu,v) = {f (W) - viu, and g(u,v) = -{g (v) -ulv,
o o
(0.2)
where £ (w) = (35 + Lou - w279, and g,(v) = 1+ (2/5)v.

This model has been used for numerical tracing of bifurcating branches in [1].

flu,v)=0

e (S Fig. 0.1.

§1. View near double bifurcation points

The constant state U = U has an infinite number of hyperbolic curves Fn (n =

1,2,...) on the (d )-plane, defined by

1’d2
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b, b
2 _1 o 12
VR, = 55

n. n d1~b11

(1.1) ro= i@ + b)), (0=1,2,...).

1’d2
Fn (n=1,2,...) is the set of (dl,dz) 3 Ri where the constant state U has zero
eigenvalues, and hence correspond to primary bifurcation points of 0. see, [3]
and [1]. Each Fn has intersections with the other Fm’s, m#n, m=1,2,... Namely,
rn n = Fnﬂ Fm (n,m=1,2,..., n # m) are double bifurcation points of U, where the
. . : ; - U
linearized operator of (SP)} has two dimensional kernel. Let Tn Fn/ m#nrn,m'
From each points of Tﬁ, there appears a bifurcating sheet of solutions of (SP),
which consists of functions with Dn-symmetry ({1]). See, Fig.l.l. Here, by a
function U ¢ X is Dn—symmetric we mean that its even extension U to [-m,n], consi-

dered as a periodic function defined on the circle {-m, n], is invariant under the

group Dn; Dn is the dihedral group which sends a regular n-polygon onto itself,

o Lo I

. iET]

21
r‘1,r1.
FJ,Z
;dl

X

Fig. 1.1.

The local structure near the double bifurcation points Fn o may be classified
s

into several types according to the symmetry groups Dn and Dm of the kernel at Fn n
>

Using the group representation of the Lie group D_, a number of new bifurcation
diagrams have been obtained in [1]. An example is illustrated in Fig.l.2, which

is the case for the May-Mimura model (0.2).

The double singularity at T may deserve a further investigation. Since the

1,2

bifurcation equations at T take the form (due to a group theoretic argument):

1,2

2 2 .
(1.2, pl{-(alol-azoz) * PPy * PgpPy * PygP, * (higher order terms)}= 0,
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2 2 3 .
(1.2)2 -(blol—bzoz)pz *,Py * QZIDlpz * GgzPs +(higher order terms) = 0,

where ¢ =d - T , the local bifurcation parameters, and a., b., p. . and q. .'s
1,2 1 1 1,] i,j

are all constants; o = (pl,pz) £ Ri = the kernel space at Fl 2 is the amplitude

vector of the bifurcation equations. The bifurcation diagram near Fl > is shown in
>

Fig.1.3 for the case P90 > 0 ([1]). Note, however, that the destination of the

primary Dl-branch is not indicated in this diagram, as well as those of the secon-

dary branches of the Dz—branch.

Fig. 1.2. Schematic Bifurcation Diagram near FZ.

Fig. 1.3. Local Bifureation Dia ram
g near r1,2 (pzzqzo >0).
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If one unfolds (1.2) near the degenerate parameter values Py = 0, an
interesting local bifurcation structure near rl,Z reveals itself. In fact, as may
be the case for the May-Mimura model (0.2), let us suppose that a,0° qgo # 0, and
let P11 be the unfolding parameter as ‘pll‘ < 60 (60: sufficiently small). The bi-

furcation diagram thus obtained are shown in Figs. (1.4)a and (1.4)b, which corres-

: ]
pond respectively to the case 40P11 7 0 and < 0, for Iplll < 8y

i
:
T,

Lk T

ﬁ/ii

Fig. 1'40 Fig. 1.4

" b
The ’Dl pot near r1,2; Zl is a simple degenerate singular point of elliptic type ((a),

P11%0
> 0); of hyperbolic type ((b), P11950 < 0).

Z1 is a simple degenerate singular point placed on the Dz—sheet, respectively

of elliptic type when qgop11 > 0, and of hyperbolic type when qgop11 < 0. As Py

tends to zero, Z1 approaches to the double bifurcation point T Thus, one sees

1,2

that the primary sheet D, has a secondary bifurcation line, which passes Zl and

Fl 2 See, Fig.l.5. 1If one let the parameters (dl,dz) cross this line from the
right to the left, the D2-sheet recovers its stability - hence, this secondary line
is called the recovery line of the Dz—sheet‘

A remarkable fact in these diagrams is that in both cases there appears a "

pot-like" structure due to the existence of T We note that this pot-like

1,2
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structure has been predicted numerically in [1]. A remark is that due to the
fold-up principle ([1]), every Dn~)rimary sheet takes the pot-like form, the origin

of which is a degenerate simple singularity Zn located on the D2n-sheet.

The basic question is the global behavior of this ''pot", and also of the other
secondary branch born at Fl E It is also worthy of noting that from Fz 35 there
appears a secondary bifurcation line of D, - which actually corresponds to the

points where D, loses its stability again. Hence, this line may be called the

2

losing line of DZ' Between s and I, 5, one sees an outcrop of the stable region
3 3

of the primary Dz—sheet. See, Fig.l.5.

Fig. 2.1. The Shadow Branches and their extension to a > 0.

Fig. 1.5. The recovery and losing lines of the 02 sheet;
the shaded part shows the stable region.

§2. View on and near the shadow ceiling - global existence of bifurcating branches

By the shadow ceiling we mean the limit space R, x X of o + 0. If solutions
of (SP) are uniformly L -bounded with respect to d1 and o, one may have the limit

system:

dluxx + f(u,n) = 0, in I,

(s$)
Jp glu,ndx =0,

with the boundary condition u, = 0 on 31, where v = n is a constant function. The
second equation comes from the integration of (SP)2 over the interval I. The

system (S8S) is called the shadow system for (SP).

The global behavior of solutions of (SS) with respect to dl v 0 is the first
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object of the study here, which is expected to approximate the global behavior of
solutions of (SP) for sufficiently small « > 0. In fact, a complete bifurcation

diagram for (SS) has been obtained by the second author [6].

Theorem 2.1. (i) The one-mode bifurcating branch D, emanating from (3?, U) conti-
nues to exist as dl v 0. By the fold-up prineiple, the same conclusion holds to
the n-mode branches D emanating from (3;, U). Fig.2.1.  (i1) These shadow branch-
es Dn (n =2,3,...) do not recover their stability on the way to the limit dz v 0,

and consequently, they have no secondary branches in a generic sense. Hence, only

the Ez-bpanch ig the stable one among the branches on the shadow ceiling.

Theorem 2.2. The global existence result, i.e., the statement (i) of Theorem 2.1
holds as well for the bifurcating branches Dn'S (n=1,2,..) of (8P) for small o
> 0. Namely, every bifurcating branch hits the singular wall dl = 0 for small a

> 0. See, Fig.2.1.

It should be noted that the statement (ii) of Theorem 2.1 does no more hold
for the primary branches Dn's of (SP) even for sufficiently small o > 0, except for

n=1.

§3. The singular shadow edge - Edge continua

The study of the limit dl + 0 of the shadow system (SS) plays a key role in

subsequent discussions. The reduced shadow system as d1 + 0 is defined by

fu,n) =0,
(RSS)

[{ glu,n) dx = 0.
A solution (u,n) € X0 (where v = n is a constant function) of (RSS) is called
a reduced shadow solution, where X, = LZ(I) x H;(I). The system (RSS) has a vast
of solutions as compared with (SS) or (SP}. In fact, one takes ne A arbitrarily.
Suppose 52(”)’ £ = 0, +1, are the three solutions of (RSS)l. See, (A.2). Let
u(n;x) be any step function in which u(n;x) takes either of El(n)’ 2 =0, +1, for

almost all x ¢ I. Let Il(n) ={xel |u(n;x) = gl(n)}, ¢ =0, +1. Then, (RSS)2
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reduces to

e

(3.1) I gg,(m,m 1, =0,
=0

where |Iz(n)| = measure of Il(n)’ 2= 0, +1.

Thus, for any n ¢ A, if one chooses Iz(n), 9 =0, fl, so as to satisfy (3.1),
the corresponding step function is a reduced shadow solution of (RSS). See, Fig.
3.1. Note that there are many such step functions, since only the ratio of lll(n)|

's has the meaning in (3.1).

Fig. 3.2.
Fig. 3.1. The Stingular Shadow Limit Solution

(n = 1).
Among the reduced shadow solutions, we pick up those which satisfy the rela-

tion:
(3.2) g6, (), ) |1 |+ g(&_  (n®), n=)[1% ] =0,

and write them as (&*(x),n*). Let Hg(x) be a function of { 3*(x)} , the even ex-
tension of which (considered as a periodic function on the circle [-w,n]) has

exactly n intervals of Ii ( and of Ifl). (For the definition of n*, see (0.1).)

1
Namely, &;(x) is a function of {G*(x) } which has n boundary discontinuities.
Finally, let u;(x) be a function of { ﬁ;(x) } , the even extension of which is in-

variant under the group action D . We have the following

Theorem 3.1. The shadow branch Bn converges to (u%(x),n*) as dl v 0 in the punc-

tuated sense. See, Fig.3.2 for n = 1. Namely, it converges to u;(x) uniformly on

the interval T - X.f (xi-k,xt+) for any « > 0, where {x3 }.ﬁ are the points of
i=1""1 7 1 1=l

discontinuity of u;(x) and the location of each discontinuity is determined by

(8.2).

One may thus call (u*(x},n*) the ﬁn—limit solution.
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The set of functions {ﬁ;(x) } can be obtained from the limit solution u;(x)
by a translation, an extension, or a contraction of intervals of the blocks of
ux(x), so long as such an operation keeps the ratio ‘Iill / [Ifll. (Note that a
division of a block of ua(x) yields a function of { &;+2k(x)} (for some k > 1).)
Thus, the set {aﬁ(x) } may consist of a set of one-parameter families of functions,
including the limit state u;(x) - which we call the edge continua. An example is

illustrated in Fig.3.3, where the continua of the uE(x) and uz(x) are shown.

*
u2(x)

Fig.3.3. Edge continua of ug(x) and uZ(x), formed by translations of blocks.
Note that the terminal states (the right and left pictures) are
different from uf(x) (upper), and ug(x) (lower), since they contain

"slits" at x = 0, % or .

54. View on the singular wall

By the singular wall, we mean the limit space R+ x XO (3 (a,(u,v))) of dl¢ 0.

The goal of this section is the study of the structure of solutions on the singular

wall of:
f(u,v) = 0,
in I,
1
(RP) TV toeluy) =0,
v, =0, on 3T.
X

The system (RP) is called the reduced problem of (SP), and its solutions reduced
solutions. However, we are only interested in such reduced solutions that from
which we can extract smooth solutions of (SP) for (small) positive d1 v+ 0. Such

limit solutions will be called singular solutions (,and a singular branch if it
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consists of a one-parameter family of singular solutions).
Let SO denote the set of singular solutions. We associate to So the follow-

ing asymptotic norm. For U = (u,v) ¢ SO, the asymptotic norm HU]L is defined by

(MOfL = tim || (ulesxd,vies,x)l,
s e+0 ;¢

where (u(e;,x),v(e;,x)) is a family of solutions of (SP) which converges to U as

e=¢d1 in the punctuated sense, and

2
d k d
Jju, v ) = max |(es—) u| + max |[(5=)v].
2.¢ kZO xel | dx xel dx

Mimura, Tabata and Hosono [ 4] have found a family of singular branches with
interior transition layers for sufficiently small o > 0. On the singular wall,
these singular branches correspond to the double solid lines in Fig.4.1. Ata = 0,
they start from the gingular-shadow solutions (u;,n*) (n=1,2,...), and hence

connect to the shadow branches Dn (n=1,2,...) at the edge.

1/ "Stngular Wall"
a

Fig. 4.1.

In the following, we consider only one-mode type of solutions for simplicity
of presentation. As in §3, one may choose an n e A, firstly; solve f(u,v) = 0 to
have u = h(n;v), where h(n;v) = h_l(v) for v < n, and = h+l(v) for v > n(Fig.4.2}.

Substitution of u = h(n;v) into (RP)2 leads to a scalor equation for v:

!

4.1 v + G(n;v) = 0, x eI,

XX
where G(n;v) = g(h(n;v),v). Note that G(n;v) has a discontinuity in v at v = n.
Eq.(4.1) with v, = 0 on 31, has ana -family of strictly increasing solutions V?g

(x) € Cl(f), 0 <a <3, for each n ¢ A. Let U?’a(x) = h(n;Vn;x(x)). According to

1
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the construction, the function U?’a(x) has a discontinuity at x=x* e I. Then, the
N N
couple (Ul ,Vl 1

A question is that when a small diffusion dl > 0 is introduced to (RP)I, under

), 0 <a <a is an o -family of reduced solutions for each n e A.

n,o

} can be smoothed out by an interior transi-

what conditions the discontinuity of U
tion layer. The following result has been obtained in [4]:

If the Fife condition
£,

“.2) £

f(s,n)ds =0,

te satisfied, then the couple (UT;l,V n”‘) g a singular solution. Thanks to the

1

assuumption (A.3)}, there exists a unique separation point n=n*, which satisfies

(4.2). Hence, follows an a-family of singular solutions with an interior transi-

. o, @ MLa Cy
tion layer J = {kUl ’Vl ) e X, 0 <a < apt

Y S N
¥L7 I W
q
n Fve--
v (a) -
i R
D’/ Vo
| |
[}
£,
2 (o)

-1
Fig. 4.2.

As is remarked in [ 1], this singular branch with an interior transition layer

ceases to exist as a reaches ai. See, Fig.4.1. Fig.4.2 illustrates that part of

the nonlinearity f which is actually used by a singular solution VT*“l(x) of (4.
1) { the solid line ). Since the numerical range (vax),vM@x)) of V?*g (x) 1is

monotone increasing with respect toa > 0, it is easily seen that, as x increases,
one of vm(a) and VM(x) reaches finally to the extremum values 1 or n of £. This

is the reason why the singular branch ceases its existence at o =u i.
It is wondered whether this is all the existing singular branches, and what

happens at the ''critical point"a = ai on the singular wall. This is a question

which has been left open for a long time. The answer is that there appears

C

another singular branch from(xl

upwards toa + 0. See, broken lines in Fig.4.1.
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This new branch is characterized by that it has both boundary and interior transi-
tion layers. Hence, we shall call it the singular branch with boundary and intertor

transition layers. The critical point oS will be called the singular limit point.

1
The detailed construction and proofs will be published elsewhere. However, it should
be remarked that such a singular solution can not be constructed within the Fife
setting as in [4]. Moreover, the "boundary layer'" thus constructed is completely
different in nature from boundary layers observed in Dirichlet boundary-value prob-
lems.

The construction on the singular wall of a singular branch with boundary and
interior transition layers can be performed simply by adding boundary layers (
actually, "boundary slits'") to [UT*# ,VT*J ). There are three such branches, cor-
responding to where the slit exists: at the left ( #&), or right end ( ﬁ#), or at
the both ends ( ﬁ)#). See, Fig.4.4. The essential point in our construction is
that the depths uf the slit (5?1 - 5%1) and (EEI - gil) are determined by the
generalized Fife condition (See, Fig.4.2):

b b
(4.3) -1 ds =0 a| g ds= 0
. a (s,vm) s=0, an a (S,VM) s= 0.

13
-1 +1
Note that the part of nonlinearity f wused by this singular solution is the solid

line plus (one or both of)the double solid lines in Fig.4.2.

[

U

7

Fig.4.3. The Singular Solutions with Boundary-

/.

and Interior-Transition Layers.

It is noted that the four branches constructed in this way are different each

other when they are measured by the asymptotic norm L. (They have the same XO-

norm.)
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Fig. ¢.4. The Dependency on Nonlinearities

of Singular Branches.

To study the interrelation of these branches, one may need the quantities:
E*(f,g) = j:‘] G(n*;v)dv.

Suppose E*(f,g) < 0. Then, asy tends toa i, the depth of the slit at g+1 tends
to zero, while the depth at E—l remains bounded away from zero. (And, vice versa
if E*(f,g) » 0.) Thus, the four singular branches form two '"wedges' on the singu-
lar wall as in Fig.4.1l, since the asymptotic norms of the branches J and o# take
the same value at o= uT. The same is true for the branches #0# and ”o

What happens when one deforms the nonlinearity (f,g) so that E*(f,g) changes
smoothly ? See, Fig.4.4. The four singular branches move smoothly, and when E*(
f,g) = 0, the tops of the two wedges meet together. Then, they split again for
E*(f,g) > 0. Note that an exchange of branches occurs in this process, since the
depth of the slit at Ql remains finite instead of 5_1 for the case E*(f,g) > 0.

It should be noted here that the wedges of singular branches on the wall are
traces of "hitting" and "splitting' of limit points of some branches of the

stationary problem (SP).
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§5. Discussions - the Global View

The purpose of discussions here is to integrate the analytical results in §1
- §4 into a unified view to the global bifurcation structure for our nonlinear
One of the main interests is to see the mechanism of success-

diffusion systems.

ive recovery and losing of stability observed in primary branches of (SP). (See,
(119

The local structure of double singularities placed on the trivial sheet ((dl,
dz), 0) e Rf x X (§1), the global structure on the shadow ceiling (§2), and the
somewhat complex structure of singular branches on the singular wall (84) - they
are all expected to reflect the real existing bifurcation structure of the non-
linear diffusion system.

The first key seems to be the structure of continua at the singular-shadow

In fact, an integration of all the above results, together with the numerica

edge.
evidences reported in [1 ], may lead us to a working hypothesis on the edge
continua.
r T 7 T
Lo by
1
v o H
\‘| " 4 d “l
= &% v/ ;
=a \/ e
1 - Q =
\ .Y \\ %)
D D
. 3,+ 3, -
D, sheet ’ »
2 b, sheet
‘ Fig. &. Za Fig. §. Jb
Extension of the Edge Continuwm; The line ——-——- = shows the recovery line of D,,_ and Dy,
»

which tend to the Shadow Singular Limits. The two Singular Limit Points of the D, sheet
appear here. !

Two singular branches with boundary slits are said to be terminal branches of

Dn . (or Dn ) if ata = 0, they are connected by a (one-parametrized) edge

continuum which includes the limit state Dn +(o-r Dn ). Then, for a pair of two
’ F 2

terminal singular branches of Dy there may exist a sheet of solutions of (SP)
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which connect the two terminal branches, and to which intersects the primary sheet
Dn + trangversally. See, Fig.5.1 (a) for the case of D2 , and Fig.5.1 (b) for
£ E

D, -

>

Assuming this, the global picture of the Dl-sheet looks like Fig.5.2. The

pot-like structure in Fig.1.4 which begins at Z, on the D2 sheet extends, and as a

1

becomes snmaller, the '"loop' expands until it hits the singular wall ata= uc,
P P g 1

. . . . . c
where it yields two singular limit points. Asa < ars

arcs, one is, of course, a cross-section of the primary Dl-sheet, and the other is

the loop splits into two

the branch connecting the two terminal singular states of DZ’ which have a boundary
and interior transition layers. As o tends to zero, the latter arc shrinks to the

edge continuum of D2, while the former remains as the primary ﬁl . shadow branches.
s

Fig. 5.2. The Global Picture of the Dl pot.

An important consequence of this picture is that the outer surface of this Ul—
pot is the stable region of (P), while the inner surface corresponding to the
boundary- and interior-layered solutions is the umstable region. A remark should
be made here. There remains a possibility that this stable region may have some
isolated "unstable <slands" encircled by a Hopf secondary bifurcation line. How-
ever, it is shown in [ 5] by an a priori estimate that such Hopf points, if exists,

cannot exist for sufficiently small x > O.

We note that such a global picture is supported by uuaicerical computations in
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[1], and in fact, this has been essentially predicted there. In [1], we were
not aware of the nature of the inner surface of the pot, since the boundary- and
interior-layered solutions and the existence of singular limit point were not dis-

covered yet,

Fig.5.3 shows the recovery of stability of the D2—sheet. This picture shows
the mechanism of a recovery of stability; this recovery is actually performed by a

separation of a sub-branch which has both boundary- and interior layers.

Fig. 5.3.

+—branche8.

The Singular Limit Points of 01 - and the Recovery of DZ,

It should be remarked that, as is mentioned in §1 (see, also [ 1]), the
primary bifurcating Dz-sheet loses stability on the way to the singular wall d1+ 0.
One sees an outcrop of the stable region of D2 between FI,Z and F2,3 in Fig.1.5.
The above analyses suggest that the recovery line of stability of Dy, which starts
r1,2’ enters into the singular-shadow edge a1 = d1 = 0, while the losing line which

starts T

5 3» enters into the singular wall d1 = 0 at latest at the singular limit
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point of D2, namely, at:xg = 4<§. As a result, the the stable region of the D2-
sheet accupies a band-shaped region of the D,-pot. Similar statements hold in

general to the Dn-sheets (n > 2). See, Figh.4 for the case of the Dz—sheet.

Fig.5.4. The Stable Region of D,-pot.

As a conclusion, our study suggests that the real organizing centre which
control the whole bifurcation structure may lie on the singular wall, and especially
in the singular-shadow edge. Further studies are necessary to clarify the situa-
tion. Though there remains many questions which are not answered, we believe that

our study may serve as a first step towards the global bifurcation study of non-

linear diffusion systems.
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We discuss the existence of a strong solution of the non-
stationary Navier-Stokes system in LY spaces. Our results
generalize L€ results of Kato and Fujita. To establish

LY theory we study the Stokes system and construct the
resolvent of the Stokes operator.

Introduction and summary of results.

This is an introduction to the articles [3-7] which concern the Stokes and
the Navier-Stokes equations.

Let D be a bounded domain in R"

(n > 2) with smooth boundary S. We
consider the Navier-Stokes initial value problem concerning velocity u= (ul,---,

un) and pressure p:

%%—- su + {u,grad)u + grad p = f in D x (0,T),
divu=20 in D x (0,T),
u=20 on S x (0,T),

u(x,0) = a(x} in D

with given external force f and initial velocity a. Here

(u,grad) =

37
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Many mathematicians, J. Leray, E. Hopf,-++ have studied the solvability of
this problem; see Ladyzhenskaya [9] and Temam [14] and -papers cited there.
On the existence of a regular (in time) solution there is a celebrated work
established by Kato and Fujita [1,8].

Let us quickly review their theory. As is well known (see [9]) the space

(LZ(D))n admits the orthogonal Helmholtz decomposition

n
(L))" = X, @G,

X2 = the closure in (Lz(D))n of {u e (C:(D))n; div u = 0},

1
G2 = {grad p; p € WZ(D)},

where W?(D) is the Sobolev space of order m such that Wg(D) = Lr(D)' Let

P be the orthogonal projection from (LZ(D))n onto X Using P, we can trans-

2

form (I) to the evolution equation in X

2
du
(11) Frad Au = Fu + Pf (t >0), u(0) = a,
where Fu = -P(u,gradju. Here the operator A = A, = -PA is called the Stokes

2

operator in X, with the domain

2

D(A) = {u ¢ W;(D); u=0 on S}n X2.
For simplicity we assume Pf = 0, Applying semigroup theory, Kato and Fujita
have proved the existence of a unique global strong solution of (II) for every
a e X2 when the space dimension n is two. While, when n = 3, they have
/4

proved the existence of a unique local strong solution of (II) for a € D(A1

))

where A% denotes the fractional power of A.
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Qur aim is to show the existence of a unique strong solution without
assuming that the initial velocity a is regular. To do this, we develop Lp
theory (1 < p < «) which extends the corresponding L2 theory of Kato and

Fujita. When p = n, our main result reads that a ¢ Ln(D) n X, <mplies the

2
existence of a wunique strong solution. With a particular choice of p = 2 this
is just a result of [8]. On the other hand Serrin [12] raised a gquestion how to

show the existence of strong solutions in n > 4., Our Lp theory also answers

to his problem.

To develop our theory the crucial step is to derive the following two
properties of the Stokes operator Ap; here Xp and Ap are Lp—analogues of

X2 and A2, respectively.

Theorem 1 ([3]). The operator -Ap generates a bounded analytic semigroup in

Xp' Moreover, the estimate
o+ Ap)_lfH < TK%:TWIfH, fe Xp’ larg A| < m-e (e > 0)

is valid with constant C, where ||f|| denotes the norm of £ in Xp'

Theorem 2 ([4]). The space D(A;) is the complex interpolation space

Ja, where 0 <o < 1.

[Xp,D(Ap)
Remark. When ©p = 2, we easily get the above properties by using the abstract
functional analysis, because A2 is a strictly positive self-adjoint operator.
Remark. Solonnikov [13] has proved the first part of Theorem 1 when n = 3,
although his method is different from ours.

Remark. For the Laplace operator, the corresponding results are known by

Fujiwara [2] and Seeley [11]. However, we cannot apply their results to our case

since P does not commute with A.
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To prove the theorems above we construct the resolvent of the Stokes operator,
using pseudodifferential operators; see [3]. Since we use technique of pseudo-
differential operators instead of integral kernels, our argument is more clear
than the classical potential-theoretic discussion. Here our symbol class of
pseudodifferential operators differs from that of Fujiwara [2] and Seeley [11]
because the Stokes system is elliptic not in the sense of Petrowsky but in the
sense of Agmon, Douglis and Nirenberg. Using Lp estimate for pseudodifferential

operators, we can prove Theorems 1 and 2; for the detail, see [3,4].

Theorem 2 is useful in estimating the nonlinear term Fu in (II).

Lemma 1 ([5]). Let 0 2 8 < %—+ n(l - 1)«1 We have

p’ 2’

;%P cu,gracyv | < Miladull [1A%v]]

with constant M = M(6,8,0,p) if 8+6+p > %%—+ %3 8 >0, p >0, p+é > %,

In particular, 1f p = n the above estimate is valid for

We now consider (II) in Xp' The existence result follows from Theorem 1

and Lemma 1. Our method to prove is similar to that of Kato and Fujita.

Theorem 3 ([S]). PFixz y such that n/2p - 1/2 <y < 1. Assume that a € D(A;).
Then there exists a unique local strong solution u of (11) with the following
properties. For some T > 0,

(1) u ig continuous from [0,T) to D(A;),

(ii) u s continuous from (0,T) to D(Ag) and
A% || = ot"™™) as t >0 for some a, y <a < 1.

Moreover, u is smooth in D x (0,T). If HA;aH is emall, then u can be

extended to a global solution.
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One can easily see that Theorem 3 includes the results of Kato and Fujita [8]
as a particular case p =2, n = 2, 3.
Remark. When p = n,y can be taken to be zero and the assumption on initial
data is a ¢ Xn' Kohn [15] pointed out this assumption is reasonable because
the norm of a in Xn has zero dimension in "dimensional calculus'.
Remark. Even when the zero-boundary condition in (I) is replaced by some first

order boundary condition, we can prove similar results; see [6].

We next discuss the analyticity of the solution u of (II}.

Theorem 4 ([7]). (i) ZLet u be as in Theorem 3. Then u(t) <& analytic in
(0,T) with value in w;(n).

(ii) Suppose that S 1is analytic at x Then, u(x,t) is analytic in (x,t)

o
at (xo,t), t ¢ (0,T).

The first part implies the time-analyticity of the solution, while the

second part implies the spatial analyticity up to the boundary S.

In [7] we extend the results of Masuda [10]. He discussed the time-

analyticity in L, spaces and the interior spatial analyticity.

2

In the following sections we give heuristic arguments to prove the foregoing
Theorems. We omit proof unless it is very short and understandable even to

non-specialists. For the technical detail, see author's papers [3-7].

1. The resolvent of the Stokes operator.

We investigate the way of XA-dependence of the resolvent (X + Ap)_l. To do
this we construct the resolvent. We begin with transforming the equation

(X + Ap)u = f in Xp into the following Stokes equations
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(X - A)u + grad p

I
=
[N
=
wo)

divu=20 in D,

u=0 on S,

where p 1is some scalar function. Since f determines u for X e C\ (-%,0),

we denote u by u = fo. Our plan to construct GA is

1°. Reduce the problem to the Dirichlet problem with tangential
boundary data.

2°. Solve an integral equation on the boundary for large A.
To do Step 1° we recall the hydrodynamic potential. Set

[

i J) 1 n
)% aelg)?

K = (61 -

where 67 is Kronecker's delta and ]E = Ef +osee 4 Ei. The hydrodynamic

potential of f is
(K6 (x) = (F K F 0,

where F 1is the Fourier transformation with respect to x. The definition of

Kxf implies that u' = KAf satisfies the equations

(A - AJu' + grad p' = f in R

il
<o

div u' in R,

where p' is some scalar function on R". Using Kxf, we reduce the problem

to the Dirichlet problem. More explicitly, w = KAf - fo satisfies

(A - A)w + grad p'" =

i
(=}
[y
=3
o

divw =0 in D,

w o= Kxf on S,
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where p'" 1is some scalar function on D.
We now reduce the problem to the Dirichlet problem with tangential boundary

data. Let z = N@ satisfy

Az

il
o
-
=
o)
i
S
Q
3
wn
-
€y
)
~N
—
tad
=
o
>~
i
=]

where vy denotes the unit interior normal vector to S at x ¢ S. Let <, >

be the standard inner product in R". Definition shows that

v = w - grad N<v, nyf>, q = p" + AN<y, YKAf>

satisfy

[f]
<

- A)v + gra in D,
(* ) grad q 1
divv =0 in D,

v=g on 8§,

|
(=]

<YV,v> = on S,
where yw denotes the trace of w on S. We call this problem the Dirichlet
problem with tangential boundary data and denote v by v = V,g. If we notice

that the projection P 1is defined by
Pf = f - grad N<v,yf> for div f = 0,
we see that v = Pka - fo and g = yPKAf. We thus have

GAf = PKAf - VAMAE with fo = YPKAf.

Since P and KA are written explicitly, all we have to do is to construct VA'
Remark. We have reduced the original problem to the Dirichlet problem with
tangential boundary data not with general boundary data, This is because the

effect of the normal component differs from that of tangential component.
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We now give a rough outline of Step 2°. By Step 1° our problem is reduced
to construct VA' Let YA be a pseudodifferential operator of order one on S.

We consider the single layer potential K}\(GS ® Yxh). We see
th = PK%(GS ® Ykh)

satisfies the Dirichlet problem with tangential boundary data YW, h; we denote

wah by th. Our problem is now to solve the integral equation

g = Skh
for given tangential boundary data g. In [3] we construct YA such that S

has the inverse for large X. We thus have VA = WAS;I' This yields

_ -1
GAf = PKAf - WASA fo.

We thus have constructed the resolvent.

To construct Yk the author introduced a symbol class Sm;k (see below) of

pseudodifferential operators.

Definition ([3]). Let m and k be real numbers. Then we denote by Sm;k the
set of all P, € CwORn x Rn) (A € €\ (-»,0]) such that for all multi-indices

a,B and positive numbers e,w the estimate

Bl NENSTIE W R IS U L e I LAY

is valid with constant M = M(a,B,¢,w); here <\;£> denotes (}X‘ + |Ei2 + 1)1/2

and <g> = <0;&>,
Remark. Grubb [16] introduces a similar symbol class. In our situation her

symbol class reads that the estimate above is replaced by

otafalp, . 0 | < Meceesr e o™ 1By o ke lels,

If we use this symbol class, our formulation will be more clear than that of

[3,4].
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2. Analyticity of the semigroup e ™ and domains of A%

In section 1 we obtain an explicit form of GA’ T.e.,

-1 -1

(A + A)Tf = G f = PK,F - W,SITM .

Since the spectrum of A 1is contained in (-»,0), to prove Theorem 1 it suffices

to prove the estimates

1. {ipk, £l] :lCTIHfH, f e (Lp(D))n, larg A| < 7-e
2. |lw,s; ' g ;]CT]nfn, £ e (Lp(m)“, larg A] 2 m-e

with constant C = C(e) for large A. To show Step 1 is easy, so we give a
proof.
Proof of Step 1. It is known that P 1is a bounded operator in (Lp(D))n, s0 it

suffices to prove
C
£l < T el

Since the symbol of KA satisfies the estimate

gk, (&) < o
this follows from Mihlin's LP-boundedness theorem.

Remark. In principle P _boundedness of operator follows from estimates for its
symbol. Classical results are the Calderdn-Zygmund inequality and Mihlin's
theorem for convolution type operators. In recent years LP-boundedness is proved
for more general class of operators, namely, pseudodifferential operators.

We often use Lp-boundedness theorem to construct and estimate the resolvent;

see [3,4].
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We see Step 2 follows from the following three estimates:

-1/2
gl < cla™%Pgl,
-1+1/2
el < cla YR gl
Isnl < clhl, <hv> =0,

where |h| denotes the norm of h in (Lp(S))n. The first two estimates are
easy to prove, The last one follows from the construction of YA; for the detail

see [3].

By Theorem 1 we can define fractional power A; (Re 2 < 0), using the

Dunford integral. To prove Theorem 2 it suffices to prove

1211 = c et 2!

1A

C
a

for all 2z such that -a < Re z < 0, where ||A;|| is the operator norm of A;.

We prove this estimate, using the Dunford integral

z 1 z
AT = a7 jr -2 Gxdk.

The expression of G, enable us to estimate the right side. The estimate
||X -0% pr.dr]| < ceslm 2
A =
r
is easy to prove like the proof of Step 1. While
e|Im z|

Z
[| XT 07 VM A < ce

is not easy. We have to study VAMA = WAS;IMA more carefully. In {[4] we

decompose  V,M, into main term and error term to get the estimate.

Remark. Theorem 2 is very similar to the case of the Laplace operator Bp
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with zero boundary condition. Fractional powers of both operators are closely

related. Indeed, in {4] we show

DAYy = DB n X, O0<a<l.
( p) ( p) o a

3. Solutions to the evolution equation (II).

We now consider the nonlinear equation (II) and discuss only the existence

results. In Theorem 3 the reader may have a canonical question.
What ie¢ T ?  Are there any estimate for T from below ?

To answer this question we restrict ourselves in a simple case, for example,

p =n and give a rough outline of proof of Theorem 3; for the detail see [5].

We begin with estimates for nonlinear term Fu in (II). To avoid technical

difficulties we only give a proof to the last part of Lemma 1. That is

1/

(A~ 4 P(u,grad)v”n < MHA1/4an HAl/szn Hlan : L -norm of f).

Proof. In a word this estimate follows from Sobolev's inequality and Theorem 2.

Let H;Q(D) "be the space of Bessel potentials, that is,

2a _ 2
HED) = (1), WD),

Theorem 2 now implies that the canonical injection D(Ag) c H;u(D) is continuous.

Sobolev's inequality now implies that the injections

1/4

@ 0 e Ly (0
1/4

(®)  D(Ay,5) < L (D)

are continuous. The second inclusion (b) yields
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HA'1/4 P(u,grad)v]| < C”P(U’grad)VHZH/S'

Applying HGlder's inequality, we have

ot gradivll,, < Cliully, llerad vil, .

since P is continuous from Lp to Lp' The estimates

1/4
llull,, < cllatl_

1/2
lgrad il < clla™2ull,

follow from (a) and D(A;/z) c W;(D). Combine the above to get the result.

To solve (II) we consider its integral form

t - (t-5)A
0

(111) ut) = e a4 S Fu(s) ds, t > 0.
We use Theorem 1 and Lemma 1 to prove existence theorem for the integral equation
(III) in Xn. We construct approximate solutions by the iteration scheme

-tA

uO(t) = e a,

t e-(t-s)A

. Fum(s) ds, m > 0.

um+1(t) = uo(t) + S

We will estimate IIAaum(t)I|, where ||£|| denotes the norm of f in X .
Theorem 1 implies that
a4
This yields the estimate

HAauO(t)|| SKot » 20

with
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Ko = sup t%)]a% e th al| < Ca|‘a[| < o,
0<t<T
We consider the following problem:
If K, ts small enough, is it possible to estimate []Aaum(t)|
by Kom ¢ from above with constant Kam < K<e  such that K is independent
of m?

The answer is yes and we will give a proof; see [1,5,8]. Suppose that for

some m > 0, um(t) satisfies

1A
=
+

HAaum(t)|I for all a 2 0.

am
Lemma 1 with § = 1/4, 6 = 1/4, p = 1/2 implies

-8 8-1
A™"Fu ()l s MK Kns -

We thus have

T
a -a -a-8 -8
A% ) <kt SO (e-5)78 ||a7ku_(s)]] ds
<K t™% for all o, 0 <a<1l-6=3/4
= “a,m+l =
with
Ky mer = Kag * Coug BOL-8-0,8) Ko K,

where B(a,b) 1is the beta function. This implies that um(t) is well-defined
for each m > 0 as a element of C([0,T], Xn) n C((0,T], D(Aa)) for all «a,

0<acx< 3/4 and that um(t) satisfies

A% (0] sk t7%, 0z <3/4

Put k_ = max{K, , K 1} and note the definition of K to get
m om pm am

v 2
km+1 < k0 + C km
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where C 1is a constant depending only on A. An elementary calculation shows

that if
(€) kK. < -—
then for each m > 1 the estimates

k < K < 1/2C

2
K g+ CppgM B(1-6-0,8) K

i
=~

A

Ka,m+1
are valid for constant K. We thus have

-Q
>

A%, (0] sk, t 0<ac<3/4, 0

WA
P

A
-3

Using again Theorem 1 and Lemma 1, we can prove

HAd(u

1A

m+1

) - u ()] zkcwé(zcm"“1 B(1-6-0,6)t™%, 0 < a < 3/4.

Since 2CK < 1, this implies um(t) converges a solution u(t) of (III) and
u(t) 1is eventually a unique strong solution of (II}; see [1,5,8].

We consider the meaning of (C). In (C) k0 depends on T and a, so (C)
is a condition for initial data and the length of time interval where the

solution u(t) of (ITI) exists. There are at least two types of sufficient

conditions for (C). Conceptually speaking, these are

(i) T 1is fixed and a is taken so that ||a|| is sufficiently small,

(ii) a 1is fixed and T 1is sufficiently small.

Let us explain (i). Suppose |la|| is small, say [la]] < 1/2¢C for

a = 1/2, 1/4. Then clearly ko < 1/2C for all T. This implies that the

solution u(t) of (ITI) exists for all time if la] <1/2¢ C for a = 1/2, 1/4.

Namely, there exists a global solution of (III) if {|a|| is emall enough.

We next explain (ii). First, we prove that
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(a3

OLHAOLe-tA a[[ >0 (t->0) for all a ¢ Xn (a > 0).

1f a € Cz,c = (C;(D))n n X2, we see b = A% is in Xn' This yields
A% a) = Xl bl >0 (x> 0).
Suppose now a € Xn' Since C; o is dense in Xn’ we can take a sequence {am}
in ¢, such that a_ tends to a in X as m - =, Using {a }, we have
0,0 m n m

-tA

1A% A el < % ™ @ - ay) + A% a ]

Tl

A

CaHa - amH + ta“Aae

Since Cu is independent of m and since the result is valid for a € Cg o’

this estimate now implies

tallAae_tA all >0 (t~>0).

This result implies that we can take T sufficiently small so that
TQHAae-tA all s 1/2C (¢ =1/2, 1/4) for fixed a. In other words for every
a e Xn there is a solution on (0,T] for small T. Note that this T

heavily depends on a.

4. Analyticity of the solution of (II).

We can prove time-analyticity of the solution u of (IiI) as the proof of

Theorem 3. Here we discuss spatial analyticity for u which is analytic in time.

To prove (ii) in Theorem 4 we consider the elliptic system of (u,v) of
n+2 variables as in Masuda [10], where v 1is the vorticity, Z.e., v = curl u.
Let us derive the elliptic system. For simplicity we assume n = 3. Since u

is analytic in (0,T], u 1is holomorphic in some complex neighborhood U of
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(0,T]. This implies wu{x, T+ic) is harmonic on U c [ = Rz for fixed «x.

That is,

242820 i G=DxU
T 90
Since div u = 0, we have
du - curl v =90 in G.
Sum up both sides to get
Au - curl v =0 in G,

G

where AG is the Laplacian on G.

We derive the equation for the vorticity v. For simplicity we assume

f = 0. Apply curl both sides of (I) to get

g¥,_ Av + curl(u,grad)u = 0.

Since v is holomorphic in U, we have

Summing up both sides, we get

3v
AV - a7

curl(u,grad)u in G.

The foregoing argument shows that (v,u) satisfies

AV - — =g in G,

v-curlu=0 on §x0U,
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where g = curl(u,grad)u.

If the right hand side is regarded as a given data, this system is a linear
elliptic system with complementary boundary conditions on § x U; see [7].
Moreover, this itself is a nonlinear elliptic boundary value problem for (v,u).

Apply regularity theorems for elliptic system to get spatial analyticity of u.
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Hash's Implicit Function Theorem and The Stefan Problem
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SAPPORO 060, JAPAN

We sketch out a proof of the local existence of the
classical solutions for the multidimensional Stefan
problem and its relevance tc Nash's implicit function

theorem,

The Stefan problem is a mathematical model of the melting of a body of ice,
where we suppose that a body of ice melts, at each point of the surface, with
velocity in proportion to the normal gradient of the thermal distribution in
water and that the thermal distribution satsfies the heat equation. We show the
local existence of the classical solutios for the initial value problem of the
Stefan problem, by using Nash's implicit function theorem, which enables us to
reduce the solvability of a nonlinear problem to that of the linearized problem
even if a loss of regularity of the solution for given data occurs.

Here we suppose that the initial surface FO of a body of ice is a closed

¢ hypersurface in Rn, the exterior of T, 1is the ice part, a heater is in the

0

interior of T, whose surface J 1s also a closed c” hypersurface in R? and

0

the domain QO bounded by FO

conditions of regularity, these assumptions, e.g., that the water part is in the

and J is the water part. (Except the

ice part, are not essential.) The locus of a surface of a body of ice, which is

the free boundary to be determined, is denoted by F¢ 7= {(x,t) € R x [0, TI;
L]

55
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®(x, t) = 0}, where t 1s the time variable. We denote the free domain with

water by 0, n. See Flgure 1.
3,T

Figure 1.

J <\> heater

%,T

5,T

Our unknowns are the defining function ¢ and the thermal distribution u

in water in Qq) 7 Our equations and result are as follows.
3

Fquations,
(1) ¢|t=0 = &g, ult=0 = a, where {x; <I>O(x) =0} =T,.
@ 3, -3"3)u=0 1n @

t 1=1"x

(3) u

b on J x [0, T].

(5 u

0 on rd),T'
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n

(5) 3t® -~ kzi=l(3x u)(BX ) =0 on T, p» where k 1s a positive (from a
2

i i

physical reason) constant.

Theorem. JSuppose that a and b are nommegative Cw functions and
satisfy the compatibility conditions up to <« order on FO and J at t =0
(which are necessary conditions of the existence of a ¢ solution for (1)-
(5)). Then, for sufficiently small T > 0, there uniquely (in the essential
sense) exist a ¢ function ® anda C function u on Q@

(1)-(3).

T which satsfy
>

Remark 1. For the one-dimensional Stefan problem, 1t is well known that
the unique global classical solutions are obtained (see Rubinstein [5]). For the
multidimensional problem, the unique global weak solutions are obtained by

Kamenomostskaja [2].

Remark 2. The Cw-ness of the solutions in Theorem is remarked by M.
Tanigawa [6]. The author's original theorem is that for solutions with finite
differentiability of any order. The reason for giving this limitation was purely
technical. That is, the author did not know whether there are smoothing
operators up to = order on a scale of Banach spaces which is used in [1]. They

are constracted by Tanigawa.

Remark 3. For the general existence theorem of the classical solutions for
the multidimensional Stefan problem, it seems that Nash's implicit function
theorem is necessary, i.e., we encounter an essential loss of regularity. It
oceurs because to solve the single first order equation (5) for ¢ on r¢,T
does not cover the loss of regularity of the normal derivative of the thermal

distribution u, that is, the former gains the regularity only along the
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characteristic curves although the latter loses the regularity in every
direction. See Figure 2. The sltuation of this phenomenon 1s clearly
recognized when we linearize the problem (1)-(5). Note that this difficulty
does not occur in the one-dimensional Stefan problem, because the free boundary

is one-dimensional so that 1t is covered by the characteristic curve.

Figure 2: The reason why the loss of regularity occurs.

the free boundary F@

l

sT

the characteristic curves

the directions of loss of

_/f//,%

regularity of the normal
derivative of u with

(3t -AMu=20

-

Remark Y4, Vhen a body of ice melts rapidly, e.g., when |grad al > e >0
on FO at t = 0, we do not need Nash's implicit function theorem. See
Kinderlehrer and Nirenberg [3] and Meirmanov [4]. G. Komatsu suggests to the
author that the essential reason why we can get around the difficulty of the loss
of regularity in this case 1s in the fact that a heat potential cover losses of

regularity in the time direction when the melting is rapid.

Remark 5. The assumption that the initial data a and b are nonnegative
(which is natural in physics) enables us to solve the linearized problem of (1)-
(5). We resolve the linearized problem into a parabolic mixed problem and an

initial value problem in Q for a first order operator which has the form

%, T
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at -k f2(3vu)3v on FG,T’ where Vv 1s an outward unit normal to the surface
{x; #(x, t) = 0} in ®' and u is the thermal distribution at which we
liearize the problem. We can solve the latter problem if the characteristic
curves starting from Q. at t =0 cover the domain Q

0
satisfied because u = a >0 on Q

. This requirement is
9,T

5 at t=0,u=b>0 on Jx[0,T]l,u=20

on FQ T and we have the maximum principle for the heat equation. See Figure
3

3. This fact is the core of the present work.

Figure 3: The reason why we can solve the linearized Stefan problem.

The characteristic curves

of the operator

2
9 - ]
. k £( Vu)av cover

2
Q@,T because k > 0,

> 0 and Bvu < 0 on F®

T

il
o
~—
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Quasi-linear equations of evolution

in nonreflexive Banach spaces

Tosio Katol

Department of Mathematics
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An existence-uniqueness theorem and a regularity theorem
are given for the Cauchy problem for quasi-linear equations
of evolution in nonreflexive Banach spaces. As an appli-
cation, C*-sclutions are constructed for hyperbolic systems
of partial differential equations in the "Schauder canonical
form" (which include generic equations in two independent
variables. )

1. Introduction

In previous publications [7,9,10], we considered the Cauchy problem for

abstract quasi-linear equations of the form
Q) du/dt + Alulu = £(u), t > 0.

In this theory {at least) two Banach spaces X, Y are used, such that the solu-
tion u(t) is in Y and du(t)/dt is in X. The object of the present paper
is to give another version of the theory which is more flexible and convenient in
some applications.

The main differences of the new version from the previous ones are {(a)
elimination of the reflexivity assumptions on the basic Banach spaces X, Y,
(b) elimination of the isomorphism S between Y and X, and (¢) extension of
the domain of the map w > A(w) to all of Y without imposing any restriction
of the growth rate. In the simple form presented here, the new result will not
completely cover the previous ones, but it will be applicable to problems that

were not accessible to the latter.

61
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In particular, we have in mind applications to first-order hyperbolic systems

m
(HS) du/dt + I a, (wdu/dx, = f{u), t >0, x&R",
2y 4 3 -
3=
in which the unknown u = {ul(t,x),...,uN(t,x)} is a real N-vector function, the

. . . 1
aj(z) are real N x N matrices depending on =z & R' in the C -manner, and f(z)

is a similar N-vector function. It is assumed that the aj(z) are simultaneously

. . . R N o 1
diagonalizable by a common real matrix q(z) depending on z & R in the C™-

manner., Our abstract results will be applicable to solve the Cauchy problem for
(HS) in the class u E’C([O,T];Cl(Rm;RN)) for some T > 0, given an initial
L™ &Y), [Here and in what follows # & C(R™;RY

value u(0) = gecC ) implies

that &(x) —> 0 as |x]-—> =, and similarly for Cl( m gl

RGR).]
Our old theory is not applicable to (HS) simply because Cl is not reflex-
ive. It may be remarked that what is really required in the old theory is not

necessarily the reflexivity of Y but rather that Y be locally closed in

o

X : Y =Y in the notation introduced below. Even this condition is not satis-

fied by the pair Y = Cl, X =C.

It will be recalled that for m = 1, classical Cl—theories for (HS) were
given by Douglis (L] and Hartman and Wintner [6]. (For earlier works in this
direction, see Schauder [1L] and Friedrichs [5].) A generalization to the case
m > 1 was given by Cinguini Cibrario [3). All these proofs make essential use
of the moduli of continuity of the first derivatives of the functions involved,
indicating that there can be no cheap way to construct a Cl—theory for (HS). Imn
fact our proof depends on the use of semigroups acting on spaces of functions
with fixed moduli of continuity (see section 5).

In view of this example, it appears that the following is a natural and
inevitable procedure. In the abstract theory, we shall be content with construc-
ting only a weak solution u(t) to (Q) which, however, will be uniquely deter-

mined by the initial value u(0) = # € Y° and which will stay in Y°, where Y°

is the local closure of Y in X. (For the definition of YO, see below.)

If we want to show that u{t) 1is in fact a "strong solution" which stays in
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Y provided Z€ Y, we shall construct a weak solution in another pair (X,Y)

of spaces such that & & YO C Y. In view of the uniqueness, this will show that
ult) € Y.
To ensure that the interval of existence [O,T] of the solution is not

A A

diminished when we go over to the pair (X,Y) , we would need a regularity theorem

to the effect that a weak solution in (X,Y) with u{0)€ ¥ is a weak solution

~ A

in (X,Y) on all of its interval of existence.

In the application to (HS), we choose X =, Y = ¢t as above and then

N

x=0"" ana v=c

. . 1 .
l+p+O. Here Cp+O is the closure of C in Cp , the set of

all functioas in € with modulus of continuity dominated by a constant multiple

. .
of a fixed modwlus function p, and C1 p+0 is the set of all ve Cl with

. .
djV'E o? O. p will be determined by the initial function 4 € Cl and the conti-
nuity properties of the functions a, , g and f. (see section 5 for details.)

J

2. The existence theorem
We start from a pair Y C X of real Banach spaces, with the associated

norms , with the inclusion continuous and dense.

NFEEE

We assume that for each w &€ Y , a vector f{w)e& Y, a linear operator Alw)

in X and two norms equivalent to , respectively,

s |y

L, Tl

are given with the following properties. If w, veY with }w|Y <r, iv|Y <r,
then
(N1) dist(| [X N 1X) < Al(r),

W
(N2) dist(| |X , | Ix ) < ul(r)lw—vix ,

W v
(n3) aist(] [y o {y) < 2,0r)

W
(nk) dist(] [Y o IY ) < Ug(r)‘w—v‘x ,

W v
(A1) Alw, € G(Xw,l,Bl(r)) /\G(Yw,l,ﬁz(r))
(A2) |A(w)|Y ¥ < x3(r) ( D(A(w)) D> Y )
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(a3) [aG)-alnly s mgled vy,

(£1) [eG) ], <2 (x)

(r2) [eGa)-oC ], < o) fu=vly

Here Al,..., 81""’ M), are monotone increasing functions on R, to B, , and

will be called the parameters of the system (X,Y,A,f).

REMARK 2.1. (a) The distance dist({| |,| |') between two equivalent norms is

defined by log s&p{|xl/]x}',]x|'/|xi}. A& G(X,1,B) means that -A generates

a C-semigroup {e§tA; t >0} on X such that fe_tAfy < eBY. e genote by

[Al the operator-norm of A € B(Y,X), and 1Al = lAl . X is the Banach
X XX w

Y,X

space X with the norm (b) In (N1)~--(f2), the argument r in the

Py
W
parameters Al(r),...,uh(r) are (for simplicity and generality) assumed to be

r=lul, or r= |

v Vv ‘V\Y . {We write ay b for supla,o} .} In some

Y
problems, however, (N1) holds with Xl(|w|Y) replaced by Xl(]wlx) , thereby

strengthening some of the results. Similar remarks apply to other parameters.

DEFINITION 2.2 A sequence {un} is called a null sequence (of approximate solu-
tions) to (@) on [0,T] if the u ~are bounded in c({o,T]Y N Lip,([0,T]5X)

and

(2.1) du /dr + Ay Ju - £lu ) =0 in 1°([0,715%)

Here u & Lip,{{0,T];X) means that u ~1is an indefinite Bochner integral of &
function u & Lw([O,T];X) so that du /dt = u . Note that A{u Ju

n n n n’n
€ C([0,T];X) by virtue of (A2) and (A3). [In the existence proof, approximate

solutions u. will be mostly piecewise Cl([O,T];X) and no measure theory will

be required. ]

DEFINITION 2.3. u e C({0,T];X) is called a weak solution to (Q) if there is a
partition of [0,T] into a finite number of subintervals such that on each

closed subinterval I, u is the limit in C(I;X) of a null sequence. [Hence
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ue Lip([0,T);X) .)

DEFINITION 2.4 TLet BY(r) be the ball in Y with center 0 and radius r > O,
and ClX(BY(r)) its closure in X . We denote by Y° +the union of ch(BY(r))
for all r > Q. YO will be called the local closure of Y in X

REMARK 2.5 As is easily seen, Y° 1is a Banach space with the norm J x|
Q
Y

defined as the infimum of r > 0 such that x & ch(BY(r)) . Obviously we have

Y < YO < X, with the inclusions continuous. If Y 1is reflexive one has ¥° = Y,

including the norm. 1In general Y need not be dense in Y°. For example, let
X =c[n,1), Y= Cl{O,l] ; then Y° = Lip(0,1], and Y 1is a closed subspace of

Y°,

THEOREM I. (existence) Given £ < ¥° , there is T > 0, depending only on

)Zl o (and the parameters of the system), and a unique weak solution u to

(Q)Y on [0,T7] with u(0) =& . The map &+ u 1is bounded on a bounded

subset of Y° to B([O,T];YO), and is continuous from the X-topology to

¢({0,T);X) within a bounded set of Y°. [Here B(I;YO) denotes the set of
o

o
bounded functions on I to Y . We cannot replace it with L (I;YO) since the

functions considered may not be strongly measurable. ]

REMARK 2.6 After introducing the space YO, one might try to extend the map
w—> A{w) to all w E-YO, to be able to work in the space pair Y°C X instead
of Y &< X. There are two difficulties in this attempt. First, there is no
general method to extend A in this manner so as to make Alw)e& B(YO,X).
Second, even if this is possible, A(w) may not become a generator in Y°. This

may be expected from the typical example (HS) in which Y° = Lip (see section 5).

In fact there are no reascnable Co—semigroups on the space Lip.

REMARK 2.7. If Y 1is reflexive, we have YO =Y and the solution u in
Theorem I belongs to Cw([O,T];Y), where CW indicates weak continuity, and u
is a solution to (Q) with du/dt e Cw([O,T];X). Thus u is almost a strong

solution to {Q). In favorable cases one may be able to show that ue€ C([0,T];Y)
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(strong solution) by auxiliary considerations such as those given in [8;Remark

5.3]

3. Sketch of the proof of Theorem I

For simplicity we assume f = 0.

As in previous works [7,9,10], we use successive approximation based on the
theory of linear evolution equations given in [8].

(a) First we assume that & @ Y, and find a ball in Y in which we can

expect to confine the values of the approximate solutions u for a fixed inter-

val [0,T]. To this end, fix an R > |B1Y . Then we can determine R', R"
such that

. IS < " < "
(3.1) 7 BY(R) BYg(R ) B,(R") .

Tndeed, in view of (N3) it suffices to set R' =R exp[A\(R)] and R" = R'exp

[AE(R)] . All approximate solutions u and related functions we introduce

below will take values in BY(R"), so that we shall be able to set r = R"

in all the parameters Xl(r),...,uh(r).

REMARK 3.1. R, R', R" and L, T (introduced below) are determined by lZlY

only. This is a great advantage over the situation in [7,10], where T depended

only on & but not necessarily on |@| only.

Y
(b) Let E Dbe the set of all functions v € C([0,T];Y) such that
(3.2) v(0) =&, v(t)E€ B

(R'), [|v(t)-v(s)], < L|t-s],

ta

X
where T and L are constants to be determined.

For each v & E, let Vv be a step-function approximation for v (by which
it is implied that the values of ¥ are a subset of the values of v ). It
follows from (3.2) and (N2), (N4), (A1) that A'(t) = A(v(t)) and Av(t) =
A(Y(t)) form stable families of generators in X as well as in Y (see [8]),
with uniform stability constants. Therefore, there is an evolution operator

¥

{U'(t,s)} associated with {A'(t)} (see [8]; here we may disregard finitely many
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discontinuities for the derivatives of Uv(t,s) ).

It follows from the uniform estimates for the stability constants that

-~
UV(',O)Z € E if L and T are chosen appropriately, for any v € E and

u
any step function approximation ¥ of v. Moreover, the map ¥Yi+——su = ¥ can
be shown to be a contraction in the metriec of L ([0,T]:X), by reducing the size

of T 1if necessary.

(c¢) We can now construct a null sequence {un} to (Q) on [0,T] such that

un(O) = £ . Assuming that une E has been constructed, we choose a step

. . . ~ -n
function approximation ﬁn to u_ such that Hun—unl& < 277, where I “X
denotes the Lw([O,T];X)—norm. Then W T @ﬁn will be the next element, and

{un} is shown to be a null seqguence.
Finally we show that 1lim u =u exists in Lm([O,TJ;X), so that u is a
weak solution to (Q) on [0,T] with u(C) = & . The proof is based on the

following lemma.

LEMMA 3.2. If {un} is a null sequence to (Q) on [O,T] and if 1lim un(O)
exists in X, then u = lim u exists in c([0,7];X) (so that u is a weak
solution).

(d) In the general case in which & G_YO, we choose a seguence EG & Y such
that IBEIY = ]Z]YO and ]Zﬁ-ﬂwx——-a 0. Let u; be a weak solution to (Q) with
uj(O) = Bb , which exists on an interval [0,T] independent of Jj by the
previous result.

Fach u, is constructed as the limit in Lm([O,T];X) of .2 null sequence
{ujn}. Thus we can find a sequence {uj,n.} = {vj} such that ”uj—vj"X < j‘l
and "QVJHX < j—l, where Qw = dw/dt + Alw)w . Thus {Vj} is a null sequence
for (Q) on [0,T] such that vj(O) = zj——a # in X . According to Lemma 3.2,
it follows that lim vj = u exists and defines a weak solution to (Q) on [0O,T]
with u(0) = & .

(e) The uniqueness of the weak solution is alsc a direct consequence of

Lemma 3.2.
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4. The regularity theorem

In general different choices of the spaces X, Y are possible for a given
equation (Q). 1In other words, there are many systems (X,Y,A,f) satisfying
conditions (N1) ~—- (f2) with different pairs (X,Y) but with the same A and
f . [To explain the last expression, we say that the two systems (X,Y,A,f) and
{(X'",Y',A",f') have the same A and f if A{w)y = A'(wly € XN X' and flw)
= f'{u)ye YNnY' whenever w, ye YN Y'.]

For simplicity, suppose that we have two systems (X,Y,A,f) and (X,Y,A,f)

such that X< X , YC Y with the inclusions continuous. Then we have obviously
YO C YO . If we choose the initial value #€ YO , Theorem I gives a weak solu-

~

tion ue B([O,T];YO) to {(Q) and another solution u& B([O,T];YO) , both

satisfying the initial condition u(0) = u(0) =@ . In view of the uniqueness
result, we may assume that T < T and u=u on [0,T] . The question arises

~

whether or not we can take T

"
L]

More generally, one may ask whether every weak solution in the system

(X,Y,A,f) with u(0) e Y° is automatically a weak solution in (X,Y,A,f) with
the same interval of existence. This is the problem of regularity for ()
To answer this question, we would need further assumptions. To formulate

such assumptions, we find it convenient to introduce the notions of norm-

compression and compressible systems.

DEPINITION 4.1. Given two Banach spaces X C X with the inclusion continucus,
we may introduce in X new equivalent norms. A family of equivalent norms

A

I Ie ; in X , depending on a parameter € > 0, will be called a compressible

~

norm in X (relative to the X-norm) if

~

L1 11 o f h X .
(k1) zrf;xg ‘XiE,X‘ [x[y or each x &
EXAMPLE k.2. Set [ﬂg&=\x&\/dx&. In this case we have [ﬂg=]xu.

for sufficiently small e {devending on x ).

Consider now the two systems (X,Y,A,f) and (X,Y,A,f) for (Q) mentioned
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above, with XC X and Y CY . Suppose that we introduce compressible norms in

various spaces: relative to X-norm, | | relative to Y-norm,

( fe,X £,Y

relative to Xw—norm, and [ IE ; relative to Yw—norm, where weYCY,
P W

Assume that with these new norms, condition (N1) --- (f2) remain satisfied with

Pl x

set of e ]
a et of parameters Xl,e’ ,uh’a depending on €

DEFINITION L4.3. If these parameters ll E,...,uu e stay bounded as € —> O,
3 k]

~ A

we say that the system (X,Y,A,f) 1is compressible to the system (X,Y,A,f).

[The parameter A is bounded as € — 0 if A (r) <A (r) for r >0,

1,€ 1, 1,0

for some monotone increasing function Al o .
»

REMARK L.4 Definition 4.3 is admittedly rather implicit and complicated. But it
is not unreasonable, as is seen from the example (HS) discussed in the next
section. As a matter of fact, compressibility holds in most well-posed systems
as soon as (X,Y,A,f) is a reasonably good system, although the definition would
require a generalization to systems (X,Y,Z,A,f) 1involving three Banach spaces

if wider applications are desired. Among simple systems in which two Banach

spaces X, Y suffice, we may mention the KdV equation, for which X = H_l(R),

~

“lr), vy=1

S*2(R) with s > 0

Y = B(R) will give a “good" system, and X = H
will give a compressible system. For relevant results see [11,12] (though

compressibility was not formally introduced there).

~A A

THEOREM IT. (regularity) Suppose that the system (X,Y,A,f) for (Q) is
compressible to (X,Y,A,f). If u is a weak solution tou (Q) on [0,T] in the
system (X,Y,A,f) (so that u(t) =¥° ) and if u(0) e v° , then u 1is a weak

A A A

solution to (Q) on [0,T] in the system (X,Y,A,f) (so that u(t) & ¥°).

Proof (sketch). Since u(0) € §O, there is by Theorem I a weak solution in the
system (;,?,A,f) on an interval [O,%] with the initial value u(0). By the
uniqueness result, this solution coincides with u on [O,%]. If the assertion
were not true, |u(t)|Ao must blow up at some t = s < T . If we take s' < s

Y
sufficiently close to s, and choose the compressible norms with sufficiently
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small € , we may achieve that |u(s')] no S u(s) ] ot 1<K . Since the
€,Y Y A A

parameters stay bounded with compression, the weak solution in the system (X,Y)
will exist on an interval [s',s'+Tl] with Tl > 0 independent of s'. Thus we

have a contradiction by choosing s' sufficiently close to s.

REMARK 4.5. Since norm-compression is used in the proof, we have no simple esti-
mate for the growth rate of !u(t)lAO . But we do have sufficient control over

~ ~

the interval of existence [O,T] to show that T = T.

5. Application to (HS)
For simplicity we assume f = 0 in (HS).

It is assumed that the aj are simultaneously diagolizable:

(5.1) aj(z) = q(z)_lag(z)q(z) (J =1, ..,m5 2z & RN),

where the a?(z) are real diagonal matrices and q(z) is a real nonsingular
matrix, such that
2
0 1 N
(5.2) aj,a&c (R™;R" ).
We may assume, if necessary, that det qlz) = 1.

(a) Let

(5.3) % = C(R%EY), v = cHr™RY).
X is the set of all vector-valued continuous functions u such that u(x) —> 0

as |x| —» », Y 1is the set of all u e C1 such that u(x) and &ll

dulx) — 0 as |x|] —s = (4. = d/dx. ).
J J J

The norms | (X and | ‘Y are given by
(5.4) fal, = fag ] oV -eeV fudl s
X 1 L N I
\u]Y = lu\x\/ ldlulx\/... \V ldmulx ,
where u = (ul,. ,uN). In general we agree to use the norm
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(5.5) lz| = lzl| VooV |ZN| for =z = (Zl""’ZN) SR,

: . m
while we use as usual the euclidean norm lx‘ for x€ R .

For each w& Y, the norms I [X and | !Y are given by
W W
(5.6) luly = fabwluly
w
|u]Y = |u|X V |dlu|X \/ eV ldmulx .
W W W W

With these norms, conditions (N1) to (Ni) are easily verified. Here we may take

r = ]w|X instead of |w| , etc.

Y
Next we define the operator A(w) formally by

m m -1
(5.7) Alw) = I a (w(x))d, = £ (q "a.q)(w(x))d,
3=1 J j=1 J J
= o) (g (w) - Blw),
where
o, ,_ m g
(5.8) A(w) = jEl aJ(W)dJ >
B(w) = ale) ! _35’1 adti)aa(n) (€300 )
i=

To be precise, these operators must be defined by carefully specifying their
domains. In any case it i1s obvious that Ao(w) is a first-order differential
operator acting separately on each component. Using the well-known results for
the first-order operators in one unknown, it is possible, with some efforts, to
determine these domains and verify conditions (Al) to (A3).

Thus we are able to apply Theorem I to construct a unique weak solution u
for (HS) in the system (X,Y,A). Since Yo = Lip(Rm;RN) (with appropriate
behavior at infinity), ult) 1is Lipschitzian for each t Dbut as yet unknown to

1

be in Cl, even when & = u{0) & C°. This corresponds to the results proved by

Cesari [1] and Cinquini Cibrario [2].
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(b) To prove the sharper result that u(t) € Y if @& €Y, we introduce a

~ A

nev system (X,Y,A) with spaces Y © X related to the moduli of continuity.

1
If #e€Y =C , the djg have uniform modulus of continuity

o]

. Since the

aj and q are Cl, their first derivatives have uniform moduli of continuity

N
on any compact subset of R . Since we have already found a weak solution u to

(HS) staying in a bounded set in ¥° , we may assume that the a?

first derivatives with a common modulus of continuity on all of RN

these functions if necessary for large lz|

and q Thave

, modifying

Thus we are able to find a "modulus function' p such that the de, dkag s

and qu have moduli of continuity dominated by constant multiples of p

Then we define the space X &€ X = C(Rm;RN) with the norm

(5.9) hulg = fuly, V Iul[pJ ,

lal = sup lulx)-uly) [ /pllx-y|) .

P X X
’y

- . l,m N ;
Similarly we define the space Y € Y = C(R ;R ) with the norm

(5.10) [u|§ = [u[; \V4 |d1u[; v oV [dmu!; .

~

For each w & Y, we now introduce equivalent norms:

it

(5.11) lul
W

latw)uly

i

(5.12) laly = luly v laguly vy lalg

Tt can be shown, with some computations, that conditions (N1) ---

fied with X, Y replaced by X, Y, respectively. Here again, r

to be |w|2

§ rather than |w{Y , ete.

(NL) are satis-

may be taken

A A

Finally, conditions (Al) to (A3) can be verified for the system (X,Y,A) by

0
making use of the explicit formulas known for the operator A (w).

Before doing

so, however, we have to make a small correction to the previous definitions by

~ .

replacing the space X with its subspace spanned by Cl, and accordingly modify-

~ ~ .

~ e
ing the space Y . (We denote these spaces by X = cP O, Y=2¢C

1+p+0 )
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This is necessary because otherwise the operator -A(w) would not be densely
defined and therefore not generate a Co-semigroup on X or Y . DNote that &
may be assumed to be in the modified Y , by weakening p slightly if necessary.

Theorem I can now be applied to the system (X,Y,A), with the result that

A~

u(t) e YO at least for a short time. Using the special properties of the space

Y, then, it is not difficult to show that u e C({0,T};¥) . Thus u is a strong

solution in the system (X,Y,A) on [0,T].
Actually we can take T = T . To prove this, we apply Theorem II by showing

A A

that the system  (X,Y,A) is compressible to (X,Y,A). In the present problem,
however, compressibility is almost a built-in property. Indeed, there is nothing
that distinguishes a modulus function p from its constant multiple e_lp.

If we choose € sufficiently small, the associated seminorm Iu[[p] in (5.9)

becomes small so that we have |u|§ = Iu[X . This can be done simultaneously for
any finite number of functions u . Thus it is not surprising that the parame-
ters ;l""’£3 in the system (%,;,A) can be made equal to Al,...,u3 by
choosing € sufficiently small, although the proof is by no means trivial. (For

details cf. Nakata [13], where norm-compression is systematically used.)

(c) Thus we have shown that (HS) has a unique strong solution ue C([0,T];Y)

for any u(0) = Z€Y = Cl(Rm;RN), with T > 0 depending only on IH]Y {for

the aj fixed). Moreover, we shall show that the dependence #&r— u 1is con-
tinuous from Y to C([0,T];Y).

To this end let BE eY, J=1,2,..., such that ES —>» Z in Y. Let
uj¢5 Cc{[0,T];Y) be the strong solution with uj(O) = 23 , where T can be taken
common to all U and u . We have to show that u;—> in C([0,T];Y).

Since Hj—~—9 Z in Y = Cl, it can be shown that there is a modulus function

+
p such that all 25 and & are in Y = Cl+p 0

with the norms bounded. we may

. . 0 . 1+p+Q
also assume, by weakening p 1if necessary, that the aj and g are in C .

PN X s
Then Theorem I applied to the system (X,Y,A) (where X = cP 0) shows that
uj-——9 u in C([0,T];X). Since the uj are bounded in B([0,T};Y) (because

~

the 65 are bounded in Y )}, it follows that uj-——y u in c(lo,7]:v).
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6. An example of compressible system

Let us illustrate the notion of compressible systems by a simple example.

EXAMPLE 6.1. Consider the first-order scalar equation

(6.1) u +uu_ =0, X€R, t > 0.
t X -
choose
(6.2) x=x=82R), Y=K(R), Y=8(R), Alw) =wd

x
Y

It is known (see [9]) that (X,Y,A) is a "good” system. We shall show that

A A ~

(X,Y,A) is compressible to (X,Y,A). Since X = X , we may choose the norms
(6.3) lul_ 2 = July = |ul (L%-norm)
. €,X X ’
2 2 2 2 A 2 2 2
laly = lal® + Ju 17, fulg g = luly + eflu |

In this problem we do not need variable norms | IX , etc. Thus the only
AW ~

AB,E , and US,E . Among them,

~

parameters we have to consider are § , B N
1,¢ 2,e .

only B is nontrivial, since it is easy to see that 8 (r) < 8.(r) , etc.
2,€ 1, - 1

due to ﬁ =X.

To estimate 82 , we compute
€
~ 2 2 2 2
(6.4) I(A(w)u,u)e’y| <clv Jul® + Ju [®+ e lu 1)

2 ~ 2 A
*ce |wxxx||uxx||uxxx| < clwle,YIuls,Y :

It follows that ](A(w)+k)u|€ ; > (X - c[wl€ ;)]ule § . Hence we can take
s * 3

A~ A A

62 e(r) = ¢r , which is independent of € . This shows that (X,Y,A) is
3

compressible to (X,Y,A).

REMARK 6.2. It is instructive to see what happens if in the above example we

replace Y by g (R) and Y by H2(R), with |u|§ = |u|2 + quI2 and
]uli . |u|$ + s2|uxx|2 . In this case (X,Y,A) is not a "good" system,
i

~

so that B could not stay bounded as € —» 0. Indeed, the best estimate one

2,€
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can expect of the sort of (6.L4) will be

~ 2 2 2 2
|(A(W)u,u)€,y fc]wxxl(|u| + |ux| + € |uxxf )
-1 A2 A~
< .
< ce |w!€,Y u’E,Y

This gives 82 E(r) = ce tr , which blows up as € -—> 0.
3

Footnotes

1. This work was partially supported by NSF Grant MCS 79-02578.
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1. Introduction
Let QO be connected domain in R2 with smooth boundary I'. Take £ so as to

satisfy (1) Q:)ﬁb; (11) 9]'=52— . is a connected domain; (#i) the measure of

0

agil)r\an is positive or 2, is unbounded; (iv) 3R is smooth (see Fig.1).

1
We shall consider the boundary value problem defined in 9 for every €>0 and

a,R €R.
Find we = wz in QO’ such that
€
wl in Ql
€ € _
(1.1) ~byg + Agug = £ in Qg
20 3 <28 € _
(1.2) ~-€ -Awl + € -wl =0 in Ql
(1.3) vy = ¥] on T
Q
Fig.l

77
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Y 3y
0 _ 2 1
(1.4) n T e on T
(1.5) wi =0 on 39

and wi -0 (]| =/xi+x§+°°).

Here n is the outward normal on [ to QO and )\0 is a positive constant. It is
found in Lions ([3], Chapter 1, p.80) that the boundary condition which the limit
function of wg as £~> 0 satisfies on ' is classified into three types, which
depend upon the relative value of o and RB.

In this paper, we study an asymptotic behavior of wE on I' when ¢ is small
enough. We now summarize the contents of this paper. Section 2 includes four

Theorems. In section 3, we prepare some Lemmas for the proofs of Theorems.

Sections from 4 to 7 are devoted to the proofs of Theorems.

2. Theorems
2.1 We put
2.1 K={peH @[y =0 onon and >0 (|x|+w)}.

Then (1.1)-(1.5) are reformulated as follows:

Find y¥€ K such that

(2.2) J vyEovdx + AOJ Evdx + EZG'J gyEgvdx + 5‘28-‘( vEvdx
o &) % 9
= J fvdx , VvéK.
9

There exists a unique solution \pe(é K) of (2.2) for Yf éH-l(QO). Putting

v=w€ in (2.2), we see that w(s) is uniformly bounded in e:

(2)

@.» "1

;C<+m
0
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where C depends upon only the data f.

When € tends to zero, we can extract a sequence € (n=1, 2, ...) such that

n 0 R 1
(2.4) by > Vg weakly in H (QO).
Then
*n 8] s )
(2.5) I‘DO > ¥ strongly in H (QO) (Vs<1, [5]).
Let veH. (Q,) and v be the zero extension of v to . Passing to the limit

0
in (2.2) for veHl(Q) yields

S O

(2.6) f vw8Vde + AOI wgvdx - f £vdx, Yy e Hé(QO).
2 2 2

from which, we have

0 0 X -1
(2.7) -Au;o + )\01110 = f in H (QO).
If we assume f EHm—l(no) (m>0), then we have
0 m+1
(2.8) wo € H (QO).
By the trace theorem (Nefas [5]),
0] n+3 2y | n-g
(2.9) P (3" (T) and —— € H ™.
OII‘ an r

0 c e
Moreover, \po satisfies on T:

(3

Theorem 1 Suppose f 6Hm_1(90) (m>0).

(a) 1If 8> ]al, then

1
0 n+y
(2.10) vg| =0 inH 2.
r
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(b) If B=a>0, then

awo 1n-%

(2.11) (——— 9, ) =0 in H Tr).
r

(c) If B<a and a> 0, then

ng m-%
(2.12) 5ot =0 in H .

n
r

Remark 1 There also holds wg r= 0 in the case a+B8<0 and o <0 under the same
assumption.

2.2 We now state our main result as follows.
Theorem 2 Suppose f GHm(QO) (m>0) and let ¢ be small enough.

(a) If B> e}, then

e2(8-0:) +€B-3a ‘2(a+8)

(2.13) v = . + 0( +e

3yl
flp = %‘ ) tn H o 5(D)

where wg satisfies (2.10).

(b) If B=a>0, then

1
m+ -
(2.14) vl - il + 06" in B 2(D)
0 f e
where wo satisfies (2.11).
(¢) 1f || <a, then
1
m+
(2.15) L= 0l + o™ in H 2D

where wg satisfies (2.12).
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2.3 By using (a) of Theorem 2, we have the regularity results about wg.
Theorem 3 Suppose f éHk(QO) (k>5) and let ¢ be small enough.

If g > |a|, then

(2.16) Il . o™,
W (T)

(2.17) [ o1 +e 2%y,
W (Q)

(2.18) Bl , . = 0(e~30t8)y
wor (Ql)

2.4 The motivation of this paper consists in the integrated penalty method

presented by one of the author [2]. The mathematical justification of this
method was done in the sense of distribution. If we use (a) of Theorem 2, we can

prove the key-point of this method in the framework of the Soborev space.
Theorem 4 Suppose f eHm(QO) (m> 0) and let ¢ be small enough.
If B> Iai, then

0

-2 € 2 (at+8)

).

ay
1 0 _
(2.19) I e J v drT + o=(s) I T 0(

o=

rt(s)

Here s stands for the length of the arc along T.
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3. Preliminaries

The aim of this section is to give some preparatory lemmas which will be

needed in the proofs of Theorems.

3.1 We first introduce some operators defined between traces on I'.

(i) Define the mapping
7 w2
(3.1) Tf:H(r)aa+—-—— &€ H " (I):
on
r
wa is the solution of the problem;
(3.2) -AY + Aow = f in QO
(3.3) xp|F = a
m=1
where feH (QO) (m>0).
(ii) Define the mapping
_1 L
(3.4) RE ;i n 2 () 3b wg € HZ(F);
r
€

Y. is the solution of (3.2) with £= 0 and the boundary condition

(3.5) (eB‘“-ﬂ+¢)‘ = b.
an
T
(i) Define the mapping
. wel 3

(3.6) §° 1 B°(I) 2aw—2| €H “(I);

an

T

ws is the solution of the problem;
a

3.7) B Ay

[
o
[y
=]
e}

(3.8) Iy

[}
[+
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(3.9) blyg =0 and b0 (x| > ).

m+d

£
We denote T?, Sm and R; by the restriction of Tf, s° and K to H Z(T). But we

abbreviate the suffix m hereafter.

3.2
n+s
Lemma 1 Let a, b be arbitrary in H (I'). Then
(3.10) Tf(a) - Tf(b) = To(a-b)
where TO implies Tf=0'
Proof Let wY (y =a,b) be the solution of (3.2) under the boundary condition
(3.11) vl = v,
Put ¥ =wa-wb. ¥ satisfies
(3.12) -AY + )\O‘i‘ =90 in QO’
(3.13) w|r = a - b.
Then
Y
(3.14) 3al = To(a-—b).
r
On the other hand,
3 3
(3.15) 2= -5 - -1 0.
r T r

From (3.14) and (3.15) follows (3.10). Here we should note that TO is

linear and Tf is non-linear. I

Lemma 2
m—% m+%
Tf and S are homeomorphic from H (T') to H (T) and R is homeomorphic from
m+% m-%
H (T) to H (T) for any m>0.
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Proof

m+£ m-l m+l

1° Tf is injective from H 2(1") into H 2(T). In fact, let a,b€H 2(I’)

(a¥b). Suppose Tf(a) =Tf(b). Then, by (3.10)
0 = Tf(a) - Tf(b) = To(a— b) % 0

because of the strong maximum principle under the assumption A_> 0. This is

0
a contradiction,
m+%— ln—%
2° Tf is surjective from H (T') onto H ('), 1In fact, we choose any
n+:
beH (I'). Then, the following problem:
. - A = i
(3.16) Ay + Ow f in QO
(3.17) S_W{ - b
nlr
X : m+l . . P
has a unique solution wbé H (QO) if AO> 0, which satisfies
m-+%
(3.18) ¥ € H () and b=T (! ).
b b
r T
-1 ‘”% m'%
3° 1t is checked that Tf and (Tf) are continuous between H (') and H )
(see [1]).
n+s
4°  Summing up 1°, 2° and 3°, we see that Tf is a homeomorphism from H IT)
"7 e,-1
onte H (T). The repeated use of the above arguments gives that (R ) and
1 1
e nty m-3
S~ are also homeomorphic between H (') and H Ty, l

3 €
3.3 Here we give the estimates of the norm of R and 8, which are crucial for

the proof of Theorems 1 and 2.

Lemma 3 Let € be small enough and suppose B>a and m>0. Then
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£ a-B v m-—]2:
(3.19) @I = 0@ ") |lall 1 , for Ya €H )
m+=,T m~—,T
2 2
1
€ "3
(3.20) I8,  =owlall , for Yaeun (M
m—E,T m-;,F
and
€ 8-a m+%
(3.21) R @-all | =0 all | for Ya ern “(I).
m-75, m+5,
2 2
Proof Using Green's formula in the problem defining RE, we have
(3.22) 56“’-J (‘Vw|2+>\o|w|2)dx +f Iy|2ds = [ ajds.
193 T T
0
From (3.22) it follows
(3.23) 1ilg.r = Hallg
and
B-a
(3.26) el 2 el
=, T -=,T
27 27’

Using the standard technique to raise up the regularity property of the

solution of partial differential equations, we obtain (3.19) and (3.20).

1
m+-=
Rewriting (3.5) with an aid of T0 and RE, we have for YacH 2(F)
(3.25) IR@ -all | =R @ I
m—E,F m—i,F
= o @ |
m+§, T
B-a
=0 ) llall (by 3.20).

m+%,F

85
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m+% m—%
Here we have used the continuity of TO from H (') to H (T). l
Lemma 4 Let € be small enough and m> O.
(a) Ifo=a+B+p(a-8)>0 (p€&R), then
1
m+
(3.26) I %% (a) + e @84 L ol Vaen ().
m——z—,r m+§,
(b) If a+B8>0, then
1
m+<
- (ot +
(3.27) I} s5(ay +e™ @) 4] ., " 0e®*®y [1a || L Yaen ()
m—E,F m+E,F
1
e, -1 14 m—f
(3.28) I (8% "y || L = 0(1) ||b || 1 , b€H (IT)
m+-, T m—~-=,T
2 2
- + 3 (a+
(3.29) Il (5% by + %8 || =0 by,
m—‘z,r m+5,I‘
n+i
Yben  A(r).
Proof We prove this lemma in the two cases. In the first case, we prove the

special case Q, = Rf_= {(xl’XZ) IO < Xy, = <x, <t} (QO = RE) by using the fourier

1 2

transformation. Subsequently, we give the plan of the proof in the general

geometry.
1° Let
~ o 2wiEx
€ _ 2, €
Wi 8) = [_we ¥ s %)) dx,
and

o 2miEX
a(g) = L,e “a(x,)dx,.
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~
Here we(xl,xz) is the solution of the problem (3.7)-(3.9). Then we satisfies

2% i
(3.30) Sy e20H) | g 4 un?)g) 22 @BE o o in &,
X
1
N
£ AN
(3.31) ¥ }"fo = 4.

Solving (3.30) and (3.31), we have

1
~ ) =
(3.32) pe = Q'exp{—e_(u+8)‘(l+4n2'|§|262(a+s))2 Xl}.
From (3.32)
S 1
€ AN B 7 .
(3.33) S O NG B I P L
1 xl=0
We compute
(3.34) LR NIC O

1

= €p<a+8){l— (l+4"2'l€lz'92(a+6))2 }’5

2 o+Ba
- _4n2.O. gl rE
14 (Lebn2e g ] 22 (018D 2
From (3.34), it follows
o0 m-— /\ _
(3.35) { ein?e 6] 2] e98E @) + P B a]2 4

1
= 20,2072, 12, 2(048) | (2. (212
1611‘*-52"[ Q+4n”[g] %) le[“-e lI;L [a1° 4

-0

(1+(1#4m2 15[252(”8))2 p 2
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20 (" 2 2’“%‘ 2
< 0(e O)J A+4nejg] D) - ]a)° aE.
Hence we obtain
(3.36) | €% 5% (o) + 2@ LoD lall .
m—E,T m+5’r

Repeating the simular arguments as above, we conclude (3.27)-(3.29).

2° Let us now deal with the general case. The domain Ql is a regular simply

connected domain; then there exists a (fixed) regular conformal mapping

. _ . . 2
w=f(z) —ul+1u2 (z-xl+-ix2) which maps Ql into R+. As a matter of fact,

I' is mapped into the uz-axis of w-plane. Then the transformed solution
v =¢E(f_l(w)) satisfies

2
v& =g in R%

dz

A%

(3.37) 2B e

(3.38) ¥E | - A = ae ).

By means of the iterative method proposed in the theory of singular perturba-

tion (see [3]), v& is asymptotically developed in the following way:

e _ 0, atR 1 2{(a+B) 2 n{a+B) n
(3.39) v —¢E+£ ¢E+e wE+...+eE P +w€.
Using (3.39), we obtain (3.26)-(3.29) (see the appendix). l
3.4 Define
m+l¥
3 € 2
(3.40) Yo o=y |r €H Iy,
1
, 0o o0 mty
(3.41) Y7 =y €H (r).
r

Then we have

Lemma 5 Let en-*O (n=1, 2, ...). Then
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En 0 %.-
(3.42) YLy weakly in H™(T),
1
£n 0 "2
(3.43) Tf(gO ) > Tf@? ) weakly in H ).
1
Proof Recalling (2.4), (3.42) is obvious. Let a, b be arbitrary in HZ(I‘).

Then, we denote by wY (v =a,b) the solution of the problem:

(3.44) =8y Ay =0 in ©

0’

n
<

(3.45) vlr

By using Green's formula, we have
(3.46) JPbTO(a)ds - JFaTO(b)ds = JQ (q)bAwa—u)aAwb)dx = 0.

€
Using (3.10) and taking a=97n—90 in (3.46),

€ €

(3.47) J {1, “)—Tf@O)}bds = J To(gon—g’o)bds
r r
“n 0
= L‘(Lj’ - )To(b)ds >0 (an + 0).
Lemma 6 Suppose o =a+RB+p(a-B) >0 (p&R). Then
(p-1) (a~B) ‘n o(a=B) ,n

(3.48) €, -Tf(g) ) + e Y5 50

1

strongly in H 2 ) as sn->0.

Proof By using the definition of Tf and SE, (1.4) is rewritten as follows:

(3.49) T, (%) = "5t ).

€
Taking a=§Pn and e=e_ in (3.26) for m=0 and substituting (3.49), we have

£ 14 €
(3.50) | B g (g “)+sfl(°"6)-5?“ l - oDy " i

o=
N

, T

89
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Let e 0. Then we conclude (3.48) with an aid of (2.3). [ ]

4. Proof of Theorem 1

(a) Let p=0 and B > !ot! in the assumption of Lemma 6. Then o=a+R8>0 and

(3.48) becomes

B-a “n “n _121
(4.1) €y -Tf(5° Y+ P a0 strongly in H “ (I').
By (3.42) and (3.43),
[ 4}
(4.2) v (= Yol } = 0.
T
(b) Let a=8>0. Then o=2u>0 and (3.48) becomes
1
€n £y 37
(4.3) Tf(SO ) +¢ >0 strongly in H ()

which implies

3\[)0
(4.4) () +4¢° = 2440 =0
: £'Y an T Yo’

by the definition of T, and }90.

f

(c) Let p=1, a>8 and o> 0. Then 0=2x>0 and (3.48) becomes

£n a-B  °n —%
(4.5) T, (9 + e, tY 0 strongly in H “ (')
from which

0 a“”g '%
(4.6) Tf(@ ) (= Py 1‘) =0 in H “ ().

Combining (2.8) with the results obtained above, we conclude (2.10)-(2.12).



Asymptotic Behaviors of the Solutions 91

5. Proof of Theorem 2

5.1 Using (3.49), the problem (1.1)-(1.5) is transformed into the following one:

m+s

Find a¢ H 2(I‘) such that
200 €
(5.1) Tf(a) =g S5 (a).

Hereafter we call (5.1) the transmission equation. As a matter of fact, the

solution of (5.1) is equal to the trace wglr of the solution of the problem
(1.1)-(1.5).
mi—l

5.2 Let b be arbitrary in H 2(F). Then, combining (5.1) and (3.10), we have

(5.2) T (a=b) - e 2% s%(a) = -t € 2.

Let us begin to prove (a), in which 8> [a| is assumed. By (a) of Theorem 1, we
have wg r= 0. Therefore we choose b=0 in (5.2). On substituting (3.27) into

(5.2), we get

(5.3) T (a) + ea_8~a - gza-s (a) = -T_(0), or
0 1 f
B-a, N _ B-a,
€ To(a) +a=¢ Slxa) € Tf(O)
where Si(a) = Se(a) + e’(“+sla.

The definition of R® allows us to rewrite (5.3) by

a+B
=€

(5.4) ESS(a) - PR (T (o).

Let €(>0) be small enough in (5.4).

+
Using Lemmas 2, 3 and 4, we see that the mapping e® B-RESi becomes the

m+l
contraction mapping from H (I') onto itself if ¢ is small enough and
1
B)(,,)—E

Indeed,
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(5.5) &y RFsi@ll ;< 0™ si(a)ll 1 (by 3.19)
m+7,lﬂ m--,7T
2
< o™y Jal 1 (by 3.27)
m+=,
2
On the other hand, by (3.21)
1
€ B-a m—f
(5.6) R (Tf(O)) = Tf(O) + 0™ ) in H r).
nti

Here we note that Tf(O) should be included in H 2(1“). Therefore, we have to
n
assume f&H (QO).

Summing up (5.4), (5.5) and (5.6), we have

- (I_€u+B.RsSs)—1{_EB-u 2(f-a)

(5.7) a =1y r 1

*T(0) + 0(e )}

—Eg—a-Tf(O) + 0(e

L}

2(8-a) ,  2(a+8), in v 2D

1
if > p——
if > a 38.
s R -2a e, -1 .
We remove into the case -a<f<-3 ., Operating € (s on both sides of

(5.2), we have

=2a,.€

2o gE (s (00).

(5.8) a=¢ (S )“1T0(a) + &

Let € (>0) be small enough. Then E_ZOL-(SE)-lTO becomes the contraction mapping

m+ s
from H (T) onto itself if o <0 and a+B>0. In fact, the boundedness of TO

and (3.28) yields

=2 -2a
e

(5.9

A

o(e

) [la ]

-1
(s*) Ty |

1 1
m+2,F m+Z,I‘

Therefore, by using (5.8), (5.9) and (3.29), we have
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(5.10) a =%, = - 6H T T (0 + 0™}
mei
= =", (0 + 0P T4 P8 in H %),
if a+8>0 and a> 0.
Combining (5.7) and (5.10), we obtain (2.13). | |

5.3 We shall prove (b) of Theorem 2, in which a =8> 0 is assumed. From (b) of

Theorem 1 follows Tf(wg) +1J)g= 0 on I'. Choose b=‘Pg T in (5.2). Then we have

0 2ae, 0, _ 0
(5.11) To(a—wo) - e78 (a) = —Tf(wo) = lbo .
By (3.27), we have

0 0 20 e
(5.12) To(a—wo) + a - wo = ¢ -Sl(a)

-2
where Si(a)=S€(a)+e “a. By use of R® with a=8,

0 _ 20 e.e
(5.13) a - wo = ¢ R Sl(a).
” n+3

Then € -Rgsi becomes the contraction mapping from H 2(l“) onto itself if

o>0 and ¢ is small enough. In fact, by (3.19) and (3.27), we have

2 4
(5.14) e REsT@ | =oee™ lall
m+5, T m+—2-, T
Therefore we have
1
m+ =
(5.15) a= o], = @-ePRSHTY = ug + 0™ in B 2m. |

5.4 Now we are in the final step to prove (c). In this case, o>8 and a>0 are
assumed., (c) of Theorem 1 gives us Tf(wg) =0, Put b=\bg r in (5.2). Then we

have

(5.16) To(a—wg) - 25t (a) = -Tf(wg) - 0.
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Operating (TO)_l on both sides of (5.16), we have

20

(5.17) a- wg = % 2o

)% e - v + €2 ST ).

o 0

-1_¢€
Repeating the similar arguments as in the proofs of (a) and (b), €2a‘(T0) lS
m-F%
becomes the contraction mapping from H (T) onto itself if @>8 and € is small

enough. Then we have

(5.18) a =y wg + {I- szd(TO)SE}-l{eza(T

-1.¢,.0
; o st

m+
) in H 2D, | |

]

lllg + o™

6. Proof of Theorem 3

6.1 Assume f € Hk(QO) (k;;é) and B > |a|. Then, from (2.7) and (2.10), we have

0 1 k+2
(6.1) Yy € HO(QO) NH (szo),
0 1
g k+3 k-1,8
(6.2) ETS € H Tyne T) (0<s<1).

By using (2.13) and (6.2), we have

K+l

{ = 0e®™) in 1 2my n &Sy,

(6.3) vl

By applying the maximum principle to the problem (1.2), (1.3) and (1.5) and

using (6.3), we obtain

(6.4) Il wE |l <ot
cla))

We compute on T}

€ 1 we
(6.5) f wlllk_%,r;llﬁﬂk %,F+Ha—slllk
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where 8 is the arc length of T.

By (6.3), we have

€
Y
1 -
(6.6) 521l < 0™,
s 1
k-=,T
2
From the definition of Se, we have
€ 1
wl €, € k"E
(6.7) 5o =sfefHen fm.
n
T T
By (3.27) and (2.13),
Bwi - (a+B) € -2a
(6.8) [l | - S I | S IR
-5, T k+%
2° 27
Combining (6.6) and (6.8),
£ -2a
(6.9) Iveill | o™,
k-3,
2
Similarly, we have
€ 3 N
(6.10) Iovsll <13, zow
k-+, 90 k-, 90
2 2
3 1
e Ay k-5 k-2,8
because of (6.4), wll =0 and e &€H ()Y Nce ().
n
c EBQ 1]
Put WE =le. Then ¥~ satisfies
(6.11) L L in 9.

From the maximum principle together with (6.9) and (6.10), it follows

(6.12) 1o lleg y = o(L+e 2%,
1

£
Here we have to assume k>4 to obtain the good regularity of y . Repeating the

similar argument, we have

95
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2 €
(6.13) I Bi,gx, I <o BBy (s sy,

1 c(ﬁl)

7. Proof of Theorem 4

In the final section we give the proof of Theorem 4 under the drastic

assumption. Suppose Ql= Ri.

In the same way as in 1° of the proof of Lemma 4, we transform wi into ¢ .

e
Then ¢~ satisfies

1
~ N~ =
(7.1) 8 = o°| . eexploe” OB (14 and|g) 220N 2 Ly iy R2.
1 X< 1 +
By (2.13) of Theorem 2, we have
1
> Y m--=
(7.2) W - -EB'“-a-Q P in H 2(D).
x.=0 1l S
1 1
By substituting (7.2) into (7.1), we have
(7.3) 1) = - (mu?(x £)dx
) 28 1’ 1
€ 0
o
| I 1 ‘.
Bxl 1
xl=0 (1+4"2'l€l%€2(a+8))2
We compute
o
Bwo
(7.4) I(E) +E—‘
1. 2o
*1
2
22, le| . 21”
Qg €[22y (1 ahn?e £ |22 (FB) )
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From (7.4), we have

0
oo aw
1 [T o - (e 2(at8)
(7.5) 28 J wl dxl + % 0(e ).
€ 0 1 Lo
m 2 N
Appendix

. .. © . dz| _
For simplicity, we assume A(uz)é-CO(F) and rewrite |dw|-a(ul,u2).

1° Here we state how to construct wz (n=0, 1, 2,...) in (3.39). Let wg be the

solution of the following ordinary differential equation:

a2w0
(A.1) 2@+8) e 4 a0,unZ’ =0 in R,
2 2 € +
du
1
0 0
(A.2) Y = A(u,) and ] (u,>+=).
€ 2 € 2
u1=0

Solving (A.1,2), we get

~(a+8)

(4.3) wg = A(uz)'exp{—c -a(O,uz)ul}

We compute

(a.4) 2000 4 a0 B
_2(B) d_Z% . 6—2(a+s)0{a(0,u2)2
du2
~a(up,u)) ) expl-c” " ea0,0,u)
= sz(a+6)-gg(ul,u2).

Let wi be the solution of the problem:
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azwl
2(a+8) e 21 0 2
(A.5) — a(O,uz) v = —gE(ul,uz) in R/
3u
1
1 1
(A.6) ] =0 and Yo >0 (u,>+»),
€ - € 2
ul—O

Solving (A.5,6) and computing

2
(A.7) -€ (a%)-Awi + a(ul,uz)z.wi = Ez(aw)-gi(ul,uz),

we can coustruct the equation which wez satisfies in the following way:

a2lp2
2(a+B 2,2 1
(A.8) - ) ———23 + a(O,uz) we = ge(ul,uz),
du
1
2 2
(A.9) Y =0 and Yo+~ g (u,>+= ),
€ 0. =0 € 2

Using the cascade system defined above, we can obtain wz (n=0, 1, 2,...

2° We put

(A.10) of = wg + EZ(G+B),¢2 b 4 EZn(a+B).w2
and

(A.11) w o= y° - e,

Then LA satisfies

_EZ(a+B) 0(€(n+2) (cx+B)) X 2

2
(A.12) -Awe + a(ul,uz) w, =

(A.13) w =0 and v >0 (u2->+°°).

From (A.12,13), we have
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. (n+2) (a+B)

(a.14) I w |l < 0 )
€ 2,2, = ’
L (R+)
+1) (ot
(A.15) f WEII L, < O(s(n 1) (o B))
HO(R))
and moreover
(A.16) w || <01,
3 Hn+2(Ri)
3° We compute
€ € 3
(A.17) ¥ -39 _
Bul Bul aul
ul=0 u, =0 u,=0
where
k
3 n Y
(A.18) 2 j e 2kt), e
du du
VR k=0 1
u, =0 u, =0
1
On the other hand, from (A.16)
3w€ R
(A.19) o 1 < 0(1) (I': the u, axis of w plane).
1 N n+5 .
T"H I
1 1
If we choose n+—2-;_m-—2— (or n>m=-1), then we have
€ m—~l
(A.20) B s a0, u ")y ew A
Ju 2 1 2
1ia
r
for any A€ C:(f).
3 1 aws

By noting Ty

(3.26)-(3.29).

r a(O,u2) du

1

T

, and using the density argument, we conclude
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Footnotes

1. 3@ stands for the boundary of Q.
2, Hva E stands for the norm of v in H"(E).
3. This theorem was proved in [3] for the case a >0 and 8>0. In this paper, we

give another proof, which is simpler than in [3].
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PARTIAL REGULARITY AND THE NAVIER-STOKES EQUATIONS

Robert V. Kohn

Courant Institute of Mathematical Sciences

It is a pleasure and an honor to participate in this U.S.-Japan
Seminar. My talk concerns recent joint work with L. Nirenberg and
L. Caffarelli, in which we prove

Theorem l: The singular set of a "suitable weak solution" of the

Navier-Stokes equations has "parabolic one-dimensional measure zero"

in spacetime.

I shall explain what we mean by a "suitable weak solution," and by
the phrase "parabolic one-dimensional measure zero"; and I shall
describe the structure of the proof, avoiding the more technical
parts. A fully complete discussion can be found in [1].

Theorem 1 extends and strengthens results of V. Scheffer [15-19],
and our arguments draw extensively from his ideas. Scheffer has
recently proved a result on "partial regularity at the boundary" [19];
here and in [l1] we consider only the interior problem.

Section 1. Remarks on existence and regularity.

Let Q be a smoothly bounded domain in R3, and consider the

initial-boundary value problem

(1.1) ut + u-Vu - Au + Vp = £

Asu =0 on Ox(0,T)

101
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(1.2) u(x,0) = uo(x) on , u(x,t) =0 on 30x(0,T)
where
u, = 0, V-uo =0, and V+f =0
3N
The function u = (ul,uz,u3) represents the velocity of an

incompressible fluid with unit viscosity; p is the pressure; and f
is a nonconservative force.

It is well-known that if ug and £ are C* then (1.1), (1.2) has
a unique c” solution on Ox(0,T) for some T > 0 [7]. There is also
an extensive theory of strong solutions with less regular data
{9,11,20]. 1If, for example, u0 has "one-half derivative in L2" or
if u, € L3, one can still show the existence of a unique strong
solution locally in time [2,3,5,8]. One might conjecture that the
strong sclution exists for all time; but this has been proved up to

now only when the data u f are sufficiently small.

Ol
The concept of a weak solution of (1.1), (1.2) was introduced
by J. Leray, in order to obtain an existence theorem that is global

in time. Pioneering work of Leray [(10] and Hopf [6] showed the

existence of a function u and a distribution p such that

(1.3a) ue 1°(0,7:.2(Q)) n n20,r;8%(Q) for each T < w;

(1.3b) equations (1.1), (1.2) hold weakly;

(1.3c) J lul2ax + 2
ax{t}

Ot

t
J IVulzdxdt <2 JJ u-fdsdt + J luolzdx.
Q 0Q Q

In relation (1.3c), the "energy inequality", we write

3 .
[Vuiz = ) (Viuj)2
i,3=1
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A sufficiently regular "strong solution® is known to be unique
in the class of Leray-Hopf weak solutions [13). However, weak
solutions are not known to be unique.

The fundamental regularity problem for the Navier-Stokes
equations in three space dimensions remains cpen: even if f = 0, one
does not know whether weak solutions of (1.1l) remain smooth for all
time. The work presented here achieves a much more limited goal:
we show that a "suitable weak solution" can be singular only on a

rather small set. Results of this type, called partial reqularity

theorems, are well-known in the theory of minimal surfaces and quasi-
linear elliptic systems. It was Scheffer's remarkable idea to study

the Navier-Stokes equations from this point of view.

Section 2. Basic tools.

The proof of Theorem 1 makes extensive use of the following four
tools: (a) Interpolation inegualities; (b) Solving for p in terms
of u; (c) Dimensional analysis; and (d) The generalized energy
inequality. Of these, (a)-(c) are quite standard, while (d) was

introduced by Scheffer in (16]. We review each briefly.

Interpolation inequalities

The energy (or generalized energy) inequality gives information
about ]ulz and ]Vu]z. To draw conclusions about other LP norms one

uses the well-known relation

(2.1) J !u‘q<c(j ilez)a(I !ulz)q/2—a+%(J [a]2)%/2
r

Br Br Br Br

where

N
| A
Q
A
<))
]
]
W
a
I
<E
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Br is a ball of radius r in R3, and C does not depend on r [4,12].

A typical use of (2.1) is this: if u : Qx(O,T)»—R3, u/ = 0, and
N
2
(2.2a) lul®ax < M a.e.t
ax{t}?
T
(2.2b) Jj |vu|2dxat < M
09
Then T 10 5
3 3
(2.3) [j [u] ° axdat < cM
0%
To prove (2.3), extend u by zero off @ and apply (2.1) with
q = lﬁ, a=1, r-« to see that
10 2
Jul 3 dx < oM’ J |Vul2dx ;
ox{t} Qx{t}

{(2.3) follows by integration in time.

Solving for the pressure.

The generalized energy inequality gives information about u, but

not about p. To draw conclusions about the pressure, one uses the

relation
3 is
(2.4) Ap = - ) vV, (atu))
b i’
i,j=1

which follows from (1.1) by differentiation. If Q = R3 then (2.4)

determines p explicitly as a sum of singular integral operators

. i
acting on utu’.

For partial regularity theory, it is more important to represent
p locally, using only local information about u. Let ¢(x) be Cw,

with supp ¢ C Br and ¢ = 1 on B_ . Then

IR
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(2.5a) PP (x) = - 3= J =512 0P (ay
and
(2.5b) A(¢p) = pho + 2 < V¢, Yp > - ¢ ) Vivj(uiuj) .

Substituting (2.5b) into (2.5a), one obtains a formula for p on

B as a sum of harmonic functions and integral transforms of u.
2

Dimensional analysis.

Though elementary, the scaling properties of the equations are

of fundamental importance. If (u,p) solve (l1.1), then so do

It}

u () = uix,a e

(2.6)
2Ok 2e)

Pk(x,t)

for any A . We encode this information by assigning a scaling

dimension to each guantity:

Xx. has dimension 1

t has dimension 2

(2.7) u has dimension -1
P has dimension -2
so that each term in (1.1) has dimension -3. The fact that u has
dimension -1 is consistent with its interpretation as a velocity,
i.e. dimensionally as space/time.
In view of (2.6), it is natural to use parabolic cvlinders

in space-time instead of Euclidean balls; we therefore define
2
(2.8) Q. (x,t) = {(y,1) : lv-x| < xr, Jt=-1| < °}

Using (2.7), one can assign a dimension to any integral
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involving u and p. For example, the estimates
2 2
(2.9) |vu]“axdt < = and Jul“dx < =

have dimension one; this corresponds to the fact that

I

JJ |7u, | 2axat = 27t JJ |vu| %axat

r ri

J ]uxlzdx =t f |u|2dx
B

r Bkr

The relevance of this "scaling dimension" will become clearer
as we proceed. We note here, however, that various estimates of
dimension < 0 imply regularity. For example, every known existence
theorem for a strong solution requires a hypothesis of dimension
< 0 on the initial data. Moreover, Serrin has proved that if f
is Coo and

s
(2.10) J( J lu]9ax)9 at < o,

QW
nin

then u is C? in space; the estimate (2.10} has dimension < 0 [14].
It is thus not surprising that the estimates (2.9), which have
scaling dimension one, lead to an estimate of the one-dimensional

measure of the singular set.

Generalized energy inequality.

We shall work only with weak solutions that satisfy the
following generalization of the standard energy inequality: if

¢ (x,t) is dm, compactly supported, and ¢ > 0 then
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t t
(2.11) j lu{2¢ + 2 JJ fVu12¢ < leu|2(¢t+a¢) +
ox{t} 00 00
t t
- ]
0 0

J (]u|2+2p)u-v¢ + 2 J(u-f)¢ .
Q Q

One obtains this relation formally, with < replaced by =, by
multiplying (1.1) with u¢ and integrating by parts. That procedure
is, of course, not admissible for a weak solution. There is, however,
at least one weak solution of (1.1) - (1.2) which satisfies the
inequality (2.11) [1]3.

The advantage of (2.11) over (1l.3c) should be clear: by choosing

¢ appropriately in (2.11), one can obtain local or weighted

estimates of u.

We close this section with some definitions.

Definition 1: We call (u,p) a suitable weak solution of the Navier-

Stokes equations with force f if
i) u, p, and f are defined on a space-time cylinder D = Brx(a,b)

f e Lq(D) for some q > ;

ijufzdxdt <c

P 2
jul®@x < ¢  a.e. te (a,b)

Brx{t}
5
p € L4(D)

ii) Vef = Veu = 0, and
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in the sense of distributions.

iii) The generalized energy inequality (2.11) holds for every

% >0, ¢” and compactly supported in D.

Definition 2: If (u,p) is a suitable weak solution, we call a point
(x,t) regular if u is LToc in a neighborhood of (x,t). Other points
are called singular. Notice that

(2.12) S = {singular points of u}

is by definition a closed set (relative to the domain of u).

Definition 3: A set X in R3xR has parabolic k-dimensional measure

zero if for every & > 0 there exists a finite family of parabolic

. _ N .
cylinders, {Qi = Qri(xi,ti)}i=l , with

C .
X IiJQl

and

I e~12
e
I~

[

How big can X be and still have parabolic one-dimensional measure
zero? Certainly it cannot contain a smooth arc; indeed, its one-
dimensional Hausdorff measure must be zero. Moreover, it is easily

shown that the projection onto the t-axis

m(X) = {t :d3x, (x,t) € X}

must have one-half dimensional Hausdorff measure zero.

Section 3. Sufficiently small solutions are regular.

We have already noted that "sufficiently small" solutions of the
initial-boundary value problem are regular. The key to proving a

partial regularity theorem lies in showing an analogous local result:
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Proposition 1: There are absolute constants ¢ C, > 0, and a

1’ 71
constant ez(q) depending only on g, with the following property. If

(u,p) is a suitable weak solution of the Navier-Stokes eguations on

Ql with force f € Lq(q > é), and if

2
1 5
3 4
e[ el e qalieh + [0 [ jelan®arcq
Ql -1 x| <1
and
(3.2) ” ]9 < e,
Q
then 1
(3.3) Ju(x,t)| < C, a.e.on 0,
Proposition 1 is a local version of the main lemma in [16]. To

understand it, one should ignore f and p; heuristically, it says
that if Ju| is small enough in the L3-norm on a unit-sized cylinder

Q then u is regular on Ql .

2

11

One proves Proposition 1 by a variant of Scheffer's clever
inductive procedure. As motivation, consider trying to bound
|u(0,0)|2 by using a fundamental solution of the backward heat

*
equation: suppose ¢ is defined for t < 0,

¢: + Ap* =0 near (x,t) = (0,0)

0 near {|x|=1} U {t=-1}.

hsd
1

Substitution of ¢* into (2.11) leads formally to a bound for
|u(0,0)!2; but one lacks sufficient information to estimate the

right hand side.
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Next, notice that the worst term, [J (|u|2+2p)u-v¢, is cubic

in u, while the left side of (2.11) is quadratic (p is "like |u|2"
by (2.5)). Moreover, using (2.1)
(3.4) r-SJJ [u]3 < Cq(r)2 ,

Or

for any r > 0, where

alr) = ( sup r—3 |u‘2) +r—3 JJ qu|2
2
[t]<r B, Q.

is roughly the information available on the left of (2.11).
*
The inductive argument, then, uses not ¢ but a sequence of

*
test functions{¢n}, ¢n being essentially a mollification of ¢ of

order 2 ", As one enters the nth stage, one knows

3
(3.5) r-SJJ |u|3 < ei , 278 <r <1,

Qr

and an analogous bound for the pressure. The function ¢n satisfies

¢n . 2—3n
on Q -n-1
2
-4n
[V, | < c2
b < oy~ 3K
on Q _k\Q %1’ k <n .
|V¢nl < C2‘4k 2 2
|(¢n)t+A¢n| < C on 9,

Therefore, using (3.5),
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One bounds the other terms in (2.11) similarly, to obtain

a(Z—n—l) < Ce

RN

Using (3.4), and assuming that € is small, it follows that

= Wl

2—n—l P

(3.6) r JJ |ul3 ice e <r g

Q

r

’

One proves a corresponding estimate for o using (2.5) (this is the
most technical part), and the induction continues. The key is the
different homogeneity on the left and the right in {2.11), which
allows the smallness hypothesis to be useful in (3.6).

One can rescale Proposition 1 to obtain a result on Qr = Qr(x,t)

for any r, using (2.6):

Corollary 1: For any r > 0, if

13 5
(3.7) r~? ” (] + Jullph) + ¢ 4 f (jlpldy)“ ar < e
Qr Qr
and
(3.8) r3q'5” l£]9 < e,
Qr

then

|u| < Clr_l a.e. on Q£

2

Again, the way to understand Corollary 1 is to ignore f and p. It

says, in essence, that if the dimensionaless quantity

(3.9) R(r;x,t) (r|u|)3dxdt

1
© Meas Q )JJ
o Qr(x,t)

is small enough, then u is regular on Qr' One may view R(r) as a

2
local Reynolds number for the flow on the cylinder Q-
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Section 4. A dimension % result,

If (u,p) is a suitable weak solution on all of R3, then by

(2.3) and (2.4)
10 5
(4.1) H a3+ |p|3 < = .

As Scheffer observed in [16], Corollary 1 and (4.1) imply an estimate
for the parabolic %-dimensional measure of the singular set S. The

idea is simply this:
10

if u e L 3 , then "at most points" the average of u on Qr(x,t) will
not be too large; at such points R(r;x,t) » 0 as r » 0. To quantify

this, one uses the following Vitali-type covering lemma.

Lemma 1: Let J be any set of parabolic cylinders Qr(x,t) contained

in a bounded subset of R3xR. There exists a finite or denumerable

family J' = {Qr (xi,ti)} such that
i

(4.2) the elements of J' are disjoint;
(4.3) for each Q € J there exists
- L
Q; = Qri(xi,ti) € J' such that

QcC QSri(xi'ti) .

Given Lemma 1, we argue as follows. Fix &> 0; since f € Lq
and q > % , we may assume that (3.8) holds whenever r < §, by choosing
§ small enough. By (3.7) and Holder's inequality, there exists
si > 0 such that

10 5
(4.4) r { J Jul 34 Ip]3 < ei = v is reqular on Q,
0

W

L8]

r

whenever r < §.
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Let V be any open, bounded subset of R3x(0,m), and let J

consist of all cylinders Qr(x,t) such that

Q.c¢Vv , rx §

10 5 5
(4.5) JJ !u1TT + \p,§'>g'r§

Q

By (4.4), J covers S NV, If J' is as in Lemma 1 then

snvcu QSr.(Xi’t')

i
i i
by (4.3), and
5 10 5
(4.6) ) ri < (ei)'l JJ lal >+ |p|? < =
vQ,
i
by (4.1), (4.2), and (4.5). As &8~ 0, we conclude that § N V has

Lebesque measure zero. Since UQr is contained in a §-neighborhood
i
of S, the right side of (4.6) actually tends to zero asd—> 0, so

5 . . .
the 3-d1men51onal measure of S is zero.

Section 5. The dimension 1 result.

The argument in section 4 gives a %-—dimensional estimate
for S because it uses the global estimate (4.1), which has scaling
dimension % . To prove a dimension-one result by this method, one
must use the dimension-one estimates (2.2) instead of (4.1).

Returning to Corollary 1, suppose that the point (xo,to) is
singular. Then (3.7) must fail for every sufficiently small r > 0.
Heuristically, this means that R(r;xo,to) is bounded away from zero,
i.e. that

2
(5.1) lul > S, = xmxg) o+ -ty -+ 0,
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"in the L3—mean". Thus Corollary 1 specifies a minimum rate at
which singularities can develop. If |ul| grows as % ;, it is natural

to guess that |[Vu| should grow as —%— . These considerations motivate
r

Proposition 2: There is an absolute constant e, > 0 with the

3

following property. If (u,p) is a suitable weak solution of the

Navier-Stokes equations near (x,t) and if

(5.2) lim sup r 1

qu\z axdt < e,
r+0 -

Q. (x,t)
then (x,t) is a regular point.

Proposition 2 implies Theorem 1 by the covering argument of
section 4, using (5.2) in place of (4.4).
The essential idea in the proof of Proposition 2 is contained

in the following calculus lemma

1,2 3

Lemma 2: Let w(x,t) be a W function defined near (0,0) € R xR.

For r > 0, let

R(r) = r 2 ” lw >
Qr
_% 3
B(r) =r JJ |wt|2
Qr
v =[] w)?
Qr
Then for any p < r,
L 3
(5.3)  R(p) < ct@ R+’ m) + E R @@ @)

Notice that R(r), B(r) and y(r) are dimensionless in the

sense of (2.7). Proving the lemma is an amusing exercise, using the
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interpolation inequality (2.1), HOlder's inequality, and the
fundamental theorem of calculus. The conclusion (5.3) is a sort of

decay estimate for R(p):

Corollary to Lemma 2: For any € > 0 there exists 6§ >0 such that

(5.4) lim sup B(r) + y(r) < § = lim inf R{(r) < ¢
>0 r>0

Indeed, {5.3) implies
3

v

S0y 34 253
R(P) < CuR() - [(2)74e 25

3
+ cy182 m+ 5 vt o)

03 <

whenever R(r) > €. Choosing 0 < @ < 1 so that c, % , then
§ > 0 so that
_1 3 7
2 -3.4 1 2 .=-3.4 € ’
e 7 C0 T8 <z and  Cy[8740 T8 1<
we conclude
R(Or) < iR(r) + £ < Lr(r)
- 3 6 — 2
whenever R(r) >¢ and B(r) + y(r) < § . The assertion (5.4) follows,

with this choice of §.

The proof of Proposition 2 is roughly parallel to the above

N

argument. For a weak solution u, one has no bound on JJ|ut] , but

the generalized energy inequality lets one bound the oscillation

in time of J ]u]2 . One proves a "decay estimate” like (5.3), for

B
r

the entire left side of (3.7) instead of for R{(p).
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Section 6. Concluding remarks.

One reason for studying partial reqularity is the hope of
settling, by this method, certain classical open questions about
weak solutions. Might one prove uniqueness or strong continuity,
for example, without actually proving reqgularity? Theorem 1 alone
does not suffice; one appears to need information about the maximum
rate at which singularities can develop. We note in this context
a qualitative difference between Corollary 1 and Proposition 2:
the hypothesis of the former concerns a fixed Qr’ and the conclusion
asserts a bound for wu ; the hypothesis of the latter concerns all
Qr’ and the conclusion gives no explicit estimate.

Might similar methods be used to prove an estimate of the
singular set of dimension less than one? This would require a
global estimate with scaling dimension less than one. Proving such
an estimate would take, it seems, a fundamental new idea.

It may be, of course, that weak solutions are not regqular.
An attractive scheme for constructing a solution with a self-similar
singularity is proposed in [10].

Finally, I note that the generalized energy inequality may
have uses other than for partial regularity theory. 1In [1], for
example, it is used to prove weighted norm estimates for the Cauchy
problem, in case the initial velocity satisfies J Iuolz‘xl < w,

or J ]uoizixl_l sufficiently small. R’

R3
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Abstract

We prove that any solution of u, = Au + u2 can be
analytically continued ( in t) through the upper
( and lower) half- complex plane intoc some infinite

interval (t¥, « ), t¥ > 0

1. Introduction Consider the nonlinear diffusion equation of
the form

_ 2
(1) ug = Au + u-, xe®, t>0

with the homogeneous Neumann boundary condition:

(2) 3u/3n|r = 0

and the initial condition:

(3) U| = u

where Q is a bounded domain ( in Rn) with smooth boundary T ,

and Ug is a given smooth function satisfying the homogeneous
Neumann boundary condition; 98/9n denotes differentiation in the

direction of the exterior normal to T
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We know that the local ( in t) solution of (1), (2), (3)
exists and unique. On the other hand, it 1s easy to see that
any solution of (1),(2),(3) does not exist globally, and blows up

in a finite time if Puo 1s positive, where

(4) Pf = = / f£(x)dx
o] @

( {9] : the volume of © ) ; see H. Fujita [1]. In particular,
if Ug is a positive constant function, then the solution u =
u(t) is explicitly given by : u(t) = ug /(1- uot) , and surely
blows up at t = l/uO ;5 note Puo = Uy- Moreover, this local
solution can be analytically continued into the infinite interval

(l/uo, © ), More generally we shall show that the local
solution of (1),(2),(3) can be analytically continued through

the upper (and lower) half-(complex)plane into some infinite

interval (t¥*, «), t¥* > 0

Fix p > n . We suppose that Ug is a real-valued function
in 1P(Q) with Puy # 0 . Put o = l/PuO , and let & Dbe suct
that 0 < & < Jo| . Let D, be the angular domain in the
complex-plane : |arg t] < w/4 . Dl 1s the angular domain:

5n/4 < arg( t-a-61) < Tw/4

(1 =V~1 ). Set

(e¢l. means the closure) ; note that D, = D =D if o < 0.
See Fig. 1.
We define the operator @ in LP(Q) by Q=1 -P (I

the identity operator in Lp(Q)).
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Im

Fig, 1

Our results now read as follows.

Theorem 1 Let p > n. Let uo aLp(Q), real. Suppose that

IlQug |l 0 /|Puol2 is sufficiently small. Then the initial-boundary
L

value problem (1),(2),(3) has one and only one solution ut o= u+(t)

(resp. u” = u (t)) that is analytic for t 1in D, (resp. D_) as

a wl’p(Q)-valued function ( Wl’p(ﬂ); the usual Sobolev space).

Theorem 2 Let uo, uy be as in Theorem 1. Suppose that

Pu, 1s positive, and that ||QuOH p/IPuOI2 is sufficiently small.
L

Then 1f u'(t) = u™(t) for some real t : t > a + & , then uy is

real constant. Conversely, if uO is a real constant, then

uwt(t) = uT(t) forall t : t > a+ 6
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2. Proof of Theorem 1 We have decomposition

tP) = prP() + atP(o)

Let y = y(t) be a solution of (1),(2) with the initial

condition y(0) = PuO , il.e.

(5) y(t) = a/(1- at) , ( a=Pu

For any b in QLp(Q), we set

(6) $(b) = a + a2b

If u 1is a solution of (1),(2) with the initial condition u|t=0

= ¢(b), then the function v = ( u - y)/ y2 is a solution of the

equation

(M ve = avo+ c(t)v2 R ( e(t) = Y(t)2 )

satisfying the conditilons:
(8) Bv/anlr= 0 ;

(9) Ll| 0 =D

and vice versa. Using the theory of equatiocns of evolution, we
shall show that the initial-boundary value problem (7),(8),(9) has

one and only one solution that 1s analytic in D+ ( and D_) as a
Wl’p(Q)-valued function. To this end, we define the operator A

in 1P(®) by Au = - Au with domain D(4) ;

D(A) = {u €W2’p(9) 3 au/anlr =0 }

( Wz’p(Q) is the usual Sobolev space). The following 1s then well

known.
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Proposition 3 The spectrum of -A consists only of non-nega-
tive and discrete eigenvalues { Aj}, 1 tending to the infinity.
J:

Moreover, the first eigenvalue 1is zero , which is a simple one; the

projection corresponding to the eigenvalue zero is given by (4).

Setting
I_={teC; Jargt| < 7n/2 -}, >0,

we have

Propostion 4 The operator -A generates the holomorphic

semi-groups {e"tA }t>0 in Lp(Q) such that for each e > 0

e_tA is holomorphic in Ze . Moreover, it satisfies the estimates:
(10) e ™™ < w5

(11) e ™™l < m, eTRRE

(12) lae™™ < mg eTFRE T e

for t in Ze’ Me and B being positive constants.

( For the proof, we refer the reader to H. Tanabe [3])
In what follows we fix ¢ = #/4 and I = Z“/u

Using a priori estimate: {( M denotes various constants)

[|vul) < M]ju - Pul + M| au | , u e D(A)
(see [3]1), we get
(13) Nve ™| < g "V eBREE oy

by the proposition 3 and (12), and by noting



124 Kyuya Masuba

hw =il pso il

Let Yy be such that 0 < y < 8 , B being as in Proposition 4, and

we introduce function spaces YO, Yl' YO is the set of all
holomorphic functions u in D+ with values in Lp(Q) such that
- R
Mowlll = sup € ([ Pute) | o+ e T lqu(e) | o) < @
0 t€D+ L L

and Yl is the set of all holomorphic functions u 1in D+ with

values in Wl’p(ﬂ) such that

t
Re t 1/2
Hwili, = Mull o+ sup Ce Fr=n RS CON NSRS
1 0 teD, 1+t LP
Equipped with the norm ||| u|HO (resp. ||| u Hll ), Y, (resp. Y,)

is a Banach space.

We define the map F of QLp(Q)X Yl into Y1 by:

(14) F(b,w) = w(t) - ety - fot e~ (E-8)A c(s)w(s)2ds

(t ED+) where the path of integration is taken in the interior of

D+. Then:

Lemma 5 The F is an analytic map : QLp(Q)XY1 > Y

l 3
satisfying
(15) F(0,0) = 0 ;
(16) FW(O,O) =1

( FW(O,O) denotes the Frechet derivative with respect to w at
b=0,w-=20).

Proof : The map I1 defined by
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1,lb) = ety b e QP ()

is analytic map of orP(Q) into Y1 by Proposition 4 and (13).
Next the map 12 defined by

I2[w] = fOt e-(t—S)A g(s) w(s)ds

is an analytic map of YO into Y1 , where g(s) = ((1+s.)/s)1/2

In fact, we have the inequalities:

c(s).

t
Pr,lall oo sy el sl il s

Re t t
cYRe M Sy lets)llasllliwilly s

A

Ihar, bl b

1/2
SNSRI fo 1e=sl “lecsy las il w il

(t €D+) by (10), (11) and (13) from which it follows that I,
is an analytic map : YO - Yl.
We finally define the map I3 by:

Tylw] - (t/ (14002 w2,

Then the 13 is an analytic map of Y1 into YO since we have

the following inequalitles by the Sobolev lnequality

oo —

Fawil o< Clianl oo el o)

and by the decomposition

aw® = QU(Qw)?) + 2 Pw-Qu

Prynaal < mibel g o<ow Dl
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eYRe t lergtulll < m eYRe Tio aae) (Y2 (flawy ¢
L L
+{Pul ) {lQui]
Lp
< we Pl VRl ¢
L
wlawll o+ {Pw] )l Qul]
P LP
2
< Mlbw
Since
F(b,w) = IlLb] + I2013[w]
( 12013 is the composition of 12 and 13), it follows that

F is an analytic map of QLp(Sz)XY1 into Y It 1s easy to see

1
(15) and (16). Thus the proof of the lemma is completed.

Now we are in a position to apply the implicit function
theorem, and can see that there 1s one and only one solution w =
+
v+(t,b) of F(b,v (+,b)) = 0 near (0,0) that is an analytic

function with values in Y1 of b near 0. The v+ satisfies

(17) Vie,p) = ety o+ I

b (e=s)A Loy (yT(s,b)) %as

(t £D+). By the standard argument in the theory of equations of
+
evolution, it follows that v (t,b) converges to b as t > 0O,

strongly in Lp(Q). We can also see that v+ is locally Holder

continuous for t in D, ( in Lp(n)), and so 1s (v+)2 , since

v )2 - w2 o cm (v il s iviell L)
L L

P
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+ +
< lvie) - vis) ]
P

( we simply write v+(t) for v+(t,b)); note v+ eYl. Hence v+(t)
is continuocusly differentiable in ¢ €D+ ( in Lp(ﬂ)), and its
derivative dv+(t)/dt is locally Holder continuous ( see, e.g.
T. Kato [2]). We also see v+(t) is in D(A), AV+(t) is locally

Holder continuous, and satisfies

avt(oyzar + avt(e) = ee)(vT ()2, tep,

with
v (0) = b.

By the regularity theorem on solutions of parabolic equations, v+
is actually a unique classical solution of (7),(8),(9) that is

analytic for ¢ eD+ as a Wl’p(ﬂ)—valued function. Hence
u+(x,t) = y(t) + c(t) v+(x,t) is a unique classical sclution

of (1), (2),(3) that is analytic for teD_ as a wl’p(ﬂ)—valued

function. Similarly we can show there 1s a unique classical

solution u~  of (1),{(2),(3) that is analytic for t ¢ D as a

Wl’p(n)—valued function; u (x,t) = the complex conjugate of

u+(x,t), t € D_. This completes the proof of Theorem 1.

+
3. Proof of Theorem 2 ir ug is a real constant, then u (t)

and u (t) take the same real values on (a,®) . We shall show

u+(t) does not coincide with u (t) for any real t (> a+§)

if u, 1is not (real) constant, and if [|Qu,l| ./ |Pu [2 is
0 0 P 0
sufficiently small. Let ry be a posltive number such that

v+(t,b) and v (t,b) are both analytic in b s I o | b < T
L
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Here and in what follows we shall use the same notations as in the

proof of Theorem 1. Furthermore we can take ro so small that

vt(t,b) 1s locally bounded in ol b < T ( in the norm of Y.),
L

1
+
as can be easlly seen from the proof of Theorem 1. Hence v (-,b)

has infinitely many Fréchet derivatives agv+(',b)[h,h,-~-,h] (n

eLp(Q); N =1,2,++-). In particular we have the expansion of the

form:
(18) Ve = vieL,00 o vTL00p) ¢ advE(-,0)Ib,p]
+ RY(,0)
where
(19) Rt G, i = o ol )
| ,0) il ol
Clearly
(20) ve(t) = vi(£,0) = 0

By (17) vI«t) z Bbv+(t,0)[b] satisfies

VI(t) = ety 42y

Ot e—(t—s)A

c(s)vg(s)v;(s)ds

and hence, by (20),

(21) vie) = ~thy

We can also see v;(t)z a§v+(t,0)[b,b] satisfies

vhe) = 2 1B ey vl (s)vis) + (vi(s)®T as

2 I e—(t_s)Ac(s) (v{(s))zds
T+

0]
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by (20) and (21); the path of integration r, joing 0 to t
is taken in D+: The procedures above can be easily Justified.

If va(t), vi(t), vg(t), R_(t,b) are similarly defined, we have

-tA

vo(t) =0 ; vl(t) = e b
- _ —-(t-s)A - 2

vz(t) = 2 GL e c(s)(vl(s)) ds
Set h(s) = (e_SAb)2 ( seD,), and let I be as shown in Fig. 2
below.

Im
//// "’
Y
LN
0 Re

Pig. 2
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Since <c(s)h{s) 1is holomorphic in a complex domain bounded by —F+

+ T_, we have, for any flxed t (>a+8 ),

e-(t-s)A

vp(t) - v3(t) = - L c(s)n(s)ds

1 e-(t—s)A

= -7
1"(<>L—S»)2

h(s) ds

~-{t-s)

- 2ri ] (e
]

A
. h(S)>' s=o,

-(t-a)A -af, |2

= lUxi e (Ve b)

by the Cauchy integral theorem and formula. Hence

e—(t-a)A(Ve—uA 2

v (t,0) = vT(t,b) = 02+ ool p) -
L

Consequently,

-(t-a)A( e-uAb)Z

u+(t,b) - u (t,b) = Uni [ e + o(l|p)l g)]/(a—t)z
L

and hence

lu*(e,b) - u™(t,0) ]| 1P(ut(s,0) —uT(t,0))]

v

(22) Ug

- 3
= —— [ £ (Ve **p)%ax + o(v|”)].
(a-t)2 f LP

It uo is not real constant, then b 1s not real constant. Hence,

_Q_A

. G
e b is not real constant, and so (Ve

b) 1is non-negative,
and does not vanish 1ldentically. This gives the proof of Theorem 2

by (22).
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4. Remark We can also consider diffusion equations of more

general type:
(23) ug = du 4 £(u)

where f = f(z) 1s an entire function of 2z with some conditions.
The results concerning theequations above shall be published

elsewhere.
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We discuss the asymptotic behavior of weak solutions to
one phase Stefan problems in exterior regions. It is
shown that any weak solution eventually becomes classical
after a finite period of time and that the shape of the
free boundary approaches to that of a sphere as t + +=,

1. Introduction.

A Stefan problem is a mathematical model for describing the melting of a
body of ice in contact with a region of water. In one phase Stefan problems,
the temperature of ice is supposed to be maintained at 0°C. Hence the
unknowns are the temperature distribution of water and the shape of the
interface ( free boundary ) between ice and water.

In the case where the space dimension is one, the problem has been
completely solved; and it is well known that, for any bounded smooth initial
and boundary data, the solution is unique and exists globally in time in the
classical sense ( see Friedman [4] ). However, in the case of multi-
dimensional spaces, a classical solution cannot always be extended globally
over the time interval 0 £ t < +«, since cusp-like singularities sometimes
appear on the free boundary. Such singularities occur, for instance, when a

portion of ice is in the process of being separated from the rest of the ice

133
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by the growing water region.

Duvaut [3] has introduced a weak formulation of the above problem in terms
of variational inequality, for which the solution exists globally in time.
Following his formulation, Friedman, Kinderlehrer, Nirenberg, Caffarelli and
others have studied the properties of weak solutions and obtained a number of
regularity theorems. These studies have revealed that any singular point
appearing on the free boundary should be a cusp-like singularity [1] and that
the solution is sufficiently smooth, say c” , inside the water region and also
up to the free boundary provided that this free boundary forms ( locally ) a
C1 hypersurface [8]. It is also known that the free boundary is ¢ if it is
¢ or even simply Lipschitz ( [8], [1] ). Friedman and Kinderlehrer [5] have
given an example in which the free boundary possesses no singular point for
0st<+«, in other words, the solution is classical for all time. This
example, however, requires a strong geometric assumption on the initial data.

The aim of this paper is to prove that any weak solution is "eventually"”
elassical. That is, the interface between the ice and water regions is
sufficiently smooth for all large t ; hence so is the temperature distribution
of water. It will also be shown that the shape of the free boundary ( Z.e.,
the interface ) approaches to that of a sphere in a certain manner as t > +o,
Of course the radius of this sphere goes to infinity as t = +», Note that we
shall impose no specific hypothesis on the geometric features of the initial
and the boundary data. The only assumption required in this paper is that the
temperature of water averaged on the prescribed boundary ( that is, the surface
of a heat supplying obstacle located in the midst of the water region ) be
bounded from below by a time-independent positive constant.

To state the above results more precisely, let us introduce some notation.
First, Let G1 be a bounded domain in R" such that 3G, is sufficiently

1

smooth and that ]Rn\G1 is connected. Let G be a bounded domain containing

51 . The boundary of G 1is also assumed to be smooth. G1 represents the
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fixed obstacle, G\(-Z1 is the initial water region at t=0 and R"\¢
denotes the initial ice region. As is mentioned above, the temperature of ice
is supposed to be maintained at 0°C . The water region at each t20 and the
interface between ice and water are denoted by Q{t) and T(t) respectively.

From the definition it follows that
Q(0) = (;\(';1 s

an(t) = T(t) Uac (tz0),.

1

The temperature of water will be denoted by 6 = 6(x,t). This is a nonnegative
function defined on the closure of the set { (x,t)\ x€9{t), tz0} and

supposed to satisfy the following initial and boundary conditions:

(@D)] 8(x,0) h(x), x € 0(0) ,

#

2) o({x,t) = glx,t), X€036G, , t20 ;

here h and g are given positive smooth functions satisfying

g(x,0) ( x€ 3G, )
h(x) = {
0 (x€3G ) .

The equations governing the phenomenon are as follows:

3) 6t=A6, x€Q(t) , t>0 ,

(4) 8 =20, x€P(t) , t>0 ,

(5) 6, = +|ve|? XET(t) , £>0
t k > s s

where k is a given positive constant. Thus the problem is to find 6(x,t)

and T(t) satisfying (1) ~ (5) and

(6) r(0) = sG .
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Although the problem (1) ~ (6) does not necessarily have a global classical
solution, it always has a weak solution ( in the sense of Duvaut ) that exists
globally in time. In his weak formulation, the temperature 6 is locally
given by the form 6 = ug o, where u = u(x,t) is a solution of a certain
variational problem ( see Section 3 for details ). Caffarelli and Friedman [2]
have proved that 6 1is continuous in (an\G1)>< [0, +=) , where we understand
that 6(x,t) = 0 for x¢ Q(e) v 61 , £20, It is not difficult to see that 8
is sufficiently smooth in the interior of the water region, since it satisfies
there the heat equation et = A8 in the sense of distributions. Further
regularity of 6 near the free boundary T(t) depends on the regularity of
T(t). In other words, a weak solution is classical so long as TI(t) has no

singular point ( [1], [8] ).

2, Main Theorems.

In what follows the pair 8(x,t), I'(t) will denote the weak solution to
the problem (1) ~ (6). The notation in the preceding section will be used

freely., The main theorem in this paper can now be stated as follows:

Theorem 1. Suppose there exist positive constants & and M such that

n 6 <[ glx,t)de s M
G

%,

holds for all 0st<+e, Then there is a positive number T, such that

T(t) is sufficiently smooth for all tz T0 .

Theorem 2. Let the same assumption as in Theorem 1 hold. Assume further that

n z 3, Then there exist a positive number T0 and a bounded convex set W in

' such that for any tzxT,  and any point x, € T(t) the inward normal line

0

to T(t) at z, intersects the set W .
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Combining Theorem 2 and the fact that the free boundary T(t) is moving

away from every finite region ( that is, any point outside G, will eventually

be swallowed by the water region ), we get

Corollary 3. Let n z 3 and let (7) hold. Then, for any bounded set A 1in

R, there exists a positive number T, such that Q(t)U G

with respect to any point of A for each t z Ih .

; ts star-shaped

Corollary 4. Let n z 3 and let (7) hold. Let <, be any point in E' and
put

m(t) = min |x-—x1| 5 M(t) = max lx-—x1|
xET(t) x€T(t)

Then M(t)-m(t) remains bounded as t + +=.

Remarks. (i) The condition (7) can be relaxed somewhat. For example, even if
the integral of g tends to zero as t » += , the assertion of Theorem 1 still
remains true so long as the rate of decay is moderate, However, if this value
decays very rapidly as t + +«, then the total amount of the heat energy to be
supplied to the water region through the surface 3G1 becomes finite, which
implies that only a finite portion of the ice will be melted. In such a case,
as it seems, the conclusion of Theorem 1 is not likely to hold.

(i1) In the case n = 2 , Corollary 3 still remains true, but the assertions in

Theorem 2 and Corollary 4 should be weakened slightly. For example, the

boundedness of M(t) -m(t) must be replaced by

m(t) _

lim m—‘.

tr+e
However, if g(x,t) = constant on BG1X {0, +=) , then Theorem 2 and its
corollaries all hold true even for n = 2.
(iii) In the case where g 1s independent of t , the growth order of the

radius of T(t) «can easily be calculated; namely we have
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Corollary 5. Let n 2 3 and let g +in (2) be independent of t . Then
Mee) - (ce)i/m

remains bounded as t - +>, where M(t) is as in Corollary 4 and C is a

eonstant defined by

-1 36

=
4

in which k 1is as in (5), bn i1s the volume of the n - dimensional unit ball,
that is, b = 17%/T(n/2+1) with T(-) being the usual gamma function,
3/8y 1is the outward normal derivative on 801 and, finally, § = 6(x) is

the solution of the boundary value problem

88 =0 in F'N\G, ,
(8) 8 =g on BGI 5
lim 8(x) = 0 .
lz]>e
3. Preliminaries — Existence and Regularity Theorems.

In the weak formulation due to Duvaut, 6(x,t) 1is locally given by the
form 6 = U, with u being a solution to a certain variational inequality.
More precisely, let T be any positive number and R be a sufficiently large

positive number. Set By = {xem“) fx} <R}, D= BR\E1 ,

K= {ver (0x(0,1) | vz03},
t

w(x,t)=f g(x,t)dr, x €36, , 0SE=T ,
0

h(x) ( x€G )
9) £(x) ={
-k ( x€D\G) ,



Asymptotic Behavior of the Free Boundaries 139

where k 1is the constant given in (5) and " is the Sobolev space of all
L2 functions whose derivatives up to order m belong to Lz. We are to find

a solution uEKan(O,T;HZ(D)) to the variational inequality in the pointwise

form

(10 a) (—Au+ut)(v—u) 2 f(v-u) a.e., for VEK ,
u=20 on Dx {0} ,

(10 b) u =y on 3G1X (,7) ,

u=0 on SBRX {0,T) .
Given a solution u to (10), we put
a1 Q(e) = {x€D] u(x,t)>01},

(12) r(t)

L}

30(c) \a¢, ,

ut(x,t) ( x€ED )
(13) 8(x,t) = {

0 (xem“\BR) s

for 0stsT.

It is known that the problem (10) admits a unique solution ( see
Proposition 3.1 below ). Moreover, one can check that the above-defined
8(x,t), I'(t) are actually independent of the choice of T, R provided that

R 1is chosen sufficiently large so that

(14) T(e)N 3B = @

for 0stsT . We therefore can define 6, T globally on the time interval
0st<+o, Hereafter by a weak solution we mean the solution pair 6, T
defined in the above manner.

Let us now consider the problem (10) in more detail, It is easily seen

that (10) possesses at most one solution. The existence of a solution can be
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shown by approximation with a suitable penalty function, The following
construction of approximate solutions is due to Friedman and Kinderlehrer [51.

For €>0 , define a function Be(t) €cT(RY) with the properties

Ba(t) =0 if tze ,
BE(O) = -1,
BE'(t) > 0 and Be"(t) <0, —o<t<e ,

Let f(x) be as in (9) and let fs(x) be a sequence of functions smooth in D,
uniformly bounded, decreasing to f(x) as e + 0 , and having uniformly

bounded variation in D . Set
ne(X) = en(x) , x€D ,

where n€C;( R") is a function satisfying

0sns1,
nx) =1 in [ x €R" dist(x,G,) < 2a},
nx) =0 in { x E]Rnl dist(x,Gl) > 3a}

for some positive constant a with 3a<dist(3G, 8G1) .

The approximate equation for (10) is an initial-boundary value problem of

the form
—bu +u kBE(u) = fe in Dx (0,T) ,
u=n in Dx {0} ,
(15)
u=1y+ ¢ on BG\X(O,T) ,
u=20 on BBRX (0,1) ,

where k 1is as in (5).
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Proposition 3.1 ( Friedman and Kinderlehrer ). For T>0,

unique solution u to the problem (10) with the properties
wer™(0,7 WP (M) ),  1<p<w,

u, €L°(0,T5 L°(D) ),

t

u, 2 0 a.e. in Dx(0,T) ,

there exists a
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where Wg’p(D) ig the Sobolev space of jid functions whose dertvatives up to

order 2 belong to f) . Furthermore, if u o, >0, denotes the solution

to the problem (15)e , then

u, U (as e+ 0 ) weakly in WJ’OO(Dx

(0,T))

and weakly in Wg’p(D) for each t€(0,T) and 1<p< =; hence u, > u

uniformly in Dx (0,T).

Remark 3.2, (i) Actually it can further be shown that uELm(O,T;WZ’m(D))

that u, is continuous ( [2] ).

(ii) The region §(t) defined by (11) is easily seen to coincide with the set

{ x €ER"\G, | o(x,t) >01}.

.

It therefore makes sense that we have called Q(t) the water

Definition 3.3. Let A cR" be a measurable set and let x

in R® . We say  xg

W(ANB_(xg))
tim inf —rp syt 0
o o %o

o+ 0

where p 1is the Lebesgue measure and Bp(xo) ={ x€ ]Rnl [x

Combining the ¢ smoothness criterion of Kinderlehrer and Nirenberg [8]

and the C1 smoothness criterion of Caffarelli [1], we get

0

has positive Lebesgue density with respect to A if

region.

-xol <pl.

be any point

and
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Proposition 3.4. Let t, be any positive number and let x

has positive Lebesgue density with respect to the set

0 be any point

on F(to). Suppose  x,

I¥1\\(Q(t0)tlél). Then there exists an =zt - neighborhood V of the point
(xo,to) such that T(t)JOV 4is an n- dimensional ¢ hypersurface transver-
sal to the hyperplane t = ty - Moreover, 6 is C in VAN

{(x,t) | x€QEJUT(L), t>0).

4. Proof of the Main Theorems.

In order to prove that the solution is "eventually' classical, we must
show that each point on T(t) has positive Lebesgue density with respect to
the ice region ]Rn\\(Q(c)U 51) if t 1is sufficiently large. Such a property
of TI(t) does not follow simply from local regularity analysis; studies of the
geometric features of T(t) in some global aspect are needed.

The main tool employed is the "plane-reflection" method first introduced
by Serrin [9] and later developed by Gidas, Ni and Nirenberg [6] and Jones [7].
In particular, we owe much of the discussion below to Jone's work {71, in which
he has investigated the asymptotic behavior of radially expanding wave front
solutions to the equation u, = Au + f(u) , x € R" , £t>0 . Of course his
argument does not apply to our problem automatically, partly because of the
existence of the obstacle G1 and partly because of the presence of the inter-
face T(t) through which & gains derivative gaps.

We begin with some notation and lemmas:

Notation, Let P be an (n~1) - dimensional hyperplane with PN G1 = Qﬁ; set
+
(16 a) s: the half space with boundary P such that § :JG1 ,

(16 b) xxz reflection of a point x €R" in P,

The following is the key lemma for the proof of the main theorems:
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Lemma A, Assume nz & and that (7) holds. Then there exists a positive

number R, such that for any hyperplane P with dist(P,G,) 2 R, it holds
A

that

an 8(x,t) = G(xl,t)

for all .:cES+\G , t20 , where st s xk are as in (16). Moreover, we have
A

(18) B(x,t) > B(x ,t)

for all z€S neEING, t>0 .

Corollary A, Assume n23 and that (1) holds; and let P be as in Lemma A.

Then |vxe(x,t)] #0 forany xTE€EPNQ(t) , t>0 , where V= (3/3 0,8/ 0, ).
Lemma B, Asswme (7). Then

lim dist(r‘(t),Gl) =,
t+ 4o
The proof of Lemma A will be carried out in the next section. Corollary A
follows immediately from Lemma A and the strong maximum principle, since 8
satisfies the heat equation 8, = A8 in the water region Q(t) , t>0 . For

the proof of Lemma B, see [5].

Proof of Theorem 1. For simplicity we assume n 2 3 . The case n = 2

follows from a similar ( but slightly modified ) argument.

Let R0> 0 be as in Lemma A and set

(19) W=Ccol({x er"] dist(x,6,) 5 RJUG) ,

where co denotes the closed convex hull of a set. By virtue of Lemma B,

there exists a positive number T0 such that

Te)YnNw = @

for all ¢tz TO .
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Take any t0€[T0,+°°) and fix it. And let x, be any point on I‘(to).

0
In order to apply Proposition 3.4, we must check that Xy has positive Lebesgue
density with respect to the region ]R“\Q(to). This will be shown by

constructing an open cone K, with vertex x

0 0
Put
Ko = {2z eR" | (z-x)"(y~x) <0 for all yeW},
where -+ denotes the Euclidean inner product in R® ., Since W is a compact

convex set and since x0¢w . KO is a non~empty open cone with vertex Xy

that 1is, KO is an open set such that r(Ko—xo) = Ko-xo for all r>0 .

Let z be any point in KO and set

P, ={yeR" | (y-x,-ag)t =0},

where § =2z ~ Xy - Applying Lemma A to P = Pa for each az0 , we easily
find that 9(x0+c¢5, tO) is monotone non-increasing in o2 0 . Consequently

e(x0+a£,t0) < e(xo,t ) =0

0

hence x

for all a20 . This shows that 6 vanishes everywhere in K 0

0 t]
has positive Lebesgue density with respect to r® \@(t). The conclusion of

Theorem 1 now follows by applying Proposition 3.4,

Proof of Theorem 2, Let W be as in (19) and set

= {x€ RUA\W | 8(x,ty) = ¢ }

for each ¢>0 , By virtue of Corollary A, Vxe(x,to) does not vanish on l"E s
hence Pe is an (n-1) - dimensional smooth hypersurface., Moreover, as is
easily seen, l“sﬂ W =) if e is sufficiently small. We shall show that

any ray inward normal to 1“e ( i.e. the direction parallel to Vxe(x,to) )
intersects the set W . The conclusion of Theorem 2 then follows by letting

¢ >+ 0 and using the fact that 6(x,t,) is smooth in S'z(t:o) up to the
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boundary I‘(to).
Let %, be any point on 1"e and let 2 be a ray inward normal to I‘6 at

x, . Assuming that
(20) LNW =,

we shall derive a contradiction.
Denote by F,‘ a non-zero n-vector parallel to &. By the definition of

2 , we have

21) g, = cvxe(xi,to)

1

for some c>0 . Since W 1is a compact convex set, (20) implies that there

exists an n-vector ¢ such that
(22 a) g-(y-x1) <0 for all y€EW ,
(22 b) 2-51 >0 .,

Arguing as in the proof of Theorem 1, we see from (22 a) that 6 is monotone
non—-increasing in the direction of ¢ ; more precisely, e(x1 +a;,t0) is

monotone non-increasing in o220 . In particular, we have
-v <0
g7 00(x,,t,) ,

hence z-f, £ 0 by virtue of (21). But this clearly contradicts (22), thus

1
showing that the supposition (20) is false. This completes the proof of

Theorem 2,

We omit the proof of Corollaries 3, 4 and 5.

5. Proof of Lemma A.

In this section we prove Lemma A, which, although simple, played a key role
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in the proof of the main theorems. We begin with some auxiliary lemmas:

Lemma 5.1. Let B(x,t) , 8(x,t) be solutions to the following initial-

boundary value problems:

-_— A n =
6, = 48, xEJR\Gl,t>O,
_ h(x) ( x€G\G, )
(23) 8(m,0)={ " *

0 ( x€R \G ),
=g, zEBGl,t>0,
§t=A§, xEG\Gz,t>0,

(24) 8(x,0) = h(x) , mEZ;\G] R
8=g, x€3G, , >0 .

Then

B(x,t) 2 6(z,t)  for xEJR”\al, tzo,

8(z,t) £ 8(x,t) for r€G\G tz20 .

1

Recalling that m“\é1:n(t):c (';1 for t20 and that 6 =48 in Q(v),

8 =0 on T(t) , one can easily verify the assertion of Lemma 5,1. This lemma
is a special case of a more general comparison principle in one phase Stefan

problems; see [5;Lemma 2.5)] and its subsequent remark. Suffice it to say that
(23) ( resp. (24) ) derives from the Stefan problem (1) ~ (6) if one sets k = 0

{ resp. k == ) in (5).

Corollary 5.2. Assume (7), and let G, be a domain with a smooth boundary

2

satisfying EZCGZCE2CG . Then there exist constants &,>0 , M, >0 such

that

61 < 6f(x,t) < MZ

for all z¢€ 302 . t20 .
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Corollary 5.3. Assume nz3 and that (7) holds. Let G, be as in Corollary

5.2, Then there exists a positive constant M2 such that
8(x,t) £ Myb(z)  for all xEIf‘n\GZ s

where ¢ 1is the solution to the problem

b0 =0  in En\Gz S

(25) ¢ =1 on 3G, ,
lim ¢(z) = 0 .
lx <>
In particular, we have | lim 8(x,t) = 0 wniformly in tz20 .
x|

The proof of these corollaries are straightforward, so we omit it. Note
that the assumption n 2 3 in Corollary 5.3 cannot be dropped, since the

problem (25) has no solution in the case n=1 or n=2 .,

Lemma 5.4. Let u, > €2 0 , be the solution to the problem (15)E and set
6. = BuE/at . Then u T U, 8> 8 decreasingly as e v 0 , provided that

fs and B, are chosen appropriately.

Proof. Define Be by
s
BE(S) = B(E) ,
where B(s) is a function with the properties

8(s)

L}

0 if sz1,

8(0) -1,

R'(s) >0 and B"(s) 0, ~w<s<
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It is clear that BE has the properties required in Section 3., Next we choose
fe appropriately so that eAn + fe decreases as € + 0 and that f€ satisfies
the conditions listed above (15)5' The existence of such fE is obvious,

The decreasing property of u (as € + 0) follows immediately from that
of ¢ + g, N s fE and —Be(s) (820 ) . In order to show that 66 is
decreasing as ¢ v 0 , we differentiate (15)6 by t , to get

30

- _£ ' - .
Aee ts kBE(ue)BE 0] in Dx (0,T) ,

0.(x,0) = ean(x) - kB(n(x)) + f_(x) in D,

GE =g on BGTX 0,T) ,
8 =0 on 3B_x (0,T)
€ R

By virtue of the assumption above, the initial data ee(x,O) decreases as

€ ¥+ 0 , Moreover, since Bg £ 0 and since u, is decreasing as e + 0 ,
Bé(ue) is increasing as € + 0 ., Applying the maximum principle, we see that
BE is decreasing as € + 0 ; this completes the proof of Lemma 5.4. ( Note

that the convergence Ge + 6 does not take place everywhere on Dx[0,T] ; in

fact, ee(x,O) does not converges to 0(x,0) for some xX€G . )

Proof of Lemma A. Let u o, 65 be as in Lemma 5.4. By virtue of Corollary

5.3, there exists a positive constant R1 such that

sup 8(x,t) < §

1 E]
t20, k| 2R,

where 61 is as in Corollary 5.2. By a similar argument, we see that there is

a positive constant, again denoted by R, , such that

1

(26) sup 8 (x,t) <&
(x,t) €px[o,T] ©
x| 2 R,

1

for any sufficiently small € .
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Now take a positive constant RO such that the set
W=co({xer"| dist(x,G,) 5 Ry})

contains both G and {x€R"| |x| R, }. And let P be a hyperplane with

dist(P,6,) 2 Ry ; and set D' = (x€s"| X €D}, where x' , 8* are as in

(16). We shall show that
7 6 (x",t) 56 (x,t)
€ ’ e

for all xED'\GZ , where G2 is as in Corollary 5.2.

Put

v(x,t) =u (x,t) - u (xx,t) ,
E €
wix,t) = g—:u,c) =6 (x,t) - Gs(x)\,t)

The functions v , w satisfy the degenerated parabolic: system

v =w in (D'\GZ)X(O,T)
(28 a)

ol
]

L= v - KB (u)w - kee(x*,c):,(x,c)v in (D'\G,) x (0,T)

together with the initial and the boundary conditions

vzo0 in D'\GC

2 b
(28 b) wz0 in D'\G,,
w20 on 3 (D'\GZ) x (0,T) ,
where
B! (u_(x,1)) - B'(u_(x",0))
E(X,t) - _€E E €

A
ue(x,t) - (x ,t)

Note that the last inequality in (28 b) follows from (26), Corollary 5.2 and the

decreasing property of BE ( Lemma 5.4 ). Since B‘E‘ < 0 , we have
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(29) 12

A
o

It is now clear from (28), (29) and the maximum principle that w 2 0 in

(D‘\\Gz)x [0,T] , which implies that (27) holds. Letting € ¥ 0 , we get
A
(30) B(x",t) s 8(x,t)

a.e. in (D'\\Gz)x [0,7] ; hence (30) holds everywhere in (D'\\GZ)X [(0,T] by

virtue of the continuity of © ([2]). Considering that T and R ( where

D = BR\\G1) can be chosen arbitrarily large, we see that (30) holds for all

X € S+\G2 , t20 . Thus the former part of Lemma A is proved. The latter part
is now obvious from the strong maximum principle. This completes the proof of

Lemma A,
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INITIAL BOUNDARY VALUE PROBLEMS FOR THE EQUATIONS OF

COMPRESSIBLE VISCOUS AND HEAT-CONDUCTIVE FLUID

Akitaka Matsumura and Takaaki Nishida

Department of Applied Mathematics Department of Mathematics
and Physics, Kyoto University Kyoto University
Kyoto 606, Japan Kyoto 606, Japan

The equations of motion of compressible viscous and heat-
conductive fluid are investigated for initial boundary
value problems on the interior and exterior domain of any
bounded region and also on the half space. The global
solution in time is proved to exist uniquely and approach
the stationary state as t = +», provided the prescribed
initial data and the external force are sufficiently small,

§ 1. Introduction
The motion of a compressible, viscous and heat-conductive Newtonian fluid

is described by five conservation laws:

iy .
o+ (pu )X' 0
i
1. Ui + “jui “‘lp -1 (u(ui + ol )+ u'(uk )Sij) s i=1,2,3
t X. 0 fx, 0 X. X. x X, ’ T
] 1 3 1 k 3j
. 8Pn -

6. +ulg +—2ud =L (o ) 4w,

t X. [ols} xj pc xj xj

where x = (xl,xz,x3) € R3, t >0, p is the density, u = (ul,uz,u3)

is the
velocity, 8 is the absolute temperature, p = p(p,6) 1is the pressure,
f = (f ,f,f") 1is the external force, u = u(p,8) and u'(p,8) are viscosity

coefficients, « = k(p,8) 1is the coefficient of heat conductivity, c¢ = c(p,8)

2, U'(ut )2
i k

is the heat capacity at constant volume and Y = %—(u; + ui )
bi

153
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is the dissipation function. First we assume the following basic assumptions on
(1.1):

(A.1) The external force £ s generated by a potential function ©¢(x}, i.e.,
p

(A.2) W, u', x, p and ¢ are smooth functions of p,0 > 0, and

w|n

> ' >
Hs Ky C5 Py Pos Py 0, p'+7uz20,

We consider the system (1.1) in the following domain Q.

Case 1. Q = Ql : a bounded open set in R3 with ¢ boundary Q.

Case 2. © = Q, : compliment of ﬁi or the half space R%* = {x € R3, x, > 0}.

3

For both cases we discuss the existence of a global solution in time under the
suitable initial and boundary conditions since the local existence theorem is
established by Tani [14] under full generality. In this note we shall summarize
the results in [9] and [10].

Case 1. (Interior Problem) Let us consider the system (1.1) in Ql with the

initial condition

[}

(1.2) (p,u,8)(0,x) = (po,uo,eo)(x) X ¢ §,

and the boundary conditions
(1.3)1 uw(t,x) =0, 6(t,x) =6, xe 80, tz20,

where 6 1is any fixed positive constant. In order to state the theorem

precisely, let us list up further assumptions:
(A.4) (Dpsu.36.) € H3(Q) b e HA(Q) and (p.,8.)(x) >0 for x e O
1 0’70’70 ’ 0’70 ’

(A.5) (compatibility condition)

u cu(l)(sz), 0

= 1
0 -8 e HO(Q),

0

_ i j v k(1] _ 1
("o)xi * Quglug o * “o,xi) * UOUO,ka )xJ. pod’xi e By,
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- ] 1
eo(po)ouo,xj * (KOeO,xj)xj + ¥y e Hy,

_ _ 2
where Py = p(po,eo), My = u(po,eo), , and so on. Here H () denotes the
Sobolev's space on

o

s a
ph@) = {fe L2, Dkf={a'“’f/ax11 ax,” oy, lal=kbe L2@, 1 ks 1}

2 —
with the norm |lf||2 =( Z J |Dkf|2dx)2 , and Hé(Q) denotes the completion
Q

of C:(Q) in Hl(Q). Define a positive constant p by

0 = = J o~ (x)dx
v(Q Q 0

where V() represents the volume of . We call (S(X), G(x), é(x)) € CI(ED
x (Cz(ﬁ))2 an equilibrium state of the problem (1.1)(1.2)(1.3)1 when (5,;,5)

satisfies (1.1) and the additional conditions

o 5w 1 =
Ulag = 0, 6 8 = 8, 7)) JQO dx [N
Then we have

Theorem 1. Under the assumptions (A.l)(A.Z)(A.3)(A.4)1(A.5), there exist
positive constant €, o and C such that if [IpO—B, ugs 60—§w13 + H¢lu < g, then
the problem (1.1)(1.2)(1.3)

has a unique global solution in time (p,u,0) and a

1
unique equilibrium state (5,;,5) = (5,0,5) satisfying

o € c2(0,4m; B n cL(0,4m; HE(R)),

(u,8-8) € c%(0, 405 B 0 KL 0 CH (0,4 HH(D)),
and

sup |(p,u,6)(t) - (5,0,6}| < Ce-at

x€ Q

Case 2. (Exterior or Half-space Problem) In this case let us consider the

system (1.1) in Q2 with the initial condition (1.2) and the boundary conditions
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(1.3)2 u(t,x) =0, 6(t,x) =8 for x e€3Q, ¢t2z20,

u(t,x) >~ 0, 8(t,x) 6, oplt,x) >p as [x| »+= for t 20,
where p and 9 are any fixed positive constants. Let us assume that
(4.8, (o, D, ugs 8,8 € (D, 0 e B,

2 0™ 70”70

and the compatibility condition (A.5). 1In this case we call (B(X), E(x), 8(x))
an equilibrium state of the problem (1.1)(1.2)(1.3)2 when (5,;,5) satisfies (1.1)

(1.3), and (55, u, B-8) < H'(@). Then we have

Theorem 2. Under the assumptions (A.l)(A.Z)(A.3)(A.4)2(A.5), there exist
a positive constant € such that if ||p0—5, Uy 6045‘}3 + l]@}‘s £ £, then the

problem (1.1)(1.2)(1.3)2 has a unique global solution in time (p,u,0) and a

unique equilibrium state (5,6,5) = (5,0,5) satisfying

0~ 5 e cl(o,+0; HO@) n cl(o,+o; HE()),

(,6-8) € 00,405 B (D) 0 BLD) 0 G (0,45 H (@),
and
sup  [(p,u,0)(t) - (9,0,8) 0 as t > 4w,
x
The proof of both Theorems are given by an energy method similar to those
of our previous papers [71[8] on the initial value problem. However the initial
boundary value problems require a new a-priori estimates of the sclution near
the boundary. In the following sections, we shall show rough sketch of the proof
only for the half space case because the other cases are proved along similar
strategy. Details are to be appeared in [10]. Finally we should mention that
for one-dimensional model system of (1.l) we can see more precise results in

Kawashima-Nishida [5] and Okada-Kawashima [111[12].
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§ 2, Stationary solution

Let us write the equations and conditions for the stationary solution

(0,u,8)
(2.1) (ou?y =0,
X.
i
(2.2)  pudul +p o+ e - el Wy e udf ety 20, i-1,2,3,
X, X, X. X, X. X X
] i i i k i
ey ~ J _ ~ ~ ~ -
(2.3) pc u Ox. + epeux' (KOX.)X' Y 0,
] i3
(2.4) G‘ = G‘ =0, 61 = é‘ =7, ol =09,
30 ™ 30 w w

where p = p(B,é) etc. The stationary problem (2.1)-(2.4) has a unique solution
as
Lemma 2.1. Under the assumptions A.1 ~ A.3 there exist positive constant ¢

and C such that if HcI>||2 e, % =3,4, or 5, the problem (2.1)-(2.4) has a

unique solution (E(x),O,E) in a small neighborhood of (0,0,8) in (Hz)3
satisfying
(2.5) \|5 - 5\‘2 < Cl}@i‘Q s % = 3,4, or 5 respectively,

where E(x) is determined by (1.8), i.e.,

o(x) p (n,9)
(2.6) J L dan 4 6(x) = 0.
B n

Proof. Since we consider a small neighborhood of (p,0,8) in (H2)3, by

Sobolev's lemma we may suppose |5—6|, |;|, |§-§| < %—min{E}E}. Then we can

estimate the equalities:

o p (0,0
J[z.u xf £ 4ndx = o0,
6 n

(2.7) J [2.21% x alax = o,
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J [2.31 x (6-8)dx = 0,

where [2.11, £2.21" and [2.3] denote the terms on the left hand side of (2.1),
(2.2)* and (2.3) respectively. Take the sum of (2.7) and integrate it by parts

using the mean value theorem and Lemma 4.1. We obtain the inequality:

oa {12+ 1108 |12 < ellloa ] « |5l + 851 o + 168 113(]i o |)® + |18 1%,
Therefore if || Dpll, [[Gi|1, [(5—@}[2 is small, we can conclude
(2.8) u=0, 6=79.

If we substitute (2.8) in (2.2), we have

o p_(n,8)
{J—p—~—dn+®} =0
b X5

which implies (2.6).

§ 3. Local and global existence
Let us rewrite the problem (1.1), (1.2) by the change of variables

(p,u,8) > (p + 0,u,8 + §) using (2.6) as follows:

0 Y = hj —3 .0

(3.1) Lpsu) 2 p +ulp +opu =f,
i ]

i i i i PEIE T Lol .

(3.1) Lo(p,u,8) = u — - (e w o PPt R0 = f7, i=1,2,3,
j ] 13 1 1

4 4 - - P b

(3.1) L'(u,0) 28, - k6 +pu =f .
iTi
(3.2) (u,8) = (u,0) =0,
30 ®

(3.3) (p,u,0(0) = (oo,uo.eo),

where we denote the constant for the function g of p and 6 by g = g(E,g),



Compressible Viscous and Heat-Conductive Fluid 159

and also W = u/p, u' =u'/p, « =«/pc, Py = 55/5} Py = Eé/E and
Py = éﬁe/EE . The terms on the right hand side of equations (3.4) are nonlinear

and have the form:

o e
£°(p,u,8) = (p-p=0)ul -~ o ul
X. X,
j j
. .. . .
£ (p,u,6) = —ulul o+ (- - Dot + (U+%/ - W=l +
X. X.X. X.X,
] p+p 1] PO 1]
. . .. P
sl fu ey et s e - 20 s
e T i i Tk o+p Fi
(3.4) N ~ .
Py op (P + 0,8 + 6)
*py, - =26+ ( T - Do, 1=1,2,3,
prp i (p+o)pp(o,6) i
£ (p,u,8) = —ulp  + (—= -8 +
X, ~ X.X.
j (p+ple 3]
(8+8)p, .
fpy - ——Od L s ey,

(p+pde %5 (o+pde *3 %

Next we choose a constant EO by use of Sobolev's lemma such that

1 . == 2
llg||c0 g.f min{p, 8) for any g ¢ H”, |‘g\‘2 < EO .

Then the solution of (3.1)-(3.3) is sought in the set of functioms X(0,»; E)

for some E £ EO , where for O £ t1 < t2 < o, we define

X(tl,tz; E) = {(p,u,8)

) .yl
o € c(cl,cz, H”), Dp € Lz(tl,tz, HT),

- i
€ C(r_l,tz, H®) n LZ(tl’tZ’ Hn"),

R . § L3
u,6 € C(tl,tz, H™ n H), D(u,d) e Lz(tl,tz, HY),

. 1 . 2
u ,g € c(cl,cz, H™) n Lz(tl,tz, H) and N(tl,tz) < E},

where
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Nz(tl,tz) = sup || p,u,0(t) |I§ + | P (0 H; + l]ut,et(t) Hi +
t,Stst
(3.5) 2

. jtznnp(s) 12+ 1o, )12+ [Ip0w,80() )12+ 1ju,8,0) lias -

Y

. . : 3
Here and in what follows we do not write § im H (Q).
We will obtain the global solution by a combination of a local existence
theorem and some a priori estimates for the solution in X, namely that for the

norm N.

Proposition 3.1. (local existence)
Suppose the problem (3.1)-(3.3) has a unique solution (p,u,8) « X(0,h; EO)

for some h 2 0 and consider the problem (3.1)-(3.3) for t 2 h. Then there

/ 2
0 and CO(EO 1+C0 S E

that if N(h,h), ® < €, s the problem has a unique solution
5 0

exist positive constants T, € )} independent of h such

[¥]

(p,u,B8) € X(h,h+7; CON(h,h)).

The proof is the same as that for the interior problem in (9] and is omitted.
Although the local existence theorem by Tani [14] is more general, we need it in
the form of Proposition 3.1 to extend the solution globally in time by use of L2

energy method.

Proposition 3.2. (a priori estimates)

Suppose the problem (3.1)-(3.3) has a solution (p,u,8) € X(0,h; EO) for

given h > 0. Then there exist positive constants € and C, (g, £ ¢ S E,)

1% 5 516 2 By
, it holds

N

which are independent of h such that if N(0,h), ||®|\5 €

1
N(0,h) = ClN(0,0).
1f Proposition 3.1 and 3.2 are known, the global existence of unique solu-

tion can be proved as follows: Choose the initial data (po,uo,eo) and the

potential function ¢ so small that it holds



Compressible Viscous and Heat-Conductive Fluid 161
. / 2
N(0,0) s min{e, €,/Cqs £,/C,/ 14C5 1 and | @][5 S e

Then Proposition 3.1 with h=0 gives a local solution (p,u,8) ¢ X(0,T; CON(O,O)).

Since CON(O,O) S € <€ Proposition 3.2 with h=T implies N(0,T) < ClN(0,0).

0

Then Proposition 3.1 with h=T 1implies the existence of solution

(p,u,b) € X(1,27; CON(T,T)),

€ X(0,21; / 1+c(2) N(O,T)).

Hence, since V 1+Cé N(0,T) < C1V/1+C§ N(0,0) < € » Proposition 3.2 with h = 21

gives N(0,271) < CIN(O’O)’ and Proposition 3.1 with h = 2T gives

(p,u,d) € X(21,31; CON(2T,2T)),
€ X(0,31; vV 1+Cg N(0,2T1)).

Repetition of this process yields

Proposition 3.3. (global existence)

There exist positive constants & and C(eC £ EO) such that if N(0,0),
|]¢))5 < €, then the initial boundary value problem (3.1)-(3.3) has a unique

solution

(o,u,8) € X(0,%; CN(0,0)).

8§ 4. A priori estimates for the half space case 0 = Ri

First we recall some inequalities of Sobolev type.

Lemma 4.1, It holds

A

cliell , , 0fcg<1/2,
H

el
c%) )

A

(4.1)

N
It~
i+l
N
o

el s ellelly
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) = cllot

IR}
L6(Q LZ(Q)

Proof. See for example [31, [41.
Next we note some estimates of elliptic system of equations for our domain,
when we regard equation (3.1)1, i=1,"++,4, as elliptic with respect to x

variables, i.e.,

ﬁu; Lt Gl ut *pyp PO - ET, i=1,2,3,
ii i
~ J 4
(4.2) <8, 9, +pquy £,
i3
u) =u1=6' =e|=o
n w n ®
Lemma 4.2, We have for k = 2,3
.3 ol g cllug lly + DG I, + ey + [},
k ,
(4.4) oo |l <clilo [l _p + lIDull_, + Wl _, + {ID8}.

The first estimate is well known, e.g. [1]l. The second one is given in [5].
The last estimate for an elliptic system concerns Stokes equation in §

which comes from (3.1)1, i=0,++4,3.

ol o=n,
X.
]
Al i .
(4.5) T + PP, =8, i=1,2,3,
J ] 1
u =a, u|l =20
N o

Lemma 4.3. For k = 2,3,4 it holds

. ku 2 . k-1 2 < cf 2 + 2 N a 2 + " 2 ,
o 0l e 101" ety Walliy v lalyy o (el
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where the last term on the right hand side is necessary in the case of exterior

domain,

Proof.  See for example Solonnikov [13] and Cattabriga [2].
Now we begin to obtain the energy estimate for solution of equation (3.4)%,

i=0,++,4, with (3.5).

Lemma 4.4, We have for £ =0 and 1
g 2 [f I3 2 % dp 2
138000 )12 + jo 1925 w,6) (o) 12 + [ 8% 92 (o) |12as
(4.7)
t
< efff 97C0,u,8)(0) |7 + [ ]+ 113%° | %s)
0
where
Pr 0 iii P24
AO=J:—p(f —up ) +uf + = of dx,
0 5 P3
p . ;P
(4.8) A = J L o (€ ~ulp ) +ufl 26 ¢* ax,
z xJ t t p3 tt
do j < 0 _ o]
de T e tute =B - pu
j ]

We have also for k =0 and 1

t
[EERENOYE +f Il 25" 0,0,80 (o) ) %as
0

(4.9) s oI o3k (u,8) () [|% + [ 85pc0) ) + | a¥oce) )

+

t .
J [l 0a% w, 83 (o) |2 + NG R | %2 (s ||%as}.
0 b

Proof. Compute the integral
t P . P p
f J Lol «utateh) v 2 et-eyaxar = o.
0’05 P3

Integration by parts using the boundary condition gives
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2
p° + ful

pof
A
2

p o RN P,
+ -2 ezdx + f J pru]2 + (u+t) (u? )2 + 2 K|De[2dxdt
Py 0’0 *j P3

=%J§1—oo+\u\ +—§—zegdx+JtA0dt,
3 0

where AO is defined by (4.8). If we use the notation dp/dt in (4.8), we can

obtain (4.7), % =0 from this equality. The time derivative can be treated

similarly, because it has the same boundary conditions. Next compute the

integral

t . . .
J J o - % +uial - fhy v e @ - faxde = 0
09 t t t

Integration by parts gives by use of Schwarz inequality

2,2
+ |ut| + B dxdt

. . t
Hou)? « (e @d )%+ <[po|? + pyoud ax + - o
X, 1" 7x. 2
f i j 09

lif

~ 2 aa i N2, 2 j
IQ iDug|® + (uu )(uo,xj) + x|peg |7 + ploouo’xjdx

t ~
+C J J ln(u,e)(s)l2 + }f]zdxdt ,
00

where f = (fo—ujpx ,E ,£7,f7,£7), 1f we use Schwarz inequality for the term
pui. , we obtain (i.lO), 2 = 0. The estimate (4.9), & =1 1is obtained
similarly.

Since the tangential derivatives of the solution of (3.1) satisfy the same
boundary conditions (3.2)(3.3), we can obtain the estimates for these similarly
to the above lemma 4.4. Let us denote the tangential derivatives by 3=(3x ,BX )

1 72
and integrate the equality for each k = 1,2,3 by use of integration by parts

p . . .
Lok - 9% « sfal - £hskal <o,

p
Thus we have

Lemma 4.5. For k = 1,2,3

t
3%,y (0) |2 J l10a%uce) 12 + ) 3 92 (o || 2as
0
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(4.10)

t
S el F @ 12 [ 1190 1+ 187 e 12 + [, las),

0

where

P .
a1 AL - J 2 3%a"% - o dax for cach k= 1,2,3.
Qp ]

Then we have to obtain the estimates for the normal derivatives of solution.

To do that we use the following equations from (3.1).

(g%)x * Bhi X, fg ’
3 i’3 3
(4.12)
3 ~ 3 Aas ] _ 3
Ye HAuT = (uru )ux.x T PPy * pZSX =f .
i3 3 3
If we eliminate the term u3 from these, we have
X X
373
2+l dp _ .3 20+ .0 3
(dt) + plpx Ye pzex * - fx *f
3 3 o 3
(4.13)
+ a(ui « + u3 . ) + ﬁ'(u1 + u2 ) .
11 %% 1 %2 ¥

where we note the second derivatives of u at the last two terms on the right

hand side contain one tangential derivative. Multiply (4.13) by oy and
3
(dp/dt)X respectively and integrate them respectively. We obtain after inte-
3
gration by parts

(ad

o A’
J ZE;E— 02 dx + J J plpz dxdt
2 X3 0 *3

X

~oay t Ny . .
_ J w2 e s J J@.’:_“_ (-U)J( o+ ZU;]( P, dp, dxdt
3 0! 2 373 3% 07

N A'
o B0 L) axar
o] 3 3
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P Jt J 2 2, ("
< = p° dxdt + ¢{||Dp(0) ||© + J |B, _ldt +
2 0 Xy 0 0,0
t
2 3
N PR R LY L T LR L s F

and

t ooy P
[ (2R ) Yaxar o f [ o2 ax
0 p *3

3
P t,p
= 7% J OS % dx + J J -5 (-u? o+ u e o dxdt
73 0 j 3% 73
N R R T IR .
0 x 11 %% "% %
any
L2003 e
= X
o] 3

Ay gt t
E EU:'_UJ f (dp dxdt + ¢{]] Dp(0) Hz + J {BO Oldt
26 ‘0 *3 0 ’

t
2 2 2 02 342
o f et e tme 2 pona (2 o (e 17 4 1162 ) Panae)
respectively. Thus we have obtained the following

Lemma 4.6. For k + & = 0,1,2 it holds

5455 ote 17 + [kl o 12+ 1104 0 s

2 k+1 2 k 2
el peCo) 12, + j 13 a%u 12 + |la%ak, |

ORI O N 2 R [ 2 (AP | N E B

where
k. % k.2
(4.14) Bk’Q J {a 33(dt x, -3 33ptx3}a 83px3dx s

and here the summation is not taken for k and 4.

Last we use lemma 4.3 for Stokes equation (4.6) with u = 0, where h

. iy
and gl have the following explicit forms.
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_ 0 _do
h=f dt
(4.15)
R N T e i=1,2,3.
o Xi Xi
Lemma 4.7. For k + 2 = 0,1,2, we have
[ IR
(4.16)
. 0
ol g + G Ny o+ o8+ 1100y * I 1Ly

Now we can combine the above lemmas 4.1 ~ 4.7 to obtain necessary a-priori esti-

mates. Although we omit the details, by combining step by step lemma 4.4,

£ =0, k=0, 2=1, lemma 4.2 for 8, k =2 lemma 4.5, k =1, lemma 4.6,

k+2 = 0, lemma 4.2 for u, k =2, lemma 4.7, k+2 =0, lemma 4.2 for 6,

k =3, lemma 4.5, k =2, lemma 4.6, k=1, 2 =20, lemma 4.7, k =1,

g =0, lemma 4.6, k=0, 2 =1 and lemma 4.7, k =0, £ =1, we can obtain

the H2 version of norm N(O,t), i.e,

I Gouu,® 0 112+ [lo. o) 12+ 1] (u,8)00) ||+ o o),0p0s) |2 +
p! s 2 t 1 t’ t O pt 3 p 1

Il taga8 ) () 11+ 1D (o) (15 + 142 (o) 134
(4.17)

2 t02
< ctll pgrugsdg Il + sup (ll -To, . HHEE JOH 12 .
0 2
& I

1 |ds}.

3 1
+ £, MLRE I

2 B]
L]+ lulo
1 ¥ k=0 k+2=0

. B,
J

To elevate the differentiability once to obtain the estimate of norm N(O,t)

we can repeat the above argument beginning from lemma 4.4, k =1 and by use of

lemma 4.2, k =3, lemma 4.5, k = 3, lemma 4.6, k+2 =2 and lemma 4.7,

k+2 = 2. Therefore we arrive at the estimate for N(O0,t).
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80,02 = 10,0600 112+ o (0 17 + [lu,6,(0) 12

+

10900 12+ Tlsao, 60 12 + 1000060 130

(4.18) < c{||p,u,e(o)|1§ + sup {Ilfo—ujpX (s>||§.l|f<s)||f}+
Ossst j
L0 2 2 2 i 2
G+ e Iy + e 7+ | lo ) ]]7 +
0 b

+

1Bk,gld5} .

o, 12+ ¥ lal+ 3
u’p + L |A | + z
X002 hs0 K ke=0

Last we have to show

Lemma 4.8,

. t .
sup | £%-udo, ) 13,11 £ 133+ [ 1£%0) 12411 %o ) (o112«
D8t 3 0 j

[ IR S

_ 2
(6.19) + llft(s)]]2 + Ilf(s)I}§ + k‘OlAkl + k+§=0]Bk’Qlds

) 2
s C,(N(0,t) + [|®]|5)N 0,t).

It is proved by use of lemma 4.1 and integration by parts. We show only the
term A0 and omit the proof of the other terms which can be treated similarly.
Let us recall (4.9) and compute the following

IJ D(fo—ujpx')dXI = IJ D{(B-B)uj - puj}x.dXI = IJ px'{(B-E)uj - ouj}dx]
i j 3

72N

|| Do l|{(J o-5221ul2a0) % 4 (J 0% |u|2ax) /2

A

oo 11135 1y ol el 1ol b

[y

clioe fiipalitlielly + llelly} s ¢ N@.O @iy + NO,01.
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\J ui{( Mo ﬂ)ui.x' + —lt U ui‘}dx\

< f |u; ( Ao ﬁ)u; | + |u1( —l—-) u; |dx
i oot i pro T T

< L»A u2+ L u u
<l os ulollpu 1%+ 1] ¢ - )lelL3l| Iy 1ol

< c N(O,t)2{|| o[l + N0, ).

o can be treated in the same way as above.

Finally we note that the inequalities (4.18)(4.19) easily imply the desired

a-priori estimates, in fact, we may choose El so small that

Thus

[11

£21

£33

[4]

[51

W2(0,0) = Cff pprugsfy 13 for o0, el s e .

the proof of Theorem 2 for the half space is completed.
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We consider boundary value problems for equations of mixed

type u ot q(x)u = 0 1in a half space (0,0) x R. We
discuss™Fhe existenqgtof solutions written in the integral
form u(x, t) = f{e* " v(x, t*)g(t)dT , the estimate for

v(x, «) and function spaces for g(t) and u(x, t). We put
wixe )=Vv'(x, ®)/v(x,«&,) and consider non-linear equation

of type w' = q{x)a& -w~ in Riemann sphere, where a topological
method is useful. As for estimates we need a special device
concerning the energy method.

81. Introduction and statements of results,

This note is concerned with the following problem
) { uo ot q(x)utt =0 , for (x, t) € (0,00) X R
u(0,t) = g{t) and lim u(x, t} = 0, for t € R,
X200
where the coefficient q(x) depends only on x and satisfies

(C) q(x) is a real valued piecewise continuous bounded function satisfying

lim q(x) > 0.
XYoo

Remark that q(x) may change its sign.

The boundary data g(t) 1is assumed to be written in a form

1 iTtA
(1) gt) = 75 [ TR
r -
Namely g(t) 1is a summation of exponential function e”'.t with density function

g(t) defined on complex path I’ . T will be defined later. Naturally the

formula (1) is not anything but Laplace inversion formula if g(t) and [ satisfy

171
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suitable conditions. From the linear property of (P) we seek the solution
given by

2 ulx, t) = 2‘1 Se“tv(x, 253 (0)dT .
T

Here v(x,«) is a solution of
v - q{x)Xv = 0 for x€(0,0)
~ XX
(P) {
vio,x) =1 and viw, x) = 0.
We have denoted « = _[2_ Thus T is a curve in complex planc such that

r’ - {c(: o= ‘[2, TE f'} is involved in the following domain §(q) which we

describe in Theorem 1

Theorem 1, Suppose (C). The problem (F) has unique solution

u(x, «) if and only if &« belongs to the following set

D@ =C- {F{G} U w01},

where dj, 0 < dl < d2 < ...) are positive constants tending to oo if gq(x)

changes its sign, while U {dj} is replaced by empty set ¢ if q{x) 20 in
i=1

(0,% ). Moreover v(x,«) is analytic in « € $(q) for each x € [0, ),
each dj being a simple pole. Finally v(x,«) is bounded in a neighbourhood
of « =0 for &« >0.

Remark 1. If q(x)2 0 for x € (0,®), we can take [ as real
axis. 1In case where q(x) = 1, {(2) becomes Poisson formula by Fubini theorem

- Tl x

0
with v(x, 12) = e and g(T) = Se'lrsg(s)ds.

~00
If g{x) changes its sign, we take T as a curve satisfying T'2C SlqQv {O} .
For example ] coincides real axis in a neighbourhood of origin and another

parallel line in a neighbourhood of infinity.

Next we estimate v{x,«) in order to give exact meanings to the formula

(2) in function spaces.

Theorem 2. Suppose (C). Then for any ¥ » 0, there exists positive

constant Cy such that we have
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3

(B)  vix, 'cz)lg c,(|-r|+1)5/2 if |ImTl=7¥>0.

In general we will see CY = 0(1/]2) through the process of proofs.

By Theorem 2 we can discuss function spaces for g(t) and u(x, t).

. . . 2 1 ~2 ~1
At first we introduce function spaces L e L vk L Yk L .k and

ﬁl‘ X with following norms respectively.

K (( 0 -Is d) p L P A1/p
help =2 e " —=g(s) {*ds + g [—= g(s) |'ds
le,k J‘=l{j~w dt’ 0 dat’ }

) S B Y 1/
fh §~p =}§ 0 —dfhfs) Pgs + e ——.h(s)[pds P
Ly 3= 1§ I | S ] }

0 dt
(p =1, 2)
bad, = { sw ‘_d;ih(m ¢ oswp je® ijh(s)i .
By,x j=1 s€(-«,0) dt SE(D,m) dt
(k=0,1,2, D
If 0<Y, ¢ ¥, . then it follows
ng’k c pr’k c W o< E;I.k c E;Z’k
Then we fix a smooth path T=T1 + T'2 + T's + I'4 , where
T'I:{T:Imr=0, -a&ReTﬁa}, a<d11/2

I‘zt{T:-ImT=Y, |Re T 2 Za},
["SC{T:0(—ImT<Y,a<ReT<2a},
Facf{1: 0<-mT<¥, -2a<CRT<-a}.
Denote by F the curve {‘[: TféT}. Remark that
1 itt A . 1
g(t)—ﬁjre g(t)dt , 1if g(t) € L},’2 )

1

o .
where g = [ gnar. IF g0 € 1,

-00

g(t) = E%jfeltt g(t)dt . Now let us put
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w00 0 =gy f et thimat
u (x, t) = f% Sf eittv(x, T2)§ (T)dt

Using these notatioms we can state

Theorem 3. Suppose (). If g(t) € L; Kad? (respectively
g(~-t) € L;, k+4) for certain ¥ > 0, then u, (x, t) belongs to

5“( . (resp. U (x, t) = u (x, -t) € B k=0, 1, 2, ...).
! -

x,k>’
In case of k 2 2, u+(x, t) , (resp. u (x, t)) is a C2 solution of (P).

u, (x, t) satisfies following estimates if right hand sides are bounded.

(E) sup fu(x, 3 = ¢ C(¥ Ky gt 1
! xe(0,0) B ! Ly ke
@
(E) sup bu, G 04 72 ¢, % hel,2
2 xe(0,) bk 2 Ly ke o
where K =0, 1, 2, ... and Cj(x, k) are constants. ﬁ_(x, t) = u_(x, -t)

satisfies the same inequalities replaced g(t) by é(t) = g(-t)}.

Remark 2. The analyticity of v(x, 12) says that u(x, t) in (2)

is invariant even if we change T in a bounded domain which excludes djl/2

and iR - {0} . Incidentally we give another remark. Let T be smooth closed
curve such that T is the boundary of a bounded domain & . Then u(x, t) of
(2) 1is in general non trivial solution of (P) with g= 0, if g(1)

1/2

is a given analytic function. In fact, since T = + dj is a simple

pole of v(x, rz), u(x, t) 1is described by residue calculus. This solution

R 1/2
is of type & el(idj )t aﬁ(x) and does not belong to function spaces
]
fz in Theorem 3
yx Im .

As for equations of mixed type we know the Tricomi equation, for which were

investigated usually local singular boundary value problemssuch as Tricomi
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problem and Frankl problem. Intensive references are found in [1], [2], and
[3]. Global treatments as our problem (P) could not be found by the author.
The method in this paper is continued from [4] and [5].

§ 2. Plan of proofs.

From the condition (C) there exists a positive number XO such that
2, 1 q(x) > my > 0 in (xo,oo) and 1q(x)] < M for all x € (0,m).
If the solution v(x,a) of (ﬁ) satisfies v(x,«) # 0, then putting

(2, 2) wix,a) = vi{x,a) / v(x,«)

we see that w(x,«) 1s a solution of

W'os g - in (0,0,

), {

[
Re 5 w(s,« )ds = -0o.
0

Conversely if w(x,«) 1is a solution of (P)1 then

X
2, 3 v(x,«) = exp g w(s, « )ds

0
is a solution of (f’) for any fixed « . Thus we consider (P)1 from

topological viewpoints as will be shown in lemmas in next section.

2.1, Here we expain our steps in the proofs of Theorem 1.
(I) Replacing (0,e) by (XO’ «), we show that there exists unique
solution w{x, &) of (P)1 for all o € C - (-, 0].

Put V(x, %) = exp SX w(s, « )ds, then V(x,o() is unique solution of
x

0
VX, &) = q(x)a V(x, x) in (xg, ) satisfying V(xo,x) = 1 for any

4 €C- (-m, 0].
(I For any x € (x,, ) , w(x,«) 1is analytic in C - (-ew, 0],

thus so is v{(x, x).

. . 2
(I1D) Then we extend w(x, «) to [0, ) satisfying w' = qx)« - w

for any « € C - (-w,% ), and define V(x, ®) = exp g;‘ w(s, «)ds.
0
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For « € (0,¢), we extend v(x,«) satisfying V" = q(x)a ¥

in (0,%). In this case we prove. (/'(O, dj) =0, a%(/(o, dj) # 0,

G=1,2,3 ...), limv(0,&) > 0 and Tim v(x,a)<m
%00 a0
(V1) Put vix,a) :\—/—(&i)- for o €d(q). Then vix,d)
(0, )

satisfies the desired conditions.

2.2, In order to obtain the estimate in Theorem 2, we use the identity
2, 4w, ) G 1P - el ) VG, @) |
= (Mo ey - SRCIGITEA [Py, 0%x, <x,
1 )
which follows from Sv"(y, )iy, a)dy = cLSq(y) lv(y, )\ dy, and

(2, 2). Now we introduce following coordinates depending on o
(2, 5) W W Wp w, = G 8) wpzmo_fl
Im(«g) Im(p )

where g satisfies 32 = and argp = -l—argoa, being O<largoa{ < 7
2

Wy is said simply to be B - component of w . Denote s(x,a) = ’(w(x’“))p
Take g - component of both sides of (2, 4), then it follows

2, 6) s(xl,m)lv(xl,x)\z = s(x, &) |vix, «))’ + 1y 5" v (ys o) | 2dy,

X1

where 1 = Im "_" = Im >0. Therefore
Im(s «) {2 Im g
1/2 1/2
s(0, &) _ (. s(0,a) .
2, 7 | vix, ) |2 ‘MS(X,OL) ‘ v(0,a) = ‘ S(X, &)
Hence it suffices to estimate s(0,a) and 1/s(s,a) . For this purpose

we can use the equation

' (x, &) = Im(w'x)/In(ap) = -In(w’)/Im(<p).

The details will be shown in next section.
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2.3. Here we prove Theorem 3 in view of Theorem 1 and 2. The estimate

(E)1 follows directly from the estimate (E). 1lim u(x, t) =0
X o

follows from Lebesque theorem. To obtain (E)z we use the following

localization of wu(x, t) : u(x, t) = é uj (x, t), where
j=1

1 itt 2.~
w06 t) = o fre A (DV(x, THEDAT

- LT (eiTEes) 2
75 ¢ S'[f X (@vix, T)dr)g(s)ds

Here xj(t) are smooth functions defined on [T as follows.

ZJ.(‘E)?.O. éxj(t)sl on U . suppxlc(-a, a). Xlll in
j=1

a neighbourhood of origin. supp X, C {'[E T, |ReTl>2a }

suppisc {1:6(', -3a < Re T <-%a} . suppx4c{tef, %a < ReT<3a}.

The estimates for ul(x, t) and uzfx, t) follow from Plancherel's theorem.

In fact we have (u,(x, t)f , € Clg(t) #,2 and
1 L2 L

24 2

j
e g(t) | 2 for all x € [0,00)
J L

uz(s, t) 56 }é’ Lle—{t
L° 7 5=0 at

Thus (E)2 holds for k=o and similarly for k 2 1.
As for us(x, t) and u4{x, t) we use integration by parts in view of smoothness

of v(x, 12) on the support of 7(3. ().

In fact for j =3 and 4 , uj(x, t) = —;if: Kj(t, s) g(s)ds, where
1 it(t-s),. 3 .k 2
(2, 8) K.(t, 8) = ——=— \e (1 )7 (% (r) v(x, TV))dT ,
] (t-s)¥ Sr' Tl

Here we put, for convenience,

e t, t <0 . l, t <0
2, 9 e(t,x)={ e(t,)’)={
1, t >0 , e
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Then we have jigl 2 = molel,¥) —g |, etc, and
Ly . ) L
, i=0
P ~ -Yt
(1) e(t,y) <1 € e(t,¥), e(t,¥)ee "¢ e(t,¥)
2,100 @) e(t, 1) =3¢,
) et e(t,y)] £ 1 for TeT.

Denote Ej(t, s) = e(t, V) Kj(t, s) e(s, X)'l. Then we have from
(2, 8) and (2, 10)

(2, 11) [K.(t, s; Ol <
J jt-s)” + 1

From (2, 11) we have qu(t, 50, £Cn and | Ej(., s; x| £ Cn
L

for any fixed t, s and x. Since

(2, 12) 36, %) uytx, 1) = [T Kt s 50 {els, ¥) g5} ds

we have | (., ¥) uj(x, ) “LZ
< g” K5 0l (gli.(t, si 01 [ els, y)g(s)l 2as)at
L J
Therefore N (., ¥) uj(x, I 2 < C2 nz he(o, ¥) g() | ) which means
L L

(EZ) for k = 0. 1In the same way we have (E)2 for k 2 1. (q.e.d.)

§3. Detailed proofs and viewpoints.

At first we prove
Lemma 1. Let {(x) be complex valued piecewise continuous function
satisfying Re q(x) > 0 for all x € [0,e). Then there exists a solution

w(x) of w' = E(x) - w2 satisfying Re w(x}) < 0 for all x € [0,»).

Corollary. Suppose the same conditions as in Lemma 1. Then
u'" = q(x)u has a solution u(x) satisfying [u(x)| > fu(x,)i if 0¢ xx; .
Proof of Lemma 1. From w' = §(x) - W’ follws

(3.1) sl qowe
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if we put W = 1/w in the case where w # 0 . Thus we regard w'= q(x) - w2

as a differential equation on Riemann sphere with two local coordinates :
5={w:wec}u{ﬁzﬁ=1/w€c}.
Put @ = {w:Rew <O} U {G:Reﬁ<0}, then ¢} is compact.

Remark that the vector q{x) - w2 faces the exterior on 3§ , 1i.e.

Re (q(x) - wz) > 0 and Re (1 - a(x)ﬁz) >0 for all wedR and x e [0,0).

Now assume that for every wOE §2  the solution w(t) of w' = g(x) - w2

with w(0) = w, goes out of . Namely there exists a positive number Xq

0
uniquely such that w(x) € § in (O, xO), w(xo)e 3 and w(x) € C§ in
(xo,oo). Denote by f the mapping from § to 3R : Wy > w(x,). Then f is

continuous and 'ﬂaﬁ is identity mapping. This contradicts to well-known

property of the continuous function on the contractible domain. (q.e.d.)

Identifying C and RZ, we can regard w' = q(x) - w2 and
W= l—a(x)fiz as a system of differential equations with values on a real
compact two dimensional manifold. The above proof gives directly following
ststements

Lemma A. Let M be a real manifold of n-dimensions. U' = Q(x, U) 1is
a differential equation with values on M, where Q(x, U) is piecewise
continuous on x and smooth on U, Let § be an open contractible set in
M such that § is compact and 3§ 1is a piecewise smooth hypersurface
i.e. a union of a finite number of parts of hypersurfaces. Assume that on
Q(x, U) faces the exterior strictly i.e. ».Q(x, U) > 0 for all x € [0,00)
and U € 352 , where v stands for unit outer normals of 3§ . Then there exists
at least one solution U(x) of U' = Q(x, U) such that U(x) € &
for all x € [0, ).

Evidently we have

Lemma B.  Suppose same conditions as in Lemma A, replacing

».Qx, U} >0 by v.Q(x, U) € 0. Then from U(O)efa follows
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U(x)e §@ for all x € (0,0,

As for Lemma A we can find general statements in n dimensional space
of T. Wazewski [6] by virtue of retract method, (cf. for example [7]).
Here we state another direct extension, which is useful in our reasoning.
Lemma L Suppose the same conditions on M , U' = Q(x, U) and
replacing p.Q(x, U) > 0 by v.Q(x, U) 2 0 Then there exists at least
one solution U(x) of U' = Q{x, U) such that U(x) € _{_2 for all
x € [0,%). At that time we have the alternative as follows
U(x) stays in §2 for all x € [0,0) or U(x) belongs to 382 for all
X € [Xx’”) for some Xy > 0.

Proof of Lemma A. Take a smooth vector field Ql(U) satisfying

Q(U) > 0 ondd. Let U, (x) be a solution of U' = Q(x, U) +€Q(U)
such that UE(X) € & for all x € ([0,e). Since § is compact UE.(O)
has a limit U0 as a suitabe sequence £j tends to zero. The sclution U(x)
of U' =Q(x, U} with U(0) = U, satisfies U(x) € R for x e [0,=)
since U(x}) = lim UE.(X)‘
In the same way we have the above alternative.

Remark In our problems the latter case of the above alternative does

not occur.

Now we make Lemma 1 more precise.

Lemma 2. Let §(x) satisfy 0< m < Re q(x) and 19(x)| < M.
Then there exists a solution w(x) of w' = g(x) - w2 satisfying
1/2 /2

Re w < -m and iwl < (2M)1 for all x € [0,0).

This solution w{x) is unique one satisfying Re w(x) < 0 for x e [0,00).

Proof. Let §2 be an open bounded set in {w e C : Re w < O}

i . - . - /2y,
surrounded by the following Sl’ 82 and Ss : S1 -{w : Rew=-m }

Sz={w=1/w tW

53

[}

t(-e) + (1 -t)it1 ,0<t s1} and

{(%=1/m @ @ = oY

0]
u

t(-¢) - (1-tlig , 0¢t <1}, where ¢

2
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Now we identify Riemann sphere and real compact manifold of two dimension.
Then & and w' = q(x) - w2 satisfy all the conditions in Lemma A, since we

can show Re (q(x) - wz) >0 on 8 and

. 2
. 2 ME1
(3.2) Iftan arg (1 - g(x)¥w) |« —————— =1 on S,V Sy .
1-M¢e 2
1
The uniqueness follows if we apply Limma B to w' = q(x) - w2

replacing § by -§), and take account of the linear property of solutions of
v'" = q(x)v given by (2.3). (g.e.d.)
Now we proceed t¢ sur case where {(x) = q(x)X , q{x) being a real valued
function. Then we have more precise results.
Lemma 3. Suppose that a real valued function q(x) satisfies
0< My <q(x) < M0 and that o 1is a number satisfying Re & >0 and

Ime » 0. Then there exists a solution w{x) of w' = q(x)« - w2

satisfying Re w <—(mORee()1/2 , Iwl <« (2M010(1)1/2 , Imw ¢ 0 and

(3.3) (mOReOL)l/Z(Re@)_Is s(x,) = Im(u(x, )a)

Im (« g)

for all x € [0,%), where g = ocl/z » argg being —%argoc‘

At first we must give an explanation of s(x,«)}. Remark that any complex
number w is described uniquely
(3.4) w=Trd-5Sg8,

where r and s are real numbers. We have

Im(wg) and s = Im(wa)

Im(«p) Im(xp)

(3.4)! r =

In order to show w(x,«) # 0, we will verify s{x,«) > 0 in our
arguments

Proof of Lemma 3. Let & be an open bounded domain in -{_w : Re w < 0}

surrounded by §;, S,, Sz = -[w s Imw = O} and

_ . 1/2 -1 - In(w )
34 = {w : (mOReac) {Re g = ————= +, where S1 and S2 are the same

Im(« 6)
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ones as in the proof of Lemma 2 with m = mORet( and M = MO 1l . Then we can

apply Lemma A as in the case of Lemma 2. Thus we have Lemma 3. (q.e.d.)
Now return to our assumption (2.1) and apply Lemma 2 and Lemm 3 replaced
(0,%=) by (xo,oo), then w' = q(x)« - w2 has a solution satisfying, for

X € [XO,eo) and Rex > 0 ,

1) Rew < -(mre )2 juy < my 12
(3.5)
ii) (mOReoc)l/z(Re/g)—1< stx, @) < i)Y By gy,
Im(xg)
In fact (3.5) ii) follows from (3.4)! and -1 = —IB8 o __Imd
Im(xg) Im(ap)

Here we consider the case where Re o €0 and Im« # 0, At first

we state

Lemma 4. Let E[(x) be a bounded piecewise continuous function satisfying

Imq(x)< -85§<0, (respectively Im q(x) > § >0 ) for all x € [0,00).
Then there exists a solution w(x) of w' = q(x) - w2 satisfying
Im w(x) > 51 >0 , (resp. Imw(x) —51(0 ) and jw|<M for some constants

51 and M. The solution is unique one satisfying Im w(x) >0 ,

(resp. Im w(x) ¢ 80) for all x ¢ [0,x).

Proof.  Let § be an open bounded domain in {w : Imw >0}
surrounded by Sl’ 52’ S3 and S4, where £ >0, (1 =1, 2, 3) and

Sl={v7=%:\7i:v(t;sl,ez) ,0$t51}

S, = {W=% §=(s,-€,l),ss—£1cote}

S3= {v'v':—&; W=(r,-52), gzcoteir}

S, = {w Dow s (t, ) ,tIStStz}.

Here e, tl’ t2 and v(t; El’ 52) satisfy the followings:
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(i) tan 26 = -sup(Im §(x))/sup 1a(x)!
(ii) v(t; e] , ez) =t 51(—c0t9 -1+ (1 -1t) 62(cot9 - 1)
. -1
(iii) Im(t1 + 163) = -E1 ) t] <0
(iv) In(t, + 1€)7 " = -¢ t >0
2 3 2 ’ 2 '

~

First we see that S2 N3 and S.SF\B.Q satisfy the condition in Lemma A.
Take £, sufficiently small and put £, = 251 , so that Slf\BQ satisfies

the condition. Finally we can choose positive constant € such that
qix) - w2 faces the exterior on 282 for all «x € [0,00). The uniqueness holds
from the linear property of solutions of V' = q(x) v as follows. The

integration by parts of (v" - q(x)v)v yields

(5.6) Wity v 12

X X
2 vi(s) | Zds S 2 3s)v(s) | Zds.

X X

= wix) [vix)) 12 + g
1 1

Take the imaginary part of (3.6) with v(x) = exp Sx w(s)ds and
0

vl(x) = exp Sx wl(s)ds, where wl(x) is a solution staying in -§).
[

Then we see

2]
(3.7) lim |v(x)| = 0 and S [v(s) |2 ds < o
X0 X
1
and )l(an;o ]v] (x)] = . If there exists another solution wz(x) of

w' = q(x) - w2 such that Im Wy > 0 for x e [0,0), then from (3.6)

vy (x) = exp Sx w,(s)ds  must satisfy Sx pv(s) | 24s {00 , which is a
0

*1
contradiction since the solution space is two dimensional. (q.e.d.)
R ; 2
Therefore we have unique solution w(x, ) of w' = q(x)a - w

in (xo,oo) for all « € € - (-», 0] satisfying
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(3.8) lim V(x, «) = 0 , where v(x,«) = exp gx w(s, «)ds, X >Xx

X oo X
? 0

0

Here we have
Proposition 1. Suppose (2.1) Then above w(x,a) 1is analytic in
C - (-», 0] for any fixed x € [xo,oo).

Proof. At first let us see that w(xo, «) 1is continuous,.
In fact it suffices to apply Heine-Borel theorem on a compact set

{w : Rew<0}u{w tWwe=1/w, Re W< 0} -{w : lw(xo, a(o) —wl<€} s

in case where Re« >0 . If Read £ 0 and Im« # 0 we define the above
compact set similarly using Im w instead of Re w . We use only the
uniqueness of w(x,« ) and the continuity of solutions for data and parameter

oC. To prove analyticity we put

wp (6, ) = (wix, & + h) - wix, €))/h

which satisfies ai—wh(x,d) = q(x) - {w(x, « + h) - w(x,c()} Wy (%, &)

Thus it follows

m “~
(3.9) W (x, &) = -{V(x, « + h)V(x,a)}‘l S V(s, &+ h)v(s, ®)q(s)ds.

X

Therefore we can prove from (3.6) and (3.7)

N ~
(3.10) %w(x,«) - N, c()-zs Tsy %) 2q(s)ds. (q.e.d.)
X

Evidently ’;/'(x,c() is analytic in « for all x € [xo,oo).
Now we extend w(x,x) to x € [0,0) as a solution of w' = q(x)« - w2 .
In order to show this possibility we state

Lemma S, Suppose (C). Then for all « € {_e(: Im # 0 }

w' = q(x)ef - w2 has unique bounded solution w(x,«) satisfying
(3.11) Im w(x, « ) z 0 for all x € [0,00) if Ima« 20 .

Proof. It suffices to prove in the case Im« > 0, since

w' o= q(x)e - W2 follows from w' = q(x)& - W Let §) be
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{w :Im ow > 0} U{'W'= 1/w ; Im W« < O}. Then we can apply Lemmax as

before. The uniqueness follows from Lemmas 4, and Lemma B. (q.e.d.)

Taking account of Lemma 3 and the uniqueness in Lemma 2 and Lemma 4
we see that w(x,«) in Lemma 5 1is the desired extension. Thus

V(x, X ) = exp gx w(s,« )ds is bounded, non zero and analytic in « for

%

x € [0,0) if Im« # 0. For real positive « we extend V(x, o) directly

as a solution of V" = q(x)«V with V(XO,«) =1 and V' (xo, &) = w(xo, «).

Then V(x,«x) is analytic in « € C - (-e, 0] for any fixed x € [0, ).

Since v(x,«) = V(x, x)}/V(0,«) , we need a lemma concerning zeros of V(0,« ).

Lemma 6. Suppose that q(x) satisfies (C) and q(xl) <0

for certain x1 € (0, xo).

equals {oc=dj;0<d1<d2<d

Then {«: O0O<o , V(0,) =0}

5 < -ees lim dj =o°}, where

dj ,(G =1, 2, ...) is determined by q(x). V(0,«) has a simple zero

at each « = dj and satisfies

(3.12)  0< lim v(0,«) < Tim v(0,a ) ¢ 0o

oy 0 o« {0
Proof. Put ¢\‘;(x, «) = v(x0 + % , ) Then v satisfies
d2~ ~
(3.13) v (x, ) = qlx, Qvix, &)

dx

’\7(0’“) =1 and lim v(x,«) = 0 for any o« > 0, where q(x, «) = q(XO + :—() ,
X=»©

(3.13) my < q{x, €} ¢ M for x € {0,e) and all o« >0 .

. 2 1/2 .
Applying Lemma A to o= q(x, «) -Mw2 with (@ = (—Ml/ > My / ) in R,

we have a solution ;(x, «) staying in Q, for x € [0,0). Then we have

"\7(2(, o) = exp gx w(s,®)ds from the uniqueness in Lemma 2.
0
1/2 1/2
Remark that for all o > 0 ,(—de-?/')(o,o() -0, «) € (M2, —mo/ ).
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Since |q(x,«) < M for x [—n(xo, 0] , V(0,x) = R'\;(-ocxo,o() satisfies

(3.12), 1If o becomes larger the solution 6:‘}(x, «) oscillates in the
interval where q(x,«) 1is negative valued. From this fact we can see later
that {oc t0<¢d , V(0,q) =0 } is an infinite set. Now suppose

v(, d) = 0 . Then ¥'(0, d) = 3‘%7(0, d) # 0. Similarly to (3.6) we have for

x €C- (-», 0]

“vto, ) F0, 47 - S‘”nv-(s, «)) %ds + ocj”q(s)ms, «) | %as
0 0

- w,,,
Therefore qu(s)V(s,d)zds - -at S v' (s, d)zds % 0. On the other hand,
0 0

(3.10) and w(0, o) = V'(0, x)/V(0, x) vyield

® ~ 2 ~ 20
/(0 q(s)v(s, «)"ds -v(0, o) s-c?w(o,ac)

0, %) g% V0, &) - g% T (0,0)T(0,4)

for « € C - (-w,00). Making « tend to d we have

- - 1 o .
aﬂv(o, 4y = v, )7 al 5 ¥ (s,d)2ds # 0.
< 0

Thus we have Lemma 6. (q.e.d.)
From Lemma 6 v(x, o) has simple poles at o = dj for
x & Xj ={x x>0, v(ix, dj) = O} , which constitutes of j-1 points.

Combining these arguements we have Theorem 1.

Proof of Theorem 2. We show the following two estimates.
(3.14)  inf  s(x,«) » (— Rep! ot Al 3t s
X€[0,00) (m0|Ree(l) [Tm o |
M 1 1
(3.15) sup  s(x,«) &€ —————5 Sm = Sy,

x €0, Tmec| |Inp |2
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for « € {#€C: O<largaic< % } . From (5.14), (3.15) and (2.7),

we obtain the estimate (E) in Theorem 2, if we use (o} = | - i¥ |l = 0( lvriz),
Re & = 0((el2) , IImx}|=0001), IRe £l=0(10)

and fImp | = 0{1) for fixed Y . 1In order to prove {3.14) we consider

?i—s(x,oc). From (2.8) and w2= (rac-s,/.a)2 , follows

a% s = - | (Imec) (Img) " 'r? + 21al s

£ i(Img) (Im ac)‘lsz
Thus from (1/s)' > —fccl(Im,c-s)(Imc:v()_1 we have

1 1 jaf Im 8 _
s(x) £ s(xo) * n o (XO x)

, 0 <€ x<x

-1/2

From (3.5), 1/s(x) £ (m, Re ) (Rep) , for x ¢ [xo,oc).

Thus we have (3.14) . To show (3.15) we prove that w(x,«x) stays in the
following §~? for all x € [0,e0). Here 62 (= 52“) is an open bounded domain

surrounded by S, = {wis= -Im(wa) /Im(p) = sm} and

Sz={w=1/w;W=go(-1x)+rac , r €R} , vhere we take €

sufficiently small so that following two conditions are fulfilled:
(I) The vector field 1 - q(x)av?z faces the exterior on 52 nast

(I1) §? involved the domain defined by (3.5) 1i).

The conditions {arg (1- q(x)#°)| < larg x | and (Wl < (2Ma) /2

for all w € 52 n QQ are sufficient. By elemental calculus we can take

g = M ImBlL o mpen we have wix, «) € § for all x € [0,%),
O ow "

and s, = sup RLICLY B (1) Im p)_l Im(io_l(i“ lil_z)"_t)

welt  Im(x g)
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2 -1
-1 -1 -1 2M |« s . This completes the proof of
= éo \“l \Imﬁ‘ = &_L_z_ m 1 P p
|(Tmae) (Im g) 7|
Theorem 2,
Final comments. It is interesting that unstable solutions of
v'" = q(x) v are useful to construct the solution of (P). As for Theorem 3,

the uniqueness of (P) should be discussed more precisely. The formula (2)
is useful to see the singularities of solutions of (P). The argument in this

paper will be valid for another type of problems, for example,

(P) with gq(x) satisfying Tim q(x) < 0 and (P) replaced 22
X x
by A in R" . They will be discussed elsewhere,
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Yielding and Unloading in Semidiscrete Problem of Plasticity

Tetsuhiko Miyoshi
Department of Mathematics

Kumamoto University
Kumamoto 860, JAPAN

Introduction

In formulating the elastic plastic problem it is usually assumed that each
element of the material is either in the elastic state or in the plastic state
and that these states continue for a while after they have been chosen.

The transition from the elastic state to the plastic state is called the yielding.
The reverse change is a case of the unloading. Therefore the material under-
goes the elastic and plastic deformations repeating yielding and unloading
alternately. Mathematically, this is nothing but to assume the existence of
the classical solution, which is proved only for some special cases.

For the semidiscrete system, that is, for the case that only the spatial

region is discrete,it is possible to show the existence of the classical solution.

In this paper we discuss the way to get this solution. This kind of systems
is essential for deriving the approximate methods in engineering. Especially,
the explicit integration schemes start from this system. Also, if we want the

solution of the fully continuous problem, it is only necessary to pass to the
1limit with respect to the spatial approximation,

The key to prove the existence of the classical solution 1is to guess the be-
haviour of the solution after the time at which the state of the element may

change. Assume that there are N elements which may yield or unload at time t=

189
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co. The number of the combinations of the possible states after tO is 2N,

Hence if there exists a unique classical solution, then only one in 2N possibili-
ties must take place, and what we want to show is that this is actually realized.
We will show that the next state of each element is uniquely determined by using

the data of the solution before t_  and the given data at t

0 which is independent

0

of the solution.

The mechanism of this determination in dynamic problem is different from that
in the quasi-static problem. In the former the existence of the inertia term is
the key ( see [1] for the details ). In the latter, a certain potential
relating to each order of derivatives of the solution plays the essential role.

In this paper we discuss thequasi-static case. We will explain our basic idea
taking a finite element approximation of a 2-dimensional problem as an example.

The result of the present paper 1s anncunced in [2] with a brief proof.

1. Semidiscrete finite element approximation

Let  be a region in x=(xl,x2) plane which is composed of the finite number
of triangles. Each triangle is called a finite element or simply an element.
Let {¢p} be the usual pilecewise linear finite element basis. We seek the
function uy ( i=1,2 ) of the form

e (t) = ¥ uP(e) ¢ ().
i pEP i p

Here P denotes the set of all the wvertexes of the triangles of Q excepting Pu on
which the boundary values of u, are given. We assume that, for the sake of

simplicity, P includes at least two adjecient vertexes and u,=0 on P .
u i u

(ug(t)} are determined by the following system of equations.
1.1 a X = (b,, € P,
(.0, g Coggs 0y 4 ) = (bys 0) P

- _ *.
(l.l)b 4] if f(o-a) < G, or f(o-a) = T and 3f ¢ < 0,

Q
i
j=}
5]
[
[]

(D -DYE, &= (c-a) if £(0-0) = T and A£G 2 0,

)
(1.1)C ol P
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where ( , ) denotes the LZ(Q) inner product of functions. We use this notation
for both the single and the vector functions. The above system is derived from

the Prandtl-Reuss flow rule and the Ziegler's hardening assumption.

NOTATIONS :
0= 0(t,x) = (01, Tpps 035 ) {0y = 09)
e = e(t,x) = ( 511, €991 612)
@ = alt,x) = (05, 0y 0yy)
f11 T M,0 0 f22 T U%,2 f12 7 V1,2 T Y2

£ = £(oo0), £(T) = T2, + T2 - T.. T, + 37T
n ; positive function ( assumed to be constant )
D ; elastic stress~strain matrix

* *
D'= DOf3f D/( n + 3f D3f ) af* : transposed 3f

af = ( aflacll, 9f/30 ’c)f/Bol2 Y(o-)

22°

u = Bu/BXi, u = du/dt, bi = bi(t,x) 3 given function

G : given positive constant.

Now, since u, is piecewise linear with respect to x,€ is constant on each

element. Hence ¢ and o which are determined by (1.1)b or (1.1)c are also
constant on each element. We assume that bi are continuous and piecewise ana -
lytic with respect to t. Under these assumptions we seek a continuous (u,0,0)

satisfying the equations (1.1) in I = [0, T] and the initial condition (u,0,a)=0.

2. Determination of the first derivative

We say that an element is elastic ( resp. plastic ) if (l.l)b ( resp. (l.l)c)

is satisfied on this element. Let E be the set of all elements of (. Since



192 Tetsuhiko MivOsHI

we started from the zero initial condition, all elements of E are elastic until

some elements satisfy f(0) =0 at, for example, t = tO. It is clear that our
problem has a unique plecewise analytic solution (u,0,0) in [O, tO). Let EO be
the set of all elements which satisfy f(o)=0 at t=t0. E- EO is clearly still
elastic after tO’ since the solution must be continuous. Hence the next

problem is whether the elements of EO yield at t=t, or still remain elastic.

*,
The key is to guess the sign of 3f 0 at t=t0+0, since if this is positive

( resp. negative ) then the stress point 0 moves to the outside ( resp. inside )

- %, %,
of the yield surface £(o) = O. We note that the signs of 3f ¢ and 3f De for t>
tO are same, since
* * * Bf* Jf
ae"6 = 36D (=0 pé (1- —EPE )y if elastic (if plastic).
n+ 3f D 3f

Hence we shall consider the following system which must be satisfied by the first

derivatives of the solution ( 1f it exists ).

2.1 o?,, = (b, (t.+0 P
2.1, §< 137 %, 1) = (by(egt0), 0)) pE
o o

(2.1)b g = Dg for E~ EO

o° = pe° inD_={u; Bf*(tO)DEO <0}
(2.1), { for E - B/

c® = (Dp-D' )e® inD = {u® sf*(:o)Deo 20}
where

£® = £ W= V7 uP%e (i=1,2)

i i P
peP
vt
D D (tO).
Theorem 2.1. Problem (2.1) has a unique solution (uo, Uo). This u°

minimizes the functional

(2.2) P = —%—(o",ec’)— ( b(egr0), v’ ),
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under the subsidiary conditions (2.1)b and (2.1)c.
Proof. (1) Let ( , ) be the Lz(e) inner product of (vector) functions

(e e E) and define

e 1 o o , o
F~ = 5 (o7, € )e - ( b(t0+0), u )e.
F® is a Cr-class function of u® and so is Fl = % F® too. This 1s clear for
e ¢ E ~ EO’ Let e be an element of EO. Then in D_ we have
aF® 3¢ . au®
5 = (@, S ), - (Blegto), —=-—)
b’ aub? Bu?’
i i i
and similarly in D+
3F® 360 . o
= = (D =D, - B0, —2—
= - -
i i

These derivatives coincide on the plane between D_ and D+ since

afae”
o _ Dofof D &0 -

D'e +
n + 3f DAf

on this hyperplane. This proves the C, continuity of Fe.

1
(ii) D - D' is positive definite. This is easily proved by the facts that

* * *
n is positive constant and cl§ of D3f < ¢, , (DOfof De,e)g of D3f(De,e), where

2

¢ and c2 are positive constants. Therefore Fl(uo) is bounded below by the

Korn's inequality ( we do not need this inequality as far as we treat the semi-
discrete system ). Hence Fl(uo) has a minimum point which is also a stationary

point. However, if u® is a stationary point of F then at this point o =

1)
go(uo) determined by (2.1)b or (2.1)C must satisfy the stationary condition which
is equivalent to (2.1)3. Hence the problem (2.1) has a solution which mini-
mizes Fl'

(iii) To prove the uniqueness of the solution it suffices to show the unique-

ness of the stationary point of Fl(uo). For each element e € EO we consider

the hyperplane in uo—space :
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= 0 - * 0 =
m, = {u ; 3f (t0+O)De =0 }.

Let {RX} be the partition of the uo—space by these planes. In each R, the o°-

A
€ relation is definite for all elements of E. Also, in RX Fl(uo) is a posi-
tive definite quadratic form of u® and the stationary point is at most one.

Now assume that there are two stationary points uls Ry and uze RU A% u).

Consider the line

I:iul 4 (ul-ul) t e[0,1].

This line goes through at least two regioms of {Rk} when t moves from O to 1.
Then the function

g(t) = Fl( u1 +t ( uz— ul ) )

is smooth, and a non- degenerate quadratic on t in each region. Therefore
if ul is a stationary point, that is, 1if Fl(ul) is the minimum, then g(t) must
be strictly increasing in (0, 1], which contradicts that u2 is another stationary

point. This completes the proof.

We want to show that the solution (u°,c®) of the problem (2.1) is the first

derivative at t=to+0 of the solution of (1.1) provided (1.1) has a solution.

* .
By Theorem 2.1 we can determine the sign of of (tO)DE for the element of EO.
We denote by Ee and EP the set of all elements of EO for which this sign is
negative and nonnegative, respectively, and solve the following initial value

problem set up at t=t

o'
. . ) = oy P
2.3, JZ (ogs 0y 1) = (byy 0) pe
G =DE , &=0 for E - EP
v, .
§=(D-D')E, d=(0-a)EZ for EP,
where &= e(i), D' =D'(t), f = f(0-q) and (u,G,OL)(tO) = (u,c,oc)(to—O).
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Theorem 2,2. The initial value problem (2.3) has a unique analytic

o

solution (u,0,a) in a certain neighborhood of tys and (ﬁ,é)(to+0)=(u°, G).

Proof. Differentiate the both sides of (2.3)a with respect to t and

denote the resulting equation by (2.3);1). By (2.3)(1) we denote the system
@.1® and (2.3),. Substituting the O-¢ relation of (2.3)  into (2.3)21)
and solving the resulting equation with respect to 1, we have U as an analytic

function of 0, o and t in a certain neighborhood of t Therefore (2.3)b can

0"

be regarded as a system of ordinary differential equatioms of the form

= X(0,0,t)

dc |a

where X is an analytic vector functionm. This system has a unlque analytic
solution under the given initial condition. Hence the problem for (2.3) has a

unique analytic solution (u,0,a) in a certain neighborhood of t Furthermore,

)(l)

0
the solution (uo, %) of the problem (2.1) satisfies [2.3 at t0+0. Here
[2.3)(1) is the system composed of (2.3§i) and the 0-¢€ relation of (2.3)b.

Since [2.3%1) has a unique solution on (ﬁ,é)(t0+0), we have the theorem.

% .
Let E. be the set of all the elements of EP for which 3f (tO)De(tO+O)=O

1
holds for the solution of (2.3). If El is empty, then the next state is
completely determined for all the elements. Because, the elements of E-EO are
still elastic after to and for those of E° holds
t + §
*,
2 (o) - fz(O(tO)) =2 J O fo)aE G ds < 0 (5>0)
%o
for small § and for those of EP we have
Bt 5= 0t 3 8) > 0 and f G
I(o—a)g = 9f ](O_Q)De (1L -9 an (0 -a) =0
for a while after to, where 0<06<1. In other words, the G- relation of the

elements of ES and EP are already chosen correctly and we could determine which

elements yielded at t We here emphasize that this determination is depend-

0
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ent only on the data at t=t0— 0 and the given function b.

If, however, El is not empty we have to guess the sign of d/dt(af*é ) at t =
t0+0. In this case the following theorem is important. Replace some
elements of El from EP to Ee and solve the initial value problem (2.3) for this

new EP. Let the new system be denoted by {2.3}. Then {2.3} has a unique

solution (u,0,a) under the same initial condition at t=t0, and moreover we have

Theorem 2.3. For every element of E, the value (ﬁ,b,&)(t0+0) is determined

independently of the choice of the next - ¢ relation of El'

Proof. Samely as before let [2.3}(1) be the system which is composed of
{2.3};1) and the O0-¢& relation of {2.3}b. Since the solution (u°,0°) of(2.1)

satisfies D'(tO)E0 =0 for the elements of El’ (uo,oo) is a solution of [2-3}(1) at
t = t0+0. But the solution of [2.3}(1) is unique with respect to (4,8 )(t0+0).

Therefore (u,0 )(t0+0) = ( uo,Go) and follows the theorem since &(t0+0)=0 for El'

Thanks to this theorem it is assured that the elements of E-El behave so as

to satisfy the subsidiary condition of (1.1) for any choice of the next state of

El' In other words, the next state of the element of E—El is already deter-
mined. Hence we can exclude them from our consideration.
3. Determination of the higher derivatives

%,
The next state of the element of E, is determined by the sign of d/dt(3f ¢ )

1
* .
at t=t0+0. It is easy to see that this sign and that of d/dt(3f De) is same
at t0+0 for the elements of El' Hence we consider the following problem which

must be satisfied by the second derivatives of the solution.

2
o d
(3.1, g (@ ygr 0,9 T (7 PulEg* 0 0 pE?

o° = pe® for the elastic element of E - El

(3.1)b

= - nt 0__é|’ -
o = {(D-D')e dt(D )E}t +0 for the plastic element of E El
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and for the element of E

1
*
o° = D’ inD = {u% of (tO)De° +r, < 0}
- 1
(3.1, {
o _ oty 0 _d e . _ 1.0, * o
o = {(p - D"Ye rra )e}to+0 in D= {u"; 3f (t)De” + 1) 2 o},

where €°, uo, 9f and D' are defined as before, and
d * .
rl = {d—t—(af )DE]’t +0°
0
Note that (G,é,d)(t0+0) is the derivative of the solution of (2.3).

Theorem 3.1. Problem (3.1) has a unique solution (uo,co). This u°
minimizes the following functional Fz(uo) under the subsidiary conditions (3.1)b

and (3.1)C.

(3.2) B = 2% - L a - (L b 0y, )
: )= ’ 2 2° 4r2 o v

where AZ = {dp'/dt €} ¢ and

0+O
0 ( resp. Eo) for the elastic (resp. plastic ) element of E—El
- _ o
€ = €, in D_
for the element of E,.
e in D 1
+
Here EZ is an arbitrary fixed vector included in the hyperplane of uo-space
(3.3) 7t {u®; 3 (. )De® + r, = 0}
. e ! ; 0 1 .

Proof. (i) Fz(uo) is a continuous function. To prove this let F¢
be the e - part of F2 as before ( e €E ). For e € E—El its continuity is
clear. For e EEl the discontinuity of Fe might appear across the plane LA
However, at t=t0+ ¢ it holds that on Mo

d, . %
* —(3f )D
e + E%(D')é _ D Bfai D o Dof dt . ¢
n+ 3f Daf n+ 293f D of
* x .,
(3.4) - DAf o ae*pe® 4 ﬁ( 3YDE ) = 0.

*
n+ of Dof
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Hence 0¢° is continuous with respect to u® and the first term of F€ is continuous.
. e o_ _o o

The jump at ﬂe of the second term of F 1is 1/2( AZ’ €, € )e‘ But if €, and

e belong to L) then D' ( Eg -eo) = 0 at t=t0+0 by (3.4). Therefore, since

D' is symmetric, we have at t=t0+0

o_

oy _ . _Gd, 42 o _ o
(hgy B € = (3p@DE , gy - €

)

e
o] [+ [o] [o] [o] Q
=—(D's,e*—a)e=~(s,D'(e*—€))e=0.

This implies the continuity of the second term of F® and hence of F® itself.

(i) Fz(uo) is a Cl—class function. To prove this we check the three cases.
First let e be an elastic element of E<-El. Then F° is smooth, since
e 1 o o} d2 [}
F = ""2—( De”, € )e— ( ) b(t0+0), u )e.
dt
Secondary let e be the plastic element of E-E1. Then
e 1 o o 1 d . o d2 o
= - - ' - .
Fo= 5000, &) - = {poneke 0y, €°) 3 b0 w),
Therefore
e
JF o
€ d . Je
—_ = ((D-D") €° — { S"e}(t +0),
e (« )% e dem g g0, ),
i
2 o
d du
~ (=5 b(t,+0), )
(3.5) dtz 0 Bug’o e
[ 2 o
= (0®, 2y (e, )
3P0 e dt2 0 aup,o e
i i
Since o° is continuous, this equality implies the smoothness of F. Finally
let e be an element of El' Then the following is clear in D_,
3F° o 2 o
_ o e d du
= (0o, o= (—5 blt,+0), )

P,0 P50 p,o ‘e’
du Bui dt BUi
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On the other hand, the relation (3.5) is valid in D+. Hence the Cl continuity

of Fz(uo) is proved.
(i11) Fz(uo) is a positive definite quadratic form which is bounded below.
Hence the minimizing point u® of F2 exists and (uo,oo), where o° is determined by

the unique 0°-€° relation, is the solution of (3.1). These are proved by just

the same way as in Theorem 2.1. This completes the proof of the theorem.

The solution ( uo, oo) of the problem (3.1) is the second derivatives of the

true solution. Strictly speaking, this is in the sense of the following
theorem. Devide E, = E° + Ep, where
1 1 1
ES = {e cE ; 3E (t)D 2 41, <0}
1 1 0 1
P _ .o o
E] {e €E; ; of (tO)D e +r; 2 01},
and solve (2.3) replacing EP by the new EP = Ep—-Ei. Let (u,0,0) be its solu-
tion. By Theorem 2.3, (ﬁ,é,d)(t0+0) is same to that of the solution of the
problem (2.3) with old EP.
Theorem 3.2. Let (u®, o°) be the solution of (3.1). Then hold
@ @, 0% = (6 (egr0),
(ii) Let EZ be the set of elements of Eg such that
* o
(3.6) of (tO)D e+ r, = 0.

Then, for every element, (H,B,&)(to+0) is determined independently of the choice

of the next O- ¢ relation of EZ'

2) and (2.3)(1)
a b

enciating twice the both sides of (2.3)a and once the &-¢ relation of (2.3)b with

Proof. By (2.3) we denote the equations obtained by differ

respect to time t, respectively, where EP is replaced by the new EP. By

(2.3)(2) we denote the system of these equatilons. Then (ﬁ,a)(to+0) and (uo,oo)
(2)

satisfy [2.3) , where [ ) has the same meaning as bzfore. Also the solution
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of [2.3)(2) 1s unique at t0+0. Hence (1) holds. The proof of (ii) is
exactly the same to that of Theorem 2.3. Note that for the element of E2 the
equality

{p'e°

_d prye -
* (D)E}t+0 0
0
holds for the solution (u°, ¢°) of (3.1)

If, furthermore, EZ is not empty, we repeat this discussion until EK becomes
empty for a certain K < =, It might happen that there are some elements for
which the equality

k

d *.
{ — (3t o} =0
+
dtk tOO
holds for all k. But this means that the stress point moves along the yield
surface for a while after t;: f(o) = 0. Hence we assign the plastic &-¢€
relation to these elements. For the completeness we descrive below the

procedure to determine the derivatives of the solution at t . +0 when Ek( k2 2 ) is

0
not empty.
Assume that the derivatives of order k are already determined independently

of the choice of the 3-¢ relation of E, :

k
k-1
d L _
E, = {eek _, ;{—z0fDdE)} =01
dt 0
Let us define ( formally )
k k
d ’ F
A = {—('¢) - D' —=} ,
k+1 dtk dt:k to+0

K K

* . * .

r, = (=o' - o' 21 ..
dt e 0

Let (uo,oo) be the solution of the following problem set up at t=t0+0.
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o dk+1
(3.7, L (ofgs 0 0 = (=g bys @) pe P,
] dt
o [5}
g~ = De for the elastic element of E - Ek
3.7 {
b o o
s = (D -D")e - Ak+1 for the plastic element of E - Ek
and for the element of Ek
*
o° = pe° in D_ = { u® ; 3f (tO)DeO +or < 01}
(3.7)C
o _ _ Nn'ye° _ _ o, * o]
g” = (-D")e Met1 in D= { w5 3f (g)De” 41 3 0 }
Theorem 3.3. The problem (3.7) has a unique solution (uo,Oo). This

u® minimizes the following functional F under the subsidiary conditions

k+1
(3.7)b and (3'7)c'

k+1

o, _ 1 o o, 1 = d o
Fan (%) = 57 %0 97 57 Ol B - (g b(sg#0), %)
where
0 (resp. Eo) for the elastic (resp. plastic) elements of E ~ Ek
€= ( ey in D_
for the element of Ek
e® in D
+

and EZ is an arbitrary vector in uq-space included in the hyperplane

- o . * o -
™, {u” ; of (tO)DE +r, =0 1.

s - P * . o
Classify E. = E~ 4+ E in such a way that 9f De” + r

. e
" X X is negative for E~ and

k k

non-negative for EE

EP by the new EP = EP - EC.

at t=t0+0, and solve (2.3) of the preceding stage replacing
Let (u,0,0) be the solution. Then (uo,Oo) is

the derivative of order k+l of (u,d) at t0+0. The derivative of order k+1 of

(u,0,0a) is determined independently of the choice of the next G- ¢ relation of

Ek+l'

Summarizing the above results we have
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Theorem 3.4. The § - € relation of each element of E is determined
uniquely after tO and the problem (1.1) has a unique analytic solution in a

certain time interval [to,t0+6) (5>0).

So far we have discussed only the initial yielding. However, the above
procedure and the results are valid almost word for word to the subsequent yield-
ings and also to the case that the unloading may occur. Since the boundedness

of the solution is assured by the energy inequality we can continuate the solu-

tion over the given time interval I. In fact we have

Theorem 3.5. Let (u,0,0) be the solution of (1.1) in a time interval
1'C 1. Then there is a constant C which is independent of I' such that
(3.8) Walt Nel s Nel, lall < e

Proof. In I' we have

Therefore hold

v

(3.9) (( - DME,E) < | B,w] < |lb]

lalf < e llBll 1€l

The first three inequalities of (3.8) thus follows from the positivity of the
matrix D - D'. To prove the last inequality of (3.8), use the following

relation which holds for any t in I' at which the derivatives exists.

¢-pls = Lo,
n
where f(0)93f(o) = Sa.
Remark. Since we assumed that the function b 1s piecewlse analytic, the

number of the changes of the state will be finite in any finite time interval.

If this is the case, the continuation of the solution is obvious. However,
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this is not yet proved. Hence we have to consider the case that such points

accumulate to a certain to < T, In any case, however, the value of (u,0,0)

at t = t,-0 becomes definite by the uniform boundedness of the solution, and

0

too. It

our procedure to continuate the solution 1s completely valid to such ty

is clear that there is no bound beyond which this continuation is impossible.

The conclusion is

Theorem 3.6. There is a unique absolutely continuous function (u,e,0,0)

which satisfies (1.1) except at most countable t £ I.

Proof. The existence of the solution is already proved. Also, the
above discussion shows the uniqueness too. However we shall prove the
uniqueness by another method. Let K=Ka be defined by

K = {7 ; absolutely continuous on tel and f(t-a) € G }.

1f (u,e,0,0) satisfies (1.1), then 0 € K and the followings hold.

JZ @550 8,5 = 0y, ) pev,
{(é—cd,r—o)dcgo for all T ¢ K,
I
&= i - s a.e. I (c=p1 )y,
Assume that (u,e,c,u)* satisfies (1.1) too. Since 0 € K can be written as

o =0o + 60 where £(6) £ 1, we have

J(E—Ca,aJro*—on*-o)dtsO
1
jl(e*—Co*, a, +0 -0a-0.)dt < 0.

Define (U,E,I,A) = (u,£,0,0) - (u,€,0,0),. Adding these inequalities, we have
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0 ;J (E - cE, A - D)dt
T

4

f (SA, A)dt + j (cs, Lyde,
I 1

from which the uniqueness folliows.

Now as is already seen In the existence proof of the solution, the excep-

tional t is always an end of a time interval of positive length. But the
number of such time intervals of length 2 1/n (n 2 1) is finite. Hence the
countability of the exceptional t follows. This completes the proof.
Remark. In this paper we considered only the kinematic hardening
problem. The Zsotropic hardening can also be treated in the same way [3].
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Figure 1 below is taken from a visualization of an experiment of Gollub and
McCarriar {1] in which they follow the time development of a convecting
horizontal layer of fluid of depth h through the use of laser Doppler
techniques. The dots are points where, at a depth of h/4 from the top of the
layer, the velocity component parallel to the larger side of the box is zero and
mark the boundaries of the convective rolls. The experiment is conducted in a
range of Rayleigh number where nonlinear stability theory guarantees that in a

horizontal layer of infinite extent, straight parallel rolls both exist and are

stable.

10
§ 5| ,
a
0
0 15

Figure 1: Doppler Map Of The Velocity Field For
A Stable Convective Flow 256 Hrs. After
Rayleigh Number Was Increased To 2,05 Rec.
(Horizontal Diffusion Time, 40 Hrs.)

However, the existence of orientational degeneracy and a band of stable roll
wavenumbers together with the fact that the rolls align themselves perpendicular
to all lateral boundaries makes these solutions unattainable. The patterns that
are seen are much more complicated not only containing curved rolls but also
exhibiting many dislocations. Furthermore, it is not clear whether and, if so,
under what circumstances the pattern achieves a time independent equilibrium.
Indeed, in some cases, Gollub and McCarriar have seen patterns which are slowly

time dependent over many horizontal diffusion times. The failure to reach a
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steady state was also noted earlier by Ahlers and Walden [2] who observed that
the effective thermal conductivity of a layer of convecting fluid helium
remained noisy for all Rayleigh numbers above R for sufficiently large aspect
ratios,

Our goal in this paper is to develop a theory to describe these patterns.
We start with the observation that almost everywhere in the convection field a
local wavevector is defined and varies slowly over the box., At the boundaries,
the wavevector is tangent. Therefore we expect that there exists locally
periodic solutions defined by £(0; A, R) when f is 2n -periodic in © and

vo = K(X, Y, T) (1)

(V = (3/3X, 3/3Y)) 18 a slowly varying function of X, Y, T, the horizontal
position coordinates and time. Indeed we know from the work of Busse [3] that
such solutions as functions of O exist and, as we describe later, have certain
stability properties. In other words, while the field variable f varies over
distances of the order of the roll size, the parameters A (amplitude)
and k (wavevector), which together with a knowledge of f as function of
0@ describe the pattern, vary over distances of the size of the box, The inverse
aspect ratio 62, the ratio of the roll wavelength d (= h) to the linear
dimension L of the box, is the only small parameter which enters the theory.
The Rayleigh number R can be an order one amount above its critical value
RC, the value at which the purely conductive state becomes unstable, although
it must be less than the Rayleigh number at which the straight parallel roll
solution becomes unstable. The ideas we are about to describe are closely
related to those of Whitham [4] who in the late sixties developed a theory to
describe fully nonlinear, almost periodic wavetrains,

As a first attempt we shall use model equations, the use of which
facilitates the analysis by making calculations explicit but which capture what
we believe are some of the essential features of the Overbeck-Boussinesq
equations. We derive equations for the slow variables ﬁ, A which (i) show

that all the stability criteria derived by Busse and his colleagues [3] for
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straight parallel rolls hold locally and (ii) reduce in the limit of small
R-Rc to the Newell-Whitehead-Segel [5] equations. In addition we show that the
effect of curvature is to drive the roll patterus toward a state ia which the
local wavenumber assumes a constant value almost everywhere, a result consistent
with a recent result of Pomeau and Manneville [6] for axlally symmetric rolls,
This is done by (i) proving that under certain natural boundary conditions, the
macroscoplc equations for the phase, valid for times up to the horizontal
diffusion time, are deriveable from a Lyapunov functional even though the full
microscopic equations for the model need not be and (ii) examining the nature
of the stationary states which would be reached on this time.

But this is not the whole story as such patteras in and of themselves
cannot satisfy all the boundary conditions. In between the patterns,
dislocations are formed and solutions describing these structures are given. In
looking at these solutions, it is clear that the time scale which the total
system would need to relax to equilibrium is not simply the horizontal diffusion
time L2/v but is this time scale multiplied by the aspect ratio L/d. Finally,
we include in the model a term which takes account of the "mean drift" which
occurs in systems of low to moderate Prandtl number. The presence of this
effect was first pointed out by Siggia and Zippeleus [7], and can cause marked
change in the behavior of the system.

I should point out that the ideas we discuss here can be extended to
include situations where the basic flow f 1is multiperiodic. 1In that case f
is considered to be a 21 periodic function in each of n
phases ei where VOi = ﬁi and which also depends on n amplitudes Ai and a
parameter (or set of parameters) R.

A more comprehensive paper is being written jointly with my colleague Mike
Cross who started me thinking about these problems again during a most pleasant
leave spent at the Institute of Theoretical Physics at the University of
California in Santa Barbara. 1 am most grateful fo their hospitality and to the

energetic leadership of Pierre Hohenberg who was a constant stimulus,
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2. The predictions of present theories:

Consider w(X, Y, T) given by

) 2
7+ (7

+ 1)2w ~ Rw + wzw* =0 (2)

on —» < X, Y < », The principal reason for choosing this model is that it
possesses a simple fully nonlinear periodic solution

eiO’ 0 = i . i, i = (X, Y). The “conduction™ solution w = 0 is unstable to
modes of the form

i
w(X, Y, T) = We s (3)

whenever R > %in(kz—l)2 = 0, which value 1s realized when IEI =k = I, The

neutral stability curve in the (R, k) plane is given by R = (k2-1)2, we

observe the system is degenerate in the sense that any mode of the form (3)

with ]E] = 1 will grow at the same rate whem R > 0. The nonlinear saturation

of the linearly unstable modes is described by the Stuart-Watson [8] equation
Wp = RW - whix (4)

which in this case is an exact solution for (2) but which generally 1is only true

for values of R near {ts critical value RC = 0 and for amplitudes W

proportional to YR - R

¢ Because of the orientational degeneracy, it is indeed

natural to look for solutions of the form

+> >
ik, X
wiX, ¥, T) = § Wj(T)e J
>
k =1
&, |
and, in the small R 1limit, we can show
daw
i - - *
— ij w;wj 2i§jwrwr wj . (5)

It is an easy matter to see that the only stable solution of this set is the

single roll solution N
- ik - %
W1=/Re ,Wj=0,j¢1. (6)
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So, just as in the case of the Rayleigh-Benard problem under a vertically
symmetric, applied temperature field with moderate Prandtl
number v/K » 0(l), single, parallel rolls are preferred. But, as we have
pointed out, no direction is chosen a priori. Therefore when R 1is suddenly
raised from subcritical to supercritical values, the system acts as a noise
amplifier., At any particular location in a large horizontal layer, it will
choose among the wavelengths of the noise for one close to kc = 1 but it will
not make any choice among directions, Therefore ualess the experiment is
carefully controlled (as in the case of the Busse-Whitehead [9] and Whitehead-
Chen [10] experiments), rolls of approximately the critical wavelength but of
different directions will spring up in different places. This directional
diversity is even more accentuated due to the influence of a closed boundary.
At each boundary loction, k. ; =0 (; is the unit normal to the boundary) and
therefore 1f ; is continuous, rolls of all directions ﬁ are excited. Now, once
the roll direction is chosen at a particular location, it becomes more stable
against linear disturbances of rolls of other directions the more it grows
towards {ts saturation amplitude. So, for early times, one finds a fluid layer
resembling a sea of quasi stable patches and somehow the fluid has to find a way
to resolve the incompatibilities between them.

There is also a bandwidth degeneracy. It is evident that for R > 0, a
finite bandwidth of wavenumbers k can be excited. Indeed for IE] 1,

W = (& - - 2w - W

and W » /R - (k2 - 1)2 asymptotically in time. We may test the (linear)

stability of these solutions by setting

- oINK (4 p @ I1X F MYy SILX - 1Y)

whereupon we find after some calculation that this solution is unstable if

wi(a?) (L2)ea?(a?) " (2 )ea (8% 2 5 o (5)
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2

where A = R - (k2 - 1)2

L
and (AZ) = dAz/dk2 . The first class of
instabilities occurs for

2, ,,2"

L =0, M#0 and B = (A")(A7) > 0. (6)

These correspond to the zig-zag instabilities discovered by Busse and arise when
]

a wavevector with wavenumber k < 1 (in which case (Az) > 0) interacts with and
gives its energy to either one of two modes (k, + /1 - kz) lying on the unit
circle. The second class of instabilities occur for M = 0 and
2

A2+ 22 "k + k2’25 o,

or equivalently when

d
E kB >0 (7

where B = A2 daa?/dk? = ~2(k% = D(R -~ &% - 1?) . This s the Eckhaus
instability and occurs when a roll has too small a wavelength., It is useful to

summarize these results by way of figure 2,

kB, A

BUSSE
BALLOON

|
!
)
(

Figure 2: Graphs of A, kB and R vs. k. and the
Busse Balloon
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Solutions can exist for k < k < kR but are stable only when k

L <k < kE . The

C
shaded area is known as the Busse balloon. When derived in the context of the
full Overbeck—-Boussinesq equations it is somewhat more complicated. The right
hand curve which is the boundary with the Eckhaus instabllity is replaced for
large Prandtl number by a boundary to an instability to rolls in the
perpendicular direction. On the other hand, for smaller Prandtl numbers, the
Eckhaus stability boundary becomes linked with the skew—varicose instability
which is a variant of the former when mean drift effects are included. We will
show how to include these in the model. We also remark that the left hand
boundary need not remain at k = k¢ = 1 but can bend leftward depending on
Prandtl number., The Busse balloon (or Busse windsock), the region of stable
parallel rolls in the R, p = v/K, k plane is given in reference [3].

Since for R > RC’ there is an order vR - RC band of allowable wavenumbers
in a direction parallel to t and an order A/R - R

c

direction, 1t 1s natural to include a richer class of solutions which have an

band in the perpendicular

almost parallel roll structure by letting
WX, ¥, T) =W, 5, Del¥ (8)

where x = u2X, y = uY, t = uAT with uAX =R ~ Rc << 1, This gives the Newell-

Whitehead~Segel equation [5] which for the model (2) is

2
Eﬂ+(2i._3+_3_2)2w-xw—w2w*. (9
3t x 3y

y

This equation is canonical for describiug situations inm which the rolls are

almost parallel and R 1is close to its critical value.

3. A new approach:
We will now give a description that allows the local wavevector k to
undergo order one changes continuously but slowly over the box. Let

10(X, Y, T)

w(X, ¥, T) = We (10)

where W and E = V0 are functions of the slow variables



Two Dimensional Convection Patterns 213

X = ezx, y = ezY, t = 54T

and 1/ is the aspect ratio. It is useful to write 8 = —% o(x, y, t) whence
€

Vo= V*B =% = (m, n) = (k cos ¥, k sin )

X

2 2 (n

@
]
]
53
L]
4]
Q

We will also find it useful to introduce new coordinates

8 = alx, y), B =8(x, y) (12)
defined by
ax = k Cos ¢ Bx = ~2 Sin ¢
(13)
ay = k Sin ¥ By = & Cos ¢

The Jacobian of the transformation from (@, B) to (x, y) is k& and
3 _ 3 3 3 _ 3 3
k T " Cos ¢ o~ + Sin W o 2 T Sin = + Cos I (14)

The curves a(x, y) = constant are, of course, the loci of constant phase 8 while
the B coordinates are the orthogonal trajectories and measure distance along the
rolls. The curvature Ka of the a(x, y) = constant curves 1is given

3 = -k B
by 2 3 The curvature of the constant curves B 1is KB k 5o *

In these coordinates, the compatibility conditions (1l) give us that

=y, _k e %3k
e %8 " " T3 %8 " %% "KW’ (152)
and
3, 80 3k 3,388 8
k3 3t =3c %W 3w I o (15b)
Note that
3 .16 _ 67, 2 4 3
o7 Ae etV(1ec + ¢ 3F)A ) (16)
A S LR (17)
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where
DA = 2n oA+ 2n 34+ (38430, (18a)
1 X §§A X yl
_ 2 3A ak 3y
= T o+ Ak o+ AKS g, (18b)
2 A 3k 2, 3%
= k7o + Ak mo - AR/ oo, (18¢c)
_ke s’ (184)
AR
and
DA = 32+ 32A
2 ’;‘2 2
x 3y
- 32 3 y2 3 3
{(k 2) +(z,5§) + Rk 2+ Ry 2 oagfA. (19)

We now proceed to determine the equations satisfied by the slow variables
& and A, the latter being the leading approximation to W which, without

loss of generality, can be taken to be real. Let

W=A+52W2+..., (20)

o =09, + szc + .ee (21)
2

R-A RO+62RZ+ vee s (22)

We choose the sequences {an}, {Rn} in a manner so as to eliminate secular terms
appearing in the expansion for W, In this case, secular means that no solution
exists to the algebraic equations for W,, W, etc, TIf we had left in

10 + e2w2(0) + ..., then, unless the secular

the © variable and expanded w = Ae
terms were removed, no 2l periodic solution for w, would exist. Substituting
(20), (21), (22), (16), (17) into (2) gives

[ 2

1% + ¢ .5% + n?- 162(D1(k2—1)-+(k2—1)D1-]
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_ b 2.0y, 2_1yp . 2y L L 6 . . 8, 2
" (Dy(k%=1)s + (kK=1)Dy+ + D7) + ie (DD, + DD ) + €D,
(23)
n _ 2 4 2 -
RO €2R2 EARA.-..+2€ Aw2 + € (ZAW4 + W2 )...}(A + 5%42 + oeae) 0.
What does this equation tell us? At 0(1)
2 (24)

R, = (k1)
and so, to leading order, the amplitude A 1is determined from the "eikonal"
equation

at-r - D2, (25)

At order 52 we have that

(Ry + =D, + A%, - ros,

Note the following interesting feature. For R ~ Rp = 0(1), A2 is finite and
therefore, even though Rp = (k2 - 1)2, the only terms on the RHS which

give rise to secular behavior are those which are purely imaginary. On the
other hand, if A2 were small, we would have to remove all the terms on the
RHS. 1In other words, the null space of the linearized equation is cut in half
when A = 0(1l). What this means 1is that instead of having two equations, one
for the amplitude A and the other for the phase of the convective pattern, we
simply have a single equation for the phase. The amplitude is determined
algebraically from (25), This also means, of course, that the limit to the case
of small R - R, and small amplitude A 1s fairly subtle. [For workers in
nonlinear wave theory, there is a direct analogue between this limit process and
the limit process one encounters when one attempts to obtain the nonlinear
Schrodinger equation from Whitham's theory.] We will carry out the perturbation
analysis in such a way so as to facilitate this limit process. What we do is to
use the expansion (22) which is also an amplitude expansion to reexpand A if
necessary so that we can simply set sz =0, j » 1. We find directly from (23)

the following equations,
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2 a2 byp . . .
oA - Dl(k DA - (k°~1)DjA + € (D;*D, + D, DA =0, (26)
rea? - 22 = £ (A - (&%1)D.A - D (k2-D)A
x Ay * 0
0% + e‘b%A) . (27)

Because of the simplicity of this model, these equations are exact. We will
first examine these equations with a velw to making contact with known results

and then we will discuss some new consequences,

4, Connectlions with previous theories.

For values of R of order unity, we can neglect the RHS of equation (27)
and then A 1s given as function of k by (25)., Equation (26) tells us about

the phase o = 6, and ignoring the 0(64) terms can be written as
2 38 ) ]

A 12 + T B +-§§ nB=20, (28)
or
2 2 2 2 2
2 38 m  dBy3 8 2nmn dB 39 n_ dBy3 ©
A K+(B +-—k?lz)—aj(—2-+—-—k 'd_kaxay +(B +TE);ZB 0 (29)
where
Bk = A%00 ada? . (30)

1 want to remark at this point that the fact that the spatial terms have
conservation form is not a consequence of this particular model nor the fact
that it can be derived from a Lyapunov functional,

(a) The Busse Balloon holds locally.

Equation (29) is elliptic stable or unstable (in time) or hyperbolic unstable
depending on which one of the following four cases obtains:

1) B<oO, -d.g.(kB) < 0; Elliptic stable

2) B> 0, gkB) > 0; Elliptic unstable

3) B >0, EE(kB) < 0; Hyperbolic unstable

4 B <O, .dg_(ks) > 0; Hyperbolic unstable. (31)
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These results are simply the same results which are displayed in Figure 2,
except now all the variables are functions of x, y and t. Therefore we can
say that all the stability features we had found when looking at the stability
of straight parallel rolls continue to hold locally. Case (1) above is the
Busse balloon; case (2) involves instabilities which have wavenumber dependence
in both the along and perpendicular to the roll directions; case (3) is the zig-
zag instability and case (4) is the Eckhaus intability. This can be easily seen

by taking the local roll wavevector to be (k, 0) in which case (29) becomes

2 2

36 , d 370 378
At _dk(kB)'T +B—= o . (32)

9x ay

Hence for B > O, %E(kB)> 0, the instability bhas a wavevector perpendicular to
(k, 0); for B <O, Hg kB > 0 the unstable modes are parallel to (k, 0).
The addition of the eA term in (26) which involves higher derivatives only
serves to control the growth of the instabilities after they begin. It does not
inhibit them altogether mor does it of itself trigger any new instability.

The reader might like to compare this result with what happens in nonlinear
wavetrains. There, the analogue of equation (26) is a second order system in
x and t and so it is the ellipticity or hyperbolicity of the second order
operator which determines instability or (neutral) stability of the wavetrain.
For example, for a train of gravity waves on the sea surface, the hyperbolic
nature of (26) changes to elliptic when the ratio of depth to wavelength is less
than 1,36.

(b) The Newell-Whitehead-Segel limit.

To this point, we have taken variations in the directives parallel to and
perpendicular to the local roll to be of the same order of magnitude. It is
clear that if for some reason the local wavenumber is forced to stay

approximately constant, the variations in wavenumber of order u parallel

to ﬁ are accompanied by variations of order vy in the perpendicular direction

(e.g. (kc + uL)2 + (Vu M)2= kcz) . Near k = 1, we find that variations

perpendicular to the roll are of an order of magnitude greater than those

parallel to the roll and this leads to a balance between the term %-V o E B and
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some of the 54 terms in the phase equation (26).
This situation certainly obtains when R 1is sufficiently small, for then

(see Figure 2) the bandwidth of wavenumbers parallel to the roll is 0(/;) and
the bandwidth perpendicular to the roll is O(AJEj. As we have mentioned, in this
limit the amplitude no longer follows the phase gradient as in (25) but the
terms on the RHS of the amplitude equation (27) became equally important to
these on the L.H.S. This balance is achieved when R = eax. For rolls which are
almost parallel

WX, ¥, T) = AGx, 5, pel (X + o0 ¥, ©) (33)
and

w =0 =%+ elp(x, P (34)
where x = EZX as before and ; = y/e = €Y, the new scaling in the perpendicular
direction. It is now easy to show from (11) that

2 1.2
k=l+s(¢x+—-¢~),\v=e¢~

2
y y
k3 =3 +4 2 238 = 1/e 3~ o =a, = 52¢
a X v y t t
Yy
D, = 23+ ¢~ 3~) + b, D, = 1/e2 32,
1 x y ¥y yy 2 y

Kcl = lwe = ¢;§ and KB = ‘kwa = -e¢x; - e¢;¢;;, (35)

where we have used subscripts in order to denote partial derivatives.

Substitution of (35) into (26) and dividing by 52 gives (we drop the tilde on

y)
ap, - 2(¢. + 1 @2)(23 + 2 3 +o JaA-2(20 +2 3 +¢ (o + ! ¢2)A
t x 27y yy yy x yy yy'tx 2V

(36)
2
+ + 24 3, + A+ 23+ 2 + A= .
(2, tyly ¢yy) w (23, byl ¢yy) 0

It is readily shown that, if W = Aei¢ in (9), equation (36) 1is precisely the

imaginary part of equation (9). Carrying out the same calculation on (27)
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(recall A » ezA) gives the real part of equation (9).
Therefore the equations (26), (27) contain all that was previously known

about roll solutions. They also contain some new information.

5. New results; some answers, more questions.

In what follows we shall take R to be of order one and therefore (27) can
be replaced by (25) almost everywhere. The exceptions are those regions
where V = 0(6—2) but these points are isolated. We will concentrate on the

phase equation (26),

39
A T3 + n v (kB) + € (D .DZ + D2~D1)A =0 , (37)
which may be rewritten in a variety of ways. 1In particular we may write
T(kB) = k 52 kB + kBL 3% (38)
B
or in a more revealing way as
3 kB
V(kB) = k2 =7 - (39)
8 1 31
applying k — L 4 wE to (37) gives us two equations for k and ¢ ,
3k 31 kB . 3y . .
-5?+k-a_( -a—kB+72-é—)+ek—fD D, + D,eD,JA = 0 (40)
and

3y 3 1, 38 kB , 3y 4 . . -
kﬁ+La_g[kakB+leﬁ)+elrx( D,+ DyeD JA =0 . (41)

For the first step, let us assume that all derivatives are of order one and
consequently ignore the €4 terms. We will assume that everywhere k belongs to
the Busse balloon 1l = kc <k« kE(R) and prove that in a region R with certain
conditions on the boundary 3R, the system relaxes to a stationary state with
wavenumber k taking on the value which makes B = 0. This result does not
depend critically on the fact that the present model is deriveable from a
Lyapunov function; indeed it is also valid for systems which do not have this
property. The reader might like to verify that the model

(g2 - D)D) % + (R - we - w'vP)rR = 0, (42)

which does not derive from Lyapunov functional, gives the phase equation

(k? + 1)%% k(1 - vk?) + vekB + 0(c*) = 0 (43)
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2 2 3
where B = A2 ijéE-kl‘(l-vkz)2 and A2 = R - SE——;—ll—
dk k

that the order one spatial derivative terms in the phase equation have

., It is crucial, however,

conservation form and although T have not yet categorized the class, this
happens for a large class of problems. We now prove our result. For positive

J2, let

Jzet +7 «(kB) = 0 (44)
and consider

F = [[ G(K) dxdy (45)

R
where
k2 2,2

G=-1/2f" B(kT)dk" > 0 (46)
is positive as we insist k belongs to the Busse balloon in which B < 0.
Then,

%‘ -/ 8, kB.n ds - ff Jzetz dxdy, (47)
E13 R

n the outward unit normal to the boundary 3R, where we have used the fact
that V*G = —kB, Therefore, if on 3R either (i) ken =0 (the roll axes are
perpengicular to the fixed boundary) or (ii) B = 0 (a portion of 3R may be a
fluid boundary where B = 0),

F<o0
and G decreases. But G 1s minimum only when B = 0 or k =kg the value
of k for which dAz/dk2 = 0. For model (2) this is the point k = 1l; for
model (42), ko lies to the left of k = 1 by an amount depending on v .

The fact that k + kC on a free boundary on portions of 3R is consistent

with the analysis of the stationary equation,
3 kB

= =0 - (48)
This means that the quantity
KB/ = -H2(8) (49)

is constant along the orthogonal trajectories of the constant phase contours.
Recall in the interval 1 < k < kE’ kB < 0., This in turn means that if

the B contours converge, which they will do in patches where the curvature of



Two Dimensional Convection Patterns 221

the phase contours increases torwards a center, £ iuncreases. It also means that
the flux of KB between two B coatours is independent of a. It may be useful for
the reader to keep in mind the axially symmetric case
where o = fk(r)dr, r the radial coordinate, B =4 = ¢, ¢ the azimuthal
coordinate, whence £ = % . Now in order for the solution to remala stable we
mst have that
1 <k < kE
which implies that
0 < |kB| < |kB|g
where |kBlE is the absolute value of kE B(kE). Therefore we must have that
0 < zﬂz(s) < |kB|g (50)
and therefore as £ + » along a 8 contour, HZ(B) must tend to zero, Since it
is constant along constant 8 contours, it must become as small as it can

before the 54 terms in (37) enter the picture, which they will do when

%E =0 (5-2) and £ = 0(e_2). Thus, in order that the inequality (50) holds,

#%(8) = e’k(8) and hence kB = 0(c?) everywhere that 2 = 0(1). But, since

kB 1s small only near kC =1, we must have k = 1 + 0(52). Near the sink, we

can find solutions of (37) iteratively in the form

22 2
k=l+SX oy oo 2L D
r+ep &y

where Y2 = Z% K"(B) , which indicates that as r + 82, k goes from kc =1 toa
value somewhere between ko = 1 and kg.

Thus our first prediction is that on the time scale 5_4 , the horizontal
diffusion time, patches form which satisfy the boundary conditions Een=0
along portions of the box boundary, and in which k + kc almost everywhere.
Examine the numerical experiments of Greenside, Coughran and Schryer [11]
(figure 3) carried out on equation (2) for real ¢ and the real experiments of

Berge [12] (figure 4).
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Fig., 3: Numerical Integration of (2), ¢ Real
For Time ~ Horizontal Diffusion Time

Fig. 4: From an experiment of P, Berge . Contours of
Constant Downward Velocity. Aspect Ratio of 16.
R ~ Re.
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Note in the rectaungular geometry of figure 3, that patches with cirecular
symmetry form about the corners A and C. 1In the circular geometry of
Berg;'sreal experiment, one again sees circular patches forming about sinks
which are attached to the boundary. Moreover, it 1s abundantly clear from these
figures that the box cannot be tiled with these patches. Certain areas, for
example the corner B and D in figure 3, are quite incompatible. 1In order to
compensate for these mismatches, the 54 terms of the phase equation (37) must
be incorporated in the analysis.

Ove way is to take 3/3a, 3/38 to be O(E_Z) but this simply brings us back
to the mlcroscopic theory. Another way, which retains the fundamental idea that
the convection fleld can be described by a slowly varying wavevector E, is to

recognize that the terms

P 4
V(kB) and ¢ (D1 02 + D2 Dl) A (52)

=

can balance when the B derivatives are O(s—l) and k =1 + 0(52) . This
reduces both terms in (53) to 0(&2) and since we saw that the main effect of
the dynamics on the horizontal diffusion time scale is to drive k towards

k this approximation is not at all unreasonable. A little algebra shows that

C’
if R =0(1), k=14 0(52), then A is VR to within 0(54) and the

6

stationary patterns which one might expect to reach on the ¢ ° time scale (which

is the horizontal diffusion time scale multiplied by the aspect ratio 5—2) are
given by

-0 . kD + et -gg)% =0 (53)

and the compatibility conditions (l1) are

= Q") = = (54)
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= (k) = =2 (55)
Equations (54), (55) show us that %%- is at most order one and therefore
itself is of order e¢. For these solutions, then, the rolls are locally almost
stralght., Since we are now working in distances of order e (as measured in box
units; 1/e 1in roll wavelength units) we can make the following local
approximations, which are very similar to those made when we were deriving the
Newell-Whitehead-Segel equations (36). Let (£E,n) be locally the 'across and

along' roll cordinates and
0 =5 +e2p(5,2), ¢ =n/e . (56)

Using (56) together with (12), (13) and (14) we find

]
o —

[+1 B

(57)
2.y, 220, L (282
k L+ e(5p + 3 [a;) ),

and equation (53) is (using subscripts for partial derivatives)
2
-4 - - 4 - + =0
bee 8¢c¢£c Pedey b0gter * reee » (58)
which is precisely the Newell-Whitehead-Segel equation (36) and (9) with
amplitude A held constant. We are now going to discuss solutions of this
equation which lend some ingight into Figure 5 which is the a sequel to Figure

3
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Figure 5: Numerical Integration of (2), ¢ real
For Time >> Horizontal Diffusion Time.

Notice that in order to compensate for the incompatibilities in the corner B of
Figure 3, the circular rolls emanating from AD have undergone a change and have
introduced dislocations along the wall AB. Roll number 7, counting from A along
AD, doubles in width as it approaches the side AB and undergoes a dislocation.
Roll number 9 detaches from AB altogether and forms a series of dislocations
along AB (which we call a grain boundary) and then attaches itself to the upper
wall BC. Rolls 10 through 25 take on an § shape in which the approximate
distance over which significant changes occur is the square root of the box

dimension, or the 'along the roll' scaling in equation (58).
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Figure 6: Dislocation

We first note that a property of this equation is that if

$(£,z) solves (58), so does -¢(=£,z). (59)

_ =2

Also observe that © = ¢ "8 4is given by

0 =F +6(£,0), £ = e’E. (60)

The shapes of the phase contours near dislocations suggest that we search for

self similar solutions of the form

$(E,0) = F(z), z = */VE, £ > 0. (61)

Notice that in cell units 2z = C/»/'ZE = ‘//25 where § = €f , £ = s?'E and
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o =% +r¢lvaE) . (62)
' dF
F(z) satisfies the equation, F = R
tery 2" L} ] 1 2 2
F = 42 F + 122F' - 12zF'F'' - 8F'" + 6F''F'' (63)

which is really an equation for G = F'. It has the symmetry property that if

(F(z), G(z)) solves (63), so does
(F(z), &(z)) = (F(-z), -G(-z)). (64)

Equation (63) has a one parameter family of solutions F(C;z) with derivatives
G(C,z) which decay as Ce—22 as z + -» , This can be seen by linearizing (63)

which then has error function solutions. For C very small, these solutions

behave very much like the error function solutions; they are symmetric about

z =0 and lead to a jump in F of AF = F(») - F(~) = ¥7C, However (63) is

nonlinear and the bigger C gets the closer F approaches its pole solutions

(actually G has the pole; F has a logarithmic singularity)

F(z) ~ tn —— (65)
z-z )
representing a balance between F'''' and 6F'2F'', Thus there is a critical

value C, of G, which from numerical calculations is approximately .564,
above which the solutions do not exist over the line - { z < » , As C
approaches Co from below, AF is very sensitive to changes in C, going from a

value of 3.14 (: m) at C = .54 to 7.93 at C = .,565. 1In figure 7, we graph

F(z), F(z) for C = 7 and in Figure 8, we draw the contour of constant phase 0

0o=F+F (V) . (66)



228

Alan C. NEWELL

Figure 7:

Graphs of ¥(7,z), F(w,z).

Figure 8:

Constant Phase Contours @ .

va
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For values of O slightly greater than 7w, the contours are defined for all T. For
values less than 7, the phase contours intersect the £ = 0 axis at the origin.
For £ < 0, we use the symmetry property (60) to infer that the phase contours in
this region are simply a reflection of those for T > 01in the £ = 0 axis. These
solutions seem to give a fairly accurate picture of the real dislocations seen
in experiments.

Finally, we indicate how to include mean drift terms in the model.

Consider

2 *

3w @ +u e Vu=0 (67)

2,072, _
FT'+ (9541w Rw + w
where u = Vx 1z (2 is the unit vector perpendicular to X,Y) and
2

v 1/2p (WL VA + (%)) (68)

Following the previous analysis, we find that the slow equation for the phase is

k2 3 kB 3T 4
Aet + X5 + AkL ¥ + 0(e’) =0 (69)
where
2 3 3 kA2
PV = kL g kg (=) - (70

In (68), the parameter 1/p mimics the effect of low Prandtl number situations
where mean drift is caused by the nonlinear advection terms in the momentum
equations. In (70), V refers to the slow derivatives with respect to

(x,y) = EZ(X,Y).

6. SUMMARY.

In this paper we have presented a mathematical framework for describing
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convection patterns which includes all previous theories and from it we have

made several predictions about the manner in which the patterns evolve. In

particular, we suggest that on the horizontal diffusion time scale Ty, the

convection field develops patches, often of a circular nature surrounding a

sink, {in which the wavenumber 1s constant, The incompatibility of these patches

is ironed out over the longer time scale of the aspect ratio times Ty and the
process involves a gliding motion (compare Figures 3 and 5) in which roll
dislocations move in a direction perpendicular to the roll axis. The climb
motion, where the dislocations move along the roll axis, occur on the scale

Ty as their role is to adjust wavelength, although small adjustments of order

e? will be made on the E-ZTH scale.
While we believe we have made a start, many questions still remain open.

Some of these are.

1. For what class of models is the flow on the horizontal diffusion time scale
a gradient one; equivalently, for which models does (44) obtain?

2, What 1s the effect of the mean drift term? What parallel conclusions can we
draw?

3. Do the patterns ever settle down or do they always remain noisy? If the
former is the case, is it a consequence of geometry where the dislocations
get stuck in corners? 1In a clrcular geometry, one might argue that the
glide motion never stops, If the latter is the case, does the resulting
chaotic motion lie on a low dimensional strange attractor, one which, for
example, mimics the very gentle heaving of the glide motion as it rotates

around the box?
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Stationary free boundary problems for circular flows

with or without surface tension
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Free boundary problems for flows circulating around a circle
or sphere are considered. Tt is revealed that the surface
tension plays a crucial role concerning perturbations and
bifurcations of a trivial flow. Main toolg are implicit fune-
tion theorems ( classical or generalized ) and bifurcation
theory due to Sattinger or Golubitsky & Schaeffer. Therefore
all the classical solution near the trivial one are dealt with.

§1. Physical meaning.

Consider a fluid around a planet. We keep a figure like the Jupiter in
mind. We consider a plane perpendicular to the axis of rotation and we regard
the flow as & two dimensional one. We assume that the flow is encircled with two
closed Jordan curves [' and 7Yy. The inner curve I represents the surface of
the planet,whence I' is a given curve. For simplicity we assume that [ is the
unit cirele in R 2. The outer curve Y vrepresents a free boundary to be sought.
The outside of Yy 1is assumed to be a vacuum or to be filled with a perfect fluid
whose pressure is given. Hence we treat a one phase problem. The flow region is
denoted by QY ,i.e., we denote by QY the doubly connected domain between T

and Y. Finally we assume that the fluid is incompressible,inviscid and irrota-

tional. Then the problem is formulated by the streem function V as follows.

PROBLEM A. Find a closed Jordan curve Y outside I and a function V in (Q

such that
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(1.1) AV =0 in Q ,

-
(1.2) V=0 on T,
(1.3) Ve=oa on Y ,
(1.4) %JVVIZ + 0+ GKY = unknown constant on Y ,
(1.5) IQY\ =u, -

The quantities appearing above are defined below.

a, w

5 prescribed positive constants,

U ; the surface tension coefficient ( > 0 ) «+-+ given ,

—
“

Q 3 a given function defined outside

KY ;3  the curvature of Y ,the sign of which is taken to be positive if vy is

convex,
[ | 3 the area of .
Y Y

REMARK 1.1. 'The equation (1.4) is a consequence of Bernoulli's law and the
Laplace equation arising in the theory of surface tension. In fact,Bernoulli's

law asserts that
(1.6) %1VV|2 + p + ¥ = unknown constant on Yy

where p 1is the pressure of the fluid and ¥ 1is a potential of the volume force.

On the other hand,the Laplace equation is expressed as

. = +

(1.7) P = Doy ¥ K,

where pext ig the known pressure of the external atmosphere. Putting Q =p +

P , we obtain (1.4) from (1.6) and (1.7). 1In this regard, Q =0 or Q =-g/r

ext
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1 . . .
(g ; aconstant , r = (x% + y?) /2 ) is an interesting case.

Trivial solution. If @ is radially symmetric,then there exists the following

trivial solution. Take a number T4 > 1 such that ﬂré - T = wo. Then a circle
YO of radius ro with the origin as its center is a solution for any 0 > 0.

In fact the corresponding stream function V 1is represented as

a

(1.8) vV =v(r)= isé;i;

).

logr {1<r< T,

The unknown constant in (1.k4) is %(a/rologI' )2 + Q(ro) + O/rO.

0

Our aim is to study perturbations and bifurcations of this trivial solution.
Our analysis is based on classical or generalized implicit function theorems and
the bifurcation theory due to Sattinger [5] or Golubitsky and Schaeffer [2].

Now let us consider the case where the fluid is governed by the Navier-

Stokes equation:

PROBLEM B. Find a closed Jordan curve Yy and functions V = (Vl’VE) , P such
that

(1.9) -VAV + (VeV)V = - VP + V(g/r) in QY ,
(1.10) div V.= 0 in szY ,
(1.11) V=1 on T,

(1.12) Ven=0 , tT(Vln=0 on Y ,

(1.13) - n{(¥)n = UKY on Y ,

(1.14) lﬂy| = Wy

The quantities appearing above are defined below.

v = (Vl,V ) 3 the velocity vector , P ; the pressure ,

2
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Vv ; the kinematic viscosity , n ; the outward normal vector on Y ,
t 3 a tangent vector on Y ,

T(y) ; the stress tensor , the components of which are

v, v

- i J =
T(!)lj Vﬁ;*"s‘)qJ-PGlj (i,3=1,2),

b ; a prescribed Ii2—valued function on T satisfying fr bendl' = 0.

A three dimensional analogue of PROBLEM B is also considered ( see §3 ).
§2. Mathematical Formulation and results for PROBLEM A.

We prepare some symbols.

Q={(X,Y)E]R2;l<x2+y2<°°}, st = { (x,y) ¢ R ;1=x2+y2},

+0L,— .
o OL(Q) , Cm+a(81) (m=0,1,2,*+* , 0<a<1) ; the Holder spaces with usual
norm || ‘h+a,9 . ih+a,sl .

+
We fix a number o ¢ (0,1) and a function Q « ¢® %([1, ©)}). The typicel case
is @ = QO(r) = -g/r or Qo = 0.

-
When & small u e C° 0t(Sl) is given ,we denote by Y & closed Jordan

curve which is parametrized in the polar coordinates as (ro-ku(e), 6) (0<0®
< 27 ). Hereafter we identify a function on Sl with a 2m-periodic function on

R. We denote a domain between I and Yy by ..

. The curvature of Y, is

denoted by Ku. It is represented as

hb+uﬁ4-ﬂuwg- U0+uM"

[(r0+u)2 2]3/2

+ (u")

( ' means the differentiation with respect to 6 ). B/Svu means the differenti-
ation along the outward normal vector on Yy Vu denotes the unique solution of

the Dirichlet problem
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(2.1) av =0 in Q
(2.2) Vu]F =0 , VulY = a
u
For u e C3+°L(Sl) , Q€ C2+U'(ﬁ) and & ¢ R , we put

(2.3) Fleng) = [ Hw 17+ a ] byt - g E s
1 2
where E;O = E(&/rologro) + QO(rO) + O/I'O s
(2" 2
{2.4) F‘E(a.,Q;u,E) = EJQ (r0+u(6)) a8 - 7 - Wy >
(2.5) F(a,Q;u,8) = (Fl(a,Q;u,E),Fe(a,Q;u,E)).

Using a cancnical pull-back,we regard Fl(a,Q;u,E) as a function on Sl. Then
it is easy to see that F(a,QO;O,O) = {(0,0) and that {Yu ,Vu} is a solution

for Q if and only if F(a,Q;u,£) = (0,0) for some & ¢ R. Note that

Fla,*;*,*) 1is a continuous mapping from a neighborhood of (QO;O,O) in 02+a(§)

< C3+OL( Sl) l+0L( 1

xR into C ST)xR.

Now perturbation of the trivial solution is possible in the following sense.

THEOREM 1. Assuwme that o > 0. Define a by

2 0 1/2
_ oln” = 1)/ry + —Ary)

a = r.logr

n 1yt 0 0
i ,n 0 0
T r n -n
0 0 ry = T
2 2 BQO

for me N ={me W ;o(n-1)/ry+5(r,) 20 }. Then,for any a ¢ fa )

29 satisfying

there exists a positive constant § such that for any Q ¢ C
I Q—QOHZﬂx Q< § we have a solution {u,E} of the equation F(a,Q;u,&) = (0,0).

The solution is unique in some neighborhood of the origin.

THEOREM 2. Asswre that o = 0. Let Q¢ ANR)  satisfy
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BQO

(2.6) 5or,) < a2/rg(log 7y )2

Then there exists a positive constant € such that for any Q ¢ ClO+(l/2>+o‘(ﬁ)

satisfying || Q—QOH].O"'(I/2)+OL,Q < & we have a solution {u,E} of the equation

Fla,Q;u,&) = (0,0).

The next two theorems state uniqueness or nonuniqueness of the solution.

We put G(aju,£) = F(a,q3u,5).
THEOREM 3. Fix a nutural nwmber n. Asswme that o > 0. Assume also that
(2.7) a # a, for all m # n.

Then there exists a branch of nontrivial solutions of G(aju,£) = (0,0) through

(an;0,0). If n is sufficiently large,then the bifurcation occurs suberitically.

THEOREM 4. Assume that o =0 and (2.6). Then,in some 02+a-neighborhood of

Yo there exists no golution other than Yo+

We prove THEOREM 1 by means of a classical implicit function theorem. On
the contrary we use a generalized implicit function theorem due to Zehnder [8]
in order to prove THEOREM 2. THEOREM 3 is proved by a bifurcation theory due to
[1,2,5]. THEOREM 4 is a consequence of the maximum principle. In §4 we will

give outlines of the proofs. For the details,see Okamoto [3,4].
§3. Results for the Navier-Stckes problem.

Using the notation in the preceding section,we formulate PRCBLEM B as fol-

lows. Firstly,for a given u C3+u(Sl),we consider the solution of
(3.1) - VAU + {U*V)U = - Vq + V(g/r) in @ ,
(3.2) divy =0 in o,

(3.3) U=% on T
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(3.14) Usn=0 , tTM(Wn=20 on Y, »

A
(3.5) J (q-g/r)dx = 0,
Q

u

3+OL(I,)2

where be Xz {B eC 3 JpBmndl=0 }. The boundary condition (3.h4)

constitutes a complementary condition in the sense of Agmon,Douglis and Nirenberg.

Therefore,for sufficiently small wu € C3+u(Sl)

and b e X,such a solution U ,q
is determined uniquely and continuously from u. We denote it by Vu ’Pu' Hence

we can define a mapping H by the equalities below.

(3.6) 8, (bsu,g) = QT(YB)QYU toK - & -E& ,
127 2
(3.7) HE(g;u,E) = Efo (ro+u(6)) a8 - T ~ wy
(3.8) H(bsu,€) = (H (b3u,8).H,(05u,8))
vhere w e ¢7%(sh) (| allyy <<1) . 8¢ R ,beX (bl «<1),
£y = (0-g)/r,.

Obviously H(0;0,0) = (0,0). Furthermore {yu,vu, Pu} is a solution for
b e X if and only if H(bsu,£) = (0,0) for some & ¢ R. Similarly to THEOREM

1 we obtain the following

THEOREM 5. We can choose a positive constant n such that,for any b ¢ X sat-

B GL)xR  which solves H(bsu,£)

)

isfying ”E“3+oc <n ,there exists a {u,E} ¢ C

C3+OL(S

= (0,0). The solution is unique in some neighborhood of (0,0) in xR .

In order to treat the three dimensional version of PROBLEM B,we employ

polar coordinates r ,8,¢ determined by

L
rcos Bcos ¢ , l1<r ,--g<e<.§ ,

<
]

recos 8sing | 0<¢<2m

<
1
[

z = rsinB .
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The problem to be considered is written as

PROBLEM B'. Find & Sg-like surface Yy and functions V = (Vr,V V. ),P such

8 ¢
that
(3.9) - VAV + (VeV)V = - VP + V(g/r) in QY ,
(3.10) divVy =0 in QY R
(3.11) V=1 on r=1,
(3.12) Vem=0 , tT(Vin =0 on Y ,
(3.13) - oT{(V)n = <‘.7HY on Y ,
(3.1L4) ]QY’ =y s

where QY is a domain between 82 and Y , ]QY{ is the volume of QY. HY is

the mean curvature of y. The second equation in (3.12} should be interpreted

NOTATION.
Xx={ue c3+a[-12’—,%] ; u'(ig) =0 u"'(tg)= o},
v=luec™-2 0 uwD=0)
z2={vec L Zogl s 3= 3) =0"(x Ti=v"r(sD) =0},

If a small u ¢ X 1is given,we denote by Yu a surface parametrized as

x = (r.+u(B))cosBecosd , y = (r +u(@))cosOsing , z = (r0+u(6))sin6.

0 0
. hn 3 by
> — - —— = .
Here ro 1 is determined by 3 ro 3 mo

For sufficiently small b e Z2 and u e X we solve (3.9) through (3.12)
for b = (0,0,b) (be?Z ). This is uniquely determined for small b ¢ Z and

u ¢ X. Then we put it Vu N Pu. Note that Vu and Pu are independent of ¢.
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~

Now we define a mapping H in a way similar to the case of H.

(3.15) B(b5u,6) = (5, (050,6) Hy(b30,))
(3.16) ﬁl(b;u,g) = QT(KE )E;Yu + OH - £, -8,
~ w/2
(3.17) Hg(b;u,E) = WJ_W/érO+u)2COSZG {u'sin8 + (r0+u)cose }ae - h—; - Wy

REMARK. The mean curvature Hu of Y, is represented as

(3.18) oH = u'tan b + [(r +u
u (ro+u)[(r0+u)2+ (u! )2]1/2 0

)2+ (un)?7H/2

(rg#u)®+2(u)? - (zgru "

+
)2+ (w2132

[(ro+u

~

H is a continuous mapping from a neighborhood of (0;0,0) in ZxXxR into

Yx R . Then we have the following

THEOREM 6. If b ¢ Z <s sufficiently small,then there exists {u,E} ¢ XxR
such that H(b;u,£) = (0,0). The solution igs unique in some neighborhood of the

origin.
§4. Outline of the proof.

4.1, THEOREM 1 is proved if we have shown that the Fréchet derivative of F

l+oa( 1

3o sh) x R

with respect to {u,£} is an isomorphism from C Sl) xR onto C
for a % {an}n . To show this we have to calculate the derivative of F explic-
itly:

Claim. F is a Cl-mapping and its derivative is given by

D ¥ {a,q;u,&) D F.{a,Q;u,&)
D F(aaQQHME) = ul E 1 >
u,€ Dqu(a,Q;u,E) DEFZ(a’Q;u’E)
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ov

. - 9Q
(h.1) DuFl(a,Q,u,g)w =57 {Quw + Z(Vu)w ]+ e Yuw
+olrg(ah + e (wv + Slald (v e e,
(4.2) DgFl(a,Q;u,E)}\ = - A {AeR),
an 3+a, 1
(4.3) DF(&%m@w=[ (r.+u(B))w(6)as (wecC>(87) ),
u 2 0 0
(L.b4) DEFg(a,Q;u,g))\ =0 (e R).
Here we have put
BKu SKu BKu
o) =gy W =g s Sl =g
( ' means the differentiation with respect to 0 .)
The function Z(Vu) is defined by
2
37V v
_ 2 2q=1/2 u 9,1 %
(14.5) Z(Vu) = [(ro+u) +(U ) ] Ll"arg - uﬁ[ rm——]]i_\{u .

. . _ 90U . .
The operator @u is defined by @uw = 35;-,u51ng the solution U of

AU =0 in & ,
u
v
=—-5——u w .
YU. rYu

The proof of (L4.2,3,4) is straightforward. To show (k4.1) it is sufficient to

prove that
(4.6) DT(ulw = dw+ Z(V)w ,
u u u
where T(u) = [VVUHY . The formula above is proved in [3]. Here we only give
u
+
a formel calculation to derive (4.6). Firstly we extend vV, toa 3 % class
function on some neighborhood of ﬁu' Secondly note that IVVUIIY = VVu-Gﬁ
u

since Vu is a constant on Yu' Then we have
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T(utw) - T(u) = [W__ | 1
utw - u = .
utw Yu+w u Yu+w utw
+ [ | -w | 1V
u Yu+w u Yu utw
-
* vvuly -[vu+w - vu]
u
= Il + 12 + I3.
Putting U=v -V , we obtain AU = 0 in @ ne . U=0 on I and
utw u utw U
_l ] BVu
] =a-V =v | -V ¥ -
Yot UMgee By U Ve *

Hence ll = ®uw modulo O(I'WIE+Q)' It is easy to se

>
I, = (W | -V | )ev = Z(V )w.
2 u Yu+w uly,” u u
si M Vo=t +ol|wll, ) witha t t vector 1 btai
ince vu+w - vu =t o I w E+u wi a tangent vector on Yu , We obtain
I = 0. From these considerations we find (4.6).

Now we show that A(a) =D F(a,QO;O,O) is an

u,§

Claim. If a ¢ {an}n , then A(a) is injective.

Proof. Assume that A(a)(w,A) = (0,0). We represent

oo 0
w= ) bsinn® + ] c cosnd
- n n
n=1 n=0

v
e
NS
-
>
[]

Then we have bnS(a,n) = cnS(a,n) =0 (n

where we have put

Since S{a,n) vanishes if and only if a =a_, we se

it a ¢ {an}n.

isomorphism for a % {an}n

w by the Fourier series:

e that A(a) is injective

Q.E.D.
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On the other hand,it holds that A(a) = " an isomorphism " + " a compact operator
1"

Using the claim above and the Riesz-Schauder theory we can conclude that

Ala) is an isomorphism for a 4 {an}n

4,2, Proof of THEOREM 2. When o = 0, Du EF‘(a,QO;O,O) is no longer an isomor-
k]

3+0t( l+u( 1

phism from C Sl) xR onto C 57 )x R . However,it is an isomorphism from

C3+G(Sl) xR onto 02+a(51) xR . From this fact one observes that we are in a
position to use a generalized implicit function theorem. Among others we use a
one due to Zehnder [8]. 1In verifying several assumptions of the generalized im-
plicit function theorem,we use a priori estimates of Schauder type which are bor-
rowed from Schaeffer [7]. For the details,see Okamoto [3] in which the proof of

THEOREM 4 is included.

4.3. Proof of THEOREM 3. From now on we put G(aju,f) = F(s.,QO',u,E). In the
proof of THEOREM 1 we have shown that A(a) = Du,EF(a,QO;O,O) is an isomorphism
for a ¢ {an}n and that A(an) has a null-spece spanned by (cosnf,0) and
(sinnf , 0). ( Here we have used (2.7). } In order to use & theory of bifurca-

tion from simple eigenvalue we use tha following Banach space:

= L ue ™Y u(e) =ulen-8) (0<B<2m )}

+0L
with the norm H an+oc' Let G¥ denote the restriction of G on X3 xR .

Then it holds that the range of G¥(aj;+,*) 1is included in Xl-mx R and the null-
space of Du,gG*(an;0,0) is spanned only by ({cosuf,0 ). Consequently we can
apply THEOREM 1.7 of Crandall and Rabinowitz [1]. The details are in [h].

To see whether the bifurcation occurs supercritically or suberitically,we
proceed as follows. ( The details are also in [4].) Let a two dimensional sub-

L3ta

space of C (Sl) spanned by cosnb and sinnB be < cosnf, sinnB > . We

3+0L( 1

denote a canonical projection from C 5°) onto < cosm8, sinnB > by P.

Then we define functions ¢ and § by the equations below.

(4.7) (I—P)Gl(a;xcos nd + ysinnd + ¢(a;x,y), &l(asx,y)) =0 ,
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(k.8) Ge(a ; xcosn® + ysinnb + ¢la;x,y), E(aj;x,y)) = 0.

The assumption (2.7) and the classical implicit function theorem ensures that ¢

and £ are well-defined in some neighborhood of (an;0,0) in 1R3, and that their

ranges are in (I-P)Csﬂl(Sl) , R , respectively. Then the equation
(4.9) Flasx,y) = PGl(a ;xcosn® + ysinnb +¢(a;x,y) , E(a;x,y)) =0
is a bifurcation eguation. If we write
Flasx,y) = F’l(a;x,y)cos né + Fg(a;x,y)sinne ,
then the sclution set near (an;0,0) is in a one-to-one correspondence with
{ (a5x,5) 5 Fl(a;x,y) = F(asx,y) =0} .

Since the original problem is 0{2)-covariant,we have

PROPCSITION 4.1. The bifurcation function F 18 a Cw—mapping. There exists a

Cm-mapping F¥ defined in some neighborhood of (an;o) in R° such that

2

(4.10) Fl(a;x,y) XF¥(a 3 x° + v,

(4.11) Fg(a;x,y) = yF%(a 5 x° + ye)-

By this proposition we observe that the solution set is composed of

{x=y=01} and { F¥(a; x2 + y2) =0 }. Of course the former corresponds to

the trivial solution. To deal with the nontrivial ones we expand F¥ as
2 2 2 2 .
F¥(a; x"+y7) = An(a—an) + En(x +y°) + higher order terms.

By the result of Golubitsky and Schaeffer [2],it holds that F = 0 is 0(2)-

equivalent to

\

2 2.4 9
X{An(a-an) + Bn(x +y7 )}

ﬂ
o

y{An(a -an) + Bn(x2+y2)}
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if An # 0 and Bn # 0. Therefore the direction of the bifurcatiug branch is

determined by the sign of An and Bn' Since An and Bn are given by

3°F 5F
Ancosne =m(an;0,0) . 6Bncosn6 =5;—3—(an;0,0) .

we have to compute the third order derivative of F , hence of Gl. To this end

we prepare some symbols.

+
NOTATION. TFor w « C3 0L(b‘l) we denote by U(w) the solution of
AU = O inl<r<r0,
ul,=0 , Ul _ =--—X ,
T r=r rolog T,

Lt+ot(sl)

For w, z ¢ C the symbol Y{w,z) denotes the solution of

AY = 0 in 1 <r < Ty
Y=0 on T ,
_ 8U(w) dU(z) awr.
er=r - T YT TR
0 r logr
0 0
For w, ,W.,W, € Cs+u(Sl) the symbol X{w_,w_ ,w.) denotes the solution of
l 2 2 k] 3 ym l, 23 3
AX =0 inl <r< ry o
X=0 on I,
2
x| . % 3Y(w.,wi+l) ) % 3 U(wi) .
r=r, 121 or i+2 = 8r2 i+17i+2
2aW1W2W3
- 3 ,
rOlog ro
where we put w, =W, .

i+3 i



NOTATION'.

(k.12)

[

On the other h

+
e |L»J
o #|Q

+
I = dU{w) __aw (v C3 a(sl) )
or rglo .
0 "8 %g
2 2 .
9Y(w,z) 37U (w) 3°U(z) 2awz aw'z’
z + w o+ +
or Br2 3r2 3lo r r3l r
08 % 0%8%0
L+
(w,zec™sh).
Now the third order derivative of Gl is given by
DG (a30,0) (v, ,w,,w.)
ul 7’ 1’72773
3 33
= .Z B(wi,wi+l)LWi+2 + 3 (ro)wlwzw3
=1 or
2
. 3 Y {w, ,w,
Tpto8 Ty L or = 1
3 83U(wA
N a 7 i) S
rologrOizl 8r3 i+l i+2
2 3
3a ' v )
3 5 | 2wyt Dy, |
r(logr .) . i=1
0 ¢]
3 U(w, )
. a i
Ploer i T i+#1"142
08
3
- - " - ] ' + "ot
LA IR L ViV Z Vi¥ie1¥ie0
i=1 i=1 i=1
and ,we have
3

Therefore,in p

very difficult to decide its sign,since it is very complicated.

Free Boundary Problems for Circular Flows

68 cosnb = PD7G
n ul

rinciple,we can compute Bn

y oo
Bn v - gn /hro

(n=>o

(an;0,0)(cos nd ,cos nf ,cos nd )

).

by the tormula above.

247

However,it is

But we have
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Hence Bn is negative for a large n. On the other hand, An is negative for

any n. In fact we have

n -
2a, [ n__ Tot%o 1)
2 n
O‘r 0"

= - +
n rolog r r-—n rzlog r

logr,.r 0 0

0 0 0

Thus we see that the bifurcation is subcritical for a large n.

4.4, Proof of THEOREMS 5 and 6. It is not so hard to verify that H and H
is a Cl—mapping. Hence the proof of THEOREM 5 or 6 are completed by checking

that D H(0;0,0) or D _H(030,0) 1is an isomorphism,respectively. The deriv-

3 usg

atives are given below.

(0« - o " ZW 3+0,, 1
Dqu(0,0,0)w—-rz(w+w )+r2 (wecC (s7) ),
0 o]
DéHl(O;0,0))\ = - A (XeR ),
21
D H_(0;0,0)w = r f w(8)ae (we st ),
u 2 Q 0
DgHQ(O"O’O))‘ =90 (X e R ).
D Hl(O;0,0)w = —0—2-( - w' + w'tan® - 2w) + 532[ (wex),
u 2r r
0 0
DEHl(O;O,O)A = - A (AeR),

~ 5 m/2 3 5 m/2 5
D H2(0;O,O)w = 3m‘oJ w(B)cos” Hdp + ﬂrOJ w'(B)cos” 0 sin b dd
u /2 /2

(st)i

~

D£H2(O;O,O}}\ =0 { A e R).

In a way similar to the proof of THEOREM 1 we cen prove that D H(0;0,0) is

,E
3+oc(sl) 1+, 1

an isomorphism from C xR onto C (") xR. To treat Du H(0;0,0),
£

g

we first show that it is injective.
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~

1f D_ .H (0;0,0)(w,A) = (0,0) , then w and X satisfy

u,§
) or’
(4.13) - w" + w'tan 8 -2w+—05w -—x =0,
/2 3 /2 5
(k.1%) 3f w(8)cos” 8 a8 +J w'(8)cos® sinBd8 = O.
-7/2 -/2
We change the variable from 6 to s = sinf . Then w(s) = w(8) satisfies
~ ~ 2
2 - 2r
2_)dw dw g —0, =
(s -l)ds;2 + 2550 +2(0—l)w- oA =0

~

Expanding w by the series of the Legendre polynomials,we see that w must be
a constant. Then (L.14) implies that w = 0. Consequently “(w,A) = (0,0).
To show that Range Du gH(O;0,0) = ¥YxR,we do as follows. PFirstly we de-
b

fine operators AU and BU by the equalities below.

D _H(0;0,0) = A +B ,
u,i( ) u U

Au(w9)\) = (V>C) s

(4.15) v=%(—w“+w'tan6+uw)—)\5%‘¥w—>\, (we X),
2r 2r M
4] 0
s /2 3 5 m/e o
(4.16) r = 3‘nrOJ w(B)cos™8d8 + mr J w'(0)cos“ 0sinb ab

-T/2 -n/2

( u is a positive parameter ). Then BU e L(X*R,Y*xR) is a compact opera-
tor. By the Riesz-Schauder theory it is sufficient to show that Au is an iso-
morphism from XxR onto YXTR for some u. Therefore,for a given (v,7) e
YxR, we have to find a (w,A\) ¢ X*x R satisfying (4.15) and (4.16)., Observe
that we have only to show the surjectivity of ‘}‘p. To show the surjectivity of

‘i’u , we employ the tollowing

NOTATION.

; cos 0d8) ,

=
I
[l
—~
]
IS
-
oA
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V={feH; f'eH !}

s

/2 w/2

w'(8)v'(B)cos B AB + uJ w(p)v(8 )cos 6 dd

a(w,v) = J
-n/2

~-T/2
In virtue of the Lax-Milgram theorem there exists,for a given f ¢ H , a unique

w € V such thet

alw,v) = {£,v) {veV).

H

This equality formally implies Wuw = f. Then we show that w e X if f e Y.
This is shown in an elementary way. Hence we omit the proof. By the procedure

above we arrive at THEOREM 6.
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FOCUSING SINGULARITY FOR THE NONLINEAR
SCHROEDINGER EQUATION

G. Papanicolaou,*
Courant Institute, New York University

D. McLaughlin, *
University of Arizona

M. Weinstein,*
Stanford University

We summarize recent results on the focusing singularity
of the nonlinear Schroedinger equation.

In this note we shall give a brief account of some recent work

that we carried out motivated by the observations and calculations

of Zakharov and Synakh [1]. A detailed exposition is given in [2]
and in [3]. In [4] the results of careful numerical computation are
reported.

The nonlinear Schroedinger equation

(1) 219, + 80 + [8]%% = 0, t>0, xE€ER

$(0,x) = ¢0(x)

arises as a canonical problem in which focusing (the nonlinearity
with the plus sign in (1)) competes with dispersion (the Laplacian
in (1)). Among the many specific contexts where this occurs we men-
tion nonlinear optics, where N =2 and o = 1, plasma problems,
N=3, oc=1, water waves, etc. The case N =1, o =1 has been
studied extensively and was first shown to be solvable by the

inverse scattering method by Zakharov and Shabat [5].

In the analysis of (1) three cases with distinct behavior arise.

The subcritical case o0 < 2/N where dispersion dominates and a

253



254 D. McLAUGHLIN, G. PAPANICOLAOU and M. WEINSTEIN

global sclution in C([O,W);HlURN)) exists. Here Hl(RN) denotes
the usual Sobolev space of functions with square integrable deriva-
tives. This result is proved in detail in [6]. 1In the critical

2 . s S
case 0 = g and in the supercritical case o > it is known that

e 2N

solutions of (1) will blow up in a finite time, i.e. their’ Hl norm

will become infinite [7].

Based on numerical evidence and some heuristic calculations,
Zakharov and Synakh [1] conclude that in the case N =2, ¢ =1
{critical case) 1f an axially symmetric solution becomes singular at

t = t* then near t* it has the form

2/3

(2) lo(t,x) |~ (£*=t) "2/ 3R(| x| (t*-t) "2/ 3y

where R(r) 1is the "ground state" solution of

1
(3) %+;3—R—R+R3=0, R >0, r > 0,
dr ¥
dR

= (0) = 0, R(x) = 0 .

Careful numerical computations [4] indicate that indeed the blowup

occurs with the power 2/3 as obtained by Zakharov and Synakh.

Concerning the nature of the singularity in the supercritical

case little seems to be known.

We have looked in detail into the problem of understanding the
form (2) of the blowing up solution in the critical case. For tech-
nical reasons we have so far restricted attention to the case N=1,
¢ = 2. We have shown that in this case there is a function z(t,x)
in HlCRl) for mey <t <0, 0<g4 sufficiently small, such that
for each AO # 0
A ~i7h g (-t) 77

0
(3) o, x) = —2 R( X e + z(t,x)
w77 )
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is a solution of (1) in “€5 <t <0 and

(4) (—t)z/7 sup |z(t,x)| > 0 as t > 0.
X

In other words we have shown that singular solutions of the
form (3) exist with 2z being a lower order correction in view of
(4). We do not know why solutions of the form (3) arise as singular
solutions for a broad class of initial data as has been observed

numerically.

The main tool in the analysis is the study of the linearized

problem about R Schroedinger equation

(5) 2iw, + Aw - w + (c+1)R*%w + oR%%% = 0.

If w=u+iv then we may rewrite (5) in system form

(6) 2(%) = LY L= ( ° L‘}
v £ v —L+ 0
L, = ~& + 1 - (20+1)R*C
L =~ +1- R,

On pairs of functions (;} in HY xu' Gefine the bilinear form

(7) B((f),(p)> = (f,L,p) + (g,L_a) .

g g

One verifies easily that this bilinear form is invariant for solu-~

tions of (6). However, B is not an inner product in Hl xHY be-

cause it is not positive definite owing to the nullspace that L

has.

One easily finds that the function
=R + xXR'
~ 04 _ (—R' _ 0 _[2
(8) np= (g onp= g h v my= (p) o 1y “( 0 )

satisfy
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2
(9) Lnl = Ln2 =0, L n, = LG4 =0 .

Moreover these null vectors are associated with the classical sym~

metries of our problem that take a solution ¢(t.x) into

A2+£2 tJ

i[g(x-&t—xo) + 5

W% 02 ey, M x-tt-xg)) e
where (A,g,xo,to) are four parameters.

One might expect that the bilinear form B restricted to func-

tions in Hl ><Hl that are orthogonal to four function pairs Ny v

Ny v N3r Ny (the biorthogonal basis for example) is positive.
2

This is true in the subcritical case o < N (N=1 1in the present
discussion) and in fact B becomes then equivalent to the standard
inner product in Hl ><Hl . But this is not true in the critical
case!

In the critical case there is one more symmetry to the problem
(N=1, 0=2) .

1 é ii
a
d(t,x) » A ¢(1,8)e
t

where A = a~% , T = szds , 8=Xx and a=0 , i.e. a is a
linear function. (Notice that this transformation leads to singular

solutions with vt singularity; they have never been observed in

numerical experiments.) Therefore, in addition to (8) we have

0 3
(10) ng = (5 ) with t’ng =0 .
X R

But, without having another classical symmetry, we also have

2 . 4
(11) ng = (8) , Lo = -xR, with L'ng =0 .
It can be shown that nl,nz,...,n6 span now the (generalized) null-

space of L and that B restricted to functions orthogonal to six
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function pairs nl,...,ns is an inner product equivalent to

Hl XHl .

One now looks for solutions of the form (3) and one must show
a z(t,x) with the correct properties exists. The power 2/7
emerges as the only suitable candidate for this purpose and the

structure of the nullspace discussed above is essential.

*Supported by Air Force grant AFOSR-80-0228.
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Soliton Equations as Dynamical Systems

on Infinite Dimensional Grassmann Manifold
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In the winter of 1980-81 it was found that the totality of solutions of the
Kadomtsev - Petviashvili equation as well as of its multi-component generalization
forms an infinite dimensional Grassmann manifold [1]. 1In this picture the time
evolution of a solution is interpreted as the dynamical motion of a point on this
manifold. A generic solution corresponds to a generic point whose orbit (in the
infinitely many time variables) is dense in the manifold, whereas degenerate solu-
tions corresponding to points bound on those closed submanifolds which are stable
under the time evolution describe the solutions to various specialized equations
such as KdV, Boussinesq, nonlinear Schrodinger, sine-Gordon, etc.

We foresee that a similar structural theory should hold also for multi-

dimensional 'integrable' systems.

§1. The universal Grassmann manifold
For a vector space V=V(N) (say, over &) of dimension N (=m+n) the
Grassmann manifold GM(m,V) (=GM(m,n)) is by definition the parameter space for

the totality of m-dimensional subspaces in V. We can write
GM(m,V) = {m~frames in V} / GL(m)

where an m-frame means an m-tuple of linearly independent vectors. GM(m,V) 1is a

homogeneous space of the general linear group GL(V).

259



260 Mikio Sato and Yasuko Sato

Further, itis viewed as an algebraic submanifold (of dimension mn) of the

(2)—1 dimensional projective space p(AY) by letting an m—frame (C(O),...,

E(m_l)) correspond to the exterior product g<O)A---Ag(m~1) eA™  (the caunonical
o : () _
projective embedding). If ¢ = gOieO+-- +£N—l,ieN—l where €gs s ey

(0) m-1) _

denote a basis of V, then £ A-::Af £ e, A*rrAe

0sg,<met <y 0" -1 o b1
0 m-1
= det(glij)i,j=0,-'-,m—l' These EQO'..Q . 0;21<N, (which are

with &
L7 % 1

m-1

antisymmetric in suffixes) satisfy the Plucker's relations:

m N
DG By vifag =0
=0 kg etk ol TRty Ay

and vice versa; i.e. a point in the ambient P(AV) lies in the embedded GM(m,V)

if and only if its projective coordinates ¢ 0§1i<N, satisfy the

Q/ .1-2 ?
0 'm~1
Plucker's relations (i.e. are Plucker coordinates).

To each set of suffixes (20,---,2

), Oggo<"'<£m_ <N, we associate a Young

m~1 1

diagram Y consisting of rows of length Qm_l—(m—l),'--,ll—l,lo, respectively
(cf. H, Weyl, The Classical Groups, Princeton, 1939) and often identify them;
e.g. Plucker coordinates are also written EY’ the diagrams Y being those contain-
ed in the mxn rectangular diagram Amn’

After Weyl's celebrated work Young diagrams (of vertical size g N) classify
irreducible tensor representations of GL(V). Denoting by Rij the contra-
gredient of the irreducible representation space labeled by the ix j rectangular
diagram Aij’ our GM(m,V) 1is the projective algebraic manifold corresponding

o

to the graded algebra & ij. (Here multiplication is unambiguously defined
i=0
because Rmi 2} ij containes R_ ., . exactly once.) We can also write:

m,1+]

1]

GM(m,V) = (GH(m,V) - (0}) / cL(D),

where GM(m,V) = {(QY) satisfy the Pliicker's relations}c /N,

ven &y
mn

Let m<m'

and ung<n'. Then: (i) if satisfies the Plucker's

EDyey

relations, so does its restriction to Y's within Amn (whence éﬁ(m',n') >

GM(m,n)). On the other hand, (ii) (EY)Y(:A satisfies the Pliicker's relations
mn
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if and only if (g,})ycA does, g;{ being defined by EY’, =g or = 0
m'n'

according as YCA o oor not (whence GM(m,n) <= GM(m',n'). (i) and (ii)

combined give the commutative diagram

éﬁ(m',n') - (M(m,n) (restriction)
id W id W
MFm',n') «——2> GM(m,n) (embedding).

Hence, defining the universal Grassmann manifold GM = (6M-{0}) / GL(1) and its

dense submanifold amtin < (Cﬁfln - {0}) / 6L(1) by

£ satisfy all the Plicker's relatinns},

G = {(gy) -

Y:all diagrams ]

~fin _ I _
GM = {(gY)YGGM | £y = 0 for almost all Y}

respectively, we have

) € GM(m,n) for any m and n},

oM = {(EY)Y:all diagrams l (EY YCAmn

éﬁfln = U GM(m,n), and
m,n

surjective N
GM(m,n)

cM

e | Wl

@fln >  GM(m,n).

To each g €GM(m,n) (resp. €GM) uniquely corresponds a diagram Yea o
(resp. an unrestricted Y) in such a way that, for the Pliucker coordinates of g,

# 0 while , = 0 unless Y'2Y; and, denoting b GMY(m,n) those points
Y Y 4

to which the given Y corresponds, we have a cellular decomposition GM(m,n) =
U GMY(m,n), with GMY(m,n) ~ mmn-|Yl [Y| = size of Y = 9'0""'*2‘“_1‘%‘“(‘“‘1)

Yca
mn
(resp. oM = | JoMD).
v

Consider the infinite dimensional vector space V (resp. V) consisting of
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elements § = (5\)) with é\)eﬂ:, g\) =0 for v<«0 (resp. for v>» 0).

vVelz’
(Setting eu = (6uv)v elésv one also writes § = _mgv<m £ e (resp. £ =

2 £ e ).) Further, by introducing the dual (or contragredient) basis
—ocygw VY

(e*) to (e ) and the dual space V* = {g* = § grek | L% <L} (resp.VU*
Wupez HWHEL ) v Y VIV
= {gx = 7§ 5\*)63[53&@}) to V (resp. to V) so that their pairing is given
—c0gY<0

by the effectively finite sum: <E*,£> = ZESE\), our vector space naturally acquires
the weak topology (or rather, S. Lefschetz's linear topology, in which ocur space
is locally linearly compact). (Any locally convex topology on a vector space
induces via its dual a linear topology there, and its subsapce is closed by the

latter if and only if it is so by the former.)

Define subspaces V(m) of V (resp. subspaces \./(m) of \.I), meZ, by ¥V

(m)

(m)

(resp. V') = {(EV)VEZEV (resp. V) | 5\) = 0 for v<m}. Then we have

CM(resp. oMt

{closed subspaces V of V (resp. ) | The dimensions of

Ker and Coker of the natural map V - V/V(O) (resp. ~

{?/\'7(0)) are both finite and coincide.}

V)

[}

{closed subspaces V of W (resp. \'/)‘dim vV

(\))) = |Vl

(resp. dim VNV for v« 0},

where the closedness of V 1is a consequence of the other conditions and the
qualifier is dispensable for VCV, while it is not for VCW. Also we have, for

any diagram Y parametrized by (9,0,---,2

)y

m-1

)

o' = {vev | dim vnv™ sk if and only if v mmel | (vez, keN)},

understanding that le =v for v< 0.
fin . . .
Between these extremes, GM and GM , come various intermediates. For

example we define, for r=1,2,:..,

Y]
GMana(r) = {(&Y)YEGMI Y EY /(JY[/r)! are bounded as |Y| + « }

and for 0<a<wm,
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¥}
oye*P(a) g eom | Lim Ve T < al,
Y Y
¥ |0
so that we have
oM o et (Do gna(2) oo guexe(@) o gexe(0) 5 g f
Then
ana(r) exp(a), _ ana(r)
GM (resp. GM ) = {closed subspaces V of V (resp. of
VeXP(a)) | The dimensions of Ker and Coker of the natural map V -
vana(r)/(vana(r))(O) (resp. »_Vexp(a)/(vexp(a))(O)) are both finite and
coincide.}
where

ana(r) exp(a), _ \)/]—_TT(—'
v (resp. V )y = {(gv)\)ez | EV v/r)! are bounded and
VITE v/r)T tend to 0 as v > o (resp. 11m / | a, Tin"/ & _1Fa_1
—)QO

>-v-1 v

Vana(r)* (resp. \Vexp(a)*) () ana (r) (resp. V

V'vVe Z

| (g ) ev

-v-1"veZ
and

ana(r))(m) exp(a) (m) ana(r) (resp

¢Y (resp. (V = {( )\)ez

g, =0 for v<m}.

§2. Time evolution on GM

Denoting by A the shift operator:

fe, = e ;s Azgvev = nge\)_l,

-) by £(t)

we define for § eGM its evolution in time variables ¢t = (tl,tz,--

t1A+t2A2+...
= e &.

In the case of § E@ﬁfln, £(t) 1is again in @ﬁfln for any tve €, v=1,2,---

For general £ ¢ M, however, &(t) should be understood as a generalized element

whose components are formal power series in (t <) rather than complex

12t

, one has E(t)e€ GMana(r)

numbers. (In the case of £ eGMana(r) if ‘tv[ is
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exp(a)

sufficiently small for v =r and are 0 for v>r. For £ e GH , one has

exp(a)

£(t) € GM for t,€ T subject to the condition TIm"/ t,l< a_l.)

In any case we have, for the Plicker coordinates § Y(t) of £(t),

£y () = xgBE(6) and g, (£) = EEY'XY“)’

¢

where ¢ denotes the empty Young diagram, XY(t) denotes the character polynomial

for the general linear group, and XY(at) denotes the differential operator

obtained from XY(t) by replacing t, by %ES}— (After H. Weyl, XY(t)
admits various expressions, one of which is Y
V; v t\)ltvz e
XY(t) = ¥ WY(I L 2"');;-%5—%777—‘ s
v1+2v2+-~-=]Y] 1772
V1, V2 . . . . .
where 7_(1 "2 “--+) 1is the irreducible character of the symmetric permutation

Y
group of ‘Y] letters, labeled by the Young diagram Y and evaluated at the

conjugacy class consisting of v, cycles of size 1, v, cycles of size 2, etc.)

1 2
We call £¢(t) the 1 function of § (Notation: t(t; &) or 71(t)). The
above formulae show that t(t) plays the role of generating function for Plucker

coordinates:
EY(t) = XY(at)r(t; £, Ey = xY(at)T(t; €) | £050°
(et £) = 1(t"; £(1)) = ZgY(t)XY(t'),
Y

“and that the Plicker's relations for (EY(t))Y assume the form of quadratic dif-
ferential equations, or, what amounts to the same, the form of 'bilinear' equa-
tions of R. Hirota,

Summing up, we have

Theorem 1. Although any f(t)e E[[tl,tz,---]] admits the formal expansion of the

(t), where the coefficients are uniquely given by c_ =

Y

form: f£(t) = Je x
¥ Y

xY(Bt)f(t)[ it represents the T function of some € €GH if and only if its

0’

coefficients ey satisfy the PllGcker's relatioms.
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Theorem 2. An f(t)e E[[tl,tz,---]] is the T function of some &£¢ GM 1if and

only if it satisfies theHirota bilinear equations of the form

mo D, D,
T ()% (=)x 5 (-59)1+1 = 0.
T St B

Moreover these exhaust all the Hirota equations to be satisfied by T.
These quadratic differential equations are also equivalent to the quadratic

difference equations. Namely,

213

Theorem 3. (Addition formulae) For any ael we set [a)] = (a,%a ,%a REY
so that t+{a] = (t1+a, t2+%a2,---). Let o€ ¢ for i =20,-++,N-1 and define
Ty ... (t) = Al Lo dtleH[a, e+ [a 1), 028.< N
L7 Aot b1 %o Lo -1 i
with Ao _,, --,a ) = 1 (a.~ci,). Then Cl ol (t) satisfy the Plucker's
e m>i>j20 * 0" m-1

relations for GM{(m,V(N)). This property again characterizes the function T.

E.g. we have

(al—ao)(a3—a2)T(t+[aO]+[a1])T(t+[a2]+[a3])

- (az—ao)(ot3-c11)‘[(t+[a0]+[a2])T(t+[0L1]+[0L3])

+ (a3—a0)(az-al)T(t+[aO]+(a3])T(t+[cx1]+[a2]) = 0.

Denote by EVU the linear operator on V sending eu to e, and all the

other e K #u, to 0 (i.e. EvUEEKeK = Euev), and by Luv the vector field

on GHM induced by E (i.e. (1+ELUV)F(€ ) = F((1+€Evu)€ ) mod e? for any

1

function F on GM). Since any F(&) 1is a function of the Pliicker coordinates

£, 's of €, L is also characterized by: L &, = 2 § x
1 g W7o R osien V™Y

52 e assuming v+m and u+m 2 0. (This poses no restriction on the
0 -1
diagram Y 1labelled by (2

.4 ) since (O,l,---,k-1,20+k,---,l +k)

0"’ m-1

also labels the same Y for any keN.)

m-1

For the shift operator A we have: A" = z E\j vin® P eZ. Further, define
vez O’
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the operator K s.t. AK-KA =1 by KEEVeV = Evﬁv_lev to have f(K/\)l\n =
k
k+n

. . . K
v,v+n for any polynomial f(v) of v, and in particular, T A =

1 fOWE
v

v
L (k)E\),v+n'
v

For n#0, the infinitesimal operator 1+Cf(KA)An, mod 52, induces the well-

defined infinitesimal transformation on GM, and one can write

k
2
rer™HFCE) = P((reiy K™ E) mod &
with U(k) = E(V)L , while for n=0 we introduce another vector field M
n S k" Ty+n,v
defined by Mg, = &, and set: U(k) = 3 Y )(L M) + 3 ML to have an well-
Y Y 0 020 vio k" Tvv
defined vector field on GM. (Indeed, U(O)EY = fk(Y)gY where fk(Y) =
£.-m .
(%) = (C™). In particular U(O) =0.) M commutes L and U(k),
L& k k 0 Hv v
0%i<m
and U(t)'s satisfy the commutation relation
%) ., (%) Lpy k=3 kv, k+2-Fy o (k+R-3)
= - +
[u v oY " ] jzo(( 5 )( ) )-( ; ) ( X ))U vy 6 v,- ( ) (Z+k+1)

Theorem 4. 7T(t;& ), as the function of t and & eGM, satisfies, and is charac-
terized up to an arbitrary constant factor by, the following holonomic system of

linear differential equations:

(L, =6 , JL  + (L =8 .)Lu.v)r =0 for u,u',v,v'eZ,

BV MV By [9\Y] [S)Y]
) _ 3 _ 0) _ - -
u Et—;)x =0, (U] at )t = 0 for n=l,2,

Indeed, the first equations (which are of the second order) restrict the
solution to a linear form ZCY(t)gY of the Plicker coordinates gY while the
remaining (first order) equazions fix the coefficients cY(t) to c-XY(t).

Here we see that the holonomic system of these linear equations on {t}x GM
produces no linear equation but the system of non-linear (quadratic or Hirota)
equations of Theorem 2, upon elimination of the variables &eGM (i.e. upon taking
the direct image by the projection {t}x GM » {t}), in a sharp contrast to the

finite dimensional case [2].
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Also remarkable is the close resemblance between this holonomic system and
the system characterizing theta functions [3]. (Theorem 3 also suggests analogy

between T and 6.)

The holonomic system generated by these equations in Theorem 4 contains

also the equations of the form: (U(s)—T(t))T =0, keIN, ve Z, where T(l\:) is a
differential operator in t of the form: T(E) = kl—,

Vo,

07T Ve LoVt

o+ =
0 V-1~ Y

VoY1 Vi1
0)

as v>0, =0, or <O0. (TO

. 3 .
S S +*s + terms of lower degree, with 5, =30 0, or |V|t|\)| according
v

T(O) = s .)

=0
’ v v

§3. Soliton equations and their solutions
Consider the totality 60{ of the microdifferential operators in the formal
category P = ) av(x) (di)\), where the coefficients a (x) are taken from
—00< ) &Ko X v

a given differential ring (R (i.e. an associative algebra endowed with the

. . d _ . (m)
derivation s R+R). 1If a\)(x) =0 for VvV >m we write Pe@k . Together
with P 1its adjoint P* = 2(7%2 )\)a\)(x) is again in 502_ , and for P,Q € é\@_
their product PQ € é\R is well-defined by employing the Leibniz rule (;—X)va(x)
) (:)a(k) (%) (C;i—x)\)-k for veZ. Setting a_l(x) = Res P dx, we have Res Pdx

k20

= -Res P*dx. Thus 60& constitutes a (non-commutative) ring including [Sa =
{differential oprators} as a subring. We have: P =P +P_ with P_=

d v B A A1) . .
Z av(x)(a) GLQR , P_ = \)Zoa\)(XMH) 68 , yielding the decomposition

EVECY R
(-1)
60{ ='<QO2 # eoz :

In the following we choose (R = T[[x]], the ring of formal power series in x,
and simply write é;[[x]] =£ ; similarly with 8(m) and LQ . Then V of 51
is canonically isomorphic to the quotient module of 8 by its maximal left ideal
gx as left 8 modules, by letting g = 2 gvevev correspond to the residue
—cgy <o

o d -v-1 . d .
class of )Ev(a) mod 8)( .and the action of P(X’H) €& on £ be defined
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by & P(K,A)E. Hereafter we identify them: V = & /fx. Further we write V =
V* by identifying }:Eveve ¥V with 2(-)\)5 . les € V*, so that we have: <gre>

= - <G,E'>, <E',PE> = <PAET,E>.

We also set

aana = {Ea\)(x) (:—x)\) |36 >0 s.t. a (x) are holomorphic in |x| < &,
v

Yy a\)(x) /vl + 0 and YA Ta (x) are bounded as v » ®

-v-1 ’

both uniformly in |x| < &1},

_ i\) 3 -
8-—{ z a\)(x)(dx) | kelN s.t. av(x) are polynomials of x of

& <m
degree £ kl},
ana(l) ana ana & _ &2
and get: V¥ = 8 ! E vV =5 /fx,
Consider the operator =Y w5 E(m which is monic (i.e. w.=1)
veo ¥ dx 0

so that W*l is agaln an operator of the same kind which we shall write W_l =
d . -v . . .

Z (—) -wc with WS = 1. Let W denote the totality of such monic operators

vz0 (0)

Wéa

is the field of quotients of C€{[x]]), satisfying the additional condition that

with R = C((x)) (= the field of formal Laurent series in x, which

. -1 n 0) { m n
*
there exists m,nelN s.t. xmw and W 'x both € 6&[[){ . X LA and x w

€ £{[x]] for w=1,2,...}. Set V(b 8 Le CV; v® is also characterized by
v<0
the property that its Plicker coordinates EY =1 or 0 according as Y=¢ or

n

not. For weﬂ/’ we set yY(W) = (w'lx )Vq), where n 1is so chosen that whlxne

é\é([))[ . This definition of y{(W) does not depend on the choice of such n.

(This is because xv¢ = V¢.)

Theorem 5. For Wel”, y(W) € GM and this map is bijective, namely

Y:W’:&GM.

In this correspondence, the inverse images of GMfm and GMana(l) are given by

‘h/’fln and %/,ana(l)’ respectively, where Wana(l) =11/7ﬂ8ana(1) and

£i . d d\n-1
W =HP0E = WP Tmonen, s.e W™ and ()W E’&m((x)‘)}'
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t A+t2A2+---

Theorem 6. Let &(t) = e & as in 82, and let W = W(t) = Y-1(£ t))

€ #” be the corresponding microdifferential operator. Then the evolution of

W(t) in t is given by

B _oyedyn . - d . \n -1
W] =B W=~ WG", with B (w(dx)“w ), -
(Bn is a differential operator of the n-th order.)

Theorem 5 tells that conversely any solution of [W] is given in the above form

in a unique way. More explicitly we have

p,(-3)T(t;€) . P,(B)T(t;8)
w =2t Wk =
. ? .E 3
v (t;€) tlr, X+tl v T(t;8) t1~> x+t1

where P, represents the character polynomial X v for Y = A

1,V
d -1 _ d.,1-v _ _
Put L = wa;w . Then L = vz uV(dX) with uO—l, ul—O, and u,, are

differential polynomials of w , and the above system of evolution equa-

107 Y

tions for W immediately implies that for L as follows:
2+ -BL-LB, with B = (L™
1 n n’ n +

which is also equivalent to the following system:

3B 3B

~-—24+838B -BB =0,
t 3t m n nm
n m

;

[B]

Qs

which constitutes the integrability condition for

w2 -

ot
n
. .. . L _ T(t;EY)
(Incidentally, the explicit solution for Y is given by V¥ = TGE R

(o2
tl t1+x

where &' 1is any element of GM containing M (as subspaces in V).)

[L] (or [B}) gives infinite number of non-linear equations for Ups Ugstotsy
known as the equations of Kadomtsev - Petviashvili hierarchy (e.g. 3u2 e et
*T272
(~4u +u +12u,u ) = 0).
2,05 2,000, 22,7t

Explicit forms of the equations are easier to obtain for Vo,V than for

IR
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where v;s are defined as coefficients of 4. L +v L‘-1 + v L-2+---

Ygalget s ax 2 3

(vn is a differential polynomial of u Tsu and conversely u is that of

2t

v2,---,vn;e.g. v2 = “u,, v3 = ~u3, etc. and u, = —vz, u3 = —v3, etc.) Namely
we have

' - = >
W' pn( 3 b vy, for mz 2,

and its integrability condition

+ (J [vi), =0, for mnz1,

(vl pn(-at)vmﬂ n,m

with

momt) T Vnen % ViegVites
’ i,i%j,3%1
i+i'=m,j+j'=n

) V., V., ..
i,i',i",j,j‘,j"211+'] 17417 17+]
i+i'+i"=m,j+j'+j"=n
as the equivalents of {¢] and [L], respectively.

W

. . . . B .
Again, v is explicitly given by v = 5?_(pn—1( 3t)logT ) , for nz 2.
1 t. 7 t_+x

1 1
so far, accounts are given for the l-component case. To generalize it to

the r-component case we shall modify the notations as follows. For V¢ Z and

. the . . (i)
02i<r " basis element e +i eV 1s rewritten as e v

v and operators AY and

E . . as N and E.., respectivel so that we now have
VZ z rv+i,rv+i ii’ P s

i) (i) Gy _ ()
fe’y verr Ej® 0 T CSije v

For £e GM we define its e§01¥5ion %n the new set of time variables ¢t =
. t E..A
1y by £(t) = ¥ il

v 7 0g%i<r,v=1,2,-

Let the Young diagram Y be labelled by (20,---,2mr_1), and for each i=0,«..,

r~1, suppose that there are m, of lv's s.t. EV = i (mod r), whom we rewrite

W . . .
as (Qv r+l)V=0,~’-,mi—1' Set m; =m,-m to have Zmi = 0, and call Y, the

. [
Young diagram labelled by (1(6),"',1ﬁ121)- Then we see that the single diagram
i

Y and the composite object ((Yo,mé),---,(Yr_l,m;_l)) correspond to each other

tVen antees
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in 1 to 1 manner. Accordingly, we rewrite g, as tf R . s
Y (gomp)se s (Y__yme 1)

with the possible change of sign caused by rearrangement of the suffixes Zv .

If m! =0 for i=0,.--.,r-1, it is simply written as £
i YO"”’YI‘-l

All the results for the l-component case are, mutatis mutandis, generalized

to the r-component case., For example,

(0) (r-1)

T(t3€) = & (ty =} 8o ... Xy (E777)eex (t )
LERRRRL y y YtV Yoot
0,+-+, r~1
with t(i) = (t(li), t(;g--), and, as for W = Y-lei(t),
aw o)y, FIN (i) _ d.n -1
—E;(.T) =B WS WE, (57 with B W Eii(dx)“w ),
n
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Ll and L~ Approximation of Vector Fields in the Plane

Gilbert Strang

Massachusetts Institute of Technology

ABSTRACT

We study four problems, two in Ll and two in Lm,
whose analogues in L2 are the familiar minimum
principles which lead to the Laplace equation. One
possibility is to be given the boundary value ¢ = g
and to minimize ”Vle or lloyll ; the gradient at a
point (x,y) in Q is measured by IV‘H2 = wi + ms.

In the other problems we are given a vector field

v: (1 > R2

, end minimize either ”Vw-vul or low-vll_.
In each case we use the duality theory of convex
anglysis to give equivalent statements of the problem,
often with an interpretation in mechanics and often

partly solved. Nevertheless some questions still

remain open.
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Approximation in the I?

norm leads to linear equations
(wnich are forbidden at this conference). In IP, 1< p< x
the equations become nonlinear but much of the analysis

continues to apply. In Ll

and Lw, however, the situation
is entirely different: it is not the differential eguation
but the underlying variational principle that leads to an
existence theory, and suggests how to construct the optimal
solution.

This note studies four typical problems for scalar

2 with

valued functions on a simply connected domain Q < R
sufficiently smooth boundary TI'. Each of the problems has

a dual--a maximization instead of a minimization--and in the
applications the dual is of equal importance. Where one
variational statement is the "static” formulation of a
problem in mechanics, with stresses as the unknown, the

other is the "kinematic" form in terms of velocities. We
will study several comblnations of boundary conditions and
inhomogeneous terms, but not every possible comblnation,
because glready we ask the reader's consent about one more
thing. In addition to the dual of each problem, there 1is
another pair of optimizations {equivalent to the given one)
created by a special situation in Re, that the general
solution of div o =0 is »n = (wy,-wx) for some .
Therefore it will happen that each of our problems has four
equivalent forms, and that one of them is simpler to solve
than the others. (For the others we may learn only the value
of the maximum or minimum, by duality, without finding the
function which achieves that value.) Some questions will

remain unsolved even with four alternatives.
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The problems arise in the study of plasticity and optimal
plastic design, and elsewhere; we will give references rather
than a complete description of these applications. And we do
the same for the proofs of duality; in our problems they come
directly from the techniques of Ekeland-Temam {1}, who applied
the Moreau-Rockafellar theory to a sequence of important
examples in partial differential equations. Our chief purpose
is to contribute some additional examples, and they have
developed from our joint work with Robert Kohn and Roger Temam.
We mention that optimal design leads to more complicated
variational problems ({2-3] 1is part of a large literature),
and also that perfect plasticity in R3 has required a new
space of vector-valued displacements and a corresponding
analysis [4-5]. The problems in this note are easier, but
they have natural interest and it may be useful to organize
them more systematically.

At the end we discuss some applications in optimal design

and the nonconvex problems to which they lead.

1. The minimum of [|v¢!l ~ with Dirichlet data

It 1s this form which can be solved directly, but we
begin with the four equivalent problems:

1a. MIN llofl | subject to div 6 =0 and on=f on T

1B. MAX %_uf subject to [[|vu| =1

1c. MIN flo#]l  subject to (3 =g on T

1D. MAX f gT-n subject to div 7 = O, Iflf] = 1.
r
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The conversion between 1A and 1C is by o = (wy,-wx), a
rotation through m/2 of Vi. It follows that
f = 0.n = 9yt = O1/3s, the tangential derivative of V.
Therefore =g = If ds up to a constant on T[; it is
assumed that ff ds = O on the closed curve T.

Similarly 1B and 1D are connected by 7T = (uy,-ux), and
integration by parts on TI. 1B 1s dual to 1A, and 1D to 1C.

The solution of 1C comes from an extension lemma proved
independently by McShane and Kirszbraun for Lipschitz
functions on a metric space. Thelr construction applies
equally to HBlder continuous functions, and was followed by
deeper results of Whitney and Calderon. In our case the
metric is the shortest distance within Q; 1t 1s Euclidean
distance, if Q 1is convex. Then the quantity vyl = to bve
minimized is the Lipschitz constant for #. The lemma extends
g on T to ¢ on Q with no increase in the Lipschitz
constant, by the simple construction

#(P) = max [g(Q)-a(P,Q)].
QeTl

Therefore the minimum in 1C is immediate: 1t egquals the
Lipschitz constant for g, and Problem 1 is solved.

This provides a natural analogue for continuous flows of

the max flow-min cut theorem of Ford and Fulkerson. Instead

of a finite network with capacity constraints on the edges,
the flow through Q is described by a vector field 9 and
its capacity by |0} < 1. The possibilities of varying
capacity |o| < c¢(x,y) and nonzero sources div o = F within
N are included in [6]. 1Iri created a similar theory with a

neat application to traffic in Tokyo [7].
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We give a brief but very informal derivation of the
optimality conditions that connect 1A to 1B, with u(x,y) as
Lagrange multiplier for the constraint div o = 0. The saddle-
point (Lagrangian) form is

min max[flo!l  + [fu div 0] = max min{Yell_ -~ [[o-vu + [ur].
c.-n=f u u o]

The final minimum over o 1is = if fflvul > 1, and otherwise

it is fuf as in 1B. The optimality conditions are
ol = [Jomou, [Jlvu] =1,

which gives an interesting form for wu. It is the character-
istic function, or more exactly a multiple 1/{P-Q| of the
characteristic function, of the set bounded by the line

between P and § on [ --where these are the points (not
necessarily unique) at which g attains its Lipschitz constant.
Thus VYu = 0 except across this line; on the 1line, Vu is a
singular measure of mass one and o0 1is the normal vector of

magnitude Ha”w.

Example 1l: g = sin ® on the circle Q of radius r < 1/2.

The Lipschitz constant is 1/r, between the points P = (O,r)

and Q = (0,-r). An optimal u is zero in the semicircle

x>0 and 1/2r in the complement x < 0. An optimal

(not the same as McShane's extension) is ¢ = y/r, with

o = (wy,-wx) = (1/r,0), and o 1is normal to the diameter PQ.
A less trivial example, with more uniqueness, would start

with an elliptical Q.
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2. The minimum of vaul with Dirichlet data

Again we give the four equivalent extremal principles:

2a. MIN [[|o] subject to div 0 = O and o-n = f
Q

i
[

2B. MAX [ uf subject to |lvul =
r

2c. MIN [[|v¢| subject to ¢ =g on T
2D. MaX IgT-n subject to div * = 0 and HT”w = 1.
The connections among 2A-2D are the same as for 1A-1D.

In this case it is again 2C (the least gradient problem
[8]) that can be solved most directly, using the coarea formula
for a function ¥(x,y) of bounded variation:

JJlovlaxdy = [ Ivglat,
(-]

where Y, 1s the level set where ¥ =t and IYtI is 1its
length. More precisely, since ¥ could be constant over a

set of positive area, we construct E, = ((x,y) € Q: v(x,y) > t}
and then Yt = BEt\\F. This coarea formula and its generaliza-
tions are a valuable tool in geometric measure theory [9-10];
for a smooth function ¢, or a plecewise linear function, the
proof is straightforward.

To minimize vaﬂl is to minimize for each t the length
of Yt’ subject to the requirement that Yt connects the
boundary points at which g = t. (Again a more precise form
may be required; the set Et must contain the set on which
g 2 t. We note that for ¢ of bounded variation, with trace
g in Ll(r), the function lYtI is defined for almost all
t and is integrable.)
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Example 2. g = cos 26 on the unit circle Q. The L2 norm

2

of ¥ 1is smallest for the harmonic function ¢ = r" cos 28,

zero only on the four rays to © =+ w/4, + 37/4., But the Ll
norm is minimized by a function ¥ which vanishes over the
whole inscribed square of side /2 with these rays as
diagonals. Between the square and the circle, the level lines
t = constant are straight, to minimize IYtI. To the right
of the square, for example, ¥ = 2x2-l: constant on vertical
lines x = constant, and agreeing at the boundary r =1 with
g = cos 26 =2 cosge-l.

In the duality with 2B, the optimality condition imitates

1B above to give
; = Il | ! =
IJIU[ = IJU-Vu, JVUJW = 1.

Therefore ©vu 1is a unit vector in the direction of ¢ where
6 # 0, and elsewhere |%u| < 1. 1In our example we had

¥ = 2x°-1 and 7 = (0,-4x) in the section x > 14/Z of the
circle. Therefore Wu = (0,1) and u = -y. Similarly

u = +x or +y in the four quarters of the circle--but not

uniquely so in the inscribed square where ¢ =0 and o = O.

3. The L1 approximation of a vector field by a gradient

The given vector field is v = (vl(x,y),vg(X,y)): and it
is itself a gradient if F = bvl/éy - Bve/ax = 0. Otherwise
the maxima and minima will exceed zero in our four equivalent
problems:

3A. MAX —ffv-o subject to div n =0, oon =0 on T,
Q
jol €1 in 0O
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3B. MIN [f|vw-v]
Q
3¢. MAX [[FY subject to # =0 on T, [ <1 in @

3D. MIN [[|7| subject to div t = -F.

Tn 3D, T 1is the rotation of Vvw-v through w/2; the
divergence of 9w’ = (-wy,wx) is automatically zerso, so that
div T = =div v = -F. Again we use a property special to RE.

In this case it is 3C which can be solved at sight,

provided we assume F > 0. To make IIFW as large as possible
is to maximize ¥ among functions vanishing on T with

jv#| < 1. The extremal function is ¢ = distance to T, and
this choice gives the optimal values in 3A-3D.

For F of varying sign the problem is much more difficult
and interesting; we believe it to be unsolved. On an interval
in R the optimal ¥ has ¥' = +1, and the "breakpoints"
can be determined.

A construction of the optimal w (assuming F > 0) was
given by Mosolov {11]. The computation is more delicate than

that of %, and is guided by the optimality condition

o = YW=V
T Ty

at every point where Vw # v.

Example 3. v = (y,-x) and F =2 on the unit circle. On
this domain ¥ = l-r, the distance to the boundary. Therefore
g = (wy,-wx) is the unit vector field tangent to the con-
centric cireles r = constant. It happens that in this
instance w ® 0. The optimality condition displayed above

is satisfied by o = -v/|v|, and therefore v = (y,-x)

"eannot be approximated by a gradient." The closest approxi-

mation is null.
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This choice of v arises naturally in the torsion of a
¢ylindrical rod. The vector o gives the shearing stress and
-ffv.c is the associated moment resisting an external force
that twists the bar. The maximum in 3A, subject to the limita-
tion o] < 1 for a plastic material, is the limit moment of a
bar with cross-section €. This is the largest torque the bar
can resist; the angle of twist approaches infinity and the bar
becomes fully plastic (|o| = 1 throughout Q).

The dual variable w(x,y) measures the "warping" of each
cross-section out of its original plane--and for the circular
bar of Example 3 each cross=-section remains plane and w = O.

The minimization 3D has a further mechanical interpreta-
tion. It again refers to a bar with cross-section Q, but now
subject to the axial force F(x,y). This body force is
resisted by shear stresses T = (sz’Tyz)’ and div T = -F
expresses equilibrium. Then If!f( is proportional to the

minimum weight of a bar which can withstand the load F. It

is a specialization of the Michell-Prager theory of optimal

design to the case of pure shear [12].

4. The L~ approximation of a vector field by a gradient

For given v, with F = -div v’ and 7 = (9w-v)* as
before, the equivalent problems are
4a. Max -Ifc-v subject to div o =0, a.n =0 on T, HcHl =1
4B, MIN [low-v]|

kc. MaX [[F¥ subject to ¥ =0 on T, [loyll; =12
4D, MIN fi7i|  subject to div T = -F.
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Our method is to apply the coarea formula to 4C. We want to
show that the optimal ¢ 1is a multiple of the characteristic
function C of some subset E < 0. The coarea formula can be

written as
©
_ !
llowlly = llvegly at,

where Cg is the characteristic function of Ey = (v > tl.

Tt is not difficult [6] to show that also
o

SRy = [ ([FCy) at.

Q == 0
Suppose M is the maximum in %C, and suppose that

JJFC < (M-€)llvcly

Q
for every characteristic function €. Then choosing C = Ct
for the optimal ¢ {or more precisely C = C,¢ for a
maximizing sequence of functions wn) we would contradict the
previous equations by integrating over t. Therefore the
maximum (or supremum) is attained in 4C by a normalized
characteristic function ¢ = C/HVCHI.

In other words, Problem 4C is equivalent to the simpler

problem

1 [ FC]

- E (area of E}
M = MA -
ot el = MAX tperimeter or Ey o7 F

]
—

Whenever F 1is constant, we have an isoperimetric problem:

maximize area/perimeter within Q. For F > 0 it is a

weighted isoperimetric problem. And for F of varying sign,

it is a generalized isoperimetric problem which is new to us.
We have not mentioned the boundary condition § = O, which

seems to be violated if 3dC N T # 0. Nevertheless the analysis
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can be Justified; it is the condition ¥ = 0 which must be
relaxed [13], and the correct form of 4C is

MAX [[Fy subject to [[|vw| + [ [¢]| = 1.
0 ol r

Similarly Problem 2C can be relaxed by the boundary integral
[19-gl. The effect in Problem 4C is that the length of dc n T
is included in the perimeter of C, and we reach the isoperi-
metric problem described above.

We show by example that the optimal ¢ can be computed
(at least for F = 1 and for simple domains). Since ¥ is
plecewise constant, changing only at the boundary of the optimal
set C 1in the isoperimetric problem, o = (wy,-wx) is a
singular measure supported on 3C --a "line of A-functions.'
The optimality condition connecting it to Tt gives only

moderate information:
[t] =7l on 3 (and T 1 3C).

We have no method for computing T in Q.

Example 4: v = (y,-x) and F = 2 on the unit circle 0.
This is the oldest of all isoperimetric problems, and the
subset which maximizes area/perimeter is C = Q. The vector
field Tt is radial, with div T = -2, and agailn the nearest

gradient to v 1is 9Yw = O.

Example 5: v = (y,-x) and F =2 on the unit square Q,
with vertices at (i 1/2,+ 1/2). The optimal subset C is
neither the whole square nor the inscribed circle. Instead
it 1s a compromise [6,14] whose boundary coincides with T

except for quarter circles of radius (2 + /?)'l in the four
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corners of the square. (They are tangent to the square, so oC
is smooth.) We have so far been unsuccessful in determining
a corresponding vector field T with div 7 = (2 + /W)l _.

It exists, by duality theory, and we have offered a modest
prize (10,000 Yen at the U.S.-Japan Seminar) for its dilscovery.
It would be interesting to compare these L1 and L~

optimizations with the corresponding discrete problems in Zl
and £°. There the optimality conditions are classical, and

the best approximations must approach our solutions (including
the characteristic functions) in an irregular but consistent

way. The rate of convergence, and the pattern of error in the
discrete problems, should be visible from numerical experiments--
since this is a class of discrete problems in which the cone-

tinuous 1imit can be solved.

We hesitate to propose a more complete list of dual varia-
tional problems of the same type. Harmonic functions will
appear for optimization in LQ, and the special property of two
dimensions (which produced all the second pairs of equivalent
problems) introduces the conjugate harmoniec. Within the list

above there are combinations of conditions that earlier entered

only separately, for example the combination
MAX [[F¥ subject to ¢ =g on T and logll = 1.

This corresponds to applying both shear and torsion to a
cylindrical rod, and it is solved (if the constraints are
compatible and F > 0) by the maximal function
¥(P) = min [g(Q) + d(P,Q)].

A related problem mixes L2 and Lw, and has become a

fundamental example in the theory of varlational inequalities:
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MIN [] %]vwlg - ¥F subject to ¢ =0 on T, fovf < 1.

The dual minimizes a combined norm
roo 1 2 1
’!Vw-v”l’2 = [ min (§}Vw-vl s low-v] - ) dxdy.

This seems appropriate also for "robust statistics,” in which
the least squares model (Gauss~-Markov linear regression) is
natural--except that it assigns too much weight to observations
that lie far outside the normal range. These outliers are less
significant in Ll, and a mixed norm is more realistic.

Finally we mention optimal design, which is subject to all

these constraints and one more: it begins as a nonconvex
problem, to minimize the support of 4. A typical case, for

longitudinal shear in a plastic cylinder, is

< 1.

Qo

wr [[ 1 ) subject to div o = 0, a.n = £, ol
{a#0

The integrand jumps from ¢ to 1 at o = 0, and from 1

to o at |g] =1 (since |0l > 1 is inadmissible). The
equivalent "relaxed problem” replaces this integrand by the
largest convex function which does not exceed it: it equals

lo| for |o] <1 and = for |[of| > 1. In this new problem
MIN [[|o| subject to div o =0, on = £, lofl_ <1

there exists an optimal solution {(which is a weak limit of
the highly oscillatory minimizing sequences in the original
problem). The solution can actually be computed by modifying
the construction in 2C to account for the new constraint

fo] = {9¢] € 1. It gives the admissible structure of minimum
weight.

There 1s also a more delicate class of nonconvex problems,
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whose relaxed form falls to be convex: instead it is polyconvex.
In a forthcoming paper with Kohn we study elastic design subject

to two loads, leading to the new minimum principle

wvF [[ 1

+|012+|1|2 subject to diveo=divT =0,
(tol+]]#0}

an=f, T-n=g.
In this case o,T represents a 2 by 2 matrix; with n
loads it would be 2 by n. Only the case of a single load
leads to an equivalent convex problem; for n = 2 the
relaxed integrand is polyconvex--a convex function of o,r,
and their determinant D = ¢*.7. The underlying theory was
developed abstractly by Morrey [15], and more recently by
Ball [16] and Dacorogna [17]. Perhaps our example is the
first involving all three arguments in which thils polyconvexi-

fication has been found.
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Deformation formulas and their gpplications to

spectral and evolutional inverse problems¥*

Takashi SUZUKI

Department of Mathematics
Faculty of Science

University of Tokyo

We describe our recent results on spectral and evolutional
inverse problems. Our main interest lies in the uniqueness

of the problems and 24 theorems will be stated.

§1. Summary.

In this article, two topics are taken up: inverse problems for evolution e-
quations and inverse problems for spectral theories. These two are associated
with each other, and our methodology of the study is the same. That is, the de-~
formation formulas, which are simple and are easily proven.

Our first topic, the inverse theory for evolution equations, studies the fol-
lowing problem: By observing within a ceatain area the values of the solution of
an evolution equation, can we determine the coefficients or the initial value of
the equation ? Many authors have been interested in such a problem, and some of
their works are referred to in Suzuki [29,30,31]. We here refer to Lavrentiev [13
,14], Nekagiri [25] and Kohn-Vogelius [L42], and also Kitamura-Nakagiri [12], Seid-
man {28], Pierce [27], Suzuki-Murayama [L41] and Murayama [23). Actually, the lat-
ters are related to the problems which we study here. In this article, we consid-
er parabolic equations on compact intervals and on cirecles, and give conditions
for the equations to be determined through various observations. Details will be
described in §§ 2 and 3.

Our second topic, the inverse spectral theory, determines a differential op-

erator by its spectrum. This kind of problem has been investigated for Sturm-

289
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Liouville's operator by V. Ambarzumian, G. Borg, N. Levinson, I.M. Gel'fand, B.M.
Levitan, M.G. Gasymov, V.A. Marchenko, B.Y. Levin, H. Hochstadt and B. Lieberman
({11, (21, [17]1, [s1, [18], [201, [16], [10], [111), and for Hill's equation by G.
Borg, H. Hochstadt, P.D. Lax, W. Goldberg, H. Flashka, B.A. Dubrovin, V.A. Mateev,
S.P. Novikov, H.P. Mckean, P. van Morebeke, E. Trubowitz and others ([2], [9], [1
51, 16,71, [4], {3], [21], [22]). In G554 and 5 of the present article, we re-
examine these studies from the viewpoint of our deformation formulas, and come up
with some new results, among which are involved crucisl improvements on their the-~
orems.

Throughout the present article, the "deformation formulas" play an important
role. The first and the second ones will be stated in §§ 2 and 3, respectively.
These connect eigenfunctions of two separate differential operators by integral
transformations, of which kernels satisfy certain hyperbolic equations. We are
inspired by. the Gel'fand-Levitan theory [5] in deriving these formulas. By using
these deformation formulas, the answers to our inverse problems are sometimes ar-
rived at & certsin non-linear equation, which we call the "G - equation”. A typ-
ical example of this can be seen in Theorem 2 of §2.

This article is made up of five sections. As mentioned above, we show in §2
some theorems on inverse problems for parabolic equations which are proven by the
first deformation formula. Theorems on similar problems whose proofs are based
on the second deformation formula will be stated in §3. §§ L and 5 are devoted
to the study of inverse spectral problems for Sturm-Liouville's operator and for
Hill's equation, respectively.

In this article, proofs of theorems are not explicitly stated, except for a

few allusions to them. See the papers referred to there, for the proofs.

§2. Inverse problems for evolution equations (I).

2 .
For peCl[O,l], heR, HeR and gel(0,1), Let (E ) be the parabolic equa-

p.h,H,a

tion
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(2.1) du (p(x) ~ jf Ju=0 (O<t<oo, 0<x<1)
' Jt %2 i ?

with the boundary condition

Ju

_ du -
(2.2) i o= =t Hulx:l =0 (0<t<o),
and with the initial condition
(2.3) u|t=0 = a(x) (0<x<1).

As is well-known, if the initial value a and the coefficients (p,h,H) are given,

there exists a unique solution u=su(t,x) of ( ). In particular, the values

E
p,h,H,a

of the solution on the boundaries £=0,1 are determined. Hence we obtain the map-~

ping
F" =F o (panyHaa) > (<u(t,0), ult,1)> | Ty<teT, ),

i <T_ <] <eo,
for some Tl’T2 in Q=Tl T2 CJ

Let (p,h,H,a)ecl[o,1]xRxRxL2(o,1) be given with the solution u=u(t,x) of (Ep

s

), and consider the set
h,H,a

1 1 —l( 1

M F F
pohuHaa T UTLT, T,T

1

(p,h,H,a)).
2

Tt denotes the totality of equations ( ) whose solutions v=v{(t,x) have the

Eq,J,J,b

same boundary values as those of u:

Mt = {(q,j,J,b)ECl[O,l]XRXRXLZ(O,l) [ the solution v=v{t,x)
p,h,H,a
of the equation (Eq,j,J,b) satisfies
(2.h4) v{t,8) = u(t,8) (T, <6<T 3 €=0,1)}.

Since u and v are analytic in te(0,»), (2.4) is equivalent to
(2.4") v(t,g) = u(t,£) (0<t<E; £=0,1),

is independent of T1 or Tg.
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It is obvious that (p,h,H,a)EMl holds. In the case of
p,h,Hya
1
(2.5) = {(p,n,H,a)},

p.h,H,a
on the other hand, these values {u(t,§) | Tlipéﬁ2; £=0,1} determine the equation
p.h,H,a

(E }. However, (2.5) does not always hold. For instance uz0 follows from

230 for any {(p,h,H), hence

1

M n,H,0 2

{{q,3,3,0) !qECl[O,l], jeR, JeR}

for each (p,h,H). We wish to give a condition on (p,h,H,a) for (2.5) to hold. To

this end we introduce the following

2
7x”

The eigenvalues and the

Notation., The realization in Lg(O,l} of the differential operator p(x)

with the boundary condition (2.2) is denoted by Ap noH
£ k]

eigenfunctions of Ap W are denoted by {Xn |n=0,1,2,---} and {¢(',Xn) \n=0,1,2,-

*+}, respectively, the latter being normalized by ¢(O,Xn)=l. 0

Furthermore, noting that each Xn is simple (-m<lo<kl<'-~*w), we give

Definition. For each aeLg(O,l), we call

N= 4l | (a,0(=,2 ) 205,1) = 0 }

L°(0,1

" " )
the "degenerate number" of q with respect to Ap,h,H’ where ( , )LE(O,l) denotes

the Le-inner product., [
Then we have

Theorem 1 (Murayama [23], Suzuki [32]). (2.5) holds if and only if N=0,

-0

where N is the degenerate number of a with respect to Ap n.H
2 i

This theorem is shown by the following assertion: The set {An, ¢(1,An) |n=0,

1.0 00 {zes .
,2,%**} characterizes the operator Ap,h,H

! n=0,1,2,*++} corresponds cne to one to the spectral function of A

Murayama [23] found that {An, ¢(1,An)

, and
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showed the assertion by the Gel'fand-Levitan theory [5]. Suzuki [32] proved the
assertion directly by the following first deformation formula: Let ¢=¢(x,k)€C2[O,
1] be the solution of

a2
(2.6) (_azy + plx))p = 2o {0<x<1), ¢(0,A) =1, ¢'(0,A) =h
for each AeR. (This notation is compatible to that of ¢(-,An).) Set D={(x,y) | o<

y<x<1}. Then,

Lemma 1. For each p,qul[O,l] and h,JjeR, there exists a unique K=K(x,y)ece(

D) such that

(2.7.1) Koy = Kyy + p(y)K = q(x)K (on D)
X
(2.7.2) K(x,x) = (3-n) + 2 (als)-p(s))ds  (0gx<1)
0
(2.7.3) Ky(x,O) = hK(x,0) (0<x<1). O
Lemma 2 (first deformation formula, Suzuki [32]). For K in Lemma 1,
X
(2.8) Plx,A) = olx,0) + [ Klx,y)e(y,\)dy (0gx<1)
0
satisfies
2
(2.9) (S0 v a(x))p = (0sx<1),  9(0,0) =1, 9(0,1) = 4,

for each AeR. [J

The point is that K is indepenent of A. On account of it, conditions on {Xn, o(1,
An) | n=0,1,2,¢++} can be concentrated into those on K through (2.8). [32] proved
the assertion mentioned above by the study of these conditions on K, together with
(2.7). On the other hand, the proofs of Lemmas 1 and 2 are elementary. In fact,
Lemma 1 is obtained by the method of Picard [26] (that is, "iteration”), while
Lemma 2 follows immediately from the integration by parts. See [32].

Furthermore by this method, [32] gave the following characterization of M; N
t] ’
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H.a by the "G - equation”, in case of 1<N<®, Namely, assume N<® and
y

(2.10) (a,cb(-,xn 1) 2

RS (1420)

<p<p_<reekp < initi . <9<
for 0 n, <a, S By definition we have (a,d( ,ln))LQ( #0 for n#nl {1<8<

0,1)
N). Putting

n n 0

ol+,x ) n
nN N
we consider the following non-linear N-simultaneous ordinary differential equa-

tion {G - equation)

a2 4
(2.11) 526 = [(QE;(G-é) + p)I - AlG,

and set
2 N .
G = {cec™([0,1] » R) | ¢ satisfies (2.11)},

e . N .
where + and I denotes the inner product and the unit matrix in R, respectively.

We set, furthermore,

M; hHeg = {(q,j,J)ECl[O,l]XRXR | there exists baLE(O,l) such that
1
(q,3,d,b) € Mp’h,H,a}.

Then,

~

Theorem 2 (Suzuki [32]). Under these assumptions, for each (q,j,J)EMl

P’h’H,
2 . 1 . . 1 R .
a, belL™(0,1) with (q,j,J,b)EMp,h’H,a is unique. Mp,h,H,a is homeomorphic to G:
! 3 (q54,d) = GEG
p,h,H,a e

through the relations

(2.12) qg=p+22—Gd), j=nh+(Gd)(0), T=18-((ced)(1). O
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In particular, w has 2N - degrees of freedom. G ~ equation (2.11) is ob-

p,h,H,a

tained by eliminating (g,J,J) in the relations (2.7) and in some equalities on K

derived from (q,j,J)eM1

b,h,H,a See [32], for the relation between b and G, and
2 3 b

for applications of Theorem 2.

Now it is natural that we nextly consider the mapping

1 1

Fo=Fp o (p,h,H,a) |+ {<ult,0), ult,x )> | T, <b<T, )}
1’72770
for x.€(0,1), u=u(t,x) being the solution of (E }. Similar M can be consid-
9 p,h,H,a
ered:
1 R -1,.1
M = F, ( (p,h,H,a))
pahsHax, T T LTuxg T LT, Psil>H,
= {(Q,j,J,b)eCl[O,l]XRXRXLZ(O,l) | the solution v=v(t,x)
of the equation (E_ | ) satisfies
¢ ( a4,d,d,b
(2.13) v(t,8) = ult,g) (T, 262T,5 £=0,%,)1.
Ml coincides with Ml in case x =1, However, we unfortunately have
p,h,H’a,XO p,h’HDG O
Theorem 3 (Suzuki [36]). In case of xO#l, we always have
1
(2.14) M {(p,h,H,a)}. [

P, H,a,%, #

Namely, non-uniqueness holds even if N=0, unless x0=l.

In view of this, we nextly consider the mapping

2 2
PR T (p,h,H,a) | {<u(t,0), ult,x,), u (t,x5)> | T <t<r,}

and obtain the following theorem, where

2 2 -1,.2

F FT T, .x

- (p,h,H,a))
p>h,H,a,x, T,-T, 5%, 10T %, LS

10

= {(q,j,J,b)ECl[O,l]XRXRXLg(O,l) | the solution v=v{t,x)
of the equation (Eq,j,J,b) satisfies
(2.15) v(t,0) = u(t,0), v(t,xo) = u(t,xo), vx(t,xo) = ux(t,xo)
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(T,262T,)}:

2

Theorem 4 (Suzuki [33,36]). Let N be the degenerate number of a with respect

to Ap,h,H' Then,

(i) In the case of x0=1,

(2.16) M = {(p,h,H,a)}

: p’h,H,a’XO ’ ? ’

holds if and only if N=0.

(ii) Tn the case of $<XO<1’ (2.16) holds whenever N<w,

(iii) In the case of XO=%’ (2.16) holds if and only if N<1.

. . 1 2
(iv) In the case of O;x0<§3 we always have Mp,h,H,a,XO;i(p’h’H’a)}' 0

Thus, the position Xy plays an important role as well as the number N, Theorems
3 and b are also proved by first deformation formula. Since the equation (2.7.1}
is of hyperbolic type, having the properties of the domain of dependence and so

on, the point x0=% comes to be important in Theorem L.

Before concluding this section, we briefly mention the connection between (i)

of Theorem L and Theorem 1. In this case (xo=l), (2.15) is equivalent to (2.4)

with J=H unless a#0, so that M2 is nothing but M1

p,h,H,a,x, p.h,H,a
1 2
H. B -
y Theorem 2, Mp,h,H,a has 2N - degrees of freedom, hence those of Mp,h,H,a,x

will be 2N-1 in case x0=1. In particular, 1 - degree of freedom remains even if

restricted to J=

0

N=1, which explains why (i)} of Theorem L holds.

§3. Inverse problems for evolution eguetions (II).

Let us now consider the mapping

3 3
F” =F (p,h,H,a) |~ {<u(t,x0), ux(t,x > | Tl;;éyg}.

Tl’TZ’xO 0

with similar M:
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3

3 -l( 3
p’h,Hﬁaix

= F F (p,h,H,a))
o TpToxe T T

= {(q,j,J,b)601[0,1]XRXRXL2(0,1) | the solution v=v({t,x)

of the equation (E I b) satisfies
k]

qQsds

(3.1) vit,xg) = ult,x), v (t,x5) = u (t,x)) (7 <t<7,)3.

0 0 0

In view of Theorem L4, we see that

3

(3.2)
pyh,Hya,x

= {(p,h,H,a)}
0

holds only if xo=%-and N<l. In fact, if o<x0<%3 uniqueness (q,J,J,b)=(p,h,H,a)

doesn't hold even if we assume v(t,0)=u(t,0) (T.<t<T,) besides (3.1), by (iv) of

1 2

Theorem 4. Similarly, if %<x0<1, uniqueness dcesn't hold even if we assume v{t,1)

=u(t,1) (T ;};EQ) besides (3.1). Therefore, (3.2) implies x0=%, hence also im-

1
plies N<1 by (iii) of Theorem L.

Fortunately we have

Theorem 5 (Suzuki [34,37]). If xo=% and N=0, (3.2) holds. O

For the case xo=% and N=1, which is delicate, see [37]. Furthermore, we have

Theorem 6 ([34,37]). Let xO#% and assume %<x0<l without loss of generality.

Then (3.1) implies
(3.3) alx) = p(x)  (x,%x<1), J =H,
whenever N<wo. []

Theorem 7 ([34,37]). Under the same situation Lex <1,

2°0
(3.%) MS,h,H,a,xo n {(a,d,7,0)ect[0,11xRxRXL2(0,1) | q(x)=p(x) (}eﬁx;xo)}
= {(p,h,H,a)}

if and only if N<1. O



298 Takashi Suzuki

Similar theorems also hold for the case of O<x0<%n In view of Theorems 6 and T,

we call (xo,l) the "domain of unigueness"” in the case of %<x0<l, which comes to

: 1
<x <=
be (O,xo) in the case of 0<x <Z.
These theorems cannot be proved by first deformation formula. In fact, in
Lemma 2 ¢=¢0(+,%) is requested to satisfy the boundary conditions ¢(0,A)=1 and ¢'(
0,A)=h, which are independent of A. Without observing boundary values u(t,0) or

u(t,1), we cannot apply this formula. Another deformation formula is needed:

Set D1={(x,y) | 1-x<y<x, %<x<l}.

Lemma 3. For each peCl[O,l] and qul[%,I], there exists a unique K=K(x,y)e

Cg(Bi) such that

{3.5.1) K = Ky * p(y)K = g{x)K (on 31)
1/~ 1

(3.5.2) K(x,x) = 5j1<q<s>-p<s>)as (5x<1)

2 1 .
(3.5.3) K(x,1-x) = 0 (Eixil). {1

Lemma 4 (second deformation formula, Suzuki [34]). If ¢=¢(X)ECQ[O,1] satis—
fies
a2

(3.6) (=2 + p(x))p = XD (0<x<1)

dx

for AeR, then w=w(x)ecg[%31] defined by

(3.7) W) = olx) + [ Kloyde(yday  (Fx<l)
* 1l-x
satisfies
2
(3.8) e gy = (e, WD) = o), (3 = ¢ (5. O

The point is that no boundary condition on ¢ is assumed in (3.6) and that instead
(3.8) holds only on [%,1] in spite of (3.6) on [0,1]. To get a similar relation
to (3.8) on [O,%ﬂ, another K has to be constructed on ﬁé, where D2={(x,y) | %<y<1-

X, O<x<%}.
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In virtue of second deformation formula, we can also study inverse problems
for evolution equations on circles. Henceforth Sl denotes the compact interval

[0,1] with end points identified. For pECl(Sl) (i.e., pECl(R), p{x+1)=p(x)) and

aELE(Sl), we consider the following parabolic eguation (ES a) on Sl:
3 32
(3.9.2) S+ (p(x) - z2)u=0  (0<t<w, xes')
(3.9.2) up, = alx) (xesh)
«7 e ltzo .

. s . . 2
Notation. Ap denotes the realization in L‘(Sl) of the differential operator

32

p(x)~§§ . The eigenvalues of A; are denoted by {An | n=0,1,2,¢¢} (-w<AO<A1<---+

©) and the multiplicitiy of An is denoted by a(n). Note that a(n)=1 or 2. {d)n2
| 1<f<a(n)} denotes the eigenfunctions of A;, corresponding to An and being nor-

malized by ||¢ =1. ]

ol l12(sty

Inverse problems for (ES ) are more difficult than those of (E ), partly

D,a p.h,H,a
because of the existence of double eigenvalues of Ai. In order to overcome this
difficulty, we consider several solutions of (EE a) according to the idea of Naka-

k]

giri [24]. We thus extend the notion of the "degenerate number" as

Definition. Put aEm%x a{n) (=1 or 2). TFor the set of initial values {aJ Il

ijéq}, let us consider the matrix

_ J
An = ((a ’¢HQ)L2(S1))1._<=jiO‘" lé,Q,f__Ot(rl)

for each n=0,1,2,+++. Then we call
N=4#{A | rank A_ < a(n)}
n n
" " j . - S
the "degenerate number" of {a’ | 1<j<o} with respect to Ap. 0

Let quuJ(t,x) be the solution of (Ei aj) (1<j<a). For simplicity, we henceforth
s =d2

j S
assume N=0, where N is the degenerate number of {a° fléjég} with respect to Ap.

3 X
Let v=vj(t,x) be' another solution of (Eq bj) for some qECl(Sl) and bJELe(Sl).
2

Then,
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Theorem 8 (Suzuki [35,37]). Let xlesl and x2€S1 satisfy the central symme-

try, say X = and x,=1(=0). Then the equalities

172 2
(3.10) vj(t,xl) = uj(t,xl), vi(t,xl) = ui(t,xl), v (t,x,) = uj(t,xg)
(Tl<t<T 1<3<a)
imply
(3.11) (q,b%) = (p,a%) (1<jza). O

Theorem 9 ([35,37]). Suppose that xlesl and x2€Sl don't satisfy the central

symmetry, and let xl’ESl and x2’€Sl be the symmetric points of x, and x2, respec-

1

Lex <1, x '=1{=0) and x,'=x A Let A, A', B and B' be the arcs

; -y
tively, say xl_Q’ 5 Xy o 55

l Xy xl X, ngl and x, xl, respectively as in Fig. 1, Then (3.10) implies

0%1

Al '
' %5
. i
Fig. 1 , i
*2 2 A
B! X
!
(3.12) a(x) = p(x) (xcAvA'). [

Theorem 10 ([35,37]). Under the same circumstances as those of Theorem 9,
the equalities (3.10) combined with either q(x)=p(x) (x€B) or q{x)=p(x} (xeB') im-

ply (3.11). 0

In virtue of Theorems 8-10, we can call AUA' the domain of uniqueness for this

problem, Finally we have

Theorem 11 ([35,37)). In case of p(x%)=p(x) and q(x%)=q(x) (xeR), the e~

qualities

(3.13) vj(t,x ) = ul(t,x ), VJ(t,x )= wit,x) (T <t<T
1 1 X

1 xR (ST 18920)

imply (3.11), where xlesl. 0
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In this case, one point xlESl is enough for the uniqueness.

§L4., TInverse spectral problems for Sturm-Liouville's operators.

In this section, we consider the so-called inverse Sturm-Liouville problem.

The first deformation formula will give crucial answers to them. Recall that for

l[O,l], heR and HeR, A denotes the realization in LE(O,l) of the differ-

) pyh,H

d d
1 ——n 3 344 —_— - =
ential operator ax2 p(x) with the boundary condition (dX h) ]x=0

Let {A | n=0,1,2,%2¢} (=<} <} <eees0) be (A
n 01

peC
d
(dx H) ]x=1_o'

}, the eigenvalues of A

p’h’H th)H-

Firstly,

Theorem 12 {Suzuki {36]). Suppose q{x)=p{x) (Oi}é%), j=h and

(L.1) A e ola

N q,j,J) (n#nl>

for qul[O,l], jeR, JeR and nleNE{O,l,E,"'}. Then

L.2 A = A
(h.2) q53,J p,h,H

follows. [

Theorem 12 is an improvement of Hochstadt-Lieberman [11]. Actually they derived

(k.2), assuming J=H and Anso(A } (n=0,1,2,+¢¢), besides q(x)=p(x) (Oég;%) and

qsdsd
j=h. It is important that the converse of Theorem 12 holds:

Theorem 13 ([36]).

(i) For each Ap,h,H’ nleR and XO in O;xo<%y there exist q#p, J and J such
that q(x)=p(x) (Oéx;go), j=h and (4.1).

(ii) For each Ap,h,H and nl,ngsN with nl#n2, there exist q#p, j and J such that
alx)=p(x) (Q;x;é), j=h and

(L.3) A€ C(Aq,j,J) (n#nl, n2). B

Nextly, let us consider another Sturm-Liouville operator A‘,J hoH* with o(A b
sy Pi1,

= * * * s . . 5]
H*) {An}n=0 for H¥#H, along with Ap,h,H and its eigenvalues {An}n=o'
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Theorem 14 {Suzuki [36]).

(i) Suppose

(L.h) AL E G(Aq,j,J)’ A e G(Aq,j,J*) (0=0,1,2,%°)

for qul[O,l], jeR, JeR and J*%cR. Then,

{h.5) (4,d,7,9%) = (p,h,H,H*)

follows.

(i1) Suppose

(L.6) A, € o(Aq,j,J) (n#nl), At e o(Aq’j’J*) (neN)

and either J=H or J*=H* for qul[O,l], JeR, JeR, J*eR and nleN. Then (4.5} fol-

lows. [

(ii) of Theorem 14 is an improvement of Borg [2], Levinson [17] and Hochstadt

[10]. 1In fact, they derived (L4.5) assuming j=h, J=H, J*=H¥* and

(L.6") X

Un (1’1=1,2,"'), }\‘)n(' € O(Aq,j (n=0,1,2’--.),

J*)

)

where {un}n=o=0(A .

0 J) (-“<uo<ul<"'*m). A proof of (i) of theorem 1L can be
k] b

found in Levin [16]. Levitan-Gasymov [18] reconstructed {p,h,H,H*) from {Xn,ki |
n=0,1,2,+*+} under suitable conditions.

The converse of Theorem 14 is obtained:

Theorem 15 ([36]).

(1) For each (p,h,H,H*) and nlsN, there exist (q,j)#(p,h), J#H and J*#H* such
that (4.6).
(ii) For each (p,h,H,H*) and nl,neeN with nl#ng, there exist {q,j)#{p,h), J and

J¥ guch that J=H, J¥=H* and
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(L.7) A e oA ) (n#nl, n2), M e O(Aq,j,J*) (neN).

(iii)  For each (p,h,H,H¥*) and nl,nzsN, there exist {q,j)#(p,h), J and J¥ such

that J=H, J¥=H¥* and

(L4.8) A e oA ) (n#nl), A*¥ e o(A
n

n .3, ) (ofny). O

q,J,J¥

(1) and (ii) of Theorem 15 are generalized as follows by the G - equation. Recall

the set G defined before Theorem 2:

-
* * 3 i =
Theorem 16 ([36]). Let (p,h,H,H*) (H#H*) be given with {An}n=0 O(Ap,h,H) and
[ee]
* =0 (A ini <n_<n <ese<p < i -
{An}n=o a( p,h,H*)' Let, furthermore, N be finite and O=nl n, < be inte

gers. Then, (q,j,J,J%) satisfies

(5.9) A€ o(Aq,j,J) (n#ng; 1<), A% ¢ O(Aq,j,J*) {neN)
if and only if there exists GeG with

(L.10) G'(1) + (H* - (c+9)(1))a(1) =0

such that

(4.11) q=p+ 2;%;(@@), j=h+ (Ged)(0), J=H-(6-0)(1),

J¥ = H¥ - (G9)(1).
Furthermore, the correspondence between (q,j,J,J*) and G is homeomorphic. 0O
Hochstadt [10] showed more weakly that if j=h, J=H, J¥=H* and

(4.9*) A = (n#nl; 1<R2N), A: e oA ) (neN),

n n q,J,J%

then q satisfies the first equality of (L.11) for some GeG.
Finally, set

Ci[O,l] = { pec*(0,17 ] p(1-x) = p(x) {0<x<1)}.

We say that A is (spatially) symmetric iff pECi[O,l] and h=H. Suppose that

P,h,H
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A and A are s etric., Put O(A
p,h,h Qsdsd ym (

J,J)={un}n=0 (-m<uo<ul<.'.9m)' Then

o) =Pty (hgh <o) and ola

a,

Theorem 17 (Suzuki [38]).

(L.12) o= An (n=0,1,2,+°+)
implies
{k.13}) A = A 0

Qs dsd p,h,h’

The converse of Theorem 17 holds. More precisely,

Theorem 18 ([38]). Let a symmetric operator Ap be given with o(A )=

,h,h p,h,h

{3} 7 . Let n eN. Then a symetric operator A
1 P q

=0 i3 with G(Aq,J,j)={pn}n=O sat~

sd s

isfies

(b.1k)} W= A (n#nl)

n n

if and only if there exists gECE[O,l] satisfying (G - equation)

(4.15) e - (tapcn, 0+ p =2 ds (09
with

(4.16) gl1-x) = (-1)" Tg(x)  (0zx<1),

such that

(4.17) q=p+ 2§%(g¢(-,xnl)), J =h + g(o).

Furthermore, the correspondence between {q,j) and g is homeomcrphic. [

Here the notation (2.6) of ¢(+,A) is adopted. Since such gZ0 as (4.15)-(L4.16) ac-

tually exists, for each symmetric operator A and nlEN we have a symmetric op~

erator A satisfying (4L.14) in spite of A A
0s3.d ying (L.14) in sp a,3,57,0,h

oo
In this way, {An}n=0 characterizes a symmetric operator A

p,h,h

o.hah Naturally,
> 3

we wonder if (4.1L) combined with j=h implies q=p. Actually, the study of (L.15)
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gives

Theorem 19 ([38]). In the following cases, (4.14) with j=h implies {k4.13)

for s etric operators A and A :
v P p.h,h 7% A 1,5
(1) n, = 0
(ii) A e o(A°),
n, hs)

2
Henceforth A; denotes the realization in L2(O,l) of —é§2+p(x) with Dirichlet
=0. [

boundary condition: o x=0='|x=l

Borg (2], Levinson [17] and Hochstadt [10] proved Theorem 19 for the case of (i).

Recently, we have succeeded in proving the converse of Theorem 19. Put O(A;)

={x°} ®
n

— o Okeans © 3 3 > =)0
a=1 ( oo<)\l<)\2< »o), Tt holds that Xn EO(AP) implies nl=1 and An A

1 1 ™M

Theorem 20 (Suzuki [391). Let a symmetric operator A and an integer ny2

p,h,h
: ; = *® ° 01 ® _fpo
1 be given with G(Ap’h,h)-{kn}nzo. Suppose Anl#knl, where {xn}n=1 O(Ap). Then,
xR
there exists a unique symmetric operator Aq,j,j with G(Aq,j,j>_{un}n=0 such that

a#p, (L.14) and j=h. Furthermore, such qui[O,l] is given by

(1.17) a=p-2E),
where
(4.18) L=1L{x) = ¢*‘(x,A; )d)(x,)\n ) - ¢*(x,k; )¢‘(x,kn ) (>0).

1 1 1 1
Henceforth ¢*=¢*(-,)) is the solution of

2

Tax?

(4.19) ( + p(x))o* = Ap¥*,  ¢*(0,A) =0, ¢*'(0,A) =1. O

Namely, for each ptci[o,l], heR and nleNE{O,l,B,---}, the set

Q= {qui[O,l] | ola Y={u }n:O satisfies (h.14)}

q,h,h n

coincides with {p} if and only if either n =0 or kn =k; {n
1 1
coincides with {p, p-2(L'/L)'}. For given pECi[O,l] and n

l;l), and otherwise

lil’ Fig. 2 describes
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® =o(

[eo]
. . . ) = =
the set of (g,h) which satisfies (h.14) for {un}n=0 o] ) and {An}n=0 oA n,

A
a,h,h

h). A bifurcation structure can be seen. llere hn =5'(0)/s(0) with s?0, (—§%2+
1
p{x))s=x° s and s(1-x)=(-1)™s{x). Tt holds that A =A° 1if and only if h=h_ .
n n, n n
h 1 1 1
h=h [y " /
I
af {n,>1)
: 1=
} q

Fig. 2 -
L\--2(1';'/1,)'

The key to the proof of Theorem 20 is the following theorem, which states =a

relation between O(Ap W h) and O(A;) and by itself is interesting:
L] 1

Theorem 21 ([38]). For p qul[O 1], 1let o(A%)={3°} °, o(a®)={1°} = . Let

———= T ? g T hs) n'n=1’ q n ' n=1l

nleN*E{l,z,---}. Then

(4.20) u; = A: (n#nl)

if and only if there exists heR such that

(4.21) uo= An (n#nl),

). Furthermore, in case of q#p, we have

[ea] [s0]
for {un}n=0_ (Aq,h,h)’ {An}n=O_O(Ap,h,h

(4.22) W=

We conclude this section by the following

®
Theorem 22 ([39]). Let A and A ., . be symmetric operators with {i_ }
I (139] p,.h,h Qsdsd ym P n n=0
Y. Assume (L.1l) for nlcN and also

o«
=c(A Y and {u }  =ola . .
p,h,h Lln n=0 AQydad

[}

(q{0)-p(0)) = (J+h)(J-h).

]

(h.23)

Then, (4.13) follows. [

Thus, (L.23) is more powerful than j=h to get unigueness.

Similar results to Theorems 19-22 are expected for the problems considered
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in Theorems 12-13 and Theorems 1L-16. Furthermore, it would be interesting to

consider
(k.147) uoo= A (n#ng; 1<A<W)
n ==

for (1.14) and to study similar problems to those in Theorems 19, 21 and 22. We

shall discuss them in a forthcoming paper.

85. Inverse spectral problems for Hill's egquations.

In this section, we refer to our results on Hill's equations obtained by sec-
ond deformation formula. Recall that Sl denotes the compact interval [0,1] with
end points identified.

For pECl(Sl), let us consider Hill's equation

2

-é%z + plx))o = A¢ (o< <)

(5.1) (

for AeR. The discriminant, the trace of the monodromy matrix M(X) (see Magnus-

+
Winkler [19], for example), is denoted by A(X). The solutions of A(A)=-2 are de-
noted by2 {)\n}n:O with -} <A A <Aghy <eerso. Let Azsn be the realization in L(S
} of -é§2+p(x), where S' is the compact interval [0,2] with end points identified.

1

Tt is known that {An}njo coincides with O(Ai), the eigenvalues of Ai with multi-

N ~g )
plicities counted in. Let ¢n be the eigenvalues of Ap corresponding to An’ nor-
malized by ||¢nI!L2(Sl)=1. Then, it is also known

~

6 (x41) = fpn(x) (00,3 (mod 1)), 6 (x+1) = -J;n(x) (n=1,2 (mod U)).

~ ~

a = = cee i id
See [19], for these facts. Set In (Azn_l,kgn) (n=1,2, ). Then, p is said to be

of N - "finite band" iff In=¢ (n#nl; 1<4<N) for some O<n1<n2<-'<nN<w. Hochsatdt

. 1,1, . P o, 1
[9] proved that if peC (S~) is of finite band, then peC (S57).
00 1 . ’\S ~ © ~ ~ ~ ~ ~
- fi i = < e
Let peC (S7) be of N - finite band with (Ap) D‘n}n=0 (_m<Ao<xl;A2 )\}<=)\}f
o), Set In=(k2n—l’A2n) and [In}=[A2n_1,A2nJ for n=1,2,**+, and assume
= L 1<9<
(5.2) 1 o (n#nz, 1<0<N)
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~ ~ ~ A

<n <p < < & C (Sl) it (;S)_{A } ( <A <1y <Yy <Yy <
EE R (2o = 00
for 0<n n2 nN . Take another g€ with © u 0 U u] u2 us Uh

0

~

1. Then,

) and [Jn)=[u2n—l’u2n

Coae =
»0), and set Jn (u2n-l’U2n

Theorem 23 {Suzuki [40]). Suppose that for each n#n2 {1<4<N) there exists

some m{n)eN* such that
{5.3) 3 1=11 ] (n#ng; 1<A<N).
Then,

(5.4) ; = K (n=0,1,2,%°)
holds. [J

Hochstadt [8] showed that conversely

(5.5) [Ta(ay) = Maa)) (k<)

. . w©, 1 e
implies (5.4), assuming qeC (S7) also to be of N - finite band.

We conclude the present article by characterizing the set

0 = {qec™(5Y) | (5.4) nolds for {u ) “= (&)

q
through G - equation. Set ®=t(¢o,¢ ’¢n(l)+l’...’¢ (n)? n(N) JeC (Sl 2N+l)
Al A~
0
*a(1) 3
n(1)+1, 0
A= '.' R
0 Ao 3
a(N)+1
and
G = {GECm(gl*J?N+l) | 8 = t(go,gl,él,°°‘,gN,;N) satisfies
(5.6) L0 = [(22G0) + T - A0 (xeR)
' ax? dx p
(5.7) g (x¥l) = ( 1)“(“g2(x) (0<82N), ;g(xﬂ) = (-1)“(“;11(;() (124<K)
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(5.8) a(x)*8(1-x) = 0 (xesh)1.
In (5.7), the notation n{(0)=0 is adopted. Then,
Theorem 24 ([L40]). qeQ if and only if there exists GeG such that

(5.9) a4 =+ 2(cee).

»®

Furthermore, the correspondence between q and G is homeomorphic. [I

Mckean-Moerbeke [21] showed that G is homeomorphic to TN, the N - dimensional to-

rus. We conclude that so is G by Theorem 2L, However, the direct proof of GZTN

has not been obtained yet.

Footnote

¥ This work was supported partly by the Ffiju-kai.
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1. Introduction

We consider a gas flow having a prescribed constant velocity c¢ € &” at
infinity and passing by an obstacle (¢ Rn. Such a flow has been discussed by
setting an exterior problem for the Euler or Navier-Stokes equation. There are
many literatures on the existence and stability of stationmary solutions for the
incompressible case, but few for the compressible case, which gives a better de-
scription of gas flows. We mention the works [2], [8] in which the compressible
Euler equation is solved for small c¢ on the existence of two-dimensional isentro-
pic, irrotational stationary flows, whose stability, however, is still open. We
should also mention [7] which solves the compressible Navier-Stokes equation in
the large in time for c¢ = 0.

The aim bere is to discuss the exterior problem for the Boltzmann equation
describing our gas flow, and specifically to show for n 2 3 that if c¢ 1is
small, then stationary solutions exist and are asymptotically stable in time.

The special case c¢ = 0 has been solved in [1], [9] in the large in time, for
which stationary solutions are trivially given by Maxwellians. When ¢ # 0, non-
trivial stationary solutions appear.

Put £ = R\G. We assume that (¢ is a bounded convex domain in R® with

piecewise smooth boundary 3¢t = 9Q. Let f = f(t,x,§) denote the (probability)

313
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density of gas molecules having the position x € @ and velocity & ¢ R" at time

te B,. Then we shall study the following nonlinear initial boundary value prob-

+

lem on f.
A.aa) 2o v £+ Qe (t,5,5) ¢ R, x @ x R"

«la 3t x Q ) > 3 X + ’
(1.1b) £+ g (E) = exp(-|E-c| 212y, xl » @y, (,6) € R, * R,

- + -

(1.1e) v =M f, (t,x,8) € R, * 57,
(1.1d) f[t=0 = £y (x,£) ¢ 0 x R™.

The equation (1.la) is the Boltzmann equation, where < denotes the inner
product of R" while Q, called the collision operator, is a quadratic integral
operator in the velocity variable £ whose kernel is the collision cross section
specific to the intermolecular potential. We assume the cutoff hard potential in
the sense of Grad, see [3].

In the boundary condition (1.1b) at infinity, gc(E) is a Maxwellian which
describes an equilibrium state of a gas moving with the mean velocity c.

The boundary condition on 99 = 30 1is (l.lc), which expresses reflections
of gas molecules by the wall 8f. Let n(x) denote the unit outward normal to

30 at x e 3%, and put
St = {(x,E) € 3 x Rn| n(x)'5§0} (same signs).

+ +

Then Y  are the trace operators Y f = f| +» and M is an operator which maps

functions on S+ into those on S . If the reflection at x € 3R causes a de-

terministic change of molecular velocity from m(x,&) to &, then we are given a

- +

map S 3 (x,&) * (x,m(x,§)) ¢ S and

+
f

(1.2) My £ = f(t,x,m(x,£)).
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For example, m(x,&) = &2(£*'n(x))n(x) for the specular reflection and m(x,£) =
-£ for the reverse reflection. We employ the regular reflection law of [6] for
the function m(x,%). Non-deterministic reflection laws are also possible phys-

ically, an example of which is the diffuse reflection

(1.3) W= [ m(x,E,£")E(t,x,E)dE" .

n(x)*£'>0
This was discussed in [4], and we impose on the kernel m(x,£,£') conditions an-
alogous to those given there, so as to include a wider class of M than that of
(1.3). Furthermore, M may be any convex linear combination of (1.2) and (gener-
alizations of) (3).

Besides (1.1), we shall study the corresponding stationary problem:

£V £ + Qlf,£] = 0, SRR R
a4 £+ &), (x| > o), £ e R,
vE = e, (x,£) € 5.

That Q[gc,gc] =0 for all ¢ 1is known [5], while in general, Y_gc = My+gc
for ¢ = 0 but not for ¢ # 0, as is the case with the specular and reverse re-
flections. Therefore 8g solves (1.4) for ¢ = 0, and it is natural to expect
solutions to (1.4) for small ¢ # 0 which slightly differ from g and tend to
go as c¢~ 0.

The existence of such stationary solutions has been shown in [10], using a
classical implicit function theorem for =n = 4, but a theorem of Nash-Moser-
Nirenberg type for n = 3. In §2, we will give a simplified proof showing that a
classical one is also useful for =n = 3. This became possible by getting non-
uniform estimates in the parameter c¢ which diverges as ¢ > 0 but can be com-
pensated by the closeness of solutions to 8-

Further, it will be proven in §3 that whenever the initial f0 of (1.1d) is

sufficiently close to a stationary solution, (1.1) has a unique solution in the

large in time, which approaches the stationary solution as t ~ ® in the order
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of (L + )%, a> 1/2. The proof is carried out with the aid of nice decay esti-
mates in t of the semigroup for a linearized equation of (1.1). The proofs

will be only outlined. See [11] for details.

2. Existence of Stationary Solutions

Putting f = g, + gé/zu, we rewrite (l.4) as

2.1a) £V u+Llu+Tluu] =0,  (xE)e€ QxR
(2.1b)  u=0 (| » =), £ e R

(2.1¢) Eou =h . (x,£) € 8.

where we have defined

L -1/2
LCU - Zgo Q[EC.

1/2
go/ u],

/2 1/2

2 1
Q[gO us gy vl

Mlu, vl = g,/

+ - Y2, 4+ 172 YoovT _owmt
MOY u = (Y go )MY (go u)s MO_Y MOY ’

-1/

- 2 -
ho= ey T Hon e, - Y8

The operator Lc have been investigated extensively in [5] for the case
¢ = 0, most results of which remain valid for c¢ # 0. For example, Lc has the
decomposition
= - X 4
L, v (&) K.,

0 n
where VC(E) € LZOC(RE) and

2.2 o<v s @+ EhTV E) <y,
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with some constants Vir Vo >0 and 0 < vy <1, while Kc is a compact operator
on LP(RE), 1 <p £,
In order to state the precise definition of the solution to (2.1), we need

the spaces P = Lp(Q x RZ) and

WP = {u e LP] (B0 + v (B)u e 1P,

P = 1Pt In(x) +€ldo_d£).

. : ; +
Using (2.2), we can show the unique existence of the trace operators Yy~ such

that

+ .+ - -
Yo e, Y2, T e BWP, v,

* . o n
Y u = ul . if ue CO(QXR

).
ot £

Here and hercafter B(X,Y) will denote the set of linear bounded operators from

a Banach space X into another Banach space Y. By our assumption on M,
Mo BT, PT), h e YT wieh b )l > 0(fe] > 0,
for all p ¢ [1,%], so the following definition makes sense.

Definition. Let p € [l,»). u 1is said to be an Lp—solution to (2.1) if

1) uew, Yue Yy,
i) Tlu,u] € LP,
iii) u satisfies (2.1a) and {(2.1c) in the spaces P and YP'T

respectively.

Note that if p< ®, ue 1P satisfies (2.1b) in a generalized sense.
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Define the linearized Boltzmann operator BC by
D(B) = {oew] yuevP, ﬁou = 0},

(2.3)

B = -5V +1L.
c X c

Suppose BC possess an inverse B;l. Suppose further the linear inhomogeneous

boundary value problem

-V ¢+ L ¢ =0, in 0 x BD,
X c £
2.4y >0 (x| =, in mg,
M ¢ =h, on S,
[¢} c
possess a solution ¢ = ¢C. Then (2.1) can be rewritten as

(2.5) u + Bc—lr[u,u] -¢ = 0.

It is this equation to which the implicit function theorem is to be applied.

The existence of B;l shall be established with the aid of the perturbation
technique and the limiting absorption principle. The unperturbed operator which
we employ is BC for the case { = Rn, denoted as B:, namely,

D(B) = WP@E® x D),
(2.6) ¢ X 3

B =-£*V + L.
c X c

0 a0
For later purposes we prepare notations. We denote by p(BC) and O(BC)
©
the resolvent set and spectrum of Ec respectively, and for a,s € Uo > 0, we
put

T (o) = e gl Rer z <},

I(a, o) = (X« 76+(-oo)l -Re) < aoIImAIZ},
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Ble ] = {e e R"| ‘c] = ¢}

Further, if E 1is a metric space and X 1is a Banach space, BO(E;X) will denote

the Banach space of {-valued, bounded and continuous functions on E.

We need
also the space
LP@EY = fu] a+e)Pu e LP@ERYY.
BUE £
A spectral analysis of B: is found in [3] for the special case ¢ = 0 and
can be carried out similarly for ¢ % 0, yielding the
Theorem 2.1. Let p = 2. For any c_ >0, there are positive numbers a_, kg

and a, such that the followings hold for all ¢ « B[co].

<) p(B) > Xa, o) \ {0}, 0 € o(BD).

i) B: has the orthogonal decomposition such that
o -1 n+2
(A-B)) = 0. (x,c).
=0
Here

Uyhe) € BO(E, (-0,) « Ble )| BT,

and for 1 < i < n+2,

~1 \ -1
Uy Oe) =% Xkl sic ) (o G e PG00 s

where SFX means the Fourier tramsformation with respect to x, k ¢ R" o dual

vartable to x, X([k,3<o) the characteristic function for the domain |k| < Ko

and
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A (ko) =uj(]k]) + ikec i=/v/1

2

by = -8t odkl® o« > 0y,

with coefficents ocj < R, Bj > 0, while Pj's are orthogonal projections on

Lz(ng) LBy

1

0 (3 %4) with
Py(k,e) € BBl IBlc ] m(f(ﬁ{‘). 15 ®E))
for any p =2 2 and B € R.
In view of (i) of the above ﬁz is not invertible on B(Lz) and it is seen

from (ii) that this is because Uj +o (A + 0) in B(Lz) for 1 < j £ n+2.

However we can establish the limiting absorption principle in the sense that U

3

has a well-defined 1limit as X + 0 if different spaces are chosen. More precise-’

ly we need the space
pPyr _ TN D .0
LB LS(RE’ L (Rx)).

Theorem 2.2. Let 1< q<2<ps®, 8¢ [0,1), £=0,1.

Put Yy = % - % and suppose

Let a, c , O be as in Theorem 2,1. Then for 1 £ j < n+2,
5} L ¢} .2 s
el 0,0, e) (1P, (0,00) " ¢ B (a0 0)  Bleyls B, 1))

Proof. Write @ =\}Xu. It 1s not hard to see that
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bol | = clil .
holds if p 2 2 and %~+ %1 = 1. Therefore, by virtue of Theorem 2.1,
I]Uj(X,c)u” @ < CH?;Uj(X,c)u“ Pl

<o Den ool Ikl PRl Pk yHP
k|S<o J LE

in

=1, Holder )

0 =

. 1
Y IYIIU|Iqu’2 ( q' +
0

A

c IYMU“LQ,Z )
where

= (L e oo T M Y aiyY
A

1A

¢, S In=caog =8 1 Brakeey T MY aiY

[k =<

cle|™

A

The last inequality is valid only if (2.7) is fulfilled. The continuity in A
and c¢ can be proved similarly.

00
In order to link Bc to Bc’ we need the solution operator RC(A) to the

inhomogeneous boundary value problem
(A +EV_+v (E)u =0, in Q x ®%,
Y u = h, on S .

It can be shown that a unique Lp-solution u = RC(A)h exists and RC(X) €

B(Yp’_, Wp). Let e,r be the extension and restriction operators;
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eu =u in §, = 0 in m“\ Q, u ¢ Lp(Q),

ru = ul u e Lp(Ri)-

Q

Define the operator
T 0) =M ro-) ek R )
c o c c e ’

which can be found to be in BO(X(ao, oo)xB[co];m(Yp’—)) for all p e [2,0]

where a,s Co» oo are those of Theorem 2.2. Furthermore, we can see the

Proposition 2.3. Let n 2 3. There erist positive numbers ag, ¢» 0, such
that 1 € D(TC(X)) for all p e [2,2], X € Z(ED, 50) and ¢ € B[Eo]. According-

ly there exists
(-1 0Nt e 2@, 6 yxBlE LB(PT))
c o’ "o o’ '

This fact is essential for the proof of the existence of (A—bc)_l. Indeed,
solve the eguation (A—Bc)u = f by letting u = r(A-ﬁZ)_lef + v After some

manipulations, we get
-1 _ el I s I N -1 I ]
(2.8) (=B = x(-B) e + (v r(F-B )T ) (-1 ) T H r(-B)) e

where * denotes adjoints. This is a substitute for the second resolvent equa-
tion in the perturbation theory of linear operators. Combined with Theorems 2.1,
2.2 and Proposition 2.3, it provides necessary informations of Bc. First, we

2
see that in L7,

(2.9) P(B) > z (50, oo>\{o}
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for c¢ ¢ B[Eo]. Moreover, applying to U0 of Theorem 2.1 the iterative scheme
L 2

of Grad [5] which makes possible to deduce L -estimates from L -ones with the

aid of nice properties of the operator Kc’ we can establish the limiting absorp-

tion principle for Bc at A = 0 and obtains the inverse B;l, regardless of

(2.9). Put

XP = > n P,
BT Rl
P

29 = 1? nL‘(‘)’2 ,

n+2
and define AC = \)C(E)X, PC = jz=l Pj(O,c).
Theorem 2.4. Let n 23 and 50, Eo, 0, > 0 beas before. Suppose 1 <q <2

$Sp Lo, B> % 6 € [0,1), 2 =0, 1 satisfy

Put for a € [0,1]
vOhe) = (-3 7 (- ) u(e).

(1) If ule) e ﬁ”(B[EO]; Xp) and Aiu(c) € Lf(B[Eo]; zY), then

vos,ol < clel™ du@] | + 1% ),
xg xg z1

for all X ¢ 2(2_10, 50), c € B[EOJ.
(i4) If in addition u(e) € BO(BIE ) X8_ ), b u(e) € BOBIE 15 2

with € > 0, then

™00 € 8%C G, 5, Bleyls X))
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(iii) Under the condition of (i) (ii) with o =8 =2 = 0, v(0,c) € WP,

Y v(0,e) € YT, Mv(0,0) = 0 and -B,v(0,¢) = u(c) holds in 1P.

Combining this with the estimate in [5] for T and noting that the nullspace

of PC is invariant in ¢, we have the

Proposition 2.5. Let n2 3 and Eo be as before. ILet
+9
(2.10) B ¢ [0,1), pe [2,4] n (rT-TéE , nH), B> %Jr 1,

Then there is a constant C2 0 and for any c € B[Eo],

iA

b Ml < clel Wl bl

%

: - 2
with o = a(1 + p).

The inverse B;l obtained in Theorem 2.4 is also useful to solve (2.4), If

¢ =R (OO)h + 5 is substituted, it is reduced to B 5 = -K R (0)h . Therefore
c c c c c e c

_ a1
(2.11) ¢C = Rc(O)hc BC KcRc(O)hc'

Proposition 2.6, Let n >3 and Eo be as before and let

f
6 e (0,1), pe (2] n (=, =], B =0

(7) ¢c of (2,11) is a unique LP-solution to (2.4) for c € B[Eo].

(ii) o < 50(3[501; x5y with

o]
< 2 -1 - - L
M‘“‘“xg sclel 5, o, =1-002-0.
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These two propositions enable us to apply the contraction mapping principle
to (2.5). It should be noted, however, that if 8 > 0, (2.11) becomes meaningless
when ¢ * 0, and that if n = 3, 6 = 0 1is excluded since then (2.10) becomes vac~
uous for p. But this difficulty can be removed as follows. If 8 € [0,2/7),
then a, <o, for p 2 2, and we can choose an o such that a, < a < Oye Put

1 2 1

u = ]c]uv in (2.3) to write
v = G(v,c) = —|c|ch_lF[v,v] + Icl_a¢c

for ¢ % 0. Put G(v,0) = 0. For functions v = v(c), define the nonlinear map
G[v] by E[V](C) = G(v(c),c). What is to be proved is that E is a contraction
on a ball of the space
P _ o = . p 0 = . p
Vg ¢ = L (Ble 15 Xg) 0 B (Ble 15 Xg_ )

€ bl

if € > 0 and if Eo > 0 is sufficiently small. By virtue of Theorem 2.4 (i)
(ii) and Proposition 2.6 (ii), E maps Vg c into itself, and by the aid of
y

as I,

Proposition 2.5 and writing the norm of Vg e

Weroill < c le IP0MIP + ¢l I,
Moty - Govrall < cple [Tdil + livibily - v,

where 0 =0 - al >0, T = @2 - & > 0, whence the desired conclusion readily fol-
lows. Now G has a unique fixed point v = v(c) € Vg c and u, = Ic}av(c)

E]
solves (2.5) uniquely. Theorem 2.4(iii) and Proposition 2.6 (i) then complete

the proof of the

Theorem 2.7. Let n 2 3 and let
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, nt6),

2 n+d
8 e [0,7), pe [2,4] n (s

n+o-

1 n
o ¢ {0, 1-8(2—53), B > 5+ 1.

Then there exists a positive number éo and a constant C 2 0 such that for each

ce B[EO], (2.1) has a unique LP_solution u,. Moreover u, e Vg ¢ for any
’
e >0 and
lu ] < clel®.
c'yP
B
. _ 1/2 . . .
Obviously fC = gC + &g uc is a desired stationary solution to (1.1) and
£, > 8y (e > 0)

3. Stability of Stationary Solution.
In (1.1}, put

1/2

- - 1/2
f = fc tgy wW=g, tag (uc+w).

Then w = w(t,x,f) should solve

W .
Y -E'wa + Lcw + ZF[uc,w] + I'[w,w],

w> 0 (]xl +oo),
(3.1)

If we would have a nice decay estimate in t of the linear semigroup for the
linearized equation to (3.1), then we could prove the existence in the large in

time for the nonlinear problem (3.1) by the technique developed for the case
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¢ =0 (see e.g. [1,9]). However such an estimate is difficult to deduce because
of the presence of the term F[uc,‘] which is an operator with ''variable co-
efficient", and so we have to linearize (3.1) igporing also this term. Thus we
again meet the operator BC of (2.3). Suppose it generates a semigroup

th
Ec(t) = e

Then if w = w(t) 1is a solution to (3.1), it satisfies
t
(3.2)  w(t) = E (tyw_ + [ E (t-s){2T [u_,w(s) |47 [w(s),w(s)]}ds.
c °o 3¢ ¢

When u, = 0 as is the case with ¢ = 0, the existence in the large in t for
(3.2) can be shown if the decay rate Ec(t) = O(tdY) is available with v > 1/2,
but in order to dispose of the extra linear term F[uc, w] when uc ¥ 0, the
decay with v > 1 is required as well as the smallness of U

The desired decay shall be found starting from the semigroup

o
o CBC
Ec(t) = e

generated by ﬁz of (2.6). Recall that a semigroup etA is the inverse Laplace
transform ,[fl[(X—A)_l] of the resolvent of the generator A. Apply this to
ﬁ:. By virtue of Theorem 2.1, we have the orthogonal decomposition

n+2

E (t) = Z=

-1
j v, (e,0), vy =L (v,

0
2 .
on L7, and can find that

I vyce.ol N
(3.3) V. (t,c) < Ce ,
0 B(L)

while for 1< j < nt2,
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X (k,edt
jxvj(:,c)u = X({kISKo)e J P, (k, )8k, ).

Proposition 3.1. Suppose 1 <q <2 <p <> gnd m=0, 1. Put

Then there is a constant € 2 0 and for all c ¢ B, t 20 and 1 <3 < n+2,

Y1~

N3

v, (t,e)(x =P, (0,eN™|| < Cc(1+t)
J J B

2 o
(CP A

Proof. It suffices to proceed exactly in the same way as in the proof of

Theorem 2.2, in this time with

—Rekj(k,c)tlo

T (&)=( J e (k™ 94K
61 [k|=
0
2
-8, lk|“t/6 -y
s( S e 3 e|™84k)8 < caarey 1,
k] =
[e]
where ¢ = 1_1 .
q p

Take the inverse Laplace transform of (2.8) to obtain
_ @« - * * o~ o
(3.4)  E(t) = rE_(t)e + (v rE (£) ) *D_(t)*M rE (t)e
s 1 ~1
where, writing TC(X) = TC(A)(I—TC(X)) ,
_ 1 1 _ =11
D (6) = 1 +D(v), D (t) =L [T,M]1,
and * means the convolution in t;

£(tyeg(t) = S E(t-s)g(s)ds.
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*
No confusions arise with the adjoint symbol .

Proposition 3.2. Let n =2 3 and EO > 0 be as in Proposition 2.3. For 8 €
[0,1), there is a constant C 2 0 and for any c ¢ B[Eo],
=Y
-0 2
o ol o _ = clel™ @+
B(YB’ )

with ¥, = %(n—1+6) if n g odd and = %(n—l) if n is even.

Note that Y, > 1 is possible for n =3 only if 8 > 0. Propositions
3.1, 3.2 and (3.3), substituted into (3.4), give desired estimates of Ec(t) and
Ec(t)*, by the aid of the scheme in [5] stated earlier. More precisely if we
write the right side of (3.2) as H[w](t), we get the following estimates. In
Theorem 2.7, rewrite p, @& as s uo and impose the additional condition

< n. Let
p, < n e

pe (2410 (@-H7h G-,

0
ge (L2l 0 (1, G+,
e (0,a), B>7+1
Y = min GG - D), %(Pﬂ;+ v, 3G+ ).
Then vy > 1/2 and
a1l s caro vl + el alulblivl,
Xa %Enzd

B

W (0)-Hlw' ) ()] s e+ ™ le |~ arllull+flv I lhv-wl
X
B8
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where a = ”UC” and ”p"l=rsup(l+t)Y”w(t)” . By Theorem 2.7, ]c!—ga

P

X0 X

B B8
uo—e

< ¢fe| >0 (c ~ 0).
It then follows that if v is small in Xp n Zq, and ¢ 1is small, H 1is a con-
traction map on a ball of the Banach space of functions w(t) BG([O,m); Xg)
such that mwm < w, Its unique fixed point w = w(t) is the desired solution to

(3.2). 1In this way we prove the

Theorem 3.3. Let n=> 3 and p, q, B, y be as above. Then there 18 positive

numbers a . a s

1* % such that for each ¢ e B[co] and 1f I‘wouxp 0 < a,

then (3.2) has a untque global solution w = w(t) ¢ BO([O, w); %5) with

p

[weol < a a0
*g

1/

Obviously f(t) = fC + 5 2 w(t) solves (l.1) and f(t) -» fC as t - w0,

showing the asymptotic stability of the stationary solution fc
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On the Linear Stability Analysis

of Magnetohydrodynamic System *)

Teruo Ushijima
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1-5-1 Chofugaoka, Chofu-shi, Tokyo, 182

JAPAN

A mathematical description of Tinear stability analysis

of magnetohydrodynamic (MHD, in short) system of equations
is presented. A way of linearization of ideal MHD system
in a vicinity of an equilibrium was physically established.
We show that the obtained 1inearized MHD system of equations
can be treated as the 2nd order linear evolution equation

in a Hilbert space under appropriate conditions on the
equilibrium. A justification of energy principle is also
established.

§1  THE INITIAL BOUNDARY VALUE PROBLEM OF THE LINEARIZED MAGNETOHYDRODYNAMIC
SYSTEM OF EQUATIONS.

The governing system of equations is the following ideal magnetohydrodynamic
system.

In the plasma region Qp,

(1) %%-= -p div v,
(2) o -g—;’ = _yP + JxB,
(3) & (™) =0,
(4) %% = -rot €,

(5) divB =0,
(6) rot B = ud,
(7) E+ vxB = 0.

«) This work was partly supported by Grant-in Aid for Special Project Research
on Energy {Nuclear Fusion) of the Ministry of Education, Japan.
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In this model the plasma is considered to be a fluid spreading over the bounded
domain Qp in the space R® with the density p and the velocity vector v. The
scalar function P is the pressure, and the 3-vector functions B, E and J are the
magnetic flux density, the electric field and the current density, respectively.

The positive constant p, and y are the magnetic permeability of the vacuum, and

the specific heat ratio. Here we used the material derivative: é% = é%-+ (v, v)
with the gradient operator v and the 3-dimensional inner product: ( , ). The

symbol x denotes the exterior product of 3-vectors. The equation (1) is the
conservation of mass, (2) is the equation of motion, (3) is the adiabatic condi-
tion coming from the conservation of energy. And (4), (5) and (6) are derived
from the Maxwell equation under the assumption of the superiority of the magnetic
field. The constitutive 1law (7) is Ohm's law with infinite electric
conductivity.

Now we consider the closure of plasma region Qp is completely contained in a
bounded region Q, whose boundary ' is considered to be a completely electrically
conducting wall.  The domain Q-ﬁb is the vacuum region Q- Let Fp be the
boundary of Qp. Then the boundary an of Qv is the union of " and T
(see Fig. 1). Hereafter Qv is assumed to be connected.

In the vacuum region 2, the

following conditions are assumed

to hold:

(8) p=P=0,v=J=0,
3B _

(4)v i rot E,

(5), div8 =0,

(6)v rot B =0

On the boundary T, the

following boundary condition

is assumed:
(9) nxE =0
where n is the unit normal Figure 1. Illustration of TOKAMAK type

plasma confinement
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vector of T. This represents the effect of complete conductivity of the wall T.
It is noted that the boundary condition

(10) (B,n) =0

is compatible with (9) since (9) implies (rot E,n) = 0 which may imply

2 (B,n) = 0 by (4), .
On the boundary Fp the following 3 connection conditions are imposed:

(10)p,v (Bp-n) = (B,,n) = 0,
(1) (Ep + Vp Bp) xn = (EV + vp x BV) x N,
(12) P+ B2=lp2,

P 2up  2p v
Here the subscripts p, and v, represent the limiting values of the subscripted

quantities from the interior of the plasma region Qp, and the vacuum region Qv’
respectively. (]O)p,v corresponds to the requirement that Fp should be
a magnetic surface. (11) represents the continuity of the tangential
part of the electric field in the coordinate system attached to the plasma.
(12) is called the pressure balance condition.  The sum P + é%-BZ is said to be
the total pressure, where B?= (B,B).

Thus we have an evolution problem: (1)n{12) for the ideal MHD system.

A time independent solution of this system with zero velocity and zero
electric field is said to be an equilibrium:
(13) {p,v=0, P,J,B,E=0},
Then an equilibrium triple {P,J,B} satisfies

VP = JxB, div B =0, rot B =l inQ,

p
P =0, div B =0, rot B =0 in Qv’

(B,n) = 0, on ryul,
P+2]—po2=—zlﬁBv2 on ;.

In the work of Bernstein et al. [1], a way of linearization of ideal MHD
system in a vicinity of an equilibrium was formulated. The obtained linearized
magnetohydradynamic (LMHD, in short) system of equations describes the time
evolution of the Lagrangean displacement £{t,r) of a point r of the plasma region

Qp at time t=0. We encounter the following initial boundary value problem:
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PROBLEM 1  Find a pair {£,a} of vector valued functions
£ = E(t,r): [0,°°)><5p +>R® and @ = a(t,r): (0,°°)><§V > R®

satisfying the following conditions:
%E

Pz = -KE in (0,2)q,,
50,1 = 0, 2 £(0,r) = v(r) in o,
(15)4 L(£,0) =0, -(E.n)B = vxa on T,
rot rot o =0 in Q.
nxa = 0 on I'.

In the above problem, we used the notations:
(16) K& = -V{{£,VP)+YP div &} - %'{rot B x rot{£xB)+[rot rot{£xB)]xB} ,

. . ! 1
(17) L(&,a) = -¥P div € + 7 (B, rot(£xB )+(£,7)B )~ 7 (B rot o + (£,7)B)

p
with specified equilibrium quantites P and B. Operators K, and L, are formal

operators defined in Q_, and on T, respectively. The boundary condition:

p p

L(E,a)=0 on T, is derived from the pressure balance condition (12)}. And the

p
boundary condition : -(i,n)Bv=nxa, comes from the continuity condition (11).
The vector rot o represents the variation of magnetic field Bv in the vacuum
region.  The requirement: rot rot o = 0 corresponds to (6)V. Finally the

boundary condition: nxa=0 corresponds to (9).

Hereafter we fix an equilibrium {P,J,B} satisfying the following Assumption 2.

ASSUMPTION 2.

(A.1) Q,Qp and QV are bounded connected domains with € class boundaries.
(A.2) B|Q , and B|Q , have extensions belonging to C*(Q ), and C2(Q ),
p v P v
respectively.
(A.3) P|Q has the extension belonging to Cz(ﬁp), being positive on Qp, whose
p

critical point set CP={reQ H{vP){r)=0} is composed of the finite number

p
of connected components, each of which is either a C3-class simple curve,
or a C3-surface at every point of which B is contained in the tangential

plane.
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(A.4) Either BD never vanishes on FD, or P is bounded below by a positive
constant in Qp.
(A.5) For the exterior normal derivative %%—on Fp along the unit normal vector
n from Qp to 9, the gap: G= g%-%% ]v - 55—(§E-+P)Ip
class function on Fp, where the first, and the second, terms are the one

is a nonnegative C!
sided derivatives from QV, and from Qp, respectively.

§2  THE PLASMA ENERGY BILINEAR FORM AND THE LINEARIZED MAGNETOHYDRODYNAMIC
OPERATOR.

Let Hm(Q) be the usual m-th order Sobolev space of the real valued scalar
functions on the domain @ in R®. The totality of 3-vector functions whose
components belong to Hm(Q) is denoted by mm(Q). Now we introduce the spaces of

pairs {g,a} of 3-vector functions, ﬁ, Vand D as follows.

(1) W= {e=1{¢, a}sw )*H{9,): nxa = -(£,n)B, on Fps mea = 0 on 7).
(2) V= {e={£,a}eH: rot rot « = 0 in 2,
(3) D= (E={g,0}V: e W), L(ga) =0 on T}

~

Define the bilinear form 3(£,7) for ¢

1l

{gabs A = {n,8te H{a))x<H{q ) as

follows:
8(E.0) = a(Ean)ra (£an)4a (aB),
ap(im) = 31(E,n)+32(€,n) >

%»(rot(ng),rot(an))}dr

rot(£xB),nxrot B)}dr,
2

a1(£,n) = [ _{yP div £ divn +
p
&) = Jg HEPIdivn -

p 2

3 B 3

as(i,ﬂ) f Ty 3 |V Ty
1

3V(u,B) = f o, (rot a,rot B)dr,

where n in the expression of as(g,n) is the unit outward normal vector on Fp

1
u
(

+P) |p}(€,n)(n,n)df,

from Qp to Q- It is easily checked that &(£,R) is well-defined for
8.e Hig )< W2, ).
Using the property of the equilibrium in (1.14), and the integration by part,

it can be proved that
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I
P
for any £V with ge NZ(QD) and neV.  From this formula we can conclude the

(kg,n)dr = &(E,n) + L&) (n,mar
following Proposition 1.

Proposition 1 The following identities hold.
(5)  a(E,0) = 8(R,6)  for £,0e W( )< H(a,).
(6) fQ (Kg,n)dr = a(i,ﬁ) for EeD, Nl

P

(7) fQ (KE,n)dr = fQ (£,kn)dr  for EcD,nch.
p P

Now we introduce function spaces VO and D, as follows.

0

(8) Vg = {&e H%Qp}: there is an ab,HKQV) such that & {E,u}cﬁ}.

H

(9) D, = {&c ;Hz(gzp): there is an ac HY(Q ) such that £ - {£,a}eD}.
From the theory of harmonic vector fields written in the book of Morrey [31,

we have the following fact.

.. .
Proposition 2 V0 H (Qp).

For gevo, rot a is uniquely determined. Hence we can define a symmetric
form a(&,n) defined on VOXV0 by the relation:
(10)  alg,n) = (E,0), £uneVy.
For reQD—CP, define 3-vector functions E=(rot B)xe, F=2(B,V)e+Bxrot e where
e=VP/|VP|. For &,ne H’(Qp) and rer-C let

(11} A(g.n) =

P’
rot(£xB) + (£,e)E, rot{nxB) + (n,e)E) + yP div ¢ div n
- — (g,e)(n,e)(E,F).

Then we can show

& = A s 2 T1€ ! .
(12)  a,(g.n) pr plesnidr  for £,ne H (szp)
From this representation of Plasma energy, the following Proposition 3 can be

deduced.

Proposition 3 Let



M= inf (E,F)
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, M= sup (E,F) , N= sup [E]?,
Y‘s’Qp-Cp Y‘st—CP

Y‘€Qp-Cp

(13){

Then we have

(14) 5 ay(£.8)+(kmra)

Ko

where the notation (£,n)

COROLLARY 4  Assume tha
EE
(15) 6= 3n 2u \v " on

1 N 3N o
Smax(ly + ML) 5+ M)

2 a (6,804 (ko) (£,8)ys
7)),
P

£:8)y < ap(£,£)+n<(£,£)x
for £e HY

K= fQ (£,n)dr s used.
p

t
B2

7 * 0

P

on T

(5= + P)|

b’

Then the symmetric bilinear form aK(E,n) defined on VO:

(16) a(e,n) =
is positive definite if
(17) KKy

The following Propo

which was given in [4].

Proposition 5 Let X be

is closable in X if k>k,

VO satisfies

(18)  Jim | £l = 0
and

(19) ml;]n)%o a (g.-& )
then we have

(20) m a (&) =0,

where [l £l y = (E,E)X1/2

a(g’n) + K(g9n)xa E,TKVO,

sition 5 is fundamental to our discussion, the proof of

the Hilbert space {Lz(Qp)}3. Under Assumption 1.1, a

. Namely, if the saquence {gm: m=1,2,-.-} contained in

:O,

and a (e) = a (£,8)!/2,

The preceding argument can be transformed in the frame work of complex

Hilbert space theory.

Under trivial modifications, we can consider the hermitian

form ac{£,n) with the domain Vo=H{qp) in the complex Hilbert space X={L?{qp)}>.
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Let x»ko then a is closable by Proposition 5. Thererfore we have the following

statements (21) and (22) for the completion V of Vo by a -norm.

(21} V is densely imbedded in X.

(22) aK(E,n), which is considered to be defined on V by continuity, is a
positive definite closed hermitian form.

From Theorem 2.23 of Chapter VI in Kato [2], there exists the unique positive

definite selfadjoint operator AK satisfying the following properties (23)n(25).

(23) The domain D(AK) is dense in V with a,-norm.

(24) (AKE,n)X = 3 (g,n) for geD(AK), nev.

K

(5) 0% = v, ana (A %e.8 V%), = a (£m)  for guneV.

K

Now we define the LMHD operator A by
(26) A=A -~ «, D(A) = D(A ).

K K
By a standard argument, this definition (26) is independent of k if k>«,. It is
to be noted that a, are mutually equivalent if k>okg. On the other hand we can

define the operator KO by

(27) Kq& = Ke EcD(KO) = Dg»

which is symmetric by (7) of Proposition 1.

Theorem & A is an extension of Ko satisfying the following properties.
(28) If £<Dys then £¢D(A) and AZ = Kog.

(29)  If £eD(A) nIHZ(Qp), then £eDj.

Namely we have

(30) Dy = D(A) nBZ(R).

0
Now Problem 1.1 can be regarded as an evolution equation in the Hilbert space
X = {L? 3
{ (np)}
dt?
=gy 48 = g0
£(0) = €', $% (0) = &2,
with the initial data {£',£°} = {0,v} under Assumption 1.2 on the equilibrium

2
MIE 4 ae =0, 10,
(31){

quantites. Here M is the multiplying operator with multiplier p and A is the

LMHD operator.
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§3 A REMARK ON THE ENERGY PRINCIPLE.

Assumption 1  tet {p,v=0, P,J,B,E=0} is an equilibrium of ideal MHD system (1.14)

with the properties that for the plasma density p=p(r), being measurable in Qp’

there are positive constants o and ¢ such that

0<psolr)<p<o onQp,

and that Assumption 1.2 is satisfied for {P,J,B}.

Let us define
m(&,n) = [o o(r)(g,n)cadr for £,n<{L2(Qp)}3,
P
ME = of for gs{Lz(Qp)}3.
Denote the Hilbert space {Lz(Qp)}3 with the inner product m(&,n) by Xp.
Define the operator Ap acting in Xo by

1

AQE = p ‘At for geD(Ap)=D(A),

where A is the LMHD operator established in Theorem 2.6.

Propgsition 2 1) The operator Ao is selfadjoint in the space XQ.
2) Let xy be as in (2.13). For KQ>K0/9, Ap+ %5 is positive definite, satisfying

D((A, + Kp)‘/z) = v,

and

alean) + en(en) = (A + )2+ )20) for £ney,

and

aleg,n) = m(ADg,n) for EcD(Ap), neV.

Let O(AD) be the spectrum set of Ap, which is the complement of the resolvent

set o(Ap) of Ap in the complex plane C:

Q(Ap) = {AcC: there is a bounded inverse (A—Ap)'1 from XO into Xp}.

By Proposition 2 O(Ap) is a part of real line which is bounded below.

Let A = inf o(Ap). Then we have
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£ alg,&) a{£,8)
(

= s e lELEY
) a= iy mEE) - M om(EE) "IN, miEE)

n
£eD

Definition 3 An equilibrium {p,v=0,P,J,B,E=0} is said to be stable, marginal,

and unstable if x>0, X=0, and <0, respectively.

The following Theorem may be considered as a justification of the energy
principle formulated by Bernstein et al. [1].
Theorem 4  An equilibrium is stable or marginal if a(£,£)=0 for any
2 = (g,a}cﬂ‘ And it is unstable if 3{§,€)< 0 for some é = {E,a}e@. Here W
is defined in (2.1).

To prove this Theorem we utilize the next Lemma which can be obtained from
Theorem 7.8.2 of Morrey [3].

Lemma 5 For any £ g]H‘(Qp), there is an ap ¢« H'(Q ) satisfying

rot rot o, = 0 in Qv’
(2) § nxag = -(n,£)B on Ip,
nxae = 0 on I,

Proof of Theorem 4 The first statement of Theorem follows from the last equality
in (1) since we have Vcil and a(£,8)= a(é,i) for £eVo.  To prove the second
statement, let £ = {£,a}ci satisfy a(E,£)<0. By Lemma 5, there is an

Qg ¢ IH1(QV) satisfying (2). Let go = {&,00}. Then gué Q-

Let @ = o9 + 0n.  Then
Sv(ao,al) = % ij(rot ap, rot a;)de
= % IQV(Fot rot ag, ap)dr + %‘jrpur(rOt 0gs Nxay )dl
=0

since rot rot ag = 0 on QV and nxa; = 0 on rpur. Hence

3, (o,a) = a (ap,00) + 3 (on,0m).

Therefore

~

al£.8) = a(Eo,E0)
ap(6,8) +ag(6,8) + a (ons) < a (E,6) + a(g,8) + 4

Jlesa)
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=a(g,8) <0

The Jast equality in (1) again implies the assertion.

Finally we add the following Proposition 6 which may give an explanation of

the energy principle.

~

Proposition 6 If the plasma energy a(£,2) attains the minimum i_on the set

Ap {E<W : m(g,£) = 1}, then we have

3) A== _(5_573( ) . in min  alE.g)

U @ZVO m{t,¢ ¢ _(A 5 " eon(a) m(EE

In this case X is an eigenvalue of the operator Ap. The corresponding

eigenfunction ¢ belongs to V, determined by the following generalized eigenvalue
problem:
(4)  Find 9cVo-{0}, such that a(¢,8) = am(9,£)  for &eVp.
Proof  The inequality i;;i follows from the facts §CQ and a(¢,£) = s(i,é)
for EcV,.
The inequality §>\A is shown as follows. Let é = {£,0} ¢ @p give the

~

minimum X of a(i,é) in

W

F):
(5) a(£,8) < a{n.n) for ﬁﬁéo
Choose B¢ H1(2,) such that nxg = nxa on TuT .  Then n = (E,B)eép . By (5)

we have

gv(u,a) < 3V(B,B)‘
For any ¢6{H3(QV)}3 and te R!, we can choose B as B=a+tp. For this 8, it holds
Sv(u+t¢, atte) = SV(¢,¢)t2 + 2Re SV((p,ot)t + 8 (a,a).
So we have as the stationary condition
(6) a,(¢,a) =0 for any oe{H3 (2 )} with | rot ¢l L2(q,) $ 0.
On the other hand, we have the identity:
3 =1 1
av(¢,a) " jﬂv(rot rot ¢, a)dr ” faQV(rot ¢, axn)dl
for any ¢c{(Q,)}° ,
where the boundary integral in the right hand side is understood to be the duality
pair of rot ¢eDi]/2(BQV) and axnen1’1/2(anv). Hence we have

(7) 3V(¢,a) = %—fQV(rot rot ¢, a)dr for any ¢c{47(QV)}3
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Let ®el7(9v)—{0}. Then ¢ = (9,0,0) ¢ LE'(QV)}3 satisfies the condition:
cas 3¢ _ 9% _
It rot ol L2(a,) 3+ 0. (In fact, unless the condition holds, we have ETR Toe
in Qv. Hence ¢=¢(x,)}. And & vanishes on the boundary of support of ¢.
Hence ¢=0.) From (6) and (7)
(8) IQ {rot rot ¢,a)dr = 0
v
for this ¢= ($,0,0). By the same reason, (8) holds for ¢= (0,9,0) and ¢= (0,0,9).
Hence it holds for any ¢ t{lj(Qv)}3. Namely we have rot rot o= 0 in szﬂv),
which implies 269 and &eVq. Thus we obtain i 2 A,

Since we have §_= X, the second equality of (3) is valid. Hence the third
equality of (3) is obtained from that of (1). The fourth equality and the
remaining statement of the present Proposition follows from standard arguments.
It is noted that

)\ = E_Ei)ﬂ) N -

A m ¢’¢) ¢€V {0}
implies that ¢ satisfies
(9)  a(¢,8) = mm(9,8), €eV.

Using the density argument, we have (4] from (9).
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A simple system with a continuum of

stable inhomogeneous steady states

H.F. Weinberger
Institute for Mathematics and its Applications

Iniversity of Minnesota

1. Introduction

The system
uy = {1 + av)u}XX + (R1 - au - bv) u (1.1)
Ve = (R2 - bu - av)v

{1+ uv)u}X =0 at x =0 and x =1

with
R
1 b 1
?(%’fE“T? <F (1.2)
and
2 2
Wy afa -2) _ (1.3)
Zath - (a" +b )R2

was considered by M. Mimura [2] as a model for the population densities of
two competing species, one of which increases its migration rate in
response to crowding hy the other species. It is a special case of the

model of N. Shigesada, K. Kawasaki, and E. Teramoto [3].

345
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Numerical computation hy D.G. Aronson and P.N. Brown seems to indicate
that the solution converges to a steady state in which v has one or more
discontinuities, and that these discoutinuities move continuously with
changes in the initial conditions.

The existence of a continuum of discontinuous solutions of the system
(1,1) was proved by Mimura. The purpose of this lecture is to prove that
there are, indeed, whole ane parameter families of discontinuous solutions
which are stahle in a suitable topology.

The family of piecewise continuous steady states is described in
Section 2.

We shall show in Section 3 that a somewhat unusual topology is needed
for this problem and prove that linearized stability implies stability in
this topology.

In Section 4 we give a sufficient condition for stability and show that
a continuum of the discontinuous steady states satisfies this criterion,

Section 5 discusses the evolutionary consequences of the existence of
stable nonconstant steady states.

This work is a part of ongoing joint research with D.G. Aronson and A,
Tesei.

I am grateful to Don Aronson for getting me interested in this problem

and for a great deal of useful discussion and criticism,

2. The steady state.

M. Mimura [2] 1introduced the new independent variable

w=(1+av)u

in (1.1) to obtain the system
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v, = G(v,w)

t

W, = (1 + av)(wxx + H{v,w)) (2.1)

where

G(v,w) = v(R, - av - bw Yy,

2 1 + av
W aw aV bw (2.2)
HAES AL IS S TR e AU e TR A
The no-flux boundary conditions are
W= 0 at x=0 and x =1. (2.3)
The corresponding steady-state equations are
G(v,w) =0,
w' + H(v,w) =0, (2.4)
w' =0 at x = 0,1
When
_ 2
Rz/b W Cw o= (aR2 + a)°/4qab (2.5)
the equation G{v,w} = 0 has the three nonnegative branches of solutions
Vo z 0
) <1 (2.1y byl Y2 (2.6
Vi) =g {5 -5 ) = G )l w7 -6)
R
1 2 1 b 12 I
VZ(W) = 7‘( 2" 3 )+ (EE ) (Wm - w) .

If we substitute these in the second equation of (2.4), we find the

three ordinary differential eguations
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w" + H(O,w) = 0
W' H(vy (W) ) = 0 (2.7)

w' o+ H(vz(w),w) =0

when w lies in the interval (Rz/h,wm) . It is easy to see from the
first equation of (2.1) that v tends to move away from the hranch

v = vl(w) for we (R2/h,wm) and from v = 0 for w< R2/h . Thus only
the first and last of these equations can yield stahle steady states.

Easy computations show that H{O,w) < 0 for w > R2/b while
H(vz(w),w) >0 for we (O,Wm) . If we inteqrate the first and third
equations of (2.7) and use the boundary conditions W s 0 , we see that
neither one can have a solution with w e (Rz/h,wm) .

One can, however, obtain solutions by letting v jump from the bhranch
Vo to the branch Vo and back again while keeping w and W, con-
tinuous. This can be seen from the method of first integrals (see [2]) or
from phase plane diagrams. The points of discontinuity are rather
arbitrary, so that one obtains a large continuum of steady-state solutions
with w e (Rz/b,wm) and discontinuous v . In particular, by introducing
sufficiently many discontinuities one can keep w arbitrarily close to any
constant in (R2/b,wm) .

These solutions with discontinuous v are the only candidates for

stable solutions.

3. The stability of discontinuous solutions.

We shall investigate the stahility of a steady-state solution
V(X),W(x)) with piecewise continuous V , as discussed in the preceding

(
Section, It is not difficult to prove the asymptotic stability of such a
solution in the norm Vi Wl when the linearized operator is
stable. {(See Remark 2 after Theorem 1.}

©
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This fact seems surprising because the points of discontinuity of v
can be chosen rather freely. However, in the Lm norm the distance bet-
ween a function with a jump at Xo and one without a jump at Xo is at
least half the magnitude of the jump. Therefore in this norm solutions
with discontinuities at different points are isolated from each other,

For the same reason a sufficiently small neighborhood of a discon-
tinuous function contains no continuous functions. Since a solution of the
system (2.1), (2.3) with smooth initial data remains smooth, it cannot con-
verge to a discontinuous solution in the L_ norm. Thus the L = topoloay
on the v-component of the solution is not appropriate for this problem.

We shall, instead, use the weaker topology with the neighborhood base

N (V) ={re L meas{x:|r(x) - ¥(x)| > e} < sh}

c

for the v-component. The closure of the set of continuous functions in
this topology is the set of functions which are almost everywhere
continuous.

It is usual to relate the stahility of the steady-state solution of the

system (2.1) to the spectrum of the linearized operator
L n _ GV(V,W)Y\ + GW(V’W)C ) (3 1)
c [+ o¥0g" + H (T,@)n + H (V,8)c]
with the boundary conditions 7' =0 at 0 and 1 . We shall show that

this can also be done in our topology by proving the following result,

THEOREM 1 Let (V,W) be a steady-state solution of (2.1}, (2.3) with
piecewise continuous, W continuously differentiable, 0 < ¥V ¢ R?/a , and
Rz/b W< L Suppose that the spectrum of the operator L in (3.1)

1ies uniformly in the left half-plane

Re A < -2k < 0. (3.2)

349
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Then there exist positive constants €6 and A with the property that if

(v,w) 1is a solution of (2.1), (2.3) such that 0 < v(x,0) < Ry/a

Iv(x,0) - V(x)n

)+ Iw(0) - Wntis ¢ (3.3)

2
L_(s

where the measure |S'| of the complement of the subset S of [0,1]

satisfies

[s'] < e, (3.4)

and if e < €9 * the inequality

iv(x,t) - V(x)uﬁ (5) * Mxt) -'W(x)uzl CAeT (3.5)

is valid for all t > 0,

Proof We first observe that

H

G(0,wW) =0 G(Rz/a,w) <0

Hiv,0) =0 H(v,wM) <0
when

0<v« R?/a
(3.6)

0<wcew = (aR, + b)2/4qab .

M 1

It follows [4] that the set (3.6) is an invariant set for the system
(2.1), (2.3). That is, if (v(x,0) , w(x,0)) satisfies these inequali-
ties, so does (v(x,t),w(x,t)} for all t > 0.

We agree to choose €y SO small that for ¢ < €0 the inequalities
(3.3) imply that the initial values, and hence also the solution, satisfy

(3.6). (The inequality {1.3) implies that Wy > W )
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We now define

n(x.t) = v{x,t) - v{x) 5, z{x,t) = wix,t) - wix)

no(x) = y(x,0) - v(x) , co(x) = w(x,0) - w(x)

and write the system (2.1), (2.3) in the form

3 N n
2O -thH-¢6 (3.7)

g, (0,t) = ¢ (L,t) = 0
n{x,0) = n_(x}
Q(X,O) =C (X)

where L 1is defined by (3.1) and

p = G(V + n;\'} + C) - [G(V,W) + GV(V,W)T\ + GW(V9W)C] >

ntt

Ty.waay (LY V)M + n, W+ ) -

TH(T,H) + H, (@000 + K (T,80)c])

We first treat (3.7) as a linear system. Because the spectrum of L
is in the half-plane (3.2), a standard estimate (see e.q. [1, Theo. 1.3.47)
shows that

-kt
o ,t)nL + g ,t)uL < c{[unouL1 + n;ouLlje

1 1 (3.9)

(t - 1)

. fz[Hp(‘,r)ﬂLl + uo(',i)nLIJe-k dr} .

Here and in all that follows ¢ stands for any constant which depends only
on hounds for G and H and their partial derivatives on the set (3.6),
and on k .

Because the second equation of (3.7) is parabolic, we can find a bound

of the form

351
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ucuf < c{ugoni e'3kt + jg[nonL +ni o+l ]ze'3k(t'1)dr} . (3.10)
2 2 1 1 1

The first equation of (3.7) can be solved for n by quadratures in

terms of p and ¢ . It is easily seen that the closure of the range of
Gv(v,w) Ties in the spectrum of L so that the spectral bound (3.2)

implies that GV < -2k . Consequently we find that

2

In(xit)] < Ing () 1e ™+ ¢ filctn) ]+ foter) 3720 = TDae L (3

1t follows that

2 2 -3kt t 2 2 4 -3k(t - 1)
nnnL2 < C{““o"Lze + fo [nan? + nan?]e dr} .

We combine this inequality with (3.9) and (3.10) to obtain

2 2 2 2 -
ine”  + gty < cf{fim 15 + g 17 Je
L2 L? 0y o]

- 2 -2 (3.12)

2kt

+ jt[upnf + uouf ]e'zk(t - T)dr} .
2 1

We see from (3.8) that

2 2 2 2 4 4
tow” + weny < clunt; ag Uy + uni,  +owge, J . (3.13)
L, 4 L tL, L, Ly

In order to use (3.12) and (3.13) we need bounds for an integral of
nctnf and for ncnt . For this purpose we write the second equation of
2 4

{2.1) in the form

1
T7av “t = %xx +g = H{v + n,w+ ) - Hlv,w) + 2.
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We multiply by (gt +-;—k§)ekt , integrate hy parts, and use (3.12) and
(3,13) to find that
t 2 -kt -1 2 2 24, -kt
fon;tu ekl )dr g <oy {lign® + i Je
H H ?
3.14)
t 2 2 4 b oq -k(t - 1) (
+ [ D e n” 4+ anty 4+ oz Je drc} .
n L2 t L2 L4 L[1
Suppose that on a time interval [O,tl) we have
2
cyiniy < 1. (3.15)
2
Then (3.14) shows that on this interval
uz;u21 < cl{[ugonzI +lin uf ]e—kt
H H 0t
3.16)
t b oo k(t - 7)d (
+ jo[unut4 + ncuL4]e (t - o)de
We now observe that hecause of the bound (3.6)
int? < amiP + (R,/a)|$"] (3.17)
L L_(s) 2 . .
We find from (3.11) and Sobolev's inequality that
-2kt t 2 2 -2k (t-1)
"“"Lw(s)< C{""o"Lw(S)e e [u;qu + nr,nH1 + ““"Lm(S)]e dt} .
We combine this with ({3,16) and (3.17) to obtain the inequality
2 2 2 2
"”"Lm(S) + u;qu < Cz{["“o"Lm(S) + n;oqu +
2 2 424 -kt
+ (unoan(S) + n;oqu) Je (3.18)
+ jt[(nnni (sy * ugnzl)2 + (nnnf (s) + u;uzl)“]e’k(t - T)dr
) H H

©

£UST] ISty
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Choose any A such that
A > max(c?,l)

where ¢, s the constant in (3.18) . Let e, be so small that the

inequalities

2 4
2 A 6
1+ (2 +:+—)e +(1+-k—)t-:0(A/C2

are valid. Then the inequality (3.3) implies (3.5) for sufficiently small
t . Moreover, if (3.5) holds in an interval [O’tl)’ then (3,15) is valid
there and (3.18) implies that this inequality is still valid at t = t1 .

Thus the maximal interval where (3.5) holds is hoth open and closed, That

is, (3.5) is valid for all positive t , which proves the Theorem,

REMARKS: 1. The first equation of (2.1) and (3.5) imply that there is
a constant C such that if the inequality v < vz(w) + Ce s valid on the
whole interval [0,1] for one value of t , it is valid for all larger ¢

and that this inequality holds for all sufficiently large t .

2. If |S'| =0, that is, if one works in the norm InkFoga

the bounds

gkt

1
7Kt ¢ ae hohye

nnuL e < Be

]

follow from (3.18), so that (v,w) 1is asymptotically stable in this

topology.
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4, A sufficient condition for stahility.

We wish to derive a sufficient condition for the spectrum of the opera-
tor L defined by (3.1) to be hounded away from the right half-plane, so

that the conclusion of Theorem 1 is valid.
We consider the system

G (VW) + 6 ¢ ~an=p
(L+aW)e" +Hn+Hzl-dc=0 (4.1)

¢'(0) =¢'(1) =0

whose solution gives the inverse of L - Al at points of its resolvent
set, As we have already mentioned, the closure of the range of Gv can be
shown to lie in the spectrum. Consequently, a necessary condition for

(3.2) is
GV(V,‘JJ) < -2k <0, (4.2)

Our criterion will involve the solution of the initial value problem
(4.3)

As usual,
0 if s< 0
[s], =
* S if s>0.

THEOREM 2. Suppose that Gv satisfies an inequality of the form (4.2)

and that the solution of (4.3) has the properties

355
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r>0 on [0,1]

(4.8)
r'(l1) >0

Then the steady-state solution v, w is stahle in the sense of Theorem 1.

PROOF. If 1 s outside the closure of the range of Gv , we can solve the
first equation for v and substitute in the second to obtain the prohlem

A Gy Hy Hye

_ o
-1+CN+A-GV];-T+aV-)\-GV (4.5)

¢" + [H,

This equation can always be solved unless there is a nontrivial solu-
tion of the equation with p = g = 0 . Therefore the spectrum outside the
closure of the range of Gv is discrete. To locate this part of the
spectrum we set o =g =0 in (4.5), multiply by the complex conjugate z,

and integrate hy parts to find an equation on whose real and imaginary

parts are
(Re(r) - G)G H
LIRS Arery o U
Y
and
G H
In(x) f; G . WGV!Z e lPdx = 0 . (4.7)
A -
v

The second equation shows that any complex spectrum is confined to the

union as x aoes from O to ! of the discs
2
Ix - Gv\ < -{1+ uv)Gva ,

which is a bounded set. Therefore it is sufficient to show that there are

no eigenvalues with Re x» > 0.
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If Re x > 0, we see from {(4.2) that

(Re x = G )GMH, G H

Re X WV
- + < 1 .
1+ of ')\ -G ’2 -6 +
v v
Thus (4.6) yields the inequality
2 Gva 2
-l 17 + (0, + E‘jﬁ; 1) lefhdx > 0, {4.8)

We now define
q=z/r ,
integrate (4.8) by parts, and substitute for ¢ to find that

-la(m)Pr()r (1) - [; lqf?r® dx > 0,

Since the eigenfunction ¢ cannot satisfy g{1) = ¢'(1) = 0 , since
|q(1)|2 >0, and since r(1)r*(1) > 0 , this Teads to a contradiction.

We conclude that if the solution of (4.3) satisfies the conditions
(4.4), and if (4.2) is satisfied, then the solution (v,w) is stable, which

proves our Theorem,

The conditions (4.4) are obviously satisfied when the coefficient of r

in (4.3) is nonpositive. Because H {O,w) < 0 for w >R1/a , Gw(O,w) =0,

Wl
Gv(vz(w),w) <0, and Gw(vz(w),w) < 0, this is the case if Hv >0 and
H, < 0 on the part of the range of (V,%) where ¥ = vz(ﬁ) . Computation
shows that H > 0 , H <0 at (v, (w },w ) , so that one can construct a
v W 2V m’ m
family of stable solutions by keeping w near a constant just below W
For the Timiting solutions computed by Aronson and Brown the sufficient

conditions (4.4) are found to be valid in most though not all cases.
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REMARK, Replacing the factor (1 + av} by 1 1in the second equation of
(2.1}, yields a semilinear system with the same steady states. The ahove
analysis shows that this system also has a continuum of stahle steady

states, so that quasilinearity is not needed to produce this phenomenon.

5. A bhioloqgical consequence.

The system {1.1) is a model for a pair of competitors, one of which
avoids the other to such an extent that the homogeneous steady state

solution

is rendered unstable and inhomogeneous stable steady states (u,v) occur instead,
It is reasonable to ask whether this mechanism is advantagenus to the
two species.

We integrate the steady state form of (1.1) to find that

l ~ ~ ~
fo u(R1 -au - bv)dx = 0. (5.1)

The second equation of (1.1) hecomes R, - bU - a¥ = 0 when ¥ = ACHEN

2

while R, - bl ¢ 0 on the branch ¥V = 0 . Thus on hoth hranches

R2 - bu

v >-——a———— ’ (5.2)

so that

[, BR, - aT -% (R, - bT))dx > 0 .

Since Ry = au + bv and R, = hu + av , we ohtain the inequality
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b2 b —
(a - T ) fo u{u -~ G)dx > 0

so that

U - G)dx > (T - T)%dx .

Thus if T{x) 1is not constant, we find that

I _

fo Udx <u. {5.3)
Thus the avoidance mechanism reduces the total! population of the organism
that possesses it,

On the other hand, (5.2) can be written in the form

a(V -7v)»b{u-1).
Thus, (5.3) implies that
f; Tdx > v,
so that the second species profits from the nervousness of the first one.

The second species might thus evolve a mechanism to frighten its com-

petitors away.
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In the first part of our paper, we review our recent studies
of some usual finite difference schemes for the autonomous
system, which can produce chaotic dynamical system. In the
second part, we present an age dependent discrete population
model whose solution exhibits some significant chaotic be-
haviors.

1. Finite difference schemes.

1.1 Definition of Chaos.

First we begin with a recall for the notion of Chaos. Let us consider a

most simple dynamical system which is described as follows:

1
< =
2y (0 =< ¥, < 2) 1
(1.1) Ine1 1 i pd
- = < ! 7
2(1 yn) (2 < Yn 1) B | 3
. ! o
NG
8 Fly ) | N
yn N i
A I
[ ' i '
. . . A - ) !
whose graph is shown in Figure 1. L | !
R
1 !
oL AT\\\\P/+'B!
0
Yo ¥y %yz Y3 1

Figure 1. Graph of F.

361



362 Masaya YamaGuTl and Masayoshi HaTa

We denote A the domain [0,%& and B the domain [%31]. Then we remark the

following property of the mapping F.
(1.2) F(A) A u B, F(B) >AuB.

This property means that for any point y which belongs to [0,1], there exist
always y' and y" such that F(y') =y, y' ¢ A also F(y") =y, y" ¢ B,
Now we consider an orbit {yn} which starts from Vg We list up this se-

quence of values as follows:
(1.3) Yor Yo Ypr wees Yoo

And we also list up the sequence of the symbols of domains to which Y, belongs.
A, A, B, B, B,
We write this sequence as follows:

(1.4) Wos Wys Wys ves B,

where m1 = A or B corresponds to yj.

u

Conversely, using the property (1.2), we can prove that for any arbitrary

@
given sequence {mk}k=0 we get

(1.5)

-8
+

This means that if the sequence of symbols {mk} is given by some record of
coin-toss trials, even so, we can decide an initial point yo such that yn
belongs to w ~ for any n vhere {yn} is an orbit of the dynamical system

(1.1) starting from Y- {Here we use © ~as the name of domain. )

Now we consider a change of variables:
2 T
(1.6) y_ = = arcsin vx
ks n
to the system (1.1). Then we get

(1.7) X4 = hxn(l - xn).
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This mapping maps [0,1] to [0,1]. This is a special case a = L4 of the more

general dynamical system:

(1.8) X4 = axn(l - xn) = F (x )

which also maps [0,1] into [0,1] for 0 < a < 4. We show the graph of this dy-

namical system in Figure 2.

1 1
rd
ettt et —'-—5-—'——,'(
! I Pl
/0 IN
B : :
B ' 1 Y4 :
! i ,/ '
] L |
. . - _,____)/ ‘
: g :
A Lt ;
' // ' ',
A AN P ;
. : !
| ? |
0 0 N S~ 3 1
Figure 2. (1) Graph of F). (2) Graph of Fy where a is suffi-

ciently near L.

As is easily seen, the fact (1.5) holds for the system (1.7) by exactly similar
reason as in the case of (1.1). But how about for (1.8)? If a is sufficiently

near UL, then some weak property (1.9) follows.

(1.9) Fa(A) > B, Fa(B) > AU B.

It produces any symbolic sequence {wk} where wj = A, wj+l = A never arise.

Remark. This simple dynamical system (1.8) was considered by R. May who
studied a discrete population model of some insects population which has non-
overlapping generation. We are going to explain this fact introducing an age

dependent population model in the second part of this paper.
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Now we explain the notion of Chaos mathematically, that is, the definition
of Chaos in the sense of Li-Yorke and Marotto. We consider a dynamical system

which desecribed by
(1.10) X =F(X), X R,

where F is a continuous mapping from R to R".
Definition., We say F is chaotic in the sense of Li-Yorke and Marroto if

¥ has the following four properties:

{1} (1.10) has infinite periodic orbits with distinct periods.
(2) there exists an uncountable set 8 c R such that for any X,Y € 8,

XY,

Tim | ¥(X) - F(Y) | >0

n-x

{3) for the same X and Y as in (2),
Lim | P*(X) - F(Y) | =0
n—)oa

(L) for any X € 8, X 1is not even asymptotically periodic.

Now we can state very briefly the result of Li-Yorke[l] which is that our
condition (1.9) for Rl implies '"Chaos" 1in the above sense. Also Marotto[2]
has shown this "Chaos" in R" ( for any m ) under the assumption that (1.10)
has a snap~back repeller. Here we recall the definition of the snap-back repel-

ler.

Definition. Assume that F 1is continuously differentiable. Then we call
a fixed point 2 of (1.10) a snap-back repeller if Z is expanding in some

neighbourhocod U of Z and there exists a peint X, ¢ U with XO X Z, FM(XO)

0
=7 and lDFM(XO)I ¥ 0 for some positive integer M where lDFM(XO)l is a

Jacobian determinant of FM at XO .
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1.2 Chaos arising from the discretization of ordinary differential equations.

Here we mention a review of the results of our group about the 'Chaos"
which are obtained by some simple discretization of ordinary differential equa-
tions.

Our first result was that of Yamaguti-Matano[3] which is stated as follows.

Theorem 1. For a given differential equation:

dy

1.1 =

(1.11) s fy)

where f(y) is continuous function of y in rL. TP f(y) has at least two

zeros, one of which is globally asymptotically stable, then the Euler's differ-

ence scheme:

(1.12) ¥ =y, * bt f(yn) =F (y )

n+l At “n

is chaotic if we take At sufficiently large. More precisely, there exist two

positive values Tl, TE such that for At which satisfies Tl < At 2 12, the
mapping (1.12) maps a finite interval into itself and this dynamical system is

chaotic in this interval.

After this result, we study several generalizations of this result. Here,
we limit ourselves to list up a series of our recent results. Let us consider

the system of differential equations:

ay .

(1.13) 3t

G(u), u(o) = Ug

where U is unknown m-vector and G 1is a continuously differentiable mapping
from R" into R". Then Hata succeeded to praove that the Euler's difference

scheme for {1.13):

(1.1k4) Uy = U, + 0t G(Un) = GAt(Un)
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is chaoctie for sufficiently large At under the following conditions:

(1.15) there exist U % V such that G{U) = ¢(V) = 0, IDG(ﬁ)I %0

and |DG(V)]| ¥ oO.

For the proof of this theorem, see [L].
Nextly, S. Ushiki and Yamaguti[5] studied a central discretization of the

following differential equation:
(1.16) 4 - (1 - x).

The central difference scheme of this equation is

b'd - X

n+l n-1 _
(1.17) it = xn(l - xn).

2
Putting X1 =¥, we get a mapping from R into R2 as follows,
= + -

(1.18) Xopp = ¥, + 2B xn(l xn)

yn+l - xn

S. Ushiki[6] proved that this dynamical system shows some chaotic behavior for
any mesh size At.

Similar result as Yamaguti-Matano's has been proved by Y. Oshime for the
modified Euler scheme of (1.11). Also the above result of Hata has been gener-
alized by himself for Runge-Kutta scheme of (1.13).

Before finishing our review of the results, we sketch the proof of the above

theorem by Hata.

Lemma 1. For any 8 > 1, there exist r > 0 and c(8§) > 0 such that
o, (x) -c, ] >&llx -]
for any At > c(8) and X,Y ¢ B(U,r) where B(U,r) is a ball whose center is

U and its radius r.

Proof. Because of our conditions (1.15), we get



Chaos and Age Dependent Population Model 367

|DF(T)*DR(U) | ¥ O.
Therefore we can show easily

([orU)xi] > VA, |lx || ( for all X e R")

min
Here ) . =~ means the minimum eigenvalue of DF(U)*DF(U). By the continuity,

|| oF(x) - DR(U}|] < % My, ( for all X e B(U,r) )

Then we get the following series of inequalities

If G, (X) - GAt(Y)H > mlf| F(x) - FOY - I x - |

At

2 (5 AL -1 f[x -y

> 8]l % - v

where
.2
At = c(8) = (1 + 8). c.q.f.d.

min

Lemma 2. For sufficiently small open neighbourhocod W of U and any

bounded set B, there exists a positive constant c¢(W,B) such that the equation

has at least one solution w ¢ W for any At > c¢(W,B) and for any b e B.

Using these lemmas we can constract a snap-back repeller. Thus we can prove

the conclusion of the theorem.

2. An age dependent population model.

We consider here an age dependent population model which is described by the

following equation:



368

Masaya YamacuTi and Masayoshi Hata

N N
(2B )R = I blk)uy)
k=1 k=1
(1 -a(@)Nud
n+l n B
(2.1) U = F(U) =
n
(1 - a(v-1))uy
where we denote
n t n n n N
U = "(ug, Ugs ey Uy ) e R,
uE is the population of k-age animals at n-th year, b(k) is the birthrate of

k-age population, d{k)

constant which means a saturation, and b(i

tion;
0 <bli) «1 for 1 <1<

(2.2)
0<d(i) <1 for 1 <1i <
Now it is convenient to introduce new

is the deathrate of k-age population, R

is a positive

}, d{i) satisfy the following condi-

variables by the following formulae;

j-1
F = T - Ay
J R® k=1 J
(2.3) for 1< 3 <N,
3-1
a(j) = b(j) 1 (1 - alk))
k=1
Then we have new equation;
2 N
B(ralhE - t el
=1 J=1
n
(2.4) v oo g™ = 1
.I'l
Vn-1
where we denote VR = t( vn vn Vn )
l’ 23 3 N .
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Also we have

in

0<alj) <l for 1<J<N, all) xo0.

We assume that

N
AR < b where A= I alk).
k=1

Under this assumption, it is easily verified that the N-dimensional mapping G

in (2.4) has the following invarient domain;

Q = [0,1]x{0,1]x...x[0,1] < RN,
—_
N times

that is, G maps Q into itself. Then we find the fixed points of G in @

as follows.

(a)} For the case in which 0 < AR < 1, the only one fixed point in Q is
the origin 0= (0, 0, ..., 0).
(b) For the case in which 1 < AR < ki, the fixed points in § are the

origin and

(2.5) Vo (i - ) e - ).

The local stability of these fixed point of G 1is easily studied by stand-
ard linearization techniques. From (2.L4), we obtain

ua(l) pa(2) . . . pa(m)

(2.6) DG(V) = DG(v,,v

(LR

where
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Especially, for the fixed points of G, we have
= 2
p(0) =R and ulVv) = 2R

It follows easily from (2.6) that the characteristic equation of DG{V)

N
N~
(2.7) Mo un) £ an™d = 0.
J=1
Putting
N N N-j3
(2.8) £f(x) =2 and g(x) = u(V) & a(jir ~,
J=1
we have the following estimates on the unit circle IAI =13

[t =1, Je)] < Julv)]a.

Therefore, if |u(V)|A < 1, we have

e > Je(n)]

is

on the unit circle. By the theorem of Rouché&, the all roots of the polynomial

f(A) - g()) 1lie inside the unit circle. So we have the followings.

(¢c) For the case in which 0 < AR < 1, the origin O is locally stable.

(d) For the case in which 1 < AR < 3, the non-trivial fixed point vV is

locally stable.

Similarly, we can study when all roots of the polynomial f£{A) - g(A) 1ie

outside the unit circle. Put

]
H

> |
.

Then from (2.7) we have the following new polynomial of §&;

N-1
(2.9) a(N)gN + I a(k)gk e = 0.
k=1 u{v)
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Putting
N N-1 ko1
(2.10) £ {(g) = alN)g and g, (&) = I alk)t - v,
1 1 - u(v)
k=1
we have the following estimates on the unit circle |£i =1;
N-1 1
[t ()] = am), [g ()] < 1 alk)+——o
k=1 Tu(v)|
By the theorem of Rouché&, we have the followings.
N-1
(e) 1If aln) > 53— £ alj) and a NI; —f < AR < 4, then all eigenvalues of
j=1
DG(0) exceed 1 in magnitude.
(£} 1f a(N) > 3 Ngla(j) ang 280 = A n ) then a1l eigenvalues of
< b, e
so1 2al{M) ~ A

DG(V) exceed 1 in magnitude.

The above conditions (e) and (f) about the distribution of a(j) include
some insects population which has non-overlapping generation as a special case.
Actually, we can prove that G is chaotic for sufficiently small a(1), a(2),...
a{N-1) and some a{N) which satisfy our assumptions by showing that the non-
trivial fixed point V of G isoa snap-back repeller.

First, we choose a special parameters as follows;
a(l) = a{2) = ... = all-1) = 0, o = a(N)R ¢ (0,4].

And G denotes the corresponding mapping defined in (2.4) with a parameter «,

that is,

(2.11) Gu(vl’VQ""’VN) =
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2
2
Putting ha(x) = ax - %— x , we get

(2.12) E (v, ,v
o
ha(vN)

where GaN denotes the N-fold iteration by Gu. Also we obtain from (2.12),

(2.13) DHu(Vl’VQ""’VN) =

ha'(vN)
Therefore
(2.14) lDHa(Vl’VQ""’VN)I = ha'(Vl)ha'(vz)"'ha'(vN)'

The condition of a snap-back repeller clealy includes the existence of a

homoelinic orbit {z )} such that

ik’ %20

zq is a fixed point of F, z . % z_,

-1 0

Flz ) =

x Z_p4; Tor k21, and Flz_ ) >z, as k >,

k o]

Even for one-dimensional continuous mapping, it is sometimes simpler to find a
homoelinic orbit than to verify (1.9) or some odd period conditions. In this

case, for one-dimensional continuous mapping ha, it is easily shown that there
exists a positive constant a, < 4 such that, for any fixed a e [uo,h], ha

has a transversal homoclinic orbit {p_n} a»g Such that

hd'(p_n) X 0 for any n 2 0,

The dotted lines in Figure 3 represent & homoclinic orbit of ha which is found
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by starting in a fixed point and iterating backward.

! N 7
Nt
il I
fomeoe b
| ! A0 |
N
I
! / i
, / !
e !
:/,/’ .
Figure 3. i

e e

Homoclinic orbit of h . e

a s/
s
0 1
Using a transversal homoclinic orbit {p_n} npo ©F by, we construct a
transversal homoclinic orbit {P 1} of H as follows;
-n- nz0 a
-t )
p="(p_sps-eesp_ ) ¢ R for nz0,

since from (2.14),

|om_(P_ )] = (o '(o_ " %0 for n=o.

a -n
. . : 1
Since the existence of & snap-back repeller is a stable property under small C(C -
perturbations and the orbit {P n} N is contained in the interior of Q,

we have the following.

Theorem. There exists a constant 0 < € < 1 such that for any

]N-l

(a(1),...,a(N-1),a(N)R) ¢ [0, X[ao,h],

which satisfies AR <€ 4, the corresponding mapping G in (2.L) is chaotic in @

in the gense of Li-Yorke.

Finally, by computer simulations ( see Figure 4 ), we conjecture that G is

sometimes chaotic even for the case of over-lapping generations.
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(h-a)
Total Population.
L/"\_//‘N\,//”\\,V"\\//’“%\//’\\\ﬂ \
\
T \\\‘“}&tﬁ‘
AR S
.
T e
g 200 400 600 800 Year. “\\\\}g\\g‘g&g‘xxg&:335:533;3;;s- =
0-age Population R
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R
NN N N R S
ARV, VR VARV VAR SRR
0

6] 200 400 600 800 Year 100 800

(h-vp)
Total Population,

AN AN

0 200 400 600 800 Year

0-age Population.

A NMfapa AR MM
T

0 200 400 600 800 Year

Figure 4. Numerical computations of our model (2.1) where we put N = 100

and birthrate and deathrate are shown in ( 4k - ¢ ).

(b-c)
Birthrate Deathrate

0 Age 100 0 Age 100

First, we choose a saturation value R = 9.0 in ( 4 - a ) and presumably

the periodic structure is caused by a Hopf bifurcation from a non-trivial
in ( 4 -1b)

fixed point. Secondly, we choose a saturation value R = 11.3

and the chaotic phenomenon will be appear.
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STABILITY, REGULARITY AND NUMERICAL ANALYSIS

OF THE NONSTATIONARY NAVIER-STOKES PROBLEM

John G. Heywood

University of British Columbia

Vancouver, B.C., Canada

In this paper I will describe some results relating the stability and
regularity of solutions of the Navier-Stokes equations with the long term error
and stability of numerical approximations. These results were obtained jointly
with Rolf Rannacher and are presented in full detail, along with related results,
in Part II of our work on finite element approximation of the nonstationary
Navier-Stokes problem [1]. They are of two general types, both utilizing
stability assumptions to extend results which were known locally in time to
ones which are global in time. First, that if the solution of the initial
boundary value problem is stable, then the error in its discrete approximation
remains small uniformly in time, as t + « . Second, that from the stability of
a discrete solution, for a single sufficiently small choice of the mesh size,
one can infer the global existence of a closely neighboring smooth solution. The
concepts of stability which are dealt with are formulated to describe the
stability of such phenomena as Taylor cells and von-Kirmidn vortex shedding, and
also the partial stability observed in some flows exhibiting slight or incipient
turbulence. I will include an account of some of the stability theory developed
in [1], particularly as exemplified by a new proof of the principle of linearized

stability appropriate to nonstationary solutiouns.

377



378 John G. HEYywoo0D

1. The Continuous Problem

We consider the nonstationary Navier-Stokes problem

u = AUt ueVu + Vp = f,
(1) Yeu =0, for (x,t) e x (0,») ,
u}t=0 = a, ulaQ =0,
in a bounded two or three-dimensional domain & . Here u represents the

velocity of a viscous imcompressible fluid, p the pressure, f the prescribed
external force, and a the prescribed initial velocity. The boundary values
are zero. The fluid's density and viscosity have been normalized, as is always
possible, by changing the scales of space and time.

As usual, Lp(ﬂ) , or simply 1P , denotes the space of functions defined
and pth-power summable in @ , and I'WILP its norm. We denote the inner

0

c is the space of

product in L2 by (¢,*) and let || 1.2
functions continuously differentiable any number of times in § , and C:
consists of those members of € with compact support in @ . The Sobolev
space H" 1is obtained by the completion in the norm
o y2,1/2
i, =€ 3 IpRlBt?,
Oslalsm
©o
expressed in multi-index notation, of those members of C for which the norm
. 1 ® o, 1 n
is finite. HO is the closure of Co in H~ . Spaces of R -valued functions
will be denoted with boldface type. We use
(Vu,vv) = Y (a,u,3.v) [lvu]] = (vu \71.1)1/2
’ ji!ji » * £

1<i,j<n

as inner product and norm for Hi . Finally, we need the spaces

J=1{¢ eL2 : V¢ =0 in © and ¢°n‘an =0 , weakly} ,

= l- . =
Jl-—{¢eﬂo.v¢ 0}

of solenoidal functions.
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2
Denoting the orthogonal projection of L onto J by P , we introduce

the "Stokes operator" A = PA . Assuming the boundary 3R 1is sufficiently

regular, the mapping A : Jl n Hz + J 1s one-to-one and onto, and
(A1) Ivll, < clfavl
holds for all veld. n H2 . We assume this as well as some regularity of the

1

prescribed data, namely that

ae J111H2 ,
(A2) - 9
f,fte L (0,=;L7) .
For the sake of simplicity in our presentation, we have assumed the boundary
values vanish. All of our results remain valid in the case of inhomogeneous
boundary conditions if one assumes an appropriate degree of smoothness of the
boundary values, as well as the same conditions of spatial and temporal
invariance as may be required of f .

Finally, we assume that the strong solution u,p of problem (1) exists

globally and satisfies
(a3) sup_[lvuf| <=

[0,
Once this much regularity is known or assumed of a solution, its full regularity
can be proved so far as is permitted by the data. In particular, the following

is proven in Theorem 2.3 of {2].

Proposition 1. Given a satisfying (Al), there exists a continuous inereasing

function F of three variables, such that every solution u of (1) satisfies

(2) swp [lau]| = P(|laall , sup €|+ (£, suw fivulD ,
tsr*® t<t#* t<t*

provided sup |[Vu|| < = . The function F is independent of t* .
t<t*
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We mention that to bound higher order derivatives of u , uniformly as
t + 0 , requires nonlocal compatibility conditions of the prescribed data,
conditions usually unverifiable in practice. For instance, ttvut‘i and ‘\UHB
tend to infinity as t + 0 wunless there exists a solution P, of the

overdetermined Neumann problem

Apo V-(f(+,0) - a*va) in Q ,

Vpo = Aa + £(+,0) -a-Va on 30

The loss of regularity as t > 0 complicates the proof of error estimates of
higher than second order for numerical approximations. While such estimates are
proven in Part III of this work, independently of any nonlocal compatibility
conditions, the present discussion will be restricted to second order error
estimates.

2, The Discrete Problem

We suppose that Hh and Lh are finite dimensional subspaces of L2 and

2 . . X
L” , respectively, corresponding to a sequence of values, tending to zero, of

a discretization parameter h , 0 < h € 1 . The space Hh is considered as a

1 , . .
discrete analogue of Ho . In order to include the consideration of nonconform-

ing finite elements, it is not required that Hh < Hi , but merely that the

. . 1
gradient operator V¥V has an extension Vh to the algebraic sum HO + H

such that v, = ¥V on Hl , and such that ||V, -+
h [¢ h

h °

is a norm on Hh . Another

frequently used norm is

+ hfv, -]

-1, =

A discrete analogue of the space Jl is introduced by setting

Jh = {vh € Hh : (Xh,vh-vh) = 0 , for all Xy ¢ Lh}
We also set

NhE{xhsL )=0, for all v eHh}.

h: (Xh,vh-vh h
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A discrete analogue Ah : Hh 4—Hh of the Laplacian operator is defined by

requiring

(Ahvh,¢h) = —(thh,Vh¢h) , for vh,¢hesnh .

2
Letting Ph L~ Jh denote the Lz—projection onto Jh , we introduce a
discrete analogue, Ah = PhAh , of the Stokes operator A = PA . The restriction
of Ah to Jh is automatically invertible, with inverse denoted by A;l . The
invertibility of Ah and A permits us to introduce operators
~-1, 0~ 2

Rh z 4, PhA ; Jl n H - Jh s

h _ ~=1.~ 2

R =4 PAh : Jh »—Jl nH

associating discrete solenoidal functions with smooth ones and vice versa. We

. 2
assume there are constants c¢ , independent of h , such that for VéZJl nH

and Y EJh , there holds

A

Ilv-&vlll, = en’fav]
(3)

h 20
iHVh‘R Vh'“h €ch ||AthH .

These inequalities were proven in Corollary 4.3 of [2] under the detailed
assumptions of [2].

We suppose we have a discrete analogue, of the Navier-Stokes equations
determining, for any given ahthh and to 2 0 , unique functions uh(-,t)e Jh
and ph(-,t)s Lh/Nh , defined for all t > £ such that uh(-,to) =a . Our
notation here is that for semidiscrete approximation, with the time variable
remaining continuous and a 'discrete' analogue of the Navier-Stokes equations
consisting of a system of ordinary differential equations. However, in [1] we
adapted our notation and argument to apply to a full discretization of the
equations, at least in a simple case of backward Euler time discretization of the

ordinary differential equations.

We assume a '"local' error estimate is already known, "local" meaning with
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error constants that grow (exponentially) with time:

Proposition 2. If wu,p and u Py are eontinuous and discrete solutions

defined on some time interval [to,t*) , then

Il ¢a- uh)(t) mh < theK(t—to) s

(4) -1/2 R(t-t,)

i p-p ) (O |]L2/N < hK (t-t )
h
hold for telt ,t,), with constants K dependent on ||Au(t0)|| ,

sup [[€ll + gl o swp lvell L and w7Efuce) —u e I, + B s e -

[to,t*) [tO,t*

We proved Proposition 2 for a class of semidiscrete finite element approx-
imations in [2]. The exponential growth of the error constants is unavoidable if
the solution u,p under consideration is unstable.

Our proof of "global' error estimates, exemplified by Theorem 3 below,
requires an estimate for the regularity of discrete solutions analogous to
Proposition 1. The following was proven for a class of semidiscrete finite

element approximations in Lemma 5.5 of [2].

Proposition 3. There exists a continuous inereasing function F of three

variableg, such that every solution w of the discrete Navier-Stokes equations,

defined on any time interval [co,t*] , satisfies

(5 swp ol < Bl eI LA LU NN LN

(£ ,t,] (N tosts

The function ¥ 1s independent of h , as well as o £, and  ty .

3. Exponential Stability and Global Error Estimates

Questions about the stability of wu concern the behaviour of '"perturbed

solutions", by which we mean any solution v of the Navier-Stokes problem
v - Av 4+ veVv + Vg = £,

(6) Vev=0 for (x,t) eQX(to,m) s
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starting at an initial time tO z 0 , with an initial value v, near u(to)

We refer to w = v-u as a "perturbation" of u , and to t, and wo=vy —ll(to)
as the "initial time' and "initial value' of the perturbation w . To avoid any
doubt about the global existence of v , and hence of w , it is necessary to
define it first as a weak solution in the sense of Hopf. We will not belabour
this point, as a proof of the regularity of any small perturbation of a stable

strong solution is implicit in Theorem 1 below.

The ordinary, simplest, notion of stability is the following.

Definition 1. The solution u of problem (1) is said to be stable if, for

every e >0 , there exists a rumber & > 0 such that every perturbation w ,

with w €J and HWOH <&, satisfies sup |lw|l < ¢
[t_,=)
o]

"every perturbation", it should be understood that

Here, in speaking of
we are referring to every perturbation, starting at every initial time to >0

A stronger notion of stability is required upon which to base error estimates

which are uniform in time.

Definition 8. The solution u of problem (1) is said to be ewxpomentially stable

if there exist mmbers &§,T > 0 such that every perturbation w , with woe J

and ju || <&, satisfies |[w(t 4D < Flw || -

If u satisfies the conditions of either of these definitions with § = = ,
we say u 1is unconditionally stable,

An example of an exponentially stable flow is provided by simple axially
symmetric Taylor cells occurring in flow between rotating coaxial cylinders. The
situation is one in which, if the data are steady, there exist multiple steady
solutions. If the difference between two such solutions is considered as a
perturbation, it certainly will not decay. Thus Taylor cells are not uncondition-
ally stable. Further, there generally exist even small pergurbations whose decay
in the L2—norm is not monotonic. However, the cells are certainly stable in some

sense, and intuitive considerations of linearization suggest that the decay of
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small perturbations 1s exponential.

Our development of a stability theory is based on several lemmas asserting
the continuous dependence of solutions on their initial values. Below, c 1is
a generic constant depending only on & , and

M= supHVuH .
t20

Lemma 1. For every perturbation w of u there holds

4
H zecM (t-ty)

’

heco | + 1 fowllar < flucey
o]

z .
for t ty

Lemma 2. For every T > 0 , there exists a number § > 0 such that every

perturbation w of u , with woed) and HVWOH < § , satisfies

2_c(1a') (e-to)

)

t ~
oo [+ 70 flawl®ac < lvwce ) |
o}
for ¢ St5to+T.

Lemma 3. For every T > 0 , there exists numbers o,B>0 such that every

perturbation w of u , with ||w(to) || <o, satisfies
<
lle(to+T) || < BHw(tO)H .
To prove these lemmas, one begins by writing the perturbation equation
(7) wt - Aw + WweVw + usVw + weVu = -Yq ,

for the difference w = v - u of the solutions of (6) and (1). Multiplying (7)
by w and integrating leads to Lemma 1. Multiplying (7) by Aw and integrating
leads to Lemma 2. In both cases, the constants ¢ depend on Sobolev's
inequality. Lemma 3 is obtained by combining Lemmas 1 and 2. All three lemmas
need somewhat more precise statements if v is understood only as a "weak
solution.”

Using the preceding lemmas, we can establish the equivalence of various
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definitions of stability. We prove the following simple theorem to indicate the

nature of argument.

Theorem 1. The stability condition of Definition 1 is equivalent to the

following: For every e > 0, there exists a number & > 0 such that every

perturbation w , with woedy and i|vwo{| < 8§ , satisfies sup ||ww]l < ¢

t 4o
O

Proof. First we check that the condition of Definition 1 implies that of
Theorem 1. According to Lemma 2, one may guarantee that [[vw(t)|| is small,

for t <t < £, + 1 , by taking HVWOH small. Mindful of Poincare's

o
inequality HWOH < C“VWOH , we see that if ]}Vwoﬂ is taken small, then the
condition of Definition 1 ensures that [{w(t)]| is small for all t = s

and hence Lemma 3 ensures that |{ww(t) || is small for all t = t, + 1 . Thus

the condition of Theorem 1 is satisfied.

Next we check that the condition of Theorem 1 implies that of Definition 1.
According to Lemma 1, one may guarantee that Hw(t)” is small, for
t, <t <t +1, by taking HwOH small, But then, ||Vw(to+1) | is also small,

according to Lemma 3. Hence the condition of Theorem 1, considered with starting

time to + 1, implies HVw(t) || is small for ¢t 2 to + 1 . Thus, remembering
Poincare's inequality, [jw(t)]|| is small for ¢t = t, * 1 . This completes
the proof.

The next theorem is more complicated, but proved by a similar type of

argument.

Theorem 2. The stability condition of Definition 2 is equivalent to any one

of the following conditions

(1) There exist numbers &,T>0 such that every perturbation w ,

vith w ed, and HVWOH < 6, satisfies

llwee+n |} < v Il

(ii) There exist numbers &,0,A>0 such that every perturbation w ,
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with w_eJ and Hon < & , satisfies

t-t )
lwoll s ae © flll > forail e

(i11) There exist numbers 6&,0,A>0 such that every perturbation w , with

woed, and fvw I <& . catisfies

—a(t-t )
o

(fow(e) (| < Ae “VWO I, forall t=zt

o
One of our principal results about the numerical analysis of problem (1) is
that the error constants of Proposition 2 remain bounded as t -+ « , if the

solution u belng approximated is exponentially stable.

Theorem 3. If wu,p ard u Py are continuous and diserete solutions defined

for t >0, and if u 1is exponentially stable, then there exist constants

K, h0 > 0  such that

lcw-u) oIl = vk,

(8
1/2

H(p—ph)(t) HLZ/Nh < hKmax(l,t %)

hold for all t >0 and 0<hsh . The constants K and h depend on

laall » supliell + fle,l) o suolivell » @ bound for w7%lla-aglll, + a1l »

and the stability parameters of Definition 2.

Proof. Rather than actually choosing §6,T as in Definition 2, it will be more
convenient to choose them in accordance with Theorem 2, so that for any solution

v of (6) satisfying llv(v—u)(to) || < & , there holds

1
©) Mv=wy e+l < 7l - el s
(10) sup ”V(v—u)” <1.
tZto

The main point to be established 1s an induction step for the velocity error
estimate. We claim there exist constants K and ho such that, for any choice

of h<h and t 20, if
o o
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(11) sup [flu-u fIl, <0’k ,
tse,

then

(12) a-u) e+ DI = n’k .

Since supHVuH < o it is clear that (11) implies
t20

(13) sup [|%u || ¢,
gse, 0B 1

where C depends on h and K only through their product hK . Using

1

Proposition 3, one sees that (13) implies
(l[") HAhuh(tO) ” < C2 4

with C2 also depending on h and K only through their product hK

Clearly
(15) Hl Rhuh(t0)|| = ||P£huh(to)|\ <c, .
Further, using (3), it is seen that (14) implies

(16) &% - w el < nPey

with C3 again depending on h and K only through their product hK

Finally, taking (11) and (16) together, it is evident that
a7 HWu-fM)(tH|shK+hc <8
h o 3 ’

provided hK and h are small enough.

Let v be the sclution of (6) satisfying v(to) = Rhuh(to) .  Then

v

387

satisfies (9) and (10), provided hK and h are small enough to ensure (17).

In view of (15), (10), (16) and (14), we can apply Proposition 2 to obtain

an error estimate
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(18) Hv-u) ol I T Ll N

between v and Y with constants K depending on h and K only through
C2 and C3 R

large and all h sufficiently small, there will hold

i.e., only through their product hK . Thus, for K sufficiently

KeKTS%K L Cy S K,

while at the same time both h and hXK will be small enough to ensure (17).
Now (16) and (11) imply |H(v-—u)(to)\Hh < 20’k , so that together (9) and
(18) imply (12). This completes the proof of the velocity error estimate (8).
The pressure error estimate (8) is a relatively easy consequence of it.

Much of the existing theory of hydrodynamic stability rests upon the
"principle of linearized stability". This is a general assertion that in
determining the stability of a solution u it suffices to consider the linear-

ized perturbation equation
(19) v_vt - AW + u-%W + wevu = -Vg ,

in place of the full nonlinear perturbation equation (7). In the following
theorem we give a precise statement of the principle of linearized stability
appropriate in the general context of the nonstationary problem. The proof
is a direct and simple one, entirely bypassing spectral methods, as indeed one

must in the nonstatinary case.

Theorem 4. The solution u of problem (1) is exponetially stable if and only

if there exist numbers o,A > 0 , such that every solution w of the linearized

perturbation equation (19) satisfies

(20) e || < Ae‘“(t’to)[lx}oll . for ot

Proof. Let ¢ =w - w , where w and w are solutions of (19) and (7),

respectively, satisfying G(ED) = w(to) =, Subtracting (7) from (19) gives
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\pt =AY + uvy + yeVu - weVw = ~Vq ,
for some scalar function q . Multiplying by ¢ and integrating, this leads to
d 2 2 4 2 4
acllell™ + el ™ < efloulTlhef|™ + cljowil” .

Using Gronwall's inequality now yields

t +T
o

4
e+ |2 < e e 1 0 {jvul| “ar
)
4 t +T
<™t ew fwell® [0 fww) Pac
et +T] o
o’ o
for any fixed T > 0 . Thus, if HVWOH is sufficiently small, depending on
T , Lemmas 2 and 1 imply
4
c(M, +1
2 3 24 42
1) loce s 12 < ce o 12w i1

Now suppose the condition of Theorem 4 holds. Choose T above such that

(20) implies

- 1

lace 4D || = T ||
Then, also, provided ||Vwofi is sufficiently small, (21) implies

loce Il s gliw, Il -

o 4Y 0o

Combining these gives

= 1

et || < e n ||+ loce s+ | = v Il

showing that condition (i) of Theorem 2 is satisfied, implying the exponential
stability of u .

To show that exponential stability implies linearized stability, we argue
similarly, starting again with (21). This completes the proof.

In [1], we applied Theorem 4 to show that the set of initial values for

u , which give rise to solutions that are exponentially stable and have bounded
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Dirichlet norms, is open with respect to the Dirichlet norm. All solutions
starting within a common connectivity component of this set converge together as
t » o . We also showed that an exponentially stable solution necessarily tends
to a steady or time periodic motion, if the forces and boundary conditions are
steady or time periodic. These results combined with Theorem 3 were shown to
provide a justification of time stepping as a means of calculating steady or

time periodic solutions.

4. Quasi-Exponential Stability

Below, ¢ will represent the angular variable about an axis of symmetry
common to both @ and f , if there is one. For simplicity, we will write
u = u(¢,t) , suppressing in our notation the usually nontrivial dependence
of u on the other spatial variables. The symbol w will also denote an angle
about the axis of symmetry, thought of as a rotation. If f and Q do mnot
possess a common axis of symmetry, it will be understood that w = 0 . Further,
for any 9 , if f is time independent we will consider time shifts denoted by

s . If f 1s not time independent, it will be understood that s = 0

Definition 3. We say u 1is quasi-expomentially stable if there are nwnbers

§,T,B > 0 such that for every perturbation w , with w eJ and |]wo|l <6

there exists a time shift s and a spatial rotation w satisfying

(22) tsl + fol < Bllu Il ,
(23) - en o< sl

where v 1s the solution of the perturbed problem (6) corresponding to the

perturbation w , and u(x,t) = ulgtw,t+s)

A simple example of quasi-exponential stability occurs in the Taylor
experiment. At certain rotational speeds of the cylinders, the convection cells
loose rotational symmetry, taking on a wavy appearance in the angular variable.
Clearly, if the boundary values and forces are rotaticnally symmetric, a small

angular shift in the pattern of waves will constitute an admissible perturbation
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with no tendency to decay. However, the same reasoning that leads one to
believe simple Taylor cells are exponentially stable leads to the conclusion
that wavy Tayloer cells are quasi-exponentially stable "modulc spatial rotations",
meaning that there is a fixed length of time T during which the difference
between a slightly disturbed flow v and a slightly rotated image u = u(¢tw, t)
of the original undisturbed flow will decay to half the size of the initial
perturbation wo==v(to)-u(to) , and further that the required rotation w
should be less than a fixed constant B times the size of the initial pertur-
bation. In this case the time shift s in Definition 3 is taken to be zero.
Alternatively, if the waves are precessing about the axis of symmetry, and if
the forces and boundary values are time independent, the flow can be considered
as quasi-exponentially stable "modulo time shifts", meaning that there exists

a time shift s such that the difference between v and G = u(¢,t+s) decays
to half the size of v in time T . An important example of a flow which is
quasi-exponentially stable modulo time shifts, but not modulo rotations, is
provided by von-Kdrmidn vortex shedding behind a cylinder. Small perturbations
decay modulo slight shifts in the time phase.

Definition 3 permits consideration of quasi-exponential stability modulo
both time shifts and spatial rotations simultaneously. An example occurs in
the Taylor experiment, when at certain rotational speeds of the cyliners wavy
cells are observed to undergo a further time periodic oscillation, odd and even
numbered cells alternately expanding and contracting. Though these cells are
sometimes referred to as doubly time periodic, it is clear that the second time
periodicity is possible only because the first one is equivalent to a spatial
periodicity.

In [1] we proved a result concerning the discrete approximation of quasi-
exponentially stable solutions, analogous to Theorem 3. Its conclusion differs
from that of Theorem 3 in that it provides error estimates modulo rotations

and time shifts. More precisely, it asserts the existence of time dependent
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rotations wh(t) and time shifts sh(t) , in addition to the constants K

and hO , such that for 0 < h < ho and t » 0 , there holds

ll-up @, = v'x

1/2

||(13“Ph)(t)|| ) < hKmax (1, %) ,
L°/N

h
where u(4,t) = u(¢+mh(t) , t-+sh(t)) and p(¢,t) = p(¢+wh(t) s t-+sh(t))

Moreover, wh(o) =0, sh(o) = 0, and their time derivatives satisfy
lwrCe) | + [si(e)| < nPK
h h B ‘

Thus the rates of angular precession and of drift in the time phase, of the
discrete solution relative to the continuous solution, are of order h2

The theory of quasi-exponential stability has been developed in [1]
similarly to that exponential stability, with similar consequences for discrete
approximations. We will only state here the corresponding principle of linear-
ized stability. To understand the modification needed in Theorem 4, note that
if f is independent of time, and/or §Q and f possess a common axis of
rotational symmetry with the corresponding angular variable ¢ , then the
derivatives u, and/or u¢ are necessarily solutions of the linearized pertur-

bation equation (19).

Theorem 5. The solution u of problem (1) s quasi-exponentially stable if

and only if there ewist mumbers o,A,B > 0 , such that every solution w(t)

of the linearized perturbation equation (19) satisfies

(24) lw(t) -~ ou () - uy (£) I s ae (et HG(tO)H

for t = t,t 1, where o and p are scalar multipliers satisfying

(25) lol + [e] = Bllw () .

Nonzero multipliers o and p are required in (24) if and only if nonzero
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time shifts s and nontrivial rotations w , respectively, are required in (23).

5. Contractive Stability to a Tolerance and Long Term A Posteriori

Error Estimates

We turn now to the question of whether the "global existence" of a smooth
stable solution of problem (1) can be verified by means of a numerical exper-
iment., There is a known argument for bounding a solution's Dirichlet norm
(and thus obtaining its full regularity) ''locally" via a numerical experiment
combined with an a posteriori error estimate. It goes roughly as follows.
Suppose the Dirichlet norm of the discrete solution, for a given mesh size h ,

is found to remain less than some number N, . Choosing a second number

h
M > Nh , the Dirichlet norm of the smooth solution certainly remains less than
M on some unknown interval [O,Ch] . Using the local error estimate (Proposi-

tion 2) which holds on the basis of the assumed bound M , one then obtains an
explicit estimate (exponential in time) for the solution's Dirichlet norm on
[O,th] . Equating the right side of this estimate with M one may solve for

t, » or more precisely, a lower bound for th , 1.e,, an interval of time during
which M does indeed bound the Dirichlet norm. At best, if the computed

numbers Nh Femain bounded as h - 0 , one finds that th ~-logh , because

of the exponential growth of the local error estimate. In other words, to verify
existence this way on an interval [0,T] requires a numerical experiment with

mesh size h ~ exp(-T) .

The point of Theorem 6 below is to demonstrate that in verifying existence
over time intervals of any length, it suffices to work with a single sufficiently
small choice of the mesh size, provided the discrete solution i1s found to be
stable as well as of bounded Dirichlet norm.

This raises the question of whether it is possible to verify numerically
the stability of a discrete solution. It certainly is not if one has in mind

the usual notions of stability, which set a condition to be satisfied by all

perturbations, no matter how small. For this reason we introduce, for use
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as a hypothesis in Theorem 6, another notion of stability which we call
"contractive stability to a tolerance'. 1In Theorem 7 it is shown that the
question of whether a discrete solution possesses this type of stability can be
answered through a fixed, finite amount of computation per unit of time. The
question of whether the discrete approximations of an exponentially stable
solution inherit the property of being contractively stable to a tolerance 1s
answered affirmatively in Theorem 8. It is shown, moreover, that the stability
parameters of the discrete solution are bounded uniformly in h as h -+ 0,
so that the hypotheses of Theorem 6 are necessarily satisfied for all sufficient-
ly small values of h . Together, Theorems 6, 7 and 8 imply that the existence
of a stable smooth solution can be verified (at least in principle) through a
fixed, finite amount of computation per unit of time. The proofs are supplied
in [1]. Below, for simplicity, we define contractive stability to a tolerance
relative to the infinite time interval O < t < » and state our theorems
accordingly, the modification to solutions defined on finite time intervals
being obvious.

Let u, be a solution of the discretized Navier-Stokes equations, defined

h

for t 20 . In analogy with the continuous case, we call w, a "perturbation"

h

of u if w, = v. - u , where v is a second discrete solution, starting

h h h h h

at some initial time t0 2 0 , with an initial value vh(to) near uh(to)

Whenever we speak below of a perturbation w it is to be understood that the

h td
associated initial time, initial value, and perturbed solution are denoted by

to R wh(to) and vh , respectively,

Definition 4. 4 solution u,  of the discretized Navier-Stokes equations

(defined for t 2 0) is said to be "eontractively stable to a tolerance"

if there exist positive numbere & ,p,A and T , with p < § , such that for

any time t =0 and any perturbation w, of wu  satisfying i|vhwh(to)|‘< s,

there holds
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||vhwh(tO+T)|| <p, sup ||VhWh” s AL
[t ,t +T]
o’ o
We call p the "tolerance', & the "stability radius" and T the "decay

time" of uos and A a "Dirichlet bound" for its perturbatioms.

Theorem 6. Suppose that, for some h , there is a discrete solution u which

is contractively stable to a tolerance. Then, if h 1s sufficiently small in

relation to sup||Vv u || , 4 u (o)|| , and the stability parameters p,5,T
T Ttz RB hh -

of Definition 4, there exists a continuous solution u of the Navier-Stokes

equations satisfying

sup||v. Cu-u) |l < 20 .
t20 h "

Further, if 3p < 6§ , and if h is small enough, the continuous solution u

will also be contractively stable to a tolerance.

The proof that a discrete solution's contractive stability to a tolerance
is amenable to numerical verification depends upon discrete solutions enjoying
continuous dependence properties analogous to those stated for continuous
solutions in Lemmas 1 and 2. As we are dealing abstractly with the discreti-
zation of the Navier-Stokes equations, we must assume such properties of contin-

uous dependence. The following then holds.

b=

n°n
Then, if u 18 contractively stable to a tolerance, this can be verified by

Theorem 1. Suppose u is a discrete solution satisfying supl|v
>

checking the decay (to a tolerance in fixed time) of a fixed finite number of

test perturbations per unit of time.

The assurance that discrete solutions approximating an exponentially
stable solution will, for all sufficiently small values of h , satisfy the
hypotheses of Theorem 6 is provided in our final result. Contractive stability

to a tolerance is defined for continuous solutions analogously to Definition 4.
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Theorem 8. Let u and u, be continuous and discrete solutions of problem (1).

Suppose that sup||Vul| <« and that u is contractively stable to a tolerance,
t20
with parameters o,8,T and A . Then there exist constants K and hO s

such that

(26) supHVh(u—uh) | € p+Kh ,
t£20

for all h <h . Further, if 3p < § , then the diserete solution u is

contractively stable to a tolerance for certain fixed values of the stability

parameters, for all sufficiently small values of h

We have stated this last result for continuous solutions assumed merely
to be contractively stable to a tolerance, rather than to possess the stronger
property of exponential stability, as we think there is a naturally occuring
and important class of flows which possess this weaker stability property without
being, in fact, exponentially stable. For example, imagine that € 1is a section
of pipe or tubing and let smooth boundary values be prescribed for a flow
entering across an upstream section and exiting across a downstream section.
Adjusting the rate of flow and the length of the pipe, one may expect to observe
incipient turbulence in a flow which is yet, in some sense, stable to larger
disturbances. Small perturbations in the nearly uniform upstream flow begin
to grow. However, before they grow very large they pass out of { across the
downstream boundary. Yet, their effect may not decay to zero. Even as they
pass downstream they influence the upstream flow; the flow is analytic after all.
Their effect might be likened to the introduction of new perturbations upstream,
which in their turn will grow, pass downstream, and again create new perturba-
tions upstream. TIf a larger distrubance is introduced, its effect will decay
to the same ambient level of minor disturbances. Another type of example
probably occurs in von~Kdrmin vortex shedding, if there are slight instabilities
in the vortices. Still another in the Taylor experiment, when wavy cells appear

with slightly turbulent cores. If these flows really are contractively stable
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to a tolerance, the error estimate to a tolerance (26) applies to their discrete
approximations, at least after taking account of time shifts and spatial

rotations as was done for exponential stability in section 4.
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There is no global existence theorem about the nonlinear
Navier-Stokes equation until now. However, there is an existence
theorem for the linear Stokes equation, and there also exists an
existence theorem, as we will prove in this paper, for the nonlinear

system

(1)

u: = g. on aQ, 1=i=N ,

which has the same nonlinearity as the Navier-Stokes equation but
without the condition div u = 0. These results mean, as pointed out
by R. B. Kellogg, that the difficulty about the Navier-Stokes equa-
tion stems from both the condition div u = 0 and the nonlinearity
rather than from only one of them.

We will also prove in this paper the convergence theorem for
the finite element approximation of the system (1) and some accele-

ration results.

1. Existence Theorem

The system (1) was discussed by Kiselev and Ladyzenskaya in

1957. It has been pointed by Nirenberg that the proof of existence

399
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is incorrect (see MR 20 #6881, by Finn). We first prove that the
system (1) always has a classical solution.

Iheorem 1. Suppose Q € A,, . Then for any data f, € Ca(ﬁ)
and g; € cz+a(an), the system (1) has a solution uj € C2+a(ﬁ),
1 s1sN.

The proof 1is based on

Lemma 1.

maxs I lui(x)! = maxm L ]fi(x)! + maxy, ¥ lgi(x)l

+ 2 maxg z Ixil .
Proof. We write, for fixed i,

ui(x) = v(x) + Xy .

Hence the i'M equation of (1) becomes

N

Av - X u'j 3.~V © fi(x) * Xy in Q
1

v = gi(x) - Xy on a0 .

°)

Now assume for v a positive maximum at Po = (x?, ceen Xy

€ Q that

= =0 (1 = j=N), Av s 0 at Po .

Hence

o]
- V(PO) = fi(Po) + Xy

v(Po) < maxx Ifi(x)l + maxp Ixil .
Similarly, assume for v a negative minimum at Po € 0 so that
v(Po) z -maxg Ifi(x)l - maxs Ixil .

Finally, assume for v an extreme value at PO € a0

Iv(Po)I < maxyq lgi(x)l + max,q Sxil .
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Thus in any case we have

A

maxp Iui(x)l < maxy |v(x)| + maxg Ixil

1A

maxs Ifi(x)l + max,, Igi(x)l + 2 maxp Ixil

and Lemma 1 is proved.
Applying Lemma 1 and the Learay-Schauder theorem we obtain

Theorem 1.
The existence theorem for the nonstationary problem correspond-
ing to (1) can be treated in a similar fashion.
2. Finite Element Approximation and Its Acceleration

Consider the simple solution u of (1) defined by

aw 3u - Q -
(wi0)g + Z (uy 3, * '"axjwj' p) =0 V PEH;Zw=0,
with scalars
= ¥ _ 5 8% 3y
(W) = 2 wpdx ,  (¥,9), = & (s;j. g;j) .

We have the following approximation theorem.
Theorem 2. Suppose that N = 3, g = 0, Q is a convex polygon
(o]
and u € Hy N Hy is a simple solution of (1). Then for h small

enough, the finite element equation

du
_ h
in the piecewise linear trial space Sy, has a unique solution up € Sh

in a neighborhood of u, which satisfies
‘ 2
(3) llu, = uily = chodluil, ,  lluy - ully < ch®lui, .

Furthermore, if u ¢ H3, the accuracy of energy norm can be raised by

computing the following quadratic finite element solutions
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Uy € Sk'
_ auh
(“’) - (uk"ok)l = I (th -BYE' sok) + (f.@k) \ pk € bk
in the piecewise quadratic trial space Sy with
a coarser mesh size k (see the figure). We have

(5) G, - ull, = cn® . \\\\

Note that the two finite element equations

for u, and U, have the same degrees of freedom.

k
Theorem 2 will be proved by the following abstract operator
framework.

Consider the abstract operator equation
(6) u = Ku ,

where K is Fréchet-differentiable in a Banach space E. The following
lemma can be found in, for example, G. Alefeld, Beitr Numer. Anal.
6(1977).

Lemma 2. If (I - K'(uo))'1 exists for some wu € E, K' is

Lipschitz-continuous with constant ¢, in the ball [ju - uon <r and

1 1’

1 - k)< e

pr T = K ()M (ug = Kugdlh S eg

c
- 1 > - 2.
cy = ©1ey03 < 5, ryz (1 0+ V1 - 2¢) o r, o

then (6) has a unique solution u in the region

c c
ro= (-1 + I +26) =2 <flu-ulls(t-yT-3c) =
3 ey, ) ke,
and has no solution in the region
lfu - uoH sry and 1y <lu - ull <r, .

Moreover, u is a simple solution: 3 (I - K'(u))‘l.

We now consider the projection equation
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(7) up = PpKuy

where Ph is a projection with PhE = Shc E.
Lemma 3. Suppose that u is a simple sclution of (6}, PhK is

Lipschitz-continuous in a neighborhood of u, and
lw = Ppull =0, (I~ PIK (Wil -0 (ash~0).

Then for h small enough, equation (7) has a unique solution Uy in a

neighborhood of u, which satisfies

"uh - ull = cliu = Ppuil
The Newton iterates for (7) exist and converge quadratically. Moreover
(8) lKuy = wil s cliluy = wl + lIK* () (I - P ) iu, - uil .

Proof. Replacing K with PhK and choocing u, =u in Lemma 2,
one obtains the first part of Lemma 3. The estimate (8) can be derived

by using the following identities
(1 - K'(u]}(Kuh - u) = Ku, - Ku - K'(u)(uh - u)
+ K (u)(1I - Ph}(uh - Kuh} ,
Kuh S, * Kuh - Ku + u - U .
Q
We now apply Lemma 3 to the system (1). Let E =H, and K be

an operator defined by

o
Ku € H1

- (Kup), = £ (u, 28, 9) + (£,9) Vv pen
L} 1 jale L} I'
et S, be the piecewise linear trial space with the mesh size h and

P, the standard Ritz-projection defined by

Pou € §, and (l?"},]u,sﬁ"h)1 = (u.th)l v Wh € 5y -
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Then (1) and (2) can be written as (6) and (7) respectively. And the

Fréchet derivative K'(u) will be determined by

0
v = K'(u)w € H, ,

1
ST (g o, 0
- (V:SD)l s b (uJ axj + axjwjt 50) v 506 H1 .
We now come to prove
(9) K (u) (T - Pplilyq S ch o

For this we note

UK (W (T = Pp)ilyLg = WD = PR ()

iA

I = P K (WPl < chllk' (w)™ll,,
where

(K (WMpu), = (9K (u")y),

i

du ., o
-x (—gﬁ}p.\bj) + £ (glve u.ﬂ_,w V OLEH .
d

J

Since

K (u)*oll < clluil o,

so (9) holds.
By means of Lemma 3 and Nitsche's trick we obtain the estimate

(3) and the following estimate
@ - ull, < ch®full,

where U is the solutions of the uncoupled Poisson equation

- auh
Au = & uhj % + f in Q
(10) J
=0 9on a .

The estimate (5) can be derived by the following Brezzi's

trick.
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First, split the Poisson equation {10) into two parts:

o = ou ) Q

- (40)y = 2 (uy 3;j.w) *(f,9) ¥V YEH,,
du

- _ n au [}

- (U.Z,w)l = Z (uhj ~—-——axj - uj g)—(j,&o) ¥ v¢ Hl

and

Correspondingly the quadratic finite element equation (4) can

also be splitted into two parts:

. i su
- (ulk’\pk)l = L (u.] ax‘]'wk) + (f.Wk) v pKE Sk »

) au, ;
(Upgy ey )y = T (uy 5% " us Sij'”k) VowyE 5
and
Up = U T oupg oo

Then we have

A

Huk - uul S gy = uglly rollug - sy

iA

2= i 2
ch Hu1H3 + canuzll2 < ch

and (5) folldws.
We would like to make the following remark.
Recently Lin Qun and Lu Tao proposed a "splitting extrapolation

difference method" for solving the linear elliptic problem
su=za. & +r ina
j OX. ’

u =g on o

in a cubic 0 c RN. The well known difference method consists in

replacing the differential equation with the central difference quo-
tient equation, the continuous domain Q with the discrete mesh V(hl’

h ey hN) with size h,, h h, along variables Xys Xor oevegXy

2° 1 72 "t N
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respectively and replacing the continuous exact solution u with the
discrete approximate solution U(hl' h2. ceus hN). We have, if u is

smooth enough,

=2

£ noi*z,
=11

N o
P> c§23)h§J + 0 .
1 i=t i

LN ve <=4

u - U(hl’ h2, ooy hN) =

J
The usual global extrapclation method inveolves the following:

hy hp hy hy hy

Make the homogeneous refinement meshes V(E—. Sy eees E_)' V(E—' pral)

hy h, h,
cees E_)’ +«. with corresponding difference sclutions U(x=, T e

h hl h2 hN
E—)' U(E—’ T eeen E_)' ... and compute the homogeneous extrapola-
tion solutions
h h h
N DT Ny
th = 3(lLU(2 P B e 3 ) U(hl' h2, ceey hN))
h h h h, h h
1 1 N 1 "2 N
HEZ = EE(SQU(E—, T v §f ) - 20U(2 I AARE

+
[ey
=

Then one has

o o b6y
u - th = 0(Z hi) poou - HE2 = 0(x hi) T ees o

Our splitting extrapolation method involves the following:

h
Make the one-variable refinement meshes V(—l. hz' cees hN). V(hl,
h h
T2 5Ny Loy 2
IR hN), cs sy v(hl' th .}:1.’ 2 )v V(E—y hz. seey hN)r v(hlv r'
N : . .
ceey hN). eiey v(hlﬂ h2. ey E—), «+s with the corresponding differ-

R 1 2
ence soluﬁlons U( 5= h2' caes hN), U(hly,1 5o aees hN). veey U(hl'

h
INy g 2
h2r .ﬁ.' 2 )r U(E—n h2' cvey hN)' U(hlo E_o * 00y hN)' *eey U(hlo h2'
veey Eﬁ); ... and compute the splitting extrapolation solutions
1 N hy
SE, = 3ifl(u U(hl' vees Tor eeen hN) - U(hl, eeny hN))
- (N - 1)U(h1, ceny hN)
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N h, h,
| 1 5=
SE, = h—sifl(éu Ulhyoeeaag=reeesny) = 20 Ulhy,oee,35,000,hy)

+ U(hlv'O..hN)) - (N - I)U(hl..a-,hN)

S rs s s s ettt

Then one has

. by . 6, .
u - SEl = 0(Z hi) P u - Sh2 = 0(Z hi) P oeee

Actually,

SE1 = HEl . SE2 = HE2 y see

in the asymptotic sense. It is easy to see that the splitting extra-
polation method will save computational effort in comparison with
the homogeneous extrapolation method. We hope that the splitting

method will be effective also for the system (1).

Acknowledgments. The authors are greatly indebted to Professors
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comments.
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If fluid flow is accompanied by chemical reaction, then very complicated
wave motion phenomena occur. Chapman and Jouguet used a simple and typical model
which showed various waves of combustion: strong detonation wave, weak detonation
wave, strong deflagration wave, weak deflagration wave, and their critical states,
the so-called Chapman-Jouguet detonation wave and deflagration wave [1,2]. After-
wards, many autnors have done various works about the structure of these waves and
their formative conditions using different kinds of models. More research works
have been done in the laboratories and by numerical experiments.

It is an interesting problem how a mathematical model can be applied to
these phenomena and one may investigate them by the theory of partial differential
equations. Some authors have investigated the travelling wave solutions and some
Riemann initial value problems for these problems, but up to now these investiga-
tions are not so deep as that for the shock waves.

In this paper we consider a model system of combustion as

2
3 ] _.du
ol az) g dle) = v
(1)
%%= —-Kd)(u)z,

where constants q > 0, v > 0, K > 0 represent the binding energy, viscosity and

the rate of chemical reaction respectively, u 1is a lumped variable representing

409
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density, velocity and temperature, z 1is the fraction of unburht gas. Majda [3])
has investigated the travelling wave solutions of (1) and explained some inter-
esting phenomena from it, such as strong and weak detonation waves.

The properties of (1) when Vv = +0 and K = +» are of most interest because
the mathematical shock waves and mathematical detonation waves are involved in
the solutions at this case. We will prove the global existence of the weak solu-
tions for the initial value problems under some hypotheses. The relationship
between system (1) and the reacting fluid dynamic system is just the same as that
between Burgers' equation and the fluid dynamic system. But system (1) is much
more complicated than Burgers' equation, because first of all it is a system, not
a single equation, secondly, because many properties of Burgers' equation, for
example, the order principle, are violated here, another example is that there is
no "overshot" of shock waves in the solutions of Burgers' equation, while it is
just normal with discontinuous solutions of (1). Many difficulties in
analysis arise from this.

We will give some hypotheses and two definitions of weak solutions: Problem
P and Problem Q, discuss the strong discontinuous curve and the Riemann Problem
in the first section, the formulation of Problem Q is stronger than that of Prob-
lem P since it determines the state at critical point w = 0. We will prove the
global existence of Problem P at the second section if, roughly speaking, the
initial values are functions with bounded variation. Under an additional hy-
pothesis on the points where the initial value uo(x) assumes the value O
(Hypothesis A), we will prove the global existence of Problem Q at the third

section.

§1. The definitions of solutions.

We always assume that the function f(u) is sufficiently smooth and f' > 0O,

" > 0. Function ¢ is defined as

o, u < 0,
¢(u) = {
1, u > 0,
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where u = 0 is the "ignition temperature", which is a critical point, we will

assume that ¢(O) = 1 at the following Problem Q. Clearly 0 <z <1, according

to its physical background.

Let v =+ +0, K > +» in system (1), we obtain a formally classical formula-

tion as

o (u+qz) + 52 £(u) = 0, (2)
z =0, as u > 0, j}

(3)
3z _
It 0, as u < 0.

The Rankine-Hugoniot condition is also obtained as

[u+ qzlo = [f]. ()

where [ ] denotes the jump of function, 6 is the slope of the discontinuity curve.

If the limit of u, z from the left and right sides of the discontinuous

- - + + .
curve are denoted by u , 2 and u , 2 respectively, then it is easy to

classify the discontinuous curves into five classes:

. ~ + - + - +
a) shock waves (abbr. S}, either u ,u <0 or u,u >0, and 2z =13z ,

- + -
b) strong detonation waves (abbr. SD), u >0, u < 0, and f'(u ) > o,
- + -

¢) weak detonation waves (abbr. WD), u > 0, u < 0, and f'(u )} <o,

- + -
d) Chapman-Jouguet detonation waves (abbr. CJ), u > 0, u <0, and f'(u )

‘ . Y- 4, -

e) contact discontinuities (abbr. C), u =u , z # z , where 0 = 0.
+

Some other cases are possible, for instance the case when u < 0o, u > 0,

but we assume that the Lax condition of stability

- +
A, >0 > X, for i =1 or 2,
i-" ="

is satisfied, where kl(u) =0, Xz(u) = f'{u), A, = Xi(u(x -0, t)), X; =

1

1

+ - +
X.(ul(x + 0, t)), then neither the case u < 0, u > 0, nor weak detonation wave

are admissible. We will assume that only cases a) b) d) e) are admissible in the

following.
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There are some other critical cases, for instance u+ =0 or u =0. We
will assume in the following that =z = 0 when u = 0, hence we may change
u >0 or u+ >0 to u >0 or u+ > 0 at the above inequalities.

For the convenience of following discussion, two auxiliary functions are
defined.

Function u¥ = g(u,z) is defined by

flu*) - f£u)

1 %) =
£ {u¥) u* - u -qz -

Lemma 1. u* exists uniquely and %% > 0, Q% > 0.

Proof. Set

@lur) =[O (erx) - ere)dae + [, e oas,

then (5) is equivalent to <f(u*) =0, u* > u. It is easy to verify Cf‘(u*) >0
and

P(u+ qz) = J’qu £'(t)at < 0.

But (p(+®) = +o, therefore there exists a unigque u* > u + qz such that @ (u*)
= 0. But =z >0, hence u* > u.

% | % | . .
5 > 0 and =% >0 can be verified from (5) directly. O

ir s - + o+
By (5) it is easy to see that 8D corresponds to u > g{u , z ) and CJ
- + o+
corresponds to u = g{u , z ).

The second auxiliary function is w = Y(u), satisfying

flu) - £(0)

_wy - W) >
u 74) N u 0,

u, u< 0.

It is easy to see that ¥ is continuous, monotonous and one-to-one, ${o) = 0,

P'(u) > 0.

Lemma 2. If u, <0, z, >z, >0, glu

>
0 1 5 > 0, then

0 z,)
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U)(g(uo, Zl)) - vleluy, 22)) <alz; - z,)- (1)
If v < ug <0, zy = 0, g(ul, ZO) > 0, then
blelu,, 25)) - wlalu,, zg)) < u, - u, - (8)

Proof. On the (u, f) plane, the straight lines

T - f‘(uO) = f'(g(uo, 2y - vy - qzl)’

- fluy) = £ (8luy, 2,))(u - vy - az,),

are the tangent lines of curve f = f(u) by (5). The intersection points of

these two lines with horizontal line f = £(0) are

£{0) - f(uo)
w = u + qz + VTl o )
1 0 1 f (g(uO,zl))
£(0) - tl{u.)
Wy T Ut %, Y LT ()))’
g u0,22

respectively, hence

but
elug, 2,) > aluys 2,0,

by %f > 0, we get

- z.)

- <
vy =y <alzy -z

2

by ("> 0. From (5) (6) we know w, = ¥(gluy, 2,)), v, = ¥lglu,, z,)), there-

1 2

fore {7) is proved. The proof of inequality (8) is similar. O

We consider the initial value problem of (2) (3) with initial values
u(x, 0) = uy(x), =lx, 0) = z,(x), (9)

where  z, satisfies 0 E-ZO <1 and zo(x) = 0 when uo(x) > 0. First of all,

we consider the Riemann problem, that is the case of
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u x <0 Z x <0
j'Ad —_ 7 _ 2° ]
uylx) = t zo{x) = {

ur, x > 0, Zr’ x >0,

where Ugs ur, Zg> Zr are constants. There are four cases:

a) up < u,. We construct u(x, t) as the solution of equation

du , of(u) _
e O (10

and the initial value. Set =z(x, t) = zo(x), then the solution of this case is
obtained. There is a C in the solution.
b) up > U, but uy < Q. We can construct the solution as case a). There

are & C and & S in the solution.

> >
c) uy > us U >0, and up g(ur, Zr)' Let

(s 00, % € T v,
r
(w, z) = #lug) - £lu)
(u,z ), x> £
r® “r up - u - qz

There is a 85D, it degenerates to a S when zr = 0.

<
d) 4y > u, uy >0, but uy < g(ur, zr). Let

(ug, 0), x < £'(uy)t,
(w,2) = 4 (07, 000 eugdt < x < oi(slu, 2z )t
(s 2.0, x> r'(glu, z ))t.

There is a CJ.
Therefore, the Riemann problem is always solvable. But it should be noticed
that even the condition of stability is satisfied, the solutions are still not

unique. For example, when uo(x) =4y <0, z.(x) = z

>
0 0 o> 0 &l

ugs zo)_i 0,
besides the trivial solution u El%) and z = ZO’ we may also construct a solu-

tion as:
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(uo, zo), x < 0,
(uo, 0), 0<x < f'(uo)t,
(u, 2) = -1,x
(") (E), 0), f'(uo)t < x f_f'(g(uo, zo))t,
(uy» zo), x > £'(glug, zo))t,

this solution corresponds to the case when one fires a match in a space filled
with combustible gas and oxygen. We conjecture that the solutions obtained in

"

the following are not those solutions of "catastrophe'.

For the general initial value problem, u (x), z.{x) are assumed to be

0 ¢]

bounded measurable functions. Two formulations of weak solutions are given.

Problem P. To find bounded measurable functions u(x, t), z(x, t) defined in

t > 0 such that for all t and x,
Lim = [% u(g, t)aE = u(x, t) (11)
h~>+0
exists,and for any smooth function ?(x, t) with compact support on t >0,

I"’t?_o { Ea% (u+qz> + 3—;% f(u)}dxdt + ji:{uo(x)+qzo(x)}(y(x, O)dX =0 (12)

holds, moreover, for any non-negative smooth function ?(x, t) with compact

support on t > O,

3P +@
”tzo =L zaxat + [ 2o (x) P(x, 0)ax > 0 (13)
holds, and finally such that with
v(ix, t) = sup u (x, T), (1k)
0<T<t
we have
0, if v(x, t) >0,
z(x, t) = (15}
Zo(x), if vix, t) <0

Problem Q. To find bounded measurable functions u{x, t), z{x, t) defined in
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t > 0 satisfying (11) (12) and

a, if w(x, t) >0,
2(x, t) = ‘{ (16)

z2o(x), 1T vix, t) <0,

where vi{x, t) is defined by (14).
The formulation of Problem § is stronger than that of Problem P, because (16)

implies (13) and determines the state as u = 0.

§2. The existence of the solutions of Problem P.

First of all, let us consider a class of special initial values and discuss

the properties of the solutions for these special initial value problems.

Lemma 3. If (-o, +») consists of a finite number of intervals, and zo(x)

= constant, uo(x) does not decrease on each of them, then the solution of Problem

Q exists.

Proof. Buppose there are N intervals.

When N = 1, a solution u(x, t) is constructed as the solution of equation
(10) with initial value uo(x), u{x, t) does not decrease as a function of x
for each t. It is sufficient to set z(x, t) = ZO(x).

When N = 2, we may suppose the two intervals are x <0 and x > 0 with-

out losing generality. Let u, = uo(+0) and uy = uo(—O),

Zr’ x > 0,
24(x) = {

29, x < 0.

There are four cases (consult with the Riemann problem):

a) uy < us construct u as the case N =1 and set z(x, t)= zo(x).

b) u, > us but u, < 0. Construct ul(x, t) with the initial value on x

I3

>0 and x < 0 separately Just like the case N = 1, then construct a discon-

L

tinuity through the origin defined by

dx _ flulx = 0, t)) - flulx + 0, t))

dt u(x - 0, t) ~u(x + 0, t)
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u(x + 0, t) increases and ufx - 0, t) decreases as t increases, but they are

always unequal. We have z(x,

u

t) = zo(x) in this case.
c) uy > U, vy 20, and u, > g(ur, Zr). Construct u(x, t) separately

like b), then construct a discontinuity defined by

As t increases, u(x + 0, t), u(x -~ 0, t) vary as the previous, if u{x - 0, t)
= glu{x + 0, to), Zr) at some L., then it becomes the case 4}, i.e. the discon-
tinuous varies from SD to Cd.
> > <
d) ug > u, vy 20, but uy __g(ur, Zr)'

Step 1. Using the solution of N = 1 we obtain the solution on x 3_f'(ur)t

and X flf'(uz)t, denote them by ur(x, t) and uz(x, t) respectively.

Step 2. Solve the initial value problem of ordinary differential equation:

ax _ o
=T (g(ur(x, t), Zr)>,
X|L=O = 0.

Since ur(x, t) is continuous on t > 0, we obtain a smooth solution x
= x{(t). Because g(ur, Zr) > u, eand the slope of x(t) increases, the curve x
=x(t) always lies in region x z_f'(uz)t.

Step 3. Construct a solution

on the sector f£'(u,)t < x < £'(glu_, z_))t.

2 r r

Step 4. Construct characteristics

{v
A
M

2(t): x = x(1) + f'(g(ur(X(T), 1), Zl"))(t -T), t

in region f'(g(ur, Zr))t < x < x(t), then define

on &{T), it is easy to prove &2(T) cover the whole region and (u, z) is &
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solution, x = x(t) 1is a CJ.

For the general case when N > 2, it is easy to prove by induction. A

Remark. If (u(x, t), z(x, t)) 1is the solution obtained by Lemma 3, then through

any point (xo, to) there is a characteristic

&

= ri{ulx, t)), t <t

t.) holds on this characteristic. If u(x

Tdentity ulx, t)= u(xo, 0 t,) <o,

0* 70
this line must intersect the x-axis, if u(x, t) > 0, it intersects either the

x-axis, or a CJ.

Lemma 4. If the solution by Lemma 3 satisfies ulx, t) > -My, and u(x, t) <0

at a point (x, t), then for any £ < x, we have

ulx, t) —u(g, t) . €
x - & -t

where € 1is a constant depending on function f and constant MO only.

Proof. Take any & < x. If u(&, t) < 0, then by the Remark above, through

(£, t) there is a downward characteristic which intersects the x-axis at point

g

1 if X is the intersection point of the characteristic through (x, t) and

the x-axis, then

X - x = £ {ulx, t))t,
£ -& = f'(ulg, t))t.
But thege two characteristic do not intersect by the Remark, hence x z»é . We

get

x = &= x4 (ulx, t)t - & - f'(ulE, t))t

£ (ulx, t))t ~ £'(u{g, t))t

{v

= " (a)(ulx, t) - u(g, t))t,

where U is a certain mean value, u > -MO, 50
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ulx, t) - u(g, t) 1
x - & — ()t
1f u(&, t) > 0, then the above inequality is obvious because u{x, t} < O. O

Lemma 5. The solution by Lemma 3 satisfies

inf uo(x) < ulx, t) flmax{sup uo(x), g(o, 1)}.
x x

Lemma 6. The solution by Lemma 3 satisfies
0 <azlx, t) <1.
The above two lemmas are obvious because of the structure of the solution.

Lemma 7. wvar ${u(+, t)) < C{var ¢ o u_ + var ZO},

0

where C is a constant depending on q, function f and suplu(x, t)| only,

g o g is the composition of ¢ and Yy

Proof. For a given t, ulx, t) is piecewise monotonous, z{x, t) 1is piecewise
- - +
constant, therefore the left and right limit wu (x, t), z (x, t) and u (x, t),

+ -
z (x, t), exists, Let x5 be the discontinucus points such that =z (xi, t)

+ _
<z (Xi’ t), uy(xi, t) <0 (1i=1,2,"""), i be the discontinuous points such

- + —
that 0 = 2 (yi, t) < % (yi, t), u (yi, t) >0 (i=1,2,+), set

F(t) = var Plul-, t)) + 2qE{z+(xi, t) - Z_(Xi, )}
i

flys ), 2Ty, 0))) - wlaT(yg, ), ob

+ 2% max{Y{glu 5 i

i
Let us prove that F(t) < F(0).

Firstly we compare F(0) and F(+0). Each term in F does not change
locally at the interior points of every intervals and the discontinuous points for
cases a) b) ¢). For case d), when t = +0, the jump of P(u{x, t)) at the dis-

continuous points are
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2We(u’ly;, 00y 2 (v, 0)) = Wy, 0)) = wa'(y,, 0))

= 20(e(u (v, 00y 27 (5,000 = Wy, O ¢ (U (y s 00) = B(u'(y, 0N,

hence
P(+0) = var Ylu(+,+0)) + 2an{z’ (x,, +0) - 27(x,, +0)} = F(0).
i

There are only a finite number of discontinuous curves and the numbers of inter-
section points are finite, we may assume that the lowest intersection point is at
t=t, Next, we consider F(t) as t < tyr The third term in F(t) disappears
and the second term keeps invariable in this case, therefore we will consider the
variation of ¥ o u only. For the continuous points of u, because u is
constant along characteristic, the local variation keeps invariable along the
characteristic. We will consider the influence of S, SD, CJ to the local
variation only.

The local variation decreases for 8 and 8D, hence they does not cause an
increase of F{t).

For a CJ curve x(t), set b = x(t), construct a characteristic through
(b, t) which intersects the x-axis at x = c, construct a tangent line of x(t)

at x = x{0), which is denoted by x_(T), let a = x (t) as T =1t, then

1 1
uia, t) = u (x(0), +0)
By Lemma 2
vu (b, 2)) = Wglu (b, t), ' (b, £)))
= Wlglule, 0), 2z (x(0), 0)))
+ +

< Plalut(x(0), 0), 27 (x(0), 0})) + {ule, 0) ~ u'(x(0), 0)}
= Ylua, t)) + {ulc, 0) - u (x(0), 0)}.

Hence

{pu™ (b, ) - Blula, £))) + (P (b, +)) - vlu (b, )}

< 9w (b, £)) - u'(x(0), 0))
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< {pu"(x(0), +0)) - Wlut(x(0), o))} + {wule, 0)) = w(u'(x(0), 0))},

therefore

F(t) < F(+0).

The discontinuous curves intersect each other at t =t we denote by 8D

D

- 0) to F(t.)

-+ C that a 8D catchs up with a C. The variance from F(t 0

0

is considered in the following cases:
+ -
SD +C or CJ =+ C: we denote by =z and 2z the values of 2z from the

+ -
right and left sides of C, by u and u the values of u from the right and

- +
left sides of SD or CJ, then u > glu , z ).

+ -
If 2 < z , then there is a new SD at t = to. The last two terms of

F(t) have no contribution, the local variation does not change.
+ - . . . - + o+
If 2 > 2 , then it corresponds to a point X:s if u > glu, z ), then
there is also a SD, the local variation does not change, and F(t) decreases.

+ - - + o+ + - .
If z >z and u <g(u, 2z ), then one term 2q{z - 2z} in F(t) will

+ o+ -
be eliminated and one term 2{Y(gl(u , z )) - Y(u )} will be added from t = 50
to t = to, but by Lemma 2
+ o+ + - + -
Plglu , z)) - Plglu , z7)) <qlz -z )
hence
+ o+ - + -
Yiglu , z )) - Plu) <alz -2z ).
F(t) does not increase either.
There are other cases such as S+ C, 8 » 8D, S>CJ, SD~>8, CJ » 5, it
is easy to check F(t) is invariable under these cases.
There is no difference between the analysis starting from F(t_ ) and from

0
F(0). By

F(O) i C{var‘ \l) o uO + var ZO}’

we obtain
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F(t) jrc{var Yo u. + var ZO},

0
therefore

var Y(ul*, t)) < Clvar ¢ o u, + var ZO}' O

0

Lemma 8, wvar z{*, t) < var Z

Proof. Each interval where 2z = 0 extends as t increases, while 2z does not

vary at the rest part, thus this conclusion follows. E]
400

Lenma 9. f Dol\})(u(x, t)) - plulx, 1)) ]ax f}C\t - T|{var p © u, + var zo},

where C depends on g, function f and u, = supjulx, t)] only.

Proof. We may assume that t > T without losing generality, construct a down-
ward characteristic through point {x, t), it intersects either the x-axis or a
CJ by the Remark of Lemma 3. If it is a CJ, then let the point move down along
this CJ, if this CJ stops at a point (xl, tl), then continue this procedure by

constructing a characteristic through (xl, t.), after a finite number of steps,

1
this moving point will arrive at a point (x', T) which lies at the same horizon-
tal line as {x, T).

Firstly we estimate |y¢{u(x, t)) - Ylu(x', T))I, it is sufficient to consider

the variance of u along CJ only because u does not change its value along

characteristics., If ;I;; is a CJ arc mentioned before, we construct downward
characteristics through Pl’ PQ, they intersect the T-horizontal line at points
Q. @, Dbecause u+(Pl) and u+(P2) are negative, we construct perpendicular
lines through Pl and P2 which intersect the T-horizonted line at Rl and
Rg, then
- - + + +
(20 = v )| = [wia(a’(By), 2" (P0)) - wlaa' (7)), 2" (R )))]

= |¢(g(u(Q2), Z(Rz))) - Ylglu(q)), z(R

By Lemma 2
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(™ (P,)) = w(u™ (PN < JulQy) - ulQ))] + qlz(R,) - (B )]

—_— N N
There is no overlap among the QlQQ'S and among the R1R2's formed by the Png's

hence

[wlulx, ) - Ylulx', )] < var{plu(+, )] (x', x]} + gvar{z(+, T)] [x', x]}.
Secondly by applying the triangular inequality, we get

bolulx, £)) - wlulx, ) <2 var{plul=, ) |[x",x]} + q var{e(+, )| [x', x]},
taking K = f'(um), we obtain

[lulx, £)) - lulx, )]

< 2 var{p(ul+, ™)) [x - k[t - 7|, x1} + q var{z(-, 1) [x - K|t - 1], %]},

if measure Hy and u, are the partial derivatives of Y(u(x, 1)) and z(x, T)
with respect to x for fixed T, then

X

[lulx, £)) - plulx, 1))] < max{2, q)f d(]pul + ]uZ!)

x-K|t-T|
7, Totulx, ) = wlulx, 1))]dx

< max(2, @)f " axf3 K| e allu |+ lu 1)

= max(2, q>f Ip | + |u [ jx | t-1| dx

= K max(2, q)|t - T|{var P(uls, 1)) + var z(-, 1)}.
The conclusion follows from Lemma 7 and Lemma §. Ej
+00
Lemma 10. [ |z(x, t) - z(x, T)]dx < ¢ ]t - 1| var z..

Proof. z{x, t) varies on 8D and CJ only, the slope of which is not greater

than f'(um), hence in the sense of distributions,

f+: [ ldx < £l (u fi: Igildx = f'(um) var z(*, t).

By Lemme 8 the conclusion holds. [m]|

Finally, we prove
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Thecrem 1. TIf W(uo(x)) and zo(x) are functions with bounded variation, then

the solution of Problem P exists, and Y o u, z € BV ([Lk]).

Proof. We may assume that uo(x) is left continuous, and we may assume that

vz (x) is left continuous on these points where u_ (x) < 0. TFor any integer n,

0 Q
we can define a function vén)(

(n) '

ber of intervals, v, '(x) is constant on each interval, {vén)(x) - w(uo(x))|

0
1 . (n) (n)
: vyl 0

x), such that (==, +®) consists of a finite num-

x) > 0 on some interval, then set =z (x) =0 on it, if

< 0 on some interval, then we define z(n)(

0 x) on this interval such

that 2 (x) are piecewise constants on a finite number of intervals, and
uén>(x) = w—l(vén>(x)). It is easy to see that as

Xx) converges to uo(x) uniformly and zén)(x) converges to Zo(x>

(n) _(n)

pointwise, and it is easy to make the variation of ¢ o 4y s Zg bounded

uniformly. By definition, z(n)(x) =0 if uén)(

o x) > 0.
(n

Problem Q with the initial value uén)(x) and z )(x) has a solution

0

un(X, t) and z (x, t) by Lemma 3, and the estimation in Lemmas 5-10 holds. We

n(
take a subsequence of {n} such that for all M >0 and T > 0, the correspond-
ing subsequences of {W(un(x, t))} and {zn(x, t)} converge in space C([0, T];
Ll(—M, M)), we still denote these subsequences by {y o un} and {zn} for con-
venience. Denote by w{(x, t) and =z{x, t) the limit functions. They belong to
space BV. Let u(x, t) = w_l(w(x, t}). We change the value of w(x, t) and
z(x, t) on a null measure set such that for every t, w(x, t) and z(x, t) are
left continuous and the variation of them is bounded, then u(x, t) is left con-
tinuous too. un(x, t) and zn(x, t) are also left continuous by the Proof of
Lemma 3.

Now we prove that (u(x, t), z(x, t}) is the solution of Problem P.
Clearly it satisfies (12) and (13) because (un(x, t), zn(x, t)) are solutions.
We have to verify (15). Let

Vn(x’ t) = sup u (x, T).
0<T<t
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For any t > 0, we take a subsequence of {(un, zn)} again such that W(un(x,t))
and zn(x, %) converge to w and z almost everywhere as the functions of

independent variable x, the subsequence is still denoted by {(un, Zn)}. un

also converges almost everywhere by the continuity of w—l. The set of points
where {(un, Zn)} does not converge to (u, z) is denoted by y,.

Suppose that x € Nl' If v(x, t) > 0, there exists t. <t such that

1

ulx, tl) >0 by (1k). By the left continuity, there are € > 0 and h > O,

such that wu(&, tl) >¢e for £€ [x~h, x]. But w(un(x, tl)) converges to

wix, tl) in Ll norm, we take a subsequence such that it converges almost every-

where, if £ is a point where it converges, then for sufficiently large n,
un(E, ty) > 0, hence v (£, t) > 0, zn(g, t} =0 by (15). Let n - ®, we get

2(E, t) = 0 only if £ € Nl' Therefore z(£, t) = 0 holds almost everywhere on

[x - h, x]. Thus z(x, t) = 0 by the left continuity of =z.

It vi(x, t) < 0, we prove that there is a subsequence such that v (x, t)

n(
< 0. 1If not, then vn(x, t) > 0 for all sufficiently large n. That is, for

£ >0 and every n, there exists a T < t, such that un(x, Tn) >-e. If 1

is a accumulation point of {Tn}. We take a subsequence, still denoted by

{1_}, such that T, > T as n>© If T>0, then for sufficiently large n, T

n

We have

ASYRS el

>

w (g, 1) > -6 - £ o p,

for all & < x by Lemma 4. We take g - x\ < 1£/2C, then we get un(i, Tn)

> -2¢€ uniformly with respect to n. {Y o un} converges to w in Ll norm

uniformly with respect to t, hence
u(g, 1) > -2¢, 0 <x - & < 18/2C,
almost every where. By the left continuity
ulx, T) > -2€.

Hence v(x, t) > -2¢, but € is arbitrary, hence v(x, t) > O, which contradicts
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v(x, t) <0. If T =0, then we may construct a characteristic or a curve con-
sisting of piecewise characteristics and CJ, which intersects the x-axis at gn,

En € [x - f'(um)Tn, x], and uén)(é ) > -e. En > x as n > ®, we get uo(x)
(n)

n
> -€ by the left continuity of uo(x) and the uniform convergence of u, ", but

€ is arbitrary, hence uo(x) >0, so v{x, t) >0, it is also a contradiction.

Therefore, there is a subsequence such that Vn(X, t) < 0, hence zn(x, t)

{n) =
Zg (x). Because x & Nl’

Zo(x).

z(x, t) = lim zn(x, t)

n--o©
Therefore (15) holds for almost every x. But t is arbitrary, thus (15) holds
almost everywhere. We can change the value of z(x, t) on a null set

such that (15) holds everywhere. ]

§3. The existence of the solutions of Problem Q.

First of all, let us introduce a definition and a hypothesis.

Definition. It is said that uo(x) assumes the value a at point x, if one

of the following holds:

uo(x - 0) = a;

uo(x +0) = a;

u(x +0) >u(x -0), a€ (uo(x - 0), u

0 0 (x +0)).

0

Lemma 11. Suppose (u(x, t), z{x, t)) 1is the solution obtained by Theorem 1,

if u(xo, to) <0 at a point (xO, to), then the straight line, which is called

the characteristic,

- = ' -
x - xy =1 (u(xo, to) )t to), t <ty
has the following two properties:
, - e
a) uo(x) assumes the value u(xo, to) at point x = x, - f (u(xo, to))to

which is the intersection of this characteristic and x-axis;

5 <
b} if u(xo, to) # u(xl, tl) and u(xl, tl>__ 0, then the downward



Hyperbolic Model of Combustion 427

t.) do not intersect on t

characteristics through points (xo, t and (Xl’ 1

o
> 0.

]5

Proof. For any h > 0, € > O, there is an integer n and En € [XO - h, Xy

such that

|un(E , to) = ulx

n 0 t

< g,

0° O)|

because if not, then there were h > 0, € > 0, such that

Iun(i, to) - u(x , t >e, &E€|[x

Y

for sufficiently large n, which contradicts the L1 convergence of Y a u and
n
the left continuity of u.

According to the above property, there exists a subsequence of {un}, still

denoted by {un}, and a series of points En > x as n > ©, such that

un(gn’ to) _— u(xo, tO), as n — o,
We construct a downward characteristic of w through (En, t), if un(in, to)
< 0, it intersects the x-axis, the intersection point is xn = En
(n) )
- f'(un(in, to))to and  u, (x) assumes the value un(En, to) at  x , if
wlg , t ) > b, we can construct a piecewise characteristic and CJ curve as in

n' ‘n 0
(n)<

0 x) assumes a value at the intersection

Lemma 9 which intersects the x-axis, u

point x = which is nonnegative and not greater than un(E , t.), hence x

n 0
)t £, - £'(0)t.]. Let n > =, X 7 xg - £ {u(

o t.))t

- L}
€ [En £ (un(gn’ tol ity Xgs b))ty
uo(x) assumes the value u(xo, to) at this point because {uén)} converges
uniformly and the left and right limit of uo(x) exists at each point, thus a)

is proved.
As for b), we can take a subsequence {un} and two series of points {En}

and {EA}, such that En > E; SE un(€ , b} 2>l )

n 0

> u(xl, tl) as n > o, un(gn, t) # un(gé, t) for sufficiently large n, at

1
*o° Xgs tols u (B, ty

least one of them is negative, therefore the characteristics or piecewise
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characteristic and CJ curves through points (En, to) and (Eﬁ, tl) do not

intersect on t > 0. These two families of curves converge to their limit posi-

tions as n * «, which do not intersect on t > 0 either. O

We make the following hypothesis on the initial values:

Hypothesis A. If uo(x) assumes the value O at a point x, then there is an

interval [b, c] 3 x such that uO(x) >0 on (b, ¢c)

Lemma 12. For the solution obtained by Theorem 1, if there are t > tO >0 and

x € (-, +»), guch that v{x, t) =0, z{x, t) > 0, and t, 1is the supremum

0
of those T satisfying

then u(x, to) = 0.

Proof. Because to is @ supremum, there are only twe possibilities:

a) there is a series T, to, such that u(x, Tn) > 0

b) ulx, t.)

"

0 0.
If possibility a) holds, and if T, decreases montonously, u(x, Tn) < 0 because
v(x, t) = 0. We construct a downward characteristic of u through the point

(x, Tn), which intersects the x-axis at X = x - £ {ulx, Tn))Tn. X, * Xy

=x -~ £'(0)t &as n > o, If u(&, to) <0 for some § < x, then a characteristic
can be constructed from point (£, to) to the x-axis, let the intersection point
e E&'. (&, to) is on the left side of characteristic through (x, Tn) for

sufficiently large n, by Lemma 11, &' f_xn. Let n » =, we get §' < Xy hence

the slope

that is
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The above inequality still holds if u(§, to) > 0. Let & > x,u is left contin-
uous, hence

-1 X - %
ulx, to) > (£r) T

0

)} > 0. But wu(x, t.) <0, hence ulx, t.) = 0.

i.e. ulx, t 0

0 0

Iif Tn increases monotonously, because ulx, to) < 0, we can construct a

t

characteristic through point (x, t.) and intersect the x-axis at point x',

0
r > = _ 1 . t o< A
X' 2 xy = x f (O)tO But we have x' < x = by Lemma 11 for any n x> %
as n > ®, therefore x' = Xg» We also get ulx, to) = Q0.
Therefore we get u(x, to) = 0 at any case. ]

We know Dy Lemmas 11 and 12 that u.(x) assumes the value 0 at point x

0 0’

Moreover, we can prove

(n)(

Lemma 13. Under the conditions of Lemma 12, if Hypothesis A holds and Uy x)

> uo(x), lim zn(x, t) = z(x, t), Xg =X = f'(O)tO, then there is a constant h
N

> 0, such that uo(g> > 0 for every £ € (xO, XO + h), and there is always a

point & in (xo -8, xo), such that uO(E) < 0 for any & > 0.

Proof. We prove it by contradiction. If the conclusion were false, then there

would be a & > 0, such that uO(E) >0 for g€ (xo -8, xo). We teke &
sufficiently small, such that & < £'(0)(t - to). Take an arbitrary

T e [to, to + 8/r'(0)], then construct a characteristic of u through (x, T).
Sinece ulx, T) < 0, this characteristic intersects the x-axis at a point &. By
Lemma 11, £ < Xge If £ e [xo -8, xo], then we get u{x, T) > 0 from uO(E)

> 0. 1f &< Xy - 8, then from the slope

- XX + 6 f'(O)tO + &

> ] = t
T =t *S/T (0) to+e/f (0)

= £'(0),

we also get u(x, T) > 0. But wu(x, 1) < 0, hence u(x, T) = 0. Because z(x, t)

>0 and 1lim zn(x, t) = z(x, t), zn(x, t) > 0 for sufficiently large n. But

n>«

(un, zn) is the solution of Problem §, so vn(x, t) <0 by (16), that is,
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un(x, T) <0 for all T<t. As TE [to, ty * §/£'(0)], we construct a charac-

teristic of u_ through (x, T) intersecting the x-axis at point £&. Because
n

u(n>(x) >0 on (xo - 6, xo), £ > Xy- We fix one point t, € (t

0 > Lo+ §/£7(0)),

0”70

then the slope of characteristic satisfies

T - t t

un(x, T) < -n <0, T€ [t to + &8/£(0)],

1°

for all n. We take a R 6,(t1, t. + &/'(0)), then u{x, B) = 0. TIn the samec

ol
way as in the proof of Lemma 11, we may take a subsequence {un} and a sequence

of points Sn + x as n » <, such that

un(En, B) —— 0, as n —* o,

We construct the downward characteristic of un through (En, B), then the slope
tends to f'(0) as n » ©. We construct a downward straight line through the
point {x, ty * §/£'(0)) with slope f'(-n), a straight line through the point
(x, B) with slope f'(0), then the two lines intersect, (see Figure 1). Put

£1(=n)(t, + §/2(0) - 8)

ty ¥ §/£'(0)
£1(0) - £'(-n)

Take B close enough to point ty * §/t7(0), 8
such that b < B, then the downward charac- 'tl .
teristics of u through (x, to + &8/£'(0)) .to
and (En, B) would intersect on t > 0 for 0

sufficiently large n. This is a contradiction. FIGURE 1

We have proved that there is always a point £ in (x. - 6, xo), such that

0
uO(E) <0 for any & > 0. By Hypothesis A and the fact that uo(x) assumes the

value 0 at point the only possibility is that there is a constant h > O,

XO,
such that uo(g) >0 for every £ € (xo, X, * h). 0



Hyperbolic Model of Combustion 431

Remark. Clearly the condition lim zn(x, t) = z(x, t) at the above lemma can be
>0
relaxed to the effect that this ;imit helds only for a subsequence.
By the convergence of sequence {zn(x, t)} proved in Theorem 1, we can take
a subsequence from it again, still denoted by {zn(x, t}}, such that it converges
to z(x, t) almost everywhere on t > 0. We define Nl as a set of (x, t)

such that any subsequence of {zn(x, t}} does not converge to z(x, t).

It is obvious that Nl is a null measure set.

Lemma 14. If Hypothesis A holds and u. ‘(x) > u.(x), there are t > t_. > 0,

0 — 0 0
x €(-w, +©) and s >s, >0,y € (-®, +=) such that ¢, t,, x and s, s ¥
satisfy the conditions of Lemma 12 respectively, and (x, t) € Nl’ (y, s) € Nl-

Set

then Xy # ) if x # y.

Proof. We may assume that x < y. Take a subsequence of {(un, Zn)} such that
{zn} converges to z at point (x, t). We obtain zo(x) >0 from z(x, t) > 0.
Thus uo(x) < 0.

It uo(x + 0) > 0, then there is a constant § > 0, such that uo(i) > 0 for

g€ (x, x + 8), hence uén)(g) > 0.

If u.(x + 0) < 0, by the same reason, there is a constant § > 0, such that

0
(n)

uO(E) <0 for E € (x, x + §), hence uy (g) < 0.

If uo(x + 0) = 0, then u, assumes the value 0O at point x, but uO(x)

< 0, by Hypothesis A, there is also a & > 0, such that uén)(ﬁ)_i 0 for §
€ (x, x + 68).

Tt is known that un(x, T) <0 for T € [0, t] and sufficiently large n,
(n)

and that ug does not change its sign on interval (x,x+§). Therefore un(E,T)
is a generalized solution of equation (10) on domain £ = {(§, 1);

x <E<x+ 8, 0<tT <t} with the valueon T =0 and £ = x as its initial

3z
B =0, so is the 1imit function u{&, T). Therefore

value and boundary value, Fra
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through any point (&, T) in £ we can always construct a downward character-

istic of u. If it intersects line & = x, then u < 0. We can continue this

characteristic to the x-axis. Let the intersection point be §&'. By Lemma 13,
£ E (xo, Xo * h). Because ir &' & (xo, X * h}, then u(g, 1) > 0, hence
u(g, 1) = 0. If (x, t.) is on this characteristic, then &' = x.. If (x, t.)

0 0 0

is at the left side of it, then, by u(x, 1)) <0 (V1 <t )u(g, 1) >0 is

impossible. If (x, t.) is at the right side of it, then by Temma 11, §' < x

0 =70
Therefore, all contradict ¢£' € (xo, X+ h).

Let &' be the intersection point of characteristic through point (&, 1)

and the x-axis. If £ Z}xo + h, then from the slope of it we get

& ~x.-h
(g, 1) < (e 72—

It & <x from the slope we get

0’

x-x,-h
Let (&, 1)~ (x, to), then the right hand sides have the limit (f')'l (—TO——
-1 %0 °
and (f'") qu—ﬂ = 0 respectively. Therefore there is a neighborhood of
0
(x, tO) such that
£E-x_ -h
(e TO ) < 28 < 0,
£ - x
-1 0
(£ (=) > -8,

then a discontinuity curve & = x(T) through point (x, t.) is generated [5].

0

By the Rankine-Hugoniot condition we know the slope of this discontinuity is

' . flulx(t) -0, 1)) - flu{x{t) + 0,
x!'(1) = uu(X(T) -0, 1) - u(x(t) + 0, 1)
< o) = £(-28) ;ef(_ge) < £1(0).

The points which lie at the neighborhood of the line

£ -x=r(0)(tT - to) (17)
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are at the right side of x(T), hence the values of u on these points satisfy
(g, 1) < -28.

Now we prove %q # Yo If not, then line (17) would coincide with line

E-y=1"(0)(T -5 (18)

O)’

because they intersect the x-axis at the same point and their slopes are equal.
But when & € (x, x + 8), at the neighborhood of line (17) we always have u(&, T)
< -28, but u =0 on line (18), this is a contradiction. a

Finally, we prove the existence theorem.

Theorem 2. If ¢(u0(x)) and z.(x) are functions with bounded variation and

o]
Hypothesis A holds, then the solutions of Problem @ exist, and Y ©o u, z € BV.

Proof. There are at most countably many points Xy which satisfy the conclusion

of Lemma 13. By Lemma 14, there is at most one x which corresponds to an XO

such that the condition of Lemma 12 holds. Hence there are at most countably

many such points x. Denote the set of them by Nx. Set N2 = NX x [0, +=)

then W is a null measure set on the (x, t) plane.

ol
Pt

We take uén)(x) > uo(x) and obtain the solution u{x, t), z(x, t) of
Problem P by Theorem 1. We prove that wu(x, t) and z(x, t) also satisfy
equation (16) in the case of v(x, t) = 0. Taking an arbitrary x € (-®, +®), ye

prove there is at most one t satisfying

(x, t) € NllJ N (x, t) > 0, vi(x, t) = 0. (19)

22

If not, there would be t and t satisfying the above condition. We may

1
assume that © > t,- ir t, 1is the supremum of those T satisfying v(x, T) < 0,
T€ [0, to), then tO < tl. By Lemma 13, x corresponds to an Xg which satis-

fies the conclusion of Lemma 13, hence (x, t) & NE' This is a contradiction.
Therefore the set of points which satisfy (19) is of measure zero, which is
denoted by N3.
NlLJ N2 UN3 is a null measure set, we define the value of z(x, t)
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according to (16) on this set, then (16) is satisfied everywhere. The obtained

ulx, t), z{x, t} 1is the solution of Problem Q. a
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CHTNA

In the paper, the boundary value problems for the nonlinear
systems of the Schrodinger type, the pseudo-parabolic type
and the pseudo-hyperbolic type of partial differential equa-
tions are considered. The generalized global solutions and
the classical global solutions for the boundary value prob-
lems of these nonlinear systems are obtained.

§1. Systems of Schrodinger Type.

The nonlinear Schrodinger equations

u, - tu o+ Blulfu =0 (1.1)

and the nonlinear Schrodinger systems

. 2 2
u, - du 4 ul{alul® + glv]") = o,
. 2 2
- + + =
ve - iv via|ul Blv|T) =0 (1.2)
. f1-u] .
of complex valued functions , regarded as the systems of real value functions
( of real parts and imaginary parts) are contained in the general system
u, - A(t)uxx = flu) (1.3)

as simple special cases, where u and f{u) are N-dimensional vector valued
functions, A(t) is a nonsingular and nonnegatively definite matrix. In the

problems of the theoretical physics, chemical reactions ete., it is very often

435
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that there appear the equations and systems of such kind. For the systems of
form (1.3) of higher order, the periodic boundary problems and the initial value
problems have been studied in [5-7] and the generalized global solutions and the
classical global solutions are obtained.

Now in the present section, we are going to consider the first boundary

value problems

u(0, t) = (g, t) =0,
ulx, 0) = uo(x) (1.4)
in the rectangular domain Qp = {0¢xg<2 0g<t T for the systems (1.3) of

the Schrddinger type of second order, where uo(x) is an initial vector valued
function.

Let us take the approximate semilinear parabolic system

u - A(t)uxx -eu = f{u) (1.5)

where € > 0. Firstly we establish the solutions for the problem (1.5), (1.4).
And next we get the solution for the degenerate problem (1.3), (1.4) by passing
to limit as € -+ O,

As a consequence of the result in [8], we have the following lemma for the

case of the linear parabolic systems.
Lemma 1.1. Suppose that for the linear parabolic systems

uo - Alx, t)uXX + B(x, t)uX + C(x, t)u = f(x, t) (1.6)

and the boundary condition (1.4), hold the following assumptions.

(1) The N x N coefficient matrices A{x, £), B{x, t) and C(x, t) are meas-
urable and bounded and A(x, t) 1is positively definite.

(2) The free term vector valued function f(x, t) is quadratic integrable in
QT.

(3) The initial vector valued function uo(x) belongs to w;l)(o, ).



Nonlinear Evoluational Systems 437

Then the boundary value problem (1.6), (1.4%) has a unique solution ulx, t)

(1)(

e L ((0, T); W,

0, 2)) mwéQ’l)(Q

T)’ satisfying the estimating relation

sup || u-,t)]| + {l udl + ]
DgtgT wé”(o,z) v Ly(Qp) XleE(QT)

s

< & Ul + |l £ b, (1.7)
1 0 wél)( ) LQ(QT)

where Kl is a constant.

Theorem 1.1. Suppose that the coefficient matrix A(t) is bounded, the Jacobi
ar(u)
du

derivative matrix of the vector valued function f(u) 1is semibounded,

i.e., there exists a constant b such that for any N-dimensional vectors

£EeR L (£, afa(wf)i)s v(E, £) holds, for all Ju| < = and the initial vector
valued function uo(x) € wél)(o, 2). Then the boundary problem (1.5), (1.4) has
a unique global solution u(x, t)e L _{(0, T); wél)(o, 2)) F)Wég’l)(QT), where

e > 0.

The proof of the existence of the approximate solutions ue(x, t) is based
on the fixed point theorem treatment as similarly used in [9, 10]. The method of
integral estimations for the proof of this theorem is very similar to the way of
the estimations needed in the limiting process of the approximate solutions to
the solution of degenerate problem.

Thus we have a set of approximate solutions {ug(x, t)} for the nondegener-
ate problem (1.5), (1.4), where £ > 0.

Taking the scalar product of the vector u. and the system {1.5) and inte-
grating the resulting relation for x in the interval [o, 2], we get

”u(',t)” 52(0,1) - fg(u(x,t), A(t)uxx(x,t))dx - Efé(u(x,t),uxx(x,t))dx

N
2l

- fg(u(x,t), flulx,t)))dx.

By making use of the boundary condition (1.4), the second and the third terms of

the left hand side of the above equality take the forms
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2

- fz(u(x,t), Alt)u (x,t))dx = IO

o x (ux(x,t), A(t)uX(x,t))dx > 0,

= Jgtutme), uy Gashax = u 5005 (g gy

respectively. By virtue of the semiboundedness of the Jacobl derivative matrix

Q%%?l, the last term of the above equality can be written as
3 o4 2 1 2
[Plulx,t), tlulx,t))ax € (br S ul-,t)|] + 2] e(0)]7.
) 2 L2(O,2) 2
Then the above mentioned equality becomes
d 2 ) 2 2 2
- ot 2¢ . < (D . + .
dt“u( ’t)HLQ(O,Qﬂ + &‘”ux( ’t)HLE(O,R) ~N ( b+])llu( ’t)HL,)(O,»Q,) Q|f(0)1
By means of Gronwall's lemma, the following lemma holds.
Lemma 1.2. Under the conditions of Theorem 1.1, the approximate solutions
{ug(x, t)} of the problem (1.5), (1.4) have the estimation
sup Ju (.00 oy * Ve |[u__ (.t < K, (1.8)
OcteT E LZ(O, ) ex LE(O,Q) 2

where K, 1s independent of €>0 and directly dependent on le(O)‘g. When
<

£(0) = 0 s a zero vector or the system (1.5) is homogeneous, K? is also inde-

pendent of & > 0.

In order to estimate the derivative uex(x, t), we make the scalar product
of u with the system {1.5) and integrate the resulting relation for x in
interval [0, ¢] by parts. Then we have

2

2 2
v odlu (-t .
2

d
i, ¢ ’t)”LZ(O,R) xx L,(0,2

y < EbHUX(',t)H (1.9)

where the system (1.5) is assumed to be homogeneous, i.e., f£(0) = 0. In fact,

by virtue of the boundary condition (1.4),
u (0, £) = u. (L, t) =0,

then we have
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2
LQ(O,Q)'

14

9/ — =
Jolugongdax = - 2 47

”ux('5 t>||

On the other hand,

2 x=% 3 3
fo(uxx,f(u))dx = (ux(x,t), f(u(x,t))txzo - fo( o, ﬁif) X)dx.
Under the assumption f£(0) = 0, this becomes
% 0, af 2
- o G plud)ax = 5 (u, _a<uu)_ u Jax < Ylu (-, t)nig(o’”

From the inequality (1.9), we have the following lemma.

Lemma 1.3. For the homogeneous system (1.5), i.e., £(0) = 0, under the assump-

tions of Theorem 1.1, the approximate solutions {ug(x, t)} have the estimation

sup (1.10)

e Eila I
0gtgT

g, s “N]LQ(O,Q) L,(a

where K3 is independent of € > 0 and £ > O.
Differentiating the system (1.5) with respect to x, making the scalar

product of the resulting relation and uxxx’ then integrating for x 1in interval

[0, 2], we have

L 4 3
IO (uxxx’ uxt)dx - IO <uxxx’ A(t)uxxx)dx - EfO<uxxx’ uxxx)dx
I »
= [T (u__, f(u) )dx. (1.11)
0 XXX X
On the lateral boundaries x = 0, ¢ of the rectangular domain QT, the relations
(1.12)

u (0, t) =u (2,t) =0
XX XX

follow immediately from the system (1.5). 1In fact, on account of the nonsingu-
larity of the matrix A(t), the inverse matrix A;l(t) of the matrix Ae(t)
= A(t) + eE is bounded for € > O and O < t £ T, then the system (1.5) can be

expressed as

A (tu, - u__ = A (t)f(u).
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Thus the conditions (1.12) are obviously available. Also

2
(', t)HL(O 2>+C¢,s
27 -

where Cl and C, are constants dependent on Kl, K2 and are independent of
[

€ >0 and 2% > 0.

Icmma 1.4. Besides the conditions of Lemma 1.3, assume that f{u) is twice con-

(x) e W(Q)(O, 2). The approximate solutions

tinuously differentiable and U 5

{ue(x, t)} satisfy the inequality

OZEZT H uxx('a t)ll LQ(O,Q) + || ut('i t>” LZ(O,R) < Kha (1'13)

where Kh is independent of € > 0 and 2 > O.
By means of the above estimations we can construct the global solution of
problem (1.3), {(1.L4) from the set of approximate solutions {ue(x, t)}. Under

the assumptions of Lemma 1.4, {ue(x, t)} is uniformly bounded in the functional

(2)( (1)

o, g

space L _((0, T); W ((0, T); LQ(O, %)) for € > 0. Then

{ue(x, t)} and {uex(x, t)}} are uniformly bounded in the space of HOlder con-
tinuous functions for € > 0. It can be selected from {ue(x, t)}, a sequence

{uel(x, t)}, that there exists a vector valued function u(x, t), such that

whe; i+, € >0, the sequences {ue'(x, t)} and {ue.x(x’ t)} are uniform—
1y convergent to u(x, t) and ux(x, t) lrespectively in QT. Hence it is clear
that {f‘(uE (x, t))} uniformly converges to f(u{x, t)) =and alse {
(i, t)} converge weakly to uxx(x, t) and ut(x, t) respectively.

(x, t)}

u
€, XX
1

and {uait
For any test function Y(x, t), there is the integral relation
X EXX

ijTw[uEt - Alt)u, - eu - flu)]axat = 0. (1.14)

From the estimation formular (1.10), we know that

!IIQT ¢€u€xxdxdt| g ’/E HwH LQ(QT) H‘/E UQXX” LQ(QT)
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tends to zero as €, > 0. Therefore passing to the limit for the (1.4), we get
”QT Ylu, - Alt)u - flu)laxdt = O. (1.15)

This means that u(x, t) satisfies {1.3) almost everywhere, i.e., ulx, t) is a
generalized global solution of the boundary value problem (1.4%) for the degener-

ate system (1.3) of the Schrodinger type.

Theorem 1.2. Under the conditions of Lemma 1.4, the boundary value problem (1.4)
for the system (1.3) of Schrodinger type has a unique global solution

ux, t) e L0, 1 w0, 200) Al o, my 100, 00,

Since the estimations given in the last three lemmas are all independent of

the width £ > 0 of the rectangular domain Q by taking the limiting process

]

for £ - ©, we can obtain the solution of the boundary value problem

w0, t) = 0, 0<t T
(x, 0) = uo(x). 0Dgx <™ (1.16)

in the infinite domain Q% ={0g x<®, 0gtgT} for the system (1.3) of

Schrédinger type.

Theorem 1.3. Suppose that all conditions of Lemma 1.4 hold with the replacement

of 2 >0 by %, Then the boundary value problem (1.16) in Q¥ for the system
T Y

(1.3) of Schrddinger type has a unique global solution u(x, t)e L {(0, T);
(2) (1)
Wm0, @)y N W (0, ) 1,00, @),

By the similar way it is not difficult to obtain the calssical global solu-
tions and the smooth global solutions of the boundary value problem (1.4) in Qp

and (1.16) in Q% for the nonlinear systems of the generalized Schrodinger type.

§2. Systems of Pseudo-parabolic Type.
Recently many authors have paid great attention to the study of the linear
and nonlinear pseudo-parabolic equations. The nonlinear pseudo-parabolic equa-

tions often occur in practical research, such as the so-called BBM equations
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o+ f(u)X U (2.1)

for long waves in nonlinear dispersion systems[ll—la], the equations in the cool-

ing process according to two-temperature of heat conduction, the equations for

filtration of fluids in the broken rocks, the equations of Sobolev-Galpern type

L-2 .

and so forth[l 01. These equations contain the differential operator

uoo-ou .o as their mean part. Some fairly general family of nonlinear pseudo-
[21, 22]

parabolic systems , which contain all above mentioned equations as simple

special cases are considered, such as the systems

M _
u + (-1) Au o - f(u, Ugseres EM) (2.2)
x  t X

with the speecial form of the right hand part

M M
+
e ) D" 2 n (W), g =1, 2, W, (223)
Y om=l Pym-1 m=l Pymel 9
where u and h{u) are N-dimensional vector valued functions, TF(u, Ugseeos
zm_l) and G(u, Usenes uxM'l) are smooth functions, - ujxm (3 =1,..., N3

m=0,1l,..., M-1), and A is a N x N positively definite constant matrix.
The generalized global solutions and the classical global solutions of the period-
ic boundary problems and Cauchy problems for the systems (2.2), (2.3) are obtained
in [21].

In this section, firstly we are going to consider the questions of a priori
estimation for the linear pseudo-parabolic systems, then we turn to study the
problems for nonlinear pseudo-parabolic systems.

For the linear pseudo-parabolic systems

M oM
u, + Alx, tu + } B
t X2Mt k=0 k

(-1) (x, thu . = f{x, t), (2.4)

let us consider the boundary value problem

u k(O, t) = u
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where u is a N-dimensional unknown vector valued function, f(x, t) is a
N-dimensional quadratic integrable in Qp vector valued function, P(x) is a
N-dimensional initial vector valued function, satisfying the homogeneous boundary
conditions, A(x, t} dis a N x N symmetric positively definite matrices,

Bk(x, ty (k =0, 1,..., 2M), A(x, t) anda At(x, t) are measurable and bounded
matrices.

Taking the scalar product of u ,, With the linear system (2.4) and inte-
x

grating the resulting relation with respect to x in interval [0, L), we get

ML 2
- )
(-1) 'O( M’ ut)dx + fo(u oM Alx,t)u oM ) dx
X x ¢
+ I z (,t)u o, Jdx = [ou o, £(x,t))ax (2.6)
2M’ > 2M-k 0" em’ ? : ’
x x
Since A(x, t) is a symmetric matrix,
(u Alx,t)u ) = l-(u Alx,t)u . ), -~ l-(u A (x,t)u )
oy THEIM oy 1T 5 AN oy I
X x 't X X X

From the interpolation formulae

] T
("t)”LE(O,Q) I3 cl||uX2M("t)”Lo(O,R) + Cg“u( ,t)“Lg(O,SL)

and the relation

| w0 € Colpn L 0)l
Le(o,l) 3 XM LE(O,JL)

obtained directly from the homogeneous boundary condition (2.5), the above equali-

ty becomes

2
H“ “ ,(0,2) * (% olw oy Au pplax
X X
120005 o gy * Syl (0T (0 ) + Clu el stE (00)- (2.7)
2 b'e 2 X 2
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On account of the positive definiteness of the matrix A(x, t), we get the esti-

mation relation

sSup "u(,t)“ (QM) S K {llfIIL (QT “(.‘P” } . (2,8)

USLST W {0,%) )(o %)

Again making the scalar product of vector u oM with the linear system
X t

(2.4), we get the relation

2M
M
(-1} (u u ) + (u JAu )+ E (u ,BLu ) = (u ,P).
szt’ t XEMt XZMt ¥=0 X2Mt k X2M—k X?Mt
Then integrating this equality in the rectangular domain QT, it follows that
2 2
fuy +au |
xMt L (QT) X2Mt LQ(QT)
g cfle] + (oM Hou gy b ;
67 Tplay) 1, (0,105 W™ (0,0) " KMy B2lop)
where in the derivation, the boundary relations
u. 0, t)=u, (&, t)=0 (k =0, 1,0.., M -1) (2.9)
k k
xt Xt

have been used and a 1is the least eigenvalue of the positively definite matrix
A{x, t). Hence there is the estimation relation

<kt + o }. (2.10)
”ut” (QM)(O 2)) 2 "LQ(Q‘T) ! ”wé?_M)

L, ((0,T)5 W, , (0,8)

By means of the method of continuation of parameter, it follows from the
obtained a priori estimations (2.8) and (2.10), the boundary value problem (2.5)
of the linear pseudo-parabolic system (2.4) has the solution in the functional

(am)
5 !

space WEl)((O, T); W 0, %)). Since the problem (2.4), (2.5) is linear, the
[

uniqueness of the solution is an immediate consequence of the estimation relations.



Nonlinear Evolutional Systems 445

Theorem 2.1. Suppose that the linear pseudo-parabolic system (2.4) and the
boundary value condition (2.5) satisfy the following conditions.

(1) A{x, t) is a N x N symmetric positively definite matrix and is differen-
tiable with respect to t.

(2) Ek(x, t) (k =0, 1,..., 2M), A(x, t) and At(x, t) are N x N measurable
and bounded matrices.

(3) The N-dimensional vector valued function f(x, t) is quadratic integrable

in QT.

(k) The N-dimensional initial vector valued function ¢P(x)€ W 0, %)

(2m)
2
equals to zero together with the derivatives of order up to M - 1 at the ends

of segment [0, &].

Then the boundary value problem (2.4), (2.5) has a unique solution (x, t)

3 Z(QT) = wél)((o, T); wézM)(o, 2)) and the estimation relation
[l <k, {l7] + el } (2.11)
Z(QT) 3 Lz(QT) w;QM)(O,Q\
holds.

Let us turn to condiser in the rectangular domain QT, the nonlinear

pseudo-parabolic system of partial differential equations

+ Alx,t)u = B(x, t, Uy, U 4..., U 2M—l)u

x t X X2M

+ g{x, t, u, LUPRRE ), (2.12)

> Uoong
X

where u and g are two N-dimensional vector valued function, A{x, t) is a

N x N sysmmetric positively definite matrix with bounded derivative At(x, t)

with respect to t. Matrix B(x, t, u, Ugsees ) is semibounded, i.e.,

s U
x2M-1

for {x, t) € Q, and for any u, U_,..., u € FN , there is a constant b
T X ’

ng-l
such that for any N-dimensional vector £ € R

(&, Blx, £, w5 upynnss uXQM_l)f;) < b(g, £). (2.13)
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Assume that g 1s a term of lower degree, which means that

2M-1

labe by ouy u e, v e 0F T | v glx, ) (2.1h)
X k=0 X

where fo(x, t) € LE(QT) and Kh is a constant.

In order to prove the existence of the global solution of the homogeneous
boundary value problem (2.5) for the system (2.12), we take the functional space

(ZM—l)(

G=1((0, T); W,

o 0, 2)) as the base space for the fixed point theorem
treatment.
For every v ¢ G, we construct a N-dimensional vector valued function u

defined as the unique solution of the boundary value problem (2.5) for the linear

pseudo-parabolic system

(—l)Mu + A(x, t)u = AB(x, t, v, Vireees V

t

+ Aglx, t, v, Viseres ¥ ) (2.15)

with a parameter 0 € A € 1. It can be easily seen that all conditions of

Theorem 2.1 are available, so u(x, t) is uniquely defined and wu(x, t)

(2u)

(Vg {

€Wy (0, T)5 W (0, 2)).

The correspondence of v to u defines a functional mapping TX 1G>G of
the base space G into itself, where 0 £ A £ 1 1is a parameter. For every
v ¢ G, the image TAV =u belongs to Z C G. Bince the imbedding mapping
7 Cy G is compact, for every 0 <€ A € 1, the mapping TA : 0>2 GG is com-
pletely continuous.

Let M be a bounded set of G. For any ve MCG and any 0 £ A, A

N

1,
there are TAV = Uy and TXV = uy . The difference vector w = Uy - uy satis-

fies the linear pseudo-parabolic systems

W, + Aw = XB(x,t,v,...,vXEM_l)wsz

+ (A=X)B(x,t,v, ...,V 2M—l)u— ot (A=Nelx,t,v,...,v vt )
X AX X
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w (0, t)=w (2, t) =0 (k =0, 1,..., M - 1),

It follows immediately that the estimation

(2.16)

>

lay - ugll g <l A -

holds,which means that for any bounded subset M of G, the mapping T, : M > G
is uwniformly continuous for 0 £ A £ 1.
When X =0, for any v g G, TOV =, is a fixed vector.

Now we turn to consider the a priori estimations of the solution of the

boundary value problem (2.5) for the nonlinear pseudo-parabolic system

Ju

u, + Alx,t)u = XB(x,L,u,ux,...,ung_l 2

) (2.17)

+ )\g(x,t,u,ux,...,ung_1

with parameter O € A £ 1.

Taking the scalar product of the vector u with the above system (2.17)

M
X

and integrating the resulting relation in the rectangular domain Qt(O £t<gT),

we have

M
(=1 (. udaxdt + [f 0 (w50, Au o, )dxdt
q " am Q"o M e

= xij (u s Bu o )dxdt + Aij (u s glaxat.
T X X t X

Since B is semibounded, there is

2
I u o Bu , Jdxdt € b flu o |l .
qQ, . 2M 2 LM Lg(Qt)

For the last term of the above equality, we have
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(4 e edaxat < 5l 12 oy + 211, (8, g)axat
IIQt “XzM grax z ' oM ,LE(Qt) 2 /lq,
<cpiliull? o 18 et }
8 L2<Qt) l XEM[ L,(Q,) 0 LE(Qt)

By the procedure similar to that used in previous section, we have the estimation

relation

sup |l uC, )| < kAl e, | + ¢l 1, (2.18)
0beT lwéQM)(O’Q) 5 0 |L2(QT) wéQM)(o,z)

where K is a constant independent of the parameter 0gAg 1. It follows that all

5

possible solutions of the nonliear problem (2.17), (2.5) are uniformly bounded for

0 < A <1 in the base space G = L _((0, T); W(ZM—l)(

o ]

0, 4)).

Therefore the boundary value problem {2.5) for the nonlinear pseudo-parabolic

(1)(( (EM)(

system (2.12) has at least one global solution u{x, t) € W2 0, T), W2 0,2)),

Theorem 2.2. Suppose that the nonlinear pseudo-parabolic system (2.12) and the
boundary conditions (2.5) satisfy the following assumptions.
(1) A(x, t) is a N XN symmetric positively definite matrix and has bounded

derivative At(x, t) with respect to t.

(2) B(x, t, u, ux,... ) is a semibounded matrix valued continuous func-

> U ooMa
X

. . N
tion of variables (x, t) & Qp end U, U .., uX2M_1 e R.

(3) alx, t, u, u_, ) is a N-dimensional vector valued continuous func-

0 Yooy
X
tion satisfying the relation

2M-1
| elx, t, u, U peers U 2M—l)] < Kh{ Z |u kl + fo(x, t)}, (2.14)
X k=0 X

where f {x, t) € L2(QT) and Kh is a constant.

4]
W) w0 e wégM)

Then the problem (2.12),(2.5) has a unique global vector valued solution wu(x, t)

(0, %) satisfies the homogeneous boundary conditions (2.5).

e (1) o og(eM)
w,m (0, ) W7 7(0, )
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The unigueness of the solution can be obtained by usual estimation of the
difference vector valued function of two given generalized global solutions.

The results of the classical global solutions and the smooth global solu-
tions of the boundary value problems (2.5) for the nonlinear pseudo-parabolic
system {2.12) can be obtained by the similar way.

In the case of the system

) {2.19)

= f{u, Ugseees Wooy
x X

with special right hand side (2.3), the boundary value problem (2.5) can be dis-

cussed by the method used above. Similerly we have the following result.

Theorem 2.3. Suppose that the system (2.19), (2.3) and the boundary conditions
{2.5) satisfy the following conditions.

(1) Al{x, t) is a N x N symmetric positively definite matrix and has bounded
derivative At(x, t) with respect to t.

(2) F(po, Dyseoes pM-l) is M 4+ 1 times continuously differentiable with re-
spect to all its variables po, pl,..., Py € RN. G(po, pl,‘.., pM—l) is M
times continuously differentiable. The Hessian matrix H of the function F is

semibounded, i.e., for any NM-dimensional vector & € BMN £ = (Eml)

(m=1,..., My £ =1,..., N) such that

N M 2 N M
3 F 2
N S £, <o ) ) &,
Js2=1 m,s=1 apjm-l apR,S-l Jm “ls 2=1 m=1 I

. N
where b is a constant for po, pl,..., pM—l e R .
(3) h{u) is a N-dimensional continuous vector valued function satisfying the

relation
(u, h{u)) < c(u, u) + 4,

where C and d are constants.

(b)) @(x)e wéZM)(O, %) satisfies the homogeneous boundary conditions (2.5).
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Then the problem (2.19), (2.3), (2.5) has a unique global vector valued solution

ulx, £ e w0, ms w0, 2.

§3, Systems of Pseudo-hyperbolic Type.

In the study of the practical problems in physics, mechanics, biology etec.,
such as the forced vibration of plane boundary layer, the transfer of the bio-
electric signal in animal nervous systems, the linear and nonlinear equations
with the principal part utt - Ut of pseudo-hyperbolic type often appear. A
lot of authors have paid much attention to consider various problems for the

[23-28]

linear and nonlinear pseudo-hyperbolic equations . In [7,29], the quasi-

linear systems of pseudo-hyperbolic type of higher order

M
u, t (-1} Au oM = flx, t, u, Upseens Uy ut) {3.1}
Xt X
with the special right hand side
M
&
+1 oF
£o= L (LT (5 ) tep, J=1, 2,0, W (3.2)
J m=0 mJ

are considered, where u and g{x, t, Uy+e., U Me ut) are the N-dimensional
X
vector valued functions, A 1is a N X N symmetric positively definete constant

matrix, F(u, ux,..., u M ) is a smooth non-negative funetion and g is the
(5]

X

term of lower degree. The generalized global solutions and the classical global
solutions of the periodic boundary problems and the initial value problems for
the systems (3.1) with special right hand side (3.2) are obtained.

In this section we are going to consider the boundary value problems for the
nonlinear systems of pseudo~hyperbolic type of higher order. First of all we
will talk about the linear case for the use of further investigation.

Suppose that in the rectangular domain QT’ the general linear pseudo-

hyperbolic systems
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oM 2u
(-1 o+ Z A (s,t)u g+ 1 BUet)u 5 = f(xt) (3.3)
X t k=0 X

and the boundary value conditions

(0, t) =u (2, ) =0 (kK =0, 1,..., M - 1),

u, (x, 0) = Y(x). (3.4)

Here we assume that the coefficient matrices Ak(x, t) and Bk(x, t) (k =0,

l,..., 2M) are measurable and bounded in QT. AO(X, t) is a N x N positively

definite matrix and BO(X, t) 1is a symmetric positively definite matrix having

bounded derivative BOt(X’ t) with respect to t. The N-dimensional free term

vector valued function f(x, t) is quadratic integrable in QT. The initial

(2M)

vector valued functions ¢(x) € Wy

(0, ) and ¢(x) e WéM)(O, %) and they
vanish together with their derivatives of order up to M - 1 at the ends of the

interval [0, 2].

Taking the scalar product of the vector u oM and the linear system (3.3)
x 't
and integrating in Qt(O £t <€T), we get
2M
ff souaxat + Y [ (u > Au . )dxdt
M tt k=0 Qt XZMt k X2M kt
T i
+ (u B u )dxdt = (u , £)dxdt. (3.5)
- Qt X2Mt, k XQM—k Qt x2Mt
Using the boundary relations
u ktz(o, t) = u ktz(l, t) =0 (k =0, 1,..., M~ 1) (3.6)
X

obtained directly from the homogeneous boundary conditions (3.L4), we have

2
I

) U, )dxdt = 1 (*,t) - —ﬂw
ff (u oM Ugg /0¥ aluxMt L,(0,2) | 5(0,2)
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Since Ao(x, t) is positively definite, there is aO > 0, such that

2

I :
ngt L2(Qt)

A (x, t)

I, (u )axdt » a.fju
Q 2M 0 Z %0

u
szt

Because Bo(x, t) 1is symmetric positively definite and BOt(X’ t) 1is bounded,

there is

/., » B, )dxdt
Q. .2m > "o 2u

- L 1
=3 fot(usz, BOung)t dxdt - 3 fot(ux2M, BOtuxeM)dth

1 2 (2m), 2 2
>3z ()] - ¢y - Clu
20 X2M LQ(O,Q) 1 “LE(O,Q) 2" oM LQ(Qt)

If BOt(x’ t) 1is & non-positively definite matrix, Bo(x, t) can be non-nega-

tively definite. Hence it can be proved that the equality (3.5) may be replaced

by the inequality

2

2 2
flu,, 50l +aflu oy + bflu ()]
M ’ L2(O,E) ol " oM, Lz(Qt) ol ” oM ? L2(O,£)

< Cllw 12 a2 + ol?
3 xMtIL2(Qt) | oM LQ(Qt) w(2M)<

welZ 0
S CH 2) L,(q,)

s

+ Jll®
) wéM)

By the similar way, we can obtain the following theorem.

Theorem 3.1. Suppose that the linear pseudo-hyperbolic system (3.3) and the
boundary value problem (3.4) satisfy the following assumptions.
(1) Ao(x, t) is a N x N positively definite matrix.

(2) BO(x, t) is a N x N symmetric positively definite matrix. When BO (x, t)
t

is non-positively definite, Bo(x, t) is symmetric non-negatively definite.

(3) Matrices Ak(x, t), B (x,t) (k=0,1,..., 2M) and B. (x, t) are all
X Ot

measurable and bounded in QT.

(L) f(x, t) 1is quadratic integrable in QT.

(2M)(

(5) @(x) e w, 0, 2), wix) e wéM)(o, 2) and they vanish together with all
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of their derivatives of order up to M - 1 at the ends of the interval [0, 2].
Then the boundary value problem (3.L4) for the linear pseudo-hyperbolic system

(3.3) has a unique generalized global vector valued solution u{x, t) e Z

= w0, m; wéM)(o, z))nwél)((o, )5 wéQM)(o, 2))nwég)((o, )5 L,(0, 2)).
There is estimation
sup [u(+,t)|l + sup [lu (-,8)]
OgtsTI |wé2M)(O,JL) 0gt«T °© IwéM)(O,l)
+ lull + ]
WD 0,ms WP 0,00y T (0
<k o] + [lvl + [l }. (3.7)
1 (eM) (M) L,(Q,)
Wy (0,2) Wyt (0,2) 2(9r
Now we turn to consider a nonlinear pseudo-hyperbolic system
(—l)Mutt + A(x,t,u,ux,...,u o1 e Wt oY g Ju o
X X t x t
= £(x,t,u,u,... ) (3.8)

Ll VSRR LR gl VAR
X X t

Suppose that A = A(X, ta P, q) = A(X, ty PO, Pl,---; PQM_I, qo’ ql""v qM—l)
is a positively definite matrix valued function of variables (x, t) e QT and

3M vector variables (k =0, 1,..., 2M - 1) and ay, (h=0,1,..., M -1) of

Px
dimension N. For the sake of brevity we assume that N-dimensional vector valued

funetion f(x, t, p, @) is the term of lower degree of the system (3.8), it

2MN

M
means that for (x, t) € QT and peR , qeR N,

M-1
o] <., {7 lpl + 1 la | + £.(x, t)} (3.9)
2 k=0 k h=0 h 0
where fo(x, t) € LZ(QT)'
We construct the solution of the boundary value problem (3.4) for the non-

linear pseuto-hyperbolic system (3.8) also by the method of the fixed point

technique. Let us take G =L _((0, T); WLEM-l)(O, 1))(\Wil)((O,T); WLM_I)(O,Q))
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as the base space. Now we define the functional mapping Ty : G G of the base
space into itself with parameter 0 g A £ 1 as follows. For every v e G, we

take u = TAV satisfying the following linear pseudo-hyperbolic system

(1) u,, + Alx, t, v, v_,

£t LA VX2M—1’ Vie V

xt>"7T T M-l

Af(x, t, v, Virsoos Voo ys Ves Vogseees Vo ) (3.10)
x

and the boundary conditions (3.k4).

By the compactness of imbedding Z <, G and the estimation relation (3.7),
it can easily seen that for every 0 £ A £ 1, the mapping TA is completely
continuous and for any bounded subset M of G, the mapping TA : M+ G is
uniformly continuous with respect to 0 ¢ A € 1.

In order to prove the existence of the solution for the problem (3.8), (3.4),
it remains to get the uniform boundedness for A 1in G of all possible solu-
tions of the boundary value preblems for the nonlinear pseudo-hyperbolic system
with parameter 0 € A €1

(-1) IS Alx, t, p, q)uX2Mt = Af{x, t, Py Q). (3.11)

Making the scalar product of vector u and the system (3.11) and then inte-

2Mt

x
grating the resulting reaction in Qt(O £t € T), we can obtain that all possi~-
ble solutions of problem (3.11), (3.4) are uniformly bounded in G for

0 A g1l

Theorem 3.2. Suppose that the nonlinear pseudo-hyperbolic system (3.8) and the
boundary value prcblem (3.4) satisfy the following assumptions.
(1) Alx, t, P> Pys-s Poy ys Ggo Gysccvs qM—l) is a N x N positively defi-

nite matrix valued continuous function of variables (x, t) € Q and 3M

T

vector variables (k =0, 1,..., 24 - 1) and qh(h =0, 1,..., M - 1) of

Py

dimension N.

(2) f(x, t, Dys Ppaees Poy 15 Qps Gpseves qM—l) is a N-dimensional vector
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valued continuous function, having the properties (3.9).

(2M)(

N 0, £) and U¥(x) € wéM)(o, %) are two N-dimensional initial

(3) @(x)ew
vector valued functions, vanishing together with their derivatives of order up
to M -1 at the ends of the interval [0, %].
Then the problem {3.8), (3.4) has a unique generalized global solution
ulx, t) € Z.

Similarly we can obtain the results for the boundary value problems of the
pseudo~hyperbolic systems (3.1) with special right term (3.2). Also by the simi-

lar methods, we may obtain the results for the classical and smcoth global solu-

tions for the above mentioned problems.
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