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PREFACE

This handy book presents more than 2000 needed formulas
for civil engineers to help them in the design office, in the
field, and on a variety of construction jobs, anywhere in the
world. These formulas are also useful to design drafters,
structural engineers, bridge engineers, foundation builders,
field engineers, professional-engineer license examination
candidates, concrete specialists, timber-structure builders,
and students in a variety of civil engineering pursuits.

The book presents formulas needed in 12 different spe-
cialized branches of civil engineering—beams and girders,
columns, piles and piling, concrete structures, timber engi-
neering, surveying, soils and earthwork, building struc-
tures, bridges, suspension cables, highways and roads, and
hydraulics and open-channel flow. Key formulas are pre-
sented for each of these topics. Each formula is explained
so the engineer, drafter, or designer knows how, where, and
when to use the formula in professional work. Formula
units are given in both the United States Customary System
(USCS) and System International (SI). Hence, the text is
usable throughout the world. To assist the civil engineer
using this material in worldwide engineering practice, a com-
prehensive tabulation of conversion factors is presented in
Chapter 1.

In assembling this collection of formulas, the author
was guided by experts who recommended the areas of
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greatest need for a handy book of practical and applied civil
engineering formulas.

Sources for the formulas presented here include the var-
ious regulatory and industry groups in the field of civil engi-
neering, authors of recognized books on important topics in
the field, drafters, researchers in the field of civil engineer-
ing, and a number of design engineers who work daily in
the field of civil engineering. These sources are cited in the
Acknowledgments.

When using any of the formulas in this book that
may come from an industry or regulatory code, the user
is cautioned to consult the latest version of the code.
Formulas may be changed from one edition of a code to
the next. In a work of this magnitude it is difficult to
include the latest formulas from the numerous constant-
ly changing codes. Hence, the formulas given here are
those current at the time of publication of this book.

In a work this large it is possible that errors may occur.
Hence, the author will be grateful to any user of the book
who detects an error and calls it to the author’s attention.
Just write the author in care of the publisher. The error will
be corrected in the next printing.

In addition, if a user believes that one or more important
formulas have been left out, the author will be happy to
consider them for inclusion in the next edition of the book.
Again, just write him in care of the publisher.

Tyler G. Hicks, P.E.

xiv PREFACE
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HOW TO USE 
THIS BOOK

The formulas presented in this book are intended for use by
civil engineers in every aspect of their professional work—
design, evaluation, construction, repair, etc.

To find a suitable formula for the situation you face,
start by consulting the index. Every effort has been made to
present a comprehensive listing of all formulas in the book.

Once you find the formula you seek, read any accompa-
nying text giving background information about the formula.
Then when you understand the formula and its applications,
insert the numerical values for the variables in the formula.
Solve the formula and use the results for the task at hand.

Where a formula may come from a regulatory code,
or where a code exists for the particular work being
done, be certain to check the latest edition of the appli-
cable code to see that the given formula agrees with the
code formula. If it does not agree, be certain to use the
latest code formula available. Remember, as a design
engineer you are responsible for the structures you plan,
design, and build. Using the latest edition of any govern-
ing code is the only sensible way to produce a safe and
dependable design that you will be proud to be associ-
ated with. Further, you will sleep more peacefully!
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CHAPTER 1
CONVERSION
FACTORS FOR

CIVIL
ENGINEERING

PRACTICE
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Civil engineers throughout the world accept both the
United States Customary System (USCS) and the System
International (SI) units of measure for both applied and
theoretical calculations. However, the SI units are much
more widely used than those of the USCS. Hence, both the
USCS and the SI units are presented for essentially every
formula in this book. Thus, the user of the book can apply
the formulas with confidence anywhere in the world.

To permit even wider use of this text, this chapter con-
tains the conversion factors needed to switch from one sys-
tem to the other. For engineers unfamiliar with either
system of units, the author suggests the following steps for
becoming acquainted with the unknown system:

1. Prepare a list of measurements commonly used in your
daily work.

2. Insert, opposite each known unit, the unit from the other
system. Table 1.1 shows such a list of USCS units with
corresponding SI units and symbols prepared by a civil
engineer who normally uses the USCS. The SI units
shown in Table 1.1 were obtained from Table 1.3 by the
engineer.

3. Find, from a table of conversion factors, such as Table 1.3,
the value used to convert from USCS to SI units. Insert
each appropriate value in Table 1.2 from Table 1.3.

4. Apply the conversion values wherever necessary for the
formulas in this book.

5. Recognize—here and now—that the most difficult
aspect of becoming familiar with a new system of meas-
urement is becoming comfortable with the names and
magnitudes of the units. Numerical conversion is simple,
once you have set up your own conversion table.

2 CHAPTER ONE
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Be careful, when using formulas containing a numerical
constant, to convert the constant to that for the system you
are using. You can, however, use the formula for the USCS
units (when the formula is given in those units) and then
convert the final result to the SI equivalent using Table 1.3.
For the few formulas given in SI units, the reverse proce-
dure should be used.

CONVERSION FACTORS 3
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TABLE 1.1 Commonly Used USCS and SI Units†

Conversion factor 
(multiply USCS unit 

by this factor to 
USCS unit SI unit SI symbol obtain SI unit)

square foot square meter m2 0.0929
cubic foot cubic meter m3 0.2831
pound per 

square inch kilopascal kPa 6.894
pound force newton Nu 4.448
foot pound 

torque newton meter N�m 1.356
kip foot kilonewton meter kN�m 1.355
gallon per 

minute liter per second L/s 0.06309
kip per square 

inch megapascal MPa 6.89

†This table is abbreviated. For a typical engineering practice, an actual table
would be many times this length.
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TABLE 1.2 Typical Conversion Table†

To convert from To Multiply by‡

square foot square meter 9.290304 E � 02
foot per second meter per second

squared squared 3.048 E � 01
cubic foot cubic meter 2.831685 E � 02
pound per cubic kilogram per cubic

inch meter 2.767990 E � 04
gallon per minute liter per second 6.309 E � 02
pound per square

inch kilopascal 6.894757
pound force newton 4.448222
kip per square  foot pascal 4.788026 E � 04
acre foot per day cubic meter per E � 02

second 1.427641
acre square meter 4.046873 E � 03
cubic foot per cubic meter per

second second 2.831685 E � 02

†This table contains only selected values. See the U.S. Department of the
Interior Metric Manual, or National Bureau of Standards, The International
System of Units (SI), both available from the U.S. Government Printing
Office (GPO), for far more comprehensive listings of conversion factors.
‡The E indicates an exponent, as in scientific notation, followed by a positive
or negative number, representing the power of 10 by which the given con-
version factor is to be multiplied before use. Thus, for the square foot con-
version factor, 9.290304 � 1/100 � 0.09290304, the factor to be used to
convert square feet to square meters. For a positive exponent, as in convert-
ing acres to square meters, multiply by 4.046873 � 1000 � 4046.8.

Where a conversion factor cannot be found, simply use the dimensional
substitution. Thus, to convert pounds per cubic inch to kilograms per cubic
meter, find 1 lb � 0.4535924 kg and 1 in3 � 0.00001638706 m3. Then,
1 lb/in3 � 0.4535924 kg/0.00001638706 m3 � 27,680.01, or 2.768 E � 4.

40816_01_p1-14  10/22/01  12:38 PM  Page 4



TABLE 1.3 Factors for Conversion to SI Units of Measurement

To convert from To Multiply by

acre foot, acre ft cubic meter, m3 1.233489 E � 03
acre square meter, m2 4.046873 E � 03
angstrom, Å meter, m 1.000000* E � 10
atmosphere, atm pascal, Pa 1.013250* E � 05

(standard)
atmosphere, atm pascal, Pa 9.806650* E � 04

(technical
� 1 kgf/cm2)

bar pascal, Pa 1.000000* E � 05
barrel (for petroleum, cubic meter, m2 1.589873 E � 01

42 gal)
board foot, board ft cubic meter, m3 2.359737 E � 03
British thermal unit, joule, J 1.05587 E � 03

Btu, (mean)
British thermal unit, watt per meter 1.442279 E � 01

Btu (International kelvin, W/(m�K)
Table)�in/(h)(ft2)
(°F) (k, thermal
conductivity)

British thermal unit, watt, W 2.930711 E � 01
Btu (International
Table)/h

British thermal unit, watt per square 5.678263 E � 00
Btu (International meter kelvin,
Table)/(h)(ft2)(°F) W/(m2�K)
(C, thermal
conductance)

British thermal unit, joule per kilogram, 2.326000* E � 03
Btu (International J/kg
Table)/lb

CONVERSION FACTORS 5
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TABLE 1.3 Factors for Conversion to SI Units of Measurement 
(Continued)

To convert from To Multiply by

British thermal unit, joule per kilogram 4.186800* E � 03
Btu (International kelvin, J/(kg�K)
Table)/(lb)(°F)
(c, heat capacity)

British thermal unit, joule per cubic 3.725895 E � 04
cubic foot, Btu meter, J/m3

(International 
Table)/ft3

bushel (U.S.) cubic meter, m3 3.523907 E � 02

calorie (mean) joule, J 4.19002 E � 00
candela per square candela per square 1.550003 E � 03

inch, cd/in2 meter, cd/m2

centimeter, cm, of pascal, Pa 1.33322 E � 03
mercury (0°C)

centimeter, cm, of pascal, Pa 9.80638 E � 01
water (4°C)

chain meter, m 2.011684 E � 01
circular mil square meter, m2 5.067075 E � 10

day second, s 8.640000* E � 04
day (sidereal) second, s 8.616409 E � 04
degree (angle) radian, rad 1.745329 E � 02
degree Celsius kelvin, K TK � tC � 273.15
degree Fahrenheit degree Celsius, °C tC � (tF � 32)/1.8
degree Fahrenheit kelvin, K TK � (tF � 459.67)/1.8
degree Rankine kelvin, K TK � TR /1.8
(°F)(h)(ft2)/Btu kelvin square 1.761102 E � 01

(International meter per watt,
Table) (R, thermal K�m2/W
resistance)
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TABLE 1.3 Factors for Conversion to SI Units of Measurement 
(Continued)

To convert from To Multiply by

(°F)(h)(ft2)/(Btu kelvin meter per 6.933471 E � 00
(International watt, K�m/W
Table)�in) (thermal
resistivity)

dyne, dyn newton, N 1.000000† E � 05

fathom meter, m 1.828804 E � 00
foot, ft meter, m 3.048000† E � 01
foot, ft (U.S. survey) meter, m 3.048006 E � 01
foot, ft, of water pascal, Pa 2.98898 E � 03
(39.2°F) (pressure)

square foot, ft2 square meter, m2 9.290304† E � 02
square foot per hour, square meter per 2.580640† E � 05

ft2/h (thermal second, m2/s
diffusivity)

square foot per square meter per 9.290304† E � 02
second, ft2/s second, m2/s

cubic foot, ft3 (volume cubic meter, m3 2.831685 E � 02
or section modulus)

cubic foot per minute, cubic meter per 4.719474 E � 04
ft3/min second, m3/s

cubic foot per second, cubic meter per 2.831685 E � 02
ft3/s second, m3/s

foot to the fourth meter to the fourth 8.630975 E � 03
power, ft4 (area power, m4

moment of inertia)
foot per minute, meter per second, 5.080000† E � 03

ft/min m/s
foot per second, meter per second, 3.048000† E � 01

ft/s m/s

CONVERSION FACTORS 7
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TABLE 1.3 Factors for Conversion to SI Units of Measurement 
(Continued)

To convert from To Multiply by

foot per second meter per second 3.048000† E � 01
squared, ft/s2 squared, m/s2

footcandle, fc lux, lx 1.076391 E � 01
footlambert, fL candela per square 3.426259 E � 00

meter, cd/m2

foot pound force, ft�lbf joule, J 1.355818 E � 00
foot pound force per watt, W 2.259697 E � 02

minute, ft�lbf/min
foot pound force per watt, W 1.355818 E � 00

second, ft�lbf/s
foot poundal, ft joule, J 4.214011 E � 02

poundal
free fall, standard g meter per second 9.806650† E � 00

squared, m/s2

gallon, gal (Canadian cubic meter, m3 4.546090 E � 03
liquid)

gallon, gal (U.K. cubic meter, m3 4.546092 E � 03
liquid)

gallon, gal (U.S. dry) cubic meter, m3 4.404884 E � 03
gallon, gal (U.S. cubic meter, m3 3.785412 E � 03

liquid)
gallon, gal (U.S. cubic meter per 4.381264 E � 08

liquid) per day second, m3/s
gallon, gal (U.S. cubic meter per 6.309020 E � 05

liquid) per minute second, m3/s
grad degree (angular) 9.000000† E � 01
grad radian, rad 1.570796 E � 02
grain, gr kilogram, kg 6.479891† E � 05
gram, g kilogram, kg 1.000000† E � 03
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TABLE 1.3 Factors for Conversion to SI Units of Measurement 
(Continued)

To convert from To Multiply by

hectare, ha square meter, m2 1.000000† E � 04
horsepower, hp watt, W 7.456999 E � 02

(550 ft�lbf/s)
horsepower, hp watt, W 9.80950 E � 03

(boiler)
horsepower, hp watt, W 7.460000† E � 02

(electric)
horsepower, hp watt, W 7.46043† E � 02

(water)
horsepower, hp (U.K.) watt, W 7.4570 E � 02
hour, h second, s 3.600000† E � 03
hour, h (sidereal) second, s 3.590170 E � 03

inch, in meter, m 2.540000† E � 02
inch of mercury, in Hg pascal, Pa 3.38638 E � 03

(32°F) (pressure)
inch of mercury, in Hg pascal, Pa 3.37685 E � 03

(60°F) (pressure)
inch of water, in pascal, Pa 2.4884 E � 02

H2O (60°F) 
(pressure)

square inch, in2 square meter, m2 6.451600† E � 04
cubic inch, in3 cubic meter, m3 1.638706 E � 05

(volume or section
modulus)

inch to the fourth meter to the fourth 4.162314 E � 07
power, in4 (area power, m4

moment of inertia)
inch per second, in/s meter per second, 2.540000† E � 02

m/s
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TABLE 1.3 Factors for Conversion to SI Units of Measurement 
(Continued)

To convert from To Multiply by

kelvin, K degree Celsius, °C tC � TK � 273.15
kilogram force, kgf newton, N 9.806650† E � 00
kilogram force meter, newton meter, 9.806650† E � 00

kg�m N�m
kilogram force second kilogram, kg 9.806650† E � 00

squared per meter,
kgf�s2/m (mass)

kilogram force per pascal, Pa 9.806650† E � 04
square centimeter,
kgf/cm2

kilogram force per pascal, Pa 9.806650† E � 00
square meter,
kgf/m2

kilogram force per pascal, Pa 9.806650† E � 06
square millimeter,
kgf/mm2

kilometer per hour, meter per second, 2.777778 E � 01
km/h m/s

kilowatt hour, kWh joule, J 3.600000† E � 06
kip (1000 lbf) newton, N 4.448222 E � 03
kipper square inch, pascal, Pa 6.894757 E � 06

kip/in2 ksi
knot, kn (international) meter per second, 5.144444 E � 01

m/s

lambert, L candela per square 3.183099 E � 03
meter, cd/m

liter cubic meter, m3 1.000000† E � 03

maxwell weber, Wb 1.000000† E � 08
mho siemens, S 1.000000† E � 00

10 CHAPTER ONE
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TABLE 1.3 Factors for Conversion to SI Units of Measurement 
(Continued)

To convert from To Multiply by

microinch, �in meter, m 2.540000† E � 08
micron, �m meter, m 1.000000† E � 06
mil, mi meter, m 2.540000† E � 05
mile, mi (international) meter, m 1.609344† E � 03
mile, mi (U.S. statute) meter, m 1.609347 E � 03
mile, mi (international meter, m 1.852000† E � 03

nautical)
mile, mi (U.S. nautical) meter, m 1.852000† E � 03
square mile, mi2 square meter, m2 2.589988 E � 06

(international)
square mile, mi2 square meter, m2 2.589998 E � 06

(U.S. statute)
mile per hour, mi/h meter per second, 4.470400† E � 01

(international) m/s
mile per hour, mi/h kilometer per hour, 1.609344† E � 00

(international) km/h
millibar, mbar pascal, Pa 1.000000† E � 02
millimeter of mercury, pascal, Pa 1.33322 E � 02

mmHg (0°C)
minute (angle) radian, rad 2.908882 E � 04
minute, min second, s 6.000000† E � 01
minute (sidereal) second, s 5.983617 E � 01

ounce, oz kilogram, kg 2.834952 E � 02
(avoirdupois)

ounce, oz (troy or kilogram, kg 3.110348 E � 02
apothecary)

ounce, oz (U.K. fluid) cubic meter, m3 2.841307 E � 05
ounce, oz (U.S. fluid) cubic meter, m3 2.957353 E � 05
ounce force, ozf newton, N 2.780139 E � 01
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TABLE 1.3 Factors for Conversion to SI Units of Measurement 
(Continued)

To convert from To Multiply by

ounce force�inch, newton meter, 7.061552 E � 03
ozf�in N�m

ounce per square foot, kilogram per square 3.051517 E � 01
oz (avoirdupois)/ft2 meter, kg/m2

ounce per square yard, kilogram per square 3.390575 E � 02
oz (avoirdupois)/yd2 meter, kg/m2

perm (0°C) kilogram per pascal 5.72135 E � 11
second meter,
kg/(Pa�s�m)

perm (23°C) kilogram per pascal 5.74525 E � 11
second meter,
kg/(Pa�s�m)

perm inch, perm�in kilogram per pascal 1.45322 E � 12
(0°C) second meter,

kg/(Pa�s�m)
perm inch, perm�in kilogram per pascal 1.45929 E � 12

(23°C) second meter,
kg/(Pa�s�m)

pint, pt (U.S. dry) cubic meter, m3 5.506105 E � 04
pint, pt (U.S. liquid) cubic meter, m3 4.731765 E � 04
poise, p (absolute pascal second, 1.000000† E � 01

viscosity) Pa�s
pound, lb kilogram, kg 4.535924 E � 01

(avoirdupois)
pound, lb (troy or kilogram, kg 3.732417 E � 01

apothecary)
pound square inch, kilogram square 2.926397 E � 04

lb�in2 (moment of meter, kg�m2

inertia)
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TABLE 1.3 Factors for Conversion to SI Units of Measurement 
(Continued)

To convert from To Multiply by

pound per foot� pascal second, 1.488164 E � 00
second, lb/ft�s Pa�s

pound per square kilogram per square 4.882428 E � 00
foot, lb/ft2 meter, kg/m2

pound per cubic kilogram per cubic 1.601846 E � 01
foot, lb/ft3 meter, kg/m3

pound per gallon, kilogram per cubic 9.977633 E � 01
lb/gal (U.K. liquid) meter, kg/m3

pound per gallon, kilogram per cubic 1.198264 E � 02
lb/gal (U.S. liquid) meter, kg/m3

pound per hour, lb/h kilogram per 1.259979 E � 04
second, kg/s

pound per cubic inch, kilogram per cubic 2.767990 E � 04
lb/in3 meter, kg/m3

pound per minute, kilogram per 7.559873 E � 03
lb/min second, kg/s

pound per second, kilogram per 4.535924 E � 01
lb/s second, kg/s

pound per cubic yard, kilogram per cubic 5.932764 E � 01
lb/yd3 meter, kg/m3

poundal newton, N 1.382550 E � 01
pound�force, lbf newton, N 4.448222 E � 00
pound force foot, newton meter, 1.355818 E � 00

lbf�ft N�m
pound force per foot, newton per meter, 1.459390 E � 01

lbf/ft N/m
pound force per pascal, Pa 4.788026 E � 01

square foot, lbf/ft2

pound force per inch, newton per meter, 1.751268 E � 02
lbf/in N/m
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TABLE 1.3 Factors for Conversion to SI Units of Measurement 
(Continued)

To convert from To Multiply by

pound force per square pascal, Pa 6.894757 E � 03
inch, lbf/in2 (psi)

quart, qt (U.S. dry) cubic meter, m3 1.101221 E � 03
quart, qt (U.S. liquid) cubic meter, m3 9.463529 E � 04

rod meter, m 5.029210 E � 00

second (angle) radian, rad 4.848137 E � 06
second (sidereal) second, s 9.972696 E � 01
square (100 ft2) square meter, m2 9.290304† E � 00

ton (assay) kilogram, kg 2.916667 E � 02
ton (long, 2240 lb) kilogram, kg 1.016047 E � 03
ton (metric) kilogram, kg 1.000000† E � 03
ton (refrigeration) watt, W 3.516800 E � 03
ton (register) cubic meter, m3 2.831685 E � 00
ton (short, 2000 lb) kilogram, kg 9.071847 E � 02
ton (long per cubic kilogram per cubic 1.328939 E � 03

yard, ton)/yd3 meter, kg/m3

ton (short per cubic kilogram per cubic 1.186553 E � 03
yard, ton)/yd3 meter, kg/m3

ton force (2000 lbf) newton, N 8.896444 E � 03
tonne, t kilogram, kg 1.000000† E � 03

watt hour, Wh joule, J 3.600000† E � 03

yard, yd meter, m 9.144000† E � 01
square yard, yd2 square meter, m2 8.361274 E � 01
cubic yard, yd3 cubic meter, m3 7.645549 E � 01
year (365 days) second, s 3.153600† E � 07
year (sidereal) second, s 3.155815 E � 07

†Exact value.
From E380, “Standard for Metric Practice,” American Society for Testing
and Materials.
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408

In analyzing beams of various types, the geometric proper-
ties of a variety of cross-sectional areas are used. Figure 2.1
gives equations for computing area A, moment of inertia I,
section modulus or the ratio S � I/c, where c � distance
from the neutral axis to the outermost fiber of the beam or
other member. Units used are inches and millimeters and
their powers. The formulas in Fig. 2.1 are valid for both
USCS and SI units.

Handy formulas for some dozen different types of
beams are given in Fig. 2.2. In Fig. 2.2, both USCS and SI
units can be used in any of the formulas that are applicable
to both steel and wooden beams. Note that W � load, lb
(kN); L � length, ft (m); R � reaction, lb (kN); V � shear,
lb (kN); M � bending moment, lb � ft (N � m); D � deflec-
tion, ft (m); a � spacing, ft (m); b � spacing, ft (m); E �
modulus of elasticity, lb/in2 (kPa); I � moment of inertia,
in4 (dm4); � � less than; 	 � greater than.

Figure 2.3 gives the elastic-curve equations for a variety
of prismatic beams. In these equations the load is given as
P, lb (kN). Spacing is given as k, ft (m) and c, ft (m).

CONTINUOUS BEAMS

Continuous beams and frames are statically indeterminate.
Bending moments in these beams are functions of the
geometry, moments of inertia, loads, spans, and modulus of
elasticity of individual members. Figure 2.4 shows how any
span of a continuous beam can be treated as a single beam,
with the moment diagram decomposed into basic com-
ponents. Formulas for analysis are given in the diagram.
Reactions of a continuous beam can be found by using the
formulas in Fig. 2.5. Fixed-end moment formulas for
beams of constant moment of inertia (prismatic beams) for

16 CHAPTER TWO
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FIGURE 2.1 Geometric properties of sections.
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FIGURE 2.1 (Continued) Geometric properties of sections.
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FIGURE 2.1 (Continued) Geometric properties of sections.
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FIGURE 2.1 (Continued) Geometric properties of sections.
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FIGURE 2.1 (Continued) Geometric properties of sections.
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FIGURE 2.1 (Continued) Geometric properties of sections.
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several common types of loading are given in Fig. 2.6.
Curves (Fig. 2.7) can be used to speed computation of
fixed-end moments in prismatic beams. Before the curves
in Fig. 2.7 can be used, the characteristics of the loading
must be computed by using the formulas in Fig. 2.8. These
include , the location of the center of gravity of the load-
ing with respect to one of the loads; G2 � 
 Pn/W, where
bnL is the distance from each load Pn to the center of 
gravity of the loading (taken positive to the right); and S3 �

 Pn/W. These values are given in Fig. 2.8 for some com-
mon types of loading.

Formulas for moments due to deflection of a fixed-end
beam are given in Fig. 2.9. To use the modified moment
distribution method for a fixed-end beam such as that in
Fig. 2.9, we must first know the fixed-end moments for a
beam with supports at different levels. In Fig. 2.9, the right
end of a beam with span L is at a height d above the left
end. To find the fixed-end moments, we first deflect the
beam with both ends hinged; and then fix the right end,
leaving the left end hinged, as in Fig. 2.9b. By noting that a
line connecting the two supports makes an angle approxi-
mately equal to d/L (its tangent) with the original position
of the beam, we apply a moment at the hinged end to pro-
duce an end rotation there equal to d/L. By the definition of
stiffness, this moment equals that shown at the left end of
Fig. 2.9b. The carryover to the right end is shown as the top
formula on the right-hand side of Fig. 2.9b. By using the
law of reciprocal deflections, we obtain the end moments of
the deflected beam in Fig. 2.9 as

(2.1)

(2.2) MR
F � K R

F (1 � C L
F) 

d

L

 MF
L � K F

L (1 � C F
R) 

d

L

bn
3

bn
2

xL
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FIGURE 2.2 Beam formulas. (From J. Callender, Time-Saver Standards for Architectural Design Data,
6th ed., McGraw-Hill, N.Y.)
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FIGURE 2.2 (Continued) Beam formulas.
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FIGURE 2.2 (Continued) Beam formulas.
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FIGURE 2.2 (Continued) Beam formulas.
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FIGURE 2.2 (Continued) Beam formulas.
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FIGURE 2.2 (Continued) Beam formulas.
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FIGURE 2.3 Elastic-curve equations for prismatic beams. (a) Shears, moments, deflections for full uni-
form load on a simply supported prismatic beam. (b) Shears and moments for uniform load over part of
a simply supported prismatic beam. (c) Shears, moments, deflections for a concentrated load at any point
of a simply supported prismatic beam.

4
0
8
1
6
_
0
2
_
p
1
5
-
5
1
 
 
1
0
/
2
2
/
0
1
 
 
1
2
:
3
9
 
P
M
 
 
P
a
g
e
 
4
0



40816
H

IC
K

S
M

cghp
C

h02
T

hird P
ass

bcj
7/19/01

p. 41
40

4
1

FIGURE 2.3 (Continued) Elastic-curve equations for prismatic beams. (d) Shears, moments, deflec-
tions for a concentrated load at midspan of a simply supported prismatic beam. (e) Shears, moments, deflec-
tions for two equal concentrated loads on a simply supported prismatic beam. ( f ) Shears, moments,
deflections for several equal loads equally spaced on a simply supported prismatic beam.
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FIGURE 2.3 (Continued) Elastic-curve equations for prismatic beams. (g) Shears, moments, deflec-
tions for a concentrated load on a beam overhang. (h) Shears, moments, deflections for a concentrated load
on the end of a prismatic cantilever. (i) Shears, moments, deflections for a uniform load over the full length
of a beam with overhang.
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FIGURE 2.3 (Continued) Elastic-curve equations for prismatic beams. (j) Shears, moments, deflections
for uniform load over the full length of a cantilever. (k) Shears, moments, deflections for uniform load on a
beam overhang. (l) Shears, moments, deflections for triangular loading on a prismatic cantilever.
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FIGURE 2.3 (Continued) Elastic-curve equations for prismatic beams. (m) Simple beam—load increas-
ing uniformly to one end.
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FIGURE 2.3 (Continued) Elastic-curve equations for prismatic beams. (n) Simple beam—load increas-
ing uniformly to center. 
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FIGURE 2.3 (Continued) Elastic-curve equations for prismatic beams. (o) Simple beam—uniform load
partially distributed at one end.
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FIGURE 2.3 (Continued) Elastic-curve equations for prismatic beams. (p) Cantilever beam—concen-
trated load at free end.
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FIGURE 2.3 (Continued) Elastic-curve equations for prismatic beams.  (q) Beam fixed at both ends—
concentrated load at center.
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FIGURE 2.4 Any span of a continuous beam (a) can be treated as a simple beam, as shown in (b) and (c).
In (c), the moment diagram is decomposed into basic components.
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FIGURE 2.5 Reactions of continuous beam (a) found by making
the beam statically determinate. (b) Deflections computed with
interior supports removed. (c), (d ), and (e) Deflections calculated
for unit load over each removed support, to obtain equations for
each redundant.
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g
h
d
r

FIGURE 2.6 Fixed-end moments for a prismatic beam. (a) For a
concentrated load. (b) For a uniform load. (c) For two equal con-
centrated loads. (d) For three equal concentrated loads.

In a similar manner the fixed-end moment for a beam with
one end hinged and the supports at different levels can be
found from 

(2.3)

where K is the actual stiffness for the end of the beam that
is fixed; for beams of variable moment of inertia K equals
the fixed-end stiffness times .(1 � C L

FC R
F)

MF � K
d

L
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FIGURE 2.7 Chart for fixed-end moments due to any type of
loading.

FIGURE 2.8 Characteristics of loadings.
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f

FIGURE 2.8 (Continued) Characteristics of loadings.

ULTIMATE STRENGTH OF
CONTINUOUS BEAMS

Methods for computing the ultimate strength of continuous
beams and frames may be based on two theorems that fix
upper and lower limits for load-carrying capacity:

1. Upper-bound theorem. A load computed on the basis of
an assumed link mechanism is always greater than, or at
best equal to, the ultimate load.
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FIGURE 2.9 Moments due to deflection of a fixed-end beam.

2. Lower-bound theorem. The load corresponding to an
equilibrium condition with arbitrarily assumed values
for the redundants is smaller than, or at best equal to, the
ultimate loading—provided that everywhere moments
do not exceed MP. The equilibrium method, based on
the lower bound theorem, is usually easier for simple
cases.
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For the continuous beam in Fig. 2.10, the ratio of the
plastic moment for the end spans is k times that for the cen-
ter span (k 	 1).

Figure 2.10b shows the moment diagram for the beam
made determinate by ignoring the moments at B and C and
the moment diagram for end moments MB and MC applied
to the determinate beam. Then, by using Fig. 2.10c, equilib-
rium is maintained when

(2.4)

The mechanism method can be used to analyze rigid
frames of constant section with fixed bases, as in Fig. 2.11.
Using this method with the vertical load at midspan equal
to 1.5 times the lateral load, the ultimate load for the frame
is 4.8MP/L laterally and 7.2MP /L vertically at midspan.

Maximum moment occurs in the interior spans AB and
CD when

(2.5)

or if

(2.6)

A plastic hinge forms at this point when the moment equals
kMP. For equilibrium,

M � kMP  when  x �
L

2
�

kMP

wL

x �
L

2
�

M

wL

 �
wL2

4(1 � k)

 �
wL2

4 � kMP

 MP �
wL2

4
�

1

2
 MB �

1

2
 MC
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FIGURE 2.10 Continuous beam shown in (a) carries twice as
much uniform load in the center span as in the side span. In (b) are
shown the moment diagrams for this loading condition with redun-
dants removed and for the redundants. The two moment diagrams
are combined in (c), producing peaks at which plastic hinges are
assumed to form.
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FIGURE 2.11 Ultimate-load possibilities for a rigid frame of constant section with fixed bases.
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leading to

(2.7)

When the value of MP previously computed is substituted,

from which k � 0.523. The ultimate load is

(2.8)

In any continuous beam, the bending moment at any
section is equal to the bending moment at any other section,
plus the shear at that section times its arm, plus the product
of all the intervening external forces times their respective
arms. Thus, in Fig. 2.12,

Table 2.1 gives the value of the moment at the various
supports of a uniformly loaded continuous beam over equal

 Mx � M3 � V3x � P3a

� P1 (l2 � c � x) � P2 (b � x) � P3a

 Mx � R1 (l1 � l2 � x) � R2 (l2 � x) � R3x

 Vx � R1 � R2 � R3 � P1 � P2 � P3

wL �
4MP (1 � k)

L
� 6.1

MP

L

7k2 � 4k � 4  or  k (k � 4�7) � 4�7

k2MP
2

wL2 � 3kMP �
wL2

4
� 0

 �
w

2
 � L

2
�

kMP

wL � � L

2
�

KMP

wL � � � 1

2
�

kMP

wL2 �  kMP

 kMP �
w

2
 x (L � x) �

x

L
 kMP
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FIGURE 2.12 Continuous beam.

FIGURE 2.13 Relation between moment and shear diagrams for
a uniformly loaded continuous beam of four equal spans.

spans, and it also gives the values of the shears on each side
of the supports. Note that the shear is of the opposite sign
on either side of the supports and that the sum of the two
shears is equal to the reaction.

Figure 2.13 shows the relation between the moment and
shear diagrams for a uniformly loaded continuous beam of
four equal spans. (See Table 2.1.) Table 2.1 also gives the
maximum bending moment that occurs between supports,
in addition to the position of this moment and the points of
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TABLE 2.1 Uniformly Loaded Continuous Beams over Equal Spans

(Uniform load per unit length � w; length of each span � l)

Distance to
point of Distance to

Shear on each side max moment, point of
Notation of support. L � left, measured to inflection,

Number of R � right. Reaction at Moment Max right from measured to
of support any support is L � R over each moment in from right from

supports of span L R support each span support support

2 1 or 2 0 0 0.125 0.500 None

3 1 0 0 0.0703 0.375 0.750
2 0.0703 0.625 0.250

4 1 0 0 0.080 0.400 0.800
2 0.025 0.500 0.276, 0.724
1 0 0 0.0772 0.393 0.786

5 2 0.0364 0.536 0.266, 0.806
3 0.0364 0.464 0.194, 0.734
1 0 0 0.0779 0.395 0.78915�38

2�28
13�28

13�28

3�28
15�28

17�28

11�28

1�10
5�10

6�10

4�10

1�8
5�8

5�8

3�8

1�2

6 2 0 0332 0 526 0 268 0 7834�20�23�
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�38

6 2 0.0332 0.526 0.268, 0.783
3 0.0461 0.500 0.196, 0.804
1 0 0 0.0777 0.394 0.788
2 0.0340 0.533 0.268, 0.790

7 3 0.0433 0.490 0.196, 0.785
4 0.0433 0.510 0.215, 0.804
1 0 0 0.0778 0.394 0.789

8 2 0.0338 0.528 0.268, 0.788
3 0.0440 0.493 0.196, 0.790
4 0.0405 0.500 0.215, 0.785

Values apply to wl wl wl2 wl2 l l

The numerical values given are coefficients of the expressions at the foot of each column.

12�142
71�142

72�142

11�142
70�142

67�142

15�142
75�142

86�142

56�142

9�104
53�104

53�104

8�104
51�104

49�104

11�104
55�104

63�104

41�104

3�38
19�38

18�38

4�38
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inflection. Figure 2.14 shows the values of the functions for
a uniformly loaded continuous beam resting on three equal
spans with four supports.

Maxwell’s Theorem

When a number of loads rest upon a beam, the deflection at
any point is equal to the sum of the deflections at this point
due to each of the loads taken separately. Maxwell’s theo-
rem states that if unit loads rest upon a beam at two points,
A and B, the deflection at A due to the unit load at B equals
the deflection at B due to the unit load at A.

Castigliano’s Theorem

This theorem states that the deflection of the point of
application of an external force acting on a beam is equal

FIGURE 2.14 Values of the functions for a uniformly loaded
continuous beam resting on three equal spans with four supports.
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to the partial derivative of the work of deformation with
respect to this force. Thus, if P is the force, f is the deflec-
tion, and U is the work of deformation, which equals the
resilience:

According to the principle of least work, the deforma-
tion of any structure takes place in such a manner that the
work of deformation is a minimum.

BEAMS OF UNIFORM STRENGTH

Beams of uniform strength so vary in section that the unit
stress S remains constant, and I/c varies as M. For rectangu-
lar beams of breadth b and depth d, I/c � I/c � bd 2/6 and
M � Sbd2/6. For a cantilever beam of rectangular cross sec-
tion, under a load P, Px � Sbd2/6. If b is constant, d2 varies
with x, and the profile of the shape of the beam is a parabola,
as in Fig. 2.15. If d is constant, b varies as x, and the beam
is triangular in plan (Fig. 2.16).

Shear at the end of a beam necessitates modification of
the forms determined earlier. The area required to resist
shear is P/Sv in a cantilever and R/Sv in a simple beam. Dot-
ted extensions in Figs. 2.15 and 2.16 show the changes nec-
essary to enable these cantilevers to resist shear. The waste
in material and extra cost in fabricating, however, make
many of the forms impractical, except for cast iron. Figure
2.17 shows some of the simple sections of uniform
strength. In none of these, however, is shear taken into
account.

dU

dP
� f
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SAFE LOADS FOR BEAMS
OF VARIOUS TYPES

Table 2.2 gives 32 formulas for computing the approximate
safe loads on steel beams of various cross sections for an
allowable stress of 16,000 lb/in2 (110.3 MPa). Use these
formulas for quick estimation of the safe load for any steel
beam you are using in a design.

FIGURE 2.15 Parabolic beam of uniform strength.
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FIGURE 2.16 Triangular beam of uniform strength.

e
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e
l

Table 2.3 gives coefficients for correcting values in
Table 2.2 for various methods of support and loading.
When combined with Table 2.2, the two sets of formulas
provide useful time-saving means of making quick safe-
load computations in both the office and the field.
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TABLE 2.2 Approximate Safe Loads in Pounds (kgf) on Steel Beams*

(Beams supported at both ends; allowable fiber stress for steel, 16,000 lb/in2 (1.127 kgf/cm2) (basis of table)
for iron, reduce values given in table by one-eighth)

Greatest safe load, lb‡ Deflection, in‡

Shape of section Load in middle Load distributed Load in middle Load distributed

Solid rectangle

Hollow rectangle

Solid cylinder

Hollow cylinder
wL3

38(AD2 � ad 2)

wL3

24(AD2 � ad 2)

1,333(AD � ad)

L

667(AD � ad)

L

wL3

38AD2

wL3

24AD2

1,333AD

L

667AD

L

wL3

52(AD2 � ad 2)

wL3

32(AD2 � ad 2)

1,780(AD � ad)

L

890(AD � ad)

L

wL3

52AD2

wL3

32AD2

1,780AD

L

890AD

L

6
6

L3L31 770AD885AD
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38(AD ad )24(AD ad )LL

6
7

Even-legged angle or tee

Channel or Z bar

Deck beam

I beam

*L � distance between supports, ft (m); A � sectional area of beam, in2 (cm2); D � depth of beam, in (cm);
a � interior area, in2 (cm2); d � interior depth, in (cm); w � total working load, net tons (kgf).
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TABLE 2.3 Coefficients for Correcting Values in Table 2.2 for Various Methods 
of Support and of Loading†

Max relative
deflection under

Max relative max relative safe
Conditions of loading safe load load

Beam supported at ends
Load uniformly distributed over span 1.0 1.0
Load concentrated at center of span 0.80
Two equal loads symmetrically concentrated l/4c
Load increasing uniformly to one end 0.974 0.976
Load increasing uniformly to center 0.96
Load decreasing uniformly to center 1.083�2
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g y �2

Beam fixed at one end, cantilever
Load uniformly distributed over span 2.40
Load concentrated at end 3.20
Load increasing uniformly to fixed end 1.92

Beam continuous over two supports equidistant from ends
Load uniformly distributed over span

1. If distance a 	 0.2071l l2/4a2

2. If distance a � 0.2071l l/(l – 4a)
3. If distance a � 0.2071l 5.83

Two equal loads concentrated at ends l/4a

† l � length of beam; c � distance from support to nearest concentrated load; a � distance from support to end
of beam.
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FIGURE 2.17 Beams of uniform strength (in bending).
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FIGURE 2.17 (Continued) Beams of uniform strength (in bending).
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FIGURE 2.17 (Continued) Beams of uniform strength (in bending).
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FIGURE 2.17 (Continued) Beams of uniform strength (in bending).
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FIGURE 2.17 (Continued) Beams of uniform strength (in bending).
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ROLLING AND MOVING LOADS

Rolling and moving loads are loads that may change their
position on a beam or beams. Figure 2.18 shows a beam
with two equal concentrated moving loads, such as two
wheels on a crane girder, or the wheels of a truck on a
bridge. Because the maximum moment occurs where the
shear is zero, the shear diagram shows that the maximum
moment occurs under a wheel. Thus, with x � a/2:

M2 max when x � a

M1 max when x � a

Figure 2.19 shows the condition when two equal loads
are equally distant on opposite sides of the center of the
beam. The moment is then equal under the two loads.

 Mmax �
Pl

2
 �1 �

a

2l �
2

�
P

2l
 �l �

a

2 �
2

3�4

1�4

 M1 �
Pl

2
 �1 �

a

l
�

2a2

l 2  �
2x

l
 
3a

l
�

4x2

l 2 �

 R2 � P �1 �
2x

l
�

a

l �

 M2 �
Pl

2 �1 �
a

l
�

2x

l
 
a

l
�

4x2

l 2 �

 R1 � P �1 �
2x

l
�

a

l �
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FIGURE 2.18 Two equal concentrated moving loads.
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FIGURE 2.19 Two equal moving loads equally distant on oppo-
site sides of the center. F
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If two moving loads are of unequal weight, the condi-
tion for maximum moment is the maximum moment occur-
ring under the heavier wheel when the center of the beam
bisects the distance between the resultant of the loads and
the heavier wheel. Figure 2.20 shows this position and the
shear and moment diagrams.

When several wheel loads constituting a system are on a
beam or beams, the several wheels must be examined in
turn to determine which causes the greatest moment. The
position for the greatest moment that can occur under a given

-
FIGURE 2.20 Two moving loads of unequal weight.

40816_02_p52-98  10/22/01  12:41 PM  Page 81



408

wheel is, as stated earlier, when the center of the span
bisects the distance between the wheel in question and the
resultant of all loads then on the span. The position for max-
imum shear at the support is when one wheel is passing off
the span.

CURVED BEAMS

The application of the flexure formula for a straight beam
to the case of a curved beam results in error. When all
“fibers” of a member have the same center of curvature,
the concentric or common type of curved beam exists
(Fig. 2.21). Such a beam is defined by the Winkler–Bach
theory. The stress at a point y units from the centroidal
axis is

M is the bending moment, positive when it increases curva-
ture; y is positive when measured toward the convex side; A
is the cross-sectional area; R is the radius of the centroidal
axis; Z is a cross-section property defined by

Analytical expressions for Z of certain sections are given
in Table 2.4. Z can also be found by graphical integration
methods (see any advanced strength book). The neutral
surface shifts toward the center of curvature, or inside fiber,
an amount equal to e � ZR/(Z � 1). The Winkler–Bach

Z � �
1

A
 � y

R � y
 dA

S �
M

AR
 �1 �

y

Z (R � y) �

82 CHAPTER TWO

40816 HICKS Mcghp Ch02 Third Pass 7/19/01 bcj p. 82

T
A

B
L
E

2
4

A
l

i
lE

i
f

Z

40816_02_p52-98  10/22/01  12:41 PM  Page 82



8
3

40816
H

IC
K

S
M

cghp
C

h02
Second P

ass
7/3/01

pb
p. 83

ne-fml,shl-Alnnl,h p. 82

TABLE 2.4 Analytical Expressions for Z

Section Expression

 A � 2 [(t � b)C1 � bC2]

 Z � �1 �
R

A
 �b ln � R � C2

R � C2
� � (t � b) ln � R � C1

R � C1
� �

 and A � tC1 � (b � t) C3 � bC2

 Z � �1 �
R

A
 �t ln (R � C1) � (b � t) ln (R � C0) � b ln (R � C2) �

Z � �1 � 2 � R

r � � R

r
�√� R

r �
2

� 1 �

Z � �1 �
R

h
 �ln 

R � C

R � C �
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B

B

F

theory, though practically satisfactory, disregards radial
stresses as well as lateral deformations and assumes pure
bending. The maximum stress occurring on the inside fiber
is S � Mhi/AeRi, whereas that on the outside fiber is S �
Mh0/AeR0.

The deflection in curved beams can be computed by
means of the moment-area theory. 

The resultant deflection is then equal to 
in the direction defined by Deflections can
also be found conveniently by use of Castigliano’s theorem.
It states that in an elastic system the displacement in the
direction of a force (or couple) and due to that force (or cou-
ple) is the partial derivative of the strain energy with respect
to the force (or couple).

A quadrant of radius R is fixed at one end as shown in
Fig. 2.22. The force F is applied in the radial direction at
free-end B. Then, the deflection of B is

tan � � �y / �x.
�0 � √�2

x � �2
y

FIGURE 2.21 Curved beam.
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By moment area,

y � R sin � x � R(1 � cos �)

ds � Rd� M � FR sin �

and

at

By Castigliano,

 B�x �

FR3

4EI
  B�y � �

FR3

2EI

 � 32.5�

 � tan�1 
2




 �x � tan�1 ��
FR3

2EI
�

4EI


FR3 �

 �B �
FR3

2EI
 √1 �


2

4

 B�x �

FR3

4EI
  B�y � �

FR3

2EI

FIGURE 2.22 Quadrant with fixed end.
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Eccentrically Curved Beams

These beams (Fig. 2.23) are bounded by arcs having differ-
ent centers of curvature. In addition, it is possible for either
radius to be the larger one. The one in which the section
depth shortens as the central section is approached may be
called the arch beam. When the central section is the
largest, the beam is of the crescent type.

Crescent I denotes the beam of larger outside radius and
crescent II of larger inside radius. The stress at the central
section of such beams may be found from S � KMC/I.
In the case of rectangular cross section, the equation
becomes S � 6KM/bh2, where M is the bending moment, b
is the width of the beam section, and h its height. The stress
factors, K for the inner boundary, established from photo-
elastic data, are given in Table 2.5. The outside radius
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FIGURE 2.23 Eccentrically curved beams.
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TABLE 2.5 Stress Factors for Inner Boundary at Central Section

(see Fig. 2.23)

1. For the arch-type beams

(a)

(b)

(c) In the case of larger section ratios use the equivalent beam
solution

2. For the crescent I-type beams

(a)

(b)

(c)

3. For the crescent II-type beams

(a)

(b)

(c)  K � 1.081 � h

Ro � Ri
�

0.0270  if  Ro � Ri

h
	 20

 K � 1.119 � h

Ro � Ri
�

0.0378  if  8 �
Ro � Ri

h
� 20

 K � 0.897 � 1.098 
h

Ro � Ri

  if  Ro � Ri

h
� 8

 K � 1.092 � h

Ro � Ri
�

0.0298  if  Ro � Ri

h
	 20

 K � 0.959 � 0.769 
h

Ro � Ri

  if  2 �
Ro � Ri

h
� 20

 K � 0.570 � 1.536 
h

Ro � Ri

  if  Ro � Ri

h
� 2

 K � 0.899 � 1.181 
h

Ro � Ri

  if  5 �
Ro � Ri

h
� 10

 K � 0.834 � 1.504 
h

Ro � Ri

  if  Ro � Ri

h
� 5

is denoted by Ro and the inside by Ri. The geometry of
crescent beams is such that the stress can be larger in off-
center sections. The stress at the central section determined
above must then be multiplied by the position factor k,
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given in Table 2.6. As in the concentric beam, the neutral
surface shifts slightly toward the inner boundary. (See
Vidosic, “Curved Beams with Eccentric Boundaries,”
Transactions of the ASME, 79, pp. 1317–1321.)

ELASTIC LATERAL BUCKLING OF BEAMS

When lateral buckling of a beam occurs, the beam under-
goes a combination of twist and out-of-plane bending
(Fig. 2.24). For a simply supported beam of rectangular
cross section subjected to uniform bending, buckling occurs
at the critical bending moment, given by

where L � unbraced length of the member

E � modulus of elasticity

Iy � moment of inertial about minor axis

G � shear modulus of elasticity

J � torsional constant

The critical moment is proportional to both the lateral
bending stiffness EIy /L and the torsional stiffness of the
member GJ/L.

For the case of an open section, such as a wide-flange or
I-beam section, warping rigidity can provide additional tor-
sional stiffness. Buckling of a simply supported beam of open
cross section subjected to uniform bending occurs at the
critical bending moment, given by

Mcr �



L
 √EIyGJ

T

(

A

†

b
b

w
s

m
f
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TABLE 2.6 Crescent-Beam Position Stress Factors

(see Fig. 2.23)†

Angle �,
k

degree Inner Outer

10 1 � 0.055 H/h 1 � 0.03 H/h
20 1 � 0.164 H/h 1 � 0.10 H/h
30 1 � 0.365 H / h 1 � 0.25 H/h
40 1 � 0.567 H / h 1 � 0.467 H/h

50 1 � 0.733 H/h

60 1 � 1.123 H/h

70 1 � 1.70 H/h

80 1 � 2.383 H/h

90 1 � 3.933 H/h

†Note: All formulas are valid for 0 � H/h � 0.325. Formulas for the inner
boundary, except for 40 degrees, may be used to H/h � 0.36. H � distance
between centers.

2.531 �
(0.2939 � 0.7084 H/h)1/2

0.3542

2.070 �
(0.4817 � 1.298 H/h)1/2

0.6492

1.756 �
(0.2416 � 0.6506 H/h)1/2

0.6506

1.521 �
(0.5171 � 1.382 H/h)1/2

1.382

where Cw is the warping constant, a function of cross-
sectional shape and dimensions (Fig. 2.25).

In the preceding equations, the distribution of bending
moment is assumed to be uniform. For the case of a nonuni-
form bending-moment gradient, buckling often occurs at 

Mcr �



L
 √EIy �GJ � ECw 


2

L2
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FIGURE 2.24 (a) Simple beam subjected to equal end moments.
(b) Elastic lateral buckling of the beam. a

a larger critical moment. Approximation of this critical
bending moment, Mcr� may be obtained by multiplying Mcr

given by the previous equations by an amplification factor

where  Cb �
12.5Mmax

2.5Mmax � 3MA � 4MB � 3MC

M �cr � Cb Mcr

F
A
I
Y
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s.

and Mmax � absolute value of maximum moment in the
unbraced beam segment

MA � absolute value of moment at quarter point of
the unbraced beam segment

MB � absolute value of moment at centerline of the
unbraced beam segment

MC � absolute value of moment at three-quarter
point of the unbraced beam segment

l
r

r

FIGURE 2.25 Torsion-bending constants for torsional buckling.
A � cross-sectional area; Ix � moment of inertia about x–x axis;
Iy � moment of inertia about y–y axis. (After McGraw-Hill, New
York). Bleich, F., Buckling Strength of Metal Structures.
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Cb equals 1.0 for unbraced cantilevers and for members
where the moment within a significant portion of the
unbraced segment is greater than, or equal to, the larger of
the segment end moments.

COMBINED AXIAL AND BENDING LOADS

For short beams, subjected to both transverse and axial
loads, the stresses are given by the principle of superposition
if the deflection due to bending may be neglected without
serious error. That is, the total stress is given with sufficient
accuracy at any section by the sum of the axial stress and
the bending stresses. The maximum stress, lb/in2 (MPa),
equals

where P � axial load, lb (N )

A � cross-sectional area, in2 (mm2)

M � maximum bending moment, in lb (Nm)

c � distance from neutral axis to outermost fiber at
the section where maximum moment occurs,
in (mm)

I � moment of inertia about neutral axis at that
section, in4 (mm4)

When the deflection due to bending is large and the 
axial load produces bending stresses that cannot be neglect-
ed, the maximum stress is given by

f �
P

A
�

Mc

I
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where d is the deflection of the beam. For axial compres-
sion, the moment Pd should be given the same sign as M;
and for tension, the opposite sign, but the minimum value
of M � Pd is zero. The deflection d for axial compression
and bending can be closely approximated by

where do � deflection for the transverse loading alone, in
(mm); and Pc � critical buckling load 
2EI / L2, lb (N).

UNSYMMETRICAL BENDING

When a beam is subjected to loads that do not lie in a plane
containing a principal axis of each cross section, unsym-
metrical bending occurs. Assuming that the bending axis of
the beam lies in the plane of the loads, to preclude torsion,
and that the loads are perpendicular to the bending axis, to
preclude axial components, the stress, lb/in2 (MPa), at any
point in a cross section is

where Mx � bending moment about principal axis XX,
in lb (Nm)

My � bending moment about principal axis YY,
in lb (Nm)

f �
Mx y

Ix

�
My x

Iy

d �
do

1 � (P/Pc)

f �
P

A
� (M � Pd) 

c

I
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x � distance from point where stress is to be
computed to YY axis, in (mm)

y � distance from point to XX axis, in (mm)

Ix � moment of inertia of cross section about XX,
in (mm4)

Iy � moment of inertia about YY, in (mm4)

If the plane of the loads makes an angle � with a principal
plane, the neutral surface forms an angle � with the other
principal plane such that

ECCENTRIC LOADING

If an eccentric longitudinal load is applied to a bar in the
plane of symmetry, it produces a bending moment Pe,
where e is the distance, in (mm), of the load P from the
centroidal axis. The total unit stress is the sum of this
moment and the stress due to P applied as an axial load:

where A � cross-sectional area, in2 (mm2)

c � distance from neutral axis to outermost fiber, in
(mm)

f �
P

A
�

Pec

I
�

P

A
 �1 �

ec

r 2 �

tan � �
Ix

Iy

 tan �
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I � moment of inertia of cross section about neutral
axis, in4 (mm4)

r � radius of gyration � , in (mm)

Figure 2.1 gives values of the radius of gyration for several
cross sections.

If there is to be no tension on the cross section under
a compressive load, e should not exceed r2/c. For a rectangular
section with width b, and depth d, the eccentricity, there-
fore, should be less than b/6 and d/6 (i.e., the load should
not be applied outside the middle third). For a circular cross
section with diameter D, the eccentricity should not exceed
D/8.

When the eccentric longitudinal load produces a deflec-
tion too large to be neglected in computing the bending
stress, account must be taken of the additional bending
moment Pd, where d is the deflection, in (mm). This deflec-
tion may be closely approximated by

Pc is the critical buckling load 
2EI/L2, lb (N).
If the load P, does not lie in a plane containing an axis

of symmetry, it produces bending about the two principal
axes through the centroid of the section. The stresses, lb/in2

(MPa), are given by

where A � cross-sectional area, in2 (mm2)

ex � eccentricity with respect to principal axis YY,
in (mm)

f �
P

A
�

Pexcx

Iy

�
Peycy

Ix

d �
4eP/Pc


(1 � P/Pc)

√I/A

l
r

e
,
e
s

n
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ey � eccentricity with respect to principal axis XX,
in (mm)

cx � distance from YY to outermost fiber, in (mm)

cy � distance from XX to outermost fiber, in (mm)

Ix � moment of inertia about XX, in4 (mm4)

Iy � moment of inertia about YY, in4 (mm4)

The principal axes are the two perpendicular axes through
the centroid for which the moments of inertia are a maxi-
mum or a minimum and for which the products of inertia
are zero.

NATURAL CIRCULAR FREQUENCIES
AND NATURAL PERIODS OF VIBRATION 
OF PRISMATIC BEAMS

Figure 2.26 shows the characteristic shape and gives con-
stants for determination of natural circular frequency � and
natural period T, for the first four modes of cantilever,
simply supported, fixed-end, and fixed-hinged beams. To
obtain �, select the appropriate constant from Fig. 2.26 and 
multiply it by . To get T, divide the appropriate 
constant by .

In these equations,

� � natural frequency, rad/s

W � beam weight, lb per linear ft (kg per linear m)

L � beam length, ft (m)

√EI/wL4
√EI/wL4
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FIGURE 2.26 Coefficients for computing natural circular frequencies and natural periods of vibration of
prismatic beams.
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E � modulus of elasticity, lb/in2 (MPa)

I � moment of inertia of beam cross section, in4 (mm4)

T � natural period, s

To determine the characteristic shapes and natural peri-
ods for beams with variable cross section and mass, use the
Rayleigh method. Convert the beam into a lumped-mass
system by dividing the span into elements and assuming the
mass of each element to be concentrated at its center. Also,
compute all quantities, such as deflection and bending moment,
at the center of each element. Start with an assumed charac-
teristic shape.
]

40816_02_p52-98  10/22/01  12:41 PM  Page 98



CHAPTER 3 
COLUMN

FORMULAS 

40816 HICKS Mcghp Chap_03 SECOND PASS 7/5/01 pb p. 99

40816_03_p99-130  10/22/01  12:42 PM  Page 99

Copyright 2002 The McGraw-Hill Companies.   Click Here for Terms of Use.



40816

100 CHAPTER THREE

40816 HICKS Mcghp Chap_03 SECOND PASS 7/5/01 pb p. 100

GENERAL CONSIDERATIONS 

Columns are structural members subjected to direct com-
pression. All columns can be grouped into the following
three classes:

1. Compression blocks are so short (with a slenderness
ratio—that is, unsupported length divided by the least
radius of gyration of the member—below 30) that bend-
ing is not potentially occurring.  

2. Columns so slender that bending under load is a given are
termed long columns and are defined by Euler’s theory.  

3. Intermediate-length columns, often used in structural
practice, are called short columns.  

Long and short columns usually fail by buckling when
their critical load is reached. Long columns are analyzed
using Euler’s column formula, namely,

In this formula, the coefficient n accounts for end condi-
tions. When the column is pivoted at both ends, n � 1;
when one end is fixed and the other end is rounded, n � 2;
when both ends are fixed, n � 4; and when one end is fixed
and the other is free, n � 0.25. The slenderness ratio sepa-
rating long columns from short columns depends on the
modulus of elasticity and the yield strength of the column
material. When Euler’s formula results in (Pcr /A) > Sy,
strength instead of buckling causes failure, and the column
ceases to be long. In quick estimating numbers, this critical
slenderness ratio falls between 120 and 150. Table 3.1 gives
additional column data based on Euler’s formula.

 Pcr �
n
 2EI

l 2 �
n
 2EA

(l/r)2
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TABLE 3.1 Strength of Round-Ended Columns According to Euler’s Formula*

Low- Medium-
Wrought carbon carbon

Material† Cast iron iron steel steel

Ultimate compressive strength, lb/in2 107,000 53,400 62,600 89,000
Allowable compressive stress, lb/in2

(maximum) 7,100 15,400 17,000 20,000
Modulus of elasticity 14,200,000 28,400,000 30,600,000 31,300,000
Factor of safety 8 5 5 5
Smallest I allowable at worst section, in4 Pl 2 Pl 2 Pl 2 Pl 2

17,500,000 56,000,000 60,300,000 61,700,000
Limit of ratio, l/r 	 50.0 60.6 59.4 55.6

Rectangle 14.4 17.5 17.2 16.0

Circle 12.5 15.2 14.9 13.9
Circular ring of small thickness

17.6 21.4 21.1 19.7

* (P � allowable load, lb; l � length of column, in; b � smallest dimension of a rectangular section, in; d � diameter of a
circular section, in; r � least radius of gyration of section.)
† To convert to SI units, use: 1b/in2 � 6.894 � kPa; in4 � (25.4)4 � mm4.

�r � d √1�8�, l/d 	

�r � 1�4 d�, l/d 	

�r � b√1�12�, l/b 	
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FIGURE 3.1 L/r plot for columns.

SHORT COLUMNS

Stress in short columns can be considered to be partly due to
compression and partly due to bending. Empirical, rational
expressions for column stress are, in general, based on the
assumption that the permissible stress must be reduced below
that which could be permitted were it due to compression
only. The manner in which this reduction is made determines
the type of equation and the slenderness ratio beyond which
the equation does not apply. Figure 3.1 shows the curves for
this situation. Typical column formulas are given in Table 3.2.

ECCENTRIC LOADS ON COLUMNS

When short blocks are loaded eccentrically in compression
or in tension, that is, not through the center of gravity (cg),
a combination of axial and bending stress results. The
maximum unit stress SM is the algebraic sum of these two
unit stresses.
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TABLE 3.2 Typical Short-Column Formulas

Formula Material Code Slenderness ratio

Carbon steels AISC

Carbon steels Chicago

Carbon steels AREA

Carbon steels Am. Br. Co.

† Alloy-steel tubing ANC

Cast iron NYC
l

r
� 70Sw � 9,000 � 40 � l

r �

l

√cr
 � 65Scr � 135,000 �

15.9

c
 � l

r �
2

60 �
l

r
� 120Sw � 19,000 � 100 � l

r �

l

r
� 150Sw � 15,000 � 50 � l

r �

l

r
� 120Sw � 16,000 � 70 � l

r �

l

r
� 120Sw � 17,000 � 0.485 � l

r �
2

olewnshr.n,eo
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TABLE 3.2 Typical Short-Column Formulas (Continued)

Formula Material Code Slenderness ratio

† 2017ST aluminum ANC

† Spruce ANC

† Steels Johnson

‡ Steels Secant

† Scr � theoretical maximum; c � end fixity coefficient; c � 2, both ends pivoted; c � 2.86, one pivoted, other fixed;
c � 4, both ends fixed; c � 1 one fixed, one free.
‡ is initial eccentricity at which load is applied to center of column cross section.

l

r
� criticalScr �

Sy

1 �
ec

r 2  sec � l

r
 √ P

4AE � 

l

r
�√ 2n
2E

Sy

Scr � Sy �1 �
Sy

4n
 2E
 � l

r �
2

�

1

√cr
 � 72Scr � 5,000 �

0.5

c
 � l

r �
2

1

√cr
 � 94Scr � 34,500 �

245

√c
 � l

r �
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FIGURE 3.2 Load plot for columns.

In Fig. 3.2, a load, P, acts in a line of symmetry at the
distance e from cg; r � radius of gyration. The unit stresses
are (1) Sc, due to P, as if it acted through cg, and (2) Sb, due
to the bending moment of P acting with a leverage of e
about cg. Thus, unit stress, S, at any point y is

y is positive for points on the same side of cg as P, and nega-
tive on the opposite side. For a rectangular cross section of

 � Sc(1 � ey/r 2)

 � (P/A) � Pey/I

 S � Sc � Sb
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width b, the maximum stress, SM � Sc(1 � 6e/b). When P
is outside the middle third of width b and is a compressive
load, tensile stresses occur.

For a circular cross section of diameter d, SM � Sc(1 �
8e/d). The stress due to the weight of the solid modifies
these relations.

Note that in these formulas e is measured from the grav-
ity axis and gives tension when e is greater than one-sixth
the width (measured in the same direction as e), for rectan-
gular sections, and when greater than one-eighth the diam-
eter, for solid circular sections. 

FIGURE 3.3 Load plot for columns.
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If, as in certain classes of masonry construction, the
material cannot withstand tensile stress and, thus, no ten-
sion can occur, the center of moments (Fig. 3.3) is taken at
the center of stress. For a rectangular section, P acts at dis-
tance k from the nearest edge. Length under compression �
3k, and SM � P/hk. For a circular section, SM � [0.372 �
0.056(k/r)]P/k , where r � radius and k � distance of P
from circumference. For a circular ring, S � average com-
pressive stress on cross section produced by P; e � eccen-
tricity of P; z � length of diameter under compression 
(Fig. 3.4). Values of z/r and of the ratio of Smax to average S
are given in Tables 3.3 and 3.4.

√rk

2�3

FIGURE 3.4 Circular column load plot.
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TABLE 3.3 Values of the Ratio z/r 

(See Fig. 3.5)

0.0 0.5 0.6 0.7 0.8 0.9 1.0

0.25 2.00 0.25
0.30 1.82 0.30
0.35 1.66 1.89 1.98 0.35
0.40 1.51 1.75 1.84 1.93 0.40
0.45 1.37 1.61 1.71 1.81 1.90 0.45

0.50 1.23 1.46 1.56 1.66 1.78 1.89 2.00 0.50
0.55 1.10 1.29 1.39 1.50 1.62 1.74 1.87 0.55
0.60 0.97 1.12 1.21 1.32 1.45 1.58 1.71 0.60
0.65 0.84 0.94 1.02 1.13 1.25 1.40 1.54 0.65
0.70 0.72 0.75 0.82 0.93 1.05 1.20 1.35 0.70

0.75 0.59 0.60 0.64 0.72 0.85 0.99 1.15 0.75
0.80 0.47 0.47 0.48 0.52 0.61 0.77 0.94 0.80
0.85 0.35 0.35 0.35 0.36 0.42 0.55 0.72 0.85
0.90 0.24 0.24 0.24 0.24 0.24 0.32 0.49 0.90
0.95 0.12 0.12 0.12 0.12 0.12 0.12 0.25 0.95

r1

r e

r

e

r

4
0
8
1
6
_
0
3
_
p
9
9
-
1
3
0
 
 
1
0
/
2
2
/
0
1
 
 
1
2
:
4
2
 
P
M
 
 
P
a
g
e
 
1
0
8



1
0
9

40816
H

IC
K

S
M

cghp
C

hap_03
SE

C
O

N
D

PA
SS

7/5/01
pb

p. 109
p. 108

TABLE 3.4 Values of the Ratio Smax/Savg

(In determining S average, use load P divided by total area of cross section)

0.0 0.5 0.6 0.7 0.8 0.9 1.0

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
0.05 1.20 1.16 1.15 1.13 1.12 1.11 1.10 0.05
0.10 1.40 1.32 1.29 1.27 1.24 1.22 1.20 0.10
0.15 1.60 1.48 1.44 1.40 1.37 1.33 1.30 0.15
0.20 1.80 1.64 1.59 1.54 1.49 1.44 1.40 0.20

0.25 2.00 1.80 1.73 1.67 1.61 1.55 1.50 0.25
0.30 2.23 1.96 1.88 1.81 1.73 1.66 1.60 0.30
0.35 2.48 2.12 2.04 1.94 1.85 1.77 1.70 0.35
0.40 2.76 2.29 2.20 2.07 1.98 1.88 1.80 0.40
0.45 3.11 2.51 2.39 2.23 2.10 1.99 1.90 0.45
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FIGURE 3.5 Column characteristics.
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The kern is the area around the center of gravity of 
a cross section within which any load applied produces
stress of only one sign throughout the entire cross 
section. Outside the kern, a load produces stresses of 
different sign. Figure 3.5 shows kerns (shaded) for various
sections.

For a circular ring, the radius of the kern r �
D[1�(d/D)2]/8.

For a hollow square (H and h � lengths of outer and
inner sides), the kern is a square similar to Fig. 3.5a, where
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For a hollow octagon, Ra and Ri � radii of circles cir-
cumscribing the outer and inner sides; thickness of wall �
0.9239(Ra – Ri); and the kern is an octagon similar to Fig. 3.5c,
where 0.2256R becomes 0.2256Ra[1 � (Ri /Ra)2].

COLUMN BASE PLATE DESIGN

Base plates are usually used to distribute column loads over
a large enough area of supporting concrete construction that
the design bearing strength of the concrete is not exceeded.
The factored load, Pu, is considered to be uniformly distrib-
uted under a base plate.

The nominal bearing strength fp kip/in2 or ksi (MPa) of
the concrete is given by

where � specified compressive strength of concrete,
ksi (MPa)

A1 � area of the base plate, in2 (mm2)

A2 � area of the supporting concrete that is geo-
metrically similar to and concentric with the
loaded area, in2 (mm2)

In most cases, the bearing strength, fp is , when
the concrete support is slightly larger than the base plate or

, when the support is a spread footing, pile cap, or mat1.7 f �c

0.85 f �c

f �c

fp � 0.85f c� √ A1

A1
  and  √ A2

A1
� 2

rmin �
H

6
 

1

√2
 �1 � � h

H �
2 � � 0.1179H �1 � � h

H �
2 �
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foundation. Therefore, the required area of a base plate for
a factored load Pu is

where �c is the strength reduction factor � 0.6. For a wide-
flange column, A1 should not be less than bf d, where bf is
the flange width, in (mm), and d is the depth of column,
in (mm).

The length N, in (mm), of a rectangular base plate for a
wide-flange column may be taken in the direction of d as

The width B, in (mm), parallel to the flanges, then, is

The thickness of the base plate tp, in (mm), is the largest
of the values given by the equations that follow:

where m � projection of base plate beyond the flange
and parallel to the web, in (mm)

� (N � 0.95d)/2

 tp � �n� √ 2Pu

0.9Fy BN

 tp � n √ 2Pu

0.9Fy BN

 tp � m √ 2Pu

0.9Fy BN

B �
A1

N

N � √A1 � � 	 d  or  � � 0.5(0.95d � 0.80bf)

A1 �
Pu

�c0.85 fc�
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r

-
s
,

a

t

n � projection of base plate beyond the edges of the
flange and perpendicular to the web, in (mm)

� (B � 0.80bf)/2

� 

� � 

X �

AMERICAN INSTITUTE OF STEEL
CONSTRUCTION ALLOWABLE-STRESS
DESIGN APPROACH

The lowest columns of a structure usually are supported on
a concrete foundation. The area, in square inches (square
millimeters), required is found from:

where P is the load, kip (N) and Fp is the allowable bearing
pressure on support, ksi (MPa).

The allowable pressure depends on strength of concrete
in the foundation and relative sizes of base plate and con-
crete support area. If the base plate occupies the full area of
the support, , where is the 28-day compres-
sive strength of the concrete. If the base plate covers less
than the full area, , where A1

is the base-plate area (B � N), and A2 is the full area of the
concrete support.

FP � 0.35fc� √A2/A1 � 0.70f �c

f �cFp � 0.35 f �c

A �
P

FP

[(4 dbf)/(d � bf)2][Pu/(� � 0.85f�c �1)]

(2√X)/[1 � √(1 � X)] � 1.0

√(dbf)/4n�
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cFIGURE 3.6 Column welded to a base plate.

Eccentricity of loading or presence of bending moment
at the column base increases the pressure on some parts
of the base plate and decreases it on other parts. To com-
pute these effects, the base plate may be assumed com-
pletely rigid so that the pressure variation on the concrete
is linear.

Plate thickness may be determined by treating projections
m and n of the base plate beyond the column as cantilevers.
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The cantilever dimensions m and n are usually defined as
shown in Fig. 3.6. (If the base plate is small, the area of the
base plate inside the column profile should be treated as a
beam.) Yield-line analysis shows that an equivalent can-
tilever dimension can be defined as , and
the required base plate thickness tp can be calculated from

where l � max (m, n, ), in (mm)

fp � P/(BN) � Fp, ksi (MPa)

Fy � yield strength of base plate, ksi (MPa)

P � column axial load, kip (N)

For columns subjected only to direct load, the welds of
column to base plate, as shown in Fig. 3.6, are required
principally for withstanding erection stresses. For columns
subjected to uplift, the welds must be proportioned to resist
the forces.

COMPOSITE COLUMNS

The AISC load-and-resistance factor design (LRFD) speci-
fication for structural steel buildings contains provisions for
design of concrete-encased compression members. It sets
the following requirements for qualification as a composite
column: The cross-sectional area of the steel core—shapes,

n�

tp � 2l √ fp

Fy

n� � 1�4√dbfn�

t
s
-
-
e

s
.
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pipe, or tubing—should be at least 4 percent of the total
composite area. The concrete should be reinforced with
longitudinal load-carrying bars, continuous at framed levels,
and lateral ties and other longitudinal bars to restrain the
concrete; all should have at least in (38.1 mm) of clear
concrete cover. The cross-sectional area of transverse and
longitudinal reinforcement should be at least 0.007 in2

(4.5 mm2) per in (mm) of bar spacing. Spacing of ties
should not exceed two-thirds of the smallest dimension of
the composite section. Strength of the concrete should
be between 3 and 8 ksi (20.7 and 55.2 MPa) for normal-
weight concrete and at least 4 ksi (27.6 MPa) for light-
weight concrete. Specified minimum yield stress Fy of steel
core and reinforcement should not exceed 60 ksi (414
MPa). Wall thickness of steel pipe or tubing filled with
concrete should be at least or , where b is
the width of the face of a rectangular section, D is the out-
side diameter of a circular section, and E is the elastic mod-
ulus of the steel.

The AISC LRFD specification gives the design strength
of an axially loaded composite column as �Pn, where � �
0.85 and Pn is determined from

For �c � 1.5

For �c 	 1.5

 Fcr �
0.877

�c
2  Fmy

 Fcr � 0.658�c2 Fmy

 �Pn � 0.85AsFcr

D√Fy/8Eb√Fy /3E

f �c
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where �c �

KL � effective length of column in (mm)

As � gross area of steel core in2 (mm2)

Fmy � 

Em � 

rm � radius of gyration of steel core, in � 0.3 of the
overall thickness of the composite cross section
in the plane of buckling for steel shapes

Ac � cross-sectional area of concrete in2 (mm2)

Ar � area of longitudinal reinforcement in2 (mm2)

Ec � elastic modulus of concrete ksi (MPa)

Fyr � specified minimum yield stress of longitudi-
nal reinforcement, ksi (MPa)

For concrete-filled pipe and tubing, c1 � 1.0, c2 � 0.85,
and c3 � 0.4. For concrete-encased shapes, c1 � 0.7, c2 �
0.6, and c3 � 0.2.

When the steel core consists of two or more steel
shapes, they should be tied together with lacing, tie plates,
or batten plates to prevent buckling of individual shapes
before the concrete attains .

The portion of the required strength of axially loaded
encased composite columns resisted by concrete should be
developed by direct bearing at connections or shear connec-
tors can be used to transfer into the concrete the load applied
directly to the steel column. For direct bearing, the design
strength of the concrete is where and

loaded area, in2 (mm2). Certain restrictions apply.Ab �
�c � 0.651.7�c  

fc�
  Ab,

0.75 f �c

E � c3Ec(Ac  

/As)

Fy � c1Fyr(Ar   

/As) � c2 fc�(Ac  

/As)

(KL/rm
)√Fmy/Em
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ELASTIC FLEXURAL BUCKLING
OF COLUMNS

Elastic buckling is a state of lateral instability that occurs
while the material is stressed below the yield point. It is of
special importance in structures with slender members. Euler’s
formula for pin-ended columns (Fig. 3.7) gives valid results
for the critical buckling load, kip (N). This formula is, with
L/r as the slenderness ratio of the column,

where E � modulus of elasticity of the column material,
psi (Mpa)

A � column cross-sectional area, in2 (mm2)

r � radius of gyration of the column, in (mm)

Figure 3.8 shows some ideal end conditions for slender
columns and corresponding critical buckling loads. Elastic
critical buckling loads may be obtained for all cases by sub-
stituting an effective length KL for the length L of the
pinned column, giving

In some cases of columns with open sections, such as a
cruciform section, the controlling buckling mode may be
one of twisting instead of lateral deformation. If the warp-
ing rigidity of the section is negligible, torsional buckling
in a pin-ended column occurs at an axial load of

P �
GJA

Ip

P �

2EA

(KL/r)2

P �

2EA

(L/r)2

F
l

w
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FIGURE 3.7 (a) Buckling of a pin-ended column under axial
load. (b) Internal forces hold the column in equilibrium.

where G � shear modulus of elasticity

J � torsional constant

A � cross-sectional area

Ip � polar moment of inertia � Ix � Iy
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If the section possesses a significant amount of warping
rigidity, the axial buckling load is increased to

where Cw is the warping constant, a function of cross-sectional
shape and dimensions.

ALLOWABLE DESIGN LOADS FOR
ALUMINUM COLUMNS

Euler’s equation is used for long aluminum columns, and
depending on the material, either Johnson’s parabolic or
straight-line equation is used for short columns. These
equations for aluminum follow:

Euler’s equation:

Johnson’s generalized equation:

The value of n, which determines whether the short col-
umn formula is the straight-line or parabolic type, is selected

Fc � Fce �1 � K � (L/�)


√
cE

Fce

�
n

�

Fe �
c
2E

(L/�)2

P �
A

Ip

 �GJ �

2ECw

L2 �
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FIGURE 3.9 Values of c, column-end fixity, for determining the
critical L/� ratio of different loading conditions.

from Table 3.5. The transition from the long to the short
column range is given by

where Fe � allowable column compressive stress

Fce � column yield stress and is given as a function
of Fcy (compressive yield stress)

L � length of column

� � radius of gyration of column

E � modulus of elasticity—noted on nomograms

c � column-end fixity from Fig. 3.9

n, K, k � constants from Table 3.5

� L

� �cr � 
 √ kcE

Fce
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TABLE 3.5 Material Constants for Common Aluminum Alloys

Average Values
Fcy Fce

Type Johnson
Material psi MPa psi MPa K k n equation

14S–T4 34,000 234.4 39,800 274.4 0.385 3.00 1.0 Straight line
24S–T3 and T4 40,000 275.8 48,000 330.9 0.385 3.00 1.0 Straight line
61S–T6 35,000 241.3 41,100 283.4 0.385 3.00 1.0 Straight line
14S–T6 57,000 393.0 61,300 422.7 0.250 2.00 2.0 Squared parabolic
75S–T6 69,000 475.8 74,200 511.6 0.250 2.00 2.0 Squared parabolic

Ref: ANC-5.
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ULTIMATE STRENGTH DESIGN
CONCRETE COLUMNS

At ultimate strength Pu, kip (N), columns should be capable
of sustaining loads as given by the American Concrete
Institute required strength equations in Chap. 5, “Concrete
Formulas” at actual eccentricities. Pu, may not exceed �Pn,
where � is the capacity reduction factor and Pn, kip (N), is
the column ultimate strength. If Po, kip (N), is the column
ultimate strength with zero eccentricity of load, then

where fy � yield strength of reinforcing steel, ksi (MPa)

� 28-day compressive strength of concrete,
ksi (MPa)

Ag � gross area of column, in2 (mm2)

Ast � area of steel reinforcement, in2 (mm2)

For members with spiral reinforcement then, for axial loads
only,

For members with tie reinforcement, for axial loads only,

Eccentricities are measured from the plastic centroid.
This is the centroid of the resistance to load computed for
the assumptions that the concrete is stressed uniformly to
0.85 and the steel is stressed uniformly to fy.

The axial-load capacity Pu kip (N), of short, rectangular
members subject to axial load and bending may be deter-
mined from

f �c

Pu �  0.80�Po

Pu �  0.85�Po

f �c

Po � 0.85 f �c (Ag � Ast) � fy Ast
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where � eccentricity, in (mm), of axial load at end of
member with respect to centroid of tensile
reinforcement, calculated by conventional meth-
ods of frame analysis

b � width of compression face, in (mm)

a � depth of equivalent rectangular compressive-
stress distribution, in (mm)

� area of compressive reinforcement, in2 (mm2)

As � area of tension reinforcement, in2 (mm2)

d � distance from extreme compression surface to
centroid of tensile reinforcement, in (mm)

� distance from extreme compression surface to
centroid of compression reinforcement, in
(mm)

fs � tensile stress in steel, ksi (MPa)

The two preceding equations assume that a does not
exceed the column depth, that reinforcement is in one or
two faces parallel to axis of bending, and that reinforce-
ment in any face is located at about the same distance from
the axis of bending. Whether the compression steel actually
yields at ultimate strength, as assumed in these and the fol-
lowing equations, can be verified by strain compatibility
calculations. That is, when the concrete crushes, the strain
in the compression steel, 0.003 (c – )/c, must be larger
than the strain when the steel starts to yield, fy/Es. In this

d�

d�

A�s

e�

Pue� � ��0.85 f �cba �d �
a

2 � � As� fy (d � d� )�
Pu � �(0.85 f �c ba � A�s fy � As fs)
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case, c is the distance, in (mm), from the extreme compres-
sion surface to the neutral axis and Es is the modulus of
elasticity of the steel, ksi (MPa).

The load Pb for balanced conditions can be computed
from the preceding Pu equation with fs � fy and

The balanced moment, in. � kip (k � Nm), can be obtained
from

where eb is the eccentricity, in (mm), of the axial load with
respect to the plastic centroid and is the distance, in (mm),
from plastic centroid to centroid of tension reinforcement.

When Pu is less than Pb or the eccentricity, e, is greater
than eb, tension governs. In that case, for unequal tension
and compression reinforcement, the ultimate strength is

 �√�1 �
e�

d �
2

� 2 �(�m � ��m�)
e�

d
� ��m� �1 �

d�

d ���
 Pu � 0.85 f �c bd� ���m� � �m � �1 �

e�

d �

d��

 � A�s fy (d � d� � d��) � As fy d���

 � � �0.85 fc� bab �d � d�� �
ab

2 �
 Mb � Pbeb

 �
87,000 �1d

87,000 � fy

 � �1cb

 a � ab

w
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F
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where

Special Cases of Reinforcement

For symmetrical reinforcement in two faces, the preceding
Pu equation becomes

Column Strength When Compression Governs

For no compression reinforcement, the Pu equation becomes

 �√�1 �
e�

d �
2

� 2
e��m

d �

 Pu � 0.85 f �cbd� ���m � 1 �
e�

d

 �√�1 �
e�

d �
2

� 2� �m��1 �
d�

d � �
e�

d ��

 Pu � 0.85 f �c bd� ��� � 1 �
e�

d

 �� � A�s /bd

 � � As /bd

 m� � m � 1

 m � f �y /0.85f �c
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When Pu is greater than Pb, or e is less than eb, compression
governs. In that case, the ultimate strength is approximately

where Mu is the moment capacity under combined axial
load and bending, in kip (k Nm) and Po is the axial-load
capacity, kip (N), of member when concentrically loaded,
as given.

For symmetrical reinforcement in single layers, the ulti-
mate strength when compression governs in a column with
depth, h, may be computed from

Circular Columns

Ultimate strength of short, circular members with bars in a
circle may be determined from the following equations:

When tension controls,

 � � 0.85e

D
� 0.38��

 Pu � 0.85 f �c D2� �√� 0.85e

D
� 0.38�

2

�
�

1
mDs

2.5D

Pu � � � A�s fy

e/d � d� � 0.5
�

bhf �c
3he/d 2 � 1.18 �

 Pu �
Po

1 � (Po/Pb � 1)(e/eb)

 Pu � Po � (Po � Pb) 
Mu

Mb

w

W
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W
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where D � overall diameter of section, in (mm)

Ds � diameter of circle through reinforcement, in
(mm)

�t � Ast /Ag

When compression governs,

The eccentricity for the balanced condition is given approxi-
mately by

Short Columns

Ultimate strength of short, square members with depth, h,
and with bars in a circle may be computed from the follow-
ing equations:

When tension controls,

 � � e

h
� 0.5��

 Pu � 0.85bhf �c� �√� e

h
� 0.5�

2

� 0.67 
Ds

h
 �tm

eb � (0.24 � 0.39 �t m)D

 �
Ag f �c

9.6De/(0.8D � 0.67Ds)2 � 1.18 �

 Pu � � � Ast fv

3e/Ds � 1
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When compression governs,

Slender Columns 

When the slenderness of a column has to be taken into account,
the eccentricity should be determined from e � Mc/Pu,
where Mc is the magnified moment.

 �
Ag f �c

12he/(h � 0.67Ds)2 � 1.18 �

 Pu � � � Ast fy

3e/Ds � 1
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ALLOWABLE LOADS ON PILES

A dynamic formula extensively used in the United States to
determine the allowable static load on a pile is the Engi-
neering News formula. For piles driven by a drop hammer,
the allowable load is

For piles driven by a steam hammer, the allowable load is

where Pa � allowable pile load, tons (kg)

W � weight of hammer, tons (kg)

H � height of drop, ft (m)

p � penetration of pile per blow, in (mm)

The preceding two equations include a factor of safety of 6.
For a group of piles penetrating a soil stratum of good

bearing characteristics and transferring their loads to the
soil by point bearing on the ends of the piles, the total
allowable load would be the sum of the individual allow-
able loads for each pile. For piles transferring their loads to
the soil by skin friction on the sides of the piles, the total
allowable load would be less than the sum on the individual
allowable loads for each pile, because of the interaction of
the shearing stresses and strains caused in the soil by each
pile.

Pa �
2WH

p � 0.1

Pa �
2WH

p � 1
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LATERALLY LOADED VERTICAL PILES

Vertical-pile resistance to lateral loads is a function of both
the flexural stiffness of the shaft, the stiffness of the bearing
soil in the upper 4 to 6D length of shaft, where D � pile
diameter and the degree of pile-head fixity.

The lateral-load vs. pile-head deflection relationship is
developed from charted nondimensional solutions of Reese
and Matlock. The solution assumes the soil modulus K to
increase linearly with depth z; that is, K � nhz, where nh �
coefficient of horizontal subgrade reaction. A characteristic
pile length T is calculated from

where EI � pile stiffness. The lateral deflection y of a pile
with head free to move and subject to a lateral load Pt and
moment Mt applied at the ground line is given by

where Ay and By are nondimensional coefficients. Non-
dimensional coefficients are also available for evaluation of
pile slope, moment, shear, and soil reaction along the shaft.

For positive moment,

Positive Mt and Pt values are represented by clockwise
moment and loads directed to the right on the pile head at
the ground line. The coefficients applicable to evaluation of
pile-head deflection and to the maximum positive moment
and its approximate position on the shaft, z/T, where
z � distance below the ground line, are listed in Table 4.1.

M � Am Pt T � Bm Mt

y � Ay Pt 
T 3

EI
� By Mt 

T 2

EI

T �√ EI

nh
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TABLE 4.1 Percentage of Base Load Transmitted to
Rock Socket

Er/Ep

Ls /ds 0.25 1.0 4.0

0.5 54† 48 44
1.0 31 23 18
1.5 17† 12 8†

2.0 13† 8 4

†Estimated by interpretation of finite-element solution;
for Poisson’s ratio � 0.26.

The negative moment imposed at the pile head by pile-
cap or another structural restraint can be evaluated as a
function of the head slope (rotation) from

where �s rad represents the counterclockwise (�) rotation
of the pile head and A� and B� are coefficients (see Table
4.1). The influence of the degrees of fixity of the pile head
on y and M can be evaluated by substituting the value of
�Mt from the preceding equation into the earlier y and M
equations. Note that, for the fixed-head case,

TOE CAPACITY LOAD

For piles installed in cohesive soils, the ultimate tip load
may be computed from

yf �
PtT 3

EI
 �Ay �

A� By

B�
�

�Mt �
A�PtT

B�

�
�sEI

B�T

w

A
b

c
c
t

S
r
b
A

w
c
F
q
i

40816_04_p131-146  10/22/01  12:44 PM  Page 134



PILES AND PILING FORMULAS 135

40816 HICKS Mcghp Ch04 Third Pass 7/19/01 bcj p 13534

-
a

n
e
d
f

M

d

(4.1)

where Ab � end-bearing area of pile

q � bearing capacity of soil

Nt � bearing-capacity factor

cu � undrained shear strength of soil within zone
1 pile diameter above and 2 diameters below
pile tip

Although theoretical conditions suggest that Nc may vary
between about 8 and 12, Nc is usually taken as 9.

For cohesionless soils, the toe resistance stress, q, is
conventionally expressed by Eq. (4.1) in terms of a bearing-
capacity factor Nq and the effective overburden pressure at
the pile tip :

(4.2)

Some research indicates that, for piles in sands, q, like 
reaches a quasi-constant value, ql , after penetrations of the
bearing stratum in the range of 10 to 20 pile diameters.
Approximately:

(4.3)

where � is the friction angle of the bearing soils below the
critical depth. Values of Nq applicable to piles are given in
Fig. 4.1. Empirical correlations of soil test data with q and
ql have also been applied to predict successfully end-bear-
ing capacity of piles in sand.

ql � 0.5Nq tan �

fs,

q � Nq�� vo � ql

��vo

 Qbu � Abq �Ab Nccu
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FIGURE 4.1 Bearing-capacity factor for granular soils related to
angle of internal friction.

GROUPS OF PILES

A pile group may consist of a cluster of piles or several piles
in a row. The group behavior is dictated by the group geom-
etry and the direction and location of the load, as well as by
subsurface conditions. 

Ultimate-load considerations are usually expressed in
terms of a group efficiency factor, which is used to reduce
the capacity of each pile in the group. The efficiency factor
Eg is defined as the ratio of the ultimate group capacity
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to the sum of the ultimate capacity of each pile in the
group. 

Eg is conventionally evaluated as the sum of the ultimate
peripheral friction resistance and end-bearing capacities of
a block of soil with breadth B, width W, and length L,
approximately that of the pile group. For a given pile, spac-
ing S and number of piles n,

(4.4)

where is the average peripheral friction stress of block
and Qu is the single-pile capacity. The limited number of
pile-group tests and model tests available suggest that for
cohesive soils Eg 	 1 if S is more than 2.5 pile diameters 
D and for cohesionless soils Eg 	 1 for the smallest practi-
cal spacing. A possible exception might be for very short,
heavily tapered piles driven in very loose sands.

In practice, the minimum pile spacing for conventional
piles is in the range of 2.5 to 3.0D. A larger spacing is typi-
cally applied for expanded-base piles.

A very approximate method of pile-group analysis cal-
culates the upper limit of group drag load, Qgd from

(4.5)

where Hf, �f , and AF represent the thickness, unit weight,
and area of fill contained within the group. P, H, and cu are
the circumference of the group, the thickness of the consoli-
dating soil layers penetrated by the piles, and their
undrained shear strength, respectively. Such forces as Qgd

could only be approached for the case of piles driven to
rock through heavily surcharged, highly compressible sub-
soils.

Qgd � AF�FHF � PHcu

fs

Eg �
2(BL � WL) fs � BWg

nQu
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Design of rock sockets is conventionally based on

(4.6)

where Qd � allowable design load on rock socket

ds � socket diameter

Ls � socket length

fR � allowable concrete-rock bond stress

qa � allowable bearing pressure on rock

Load-distribution measurements show, however, that much
less of the load goes to the base than is indicated by Eq.
(4.6). This behavior is demonstrated by the data in Table
4.1, where Ls /ds is the ratio of the shaft length to shaft
diameter and Er /Ep is the ratio of rock modulus to shaft
modulus. The finite-element solution summarized in Table
4.1 probably reflects a realistic trend if the average socket-
wall shearing resistance does not exceed the ultimate fR

value; that is, slip along the socket side-wall does not occur.
A simplified design approach, taking into account approxi-

mately the compatibility of the socket and base resistance,
is applied as follows:

1. Proportion the rock socket for design load Qd with Eq.
(4.6) on the assumption that the end-bearing stress is
less than qa [say qa /4, which is equivalent to assuming
that the base load 

2. Calculate Qb � RQd, where R is the base-load ratio
interpreted from Table 4.1.

3. If RQd does not equal the assumed Qb, repeat the proce-
dure with a new qa value until an approximate conver-
gence is achieved and q � qa.

Qb � (
/4) ds
2qa /4].

Qd � 
ds Ls fR �
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The final design should be checked against the established
settlement tolerance of the drilled shaft.

Following the recommendations of Rosenberg and
Journeaux, a more realistic solution by the previous method
is obtained if fRu is substituted for fR. Ideally, fRu should be
determined from load tests. If this parameter is selected
from data that are not site specific, a safety factor of at least
1.5 should be applied to fRu in recognition of the uncertain-
ties associated with the UC strength correlations (Rosen-
berg, P. and Journeaux, N. L., “Friction and End-Bearing
Tests on Bedrock for High-Capacity Socket Design,” Cana-
dian Geotechnical Journal, 13(3)).

FOUNDATION-STABILITY ANALYSIS

The maximum load that can be sustained by shallow foun-
dation elements at incipient failure (bearing capacity) is a
function of the cohesion and friction angle of bearing soils
as well as the width B and shape of the foundation. The net
bearing capacity per unit area, qu, of a long footing is con-
ventionally expressed as

(4.7)

where �f � 1.0 for strip footings and 1.3 for circular and
square footings

cu � undrained shear strength of soil

� effective vertical shear stress in soil at level
of bottom of footing

�f � 0.5 for strip footings, 0.4 for square foot-
ings, and 0.6 for circular footings

��vo

qu � �f  cu Nc � ��voNq � �f �BN�
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T
S

R

C

†

t
‡

� � unit weight of soil

B � width of footing for square and rectangular
footings and radius of footing for circular
footings

Nc, Nq, N� � bearing-capacity factors, functions of angle
of internal friction �

For undrained (rapid) loading of cohesive soils, � � 0
and Eq. (4.7) reduces to

(4.8)

where � �f Nc. For drained (slow) loading of cohesive
soils, � and cu are defined in terms of effective friction
angle and effective stress 

Modifications of Eq. (4.7) are also available to predict the
bearing capacity of layered soil and for eccentric loading.

Rarely, however, does qu control foundation design when
the safety factor is within the range of 2.5 to 3. (Should
creep or local yield be induced, excessive settlements may
occur. This consideration is particularly important when
selecting a safety factor for foundations on soft to firm
clays with medium to high plasticity.)

Equation (4.7) is based on an infinitely long strip foot-
ing and should be corrected for other shapes. Correction
factors by which the bearing-capacity factors should be
multiplied are given in Table 4.2, in which L � footing
length.

The derivation of Eq. (4.7) presumes the soils to be homo-
geneous throughout the stressed zone, which is seldom the
case. Consequently, adjustments may be required for depar-
tures from homogeneity. In sands, if there is a moderate vari-
ation in strength, it is safe to use Eq. (4.7), but with bearing-
capacity factors representing a weighted average strength.
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TABLE 4.2 Shape Corrections for Bearing-Capacity Factors of
Shallow Foundations†

Shape of
Correction factor

foundation Nc Nq Ny

Rectangle‡

Circle and
square 0.60

†After De Beer, E. E., as modified by Vesic, A. S. See Fang, H. Y., Founda-
tion Engineering Handbook, 2d ed., Van Nostrand Reinhold, New York.
‡No correction factor is needed for long-strip foundations.

1 � tan �1 � � Nq

Nc
�

1 � 0.4 � B

L �1 � � B

L � tan �1 � � B

L �� Nq

Nc
�

r
r
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Eccentric loading can have a significant impact on
selection of the bearing value for foundation design. The
conventional approach is to proportion the foundation to
maintain the resultant force within its middle third. The
footing is assumed to be rigid and the bearing pressure is
assumed to vary linearly as shown by Fig. (4.2b.) If the
resultant lies outside the middle third of the footing, it is
assumed that there is bearing over only a portion of the
footing, as shown in Fig. (4.2d.) For the conventional case,
the maximum and minimum bearing pressures are

(4.9)

where B � width of rectangular footing

L � length of rectangular footing

e � eccentricity of loading

For the other case (Fig. 4.3c), the soil pressure ranges from
0 to a maximum of

qm �
P

BL
 �1 �

6e

B �
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FIGURE 4.2 Footings subjected to overturning.
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(4.10)

For square or rectangular footings subject to overturning
about two principal axes and for unsymmetrical footings,
the loading eccentricities e1 and e2 are determined about the
two principal axes. For the case where the full bearing area
of the footings is engaged, qm is given in terms of the dis-
tances from the principal axes, c1 and c2, the radius of gyra-
tion of the footing area about the principal axes r1 and r2,
and the area of the footing A as

(4.11)qm �
P

A
 �1 �

e1c1

r 1
2 �

e2c2

r 2
2 �

qm �
2P

3L(B/2 � e)
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For the case where only a portion of the footing is bearing,
the maximum pressure may be approximated by trial and
error.

For all cases of sustained eccentric loading, the maxi-
mum (edge) pressures should not exceed the shear strength
of the soil and also the factor of safety should be at least 1.5
(preferably 2.0) against overturning.

AXIAL-LOAD CAPACITY OF SINGLE PILES

Pile capacity Qu may be taken as the sum of the shaft and
toe resistances, Qsu and Qbu, respectively.

The allowable load Qa may then be determined from
either Eq. (4.12) or (4.13):

(4.12)

(4.13)

where F, F1, and F2 are safety factors. Typically, F for
permanent structures is between 2 and 3, but may be larg-
er, depending on the perceived reliability of the analysis
and construction as well as the consequences of failure.
Equation (4.13) recognizes that the deformations required
to fully mobilize Qsu and Qbu are not compatible. For
example, Qsu may be developed at displacements less
than 0.25 in (6.35 mm), whereas Qbu may be realized at 
a toe displacement equivalent to 5 percent to 10 percent
of the pile diameter. Consequently, F1 may be taken as
1.5 and F2 as 3.0, if the equivalent single safety factor
equals F or larger. (If F is less than the Qsu/Qbu�1.0,

Qa �
Qsu

F1
�

Qbu

F2

Qa �
Qsu � Qbu

F

)

g
s,
e
a
-
-

2,

)
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2.0 usually considered as a major safety factor for perma-
nent structures.)

SHAFT SETTLEMENT

Drilled-shaft settlements can be estimated by empirical cor-
relations or by load-deformation compatibility analyses. Other
methods used to estimate settlement of drilled shafts, singly
or in groups, are identical to those used for piles. These
include elastic, semiempirical elastic, and load-transfer solu-
tions for single shafts drilled in cohesive or cohesionless
soils.

Resistance to tensile and lateral loads by straight-shaft
drilled shafts should be evaluated as described for pile
foundations. For relatively rigid shafts with characteristic
length T greater than 3, there is evidence that bells increase
the lateral resistance. The added ultimate resistance to uplift
of a belled shaft Qut can be approximately evaluated for
cohesive soils models for bearing capacity [Eq. (4.14)] and
friction cylinder [Eq. (4.15)] as a function of the shaft
diameter D and bell diameter Db (Meyerhof, G. G. and
Adams, J. I., “The Ultimate Uplift Capacity of Founda-
tions,” Canadian Geotechnical Journal, 5(4):1968.)

For the bearing-capacity solution,

(4.14)

The shear-strength reduction factor � in Eq. (4.14) consid-
ers disturbance effects and ranges from (slurry construc-
tion) to (dry construction). The cu represents the
undrained shear strength of the soil just above the bell sur-
face, and Nc is a bearing-capacity factor.

3�4

1�2

Qul �
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s
t
c

w
s
c
w
w

S
C

T
f
p

e
a
s
v

t
w
l
r
p

40816_04_p131-146  10/22/01  12:44 PM  Page 144



PILES AND PILING FORMULAS 145

40816 HICKS Mcghp Ch04 Third Pass 7/19/01 bcj p 14544

-

-
r
y
e
-
s

t
e
c
e
t
r
d
t
d
-

)

-
-
e
-

The failure surface of the friction cylinder model is con-
servatively assumed to be vertical, starting from the base of
the bell. Qut can then be determined for both cohesive and
cohesionless soils from

(4.15)

where fut is the average ultimate skin-friction stress in ten-
sion developed on the failure plane; that is, fut � 0.8 u for
clays or tan � for sands. Ws and Wp represent the
weight of soil contained within the failure plane and the shaft
weight, respectively.

SHAFT RESISTANCE IN
COHESIONLESS SOILS

The shaft resistance stress is a function of the soil-shaft
friction angle �, degree, and an empirical lateral earth-
pressure coefficient K:

(4.16)

At displacement-pile penetrations of 10 to 20 pile diam-
eters (loose to dense sand), the average skin friction reaches
a limiting value fl. Primarily depending on the relative den-
sity and texture of the soil, fl has been approximated conser-
vatively by using Eq. (4.16) to calculate .

For relatively long piles in sand, K is typically taken in
the range of 0.7 to 1.0 and � is taken to be about � � 5,
where � is the angle of internal friction, degree. For piles
less than 50 ft (15.2 m) long, K is more likely to be in the
range of 1.0 to 2.0, but can be greater than 3.0 for tapered
piles.

fs

fs � K ��vo
  tan � � fl

fs

K�  �vo

c

Qul � 
b L fut � Ws � Wp
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Empirical procedures have also been used to evaluate 
from in situ tests, such as cone penetration, standard pen-
etration, and relative density tests. Equation (4.17), based
on standard penetration tests, as proposed by Meyerhof, is
generally conservative and has the advantage of simplicity:

(4.17)

where � average standard penetration resistance within
the embedded length of pile and is given in tons/ft2.
(Meyerhof, G. G., “Bearing Capacity and Settlement of Pile
Foundations,” ASCE Journal of Geotechnical Engineering
Division, 102(GT3):1976.)

fs

N

fs �
N

50

fs
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REINFORCED CONCRETE

When working with reinforced concrete and when design-
ing reinforced concrete structures, the American Concrete
Institute (ACI) Building Code Requirements for Reinforced
Concrete, latest edition, is widely used. Future references to
this document are denoted as the ACI Code. Likewise, pub-
lications of the Portland Cement Association (PCA) find
extensive use in design and construction of reinforced con-
crete structures.

Formulas in this chapter cover the general principles of
reinforced concrete and its use in various structural applica-
tions. Where code requirements have to be met, the reader
must refer to the current edition of the ACI Code previously
mentioned. Likewise, the PCA publications should also be
referred to for the latest requirements and recommendations.

WATER/CEMENTITIOUS MATERIALS RATIO

The water/cementitious (w/c) ratio is used in both tensile
and compressive strength analyses of Portland concrete
cement. This ratio is found from

where wm � weight of mixing water in batch, lb (kg); and
wc � weight of cementitious materials in batch, lb (kg).

The ACI Code lists the typical relationship between the
w/c ratio by weight and the compressive strength of concrete.
Ratios for non-air-entrained concrete vary between 0.41 for
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a 28-day compressive strength of 6000 lb/in2 (41 MPa) and
0.82 for 2000 lb/in2 (14 MPa). Air-entrained concrete w/c
ratios vary from 0.40 to 0.74 for 5000 lb/in2 (34 MPa) and
2000 lb/in2 (14 MPa) compressive strength, respectively. Be
certain to refer to the ACI Code for the appropriate w/c
value when preparing designs or concrete analyses.

Further, the ACI Code also lists maximum w/c ratios
when strength data are not available. Absolute w/c ratios by
weight vary from 0.67 to 0.38 for non-air-entrained concrete
and from 0.54 to 0.35 for air-entrained concrete. These
values are for a specified 28-day compressive strength in
lb/in2 or MPa, of 2500 lb/in2 (17 MPa) to 5000 lb/in2

(34 MPa). Again, refer to the ACI Code before making any
design or construction decisions.

Maximum w/c ratios for a variety of construction condi-
tions are also listed in the ACI Code. Construction conditions
include concrete protected from exposure to freezing and
thawing; concrete intended to be watertight; and concrete
exposed to deicing salts, brackish water, seawater, etc. Appli-
cation formulas for w/c ratios are given later in this chapter.

JOB MIX CONCRETE VOLUME

A trial batch of concrete can be tested to determine how
much concrete is to be delivered by the job mix. To deter-
mine the volume obtained for the job, add the absolute
volume Va of the four components—cements, gravel, sand,
and water.

Find the Va for each component from

Va �
WL

(SG)Wu

fc�
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where Va � absolute volume, ft3 (m3)

WL � weight of material, lb (kg)

SG � specific gravity of the material

wu � density of water at atmospheric conditions
(62.4 lb/ft3; 1000 kg/m3)

Then, job yield equals the sum of Va for cement, gravel,
sand, and water.

MODULUS OF ELASTICITY OF CONCRETE

The modulus of elasticity of concrete Ec—adopted in modi-
fied form by the ACI Code—is given by

With normal-weight, normal-density concrete these two
relations can be simplified to

where Ec � modulus of elasticity of concrete, lb/in2 (MPa);
and � specified 28-day compressive strength of con-
crete, lb/in2 (MPa).

fc�

 � 4700 √fc� MPa in SI units

 Ec � 57,000 √fc� lb/in2 in USCS units

 � 0.043wc
1.5 √fc� MPa in SI units

 Ec � 33wc
1.5 √fc� lb/in2 in USCS units

T

T
d
s

R

A
fi
t

1

2

3

4

5

C
A

T
s
w
a
A

40816_05a_p147-195  10/22/01  12:45 PM  Page 150



CONCRETE FORMULAS 151

40816 HICKS Mcghp Chap_05 Pgs  151 7/10/2001150

s

,

-

o

;
-

TENSILE STRENGTH OF CONCRETE

The tensile strength of concrete is used in combined-stress
design. In normal-weight, normal-density concrete the ten-
sile strength can be found from

REINFORCING STEEL

American Society for Testing and Materials (ASTM) speci-
fications cover renforcing steel. The most important proper-
ties of reinforcing steel are

1. Modulus of elasticity Es, lb/in2 (MPa)

2. Tensile strength, lb/in2 (MPa)

3. Yield point stress fy, lb/in2 (MPa)

4. Steel grade designation (yield strength)

5. Size or diameter of the bar or wire

CONTINUOUS BEAMS
AND ONE-WAY SLABS

The ACI Code gives approximate formulas for finding
shear and bending moments in continuous beams and one-
way slabs. A summary list of these formulas follows. They
are equally applicable to USCS and SI units. Refer to the
ACI Code for specific applications of these formulas.

 fr � 0.7 √fc� MPa in SI units

 fr � 7.5 √fc� lb/in2 in USCS units
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For Positive Moment

End spans

If discontinuous end is unrestrained

If discontinuous end is integral with the  support

Interior spans

For Negative Moment

Negative moment at exterior face of first interior 
support

Two spans

More than two spans

Negative moment at other faces of interior supports

Negative moment at face of all supports for
(a) slabs with spans not exceeding 10 ft (3 m)
and (b) beams and girders where the ratio of 
sum of column stiffness to beam stiffness
exceeds 8 at each end of the span

Negative moment at interior faces of exterior 
supports, for members built integrally with 
their supports

Where the support is a spandrel beam or girder

Where the support is a column

Shear Forces

Shear in end members at first interior support

Shear at all other supports wln � 2

1.15 wln � 2

wl 2
n � 16

wl 2
n � 24

wl 2
n � 12

wl 2
n � 11

wl 2
n � 10

wl 2
n � 9

wl 2
n � 16

wl 2
n � 14

wl 2
n � 11
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End Reactions

Reactions to a supporting beam, column, or wall are obtained
as the sum of shear forces acting on both sides of the support.

DESIGN METHODS FOR BEAMS,
COLUMNS, AND OTHER MEMBERS

A number of different design methods have been used for
reinforced concrete construction. The three most common
are working-stress design, ultimate-strength design, and
strength design method. Each method has its backers and
supporters. For actual designs the latest edition of the ACI
Code should be consulted.

Beams

Concrete beams may be considered to be of three principal
types: (1) rectangular beams with tensile reinforcing only,
(2) T beams with tensile reinforcing only, and (3) beams
with tensile and compressive reinforcing.

Rectangular Beams with Tensile Reinforcing Only. This
type of beam includes slabs, for which the beam width b
equals 12 in (305 mm) when the moment and shear are
expressed per foot (m) of width. The stresses in the con-
crete and steel are, using working-stress design formulas,

fc �
2M

kjbd 2  fs �
M

As jd
�

M

pjbd 2
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where b � width of beam [equals 12 in (304.8 mm) for
slab], in (mm)

d � effective depth of beam, measured from com-
pressive face of beam to centroid of tensile
reinforcing (Fig. 5.1), in (mm)

M � bending moment, lb . in (k . Nm)

fc � compressive stress in extreme fiber of concrete,
lb/in2 (MPa)

fs � stress in reinforcement, lb/in2 (MPa)

As � cross-sectional area of tensile reinforcing,
in2 (mm2)

j � ratio of distance between centroid of compres-
sion and centroid of tension to depth d

k � ratio of depth of compression area to depth d

p � ratio of cross-sectional area of tensile reinforcing
to area of the beam (� As /bd)

For approximate design purposes, j may be assumed to be
and k, For average structures, the guides in Table 5.1 to

the depth d of a reinforced concrete beam may be used.
For a balanced design, one in which both the concrete

and the steel are stressed to the maximum allowable stress,
the following formulas may be used:

Values of K, k, j, and p for commonly used stresses are
given in Table 5.2.

bd 2 �
M

K
  K �

1

2
 fekj � pfs j

1�3.7�8
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FIGURE 5.1 Rectangular concrete beam with tensile reinforcing only.
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TABLE 5.1 Guides to Depth d of
Reinforced Concrete Beam†

Member d

Roof and floor slabs l/25
Light beams l/15
Heavy beams and girders l/12–l/10

†l is the span of the beam or slab in inches
(millimeters). The width of a beam should be
at least l/32.

T Beams with Tensile Reinforcing Only. When a concrete
slab is constructed monolithically with the supporting con-
crete beams, a portion of the slab acts as the upper flange of
the beam. The effective flange width should not exceed (1)
one-fourth the span of the beam, (2) the width of the web
portion of the beam plus 16 times the thickness of the slab,
or (3) the center-to-center distance between beams. T beams
where the upper flange is not a portion of a slab should have
a flange thickness not less than one-half the width of the web
and a flange width not more than four times the width of the
web. For preliminary designs, the preceding formulas given
for rectangular beams with tensile reinforcing only can be
used, because the neutral axis is usually in, or near, the
flange. The area of tensile reinforcing is usually critical.

TABLE 5.2 Coefficients K, k, j, p for Rectangular Sections†

n fs K k j p

2000 15 900 175 0.458 0.847 0.0129
2500 12 1125 218 0.458 0.847 0.0161
3000 10 1350 262 0.458 0.847 0.0193
3750 8 1700 331 0.460 0.847 0.0244

†fs � 16,000 lb/in2 (110 MPa).
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Beams with Tensile and Compressive Reinforcing. Beams
with compressive reinforcing are generally used when the
size of the beam is limited. The allowable beam dimensions
are used in the formulas given earlier to determine the
moment that could be carried by a beam without compres-
sive reinforcement. The reinforcing requirements may then
be approximately determined from 

where As � total cross-sectional area of tensile reinforcing,
in2 (mm2)

Asc � cross-sectional area of compressive reinforcing,
in2 (mm2)

M � total bending moment, lb�in (K�Nm)

M� � bending moment that would be carried by beam
of balanced design and same dimensions with
tensile reinforcing only, lb�in (K�Nm)

n � ratio of modulus of elasticity of steel to that of
concrete

Checking Stresses in Beams. Beams designed using the
preceding approximate formulas should be checked to
ensure that the actual stresses do not exceed the allowable,
and that the reinforcing is not excessive. This can be accom-
plished by determining the moment of inertia of the beam.
In this determination, the concrete below the neutral axis
should not be considered as stressed, whereas the reinforc-
ing steel should be transformed into an equivalent concrete
section. For tensile reinforcing, this transformation is made

As �
8M

7fsd
  Asc �

M � M�

nfcd
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by multiplying the area As by n, the ratio of the modulus of
elasticity of steel to that of concrete. For compressive rein-
forcing, the area Asc is multiplied by 2(n – 1). This factor
includes allowances for the concrete in compression replaced
by the compressive reinforcing and for the plastic flow of
concrete. The neutral axis is then located by solving

for the unknowns cc, csc, and cs (Fig. 5.2). The moment of
inertia of the transformed beam section is 

I � 1�3bcc
3 � 2(n � 1)Asccsc

2 � nAscs
2

1�2 bcc
2 � 2(n � 1)Asccsc � nAscs

FIGURE 5.2 Transformed section of concrete beam.
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and the stresses are

where fc, fsc, fs � actual unit stresses in extreme fiber of con-
crete, in compressive reinforcing steel,
and in tensile reinforcing steel, respectively,
lb/in2 (MPa)

cc, csc, cs � distances from neutral axis to face of con-
crete, to compressive reinforcing steel, and
to tensile reinforcing steel, respectively,
in (mm)

I � moment of inertia of transformed beam
section, in4 (mm4)

b � beam width, in (mm)

and As, Asc, M, and n are as defined earlier in this chapter.

Shear and Diagonal Tension in Beams. The shearing unit
stress, as a measure of diagonal tension, in a reinforced con-
crete beam is 

where v � shearing unit stress, lb/in2 (MPa)

V � total shear, lb (N)

b � width of beam (for T beam use width of stem),
in (mm)

d � effective depth of beam

v �
V

bd

fc �
Mcc

I
  fsc �

2nMcsc

I
  fs �

nMcs

I
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If the value of the shearing stress as computed earlier
exceeds the allowable shearing unit stress as specified by
the ACI Code, web reinforcement should be provided.
Such reinforcement usually consists of stirrups. The cross-
sectional area required for a stirrup placed perpendicular to
the longitudinal reinforcement is

where Av � cross-sectional area of web reinforcement in
distance s (measured parallel to longitudinal
reinforcement), in2 (mm2)

fv � allowable unit stress in web reinforcement,
lb/in2 (MPa)

V � total shear, lb (N)

� shear that concrete alone could carry (� vcbd),
lb (N)

s � spacing of stirrups in direction parallel to that
of longitudinal reinforcing, in (mm)

d � effective depth, in (mm)

Stirrups should be so spaced that every 45° line extend-
ing from the middepth of the beam to the longitudinal
tension bars is crossed by at least one stirrup. If the total
shearing unit stress is in excess of 3 lb/in2 (MPa), every
such line should be crossed by at least two stirrups. The shear
stress at any section should not exceed 5 lb/in2 (MPa).

Bond and Anchorage for Reinforcing Bars. In beams in
which the tensile reinforcing is parallel to the compression
face, the bond stress on the bars is 

√f c�

√f c�

V�

Av �
(V � V�)s

fid
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TABLE 5.3 Allowable Bond Stresses†

Horizontal bars with more 
than 12 in (30.5 mm) of concrete

cast below the bar‡ Other bars‡

Tension bars with sizes and or 350, whichever is less or 500, whichever is less
deformations conforming to
ASTM A305

Tension bars with sizes and 
deformations conforming to
ASTM A408

Deformed compression bars or 400, whichever is less or 400, whichever is less

Plain bars or 160, whichever is less or 160, whichever is less

† lb/in2 (� 0.006895 � MPa).
‡ � compressive strength of concrete, lb/in2 (MPa); D � nominal diameter of bar, in (mm).f c�

2.4√f c�1.7√f c�

6.5√f c�6.5√f c�

3√f c�2.1√f c�

4.8√f c�

D

3.4√f c�

D

4
0
8
1
6
_
0
5
a
_
p
1
4
7
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1
9
5
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where u � bond stress on surface of bar, lb/in2 (MPa)

V � total shear, lb (N)

d � effective depth of beam, in (mm)


0 � sum of perimeters of tensile reinforcing bars,
in (mm)

For preliminary design, the ratio j may be assumed to be
7/8. Bond stresses may not exceed the values shown in
Table 5.3.

Columns

The principal columns in a structure should have a mini-
mum diameter of 10 in (255 mm) or, for rectangular columns,
a minimum thickness of 8 in(203 mm) and a minimum gross
cross-sectional area of 96 in2 (61,935 mm2).

Short columns with closely spaced spiral reinforcing
enclosing a circular concrete core reinforced with vertical
bars have a maximum allowable load of 

where P � total allowable axial load, lb (N)

Ag � gross cross-sectional area of column, in2 (mm2)

� compressive strength of concrete, lb/in2 (MPa)fc�

P � Ag(0.25fc� � fspg)

u �
V

jd
0
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fs � allowable stress in vertical concrete reinforcing,
lb/in2 (MPa), equal to 40 percent of the minimum
yield strength, but not to exceed 30,000 lb/in2

(207 MPa)

pg � ratio of cross-sectional area of vertical rein-
forcing steel to gross area of column Ag

The ratio pg should not be less than 0.01 or more than 0.08.
The minimum number of bars to be used is six, and the
minimum size is No. 5. The spiral reinforcing to be used in
a spirally reinforced column is 

where ps � ratio of spiral volume to concrete-core volume
(out-to-out spiral)

Ac � cross-sectional area of column core (out-to-
out spiral), in2 (mm2)

fy � yield strength of spiral reinforcement, lb/in2

(MPa), but not to exceed 60,000 lb/in2 (413
MPa)

The center-to-center spacing of the spirals should not
exceed one-sixth of the core diameter. The clear spacing
between spirals should not exceed one-sixth the core diam-
eter, or 3 in (76 mm), and should not be less than 1.375 in
(35 mm), or 1.5 times the maximum size of coarse aggre-
gate used.

Short Columns with Ties. The maximum allowable load
on short columns reinforced with longitudinal bars and sepa-
rate lateral ties is 85 percent of that given earlier for spirally

ps � 0.45 � Ag

Ac

� 1� 
f �c

fy

,

e
n

-
,
s

g
l

)

)
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reinforced columns. The ratio pg for a tied column should not
be less than 0.01 or more than 0.08. Longitudinal reinforcing
should consist of at least four bars; minimum size is No. 5.

Long Columns. Allowable column loads where compres-
sion governs design must be adjusted for column length as
follows:

1. If the ends of the column are fixed so that a point of
contraflexure occurs between the ends, the applied axial
load and moments should be divided by R from (R can-
not exceed 1.0)

2. If the relative lateral displacement of the ends of the
columns is prevented and the member is bent in a single
curvature, applied axial loads and moments should be
divided by R from (R cannot exceed 1.0)

where h � unsupported length of column, in (mm)

r � radius of gyration of gross concrete area, in (mm)

� 0.30 times depth for rectangular column

� 0.25 times diameter for circular column

R � long-column load reduction factor

Applied axial load and moment when tension governs
design should be similarly adjusted, except that R varies

R � 1.07 �
0.008h

r

R � 1.32 �
0.006h

r

l
a

C
a
a
t
t

w
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linearly with the axial load from the values given at the bal-
anced condition.

Combined Bending and Compression. The strength of
a symmetrical column is controlled by compression if the equiv-
alent axial load N has an eccentricity e in each principal direc-
tion no greater than given by the two following equations and by
tension if e exceeds these values in either principal direction.

For spiral columns,

For tied columns,

where e � eccentricity, in (mm)

eb � maximum permissible eccentricity, in (mm)

N � eccentric load normal to cross section of column

pg � ratio of area of vertical reinforcement to gross
concrete area

m � fy/0.85

Ds � diameter of circle through centers of longitu-
dinal reinforcement, in (mm)

t � diameter of column or overall depth of col-
umn, in (mm)

d � distance from extreme compression fiber to
centroid of tension reinforcement, in (mm)

fy � yield point of reinforcement, lb/in2 (MPa)

f c�

eb � (0.67pgm � 0.17)d

eb � 0.43 pgmDs � 0.14t
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Design of columns controlled by compression is based
on the following equation, except that the allowable load N
may not exceed the allowable load P, given earlier, permit-
ted when the column supports axial load only:

where fa � axial load divided by gross concrete area,
lb/in2 (MPa)

fbx, fby � bending moment about x and y axes, divided by
section modulus of corresponding transformed
uncracked section, lb/in2 (MPa)

Fb � allowable bending stress permitted for bend-
ing alone, lb/in2 (MPa)

Fa � 0.34(1 � pgm)

The allowable bending load on columns controlled by
tension varies linearly with the axial load from M0 when the
section is in pure bending to Mb when the axial load is Nb.

For spiral columns,

For tied columns,

where Ast � total area of longitudinal reinforcement, in2 (mm2)

fy � yield strength of reinforcement, lb/in2 (MPa)

Ds � diameter of circle through centers of longitu-
dinal reinforcement, in (mm)

M0 � 0.40As fy(d � d�)

M0 � 0.12Ast fyDs

f c�

fa

Fa

�
fbx

Fb

�
fby

Fb

� 1.0 c
m
f

W

w
y
a

P
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a
c
s
a

e
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As � area of tension reinforcement, in2 (mm2)

d � distance from extreme compression fiber to
centroid of tension reinforcement, in (mm)

Nb and Mb are the axial load and moment at the balanced
condition (i.e., when the eccentricity e equals eb as deter-
mined). At this condition, Nb and Mb should be determined
from 

When bending is about two axes,

where Mz and My are bending moments about the x and
y axes, and M0x and M0y are the values of M0 for bending
about these axes.

PROPERTIES IN THE HARDENED STATE

Strength is a property of concrete that nearly always is of
concern. Usually, it is determined by the ultimate strength of
a specimen in compression, but sometimes flexural or tensile
capacity is the criterion. Because concrete usually gains
strength over a long period of time, the compressive strength
at 28 days is commonly used as a measure of this property.

The 28-day compressive strength of concrete can be
estimated from the 7-day strength by a formula proposed
by W. A. Slater:

S28 � S7 � 30√S7

Mx

M0x

�
My

M0y

� 1

Mb � Nbeb
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where S28 � 28-day compressive strength, lb/in2 (MPa), and
S7 � 7-day strength, lb/in2 (MPa).

Concrete may increase significantly in strength after 28 days,
particularly when cement is mixed with fly ash. Therefore, spec-
ification of strengths at 56 or 90 days is appropriate in design.

Concrete strength is influenced chiefly by the water/cement
ratio; the higher this ratio is, the lower the strength. The rela-
tionship is approximately linear when expressed in terms of
the variable C/W, the ratio of cement to water by weight. For
a workable mix, without the use of water reducing admixtures,

Tensile strength of concrete is much lower than com-
pressive strength and, regardless of the types of test, usually
has poor correlation with . As determined in flexural tests,
the tensile strength (modulus of rupture—not the true strength)
is about for the higher strength concretes and 
for the lower strength concretes.

Modulus of elasticity Ec, generally used in design for
concrete, is a secant modulus. In ACI 318, “Building Code
Requirements for Reinforced Concrete,” it is determined by 

where w � weight of concrete, lb/ft3 (kg/m3); and � speci-
fied compressive strength at 28 days, lb/in2 (MPa). For
normal-weight concrete, with w � 145 lb/ft3 (kg/m3),

The modulus increases with age, as does the strength.

Ec � 57,000√fc�

fc�

Ec � w1.533√fc�

10√fc�7√fc�

fc�

S28 � 2700 
C

W
� 760

T

F
l
a

w

H
i

a

w
(
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TENSION DEVELOPMENT LENGTHS

For bars and deformed wire in tension, basic development
length is defined by the equations that follow. For No. 11
and smaller bars,

where Ab � area of bar, in2 (mm2)

fy � yield strength of bar steel, lb/in2 (MPa) 

� 28-day compressive strength of concrete,
lb/in2 (MPa)

However, ld should not be less than 12 in (304.8 mm), except
in computation of lap splices or web anchorage.

For No. 14 bars,

For No. 18 bars,

and for deformed wire,

where Aw is the area, in2 (mm2); and sw is the spacing, in
(mm), of the wire to be developed. Except in computation of

ld � 0.03db

fy � 20,000

√fc�
� 0.02

Aw

Sw
 

fy

√fc�

ld � 0.125
fy

√fc�

ld � 0.085
fy

√fc�

fc�

ld �
0.04Ab fy

√fc�
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lap splices or development of web reinforcement, ld should
not be less than 12 in (304.8 mm).

COMPRESSION DEVELOPMENT 
LENGTHS

For bars in compression, the basic development length ld is
defined as

but ld not be less than 8 in (20.3 cm) or 0.0003fydb.

CRACK CONTROL OF 
FLEXURAL MEMBERS

Because of the risk of large cracks opening up when rein-
forcement is subjected to high stresses, the ACI Code recom-
mends that designs be based on a steel yield strength fy no
larger than 80 ksi (551.6 MPa). When design is based on
a yield strength fy greater than 40 ksi (275.8 MPa), the cross
sections of maximum positive and negative moment should
be proportioned for crack control so that specific limits are
satisfied by

where fs � calculated stress, ksi (MPa), in reinforcement
at service loads

z � fs√
3

dc A

ld �
0.02 fydb

√fc�
� 0.0003db fy

T
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e
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dc � thickness of concrete cover, in (mm), meas-
ured from extreme tension surface to center of
bar closest to that surface

A � effective tension area of concrete, in2 (mm2)
per bar. This area should be taken as that sur-
rounding main tension reinforcement, having
the same centroid as that reinforcement, multi-
plied by the ratio of the area of the largest bar
used to the total area of tension reinforcement

These limits are z � 175 kip/in (30.6 kN/mm) for interior
exposures and z � 145 kip/in (25.3 kN/mm) for exterior
exposures. These correspond to limiting crack widths of
0.016 to 0.013 in (0.406 to 0.33 mm), respectively, at the
extreme tension edge under service loads. In the equation
for z, fs should be computed by dividing the bending
moment by the product of the steel area and the internal
moment arm, but fs may be taken as 60 percent of the steel
yield strength without computation.

REQUIRED STRENGTH

For combinations of loads, the ACI Code requires that a
structure and its members should have the following ulti-
mate strengths (capacities to resist design loads and their
related internal moments and forces):

With wind and earthquake loads not applied,

where D � effect of basic load consisting of dead load plus
volume change (shrinkage, temperature) and L � effect of
live load plus impact.

U � 1.4D � 1.7L
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When wind loads are applied, the largest of the preceed-
ing equation and the two following equations determine the
required strength:

where W � effect of wind load.
If the structure can be subjected to earthquake forces E,

substitute 1.1E for W in the preceding equation.
Where the effects of differential settlement, creep, shrink-

age, or temperature change may be critical to the structure,
they should be included with the dead load D, and the
strength should be at least equal to

where T � cumulative effects of temperature, creep,
shrinkage, and differential settlement.

DEFLECTION COMPUTATIONS AND
CRITERIA FOR CONCRETE BEAMS

The assumptions of working-stress theory may also be used
for computing deflections under service loads; that is, elastic-
theory deflection formulas may be used for reinforced-concrete
beams. In these formulas, the effective moment of inertia Ic

is given by

where Ig � moment of inertia of the gross concrete section

Ie � � Mcr

Ma
�

3

Ig � �1 � � Mcr

Ma
�

3

� Icr � Ig

U � 0.75(1.4D � 1.7L) � 1.4(D � T )

 U � 0.9D � 1.3W

 U � 0.75(1.4D � 1.7L � 1.7W )
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Mcr � cracking moment

Ma � moment for which deflection is being computed

Icr � cracked concrete (transformed) section

If yt is taken as the distance from the centroidal axis of the
gross section, neglecting the reinforcement, to the extreme sur-
face in tension, the cracking moment may be computed from 

with the modulus of rupture of the concrete .
The deflections thus calculated are those assumed to occur

immediately on application of load. Additional long-time
deflections can be estimated by multiplying the immediate
deflection by 2 when there is no compression reinforcement
or by , where is the area of compres-
sion reinforcement and As is the area of tension reinforcement.

ULTIMATE-STRENGTH DESIGN
OF RECTANGULAR BEAMS WITH
TENSION REINFORCEMENT ONLY

Generally, the area As of tension reinforcement in a rein-
forced-concrete beam is represented by the ratio � � As/bd,
where b is the beam width and d is the distance from extreme
compression surface to the centroid of tension reinforce-
ment. At ultimate strength, the steel at a critical section of
the beam is at its yield strength fy if the concrete does not
fail in compression first. Total tension in the steel then will
be As fy � �fybd. It is opposed, by an equal compressive force:

As�2 � 1.2As�/As � 0.6

fr � 7.5√fc�

Mcr �
frIg

yt

40816_05a_p147-195  10/22/01  12:45 PM  Page 173



174 CHAPTER FIVE

40816 HICKS Mcghp Ch05 Third Pass bcj 7/19/01 p. 174

where � 28-day strength of the concrete, ksi (MPa)

a � depth of the equivalent rectangular stress
distribution

c � distance from the extreme compression sur-
face to the neutral axis

�1 � a constant

Equating the compression and tension at the critical section
yields

The criterion for compression failure is that the maximum
strain in the concrete equals 0.003 in/in (0.076 mm/mm). In
that case,

where fs � steel stress, ksi (MPa)

Es � modulus of elasticity of steel

� 29,000 ksi (199.9 GPa)

Balanced Reinforcing

Under balanced conditions, the concrete reaches its maxi-
mum strain of 0.003 when the steel reaches its yield strength
fy. This determines the steel ratio for balanced conditions:

c �
0.003

fs/Es � 0.003
 d

c �
pfy

0.85�1 fc�
 d

fc�

0.85 fc�ba � 0.85 fc �b�1c

M
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Moment Capacity

For such underreinforced beams, the bending-moment capac-
ity of ultimate strength is 

where and .

Shear Reinforcement

The ultimate shear capacity Vn of a section of a beam equals
the sum of the nominal shear strength of the concrete Vc

and the nominal shear strength provided by the reinforce-
ment Vs; that is, Vn � Vc � Vs. The factored shear force Vu on
a section should not exceed

where � � capacity reduction factor (0.85 for shear and
torsion). Except for brackets and other short cantilevers, the
section for maximum shear may be taken at a distance
equal to d from the face of the support.
The shear Vc carried by the concrete alone should not
exceed  where bw is the width of the beam web
and d, the depth of the centroid of reinforcement. (As an
alternative, the maximum for Vc may be taken as

 2√fc� bw d,

�Vn � �(Vc � Vs)

a � As fy/0.85fc�� � �fy/fc�

 � 0.90 �As fy  �d �
a

2 ��
 Mu � 0.90[bd 2 fc� �(1 � 0.59�)]

�b �
0.85�1 fc�

fy

  
87,000

87,000 � fy
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where �w � As/bwd and Vu and Mu are the shear and bend-
ing moment, respectively, at the section considered, but Mu

should not be less than Vud.)
When Vu is larger than �Vc, the excess shear has to be

resisted by web reinforcement.
The area of steel required in vertical stirrups, in2 (mm2),

per stirrup, with a spacing s, in (mm), is

where fy � yield strength of the shear reinforcement. Av is
the area of the stirrups cut by a horizontal plane. Vs should
not exceed in sections with web reinforcement,
and fy should not exceed 60 ksi (413.7 MPa). Where shear
reinforcement is required and is placed perpendicular to the
axis of the member, it should not be spaced farther apart
than 0.5d, or more than 24 in (609.6 mm) c to c. When Vs

exceeds , however, the maximum spacing should
be limited to 0.25d.

Alternatively, for practical design, to indicate the stirrup
spacing s for the design shear Vu, stirrup area Av, and geom-
etry of the member bw and d,

The area required when a single bar or a single group of
parallel bars are all bent up at the same distance from the sup-
port at angle � with the longitudinal axis of the member is 

s �
Av�fyd

Vu � 2�√fc�bw d

4√fc�bw d

8√fc�bw d

Av �
Vs S

fyd

 � 3.5 √fc�bw d

  Vc � �1.9 √fc��2500�w 
Vud

Mu
� bw d
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in which Vs should not exceed . Av is the area cut
by a plane normal to the axis of the bars. The area required
when a series of such bars are bent up at different distances
from the support or when inclined stirrups are used is 

A minimum area of shear reinforcement is required in
all members, except slabs, footings, and joists or where
Vu is less than 0.5Vc.

Development of Tensile Reinforcement

At least one-third of the positive-moment reinforcement in
simple beams and one-fourth of the positive-moment rein-
forcement in continuous beams should extend along the same
face of the member into the support, in both cases, at least 6 in
(152.4 mm) into the support. At simple supports and at points
of inflection, the diameter of the reinforcement should be limi-
ted to a diameter such that the development length ld satisfies 

where Mn � computed flexural strength with all reinforc-
ing steel at section stressed to fy

Vu � applied shear at section

la � additional embedment length beyond inflec-
tion point or center of support

ld �
Mn

Vu

� la

Av �
Vs s

(sin � � cos �)fyd

3√fc�bw d

Av �
Vs

fy sin  �
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At an inflection point, la is limited to a maximum of d, the
depth of the centroid of the reinforcement, or 12 times the
reinforcement diameter.

Hooks on Bars

The basic development length for a hooked bar with fy � 60
ksi (413.7 MPa) is defined as

where db is the bar diameter, in (mm), and is the 28-day
compressive strength of the concrete, lb/in2 (MPa).

WORKING-STRESS DESIGN OF
RECTANGULAR BEAMS WITH
TENSION REINFORCEMENT ONLY

From the assumption that stress varies across a beam sec-
tion with the distance from the neutral axis, it follows that

where n � modular ratio Es /Ec

Es � modulus of elasticity of steel reinforcement,
ksi (MPa)

Ec � modulus of elasticity of concrete, ksi (MPa)

n fc

fs

�
k

1 � k

fc�

lhb �
1200db

√fc�
s
(

W
l
b
t

A

T

w

w

40816_05a_p147-195  10/22/01  12:45 PM  Page 178



CONCRETE FORMULAS 179

40816 HICKS Mcghp Chap_05 Pgs  179 7/10/2001178

e
e

0

y

-
t

,

)

fc � compressive stress in extreme surface of con-
crete, ksi (MPa)

fs � stress in steel, ksi (MPa)

kd � distance from extreme compression surface to
neutral axis, in (mm)

d � distance from extreme compression to cen-
troid of reinforcement, in (mm)

When the steel ratio � � As /bd, where As � area of ten-
sion reinforcement, in2 (mm2), and b � beam width, in
(mm), is known, k can be computed from

Wherever positive-moment steel is required, � should be at
least 200/fy, where fy is the steel yield stress. The distance jd
between the centroid of compression and the centroid of
tension, in (mm), can be obtained from

Allowable Bending Moment

The moment resistance of the concrete, in�kip (k �Nm) is 

where Kc � fckj. The moment resistance of the steel is

where Ks � fs�j.

Ms � fs As jd � fs�jbd 2 � Ksbd 2

1�2

Mc � 1�2 fckjbd 2 � Kcbd 2

j � 1 �
k

3

k � √2n� � (n�)2 � n�
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Allowable Shear

The nominal unit shear stress acting on a section with shear
V is

Allowable shear stresses are 55 percent of those for
ultimate-strength design. Otherwise, designs for shear by
the working-stress and ultimate-strength methods are the
same. Except for brackets and other short cantilevers, the
section for maximum shear may be taken at a distance d
from the face of the support. In working-stress design, the
shear stress vc carried by the concrete alone should not exceed
1.1 . (As an alternative, the maximum for vc may be taken
as , with a maximum of 1.9 is
the 28-day compressive strength of the concrete, lb/in2

(MPa), and M is the bending moment at the section but
should not be less than Vd.)

At cross sections where the torsional stress vt exceeds
0.825 , vc should not exceed

The excess shear v � vc should not exceed 4.4 in sec-
tions with web reinforcement. Stirrups and bent bars should
be capable of resisting the excess shear V� � V � vcbd.

The area required in the legs of a vertical stirrup, in2

(mm2), is 

Av �
Vs�

fv d

√fc�

vc �
1.1√fc�

√1 � (vt /1.2v)2

√fc�

√fc� ; fc�√fc� � 1300�Vd/M
√fc�

v �
V

bd
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where s � spacing of stirrups, in (mm); and fv � allowable
stress in stirrup steel, (lb/in2) (MPa).

For a single bent bar or a single group of parallel bars
all bent at an angle � with the longitudinal axis at the same
distance from the support, the required area is 

For inclined stirrups and groups of bars bent up at different
distances from the support, the required area is 

Stirrups in excess of those normally required are provided
each way from the cutoff for a distance equal to 75 percent
of the effective depth of the member. Area and spacing of
the excess stirrups should be such that

where Av � stirrup cross-sectional area, in2 (mm2)

bw � web width, in (mm)

s � stirrup spacing, in (mm)

fy � yield strength of stirrup steel, (lb/in2) (MPa)

Stirrup spacing s should not exceed d/8�b, where �b is
the ratio of the area of bars cut off to the total area of ten-
sion bars at the section and d is the effective depth of the
member.

Av � 60 
bws

fy

Av �
Vs�

fv d(sin � � cos �)

Av �
V�

fv sin �
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ULTIMATE-STRENGTH DESIGN OF
RECTANGULAR BEAMS WITH
COMPRESSION BARS

The bending-moment capacity of a rectangular beam with
both tension and compression steel is 

where a � depth of equivalent rectangular compressive
stress distribution

� 

b � width of beam, in (mm)

d � distance from extreme compression surface to
centroid of tensile steel, in (mm)

� distance from extreme compression surface to
centroid of compressive steel, in (mm)

As � area of tensile steel, in2 (mm2)

� area of compressive steel, in2 (mm2)

fy � yield strength of steel, ksi (MPa)

� 28-day strength of concrete, ksi (MPa)

This is valid only when the compressive steel reaches fy and
occurs when

(� � ��) � 0.85�1
fc� d�

fyd
 

87,000

87,000 � fy

fc�

As�

d�

(As � As�)fy /f �cb

Mu � 0.90 �(As � As�) fy �d �
a

2 � � As� fy (d � d�)�

w

W
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T
s
u

w
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where � � As /bd 

�1 � a constant

WORKING-STRESS DESIGN OF
RECTANGULAR BEAMS WITH
COMPRESSION BARS

The following formulas, based on the linear variation of
stress and strain with distance from the neutral axis, may be
used in design:

where fs � stress in tensile steel, ksi (MPa)

fc � stress in extreme compression surface, ksi
(MPa) 

n � modular ratio, Es /Ec

where � stress in compressive steel, ksi (MPa) 

d � distance from extreme compression surface
to centroid of tensile steel, in (mm) 

d � � distance from extreme compression surface
to centroid of compressive steel, in (mm)

fs�

fs� �
kd � d�

d � kd
 2fs

k �
1

1 � fs /nfc

�� � As� /bd
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The factor 2 is incorporated into the preceding equation
in accordance with ACI 318, “Building Code Requirements
for Reinforced Concrete,” to account for the effects of
creep and nonlinearity of the stress–strain diagram for con-
crete. However, should not exceed the allowable tensile
stress for the steel.

Because total compressive force equals total tensile
force on a section,

where C � total compression on beam cross section,
kip (N)

Cc � total compression on concrete, kip (N) at
section 

� force acting on compressive steel, kip (N) 

T � force acting on tensile steel, kip (N) 

where � � As/bd and .
For reviewing a design, the following formulas may be

used:

 z �
(k3d /3) � 4n��d�[k � (d�/d )]

k2 � 4n��[k � (d�/d )]
  jd � d � z

 k �√2n�� � �� 
d�

d � � n2(� � ��)2 � n(� � ��)

�� � As�/bd

fs

fc

�
k

2[� � ��(kd � d�)/(d � kd )]

C s�

C � Cc � Cs� � T

fs�

w
s
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u
s
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w
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where jd is the distance between the centroid of compres-
sion and the centroid of the tensile steel. The moment
resistance of the tensile steel is 

where M is the bending moment at the section of beam
under consideration. The moment resistance in compres-
sion is  

Computer software is available for the preceding calcu-
lations. Many designers, however, prefer the following approxi-
mate formulas:

where M � bending moment

� moment-resisting capacity of compressive
steel

M1 � moment-resisting capacity of concrete

M s�

 Ms� � M � M1 � 2 fs�As�(d � d� )

 M1 �
1

2
 fc bkd �d �

kd

3 �

 fc �
2M

jbd 2{k � 2n��[1 � d�/kd )]}

 Mc �
1

2
 fc jbd 2 �k � 2n�� �1 �

d�

kd ��

Ms � Tjd � As fs jd  fs �
M

As jd
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ULTIMATE-STRENGTH DESIGN OF 
I AND T BEAMS

When the neutral axis lies in the flange, the member may be
designed as a rectangular beam, with effective width b and
depth d. For that condition, the flange thickness t will be
greater than the distance c from the extreme compression
surface to the neutral axis,

where �1 � constant

� � As fy /bd

As � area of tensile steel, in2 (mm2)

fy � yield strength of steel, ksi (MPa)

� 28-day strength of concrete, ksi (MPa)

When the neutral axis lies in the web, the ultimate moment
should not exceed

where Asf � area of tensile steel required to develop com-
pressive strength of overhanging flange, in2

(mm2) � 0.85

bw � width of beam web or stem, in (mm) 

a � depth of equivalent rectangular compressive
stress distribution, in (mm)

� (As � Asf)fy / 0.85 fc� bw

(b � bw)tfc�  / fy

Mu � 0.90 �(As � Asf ) fy �d �
a

2 �� Asf  fy �d �
t

2 �� (8.51)

fc�

fc�

c �
1.18� d

�1

T
t
�
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The quantity �w � �f should not exceed 0.75�b, where �b is
the steel ratio for balanced conditions �w � As /bwd, and
�f � Asf /bwd.

WORKING-STRESS DESIGN OF 
I AND T BEAMS

For T beams, effective width of compression flange is
determined by the same rules as for ultimate-strength
design. Also, for working-stress design, two cases may
occur: the neutral axis may lie in the flange or in the web.
(For negative moment, a T beam should be designed as a
rectangular beam with width b equal to that of the stem.)

If the neutral axis lies in the flange, a T or I beam may
be designed as a rectangular beam with effective width b. If
the neutral axis lies in the web or stem, an I or T beam may
be designed by the following formulas, which ignore the
compression in the stem, as is customary:

where kd � distance from extreme compression surface
to neutral axis, in (mm)

d � distance from extreme compression surface
to centroid of tensile steel, in (mm)

fs � stress in tensile steel, ksi (MPa)

fc � stress in concrete at extreme compression
surface, ksi (MPa)

n � modular ratio � Es /Ec

k �
I

1 � fs /nfc
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Because the total compressive force C equals the total
tension T,

where As � area of tensile steel, in2 (mm2); and t � flange
thickness, in (mm).

The distance between the centroid of the area in com-
pression and the centroid of the tensile steel is 

The moment resistance of the steel is 

The moment resistance of the concrete is 

In design, Ms and Mc can be approximated by

Mc �
1

2
 fc bt �d �

t

2 �

Ms � As  fs �d �
t

2 �

Mc � Cjd �
fc btjd

2kd
 (2kd � t)

Ms � Tjd � As  fs jd

jd � d � z  z �
t (3kd � 2t)

3(2kd � t)

 kd �
2ndAs � bt 2

2nAs � 2bt

 C �
1

2
 fc (2kd � t) 

bt

kd
� T � As  fs

d
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derived by substituting d � t /2 for jd and fc /2 for
fc(1 � t /2kd), the average compressive stress on the section.

ULTIMATE-STRENGTH DESIGN 
FOR TORSION

When the ultimate torsion Tu is less than the value calcu-
lated from the Tu equation that follows, the area Av of shear
reinforcement should be at least

However, when the ultimate torsion exceeds Tu calcu-
lated from the Tu equation that follows, and where web
reinforcement is required, either nominally or by calcula-
tion, the minimum area of closed stirrups required is 

where At is the area of one leg of a closed stirrup resisting
torsion within a distance s.

Torsion effects should be considered whenever the ulti-
mate torsion exceeds

where � � capacity reduction factor � 0.85 

Tu � ultimate design torsional moment 

Tu � � �0.5 √fc�  	x2y�

Av � 2At �
50bw s

fy

Av � 50 
bw s

fy
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x2y � sum for component rectangles of section of
product of square of shorter side and longer
side of each rectangle (where T section applies,
overhanging flange width used in design should
not exceed three times flange thickness)

The torsion Tc carried by the concrete alone should not
exceed

where Ct � bwd /
x2y.
Spacing of closed stirrups for torsion should be com-

puted from

where At � area of one leg of closed stirrup 

�t � 0.66 � 0.33y1/x1 but not more than 1.50 

fy � yield strength of torsion reinforcement 

x1 � shorter dimension c to c of legs of closed
stirrup 

y1 � longer dimension c to c of legs of closed
stirrup

The spacing of closed stirrups, however, should not exceed
(x1 � y1)/4 or 12 in (304.8 mm). Torsion reinforcement
should be provided over at least a distance of d � b beyond
the point where it is theoretically required, where b is the
beam width.

s �
At � fy �t x1 y1

(Tu � �Tc)

Tc �
0.8√fc� 	x2y

√1 � (0.4Vu /Ct Tu)2
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At least one longitudinal bar should be placed in each cor-
ner of the stirrups. Size of longitudinal bars should be at least
No. 3, and their spacing around the perimeters of the stirrups
should not exceed 12 in (304.8 mm). Longitudinal bars larger
than No. 3 are required if indicated by the larger of the values
of Al computed from the following two equations:

In the second of the preceding two equations 50bws / fy may
be substituted for 2At.

The maximum allowable torsion is Tu � �5Tc.

WORKING-STRESS DESIGN FOR TORSION

Torsion effects should be considered whenever the torsion
T due to service loads exceeds

where 
x2y � sum for the component rectangles of the sec-
tion of the product of the square of the shorter side and the
longer side of each rectangle. The allowable torsion stress
on the concrete is 55 percent of that computed from the

T � 0.55(0.5 fc�	x2y)

 � 2At�� x1 � y1

s �

 Al � � 400xs

fy

 � Tu

(Tu � Vu /3Ct)
�

 Al � 2At 
x 1 � y1

s
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preceding Tc equation. Spacing of closed stirrups for tor-
sion should be computed from

where At � area of one leg of closed stirrup

�t � 0.66 � , but not more than 1.50

�tc � allowable torsion stress on concrete

x1 � shorter dimension c to c of legs of closed
stirrup

y1 � longer dimension c to c of legs of closed
stirrup

FLAT-SLAB CONSTRUCTION

Slabs supported directly on columns, without beams or
girders, are classified as flat slabs. Generally, the columns
flare out at the top in capitals (Fig. 5.3). However, only the
portion of the inverted truncated cone thus formed that lies
inside a 90° vertex angle is considered effective in resisting
stress. Sometimes, the capital for an exterior column is a
bracket on the inner face.

The slab may be solid, hollow, or waffle. A waffle slab
usually is the most economical type for long spans, although
formwork may be more expensive than for a solid slab. A
waffle slab omits much of the concrete that would be in ten-
sion and thus is not considered effective in resisting stresses.

0.33y1

x 1

s �
3At �t x1 y1 fv

(vt � vtc)	x2y
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FIGURE 5.3 Concrete flat slab: (a) Vertical section through drop panel and column at a support. (b) Plan view
indicates division of slab into column and middle strips.
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To control deflection, the ACI Code establishes minimum
thicknesses for slabs, as indicated by the following equation:

where h � slab thickness, in (mm)

ln � length of clear span in long direction, in (mm)

fy � yield strength of reinforcement, ksi (MPa)

� � ratio of clear span in long direction to clear
span in the short direction

�m � average value of � for all beams on the edges
of a panel

� � ratio of flexural stiffness EcbIb of beam section
to flexural stiffness EcsIs of width of slab
bounded laterally by centerline of adjacent
panel, if any, on each side of beam

Ecb � modulus of elasticity of beam concrete

Ecs � modulus of elasticity of slab concrete

Ib � moment of inertia about centroidal axis of
gross section of beam, including that portion of
slab on each side of beam that extends a dis-
tance equal to the projection of the beam above
or below the slab, whichever is greater, but not
more than four times slab thickness

 � 
ln(0.8 � fy /200,000)

36 � 9�

 h �
ln(0.8 � fy / 200,000)

36 � 5�[�m � 0.12(1 � 1/�)]
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Is � moment of inertia about centroidal axis of
gross section of slab � h3/12 times slab width
specified in definition of �

Slab thickness h, however, need not be larger than (ln /36)
(0.8 � fy /200,000).

FLAT-PLATE CONSTRUCTION

Flat slabs with constant thickness between supports are
called flat plates. Generally, capitals are omitted from the
columns.

Exact analysis or design of flat slabs or flat plates is very
complex. It is common practice to use approximate methods.
The ACI Code presents two such methods: direct design and
equivalent frame.

In both methods, a flat slab is considered to consist of
strips parallel to column lines in two perpendicular direc-
tions. In each direction, a column strip spans between
columns and has a width of one-fourth the shorter of the
two perpendicular spans on each side of the column center-
line. The portion of a slab between parallel column strips in
each panel is called the middle strip (see Fig. 5.3).

Direct Design Method

This may be used when all the following conditions exist:

The slab has three or more bays in each direction.

Ratio of length to width of panel is 2 or less.

Loads are uniformly distributed over the panel.
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Ratio of live to dead load is 3 or less.

Columns form an approximately rectangular grid
(10 percent maximum offset).

Successive spans in each direction do not differ by more
than one-third of the longer span.

When a panel is supported by beams on all sides, the
relative stiffness of the beams satisfies

where �1 � � in direction of l1

�2 � � in direction of l2

� � relative beam stiffness defined in the preced-
ing equation

l1 � span in the direction in which moments are
being determined, c to c of supports

l2 � span perpendicular to l1, c to c of supports

The basic equation used in direct design is the total
static design moment in a strip bounded laterally by the cen-
terline of the panel on each side of the centerline of the
supports:

where w � uniform design load per unit of slab area and
ln � clear span in direction moments are being determined.

The strip, with width l2, should be designed for bending
moments for which the sum in each span of the absolute

Mo �
wl2l2

n

8

0.2 � 
�1

�2
 � l2

l1
�

2

� 5
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values of the positive and average negative moments equals
or exceeds Mo.

1. The sum of the flexural stiffnesses of the columns above
and below the slab 
Kc should be such that 

where Kc � flexural stiffness of column � EccIc

Ecc � modulus of elasticity of column concrete

Ic � moment of inertia about centroidal axis of
gross section of column

Ks � EcsIs

Kb � EcbIb

�min � minimum value of �c as given in engineering
handbooks

2. If the columns do not satisfy condition 1, the design
positive moments in the panels should be multiplied by
the coefficient:

SHEAR IN SLABS

Slabs should also be investigated for shear, both beam type
and punching shear. For beam-type shear, the slab is considered

�s � 1 �
2 � �a

4 � �a

 �1 �
�c

�min
�

�c �
	Kc

	(Ks � Kb)
 � �min
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as a thin, wide rectangular beam. The critical section for
diagonal tension should be taken at a distance from the
face of the column or capital equal to the effective depth d
of the slab. The critical section extends across the full
width b of the slab. Across this section, the nominal shear
stress vu on the unreinforced concrete should not exceed
the ultimate capacity or the allowable working stress
1.1 , where is the 28-day compressive strength of the
concrete, lb/in2 (MPa).

Punching shear may occur along several sections
extending completely around the support, for example,
around the face of the column or column capital or around
the drop panel. These critical sections occur at a distance
d/2 from the faces of the supports, where d is the effective
depth of the slab or drop panel. Design for punching shear
should be based on

where � � capacity reduction factor (0.85 for shear and
torsion), with shear strength Vn taken not larger than the
concrete strength Vc calculated from

where bo � perimeter of critical section and �c � ratio of
long side to short side of critical section.

However, if shear reinforcement is provided, the allow-
able shear may be increased a maximum of 50 percent if
shear reinforcement consisting of bars is used and increased
a maximum of 75 percent if shearheads consisting of two
pairs of steel shapes are used.

Shear reinforcement for slabs generally consists of bent
bars and is designed in accordance with the provisions for

Vc � �2 �
4

�c
� √f c�  bo d � 4 √f c� bo d

�Vn � �(Vc � VS)

fc�√fc�
2√fc�
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beams with the shear strength of the concrete at critical sec-
tions taken as at ultimate strength and Vn .
Extreme care should be taken to ensure that shear reinforce-
ment is accurately placed and properly anchored, especially in
thin slabs.

COLUMN MOMENTS

Another important consideration in design of two-way slab
systems is the transfer of moments to columns. This is gener-
ally a critical condition at edge columns, where the unbal-
anced slab moment is very high due to the one-sided panel.

The unbalanced slab moment is considered to be trans-
ferred to the column partly by flexure across a critical sec-
tion, which is d/2 from the periphery of the column, and
partly by eccentric shear forces acting about the centroid of
the critical section.

That portion of unbalanced slab moment Mu transferred
by the eccentricity of the shear is given by ��Mu:

where b1 � width, in (mm), of critical section in the span
direction for which moments are being computed; and
b2 � width, in (mm), of critical section in the span direc-
tion perpendicular to b1.

As the width of the critical section resisting moment
increases (rectangular column), that portion of the unbal-
anced moment transferred by flexure also increases. The

�v � 1 �
1

1 � � 2

3 �√ b1

b2

� 6√fc�bo d2√fc�
 bo d
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maximum factored shear, which is determined by combin-
ing the vertical load and that portion of shear due to the
unbalanced moment being transferred, should not exceed
�Vc, with Vc given by preceding the Vc equation. The shear
due to moment transfer can be determined at the critical
section by treating this section as an analogous tube with
thickness d subjected to a bending moment ��Mu.

The shear stress at the crack, at the face of the column
or bracket support, is limited to 0.2 or a maximum of 800
Ac, where Ac is the area of the concrete section resisting
shear transfer.

The area of shear-friction reinforcement Avf required in addi-
tion to reinforcement provided to take the direct tension due to
temperature changes or shrinkage should be computed from

where Vu is the design shear, kip (kN), at the section; fy is
the reinforcement yield strength, but not more than 60 ksi
(413.7 MPa); and �, the coefficient of friction, is 1.4 for
monolithic concrete, 1.0 for concrete placed against hard-
ened concrete, and 0.7 for concrete placed against structural
rolled-steel members. The shear-friction reinforcement should
be well distributed across the face of the crack and properly
anchored at each side.

SPIRALS

This type of transverse reinforcement should be at least
in (9.5 mm) in diameter. A spiral may be anchored at

each of its ends by extra turns of the spiral. Splices may11�2

3�8

Avf �
Vu

�fy�

fc�
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be made by welding or by a lap of 48 bar diameters, but
at least 12 in (304.8 mm). Spacing (pitch) of spirals should
not exceed 3 in (76.2 mm), or be less than 1 in (25.4 mm).
Clear spacing should be at least times the maximum
size of coarse aggregate.

The ratio of the volume of spiral steel/volume of con-
crete core (out to out of spiral) should be at least

where Ag � gross area of column

Ac � core area of column measured to outside
of spiral

fy � spiral steel yield strength

� 28-day compressive strength of concrete

BRACED AND UNBRACED FRAMES

As a guide in judging whether a frame is braced or
unbraced, note that the commentary on ACI 318�83 indi-
cates that a frame may be considered braced if the bracing
elements, such as shear walls, shear trusses, or other means
resisting lateral movement in a story, have a total stiffness
at least six times the sum of the stiffnesses of all the
columns resisting lateral movement in that story.

The slenderness effect may be neglected under the two
following conditions:

f c�

�s � 0.45 � Ag

Ac

� 1� 
fc�

fy

11�3
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For columns braced against sidesway, when 

where M1 � smaller of two end moments on column as
determined by conventional elastic frame analysis, with
positive sign if column is bent in single curvature and nega-
tive sign if column is bent in double curvature; and M2 �
absolute value of larger of the two end moments on column
as determined by conventional elastic frame analysis.

For columns not braced against sidesway, when

LOAD-BEARING WALLS

These are subject to axial compression loads in addition to
their own weight and, where there is eccentricity of load or
lateral loads, to flexure. Load-bearing walls may be
designed in a manner similar to that for columns but includ-
ing the design requirements for non-load-bearing walls.

As an alternative, load-bearing walls may be designed
by an empirical procedure given in the ACI Code when the
eccentricity of the resulting compressive load is equal to or
less than one-sixth the thickness of the wall.

Load-bearing walls designed by either method should
meet the minimum reinforcing requirements for non-load-
bearing walls.

In the empirical method the axial capacity, kip (kN), of
the wall is 

�Pn � 0.55� fc� Ag �1 � � klc

32h �
2

�

klu

r
  �  22

klu

r
 � 34 � 12 

M1

M2
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where � 28-day compressive strength of concrete,
ksi (MPa)

Ag � gross area of wall section, in2 (mm2)

� � strength reduction factor � 0.70

lc � vertical distance between supports, in (mm)

h � overall thickness of wall, in (mm)

k � effective-length factor

For a wall supporting a concentrated load, the length of
wall effective for the support of that concentrated load
should be taken as the smaller of the distance center to cen-
ter between loads and the bearing width plus 4h.

SHEAR WALLS

Walls subject to horizontal shear forces in the plane of the
wall should, in addition to satisfying flexural requirements,
be capable of resisting the shear. The nominal shear stress
can be computed from

where Vu � total design shear force

� � capacity reduction factor � 0.85

d � 0.8lw

vu �
Vu

�hd

fc�
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h � overall thickness of wall

lw � horizontal length of wall

The shear Vc carried by the concrete depends on
whether Nu, the design axial load, lb (N), normal to the wall
horizontal cross section and occurring simultaneously with
Vu at the section, is a compression or tension force. When
Nu is a compression force, Vc may be taken as ,
where is the 28-day strength of concrete, lb/in2 (MPa).
When Nu is a tension force, Vc should be taken as the smaller
of the values calculated from

This equation does not apply, however, when Mu/Vu � lw /2
is negative.

When the factored shear Vu is less than 0.5�Vc, rein-
forcement should be provided as required by the empirical
method for bearing walls.

When Vu exceeds 0.5�Vc, horizontal reinforcement should
be provided with Vs � Av fyd/s2, where s2 � spacing of hori-
zontal reinforcement, and Av � reinforcement area. Also, the
ratio �h of horizontal shear reinforcement, to the gross concrete
area of the vertical section of the wall should be at least 0.0025.
Spacing of horizontal shear bars should not exceed lw/5, 3h, or
18 in (457.2 mm). In addition, the ratio of vertical shear rein-
forcement area to gross concrete area of the horizontal section
of wall does not need to be greater than that required for hori-
zontal reinforcement but should not be less than

Vc � hd �0.6√fc� �
lw(1.25 √fc� � 0.2Nu /lwh)

Mu /Vu � lw /2 �

Vc � 3.3 √fc� hd �
Nu d

4lw

fc�
2√fc� hd
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where hw � total height of wall. Spacing of vertical shear rein-
forcement should not exceed lw/3, 3h, or 18 in (457.2 mm).

In no case should the shear strength Vn be taken greater
than at any section.

Bearing stress on the concrete from anchorages of post-
tensioned members with adequate reinforcement in the end
region should not exceed fb calculated from

where Ab � bearing area of anchor plate, and � maxi-
mum area of portion of anchorage surface geometrically
similar to and concentric with area of anchor plate.

A more refined analysis may be applied in the design of
the end-anchorage regions of prestressed members to develop
the ultimate strength of the tendons. � should be taken as 0.90
for the concrete.

CONCRETE GRAVITY RETAINING WALLS

Forces acting on gravity walls include the weight of the wall,
weight of the earth on the sloping back and heel, lateral earth
pressure, and resultant soil pressure on the base. It is advis-
able to include a force at the top of the wall to account for

Ab�

fb � 0.6 √fc�  √ Ab

Ab�
 � fc�

fb � 0.8 fc�√ Ab

Ab

� 0.2 � 1.25 fci�

10√fc� hd

 (�h � 0.0025) � 0.0025

 �n � 0.0025 � 0.5 �2.5 �
hw

lw
�

s  204

n
l
h
n
,
.
r

2

-
l

d
-
e
e
.
r
-
n
-

40816_05b_p196-212  10/22/01  12:46 PM  Page 205



F
(
t
t

F
w
c

206 CHAPTER FIVE

40816 HICKS Mcghp Ch05 Third Pass bcj 7/19/01 Pgs  206

frost action, perhaps 700 lb/linear ft (1042 kg/m). A wall,
consequently, may fail by overturning or sliding, overstress-
ing of the concrete or settlement due to crushing of the soil.

Design usually starts with selection of a trial shape and
dimensions, and this configuration is checked for stability.
For convenience, when the wall is of constant height, a 1-ft
(0.305 m) long section may be analyzed. Moments are taken
about the toe. The sum of the righting moments should be at
least 1.5 times the sum of the overturning moments. To pre-
vent sliding,

where � � coefficient of sliding friction

Rv � total downward force on soil, lb (N)

Ph � horizontal component of earth thrust, lb (N)

Next, the location of the vertical resultant Rv should be
found at various sections of the wall by taking moments
about the toe and dividing the sum by Rv. The resultant
should act within the middle third of each section if there is
to be no tension in the wall.

Finally, the pressure exerted by the base on the soil should
be computed to ensure that the allowable pressure is not
exceeded. When the resultant is within the middle third, the
pressures, lb/ft2 (Pa), under the ends of the base are given by

where A � area of base, ft2 (m2)

L � width of base, ft (m)

e � distance, parallel to L, from centroid of base
to Rv, ft (m)

p �
Rv

A
�

Mc

I
�

Rv

A
 �1 �

6e

L �

�Rv �  1.5Ph
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Figure 5.4 shows the pressure distribution under a 1-ft
(0.305-m) strip of wall for e � L/2�a, where a is the dis-
tance of Rv from the toe. When Rv is exactly L/3 from the
toe, the pressure at the heel becomes zero (Fig. 5.4c). When

FIGURE 5.4 Diagrams for pressure of the base of a concrete gravity
wall on the soil below. (a) Vertical section through the wall. (b) Signifi-
cant compression under the entire base.
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Rv falls outside the middle third, the pressure vanishes
under a zone around the heel, and pressure at the toe is much
larger than for the other cases (Fig. 5.4d).

CANTILEVER RETAINING WALLS

This type of wall resists the lateral thrust of earth pressure
through cantilever action of a vertical stem and horizontal

FIGURE 5.4 (Continued) Diagrams for pressure of the base of a
concrete wall on the soil below. (c) No compression along one edge of
the base. (d) Compression only under part of the base. No support from
the soil under the rest of the beam.
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base (Fig. 5.5). Cantilever walls generally are economical
for heights from 10 to 20 ft (3 to 6 m). For lower walls,
gravity walls may be less costly; for taller walls, counter-
forts (Fig. 5.6) may be less expensive.

Shear unit stress on a horizontal section of a counterfort
may be computed from vc � V1/bd, where b is the thickness
of the counterfort and d is the horizontal distance from face
of wall to main steel,

V1 � V �
M

d
 (tan � � tan �)

FIGURE 5.5 Cantilever retaining wall. (a) Vertical section shows main
reinforcing steel placed vertically in the stem. (b) Moment diagram.
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FIGURE 5.6 Counterfort retaining wall. (a) Vertical section. 
(b) Horizontal section.
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where V � shear on section

M � bending moment at section

� � angle earth face of counterfort makes with
vertical

� � angle wall face makes with vertical

For a vertical wall face, � � 0 and V1 � V � (M/d)tan �.
The critical section for shear may be taken conservatively at
a distance up from the base equal to d� sin � cos �, where d�
is the depth of counterfort along the top of the base.

WALL FOOTINGS

The spread footing under a wall (Fig. 5.7) distributes the
wall load horizontally to preclude excessive settlement.

The footing acts as a cantilever on opposite sides of the
wall under downward wall loads and upward soil pressure.
For footings supporting concrete walls, the critical section
for bending moment is at the face of the wall; for footings
under masonry walls, halfway between the middle and edge
of the wall. Hence, for a 1-ft (0.305-m) long strip of sym-
metrical concrete-wall footing, symmetrically loaded, the
maximum moment, ft�lb (N�m), is

where p � uniform pressure on soil, lb/ft2 (Pa)

L � width of footing, ft (m)

a � wall thickness, ft (m)

M �
p

8
 (L � a)2
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FIGURE 5.7 Concrete wall footing.

If the footing is sufficiently deep that the tensile bending
stress at the bottom, 6M/t2, where M is the factored moment
and t is the footing depth, in (mm), does not exceed ,
where is the 28-day concrete strength, lb/in2 (MPa) and
� � 0.90, the footing does not need to be reinforced. If the
tensile stress is larger, the footing should be designed as a
12-in (305-mm) wide rectangular, reinforced beam. Bars
should be placed across the width of the footing, 3 in (76.2
mm) from the bottom. Bar development length is measured
from the point at which the critical section for moment
occurs. Wall footings also may be designed by ultimate-
strength theory.

 fc�
5�√fc�

40816_05b_p196-212  10/22/01  12:46 PM  Page 212



CHAPTER 6
TIMBER

ENGINEERING
FORMULAS

40816 HICKS Mcghp Chap_06 Pgs 214–242 7/10/2001

40816_06_p213-242  10/22/01  12:47 PM  Page 213

Copyright 2002 The McGraw-Hill Companies.   Click Here for Terms of Use.



214 CHAPTER SIX

40816 HICKS Mcghp Chap_06 Pgs 214–242 7/10/2001

GRADING OF LUMBER

Stress-grade lumber consists of three classifications:

1. Beams and stringers. Lumber of rectangular cross sec-
tion, 5 in (127 mm) or more thick and 8 in (203 mm) or
more wide, graded with respect to its strength in bend-
ing when loaded on the narrow face.

2. Joists and planks. Lumber of rectangular cross section,
2 in (50.8 mm) to, but not including, 5 in (127 mm)
thick and 4 in (102 mm) or more wide, graded with respect
to its strength in bending when loaded either on the nar-
row face as a joist or on the wide face as a plank.

3. Posts and timbers. Lumber of square, or approximately
square, cross section 5 � 5 in (127 by 127 mm), or larger,
graded primarily for use as posts or columns carrying
longitudinal load, but adapted for miscellaneous uses in
which the strength in bending is not especially important.

Allowable unit stresses apply only for loading for which
lumber is graded.

SIZE OF LUMBER

Lumber is usually designated by a nominal size. The size of
unfinished lumber is the same as the nominal size, but the
dimensions of dressed or finished lumber are from to in
(9.5 to 12.7 mm) smaller. Properties of a few selected standard
lumber sizes, along with the formulas for these properties,
are shown in Table 6.1.

1�2
3�8
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TABLE 6.1 Properties of Sections for Standard Lumber Sizes.

(Dressed (S4S) sizes, moment of inertia, and section modulus are given
with respect to xx axis, with dimensions b and h, as shown on sketch)

Standard Moment of Section

Nominal dressed size Area of inertia modulus Board feet
size S4S section per linear

b h b h foot of piece

2 � 4 5.89 6.45 3.56

2 � 6 8.93 22.53 8.19 1
2 � 8 12.19 57.13 15.23

Source: National Lumber Manufacturers Association.

11�315�8 � 71�2
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BEARING

The allowable unit stresses given for compression perpendic-
ular to the grain apply to bearings of any length at the ends
of beams and to all bearings 6 in (152.4 mm) or more in
length at other locations. When calculating the required
bearing area at the ends of beams, no allowance should be
made for the fact that, as the beam bends, the pressure upon
the inner edge of the bearing is greater than at the end of
the beam. For bearings of less than 6 in (152.4 mm) in
length and not nearer than 3 in (76.2 mm) to the end of the
member, the allowable stress for compression perpendicular
to the grain should be modified by multiplying by the factor

, where l is the length of the bearing in inches
(mm) measured along the grain of the wood.

BEAMS

The extreme fiber stress in bending for a rectangular timber
beam is

f � 6M /bh2

� M/S

A beam of circular cross section is assumed to have the
same strength in bending as a square beam having the same
cross-sectional area.

The horizontal shearing stress in a rectangular timber
beam is

H � 3V /2bh (6.1)

For a rectangular timber beam with a notch in the lower
face at the end, the horizontal shearing stress is 

(l � 3�8)/l

A
n
f

f
o
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o
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H � (3V /2bd1) (h /d1) (6.2)

A gradual change in cross section, instead of a square
notch, decreases the shearing stress nearly to that computed
for the actual depth above the notch.

Nomenclature for the preceding equations follows:

f � maximum fiber stress, lb/in2 (MPa)

M � bending moment, lb�in (Nm)

h � depth of beam, in (mm)

b � width of beam, in (mm)

S � section modulus (�bh2/6 for rectangular section),
in3 (mm3)

H � horizontal shearing stress, lb/in2 (MPa)

V � total shear, lb (N)

d1 � depth of beam above notch, in (mm)

l � span of beam, in (mm)

P � concentrated load, lb (N)

V1 � modified total end shear, lb (N)

W � total uniformly distributed load, lb (N)

x � distance from reaction to concentrated load in (mm)

For simple beams, the span should be taken as the distance
from face to face of supports plus one-half the required length
of bearing at each end; and for continuous beams, the span
should be taken as the distance between the centers of bearing
on supports.
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When determining V, neglect all loads within a distance
from either support equal to the depth of the beam.

In the stress grade of solid-sawn beams, allowances for
checks, end splits, and shakes have been made in the assigned
unit stresses. For such members, Eq. (6.1) does not indicate
the actual shear resistance because of the redistribution of
shear stress that occurs in checked beams. For a solid-sawn
beam that does not qualify using Eq. (6.1) and the H values
given in published data for allowable unit stresses, the modified
reaction V1 should be determined as shown next.

For concentrated loads,

(6.3)

For uniform loading,

(6.4)

The sum of the V1 values from Eqs. (6.3) and (6.4) should
be substituted for V in Eq. (6.1), and the resulting H values
should be checked against those given in tables of allow-
able unit stresses for end-grain bearing. Such values should
be adjusted for duration of loading.

COLUMNS

The allowable unit stress on timber columns consisting of
a single piece of lumber or a group of pieces glued together
to form a single member is

V 1 �
W

2
 �1 �

2h

l �

V 1 �
10P(l � x) (x /h)2

9l[2 � (x /h)2]

f

b

T
c
V
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i
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(6.5)

For columns of square or rectangular cross section, this
formula becomes

(6.6)

For columns of circular cross section, the formula
becomes

(6.7)

The allowable unit stress, P/A, may not exceed the allowable
compressive stress, c. The ratio, 1/d, must not exceed 50.
Values of P/A are subject to the duration of loading adjust-
ment given previously.

Nomenclature for Eqs. (6.5) to (6.7) follows:

P � total allowable load, lb (N)

A � area of column cross section, in2 (mm2)

c � allowable unit stress in compression parallel
to grain, lb/in2 (MPa)

d � dimension of least side of column, in (mm)

l � unsupported length of column between points
of lateral support, in (mm)

E � modulus of elasticity, lb/in2 (MPa)

r � least radius of gyration of column, in (mm)

For members loaded as columns, the allowable unit
stresses for bearing on end grain (parallel to grain) are given
in data published by lumber associations. These allowable

P

A
�

0.22E

(l/d)2  

P

A
�

0.30E

(l/d)2  

P

A
�

3.619E

(l/r)2  
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stresses apply provided there is adequate lateral support and
end cuts are accurately squared and parallel. When stresses
exceed 75 percent of values given, bearing must be on a
snug-fitting metal plate. These stresses apply under conditions
continuously dry, and must be reduced by 27 percent for
glued-laminated lumber and lumber 4 in (102 mm) or less
in thickness and by 9 percent for sawn lumber more than 4 in
(102 mm) in thickness, for lumber exposed to weather.

COMBINED BENDING AND AXIAL LOAD

Members under combined bending and axial load should be
so proportioned that the quantity

(6.8)

where Pa � total axial load on member, lb (N)

P � total allowable axial load, lb (N)

Ma � total bending moment on member, lb in (Nm)

M � total allowable bending moment, lb in (Nm)

COMPRESSION AT ANGLE TO GRAIN

The allowable unit compressive stress when the load is at
an angle to the grain is

(6.9)c� � c (c�)/[c (sin �)2 � (c�) (cos �)2]

Pa /P � Ma  /M � 1

w
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where c� � allowable unit stress at angle to grain, lb/in2

(MPa)

c � allowable unit stress parallel to grain, lb/in2

(MPa)

c� � allowable unit stress perpendicular to grain,
lb/in2 (MPa)

� � angle between direction of load and direction
of grain

RECOMMENDATIONS OF THE
FOREST PRODUCTS LABORATORY

The Wood Handbook gives advice on the design of solid
wood columns. (Wood Handbook, USDA Forest Products
Laboratory, Madison, Wisc., 1999.)

Columns are divided into three categories, short, inter-
mediate, and long. Let K denote a parameter defined by the
equation

(6.10)

The range of the slenderness ratio and the allowable stress
assigned to each category are next.

Short column,

(6.11)
L

d
� 11  f � fc 

K � 0.64 � E

fc
�

1/2
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Intermediate column,

(6.12)

Long column,

(6.13)

The maximum L /d ratio is set at 50.
The National Design Specification covers the design of

solid columns. The allowable stress in a rectangular section
is as follows:

(6.14)

The notational system for the preceding equations is

P � allowable load

A � sectional area

L � unbraced length

d � smaller dimension of rectangular section

E � modulus of elasticity

fc � allowable compressive stress parallel to grain in
short column of given species

f � allowable compressive stress parallel to grain in
given column

f �
0.30E

(L /d)2   but  f � fc

L

d
	 K  f �

0.274E

(L /d )2  

11 �
L

d
� K  f � fc �1 �

1

3
 � L/d

K �
4

�

C

C
f
t

a
m
a
t
f

I
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COMPRESSION ON OBLIQUE PLANE

Consider that a timber member sustains a compressive
force with an action line that makes an oblique angle with
the grain. Let

P � allowable compressive stress parallel to grain

Q � allowable compressive stress normal to grain

N � allowable compressive stress inclined to grain

� � angle between direction of stress N and direction
of grain

By Hankinson’s equation,

(6.15)

In Fig. 6.1, member M1 must be notched at the joint to
avoid removing an excessive area from member M2. If the
member is cut in such a manner that AC and BC make an
angle of �/2 with vertical and horizontal planes, respectively,
the allowable bearing pressures at these faces are identical
for the two members. Let

A � sectional area of member M1

f1 � pressure at AC

f2 � pressure at BC

It may be readily shown that

(6.16) AC � b 
sin (�/2)

sin �
   BC � b 

cos (�/2)

sin �

N �
PQ

P sin2 � � Q cos2 �
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(6.17)

This type of joint is often used in wood trusses.

ADJUSTMENT FACTORS FOR
DESIGN VALUES

Design values obtained by the methods described earlier should
be multiplied by adjustment factors based on conditions of
use, geometry, and stability. The adjustments are cumula-
tive, unless specifically indicated in the following:

The adjusted design value for extreme-fiber bending
is given by

Fb�

 f1 �
F sin �

A tan (�/2)
   f2 �

F sin � tan (�/2)

A

w

F
i

w

FIGURE 6.1 Timber joint.
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� FbCDCMCtCLCFCVCfuCrCcCf (6.18)

where Fb � design value for extreme-fiber bending

CD � load-duration factor

CM � wet-service factor

Ct � temperature factor

CL � beam stability factor

CF � size factor—applicable only to visually graded,
sawn lumber and round timber flexural members

Cv � volume factor—applicable only to glued-
laminated beams

Cfu � flat-use factor—applicable only to dimension-
lumber beams 2 to 4 in (50.8 to 101.6 mm)
thick and glued-laminated beams

Cr � repetitive-member factor—applicable only to
dimension-lumber beams 2 to 4 in (50.8 to
101.6 mm) thick

Cc � curvature factor—applicable only to curved
portions of glued-laminated beams

Cf � form factor

For glued-laminated beams, use either CL or Cv (whichever
is smaller), not both.

The adjusted design value for tension is given by

(6.19)

where Ft is the design value for tension.

Ft� � FtCDCMCtCF

Ft�

Fb�
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For shear, the adjusted design value Fv is computed from

(6.20)

where Fv is the design value for shear and CH is the shear
stress factor ≥1—permitted for Fv parallel to the grain for
sawn lumber members.

For compression perpendicular to the grain, the adjusted
design value is obtained from

(6.21)

where is the design value for compression perpendicu-
lar to the grain and is the bearing area factor.

For compression parallel to the grain, the adjusted design
value is given by

(6.22)

where Fc is the design value for compression parallel to
grain and Cp is the column stability factor.

For end grain in bearing parallel to the grain, the adjusted
design value, is computed from

(6.23)

where Fg is the design value for end grain in bearing paral-
lel to the grain.

The adjusted design value for modulus of elasticity, is
obtained from

(6.24)E� � ECMCTC � � �

E�

Fg� � FgCDCt

Fg�

Fc� � FcCDCMCtCFCp

Fc�

Cb

Fc�

Fc�� � Fc�CMCtCb

Fc��

FV� � FVCDCMCtCH

w
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where E � design value for modulus of elasticity

CT � buckling stiffness factor—applicable only to
sawn-lumber truss compression chords 2 � 4 in
(50.8 � 101.6 mm) or smaller, when subject
to combined bending and axial compression
and plywood sheathing in (9.5 mm) or more
thick is nailed to the narrow face

C � � � � other appropriate adjustment factors

Size and Volume Factors

For visually graded dimension lumber, design values Fb, Ft,
and Fc for all species and species combinations, except
southern pine, should be multiplied by the appropriate size
factor Cf , given in reference data to account for the effects
of member size. This factor and the factors used to develop
size-specific values for southern pine are based on the
adjustment equation given in American Society for Testing
and Materials (ASTM) D1990. This equation, based on in-
grade test data, accounts for differences in Fb, Ft, and Fc

related to width and in Fb and Ft related to length (test span).
For visually graded timbers [5 � 5 in (127 � 127 mm)

or larger], when the depth d of a stringer beam, post, or timber
exceeds 12 in (304.8 mm), the design value for bending should
be adjusted by the size factor

(6.25)

Design values for bending Fb for glued-laminated beams
should be adjusted for the effects of volume by multiplying by

(6.25)CV � KL �� 21

L �� 12

d �� 5.125

b ��
1/x

CF � (12 / d)1/9

3�8
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where L � length of beam between inflection points, ft (m)

d � depth, in (mm), of beam

b � width, in (mm), of beam

� width, in (mm), of widest piece in multiple-piece
layups with various widths; thus, b ≤ 10.75 in
(273 mm)

x � 20 for southern pine

� 10 for other species

KL � loading condition coefficient

For glulam beams, the smaller of Cv and the beam stability
factor CL should be used, not both.

Radial Stresses and Curvature Factor

The radial stress induced by a bending moment in a mem-
ber of constant cross section may be computed from

(6.26)

where M � bending moment, in�lb (N�m)

R � radius of curvature at centerline of member,
in (mm)

b � width of cross section, in (mm)

d � depth of cross section, in (mm)

fr �
3M

2Rbd

(
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When M is in the direction tending to decrease curvature
(increase the radius), tensile stresses occur across the grain.
For this condition, the allowable tensile stress across the
grain is limited to one-third the allowable unit stress in hori-
zontal shear for southern pine for all load conditions and
for Douglas fir and larch for wind or earthquake loadings.
The limit is 15 lb/in2 (0.103 MPa) for Douglas fir and larch
for other types of loading. These values are subject to modi-
fication for duration of load. If these values are exceeded,
mechanical reinforcement sufficient to resist all radial ten-
sile stresses is required.

When M is in the direction tending to increase curvature
(decrease the radius), the stress is compressive across the grain.
For this condition, the design value is limited to that for com-
pression perpendicular to grain for all species.

For the curved portion of members, the design value for
wood in bending should be modified by multiplication by
the following curvature factor:

(6.27)

where t is the thickness of lamination, in (mm), and R is the
radius of curvature of lamination, in (mm). Note that t/R
should not exceed for hardwoods and southern pine or

for softwoods other than southern pine. The curvature
factor should not be applied to stress in the straight portion
of an assembly, regardless of curvature elsewhere.

Bearing Area Factor

Design values for compression perpendicular to the grain
Fc� apply to bearing surfaces of any length at the ends of
a member and to all bearings 6 in (152.4 mm) or more long

1�125

1�100

Cc � 1 � 2000 � t

R �
2
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at other locations. For bearings less than 6 in (152.4 mm)
long and at least 3 in (76.2 mm) from the end of a member,
Fc� may be multiplied by the bearing area factor:

(6.28)

where Lb is the bearing length, in (mm) measured parallel
to grain. Equation (6.28) yields the values of Cb for elements
with small areas, such as plates and washers, listed in refer-
ence data. For round bearing areas, such as washers, Lb

should be taken as the diameter.

Column Stability and Buckling Stiffness Factors

Design values for compression parallel to the grain Ft

should be multiplied by the column stability factor Cp given
by Eq. (6.29):

(6.29)

where � design value for compression parallel to the
grain multiplied by all applicable adjustment
factors except Cp

FcE �

� modulus of elasticity multiplied by adjust-
ment factors

E�

KcE E�/(Le /d)2

F *
c

 �√� 1 � (FcE /Fc
*)

2c �
2

�
(FcE /F *

c )

c

 CP �
1 � (FcE /F *

c )

2c

Cb �
Lb � 0.375

Lb

F
o

s
p
t
t
l
p
m
b
c
9

w
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KcE � 0.3 for visually graded lumber and machine-
evaluated lumber

� 0.418 for products with a coefficient of varia-
tion less than 0.11

c � 0.80 for solid-sawn lumber

� 0.85 for round timber piles

� 0.90 for glued-laminated timber

For a compression member braced in all directions through-
out its length to prevent lateral displacement, Cp � 1.0.

The buckling stiffness of a truss compression chord of
sawn lumber subjected to combined flexure and axial com-
pression under dry service conditions may be increased if
the chord is 2 � 4 in (50.8 � 101.6 mm) or smaller and has
the narrow face braced by nailing to plywood sheathing at
least in (9.5 mm) thick in accordance with good nailing
practice. The increased stiffness may be accounted for by
multiplying the design value of the modulus of elasticity E
by the buckling stiffness factor CT in column stability cal-
culations. When the effective column length Le, in (mm), is
96 in (2.38 m) or less, CT may be computed from

(6.30)

where KM � 2300 for wood seasoned to a moisture con-
tent of 19 percent or less at time of sheathing
attachment

� 1200 for unseasoned or partly seasoned wood
at time of sheathing attachment

CT � 1 �
KM Le

KT E

3�8
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KT � 0.59 for visually graded lumber and machine-
evaluated lumber

� 0.82 for products with a coefficient of varia-
tion of 0.11 or less

When Le is more than 96 in (2.38 m), CT should be calculated
from Eq. (6.30) with Le � 96 in (2.38 m). For additional
information on wood trusses with metal-plate connections,
see design standards of the Truss Plate Institute, Madison,
Wisconsin.

The slenderness ratio RB for beams is defined by

(6.31)

The slenderness ratio should not exceed 50.
The effective length Le for Eq. (6.31) is given in terms of

unsupported length of beam in reference data. Unsupported
length is the distance between supports or the length of a
cantilever when the beam is laterally braced at the supports
to prevent rotation and adequate bracing is not installed
elsewhere in the span. When both rotational and lateral dis-
placements are also prevented at intermediate points, the
unsupported length may be taken as the distance between
points of lateral support. If the compression edge is supported
throughout the length of the beam and adequate bracing is
installed at the supports, the unsupported length is zero.

The beam stability factor CL may be calculated from

(6.32)

 �√� 1 � (FbE/Fb
*)

1.9 �
2

�
FbE /F *

b

0.95
 

 CL �
1 � (FbE/Fb

*)

1.9

RB �√ Le d

b2

w
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T
e
(
w
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where � design value for bending multiplied by all
applicable adjustment factors, except Cfu, CV,
and CL

FbE �

� 0.438 for visually graded lumber and machine-
evaluated lumber

� 0.609 for products with a coefficient of vari-
ation of 0.11 or less

� design modulus of elasticity multiplied by
applicable adjustment factors

FASTENERS FOR WOOD

Nails and Spikes

The allowable withdrawal load per inch (25.4 mm) of pen-
etration of a common nail or spike driven into side grain
(perpendicular to fibers) of seasoned wood, or unseasoned
wood that remains wet, is

(6.33)

where p � allowable load per inch (mm) of penetration
into member receiving point, lb (N)

D � diameter of nail or spike, in (mm)

G � specific gravity of wood, oven dry

p � 1,380G5/2D

E�

KbE

KbE E�/R 2
B

F *
b
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The total allowable lateral load for a nail or spike driven
into side grain of seasoned wood is

(6.34)

where p � allowable load per nail or spike, lb (N)

D � diameter of nail or spike, in (mm)

C � coefficient dependent on group number of
wood (see Table 6.1)

Values of C for the four groups into which stress-grade
lumber is classified are

Group I: C � 2,040

Group II: C � 1,650

Group III: C � 1,350

Group IV: C � 1,080

The loads apply where the nail or spike penetrates into the
member, receiving its point at least 10 diameters for Group I
species, 11 diameters for Group II species, 13 diameters for
Group III species, and 14 diameters for Group IV species.
Allowable loads for lesser penetrations are directly propor-
tional to the penetration, but the penetration must be at least
one-third that specified.

Wood Screws

The allowable withdrawal load per inch (mm) of penetra-
tion of the threaded portion of a wood screw into side grain
of seasoned wood that remains dry is

p � CD3/2
w

W
g

i

w
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H
H
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p � 2,850G2D (6.35)

where p � allowable load per inch (mm) of penetration of
threaded portion into member receiving point,
lb (N)

D � diameter of wood screw, in (mm)

G � specific gravity of wood, oven dry (see Table 6.1)

Wood screws should not be loaded in withdrawal from end
grain.

The total allowable lateral load for wood screws driven
into the side grain of seasoned wood which remains dry is

p � CD2 (6.36)

where p � allowable load per wood screw, lb (N)

D � diameter of wood screw, in (mm)

C � coefficient dependent on group number of
wood (Table 6.2)

TABLE 6.2 Specific Gravity and Group Number for Common
Species of Lumber

Group Specific
Species number gravity, G G2 G5/2

Douglas fir II 0.51 0.260 0.186
Pine, southern II 0.59 0.348 0.267
Hemlock, western III 0.44 0.194 0.128
Hemlock, eastern IV 0.43 0.185 0.121
Pine, Norway III 0.47 0.221 0.151
Redwood III 0.42 0.176 0.114
Spruce IV 0.41 0.168 0.108
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Values of C for the four groups into which stress-grade
lumber is classified are

Group I: C � 4,800

Group II: C � 3,960

Group III: C � 3,240

Group IV: C � 2,520

The allowable lateral load for wood screws driven into end
grain is two-thirds that given for side grain.

ADJUSTMENT OF DESIGN VALUES FOR
CONNECTIONS WITH FASTENERS

Nominal design values for connections or wood members
with fasteners should be multiplied by applicable adjust-
ment factors available from lumber associations and in civil
engineering handbooks to obtain adjusted design values.
The types of loading on the fasteners may be divided into
four classes: lateral loading, withdrawal, loading parallel to
grain, and loading perpendicular to grain. Adjusted design
values are given in terms of nominal design values and
adjustment factors in the equations below. The following
variables are used in the equations:

Z� � adjusted design value for lateral loading

Z � nominal design value for lateral loading

W� � adjusted design value for withdrawal

W � nominal design value for withdrawal

P� � adjusted value for loading parallel to grain

P � nominal value for loading parallel to grain

w

w
m

w
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Q� � adjusted value for loading normal to grain

Q � nominal value for loading normal to grain

For bolts,

where CD � load-duration factor, not to exceed 1.6 for
connections

CM � wet-service factor, not applicable to toenails
loaded in withdrawal

Ct � temperature factor

Cg � group-action factor

C� � geometry factor

For split-ring and shear-plate connectors,

where Cd is the penetration-depth factor and Cst is the
metal-side-plate factor.

For nails and spikes,

where Cdi � is the diaphragm factor and Ctn � toenail factor.

 Z� � ZCD CM Ct Cd Ceg Cdi Ctn

 W� � WCD CM Ct Ctn

 Q� � QCD CM Ct Cg C� Cd

 P� � PCD CM Ct Cg C� Cd Cst

Z� � ZCD CM Ct Cg D�
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For wood screws,

where Ceg is the end-grain factor.
For lag screws,

For metal plate connectors,

For drift bolts and drift pins,

For spike grids,

ROOF SLOPE TO PREVENT PONDING

Roof beams should have a continuous upward slope equiv-
alent to in/ft (20.8 mm/m) between a drain and the high
point of a roof, in addition to minimum recommended
camber to avoid ponding. When flat roofs have insuffic-
ient slope for drainage (less than in/ft) (20.8 mm/m) 1�4

1�4

Z� � ZCD CM Ct C�

 Z� � ZCD CM Ct Cg C� Cd Ceg

 W� � WCD CM Ct Ceg

Z� � ZCD CM Ct

 Z� � ZCD CM Ct Cg C� Cd Ceg

 W� � WCD CM Ct Ceg

 Z� � ZCD CM Ct Cd Ceg

 W� � WCD CM Ct

t
a
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the stiffness of supporting members should be such that
a 5-lb/ft2 (239.4 N/mm2) load causes no more than -in
(12.7-mm) deflection.

Because of ponding, snow loads or water trapped by gravel
stops, parapet walls, or ice dams magnify stresses and deflec-
tions from existing roof loads by

where Cp � factor for multiplying stresses and deflections
under existing loads to determine stresses and
deflections under existing loads plus ponding

W � weight of 1 in (25.4 mm) of water on roof area
supported by beam, lb (N)

L � span of beam, in (mm)

E � modulus of elasticity of beam material, lb/in2

(MPa)

I � moment of inertia of beam, in4 (mm4)

(Kuenzi and Bohannan, “Increases in Deflection and Stresses
Caused by Ponding of Water on Roofs,” Forest Products
Laboratory, Madison, Wisconsin.)

BENDING AND AXIAL TENSION

Members subjected to combined bending and axial tension
should be proportioned to satisfy the interaction equations

and

 
ft

Fc�
�

fb

F *
b

 � 1

Cp �
1

1 � W�L3/
 4EI

1�2
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where ft � tensile stress due to axial tension acting alone

fb � bending stress due to bending moment alone

� design value for tension multiplied by applica-
ble adjustment factors

� design value for bending multiplied by appli-
cable adjustment factors except CL

� design value for bending multiplied by applica-
ble adjustment factors except Cv

The load duration factor CD associated with the load of
shortest duration in a combination of loads with differing
duration may be used to calculate and . All applicable
load combinations should be evaluated to determine the
critical load combination.

BENDING AND AXIAL COMPRESSION

Members subjected to a combination of bending and axial
compression (beam columns) should be proportioned to
satisfy the interaction equation

�
fb2

[1 � ( fc /FcE2) � ( fb1/FbE)2]F�b2
� 1

� fc

F�c
�

2

�
fb1

[1 � ( fc  / FcE1)]F�b1

F b
*F�t

F **
b

F *
b

F� t

 
( fb � ft)

F **
b

� 1
w

F

w
m

a
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where fc � compressive stress due to axial compression
acting alone

� design value for compression parallel to grain
multiplied by applicable adjustment factors,
including the column stability factor

fb1 � bending stress for load applied to the narrow
face of the member

fb2 � bending stress for load applied to the wide
face of the member

� design value for bending for load applied to
the narrow face of the member multiplied by
applicable adjustment factors, including the
column stability factor

� design value for bending for load applied to
the wide face of the member multiplied by
applicable adjustment factors, including the
column stability factor

For either uniaxial or biaxial bending, fc should not exceed

where E� is the modulus of elasticity multiplied by adjust-
ment factors. Also, for biaxial bending, fc should not exceed

and fb1 should not be more than

FbE �
KbE E�

R2
B

FcE2 �
KcE E�

(Le2 / d2)2

FcE1 �
KcE E�

(Le1 / d1)2

F�b2

F�b1

F�c
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where d1 is the width of the wide face and d2 is the width of
the narrow face. Slenderness ratio RB for beams is given
earlier in this section. KbE is defined earlier in this section.
The effective column lengths Le1 for buckling in the d1 direction
and Le2 for buckling in the d2 direction, E�, FcE1, and FcE2 should
be determined as shown earlier.

As for the case of combined bending and axial tension,
, , and should be adjusted for duration of load by

applying CD.
F�b2F�b1F�c
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UNITS OF MEASUREMENT

Units of measurement used in past and present surveys are

For construction work: feet, inches, fractions of inches
(m, mm)

For most surveys: feet, tenths, hundredths, thousandths
(m, mm)

For National Geodetic Survey (NGS) control surveys:
meters, 0.1, 0.01, 0.001 m

The most-used equivalents are

1 meter � 39.37 in (exactly) � 3.2808 ft

1 rod � 1 pole � 1 perch � ft (5.029 m)

1 engineer’s chain � 100 ft � 100 links (30.48 m)

1 Gunter’s chain � 66 ft (20.11 m) � 100
Gunter’s links (lk) � 4 rods � mi (0.020 km)

1 acre � 100,000 sq (Gunter’s) links � 43,560
ft2 � 160 rods2 � 10 sq (Gunter’s) chains � 4046.87
m2 � 0.4047 ha

1 rood � acre (1011.5 m2) � 40 rods2 (also
local unit � to 8 yd) (5.029 to 7.315 m)

1 ha � 10,000 m2 � 107,639.10 ft2 � 2.471 acres

1 arpent � about 0.85 acre, or length of side of
1 square arpent (varies) (about 3439.1 m2)

1 statute mi � 5280 ft � 1609.35 m

1 mi2 � 640 acres (258.94 ha)

51�2

3�4

1�80

161�2
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1 nautical mi (U.S.) � 6080.27 ft � 1853.248 m

1 fathom � 6 ft (1.829 m)

1 cubit � 18 in (0.457 m)

1 vara � 33 in (0.838 m) (Calif.), in (0.851 m)
(Texas), varies

1 degree � circle � 60 min � 3600 s �
0.01745 rad

sin 1� � 0.01745241

1 rad � 57� 17� 44.8� or about 57.30�

1 grad (grade) � circle � quadrant �
100 centesimal min � 104 centesimals (French)

1 mil � circle � 0.05625�

1 military pace (milpace) � ft (0.762 m)

THEORY OF ERRORS

When a number of surveying measurements of the same
quantity have been made, they must be analyzed on the
basis of probability and the theory of errors. After all
systematic (cumulative) errors and mistakes have been elimi-
nated, random (compensating) errors are investigated to
determine the most probable value (mean) and other critical
values. Formulas determined from statistical theory and
the normal, or Gaussian, bell-shaped probability distribu-
tion curve, for the most common of these values follow.

21�2

1�6400

1�100
1�400

1�360

331�3
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Standard deviation of a series of observations is

where d � residual (difference from mean) of single obser-
vation and n � number of observations.

The probable error of a single observation is 

(The probability that an error within this range will occur is
0.50.)

The probability that an error will lie between two values
is given by the ratio of the area of the probability curve
included between the values to the total area. Inasmuch as the
area under the entire probability curve is unity, there is a
100 percent probability that all measurements will lie within
the range of the curve.

The area of the curve between ��s is 0.683; that is,
there is a 68.3 percent probability of an error between ��s

in a single measurement. This error range is also called the
one-sigma or 68.3 percent confidence level. The area of the
curve between �2�s is 0.955. Thus there is a 95.5 percent
probability of an error between �2�s and �2�s that represents
the 95.5 percent error (two-sigma or 95.5 percent con-
fidence level). Similarly, �3�s is referred to as the 99.7
percent error (three-sigma or 99.7 percent confidence level).
For practical purposes, a maximum tolerable level often
is assumed to be the 99.9 percent error. Table 7.1 indicates
the probability of occurrence of larger errors in a single
measurement.

The probable error of the combined effects of accidental
errors from different causes is

PEs � �0.6745�s

�s � �√ 
d 2

n � 1

w
m

w

M

R
d
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TABLE 1 Probability of Error in a Single Measurement

Probability
Confidence of larger

Error level, % error 

Probable (0.6745�s) 50 1 in 2
Standard deviation (�s) 68.3 1 in 3
90% (1.6449�s) 90 1 in 10
2�s or 95.5% 95.5 1 in 20
3�s or 97.7% 99.7 1 in 370
Maximum (3.29�s) 99.9� 1 in 1000

where E1, E2, E3 . . . are probable errors of the separate
measurements.

Error of the mean is 

where Es � specified error of a single measurement.
Probable error of the mean is 

MEASUREMENT OF DISTANCE WITH TAPES

Reasonable precisions for different methods of measuring
distances are

PEm �
PEs

√n
� �0.6745√ 
d 2

n(n � 1)

Em �
Esum

n
�

Es√n

n
�

Es

√n

Esum � √E2
1 � E2

2 � E2
3 � � � �
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Pacing (ordinary terrain): to 

Taping (ordinary steel tape): to (Results can be
improved by use of tension apparatus, transit alignment,
leveling.)

Baseline (invar tape): to 

Stadia: to (with special procedures)

Subtense bar: to (for short distances, with a 1-s
theodolite, averaging angles taken at both ends)

Electronic distance measurement (EDM) devices have
been in use since the middle of the twentieth century and
have now largely replaced steel tape measurements on large
projects. The continued development, and the resulting drop
in prices, are making their use widespread. A knowledge of
steel-taping errors and corrections remains important, how-
ever, because use of earlier survey data requires a knowl-
edge of how the measurements were made, common sources
for errors, and corrections that were typically required.

For ordinary taping, a tape accurate to 0.01 ft (0.00305 m)
should be used. The tension of the tape should be about 15
lb (66.7 N). The temperature should be determined within
10°F (5.56°C); and the slope of the ground, within 2 per-
cent; and the proper corrections, applied. The correction to
be applied for temperature when using a steel tape is 

The correction to be made to measurements on a slope is

or

or  � h2/2s  approximate

 � 0.00015s�2  approximate

 Ch � s (1 � cos �)  exact

Ct � 0.0000065s(T � T0)

1�7000
1�1000

1�500
1�300

1�1,000,000
1�50,000

1�10,000
1�1000

1�100
1�50 w

f
t

T

w

40816_07_p243-256  10/22/01  12:47 PM  Page 248



SURVEYING FORMULAS 249

40816 HICKS Mcghp Chap_07 pgs 249 7/12/2001

e
,

s

e
d
e
p
f
-
-
s

)
5
n
-
o

where Ct � temperature correction to measured length, ft (m)

Ch � correction to be subtracted from slope dis-
tance, ft (m)

s � measured length, ft (m)

T � temperature at which measurements are made,
�F (�C)

T0 � temperature at which tape is standardized, �F (�C)

h � difference in elevation at ends of measured
length, ft (m)

� � slope angle, degree

In more accurate taping, using a tape standardized when
fully supported throughout, corrections should also be made for
tension and for support conditions. The correction for tension is

The correction for sag when not fully supported is 

where Cp � tension correction to measured length, ft (m)

Cs � sag correction to measured length for each
section of unsupported tape, ft (m)

Pm � actual tension, lb (N)

Ps � tension at which tape is standardized, lb (N)
(usually 10 lb) (44.4 N)

Cs �
w 2L3

24P 2
m

Cp �
(Pm � Ps)s

SE
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S � cross-sectional area of tape, in2 (mm2)

E � modulus of elasticity of tape, lb/in2 (MPa)
(29 million lb/in2 (MPa) for steel) (199,955 MPa)

w � weight of tape, lb/ft (kg/m)

L � unsupported length, ft (m)

Slope Corrections

In slope measurements, the horizontal distance H � L
cos x, where L � slope distance and x � vertical angle,
measured from the horizontal—a simple hand calculator
operation. For slopes of 10 percent or less, the correction to
be applied to L for a difference d in elevation between tape
ends, or for a horizontal offset d between tape ends, may be
computed from

For a slope greater than 10 percent, Cs may be determined from

Temperature Corrections

For incorrect tape length:

Ct �
(actual tape length � nominal tape length)L

nominal tape length

Cs �
d 2

2L
�

d 4

8L3

Cs �
d 2

2L

F

w
E
(

w
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t
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f
b
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For nonstandard tension:

where A � cross-sectional area of tape, in2 (mm2); and
E � modulus of elasticity � 29,000,00 lb/ in2 for steel
(199,955 MPa).

For sag correction between points of support, ft (m):

where w � weight of tape per foot, lb (N)

Ls � unsupported length of tape, ft (m)

P � pull on tape, lb (N)

Orthometric Correction

This is a correction applied to preliminary elevations due
to flattening of the earth in the polar direction. Its value is
a function of the latitude and elevation of the level circuit.

Curvature of the earth causes a horizontal line to depart
from a level surface. The departure Cf, ft, or Cm, (m), may
be computed from

 Cm � 0.0785K2

 Cf � 0.667M 2 � 0.0239F 2

C � �
w2 L3

s

24P2

Ct �
(applied pull � standard tension)L

AE
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where M, F, and K are distances in miles, thousands of feet,
and kilometers, respectively, from the point of tangency to
the earth.

Refraction causes light rays that pass through the earth’s
atmosphere to bend toward the earth’s surface. For horizon-
tal sights, the average angular displacement (like the sun’s
diameter) is about 32 min. The displacement Rf, ft, or Rm,
m, is given approximately by

To obtain the combined effect of refraction and curvature of
the earth, subtract Rf from Cf or Rm from Cm.

Borrow-pit or cross-section leveling produces elevations
at the corners of squares or rectangles with sides that are
dependent on the area to be covered, type of terrain, and
accuracy desired. For example, sides may be 10, 20, 40, 50,
or 100 ft (3.048, 6.09, 12.19, 15.24, or 30.48 m). Contours
can be located readily, but topographic features, not so well.
Quantities of material to be excavated or filled are com-
puted, in yd3 (m3), by selecting a grade elevation or final
ground elevation, computing elevation differences for the
corners, and substituting in

where n � number of times a particular corner enters as
part of a division block

x � difference in ground and grade elevation for
each corner, ft (m)

A � area of each block, ft2 (m2)

Q �
nxA

108

 Rm � 0.011K2

 Rf � 0.093M2 � 0.0033F 2
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VERTICAL CONTROL

The NGS provides vertical control for all types of surveys.
NGS furnishes descriptions and elevations of bench marks
on request. As given in “Standards and Specifications for
Geodetic Control Networks,” Federal Geodetic Control
Committee, the relative accuracy C, mm, required between
directly connected bench marks for the three orders of
leveling is

First order: for Class I and for Class II

Second order: for Class I and for Class II

Third order:

where K is the distance between bench marks, km.

STADIA SURVEYING

In stadia surveying, a transit having horizontal stadia
crosshairs above and below the central horizontal crosshair
is used. The difference in the rod readings at the stadia
crosshairs is termed the rod intercept. The intercept may
be converted to the horizontal and vertical distances
between the instrument and the rod by the following
formulas:

 V �
1

2
 Ki(sin 2a) � ( f � c) sin a

 H � Ki(cos a)2 � ( f � c) cos a

C � 2.0√K

1.3√KC � 1.0√K

0.7√KC � 0.5√K
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where H � horizontal distance between center of transit
and rod, ft (m)

V � vertical distance between center of transit and
point on rod intersected by middle horizontal
crosshair, ft (m)

K � stadia factor (usually 100)

i � rod intercept, ft (m)

a � vertical inclination of line of sight, measured
from the horizontal, degree

f � c � instrument constant, ft (m) (usually taken as
1 ft) (0.3048 m)

In the use of these formulas, distances are usually calculated
to the foot (meter) and differences in elevation to tenths of a
foot (meter).

Figure 7.1 shows stadia relationships for a horizontal
sight with the older type of external-focusing telescope.
Relationships are comparable for the internal-focusing type.

For horizontal sights, the stadia distance, ft, (m) (from
instrument spindle to rod), is

where R � intercept on rod between two sighting wires,
ft (m)

f � focal length of telescope, ft (m) (constant for
specific instrument)

i � distance between stadia wires, ft (m)

D � R 
f

i
� C

C

f
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P

P
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i
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FIGURE 7.1 Distance D is measured with an external-focusing
telescope by determining interval R intercepted on a rod AB by two
horizontal sighting wires a and b.
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C � f � c

c � distance from center of spindle to center of
objective lens, ft (m)

C is called the stadia constant, although c and C vary slightly.
The value of f/i, the stadia factor, is set by the manu-

facturer to be about 100, but it is not necessarily 100.00.
The value should be checked before use on important work,
or when the wires or reticle are damaged and replaced.

PHOTOGRAMMETRY

Photogrammetry is the art and science of obtaining reliable
measurements by photography (metric photogrammetry) and
qualitative evaluation of image data (photo interpretation). It
includes use of terrestrial, close-range, aerial, vertical, oblique,
strip, and space photographs along with their interpretation.

40816_07_p243-256  10/22/01  12:47 PM  Page 255



Scale formulas are as follows:

where f � focal length of lens, in (m)

H � flying height of airplane above datum (usually
mean sea level), ft (m)

h1 � elevation of point, line, or area with respect to
datum, ft (m)

 Photo scale �
ab

AB
�

f

H � h1

 
Photo scale

Map scale
�

photo distance

map distance
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PHYSICAL PROPERTIES OF SOILS

Basic soil properties and parameters can be subdivided into
physical, index, and engineering categories. Physical soil prop-
erties include density, particle size and distribution, specific
gravity, and water content.

The water content w of a soil sample represents the
weight of free water contained in the sample expressed as
a percentage of its dry weight.

The degree of saturation S of the sample is the ratio,
expressed as percentage, of the volume of free water con-
tained in a sample to its total volume of voids Vv.

Porosity n, which is a measure of the relative amount of
voids, is the ratio of void volume to the total volume V of
soil:

(8.1)

The ratio of Vv to the volume occupied by the soil particles
Vs defines the void ratio e. Given e, the degree of saturation
may be computed from

(8.2)

where Gs represents the specific gravity of the soil particles.
For most inorganic soils, Gs is usually in the range of 
2.67 � 0.05.

The dry unit weight �d of a soil specimen with any
degree of saturation may be calculated from

(8.3)�d �
�w Gs S

1 � wGs

S �
wGs

e

n �
Vv

V
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where �w is the unit weight of water and is usually taken
as 62.4 lb/ft3 (1001 kg/m3) for freshwater and 64.0 lb/ft3

(1026.7 kg/m3) for seawater.

INDEX PARAMETERS FOR SOILS

Index parameters of cohesive soils include liquid limit,
plastic limit, shrinkage limit, and activity. Such parameters
are useful for classifying cohesive soils and providing cor-
relations with engineering soil properties.

The liquid limit of cohesive soils represents a near-liquid
state, that is, an undrained shear strength about 0.01 lb/ft2

(0.0488 kg/m2). The water content at which the soil ceases
to exhibit plastic behavior is termed the plastic limit. The
shrinkage limit represents the water content at which no
further volume change occurs with a reduction in water
content. The most useful classification and correlation
parameters are the plasticity index Ip, the liquidity index Il,
the shrinkage index Is, and the activity Ac. These parameters
are defined in Table 8.1.

Relative density Dr of cohesionless soils may be expressed
in terms of void ratio e or unit dry weight �d:

(8.4)

(8.5)

Dr provides cohesionless soil property and parameter corre-
lations, including friction angle, permeability, compressibility,
small-strain shear modulus, cyclic shear strength, and so on.

 Dr �
1/�min � 1/�d

1/�min � 1/�max

 Dr �
emax � eo

emax � emin
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TABLE 8.1 Soil Indices

Index Definition† Correlation

Plasticity Ip � Wl � Wp Strength, compressibility, compactibility, and so forth

Liquidity Compressibility and stress rate

Shrinkage Is � Wp � Ws Shrinkage potential

Activity Swell potential, and so forth

† Wt � liquid limit; Wp � plastic limit; Wn � moisture content, %; Ws � shrinkage limit; � � percent of soil
finer than 0.002 mm (clay size).

Ac �
Ip

�

Il �
Wn � Wp

Ip
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RELATIONSHIP OF WEIGHTS AND 
VOLUMES IN SOILS

The unit weight of soil varies, depending on the amount
of water contained in the soil. Three unit weights are in gen-
eral use: the saturated unit weight �sat, the dry unit weight
�dry, and the buoyant unit weight �b:

Unit weights are generally expressed in pound per cubic
foot or gram per cubic centimeter. Representative values of
unit weights for a soil with a specific gravity of 2.73 and
a void ratio of 0.80 are

 �b � 60 lb/ft3  � 0.96 g/cm3

 �dry � 95 lb/ft3  � 1.52 g/cm3

 �sat � 122 lb/ft3 � 1.96 g/cm3

 �b �
(G � 1)�0

1 � e
  S � 100%

 �dry �
G�0

(1 � e)
  S � 0%

 �sat �
(G � e)�0

1 � e
�

(1 � w)G�0

1 � e
  S � 100%
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FIGURE 8.1 Relationship of weights and volumes in soil. 

The symbols used in the three preceding equations and in
Fig. 8.1 are

G � specific gravity of soil solids (specific gravity of
quartz is 2.67; for majority of soils specific gravity
ranges between 2.65 and 2.85; organic soils would
have lower specific gravities)

�0 � unit weight of water, 62.4 lb/ft3 (1.0 g/cm3)

e � voids ratio, volume of voids in mass of soil divided
by volume of solids in same mass; also equal to
n / (1 � n), where n is porosity—volume of voids
in mass of soil divided by total volume of same
mass

S � degree of saturation, volume of water in mass of
soil divided by volume of voids in same mass

w � water content, weight of water in mass of soil
divided by weight of solids in same mass; also
equal to Se /G

I
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INTERNAL FRICTION AND COHESION

The angle of internal friction for a soil is expressed by

where � � angle of internal friction

tan � � coefficient of internal friction

� � normal force on given plane in cohesionless
soil mass

� � shearing force on same plane when sliding on
plane is impending

For medium and coarse sands, the angle of internal friction
is about 30° to 35°. The angle of internal friction for clays
ranges from practically 0° to 20°.

The cohesion of a soil is the shearing strength that the
soil possesses by virtue of its intrinsic pressure. The value
of the ultimate cohesive resistance of a soil is usually desig-
nated by c. Average values for c are given in Table 8.2.

tan � �
�

�

TABLE 8.2 Cohesive Resistance of Various Soil Types

Cohesion c

General soil type lb/ft2 (kPa)

Almost-liquid clay 100 (4.8)
Very soft clay 200 (9.6)
Soft clay 400 (19.1)
Medium clay 1000 (47.8)
Damp, muddy sand 400 (19.1)
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VERTICAL PRESSURES IN SOILS

The vertical stress in a soil caused by a vertical, concentrated
surface load may be determined with a fair degree of
accuracy by the use of elastic theory. Two equations are in
common use, the Boussinesq and the Westergaard.
The Boussinesq equation applies to an elastic, isotropic,
homogeneous mass that extends infinitely in all directions
from a level surface. The vertical stress at a point in the
mass is

The Westergaard equation applies to an elastic material
laterally reinforced with horizontal sheets of negligible
thickness and infinite rigidity, which prevent the mass from
undergoing lateral strain. The vertical stress at a point in the
mass, assuming a Poisson’s ratio of zero, is

where �z � vertical stress at a point, lb/ft2 (kPa)

P � total concentrated surface load, lb (N)

z � depth of point at which �z acts, measured
vertically downward from surface, ft (m)

r � horizontal distance from projection of surface
load P to point at which �z acts, ft (m)

For values of r/z between 0 and 1, the Westergaard
equation gives stresses appreciably lower than those given

�z �
P


z2  �1 � 2 � r

z �
2

�
3/2

�z �
3P

2
z2  �1 � � r

z �
2

�
5/2

b
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by the Boussinesq equation. For values of r /z greater than
2.2, both equations give stresses less than P /100z2.

LATERAL PRESSURES IN SOILS, 
FORCES ON RETAINING WALLS

The Rankine theory of lateral earth pressures, used for
estimating approximate values for lateral pressures on
retaining walls, assumes that the pressure on the back of
a vertical wall is the same as the pressure that would exist
on a vertical plane in an infinite soil mass. Friction between
the wall and the soil is neglected. The pressure on a wall
consists of (1) the lateral pressure of the soil held by the
wall, (2) the pressure of the water (if any) behind the wall,
and (3) the lateral pressure from any surcharge on the soil
behind the wall.

Symbols used in this section are as follows:

� � unit weight of soil, lb/ft3 (kg/m3) (saturated unit
weight, dry unit weight, or buoyant unit weight,
depending on conditions)

P � total thrust of soil, lb/ linear ft (kg/ linear m) of
wall

H � total height of wall, ft (m)

� � angle of internal friction of soil, degree

i � angle of inclination of ground surface behind
wall with horizontal; also angle of inclination of
line of action of total thrust P and pressures on
wall with horizontal

KA � coefficient of active pressure
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KP � coefficient of passive pressure

c � cohesion, lb/ft2 (kPa)

LATERAL PRESSURE OF 
COHESIONLESS SOILS

For walls that retain cohesionless soils and are free to move
an appreciable amount, the total thrust from the soil is

When the surface behind the wall is level, the thrust is

where

The thrust is applied at a point H /3 above the bottom of the
wall, and the pressure distribution is triangular, with the maxi-
mum pressure of 2P /H occurring at the bottom of the wall.

For walls that retain cohesionless soils and are free to
move only a slight amount, the total thrust is 1.12P, where
P is as given earlier. The thrust is applied at the midpoint of
the wall, and the pressure distribution is trapezoidal, with
the maximum pressure of 1.4P /H extending over the mid-
dle six-tenth of the height of the wall.

 KA � �tan �45��
�

2 ��
2

 P � 1�2� H 2 KA

P �
1

2
 �H 2 cos i 

cos i � √(cos i)2 � (cos �)2

cos i � √(cos i)2 � (cos �)2

p

W

w
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For walls that retain cohesionless soils and are com-
pletely restrained (very rare), the total thrust from the soil is

When the surface behind the wall is level, the thrust is

where

The thrust is applied at a point H /3 above the bottom
of the wall, and the pressure distribution is triangular, with
the maximum pressure of 2P /H occurring at the bottom of
the wall.

LATERAL PRESSURE OF COHESIVE SOILS

For walls that retain cohesive soils and are free to move
a considerable amount over a long period of time, the total
thrust from the soil (assuming a level surface) is

or, because highly cohesive soils generally have small
angles of internal friction,

P � 1�2�H 2 � 2cH

P � 1�2�H 2 KA � 2cH √KA

 KP � �tan �45��
�

2 ��
2

 P � 1�2�H 2 KP

P �
1

2
 �H 2 cos i 

cos i � √(cos i)2 � (cos �)2

cos i � √(cos i)2 � (cos �)2

40816_08_p257-282  10/22/01  12:48 PM  Page 267



268 CHAPTER EIGHT

40816 HICKS Mcghp Chap_8 Pgs 268 7/12/2001

The thrust is applied at a point somewhat below H /3 from
the bottom of the wall, and the pressure distribution is approxi-
mately triangular.

For walls that retain cohesive soils and are free to move
only a small amount or not at all, the total thrust from the
soil is

because the cohesion would be lost through plastic flow.

WATER PRESSURE

The total thrust from water retained behind a wall is

where H � height of water above bottom of wall, ft (m); and
�0 � unit weight of water, lb/ft3 (62.4 lb/ft3 (1001 kg/m3) for
freshwater and 64 lb/ft3 (1026.7 kg/m3) for saltwater)

The thrust is applied at a point H /3 above the bottom of
the wall, and the pressure distribution is triangular, with the
maximum pressure of 2P /H occurring at the bottom of the
wall. Regardless of the slope of the surface behind the wall,
the thrust from water is always horizontal.

LATERAL PRESSURE FROM SURCHARGE

The effect of a surcharge on a wall retaining a cohesionless
soil or an unsaturated cohesive soil can be accounted for by
applying a uniform horizontal load of magnitude KAp over
the entire height of the wall, where p is the surcharge in

P � 1�2�0H 2

P � 1�2�H 2KP

p
s
a
z

S

C

A
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pound per square foot (kilopascal). For saturated cohesive
soils, the full value of the surcharge p should be considered
as acting over the entire height of the wall as a uniform hori-
zontal load. KA is defined earlier.

STABILITY OF SLOPES

Cohesionless Soils

A slope in a cohesionless soil without seepage of water is
stable if

With seepage of water parallel to the slope, and assuming
the soil to be saturated, an infinite slope in a cohesionless
soil is stable if

where i � slope of ground surface

� � angle of internal friction of soil

�b, �sat � unit weights, lb/ft3 (kg/m3)

Cohesive Soils

A slope in a cohesive soil is stable if

H �
C

�N

tan i � � �b

�sat
� tan �

i � �
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where H � height of slope, ft (m)

C � cohesion, lb/ft2 (kg/m2)

� � unit weight, lb/ft3 (kg/m3)

N � stability number, dimensionless

For failure on the slope itself, without seepage water,

Similarly, with seepage of water,

When the slope is submerged, � is the angle of internal
friction of the soil and � is equal to �b. When the surround-
ing water is removed from a submerged slope in a short
time (sudden drawdown), � is the weighted angle of internal
friction, equal to (�b /�sat)�, and � is equal to �sat.

BEARING CAPACITY OF SOILS

The approximate ultimate bearing capacity under a long
footing at the surface of a soil is given by Prandtl’s equa-
tion as

qu � � c

tan � � �
1

2
 �dry b √Kp (Kp e
 tan � � 1)

N � (cos i)2 �tan i � � �b

�sat
� tan ��

N � (cos i)2 (tan i � tan �)

w

c
T
0
d

S

T
a

w
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where qu � ultimate bearing capacity of soil, lb/ft2 (kg/m2)

c � cohesion, lb/ft2 (kg/m2)

� � angle of internal friction, degree

�dry � unit weight of dry soil, lb/ft3 (kg/m3)

b � width of footing, ft (m)

d � depth of footing below surface, ft (m)

Kp � coefficient of passive pressure 

�

e � 2.718 � � �

For footings below the surface, the ultimate bearing
capacity of the soil may be modified by the factor 1 � Cd /b.
The coefficient C is about 2 for cohesionless soils and about
0.3 for cohesive soils. The increase in bearing capacity with
depth for cohesive soils is often neglected.

SETTLEMENT UNDER FOUNDATIONS

The approximate relationship between loads on foundations
and settlement is

where q � load intensity, lb/ft2 (kg/m2)

P � settlement, in (mm)

q

P
� C1 �1 �

2d

b � �
C2

b

�tan �45 �
�

2 ��
2
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d � depth of foundation below ground surface, ft (m)

b � width of foundation, ft (m)

C1 � coefficient dependent on internal friction

C2 � coefficient dependent on cohesion

The coefficients C1 and C2 are usually determined by bearing-
plate loading tests.

SOIL COMPACTION TESTS

The sand-cone method is used to determine in the field the
density of compacted soils in earth embankments, road fill,
and structure backfill, as well as the density of natural soil
deposits, aggregates, soil mixtures, or other similar materials.
It is not suitable, however, for soils that are saturated, soft,
or friable (crumble easily).

Characteristics of the soil are computed from

Field density, lb/ft 3 (kg /m3) �
weight of soil, lb (kg)

volume of soil, ft3 (m3)

�
100(weight of moist soil � weight of dry soil)

weight of dry soil

% Moisture

�
weight of sand filling hole, lb (kg)

density of sand, lb/ft 3 (kg/m3)

Volume of soil, ft 3 (m3)

M
c

L

O
d
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b
m
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Maximum density is found by plotting a density–moisture
curve.

Load-Bearing Test

One of the earliest methods for evaluating the in situ
deformability of coarse-grained soils is the small-scale
load-bearing test. Data developed from these tests have
been used to provide a scaling factor to express the settle-
ment � of a full-size footing from the settlement �1 of a
1-ft2 (0.0929-m2) plate. This factor �/�1 is given as a function
of the width B of the full-size bearing plate as

From an elastic half-space solution, can be expressed
from results of a plate load test in terms of the ratio of bear-
ing pressure to plate settlement kv as

where � represents Poisson’s ratio, usually considered to
range between 0.30 and 0.40. The equation assumes that
�1 is derived from a rigid, 1-ft (0.3048-m)-diameter circular
plate and that B is the equivalent diameter of the bearing

Es�

Es� �
kv (1 � �2)
/4

4B/(1 � B)2

Es�

�

�1 � � 2B

1 � B �
2

 % Compaction �
100(dry density)

max dry density

 Dry density �
field density

1 � % moisture/100
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area of a full-scale footing. Empirical formulations, such as
the �/�1 equation, may be significantly in error because of the
limited footing-size range used and the large scatter of the
database. Furthermore, consideration is not given to varia-
tions in the characteristics and stress history of the bearing
soils.

California Bearing Ratio

The California bearing ratio (CBR) is often used as a meas-
ure of the quality of strength of a soil that underlies a pavement,
for determining the thickness of the pavement, its base, and
other layers.

where F � force per unit area required to penetrate a soil
mass with a 3-in2 (1935.6-mm2) circular piston (about 2 in
(50.8 mm) in diameter) at the rate of 0.05 in/min (1.27
mm/min); and F0 � force per unit area required for corre-
sponding penetration of a standard material.

Typically, the ratio is determined at 0.10-in (2.54-mm)
penetration, although other penetrations sometimes are used.
An excellent base course has a CBR of 100 percent. A com-
pacted soil may have a CBR of 50 percent, whereas a
weaker soil may have a CBR of 10.

Soil Permeability

The coefficient of permeability k is a measure of the rate of
flow of water through saturated soil under a given hydraulic

CBR �
F
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gradient i, cm/cm, and is defined in accordance with Darcy’s
law as

where V � rate of flow, cm3/s, and A � cross-sectional area
of soil conveying flow, cm2.

Coefficient k is dependent on the grain-size distribution,
void ratio, and soil fabric and typically may vary from as
much as 10 cm/s for gravel to less than 10–7 for clays. For
typical soil deposits, k for horizontal flow is greater than k
for vertical flow, often by an order of magnitude.

COMPACTION EQUIPMENT

A wide variety of equipment is used to obtain compaction
in the field. Sheepsfoot rollers generally are used on soils
that contain high percentages of clay. Vibrating rollers are
used on more granular soils.

To determine maximum depth of lift, make a test fill. In
the process, the most suitable equipment and pressure to be
applied, lb/in2 (kPa), for ground contact also can be deter-
mined. Equipment selected should be able to produce desired
compaction with four to eight passes. Desirable speed of
rolling also can be determined. Average speeds, mi/h (km/h),
under normal conditions are given in Table 8.3.

Compaction production can be computed from

where W � width of roller, ft (m)

S � roller speed, mi/h (km/h)

yd3/h (m3/h) �
16WSLFE

P

V � kiA
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TABLE 8.3 Average Speeds of Rollers

Type mi/h (km/h)

Grid rollers 12 (19.3)
Sheepsfoot rollers 3 (4.8)
Tamping rollers 10 (16.1)
Pneumatic rollers 8 (12.8)

L � lift thickness, in (mm)

F � ratio of pay yd3 (m3) to loose yd3 (m3)

E � efficiency factor (allows for time losses, such
as those due to turns): 0.90, excellent; 0.80,
average; 0.75, poor

P � number of passes

FORMULAS FOR EARTHMOVING

External forces offer rolling resistance to the motion of
wheeled vehicles, such as tractors and scrapers. The engine
has to supply power to overcome this resistance; the greater
the resistance is, the more power needed to move a load.
Rolling resistance depends on the weight on the wheels and
the tire penetration into the ground:

(8.6)

where R � rolling resistance, lb (N)

Rf � rolling-resistance factor, lb/ton (N/tonne)

R � Rf W � Rp pW

R
a
H

w

t
w

w

T
r

I
p
1

40816_08_p257-282  10/22/01  12:48 PM  Page 276



SOIL AND EARTHWORK FORMULAS 277

40816 HICKS Mcghp Chap_8 Pgs 277 7/12/2001

h
,

f
e
r
.
d

)

W � weight on wheels, ton (tonne)

Rp � tire-penetration factor, lb/ton�in (N/tonne�mm)
penetration

p � tire penetration, in (mm)

Rf usually is taken as 40 lb/ton (or 2 percent lb/lb) (173 N/t)
and Rp as 30 lb/ton�in (1.5% lb/lb�in) (3288 N/t�mm).
Hence, Eq. (8.6) can be written as

(8.7)

where � weight on wheels, lb (N); and � 2% � 1.5%p.
Additional power is required to overcome rolling resis-

tance on a slope. Grade resistance also is proportional to
weight:

(8.8)

where G � grade resistance, lb (N)

Rg � grade-resistance factor � 20 lb/ton (86.3 N/t)
� 1% lb/lb (N/N)

s � percent grade, positive for uphill motion,
negative for downhill

Thus, the total road resistance is the algebraic sum of the
rolling and grade resistances, or the total pull, lb (N), required:

(8.9)

In addition, an allowance may have to be made for loss of
power with altitude. If so, allow 3 percent pull loss for each
1000 ft (305 m) above 2500 ft (762 m).

T � (R� � Rg s)W� � (2% � 1.5%p � 1%s)W�

G � Rg sW

R�W�

R � (2% � 1.5%p) W� � R�W�
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Usable pull P depends on the weight W on the drivers:

(8.10)

where f � coefficient of traction.

Earth Quantities Hauled

When soils are excavated, they increase in volume, or swell,
because of an increase in voids:

(8.11)

where Vb � original volume, yd3 (m3), or bank yards

VL � loaded volume, yd3 (m3), or loose yards

L � load factor

When soils are compacted, they decrease in volume:

(8.12)

where Vc � compacted volume, yd3 (m3); and S � shrinkage
factor.

Bank yards moved by a hauling unit equals weight of load,
lb (kg), divided by density of the material in place, lb (kg), per
bank yard (m3).

SCRAPER PRODUCTION

Production is measured in terms of tons or bank cubic yards
(cubic meters) of material a machine excavates and dis-
charges, under given job conditions, in 1 h.

Vc � Vb S

Vb � VL L �
100

100 � % swell
 VL

P � f W
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Production, bank yd3/h (m3/h) � load, yd3 (m3) � trips per hour

The load, or amount of material a machine carries, can
be determined by weighing or estimating the volume. Pay-
load estimating involves determination of the bank cubic
yards (cubic meters) being carried, whereas the excavated
material expands when loaded into the machine. For deter-
mination of bank cubic yards (cubic meters) from loose vol-
ume, the amount of swell or the load factor must be known.

Weighing is the most accurate method of determining the
actual load. This is normally done by weighing one wheel or
axle at a time with portable scales, adding the wheel or axle
weights, and subtracting the weight empty. To reduce error,
the machine should be relatively level. Enough loads should
be weighed to provide a good average:

Equipment Required

To determine the number of scrapers needed on a job,
required production must first be computed:

�
quantity, bank yd3 (m3)

working time, h

Production required, yd3/h (m3/h)

Bank yd3 �
weight of load, lb (kg)

density of material, lb/bank yd3 (kg/m3)

Trips per hour �
working time, min/h

cycle time, min

40816_08_p257-282  10/22/01  12:48 PM  Page 279



280 CHAPTER EIGHT

40816 HICKS Mcghp Chap_8 Pgs 280 7/12/2001

Because speeds and distances may vary on haul and
return, haul and return times are estimated separately.

Haul speed may be obtained from the equipment specifi-
cation sheet when the drawbar pull required is known.

VIBRATION CONTROL IN BLASTING

Explosive users should take steps to minimize vibration and
noise from blasting and protect themselves against damage
claims.

Vibrations caused by blasting are propagated with a
velocity V, ft /s (m/s), frequency f, Hz, and wavelength L,
ft (m), related by

 �
haul distance, m

16.7 � speed, km/h
�

return distance, m

16.7 � speed, km/h

 �
haul distance, ft

88 � speed, mi/h
�

return distance, ft

88 � speed, mi/h

Variable time, min

�
scraper cycle time, min

pusher cycle time, min

No. of scrapers a pusher can load

�
production required, yd3/h (m3/h)

production per unit, yd3/h (m3/h)

No. of scrapers needed

V
v
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w
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Velocity v, in/s (mm/s), of the particles disturbed by the
vibrations depends on the amplitude of the vibrations A,
in (mm):

If the velocity v1 at a distance D1 from the explosion is
known, the velocity v2 at a distance D2 from the explosion
may be estimated from

The acceleration a, in/s2 (mm/s2), of the particles is given by

For a charge exploded on the ground surface, the overpres-
sure P, lb/in2 (kPa), may be computed from

where W � maximum weight of explosives, lb (kg) per delay;
and D � distance, ft (m), from explosion to exposure.

The sound pressure level, decibels, may be computed from

For vibration control, blasting should be controlled with the
scaled-distance formula:

dB � � P

6.95 � 10�28 �
0.084

P � 226.62 � W1/3

D �
1.407

a � 4
 2 f 2A

v2 
 v1 � D1

D2
�

1.5

v � 2
fA

L �
V

f
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where � � constant (varies for each site), and H � constant
(varies for each site).

Distance to exposure, ft (m), divided by the square root of
maximum pounds (kg) per delay is known as scaled distance.

Most courts have accepted the fact that a particle velocity
not exceeding 2 in/s (50.8 mm/s) does not damage any part
of any structure. This implies that, for this velocity, vibration
damage is unlikely at scaled distances larger than 8.

v � H � D

√W �
��
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LOAD-AND-RESISTANCE FACTOR 
DESIGN FOR SHEAR IN BUILDINGS

Based on the American Institute of Steel Construction (AISC)
specifications for load-and-resistance factor design (LRFD)
for buildings, the shear capacity Vu, kip (kN � 4.448 � kip),
of flexural members may be computed from the following:

where Fyw � specified minimum yield stress of web,
ksi (MPa � 6.894 � ksi)

Aw � web area, in2 (mm2) � dtw

� �

k � 5 if a/h exceeds 3.0 or 67,600/(h/tw)2, or if
stiffeners are not required

� 5 � 5/(a /h)2, otherwise 

Stiffeners are required when the shear exceeds Vu. In
unstiffened girders, h/tw may not exceed 260. In girders
with stiffeners, maximum h/tw permitted is for

or for , where
Fyf is the specified minimum yield stress, ksi, of the flange.

a/h > 1.514,000/√Fyf (Fyf � 16.5)a/h � 1.5
2,000/√Fyf

187√k /Fyw

 Vu �
23,760kAw

(h/tw)2    when  h

tw

	 1.25�

 Vu �
0.54�Fyw Aw

h/tw

  when  � �
h

tw

� 1.25�

 Vu � 0.54Fyw Aw   when  h

tw

� �
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TABLE 9.1 Values of Cc

Fy Cc

36 126.1
50 107.0

For shear capacity with tension-field action, see the AISC
specification for LRFD.

ALLOWABLE-STRESS DESIGN FOR 
BUILDING COLUMNS

The AISC specification for allowable-stress design (ASD) for
buildings provides two formulas for computing allowable
compressive stress Fa, ksi (MPa), for main members. The
formula to use depends on the relationship of the largest
effective slenderness ratio Kl/r of the cross section of any
unbraced segment to a factor Cc defined by the following
equation and Table 9.1:

where E � modulus of elasticity of steel

� 29,000 ksi (128.99 GPa)

Fy � yield stress of steel, ksi (MPa) 

When Kl/r is less than Cc,

Cc �√ 2
2E

Fy

�
756.6

√Fy

p 284
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FIGURE 9.1 Values of effective-length factor K for columns.

where F.S. � safety factor � . 

When Kl /r exceeds Cc,

The effective-length factor K, equal to the ratio of effec-
tive-column length to actual unbraced length, may be
greater or less than 1.0. Theoretical K values for six ideal-
ized conditions, in which joint rotation and translation are
either fully realized or nonexistent, are tabulated in Fig. 9.1.

Fa �
12
 2E

23(Kl/r)2 �
150,000

(Kl/r)2

5

3
�

3(Kl/r)

8Cc

�
(Kl/r)3

8C3
c

Fa �
�1 �

(Kl/r)2

2C2
c
� Fy

F.S.
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LOAD-AND-RESISTANCE FACTOR DESIGN
FOR BUILDING COLUMNS

Plastic analysis of prismatic compression members in
buildings is permitted if does not exceed 800 and
Fu � 65 ksi (448 MPa). For axially loaded members with
b/t � �r, the maximum load Pu, ksi (MPa � 6.894 � ksi),
may be computed from

where Ag � gross cross-sectional area of the member

Fcr � 0.658�Fy for � � 2.25

� 0.877 Fy /� for � 	 2.25

� � (Kl /r)2(Fy /286,220) 

The AISC specification for LRFD presents formulas for
designing members with slender elements.

ALLOWABLE-STRESS DESIGN FOR 
BUILDING BEAMS

The maximum fiber stress in bending for laterally sup-
ported beams and girders is Fb � 0.66Fy if they are com-
pact, except for hybrid girders and members with yield
points exceeding 65 ksi (448.1 MPa). Fb � 0.60Fy for non-
compact sections. Fy is the minimum specified yield strength
of the steel, ksi (MPa). Table 9.2 lists values of Fb for two
grades of steel.

Pu � 0.85AgFcr

√Fy (l/r)

p 286

-
e
-
e
.
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TABLE 9.2 Allowable Bending Stresses in Braced
Beams for Buildings

Yield strength, Compact, Noncompact,
ksi (MPa) 0.66Fy (MPa) 0.60Fy (MPa)

36 (248.2) 24 (165.5) 22 (151.7) 
50 (344.7) 33 (227.5) 30 (206.8)

The allowable extreme-fiber stress of 0.60Fy applies to
laterally supported, unsymmetrical members, except chan-
nels, and to noncompact box sections. Compression on outer
surfaces of channels bent about their major axis should not
exceed 0.60Fy or the value given by Eq. (9.5).

The allowable stress of 0.66Fy for compact members
should be reduced to 0.60Fy when the compression flange is
unsupported for a length, in (mm), exceeding the smaller of

(9.1)

(9.2)

where bf � width of compression flange, in (mm) 

d � beam depth, in (mm) 

Af � area of compression flange, in2 (mm2)  

The allowable stress should be reduced even more when
l/rT exceeds certain limits, where l is the unbraced length,
in (mm), of the compression flange, and rT is the radius of
gyration, in (mm), of a portion of the beam consisting of

 lmax �
20,000

Fyd/Af

 lmax �
76.0bf

√Fy
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the compression flange and one-third of the part of the web
in compression.

For , use 

(9.3)

For , use

(9.4)

where Cb � modifier for moment gradient (Eq. 9.6).
When, however, the compression flange is solid and

nearly rectangular in cross section, and its area is not less
than that of the tension flange, the allowable stress may be
taken as 

(9.5)

When Eq. (9.5) applies (except for channels), Fb should be
taken as the larger of the values computed from Eqs. (9.5)
and (9.3) or (9.4), but not more than 0.60Fy. 

The moment-gradient factor Cb in Eqs. (9.1) to (9.5)
may be computed from

(9.6)

where M1 � smaller beam end moment, and M2 � larger
beam end moment.

The algebraic sign of M1 /M2 is positive for double-
curvature bending and negative for single-curvature bending.
When the bending moment at any point within an unbraced

Cb � 1.75 � 1.05 
M1

M2
� 0.3 � M1

M2
�

2

� 2.3

Fb �
12,000Cb

ld /Af

Fb �
170,000Cb

(l/rT)2

l/rT 	 √510,000Cb/Fy

Fb � � 2

3
�

Fy(l/rT)2

1,530,000Cb
� Fy

√102,000Cb/Fy � l/rT � √510,00Cb /Fy

p 288

o
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length is larger than that at both ends, the value of Cb

should be taken as unity. For braced frames, Cb should be
taken as unity for computation of Fbx and Fby. 

Equations (9.4) and (9.5) can be simplified by introduc-
ing a new term:

(9.7)

Now, for 0.2 � Q � 1,

(9.8)

For Q 	 1:

(9.9)

As for the preceding equations, when Eq. (9.1) applies
(except for channels), Fb should be taken as the largest of
the values given by Eqs. (9.1) and (9.8) or (9.9), but not
more than 0.60Fy. 

LOAD-AND-RESISTANCE FACTOR 
DESIGN FOR BUILDING BEAMS

For a compact section bent about the major axis, the
unbraced length Lb of the compression flange, where plastic
hinges may form at failure, may not exceed Lpd , given by
Eqs. (9.10) and (9.11) that follow. For beams bent about the
minor axis and square and circular beams, Lb is not restricted
for plastic analysis.

Fb �
Fy

3Q

Fb �
(2 � Q)Fy

3

Q �
(l/rT)2Fy

510,000Cb
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For I-shaped beams, symmetrical about both the major
and the minor axis or symmetrical about the minor axis but
with the compression flange larger than the tension flange,
including hybrid girders, loaded in the plane of the web:

(9.10)

where Fyc � minimum yield stress of compression flange,
ksi (MPa)

M1 � smaller of the moments, in�kip (mm�MPa)
at the ends of the unbraced length of beam

Mp � plastic moment, in�kip (mm�MPa) 

ry � radius of gyration, in (mm), about minor axis

The plastic moment Mp equals Fy Z for homogeneous sec-
tions, where Z � plastic modulus, in3 (mm3); and for hybrid
girders, it may be computed from the fully plastic distribu-
tion. M1/Mp is positive for beams with reverse curvature. 

For solid rectangular bars and symmetrical box beams:

The flexural design strength 0.90Mn is determined by the
limit state of lateral-torsional buckling and should be calcu-
lated for the region of the last hinge to form and for regions
not adjacent to a plastic hinge. The specification gives for-
mulas for Mn that depend on the geometry of the section and
the bracing provided for the compression flange.

For compact sections bent about the major axis, for
example, Mn depends on the following unbraced lengths:

Lpd �
5000 � 3000(M1/Mp)

Fy

 ry � 3000 
ry

Fy

 (9.11)

Lpd �
3600 � 2200(M1/Mp)

Fyc

 ry

p 290
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Lb � the distance, in (mm), between points braced
against lateral displacement of the compression
flange or between points braced to prevent twist

Lp � limiting laterally unbraced length, in (mm), for
full plastic-bending capacity

� for I shapes and channels

� for solid rectangular bars and
box beams

Fyf � flange yield stress, ksi (MPa) 

J � torsional constant, in4 (mm4) (see AISC “Manual
of Steel Construction” on LRFD)

A � cross-sectional area, in2 (mm2) 

Lr � limiting laterally unbraced length, in (mm), for
inelastic lateral buckling

For I-shaped beams symmetrical about the major or the
minor axis, or symmetrical about the minor axis with the
compression flange larger than the tension flange and chan-
nels loaded in the plane of the web:

(9.12)

where Fyw � specified minimum yield stress of web,
ksi (MPa)

Fr � compressive residual stress in flange

� 10 ksi (68.9 MPa) for rolled shapes, 16.5
ksi (113.6 MPa), for welded sections

FL � smaller of Fyf � Fr or Fyw

Fyf � specified minimum yield stress of flange,
ksi (MPa) 

Lr �
ry x1

Fyw � Fr

 √1 � √1 � X2 FL
2

3750(ry /Mp)/√JA

300ry / √Fyf
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X1 �

X2 � (4Cw/Iy) (Sx/GJ)2

E � elastic modulus of the steel

G � shear modulus of elasticity

Sx � section modulus about major axis, in3 (mm3)
(with respect to the compression flange if
that flange is larger than the tension flange)

Cw � warping constant, in6 (mm6) (see AISC manual
on LRFD)

Iy � moment of inertia about minor axis, in4 (mm4) 

For the previously mentioned shapes, the limiting buckling
moment Mr, ksi (MPa), may be computed from

(9.13)

For compact beams with Lb � Lr, bent about the major
axis:

where Cb � 1.75 � 1.05(M1 /M2) � 0.3(M1 /M2) � 2.3,
where M1 is the smaller and M2 the larger end moment in
the unbraced segment of the beam; M1/M2 is positive for
reverse curvature and equals 1.0 for unbraced cantilevers
and beams with moments over much of the unbraced seg-
ment equal to or greater than the larger of the segment end
moments.

Mn � Cb �Mp � (Mp � Mr) 
Lb � Lp

Lr � Lp
� � Mp (9.14)

Mr � FL Sx

(
/Sx)√EGJA/2

p 292

e
e
-

)

,

5

,
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(See Galambos, T. V., Guide to Stability Design Criteria
for Metal Structures, 4th ed., John Wiley & Sons, New York,
for use of larger values of Cb.) 

For solid rectangular bars bent about the major axis:

(9.15)

and the limiting buckling moment is given by:

(9.16)

For symmetrical box sections loaded in the plane of sym-
metry and bent about the major axis, Mr should be deter-
mined from Eq. (9.13) and Lr from Eq. (9.15) 

For compact beams with Lb > Lr, bent about the major
axis:

(9.17)

where Mcr � critical elastic moment, kip�in (MPa�mm). 
For shapes to which Eq. (9.17) applies:

(9.18)

For solid rectangular bars and symmetrical box sections:

(9.19)

For determination of the flexural strength of noncompact
plate girders and other shapes not covered by the preceding
requirements, see the AISC manual on LRFD.

Mcr �
57,000Cb √JA

Lb / ry

Mcr � Cb 



Lb

 √EIy GJ � Iy Cw � 
E

Lb
�

2

Mn � Mcr � Cb Mr

Mr � Fy Sx

Lr � 57,000 � ry

Mr
� √JA
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ALLOWABLE-STRESS DESIGN FOR SHEAR
IN BUILDINGS

The AISC specification for ASD specifies the following
allowable shear stresses Fv, ksi (ksi � 6.894 � MPa):

where Cv � 45,000kv /Fy(h/tw)2 for Cv � 0.8 

� for Cv 	 0.8 

kv � 4.00 � 5.34/(a /h)2 for a /h � 1.0

� 5.34 � 4.00/(a /h)2 for a /h 	 1.0

a � clear distance between transverse stiffeners 

The allowable shear stress with tension-field action is

When the shear in the web exceeds Fv, stiffeners are required.
Within the boundaries of a rigid connection of two or

more members with webs lying in a common plane, shear
stresses in the webs generally are high. The commentary on
the AISC specification for buildings states that such webs
should be reinforced when the calculated shear stresses,

where  Cv � 1

 Fv �
Fy

289
 �Cv �

1 � Cv

1.15√1 � (a/h)2 � � 0.40Fy

√36,000kv /Fy(h/tw)2

 Fv �
Cv Fy

289
� 0.40Fy  h

tw

	
380

√Fy

 Fv � 0.40Fy  h

tw

�
380

√Fy

p 294
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FIGURE 9.2 Rigid connection of steel members with webs in a
common plane.

such as those along plane AA in Fig. 9.2, exceed Fv, that is,
when 
F is larger than dctwFv, where dc is the depth and tw

is the web thickness of the member resisting 
F. The shear
may be calculated from

where Vs � shear on the section

M1 � M1L � M1G

M1L � moment due to the gravity load on the leeward
side of the connection


F �
M1

0.95d1
�

M2

0.95d2
� Vs
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M1G � moment due to the lateral load on the leeward
side of the connection 

M2 � M2L � M2G

M2L � moment due to the lateral load on the wind-
ward side of the connection

M2G � moment due to the gravity load on the wind-
ward side of the connection

STRESSES IN THIN SHELLS

Results of membrane and bending theories are expressed in
terms of unit forces and unit moments, acting per unit of
length over the thickness of the shell. To compute the unit
stresses from these forces and moments, usual practice is to
assume normal forces and shears to be uniformly distrib-
uted over the shell thickness and bending stresses to be lin-
early distributed.

Then, normal stresses can be computed from equations
of the form:

(9.20)

where z � distance from middle surface

t � shell thickness

Mx � unit bending moment about an axis parallel to
direction of unit normal force Nx

fx �
Nx

t
�

Mx

t 3/12
 z

p 296
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,
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Similarly, shearing stresses produced by central shears T
and twisting moments D may be calculated from equations
of the form:

(9.21)

Normal shearing stresses may be computed on the
assumption of a parabolic stress distribution over the shell
thickness:

(9.22)

where V � unit shear force normal to middle surface.

BEARING PLATES

To resist a beam reaction, the minimum bearing length N in
the direction of the beam span for a bearing plate is deter-
mined by equations for prevention of local web yielding
and web crippling. A larger N is generally desirable but is
limited by the available wall thickness.

When the plate covers the full area of a concrete sup-
port, the area, in2 (mm2), required by the bearing plate is 

where R � beam reaction, kip (kN), � specified com-
pressive strength of the concrete, ksi (MPa). When the plate
covers less than the full area of the concrete support, then,
as determined from Table 9.3,

fc�

A1 �
R

0.35 f c�

vxz �
V

t 3/6
 � t 2

4
� z2�

vxy �
T

t
�

D

t3/12
 z
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where A2 � full cross-sectional area of concrete support,
in2 (mm2).

With N established, usually rounded to full inches (milli-
meters), the minimum width of plate B, in (mm), may be
calculated by dividing A1 by N and then rounded off to full
inches (millimeters), so that BN � A1. Actual bearing pres-
sure fp, ksi (MPa), under the plate then is

The plate thickness usually is determined with the assump-
tion of cantilever bending of the plate:

t � � 1

2
 B � k� √ 3fp

Fb

fp �
R

BN

A1 � � R

0.35 fc�  √A2
�

2

TABLE 9.3 Allowable Bearing Stress, Fp, on Concrete and
Masonry†

Full area of concrete support

Less than full area of concrete
support

Sandstone and limestone 0.40

Brick in cement mortar 0.25

† Units in MPa � 6.895 � ksi.

0.35fc� √ A1

A2
� 0.70fc�

0.35fc�

p 298
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where t � minimum plate thickness, in (mm)

k � distance, in (mm), from beam bottom to top of
web fillet

Fb � allowable bending stress of plate, ksi (MPa)

COLUMN BASE PLATES

The area A1, in2 (mm2), required for a base plate under a col-
umn supported by concrete should be taken as the larger of
the values calculated from the equation cited earlier, with R
taken as the total column load, kip (kN), or

Unless the projections of the plate beyond the column are
small, the plate may be designed as a cantilever assumed to
be fixed at the edges of a rectangle with sides equal to
0.80b and 0.95d, where b is the column flange width, in
(mm), and d is the column depth, in (mm).

To minimize material requirements, the plate projections
should be nearly equal. For this purpose, the plate length N,
in (mm) (in the direction of d), may be taken as

The width B, in (mm), of the plate then may be calculated
by dividing A1 by N. Both B and N may be selected in full
inches (millimeters) so that BN � A1. In that case, the bearing
pressure fp, ksi (MPa), may be determined from the preceding

N � √A1 � 0.5(0.95d � 0.80b)

A1 �
R

0.70 fc�
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equation. Thickness of plate, determined by cantilever
bending, is given by

where Fy � minimum specified yield strength, ksi (MPa), of
plate; and p � larger of 0.5(N � 0.95d) and 0.5(B � 0.80b).

When the plate projections are small, the area A2 should be
taken as the maximum area of the portion of the supporting
surface that is geometrically similar to and concentric with the
loaded area. Thus, for an H-shaped column, the column load
may be assumed distributed to the concrete over an H-shaped
area with flange thickness L, in (mm), and web thickness 2L:

where Fp � allowable bearing pressure, ksi (MPa), on support.
(If L is an imaginary number, the loaded portion of the sup-
porting surface may be assumed rectangular as discussed ear-
lier.) Thickness of the base plate should be taken as the larger
of the values calculated from the preceding equation and

BEARING ON MILLED SURFACES

In building construction, allowable bearing stress for milled
surfaces, including bearing stiffeners, and pins in reamed,
drilled, or bored holes, is Fp � 0.90Fy, where Fy is the yield
strength of the steel, ksi (MPa).

t � L √ 3fp

Fb

L �
1

4
 (d � b) �

1

4
 √(d � b)2 �

4R

Fp

t � 2p √ fp

Fy

p 300
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For expansion rollers and rockers, the allowable bearing
stress, kip/linear in (kN/mm), is

where d is the diameter, in (mm), of the roller or rocker.
When parts in contact have different yield strengths, Fy is
the smaller value.

PLATE GIRDERS IN BUILDINGS

For greatest resistance to bending, as much of a plate girder
cross section as practicable should be concentrated in the
flanges, at the greatest distance from the neutral axis. This
might require, however, a web so thin that the girder would
fail by web buckling before it reached its bending capacity.
To preclude this, the AISC specification limits h/t.

For an unstiffened web, this ratio should not exceed

where Fy � yield strength of compression flange, ksi (MPa).
Larger values of h/t may be used, however, if the web is

stiffened at appropriate intervals.
For this purpose, vertical angles may be fastened to the

web or vertical plates welded to it. These transverse stiffeners
are not required, though, when h/t is less than the value
computed from the preceding equation or Table 9.4.

h

t
�

14,000

√Fy (Fy � 16.5)

Fp �
Fy � 13

20
 0.66d
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TABLE 9.4 Critical h/t for Plate Girders in Buildings

Fy, ksi (MPa)

36 (248) 322 333
50 (345) 243 283

2,000

√Fy

14,000

√Fy (Fy � 16.5)

With transverse stiffeners spaced not more than 1.5 times
the girder depth apart, the web clear-depth/thickness ratio
may be as large as

If, however, the web depth/thickness ratio h/t exceeds
, where Fb, ksi (MPa), is the allowable bending

stress in the compression flange that would ordinarily
apply, this stress should be reduced to , given by the fol-
lowing equations:

where Aw � web area, in2 (mm2)

Af � area of compression flange, in2 (mm2)

 Re � � 12 � (Aw/Af)(3� � �3)

12 � 2(Aw /Af) � � 1.0

 RPG � �1 � 0.0005 
Aw

Af

 � h

t
�

760

√Fb
�� � 1.0

 Fb� � RPGRe Fb

Fb�

760/ √Fb

h

t
�

2000

√Fy
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� � 0.6Fyw /Fb � 1.0

Fyw � minimum specified yield stress, ksi, (MPa), of
web steel

In a hybrid girder, where the flange steel has a higher yield
strength than the web, the preceding equation protects against
excessive yielding of the lower strength web in the vicinity of
the higher strength flanges. For nonhybrid girders, Re � 1.0.

LOAD DISTRIBUTION TO BENTS
AND SHEAR WALLS

Provision should be made for all structures to transmit lateral
loads, such as those from wind, earthquakes, and traction
and braking of vehicles, to foundations and their supports
that have high resistance to displacement. For this purpose,
various types of bracing may be used, including struts,
tension ties, diaphragms, trusses, and shear walls.

Deflections of Bents and Shear Walls

Horizontal deflections in the planes of bents and shear
walls can be computed on the assumption that they act as
cantilevers. Deflections of braced bents can be calculated
by the dummy-unit-load method or a matrix method.
Deflections of rigid frames can be computed by adding the
drifts of the stories, as determined by moment distribution
or a matrix method.

For a shear wall (Fig. 9.3), the deflection in its plane
induced by a load in its plane is the sum of the flexural
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FIGURE 9.3 Building frame resists lateral forces with (a) wind bents
or (g) shear walls or a combination of the two. Bents may be braced in
any of several ways, including (b) X bracing, (c) K bracing, (d) inverted
V bracing, (e) knee bracing, and ( f ) rigid connections.

deflection as a cantilever and the deflection due to shear.
Thus, for a wall with solid rectangular cross section, the
deflection at the top due to uniform load is

where w � uniform lateral load

H � height of the wall

E � modulus of elasticity of the wall material

t � wall thickness

L � length of wall

� �
1.5wH

Et
 �� H

L �
3

�
H

L �
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For a shear wall with a concentrated load P at the top, the
deflection at the top is

If the wall is fixed against rotation at the top, however, the
deflection is

Units used in these equations are those commonly
applied in United States Customary System (USCS) and the
System International (SI) measurements, that is, kip (kN),
lb/in2 (MPa), ft (m), and in (mm).

Where shear walls contain openings, such as those for
doors, corridors, or windows, computations for deflection
and rigidity are more complicated. Approximate methods,
however, may be used.

COMBINED AXIAL COMPRESSION
OR TENSION AND BENDING

The AISC specification for allowable stress design for
buildings includes three interaction formulas for combined
axial compression and bending.

When the ratio of computed axial stress to allowable
axial stress fu /Fa exceeds 0.15, both of the following equa-
tions must be satisfied:

�f �
P

Et
 �� H

L �
3

� 3 
H

L �

�c �
4P

Et
 �� H

L �
3

� 0.75 
H

L �
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When fa /Fa � 0.15, the following equation may be used
instead of the preceding two:

In the preceding equations, subscripts x and y indicate the
axis of bending about which the stress occurs, and

Fa � axial stress that would be permitted if axial force
alone existed, ksi (MPa)

Fb � compressive bending stress that would be permit-
ted if bending moment alone existed, ksi (MPa)

� , ksi (MPa); as for Fa, Fb, and
0.6Fy, may be increased one-third for wind
and seismic loads

lb � actual unbraced length in plane of bending, in (mm)

rb � radius of gyration about bending axis, in (mm)

K � effective-length factor in plane of bending

fa � computed axial stress, ksi (MPa)

fb � computed compressive bending stress at point
under consideration, ksi (MPa)

Cm � adjustment coefficient

Fe�
149,000/(Klb /rb)2Fe�

fa

Fa

�
fbx

Fbx

�
fby

Fby

� 1

 
fa

0.60Fy

�
fbx

Fbx

�
fby

Fby

� 1

 
fa

Fa

�
Cmx fbx

(1 � fa / F�ex)Fbx

�
Cmy fby

(1 � fa / F�ey)Fby

� 1
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FIGURE 9.4 For investigating web yielding, stresses are assumed to
be distributed over lengths of web indicated at the bearings, where N is
the length of bearing plates, and k is the distance from outer surface of
beam to the toe of the fillet.

WEBS UNDER CONCENTRATED LOADS

Criteria for Buildings

The AISC specification for ASD for buildings places a limit
on compressive stress in webs to prevent local web yield-
ing. For a rolled beam, bearing stiffeners are required at a
concentrated load if the stress fa, ksi (MPa), at the toe of the
web fillet exceeds Fa � 0.66Fyw, where Fyw is the minimum
specified yield stress of the web steel, ksi (MPa). In the cal-
culation of the stressed area, the load may be assumed dis-
tributed over the distance indicated in Fig. 9.4.

For a concentrated load applied at a distance larger than
the depth of the beam from the end of the beam:

fa �
R

tw (N � 5k)
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where R � concentrated load of reaction, kip (kN)

tw � web thickness, in (mm)

N � length of bearing, in (mm), (for end reaction,
not less than k)

k � distance, in (mm), from outer face of flange to
web toe of fillet

For a concentrated load applied close to the beam end:

To prevent web crippling, the AISC specification
requires that bearing stiffeners be provided on webs where
concentrated loads occur when the compressive force
exceeds R, kip (kN), computed from the following:

For a concentrated load applied at a distance from the beam
end of at least d/2, where d is the depth of beam:

where tf � flange thickness, in (mm)

For a concentrated load applied closer than d/2 from the
beam end:

If stiffeners are provided and extend at least one-half of the
web, R need not be computed.

R � 34t2
w �1 � 3 � N

d �� tw

tf
�

1.5

� √Fyw tf / tw

R � 67.5t2
w �1 � 3 � N

d �� tw

tf
�

1.5

� √Fyw tf /tw

fa �
R

tw (N � 2.5k)
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Another consideration is prevention of sidesway web
buckling. The AISC specification requires bearing stiffeners
when the compressive force from a concentrated load
exceeds limits that depend on the relative slenderness of
web and flange rwf and whether or not the loaded flange is
restrained against rotation:

where l � largest unbraced length, in (mm), along either
top or bottom flange at point of application of
load

bf � flange width, in (mm)

dc � web depth clear of fillets � d � 2k

Stiffeners are required if the concentrated load exceeds R,
kip (kN), computed from

where h � clear distance, in (mm), between flanges, and rwf

is less than 2.3 when the loaded flange is restrained against
rotation. If the loaded flange is not restrained and rwf is less
than 1.7,

R need not be computed for larger values of rwf.

R � 0.4r3
wf 

6800t3
w

h
 

R �
6800t 3

w

h
 (1 � 0.4r 3

wf)

rwf �
dc /tw

l / bf

40816_09_p283-320  10/22/01  12:49 PM  Page 310



BUILDING AND STRUCTURES FORMULAS 311

40816 HICKS Mcghp Ch09 THIRD PASS bcj 07/12/01 p 311

DESIGN OF STIFFENERS UNDER LOADS

AISC requires that fasteners or welds for end connections
of beams, girders, and trusses be designed for the combined
effect of forces resulting from moment and shear induced
by the rigidity of the connection. When flanges or moment-
connection plates for end connections of beams and girders
are welded to the flange of an I- or H-shape column, a pair of
column-web stiffeners having a combined cross-sectional
area Ast not less than that calculated from the following
equations must be provided whenever the calculated value
of Ast is positive:

where Fyc � column yield stress, ksi (MPa)

Fyst � stiffener yield stress, ksi (MPa)

K � distance, in (mm), between outer face of col-
umn flange and web toe of its fillet, if col-
umn is rolled shape, or equivalent distance if
column is welded shape

Pbf � computed force, kip (kN), delivered by
flange of moment-connection plate multi-
plied by , when computed force is due to
live and dead load only, or by , when com-
puted force is due to live and dead load in
conjunction with wind or earthquake forces

twc � thickness of column web, in (mm)

tb � thickness of flange or moment-connection
plate delivering concentrated force, in (mm)

4�3

5�3

Ast �
Pbf � Fyctwc(tb � 5K)

Fyst
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Notwithstanding the preceding requirements, a stiffener
or a pair of stiffeners must be provided opposite the beam-
compression flange when the column-web depth clear of
fillets dc is greater than

and a pair of stiffeners should be provided opposite the ten-
sion flange when the thickness of the column flange tf is
less than

Stiffeners required by the preceding equations should com-
ply with the following additional criteria:

1. The width of each stiffener plus half the thickness of the
column web should not be less than one-third the width
of the flange or moment-connection plate delivering the
concentrated force.

2. The thickness of stiffeners should not be less than tb /2.

3. The weld-joining stiffeners to the column web must be
sized to carry the force in the stiffener caused by unbal-
anced moments on opposite sides of the column.

FASTENERS IN BUILDINGS

The AISC specification for allowable stresses for buildings
specifies allowable unit tension and shear stresses on the
cross-sectional area on the unthreaded body area of bolts
and threaded parts.

tf � 0.4 √ Pbf

Fyc

dc �
4100twc

3  √Fyc

Pbf
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(Generally, rivets should not be used in direct tension.)
When wind or seismic load are combined with gravity
loads, the allowable stresses may be increased one-third.

Most building construction is done with bearing-type
connections. Allowable bearing stresses apply to both
bearing-type and slip-critical connections. In buildings, the
allowable bearing stress Fp, ksi (MPa), on projected area of
fasteners is

where Fu is the tensile strength of the connected part, ksi
(MPa). Distance measured in the line of force to the nearest
edge of the connected part (end distance) should be at least
1.5d, where d is the fastener diameter. The center-to-center
spacing of fasteners should be at least 3d.

COMPOSITE CONSTRUCTION

In composite construction, steel beams and a concrete slab
are connected so that they act together to resist the load on
the beam. The slab, in effect, serves as a cover plate. As a
result, a lighter steel section may be used.

Construction In Buildings

There are two basic methods of composite construction.

Method 1. The steel beam is entirely encased in the 
concrete. Composite action in this case depends on the
steel-concrete bond alone. Because the beam is completely
braced laterally, the allowable stress in the flanges is

Fp � 1.2Fu

p 312
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0.66Fy, where Fy is the yield strength, ksi (MPa), of the
steel. Assuming the steel to carry the full dead load and the
composite section to carry the live load, the maximum unit
stress, ksi (MPa), in the steel is

where MD � dead-load moment, in�kip (kN�mm)

ML � live-load moment, in�kip (kN�mm)

Ss � section modulus of steel beam, in3 (mm3)

Str � section modulus of transformed composite
section, in3 (mm3)

An alternative, shortcut method is permitted by the
AISC specification. It assumes that the steel beam carries
both live and dead loads and compensates for this by per-
mitting a higher stress in the steel:

Method 2. The steel beam is connected to the concrete
slab by shear connectors. Design is based on ultimate load
and is independent of the use of temporary shores to sup-
port the steel until the concrete hardens. The maximum
stress in the bottom flange is

To obtain the transformed composite section, treat the
concrete above the neutral axis as an equivalent steel area

fs �
MD � ML

Str
� 0.66Fy

fs �
MD � ML

Ss

� 0.76Fy

fs �
MD

Ss

�
ML

Str
� 0.66Fy
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FIGURE 9.5 Limitations on effective width of concrete slab in a
composite steel-concrete beam.

by dividing the concrete area by n, the ratio of modulus of
elasticity of steel to that of the concrete. In determination of
the transformed section, only a portion of the concrete slab
over the beam may be considered effective in resisting
compressive flexural stresses (positive-moment regions).
The width of slab on either side of the beam centerline that
may be considered effective should not exceed any of the
following:

1. One-eighth of the beam span between centers of sup-
ports

2. Half the distance to the centerline of the adjacent beam

3. The distance from beam centerline to edge of slab
(Fig. 9.5)
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NUMBER OF CONNECTORS REQUIRED
FOR BUILDING CONSTRUCTION

The total number of connectors to resist Vh is computed
from Vh /q, where q is the allowable shear for one connector,
kip (kN). Values of q for connectors in buildings are given
in structural design guides.

The required number of shear connectors may be spaced
uniformly between the sections of maximum and zero
moment. Shear connectors should have at least 1 in (25.4
mm) of concrete cover in all directions; and unless studs
are located directly over the web, stud diameters may not
exceed 2.5 times the beam-flange thickness.

With heavy concentrated loads, the uniform spacing
of shear connectors may not be sufficient between a
concentrated load and the nearest point of zero moment.
The number of shear connectors in this region should be
at least

where M � moment at concentrated load, ft�kip (kN�m)

Mmax � maximum moment in span, ft�kip (kN�m)

N1 � number of shear connectors required between
Mmax and zero moment

� � Str /Ss or Seff /Ss, as applicable

Seff � effective section modulus for partial composite
action, in3 (mm3)

N2 �
N1[(M�/Mmax) � 1]

� � 1
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Shear on Connectors

The total horizontal shear to be resisted by the shear con-
nectors in building construction is taken as the smaller of
the values given by the following two equations:

where Vh � total horizontal shear, kip (kN), between maxi-
mum positive moment and each end of steel
beams (or between point of maximum positive
moment and point of contraflexure in continu-
ous beam)

� specified compressive strength of concrete at
28 days, ksi (MPa)

Ac � actual area of effective concrete flange, in2 (mm2)

As � area of steel beam, in2 (mm2)

In continuous composite construction, longitudinal rein-
forcing steel may be considered to act compositely with the
steel beam in negative-moment regions. In this case, the
total horizontal shear, kip (kN), between an interior support
and each adjacent point of contraflexure should be taken as

Vh �
Asr Fyr

2

fc�

 Vh �
As Fy

2

 Vh �
0.85 fc�  Ac

2
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where Asr � area of longitudinal reinforcement at support
within effective area, in2 (mm2); and Fyr � specified mini-
mum yield stress of longitudinal reinforcement, ksi (MPa).

PONDING CONSIDERATIONS IN BUILDINGS

Flat roofs on which water may accumulate may require
analysis to ensure that they are stable under ponding condi-
tions. A flat roof may be considered stable and an analysis
does not need to be made if both of the following two equa-
tions are satisfied:

where Cp � 32LsLp
4 /107Ip

Cs � 32SLs
4 /107Is

Lp � length, ft (m), of primary member or girder

Ls � length, ft (m), of secondary member or purlin

S � spacing, ft (m), of secondary members

Ip � moment of inertia of primary member, in4

(mm4)

Is � moment of inertia of secondary member, in4

(mm4)

Id � moment of inertia of steel deck supported on
secondary members, in4/ft (mm4/m)

 Id � 25S4/106

Cp � 0.9Cs � 0.25
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For trusses and other open-web members, Is should be
decreased 15 percent. The total bending stress due to dead
loads, gravity live loads, and ponding should not exceed
0.80Fy, where Fy is the minimum specified yield stress for
the steel.
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CHAPTER 10
BRIDGE AND

SUSPENSION-
CABLE FORMULAS
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SHEAR STRENGTH DESIGN FOR BRIDGES

Based on the American Association of State Highway and
Transportation Officials (AASHTO) specifications for load-
factor design (LFD), the shear capacity, kip (kN), may be
computed from

for flexural members with unstiffened webs with h / tw �150
or for girders with stiffened webs but a/h exceeding 3 or
67,600(h / tw)2:

For girders with transverse stiffeners and a /h less than 3
and 67,600(h / tw)2, the shear capacity is given by

Stiffeners are required when the shear exceeds Vu.
Chap. 9, “Building and Structures Formulas,” for sym-

bols used in the preceding equations.

Vu � 0.58Fy dtw �C �
1 � C

1.15 √1 � (a/h)2 �

 �
45,000k

Fy (h/tw)2   when  h

tw

	 1.25�

 �
�

h/tw

      when  � �
h

tw

� 1.25�

 C � 1.0        when  h

tw

� �

Vu � 0.58Fy htwC
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TABLE 10.1 Column Formulas for Bridge Design

Yield Allowable Stress, ksi (MPa)
Strength,

ksi (MPa) Cc Kl/r � Cc Kl/r � Cc

36 (248) 126.1 16.98–0.00053(Kl/r)2

50 (345) 107.0 23.58–0.00103(Kl/r)2

90 (620) 79.8 42.45–0.00333(Kl/r)2

100 (689) 75.7 47.17–0.00412(Kl/r)2

135,000

(Kl/r)2

ALLOWABLE-STRESS DESIGN
FOR BRIDGE COLUMNS

In the AASHTO bridge-design specifications, allowable
stresses in concentrically loaded columns are determined
from the following equations:

When Kl /r is less than Cc,

When Kl /r is equal to or greater than Cc,

See Table 10.1.

Fa �

2E

2.12(Kl/r)2 �
135,000

(Kl/r)2

Fa �
Fy

2.12
 �1 �

(Kl/r)2

2C2
c
�

d
-
e

0
r

3

-
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LOAD-AND-RESISTANCE FACTOR
DESIGN FOR BRIDGE COLUMNS

Compression members designed by LFD should have a
maximum strength, kip (kN),

where As � gross effective area of column cross section, in2

(mm2).

For 

For 

where Fcr � buckling stress, ksi (MPa)

Fy � yield strength of the steel, ksi (MPa)

K � effective-length factor in plane of buckling

Lc � length of member between supports, in
(mm)

r � radius of gyration in plane of buckling, in
(mm)

E � modulus of elasticity of the steel, ksi (MPa)

Fcr �

2E

(KLc /r)2 �
286,220

(KLc /r)2

KLc/r 	 √2
2E/Fy :

Fcr � Fy �1 �
Fy

4
2E
 � KLc

r �
2

�

KLc /r � √2
2E/Fy :

Pu � 0.85As Fcr
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The preceding equations can be simplified by introduc-
ing a Q factor:

Then, the preceding equations can be rewritten as shown
next:

For Q � 1.0:

For Q 	 1.0:

ALLOWABLE-STRESS DESIGN
FOR BRIDGE BEAMS

AASHTO gives the allowable unit (tensile) stress in bending
as Fb � 0.55Fy. The same stress is permitted for compres-
sion when the compression flange is supported laterally
for its full length by embedment in concrete or by other
means.

When the compression flange is partly supported or
unsupported in a bridge, the allowable bending stress, ksi
(MPa), is (Table 10.2):

Fcr �
Fy

2Q

Fcr � �1 �
Q

2 � Fy

Q � � KLc

r �
2

 
Fy

2
2E
a

2

)
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TABLE 10.2 Allowable Bending
Stress in Braced Bridge Beams†

Fy Fb

36 (248) 20 (138)
50 (345) 27 (186)

† Units in ksi (MPa).

where L � length, in (mm), of unsupported flange between
connections of lateral supports, including knee
braces

Sxc � section modulus, in3 (mm3), with respect to
the compression flange

Iyc � moment of inertia, in4 (mm4) of the compres-
sion flange about the vertical axis in the plane
of the web

J � 

bc � width, in (mm), of compression flange

bt � width, in (mm), of tension flange

tc � thickness, in (mm), of compression flange

1/3(bc t3
c � btt3

c � Dt3
w)

 �√ 0.772J

Iyc

� 9.87 � d

L �
2

� 0.55Fy

 Fb � � 5 � 107Cb

Sxc
� � Iyc

L �
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tt � thickness, in (mm), of tension flange

tw � thickness, in (mm), of web

D � depth, in (mm), of web

d � depth, in (mm), of flexural member

In general, the moment-gradient factor Cb may be com-
puted from the next equation. It should be taken as unity,
however, for unbraced cantilevers and members in which
the moment within a significant portion of the unbraced
length is equal to, or greater than, the larger of the segment
end moments. If cover plates are used, the allowable static
stress at the point of cutoff should be computed from the
preceding equation.

The moment-gradient factor may be computed from

where M1 � smaller beam end moment, and M2 � larger
beam end moment. The algebraic sign of M1/M2 is positive for
double-curvature bending and negative for single-curvature
bending.

STIFFENERS ON BRIDGE GIRDERS

The minimum moment of inertia, in4 (mm4), of a transverse
stiffener should be at least

I � ao t3J

Cb � 1.75 � 1.05 
M1

M2
� 0.3 � M1

M2
�

2

� 2.3n
e

-
e
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where J � 2.5h2/ � 2 � 0.5

h � clear distance between flanges, in (mm)

ao � actual stiffener spacing, in (mm)

t � web thickness, in (mm)

For paired stiffeners, the moment of inertia should be taken
about the centerline of the web; for single stiffeners, about
the face in contact with the web.

The gross cross-sectional area of intermediate stiffeners
should be at least

where ! is the ratio of web-plate yield strength to stiffener-
plate yield strength, B � 1.0 for stiffener pairs, 1.8 for
single angles, and 2.4 for single plates; and C is defined in
the earlier section, “Allowable-Stress Design for Bridge
Columns.” Vu should be computed from the previous sec-
tion equations in “Shear Strength Design for Bridges.”

The width of an intermediate transverse stiffener, plate,
or outstanding leg of an angle should be at least 2 in (50.8
mm), plus of the depth of the girder and preferably not
less than of the width of the flange. Minimum thickness
is of the width.

Longitudinal Stiffeners

These should be placed with the center of gravity of the fas-
teners h/5 from the toe, or inner face, of the compression
flange. Moment of inertia, in4 (mm4), should be at least

1�16

1�4

1�30

A � �0.15BDtw (1 � C) 
V

Vu

� 18t2
w� !

ao
2
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where ao � actual distance between transverse stiffeners, in
(mm); and t � web thickness, in (mm).

Thickness of stiffener, in (mm), should be at least 
where b is the stiffener width, in (mm), and fb is the flange
compressive bending stress, ksi (MPa). The bending stress in
the stiffener should not exceed that allowable for the material.

HYBRID BRIDGE GIRDERS

These may have flanges with larger yield strength than the
web and may be composite or noncomposite with a con-
crete slab, or they may utilize an orthotropic-plate deck as
the top flange.

Computation of bending stresses and allowable stresses
is generally the same as that for girders with uniform yield
strength. The bending stress in the web, however, may
exceed the allowable bending stress if the computed flange
bending stress does not exceed the allowable stress multi-
plied by

where � � ratio of web yield strength to flange yield
strength

� � distance from outer edge of tension flange or
bottom flange of orthotropic deck to neutral
axis divided by depth of steel section

R � 1 �
��(1 � �)2 (3 � � � ��)

6 � ��(3 � �)

b√fb /71.2,

I � ht3 �2.4 
a2

o

h2 � 0.13�

n
t

s

-
r
n
e
-

,
8
t
s

-
n
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� � ratio of web area to area of tension flange or
bottom flange of orthotropic-plate bridge

LOAD-FACTOR DESIGN
FOR BRIDGE BEAMS

For LFD of symmetrical beams, there are three general
types of members to consider: compact, braced noncom-
pact, and unbraced sections. The maximum strength of each
(moment, in�kip) (mm�kN) depends on member dimensions
and unbraced length, as well as on applied shear and axial
load (Table 10.3).

The maximum strengths given by the formulas in
Table 10.3 apply only when the maximum axial stress
does not exceed 0.15Fy A, where A is the area of the
member. Symbols used in Table 10.3 are defined as
follows:

Fy � steel yield strength, ksi (MPa)

Z � plastic section modulus, in3 (mm3)

S � section modulus, in3 (mm3)

b� � width of projection of flange, in (mm)

d � depth of section, in (mm)

h � unsupported distance between flanges, in (mm)

M1 � smaller moment, in�kip (mm�kN), at ends of
unbraced length of member

Mu � Fy Z

M1 /Mu is positive for single-curvature bending.
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TABLE 10.3 Design Criteria for Symmetrical Flexural Sections for Load-Factor Design of Bridges

Maximum Flange minimum Web minimum Maximum 
Type of bending strength Mu, thickness tf, thickness tu, unbraced length lb,
section in�kip (mm�kN) in (mm) in (mm) in (mm)

Compact† FyZ

Braced FyS
noncompact†

Unbraced ________________________ See AASHTO specification ________________________

† Straight-line interpolation between compact and braced noncompact moments may be used for intermediate criteria,
except that should be maintained as well as the following: For compact sections, when both and
d/tw exceed 75% of the limits for these ratios, the following interaction equation applies:

where Fyf is the yield strength of the flange, ksi (MPa); tw is the web thickness, in (mm); and tf � flange thickness, in (mm).

d

tw

� 9.35 
b�

tf

�
1064

√Fyf

b�/tftw � d√Fy/608

20,000 Af

Fy d

h

150

b�√Fy

69.6

[3600 � 2200(M1/Mu)]ry

Fy

d√Fy

608

b�√Fy

65.0
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TABLE 10.4 Allowable Bearing Stresses on Pins†

Bridges

Pins subject Pins not subject 
Buildings to rotation to rotation

Fy Fp � 0.90Fy Fp � 0.40Fy Fp � 0.80Fy

36 (248) 33 (227) 14 (96) 29 (199)
50 (344) 45 (310) 20 (137) 40 (225)

† Units in ksi (MPa).

BEARING ON MILLED SURFACES

For highway design, AASHTO limits the allowable bearing
stress on milled stiffeners and other steel parts in contact to
Fp � 0.80Fu. Allowable bearing stresses on pins are given
in Table 10.4.

The allowable bearing stress for expansion rollers and
rockers used in bridges depends on the yield point in ten-
sion Fy of the steel in the roller or the base, whichever is
smaller. For diameters up to 25 in (635 mm) the allowable
stress, kip/linear in (kN/mm), is

For diameters from 25 to 125 in (635 to 3175 mm),

where d � diameter of roller or rocker, in (mm).

p �
Fy � 13

20
 3√d

p �
Fy � 13

20
 0.6d
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BRIDGE FASTENERS

For bridges, AASHTO specifies the working stresses for
bolts. Bearing-type connections with high-strength bolts are
limited to members in compression and secondary mem-
bers. The allowable bearing stress is

where Fp � allowable bearing stress, ksi (MPa); and
Fu � tensile strength of the connected part, ksi (MPa) (or as
limited by allowable bearing on the fasteners). The allow-
able bearing stress on A307 bolts is 20 ksi (137.8 MPa) and
on structural-steel rivets is 40 ksi (275.6 MPa).

COMPOSITE CONSTRUCTION
IN HIGHWAY BRIDGES

Shear connectors between a steel girder and a concrete
slab in composite construction in a highway bridge
should be capable of resisting both horizontal and verti-
cal movement between the concrete and steel. Maximum
spacing for shear connectors generally is 24 in (609.6 mm),
but wider spacing may be used over interior supports,
to avoid highly stressed portions of the tension flange
(Fig. 10.1). Clear depth of concrete cover over shear
connectors should be at least 2 in (50.8 mm), and they
should extend at least 2 in (50.8 mm) above the bottom
of the slab.

Fp � 1.35Fu

t 

g
o
n

d
-
s
e

40816_10_p321-354  10/22/01  12:49 PM  Page 333



408

334 CHAPTER TEN

40816 HICKS Mcghp Ch. 10 REVISE PASS bzm 6/7/01 p334

B

I
n
i
i
s

w

w

FIGURE 10.1 Maximum pitch for stud shear connectors in composite
beams: 1 in (25.4 mm), 2 in (50.8 mm), 3 in (76.2 mm), and 24 in (609.6
mm).

Span/Depth Ratios

In bridges, for composite beams, preferably the ratio of
span/steel beam depth should not exceed 30 and the ratio of
span/depth of steel beam plus slab should not exceed 25.

Effective Width of Slabs

For a composite interior girder, the effective width assumed
for the concrete flange should not exceed any of the fol-
lowing:

1. One-fourth the beam span between centers of supports

2. Distance between centerlines of adjacent girders

3. Twelve times the least thickness of the slab

For a girder with the slab on only one side, the effective
width of slab should not exceed any of the following:

1. One-twelfth the beam span between centers of supports

2. Half the distance to the centerline of the adjacent girder

3. Six times the least thickness of the slab
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Bending Stresses

In composite beams in bridges, stresses depend on whether or
not the members are shored; they are determined as for beams
in buildings (see “Composite Construction” in Chap. 9,“Build-
ing and Structures Formulas”), except that the stresses in the
steel may not exceed 0.55Fy. (See the following equations.)

For unshored members:

where fy � yield strength, ksi (MPa).

For shored members:

where fs � stress in steel, ksi (MPa)

MD � dead-load moment, in.kip (kN.mm)

ML � live-load moment, in.kip (kN�mm)

Ss � section modulus of steel beam, in3 (mm3)

Str � section modulus of transformed composite
section, in3 (mm3)

Vr � shear range (difference between minimum and
maximum shears at the point) due to live
load and impact, kip (kN)

Q � static moment of transformed compressive
concrete area about neutral axis of transformed
section, in3 (mm3)

fs �
MD � ML

Str
� 0.55Fy

fs �
MD

Ss

�
ML

Str
� 0.55Fy

e
6

f
f

d
-

s

e

s

r
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I � moment of inertia of transformed section, in4

(mm4)

Shear Range

Shear connectors in bridges are designed for fatigue and
then are checked for ultimate strength. The horizontal-shear
range for fatigue is computed from

where Sr � horizontal-shear range at the juncture of slab and
beam at point under consideration, kip/linear in (kN/linear
mm).

The transformed area is the actual concrete area divided
by n (Table 10.5).

The allowable range of horizontal shear Zr, kip (kN), for
an individual connector is given by the next two equations,
depending on the connector used.

Sr �
VrQ

I

TABLE 10.5 Ratio of Moduli of Elasticity
of Steel and Concrete for Bridges

for
concrete

2.0–2.3 11
2.4–2.8 10
2.9–3.5 9
3.6–4.5 8
4.6–5.9 7

6.0 and over 6

n �
Es

Ec

fc�
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For channels, with a minimum of -in (4.76-mm) fillet
welds along heel and toe:

where w � channel length, in (mm), in transverse direction
on girder flange; and

B � cyclic variable � 4.0 for 100,000 cycles,
3.0 for 500,000 cycles, 2.4 for 2 million
cycles, and 2.1 for over 2 million cycles.

For welded studs (with height/diameter ratio H/d � 4):

where d � stud diameter, in (mm); and

� � cyclic variable � 13.0 for 100,000 cycles, 10.6
for 500,000 cycles, 7.85 for 2 million cycles,
and 5.5 for over 2 million cycles.

Required pitch of shear connectors is determined by
dividing the allowable range of horizontal shear of all con-
nectors at one section Zr, kip (kN), by the horizontal range
of shear Sr, kip per linear in (kN per linear mm).

NUMBER OF CONNECTORS IN BRIDGES

The ultimate strength of the shear connectors is checked by
computation of the number of connectors required from

N �
P

�Su

Zr � �d 2

Zr � Bw

3�16
4

d
r

d
r

d

r
,
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where N � number of shear connectors between maxi-
mum positive moment and end supports

Su � ultimate shear connector strength, kip (kN)
[see Eqs. (10.1) and (10.2) that follow and
AASHTO data]

� � reduction factor � 0.85

P � force in slab, kip (kN)

At points of maximum positive moments, P is the
smaller of P1 and P2, computed from

where Ac � effective concrete area, in2 (mm2)

� 28-day compressive strength of concrete,
ksi (MPa)

As � total area of steel section, in2 (mm2)

Fy � steel yield strength, ksi (MPa)

The number of connectors required between points of
maximum positive moment and points of adjacent maxi-
mum negative moment should equal or exceed N2, given
by

N2 �
P � P3

�Su

fc�

 P2 � 0.85 fc�Ac

 P1 � AsFy
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At points of maximum negative moments, the force in
the slab P3, is computed from

where Asr � area of longitudinal reinforcing within effec-
tive flange, in2 (mm2); and Fyr � reinforcing steel yield
strength, ksi (MPa).

Ultimate Shear Strength of Connectors
in Bridges

For channels:

(10.1)

where h � average channel-flange thickness, in (mm)

t � channel-web thickness, in (mm)

w � channel length, in (mm)

For welded studs (H/d � 4 in (101.6 mm):

(10.2)

ALLOWABLE-STRESS DESIGN
FOR SHEAR IN BRIDGES

Based on the AASHTO specification for highway bridges, the
allowable shear stress, ksi (MPa), may be computed from

Su � 0.4d2 √fc�Ec  

Su � 17.4 �h �
t

2 � w √fc�

P3 � AsrFyr

-

)
d

e

,

f
-
n
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for flexural members with unstiffened webs with h/tw � 150
or for girders with stiffened webs with a/h exceeding 3 and
67,600(h /tw)2:

or stiffeners are not required

For girders with transverse stiffeners and a/h less than
3 and 67,600(h/tw)2, the allowable shear stress is given by

Stiffeners are required when the shear exceeds Fv.

Fv �
Fy

3
 �C �

1 � C

1.15 √1 � (a/h)2 �

 � � 190 √ k

Fy

 � 5 �
5

(a/h)2      otherwise

 k � 5 if 
a

h
 exceeds 3 or 67,600 � h

tw
�

2

 �
45,000k

Fy (h/tw)2   when  h

tw

	 1.25�

 �
�

h/tw

  when  � �
h

tw

� 1.25�

 C � 1.0  when  h

tw

� �

Fv �
Fy

3
 C �

Fy

3
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MAXIMUM WIDTH/THICKNESS RATIOS
FOR COMPRESSION ELEMENTS FOR
HIGHWAY BRIDGES

Table 10.6 gives a number of formulas for maximum
width/thickness ratios for compression elements for highway
bridges. These formulas are valuable for highway bridge
design.

SUSPENSION CABLES

Parabolic Cable Tension and Length

Steel cables are often used in suspension bridges to support
the horizontal roadway load (Fig. 10.2). With a uniformly
distributed load along the horizontal, the cable assumes the
form of a parabolic arc. Then, the tension at midspan is

where H � midspan tension, kip (N)

w � load on a unit horizontal distance, klf (kN/m)

L � span, ft (m)

d � sag, ft (m)

The tension at the supports of the cable is given by

T � �H 2 � � wL

2 �
2

�
0.5

H �
wL2

8d

0
d

n
y
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TABLE 10.6 Maximum Width/Thickness Ratios b/ta for Compression Elements for Highway Bridgesb

Load-and-resistance-factor designc

Description of element Compact Noncompactd

Flange projection of rolled or
fabricated I-shaped beams

Webs in flexural compression 150

Allowable-stress design f

fa � 0.44Fy

Description of element fa � 0.44Fy Fy � 36 ksi (248 MPa) Fy � 50 ksi (344.5 MPa)

Plates supported in one side and
outstanding legs of angles

In main members 12 11
51

√fa � 12

608

√Fy

70e

√Fy

65

√Fy

4
0
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1
6
_
1
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In bracing and other 12 11
secondary members

Plates supported on two edges or 32 27
webs of box shapesg

Solid cover plates supported on 40 34
two edges or solid websh

Perforated cover plates supported 48 41
on two edges for box shapes

a b � width of element or projection; t � thickness. The point of support is the inner line of fasteners or fillet welds connect-
ing a plate to the main segment or the root of the flange of rolled shapes. In LRFD, for webs of compact sections, b � d, the
beam depth; and for noncompact sections, b � D, the unsupported distance between flange components.
b As required in AASHTO “Standard Specification for Highway Bridges.” The specifications also provide special limitations
on plate-girder elements.
c Fy � specified minimum yield stress, ksi (MPa), of the steel.
d Elements with width/thickness ratios that exceed the noncompact limits should be designed as slender elements.
e When the maximum bending moment M is less than the bending strength Mu, b/t in the table may be multiplied by .
f fa � computed axial compression stress, ksi (MPa).
g For box shapes consisting of main plates, rolled sections, or component segments with cover plates.
h For webs connecting main members or segments for H or box shapes.

√Mu/M

190

√fa � 55

158

√fa � 50

126

√fa � 45

51

√fa � 16
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FIGURE 10.2 Cable supporting load uniformly distributed along
the horizontal.

where T � tension at supports, kip (N); and other symbols
are as before.

Length of the cable, S, when d/L is 1/20, or less, can be
approximated from

where S � cable length, ft (m).

Catenary Cable Sag and Distance
between Supports

A cable of uniform cross section carrying only its own
weight assumes the form of a catenary. By using the same
previous notation, the catenary parameter, c, is found from

S � L �
8d 2

3L
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Then

Span length then is L � 2c, with the previous same symbols.

GENERAL RELATIONS FOR
SUSPENSION CABLES

Catenary

For any simple cable (Fig. 10.3) with a load of qo per unit
length of cable, kip/ft (N/m), the catenary length s, ft (m),
measured from the low point of the cable is, with symbols
as given in Fig. 10.3, ft (m),

Tension at any point is

The distance from the low point C to the left support is

a �
H

qo

 cosh�1 � qo

H
 fL � 1�

T � √H2 � q2
o s2 � H � qoy

s �
H

qo

 sinh 
qo x

H
� x �

1

3!
 � qo

H �
2

 x3 � � � �

 Sag � d � c ft (m)

 c � �(d � c)2 �  � S

2 �
2

�
0.5

d � c �
T

w

g

s

e

n
e

m
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FIGURE 10.3 Simple cables. (a) Shape of cable with concen-
trated load; (b) shape of cable with supports at different levels.

where fL � vertical distance from C to L, ft (m). The dis-
tance from C to the right support R is 

where fR � vertical distance from C to R.
Given the sags of a catenary fL and fR under a distributed

vertical load qo, the horizontal component of cable tension
H may be computed from

where l � span, or horizontal distance between supports L
and R � a � b. This equation usually is solved by trial.
A first estimate of H for substitution in the right-hand side of
the equation may be obtained by approximating the catenary

qo l

H
 cosh�1 � qo  fL

H
 � 1� � cosh�1 � qo  fR

H
� 1�

b �
H

qo

 cosh�1 � qo

H
 fR � 1�
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by a parabola. Vertical components of the reactions at the
supports can be computed from

Parabola

Uniform vertical live loads and uniform vertical dead
loads other than cable weight generally may be treated as
distributed uniformly over the horizontal projection of
the cable. Under such loadings, a cable takes the shape of
a parabola.

Take the origin of coordinates at the low point C (Fig.
10.3). If wo is the load per foot (per meter) horizontally, the
parabolic equation for the cable slope is

The distance from the low point C to the left support L is

where l � span, or horizontal distance between supports
L and R � a � b; h � vertical distance between supports.

The distance from the low point C to the right support
R is

b �
1

2
�

Hh

wol

a �
l

2
�

Hh

wo l

y �
wo x2

2H

RL � H sinh 
qo a

H
  RR � H sinh 

qo b

H

-

-

d
n

L
.
f
y
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Supports at Different Levels

The horizontal component of cable tension H may be com-
puted from

where fL � vertical distance from C to L

fR � vertical distance from C to R

f � sag of cable measured vertically from chord
LR midway between supports (at x � Hh /wol)

As indicated in Fig. 10.3b:

where yM � Hh2/2wol2. The minus sign should be used
when low point C is between supports. If the vertex of the
parabola is not between L and R, the plus sign should be
used.

The vertical components of the reactions at the supports
can be computed from

 Vr � wob �
wol

2
�

Hh

l

 VL � woa �
wol

2
�

Hh

l

f � fL �
h

2
� yM

H �
wo l2

h2  �fR �
h

2
� √fL fR� �

wo l2

8f
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Tension at any point is

Length of parabolic arc RC is

Length of parabolic arc LC is

Supports at Same Level

In this case, fL � fR � f, h � 0, and a � b � l/2. The hori-
zontal component of cable tension H may be computed
from

The vertical components of the reactions at the supports are

VL � VR �
wo l

2

H �
wo l2

8 f

 � a �
1

6
 � wo

H �
2

 a 3 � � � �

 LLC �
a

2
 √1 � � woa

H �
2

�
H

2wo

 sinh 
woa

H

 � b �
1

6
 � wo

H �
2

 b3 � � � �

 LRC �
b

2
 √1 � � wob

H �
2

�
H

2wo

 sinh 
wob

H

T � √H 2 � w2
o x2-

)

d
e
e

s
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Maximum tension occurs at the supports and equals

Length of cable between supports is

If additional uniformly distributed load is applied to a para-
bolic cable, the change in sag is approximately

For a rise in temperature t, the change in sag is about

where c � coefficient of thermal expansion.
Elastic elongation of a parabolic cable is approximately

where A � cross-sectional area of cable

E � modulus of elasticity of cable steel

H � horizontal component of tension in cable

�L �
Hl

AE
 �1 �

16

3
  

f 2

l2 �

� f �
15

16
 

l2ct

f (5 � 24 f 2/l2)
 �1 �

8

3
 
f 2

l2 �

� f �
15

16
 
l

f
  

�L

5 � 24 f 2 /l2

 � l �1 �
8

 3
 
f 2

l2 �
32

5
 
f 4

l4 �
256

7
 
f 6

l6 � � � ��

 L �
1

2
 √1 � � wo l

2H �
2

�
H

wo

 sinh 
wo l

2H

TL � TR �
wo l

2
 √1 �

l2

16 f 2
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If the corresponding change in sag is small, so that the
effect on H is negligible, this change may be computed
from

For the general case of vertical dead load on a cable, the
initial shape of the cable is given by

where MD � dead-load bending moment that would be pro-
duced by load in a simple beam; and HD � horizontal com-
ponent of tension due to dead load.

For the general case of vertical live load on the cable,
the final shape of the cable is given by

where � � vertical deflection of cable due to live load

ML � live-load bending moment that would be pro-
duced by live load in simple beam

HL � increment in horizontal component of tension
due to live load

Subtraction yields

� �
ML � HL yD

HD � HL

yD � � �
MD � ML

HD � HL

yD �
MD

HD

� f �
15

16
 

Hl2

AEf
 
1 � 16 f 2/3l2

5 � 24 f 2/l2

-

y
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If the cable is assumed to take a parabolic shape, a close
approximation to HL may be obtained from

where �� � d2�/dx2.
If elastic elongation and �� can be ignored,

Thus, for a load uniformly distributed horizontally wL,

and the increase in the horizontal component of tension due
to live load is

 �
wL

wD

 HD

 HL �
3

2 f l
 
wLl 3

12
�

wLl 2

8 f
�

wLl 2

8
 

8HD

wDl  2

�1

0
ML dx �

wL l3

12

HL �

�1

0
ML dx

�1

0
 yD dx

�
3

2 f l
 �1

0
ML dx

 �
3l

32 f
 loge � 4 f

l
�  √1 �

16 f 2

l2 ��

 K � l � 1

4
 � 5

2
�

16 f 2

l2 � √1 �
16 f 2

l2

 
HL

AE
 K �

wD

HD

 �1

0
� dx �

1

2
 �1

0
�� � dx
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FIGURE 10.4 Planar cable systems: (a) completely separated
cables; (b) cables intersecting at midspan; (c) crossing cables; (d)
cables meeting at supports.

CABLE SYSTEMS

The cable that is concave downward (Fig. 10.4) usually is
considered the load-carrying cable. If prestress in that cable
exceeds that in the other cable, the natural frequencies of
vibration of both cables always differ for any value of live
load. To avoid resonance, the difference between the fre-
quencies of the cables should increase with increase in
load. Thus, the two cables tend to assume different shapes
under specific dynamic loads. As a consequence, the result-
ing flow of energy from one cable to the other dampens the
vibrations of both cables.

Natural frequency, cycles per second, of each cable may
be estimated from

where n � integer, 1 for fundamental mode of vibration,
2 for second mode, . . .

l � span of cable, ft (m)

w � load on cable, kip/ft (kN/m)

�n �
n


l
 √ Tg

w

e

e
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g � acceleration due to gravity � 32.2 ft/s2

T � cable tension, kip (N)

The spreaders of a cable truss impose the condition that
under a given load the change in sag of the cables must be
equal. Nevertheless, the changes in tension of the two
cables may not be equal. If the ratio of sag to span f /l is
small (less than about 0.1), for a parabolic cable, the
change in tension is given approximately by

where �f � change in sag

A � cross-sectional area of cable

E � modulus of elasticity of cable steel

�H �
16

3
 
AEf

l 2  �f
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FIGURE 11.1 Circular curve.

CIRCULAR CURVES 

Circular curves are the most common type of horizontal
curve used to connect intersecting tangent (or straight)
sections of highways or railroads. In most countries, two
methods of defining circular curves are in use: the first,
in general use in railroad work, defines the degree
of curve as the central angle subtended by a chord of
100 ft (30.48 m) in length; the second, used in highway
work, defines the degree of curve as the central angle
subtended by an arc of 100 ft (30.48 m) in length.

The terms and symbols generally used in reference to
circular curves are listed next and shown in Figs. 11.1 and
11.2.

F
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PC � point of curvature, beginning of curve

PI � point of intersection of tangents

PT � point of tangency, end of curve

R � radius of curve, ft (m)

D � degree of curve (see previous text)

I � deflection angle between tangents at PI, also
central angle of curve

T � tangent distance, distance from PI to PC or PT,
ft (m)

L � length of curve from PC to PT measured on 100-ft
(30.48-m) chord for chord definition, on arc for
arc definition, ft (m)

C � length of long chord from PC to PT, ft (m)

E � external distance, distance from PI to midpoint
of curve, ft (m)

FIGURE 11.2 Offsets to circular curve.
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M � midordinate, distance from midpoint of curve to
midpoint of long chord, ft (m)

d � central angle for portion of curve (d � D)

l � length of curve (arc) determined by central angle
d, ft (m)

c � length of curve (chord) determined by central
angle d, ft (m)

a � tangent offset for chord of length c, ft (m)

b � chord offset for chord of length c, ft (m)

Equations of Circular Curves

 d �
Dl

100
  exact for arc definition

 L � C �
L 3

24R 2 �
C 3

24R 2   approximate

 L �
100I

D
      exact

 C � 2R sin 1�2 I  exact

 M � R vers 1�2 I � R (1 � cos 1�2 I)   exact

 E � R exsec 1�2 I � R (sec 1�2 I � 1)  exact

 T � R tan 1�2 I    exact

 �
50

sin 1�2 D
    exact for chord definition

 R �
5,729.578

D
  exact for arc definition, approxi-

mate for chord definition
P

P
w
b
t
e
F
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PARABOLIC CURVES

Parabolic curves are used to connect sections of high-
ways or railroads of differing gradient. The use of a para-
bolic curve provides a gradual change in direction along
the curve. The terms and symbols generally used in refer-
ence to parabolic curves are listed next and are shown in
Fig. 11.3.

PVC � point of vertical curvature, beginning of curve

PVI � point of vertical intersection of grades on
either side of curve

PVT � point of vertical tangency, end of curve

G1 � grade at beginning of curve, ft/ft (m/m)

G2 � grade at end of curve, ft/ft (m/m)

L � length of curve, ft (m)

R � rate of change of grade, ft/ft2 (m/m2)

V � elevation of PVI, ft (m)

 b �
c 2

R
   approximate

 a �
c 2

2R
   approximate

 sin 
d

z
�

c

2R
   exact for chord definition

 �
Dc

100
  approximate for chord definition
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FIGURE 11.3 Vertical parabolic curve (summit curve).

E0 � elevation of PVC, ft (m)

Et � elevation of PVT, ft (m)

x � distance of any point on the curve from the
PVC, ft (m)

Ex � elevation of point x distant from PVC, ft (m)

xs � distance from PVC to lowest point on a
sag curve or highest point on a summit curve,
ft (m)

Es � elevation of lowest point on a sag curve or
highest point on a summit curve, ft (m)

Equations of Parabolic Curves

In the parabolic-curve equations given next, algebraic quan-
tities should always be used. Upward grades are positive
and downward grades are negative.
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Note. If xs is negative or if xs 	 L, the curve does not
have a high point or a low point.

HIGHWAY CURVES AND DRIVER SAFETY

For the safety and comfort of drivers, provision usually is
made for gradual change from a tangent to the start of a cir-
cular curve.

As indicated in Fig. 11.4, typically the outer edge is
raised first until the outer half of the cross section is level
with the crown (point B). Then, the outer edge is raised far-
ther until the cross section is straight (point C). From there
on, the entire cross section is rotated until the full super-
elevation is attained (point E).

Superelevated roadway cross sections are typically
employed on curves of rural highways and urban freeways.
Superelevation is rarely used on local streets in residential,
commercial, or industrial areas.

 Es � E0 �
G2

1

2R

 xs � �
G1

R

 Ex � E0 � G1x � 1�2 Rx2

 E0 � V � 1�2 LG1

 R �
G2 � G1

L
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FIGURE 11.4 Superelevation variations along a spiral transition curve.

F

HIGHWAY ALIGNMENTS

Geometric design of a highway is concerned with horizon-
tal and vertical alignment as well as the cross-sectional
elements.

Horizontal alignment of a highway defines its location
and orientation in plan view. Vertical alignment of a highway
deals with its shape in profile. For a roadway with contigu-
ous travel lanes, alignment can be conveniently represented
by the centerline of the roadway.

Stationing

Distance along a horizontal alignment is measured in terms
of stations. A full station is defined as 100 ft (30.48 m) and
a half station as 50 ft (15.24 m). Station 100 � 50 is 150 ft
(45.7 m) from the start of the alignment, station 0 � 00.
A point 1492.27 ft (454.84 m) from 0 � 00 is denoted as
14 � 92.27, indicating a location 14 stations, 1400 ft
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FIGURE 11.5 Stopping sight distance on a crest vertical curve.
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(426.72 m) plus 92.27 ft (28.12 m), from the starting point
of the alignment. This distance is measured horizontally
along the centerline of the roadway, whether it is a tangent,
a curve, or a combination of these.

Stopping Sight Distance

This is the length of roadway needed between a vehicle and
an arbitrary object (at some point down the road) to permit
a driver to stop a vehicle safely before reaching the obstruc-
tion. This is not to be confused with passing sight distance,
which American Association of State Highway and Trans-
portation Officials (AASHTO) defines as the “length of
roadway ahead visible to the driver.” Figure 11.5 shows the
parameters governing stopping sight distance on a crest
vertical curve.

For crest vertical curves, AASHTO defines the mini-
mum length Lmin, ft (m), of crest vertical curves based on a
required sight distance S, ft (m), as that given by
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When eye height is 3.5 ft (1.07 m) and object height is 0.5 ft
(0.152 m):

Also, for crest vertical curves:

When eye height is 3.5 ft (1.07 m) and object height 0.5 ft
(0.152 m):

where A � algebraic difference in grades, percent, of the
tangents to the vertical curve

H1 � eye height, ft (m), above the pavement

H2 � object height, ft (m), above the pavement

Design controls for vertical curves can be established in
terms of the rate of vertical curvature K defined by

K �
L

A

Lmin � 25 �
1329

AS2  S 	 L

Lmin � 25 �
200 �√H1 � √H2�

2

AS 2  S 	 L

Lmin �
AS2

1329
 S � L

Lmin �
AS2

100 �√2H1 � √2H2�2  S � L
w
e
t
t
a
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where L � length, ft (m), of vertical curve and A is defined
earlier. K is useful in determining the minimum sight dis-
tance, the length of a vertical curve from the PVC to the
turning point (maximum point on a crest and minimum on
a sag). This distance is found by multiplying K by the
approach gradient.

Recommended values of K for various design velocities
and stopping sight distances for crest and sag vertical
curves are published by AASHTO.

STRUCTURAL NUMBERS FOR 
FLEXIBLE PAVEMENTS

The design of a flexible pavement or surface treatment
expected to carry more than 50,000 repetitions of equiva-
lent single 18-kip axle load (SAI) requires identification
of a structural number SN that is used as a measure of the
ability of the pavement to withstand anticipated axle loads.
In the AASHTO design method, the structural number is
defined by

where SN1 � structural number for the surface course �
a1D1

a1 � layer coefficient for the surface course

D1 � actual thickness of the surface course, in
(mm)

SN2 � structural number for the base course �
a2D2m2

SN � SN1 � SN2 � SN3
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FIGURE 11.6 Typical two-lane highway with linear cross slopes.

a2 � layer coefficient for the base course

D2 � actual thickness of the base course, in (mm)

m2 � drainage coefficient for the base course

SN3 � structural number for the subbase course
� a3D3m3

a3 � layer coefficient for the subbase course

D3 � actual thickness of the subbase course, in
(mm)

m3 � drainage coefficient for the subbase

The layer coefficients an are assigned to materials used
in each layer to convert structural numbers to actual thick-
ness. They are a measure of the relative ability of the materi-
als to function as a structural component of the pavement.
Many transportation agencies have their own values for
these coefficients. As a guide, the layer coefficients may
be 0.44 for asphaltic-concrete surface course, 0.14 for
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FIGURE 11.7 Types of interchanges for intersecting grade-separated
highways. (a) T or trumpet; (b) Y or delta; (c) one quadrant; (d) dia-
mond; (e) full cloverleaf; (f) partial cloverleaf; (g) semidirect; (h) all-
directional four leg.
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FIGURE 11.8 Highway turning lanes. (a) Unchannelized; (b) channelized;
(c) flared.
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FIGURE 11.9 Highway turning lanes. (a) Unchannelized; (b) inter-
section with a right-turn lane; (c) intersection with a single-turning
roadway; (d) channelized intersection with a pair of turning roadways.

crushed-stone base course, and 0.11 for sandy-gravel sub-
base course.

The thicknesses D1, D2, and D3 should be rounded to the
nearest in (12.7 mm). Selection of layer thicknesses usu-
ally is based on agency standards, maintainability of the
pavement, and economic feasibility.

Figure 11.6 shows the linear cross slopes for a typical
two-lane highway. Figure 11.7 shows the use of circular
curves in a variety intersecting grade-separated highways.

Figure 11.8 shows the use of curves in at-grade four-leg
intersections of highways. Figure 11.9 shows the use of
curves in at-grade T (three-leg) intersections. Figure 11.10
shows street space and maneuvering space used for various
parking positions.

1�2
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FIGURE 11.10 Street space and maneuvering space used for various
parking positions. USCS (SI) equivalent units in ft (m): 7 (2.13), 17
(5.18), 18 (5.49), 19 (5.79), 22 (6.7), 29 (8.84), 36 (10.97), 40 (12.19).

TRANSITION (SPIRAL) CURVES

On starting around a horizontal circular curve, a vehicle
and its contents are immediately subjected to centrifugal
forces. The faster the vehicle enters the circle and the
sharper the curvature is, the greater the influence on vehi-
cles and drivers of the change from tangent to curve. When
transition curves are not provided, drivers tend to create
their own transition curves by moving laterally within their
travel lane and sometimes the adjoining lane, a hazardous
maneuver.

p

w

A
i
(
p
r
r

D

A
w
r
b
l
s
t
b

40816_11_p355-380  10/22/01  12:50 PM  Page 370



HIGHWAY AND ROAD FORMULAS 371

40816 HICKS Mcghp Ch. 11 REVISE PASS bzm 6/7/01 p371p370

s
7
.

e
l
e
-
n
e
r
s

The minimum length L, ft (m), of a spiral may be com-
puted from

where V � vehicle velocity, mi/h (km/h)

R � radius, ft (m), of the circular curve to which
the spiral is joined

C � rate of increase of radial acceleration

An empirical value indicative of the comfort and safety
involved, C values often used for highways range from 1 to 3.
(For railroads, C is often taken as unity 1.) Another, more
practical, method for calculating the minimum length of spiral
required for use with circular curves is to base it on the
required length for superelevation runoff.

DESIGNING HIGHWAY CULVERTS

A highway culvert is a pipelike drainage facility that allows
water to flow under the road without impeding traffic. Cor-
rugated and spiral steel pipe are popular for culverts
because they can be installed quickly, have long life, are
low in cost, and require little maintenance. With corrugated
steel pipe, the seam strength must be adequate to withstand
the ring-compression thrust from the total load supported
by the pipe. This thrust C, lb/ft (N/m), of structure is 

C � (LL � DL) 
S

2

L �
3.15V 3

RC
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where LL � live-load pressure, lb/ft2 (N/m2)

DL � dead-load pressure, lb/ft2 (N/m2)

S � span (or diameter), ft (m)

Handling and installation strength must be adequate to
withstand shipping and placing of the pipe in the desired
position at the highway job site. The handling strength is
measured by a flexibility factor determined from

where D � pipe diameter or maximum span, in (mm)

E � modulus of elasticity of the pipe material, lb/in2

(MPa)

I � moment of inertia per unit length of cross
section of the pipe wall, in4/in (mm4/mm)

The ring-compression stress at which buckling becomes
critical in the interaction zone for diameters less then
126.5r/K is

For diameters greater than 126.5r /K:

where fc � buckling stress, lb/in2 (MPa)

K � soil stiffness factor

f c �
12E

(KD/r)2

f c � 45,000 � 1.406 � KD

r �
2

FF �
D2

EI

o
t

f
p
z

w
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D � pipe diameter or span, in (mm)

r � radius of gyration of pipe wall, in4/in (mm4/mm)

E � modulus of elasticity of pipe material, lb/in2

(MPa)

Note. For excellent sidefill, compacted 90 to 95 percent
of standard density, K � 0.22; for good sidefill, compacted
to 85 percent of standard density, K � 0.44.

Conduit deflection is given by the Iowa formula. This
formula gives the relative influence on the deflection of the
pipe strength and the passive side pressure resisting hori-
zontal movement of the pipe wall, or

where �x � horizontal deflection of pipe, in (mm)

D1 � deflection lag factor

K � bedding constant (dependent on bedding angle)

Wc � vertical load per unit length of pipe, lb per
linear in (N/mm)

r � mean radius of pipe, in (mm)

E � modulus of elasticity of pipe material, lb/in2

(MPa)

I � moment of inertia per unit length of cross
section of pipe wall, in4/in (mm4/mm)

E� � modulus of passive resistance of enveloping
soil, lb/in2 (MPa)

�x �
D1 KWc r3

EI � 0.061E�r3

40816_11_p355-380  10/22/01  12:50 PM  Page 373



4081

374 CHAPTER ELEVEN

40816 HICKS Mcghp Ch. 11 REVISE PASS bzm 6/7/01 p374

F
f

Soil modulus E� has not been correlated with the types
of backfill and compaction. This limits the usefulness of the
formula to analysis of installed structures that are under
observation.

AMERICAN IRON AND STEEL 
INSTITUTE (AISI) DESIGN PROCEDURE

The design procedure for corrugated steel structures recom-
mended in their Handbook of Steel Drainage and Highway
Construction Projects is given below.

Backfill Density

Select a percentage of compaction of pipe backfill for
design. The value chosen should reflect the importance and
size of the structure and the quality that can reasonably be
expected. The recommended value for routine use is 85 per-
cent. This value usually applies to ordinary installations for
which most specifications call for compaction to 90 per-
cent. However, for more important structures in higher fill
situations, consideration must be given to selecting higher
quality backfill and requiring this quality for construction.

Design Pressure

When the height of cover is equal to, or greater than, the
span or diameter of the structure, enter the load-factor chart
(Fig. 11.11) to determine the percentage of the total load
acting on the steel. For routine use, the 85 percent soil com-
paction provides a load factor K � 0.86. The total load is

m
t
e
T

W
p
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FIGURE 11.11 Load factors for corrugated steel pipe are plotted as a
function of specified compaction of backfill.
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multiplied by K to obtain the design pressure P� acting on
the steel. If the height of cover is less than one pipe diam-
eter, the total load TL is assumed to act on the pipe, and
TL � Pv; that is,

When the height of cover is equal to, or greater than, one
pipe diameter,

Pv � K(DL � LL � I)  H � S

Pv � DL � LL � I  H � S
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where Pv � design pressure, kip/ft2 (MPa/m2)

K � load factor

DL � dead load, kip/ft2 (MPa/m2)

LL � live load, kip/ft2 (MPa/m2)

I � impact, kip/ft2 (MPa/m2)

H � height of cover, ft (m)

S � span or pipe diameter, ft (m)

Ring Compression

The compressive thrust C, kip/ft (MPa/m), on the conduit
wall equals the radial pressure Pv, kip/ft2 (MPa/m2), acting
on the wall multiplied by the wall radius R, ft (m); or
C � PvR. This thrust, called ring compression, is the force
carried by the steel. The ring compression is an axial load
acting tangentially to the conduit wall (Fig. 11.12). For
conventional structures in which the top arc approaches a
semicircle, it is convenient to substitute half the span for
the wall radius. Then,

Allowable Wall Stress

The ultimate compression in the pipe wall is expressed by
Eqs. (11.1) and (11.2) that follow. The ultimate wall stress
is equal to the specified minimum yield point of the steel

C � Pv 
S

2
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FIGURE 11.12 Radial pressure, Pv, on the wall of a curved conduit
is resisted by compressive thrust C.
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and applies to the zone of wall crushing or yielding. Equa-
tion (11.1) applies to the interaction zone of yielding and
ring buckling; Eq. (11.2) applies to the ring-buckling zone.

When the ratio D/r of pipe diameter—or span D, in
(mm), to radius of gyration r, in (mm), of the pipe cross
section—does not exceed 294, the ultimate wall stress may
be taken as equal to the steel yield strength:

When D/r exceeds 294 but not 500, the ultimate wall stress,
ksi (MPa), is given by

(11.1)Fb � 40 � 0.000081 � D

r �
2

Fb � Fy � 33 ksi (227.4 MPa)
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When D/r is more than 500,

(11.2)

A safety factor of 2 is applied to the ultimate wall stress
to obtain the design stress Fc, ksi (MPa):

(11.3)

Wall Thickness

Required wall area A, in2/ft (mm2/m), of width, is computed
from the calculated compression C in the pipe wall and the
allowable stress Fc:

(11.4)

From the AISI table for underground conduits, select the
wall thickness that provides the required area with the same
corrugation used for selection of the allowable stress.

Check Handling Stiffness

Minimum pipe stiffness requirements for practical handling
and installation, without undue care or bracing, have been
established through experience. The resulting flexibility
factor FF limits the size of each combination of corrugation
pitch and metal thickness:

(11.5)FF �
D2

EI

A �
C

Fc

Fc �
Fb

2

Fb �
4.93 � 106

(D/r)2

w
3
w

e

e
c
e
i
o
t
a
s
a

C

S
d
k
e
u
f
d

40816_11_p355-380  10/22/01  12:50 PM  Page 378



HIGHWAY AND ROAD FORMULAS 379

40816 HICKS Mcghp Ch. 11 REVISE PASS bzm 6/7/01 p379p378

)

s

)

d
e

)

e
e

g
n
y
n

)

where E � modulus of elasticity, ksi (MPa), of steel �
30,000 ksi (206,850 MPa); and I � moment of inertia of
wall, in4/in (mm4/mm).

The following maximum values of FF are recommend-
ed for ordinary installations:

FF � 0.0433 for factory-made pipe with less than a
120-in (30.48-cm) diameter and with riveted, welded, or
helical seams

FF � 0.0200 for field-assembled pipe with over a 120-in
(30.48-cm) diameter or with bolted seams

Higher values can be used with special care or where
experience indicates. Trench condition, as in sewer design,
can be one such case; use of aluminum pipe is another. For
example, the flexibility factor permitted for aluminum pipe
in some national specifications is more than twice that rec-
ommended here for steel because aluminum has only one-
third the stiffness of steel, the modulus for aluminum being
about 10,000 vs. 30,000 ksi (68,950 vs. 206,850 MPa) for
steel. Where a high degree of flexibility is acceptable for
aluminum, it is equally acceptable for steel.

Check Bolted Seams

Standard factory-made pipe seams are satisfactory for all
designs within the maximum allowable wall stress of 16.5
ksi (113.8 MPa). Seams bolted in the shop or field, how-
ever, continue to be evaluated on the basis of test values for
uncurved, unsupported columns. A bolted seam (standard
for structural plate) must have a test strength of twice the
design load in the pipe wall.
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To simplify using the formulas in this chapter, Table 12.1
presents symbols, nomenclature, and United States Cus-
tomary System (USCS) and System International (SI) units
found in each expression.

CAPILLARY ACTION

Capillarity is due to both the cohesive forces between
liquid molecules and adhesive forces of liquid molecules.
It shows up as the difference in liquid surface elevations
between the inside and outside of a small tube that has one
end submerged in the liquid (Fig. 12.1).

Capillarity is commonly expressed as the height of this
rise. In equation form,

where h � capillary rise, ft (m)

� � surface tension, lb/ft (N/m)

w1 and w2 � specific weights of fluids below and above
meniscus, respectively, lb/ft (N/m)

� � angle of contact

r � radius of capillary tube, ft (m)

Capillarity, like surface tension, decreases with increas-
ing temperature. Its temperature variation, however, is small
and insignificant in most problems.

h �
2� cos �

(w1 � w2)r
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TABLE 12.1 Symbols, Terminology, Dimensions, and Units Used in Water Engineering 

Symbol Terminology Dimensions USCS units SI units 

A Area L2 ft2 mm2

C Chezy roughness coefficient L1/2/T ft5/s m0.5/s 
C1 Hazen–Williams roughness coefficient L0.37/T ft0.37/s m0.37/s 
d Depth L ft m 
dc Critical depth L ft m 
D Diameter L ft m 
E Modulus of elasticity F/L2 lb/in2 MPa 
F Force F lb N 
g Acceleration due to gravity L/T 2 ft/s2 m/s2

H Total head, head on weir L ft m 
h Head or height L ft m 
hf Head loss due to friction L ft m 
L Length L ft m 
M Mass FT 2/L lb�s2/ft Ns2/m 
n Manning’s roughness coefficient T/L1/3 s/ft1/3 s/m1/3

P Perimeter, weir height L ft m 
P Force due to pressure F lb N 
p Pressure F/L2 psf MPa 

1-sn.ses-l
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TABLE 12.1 Symbols, Terminology, Dimensions, and Units Used in Water Engineering (Continued)

Symbol Terminology Dimensions USCS units SI units 

Q Flow rate L3/T ft3/s m3/s 
q Unit flow rate L3/T�L ft3/(s�ft) m3/s�m 
r Radius L ft m 
R Hydraulic radius L ft m 
T Time T s s 
t Time, thickness T, L s, ft s, m 
V Velocity L/T ft/s m/s 
W Weight F lb kg 
w Specific weight F/L3 lb/ft3 kg/m3

y Depth in open channel, distance from 
solid boundary L ft m 

Z Height above datum L ft m 
" Size of roughness L ft m 
� Viscosity FT/L2 lb�s/ft kg�s/m 
� Kinematic viscosity L2/T ft2/s m2/s 
� Density FT2/L4 lb�s2/ft4 kg�s2/m4

� Surface tension F/L lb/ft kg/m 
� Shear stress F/L2 lb/in2 MPa 
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� Shear stress F/L lb/in MPa 

Symbols for dimensionless quantities 

Symbol Quantity 

C Weir coefficient, coefficient of discharge 
Cc Coefficient of contraction 
Cv Coefficient of velocity 
F Froude number 
f Darcy–Weisbach friction factor 
K Head-loss coefficient 
R Reynolds number 
S Friction slope—slope of energy grade line 
Sc Critical slope 
# Efficiency 

Sp. gr. Specific gravity 
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FIGURE 12.1 Capillary action raises water in a small-diameter tube.
Meniscus, or liquid surface, is concave upward.

VISCOSITY

Viscosity � of a fluid, also called the coefficient of viscosity,
absolute viscosity, or dynamic viscosity, is a measure of its
resistance to flow. It is expressed as the ratio of the tangential
shearing stresses between flow layers to the rate of change of
velocity with depth:

� �
�

dV/dy

w

V
a
i
v

b
a
t
0

t
l

P
C

T
(

w

40816_12a_p381-431  10/22/01  12:51 PM  Page 386



HYDRAULICS AND WATERWORKS FORMULAS 387

40816 HICKS Mcghp Ch. 12 REVISE PASS bzm 7/18/01 p387p386

.

,
s
l
f

where � � shearing stress, lb/ft2 (N/m2) 

V � velocity, ft/s (m/s) 

y � depth, ft (m) 

Viscosity decreases as temperature increases but may be
assumed independent of changes in pressure for the major-
ity of engineering problems. Water at 70°F (21.1°C) has a
viscosity of 0.00002050 lb�s/ft2 (0.00098 N�s/m2).

Kinematic viscosity � is defined as viscosity � divided
by density �. It is so named because its units, ft2/s (m2/s),
are a combination of the kinematic units of length and
time. Water at 70°F (21.1°C) has a kinematic viscosity of
0.00001059 ft2/s (0.000001 Nm2/s).

In hydraulics, viscosity is most frequently encountered in
the calculation of Reynolds number to determine whether
laminar, transitional, or completely turbulent flow exists.

PRESSURE ON SUBMERGED 
CURVED SURFACES

The hydrostatic pressure on a submerged curved surface
(Fig. 12.2) is given by

where P � total pressure force on the surface 

PH � force due to pressure horizontally

PV � force due to pressure vertically 

P � √P 2
H � P 2

V
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FIGURE 12.2 Hydrostatic pressure on a submerged curved surface.
(a) Pressure variation over the surface. (b) Free-body diagram.

FUNDAMENTALS OF FLUID FLOW 

For fluid energy, the law of conservation of energy is repre-
sented by the Bernoulli equation:

Z1 �
p1

w
�

V 2
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2g
� Z2 �
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where Z1 � elevation, ft (m), at any point 1 of flowing fluid
above an arbitrary datum 

Z2 � elevation, ft (m), at downstream point in fluid
above same datum 

p1 � pressure at 1, lb/ft2 (kPa) 

p2 � pressure at 2, lb/ft2 (kPa) 

w � specific weight of fluid, lb/ft3 (kg/m3) 

V1 � velocity of fluid at 1, ft/s (m/s) 

V2 � velocity of fluid at 2, ft/s (m/s) 

g � acceleration due to gravity, 32.2 ft/s2 (9.81 m/s2) 

The left side of the equation sums the total energy per
unit weight of fluid at 1, and the right side, the total
energy per unit weight at 2. The preceding equation
applies only to an ideal fluid. Its practical use requires
a term to account for the decrease in total head, ft (m),
through friction. This term hf, when added to the down-
stream side, yields the form of the Bernoulli equation
most frequently used:

The energy contained in an elemental volume of fluid
thus is a function of its elevation, velocity, and pressure
(Fig. 12.3). The energy due to elevation is the potential
energy and equals WZa, where W is the weight, lb (kg), of
the fluid in the elemental volume and Za is its elevation, ft
(m), above some arbitrary datum. The energy due to velo-
city is the kinetic energy. It equals , where Va is theWVa

2 /2g

Z1 �
p1

w
�

V 2
1

2g
� Z2 �

p2

w
�

V 2
2

2g
� hf
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FIGURE 12.3 Energy in a liquid depends on elevation, velocity, and
pressure.

F

velocity, ft /s (m/s). The pressure energy equals Wpa /w,
where pa is the pressure, lb/ft2 (kg/kPa), and w is the specific
weight of the fluid, lb/ft3 (kg/m3). The total energy in the
elemental volume of fluid is 

Dividing both sides of the equation by W yields the energy
per unit weight of flowing fluid, or the total head ft (m):

pa /w is called pressure head; /2g, velocity head.
As indicated in Fig. 12.3, Z � p/w is constant for any

point in a cross section and normal to the flow through

V 2
a

H � Za �
pa

w
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V 2
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Wpa
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FIGURE 12.4 Force diagram for momentum.
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a pipe or channel. Kinetic energy at the section, however,
varies with velocity. Usually, Z � p/w at the midpoint and
the average velocity at a section are assumed when the
Bernoulli equation is applied to flow across the section or
when total head is to be determined. Average velocity, ft/s
(m/s) � Q/A, where Q is the quantity of flow, ft3/s (m3/s),
across the area of the section A, ft2 (m2). 

Momentum is a fundamental concept that must be con-
sidered in the design of essentially all waterworks facilities
involving flow. A change in momentum, which may result
from a change in velocity, direction, or magnitude of flow,
is equal to the impulse, the force F acting on the fluid times
the period of time dt over which it acts (Fig. 12.4). Dividing
the total change in momentum by the time interval over
which the change occurs gives the momentum equation, or
impulse-momentum equation:
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where Fx � summation of all forces in X direction per
unit time causing change in momentum in
X direction, lb (N)

� � density of flowing fluid, lb�s2/ft4 (kg�s2/m4)
(specific weight divided by g)

Q � flow rate, ft3/s (m3/s)

�Vx � change in velocity in X direction, ft/s (m/s) 

Similar equations may be written for the Y and Z directions.
The impulse–momentum equation often is used in conjunc-
tion with the Bernoulli equation but may be used separately. 

SIMILITUDE FOR PHYSICAL MODELS

A physical model is a system whose operation can be
used to predict the characteristics of a similar system, or
prototype, usually more complex or built to a much larger
scale.

Ratios of the forces of gravity, viscosity, and surface
tension to the force of inertia are designated, Froude number,
Reynolds number, and Weber number, respectively. Equat-
ing the Froude number of the model and the Froude number
of the prototype ensures that the gravitational and inertial
forces are in the same proportion. Similarly, equating the
Reynolds numbers of the model and prototype ensures that
the viscous and inertial forces are in the same proportion.
Equating the Weber numbers ensures proportionality of sur-
face tension and inertial forces.

Fx � pQ �Vx
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The Froude number is

where F � Froude number (dimensionless) 

V � velocity of fluid, ft/s (m/s) 

L � linear dimension (characteristic, such as depth
or diameter), ft (m) 

g � acceleration due to gravity, 32.2 ft/s2 (9.81 m/s2)

For hydraulic structures, such as spillways and weirs,
where there is a rapidly changing water-surface profile, the
two predominant forces are inertia and gravity. Therefore, the
Froude numbers of the model and prototype are equated:

where subscript m applies to the model and p to the prototype.
The Reynolds number is

R is dimensionless, and � is the kinematic viscosity of fluid,
ft2/s (m2/s). The Reynolds numbers of model and prototype
are equated when the viscous and inertial forces are predom-
inant. Viscous forces are usually predominant when flow
occurs in a closed system, such as pipe flow where there is
no free surface. The following relations are obtained by
equating Reynolds numbers of the model and prototype:

R �
VL

�

Fm � Fp  Vm

√Lm g
�

Vp

√Lp g

F �
V

√Lg
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The variable factors that fix the design of a true model
when the Reynolds number governs are the length ratio and
the viscosity ratio.

The Weber number is

where � � density of fluid, lb�s2/ft4 (kg�s2/m4) (specific
weight divided by g); and � � surface tension of fluid,
lb/ft2 (kPa).

The Weber numbers of model and prototype are equated
in certain types of wave studies.

For the flow of water in open channels and rivers where
the friction slope is relatively flat, model designs are often
based on the Manning equation. The relations between the
model and prototype are determined as follows:

where n � Manning roughness coefficient (T/L1/3, T rep-
resenting time)

R � hydraulic radius (L)

S � loss of head due to friction per unit length of
conduit (dimensionless)

� slope of energy gradient

For true models, Sr � 1, Rr � Lr. Hence,
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In models of rivers and channels, it is necessary for the flow
to be turbulent. The U.S. Waterways Experiment Station
has determined that flow is turbulent if

where V � mean velocity, ft/s (m/s) 

R � hydraulic radius, ft (m) 

� � kinematic viscosity, ft2/s (m2/s) 

If the model is to be a true model, it may have to be uneco-
nomically large for the flow to be turbulent.

FLUID FLOW IN PIPES

Laminar Flow

In laminar flow, fluid particles move in parallel layers in
one direction. The parabolic velocity distribution in laminar
flow, shown in Fig. 12.5, creates a shearing stress � �
� dV/dy, where dV/dy is the rate of change of velocity with
depth, and � is the coefficient of viscosity. As this shearing
stress increases, the viscous forces become unable to damp
out disturbances, and turbulent flow results. The region of
change is dependent on the fluid velocity, density, and
viscosity and the size of the conduit.

VR

�
� 4000

Vr �
L2/3

r

nr
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FIGURE 12.5 Velocity distribution for lamellar flow in a circular
pipe is parabolic. Maximum velocity is twice the average velocity.

A dimensionless parameter called the Reynolds number
has been found to be a reliable criterion for the determina-
tion of laminar or turbulent flow. It is the ratio of inertial
forces/viscous forces, and is given by

where V � fluid velocity, ft/s (m/s) 

D � pipe diameter, ft (m)

� � density of fluid, lb�s2/ft4 (kg�s2/m4) (specific
weight divided by g, 32.2 ft/s2)

� � viscosity of fluid lb�s/ft2 (kg�s/m2)

� � �/� � kinematic viscosity, ft2/s (m2/s)

For a Reynolds number less than 2000, flow is laminar in
circular pipes. When the Reynolds number is greater than
2000, laminar flow is unstable; a disturbance is probably
magnified, causing the flow to become turbulent.
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In laminar flow, the following equation for head loss due
to friction can be developed by considering the forces act-
ing on a cylinder of fluid in a pipe:

where hf � head loss due to friction, ft (m) 

L � length of pipe section considered, ft (m) 

g � acceleration due to gravity, 32.2 ft/s2 (9.81 m/s2) 

w � specific weight of fluid, lb/ft3 (kg/m3) 

Substitution of the Reynolds number yields

For laminar flow, the preceding equation is identical to the
Darcy–Weisbach formula because, in laminar flow, the fric-
tion f � 64/R.

Turbulent Flow

In turbulent flow, the inertial forces are so great that viscous
forces cannot dampen out disturbances caused primarily by
the surface roughness. These disturbances create eddies,
which have both a rotational and translational velocity. The
translation of these eddies is a mixing action that affects an
interchange of momentum across the cross section of the
conduit. As a result, the velocity distribution is more uni-
form, as shown in Fig. 12.6. Experimentation in turbulent
flow has shown that

hf �
64

R
 

L

D
 
V 2

2g

hf �
32�LV

D2�g
�

32�LV

D2w

40816_12a_p381-431  10/22/01  12:51 PM  Page 397



4081

398 CHAPTER TWELVE

40816 HICKS Mcghp Ch. 12 REVISE PASS bzm 7/18/01 p398

FIGURE 12.6 Velocity distribution for turbulent flow in a circular
pipe is more nearly uniform than that for lamellar flow.

The head loss varies directly as the length of the pipe.

The head loss varies almost as the square of the velocity. 

The head loss varies almost inversely as the diameter.

The head loss depends on the surface roughness of the
pipe wall.

The head loss depends on the fluid density and viscosity. 

The head loss is independent of the pressure.

Darcy–Weisbach Formula

One of the most widely used equations for pipe flow, the
Darcy–Weisbach formula satisfies the condition described
in the preceding section and is valid for laminar or turbu-
lent flow in all fluids:

where hf � head loss due to friction, ft (m)

f � friction factor (see an engineering handbook) 

L � length of pipe, ft (m)

hf � f 
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D � diameter of pipe, ft (m)

V � velocity of fluid, ft/s (m/s)

g � acceleration due to gravity, 32.2 ft/s2 (9.81 m/s2)

It employs the Moody diagram for evaluating the friction
factor f. (Moody, L. F., “Friction Factors for Pipe Flow,”
Transactions of the American Society of Mechanical
Engineers, November 1944.)

Because the preceding equation is dimensionally homo-
geneous, it can be used with any consistent set of units
without changing the value of the friction factor. 

Roughness values ", ft (m), for use with the Moody dia-
gram to determine the Darcy–Weisbach friction factor f are
listed in engineering handbooks.

The following formulas were derived for head loss
in waterworks design and give good results for water-
transmission and -distribution calculations. They contain a
factor that depends on the surface roughness of the pipe
material. The accuracy of these formulas is greatly affected
by the selection of the roughness factor, which requires
experience in its choice.

Chezy Formula

This equation holds for head loss in conduits and gives rea-
sonably good results for high Reynolds numbers:

where V � velocity, ft/s (m/s)

C � coefficient, dependent on surface roughness of
conduit

V � C √RS
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S � slope of energy grade line or head loss due to
friction, ft/ft (m/m) of conduit

R � hydraulic radius, ft (m)

Hydraulic radius of a conduit is the cross-sectional area of
the fluid in it divided by the perimeter of the wetted section. 

Manning’s Formula

Through experimentation, Manning concluded that the C in
the Chezy equation should vary as R1/6:

where n � coefficient, dependent on surface roughness.
(Although based on surface roughness, n in practice is some-
times treated as a lumped parameter for all head losses.)
Substitution gives

On substitution of D/4, where D is the pipe diameter, for
the hydraulic radius of the pipe, the following equations are
obtained for pipes flowing full:

 Q �
0.463

n
 D8/3S1/2

 V �
0.590

n
 D2/3S1/2

V �
1.486

n
 R2/3S1/2

C �
1.486R1/6
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where Q � flow, ft3/s (m3/s).

Hazen–Williams Formula

This is one of the most widely used formulas for pipe-flow
computations of water utilities, although it was developed
for both open channels and pipe flow:

For pipes flowing full:

where V � velocity, ft /s (m/s)

C1 � coefficient, dependent on surface roughness
(given in engineering handbooks)

 D �
1.376

S0.205  � Q

C1
�

0.38

 hf �
4.727

D4.87  L � Q

C1
�

1.85

 Q � 0.432C1D2.63S 0.54

 V � 0.55C1D0.63S 0.54

V � 1.318C1R
0.63S0.54

 D � � 2.159Qn

S1/2 �
3/8

 hf � 4.66n2 
LQ2

D16/3
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FIGURE 12.7 Flow between reservoirs.

R � hydraulic radius, ft (m)

S � head loss due to friction, ft/ft (m/m) of pipe 

D � diameter of pipe, ft (m)

L � length of pipe, ft (m)

Q � discharge, ft3/s (m3/s)

hf � friction loss, ft (m)

Figure 12.7 shows a typical three-reservoir problem.
The elevations of the hydraulic grade lines for the three
pipes are equal at point D. The Hazen–Williams equation
for friction loss can be written for each pipe meeting at D.
With the continuity equation for quantity of flow, there are
as many equations as there are unknowns:
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where pD � pressure at D, and w � unit weight of liquid. 

PRESSURE (HEAD) CHANGES CAUSED BY
PIPE SIZE CHANGE

Energy losses occur in pipe contractions, bends, enlarge-
ments, and valves and other pipe fittings. These losses can
usually be neglected if the length of the pipeline is greater
than 1500 times the pipe diameter. However, in short pipe-
lines, because these losses may exceed the friction losses,
minor losses must be considered.

Sudden Enlargements

The following equation for the head loss, ft (m), across a
sudden enlargement of pipe diameter has been determined
analytically and agrees well with experimental results:

where V1 � velocity before enlargement, ft/s (m/s)

V2 � velocity after enlargement, ft/s (m/s)

g � 32.2 ft/s2 (9.81 m/s2)

hL �
(V1 � V2)2

2g

 QA � QB � QC

 Zc � Zd �
PD

w
 �

4.727LC

D4.87
C

 � QC

CC
�

1.85
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It was derived by applying the Bernoulli equation and the
momentum equation across an enlargement.

Another equation for the head loss caused by sudden
enlargements was determined experimentally by Archer.
This equation gives slightly better agreement with experi-
mental results than the preceding formula:

A special application of these two preceding formulas is the
discharge from a pipe into a reservoir. The water in the
reservoir has no velocity, so a full velocity head is lost.

Gradual Enlargements

The equation for the head loss due to a gradual conical
enlargement of a pipe takes the following form:

where K � loss coefficient, as given in engineering hand-
books.

Sudden Contraction

The following equation for the head loss across a sudden
contraction of a pipe was determined by the same type of
analytic studies as

hL � � 1

Cc

� 1�
2
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where Cc � coefficient of contraction; and V � velocity in
smaller diameter pipe, ft/s (m/s). This equation gives best
results when the head loss is greater than 1 ft (0.3 m).

Another formula for determining the loss of head caused
by a sudden contraction, determined experimentally by
Brightmore, is

This equation gives best results if the head loss is less than
1 ft (0.3 m).

A special case of sudden contraction is the entrance loss
for pipes. Some typical values of the loss coefficient K in
hL � KV 2/2g, where V is the velocity in the pipe, are pre-
sented in engineering handbooks.

Bends and Standard Fitting Losses

The head loss that occurs in pipe fittings, such as valves
and elbows, and at bends is given by

To obtain losses in bends other than 90°, the following
formula may be used to adjust the K values:

where � � deflection angle, degrees. K values are given in
engineering handbooks.

K� � K √ �

90

hL �
KV 2

2g

hL �
0.7(V1 � V2)2

2g
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FLOW THROUGH ORIFICES

An orifice is an opening with a closed perimeter through
which water flows. Orifices may have any shape, although
they are usually round, square, or rectangular. 

Orifice Discharge into Free Air 

Discharge through a sharp-edged orifice may be calculated
from

where Q � discharge, ft3/s (m3/s) 

C � coefficient of discharge 

a � area of orifice, ft2 (m2) 

g � acceleration due to gravity, ft/s2 (m/s2) 

h � head on horizontal center line of orifice, ft (m) 

Coefficients of discharge C are given in engineering
handbooks for low velocity of approach. If this velocity is
significant, its effect should be taken into account. The pre-
ceding formula is applicable for any head for which the
coefficient of discharge is known. For low heads, measuring
the head from the center line of the orifice is not theoretically
correct; however, this error is corrected by the C values. 

The coefficient of discharge C is the product of the coef-
ficient of velocity Cv and the coefficient of contraction Cc.
The coefficient of velocity is the ratio obtained by dividing
the actual velocity at the vena contracta (contraction of the
jet discharged) by the theoretical velocity. The theoretical

Q � Ca√2gh
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FIGURE 12.8 Fluid jet takes a parabolic path.
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velocity may be calculated by writing Bernoulli’s equation
for points 1 and 2 in Fig. 12.8.

With the reference plane through point 2, Z1 � h, V1 � 0,
p1/w � p2/w � 0, and Z2 � 0, the preceding formula
becomes

The coefficient of contraction Cc is the ratio of the
smallest area of the jet, the vena contracta, to the area of
the orifice. Contraction of a fluid jet occurs if the orifice
is square edged and so located that some of the fluid

V2 � √2gh

V 2
1

2g
�

p1

w
� Z1 �

V 2
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FIGURE 12.9 Discharge through a submerged orifice.

approaches the orifice at an angle to the direction of flow
through the orifice. 

Submerged Orifices 

Flow through a submerged orifice may be computed by
applying Bernoulli’s equation to points 1 and 2 in Fig. 12.9:

where hL � losses in head, ft (m), between 1 and 2.
By assuming V1 
 0, setting h1 � h2 � �h, and using

a coefficient of discharge C to account for losses, the fol-
lowing formula is obtained:

Q � Ca √2g �h

V2 �√2g �h1 � h2 �
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Values of C for submerged orifices do not differ greatly
from those for nonsubmerged orifices.

Discharge under Falling Head 

The flow from a reservoir or vessel when the inflow is less
than the outflow represents a condition of falling head. The
time required for a certain quantity of water to flow from a
reservoir can be calculated by equating the volume of water
that flows through the orifice or pipe in time dt to the
volume decrease in the reservoir. If the area of the reservoir
is constant,

where h1 � head at the start, ft (m) 

h2 � head at the end, ft (m) 

t � time interval for head to fall from h1 to h2, s 

FLUID JETS

Where the effect of air resistance is small, a fluid dis-
charged through an orifice into the air follows the path of
a projectile. The initial velocity of the jet is 

where h � head on center line of orifice, ft (m), and
Cv � coefficient of velocity. 

V0 � Cv √2gh

t �
2A

Ca √2g
 �√h1 � √h2�
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The direction of the initial velocity depends on the
orientation of the surface in which the orifice is located. For
simplicity, the following equations were determined assum-
ing the orifice is located in a vertical surface (see Fig. 12.8).
The velocity of the jet in the X direction (horizontal)
remains constant:

The velocity in the Y direction is initially zero and there-
after a function of time and the acceleration of gravity:

The X coordinate at time t is

The Y coordinate is

where Vavg � average velocity over period of time t. The
equation for the path of the jet:

ORIFICE DISCHARGE INTO DIVERGING 
CONICAL TUBES 

This type of tube can greatly increase the flow through an ori-
fice by reducing the pressure at the orifice below atmospheric.
The formula that follows for the pressure at the entrance to the

X 2 � C2
v4hY

Y � Vavg t �
gt2

2

X � Vx t � tCv √2gh

Vy � gt

Vx � V0 � Cv √2gh
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FIGURE 12.10 Diverging conical tube increases flow from a reser-
voir through an orifice by reducing the pressure below atmospheric.
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tube is obtained by writing the Bernoulli equation for points
1 and 3 and points 1 and 2 in Fig. 12.10:

where p2 � gage pressure at tube entrance, lb/ft2 (Pa)

w � unit weight of water, lb/ft3 (kg/m3)

h � head on centerline of orifice, ft (m)

a2 � area of smallest part of jet (vena contracta, if
one exists), ft2 (m)

a3 � area of discharge end of tube, ft2 (m2) 

Discharge is also calculated by writing the Bernoulli equa-
tion for points 1 and 3 in Fig. 12.10.

For this analysis to be valid, the tube must flow full, and
the pressure in the throat of the tube must not fall to the
vapor pressure of water. Experiments by Venturi show the
most efficient angle � to be around 5°.

p2 � wh �1 � � a3

a2
�

2

�
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WATER HAMMER

Water hammer is a change is pressure, either above or
below the normal pressure, caused by a variation of the flow
rate in a pipe.

The equation for the velocity of a wave in a pipe is

where U � velocity of pressure wave along pipe, ft/s (m/s) 

E � modulus of elasticity of water, 43.2 � 106 lb/ft2

(2.07 � 106 kPa)

� � density of water, 1.94 lb�s/ft4 (specific weight
divided by acceleration due to gravity) 

D � diameter of pipe, ft (m) 

Ep � modulus of elasticity of pipe material, lb/ft2

(kg/m2) 

t � thickness of pipe wall, ft (m) 

PIPE STRESSES PERPENDICULAR
TO THE LONGITUDINAL AXIS

The stresses acting perpendicular to the longitudinal axis of
a pipe are caused by either internal or external pressures on
the pipe walls.

Internal pressure creates a stress commonly called hoop
tension. It may be calculated by taking a free-body diagram

U �√ E

�
  √ 1

1 � ED/Ep t
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FIGURE 12.11 Internal pipe pressure produces hoop tension. 
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of a 1-in (25.4-mm)-long strip of pipe cut by a vertical
plane through the longitudinal axis (Fig. 12.11). The forces
in the vertical direction cancel out. The sum of the forces in
the horizontal direction is

where p � internal pressure, lb/in2 (MPa) 

D � outside diameter of pipe, in (mm) 

F � force acting on each cut of edge of pipe, lb (N) 

Hence, the stress, lb/in2 (MPa) on the pipe material is

where A � area of cut edge of pipe, ft2 (m2); and t � thick-
ness of pipe wall, in (mm).

f �
F

A
�

pD

2t

pD � 2F
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TEMPERATURE EXPANSION OF PIPE

If a pipe is subject to a wide range of temperatures, the
stress, lb/in2 (MPa), due to a temperature change is

where E � modulus of elasticity of pipe material, lb/in2

(MPa) 

�T � temperature change from installation temper-
ature 

c � coefficient of thermal expansion of pipe material 

The movement that should be allowed for, if expansion
joints are to be used, is 

where �L � movement in length L of pipe, and L � length
between expansion joints.

FORCES DUE TO PIPE BENDS

It is common practice to use thrust blocks in pipe bends to
take the forces on the pipe caused by the momentum change
and the unbalanced internal pressure of the water.

The force diagram in Fig. 12.12 is a convenient method
for finding the resultant force on a bend. The forces can be
resolved into X and Y components to find the magnitude and
direction of the resultant force on the pipe. In Fig. 12.12,

�L � Lc �T

f � cE �T
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FIGURE 12.12 Forces produced by flow at a pipe bend and change
in diameter. 
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V1 � velocity before change in size of pipe, ft /s (m/s) 

V2 � velocity after change in size of pipe, ft /s (m/s)

p1 � pressure before bend or size change in pipe, lb/ft2

(kPa)

p2 � pressure after bend or size change in pipe, lb/ft2

(kPa)

A1 � area before size change in pipe, ft2 (m2)

A2 � area after size change in pipe, ft2 (m2)

F2m � force due to momentum of water in section
2 � V2Qw/g
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F1m � force due to momentum of water in section
1 � V1Qw/g

P2 � pressure of water in section 2 times area of sec-
tion 2 � p2A2

P1 � pressure of water in section 1 times area of sec-
tion 1 � p1A1

w � unit weight of liquid, lb/ft3 (kg/m3) 

Q � discharge, ft3/s (m3/s) 

If the pressure loss in the bend is neglected and there is no
change in magnitude of velocity around the bend, a quick
solution is

where R � resultant force on bend, lb (N) 

� � angle R makes with F1m

p � pressure, lb/ft2 (kPa) 

w � unit weight of water, 62.4 lb/ft3 (998.4 kg/m3) 

V � velocity of flow, ft/s (m/s) 

g � acceleration due to gravity, 32.2 ft/s2 (9.81 m/s2)

A � area of pipe, ft2 (m2) 

� � angle between pipes (0° � � � 180°)

 � �
�

2

 R � 2A �w 
V2

g
� p� cos 

�
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CULVERTS

A culvert is a closed conduit for the passage of surface
drainage under a highway, a railroad, a canal, or other em-
bankment. The slope of a culvert and its inlet and outlet con-
ditions are usually determined by the topography of the site.
Because of the many combinations obtained by varying the
entrance conditions, exit conditions, and slope, no single for-
mula can be given that applies to all culvert problems.

The basic method for determining discharge through a
culvert requires application of the Bernoulli equation
between a point just outside the entrance and a point some-
where downstream.

Entrance and Exit Submerged

When both the exit and entrance are submerged (Fig. 12.13),
the culvert flows full, and the discharge is independent of the
slope. This is normal pipe flow and is easily solved by using
the Manning or Darcy–Weisbach formula for friction loss. 

From the Bernoulli equation for the entrance and exit,
and the Manning equation for friction loss, the following
equation is obtained:

Solution for the velocity of flow yields

where H � elevation difference between headwater and
tailwater, ft (m) 

V �√ H

(1 � Ke/2g) � (n2L /2.21R4/3)

H � (1 � Ke) 
V 2

2g
�

V 2n2L

2.21R4/3
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FIGURE 12.13 With entrance and exit of a culvert submerged,
normal pipe flow occurs. Discharge is independent of slope. The fluid
flows under pressure. Discharge may be determined from Bernoulli and
Manning equations.

V � velocity in culvert, ft/s (m/s) 

g � acceleration due to gravity, 32.2 ft/s2 (9.81 m/s2) 

Ke � entrance-loss coefficient 

n � Manning’s roughness coefficient 

L � length of culvert, ft (m) 

R � hydraulic radius of culvert, ft (m) 

The preceding equation can be solved directly because the
velocity is the only unknown. 

Culverts on Subcritical Slopes 

Critical slope is the slope just sufficient to maintain flow at
critical depth. When the slope is less than critical, the flow
is considered subcritical. 
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FIGURE 12.14 Open-channel flow occurs in a culvert with free dis-
charge and normal depth dn greater than the critical depth dc when the
entrance is unsubmerged or slightly submerged. Discharge depends on
head H, loss at entrance, and slope of culvert. 

,
d
d

) 

e

t
w

Entrance Submerged or Unsubmerged but Free Exit. For
these conditions, depending on the head, the flow can be
either pressure or open channel (Fig. 12.14). 

The discharge for the open-channel condition is
obtained by writing the Bernoulli equation for a point just
outside the entrance and a point a short distance down-
stream from the entrance. Thus,

The velocity can be determined from the Manning
equation:

By substituting this into

H � (1 � Ke) 
2.2

2gn2  SR4/3 � dn

V 2 �
2.2SR4/3

n2

H � Ke 
V 2

2g
�

V 2

2g
� dn
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where H � head on entrance measured from bottom of
culvert, ft (m) 

Ke � entrance-loss coefficient 

S � slope of energy grade line, which for culverts
is assumed to equal slope of bottom of culvert 

R � hydraulic radius of culvert, ft (m) 

dn � normal depth of flow, ft (m) 

To solve the preceding head equation, it is necessary to
try different values of dn and corresponding values of R
until a value is found that satisfies the equation. 

OPEN-CHANNEL FLOW 

Free surface flow, or open-channel flow, includes all cases
of flow in which the liquid surface is open to the atmos-
phere. Thus, flow in a pipe is open-channel flow if the pipe
is only partly full. 

A uniform channel is one of constant cross section. It
has uniform flow if the grade, or slope, of the water surface
is the same as that of the channel. Hence, depth of flow is con-
stant throughout. Steady flow in a channel occurs if the depth
at any location remains constant with time. 

The discharge Q at any section is defined as the volume
of water passing that section per unit of time. It is
expressed in cubic feet per second, ft3/s (cubic meter per
second, m3/s), and is given by

Q � VA

w

W
t
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where V � average velocity, ft/s (m/s) 

A � cross-sectional area of flow, ft2 (m2) 

When the discharge is constant, the flow is said to be con-
tinuous and therefore

where the subscripts designate different channel sections.
This preceding equation is known as the continuity equa-
tion for continuous steady flow. 

Depth of flow d is taken as the vertical distance, ft (m),
from the bottom of a channel to the water surface. The
wetted perimeter is the length, ft (m), of a line bounding the
cross-sectional area of flow minus the free surface width.
The hydraulic radius R equals the area of flow divided by
its wetted perimeter. The average velocity of flow V is
defined as the discharge divided by the area of flow:

The velocity head HV, ft (m), is generally given by

where V � average velocity, ft/s (m/s); and g � acceleration
due to gravity, 32.2 ft/s2 (9.81 m/s2).

The true velocity head may be expressed as

HVa � � 
V 2

2g

HV �
V 2

2g

V �
Q

A

Q � V1 A1 � V2 A2 � � � �
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FIGURE 12.15 Characteristics of uniform open-channel flow. 

where � is an empirical coefficient that represents the
degree of turbulence. Experimental data indicate that � may
vary from about 1.03 to 1.36 for prismatic channels. It is,
however, normally taken as 1.00 for practical hydraulic work
and is evaluated only for precise investigations of energy loss.

The total energy per pound (kilogram) of water relative
to the bottom of the channel at a vertical section is called
the specific energy head He. It is composed of the depth of
flow at any point, plus the velocity head at the point. It is
expressed in feet (meter) as

A longitudinal profile of the elevation of the specific energy
head is called the energy grade line, or the total-head line
(Fig. 12.15). A longitudinal profile of the water surface is
called the hydraulic grade line. The vertical distance between
these profiles at any point equals the velocity head at that point.

He � d �
V 2
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Loss of head due to friction hf in channel length L
equals the drop in elevation of the channel �Z in the same
distance.

Normal Depth of Flow 

The depth of equilibrium flow that exists in the channel of
Fig. 12.15 is called the normal depth dn. This depth is
unique for specific discharge and channel conditions. It may
be computed by a trial-and-error process when the channel
shape, slope, roughness, and discharge are known. A form
of the Manning equation is suggested for this calculation:

where A � area of flow, ft2 (m2) 

R � hydraulic radius, ft (m) 

Q � amount of flow or discharge, ft3/s (m3/s) 

n � Manning’s roughness coefficient 

S � slope of energy grade line or loss of head, ft (m),
due to friction per linear ft (m), of channel 

AR2/3 is referred to as a section factor.

Critical Depth of Open-Channel Flow

For a given value of specific energy, the critical depth gives
the greatest discharge, or conversely, for a given discharge,
the specific energy is a minimum for the critical depth. 

AR2/3 �
Qn

1.486S1/2
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For rectangular channels, the critical depth, dc ft (m), is
given by

where dc � critical depth, ft (m)

Q � quantity of flow or discharge, ft3/s (m3/s)

b � width of channel, ft (m) 

MANNING’S EQUATION FOR
OPEN CHANNELS

One of the more popular of the numerous equations devel-
oped for determination of flow in an open channel is
Manning’s variation of the Chezy formula:

where R � hydraulic radius, ft (m) 

V � mean velocity of flow, ft/s (m/s) 

S � slope of energy grade line or loss of head due
to friction, ft/linear ft (m/m), of channel 

C � Chezy roughness coefficient 

Manning proposed:

C �
1.4861/6

n

V � C √RS

dc �√
3 Q2

b2g

w
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where n is the coefficient of roughness in the Ganguillet–Kutter
formula.

When Manning’s C is used in the Chezy formula, the
Manning equation for flow velocity in an open channel results:

Because the discharge Q � VA, this equation may be written:

where A � area of flow, ft2 (m2); and Q � quantity of flow,
ft3/s (m3/s). 

HYDRAULIC JUMP

This is an abrupt increase in depth of rapidly flowing water
(Fig. 12.16). Flow at the jump changes from a supercritical
to a subcritical stage with an accompanying loss of kinetic
energy. Depth at the jump is not discontinuous. The change
in depth occurs over a finite distance, known as the length
of jump. The upstream surface of the jump, known as the
roller, is a turbulent mass of water. 

The depth before a jump is the initial depth, and the
depth after a jump is the sequent depth. The specific energy
for the sequent depth is less than that for the initial depth
because of the energy dissipation within the jump. (Initial
and sequent depths should not be confused with the depths
of equal energy, or alternate depths.) 

Q �
1.486

n
 AR2/3S1/2

V �
1.486

n
 R2/3S1/2
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FIGURE 12.16 Hydraulic jump.

The pressure force F developed in hydraulic jump is 

where d1 � depth before jump, ft (m) 

d2 � depth after jump, ft (m) 

w � unit weight of water, lb/ft3 (kg/m3) 

The rate of change of momentum at the jump per foot
width of channel equals

where M � mass of water, lb�s2/ft (kg�s2/m)

V1 � velocity at depth d1, ft/s (m/s)

V2 � velocity at depth d2, ft/s (m/s)

F �
MV1 � MV2

t
�

qw

g
 (V1 � V2)

F �
d2

2 w

2
�

d2
1 w

2

T

e
(

w
(
f

r
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t

q � discharge per foot width of rectangular
channel, ft3/s (m3/s)

t � unit of time, s

g � acceleration due to gravity, 32.2 ft/s2 (9.81
kg/s2)

Then

The head loss in a jump equals the difference in specific-
energy head before and after the jump. This difference
(Fig. 12.17) is given by

where He1 � specific-energy head of stream before jump, ft
(m); and He2 � specific-energy head of stream after jump,
ft (m).

The depths before and after a hydraulic jump may be
related to the critical depth by 

d1d2 
d1 � d2

2
�

q2

g
� d3

c

�He � He1 � He2 �
(d2 � d1)3

4d1 d2

 d1 �
�d2

2
�√ 2V 2

2 d2

g
�

d 2
2

4

 d2 �
�d1

2
�√ 2V 2

1 d1

g
�

d 2
1

4

 V 2
1 �

gd2

2d1
 (d2 � d1)
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FIGURE 12.17 Type of hydraulic jump depends on Froude number. 
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where q � discharge, ft3/s (m3/s) per ft (m) of channel
width; and dc � critical depth for the channel, ft (m).

It may be seen from this equation that if d1 � dc, d2

must also equal dc.

F
o
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Figure 12.18 shows how the length of hydraulic jump may
be computed using the Froude number and the L /d2 ratio.

NONUNIFORM FLOW IN OPEN CHANNELS 

Symbols used in this section are V � velocity of flow in the
open channel, ft/s (m/s); Dc � critical depth, ft (m); g �
acceleration due to gravity, ft/s2 (m/s2); Q � flow rate, ft3/s
(m3/s); q � flow rate per unit width, ft3/ft (m3/m); Hm �
minimum specific energy, ft�lb/lb (kg�m/kg). Channel
dimensions are in feet or meters and the symbols for them
are given in the text and illustrations. 

Nonuniform flow occurs in open channels with gradual
or sudden changes in the cross-sectional area of the fluid
stream. The terms gradually varied flow and rapidly varied
flow are used to describe these two types of nonuniform

l

2

FIGURE 12.18 Length of hydraulic jump in a horizontal channel depends
on sequent depth d2 and the Froude number of the approaching flow.
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FIGURE 12.19 Energy of open-channel fluid flow. 

flow. Equations are given next for flow in (1) rectangular
cross-section channels, (2) triangular channels, (3) parabolic
channels, (4) trapezoidal channels, and (5) circular chan-
nels. These five types of channels cover the majority of
actual examples met in the field. Figure 12.19 shows the
general energy relations in open-channel flow. 

Rectangular Channels 

In a rectangular channel, the critical depth Dc equals the
mean depth Dm; the bottom width of the channel b equals
the top width T; and when the discharge of fluid is taken
as the flow per foot (meter) of width q of the channel, both
b and T equal unity. Then Vc, the average velocity, is 

(12.1)

and (12.2)Dc �
V 2

c

g

Vc � √gDc

A

w

a

a

W

T

I
a
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Also (12.3)

where g � acceleration due to gravity in USCS or SI units. 

(12.4)

and (12.5)

The minimum specific energy is

(12.6)

and the critical depth is

(12.7)

Then the discharge per foot (meter) of width is given by

(12.8)

With g � 32.16, Eq. (12.8) becomes

(12.9)

Triangular Channels 

In a triangular channel (Fig. 12.20), the maximum depth Dc

and the mean depth Dm equal Dc. Then,

(12.10)Vc �√ gDc

2

1�2

q � 3.087H3/2
m

q � √g (2�3)3/2H3/2
m

Dc � 2�3 Hm

Hm � 3�2 Dc

Dc �√
3 q2

g

q � √g  Dc
3/2

Q � √g  bDc
3/2
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FIGURE 12.20 Triangular open channel.

and (12.11)

As shown in Fig. 12.20, z is the slope of the channel
sides, expressed as a ratio of horizontal to vertical; for sym-
metrical sections, z � e/Dc. The area, a � . Then,

(12.12)

With g � 32.16,

(12.13)

and
(12.14)

or (12.15)

With g � 32.16,

(12.16)Q � 2.295zHm
5/2

Q �√ g

2
 � 4

5 �
5/2

zHm
5/2

Dc �√
5 2Q2

gz2

Q � 4.01zDc
5/2

Q �√ g

2
 zDc

5/2

zD2
c

Dc �
2V 2

c

g

P

T
t
t

a

F

W

a

F

40816_12b_p432-450  10/22/01  12:52 PM  Page 432



HYDRAULICS AND WATERWORKS FORMULAS 433

40816 HICKS Mcghp Ch. 12 REVISE PASS bzm 7/18/01 p433p432

)

l
-

)

)

)

)

)

Parabolic Channels

These channels can be conveniently defined in terms of the
top width T and the depth Dc. Then the area a � DcT and
the mean depth � Dm.

Then (Fig. 12.21),

(12.17)

and (12.18)

Further, (12.19)

With g � 32.16,

(12.20)

and (12.21)Dc �
3

2
 √

3 Q2

gT 2

Q � 3.087TD3/2
c

Q �√ 8g

27
 TD3/2

c

Dc �
3

2
  

V2
c

g

Vc � √2�3 gDc

2�3

FIGURE 12.21 Parabolic open channel.
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FIGURE 12.22 Trapezoidal open channel.

Also (12.22)

With g � 32.16,

(12.23)

Trapezoidal Channels

Figure 12.22 shows a trapezoidal channel having a depth of
Dc and a bottom width b. The slope of the sides, horizontal
divided by vertical, is z. Expressing the mean depth Dm in
terms of channel dimensions, the relations for critical depth
Dc and average velocity Vc are 

(12.24)

and (12.25)Dc �
V 2

c

c
�

b

2z
�√ V 4

c

g2  �
b2

4z2

Vc �√ b � zDc

b � 2zDc

 gDc

Q � 2.005TH3/2
m

Q �√ 8g

27
 � 3

4 �
3/2

 TH3/2
m

T
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F
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The discharge through the channel is then 

(12.26)

Then, the minimum specific energy and critical depth are

(12.27)

Circular Channels 

Figure 12.23 shows a typical circular channel in which the
area a, top width T, and depth Dc are

(12.29)

(12.30)

(12.31)

Flow quantity is then given by

(12.32)Q �

23/2g1/2(�r �
1

2
 sin 2�)3/2

8(sin �)1/2 (1 � cos �)5/2  D5/2
c

 Dc �
d

2
 (1 � cos �)

 T � d sin �

 a �
d2

4
 (�r �

1

2
 sin 2�)

Dc �
4zHm � 3b � √16z2H m

2 � 16zHm b � 9b2

10z
 (12.28)

Hm �
3b � 5zDc

2b � 4zDc

 Dc

Q �√g 
(b � zDc)3

b � 2zDc

  D3/2
c
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WEIRS

A weir is a barrier in an open channel over which water
flows. The edge or surface over which the water flows is
called the crest. The overflowing sheet of water is the
nappe.

If the nappe discharges into the air, the weir has free dis-
charge. If the discharge is partly under water, the weir is
submerged or drowned.

Types of Weirs

A weir with a sharp upstream corner or edge such that
the water springs clear of the crest is a sharp-crested weir
(Fig. 12.24). All other weirs are classed as weirs not sharp
crested. Sharp-crested weirs are classified according to the
shape of the weir opening, such as rectangular weirs, triangular
or V-notch weirs, trapezoidal weirs, and parabolic weirs.
Weirs not sharp crested are classified according to the shape
of their cross section, such as broad-crested weirs, triangular
weirs, and (as shown in Fig. 12.25) trapezoidal weirs.
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F
FIGURE 12.23 Circular channel. 

F
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The channel leading up to a weir is the channel of
approach. The mean velocity in this channel is the velocity
of approach. The depth of water producing the discharge is
the head.

Sharp-crested weirs are useful only as a means of meas-
uring flowing water. In contrast, weirs not sharp crested are
commonly incorporated into hydraulic structures as control
or regulation devices, with measurement of flow as their
secondary function.

FIGURE 12.24 Sharp-crested weir. 

FIGURE 12.25 Weir not sharp crested.
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FLOW OVER WEIRS

Rectangular Weir

The Francis formula for the discharge of a sharp-crested
rectangular weir having a length b greater than 3h is

where Q � discharge over weir, ft3/s (m3/s)

b � length of weir, ft (m)

h � vertical distance from level of crest of weir to
water surface at point unaffected by weir
drawdown (head on weir), ft (m)

n � number of end contractions (0, 1, or 2)

h0 � head of velocity of approach [equal to ,
where � velocity of approach, (ft/s (m/s)],
ft (m)

gc � 32.2 (lb mass) (ft)/(lb force) (s2)(m/s2)

If the sides of the weir are coincident with the sides of the
approach channel, the weir is considered to be suppressed,
and n � 0. If both sides of the weir are far enough removed
from the sides of the approach channel to permit free lateral
approach of water, the weir is considered to be contracted,
and n � 2. If one side is suppressed and one is contracted,
n � 1.

v0

v0
2 /2gc

Q � 3.33 � b � nh

10 � [(h � h0)3/2 � h3/2
0 ]

T

T
6

T

T
t
c
c

w
t
c
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T
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Triangular Weir

The discharge of triangular weirs with notch angles of 30°,
60°, and 90° is given by the formulas in Table 12.2. 

Trapezoidal (Cipolletti) Weir

The Cipolletti weir, extensively used for irrigation work, is
trapezoidal in shape. The sides slope outward from the
crest at an inclination of 1:4, (horizontal/vertical). The dis-
charge is

where b, h, and Q are as defined earlier. The advantage of
this type of weir is that no correction needs to be made for
contractions.

Broad-Crested Weir

The discharge of a broad-crested weir is

Q � Cbh3/2

Q � 3.367bh3/2

TABLE 12.2 Discharge of Triangular Weirs

Notch (vertex) angle Discharge formula†

90° Q � 0.685h2.45

60° Q � 1.45h2.47

30° Q � 2.49h2.48

† h is as defined above in the Francis formula.
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TABLE 12.3 Variations in Head Ratio and
Coefficient of Discharge for Broad-Crested Weirs

Ratio of actual head Coefficient of
to design head discharge

0.20 3.30
0.40 3.50
0.60 3.70
0.80 3.85
1.00 3.98
1.20 4.10
1.40 4.22

Values of C for broad-crested weirs with rounded upstream
corners generally range from 2.6 to 2.9. For sharp upstream
corners, C generally ranges from 2.4 to 2.6. Dam spillways
are usually designed to fit the shape of the underside of
a stream flowing over a sharp-crested weir. The coefficient
C for such a spillway varies considerably with variation in
the head, as shown in Table 12.3.

Q, b, and h are as defined for rectangular weirs.

PREDICTION OF SEDIMENT-DELIVERY RATE

Two methods of approach are available for predicting the
rate of sediment accumulation in a reservoir; both involve
predicting the rate of sediment delivery.

One approach depends on historical records of the
silting rate for existing reservoirs and is purely empirical.
The second general method of calculating the sediment-

d
t
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t
b
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p

w

f
v
t
(
a

40816_12b_p432-450  10/22/01  12:52 PM  Page 440



HYDRAULICS AND WATERWORKS FORMULAS 441

40816 HICKS Mcghp Ch. 12 REVISE PASS bzm 7/18/01 p441p440

m
m
s
f
t
n

e
e

e
.
-

delivery rate involves determining the rate of sediment
transport as a function of stream discharge and density of
suspended silt. 

The quantity of bed load is considered a constant func-
tion of the discharge because the sediment supply for the
bed-load forces is always available in all but lined channels.
An accepted formula for the quantity of sediment trans-
ported as bed load is the Schoklitsch formula:

where Gb � total bed load, lb/s (kg/s)

Dg � effective grain diameter, in (mm)

S � slope of energy gradient

Qi � total instantaneous discharge, ft3/s (m3/s)

b � width of river, ft (m)

qo � critical discharge, ft3/s (m3/s) per ft (m), of river
width

� (0.00532/S4/3)Dg

An approximate solution for bed load by the Schoklitsch
formula can be made by determining or assuming mean
values of slope, discharge, and single grain size representa-
tive of the bed-load sediment. A mean grain size of 0.04 in
(about 1 mm) in diameter is reasonable for a river with
a slope of about 1.0 ft/mi (0.189 m/km).

Gb �
86.7

D1/2
g

 S3/2 (Qi � bqo)
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EVAPORATION AND TRANSPIRATION

The Meyer equation, developed from Dalton’s law, is one
of many evaporation formulas and is popular for making
evaporation-rate calculations:

where E � evaporation rate, in 30-day month

C � empirical coefficient, equal to 15 for small,
shallow pools and 11 for large, deep reservoirs

ew � saturation vapor pressure, in (mm), of mercury,
corresponding to monthly mean air tempera-
ture observed at nearby stations for small
bodies of shallow water or corresponding to
water temperature instead of air temperature
for large bodies of deep water

ea � actual vapor pressure, in (mm), of mercury, in
air based on monthly mean air temperature
and relative humidity at nearby stations for
small bodies of shallow water or based on
information obtained about 30 ft (9.14 m)
above the water surface for large bodies of
deep water

w � monthly mean wind velocity, mi/h (km/h), at
about 30 ft (9.14 m) aboveground

� � wind factor

 � � 1 � 0.1w

 E � C (ew � ea)�

A
l
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M
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h

w

C

C

w
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As an example of the evaporation that may occur from a
large reservoir, the mean annual evaporation from Lake
Mead is 6 ft (1.82 m).

METHOD FOR DETERMINING RUNOFF
FOR MINOR HYDRAULIC STRUCTURES

The most common means for determining runoff for minor
hydraulic structures is the rational formula:

where Q � peak discharge, ft3/s (m3/s) 

C � runoff coefficient � percentage of rain that
appears as direct runoff 

I � rainfall intensity, in/h (mm/h) 

A � drainage area, acres (m2) 

COMPUTING RAINFALL INTENSITY 

Chow lists 24 rainfall-intensity formulas of the form:

where I � rainfall intensity, in/h (mm/h)

I �
KF n1

(t � b)n

Q � CIA
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K, b, n, and n1 � coefficient, factor, and exponents, respec-
tively, depending on conditions that affect
rainfall intensity

F � frequency of occurrence of rainfall, years

t � duration of storm, min

� time of concentration

Perhaps the most useful of these formulas is the Steel formula:

where K and b are dependent on the storm frequency and
region of the United States (Fig. 12.26 and Table 12.4).

The Steel formula gives the average maximum precipi-
tation rates for durations up to 2 h.

I �
K

t � b

FIGURE 12.26 Regions of the United States for use with the Steel
formula. 
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TABLE 12.4 Coefficients for Steel Formula 

Region

Frequency, years Coefficients 1 2 3 4 5 6 7

2 K 206 140 106 70 70 68 32
b 30 21 17 13 16 14 11

4 K 247 190 131 97 81 75 48
b 29 25 19 16 13 12 12

10 K 300 230 170 111 111 122 60
b 36 29 23 16 17 23 13

25 K 327 260 230 170 130 155 67
b 33 32 30 27 17 26 10
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GROUNDWATER

Groundwater is subsurface water in porous strata within
a zone of saturation. It supplies about 20 percent of the
United States water demand.

Aquifers are groundwater formations capable of furnish-
ing an economical water supply. Those formations from
which extractions cannot be made economically are called
aquicludes.

Permeability indicates the ease with which water moves
through a soil and determines whether a groundwater for-
mation is an aquifer or aquiclude.

The rate of movement of groundwater is given by
Darcy’s law:

where Q � flow rate, gal/day (m3/day)

K � hydraulic conductivity, ft/day (m/day)

I � hydraulic gradient, ft/ft (m/m)

A � cross-sectional area, perpendicular to direction
of flow, ft2 (m2)

WATER FLOW FOR FIREFIGHTING

The total quantity of water used for fighting fires is normally
quite small, but the demand rate is high. The fire demand as
established by the American Insurance Association is

G � 1020√P (1 � 0.01√P)

Q � KIA
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where G � fire-demand rate, gal/min (liter/s); and P �
population, thousands.

FLOW FROM WELLS

The steady flow rate Q can be found for a gravity well by
using the Dupuit formula:

where Q � flow, gal/day (liter/day)

K � hydraulic conductivity, ft/day (m/day), under
1:1 hydraulic gradient

H � total depth of water from bottom of well to
free-water surface before pumping, ft (m)

h � H minus drawdown, ft (m)

D � diameter of circle of influence, ft (m)

d � diameter of well, ft (m)

The steady flow, gal/day (liter/day), from an artesian well is
given by

where t is the thickness of confined aquifer, ft (m).

Q �
2.73Kt(H � h)

log(D/d)

Q �
1.36K(H 2 � h2)

log(D/d)

n
e

-
m
d

s
-

y

n

y
s
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ECONOMICAL SIZING OF 
DISTRIBUTION PIPING

An equation for the most economical pipe diameter for a
distribution system for water is

where D � pipe diameter, ft (m)

f � Darcy–Weisbach friction factor

b � value of power, $/hp per year ($/kW per year)

Qa � average discharge, ft3/s (m3/s)

S � allowable unit stress in pipe, lb/in2 (MPa)

a � in-place cost of pipe, $/lb ($/kg)

i � yearly fixed charges for pipeline (expressed as
a fraction of total capital cost)

Ha � average head on pipe, ft (m)

VENTURI METER FLOW COMPUTATION

Flow through a venturi meter (Fig. 12.27) is given by

 K �
4



 √ 2g

1 � (d2 � d1)2

 Q � cKd 2
2 √h1 � h2

D � 0.215 � fbQ3
a S

aiHa
�

1/7

w

H

H
v
t
a

F
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where Q � flow rate, ft3/s (m3/s)

c � empirical discharge coefficient dependent on
throat velocity and diameter

d1 � diameter of main section, ft (m)

d2 � diameter of throat, ft (m)

h1 � pressure in main section, ft (m) of water

h2 � pressure in throat section, ft (m) of water

HYDROELECTRIC POWER GENERATION

Hydroelectric power is electrical power obtained from con-
version of potential and kinetic energy of water. The poten-
tial energy of a volume of water is the product of its weight
and the vertical distance it can fall:

PE � WZ

FIGURE 12.27 Standard venturi meter.
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where PE � potential energy

W � total weight of the water

Z � vertical distance water can fall

Power is the rate at which energy is produced or utilized:

1 horsepower (hp) � 550 ft�lb/s

1 kilowatt (kW) � 738 ft�lb/s

1 hp � 0.746 kW

1 kW � 1.341 hp

Power obtained from water flow may be computed from

where kW � kilowatt

hp � horsepower

Q � flow rate, ft3/s (m3/s)

w � unit weight of water � 62.4 lb/ft3 (998.4
kg/m3)

h � effective head � total elevation difference
minus line losses due to friction and turbu-
lence, ft (m)

# � efficiency of turbine and generator

 kW �
#Qwh

738
�

#Qh

11.8

 hp �
#Qwh

550
�

#Qh

8.8
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Adjustment factors for lumber,
224–233

Allowable-stress design,
285–297

Beam formulas, 16–98
beam formulas and elastic

diagrams, 29–39
beams of uniform strength,

63
characteristics of loadings, 52
combined axial and bending

loads, 92
continuous beams, 16, 27, 51
curved beams, 82–88

eccentrically curved, 86
eccentric loading, 94–96
elastic-curve equations for

prismatic beams, 40–51
elastic lateral buckling, 88–92

natural circular and periods
of vibration, 96–98

rolling and moving loads,
79–82

safe loads for beams of
various types, 64–78

parabolic beam, 64
steel beam, 66
triangular beam, 65

ultimate strength of
continuous beams,
53–62

Castigliano’s theorem,
62

Maxwell’s theorem, 62
unsymmetrical bending, 93

Blasting, vibration control in,
280–282

Bridge and suspension-cable
formulas, 322–354

allowable-stress design, 323
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Bridge and suspension-cable
formulas (Continued )
for bridge beams,

325–327
for bridge columns, 323
for shear, 339–340

bearing on milled surfaces,
332

bridge fasteners, 333
cable systems, 353
composite construction in

highway bridges, 333
bending stresses, 335
effective width of slabs,

334
shear range, 335–337
span/depth ratios, 334

general relations for
suspension cables,
341–352

keeping strength at
different levels, 348

parabola, 347
supports at different

levels, 348
supports at same level,

349–352
hybrid bridge girders, 329
load-and-resistance factor

design, 324–331
for bridge beams, 330–331
for bridge columns,

324–325
maximum width/thickness

ratios, 341

Bridge and suspension-cable
formulas (Continued )

number of connectors in
bridges, 337–339

ultimate strength of
connectors, 339

shear strength design for
bridges, 322–323

stiffeners on bridge girders,
327

longitudinal stiffeners,
328

suspension cables, 341–352
catenary cable sag, 344
parabolic cable tension

and length, 341–344
Building and structures

formulas, 284–319
allowable-stress design,

285–297
for building beams,

287–290
for building columns, 285
for shear in buildings,

295–297
bearing plates, 298–300
bents and shear in walls,

304–306
deflections of, 304

column base plates, 300
combined axial compression

or tension and bending,
306–307

composite construction,
313–315

452 INDEX
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Building and structures
formulas (Continued )

design of stiffeners under
load, 311–312

fasteners in buildings,
312–313

load-and-resistance factor
design, 284–294

for building beams,
290–294

for columns, 287
for shear, 284–285

milled surfaces, bearing on,
301

number of connections
required, 316–318

shear on connectors, 317
plate girders in buildings,

302–304
ponding considerations,

318–319
stresses in thin shells, 297
webs under concentrated

loads, 308–310

Cable systems, 353
California bearing ratio, 274
Cantilever retaining walls,

208–211
Chezy formula, 399
Circular channels, 435
Circular curves, 356–359
Column formulas, 100–130
Columns, lumber, 218–220

Commonly used USCS and
SI units, 3

Composite construction,
313–315, 333–337

Concrete, formulas for, 148–
212

braced and unbraced frames,
201–202

cantilever retaining walls,
208–211

column moments, 199–200
compression development

lengths, 170
continuous beams, 16, 27,

52, 151, 153–162
one-way slabs, 151–153

crack control, 170
deflection, computation for,

172–173
design methods, 153–162

beams, 153–162
columns, 162–167

flat-plate construction,
195–197

direct design method,
195–197

flat-slab construction,
192–195

gravity retaining walls,
205–208

hardened-state properties,
167–168

job mix volume, 148
load-bearing walls, 202–203
modulus of elasticity, 150
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Concrete, formulas 
for (Continued )

properties in hardened state,
167–168

reinforced, 148–212
required strength, 171
shear in slabs, 197–199
shear walls, 203–205
spirals, 200–201
tensile strength, 151
tension development length,

169
ultimate-strength design of I

and T beams, 186–187
ultimate-strength design of

rectangular beams,
173–174

balanced reinforcing, 174
with compression bars,

183–185
development of tensile

reinforcement, 177
hooks on bars, 178
moment capacity, 175

ultimate-strength design for
torsion, 189–191

wall footings, 211–212
water-cementation ratio, 148
working-stress design:

for allowable bending
moment, 179

for allowable shear,
180–181

of I and T beams,
187–189

Concrete, formulas 
for (Continued )
of rectangular beams,

183–185
for torsion, 189–191

Continuous beams, 16, 27, 51,
153–162

Conversion factors for civil
engineering, 2–14

Conversion table, typical, 4
Crack control, 170
Culverts, highway, designing,

371–374

Darcy–Weisbach formula, 398
Design methods, 153–167

beams, 153–162
columns, 162–167

Earthmoving formulas, 276–278
Elastic–curve equations for

prismatic beams, 40–51
Expansion, temperature, of

pipe, 414

Factors, adjustment, for
lumber, 224–233

conversion, 2–14
Fasteners, for lumber, 233–236
Fixed-end moments, 52
Flat-plate construction,

195–197
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Flat-slab construction, 192–195
Forest Products Laboratory, 221

Geometric properties of
sections, 17–28

Grading of lumber, 214

Highway and road formulas,
356–379

American Association of
State Highway and
Transportation Officials
(AASHTO), 363–365

circular curves, 356–359
equations of, 358

culverts, highway, designing,
371–374

American Iron and Steel
Institute (AISI)
design procedure,
374–379

allowable wall stress, 376
bolted seams, checking of,

379
handling stiffness, 378
ring compression, 376
wall thickness, 378

highway alignments, 362
curves and driver safety,

361
stopping sight distance,

363–365
stationing, 362

Highway and road 
formulas (Continued )

interchanges, types of, 367
parabolic curves, 359

equations of, 360
street and maneuvering

space, 370
structural numbers for flexi-

ble pavements,
368–370

transition (special) curves,
370

turning lanes, 368–369
Hydraulic and waterworks

formulas, 382–450
capillary action, 382–386
computing rainfall intensity,

443–445
culverts, 417

entrance and exit
submerged, 417

on subcritical slopes,
418–420

economical sizing of
distribution piping,
448

evaporation and
transpiration, 442

flow from wells, 447
flow over weirs, 438

broad-crested weir, 439
rectangular weir, 438
trapezoidal (Cipolletti)

weir, 439
triangular weir, 439
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Hydraulic and waterworks
formulas (Continued )

flow through orifices,
406–409

discharge under falling
head, 409

submerged orifices, 408
fluid flow in pipes, 395–403

Chezy formula, 399
Darcy–Weisbach formula,

398
Hazen-Williams formula,

401
Manning’s formula, 401
turbulent flow, 397

fluid jets, 409
forces due to pipe bends,

414–416
fundamentals of fluid flow,

388–392
groundwater, 446
hydraulic jump, 425–429
hydroelectric power

generation, 449–450
Manning’s equation for open

channels, 424
method for determining

runoff, 443
nonuniform flow in open

channels, 429–435
circular channels, 435
parabolic channels, 433
rectangular channels, 430
trapezoidal channels, 434
triangular channels, 431

Hydraulic and waterworks
formulas (Continued )

open-channel flow, 420–423
critical depth of flow, 423
normal depth of flow, 423

orifice discharge, 410
pipe stresses, 412–413
prediction of sediment

delivery rate, 440
pressure changes caused by

pipe size changes,
403–404

bends and standard fitting
losses, 405

gradual enlargements,
404

sudden contraction, 404
similitude for physical

models, 392–395
submerged curved surfaces,

pressure on, 387–388
temperature expansion of

pipe, 414
venturi meter flow

computation, 448
viscosity, 386
water flow for firefighting,

446
water hammer, 412
weirs, 436–439

types of, 436–437

Load-and-resistance factor
design, 284–294, 324–331
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Load-and-resistance factor
design (Continued )

for bridge beams, 330–331
for bridge columns, 324–325
for building beams, 290–294
for building columns, 287
for building shear, 284–285

Load-bearing walls, 202–203
Lumber formulas, 214–241

adjustment factors for design
values, 224–233

beams, 215–218
bearing area, 229
bending and axial

compression, 240
bending and axial tension,

239
column stability and

buckling, 230–233
for connections with

fasteners, 236–238
columns, 218–220

in combined bending and
axial load, 220

compression, at angle to
grain, 220

on oblique plane, 223–224
fasteners for lumber, 233

nails, 233
screws, 234–236
spikes, 233

Forest Products Laboratory
recommendations,
221–222

grading of lumber, 214

Lumber formulas
(Continued )

radial stresses and curvature,
236–238

size and volume of lumber,
227

Manning’s formula, 401
Maxwell’s theorem, 62
Modulus of elasticity, 150

Open channels, nonuniform
flow in, 429–435

Orifice discharge, 410
Orifices, flow through,

406–409

Parabolic channels, 433
Piles and piling formulas,

132–146
allowable load, 132
axial-load capacity, single

piles, 143
foundation-stability and,

139–143
groups of piles, 136–139
laterally loaded, 133
shaft resistance, 145
shaft settlement, 144
toe capacity load, 134–135

Pipe bends, 414–416
Pipes, flow in, 395–403
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Piping, economical sizing of,
448

Plate girders in buildings,
302–304

Ponding, roof, 318–319
Prismatic beams, elastic-curve

equations for, 40–51

Rainfall intensity, computing,
443–445

Rectangular channels, 430
Retaining walls, forces on, 265
Road formulas, 356–379
Rolling and moving loads,

79–82
Roof slope to avoid ponding,

238–239

Safe loads for beams, 64–78
Sections, geometric properties

of, 17–28
Sediment, prediction of

delivery rate, 440
Similitude, physical models,

392–395
Sizes of lumber, 214–215
Soils and earthwork formulas,

258–282
bearing capacity of, 270
California bearing ratio,

274
cohesionless soils, lateral

pressure in, 266

Soils and earthwork formulas
(Continued )

cohesive soils, lateral
pressure in, 267

compaction equipment, 275
compaction tests, 272

load-bearing, 273
earthmoving formulas,

276–278
quantities hauled, 278

forces on retaining walls,
265

index parameters, 259–260
internal friction and

cohesion, 263
lateral pressures, 264
permeability, 274
physical properties of soils,

258
scraper production, 278

equipment required, 278
settlement under

foundations, 271
stability of slopes, 269

cohesionless soils, 269
cohesive soils, 269

surcharge lateral pressure,
268

vertical pressures, 264
vibration control in blasting,

280–282
water pressure and soils, 268
weights and volumes,

relationships of,
261–262
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Strength, tensile, 151
Submerged curved surfaces,

387–388
Surveying formulas, 244–256

distance measurement with
tapes, 247–250

orthometric correction,
251–252

photogrammetry, 255–256
slope corrections, 250
stadia surveying, 253–255
temperature corrections, 250
theory of errors, 245–247
units of measurement, 244
vertical control, 253

Suspension cables, 341–352

Table, conversion, 4
Temperature expansion of pipe,

414
Thin shells, 297

Timber engineering, 214–241
Trapezoidal channels, 434
Triangular channels, 431

Ultimate strength, of
continuous beams, 53–62

Uniform strength, of beams, 63

Venturi meter flow
computations, 448

Vibration, natural circular and
periods of, 96–98

Viscosity, 386

Walls, load bearing, 202–203
Water flow for firefighting,

446
Weirs, 436–439
Wells, flow from, 447
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