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Preface

This book is the second edition of the third and last volume of a treatise on projec-
tive spaces over a finite field, also known as Galois geometries. The first volume,
Projective Geometries over Finite Fields (1979, 1998), with the second edition re-
ferred to as PGOFF2, consists of Parts I to III and contains Chapters 1 to 14 and
Appendices I and II. The second volume, Finite Projective Spaces of Three Dimen-
sions (1985), referred to as FPSOTD, consists of Part IV and contains Chapters 15
to 21 and Appendices III to V. The present volume comprises Part V and, in its first
edition, contains Chapters 22 to 27 and Appendices VI and VII. In this edition, the
chapters are numbered from 1 to 7. The scheme of the treatise is indicated by the
titles of the parts:

Part 1 Introduction

PartII  Elementary general properties
Part III  The line and the plane
PartIV PG(3,q)

PartV  PG(n,q)

There are three themes within the book: (a) properties of algebraic varieties over
a finite field; (b) the determination of various constants arising from the combina-
torics of Galois spaces such as the maximum number of points of a subset under
certain linear independence conditions; (c) the identification in Galois spaces of var-
ious incidence structures. Many of the results on theme (a) could be equally well
stated over an arbitrary field. However, over a finite field, counting arguments come
more into play. A significant number of theorems count certain sets and establish
the existence of combinatorial structures. Most of Chapters 1 to 4 is on theme (a),
whereas Chapter 5 is on theme (c) and Chapter 6 is for the most part on (b). Chapter
7 is on themes (a) and (b).

Chapter 1 on quadrics develops their properties and gives one way of character-
ising them.

Chapter 2 on Hermitian varieties similarly develops their properties and charac-
terises them in the course of describing all sets of type (1,r,¢ + 1). This chapter is

xi



xii Preface

the one on algebraic varieties that differs most from the classical case, as Hermitian
manifolds over the complex numbers are not algebraic varieties.

Chapter 3 on Grassmann varieties and Chapter 4 on Veronese and Segre varieties
most closely follow a classical model in the description of their properties. Although
most of the characterisations of the Veronesean of quadrics and its projections re-
semble classical theorems over the complex numbers, the characterisation of Grass-
mannians is quite different. This is because the Grassmannian characterisation is in
terms of an incidence structure, a topic which was studied over the real and complex
numbers only for the entire projective space rather than any substructure, whereas
the Veronesean and its projections are studied as subsets of PG(n, ) in terms of
sections by subspaces. Chapter 4 also contains a section on Hermitian Veroneseans;
this section contains no proofs.

Chapter 5 begins with polar spaces, thereby unifying the subjects of Chapters 1
and 2, and it goes on to consider the special case of generalised quadrangles and
structures which are natural developments. In this chapter, not every theorem is
proved; in particular, no proofs are given for most of the characterisations of gen-
eralised quadrangles

Chapter 6 generalises to an arbitrary dimension results of Chapters 18 and 21
from the previous volume: an upper bound is found for the size of a k-cap and the
maximum size of a k-arc is found under some restrictions on n and ¢; the corre-
sponding arcs are generally normal rational curves.

Chapter 7 begins with ovoids and spreads of finite classical polar spaces, which
are then generalised to m-systems. Applications to maximal arcs, translation planes,
strongly regular graphs, linear codes, generalised quadrangles and semi-partial ge-
ometries are given. This is the only chapter without proofs.

The book is conceived as a work of reference and does not have any exercises.
However, each individual chapter is suitable for a course of lectures.

Apart from Chapter 5 and the short Chapter 7, complete proofs are given for
nearly all results. The last section of each chapter contains all references as well as
remarks both on the chapter itself and on related aspects that are not covered.

This volume may be considered as developing over finite fields aspects of the
three volumes of Hodge and Pedoe [183, 184, 185], particularly regarding quadrics
and Grassmannians. Burau [60] is also an appropriate analogy for quadrics, Grass-
mannians, Veroneseans and Segre varieties.

Compared to the first edition, this edition contains a considerable amount of new
material. In Chapter 4, the characterisation of quadric Veroneseans has been com-
pletely rewritten; there is also a section on Hermitian Veroneseans. Chapters 5 and
6 are updated, and contain several new and better proofs. Chapter 7 is new up to the
section on ovoids and spreads of finite classical polar spaces, and covers much new
material but without proofs.

Status of the subject

Apart from being an interesting and exciting area in combinatorics with beautiful
results, Galois geometries have many applications to coding theory, algebraic geom-
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etry, incidence geometry, design theory, graph theory, cryptology and group theory.
As an example, the theory of linear maximum distance separable codes (MDS codes)
is equivalent to the theory of arcs in PG(n, q); so all results of Sections 6.5 to 6.7
can be expressed in terms of linear MDS codes.

Finite projective geometry is essential for finite algebraic geometry, and finite
algebraic curves are used to construct interesting classes of codes, the Goppa codes,
now also known as algebraic-geometry codes. Many interesting incidence structures
and graphs are constructed from finite Hermitian varieties, finite quadrics, finite
Grassmannians and finite normal rational curves. Further, most of the objects studied
in this book have an interesting group; the classical groups and other finite simple
groups appear in this way.

Currently there are several international journals on combinatorics and geometry
publishing a large number of papers on Galois geometries; for example, Ars Com-
binatoria, Combinatorica, Designs, Codes and Cryptography, European Journal of
Combinatorics, Finite Fields and their Applications, Journal of Algebraic Combina-
torics, Journal of Combinatorial Designs, Journal of Combinatorial Theory Series
A, Journal of Geometry, and the conference series Annals of Discrete Mathematics.

Finite vector spaces and hence also finite projective spaces are of great impor-
tance for theoretical computer science. So, in many syllabuses of a computer science
degree, there is a course on discrete mathematics with a section on combinatorial
structures.

Related topics

There are some interesting topics either not covered or only touched upon in the
three volumes. In the Handbook of Incidence Geometry [55], edited by Buekenhout,
surveys of several of these topics are given. Recent surveys are contained in Current
Research Topics in Galois Geometry [298], edited by Storme and De Beule.

Finite non-Desarguesian planes are not discussed in the treatise. For references
see the chapters in the Handbook [55] on ‘Projective planes’ by Beutelspacher and
‘Translation planes’ by Kallaher. See also the book Foundations of Translation
Planes [28] by Biliotti, Jha and Johnson and the Handbook of Finite Translation
Planes [187], by Johnson, Jha and Biliotti.

Spreads and partial spreads in PG(n, q) are considered in Chapter 4 of PGOFF2,
in Chapter 17 of FPSOTD, and in Chapter 7 here. For blocking sets, only the plane
case is considered in Chapter 13 of PGOFF2. For the theory of spreads, partial
spreads and blocking sets in n dimensions, see Sections 7 and 8 of the chapter ‘Pro-
jective geometry over a finite field” by Thas in [55], as well as Chapter 2 by De
Beule, Klein and Metsch and Chapter 3 by Blokhuis, Sziklai and Szényi in [298].

Flocks of quadrics in PG(3, q) are key objects for the constructions of some
new classes of translation planes and generalised quadrangles. They also have other
applications. For literature on flocks, see Chapter 7 by Thas in [55], and the books
Translation Generalized Quadrangles [352] by Thas, K. Thas and Van Maldeghem
and Finite Generalized Quadrangles [260] by Payne and Thas.
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Ovals and ovoids can be generalised by replacing their points with m-dimensional
subspaces. These have connections to generalised quadrangles, projective planes, cir-
cle geometries, flocks, and other structures; see the last two books.

In Chapter 5, the finite classical generalised quadrangles are considered. Gener-
alised quadrangles are the polar spaces of rank 2, the point of view of Chapter 5,
but are also the generalised n-gons with n = 4. Generalised 6-gons or hexagons ap-
pear in Chapter 1. Standard works on generalised n-gons are the books Generalized
Polygons [391] by Van Maldeghem and Moufang Polygons [385] by Tits and Weiss.

Although null polarities are mentioned in Chapter 7, they are not discussed in
detail, nor are pseudo-polarities; references are given there.

The book contains only a few group-theoretical results; also theorems on graphs
and designs are rare. Apart from the Handbook of Incidence Geometry, the books
of Dembowski [116], Beth, Jungnickel and Lenz [18, 20, 19], Brouwer, Cohen and
Neumaier [41], Cameron and van Lint [65], Hughes and Piper [186], Assmus and
Key [4] may be consulted. Much material is contained in the Handbook of Combi-
natorial Designs [73], edited by Colbourn and Dinitz.

Reference works on point-line incidence structures and diagram geometries are
Diagram Geometries [253] by Pasini, Points and Lines [288] by Shult, Diagram
Geometry [56] by Buekenhout and Cohen.

Codes are considered only in Section 2 of Chapter 6. For an introduction, see
Hill [170] or van Lint [388]. For further results and geometrical connections, see
Cameron and van Lint [65], MacWilliams and Sloane [222], Peterson and Weldon
[264], Tonchev [386]. For an introduction to Goppa’s algebraic-geometry codes, see
Pretzel [267], van Lint and van der Geer [389], Goppa [144], Moreno [240], Nieder-
reiter and Xing [242], Hirschfeld, Korchmdros and Torres [176].

For a range of other topics, see the Handbook of Finite Fields [241], edited by
Mullen and Panario.
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Terminology

The set V(n+1, K) is (n+1)-dimensional vector space over the field K and is taken
to be the set of vectors X = (xo,...,2,), x; € K. Correspondingly, PG(n, K) is
n-dimensional projective space over K and is the set of elements, called points, P(x)
withz € V(n + 1, K)\{0}. When K = GF(q) = F, the finite field of ¢ elements,
also called the Galois field of ¢ elements, then V (n+1, K) is written V(n+1, ¢) and
PG(n, K) is written PG(n, ¢). The order of PG(n, q) is . The number of points in
PG(n,q)is
n+1
oy ="
q—1

A projectivity, or projective transformation, from S to S, with S7, S5 both
n-dimensional projective spaces over F, is a mapping T : S; — Sy such that
P(z)% = P(aT) for all vectors = # 0 and some non-singular (n+1) x (n+1) matrix
T. The group of projectivities from PG(n, q) to itself is denoted PGL(n + 1,q). A
collineation from S; to So is a mapping ¥ : S; — S5 preserving the incidence
of points and lines. The Fundamental Theorem of Projective Geometry states that
P(2)% = P(«°T) with ¢ an automorphism of F ;. Mostly, the properties considered
are invariant under PGL(n + 1, q).

A reciprocity of PG(n, q) is a collineation T from PG(n, ) to its dual space; if
% is a projectivity, then the reciprocity is a correlation of PG(n, q).

A subspace of dimension r in PG(n,q) is a PG(r,¢) and is written II,; this
notation is used both specifically and generically. Then II_; is the empty set, IIj is
a point, I1; is a line, 15 is a plane, 113 is a solid, 11,,_1 is a hyperplane. Also, 7 (u),
with v = (ug, ..., u,), with not all u; zero, denotes the hyperplane whose points
P(zo,...,x,) satisfy the equation

UeTo + + -+ + upx, = 0.

A subspace written 7, can have any dimension. In PG(n, ¢), the vertices of the
simplex of reference are denoted Uy, Uy, ..., U, where U, has 1 in the (i + 1)-th
coordinate place and zeros elsewhere, and U is the unit point. Dually, ug, uy, ..., u,

XV



xvi Terminology

are the hyperplane faces of the simplex of reference and u is the unit hyperplane. The
set of all 7-spaces in PG(n, q) is written PG (n, ¢).
If two subspaces S, S’ intersect in a point P, this will generally be written

SnS' =P
For any matrix M = (m;;), the transpose M* = (mj;) has mj; = my;.
The ring I' = F,[Xo, ..., X,,] is the ring of polynomials in the indeterminates
Xo,..., Xy, overF,. For Fi, ..., F, non-zero forms, or homogeneous polynomials,

in I, the variety
V(F,...,F.)={P(z) € PG(n,q) | Fi(z) =--- = F.(z) = 0}.
So the hyperplane 7r(u) is also written as
V(uXo + -+ + un X).

The term ‘variety’ here is the set of rational points of a variety in the sense of alge-
braic geometry. A variety V (F) is called a hypersurface. A hypersurface in PG(2, q)
is a plane algebraic curve; a hypersurface in PG(3, q) is a surface. If the hypersur-
faces F1 and F» are projectively equivalent, then write 7 ~ Fo.

In keeping with the terminology of Chapter 8 of PGOFF2, in PG(2, ¢) an oval is
a (g + 1)-arc for ¢ odd and a (g + 2)-arc for ¢ even. Other authors use hyperoval or
complete oval in the latter case.

Occasionally, (r, s) denotes the greatest common divisor of 7 and s.

For more detailed explanation of the foregoing, see Chapter 2 of PGOFF2.
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Quadrics

1.1 Canonical forms

Quadrics were introduced in Chapter 5 of PGOFF2. The properties of quadrics on
a line were developed in Chapter 6 and in a plane in Chapter 7. The properties of
quadrics in three dimensions were developed in Chapters 15 and 16 of FPSOTD.
Quadrics in five dimensions were also considered in Chapters 15, 17 and 20. First

the essential definitions are recalled. Let ' € F,[ Xy, ..., X,], where
F = ZaiX,? + Zainin,
=0 i<j

be a quadratic form which is non-degenerate; that is, F' is not reducible to a form
in fewer than n + 1 variables by a linear transformation. The variety V(F) is a
non-singular quadric. Under projectivities of PG(n, ¢) there are one or two distinct
non-singular quadrics @ = V(F) according as n is even or odd. Equivalently, the
projective linear group PGL(n+1, ¢) acting on all non-singular quadrics in PG(n, q)
has one or two orbits as 7 is even or odd. Throughout the chapter, the notation Q,, is
used for non-singular quadrics and W,, for general quadrics.
For n even, Q,, ~ P,,, where

Po=V(XZ+ X1 Xo+---+ X, 1X,), parabolic.
For n odd, Q,, ~ H,, or &,,, where

Hy, =V(XoX1 + XoXs+ -+ X,—1X,), hyperbolic;
En =V (f(Xo,X1) + Xo X3+ -+ X,,1X,,), elliptic;

here f is irreducible over F,.

In each of the three cases, write Q,, = V(F,,), where F,, is the corresponding
quadratic form.

For the method to reduce F' to canonical form, see Section 5.1 of PGOFF2.

© Springer-Verlag London 2016 1
J.W.P. Hirschfeld, J.A. Thas, General Galois Geometries, Springer Monographs
in Mathematics, DOI 10.1007/978-1-4471-6790-7_1



2 1 Quadrics

Suppose now that the form F' may be degenerate. Then the quadric W,, = V (F)
may be singular and is a cone 11;Q;, the join of the vertex 1) to a non-singular
quadric Q; in the subspace I, with II; N1l =I1_; and k +s=n — 1.

If F is reduced to canonical form F, then

Wn = Hn—s—le = V(Fe)a

where the vertex IT, = II,,_s_1 = V(Xo,..., X) is the space of singular points
and Q; is non-singularin ITy = V(Xgyq,..., X,,).
When k = —1 then W,, = 111 Q,, = Q,, and is non-singular.

Lemma 1.1. The number of projectively distinct quadrics in PG(n, q) is
aBn+ 14 (n+1,2)],

of which (n + 1,2) are non-singular and
Bn+1—(n+1,2)]

are singular.

Proof. Each quadric may be written as I1,,_,._1 9, for r € N,,. For n even, there is
one non-singular quadric for each r = 0, 2, ..., n and two non-singular quadrics for
eachr =1,3,5,...,n — 1. Hence the total number of quadrics is

yn+2)+2.in=103Bn+2).

For n odd, there are two quadrics for each » = 1,3, 5, ..., n and again one for each
r=0,2,...,n — 1. Hence the total number is
220(n+1)+ S(n+1)=13n+3). 0

For n < 5 the quadrics in PG(n, ¢) are now described and listed in Table 1.1:
for n = 5, only the non-singular quadrics are listed.

Table 1.1. Quadrics for low dimensions

PG(1,q) H1 = V(XoX1) is two points Ug, Uy
&1 =V (f(Xo, X1)) is empty
IIoPo = V(X3) is a single point, the join of ITp = Uy to the empty
quadric Pg in uy

PG(2,q) P2 = V(X3 + X1 X2) is a conic, comprising ¢ + 1 points, no three
of which are collinear
IMyH1 = V(X0 X1) is a line pair ug, uy
IIo&r = V(f(Xo, X1)) is a single point Us
I, Po = V(X3) is a single line ug
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PG(3,q) Hz = V(XoX1 + X2X3) consists of (g 4+ 1)? points on
2(q + 1) lines, two through each pomt
(f(Xo,X1) + X2X3) consists of g* + 1 points, no
three of which are collinear
oP2 = V(X3 + X1X2) is a cone, comprising the join of a point
to a conic
IT:H1 = V(X0 X1) is a plane pair uo, uz
H181 V(f(Xo,X1)) 1S asmgle line U2U3
M2Po = V(X3) is a single plane ug

PG(4,q) Py= V(X3 + X1 X2+ X3X4) consists of (g 4+ 1)(g® + 1)
points on (g + 1)(¢* + 1) lines with ¢ + 1 lines
through each point
IToHs = V(XoX1 + X2X3) is a cone comprising the join

of a point to the hyperbolic surface Hs, that is,

q(q 4 1)? + 1 points in 2(¢q + 1) concurrent planes
IIo€3 = V(f(Xo, X1) + X2X3) is a cone comprising the join

of a point to the elliptic surface &3, that is,

q(¢* + 1) + 1 points on ¢ 4 1 concurrent lines
II1Ps = V(X3 + X1X>) is the join of a line to a conic,

and so consists of ¢ + 1 planes through a line,

no three in a solid

<

&3 =

IIoH1 = V(X0X1) is a pair of solids ug, uy
II:€, = V(f(Xo, X1)) is a single plane
3Py = V(X3) is a single solid ug

PG(5,q) Hs = V(XoX1 + X2 X3 + X4X5) consists of

(¢* + 1)(¢” + ¢ + 1) points on 2(q +1)(¢* + 1)
planes with 2(g + 1) planes through a point

Es = V(f(Xo, X1) + X2Xs3 + X4 X5) consists of
(¢+1)(¢° + 1) points on (¢° + 1)(¢* + 1)
lines with ¢> + 1 lines through a point

The properties of the singular quadrics follow inductively from the properties of
non-singular quadrics in lower dimension. So, for the most part, it is reasonable to
concentrate on the properties of non-singular quadrics.

1.2 Invariants

In the next theorem, two invariants are given. One, A, decides whether the quadric
W, is singular or not: the other, o, decides whether WV, is hyperbolic or elliptic
in the odd-dimensional non-singular case. In these invariants, factors 1/2 and 1/4
appear. This means that, even in the characteristic two case, when the rest of the
formula is evaluated in general, the factors 2 and 4 that appear must be cancelled.
The invariant A is usually called the discriminant and « the Arf invariant.
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First, some results on quadratic equations over F, are summarised. As always,
F,* = F,\{0}; see Sections 1.4, 1.8 of PGOFF2 for more details. Define

(1 —tlab)/2 t € Fy*, qodd;
cw={ 217 s v 40
t+te+--- 4t ,teFy, g=2"
Then, for ¢ odd,
To={ceF,|2> —c=0 hastwo solutions}
={teF,;" | C@t) =0}
Ti={c€F,| 2> —c=0 hasno solutions}
={teF,” | C(t) =1}
For g = 2", the elements of 7; have trace i:
To={c€F,|2* +x+c=0 hastwo solutions}
={teF,|C(t) =0}
Ti={cc€F,|2* +x+c=0 hasno solutions}
={teF,|C() =1}

Also, for g odd, | To| = |T1| = (¢ — 1); for g even, |To| = |T1| = 1q.
Another way of phrasing the above is to consider the group homomorphisms

F,* 5 F,* 5 Zy  forqodd,
F, > F, 2% 7, for g even,

where F, is regarded as the additive group and F,* the multiplicative group of the
field, with
tu=1%, to=t+t> tp=C(t).

Then up =0, op =0, kerp = Ty.
As before, let W,, = V(F) with

F=> aX}+) a;XiX;.
i=0 i<j
Define A = (a;j), where a;; = 2a;, aj; = a;; fori < j.
Let B = (b;j), where b;; = 0, bj; = —b;; = —a,; for ¢ < j. Then, with
X = (Xo, X1,...,X,,) and X* the transpose of X,

F=1XAX"=1X(A+B)X".

When ¢ is even, the formulas for A and « in the next theorem should be interpreted
as follows. If, in A and B, the terms a; and a;; are replaced by indeterminates Z;
and Z;;, and A and « are evaluated as rational functions over Z, then Z; and Z;; can
be specialised to a; and a;; to give the result. In the lemma following the theorem, «
is obtained for small dimensions.
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Theorem 1.2. (i) The quadric W,, is singular or not according as A is zero or not,

where
A ;\A|, n even;
B |Al, n odd.

(ii) For n odd, the non-singular quadric Q,, is hyperbolic or elliptic according as
a € To or Ty, where

(—1)(n+D/21 4|, q odd;
— L{IB] = (~1)™ 72| 4]} /{4]B|}, g even.

Proof. With x = (29,21, ...,2,) € PG(n, q), under a projectivity = — 2T~ 1,

V(IXAX*) = V(L X(A+ B)X")
= V(3 XTAT*X*) = V(L XT(A+ B)T*X™).

So, in (i), A + A|T|?; thus, both A and A|T|? are zero or neither is. In (ii), for
q odd, a — «|T|?; thus, o and «|T'|? are both squares or both non-squares. For ¢
even, it may be shown that o — a + t + t2, t € F, under the projectivity. Hence
the invariance of the conditions has been established.

It now suffices to examine the invariants for the canonical forms:

M, s 1Ps = V(X5 + X1 Xo + - + X1 Xy),

s 1Hs = V(Xo X1 + Xo X3 + - + X1 Xy),

,—s1& = V(X§ + XoX1 +dX7 + XoXs + -+ Xe—1X5),
with X? + X + d irreducible over F,. This gives the following values for |A| and
|Bl:
(—=1)"/2, s =n;

I, —s—1Ps : ‘A| = {
0, s < mn;

(1)oD72, 5 =
I—s—1Hs : ‘A| =

0, s <n;
IBl=1, s=mn;

(1 —4d)(=1)"*tD/2 5 = p;
0, s < mn;
IBl=1, s=mn.

Hn—s—lgs : ‘A| = {

So A # 0fors =mnand A =0 for s < n. With s = n, the invariant « is given by
Table 1.2. Since X2+ X +d is irreducible, it follows from the table and the formulas
for C that C'(«) = 0 when W,, = H,, and C(«) = 1 when W,, = &,,. O
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Table 1.2. Values of the invariant «

Wh q odd q even
Hn 1 0
En 1—4d d

Lemma 1.3. For q even and n = 1 or 3, the invariant c is given, modulo F o, as
follows:

Hn=1, a= aoal/agl;

(i) n = 3,

_ Ydiajrazan + 3 aiajai; + ([Tai) Y(aramn) ™
(X aijam)? ’

where the summands in the numerator have four, six, and three terms respec-
tively and that of the denominator also has three terms.

(&%

Proof. (i) In this case,
A— 2ap ao1 ’ B— 0 ao1 .
apil 2@1 —ap1 0
So |A| = 4agar — a3y, |B| = a3,

. |B| + ‘A| _ apai

5
4|B| ap1
(ii) Here,
2ag ap1 ap2 ao3 0 ap1 aop2 aps
A - | oo 2a1 a2 a3 B | a0 0 a2 a3
ap2 @12 2a2 a3 |’ —ag2 —a12 0 az3 |’
apz a13 a23 2as —ap3 —ai3z —azz 0

and, with ¢ the Pfaffian of the matrix B,
® = ap1a23 — Qp2a13 + Ap3a12,
|B| = ¢?,
|A| = ag,a3; + agyais + agzai,
—2a01a23a02a13 — 2001023003012 — 2002013003012
+4> aiajkaa — 4 Zaiaja,zd + 16 agaiasas.

So, in Z({a;, ai;}),
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_BI= Al _ Y aiajaf, — Y aiajeajiam — 4 aoarazas + aorazsagsai

4|B| ©?
Hence, over F,

2
o= Yo aiajag; + Y aijkaak + Go1a23003012
= 5 .
¥

However,

01023002013 + Q02013003012 _ ap20a13 + (a02a13>2
©? P ¢

So, modulo Fyo = {t +t* | t € F,},

_ Y aiakazap + 3 aiajag; + (1 aij) Yo(amamn) ™

(6] .
@2 0

1.3 Tangency and polarity

Consider the non-singular quadric Q,, = V(F). With P # @, let P = P(A) and
Q = P(B), where A = (ag,...,a,) and B = (bo, ..., b,). Then

F(A+tB) = F(A) +tG(A, B) + t*F(B), (1.1)

where
G(A,B)=F(A+ B)—-F(A) — F(B).

Definition 1.4. The line ¢ is a tangent to Q,, if [¢ N Q,,| = 1.

Lemma 1.5. Let P = P(A) € Q,,.

() IfQ & Qn, then G(A, B) = 0 <= PQ is a tangent to Q,,.
(i) IfQ € Oy, then G(A,B) =0 <= PQ C Q.
(iii) G(A, B) # 0 <= |[PQ N Q,| = 2.

Proof. Since P € Q,,, equation (1.1) becomes
F(A+1tB) =tG(A,B) +t*F(B).
The point P(A +tB) € Q,, if and only if
0 =tG(A,B) + t*F(B). (1.2)
The solution ¢ = 0 of (1.2) corresponds to P. Parts (i), (ii), and (iii) now follow. O

Corollary 1.6. For q even, if one of P and Q is not on Q,,, then PQ is a tangent if
and only if G(A, B) = 0.
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Proof. When F'(A+tB) = 0, equation (1.1) becomes
0= F(A) +tG(A,B) +t*F(B). (1.3)
If G(A, B) = 0, then this becomes
0= F(A) +t*F(B), (1.4)

which has just one solution.
Conversely, if (1.3) has just one solution, the coefficient of ¢ must be zero. O

Definition 1.7. A point P(A) is a nucleus of Q,, if G(A, B) = 0 for all points P(B).

Corollary 1.8. (i) The quadric Q,, has a nucleus if and only if q and n are both
even.
(i) For q even, Py, in canonical form has precisely one nucleus N = U.

Proof. This follows immediately from the forms for G(A, B). O

Remark 1.9. It should be noted that (ii) applies in the case n = 0. The empty quadric
Py has the point Ug as nucleus.

Definition 1.10. If G(A, B) = 0, the points P = P(A) and Q = P(B) are conju-
gate. If P is not a nucleus, then, with

G(A, X)=F(A+ X)— F(A) — F(X), (1.5)

the hyperplane V(G(A, X)) is the polar hyperplane of P. When P € Q,,, then
V(G(A, X)) is the tangent hyperplane to Q,, at P and is denoted Tp = Tp(Q,,).
If P is the nucleus of Q,,, then V(G(A4, X)) = II,,.

Theorem 1.11. (i) Tp(Q,,) comprises the points on the tangents to Q,, at P and
the lines on Q,, through P.
(ii) Tp(Qy,) contains any subspace 11, such that P € 11,,, C Q,,.

Proof. (i) This follows from Lemma 1.5 (i) and (ii).
(ii) Since every line through P of Q,, lies in the tangent space and every point of
I1,, lies on such a line, so II,,, C Tp(Q,). a

Lemma 1.5 and Corollary 1.6 also hold for general quadrics. In particular, when
Wy, = I1;;Q; = V(F) is an arbitrary quadric and P € W,, the tangent space to W,,
at P, denoted Tp(W,,), is V(G(A, X)) with G(A, X) as in (1.5).

Corollary 1.12. (i) Tp(W,,) contains the vertex 11y,
(ii) If P € Iy, then Tp(W,,) = 11,,, the whole space.
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It should be noted that if the notation F;) = 0F'/0X; is adopted so that F{;)(A)
is the partial derivative of F' with respect to X; evaluated at A, then

G(A,X) =) Fu(A) X,

Thus the tangent space to a quadric as defined here coincides with that for an arbitrary
primal; see Section 2.7 of PGOFF2. A nucleus P(A) of Q,, can also be defined as a
point at which F{;)(A) = 0, all 4.

With the canonical forms of Section 1.1 and

f(Xo, X1) = X§ + Xo X1 + dX7,
the linear form G (A, X) is as follows:

Qn = Pn, G(A,X) = 2a0X0+(a1X2+a2X1)+
ot (@ X1 F a1 Xn);

Qn=H,, GAX)= (a1Xo+ apX1)+ (asX2+ axX3)+
oot (anXn—1 + an—1Xn);

Q, =&, GAX)=(2a0+ a1)Xo + (a0 + 2da1) X1 + (a3 X2 + a2 X3) +
oot (anXn—1 + an—1Xn).

Lemma 1.13. Let Q,, be a non-singular quadric.

(1) If ¢ and n are not both even, the correspondence
P(A) «— V(G(4, X))

is a polarity. For q odd, the set of self-polar points is Q,,. For q even, the polarity
is null and every point in PG(n, q) is self-polar.

(ii) If ¢ and n are both even, the tangent hyperplanes to P,, are concurrent at the
nucleus N = Uj,.

Even though the points and tangent hyperplanes of P,, are not related by a po-
larity for ¢ even, the following lemma plus Theorem 1.11 (ii) are strong enough to
prove facts about P, for ¢ even which follow from the polar theory for all other Q,,.

Lemma 1.14. The tangent hyperplanes at r + 1 independent points of a 11, lying on
Q,, are themselves independent.

Proof. When (¢,n) # 0 (mod 2), this follows from Lemma 1.13 (i). This leaves
the case that ¢ is even and Q,, = P,,. With A = (ay, ..., ay) and P = P(A), then
Tp(P,) =V(G(A, X)) = V(AT X*), where

.
A = (0,&2,&1,&4,&3, .. 7an7an—1)~

Suppose that the points P = P(A4;), i = 0,...,r, span I, on P,; that is, they
are independent. If the corresponding tangent hyperplanes V(A” X*) are dependent,
so are the  + 1 points P(A7). Hence, under the projectivity fixing P,, given by
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1

o — Xg, $2j,1<—>$2j,j:1,2,...,2

n?

the points P(A7), where A” = (0, a1, a2, as, a4, . . . , ay ), are dependent and hence
lie in a II,_;. But P(AY?) is the projection of P = P(A) from the nucleus Uy of
P, onto ug. Since the r + 1 points P(A?) lie in II,_1, so the r + 1 points P(A;)
lie in the r-space Upll,_; this follows from the fact that P(A?) lies on UgP(4;).
However, by hypothesis, the » 4 1 points lie in a II,. on P,, and are independent. As
1L, cannot be Uyll,._1, a contradiction is obtained. O

Definition 1.15. If II, C Q,, the tangent space at 11, is the intersection of the
tangent hyperplanes at  + 1 independent points Py, . . ., P. of II,.; in symbols,

T, (Qn) = ()T (Qn) -

Corollary 1.16. (i) The tangent space of 11,. on Q,, is a Il,,_._1 containing I1,.
(11) Qn D) Hr D) Hs = THg(Qn) D) Hr-

Proof. (i) By the lemma, the tangent space is the intersection of r 4+ 1 independent
hyperplanes and so is a II,,_,_;. By Theorem 1.11 (ii), it contains IL,..
(i1) This follows from Theorem 1.11 (i). O

In the subsequent results, II/, __, is the tangent space of I, on Q,, and IT

is the polar space of 11,,, for the cases in which a polarity occurs.
If II, C W,, the tangent space

!
n—m—1

T, (Wa) = (] Tr(Wn).

Pell,.

Corollary 1.17. If W,, = 1, Qs and I, C W, so that 11, = 11,11, with Il C Oy
and 11, C Iy, then
T, Wy) = T, (Qe)y

and has dimensiont — s + k.

A tangent line meets O,, precisely in a point. Now consider what happens in
general when a subspace II,,, meets Q,, in a subspace II,. that is not the whole of
II,,.

Lemma 1.18. Suppose 11, ¢ Q,, and 11,,, N Q,, = I1,.. Then the following hold:

(i) I, € Tp(Qn), forall P in11,, whence 1L, C IT,,_,._1;
(ii) either (aym =r+ 1landIl,,, N Q, =11,,_1Py
orym=r+2andll,, N Q, = Il _2&;
(iil) when q is odd, 11, NI, 1 =, and 11,11, _ . =1/ . _1;
(iv) when q is even with n odd and m = r + 1, then I1,,, CII/,_ _1;
(v) when q is even with n odd and m = r + 2, then 11, NI, = I, and
11,11, I

n—m—1— tp—r—1-
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Proof. (1) If P € I1,., then any line [ through P in II,, either lies in II,. and so is on
Q,, or meets I1,. and so Q,, in the single point P. Thus [ is a tangent through P or a
line of Q,, through P; hence ! C Tp(Q,,).

(i) A quadric II,,_s_1 Q, is a I, if and only if Q4 is empty; that is, Q, = Py
or & . Hence, if 1I,,, N Q,, = II,, then either 11, = II,,_1Py or II,,,_2&1. Then
I1,,-1Py is considered as a repeated I1,,,_; and 1I,,,_2&; as a II,,,_o which is the
intersection of two II,,, 1 lying over F 3.

(iii) 1T, _,,,_ is the intersection of the polar hyperplanes of points of II,,. So
every point of IT,,, N II/,_ _, lies in its own polar hyperplane, which implies that
I, N1, c II,. Since IT,,, C II,_,._, by (i), so II/,_,._; D II,. But, by

hypothesis, I1,,, D IL,.; so II, C IT,,, N 1L, _,, ;. Thus IT,,, NI/, _,, _; = II, and so
HmH/n—m—l = H/n—r—l'

(iv) Since q is even, the polarity defined by Q,, is a null polarity. Thus, if two
particular points on a line [ are conjugate, then any two points on [ are conjugate and
[ is self-polar: that is, [ lies in its polar space. Hence the self-polar lines are the lines
of Q,, and the tangents to Q,,; see Corollary 1.6.

Now, if 7 = m — 1, then every line in II,,, through a point P of IL,;,\II, meets
IT, and is tangent to Q,,. So P is conjugate to every point of II,, and consequently
I, cIt,_,, 4.

(v) Now, with r = m — 2, let P € II,,\II, and let @ € II,,\{P}. Then PQ is
self-polar if and only if PQ N II,. = IIy. However, through P, there is a line of 11,
missing II,.. But R in IL,, isin II/, ., if and only if R is conjugate to every point

Q of I,,. Hence IL,,, NI, ., =1, and 1L, I, =1I'_ ;. O
Lemma 1.19. If 11, ¢ Q,,, then the following are equivalent:
(i) II,. is the largest subspace on Q,, such that 11,,, C Tp(Q,,) for all P € 11,;

(ii) I1, is the largest subspace on Q,, such that 11, C I, _. _1;
(iii) II,. is the singular space of I1,,, N Q,,.
Proof. P is in the singular space of I1,,, N Q,,

<= every line through P in II,, is a tangent or line of Q,,

—1II,, C Tp(Qn).
Hence 11, is the singular space of I1,,, N Q,, if and only if

I, C m Tp(Qn) C H;z—r—l’ O

Pell,
When the conditions of this lemma hold, then I1,, fouches Q,, along 11,..

Corollary 1.20. In the case that n and q are not both even, suppose that 11,,, and its
polar space I, . are not contained in Qy,. If I1,, N Q,, = 1, Qy, then the space
IT,_,,._; satisfies the following:

) I, .1 N Qy, has singular space 11;
(i) 1L, NI, _,, 1 N Q, = T;
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(iii)
. A1 1o when q is odd, or q is even with t odd,
m n=m=1"7" 1\ T[.N  when q is even with t even,

where N is the nucleus of Q.

Proof. The hypothesis means that the set of points P in II,,, N Q,, such that |l N Q,,|
is 1 or ¢ + 1 for every line [ through P in II,, is II. Any such line [ lies in Tp(Q,,)
but lies in II/, ., only if it lies in the polar hyperplane of every point @ in II,,.
This occurs only if [ lies in I or does not lie in IIj and II,,,/ N II; lies in the polar
hyperplane of every point @) in II;, where Q; C II;. These two possibilities give the
respective cases for g even in (iii). a

Lemma 1.21. Suppose that 11,,, ¢ Q.. Let 11, N Q,, = 11, Q; and let 11 be any
subspace on 11}, Q; containing 1. Then

/ /
HmHn—d—l = Hn—k’—lv

where H’n_d_1 is the tangent space to Q,, at 114 and H’n_k_1 is the tangent space at
1I.

Proof. Since Ilg D I, so I} _, , C II' _, ,.ByLemma 1.19,1L,, C I _, .
SoIl,II, , ,=II' _, .

To prove the converse, consider two cases.

(@) I Q¢ spans 11,

The space II,,, N H’n_d_1 is the tangent space of II; Q; at IT,. Since I1; D 1I,
the dimension of IL,,, NI/, _, | ist — (d —k — 1) + k = m — d + k by Corollary
1.17. Hence the dimension of IT,,,II/, _,_, is

m+n—d—-1)—(m—-d+k)=n—Fk—1.

Soll, I/, _, =1, _, .

(b) 11, Q; does not span 11,

Then, as in Lemma 1.18, 11, 9Q; = II;. So II;, = II; and II,,, C H’n_d_l. The
result follows. d

Two quadrics have the same character if they are both parabolic, both hyperbolic
or both elliptic. An absolute definition of character is given in Section 1.4.

Lemma 1.22. For n > 2, the tangent hyperplane Tp at a point P of Q,, meets Q,,
ina cone PQ,_o, where Q,, and Q.,,_o have the same character.

Proof. Choose P = U,,. Also, let U,,_; be on Q,, and let Uy, Uy,...,U,_5 bein
Tp.SoTp = u,_1 and

Qn = V(F(XOa BERE) anl) + anan)a

where F contains no termin X2_ . If F = >_i<j Xi X, substitute X, for
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ao,n—1Xo + a1 p—1 X1+ Fan—2n—1Xn—2+ X,.

So
Qn :V(F(Xo,...,Xn,Q,O) +Xn,1Xn) (1.6)
and
Qn N TP = V(anla F(XO; cee 7Xn7270)) = PQn72a
where

Qn_o=V(X,_1,Xn, F(Xo,...,Xn_2,0)). (1.7)

Reference to the canonical forms in Section 1.1 shows that Q,, and Q,,_» have
the same character since the quadratic forms in (1.6) and (1.7) which define them
differ by X,,—1X,. O

1.4 Generators

A subspace of maximum dimension on a quadric W,, is a generator; its dimension
g = g(W,,) is the projective index of W,,. The more classical Witt index is g + 1;
this is not used here.

Definition 1.23. For Q,,, the character w = w(Q,,) is defined as follows:

Lemma 1.24. The character of non-singular quadrics is as follows:

This lemma justifies the names parabolic, hyperbolic and elliptic for the respec-
tive quadrics. Sometimes it is convenient to invert (1.8) to give

g=3(n—3+w). (1.9)
Lemma 1.25. (i) For Q,, and Q,,_s, non-singular quadrics of the same character,
9(Qn) = 9(Qn—2) + 1.
(ii)
n Pn Hn En

g9 (=2 -1 3(n-3)

(iii) Any subspace on Q,, lies in a generator.



14 1 Quadrics

Proof. (i) This follows directly from Lemma 1.22 and Theorem 1.11 (ii).
(ii) This follows from (i) and the knowledge of g(Q,,) for low n.
(iii) Induction on n and a similar argument to (i) gives the result. a

Lemma 1.26. A generator of W,, = 11, Q, is the join of the vertex 11, to a generator

Of Qt.

Now the character w = w(W,,) of an arbitrary quadric W), = IIj; Q; is defined.
Recall that

k = dimension of singular space of W,
n = dimension of space in which W, is defined by a quadratic form,

g = projective index of W,

Define
w=29—k—n+2. (1.10)

This agrees with (1.8) in the non-singular case, when k = —1.

Lemma 1.27. For a quadric W,,, the constants g and w are as follows:

Wn antfltpt antlet antflgt
g n—3it+2) n—3i(t+1) n—i(t+3)
w 1 2 0

Note 1.28. (i) The character of W,, = Il Q; is the same as for the base O;.

(ii) When ¢ = k& = n, then w = 2. So it is consistent to write I,, = II,H_; and
include the whole space II,, as the quadric V(0). This becomes relevant when
sections of a quadric by a subspace are considered.

Corollary 1.29. A quadric Wy, = 1l,,_1_1 Q¢ of character w has projective index

g=n—3(t+3—w). (1.11)

Lemma 1.30. If11,,, C Q,, and 11, _, is the tangent space of I1,,, then
I, 1N Q=19 5, o
where Q) o, 5 has the same character as Q.

Proof. For P € 11, every line through P in II),_, _, is a tangent or a line of Q,,.
So II,, lies in the singular space of IT/, =, N Q,,. It must be shown that the singular
space is no bigger.

Suppose I1,,, = UyU; - - - U,,. Then Q,, = V(F') with
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F:X0f0+"'+mem+ga

where each f; and g are forms in X,,41,...,X,. Since Q,, is non-singular, the
forms fo, ..., fm are linearly independent. Hence, by a change of coordinates,

F=X0Xmi1+ + XmXomi1 + 9 (Xont1, -, Xn)-

The non-singularity of F' considered as a form in Xy, ..., X, is equivalent to
the non-singularity of G = ¢’(0,...,0, Xomy2,...,X,) considered as a form
in Xomyo,..., Xpn. Thus, in I, _ 1 = V(X,q1,..., Xom41), the equation of

Ir,_,,.1NQ,isG=0.
Itfollows that 11}, ,NQ,, =11,,Q) . 5. AnyIl, lying on Q,, and contain-
ing II,,, lies in I, by Corollary 1.16 (ii). Hence ¢(Q,,) = ¢(I1,, Q] ).

n—32m-—2
So, if w and w’ are the characters of Q,, and Q/, .., », then

sn=34+w)=n—-m—-1-13(n—2m—-2+3—w'),
whence w = w'. O

For m = 0, the result was given by Lemma 1.22.
Now some numerical properties of the generators are considered before the
whole system is described. Let G = G(Q,,) be the set of generators of Q,,.

Notation 1.31. (i) p(d, n;w) = |{II; € G | I, contains a fixed Iy }|.

(ii) A(d, n;w) = |{II; € G | II, meets a fixed generator in some 114 }|.

(iii) p(c) = p(e,n;w) = |{Il; € G | II, meets a fixed generator in a fixed IT,_. }|.
(iv) k(n;w) = |G|.

In the subsequent results, the following numerical notation is frequently used.

Notation 1.32.
o), = L@ D@ D) (@ 4 D) Fors >
By 1 for s < r;
g L@ D@ D)@ =) fors>
7= 1 fors < r.

Theorem 1.33.

R(nsw) = [2—w, Y(n—w+ D]y = 2 w,g+2— ],
2,5+ 1], for Exsi1,

= [O,SLr for Hogiq,
[1,$Lr for Pas.

Proof. The set {(P,I1,) | P € II; € G} is counted in two ways. By Theorem 1.11
and Lemma 1.22, the set {(P,I1,) | Py € II; € G} for a fixed point Py has size
k(n — 2;w). Hence
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k(n—2;w)|Qn| = k(n;w) || .
However, from Section 5.2 of PGOFF2,

(¢*T' +1)(¢* = 1)/(g— 1) for Eaey,

1Qul =1 (@ +1)(@>" = 1)/(g—1) for Haspa,
(> -1)/(q—1) for P
The result then follows by induction. a

Theorem 1.34.

p(d,n;w) =[2—w, S(n—1-—2d—w)4.

Proof. By Corollary 1.16, the tangent space I/, _, , at Il to Q,, contains all gen-
erators through IT;. By Lemma 1.30,

H/n—d—l N Qn = HdQn—2d—2a

and has the same character w as Q,,. Hence each generator of Q,, through Il is the
join of I, to a generator of Q,,_24_2 and conversely. So

pld,n;w) = k(n — 2d — 2;w). O
It may be noted that, when d = g,
pld,nyw) =[2—-w,1 —w]y =1,
confirming that the only generator containing a given 11, is Il itself.

Lemma 1.35.

ple miw) = o212

Proof. The only generator meeting II, in II, is I, itself; hence ©(0) = 1. Now
proceed by induction on c and assume the formula true for all values less than c.
The number of generators meeting II, in at least the fixed space II,_. is

p(g—c,n;w)z [Q—W,C—‘y—l—w]_;,_.

So, to find p(c), subtract from p(g — ¢, n; w) the number of generators meeting II,
in a (g — 4)-space containing II,_. for all ¢ such that 0 < ¢ < c¢. Hence

c—1

ple) = plg — e;msw) = > u(i)x(g — ¢, 9 —i59,9),
=0

where

x(g — ¢, 9 —i;9,q) = number of II,_; through II,_. in II,
=lc—i+1,¢-/[1,i-,
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as in PGOFF2, Section 3.1. Hence

c—1
ple) =2—w,c+1—wly — > ¢T3 —it1.c /1],
i=0
which gives the result after some manipulation. a

Lemma 1.36. For —1 < d < g,

Ad, i w) = g CH20 2 a1 g4 1] /(L d+ 1],
wherec=g—d, g = }(n—3+w).
Proof. For0 <d <y,

A(d, n; w) = (number of generators meeting II; in a given I14)
x (number of I in 11,)
= u(c) ¢(d; g, q)-
From Section 3.1 of PGOFF2,
o(dig,q) =lg—d+1,9+1-/[1,d+1]-.

Ford = —1,

g
AM=1,n;w) = k(n;w) — ZA(i,n;w)
i=0
— q(9+1)(9+4*2w)/2

In Section 16.3 of FPSOTD, the theory of stereographic projection of a quadric
and an ovaloid of PG(3, ¢) was explained. Here the stereographic projection of a
non-singular quadric Q,, onto a hyperplane from a point Py on the quadric is consid-
ered. Precisely the same argument applies to a variety of degree d > 2 if P is taken
to be a point of multiplicity d — 1.

Let Py be any point of Q,, and let I1,,_; be a fixed hyperplane not containing P.
Let V = Tp,(Q,,) be the tangent hyperplane at P, let W = V N Q,, be the tangent
cone, let V' =1I,_1 NV, and W = II,,_1 N W. For example, when Q,, = H3, then
IT,,_1 is a plane, V is a plane meeting H3 in a line pair W, and V' is a line meeting
Hs in a point pair W'.

For P € Q,\{ Py}, define P’ = Py P N1I,,_;. This gives the correspondence

PP, PV,

Analytically, let Py = Uy, II,,_1 = uy,
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Qn:V(XoFl(Xl,...,Xn)+F2(X1,...,Xn)), (1.12)

where deg F; = i. Then ¥V = V(Fy) and W = V(F1, F2). If P = P(ao, ..., an),
then P’ = P(0,a1,...,a,). Conversely, if P" = P(0,a4,...,ay), then, from
(1.12), P = P(ag, . .., an) withag = —Fs(a1,...,a,)/Fi(a1, ..., ay).

Now the effect of stereographic projection on the generators of Q,, is described.
Let I, be a generator of Q,, and let Py € Q,\IL,. Let II,,_; be a fixed hyperplane
not containing F; then II, projects from F to H’g = Pyll, N1IIL,—q. Now II,; does
not lie on V = T'p,(Q,,) as otherwise PyII, would lie on Q,,. So II, meets V in a
II;_; lying in V and Q,, and so in W = V N Q,,. Hence the projection of II, onto
II,,_; from Pyisa H’g not lying in V' = II,,_; NV but meeting W = II,_1 N W in
ally_;.

Conversely, a space H’g of II,,_1 not on )’ but containing a space H’gf1 of W
is joined to P by a 11,1, which contains the generator Pol_[’g_1 of Q,,; the space
II;41 meets Q,, residually in a 11,4, not containing Fy, which projects from F to the
space H’g. However, V' is a Il,,_5 in II,,_1 and W' is a quadric in V. From Lemma
1.22, W = PyQ,,_o, where Q,,_» has the same character as Q,,; hence W' is a
Qn—2~

The existence of a partition of the generators of H,, into two sets is now es-
tablished. Given two generators II, and II,, define them to be equivalent if their
intersection II; has its dimension ¢ of the same parity as g. It is shown that this re-
lation is an equivalence relation. Trivially, the relation is reflexive and symmetric.
Stereographic projection is used to show the transitivity. The key lemma follows.

Lemma 1.37. If two generators oy and oy of Hogyy intersect in 11,_ 1, then a third
generator o intersects oy and o in spaces whose dimensions have different parity.

Proof. Since oy Ny = Ily_1, 50 ajap = Ilgyq and gy N Hogyr = g1 H1,
which consists of the pair {a1, @s}. By Lemma 1.19, II,; touches Hg41 along
IT,_;. Let II4q N ag = II,,; then m > 0, since 2g + 1 is the dimension of the
ambient space. Now, either (a) II,, lies in exactly one of a1, as or (b) 11, lies in
II4_1. In case (b), the polar space H/Zg—m of IL,, contains both II,; and a3. So
g1 Nas =1, where k > g+ (g+1) — (29 —m) = m+1 > m, a contradiction.
So (a) holds.

Suppose therefore that II,,, C a4, whence a; N ag = 11,,,. Since 11,1 and II,,
are both contained in a1, so II,_1 N1IL,, =II;, withl = (¢ — 1)+ m—g=m — 1.
Hence as N3 =11, 1. O

Lemma 1.38. If the generators oy and o of H,, with intersection 11, are projected
Jfrom a point Py in H,\(cn U a2) to spaces oy and oy containing the generators 31
and By of W' = Hp—o with 81 N By =11, _,, then t and s have the same parity.

Proof. Take the point Py and project stereographically onto IT,,_;. Let 8] and 35 be
the spaces in which o} and o, meet W' = I1,,_1 N T'p, (Hn) N Hy,.

As in the above description of stereographic projection, Pyay NH,, = a1 + Py5]
and Poah, N H,y, = ag + Pyfs. Now ag Nag = II; and Py N PofSy = Polll,_,
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which are of respective dimensions ¢ and s. Both these are of different parity to
dim(aq N PyB4), by Lemma 1.37, when the two triples of generators (ca, P /35, cv1)
and (o, PyBy, PoB,) are considered. So s and ¢ have the same parity. O

Theorem 1.39. When Q,, = H,,, the relation on the generators is an equivalence
relation with two equivalence classes.

Proof. It remains to prove that the relation is transitive. Let Hgl), H§2), H§3) be gen-

) ) . There exists

erators on H,,, with Hgl) equivalent to Hé2 and Hf) equivalent to Hé?’
a point not on the generators, and so projection may be used. At the i-th stage, Héj )
corresponds to Héjzi C Hp—2; and the parity of (¢ — i) — dim(Hglli N Hf)i) is the
same for all ¢, by Lemma 1.38; the parity of (g — i) — dim(H!(f_)i N Hég'_)i) is also the
same for all <.

Successive projection gives three lines 1,12, 13 on Hsz. As Hgl) is equivalent to
ng), S0 g— dim(Hgl) N ng)) is even; therefore 1 — dim(ly Nl3) is even. Thus [y and
I are the same line or are skew. Similarly, /5 and [3 are the same or skew. So [y, 3,3
belong to the same regulus of H3. Hence the dimension of [; N I3 is 1 or —1. Thus
1 —dim(l; N13) is even, and so is g — dim(Hgl) N HEJS)). Hence Hgl) is equivalent
to H!(,S).

From Lemma 1.37 it follows that there are exactly two equivalence classes. O

Each equivalence class is called a system of generators.

Corollary 1.40. Let 11, and I:Ig be distinct generators of H,,, withn = 2g+ 1. Their
possible intersections are as follows:

6)) n=4s+1, g = 2s,
. = _ ]0,2,4,...,25 =2  same system,
dim(Ily N1l,) = { 1,3,...,2s—1 different systems;
(ii) n=4s+3, g =2s+1,
. =\ ) —1,1,3,...,2s =1  same system,
dim(Tly N1Iy) = { 0,2,4,...,2s different systems.

For dimensions up to 9 of hyperbolic quadrics, Table 1.3 gives all the dimensions
of intersections of distinct generators that occur.

1.5 Numbers of subspaces on a quadric

Let N(m;n,w) be the number of subspaces II,,, on the quadric Q,, of character w.
In Section 1.4, the number of generators was determined; that is,
k(n;w) = N(gin,w),

where g = }(n + w — 3). Also, write N (II,;,,W,,) for the number of m-spaces on
the quadric W,,; so
N(m;n,w) = N(I,,, Q) .
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Table 1.3. Intersection of generators

Qn Dimension Same Different
of generator system systems

Hi 0 — -1

Hs 1 -1 0

Hs 2 0 ~1,1

Hr 3 -1,1 0,2

Ho 4 0,2 ~1,1,3

Theorem 1.41. (i) m-spaces on a general quadric
N(m;n,w) = [5(n+1—w)—m, %(n+1—w)]+
x[y(n—14+w)—m,y(n—1+w)]_/[Lm+1]_ (1.13)
=g+2-w—-—m,g+2—w),
xlg+1—m,g+1]_/[L,m+1]_. (1.14)
(i) m-spaces on particular quadrics
N(m; 2s — 1,0) = N(Hma‘f"Zsfl)
=[s—m,s]4[s—1—m,s—1]_/[1,m+1]_; (1.15)
N(ma 25 — 1a2) = N(HmaH2s—1)
=[s—1—-m,s—1]:[s—m,s]_/[I,m+1]_; (1.16)
N(m;2s,1) = N(I,,, Pas)
=[s—m,s]+[s—m,s]-/[L,m+1]_. (1.17)
(iii) Points on a general and particular quadrics

N(0:n,w) = (g2 £ 1) (g2 1) /(g 1) (L8

= (¢" = 1)/(g—1) + (w—1)g"~1/2; (1.19)
N(Uo, £25-1) = (¢" + D)(g" " = 1)/(q — 1); (1.20)
N(Io, Haso1) = (¢" " + 1)(¢" = 1)/(q = 1) (121
N(Ho, Pas) = (¢° +1)(¢° = 1) /(g —1). (1.22)
(iv) Generators on a general and particular quadrics
knyw) =[2—w,g+2— w4 (1.23)
=[2-wy(n+1-w)], ; (1.24)
k(25 —1;0) = [2, 8]+ ; (1.25)

k(25 —1;2) = [0,8 — 1]+ ; (1.26)
k(28:1) = [1, 5] . (1.27)
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Proof. First the number of points on Q,, is calculated. By Lemma 1.22,
N(0;n,w) =q¢" ' +1+gN(0;n —2,w). (1.28)
However, for dimensions 0 and 1,
N(0;1,0) = N(0;0,1) =0, N(0;1,2)=2;

induction gives (1.18) and (1.19).

Now, by Theorem 1.11 (ii), if P € II,,, C Q,,, then1I,, C Tp(Q,) N Q,,, which
by Lemma 1.22 is PQ,,_» of the same character as Q,,. So II,,, meets Q,,_, in a
I1,,—1 and, conversely, every II,,, 1 on Q,,_5 determines a II,,, on Q,, through P.
Hence

N(m;n,w) = N(0;n,w)N(m —1;n—2,w)/0(m), (1.29)
where 0(m) = (¢™*! —1)/(q — 1). Induction and (1.18) give the result. O
Corollary 1.42.

N (g, IL,—4-1Q¢) = (¢" — 1)/(g — 1) + (w — 1)@=/,

Proof. The joins of two points of the base to the vertex give (n — t)-spaces intersect-
ing in the vertex II,,_,_;. Hence

N(ITo, M, ¢ 1Qs) = N(Ily, Q) (0(n —t) — O(n — t — 1)) + O(n —t — 1) ,

which gives the answer. d

1.6 The orthogonal groups

The group of projectivities of PG(n, q) is PGL(n+1, ¢). Let G(Q,, ) be the subgroup
of PGL(n+1, q) fixing the form defining Q,, up to a scalar multiple. This is actually
the same as the group fixing Q,, provided that Q,, # &;. The group G(Q,,) is called
orthogonal and is also denoted by PGO(n + 1, ¢) for P,,, by PGOL(n + 1, q) for
Hp, and by PGO_(n + 1, q) for &,.

Also, let N'(Q,,) be the set of all quadrics in PG(n, q) projectively equivalent to
Q,; that is, N'(Q,,) is the orbit of Q,, under the action of PGL(n + 1, ). Again &;
is a special case and is considered here as a pair of conjugate points in PG(1, ¢?).
First, |G(Q,,)| and |]NV(Q,,)| are calculated.

Lemma 1.43. The number of quadrics Q,, in PG(n,q), n > 2, containing a given
11y Q,,—2 as a tangent cone is ¢"(q — 1).

Proof. LetI1;Q,,_o have vertex IIy = U,,_; and base

Qn72 = V(Xna anla f?(X07 cee aXn72)) .
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So the hyperplane containing I1yQ,,_5 is u,. Any quadric containing U,,_; and

Q,,_o has the form

Q=V(X,(agXo+ -+ anXy,) + Xp_1(boXo + -+ + bp—2Xpn_2) + f2) .

The tangent hyperplane to Q at U,,_1 is
V(an—1Xn +boXo+ -+ bp_2Xn_2).
Since this is u,,, so
bop=-=bp2=0, an,_1#0.

Thus
Q= V(Xn(aoXO +Fap1Xn_1+ aan) + f2) 5

which is non-singular since a,,—1 # 0. Therefore a,,_1 may be chosen in ¢ — 1 ways
and every other a; in ¢ ways, giving ¢"(q — 1) possibilities for @ = V(F'). This
argument relies on the fact that, if Q # II,,_5&;, then it uniquely defines the form F'

up to a scalar multiple.

O

In this proof, when Q,, = &s, then I14Q,,_o = IIy&; is a pair of conjugate

intersecting lines in the quadratic extension.
Theorem 1.44. (i) The values of |G(Q,,)| are as follows:

n/2
G(P)| =g * ] (@ - 1);
=1

(n—1)/2
‘G(,Hn)‘ _ Qq(n2_1)/4(q(n+1)/2 _ 1) (q2z _ 1);
i=1
(n—1)/2
2 .
|G(En)] = 24" DM (g2 1 1) (@* —1).
i=1
(ii) The values of |IN'(Q,,)| are as follows:
n/2
N(P)| = ¢"" 24T (¢ = 1);
i=1
) (n—1)/2 ‘
|N(,Hn)‘ _ ;q(nJrl) /4(q(n+1)/2 + 1) (q21+1 _ 1) .
i=1
] -1/
IN(En)| = 3q /A (gt D/2 — 1) (¢ —1).

(1.30)

(1.31)

(1.32)

(1.33)

(1.34)

(1.35)
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Proof. First, IN(Q,,)] is calculated by counting the set
{(Qn, S) | 9y, anon-singular quadric, S a tangent cone of Q,, }

in two ways. Let M be the number of cones I1pQ,,_2 in PG(n, ¢) for a fixed char-
acter w. Then
IV(Qn)| N(0;n,w) = Mq" (g —1).

However,
M = number of IT,,_; in PG(n, q)
xnumber of Il in 11,1
xnumber of Q,,_» in a fixed II,,_ of IT,,_1
=0(n)0(n —1)[N(Qn-2)|.
Thus

IV (Qn)| = 6(n) 6(n — 1) IN(Qn—2)¢" (¢ — 1)/N(0;n, w)

_ (@™ = 1)(¢" = D" IN(Qn—2))]
- (q(n+1—w)/2 4 1)(q(n—1+w)/2 _ 1) :

Since [NV (Po)| = 1, IN(&1)| = Sa(g — 1), [N (H1)| = Sq(g + 1), induction now
gives IN(Q,,)].
Finally,
[IPGL(n +1,9)| = |G(Qn)[IN(2n)]

in each case, where

n+1
[PGL(n + 1,q)| = ¢""*V/2 T](¢" = 1).
=2 O

For the orders of groups associated to these orthogonal groups, see Appendix I
of PGOFF2 or Appendix III of FPSOTD.

Consider the following involutory transformations which fix Q,,. Let @) be any
point of PG(n, ¢)\ Q,, with the only restriction that, for ¢ and n even, @ is not the
nucleus of Q,,. Let pg : 9, — Q,, be defined as follows. For P € Q,,,

Pug =P if PQisatangentto O, ;
Pug = P if PQ meets Q,, again at P’ .

Lemma 1.45. The mapping ¢ can be extended to an element of G(Qy,).

Proof. Let Q, = V(F), Q =P(B) ¢ Q,, P =P(A) € Q,.If P’ € PQ, then
P'=P(A+1tB).If P’ € Q,, then, as in (1.3),

F(A+1tB) = F(A) +tG(A,B) +t*F(B) = 0.
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Since P € Q,,, so F'(A) = 0. Hence
tG(A, B) +t*F(B) = 0.

The solution ¢ = 0 corresponds to P and the solution t = —G(A, B)/F(B) corre-
sponds to P’. Hence P’ = P(A — G(A, B)B/F(B)), which is the same point as P
when G(A, B) = 0, that is, when P lies in the polar hyperplane of Q. In any case,

is given b
HQ 1S g y C(e.B)
P(ac)»—>P(ac— F(B) B).

Thus p¢ can be extended to an element of G(Q,,). O

Since the identity is the only element of G(Q,,) which fixes @) and all points of
Q,,, the extension of /1 is necessarily unique. This extension is a perspectivity with
centre (; the axis contains all points P of Q,, for which P( is tangent to Q,,.

The extension of ¢ is also denoted p().

Theorem 1.46. The group G(Q,,) acts transitively on Q,,.

Proof. Let P, P’ be any two points of Q,,. If PP’ ¢ Q,, let Q be any point on
PP'\{P, P'}. Then u¢q maps P to P’.

If PP’ C Q,, choose P such that neither P P” nor P’ P” lies on Q,,. The point
P" exists, since otherwise Q,, would be singular. Now choose @ on PP"\{P, P"}
and Ron P'P"\{P’, P"}. Then Pugur = P"pur = P". O

Notation 1.47. Let the quadric Q,, have character w. Then

(i) S(m,t,v;n,w) is the set of m-spaces IL,,, in PG(n, q) with m # n such that
IT,, N Q,, is of type I1,,,_;—1 Q; where Q; has character v;
(ii) N(m, t,v;n,w) = N(Il,;,—4—1Q4, Qn) = |S(m, t, v;n,w)|.

In Section 1.8, N(m,t,v;n,w) is determined and, in particular, it is shown when
it is zero, that is, when S(m,t,v;n,w) is empty. Here the number of orbits of
S(m, t,v;n,w) under the action of G(Q,,) is given.

First consider PG(1, q). The quadric H; consists of two points and the group
G(H1) = PGOL(2,¢) has order 2(¢ — 1). As PGL(2, ¢) acts triply transitively on
PG(1, g), as in Section 6.1 of PGOFF2, there is a projectivity fixing both points of
‘H1 and moving P; to P», where P, and P» are any points off #1. So PGO4 (2, q)
acts transitively on the points off ;.

The quadric &; is empty in PG(1, ¢) but consists of two conjugate points on
PG(1,4?). So, if & = V(F) with

F=X?-bX+c=(X—a)(X —a?),

then, in non-homogeneous coordinates, the projectivity T : ¢ +— ¢’ of PG(1, ¢?),
given by
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tt'{e+e — (a+a?)} — (t+t){ee! —a?™!}
+H(a+af)ee’ —a®™(e+e)} =0,

is an involution with pairs (c, ) and (e, e’). It therefore fixes & and takes e to
e’. Thus PGO_(2, q) acts transitively on the points of PG(1, ¢) off £;. The group
G(&1) = PGO_(2,q) has order 2(q + 1).

Next the conic P, is examined. Let

01 =8(0,—-1,2;2,1) = {points on Ps},

Oy = 5(0,0,1;2,1) = {points off P2},

03 =8(1,0,1;2,1) = {tangents to Pa},

O, =8(1,1,2;2,1) = {bisecants of Py},

05 = 8(1,1,0;2,1) = {external lines of Py }.

Theorem 1.46 says that G(Ps) acts transitively on Os. In fact, G(Ps) acts triply
transitively on O; and O3, by Corollary 7.15 of PGOFF2. Recall that, for ¢ odd,

Oy =05 U0y,
where
O = {external points of P5}, O, = {internal points of P} ;

here, a point () off P is external or internal according as it lies on two or no tangents
of P5, Section 8.2 of PGOFF2. For ¢ even,

OQZ{N}UO/Q.

where N is the nucleus, the meet of all the tangents, and each point of @) lies on
precisely one tangent.

Lemma 1.48. (i) G(P2) acts transitively on Oy and Os.
(ii) G(P2) has two orbits on Oz, namely OF and O for q odd, and {N'} and O
for q even.

Proof. (a) For g odd, consider the action of G(P5) on Oq, the points off
Py =V(XZ+X1X5).

Since each point of O is the intersection of two tangents, so G(Pz) is transitive on
(’)2+ , the external points. By the polarity, it is transitive on Oy, the bisecants.

Any external line contains an external point. Therefore, to show the transitivity
of G(P2) on O and, by the polarity, on O, it suffices to show the transitivity on
the external lines through a particular external point. Let Uy be this point. Then the
line I(t) = V(X7 + tX5) is a bisecant or an external line as ¢ is a non-zero square
or a non-square.

The projectivity . given by
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P(z0, 21, 22)%c = P(cz, 21, *22)

fixes Py and transforms [(¢) to [(t/c?). So there is an element of the group trans-
forming any bisecant through Uy to any other bisecant through U and any external
line through Uy to any other external line through Uy.

(b) For q even, G(Ps) is similarly transitive on Q4. Since any point of O is the
meet of a tangent and a bisecant, the triple transitivity of G(P2) on O; ensures the
transitivity on Q.

To show the transitivity of G(P2) on Os, it suffices to consider the external lines
through a particular point of Of. Let @ = P(1,0, 1) with P as above. Then the
line I(t) = V(Xo + tX;1 + X3) contains ) and meets Py at P(xo, 1, x2), where
t?2% + 2122+ 23 = 0. So [(t) is a bisecant or an external line according as ¢* and so
tisin 7o or T, that is, has trace 0 or 1, Section 1.2. Now the projectivity ¥}, given
by

P((E(), X1, .’EQ)Sb = P(.’EO + bxy, 21, b2$1 + .’EQ) s

fixes Q and Py and transforms [(¢) to [(t + b+ b?). As t + b + b? has the same trace
as t, any external line through () can be transformed to any other. ad

For a sectionIl,,,_;_1Q; of Q,,letT = n +t — 2m.

Theorem 1.49. For given m,t,v,n,w, the set S(m, t,v;n,w) acted on by G(Q,)
is either empty or has

(i) one orbit when (a) n is odd or (b) n is even and t is odd or (¢c) n is even, t is
evenand T = 0;
(1) two orbits when n is even, t is even and T’ > 0.

Proof. (1) t=mwith (v,w) # (1,1)

First assume that m > 2.

Let 19 N Q, = W with TI{) € Sfori = 1,2 and let P € WS n w2,
Project Q,, from P onto a hyperplane I1,,_; not containing P, as in Section 1.4.

Then Q,, determines a quadric W = Q,, 5 in II,,_», and Wf(nl ) and Wy(f ) give
quadrics R and R9 of the same type but in dimension m — 2. By induction there is
a projectivity ¥ of IL,,_5 fixing Q,,_» and mapping R to R». Let

e N, =t

m—1>

i=1,2.

Extend ¥ to II,,_1, and let Hg)_li = Hg‘i)l. In IL,,_; there is an elation " with
axis IT,,_» mapping T1'*)| to TI'? . Hence TT" maps Ry to Ra, I | 1o I |
and Q,,_» to itself.
Taking P = U,, with tangent hyperplane T» = u,,_1, the quadric Q,, = V(F)
with
F=f(Xo,...,.Xn-1)+ Xn1X,.

By a linear transformation,

F= g(XOa s vXn72) + anan .
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Then Q,,—2 = V(g,X,—1,Xn). So TI’ is given by a linear transformation on
Xo,..., X1 taking g to A\g and X,,_1 to N’ X,,_1. Extend %’ to the whole space
by letting X,, — (A/X')X,,. This gives a projectivity & fixing P and Q,,, and map-
ping WE,%) to Wy(,f).

Next, let V\/,(n1 N WT(,? ) — (). Since G(Q,,) acts transitively on Q,,, there exists &,
in G(Q,,) for which WT(,} ) S = WT(,‘? ) meets W,(,f ). Then application of the preceding
argument gives an element S, of G(Q,,) with W,(,f ) Sy = WT(,? ) Hence G165 is the
required element of G(Q,,) taking WD 1o WD,

Since induction was used, the small cases have still to be considered.

First assume that m = ¢ = 0. Then the section is a point off the quadric Q,, with
n odd. For n = 1, the group G(Q1) acts transitively on the set of all points off Q1,
as discussed after Theorem 1.46. So let n > 3. Assume that P; and P, are points off
Q,, and let oy and a be their polar hyperplanes. Then oy N Q,, and ae N Q,, are

non-singular quadrics 7?(1)1 and 7?(2)1 as n—1 is even It is sufficient to show that
there is an element ¥ in G(Q,,) with 79 1T 79 1 By induction, as in a previous
argument, this reduces to the case n = 1 and m =t = 0.

Now let m = t = 1; then n is even. For n = 2 there is nothing to prove, due to

Lemma 1.48. Soletn > 4. If Wl(l) and Wl(Q) are hyperbolic and meet at P, then by
projecting from P and applying a previous argument it follows that G(Q,,) contains
an element which maps Wl(l) onto WF). If Wfl) N W1(2) = () then proceed as in the
case Wi n Wi = .

Finally, assume that W{l) and W{z) are elliptic, and let

wil = (P, P}, WP = (P, P}

with P;, P/ conjugate in a quadratic extension of F,. Let P,” be a point of P, P/ off
Q,, i = 1,2. From the case m = ¢ = 0, there is an element T in G(Q,,) which
maps P;” to Py”'. Let

P,T =Ry, Pllf = Rll, R1P2/ N R’1P2 =Q, RPN R/1P2/ =Q'.

If Q and Q' are on Q,, then the plane containing Ry, R}, P2, P} is on Q,; so P"
is on Q,, a contradiction. Assume therefore that () is not on Q,,. Then Ry = P4
and R} jig = P>. Thus Tpg maps W{l) to W{z)

2) t=mwithw=v=1

First assume m > 2.

Let Sp be the set of all elements of S containing the point P, and let Gp be
the subgroup of G(Q,,) fixing P. By projection of Q,, from P onto a II,,_; not
containing P and by using induction on m as in (1), G p has two orbits on Sp.

Suppose that W(l) and WT(,,2 ) are in Sp and also in one orbit O of G(Q,,); then
wilT = WP for some T in G(Qp). Let PT = Q. Now it is shown that there
exists T’ in G(Q,,) fixing W2 and mapping Q to P. If PQ is not a line of W
then p1z, with R on P() but not on WT(,?), fixes Q,,, fixes Wr(,f) and maps @ to P.
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Let PQ be a line of W,(,f ). Consider a point R on W,(,f ) such that neither PR nor
QR ison Wy(f ). Further, let A be a point on PR but not on Wy(f ) and let B be a point
on QR but not on Wr(,f). Then papp fixes both Q,, and WT(,?), and maps P to Q.
Hence Wf,,? ) is in the orbit Op of Wy(,% ) under G p. Since G(Q,,) acts transitively on
Q,, it follows that the number of orbits O of S under G(Q,,) is the number of orbits
Op of Sp under G p.

Since induction was used, the small cases still need to be considered. So assume
that m = t = 0; then the section is a point off Q,, and n is even.

First consider g odd. Let P be a point off Q,,, let II,,_; be its polar hyperplane,
and let @, N1I,,_1 = Q,,_1. By (1) and Lemma 1.48, G(Q,,) has two orbits on the
set of all sections Q,,_1. Hence G(Q,,) has two orbits on the set of all points off Q,,.

Now suppose that g is even. By Lemma 1.48 it may be assumed that n > 4. One
orbit consists of a single point, the nucleus V. So take distinct points P; and P» not
in Q, U{N}.LetC; be a conic on Q,, with nucleus P;, i = 1, 2. It suffices to show
that there exists T in G(Q,,) with C;T = Cs. Now C; and C2 may be chosen in such
a way that P € C; N Ca. Project Q,, from P onto a hyperplane 11,,_; not containing
P.InTI,_; this gives a Q,,_» with nucleus N’. The tangents to C; and Cs at P meet
I, in points P| and Py distinct from N’. By induction on n, the group G(Q,,_2)
contains an element T’ with P/T' = Pj. Asin (1), ¥’ can be extended to an element
of G(Q,,) that fixes both Q,, and P, and maps C; to C5. Hence this extension maps
P, to P5. The smallest case, where n = 2 and m = ¢ = 0, is contained in Lemma
1.48.

B) —-1<t<m-1

First let t = —1. Then Hg), Hg) C 9,. For m = 0 the result is contained in
Theorem 1.46. So assume that m > 0. Let P € H%) N Hg). By projection of Q,,
onto a hyperplane not containing P and using induction on m as in (1), there is an
element ¥ of G(Q,,) that fixes P and maps 1) to 2.

Now assume that H%) N Hg) =I_,.IfP € H%), then there is a point P, in
12 N Tp, (Q,) since m > 0. Take II'y) € Q,, with the line P P, in TI'y). Then
there exist T and To in G(Q,,) such that T; maps H%) to HS{) and %5 maps Hg)
to Hg,?{). Hence ‘Zlfz_l maps H%) to H%).

Next, let t > 0. Define S,,, + to be the set of all elements of S containing the
subspace 1I,,_+_1 as vertex of a section of Q,, by an m-space, and let G, ; be
the subgroup of G(Q,,) fixing II,,,_;_;. Suppose that G, ; has M orbits on S,, ;.
Project Q,, from II,,,_;_1 onto II,,_,,4¢ with IT,,, _y_1 N II,,_,,4¢ = 0. Then Q,
determines a quadric Q,, _(,—¢) Of I1, 4, ¢, Whose equations are now determined.

Let Py,..., P, —;—1 be linearly independent points of II,,_,_;. Take P, = U;
and the tangent hyperplane Tp, (Q,,) = U—t4; fori = 0,1,...,m — t — 1; then
Q, = V(F) with

F=f(Xom—2t,. .., Xn) + a0XoXm—t + + am—t—1Xm—t—1Xom—2t-1.

This gives
Qn—2(m—t) = V(f, Xo, .-, Xom—2t-1).
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Let Qil) and Q§2) be sections of Q,,_s(,,—4) by subspaces Hgl) and H§2) of
I, —3(m—s), where Qil) and QEQ) are of character v and belong to the same orbit
of G(Qp—2(m—+)). Then an element T mapping le) to Q?) is given by a linear
transformation on Xo,,_o¢, ..., X, taking f to Af. Extending ¥ by the transforma-
tion

XZ‘O—>XZ‘, i:l,...,m—t—l,

X = AX,, t=m-—1t,....2m -2t -1

gives a projectivity fixing II,,, ;1 and Q,, as well as mapping Hm,HQP to
Hm_t_lgf). If M’ is the number of orbits of G(Q,,_2(m—¢)) on the set of all
sections Q; of character v of Qn,Q(m,t), then it follows that M < M’. But, by
definition, M > M’, and so M = M’.

Suppose that WT(,} ) and W,(,f ) are in S, and also in one orbit O of G(Q,,). Since
I1,,_;_1 is the vertex of )/Vr(n1 ) and WT(,% ), every element T of G(Q,,) mapping )/Vr(n1 )
to WT(,?) fixes II,,_+_1 soisin G,, +. Hence Wr(,f) is in the orbit O,y, + of WT(,%) under
G ¢ Since G(Q,,) acts transitively on the set of all (m — ¢ — 1)-spaces on Q,,, it
follows that the number of orbits O of S under G(Q,,) is the same as the number M
of orbits O, ¢+ of Sy, + under Gy, ;. Hence the number of orbits of S under G(Q,,)
is the number of orbits of G'(Q,,—2(m—¢)) on the set of all sections Q; of character v
of Qn72(m7t) .

When n = 2m — t, then Qn_g(m_t) = O, and so S has just one orbit under
G(9y). When n # 2m — t, and so n — 2(m — t) > t, then the number of orbits of
G(Qn,g(m,t)) on the set of all sections of character v was calculated in (1) and (2):
one orbit when (i) n is odd or (ii) n is even and ¢ is odd; two orbits when n is even
and ¢ is even. a

1.7 The polarity reconsidered

Now the complete generalisations of Lemmas 1.22 and 1.30 are given, and sections
of Q,, by subspaces IT and IT" which are polar under the polarity of Q,, are described.

Lemma 1.50. Let Q,, have character w and projective index g, and let a section
I1,,—+—1Q; have character v and projective index f. Then, with T = n +t — 2m,

OT>v—w;
1) T+ w — v is even.

Proof. From (1.9) and (1.11),
g=13in—-34w), f=m-j({t+3—-0).

Sog—f = %(T + w — v) and (ii) follows. However, g > f since II,,,_;_1Q; lies
on Q,,; hence (i) is obtained. O
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Table 1.4. Polar sections

q Qn I, v I,

All Hn i1 H: Hm—t—1Hr 1
Mn—t-1& Mpn—t-1Er-1
Hm—t—lpt Hm—t—lPT—l

All En It 1He p—t—1Er—1
Mn—t-1& -1 Hr—1
1P m—t—1Pr—1

Odd P’n Hmftlet Hmftflprl

Hm—t—lgt Hm—t—lPT—l
M—t—1Hr—1
It —1Ps { Mt 1Er 1

Theorem 1.51. Let 1T = 11,,, have polar space 11" = 11,,_,,,_1 with respect to Q,,.
Then the possibilities for 1IN Q,, = I,V and II' N Q,, = 11V’ are listed in Table
1.4.

Proof. By Corollary 1.20 and Lemma 1.30, II’ N Q,, has the same singular space 1T},
asIIN Q,. So,if II' N Q,, =11,,_;_1 Q,, then

s=n-m-1)—-(m—-t—1)—1=n+t—-2m—-1=T-1.

Now it suffices to look at particular cases of each type of subspace using the standard
equations, as, for a given trio m, t, v, there are at most two orbits by Lemma 1.48. O

Corollary 1.52. In the theorem, let Q,,, V, V' have respective characters w,v,v’
and respective projective indices g, f, f'. Then
(i) v' = |2 — w — v| unless w = v = 1, in which case v' = 0 or 2;
G) f+f —g=k—1+(v+v —w).
Proof. (i) This follows from the theorem.
(i1) From (1.8) and (1.10),
w=29—n+3,
v=2f—k—m+2,
vV =2f ~k—(n-m-1)+2=2f -n+m—k+3.

Elimination of m and n gives the formula. a

To add something comparable to Theorem 1.51 for P,, with ¢ even, the following
result is available; it only repeats a particular case of Lemma 1.30.
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Lemma 1.53. Ler q be even. Then, in the notation of Theorem 1.51, with tangent
space replacing polar space, the result is as follows:

Quadric Section Tangent section
Qn YV IV
Pn Hmel Hmtpn72m72

The next result gives more information on the tangency properties when Q,, does
not have a polarity.

Theorem 1.54. With q even, let N be the nucleus of the parabolic quadric
Pn=V(XZ+ X1 Xo+ -+ X 1X,).

(1) Every section of P, through N is parabolic.
(ii) There is a bijection between m-spaces 11,,, through N of Py, and (m —1)-spaces
Hm_ 1 in Up:

Hm '_>Hm—1 :Hm_lﬂuo, Hm—l 0—>Hm :UOHm—1~

Here, 11,, NP, is a 1l,,,_1_1P¢ with 11, containing N if and only if, with
Hn—1 = ug NPy, the intersection 11,,,_1 N H,,—1 is one of

i1 Hi—1, p—y—1&-1, 2Py

Proof. If 1L, NP, =11,,_t_1P; and I1,,_1 = up N 1l,,, then I1,,,_; meets H,_1
in a section I1,,,_ ;1 Q¢_1, which is reduced to canonical form by a projectivity p of
PG(n, ¢) fixing ug and Uy. Hence  has the matrix

1 Z
Z* M|’
where Z = (0,0, ...,0) and M is an n X n matrix with no further restriction. So the

possible canonical forms for Q;_; and correspondingly P; are given in Table 1.5.
This proves (ii) and so, a fortiori, (). a

1.8 Sections of non-singular quadrics

As in Section 1.6, let S(m, t, v; n, w) be the set of m-spaces IL,, such that I, N Q,,
is of type I1,,,—;—1 Q;, where Q,, and Q; have respective characters w and v. Also,

‘S(matvv; n, 'U})‘ = N(matvv; TL,’U}) = N(Hmftfl Qta Qn)

and this number will be calculated. As special cases, the formula gives
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Table 1.5. Sections through the nucleus

Type Form for Q.1 s 19Qs-1
1 X1X2+"'+X571X5 Hmfslesfl
2 (X1, Xo) + XaXg+ -+ X1 X M s—1E5-1
3 X12 + X2X3 + M + Xs—IXs Hm—s—lps—l

Type Form for P —t—1Pe
1 X02+X1X2+"'+X571X5 Hmfsflps

2 X¢ 4 f(X1,Xo) + XaXa+ -+ Xoo1 Xy Mg 1Ps
3 (Xo+X1)?+ Xo X3+ 4+ X1 X I sPs—1

(1) the number of I1,,, lying on Q,,, and here I,, N Q,, = 1I,, H_1;
(2) the number of points IIy not on Q,,, and here I1,,, N Q,, = I1_1P,.

The formula gives the size of the orbits when G(Q,,) operates on the lattice of sub-
spaces of PG(n, ¢), apart from the case w = v = 1. This fact is contained in Theo-
rem 1.49: when (w, v) # (1, 1), the sections of Q,, for a triple (m, ¢, v) form a single
orbit under G(Q,,); when (w,v) = (1,1), the sections for a given pair (m,t) form
one or two orbits, and the size of these orbits will also be determined.

To obtain the general result, some special cases are first required. These are sub-
sumed in the general result. In Section 1.5, the number

N(m,n,w) = N(m7 —1,2;7’1,’(1)),

which is the number of m-spaces on Q,, of character w, was determined.

The next special cases required are the numbers of bisecants, tangent lines and
skew lines to Q,,; the total number of lines on Q,, has already been determined in
Section 1.5.

Lemma 1.55.

@ NI, Q,) = [3(n =1 —w), j(n+1 —w)]y
x[3(n=3+w), (n—1+w)_/[1,2]—; (1.36)
(i) N(ToPo, Qn) = {(¢" — 1)/(g = 1) + (w — 1)g" 172}
x{g" "% — (w—1)g" 7%}, (1.37)
(i) N(H1,Qn) = 30" H{(@" = 1)/(a— 1)+ (w—=1)g" " V"?}; (1.38)
(iv) N(E1,Qn) = 5" (g2 2 4w 4 1)

><(q{n—(w_1)2}/2 +U)2 _3w+1)/(q+1), (1.39)
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Proof. The number of lines on Q,, through a point P is N (0; n—2, w), Lemma 1.22.
Hence the number of tangents through P is

O(n—2)— N(O;n—2,w)
and the total number of tangents is
N(O;n,w){0(n —2) — N(0O;n —2,w)};

this gives (ii).
The number of bisecants through a point P of Q,, is

O(n—1)—0(n—2)=q"*;

hence
N(Hi,Qn) = N(0;n,w)¢" /2.

The total number of lines in PG(n, q) is, from Theorem 3.1 of PGOFF2,
o(1;n,q) = n,n+1]-/[1,2]_. (1.40)
Hence (iv) is obtained from the formula

N(glv Qn) = ¢(11 n, Q) - N(Hla Qn) - N(Hopo, Qn) - N(Hlv Qn) . O

Corollary 1.56.
6 N(1,1,0;n,0) = N(&1,&)
_ %qnfl(q(nj%)/? + 1)(q(n*1)/2 + ]_)/(q + 1) ; (1.41)
(i) N(1,1,0;n,2) = N(&1, Hn)
_ %qn—l(q(n-‘rl)/Q —1)(¢™ V2 —1)/(g+1); (1.42)
(iii) N(1,1,0;n,1) = N(&,Py)

=3d" "= 1)/(g+1). (1.43)

Theorem 1.57. The number of sections 11,,__1 Qy of character v on Q,, of charac-
ter w is

N(m,t,v;n,w)

= (T Hvw2—0) 2-w)]—v(2-v)(w-1)?} /2
X[HT +v+(1+3v—20)w—v2—-v)w’}, L(n+1-w)y
X[MHT+2—v—(1-5v+20%)w—v(2—v)w'}, J(n—1+w)-
Hw2—v), s(t+1—0v)]+[1, St —1+v)]-[1,m —t]_}, (1.44)

where T =n +1t—2m.
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Proof. Consider the spaces II; lying on Q,, and the spaces II,, meeting Q,, in a
quadric IT; Q; of projective index d and character v. Let Ny be the number of such
I1,,, through a I1,;. Also, let N'(I14, 11 Q;) be the number of I on I}, Q; containing
the vertex ITj. Then, counting pairs (IT4, IT,,) gives

N1 Qt, Qn) = No N(Ilg, Q,)/N' (114, 114 Q;) . (1.45)
Here m = k + t 4+ 1. From (1.10),

v=2d—(m—-t—1)—m+2,
whence
d=m-—3(t—v+3). (1.46)

To find Ny, consider all W,, = II;Q; on Q,, through a particular II;. Let
H’n_ 41 be the tangent space of II; with respect to Q,,. Then, by Lemma 1.30,

H/n—d—l N Qn = HdQn72d72a

which has the same character w and projective index g as Q,,.
The required spaces 11,,, must satisfy the following properties:

(a) W), has projective index at most d;
(b) II,, touches Q,, along IIj.

For (a), it is necessary and sufficient that II,,, contains none of the (d + 1)-spaces
through IT; on 11 Q,,_24—2. If (a) is assumed, then it is necessary and sufficient for
(b) that I1,,, 1T/, | =1II/ , ,, using Lemma 1.21. This is equivalent to

I, NI, , , =1I,,

where
r=m+m—-d-1)—(n—k—-1)=m-—-d+k. (1.47)

The space II,. contains I1; and, to satisfy (a), II, N 113Q,_24—2 = Iz If r > d, so
IL. N Q,,_24—_9 is either Py or £1; hence

d<r<d+2. (1.48)

Three cases are distinguished according as W,,, is parabolic, hyperbolic or ellip-
tic; thatisv = 1,2 or 0, where v = 2d — k — m + 2, as in (1.10).

(1) Wy, parabolic

Since 2 +2d —k —m = landr = m —d + k, sor = d + 1. Therefore, by (a),
II,. is any one of the II;; which lie in H’n_ 4—1 and contain Il without being on
11;9,,—24—2. So the number of II,. is, in the notation of Section 3.1 of PGOFF2,

x(d,d+1;n—d—1,q) — N(Ilp, Qp—24-2)
= 9(77, —2d — 2) — N(Ho, Qn,Qd,Q) = N1 . (149)
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The spaces 11,,, are those m-spaces containing such a IT,, = II;4; with the condition
that IT,,, N H’n_d_1 = II,.. If I is fixed, the number of these 11, is

Yia(d+1,n —d—1,m;n,q)
= gm=d=D=2d=D19g 4 3 _m d+1]_/[1,m —d—1]_
— Ny, (1.50)

by Theorem 3.3 of PGOFF2. Thus

No = N1 N,
q{T(t+1)—(w—1)2}/2(q{T+(1u—1)2}/2 —w+1
x[m—t+1,m— 3t|_/[1, 3t]_, (1.51)

where V7 has been evaluated using (1.18) and d has been eliminated by (1.46). Here
n—2d—2=n—-2m+4+t—v+3—-2=T.

(2) Wy, hyperbolic

Since2+2d—k—m=2andr = m —d+ k,sor = dand II,, = II;. Thus the
spaces II,,, are those m-spaces such that IT; = II,, N II,_, . By Theorem 3.3 of
PGOFF2, their number is

¢12(d»n—d— ]-amanvq)

=22 42— m,d 1) /[1m — d]
= ¢ 2 —t 4 L — g (E = D]/ (1))
— Np, (1.52)

using (1.46) with v = 2.
(3) Wiy, elliptic

Since 2+2d—k—m = 0andr = m—d+k,sor = d+2. Then, from (a), II,. is one of
the spaces II42 in H;k 41 through the vertex I1; of 11;Q,,_24—2 but not containing
any point of the base Q,,_24_2. So Ilz42 is the join of II; and a line external to
Q1 —24—2. Thus the number of II,. is the number of lines of PG(n — 2d — 2,q)
meeting Q,,_24—2 in some &, that is, N (1, Qp—24—2). Now, (1.46) with v = 0
givesd = m — }(t + 3), whence

n—2d—2=n-2m+ (t+3)—-2=T+1.
So, from (1.39),
N(&1, Qn2d-2) = %QT(Q{THH“’A)Q}/? —w? +w+1)

X (g T2 o 34 1) /(g + 1)
Y (1.53)
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The spaces II,,, are those m-spaces meeting H’nf g—q insuch all, = Ilg4o. If 11, is

fixed, the number of 11,,, is, by Theorem 3.3 of PGOFF2,

le(d+2an_d_ 1am;n7Q)
= gm=d=D=2d=319g L 4 —m d+1]_/[1,m —d —2]_
=" ED 2t 1,m = L+ 1))/ L - 1)

:N2.
Thus
Ny = N1 Ny
_ qT(t+1)/2[m_t+ 1,m— é(t‘*‘ 1)]- N
~{(g+ D[, %(t_l)]*}a
where
AT AT+1) forw=0,
No={ BTIT 41 forw—2,
7,7 +1]— forw=1.

This completes the calculation of Ny in the three cases v = 1,2, 0.

(1.54)

(1.55)

To apply the formula (1.45), the numbers N (114, Q,,) and N'(I14, 11, Q) are

required. By (1.46) and the definition,

N(Ilg, Q,) = N(m — %(t—v—|—3);n,w),
N'(Ig, 11, Q) = N(g—g—1,Q¢) = N(5(t +v —3);t,0).

Thus, using (1.13) in Theorem 1.41,

N(Hda Qn)/N/(Hd7 Hk Qt)

= [T +4—w—v), jJ(n+1-w) [T +2+w—0), }(n— 1 +w)]-

x[1, 5t —14v)]-

HR2-v i+ 1= [, 5t —1+0v)-[L,m—L(t+1-v)]_}

=Ny.
So (1.45) becomes
N(I1;Q:, Q) = N(m, t,v;n,w) = No Ny .
Thus, from (1.51) and (1.56) withv = 1,

N(m, t,1;n, w) = q{T(t+1+2w7w2),(w71)2}/2
K[LT + 1420 —w?), Ln+1—w)]:
AT 41420 = w), Y~ 14 w)]-
{1, L1 e[y m — ]}

(1.56)

(1.57)
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From (1.52) and (1.56) with v = 2,

N(m,t,2;n,w) = gr /2
X[3(T+2—-w), j(n+1—w)] [3(T+w),i(n—1+w)-
{10, 3 (¢ = D] [1, 3+ D] [1,m — 1] -} (1.58)

From (1.55) and (1.56) with v = 0,

N(m,t,0;n,w) = ¢ D72
X[T +w), Yn+1—w)]+[J(T+2—w), s(n — 1 +w)]_
+{[0»§(t+1)]+[1,§( Dl-[1m—1]_}. (1.59)

The substitution of v = 1, 2, 0 in the ‘big formula’ (1.44) gives (1.57), (1.58), (1.59)
respectively. Thus (1.44) is established. a

It may be noted that all the special cases of (1.44) required for its proof are
immediately retrievable from the general formula.

Example 1.58. The number of conics on a quadric P,,, n even:

v=w=1 m=1t=2, T=n-—2,

N(P2,Pa) = " P[50, ynli[3n, yn]-
AL A LA, ]—}
=" " - 1)/(¢* - 1).

Now consider, under what conditions on the parameters m, ¢, v, n, w and the in-
variant T' = n + t — 2m, the quadric Q,, of character w has a section IL,,_;_1 O
of character v. First, the properties of the parameters that are contained within their
definition are listed.

Property 1.59. (a) n — w is odd;
(b) t — v is odd;

(¢) T4+ w — v is even;
dn>m>0;
eym>t>1-—uv;

O n>(w-1)>~4

In Lemma 1.50, it was also shown that 7" > v — w.

Theorem 1.60. Subject to the conditions (a)—(f) of Property 1.59, a quadric Q,, of
character w has a section 11,,,_;_1Q; of character v if and only if

T>|w-—1.



38 1 Quadrics

Table 1.6. Values of f(v,w)

w 0 1 2
v
0 -2 -1 0
1 -1 -2 -1
2 0 -1 -2
Proof. From Notation 1.32, the integer [r, s]— = 0 if and only if » = 0. So, from

(1.44), the number N (m, t,v;n,w) > 0 if and only if
T+2—v—(1-5v+20H)w—v2—v)w?>0;

thatis, T > f(v,w) where f(v,w) is given in Table 1.6.
Since T'+ w — v is even, the minimum value g(v, w) of T is given as follows:

_ J flo,w)+1 i f(v,w) +1— (w —v) is even;
g(v’w)_{f(v,w)m if f(v, w) + 1 — (w — ) is odd.

Hence g(v, w) is given by Table 1.7. Thus g(v, w) = |w — v|. O

Table 1.7. Values of g(v, w)

w 0 1 2
v
0 0o 1 2
1 1 0 1
2 2 1 0

Corollary 1.61. The quadric Q,, of character w has a section 11,,_;_1Q; of char-
acter v if and only if

(@) n —wisoddandn > (w — 1)
(b) t — v is odd,
©n>m>t>max(2m —n+|w—v|,1 —o).

Corollary 1.62. The quadric Q,, of character w has a section 11 Q; of character v
with k =m —t — 1 if and only if

(@) n —wis oddandn > (w — 1)%
(b) t — v is odd,
©l—-v<t<n—k-—1,

@ —-2<2k<n—t—|w—v -2
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Theorem 1.63. For a given Q,, = H,, Ep, P the number of projectively distinct
pairs (11, 11,11 Q) where 11, N Q,, = 11,,,_4_1Qy is as follows:

Type of Hon En Pn
section

Hyperbolic %(n2 —1)+n %(n —1)(n+5) %n(n +6)
Elliptic §(n2 —-1) §(n —1)(n+5) §n(n +2)
Parabolic g(n+1)(n+3) s(n+1)(n+3) gn(n+6)
Total gBn+)(n+1)+n Bn+T7)(n—1)+n sn(Bn+14)

Proof. For each m such that 0 < m < n — 1, Corollary 1.61 permits a count of the
values of ¢ for which a section II,,,_;_1 Q; of character v exists. O

By way of example, the different sections by an m-space for the three quadrics
Es, Pg, Hr are listed in Table 1.8.

Since the sections of non-singular quadrics have been determined, it is possible
to say precisely what are the sections of a singular quadric.

Theorem 1.64. If, for a fixed t, the non-singular quadric Q,, has a section 11;Q; of
character v, then 11;,Q,, has a section 11;Q; of character v for all j in the range
1<j3<i+k+1

Proof. A section of 11, Q,, is the join of a section Il of IIj, to a section 11; Q; of Q,,;
this join is 1154149y, where s may vary from —1 to k. O

1.9 Parabolic sections of parabolic quadrics

Part of Theorem 1.49 is that, in the operation of G(Q,,) on the set S(m, t,v;n, w)
of m-spaces I1,,, meeting Q,, of character w in a section II,,,_;_1 Q; of character
v, the only case that two orbits may occur is when v = w = 1. The geometrical
explanation of this phenomenon is different for ¢ odd and ¢ even. From (1.44),

N(m,t,1;n,1) = ¢"EF220(T +2), In]y [3(T +2), in]-
{00 M0, Y[ m— )}, (1.60)

where, as before,
T=n+t—2m.

This is the number of II,,, such that
Hm N Pn = Hm—t—lpt~ (161)

In this section only such II,,, are considered.
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Table 1.8. Sections in dimensions 5, 6, 7

Hyperbolic Elliptic Parabolic
Es
m=4 I1yE3 Pa
m=23 Hs &3, I11& o P2
m = 2 HOH1 H0<€1 732, Hlpo
m=1 Ha, Iy &1 IToPo
m=0 Ho PO
Ps
m=>5 Hs Es IToPa
m=4 TIoHs Io&3 P4, I11P2
m=3 Hs, I Hq &3, 111 & IIo P2, 2Py
m = 2 HOH1,H2 H0(€1 PZ,HlPO
m=1 Hi, Iy &1 IToPo
m=0 Ho PO
Hr
m==6 TloHs Ps
m=5 Hs, 1 Hs Es o P4
m = 4 Hng, H2H1 Hogg 734, H1P2
m=3 Hsz, I Hq1, I3 &3, 111 & IIo P2, 2Py
m=2 IIoH 1, 112 IIpé& P2, 11 Po
m=1 Ha, Iy &1 IToPo
m=0 Ho PO

For ¢ odd, as in Theorem 1.51, the polar II/,_ _, of II,,, meets P, in either
an elliptic or a hyperbolic section. If I/, ., NP, = II,,,_4_1Er_1, then 1L,
is internal; if 11, NP, = Il,,_4_1Hp_1, then II,, is external. This con-
forms with the notion of internal and external points of a conic as in Section 8.2 of
PGOFF2. Accordingly, write N_(m,t,1;n,1) for the number of internal II,, and
N (m,t, 1;n,1) for the number of external II,,, such that (1.61) holds. Hence

N_(m,t,1;n,1) + Ny(m,t, 1;n,1) = N(m,t,1;n,1). (1.62)
Theorem 1.65.
(1) N_(m,t, 1;n,1) = qT(tH)/Q[;(T—Q— 2), sn] L[5 T, dn]-
={[0, 34 [1, 3t —[1,m—t]_}.  (1.63)
(i) Ni(m,t,1;n,1) = g7 In] [L(T +2), In]_

{10, el [1, 5t -[L,m —#]-} . (1.64)
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Proof. By definition,

N_(m,t,1;n,1)=Nn—m—1,T—1,0;n,1),
Ny(m,t,1;n,1)=Nn—m—1,T—1,2;:n,1).

Application of (1.44) and some manipulation give the required answers, for which
(1.60) and (1.62) provide a check. O

Corollary 1.66. For q odd, the set S(m,t,1;n,1) has one or two orbits under
G(P,) according as T = 0 or T > 0. In the former case, the sections of
the orbit are all external and have polar sections 11, _, 1 N P, = II,., where
r=n—-m-1l=m-—t—-1

Proof. This follows from Theorem 1.49, (1.63) and (1.64). When T = 0,
0, NPy =11 Hr1 =1I,. O

For g even, a space I1,,, such that (1.61) holds either does or does not contain the
nucleus N of P,. If II,,, does contain IV, it is called nuclear; if I1,,, does not contain
N, it is called non-nuclear. Accordingly, write No(m, t, 1;n, 1) for the number of
nuclear I1,, and Ny(m,t,1;n,1) for the number of non-nuclear I1,,, both such that
Hm N Pn = Hm_t_ﬂ?f,. So

No(m,t,1;n,1) + Ni(m,t,1;n,1) = N(m,t,1;n,1). (1.65)
Theorem 1.67.

(D No(m,t,1;n,1) = ¢""/2[J(T + 2), in] [J(T +2), in]—

{1, 3t [L, 2L, m —¢]_}.  (1.66)

(i) Ni(m,t,15n,1) = ¢T3 T, in]y [T, yn)-
{1 St [L S [L,m —¢]_}. (1.67)

Proof. From Theorem 1.54 (ii),

No(m,t,1;n,1) = N(Iy—¢—1Hs 1, Hn1) + Nyt -1&—1, Hn-1)
+N(Hm_t_2Pt, 7‘[”_1)
=Nm-1t-1,2n-1,2)+ Nim—1,t —1,0;n—1,2)
+N(m—1,t,1;n—1,2).

Applying (1.44) gives (1.66); then (1.65) gives (1.67). O

Corollary 1.68. For q even, the set S(m,t,1;n,1) has one or two orbits under
G(P,) according as T = 0 or T > 0. In the former case, the sections of the or-
bit are all nuclear and each is the section of P,, by the tangent space of a 11,,,_;_1
lying on P,,.
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Proof. This follows from Theorem 1.49, (1.66) and (1.67). In the case that T' = 0,
thenn — 2(m —t — 1) — 2 = t. So, by Lemma 1.53, the tangent space of a IT,,,_;_1
on P,, meets P,, in a section II,,, ;1 P;. a

The corollaries to Theorems 1.65 and 1.67 for ¢ odd and even can be combined
as follows.

Theorem 1.69. The set S(m, t, 1;n,1) has one or two orbits under G(Py,) accord-
ingasT = 0 orT > 0. In the former case, each element of the orbit is the section
of Py, by the tangent space at a 11,,,__1 lying on P,,.

Example 1.70. Orbits of parabolic sections of P4. The five types of parabolic section
of P, are as follows:

(@) Py, m =0, T =4, apoint off Py;

(b) IIo Py, m =1, T = 2, a tangent line meeting P, in a point;
(c) II1 Py, m = 2, T = 0, a plane meeting P, in a line;

(d) P2, m =2, T = 2, a plane meeting P, in a conic;

(e) lIgP2, m = 3, T' = 0, a tangent solid meeting P, in a cone.

In both cases (c) and (e), for ¢ odd or even, there is a single orbit of (¢ + 1)(¢* + 1)
elements. In case (a), for g odd, there are ;qQ (¢®> — 1) internal points and %qz (¢>+1)
external points; for ¢ even, there is the nucleus and q4 — 1 non-nuclear points. In case
(b), for g odd, there are } q(q* — 1) internal tangents and ;q(q+1)?(¢* + 1) external
tangents; for q even, there are (¢ + 1)(¢? + 1) nuclear tangents and (¢ + 1)(¢* — 1)
non-nuclear tangents. In case (d), for ¢ odd, there are éqS(q — 1)(¢* + 1) internal
conics and }¢3(g+1)(¢*+1) external conics; for g even, there are ¢*(¢?+ 1) nuclear
conics and ¢%(¢* — 1) non-nuclear conics.

1.10 The characterisation of quadrics

In this section, non-singular quadrics in ¥ = PG(n, ¢) are characterised purely
in terms of their intersections with lines of 3. The characterisation also applies to
infinite fields with only a slight rewording. First, a number of definitions are required.

Definition 1.71. (1) A set K in X is of type (1,72, ...,7s) if
|l ﬂ]q S {Tl,TQ, e ,7"3}

for all lines [.

(2) Let K be a set of type (0,1,2,g+ 1). A line meeting K in ¢ points is an i-secant.
The alternative terms for a 0-secant, 1-secant, 2-secant, and (¢ + 1)-secant are
external line, unisecant or tangent, bisecant, and line on K or line of K. Some
authors use ‘tangent’ to mean 1-secant or (¢+ 1)-secant, but this usage is avoided
here. However, in the context of this section, it is convenient to have a single term
for this idea. So a B-line is defined to be a 1-secant or a (¢ + 1)-secant. ,
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(3) The set K is quadratic if
(a) Kisof type (0,1,2,q + 1);

(b) for each P in [, the union of B-lines through P together with P form the
tangent space Tp = Tp(K), which is either a hyperplane or ¥ itself.

In (b), if P is not specifically included in T»(K), there is a difficulty when n = 1

and /C consists of two points.

(4) The point P of the quadratic set K is singular if Tp(K) = X; in other words,
there is no bisecant through P. If K has a singular point it is singular.

(5) If a quadratic set does not contain a line, it is an ovoid.

(6) A perspectivity of X is a projectivity fixing all lines through a certain point Fj,
the centre. A quadratic set is perspective if there is a non-identity perspectivity
with centre () fixing K for every ) in 3 not in C U [ Tp. Every non-singular
quadric in ¥ is perspective, by Lemma 1.45.

Lemma 1.72. If K is a quadratic set and 11 is a subspace of 2, then K' = K N 11,
is a quadratic set in 11 for which Tp(K') = Tp(K) N I, where P is any point of
K.

Proof. 1f L is a line of 33, then it meets 1, in 0, 1 or g + 1 points. Hence the possibil-
ities for |(I N II5) N K'| are given in Table 1.9.

Table 1.9. Intersection numbers for quadratic sets

LNkl o 1 2 g+1

[T N IL,]
0 0 0 0 0
1 0 01 0,1 1
qg+1 0 1 2 qg+1
So K’ is a quadratic set. The other part follows similarly. ad

Corollary 1.73. If I is a hyperplane and K is non-singular, then 11 N KC has a sin-
gular point P if and only if 1 = Tp(K).

Theorem 1.74. In ¥ = PG(n,q), n > 2, a set K is a quadratic set if and only if
each plane section is a quadratic set.

Proof. One implication is included in Lemma 1.72. Suppose therefore that every
plane section of X is quadratic. Let | be a line and 7 a plane containing [. Since
Knl=(KNm)Nl, itfollows that K is of type (0, 1,2, g + 1). Further, [ is a B-line
of K if and only if [ is a B-line of K N 7 for every plane 7 containing [.

For each P € K, let the union of the B-lines through P be Tp. If I; and I
are two of these B-lines, let 7 = [; l3; then 7 N K is a quadratic set whose tangent
hyperplane at P is . So 7 is contained in T'p, and T’p is a subspace. As each plane
containing P has a line in T'p, so T'p is a hyperplane or the whole of 3. a
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Some properties of singular quadratic sets are now developed.
Theorem 1.75. The set of singular points of a quadratic set is a subspace.

Proof. Let P, () be distinct singular points of the quadratic set K and let R be any
point of the line PQ. As PQ is a B-line at P, so PQQ C K and R € K. Let [ be any
line through R. It must be shown that [ is a B-line. So take R # P and [ # PQ. If
[ contains a point S in K with S # R, the tangent hyperplane T contains P and )
since P'S and Q.S are lines of K. So T’s contains the line PQ and the point R. Hence
RS = lis a B-line and lies in KC. So R is singular. ad

The next result shows that the theory of quadratic sets is entirely dependent on
the theory of non-singular ones. The structure is similar to that of quadrics.

Theorem 1.76. If K is a quadratic set, then K is a cone 11,K', where 11, is the
subspace of singular points of K and K' is a non-singular quadratic set in a subspace
11,,_s—1 disjoint to 11,.

Proof. LetII,_s_1 be any subspace disjoint from Il and let K = K N 1L, _s_1. If
K’ has a singular point P, then II,, 51 C Tp(K) by Lemma 1.72. As II; also lies
in Tp(K) so Tp(K) = ¥ and P € Il;, a contradiction. If @ € IC\(II; UIL,,__1),
then QII, N1II,__1 # (. So there is a line Py Py with Py € II,, P, € I1,,_,_1, and
Q € PyPy. Hence P, € K’ and Q € II,K'; therefore K C II,K’. However, every
point of IT,K’ is also in K. O

Theorem 1.77. If K is a quadratic set in & = PG(n,q), n > 2, then every plane
section of K is singular or empty if and only if K is a subspace or the union of two
hyperplanes.

Proof. In %, if K is a subspace, then, for any plane Ilo, the intersection with /C is
one of Iy, ITy, IIg, IT_1. IfX=11,_1 UHlnil, then I NIl = I or IT UH’l So,
in both cases, a plane section of K is singular or empty.

To prove the converse, suppose K is not a subspace. So there are points P and
P’ with PP’ not contained in K. Each plane 7 through PP’ meets K in two lines
I and I’ with P € [ and P’ € I’. The line [ is the only B-line of K through P in .
Hence the tangent space of /C at P is the hyperplane IT,,_; = | I, where the union
is taken over all planes 7. Similarly, the tangent space of C at P’ is the hyperplane

I, =, V. Since K = J(IUl"),so K =1I,,_; UII;,_,. O

Theorem 1.78. If K is a quadratic set in 3. other than a subspace, then the smallest
subspace containing K is Y.

Proof. The set C must have at least one non-singular point P, whence Tp is a hy-
perplane. So every line through P not in T» contains a second point P’ of K. Thus
any subspace containing K contains every line not in 7’p and so must be X. a

Definition 1.79. (1) A generator of K is a subspace contained in C and maximal
with respect to inclusion.
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(2) Any subspace contained in K is a sub-generator of K.

Theorem 1.80. Let K’ be a subset of the quadratic set K such that the line PQ is
contained in K for all P and Q in K'. Then the subspace spanned by K' is a sub-
generator of K.

Proof. This is by induction on m = |K’|. The result is immediate for m = 0,1, 2.
Solet m > 2,let P € K’ and let II; be the subspace spanned by K'\{P}. By the
induction hypothesis, I1; is a sub-generator of XC. Every point () of the subspace PII;
spanned by K’ lies on a line PP’ with P’ in II. The tangent hyperplane Tp contains
K'\{P} and hence II;. So every line PP’ is a B-line at P and, since it contains two
points of /C, lies in K; thus @ € K. O

Theorem 1.81. Let KC be a quadratic set with a sub-generator 11 and a point P of K
such that P11 is not a sub-generator. Then

(1) the union Il p of the lines of IC through P and a point Q of 11 is a sub-generator;
(i) IIp NII = T'p N II and this subspace is a hyperplane in 11 and in I1p;
(iii) dim IIp = dim IT;
@v) if I is a generator of KC, so is Il p.

Proof. First, [Ip = PIINTp. So 1lp is a subspace and IIp N1I = T» NII. Further,
IIp is a sub-generator by Theorem 1.80, where K’ = (IIp NII) U{ P} in the notation
used there. As IIp cannot contain II, so IT» N II is a hyperplane of II since Tp is a
hyperplane of 3. Hence P(IIp N II) = Ilp is a hyperplane of PII and IIp N1l is a
hyperplane of IIp. This proves (i) and (ii); part (iii) now follows.

Suppose IIp is a generator and I is not. Then 11 is properly contained in a gener-
ator IT". Hence, by (ii), IT’> NI’ is a hyperplane in II'. So there is a line of /C through
P notin Il p, whence IIp is not a generator. Thus, if I p is a generator, so is 1I. The
converse result (iv) follows by symmetry. For, let @) be a point of IT\II p; then QIIp
is not a sub-generator, unless PIIis. As (IIp)g = II, the result is proved. O

Theorem 1.82. The generators of a quadratic set K all have the same dimension.

Proof. Suppose II and I are generators of dimensions r and 7’ with r < r/. Let
B = {Py,...,P.} be a generating set for II. For each P;, let II; be the union of
lines of K joining P; to a point of II'. Then II; N I is either a hyperplane of II'
or I’ itself, by Theorem 1.81. As r < 7/, the intersection of the II is non-empty
since its codimension in II’ is at most r. If P is in this intersection, then PII is a
sub-generator by Theorem 1.80 and so II is not a generator. a

As for quadrics, the dimension g of a generator of /C is called the projective index
of KC. It should be noted that this is one less than the Witz index.

Lemma 1.83. If I1 is a sub-generator of a non-singular quadratic set K, then there
exists a generator disjoint from 11
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Proof. If II' is a generator meeting II and dim (I’ N IT) = j, it suffices to show that
there exists a generator II” such that dim(IT” N II) = j — 1. There exists a point P
in IC such that P(II' N II) is not a sub-generator; otherwise, every point of II' N T
would be singular for K. Hence (IT' NII) p is a sub-generator whose intersection with
IT' N1II has dimension j — 1, by Theorem 1.81. By the same result, IT’; is a generator,
and contains (I N II) p. Since P(II' N II) is not a sub-generator,

' NI ¢ 1p. (1.68)
So
(I NIT) p N (I N 1T) = 1T, N (1T N ID). (1.69)
It is now shown that
NIV NI =10 NI (1.70)

Assume on the contrary that there is a point ) of IINII; notin II'. Let 2 be the union
of I' N1II, I, N II', and {Q}. The join of any two points of 2 is a sub-generator.
By Theorem 1.80, 2 spans a sub-generator K. Since K’ contains the hyperplane
IT" NI, of I, and the point @) of II)5, so I C K'. Since I, is a generator, so
I, = K'. Hence 1T, = K’ D II' N 11, contradicting (1.68). So (1.70) holds. Now,
from (1.69),

(I' NI p N (I NII) = I N IL

Since dim((II' N1II)p N (II' N1I)) = j — 1, so dim(II%» N II) = j — 1. Thus there is
a generator IT” = I, with dim(IT” N1II) = j — 1. O

Corollary 1.84. If K is a non-singular quadratic set in PG(n, q), its projective index
g satisfies 2g < n — 1.

Proof. Let 1T and IT’ be disjoint generators of K; then dim ITIT" < n. So
2g = dimII + dim Il = dim(II 1) + dim(ITNIT') < n — 1. O

Lemma 1.85. If 11 is a sub-generator of the non-singular quadratic set K and 11 is
contained in the generator I, then there exists a generator I'" such thatT’ N TV = IL.

Proof. This is by induction on dimII = m. If m = —1, the result is that of the
previous lemma. Suppose now that the property is satisfied for dimension m — 1,
with m > 0. Let II' be a hyperplane of IT and let P be a point of IT\II'. There exists
a generator 'y such that ' NI’y = I since dimII' = m — 1. Then TV = (T'y) p is
the required generator. a

Theorem 1.86. Every sub-generator of a non-singular quadratic set K is the inter-
section of the generators containing it.

Proof. This follows from the preceding lemma. a

Lemma 1.87. If K is a quadratic set in PG(n,q), n > 2, which is not a subspace,
then any collineation o fixing every point of KC is the identity.
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Proof. Since K is not a subspace, it contains non-singular points P and ). Hence o
fixes every line through P other than a tangent line. It follows that o also fixes these
tangent lines. So o is a perspectivity with centre P. Similarly, it is a perspectivity
with centre Q. If R is any point not on the line PQ), the lines RP and R() are fixed.
So R is fixed and o is the identity. a

Lemma 1.88. If KC is a quadratic set in ¥ = PG(n,q), n > 2, and P in X\K is
a point not lying on all tangent hyperplanes, then there is at most one perspectivity
other than the identity with centre P which fixes K.

Proof. Since P exists, K is not a subspace. Let o and ¢’ be perspectivities with
centre P fixing IC. Let P, P, be a bisecant of K through P with P;, P, € K. First,
let P,o’ = P;, i = 1,2. Then ¢’ fixes both T'», and T'p,, whence ¢’ is the identity, a
contradiction. So Py¢’ = P5 and Py’ = P;. Analogously, Pioc = P, Poo = P.
So 010’ is a perspectivity with centre P fixing IC, P and P». Again, 0~ 1o is the
identity, implying that o = o’. O

Theorem 1.89. If IC is a quadratic set other than a subspace and every plane section
of K is the empty set, a point, a line or a conic, then K is a quadric.

Proof. This is by induction on the dimension n. The result is in the hypotheses when
n=1or2. Soletn > 3,and let P’Q' N K = {P’,Q’}. A hyperplane II through
P’Q’ therefore does not meet K in a subspace. So, by induction, IT N K is a quadric.

If all points of /C outside II were singular, they would be contained in a subspace
IT'. So £ ¢ ITUII', whence K has bisecants through each point of (C N II')\IL, a
contradiction. So K has a non-singular point P not in II. Choose coordinates such
that (i) P = Uy, (ii) I = uy, (iii) T = u,,. Then

IINK=V (Xo, Z/ a,-inXj> .
1

The summation sign Z/ indicates summation over all ¢ and j with ¢ < j, whereas
>~" indicates summation with i < j.
Consider the pencil of quadrics F;, ¢t # 0, where

F:=V (thXn =+ Z/ ainin> .
1

Each F; contains IINC, passes through P, and has Tp(K) as the tangent hyperplane
at P.

Now, let @ be a point of IT N K not lying in T'p; suppose Q@ = P(0,¢1,...,cpn),
¢n, # 0. Not all points of IT N K outside T are singular for IT N . So, let @ be
non-singular for IT N £; then

n n
TQ(}}) = V <tCnX0 + 2 Z a,-iciXi + Z " ai]‘ (Cin + CjX,')) .
1 1
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However,
n n
TQ(/C) =V (/\Xo + 2 Z a,-iciXi + Z " Aij (Cin + Cin)> 5 with A 75 0.
1 1

So there exists some ¢, say ¢ = b, such that Ty (Fp) = T (K). It is now shown that
K=F.

Let R be a point of /K other than P and not in II. The points P, @, R are not
collinear; so the plane @« = PQR meets K in a conic C and F}, in a conic C’. Let
I = aNIl; then P and R do not belong to the line [, although () does. There are two
cases.

(a) I contains a point Q' in K with Q' # Q. Then C and C’ have the points
P,Q, Q' in common as well as the tangents at P and @, by Lemma 1.72; thus C = C’.
Let A be any point not in the union of the planes « through P meeting II in a
tangent [ to K, and so in particular outside the hyperplane PTq(IIN ), which is the
union of the planes (3 through P meeting IT in a B-line to K. Then A belongs to K
if and only if it belongs to Fp.

(b) L is a tangent to KC. Then R P belongs neither to & nor to ;. Let S be a point
of IC not in the hyperplane PT(II N ). The plane P RS meets K and Fy in conics
D and D’ which coincide outside the line PR. Since PR is contained in neither D
nor D', so D = D’; hence R € Fy,.

Thus IC C Fp. Similarly F, C K. This concludes the proof. O

Theorem 1.90. In PG(n, q), a perspective quadratic set IC which is not a subspace
is a quadric.

Proof. 1f the set is the union of two subspaces, neither of which is contained in the
other, then it follows, for example from Theorem 1.77, that /C is the union of two
distinct hyperplanes and so is a quadric. From now on, assume that this is not the
case.

(a) n = 2. Here K must be non-singular and non-empty. So it has no three points
collinear and is therefore a (¢ 4 1)-arc. Let U, U; be points of K and let UyUs,
and U; U, be the tangents at Uy and U;. Every point of uy not in K is of the
form P(1,m,0) with m # 0. There exists a non-identity perspectivity o with centre
P(1,m,0) fixing K and U, but interchanging Uy and U;. Hence the axis of o is
V(mXo + X1);if p = 2, the axis contains P(1,m,0) and, if p # 2, the axis passes
through the harmonic conjugate P(1, —m, 0) of P(1,m,0) with respect to Uy and
U;. Thus U is mapped to P(1,m?, —m), whence K = V(X X1 — X3).

(b) n > 2. Let II be a plane such that IT N /C is not a subspace. If IT N K is
non-singular, it is a conic by (a). If Il N /C is singular, it is a line pair and therefore a
quadric. Hence, by Theorem 1.89, K is a quadric. a

To reach the final characterisation of quadrics, more properties of perspective
quadratic sets are required. For the next theorem, let P, be distinct points of a
quadratic set /C, and define Spg = Tp N T(,. For the remainder of this section, K is
always non-singular.
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Lemma 1.91. (i) Spq has codimension two in X.
@ii) If A, B, C are collinear points of IC, then Sap = Sac.

Proof. (i) It Tp = T, then PQ) C K. Itis first shown that if R is any other point on
PQ, then Tp = Tg. Let A € Tp\ PQ); then either AP and AQ) are both tangents or
both lines of K.

(a) Suppose AP, AQ are tangents. The plane AP R lies in Tp. If AR is a bisecant,
then it meets X in another point R’. So PR’ and QR are lines of K. Hence any line
[ through R other than AR meets PR’ and QR’ in a point of XC; so I C K. Thus the
plane APR lies in K. So AR is not a bisecant and is hence a tangent.

(b) Suppose AP, AQ are lines of K. Again, any line [ through R other than AR
contains distinct points of K on AP and AQ), and so lies on K. Hence the plane APQ
lies in K. So AR is a line of K.

From (a) and (b), it follows that Tp C Tg. Since K is non-singular, Tp = T
for all R on PQ.Let A ¢ Tp UK. Then AR is a bisecant for every R on PQ); so
AP, AQ, AR all meet IC again at the respective points P;, Q1, R;.

If P1, @1, Ry are not collinear, then each side of the triangle P; Q1 R, meets the
line P in a point of K. So these sides are lines of /C and the plane of the triangle
lies on K; thus A lies on K. So P;, 1, Ry are collinear and R lies on P;@Q; for
every R on PQ.

Let PQN PyQ1 = S. Then AS is a tangent to KC. Thus A € T's and T's = X. So
K is singular, a contradiction. Hence T'» # T and so Spg has codimension two.

() If D € Sapand D € K, then AD and BD are tangents. If DC' is not a
tangent, it meets & again at C’. The plane o« = ABD lies in Sap, hence C' € Sap,
and AC” and BC’ lie in K. This gives enough points of & on K to mean that « lies
in IC, a contradiction. If D € K\AB, then ABD C K.Inbothcases, D € Tc. O

Lemma 1.92. If PQ) is a bisecant of IC, then Spg is spanned by Spg N K providing
Spo N K is non-empty.

Proof. The set Spg N K is non-singular, for a singular point R would be such that
T contains Spg as well as P and (); so R would be singular for /C, since Spg and
P span Sp. Now Theorem 1.78 gives the result. a

Lemma 1.93. If o is a perspectivity fixing K with centre R not in K and Po = @,
where P, Q) € K and P # @), then the axis of o contains Spg.

Proof. Since Po = (), s0 Tpo =Tg. Hence Tp NIy = Spq is in the axis of 0. O

Let AB be a bisecant of K, with A, B € K, and let P € AB\K. Let [ be a line
of IC through A; then Bl ¢ K. By Theorem 1.81, there exists a unique £ on [ such
that BE C K. Let C be a point of I\{4, E'} and let D = PC' N BE. See Figure 1.1.

Lemma 1.94. With A, B,C, D, E as in Figure 1.1,

(i) Sap # Spc:
(ii) SapScp is a hyperplane.
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Fig. 1.1. Points on a quadratic set

Proof. (1) If Sap = Spc, then Syp = Sac = Scp and T contains A.
() SapNSecp =TaNTeNTcNTp

=TaNTcNTpNTE, sincelpNTp=TgNTg,
=TaNTpNTg, sinceTcNTg=TsNTc,

using Lemma 1.91 (ii) twice. By (i), dim(Ta NTp N T¢) = n — 3. So SapScp is
a hyperplane. a

Lemma 1.95. Let o be the perspectivity with centre P, axis SapScp, and such that
Ao = B. Then o fixes K.

Proof. First it is shown that A, B ¢ S4pScp in order to guarantee the existence of
o. Suppose that A € SypScp. As A & Sap,s0 ASap = Ta = SapScp. Hence
SCD C T4 and so SAC = SCD~ By Lemma 1.91 (ii), SAC C Tg; so SCD C Tkg.
Hence Sgp = Scp. Again by Lemma 1.91 (ii), Sgp C T and so S¢p C T5.
Consequently, S¢p is contained in T, Tp, T4, Ts. Hence Sap = Spc = Scp,
contradicting Lemma 1.94 (i). Analogously, B € SapScp.

Since E € Sap N Scp so E is on the axis. The perspectivity o depends only on
K, P, A, B, C, so write

c=0(K,P,A B,C).

Now, ¢ maps every line of K through A to a line through B and every line of K
through C' to a line through D. Hence

Taoc = (ASap)o = BSap =Tg;

analogously, Tco = Tp.
Choose () in K not in the plane ABC' and consider the following two possibili-
ties.

(a) QFE is not a line of K

Let!’ = QF, with I' € AC, be on K, and consider the solid II3 = ABCQ. It
can be shown that I3 N /C is non-singular. It follows that every point of IT3 N /C lies
on at most two lines of IT3 N /C. For any point R of II3 N K such that RE is not a
line of K, the tangent hyperplane T intersects AE and BE in points A’ and B’;
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then RA’ and RB’ are lines of K. If R’ € II5 N K is such that R'E is a line of ,
then choose E’ such that neither E'E nor E’R’ are lines of K. Then the previous
argument can be applied with R’ for R and E’ for E. Thus each point of IT3 N K lies
on exactly two lines of II3 N K. Hence I3 N K is a hyperbolic quadric, by Theorem
16.2.6 of FPSOTD.

In I3 there exists a perspectivity o’ with centre P and axis II3 N S4p5Scp fixing
II3 N K and such that Ao’ = B. Hence o1, = 0’ and Qo € K. It also follows that
Bo = A, and so Tgo = T4. Since E is non-singular, such a point () always exists.
(b) QF is a line of K

If QA and QB are lines of K, then QQ € Sap and so Qo = Q. Thus it may be
assumed that QA is not on K. It may also be assumed that Q ¢ SapScp, since
otherwise Qo = Q. There exists a point £’ in Sap U Scp such that £/ € K and
QFE’ is a bisecant of K. Otherwise, T contains S4p and Scp, by Lemma 1.92, as
Sap N K and Scp N K are not empty since they both contain F; this is excluded by
the fact that @ is neither singular nor in SapScp.

Let E' € Sap. Through Q there is a line QA’ in K meeting AE’ in A’. Then
A’ # FE', A. Now consider the perspectivity o1 = o(K, P, A, B, A’);s0 A'oy = B’
where B’ = PA’ N E’B. Applying the result of the previous paragraph to o shows
that Qo € K. As o and o; both interchange T4 and Tz, the map ooy L is the
identity, whence 0 = 0. O

Theorem 1.96. In PG(n, q), a non-singular quadratic set containing a line is per-
spective.

Proof. This merely restates the previous lemma in a different form. a

Theorem 1.97. In PG(n, q), a non-singular quadratic set K is a quadric or an
ovoid. If IC is an ovoid, then it is one of the following:
(i) a (¢ + 1)-arcin PG(2, q);
(ii) an ovaloid of PG(3,q), q > 2;
(iii) an elliptic quadric in PG(3,2).

Proof. The first part follows from Theorems 1.90 and 1.96. The second part follows
from Theorem 5.55. a

1.11 Further characterisations of quadrics

In Section 1.10 two restrictions are put on a subset K of ¥ = PG(n, q):

(a) Kisoftype (0,1,2,q+1);
(b) K has a tangent space at each point P, which is either a hyperplane or ¥ itself.

In this section, condition (b) is dropped. In what follows, condition (a) still holds.
So the definitions of Section 1.10 still apply for a set K is of type (0,1,2,¢ + 1). A
point P of K is singular if there is no bisecant of X through it. The set of singular
points of /C is the singular space of IC, and K is singular or non-singular according
as it has singular points or not.
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Lemma 1.98. The singular space S of K is a subspace of 3.

Proof. Let P,Q € §S; then it must be shown that any other point R of P( is also
singular. Since P is singular, so PQ C K. Let A € IC\PQ. Then the three lines
AP, AQ, PQ lie on K and hence the plane AP( also lies on /C; so AR C K. Hence
R is singular. ad

Theorem 1.99. If K is a set of type (0, 1,2, g+ 1) in X with singular space 11,., then
K is a cone 11.K', where K' is a non-singular set of type (0, 1,2, ¢+ 1) in a subspace
1L, _,_1 skew to I1,.

Proof. Letl1l,,_,_; be any space of dimension n — r — 1 skew to the singular space
II, and let K" = II,,_,_1 N K. Now take A in II,. and A’ in K’; then AA’ C K. For
any point P of K\ (II, U K'), the line AP C K. The space PII, meets II,,_,_; in a
point B; so B € K’. Hence K is the cone II,.X’.

It must still be shown that K’ is non-singular; it is a set of type (0,1,2,¢ + 1)
from its definition. Suppose K’ has a singular point Q. Let P € K\II, and also let
B = PII,NIl,_,_1.If B=Q, then PQ C K.If B # @, then, with A = BPNII,,
the planes APQ and ABQ coincide. However, BQ C K and A is singular; so
ABQ C K. Thus PQ C K and @ is a singular point of K, which is a contradiction.

O

Theorem 1.100. A k-set of type (0,1,2,q+ 1) in PG(n, q), withn > 3, ¢ > 2, and
such that 0(n) > k > 0(n — 1), is one of the following:

(a) IT,,_1 UIL, for somer = —1,0,1,...,n—1;

(b) Iy P,—_—1 for somet = —1,1,...,n — 3 when n is even and equally some
t=0,2,...,n— 3 when n is odd,

() IlyHp—t—1 for some t = —1,1,...,n — 4 when n is odd and equally some
t=20,2,...,n— 4 whennis even,

(D) W, U 1L, where W, is one of the quadrics (b) and 11, C 1I;N with N the
nucleus of a base Pr,__1, and q is even;

(e) IT,,_3K'UIL,, where K is a (q+1)-arcin ally skew to 11,5 and I1,. C II,,_3N
with N the nucleus of K', and q is even.

Theorem 1.101. In PG(n, q), with g > 3, n > 4, a k-set of type (0, 1,2, g+ 1) with
k=0(n—1)—q9"L, where g is the largest dimension of a subspace in K, is one of
the following:

(a) I, Ep—t—1 for somet = —1,1,....,n — 4 when n is odd and similarly some
t=20,2,...,n— 4 whennis even,

(b) IL,,_4K', where K' is a (q* + 1)-cap in PG(3, q) skew to 11,,_4 and q is even;

(©) 1L, —o.

The last theorem has the following improvement.

Theorem 1.102. In PG(n, q), ¢ > 3, n > 3, q odd, a k-set of type (0,1,2,q+ 1)
withO(n) >k > 0(n—1) —q" =2+ q" 3 is either a quadric or 11,,_1 UTL, for some
r=-10,1,...,n— 1
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From the previous three results, the following result for the non-singular case is
immediate.

Theorem 1.103. In PG(n, q) withn > 4, q¢ > 2, let K be a non-singular k-set of
type (0,1,2,q+ 1).

(1) If0(n) > k > 6(n — 1), then one of the following holds:
(@) k=06(n—1), nisevenand K = Py;
b) k=60(n—1)+q¢" V2 nisoddand K = H,;
©k=0n—-1)+1and K = ;P41 U{N} or K = 1I,,_3K" U {N},
where K' is a (¢ + 1)-arc in a 11y skew to 11,,_3, and N is the nucleus of
Pr—i—1 and K' in the two cases.
(i) If k = 0(n — 1) — q971, where g is the largest dimension of a subspace in K,
thenn isodd, g+1=1(n—1),and K = &,.
(iii) If g is odd, ¢ > 3 and O(n) > k > O(n — 1) — ¢" =2 + ¢" =3, then
(a) for n even, K = Py;
(b) forn odd, K = H,, or &,.

1.12 The Principle of Triality

On the hyperbolic quadric H~, known sometimes as the triality quadric or the Study
quadric after the discoverer of the principle, consider the two systems of generators
A and B. From Theorem 1.33,

Al = [B| = 3#(7;2) = 3[0,3] = (¢ + 1)(¢* + 1)(¢° + 1)
From Theorem 1.41 (iii),
[Hr| = N(0;7,2) = (¢° + 1)(¢" = 1)/(¢ = 1) = }5(7;2).

Then it can be shown that the solids in .4 correspond to the points of a quadric 1/
of PG/(7, q) such that solids in A containing a given line are mapped to the points
of a line of H%; similarly, the solids in B correspond to the points of a quadric H/ of
PG”(7,q) . A triality is a permutation 7 of H U A U B such that

Hr=A, Ar =B, Br=%H,

and such that incidence is preserved, where incidence is defined as follows:

(1) a point is incident with a solid if it lies in the solid;

(2) two points are incident if their join lies on Hr;

(3) two solids of the same system are incident if they meet in a line;
(4) two solids of different systems are incident if they meet in a plane.
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Then

Hr — A— B — Hr

is induced by collineations
PG(7,9) = PG/(7,9) % PG"(7,9) 4 PG(7.q)

such that
7‘[701 S H/7, H/702 S 7‘[/7/, /7/03 S 7‘[7.

The map 7 is called a triality by analogy with a duality of a projective space.

Example 1.104. To give an explicit example, a trilinear correspondence is intro-
duced. Write points as follows:

in PG(7, q) as P(x) with x = (x¢, 21, ..., 27);

in PG'(7,q) as P(y) withy = (yo,y1,---,¥7);

in PG"(7,q) as P(z) with z = (29, 21, - - - , 27)-
Let

Hr = V(X0X4 + X1 X5 + XoX6 + )(3)(7)7

Hy = V(YoYs+ Y1Y5 + Yo Y5 + Y3Y7),
H/7/ = V(Z()Z4 4+ Z1Zs+ ZoZg + 2327)

Consider the following trilinear form:

Xo X1 Xo X4 X5 X
T(X,)Y,Z)=|Yy Y1 Yo |+ |Ys V5 Y5
Zo 71 Zo| | Zs Zs Z
+ X3(ZoYa + Z1Ys + Z2Ys) + X0 (YoZs + Y125 + Yo Zs)
+ Y3(XoZs + X1 Z5 + XoZg) + Y7(Zo Xu + Z1 X5 + Z2Xs)
+ Zs(YoX4 + Y1 X5 + Yo Xs) + Z7(XoYa + X1Y5 + X2Y5)
— X3Y323 — X7Y7Z7.

A pair (P(z), P(y)) of points in H7 x H/, represents an incident pair in H7 x A if
and only if the linear form T'(z, y, Z) is identically zero in Z; the similar condition
applies for a cyclic permutation of z, y, z.

For example, to find the solid of .4 that corresponds to the point P (y) of 7~ when
y = (1,0,...,0), put this value of y in T'(X, y, Z) and require that the coefficients
ofall Z;, i € {0,1,...,7} vanish. This gives the solid V (X1, X2, X4, X7).

The collineations o1, 02, 03, with

PG(7,q)01 = PG/'(7,q), PG'(7,q)02 = PG"(7,q), PG"(7,q)03 = PG(7,q),
(80,81,...,87)0'1':(80,81,...,87), i:1,2,3,

define a triality 7. Explicit calculations are possible using the form T'(X,Y, Z).
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1.13 Generalised hexagons

Definition 1.105. A generalised hexagon is an incidence structure S = (P, B,1) in
which P and B are non-empty, disjoint sets of points and lines, and for which I is a
symmetric point-line incidence relation satisfying the following properties.

(1) Each point is incident with 1 + ¢ lines, with ¢ > 1, and two distinct points are
incident with at most one line.

(2) Each line is incident with 1 4 s points, with s > 1, and two distinct lines are
incident with at most one point.

(3) S contains no ordinary k-gon, as a subgeometry, for 2 < k < 6.

(4) Any two elements of P U B are contained in some ordinary 6-gon, again as a
subgeometry.

The integers s and ¢ are the parameters of the generalised hexagon, and S has
order (s,t);if s = t, then S has order s. There is a point-line duality for a generalised
hexagon of order (s, t) for which in any statement ‘point’ and ‘line’ are interchanged,
and s and ¢ are interchanged.

Theorem 1.106. The order of the known finite generalised hexagons is one of the
following:

(a) (s,1) with s > 1;

() (1, 1) with t > 1;

(¢) (q, q) for q any prime power;

(d) (¢,¢%), and dually (¢*, q), for q any prime power.

Example 1.107. Let S’ = (P’, B, 1') be any finite projective plane of order s. Define

(ayP=P UB;
b)B={(P,I")eP' xB|P'Tl};
(¢c) PIlwith P € Pand!l € Bif and only if P € [.

Then S = (P, B,1) is a generalised hexagon of order (s, 1). Conversely, any gener-
alised hexagon with ¢t = 1 is of this type.

Trialities and generalised hexagons are closely related. Let 77 be the Study
quadric and let Pg be a parabolic quadric on it. If 7 is a triality and [ is a line of
Ps, then T maps the points of [ onto the ¢+ 1 generators of A through a line I’ of H7.
Let BB be the set of all lines I’ on Pg. Then the incidence structure (Pg, B, 1), with I
the natural incidence, is a generalised hexagon of order q.

Up to duality and isomorphism, no other generalised hexagon of order ¢, with
q # 1, is known. Also, all known generalised hexagons of order (g, ¢*), and dually
(¢, q), arise from trialities.
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1.14 Notes and references

Sections 1.1-1.9

These sections continue the material in Chapter 5 of PGOFF2. They are based on
Hirschfeld [174], although many details come from Segre [276]. In particular, the
proof of Theorem 1.57 is based on Segre’s treatment, although the formula (1.44),
due to Hirschfeld [173], is an amalgamation of several formulas established by
matrix-theoretic methods by Dai and Feng [81] and by Feng and Dai [132]. See
also De Bruyn [84].

The nature of the transitivity of the orthogonal group, as expounded in Theorem
1.49, seems more difficult in the projective space than in the vector space case. See
Higman [165], Artin [3], Dieudonné [122] for the vector space case, and Dye [124]
for the connection between the two cases. The size of the stabiliser in the orthogonal
group of an isotropic subspace in the vector space case has been calculated by Derr
[117].

Section 1.10

This section follows Buekenhout [54].

Section 1.11

The complication of further characterisations, even when the set K is non-singular is
illustrated by the work of Lefevre [200]. Theorems 1.100 and 1.101 are due to Tallini
[302, 303] and Theorem 1.102 to Lefevre-Percsy [202].

For characterisations of quadrics by intersection numbers, see Schillewaert [270]
and De Winter and Schillewaert [105].

Sections 1.12-1.13

See Hirschfeld and Thas [180], Tits [379], Van Maldeghem [391].
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Hermitian varieties

2.1 Introduction

In F, = GF(q), ¢ square, the map = — V% = Z is an involutory automorphism.
For a matrix A = (a;;), write A = (a;;). Then a Hermitian form F' is an element of
F,[Xo, X1, Xs, ..., X,] such that

F=XHX"

where X = (Xo, X1, Xo,...,X,), H* = H and H # 0. As in Section 5.1 of
PGOFF2, F can be reduced by a non-singular linear transformation to the canonical
form

F.=XXo+ X1 X1+ -+ X, X,.

The variety V(F).) in PG(n,q) is a Hermitian variety, which is non-singular
when 7 = n. The Hermitian variety V (F,.) is written U, or U, 4; that is,
U. =V (Xo X0+ X1 X1+ + X, X,). 2.1

Similarly to quadrics, V(F}.) = II,,_,._1U,., where U, is the non-singular Hermitian
variety in the r-space UgU; --- U, = V(X,41,...,X,,) and

L1 = V(X07 BRI X'r‘) = Ur+1Ur+2 co Un;

that is, the points of II,,_,_1U, comprise all the points of the lines joining any point
of II,,_,—1 to any point of .. As for quadrics, II,,_,._; is the vertex of the cone and
U, abase.

Theorem 2.1. There are n+ 1 projectively distinct Hermitian varieties in PG(n, q).
Proof. From above, there is one variety II,,_,_1U, foreach r in {0,1,...,n}. O

Lemma 2.2. A section of a Hermitian variety is still a Hermitian variety.

© Springer-Verlag London 2016 57
J.W.P. Hirschfeld, J.A. Thas, General Galois Geometries, Springer Monographs
in Mathematics, DOI 10.1007/978-1-4471-6790-7_2



58 2 Hermitian varieties

Proof. f U = V(F) is Hermitian with I in F ;[ X, X1, ..., X,,], then a section by
ahyperplane V(L), where L = Xo — a1 X1 — - - — ap X, isUU' = V(L, G), where

G(Xl,...,Xn) :F(a1X1—|—-~-—|—aan,X1,...,Xn).

As G is a Hermitian form, so &’ is a Hermitian variety in V(L). Thus the result
follows by induction. a

The behaviour of low-dimensional varieties gives a feeling for higher dimen-
sional ones. In Table 2.1, all types up to five dimensions are described.

2.2 Tangency and polarity

The notation U, or U,, 4 is also used for any non-singular Hermitian variety of
PG(n,q). So consider U, = V(F). Let P = P(A) and Q = P(B), where
A= (ag,...,a,)and B = (bg,...,b,). If F(X) = XHX™*, then

F(A+tB) = (A+tB)H(A+tB)*
= AHA* +tBHA* +tAHB* + ttBHB*.

So P(A + tB) lies on U, if and only if
0= F(A) +tG(A, B) + TG(A, B) + t{F (B), 2.2)

where G(A, B) = BH A*.
The line [ is a tangent to U,, if |l NU,,| = 1.

Lemma 2.3. Let P = P(A) and Q = P(B).

() If F(A)F(B) — G(A, B)G(A, B) # 0, then |PQ NUy,| = /g + 1.
(i) If F(A)F(B) — G(A, B)G(A, B) = 0, then
(a) F(A) = F(B)=G(A,B) =0 = PQ C Uy;
(b) otherwise |PQ NUy,| = 1.
(iii) Suppose P € U,,.
(@) If Q & Uy, then PQ) is a tangent to U,, if and only if G(A, B) = 0.
(b) If Q € Uy, then PQ is a line of Uy, if and only if G(A, B) = 0.

Proof. (i), (ii) With F'(A) = a, F(B) = b, G(4, B) = 4, (2.2) becomes
btt + 6t + 6t +a = 0; (2.3)

here b = b, @ = a.
First, let a = b = 0. If 6 = 0, then PQ C U,,. Now, let 6 # 0. Then (2.3)
has ¢t = 0 and ¢ = oo as solutions corresponding to P and () on U,,. Every other ¢

satisfies
Vil = _5—va-1), (2.4)
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Table 2.1. Hermitian varieties in PG(n, ¢) forn < 5

PG(0,q) Uy = V(XoXo) is empty
PG(1,q) U = V(XoXo + X1X1) is \/q + 1 points forming a subline PG(1, \/q)
Tolo = V(X0Xo) is the single point Uy

PG(2,q) Us = V(Xo)_(o + X1 X1+ Xz)_(z) is a Hermitian arc (unital) comprising
q+/q + 1 points; through each point of ¢/> there is a unique line
meeting U» in a I1olo, whereas all other lines meet U/> in a U,
oy = V(XoXo + X1X1) comprises \/q + 1 lines concurrent at U
II,:Uy = V(X0Xo) is the single line ug

PG(3,q) Us = V(XoXo+ X1X1 + X2X> + X3X3) comprises (¢ + 1)(g/q + 1)
points on (,/q + 1)(g./q + 1) lines; there are as many plane sections
IToU; as points and the remaining plane sections are of type Us
IIols = V(Xo)_(o + X1 X1+ Xz)_(z) is a cone comprising the join of the
vertex Us to a Hermitian curve
Mith = V(XoXo + X1X1) is /g + 1 collinear planes
Maoldy = V(X0Xo) is the plane ug

PG(4,q) Us= V(X ,X:X;) comprises (¢ + 1)(¢*\/q + 1) points on

(gv/a + 1)(¢? Va+ 1) lines with g,/q + 1 lines through each point

Molds = V(327_, XiX;) is a cone with vertex Uy and base a Hermitian
surface U3; its generators are planes

iUy = V(XoXo + X1 X1 + X2X>5) is a cone with vertex the line Uz Uy
and base a Hermitian curve; its generators are planes

ath = V(XoXo + X1X1) comprises /g + 1 solids through the plane
U,U3U,4

IIsUp = V(X()Xo) is the solid ug

PG(5,q) Us = V(X7 , XiX;) comprises (¢° + g + 1)(¢*\/q + 1) points on

(va+ D(ay/a +1)(¢°\/q + 1) planes

Tlols = V(Zfzo X;X;) is a cone with vertex Us and base Uy; its generators
are planes

ILiUs = V(37_, XiX;) is a cone with vertex the line U4 Us and base the
surface Us ; its generators are solids

aolls = V(X0 X0 + X1 X1 + X2X5) comprises q+/q + 1 solids through the
plane U3 U4Us

Hsth = V(XoXo + X1X1) is /g + 1 hyperplanes through the solid ug N uy

yldy = V(X0Xo) is the hyperplane ug

which has ,/q — 1 solutions by PGOFF2, Section 1.5(v). Thus |[PQ NU,,| = \/q + 1.
If b = 0, a # 0, then the substitution ¢ ~ ¢! gives an equation of the form
(2.3) with b # 0.
Finally, if b # 0, the substitution ¢ +— ¢ — 5 /b transforms (2.3) to
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tt + (ab — §06)/b* = 0. (2.5)

If ab— 65 = 0, then |PQNU,| = 1;if ab— 56 # 0, then, again by PGOFF2, Section
1.5(v), (2.5) has ,/q + 1 solutions, which means that |PQNU,| = Va+ 1.
(iii) This follows immediately from (i) and (ii) with F'(4) = 0. a0

When G(A, B) = 0, the points P = P(A) and Q = P(B) are conjugate. With
X = (Xo,X4,...,X,), the hyperplane V(G (X, A)) is the polar hyperplane of P
and is denoted P4, the image of P under the Hermitian polarity 4 with matrix H. If
II, = PyP; - - - P,, then the polar space 11,,_,_; = 11,4l of 1L, is

PN Pstn.--NPAL
This is independent of the choice of Py, P, ..., P, in IL, in the sense that, if
Hr :POP1"'P7" :QOQl"'QTa

then PpttN PN --- NP = Qo NQ1UN---N QL Two spaces are conjugate
if they are contained in polar spaces.

When P € U, the polar hyperplane of P is also the tangent hyperplane at P
and written Tp or Tp(U, ). Similarly, if I, = PyP; --- P. C U, then the tangent
space at 11, is Ty, =1 =), Th,.

For U,, in canonical form, that is, U,, = V(XoXo + X1 X1 + - + X, X,,),

G(X,A) =) a;X. (2.6)
i=0
Lemma 2.4. If 11, C U,,, then the tangent space at 11, is a 11,,_,_1 which contains
11, and any 115 on U,, through 11,.
Proof. This follows from Lemma 2.3 and the definition of tangent space. a

It should be observed that the polarity of U, lies behind its reduction to the

canonical form (2.1). For, let ¢/ be any non-singular Hermitian variety with polar-
ity & in II,, = PG(n, q). Choose P, in IL,\U and let 7y = Pyl. Now, choose P;

in mo\U and let 7, = P;4l. Continue this process and choose Py, Py, ..., P, so that
Py, Py, ..., P, span an i-space and so that P; lies in (mg N7y N -+ Nw;—1)\U. Take
U, =P, ©=0,1,...,n, as the vertices of the simplex of reference. Hence

U= V(CoXoXo + CleXl + -+ CanXn)

Now, a suitable choice of the unit point or, equivalently, the projective transformation
xf =d;x;, 1=0,1,...,n, with d;d; = ¢;, gives the required form

U= V(X()X() + X1X1 + -+ Xan),

where the dashes have been omitted.
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When considering spaces lying on ¢/, another canonical form is useful. Since U,
is projectively unique, it can also be written as V(G,, ), where

Gn(Xo,..., Xn)

_ X()XQ + (X1)§2 + XQXI) + ... —|: (anl)ign + Xanfl), n eVCIl,(2 7)
(XOX1 —|—X1X0) ++(Xn—1Xn +Xan_1), n odd. ’
Lemma 2.5. The tangent hyperplane at a point P of U,, is a cone 11Uy, —o.

Proof. Let P = Uy and choose U; € U,,, but not in the tangent prime 7p. Choose
Usy,...,U, in Tp N Ty,. Then, by a suitable choice of unit point, U,, = V(F),
where

F = X()Xl + XlXo + F/(Xg, ceey Xn)

Then F' can be reduced to canonical form so that

F=XX1+X1Xo+XoXo+ -+ X, X,
So
Uy NTp =V (X1, X2 X0+ -+ + Xp X)
={P(\,0,29,...,2y) | T2T2 + -+ + 2Ty, = 0}
=UoUp—2. 0O
Notation 2.6. Let 1, = [U,].
Corollary 2.7. The tangent hyperplane at P meets Uy, in qpi,—o + 1 points.
Theorem 2.8. The number of points on U,, is
pn = {(VO" + D" H(V)" = (1"} (- 1) 2.8)
=0(n—1)+{¢" - (=vVo)"}/ (Vg +1). 2.9

Proof. Any line through a point P of U,, not in T’» meets U, in \/q other points.
Hence

tn = /q{0(n —1) = 0(n —2)} + qup—2 + 1
=q"" g+ 1+ qun—o.
Put a,, = i /(/q)". Then
an = (V)" + (1/y/a)" + cno.
Separate calculations for n even and odd give the desired result. a
Now let ug) = |t Uyp—¢—1]; thus p, = ugfl).
Corollary 2.9. u!) = 60(n — 1)+ {¢" — (—/o)" "'}/ (Va +1). (2.10)
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Proof. Any two points of the base U,,_;_1 are joined to the vertex II; by two IT;4;
having precisely the vertex in common. Therefore

) = 00t) + {0t +1) = 0(t) s 1
and the result follows. O
Let NV'(U,,) be the set of non-singular Hermitian varieties in PG(n, q).

Lemma 2.10. The number of Hermitian varieties U,, containing a given IloU,,_5 as
tangent cone is

(¢—1)q" 'Va.
Proof. Letlly =U,_; andU,,—2 = V(X,,, X;,—1, F),_2), where
Frooo=XoXo+ 4+ Xp_2Xy 2.

The hyperplane containing Iy U, 2 is u,. Any Hermitian variety containing U,,_1
and U,, - has the form

V(Xn.f"' an + Xn—lg + Xn—lg + Fn—Q)a

where f is linear in Xg, ..., X, and g is linear in Xg, ..., X,,_o. Since the tangent
hyperplane at U,,_; is u,,, so the only term involving X,,_; is ¢X,, X,,_1 with ¢ # 0
and hence the only term involving X, is X1 Xn; s0 g=0.

The non-singularity of U,, is equivalent to ¢ # 0. Thus the number of choices for
the form f and thus for U, is (¢ — 1)q”*1\/q. This argument relies on the fact that,
ifU,, = V(F), then U,, defines F’ uniquely up to a scalar multiple. O

Lemma 2.11. The number of cones IlyU,,—2 in PG(n, q) is
0(n)0(n — 1) [N (Un-2)] -

Proof.  The number of cones
= number of II,,_; in PG(n, ¢) X number of I1j in IT,,_4
x number of U,, _» in a fixed II,,_5 of I,,_. 0O

Notation 2.12. Let

8] = {HS {(Va)' = (=17} forr <

1 forr > s.
Theorem 2.13. The total number of Hermitian varieties in PG(n, q) is

N Ul = ¢ D20 4 1] /12,0 4 1].
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Proof. Count {(Uy,,S) | U, aHermitian variety, S a tangent cone of I/, } in two
ways:

A @) = 0m)0(n = 1) W U —2) (0 = 12"V

e om)6(n ~ 1)(q ~ "~
n)0(n —1)(¢ —1)q" " \/q
N ()| = p N (Un—2)] .
Repetition of this recurrence relation gives the result, after a separate calculation for
n even and odd; it is only required that [NV (Up)| = 1 and [N (U)| = /(¢ + 1),
from PGOFF2, Section 6.2. O

The group G = G(U,, ), the unitary group, is the group of projectivities fixing
Up,.

Corollary 2.14.
|G| = |GUy)| = [PGU(n + 1,9)| = "D/ 2,n +1].

Proof. All U,, are projectively equivalent; in other words, A (U,,) is a single orbit
under PGL(n + 1, q). So

G| = [PGL(n + 1, q)|/|N (Un)] .
As |PGL(n + 1,q)| = ¢"™TY/2[2,n 4 1]_, the result follows. O

Lemma 2.15. [f I1,,, N U,, = IL,Us, then the polar space 11, | of 1L, satisfies
the following:

() II),_,,_1 NU,y, also has singular space 11,,;

(i) I, N 1L, _,,,_, =1L,.
Proof. The point P is in 11, if and only if every line [ through P in II,, is either a
tangent or lies in U,,. This is precisely the condition for P to be conjugate to every
point of IT,,,; hence I, C II), ;. Since a point P in I, is conjugate to every point
of I, _,._1, so II, belongs to the singular space I/, of II/,_, _, NU,. Similarly,
IT), C II, and consequently IT/, = II,,.

Since every point P of IL,,,NII/,_, . _; is conjugate to all points of IL,,,UII _, . _;,
it belongs to the singular space I, both of II,,, N U, and of II/, .| NU,. Hence
I, =1L, NI, _ .. O

Corollary 2.16. If I1,, NU,, = LU, then 1I,,_ | NU,, = IL,Up_1, where 11,
and 1), . are polar spaces,and T =n — 2m + s.
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2.3 Generators and sub-generators

The following definitions are similar to those for quadrics.

Definition 2.17. (1) A generator of U,, is a subspace of maximum dimension lying
onl,.

(2) A sub-generator of U,, is any subspace lying on U,,.

(3) The dimension of a generator is the projective index of U,,; as for quadrics, it is
denoted by g = g(U,,).

Lemma 2.18. The projective index g(Uy,) = [ 5(n —1)].
Proof. If 11, is a generator, then by Lemma 2.4 it lies in its own tangent space
I, _,1.Sog <n—g—1andhence g < y(n—1).

When n is even, V(Xg, X1, X5,..., X,,_1) is a space of dimension }

on— 1 on
V(XoXo+ (X1 Xo + XoX1) + -+ (X1 Xy + X0 X0 1));

3(n—1)on

when n is odd, V(Xy, X2, X4, ..., X,,_1) is a space of dimension
V((X()Xl + XlX()) + -+ (anan + Xanfl)).
So the upper bound is achieved. a

Now the number of sub-generators of a given dimension is calculated.
Theorem 2.19. The number of 11, on U,, is
Vpn = N(IL.,Up) = [n—2r,n+ 1] /[1, 7+ 1] . (2.11)
Proof. The following set is counted in two ways:
{1, I,—q) | II, C Uy, 1T,y C II, .
Hence
Up o 0(r) = Vp_1.n M, (2.12)

where M is the number of II,. on U, through a given II,._;.

To calculate M, consider the polar II/, . of II,_;. It contains II,_; and meets
U, inIl,_1U,,_o, with the same II,_; as vertex, by Lemma 2.15. So take a II,,_o,
inIT/,_ . skew to II,_;. It meets U, in a U,,_2, whose points joined to II,_; form
the IL,. of U,, containing I1,._;. Thus M = py,—o,.

Now, (2.12) becomes

Vrn Q(T) = Vr—1,n n—2r- (2.13)

Iteration gives that
_ Hn—2rfn—2(r—1)" " Hn

T g)e(r — 1) -+ 6(0)
Since 0(i) = (¢"** — 1)/(q — 1) and p; is given by (2.8), the result follows. O
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2.4 Sections of U,

If I1,,, € PG(n, ¢), then from Theorem 2.1 there are m + 1 types of Hermitian var-
ieties in II,,,, namely II,,,_;_1U; for s = 0, ..., m. However, when the intersection
of I1,,, with U, is considered, it may also occur that II,,, lies entirely on i£,,. Suppose
therefore that

1L, nU, =11, Uy ; (2.14)

then
s+v=m—1. (2.15)
The section is non-singular when v = —1, and I1,, lies entirely on /,, when s = —1.

The parameters n, m, v, s satisfy the following:

—1<v<m, (2.16)
-1 <s<m, (2.17)
0<m<n-—1. (2.18)

The question now is to determine for what values of v and s there is a section as
in (2.14).

Lemma 2.20. There is a section 11, " U,, = 11, U, if and only if
T >0, (2.19)

where
T=n—-2m+s. (2.20)

Proof. When m < L%(n — 1)/, the condition T' > 0 means that m > s > —1, so
that (2.19) is equivalent to (2.17); then it must be shown that 1L, exists for each s
in I = {-1,0,1,...,m} or, equivalently, for each v in I. When m > [ }(n — 1)],
condition (2.19) means that m > s > 2m —n or, equivalently, —1 <v <n—m—1.
Thus, if the result is established for m < | 1 (n — 1)], the polarity gives the result for
m > [5(n—1)].

Now letII,, = UyU; ---U,, = V(Xyq1,...,X,) withm < L%(n —1)]. For
—1 < s < m, write

K, = ZXz‘Xi + Z (X Xomt1—j + Xom1—;X;) + Z X X;.
i=0 j=st1 i=mt1

Then V(K) is non-singular and

V(K,) NI, =V ( XX, Xongt, - - .,Xn>
=0
1L, U,
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Corollary 2.21. For fixed m and n, the number of projectively inequivalent sections
1L, N U, of Uy, is
m+2 whenm < |3 (n—1)],

n—m+1whenm> [}(n—1)].

The next result looks at the orbits of subspaces II,,, under the action of the unitary
group G(U,) = PGU(n + 1, q).

Theorem 2.22. (i) Two subspaces are in the same orbit of G(U,,) if and only if they
have the same parameters m and s, where m is their dimension and Uy is the
type of base of their intersection with U,,.

(ii) If there is a projectivity X : 11,,, — 11, such that (1L, "U,, )T = 11, NU,,, then
it can be extended to an element of G(U,,).

Proof. The variety U,, and the space II,, are reduced simultaneously to canonical
form. Consider the section 11,0/, where U; C 1lg; thus II, and Il are skew. The
polar of IT,,, is IT} with t = n — m — 1.
By Lemma 2.15, II; contains IL,. Choose in I} a space Il skew to II, with
I/, 11, = II}; so
w=t—v—1l=n—-m-—v—2.

Since w > —1,(2.19) is satisfied. By construction, I/, is conjugate to IT,,. The polar
I1,; of I, has dimension

d=n—-w—-1=m+uv+1.

Also I1, contains II,,,. Choose in II4 a space II/ skew to II,, with I/ 1I,, = Il in a
way that is specified below.

The set of points P of II,,, such that P is conjugate to every point of 11, is 1L,
and I, is the same set with respect to II;. Hence, when w # —1, the space IT meets
U,, in a non-singular Hermitian variety. So 11/, and its polar space II, are skew, as
any intersection would be singular for such a Hermitian variety, Lemma 2.15. Thus
I/, Iy = PG(n, ¢) and II; N U, is non-singular.

Take in II; the polar space 1,1 of I with respect to 115 N U,,. In 115, take
IT/, skew to IT,, with II, N4, non-singular. Then, with S,,, = II, II,, the set S,,, N1,
is empty and S, N U,, is non-singular. Also, in S,,, the polar of II; with respect
to Sy, N U, is the v-space II, which is skew to both II,, and II,. Thus IT/ N4, is
non-singular and the polarity { of {4, induces a reciprocity, as in PGOFF2, Section
2.1, between II/, and I1,,.

Thus there are four mutually skew spaces

I, II,, I, 1L, .

!

By construction, the spaces II, II; ,

is a space II, with

I, are skew and mutually conjugate. Their join

e=st+w+v+2=m+w+1,
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and I, N, is non-singular. For, if P is singular on II. N4, then P is conjugate to
all points of IT/, and to all points of S,,; so P € I, N S,,, a contradiction.

As in the derivation of the canonical form following Lemma 2.4, in the three
spaces II,, I/ , TI/ it is possible to choose s + 1,w + 1,v + 1 points so that they
form e 4 1 independent points in 1I. with any two of these points conjugate.

The reciprocity induced between II/ and II, by 4 transforms the v + 1 points of
IT/,, which may be considered as vertices of a simplex, to v + 1 faces of a simplex in
II,; hence the vertices of this simplex in II,, form v 4 1 independent points. These
v + 1 and the above e + 1 give n 4+ 1 independent points. Thus, in a suitable or-
der, these points are the vertices of the simplex of reference of a coordinate system.
Correspondingly,

I, =10, = V(Xpt1, Xnt2, -, Xn) -

Table 2.2. Equation for U,

IT, 1T, 1T, IT,,

I, Hy 0 0 0
IT, 0 0 0 Hy
I, 0 0 H» 0
I, 0 Hy 0 H;

Thenf,, = V(X HX*) with H* = H, where H is the matrix of Table 2.2; here,
Hi, Hs, Hs, Hy are square diagonal submatrices, the three matrices H;, Ho, H3
have all their elements in F /,, and the elements of Hy, are the conjugates of the
elements of H,. The zero submatrices indicate the conjugacy of the spaces border-
ing the matrix H. A suitable choice of the unit point allows H; to be reduced to the
identity matrix of the appropriate order. Thus the simultaneous reduction of ¢/,, and
11,,, N U, to canonical form has been achieved.

The first part of the theorem now follows since the canonical forms are deter-
mined by the integers n, m, v.

To prove the second part, note that, in the reduction to canonical form, the m + 1
reference points chosen in II,,, consist of v 4+ 1 in II,, and s + 1 in I, every two of
which are conjugate. Now, it is shown that, for any choice of v+ 1 independent points
Py, ..., P, inIl,, there exists IT/, in IT, 1 and independent points P, ..., P, inII,
such that P/ & U,,, 11, NI}, = 0, 1I) NU,, is non-singular, P}, ..., P, are mutually
conjugate, and P; is conjugate to PJ{ for i # j. Therefore it is sufficient to show that,
for any v + 1 independent points Qo, . . ., @, in IL,, there is a projectivity & fixing
Moy 1 N Uy, and T1,, and with P,G = Q;, i = 0,1,...,v. Choose a space II)/ on
Moy +1 NU,, skew to TI, and choose independent points Py, ..., P/ in II] with P,
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conjugate to P/, i # j. With respect to the reference points Py, ..., Py, I/, ..., P/
and a suitable unit point, 1o, 11 N, is represented by the canonical form Gg,11 as
in (2.7). This proves the existence of the projectivity &.

Since the projectivity ¥ from IL,, to I/, transforms the chosen (m + 1)-tuple in
I1,,, to such an (m+ 1)-tuple in I/, by the preceding paragraph the reference points
and the unit point may be chosen in a new system of coordinates (z{, z, ..., z},) so
that

I, = V(Xpp15- 5 X5)

n

and so that T has equations

’ ’ ’
Ty &Ly P Xy, =Coxp - C1T1 -+ L CmTm

here, U,, preserves its equation in these coordinates apart from changing X; to X/.
Since II,,, N U, and 1I,, N U,, have the same equations, apart from changing X; to
X/, so

CoCo = C1C1 = *++ = CmCpy -

The projectivity T has an extension to PG(n, ¢) with equations

Ciy, i=0,...,m;
x, =< comy, i=m+1,...,m+w+1;
Citm—-nTi, L =m+w+2,...,n;
this is an element of G({4,,). Thus the theorem is established. O

Now, the size of the orbits in the previous theorem must be determined. Let
N(IL,Up,—y—1,Uy,) be the number of m-spaces I1,,, meeting U,, in a section of type
1I,U,,——1. This number was determined in Theorem 2.19 in the case that v = m,
that is when 11,,, lies on 4,,.

Theorem 2.23. The number of sections 1L,U,,—,—1 of Uy, is
N (U —o—1,Upn) = qTED 2[5 42, n + 1]/{[1,T)[1,v + 1]},
where

s+v=m—1, (2.15)
T=n-2m+s. (2.20)

Proof. The required number N (IL,Us, U,,) is equal to the product of N (IL,,U,,) and
the number of sections II,U/s with a given II,,.

So, let IT,, be given and let II,,_,_; be skew to II, with II,,_,_; N U, non-
singular; put IT,,_,—1 N U, = Up—p—1. If I, _, _, is the tangent space of U,, at II,,,
then 11/, NUp_,—1 is a non-singular U, 2, 2. Each section I1,U; is contained
inII),_,_,, by Lemma 2.4, and IT1,Us N U,,_2,—2 is a non-singular I/.. Conversely,
each non-singular U/, on U,,_2,_o defines a section II, U’ of the prescribed type.
Hence the number of sections I, U, with given IT,, is N (II_1Us, Uy, —2,—2).
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Now, N(II_1Us,U,) = ps,r is calculated by counting the following set in two
ways:

{(Ils, Mgyq) | IIy C 441, Iy NU, non-singular, 11,1 N, non-singular}.

For a given II,, the number of such pairs (Il II;41) is the number of points of
Il _._;notonIll__. ; NU,, with II/ ___, the polar space of II,.. Hence
Psr{O(r —s—1) = pir—s-1} = pst1,,{0(s + 1) — pss1}-

Since pr_1 , is the number of non-tangent hyperplanes to U, in PG(r, g), so

pr—1,r = 0(r) — fir.
Hence
Do = {0(s +1) = ps1}{0(s +2) — pisya} - {0(r) — s}
T O) — j HO2) — o} {0 — 5 — 1) — prmur)
By (2.9),

_ v+ (=va) ™'} Adva+ (v}
Va+1Heva+ (=)} A" a+ (=ya) '}
_ D=9/ {(VoOrt? = (=12 (V) = (=)}
{va+1H{(va)? -1} {(ya) = - (=1)*}
= qEtDO=2[5 4 2 r 4 1]/[1,r — 5].

Ps,r

Hence, forr =n — 2v — 2,
Pam—zo—2 = ¢TI/ 2[s 42 n — 20 — 1]/[1,T).

Since N(IL,,U,,) = [n — 2v,n + 1]/[1, v+ 1] by (2.11), the final result follows. O

2.5 The characterisation of Hermitian varieties

This is a continuation of the treatment in FPSOTD, Section 19.4, where Hermitian
surfaces were characterised as subsets of PG(3, ¢) meeting every linein 1,7 or ¢ +1
points with some further restrictions. Some definitions and results are recalled. A
subset IC of PG(n, ¢) is a k., 4 if 7 is a fixed integer with 1 < r < ¢ such that

(D) K] = k;
(2) INK|=1,rorq+ 1 foreach line /;
(3) [IN K| = r for some line .

A k1,n,q 1s a hyperplane. A ks ,, 2 is the complement of a cap with at least one unise-
cant; the only cap of PG(n, 2) with no unisecant is the complement of a hyperplane.

From now on, assume that ¢ > 2. From FPSOTD, Theorem 19.4.4, there are
seven types of plane section K’, with |K'| = k/, of such a K:
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I. a Hermitian arc (unital), that is, a set of type (1, /g + 1) with r = /g + 1 and
k'=qyq+ 1L
II. a subplane PG(2, /q), that is, a set of type (1, /¢ + 1) with r = /¢ + 1 and
E=q+a+1;
III. a set of type (0, — 1) plus an external line, whence ¥’ = (r — 1)q + r and
r=1q
IV. the complement of a set of type (0,¢q + 1 — ), whence ¥’ = r(q + 1) and
(g+1-7)la
V. the union of r concurrent lines, whence k' = rq + 1;
VI. asingle line, ¥ = q + 1;
VIL aplane, k' = ¢*> + ¢ + 1.

Definition 2.24. (1) A point P of K is singular if every line through P is either a
unisecant or a line of K.
(2) The set KC is singular or non-singular according as it has singular points or not.

In PG(3, q), the fundamental result is contained in FPSOTD, Theorem 19.5.13
and Section 19.6.

Theorem 2.25. Let KC be a k, 3 4 in 113 = PG(3, q).

(1) Whenr = 1, then K is a plane.
(i) When r = 2, then IC is one of the following:
(a) 1Ty U o,
(b) Ix UILy,
(c) Ty UTLS.
(iii) When r = q, then IC is one of the following:
(a) (Hg\Hg) U Il with 11, C HQ,
(b) (Hg\Hl) U Il with Iy C 114,
(C) Hg\HO
(iv) When 3 < r < q — 1, then one of the following occurs.
(a) If K is singular, then K is v planes through a line or a cone I1oK' with base
K’ a set of type 1, 11111 or IV as above.
(b) If K is non-singular, then
(1) forqodd, v = \/q+ 1and K = Us 4;
(2) for g even and q > 4, either v = \/q + 1 and K = Uz 4 or r = %q +1
and K = Rs, the projection of a quadric Py;
(3) forq =4, K =Us.4 or K = R3 or K contains sections of type 1L

A similar result is true in PG(n, ¢). First, singular sets are considered. As for
n = 3, the study of singular sets ,.,, , reduces to that of non-singular ones.

Lemma 2.26. The singular points of a k., q form a subspace.

The subspace of singular points of K is the singular space of K.
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Theorem 2.27. If K is a singular k, , 4 with singular space 11, then one of the
following holds:

(@) d =n — 1 and K is a hyperplane;
(b) d =n — 2 and K is v hyperplanes through 114, with r > 1;
(¢)d<n—3and K =14K', where K is a non-singular ky ,,—q—1,q.

Now the cases r = 2 and r = ¢ are considered.

Theorem 2.28. If K is a ka 4, then K = II,,_1 UII} for some I, not contained in
I, 1.

Proof. (a) n = 2. Suppose K contains no line. Then /C is a k-arc meeting every line
of the plane, a contradiction. So K contains a line IT;. If X\II; contains a 3-arc then
K is the whole plane. Hence it follows that C = IT; U IT} or IT; U II,.

(b)yn > 2.

(i) K is non-singular

The proof proceeds by induction on n. Since not every plane is contained in /C,
some plane meets K in a line or a k5 , ,. Hence K has a unisecant [ with point of
contact ().

Let IT,,_; be a hyperplane of PG(n, ¢) not containing @ and let K’ be the pro-
jection of K\{Q} from Q onto IT,,_1. If I’ is any line of II,,_; then, by (a),

QUNK =11, I1; U Hll, I1; U Ily, or I1;.

Hence |I' N K'| = 1,2, or ¢ + 1. Let I N II,,_y = {R}; then at least one line m
through R in II,,_; meets K’ in two points. For, otherwise, every plane through [
meets K in a line and so @ is singular, a contradiction. So K’ is a kl?m—L 0 Hence,
by the induction hypothesis, K’ = II,,_o U II/;, for 0 < d < n — 2. Consequently,
KcQIl, U QH&

(Hhd<n—-21S € QII,,_3\K, then there is a line through S with no point
in K, a contradiction; so QII,,_o C K. If P; and P, are points of I\QIL,_o, the
line P, P> meets QII,,_o and so contains a third point of /C; therefore P, P, C K.
Hence, if |[KC\QII,,_2| > 2, then K\ QII,,_2 is an affine subspace of the affine space
PG(n, q)\QII,,_ since ¢ > 2. In this case, K = QII,,_o UTII} with ¢t > 1; since K
is non-singular, QII,,_> NI} = (), a contradiction. Therefore K = II,,_; U IIy with
IIg notin II,,_1.

2)d=n—-2.TfQI,_2 ¢ K and QII/,_, ¢ K, then there is a line with no
point in /C, a contradiction. So, let QII,,_o C K. Now, proceed exactly as in (1).

(ii) KC is singular

The result follows from Theorem 2.27. a

Now the case r = ¢ is considered.

Theorem 2.29. If Cisa kg 4 in1l, = PG(n,q), ¢ > 3, then K = (I1,\I1;)UIL;_4
with1l;_1 CII; for0 <i¢ <n— 1.
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Proof. Let @ be a point of II,,\K. If [; and l» are two unisecants through @) with
points of contact P; and P, the line P; P; either belongs to /C or is a g-secant. Since
q > 3, there is another point P53 of IC on P; P». Each line [ of the plane 7 = [yl
through P5 other than P; P, and Q) P; is a unisecant of /C since [ Nl and [ N I
are not in /C. It follows that every line of 7 through P, other than P, P is also a
unisecant and that all points of C in 7 lie on P; P» . As K has no external lines, so
K N7 = Py P,. Thus it has been shown that, for any two unisecants through (), all
the lines of the pencil determined by these two are unisecants and that the plane of
the pencil meets K in a line. Hence the unisecants through Q) generate a II; meeting
K in a IT;_;. Since every line through @ not in this II; is a g-secant, it follows that
K consists of the points of IT;_; plus the points not in II;. a

The previous two theorems mean that the rest of the characterisation can be re-
stricted to
3<r<qg-1 (2.21)

Lemma 2.30. If K is a ky , g with 3 < 1 < q — 1 such that K has a section K by
a plane  containing a triangle of lines of IC with m ¢ IC, then one of the following
occurs:

(a) K =11,,_3K', where K' is a section of type IV;
(b)g=2" r= éq + 1, and the singular space of IKC has dimension at most n — 4.

Proof. Since 7 is not contained in /C, the section X' must be of type IV; that is, K’ is
the complement in 7 of a maximal arc of type (0,¢q + 1 — r). So, by Theorem 12.7
of PGOFF2, ¢ = 0 (mod ¢ — r + 1); hence, with ¢ = p",

pt—r+1=p" (2.22)
for some m with 0 < m < h. Thus
r—1=pm@p"m-1). (2.23)

This gives two possibilities:

(1) » — 1 # p™, in which case every plane section of /C is of type IV, V, VI or VII;
2 r—1=pmandp" ™ —1=1,whencep=2,m=nh—1,andr = %q—ﬁ—l.

In case (1), let II3 be a solid through 7. By the Corollary to Lemma 19.4.7 of
FPSOTD, there is a unisecant /; of II3 N /C and so of /C with point of contact P. Let [
be any line through P other than /; and let 71 = [l;. The section 71 N XC cannot be of
type IV or VII since they do not have unisecants. So ;3 N KC is of type V or VI, that
is, r lines of a pencil or a single line; in both these cases, P is singular. So every solid
through 7 meets the singular space .S of I, while S does not meet 7 since = N I is
non-singular. Hence S = I1,,_3 and K = II,,_3K’.

In case (2), it may happen that (a) occurs. If it does not, then the dimension of S
is at most n — 4. O
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This section continues the investigation under the hypothesis that a k,.,, , has no
section of type IV. The case when such a section occurs is investigated in Section
2.6.

Lemma 2.31. Let K be a k; g with 3 < v < q — 1 such that (a) K contains a
hyperplane 11,,_1 with IC # I1,,_1, (b) IC has no plane section of type IV. Then K is
the union of v hyperplanes of a pencil or K = 11,,_3K' with K' a plane section of
type 111

Proof. Let 7 be a plane in II,,_; and let P be a point of K\IL,,_;. First it is shown
that the solid P contains a line / of K not in 7. Suppose otherwise and consider the
set K' = (KN Pr)\m. Itis a k'-set of type (0,7 — 1) in Prwith2 <r—1<g¢g—1.
By Lemma 19.4.7 of FPSOTD, such a set K’ does not exist.

Let P’ = [ N, let I’ be any line through P’ other than [ and let 7’ = [I’. The
plane 7' meets II,,_; in a line m # [. So 7’ has the two lines [ and m in K in a
section of type V or VII; in the former case, the r lines contain P’. Hence I’ is either
a unisecant or a line of K; so P’ is singular. Thus K is singular and its singular space
S is necessarily in II,,_;. Also every plane in II,,_; meets S. Thus the dimension of
S is at least n — 3. Now Theorem 2.27 gives the result. a

For n = 3, the characterisation of Hermitian surfaces was completed in Section
19.5 of FPSOTD.

Definition 2.32. A subset K of PG(n, q) is regular if

(D) Kisakyngq;
@)3<r<qg-—1
(3) K has no plane section of type I'V.

Lemma 2.33. If K is a regular k, ,, ¢ withn > 4, then IKC cannot have plane sections
both of type 1 and of type 11.

Proof. Let m be a plane meeting K in a section K of type 1. Then, from Theorem
2.25, a solid through 7 meets K either in a cone PKX’ or in a Hermitian surface Us 4.
If there are M solids of the latter type, then there are (n — 3) — M of the former.
Hence

k=qyqg+1+Mq(gy/q+1)+{0(n—3)—MH(qg—1)(gy/q+1)+1}
= q\/q(q”72 + M)+ 0(n—2). (2.24)

If 7 is a plane meeting K in a plane section Ky if type II, then every solid through
o meets K in a cone P/Cy, by Theorem 2.25. Hence

k=q+qg+1+60(n—-3{(¢—1)(¢++q+1)+1}
=0(n—1)+q¢""2/q. (2.25)

Equating (2.24) and (2.25) gives that
M =q"?(14/q—q) <0,

a contradiction. O
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Lemma 2.34. If K is a regular k,.,, 4 withn > 4, then IC cannot have plane sections
both of type 11 and of type 111

Proof. If m is a plane meeting K in a section K’ of type III, then again by Theorem
2.25 any solid through 7 meets K in a cone PX’. Hence

k=@r—-1g+r+0n-3){q—1)[r—-1qg+r]+1}
=(r—=1q¢" "+ r¢" % +0(n—-3). (2.26)

If there is a section of type III and of type II, then r = /g + 1. So substituting this
in (2.26) and equating it to (2.25) gives ¢ = 1, a contradiction. a

Lemma 2.35. If K is a regular k., o with n. > 4, and K has plane sections of type
I and type 111, then q"~2 solids through a plane of type 1 meet K in a Hermitian
surface.

Proof. Equating (2.24) and (2.26) with r = /g + 1 implies that M = qn 3. a

Theorem 2.36. If KC is a regular k, ,, ¢ with n > 3 and if there is a plane ™ meeting
K in a section K' of type I, then K = 11,,_3K'.

Proof. The result is true for n = 3 by Theorem 2.25. So let n > 4 and proceed by
induction. Thus every hyperplane through 7 meets K in a k/r,n—l, 4 Which is a cone
IT,,_4K’. The theorem will follow if it is shown that the points of any such II,_4
are singular for /. For, considering a second hyperplane through m, it then follows
that K has at least a II,,_3 of singular points, and hence exactly a II,,_3 of singular
points.

Let II,,_; be one such hyperplane and let P be a point of the vertex II,,_,4, that
is, the singular space of II,,_; N XC. Suppose that P is non-singular for C, and let
be an r-secant of C through P; necessarily, 7 = ,/q + 1. The line [ cannot belong to
IT,,_1 and so a plane through [ meets IT,,_; in a line I’ other than [, where I’ is a line
or a unisecant of I,,_; N /C. The number of lines through P in II,,_; N K is

{6(n—4) —0(n—5) g+ g+ 1)+0(n—5)=q¢""*/g+0(n-3); (2.27)

this is calculated by looking at the number of lines through P in each (n — 3)-space
IT,,_4Q, where Q varies in K'. Thus the number of lines through P in IT,,_; but not
in IC is

"N~ Va)- (2.28)
Therefore the number of planes through [ meeting II,,_; in a line of C is given by
(2.27) and the number meeting I1,,_1 in a unisecant of /C by (2.28).

By Lemmas 2.33 and 2.34, each of these planes meeting 11,,_; in a line of IC must
be a section of type V with r = /g + 1andsohas (¢ — 1) + 1 = ¢\ /g + q — \/q
points in common with K\/. Similarly, the other planes meet K in a section of type
IT and so meet XC\[ in ¢ points. Using these numbers to find the size of K\[ gives

k= (Va+1) =(""*Va+0(n—=3)agva+a—va)+ 7" (¢ — Vg,
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whence

k=0n—1)+q¢"%/qg+q¢">(q—1). (2.29)
Comparing this with (2.25) gives ¢"~3(q — 1) = 0. This contradiction proves the
result. o

Lemma 2.37. Let K be a regular k, ,, ¢ withn > 3 that contains a hyperplane 11,,_,.
Then K is one of the following:

(a) r hyperplanes of a pencil,
(b) IL,,_3/KC111, where K11 is a plane section of type 111

Proof. Let m be any plane in IT,,_1, and let P be any point of JC\II,,_;. The solid Pw
contains a line [ of C not in 7 and therefore not in II,,_1; for, otherwise, the points
of £ N (Px\m) constitute a k'-set ' with

K =(r—2)(¢+q+1)+1

and of type (0,7 — 1) in Pr. Such sets do not exist by Lemma 19.4.7 of FPSOTD.
Let P’ = I[N and let I’ be any line through P’ other than [. The plane ' = I’
meets II,,_1 in a line m through P’. Thus 7’ contains the lines [ and m of K. Hence
7' meets K in 7 lines of a pencil with centre P’ or lies in K. So I’ is either a line of K
or a unisecant at P’. Thus P’ is singular. Therefore the singular space I of K lies
in IT,,_1, and every plane of I1,,_; meets II;. Hence d > n — 3 and the result follows
from Theorem 2.27. a

Theorem 2.38. If KC is a regular k. ,, o with n > 4 and if there is a plane T meeting
K in a section K' of type 111, then K = 11,,_3K’.

Proof. Let n = 4, and take two solids II5 and IT} through 7. From Theorem 2.25,
I[I3NK = PK"and IT5;NK = P’K’. The section K is an ((r—2)q+r—1;r—1)-arc
plus an external line [. The points P and P’ are distinct as are the planes o = P[ and
o' = P'l. The line PP’ is skew to 7, since otherwise it would belong to both I3 and
IT5, and hence to 7. The planes o and ¢ lie in /C. If it is shown that the solid ae/
lies in /C, then the result follows from Lemma 2.37.

So suppose that the solid aa’ is not contained in K. Since ac/ contains two
planes in K, it meets K in r planes through the line I, by Theorem 2.25; hence PP’
is an r-secant of /C.

Any plane 3 through PP’ does not lie in K and meets 7 in a point B. If B € K’,
the lines BP and BP’ lie in K and hence 8 N K is r lines of a pencil. If B ¢ K’,
the lines BP and BP’ are unisecants to K with contacts P and P’; then 8 N K can
contain no lines, as otherwise such a line would have to pass through P and P’. So,
in this case, 3 N K is of type I by Lemma 2.34 and r = /g + 1.

The planes 3 of the first type number (r—1)g+7 and each meets Cinr(¢—1)+1
points off the line PP’. There are §(2) — {(r — 1)g + r} planes § of the second type,
each of which contains ¢,/q + 1 — r points of IO\ PP’. Thus a count of the points of
K\ PP’ on the planes through PP’ gives
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k—r={0r-Dg+rH{rlg—-1)+1}+{@ +q+1—-(r—1)g—r}
x{g\/qg+1—r1};

hence, with r = Va+1,

k=qyq(@®+q+1)+q+1. (2.30)

However, with 7 = /¢ + 1 and n = 4, the number £ is given by (2.26); namely,

k=¢va+a(Va+1)+q+1

Thus q,/q = ¢?, a contradiction. This proves the result for n = 4.

Now let n > 5. Each solid y through 7 meets K in a cone QK. It suffices to
show that () is always singular. Let m be a line through Q. If it lies in the solid yx,
it cannot be an r-secant. Suppose therefore that m is not in y and so is skew to 7.
The 4-space mm meets K in a k;., , that is a cone II;K’, by the previous part of
the proof. Also x N II; = {Q}. Hence Q is singular for k. , ; so the line m is not
an r-secant of k;’r 14,4 and therefore not an 7-secant of K. Thus () is singular and the

result follows. a
The previous results allow a summary for sections of a non-singular regular set.

Theorem 2.39. Let IC be a regular, non-singular k. ,, 4 and let I3 and 113 be spaces
not contained in KC. Then

1) e N K is of type 1, V or VI,
(ii) I3 N K is a plane, r planes of a pencil, 11Ky, or Us, where Ky is a section of
type L.

Now the study of regular sets k., 4 is continued for n > 4 and ¢ > 4.

Lemma 2.40. Let K be a non-singular, regular k., o with n > 4 and q > 4. Then
through any point P of K there passes a section of type 1, whence q is a square and
r=,/q+1

Proof. Suppose there is no unisecant through P. Let [,. be an r-secant through P and
let ', " be distinct planes through I,.. By Theorem 2.39, 7’ N K is  lines through
P’ and 7" N K is r lines through P”; also 7’7" N K is r planes through P’ P”. Tt
follows that P’ is singular for C, which is a contradiction. If /1 is a unisecant through
P, then, by Theorem 2.39, the plane = = {1/, meets K in a section of type I. a

Definition 2.41. For any point P of a regular, non-singular set K, the tangent space
T'p is the union of the unisecants and lines of XC through P.

Lemma 2.42. The tangent space has the following properties:
(1) T'p is a hyperplane;

(ii) the singular space of Tp N K is { P};

(iii) if P # Q then Tp # T;
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/

(iv) a non-tangent hyperplane meets K in a non-singular k. ,,_; .

Proof. Let L be the set consisting of the unisecants and lines of /C through P. By the
previous lemma, there is a plane 7 through P meeting K in a Hermitian arc K'. Let
[ be the unisecant to K’ in 7 at P. Each of the 6(n — 3) solids II3 through 7 meets
either in a cone QK or Us. Let « be the tangent plane at P to II3 N K; here o must
contain /. The lines through P in « belong to £ and so are the only lines of £ in II3.
Also, any line of £\{} is joined to 7 by some II3 and lies in the tangent plane at P
to II3 N KC. Since distinct solids through 7 give distinct tangent planes, the number
of linesin Lis ¢f(n —3) + 1 =0(n — 2).

Now consider the pencil of lines containing two lines /; and l2 of £. The plane
l1l5 cannot meet K in a section of type I. Hence [1l5 is of type V, VI or VII, by
Theorem 2.39. In each case, all the lines of the pencil are in £. Since |£| = 6(n—2),
the lines of £ must be the set of lines through P in a hyperplane; that is, Tp is a
hyperplane.

Theset Tp NKisak}, 1, 0rak,, ;,for which P is singular. Suppose that
Tp N K has another singular point P’; then every point of PP’ is singular. So every
point Q) of PP’ has Tp as tangent hyperplane. Hence every line through Q not in Tp
is an r-secant.

Let « be a plane through PP’ but not contained in T'p. Either « belongs to K or
meets it in a line or in 7 lines of a pencil with centre Qq, a point of PP’. This means
that in « there is no r-secant through any point of PP’ in the first two cases and
through @ in the third case. This contradicts the result of the previous paragraph.
Hence P is the only singular point of Tp N K. This is (ii). Parts (iii) and (iv) now
follow. a

Corollary 2.43. For any point P in K, the meet Tp N K is a cone PK', where K' is

. /
a regular, non-singular k;. ,, 5 .

Proof. Let1l,,_o C Tp with P ¢ II,,_5. Then K’ = II,,_5 N K is non-singular and
meets every line of K through P. Conversely, since P is singular in 7p N /C, the join
QP is a line of K for every point @ of K'. Hence Tp N K = PK'. O

Theorem 2.44. Let IC be a non-singular, regular k. , o withn > 3 and g > 4. Then,
With i, = [Un,ql,

() k = pin; (2.31)
(ii) every section of type 1 is a Hermitian curve.

Proof. (i) For n = 3, the theorem is part of Theorem 2.25. For n > 4, let P be a
point of K and Tp the tangent hyperplane to K at P. Thus Tp N K = PK', where
K is a regular, non-singular k;.,, _, .. By the definition of Tp, each of the ¢! lines

through P notin T’p is an r-secant of K. Since r = /g + 1 by Lemma 2.40,

k=q""'g+1+qk'.
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This is the same recurrence relation as for y,, in Theorem 2.8. Since a Hermitian arc
has the same number of points as a Hermitian curve and the result is true for n = 3,
the result is true for all n.

(ii) For any section by a plane 7 of type I, by (2.24),

k=qy/aq(q" >+ M) +60(n—2),

where M is the number of solids through 7 meeting K in a U3 4. From (2.31) above,
k = up; that is, from (2.9),

k=q"*{q"? — (-1)"}/(Va+1) +6(n—1).

Hence
M ={q"""? = (=1)"¢"" 2} /(g + 1).

Since M > 1, the section 7 N K is a Hermitian curve. O

As in the previous results, let /C be regular and non-singular, with ¢ > 4. For
P € K, the meet Tp N K is the tangent cone at P. From Corollary 2.43, the tangent
cone is PK’ with K’ C II,,_. From Theorem 2.44 when n = 4 and Theorem 2.25
when n = 5, the tangent cone is a Hermitian variety.

Consider a Hermitian variety W in PG(n, ¢) with singular space I1y. If IIp = U,
and W is reduced to canonical form

W= V(X()Xo + Xle —+ -+ Xn—l)_(n—l)7
then associate to any point P = P(ag, a1, ..., a,) other than U,, the hyperplane
IIp = V(Xoao + X1a1 + - + Xp_1Gn—1).

As ITp does not depend on a,,, the hyperplane Il p is associated to every point other
than U, on the line PU,,. Hence the hyperplane IIp is associated to the line PU,,.
Conversely, associated to any hyperplane IT = V(bgXo + -+ + b,—1X,,—1) is the
line

Iln = {P(bo, bl, Ceey bn_l,t) | t e Fq ] {OO}} .
If I17 is associated to IT, with U,, in II, and if IT’ is any hyperplane not through U,
then IT N IT' is the polar hyperplane of Iy N I1' with respect to VW N 1T,

Theorem 2.45. Let KC be a non-singular, regular k. , 4 withn > 4 and g > 4. If
every tangent cone of K is a Hermitian variety, then K is a non-singular Hermitian
variety.

Proof. Let II be a non-tangent hyperplane, let P be a point of II N IC = Iy and let
I'=TpNK = PK'. The (n — 2)-space Bp = Tp NIl is tangent to Ky at P and so
Bp N Ky is a cone PK”, which is the same as I' N Sp. Hence I N 3p has only one
singular point, namely P.

In the hyperplane Tp let [ p be the line associated with p as described before the
theorem; it is a 1-secant to /C with point of contact P. To each P in Ky is associated
such a line [ p.
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To see this when n = 4, consider the case that
K=Uy=V(XoXo+ X1 X1 + X0 X3+ X3Xo + X4 Xy).
LetII = uy and P = Us. Then

Tp = uy,
Ki=Us = V(XoXo + X1X1 + Xo X5+ X3X0, Xy),
K'=Uy = V(XoXo + X1 X1 + X4 X4, Xo, X3),
Bp =uz Nuy,
K'=ut = V(XOXO + Xle,XQ,XS,X4),
I' = UsK',
BpNKy=BpNT =UsK" = V(X Xo + X1 X1, X2, Xy),
Ip = U3Uy = V(Xo, X1, Xa).

It is now shown that the lines [ p are concurrent at a point Fy. To do this it suffices
to show that any two lines [p intersect. So, let Py, P, be points of ICq; fori = 1,2,
let T; be the tangent hyperplane at P;, and let /; be the line associated to P;. To prove
that /; and /5 meet, two cases are distinguished: (a) P, P> ¢ K; (b) P1 P> C K.

(a) The (n — 2)-space T1 N Ty contains neither P; nor P and so Ty NTo N K
is a non-singular Hermitian variety. It follows that [, and [, are the lines joining P;
and P; to the pole Py of the (n — 3)-space 71 N 1o N1I = 31 N By with respect to
the Hermitian variety 77 N 7T N .

(b) Both 5, and (5 contain P; P5. Let a be a plane in II through P; P, but in
neither 31 nor [Bo; it does not lie in IC. If « N K = P P, then a would be in both
Ty and T, and so in 31 N Bo. Also, if a met K in r lines of a pencil with centre
P;, it would belong to g;. Thus o meets K in r lines of a pencil through a point P
of PP, with P # P;, P,. Let m; and mo be two of these lines other than P; Ps;
also let Q1 € mi\{P}, and let Q2 € mo\{P} with Q2 not on P;Q; or P,Q;.
Then the points Py, P>, @1, Q2 of K1 have no three collinear and none of the lines
PiQ1, P1Q2, P,Q1, P,Q2, Q1Q2 belong to K. Hence, from (a), the lines I} and [},
associated to Q1 and ()2 meet in a point Py; they also must meet /; and [5. Since
P;,Q1, Q2 are not collinear, so I;,17,1} are not coplanar, for ¢ = 1, 2. Therefore Iy
and [, also contain F,.

The point P, through which all the lines [ p pass as P varies in K; is called the
pole of 11; it is not in /C U IL.

From Theorem 2.44 (i), the number of lines [ p is

ki = fnet - (2.32)

On the other hand, let IV denote the number of unisecants of IC through Fy. Then
counting the points of C on the lines through P, gives

E=N+r{(n—1)— N},

where r = /q + 1. Hence
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N={(Ve+1)0(n—1)=k}/\/g= k1,

using (2.31) and (2.32). Thus every unisecant through F; is a line associated to a
point of ;. Hence K1 is the set of points of contact of the unisecants through P,
and these points generate 11, which can now be called the polar hyperplane of Py
with respect to K.

From above, the correspondence which associates to a non-tangent hyperplane
IT its pole Py is bijective. Let & be the bijection from the points to the hyperplanes
of PG(n, g) in which each point of K is mapped to its tangent hyperplane and each
point not on /X is mapped to its polar hyperplane.

It must be shown that & is involutory; that is, if II = P& and P’ € 11, then the
hyperplane II' = P’G contains P. Let P and P’ be off K, and let [ be an r-secant
of K through P’ in II. The r lines PQ for Q € [ N K are unisecants of K. So the
plane m = Pl meets K in a Hermitian curve Us by Theorems 2.39 and 2.44 (ii). Also,
[ is the polar of P with respect to U, and so the polar I’ of P’ with respect to Us
contains P. The line I’ contains the r points of contact of the tangents to Us through
P’. Hence the polar hyperplane I’ of P’ contains I’ and so P.

The other cases of P and P’ are simpler. Thus the mapping & is bijective and
involutory, and transforms the points of a hyperplane I into the hyperplanes through
the point P = IIG !, as well as vice versa. So & is a polarity for which K is the set
of self-polar points. Hence K = U,,. a

Theorem 2.46. If K is a non-singular, regular ki,  withn > 4 and q¢ > 4, then K
is a non-singular Hermitian variety.

Proof. From the previous result and Theorems 2.25 and 2.44 (ii), the result is true
forn =4andn = 5.

Let n > 6 and proceed by induction. The tangent cone I at a point P of /C has
base X', which is a regular, non-singular krn—2,4. Since n — 2 > 4, the set K is
a non-singular Hermitian variety by the induction hypothesis. So I" is a Hermitian
variety and then Theorem 2.45 gives the result. a

2.6 The characterisation of projections of quadrics

In Section 2.5, a description was given of sets K = k, , 4 with one of the following
properties:

(i) r=1,2o0rq;
(i) X is singular;
(iii) /C is non-singular with no plane section of type IV, 3 <r < ¢ —1,and g > 4.

This leaves the case that I is non-singular, 3 < r < ¢ — 1, and either g =4 or K
has a plane section of type IV.

When ¢ = 4, the topic is sets k3 ,, 4, that is, sets of type (1,3,5) in PG(n,4)
with at least one 3-secant. As explained in Section 19.6 of FPSOTD, these sets form
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a vector space over F of dimension } (n + 1)(n? + 2n + 3). In PG(3, 4) there are
seven distinct types of non-singular ks 3 4.

For the remainder of this section, although some notice is taken of the case ¢ = 4,
the main topic is the case that

(a) K is non-singular and has a plane section of type IV;
®g>4,n>3,3<r<qg—-1

It follows from Lemma 2.30 that ¢ = 2" with h > 2 and r = %q + 1.

Theorem 2.47. Let K be a non-singular k., o with 3 < r < q — 1 having a plane
section of type IV. Then,

(1) if ¢ > 4, K contains exactly one hyperplane 11,,_1;
(ii) if ¢ = 4 and K contains no section of type 1 or 11, it contains exactly one hyper-
plane 11,,_1.

Proof. Forn = 3, the result is contained in Theorems 19.4.8 and 19.4.9 of FPSOTD,
which show that K is a set Ky that contains precisely one plane. Subsequently, in
Theorem 19.4.17, it is shown that KC; is R3, which is the projection of a quadric Py
onto a solid 113 from a point other than the nucleus. Now suppose that n > 3.

By the Corollary to Theorem 19.4.7, there exists a unisecant /; of }C with point
of contact P; let l; be an r-secant through P. So the plane m = ;15 is of type III.
Let II4 be a 4-dimensional space containing 7 and consider the solids o, . . ., ag41
in Il containing 7. Then a; N K is either a cone P; Ky with vertex P; and a section
Kim=nNKora; NKis aset Rg'); this follows from Theorem 2.25 for ¢ > 4 and
from Theorem 19.6.8 of FPSOTD for ¢ = 4.

Suppose there are s cones with vertices P, Ps,...,P; and ¢ + 1 — s sets
Rél), ... ,Réq+1_s). If TI, N K contains a solid II5, then II5 contains the line o

of I in =, the plane [y P;, and the plane Héj ) of K in Réj )1t follows that II3 is

unique and is the union of the g + 1 planes [y P;, Héj ),

Now suppose that the ¢ + 1 planes [y F;, Hé] ) do not lie in a solid: they are in any
case the only planes in IT, N K through [y. Consider the solid II5 containing two of
the planes; then IT; N K is a cone with base type IV or V. If the base is of type IV, then
IT; N K contains exactly two of the ¢ + 1 planes. Also, any other plane Il through
lo in I is of type V. This plane I, and 7 define a solid 115 for which IT% N C is an
Rs. Since 115 is of type V and since [ is in the plane on this R, the line [y contains
the exceptional point Q of R3. So 7 is also of type V, a contradiction. Thus IT; N K
consists of éq + 1 planes through ly. Hence the solids II5 and the sections of type
VII through /¢ in such solids forma 2 — (g+1, éq +1,1) design, whence the number
of such solids is 2(¢ + 1)/(5¢ + 1), which is not an integer. Thus the ¢ + 1 planes

loF;, Héj) are the ¢ + 1 planes through [ of a solid.
Consider now all the solids cv;, i = 1,2,..., N = (¢"~2 — 1)/(¢ — 1), which
pass through 7. Then «; N K is a cone P; Ky or a set Rg'). Suppose there are ¢

cones with vertices Py, P,..., P, and N — ¢ sets Rgl), ... ,R:(),th). If IC contains
a hyperplane 1I,,_;, then II,,_; contains the line [y, the plane [y F;, and the plane



82 2 Hermitian varieties

Héj ) of K on Réj ) Tt follows that IT,, _; is unique and is the union of the N planes
loP;, ng ), which all contain /y. However, the solid containing at least two of these
planes contains exactly ¢ 4 1, by the same argument as above for the 11, containing
m and the two planes. Hence the planes [y P;, Héj ) are all the planes through [y of a
hyperplane IT,,_;. So X contains exactly one hyperplane IT,,_. a

Corollary 2.48. If K is a non-singular k, , 4 with 3 < r < q — 1, then K contains
at most one hyperplane.

Proof. Suppose K contains two hyperplanes IT,,_1, II/,_; they intersect in a IT,, 5.

Let P be a point of II,,_5 and let [ be an r-secant of /I through P; also let 7 be a
plane through [ such that 7 N II,,_o = {P}. Now 7 contains [, and meets II,,_; and
IT/,_, in lines of K; so 7 is of type IV. For ¢ = 4, since any plane contains at least
one line of /C, no plane section is of type I or II. Hence, by the theorem, XC contains
exactly one hyperplane, a contradiction. a

Let KC contain the unique hyperplane II,,_;. As in Theorem 19.4.9 of FPSOTD
for PG(3, q), define 7, the residual of IC, to be

J = (PG(n,¢)\K) UL, .

This may also be written J = KAIL,_;, where XAY is the complement of the
symmetric difference of the two sets X and Y. For ¢ = 4, this operation defines a
vector space over Fa on the sets K of type (1,3,5) as above; see Section 19.6 of
FPSOTD.

Corollary 2.49. If K is a non-singular ky , q with 3 < r < q — 1 and contains a
hyperplane 11,,_1, then

(1) IC contains a section of type IV and no section of type 1 or 11
(i) J is also a non-singular set of type (1, %q—|— 1,q+1) containing the same unique
hyperplane as K.

Proof. If INK| =iforalinelnotinII,_q,then INJ|=¢+2—1i.SoJisa
set of type (1,¢+2 —r,q+ 1); note that 3 < ¢ +2 — r < g — 1. Suppose P is
a singular point of 7. If P ¢ II,,_1, then any line [ through P contains two points
of Jandso |INJ| = q+ 1. Hence J = PG(n, ¢), a contradiction. If P € II,,_1,
then any line through P contains 1 or ¢+ 1 points of /C; that is, P is singular for /C, a
contradiction. Hence 7 is a non-singular set of type (1,q + 2 — r, ¢ + 1) containing
I,

By Corollary 2.48, II,,_; is the only hyperplane of K. Any plane section of K
contains at least one line and is consequently not of type I or II. Similarly 7 contains
no sections of type I or IL. If /; is a unisecant of K with point of contact P and if [,
is an r-secant through P, then the plane /41, is of type III for K and hence of type IV
for 7. Consequently r = %q + 1. In this argument, K and J can be interchanged. O

The nature of sets /C containing a hyperplane is now investigated in more detail.
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Definition 2.50. (1) A non-empty subset S of PG(d, q) is a projective Shult space
with ambient space PG(n, q) if
(a) S spans PG(n, q);
(b) there is a non-empty subset L of the set of lines in S such that, given a point
S € Sandaline ! € £ not containing S, then the line S@Q is in £ for exactly
one or for all points () of [.
(2) The Shult space S is non-degenerate if there is no point A € S such that AQ € £
for every point @ of S\{A4}.

Projective Shult spaces in PG(n, ¢) are discussed in Section 5.3, and classified in
Theorems 5.51 and 5.52.

Definition 2.51. If K in PG(n, ¢) contains a hyperplane II,,_; and P is any point of
K\II,,—1, then the support of P is

Sp={Qell, 1| PQ cC K}.

In Theorem 2.56, it is in fact shown that Sp is a non-degenerate, projective Shult
space in II,,_;, or possibly, when n = 4, an elliptic quadric. When n = 3, it is
proved in Lemma 19.4.16 of FPSOTD that Sp is a conic.

The number of projectively distinct non-singular quadrics Q,, in PG(n, ¢) is one
or two according as n is even or odd. For n even, Q,, = P,, and, for n odd, Q,, = H,,
or &,. In the respective cases, the character w of Q,, is 1, 2 or 0; see Section 1.4. Also
from (1.19),

‘Qn‘ _ qn—l +qn—2 4o dg+1+ (w _ 1)q(n—1)/2.
The character w = 0 is also assigned to a (¢ + 1)-cap, of which &3 is an example.

Theorem 2.52. Let

(a) Qn41 be a non-singular quadric of character w in PG(n + 1, q), q even;
(b) Q be a point off Q,, 1 other than the nucleus when Q.11 = Pr1;
(¢) I, be a hyperplane not containing Q.

Then the projection of Q.41 from Q onto 11, is a non-singular set R,, of type
(1, éq + 1,9+ 1) in 11, containing a hyperplane 11,,_1 of IL,, with

Rl = 30" + " +¢" 2+ g+ 1+ J(w—1)g">

Proof. Let [ be aline in II,,. The plane Q! meets Q,,+1 in a point, a line, a line pair
or a conic. In the case that QI N Q,, 11 = Pa, either Q) is the nucleus of Ps, in which
case the lines joining () to the points of Ps are ¢ + 1 distinct tangents, or the lines
joining @) to P are %q bisecants and one tangent.

Let R, ={P' = PQnNIL, | P € Q,1}; then Table 2.3 is obtained. Thus R,
is of type (1, éq +1,g+1). The tangents to Q,,41 through QQ meet Q,, 1 in P,,, P,
or lIgPp—1 as Qpy1 18 Hpt1, Ent1 Of Ppy1; they meet 11, in a hyperplane IL,,_ ;.
Since f(n — 1) is the number of tangent lines through @ to Q,, 11, so
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Table 2.3. Intersection types

QLN Qi1 Point Line Line pair Conic

[INR,| 1 g+1 q+1 g+1lorlg+1

k=Rl = 0(n — 1)+ 1(Quir| — 6(n 1)),

whence k is as required.

To show that R,, is non-singular, it suffices to show that for any point P of Q,, 11,
joined to ) by a line [ there exists a plane 7 through [ meeting Q,, 1 in a P5 for
which Q is not the nucleus; if P projects to P’, then 7 projects to a (%q + 1)-secant
of R,, through P’.

First, let [ be a bisecant of Q,,11. Then every plane through | meets Q,,11 in a
conic P5 or a line pair Iy . If there are by of the former and b; of the latter,

bo + b1 = 0(n — 1),
(g—1)bo + (2¢ — 1)by +2 =0(n) + (w — 1)q"/2,

whence
bo=q" ' — (w—1)g""2/2 > 0.

Now let [ be a tangent to Q,, 11 through ) and let s,, 1 be the number of planes
through [ meeting Q,,+1 in a line pair IIpH1. When Q,,+1 = P,,+1 and the nucleus
of P41 is on [, then s,,+1 = 0; otherwise,

Sn4+1 = é(‘Qn71| - tnfl)a

where ¢,,_1 is the number of tangent lines to Q,,_; through a point P off Q,,_; other
than the nucleus. It follows that there is a bisecant m through @ such that the plane
ml does not meet Q,, ;1 in a line pair. So ml meets Q,,+1 in a conic. O

When n is even, R, is also denoted R} or R, according as it is the projection
of Hn+1 or 5n+1-

A description of R, is required which does not depend on projection from higher
space. So, let F'(Xo, X1,...,X,—1) be a non-degenerate quadratic form over F,
and let H be an additive subgroup of F, of index 2. Let

JT")\ - V(F(Xo,Xl, ‘e 7Xn—1) + )‘X721)
be a quadric in PG(n, q); here Foo = V(X2) = u,. Also it may be assumed that F’
is one of the following forms:

() X2+ X1Xo+ -+ X,_2X,,_1, for n odd;
(i) XoX1+XoXg+ -+ Xy oXp_10r f(Xo, X1)+ Xo X3+ + X, 02X, 1
with f irreducible, for n even.



2.6 The characterisation of projections of quadrics 85
Theorem 2.53. The set R,, = U)\GHU{OO} Fforn > 2.

Proof. Consider together the cases that Q, 11 = Ppniy1, Hnt1, Ent1. Now write
Qn+1 = V(Gpi1), so that in each case Gp11 = Gpo1 + X, X1 withn > 1.
From the above canonical forms, Gy = X, 3 in the parabolic case, G; = XX} in the
hyperbolic case and G = f(Xp, X1) in the elliptic case. Let @ = P(0,0,...,0,1,1)
and consider the pencil of hyperplanes in PG(n + 1,¢) through the subspace
V(X,, Xpnt1). Let

Vi = V(tXn + Xn+1) N QnJrl'

For t # oo,
Vi=V(Gn 1 +tX2tX, + Xpi1).

In particular, Vo = V(X p41) N Qnt1, Voo = V(X)) N Q1.
(i) For Qn+1 = Pn+1;
Gpo1 +tX2=X0+ X1 Xo+ -+ Xp2Xp 1 +1X].

So
Vi = lyP,_1, forallt.

(11) For QnJrl - HnJrl,
Gp-1+ th =Xo X1+ -+ Xp oX 1+ th .

So
v, — Pn fort # 0, oo,
E7 ) HoHy—q fort =0, 00.

(iii) For Qpni1 = Envt1,
Gp_1+ th = f(Xo,Xl) + XoXsg+ - 4+ X, 20X, 1+ LLX?L .

So
v, — Prn fort # 0, o0,
ET ) Ty fort = 0, 00.

In each case, the V; have a Q,,_; in common, of the same character w as Q,, 1.
If A="P(ap,a1,...,an41) liesin Q, 11, then QA meets Q,, 1 again in
A" =P(ag,a1,...,an-1,0n41,an). If A also lies in V;, then

/
A= P(GOa Aty ..., anatan)a A= P(a0>alv cey Qp—1, tan, an)a

whence A’ lies in V; /¢ Further, QA is a tangent when ¢t = 1, and so the tangents
through @ meet Q,,+1 in V.
Now project Q,,+1 from Q to u, 1 = V(X,41):

A= P(G/Oaa/la .. 'aa/naa/n-‘rl) = P(a‘Oaa/la <oy Up—1,0n + an+170)~

Hence V; — V(X,,, X;,+1) and, for ¢ # 1,
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Vi, Vit = Wi =V (G X7 Xng1 ) -
Ve, Vije} t < 1+t2+1 n +1>
For, regarding the projection as P(x) — P(z'),

T = X0y ey Ty = Tn1, Ty = T + Tpt1, 95/n+1 =0.

So, if P(X) € V; fort # 1, then @y, 1 = ta,, whence &}, = (t + 1)x,. Also, W is
the same type of quadric as V;.

Let K = {t/(t* 4+ 1) | t € F,\{1}}; then |K| = 1q. It is now shown that K is
a group. Write t = \/\'; then t/(t? 4+ 1) = AN /(A2 + \'?). So

AN Qe N+ V)
A2 \2 U2+ p'? - (/\M‘F)\/M/)Q‘F(/\M/‘*‘/\/M)Q.
Therefore K is a subgroup of F; of index 2. It has thus been shown that
R = |J MrUV(X,, X011).
AEK
Select ' as G,,—1. By Lemma 19.4.12 of FPSOTD, K = $H forsome 3 € F,\{0}.
So the projectivity P(z) — P(a’), given by
Th =120, ..., T | =xp_1, T = /By,
transforms R, to the required form. ad

Now a result on the characterisation of elliptic quadrics in PG(3, ¢) for ¢ even is
established that might have been shown in Chapter 16 or 18 of FPSOTD. A weaker
version is required in the subsequent theorem. For ¢ odd, or ¢ = 4, a (¢® + 1)-cap is
an elliptic quadric, by Theorem 16.1.7 of FPSOTD.

Lemma 2.54. A (¢> + 1)-cap K in PG(3, q) containing %(q‘3 — q% + 2q) conics is
an elliptic quadric Es.

Proof. From above, it suffices to consider ¢ even with ¢ > 8. First it is shown that
there exist points P and @ on K such that

(a) through P there are %qz + 1 conics in £C;
(b) through both P and () there are %q + 1 conics in K.

If there were no point P for which (a) holds, then every point of & would be on
at most ;qQ conics. Counting the size of the set

{(A,C)| A€ K, Caconicin K, A e}
in two ways gives the following:

3@ = +29)(q+1) < 3P (P + 1),
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a contradiction.

If, given P, there is no point @) of K for which (b) holds, then through P and any
one of the ¢* points of K\ { P} there can be at most 3¢ conics of K . So, a count of
the set

{(4,C) | A € K\{P},C aconic in K containing A and P}

gives
G +1Dg< 390,
another contradiction.

Since P and @ satisfy (a) and (b), let Tp and Ty be the tangents planes to K
at P and @, let Co,C1, . ..,C, /2 be distinct conics on K through P and @, and let
C be a conic on K containing P but not ). The plane 7 of C meets T in a line
which is tangent at P to at most one C;, say Cy. Therefore m meets the planes of
C1,Ca,...,Cy/o in bisecants of [C; if P1, P, ..., P, /5 denote the points of K other
than P on these bisecants, where P; € C;, thenC; N C = {P, P;}.

Let Q be the quadric containing C;, Co and Pj; the nine conditions necessary for
C1,C5 and Pjs to lie on a quadric ensure the existence of Q, and it is impossible for
two quadrics to meet in two conics plus a point.

Since Tp contains the tangent lines at P to C; and Co, it is also the tangent plane
at P to Q; it also contains the tangent line to C at P. As Q contains the four points
Py, Py, P3, Py of C and, as the tangent plane Tp to Q at P contains the tangent to
C at P, so Q contains C. Also, each conic C;, i = 3,..., éq, lies on Q, since Q
contains the three points P, (), P; of C; and the tangent planes T» and T to Q at P
and () contain the tangents of C; at P and Q).

From (a), there exists a conic D on XC which contains P but not () and which does
not touch Cy at P. If D is substituted for C in the above argument, then it follows that
Cy lies on any quadric containing %q — L of the conics C1,Ca, . . ., Cy/2; hence Q also
contains Cy.

The number of pointsin Co UCy U -+ - UCy/p UC is at least

Hence, by the Corollary to Lemma 18.1.8 of FPSOTD, K lieson Q;so X = Q. O
To prove the next result a further definition is required.

Definition 2.55. A semi-quadric in PG(n, q) is a pair (P, L) where P is a set of
points and £ is a set of lines of PG(n, ¢) such that one of the following holds:

(1) P is a non-singular quadric Q,, and L is the set of lines on Q,,;
(2) P is a non-singular Hermitian variety 4, and L is the set of lines on U, ;
(3) P = PG(n, q) and L is the set of lines of a linear complex.
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Theorem 2.56. In PG(n, q) with n > 4, let KC be a non-singular ki, 4 still with
3 <r < q— 1 and containing a hyperplane 11,,_1. If P is a point of K\I1,,_1, then
the support Sp of P is a non-singular quadric in 11,,_1. Thus

Sp— { Prn-1 Sforn odd,

Hyp_10rEp_1 forn even.
Proof. 1f [ is a line through P, then [ contains a point of II,,_;, whence
INK|=1lq+Tlorg+1.

Consider all lines 1, ls, . . ., [, through P which lie on K, and let [; N II,,_1; = S;;
thatis, Sp = {S; | i = 1,2, ..., m}. Suppose that three distinct lines [1, l2, I3 lie in
a plane Il and consider a solid II3 containing II5 . Since IT3 N X contains a plane
in IT,,_; as well as the lines [1, l2, [3, it is singular by Lemma 19.4.10 of FPSOTD.
In particular, it must be the join of a point to a plane section of type IV, V or VII;
that is, II3 N KC consists of either ¢ 4+ 2 concurrent planes no three of which have a
line in common, or %q + 1 planes through a line or Il itself. In each case, the plane
II, lies on K and hence every line through P in II5 is on K. So Sp is a set of type
(0,1,2,¢g+ 1) inII,,_1.

Now it is shown that Sp is a non-degenerate Shult space in some subspace II; of
IT,,_1. Let I be a line of Sp and S; a point of Sp\{l/}. Consider the solid II5 = I[;,
where [; = PS;. Then II3 N C contains a plane of II,,_1, the plane P[ and the line
l; skew to [. So II3 N IC is II3 or a cone with base of type IV and vertex V on [.
In the first case, the plane S;/ is in Sp; in the second case, there is just one line
in Sp through S; containing a point of /, namely V'.S;, since the plane PV'S; lies
in KC. Thus, if Sp contains at least one line 1, it is a projective Shult space of type
(0,1,2,q+ 1) in some subspace 11 of II,,_1; if Sp contains no line, it is a cap.

If 113 is a solid containing P, then in each of the cases there is at least one line
of II3 N K through P; so Sp is non-empty. Suppose Sp is degenerate with singular
point A. Let Q be a point of K\II,,_; other than P, and let IT3 contain A, P, Q. Then
113 N Sp consists of lines through A. If I3 N K is non-singular, then II35 N Sp is the
support of P in IT3 N K and so, by Lemma 19.4.10 of FPSOTD, is a (¢ + 1)-arc, a
contradiction. Thus I3 N KC is singular and is therefore the join of a point to a section
of type III, IV, V or VIIL

(i) If the section is of type III, then II3 NSp = { A} and A is the vertex of the cone.
Hence AQ is on K.

(ii) If the section is of type IV, then I3 N Sp is a pair of distinct lines which meet
in the vertex V' of the cone. Since V is the only singular point of II3 N Sp, so
A=V and AQ is on K.

(iii) If the section is of type V, then II3 N Sp is a line through A, namely the line of
intersection of the %q + 1 planes of II3 N K. Hence AQ is on K.

(iv) If the section is of type VII, then II3 N /C = 13 and again AQ is on K.

In each case AQ is on K, whence A is a singular point of /C, a contradiction.
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If Sp contains no lines, it is a cap. If Sp has a projective index at least one, then,
by Theorem 5.51, it is a semi-quadric in a subspace 11 of II,,_1. As Sp is of type
(0,1,2,g+ 1), it cannot be a Hermitian variety. The symplectic case is also excluded
as every line of II,,_;1 in Sp is a line of it considered as a Shult space. Thus Sp is a
cap or a non-singular quadric spanning a subspace II; of IT,,_.

Suppose s < m — 1. Let [ be a line of II, with [ N Sp = (), and let II3 be a
solid containing P and [ such that II3 N II; = [. Then, in II3 N I, there is no line
containing P, a contradiction. Hence Sp spans I1,,_1.

It remains to show that when Sp is a cap, then n = 4 and Sp = &;. Let 113 be
the solid containing P and three points S1, S2, S3 of Sp. As I3 N K is necessarily
non-singular, it follows that it is an R3 and II3 N Sp is a conic. So the points of Sp
and the conics II3 N Sp form a 3 — (m, ¢ + 1, 1) design with m = |Sp|. However, if
II3 is an arbitrary solid through P, S, Sa, then II3 N K is non-singular and I13 N Sp
is again a conic. Thus every plane through two points of Sp meets it in a conic. The
number of planes through a line in I1,,_1 is N = (¢"~2 — 1)/(q¢ — 1). Hence

m=N(g—1)+2=¢""?+1.

However, the maximum number M of points of a cap in PG(d, ¢) with ¢ > 2 satisfies
M =¢*+1ford=3and M < ¢ + 1 ford > 3: see Section 6.3; so n = 4 and
m = ¢* + 1. Since every plane of the II3 containing Sp intersects Sp in a conic or
just one point, so Sp = €3 by Lemma 2.54. d

Theorem 2.57. In PG(n, q), let K be a non-singular ky, o with 3 < r < ¢ —1
containing a hyperplane 11,,_1 and let P be a point of K\IL,,_1. If the support Sp
of P has character w, then
k=1"+q¢"" '+ "+ g1+ L w 1),
Proof. For n = 3, this was proved in Theorem 19.4.9 of FPSOTD. For d > 4,
Theorem 2.56 gives that
m=|Sp|=|Qn-1|=¢"2+¢" "+ +q+ 1+ (w—1)g" P2,

There are (¢" — 1)/(g — 1) lines through P; of these, m are lines of X and the
remainder are (g + 1)-secants. Hence
k=1+gm+ 5ql(¢" —1)/(q—1) —m]
=1+ ,0m+ 5" —1)/(g—1)
=1+ 3" " g L+ (w— 1)g"]
+ald” " )
:%qn+qn—1+qn—2++q+1_~_%(w_1)qﬁ/2 0
This theorem shows that £ is the same as |R,,| in Theorem 2.52. The aim now is

to show that, if C is as in the previous two theorems, then K = R,,. It is necessary
to deal separately with the cases of n odd and even.
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First a rather curious lemma is required. Consider the pencil £ in PG(2, q), ¢
even, of plane quadrics F), where

Fr= V(X2 +bXo X, +cX2 4+ 2X2);

here, A varies in F, U {oc} and X% + bX + cis irreducible. So Fo, = V(X3) is the
line up and Fo = V(X + bXoX; + ¢X?) = {Us}, a point not lying on F,. The
other ¢ — 1 quadrics F), are all conics, no two of which have a point of intersection,
since Fy N Foo = (. If H is an additive subgroup of F, it is shown in Theorem
12.12 of PGOFF2 that K’ = UycgFy is a maximal arc. However, implicit in the
proof is the following result.

Lemma 2.58. Let H C ¥, with |H| = %q and let K' = UxcgFx. If there is some
line | other than Fs with I N K' = 0, then H is an additive group and K' is a
maximal arc of type (0, éq)

Proof. Letl = V(agXo + a1 X1 + X32) with not both ag and a; zero. Note that
any line through U, meets every Fy. Let A\ € H and so [ N Fy = (). However,
P(zg,z1,22) € 1N F) when

x2 + broxy + cat + Magad + atx?) =0;

that is,
z2(1+ Aad) + brozy + (c + Aaf)2? =0,
or
?+r+d=0,
where
x = (1+ Xad)zo/(bx1), d= (14 Xad)(c+ \a})/b>.
So
d:€0+€1/\+€2/\2,

where

ep = c/bz, e1 = (cag + a%)/bz, ey = a%a%/bQ.

Also, e1 + /ea = (ca + bapar + a?)/b* # 0, since X2 + bX + c s irreducible.
Now, 22 + z + d = 0 has two solutions or none in Fyn as T'(d) = 0 or 1, where

Td)=d+d+d* + - +d .
The trace function 7" from F,» onto F5 is an additive homomorphism, and satisfies

T+ ) = T(u) + T(0),
T(w?) = T(u)? = T(u).

Also, since X2 + bX + c is irreducible, so is X2 + X + ¢/b?, whence T'(eg) = 1.
Thus
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T(d) = T(eo) + T(e1A) + T(e2A?) = 1 + T(e1\) + T(y/e2))
=1+4+T((ex1 + e2)N).

Now, as [ N Fy = () foreach A € H, so T'(d) = 1 for each A € H. Hence
T((e1 4+ /e2)A) =0, or T(u) =0,

where ;1 = (e1 +4/e2)A. The éq solutions u of this equation form an additive group,
the kernel of the function 7'. So H is also an additive group. The rest of the lemma
follows as in Theorem 12.12 of PGOFF2. a

It may be noted that, in this case, K’ is the complement of the dual of a regular
oval, where a regular oval is defined to be a conic plus its nucleus.

Theorem 2.59. In PG(n, q), n odd and n > 5, let K be a non-singular k. ,,  with
3 <r < q— 1 containing a plane section of type IV and, for q = 4, also no section
of type Lor Il Then KK = R,,, the projection of the quadric Py+1 in PG(n + 1,q)
onto PG(n, q).

Proof. By Theorem 2.53, it must be shown that IC comprises éq + 1 quadrics of a
pencil, one being a hyperplane I1,,_; and the others cones V;P,,_1, 1 = 1,2,.. ., éq.
From Theorem 2.47, K contains a unique hyperplane II,,_;. If P is any point of
KC\IL,,_1, then its support Sp in II,,_; is a quadric P,,—1, by Theorem 2.56. Let Qg
be the nucleus of P,,_1; the line PQy is a (éq + 1)-secant of K. So let P’ be any
point of L N PQq other than P and )y, and let S be any point of Sp.

Suppose that P’S is not a line of K. Consider the plane 7 = PP’S. It contains
the two (g + 1)-secants PP’ and P'S, and the two (¢ + 1)-secants P.S and SQo;
so 7 is a section of type IV. However, choose a solid 113 containing 7 in such a way
that IT3 N P,,_1 is a conic Ps. Then II3 N K is an R3. As 7 contains the nucleus Q)
of the conic P, it is of type V, from Table 19.5 of FPSOTD; this contradicts that 7
is of type IV. So P’S is a line of K. Hence Spr = Sp = P, _1.

Now it is shown that if, for S, S’ € P,,_1, the lines PS and P’S’ intersect, then
S = 5’. Suppose that S # S’ and that PS N P’S’ = T The plane 7 containing P.S
and P’S’ contains Q¢ and therefore it is of type V. However, 7 contains the three
lines P.S, P'S’ and SQq, which are not concurrent, a contradiction. Hence S = 5.

This means that if P; and P, are any two points on PQy N C other than ), then
the two cones P, P,,_1 and P,P,,_1, where P;P,,_1 comprises the points on all joins
P;Q for @ in P,,_1, intersect exactly in P,,_1. So, if

PQuNK ={Qo.P1,Py,..., Py},

where P is some P;, say P, define

q/2
Ko=1,_1U U PPn_1.

i=1

Then Ky C K and
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Kol = (¢" = 1)/(q—1) + Sq+ 3a(q — 1)|Pr1]

(@ =1)/(q—=1)+ Sq+ sala—1)(¢" " —=1)/(qg—1)
= 1"+ (" —1)/(g—1)

— I,

by Theorem 2.57. So Ky = K.
Now coordinates are attached to /C. Let
1 =V(X,), Puo1=V(XZ+X1Xo+ -+ X, 2X,1,X,)
P, =P(v/)\;,0,...,0,1)

with Ay = 0. Then Q¢ = Uy and
PPp1=V(X§+ X1 X0+ + XpoXn1 + NX7).

Lemma 2.58 can be used to now show that H = {\; | i = 1,2,..., ¢} is an
additive group. Select a plane II; meeting II,,_; in a line skew to P,,_, namely,

I, = V(bX() + X1+ X9, X3, Xy, ..., anl);
where X2 + bX + cis irreducible. Then
HoNPP, 1 = V(XEZ+bXo X1 +cXP+NX2 bXo+cX1+Xo, X3y, Xp1).

So II; N K consists of the line 115 N IT,,—; plus éq — 1 conics of a pencil plus the
point P, the nucleus of each of the éq —1 conics. So [I; N IC is of type 111 containing
a unisecant [, which is a 0-secant of IC\II,,_; and is not the line Iy N IL,,_; of the
pencil. So, by the lemma, H is an additive group. Thus, by Theorem 2.53, I = R,,.

O

It remains to consider the case that n is even. Let K be a non-singular k,. ,, , with
3 < r < g — 1 containing a hyperplane II,,_; and let P € IC\II,,_;. Then, from
Theorem 2.56, Sp = H,,—1 or &,_1. Suppose it is shown when Sp = H,,_1 that K
is projectively unique and so the projection of a quadric H,,+1. Now take the other
case and let /C be such that Sp = &,,_1; then

k:éqn_’_qn—l_’_qn—2+_._+q+1_éqn/2

and, with Q the residual of /C,
QI = (""" = 1)/(g—1) —k+(¢" —1)/(g—1)
— éqn+qn—1+qn—2_~_._._~_q_~_1+éqn/2.

So, for Q, the support of a point is an #,,; and hence Q is the projection of #,,41.
Thus K is projectively unique and so the projection of &, 1.

Theorem 2.60. In PG(n, q), n even and n > 4, let K be a non-singular k;. , 4 with
3 < r < q — 1 containing a plane section of type IV and, for ¢ = 4, also no section
of type 1 or 11. Then K is the projection of either a hyperbolic quadric H, 11 or an
elliptic quadric &, 41 in PG(n + 1, q) onto PG(n, q).
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Proof. By Theorem 2.47, K contains a unique hyperplane I1,,_. If P is any point of
KC\IL,,_1, then its support Sp in II,,_; is a quadric H,,—1 or &,_1, by Theorem 2.56.
However, by the remark above, it suffices to consider the case that Sp = H,,_1. Now,
by Theorem 2.53, it must be shown that /U comprises éq + 1 quadrics of a pencil,
one of which is the hyperplane 11I,,_;, another the cone PH,,_; and the remainder
parabolic quadrics Py(f), i=1,2,..., éq — 1, each of which contains H,,_; and has
P as its nucleus.

Each line [ through P not joining P to #,,_; meets II,,_; in a point of K and is
therefore a ( %q + 1)-secant of : it contains %q — 1 points other than P and the point

of IT,,_1. The quadrics P are now constructed by suitably selecting from every

such line [ one of the %q — 1 points for each quadric.
Letll,,_; = u,,let P =U,, and let

Sp=Hn-1=V(Xo X1+ Xo X3+ -+ X, 2Xp1, X5).

InII,, 4, take the line | = V(Xo+ X1, Xo+ X3, X4,..., Xp). ThenINSp = {R},
where R = P(1,1,1,1,0,...,0). If I’ is any line in II,,_; not on Sp, then in the
plane P!’ there are through P two, one or no lines of K and respectively ¢ — 1, ¢ or
q + 1lines (3¢ + 1)-secant to K according as |I' N Sp| = 2,1 or 0; the plane Pl'
meets I correspondingly in a section of type IV, V or III. In particular, Pl meets C
in a section of type V. The line [ contains the point Q@ = P(0,0,1,1,0,...,0) in
Hn—1~ So

POQNK ={T\=P(0,0,A\,\,0,...,0,1) | A € HU {o0}},
where |H| = éq and T, = Q. Consider, for A # oo, the line
Ix=RT\={M,»=P(u,p, p+ A\ p+X0,...,0,1) | p e F,U{oc0}}
of IC, where M) = R. Define, for u # co and A # 0, oo, the set

N/M =SpNSu

X

Then, for any point N € N, the lines NP, NM,» and IL,,_1 N.NPM,,, are all lines
of K. As m = NPM,, contains the (%q +1)-secant PM,» and three concurrent lines
of KC, it follows that 7 N K is of type V and II,,_; N7 is a tangent to Sp.

The point Sy,n = II,,—1 N PMux = P(u, p, 0 + A, + X, 0,...,0) lies on [.
Then, not only is NS,,» = 1I,,_; N 7 a tangent to Sp, but conversely, if S,\V is a
tangent to Sp with point of contact V', then V' € ./\f,L x. Thus ./\f,L » is the set of contact
points of the tangents to Sp from S,5. Let M, be the cone with vertex M, and
base V,», and let I' = UNqu M n. Now

Nar={PWo.y1,---,yn-1,0) | F =G =0},

where

F=plyo+uy) +(pu+N(y2+y3), G=yoyr +y2y3+ -+ Yn2Yn—1.



94 2 Hermitian varieties

Fig. 2.1. The structure of /C
P

Q
g

So

My ={P(xo,1,...,2n) | o = p 4+ tyo, T1 = p+ty1, T2 = p+ A+ tya,
$3:/L+>\+ty3a $4:ty4» sy xnflztynfla .’En:].,
F=G=0,teF,U{sx}}.

Elimination of /1, ¢, Y0, Y1, - - - , Yn—1 from the equations for M, and homogenis-
ation give G (xo, x1, ..., x,) = 0, where

Gr=XoX1 + Xo X3+ -+ X 0X, 1 +NX2.

Thus I'y is a subset of the quadric Q) = V(G»), where A € H\{0}.
Each V,,) is a P,,_o, whence

Nl ="+ ¢+ g+ 1.
Further,

NIM ﬂ./\[p)\ = V(Xo + X1, Xo+ X3, X0, Xo X1+ Xo X3+ -+ Xn72Xn71)
= RP,_4

for pu # p. So,if N = Nyer, Nx, then N = RP,,_4 and
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Wl=¢"" " +¢" "+ +q+1.
As N,y isa Pp—g and M,n = M\ N, it follows that
Nl =" 2 +¢" 2+ + g+ 1.
Also, for any point N in N\ { R}, the plane RT\ N is on K, whence, for u # p,
TN C ManNMpy.

Conversely, if M € M,y N My for p # pand M ¢ RT), then MRT) N 1L,
is a line of V, and so the plane MRT) is on K, whence M € T)N. This means
that M, x N M,y = T N; this fact is also obtainable from the equations for
M n, Mpx, THN. Therefore

M= (Y M =TN and |[M|=¢"+¢" "+ - +q+1.
neF,

Thus
DAl = q(IMual = M) + M =¢" " +¢" P +¢" "+ +q+1.

In fact, Q) \I', consists of ¢" 3 lines through R. So let g be a line of Q, through
R other than [. If ¢ C II,,_1, then g is on K. Assume therefore that g ¢ II,,_;. If
gly is a plane of Qj, then gly N1II,,_; is a line of Sp, where Sp C Q). It now
follows that gl C ThA andso g C K.

If the plane gl is not on Qj, then let 13 be a solid containing gl and intersecting
Q) in a hyperbolic quadric 3. The latter contains one line other than [, of each
M, for p € F,. These ¢ lines form with g a regulus on H3. Let ¢’ be a line other
than [, of the complementary regulus. Since |¢’ N K| > ¢, so ¢’ is a line of K and
g N g ison K, whence g is on K. Hence Q) C K.

Any two Q) intersect in Sp. Thus I,y U PSp U Uer\{O} Q) is contained in
K and has the same number of points as K; so this set is /C. Therefore

k= U 7

teH'U{oo}

where 7; = V(X0 X1+ Xo X5+ -+ Xn_2 X, 1 +tX2), |H'| = jqand0 € H';
here ]:0 = PSP, .7:00 = Hn—1~

Now, exactly as in the proof of Theorem 2.59, if a plane section of type III
through P is considered, Lemma 2.58 shows that H’ is an additive subgroup of
F; for example, take the plane

HQ = V(Xo + Xl,le + CX2 +X3,X4, e ,Xn_l),

where X2 + bX + c is irreducible. Then, by Theorem 2.53, K is the projection of
Hpi1; thatis, K = R |
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Theorem 2.61. In PG(n,q) with n > 3 and ¢ > 4, a non-singular k; ,, 4 with
3 < r < q — 1is either a non-singular Hermitian variety with r = \/q + 1 or the
projection of a non-singular quadric in PG(n + 1, q) with r = éq + 1.

Proof. The case n = 3 was summarised in Theorem 2.25. When n > 4 and the set
has no plane section of type IV, the result is given by Theorem 2.46; whenn > 4 and
the set has a plane section of type IV, the result is given by Theorems 2.59 and 2.60.

O

This theorem can be reworded as follows.

Corollary 2.62. The projectively distinct non-singular sets k., 4 in PG(n, q), with
n > 3, with3 < r < q— 1andwith q > 4, are given in Table 2.4.

Table 2.4. Types of k. n 4

n odd n even
g=7p", p>2 h odd - -
h even Un Uy,
g=2" h odd Rn R, Rn

h even Un, Rn Un, R, Ry

2.7 Notes and references

Sections 2.1-2.3

Although the theory of Hermitian forms over finite fields and their associated semi-
linear groups is already contained in books such as Jordan [188] and Dickson [119],
the first accounts with greater emphasis on the geometry rather than the group theory
were given independently by Bose and Chakravarti [37] and in the monumental paper
of Segre [279]. These sections follow in style the early sections on quadrics. See also
De Bruyn [84].

In Section 19.3 of FPSOTD, regular systems of lines on 2/(3, ¢°) are considered.
The only type that exists is a hemisystem; this is a subset £ of the generators of
U(3, %) such that through every point of ¢(3, ¢?) there pass exactly (g + 1)/2 lines
of L. Segre [279]constructed a hemisystem in the case ¢ = 3. In 2005, Cossidente
and Penttila [77] constructed hemisystems for all odd g. See also Cossidente and
Penttila [78] and Bamberg, Giudici and Royle [12].
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Section 2.4

The proof of Theorem 2.22, which is Witt’s theorem, follows the treatment of Segre
[279]. The fundamental formula of Theorem 2.23 is due to Wan and Yang [396],
although they give a different proof.

Sections 2.5-2.6

These sections on the characterisation of Hermitian varieties as well as sets of type
(1,7,q + 1) are an amalgamation of Tallini Scafati [308], Hirschfeld and Thas [179,
178], and Glynn [139].
Lemma 2.54 was considerably improved by Brown [45]: a (¢* + 1)-cap K in
PG(3,q), g even and ¢ # 2, containing at least one conic is an elliptic quadric ;.
For other characterisations of Hermitian varieties by intersection numbers, see
De Winter and Schillewaert [104] and Schillewaert and Thas [271].
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Grassmann varieties

3.1 Pliicker and Grassmann coordinates
Let II, be an r-space in PG(n, K), n >3, 1 <r <n — 2, and let

P(z?),P(zM),.. ., PxM),

with () = (2, 2%, ..., 2%), be r + 1 linearly independent points of II,.. Write
zy oY ap
x5 @ Ty,
Ty o Ty,

Also, write (ig 41 -+ %r)s, OF (ig 41 - - ir) if no confusion is possible, for the deter-
minant of order  + 1 whose columns are the (ig + 1)-th, (i1 + 1)-th,... (i, + 1)-th
columns of the matrix T, with ig,¢1, ..., € {0,1,...,n}. If two of the i; are
interchanged the sign of (ig 41 - - - i), changes, and if two of the ¢; are equal then
(igi1 -+ i), = 0. Note also that at least one of the determinants (ig i1 - - i,), 1S
not zero.

Lemma 3.1. Let P(2(?), P(z™), ..., P(z(™)) and P(y©),P(y™M),...,P(y")
be two sets of r + 1 linearly independent points of the r-space 11, of PG(n, K),
wheren > 3 and1 < r < n—2. Then (igi1 -+ ir)y = t(igi1 - ir)g for some
t € K\{0} which is independent of iy, i1, . . ., ir.

Proof. First, T,y = TT, with T = (¢;;) a non-singular (r + 1) x (r + 1) matrix over
K .Hence,ift = |T'| # 0,then (ig i1 - 4r)y = t(io 41 - - ir)z fOranyip, s, ..., o

in{0,1,...,n}. O

Now choose c(n + 1,7 + 1) ordered (r + 1)-tuples (ig,?1,...,%,) such that
10,191, - . -, i, are distinct elements of {0, 1,...,n} and such that the {ig,41,...,%,}
© Springer-Verlag London 2016 99
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are all subsets of order r+1 of {0, 1, ..., n}. Further, order the set V' of these (r+1)-
tuples.

Reconsider the r + 1 linearly independent points P(z(?)), P(z(M), ... P(z(")
of II,.. Then a coordinate vector of 11, is

L= (lOa llv ey lc(n+1,r+1)—1)a

where the [; are the elements (ig i1 - - - %)z With (i0,41,...,4,) in V in the given
order. These elements [; are the coordinates of the r-space II, of PG(n, K). By
Lemma 3.1, L is determined by II,. up to a factor of proportion. Write

I, = I, (L).

For n = 3 and » = 1 these coordinates were introduced in Section 15.2 of
FPSOTD. In this case, the coordinates are also called Pliicker coordinates. In the
general case they are called Grassmann coordinates.

Consider a projectivity £ of PG(n, K) with matrix A, and let II,.§ = II/. with
I, = II,.(L) and II/. = II.(L’). By a standard matrix manipulation as in Lemma
15.2.8 of FPSOTD,

tL' = LA,

where ¢ € K\{0} and where the elements of A are, up to the sign, minors of order
r + 1 of the matrix A. Also, A is non-singular.

Next let 7(u(®), w(u™), ..., w(u™="=1) be n — r linearly independent hy-
perplanes containing the r-space II, of PG(n, K), where u = (ud,ul, ... ul).
Write

ug uf Up,
ug uy up,
Tu = . .
u(r)tfrfl u;tfrfl . uzfrfl
Also, write (joJ1 " Jjn—r—1)u> O (JoJ1 -+ jn—r—1) if no confusion is possible,

for the determinant of order n — r whose columns coincide with the (jo + 1)-th,
(j1+1)-th,...,(jn—r—1+ 1)-th columns of the matrix T}, with jo, j1,- .., jn—r—1 i0

{0,1,...,n}. Atleast one of the n — r determinants (jo j1 - jn—r—1) is nOt Zero.
For each element (ig,%1,...,4,) of V an (n — r)-tuple (jo,j1, .-, Jn_r—1) i8
chosen so that
(7;03 ilv e 77:T7j07j1a v vjnfrfl)
is an even permutation of (0, 1, ..., n). The set of these ordered (n—r)-tuples, which

number ¢(n + 1,7 + 1) = ¢(n + 1,n — r), is denoted by W. Then the ordering of
V induces an ordering of V.

Consider again the n — r linearly independent hyperplanes containing II,.. Then
a dual coordinate vector of 11, is

L= (o)1, letnirrsn)-1) s
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where the [; are the elements (Joj1 - jnfrﬂ)u with (jo, 41, -+, Jn—r—1) in Win
the given order. By the dual of Lemma 3.1, L is determined by II,. up to a factor of
proportion.

Lemma 3.2. The coordinates pl; = lifori=0,1,..., cin+1,r+1)—1; that is,
up to a factor of proportion, L is L.

Proof. Let P(z(9), P(z(), ... P(z(")) be 7+ 1 linearly independent points of IT,.
with () = (2}, 2%, ...,2%), i = 0,1,...,r. The I, are of the form (igiy - - -i,.),.

Consider n — r points P(z("t1D), P(z("+2) ... P(2(™) of PG(n, K) such that
P(z), P(zM),..., P(z™), with
e = (gh 2t 2, i=r+1,r42,...,n,

are linearly independent. As hyperplanes 7 (u(?)), 7w (u(M), ..., 7w(u™~"=1) choose

ILP (P20 *2) . . P D) p (D) o p (™) |

withi = 1,2,...,n —r. So, for u take the cofactor of x?““ in the matrix
0 .0 0
Lo X T
1 1 1
l’o xl ... l’n
D= . . -
n n n
Lo I T,

7 =0,1,...,nand¢ = 0,1,...,n — r — 1. If E is the matrix obtained from D
by replacing each element x; by its cofactor, then each minor of order n — r of F
is equal to the product of |D|"~"~! and the algebraic complement of the similarly
placed minor in the matrix D. Hence

(jO jl e jnfrfl)u = |D|niri1 (—1)d (io i1 - ir)m;
where
{jOvjla "'7jn—7"—1} U {Z.Oailv "'air} - {0,1,...,7’1},
with jo < j1 < -+ < Jnor_1, 10 <11 < - - < i, and
d=ig+ir+--+ir+r+14+(r+2)(r+1)/2.

Now the result follows. O

If n = 27 + 1 then often the ordering in W is chosen in such a way that
pl; = AZ-JFC(QTH,TH)/Q, where indices are taken modulo ¢(2r + 2,7 + 1). Hence,
if (g1 - -+ i)y is a coordinate of IT,. and (jo j1 -+ jr)w is @ dual coordinate of IT/,
then their positions differ by c¢(2r + 2, + 1)/2, where

|{i07i1a "'air}u{jOajlv ajr}‘ :2T+2
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In Lemma 3.3, for n = 2r+1 and r even, the following condition is not imposed:
for a coordinate (igiy - - - i, ), of I, and a dual coordinate (joji - - * jr)u Of II, with
{i0,%1,- -, 0} U{josJ1,---,Jr}| = n+ 1, the permutation

(Z.07i1a .. -airajovjlv' . 'va)
has to be even.

Lemma 3.3. Let 11, be an r-space of PG(n, K) with coordinates (ig i1 -+ i)y for
n > 3. Also, let 11,,_._1 be an (n—r—1)-space with dual coordinates (ig i1 - -+ iy )u,
where 1 <r <mn — 2. Then 1L, N1L,,_,._1 # 0 if and only if

> (igir -+ ip)a(ioin -+ ir)u =0,
Proof. Choose 7 + 1 linearly independent points P(z(9), P(z(1)), ..., P(z(")) in

IT, and n — r linearly independent points P(y(©), P(y™), ..., P(y»~"=Y) in
II,,_,_1. Let

x4 zf )

4 i T,

xg x] x

A=l 0 0

yo yl PN yn

Yo v U

yg—r—l y?—r—l L ygfrfl

Then IT,. N 11,1 # 0 if and only if A = 0. By the Laplace expansion of A along
the first  + 1 rows and by Lemma 3.2 the required result is immediate. a

Corollary 3.4. Let 11, be an r-space of PG(n, K), where 1 <r < n—2andn > 3,
with coordinate vector L = (lo,l1,...). If ly = (iot1 -+ ir)s then I, = 0 if and
only if 1L, NU; U, ., --- Uy, # 0, where {ig,i1, ...,in} ={0,1,...,n}.

Proof. Let Uir+1Uir+2 ... Uin = Hn—r—1~ AS Hn—r—l = V(Xio, Xiu e ,XZ‘T),
the space II,,_,_1 has (joj1 - - - jr)u 7 0 if and only if

{jovjlv e 7j’r‘} = {iOailv e 77:7”}'
By Lemma 3.3, (ig i1 -+ ir)s = 0 if and only if IT, N IL,_,_; # 0. 0

Lemma 3.5. Let 11, be an r-space of PG(n, K), where 1 <r <n—2andn > 3,
and let I, N V(X,;,, X,,, ..., X;,) be a point P(x), where iy, ..., i, are distinct
elements of {0,1,...,n}. IfP(z(©), P(zM),... , P(x(")) are linearly independent
points of I1,., where (V) = (z8, 2%, ..., 2L), then up to a factor of proportion

=081 - ip)z, (Liy -+ p)gy. ooy (i1 - Op)g) .
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Proof. Since II, N 'V (X, X,,,...,X;,) is a point P = P(x), there is at least
one hyperplane V(X;) not containing P(x) for some ¢ in {0, 1,...,n}. Then, by
Corollary 3.4, (ii1io - - - i), 7 0. Hence the matrix

0 0o ... 0

71 12 T

1 1 1

D N .i1 is PN 'T'L,

x;‘l x;z 'T:,
has rank r. If z = (zo,21,...,2y) is the coordinate vector of P, then there are
elements ¢, .. ., ¢, determined up to a factor of proportion and not all zero such that

z; = toxd + tyxp 4 - + tpal,

i=20,1,...,n. Since

tox) +tiz} + -+ tal =0,
s = 1,2,...,r and since rank D = r, take for the ¢; the minors of order r of D
with alternating signs. Hence, up to a factor of proportion, z; is (i 41 iz - - - %), for
1=0,1,...,n. ad

Lemma 3.6. Let P(2(0), P(z™M)), ... P(2"), with ) = (2},2%,...,2%), be

r + 1 linearly independent points of the r-space 11, of PG(n, K), 1 <r <n —2

and n > 3. The point P(z), where © = (x0, 21, ...,xy), is contained in 11, if and

only if

Tig (i1 2+ ips1)a — @iy (G2 ip)a + -+ (=1) g, (lgdy -+ in)a =0,
3.1)

for each choice of distinct ig, i1, . .. ,ir+1in {0,1,...,n}.

Proof. The point P(z) is contained in II. if and only if there exist elements
to,t1,...,t- in K, not all zero, such that

T = tox(o) + tll‘(l) et trx(r) )
Equivalently, 4 4 '
Ty = toﬂ?é + tlxll + -+ trl‘zr, (32)

i =0,1,...,n. Since the rank of the ( + 1) x (n 4 1) matrix with elements z, is
equal to r + 1, the system (3.2) of n + 1 linear equations in r + 1 unknowns has at
least one solution if and only if all minors of order r 4 2 of the matrix

Xo X e Ty
G Th

1 1 1
Ty o T Ty,

Sy e

T T
(L'O ‘rl PN €
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are zero. Expanding these minors along the first row, the conditions (3.1) are ob-
tained. O

Theorem 3.7. For any r-space 11, of PG(n, K), 1 <r <n—1landn > 3,

(ipi1 -+ 4r)(Jo g1 -+ Jr) — (Joi1 -~ ir) (0 J1 -+ Jr)
+ (]1 'Ll 'Lr)(ZO]OJQ jr)
— o (1) Gy i) (G0 Jo e jr-1) =0, (3.3)

where ig,%1, ..., %, J0s 1, - - - » Jr are arbitrarily chosen elements in {0,1,...,n}.

Proof. Assume that II.NV (X;,, X, ..., X; ), with iy, 4o, . .., 4, distinct, is a point
P(z). By Lemma 3.5, up to a factor of proportion,

Xr = ((Oilig ir),(lilig ir),...,(nilig Zr))
Since P(x) belongs to II,, by Lemma 3.6,

(ipi1 -+ 4r)(Jo g1 -+ Jr) — (Joi1 -+ ir) (0 J1 -+ Jr)
+ (]1 'Ll 'Lr)(ZO.]OjQ jr)
— o (=) Gy i) (G0 Jo o 1) =0, (3.4)

for any distinct ig, jo, J1, - - - 5 Jr-

I, NV (X;,, Xy, ..., X;), with i1, 49, .. ., 4, distinct, is at least of projective
dimension one then, by Corollary 3.4, (ii1iz---i,) = 0 fori = 0,1,...,n. Hence
(3.4) is also satisfied in this case.

Ifi1,2,...,%, O %g, jo, J1, - - -, Jr are not all distinct, then (3.4) is trivially satis-
fied. In conclusion, (3.4) is satisfied whenever ig, 1, .. ., j, are arbitrarily chosen in
{0,1,...,n}. O

By Theorem 3.7, the coordinates of 11, satisfy a number of quadratic relations.
These relations (3.3) can also be written as follows:

T

(ioiy = i) (o1 =+ gr) = 3 (s - in)(o -+ Jom1 0 jsgr -+ Jr) . (3.5)
s=0

In particular, putting jo = @9, ..., j» =, (3.5) becomes

(to%1 -+ i) (Jojriz -+ i) = (Jot1 -+ 4r)(i0 J1 92 - ir)
+(j1i1 - ir)(Joio iz -+ ir). (3.6)

These are the elementary quadratic relations. When r = 1 or r = n — 2, it follows
that (3.5) and (3.6) are the same. For » = 1, (3.6) was also derived in Lemma 15.2.2
of FPSOTD.

Now let 1 < r < n — 2; in this case, n > 5. Suppose that (kok; - - - k,.) # 0 if
and only if
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{ko,kl,...,kr} = {0,1,2,6,7,...,r—|—3}0r{3,4,5,6,7,...,r—|—3},

where ko, k1,...,k. € {0,1,...,n}. Then the relations (3.6) are satisfied. Since
(01267 ---7+3)(34567 ---r + 3) # 0, the relations (3.5) are not satisfied.
Hence elements (kok; - - - k), where

(kokiks - kp)=—(k1koka - k), (kokoka -+ kr)=0 (3.7

and similar relations, which satisfy the elementary quadratic relations and which are
not all zero, do not necessarily correspond to some r-space of PG(n, K).

Theorem 3.8. Let 1 < r < n — 2, n > 3. If the elements (koky - - - k), where
ki € {0,1,...,n}, are not all zero and satisfy both (3.7) and the quadratic relations
(3.5), then these elements correspond to exactly one r-space 11, of PG(n, K).

Proof. Suppose, for example, that (01---r) # 0. If there is an r-space II,. corre-
sponding to the ¢(n + 1,7 + 1) given elements, then, by Corollary 3.4,

L, NV(Xo, X1,...,X,) #0.

Hence
II,. N V(Xo,Xl7 e X1, Xy, o, X))

is a point P(z(®)), s =0,1,..., 7. By Lemma 3.5, up to a factor of proportion,
o) = (x5, 25,...,25),

where 2f = (01 -+ s—1is+1---r), s=0,1,...,7andi =0,1,...,n. Calcu-
lating the determinant

A=z, i,s=0,1,...,r

it follows that (01 --- 7)"*! 2 0. Hence the points P(2(?), P(z()), ... P(2("),
are linearly independent. Now it is shown that, up to a factor of proportion, the
given elements (koky - - - k) are the elements (ko k1 k2 - - - k), corresponding to
the points P(x(s)) of II,.; more precisely, it is shown that

(kokika -+ kp)o = (ko k1 kg -+ kp)(O1 - 1) (3.8)
From above,
(01 7)y = (01 7). (3.9)
Also,
(01--+-s—1lis+1---7r)py =201 7)" (3.10)
=01---s—1lis+1---7r)(01--- 1),
s =20,1,...,rand 7 = 0,1,...,n. Now proceed by induction on the number v of

k;inthe set {r +1,r +2,...,n}. Equation (3.8) is satisfied if » = 0 or 1. Without
loss of generality, it must be shown that
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(rje - guvv+l--r)e=(rje- juvv+1l---r)(0L---r)",  (3.11)

where j1,j2,...,5, € {r+ 1,7+ 2,...,n} and v > 1. Since both the elements
(ko k1 ko -+ k) and (ko k1 k2 - - - ky), satisfy the quadratic relations (3.5), so

(01... )(jle...juyl/J'_l...r)

=Zy512 P)(G1dz o Js1 0dsr o Juvv+1-or)
+2312 Yj1je - jov---s—10s+1---7)
23912 r(j1de - Js—10jss1 - Juvv+1--7).  (3.12)

Also,
(01 )(JIJQJVVV—’_]-T):L’

:Zﬁw c(ida - Js—10jse1 - juvv+1---1),. (3.13)

By (3.9) and (3.10),

(01"'7")ac:(01 _._r)r+17
(Js12--7)e = (js12--- )01 -~ 7).

By induction,

(Jrj2 -+ Js—10ds41 - v v+l 1)y
=(1J2 Js—10Js41 - Govv+1---7)(01 - ).

Hence (3.13) becomes
(01--- )Y Grge o G vl ), (3.14)

—Z )2 (§e 12 ) (Grda e a1 0dast e Gy v L),

Comparing (3.14) with (3.12), and since (01 - - - 7) # 0, this gives
(j1j2...juyl/_i'_l...r)x:(jl]é...juyl/_i'_l...r)(ol...r)r’
which is (3.11), as required. a

Example 3.9. For n = 4 and r = 1, a coordinate vector of a line [ is

L = ((01),(02), (03), (04), (12), (13), (14), (23), (24), (34)).
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The coordinates of ! satisfy the following five quadratic relations :

(12)(34) + (23)(14) + (31)(24) = 0,
(02)(34) + (23)(04) + (30)(24) = 0,
(01)(34) + (13)(04) + (30)(14) = 0,
(01)(24) + (12)(04) + (20)(14) = 0,
(01)(23) + (12)(03) + (20)(13) = 0.

These relations, though linearly independent, must in fact be equivalent to three con-
ditions only, giving seven independent homogeneous parameters with which to de-
fine a line [.

Example 3.10. For n = 5 and r = 2, the 20 Grassmann coordinates of a plane 7 are
the following:

(012), (013), (014), (015), (023), (024), (025), (034), (035), (045),
(123), (124), (125), (134), (135), (145), (234), (235), (245), (345).

These coordinates satisfy the following quadratic relations:
(ijk)(uvw) = (ivw)(ugk) + (Jow)(iuk) + (kvw)(iju),

with ¢, j, k, u,v,w € {0,1,2,3,4,5}.
In particular for £ = w the following elementary quadratic relations are obtained:

(ijk)(uvk) = (ivk)(ujk) + (jok)(iuk),

with 4, j, k,u,v € {0,1,2,3,4,5}.

It can be shown that, among these 20 Grassmann coordinates there are exactly
35 linearly independent quadratic relations. In fact, these relations are equivalent to
10 conditions only, giving 10 independent homogeneous parameters with which to
define a plane 7 in PG(5, K).

3.2 Grassmann varieties

Let PG (n, K) be the set of all r-spaces of PG(n, K), with 1 < r < n — 2 and
n > 3. If

L= (lOv lla ceey lc(n+1,r+1)—1)

is a coordinate vector of II,, € PG (n, K), then P(L) is a point of the projective
space PG(N, K),with N =c(n+ 1,7 +1) — 1.

The mapping which associates P(L) to II,. is denoted by &. The algebraic variety
PG (n, K)& of PG(N, K) is called the Grassmannian or the Grassmann variety
of the r-spaces of PG(n, K). It is denoted by G, , x or G, . In the finite case,
when K = F, it is also denoted by G, ,, ;. By Theorems 3.7 and 3.8, G, ,, is the
intersection of the quadrics of PG(V, K) represented by the equations (3.5). For
r = 1 and n = 3, the dimension N = 5 and (3.5) represents only one quadric of
PG(5, K). In this case, Gy 3 is the hyperbolic quadric of Section 15.4 of FPSOTD.
This quadric Gy 3 is also called the Klein quadric.
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Theorem 3.11. The Grassmannian G, ,, 4 has ¢(r;n, q) points.
Proof. |Grn.q| = PG (n,q)] = 6(r;n, q). 0
Theorem 3.12. No hyperplane of PG(N, K) contains G, .
Proof. Suppose that the hyperplane 7 (u), where
u=(ug,U1,...,un)
contains G, ,,. Consider the r-space U;,U;, - - - U, of PG(n, K), where
{io,i1,...,ir} C {0,1,...,n}.

For this r-space, (ko k1 - -+ k) = 0 whenever (ko, k1, ..., k) # {i0,t1,...,0,}. If

l; is the coordinate of U;,U;, - - - U, corresponding to the set {ig, i1, ...,.} then
l; # 0 while all other coordinates of this r-space are zero. Since G, ,, is contained in
7(u), so u; = 0. Hence all coordinates of u are zero, a contradiction. O

If V(Fy), V(F), ... are the quadrics represented by (3.5), then

gr,n,K = VN,K(FlaFQa e )

Also, Grn k= VN’K(Fl7 Fy,...) is the Grassmannian QT’H’K of the r-spaces of
PG(n, K).
The following result is stated without proof.

Theorem 3.13. (i) The algebraic variety G, ,, is absolutely irreducible and rational.
(ii) All points of G, ,, are simple.

(iil) The dimension of Gy, is (r + 1)(n — r).

(iv) The order of Gy, is

((r)((n—r—1))

(G =

where ((m)) = 112! -+ ml.

Hence G 3 has dimension 4 and order 2, while G; 4 has dimension 6 and order 5,
and G, has dimension 2(n — 1) and order [2(n — 1)]!/{(n — 1)!n!}. Also G2 5 has
dimension 9 and order 42, while G, 5,41 has dimension (r + 1)2 and order

120 . 7!

[(T+1)2]!(T+1)!(T+2)! e 2r+ D

Theorem 3.14. The Grassmannians G, ,, and G,,_,_1., are projectively equivalent
forl <r<n-—2andn > 3.
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Proof. It may be assumed that n # 2r 4 1. So, suppose that the coordinate
of II, in PG(T)(n, K) in position s + 1, and the dual coordinate of II,,_,_; in
PG ""Y(n, K) in the same position, correspond to the same ordered (r + 1)-
tuple

(i0yi1y...,0r), s=0,1,...;c(n+ 1,r+1).

If P(z(), P(zM),...,P(z(")) are r + 1 linearly independent points of II,., then
the hyperplanes 7(2(?)), (™)), ..., 7w(2(")) have aIl,,_,._; as intersection. Hence
any coordinate vector of 11, is also a dual coordinate vector of II,,_,_;. By Lemma
3.2, any dual coordinate vector of II,,_,_; is also a coordinate vector of IT,,_,._;.
Hence g’r,n = gnfrfl,n .

If the assumption on positions at the beginning of the proof is not made, then
there is a projectivity of PG(N, K) of the form pz, = ¢;x; which takes G, ,, to
Gn—r—1n; here, ¢; € {+1,—1}andi,j7 =0,1,...,c(n+ 1,7+ 1) — 1. O

Now the case n = 2r + 1 is considered in more detail. It is assumed that, for any
two coordinates (ig 41 - - i)z and (jo 41 j2 + -+ jr)x Of I, where

|{i07i1a"'ai7‘}U{jOajlv"'ajT}‘ - 2T+2a

their positions in the coordinate vector of II,. differ by c(2r + 2,7 + 1)/2 = m;
if [; = (ioil ir):z: and lier = (j()jljg jr)z; S {0,1,...,m — ].}, then
assume that the permutation (g, %1, . - . , 4, jo, J1,- - -, Jr) is even. Let II,, = P,.(L)
and IT/. = P,.(L') be r-spaces of PG(2r + 1, K'), where

L=(o01,..)and L' = (I,1,,...). (3.15)

By Lemmas 3.2 and 3.3, II,. N IT/. # () if and only if

m—1
Z (Lily 4 + Uilivm) =0 forr odd,
i=0
m—1

(Lili 4y — Uilizm) =0 forr even.
i=0

When 7 is odd, then associated to PG(™) (2r+1, K) is the polarity § of PG(N, K)

with bilinear form
m—1

(Xi XL + X Xism). (3.16)
=0

(3

If K = F, with ¢ odd, then J is the orthogonal polarity defined by the hyperbolic

quadric
m—1
\Y% ( > XiXi+m> .
i=0

For 7 = 1 and n = 3 this quadric coincides with the Grassmannian G; 3. If K = F,
with ¢ even, then ¢ is a null polarity.
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When 7 is even, then associated to PG (2r + 1, K) is the null polarity & of
PG(N, K) with bilinear form

m—1

(Xi X — X1 Xigm). (3.17)
=0

(3

The polarity 0 is the fundamental polarity associated to G, 2, 1.
Consider in PG(2r + 1, K) the correlation 7 represented by

pxri =u;, +=0,1,...,2r+1. (3.18)
If T,y = II,. with I, = P.(L), II, = P,.(L’) as in (3.15), then, by Lemma 3.2,

l/: lz+m, Z‘ZO,l,...,'n’l—l7
P (_]‘)T+lli+ma i:m7m+1a"'7N7

where the indices are taken modulo NV + 1. Hence, to the correlation 7, there corre-
sponds the following projectivity of PG(N, K) that leaves G, 2,11 invariant:

= Litm, Z.:O,l,...’m—l,
pxi - { (_1)T+1xl+ma Z = m7m_|_ 17. . ~,N. (3.19)

This projectivity is denoted by (.
Now, all subspaces of PG(N, K) contained in G, ,, are determined. First, the
lines on G, ,, are considered.

Definition 3.15. The set of all r-spaces II,. of PG(n, K) contained in a given (r+1)-
space I1,; and containing a given (r — 1)-space IL,._; is a pencil of r-spaces and is
denoted by (II, 1,11, 41).

Theorem 3.16. The image of a pencil of r-spaces under & is a line of G, ,,, and
conversely.

Proof. Let II,,_1 be a given (r — 1)-space of PG(n, K) and let I, be a given
(r + 1)-space through II,_;. Also, let [ be a line of II, 1 skew to II,_; and let
P(z(?),P(zM),...,P(z"~ V) be r linearly independent points of IT,. _;. Consider
distinct elements II%, 112 of the pencil (IT,_1,IL,,1). The intersections of I1% and
12 with [ are denoted by P(x}) and P(22). The coordinates of II%, i = 1,2, are
determined by the matrix
2(0)
ey
=
(1)

Ly

Let II, be an arbitrary element of the pencil (IT,_1,II,+1). A coordinate vector of
the point I, N [ is of the form
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1 2
tix, + taxy,

t1,t2 € K and not both zero. Conversely, any vector of this type defines one element
IL, of (IT,_1,II,41). The coordinates of I, are determined by the matrix

20
2D

x(r.—l)
tll‘,,l, —&-tgx%
If o
L; = (1§, 05,...),1=1,2,

is the coordinate vector defined by the matrix 77, then
t1L1 + tQLQ

is the coordinate vector defined by the matrix 7). Hence (II,_1,1I,11)® is the line
joining the points IT}® and I126.

Conversely, let [ be a line on G,,, and let P(L;),P(L2) be distinct points of
l. Suppose that the intersection of P(L;)®&~! = II! and P(L2)®~! = II2 is an
(r — 1)-space I1,._;. Then ITLTI2 is an (r + 1)-space I1,.;1; so

(T, _1,T,41)® = P(L1)P(Ly) = L.

Now it is shown that IT} NT12 is an (r — 1)-space. Let ITL N 112 be a d-space, with
—1<d<r—11et P(z@) Px®), ... P(x®)be d+ 1 linearly independent
points of Iy, and also let P(z(), P(z™M), ..., P(z(®), P(xz(dﬂ)), . ,P(xgr))
be r + 1 linearly independent points of II%, for i = 1, 2. Let £ be a projectivity of
PG(n, K) with

PW)e=U;, j=0,1,....4d,
P)e=U;, j=d+1,d+2,...,r,
P(zs" e =U,yy, j=1,2,...,r—d
In Section 3.1, it is shown that £ induces a projectivity € of PG(N, K) which leaves
G, invariant. Then

— (UyU, ---U,)®,
= (UgU;---UgU,yq - - Ugpyg)®.

The points P (L)€ and P(Ls)E are on the line 1€ of Gy For the space UgU; - - - Uy,
the coordinate (ko k1 - - - k) # 0 if and only if

{ko,kl,...,kr}:{0,1,...,T};
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for the space UgU; - UyU, 41 - - Ug,_g, the coordinate (ko ki -+ k) # 0 if
and only if

{ko,k1,..., k. ={0,1,....d,r+1,...,2r —d}.

Since each point of lé is on G, ,,, for any two given elements t1,t2 € K, not both
zero, there is an r-space I, with

O01---r)y=ty, (O0---dr+1--2r—d)=ts,
and (ko k1 -+ k) = 0 in all other cases. Choose t1,t2 # 0. Then
(rr=1---0)01---dr+4+1---2r—d)#0.
By (3.5),

(rr—1---0)01---dr+1---2r—d)

d
:Z(sr—1~-~0)(0~-~s—1rs+1-~-dr+1-~-2r—d)
s=0

2r—d
+ Z (sr—=1---0)0---dr+1---s—1rs+1---2r—d)
s=r+1
2r—d
= > (sr=1--0)(0---dr+1--s—1lrs4+1---2r—d).
s=r+1

Hence (sr—1---0) #0forsome s € {r+ 1,7 +2,...,2r — d}; thatis,
{0,1,...,7r—=1,s}={0,...,d,r+1,...,2r — d}.
Consequently, d = 7 — 1, and so I11 N I12 is an (r — 1)-space. O

Theorem 3.16 is equivalent to saying that the images II1® and I12® of two dis-
tinct r-spaces II! and 112 of PG(n, K) are on a common line of G, ,, if and only if
the intersection IT! N TI2 is an (r — 1)-space or, equivalently, if and only if IT1TI2 is
an (r + 1)-space.

Theorem 3.17. The number of lines on G, ., 4 is equal to

n+1 . r . n—r—1 .

[ - 1)/{ [T -1 I - 1)}. (3.20)
i=3 i=1 i=1

Proof. By Theorem 3.16, the number of lines of G, ,, 4 is equal to the number of

pencils (IT,_1,I1,41). Hence it is equal to the product of |PG(T71)(n7 q)| and the
number of (r + 1)-spaces containing a given II,_;. So it is equal to
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o(r—Lin,q)x(r — 1,7+ 1;n,q)
n—r+2,n+1_3,n—r+1]_
[L,r]-[L,n—r—1]_-
B,n+1]_
1,r]-[l,n—r—1]_"

as required. a
Lemma 3.18. The number of lines on G, ,, 4 through one of its points is equal to
On—r—1)6(r). (3.21)

Proof. The number of lines of G,.,, , through a given point P on it is equal to the
number of pencils (IT, 1,1, 41) with II,_; C II,. C II, ;1 and II,, = P&~ L. Hence
this number equals

x(rr+1;n,q) ¢(r —1;7,q) = 0(n —r —1)6(r). O

Lemma 3.19. A line | of PG(N, K) having at least three points in common with
Gr.n Is entirely contained in it.

Proof. Since G, , is the intersection of the quadrics of PG(NN, K') represented by the
equations (3.5), so the line [ has at least three points in common with each of these
quadrics, and hence is contained in all the quadrics. It follows that [ is contained in
Gron. O

An s-space II; which is contained in G, ,, but in no (s + 1)-space IIs4; of G, ,,
is a maximal space or maximal subspace of G,. ,,. The next result describes all such
maximal spaces.

Theorem 3.20. The variety G, ,, contains two systems Sy, and Sg; of maximal spaces:

(i) Sy, consists of the (n — r)-spaces I1,,_, with I1,, &~ ! the set of all r-spaces
through a common 11, _1;

(ii) Sq consists of the (r + 1)-spaces 11,11 with 11,41 &1 the set of all r-spaces
contained in a common 11, 1.

Proof. Let II,_1 be an (r — 1)-space of PG(n, K) and let R be the set of all the
r-spaces containing IT, ;. If IIL, T12 are distinct elements of R, then IIL N T12 is the
(r — 1)-space II,_1, and so they belong to a pencil of r-spaces which is completely
contained in R. Hence, if P; and P; are distinct points of R®, then the line P; P; is
contained in R®; so R& is a subspace of PG(N, K).

Let II,,_, be a subspace of PG(NV, K') which is skew to II,_;. The bijection
which maps each element of R onto its intersection with II,,_, is denoted by 6.
Then 6 !B is a bijection of II,,_,. onto R& which maps the lines of II,,_,. onto the
lines of R®, and so RS has dimension n — r. If R® is properly contained in the
subspace 7 of G, ,, then let P € w\R®. The r-space P& ! of PG(n, K) does not
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contain II,_; but has an (r — 1)-space in common with each r-space through II,._;.
This contradiction shows that the (n — r)-space R® is a maximal space of G, ,,.
Similarly, let IT,, ; be an (r+1)-space of PG(n, K') and let S be the set of all the
r-spaces contained in I, ;. If Hi, Hf are distinct elements of S, then H}II? is the
(r + 1)-space I1,.;1, and so they belong to a pencil of r-spaces which is completely
contained in S. Hence, if P; and P, are distinct points of S&, then the line P; Py
is contained in S&; so S& is a subspace of PG(N, K). Since the pencils of hyper-
planes of II,; are mapped by & onto the lines of S®, so & induces a reciprocity
from IL,;; to S&. Hence S® has dimension r + 1. If S& is properly contained in
the subspace 7 of G, ,,, then let P € m\S®. The r-space P&~! of PG(n, K) is not
contained in I,y but has an (r — 1)-space in common with each r-space in II,. 1,
a contradiction. This shows that the (r + 1)-space S® is a maximal space of G, ,.
Now consider an arbitrary maximal space 7 of G, ,,; then 7 has dimension at least
1. If [ is a line of 7, then each element of the pencil (I, _1,II,,1) = [&~! has at
least an (r — 1)-space in common with each element P& !, where P € 7. So P& !
contains IT,_; oris contained in IT, ;. Suppose, for at least one point P’ € 7\l that
the r-space P'® ! contains I1,_;. For any element P&, with P € 7\ (lU {P'}),
it is known that P&~ C .y orll,_; C P&~ ! and that P& ' N P'& ! is an
(r — 1)-space. Hence II,_; C P&~ 1. So all elements of 7& ! contain II,_;. Since
7 is maximal, it is the image of the set of all r-spaces containing II,._;. If, for at least
one point P’ € '\, the r-space P'® 1 is contained in II, 1, then, analogously,
is the image of the set of all r-spaces contained in II,. ;. a

The system S, of maximal spaces of G, ,, corresponding to the (r — 1)-spaces
of PG(n, K) is called the Latin system and its elements the Latin (n — r)-spaces.
The system S¢ corresponding to the (r + 1)-spaces of PG(n, K) is called the Greek
system and its elements the Greek (r + 1)-spaces. Note that the Latin and the Greek
spaces have the same dimension if and only if n = 27 + 1.

Let II,._; be an (r — 1)-space of PG(n, K) and let II,,_,. be an (n — r)-space
skew to II,_;. In the first part of the proof of Theorem 3.20, it was shown that &
induces a collineation & of II,,_, onto the corresponding maximal space of G, .
From the first part of the proof of Theorem 3.16, £ preserves the cross-ratio of any
four collinear points of IT,,_,.. Hence £ is a projectivity.

Similarly, Let IT, 1 be an (r + 1)-space of PG(n, K). In the second part of the
proof of Theorem 3.20, it was shown that & induces a reciprocity & of 11,1 onto
the corresponding maximal space of G, ,,. Again, by Theorem 3.16, £ preserves the
cross-ratio of any four hyperplanes of II,; in the same pencil, and hence £ is a
correlation.

Lemma 3.21. (i) Any line l of G, ;, is contained in one Latin space and one Greek
space.
(i1) Any two distinct Latin or two distinct Greek spaces have at most one point in
common.
(i) If1,,—, € Sy and 11,41 € Sq, then 11, N 11,41 is the empty set or a line.
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Proof. Let [&~1 be the pencil (IT,_1, I, 1). Then the Latin space defined by I, _;
is the only Latin space through [ and the Greek space defined by II,; is the only
Greek space through /.

For II,,_, € S, and 1,41 € Sg, let the corresponding spaces of PG(n, K)
be denoted by IT;._; and II/. ;. If IT}. _, C II; ., then II,,_, N II,41 is a line; if
I, ¢ 17,y then I, NIL, 1 = 0. O

Let 7, (114, II5) be the set of all r-spaces of PG(n, K) through the g-space II,
and contained in the h-space 1I;,. In the previous notation, 7, (II,_1,1I, 1), where

I,y C I, is the pencil (IT,_1,I,41). Let Qﬁ‘?t be the set of all s-spaces on
Gron-

Theorem 3.22. (i) For 0 < s < n — r, the set T, (Il,_1,11,1), is an element of
ﬁgr)“ here 11,1 C I, 4.
(ii) For0 < s <r+1, the set T,(11,_s, 11, 11), where I1, s C 11,11, is an element
Ofg'lg‘i’)l,.
(iii) Any s-space of G, ,, where 0 < s < max(n — r,r + 1), is obtained in one of
these ways.

Proof. (i) Itis first shown that 7.(IT,_1, T, ) € G&5) for0 < s < n—r. If IT,,_, is
a space skew to II,_q, then II,,_, N IL, = 1I,. The maximal space of G, ,, defined
by II,_ is denoted by IT/, _... Now consider the projectivity £ : II,,_, — II then
Tr(I—1, 11,1 5)® = II, is an s-space 11, of IT/,_,..

(ii) Similarly, 7, (II, _¢, II,41) € Q,Ef})b, where 0 < s < r + 1. For, if the maximal
space of G, ,, defined by 11, ; is denoted by IT. 1, consider, as above, the correlation
§: 1Ly — 10 ;5 then 7, (I, 4, 11,41 )& is an s-space 1T, of II;. ;.

(iii) Conversely, consider IT/, in Q,Ef})b, where 0 < s < max(n—r,r+1). The space
IT” is contained in at least one element of S, U Sg. So, either 1T, C II),_, where
I, . € SporIl, C II, ; where I, ; € Sg. The (r — 1)-space corresponding to
II;, . is denoted by II,_; and the (r + 1)-space corresponding to II], ; is denoted
by IT41.

(a) Let II,,_, be an (n — r)-space of PG(n, K') skew to II,_;. From the projec-
tivity ¢ : IT,,_, — II/,_,., it follows that IT.¢~! is an s-space II, of II,,_,. Hence
.61 s the set T, (1L, _1, I IT, g = IL,4 ).

(b) From the correlation & : 11,1 — II;., ;, it follows that IT}£ —1 is the set of all
hyperplanes of I1,., ; containing a fixed I, _. Hence I\& ! = 7,.(I,_4, 1L, 4 1). O

r.
n—r>

Remark 3.23. By Lemma 3.21, any s-space of G, ,,, where s > 1, is contained in
exactly one element of S, U Sg.

Theorem 3.24. For K = F, the sizes of S1., Sg, 952 are as follows:

() |Su| = ¢(r — Lin, q) and [Sc| = ¢(r + Lin, q);
() forn <2r+landl <s<n-—r,

G| = ¢(r — Lin, @)p(s;n —1,q) + ¢(r + Lyn, q)d(s; 7 + 1, );
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@) forn <2r+1landn—r <s<r+1,

G| = 6(r + Lin,q)d(s;r + 1,9);
@v) forn>2r+1landl <s<r+1,

G = ¢(r — 1in, q)(s;n — 7,q) + ¢(r + 1;n,q)d(s; 7 + 1, q);

W forn>2r+landr+1<s<n-—r,

G = o(r — 15m,9)p(s;n — 7, );
vi)forn=2r+1landl <s<r+1,

G = 26(r + 152 + 1,q)é(s57 + 1, 0);

(vii) forn =2r + 1,
SL| = [Sa| = ¢(r +1;2r +1,q).

Proof. First,

St) = PG V(n,q) = ¢(r — 1;n,);
ISa| = PG (n,q) = o(r + 1;n,q).

When n = 2r + 1, then ¢(r — 1;2r + 1,q) = &(r + 1;2r + 1, ¢); hence (vii) is
shown.

Since any s-space of G, ,,, with s > 1, is contained in exactly one element of
S, U Sg, the number of these s-spaces is equal to the sum of the number of all s-
spaces in elements of Sy, and the number of all s-spaces in elements of Sg. This
gives (ii)—(vi). a

Theorem 3.25. If the parameters r, s,t,n satisfy
1<r<n—-2, —-1<t<r—-2, r4+2<s<n,

and 11, 114 are subspaces of PG(n, K) with 11, C I, then T, (I1;,I1,)® is projec-
tively equivalent both to Gy 41, —¢—1 and to Gs_r_1 s—¢—1.

Proof. From Section 3.1 it may be assumed, without loss of generality, that
II, =UgU;---U,, II; =U,_Ug_y41---Us.
For any I, € 7, (II;, II,) choose r — ¢ linearly independent points
Pz©), P(zW),. .. PzrtD)
inll, NUgUy -+ - Ug_y_1. Let

W) i i
x()—(xo,xl,...,xs_t_l,O,...,O),
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1 =0,1,...,r—t— 1. The coordinates of II,. are determined by the (r+ 1) x (n+1)
matrix

3;8 55(1) 352—1‘,—1 o 0 --- 0 0 0 - 07
) xi zt, . 0 0 0
ap Tt gl 2T 000 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0 0 O 0
L O 0 0 0 0 1 0 0 0]

Now, with kg, k1, . .., k, distinct,
(koki - k) =0

if{s—t,s—t+1,...,s+ & {ko,k1,..., ke }orif{ko,k1,..., k-} ¢ {0,1,...,s}.
If both

{s—t,s—t+1,...,s8} C{ko,k1,...,k.} C {0,1,...,s},
{lo,ll,...,lr_t_l}:{ko,k‘l,...,]{ir}\{s—t,s—t—‘r1,...,8},

then, up to the sign, (ko k1 -~ k) is equal to (loly --- l,—;—1), where the latter is
calculated with respect to the matrix

0 0 0
Lo Ty Tg_t—1

1 1 1
Lo Ty Ts_t—1
r—t—1 r—t—1 r—t—1
Lo Ly o Ty

From these considerations it follows that 7,.(II;, II;)® is projectively equivalent to
the Grassmann variety G, _¢—1 s—¢—1. By Theorem 3.14, this variety is projectively
equivalentto Gs_r_1 s—¢—1. O

Corollary 3.26. The image of the set of all r-spaces of PG(n, K) containing a given
t-space 11y, where 1 < r < n —2and —1 <t < r — 2, is projectively equivalent
both to grftfl,nftfl and to gnfrfl,nftfl-

Proof. This is Theorem 3.25 with s = n. ad

Corollary 3.27. The image of the set of all r-spaces of PG(n, K) contained in a
given s-space s, where 1 < r < n —2andr + 2 < s < n, is projectively
equivalent both to G, s and to Gs_,_1 .
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Proof. This is Theorem 3.25 with s = —1. a

Corollary 3.28. The Grassmannian G, ,, contains a subvariety projectively equiva-
lent to Gy s if and only if 3 <n' < max(n —r+ 1,7+ 2).

Proof. For t = r — 2, Theorem 3.25 gives subvarieties projectively equivalent to
Gi,s—r+1, Where r + 2 < s < n; for s = r + 2 the theorem also gives subvarieties
projectively equivalent to Gy 41, Where —1 <t <71 — 2.

Forn’ > max(n — r + 1,7 + 2), the variety G; ,,» contains (n’ — 1)-spaces. The
Latin spaces of G, ,, have dimension n — r < n/ — 1, and the Greek spaces of G, ,,
have dimension r +1 < n/ — 1. Hence, in this case, G,.n cannot contain subvarieties
projectively equivalent to Gy /. O

In the last part of this section all projectivities of PG(N, K) leaving G, ,, invari-
ant are determined. It is necessary to distinguish between the cases n = 2r + 1 and
n#2r+1.

Theorem 3.29. If ¢ is a projectivity of PG(N, K) leaving G, ,, invariant, then § also
leaves Sy, and Sg invariant or interchanges them. For n # 2r + 1, they are left
invariant.

Proof. First, £ maps a maximal space of G, , onto a maximal space. For n # 2r +1,
the Greek and Latin spaces have different dimensions, and so £ leaves St, and Sg
invariant.

Now assume that n = 27 + 1. Let Il € Sp, U Sg; for example, 11,1 € St..
Choose a space II). ; € Sp, which has exactly one point P in common with II, | ;;
then IT, 1 £ NII] ;£ = P& By Lemma 3.21, the maximal spaces II, 1§ and IT/. | &
both belong to Sy, or to Sg.

Next consider any space II,' | € Sy, II),; # IL.;1. The (r — 1)-spaces of
PG(2r+1, K) which correspond to 11, 1 and II;’, ; are denoted by I, _; and II7/_;.

There exists a finite number of distinct (r — 1)-spaces 11, II ..., II¥_, such
that
0 0 1 k—117k k "
H’f‘*lnrfl? Hrfl]'_'[rfh e Hrfln'rfl? H'r‘lerfl
are r-spaces. Hence to I1Y_;, II! ... TI* | there correspond Latin spaces
0 1 k
|1 IR | =TI | Y
such that

0 0 1 k—1 k k 1"
My NG T NIy, Ty NI T NI
are points. By a previous argument, the maximal spaces

ITPTRTIN I RIRTN | EERTIPUONN | WIST IR I EIRYS

all belong to St, or all to Si. Hence 11,1 £ and II)_; £ both belong to Sy, or both to
S¢. Thus it has been shown that £ maps the elements of Sy, either all to S, or all to
Sc. Analogously, £ maps all elements of Sg to S, or to Si. Hence £ leaves both S,
and Sg invariant or interchanges them. ad
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From (3.18) and (3.19) in the case n = 2r+ 1 the correlation ) of PG(2r+1, K)
represented by
pxri =u;, 1=0,1,...,2r+1,
induces a projectivity ¢ of PG(N, K') which leaves G, 2,41 invariant. Then ( inter-

changes the systems St, and Sg of G 27 41.
Let G(Gy,») be the subgroup of PGL(N + 1, K) leaving G, ,, fixed.

Lemma 3.30. Let 0 : § — € map each element & of PGL(n + 1, K) onto the corre-
sponding element § of G(Gy.,). Then

(1) 0 is a monomorphism of PGL(n + 1, K) into G(G,..);
(ii) distinct elements of G(G,y,) induce distinct permutations of Gy .

Proof. First it is shown that the identity mapping of G, ,, is induced only by the
identity J of PGL(N 41, K).Let 3’ € PGL(N + 1, K) fix G, ,, point-wise. Choose
distinct points P, P’ € G, ,,, and let P&~ = II,, P'&~!1 = II.. There is a finite
number of elements 119, IT!, . .. II* € PG (n, K) such that

I, N0, IO NIIk, .. It ik, ok N,

are (r — 1)-spaces. This means that there is a finite number of points Py, P1, ..., Py
on G, ,, such that PPy, Py Py, ..., Py_1 Py, P, P’ are lines of G, ,,. Hence all points
of the subspace of PG(V, K') generated by G, ,, are fixed by J’. By Theorem 3.12,
all points of PG(N, K) are fixed by J’; hence J’ is the identity of PGL(N + 1, K).

From the preceding paragraph it follows that, if 6, 8’ € G(G,,,) coincide on G, ,,,
then 6 = ¢'.

Let &, & € PGL(n + 1, K), with £ # £'. Then the mappings induced by ¢ and
¢ on PG (n, K) are distinct; hence £ # £'. So @ is an injection of PGL(n + 1, K)
into G(G,.). Again, consider elements ¢,&’ € PGL(n + 1, K); then £€ and §~§/
coincide on G, ,,. Hence & = §~§/ and 6 is a monomorphism of PGL(n + 1, K) into
G(Grn)- O

Theorem 3.31. For n # 2r+ 1, the mapping 0 is an isomorphism of PGL(n+1, K)
onto G(Gy.). Forn =2r +1,

G(Grn) =PGL(n+1,K)0 U (PGL(n + 1, K)6)(.
Proof. First suppose that n # 2r + 1. It must be shown that
G(Grn) =PGL(n + 1, K)0.

Consider an element 6 € G(G,.,,). By Theorem 3.29, ¢ leaves Sy, and Sg invariant.
Consider an (r + 1)-space AL,; € Sg. The (r + 1)-space Al ;6 = AL’ also
belongs to Sg. The corresponding (7 + 1)-spaces of PG(n, K) are denoted by 11} ,
and Hi;l. By the remark just preceding Lemma 3.21, & induces a correlation of
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11}, onto AH_1 and of H%;_l onto A%;_l. Hence 56 ~! induces a projectivity £; of
11!, onto HH_1

Next consider an (r + 1)-space 112, | of PG(n, K) for which II',, N IIZ
is an r-space II,. Corresponding to 112 ; is an (r + 1)-space A%, € Sg. So, let
A2, 0= A?;l € Sc and let Hg/ﬂ be the corresponding (r+1)-space of PG(n, K).
Again 866! induces a projectivity & of I, | onto HT'Jrl

Since II} .4 N HT 11 1s an r-space, the intersection AT 41 NAZ, is a point P.
Hence ATJrl N AT+1 is a point P’, whence HlJrl N HTJrl is an r-space II... Since
P§ = P/, soI1,& = 11§, = II.. In II,,, now choose an (r — 1)-space II,_;. If
H1+1HT_~_1 = II,49, then 7,.(IL,_1,11,15)® is a plane IIs. If the lines II5 N A}n_H
and II, N AH_1 are [y and Iy, then Iy NIy = P. The plane 115§ = II} intersects
ALy, and AH_1 in the lines I = 116 and I}, = [50; also I5 N1 = P'. Now, [1& !
is the pencil (IL,_;&;, 7”+1) and 1561 is the pencil (Hr,lgg,n,%;l). These two
pencils belong to IT,6~!; hence, by Theorem 3.22, all elements of the two pencils
contain a common (r — 2)-space and are contained in a common (r + 1)-space, or
contain a common (r — 1)-space and are contained in a common (r + 2)-space. Since
the elements of the pencils generate H}ﬂ;lﬂf;l, which is an (r + 2)-space, they all
contain a common (7 — 1)-space.

Hence I1,,_1& = I,_1& = II/._,. Consequently, the actions of &; and &, on
the set of all hyperplanes of II,. coincide, which means that £; and &5 also coincide
on all points of 1L,..

Consider distinct (r+1)-spaces II?, | and IT}, ; of PG(n, K). Let their intersec-
tion be an s-space Il for some s € {—1,0,1,...,r}. There exists a finite number
of distinct (r + 1)-spaces

3 5 6 k 4
e, =105, 16, ... Tk, =10,
in PG(n, K) such that
5 k—1
e, , NI, 18, nil,,,... Ik nik,,

are r-spaces which contain II;. As in the preceding paragraphs, the spaces

HiJrlv Hnglv R H7’f+1
define projectivities & = &5,8,...,& = &4 Also, & and ;4 coincide on all
points of II7. . ; N Hﬁll, ; =5,0,...,k— 1, and consequently coincide on all points

of IIs. Hence &3 and &, coincide on all points of II;.

Define ¢ as follows. Let P be an arbitrary point of PG(n, K). Consider any
(r+1)-space I, ; containing P and the corresponding projectivity &. Then define
P& = P&y. From the above, P& is independent of the choice of I1° 41 through P.If
L is a line of PG(n, K), then choosing I1° +11 through [ it follows that £ is a line of
PG(n, K); if II,. is an r-space of PG(n, K), then choosing IIY_ ; through II, gives
that I, &6 = IL,.£6. Hence ¢ is a projectivity of PG(n, K) and €0 = £ = 4. This
proves the theorem in the case that n # 2r + 1.
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Finally, suppose that n = 2r + 1. From above,
PGL(2r +2,K)0 U (PGL(2r + 2, K)0)¢ C G(Gr2r+1)-

Let § € G(Grar+1) leave Sp, and Sg invariant; then, as in the case n # 2r + 1,
it follows that § € PGL(2r + 2, K)#. Now suppose that ¢ interchanges Sy, and
Sc.Then 8¢t € G (Gr.2r+1) and leaves both S, and Sg invariant. Consequently
§¢~1 € PGL(2r + 2, K); that is, § € (PGL(2r + 2, K)6)(. O

It follows from this proof that (PGL(2r + 2, K)6)( is induced by the set of all
correlations of PG(2r + 1, K).

Corollary 3.32. (i) Forn # 2r + 1,
|G(Gr.nq)| = [PGL(n +1,4)|.
@) Forn =2r + 1,
|G(Gr.2r41,4)] = 2|PGL(2r +2,q)].
Proof. This follows immediately from the theorem. a

Theorem 3.33. If § is a permutation of G,.,, such that both § and 5 fix Qr n, then
d can be extended to an element of G(Gy. ).

Proof. The permutations § and § ! map each s-space Il of G, ,, onto an s-space of
Gr.n- As in the proof of Theorem 3.29, it can be shown that, for n # 27 + 1, both
§ and 6! leave each of S, and S¢ invariant, whereas, for n = 2r + 1, both § and
51 leave the pair {Sp, S } invariant. Similarly to the proof of Theorem 3.31, when
n # 2r 4 1 the permutation § naturally defines a projectivity £ of PG(n, K); also, ¢
is the restriction of £ = £ to G, ,,. Thus J can be extended to £&. When n = 27 + 1,

either § or 6! defines the projectivity £ and is correspondingly the restriction of
€0 =€ to Gr.n; here, 6 can be extended to one of £ and £(. In both cases, § can be
extended to an element of G(G,.,,). 0

3.3 A characterisation of Grassmann varieties

In this section it is always assumed that the objects considered are finite. However,
all theorems stated can be generalised to the infinite case. The main goal is to char-
acterise the finite Grassmann varieties in terms of their subspaces.

Let P be a non-empty set whose elements are called points, and let 5 be a non-
empty set consisting of subsets of P. The elements of B are called lines. The pair
(P, B) is a partial linear space (PLS) if the following conditions are satisfied:

(1) any two distinct points in P belong to at most one line in B;
(2) any line in B contains at least two points of P;
(3) Bis a covering of P; that is, P is the union of all elements of 5.
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The points P, P’ of P are collinear if there is a line [ of B containing P and P’;
in this case, write P ~ P’. If P and P’ are non-collinear, write P ¢ P’. Note that
P ~ P.If P and P’ are distinct points of the line /, then [ is also denoted by PP’.

Definition 3.34. (1) If any two points of P are collinear, then (P, B) is a linear space
(LS).

(2) Otherwise, (P, B) is a proper partial linear space (PPLS).

(3) A subset P’ of the PLS (P, B) is a subspace if any two of its points are collinear
and the line joining them is completely contained in P’.

(4) The subspace P’ is a maximal subspace if it is not properly contained in any
subspace of (P, BB).

(5) If each line [ of the PLS (P, BB) contains at least three points, the space (P, B) is
irreducible.

(6) A PPLS (P, B) is connected if for any two points P, P’ there exist points
P, Ps,...,Pysuchthat P~ Py ~ Py~ -+~ P ~ P.

Consider the Grassmann variety G, ,, 1 <r <n—2.LetP = G, ,, and let 3 be
the set of all lines of G, ,,. Then (P, B3) is a PPLS whose subspaces are the subspaces
of PG(N, ¢) contained in G, , and whose maximal subspaces are the maximal spaces
of G, . Also, (P, B) is irreducible and connected; see the proof of Lemma 3.30.

Lemma 3.35. Let (P, B) be the PPLS corresponding to the Grassmann variety Gy ,,.
Then (P, B) satisfies the following conditions.

W) IfP,P',P" € Pwith P ~ P'" ~ P" ~ P, then there is a subspace containing
these points.
(ii) The set of maximal subspaces is partitioned into two families Sy, and Sg with
the following further properties.
@IfmreSyandr’ € Sg,thentNw =PormNn’ €B.
(b) For each | € B there is a unique ™ € St, and a unique ©' € Sg such that
rNwa =1
(¢) If m, ', 7" are distinct elements of Sy, for which t N«', 7' N7", 7" N7 are
distinct points, then any element of Sy, other than 7, 7', 7" having distinct
points in common with w and 7' also has a point in common with .
Similarly, if T, 7', 7" are distinct elements of Sg for which the spaces
N« 7' N7”, 7" N7 are distinct points, then any element of Sg other than
m, 7', " having distinct points in common with © and 7' also has a point in
common with 7.
(iii) There exist distinct subspaces 71, o, ..., Tpr41 such that m1 € B, w41 € Sg,
m; C miy1 and such that there is no subspace 7 other than m; and ;11 with
T Cm C g,
Similarly, there exist distinct subspaces 7y, T, . .., Tp_y Such that w € B,
Tp—r € SL, T C Tit1 and such that there is no subspace w other than m; and
Ti4+1 with mw; C ™ C Ti41-
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Proof. Let P, P’, P” be distinct points of P, with P ~ P’ ~ P” ~ P. It may
be assumed that P, P’, P” are not on a common line of . The plane PP’ P" has
three lines in common with each of the quadrics represented by equations (3.5), and
hence is contained in all these quadrics. So the plane PP’ P” is contained in G, ,,.
Therefore P, P’, P lie in a subspace of (P, B).

Properties (ii)(a) and (ii)(b) are proved in Theorem 3.20 and Lemma 3.21. Let
m, 7', 7" be distinct elements of St for which # N 7', 7’ N 7", 7" N 7 are dis-
tinct points. The (r — 1)-spaces of PG(n,q) which correspond to 7,7, 7" are
denoted by II,_,II/_{,II” ;. Since 7 N 7', 7’ N 7", 7"’ N 7 are distinct points,
the spaces II,_q,II/_;,II”_; contain a common (r — 2)-space II,_o. If the space
7" € Su\{m, 7', 7"} has distinct points in common with 7 and 7/, then the (r — 1)-
space of PG(n,q) corresponding to 7" contains II,_5. Hence 7" and 7"/ have
a point in common. Similarly, let 7, 7/, 7" be distinct elements of S for which
rmNx', 7' Na” 7" N7 are distinct points. The (7 + 1)-spaces of PG(n, ¢) which cor-
respond to 7, 7', '’ are denoted by 11,1, 1T/, I ;. Since 7 N 7', 7' Nx” , 7" N7
are distinct points, the spaces 11,1, 117, , II;, | are contained in a common (r +2)-
space 11, ;. If the space 7' € Sg\{m, 7', 7"’} has distinct points in common with
7 and 7/, then the (r 4+ 1)-space of PG(n, ¢) corresponding to 7" is contained in
II, 5. Hence " and 7' have a point in common.

Property (iii) follows immediately. a

Let (P, B) be a connected irreducible PPLS. It is a Grassmann space of index r,
with r > 1, if the following axioms are satisfied.

Al. If PP’ P" € P with P ~ P’ ~ P” ~ P, then there is a subspace of (P, B)
containing these points.
A2. The set of maximal subspaces of (P, B) is partitioned into two families, say S
and 7, with the following properties.
. freSandn’ € T,thenmtNa’' =QormNa’ €B.
II. For each [ € B there is a unique 7 € S and a unique ©’ € T such that
ICrmandl C 7.
II. Let, 7', 7" be distinct elements of S for which N7/, 7’ N#", 7" N are
distinct points. Then any element of S\{7, 7, 7"} having distinct points
in common with 7 and 7’ also has a point in common with 7.
A3. There exist r + 1 distinct subspaces 7; such that 7y C m C --- C 741, With
m € B, m-41 € T, and such that there is no subspace 7w with m; C ™ C m;41
other than m = 7;, m; g fore = 1,2, ..., r.

Lemma 3.36. Let (P, BB) be the PPLS corresponding to the Grassmann variety Gy ,,.
Then (P, B) is a Grassmann space both of index r and of index n — r — 1.

Proof. Putting S = S, and T = Sg in Lemma 3.35 shows that (P, B) is a Grass-
mann space of index r; putting S = Sg and 7 = Sy, shows that (P, B) is a Grass-
mann space of index n —r — 1. ad

Definition 3.37. Let (P, B) and (P’, B’) be two Grassmann spaces.
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(1) A bijection ¢ from P to P’ is an isomorphism or collineation from (P, B) to
(P’,B’) if B’ is the set of all images of the elements of /3 under &.
(2) In this case, (P, B) and (P’, B) are isomorphic.

If ¢ is an isomorphism from (P, B) to (P’,B’), then £ maps the subspaces and
maximal subspaces of (P, ) onto the subspaces and maximal subspaces of (P’, B).

Let 7 and 7’ be distinct maximal subspaces belonging to the same system D of
maximal subspaces of the Grassmann space (P, B).If P € m, P’ € «/, P # P’, then
by the connectivity of (P, B) there exist distinct points P, = P, P, ..., P, = P’
such that P ~ Py ~ --- ~ Pp. Let m; be the element of D which contains the
line P,Pjy1,1 = 1,2,...,k — 1. By A2Il, m; = ;41 or m; N m;41 is a point,
i=1,2,...,k—1.If £ is an isomorphism from (P, B) to (P’, B’) then m;& = m;11&
or m;& N m;41& is a point. Hence, by A2.1, &, me&, ..., & belong to the same
system D’ of maximal subspaces of (P’,B’). Consequently, 7£ and 7' belong to
D'. Therefore £ maps each system of maximal subspaces of (P, B) onto a system of
maximal subspaces of (P’, B').

Henceforth, it is assumed that (P, B) is a Grassmann space of index r > 2.

Lemma 3.38. (i) No line in B is a maximal subspace.
(i1) Two distinct elements of the same system of maximal subspaces have at most
one point in COmmon.

Proof. Let | € B be a maximal subspace, say [ € S. By A2.II, thereisanm € T
which contains [. Since 7 NS = (), so [ is properly contained in 7, and hence [ is not
maximal, a contradiction. Consequently no element of B is a maximal subspace.
Suppose that = and 7" are distinct elements of 7 U S which have distinct points
P and P’ in common. The line [ = PP’ belongs to exactly one element of S and to
exactly one element of 7. Hence 7 and 7’ belong to distinct families. a

Lemma 3.39. Letm, 7' € S,r # 7', and P e n N7’ If 7"’ € T, and if tN7" =1
and ™' N« = 1" are lines , then | NI' = P and so "’ contains P.

Proof. By Lemma 3.38, r N7’ = P;sol #1'.LetQ € [,Q" €I, with P,Q,Q’
distinct; then P ~ Q ~ Q' ~ P. By Al, the points P, Q, Q' are contained in a
subspace a1, and g is contained in a maximal subspace as. If as € S then, by
Lemma 3.38, 7 = a9 = 7', a contradiction; so as € 7. Since a contains the
distinct points Q, Q' of 7, so © = «ao by Lemma 3.38; thus P € «”. Finally,
Pecrna’ =landPecn' Nnna”’" =1. |

Lemma 3.40. Each element of T provided with its lines has the structure of the
points and lines of a projective space.

Proof. If m € T, then 7 with its lines is a linear space. It is sufficient to show that in
that linear space the Veblen—Wedderburn axiom holds.

Let [; and [5 be distinct lines of 7, with [1 Nl = P;if I3 and l4 are distinct lines
of m, each meeting both /; and /5 at points other than P, then it must be shown that
l3 and l4 meet at a point.
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Letl1Nl3 =P, loNis=Po, 1Nl = Q1, la Ny = Qo. Through I; there is
exactly one maximal subspace o; € S, 1 =1,2,3,4. If s = 5, 1 # j, thenoy N7
contains all points of /; Ul;, in contradiction to A2.1. Hence the spaces oy, a2, a3, a4
are distinct. By Lemma 3.38,

arNas =P, aiNag=P, asNasg=Ps,,

a1Nag =Q1, aNay= Q4.
By A2.11I1, a3 and a4 have a common point (). Since
QeasNay, weT,azNm=I3, asNmT=ly,
solsNly = @, by Lemma 3.39. a

Any projective space belonging to 7 contains projective planes. The set of all
these projective planes is denoted by C. Then any element of C is a subspace of
(P, B), and is contained in exactly one element of 7.

Lemma 3.41. Let

(a) m and 7' be distinct elements of T which intersect in the point P;
(b) a1, s, as be distinct elements of S containing P;

© anr=LeB, ;N =1l eB,i=1,2,3;

(d) 11,1s,13 belong to a common plane in .

Then I, 15,15 also belong to a common plane in ',

Proof. The lines l1, l2, [3 are distinct, as are [1, 15, [5. Let II5 be the plane containing
l1,12,13, and let I, be the plane of 7’ containing I} and 5. It must be shown that
I C II5.

Let [ be a line of II; which does not contain P, and let « be the element of S
which contains [. If & N 7’ is not a line, then let I’ be any line of IT, which does not
contain P; if N7’ is a line, then let I’ be any line of T, which is distinct from aN 7’
and does not contain P.

LetlNl; = Q;,¢ = 1,2,3,and let ' N1, = Q}, i = 1,2. The five points
Q1,Q2, Q3, Q, QY are distinct. Let o’ be the element of S which contains I’. Then
a, o/, a1, as, ag are distinct, with

aNa; =Qi,i=1,2,3, o Na;=Q;, i=1,2.

Since «, a1, g meet in pairs in distinct points and since o has distinct points in
common with a; and «a, then A2.III implies that « and o have a point in common.

LetaNa’ = Q; here, Q is distinct from Q; and Q. Consequently, the maximal
subspaces a, o', 1 meet in pairs in distinct points, and a3 meets o and o in the
distinct points Q3 and P. Hence, by A2.III, the intersection of a3 and ' is a point
Q. SinceasnNa’ =, o' N’ =1, azNa’ = Q, by Lemma3.39,1' Nl = Q.
So I4 contains distinct points P and @’ of the plane I1; that is, {5 C 1I5. O
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Let P € P and 7 € C, with P € 7. Then the set consisting of all the elements of
S meeting 7 at lines through P is denoted by R(P, 7).

Lemma 3.42. If 7 € C with P € w, then |R(P,w)| > 3. If m,7' € C,with P € 7
and P' € 7', then |R(P,m) N R(P’,7')| > 2 implies that R(P,7) = R(P',n").

Proof. Letw € C, P € P, where P € 7. Choose distinct lines [1, I3, I3 in 7 through
P. The elements of S containing l1, 2, [3 are denoted by a1, aa, ag; then v, e, a3
belong to R(P, ). If o; = «vj, ¢ # j, then mNe, with o the element of 7 containing
, contains all points of [; U [;. This contradicts A2.1. Hence «; # «; for ¢ # j, and
so |[R(P,m)| > 3.

Next, let 7,7’ € C, P € w, P’ € 7/, and |R(P,7) N R(P’,7")| > 2. Choose
distinct elements «; and ap in R(P, ) N R(P’, 7). The points P and P’ belong to
both a1 and a. By Lemma 3.38, P = P'. If 7 = 7/, then R(P, 7) = R(P’, 7). So
assume that m # 7. Let o and o be the elements of 7 which contain 7 and 7. For
at least one of a1, oo the lines a;; N and a;; N’ are distinct, say oy N7 # g N’ If
« = o then the distinct lines ai; N, ey N’ belong to aNary, in contradiction to A2.1.
Hence oo # o and o N o/ = P. Now consider a subspace oz € R(P, m)\{a1, a2}
Since a3 N’ # (), so it is a line I’. By Lemma 3.41, the lines a1 N o/, ap N &', 1’
belong to a common plane. The lines oy N &/, s N &’ belong to 7’; hence I’ C 7'.
This means that g € R(P,7’). Consequently R(P,w) C R(P,n’). Analogously,
R(P,7") C R(P,m).So R(P,n") = R(P, ), and the theorem is proved. O

The set whose elements are the subsets R(P, 7) of S is denoted by R.

Lemma 3.43. The pair (S, R) is a connected irreducible PLS. Also, two elements in
S are collinear if and only if they have a common point in P.

Proof. Let 7 and 7’ be two distinct elements of S. If 7 N 7’ = P, then let [ be a
line in 7 through P. There is a subspace « € T through [ meeting 7’ in at least one
point. Hence oo N 7’ is a line I’. Let I, be the plane of 7 containing the lines [ and
I'. Since m, 7’ € R(P,1l2), so 7 and 7’ are collinear in (S, R). If # N7’ = (), then
there is no element in R through 7 and 7’

Let # € S and choose a line [ in 7. Through [ there is a maximal subspace
7w’ € T.Let P € [ and let TI; be a plane of 7’ containing /. Then w € R(P, II3), and
so R is a covering of S. By Lemma 3.42, any element of R contains at least three
elements of S, and two distinct elements of S belong to at most one element of R.
Hence (S, R) is an irreducible PLS.

Let 7 and 7’ be distinct elements of S. Choose P € m and P’ € «'. Since (P, B)
is connected, there are points P = P, Ps, ..., P, = P’ with P, ~ Py ~ -+ ~ Pj.
Let a; be the element of S containing the line PP, 1,7 = 1,2,...,k — 1. Then
TNay #0, 7 Nag_1 #0,and a; N1 # O, fori =1,2,...,k — 1. Hence the
three pairs {7, a1}, {a, i1}, {7, ax_1} are collinear in (S, R). This shows that
(S, R) is connected. O

Let P € P, and let Sp be the set of all elements of S containing P. Then Sp is
a subspace of the PLS (S, R).
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Lemma 3.44. Let P be a point of P and let ™ be an element of T through P. If 7 is
the projective space PG(s + 1, q), then Sp provided with its lines is isomorphic to
the linear space formed by the points and lines of PG(s, q).

Proof. Let L be the set of all lines of 7 through P. By A2.1, each element of Sp
meets 7 in a line of L. Let ¢ be the mapping

p:7 €SprrNweL;

then ¢ is a bijection of Sp onto L.

First, ¢ ~! maps each pencil of lines in £ onto a line of (S, R) which is contained
in Sp. Conversely, consider a line of the PLS (S, R) which is contained in Sp. Such
a line is of type R(P,II;). If 1 and ay are distinct elements of R(P,IIy), then
a1 N and ag N 7 are distinct lines of 7, which determine a plane II}. By Lemma
3.42, R(P,112) = R(P,I1,). Then R(P,II3)¢ = R(P,1I})¢ consists of all lines of
IT, through P. Hence R(P,112)¢ is a pencil of lines in L.

Note that £ provided with its pencils of lines is isomorphic to the structure of
points and lines of PG(s, ¢). Since ¢ is an isomorphism of the linear space formed
by Sp and its lines onto the linear space formed by £ and its pencils, it has been
shown that Sp provided with its lines is isomorphic to the linear space formed by the
points and lines of PG(s, q). O

Lemma 3.45. Each 7 in T is an (r + 1)-dimensional projective space over the same
field F .

Proof. By A3, there is a maximal subspace « in 7 which is an (r + 1)-dimensional
projective space over some field F,. Let 7 € T\ {a}, and choose a point P € « and
a point P’ € m, with P # P’. Since (P, BB) is connected, there are distinct points
P=P,P,...,P, =P suchthat P, ~ P,y fori =1,2,...,k—1. Let o; be the
element of 7 containing P; P;;1; then «v; and «v; 11 have a common point P; 4. Also,
« and a3 both contain P = Py, and ay,_; and 7 both contain P’ = Py. Suppose that
v is the projective space PG(r' + 1, ¢’). By Lemma 3.44, Sp provided with its lines
is isomorphic to the linear space formed by the points and lines both of PG(r, ¢) and
of PG(7’,q’). Hence r = 7’ and ¢ = ¢'. Repeating the argument, it finally follows
that 7 is PG(r + 1, ). O

Corollary 3.46. Each Sp, provided with its lines, is the linear space formed by the
points and lines of PG(r, q).

Proof. Let P € P. Choose a line [ containing P, and let 7 be the element of T
containing . By Lemma 3.45, 7 is the space PG(r + 1, ¢). Now, by Lemma 3.44,
Sp is the space PG(r, q). O

Lemma 3.47. Let a1, o, aig be distinct elements of S which are pairwise collinear
in (S, R). If a1, a2, ag contain a common point P of P, then there exists a projective
plane over F , in (S, R) through them.
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Proof. By Corollary 3.46, Sp is the projective space PG(r,¢), which contains
o, o2, a3 as points. Hence there is a plane over F, in (S,R) which contains
a1, g, 3. O

Lemma 3.48. Let a1, s, a3 be elements of S which are pairwise collinear in
(S, R), and suppose as subspaces of (P, B) that they do not contain a common
point of P. Then there exists a projective plane over ¥ in (S, R) which contains
ag, Qg, Q3.

Proof. Since aq, a, arg are distinct and do not belong to a common line of (S, R),
let ag Naag = P,azNay = P,a1 Nag = Psin (P,B) As ap,q9, a3
do not contain a common point, so P;, P», P3 are distinct. By A2.II, the lines
Py Py, P,P3, P3Py of B are distinct. By Al, there is a subspace of (P, B) which
contains Py, P,, P3, and this subspace contains a line of ay, ¢ = 1,2, 3; hence it is
contained in an element 7 of 7. Consequently Py, P», Ps generate a projective plane
H2 of 7.
Now it is shown that

I, ={r" eS| NIl € B}

is a projective plane of (S, R) which is isomorphic to II5. Let 7}, 75 be any two dis-
tinct elements of ﬁg. They meet I15 in two lines [y, I3 of B that are distinct; here, let
Iy = P.Hence 7} and 7}, belong to the line R(P, II;) in R; also R(P, II3) C .
Now, corresponding to each line [ in II5 there is an element of S containing [. This
gives an isomorphism from the dual of the plane II5 to the linear space formed by
the elements of II5 and the lines of (S, R) contained in Hg Hence 115 is a projective
plane isomorphic to the dual of II5 and so also to PG(2, q). a

Lemma 3.49. Each subspace of (S, R) is a projective space over F .
Proof. This follows immediately from the previous two lemmas. a

Lemma 3.50. Let P be a point in P and let m be an element of S which does not
contain P. Then the set

D={reS|Per,nnn #0}
is either a line in R or the empty set.

Proof. Assume that through P there are two distinct elements of S, say «ay, s, both
meeting 7 in points: TNa; = Py, mNasy = P>. By Lemma 3.38, P, # P». Since the
points P;, P>, P are pairwise collinear, there is an element « in 7 containing these
points. If I, is the plane of « containing Py, P», P, the line R(P,1II3) in (S,R)
consists of those elements in S containing P and any point of the line P, P. Now
assume that o3 in S contains P, that ag N7 # (), and that o3 ¢ R(P,1ls). Let
7 Nag = Ps; then P3 ¢ Py P,. Again, P, Py, P5 are contained in some plane IT),
contained in some element of 7. The intersection of the planes IT» and IT} is the line
PPy. Let « and o’ be the elements of 7 containing II5 and IT;. By Lemma 3.38,
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«a = . Hence the points Py, Py, P3 belong to «, and so the plane Py P, P; belongs
to m N «, contradicting A2.1. This proves that D is a line in R.

Next, assume that through P there is at least one element of S, say 7/, which has
a point Q' in common with 7. The element of 7 containing the line PQ’ has a line [
in common with 7. Let Q" € I\{Q'}. Then P ~ @", and the element of S through
PQ" belongs to D. By the first part of the proof, D is a line in R. So it has been
shown that D = () or a line in R. O

Corollary 3.51. The set (S, R) is a proper PLS. More precisely, if P € P,m € S,
with P & m, then there is at least one element of Sp which has no point in common
with .

Proof. Let m € S and let P be a point not in 7. Since Sp is the projective space
PG(r,q), with r > 2, and since D = () or a line in Sp, there are elements in Sp
which do not belong to D. Hence there are elements through P which have no point
in common with 7, which means that there exists at least one pair of non-collinear
points in (S, R). O

Lemma 3.52. For any P € P, the set Sp is a maximal subspace of (S, R).

Proof. Suppose that Sp is not maximal. Then there exists an element 7 € S, with
7w & Sp, such that 7 is collinear in (S, R) with each element of Sp. By Lemma 3.43,
7 has a point in common with each element of Sp. By Corollary 3.51, Sp contains
an element which has no point in common with 7, a contradiction. a

The family consisting of the maximal subspaces Sp of (S,R) is denoted by T.
Note that each element of 7 is an r-dimensional projective space over F,.

Lemma 3.53. Two distinct maximal subspaces in T have at most one element of S
in commony; that is, |Sp N Sg| < 1 for distinct points P, Q € P.

Proof. It P ~ () and P # @), then Sp N S is the unique element of S containing
the line PQ. If P o @, there is no element of S containing both P and Q). a

Lemma 3.54. Let 7, 7' be distinct elements of S containing the point P. If o and
ag are distinct elements of S\{m, 7'} both meeting m and ' at distinct points, then

(1) a1 and as are collinear in (S, R);
(ii) any element az € S belonging to the line ayas of (S, R) either meets both 7
and ' in distinct points or belongs to the line ' of (S, R).

Proof. By A2.I1I, the maximal subspaces oy and as have a point in common; that
is, they are collinear in (S, R). If oy N e = @, then P # @ since P & ay U aa.

If Q € 7, then any a3 € S belonging to the line oy ap of (S, R) has a point in
common with 7. Hence in (S, R) any such « is collinear with 7.

Now let Q@ ¢ w. By Lemma 3.50, the set of all elements in S through @ and
having a point in common with 7 is the line «j o of (S, R). Hence each element of
the line v o contains a point of 7.
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Similarly, each element of the line ;o contains a point of 7.

Next, assume that the element g € 1 vy contains P. It must be shown that ag
belongs to the line 7’ of (S, R). So a3 € Sp and a3 N a3 = Q. By Lemma 3.50,
the set of all elements in S through P and having a point in common with «; is the
line 77’ of (S, R). Hence ag € w7’ and the result is proved. O

Let 7, 7’ be distinct elements of S which are collinear in (S, R). Then 7 and 7’
have a common point P. Denote by S(m, 7’) the set consisting of all elements in S
that either belong to the line 77’ of (S, R) or meet both 7 and 7’ at points of P\{ P}.

Lemma 3.55. The set S(m,7') is a subspace of (S, R), which properly contains the
line rr’ of (S, R).

Proof. Let m N’ = P and let « be an element of 7 containing P. By the axiom
A2L,rNa=leBandn Na=1 € B.LetQ € I\{P} and let Q' € I'\{P};
then @ ~ Q’. The space 7"’ € S which contains the line QQ’ belongs to S(m, 7’),
but not to 77’. Hence S(rr, 7') properly contains the line 77’ of (S, R).

It must still be shown that S(m, 7’) is a subspace of (S,R). Three cases are
considered.

(1) Let v, o be distinct elements of S(, ') which both belong to the line 77’.
Then o, aig are collinear in (S, R) and the line oy ap = 7w’ is completely contained
in S(m, 7).

(2) Let a1, ap be distinct elements of S(r, 7’), and suppose that P ¢ «; and
P ¢ ay. By Lemma 3.54, o1 and a5 are collinear in (S, R), and the line oy is
completely contained in S(7, 7).

(3) Let a1, oo be distinct elements of S(m, 7’), where P € «; and ay € 7r'.
By Lemma 3.50, the spaces a; and « have a common point ). Hence oy and as
are collinear in (S, R). If @ € m, then each a3 € a2 contains a point of 7; if
Q@ ¢ 7, then, by Lemma 3.50, each a3 € a3 2 contains a point of 7. Similarly, each
a3 € aiag contains a point of 7', Since as is the only element of S containing P
and @, so all spaces in a2\ {aa} belong to S(m, 7')\7n’. Hence the line oy axo of
(S, R) is completely contained in S(m, 7).

From (1), (2), (3), it follows that S(7r, 7’) is a subspace of (S, R). a0

Lemma 3.56. Each S(wt,7") is a maximal subspace of (S, R).

Proof. Let m N’ = P, and suppose that S(7, 7’) is not maximal. Then there exists
an element 7" in S not in S(w, ') such that in (S, R) the element 7’ is collinear
with each element of S(, 7’). Hence 7/ has a point in common with each element
of S(m,n’). If P ¢ =", then " meets both 7 and 7’ at points of P\{P}. Hence
7" € S(w,n’), a contradiction; so P € 7.

Let a; € S(m, 7’)\wn’. Since 7"’ contains P and 7"/ N ay # (), by Lemma 3.50,
7" € wr’; hence " € S(m, '), again a contradiction. ]

The family consisting of the maximal subspaces S(7, ') of (S, R) is denoted
by S. By Lemma 3.55, each element of S properly contains a line of (S, R).
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Lemma 3.57. Let m and ' be two distinct collinear elements of (S, R), and suppose
that m N« = P. Then Sp and S(w, ') are the only maximal subspaces of (S,R)
containing ™ and 7', and Sp N S(mw, 7') = wr'.

Proof. First, 77’ is contained in both Sp and S(7, 7'); also, Sp N S(w, 7') = ww'.
Now, let IT be any subspace of (S,R) through 7 and 7’. It must be shown that
IMcSporll C S(m,n).

If each element of II contains P, then II C Sp. So, assume that 7/ € II and
P ¢ 7. Since 7" is collinear with 7 and 7/, it meets 7 and 7’ at distinct points;
hence 7" € S(m, n'). Each element 7 of 1T which contains P has a point in common
with 7" and hence, by Lemma 3.50 belongs to the line 77’ of (S, R). This means
that mg € S(m, '), and so I C S(w, 7). O

Corollary 3.58. The only maximal subspaces of (S, R) are the elements of SUT.
Proof. This is immediate from Lemma 3.57. a
Remark 3.59. From their definitions, S NT = ().

Lemma 3.60. If o1, oo are distinct elements of S(w, '), then they have a common
point, and S(aq, ) = S(w, 7).

Proof. Since ay, as € S(m, ), they are collinear in (S, R); so they have a common
point @ in P. By Lemma 3.57, Sg and S(a, a2) are the only maximal subspaces
containing the line aya of (S, R). Since S(m, 7') is a subspace containing the line
arag, 80 S(m, ') C Sg or S(m, ') C S(aq, ag). Since not all elements of S(, 7')
have a common point, so S(7,7’) C S(ay, az). Since S(m, ') is maximal, it fol-
lows that S(ay, as) = S(m, 7). O

Lemma 3.61. If 3, 8/, 8" are distinct elements in S with the intersections
5ﬂﬁ/ — {7_[_//}’ 5/ ﬂﬁ” — {7'['}’ 5// ﬂﬂ — {ﬂ_/}’
where ™ # 7', then w, 7', " have a point of P in common.

Proof. If 1 = 7", then also m = 7/, a contradiction. Hence 7 # 7" and analogously
7' # «’. The spaces m, 7', 7" are collinear in pairs in (S,R). By Lemmas 3.47
and 3.48, they are contained in a subspace v of (S, R). Denote by 5y the maximal
subspace of (S, R) which contains ~. Since 7, 7" € 8y N 3", s0 By € T by Lemma
3.57. Hence there is some point P € P for which 5y = Sp. It follows that 7, 7/, 7"/
all contain the point P. a

Lemma 3.62. The pair (S, R) is a Grassmann space of index r — 1.

Proof. From Lemma 3.43 and Corollary 3.51, it follows that (S, R) is a connected
irreducible PPLS.

Let 7, ', 7" be pairwise collinear elements of (S, R). By Lemmas 3.47 and
3.48, they are contained in a subspace of (S, R). This means that Al is satisfied.
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The set of all maximal subspaces of (S, R) is partitioned into the families S and
7. Consider an element 8 € T and an element 3/ € S. Then 8 = Sp for some
point P € P. Take an element 7 € Sp N 3’ and let 7’ € §'\{7}. By Lemma 3.60,
B = S8(m, 7). if r N7’ = P, then Lemma 3.57 implies that Sp N S(w, ') = 7.
Now assume that P ¢ 7’. By Lemma 3.50, the set of all elements of Sp which have
a point in common with 7’ is a line  in R. Take 77 in [\ {7 }; then 7" € S(m, 7’). By
Lemma 3.60, S(m, 7') = S(w, ). Again, by Lemma 3.57, Sp N S(w, n") = nr”.
Hence, if 5N’ # (), then SN 3’ is a line of (S, R). This shows that A2.1 is satisfied.

Let [ be a line of (S, R). Suppose that 7, 7’ € I, 7 # 7', and let N7’ = P. By
Lemma 3.57, Sp in T and S(m, ') in S are the only maximal subspaces of (S, R)
containing /. Consequently A2.11 is satisfied.

Next, let 3, 8, " be distinct elements in S for which

pnp ={x"}, B'np" ={r}, " nB={r"}

are distinct elements of S. Now consider an element 3y € S\{, 3, 3"} having
distinct elements in common with 8 and 8’. Let 8o N 8 = {a} and By N B’ = {a/}.
It is now shown that 5y N 38" # (.

From Lemma 3.61, 7, #, 7’/ contain a common point P in P and «, o/, 7’ con-
tain a common point @) in P.

First assume that P = Q. Since 3N Sp = @ or a line of (S, R), the elements
7", 7', o are collinear in (S, R); similarly, 7'/, 7, ' are collinear in (S, R). Hence,
in the projective space Sp, the plane w7/7" also contains « and . Consequently, in
(S, R), the lines aa’ and 77’ meet at an element o/ € S. However, aa’ C 3y and
7w’ C (", so that By N B # (.

Next, assume that P # @, and so o # 7. In (S, R), the elements « and 7’ are
collinear; so a N’ = P’ for some P’ € P. Similarly, o’ # mando/’ N7 = Q.
Now, P # @ implies that the points P, Q, P’, Q' are distinct. In (P, B), the points
P, Q, P’ are pairwise collinear; hence they are contained in a maximal subspace 7 of
(S, R). Since P and PP’ are contained in the distinct elements 7" and 7’ of S, so
7 € T. Similarly, the points P, ), Q" are contained in a maximal subspace 7 in 7.
The subspaces T and 7’ have at least two points in common, and so they coincide.
Hence P,Q, P',Q’ € T so the points P’ and Q' are collinear. Let g be the element
of S which contains P’ and Q’. Since P’ belongs to 7y and «, and since @’ belongs
to m and ', so my € S(a, ') = By. Since P’ belongs to 7y and 7', and Q' belongs
to mo and 7, so g € S(w, ") = B”. Consequently, 3y N 3" # (. Since Bo N B" # O
in both cases, so A2. III is satisfied.

By Corollary 3.46, each Sp in 7T is an r-dimensional projective space over F,.
This means that, for each Sp in 7, there exist distinct subspaces 1, 2, .. ., B, of
(S, R) such that 3y is a line, that 8; C 82 C --- C 3, and that there is no subspace
B with 3; G B G Biyq fori =1,2,...,r — 1. This proves that A3 is satisfied.

Thus (S, R) is a Grassmann space of index r — 1. O

Lemma 3.63. If (S, R) is isomorphic to the PPLS corresponding to the Grassmann
variety G,_1.y, then (P, B) is isomorphic to the PPLS corresponding to the Grass-
mann variety Gy .
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Proof. By hypothesis there exists a bijection £ of S onto G,_; ,, such that the set
of all lines of G,_1 ,, consists of all images under & of the elements of R. Then &
maps the maximal subspaces of (S, R) onto the maximal subspaces of G,_1 ,,. By
the observation preceding Lemma 3.38, £ maps each of Sand 7 onto a system of
maximal spaces of G,_1 .

First let n # 2r — 1. Then the elements of Sy, namely the Latin spaces of G,_1
and the elements of S¢, the Greek spaces of G,_; ,,, have different dimensions. By
Corollary 3.46, the elements of T have dimension r, which is the dimension of the
elements of S¢.

Next, let n = 2r — 1. In Section 3.2, it was shown that G(G,_1 2,—1) contains
elements interchanging Sy, and S¢. It follows that also in this case it may be assumed
that £ maps the elements of 7T onto the elements of Sg and the elements of S onto
the elements of Sz. As in Section 3.2, the mapping which associates the points of
Gr_1,, to the elements of PG(T_l)(n, q) is denoted by &.

Let II, € PG (n,q), and let R"~1(I1,.) be the set of all (r — 1)-dimensional
subspaces of II,.. Then

RYIL) c PG V(n,q)and RT(I,) 661 =Sp e T.
Now consider the mapping
¢ : PG (n,q) — P,

defined by
M) =P+ R YII)& ¢! = Sp.

Then ¢ is a bijection of PG(")(n, ¢) onto P.
Let IT,., IT", II” be elements of PG")(n, q), with at least two of them distinct,
and let IT,.¢p = P, II/.¢p = P’, II”/1) = P”. Then the following are equivalent:

(a) I, NI N II” is an element IT,_; of PG(""Y(n, ¢);
(b) R(rfl)gnr) n R/(rfl)(Hr) N ; //(rfl)(Hr) _ {Hrfl}ﬁ
(© RUDAL)Se )R L) e ) n (R L) 7

= {Hrfl 6571};

) SpNSp NSpr = {7} withr =1I,_; &£ Lin S;
() P,P',P" €.

Hence II, N T, N 117 is an element I1,_; of PG(" Y (n, ¢) if and only if P, P/, P"
belong to a common element of S.

Let IT, and II/. be distinct elements of P(}(T)(n7 q), with IL,.¢p = P, 14 = P'.
If II, N II,. € PG~ (n, q), then by the preceding paragraph the points P and P’
belong to a common element of S, and hence are collinear in (P, B). Conversely,
if P and P’ are collinear, then the line PP’ belongs to an element of S, and hence
I, NI € PG~V (n, ).

Assume again that II, N II/. = II,_; € PG" "V (n,q). Then each element of
PG (n, q) through II,_; belongs to the unique 7 in S containing P = II,1) and
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P' = 1I'4. Conversely, if P” € =, then P"v)~! contains IL,_;. So all elements of
PG (n, q) through II,_; are mapped by ¢ onto all points of 7. It follows from
the preceding paragraph that each 7 in S corresponds in this way to a II,_; in
PGV (n, q).

Next, let « € T and let P, P’, P"” be three points of o which do not belong
to a common line of (P, B). Since P, P', P" are pairwise collinear, the spaces
Py~ =11, Py~ = 1L, P"¢~! = 11/ intersect in pairs at some element of
PGV (n, q). If IL,, 1T/, I/ contain a common element of PG~ (n, ¢), then
P, P, P” belong to a common 7 in S. Hence o N 7 contains three non-collinear
points, a contradiction. Consequently II,., II’. I/ do not contain a common element
IT,_1, whence they all lie in some IL,.; ; in pPG+Y (n,q).

Now, let Q be any point of «, and suppose that P, P’, P" are three points of « that
do not belong to a common line of (P, B). Then the r-spaces II,., 1T/, A, = Q!
belong to a common (r + 1)-space; hence A, C II,;1. Conversely, let A, be any
r-space contained in II, 4. Since II,, = A, or IT, NA, is an (r — 1)-space, the points
P and Q = A, are collinear.

Similarly Q and P’ are collinear as are () and P”. If Q ¢ «, then the maximal
subspaces of (P, B) containing PP'Q), P'P"Q, PP"(Q) are elements of S, which
gives a contradiction; hence () € «. So it has been shown that all elements of
PG (n, q) contained in II,., 1 are mapped by ¢ onto all points of c.

Consider now any I/, | in PG (n, q). If [T}, 12 C 1T/, with TIL # II2,
then ITly) = Py and I12¢) = P, are collinear. The points of the element of 7~ through
the line Py P, are mapped by 1)~ onto the r-spaces belonging to the (r + 1)-space
1T/, which contains IT} and IT2. Hence each (r+ 1)-space of PG(n, g) corresponds
to some element of 7.

Next, let [ be a line of (P, B). Then [ is contained in a unique element 7 of S
and a unique element o of 7 also 7 N = [. So )y~ Nayp=! = lp~L. Since
I~ # (), so it is the pencil (IT,_1, II, ;1) of r-spaces, with II,_ the (r — 1)-space
corresponding to 7 and II,;q the (r 4+ 1)-space corresponding to «. Conversely,
consider a pencil (II,_1,II,41) of r-spaces in PG(n, ¢). If 7 is the element of S
corresponding to II,_; and « is the element of 7 corresponding to 11,1, then the
image (IL,—1,1L,4+1)Y = 7 N a. Since (I1,_1, I, 41)1 # 0, so 7 N« is a line [ of
(P, B).

It has been shown that ¢/ is a bijection of PG") (n, ¢) onto P such that 5 is the set
of all images of the pencils of r-spaces of PG(n, ¢). In other words, the Grassmann
space (P, B) is isomorphic to the PPLS defined by the Grassmann variety G, ,. O

Theorem 3.64. (i) In a Grassmann space (P, B) of index r = 1, any two distinct
elements of S have exactly one point in common.
(ii) If (P, B) is a connected irreducible PPLS satisfying Al, A2.1, A2.11, and

A2.IIT" : any two distinct elements of S have exactly one point in common,

then (P, B) is a Grassmann space of index 1.
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Proof. Let (P, B) be a Grassmann space of index » = 1. Then Lemmas 3.38 to
3.45 hold, so that each element of 7 is a projective plane over F,. Let 7 and 7’
be distinct elements of S, and suppose that 7 N " = (). Let k be the minimum
number for which there exist distinct points Py, P, ..., P, with P, € m, P, € 7/,
and Py ~ Py ~ .-+ ~ Py. Then Py, P3,...,P._1 & m N «'. Note that k exists by
the connectivity of (P, 5). Assume that & > 2. Let 7" be the element of S which
contains the line P, P3, and let « be the element of 7 which contains the line P Ps.
Since m Nev # ), so m N v is a line [ of (P, B). Similarly 7" N « is a line . The
space « is a projective plane; hence [ and I” have a common point P. The points
P, Ps, Py, ..., Py are distinct, and P ~ Py ~ Py ~ --- ~ P, with P € 7. This
contradicts the assumption on the minimality of k. Hence k£ = 2, which means that
there are points P; and P, with Py € 7w, P> € 7’ and P| ~ Ps.

Let o/ be the element of 7 which contains the line P, P». Since m N o’ # (),
so ™ N« is a line m. Similarly 7’ N« is a line m/. Since ¢’ is a projective plane,
the lines m and m’ have a point in common, whence m N 7’ # (), a contradiction.
Therefore any two distinct elements of S have exactly one point in common.

Next, let (P, B) be a connected irreducible PPLS satisfying A1, A2.I, A2.IT and
A2.III'. Then A2.III is trivially satisfied. Lemmas 3.38 to 3.45 are satisfied for a
certain » > 1. Hence (P, B) is a Grassmann space of index r. If » > 2, then, by
Corollary 3.51, there exist disjoint elements in S, in contradiction to A2.IIT'. This
gives the conclusion that » = 1. O

Theorem 3.65. Any Grassmann space of index r > 1 is isomorphic to the PPLS
defined by some Grassmann variety Gy ,,.

Proof. Let (P,B) be a Grassmann space of index r, where r > 2. Assume that
each Grassmann space of index r — 1 is isomorphic to the PPLS defined by some
Grassmann variety G,_1 .

Then, by Lemmas 3.62 and 3.63, the space (P, B) is isomorphic to the PPLS
defined by the Grassmann variety G, ,. So it is only necessary to show that any
Grassmann space of index 1 is isomorphic to the PPLS defined by some Gy ,.

Let (P, B) be a Grassmann space of index 1. By Theorem 3.64, any two distinct
elements of S have exactly one point in common. Since Lemmas 3.38 to 3.45 hold,
each element of 7 is a projective plane over F,. For any P in P, let S, denote the
set of all elements of S through P. Further, let 7 = {S, | P € P}. Consider a point
P of P and a plane « of 7 through P. Through each line in « through P, there is a
unique element of S,,; by A2.1, ¢+ 1 distinct elements of S,, are obtained in this way.
Hence (S, 7~') is an irreducible linear space, and it is now shown that it is isomorphic
to the linear space formed by the points and lines of some PG(n, ¢). It is sufficient
to show that the Veblen—Wedderburn axiom holds in (S, 7).

Let 7, ', 7’ be distinct elements of S, let

/ 1 / 12 " /
Nt =P, 7#nNna"=P, #'Nn=F,

and assume that P, P’, P are distinct. Further, let o and o’ be distinct elements of
S\{7"},letann” = P, o/’ N7"” = P, aNa’ = Q, and assume again that P, P’, Q
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are distinct. It must be shown that P and @ belong to a common element of S; that
is, P ~ Q. By Al, the pairwise collinear points P, P’, P” belong to a maximal
space 71, which by A2.11 is an element of 7. Similarly the pairwise collinear points
P, P’, @ belong to a maximal space 7 in 7. As the line PP’ is contained in both 7y
and 7y, s0 m; = 2 by A2.IL. Hence P” ~ @, and consequently (S, 7~') is isomorphic
to the linear space formed by the points and lines of some PG(n, ¢). Since the partial
linear space (P, B) is proper, there exist disjoint lines in (S,7"), and so n > 3.
Now consider the mapping

®:T P, Spr—s P

Then & is a bijection of 7 onto P. Let § be a plane in (S, 7') and let 7, 7/, 7’/ be any
three independent points of J. Further, let

N =P ons’" =P, a'nm=P.

Then the points P, P/, P” are distinct. Since they are pairwise collinear in (P, 53),
there exists a maximal subspace « containing them; by A2.I1, this subspace belongs
to 7. Let 3 be an element of S containing a line [ of «. Suppose that [ is distinct
from the line PP’. If PP’ N1 = @, then Sg, contains 7" and 3, and has an element
in common with Spr. But Spr is the line 7’ of (S, T, and hence 3 belongs to the
plane §.

Conversely, let S be an element of the plane §. Suppose, for example, that
B # 7550 let N 7" = Q. Then the lines Sp and S of (S, T) have an ele-
ment in common; hence P” ~ Q. Suppose that Q ¢ «. The pairwise collinear and
distinct points P, P”, () are contained in a maximal subspace «, which belongs to
T. Since « and o’ share the line PP”, so « = /. Hence Q € «, a contradiction.
Consequently @ € «. From A2.I, 8 N « is a line of (P, ). Therefore it has been
shown that ¢ consists of all elements of S meeting « at a line of (P, 3). As the lines
of § are the elements Sp with P € q, it follows that, for any plane o’ of T, the set
of all spaces in S having a line in common with o is a plane of (S, T).

Let 7 € S, let § be a plane of (S, 7), and assume that 7 € §. From the preceding
paragraph, J consists of all elements of S containing a line of some plane « of 7. The
lines of the pencil (, d) of (S, 7)) are the elements Sp with P in 7 N a = [; hence
(m,8)® = . Conversely, consider any I’ in B. Let!’ C #’ € Sand!' C o/ € T.
Then I'®~" is the pencil (7/,8") with &' the plane of (S,7) which consists of all
elements of S having a line in common with «’.

It has been shown that the Grassmann space (P, B) of index 1 is isomorphic to
the PPLS defined by the Grassmann variety G ,,. ad

To end this section, some examples of proper partial linear spaces are given; these
show that none of the axioms A2.1, A2.11, A2.ITI, nor the conditions of connectivity
or irreducibility, can be deleted in the characterisation of Grassmann varieties.

Example 3.66. Let P consist of all 2-subsets of the set {1, 2,3, 4}; let B consist of
the elements of the form {{a, b}, {a, c}} with a, b, ¢ distinct. Then (S, B) is a con-
nected PPLS which satisfies A1, A2.1, A2.II, A2.II1. However, it is not irreducible.
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Example 3.67. Let (P, B) and (P’, B) be Grassmann spaces with PNP’ = (). Then
(PUP’,BUB) is an irreducible PPLS which satisfies A1, A2.I, A2.1T, A2.1II, but
which is not connected.

Example 3.68. Let (P, B) be a Grassmann space with lines having at least four
points. Let [ € B, and let (I, £) be an irreducible linear space with |£| > 1. Then
(P, (B\{l})U L) is a connected irreducible PPLS which satisfies A1, A2.11, A2.1TI,
but not A2.1.

Example 3.69. Let (P, ) be a Grassmann space. If the elements of S are projective
spaces of dimension s over F';, then embed one element 11, of S in a projective space
I of dimension s 4 1 over F for which II,; NP = Il,. Let £ be the set of
all lines of IT;4 1. Then (P UIl,11,B U L) is a connected irreducible PPLS which
satisfies A1, A2.1, A2.I1I, but not A2.II.

Example 3.70. Let (P,3) be a Grassmann space with lines having at least four
points. Choose a point P in P and let B = {I\{P} | | € B}, P = P\{P}.
Then (P’, B’) is a connected irreducible PPLS which satisfies A1, A2.1, A2.1T; for
neither of the systems of maximal subspaces is A2.III satisfied.

It is not known whether or not A1 can be deleted in the characterisation of Grass-
mann varieties.

3.4 Embedding of Grassmann spaces

Let (P, B) be a Grassmann space. If P is a point set of PG(n, ¢) and B is a line set of
PG(n,q), then (P, B) is embedded in PG(n, ¢). Grassmann varieties are examples
of embedded Grassmann spaces. In this section all embedded Grassmann spaces are
determined.

First it is shown that not every embedded Grassmann space is a Grassmann
variety. Consider the Grassmann variety G; 7 of the lines of PG(7,¢). The num-
ber of points of G 7 is a polynomial of degree 12 in ¢. The number of points
on the lines having at least two points in common with G 7 is a polynomial
apq®® 4+ a1¢** + -+ 4 agaq + ass. By Theorem 3.12, the projective space gener-
ated by G 7 has dimension 28. Hence, for ¢ large enough, PG(28, ¢) contains a
point P such that each line through it has at most one point in common with G 7.

Let II57 be a hyperplane of PG(28, ¢), which does not contain P. The intersec-
tion of the cone PG 7 with the hyperplane Il is a variety which, together with the
projections of the lines of G; 7 is a Grassmann space embedded in I157. Assume that
this Grassmann space (P, 3) is a Grassmann variety. Since the maximal subspaces
of (P, B) have dimensions 2 and 6, the only candidates for the Grassmann variety
are Gy 7 and G5 7. By Theorem 3.12, these two projectively equivalent varieties are
not contained in a PG(27, ¢), a contradiction. So, this is an example of a Grassmann
space which is embedded in a projective space, but which is not a Grassmann variety.

To determine all embeddings of Grassmann spaces, it is necessary to introduce
homomorphisms between projective spaces. Let ¢ be the semi-linear transformation
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of the vector space V' (m + 1, K) into the vector space V' (n + 1, K) defined by the
m x n matrix 7" over K and the automorphism o of K. The kernel of ¢ is a subspace
of V(m + 1, K) and the image of ¢ is a subspace of V' (n + 1, K). Also,

dim(ker ¢) + dim(im ¢) = m + 1.

Now consider the projective spaces over K definedby V(m + 1, K), V(n+ 1, K),
the kernel of ¢, and the image of ¢). These spaces are respectively denoted by
PG(m, K), PG(n, K), P(kert), and P(im 1). Then

dim(P(ker)) + dim(P(imv)) =m — 1.

The semi-linear transformation ¢ induces a mapping & from PG(m, K)\ P(ker )
onto P(im ). Such a mapping & is a homomorphism of PG(m, K) into PG(n, K)
or onto P(im ). If ¢ is bijective, that is, if T" is a non-singular (n + 1) x (n + 1)
matrix over K, then £ is a collineation between projective spaces.

Now consider the Grassmann variety G, ,, of the r-spaces in PG(n, ¢). The pro-
jective space generated by G, ,, is denoted by PG(XN, ¢). Suppose that £ is a homo-
morphism of PG(N, ¢) into PG(N’, q), where kert # {0} and with the condition
that any line of PG(NV, ¢) having at least two distinct points in common with G, ,, has
no point in common with P(ker ¢). Then £ maps the points and lines of G, ,, onto
the points and lines of a Grassmann space (P, ) which is embedded in P(im ).
Since the dimension of P(im ) is less than /N, an argument of one of the previous
paragraphs shows that (P, B5) is not a Grassmann variety. The example given at the
beginning of this section is constructed in this way.

It is now shown that any Grassmann space embedded in a projective space can
be obtained in the way described above. The proof is given for F, but is valid for
any field K.

Theorem 3.71. Let (P, B) be a Grassmann space of index v that is embedded in
a projective space PG(s, q) and let £ be an isomorphism from the PPLS defined by
Gr.n onto the PPLS (P, B). Then there is a unique homomorphism 1) from PG(N, q),
the space generated by G, ,,, into PG(s, ) that induces & on G, .

Proof. Let (P, B) be a Grassmann space of index r, with r > 1, which is embedded
in PG(s, q). It may be assumed that P generates PG(s, ¢). From Section 3.3, there
is an isomorphism £ from the PPLS corresponding to some Grassmann variety G,
onto (P, B). The projective space generated by G, ,, is denoted by PG(N, q).

It is sufficient to prove the theorem for the pair (r,n), where 1 < r < n — 2,
under the assumption that it is already established for all pairs (', n’) # (r, n), with
" <r,n <n,and1 <7’ <n' —2.

Let 7 be a hyperplane of PG(n, ¢). If r < n— 3, then, by Corollary 3.27, & maps
the r-spaces of 7 onto the points of a subvariety G, ,,—1 of G ,,; if r = n — 2, then &
maps the (n—2)-spaces of 7 onto the points of a maximal (n—1)-space 7’ of G, _2 .
For r < n—3, the images under & of the points and lines of G, ,,_; form a Grassmann
space (P’, B') isomorphic to G, ,,_1; for r = n — 2, a maximal (n — 1)-space '€ of
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(P, B) is obtained. Let PG(N’, g) be the projective space generated by G, ,,_1. For
r < n — 3, the induction step gives a unique homomorphism v, from PG(N’, q)
into PG(s, ¢) which coincides with £ on G, ,,_1; if r = n — 2, the restriction of
€ to 7’ is a collineation 1), of 7’ onto 7’¢. The semi-linear transformations 1), of
V(N' +1,q) into V(s + 1, q¢) which correspond to 1), are determined by 7 up to a
scalar multiple.

Next, let P be a point of PG(n, ¢). When r > 2, then, by Corollary 3.26, &
maps the -spaces through P onto the points of a subvariety G, 1 ,,—1 of G, ,,; When
r = 1, then & maps the lines through P onto the points of a maximal (n — 1)-
space " of Gy ,,. For r > 2, the images under £ of the points and lines of G,_1 ,,—1
form a Grassmann space (P, B”) isomorphic to G,_1 ,—1; for r = 1, a maximal
(n — 1)-space 7’¢ of (P, B) is obtained. Let PG(N", ¢) be the projective space
generated by G,_1 ,,—1. For r > 2, the induction hypothesis implies that there is a
unique homomorphism ¢ p from PG(N", ) into PG(s, ¢) which coincides with &
on G,_1,,—1; when r = 1, the restriction of £ to 7"’ is a collineation ¢ p of 7" onto
7'’¢. It may be noted that the semi-linear transformations 1/p of V(N" + 1, q) into
V(s + 1, q) which correspond to ¢ p are determined by P up to a scalar multiple.

It is now shown that v, and ¥p have the same associated field automorphism.
First suppose that P € 7. The notation of the preceding paragraphs is used. Let W
be the image under & of the set of all r-spaces of 7 containing P. If r # 1,n — 2,
then, by Theorem 3.25, W = G, ,,_1 N Gr_1 n—1 is a Grassmann variety G, _1 ,—2.
Ifr=n—2andn # 3,then W = 7' NG,,_3 ,,_1 is a maximal (n — 2)-space o’ of
Gn—3n—1;if r =1andn # 3, then W = 7"/ N Gy ,,—1 is a maximal (n — 2)-space
o of Gy p_1;ifr =1andn =3, then W = 7’ N7 is a line [.

Let [ be a line of W, and let Py, P, P53, P, be any four distinct points of [. Then

Psz:PZwTr:Pzga 7;:172a374'

Let P& = Q;, i = 1,2,3,4. Then the cross-ratio {Q1, Q2; Q3,Q4} is equal to
{P1, P2; P53, P,}? and to { Py, P»; Ps, P4}"', where o and o’ are the field automor-
phisms associated to )p and ¢,; hence o = ¢”.

Next, let P ¢ 7. Consider a point @ and a hyperplane « of PG(n, q), where
P € a, @ € a @ € m The field automorphisms associated to ¥p, 1q, ¥qQ, ¥r
are respectively denoted by o, p’, p, o’. By a previous argument, 0 = p' = p = o¢’;
hence o = o’.

Now let P and P’ be distinct points of PG(n, q). By considering a hyperplane
through P and P’, it is seen that the field automorphisms associated to 1 p and ¢ p
coincide. Similarly, with 7 a hyperplane of PG(n, ¢), the field automorphism asso-
ciated to ), is independent of the choice of 7. This common field automorphism,
associated to each P and each 7, is denoted by o.

The following notation is required. For ¢« = 0,1,...,n, let 1; = 9y, and let
1" = 1by,. Recall that U; € u; for i # j. For the corresponding semi-linear trans-
formations, write t; and 9)*. Consider now homomorphisms v; and ¥ with i # j.
Let W/ be the image under & of the set of all 7-spaces of u; containing U;. On
WZJ the homomorphisms v; and 17 coincide with £. First, let WZJ be the Grassmann
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variety G, _1 2 and let PG(N * q) be the projective space generated by G, 1 5,—2.
Let ®; be the restriction of 1; and ®7 the restriction of 1/ to V(N* + 1, ¢). By in-
duction, the semi-linear transformations ®; and 7,[13 differ only by a scalar multiple.
If W] is a projective space II,,, then again let ®; and ®7 be the restrictions of 1);
and W toV(im+1 q) again, they differ only by a scalar multiple. In both cases, it
is possible to choose 1; and 77 in such a way that ®; and ®7 coincide. This process
is called normalisation.

Fix )" and normalise each of v, 11, . . . , 1,1 With respect to it. Next norn@lise
¥ with respect to ¢, and v, with respect to 1)°. Then normalise ¢!, )%, ... "1
with respect to 1/,,. Now consider 1; and ¢;, i # jandi,j € {0,1,...,,n— 1}.The

image under & of the set of all r-spaces through U; and Uj is denoted by W, ;; the
image under & of the set of all -spaces of u,, through U; and Uj; is denoted by W;';.
Let PG(M, ¢) be the projective space generated by WV; ; and let W be the set of
all vectors representing the points of W;';. By previous arguments, the restrictions of
1p; and 1/)] to V(M + 1, q) differ only by a scalar multiple. Since 1); and % coincide
on WL"] C V(M +1,q) and Wz”] contains a non-zero vector, it follows that the
restrictions of 1; and v; to V(M + 1,q) coincide. Repeating this argument shows
that any two elements of 11, 12, . . ., ¢, ¥', 42, ..., ™ coincide on the intersection
of their common domain and g‘m, the set of all vectors representing the points of
Gron-

Let V(N + 1,q) be the vector space generated by G, .. If E; is the vector
of V(N + 1,q) with one in the (i + 1)-th place and zeros elsewhere, then the

vectors Eg, F1,..., Ex are contained in Q_M, Consider the vector FEj;. It is in
the common domam of 7 + 1 semi-linear transformations ;,,;,, . ..,;,. Then
i, By = i, E; = - - - = 1; ;. Now define as follows a semi-linear transformation

Y from V(N + 1, q) into V(s + 1, q) with associated field automorphism o
YE; =;,E;,withi=0,1,...,N, j =0,1,...,r.

Consider now the basis { E,, E;, , . . .} of the domain 1);; then z/jE ;, = V;E;,. Hence
1 agrees with 19,11, . . . , ¥, Next consider the basis { Ej,, E;, , . ..} of the domain
of 1)7. Then, since ¢/’ agrees with any 1);, it follows that wE i = )7 E;,. Hence
1 agrees with 10 ¢!, ... 4" Thus the homomorphism v from PG(N,q) into
PG (s, ), which corresponds with ), agrees with ¢g, 11, . . ., ¥, 0,01, ... Q™.

For a point P of PG(n, q), let its weight w(P) be the number of non-zero co-
ordinates, and let the weight of a set of linearly independent points be the sum of
its members’ weights. The weight of an r-space of PG(n, ¢) is the minimum of all
the weights of its linearly independent sets of size r + 1; then the smallest possible
weight of an r-space is r + 1. The weight of a point () of G, ,, is the weight of the
r-space QB! of PG(n, q). Let I1, be an r-space of weight at most 2r + 1. Such a
space must have a point of weight one in one of its independent sets of size r + 1
of minimal weight. Hence this space contains one of the points U;, and so £ and v
agree on the corresponding point of G, .

It is now shown by induction on the weight that ¢ and 1 agree on all the points
of G, .. First, assume that £ and ¢ agree on all points of G, ,, of weight r + 1,
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r+2,...,h—1andlet h > 2r + 2. Let P be a point of G, ,, of weight h. Suppose
that Py, P, ..., P, define the r-space II, = P®~! of PG(n,q). Now it may be
assumed that h = Y ._, w(P;). There exist indices i and j, with i # j, for which
w(P;) > 2, w(P;) > 2; so take Py, P with w(Py) > 2, w(P;) > 2 and also
let P, = P(X;), ¢ = 0,1. Now choose points Q; = P(Y;), i = 0,1,2,3, with
Xo=Yy+Y:, Xy =Y5+Y;3, and

w(Qo) < w(Py), w(Q1) < w(Py), w(Q2) < w(Pr), w(Qs) < w(Py).

Then Py, Qo, Q1 are distinct as are P;, 2, Q3. Suppose that )y € II,; then also
@1 € II,.. At most one of the points @y, Q)1 belongs to II,_; = P P> --- P,; so
assume that Q)1 & I1,._1. Then the points Q1, P, Ps, ..., P, define IL,., and

w(@Q1) + Y w(P) <> w(P)=h,
i=1 =0

a contradiction. Hence Qg ¢ I1,.; similarly Q1, Q2, Q3 & IL,..
Let

Hi:QOP1P2"'Pra Hf:lelpz...p“
HEZQQPOPQ"'PT; H;IZQSP()PQ-“PT,

The r-spaces 11} and I1? are distinct, as are II? and II}. For i = 1,2, 3,4, write
Hi@ = A;. Since w(A;) < h, so, by induction, ¢ and £ agree on the four A4;. As the
r-spaces 11! and I12 have an (r — 1)-space in common, so, by Theorem 3.16, A; A,
is a line of G, ,,; similarly, so is A3 A4. Since IT NTI2 # TI2N1I2, so Ay Ay # Az Ay.
As 11, belongs to the pencils defined by both the pairs {11}, 112} and {II3, TIZ}, so
A1 As N A3 Ay = P. Hence

Pip = (A1 A2)Y N (A3Ag)y = (A1)v(A2)e N (As)h(As)
= (A1)§(A2)€ N (A3)§(A1)E = (A1A2)EN (A3A4)¢
= P¢.
Therefore £ and v agree on P. This shows that £ and 1) agree on all points of G, ,,.
Finally, it is shown that ¢ is uniquely defined by &. To do this, let 1)’ be a homo-

morphism from PG(N, q) to PG(s, q) which agrees with § on G, ,. A corresponding
semi-linear transformation is denoted by v/’. Then, for the restrictions

L VA Ve 1 (3.22)

of ¢/, the map 1/’ is normalised with respect to /"7 forall i # j. From the uniqueness
of the homomorphisms v, V1, . .., ¥y, 0, 1, ... ", it follows that the transfor-
mations (3.22) are the transformations

1/_10”1/_11’,..,'l/_Jn,’LZ_JO,{Zl,...,'I/_Jn

up to a common factor of proportion. Hence 1 and v are equal up to a factor of
proportion. Therefore v = ). a



142 3 Grassmann varieties

3.5 Notes and references

Section 3.1

This is taken from Segre [277].

Section 3.2

For more details on Grassmann varieties, see for example Burau [60], and Hodge
and Pedoe [183], where Theorem 3.13 is proved.

Section 3.3

This is taken from Tallini [307], Bichara and Tallini [25, 26]. The final section on the
independence of the axioms is due to Bichara and Mazzocca [22].

LetI' = (P, L, B) be a finite Buekenhout incidence structure of points, lines and
blocks admitting the diagram

©) ©) ©)
and satisfying the following:

(Sp) blocks are subspaces of (P, £);
(Sp*) each line is the intersection of any two blocks containing it.

These structures were determined by Sprague [295, 296]. Essentially, this is an al-
ternative proof of the characterisation theorem in Section 3.3. An infinite version of
Sprague’s theorem is proved in Shult [286]. Shult [288] points out that, in several pa-
pers and books, including Section 24.5 of GGG, these two axioms are overlooked.
In Sprague’s original paper [296], these axioms are unstated, but are used in the
proof. If the axioms are not satisfied, there are counterexamples; see Shult [288].

Characterisations of the Grassmann varieties Gy, and G ,,, in terms of points
and lines only, are given by Lo Re and Olanda [209] and Biondi [29]. In these papers
the authors prove that their axioms are equivalent to the axioms A1, A2, A3, and then
apply Theorem 3.65.

The Grassmann varieties associated to an affine space are characterised by
Bichara and Mazzocca [23, 24]. Other characterisations of Grassmann varieties are
discussed in Section 5.10.

Section 3.4

This is taken from Wells [397]. However, Theorem 3.71 was first obtained by
Havlicek [158, 159].
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Veronese and Segre varieties

4.1 Veronese varieties

The Veronese variety of all quadrics of PG(n, K),n > 1, is the variety

V= {P(z},2%,... 27

no

TOTLy -+ o vy TOLyy 1Ly« ooy 1Ty v o vy Tp1Lpy) |
P(X) is a pointof PG(n, K)}

of PG(N, K) with N = n(n + 3)/2, where X = (zo,21,...,2,); then V is a
variety of dimension n. It is also called the Veronesean of quadrics of PG(n, K),
or simply the quadric Veronesean of PG(n, K). It can be shown that the quadric

Veronesean is absolutely irreducible and non-singular.
Let PG(N, K) consist of all points P(Y") with

Y = (Y00, Y11y - > Ynn> Yo1, Y02, - - - Yors Y125« s Ylns - - s Yn—1,n)-

For y;; also write y;;. Then ) belongs to the intersection of the quadrics V (F;;) and
V(Fupe) with i,5 € {0,1,...,n}, ¢ # jand a,b,c € {0,1,...,n}, with a,b,c
distinct, where

Fij = ij - ni}/jjv Fave = YaaYoe — YapYae.
It is now shown that the variety V is the intersection of these (n + 1)n?/2 quadrics.

Lemma 4.1. The quadric Veronesean V of PG(n, K) is the intersection of all
quadrics V (Fy;) and V (Fgpe).

Proof. Let P = P(Y), with
Y = (Y00, Y11, - - s Yn—1,n),

be a point of the intersection of the quadrics V (F;;) and V(Fgp.). Then

(yOO»ylla s 7ynn) 7é (ana s 70)a

© Springer-Verlag London 2016 143
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since Yoo = Y11 = -+ = Ynn = 0 and yfj — ¥iiYj; = 0 imply that y;; = 0 for all
i, j. Suppose, for example, that yoo # 0. Put

Yoo = 1 = xo, Yo1 = T1, Yo2 = X2, - -+, Yon = Tn-

Leti,j € {1, 2., n} with ¢ 7& j. Then, since YooYi; — YoiYoj = 0, so Yij = TiTj.
Since y5; — yooy;j; = 0 for j # 0, 50 y;; = «3. Hence y;; = w;x; for all 4,7 in
{0,1,2,...,n}; thatis, P belongs to the quadric Veronesean ). |

Theorem 4.2. The quadric Veronesean V of PG(n, K) consists of all points P(Y'),
with Y = (Y00, Y11; - - - » Yn—1,n), of PG(N, K) for which rank [y;;] = 1.

Proof. Let P(Y') be a point for which rank [y;;] = 1. Then P(Y") belongs to the
intersection of the quadrics V(F;;) and V(Fy;.). By Lemma 4.1, P(Y") belongs to
the quadric Veronesean V.

Conversely, let P(Y") be a point of the Veronesean V. Then

YijYab — YiblYaj = TikjTaZp — TiTpTaZy = 0,
foralli,j,a,b € {0,1,...,n}. Hence rank [y;;] = 1. O

Let ¢ : PG(n,K) - PG(N, K), with N = n(n + 3)/2 and n > 1, be defined
by
P(zo,z1,...,20) = P(Yoo, Y115+ - Yn—1,n)
with y;; = x;2;. Then ( is a bijection of PG(n, K') onto V. It then follows that the
variety )V is rational.

Theorem 4.3. The quadrics of PG(n, K) are mapped by ¢ onto all hyperplane sec-
tions of V.

Proof. Let V(F), with F' = ) a;; X; X, be a quadric Q of PG(n, K). Then Q¢
consists of all points P(Y") of V for which ) a;;v,;; = 0; that is, Q¢ is a hyperplane
section of V.

Conversely, let 7 be the intersection of V' and the hyperplane V(> a;;Y;)
of PG(N, K). Then H( ™! consists of all points P(X) of PG(n, K) satisfying
> aijrix; = 0; thatis, H¢ ! is a quadric of PG(n, K). O

Theorem 4.3 explains why V) is called the Veronesean of quadrics of PG(n, K).
Corollary 4.4. No hyperplane of PG(N, K) contains the quadric Veronesean V.

Theorem 4.5. The Veronese variety V of all quadrics of PG(n, K), n > 1, has order
2m,

Proof. Let K be the algebraic closure of K, and let V be the corresponding extension
of V. In PG(N, K) take the intersection IIy_,, N V. Let 1T}, _;, 1% _,.... II% 4

be n linearly independent hyperplanes of PG(N, K) through Iy _,,. Then, writing
H; =V NIl 4, it follows that
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Since H1¢( ™Y, Ha( L, ..., H, ¢t are n linearly independent quadrics of PG (n, K),
so |[VNIIy_,| = 2" for a general Iy _,, in PG(V, K). This means that the quadric
Veronesean of PG(n, K) has order 2. O

Notation 4.6. Henceforth, the quadric Veronesean of PG(n, K), n > 1, is denoted
by V2" orsimply V,,. For n = 1, the Veronesean V# is a conic of PG/(2, K); referring
to the classification of plane quadrics in Section 7.2 of PGOFF2, a conic is a non-
singular plane quadric. For n = 2, the Veronesean is a surface Vj of order 4 in
PG(5, K). For n = 3, the Veronesean is a variety V§ of dimension 3 and order 8 of
PG(9, K).

Remark 4.7. For n = 1 and any four points Pi, Py, P5, Py on PG(1, K), the cross-
ratio { P1, Po; P3, P1} = {Pi(, P>(; PsC, PaC}.

From now on it is assumed that K is the finite field F,, although many of the
results also hold in the case of a general field.

Theorem 4.8. The number of points on Vy, is |Vy,| = 0(n).

Proof. The variety V), is bijectively mapped by (~! onto PG(n, ¢). Hence V,, has
6(n) points. O

Let £ be a projectivity of PG(n, ¢). Then £ defines a permutation £’ of the quadric
Veronesean V), .

Lemma 4.9. The permutation &' of V,, is induced by a projectivity gofPG(N, q).

Proof. Let F, be the algebraic closure of F,, and let ¢’ be the bijection which maps
the quadric @ = V(F), with F' = Y a;; X; X, of PG(n, F,) onto the hyperplane
V(3 ai;Yi;) of PG(N, Fy). For any hyperplane Iy _; of PG(N, Fy), let IIy_1n
be the hyperplane 11 ¢’ ~1£¢, with ¢ the extension of ¢ to PG(n, F,). Then 7 is
a permutation of the set of all hyperplanes of PG(N, F,). Since £ maps a pencil of
quadrics onto a pencil of quadrics, the permutation 77 maps a pencil of hyperplanes
onto a pencil of hyperplanes. Also, ¢ leaves invariant the cross-ratio of any four
elements of any pencil of quadrics of PG(NV, F,). It follows that ) is a projectivity of

the dual space of PG(NV, F,). Let £ be the corresponding projectivity of PG(N, F,),

with E the projectivity induced by E on PG(N, ¢). Now it follows that E leaves V),
invariant and induces ¢’ on V,,. This proves that &’ is induced by at least one element

£of PGL(N + 1,¢). O

Theorem 4.10. If 11, is any s-dimensional subspace of PG(n,q), then 11,( is a
quadric Veronesean Vg, which is the complete intersection of V,, and the space
PG(s(s + 3)/2, q) containing Vs.
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Proof. By Lemma 4.9, let I, contain the points P(Ey), P(E1), ..., P(E;), where
E; is the vector with 1 in the (¢ + 1)-th place and zeros elsewhere. So II,{ consists
of the points P(Y"), where, up to permutation, the coordinates of the vector Y are

x%,x%, e ,xf,xoxl,xoxg, ey 0Ly ey T1Tsy vy Ts—1T5,0,0,...,0,
where z; € Fgand (xg, z1,...,25) # (0,0,...,0). Hence I ( is a quadric Verone-
sean I1,.

The subspace 7 of PG(N, ¢) which contains V; is the intersection of the hyper-
planes V(Y;;), with ¢ and j not both belonging to {0, 1, ..., s}. Then the intersection
of 7w and V,, corresponds to the set of all points P(zg, 1, ..., z,) of PG(n, q) with
Tsyl = Tgq2 = -+ = o, = 0; thatis, 7NV, = V. O

As a particular case, the lines of PG(n, ¢) are mapped onto conics of V.

Theorem 4.11. The quadric Veronesean Vy, is a 6(n)-cap of PG(N, q), where the
dimension N = n(n + 3)/2.

Proof. Suppose that Py, P, P3 are distinct collinear points of V,,. Let 7 be a plane
of PG(n,q) containing the points Pi¢~1, P,(™1, P3¢~!. By Theorem 4.10, ¢
is a quadric Veronesean V3 which is contained in a subspace IT5 of PG(NV,q).
The mapping ¢ defines a bijection of the set of all plane quadrics of 7 containing
Pi¢71 P!, P3¢ ! onto the set of all hyperplanes of 115 containing Py, Ps, Ps.
There are ¢> + g + 1 plane quadrics of 7 through P, (™!, Po¢~', P3¢ ™', and there
are ¢° +q% + ¢+ 1 hyperplanes of II5 through Py, P,, Ps. This yields a contradiction;
s0 V, is a (n)-cap of PG(n, q). O

Now a converse of Theorem 4.10 is established.

Theorem 4.12. For (q,s) # (2,1), any quadric Veronesean Vs contained in V,,
withn > 1, is of the form 11, with Il some s-dimensional subspace of PG(n, q).

Proof. First, the theorem is proved for s = 1 with ¢ > 3. So let C be a conic which
is contained in V,,. Let P;, P, P5 be three distinct points of C, and let 7 be a plane
of PG(n, q) containing P1(~1, P,( ™1, P3¢~!. By Theorem 4.10, 7( is a quadric
Veronesean V; in a subspace II5 of PG(N, q). Take the ¢ + ¢ + 1 hyperplanes of
II5 containing C. If 7’ is any of these hyperplanes, then (7' N V3)(~! = C’is a plane
quadric of 7 which contains the set C¢(~! of order ¢ + 1. In this way the ¢% + ¢ + 1
distinct plane quadrics of 7 containing C¢ ~! are obtained. Hence C¢ ! is necessarily
a line of the plane 7. It has therefore been shown that, for any conic C on V,,, the set
C¢~tis aline of PG(n, q).

Next, the theorem is established for s = ¢ = 2. So let Vé be a quadric Veronesean
which is contained in V,,. Let P;, P», P35, P, be four distinct points of Vé*, and let
II3 be a solid containing P; (1, Po( ™1, P3¢~ 1, P4~ t. By Theorem 4.10, II3( is a
quadric Veronesean V§ in a subspace Iy of PG(N, 2). Consider the 15 hyperplanes
of Iy containing V4. If 7’ is any of these hyperplanes, then (7' N V§)(~! = Q
is a quadric of II3 which contains the set V3¢ ™! of size 7. In this way, 15 distinct
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quadrics of I3 are obtained, all containing V43¢ ~!. Hence V3¢ ! is necessarily a
plane of the solid II3. It has therefore been shown that, for any Veronesean Vi on
VY, the set V§C‘1 is a plane of I1,,.

Consider any quadric Veronesean V, contained in V,,, with ¢ > 3. Let @1, ()2 be
distinct points on V,( ' = R. The points Q¢ and Q2 are contained in a conic C
of V,. By the first part of the proof, C{~! is the line Q1 Q2. As C(™' C V,( 71, the
line Q1 Q)2 belongs to R. Hence R is a subspace of PG(n, ¢). Since both |R| and
|Vs| equal 6(s), so R is an s-dimensional subspace of PG(n, ¢). Thus any quadric
Veronesean V, contained in V), is of the form 1I,(, with II; some s-dimensional
subspace of PG(n, q).

Finally, consider any quadric Veronesean V; contained in V,,, with ¢ = 2 and
s > 2. Let Q1, Q2 be distinct points on V,(~ = R. Further, let V3 be a quadric
Veronesean on Vs containing ()1 ¢ and ()2¢. By the second part of the proof the set
Vy¢~1is a plane of PG(n,2). As V3¢~ C V(! the plane V3( ! belongs to
R. Consider a second quadric Veronesean V§/ on V;, containing (Q1¢ and Q2(. This
yields a second plane V& ¢! belonging to R. So the line V(1 NV ¢! = Q1Q-
belongs to R. Hence R is a subspace of PG(n, 2). Since |R| = |Vs| = 0(s), so R is
an s-dimensional subspace of PG(n, 2). Thus any quadric Veronesean V), contained
in V,, is of the form II,{, with II; some s-dimensional subspace of PG(n, 2). O

Let ¢ = 2. Then any triple of points on V), is a conic. As for n > 1 there are
more triples of points on V), than lines in PG(n, 2), so Theorem 4.12 does not hold
for (¢,s) = (2,1) withn > 1.

Corollary 4.13. For q # 2, any two points of V,, are contained in a unique conic of
Vh.

Proof. Let P, P, be distinct points of V,,. Then P;( ~Land P,¢ ™! are contained in
a unique line of PG(n, q); that is, P; and P, are contained in a unique V12, which is
a conic. O

Corollary 4.14. For (q,s) # (2,1), the quadric V,, contains ¢(s;n,q) quadric
Veroneseans V.

Proof. The number of Veroneseans V, on V), is the number of s-dimensional sub-
spaces of PG(n, q). O

Let & be a projectivity of PG(n, ¢). Then £ defines a permutation & of V,, which,
by Lemma 4.9, is induced by a projectivity £ of PG(IV, q). However, &1 # £, implies
that &; # &;. Let G(V,,) be the subgroup of PGL(N + 1, q) leaving V,, fixed.

Theorem 4.15. Let n > 2 with (q,n) # (2,2). Then, for any projectivity £ of
PG(n,q),

(i) the corresponding permutation £ of V,, is induced by a unique element 5 of
G(Vn)a _
(ii) the mapping 0 : PGL(n+1,q) — G(Vy,), given by £ — &, is an isomorphism.
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Proof. Let E be any element of G(V,,). The corresponding permutation of V), is
denoted by ¢’. Tt is now shown that £’ corresponds to a projectivity of PG(n, q).

Let £ be the permutation of the points of PG(n, ¢) which corresponds to &’. First,
let ¢ > 3. Since, on V,,, the map &’ transforms conics to conics, so, on PG(n, ¢), the
permutation £ maps lines to lines. By Remark 4.7, £ leaves the cross-ratio of any
four collinear points invariant. By the fundamental theorem of projective geometry,
the permutation & is a projectivity of PG(n, ¢). Next, let ¢ = 2, n > 2. Since, on
Vn, the map &’ transforms a V§ to another one Vé/ , 80, on PG(n, 2), the permutation
¢ maps planes to planes. Hence ¢ is a projectivity of PG(n, 2). Consequently, for
(g,mn) # (2,2), the map &’ corresponds to a projectivity of PG(n, q).

Next, consider any projectivity £ of PG(n, ¢) and also the corresponding permu-
tation &’ of V,,. Assume that £’ is induced by the projectivities £ and £ of PG(N, q).
It must be shown that E=¢.

If 7 = ¢’¢€~1, then 7 induces the identity mapping of V,,. Consider distinct points
Py, P, onV,. If ¢ = 2, then 7 fixes all points of the line P} P.

Now let ¢ > 2. The points P, P» are contained in exactly one conic C on V,,. Let
7 be the plane of C; then the projectivity 7 fixes all points of C, and so fixes each point
of 7. In particular, 7 fixes all points of the line P; P,. By Corollary 4.4, the Verone-
sean V,, generates PG(N, q). Let Py, P, ..., Py41 be linearly independent points
on V,,. The projectivity 7 fixes each point of the line P; P;, for4,j =1,2,...,N+1
and i # j. It follows that 77 is the identity mapping of PG(NV, ¢); so 5 5’

Since £ # 7 implies that§ = 1, it has been shown that 0 : £ — 5 is an isomor-
phism of PGL(n + 1, ¢) onto G(V,,). O

Let ¢ = n = 2. Then, for any projectivity £ of PG(2,2), the corresponding
permutation £’ of Vs is induced by a unique element ¢ of G()); but the group order
[PGL(3,2)| < |G(V2)| = 7. For n = 1, Theorem 4.15 also holds.

Corollary 4.16. |G(V,,)| = [PGL(n + 1,q)| for (¢,n) # (2,2).

In the rest of this chapter, to avoid exceptions, when ¢ = 2 a conic of the quadric
Veronesean V), is by definition any triple of points of V,, which is the image of a line
of PG(n, 2).

Apart from the conic, the quadric Veronesean which is most studied and charac-
terised is the surface Vy of PG(5, ¢). In the second part of this section, some inter-
esting properties of this surface are established, several of which can be generalised
to all Veroneseans.

So consider the quadric Veronesean V3. By Corollary 4.14, the variety V3 con-
tains g2 4+ ¢ + 1 conics and, by Corollary 4.13, any two points of V; are contained
in a unique one of these conics. Since the conics of Vj correspond to the lines of
PG(2, g), any two of these conics have a unique point in common.

To the quadrics of PG(2, ) there correspond all hyperplane sections of V. The
hyperplane is uniquely determined by the plane quadric if and only if the latter is not
a single point. If the quadric C of PG(2, ¢) is a repeated line, then the corresponding
hyperplane I1; of PG(5, q) meets Vj in a conic; if C is two distinct lines, then II,
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meets Vé in two conics with exactly one point in common; if C is a conic, then 114
meets V3 in a rational quartic curve.

The planes of PG(5, ¢) which meet V3 in a conic are called the conic planes of
Vi,
Theorem 4.17. Any two conic planes m and 7' of Vi have exactly one point in

common, and this common point belongs to V3.

Proof. Let N Vi =Cand 7’ NVy = C' As |CNC'| = 1, suppose that 7 N 7’ is
a line and let w U 7’ be contained in two distinct hyperplanes of PG(5, ¢). To these
hyperplanes there correspond two distinct quadrics of PG(2, ¢), which both contain
the distinct lines C¢ ! and C’¢ . This contradiction proves the theorem. a

Theorem 4.18. The union of the conic planes of V3 is the hypersurface V(F) = M3
of order three, where
Yoo Yo1 Yo2
F =Y Y11 Y12 |. 4.1)
Yoo Y12 Yoo

Proof. Letl = V(ugXo + u1 X1 + u2X2) be any line of PG(2, ¢). Then, by multi-
plying this form in turn by X, X, X5, it follows that the conic C = [( is the section
of V3 by the plane

V (uoYoo+u1Yor +uaYos, uoYor +uiYii+ueYio, uoYoo +u1Yia+uaYss). (4.2)

A point P (yoo, Y11, Y22, Yo1, Yoz, Y12) belongs to a conic plane, that is, a plane of the
form (4.2), if and only if F'(yo0, Y11, Y22, Yo1, Yoz, y12) = 0. U

Theorem 4.19. The hypersurface M3 has (¢> + q + 1)(q* + 1) points.

Proof. The hypersurface M3 is the union of the ¢?> + ¢ + 1 conic planes of Vj.
By Theorem 4.17, any two conic planes have exactly one point in common which
belongs to V3. Also, each point of V3 belongs to at least one conic plane. Hence

M3 = (P + g+ 1)@+ (*+q+1) = (¢® +q+1)(¢* +1). 0
If the characteristic of F; is two, then M3 = V(F), where
F = YooY11Yas + YooYy + Y11 Y5 + Ya2 Y. (4.3)

In this case, M3 contains the plane U3 U4 Us. It may be noted that this plane has no
point on V3.

Lemma 4.20. [f the characteristic of F, is 2, then the Veronesean V3 is the intersec-
tion of the quadrics V (Fy1), V(Fo2), V(Fi2), where

For = Y& + YooYi1, Foo =Y + YooYaz, Fia=Y5+Yi1Ya.  (44)
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Proof. With' Y = (yo0, Y11, Y22, Yo1, Yoz, Y12), let
P(Y) € V(Fol) n V(FOQ) n V(Flg).

Then
931 = Yoo¥Y11, ?ng = YooY22;

SO Y1 Yg2 = Ygoy11Yaz. Since Y7, = yi1Yaz, it follows that y3, yg, = ygoy7.. Hence
Yo1Y02 = Yooy12; so P(Y") belongs to V(Fpi2) in the notation of Lemma 4.1. Anal-
ogously, P(Y) belongs to V(Fi29) and V(F01). By Lemma 4.1,
Vg ZV(F()l) ﬂV(FoQ) ﬂV(Fm). 0O
Theorem 4.21. The hypersurface M3 has the Veronesean Vi as double surface.
Proof. First M3 = V(F), where
F = YoY11Ya2 4 2Y01 Yoo Y12 — YooYy — Y11 Ygh — Yoo Y. 4.5)

The partial derivatives of F' are

881/1;) =Y11Yaos — Y5 = —Fia,
;YZ; = YooYar — Yo = —Fpo,
88322 = YooY11 — Y5 = —Fou,
;;; = 2(Yo2Y12 — Y22 Y01) = —2Fb01,
aa;; =2(Yo1Y12 — Y11 Yp2) = —2F120,
;YZ; = 2(Y01Yo2 — YooY12) = —2Fp12.

If the characteristic of F, is not two, then the singular points of M3 are the
elements of

MZQV(FH)QV(FOQ)QV(FM)ﬂV(F()lQ)ﬂV(FlQo)ﬂV(FQOl) = MZHVQI = Vg

If the characteristic of F, is two, then the singular points of M3 are the elements
of M3 NV (Fi2) NV (Fo2) N V(Fp1). By Lemma 4.20, this set is again Vj.

Finally, it is straightforward to check that all singular points of M3 are double
points. a

The tangent lines of the conics of V3 are the tangents or tangent lines of Vj.
Since no point of the surface V3 is singular, all tangent lines of V3 at the point P of
Vj are contained in a plane 7(P). This plane 7(P) is the tangent plane of V3 at P.
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Since P is contained in exactly ¢ + 1 conics of V3 and since no two conic planes
through P have a line in common, the tangent plane 7(P) is the union of the ¢ + 1
tangent lines of V3 through P. Also 7(P) N V3 = {P}.

All the tangent lines and tangent planes of the surface V3 belong to the hypersur-
face M3. Since M3 is the union of the conic planes of V3, any point of M3 is on at
least one tangent or bisecant of V3. As any two points of V5 are contained in a conic
of V3, each bisecant of Vj is a line of M3. Hence M3 can also be described as the
union of all tangents and bisecants of V.

Theorem 4.22. For any two distinct points Py and Py of Vj, the tangent planes
w(Py) and (Py) have exactly one point in common.

Proof. Let P and P» be distinct points of V3, and let C be the conic of Vj through
Py and P,. The tangent [; of C at P; is contained in w(P;), ¢ = 1,2, and so w(P;)
and 7(P,) have the point /; NIy = @ in common.

Suppose that Q' € 7(Py) N7 (P2) with Q' # Q. Then P;Q’ is tangent to a conic
Ciof Vi, i=1,2.1fC; = Co, thenC; = C2 = C and so Q = ', a contradiction;
s0 Cy # Co. If C; N C2 = { P}, then the conic planes containing C; and Cy have the
distinct points P and @’ in common, contradicting Theorem 4.17. Hence it has been
shown that 7(Py) N7m(P) = {Q}. O

Theorem 4.23. Suppose that the characteristic of F; is two. Then each tangent plane
of V§ meets the plane UsU,Us in a line, each conic plane meets UsU4Us in a
point, and U3 U, Us consists of the nuclei of all conics on V3.

Proof. It was observed above that, in the case of characteristic two, the plane
U3U,Us belongs to the hypersurface M3. If P is any point of V4 and @ is any
point of the plane U3 U4Us, then, by Lemma 4.20, the line P has only the point
P in common with Vj.

Let 7 be any conic plane of V4, and let 7 be represented by (4.2). Then

7N U3U4Us = V(u1 Yo1 + uaYpe, woYor + u2Yi2, uoYor + u1Yi2).

Since the rank of the matrix
Ul u2 0
uo 0 (%)
0 Uug U1

is 2, so |7 N U3U,4Us| = 1. Let 1 N U3U4Us = Q and 7 N V3 = C. Since
|PQ N C| = 1 for any point P of C, the point @ is the nucleus of C. Also, by
Theorem 4.17, the nuclei of distinct conics of V3 are distinct. So any conic plane of
Vé has exactly one point in common with U3U4Uj;, which is therefore the set of the
nuclei of all conics on V3.

Finally, let 7( P) be the tangent plane of V3 at P. Since each line of 7(P) through
P is tangent to some conic of V%, it contains the nucleus of this conic and hence
contains a point of U3U,4Us. Hence 7(P) and U3U,Us have a line in common. O
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Definition 4.24. In the case of characteristic two, the plane U3 U4 Uy is the nucleus
of the Veronesean V3.

Let! = V(F), where F' = uoX( + u1 X1 + u2X> be any line of PG(2,¢q). If C
is the plane quadric whose point set coincides with /, then to C there corresponds the
hyperplane Iy = V(F’) of PG(5, ¢), where

F' = u2Yo0 + ulY1y + udYas + 2ugu; Yor + 2uouzYos + 2uiusYis. (4.6)

Such a hyperplane I1, is a contact hyperplane of V. The contact hyperplanes of Vj
are those which have exactly one conic on Vj.

First, let the characteristic of F; be 2. Then the contact hyperplane 14 always
contains the nucleus U3 U4 Us.

Let I, be the conic plane containing /¢ = I1,NV3. By Theorem 4.23, the contact
hyperplane I1, is generated by the conic plane II; and the nucleus U3 U4 Us. By the
same theorem, the contact hyperplane I1, contains the ¢ + 1 planes tangent to Vs at
the points of the conic [(.

Next, let the characteristic of F, be odd. Consider a point P of PG(2, ¢), and
also distinct lines [, [1, 5 through P. Then, for i = 1,2, there is a hyperplane 1T}
of PG(5, q) corresponding to the plane quadric C; = [ U [;. Here I} contains the
tangent lines at PC of the conics I(, (1, [2¢. Hence II} contains the tangent plane
7(P¢) of V4 at P, fori = 1, 2. The plane quadric that is the repeated line | belongs
to the pencil defined by C; and Ca; so the contact hyperplane I14 corresponding to C
belongs to the pencil defined by I} and I13. Hence 11, also contains 7(P¢). Thus,
also in this case, the contact hyperplane 11, defined by the line [ contains the ¢ + 1
planes tangent to V4 at the points of the conic IC.

From (4.6) it also follows that, if the characteristic of F; is not two, the set of all
contact hyperplanes of V3 is simply the dual of V3.

Theorem 4.25. When the characteristic of F is not two, PG(5, q) admits a polarity
that maps the set of all conic planes of Vy onto the set all tangent planes of Vj.

Proof. Letl = V(ugXo + u1 X1 + u2X2) be a line of PG(2, ¢). By (4.2), the conic
plane defined by the line [ is

V(uoYoo + u1Yo1 + waYoo, uoYor + u1Yi1 + u2Yio, uoYo2 + u1Yi2 + u2Yas).

Next, let P(A) = @, where A = (ag,a1,az2), be a point of PG(2, ¢q). For any
line m of PG(2, ¢) through @, the corresponding contact hyperplane of V3 contains
the tangent plane of V3 at Q¢. Hence the tangent plane 7(Q() belongs to every
hyperplane

V(udYoo + ulY11 + udYas + 2uoui Yor + 2uouaYoe + 2uiusYiz),

where ug, U1, ug satisfy
Ugao + ura1 + usas = 0.

Hence the following points are elements of 7(Q)():
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P(2a0a 07 0; ai,az, 0)3 P(Oa 20/1) 07 ao, 07 (12), P(Oa 07 2(123 07 ao, al)'
Let 7 be the polarity of PG(5, q) represented by
_1 _1 _1
PYo0 = Y00,  PUV11 = Y11,  PU22 = Y22,
pYo1 = You, PYo2 = Yoz, pU12 = Y12,

where
V (v00 Yoo + v11Y11 + v22Y22 + v01 Y01 + vo2 Yoo + v12Y12)

is a variable hyperplane of PG(5, ¢). Then 7 (Q()n is the conic plane defined by the
line [ of PG(2, q), where

= V(a()Xo +a1 X1 + GQXQ).

Hence the polarity 17 maps the set of all conic planes of V3 onto the set of all tangent
planes of Vj. ad

Corollary 4.26. Let the characteristic of ¥, be odd. Then, for any three distinct
points Py, Ps, Py of Vi, the intersection w(Py) N w(P2) N w(Ps) is empty.

Proof. Suppose that 7(Py) N7 (P2) N7 (P3) # (). By Theorem 4.22,
7(P) Nw(P) Nw(P3) ={Q}.

So the hyperplane @7 contains the three distinct conic planes 7(P;)n, i = 1,2, 3.
Hence the quadric of PG(2, ¢) which corresponds to Q) has at least three distinct
linear components, a contradiction. O

4.2 Characterisations

4.2.1 Characterisations of Vﬁn of the first kind

First, two properties are proved which hold for the quadric Veronesean V,,. The
planes of PG(N, q), N = n(n + 3)/2, meeting V,, in a conic are called the conic
planes of V,,.

Lemma 4.27. Two distinct conic planes of V,, with non-empty intersection meet in
exactly one point, and this point lies in V,,.

Proof. Let 1T}, and I} be distinct conic planes of V,, and let P € 11, N I15. Assume
that P € V,.

First, let ¢ be odd. The point P belongs to at least one bisecant [ of II,NV,, = C’.
By Corollary 4.13, the line [ is not contained in the plane I15. Let C' Nl = { P, P2}
and IT§ N'V,, = C". The plane of PG(n, ¢) containing the line C”¢~! and the point
P! is denoted by II,, with ¢ as in Section 4.1. Then II5( is a Veronesean V3
containing C"” and P;. The point P, belongs to the space PG (5, q) containing V.
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By Theorem 4.10, V3 is the complete intersection of PG(5, q) and V,,, and so P»
belongs to V. The points P, and P, are contained in a unique conic of Vj and
a unique conic of V,,. Consequently C’ is a conic of V5. Now, by Theorem 4.17,
P e V§, contradicting that P ¢ V,;; hence P € V,. Since V), is a cap it follows that
P is the unique common point of IT}, and I17.

Next, let ¢ be even. If P is not the nucleus of C' = I, NV, or " = I N V,,,
then the argument of the preceding paragraph shows again that P € V,,. So assume
that P is the nucleus of both ¢’ and C”. Let P’ € C'\C". Then the line PP’ is
a tangent to the conic C’ and hence is a tangent of the algebraic variety V,,. The
plane of PG(n, ¢) containing the line C""¢ ! and the point P’¢ ! is denoted by IT5.
Then II5( is a Veronesean Vi containing C” and P’. The line [ belongs to the space
PG(5, q) containing V3; hence [ is a tangent of V5. By Section 4.1, the Veronesean
V3 contains a unique conic C which is tangent to [ at P’. Since P is the nucleus of
C", by Theorem 4.23 it belongs to the nucleus of V. Then, again by Theorem 4.23,
the point P is the nucleus of the conic C. Hence the conics C and C” have a common
nucleus. This contradicts Theorem 4.23. This proves that again P € V,,. Since V), is
a cap, it now follows that P is the unique common point of I} and IT}. a

Lemma 4.28. Let C be a conic of V,, and let P be a point of V,,\C. Then the union
of the tangents at P of the conics of V,, which pass through P and a point of C is a
plane.

Proof. Let I1; be the plane of PG(n, q) which contains the line C{ ! and the point
P(¢~'. Then Il is a Veronesean Vi which contains C and P. By Corollary 4.13, the
q + 1 conics of V,, which contain P and a point of C are precisely the ¢ + 1 conics of
V), through P. From the remarks preceding Theorem 4.22, the union of the tangents
at P to the ¢ + 1 conics of Vj through P is the tangent plane of V3 at P. O

Let Q be a subspace of PG(N, q), with @ N'V,, = (), and let IT be a subspace of
PG(N, q), with QN 1T = () and where IT and Q) generate PG(XV, ¢). Assume that the
projection of V,, from €2 onto II is bijective between V,, and its image ® in II. Then
Lemmas 4.27 and 4.28 also hold for the set ®.

In this section it is shown that a weak version of Corollary 4.13, together with
Lemmas 4.27 and 4.28, characterise the (bijective) projections of the Veronesean V,,.

From now on, let XC be a set of & points of some projective space PG(N, ¢), with
N > 2, where K generates PG(N, ¢). Further, let I" be a set of (¢ + 1)-arcs, where
each element of I" is the complete intersection of K and some plane. The elements
of I are called I'-arcs, and the planes of the I'-arcs are I'-planes. The tangents of the
I'-arcs are I'-tangents. The I'-tangent which is tangent to C € I" at P € C is denoted
by t(P,C).

Suppose that K satisfies the following:

(a) any two distinct points of IC belong to a I'-plane;

(b) any two distinct intersecting I'-planes meet on /C;

(c) if Cis aT-arc and P belongs to K\C, then the tangents at P of the I'-arcs passing
through P and a point of C are coplanar.
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Note that, for ¢ > 2, the set I" is uniquely determined by K. Indeed, since ¢ > 2,
any (¢ + 1)-arc C on K contains at least four different points Py, P», Ps, P;. Let
P = P, P, N P3Py, let 1 be a I-plane containing Py, P», and let IT}, be a I'-plane
containing Ps, Py. Then P ¢ K and P € II; N IT,. By (b), II; = II}, and so C is a
I"-arc.

If By, Ba, . .., By are point sets of PG(N, q), then (B1, Ba, ..., B)) denotes the
subspace of PG(N, ¢) generated by B; U B2 U - - - U B

Lemma 4.29. (i) The set K is a k-cap.
(ii) Any two distinct points of KC are contained in a unique I'-arc.
(iii) A T'-tangent t( P, C) is tangent to a unique I'-arc through P.

Proof. Let P, P’ € K and let I, be a I’-plane containing P and P’. Since I, N K
is an arc, so K N PP’ = {P, P'}. Hence K is a k-cap. Let II; be another I'-plane
containing the line PP’. By (b), the line IIo NII} is a line of &, contradicting the first
part of the proof. Finally, consider a I'-tangent ¢(P,C), and let ¢t(P,C) = t(P,C’),
with C # C’. By (b), the I'-planes containing C and C’ meet on K. Since ¢(P,C) is
the intersection of these I'-planes, the set IC contains a line, a contradiction. O

As K is a cap, it is called a Veronesean cap. The unique I'-arc containing the
points P, P’, with P # P’, of K is denoted by [P, P']. For P € K and C a I'-arc
not passing through P, the plane containing the tangents at P of the I'-arcs passing
through P and a point of C is denoted by 7(P,C). By Lemma 4.29, the number of
T-arcs containing P and a point of C is exactly ¢ + 1, and 7 (P, C) is the union of the
corresponding I'-tangents.

Lemma 4.30. The incidence structure S formed by the points of K and the (q + 1)-
arcs of T is the incidence structure of points and lines of a projective space of order
q and some dimension n > 2.

Proof. By Lemma 4.29, the incidence structure S is a linear space in which all lines
have size ¢ + 1. It suffices to check the Veblen—Young (or Pasch) axiom. So let
Cy and C; be two elements of I" meeting in a point P € K, and let C3,C4y € T,
with P ¢ C3 U C4, be such that they both meet C; and Csy in distinct points
{P;j} =C;NnCj, i€ {1,2} and j € {3,4}. It must be shown that C3 and C4
are not disjoint. Both planes w(P;3,C2) and 7(P;3,C4) contain the distinct lines
t(P13,Cq1) and t( P13, [P13, P24]); hence they coincide. Consequently, there is some
point P’ € C4 suchthatt(Py3, [P13, P']) = t(Py3,C3). But then Lemma 4.29 implies
that C3 = [Plg,P’].Hence P cC3nCy. O

The natural number n is called the dimension of K. Then K has §(n) points.

Corollary 4.31. Let S’ be a subspace of S of dimension r, 2 < r < n, with K the
set of points of S’ and 1" the set of T'-arcs in S'. Then K’ satisfies (a), (b), (¢) and
hence is a Veronesean sub-cap of K of dimension r with I as the prescribed set of
(g + 1)-arcs.
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For any point P in K, let T'(P) = |Jt(P, C), with the union taken over all I'-arcs
containing P.

Lemma 4.32. For any point P, the set T (P) is an n-dimensional projective subspace
of PG(N, q).

Proof. Let R, R’ be distinct points of T'(P), where R, R’, P are not collinear. Let
PR = t(P,C) and PR’ = ¢(P,C’). For A € C\{P} and B € C'\{P}, the
plane 7 (P, [A, B]) coincides with the plane PRR'. Since 7(P, [A, B]) C T(P) and
7w(P,[A, B]) = PRR/, the line RR’ belongs to T'(P). Hence it follows that T'(P) is
a projective subspace of PG(NV, q).

Since the projective space K has dimension n, the number of I'-arcs through P is
equal to §(n—1). Hence the number of tangents ¢(P,C) in T'(P) is equal to 8(n—1).
Thus the projective space T'(P) is n-dimensional. O

For any point P of K the space T'(P) is called the rangent space of KC at P.
In the next theorem a bound on [V is obtained.

Theorem 4.33. The dimension N < n(n + 3)/2.

Proof. Proceed by induction on n, first assuming n > 2. Let S’ be a hyperplane of
S and P a point of S not in &’. Then, by induction, the point set ' of S’ generates
a subspace PG(N', ¢) of PG(NV, ¢) with N’ < (n —1)(n+2)/2.Let P’ € K\{P}.
Then [P,P'|NK' = {P"} and P' € P"t(P,[P,P']) C T(P)PG(N’,q). Hence
PG(N,q) = T(P)PG(N', q), implying N < 14+n+(n—1)(n+2)/2 = n(n+3)/2.
If n = 2, then the same argument can be made but replacing K’ by an element of
I. O

Theorem 4.34. When n = 2, then

) N =5;
(ii) the plane S is isomorphic to PG(2, q);
(>iii) all T'-arcs are conics;
(iv) K is the Veronesean V3 whose conic planes are the T'-planes of K.

Proof. Let 11, be a fixed I'-plane and put C = K N Il,. First it will be shown that
M = 5.Let P € K\C. From the proof of Theorem 4.33, PG(N, q) = T(P)Il..
Suppose by way of contradiction that there exists P’ € T'(P) N Ily. The line PP’
is tangent to a certain I'-arc [P, P"], for some P € C. But now P’ ¢ K and yet P’
belongs to II, and the I'-plane containing [P, P”'], contradicting (b). It now follows
that N = 5.

Now consider a plane IT, skew to II5 and denote by p the projection from IT5 onto
IT,. It will be shown that p is injective on K\C. Indeed, if Pp = Rp, for P, R € K\C
and P # R, then PIl = RII, and contains [P, R]. Hence II» and the I'-plane
containing [ P, R] have a line in common, which by (b) belongs to /C, a contradiction.
So p is injective on K\C. The points of J\C on a I'-arc C’ of K different from C
are mapped onto ¢ points of a line of IT5; the missing point is the projection of the
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tangent line, minus its point on C, of C’ at the point C N C’. So a set A of ¢? points
of 11, and ¢* + ¢ lines of 11} is obtained, all containing exactly ¢ points of A. Let
loo be the remaining line of II},. Assume by way of contradiction that [, contains a
point V' € A. Then consider two distinct lines /1, [ through V, distinct from /.. The
unique points X of /; and X5 of I3 not in A are distinct and not contained in /.
But now the line X7 X5 contains at most ¢ — 1 points of .4, a contradiction. Hence [
contains no point of .4, and so it contains the projections of all tangent lines minus
their points on C, as mentioned above. It now also follows that the projective plane S
is isomorphic to IIj, and so to PG(2, ¢). Consequently, the plane S can be denoted
by PG(2, q).

Consider the inverse image in I of the intersection of .4 and the line containing
U'p and (T'(U)\C)p. Therefore, given a point U € C and a point U’ € K\C, the
space T'(U)U’ meets K in [U, U']. Let (x) denote this property.

Next it is shown that the I'-arcs are conics. Consider two points Py, P, € C.
Project C\C from the line P; P, onto some solid IT3 of PG(5, ¢) skew to P, P,. Let
o’ be this projection map. Then the image of the ¢ points not on C of a I'-arc C’ # C
containing P, together with the image of its tangent line (minus its point on C) at
C N (' is aline of II3; similarly for I'-arcs on K through P;. Also, the set of images
of tangent lines at P; to ['-arcs different from C through P, together with the image
of I, \ Py P», is also a line of II3 and similarly for P,. So a set of (¢ + 1)? points
of 1I3 containing two sets of ¢ + 1 mutually skew lines is obtained, and lines of
different sets intersect in exactly one point; hence these (¢ + 1)? points are the points
of a hyperbolic quadric H. It follows that the image D’ under p’ of any I'-arc D not
containing P; nor P, is a conic section of H. Hence D is, as the intersection of a
plane and a quadratic cone Py P,D’, itself a conic.

Now consider three points Py, P;, P> of K which form a triangle in PG(2, q).
Let V3 be the quadric Veronesean in PG(5, q) associated with PG(2, ¢), and denote
for each point or subset & of PG(2, ) the corresponding point or subset on Vi by
E*. The set of conics of V3 will be denoted by I'*. Since Vj satisfies in particular (a),
(b), (c), V4 may be treated as a Veronesean cap and thus appropriate notation may
be used. The I'-arcs [Py, P1], [P1, P, [ P2, Po] generate PG(5, ¢), because the space
they generate contains both T'(FPp) and [Py, P], and by the first section of the proof
this space is 5-dimensional.

Now project K\ [Py, P1] and V3\[P§, P;] from the planes containing [Py, P;]
and [P}, Pf] onto the planes Il and II3; then II; and the I'-plane of [Py, P;] are
skew, and I} and the I'™*-plane of [Pg, Py] are skew. There is a collineation o from
I, to IT; which maps the projection of a point P € C\ [Py, P1] onto the projection
of P*. Let 0 be the field automorphism associated to . Then there is a collineation
(of conics, that is, a bijection preserving the cross-ratio, up to a field automorphism)
between [Py, P»] and [P§, Py], and between [Py, P»] and [Py, P5], with associated
field automorphism 6, and mapping P onto P*. By extending these collineations to
the T'-planes ([P, P»]) and ([Pi, P»]) of [Py, P»] and [Py, P»], and permuting the
indices, it follows that there are collineations «; : ([P;, Px]) — ([P}, Py]), for all
1,7, k, with {7, j, k} = {0, 1,2}, with associated field automorphism €, mapping P
to P*, forall P € [P(), Pl] U [Pl, PQ] U [PQ, P()]
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Now «p and 1 extend to a common collineation o between ([Py, Ps], [Py, P2])
and ([P, P5], [P}, Py]). Consider any I'-arc C, with Py, Py, P> ¢ C.Let R be the in-
tersection of the line Py P, and the tangent line I of [Py, Pi] at CN[ Py, P ]. Consider
the tangent lines lp and [; of [Py, P»] and [Py, P>] at CN[Py, Py] and CN[Fy, P»). Let-
ting (C) play the role of II; in the first part of the proof, it follows that the subspace
(lo, 11,12) is 4-dimensional and meets K in C. Choose the plane II} in the second
section of the proof so that it contains Py P;. As (lg, 1) is a solid in the hyperplane
([P1, P2, [Pz, Po]), it follows that (ly,[;) intersects the line Py P; in R. Hence the
restriction of o/ to Py P; coincides with the restriction of i to Py P;. So there exists
a collineation o : PG(5, ¢) — PG(5, ¢) such that « induces «; on ([P;, Py]), for all
i, 7, k, with {¢, 5, k} = {0,1,2}.

Now let P € K be arbitrary, but not belonging to the I'-planes containing
[P(), Pl], [Pl, Pg}, [PQ, P()] Put Pi/ = [P, Pz] N [.Pj, P}C], for {i,j, k} = {1, 2, 3}
Then, by (), the point P is the intersection of K with ®, where

O =T(Py)PyNT(P)P{NT(P)P;.
Hence P* is the intersection of V§ with ®*, where
O =T(Py)Py* NT(Py)P* NT(Py)Py*.
It is now shown that & = {P}. First, [Py, P2] C T'(Py)P/; hence
PG(5,q) = T(Ro)([Pr, P2]) = T(Py)T(Py) PPy

Consequently, T'(Py) Py N T'(P1)P] is a line of PG(5, q), which contains P and
P = t(Po, [Po,Pl]) n t(Pl, [Po,Pl]). As P’ 7& PQ/ and as T(PQ) n <[P0,P1]> is
empty, the assumption P’ € T'(P,)P; would imply that T'(P,) P is a hyperplane, a
contradiction. Hence { P} = ®. However, in a similar way, { P*} = ®*. It follows
that Pao = P*, and the theorem is proved. O

The projection map p in the second section of the proof shows the following.

Lemma 4.35. [f n = 2 and C € T, then the planes T (P), with P € C, generate a
hyperplane of PG(5, q) which meets K precisely in C.

Consider now the general case.

Theorem 4.36. [f n > 2 and N > n(n + 3)/2, then N = n(n + 3)/2 and K is the
quadric Veronesean V,, of dimension n.

Proof. The proof proceeds by induction on n, the case n = 2 being proved in The-
orem 4.34. So suppose now that n > 2. By Theorem 4.33, N = n(n + 3)/2.
Select two distinct hyperplanes &1 and S of S. These correspond to two Verone-
sean sub-caps K and Ky of K of dimension n — 1. It will be shown that (K;)
and (C3) have dimension (n — 1)(n + 2)/2. By Theorem 4.33, the dimension n;
of (IC;) is at most (n — 1)(n + 2)/2, with ¢ = 1,2. From the proof of Theorem
433, PG(N,q) = T(P)(K;) for any P € K\K;, and hence, by Lemma 4.32,
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n(n+3)/2 <1+n+mn; <n(n+3)/2, implying that n; = (n — 1)(n + 2)/2, for
i =1,2.So0 (K;) and (K2) have dimension (n — 1)(n + 2)/2. Put (K;) = €, with
1 =1,2. The caps K1 and /2 meet in a Veronesean cap K3 of dimension n — 2.

Let (K3) = Q. Considering K3 as a Veronesean sub-cap of K1, the dimension of
Qs (n — 2)(n + 1)/2. Now consider a I'-arc C not meeting Ky N Kq. For ¢ > 2, it
is immediate that PG(V, ¢) is generated by Ky, K2 and C.

Now let g = 2. Let P = C\ (K1 UK2). If P’ € K\ (K1 UK3UC), then consider a
Veronesean sub-cap K’ of K of dimension two containing P and P’. The space (K')
of dimension five is generated by K1 NK’, aNK' and P. Hence P’ € (K1, Ko, P).
So, also for ¢ = 2, PG(N, q) is generated by K1, K2 and C. As N = n(n + 3)/2
it follows that Q1 N Qy = Q and that Q1Q5 N (C) is a line. Also, by induction, the
caps IC;, for i = 1,2, 3, are projectively equivalent to quadric Veroneseans and can
be identified as such.

Now proceed very similarly as in the proof of Theorem 4.34. Let V,, be the
quadric Veronesean in PG(V, ¢) associated with S = PG(n, ¢) and denote for any
point or point set B of S the corresponding point or point set on V,, by 5*. It is now
shown that K and V,, are projectively equivalent and that a collineation of PG(V, q)
can be chosen which maps any point P € K to the point P* € V),,. These assertions
may be included in the induction hypothesis as they are valid for the case n = 2,
by Theorem 4.34. Hence there is a collineation «g : (C) — (C*) with associated
field automorphism 6y, and collineations «; : Q; — (K¥), with associated field
automorphisms 0;,7 = 1,2, mapping P to P*, forevery P in C and K;, i = 1,2;
here ay is obtained by restriction to C, after considering a Veronesean sub-cap of
dimension two of K containing C.

Let K’ be a Veronesean sub-cap of dimension two of I containing C, and let
Vs be the corresponding Veronese variety on V,,. Considering the restriction of «;
to K' U K;, with ¢ = 1,2, it follows from Theorem 4.34 that 8y = 6; = 05, that
there exists a collineation o/ from 21 onto (K7, K3) having as restriction to
and (25 the collineations «; and a, and that g and o’ coincide on (C) N Q1.
Hence there exists a collineation @ : PG(N,q) — PG(N, q) such that Paw = P*,
forall P € C UK UKs. Now let P be any other point of . Then there is a unique
Veronesean cap of dimension two on K containing C and P, namely, the plane in &
defined by the line C of S and the point P. It has a unique I'-arc in common with both
K1 and Ko, and hence, as in the proof of Theorem 4.34, it follows that Pao = P*.
The theorem is thus established. a

Now the main result of this section is proved, keeping all the previous notation.

Theorem 4.37. If n = 3, then either N = 8 or 9. In the latter case, IC is the quadric
Veronesean of dimension three.

Proof. Consider a quadric sub-Veronesean XC; of dimension two on . It will be
shown that the 5-dimensional space (K1) contains at most one point of \/C;. Let
P, P' € (K\K1)N (K1), P # P’. The set of all I"-arcs contained in K; is denoted by
I';. The unique I'-arc C containing P, P’ has some point P; in common with K; and
therefore is entirely contained in (/). It follows that 7'( P ) is completely contained
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in (K1). Let Il be a plane containing an element of I'y, but not containing P;.
Then, by comparing dimensions, it follows that there exists a point U of PG(N, q)
in T'(P;)NIly. By Lemma 4.32, there is a I'-arc C’ through P; with tangent line P, U
at P;. Hence the plane (C’) meets II5 in a point not belonging to X, contradicting
(b). So it has been shown that (K;) contains at most one point of I\ K;. Note that
the last part of the argument shows that no space T'(P;), P, € K, is contained in
(Kq).

Assume that the point P € K\K; is contained in (; ). Choose a second quadric
sub-Veronesean [y # Ky of dimension two on K with P ¢ KCo. The intersection
C" = K1 N K belongs to T'. It will be shown that (K1) N (K2) = (C”). Assume,
by way of contradiction, that (K1) N (K2) contains a solid I3 containing (C"'). Let
P" € K9\K; be arbitrary. By comparing dimensions and as P # P, the tangent
plane at P” of K5 has at least one point R # P” in common with IT5. Hence there is
a point R’ € C” such that RP” is tangent to [R’, P”]. So the line R'R is contained
in ([P”, R']), implying that it must be a tangent line to [P”, R'] because otherwise
(K1) contains a point of [P”, R']\{R'}, contradicting that { P} = (IC\K1) N (K1).
Consequently, T'(R’) is generated by the tangent plane of K; at R’ and the line R’R.
Hence T'(R’) is contained in (K1), contradicting the last remark in the previous
paragraph. So it has been shown that (}C1) N (K2) = (C"). Hence N > 8.

The assertion for N = 9 follows from Theorem 4.36. ad

Theorem 4.38. (i) When n = 3 and N = 8, then there exists a projective space
Iy = PG(9, q) containing PG(8, q), a point R of Iy, and a quadric Verone-
sean IC of dimension three in g, with R ¢ KC, such that K is the projection of
KC from R onto PG(8, q).

(ii) The Veronesean IC can be chosen in such a way that K N IC is the union of two
quadric sub-Veroneseans of dimension two of both KC and IC, and IC is uniquely
determined by this intersection, by the point R and by one point P’ € K with
P’ not belonging to K N K with RP' N K non-empty.

Proof. The proof of Theorem 4.37 yields the existence of two quadric sub-Verones-
eans Ky and K of K such that (K1,K2) = PG(8,¢) and (K1) N (K3) is a T-
plane. Now embed PG(8, ¢) as a hyperplane in some 9-dimensional space PG(9, q)
and let R be any point of PG(9, ¢)\PG(8, q). Let P € K\(K; U K3) and choose
P’ € PR,P # P’ # R, arbitrarily. Let Q € K\(K; U K3) be arbitrary, Q # P.
The conic [P, Q] either has different points Py, P» in common with Ky and K5 or
has a point Z in common with /C; N /Cs. In the first case, define the point Q6 as the
intersection of the plane Py P, P’ with the line RQ; this is well defined since both
objects are contained in the solid P, P, PR. In the second case, define Q6 as the
intersection of the plane ¢(Z, [P, Z]) P’ with the line RQ. If U € K1 U Ko, then put
Ul = U. Also, PO = P’. Define K as the set of points Q0 such that Q € K. Then
is a well-defined map from /C to K. It follows that # is bijective and that its inverse
is the restriction to K of a projection mapping with centre R and image PG(8, q).
Note that (/) = PG(9, ¢). It is now shown that for every conic C € T', the set C6 is
a conic on KC.
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If C C KUK, then this is immediate. Also, if C contains P, then it follows from
the construction. Now suppose that P ¢ C and that C is not contained in /C; U Ks.
Then P and C are contained in the 5-dimensional space PG(5, ¢) containing the
unique quadric sub-Veronesean Vs of dimension two which contains both P and C.
Now, Vs either has distinct conics C1 and Cy in common with Ky and o or Vo
contains the conic K1 N /Co.

Consider the first case and let U € C be arbitrary. If [U, P] contains distinct
points of Ky and Ko, then U# is contained in the 5-dimensional space (C1,Ca, P’).
If [U, P] contains the unique common point W of C; and Cs, then the tangents at W
of [U, P],Cy,Cs are coplanar by (c), and so again U6 is contained in (Cy, Ca, P'). If
R € (C1,Ca, P'), then P € (C1,C2), so P € C; U Cs, a contradiction. Hence, in this
first case, C6 is the intersection of the cone RC with (Cy,Ca, P’), implying that C6 is
a conic on KC.

Now consider the second case. If U € C, then U@ is contained in the 5-
dimensional space IT5 generated by P’ and all tangent planes of V> at points of
K1 N Ko; see also Lemma 4.35. If R were contained in Il5, then P would be in II5,
so P € II5NKC; hence P € K1 N K2 by Lemma 4.35, a contradiction. Hence, in this
second case, C# is the intersection of the cone RC with Il5, implying as before that
C0 is a conic on K.

Therefore it follows that every two points of /C are contained in a unique conic
which is the image under 6 of some element of I". Let I be the set of all these conics
on K. Then it has been shown that K satisfies (a) for I". Let IT5 and IT} be two planes
of PG(9,¢q) containing the images under 6 of distinct T'-arcs C and C’. Suppose
II, N1II5 # 0. As (C,C’) is at least 4-dimensional, the point R does not belong to
1,11 and |[IIo N IT5| = 1. So (C) N (C’) # (), and consequently C N C’ is a point by
(b). It follows that II; N I} is a point of K. This shows that K satisfies (b).

Finally, it is shown that (c) is satisfied for IC. Therefore, let V' € IC and let C be a
conic of K which is the image under € of an element of I'; assume also that V' ¢ C.
By (c) applied to /C, the tangents at V' of the elements of I" which contain V" and a
point of C, are contained in a solid I3 containing R.

Firstlet ¢ > 2. By considering ! it follows that all elements of I which contain
V' and a point of C belong to the 5-dimensional space II§ generated by C and two
elements C; and Cs of T, defined by V and distinct points U; and U5 of C. This space
I1% does not contain R, as otherwise, by applying 6!, there arises a Veronesean sub-
cap of dimension 2 on K contained in a 4-dimensional space. It now follows that the
tangents at V' of the elements of I which contain V" and a point of C are contained in
the plane IT3 N ITf. By Theorem 4.36, K is a quadric Veronesean of dimension 3.

Now let ¢ = 2. If it is shown that the image under 6 of the point set of any
Veronesean cap of dimension 2 on K is contained in a 5-dimensional space, then the
argument of the previous paragraph applies and the theorem is proved. This is true
for ICy and K2. Now consider the set K5 = (K\ (1 UK2))U(K1NK2). In the present
situation, [P, Q)] contains a point Ug of Iy N g, for all @ € K\ (K U K2), with
P # Q. Alllines t(Ug, [P, Ug]) belong to a common 4-dimensional space I14 which
intersects the Veronesean cap of dimension 2 defined by P and K1 N Ko in 1 N /Cs.
Hence all planes t(Uq, [P, Ug|)P’ belong to a common 5-dimensional space II7.
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This space II7 does not contain R as otherwise II; contains P, a contradiction. By
construction, all corresponding points Q6 are contained in IT7, for all @ in the set
K\ (K1 UK2), with P # Q. These points Q6 together with P’ and K1 N Ky form the
point set that is the image under 6 of the Veronesean sub-cap K3 of dimension 2.
Last, consider a Veronesean cap /4 of dimension 2 on /C other than K1, Ko, 3,
and hence not containing /0y N Ka. Put {Z} = K1 N Ky N K4 and let Q1, Q2 be the
other points of s N KCy. Put C; = Ky N K, with ¢ = 1,2, 3. By (c), the tangent [
to Cs at Z is contained in (Cq,C2). The conic C30 is {Z, 10, Q20}, and, from the
construction of 6, it follows that [ is tangent to Cs6 at Z. Hence (K40) = (C1,Ca,C30)
is 5-dimensional and does not contain R, as otherwise K4 is in a 4-dimensional space.
The theorem is thus established. a

Lemma 4.39. If N < n(n + 3)/2, then there exist two distinct Veronesean sub-caps
K1, K2 of dimension n — 1 such that (K1, K3) = PG(N, q).

Proof. Suppose M < n(n + 3)/2. Coordinatise the projective space PG(n, g) with
respect to a basis Ey, E, ..., E, of the underlying vector space and consider the
points P = P(E;) and the points P; = P(E; — Ej), with i,j € {0,1,...,n}
and i # j. Note that P; = PJ; so it may be assumed that ¢ < j. Denote the
corresponding points on IC by P; and P;;. Let P* € PG(n,q) and let I(P*) be
the minimal number of points of { P, Py, ..., PX} needed to generate a subspace
containing P*. Put S = {P,P;; | 0 < k <nand0 < i < j < n}. For any
P € K, let P* be the corresponding point of PG(n, ¢). If [(P*) = 1, then P € (S).
If [((P*) = 2, then P belongs to some plane P;P;P;;, with i < j, and so belongs
again to (S).

Now, assume that [(P*) > 2 and, first, take ¢ > 2. Let P* = P(}_ r, E;), with
ri € Fg,andr; # 0 fori € {0,1,...,1(P*) — 1}, but with 7, = 0 otherwise. Then
take a line m* of PG(n, ¢) through P* and the point Q* = P (D), where the vector
D is defined as follows. If not all r; are equal, say 7y # 71, let D = Ey + Ey;if all
r; are equal, let D = Ey+tFEy, with t # 0, 1. Then m™ contains three distinct points
Q3, Q5, Q% such that [(QF) < I[(P*) — 1, for i = 1,2, 3. By induction on [(P*),
it follows that Q1, Q2, Q3 € (S), and hence P € Q1Q2Q3 C (S). If ¢ = 2, then,
without loss of generality, let P* = P(D = 3" F;), with 0 <4 < [(P*) — 1. Hence
P is contained in the 5-dimensional space II5 generated by the Veronesean sub-cap
of dimension 2 determined by

P(Eo), P(El), P(Eo + FE1 + D), P(E() + E1), P(Eo + D), P(E1 + D);

note that these six points correspond to six points of PG(N, 2) which generate IT5.
By induction it now follows that P € (S). Hence (S) = PG(N, q).

Since N < |S| —1 = n(n+3)/2, some element P of S satisfies P € (S\{P}).
Without loss of generality, let P = Py or P = Fy;. In the first case choose the
two Veronesean sub-caps K1 and Ko of dimension n — 1 as being determined by the
hyperplanes V(Xj) and V(Xo + X1 + - - + X,,) of PG(n, ¢), while in the second
case choose them as being determined by the hyperplanes V(X) and V(X) of
PG(n,q). O
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Finally, the main result is shown.

Theorem 4.40. There exists a projective space PG(n(n + 3)/2,q) containing the
space PG(N, q), a subspace 11 of PG(n(n + 3)/2,q) skew to PG(N,q), and a
quadric Veronesean V,, of dimension n in PG(n(n + 3)/2,q), with 1INV, = 0,
such that K is the bijective projection of Vy, from 11 onto PG(N, q). The subspace 11
can be empty, in which case K is the quadric Veronesean V,,.

Proof. By Theorems 4.34, 4.36, 4.37, 4.38, the theorem is already established for
n=23and N =n(n+3)/2.

Suppose N < n(n + 3)/2. Let K1, K be as in Lemma 4.39. Embed PG(N, q)
as a hyperplane in a projective space PG(N + 1, ¢) and let R be any point of the
difference PG(N +1, ¢)\PG(N, ¢). Further, let P be any point of K\ (1 UK5), and
choose arbitrarily a point P’ = P# other than P and R on the line RP. Also, choose
an element C of I" through P which has different points P; and P, in common with
K1 and Ks. As in the proof of Theorem 4.38, define Q6 for @ € C. For Q € K1 UKo,
let Q9 = Q. Now, let Q € K be arbitrary, but not in 'y U K2 U C. Then there is
a Veronesean sub-cap Vs of dimension two of K containing C and @); also Vs has
different conics C1 and Cs in common with /C; and Ko. Define Q6 as the intersection
of the spaces (C1,C2, P0) and R(Q). The set of all points Q6, with ) € K, is denoted
by K.

Let D be any element in T It is shown that D@ is a conic. If C N'D # (), then this
follows immediately from the construction. Assume now that C N'D = (). Consider
the unique Veronesean sub-cap K3 of dimension three containing C and D. Then
K3 meets Ky and Ky in different sub-Veroneseans V5 and V4 of dimension two,
meeting in a conic D’ of I'. If P ¢ (V5, V'), then D@ is the intersection of the space
(V5, VY, P8) with the cone RD; hence it is a conic itself. If P € (V4, V4, then this
follows from Theorem 4.38 and its proof. Let I" be the set of all conics D6 on K.

As in the proof of Theorem 4.38, it is shown that (a) and (b) are satisfied for C and
T, and also (c) for ¢ > 2. So let ¢ = 2. With this notation, the Veronesean sub-cap Vs
contains the points P, Q, Py, P>, U € C; N Ca, the third point Q; of C; and the third
point of Co. Hence U € [P, Q]. So t(U, [P,U]) is in the plane ¢(U,Cy)t(U,Cz). It
follows that t(U, [P, U]) P'NRQ = (C1,Ca, P"YNRQ. Now consider any Veronesean
sub-cap Vs of dimension two on K and let K3 be a Veronesean sub-cap of dimension
three on K containing ), and P. Relying on the foregoing and the case ¢ = 2 of the
proof of Theorem 4.38, it follows that the set V16 belongs to a 5-dimensional space
which does not contain R. Hence (c) holds.

Induction on N now completes the proof of the main theorem. a

4.2.2 Characterisations of V2" of the second kind

By Theorem 4.22, for any two distinct points P; and P, of the Veronesean V3, the
tangent planes 7 (P;) and w(P») have exactly one point in common. By a classical
theorem, the Veronesean Vé over C is the only surface generating PG(n, C), n > 5,
which is not a cone (with non-trivial vertex) and which satisfies the property just
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mentioned. In this section, the aim is to prove similar characterisation theorems in
the case of a Galois field F', and the Veronesean V2" .

Consider the quadric Veronesean V2" and the corresponding Veronesean map
from PG(n, ¢) into PG(N,, q), with N,, = n(n+3)/2. Then, by Theorem 4.10, the
image of an arbitrary hyperplane of PG(n, ¢) under the Veronesean map is a quadric
Veronesean Vg:l and the subspace of PG(V,,, q) generated by it has dimension
Np—1 = (n — 1)(n + 2)/2. Such a subspace is called a Vﬁ:l—subspace, or, for
short, a V,,_1-subspace, of VTQLH or of PG(N,,, q): this is an abuse of language, since
the subspace does not lie in V2". The image of a line of PG(n, ¢) is a conic. If ¢ is
even, then the intersection of all tangent lines of a conic is the nucleus of the conic. In
the next theorem it is shown that for n > 2 the set of all these nuclei is a Grassmann
variety. For n = 2, by Theorem 4.23 the set of all these nuclei is a plane, called the
nucleus of V3.

Theorem 4.41. If q is even, then the set of all nuclei of the conics on VZ", with
n > 2, is the Grassmann variety G ,, of the lines of PG(n, q) and hence generates
a subspace of dimension N,,_1.

Proof. Let ¢ be even and n > 2. If [ is the line of PG(n, ¢) determined by the points
P(xzo,21,...,2,) and P(yo, y1, ..., yn), then the image of [ under the Veronesean
map is the set of points

P(azgsz + y%tQ, - ,xisQ + thQ, 3;03;152 + y0y1t2
+(zoy1 + x1yo)st, - . . L T0TnSe + Yoynt® + (2oYn + Tnyo)st, .. .,
Tn-1Tn8” + Yn—1Ynt® + (Tn_1Yn + TnYn_1)st),

with s,¢ € F, and (s,t) # (0,0). This is a conic C in the plane generated by the
three points

P(z2,..., 22, 2021, ., T0Tn, - - s Tno1Tn),
P( 2 2 )

Yos- -5 Yn>YoYis - - - YoYns - - -y Yn—1Yn ),
P(Oa e »0,350111 +$1y0> e XoYn + TnYo, -+ Tn—1Yn + fnyn—l)«

It can be checked that the last point is the nucleus of C and the result follows. a

The subspace of dimension V,,_; generated by the Grassmann variety G ,, is
called the nucleus of the Veronesean V2" .

In Section 4.1 it was mentioned that, for ¢ even, all contact hyperplanes of Vj
contain the nucleus of V. For later reference, call this the nucleus property of V3.
In the next theorem, this is generalised to all n > 2, but first the definition of contact
hyperplane in the general case is given.

Let PG(n — 1,q) = V(F), where F' = uoXo + u1 X1 + - -+ + u, X,,, be any
hyperplane of PG(n, q), with n > 2. If Q is the quadric whose point set coincides
with PG(n — 1, ¢), then to Q there corresponds the hyperplane V (F”) of the space
PG(n(n+ 3)/2,q), where
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F' = udYoo +ulYir + - +udY,
F2upu1Yo1 + - - 4 2uounYon 4 -0+ 2Up—1Un Y1,

Such a hyperplane is called a contact hyperplane of VZ The contact hyperplanes of
Vg” are the hyperplanes which contain exactly one V,,_-subspace of Vg

Theorem 4.42. If q is even, then the nucleus of V,QL is the intersection of all contact
hyperplanes of Vg

Proof. From the proof of Theorem 4.41, the subspace V (Yoo, Y11, .., Ynn) of
PG(n(n+3)/2,q) is the nucleus of V2", As V(u2Yoo +uiYi1 +- - -+ u2 Y, ), with
(uo, 1, ..., u,) # (0,0,...,0), are the contact hyperplanes of V2", so the nucleus
is the intersection of the contact hyperplanes. a

For later reference, call this the nucleus property of Vfln.

In Theorem 4.25 it was shown that PG(5, ¢), with ¢ odd, admits a polarity which
maps the set of all conic planes of V; onto the set of all tangent planes of V3. Sim-
ilarly it may be shown that PG(V,,, q), with ¢ odd, admits a polarity 8 which maps
the set of all V,,_1-subspaces of VZ onto the set of all tangent spaces of Vg This
polarity is represented by the equations

PU00 = Y00/2, PUIL = Y11/2, .-, PUnn = Ynn/2,
PLO1 = Yo1, P02 = Y02,5---5PUn—1n = Yn—1,n,

where
V(vooYoo + v11Yi1 + -+ Un—1nYn—1,n)

is a variable hyperplane of PG(N,,,q). The images of the points of V2" are the
contact hyperplanes of V2"

Now let S,, be the set of all V,,_1-subspaces of the quadric Veronesean V,, in
PG(N,, q), with N,, = n(n + 3)/2. The set S,, has the following properties, which
can be verified using coordinates:

(a) every two members of S,, generate a hyperplane of PG(N,,, ¢);

(b) every three members of S,, generate PG(V,,, q);

(c) no point is contained in every member of S,,;

(d) the intersection of any non-empty collection of members of S,, is a subspace of
dimension N; = i(i + 3)/2 forsome i € {—1,0,1,...,n —1};

(e) if q is even, then there exist three members 7, ', 7 of S,, with

sN =7 nNna" =7"Nmr.

For n = 2 and arbitrary ¢, property (d) follows immediately from (a), (b), (c).

From now on, let S be a collection of #(n) = ¢" +¢" =+ -+ ¢+ 1 subspaces
of dimension N,,_1 = (n — 1)(n + 2)/2 of PG(N,, q), with N,, = n(n + 3)/2,
such that the following conditions are satisfied:

(I) every two members of S generate a hyperplane of PG(N,, q);
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(1) every three members of S generate PG(N,,, q);
(IIT) no point is contained in every member of S.

Definition 4.43. (1) The set S is called a Veronesean set of subspaces.

(2) In the particular case where no three members of S meet in the same subspace,
necessarily of dimension V,, o, the set S is called an ovoidal Veronesean set of
subspaces.

(3) A set of subspaces in (1) which is not ovoidal is called proper.

(4) If a collection S of subspaces of dimension N,,_; satisfies (1), (IT) and (III), but
no three members of S meet in the same subspace, and if S contains 6(n) + 1
elements, then S is called a hyperovoidal Veronesean set of subspaces.

One of the purposes of this section is to classify the proper Veronesean sets of
subspaces, and to show that every ovoidal Veronesean set of subspaces is contained
in a unique hyperovoidal Veronesean set of subspaces.

Further it is shown that, for ¢ > n, every Veronesean set of subspaces satisfies
the following:

(IV) the intersection of any non-empty collection of members of S is a subspace
of dimension i(¢ + 3)/2 for some i € {—1,0,1,...,n —1}.

A further condition may be formulated:

(V) if q is even, then there exist 7, 7/, 7"/ € S with

! ! " "
TONT =7 N’ =m M.

If S is a proper Veronesean set of subspaces satisfying also (IV), then it will be
shown that either it must be the collection of V,,_1-subspaces of a quadric Verone-
sean V2" in PG(N,,, ¢), or that ¢ is even and there is a unique subspace PG(N,,_1, ¢)
such that SU {PG( n—1,q )} is the set of V,,_1-subspaces together with the nucleus
of a quadric Veronesean V2" in PG(N,,, q). Also, it will follow that, if S* is a set
of (n) + 1 subspaces of dimension N,,_1 = (n — 1)(n + 2)/2 of PG(V,, ¢) such
that (I), (II), (IIT) hold for S* and either also (IV) holds, or ¢ > n, then q is even
and either S* is the set of all V,,_;-subspaces together with the nucleus of a quadric
Veronesean VZ in PG(N,, q), or it is a hyperovoidal Veronesean set of subspaces.

The proof proceeds by induction on n, but the smallest case n = 2 is handled in
the course of proving the general case.

It is convenient in many situations to consider the dual projective space. The
dual of an object B of PG(N,,, ¢) is denoted by 5. In particular, denote the dual of
PG(N,, q) by PG(N,, q). So consider a set S of §(n) n-dimensional subspaces of
PG(Np,q), satlsfymg the following properties:

(r ) every two members of S meet in a point of PG(N,,, q);
(I") no three members of S have a point in common;
(ITI1") no hyperplane of PG(NN,,, q) contains all members of S.

The rough idea of the strategy is to fix one member 7 of S and to consider all
intersections of 7 with the other elements of S. This allows the use of induction.
However, these intersections do not always satisfy (I), (IT), (IIT); if they do not, then
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another member of S is considered. To start, the properties of the set S, of subspaces
of 7 of dimension N,,_o = (n — 2)(n + 1)/2 obtained by intersecting 7 with all
elements of S\{7} are collected.

Note that, for any element 7w of S, every point of 7 is incident with a unique
element of S\ {7}, by (I) and (II), except for a unique point, called the nucleus of
.

For sake of completeness (IV’) and (V') are also formulated:

(IV') any non-empty collection of members of S generates a subspace of dimen-
sion N,, — N; — 1 forsome i € {—1,0,1,...,n—1};

(V') when ¢ is even, then there exists a 2n-dimensional space containing at least
three elements of S.

Lemma 4.44. If ¢ > n or if S satisfies (IV), then any two elements of S,, with
w € S, generate a hyperplane of .

Proof. The lemma is immediate if S satisfies (IV). So assume that ¢ > n.
Let 71,72 € S\{r}, with 7 N 7! # m N 2. Then

(rnat,rna?) crnrt, ),

and the last is a hyperplane of 7 by (II). Hence, it remains to show that (wN7!, 7N7?)
has dimension at least N,,_; — 1. This is equivalent to showing that the dimension
of t N7l Na?isatmost 2N, o — N,,_1 + 1 = n(n — 3)/2 = N,,_3. Suppose by
way of contradiction that the dimension of 7 N 7! N 72 is larger than N,,_3. Then
the dimension of (7, !, 72) is at most 3n — 2. Put

1 1 2 12
vo=(mm), =y, ).
Since 7 and 7! meet in a point, the subspace y' has dimension 2n. If ! = 2, then
rNat=71Na2, contrary to the assumption.

Now it is shown that there is a sequence (73, 7%, ... 7"*1) of elements of S
such that, for all i € {2,3,...,n},

(i) the subspace 7* defined inductively by vt = (y*~1,7%) has at least an i-
dimensional subspace in common with an
(ii) ~* does not contain 7' **.

Putting « = n in (i) and (ii), these two conditions give a contradiction, in view of
the fact that 7! has dimension 7.

The sequence is now constructed by an inductive argument, adding 7% to the
sequence, putting 7 = ~°, and noting that 72 has at least one plane in common
with ~'. For this first step, the intersection with 7*! is larger than asked for in ().
Suppose now that there is already a sequence (72, 7%, ..., 7"), for some integer k in
{2,3,...,n}, satisfying (i) and (ii) for all 7 € {1,2,...,k — 1}. First, note that the
dimension of v* is bounded by

dimy? +(n—2)+n—-3)+---+(n—(k—1))
<3n-—-2+n-2)(n—1)/2=(n(n+3)/2) — 1;
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hence v* is contained in a hyperplane of PG(NN,,, ¢). Condition (III') therefore guar-
antees the existence of a subspace (7%*1)’ not contained in v*.

Now, there are at least ¢" — 1 elements of S meeting (7" in a point outside
¥, and it is shown that, forall i € {2,3, ..., k}, there are at most (¢" —1)/(qg—1)—i
of these meeting 7% in a point of 4*~!. Indeed, the i subspaces 7, 7%, ..., 7! meet
7" in a point of v*~! and have no points outside 7*; therefore there still remain
(¢" — 1)/(g — 1) — i points of 7° N ~*~! that possibly could be contained in a
(necessarily unique) element of S meeting (7**1)’ in a point outside v*. The result
follows.

A counting argument, using the fact that & < n < ¢, now shows that at least
one element 75! of S meets (7**1)’ in a point outside v* and meets 7 in a point
outside v~ !, forall i € {2,3,...,k}. Putting kK = n, a subspace 7"+ is obtained
having an n-dimensional subspace in common with 4", but not contained in 7", a
contradiction. The lemma is thus established. O

Now assume either that S also satisfies (IV) or that ¢ > n.

Some more notation and terminology are required. For 7’ € S\{r}, define
[, 7] to be the set of elements of S containing 7 N 7. The dual of [7, 7’] is de-
noted by [, 7']. The w-number of ' is the size of [, 7’']. The spectrum Spec(r) of
 is the set of all 7-numbers of elements of S\ {7 }. It is shown that for the w-number
there are a limited number of possibilities.

Lemma 4.45. (i) For q even, Spec(w) C {2,¢,q¢+ 1}.
(ii) For q odd, Spec(m) C {q,q+ 1}.

Proof. First it is shown that if, for some 7’ € S, there is a m-number at least three,
then it is either ¢ or ¢+ 1. So, suppose that 7', 7/ € S\{7}, with 7’ £ 7"/, meet 7 in
the same subspace . Dualise the situation. By (III'), there is an element 7 € S not
contained in . By Lemma 4.44, 7 meets - in a line {, which has the distinct points
o,0’,0"” in common with 7, 7w/, 7”. Since every element of S contained in v must
meet 7, by (I'), necessarily in a point of ¢, and since these points must all be distinct,
it follows already that the w-number of 7’ is not larger than g + 1.

Suppose now, by way of contradiction, that the 7-number of 7’ is strictly less than
q. Then there are at least two points on ( that are not contained in an element of S
that is entirely contained in . One of these points cannot be the nucleus of 7; so there
is at least one point § of ¢ that is contained in an element 7/ of S\ {7} that does not
belong to ~y. The subspace 7’ meets +y in a line ¢ intersecting w, 7', 7" in 6,6 ,0 . Let
{n} = 7N, and let a be the plane spanned by n and . Then, o = (m,{) N {(x’, {).
But since (r,¢) = (m,8) = (m,¢), and similarly (7', ¢) = (x/, ), it follows that
¢ is contained in av. Hence 7' has the two distinct points ¢’/ and € in common with
«a, implying that 7" meets both 7 and 7’ in points of «; these intersections are on the
lines (n, o, 6) and (n, o, 9/>. So all elements of S that are contained in v meet 7 in
points of a.

Now select a point § of m, distinct from the nucleus of 7, and not lying in a.
There is a unique element 7/ € S\ {7} containing §', and by the foregoing 7 is not
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contained in . Interchanging the roles of 7”7 and 7, it follows that 7 N 7’ is a point
of the line (7, 6/), a contradiction. Hence Spec(m) C {2,¢,q+ 1}.

Suppose now that ¢ is odd. It is shown that the 7-number of 7/ € S\ {7} cannot
be two. Assume, by way of contradiction, that the w-number of such a 7’ is two.
Consider an arbitrary 7 € S\{, 7'}. Then, again putting v = (m, 7’), the space 7
meets v in a line ¢. Let {n} = 7 N 7’. As in the previous section, the intersection
of v and any element 7 € S\{m, 7', 7} containing some point of ¢, is a line C/
contained in the plane (7, ¢). If the nucleus of 7 were not on (, then there would be
q — 1 choices for 7/, and since no three of the corresponding lines CI, together with
(,(, =anm, (., = anNn meetin a common point, there arises a (q + 2)-arc,
a contradiction. Hence there is a unique point € on the line ¢, not contained in an
element of S\ {7} that contains a line of a.

By way of contradiction, suppose that 6 is not the nucleus of 7. Then there is an
element 7”7 € S\{r} containing 6. If ¢ " is the intersection of 7 with 7, then a pre-
vious argument shows that there are ¢ — 2 > 0 elements of S different from 7", 7, 7’
meeting ~y in a line of the plane (7, CH>. These g — 2 elements also contain points
of the line (. different from 7 and 6, and so their intersections with  are contained
in «. It follows that o = (1, C”>, and so 7 contains a line of «, a contradiction.
Hence 6 is the nucleus of 7. But T was arbitrary in S\{, 7'} and this contradicts
the uniqueness of the nucleus of 7. The lemma is thus proved. d

Now the case ¢ # 2 with each spectrum a subset of {¢, ¢ + 1} is considered, and
also the case ¢ = 2 for which each spectrum is {3}.

An extra axiom is required.

(A,) Assume that S satisfies (I) to (V). Then either S is the set of V,,_1-
subspaces of a quadric Veronesean Vg in PG(N,, q), or ¢ is even, there are two
elements 7, 7' € S with the property that no other element of S contains = N 7/, and
there is a unique subspace 1 of dimension (n — 1)(n 4 2)/2 such that S U {n} is
the set of V,,_1-subspaces together with the nucleus of a quadric Veronesean 2" in
PG(n(n+3)/2,q).

Lemma 4.46. (i) Let ¢ > 2 and suppose that Spec(w) C {q,q + 1}. Then
Spec(m) = {q + 1}. If this holds for every element of S and if for n > 2
the axiom (A,,_1) is satisfied, then S is the set of V,,_1-subspaces of a quadric
Veronesean V2" .

(ii) If ¢ = 2, if Spec(mw) = {3} for every element of S and if for n > 2 the axiom
(A,,—1) is satisfied, then the same conclusion holds.

Proof. Assume that ¢ > 2 and that Spec(m) C {q, g+1}. Suppose that the 7-number
of some 7/ € S\{r} is ¢. Let 7 € S be such that it does not contain 7 N 7/, and
let 7' € [m, 7], with 7 # 7' # 7. This means that (7, 7) = (7, 7’), which implies
that the lines (7, 7) N 7" and (7, 7') N7’ coincide. Denoting this line by ¢, = ¢/, it
follows that there are two possibilities:

(a) all points on (. are contained in an element of [, 7] when the 7-number of 7 is
qg+1
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(b) all but exactly one point of ¢ are contained in an element of |7, 7] when the
m-number of 7 is q.

Also, there are exactly g points on the line ( = 7 N ~, with v = (7, '), contained in
elements of [, 7']. So there remains a unique point # on ¢ which is not contained in
any element of [, 7r']. It is now shown that 6 is the nucleus of 7.

Assume, by way of contradiction, that  is not the nucleus of 7. Then, let /3 be the
unique element of S\{7} containing 8. As in the proof of the previous lemma, this
implies that the intersection of 5 with ~y is a line " contained in the plane « spanned
by ¢ and the point 1, with {n} = 7 N 7. Also, every element of |7, 7] meets CI
in a point not belonging to ¢, and hence has a line in common with «; this implies
that every element of [, 7] has a point in common with ¢, which is contained in
«. This contradicts the observation made in the previous paragraph on the points of
(.. Consequently, 6 is the nucleus of 7.

Hence, as 7 was essentially arbitrary, all nuclei are contained in ~. If the -
number of 7 were also equal to ¢, then similarly all nuclei would be contained in
(m, 7). Assume, by way of contradiction, that this is the case. Let B/ be an element
of S containing no point of (7, 7) N 7" and no point of (m, 7’) N 7. Then the nucleus
of ﬁ/ is on the line (7, 7) N 3" and on the line (m, ') N 3’ Hence these lines coincide
and so 8 intersects (m,7) N«" and (7, 7') N 7, a contradiction.

It follows that the 7r-number of all elements of S\ [7, 7] is equal to ¢ + 1. Count-
ing the number of sets [, 7], with 7/ € S\ [, 7'], gives (¢"+¢" 1+ - -+¢*+1)/q,
which is not an integer. This is a contradiction, and so the spectrum of 7 is the sin-
gleton {q + 1}.

Suppose now that Spec(w) = {q + 1} for all 7 € S, and let ¢ > 2. First assume
that n = 2. Let V be the set of points of PG(5, ¢) that are contained in precisely
q + 1 elements of S. Note that

(¢ +q+1)(¢*+4q)/2

VI= (q+1)q/2

=¢ +q+1,

by counting the ordered triples (7, 7", P) with 7/, 7" € S, «’ # 7", and P a point
of 7’ N #”, in two ways. Also, there are precisely g + 1 points of } in each member
of S. It is shown that V is a cap. First it is established that, whenever a point P € V
is contained in a line of PG(5, ¢) intersecting V in at least three points, then the set
of ¢ + 1 points in any element of S containing P is a line of PG(5, ¢), leading to a
contradiction.

Let P, P’, P” be three distinct points of VV on a common line m. Let 7p € S
contain P. First suppose that m is not contained in an element of S. Let 7p/ and
mpr be two elements of S containing P’ and P”, and such that the intersections
with 7p, say R’ and R”, are distinct; these elements exist because there are ¢ + 1
elements of S through each point of V. If P, R’, R” were not collinear, then the plane
mp would be generated by these three points; but then the planes 7p, and 7p» would
generate a 4-dimensional space containing R', R, P', P", hence also containing P
and thus containing 7p, contradicting (II). Fixing m7p and 7p/, but not wp~, there
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arise at least ¢ distinct points on PR'\{ P, R'}, a contradiction. So m is contained in
an element 7 of S.

Assume that 7w p does not contain m. From a previous argument it follows that the
points of V in 7p are contained in a line. Similarly, interchanging the roles of P’, P”
and two arbitrary points of mp NV different from P, it follows that also 7NV is a line.
But now every member of S has that property, since every member of S contains a
point of 7p. Hence V consists of the union of ¢? + ¢ + 1 lines and consequently is
a projective plane I of PG(5, ¢). Every element of S meets II5 in a line, which
implies that the (¢ + ¢+ 1)(¢? + ¢) /2 distinct hyperplanes containing two elements
of S all contain IT5. But there are only g2 + ¢ + 1 hyperplanes in PG(5, ¢) through
II,, a contradiction. Consequently, V is a cap.

It now follows that, for every m € S, the set 7 NV is a (¢ + 1)-arc. Hence, on
V, there is a set O of size q2 + g + 1 of (¢ + 1)-arcs, meeting in pairs in a point,
and such that every point is contained in ¢ + 1 of these (¢ + 1)-arcs. It follows that
every two distinct points of ) are contained in a unique (g + 1)-arc. In order to apply
Theorem 4.34 to conclude that V is the quadric Veronesean V3, it must be shown that
the tangent lines at any fixed point P € V to the (¢ + 1)-arcs O € O containing P
are coplanar. To that end, consider an arbitrary plane 7 € S containing P and project
V\7 from 7 onto a plane II5 of PG(5, ¢) skew to 7; denote by 6 the projection map.

First it is shown that € is injective on V\m. Let P, P € V\7 and suppose
that P’ = P”0. Let #’ € S contain P’ and P”. Then (m, P', P") = (m,x’) is
3-dimensional, a contradiction. Now let 7’ € S\ {7} be arbitrary. Since (7, 7’) is 4-
dimensional, the projection of (7"\7) NV consists of ¢ points on a line m’ of II5. Let
R’ be the unique point on m’ that is not an image under 6 of any point of (7' NV)\.
By way of contradiction, let R’ be the image of a point R € V\7; necessarily R ¢ 7’.
The g + 1 planes of S through R, minus their intersection points with 7, are mapped
under @ into ¢+ 1 different lines of I, through R’, since every three distinct elements
of S generate PG(5, ¢). Hence there is an element 7" € S through R which yields
m’. So w, 7', 7" are contained in the hyperplane (7, m’) of PG(5, q), contradicting
(I1). It now follows that the set of planes of S\{x} through P corresponds under
6 with the set of ¢ + 1 lines of II, containing a fixed point P* of Il,, and that the
3-dimensional subspace I3 = (7, P*) meets every element 7’ € S\{7} containing
P in a line m+ through P disjoint from V\7. So m- is tangent to the (¢ + 1)-arc
7' NV at P. Now fix 7/ € S\{n} with P € «’. Then, similarly, there is a solid

% containing 7’ and the tangent lines at P to the elements of O containing P. As
II; # 114, so all these tangent lines are contained in the plane IT3 N II5. This shows
the lemma for n = 2.

Next, suppose that n > 2. Consider the set S, = {rN 7' |7 € S\7}, and
calculate |S;| = 0(n — 1). In m = PG(N,_1,¢q) the set S; satisfies (I) and (IIT)
for the parameter n — 1 instead of n. It is now shown that it also satisfies (II). Let
[m, 7] # [, 7], with 7 € S\{r}, and let {, be as above. Then, all points of (. are
contained in elements of [, 7. Hence any 7/ € S\ ([, 7'] U [r, 7]) meets ' outside
(7, 7). This means that

(m, 7"y N {m,7) N {m, 7'y =,
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and the dual of this is exactly (IT). Also, if S satisfies (IV), then S satisfies (IV); if
q > n, then ¢ > n — 1. Hence, by (A,,_1), the set S is either the set of all V,,_o-

. n-1 . .
subspaces of a quadric Veronesean V2" |, or ¢ is even and S, is the nucleus together

with all V,,_»-subspaces but exactly one of a quadric Veronesean Vgﬂ__ll or it is an
ovoidal Veronesean set of subspaces.

It is now shown that the last two cases cannot occur. In both these cases, there is
an element of S,;, which can be taken to be m N 7/, with the property that it contains
6(n — 1) — 1 subspaces of dimension NN,,_o arising as intersections of 7 N 7’ with
other elements of S,;; if S is not ovoidal, then take for 7’ the nucleus of VZ:I. Let
d be such a subspace of dimension N,,_ and let 7 € S\[r, 7’| contain §. Then all
q+ 1 elements of [, 7] contain J, but they define ¢+ 1 distinct members of Sy, each
of which is defined by ¢ different elements of S. As there are §(n — 1) — 1 choices
for ¢, there are at least

gt P (g 1) (4.7)

elements in S, a contradiction; the last ‘g+ 1’ in (4.7) comes from the q+ 1 elements
of [rr, ©']. It follows that S is the set of all V,,_y-subspaces of a V2" .

Consider now the set V of all points of PG(NV,,, ¢) that are contained in precisely
6(n — 1) elements of S. From the previous section, it immediately follows that, for
each element 7 of S, the intersection w NV is a quadric Veronesean VT%:ll Denote
by T the set of all conics contained in these intersections 7N V. Now let P’, P” € V,
P’ = P”. Then there are elements 7', 7/ € S with P’ € 7’/ and P” € 7. Suppose
7’ # . The 6(n—1) elements of S containing P’ meet 7 in distinct subspaces, by
(I) and the fact that their intersection contains P’; hence P’ is contained in at least
one of them. Consequently P’ and P" are contained in a common member of S, and
hence P’ and P” are contained in a conic of I'. Assume, by way of contradiction,
that P’, P € V with P’ # P” are contained in distinct conics C’ and C” of T'. Let
R € C"\C'. As before, it follows that, if n > 2, then C’ is contained in at least one
of the O(n — 1) elements of S containing R. So C' and C" are distinct conics of a

quadric Veronesean Vgi_ll sharing two distinct points, a contradiction. So any two
distinct points of V are contained in exactly one conic of I'.

Now let C be any member of I' and assume that P € V\C. As before, if n > 3,
then C is contained in at least one of the §(n — 1) elements of S containing P. So P
and C are contained in a common member 7 of S and, since w NV is a Veronesean,
the tangents at P of the conics through P which have a point in common with C all
lie in a fixed plane. By a similar argument, it follows that two distinct elements of I"
containing P always generate a 4-dimensional space. Now assume that C’,C” € T,
with C’ # C”, and that P € (C’') N (C"). It will be shown that P € C' N C".

If P ¢ C'"NC"” and P is not the nucleus of at least one of C’',C”, say P is not
the nucleus of C’, then there is an element 7 of S containing C” and two distinct
points P’ and P” of C’. If  also contains C’, then, as C’ and C” are conics of some
V?;:l, it follows that P € C' N C"”, a contradiction. If 7w does not contain C’, then P’
and P” are contained in common distinct elements of I', again a contradiction. Now

assume that P is the common nucleus of C’ and C”. Let R € C”. Then R and C’ are
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contained in a common element 7 of S. As P is the common nucleus of C’ and C”
the space 7 cannot contain C”. So N (C”) = PR.Let R’ € C"\{R}.If n > 3, then
by similar arguments R, R’ and C’ are contained in a common element 7’ of S. As
7' NV is a quadric Veronesean V,Qli_ll, the conics C’ and C” of 7/ NV cannot have a
common nucleus. Son = 3.

If R, R, R" are distinct points of C”, then (R,C’),(R',C"),(R",C’") are con-
tained in respective elements 7, 7', 7 of S. The 5-dimensional spaces 7, 7w/, 7" are
distinct and share the plane (C’'). Let U € C’. Then U and C” belong to a Veronesean
V3, so the tangents of V4 at U are coplanar. Let D, D’, D" be the conics contain-
ing {U, R}, {U, R'},{U, R"}. Since the tangents at U of D, D’, D" are coplanar,
D" belongs to (m,7’). Consequently, 7"/ C (m,7’). So m,n’,#" are in the same
hyperplane, a contradiction. Therefore P € C' N C".

By Theorem 4.36, it now follows that I' is the set of all conics on a quadric
Veronesean VE Finally, by Theorem 4.15, S is the set of all V,,_;-subspaces of
V2", 0

From now on assume that there exists some member of S whose spectrum con-
tains 2. Then ¢ is even by Lemma 4.45. First consider the case where the spectrum
contains 2 and has size at least two.

Lemma 4.47. Let m € S be such that 2 € Spec(w) and |Spec(w)| > 2. Then the
following hold.

(i) Spec(m) = {2,q,q + 1}.

(ii) If ¢ > 2, then there exists a unique element ©' € S\{n} such that |[z,7']| = 2
and there are precisely g—1 elements " € S\{r} such that |[x,7"]| = ¢. Also,
Spec(n’) = {2} and the spectrum of any other element of S is {2,q,q+ 1}.

(iii) If ¢ = 2, then there are precisely two elements of S\{r} with w-number 2, one
of which has spectrum {2}, while any other element of S has spectrum {2, 3}.

Proof. Let m,7n' € S be such that |[7,7']] = 2 and let 7 € S\{7} be such that
[ = |[m, 7]| > 2. As before, let v = (7, 7’) and let ¢ be the intersection of  with 7.
The elements of [, 7] must meet 7’ in the line joining 7 N 7" and 7 N7’; on the other
hand, the elements of S\ {7, 7/, 7} containing a point of ¢ intersect ~y in lines which
are contained in the plane (n, ¢), with {n} = 7 N 7’. It follows that there are at least
g — 1 points on the line C/ joining 7 to ™ N 7 contained in elements of [, 7]\ {7}, if
[ = g¢+1, and at least g — 2 such points if | = ¢. A similar statement holds for the line
¢ joining n with = N 7/, for every 7/ € [, 7]\{7}. It readily follows that, if ¢ > 2,
then every such line ¢ " coincides with ¢ ", Suppose now that ¢ > 2. Then there are
precisely ¢ points on the line ¢’ contained in elements of [, 7\{7}, ifl = g+ 1,
and precisely ¢ — 1 such points if [ = g. Since the line ¢ "is uniquely determined by

. . . /
[7, 7], every element 7" of S\{7} with 7-number 2 must intersect 7 on the line ¢ .
It follows that 7’ = 7" if | = ¢ + 1, and there is at most one choice for 7" # 7’ if

l=q.



174 4 Veronese and Segre varieties

So suppose that such a space 7" # 7’ exists. Put {n'} = 7 N «”. Then every
element 7/ € S\[m, 7], with 7’ # 7’ # «”, has m-number ¢, and so, by the pre-
vious arguments, all elements of [, 7/]\{m} have a point in common with 77, a
contradiction. Hence, for ¢ > 2, there is just one 7’ € S\{w} with |[r, 7']| = 2.

Suppose now that ¢ = 2 and put [, 7] = {7, 7, 7’'}. The only possible reason for

the line ¢ " not to contain 7 N 7 is that there is no element of S \{m, 7,7} containing
a point of (; in other words, the nucleus of 7 is contained in . Assume, by way
of contradiction, that there are at least three elements of S\{7} with 7-number 2.
Then for at least two of them, say «’ and 7"/, the points 7 N 7,7’ N 7, 7" N 7 and
the nucleus 6 of 7 are distinct collinear points, a contradiction. So in the case ¢ = 2,
there are at most two elements in ¢ with 7r-number 2, say 7’ and 7/, and a counting
argument shows that there are exactly two elements in S with m-number 2. Putting
rmNn’ ={n}and rN7" = {n'}, the same argument also shows that, if N7 = {a}
and 7 N 7" = {a’}, then the line &@’ contains either i or 7/, and if it contains, say,
7, then the nuclei of 7 and 7’ are contained in .

With this notation, it is shown that the spectrum of 7" is equal to {2}. For, if
[, 7] contains an element 7”7 ¢ {7" 7}, then 7"/ meets 7 in the point o/, a contra-
diction. Similarly, |[7”,7']| = 2 and so there are at least three elements of S\{7"}
with 7”-number 2, namely 7, 7 and 7’. So, by previous arguments, there cannot be
an element with 7”/-number ¢ + 1 = 3. Hence Spec(7”) = {2}.

Next, it is shown that Spec(n’) = {2,3}. Suppose, by way of contradiction,
that Spec(n’) = {2}. First note that the argument in the previous paragraph implies
that the nucleus of 7 is on the line 7@, as otherwise 7’ contains the third point of
fa as well as o’. Analogously, the nucleus of 7 is on the line 7a’. This yields a
contradiction. It also follows that |[7’, 7]| = |[#’, 7']| = 3, and so the nucleus of 7 is
on 777. Taking into account all previous arguments, it follows that 7’ is the unique
element of S with spectrum {2}, and the other elements are divided in pairs {¢, ¢’}
with respect to the relation “’ has ¢-number 2”. Also, the nucleus of ¢ and the
points ¢ N ¢’, o N 7' are collinear, and the two intersection points of the elements
of [, B]\{¥}, where 8 ¢ {p,¢’, 7"}, with ¢ are collinear with o N 7.

Further, it is shown that the nucleus of any p € &S is contained in the space
(m, @) = ~. This is immediate if p € {m, 7'}. Suppose now that p ¢ {7, 7'}, and
also assume that p # 7", If the nucleus of p were not contained in -y, then the unique
element p’ of [r, p]\{, p} would meet v in a line of the plane spanned by 7 and
p N+, implying that the intersection points 7 N p and N p’ would be collinear with
7, contradicting an earlier observation. Now it has still to be proved that the nucleus
of 7"’ is contained in . Suppose this is not the case. Then the third point of the line
joining " and 7’ N7t is on an element 3 of S intersecting 7, 7/, 7’/ in distinct points
of the line S N ~. But the nucleus of 3 is also on that line, a contradiction.

A similar result on the nuclei of the elements of S is now shown for ¢ > 2.
A counting argument shows the existence of at least one element 7 € S\{w} with
m-number ¢. It is now shown that the nuclei of all elements of S are contained in
~v* = (m, 7). Note that, similarly to the first part of the proof of Lemma 4.46, this
implies that the only elements of S\{7} with 7-number ¢ are those of [, 7].
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Now the assertion on the nuclei is shown. Put {£} = mN 7. Let ¢ be any element

of S\[m, 7]. There is a unique point ¢ on the line ¢ » = 7" N not contained in
an element of [r, 7]. If this point would not be the nucleus of ¢, then it would be
contained in an element ¢’ # ¢ of S. By previous arguments, it follows that the
elements of [, 7]\{7} would meet 7 in points of the line 7 N (£, (). But this line
contains the points of intersection of 7 with any element of [, ¢] U [, ¢']. It follows
that the w-number of both ¢ and ' is 2, a contradiction. This proves the assertion.
It is now shown that all elements of S\ {7’} have 7’-number equal to 2. If not,
then, by the first section of this proof, each element of S\{7’, 7} has 7’-number ¢ or
g+ 1, and, from above, ¢ — 1 elements of S\{7’} have 7/-number ¢. Hence one can
find ¢ € S\{m, 7’} such that ¢ has w-number ¢ + 1 and 7’-number ¢ + 1. It follows
from previous arguments that at least ¢ — 2 elements of [, p]\ {7, p} meet v in lines
belonging to the plane generated by 7, with {n} = 7 N x’, and v N ¢. By symmetry,
this also holds for at least ¢ — 2 elements of [7/, ©|\{7’, ¢}, a contradiction.
Finally, it is shown that the spectrum of any element of S\{#'} is {2,¢,¢ + 1}.
Assume, by way of contradiction, that the spectrum of ¢ € S\{#n’} contains at
most two elements. As Spec(n’) = {2}, the spectrum of ¢ contains 2. In the case
that [Spec(¢)| = 2, then, with 7 and ¢ interchanged, Spec(yp) = {2,¢,q + 1}, a
contradiction. Hence Spec(¢) = {2}, again a contradiction, as there is exactly one
element of S\ {7} with 7-number 2. Hence Spec(yp) = {2, ¢, ¢+ 1} for any element

o e S\, 0

Lemma 4.48. If S is a proper Veronesean set of subspaces with the property that 2
is contained in the spectrum of at least one element of S and if, for n > 2, axiom
(A1) is satisfied, then S is the set of all V,,_1-subspaces but one, together with
the nucleus of a quadric Veronesean V,QL

Proof. As S is proper, there is an element of S whose spectrum contains 2 and at
least one of ¢, ¢+ 1; if ¢ = 2, then there is an element of S whose spectrum is {2, 3}.
Lemma 4.47 implies that there is a unique element 7’ of S with spectrum {2}, and
all other elements of S have spectrum {2, ¢, ¢ + 1} for ¢ > 2, and {2, 3} for ¢ = 2.
Also, for m € S\{n'}, there is a unique set [, 7] of size ¢, with 7 € S\{m, 7'},
and all elements of S\ ([7, 7] U {n’}) have m-number ¢ + 1. It also follows from the
proof of Lemma 4.47 that, for each element ¢ with m-number g + 1, the set of points
7Ny’ with " € [m,¢]\{7}, is contained in a line ¢ ,, which contains the common
point 7y of 7 and 7’. The unique line ¢ of 7 through 7 that cannot be obtained in this
way, contains the ¢ — 1 points of intersection of 7 with the elements of [, 7]\ {7}
and also the nucleus of 7.

It is now shown that the set of all nuclei is an n-dimensional subspace PG(n, q)
of PG(N,, q). From the fact that there are exactly 6(n) nuclei, it suffices to show
that all points of the line joining any two distinct nuclei are again nuclei. In other
words, it is sufficient to show the following:

(1) the nuclei of all elements of [r, ] are collinear;
(2) the nuclei of all elements of [, 7] U {7’} are collinear.
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Put v* = (m,7), and for each element ¢ of [r, o]\{7}, putv* N’ = p,.
Note that the unique point of such a line p,,, which is not contained in any element
of [m, 7] is the nucleus fl of ¢/, since, by the proof of Lemma 4.47, all nuclei are
contained in (m, 7). Previous arguments imply that, for each 7/ € [m, 7]\{7}, the
points 7N 7" and ¢’ N7/, with ¢’ € [m, ]\ {7}, constitute a line §, = (7, p) N7'. It
follows that the ¢ disjoint lines £, 6., with 7" varying in [r, 7]\ {7}, all meet each
of the ¢ + 1 disjoint lines (., p,,, with ¢’ varying in [r, ¢]\{7}. Hence the nuclei
of all elements of [, ¢] are contained in the unique ‘missing’ line of the hyperbolic
quadric containing the 2¢g + 1 mentioned lines. This shows (1).

Let ¢, be the intersection of v* with 7’. This line contains the point 7, hence
(C,5C,) is a plane a. Since, for every 7/ € [m, 7], the 7/-number of 7’ is 2, the
plane o contains, for every such 7/, the line ¢, consisting of all points 7/ N 7, with
7 € [r,7]\{7'}, the point 7’ N 7/, and the nucleus of 7. Note that (.. = (,. So the
setof lines O = {¢., | 7 € [r, 7]} U{(,.} is a dual (¢ + 1)-arc in cv. As all nuclei
are contained in v*, the nucleus of 7’ belongs to (.. Hence, noting that ¢ is even
by Lemma 4.45, the ¢ + 1 nuclei of the elements of [rr, 7] U {n’} form the nucleus
line of the dual (¢ + 1)-arc O, proving (2). Consequently, the set of all nuclei is an
n-dimensional subspace PG(n, ¢) of PG(N,, q).

Now it is shown that also the set S = (S U {PG(N,_1,¢)})\{x'}, where
PG(N,,_1, q) is the dual of PG(n, ¢), is a Veronesean set of subspaces. Condition
(I) follows from the fact that PG(n, ¢) meets every element of S in a unique point.
Condition (I) follows from the fact that no point of PG(n, q) is contained in two
distinct elements of S. Condition (III) is also satisfied.

Assume, by way of contradiction, that the PG(N,,_1, ¢)-number of ¢ € S\ {7’}
equals 2. Then a subspace ¢’ € S\{7'}, ¢’ # ¢ exists, for which |[p, ¢']| = ¢.
By the foregoing, PG(n, q) is a subspace of (i, ©'), and so ¢’ € [PG(Np—1,9), ¥,
a contradiction. Now, no spectrum cgntains 2. Next, it is shown that, if S satisfies
condition (IV), then so does the set S. This follows immediately from the fact that,
for any two distinct ¢, ¢’ € S\{#'}, with |[¢, ¢']| = ¢, the equation

(p,¢') = (¢, PG(n,q)) = (¢',PG(n,q))

holds.

As for n > 2 axiom (A,_1) is also satisfied, it follows that S* is the set of all
Vy—1-subspaces of a quadric Veronesean V2" Finally, by the nucleus property of
V2" the subspace 7’ is the nucleus of V2", O

n °
Now the main results can be stated and proved.

Theorem 4.49. Let S be a collection of 0(n) subspaces of dimension (n—1)(n+2)/2
of the projective space PG(n(n + 3)/2, q), with n > 2, satisfying (—(V). Then one
of the following holds:

(a) S is the set of Vy_1-subspaces of a quadric Veronesean V,QL in the space
PG(n(n +3)/2,q);
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(b) q is even, there are two elements w, ' € S with the property that no other element
of S contains ™ N 7', and there is a unique subspace PG(N,,_1,q) such that
SU{PG(N,—-1,q)} is the set of V,,_1-subspaces together with the nucleus of a
quadric Veronesean V2" in PG(n(n + 3)/2, q).

When n = 2, the statement holds under the weaker hypothesis of S satisfying (1),
(I1), (II1), (V). In both cases, but with (q,n) # (2,2) in the latter case, V2" is the
set of points of PG(n(n + 3)/2,q) contained in at least 0(n — 1) — 1 elements of
S; in the exceptional case there are 13 points contained in at least 2 elements of S,
where 6 are coplanar while the others form V3.

Proof. The first part of the statement follows from Lemmas 4.46 and 4.48. For
n = 2, condition (IV) is trivially satisfied. Now, any point of VTQLH is contained in
exactly 6(n — 1)V, _1-subspaces. Conversely, let P be a point of PG(n(n+3)/2, q)
contained in 6(n — 1) V,,_1-subspaces of VZ The Veronesean Vg is the image of
some IT,, and the V,,_ -subspaces correspond to (n — 1) hyperplanes of IL,,. In T,
there are distinct intersecting lines [ and m such that [ is the intersection of some
of these hyperplanes, and such that m is the intersection of some of these hyper-
planes. To [ and m, there correspond conics C; and C,,, on V2" such that the point
P € (C;) N (Cy,); it follows that P € V2", Now it follows that, for (¢, n) # (2,2),
the Veronesean V2" is the set of points of PG (n(n + 3)/2, ¢) contained in at least
O(n — 1) — 1 elements of S. If (¢,n) = (2,2) and S is not the set of V;-subspaces
of a V§ , then there are 13 points contained in at least 2 elements of S, where 6 are
coplanar while the others form Vj; here, the 6 coplanar points are contained in the
nucleus of V3. ad

For g large enough, this set of axioms can be reduced.

Theorem 4.50. Let S be a set of 0(n) subspaces of dimension (n—1)(n+2)/2 of the
projective space PG(n(n + 3)/2, q), with n > 2, satisfying (I), (I1), (I1D). If ¢ > n,
then S also satisfies (IV).

Proof. For n = 2, condition (IV) is trivially satisfied. So let n > 2. Consider the set
Sy = {mna'|7" € S\{r}}. Relying on Lemma 4.44, it was shown in the proof of
Lemma 4.46 that S, satisfies (I), (I) and (IIT). By induction it follows that (IV) is
satisfied. a

For ¢ odd, this is a most satisfying characterisation, since conditions (I)—(IV)
really characterise the set of V,,_;-subspaces of a quadric Veronesean V2", and for
q > n conditions (I), (IT), (IIT) do this.

There are two corollaries.

Corollary 4.51. If S* is a set of 0(n) + 1 subspaces of dimension (n — 1)(n + 2)/2
of PG(n(n + 3)/2,q) such that (1), (), (I1T), (V) hold for S* and either (IV) also
holds or q > n, then q is even and S8* is the set of all V,,_1-subspaces together with
the nucleus of a quadric Veronesean VfL" in PG(N,, q). Also, VfL" is the set of points
of PG(n(n + 3)/2, q) contained in 0(n — 1) elements of S*.
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Proof. There is an element 7 in S* such that S*\ {7} also satisfies (D—(V). If ¢
were odd, then by Theorem 4.49 all contact hyperplanes of some V2" would contain
m, a contradiction. Hence ¢ is even. Now, again by Theorem 4.49, S* is the set
of all V,,_1-subspaces together with the nucleus of a quadric Veronesean VZ in
PG(N,,, q). Finally, from the proof of Theorem 4.49, V2" is the set of points of
PG(n(n + 3)/2, q) contained in #(n — 1) elements of S*. O

Corollary 4.52. Let S be a set of k > 6(n) subspaces of dimension m —n — 1 of
PG(m, q), withm > n(n + 3)/2 and such that ¢ > n. Suppose that

(a) every pair of elements of S is contained in some hyperplane of PG(m, q);
(b) no three elements of S are contained in a hyperplane of PG(m, q);

(¢) no point is contained in all elements of S;

(d) for q even there exist three distinct elements 7, 7', 7" of S with

e =7 N7 =x"Nmn.
Then

@Hm=n(n+3)/2;

(ii) either k = 0(n) and S is the set of V,,_1-subspaces of a quadric Veronesean
V2" orqis even, k € {0(n),0(n) + 1} and S consists of k elements of the set
of V—1-subspaces together with the nucleus of a quadric Veronesean Vfln.

In both cases, for q even but with (q,n) # (2,2), if S contains the nucleus of
V2" then V2" is the set of points of PG(m, q) contained in at least O(n — 1) — 1
elements of S; in the exceptional case there are 13 points contained in at least 2
elements of S, where 6 are coplanar while the other T form Vj.

Proof. If elements 7, 77" of S, with 7 # 7/, did not generate a hyperplane, then
the number of hyperplanes containing 7w and one element of S\{r} is at least
(8(n) — 2) + (¢ + 1), a contradiction as 7 is contained in exactly 6(n) hyperplanes
of PG(m, q).

Assume, by way of contradiction, that m > n(n + 3)/2. As in the proof of
Lemma 4.44, and with that notation, there is a sequence (73, 74,..., 7" ") of el-
ements of S in the dual space PG(m, q) of PG(m, ¢) satisfying (i) and (ii) of that
proof, for all ¢ € {2,3,...,n}. Again, as in the proof of Lemma 4.44, this gives a
contradiction. Hence m = n(n + 3)/2. Now Corollary 4.52 follows from Theorems
4.49, 4.50 and Corollary 4.51. O

For ¢ odd, relying on the polarity § which interchanges the V,,_;-subspaces and
tangent spaces of V2", the following results are obtained.

Theorem 4.53. Let S be a collection of 6(n) subspaces of dimension n of the pro-
jective space PG (n(n + 3)/2, q), with q odd and n > 2, satisfying (I')\=(IV"). Then
S is the set of all tangent spaces of a quadric Veronesean V2" in PG(n(n+3)/2, q).
In particular, if n = 2, then the statement holds under the weaker hypotheses of
S satisfying (I')—(111"). Also, V2" is the set of all points contained in exactly one
element of S.
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Theorem 4.54. Let S be a set of 0(n) subspaces of dimension n of the projective
space PG(n(n + 3)/2,q), with q odd and n > 2, satisfying (I')—(II'). If ¢ > 2,
then S also satisfies (IV').

Corollary 4.55. Let S be a set of k > 0(n) subspaces of dimension n of PG(m, q),
with q odd, m > n(n + 3)/2 and such that ¢ > n. Suppose that

(a) every two elements of S have a non-empty intersection,
(b) every three distinct elements of S have an empty intersection,
(¢) no hyperplane contains all elements of S.

Then

) m=n(n+3)/2, k=0(n); ’
(ii) S is the set of all tangent spaces of a quadric Veronesean V2"
(iii) Vf,ln is the set of all points contained in exactly one element of S.

Something more can be said in the case that S does not satisfy (V).

Theorem 4.56. Let S be an ovoidal Veronesean set of subspaces of the projective
space PG(n(n + 3)/2,q), with n > 2. Then q is even and S can be extended to a
hyperovoidal Veronesean set of subspaces of PG(n(n+3)/2, q). Also, if n = 2, then
q € {2,4} and S is uniquely determined in both cases, up to a projectivity.

Proof. Ttis shown that the set of all nuclei of members of S is an n-dimensional sub-
space of PG(NV,,, q). Therefore it suffices to prove that all points of the line joining
two arbitrary distinct nuclei are nuclei. So let 7/, 7" € S, with 7’ # 7", and let 5/
be the nucleus of 7' and ¢ the nucleus of 7. Let 7/ N 7/ = {n}. Further, let 5 be
an arbitrary point on the line 775/ different from 7 and £ "Letre S \{7’} contain 5,
and let ¢ be the intersection of 7 with {7/, 7”’). As before, any element of S meeting
¢ has a line in common with the plane (), (), and the set of all these lines is a dual
(¢ + 1)-arc if the nucleus of 7 is on ¢, or a dual (¢ + 2)-arc if the nucleus of 7 is
not on (. In the latter case, the point fl is contained in a unique line, different from
the line n 5/, of that dual (g + 2)-arc, contradicting the definition of a nucleus. Hence
there is a dual (¢ + 1)-arc and it now follows, interchanging the roles of 7 and T
if necessary, that the unique line of (1, ) extending the dual (¢ + 1)-arc to a dual
(¢ + 2)-arc contains ¢ + 1 nuclei amongst which are 5/ and 5//. Hence the set of all
nuclei of members of S is an n-dimensional subspace PG(n, q) of PG(N,, ¢). So
SU{PG(n, q)} is a hyperovoidal Veronesean set of subspaces of PG(n(n+3)/2, q).

Now take the case n = 2. Consider the hyperovoidal Veronesean set of subspaces
SUPG(2, q) = §*. By the first part of this proof, every three distinct elements of S *
define ¢ + 2 elements of S *, which all intersect a common plane in a line. Let B be
the set with as elements these sets consisting of ¢ + 2 elements of S *. Now count in
different ways the number of ordered pairs (7, O), with 7 € S *, OeBandm e 0.
Then

Bl(g+2) = (" +q+2)(¢" +q¢+1)(¢* +q)/ (g + 1)g.
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Hence ¢+ 2 divides 12, and so ¢ € {2,4}. Also, if ¢ = 2, then S and S" are uniquely
defined, up to a projectivity. For ¢ = 4, there is, up to a projectivity, just one example,
which is related to the simple Mathieu group Mss; see Section 4.7. a

Remark 4.57. The set S *, provided with the elements of B, is an extension of a
projective plane of order g. Hence ¢ € {2, 4}. For ¢ = 4, this extension is the unique
3-(22, 6, 1) Witt design. This design admits Ms as an automorphism group; this is
not the full automorphism group.

The unique example for ¢ = 2 can be generalised as follows to any n, withn > 2.
Let AG(n + 1,2) be an affine space in PG(n + 1, 2). Consider, in the Grassmann
variety of the lines of PG(n + 1,2), all subspaces corresponding to the sets of all
lines with a common point in AG(n + 1, 2). Then this gives a dual hyperovoidal set
of subspaces in PG(n(n + 3)/2, 2).

For n > 3 with ¢ > 2, a classification of ovoidal and hyperovoidal sets of
subspaces remains open.

4.2.3 Characterisations of Vfln of the third kind

Relying on Subsection 4.2.2, a simple and elegant characterisation of the finite
quadric Veronesean V2" is obtained.

Theorem 4.58. Under the conditions that m > n(n + 3)/2,n > 2 and q > 2, let
0 : PG(n,q) — PG(m,q) be an injective map, such that the image of any line of
PG(n, q) under 0 is a plane (q + 1)-arc in PG(m, q), and such that the image of 0
generates PG(m, q). Then m = n(n+3)/2, the image of 0 is the quadric Veronesean
V2" and the images of the lines of PG(n, q) are the conics on V2"

Proof. Let 0 : PG(n,q) — PG(m,q) be an injective map from PG(n,q) into
PG(m,q), with n > 1 and ¢ > 2, such that the image of any line of PG(n, q)
is aplane (g+ 1)-arc in PG(m, ¢), and such that the image of 6 generates PG(m, q).
Let 7 be the subspace of PG(m, ¢) generated by the image under 6 of any hyperplane
IT,_1 of PG(n, q). It is shown that the dimension of 7 is at least m — n — 1.

For n = 1, this follows since in this case m = 2 and the dimension of the image
of a point is zero. Now let n > 1. Let 7’ be the subspace of PG(m, ¢) generated by
the image of a hyperplane IT, _; of PG(n, ¢), with IT,,_; # II/,_, and let! be a line
of PG(n, ¢) not contained in II,,_y UTI,,_; for which I[N II,_; # I NI, ;. Let
II; = (10). Since g > 2, it follows that every point P of PG(n, ¢) is contained in a
line I’ of PG(n, q) meeting [UIL,,_; UII/,_; in three distinct points. Since the images
under 6 of these points generate (I'), the point P# is contained in (m, 7/, II2). Hence
PG(m,q) = {(m,n',115). If w is the dimension of 7, w’ the dimension of 7/, and u
the dimension of 7 N7/, then this implies that m < w +w’ —u+ 1. By the induction
hypothesis u > w’ — n; hence m — w < w’ —u+1 < n + 1 and the result follows.

Now it is shown that, forn > 2 and m > N,, = n(n+3)/2, adirect consequence
is the equality m = N,. From a chain of subspaces II; C Il C --- C II,—; in
PG(n,q), it follows that m < 2+4+3+--- +n+ (n+ 1) = N,. Hence m = N,,.
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Also, in this case, the dimension of the subspace of PG(m, ¢) generated by the image
of a k-dimensional subspace IIj, of PG(m,q) is equal to N, = k(k + 3)/2, for
k € {0,1,2,...,n}. It also follows that, with the notation of the previous paragraph,
if n > 2and m > N,, then 7 and 7’ meet in a subspace of dimension N,, o,
and (m, 7', II2) = PG(N,, q). Since every hyperplane I | ¢ {II,,_1,1I},_;} of
PG(n, q) either contains a line meeting II,,_; U II/,_; in just two points, or else
meets every such line in a unique point outside II,,_; UII,,_,, the images under 6 of
three distinct hyperplanes generate PG(N,,, q).
Hence the set

S = {({II,,—10) | II,,_1 is a hyperplane of PG(n, ¢)}

satisfies (1), (I) and (IV) of Subsection 4.2.2. Assume, by way of contradiction, that
there is a point P contained in all elements of S. Then P is contained in all subspaces
(I1,,_26) with II,,_o a subspace of dimension n — 2 in a given hyperplane IT,,_; of
PG(n, ¢). Similar arguments imply that P is contained in all planes ([#) with [ any
line of a given plane Iz of PG(n, q). As (10) N (I'6) is 1§ N 16, a contradiction is
obtained. Hence, (III) is also satisfied.

Next, it is shown that (V) is satisfied. Since every subspace of dimension n — 2
in PG(n, q) is contained in ¢ + 1 hyperplanes of PG(n, ¢), with the notation of
Subsection 4.2.2, the size of [m, 7] is ¢ + 1 for any two distinct 7, 7’ € S. So, again
with the same terminology, the spectrum of every element of S is {¢ + 1}.

From Theorem 4.49, it now follows that the image of 6, which is precisely the
set of points of PG(N,, q) contained in #(n — 1) elements of S, is the quadric
Veronesean 12" ; the images of the lines of PG(n, q) are precisely the conics on
V2", 0

Remark 4.59. 1. For ¢ = 2, every cap of size 2"T! — 1,n > 2, in some projective
space PG(m, 2), with m > n(n + 3)/2 and where the cap generates PG(m, 2),
can be seen as the image of a mapping 6 of PG(n,2) into PG(m, 2) satisfying
the conditions of Theorem 4.58. Hence the condition ¢ > 2 in the statement of
Theorem 4.58 is necessary.

2. For n = 2, the plane PG(2, ¢) in the statement of Theorem 4.58 can be replaced
by any projective plane, which is not necessarily Desarguesian, with ¢ + 1 points
on any line.

4.2.4 Characterisations of Vﬁn of the fourth kind

First, the Veronese surface Vj is characterised by considering its common points
with the planes and hyperplanes of PG(5, ¢). Then, without proof, recent character-
isations of V2" are given, where again the common points of V2" with subspaces
are considered. Since the hyperplane sections of Vj correspond to the quadrics of
PG(2, q), any hyperplane I, of PG(5, ¢) has 1,¢ + 1 or 2¢ + 1 points in common
with V3. Now consider the intersections of V5 with the planes of PG(5, q).

Lemma 4.60. Any plane 7 of PG(5, q) meets V3 in 0,1,2,3, or g + 1 points.
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Proof. Suppose that the plane 7 contains at least four distinct points Q1, Q2, Q3, Q4
of V3. Then ¢ > 2. By Corollary 4.13, the points @; and Q;, i # j, are contained
in a unique conic of V3. Let C’ be the conic defined by @Q; and @2, and let C” be
the conic defined by Q5 and Q3. Suppose that C’ # C”. By Theorem 4.17, the conic
planes 7’ and 7"’ containing C’ and C” generate a hyperplane IT4. With the notation of
Section 4.1, the set (IL;N V)¢~ is a quadric of PG(2, ¢); hence [II;N V3| < 2¢+1.
Since m C Iy, so Q4 € Ily; since also C' U C” C Iy, it follows that

Iy N V3| > [C'UC” U{Qu} =2q+2,
a contradiction. Thus C’ = C”, and so C' = wNVj. It follows that [ NVy| = g+1. O

Now the intention is to characterise, for ¢ > 2, the Veronesean Vé by the number
of its common points with the hyperplanes and planes of PG(5, ).

From now on, let K be a set of k points of PG(m, ¢), m > 5, with the following
properties:

(A) |IIs N K| < 2¢ + 1 for any four-dimensional subspace II4 of PG(m, q) with
equality for some Ily;
(B) any plane of PG(m, ¢) meeting K in four points meets it in at least ¢ + 1 points.

Lemma 4.61. For any line [, either | C K or [l N K| < 3.

Proof. The lemma is immediate for ¢ < 3. So, for ¢ > 4, let [ be a line of PG(m, q),
where ! ¢ K and |l N K| = s. Suppose that 4 < s < ¢ and let I1; be a 4-dimensional
space containing the line /. By (B), any plane 7 of II4 containing [ has at least ¢ + 1
points in common with K. Consequently,

ML NK| > (P +q+1)(g+1—8)+s>¢>+q+1+s5>¢*+q+5.
By (A), [T, NK| <2¢+1.S0¢* +q+5 < 2q+ 1, a contradiction. O

Lemma 4.62. For the set IKC with ¢ > 5, there is no pair (l1,12) of skew lines in the
following cases:
(i) {1 and lo are both lines of K;
(ii) Uy is a line of K and 15 is a trisecant of IC;
(iii) 1y and ls are both trisecants of IC.

Proof. (i) Let [ and [ be distinct skew lines of /C, and let II3 be the solid defined
by them. So |II3 N K| > 2¢ + 2. Hence any four-dimensional space of PG(m, q)
containing II3 has more than 2q + 1 points in /C. This contradicts (A).

(ii), (iii) Here, I is a trisecant and [; is a trisecant or line of /. Then there exist
distinct planes 7, 7', 7’ containing o and also a point of [; N K. By (B), each of
|7 N K|, |7 N K|, |7” N K| is at least ¢ + 1. Hence the solid II3 = [; I3 contains
at least 3(¢ + 1 — 3) + 3 = 3¢ — 3 points in K. Consequently, any 4-dimensional
subspace of PG(m, q) through I3 has at least 3¢ — 3 points in . Since ¢ > 5, so
3q — 3 > 2q + 1, contradicting (A). a
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Lemma 4.63. If K contains distinct lines |1 and ls, then 11 Nly # 0 and K = 11 Uls.

Proof. From the first part of the proof of Lemma 4.62, I; N1y # 0. Let Q € K, with
Q@ ¢ 11 Uls. Then any four-dimensional subspace containing /1, I3 and () has at least
2q + 2 points in /C, contradicting (A). Hence K = 11 U ls. O

Lemma 4.64. If C lies in a plane m of PG(m, q), then |KC| = 2q + 1 and there are
the following possibilities:

() I N K| < 3 for any line | in 7, with equality for some line [,

(b) the set K consists of a line | and a q-arc K' of m, where LN K’ = {J;

(c) the set IC consists of two distinct lines of 7.

Proof. Any 4-dimensional subspace containing 7 has at most 2q + 1 points in K. As
K C 7, it follows that || < 2¢ + 1. Since at least one 4-dimensional subspace has
exactly 2¢ + 1 points in /C, so |K| = 2¢ + 1.

First, assume that /C does not contain a line. By Lemma 4.61, any line of 7 has
at most three distinct points in /C. If there is no line of 7 with exactly three points in
KC, then K is a (2¢ + 1)-arc, contradicting Theorem 8.5 of PGOFF2. So 7 contains at
least one trisecant of K.

Next, let [ be a line which lies in K. If the ¢ points of K\[ lie on a line I’, then
K = 11U by Lemma 4.63. Now assume that there is no line containing X\[. Then,
by Lemma 4.61, the set K\[ is a g-arc of 7. O

Lemma 4.65. Let ¢ > 5 and suppose that KC generates a solid 1. Then K = [UK*,
with KC* a g-arc of some plane w, with [ a line not contained in 7, and I N KC* = ().

Proof. Any 4-dimensional subspace containing II3 has at most 2¢ + 1 points in K.
As K C IIs, so |[K| < 2¢ + 1. Since at least one 4-dimensional subspace has exactly
2¢ + 1 points in K, so |[K| = 2¢ + 1.

Two cases are distinguished.

(1) K does not contain a line

By Lemma 4.61, any line has at most three points in K.

First, suppose that K has at least one trisecant [. Let Q € IC\l. By condition (B),
the plane 7 = QI has at least ¢+ 1 points in K. Since K generates the solid 113, there
is at least one point Q' in K\ 7. By (B), the plane 7/ = @Q)’l has at least ¢ + 1 points
in . If Q" € K\(7 U '), then the plane 7"/ = Q"1 has at least ¢ + 1 points in £;
so|K| >3(¢q+1—3)+3=3¢—3.Hence 2¢ +1 > 3¢ — 3, whence ¢ < 4, a
contradiction. Consequently, L C 7w U 7',

Suppose now that K has a trisecant I, with I’ # [. Then [’ lies in 7 or 7’; say,
" C 7. The plane 7* = Q’l’ has at least ¢ + 1 points in K, at most three of which
belong to 7’. Hence at least g + 1 — 6 points of 7* N XC do not belong to w U ', Since
K cmuUn’,soq < 5. As it was assumed that ¢ > 5, hence ¢ = 5.

By the same argument, the line [ = 7* N 7’ is a trisecant of X and the point
"N of I is notin . On the lines [, ', " there are nine points of . Since || = 11,
there is a point @* € K\(IUI' Ul"), say Q* € 7. Since ¢ = 5, at least one of the
lines joining Q* to a point of I’ N K has a point in / N /C. Such a line [* is a trisecant
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of K. Then the plane QQ'I* contains at least one point of IO\ (7 U '), a contradiction.
So it has been shown that [ is the only trisecant of .

Let I N K = {Q1,Q2,Q3}. Then (m N K)\{Q;} is a k;-arc of the plane 7 for
i = 1,2, 3. Analogously, (7' N K)\{Q;} is a k.-arc of the plane 7’ fori = 1,2, 3.
However, since || = 2¢+ 1 and X C 7 U ', so

(ki —2)+ (ki —2)+3=2¢+1,

fori = 1,2, 3. Hence k;+k] = 2¢+2. Without loss of generality, let k1 > ¢+1. From
Section 8.1 of PGOFF2, the ki-arc (7 N K)\{Q1} has at least (¢ — 1)/2 bisecants
passing through @;. It follows that the plane 7 contains at least two trisecants of /C
through @1, a contradiction.

It has been shown that /C has no trisecant; that is, KC is a (2¢ + 1)-cap of the
solid IT3. Assume that no four points of C are coplanar; then K is a (2¢ + 1)-arc
of II3. By Theorems 21.2.4 and 21.3.8 of FPSOTD, |K| < ¢ + 1, contradicting that
|| = 2¢ + 1. Hence II3 contains a plane 7 which has at least four points in K. By
condition (B), [rNK| > g+ 1. Since 7NK is a k'-arc of 7, so |[7NK| € {¢+1,q+2}.
Hence |KC\7| > ¢ — 1.

Let [ be a line containing at least two distinct points of K\7. Since K is a cap,
the point { N 7 is not in /C. If 7 N KC is a (¢ + 1)-arc of 7 and ¢ is even, then, since
q — 1 > 2, it may be assumed that [ does not contain the nucleus of 7 N /. Since
q > 5, the point [ N 7 is on at least two bisecants /1 and [y of w N KC. By (B), the
planes [l; and [l have at least ¢ + 1 points in . Hence

K| >2(g+1-2)+2+(¢+1—4)=3¢—3.

So2q+ 1> 3q — 3, whence ¢q < 4, a contradiction. Hence case (1) cannot occur.

(2) K contains a line |

Since K generates the solid 113, Lemma 4.63 shows that [ is the only line on /.
Suppose that K\ contains distinct collinear points @1, @2, Q3. By Lemma 4.61, the
line Q1Q)> is a trisecant of /C; by Lemma 4.62, the line 1 Q> has a point on the line
l. So Q1 Q2 has at least four distinct points in /C, a contradiction.

Hence KC\[ is a g-cap of II3. On KC\[, the distinct points P, Ps, P5 can be chosen
so that the plane m = P P, P5 does not contain [. Since Py, P», P3,m N[ are four
distinct points of K, the plane 7 contains at least ¢ + 1 points of K. As || = 2¢+ 1,
so [N K| = ¢+ 1 and K consists of [ and the g-arc £* = (7 N KC)\[. O

Lemma 4.66. Let ¢ > 5 and suppose that IC generates an s-space 1l with s > 4.
Then any line | which is not contained in K has at most two points in K.

Proof. Let [ be a line not contained in K and suppose that [l N K| > 2. By Lemma
4.61, |l N K| = 3. Since K generates II; and s > 4, there are points Py, P2, P3 in K
such that [, Py, P», P3 generate a II4. For 1,2, 3, let Hé be the plane containing [ and
P;. Since |11 N K| > 4, so |II5 N K| > ¢ + 1. Hence [II4 N K| > 3¢ — 3. By (A), it
follows that 3¢ — 3 < 2¢q + 1; so ¢ < 4, a contradiction. O
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Corollary 4.67. Let ¢ > 5 and suppose that K generates an s-space 115 with s > 4.
Then K is a k-cap or K contains a unique line | and any other line has at most two
points in K.

Proof. This follows from Lemmas 4.62, 4.63, 4.66. O

Henceforth, let XC be a set of & points of PG(5, ¢) satisfying the following:

(A") Ty N K| € {1,q+ 1,2¢ + 1} for any hyperplane I14 of PG(5, ¢) but also that
|14 N K| = 2¢g + 1 for some hyperplane I14;
(B) any plane of PG(5, g) with four points in K has at least ¢ + 1 points in /.

Lemma 4.68. For q > 5, any set satisfying (A’) and (B) is a (¢> + q+ 1)-cap which
generates PG(5, q).

Proof. By (A’), the set K does not generate a line. Assume that K generates a plane
II;. By Lemma 4.64, there is a line [ of II, with [[ N K| € {2, 3}. Let I14 be a hyper-
plane of PG(5, ¢) which contains [ but not ITy. Then [II,NK| € {2, 3}, contradicting
(A’). Next, suppose that IC generates a solid II3. By Lemma 4.65, K = [ U K*, with
K* a g-arc of some plane I, and [ a line not contained in ITs skew to K*. Let 1T} be a
plane containing two points of K£* and one point of I\1Iy; then |II; N IC| = 3. Hence
any hyperplane containing IT} but not IT3 has exactly three points in &, contradicting
(A).

Finally, let K generate a hyperplane I1,. By (A’), |K| = 2¢ + 1 and each solid
II5 of I, has 1 or ¢ + 1 points in IC. Let [ be a line with at least two points in K and
let II5 be a plane of 11, containing [. Further, let |l N K| = a; and |13 N K| = as.
Counting the points of £ in the solids of 11, containing Ils,

(g+1—a2)(g+1)+az=2q+ 1.
Hence a; = g. Counting the points of K in the planes of 114 containing [,
(q—a))(g®+q+1)+a =2¢+1.

Hence
¢+ —a® —ag—qg=1.

Consequently ¢ divides 1, a contradiction. So it has been shown that KC generates
PG(5,q).

Now, it must be shown that C is a k-cap. By Lemma 4.66, it is sufficient to prove
that KC does not contain a line. So assume that /C contains some line [. By Corollary
4.67, any plane through [ has at most one point in C\l. Let IT5 be a solid skew to [.
By projecting K\! from [ onto 113, a set K’ of size k — (¢ + 1) is obtained. By (A’),
any plane of II3 has 0 or ¢ points in K'. Let {ITy | i = 1,...,¢°> +¢*> + ¢+ 1} be
the set of planes of II3 and let ¢; be the number of points of K’ in II5. Counting the
set {(P,113) | P € K', P € 114} in two ways gives

> ti=(k—q-1)(¢"+q+1). (4.8)
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Now, counting the set {(P, P’,11}) | P, P’ € K'; P, P' € 11; P’ # P} in two ways
gives

dotiti—1)=(k—qg—1)(k—q—2)(g+1). 4.9)
Since t; € {0, ¢} forall 4, s0 > t;(t; — ¢) = 0. Hence
S tilti—1) = (g—1)Y t;=0. (4.10)

By (4.8), (4.9), (4.10),
(k—q—1k—-q¢=2)(g+1)—(¢g—D(k—q—1)(¢" +¢+1)=0.
Since k # ¢ + 1, 50
(k=g=2)(g+1)—(¢g— (> +g+1)=0.

Thus
k=(+q¢+3q+1)/(g+1).

Therefore ¢ + 1 divides ¢ + ¢® + 3¢ + 1 and so ¢ + 1 divides 2, a contradiction.
Hence it has been shown that K is a k-cap.

Finally it must be shown that k = ¢® + ¢+ 1. Let {Il§ | i = 1,...,0(5)} be
the set of hyperplanes of PG(5, ) and let s; be the number of points of K in II.
Counting the set {(P,11%) | P € K, P € 11}, i € 6(5)} in two ways gives

Y si=kid*+¢* + ¢ +q+1). “4.11)

Now, counting the set {(P, P',1I}) | P, P’ € K; P,P' € II}; P' # P; i € §(5)} in
two ways gives

D si(si— 1) =k(k—1)(¢*+¢* +q+1). (4.12)

As K is a k-cap, so counting the number of ordered 4-tuples (P, P', P 1I}) for
distinct points P, P’, P" in K and II, with 7 varying, in two ways gives

S si(si — 1)(si — 2) = k(k — 1)(k — 2)(¢° + ¢ + 1). 4.13)
Since s; € {1,q +1,2¢ + 1} for all 4,
D (si—1)(si—g—1)(si —2¢— 1) =0, (4.14)
which expands to
D silsi—D(si —2) =3y si(si — 1)
Hg+ )20+ 1)) si— (g +1)(2¢ + 1)0(5) = 0. (4.15)

From (4.11), (4.12), (4.13), (4.15),
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k(k—1)(k—2)(*+q+1) = 3¢k(k—1)(+ > +q+1)
+q+1)2¢+Dk(q" +¢* +*+q+1) — (g+1)(2¢ + 1)6(5) = 0.

Hence
(® +q+ DE> = 3(¢* + & +2¢> + 2¢ + 1)K?
+(2¢°% +5¢° +9¢* +9¢> + 11¢*> + 9¢ + 3)k
—(2¢" 4+ 5¢5 + 6¢° + 6¢* +6¢° + 6¢°> + 4+ 1) = 0.
It follows that, if k # ¢ + ¢ + 1, then

(@ +q+ Dk — 2¢" + ¢ + 3¢ + 49+ 2)k
+02¢° +3¢* + ¢ +2¢° + 3¢+ 1) =0. (4.16)
If s; = 1 for at least one hyperplane II}, then there exists at least one solid with
exactly one point in IC‘. Now suppose that there is at least one hyperplane T} with
sj=q+1IfP€ Hi N IC, then there exists a line I1;, a plane 15, and a solid 113
Oin, with P € II; C Iy C II3 and ‘Hl N IC‘ = ‘Hg N IC‘ = ‘Hg N IC| = 1. Thus,
also in this case, there exists a solid with exactly one point in .
Next, assume that s; = 2¢ + 1 for all hyperplanes IT}. Then, by (4.11),

0(5)(2q + 1) = k6(4).

Hence
k=q(2¢+1)+ (29 +1)/6(4).

It follows that (4) < 2q + 1, a contradiction. So there is always a solid II3 with
exactly one point P in . Now, counting the points of /C in all hyperplanes containing
113 shows that

k=1 (mod q). 4.17)

Suppose that k& # ¢ + g + 1; that is, k satisfies (4.16). Let

F(z) = (¢*+q+1)2* — 2¢" + ¢* + 3¢° + 4¢ + 2)x
+(2¢° +3¢* + ¢ +2¢°> + 3¢+ 1).

Then
F(q+1):q4—q2>0, F(q+2):—q4+q3+q2+q+1<0.

Consequently, F'(z) has aroot k' = q + ¢, with 1 < ¢ < 2. Since k > 2g + 1, so
k" # k. The sum of the roots of F'(x) is

k+k =k+q+tec=02¢" +P +3* +4¢+2)/(¢* +q+1).

Hence
k=2¢>—2¢+2—c+3q/(*+q+1). (4.18)
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By (4.17), ¢ divides 2¢®> — 2¢ + 1 — ¢ + 3q/(¢* + q + 1). It follows that ¢ divides
1—c+3q/(¢>+q+1).Sincel <c<2,

1—c+3q/(¢®+q+1)|<q

whence
1—c+3q/(¢* +q+1)=0. (4.19)

Now, by (4.18) and (4.19),
k=2¢*—2¢+1.

Hence
F(2¢° —2q+1)=q¢*(¢—2)(¢—4) =0,

a contradiction, since ¢ > 5. Therefore k = ¢ + ¢ + 1. a

Lemma 4.69. In PG(5,3), any set K satisfying (A’) is a 13-cap which generates
PG(5,3).

Proof. By (A’), the set K does not generate a line. So, suppose that it generates a
plane II;. By Lemma 4.64, there is a line [ of I with |l N K| € {2,3}. Let II4
be a hyperplane of PG(5, 3) which contains [ but not II5. Then |II, N K| € {2, 3},
contradicting (A’).

Next, suppose that K generates a solid IT;. Then || = 7 and each plane of
IT3 has one or four points in K. Let P and P’ be distinct points of K. If the line
PP’ = [ has b points in X, then a count of the points of K in the planes of II3
through [ gives 4(4 — b) + b = 7, whence b = 3. Let I[N K = {P,P’, P"} and
I, N K = {P,P',P", P"} with II; some plane of II3 through /. Then the line
PP has only two points in K, a contradiction.

Finally, suppose that KC generates a hyperplane II4. By (A’), || = 7 and each
solid IT3 of II4 has one or four points in /C. Let [ be a line with at least two points in /C,
and let I, be a plane of I, containing . Further, let [N K| = a1 and |TIo N K| = as.
Counting the points of C in the solids of II, containing ITs gives 4(4 —a2) + a2 = T7;
hence a2 = 3. Counting the points of K in the planes of I, containing [ gives
13(3 — a1) + a1 = 7; hence a; = 8/3, a contradiction. So it has been shown that X
generates PG(5, 3).

Now it is shown that /C is a k-cap. First suppose that there is a line [ which
contains exactly three points P, P’, P of K. Let Ry, Rz, R3 be points of K\l such
that the planes [ Ry, [R2, [ R3 generate a hyperplane Ily; then |II4 N K| = 7. Also
IR; N K| € {4,5} fori = 1,2, 3. If the plane R, contains five points of /C, then
a count of the points of /C in the hyperplanes through the solid [R; Ry shows that
|| = 4(7 — 6) + 6 = 10. However, a count of the points of K in the hyperplanes
through the solid [ Ry R3 gives |KC| = 4(7 — 5) + 5 = 13. This contradiction shows
that the plane [ Ry contains exactly four points of /C. Analogously, the planes [ Ry
and [ R3 contain exactly four points of /C.

Let (K N1I4)\l = {R1, Rz, R3, R4}. By a previous argument,

‘IC n ZR1R2| = ‘IC n ZR2R3| = |]C N lR1R3‘.
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It follows that R4 does not belong to any of the solids [ R Ry, [RoR3, IR R3. As
above, counting the points of /C in the hyperplanes through the solid [R; Ry gives
|KC| = 13. Let I3 be a solid skew to [ and let O\l = K'; then IK' N1I3 = K" is a
set of 10 points of II5. No three points of K are collinear, and any plane containing
at least three points of X"’ contains exactly four points of X”’. So K" is an ovaloid of
IT5. Hence { P, P’, P"} is the only set consisting of three collinear points of .

For a hyperplane I} of PG(5,3), let s; be the number of points of X in II}.
Counting in two ways the number of ordered pairs (R, I1}), with R € K N II} and
I} varying over all hyperplanes, gives

Zs,- =13.121 = 1573. (4.20)
Counting the ordered triples (R, R',I1}) with distinct R, R’ in KC N IT} gives
Z si(s; — 1) = 13.12.40 = 6240. (4.21)

Now a count of ordered 4-tuples (R, R’, R, I1}) with distinct R, R', R” in K N 1T}
gives

> si(si — 1)(si — 2) = (13.12.11 - 6).13 + 6.40 = 22470. (4.22)
From (4.20), (4.21), (4.22),

D s =1573, Y s =7813, Y s?=42763. (4.23)

These equations imply that
> (55— 1)(si —4)(s; — T) = 162. (4.24)

Since (A') is satisfied, so s; € {1,4, 7}, whence

D (si=)(si = 4)(si = 7) =0,

contradicting (4.24). Hence there is no line containing exactly three points of .

Now suppose that there is a line [ which is contained in K. Let R1, Ro, R3 be
points of /C\! such that the planes [R1,[Rs,lR3 generate a hyperplane II4; then
|1, N K| = 7. Hence the planes [ Rq, [ R2, | Rs each contain exactly five points of K,
and the solids [ Ry R, [ R2 R3, I R1 R3 each contain exactly six points of IC. Counting
the points of K in the hyperplanes through I Ry Ry makes |[KC| = 4.(7 — 6) + 6 = 10.
Let IT3 be a solid skew to [ and let K\l = K'. Then IK’ N1l = K" is a set of six
points of II3. As no four of these six points are coplanar, so K is a 6-arc of II3.
By Theorem 21.2.1 of FPSOTD, an arc of PG(3, 3) has at most five points, giving a
contradiction. Thus it has been shown that K is a k-cap.

Finally, it must be shown that k = 13. For distinct points P, P’, P" in K and IT/,
count in two ways, similarly to above, the ordered pairs (P, IT}), the ordered triples
(P, P',11%), and the ordered 4-tuples (P, P', P 1I}):
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Zsi = 121k; (4.25)
> si(si — 1) = 40k(k — 1); (4.26)
D silsi = 1)(si — 2) = 13k(k — 1)(k — 2). (4.27)

As above, since s; € {1,4, 7} for all 7, so

D (si = 1)(si —4)(si = 7) =0, (4.28)

which implies that

D silsi—1)(si—2) =9 si(si—1)+28) s —10192=0.  (4.29)
Substituting from (4.25), (4.26), (4.27) into (4.29), gives
13k3 — 399k2 + 3774k — 10192 = (k — 13)(13k® — 230k + 784) = 0.
As the quadratic does not have integer roots, so k = 13, completing the proof. O

Lemma 4.70. Any solid 113 of PG(5,q), ¢ = 3 or ¢ > 5, meets K in at most q + 2
points.

Proof. Let |II3 N K| = m and suppose that m > ¢ + 2. Counting the points of  in
the hyperplanes through 113 gives

E=(¢+1)2¢+1—m)+m.
By Lemmas 4.68 and 4.69, k = ¢°> + ¢ + 1. Hence m = ¢q + 2. O

Lemma 4.71. When q = 3 or q > 5, suppose that the plane 11y meets KC in more
than three points. Then Iy N K is a (¢ + 1)-arc and so, for q odd, is a conic.

Proof. Let Il N K| = n. From (B), n > ¢ + 1. Since K is a cap, n < ¢ + 2 by
Theorem 8.5 of PGOFF2. If n = ¢ + 2, then any solid containing Il and a point of
KC\II; has at least ¢ + 3 points in common with /C, contradicting Lemma 4.70. Hence
n =g+ 1,and Iy N is a (¢ + 1)-arc of IIo. By Theorem 8.14 of PGOFF2, II, N K
is a conic when ¢ is odd. a

Lemma 4.72. For ¢ = 3 or q¢ > 5, any two points of K are contained in a unique
plane meeting K in a (¢ + 1)-arc.

Proof. Let P and P’ be distinct points of K, and suppose that no plane through the
line PP’ meets K in a (¢ + 1)-arc. Then, by Lemma 4.71, any plane through PP’
has at most three points in . Now project the set K\{ P, P’} from the line PP’ onto
a solid IT3 skew to PP’. This gives a set K’ of ¢> + ¢ — 1 points in II3. Since any
hyperplane of PG(5, ¢) through PP’ meets K in g + 1 or 2¢ + 1 points, any plane
of I3 meets K’ in ¢ — 1 or 2¢ — 1 points. For a plane IT} of 13, let s; = |K' N II5].
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Again count, for distinct points R, R’ in K and I1%, the ordered pairs (R, 115) and
the ordered triples (R, R', 11%):

Y si= (@ +q—1D( +q+1); (4.30)

> silsi—1) = (° +a- D@ +a-2)(g+1). (431)

Since s; € {¢ — 1,2q — 1} for all 4, so

> (si—q+1)(si—2¢+1)=0. (4.32)
Hence
D silsi—1)+3(1—q) Y si+(g—1)2¢— 1)@ +¢° +q+1)=0. (433)
Substituting from (4.30), (4.31) into (4.33) gives

(@P+a-D)(@+q-2)(q+1D)+301—9)(¢" +q—1)(¢*+q+1)
+@—-1R2q—1)(¢* +¢*+q+1)=0;

that is,
¢*(g—1)(g —2) =0,

contradicting that ¢ > 2. Consequently, there exists a plane through PP’ which
meets /C in a (g + 1)-arc.

Now suppose that PP’ is contained in distinct planes II5 and IT, meeting K in
(¢ + 1)-arcs. Then the solid defined by these planes meets X in at least 2¢ points,
contradicting Lemma 4.70. Hence the points P, P’ are contained in a unique plane
meeting K in a (¢ + 1)-arc. O

Lemma 4.73. Let ¢ = 3 or ¢ > 5. The number of planes meeting K in (¢ + 1)-arcs
is ¢ + q + 1, and any two distinct planes meeting K in a (q + 1)-arc have exactly
one point in COmmon.

Proof. Let b be the number of planes meeting X in a (¢ + 1)-arc. By Lemma 4.72,
with k = |K

’ k(k— 1)/{(q+ 1)a} = b.

Since k = ¢*> + ¢ + 1,50 also b = ¢ + ¢ + 1. If Il and 1T} are distinct planes
meeting K in (¢ + 1)-arcs, and if they meet in a line, then the solid containing them
meets K in at least 2¢ points, contradicting Lemma 4.70.

Now suppose that [Ty N II;, = (. For any point P in IIs N K and any point P’
in IT5 N KC, there is exactly one plane containing PP’ and meeting K in a (¢ + 1)-
arc. Hence there are at least 2 + (¢ + 1)? planes meeting K in a (¢ + 1)-arc. This
contradicts the first part of the proof. Therefore IT; and IT, have exactly one point in
common. O

Theorem 4.74. If K is a set of k points of PG(5,q), q & {2,4}, which satisfies (A")
and (B), then K is a Veronesean V.
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Proof. Let L be the set of all planes intersecting X in a (¢ + 1)-arc. By Lemma
4.73, |L] = ¢®> + ¢+ 1 and any two elements of £ meet in exactly one point. Hence
condition (I) of Subsection 4.2.2 is satisfied.

Now it is shown that condition (III) of Section 4.2.2 is also satisfied. Let Il € L,
let P € Iy, let P’ € TIo N K with P # P’, and let P” € K\II,. Then the element
IT,, of £ containing P’ and P” has only the point P’ in common with II,. Hence
P ¢ 1I,,. Since P was arbitrarily chosen in I, this means that there is no point
belonging to all elements of L.

Let ITo, II/, IT be three distinct elements of L. If TI, II}, IT) generate a hyper-
plane I14, then |II, N K| > 3¢, contradicting that |IIy N K| € {1,¢+ 1,2¢ + 1}.
Hence I1, 1T}, IT generate PG(5, ¢). This is condition (11).

Now, by Theorems 4.49 and 4.56, the set K is a Veronesean Vé. O

Remark 4.75. For ¢ = 3, any set I satisfies condition (B). Hence any set /C of
PG(5, 3) which satisfies (A’) is a Veronesean Vj.

In the next three lemmas, assume that ¢ = 4 and that K satisfies (A’) and (B).
Lemma 4.76. The set K generates PG(5, 4).

Proof. By (A’), the set K does not generate a line. Assume that IC generates a plane
II,. By Lemma 4.64 there is a line [ of I with |l N K| € {2, 3}. Let I14 be a hyper-
plane of PG(5, 4) which contains [ but not ITz. Then [II;NK| € {2, 3}, contradicting
(A’). Next, assume that K generates a solid II; then || = 9. By considering the
hyperplanes of PG(5,4) which intersect II3 in a plane, each plane of II3 has either
one or five points in K. Let P and P’ be distinct points of K. Suppose that the line
PP’ =lhasb > 2 points in K. Counting the points of K in the planes of II3 through
the line [ gives 5(5—b) +b =9, whence b = 4. Let INK = {P, P’, P”, P’} and let
I, N K ={P, P, P" P" R}, with II; some plane of IT3 through I. Then the line
RP has only 2 # b points in C, a contradiction. Finally, assume that C generates a
hyperplane I14. By (A’), again || = 9 and each solid II3 of II, has either one or
five points in /C. Let [ be a line with at least two points in /C, and let I be a plane of
I14 containing [. Further, let |IIs N K| = b. Counting the points of K in the solids of
I14 containing Il gives 5(5 — b) + b = 9, whence b = 4. This contradicts (B), and
the lemma is proved. a

Lemma 4.77. The set K is a cap.

Proof. Let ! be aline of PG(5,4). By Lemma 4.61, either . C K or |l N K| < 3.
First assume that [ N KC = {P, P/, P"}. Then select three points Ry, Ry, R3 in
K\{P, P', P"} so that (I, R1, Ra, R3) is a hyperplane II4. Then |II; N K| = 9. By
(B), (I, R;) necessarily contains five points of K, i = 1,2, 3. The solid (/, R1, R2)
contains either seven or eight points of K. If (I, Ry, Ry) contains eight points of
IC, then it contains the three planes (I, R;),i = 1,2, 3, which is a contradiction.
Therefore |[KN(l, Ry, R2)| = 7. Considering the hyperplanes of PG(5, 4) containing
(I, R1, R2), it follows that |[}C| = 17. Now project C\! from [ onto a solid II3 of
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PG(5,4) skew to [. This produces a set K’ of size seven in 113 which intersects each
plane of II3 in either one or three points. However, such a set K’ does not exist.
Next, assume that K contains a line . Choose points Ry, Ro, Rs € K\l such that
(I, R1, Ra, R3) is a hyperplane I14; then |II4 N K| = 9. So (K N I14)\! consists of
four points Ry, Rs, R3, Ry. By the previous paragraph, Ry ¢ (I, R;), i = 1,2,3, as
otherwise there is a line containing exactly three points of . Now project K\ from
[ onto a solid I3 of PG(5,4) skew to I. This gives a set K’ which intersects each
plane of II3 in zero or four points. It follows that each line of II3 contains either zero
or ¢ points, with ¢ a constant. If Tl is a plane of II3 with [IIs N K'| = 4, then each
line of 115 contains either zero or ¢ points of this set of size four, a contradiction. O

Lemma 4.78. The cap K contains exactly 21 points.

Proof. Put |[K| = k. Let {II{ | i = 1,...,0(5)} be the set of hyperplanes of
PG(5,4), and let s; = |K N II4|. Counting in two ways the number of ordered
pairs (P, I13), with P € K N TI},

1365

Z s; = 341k. (4.34)
i=1

Counting in two ways the number of ordered triples (P, P’,I1}), with P, P’ € KNI}

and P # P/,
1365

> si(si — 1) = 85k(k — 1). (4.35)
i=1
The set K is a cap; so counting in two ways the number of ordered 4-tuples
(P, P', P" 11}, with distinct P, P', P" € K N 11,

1365

D si(si — 1)(si — 2) = 21k(k — 1)(k — 2). (4.36)
i=1

Since s; € {1,5,9} for all 7,

1365

Z(Si — 1)(81‘ — 5)(81 — 9) = U.

=1
Hence
1365 1365 1365
D si(si—1)(si—2) =12 si(si— 1) +45 Y s; — 61425 = 0.
i=1 i=1 i=1

By (4.34), (4.35), (4.36),
21k(k — 1)(k — 2) — 1020k (k — 1) 4 15345k — 61425 = 0.

Hence
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7k — 361k + 5469k — 20475 = 0.

It follows that k = 21 or k = 25.

Assume, by way of contradiction, that & = 25. If II3 is a solid in PG(5, 4) which
contains ¢ > 6 points of /C, then, considering the hyperplanes of PG(5, 4) containing
13,

K] =25=c+5(9—c¢);

so ¢ = 5, a contradiction. If I, is a plane of PG(5, 4) which contains at least four
points of K, then, by (B), the plane II> contains at least five points of /C; so there
exists a solid which contains at least six points of ', a contradiction. Hence any four
points of /C are linearly independent.

Let P be a fixed point of K and let ¢; be the number of hyperplanes of PG(5, 4)
which contain P and intersect K in ¢ points, with ¢ = 1,5,9. A count of pairs
{P’, 114}, with P" € K, P # P’, with T4 a hyperplane, and with P, P’ € 1,4, gives
4t5 + 8tg = 2040. Similarly, a count of triples { P/, P”, 114}, with P’, P” distinct
points of K, different from P, and with P, P’, P" € Il4, gives 6t5 + 28ty = 5796.
Finally, a count of 4-tuples { P’, P, P""" 114}, with distinct P’, P"”  P""" € K differ-
ent from P and with P, P', P" P € 114, gives 4t5+56tg = 10120; this contradicts
the previous two equations. So k = 21 and the lemma is proved. a

Theorem 4.79. Let K be a set of points of PG(5, q), satisfying (A’) and (B). Then

() for q > 2, the set K is a Veronesean V3 in PG(5, q);
(i) for ¢ = 2, it is either a quadric Veronesean V3 or an elliptic quadric in some
subspace PG(3, 2).

Proof. By Theorem 4.74 it may be assumed that ¢ € {2,4}.

First, let ¢ = 4. From the previous three lemmas, it follows that Lemmas 4.70 to
4.73 hold. Let L be the set of all planes of PG(5, 4) intersecting K in a 5-arc. As in
the proof of Theorem 4.74, it is shown that K either is V3 or £ is the unique ovoidal
Veronesean set of planes of PG(5,4). Lemmas 4.72 and 4.73 imply that any point
of K is contained in five planes of £. Hence L is not an ovoidal Veronesean set of
planes, and so K is a Vj.

Finally, suppose that ¢ = 2. Let I, be a hyperplane of PG(5, 2) containing five
points of /C. If these five points generate I14, then, considering the three hyperplanes
containing a common solid of II4 which contains four points of /C, it follows that
|| = 7 and that any six points of K generate PG(5, 2). In this case, K is a quadric
Veronesean V3. So assume now that these five points of IT; do not generate I14. This
implies that |/C| = 5. Now it can be shown that K generates a solid II5. As every
plane of that solid contains either one or three points of K, it follows that /C is an
elliptic quadric of II5. a

From now on, let K be a set of points of PG(m, ¢),m > 5, with the following
properties :

(A") |II4NK| =1, ¢+1, or 2+ 1 for any four-dimensional subspace I1, of PG(m, q)
with equality for some Il4;
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(B’) any plane of PG(m, ¢) meeting K in four points meets it in at least ¢ + 1 points.

Corollary 4.80. (i) When q > 2, then m = 5 and K is a Veronesean V3 in
PG(5,q).
(ii) When q = 2, then m = 5 and K is either a quadric Veronesean V3 of PG(5,2)
or an elliptic quadric in some solid 113.

Proof. First let ¢ > 2 and assume, by way of contradiction, that m > 5. Consider a
subspace IT; which intersects K in 2¢ + 1 points, a subspace II5 of PG(m, ¢) which
contains I14, and a subspace IIg of PG(m, ¢) which contains II5. By Theorem 4.79,
the set IT; N KC = K’ is a Veronesean Vj in I5. Let K" = K N Ilg. Considering the
hyperplanes of IIs which contain I,

(g+1)(¢> —q) +2¢+1=|K"|.

Hence |[K”| = ¢ + ¢ + 1. From Theorem 4.79, it follows that any plane containing
at least four points of I intersects K" in a (¢ + 1)-arc. Let I be the set of these
(¢ + 1)-arcs; by Theorem 4.79, any two points of K" belong to exactly one element
of I. If P € K", then there are exactly ¢> + 1 elements of I" containing P. Counting
in two ways the number of pairs { P, K}, with P € K", K €T, P € K,

(@ +q+1)(@®+1)=[|(g+1).

Hence ¢+ 1 divides (¢* +q+1)(g*>+ 1), a contradiction. So m = 5 and, by Theorem
4.79, K is a Veronesean Vi in PG(5, q).

Next let ¢ = 2. Consider a subspace II; which intersects K in five points. If
these five points generate a solid, then, considering the 5-dimensional subspaces of
PG(m, 2) containing I14, it follows that K consists of these five points. Now m = 5
by (A”).

So from now on assume that any five points of K are linearly independent. Sup-
pose, by way of contradiction, that m > 5. Let Il be a subspace of PG(m,2)
containing at least five points of K. As in the case ¢ > 2, it follows that || = 11
with | N IIs| = K”. Also, by Theorem 4.79, any six points of '/ are linearly in-
dependent. Any 5-dimensional subspace II5 of Il containing at least six points of
K" contains exactly seven points of K. Let I/ be the set of all such sets IT5 N K"
of size seven. Counting the number of elements of I containing two given points
of K" gives ¢(9,4)/¢(5,4) = 126/5, a contradiction. Hence m = 5 and then, by
Theorem 4.79, K is a quadric Veronesean V3 in PG(5, 2). O

Some recent characterisations of V2" are now given, where again the numbers
of common points of V2" with subspaces are considered. As the proofs are technical
and quite long, they are omitted.

Theorem 4.81. With N,, = n(n + 3)/2, ¢ > 5andn > 2, a set K of 0(n) points
generating PG(N,,, q) is a quadric Veronesean Vfl" if and only if the following con-
ditions are satisfied.
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(a) If a plane of PG(N,,, q) intersects K in more than three points, then it contains
exactly ¢ + 1 points of KC. Also, any two distinct points are contained in a plane
containing q + 1 points of K.

(b) If a solid T3 of PG(N,, q) intersects K in more than four points, then there are
Sour points of lI3NIC contalned in a plane of 113; in particular, by (a), this implies
that if |IIs N KC| > 4, then [IIs N K| > g + 1.

(¢) If a 5-dimensional subspace 115 of PG( ,q) intersects K in more than 2q + 2
points, then it intersects K in exactly > + q + 1 points.

Remark 4.82. For ¢ < 5, any quadric Veronesean VTQLH satisfies conditions (a), (b),
(c) of Theorem 4.81.

A counterexample to the previous theorem, for n > 2 and ¢ = 2, is given by
removing one point of Vg" and replacing it by a point of PG(N,,, 2) for which the
rank of the matrix in Theorem 4.2 is maximal.

A counterexample, for ¢ = 3 and n = 2, is given by the point set consisting of
the points of an elliptic quadric &3 of a solid II5 of PG(5, 3) and three points on a
line [ of PG(5, 3) which does not intersect II5.

Theorem 4.83. With N,, = n(n+3)/2,a set K of 0(n) points generating PG(N,, q),
q > 5andn > 2, is a quadric Veronesean VTQLH if and only if the following conditions
are satisfied:

(a) for any plane © of PG(N,, q), the intersection m N K contains at most q + 1
points of IC;

(b) if a solid 13 intersects K in more than four points, then |lIs N KC| > ¢ + 1 and
I3 N K is not a (¢ + 1)-arc;

(c) if a 5-dimensional subspace 115 of PG( ,q) intersects K in more than 2q + 2
points, then it intersects K in exactly ¢> —|— q + 1 points; also, any two distinct
points of K are contained in a 5-dimensional subspace of PG(N,,, q) containing
q*> + q + 1 points of K.

Remark 4.84. For ¢ < 5, any quadric Veronesean VTQLH also satisfies conditions (a),
(b), (c) of Theorem 4.83.

For n = 2, a counterexample to the previous theorem is obtained as follows.
Consider in PG(5, ¢) a point P on a (¢® + 1)-cap O in PG(3, q), where, for ¢ = 2,
the cap O is assumed to be an elliptic quadric. Let [ be a tangent line of O at P.
Next, consider a second solid IT} intersecting I3 precisely in [ and let K be a plane
(¢ + 1)-arc for which I N K = {P}. Then O U K satisfies (a), (b), (c) of Theorem
4.83 but is not a Veronesean Vj.

4.3 Hermitian Veroneseans

In this section, Hermitian Veroneseans are introduced. Also, several properties and
characterisations of these Hermitian Veroneseans are stated. There are many similar-
ities with properties and characterisations of quadric Veroneseans. However, due to
their length and technicality, the proofs are omitted.
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Here 29, with x € F 2, is also denoted by =. An (n+1) x (n+ 1) matrix M over
F 2 is Hermitian if M™* = M, where M* is the transpose of M and M is the result
of applying x +— =z to each entry of M. The space of all (n + 1) x (n+ 1) Hermitian
matrices over F 2, with n > 1, is denoted by H(n + 1, ¢?); this space is a vector
space of dimension (n + 1)% over F; the group GL(n + 1, ¢*) acts on H(n + 1, ¢?)
with the action Z given by MZ = TMT".

For1 <i < n+1,let H;(n + 1,¢?) be the set of matrices in H(n + 1,¢?) of
rank i and let PH;(n + 1, ¢?), or simply PH;, be the set of spaces of dimension one
spanned by the matrices in H;(n+1, ¢?). Then each PH,; is an orbit of GL(n+1, ¢%)
under the induced action on the projective space PG(H(n + 1,¢?)) of dimension
n? + 2n over F,. Note that P is canonically in one-to-one correspondence with
the projective space PG(n, ¢?).

This can be seen as follows. Let V' = K" consist of all column vectors over
F,2 of length n + 1. For P = P(z) € PG(V), put P§ = P(xx™); here, zz*
is a matrix of rank one in H(n + 1,¢?) and so P§ is in P#H;. The linear group
GL(n + 1, ¢°) preserves this action:

P(T2)6 = P((Tz)(Tx)*) = P(T(xx*)T") = (P(z)5).

Since GL(n + 1, ¢?) is transitive on PH, it follows that PG(V)d = PH,. In fact,
J is an injective map from PG(V') onto PH;.

Next, note that P#; is a cap in PH = PG(H(n + 1, ¢?)), that is, no three points
are collinear. The set PH is called the Hermitian Veronesean of PG(n, ¢?).

Now, an alternative description of PH; in PG(n?+2n, q) is given. This amounts
to choosing an explicit basis in the vector space H(n + 1, ¢?), and then applying the
map J. Let 7 € F2\F, be arbitrary. Then the map ¢ above can be given as

P(‘T()vxla cee ,.’En)5 = P((Z/U))’

with 2; € Fpe, i = 0,1,...,n, yii = 7374, Yij = ;75 + x;x5 for ¢ < j, and
Yij = rx;x; + rx;x;, fori > j. This representation is called the r-representation.

From the r-representation it follows that the inverse image with respect to § of
the intersection of PH; with a hyperplane of PG (n? + 2n, ¢) is a Hermitian variety,
and conversely every Hermitian variety of PG(V) arises in this way. It follows that
P, is not contained in a hyperplane of PG(n? +2n, ). The lines of PG(V') have a
natural interpretation in terms of the geometry of P#: the span in PH of the image
15, with [ a line of PG(V/), is a solid denoted by &(1). Since I6 is a cap of size g% + 1
in the solid £(1), it is an ovoid for ¢ > 2; then [ is always an elliptic quadric in £(1)
and £(1) N PH; = 1§. Thus the lines of PG(V') can be interpreted as certain solids
of PH in which the points of P7?; form an elliptic quadric. Denote by X the set of
all these solids. Further, for a point P € P, and £ € ¥ with P € &, let Tp(&) be
the tangent plane to ¢ N PH; at P in &.

Now some important properties of the Hermitian Veroneseans H,, ,,2 42, = PH1
are listed.

Theorem 4.85. Let H,, ,,21 9, be a Hermitian Veronesean in PG(n? + 2n,q). Then
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(i) each elliptic quadric in some PG(3,q) C PG(n? + 2n,q) contained in
M2 42, corresponds to a line of PG(V);

(ii) every n-dimensional subspace over ¥, of PG(V') corresponds to a quadric
Veronesean V,, over Fy on H,, p2 4o, and (Vi) NV Hy, n210n = Vn.

Definition 4.86. A solid generated by an elliptic quadric on H,, ,,2 2, is an elliptic
space of Hy, p240p.

Every elliptic space corresponds to a line of PG(V') and vice versa.

Theorem 4.87. Let H,, ,2 2, be a Hermitian Veronesean in PG(n? + 2n, q).

(i) Any two distinct points P, P' of H,, 212, lie in a unique element of ¥, denoted
by ¢[P, P'].
(1) Two distinct solids of X are either disjoint or meet in a unique point of

Hn,n2+2n-
(iii) Let § € X, P € Hy p2i0n, P ¢ Eand put O = N Hy, 249y Then
U Trlp, PY)
P'eO

is a projective subspace of dimension four.

4.4 Characterisations of Hermitian Veroneseans

This section contains characterisations of Hermitian Veroneseans similar to the char-
acterisations of the first, third and fourth kind of the quadric Veroneseans.

4.4.1 Characterisations of 7{,, ,,2 2., of the first kind

Let K be a subset of the point set of PG(N, ¢), N > 3, which generates PG(NV, q)

and for which there exists a set & of solids of PG(V, ¢), called the elliptic spaces of

PG(N,q), such that for any £ € 3, the set K£(£) = K N € is an ovoid in €. When

¢ € Yand P € K(&), the tangent plane of K(§) at P in & is denoted by Tp(§).
Suppose that C satisfies the following:

(a) any two distinct points P, P’ of K lie in a unique element of ¥, denoted by
[P, P'];

(b) if&,& € X, with&y # & and & N&y # (B, then & Né C K

(c) if P € Kand ¢ € X, with P ¢ &, then the planes Tp([P, P']), with P" € K(£),
are contained in a common 4-dimensional subspace of PG(N, ¢q), denoted by
T(P,¢).

It can be shown that /C is a cap, and subsequently K is called a Hermitian cap.
By Theorem 4.87, any Hermitian Veronesean is a Hermitian cap.

Consider the Hermitian Veronesean H,, ,,2 4 2, in PG(n? 4 2n, ), and let IL,,, be
a subspace of PG(n? + 2n, q) of dimension m, which does not intersect any elliptic
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space, nor any T'(P, £), with P € H,, 2, and & an elliptic space not containing P.
If 11,24 9y, —m—1 1S a subspace of dimension n? 4+ 2n —m — 1 skew to II,,, then the
projection of H,, ,,2 9, from IL,;, onto 11,24 5,,_,,,_1 is also a Hermitian cap. Such a
Hermitian cap is a quotient of the Hermitian Veronesean H,, ,,2 2y,

Theorem 4.88. Let KC be a Hermitian cap in the projective space PG(N, q), N > 3.

(1) If X is the corresponding set of elliptic spaces, then K together with the set
E ={K(&) | £ € X} is the point-line incidence structure of a projective space
PG(n, ¢?), withn > 1.

(ii) The cap K is projectively equivalent to a quotient of the Hermitian Veronesean
Hn,n2+2n-

In order to obtain this result, some particular cases and lemmas are proved, some
of which are of independent interest. In particular, the following result is significant.

Theorem 4.89. Let

(a) K be a Hermitian cap in the projective space PG(N, q), N > 3;
(b) X be the corresponding set of elliptic spaces;

©E={K(§) | X}
Then the following hold:

(i) K, together with the set =, is the point-line structure of a projective space
PG(n,q?), n > 1,and N < n? + 2n;
(i) if N = n? + 2n, then K is projectively equivalent to Hin242n;
(i) if n € {2, 3}, then K is projectively equivalent to H,, p2on;
(v) if K N (I1,,_1) = II,,_y for every hyperplane 11,,_1 of PG(n,q?*) and with
(I1,,—1) the subspace of PG(N, q) generated by 11,,_1, then IC is projectively
equivalent to H,, 24 op.

Theorem 4.88 is similar to Theorem 4.40 on Veronesean caps. Also, note that
the set of elliptic spaces of a Hermitian cap K in PG(N, ¢) is uniquely determined
if ¢ > 2. This follows immediately from (b) in the definition of Hermitian cap, by
considering two coplanar bisecants with no common point on X of a hypothetical
ovoid contained in K and not lying in an elliptic space of K. If ¢ = 2, this is not
clear.

4.4.2 Characterisation of H,, .2 2,, of the third kind

Relying on Subsection 4.4.1, a characterisation of H,, 22, similar to the charac-
terisation of the third kind of V?L", is obtained.

As always, a finite projective space has order q if ¢ + 1 is the number of points
on any line.

Theorem 4.90. Let
(@) S = (P, B,1) be a finite projective plane of order q> > 4;
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(b) P be a subset of the point set of PG(d, q), with d > 8, not contained in a hyper-
plane of PG(d, q);
(c) the points incident with any line l of S form an ovoid in some solid & of PG(d, q).

Then

(i) d =8;
(ii) the plane S is Desarguesian;
(iii) P is projectively equivalent to the Hermitian Veronesean Ha s of PG(2, ¢?).

A representation of a point-line incidence structure S as in this theorem is an
ovoidal embedding of S. Hence, by Theorem 4.90, all ovoidal embeddings of all
finite projective planes of order ¢* > 4 are classified.

Theorem 4.91. Let

(a) S = (P, B,]) be the point-line geometry of a finite projective space of order
q* > 4 and dimension n > 2;

(b) P be a subset of the point set of PG(d, q), with d > n? + 2n, not contained in a
hyperplane of PG(d, q);

(c) the points incident with any line l of S form an ovoid in some solid & of PG(d, q).

Then d = n? + 2n and P is projectively equivalent to the Hermitian Veronesean
Hn,n2+2n OfPG(n7 q2)'

Hence all ovoidal embeddings of all point-line geometries of the finite projective
spaces of dimension n > 2 and order q2 > 4 are classified. In fact, Theorem 4.90 is
part of Theorem 4.91, but it is formulated separately to emphasise that, for n = 2, it
is not assumed that S is Desarguesian.

4.4.3 Characterisation of 7, g of the fourth kind

In this subsection the Hermitian Veronesean H» g is characterised by considering its
common points with solids and hyperplanes of PG(8, ¢).

Since hyperplanes of PG(8, ¢) meet Hs g in point sets that correspond to singular
and non-singular Hermitian curves in PG(2, ¢?), the size of such an intersection is
either ¢> + 1, ¢® + 1, or ¢ + ¢* + 1. It is now shown that each solid of PG(8, q)
which intersects H g in at least ¢ + 3 points intersects it in @ +1 points. So, let I3
be such a solid. Suppose first that IIs N Ho g generates 113 and let Py, P>, Ps, Py be
four points of PG(2, ¢?) which correspond to four points of 113 N H2 g generating
IIs.

First, assume that P;, P>, P, P; are four points on a line [ of PG(2, ¢?). Then,
to [ there corresponds an ovoid on Hs g in some solid of PG(8, ¢), and this solid
coincides with IIs. So, in this case, II3 N Hs g is an ovoid of II3 and thus contains
¢* + 1 points.

Suppose next that P;, P>, P3 lie on a line [ and that P, is not on /. Then each
point of II3 N H4 g is also contained in every hyperplane of PG(8, ¢) containing the
images of P;, P, P3, P;. Hence every point of PG(2, ¢?) corresponding to a point
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of II3 N H2 g is contained in every Hermitian curve containing Py, P, P3, Py. If P,
with P # P4, is a point of PG(2, ¢?) not on the subline over F,, of [ defined by
Py, P, P, then either P does not belong to the singular Hermitian curve defined by
the three lines Py Py, Py Py, Py Ps, if P is onl, or there is a point P’ on [ and a line I
through P’ such that P does not belong to the singular Hermitian curve defined by
the three lines I, ', P’ Py, if P is not on [. Hence II3 N H2 g contains at most g + 2
points, a contradiction.

Suppose now that { Py, P2, P53, Py} is a 4-arc in PG(2, ¢). By considering the
three, unique singular Hermitian curves containing the lines P P>, P P3, P, Py, the
lines Po P, P> P3, P> Py, and the lines P3Py, P3P5, P3Py, it follows that every point
P of II3 N'Ha g corresponds to a point of the subplane PG(2, q) of PG(2, ¢?) which
contains P, P, P5, P;. Hence P is contained in the quadric Veronesean V§ onHag
which is the image of PG(2, ). Since V5 generates a 5-dimensional subspace I15 of
PG(8, q), so I1; is the intersection of two hyperplanes of II5. Consequently, the size
of II3 N#H4 g is the size of the intersection of two distinct plane quadrics in PG(2, q).
Since this is at most ¢ + 2, a contradiction is obtained.

Finally, suppose that IIs N H2 g does not generate II3. Then it generates a plane
since Ho g is a cap. Hence I3 N Ha g is a plane k-arc, and so k& < ¢ + 2, again a
contradiction.

Theorem 4.92. Let K be a set of points of PG(8, q), q # 2, with |K| = ¢* + ¢* + 1.

Then K is projectively equivalent to Hs s if and only if the following conditions are

satisfied:

(a) every hyperplane of PG(8, q) intersects K in either > +1, ¢> + 1 or ¢* + ¢*> + 1
points;

(b) if a solid of PG(8, q) intersects K in at least q + 3 points, then it intersects K in
precisely ¢> + 1 points.

4.5 Segre varieties

To begin with an example, let £; and Lo be projective lines over the field K. If
Ly = {P(s1,t1)} and L3 = {P(s2,t2)}, then their Segre product or Segre variety
is

S1;1 = {P(s152, 512, t152,t1l2)}

in PG(3, K). Note that Sy.; is the hyperbolic quadric H3 = V(X X35 — X1 X>).
In general, let Py, Pa, ..., Py be projective spaces with P; = PG(n;, K), for
i1=1,2,...,k, where eachn; > 1. Let

Pi = {P(X")},
with X° = (xéi),xgi), . ,x(’?).

LetN, ={0,1,...,7} forany r > 1, and let
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1N :Np, X Ny, x -+ x N, — N,
be a bijection, withm + 1 = (ny + 1)(ng + 1) -+« (ng + 1).
Definition 4.93. The Segre variety of the k given projective spaces is

_ _ _ _ (1), (2 (k)
S= Sﬂunz;m;nk = {P(x(),l'l, ce axm) | Lj = L(iyin,in)n — Loy Ly " Lg

P(X") apoint of P; }
in PG(m, K).

As (28,2, 2y £ (0,0,...,0) all i, s0 (z0,21, ..., 2m) # (0,0,...,0).
The integers n1,no, ..., ng are the indices of the variety S, which has dimension
ny +ng + - -+ + ng. Also, Spyins,;...in,. is absolutely irreducible and non-singular. It
has order

(n1+ng+ -+ +ng)!

nilng! -+ ny!

Any point P(xq, x1, ..., 2 ) of the Segre variety satisfies the equations

L1 isensir)n (142,000

T (i1 ism 15 s ha g 18N L (1,021 s Fa 1 dk)T 0. (4.37)
Theorem 4.94. The Segre variety Sy, :n.:....n,, IS the intersection of all quadrics of
PG(m, K) defined by the equations (4.37). Also, any point of PG(m, K) satisfying
the equations (4.37) corresponds to a unique element of P X Po X -+ X P.

Proof. Let P(z(,x},...,2,) be a point satisfying the equations (4.37). Without
loss of generality, let 2y, = 1. If the points P; = P(af’,z{",... ) of

i

P; define the given point of PG(m, K), then x(()l)x((f) e a:(()k) # 0. Hence, take
(1) k)

) R )
x5 =25 =---=2a = 1. Then
Z(; =20z, =% x oy = 2
(i1,0,...,0)n = iy 5 L(04i,0,...,0)n = iy s - L(0,0,0,...,0,ik)n T Liy o

with i = 0, 1,...,ns. Consequently, the given point of PG(m, K) corresponds to
at most one element of Py X Py X - - - X Py. '
Consider the & points P; = P(:réz) , xgl), . ,ng)) with

i

x! — B g — 2 x! — "
(i1,0,.,000 — Tiy s Z(0,i2,0,....000 — Tin v -5 2L(0,0,0,....0,1)n — Lij, +

For these points,



4.5 Segre varieties 203

/ /

o
Ly yig,oir)n — L(iyyig,...ik)n £(0,0,...,0)n

o /

= Tliy i, nsin—1,0)n T(0,0,...,0,i))n

_ (k)

= Ty inyeryir—1,0)n Liy,

o / 2

= L(iy iz, rig—1,0)m £(0,0,...,0)nT iy

— 2 2

= Lir,iz,e.nrin—2,0,0)n £(0,0,...,i5—1,0)7%d,

_ (k=1) (k)

= Lliyig,yin—2,0,0)n Tig_y Tiy,

_ _ (1), (2 (k) _

==y Xy, Xy = iy in,eik)n-

Hence, to the element (P, Ps, ..., P;) in Py X Pg X - -+ X Py, there corresponds

the given point of PG(m, K). O
Let
0:P1xPax- - XPp—= Sniingsing (4.38)
be defined by

(P(xél),acgl), .. .,x%ll)), R P(xék),x(lk),...,x(k))) — P(xo, 21, ..., Tm),

with
— W@

Lj = T(iy,iz,...ix)n i1 Vi Lo+
By Theorem 4.94, the mapping ¢ is a bijection.
Theorem 4.95. Given points Py, P>, ..., P;_1, P;11, ..., P; of the respective spaces

P1,Pay ..., Pic1,Pit1, .-, Pk, the set of all points (Py, Py, ..., Py)d, with P; any
point of P;, is an n;-dimensional projective space.
Proof. Up to order, the coordinates of (P, Ps, ..., Py )d are of the form
x(())rl,xg)rl x()rl 33(())’[‘2 xg)rg gfi)rg, .
zy )’"(m+1)/(m+1)a o ’xgu)r(m-ﬁ-l)/(nﬁl)’

with 71,72, ..., "(m+1)/(n;+1) Constants, which are not all zero. However, since

(x((f) , acg ), .. xsf)) is a variable point of P;, it follows that the set of all points
(P, Py, ..., Pk)é is an n,;-dimensional projective space on Sy, :n,:...in;. - O

The variation of (Py, Ps,...,P;—1,Piy1,...,P;) gives a system X; of ny-
dimensional projective spaces on Sy, :ns:...iny -

Theorem 4.96. (i) Any two distinct elements of 3; are skew.
(ii) Each point of Sy, :n,;...;n, is contained in exactly one element of each ;.
(iil) For i # j, an element of ¥; meets an element of ¥.; in at most one point.
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Proof. Let 11, and II}, in 3; correspond to the distinct (k — 1)-tuples

(P17P27'"aPi—lvpi-‘rl?"'ka’)a
(P{,PQ/,...,PZ-/717PZ{+17,_,7P}2)’

where P;, Pj( € P;. For any points P;, P/ € P;, the two k-tuples (P, Ps, ..., Py),
(P{,Ps,...,P})aredistinct; so (P, Ps, ..., Py)0 # (P[, Py, ..., P})d. Therefore
I, N1I, = 0.

Let (P1, Ps, ..., Py)d be any point of Sy, .pn,....n,; this point lies in the space
II,,, of 3; corresponding to the points P, P, ..., Pi_1, Piy1, ..., Pg.

Finally, let the spaces Il in ¥; and II,,, in ¥; correspond to the (k — 1)-tuples
(Pl, PQ, ey .Pifl, Pi+1> ey Pk) and (Pll, PQI, ey Pg{—h P]{-‘rl’ ey P]é), with i,j
distinct. If IT,,, N II,,, # 0, then Py = P; for all s with s # 4, j. If Py = P} for all
s with s # i, 7, then (P1, Pa,...,Pi_1, P/, Piy1,..., Py)d is the unique common
point of IT,,; and 1T, ,. a

From now on, it is assumed that K = F, although many of the results hold in a
general field.

Theorem 4.97. The cardinalities of the Segre variety and its projective spaces X;
are as follows:

(1) ‘Snl;nz;...;nk| = 0(711)9(77,2) e a(nk)v
(i) [Xi| = 0(n1)8(n2) - - - 6(ni) /0(ns).

Proof. Since the mapping J of (4.38) is a bijection, so (i) follows. By Theorem 4.96,
the elements of X; form a partition of Sy, .n,.....n,,» Which gives (ii). O

Example 4.98. (1) Forn; = ng = --- = nj, = 1, the dimension m = 2* — 1 and the
order of Sy, .ny....n, 18 k!. Here, the elements of %; are lines, |S1.1.. 1| = (¢ + 1)*
and |3;| = (¢ + 1)k~1. As at the start, S is a hyperbolic quadric of PG(3, ¢). For
k = 3, the dimension m = 7, the order of Sy.1.1 is 6, the size |S1.1.1| = (¢ + 1)3,
and |3;| = (¢ + 1)%

(2) Forny = ng = -+ = ny = n, the dimension m = (n + 1)¥ — 1 and the
order of S, ny...ny, 18 (kn)!/(n))*. Also, [Spn:. .n| = 0(n)* and |3;| = O(n)F— 1.
When k = n = 2, then m = 8, the order of Sa,5 is 6, the size |Sz.2| = (¢* + ¢+ 1),
and |3;| = ¢ +q+ 1.

(3) When k = 2, thenm = (n1+1)(n2+1) —1 = nyna+ny +no and the order
of Spyiny 18 (1 4+ n2)!/(n1!ng!). Also, |Spyim,| = 0(n1)0(n2), with |21] = 6(ng)
and |Xo| = 0(n1).

For ny = ng = n, then m = n(n + 2), the order of S,,.,, is (2n)!/(n!)?, the size
|Spin| = 0(n)?, and ;| = 0(n).

When n; = 1 and ny = n, then m = 2n + 1, the order of S;.,, is n + 1, the
size [S1;n| = (¢ + 1)0(n), with |[X1]| = 6(n) and |X3| = ¢ + 1. In the particular
case that ny = 1 and ny = 2, then m = 5, the order of Sy;2 is 3, with the size
IS1.2] = (¢ +1)(¢> + g+ 1);also, 81| =¢> + ¢+ 1and |[Zs] = ¢ + 1.
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Now, the variety Sy, ,», is considered in more detail. Several of its properties can
be generalised to all Segre varieties.

Theorem 4.99. On the Segre variety Sy, .p,, each element of ¥1 meets each element
of ¥s in a single point.

Proof. 1f 11,,, corresponds to the point P, of Py and II,,, to the point P; of Py, then
Hn1 ﬂHn2 = {(P],PQ)(S} O

Theorem 4.100. No hyperplane of PG(m, q) contains the Segre variety Sp, .n,-

Proof. Suppose the hyperplane I1,,,_1 = V(F
Snyiny- Then, with the notation a; = a(

with /' = . a;X;, contains

i1,92)M

Z Z by D2 = 0

11 022 0
for all a;(()l), a;gl), .. x%ll) and all xé ), xf), .. x%z) Now, fix the first set of ele-
ments, namely z', 2" (1) Si
, YTy, %y ..., Tn, . Since
no ni
1 2
35 (35 st} o2 <0
i2=0 \i1=0
for all x((f),xg), . ,33222), it follows that, for any iz € {0,1,...,n2},
ni
1
Z bili?xl('l) =0
i1=0

for all a:(()l), :rg ). , 3:5111). Hence b;,;, = 0 for both all 1 € {0,1,...,n;} and all
i2 € {0,1,...,n2}.Soap = a; = -+ = ay, = 0, a contradiction. m|

Now introduce the following notation:

1 1
‘T(()):y()axg):yla"'v 5“) Ynqs
x(()Q) = 20, ng) =21y .- ,l‘%? = Zngy>

Tj = T(iy ip)n = Tiyia-
Also, let (i1,42)n = i1(n2 + 1) + i2. The equations (4.37) become
TirinTiijs — TjrinTiyje = 0. (4.39)
Theorem 4.101. The Segre variety Sy, ., consists of all points P(X), with
X = (2005015 -+ - s TOnps T105 - - - s Llngs - - - s Tryns )y

of PG(m, q) for which rank [z;;] = 1.
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Proof. By Theorem 4.94, S, ., consists of all points P(X) satisfying (4.39). This
implies the result. a

Theorem 4.102. The intersection of Sy, and the subspace
Iy (n43)/2 = V(Xo1r — X10, Xo2 — Xo0, -, Xno1n — Xnn—1)
is the quadric Veronesean V,, of all quadrics of PG(n, q).
Proof. This follows immediately from Theorems 4.2 and 4.101. a
Let &, be a projectivity of P;, ¢ = 1,2, and let £ be defined by
(P, P2)6¢ = (P16, P262)d

for all P; in P, and P, in P,. Then £ is a permutation of the Segre variety Sy, :n,;
also, £ fixes both 31 and Y.

When ny = ne = n, let ¢ : P1 — Po and ¥y : Py, — P; be projectivities.
Define ¢ by (P1, P2)0v = (Patbe, Pi4p1)0 for all Py in Py and P in Ps. Then 1) is
a permutation of S,,., that interchanges > and ¥,.

Let G(Sy,:n,) be the subgroup of PGL(m + 1, q), with m = ning + nq + na,
that fixes Sy, .p,-

Theorem 4.103. (i) The permutation & of Sy, ., is induced by a unique elementé

OfG(Snl;n’z)'
(ii) When n1 = ng = n, then the permutation v of Sy, is induced by a unique

element 1 of G(Sp.n).

Proof. Let &; be the projectivity of P;, i = 1, 2, with matrix A; = [agzk)] If

(l'OOa Tols .-, xn1n2)§ = (xz)vaE)]v s 71‘;1,171,2)’

then

Tiia = Yt = Z ays) v Z a5z
- i i aril ey 2 ZZ a0 . (4.40)

r=0 s=0 r=0 s=0

Hence ¢ is induced by the element & of G(S,,, ., ) with matrix

Lagg Az afy Ay -+ ag) A

a%)Ag au)Ag a%}lAQ

_a(l) Ao a(l) Ay - agzll)nlAQ_
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The matrix A is the Kronecker product A; ® A of A; and A,. A consequence is
that |[A] = |A; ® Ag| = A2t Ag|mtl.

Suppose that ¢ is also induced by the element & of G(S,,.n,), Where & has
matrix A" = [a};]. Then the projectivity €€~ with matrix A’A~! = B induces
the identity mapping on S, .n,. Let B = [b;x] and put bjr = b(;, j,)(kks)» Where
(J1,J2)n = j and (k1, k2)n = k. Then

ni no
LYy 2y = Z Z b(j1j2)(k1k’2)yjlzj2

j1=072=0

for some t € F,, for all P(Y') of Py with Y = (yo,%1,...,Yn,) and all P(Z) of
Py with Z = (z0,21,...,2n,). Letting Y = (1,0,...,0) and Z = (1,0,...,0)
gives booy(k k) = 0 if (k1,k2) # (0,0). More generally, b, j,)(k, ko) = O for
(K1, k2) # (41,J2)- So

LYy 2y = b(k1 ko) (k1ke)Yk1 ks>

for all P(Y') of Py and P(Z) of Pa. Thus b(x, 1) (k. k) is independent of k; and k.
Therefore B = tI and and so 5’ = 5 . So it has been shown that the permutation & of
Sy, iny is induced by a unique element € of G(S, i, )-

Now assume that n; = ny = n. Similarly to above, let ¢; : P; — Po and
12 Py — Pp be projectivities defined by the matrices Dy and Ds. Define ¢ by
(P, P2)0w = (Pytho, Prap1)d for all Py in Py and Py in Py. Put D; = [d\)] for
1 =1,2, and

(I'OO;xOla .o @nn)ﬁ’ = (x607$613 s axizn)

Then

/ A 2 : (2) E
xilig - yil Ziz - d'r‘zlz?” d512y9
r=0

n

r=0 s=0 r,s=0

Since (4.41) represents an element w of PGL(m+1, q), the permutation ¢ is induced
by the element ¢) € G(Sp;p). Let ¢ € PGL(m+1 q) with m = n? +2n, be defined
by xl, = x5 forallr, s = 0,1,..., m. For any pomt P of Sy, the coordinates of
P satlsfy (4.39); so, by Theorem 4 94, the point P(isin Spin- Hence (eG (Sn )
and 9)¢ has matrix D; @ Ds. So, by the first part of the proof, the projectivity ¢C
corresponds to (£1,&2), with &; the projectivity of P; with matrix D;, i = 1, 2.

If 9 is also induced by the element ¢ of G(S,,.,,), then ¥¢ and ¢'¢ induce the
same permutation of S,,.,,. Now, by the precedmg paragraph and the first part of the
proof, it follows that ng w C whence w w’ The conclusion is that v is induced
by a unique element 1) of G(S,,.,, ). O
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Since Sy, ;n, is the intersection of the quadrics (4.39), any line [ of PG(m+1, q)
meets Sy, .n, in 0,1, 2 or ¢ + 1 points. In the next lemma it is shown that the lines
of the elements of 3; and Yo are the only lines which are completely contained in

Snl nae
Lemma 4.104. Any line | of S,,, ., is contained in an element of 31 or Xs.

Proof. Letl be a line of Sy, ., and let P and P’ be distinct points of {. Further, let
(Py, Py)6 = Pand (P}, P;)6 = P'. Assume that P, # Pj and P, # P;. With

U, =P(1,0,...,0) and U} =P(1,0,...,0),
U, = P(0,1,0,...,0) and U/ =P(0,1,0,...,0),

let & be a projectivity of P; = PG(nq, q), for which P& = Uj,, P/¢; = U/, and
&2 be a projectivity of Py = PG(nz, q), for which P&, = Uy, Py = UfY. The
element of G(S,,;n,) Which corresponds to (&1, £2) is denoted by £. Then € is also
aline of Sy, -

The line € contains the points (U}, UJ)d = Up and (U}, UY)6 = U, .o,
where U; = P([;) with E; the vector with one in the (i + 1)-th place and zeros
elsewhere. Hence ¢ also contains the point P(Ey + F,,,12) = R. However, the
coordinates of R do not satisfy (4.39); thus R ¢ Sniing, giving a contradiction.
Therefore, either P, = P] or P, = Pj; suppose the former.

Let P” be any point of [ and let (P}, Py)d = P”.If P{ # Pj, then, by the
preceding paragraph, Py’ = P, and Py = Pj, a contradiction. So P/’ = P;. This
gives the conclusion that [ is a line of the element of X5 that corresponds to the point
P, of P;. O

An s-space II; which is contained in Sy, .n, but in no (s + 1)-space II5y; of
Sni:n, 18 @ maximal space or maximal subspace of S, .y,. The next result describes
what they are.

Theorem 4.105. The maximal spaces of the Segre variety S,,, ., are the elements of
21 and 22.

Proof. Let 11, be a maximal subspace of Sy, ;,, and suppose that II, is not contained
in an element of 3; U X5. Choose a point P in Il and also a line [ of II; through P.
By Theorem 4.96 and Lemma 4.104, the line [ is contained in a unique element 7/
of 31 U Xs. Since I, is not contained in 7', there exists a line I’ through P which
is contained in Il but not in 7’. Let 7" be the unique element of X1 U X5 which
contains !’; then 7/ N 7" = {P}. Since II, # (II, N 7’) U (II; N 7"’), there exists
a line I” through P not in 7’ U «”’. The line {”’ is contained in a unique element 7'
of X1 U Y. Thus P is contained in at least three distinct elements of >; U Yo, a
contradiction.

Hence 11, is contained in an element of > U X5. Since 11, is maximal, it is an
element of X1 U . O

Corollary 4.106. Each s-space of Sy, ;n,, s > 0, is contained in a unique element
of ¥1 U 2.



4.5 Segre varieties 209

Proof. Let 11, be an s-space of Sp,;n,, With s > 0. This space is contained in a
maximal subspace of Sy, ., and, by the theorem, in an element 7 of X; U X5. By
Theorem 4.96, the space 7 is uniquely determined by IT;. a

Notation 4.107. With [r, s]- = Hi:(q’ —1)forr < sand[r,s]- =1forr > s,
as in PGOFF2,

¢(rin,q) = [PG7(n,q)| = [n —r+ 1,n+1]_/[1,r +1]_.

Corollary 4.108. Let ny < ngo. The number of s-spaces contained in S, ., is

(i) O(n1)d(s;n2,q) + 0(n2)d(s;n1, q), for 0 < s < ny;
(i) O(n1)p(s;n2,q), forny < s < na.

Proof. This follows from Corollary 4.106. a

Theorem 4.109. Let P, € P; and let PG(d;, q) be a d;-space of P;, i = 1,2. Then
(i) ({P1} x PG(d2,q))d is a da-space and (PG(dy, q) x {P2})d is a dy-space of

Sniinai
(ii) all subspaces of Sy, .n, are obtained as in (i);
(iil) for d; > 0, i = 1,2, the set (PG(d1, q) x PG(dz, q))0 is a Segre variety S, .4,
on Spyin,;
(V) Sdy:dy = Sniiny NIy, where m' = didy + di + do and 11, is the m/-space
generated by Sq, .4.;
(v) all Segre varieties of Sy, ., are obtained as in (iii).

Proof. By Theorem 4.103, coordinates can be chosen so that PG(dy, ¢) contains the
points
U, = P(Ep), Uy =P(E)),..., Uy, =P(Ey,),

and that PG(ds, ¢) contains the points
Ug :P(Eél)v /1/ :P(Ei/)""v ii/Q :P(Er/i/rz)’

where E/ and E/ are vectors with 1 in the (¢ + 1)-th place and zeros elsewhere. Then
(PG(dy,q) x PG(da,q))d =V is the set of all points

(yOZOa Yoz1, -+, Y0Rnos Y120, Y1215 - - - Y12ng;5 - - - 7yn1zn2)a

with
Zdyt1 = Zdp2 = = Zny = 0a0d Y4, 41 = Ydy+2 =+ = Yn, = 0.

When d; = 0, then V is a da-space of S, .n,; When da = 0, then V is a d;-space
of Sy, iny- When dy,do > 0, then V is a Segre variety Sy,.q4,. The subspace II,,,,
with m’ = dida + dq + da, of PG(m, q) generated by Sy, .4, is the intersection of
the hyperplanes V (X, ;,) where i1 > d; or iz > ds. For any point of S, .,,, in the
intersection of these hyperplanes, y;, = 0 for iy > d; and z;, = 0 for iy > ds.
Hence Sg,.d, = Snyin, N 1.
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When d; = 0, then ¢ defines a projectivity from PG(dz, ¢) onto the ds-space
(PG(dy,q) x PG(dq,q))d; similarly, when do = 0, then ¢ defines a projectivity
from I, onto the d;-space (PG(dy,q) x PG(dz,q))0.

Conversely, let I, be a da-space contained in Sy, ;r,. By Corollary 4.106, the
space 114, is contained in an element of ¥; U ¥5. Suppose, for example, that I,
is contained in an element II,,, of ¥1. Let I1,,,6 ! = {P;} x PG(na,q). Since &
defines a projectivity from PG(na, q) onto Il,,,, so 114,61 = {P1} x PG(da, q),
where PG(dz, q) is a d2-space of PG(nz, q).

Next, let Sg,.q4, be a Segre subvariety of Sy,,.,,. The systems of maximal sub-
spaces of Sy, .4, are denoted by 3] and X%, where the elements of 3/ are contained in
elements of 3;, i = 1,2. Let P € Sy,.4, and P§~* = (P1, ). The elements of 3}
and ¥, containing P are denoted by 114, and I1y, . Let 11,6~ = { P, } x PG(da, q),
where PG(ds, q) is a da-space of PG(na, q), and let 115, 6 = PG(d1, q) x { P2},
where PG(d1, ¢) is a dq-space of PG(n1, ¢). The points of Sy, .4, are the points P,
where { P'} = 11, NII}; , with IT}; € ¥ and 11}, € /. It follows that S, 4, con-
sists of the points P’, where { P’} = II,,, N1, with II,,, any space of ¥, containing
a point of I, and II,,, any space of ¥; containing a point of II;,. Hence Sg, 4,0 -1
consists of all ordered pairs (P, Py) with P{ € PG(d1,q) and Py € PG(dz,q).
Therefore Sy, .4, = (PG(d1, q) x PG(d2, q))9. O

Corollary 4.110. Let nq < no. For given dy,ds, with 0 < dy < n1,0 < dy < ng
and dy < da, the number of Segre subvarieties Sg, .4, of Sn,:n, iS

D o(di;n1,q)d(da; 2, q) + ¢(di; n2, q)P(da; na, q), for di < da < n;
(i) ¢(di;n1,q)o(d2;ne, q) for di = do <y and di < ny < ds.

Proof. This follows from Theorem 4.1009. a

Corollary 4.111. Let 11, with s > 1, be an s-space of Sy, ;n, contained in an ele-
ment 11,,, of ¥o. Then the elements of X1 meeting 11 in a point are the elements of
a system of maximal spaces of a Segre subvariety Ss.n, 0f Spins-

Proof. Let 11,61 = PG(s,q) x { P2}, with P a point of PG(nz, q) and PG(s, q)
an s-space of PG(nq, ¢). Then the elements of ¥; having a point in common with
II; are the elements of a system of maximal spaces of (PG(s,q) x PG(ng,q))d,
which is a Segre subvariety Ss.p,, of Sy ins,- a

Let & be a projectivity of PG(n;,q), i = 1,2, and let £ be the correspond-
ing element of G(S,,;n,). By Theorem 4.103, the map 6 : (£1,&2) — & defines
a monomorphism from PGL(nq + 1,¢) X PGL(n2 + 1, ¢) to G(Sp,;n,)- Now let
n1 = ng = n, let (1 be the projectivity from PG(ny, q) = II} onto PG(na, q) = 112
with matrix I, and let (» be the projectivity from II2 onto IT} with matrix 1.
By (4.41), the element of G(S,,,) which corresponds to ((1,(2) is the element
¢ € PGL(m +1,q), m = n?® + 2n, defined by ., = 2, forallr,s = 0,1,...,m.

Theorem 4.112. (i) For ny # na, the mapping 0 : (£1,&2) — éis an isomorphism
from PGL(n1 + 1, q) x PGL(n2 + 1,q) to G(Sny s )-
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@ii) Forni = ng =n,
G(Spin) =
(PGL(n +1,q) x PGL(n +1,¢))0 U (PGL(n +1,¢) x PGL(n +1,¢))0)(.

Proof. Let ny # ns, and let §~ € G(Sp;:ny)- By Theorem 4.105, 215 = ¥; and
225 = Y,. Hence 5 defines permutations &; of PG(n1, q) and & of PG(ns, ¢). To
the points of a line  of PG(n1, ¢) there correspond the elements 119, IT% ... TI%
of a system of maximal ny-spaces of the Segre subvariety Si.,, = (I X PG(ng, ¢))d
of Sy,:n,. From the second paragraph of the proof of Theorem 4.109, ¢ defines
a projectivity from [ onto any line (I x {%})d = m, with P, € PG(ny,q).

The na-spaces 119 5 Il 5, ..., I} & are the elements of a system of maximal
ng-spaces of the Segre subvariety Siin,€ = S1.ny Of Snyin,. By Theorem 4.109,
S1.n, = (I x PG(na, q))d, with I some line of PG(n1, ¢). Again from the proof of
Theorem 4.109, § defines a projectivity from I’ onto the line mé .Hence l&; =1, and
&, induces a projectivity from [ to I’. It follows that &; is a projectivity of PG(ny, q).
Analogously, &, is a projectivity of PG(ns, ). Hence (&1, &) is the given £. There-
fore (PGL(n1 4+ 1,¢) x PGL(n2 + 1,q))8 = G(Sn,:n, ), Which proves the first part
of the theorem.

Next, let ny = ngy = n, let PG(n1, q) = 11} and let PG(n2, ¢) = 112. Consider
any element 77 in G(Sy,;,). Then either 317 = ¥; and Yo7 = g or 17 = X
and Yo = X;. In the former case, as in the first part of the proof, there exists
projectivities &1 of I} and & of 112 such that (&;,£2)0 ﬁ In the latter case,

2;n¢ = 3 fori = 1,2. Hence there exist projectivities 7, of IT! and 7, of 112 such
that (11, 72)0 = 7iC. SlnceC 1= ¢, 50 (m1,72)0C = 7). This gives the conclusmn O

Corollary 4.113. (i) For ny # na,
|G (Sniimz)| = [PGL(n1 + 1, )| [PGL(n2 + 1, g)|.
@ii) Forni = ng =n,
|G(Snin)| = 2|PGL(n + 1,9)|*.
Proof. This follows from the theorem. a

Theorem 4.114. For ny = ny = n, let 1y be a projectivity from PG(ny,q) = 11}
onto PG(nz,q) = 112. Then the set of all points (Py, Py11)6, with Py € 11, is a
quadric Veronesean V,,.

Proof. Coordinates can be chosen so that ¢»; has matrix . Then (P, Py1)1)d is the
set of all points

P (Y3, YoU1, - - -+ YoUn: Y190, YT, Y12, - - Y1¥ns - - - Yoo

with (yo,y1,.-.,Yn) # (0,0,...,0). Hence (P1, P111)d is a quadric Veronesean
V. Since (Py, P1y1)d is the intersection of S,,.,, and the space

V(Xo1 — X10, Xoz — Xo0, -+ s Xnm1n — Xnn—1),

it is the quadric Veronesean V,, described in Theorem 4.102. a



212 4 Veronese and Segre varieties

Remark 4.115. With ¢; as in Theorem 4.114, let ¢y = 1[11_1. Also, let 1; be the
element of G(S,,,,) that corresponds to (1)1, 1)2). Then the points P = (Py, P»)d of
Sy which are fixed by 1; are determined by (P22, P1tp1)d = (P1, P2)d. Hence
these points are of the form (P;, P111)d with Py € H}L. By Theorem 4.114, the set
of all these fixed points is a quadric Veronesean V/,,.

Finally, the coordinates of the maximal spaces merit a brief description. Con-
sider the element (PG(n1,q) x {P2})0 = II,, of ¥y, where P» = P(Z) and
Z = (z0,%1,---,%n,). The space II,, is generated by the independent points
R, =P(X;), i=0,1,...,n, where

X() = (20,21,...,Zn2,0,...,0),
X1 = (0,...,O,Zo,zl,...,an,o,...,())
with zq in the (ny + 2)-nd place,

X”l = (03"'70320azlv"'72n2)'

The coordinates of II,,, are denoted by (ig i1 -+ in, ) With ig < i3 < --+ < iy, and
{40,491, - ,in, } asubsetof order n; + 1 of {0,1,...,n1n2 + ny +na = m}.

Let Vi, = {k‘(HQ + 1),]41(712 + 1) —|—1,...,k(n2 + 1) +n2},k =0,1,...,n1,
and igs = k(n2 + 1) 4+ s. Then

(tod1 ++iny) =0 when (igiy -+ in,) & Vo X Vi X oo X V..

If
(ioil inl) eVoxVix---x an,With’iO = iOsoail = ilsl,...,’inl = inlsnl,
then (g i1 =+« iny) = Zsy 25y ** Zsp, -

With m = nyng + n1 + no, let X1 ® be the image of 37 on the Grassmannian
Gni,m- When n; = 1, then, from above, it follows that 3, ® is the Veronesean of
quadrics of PG(na2, q¢). When ny = 1, then 31 ® is a normal rational curve of order
ny + 1. In particular, when n; = ny = 1, then X7 ® and X5 & are conics of the Klein
quadric Gy 3.

4.6 Regular n-spreads and Segre varieties S;,,,

In Section 17.1 of FPSOTD, regular spreads of lines in PG(3, ¢) were studied in
detail. In particular, the reguli contained in such a spread were considered. Some of
the results are extended here to regular spreads of n-spaces in PG(2n + 1, g).

Definition 4.116. (1) A partition of PG(2n + 1, ¢) by n-spaces is an n-spread.
(2) A system of maximal n-spaces of a Segre variety S1.,, is an n-regulus.
(3) A 1-regulus is a regulus.
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Theorem 4.117. If, in PG(2n+1, q), n > 1, the n-spaces 11,11, . 11" are mutually
skew, then the set of all lines having a non-empty intersection with 11,,, I, | TI is a
system of maximal spaces of a Segre variety Sy;,.

Proof. Coordinates are chosen so that I1,, contains the points
U = P(EO)a U, = P(El)a tey U, = P(En)a

where FE; is the vector with one in the (i 4 1)-th place and zeros elsewhere. Through
each U;, i = 0,1,...,n, there is exactly one line /; meeting I/, and II// in a point.

Suppose that intersections of lo, [, ..., I, with II/, generate a space 11/, and
with II) generate a space II//,,. Then the (n’ + n’”” + 1)-space generated by II/, and
I1”,, contains the points Uy, Uy, ..., U, and hence IL,. Since I, N1/, = ), so
n = n'; analogously, n = n’. Hence take [; N II}, = {U;yny1},7 = 0,1,...,n,
with U141 = P(Eignt1). Let ; NII) = {Q;}, ¢ = 0,1,...,n,and let U be
a point of II" contained in none of the (n — 1)-spaces generated by n of the points
Qo,Q1,...,Qyn. Then U may be taken as P(E) with £ = (1,1,...,1). Then it
follows that Q; = P(E; j1,41) With E; ;4,41 the vector with one in the (i + 1)-th
and (7 + n + 2)-nd places and zeros elsewhere, i = 0,1, ..., n.

Let P = P(Z), with Z = (20,21,---,2n,0,...,0), be any point of II,,, and
let [ be the line through P having a non-empty intersection with I/, and II”/. Let
INIL, = {P'} with P’ = P(Z') and Z' = (0,...,0,20,21,...,4,); also, let
NI = {P"} with P =P(Z") . Then, with ro, 71 # 0,

g — / / /
= (1020, T0%Z1y« -+ s T0Zn, T120s 121y - - + s 125, )-

Since Z" is a linear combination of the vectors Eg 11, E1n+2,. .., Enant1, it

follows that roz; = 12}, i = 0,1,...,n. Hence take z; = z/ all . Then any point

of the line [ is of the form P (X), where

X = (y0207y0213 o Yoln,y Y120, Y121, - - 7y12n)7

with (yo,y1) # (0,0). Therefore all lines [ form a system of maximal spaces of a
Segre variety Si;p,. d

Corollary 4.118. IfI1,,, I, 11 are mutually skew n-spaces in PG(2n + 1, q), with
n > 1, then there is exactly one n-regulus containing all three spaces.

Proof. A Segre variety Si., containing the spaces II,,II/ , II” is necessarily the
union of the #(n) lines having a point in common with these three spaces. In the
theorem it was shown that this union is a Segre variety Sy,,,. The system of maximal
spaces containing IL,,IT/ , II" of this unique Segre variety S,y is the unique n-
regulus containing these three spaces. a

Notation 4.119. The n-regulus containing I1,,, II/ , II"" is denoted R(IL,,, IT/ , I1").
Theorem 4.120. The number of n-reguli in PG(2n + 1, q) is
[PGL(2n + 2,¢)| {|[PGL(2, ¢)|[PGL(n + 1, )|}
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Proof. The number of n-reguliin PG(2n+1, g), n > 1, is the number of Segre var-
ieties Sy, in PG(2n+1, ¢), which is [PGL(2n+2, q)|/|G(S1;»)|- So, by Corollary
4.113, this is the required number.

For n = 1, the number of reguli in PG(3, ¢) is twice the number of Segre var-
ieties S1;1 in PG(3, ¢). The number of Si.1 is [PGL(4, ¢)|/|G(S1,1)|- By Corol-
lary 4.113, this is |[PGL(4,q)|/{2|PGL(2,q)|?}. Hence the number of reguli is
IPGL(4, q)l/{[PGL(2, q) . 0

Letlo,l1,...,l, be n+1lines of PG(2n+1, ¢" 1) which generate the space and
are conjugate in F 1 over Fy. Also, let Py be any point of [y and let Py, ..., P,
be the points conjugate to . Then P; € [; forv = 0,1,...,n and the points
Py, Py,..., P, generate an n-space II,, of PG(2n + 1,¢"*!). The intersection of
I1,, and PG(2n + 1, q) is an n-space II,, of PG(2n+1, q). The set of these ¢" ! + 1
spaces II,, is denoted by S(lo, 11, .. .,1,). In PG(3, q), the set S(lg, [1) is an elliptic
congruence or, equivalently, a regular spread, as in Lemma 17.1.2 of FPSOTD.

Lemma 4.121. The set S(lo, 1, . .. ,1y,) is an n-spread of PG(2n + 1, q).

Proof. Suppose that II,, and IT/, correspond to distinct points Py and P} of lo. Then
I, NI; # I, N1; fori = 0,1,...,n, with II,, the extension of II,, and I/, the
extension of II/ . Suppose that IT,, N I/, # (J; then the space generated by II,, and
IT/, has dimension less than 2n + 1 and its extension contains the lines lg, l1, . . ., [,
a contradiction. Hence IT,, N I, = ().

Since |S(lo, 1, - - -, 1n)| = |lo| = ¢ + 1, the set S(lo, l1, . . ., I,) is a partition
of PG(2n + 1, q). This gives the result. O

Definition 4.122. For n > 1, an n-spread of PG(2n + 1, q) is regular if there exist
lines lo, 1, . .., 1, of PG(2n + 1,¢" 1) for which S = S(lg, l1, ..., 1)

Theorem 4.123. (i) The following are equivalent:
(a) if 11, 11, I1! are three distinct elements of the n-spread S of PG(2n+1, q),
then the whole n-regulus R(IL,, I, 11"} is contained in S;
(b) S is an n-spread of PG(2n + 1, q) such that the n-spaces of S meeting any
line not in an element of S form an n-regulus.
(1) A regular n-spread satisfies (a) and (b).

Proof. (a) = (b). Suppose that S satisfies (a), and let [ be a line not contained
in an element of the n-spread S. Also, let P, P’, P” be distinct points of [ and let
IL,,, IT , II” be the n-spaces of S containing these points. Then R(I1,,, IT, , II") C S.
The elements of R(IL,, I/, II) are the n-spaces of S containing a point of /. Hence
the n-spaces of S meeting [ form an n-regulus.

(b) = (a). Suppose that S satisfies (b), and let II,,, IT/ , IT"” be distinct elements
of S. Also, let [ be a line meeting them. The n-regulus consisting of the ¢ + 1 ele-
ments of S meeting ! contains II,,, I , IT”” and hence is R(II,,, IT,,, II”"). Therefore
R(IL,,, I, II) C S.
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Finally, let S be the regular n-spread S(ly,!1,...,1,). Consider a line [ not
contained in an element of S. The elements of S meeting [ are 110, 1T}, ... TIZ.
The q + 1 spaces II,, of R(II%,II},112) meet [,lo,l1,...,l, in the extension
PG(2n +1,¢"1) of PG(2n + 1, q). Hence R(I12, T1L ) 112) = {11 11, ... 114},
and so {II2 TI.,... TI%} is an n-regulus. Thus (b) is satisfied. By the previous part
of the proof, (a) is also satisfied. a

Theorem 4.124. For ¢ > 2, an n-spread S of PG(2n + 1, q) satisfying (a) or (b) in
the statement of Theorem 4.123 is regular.

Proof. See Section 4.7. a

Remark 4.125. For ¢ = 2, conditions (a) and (b) are trivially satisfied. Many exam-
ples of non-regular n-spreads in PG(2n + 1, 2) are known.

Theorem 4.126. (i) The number of n-reguli contained in a regular n-spread of
PG(2n+1,q) is

(@ =D/ =) ="+ ).
(ii) The number of regular n-spreads of PG(2n + 1,q) is
¢TI 20+ 1] {(¢" = D(n+ 1))

Proof. (i) Let S be a regular n-spread of PG(2n + 1,¢). By Theorem 4.123, the
number of n-reguli contained in S is the number of subsets of order three of &
divided by the number of subsets of order three of an n-regulus. Hence this number
is

(" + 1" " = D/{lg+ Dalg = D} = ¢" (¢ = 1/(¢* - 1).

(i) Let 119, IT! | TI2 be mutually skew n-spaces of PG(2n + 1, ¢). For any point
P € 119, let [ be the line containing P and meeting the n-spaces IT}, and 112, and let
[N = {P}and N2 = {P"}.

To show that ) : P’ — P” is a projectivity, from the proof of Theorem 4.117
coordinates can be chosen so that the Segre variety Sy, containing R (I19, IT}, T12)
consists of all points P(X) with

X = (y0207y0213 o Yoln, Y120, Y121,y - - - 7y12n)7
and with
p: P =(0,...,0,20,21,..,2n) = P" = (20,21, -,2n,0,...,0)

for all (20, 21, ...,2,) # (0,...,0). Hence ¢ is a projectivity.
Next, let S be a regular n-spread of PG(2n + 1, ¢), where

S = S(lo,ll,...,ln) = S(mo,ml,...,mn).
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Consider elements 112, IT} T12, 113 of S not belonging to the same n-regulus. For
any point P of 119, let [ be the line containing P and meeting the n-spaces 11}, 12,
and let I’ be the line containing P and meeting the n-spaces II., IT3. In addition, let
I[N, = {P'}and ' NI, = {P"}. Theny : P — P and v’ : P — P" are
projectivities from 12 to I1%. Hence =4’ = 6 : P’ — P" is a projectivity of 1}
to itself. Since I19, 1T | 112, 113 do not belong to the same n-regulus, so § is not the
identity.

In the extension PG(2n + 1,¢"*!) of PG(2n + 1,q), let I; N Hi = {P;}
and m; N Hi = {Q;} fori = 0,1,...,n, where Hi is the extension of II..
Note that, in PG(2n + 1,¢"™1), the points Py, Py, ..., Py, Qo,Q1,...,Q, are
fixed by J. Since the conjugate points Py, Py, ..., P,, as well as Qo, @1, ..., @n,
are linearly independent, so { Py, Py, ..., P} = {Qo, Q1,...,Qn}. It follows that
{lo, ll, ey ln} = {mo,ml, . ,mn}.

Now, the number of all regular n-spreads of PG(2n + 1, ¢) containing a given
n-regulus R is calculated. Let II,, € R and let S be a regular n-spread containing
R.Then S = S(lo,l1,...,1,), where {lo,l1,...,I,} is uniquely defined by S.

The points P;, with { P;} = I; N1I,, and IT,, the extension of I,,, ¢ = 0,1, ..., n,
are linearly independent in II,,. Conversely, consider n + 1 linearly independent and
conjugate points Py, Py, ..., P, of IL,,. If Sy, is the extension of the Segre va-
riety Si.,, defined by R, then S, contains exactly one line /; through P; which
meets all elements of R, i« = 0,1,...,n. The lines ly,!1,...,l, are conjugate
and generate PG(2n + 1,¢"*!), and so they define a unique regular n-spread
S = S(lp, 1, --.,1,). Hence the number of regular n-spreads containing R is the
number of sets { Py, P1,...,P,}. Let II,, = V(X,41, Xny2,. .., Xont+1) and let
Py = P(Y()), with

YvO = (fO(a)afl(a)v‘"7fn(a)30703"'70)3
fi(T) = aio + anT + -+ ainT", aij € Fy,
F i ={ag+aia+ -+ a,a”™ | a; € Fy}.

The points P;, ¢ = 1,2, ..., n, which are conjugate to P are the points P; = P(Y;),
with

Vi = (fo(a?), f1(a?), ..., fola?),0,0,...,0).

The points Py, Py, ..., P, are linearly independent in IL,, if and only if A A’ # 0,
where

1 « a? a™ apo Go1 -+ Aon

Al 1 af (Qq)2 e (at)m , aip @11 - -+ Qin
= : , =

1" (aq")2 (aq")n Ano Gn1 * - Gnn

Since
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so A # 0. Therefore the points Py, P, ..., P, are linearly independent if and only
if A’ # 0. So the number of such sets { Py, P, ..., P,} is equal to

IGL(n + 1, q)|/{(¢"™" = )(n+1)}.

This is also the number of all regular n-spreads containing R.
From Theorem 4.120 and the first part of Theorem 4.126, it now follows that the
number of all regular n-spreads of PG(2n + 1,¢) is

[PGL(2n +2,q)| . IGL(n+ 19 ¢ -1
[IPGL(2,¢)[ [PGL(n +1,¢)[ (¢"*' =1)(n+1) ¢"(¢*"*2 1)
2n+1
=" TT @ = /A =D+ 1D} o
i=1
Corollary 4.127. The number of lines lo of PG(2n + 1, ¢"*1) for which ly, together
with its conjugates l1,la, . . ., l,, generate PG(2n + 1, ¢" 1) is

@M1 20+ 1) /(" - 1),

Proof. To each such line [y there corresponds one regular n-spread S(lg, l1, . . ., ln)
of PG(2n+ 1, q), and to each regular n-spread there correspond n + 1 of these lines.
Hence the number of such lines [ is equal to n + 1 times the number of regular
n-spreads. a

Theorem 4.128. (i) The group PGL(2n + 2, q) acts transitively on the set of all
regular n-spreads.
(ii) The subgroup G(S) consisting of projectivities fixing a given regular n-spread
S has order

(n+1)¢" (g™ = 1)(* T = 1) /(g - 1).

Proof. Let S = S(lo, l1,...,1l,) and 8" = S(I(,1],...,1},) be regular n-spreads of
PG(2n + 1,q), with I19, IT} , TI2 distinct elements of S and 119, IT!", 12" distinct
elements of &’. There is an element ¢ in PGL(2n + 2, ¢) for which 11}, ¢ = I/,
fori = 0,1,2. By Theorem 4.117, R(I1% , T1%, 112 )¢ = R(T9, IT}, T12). Also, let
1€ HHSL = Pjandly HHSL = Py, with HSL the extension of I1%. Now, coordinates are
chosen so that I1Y = V (X, 11, Xni2, ..., Xont1), Po = P(Yy) and P, = P(Yy),
where

with
fi(T) = aio +anT + -+ aiT", ay €Fy,
fi(T) = alg + ay T+ -+ a,, T, aj; €Fy,
F ot = {ag+aia+ -+ apa”™ | a; € Fy}.
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From the proof of Theorem 4.126, the matrices A = [a;;] and A" = [a];]
singular. Also, from the proof of Theorem 4.117, it may be assumed that

are non-

I = V(Xo,X1,...,X,), T2 =V(Xo—Xni1, X1—Xnio, s Xn—Xoni1).
Given the projectivity n of PG(2n + 1, ¢) with matrix

AAY o0 1T
0  AAL|

then IIi,n =117, i = 0,1, 2, and so R(I19, 11}, 112 ) = R(I1%, 11}, 112). Extended
to PG(2n + 1 q"“), this projectivity 1 maps P, to P}. Then

lon:légﬂ l077§_1 :lE)? {ZOallv"'aln}ng_l = {l(l)a llvvlfln}

Hence Sn¢~1t = &

Since PGL(2n + 2, ¢) acts transitively on the set of all regular n-spreads of
PG(2n + 1,q), so, with S a regular n-spread, the order of G(S) is equal to
|PGL(2n + 2, ¢)| divided by the number of all regular n-spreads. Thus Theorem
4.126 gives the result. a

Lemma 4.129. Let

(@) PG(2n + 1, ¢?) be an extension of the projective space PG(2n + 1, q);
(b) 11, , be an n-space over F, in PG(2n + 1, ¢*) skew to PG(2n + 1, q);
(c) P € 11, 4 and P be the conjugate of P with respect to F ;2 over F,.

Then the lines of PG(2n + 1, q) which are intersections of PP and PG(2n +1,q)
form a system of maximal spaces of a Segre variety Si., of PG(2n + 1, q).

Proof. The intersection of the line PP and the space PG(2n + 1,¢q) is a line of
PG(2n+1,q). Let Py, P, ..., Py+1 be n+ 2 points of II,, , such that any n + 1 of
them are linearly independent in II,, 4. If lg, 1, . . ., l,,1 are the corresponding lines
of PG(2n + 1, q), then any n + 1 of them generate PG(2n + 1, q).

Let Qo, Q1, Q2 be three distinct points of the line [y. Through @); there is exactly
one n-space H%’q of PG(2n + 1, ¢) which has a point in common with each of the
lines I1,1a, ..., lpt1, @ = 0, 1, 2. Let Sy, be the Segre variety of PG(2n + 1,¢)
defined by the n-regulus R(II) ,II} . 1I2 ) = R. The extensions of IL,, 4, R, Si:n
to PG(2n + 1, ¢°) are denoted II,, a R, 81 .n- The space Hn .q 1s the unique n- space
of PG(2n+1,q ) containing P and meeting the lines P1P1, PQPQ, ... Pn+1Pn+1
in a point; hence 1I,, ; belongs to R. If  is a line of S1,, meeting all elements of &,
then the extension [ of [ has a point P in I, 4. Since [ is a line of PG(2n + 1, ¢q),
the line [ also contains the conjugate point P. The set of all points P is projectively
equivalent to 1T n,q and hence is a projective n-space Ir, 4 over Fy. Since the points
Py, Py, ..., P,41 are contained in a unique n-space over Fq, SO H = II, 4. The
result is thus established. a
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4.6.1 Construction method for n-spreads of PG(2n + 1, q)

Consider a projective space PG(2m, ¢?) and let P be a partition of it by projective
2m-spaces 114, , over Fy, i = 1,2,...,(¢°""' +1)/(¢q + 1). By Theorem 4.29
of PGOFF2, such a partition P exists. Embed PG(2m, ¢°) in the extension space
PG(4m + 1,¢%) of PG(4m + 1, q), and assume that PG(2m, ¢*) does not contain
a point of PG(4m + 1,¢q). By Lemma 4.129, the 2m-space Hém’q defines a Segre
variety Sf.,,, of PG(4m + 1,¢). These (¢°" ' 4 1)/(q 4 1) Segre varieties form a
partition of PG (4m+ 1, q). Hence the ¢ *! + 1 maximal 2m-spaces of these Segre
varieties form a 2m-spread S of PG(4m + 1, q).

Next, consider a projective space PG(2m + 1,¢?), m > 0. Let P be a partition

of this space consisting of o spaces T3, 41,4 Of dimension 2m + 1 over F and S
spaces Hfmiz of dimension m over F 2; then a(q+1)+ 3 = ¢*™*2+1. By Theorem
4.1 of PGOFF2, such a partition always exists for &« = 0. Embed PG(2m + 1, ¢?) in
the extension PG(4m + 3, ¢2) of PG(4m + 3, ¢), and assume that PG(2m + 1, ¢?)
does not contain a point of PG(4m + 3, ¢). By Lemma 4.129, the (2m + 1)-space
Hémﬂ’q defines a Segre variety S{';Qmﬂ of PG(4m+3, q). The m-space Hin,qQ and

its‘conjugate ﬁ{;@,q’z generate a (2m + 1)-space H;m+1,q2 of PG(4m + 3,¢?), and
1’

omi1.q2 VPGAm+3,q)isa (2m + 1)-space Hémﬂ’q of PG(4m + 3, q). The o
Segre varieties Si;2m+1 and the 3 spaces Hémﬂ’q form a partition of PG(4m+3, q).
Let X' be the system of maximal (2m + 1)-spaces of 87 5,,, 1 for m # 0, and let X*
be a system of lines of S}, ; for m = 0. Then the elements of 3! UX?U- - - UL
together with the 3 spaces I13,, 1 . 113,11 4> - - - ,H§m+17q form a (2m+ 1)-spread
S of PG(4m + 3, q).

4.7 Notes and references

Section 4.1

For more details on quadric Veroneseans and their projections, see for example
Bertini [17], Burau [60], Godeaux [142], Semple and Roth [283], Herzer [161].
Due to the finiteness of the field, the proofs of Theorems 4.12 and 4.15 had to be
modified from the proofs for C.
The following important result on Veroneseans over C is due to Kronecker and
Castelnuovo.

Theorem 4.130. (i) Any surface of PG(m, C) that contains c0? plane quadrics is
the Veronesean V; or one of its projections.
(ii) Any surface of PG(3, C) having oo? reducible plane sections is either the pro-
jection of Vi or a scroll.

Consider the Veronesean V3 in PG(5, C) and let [ be a line meeting M in three
distinct points. By Theorem 4.21, V3 is a double surface of M3 and so [ is skew to
V3. The projection of V4 from [ onto a solid II3, with [ N II3 = (), is a surface F
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of order four and is a Steiner surface. It has three double lines which meet in a triple
point of the surface. In a suitable coordinate system,

Fi=V(Xo X1 XoX35 — X2X2 - X2X? — X2X2).

Section 4.2

Mazzocca and Melone [229] formulate (a), (b) and (c), but they assume conics in-
stead of (¢ + 1)-arcs; in their paper such sets are called Veronesean caps. For ¢ odd,
they establish Theorem 4.36. In this paper, there is no bound on the dimension of
the ambient projective space. In GGG, there are some counterexamples; an extra
condition is added to make the characterisation work. The proof of Mazzocca and
Melone is modified so as to hold also in the even case. In Thas and Van Maldeghem
[361], the extra condition is again deleted and conics are replaced by (¢ + 1)-arcs. In
particular, the original problem of Mazzocca and Melone is completely solved in the
finite case. To obtain the main theorem, which is Theorem 4.40, a completely new
proof is developed.

Let M be the algebraic variety formed by the tangent spaces of V,,. Melone
[234] gives a characterisation of M in terms of its points and the lines contained in
the tangent spaces of V.

Concerning Theorems 4.37 and 4.38, it turns out that the case N = 8 does not
exist; so necessarily N = 9.

The particular case n = 2, with ¢ odd, of Theorem 4.49 is due to Tallini [304].
All other results of Section 4.2.2 are taken from Thas and Van Maldeghem [360]. In
Theorem 4.56, the uniqueness in the case (n, ¢) = (2, 4) is taken from Del Fra [114].

Section 4.2.3 comes from Thas and Van Maldeghem [360].

For q odd and ¢ > 3, the characterisation Theorem 4.79 is taken from Ferri [134].
The proof of Lemma 4.68 has been modified from the latter. Lemma 4.69 is essential
for the characterisation of Vj in the case ¢ = 3. For any g, Thas and Van Maldeghem
[362] copy the proof in GGG, except for ¢ € {2,4}, for which they produce a
separate argument. Theorems 4.81 and 4.83 as well as Remarks 4.82 and 4.84 are
taken from Schillewaert, Thas and Van Maldeghem [272].

Section 4.3

This section is taken from Cooperstein, Thas and Van Maldeghem [76]; see also
Cossidente and Siciliano [79] for the case n = 2.

Section 4.4

Theorems 4.88 and 4.89 are also taken from [76]. Theorems 4.90 to 4.92 are
taken from Thas and Van Maldeghem [363]. For more characterisations of quadric
and Hermitian Veroneseans, including the infinite cases, see Schillewaert and Van
Maldeghem [273, 274], Thas and Van Maldeghem [366, 365], Akca et al. [1].
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Section 4.5

For more details on Segre varieties, see, for example, C. Segre [281], Godeaux [142],
Burau [60], Melone and Olanda [235]. For ny = 1, the normal rational curve ¥ &
on the Grassmannian G,,, 2,1 is also considered by Herzer [162]. Other character-
isations of Segre varieties are contained in Thas and Van Maldeghem [365, 367].

Section 4.6

Theorem 4.124 is due to Bruck and Bose [51]. Its proof depends on deep theorems
about translation planes. In André [2], in Segre [278], and in [51], it is shown that
the study of n-spreads in PG(2n + 1, g) is equivalent to the study of finite trans-
lation planes. The n-spread is regular if and only if the corresponding translation
plane is Desarguesian. To a translation plane of order 2" *! there always corresponds
an n-spread of the space PG(2n + 1,2). Since there are many non-Desarguesian
translation planes of order 2"*!, Dembowski [116], it follows that there are many
non-regular n-spreads in PG(2n + 1, 2). This explains Remark 4.125.

In Bruen and Thas [52] there is a construction of translation planes which is
equivalent to the second construction in the last part of the section. In this connection,
Corollary 2 of Lemma 17.6.6 of FPSOTD shows that PG(3,4) can be partitioned
into 14 lines and one PG(3, 2). The corresponding translation plane of order 16 is
non-Desarguesian and can be shown to be isomorphic to the plane discovered by
Lorimer [210]. The partitions described in the second construction are called mixed
partitions of PG(2m + 1, ¢%). In recent years, several papers on such partitions have
been written; see, for example, Mellinger [231, 233, 232], Ebert and Mellinger [127].

Finally, interesting invariants, formulas and properties related to Segre varieties
and Veroneseans are contained in Glynn [141], Havlicek, Odehnal and Saniga [160],
Kantor and Shult [197].
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Embedded geometries

5.1 Polar spaces

Definition 5.1. A polar space S of (finite) rank n or projective indexn —1,n > 3, is
aset P of elements called points together with distinguished subsets called subspaces
with the following properties.

(1) A subspace together with the subspaces it contains, is a d-dimensional projective
space with —1 < d <n — 1.

(2) The intersection of any two subspaces is a subspace.

(3) Given a subspace 7 of dimension n — 1 and a point P in P\, there exists a
unique subspace 7’ containing P such that the dimension of 7 N7’ is n — 2. The
subspace 7’ contains all points of 7 which are joined to P by some subspace of
dimension 1.

(4) There exist disjoint subspaces of dimension n — 1.

Definition 5.2. A polar space has rank 2 or projective index 1 if it is an incidence
structure consisting of the triple S = (P, B,I) in which P and B are disjoint, non-
empty sets of objects called points and lines, and for which I is a symmetric point-line
incidence relation satisfying the following axioms.

(1) Each point is incident with 1 + ¢ lines, where ¢ > 1, and two distinct points are
incident with at most one line.

(2) Each line is incident with 1 + s points, where s > 1, and two distinct lines are
incident with at most one point.

(3) If P is a point and [ is a line not incident with P, then there is a unique pair
(P',I') € P x B for which P11I'T P'1l; see Figure 5.1.

Polar spaces of rank 2 are usually called generalised quadrangles. The integers
s and t are the parameters of the generalised quadrangle and S has order (s, t); when
s = t, then S has order s. There is a point-line duality for generalised quadrangles
of order (s, t), for which in any definition or theorem the words ‘point” and ‘line” are
interchanged and the parameters s and ¢ are interchanged. Normally, it is assumed
© Springer-Verlag London 2016 223
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Fig. 5.1. The polar space axiom in the rank 2 case

P’ l

without further remark that the dual of a given theorem or definition has also been
given.

The main reason for the difference between the axioms in the cases n = 2 and
n > 3 is that, in the latter case, the axioms applied to n = 2 do not imply that
each line contains a constant number of points and similarly that each point is on a
constant number of lines.

Isomorphisms and automorphisms of polar spaces are defined in the usual way;
similarly for isomorphisms (or collineations), anti-isomorphisms (or reciprocities),
automorphisms, anti-automorphisms, involutions, and polarities of generalised quad-
rangles.

Example 5.3. (a) Let Q be a non-singular quadric of PG(d, q) of projective index
n — 1 with n > 2. Then Q together with the projective subspaces lying on it is a
polar space of rank n.

(b) Let U be a non-singular Hermitian variety of PG(d, ¢%), d > 3. Then U together
with the subspaces lying on it is a polar space. The projective index of this polar
space is the maximum dimension of subspaces lying on /.

(c) Let ¢ be a null polarity of PG(d, ¢), with d odd. Then PG(d, ¢) together with
all subspaces of the self-polar (d — 1)/2-dimensional spaces is a polar space of
projective index (d — 1)/2.

(d) Let

P={P;li,j=0,1,...,s},s>0,
B={lo,l1,...,ls,mo,m1,...,mg},
P11, ifandonlyif i = £,
PijImy ifandonlyif j = k.



5.1 Polar spaces 225

Then (P, B,1) is a generalised quadrangle of order (s, 1). Up to an isomorphism,
there is only one generalised quadrangle of order (s, 1), for any given s > 0. The
generalised quadrangles with ¢ = 1 are called grids.

(e) Let 7 be a plane of PG(3,¢), ¢ even, and let O be an oval in 7. Further, let
P =PG(3, )\, let B be the set of all lines of PG(3, ¢) not contained in 7 but
containing a point of O, and let I be the incidence of PG(3, ¢). Then (P, B,1) is
a generalised quadrangle of order (¢ — 1, ¢ + 1) and is denoted by 75" (O).

A complete classification of the polar spaces of rank at least three has been ob-
tained by Tits. This is the result, without proof, in the finite case.

Theorem 5.4. If S is a finite polar space of rank at least three, then S is isomorphic
to one of (a), (b), (¢).

The examples (d) and (e) show that this theorem is not valid in the rank 2 case.
In fact, many other examples of generalised quadrangles are known.

Definition 5.5. (1) A Shult space S is a non-empty set P of points together with
distinguished subsets of cardinality at least two, called lines, such that for each
line [ of S and each point P of P\l, the point P is collinear with (or adjacent
to) either one or all points of [; two not-necessarily-distinct points P; and P, are
collinear (or adjacent), with the notation P; ~ P, if there is at least one line of
S containing P; and Ps.

(2) The space S is non-degenerate if no point of S is collinear with all other points.

(3) A subspace X of S is a set of pairwise collinear points such that any line meeting
X in more than one point is contained in X.

(4) The space S has rank n or projective index n — 1, where n > 1, if n is the largest
integer for which there is a chain Xg C X; C --- C X, of distinct subspaces
Xo=0,X1,Xo,..., X,.

From Theorem 5.4, it follows that, for any finite polar space S of rank n > 3,
the point set P together with the subspaces of dimension 1 is a Shult space of rank
n. In fact this result also holds for infinite polar spaces. Next, let S be a generalised
quadrangle of order (s,t). If each line of S is identified with the set of its points,
then a Shult space of rank 2 is obtained.

The following converse, stated without proof, is due to Buekenhout and Shult.

Theorem 5.6. (i) A non-degenerate Shult space of rank n > 3, all of whose lines
have cardinality at least three, together with its subspaces, is a polar space of
rank n.

(1) A Shult space of rank 2, all of whose lines have cardinality at least three and
all of whose points are contained in at least three lines, is a generalised quad-
rangle.

Definition 5.7. If S is a degenerate Shult space, then the point set consisting of all
points of S which are collinear with each point of S is the radical of S and is denoted
by R; it is a subspace of S.
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An equivalence relation p is defined on the point set P of S by putting P p P’ if
and only if the set of all points collinear with P coincides with the set of all points
collinear with P’. Let p(P) denote the equivalence class containing the point P for
the relation p; then p(P) = R for all P in R.

Lemma 5.8. Let S be a degenerate Shult space with radical R. If the set of all points

collinear with the point P is contained in the set of all points collinear with the point
P’ then either P p P' or P’ € R.

Proof. Assume that P’ ¢ p(P) and P’ ¢ R. Then P and P’ are distinct collinear
points, and there exists a point 7' which is not collinear with P’. Let [ be a line
containing P and P’, and let 7" be a point of [ collinear with 7. Since P’ ¢ p(P)
there exists a point Z which is collinear with P’ but not with P. Let m be a line
containing Z and P’. On m\{P'} there is a point Z’ which is collinear with T'.
Since Z is not collinear with P, also Z’ is not collinear with P. On a line m’ through
T and Z’ there is a point W which is collinear with P. Hence W is collinear with P’.
Since W and Z’ are collinear with P’, also T is collinear with P’, a contradiction.
Therefore P’ € p(P) or P’ € R. O

Let P be a point of S which is not contained in the radical R. A corollary of
Lemma 5.8 is that RUp(P) is a subspace of S. Now a new structure S’ is introduced
with point set P’ and line set 5':

(1) apointis aclass p(P) with P ¢ R;
(2) alineof §"isaset {p(P) | P € 1} with [ aline of S not contained in a subspace
of the form p(T') UR.

Then the following result is readily obtained.
Theorem 5.9. If R # P, then the structure S’ is a non-degenerate Shult space.

Finally, for a non-degenerate Shult space, the radical R is defined to be the empty
set.

5.2 Generalised quadrangles

Only finite generalised quadrangles are considered.

A start is made by giving a brief description of three families of examples known
as the classical generalised quadrangles, all of which are associated with classical
groups.

(a) Consider a non-singular quadric @ of projective index 1 in the projective
space PG(d, q), with d = 3,4, or 5. Then the points of Q together with the lines of Q,
which are the subspaces of maximal dimension on Q, form a generalised quadrangle
Q(d, q) with the following parameters:

s=gq, t=1, when d = 3,
s=gq, t=gq, when d = 4,
s=gq, t=¢? whend=>5.
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Since 9Q(3, ¢q) is a grid, its structure is trivial. From Section 1.1, the quadric Q
has the following canonical form:

Q = 7‘[3 = V(XOX1 + X2X3), when d = 3,
Q =Py =V(XZ+X1Xo+ X3X4), when d = 4;
Q=E&5 = V(f(Xo,Xl) + Xo X3+ X4X5), when d = 5,

where f(Xo, X1) is an irreducible binary quadratic form.

(b) Let U be a non-singular Hermitian variety in the projective space PG(d, ¢?),
with d = 3 or 4. Then the points of I/ together with the lines on ¢/ form a generalised
quadrangle 2/ (d, ¢*) with parameters as follows:

s=¢q? t=gq, whend=3,

s=¢? t=q° whend = 4.
From Section 2.1, U has the following canonical form:
U=VXT + X4+ XTI,

(c) The points of PG(3, q), together with the self-polar lines of a null polarity ¢,
form a generalised quadrangle WW(q) with parameters

s=4q,t=gq.

From Chapter 15 of FPSOTD, the lines of WW(q) are the elements of a general
linear complex of lines of PG(3, ¢). Further, a null polarity of PG(3, ¢) has the
following canonical bilinear form:

XoY1 — XYoo + XoYs — X3Y5.

The examples (d) and (e) of Section 5.1 show that there exist generalised quad-
rangles other than the classical ones and their duals. The order of each known gener-
alised quadrangle is one of the following:

(s,1) with s > 1;
(1,1) with t > 1;
(¢,9) with ¢ a prime power;
(¢,4%),(¢%q) with ¢ a prime power;
(¢*,4°), (¢*, 4%) with ¢ a prime power;
(g—1,g+1),(¢g+1,q— 1) with g a prime power.

Definition 5.10. Let S = (P, B, 1) be a generalised quadrangle of order (s, ).

(1) Two, not-necessarily-distinct points P, P’ of S are collinear provided that there
is some line [ for which PI11P’; write P ~ P’. Hence P ¢ P’ means that P
and P’ are not collinear.

(2) Dually, for l,1"” € B, they are concurrent or non-concurrent; write [ ~ I’ or [ 4 I’
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(3) When P ~ P, it s also said that P is orthogonal or perpendicular to P’; simi-
larly for [ ~ I,

(4) The line incident with distinct collinear points P and P’ is denoted PP’, and the
point incident with distinct concurrent lines [ and I’ is denoted [ N I'.

For P € P,put P+ = {P' € P | P ~ P'}, and note that P € PL. The trace
of a pair { P, P'} of distinct points is defined to be the set P~ N P+ and is denoted
{P,P'}*; then |{P,P'}*| = s+ 1ort+ 1 accordingas P ~ P' or P  P'. More
generally, if A C P, the ‘perp’ is defined by A+ = {P+ | P € A}.For P # P,
the span of the pair {P, P’} is

sp(P,P)={P,P'}** ={Y e P|Y € Z* forall Z € P+ N P*}.

When P # P’, then { P, P’} is also called the hyperbolic line defined by P and
P’ and [{P,P'}*t] = s+ 1 or |[{P,P'}*+| <t + 1 according as P ~ P’ or
P AP,

A triad (of points) is a triple of pairwise non-collinear points. Then, given a triad
T = {P, P, P"}, acentre of T is just a point of 7.

These definitions are illustrated by some examples.

Example 5.11. (a) Let P # P’ in W(q), and let ¢ be the null polarity defining
W(q). If L is the polar line of the line PP’ of PG(3, q), then {P, P’} = [ and
{P, P'}*+ = PP’. Hence each hyperbolic line of YW(q) contains g + 1 points.

(b) Let P o P’ in Q(4,q); then {P, P'}* is a conic. For ¢ odd, the double perp
{P, P'}1+ = {P, P'}, and for q even, { P, P’} is the intersection of Q and
the plane PP'N, where N is the nucleus of the quadric Q. In the even case
{P, P'}*+ is a conic, and each hyperbolic line contains ¢ + 1 points.

(c) Let P ¢ P’ in Q(5,q), and let ¢ be the polarity defined by Q. If 7 is the polar
solid of the line PP’ of PG(5, q), then { P, P’} is the elliptic quadric 7 N Q of
7, and {P, P'}*+ = {P, P'}.

(d) Let P £ P"inU(3, ¢?), and let ¢ be the unitary polarity defined by . If [ is the
polar line of the line PP’ of PG(3, ¢?), then { P, P'}* = U/ N [ and the double
perp { P, P'}*+ = PP’ NU. Hence each hyperbolic line has g + 1 points.

(e) Let P o P"inU(4,q?), and let ¢ be the unitary polarity defined by U. If  is
the polar plane of the line PP’ of PG(4, ¢2), then { P, P’} is the non-singular
Hermitian curve 7 N, and { P, P'}** = PP’ NU. Hence each hyperbolic line
has ¢ + 1 points.

(f) Consider again W(q) and its defining polarity ¢. If 7 = {P, P’, P"} is a triad
of W(q) for which P, P’ P" are collinear in PG(3, q), then T+ = {P, P'}+
andso [T+ =q+ 1.If T = {P, P', P"} is a triad for which P, P’, P are not
collinear, then the pole of the plane PP’ P" is the unique centre of 7.

(g) Finally consider again Q(5,¢) and the corresponding polarity ¢. For the triad
T = {P,P',P"} of Q(5,q), the perp T is the conic Q N 7, where 7 is the
polar plane of the plane PP’ P”. Hence, in this case, any triad has ¢ + 1 centres.

Let S = (P, B,1) be a generalised quadrangle of order (s,t), and put |P| = v
and |B| = b.
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Theorem 5.12. (i) v = (s + 1)(st +1); (i) b = (t + 1) (st + 1).

Proof. Let [ be a fixed line of S and count in different ways the number of ordered
pairs (P,m) € P x Bwith PYl,PIm,andl ~ m. Thenv — s — 1 = (s + 1)ts,
whence v = (s + 1)(st + 1). Dually, b = (¢ + 1)(st + 1). O

Theorem 5.13. The integer s + t divides st(s + 1)(t + 1).

Proof. If E = {{P,P'} | P,P' € P and P ~ P'}, then it is evident that (P, ) is a
strongly regular graph with parameters

v=(s+1)(st+ 1), k=n1=st+s A\=pl,=5—1, p=p =t+1.

The graph (P, E) is called the point graph of the generalised quadrangle. Let the
point set P = {P;, P>,...,P,} and let A = [a;;] be the v X v matrix over R for
which a;; = 0if ¢ = jor P; % Pj,and a;; = 1if ¢ # j and P; ~ Pj; thatis, A is
an adjacency matrix of the graph (P, &).

If A% = [c;5], then (a) ¢;; = (t + 1)s;(b) i # j and P; £ Pjimply ¢;; =t + 1;
(c)i # j and P; ~ P; imply ¢;; = s — 1. Consequently,

A2 —(s—t—2A—-(t+1)(s—DI=(t+1)J;

here I is the v x v identity matrix and .J is the v X v matrix with each entry equal
to one. Evidently, (¢ + 1)s is an eigenvalue of A, and J has eigenvalues 0, v with
respective multiplicities v — 1, 1. Since

(t+1)s)2 —(s—t—=2)(t+1)s — (t+1)(s — 1)
=@+ 1D(st+1)(s+1)=(t+1)v,

the eigenvalue (¢ 4 1)s of A corresponds to the eigenvalue v of J, and so (¢ + 1)s
has multiplicity 1. The other eigenvalues of A are roots of the equation

22— (s—t—2)z—(t+1)(s—1)=0.
Denote the multiplicities of these eigenvalues 61, 05 by mq, ms. Then

0p=—t—1,0=s—1, v =14+ m1 + mo,
s(t+1)—mi(t+1)+ma(s —1) =tr(4) =0.

Hence
my = (st+1)s?/(s+1t),  ma=st(s+1)(t+1)/(s+1).

Since m, my are positive integers, s -+t divides both (st+1)s? and st(s+1)(t+1).
Note that s + ¢ divides (st + 1)s? if and only if it divides st(s + 1)(t + 1). O

Theorem 5.14 (Higman’s inequality). If s > 1 andt > 1, then t < 52, and dually
s <t
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Proof. Let P, P’ be two non-collinear points of S. Put
V={TecP|PgTand P T};

so[V|=d=(s+1)(st+1)—2—2(t+1)s + (¢t + 1). Denote the elements of V
by T1,T5, ..., T4 and let

ti=|{Ze{P, P} |Z~T}|.

Count in different ways the number of ordered pairs (T}, Z) € V x {P, P'}* with
Z ~ T; to obtain

> ti=(t+1)(t—1)s. (5.1

Next count the number of ordered triples (7}, Z, Z') € V x {P, P'}+ x {P, P'}*,
with Z £ 7', Z ~ T;, Z' ~ T}, to obtain

D ti(ti —1) = (t+ 1)t(t — 1). (5.2)
From (5.1) and (5.2), it follows that

Dot =(t+ 1)t —1)(s+1).

With df = 3", t;, the inequality 0 < >, (¢ — ¢;)? simplifies to

2
Yt - (Zn) >0,
which implies
dit +1)(t —1)(s+1) > (t+1)2(t — 1)%s?,

or
t(s —1)(s* —t) >0,
completing the proof. a

There is an immediate corollary of the proof.

Corollary 5.15. When s > 1 and t > 1, the following are equivalent:

() s? = t;
(i) d > t? — (3 t:)? = 0 for any pair { P, P'} of non-collinear points;
(i) t; =t fori = 1,2, ...,d and any pair { P, P'} of non-collinear points;
(iv) each triad of points has a constant number of centres, in which case this number
iss+ 1.
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Theorem 5.16. If s # 1, t # 1, s # 12, and t # s°, thent < s*> — s and dually
s<t?—t

Proof. Suppose s # 1 andt # s%. By Theorem 5.14,¢ = s> — x with 2 > 0, and, by
Theorem 5.13, the integer s + s — x divides s(s%> — x)(s + 1)(s> — x + 1). Hence,
modulo s + s? — z,

0=x(—s)(—s+1)=xz(xr—2s).

If z < 2s, then s + s> — 2 < x(2s — z) forces * € {s,s + 1}. Consequently,
x:s,x:s—i—l,orazz2$;sot§52—3. O

The only classical generalised quadrangle which has t = 52 is Q(5, ¢); the only
classical example with s = 2 is 2(3, ¢*). In Example 5.11 (g), it was shown that
any triad of Q(5, ¢) has ¢ + 1 centres.

In the next two theorems, isomorphisms and anti-isomorphisms between the
classical generalised quadrangles are described.

Theorem 5.17. (i) Q(4, q) is isomorphic to the dual of W(q);
(il) Q(4, q) and W(q) are self-dual if and only if q is even.

Proof. Let Hs = G 3 be the Klein quadric, that is, the Grassmannian of the lines
of PG(3, ¢). The image of W(q) on Hs is the intersection of H5 with a non-tangent
hyperplane PG(4, ¢) of PG(5, ¢); see Section 15.4 of FPSOTD. The non-singular
quadric H5 N PG(4, q) of PG(4, q) is denoted by Q. The lines of W (q) which are
incident with a given point form a flat pencil of lines; hence their images on H5 form
a line of Q. Now it follows that WW(q) is anti-isomorphic to Q(4, q).

In Theorem 16.4.13 of FPSOTD, it was shown that WW(q) is self-dual if and only
if ¢ is even. By the first part of the proof, also Q(4, ) is self-dual if and only if ¢ is
even. O

In Section 16.4 of FPSOTD, it was shown that W(q) admits a polarity if and only
if ¢ = 2271 with b > 0.

An algebraic proof of the existence of an anti-isomorphism between Q(5, ¢) and
U(3,q?) can be found in Section 19.2 of FPSOTD. Here it is shown in a purely
geometrical way that Q(5, ¢) and (3, ¢) are anti-isomorphic.

Theorem 5.18. The generalised quadrangle Q(5,q) is isomorphic to the dual of
U3, q%).

Proof. Let Q be an elliptic quadric in PG(5, ¢). Extend PG(5, q) to PG(5, ¢?). Then
the extension of Q is a hyperbolic quadric H5 in PG(5, ¢?). Hence Hs is the Klein
quadric of the lines of PG(3, ¢?). So to Q in H5 there corresponds a set V' of lines in
PG(3,¢?). To a given line [ of the generalised quadrangle Q(5, q) there correspond
q + 1 lines of PG(3, ¢?) that all lie in a plane and pass through a point P.

Let U be the set of points on the lines of V. Then, to each point of Q(5, ¢), there
corresponds a line of V, and to each line [ of Q(5, ¢) there corresponds a point P of
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U. To distinct lines 1, 1" of Q(5, q) correspond distinct points P, P’ of U, as a plane
of Hs contains at most one line of Q. Since a point T of Q(5, q) is on ¢* + 1 lines
of Q(5,q), these ¢> + 1 lines are mapped onto the ¢> + 1 points of the image of
T. Hence an anti-isomorphism is obtained from Q(5, ¢) onto the structure (U, V, 1),
where 1 is the natural incidence relation. So (U, V,1) is a generalised quadrangle
of order (¢?,q) embedded in PG(3,¢?). But now, by a result of Buekenhout and
Lefévre, which is part of Theorem 5.51, the generalised quadrangle (4, V, 1) must
be U(3, ¢%). O

5.3 Embedded Shult spaces

Definition 5.19. (1) A projective Shult space S is a Shult space for which the point
set P is a subset of the point set of some projective space PG(d, K), and for
which the line set B is a non-empty set of lines of PG(d, K).

(2) In this case, the Shult space S is (fully) embedded in PG(d, K).

(3) If PG(d', K) is the subspace of PG(d, K) generated by all points of P, then
PG(d', K) is the ambient space of S.

Examples (a), (b), (c) of Section 5.1 are projective Shult spaces. The aim is
to show that these are the only non-degenerate Shult spaces embedded in a Galois
space; a direct proof is given, without relying on Theorems 5.4 and 5.6.

Theorem 5.20. A non-degenerate Shult space S of rank 2 embedded in PG(d, q) is
a generalised quadrangle.

Proof. Let P be the point set of S, and let B be the line set of S. On each line of
B there are exactly ¢ + 1 points. Let P € P,l € B, and P ¢ [. By the definition
of Shult space, B contains one or ¢ + 1 lines through P which are concurrent with
[. If B contains ¢ + 1 lines through P and concurrent with [, then the plane P/ is a
subspace of S. This yields a contradiction since S has rank 2. So there is exactly one
line of S through P which is concurrent with /.

Let P, P’ be distinct points of P for which PP’ is not a line of . If [ is any line
of B through P, then there is exactly one line I’ of BB through P’ which is concurrent
with [. It follows that the number of lines of 3 through P is equal to the number of
lines of BB through P’.

Now it is shown that any point P of P is contained in at least two lines of B.
Since S is non-degenerate, there is a line [ in B which does not contain P. Let [’ be
the line of B through P which is concurrent with [. The common point of [ and I’ is
denoted by P’. Since S is non-degenerate, there is a point P’/ P’ in P such that
P’ P" is not a line of B. The line of B which contains P and is concurrent with [ is
denoted by I”. Then P ¢ I and I’ N 1" = {). So the line of B which contains P and
is concurrent with [” is distinct from I’. Consequently, P is contained in at least two
distinct lines of B.
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Now consider distinct points T, T’ of PP, where T'T” is in B. Let m be a line of B
through T which is distinct from 77", and let m’ be a line of 53 through 7" which is
distinct from 7'7"; then m N'm/ = (. Let M € m\{T'}, M' € m/\{T"}, with M M’
not in B; then 7'M ¢ B and TM' ¢ B. By a previous argument, the number of
lines of BB through T is equal to the number of lines of B through M’, which equals
the number of lines of 13 through A/, which in turn equals the number of lines of 5
through 7. Therefore each point of P is contained in a constant number ¢ + 1, where
t > 1, of lines of B.

Therefore S is a generalised quadrangle of order (g, t). d

Theorem 5.21. Let S be a non-degenerate projective Shult space of rank 2 with am-
bient space PG(d, q). If some point of S is contained in exactly two lines of S, then
d = 3 and S is the generalised quadrangle Q(3, q).

Proof. By Theorem 5.20, S is a generalised quadrangle of order (¢, 1). Since S is a
grid,sod =3and S = 9(3,q). O

Let S be a Shult space embedded in PG(d, ¢). Let P be the point set of S and let
B be the line set of S. If P, P’ € P and if there is at least one line of B through P
and P’, then P and P’ are adjacent; write P ~ P’. So there should be no confusion
between collinearity in PG(d, ¢) and adjacency in S.

For the subspace of PG(d, ¢) generated by the point sets or points V1, Va, ..., Vi,
the notation (V1, Vs, ..., V) is used. If 7 is a subspace of PG(d, ¢), then 7 NS (or
S N m) denotes the structure with point set 7 N P and line set the set of all lines
of S contained in 7. If PG(d, ¢) is the ambient space of S, then (w N P) does not
necessarily coincide with 7.

Assume, from now on, that S is a projective Shult space with point set P, line
set B, and ambient space PG(d, q).

Theorem 5.22. (i) The radical R of a degenerate Shult space S is a subspace of

PG(d, q).
(ii) Let R have dimensionr # —1, and let PG(d — r — 1, q) = m be a subspace of
PG(d, q) which is skew to R. If R # PG(d, q), then
(a) m NS is a non-degenerate Shult space;
(b) P is the union of all lines joining every point of R to every point of 1 N S;
(c) two points of P\'R are adjacent if and only if their projections from R onto
T are adjacent.

Proof. In Section 5.1, it was already mentioned that R is a subspace of the Shult
space S. Hence R has the property that the line joining any two distinct points of
R is completely contained in R. Hence R is a subspace of PG(d, ¢). Let R have
dimension r, with r < d, and let PG(d — r — 1,¢) = 7 be a subspace of PG(d, q)
which is skew to R. Also, in Section 5.1 the equivalence relation p on P was intro-
duced: P p P’ if and only if the set of all points collinear with P coincides with the
set of all points collinear with P’. Let p(P) denote the equivalence class containing
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the point P. If P € P\R, then it was shown in Section 5.1 that R U p(P) is a sub-
space of S and hence a subspace of PG(d, ¢). Now it is shown that R U p(P) is the
projective (r 4+ 1)-space RP.

Let P’ € RP, with P’ ¢ RU{P},andlet P = PP'NR.If T ~ P, then, since
T ~ P"”,also T ~ P’. Analogously, T ~ P’ implies T' ~ P; hence P’ € p(P),
and so RP C R U p(P). Next, let P, € p(P)\{P} and suppose that PP} N R = {);
then PP’ C p(P). Since P ¢ R there is a point 7" not adjacent to P. On PP’ there
is at least one point 7" adjacent to T'. Since 77 € p(P), so T' ~ P, a contradiction.
Hence PPy N'R # ), and so P; € RP. Consequently, R U p(P) C RP. It follows
that R U p(P) = RP.

The set P is the union of all lines joining every point of R to every point of TNS.
Let p(P) # p(P’), with P,P' ¢ R,letT € p(P),T' € p(P’), and let P ~ P’
Since T' € p(P) so T ~ P’ and, similarly, since 77 € p(P’') so T' ~ T". It now
follows that two points of P\R are adjacent if and only if their projections from R
onto 7 are adjacent. Finally, by Theorem 5.9, 7 NS is a non-degenerate Shult space.

O

The non-degenerate Shult space 7 N S is a basis of S.

Lemma 5.23. Let S be a non-degenerate Shult space in PG(d, q) and let P, P’ be
adjacent points of S. Then

(i) there is a point T in S such that T + P and T + P’;
(i) each point of S is contained in a constant number t + 1 of lines of B, where
t> 1

Proof. Suppose (i) is false. As S is non-degenerate, there is a point P; with Py +# P’
so P; ~ P. There is also a point P, for which P ¢ P and P, ~ P’. Let [ be a line
through P, intersecting P’ P, in P,. Then Py # P’ and P ¢ Pj. If T is a point on [
other than P; and Pj, then T ¢ Pand T  P'.

Let M, M' € P, with M « M. If m is any line of B through M, then there is a
unique line of B through M’ concurrent with m, and conversely. It follows that the
number of lines of B through M is equal to the number of lines of B through M.
Next, let M, M’ € P, with M # M’ and M ~ M’. Thereis a point T in S such that
T o« M and T # M'. The number of lines of 3 through 7" is equal to the number of
lines of B through M and to the number of lines of B through M’. Again the number
of lines of B3 through M is equal to the number of lines of 53 through M’. Hence the
number of lines of 53 through the point M € P is a constant ¢ + 1. Let m € B with
M ¢ m. On m there is a point M’ which is collinear with M ; so M’ is contained in
at least two lines of 3. Therefore ¢t > 1. O

Lemma 5.24. If 7 is a subspace of PG(d, q) for which = N P is non-empty, then
m NS is a Shult space. If S is non-degenerate and 7 is a hyperplane, then T NP
generates .

Proof. Let 7 be a subspace of PG(d, ¢). If # NP is non-empty, then it is immediate
that 7 N S is a Shult space. Now let S be non-degenerate and let 7 be a hyperplane.
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Since PG(d, ¢) is the ambient space of S, there is a point P in P\ (7w N'P). It suffices
to show that an arbitrary line [ of B is in (w N P, P).

Suppose that [ meets 7 in some point P’. If P € [, the result follows. So suppose
P ¢ 1.1f P ~ P" with P” € [\{P’}, there is a line I’ of B through P and P” which
isin (w NP, P). Hence P” € (w NP, P), and consequently [ is in (w N P, P).

Finally, suppose P ¢ [ and suppose that P’ is the only point of [ which is adjacent
to P. Let R be a point not adjacent to P’. The line PP’ contains a point R’ for which
R ~ R.AsR € (rNP,P),so RR' C (sNP, P).LetT € RR\{R'} withT ¢ 7.
Then T € (x NP,P). Let T' € | with T ~ T'. Then T" # P’, since otherwise
R ~ P’.The line TT" is contained in (w NP, P); hence T € (w NP, P). Therefore
P'T'" =l is contained in {7 N P, P). O

Definition 5.25. (1) For P in P, put P* = {P’ € P | P’ ~ P}. Then P~ is the
union of all lines of B through P.

(2) A tangent to S at P € P is any line [ through P such that either [ € B or
InP={P}.

(3) The union of all tangents to S at P is the tangent set of S at P and is denoted by
S(P). The relation between S(P) and P is that PX = P N S(P).

(4) A line I of PG(d, q) is a secant of S if [ intersects P in at least two points but is
not a member of B.

Lemma 5.26. For each P € P, the set (P+) C S(P).

Proof. 1t must be shown that, for each line [ through P in <PJ->, either [ € B or
[ intersects P exactly in P. So suppose that P € [ ¢ B,l C (P1). First, let [
be a line of B through P and let /> be a second tangent to S at P for which the
plane m = (I1,l2) contains [. If [ were not a tangent at P it would contain some
point P’, where P # P’ € 'P. There would be a unique line m € B through P’
and intersecting /1 in P;, with P; # P. As m is contained in 7, so m meets /5 in
a point Py, with P, # P. Then P, P, € l5 implies lo € B, since o is a tangent to
S containing at least two points of S. But then [ and [y are two lines of S through
P intersecting m, contradicting P ¢ P’ and the assumption that S is a Shult space.
Hence [ must be a tangent.

Now, suppose there is an integer k such that (P1) is generated by k lines
I1,1a,...,1 of S through P. Let 7 = (I Ulo U---U1L), i = 2,3,..., k. From
the first case, 7(2) € S(P). Now use induction on i. Assume 7() C S(P), and let
I be some line of 7(*+1) through P. Take [ # l;4, and | ¢ 7(*). Then the plane
7 = (I,1;41) intersects 7(") in a line I’. By the induction hypothesis, I’ is tangent to
S at P, so that m = (I’,1;11) satisfies the hypothesis of the first case. Hence [ is a
tangent to S at P, and it follows that 7(+1) C S(P). O

Lemma 5.27. For any point P in P, the set (P+) # PG(d, q).

Proof. 1f (P+) = PG(d, q), then, by Lemma 5.26, S(P) = PG(d, ¢). But then P is
adjacent to all points of S, and so S is degenerate, a contradiction. a

Lemma 5.28. The dimension of (P~) is independent of P in P.
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Proof. If P # P', with P, P’ € P, then it must be shown that (P1) N (P'1) is a
hyperplane in (P1). As (P+ N P'*t)  (P+) N (P'") and, since S is a Shult space,
so P and P+ N P'* generate (P1). Hence (P+) N (P'*) is a hyperplane of (P1),
or (PH)y N (P'*) = (PH). If (P1) = (P+) N (P'*), then (P'+) C (PL) C S(P),
contradicting that P £ P’. Consequently, (P1) N (P't) is a hyperplane of (P).
Analogously, (P1)N(P'*) is a hyperplane of (P'+). It follows that (P+) and (P'+)
have the same dimension.

Next, let P ~ P’ with P, P’ distinct points of P. By Lemma 5.23, there is a
point 7" in S such that T ¢ P and T' ¢ P’'. Now, from above, diim(7+) = dim(P+)
and dim(7T+) = dim(P’+). Hence dim(P~+) = dim(P'*). O

Lemma 5.29. The point P in P is the unique point of S adjacent to all points of P~.

Proof. Let P’ € P\{P} be adjacent to all points of P1; so P’ € PL. Since S is
a Shult space, all points of the line PP’ are adjacent to all points of P. Now take
apoint T € P\PL. Since (P+) C S(P), we have T ¢ (P1). There is a line m
through 7 intersecting PP’ in a point P”, and so (P"*) contains (P1) properly.
This contradicts Lemma 5.28. O

Lemma 5.30. For each P in P, the subspace (P+) is a hyperplane of PG(d, q).

Proof. Consider a point P in P\(P1). By Lemma 5.24, (P, P') N S is a Shult
space §’. Assume that S’ is degenerate with radical R". If R € R/, then R is adjacent
to all points of P+, By Lemma 5.29, R = P. Hence P’ ~ P, a contradiction.
Consequently S’ is non-degenerate. Now assume that (P+, P') # PG(d, ¢), and let
P" € PG(d, q)\(P+, P'). Consider a point T in S’, with T' ~ P". If T is contained
int+1lines of S and ' + 1 lines of &', then t > ¢’ + 1. But P is contained in exactly
t+1lines of S’. Hence t = ', contradicting ¢t > t'. Therefore (P+, P') = PG(d, q),
whence (P1) is a hyperplane of PG(d, q). O

Lemma 5.31. The hyperplane (P+), for P in P, is the tangent set S(P) of S at P.

Proof. From Lemmas 5.26 and 5.30, (P1) is a hyperplane contained in S(P). If
equality did not hold, there would be some tangent [ at P not in (P1).

Let /; be a line of S through P and let II; be the plane (I,11). If there were a
point P’ € I, NP with P’ ¢ [, there would be a line m of B through P’ meeting
l1 in a point other than P. But m would be in II; and hence would meet [ in a point
of P other than P, an impossibility. Hence each line of Il through P is a tangent of
SatP

Let l5 be a line of S through P, with Iy # [1. If m, with m # [y, is a line of
II, through P, then, by the previous paragraph, each line of (I, m) through P is a
tangent of S at P. Hence each line of II3 = (I,11, l2) through P is a tangent of S at
P.

Let I3 be a line of S through P, with I3 not in the plane (I, lo). If m/, with m/
not in the plane (1, [5), is a line of I3 through P, then, by the previous paragraph,
each line of (I3, m’) through P is a tangent of S at P. Hence each line of the space
11y = (l,13,1s,13) through P is a tangent of S at P.
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Continuing in this way shows that each line of (P+,1) = PG(d, q) through P is
a tangent of S at P. Consequently, P belongs to the radical of S, a contradiction as

S is non-degenerate.
The conclusion is that (P+) = S(P). O

The tangent set S(P) of S at P, for P in P, is also called the tangent hyperplane
of S at P.

Lemma 5.32. Let | be a secant of S containing three distinct points P, A, A" of P.
Then the perspectivity o of PG(d, q) with centre P and axis S(P) mapping A onto
A’ leaves P invariant.

Proof. The map o fixes all points of S(P) and thus fixes PL. Let P’ € P\ P+. First,
suppose that P’ is not on [ and let 7 be the plane (P, A, P’). If m = (A, P’), then m
intersects S(P) at a point P”, fixed by 0. Hence mo = (A’, P").

If m is a line of S, then P € P and so the tangent (P, P"’) is a line of S. Thus
the plane (P, A, P") =  is in the tangent hyperplane S(P"). Hence, since A’ € ,
it follows that A’ ~ P”, that mo is a line of S, and that P’¢ is a point of S.

If m is not a line of S, suppose there is a point D € P\S(P) with D € AtnP'+.
The argument above, with D in the role of P’, shows that Do € P. Then, with D
and Do playing the roles of A and A’, it follows that P’c € P. On the other hand,
suppose A+ N P C S(P). Consider a line [; of B containing P, and let P; be
defined by P, € [; and A ~ P; ~ P’. By Lemma 5.23, there is a point 7' € P with
T o Pand T # P;. The line of 3 through 7" which is concurrent with [; is denoted
by m1.Let D, D' be definedby D, D’ € my and A ~ D, D' ~ P’. Then D, D' are
distinct points of P\S(P). Repeated applications of the argument above show that
Do, D'c, and finally P’ are all in P.

Secondly, suppose P’ is on [, and use the fact that, if D is any point of P not on
[, then Do € P. It follows readily that P'o € P. ]

Lemma 5.33. If A, B, C are three collinear, distinct points of P, then the intersec-
tions S(A) NS(B), S(B)NS(C), S(C)NS(A) coincide.

Proof. Tt is shown that S(A) N S(B) C S(C).

First, suppose that A, B,C are on a line [ of S. Let P € S(A) N S(B). If
PeP\l,then P~ Aand P ~ B,andso P ~ C.If P € [, then P € §(C). Now
let P ¢ P. Suppose that PC'is a secant of S, and let C’ € PCN'P with C' # C’. The
plane (A, P, B) is in S(A); hence AC’ € B. Analogously, BC’' € B. Consequently,
C ~ (', a contradiction. So PC'is a tangent of S at C.

Secondly, suppose that A, B, C' are on a secant [ of S. Let P € S(A) N S(B).
If P € P,then P ~ A and P ~ B, and so the line AB is in S(P). Hence P ~ C
and so P € S(C). Now let P ¢ P, and suppose that P ¢ S(C). Then there is a
second point C’ of P on the line PC'. Consider the perspectivity o with centre A and
axis S(A) mapping C onto B. By Lemma 5.32, Po = P. This perspectivity o fixes
P € S(A) and so o maps the line PC' onto the line PB. Hence C’c is a point of
PB\{B} on P, a contradiction since P € S(B). Consequently, P € S(C). Hence
S(A)NS(B) C S(O).
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Analogously, S(A) N S(C) € S(B) and S(B) N S(C) C S(A). Therefore
S(A)NS(B),S(B)NS(C), and S(C) N S(A) coincide. O

Lemma 5.34. All secant lines contain the same number of points of S.

Proof. Let | and I’ be secant lines of S. First, suppose that [ and !’ have a point
P of P in common, and let m be any secant line through P. If some m contains
more than two points in P, consider, by Lemma 5.32, the non-trivial group G of
all perspectivities with centre P and axis S(P) leaving P invariant. The group G is
regular on the set of points of m in P other than P. Hence each secant through P
has 1 + |G| points of P, so that [ and !’ have the same number of points of S. If no
m is incident with more than two points of P, then [ and [’ contain two points of S.
Secondly, suppose [ and I’ do not have any point of P in common, and choose
points P and P’ of Ponland!’. If P o P’, then PP’ is a secant, and so meets P in
the same number of points as do [ and I/, by the above. If P ~ P’, then, by Lemma
5.23, there is a point 7" in S such that P ¢ T' 4 P’. Now apply the above argument
to the secants [, PT, TP’ l'. ]

Definition 5.35. (1) For a point P of PG(d, q), the collar Sp of S for P is the set
of all points P’ of S such that P = P’ or the line (P, P’} is a tangent to S at P.
For example, if P € P, then Sp is just PLIfP ¢ P, the collar Sp is the set of
points P’ of P such that (P, P’y NP = {P’'}.

(2) For all P € PG(d, q), the polar P of P with respect to S is the subspace of
PG(d, q) generated by the collar Sp. So, if P € P, then P( = (P+) = S(P).

Lemma 5.36. For any point P of PG(d, q), let Py and P» be distinct points of Sp.
Then P N <P1,P2> C Sp.

Proof. Suppose P’ € PN (P, ), Py # P’ # P,. Since P € S(P;) NS(), by
Lemma 5.33 the point P is also in S(P’) and hence P’ € Sp. O

Lemma 5.37. Each line | of S intersects the collar Sp, with P € PG(d, q), in ex-
actly one point, unless each point of l is in Sp.

Proof. When P € P, the result is immediate. So suppose that P ¢ P and put
m = (I, P). If ¥ NP = [, then each point of [ is in Sp. So suppose P’ € = N P,
P ¢l Let (P,P')Nnl={T};then T ¢ P'. Hence P’ is adjacent to a unique point
T’ of I. By Lemma 5.31, each line of 7 through 7" is tangent to S at 7", and hence
T’ € Sp. Also, by Lemma 5.36, T" is the unique point of [ in Sp unless each point
of [ is in Sp. O

Lemma 5.38. Either P{ = (Sp) is a hyperplane or P{ = PG(d, q).

Proof. Again assume that P ¢ P. If the assertion is false for some point P, then
P( is contained in some (d — 2)-space m of PG(d, ¢). By Lemma 5.37, each line
[ of B intersects 7. Therefore, if P’ is a point of S not in 7, then Spr = P’ s
contained in (, P’). As (Sp/) is a hyperplane, so (m, P’') = (Sp/) = Spr. Any line
I’ of S through P’ must contain another point P of P not in 7. Then it follows that
S(P") = (m, Py = (z, P") = S(P"). This contradicts Lemma 5.29. O
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Lemma 5.39. If P is a hyperplane, then Sp = P N PC_.

Proof. By definition, Sp C P N P(. Suppose there were a point P’ of P N P¢ not
in Sp. Then either some line [ of S through P’ does not lie in P, or P{ = S(P’).
In the first case, [ intersects P¢ exactly in P’. As P’ ¢ Sp, so [ is on no point of Sp,
contradicting Lemma 5.37. In the second case, as P’ ¢ Sp, each line of B through
P’ has exactly one point in Sp. So on any line of B through P’ there is a point
P" # P' of S(P')\Sp. By Lemma 5.29, S(P’") # S(P"); so there is a line of B
through P” but not in P{ = S(P’), leading back to the first case. O

Lemma 5.40. Let P be a point of PG(d, q) and let A, A’ be distinct points of P\{ P}
collinear with P but not in P(. Then the perspectivity o of PG(d, q) with centre P
and axis P{ mapping A onto A’ leaves P invariant.

Proof. Since A, A’ ¢ P(,so P( isahyperplane. First, let P € P. Since A, A’ ¢ P(,
the line (P, A, A’) is a secant of S. In this case, the result is known by Lemma 5.32.
Now let P ¢ P. Note that o fixes all points of PN P¢. Let P’ be a point of P\ P¢ not
on (A, A’). Let 7 be the plane (P, A, P’) and m the line (A, P"). If mNP¢ = {P"},
then mo = (A’, P").

If m is a line of S, then P € PN P¢ = Sp by Lemma 5.39. So (P, P) and m,
and hence 7, are in the tangent hyperplane S(P"). Then A’ € 7 C S(P"), showing
that mo = (A’, P") € B; thatis, P'o € P.

If m is not a line of S, suppose there is a point D € P\ P¢ with D € A+ N P+,
The previous argument, with D in the role of P’, shows that Do € P. Then, with
D and Do playing the roles of A and A’, it follows that P'c € P. On the other
hand, suppose A+ N P+ C Sp.Let T € A+ N P'*. Now assume that each point of
A+ N P+ is adjacent to 7. Since each line of B through P’ has a point in common
with Sp, it follows that 7" is adjacent to all points of P’ contradicting Lemma 5.29.
Hence there exists a point 7" € AL N P4 with T £ T'. Let D € (A, T)\{A, T},
and let D' € (P",T") with D ~ D'. If D’ = P’, then A ~ P’, a contradiction. If
D =T',then T ~ T’, a contradiction. However, D # D’, which means that D and
D’ are distinct points of P\ P(. Repeating the argument above shows that Do, D',
and P’c are all in P.

Finally, suppose that P’ is on (A, A"}, and use the fact that, if D is any point of
P noton (A, A'), then P'c € P. It follows readily that P'o € P. O

By Lemma 5.34, all secant lines of S contain the same number « of points of S;
note that o > 2.

Lemma 5.41. If a # 2, there is no point in all tangent hyperplanes of S.

Proof. Suppose that P belongs to all tangent hyperplanes of S. If P € P, then
P = P+, contradicting the non-degeneracy of S; so P ¢ P. Let P, P" € P, with
P’ o P".Then the plane 7 = (P, P’, P") contains no line of S, since otherwise
at least one of the tangents (P, P’), (P, P"") contains at least two distinct points of
S. Since P’ o« P”,sow ¢ S(P'); hence (P, P’) is the only line of 7 which is
tangent to S at P’. Counting the points of 7 N P on the lines of 7 through P’ gives
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q¢(a — 1) 4 1. For each point T € 7 N P, the line (T, P) is a tangent of S at T’;
so the number of points in 7 N P is at most the number of lines of 7 through P.
Consequently, g(a — 1) + 1 < ¢+ 1. Hence o = 2. O

Theorem 5.42. When o« = 2, then S is formed by the points and lines of a non-
singular quadric of PG(d, q).

Proof. Each line of PG(d, ¢) contains 0, 1,2, or ¢ + 1 points of S. Since the union
of all tangent lines at any point of P is a hyperplane, P is a non-singular quadratic
set in the sense of Section 1.10. By Theorem 1.97, P is a non-singular quadric of
PG(d, q), and all lines in B are lines of the quadric P. Conversely, let [ be a line of
the quadric P. Since [ contains more than o = 2 points of P, it is a line of 5. Hence
B is the set of all lines of the quadric P. ad

From now on, it is assumed that & > 2. By Lemma 5.41, there is no point in all
tangent hyperplanes of S.

Lemma 5.43. [f S has rank at least three, then P( is a hyperplane for any P in
PG(d, q).

Proof. Suppose that S contains a plane 7. If P € P, then P( is the hyperplane
(Pt) = S(P). By way of contradiction, let P ¢ P with P( = PG(d,q). By
Lemma 5.37, each line of 7 has at least one point in Sp. Hence consider in 7 two
points P; and P, of Sp. By Lemma 5.36, the line (P, P,) is contained in Sp. Hence
Sp contains at least one line of 5. Also, the set Sp, together with the lines of S in
Sp, forms a projective Shult space S’ with ambient space (Sp) = P¢ = PG(d, q).
The Shult space S’ cannot be degenerate, since otherwise Sp would be contained in
a tangent hyperplane of S, contradicting that (Sp) = PG(d, ¢). Consequently, the
lines of S’ through T € Sp generate a hyperplane 7’ of PG(d, ¢). Hence /' = (T'+),
and so the tangent hyperplanes of S’ are tangent hyperplanes of S.

Let T' € Sp, and consider the secant lines of S’ through T'. As the tangent
hyperplanes S’(T") and S(T") coincide, these secant lines are also the secant lines of
S through T'. Hence, by Lemma 5.36, all points of PP non-adjacent to 7" are in Sp.
Next, let T/ € T+\{T'}. By Lemma 5.29, there is a point 7" in 7'+ which is not
adjacent to 7. The line (7", T") contains ¢ points not adjacent to T'. Hence these ¢
points are in Sp. By Lemma 5.36, T” is also in Sp. Consequently, Sp = P. So P is
in all tangent hyperplanes of S, contradicting Lemma 5.41. a

The next few lemmas show that Lemma 5.43 also holds in the rank 2 case, that
is, in the case of a generalised quadrangle.

Lemma 5.44. If S is a generalised quadrangle, then o = (t/q? %) + 1 and d = 3
or4.

Proof. If S is a generalised quadrangle, then S has order (g, t). Since S is non-
degenerate, so d > 3. The secant lines through a point P of P are the ¢?~! lines of
PG(d, q) through P which do not lie in the tangent hyperplane S(P). Hence the total
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number of points of S is (a—1)¢?¢~ 14| P+|. By Theorem 5.12, |P| = (1+q)(1+qt).
Hence o = (t/q%3) + 1. By Theorem 5.14, ¢ < ¢%,so that 2 < o < (¢%/¢% )+ 1;
this implies that d = 3 or d = 4. a

Definition 5.45. A subset C of P is called linearly closed in P or S if, for all points
P, P'e C, with P # P/, the intersection (P, P') NP is contained in C. Thus any sub-
set D of P generates a linear closure D in P or S.

Lemma 5.46. Let S be a generalised quadrangle with ambient space PG(3, q). If
Py, P>, P3 € P are non-collinear in PG(3,q) and D = {Py, P, Ps}, then the
linear closure D =P N (Py, Py, Ps).

Proof. Let S have order (g, t). If the plane 7 = (P;, P>, P3) contains a line of S,
then PN (P, Py, P3) consists of ¢+ 1 distinct concurrent lines of /5. In this case, the
lemma follows immediately.

Hence suppose 7 contains no lines of 5. As d = 3, by Lemma 5.44, any secant
line intersects P in exactly ¢+ 1 points. Take a point P, with P # Py, on (Py, P2)NP.
The t+1 secant lines (P, T'), where T is a point of PN (Py, Ps3), intersect P in points
which are in the linear closure D. As each of these lines (P, T) intersects P in t + 1
points, there are t(t + 1) + 1 points of P on these lines. Hence |[D| > 2 +t + 1.

If Lemma 5.46 were false, there would be a point 7" in (P N )\ D. Then every
line of 7 through 7" contains at most one point of D; so there are at least t? + ¢ + 1
lines of 7 through 7”. Hence t2+t+1<q+1,andsot? < q. By Theorem 5.14,
it follows that ¢ = 1. Consequently, « = 2, a contradiction. The conclusion is that
D =PnN (P, Py, Ps). O

Lemma 5.47. Let S be a generalised quadrangle with ambient space PG(4, q). If
Py, Py, Ps € P are non-collinear in PG(4,q) and D = {Py, P, Ps}, then the
linear closure D = P N (Py, Pa, Ps).

Proof. Let S have order (g, t). As before, suppose that 7 = (P, P>, P3) contains
no line of S. Fix a point P € P N« and a line [ € B incident with P. Also, let
7' = (Py, P2, P3,1). By Lemma 5.24, 7/ N S is a Shult space with ambient space 7’.
For 7’ N S there are the following possibilities:

(a) 7 NS is non-degenerate and then, by Theorem 5.20, 7/ N S is a projective
subquadrangle of S;
(b) 7’ NS is degenerate, and the lines of 7’ NS contain a distinguished point of 7.

If (a) holds, then, by Lemma 5.46, P N 7 is the linear closure of D in S. If (b) holds,
two cases are possible.

(1) There exists a line I’ in 3 through a point of 7 such that (7, !’) intersects S in
a subquadrangle. Then Lemma 5.46 still applies.

(ii) For each line I’ of B intersecting m, the lines of (mr,!’) NS all contain a point
T; of I not in 7. Here the hyperplane (r,{’) is the tangent hyperplane of S at T;.
Hence 7 contains 1 + ¢ points of P: these are Py, Ps,..., P41, and P; ~ T; for
all 7 and j. Further, by the definition of the points 77, the lines of S through a given
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point P; are the lines (P}, T;). Hence there are exactly 1 + ¢ points T;. This means S
has two disjoint sets { P; }, {T;} of 1+ ¢ pairwise-non-adjacent points with P; ~ T3,
0<i,7<tUT e (P;,T;)Nn (P, Ty), with j # j" and i # 7', then a triangle
P;T;;T' is obtained in S, a contradiction, since S is a generalised quadrangle. Hence
there are exactly (¢ — 1)(t + 1)? + 2(t + 1) points of S on the lines (P;, T;). Since

(@=D(E+1)°+2(t+1) <[P] = (¢ +1)(qt +1),

so (t —q)t(¢ — 1) < 0, whence t < ¢. Then @ = (t/q) + 1 < 2, contradicting that
a > 2. a

Lemma 5.48. Let { Py, Ps, ..., Py} be a set of points of the generalised quadrangle
S. Then the linear closure of {Py, P, ..., Py} inSis PN (P, Pa,..., Py).

Proof. First note that if ¢ = 2 then, since o > 2, any line of PG(d, ¢) containing at
least two points of P is entirely contained in P. Hence P is a subspace of PG(d, q)
and P = PG(d, ¢). Consequently, in this case, the lemma follows.

Now let ¢ > 2. The result is immediate when £ = 1 or £ = 2. By Lemmas
5.46 and 5.47, the result also holds if (P;, Ps, ..., Py) is a plane. Further, it may be
assumed that the points P; are linearly independent in PG(d, ¢). Now apply induc-
tion; so suppose the result is true for kK — 1 points P, Po,..., Pr—1, 3 < k — 1.
For D = {Py, Ps,..., P}, with P, € P\(P1, Ps,..., Py,_1), indices can be cho-
sen so that (P, Pa, ..., Py_1) ¢ S(Py). Putl;, = (P, P;), i =2,3,...,k,and let
7 be any plane through [; contained in (lo,l3,...,lx) = (P, P, ..., Py). Then 7
intersects (l2, 13, ...,lx—1) in aline [.

If it is shown that P N (I, 1) C D, the desired result follows immediately. Sup-
pose [ contains at least two points of P. By the induction hypothesis, the points of P
onlareallin {Py, Ps,..., P._1}. Lemmas 5.46 and 5.47 then show that P N (I, )
is in D. Now suppose that [ is a tangent line whose points are not all in P. If (I, )
contains no point of PP not on [y, there is nothing more to show.

So suppose P is a point of P N (I, ) but not on lj. Consider the plane 7’ gener-
ated by [ and a secant through P, in the space (lo,ls, ..., lx_1); such a secant exists
since S(Py) does not contain {Py, Pa, ..., P;_1). This plane 7’ is not in the tangent
hyperplane S(P;); so [ is the unique tangent at P; in 7. Hence there are two secants
mq,ms in 7’ and through P;. Each of the planes (I, m1), (I, m2) is notin S(P)
and hence contains exactly one tangent at P;. Consider in (I, m1) a secant m, with
m # lg, such that the plane (m, P) intersects (I, m2) in a secant m’. Note that m
exists, because (I, m1) has at least four lines through P;. By the induction hypothe-

sis, the points of P on m; and mq belong to { Py, Ps, ..., Py_1}. Hence, by Lemmas
5.46 and 5.47, the points of P on m and m’ belong to D. But, as P € (m,m/'), again
by Lemmas 5.46 and 5.47, P € D. O

Lemma 5.49. If S is a generalised quadrangle, then P( is a hyperplane for any P
in PG(d, q).

Proof. If P € P, then P( is the hyperplane (P+) = S(P). So suppose P ¢ P.
Consider the intersection P¢ N P. By Lemmas 5.36 and 5.48, all points of P{ NP
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are in Sp, implying that Sp = P¢{NP. If P were not a hyperplane, then, by Lemma
5.38, P¢ = PG(d, q), implying Sp = P. Hence P belongs to all hyperplanes of S,
contradicting Lemma 5.41. Therefore P( is a hyperplane. a

Theorem 5.50. (i) The mapping P — P( is a polarity of PG(d, q);
(i) P is the set of all self-conjugate points of (;
(iil) B consists of all lines | of PG(d, q) such that | C I¢.

Proof. First, it is shown that P — P( defines a bijection from the set of all points
of PG(d, q) onto the set of all hyperplanes of PG(d, ¢). By Lemmas 5.43 and 5.49,
P( is a hyperplane for any P € PG(d, ¢). Assume that P # P’ and P{ = P’(. Let
X € (P, PYandY € Sp = PNP({ =PNP'( = Sp/,withY # X, P, P’. The lines
(Y, P) and (Y, P’} are tangents of S; hence the line (Y, X) is also a tangent of S. If
Y = PandY # X, then the line (Y, X) = (Y, P’} is a tangent of S. Analogously,
ifY = P'and Y # X, then the line (Y, X) = (Y, P) is a tangent of S. Hence
Sp C Sx forany X € (P, P'). Consequently, P( = (Sp) C (Sx) = X(; so
P¢ = X( since P¢ and X are hyperplanes. Let P € P\ P(; then P # P" = P’.
Let X be the common point of (P, P’) and the hyperplane P”¢. Then X = P”,
or (X, P") is a tangent; so P” € X(. Hence P € P{ = X(, a contradiction. It
follows that P # P’ implies that P{ # P’(. Since PG(d, ¢) is finite, so P — P(
defines a bijection of the set of all points of PG(d, ¢) onto the set of all hyperplanes
of PG(d, q).

Next, suppose that P’ € P(, with P # P’. Now, let A € P\ P¢, and also let
A’ € (P,A)NP with A’ # P and A’ # A. By Lemma 5.40, the perspectivity o with
centre P and axis P¢ mapping A onto A’ leaves P invariant. Since P’ is on the axis
of o, s0 P'c = P’; hence P'(oc = P’(. From above, P{ # P’(; so P’( contains
the centre P of . Therefore it has been shown that P’ € P( implies that P € P'(.
This means that ¢ is a polarity of PG(d, q).

Let 8’ be the Shult space defined by the polarity ¢. The point set of S’ is denoted
by P’ and the line set of S’ by B’. If P € P, then P € P( and hence P € P’; so
P C P’. Also B C B'. Assume that P’ € P’\P and let T, T” be distinct points of
Spr.

First, suppose that the plane (P, T,T’) = 7 contains no lines of 3. Then the
plane 7 ¢ S(T) since T 4 T"; so (P’, T is the only line of 7 tangentto S at T'. A
count of the points of 7 N P on the lines of 7 through T" gives ¢(«w — 1) + 1. Since
P’ € P/, the lines (P, T) and (P’,T') are contained in P’(; so, for each point
A € TN P, the line (P, A) is contained in P’¢. Consequently, (P’, A) is tangent to
S at A. So the number of points in 7 NP is at most the number of lines of 7 through
P’. Therefore g(aw — 1) + 1 < ¢ + 1, whence @ = 2, a contradiction.

Secondly, suppose that the plane 7 contains a line [ of B. Since (P’,T) and
(P’,T') are tangents of S, it follows that | = (7", 7”). Hence any two points of Sp
are adjacent in S. By Lemma 5.36, T+ O Sp,. Hence T¢ O P'¢ and so T¢ = P'¢,
giving T = P’, a contradiction. Thus P’ = P. Next, let !’ € B'. If D, D’ are distinct
points of I/, then D’ belongs to the tangent hyperplane D¢ of S’ at D. As D’ € D¢
and D, D’ € P, the line I’ = (D, D’) belongs to B. Therefore B = B’. Hence
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S = &', which means that P is the set of all self-conjugate points of the polarity ¢
and that 5 consists of all lines [ with [ C [(. a

Theorem 5.51. Let S be a non-degenerate projective Shult space with ambient space
PG(d, q). Then one of the following holds:

(a) S is formed by the points and lines of a non-singular quadric of PG(d, q);

(b) q is a square and S is formed by the points and lines of a non-singular Hermitian
variety of PG(d, q);

(¢) d is odd, the points of S are the points of PG(d, q), and the lines of S are the
lines of PG(d, q) in the self-polar (d — 1) /2-dimensional spaces with respect to
some null polarity ¢ of PG(d, q).

Proof. If o = 2, then, by Theorem 5.42, it is case (a). If a« > 2, then, by Theorem
5.50, it is one of the cases (b), (c). a

Theorem 5.52. Let S be a projective Shult space with ambient space PG(d, q). Then
S is one of the following types.

(a) S is formed by the points and the lines of PG(d, q),d > 1. The radical R of S is
PG(d, q).

(b) The point set of S is the union of k spaces PG(r+1, q) through a PG(r, q), where
k > 1 andr > 0. The line set of S is the set of all lines in these (r + 1)-spaces.
The radical R of S is PG(r, q).

(¢) S is formed by the points and lines of a quadric Q of projective index at least one
of PG(d, q), d > 3. The radical R of S is the space of all singular points of Q.

(d) The order q is a square and S is formed by the points and lines of a Hermitian
variety U of PG(d, q), d > 3. The radical R of S is the space of all singular
points of U.

(e) The points of S are the points of PG(d, q), d > 3. There are skew subspaces 11,
andly_,_1, withr > —1, and d—r —1 odd and at least three; the lines of S are
all the lines of PG(d, q) in the (r + 2)-spaces joining 11, to the lines of 14—, _1
in the self-polar (d — r — 2)/2-spaces of some null polarity ¢ in 11y_,_1. The
radical R of § is 11,.

Proof. First, let S be non-degenerate. By Theorem 5.51, it is either case (c) with
R = 0, or case (d) with R = 0, or case (e) with R = 0.

Next, let S be degenerate with radical R and let R = PG(d, ¢). Then case (a)
holds.

Now, let S be degenerate with radical R = I, and —1 < r < d.LetIl;_,_1 bea
subspace of PG(d, ¢) skew to R. By Theorem 5.22, II;_,._1 NS is a non-degenerate
Shult space, the point set of S is the union of all lines joining every point of R to
every point of Il;_,._1 N S, and two points of P\R are adjacent if and only if their
projections from R onto I1;_,._; are adjacent. If II;_,._1 N S contains at least one
line, then I1;_,_; NS is a non-degenerate projective Shult space with ambient space
I14_,_1. In this case, by Theorem 5.51, one of (c), (d), (e) with R # @ occurs.

Finally, suppose that II;_,._1 N S contains no line; this gives case (b). O
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Definition 5.53. Consider a pair S = (P, B), where P is a non-empty point set of
PG(d, q) and B is a (possibly empty) line set of PG(d, q). If B # (), then let P be
the union of all lines of B.

(1) The subspace 11 of PG(d, ¢) generated by all points of P is the ambient space
of S.
(2) A tangent to S at P € P is any line [ through P such that either [ € B or

INnP={P}.
(3) The union of all tangents to S at P is the tangent set of S at P, and is denoted
S(P).

(4) The set S is a semi-quadratic set of PG(d, q), d > 2, if PG(d, q) is the ambient
space of S and if, for each P € P, the tangent set S(P) is either a hyperplane or
PG(d, q).

(5) If S(P) = PG(d, q), then P is a singular point of S.

(6) The set of all singular points of S is the radical R of S.

(7) A semi-quadratic set S of PG(d, q) is a semi-ovaloid if B = (; in this case
R =0.

Theorem 5.54. The pair S = (P, B) is a semi-quadratic set of PG(d, q), d > 2, if
and only if one of the following holds.

(a) S is of type (a), (¢), (d), (e) in the statement of Theorem 5.52. In each of these
cases the radical of the Shult space S coincides with the radical of the semi-
quadratic set S.

(b") (1) The point set of S is the union of k spaces 11,1 through a I1,., where k > 1
andd —3>r > —1.
(2) The line set of S is the set of all lines in these (r + 1)-spaces.
Q) If 14— —q is skew to 11,., then P N 1l4_,_1 is a semi-ovaloid of 11—, 1.
(4) The radical R of S is 11,..

Proof. Let S = (P, B) be a semi-quadratic set of PG(d, ¢), d > 2. It is shown that
S is a Shult space. Let P € P,l € B, and P ¢ [. Since the tangent set S(P) is a
hyperplane or PG(d, q) itself, so [N S(P)| = 1lorl C S(P). If P € INS(P),
then (P, P’} is a line of . Hence P is adjacent to one point or to all points of [. It
follows that S is a Shult space.

First, assume that 5 # (). Then S is a projective Shult space with ambient space
PG(d, q). So one of the cases (a) to (e) in the statement of Theorem 5.52 occurs.
Conversely, each Shult space of type (a), (c), (d), or (e) is a semi-quadratic set. Now
consider a Shult space of type (b), and let II;_,_; be skew to I, » > 0. Then &
is a semi-quadratic set if and only if P N II;_,_1 is a semi-ovaloid of 1I;_,_; with
d —r —1 > 2.1In each of these cases the radical of the Shult space S coincides with
the radical of the semi-quadratic set S.

Secondly, assume that 5 = (). Then the semi-quadratic set S is a semi-ovaloid of
PG(d, q). This gives case (b’) with rr = —1. O

Let S = (P,0) be a semi-ovaloid of PG(d,q),d > 2. Any tangent of S has
exactly one point in common with S, and the tangent set S(P) of S at P € P is
always a hyperplane. In the next theorem all semi-ovaloids are classified.
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Theorem 5.55. Let S = (P, ) be a semi-ovaloid of PG(d, q), then there are only
two possibilities.

(@d=2andq+1<|P| <qy/q+ 1L If|P| = q+1,then P is a(q+ 1)-arc of
PG(2,q); if |P| = q\/q + 1, then P is a Hermitian arc of PG(2, q).

(b)d = 3 and |P| = ¢°> + 1. For q > 2, the set P is an ovaloid of PG (3, q); for
q = 2, the set P is an elliptic quadric of PG(3,2).

Proof. Let S = (P, ) be a semi-ovaloid of PG(2, q). Let P € P and let [ be the
tangent of S at P. If the line m contains P and m # [, then |m N P| > 1. Counting
the points of P on the lines through P gives |P| > ¢ + 1. If |P| = ¢ + 1, then each
non-tangent contains exactly zero or two points of P, whence P is a (¢ + 1)-arc of
PG(2, q). Conversely, any (g + 1)-arc of PG(2, ¢) is a semi-ovaloid of PG(2, q).
Next, let S = (P, D) be a semi-ovaloid of PG(d, q),d > 2. Let [ be a tangent of
S at P € P.If 7 is a plane through [ which does not belong to the tangent set S(P),
then 7 N S is a semi-ovaloid of 7. Counting the points of S in the planes through !
gives
Pl=>(Pna|-1)+1>q-¢" 2 +1=¢""+1,
Let S = (P, D) be a semi-ovaloid of PG(d, q),d > 2. From the first part of the
proof,
|P| >q% ' + 1. (5.3)

LetP ={P, Ps,...,P,} and PG(d, q)\P = {T1,T>, ..., T3}, with

atB=(¢""-1)/(g—1)

Further, let ¢; be the number of tangents of S through 73,7 = 1,2, ..., 5. Now, count
in different ways the number of ordered pairs (T}, P;), where (T}, P;) is a tangent of
S; this gives

B d—2
Y ti=aqd q". (5.4)
i=1 k=0

Next, count in two ways the number of ordered triples (75, P;, P;/), with P; # Pj
and (T;, P;), (T;, Pj/) tangents to S. Hence

B d—2
D otilti—1) =ala—1)) q". (5.5)
i=1 k=0
From (5.4) and (5.5), it follows that
8 d—2
Zt? =ala+q— 1)qu.
i=1 k=0

With 8t = Zle t;, the inequality 0 < Zle(f — t;)? simplifies to
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B B\ 2
By 0 (&) -
i=1 i=1

this implies that

d—2 d—2
Ba(a+q—1) qu —a?g? (Z qk> > 0.

k=0
As g = Zz:o q* — o, manipulation gives
(a—1)* < ¢ (5.6)
Next, let d = 2. From (5.3) and (5.6) it follows that
gt+1<a<q/q+ 1

If ¢ + 1 = q, then in the first part of the proof it was shown that P is a (¢ + 1)-arc.
Let o = q/q + 1. Then

sot; =t = (Zle ti)/B = aq/B = /g +1,i = 1,2,..., 3. From Section 12.3
of PGOFF2, the set of all tangents of S forms a dual Hermitian arc of PG(2, ¢), and
hence P is a Hermitian arc of PG(2, q).

Next, let d = 3. From (5.3) and (5.6), it follows that & = ¢ + 1. Any line !
through P; € P, but not in S(F;), contains at least one point of P\{P;}. Since there
are ¢? such lines [ through P; and |P\{P;}| = ¢, it follows that [ contains exactly
two points of P. Hence P is a (¢% + 1)-cap of PG(3,q). If ¢ > 2, then P is an
ovaloid; if ¢ = 2, then the 5-cap P is an elliptic quadric of PG(3, 2).

Finally, let d > 3; then (5.3) contradicts (5.6). a

Let S = (P, () be a semi-ovaloid of the plane PG(2, ¢). If P € P and all non-
tangents through P intersect P in more than two points, then S’ = (P\{P},0) is
still a semi-ovaloid of PG(2, ¢). In PG(2, 3), there is a class of semi-ovaloids with
six points: take the vertices of a quadrangle together with two of its diagonal points.

5.4 Lax and polarised embeddings of Shult spaces

Definition 5.56. (1) A Shult space S with point set P is laxly embedded in PG(d, K ),
d > 2,if, for P C PG(d, K), each line [ of S is a subset of a line " of PG(d, K),
and distinct lines [y, [ of S define distinct lines 1, I5 of PG(d, K).

(2) If 1 is the subspace of PG(d, K) generated by all points of P, then I is the
ambient space of S.



248 5 Embedded geometries

(3) A lax embedding is full if, in (1), I = I’ for each line [ of S. The embeddings
considered in Section 5.3 are full embeddings.

(4) The embeddings described in Theorem 5.51 are the natural embeddings of the
classical finite non-degenerate Shult spaces.

(5) A lax embedding in PG(d, ¢) of a Shult space S, with point set P, is weak or
polarised if, for any point P of S, the subspace generated by the set

A ={P" € 8| P is collinear with P}
meets P precisely in A.

Remark 5.57. If the non-degenerate Shult space S is isomorphic to the Shult space
arising from a non-singular parabolic quadric P,, in PG(n, ¢), n even and n > 4,
then S has two natural embeddings which are not projectively equivalent: the points
and lines of P,, and the points of PG(n—1, ¢) together with the lines of PG(n—1, q)
in the self-polar (n — 2)/2-dimensional spaces with respect to some null polarity ¢
of PG(n — 1, ¢q).

It can be shown that, for a non-degenerate Shult space S laxly embedded in
PG(d, q), (5) is equivalent to the following condition (5'):

(5") the set of all points of S collinear in S with any given point of S is contained in
a hyperplane of PG(d, ¢).

All full embeddings described in Theorem 5.52 are polarised and all full embed-
dings described in Theorem 5.51 satisfy conditions (5) and (5).

In what follows, ‘embedded in PG(d, K)’ means that PG(d, K) is the ambient
space.

The next three theorems contain the complete classification of all Shult spaces
weakly embedded in PG(d, q). However, proofs are not given. First, the universal
weak embedding of the generalised quadrangle YW(2) in PG(4, K) is described.

Let Py, Py, P3, Py, P5 be consecutive vertices of a proper pentagon in W(2). Let
K be any field and identify P;, ¢ € {1,2,3,4, 5}, with the point of PG(4, K') with
coordinates (0,...,0,1,0,...,0), where the 1 is in the i-th position. Identify the
unique point Q; 3 of W(2) on the line P, P, and different from both P; and P, 1,
with the point (0,...,0,1,1,0,...,0) of PG(4, K), where the 1’s are in the i-th and
the (¢ + 1)-th positions, and where subscripts are taken modulo 5. Finally, identify
the unique point R; of the line P; @, of WW(2) and different from both P; and @Q;, with
the point whose coordinates are all 0 except in the ¢-th position, where the coordinate
is —1, and in the positions ¢ — 2 and 7 + 2, where it takes the value 1; again subscripts
are taken modulo 5. It is an elementary exercise to check that this defines a weak
embedding of W(2) in PG(4, K). This embedding is the universal weak embedding
of W(2) inPG(4, K).

Theorem 5.58. Let S be a generalised quadrangle of order (s,t), s,t # 1, weakly
embedded in PG(d, q). Then either s is a prime power, ¥ is a subfield of F ; and S
is fully embedded in some subgeometry PG(d, s) of PG(d, q), or S is isomorphic to
W(2) and the weak embedding is the universal one in PG(4, q) with g odd.
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Theorem 5.59. Let S be a non-degenerate Shult space of rank at least three, all of
whose lines have size at least three. If S is weakly embedded in PG(d, q), then S is
fully embedded in some subgeometry PG(d, q") of PG(d, q), for some subfield F ,

of Fy.

Let S be a finite Shult space of rank at least three all of whose lines have size at
least three. Then the radical R of S together with the lines of S in R is the point-line
incidence structure of a projective space over some field F . Let the dimension of
R be denoted by 7(S), or r for short.

Definition 5.60. A Shult space is classical if it arises, up to isomorphism, from a
quadric, a Hermitian variety, or a null polarity.

Theorem 5.61. Let S be a classical Shult space with rank(S) = R and satisfy-
ing R—r > 4. If S is weakly embedded in PG(d, q), then there is a projective
space PG(d, q), d > d, containing PG(d, q) such that S is the projection from a
Hy gy,C PG(d, q) into PG(d, q) of a classical Shult space S which is fully em-

bedded in some subgeometry PG(d,q") of PG(d, q), for some subfield ¥y of F,.

Surprisingly, also for the weakest form of embeddings, the lax embeddings,
strong results are obtained. First, a lax embedding of the generalised quadrangle
U(3,4) arising from a non-singular Hermitian variety &/ in PG(3, 4) is described.

A double-six in PG(3, K), with K any field, is a set of 12 lines

a1 a2 a3z a4 as Gg
b1 by b3 by bs bg

such that each line meets only the five lines not in the same row or column. A double-
six lies on a unique non-singular cubic surface F, which contains 15 further lines.
Any non-singular cubic surface F of PG(3, K), with K an algebraically closed ex-
tension of K, contains exactly 27 lines. These 27 lines form exactly 36 double-sixes.
With the notation introduced above, there exists a unique polarity 5 of PG(3, K)
such that a;8 = b;, 7 = 1,2,...,6. As the other 15 lines of the corresponding cubic
surface are the lines ¢;; = (a;,b;) N (a;,b;), with i, = 1,2,...,6 and i # j, so
¢i; 8 = (a; Nbj, a; Nb;). For every double-six, any line [ of it together with the five
lines different from [ and concurrent with [, form a set of six lines every five of which
are linearly independent when regarded as six points on the Klein quadric.
Conversely, given five skew lines a1, as, as, a4, as with a transversal bg such that
each five of the six lines are linearly independent, then the six lines belong to a
unique double-six, and so belong to a unique, non-singular cubic surface. A double-
six and a cubic surface with 27 lines exist in PG(3, K') for every field K except
K = F, with ¢ = 2,3,5. Let F be a non-singular cubic surface of PG(3, K). If
P € F is on exactly three lines {1, l2,l3 of F, then P is an Eckardt point of F;
if F is non-singular these lines /1, [2, [3 belong to the tangent plane of F at P. A
tritangent plane is a plane containing three lines of F. If F has 27 lines, then F has
45 tritangent planes. A trihedral pair is a set of six tritangent planes divided into two
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sets, each set consisting of three planes pairwise intersecting in a line not belonging
to JF, such that the three planes of each set contain the same set of nine distinct lines
of F. If F contains 27 lines, then the 45 tritangent planes form 120 trihedral pairs.

Consider a non-singular cubic surface F in PG(3, K) and assume that F has
27 lines. Let 8’ = (P’,B’,T’) be the following incidence structure: the elements
of P’ are the 45 tritangent planes of F, the elements of B’ are the 27 lines of F,
a point 7 € P’ is incident with a line [ € B’ if | C 7. Then &’ is the unique
generalised quadrangle of order (4, 2); for the uniqueness, see Corollary 5.82. Let D
be one of the double-sixes contained in B and let 3 be the above polarity fixing D. If
P =P'B, B=Bj, and Iis symmetrised containment, then S = (P, B,1) is again
the unique generalised quadrangle of order (4, 2). This generalised quadrangle S is
contained in the dual surface F of F which also contains exactly 27 lines. If lines in
B are identified with their set of points, S is laxly embedded in PG(3, K).If P € P
and the three lines of S incident with P are contained in a common plane 7, then /3
is an Eckardt point of F.

If D is a double-six contained in B, then the 15 lines of B not contained in
D, together with the 15 points of P not on lines of D, form the unique gener-
alised quadrangle of order 2; for the uniqueness, see Theorem 5.73. In this way the
36 subquadrangles of order 2 of S are obtained. If P, P’ are non-collinear points
of S, then let {P,P'}* = {R,R,R"}, {R,R'}* = {P,P',P"} in S. Then
{PB,P'3,P"B,RB, R' B, R"j3} yields a trihedral pair of 5’. In this way the 120
trihedral pairs are obtained. If [, m, n are skew lines of B, then |{l,m,n}*| = 3 in
S, say {l,m,n}+ = {I',m/,n'}. So also any three skew lines of B are concurrent
with three skew lines of B’. In total, B’ admits 360 such configurations.

As already mentioned, S = (P, B,]I) is laxly embedded in PG(3, K'). Con-
versely, let S = (P, BB, 1) be any lax embedding in PG(3, K) of ¢(3,4); up to iso-
morphism, ¢/(3, 4) is the unique generalised quadrangle of order (4, 2). Let D be any
double-six contained in 3; then D consists of the 12 lines not belonging to a subquad-
rangle of order 2. Let (3 be the polarity fixing D described above, and let B’ = Bj3.
The double-six D belongs to a unique non-singular cubic surface F. With the nota-
tion introduced above, the other 15 lines of F are the lines ¢;; = (a;, b;) N (a;, b;).
So ¢;;8 = {(a; N'bj,a; Nb;), and, by considering a subquadrangle Q(4,2) of the
generalised quadrangle Q(5, 2), it follows that (a; Nb;, a; Nb;) is a line of S. Hence
¢;jfis aline of S. Consequently, B’ is the set of the 27 lines of a unique non-singular
cubic surface F. It follows that every lax embedding of ¢/(3,4) in PG(3, K) is of
the type described above. So, such a lax embedding is uniquely defined by five skew
lines a1, as, as, aq, as together with a transversal bg such that each five of the six
lines are linearly independent. Such a configuration exists for every field K except
for K = FQ, F3, F5.

The embedding S is polarised if and only if the 45 tritangent planes of F de-
fine 45 Eckardt points. If K = F, then necessarily ¢ = 4™, and for each such ¢
a polarised embedding of the generalised quadrangle of order (4,2) is possible. If
U(3,4) is embedded in PG(3, ¢) and if the embedding S is polarised, then, by The-
orem 5.58, S is a full embedding of 1/(3, 4) in a subgeometry PG(3, 4) of PG(3, ¢q),
for a subfield F4 of Fy; so S is a Hermitian surface of PG(3,4). This result can be
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extended to infinite fields. So, if ¢/(3, 4) admits a polarised embedding in PG(3, K),
then F is a subfield of K and the embedding is full in a subgeometry PG(3,4) of
PG(3, K).

Hence the following result is obtained.

Theorem 5.62. Let K be any field and let S be a lax embedding of U(3,4) in
PG(3, K). Then

(i) | K| # 2,3,5 and S arises from a non-singular cubic surface F;,
(i) the embedding is polarised if and only if F admits 45 Eckardt points;
(iii) in the latter case, the field ¥4 is a subfield of K and S is a Hermitian surface
in a subgeometry PG(3,4) of PG(3, K).

Similarly to the projective case, lax, weak (or polarised) and full embeddings of
point-line geometries in an affine space AG(d, K) can be defined. In the follow-
ing theorem, lax embeddings of generalised quadrangles of order (s,t), s > 1, in
PG(d, q), d > 2, are considered.

Theorem 5.63. If the generalised quadrangle S of order (s,t), s > 1, is laxly em-
bedded in PG(d, q), then d < 5.

() If d =5, then S = Q(5, s) and the full automorphism group of S is induced by
PGL(6, q). Also, one of the following holds:
(a) it is weakly embedded and hence, by Theorems 5.58 and 5.51, fully and

naturally embedded in some subgeometry PG(5, s) of PG(5, q);

(b) s = 2, q is odd and there exists up to an element of PSL(6, q), a unique

(non-weak) lax embedding, which is a full affine embedding if ¢ = 3;

() for s = 2, q = 3", the (non-weak) lax embedding is a full embedding in

some affine subgeometry AG(5, 3) over the subfield F3 of F.

@) Ifd =4, then s < t.
(a) If s = t, then S = Q(4, s) and one of the following occurs.

1. s # 2, qisodd,and S is weakly embedded; hence, by Theorems 5.58 and
5.51, it is fully and naturally embedded in some subgeometry PG(4, s) in
PG(4,q).

2.5 =2, qisodd,and S is weakly embedded in PG(4, q), that is, S is the
universal weak embedding of W(2) in PG(4, q) by Theorem 5.58.

3.5 =3, ¢ =1 (mod 3), and there exists, up to an element of PSL(5, q),
a unique (non-weak) lax embedding. Further,

L. the case q = 4 corresponds to a full affine embedding;
IL. the case q even corresponds to a full affine embedding in an affine
subgeometry over the subfield Fy of F ;

L. the group PSp(4, 3) acting naturally as an automorphism group on
W(3) is induced on S by PSL(5,q); if q is a square and if also
Va4 = —1 (mod 3), then the full automorphism group PGSp(4,3)
of S is the group induced by PTL(5, q); otherwise, PTL(5, q) just
induces PSp(4, 3).
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(b) If s > 2, thent # s + 2.

(©) Ift> = s%, then S = U(4,s) and S is weakly embedded and hence, by
Theorems 5.58 and 5.51, fully and naturally embedded in some subspace
PG(4,s) of PG(4, q).

@ IfS = 9Q(5,s), then there exists a PG(5,q) containing PG(4,q) and a
point P € PG(5,q)\PG(4, q) such that S is the projection from P onto
PG(4, q) of a generalised quadrangle S = Q(5, s) which is laxly embedded
in PG(5, q), and hence determined by (i).

(iii) d = 3.

(a) Ift = 1, then S is a subquadrangle of order (s, 1) of some Q(3,q).

(b) If s = 2, then S = U(3, s) and one of the following holds:

1. S is weakly embedded in PG(3,q) and hence, by Theorems 5.58 and
5.51, fully and naturally embedded in some subgeometry PG(3,s) of
PG(3,q9);

2. (s,t) = (4,2) with q ¢ {2,3,5} and S arises from a non-singular cubic
surface in PG(3, q); see Theorem 5.62.

(c) If S is classical or dual classical, but not isomorphic to W(s) with s odd,
then the following classification is obtained.

1. S is not dual to U(4, s*/3).

2.IfS = U(4,s), then there exists a PG(4, q) containing PG(3, q) and a
point P € PG(4, q)\PG(3, q) such that S is the projection from P onto
PG(3,q) of a generalised quadrangle S = U(4, s) which is fully and
naturally embedded in a subgeometry PG(4,s) of PG(4, q), for some
subfield ¥ s of ¥, with s a square.

3.If S = Q(4,s), then there exists a PG(4, q) containing PG(3, ¢) and
a point P € PG(4,q)\PG(3,q) such that S is the projection from P
onto PG(3, q) of a generalised quadrangle S = Q(4, s) which is laxly
embedded in PG(4, q), and hence determined by (ii)(a).

4.If S = Q(5, s), then there exists a PG(5, q) containing PG(3, q) and a
line l of PG(5, q) skew to PG(3, q) such that S is the projection from [
onto PG(3, q) of a generalised quadrangle S = Q(5, s) which is laxly
embedded in PG(5, q), and hence determined by (i).

Lax embeddings of non-degenerate Shult spaces of rank at least three are consid-
ered in the next theorem.

Theorem 5.64. Let S be a non-degenerate Shult space of rank at least three all of
whose lines have size at least three and which is laxly embedded in PG(d, q), where
d>3.

(1) If S is not the Shult space arising from a null polarity of PG(2m + 1,s), s
odd, then there exists a PG(n,q) containing 11, = PG(d,q), a II,,_q4—1 in
PG(n, q) skew to 11, and a non-degenerate classical Shult space S = S fully
and naturally embedded in a subgeometry PG(n, s) of PG(n, q), such that S
is the projection of S from 11,,_4_1 onto 11,.
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(ii) If d > 4 and if S arises from a null polarity of PG(2m + 1,s), m > 2 and s
odd, then there exists a PG(2m + 1, q) containing 114 and a subspace 112, _4
of PG(2m+1, q) skew to 114 such that S is the projection from Ila,, 4 onto 114
of a non-degenerate Shult space S = S which is fully and naturally embedded
in a subgeometry PG(2m + 1, s) of PG(2m + 1, q).

Remark 5.65. The lax embeddings in PG(3,q) of the generalised quadrangles
W(s), s odd, and of the non-degenerate Shult spaces of rank at least three aris-
ing from a null polarity of PG(2m + 1, s), m > 2 and s odd, are not yet classified.
The classification of lax embeddings of Shult spaces in PG(2, ¢), without extra con-
ditions, seems to be hopeless.

5.5 Characterisations of the classical generalised quadrangles

In this section the most important characterisations of the classical generalised quad-
rangles are reviewed. Apart from a few exceptions the proofs are long, complicated,
and technical. So, proofs are given only in the simpler cases. First, some new ideas
are introduced.

Definition 5.66. Let S = (P, BB, 1) be a finite generalised quadrangle of order (s, t).

(DIfFP ~ P, P# P orif Py P and |{P,P'}**| =t + 1, the pair { P, P'} is
regular.

(2) The point P is regular if { P, P'} is regular for all P’ € P, P’ # P.

(3) A point P is co-regular if each line incident with P is regular.

(4) The pair {P, P'}, P + P, is anti-regular if |P"+ N {P, P'}*| < 2 for all
P" e P\{P,P'}.

(5) A point P is anti-regular if { P, P'} is anti-regular for all P’ € P\ P*.

(6) The closure of the pair { P, P'} is

(P,P)={P"eP|P'*n{PP}* #0}.

Theorem 5.67. Let S = (P, B,1) be a generalised quadrangle of order s > 1.

(i) For a regular point P, the incidence structure wp with point set P, with line
set the set of spans {P', P"}*+ where P', P" € P+ with P' # P", and with
the natural incidence is a projective plane of order s.

(ii) For an anti-regular point P and a point P' in P-\{ P}, the incidence structure
7(P, P') with point set P-\{P, P'}*, with lines the sets { P, P, }*-\{P} with
P ~ Py & P and the sets { P, Py}**\{P'} with P’ ~ Py ¢ P, and with the
natural incidence is an affine plane of order s.

Proof. Both parts are straightforward verifications of the axioms. a

Definition 5.68. (1) An ovoid of S is a set O of points of S such that each line of S
is incident with a unique point of O.
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(2) A spread of S is a set R of lines of S such that each point of S is incident with a
unique line of R.

Remark 5.69. It follows that any ovoid or spread of S has exactly 1 + st elements.

Definition 5.70. (1) Let s = ¢ > 1; then, by Corollary 5.15, any triad { P, P’, P"'}
has [{P, P, P"}*| = s + 1. Thus |{P, P', P"}*+| < s+ 1 and {P, P, P"} is
3-regular provided that [{P, P, P"}*+| = s + 1.

(2) The point P is 3-regular if and only if each triad containing P is 3-regular.

These definitions are illustrated by some examples.

In Section 5.2, it was observed that each hyperbolic line of WW(q) contains g + 1
points. Hence all points of YW(q) are regular. Dually, all lines of Q(4, ¢) are regular.
By Theorem 5.17, all lines of W(q), with g even, are regular. Dually, all points of
Q(4,q), q even, are regular. From the examples in Section 5.2, it follows that each
point of Q(4, q), q odd, is anti-regular, and, dually, that each line of W(q), ¢ odd,
is anti-regular. Further, each hyperbolic line of 2/(3, ¢®) contains ¢ + 1 points; hence
each point of U (3, ¢?) is regular. Dually, each line of Q(5, q) is regular.

Consider Q(5, ¢) and the corresponding polarity ¢. If T = {P, P/, P"} is a triad
of Q(5,q), then T+ is the conic Q N 7, where 7 is the polar of the plane PP’ P",
and 7+ is the conic QN PP'P". So |[T+*| = ¢ + 1, and consequently each point
of Q(5, q) is 3-regular. Dually, each line of (3, ¢?) is 3-regular.

The generalised quadrangle Q(4, g) always has ovoids, and has spreads if and
only if ¢ is even; see Section 7.2. Further, Q(5, ¢) has spreads but no ovoids, and
U(4,¢%) has no ovoids. For ¢ = 2, the Hermitian variety (4, ¢?) has no spreads;
for ¢ > 2, the existence of a spread is an open problem.

Historically, the next result is probably the oldest combinatorial characterisation
of a class of generalised quadrangles. A proof is essentially contained in a paper
by Singleton, although he erroneously thought he had proved a stronger result; but
the first satisfactory treatment may have been given by Benson. Undoubtedly, it was
discovered independently by several authors; see Section 5.10.

Theorem 5.71. A generalised quadrangle S of order s # 1 is isomorphic to W(s) if
and only if all its points are regular.

Proof. All points of W(s) are regular.

Conversely, let S = (P, B, 1) be a generalised quadrangle of order s # 1, for
which all points are regular. Now define the incidence structure 8’ = (P’, B, 1),
with P’ = P, with B’ the set of spans of all point pairs of P, and I’ the natural
incidence. Then § is isomorphic to the substructure of S’ formed by all points and
the spans of all pairs of points collinear in S.

Let 7 = {P, P/, P"} be a triad of points in S. Counting all points on the lines
joining a point of { P, P’}* and a point of { P, P’} gives

(s+1)%(s—1)+2(s+1)=(s+ 1)(s*+1)=P|.
Hence P" is on at least one line joining a point of { P, P’} to a point of { P, P'}*++,
and so 7+ # (). Now, by Theorem 5.67 (i), it follows that any three non-collinear
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points of S” generate a projective plane of order s. Since |[P’| = 53 +s%+5+1,50 S’
is the design of points and lines of PG(3, s). All spans in S of collinear point pairs
containing a given point P form a pencil of lines in PG(3, s). By Theorem 15.2.13
of FPSOTD, the set of all spans of collinear point pairs is a general linear complex
of lines of PG(3, ) or, equivalently, is the set of all self-polar lines of a null polarity
¢. Thus S = W(s). O

The next result is a slight generalisation of the preceding theorem and is stated
without proof.

Theorem 5.72. A generalised quadrangle S of order (s,t), s # 1, is isomorphic to
W(s) if and only if each hyperbolic line has at least s + 1 points.

Theorem 5.73. Up to isomorphism, there is only one generalised quadrangle of or-
der 2.

Proof. Let S be a generalised quadrangle of order 2. Consider two points P, P’ with
P oA P andlet {P, P}t = {Z1,7Z5,Z3}. Let {Z1, Zo}+ = {P,P', U}, let Y be
the unique point of PZ3 collinear with U, and let Y be the unique point of P’'Z;3
collinear with U. If Y, Z3,Y" are distinct, then U is incident with the four distinct
lines UZ1,UZ5,UY,UY", a contradiction since t = 2. Thus Y = Z3 = Y, and
so U ~ Zs. Hence |{P, P'}*| = 3. So every point of S is regular and now, by
Theorem 5.71, S = W(2). O

The following four characterisations are stated without proof.

Theorem 5.74. A generalised quadrangle S of order s # 1 is isomorphic to W(2")
if and only if it has an ovoid O each triad of which has at least one centre.

Theorem 5.75. A generalised quadrangle S of order s # 1 is isomorphic to YW(2")
if and only if it has an ovoid O each point of which is regular.

Theorem 5.76. A generalised quadrangle S of order s # 1 is isomorphic to WW(2")
if and only if it has a regular pair {l1, 12} of non-concurrent lines with the property
that any triad of points lying on lines of {l1,l2}* has at least one centre.

Theorem 5.77. Let S be a generalised quadrangle of order s # 1 with an anti-
regular point P. Then S is isomorphic to Q(4, s) if and only if there is a point P’ in
PH\{P}, for which the associated affine plane 7(P, P') is Desarguesian.

Corollary 5.78. Let S be a generalised quadrangle of order s # 1 having an anti-
regular point P. If s < 8, then S is isomorphic to Q(4, s).

Proof. Since each plane of order s < 8 is Desarguesian, the result follows. O

Theorem 5.79. Let S be a generalised quadrangle of odd order s > 1 with co-
regular point P. Then S = Q(4, s) if and only if, for at least one line | incident with
P, the projective plane 7 is Desarguesian.
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Corollary 5.80. Let S be a generalised quadrangle of order s, with s € {5, 7}. If S
contains a co-regular point, then S = Q(4, s).

Proof. As the projective planes of order 5 and 7 are unique, the result follows from
Theorem 5.79. O

The following characterisation theorem is very important, not only for the theory
of generalised quadrangles, but also for other areas in combinatorics. The proof is
again very long, and so it is not given.

Theorem 5.81. Let S be a generalised quadrangle of order (s, s2).

(1) When s > 1, then S = Q(5, s) if and only if all points of S are 3-regular.
(ii) When s is odd and s > 1, then S = Q(5, s) if and only if it has a 3-regular
point.
(iii) When s is even, then S = Q(5, s) if and only if it has at least one 3-regular
point not incident with some regular line.
(iv) When s is odd and s > 1, then S = Q(5, s) if and only if the following proper-
ties hold:
(a) there are distinct collinear points P and P’ such that each triad containing
P with centre P’ is 3-regular;
(b) each triad containing P’ with centre P is 3-regular;
(c) there is at least one 3-regular triad { Py, Py, P3} with P 1 PP’ and where
{P1, Py, P3}* does not contain a point incident with PP'.

Corollary 5.82. Up to isomorphism there is only one generalised quadrangle of the
following orders: (i) (2,4); (ii) (3,9).

Proof. (a) Let S be a generalised quadrangle of order (2, 4). If { Py, P», P3} is a triad
of points, then { Py, Py, P3}*++ = {Py, P, P3}. Hence |{ Py, Py, 3} = 1 + s,
every point is 3-regular, and, by Theorem 5.81 (i), S = Q(5, 2).

(b) Let S be of order (3,9). Let {P1, P>, P3} be a triad of points, and let
{Py, Py, P}t = {Uy,Us, U3, Uy}, {Uy,Us, U3} = {Py, Py, P3, Py}. The num-
ber of points collinear with U, and also with at least two points of {Uy, Us, Us} is
at most six, and the number of points collinear with U, and incident with some line
P,U;,i = 1,2,3, is at most three. Since 3 + 6 < 10 = t + 1, there is a line [ in-
cident with Uy, but not concurrent with P,U;,7 = 1,2, 3, and not incident with an
element of {U;, Uj}l, 1# 7, 1 <1<3, 1< j < 3. The point incident with [ and
collinear with U; is denoted by Z;, ¢ = 1,2, 3; the points 21, Z», Z3 are distinct.
Since S has no triangles, the point P is not collinear with any Z;, forcing Py ~ Uy.
Hence the triad { Py, P», P3} is 3-regular, and so every point of S is 3-regular. Now,
by Theorem 5.81, S = Q(5, 3). O

Definition 5.83. (1) The generalised quadrangle S’ = (P’, B',1’) of order (s',t') is
a subquadrangle of the generalised quadrangle S = (P, B,1) of order (s,t) if
P’ C P, B' C B,and if T is the restriction of I to (P’ x B') U (B’ x P’).

(2) If 8’ # S, then &’ is a proper subquadrangle of S.
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Remark 5.84. If |P| = |P’| it follows that s = s" and ¢ = t'; hence, if S’ is a proper
subquadrangle, then P # P’, and dually B # B’

Some examples are given.

Example 5.85. (a) Consider Q(5, q), with Q a non-singular quadric of projective
index 1 in PG(5, g). Intersect Q with a non-tangent hyperplane I14. Then the
points and lines of Q' = Q N 114 form the generalised quadrangle Q' (4, q). Here
s? =t =¢q% s=s =t Since all lines of Q(5, ¢) and of Q’(4, q) are regular,
both have subquadrangles of order (s”,¢"”) with t” = 1 and s” = s’ = s, each of
which is a hyperbolic quadric in some solid of PG(5, q).

(b) Let U = U(4,¢?), a non-singular Hermitian variety of PG(4, ¢?) and intersect
U with a non-tangent hyperplane IT5. Then the points and lines of i/’ = U N 113
form the generalised quadrangle U’ (3, ¢?). In this case, the parameters are

t=s2=¢ s=45,t =/s.

Since all points of U’(3, ¢?) are regular, so U’(3, ¢?) has subquadrangles with
"=t =/sand s" = 1.

(c) Now consider Q(4, ¢) and extend F to F 2. Then Q extends to Q and Q(4, q)
to Q(4,¢?). Here, Q(4, ) is a subquadrangle of Q(4, ¢?), with t = s = ¢ and
t'=s"=q.

Next consider the role of subquadrangles in characterising Q(5, ¢). Proofs are
again omitted.

Theorem 5.86. Let S be a generalised quadrangle of order (s,t) with s > 1 and
t > 1. Then S is isomorphic to Q(5, s) if and only if either (i) or (ii) holds:

(1) every triad of lines with at least one centre is contained in a proper subquad-
rangle of order (s,t');

(ii) for each triad { P, P', P"} with distinct centres Z, Z', the five points P, P', P",
Z, 7' are contained in a proper subquadrangle of order (s,t').

For a generalised quadrangle S of order (s, 1), let {1, 2,13} and {m1, mga, ms}
be two triads of lines for which [; ¢ m; if and only if {7, j} = {1, 2}. Let P; be the
point defined by [; I P; Im,;, ¢ = 1,2. This configuration 7 of seven distinct points
and six distinct lines is a broken grid with carriers P; and Ps; see Figure 5.2.

The broken grid 7T satisfies axiom (D) with respect to the pair {l1, 12} provided
the following holds: if Iy € {my, ma}* with Iy £ 1;,i = 1,2, 3, then {I1, 12,14} has
at least one centre. Interchanging [; and m; gives the definition of axiom (D) for T
with respect to the pair {m1,mz}. Further, 7 is said to satisfy axiom (D) provided
it satisfies axiom (D) with respect to both pairs {l1, 2} and {mq, m2}.

Let P be any point of S. Then S is said to satisfy axiom (D)’ if the broken
grid T satisfies axiom (D) with respect to {l1, [} whenever P 11y; it satisfies axiom
(D)% if T satisfies axiom (D) with respect to {m1, ma} whenever P11;.

Now, another interesting characterisation of Q(5, s) is the following.
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Fig. 5.2. Broken grid
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Theorem 5.87. Let S be a generalised quadrangle of order (s,t), with s # t, and
s>1,t>1.

(1) If s is odd, then S = Q(5, s) if and only if S contains a co-regular point P for
which (D)’p or (D)} is satisfied.

(ii) If s is even, then S = Q(5, s) if and only if all lines of S are regular and S
contains a point P for which (D)'s or (D)} is satisfied.

In order to conclude this section dealing with characterisations of Q(5, s), one
more basic concept is introduced.

Definition 5.88. Let S = (P, B,1) be a generalised quadrangle of order (s,t). If
B+ is the set of all spans { P, P'}++ with P o P/, then let S*+ = (P, B+, €).

(1) S satisfies property (A)p for P € P, if for any m = {P’, P"}++ € B+L with
Pe{P P"}t andU € cl(P', P")N(P+\{P}) with U ¢ m, the substructure
of S+ generated by m and U is a dual affine plane.

(2) S satisfies property (A) if it satisfies (A)p for all P € P.

(3) The dual of (A) p is denoted by (A); and of (A) by (A).

So S satisfies (A) if, for any m = {P’, P”"}*+ € B*+ and any U in the set
(P, P\({P', P"}*+ U {P', P"}1L), the substructure of S+ generated by m
and U is a dual affine plane.

Again, the proof of the following theorem is not given.

Theorem 5.89. Let S be a generalised quadrangle of order (s,t),s # t,t > 1.

(1) If s > 1, and s is odd, then S is isomorphic to Q(5, s) if and only if (A)l is
satisfied for all lines | incident with some co-regular point P.
(i) If s is even, then S is isomorphic to Q(5, s) if and only if all lines of S are

regular and (A), is satisfied for all lines | incident with some point P.

Definition 5.90. A finite net of order k > 2 and degree r > 2 is an incidence struc-
ture N' = (P, B, 1) of points and lines satisfying the following axioms.
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(1) Each point is incident with 7 lines and two distinct points are incident with at
most one line.

(2) Each line is incident with k points and two distinct lines are incident with at most
one point.

(3) If P is a point and [ is a line not incident with P, then there is a unique line m
incident with P and not concurrent with [.

For a net of order k and degree r, it follows that |P| = k2 and |B| = kr. Also,
r <k + 1, with r = k£ + 1 if and only if the net is an affine plane of order k.

The following theorem gives the relation between regularity in generalised quad-
rangles and dual nets.

Theorem 5.91. Let P be a regular point of the generalised quadrangle S = (P, B, 1)
of order (s,t), s # 1. Then the incidence structure, with

(a) point set P-\{P},

(b) line set the set of all spans {Q, Q'Y+, where Q, Q" € PA\{P}, Q # Q’,
(c) incidence the natural one,

is the dual of a net of order s and degree t + 1. If, in particular, s =t > 1, then a
dual affine plane of order s arises.

Proof. This is a straightforward exercise. a

Let P be the set of all points of PG(n,q) which are not contained in a fixed
subspace PG(n — 2, ¢), with n > 2, let B be the set of all lines of PG(n, ¢) having
no point in common with PG(n — 2, ¢), and let I be the natural incidence. Then
(P, B,1) is the dual of a net of order ¢" ! and degree ¢ + 1; this dual net is denoted
by Hj.

Definition 5.92. A point-line incidence geometry S = (P, B, 1) satisfies the Veblen—
Pasch axiom if and only if the following condition is satisfied:

(VP)if [ IPIly, Ui # lp, and mi Y PY¥mo, [; ~ my, for all 4,5 € {1,2}, then
miy ~ mao.

Theorem 5.93. Let S be a dual net of order s + 1 and degree t + 1, with s < t + 1.
If § satisfies (VP), then S is isomorphic to the dual net Hy', which has s = q and
t=q" 1 -1

The following characterisation theorem of Q(5, s) is in terms of regularity and
dual nets.

Theorem 5.94. Let S be a generalised quadrangle of order (s,t) with s £ t, s > 1
andt > 1.

(1) If s is odd, then S is isomorphic to the classical generalised quadrangle Q(5, s)
if and only if it has a co-regular point P and if for each line | incident with P
the corresponding dual net /\/ID satisfies (VP).
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(i) If s is even, then S is isomorphic to the classical generalised quadrangle
Q(5, s) if and only if all its lines are regular and, for at least one point P
and all lines l incident with P, the corresponding dual nets /\/ZD satisfy (VP).

The next characterisation theorem of Q(5, s) involves subquadrangles and ovoids.

Theorem 5.95. Let S be a generalised quadrangle of order (s, s?), s # 1, having
a subquadrangle S’ isomorphic to Q(4, s). If in 8" each ovoid Op consisting of all
the points collinear with a given point P of S\S' is an elliptic quadric, then S is
isomorphic to Q(5, s).

Definition 5.96. (1) Let S = (P, B,1I) be a generalised quadrangle of order (s, ),
and define B* = {{P, P'}*+ | P,P' € P,P # P'}. Then §* = (P, B*,€) isa
linear space; see Section 5.10.

(2) So as to have no confusion between collinearity in S and collinearity in $*, points
Py, P, ..., P.of P which are on a line of §* are S*-collinear.

(3) A linear variety of S* is a subset P’ C P such that P, P’ € P/, P # P, implies
{P, P}t cCP.

(4) If P’ # P and [P’| > 1, the linear variety is proper; if P’ is generated by three
points which are not S*-collinear, P’ is a plane of S*.

Now a fundamental characterisation of the generalised quadrangle U/(3,s) is
stated.

Theorem 5.97. Let S = (P, B,1) be a generalised quadrangle of order (s,t), with
s#t,s>1,andt > 1. Then S is isomorphic to U(3, s) if and only if the following
hold:

(a) all points of S are regular,
(b) if the lines | and I’ of B* are contained in a proper linear variety of S*, then also
the lines I~ and I'* of B* are contained in a proper linear variety of S*.

A beautiful characterisation theorem, but with a long and complicated proof, is
the following.

Theorem 5.98. A generalised quadrangle S of order (s,t), s° = t> and s # 1, is
isomorphic to U(4, s) if and only if every hyperbolic line has at least \/s + 1 points.

Relying on this result, another characterisation of I/ (4, s) can be given.

Theorem 5.99. Let S have order (s,t) with 1 < s < t2. Then S is isomorphic to
U(4, s) if and only if each trace { P, P'}*, with Pt P', is a plane of S8* which is
generated by any three non-S*-collinear points in it.

Next, conditions are given which simultaneously characterise several classical
generalised quadrangles.

Definition 5.100. (1) A point U of S is semi-regular provided that P € cl(P, P')
whenever U is the unique centre of the triad { P, P’, P"}.
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(2) A point U has property (H) when P” € cl(P, P’) if and only if P € cl(P’, P"),
whenever { P, P’, P"} is a triad consisting of points of U~. If follows that any
semi-regular point has property (H ).

Some examples are now given.

In W(q), Q(4,q), Q(5, q), and (3, ¢*) all points and lines are semi-regular and
have property (H ). InU(4, ¢*) all points are semi-regular and have property (H ); all
lines have property (H ). Finally, it is shown that no line of /(4, ¢?) is semi-regular.
Consider three distinct lines [, m,n of U (4, ¢*) with [ ~ n ~ m o [. Further, let r
be a line of U(4, ¢*) for which r ~ n, [ 4 r ¢ m, and which is not contained in the
solid PG(3, ¢?) defined by [ and m. Then n is the unique centre of the triad {/, m, '},
but r ¢ cl(l,m) since cl(l,m) consists of all lines concurrent with at least one of
[, m. Hence n is not semi-regular. So property (H ) does not imply semi-regularity.

The following characterisation of /(4, s?) involves subquadrangles.

Theorem 5.101. A generalised quadrangle S of order (s, s3), with s # 1, is iso-
morphic to U(4, s?) if and only if any two non-concurrent lines are contained in a
proper subquadrangle of order (s*,t), witht # 1.

Now, six characterisations, most of them involving more than one classical gen-
eralised quadrangle, are stated without proof.

Theorem 5.102. Let S have order (s,t) with s # 1. Then |{ P, P'}++| > (s?/t) +1
forall P, P’ with P & P’ if and only if one of the following occurs:

(a) t = s2;
(b) S = W(s);
() S=U4,s).

Theorem 5.103. In the generalised quadrangle S of order (s,t), each point has
property (H) if and only if one of the following holds:

(a) each point is regular;
(b) each hyperbolic line has exactly two points;
() S=U4,s).

Theorem 5.104. Let S be a generalised quadrangle of order (s, t). Then each point
is semi-regular if and only if one of the following occurs:

(a) s > t and each point is regular;

(b) s=tand S = W(s);

(c) s =t and each point is anti-regular;

(d) s < t, each hyperbolic line has exactly two points, and no triad of points has a
unique centre;

€ S=U(4,s).

Theorem 5.105. In a generalised quadrangle S of order (s, t), all triads { P, P', P"'}
with P ¢ cl(P, P") have a constant number of centres if and only if one of the fol-
lowing occurs:
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(a) all points are regular;
(b) s2 =t;
() S=U4,s).

Theorem 5.106. The generalised quadrangle S of order (s,t), s > 1, is isomorphic
to one of W(s), Q(5,s), or U(4, s) if and only if, for each triad { P, P', P"} with
P ¢ cl(P', P"), the set {P} U {P', P"}* is contained in a proper subquadrangle
of order (s,t).

Theorem 5.107. Let S be a generalised quadrangle of order (s, t) with not all points
regular. Then S is isomorphic to Q(4, s), with s odd, to Q(5, s), or toU(4, s) if and
only if each set {P} U {P', P"}%, where {P, P', P"} is a triad with at least one
centre and P ¢ cl(P’, P"), is contained in a proper subquadrangle of order (s,t’).

Next, a characterisation is given in terms of matroids. A finite matroid is an
ordered pair (P,9%) where P is a finite set of elements called points, and 2t is a
closure operator which associates to each subset X’ of P a subset X, the closure of
X, such that the following conditions are satisfied:

(1) 0 = 0, and {P} = {P} forall P € P;

2) X Cc Xforall X C P;

B XcCcyYy=xcYforall X,y CP;

4) PeXU{P},PP¢X=PecXU{P}foral P,P'e€Pand X C P.

The sets X are called the closed sets of the matroid (P, 90). It is immediate that
the intersection of closed sets is always closed. A closed set X' has dimension h if
h + 1 is the minimum number of points in any subset of X whose closure coincides
with &X'. The closed sets of dimension 1 are the /ines of the matroid.

Theorem 5.108. Suppose that S = (P, B,1) is a generalised quadrangle of order
(s,t), s > landt > 1. Then B* = {{P,P'}*+ | P,P' € Pand P # P'} is the
line set and P is the point set of some matroid (P,ON) having all sets P+, P € P,
as closed sets, if and only if one of the following occurs:

(@) § = W(s);

(b) S = 94, s);

(©) S=U4,s);

(d) 8 = Q(5, 5);

(e) all points of S are regular, s = t>, and every three non-S*-collinear points are
contained in a proper linear variety of the linear space S* = (P, B*, €).

Now a characterisation of Q(4, ¢) and Q(5, ¢) is given that uses Theorem 5.123
on Moufang generalised quadrangles. The statement of the theorem, however, is
purely combinatorial.

Let S be a generalised quadrangle of order (s,t),s > 1 and ¢t > 1. A quadri-
lateral of S is just a subquadrangle of order (1,1). A quadrilateral V is said to be
opposite a line [ if the lines of V are not concurrent with [. If V is opposite [, the
four lines incident with the points of V and concurrent with [ are called the lines of
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perspectivity of V from |. Two quadrilaterals V and V' are in perspective from [ if one
of the following holds:

(1) ¥V =V’ and V is opposite [;
@ QO V£V,
(ii) V and V' are both opposite [,
(iii) the lines of perspectivity of V), and of V', from [ are the same.

Theorem 5.109. The generalised quadrangle S = (P, B,1) of order (s,t), s > 1
and t > 2, is isomorphic to Q(4, s) or Q(5, s) if and only if, given a quadrilateral
V opposite a line | and a point P', P' Y1, incident with a line of perspectivity of V
from 1, there is a quadrilateral V' containing P’ and in perspective with V from l.

Remark 5.110. If t = 2 and s > 1, then, by Theorems 5.13 and 5.14, s € {2,4}.
Now, by Theorem 5.73 and Corollary 5.82, S = Q(4,2) or S = U/(3,4). It can be
checked that in these two cases the quadrilateral condition of the preceding theorem
is satisfied.

This section on characterisation theorems of purely combinatorial type is con-
cluded with a fundamental characterisation of all classical and dual classical gener-
alised quadrangles with s > 1 and ¢t > 1. The reader is reminded of properties (A)
and (A) introduced in Definition 5.88.

Again, let B be the set of all hyperbolic lines of the generalised quadrangle
S = (P,B,1), and let S*+ = (P, B+, €). Then S satisfies property (A) if, for
any m = {P, P'}*+ € B+ and any U € cl(P, P")\({P, P'}* U {P, P'}1), the
substructure of St generated by m and U is a dual affine plane. The dual of (A) is

denoted by (A).

Theorem 5.111. Let S = (P, B,1) be a generalised quadrangle of order (s,t), with
s> landt > 1. Then S is a classical or a dual classical generalised quadrangle if

and only if it satisfies either condition (A) or (A).

In the last part of this section, some important characterisations of classical
generalised quadrangles, formulated in terms of automorphisms, are given without
proof. The trivial cases s = 1 and ¢ = 1 are excluded.

Definition 5.112. Let S = (P, B, I) be a generalised quadrangle of order (s, t) with
an automorphism 7.

(1) If 7 fixes each point of P+, P € P, then 7 is a symmetry about P.

(2) If 7 is the identity or if 7 fixes each line incident with P but no point of P\ P,
then 7 is an elation about P. It is possible to prove that any symmetry about P is
automatically an elation about P.

(3) The generalised quadrangle S is an elation generalised quadrangle with elation
group G and base point or centre P, if there is a group G of elations about P
acting regularly on P\ P; briefly, (S), G) or S(”) is an elation generalised
quadrangle.
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(4) If the group G is abelian, then the elation generalised quadrangle (S, G) is
a translation generalised quadrangle with translation group G and base point
or centre P. It may be shown that the base point P of a translation generalised
quadrangle is co-regular.

(5) If there is a group G of automorphisms fixing all lines incident with P and act-
ing transitively, but not necessarily regularly, on P\ P+, then P is a centre of
transitivity.

(6) If there is a group G of automorphisms fixing all points incident with / and acting
transitively, but not necessarily regularly, on B\I+, then [ is an axis of transitivity.

(7) If the group of symmetries about P has maximum size ¢, then P is a centre of
symmetry, in which case P is regular.

(8) If the group of symmetries about a line [ has maximum size s, then [ is an axis of
symmetry; in this case, [ is regular.

(9) Suppose that [ and m are non-concurrent axes of symmetry of S. Then it follows
that every line of {I,m}** is an axis of symmetry, and S is a span-symmetric
generalised quadrangle with base span {1, m}+=.

Definition 5.113. Let P, P’ € P, P « P’.

(1) A generalised homology with centres P, P’ is an automorphism 7 of & which
fixes all lines incident with P and all lines incident with P’. The group of all
generalised homologies with centres P, P’ is denoted H (P, P').

(2) The generalised quadrangle S is (P, P')-transitive if, for each P" € {P, P'}*,
the group H (P, P') is transitive on both the set { P, P""}-\{P, P} and the set
{Pl7 P//}l\{P/’ P”}.

Finally, the Moufang conditions are defined.

Definition 5.114. (1) The generalised quadrangle S is a Moufang generalised quad-
rangle if the following condition and its dual are satisfied:
for any point P and any two distinct lines [ and m incident with P, the group
of automorphisms of S fixing [ and m point-wise and P line-wise is transitive
on the lines (5 1) incident with a given point P’ on [, where P’ # P.
(2) If one of these mutually dual conditions is satisfied, S is a half Moufang gener-
alised quadrangle.

Definition 5.115. (1) Let { P,} be any incident point-line pair of S; such a pair is
called a flag of S.

(2) Let Q11, with @ # P. The flag {P,} is called a Moufang flag if the group of
automorphisms of S fixing [ point-wise and P line-wise is transitive on the points
collinear with ) which are not incident with /.

(3) If every flag of S is a Moufang flag, the generalised quadrangle S is 3-Moufang.

(4) For the flag { P, 1} of S, let RImIP and nI1Q1! such that R # P, n # | and
QYm. The flag { P, (} is half 3-Moufang at P if the group of automorphisms of
S fixing P line-wise and [ point-wise is transitive on the set { R, Q}+\{P} for
all R and Q; the flag { P, 1} is half 3-Moufang at | if the group of automorphisms
of S fixing P line-wise and [ point-wise, is transitive on the set {m, n}+\{l} for
all m and n.
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(5) The generalised quadrangle S is half 3-Moufang if either every flag {P,l} of S
is half 3-Moufang at P, or every flag { P, [} of S is half 3-Moufang at [.

(6) If all points of S are centres of transitivity, and all lines are axes of transitivity,
then S is a 2-Moufang generalised quadrangle.

Theorem 5.116. Let (S(P ), G) be a translation generalised quadrangle of order
(s,t), s>1,t> 1

(i) If s is prime, then § = Q(4,s) or S = Q(5, 5).

(ii) If all lines are regular, then S = Q(4,s) ort = s>

(iii) Let t = s% with s odd. Then (S\), Q) is isomorphic to Q(5, s) if and only if
for a fixed point P’ with P' « P, the group H(P, P") has order s — 1.

(iv) Let t = s with s even. Then (S\"), G) is isomorphic to Q(5, s) if and only if
all lines are regular and for a fixed point P, with P' + P, the group H (P, P")
has order s — 1.

() If t = 52, with s = p? and p prime, and if all lines are regular, then (S(P) ,G)
is isomorphic to Q(5, s).

(vi) Let t = s with s even. Then (SF), Q) is isomorphic to Q(5, ) if and only if
S has a classical subquadrangle S’ of order s containing the point P.

Theorem 5.117. A generalised quadrangle S of order (s,t), s,t # 1 and s even for
s # t, is a translation generalised quadrangle for two distinct collinear base points
if and only if S is isomorphic to Q(4, s) or Q(5, ).

It may be shown that Q(4, ¢) and Q(5, ¢) are translation and elation generalised
quadrangles for any choice of the base point.

Theorem 5.118. For q even, let S\) be an elation generalised quadrangle of or-
der (q,q?) containing a classical subquadrangle S' of order q containing P. Then

S = 9(5,q).
A characterisation of Q(5, ¢) may also be given in terms of axes of symmetry.

Theorem 5.119. A generalised quadrangle S of order (s, s?), s # 1, is isomorphic
to Q(5, s) if and only if each line is an axis of symmetry.

The following theorem concerns span-symmetric generalised quadrangles.

Theorem 5.120. Let S be a span-symmetric generalised quadrangle of order (s,t),
where 1 < s <t < s2. Then s = t is a prime power and S is isomorphic to Q(4, s).

The following characterisations again involve more than one classical generalised
quadrangle.

Theorem 5.121. The group of symmetries about each point of the generalised quad-
rangle S of order (s,t), s > 1, t > 1, has even order if and only if one of the
following holds:

@) S = W(s);



266 5 Embedded geometries

(b) S=U(3, s);
© S=U(4,s).

Theorem 5.122. Let S = (P, B,1) be a generalised quadrangle of order (s, t), with
s # 1, t # 1. Then S is classical if and only if S is (P, P')-transitive for all
P,P' € Pwith P« P,

Theorem 5.123. A generalised quadrangle S of order (s,t), s # Landt # 1,isa
Moufang generalised quadrangle if and only if S is classical or dual classical.

The next result allows the previous theorem to be considerably strengthened.

Theorem 5.124. Let S be a generalised quadrangle of order (s,t), s # Landt # 1.
Then S is a Moufang generalised quadrangle if and only if one of the following
equivalent conditions holds:

(1) it is a half Moufang generalised quadrangle;
(ii) it is a 3-Moufang generalised quadrangle;
(iii) it is a half 3-Moufang generalised quadrangle;
(iv) it is a 2-Moufang generalised quadrangle.

Remark 5.125. Many of the theorems in this section also hold in the infinite case.

5.6 Partial geometries

Definition 5.126. A (finite) partial geometry is an incidence structure S = (P, 3, 1)
in which P is a set of points, B is a set of lines and I is a symmetric point-line
incidence relation satisfying the following axioms:

(1) each point is incident with 1 + ¢ lines, with ¢ > 1, and two distinct points are
incident with at most one line;

(2) each line is incident with 1 + s points, with s > 1, and two distinct lines are
incident with at most one point;

(3) if P is a point and [ is a line not incident with P, then, with o > 1, there are
exactly « points Py, Ps, ..., P, and « lines Iy, s, ...,l, such that PI1; 1 P; 11
fort =1,2,...,q.

Remark 5.127. From the axioms, a partial geometry with @ = 1 is a generalised
quadrangle.

Definition 5.128. (1) The integers s, t, « are the parameters of the partial geometry.

(2) Given two points P, P’ of S that are not necessarily distinct, they are collinear,
written P ~ P’, if there is some line [ for which PII1P’; so P # P’ means
that P and P’ are not collinear.

(3) Dually, for I,I’ € B, write [ ~ I’ or [ + [’ as they are concurrent or non-
concurrent.
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(4) The line incident with distinct collinear points P and P’ is denoted PP’.
(5) The point incident with distinct concurrent lines [ and !’ is denoted I N I’.

Let S = (P, B,1) be a partial geometry with parameters s, ¢, . Put |P| = v and
|B| = b.

Theorem 5.129. () v = (s+ 1)(st+ o)/ «;
) b=(t+1)(st+a)/a.

Proof. Let [ be a fixed line of S and count in different ways the number of ordered
pairs (P,m) € P x Bwith P¥l, PIm, and [ ~ m. This gives

(v—s—1)a=(s+1)ts,
whence the result. Dually, b = (¢t + 1)(st + a)/a. 0
Corollary 5.130. The elements st(s + 1)/« and st(t + 1)/« are integers.
Theorem 5.131. The integer o(s +t + 1 — «) divides st(s + 1)(t + 1).
Proof. This is analogous to the proof of Theorem 5.13. a

Theorem 5.132 (The Krein inequalities). The integers s, t, « satisfy the following
inequalities:

(s —1)(s+1—a)? (5.7)
t—1(t+1—a) (5.8)
When equality holds in (5.7), the number of points collinear with three points
Py, Py, Ps depends only on the number of collinearities in { Py, Pa, Ps}; when equal-

ity holds in (5.8), the number of lines concurrent with three lines 1, 12,3 depends
only on the number of concurrencies in {l1,l2,13}.

Proof. See Section 5.10. a

Partial geometries S can be divided into four, non-disjoint classes.

(I) Shasa = s+1or,dually,« = t+1; when = s+1,thenSisa2-(v,s+1,1)

design.
(II) S has @ = s or, dually, & = t; when o = ¢, then S is a net of order s + 1 and
degree t + 1.

(III) When « = 1, then S is a generalised quadrangle.
(IV) When 1 < a < min(s, t), then S is proper.

Example 5.133. (a) Let S be the design formed by the points and lines of PG(n, q),
with n > 2; then Sis a 2-(A(n),q + 1, 1) design.

(b) The points and lines of AG(n, q), n > 2, form a 2-(¢™, ¢, 1) design.

(c) Let K be a maximal (¢gn — ¢ + n;n)-arc in PG(2, ¢), with n > 2. Then the
points of C together with the non-empty intersections [ N XC with lines ! of the plane
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form a 2-(gn — ¢ + n,n, 1) design. For n < ¢, the points of PG(2, ¢)\K and the
lines having empty intersection with /C form a dual design with parameters

s=q, t=q/n—1, a=gq/n.

(d) When d classes of parallel lines in AG(2, ¢) are deleted, where 0 < d < g—1,
then a net of order ¢ and degree ¢ + 1 — d is obtained.

(e) If P = PG(n, ¢)\IL,,_2 and B is the set of lines of PG(n, ¢) skew to IT,,_o,
n > 2, with I the natural incidence, then S = (P, ,1) is a partial geometry with
parameters s = ¢, t = ¢" ' — 1, a = ¢. This dual net is denoted by Hy.

(f) Let K be a maximal (gn — g+n; n)-arcin PG(2, ¢), with 2 < n < g; then, by
Theorem 12.47 of PGOFF2, q is even. Let P = PG(2, ¢)\K, let BB be the set of all
lines having non-empty intersection with /C, and let I be the natural incidence. Then
S(K) = (P, B,1) is a partial geometry with parameters

s=q—-n, t=qn—-1)/n, a=(qg—n)n—1)/n (5.9)

(g) Take K of (f) to be in the plane IIo, which is then embedded in PG(3, q).
Now, let P’ = PG(3,¢)\Ilz, let B’ be the set of all lines of PG(3, ¢) meeting
in a single point, and let I’ be the natural incidence. Then 75*(K) = (P',B',I') is a
partial geometry with parameters

s=q—-1, t=(@+1)(n-1), a=n-1 (5.10)

(h) By Theorem 12.12 of PGOFF2, there exist maximal (2™*" — 27 4 om; 9m)_
arcs in PG(2,2") for any m with 1 < m < h. Hence there exist partial geometries
with the following parameters:

(a) s=2"—2m p=2h _2oh=m o =(2m _1)(2""™ —1); (5.11)
b) s=2"—1, t=02"+1@2"-1), a=2"-1. (5.12)

Such a partial geometry has o = 1 or is proper. A partial geometry of type (a) is a
generalised quadrangle if and only if A~ = 2 and m = 1. This gives the following
model of the unique generalised quadrangle with 15 points and 15 lines: points of S
are the 15 points of PG(2,4)\ X, with K a given oval; lines of S are the 15 bisecants
of IC; incidence is the natural one. A partial geometry of type (b) is a generalised
quadrangle if and only if m = 1. In this case, K is an oval of PG(2, q), ¢ = 2", and
75" (K) is the generalised quadrangle described in Section 5.1.

Up to duality, the parameters of the known partial geometries are the following:

(1) s=2"h—2m =20 _2h—m o= (2m —1)(2"~™ — 1), with h # 2 and
1<m<h;

Q) s=2"-1, t=02"+1)(2™-1), a=2"—1, withl <m < h;

(3)s:22h*1—1, t=2%""1" o =222 withh > 1;

4 s=3""—-1, t=03""-1)/2, a=3*"-1)/2, m>1,

5) s=26, t=27, a=18;

6) s=t=5, a=2;

7 s=4, t=17, a=2;

®) s=8, t=20, a=2.
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5.7 Embedded partial geometries

Definition 5.134. (1) A projective partial geometry S = (P, B,1) is a partial geom-
etry for which the point set P is a subset of the point set of some projective space
PG(n, q) and the line set B is a set of lines of PG(n, q).

(2) In this case, S is embedded in PG(n, q).

(3) If PG(n/, q) is the subspace of PG(n, ¢) generated by the points of P, then it is
the ambient space of S.

Theorem 5.135. If S = (P, B,1) is a partial geometry with parameters s, t, o which
is projective with ambient space PG(n, s), then one of the following holds:

(@) a = s+ 1land S is the 2-(0(n), s + 1,1) design formed by the points and lines
of PG(n, s);

(b) o = 1 and S is a classical generalised quadrangle;

© a=t+1,n =2, PG(2,s)\P is a maximal (sd— s+d; d)-arc K of PG(2, s), s
even, with d = s/aand 2 < d < s, and B consists of all lines of PG(2, s) not
meeting IC;

(da=s,n>2andS = H.

Proof. If « = s+ 1,then S is a 2-(v, s + 1, 1) design. Hence S consists of all points
and lines of a subspace II,,, of PG(n, s). Since PG(n, s) is the ambient space of S,
so m = n. Therefore S is the design formed by the points and lines of PG(n, s).

If @ = 1, then by Theorem 5.51 the partial geometry S is a classical generalised
quadrangle.

Now let « = t 4 1. Since any two lines of S meet, the ambient space of
S is a plane PG(2, s). Each line of PG(2, s) not in B has exactly s/a points in
PG(2,5)\P. If @ = s, then S is the dual affine plane H2. If 2 < d < s with
d = s/a, then PG(2, s)\P is a maximal (sd — s + d;d)-arc K; so s is even by
Theorem 12.47 of PGOFF2, and B is the set of all lines of PG(2, s) not meeting /C.

Now suppose that 1 < o < s and « # ¢ + 1. In this case, n > 3.

First, let n = 3. Suppose that [ is a line of S and P is a point of S with P ¢ [;
let 7 be the plane Pl of PG(3, s). The points and lines of S in 7 constitute a partial
geometry S, with parameters

Sr =38, tr=a—1, a=a.

Hence the points of 7 not in S, form a maximal (s(sa™1! + a~1 — 1); sa~1)-arc of
7. Consequently, s is even by Theorem 12.47 of PGOFF2.

Let m be any line of PG(3, s) that contains at least two points P’, P” of S. Take
aline m’ € B, with m # m/ and P’ € m/. Considering the plane P"m’, the set
P"m/\P is an (s(sa™! + a~! — 1); sa~1)-arc of the plane P"m’, and therefore
Im N P| € {s+ 1,5+ 1 — sa~'}. Hence each line of PG(3, s) meets P in one of
0,1,s+1—sa~1, or s+1 points; that is, P is a set of type (0,1, s+1—sa~t,s+1)
in PG(3, s). Here, the (s + 1)-secants of P are the lines of S.

Now it is shown that P has no 1-secants. Suppose the contrary and that [ is a
1-secant with { P} = [ N P. Let the lines through P be mq,ma, ..., msy1. Suppose
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that each plane /m; contains exactly s 4+ 1 points of P. Since n = 3, each line m of
B contains at least one point of P N Im; = m; for every 4. It follows that all lines of
S lie in a common plane; so PG(3, s) is not the ambient space of S, a contradiction.
Consequently, [P N Im;| > s + 1 for at least one index ¢; say, P’ € (P Nim;)\m;.
From the previous paragraph, the line [ contains s + 1 — sa~! or s + 1 points of the
partial geometry S, where m; = P'm; = Im;. Hence 1 € {s+ 1,5 +1 — sa~'},
a contradiction. So P has no 1-secant; that is, P is of type (0,s + 1 — sofl, s+1).

Next, it is shown that such a set cannot exist when 1 < « < s. Counting the
points of P on all lines of PG(3, s) containing a fixed point of P gives

|Pl=1+(t+1)s+ (s> +s5—t)(s—sa ). (5.13)
Also, from Theorem 5.129,
[Pl = (s+1)(st+ a)/c. (5.14)

From (5.13) and (5.14), it follows that t = (s 4+ 1)(a — 1). Since & # s + 1, so
P # PG(3,s). Taking A € PG(3, s)\P and counting the points of P on all lines
of PG(3, s) containing A shows that s + 1 — sa~! divides |P|. Hence sa + o — s
divides

2

(s+1)(s*a+sa—s—s+a)=(sa+a—s)(s?+s+1)— s>

Thus sa 4+ o — s divides s2. With s = 2, o = 2%, where 0 < k < h, this becomes
that 2" + 1 — 2"* divides 22"~ * a contradiction.

It has been shown that, for 1 < o < s and « # t 4 1, necessarily n > 3.

So,letl < a < s, a # t+ 1, withn > 3. Let [ be a line of S, let 7 be the
plane defined by [ and a point P in P\[, and let PG(3, s) be the solid defined by 7
and a point P’ in P\r. Let Py, P, be distinct points of P in PG(3, s). Counting the
number of pairs (I1,l3), with l1,l> € B, and both in PG(3, s) with P, € [y, P € I,
and [; ~ lo, in different ways, it appears that the number of lines of B in PG(3, s)
containing P; equals the number of lines of B in PG(3, s) containing P». It follows
that the points and lines of S in PG(3, s) constitute a partial geometry S’ with para-
meterst’, s’ = s, 0’ = a.Since 1 <o’ < s and o # t' + 1 as &’ is not contained
in a plane, such a geometry cannot exist.

So the only possibilities for cvare 1, s + 1, t + 1, s.

Consider, therefore, the case that « = s with o £ 1,¢+ 1;thenn > 3. Let [ be a
line of S, and suppose that the point P of S is not on [. The points and lines of S in
the plane m = P form a partial geometry with parameters

s=s,t=a—-1=s -1, =a=5";

that is, it is a dual affine plane of order s. If the line m of PG(n, s) contains at least
two points of P, then m lies in at least one plane 7 in which S induces a dual affine
plane of order s. Hence P is a set of type (0,1,s,s + 1) in PG(n, s), and a line m
of PG(n, s) contains s + 1 points of P if and only if m belongs to 5. Also, if P has
no 1-secant, then all planes of PG(n, s) through a fixed line [ of S contain a point
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of P\[; hence the points of S in such a plane are the points of a dual affine plane of
order s. It follows that

Pl=s+1+(s*>=1)(s"t=1)/(s—1)=s"+s""". (5.15)

Conversely, if |P| = s + s" 71, then P admits no 1-secant.

Now it is shown that P has no 1-secant. First, let n = 3. By an argument analo-
gous to the above, P has no 1-secant; so P = s% + s2. Now, induction is used. Sup-
pose that any projective partial geometry with o = s but & # 1,¢ + 1, and ambient
space PG(n—1, s), n > 4, hasno 1-secant. Next, assume that S = (P, B, 1) is a pro-
jective partial geometry with these parameters and ambient space PG(n, s), n > 4,
which has at least one 1-secant /.

Let I NP = {P}. Consider a line m of B containing P and n — 2 points
Pi,Ps, ..., P,_o of Psuchthatm, Py,..., P,_o generate a hyperplane 11,,_;.The
geometry induced by S in II,,_1 is a partial geometry with parameters ¢, 5§ = s = &
and ambient space II,,_;. Here, & # 1, + 1 since n — 1 > 2. By the induction
hypothesis,

Pl = PN,y =s""' + "2 (5.16)

Let my,ma,...,myy1 be the lines of B through P. The plane [m; contains s + 1
points of S. If the intersection of P and the solid Imm;, with ¢ > 1, generates
Imym;, then the set PN{mym; has no 1-secant, a contradiction. Hence, forall 7 > 1,
the set P M lmym; is contained in the plane mm;, whence |P N Imym;| = s + s.

Let P’ be any point of P\m;. Then the plane P'm; contains s lines through P’
which also belong to B. Therefore P’ belongs to at least one of the solids imym;,
with ¢ # 1. It follows that

Pl <O(n—3)(s*—1)+s+1=s""1+5"2 (5.17)

where 6(n — 3) is the number of solids containing the plane [m;. From (5.16) and
(5.17), it now follows that P = P N 11, _;; hence PG(n, s) is not the ambient space
of §, a contradiction. So P has no 1-secant.

Therefore |P| = s™+s" "1 and P is of type (0, s, s+1). Hence PG(n, s)\P is of
type (0,1, s+ 1) and so PG(n, s)\P is a subspace II,,_s of PG(n, s) of dimension
n — 2. The lines of B are the lines of PG(n, s) skew to II,,_5. Thus S = H”, and
the theorem is established. O

Any projective partial geometry S = (P, B, I) satisfies the Veblen—Pasch axiom:

(VP) if [; IPIla, I1 # lo, mi¥PYmg, l; ~ my, forall i,j € {1,2}, then also
mi ~ mMma.

The known partial geometries satisfying (VP) are as follows:

(1) all known generalised quadrangles;
(i1) all known partial geometries with a = ¢ + 1;
(iii) the partial geometries isomorphic to the design formed by the points and lines
of some PG(n, q);
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(iv) the partial geometries isomorphic to some H;'.

Theorem 5.136. Let S be a dual net of order s + 1 and degree t + 1 with s < t + 1.
If § satisfies (VP), then S is isomorphic to a partial geometry H,' with parameters
s=q, t=q¢" 1 -1

Proof. See Section 5.10. a

5.8 (0, a)-geometries and semi-partial geometries

Definition 5.137. A (finite) (0, «)-geometry, where v > 1, is an incidence structure
S = (P, B,]) in which P and B are disjoint, non-empty sets of points and lines,
and for which I is a symmetric point-line incidence relation satisfying the following
axioms:

(1) two distinct points are incident with at most one line;

(2) if a point P and a line [ are not incident, then there are 0 or o points which are
collinear with P and incident with /;

(3) each line is incident with at least two points and each point is incident with at
least two lines;

(4) S is connected; this means that, for any two elements 7" and T” of P U B, there
exist elements Ty, T5,..., T, € PUBsuchthat T I Ty 1151 --- 1T, 1 1.

Terms such as ‘collinear’ and ‘concurrent’ and notation such as ~ and ¢ are
defined as for generalised quadrangles and partial geometries.

Theorem 5.138. Each point is incident with a constant number 1 + t of lines and
each line is incident with a constant number 1 + s of points, where t, s > 1.

Proof. Let P and P’, with P # P’, be collinear points of S; let 1 + ¢ and 1 + ¢’ be
the respective number of lines incident with P and P’. Counting in different ways
the number of ordered pairs (1,1'), with P11, P’ T1I', 1 £1', | ~ U, gives

tla—1)=t(a—1);

hence t = t’. By the connectedness of S, each point of S is incident with 1 + ¢ lines.
Dually, each line is incident with 1 + s points. a

Definition 5.139. The integers s, t, « are the parameters of the (0, a)-geometry.

Let |[P| = v and |B| = b. It should be noted that v and b are not uniquely
determined by s, ¢, a.

Definition 5.140. A (finite) semi-partial geometry is an incidence structure S, where
S = (P, B,1), in which P and B are disjoint, non-empty sets of points and lines,
and for which I is a symmetric point-line incidence relation satisfying the following
axioms:
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(1) each point is incident with 1 + ¢ lines, with ¢ > 1, and two distinct points are
incident with at most one line;

(2) each line is incident with 1 + s points, with s > 1, and two distinct lines are
incident with at most one point;

(3) if a point P and a line [ are not incident, then there are 0 or « points, where
« > 1, which are collinear with P and incident with [;

(4) if two points are not collinear, then there are p points, where ;1 > 0, collinear
with both;

(5) The integers s, ¢, o, i are the parameters of the semi-partial geometry.

From the definitions, a semi-partial geometry with o > 1 is a (0, «)-geometry.
The semi-partial geometries with o = 1 are also called partial quadrangles. A semi-
partial geometry is a partial geometry if and only if the zero in axiom (3) does not
occur; this is equivalent to the condition p1 = (¢ 4+ 1)a. This gives the following
diagram, where ‘—’ indicates ‘generalises to’:

generalised quadrangle ———  partial geometry

l !

partial quadrangle =~ ——— semi—partial geometry

Theorem 5.141. Let S = (P, B,1) be a semi-partial geometry with parameters
Syt A, and with |P| = v, |B| = b. Then

D o(t+1)=>b(s+1);
Hov=14+10+8s(1+t(s—a+1)/p).

Proof. Counting the ordered pairs (P,[), with P € P, | € B, P 1, in different
ways gives
v(t+1)=b(s+1).

Now, counting the ordered triples (P, P’, P"), with P, P, P” € P and P ~ P/,
P A P", P’ ~ P”, in different ways gives

v(it+ Dst(s+1—a)=v(w—(t+1)s—1)u;
this implies the result. ad
Corollary 5.142. Both the following are integers:
stt+1)(s+1—a)/p, stlp+(E+1)°(s+1—a)/(uls +1)).
Proof. This follows from the fact that v and b are integers. O

Theorem 5.143. For oo # s + 1,
(i) « divides st(t + 1) and st(s + 1);
(1) « divides u;

(iii) o divides pst;
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(iv) o2 divides t(a(t + 1) — p);

WM a2 <pu<alt+1).
Proof. For any non-incident point-line pair (P, 1), the symbol [P,{] is the number
of points collinear with P and incident with [. For any line [, let v; be the number
of points P for which [P,l] = «; for any point P, let bp be the number of lines !
for which [P, 1] = «. For a fixed line [, the following set is counted in two different

ways:
{(PI)|PeP,I'eB, PYl, P1I', I ~1'}.

This gives v; & = (s + 1)ts, and so « divides st(s + 1). Similarly, for a fixed point
P, the following set is counted in two different ways:

{(P',I)|P'eP,1€B, PYl, P'1l, P~P'}.

This gives bp a = (t + 1)st, and so « divides st(t + 1).

Let P and P’ be two non-collinear points. Then the number of lines [ for which
P1Iland [P’ l] = ais /. Therefore « divides p.

Consider again two non-collinear points P and P’. Let

B={l|leB, PYl, P'YIl, [Pl =a, [P,]=0}.
Now count in different ways the following set:
{1, eB, PYl, PPYl, PTI', I~ [P 1] =0}
Since there are p1/« lines I’ with P 11" and [P’,1'] = a, so
Ba = (t+1— p/a)s(t — p/a) + (u/a)(s — a)(t + 1 - p/a)
= ((t+ Do —p)(st — p)/a.

Since « divides p and also st(t + 1), so a? divides pst.
Now consider two distinct collinear points P and P’. Then the set

{I|leB, PYl, P'YI, [Pl =a, [P,] =0}

has size
ts+1—a)(t+1—p/a)/a
Since « divides all three of p, st(t + 1), ust, so a? divides t(a(t + 1) — p).
Finally, let P and P’ be two non-collinear points. The number of lines | with
P1lland[P,l] = ais p/a. Hence u/a < t + 1. Equality occurs if and only if S
is a partial geometry. Let P I m, P’ Tm’, m ~ m/. Since [P,m’] = a, there are at
least « lines [ with P I and [P’,l] = «. Therefore a < i/ cv. O

If « = s+ 1,then Sisa2-(v,s+ 1,1) design.

Theorem 5.144. If S = (P, B,1) is a semi-partial geometry with parameters s, t,
wand with o # s + 1, then
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Q) D= ta—1)+s—1—p)2+4((t+1)s — ) is a square, except in the case
s=t=a=pu=1whereS is a pentagon and D = 5.
(i) [2(t + 1)s 4+ (v = 1)(tH(a — 1) + 5 — 1 — p+ DY?)]/(2D/?) is an integer.

Proof. LetE = {{P,P'} | P,P' € P, P ~ P’}. Then (P, £) is a strongly regular
graph with the following parameters:

v=14+14+t)s(1+t(s—a+1)/n),

k=mny=st+s,
/\zph:t(a—l)—ks—l,
p=Dpi = p

The graph (P, £) is the point graph of the semi-partial geometry.

Let P = {P1,P,...,P,} and let A = [a;;] be the v x v matrix over R for
which a;; = 0if i = j or P; » Pj and a;; = 1 if P; ~ Pj; thatis, A is an adjacency
matrix of the graph (P, &). If A% = [¢;;], then

(@) ci=(t+1)s;
(b) i # j and P; ~ P; imply that ¢;; = pu;
(c) i # jand P; ~ P; imply that ¢;; = t(a— 1) +s— 1.

So
A2 —(tla—1)+s—1—p)A— (st +1) — ) = pJ, (5.18)

where I is the identity matrix and .J is the all-one matrix.
The matrix A has an eigenvalue s(¢ + 1), whereas J has an eigenvalue 0 with
multiplicity v — 1 and v with multiplicity 1. Since

(s(t+ 1)) = (Ha— 1) + 5 — L — w)s(t +1) — (s(t + 1) — ) = v,

the eigenvalue s(t + 1) of A corresponds to the eigenvalue v of .J, and so s(¢ + 1)
has multiplicity 1. The other eigenvalues of A are roots of the equation

2 — (Ha—1)+s—1—pa—(s(t+1) —p) =0. (5.19)
Denote the multiplicities of these eigenvalues 61, 3 by m1, ms. The discriminant
D=ta—-1)+s—1—p)?+4(s(t+1)— p).
If D=0,then,as pu < (t + 1) < (t + 1)s, s0
tla—1)+s—1—pu=s(t+1)—pu=0;

hence t(o — (s + 1)) = 1, a contradiction. Therefore D # 0 and so 6, # 6. From
(5.19),

01 = (t(a —1)+s—1—p+ DY?)/2,
0y = (t(a —1)+s—1—p— DY?)/2.
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Since 1 +mq + mo = v and s(t + 1) + m1601 + maby = > a;; =0, so
mo = (2(t+1)s+ (v — D)[t(e — 1) + s — 1 — p+ D'Y?))/(2D/?).
It follows that
2(t+1)s+ (v —Dt(a —1) +s — 1 — u+ DV?]))/(2D'/?)

is an integer.
Now suppose that D is not a square. Then, as my is an integer,

2+ 1)s+ (v—=1t(a—1)+s—1—pu] =0. (5.20)
Since (v — 1) > (t+1)s, so
O<p—tla—1)—s+1<2.
Hence it = s + t(a — 1). From (5.20),
v=2(t+1)s+1. (5.21)

By Theorem 5.141,

v=1+4(t+1)s (1 n ’;(_:(Z J_r B) . (5.22)
From (5.21) and (5.22), it follows that
a=1+s(t—1)/(20). (5.23)
Hence
= s(t+1)/2. (5.24)

From (5.23), 2t divides s(t — 1); so ¢ divides s. Since p < «a(t + 1), so s < 2t by
(5.23) and (5.24). Since t divides s, so s € {t,2t}.

First, suppose s = 2t. Then o = ¢ and p = (¢t 4 1), which in turn implies that
D = (1 + 2t)?, a contradiction since D is not a square.

Sos=t a=(t+1)/2and u = t(t + 1)/2. By Theorem 5.143, o divides
ust, and so t + 1 divides 2t3; hence t = 1. Consequently,

This means that S is a pentagon. a

Theorem 5.145. If S is a semi-partial geometry, but not a partial geometry, then
b> .
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Proof. Let S = (P, B,1) be a semi-partial geometry with parameters s, ¢, v,  and
assume that S is not a partial geometry; so p < «(t + 1).

Let P = {P,P,...,P,} and B = {l3,ls,...,l;}. The corresponding adja-
cency matrix of the point graph of S is denoted by A = [a;;]. Let M = [my;] be the
v x b matrix over R for which m;; = 0if P; ¥l; and m;; = 1if P; 11;; thatis, M is
an incidence matrix of the geometry S. It follows that

MM* = (t+1)I + A. (5.25)

Suppose that v > b. As rank M < b, so rank M M* < b. Therefore the v X v matrix
M M* is singular, whence — (¢ 4 1) is an eigenvalue of A. Then, by (5.19),

(t+1)% 4+ (ta—1)+s—1—p)(t+1)— (s(t+1)—pu) =0,

which is equivalent to ¢(u — «(¢t 4+ 1)). Hence 1 = «(t + 1), and so S is a partial
geometry, which is a contradiction.
Hence, if S is not a partial geometry, then b > v. O

Theorem 5.146. The dual of a semi-partial geometry S is a semi-partial geometry if
and only if S is a partial geometry or v = b. If v = b, then S and its dual S have the
same parameters.

Proof. Let S = (P, B,1) be a semi-partial geometry with dual S.

Suppose that S is also a semi-partial geometry. If S is not a partial geometry,
then S is not a partial geometry. By Theorem 5.145,b > v and v > b. Hence S is a
partial geometry or v = b.

If S is a partial geometry, then S is a partial geometry and consequently also a
semi-partial geometry. Now suppose that S is not a partial geometry, but let b = v.
With the notation of Theorem 5.145, since u # «(t + 1), so —(¢ + 1) is not an
eigenvalue of A. Hence M M™ is non-singular, as is the v X v matrix M. By (5.25),

M* = (s+1)M '+ M A,
as b = v and so s = t. Hence
M*M = (s+1)I + M~ *AM.

Let M~'AM = B = [b;;]. Then b;; + s + 1 is the number of points incident with
l;3 so bj; = 0. Further, b;;, for ¢ # j, is the number of points incident with /; and
l;. Hence B is an adjacency matrix of the point graph of S. Also B? = M 1A% M;
hence, by (5.18),

B? = (sa—1—p)B+ (s(s+1) — p)I + puM " JM.
Since MJ = JM = (s+1)J,s0
B*=(sa—1—p)B+ (s(s+1) — p)I + puJ. (5.26)

Let B2 = [d;;]; then, by (5.26), d;; = p for l; »~ 1. As
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v
dij = Y birbjr,
r=1

so d;; is the number of lines [, with [; ~ [, ~ [;. It follows that S is also a semi-
partial geometry with the same parameters as S. a

A list of some of the known (0, «)-geometries and semi-partial geometries is
now given.

Example 5.147. (a) Let O be an ovoid of PG(3, ¢), ¢ > 2, or an elliptic quadric of
PG(3,2). Suppose that PG(3, ¢) is a hyperplane of PG(4, ¢). The points of S are
those of PG(4, ¢)\PG(3, ¢q). The lines of S are the lines of PG(4, ¢) that contain a
point of O but are not contained in PG(3, ¢). Here, I is the incidence of PG(4, q).
Then S is a partial quadrangle with parameters

s=q—1, t=¢* a=1, p=¢—q

(b) Consider a subgeometry PG(2, q) of the plane PG(2, ¢%) and suppose that
PG(2, ¢?) is a plane of PG(3, ¢?). The points of S are those of PG(3, ¢%)\PG(2, ¢?)
and the lines of S are the lines of PG(3, ¢?) that contain a point of PG(2, ¢) but are
not contained in PG(2, ¢?). Here, L is the incidence of PG(3, ¢?). Then S is a semi-
partial geometry with parameters

s=q¢" =1, t=qlg+1), a=q, p=qlg+1)
(c) Let U be a Hermitian arc in PG(2, ¢?). With the same construction as in (b),
a semi-partial geometry is obtained; its parameters are

s=q¢*-1, t=¢ a=q p=q¢-1).

(d) Let II,,_o be an (n — 2)-dimensional subspace of PG(n,q), n > 3. The
points of S are the lines of PG(n, ¢) skew to II,,_s. The lines of S are the planes
of PG(n, ¢) meeting II,,_5 in a point. Incidence here is inclusion. Then S is a semi-
partial geometry with parameters

s=¢ -1, t=¢"?+¢"3+ - +q a=gq p=qlg+1).

(e) Let P be the set of all lines in PG(n, ¢), n > 3, let BB be the set of all planes
in PG(n, ¢), and let I be inclusion. Then § = (P, B,1) is a semi-partial geometry
with parameters

s=qlg+1), t=q¢"+¢" %+ 4q a=q+1, p=(¢+1)°

(f) Let U be a non-singular Hermitian surface in PG(3, ¢?). Points of S are the
points of PG(3, ¢?)\U; lines of S are the 1-secants of I/ and incidence is the natural
one. Then S is a semi-partial geometry with parameters

s=q¢>—1, t=¢* a=q+1, u:q(q—i—l)(qz—l).
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(g) Let Q be an elliptic quadric of PG(5, ¢). Let P be a point off Q and let 11,
be a hyperplane not containing P. The projection of Q from P onto I14 is denoted
by Q’. Also, let Q" be the set of points P’ of Q' for which PP’ is a 1-secant of Q.
If g is odd, then Q" is a non-singular quadric of Il4; if ¢ is even, then Q" is a solid
of IIy. Let P = Q'\Q”, let B be the set of all lines of I, that are contained in Q'
but not in Q”, and let I be the incidence of I14. Then S = (P, B, 1) is a semi-partial
geometry with parameters

s=q—1, t=¢* a=2, p=2qq-1).
For g even, see also Section 2.6.

(h) Let U be a non-singular Hermitian surface in PG(3, ¢?), and let [ be a fixed
line of . The points of S are the points of 2/\/; lines of S are the lines of U not
meeting [ and incidence is containment. Then the dual of S is a partial quadrangle
with parameters

s=q—1, t=¢* a=1, p=¢—q

(i) Let V be a set with h elements, h > 4, let Vo = {T' C V | |T'| = 2}, and let
Vs ={T C V| |T| = 3}. If Lis inclusion, then Sy, = (V2, Vs,1) is a semi-partial
geometry with parameters

s=a=2, t=m-3, p=4

() Let M be an (n + 1) x (n + 1) skew-symmetric matrix over Fy with n > 2;
then rank (M) = 2k with & > 0. The mapping ¢ from PG(n, ¢) to its dual defined by
M is a null polarity when M is non-singular. The subspace of PG(n, ¢) containing
all points having no image with respect to ( is the radical R of (; it has dimension
n — 2k.

The points of S are the points of PG(n,q)\R. The lines are the lines [ of
PG(n, g)\'R for which ! ¢ I{ whenn > 3 and I{ ¢ [ when n = 2. The incidence is
the natural one. Then S = (P, B,1) is a (0, a)-geometry with parameters

s=a=¢q, t=q¢"'-1

This geometry is denoted by W (n, 2k, q).

When k = 1, then W (n, 2k, ¢) is the dual net H(? introduced in Section 5.6; see
also Section 5.7. When 2k = n + 1 and so n is odd, then this is the case of the null
polarity. Here, W (n,n + 1,q) is a semi-partial geometry with 1 = ¢" (g — 1),
and is also denoted W (n, q). In all other cases, W (n, 2k, ¢) is not a semi-partial
geometry; that is, it is a proper (0, a)-geometry.

(k) Take a quadric Q in PG(n,2), n > 3, and suppose that Q is not one of the

following:
(l) anl;
(2) Hn—l ] H;Lfl, Hn—l 7é Hzfl;

(3) H3 in PG(3,2);
A Hp—aHs, n > 4.
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Let B be the set of lines skew to Q, let P be the set of points of PG(n,2) on at
least one line of B, and let I be the natural incidence. Then S = (P, B,1) is a (0, 2)-

geometry.
Ifn = 2d—1and Q@ = &, then S is a semi-partial geometry, denoted by
NQ™(2d — 1, 2) with parameters

s=a=2 t=2%3121"2 1 =923 4 od-l
Ifn = 2d —1and Q = H,, then § is a semi-partial geometry, denoted by
NQ™(2d — 1,2) with parameters
s=a=2 t=2%"3_92i=2_ 1 ;=923 _gd-l

Ifn = 2d and Q = P, then S is a semi-partial geometry, denoted by NQ(2d, 2)
with parameters
s—a=2, t=2922"2_1 —9%1_o92-2
In all other cases, S is a proper (0, 2)-geometry.
() Let Q = Hz in PG(3,2"), h > 2. Let B be the set of lines skew to Q, let P
be the set of points of PG(3,2")\ Q and let I be the incidence of PG(3,2"). Then
S = (P, B,1) is a proper (0, 2"~1)-geometry NQ*(3,2") with parameters

s=2" =297l _9oh"1_ 1

(m) Let Q@ = &5 in PG(5, q), ¢ odd. Let P be a subset of Q which meets every
line of Q in % (¢ + 1) points. Let B be the set of lines of Q and let I be the incidence
of PG(5,¢). Then S = (P, B, 1) is a partial quadrangle with parameters

Ya-1), t=¢* n=1Lg-1>%

For each odd ¢, at least one example is known.
(n) For the parameter sets in the following table, there is at least one semi-partial
geometry:

S =

s t @ 0 Conditions
1 r—1 1 r=2,3,7
6 6 6 36
1 9 1 2
1 15 1 4
1 21 1 6
2 10 1 2
2 55 1 20
3 7 1 14
qm+1 -1 qm+2 qm qm+1(qm+1 _ 1) q= 2h’ m >
g" —1

gttt 2! 2¢" (¢ — 1) q=p", m=2;
m
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5.9 Embedded (0, a)-geometries and semi-partial geometries

A projective (0, «)-geometry or semi-partial geometry S = (P, B,1) is a (0, «)-
geometry or semi-partial geometry whose point set P is a subset of the point set
of some PG(n,¢) and whose line set B is a set of lines of PG(n, q). Also, S is
embedded in PG(n, q). If PG(n/, q) is the subspace of PG(n, ¢) generated by the
points of P, then PG(n’, q) is the ambient space of S.

A (0, a)-geometry or semi-partial geometry embedded in PG(2, q) is a partial
geometry. As these were classified in Section 5.7, the dimension of the ambient space
is now taken to be at least 3.

Let S = (P, B,1) be a projective (0, «)-geometry or semi-partial geometry with
parameters s, ¢, «, where o > 1, and with ambient space PG(3, s). Consider a pair
I, of intersecting lines and let 7 = [{’. The points and lines of S in 7 constitute a
partial geometry S(m) with parameters s(7) = s, t(7) = a—1, a(m) = «, together
with m(7) isolated points, where a point P of S in 7 is isolated if no line of S
through P is contained in 7. By Theorem 5.135, there are the following possibilities
for S(m).

(a) The parameter & = s + 1 and S(7) is the 2-(s? + s + 1,s + 1,1) design
formed by all points and lines of .

(b) The points of 7 not in S(7) form a maximal (sd — s + d; d)-arc K(m) of m,
with s even, d = s/, and 2 < d < s. The lines of S(7) are the lines of 7 not
meeting IC(7).

(c) The parameter o« = s and 7 contains exactly one point P(7) which is not in
S(m). The lines of S() are the lines of 7 not containing P ().

Lemma 5.148. (i) The number m = m(r) of isolated points in 7 is independent
of the choice of .
(ii) The number of lines in S is

b=a'(sa—s+a)(s+1)(t+1)—as|+m(t+1), (5.27)
and the number of points of S is
v=[at+1)] Hs+1)(sa—s+a)(s+1)(t+1)—as] +m(s+1). (5.28)

Proof. The number of points of S(r) is (s + 1)(sa — s + «)/« and the number of
lines is s« — s + a. The number of lines of S containing exactly one point of S()
is (t+1—a)(s+ 1)(sa — s+ a)/a and the number of lines of S containing an
isolated point in 7 is (¢ 4+ 1)m(7). Hence

b=sa—s+a+ta (t+1—a)(s+1)(sa—s+a)+mr)(t+1),

giving the result. So m = m(r) is independent of the choice of 7.
Counting the number of ordered pairs (P,l), with P € P, | € B, PIl, in
different ways shows that |P|(t + 1) = |B|(s + 1), from which (5.28) follows. O

Lemma 5.149. With respect to S, there are three possible types of planes in the
ambient space PG(3, s):
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(A) those containing sac — s + « lines of S and
pa=0a (s +1)(sa—s+a)+m (5.29)

points of S;
(B) those containing exactly one line of S and

pp=s+1+[at+1D)]  s(s+1)t+1—-a)a—1)+m (5.30)

points of S;
(C) those containing no line of S and
pe = [t + 1) Hsa—s+a)[(s+1)(t+1)—as]+m (5.31)
points of S.

Proof. Let 7 be a plane of the ambient space PG(3, s).
If 7 contains at least two lines of S, then the points and lines of S in 7 constitute
a partial geometry S(7) with parameters

s(my=s, tm)=a—-1, alr)=q,

together with m isolated points. Hence 7 contains sae— s+« lines of S and p, points
of S.
Next, suppose that 7 contains exactly one line of S. Then, with p}, the number of
points of S in 7,
b=1+(s+1t+(pp—s—1)(t+1).

So, by Lemma 5.148, py, is as stated.
Finally, suppose that 7 contains no line of S. If p. is the number of points of S
in 7, then
b=pc(t+1).

Again, Lemma 5.148 gives the result. O

Corollary 5.150. If there is at least one plane of type (B) and at least one plane of
type (C), then t 4 1 divides s.

Proof. From the theorem, (¢t + 1)(p1, — p.) = s, whence the result. O

Theorem 5.151. If S = (P, B,1) is a projective semi-partial geometry with param-
eters s, t, a, u and with ambient space PG(3, s), then one of the following holds:

(@) a = s+ 1and S is the 2-((s*> + 1)(s + 1), s + 1, 1) design formed by all points
and lines of PG(3, s);

(b) o = 1 and S is a classical generalised quadrangle;

(c)a=sand S = HZ;

(d)a=sand S =W (3,s);

@a=s=2andS =NQ (3,2).
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Proof. If S is a partial geometry, then Theorem 5.135 gives one of the first three
cases.

So, suppose that S is not a partial geometry. Then © < (¢ + 1)« and, from
Theorems 5.143 and 5.145, o < pand |[B| = b > |P| = v. So b(s + 1) = v(t + 1)
implies that ¢ > s. By Theorem 5.143, « divides p, and so o < (t + 1)« implies that
n < at.

Let « = 1. Then, by Theorem 5.141,

v=1+ (1+1t)s(1+ts/u).

Hence v < 3+ 8%+ s+ 1 implies p(s? +s—t) > st(t+1). Since p < t, it follows
that st(t +1) < t(s?+s—t)andsot < s—1+1/(s+ 1) < s, a contradiction.
Hence a # 1.

For the next step, let « = s + 1. From the connectedness of S, it follows that S
is a 2-(v,s+ 1, 1) design, a contradiction since S is not a partial geometry. Hence
« # s+ 1. As there is always a plane of type (A), either s = o or s = 2",

Now suppose that there is a plane of type (C). The number of points of S in 7 is
pe =v/(s+1). Let P be a fixed point of S in 7, and count in different ways the set

{(P",P")| P',P" € P\{P}, P" € x, PP',P'P" € B}.

This gives
(pe = Dp=(t+1)st, pc=1+(t+1)st/pu,
and so
v=s+1+(s+1)(t+1)st/pu. (5.32)
By Theorem 5.141,
v=1+1Q+t)s(l+t(s—a+1)/n). (5.33)

From (5.32) and (5.33), it follows that 4 = (¢ + 1), a contradiction. Consequently,
there is no plane of type (C).
From (5.28),

v (sa —s+a)(s+1)(t+1) — as]

- - 34
m s+1 a(t+1) ’ (5:34)

with v given by (5.33).

Let P, P! € P with P # P" and PP’ ¢ 3, and let 7 be a plane containing PP’.
If 7 is of type (B), or if 7 is of type (A) with at least one of P, P’ isolated in T,
then 7 does not contain a point P € P\{P, P’} with PP” and P'P" in B.If 7 is
of type (A) and neither P nor P’ is isolated in 7, then 7 contains exactly o points
P" € P\{P, P’} for which PP"” and P'P" are lines of . Considering all planes
through PP, it follows that a2 divides .

Now suppose that all planes of PG(3, s) are of type (A). Counting all points of
P in all planes through a given line [ of B,
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v=s+14(s+1)(pa—s—1), (5.35)
with p, given by (5.29). Hence

m= U _GtDla—sta) (5.36)
s+ 1 «

From (5.34) and (5.36), it follows that

t=(s+1)(a—1). (5.37)
Counting in different ways the set { (P, 7) | P € P, m a plane through P},

v(s? +s+1)= (s> + 5%+ 5+ 1)pa. (5.38)

Eliminating p, from (5.35) and (5.38) gives

v=(s"+1)(s+1),
and so P = PG(3, s). Now, from Theorem 5.141 and (5.37),

w=(a—1)(sa—s+ ).

Since « divides p, it divides s. Let s = ph and o = p", with p prime and r < h.
Since o2 divides 1, so p?" divides p"*" — p" +p", whence p" divides p" — p" " + 1.
Hence h = r, which means that s = . So

s=a, t=a’-1, p=ac*(a—1), m=1.

So any plane contains exactly one point P(7) not in P, and the lines of B in 7 are
the lines not containing P (). Therefore the structure S’ consisting of all points of
PG(3, s) and all lines of PG(3, s) not in B is a projective generalised quadrangle.
By Theorem 5.51, S’ is a classical generalised quadrangle; so, since PG(3, s) is the
point set of &’, the structure S’ is the generalised quadrangle W(s) arising from a
null polarity of PG(3, s). Thus S is the semi-partial geometry W (3, s).

Next, suppose that there is at least one plane 7 of type (B). Let [ be the unique
line of B in 7. Fix a point P on [ and count in different ways the set

{(P',P")| P',P" € P\{P}, P" € n\l, P' ¢ =, PP',P'P" € B}.

This gives
(pp—s— Dp=tst+1—a). (5.39)

Now fix a point ) in 7\, and count in different ways the set

{@,Q")Q,Q"eP\{@}, Q" e m\{Q}, Q" ¢ 7 QQ',Q'Q" € B}.

Hence
(pp — D) = ts(t +1). (5.40)
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From (5.39) and (5.40), it follows that ;x = «t. Hence
pp=a ts(t+1)+1,
and, from Theorem 5.141,
v=1+a ts(t+1)(s+1).

Eliminating ¢ gives
v=1+(pp—1)(s+1). (5.41)

Count in different ways the set
{(R,7)|RePnm, reB\{l}, Rer};

this gives
b—1=(s+1)t+ (pb —s—1)(t+1).

Since v(t 4+ 1) = b(s + 1), it follows that

_ (s+1)(st+t+1)

b1 + (pp — 5 —1)(s + 1). (5.42)

From (5.41) and (5.42), it follows that s = t. By Theorem 5.144, either
D=1+4s(s+1—a)

isasquareor D =5.Since l < a < s+1,s01+4s(s+1—a)>5,andsoDisa
square. Consequently, there exists a positive integer g for which

s(s+1—a)=g(g+1).
As s is a prime power, it divides either g or g + 1. Hence
g+l>s>s+1—-—a>g.
It followsthat s + 1 —a =g, s = g + 1, a = 2. Therefore
s=t, a=2 pu=2t D= (2s—1)%
Also, since o divides W80t =s5= oh, By Theorem 5.144, 2v/D divides
2t+1)s+ (v —1)(ta—-1)+s—1—p+ VD),

and so 2"+ — 1 divides (2" + 1)(22" + 1)2"~1. Hence h € {1, 3}. This gives two
cases:

D s=t=a=2, u=4
) s=t=8, a=2, u=16.
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Case (I). Here v = 10. Now, from (5.34), (5.29) and (5.30),
m =0, pa:67 pb:4

Since there are no planes of type (C), no three points of @ = PG(3,2)\P are

collinear. Hence Q is a 5-cap of PG(3, 2). Since p, = 6 and p, = 4 so any plane of

PG(3,2) contains one or three points of Q. Therefore Q is an elliptic quadric and B

consists of the 10 external lines of Q. So it has been shown that S = NQ (3, 2).
Case (II). Here v = 325. Now, from (5.34), (5.29) and (5.30),

m=0, p,=45pp=37.

Let 7 be a plane of type (B), let [ be the line of 5 in 7, and let K be the set of the
28 points of P in 7\l. If P, P’ are distinct points of &, then, since p > 0, it follows
that there is at least one plane 7’ of type (A) through PP’. Since 7’ is of type (A)
and m = 0, the line PP’ contains five points of 7/ N P. Since PP’ contains exactly
one point of [, it contains four points of . Hence K is a maximal (28;4)-arc of 7.
Therefore each line of PG(3, 8) has 1,5 or 9 points in P. In fact, from Section 19.4
of FPSOTD, P is a non-singular 285 5 s of PG(3,8). Then, from Theorems 19.4.8
and 19.4.9,v = (8%/2) + 82 + 8 + 1 = 329, contradicting that v = 325. So this case
cannot occur. O

Theorem 5.152. Let S = (P, B,1) be a (0, «)-geometry with parameters s,t, q,
which is projective with ambient space PG(3, s). If m = 0, then one of the following
holds:

(@) = s+ 1and S is the 2-((s®> + 1)(s + 1), s + 1, 1) design formed by all points
and lines of PG(3, s);

(b)a=sand S = HZ;

©a=s=2andS =NQ (3,2).

Proof. From the definition of a (0, «)-geometry, o > 1.

Suppose that all lines of some plane 7 of type (A) belong to 53; then o = s + 1.
It follows that all lines of each plane of type (A) belong to B. Let [ be a line of 5
not contained in 7. If N7 = P, and if [1, 1o, ..., 541 are the lines of 7 through P,
then all lines of the plane [/; through P belong to B, fori = 1,2,...,s + 1; hence
t = s?+s.From (5.27),b = (s2+1)(s*>+s+1) and, from (5.28),v = (s?+1)(s+1).
This gives (a).

Now suppose that, in each plane of type (A), there is at least one line not in .
Then either s = o or s = 2. Let 7 be a plane of type (A) and let [ be a line of 7
which does not belong to B. Since m = 0,s0 |l N P| = (sa — s + «)/c. Let 7 be
the number of planes of type (A) through /. The number of lines of 5 containing a
point of [ and contained in a plane of type (A) through [ is 7(sar — s 4+ «). Hence the
number of planes of type (B) through [ is

t+1)(sa—s+a)/a—T(sa —s+a)=(sa—s+a)t+1—7a)/a. (5.43)
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From (5.43),t+ 1 > 7. Since the number of planes of type (B) through [ is at most
s+1—17,5s0
(sa—s+a)t+1l—T1a)/a<s+1-—7. (5.44)

This inequality is equivalent to

1 t+1

t+1— <1 — .
e Tes T s+

(5.45)
Hence 0 <t+1—7a<1,andsoeithert+1=71aort = Ta.

Let ¢t +1 = 7a. Then the number of planes of type (B) through [ is zero. By
way of contradiction, assume that S contains at least one plane 7’ of type (B). Let I’
be the line of B in 7. Also, let 7 be a plane of type (A) not containing I’, and let
7" N’ =1". Since I” ¢ B, it is contained in no plane of type (B), a contradiction
since 7’ is of type (B). Consequently, there are no planes of type (B). Therefore S is
a partial geometry, whence, by Theorem 5.135, (b) follows.

Next, let t = 7. Then, by (5.44), s > t. Let 7 be a plane of type (A) and let P
be any point of S in 7. Now count in different ways the number 7 of ordered pairs
(7', I') with 7" a plane of type (B) having its line of S through P and with I’ = 7N~’
not in B. Since there are ¢/(« — 1) planes of type (A) through a given line of S and
thus s + 1 — t/(a — 1) planes of type (B) through that line, so

n=0t+1—-a)s+1—-t/(a—1)]. (5.46)

For a given line I’ ¢ B of m through P, the number of lines !’ of B through P, for
which I'l” is of type (B),is t + 1 — 7w = 1. Hence

n=s+1-a. (5.47)
From (5.46) and (5.47),
st+l—a=(0Ct+1-a)s+1—¢t/(a—1). (5.48)

Since s > t,
stl—a>@t+1—-a)s+1—-s/(a—1)],

which is equivalent to

a—a2+s

t+l—a<l+ (5.49)

as+a—2s—1"
Sincet = Ta, s0t + 1 —a > 1and o — a? + s > 0. However,
(@ —a®+s)/(as+a—2s—1)>1

if and only if @« = 2 and s > 3. This means that ¢ = o« whenever o # 2. But since
there are t/(a — 1) planes of type (A) through a given line of S, the case o # 2 and
t = « cannot occur. Therefore « = 2. Then (5.48) becomes (s — t)(t — 2) = 0.
Consequently s =t ort = 2.
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Now suppose that « = 2 and s = ¢. Since m = 0, the dual of S is a semi-partial
geometry S* with parameters

s =t, t'=s, o=« p"=at/(la—1).

Here, s* = t* and so, by Theorem 5.146, S is also a semi-partial geometry. Now,
Theorem 5.151 with s = ¢t and o = 2 gives S = NQ~ (3, 2).

Finally, let « = 2 and t = 2; then 7 = 1 and s = 2". Let 7 be a plane of type
(A) and let [ be a line of = which does not belong to B. It was shown that the number
of planes of type (B) through [ is 1 + s/2. If there is at least one plane of type (C),
then, by Corollary 5.150, 2" is divisible by 3, a contradiction. So there are no planes
of type (C). It follows that each of the planes through [ is either of type (A) or of
type (B), and so 2 + s/2 = s + 1, whence s = 2. Again s = t and @ = 2 and so
S=NQ (3,2). ad

Theorem 5.153. Ler S = (P, B,1) be a (0, «)-geometry with parameters s,t, q,
which is projective with ambient space PG(3, s). If m # 0, then there is no plane of

type (B).

Proof. Suppose that there is at least one plane of each type. The total number of
planes of type (A) is

bt

(a=1)(sa—s+a) (5:50)

By (5.27), this is

1 t
[a(é((s—&-l)(t—&—l)—as)) —&-m(t—&—l)} (a—1)5 (5.51)
with § = sa — s + . The number of planes of type (B) is

b(s+1—tla—1)"1). (5.52)

By (5.27), this is
[;(5((5 +1)(t+1) —as)) +m(t+ 1)} (s+1—tla—1)"1). (5.53)

The total number of planes of type (A) and (B) is at most (s? + 1)(s + 1). Adding
(5.51) and (5.53) gives

[ ' (6((s+1)(t+1) —as) +m(t+1)] (s+1)(6 —t)/s
<(sP+1)(s+1), (554

a Y (s+1)(t+1) —as)(sa —s+a—t)

t

+m(t+1) (1—
s — S+ «

> <s’4+1. (555)

Asm # 0, aline [ of the plane 7 of type (A), which does not belong to 3, exists; so
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INP|=(sa—s+a)lao.

Hence « divides s. By Corollary 5.150, ¢ + 1 divides s. Since « < ¢t + 1 and s is a
prime power, so « divides ¢ + 1.
As, by assumption, there is at least one plane of type (B), so, by (5.52),

t<(a—1)(s+1). (5.56)

Hence

m(t+1) (1 - > 0. (5.57)

By (5.55) and (5.57),

t >> m(t+1)

sa— S+« s — S+«

a s+ 1)(t+1) —as)(sa—s+a—t)<s®+1,
which is equivalent to

as(a+ s) as(t+1)

atas—t—1— 5.58
t+s (s+1)(t+s) (5.58)
From this it follows that
t+ 1+ asa+ ) > as,
t+s
tit+1)+ st +a* —at+1) > 0. (5.59)

Note thatt + a2 —at+1 < Oifand only if t > a+ (a+1)/(a—1). Let [, I, 1"
be distinct non-coplanar lines of 5B through P in P. The « lines of B in [l’ through
Parel =1y,l' =13,l3,...,ly. A count of the lines of B through P in the « planes
I"l; shows thatt > o? — . If @ > 3, thena® —a > a + (o + 1)/(a — 1) and
t+ao? —at+1<0.So, from (5.59),

tt+1)

. 5.60
ot—a?2—t—-1 ( )
Since ¢t + 1 divides s, so t + 1 < s; then, from (5.60),

(0 —2)t < a? +1. (5.61)

Previously it was shown that o divides ¢ + 1; so ¢ > o — v implies that t > o? — 1.
Hence, from (5.61), (o — 2)(a? — 1) < o + 1, whence @ < 3 and so « € {2, 3}.

Suppose that o = 3. From (5.61), ¢t < 10; since ¢t > o —a,s0t > 6. As o and
t+1divide s, sot = 8. From (5.59), s < 12 and so s < 9. This gives a contradiction
as s # « implies that s = 2"

Next, let « = 2 and ¢t = 3. From (5.58), s < 3, a contradiction since ¢ + 1 divides
s.

Finally, let « = 2 and t # 3. Since « divides ¢t + 1, so ¢ > 3. As « divides s,
so s = 2" Ast + 1 divides s, so t > 7. With s = (t + 1)r, (5.59) implies that
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(r—1)(t —5) < 5.Sincet > 7Tandr = 2%, sor € {1,2}.1f r = 1,thens =t + 1
and (5.58) gives t(t — 1) < 4, contradicting that ¢ > 7. If r = 2, then s = 2(¢ + 1)
and (5.59) gives t < 10. Hence s = 16 and ¢t = 7, contradicting (5.58). Thus planes
of type (B) and (C) cannot both occur.

Suppose that there are no planes of type (C), but at least one plane of type (B).
Then, by (5.52),

t<(a—1)(s+1). (5.62)

The total number of planes of types (A) and (C) is (s? + 1)(s + 1). Hence, from
(5.50) and (5.52),

s — S+ «

b(l— t ) =s2+1. (5.63)
From (5.63) and (5.27),

t(s?+1)

m(t+1): sa—s+a—t

+1-(s+1)s(t+1—a)
+(s+ Dt +1)(s/a—1). (5.64)

If all the points of PG(3, s) are elements of P, then p, = s2 4+ s+ 1 and so,
by (5.29),m = (s + 1 — a)s/c. Since v = (s? + 1)(s + 1), so (5.28) implies that
t = (o —1)(s + 1), contradicting (5.62). Hence PG(3, s) contains at least one point
which does not belong to P.

Let P € PG(3, s)\P, and let 7, denote the number of planes of type (B) through
P. Counting the pairs (7, 1), with I € B and = = [ P shows that

b=m,+ (s> +s5+1—1)(s0 — 5+ a),
and so, using (5.27),

mit+1)=—-m(s+1)(a—1)+ (sa—s+a)(s+1) x
(s—a l(t+1)+1). (5.65)

From (5.65), s + 1 divides m(t + 1); therefore, by (5.64), s + 1 divides
L+ [t(s* +1)/(sa — s +a —t)].
Hence s + 1 divides ¢ + 1. Since t + 1 < (s + 1)(a — 1), so
either t+1=(s+1)(a—1) or t+1<(s+1)(a—2). (5.66)

Let P’ € P. The number of planes of type (A) containing at least one line of 5
through P’ is t(t + 1)/[a(a — 1)]. The number of planes of type (B) having its line
of BB through P’ is

t+D[s+1—-t/(a—1)].

Since P’ is in exactly s 4 s + 1 planes, so

tt+1)/[ala -]+ E+D[s+1-t/(a—1)] < s> +s+1,
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which can be written as
t2 —t(as +a — 1)+ s%a > 0. (5.67)

The corresponding discriminant is D = (as + « — 1)? — 4s2a. So D < 0 if either
a=3ands >4ora =2 Whena =s=3and a > 4, then D > 0. Since m # 0,
it cannot be that « = s + 1 = 3; since o < s + 1, so « divides s and it cannot be
that « = 3 and s = 4.

There are now six cases to consider.

Casel: t+1<(s+1)(a—2),D>0,t>}(as+a—1++D)
From these inequalities,
sa—2s+a—2>t+1> as+a+1+ VD) (5.68)
s2(4 —a) 4+ 2s(5 —2a) +2(3 —a) > 0. (5.69)
If a > 4, then s2(4 — @) <0, 2s(5 — 2a) < 0, 2(3 — a) < 0, a contradiction. For

a=s=3,(5.68) becomes 4 > t+ 1 > 9, again a contradiction.
Consequently, D > 0 implies one of the following:

@t+1>(s+1)(a—2);
(b) t < S(as+a—1+ VD).

By (5.66), (a) is equivalentto ¢t + 1 = (s + 1)(a — 1); by (5.67), D > 0 and (b)
imply thatt < }(as+a —1— VD).

Case2: t< é(as—ﬁ—a—l—\/D), D>0,t>2s+1
From these inequalities,
4s+2<2At<as+a—1—+VD; (5.70)
s2(4—a)+3s(2—a)+2—a>0. (5.71)
If « > 4, then s2(4 —a) < 0, 35(2 —a) < 0, 2 — a < 0, a contradiction. If
a = s =3, (5.71) also gives a contradiction.

Thus D > 0andt < ! (as+a—1— /D) imply that ¢ < 2s + 1. Since s + 1
dividest +1,s0¢ = s.

Case3: t<l(as+a—1-+vD), D>0,t=s

From (5.64),
_os(s?+1)
m(s+1)= sa—2$+a+1_(8+1)8(8+1_a)
+(s 4+ 1)*(s/a — 1); (5.72)
ma(sa —2s+ a) = —s(a — 2)[(a —1)(s — a)(s + 1) + sa]. (5.73)

Since D > 0, so a > 2. Hence the left-hand side of (5.73) is positive and the right-
hand side is negative, a contradiction.
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Cased: t+1=(s+1)(a—1), D>0
Counting the planes of type (A) through a line of B shows that o — 1 divides ¢;
so o — 1 also divides ¢t + 1. Hence o = 2, contradicting that D > 0.

Caseb: a=2, D<0
From (5.62),t < s + 1. Since s 4 1 divides ¢ 4+ 1, so ¢t = s. Then (5.64) implies
that m = 0, a contradiction.

Case6: a=3,s5>4, D<0

From (5.62),t < 2s+2. Since s+ 1 dividest+1,s0t = sort = 2s+1.1f t = s,
then (5.64) is equivalent to (5.73), giving 3m(s +3) = —s(2(s — 3)(s+ 1) + 3s), a
contradiction. If t = 2s + 1, then (5.64) becomes 2m = —(2s2 + 55 + 3)/6, again
a contradiction.

The conclusion is that there are no planes of type (B). a

Corollary 5.154. Let S = (P, B,1) be a (0, «)-geometry with parameters s,t, o,
which is projective with ambient space PG(3,s). If m # 0, thent = (s +1)(a — 1);
if also there is no plane of type (C), then m = s(s —a + 1) /aand P = PG(3, s).

Proof. Suppose that m # 0. By Theorem 5.153, there is no plane of type (B). Now,
from (5.52), it follows that t = (s + 1)(a — 1).
If there is also no plane of type (C), then every plane is of type (A); so, from
(5.50),
bt

= (s? s .
(a—l)(sa—s+a)_( D+

Sob=(s2+1)(sa — s+ a)and v = (52 + 1)(s + 1). Now, by (5.28), the result
follows. n

Corollary 5.155. Let S = (P, B,1) be a (0, «)-geometry with parameters s,t, a,
which is projective with ambient space PG(3, s). If there is at least one plane of type
(B),thens =a=2and S = NQ(3,2).

Proof. By Theorem 5.153, m = 0. Now, by Theorem 5.152, S is either the design
formed by all points and all lines of PG(3,s) or S = H2 or § = NQ(3,2).
However, only N@Q~(3,2) admits planes of type (B). O

Theorem 5.156. Let S = (P, B,1) be a projective (0, «)-geometry with parameters
s, t, a, with ambient space PG(3,s) and with m = 1. Then one of the following
holds:

(@ a=sand S =W(3,s);

b a=s/2,s=2" h>1andS = NQT(3,s).

Proof. Suppose o # s; then s = 2", Now, count the number 7 of lines of PG(3, s)
containing exactly (saw — s + &)/« points of P. In a plane of type (A) there are

2 4s+1—(sa—s+a)—(s+1)=(s—a)(s+1)
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such lines. By (5.50) and Corollary 5.154, there are b(s + 1)/(sa — s + «) planes of
type (A). So, by (5.27), the number of planes of type (A) is

(s+D[(s+1)(s—s/a)+2].

If aline | ¢ B of PG(3, s) contains p points of P, then the number of planes of type
(A) containing L is p(t + 1)/(sa — s + a)) = p. It follows that

T=(s—a)(s+1)*[(s+1)(s — s/a) + 2]a/(sa — s + ). (5.74)
Hence sae — s + « divides the following:

(5 — a)(s + 1)?[(s + D)sa — 1) + 2a],
(s—a)(s+1)?a(s —1) = (s* —as + s —a)(as +a)(s — 1),
s3(s —1).

As o = 2F, with 0 < k < h, so 2"k — 2P 4 2F divides 237 (2" — 1), and so
2h — 2h=Fk 4 1 divides 23" F(2" — 1). Since (2" — 2"F 4+ 1,23 F) = 1, s0
20 — 2h=k 4 1 divides (2" — 1); therefore 2" — 2"=% + 1 divides 2"=% — 2. If
2h=k £ 9 then 2" — 2"=F + 1 < 2"=%F _ 2 implying that 2" — 2"=*+1 < 0; so
a = 2F < 2, a contradiction. Hence 2"~* = 2, whence o = s/2. Thus either a = s
ora = s/2.

Assume that o« = s; thent = s> — 1. By (5.27) and (5.28), b = s* + s and
v = (52 4+ 1)(s + 1); hence P = PG(3, s). By (5.50), the number of planes of type
(A)is (s> + 1)(s + 1). Consequently, there are no planes of type (C). In any plane 7
of type (A) there is exactly one point P not in P, and the lines of 7 not in B form the
pencil of 7 through P. Now, by Theorem 15.2.13 of FPSOTD, the lines of PG(3, s)
which are not in B are the lines of a general linear complex. Hence S = W (3, s).

Next, assume that & = s/2; then ¢t = (s — 2)(s 4+ 1)/2. By (5.27) and (5.28),
b=s%(s—1)?/2and v = s(s? —1). A plane of type (A) contains s points of 7P and
s(s — 1)/2 lines of B; a plane of type (C) contains s(s — 1) points of P. By (5.50),
there are s(s® — 1) planes of type (A), and so (s + 1)? planes of type (C).

A line [ ¢ B containing p points of P is in p planes of type (A). Hence, if such
a line [ contains at least one point of P, then [ is in at least one plane 7 of type (A)
and |l NP| € {s —1,s,s + 1}. Therefore, for any line [ of PG(3, s), necessarily
INP|le{0,s—1,s,s+1}.

Let P’ = PG(3, s)\P; then |P’| = (s+1)2, and any line with at least three points
in P’ lies entirely in it. Now, by Theorem 16.2.2 of FPSOTD, P’ is a hyperbolic
quadric or consists of a plane and a line or is a cone joining an oval to a vertex. By
definition, P’ does not contain a plane. If it is a cone, then there are planes through
the vertex which contain exactly s2 + s points of P. Such planes cannot be of type
(A) nor of type (C), a contradiction. Hence P’ is a hyperbolic quadric. As no line of
B has a point in P’ and as b = s2(s — 1)2/2, so B consists of all lines having empty
intersection with the quadric P’. Thus § = NQ™(3,s). Also, s # 2, as for s = 2
the geometry NQT (3, s) is not connected. O
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Theorem 5.157. In a (0, )-geometry S = (P, B, 1) with ambient space PG(3, s),
the number m of isolated points satisfies m % 2.

Proof. Suppose that m = 2. Now count the number 7 of lines of PG(3, s) containing
exactly (sa—s+3a)/a points of P. In any plane of type (A) there is exactly one such
line. By (5.50) and Corollary 5.154, there are b(s + 1)/(sa — s 4+ «) planes of type
(A). By (5.27), the number of planes of type (A)is (s + 1)[s(s+1)(a—1) + 3a]/a.
However, if a line [ not in 3 contains p points of P, then [ is in p planes of type (A).
Hence

T=(s+1)[s(s+1)(a— 1)+ 3a]/(sa — s + 3c).

Consequently, s« — s+ 3a divides (s+1)[s(s+1)(aw—1)+3a], and so s — s/ +3
divides

(s—s/a+3+s/a—2)[(s—s/a+3)(s+1)—3(s+ 1)+ 3];

$0 s — s/a + 3 divides 3s(s/a — 2).

Let s = p" with p prime; then a = p* with 0 < k < h. If & = s, then for any
plane of type (A) the union of its s — s + o = s2 lines of B is a set of order 52 + s;
so m < 1, a contradiction. Hence k¥ < h and so p = 2. It has therefore been shown
that 2% — 2h=% 1 3 divides 3.2" (2" % — 2).

Since (2" — 2"k 43, 2") = 1, the integer 2" — 2"~F 4 3 divides 3(2" % — 2).
Let 2% £ 2. Then 2" — 2% 4+ 3 < 3(2"% — 2), and so 2" — 2"F+2 1. 9 < 0,
whence 2" — 2h=k+2 (. Hence 2% < 4, and so k = 1. Consequently, 2h—-1 43
divides 3(2"~1 — 2); so 2"~1 + 3 divides 2"~! — 2. Hence h = 2 and 2" % = 2, a
contradiction. Therefore h = k + 1.

Let 7 be a plane of type (A) and let P be a point of 7 not in P. Since s/ = 2
and m = 2, the set 7\ P is an s-arc K of 7. However, K contains P, and K together
with the two isolated points of 7 forms an oval of . It follows that 7 contains exactly
two lines of 13 through P having s points in common with 7. The number of planes
of type (A) through P is b/(sa — s + a) = s? — s + 1. Therefore the number of
lines through P having exactly s points in P is 2(s> — s + 1)/s. Hence s divides 2;
so s = 2 and o« = 1, a contradiction. O

Theorem 5.158. Ler S = (P, B,1) be a (0, «)-geometry with parameters s,t,«
which is projective with ambient space PG(3, s). If s is odd, then S is a semi-partial
geometry and hence is known.

Proof. By the first part of Section 5.9, eithera = s+ lora = s. lf a = s+ 1,
then m = 0, and, by Theorem 5.152, S is a partial geometry; so a = s. By (5.29),
pa = s>+ s+m.Som € {0,1}.If m = 0, then, by Theorem 5.152, S is a semi-
partial geometry; if m = 1, then, by Theorem 5.156, S is a semi-partial geometry.

O

Theorem 5.159. If S is a (0, «)-geometry which is projective with ambient space
PG(3,2), then S is a semi-partial geometry and hence is known.

Proof. As m < 3, the result follows from Theorems 5.152, 5.156 and 5.157. O
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By Theorems 5.153, 5.156, 5.157, 5.158, 5.159 all projective (0, «v)-geometries
with ambient space PG(3, s) are known if either m < 2, s is odd, or s = 2.

In the first edition of General Galois Geometries it was wrongly conjectured that
any projective (0, «)-geometry with ambient space PG(3, s) is one of the following:

(a) m = 0 and S is either the design formed by all points and all lines of PG(3, s),
orS =H2 orS=NQ (3,2);
(b) m =1 and either S = W (3,s),0r s # 2isevenand S = NQ (3, s).

Let S = (P, B,1) be a geometry whose point set PP is a subset of the point set of
some PG(3, q), ¢ > 2, and whose line set 53 is a non-empty set of lines of PG(3, ).
If P generates PG(3, ¢), then PG(3, q) is the ambient space of S. From Theorems
5.152 and 5.153 it follows that S is a projective (0, «)-geometry with ambient space
PG(3, q) if and only if every pencil of lines of PG(3, ¢) contains either 0 or o, with
« > 1, lines of B.

A point set K of the non-singular hyperbolic quadric Hs of PG(5, ) is a (0, «)-
set if every line of H5 contains either O or v points of K. By considering H5 as the
Klein quadric G; 3, that is, as the image of the line set of PG(3, ¢) under the Klein
correspondence, it is seen that any projective (0, «)-geometry with ambient space
PG(3,q), ¢ > 2, is equivalent to a (0, )-set, with « > 1, of H, and conversely.

For ¢ > 2, the deficiency of a projective (0, «)-geometry S with ambient space
PG(3, q), and also of the corresponding (0, «v)-set of Hs, is d = q(¢+1—«a)/a—m.
Four special cases are the following:

(1) S consists of all points and all lines of PG(3, ¢), withaw = ¢ + 1, 6 = 0;
(2) S=W(3,q), witha =g¢q, 6 =0;

(3) S=H3 witha=g¢q, 6§ =1,

4) S=NQ*(3,2"), witha =¢q/2, § =q+1.

For o < ¢, with ¢ > 2 and « > 1, the (0, a)-sets of H5, and so the projective
(0, «)-geometries with ambient space PG(3, ¢), are known in the following cases:

(@ q=2" h>1,forany o € {2,22,...,2h 1} andany 6 € {1,q+ 1};
(b) g=2%",e>0, a=2foranyd € {g+2¢+1,q— /2q+1}.

See Section 5.10.

Lemma 5.160. Ler S = (P,B,1) be a projective (0, «)-geometry with ambient
space PG(n, s), n > 3. If P is any point of P, then the t + 1 lines of B through P
do not lie in the same hyperplane of PG(n, s).

Proof. Suppose that the ¢t + 1 lines of B through P are contained in a hyperplane
IT,,_1. If I is one of these lines, then a point P’ € [, with P’ = P, lies on t + 1 lines
I11,12,13,...,1; of B.On [;\{P'} there are « — 1 (> 1) points which are joined to
P by aline of B. It follows that I; is contained in II,,_; fori = 1,2,...,t. Since S is
connected, repeated application of this argument shows that S is contained in IL,,_1,
a contradiction. a
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Suppose that S = (P, B,1) is a projective (0, «)-geometry with ambient space
PG(n,s), n > 3. Let P € P and let l1,ls,...,l,, r > 2, be lines of B through
P that generate a PG(n/, s), with 2 < n’ < n. Further, let S N PG(n/, s) denote
the structure formed by all points and lines of S in PG(n/, s). By definition, the
connected component of S N PG(n', s) through P is the structure S’ formed by
all elements T' of S N PG(n’, s) for which there exist elements 77, T, ..., T, of
SNPG(n/,s) with TITy1---1T, I P. Then S’ is a projective (0, «)-geometry with
ambient space PG(n/, s). In particular, each point of S’ is incident with the same
numbert’ + 1, ¢/ > 1, of lines of S’.

Theorem 5.161. Ler S = (P, B,1) be a projective (0, «)-geometry with ambient
space PG(n, s), n >4, s > 2. Then S is either the design formed by all points and
lines of PG(n, s) or § = W(n, 2k, s) with 2k € {2,4,...,n+ 1}.

Proof. Ttis shownthatao = sora = s+ 1.
Hn=4

Let P be a point of S. By Lemma 5.160, there exist lines l1, l2, I3, [4 of B through P
that are not contained in a solid. Let PG(3, s) be the solid containing l1, l2, [3. The
connected component 8’ of S N PG(3, s) through P is a projective (0, «)-geometry
with ambient space PG(3, s). Since s > 2, Corollary 5.155 implies that no plane of
PG(3, s) contains exactly one line of S’. Considering all planes of PG(3, s) through
l1, it follows that the parameter ¢’ of S is (o — 1)(s + 1). Hence the parameter ¢ of
S satisfies t > (o — 1)(s + 1).

Let [ be any line of S through P, and assume that [ is contained in a plane 7

such that [ is the only line of S in 7. The other lines of S through P are denoted by

1,1, ..., 1;. The solid defined by 7 and [} is denoted by m; for i = 1,2, ...,¢. Then
P belongs to at least o — 2 lines l;, j # i, of m;. Now suppose that P is on exactly
alines of SNy, forall i = 1,2, ..., ¢; that is, the lines of S N 7; through P lie in a
plane. Considering all solids of PG(4, s) through 7 shows that ¢ < (a —1)(s+1), a
contradiction. Hence there exist lines [}, I/, j # i, such that m; = m; and with [}, 1, ]
not coplanar. Since the plane 7 of m; contains exactly one line of the connected
component of S N 7; through P, so Corollary 5.155 gives a contradiction. Therefore
each plane 7 through [ contains exactly s — s + « lines of S.

Now, let PG(3, s) be a solid in PG(4, s) not containing P. The ¢ + 1 lines of B
through P meet PG(3, s) in the ¢+ 1 points Py, P, . .., P;. From above, each line of
PG(3, s) contains either 0 or « points of the set V = { Py, Py, ..., P;}. Considering
all lines of PG(3, s) through Py gives that t = (s? + s + 1)(a — 1). If 7 is any
plane of PG(3, s) through Py, then w NV is a maximal (sa — s + «; «)-arc of . Let
a # s+ 1 and let I’ be a line of 7 not meeting this arc. From the planes of PG(3, s)
through !, it follows that sa — s + « divides ¢ + 1. Hence sa — s + « divides
s(sa—s+a)— s+ a,and so sao — s + «v divides s — .. Since s — s+ > s — q,
so s = a. Therefore either« = s+ 1 or a = s.
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IHn >4

Let P be a point of S. By Lemma 5.160, there exist lines l1, l2, I3, [4 of B through P
which generate a subspace PG(4, s) of PG(n, s). The connected component S’ of
SNPG(4, s) through P is a projective (0, a)-geometry with ambient space PG(4, s).
Hence, from (I), either « = s + 1 or o = s.

Suppose that S is a projective (0, «)-geometry with ambient space PG(n, s),
with s > 2, a = s+ 1, n > 4. Let P be a point of S, and let [, I’ be two lines of S
through P. Since oo = s + 1, every line of the plane /I’ is a line of S. It follows that
the union of all lines of S through P is a subspace PG(n’, s) of PG(n, s). Now, by
Lemma 5.160, n’ = n. Hence S is the design formed by all points and all lines of
PG(n,s).

Next, let S be a projective (0, «)-geometry with ambient space PG(n, s), with
s > 2, a = s, n > 4. Itis shown that t = s"~! — 1. Considering all planes
containing a given line [ of 3 indicates that this is equivalent to proving that no plane
through [ contains exactly one line of B. By (I), this holds for n = 4; in this case,
t=s>—1.

Now proceed by induction on n. For any line [ of S, assume that it is contained
in a plane 7 and that no other line of S is in 7. Let P € [ and let the other lines of B
through P be Iy, o, ..., ;. The solid through 7 and [; is denoted by 7;, i =1, ..., t.
Then P belongs to at least o — 2 lines [;, j # 4, of m;. Now suppose that P is on
exactly « lines of S N7, for all ¢ = 1,...,t. Considering all solids of PG(n, s)
through 7 shows that t < s"~2 — 1. By Lemma 5.160, it may be assumed that
Ll la, ... l,—1 generate PG(n, s). Let PG(n—1,s) = ll; - - - I,,_ and let S’ be the
connected component of S N PG(n — 1, s) through P. By the induction hypothesis,
the parameter ¢’ of S’ is s" =2 —1. Since [,,_; isnotin PG(n—1,s),s0t > s" "2 -1,
contradicting that t < s"~2 — 1. Therefore, each plane through [ contains exactly s2
lines of B; this is equivalent to the relation ¢ = sn—l—1.

Let P be any point of S and let [, l1, . . ., I; be the lines of BB through P. Further,
let IT,,_; be a hyperplane not through P and let ; N IL,,_; = P, fori =0,1,...,t.
From above, any line of I,,_1 meets V = {Py, P1,..., P} in 0 or s points. Hence
YV is the complement of a hyperplane of II,,_;. Therefore, the union of ly,l;,...,[;
is the complement of a hyperplane of PG(n, s).

Now consider the incidence structure S’ formed by all points of PG(n, s) and
its lines not in B. By the above, the union of all lines of S’ through any point of
PG(n, s) is a hyperplane. Hence S’ is a projective Shult space. Since PG(n, s) is
the point set of &', so either (b) or (¢) of Theorem 5.52 occurs. In case (b), with the
notation of Theorem 5.52,7 =n —2and k = s+ 1;then S = H = W(n,2,s).In
case (e), S = W(n, 2k, s) with 2k € {4,6,...,n+ 1}. O

Theorem 5.162. Ler S = (P, B, 1) be a projective semi-partial geometry with am-

bient space PG(n,s), n > 4. If « > 1 and s > 2, then it is one of the following
types:

(a) « = s+ 1 and S is the design formed by all points and all lines of PG(n, s);
(b)ya =sand S = HY;
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(©)a=s,nisoddand S = W(n,s).

Proof. First, S is a projective (0, «)-geometry with ambient space PG(n, s), where
s > 2, n > 4. By Theorem 5.161, S is the design formed by all points and lines of
PG(n,s) or & = W(n,2k,s) with 2k € {2,4,...,n + 1}. In Section 5.8, it was
observed that W (n, 2k, s) is a semi-partial geometry if and only if either 2k = n+1,
in which case n is odd, or k = 1. When k = 1, then S = W (n, 2, s); however, when
2k=n+1,then S = W(n,n+1,s) = W(n,s). O

Theorem 5.163. Let S = (P, B,1) be a projective semi-partial geometry with ambi-
ent space PG(n, s), n > 3 and o > 1. Then it is one of the following types:

(a) « = s+ 1 and S is the design formed by all points and all lines of PG(n, s);
(bya=sand S = HY;
©a=s=2andS =NQ (3,2).

Proof. For any plane 7 containing at least two lines of B, let 7 be the set of all lines
of 7in B; then |7| = sa—s+a. Let P denote the set of all these sets 7. Now consider
the structure S = (P, B, 1), where, for © € P and | € B, the relation 7 I/ holds when
| € 7. ThenSisa (0, a)-geometry with&@ = a, t = (a—1)(s+1), s =t/(a—1)—1.
Two lines of 3 are concurrent in S if and only if they are concurrent in S. Hence S
is also a dual semi-partial geometry.

First suppose that S is a partial geometry. Then, by Theorem 5.135, either (a) or
(b) holds.

Now suppose that S is not a partial geometry. Then s > ¢ by Theorem 5.145;
hence 5 < . Again, by Theorem 5.145, S is a partial geometry. Consequently, for
any line [ € B and any element 7 € P with [ ¢ 7, the line [ is concurrent with o
lines of B in 7. So, for any point P € P with P ¢ m, the lines of 53 through P are
contained in the solid Px. Hence n = 3 by Lemma 5.160. Now suppose that m # 0
and let P’ be a point of P in 7 which is on none of the sa — s + « lines of B in
7. If P’ € I/, with I’ € B, then I’ does not meet any line of B in 7, a contradiction.
Therefore m = 0. Since § is not a partial geometry, so S = NQ~(3,2) by Theorem
5.152. O

Remark 5.164. The determination of all projective (0, 2)-geometries with ambient
space PG(n, 2) is complicated. However, this problem has been completely solved,
and the main references are given in Section 5.10.

Open problems

Concerning the determination of all projective (0, )-geometries with ambient space
PG(n, s), for given «, nn, s, the following problems are still open.

(a) Determine all projective partial quadrangles, that is, « = 1, with ambient space
PG(n,s), n > 4.

(b) Determine all projective dual partial quadrangles, that is, o = 1, with ambient
space PG(n, s), n > 3. An infinite class of projective dual partial quadrangles,
which are not generalised quadrangles, is given by (h) of Example 5.147.



5.10 Notes and references 299

(c) Determine all projective (0, «)-geometries with ambient space PG(3, s) when
s=2" h>1.

5.10 Notes and references

Section 5.1

Theorem 5.4 is due to Tits [380], and Theorem 5.6 is due to Buekenhout and Shult
[59]. Example (e) for a generalised quadrangle is taken from Hall [148]. Lemma 5.8
and Theorem 5.9 are from [59].

Now two important characterisations of Grassmann varieties are stated, in which
generalised quadrangles play a central role. Let S = (P, B) be a pair consisting of a
non-empty finite set P of points and a set I3 of distinguished subsets of cardinality at
least three of P called lines. For any point P let P+ be the set of all points collinear
with P, and for any line [ let I~ be the set of all points collinear with each point of
l. Suppose that S is connected, that P contains at least two non-collinear points, and
that P\ {P} is connected for each point P. A subspace of S is a set X of pairwise
collinear points such that any line meeting X in more than one point is contained
in X'. A subspace that is not properly contained in a larger subspace is called a max
space. Now consider the following conditions:

(a) for any point P and any line [, the point P is collinear with 0, 1 or all points of ;

(b) if P and P’ are non-collinear points such that [P+ N P'*| > 2, then P+ N P+
with the lines it contains is a generalised quadrangle;

(c) if P € P and ! € B such that PX N1 = () but P NI+ # ), then PX Nitisa
line;

(¢") each line is contained in exactly two max spaces.

Theorem 5.165. If S satisfies (a), (b), (c), then either S is a non-degenerate Shult
space of rank 3 or S is the incidence structure formed by all points and all lines of a
Grassmann variety Gp ,, withn > 3and 1 <r <n — 2.

Theorem 5.166. If S satisfies (a), (b), (¢'), then S is the incidence structure formed
by all points and all lines of a Grassmann variety G, ,,, n >3, 1 <r <n—2.

In the case of these Grassmann varieties, the generalised quadrangle of (b) is
always the classical grid Q(3, ¢). The corresponding versions of these theorems have
also been proved in the infinite case. Theorem 5.165 is due to Cooperstein [75] and
Cohen [72], and Theorem 5.165 is due to Hanssens [154] and Hanssens and Thas
[155].

Section 5.2

This is taken from Payne and Thas [259].
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Generalised quadrangles were introduced by Tits [379]. The classical generalised
quadrangles, all of which are associated with classical groups, were first recognised
as generalised quadrangles also by Tits. Higman [163, 164] first proved Theorem
5.14 by a complicated matrix-theoretic method. The argument given here was used
by Bose and Shrikhande [38] to show that, when ¢ = s? > 1, then each triad has
1+ s centres; Cameron [63] first observed that the above technique also provides the
inequality.

Concerning proper subquadrangles, the following theorem is due to Payne [254];
see also Thas [319], and Payne and Thas [259].

Theorem 5.167. Let S’ = (P’, B/, 1') be a proper subquadrangle of the generalised
quadrangle S = (P, B,1). Then the following hold:
(i) either s = s’ or s > s't';
(ii) if s = &', then each external point is collinear with 1 + st points of S';
(iii) if s = s't’, then each external point is collinear with 1 + s’ points of S'.
The dual holds similarly.

Now, generalised quadrangles with small parameters are briefly described. The
detailed proofs of all these results can be found in Payne and Thas [259]. Here, let
S = (P, B,1) be a generalised quadrangle of order (s,t), with2 < s < 4 and s < t.
By Theorems 5.13 and 5.14, (s, t) is one of the following:

(2,2), (2,4), (3,3), (3,5), (3,6), (3,9),
(4,4), (4,6), (4,8),(4,11), (4,12), (4, 16).

A short proof shows that up to isomorphism there is only one generalised quadrangle
of order 2. The uniqueness of the generalised quadrangle of order (2, 4) was proved
independently at least five times, by Seidel [282], Shult [284], Thas [317], Freuden-
thal [138] and Dixmier and Zara [123]. Payne [255] and independently Dixmier and
Zara [123] showed that a generalised quadrangle of order 3 is isomorphic to WW(3) or
its dual Q(4, 3). The uniqueness of the case (3, 5) was proved by Dixmier and Zara
[123], who also proved the uniqueness of the case (3, 9); the latter was independently
done by Cameron, for which see Payne and Thas [258]. The non-existence in the case
of order (3,6) was also shown in [123]. Payne [256] proved the uniqueness of the
generalised quadrangle of order 4. The long proof required a correction by Tits; see
Payne and Thas [259]. Single examples are known in the cases (4, 6), (4,8), (4, 16),
but nothing is known about the cases (4,11) and (4, 12).

Section 5.3

Theorems 5.51, 5.52, 5.54 are taken from Buekenhout and Lefevre [57, 58] and
Lefévre-Percsy [201]. Theorem 5.55 is due to Thas [318].

All finite projective generalised quadrangles were first determined by Bueken-
hout and Lefévre [57] by a proof most of which is valid in the infinite case. Inde-
pendently, Olanda [251, 252] gave a typically finite proof; Thas and De Winne [347]
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gave a different combinatorial proof under the assumption that the 3-dimensional
case is already settled.

The infinite case was settled by Dienst [121, 120]. For projective Shult spaces of
rank at least three, the infinite case was completely solved in [58] and [201]. Because
the generalised quadrangles, and more generally the Shult spaces, in this book are
finite, the presentation of Buekenhout and Lefévre has been modified.

All finite generalised quadrangles fully embedded in the affine space AG(d, q),
for d > 2, were determined by Thas [325]. The 3-dimensional case was settled
independently by Bichara [21].

Section 5.4

For d = 3, Theorem 5.58 is due to Lefevre-Percsy [207], and, for d > 3, to Thas
and Van Maldeghem [357], although the former used a stronger definition for ‘weak
embedding’, proved by the latter to be equivalent to the notion in Section 5.4. Weak
embeddings of Shult spaces in PG(d, ¢), d > 3, were introduced by Leféevre-Percsy
[204, 206, 207], but only in the case d = 3 was a complete classification obtained.
Theorem 5.59, which contains the complete classification in the case where the
Shult space has rank at least three and is non-degenerate, is due to Thas and Van
Maldeghem [354]; the degenerate case is handled in Theorem 5.61 and is also taken
from Thas and Van Maldeghem [356]. For details on double-sixes, cubic surfaces,
tritangent planes, trihedral pairs and the case ¢ = 4, see Chapter 20 of FPSOTD.
Theorems 5.62 and 5.63 on lax embeddings of generalised quadrangles are due to
Thas and Van Maldeghem [359, 364]; Theorem 5.64 on lax embeddings of Shult
spaces is also taken from Thas and Van Maldeghem [358].

Section 5.5

The detailed proofs of most of Theorems 5.67 to 5.116 can be found in Payne and
Thas [259, 260]. Theorem 5.71, which is probably the oldest combinatorial char-
acterisation of a class of generalised quadrangles, was discovered independently by
several authors; for example, Singleton [293], Benson [16], and Tallini [306]. The-
orem 5.72 is due to Thas [321], Theorems 5.74 and 5.75 to Thas [315], Theorems
5.76 and 5.77 to Payne and Thas [258], and Theorem 5.77 independently to Maz-
zocca [228].

Theorem 5.79 is taken from Thas [339]. The first three parts of Theorem 5.81
are due to Thas [324], part (iv) to Brown and Thas [49, 50], and Theorem 5.81(i)
independently to Mazzocca [227]. Theorems 5.86 and 5.87 are taken from Thas [324]
and Theorem 5.89 from Thas [327]. Theorem 5.91 on generalised quadrangles and
dual nets is due to Payne and Thas [259, 260], and Theorem 5.93 on dual nets to
Thas and De Clerck [346].

Theorem 5.94 was proved by Thas and Van Maldeghem [355], Theorem 5.95
in the even case by Thas and Payne [350], in the odd case by Brown [43], and a
proof for both cases may be found in Brouns, Thas and Van Maldeghem [39] and
in Brown [46]. Theorem 5.97 is taken from Tallini [306], Theorem 5.98 from Thas
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[320], Theorem 5.99 from Thas and Payne [349], and Theorem 5.101 from Thas and
Van Maldeghem [359]. Theorem 5.102 is due to Thas [321], Theorems 5.103 and
5.104 to Thas and Payne [349] and Thas [321], and Theorems 5.105, 5.106, 5.107 to
Thas [321]. Theorem 5.108, which is a characterisation in terms of matroids, is taken
from Mazzocca and Olanda [230]. A considerable shortening of the original proof
was given by Payne and Thas [259, 260].

Theorem 5.109 is due to Ronan [269]. This approach includes infinite generalised
quadrangles and relies on topological methods. Payne and Thas [259, 260] offer
an ‘elementary’ treatment which is more combinatorial than topological, and which
corrects a slight oversight in the case t = 2. Theorem 5.111 is taken from Thas [327].

Theorem 5.116(i)—(v) is due to Payne and Thas [259, 260], while (vi) is due to
Brown and Lavrauw [48]. The proof of Theorem 5.117 can be found in K. Thas
[370, 375, 376], Theorem 5.118 in K. Thas [377], and Theorem 5.119 in Kantor
[194] and K. Thas [368]. Theorem 5.120 on span-symmetric generalised quadrangles
is due independently to Kantor [196] and K. Thas [371]. Theorem 5.121 was proved
by Ealy [126], Theorem 5.122 by Thas [330, 331].

Using the language of BN pairs, Fong and Seitz [136, 137] obtained a character-
isation of the finite generalised polygons, in particular the finite classical generalised
quadrangles. Tits [381, 382, 383, 384] and Tits and Weiss [385] determined all finite
and infinite Moufang generalised polygons; the finite case, in particular Theorem
5.123, is essentially the theorem of Fong and Seitz. De Medts [99, 100] unified and
shortened the proof of Tits and Weiss for generalised quadrangles. The proofs of the
different parts of Theorem 5.124 can be found in Thas, Payne and Van Maldeghem
[351], Van Maldeghem [391], Tent [309], Haot and Van Maldeghem [156, 157] and
K. Thas and Van Maldeghem [378].

In order to state Theorem 5.97 the notion of linear space was used. Here, a linear
space is an incidence structure S* = (P, B*, €) with P a non-empty set, 5* a non-
empty set of subsets of P, where each of the subsets has cardinality at least two, and
having the property that any two distinct elements (points) of P are contained in a
unique element (line) of B*.

Section 5.6

Partial geometries were introduced by Bose [36]. Theorem 5.132 is taken from
Cameron, Goethals and Seidel [64]. The proper partial geometries S(K) are due
to Thas [313, 316] and independently to Wallis [394]; the proper partial geometries
75" (K) are due to Thas [313, 316]. For surveys on partial geometries, see De Clerck
[85], Thas [322], Brouwer and van Lint [42], De Clerck and Van Maldeghem [93],
and De Clerck [87]; constructions of partial geometries are also contained in Mathon
[226], De Clerck [86], De Clerck, Delanote, Hamilton and Mathon [90], and Hamil-
ton and Mathon [151].



5.10 Notes and references 303
Section 5.7

Theorem 5.135 is taken from De Clerck and Thas [91] and Theorem 5.136 is taken
from Thas and De Clerck [346]. All finite partial geometries embedded in the affine
space AG(d, q), d > 2, were determined by Thas [325].

Section 5.8

Partial quadrangles were introduced by Cameron [63], semi-partial geometries by
Debroey and Thas [111, 112, 113] and (0, «)-geometries by De Clerck and Thas
[92]. Theorems 5.138 to 5.145 are taken from [111]. Theorem 5.146 is due to De-
broey [109, 110], but here a new and simpler proof is given. Most of the examples of
semi-partial geometries can be found in Brouwer and van Lint [42], Cameron [63],
Debroey and Thas [111], Thas [328], De Clerck and Thas [92], Hall [147], De Clerck
and Van Maldeghem [93], Thas [342], De Clerck [87], De Winter [102], De Winter
and Thas [106], Cossidente and Penttila [77], Devillers and Van Maldeghem [118],
and De Winter and Van Maldeghem [108].

Section 5.9

Lemmas 5.148, 5.149 and Theorems 5.152, 5.153, 5.163 are taken from De Clerck
and Thas [92]. Theorem 5.151 is due to Debroey and Thas [113]; Theorems 5.156
and 5.157 are unpublished results of Thas. Several constructions of (0, «)-sets of
Hs, or, equivalently, of projective (0, a)-geometries with ambient space PG(3, ¢),
are due to De Clerck, De Feyter, and Durante [88]. Lemma 5.160 and Theorems
5.161, 5.162 are taken from Thas, Debroey, and De Clerck [348].

Farmer and Hale [130] proved that any projective (0, s)-geometry with ambient
space PG(n,q), s > 2,n > 3,is a W(n, 2k, s) with 2k € {2,4,...,n + 1}. For
the results on (0, 2)-geometries, see Shult [285], Hall [147], Thas, Debroey, and De
Clerck [348], and GGG1, Section 26.9.

All finite semi-partial geometries embedded in the affine space AG(d, ¢), with
d € {2,3}, were determined by Debroey and Thas [112]. Many results on (0, «)-
geometries and semi-partial geometries embedded in AG(d, ¢) were obtained by De
Clerck and Delanote [89], Brown, De Clerck, and Delanote [47], De Winter [103],
and De Feyter [94, 95, 96, 97, 98]. In this series of papers, De Feyter determines all
(0, 2)-geometries and semi-partial geometries with o = 2 embedded in AG(d, 2"),
up to the classification of all sets of type (0, 1, k), k > 2,in PG(d — 1,2").
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Arcs and caps

6.1 Introduction

A (k;r, s;m, q)-set K is defined to be a set of k points in PG(n, ¢) with at most r
points in any s-space such that /C is not contained in a proper subspace. This is a
slight variation on the definition of Section 3.3 of PGOFF2, where the last condition
is not present. The large question is to describe all such sets. Four questions particu-
larly are of interest. The set K is complete if it is not contained in a (k + 1;7, s;n, q)-
set.

I. Find the maximum value m(r, s; n, q) of k.
II. Characterise the sets, the maximum sets, with this value of k.
III. Find the size m’(r, s; n, q) of the second-largest, complete (k;r, s; n, q)-set.
IV. Characterise the complete (k; r, s; n, q)-sets.

Question IV includes I, II, and III. The importance of III is that, if I is a
(k;r,s;m,q)-set with k& > m/(r, s;n,q), then K is contained in a maximum set.
So upper bounds on m/(r, s;n, ¢) permit inductive arguments.

In fact, these questions are examined only when r = s 4 1, and then only in the
casess =lands=n—1.

A (k;2,1;n,q)-set is a k-set with at most two points on any line of PG(n, q)
and is also called a k-cap. The number m(2, 1;n, q) is written as mo(n, ¢). The only
precise values known are the following:

ma(n,2) = 2"; 6.1)
_Jg+1, qodd,
ms(2,q) = {q 12 goven (62)
m2(3,q) = ¢* +1, ¢>2 (6.3)
m2(4,3) = 20; (6.4)
ma(5,3) = 56; (6.5)
ma(4,4) = 41. (6.6)
© Springer-Verlag London 2016 305
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Upper bounds for ms(n, ¢) are determined in Sections 6.2 to 6.4. In the case that
s =n—1,a(k;n,n — 1;n,q)-set is a k-set not contained in a hyperplane with at
most n points in any hyperplane of PG(n, ¢) and is also called a k-arc; forn = 2, a
k-cap and a k-arc are equivalent. The number m(n, n—1;n, ¢) is written m(n, q); by
definition m(2, ¢) = ma(2, ¢). Values obtained in previous chapters are as follows:

m(n,q) =n+2 forqg<n-+1; (6.7)
_Jg+1, qodd,

m(2,q) = {q+27 4 even: (6.8)

m3,q) =q+1, ¢>3. 6.9)

All other values known and all the values determined in Sections 6.5 to 6.7 are
m(n,q) = g+ 1 or ¢ + 2. This leads naturally to the following.

Conjecture 6.1 (The Main Conjecture for Arcs).
(1) If ¢ > n + 1 with ¢ odd, then m(n,q) = ¢+ 1.
(2)Ifg>n+1,withgevenandn ¢ {2,q — 2}, then m(n,q) = g+ 1.

In deciding the value of m(n, q), the value of m/(2, ¢), the size of the second
largest complete arc in PG(2, ¢), is crucial. It is also useful to write, for ¢ > 5,

fl@) =q—m'(2,q). (6.10)

For ¢ < 5, there is only one complete plane arc and m/(2, ¢) is not defined. For
other small values of ¢ the results are as in Table 6.1.

q 7 8 9 11 13 16 17 19 23 25 27 29 31 32
m'(2,q) 6 6 8 10 12 13 14 14 17 21 22 24 22 24
f(q) 1 2 1 1 1 3 3 5 6 4 5 5 9 8

Table 6.1. Complete plane arcs

Also
m'(2,q) < q— e+ 3%, q odd; (6.11)

the slightly weaker result
m'(2,q9) <q—iVa+], q odd, (6.12)

has been frequently used. Further,
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m'(2,q) <qg—+/g+1, qeven, q>2; (6.13)
m'(2,q) =q—+q+1,¢g=2"" m>1; (6.14)
m/(2,q) < j3q+ 5, qprime; (6.15)
m'(2,q) < q— Lpg+ Bp+1, g=p* " m > 1, podd; (6.16)
m'(2,q) §q—\/2q—|—2, g=2"*"m>1; (6.17)
m'(2,q) <q—3g+5, q=p"forp>5; (6.18)
m'(2,q) <q—3Vg+3, q=p", p>3; q=3% whenp=3;

g >23%and g #* 3% or 55; (6.19)
m'(2,q) < q—22 whenq =5 (6.20)
m'(2,q) <q¢—9 whenq=35 (6.21)
m'(2,q) < q¢—9 whenq=23% (6.22)
m'(2,q) < q—5 whenq =19 (6.23)

m/(2,q) < ¢—1 when g > 13 except possibly for ¢ = 37,41, 43,
47,49,53,59,61,67,71,73,79,81,83.  (6.24)

It is convenient to record an elementary result which is subsequently applied in
Section 6.3.

Lemma 6.2. If A, B, C are three sets such that C > AU B, then
|AN B[ = [A] +[B[] - [C].
Proof. |ANB|=|A|+|B|—|AUB| > |A| +|B| —|C|. O

6.2 Caps and codes

Let K be the k-cap {Pi, ..., P} where P, = P(aj0, a;1,-..,ain). This gives the
k x (n + 1) matrix
A = [ai;] i=1,...,k; 7=0,...,n,

which is a matrix of . Any permutation of the rows of A or multiplication of a row
of A by an element of F;* gives another matrix of K. For any projectivity ¥, write

KT ={P%T,..., P}

So the caps Ky and /Cy are (projectively) equivalent if ;T = Ko for some projec-
tivity T.
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Lemma 6.3. Let KCy and Ko be caps with matrices Ay and As. Then Ky and Ko are
equivalent if and only if A5 can be obtained from A1 via a sequence of operations of
the following type:

(C1) multiplication of a column by a non-zero scalar;

(C2) interchange of two columns;

(C3) addition of a scalar multiple of one column to another;
(R1) multiplication of a row by a non-zero scalar;

(R2) interchange of two rows.

Proof. The operation of ¥ on K; corresponds to a sequence of operations of types
(C1), (C2), and (C3). The operations (R1) and (R2) leave KC; fixed. O

If A; can be obtained from A as in the lemma, then A; and A5 are C-equivalent.
An [N, d]-code over F is usually defined to be a d-dimensional subspace of the N-
dimensional vector space V' (n, ¢). In this section, it is more convenient to replace a
vector by its non-zero multiples. So an [N, d]-code is a II—1 of PG(N — 1,q). It
is also convenient to represent the points of an [N, d]-code by column vectors rather
than row vectors. A generator matrix A for an [N, d]-code C'is thus an N X d matrix
whose columns generate C'. Other generator matrices of C' are obtained from A via
operations of types (C1), (C2), (C3).

Two codes are equivalent if one can be obtained from the other by a permutation
of the coordinate indices combined with multiplication of some coordinates by a
non-zero scalar.

Lemma 6.4. Let C; and Cs be codes with generator matrices Ay and As. Then C
and Cs are equivalent if and only if A1 and Ao are C-equivalent.

Proof. From the definition of equivalent codes, a generator matrix of Cs is obtained
from a generator matrix of C; by operations (R1) and (R2). a

If K is a k-cap in PG(n, ¢) with matrix A, the code C of K is the [k,n + 1]-
code with generator matrix A; such a code is a cap-code. It is assumed that C is not
contained in a subspace of lower dimension than n.

Theorem 6.5. Let K1 and KCo be caps with codes Cy and Cs. Then K1 is equivalent
to ICo if and only if C1 is equivalent to Cs.

Proof. This follows from Lemmas 6.3 and 6.4. O

An [N, d]-code is projective if the rows of a generator matrix are distinct points
of PG(N — 1, ). Any cap-code is projective.

With, as usual, (n) = |PG(n, ¢)|, given a [k, n + 1]-code C, denote by M(C) a
k x 6(n) matrix whose columns are the points of C. Given a linearly independent set
{Xo,..., X} of PG(k — 1, q), let M (X, ..., X;) denote a k x 6(t) matrix whose
columns are the points X;.

Lemma 6.6. The number of zeros in the i-th row of the matrix M (X, ..., X;) is
6(t) if all the X j have zero in the i-th row and is 6(t — 1) otherwise.
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Proof. Let II; be the subspace spanned by Xo, ..., X;. Intersect II; with V(X;).
Then I, N V(X;) =1L if II; € V(X;) and II, N V(X;) =11, if II; ¢ V(X;). O

Given a projective [k, n + 1]-code C, let M; be the matrix obtained from M (C')
by omitting one row and also those columns having a non-zero entry in that row. By
Lemma 6.6, M7 is a (k — 1) x 6(n — 1) matrix whose columns are the vectors of a
[k —1,n]-code C;. The code C is a residual code of C. The code C has k residuals,
one for each row of C'; some or all of these residuals may be equivalent codes. By
identifying the vectors of C; with those of C' from which one zero entry has been
omitted, C; can be regarded as a [k, n]-subcode of C'. If A; is a generator matrix for
aresidual code C of C, then C'is equivalent to a code with generator matrix

01
A- [ N ] .
The matrix A; is a residual of A. If C7 and Ay are residuals of C' and A, then C' and
A are extensions of C and A;.

Theorem 6.7. A projective code C'is a cap-code if and only if every residual code of
C' is projective.

Proof. Suppose C; with matrix A; is a non-projective residual of C' with matrix A
an extension of A;. Then two rows, the i-th and j-th, say, of A; are the same, up to
a scalar multiple; so the first, (¢ + 1)-th and (j + 1)-th rows of A are collinear. So C'
is not a cap-code.

Conversely, suppose C is not a cap-code and let A be any generator matrix of
C. Then three rows, say the first, second and third of A, are collinear. However,
using suitable column operations, A is C'-equivalent to a matrix whose first row is
(0,0,...,0,1). Since column operations preserve the collinearity of rows 1, 2 and 3,
the residual obtained by omitting the first row is non-projective. d

To fix ideas, consider the small example of the 4-arc (= 4-cap) K in PG(2,2)
with points P(1,0,0),P(0,1,0),P(0,0,1),P(1,1,1). A matrix for K is

0

—_ O O =
—_ O
=0 o

It is a generator matrix for a [4, 3]-code C' for which a suitable M (C) is

M(C) =

—_ O O
— O~ O
(RO e i)
OO R
O = O =
[ =)
— ==

The residuals with respect to the four rows of M (C) are
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1 0 1 1 0 1 1 0 1 1 1 0
0 1 1|, o 1 1|, |o 1 1|, |1 0 1
1 1 0 1 1 0 1 1 0 0 1 1

Now, the weight distribution of a cap-code is considered. Let X be a vector, that
is, a column of the code C.

The weight of X, denoted w(X ), is the number of non-zero entries in X. Denote
the vectors of a [k,n + 1]-code C by X1, Xo, ..., Xg(,,) and let w; = w(X;), for
i € Ng(y,). Order the X; so that wy > wy > -+ > wgy(,). The ordered 6(n)-tuple
(w1, ..., ween)) is the weight distribution of C. Equivalent codes have the same
weight distribution. It turns out that cap-codes have large minimum weight. For a
[k,n + 1]-code C, let C* be the dual code; that is, C* is the [k, k — n — 1]-code
consisting of points P(Y') in PG(k — 1, ¢) such that XY™* = 0 for all X in C. If C
is a code of the cap K, then C has minimum weight at least four; for, if any vector
in C* had three or less non-zero entries, its orthogonality with C' would force C' to
be non-projective or would induce a collinearity of the corresponding three rows of
C. Conversely, if C* has minimum weight at least four, then C' is a cap-code. Thus
ma(n, q) is the maximum value of IV for which one error can be corrected and three
detected with certainty by an [NV, N — n — 1]-code.

Theorem 6.8. Let K be a k-cap in PG(n, q) with code C. Then the minimum weight
of C, as well as that of any residual, is at least k — ma(n — 1, q).

Proof. Let X be any vector in C' and suppose X has ¢ zeros. Let A be a generator
matrix of C' with X as first column. Since the rows of A form a cap and since any
subset of a cap is also a cap, it follows that those rows having a zero as first coordinate
form a t-cap in a hyperplane of PG(n, ¢). Hence ¢ < mgy(n — 1,¢) and therefore
w(X) =k —1t >k —ma(n —1,q). The result holds for a residual C, since any
vector in 'y is obtained from a vector in C' by omitting one zero and so leaving the

weight unchanged. a
Lemma 6.9. Let (w1, . .., wy(y,)) be the weight distribution of a projective [k, n+1]-
code C'. Then
® > wi = kg (6.25)
(ii) > wi =kq" k(g — 1)+ 1} (6.26)

Proof. (i) By summing over columns, the number of non-zero entries in M (C) is
>~ w; and, by Lemma 6.6, is also kg™ by summing over rows.

(ii) Let Z1, Za, ..., Z), be the rows of the matrix M (C') and also let B be the
k(k —1)(qg — 1) x 0(n) matrix with rows Z; + A\Z;, (i,7) € N7, i # j, A € F,*.
Since C' is projective, the rows of B are all non-zero; so, by Lemma 6.6, each row
has 6(n—1) zeros. The i-th column of B has w; (w; — 1)+ (k—w;)(k—w; —1)(¢—1)
zeros. Counting the zero entries of B via columns and rows thus gives
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q> wi = {1+ 2k—1)(¢— 1} wi+0(n)k(k—1)(g—1)
=k(k—1)(¢g—1)0(n—1). (6.27)
Substituting > w; from (6.25) gives the result. O

Now write m; = ma(n — 1, ¢). Then Theorem 6.8 says that, for a cap-code,
w; > k — mj. So consider the amended weights u; given by

U; = W; — (]{3 — ml). (628)
Then u; > uz > --+ > wgpy > 0and (ug,...,usm)) is the amended weight
distribution of C. For a residual code C of C, let (v1,...,vg(—1)) consist of the

amended weights of the corresponding columns of M (C') with
vl > V2 > 2 Ug(no1) = 05

each v; is some u;. By abuse of language, (v, ..., vg(n,l)) is called the amended
weight distribution of C'.

Lemma 6.10. Let C be a projective [k, n + 1]-cap-code with amended weight distri-
bution (uy,uz, . .., ug(n)). Then

@) > ui =mif(n) — k6(n —1); (6.29)
(i1) Z u? = k*0(n —2) + k(¢g" ' —2m10(n — 1)) + m26(n). (6.30)
For a residual code C1 of C with amended weight distribution (vi,va, . . . ,’Ug(n_l)),
(iii) > wi=(m1—1)f(n— 1) — (k—1)0(n — 2); (6.31)

(iv) > wf = (k—1)%0(n —3)+ (k — 1){g"* — 2(m1 — 1)6(n — 2)}
+(my —1)%0(n — 1). (6.32)
Proof. Equations (6.29)—(6.32) are just restatements of the previous lemma. a

It should be noted that (6.31) and (6.32) only hold because a residual of a cap-
code is projective, which is not true for general codes.

Theorem 6.11. Let C be a [k, n+ 1]-cap-code with weight distribution and amended

weight distribution (w1, ws, ..., Wy(n)) and (uy, Uz, . .., Ug)). Then
@ wy +wz < mi(g—1) +k; (6.33)
(i1) up +uy <mi(qg+1) — k. (6.34)
For a residual of C with amended weight distribution (v1, va, . . . ,vg(n,l)),

(iii) v +vo <mi(g+1)—q—Ek. (6.35)



312 6 Arcs and caps

Proof. (i) By Lemma 6.6, each row of the &k x (¢+ 1) matrix M (X7, X>) has at least
one zero. Hence, counting the zeros of M (X1, X5) gives

(k—w)+ (k—wa) + Y {k—w(X1+AX3)} > k.
AEF,*

By Theorem 6.8, w(X7 + AX2) > k —m1. So
wy +we < k+m(qg—1).
(ii), (iii) These follow immediately. a

Now the bounds of Theorems 6.8 and 6.11 together with the identities of Lemma
6.10 give restrictions on ms(n, q).

Theorem 6.12. For n > 4 and q # 2,
ma(n,q) < gma(n—1,q) —q+ 1. (6.36)

Proof. Induction on n is used. Suppose K is a k-cap in PG(n, ¢) with code C. A
residual code C is a projective [k — 1,n]-code. So, if C; has weight distribution
wh, .. le(n—l)’ then Lemma 6.9 gives

> w=(k-1)¢"" (6.37)
and Theorem 6.8 gives
> w) > (k—my)f(n —1). (6.38)
Hence (6.37) and (6.38) imply that
k<mig+ (mi—q" " )g—1)/(¢"" = 1). (6.39)

Next, it is deduced by induction that ma(n,q) < ¢"~! + 1. First, by Theorem
16.1.5 of FPSOTD, m»(3,q) = ¢* + 1. However, the induction hypothesis is that
my =ma(n —1,q) < ¢"~2 + 1. Then (6.39) gives

E<q" 7 4+1-(""" =" /(" 1)

and so £ < qT“1 + 1. Hence m; < q’“2 + 1. Substituting this in the second
occurrence of m; in (6.39) implies that

k<mig+ (" +1-¢""g-1)/(@"" =) <mig—g¢+1. O
Now (6.36) is improved by showing that equality cannot hold.
Theorem 6.13. For n > 4 and q # 2,

mQ(na q) < qu(n - ]-a q) —q. (640)
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Proof. Suppose K is a k-cap with k = gmy — ¢ + 1. Let C'; be any residual of the
code C of K and let C; have amended weight distribution (vy, ..., vg(,,—1)). Then
(6.31) and (6.32) give

Zvi =mp — 1, (6.41)
S = (D@ — (g — (s — D)} (642)
Since Y v? < (3 )2,

¢"" = (g=1D(m1—1) <mi -1

this gives my > q’“2 + 1. However, in Theorem 6.12 it was shown inductively that
my < q"‘2 + 1; that is, m; = q"‘2 + 1. By (6.40) and since

may(n—2,q) <¢" 7 +1,
it now follows that mo(n — 2, q) = ¢" 2 + 1. Proceeding in this way,
ma(s,q) = ¢" ' +1
for all 3 < s < n. To prove the theorem, it therefore suffices to show that
ma(4,q) < ¢ + 1.

This is shown geometrically in Theorem 6.16.
Alternatively, suppose K is a (¢ + 1)-cap in PG(4, ¢). Then (6.41) and (6.42)

give ,
(ZU,’) = Z’UZQ = q4.

So

(U17U27 DR 7’09(7171)) = (q270a s 70)a
(wlla ’LU/2, .. 7w/0(n71)) = (q37q3 - q2a ey q3 - q2)
Thus, each of the k residuals of C' contains a vector of weight ¢>. Since any vector
of weight ¢3 is contained in (¢® + 1) — ¢® = 1 residual, there are k distinct vectors
of weight ¢® in C. In particular,
w1 + wo = 2q3.

However, from (6.33),

wi+wy < (P +1)(q—1)+¢ +1<2¢. 0

The next result is an improvement.
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Theorem 6.14. In PG(n, q), g > 2,
(@ ma(n,q) < gma(n —1,q) — (¢ + 1) forn > 4; (6.43)
(ii) ma(n,q) < ¢ *ma(4,q) —q" 1 —20(n — 5) + 1 forn > 5. (6.44)

Proof. (i) See Section 6.8.
(i1) This follows from (i) by induction. a

For ¢ odd, there is a major improvement; the larger n is, the better the improve-
ment.

Theorem 6.15. In PG(n, q), n > 4, q = p" with p odd,

nh+1

ma(n,q) < (nh)? q" +ma(n —1,q).

6.3 The maximum size of a cap for q odd

In this section some upper bounds for ma(n, ) are proved. First, a general bound is
given that is useful in that it holds for all ¢ > 2. The first result is also implicit in
Theorem 6.13.

Theorem 6.16. For ¢ > 2 and n > 4,
ma(n,q) < ¢" . (6.45)

Proof. Suppose there exists a k-cap K with & = ¢"~! + 1. First, it is shown that,
for g even, any plane meets /C in at most ¢ + 1 points. Suppose therefore that 7 N IC

is a (¢ + 2)-arc for some plane 7, and consider the §(n — 3) solids H:(;) through 7,
1€ Ng(nfg). If ‘H:(;) N (’C\?T)| = d;, then

Sdi=q"t 1 (g+2) =g —g— 1. (6:46)
Since m2(3,q) = ¢ + 1,
di+q+2<¢+1,

whence
di <¢®>—q—1. (6.47)

So
Y di< (¢’ —q-1)0(n-3)

=q" ' —q—0(n-3)
71_(]_17
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for n > 4. This contradiction implies that K has no (g + 2)-arc as a plane section.
Now, for all ¢ > 2, let P, and P, be points of K and consider the 6(n — 2) planes
through the line P; P,. They contain at most

(g—1)0(n—2)+2=q¢" ' +1=k

points. So each of these planes must meet K in a (g + 1)-arc.
Consider a hyperplane II,,_; through P; P,. The §(n — 3) planes through P; P,
in II,,_; all meet \{Py, P>} in ¢ — 1 points, whence

L, 1 NK|=(¢g—1)0(n—3)+2=¢""2+1.

So K = II,,_1 N K is a (¢" 2 + 1)-cap. It follows from this argument that any
hyperplane meeting KC meets it either in a single point or in a (¢" 2 + 1)-cap. Let
@ be a point of K. There are ¢" ! bisecants of /C through @ and so the number of
unisecants through Q is #(n — 1) — ¢"~* = (n — 2) . Let £1 and /5 be two of them.
Then every line through @ in the plane ¢; {5 is also a unisecant to &, as otherwise the
plane ¢ {5 would meet /C in a (¢ + 1)-arc with two unisecants at (), a contradiction.
So the set S’ of points on the unisecants through () has the property that the line
joining two points of S is in S. Thus S is a subspace and hence a hyperplane, which
is called the tangent hyperplane to IC at ().

Let P, and P; be two points of K with tangent hyperplanes 73 and 75. As 7} and
T, are distinct, they meet in a II,,_s skew to K. Let r be the number of hyperplanes
through IT,, _5 other than 73 and 75 which are tangent to /C and s the number of other
hyperplanes through II,,_o meeting K. So

r+s<gq-—1. (6.48)
Counting the points of K\{ Py, P>} gives
r+s(@ i) =¢" — 1 (6.49)
However, from (6.48),

r+s(@" 1) <g-1-s+s(¢"*+1)

<q—1+(¢—1)q"?
=(¢—1)(¢" 2 +1). (6.50)

But, (¢ — 1)(¢" "2 +1) < ¢"! — 1. So (6.49) and (6.50) cannot both hold. This
proves the theorem. a

Now, Theorem 6.16 is improved first for ¢ odd and then for ¢ even. In both cases,
however, it is necessary for ¢ to be sufficiently large. The main result for ¢ odd is
a consequence of the following result, which appeared as the corollary of Theorem
18.4.8 of FPSOTD.
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Theorem 6.17. In PG(3,q), q odd and q > 67, if K is a complete k-cap which is
not an elliptic quadric, then

k<q?— iq3/2+2q.

More precisely, .
k<q®—1a*?+ R(q),

where
R(q) = (31¢+ 14,/q — 53)/16.

To obtain a similar result in PG(4, ¢), consider a k-cap K and examine the sec-
tions of /C by three solids through a plane 7 which has a sufficiently large intersection
with K.

Lemma 6.18. InPG(4,q), ¢ > 67 and odd, let K be a k-cap and  a plane such that
wNK is an s-arc with s > q — i\/q + Z. Then there do not exist three distinct solids
aq, a, ag containing T such that K; = o;NK is a ks-cap with k; > ¢*— iqg/z—&—R(q)
fori=1,2,3.

Proof. Suppose that the lemma is false. Then, by Theorem 6.17, each K, is contained
in a (unique) elliptic quadric Q;. So Q1N Q2N Q3 is the unique conic in 7 containing
N K.

(D) There exists a quadric Q meeting c; in Q;, 1 =1,2,3

The set M = K1 U K2 U K3 is an m-cap contained in /C with
m:s—|—Z(k:i—s) = ki + ko + k3 — 2s.

Ass < q+1,s0

m > 3(q° — 1¢** + R(q)) — 2(¢ + 1)
=3(¢*> — 1¢¥?) + [ (61¢ +42,/qg — 191). (6.51)

There are two possibilities for Q. Either Q@ = Py, the non-singular quadric, or else
Q = II&s, the singular quadric with vertex Iy and base &s.
(@) Q=P

First, P4 comprises (¢> + 1)(¢ + 1) points on the same number of lines with
q + 1 lines through a point. Through each point of a line ¢ on P, there pass ¢ other
lines, whence ¢(¢q + 1) lines ¢ on P, meet £. No two of these lines ¢/ meet off ¢, as
otherwise their plane would meet P, in a cubic curve. Also, P4 contains ¢?(q + 1)
points off £. So, through each point of P4 \/ there is exactly one line ¢. The m-cap
M has at most two points on £ and on each ¢, and every point of M lies on £ or
some ¢’. Hence

m<2+2q(q+1)=2(¢>+q+1). (6.52)

From (6.51) and (6.52),
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3(¢> — 14°?) + [5(61g +42,/q — 191) <m < 2(¢> + ¢+ 1).

Hence
¢* = 3¢ + 3(29q + 42,/ — 223) < 0,

a contradiction.
(b) @ =Tlpé&;3
Through I there are ¢? + 1 generators of Q each containing at most two points
of M. So
m < 2(g® +1). (6.53)

From (6.51) and (6.53),
3(q° — 1% + L (61g+42,/g — 191) < m < 2(¢* + 1).

Hence
- 3¢*% + L(61g+42,/q — 223) < 0,

a contradiction.

(IT) There is a pencil ® of quadric hypersurfaces through Q1 and Qs none of which
contains Qs

The members of ® cut out on a3 a pencil ®’ of quadric surfaces all containing the
conic C, the unique conic through 7 N K. One member of @’ is 7 repeated, and
Q3 ¢ ®’. So ¢’ cuts out on Qj a set of quartic curves C U C’ with C’ quadric curves
in planes 7’ of a pencil in a3; each quadric C’ is either a conic or a point. Denote the
set of quadrics C’ by W. Then C € ¥ and the planes 7’ have a common line £ in 7.

Asks —(q+1)>2(q+ 1)+ (¢—2)(q — }/q). there are at least three planes
7’ other than 7 meeting K3 in a k’-arc K’ with k' > ¢ — }l\/q. Since K’ C Qs, each
of these K’ is contained in a conic C’ = 7/ N Q3. For at least one of these planes the
quadric V of ® meeting Q3 in C U C’ is non-singular. It is now shown that, for such
a K', there exists a line P’ P} P,, where P’ € K', P, € K1, P, € K.

Take a point P’ € C’\C. Since it is simple for V, the tangent space Tp/(V) to V
at P’ meets V in a cone P’Ps. So there are ¢ + 1 lines ¢/ of V in Tp/ (V). As C' is
non-singular, the space T/ (V) does not contain C. Consequently, T/ (V) meets C
in at most two points whence at most two lines ¢’ meet 7. The others, in number at
least ¢ — 1, all meet a3 in a point P; of Q1 and a5 in a point P; of Qs, with Py, Py
not in C. Also P; # P, since oy Ny = 7 and Py, P> ¢ 7. Further, P, # P’ for
1 = 1,2, since every point of a;; N C’ lies on C.

Let P’ € K'\C and note that [K'\C| > ¢ — }/q — 2. For each such P’, there
are at least ¢ — 1 points P;. Conversely, each P is derived from at most two P,
namely K’ N T'p, (V), unless T'p, (V) contains " and hence X'. The exceptional case
can only occur twice, when P; lies on the polar line of the plane 7’. Thus each P’
gives at least ¢ — 3 points P;, apart from the exceptions; each P comes from at most
two P’. Thus, with A = {P; € Q; obtainable from some P’ € K'},
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Al > 5(a—iva—2)(a—3)
= 20" — 3¢ —Ja+ 3Va+3.

Let B = Ky, C = Qp and K = {P; € K; obtainable from some P’ € K'}.
Then KT = AN B. So, by Lemma 6.2,

IKi| > 3a° — 2a®? = Sa+ 3/a+3+ (> — 1¢** + R(q)) — (¢* +1)
=1q°— 3¢%? — [s(9¢ — 20,/q + 21).

The line P’ P; with P’ in K’ and P; in K} meets a in a point P; of Q2\C. Such a
P, is obtained at most twice when |Tp, (V) N K'| < 2, unless Tp, (V) D #’, which
can occur for at most two points P, where the polar line of 7’ meets Qs. Thus, with
A = {P, € Q, obtainable from some P; P'},

[A] > 2+ (1K = 2IK\C)) > 2+ 3 IK]| = (¢ + 1)
=12 - 2¢¥? - L (41— 20/ — 11).
Now, let B = Ky and C' = Q5. Therefore, if
K5 ={P, € Ko | PP Py is aline with P' € K', P, € K}},
Lemma 6.2 gives
K5 > 1* — 5a** — 4, (41q — 20/ — 11)
+(@® = 14** + R(q)) — (¢* + 1)

=12 - T2+ L(21g +48/q — 127)
> 0.

So there is a line meeting X', K1, Ko in distinct points. Therefore K is not a cap,
which provides the desired contradiction. a

Theorem 6.19. In PG(n, q), n > 4, ¢ > 197 and odd,
ma(n,q) < ¢" = 1q" ¥ 42472
In fact, for ¢ > 67 and odd,

ma(n,q) < ¢" ' — 1gn3/?

+ L (31g"7% +22¢"%/2 — 112" 7% — 14¢"7/2 4 69¢" )
—2(¢" P 4" g+ 1)+,

where there is no term —2(q"~® + --- + 1) forn = 4.

Proof. Let K be a k-cap in PG(n, q).
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Hn=4
(a) There is no plane 7 such that 7 N /C is an s-arc with
s>q—a+ 1.
Take a line ¢ meeting K in two points. There are ¢? + ¢ + 1 planes 7 through ¢ each
meeting K in an m-arc withm < ¢ — 1 /g + 7. So
k< 2+(q2+q+ D(g—iva—1)
=" = 1"+ 1B - ¥ +3¢— g —1)
<q 5/2 + L (31¢% +22¢%/% — 112¢ — 14¢*/? + 85).
(b) There is a plane 7 such that 7 N & is an s-arc with s > ¢ — i\/q + Z

Then, by Lemma 6.18, for ¢ > 67, there are at most two solids through 7 meeting
K in an elliptic quadric, and, for the other ¢ — 1 solids « through 7,

lanK|<¢® - 1¢*?+ R(q).
So
k< 3+2( P+1-8)+(¢—D[* — 1¢**+ L (31g+14,/g — 53) — 5]
=q¢" = 1¢°% + (47¢> +18¢%/? — 84q — 14¢"/% + 85) — sq
< ¢ - 1 ¢°? + L (47¢% + 18¢%/2 — 84q — 14¢*/2 +85) —q(g — L /g + 7)
=q¢ — 1¢°? + s (31¢% + 22¢%/? — 112 — 14¢"/% + 85)
< q3 — }lq‘r’/? + 2¢? for ¢ > 197.
D n >4
The induction formula of Theorem 6.14 gives that
ma(n,q) < q¢" *ma(4,q) — " =2(¢" P+ 1)+ 1
< qnfl _ iqn73/2 + 116 (31(]“72 _’_22qn75/2
—112¢" 7% — 14¢" 7/ 4+ 69¢" )
—2(¢" P+ -+ 1)+ 1forq > 67
< qn—l _ iqn—3/2 + Qqn—2 _ qn—4
—2(¢" P44 1)+ 1forg > 197
<q" ' = 1q"3/% 4 2¢" 2 for g > 197. 0

6.4 The maximum size of a cap for g even

Before looking at an upper bound for ms(n, ¢) for g even and ¢ > 2, it is necessary to
improve the upper bound for m4 (3, ¢), the size of the second largest cap in PG(3, q);



320 6 Arcs and caps

alternatively, if a k-cap of PG(3,¢) has k& > mb(3,¢), then it is contained in a
(¢*> + 1)-cap. In Theorem 18.3.2 of FPSOTD it was shown that, for ¢ even with
q>2,

my(3,9) < ¢° — 3v/q+ 1.

For any k-cap K in PG(n, q), as above, a 1-secant line is called a rangent or a
unisecant, a 2-secant line is a bisecant, and a 0-secant line is an external line. Also,
let ¢ be the number of tangents through a point P of ; for a point ) not in /C, let
o1(Q) be the number of tangents through @ and let 05((Q) be the number of bisecants
through Q.

Lemma 6.20. For a k-cap K in PG(n, q),

) t+k=0n—1)+1;
(i) 01(Q) + 202(Q) = k.

Lemma 6.21. In PG(n, q) with q even, if Q) is a point not on the k-cap K such that
JQ(Q) >1, then 0’1(@) <t.

Proof. See Lemma 18.3.1 of FPSOTD, where the proof is given for PG(3, ¢), but it
extends immediately to PG(n, q). O

Corollary 6.22. If K is a complete k-cap of PG(n, q), with n > 3 and q even, then
01(Q) < t for all points Q off K.

Lemma 6.23. Let K be a complete k-cap in PG(3, q) with q even. If 1L is a plane
such that [ITN K| =z, then t(t — 1) > q(¢ + 2 — ).

Proof. As each of the g2 + ¢ + 1 lines through a point P € PG(3, ¢)\II meets II in
a point, each of the ¢(k — z) tangents through the points of X\II meets II in a point
of IT\K. As there are z:(q + 2 — x) tangents to K on II, so, counting the pairs (@), ¢)
with ¢ a tangent of K, Q € IIN\K and Q € ¢,

Y 0@ =tk —x) +x(g +2—)q

QEI\K
<t@+q+l—z)=tlt+k—1-—2x).

Hence t(t — 1) > q(q + 2 — ). O
Theorem 6.24. For g even, q¢ > 8,
mh(3,q) < ¢* —q+5.

Proof. Let K be a complete k-cap in PG(3, ), with g even, ¢ > 8 and k < ¢ + 1.
Suppose there exists a plane IT such that 4 < |IIo N K| < ¢ —2. Let zg = |IIp N K|
and f(y) = q(q + 2 — y)y. Then, by Lemma 6.23,

tit—1)> f(4) = f(g—2) =4q(q — 2).
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So
t2 {14+ V141600 -2} > 202

Therefore k < ¢® — q + 5.

Suppose that either |IIN K| < 3 or [IINK| > ¢ — 1 for any plane IT of PG(3, q).
Letly,...,l; be the t tangents to K through a point P € K. There are three cases to
consider.

(I) There exists exactly one plane 11}, through any l; such that |II;, N K| < 3 for
1<i<t

Suppose that there is exactly one plane IT through P with [IINK| < 3. Then II;, = 1I
for all . Hence all tangents to /C through P are in II. Therefore ¢t < ¢ 4+ 1 and so
k> q2 + 1, a contradiction. So there are at least two planes II;, j = 1, 2, through P
such that |II; N K| < 3. Each plane IT; contains at least ¢ — 1 tangents to X through
P.Thust >2(q—1)andso k < ¢*> — q + 4.

(IT) There exist two planes through some tangent l., 1 < ¢ < t, with at most three
points in IC

Any plane through /. meets I in at most ¢ + 1 points since [, is a tangent of K.
Counting the points of K on the g + 1 planes through /. shows that

k—1<2x2+(¢g—1)q.
Sok<q¢*—q+5.

(IT) There is no plane through some tangent lg, 1 < d < t, with at most three
points in IC

Then |II; N K| > ¢ — 1 for any plane II; through /4. By (6.13), II; N K can be
completed to a (g + 2)-arc, which meets [, in a point P; other than P. As there are
q+ 1 points P; and only ¢ points on [ for them to occupy, so two of the P; coincide;
say P, = P». Thus the number of tangents to C through P includes the joins of P;
to the points of II; N X and Iy N K. Hence t > o1(P;) > 2(¢ — 2) + 1, whence
k<q¢*—q+5. i

Theorem 6.25. In PG(3,4),

(i) m}(3,4) = 14;
(ii) a complete 14-cap consists of the points on the generators of a cone P3, where
P is the vertex and (3 is a PG(2, 2), outside a PG(3, 2) containing P and f3.

Proof. See Section 6.8. a

Theorem 6.26. Let q be even.

(i) For g > 8,
mh(3,q) < ¢*> — (V5 —1)q+ 5.
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(i) For q > 16,
mh(3,q) < ¢° —q+2.

(iii) For q > 128,
m5(3,q) < ¢* —2q + 8.

Proof. See Section 6.8. a
Now the maximum number of points on a cap in PG(4, ¢) is considered.
Theorem 6.27. For q even, and q > 8,
ma(4,q) < ¢® — ¢* +6q — 3.
Proof. Suppose there exists a complete k-cap K in PG(4, ¢) with
kE>q®—q*+6q—3. (6.54)
Then, with ¢ the number of tangents through a point of /C,
t <2¢> —5q+5, (6.55)
by Lemma 6.20(i). A contradiction is obtained in several stages.
(D) K contains no plane q-arc

Suppose that 7 is a plane such that 7 N K is a g-arc Q. Consider two subcases.
(a) Suppose there exist three solids d1, d2, 03 containing the plane 7 such that, for
1=1,2,3,
|6; K| >¢q* —q+5.

Then, by Theorem 6.24, §; N K can be completed to an ovoid O;. So O; N7 is a
(¢ + 1)-arc Q U {N;}. However, since Q can be contained in no more than two
(¢ + 1)-arcs, at least two of the N; coincide; say N1 = N,. The joins of Nj to the
points of §; N K and J» N K are all tangents to . Hence

o1(Ny) > 2(¢* =2+ 5) +q. (6.56)
Since K is complete, o1 (N7) < t by Lemma 6.21. So (6.55) and (6.56) imply that
2q+5<0,

a contradiction.
(b) If there are at most two solids d; and J, through 7 such that, for: = 1, 2,

0: VK| > ¢* =g +5,
then, counting the points of /C on the solids through 7,

k<(qg—1)(¢"—2¢+5)+2(¢+1-q) +q
=q’ —¢° +6q -3,

in contradiction to (6.54).
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(I) There exists no solid § such that > +1 > |6 N K| > ¢*> —q+5

Suppose § exists. Let § N K = K’. Then K’ can be completed to an ovoid O by
Theorem 6.24. Let N € O\K' and let N’ € K'. Consider the ¢ + 1 planes of &
through N N'. Since each of these planes meets O in a (¢ + 1)-arc, each plane meets
K’ in at most a g-arc. By (I), there is no g-arc on K; so each of these planes meets K’
in at most a (¢ — 1)-arc. Therefore a count on the points of X’ gives

¢ —q+5<|K<(@+1D(g-2)+1,
whence 6 < 0, a contradiction.

(IIT) For a point N not in IC, there do not exist planes 1, o with m; N2 = {N}
and such that w; N K is a (q¢ + 1)-arc with nucleus N fori = 1,2

Suppose 71 and 73 exist. Let § be a solid containing 7. Then § N K contains at least
q + 2 tangents through N, of which ¢ + 1 are in m; and one of which is in 7g; so
|6 N K| < ¢* + 1. Suppose now that

6NK| <q¢®*—q+5
for any such solid d. Then a count on the points of K in the solids through m; gives
k< (q+1)(¢* —2¢+5) + (g + 1);

that is,
E<q®—q¢®+4q+6. (6.57)

But (6.54) and (6.57) imply that 2¢ — 9 < 0, a contradiction; thus there exists a solid
0 such that
CH+1>0NK|>¢ —q+5.

But this contradicts (II). So 7y and 75 do not exist.
(IV) The tangents through any point Q off K lie in a solid

Let 0 be a solid not containing () and let V' be the set of intersections of tangents to
KC through @ with §. It is shown that each point of V is on at least two lines of V.

Let R € V and let r be the corresponding tangent. Suppose, for at most one plane
7 through r, that |7 N K| = ¢ 4+ 1. Then, since there is no g-arc on K, counting the
points of XC on the planes through r gives

E<(@+q)(g—2)+q+1,

a contradiction to (6.54).

Now let 7, and 72 be planes through r meeting K in (¢ + 1)-arcs. If @ is the
nucleus of both 7; N IC and 7o N /C, then there are two lines of )V through R, namely
w1 N § and 75 N §. Therefore, suppose that ) is not the nucleus of 71 N K. If, for at
most one solid ¢’ through 71, the equality |8’ N K| = ¢ + 1 holds, then, by (II),
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k<@ +1+4+4q(®—q+5—q—1),

whence
E<q@®—q*+4q+1. (6.58)

But (6.58) contradicts (6.54). Thus there are two solids d; and 5 through m; for
which §; N K = O; is an ovoid. Then @ is the nucleus of a (¢ + 1)-arc M, on O; for
i = 1, 2. The tangents of M; meet ¢ in a line /; through R, and the lines ¢; and /5
are distinct since () is not the nucleus of m; N XC. Thus R always lies on at least two
lines of V.

If there existed two skew lines in V, then there would be two planes 71 and 7o
through @ with 7, N7, = {Q} and @ the nucleus of both ;3 N K and m2 N K, in
contradiction to (III). Thus the lines of V either all have a common point or all lie in
a plane. Since each point of V is on at least two lines of V), all lines of V lie in plane.
Hence V is a subset of a plane and the tangents to X through @ lie in a solid.

(V) The final contradiction is obtained by counting the tangents of KC
Consider the function
Ga)=2(’ +¢* +q+2—x).

It attains its maximum value for x = ;(q3 + ¢ + q + 2). Since, by Theorem 6.16
and (6.54),
C2k>¢ P +60-3> NP+ +q+2),
o)
kt=k(>+a*+q+2-k) >G(¢®) =’ (> +q+2). (6.59)

By (IV), all tangents through a point ) off K lie in a solid, which contains at
most ¢> + 1 points of . However, an ovoid has exactly ¢ + 1 tangents through an
external point. So, through @, there are at most ¢ tangents of K. A count of the pairs
(R,r) where R is a point off IC and r a tangent to X through R gives

(@' +*+ ¢ +q+1—-k)q” > ktg. (6.60)
From (6.54), (6.59) and (6.60),

@+ ++q+1—¢>+¢*—6g+3)qg
>kt > ¢ (¢? +q+2).

Hence
¢t +2¢° —5q+4> ¢t + & + 245,
and
¢ +5¢—4<0,
the final contradiction. O

Similar methods give an improvement to this result.
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Theorem 6.28. (i) m2(4,8) < 479;
(ii) for q even, q > 8,

ma(4,q) < ¢® — > +2Vbq — 8;
(iii) for q even, q > 128,
ma(4,q) < ¢° — 2¢* + 14¢ — 20.
Proof. See Section 6.8. a

Finally, upper bounds for the size of a k-cap in PG(n, ¢) can be obtained when
qiseven,q > 2andn > 5.

Theorem 6.29. Let q be even, with ¢ > 2 and n > 5.

(i) ma(n,4) < 138 4n=t 4 %

(i) ma(n,8) < 478874 —2(8" 5 4+ ... £ 84 1) + 1;
(i) ma(n,q) < ¢t —(n—4)¢" 2+ (n—3)%¢" 3 forq > 8and 4 < n < 2q/3;
(iv) ma2(5,q) < ¢* — ¢ +5¢® + 3¢ — 1 for ¢ > 16;

(V) ma(n,q) < ¢" 1 —q" 2 +5¢" P +2¢" 1 +2(¢" P +q" 0+ +q)+q—1
forq> 16 andn > 5;

(Vi) ma(n,q) < ¢" 1 —q" 2 42v/5¢" 3 —9¢" 1 —2(¢" P+ ¢V O+ g+ 1)+1
forq > 16;

(vii) ma(n,q) < ¢" ' =2¢" 2 +14¢" 2 =21¢" 1 =2(¢" P +¢" 04 +g+1)+1
forq > 128.

Proof. Parts (i), (ii), (vi), (vii) follow from (6.6), Theorem 6.28 and Theorem
6.14¢(ii). For (iii), (iv) and (v), see Section 6.8. a

6.5 General properties of k-arcs and normal rational curves

As in Section 21.1 of FPSOTD, a rational curve Cq4 of order d in PG(n, ¢) is the set
of points
{P(t07t1) = P(go(t()a tl)a s agn(t()vtl)) | th tl S Fq}a (661)

where each g; is a binary form of degree d and they have no non-trivial common
factor. The curve C, may also be written
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{Pt) =P(fo(t), i(t),. ... fu(®) [t €EF "}, (6.62)

where f;(t) = g¢i(1,t). As the g; have no non-trivial common factor, at least one
fi has degree d. Also Cq is normal if it is not the projection of a rational C/, in
PG(n + 1, q), where C/, is not contained in a hyperplane.

Theorem 6.30. Let Cy be a normal rational curve in PG(n, q) not contained in a
hyperplane. Then

@) g = n;
(i) d = n;
(iii) C,, is projectively equivalent to

{(Pt) =P, t" ... t,1) [t e F,T}; (6.63)

(@iv) C,, consists of ¢ + 1 points no n + 1 in a hyperplane;

(V) if ¢ > n+2, there is a unique C,, through any n+ 3 points of PG(n, q) non+1
of which lie in a hyperplane;

(vi) there is a subgroup H of PGL(n + 1,q) isomorphic to PGL(2, q) that acts
3-transitively on C,,.

Proof. (1)—(v) See Theorem 21.1.1 of FPSOTD.
(vi) With C,, as in (6.63), the transformation 7 given by t — (at + b)/(ct + d),
with ad — bc # 0 induces the transformation

("t 1)
= ((at +b)", (at +b)" et +d), ..., (at +b)(ct +d)" !, (ct +d)™)
= ("t s DT
for a suitable non-singular matrix 7. Hence H = {T' | 7 € PGL(2,¢)}. O
Now, further proper_ties of C,, are considered. With C,, as in (6.61), write the
derivative dg;/0t; = g;. If, for a given i in {0, 1}, not all g;(o,?1) are zero, then

the point with g% (to, 1) as (j + 1)th coordinate is denoted by Pi(to,t1). If such is
the case for both i and if P(t,t1) # P(to,t1) also for both 4, then

P(to,t1)P°(to,t1) = P(to,t1)P' (to, t1)

since
tog) (to, t1) + t1g; (to, t1) = ng;(to, ta).

For at least one i in {0,1}, the point P(to,t;) exists and is distinct from
P(tg,t1); for such an i, the line P(tg,t1)P*(to,t1) is the tangent of C,, at P and
is denoted by £,,.

Lemma 6.31. Let ¢ > n > 3, let C,, be a normal rational curve, and let P be a point

of Cp.
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(i) The image of the projection map G of C, \{ P} from P onto a hyperplane 11 not
containing P together with P’ = {p N 11 is a normal rational curve in 11, and
is denoted by C,,G.
(ii) No two tangents to C,, intersect.
(iii) If ¢ p lies in a hyperplane 11 then |II' N C,,| < n — 1.
i) lpNncC, = {P}
WM IfQ, R € C,\{P}, then QR does not meet { p.
Proof. (i) Take C,, in canonical form
{Pt)y=P@t"t" ', ..., t,1) | teF, T}

By Theorem 6.30 (vi), choose P = Uj. Let G’ be the projection of II from P onto
the hyperplane ug. Then, fort € F,

PGG' =P(0,t" 1 "2t 1).

Also the tangent £p = Uy U, which meets ug in U;. So {PGG’ |t € F,} U{U;}
is the normal rational curve

{PO,t" 1" 2.t 1) [te F, T}

Thus C,,G is a normal rational curve of degree n — 1 in IL.
(ii) Let P = P(t) and Q = P(s), s,t € Fy, s # . To show that £p N {g = (),
consider the matrix

" R A AR
nt"l (n—1)t"2 ... 322t 10
s" sn1 8% 5251
ns" 1l (n—1)s""2... 3522510

It has rank 4, since the submatrix formed by the last four columns has determinant
(t — s)*. So, when P, Q # Uy, the lines £p and /¢ do not meet. By the transitivity
of the group, this is also true when P = Uy, .

(iii) Let II" = V(agXo + a1 X1 + -+ 4+ a,X,,) and take P = Uy. From (i),
{p = UyUy; so £p lies in II" if and only if ag = a1 = 0. Hence, apart from P, a
point P(t) of C,, lies in II if and only if

ast" 2+ +a, =0.

This has at most n — 2 solutions.
iv) UgU; NC, = {Uo}
(v) Take P = Ugy, Q@ =U,,and R = U. a

Theorem 6.32. If ¢ > n + 2, then

(i) the group G(C,,) of projectivities in PG(n,q) fixing Cy, is isomorphic to the
projective linear group PGL(2, q), given by the transformations

t+— (at +b)/(ct + d),
with ad — be # 0, acting on (6.63);
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(ii) the number of normal rational curves in PG(n, q) is

Vp = ¢ D0ED/2(3 4 )

n

= [I@* =) /Hal@® = (g - 1)}

=0

Proof. (i) From Theorem 6.30(vi), there is a subgroup H of G(C,,) isomorphic to
PGL(2, ¢). It must be shown that H = G(C,,).

Now, suppose that an element I/ of G(C,,) is given by the matrix A = [a;;], with
0 <1i,j <n,andC, is taken in the form (6.63). Since

n n n
(tn, tnil, Loty 1)A = (Z aiotnii, Z ailtnii, RN Z amtnii)
=0 =0 =0
= (sn’ Snila sy S, 1)7

there exists a permutation p,, of F,* such that tp,, = s, whence

n n
tpn = Zaiotnii/ Zailtnii.
=0 =0

It is now shown by induction on n that there exist a, b, ¢, d in F; with ad—bc # 0
such that
tpn = (at +b)/(ct + d).

Forn =1,
tpn = (aoot + a10)/(ao1t + a11);

so the result is proved.
Assume that the result is true for

Coo1 ={P(" 14" 2 ... t,1,0) [t € F, T}, n>2.

By the transitivity of H, take U,/ = U,; hence a,; = 0, 0 < ¢ < n — 1, and
ano = an1 = 01in particular. So

n—1 n—1
tpn = Z apt" "/ Z apt" "t
i=0 i=0

n—1 n—1
_ n—1—1 n—1—1
= aiot / a,-lt .
=0 =0

Since the tangent at U, is fixed, also a,—1; = 0for 0 <7 <n — 2.

Let G be the projection map from U,, onto u,,. Then, as in Lemma 6.31(i), let
Cpo1 =CnG. Let A = [a;j}, 0<1i,j <n-—1with agj = a;;. Also let i’ be the
projectivity on u,, corresponding to the matrix A’. Then, for t € F, 7\ {0},

P@t",....t, YU =P L ..t 1,00 =P(t",...,t, ) UG € Cp,_1.
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Also U,,_ U’ = U,,_; € C,_1. Since C,,_1U4’ is also a normal rational curve of
order n — 1, so C,,_1U’ = C,,_1 by Theorem 6.30(v). So U’ is a projectivity of u,
fixing C,,—1. However,

n—1 n—1
r n—i—1 1 n—1—i
tpn-1 = E a;ot / E a;t
i=0 i=0

n—1 n—1
_ n—1—1 n—1—1
= E aiot /E a,-lt

=0 =0
=1pn.

By the induction hypothesis, p,, has the required form.
(ii) Since C,, is projectively unique and since G(C,,) = PGL(2, q), so

vn = |[PGL(n + 1,4)|/[PGL(2, )] O
Now consider the existence of k-arcs in PG(n, q).

Theorem 6.33. A k-arc in PG(n,q), k > n + 4, exists if and only if a k-arc exists
inPG(k—n—2,q).

Proof. Choose n + 1 points of a k-arc K as the simplex of reference. Consider the
(k—n—1) x (n+ 1) matrix M whose rows are the vectors of the other k — n — 1
points of K. Since no n 4 1 points of /C lie in a hyperplane, taking n — s + 1 points,
where 0 < s < min(k —n — 1, n+ 1), of the simplex of reference and s other points
shows that all s X s minors of M are non-zero. So now take the rows of the transpose
M* as vectors of points in PG(k —n — 2, ¢) and add the simplex of reference in this
space. This gives a k-arc K’ in PG(k — n — 2, q). The process is reversible. a

As in Chapter 3, let G, , denote the Grassmannian of r-spaces in PG(n, ¢). Let
A, be the set of all k-arcs in PG(n, ¢). Now consider a relation between Gy, j,—1
and Ay, .

Let K = {P1,..., P} be a k-arc in PG(n, ¢) with & > n + 3, let G(K) be the
group of projectivities fixing K, and let g(K) = |G(K)|. Let P, = P(X;). Then to
K there correspond (¢ — 1)¥k! matrices each with k rows and n + 1 columns:

p1Xi1

p2Xi2
(6.64)

PrXik

Here {i1,...,ix} = {1,...,k} and p; € F,*. Every subdeterminant of order n + 1
is non-zero, since K is a k-arc. This matrix is denoted by

M = Mg, (6.65)
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where R = (p1,...,px) and 0 = (i1, ...,4x). Now, take the columns of Mp , as
the vectors of n + 1 points in PG(k — 1, ¢). These points define a PG(n, ¢) which is
denoted I1,,(M). From the (¢ — 1)*k! matrices M, the (¢ — 1)*k! subspaces I1,, (M)
of PG(k — 1, q) are obtained; these are not necessarily distinct. Suppose that for
two matrices M and M’ the equation IT,, (M) = II,,(M’) holds. Then there exists a
unique non-singular (n + 1) x (n + 1) matrix A such that

MA= M. (6.66)

However (6.65) also defines a unique projectivity of PG(n, ¢) fixing K.
Conversely, if B is the matrix of a projectivity fixing /C, then

for all p # 0; thatis, (¢ — 1)g(K) matrices M give the same II,, (M ). So, to K, there
correspond

X(K) = (¢ = D* "kl /g(K) (6.67)

distinct subspaces II,, of PG(k — 1, q).
The Grassmannian G, ;1 is embedded in PG(N, ¢), with N = c(k,n+1) — 1,
and contains
[k —n,k]_/[1,n+1]_

points, Section 3.2. From above, it follows that to the k-arc I correspond x(K)
points of G, —1 lying in no face of the simplex of reference of PG(N, ¢). Now
consider how many k-arcs correspond to one of these x(/C) points @ of G,, k1.
To @ corresponds one 1T/, of PG(k — 1, ¢). The number of ordered (n + 1)-tuples
(Q1,...,Qny1) of linearly independent points of 1T/, is

n

¢=1J""" —=d)/(g—1) .

=0

So, to II/, there correspond
(@™o =] -q)
i=0

matrices M.

Suppose now that the two k x (n + 1) matrices Y and Z have, as their columns,
vectors of n + 1 linearly independent points of II/, and give the same k-arc K’ of
PG(n,q). Then

YA=Z

for a unique non-singular (n + 1) x (n 4 1) matrix A, which consequently defines a
projectivity of PG(n, q) fixing K'. Conversely, a projectivity of PG(n, q) fixing K’
gives ¢ — 1 matrices corresponding to I/, . So K’ comes from (¢ — 1)g(K’) matrices
corresponding to II/,.
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Since the k-arcs K and K’ come from two ordered (n + 1)-tuples of linearly
independent points of I/, they are projectively equivalent; hence g(K) = g(K').
So, to @ of G,, .1 there correspond

n

[T =4/l — 1)g(K)]

=0

k-arcs of PG(n, ¢) and these are precisely the ones projectively equivalent to K.

Let V,, —1 denote the set of points of G,, .1 on no face of the simplex of ref-
erence and let V,, ;_1(K) denote the set of x () points corresponding to the k-arc
K. Hence V,, ;1 is partitioned by the sets V,, x—1(K). In A, which is the set of
k-arcs of PG(n, ¢q), let A ,,(K) denote the set of k-arcs corresponding to a point
of Vy, k—1(K). Then the sets Ay, (K) partition Ay, ,,. If Ay, (K) is mapped onto
V. k—1(KC), then a bijection of the quotient set corresponding to the partition of Ay, ,
and the quotient set corresponding to the partition of V), 1 is obtained. This dis-
cussion gives the following results.

Theorem 6.34. (i)

A ()] = (@™ = ¢")/1(q — 1)g(K)]. (6.68)
i=0
(i1) .
Vb1 (K)|/|Arn (K)| = (¢ = DY T[ (@ = 0. (6.69)
i=0
(iii) )
Wnkl/[ Akl = (@ = DY/ ] (@ = d"). (6.70)
1=0

Theorem 6.35. For ¢ > max(n+ 2,k —n), n>2, k>n-+4,

‘Ak,k72fn|/‘d4k,n - Vk:72fn/7/n
k—2—n n
= [ @' =a)/ [l =) ©7)
=0 1=0

Proof. To a point of V,, ;_1 there corresponds a II,, of PG(k — 1, ¢) skew to every
(k — 2 — n)-dimensional edge of the simplex of reference of PG(k — 1,¢), and
conversely. By the principle of duality, the number of such II,, is the same as the
number of IT;,_5_,, of PG(k—1, ¢) skew to every n-dimensional edge of the simplex
of reference. Hence

Vik—1] = Vi—2-n k1. (6.72)

The result now follows from (6.70), (6.72) and Theorem 6.30(vii). O
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There are numerous consequences that can be drawn from Theorems 6.33 and
6.35. For the moment, only results that follow from properties of PG(2,¢) and
PG(3, q) are considered.

Corollary 6.36. (i) m(q —3,q) = ¢+ 1forq > 5;
(ii) m(q — 2,q) = q + 1 for q odd with q¢ > 5;
(iil) m(q — 2,q9) = q + 2 for q even with g > 4.

Proof. (i) Forq>5, |Agt23]=0= |Agt2,4-3/=0.
(ii) Forgoddwith ¢ > 5, [|Ag42.2]|=0=|Agt24-2| =0.
(iii) (a) Forgevenwithqg >4, |Agi22] > 0= |Ajq2q-2] > 0;
(b) also, for geven, |Ay133] =0= |Agt3,4-2|=0. 0O

Corollary 6.37. For ¢ > n+ 3, n > 2, ifevery (q + 1)-arc of PG(n, q) is a normal
rational curve, then every (q+1)-arc of PG(q—n—1, q) is a normal rational curve.

Proof. Forq>n+3, n> 2,

| Ag+1,g-n-1] = Vg—n-1 <= [Agt1,n| = V. a

6.6 The maximum size of an arc and the characterisation of such
arcs

In Sections 21.2 and 21.3 of FPSOTD it is shown that m(3,q) = ¢ + 1 for ¢ > 3;
also a (¢ + 1)-arc is a twisted cubic for ¢ odd, while, for g even, it is of the form

(P H1 12" 1,1) | t € Fon U {o0}}
for some m coprime to h. This result is now generalised to higher dimensions.

Theorem 6.38. Let KC be a k-arc in PG(n,q) with k > n + 3 > 6. If there exist
points Py and Py in IC such that the projections Ko of K\{Py} from Py and K1 of
K\{P1} from Py onto a hyperplane 11,,_1 are both contained in normal rational
curves in I1,,_1, then K is contained in a unique normal rational curve of PG(n, q).

Proof. Let L = {Py,...,Py42} bean (n + 3)-arcin K. Fori = 0,1, let £; and K;
be the projections from P; of £\{P;} and K\{P;} onto II,,_;. By Theorem 6.30(v),
there exist unique normal rational curves C in PG(n, ¢) and C(*), (") in IT,,_; such
that L C C, Lo € CO, £, ¢ ¢M. Since Ky and K; are assumed to be in normal
rational curves, so Ko € C© and K; ¢ CW. As K is contained in Py and in
PiKq, so

K\{Py, P,} C (PO N PLCYN\PyPr; (6.73)

the right-hand side of (6.73) is now shown to lie in C.
LetC = {Q; | j € N,} with Q; = P; for j € Ny, ;2. Also let D) be the
projection of C\{P;} onto II,,_; from P; fori = 0, 1. Since 1IONY {lp,NIL,,_1}
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is a normal rational curve in II,,_; containing £; by Lemma 6.31(i), so it coincides
with C() by Theorem 6.30(v). Thus a line on the cone P;,C (1) other than Py P is
either the tangent ¢ p, or a line P;();, where j # 0, 1. Let £y be a line on PyC©) and
¢4 aline on P;,C) such that neither line is Py P, but with ¢y and ¢; intersecting. If
ly = Up,, then {; # {p, by Lemma 6.31(ii); thus ¢; = P;Q; for some j # 0, 1.
Since the plane m = {o¢; contains Py, P, @;, there exists a hyperplane containing
n points of C,, as well as ¢y, contradicting Lemma 6.31(iii). Thus ¢y = PyQ,, and
1 = P1Q, for u,v # 0, 1. Since 7 contains at most three points of C, s0 @, = Q5.
Hence ¢y N ¢4 is a point of C. Thus K\{ Py, P,} C C\{Py, P1}, whence X C C. O

Theorem 6.39. (i) Let K be a (¢ + 2)-arc in PG(n,q) withq+1 >n+3 > 6.
If Py and Py are points of KC and 11,,_1 is a hyperplane containing neither P
nor Py, then the projections Ko of K\{Po} and KC1 of K\{P1} from Py and Py
onto I1,,_1 cannot both be normal rational curves.

(ii) If every (¢ + 1)-arc in PG(n — 1,q), withq + 1 > n+ 3 > 6, is a normal
rational curve, then m(n,q) = q + 1.

Proof. (i) Suppose Ky and Ky are normal rational curves in II,,_;. For a point P
in K\{Py, P1}, let K’ be the (¢ + 1)-arc K\{P}. Then, by Theorem 6.38, K’ is a
normal rational curve in PG(n, ¢). Let £p, be the tangent of X' at P; fori = 0 and 1,
and let I} be the projection of X'\ { P;} from P, onto II,,_;. Then X' U{¢p, NII,,_1}
is a normal rational curve in II,,_; by Lemma 6.31(i). So K; = K, U {¢p, N 1L,,_1 }
since both curves have ¢ points in common and ¢ > n — 1 + 3. Thus {p, = P, P
contradicting Lemma 6.31(ii).

(ii) If there is a (¢ + 2)-arc K in PG(n, q), then Ky and K; are (¢ + 1)-arcs and
so normal rational curves, contradicting (i). O

Theorem 6.40. In PG(4,q), ¢ > 5,
m(4,q) =q+1.

Proof. (i) For q odd, since every (¢ + 1)-arc in PG(3, q) is a twisted cubic, the result
follows by Theorem 6.39(ii).

(ii) For g even, suppose there exists a (¢ + 2)-arc K = {P,Q, R1, Ra, ..., Rq}.
Take a solid II5 in PG(4, ¢) containing neither P nor ). Let K; and Ko be the
projections of K\{P} and K\{Q} onto II3 from P and Q. In Theorem 21.3.10 of
FPSOTD, it is shown that, at any point L of a (¢ + 1)-arc L, there are precisely
two lines, called special unisecants, such that every plane through such a unisecant
meets £ in at most one point other than L; further, the special unisecants to £ are
the generators of a hyperbolic quadric Hs. Let ’Hél) and 7—[:(52) be the corresponding
quadrics containing /C; and /Cs. Also, let PQ N1l3 = S, let PR; N1l3 = P;, and let
QR NIl3 =Q;,1 € N,. Then Ky = {S,Pl, .. .,Pq} and ICy = {S,Ql,. . .,Qq}.
Since the plane PQR; meets II3 in a line, so S, P;, Q; are collinear, for j € N,
on the line ¢;. Also let £ and m be the special unisecants at S to K;. Then, each of
the ¢ planes ¢/; meets K; in precisely two points S and P;, and also meets K5 in
precisely two points .S and @);. So ¢, and similarly m, is a special unisecant to Co
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at S. Thus the two quadric cones P’Hél) and Q?—l;(f) contain the planes ¢{(PQ) and
m(PQ). They therefore intersect residually in a quadric surface Vs which either (a)
lies in a solid IIf, or (b) lies in no solid. However, W5 contains Ry, ..., R,. In case
(a), II5 contains at most four points of K and so ¢ < 4. In case (b), Wj5 is a pair
of planes with just one common point, which can contain at most six points of /C,
whence ¢ < 6. Thus both (a) and (b) are impossible. a

Theorem 6.41. In PG(n, q), q odd, n > 3,

1) if K is a k-arc with k > q — Zi\/q +n— i, then IC lies on a unique normal
rational curve;
(i) if ¢ > (4n — 5)2, every (q + 1)-arc is is a normal rational curve;
(iii) if g > (4n — 9)2,
m(n,q) =q+ 1.

Proof. (i) This follows by induction from Theorem 6.38 and Theorem 10.25 of
PGOFF2.

(i)g+1>qg—j\/g+n—} < q>(4n—5)%

(iii) This follows from Theorem 6.39(ii) and part (ii). a

The next result shows that, in part (ii) of this theorem, some restriction on ¢ is
necessary.

Theorem 6.42. In PG(4, q), q odd,

() for q <7, a (q + 1)-arc is a normal rational curve;
(ii) for ¢ = 9, there exist precisely two projectively distinct 10-arcs, the normal
rational curve and one other.

Proof. (i) For ¢ = 3 and 5, the result is immediate. For ¢ = 7, Corollary 6.37 with
n = 2 can be applied.

(i) With Fo\{0} = {0® | i € N7,02% = o + 1}, every 10-arc in PG(4,9) other
than a normal rational curve is projectively equivalent to

K={P(1,t,t> +at® t3,t*) | t € Fo} U{P(0,0,0,0,1)};

see Section 6.8. The 10-arc K projects to the unique complete 8-arc in PG(2,9), as
in Section 14.7 of PGOFF2. a

Remark 6.43. Theorem 6.33 and Corollary 6.36 can be applied to the previous re-
sults.

The situation is surprisingly different for (¢ + 1)-arcs in PG(4, ¢) with ¢ even,
as is now demonstrated.

Let K = {Py, P1,..., P} bea(q+1)-arcin PG(4,q), ¢ = 2", h > 3. Ateach
point P; of K there is an induced incidence structure S(P;) isomorphic to PG(3, q),
whose points, lines, and planes are the lines, planes and solids of PG(4, ¢) through
P;; the incidence is that induced by PG(4, ¢). As usual, a subspace of dimension r
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is denoted I1,.; however, II% also denotes an s-dimensional subspace of S(P;). Thus
a II, through P; is also a IT%._,. This notation is only used for the remainder of this
section.

From the definition of C any solid through P; contains at most three other points
of K. Thus the set of ¢ lines P, P}, j € Ny \{i}, is a g-arc IC; of S(P;). By Theorem
6.71 for ¢ > 16, this arc XC; can be completed to a (¢ + 1)-arc K} of S(P;) by adding
a unique II; through P;; for ¢ < 16, see Section 6.8. Let this line be denoted ¢; and
called the rangent line to KC at P;. From Theorem 21.3.10 of FPSOTD, the points
of K} lie on a hyperbolic quadric, denoted Q;. Let S; denote the quadric cone of
PG(4, ¢) whose points lie on the 1T} of Q;; that is, S; = P;H3, where Hj is a solid
section of Q; regarded as a set of 1.

Lemma 6.44. (i) The tangent lines ¢; of KC are pairwise skew.
(ii) Fori # j, the solid {;0; meets K in { P;, P;}.
(iii) There is a unique plane ov;j through P; and P; which is both a 1} of Q; and a
H{ of Qj. Further, P;il; is a H’i of Qi and Pjl; is a H{ of Q;.

Proof. (i) By construction, £; N KC = {P;}. Suppose ¢; N ¢; is a Ilp; then ¢£;¢; is a
I, as well as a [T} and a H{. By Theorem 21.3.10 of FPSOTD, through P; P; there
are exactly two special unisecants I1¢ of K, and these are generators of Q;. Any I3
containing a special unisecant I of K} through P, P; meets K in at most one I
other than P; P;. Hence, for ¢; ¢ Il3, any such II3 meets K in P;, P;, and at most
one further point; for ¢; C 1l3, it meets K in P;, P;. Since ¢; C 1l3 if and only if
¢; C I3, these two IT% of Q; are also IT] of Q; through P;P;. Thus the two cones
S; and S; intersect in these II; and hence residually in a quadric surface Q. Since
K\{P;, P;}isin Qand ¢ +1 > 9, the surface Q does not contain a plane. So Q lies
in a solid and also contains the ¢ — 1 > 7 points of K\{P;, P;}, a contradiction.
(ii), (iii) Project C\{P;, P;} from P;P; onto a plane I1 skew to P; P;; the pro-
jection of IC\{P;, P;} is a (¢ — 1)-arc K’ of II,. Then both P;j¢; NIl = {Q} and
Pi¢;NII; = {Q'} extend K’ to a g-arc. From Section 10.3 of PGOFF2, K'U{Q, Q'}
is a (q 4 1)-arc. Hence £;(; N KC = {P;, P;}, Pi{; is a IT; of Q; and P;¢; is a I} of
Q,. Let Q" be the unique point of I, which extends K’ U {Q, Q’} to a (¢ + 2)-arc.
Then the plane Q" P; P; = «;; is both a IT} of Q; and a IT] of Q;. 0

Lemma 6.45. For a given i, the planes P}, for j in N \{i}, are q of the 11} of a
regulus R; of Q;.

Proof. Let {; and {;, be distinct lines of IC with j,k # i. By Lemma 6.44(ii), the
point P; ¢ {;l}, and hence P;¢; and P;{;, are skew II¢; they are generators of Q;,
by Lemma 6.44(iii), and so belong to a regulus R;. a

Lemma 6.46. Let g; and g. be the two 11§ of Q; through ; and let g; € R;. Then
g; N isally, forj #i.

Proof. Let g} belong to the regulus R} complementary to R;. By the previous
lemma, P;¢; € R, for j # i. Since lines of complementary reguli meet, so g; N P;¢;
is a IT{. Thus g/ N ¢; is a Il,. O
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Corollary 6.47. Through each {; there are two 11} of Q;; they are g;, which is skew
to all U} for j # i, and g, which meets all U} for j # i.

Lemma 6.48. The q + 1 generators g, of Q; contain a unique 11, denoted by £,
which is disjoint from K and meets the ¢; in distinct points.

Proof. Fori # j,let gi N {; = {Q} and g; N ¢; = {R}. Since ¢; and {; are skew,
so @ and R are distinct points. Since ¢; C g/ and ¢; C g}, so g; N gj; = QR. Thus
90 - - - » 9y are ¢ + 1 planes Iz, meeting in pairs in a I1;; so either they pass through
a common II; or they lie in a common II3. The latter is impossible since /X lies in
the space they generate. So they meet in a I1;, denoted by ¢. Now, / is disjoint from
K, since otherwise every g; would contain ¢ N K. Since ¢; C gj and {; ¢ g}, 7 # i,
so [¢; N ¢] = 1. Since the ¢; are skew, each point of ¢ lies on a unique tangent line ¢;
of K. a

Theorem 6.49. In PG (4, q), q = 2", every (q+1)-arc K is a normal rational curve.

Proof. For h = 1 and 2, the result is immediate. So, let ~ > 3 and use the above
notation. For K = { P, ..., P}, it is possible to choose coordinates so that

Po = Uo,Pl = U4,A = Oé(nﬁgoﬂgl = UQ, B = gﬂgl = U3, C= Eﬂzo = Ul,
and U is any point of K\{ Py, P1 }. Note that
Ly = g, U = g1, Aly = go, Aly = ¢

and P()PlA = Qp1.

Let 81 = g19} = up and consider the (¢ + 1)-arc 81 N K{. This (¢ + 1)-arc (in
a II3) contains the points C' = Uy, P, = Uy, and P,UN B; = P(0,1,1,1,1). The
special unisecants of 81 N K, at C and P are the intersections of 31 with the H(l) of
Qo containing ¢y and Py P;; these unisecants are therefore

CA:goﬂﬁl, C’B:@:g(l)ﬂﬁl’ PiB = Pyl ﬂﬁl, PiA =y NP

Thus these unisecants intersect at A = Uy and B = Us.
It now follows from Theorem 21.3.15 of FPSOTD and its proof that

]CO = ﬁl N ]C6 = {P(Oa 17/”'v IUGMUGJFI) | M € Fq+}v

where o is a generator of the automorphism group of F;; hence 27 = 22" for some
n coprime to h. Since, by definition, Ky is £y N S together with a projection of
K\{Up} from Uy,

K= A{P(L, f(u), pf (), 17 f (), p7 1 f () | € By}

for some function f : F, — F, with f(0) =0, f(1) = 1. O
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Next consider the (g + 1)-arc Sy N K/, where Sy = gog{, = u4. Similarly to the

above,

K1 =Bon Ky ={P1,\A,ATH0) | ANeF, T},
where 7 is an automorphism of F,, such that ™ = 22" with m coprime to h. Since
K1 is €1 N f3p together with a projection of K\{U4} from Uy, so

’C = {P(17 /\a AT? /\T+17 f/()‘)) ‘ /\ € Fq} U {U4}’
where f’ is a function on F, with f/(0) = 0, f/(1) = 1. The two forms for K are the
same if, for all A and p in Fy,

Flu) = A pf () = A7, u7 () = X0 po () = f/(.

Hence
= )\‘rfl’ LL071 _ )\’ and \ = ()\771)071.

From the definitions of 7 and o,
AT =220 N =0
Let1 <n <m < h;so, mod (2" — 1),
2m-1nE2"-1) =1,
gmtn _gm _on = (),
om _9m=n _ 1 =,
Since 0 < 2m —2m—" _ 1 < 2" _1 g0
2m —2mTn — 1 =0.
Therefore m = n = 1. Thus
K={P(L,A\ 0\ | AeF, 1,
where A = oo gives the point Uy.
Theorem 6.50. For ¢ > 5, n > 5,
qg+n—3, qodd,
qg+n—4, q even.

m(n,q) < {

Proof. For q odd, the result follows from Theorem 6.39 and induction, using the
fact that a (¢ + 1)-arc in PG(3, ¢) is a normal rational curve. For ¢ even, a similar
argument applies, but now the fact that a (¢ + 1)-arc in PG(4, ¢) is a normal rational
curve must be used. a
Theorem 6.51. (i) Ifn < 2p — 3, q = p", with p prime, then m(n,q) = q + 1.
(i) Ifg>n+1>p+1>4, ¢g=0p", withpprime, thenm(n,q) < q—p+n-+1.
(iii) Forn < p — 1, all (q + 1)-arcs are normal rational curves.
Remark 6.52. Theorem 6.33 and Corollary 6.36 can be applied to Theorem 6.51.
Theorem 6.53. If p is a prime with p > n + 1, then m(n,p) =p + 1.

Proof. See Section 6.8. a
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6.7 Arcs and hypersurfaces

In this section, a connection is obtained between arcs and hypersurfaces. The main
aim is to obtain an upper bound for m(n, ¢) with ¢ even. To do this, a more sophis-
ticated notion of algebraic variety than in the previous chapters is required.

Let H, Hy,..., H,beformsin Q = Fy[Xo,..., X, ];infact, H, Hy, ..., H, are
always linear. The variety A in PG(n, ¢) defined by H and H;, ..., H, is denoted

A=A(H, Hy,... H)

and consists of the pair (V(A),I(A)), where V(A) = V(H, Hy, ..., H,) is the set
of zeros of H, Hy, ..., H, in PG(n,q) and I(A) = I(H, Hy, ..., H,) is the ideal
generated by H, Hy, ..., H, in ); that is,

V(A) ={P(X) € PG(n,q) | H(X) = H(X) = --- = H.(X) = 0},
I(A)={FeQ|F=GH+GH,+---+G,.H,
for some G, G1,...,G, € Q}.

The number of points in V(A) is denoted by |.A|.

If A and B are varieties in PG(n, q), then A is algebraically contained in B,
denoted A C B, if I(A) D I(B). The varieties A and B are (algebraically) equal if
I(A) = I(B). A variety A = A(H) with deg H = d is a hypersurface of degree d.

IfA=A(H,Hy,...,H,)isavariety with H, H; # 0, all¢,and H,1,..., H,
are other linear forms in 2\ {0}, then

ANmn--Nmy, =ANTp1 NNy

is the variety A(H, Hy, ..., H,), where 7; is the hyperplane V(H;), j=1,...,u.
As Hy, ..., H, are linear, the terms V(H;) and A (H;) are used interchangeably.

Theorem 6.54. In ¥ = PG(n,q), n > 3, let K = {m,m2,..., 7} be a set of
hyperplanes, any three of which are linearly independent, and such that to =; is
associated a hypersurface ®; of 3 of degree d with the following properties:

(@) ®; N Ny = ®; N Nmy for all distinet 4, j;
(b) |®; Nm; N 7w;| < O(n — 2) for all distinct i, j;
(©) |®; Nm Ny Ny | < 8(n — 3) for all distinct 4, j, u.

Then there exists a hypersurface ® in 3 of degree d such that, for all 1,
(I)ﬂ’ﬂ'i = (I)iﬂﬂ'i. (674)

Proof. The proof is by induction on k. For k£ = 1, there is nothing to prove. Suppose
that £ > 2 and that the statement holds for k& — 1. Let ®' be a hypersurface of degree
dsuch that, for1 < <k —1,

@lﬂﬂ'i:@iﬂﬂ'i. (675)
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Then, forl <i <k —1,
O Nm,Nm =0, NmNme =D, NmE Ny (6.76)
Let ® = A(D'),®;, = A(Dy,) and 7; = A(H;), j = 1,...,k. By (6.76), for

1<i<k-—-1,
(D', Hy, H;) = I(Dy, Hy,, H;).

So
D' = u;Dy, + riHy + s;H;,

where u;, 75, 8; € Fy[Xo, ..., X,]. Comparing terms of degree d shows that
D' +t;Dy, € I(Hy, H;), (6.77)
with t; € Fy; here t; # 0, since otherwise |®' N 7, N ;| > 6(n — 2), whence
|®; N Ng| > O(n — 2), a contradiction.
It is now shown that ¢; = t;. From (6.77),
(t,' — t]‘)Dk = (D/ + tka,) — (D/ + t]‘Dk) € I(Hk, H;, Hj). (6.78)

Since Dy, ¢ I(Hy, H;, H;) by (c), so (6.78) implies that ¢, — t; = 0. Write t;, = A
and note that A # 0. Next, choose coordinates so that 7, = A(X() and

mi = A(aioXo+ -+ ainXy,) forl <i<k-—1
Forl <¢<k—1,put
D'+ \Dy = GHy, + Gi(H; — aiHy),
where GG; is chosen so that it contains no terms in Xg. Thus
D'+ \Dy, — GHy, = G;(H; — a;,0Hy) = G;(H; — ajoHy).
Hence

GJ(H - ajon =F H - alon (679)

since 7y, 7;, m; are linearly independent for distinct £, 4, 7.
Finally, it is shown that ® = A (D), with

k—1
- F H H;,
=1

has the required properties. The only thing to check is that ® N 7, = @5 N my; that
is, I(D, Hy) = I(Dy, Hy). This can be shown as follows:
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k—1
I(D, Hy) = (D' — F [ [ Hi, Hy)
i=1
FH i — aioHy), Hy,)

= 1(GHy — /\Dk,, Hy,)
= I(Dy, Hy,). 0

Remark 6.55. For £ > 3, hypothesis (b) follows from the others. This is because
|®; N N;| = O8(n — 2) implies |®; Nm; Ny Nwy,| = 8(n — 3), contradicting
(©).

Theorem 6.56. In > = PG(n,q), n > 3,let K = {m1,ma,..., 7}, k > n, be a set
of hyperplanes, any n of which are linearly independent, such that, for each plane
iy N7, NNy, _,, there is an associated hypersurface Cy;, . ;. .,y of degree d.
Suppose

(a) C{ilauwin72} Ny, N, NNy, = C{jl,‘u’jn—2} Nmj NNy _, forall
subsets {i1,...,in—1} = {j1,-. -, jn—1} of sizen — L of {1,2,... k};

) [Cyiy,oin_oy Ny Ny N o= N | = 0 for any subset {iy, ..., i,} of size n
of {1,...,k}.

Then there exist hypersurfaces ®, @1, ..., Py in 3 of degree d such that

i) @5 Ny, Moo Ny, = Cpiy i oy Ny N oo Ny, for all distinct
U1y e ey ln—2;
i eNm=o;Nmforl <i<k.

Proof. For n = 3, the statement holds by the previous theorem and the subsequent
remark. Consider the 3-space 7;, N --- N m;, .. Again, by the previous theorem
and remark, in this 3-space and so in E there exists a hypersurface ®;,
degree d with

ey

in—3} Nmy NN, , = C{i1,---,in_2} Ay NN, ,

for any 4,,—2 € Ng\{41,...,%,—3}. Also, in each 4-space 7;, N--- N m;, _, and so
in X, there exists a hypersurface ®¢;, . ; _,y of degree d with

Cb{i1,---,in—4} Amy NN, g = cb{u } gy MM, g

yeesin—3
for any i,,_3 € Np\{i1,...,0,_4}. Fordistinct ¢,,_3,4p—2 in Np\{i1,...,0n_4a},
Qi iy Ny OOy, =Py iy Ny NN,
=Cfi y Oy O O,y

yeesin—2

Continuing in this way,

D, Ny, Ny = <I>{14M2} N, Ny,
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for hypersurfaces ®;, , ®(;, ;,) of degree d and any i in N\ {41 }. Hence, for distinct
ig, . ,in,Q in Nk\{Zl},
(Dil N Ty N---N Tip_o — (I){il,iz} N T4, N---N Tip_o
= C{i17~~~,in—2} Oy N N,y
Finally, a hypersurface ® of degree d in X is obtained such that, for any ¢; in N and
for any ia, ..., in—o in Ni\{i1},
P N, = (I)il N1,
cbﬂﬂ'il ﬂ~-~ﬂmn72 = (I)il ﬂﬂ'il ﬂ"'ﬂ’ffiniz
:C{il,.. }ﬂﬂ'il NN,y O

. ain —2
The essential construction

In PG(n,q), n >3, ¢ = 2", let K = {m,m,..., 7}, k > n + 1, be an arc of
hyperplanes; that is, every n + 1 hyperplanes in K are linearly independent or, equiv-
alently, no n+ 1 hyperplanes in /C have a point in common. For distinct ¢1, ..., 9,1,
there are exactly t = ¢ + n — k points on the line 7;, N--- N m;, , contained in no
other hyperplane of K. With S = {i1,...,4,_1}, denote this set of ¢ points by

Zs={zY), ...,z

In the plane IIy = m;, N--- N7, _,, the other points of IC cut outa (k — n + 2)-arc
of lines. As ¢ + 2 — (k — n + 2) = t, so by Theorem 10.1 of PGOFF2, the points in
Zs lie on an algebraic curve Cy;, i, _,y of degree ¢ in I with

C{ilvwain—z} N M1 = Zs.

Also
Clityin—ay N iy = Cljt i jnz} N Wiy
for all equal subsets {i1,...,i,—1} and {j1,...,jn—1} Of size n — 1 in Ny. Further,
ICirevin_o} Nip_y N, | =0
for any subset {i1,...,7,} of size n in Ny.

By Theorem 6.56, the curves Cy;, . 4, _,}
in a hypersurface ®;, in 7;, of degree ¢ with

for a fixed ¢ are algebraically contained

(I)il Ny NN, = C{ih---,in—‘z};

the varieties @1, . . ., @y, are algebraically contained in a hypersurface ® = ®(K) of
PG(n, q) of degree ¢t with ® N m; = ®; for 1 < i < k. The hypersurface & = ®(K)
is the hypersurface associated to IC.

Theorem 6.57. In PG(n,q) with n > 3, and ¢ = 2", let K = {my,..., 7},
where k > n + 1, be a k-arc of hyperplanes. For distinct i1, 12, . ..,i,—1 in Ny,
let Zy;, ....i,_,y denote the set of t = q +n — k points on the line ;, N ---Nm;, _,
that lie on no other hyperplane of K. Then
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(i) there exists a curve Cy;, | i .y of degreet in the plane m;, N --- N, _, such
that
C{ilw--vin—Q} Ny = Z{il,...,in_l};

(i) for fixed i, the curves Cy;, .. ;. .y are algebraically contained in a hypersurface
i, of mi, of degree t with ®;, Nmy, M-+~ Nmy,_, = Cpiy i, _,) and each
variety ®;, is algebraically contained in a hypersurface ® = ®(K) of PG(n, q)
of degree t with ®(K) Nm; = ®;;

(iii) if k > éq +n — 1, the hypersurface ®(K) is unique;

@iv) with k > éq +n—1,if L ={m,...,Thy...,mu} is an arc of hyperplanes
containing IC, the hypersurface ®(KC) has components ® (L), Tpi1, .. ., Tu;

W) ifk > %q +n— 1, there is a bijection between hyperplanes of PG(n, q) extend-
ing K to a (q + 1)-arc and linear components over Fy of ®(K).

Proof. (1), (ii) These were proved in the previous theorem and the subsequent re-
marks.

(>iii) Since k —n+ 2 > t = g — k + n, it follows from Theorem 10.1 of PGOFF2
that the curve Cy;, .. ;,_,1 is unique. Suppose ® and & are distinct hypersurfaces of
degree t for which

dnN T Ny, = d'N T MMy, = C{ih---,in—z}'

Let® = A(D) and &' = A(D').

First, let n = 3 and fix an index ¢;. As in Theorem 6.54, there exists A in Fy*
for which D + AD’ vanishes at all points of the k — 1 lines 7;, N 7;, with iy # 5.
The surfaces ® and @’ both have degree t = ¢ + 3 — k. Since k > %q + 2, so
k—1>1t = q+ 3 — k. Therefore D + AD’ vanishes at all points of 7;,. Since
the surface ®” = A(D + AD’) contains all points of the lines m;, N 7, it follows
that " has the & planes 71, . .., 7 as components. However, k > t = deg(®”), a
contradiction. So &’ = ®.

Next, let n > 3 and proceed by induction on n. Since k — 1 > %q +(n—-1)—1,
assume that the varieties ®;, = <I>§1 are unique for ¢; in N. Fix an index ;. Again,
as in Theorem 6.54, there exists A in F;* such that D + AD’ vanishes at all points
of the (n — 2)-spaces m;, N 7;,, of which there are k¥ — 1. Now, both ® and &’ have
degreet = g+ n — k. Since k > §q+n— 1,s0 k—1 > t. Hence D + \D’ vanishes
at all points of 7;,. Since ®’ = A(D + AD’) contains all points of 7;, N 7;, the
hypersurface ®” has the k hyperplanes as components. As k& > t = deg(®”), a
contradiction is obtained and ® = @’.

(iv) ®(K)Nm;, N-- N, consists of the set &(L) N, N-- Ny, together
with the points

Ty (Ve M M a1, ey Ty Moo TG, Ty

Since ®(K) is unique, the required factorisation is obtained.

(v) Suppose K U {r} is a (k + 1)-arc of hyperplanes. By (iv), 7 is a linear
component of ®(KC). Conversely, let o be a linear component over F, of . Let
Ty, ..., T, be any n hyperplanes in K. Then these n hyperplanes and ¢ have no
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point in common, since such a point would lie on ®(K)Nm;, N- - -N7r;,,, contradicting
the defining property of ®(/C). So no n + 1 hyperplanes in K U {o} have a point in
common, whence JC U {c} is a (k + 1)-arc of hyperplanes. O

Theorem 6.58. Let IC = {m1, ..., 7} be a k-arc of hyperplanes in PG(n, q),n > 3
and q = 2°. If k > éq + n — 1, then K is contained in a unique complete arc.

Proof. Let K’ and K be distinct complete arcs of hyperplanes containing K, and
assume that 7 € K'\K”. By Theorem 6.57(v), 7 is a component of ®(K). Since
7w ¢ K", by part (iv), the hyperplane 7 is a component of ®(K""). Again, by part (v)
the arc K can be extended to an arc K" U {7} where = ¢ K. This contradicts the
completeness of K. O

Now these results are applied in PG(3,q), ¢ = 2". First, the necessary results
for n = 3 are restated.

Theorem 6.59. Let KK = {m1, ..., 7} be a k-arc of planes in ¥ = PG(3, q), with
g = 2". For any two distinct planes ; and m;, let Z;j be the set of points of m; N 7;
in exactly two planes of K. Then

(i) there exists an algebraic curve C; in m; containing all sets Z;; and such that
CZ‘ n Ty = Zij;

(ii) there exists an algebraic surface ® = ®(K) of degree t = q + 3 — k alge-
braically containing the curves C; and with ® N w; = C;.

Suppose further that k > éq + 2. Then

(iii) the surface ® is unique;

V) if L = KU {mks1,...,7u} is a u-arc of planes, u > k, the surface ®(K)
Sactors into (L), Tpt1,. .., Tu;

(V) there is a bijection between planes of . extending K to a (k + 1)-arc and linear
components over Fy of ®(K);

(vi) K is contained in a unique complete arc of 3.

Lemma 6.60. Letk > q— \/q+ 2, ¢ = 2" With notation as in Theorem 6.59,

(i) the curve C; of degree t = q + 3 — k factors into t lines forming an arc of lines
inm;;
(i) these t lines U;1, . . ., Ly, called S-lines, together with the k — 1 lines m; N 7,
Jj € Np\{i}, form a (q¢ + 2)-arc of lines in 7;;
(iii) each S-line lies in a unique plane of IC;
(iv) each point P on an S-line lies on exactly one other S-line.

Proof. (i) This follows from Section 10.3 of PGOFF2.

(i1),(iii) These follow from Theorem 6.59.

(iv) Each point Zi(;‘) in Z;; lies on one S-line ¢;, in m; and on one S-line £;; in
m;. If P is on ¢;, and is not of type zW then, by (ii), P lies on exactly one other

ij
S-line, which will be of type ¢;;, with b # a. ad
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Theorem 6.61. Let IC = {71, 7o, ..., 7} be anarc of planes in ¥ = PG(3, q), with
qg=2"and k > %q + 2. Assume that KC is contained in a (q + 1)-arc L of planes in
3. Then

() ©(KC) factors into t — 2 linear components over F ; and one quadratic compo-
nent H, where t = q + 3 — k and H. is a hyperbolic quadric Hs;
(i) ®(L) = H;
(iii) each plane of L is a tangent plane to H;
(iv) for any plane 7 in L the planes of L\H together with H cut out a (q + 2)-arc
of lines in .

Proof. (i), (ii) Let £ = {m,m2,...,mg+1}. By the definition of an arc, ¢ > 2.
From Theorem 6.59(iv), ®(K) factors into ®(L), mpt1, ..., Tg+1 With ®(L) = H
of degree 2. Since ¢ > 2, Theorem 21.3.8 of FPSOTD says that £ is complete. From
Theorem 6.59(v), the quadric # is irreducible.

Let mp41 = 7}, ..., Tg41 = T,_o. Each plane 7} in £\ intersects each plane
m; of KCin a line. Also, if 7}, 7, ;, are distinct, then 7 N 7, N 7, N m; = ) since
these four planes belong to an arc. Therefore the ¢t — 2 planes 7{, ..., 7;_, cut out a
(t — 2)-arc of lines in ;.

Let C; be the curve of degree t in m; corresponding to the arc K. Then C; has
t — 2 linear components 7} N, ..., 7 _o N m; and one component HO =HNw
of degree 2. For each j # i with 7; in K, each of the lines 7], N 7; contains exactly
one of the ¢ points Zi(f). If a # b, then 7/, Nm; N Z;; # w1, Nm; N Z;; since otherwise
m,,,m,,m; and 7; have a point in common, contradicting that these four planes are
part of an arc of planes of X.. Therefore H(?) contains exactly two points of Zij, say

2D and 23, i # j. Then [H®| > 2(k — 1) > ¢ + 2. Since [H®| > ¢ + 2, 50
‘H N m; cannot be a conic. It follows that 7 N 7; factors into a pair of distinct lines
x4,y With x; N Z;5 = Z-(jl), yi N Zij = Zi(f), and ZZ-(jl) # ZZ-(;). Hence each plane
of IC contains exactly two lines of 7. Further, each line of H is on at most one plane
of KC. So H contains at least 2k > ¢ + 4 lines. It follows that 7 cannot be a cone and
is in fact a hyperbolic quadric of 3.

(iii), (iv) Let 7 be any plane of £. The planes of £\{x} cut out a g-arc of lines
in 7 since L is an arc of planes in X. Hence ®(L£) N is a curve C of degree 2. Also,
since ¢ +1 > q — \/q + 2, it follows from Section 10.3 of PGOFF2 that C factors
into two lines ¢, m, which are therefore lines of ®(L). Since ®(L) is a hyperbolic

quadric, (iii) follows. By Lemma 6.60(ii), part (iv) also follows. a
For the remainder of this section assume that ¢ > 2.
Lemma 6.62. Let K be a k-arc of planes in PG(3, q), ¢ = 2". If
(q— 1)/t +2/t >t
witht =q+3 —k,thenk > q— \/q+ 2.

Proof. Suppose that k < g — Va+2; that is, Vast—1 Therefore
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(¢ —=1)/(g+1+2vq) > (¢ - 1)t*.
This implies that
t—2/t> g+ 1-2/t>/g+1-2/(\/g+1)>1> (¢g—1)/t%
Sot—2/t> (q— 1)/t acontradiction. O

Theorem 6.63. Let IC = {71, 7o, ..., 7} be a complete k-arc of planes in the space
Y =PG(3,q), ¢ =2"If (¢ — 1)/t? + 2/t > t, then each C; factors into t S-lines
and each S-line belongs to a hyperbolic quadric algebraically contained in ®(KC).

Proof. From Lemmas 6.60(i) and 6.62, the curve C; in m; factors into ¢ S-lines. Let
£y, be a fixed S-line in ;. By Lemma 6.60(iv), there are exactly ¢+ 1 S-lines distinct
from ¢;,, having a point in common with £;,,; denote these by £1,0s,...,{441. Let
i, 7, g be distinct. The S-lines in 7; are the lines £, and the S-lines in 7, are denoted
by {4w. Let f,,, be the number of lines ¢, having a point in common with ¢, and
4. If £, is notin 7; nor in 7,4, then £, is concurrent with one line of type ¢;,, and one
of type {4 If £, is in the plane 7, then it is concurrent with ¢ lines £, and one line
Lgy. If €, is in g, it is concurrent with ¢ lines £4,, and one line ¢;,,. Consequently,

t
> fow=gq-1+2t

v, w=1

Averaging gives f = (q—1)/t?>+2/t. Therefore there exist two S-lines, say £;,, = ¢’
and £y, = (", for which f,, > f = (¢ — 1)/t* + 2/t. Now it is shown that
Ly, = £, ¢/ and ¢" are mutually skew.

Suppose for example that £ and £ meet in a point P. Since

fow > (q—1)/t> +2/t

and since, by Lemma 6.60(iv), P lies on exactly two S-lines, the plane £'¢” contains
at least (¢ — 1)/t> + 2/t S-lines. Because /¢ N ®(K) is an algebraic curve of
degree t or ¢'¢" is a component of ® = ®(K), so (¢ — 1)/t> + 2/t < t or else the
plane #/¢" is a component of ®. By assumption (¢ — 1)/t + 2/t > t; so the plane
2'¢" is a component of ®. But then, by Theorem 6.59(v), the plane ¢'¢" extends K,
contradicting the fact that K is complete. It follows that the lines ¢, ¢/, ¢ are mutually
skew.

If \ is the integer defined by (¢ — 1)/t* +2/t+1 > X\ > (¢ —1)/t* 4+ 2/t, then
there are at least A S -lines of the form ¢;, say /1, ..., £y, which meet £, ¢/, ¢"'. Hence
ly,€q, ..., L belong to a regulus R. Let m be a line of the complementary regulus
R’. Then m has at least A > ¢ points in common with & = &(K). Consequently,
m is a line of ®. So the hyperbolic quadric H3 with reguli R, R’ is a component of
®. Therefore, each S-line /;,, belongs to a hyperbolic quadric which is algebraically
contained in P. O

Lemma 6.64. If ¢ — ;\/q + 2 < k < q+ 1, then, for any plane 7 of PG(3, q), the
curve ® N 7 is reducible over F .
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Proof. As k > q — \/q + 2 and since there is an integer between g — ;\/q + Z and
q + 1, s0 ¢ > 32. It may be assumed that no S-line is contained in 7. Then any
S-line has exactly one point in common with 7. Since the number of S-lines is equal
to k(q + 3 — k) = kt and each point is on either zero or two S-lines, so

| Nw| > kt/2.

Suppose that & N 7 is absolutely irreducible, that is, irreducible over F,. By
Corollary 2.29 of PGOFF2,

(q+3—-kk/2<q+1+(qg+2—-k)(g+1-Fk)/q

Consequently, either k > g+1ork < q—3\/g+ 9 —1/(4+8/q) < q¢— 5/a+ 3,
a contradiction. Therefore N 7 is reducible over F,. O

Lemma 6.65. If g — %\/q + Z < k < q+1,andk is even, then, for each plane © of
PG(3, q), the curve ® N = C contains a line as a component over F.

Proof. 1t may be assumed that no .S-line is contained in 7. By Lemma 6.64, the curve
C is reducible over F,. Also 2 < t < },/g+ % and ¢ > 32.1If C’ is an absolutely
irreducible component of C of degree m, with m > 4, then it can now be shown that
IC"| < (g + 1)m/2.

If C’ is not defined over F, then |C’| < m?, Lemma 2.24(i) of PGOFF2; if C' is
defined over F, then, by the Hasse—Weil bound, |C'| < ¢+ 1+ (m —1)(m —2),/q.
Since g+1+(m—1)(m—2),/q > m?, it follows that [C’| < g+1+(m—1)(m—2),/q.

Suppose that

g+ 1+ (m—1)(m—2)y/q=(¢+1)m/2.
Then, either

Cat S+ /Ay + Hva—-22+2-4/yg+1/g} 2 <m

or
Wat s +1/(4ye) - a2 +2 -4/ g+ 1/q}* > m.
Hence, either
m>1/a+ 5+ 1(Va—2) = 3/a+1
or
m< bya+3+1/(4ya) — H(Va—2) =2+ 1/(4\/q).
This contradicts that 4 < m < ¢t < 1,/g + 5. Hence [C'| < (g + 1)m/2.

If C” is an absolutely irreducible component of C of odd degree m, with m > 5,
then it is now shown that |C”| < (m — 3)(g+1) + ¢+ 1 + 2,/q. Note that, by the
Hasse—Weil bound, ¢ + 1 + 2,/q is the maximum number of points of an absolutely
irreducible plane cubic curve over F.

As for C/,

IC"| <g+1+(m—1)(m—2)/q.
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Sinceb<m<qg+1—-k< ;\/q— Z,soqz 256. Assume that
Am=3) g+ 1) +q+1+2y/g<q+1+(m—1)(m-2)/q.
Then, either

m < va+1/(4ya) + 35— {(va—6)>+2-12/ /g +1/q}'/?

or

m> g+ 1/(4yq) + 5+ H{(/a—6)? +2—-12/\/g+1/q}"/>.
Since ¢ > 256, s0 2 — 12/(,/q) + 1/q > 0. Hence, either

m < va+5+1/(4ve) - i(Va—6) =3+1/(4y9),
or
m> v+ s+ 1(Va—6) = v
This contradicts that 5 < m < J,/g— 5, andso [C”| < J(m—3)(g+1)+q+1+2/q.
Now suppose that C contains no linear component over F, but contains 8 > 0
linear components over F,. Since C has odd degree, the number of components over

F, of C of odd degree is odd. By the preceding sections and using the fact that
2(g+1+2y/q) <3(qg+1),

(i) for S even,
Cl < 3(t—=B-3) g+ 1)+ B+ (¢+1+2Vq)
sE=3)(g+1)+q+1+42Vq
(ii) for S odd,
Cl<3t=B)a+1D)+B8<3(t=3)g+1)+q+1+2q
Hence, in each case,
ICl < 5(t=3)(g+1)+q+1+2/q.
Consequently,
Ve(g+3-k) <IC1< L(g—k)(g+1)+q+1+2/q
So, either
k<q+2-{(/g—3)*+2yq— T}/
or
k>q+2+{(Va—3) +2yq- T}
Hence, either
k<q+2-(/qg—3)=q—+/q+5
or
E>q+2+(/¢g—3)=qg+q— 1

This contradicts that ¢ — ; q+ Z < k < q + 1. Therefore C contains a line as a
component over F ;. O
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Theorem 6.66. If g — %\/q + Z < k < q+ 1andk is even, then ® contains a plane
as a component over F .

Proof. Let m; be a plane of the k-arc. In 7; there are g+3—k =t < ; Va+ i S-lines
which form an arc of lines in 7;. Since ¢ > t(t — 3)/2 + 2, this arc is incomplete by
Theorem 9.12 of PGOFF2; so there is a line ¢ which intersects the ¢ lines of the arc
at ¢ different points. Hence |[¢ N ®| = ¢ and the ¢ points of ® N ¢ are simple for .
Considering the ¢ + 1 planes of PG(3, ¢) through ¢ and using Lemma 6.65, at least
one point P of ®N{ is contained in at least (¢+ 1)/t lines of ®. Hence P is contained
in atleast 2,/q — 4+ (3/q +4)/(5/q + ) lines of ®. It follows that the tangent
plane 7p of ® at P contains more than 2,/q — 4 lines of ®. Since 2,/q — 4 > t, the
plane mp is a component of . a

Theorem 6.67. Any k-arc K of PG(3, q), with q even, k even, and with the bound
q— ;\/q —+ 2 < k < g+ 1, can be extended to a (k + 1)-arc.

Proof. This follows immediately from Theorems 6.59(v) and 6.66. a

Lemma 6.68. If ¢ — %\/q + 2 < k < q+ 1andkis odd, then, for each plane 7
of PG(3,q), the curve ® N = C either contains a line as component over F or
consists of t/2 conics defined over F,.

Proof. It may be assumed that no S-line is contained in 7. If C’ is an absolutely
irreducible component of C of degree m, with ¢ +2 — k > m > 4 and ¢ > 512,
then it is now shown that [C'| < }(m —4)(q¢ + 1) + ¢ + 1 + 2,/¢. Note, that by the
Hasse—-Weil bound, g + 1 + 2,/q is the maximum number of points of an absolutely
irreducible plane cubic curve over F,. Ignore for the moment the condition g > 512.
If C' is not defined over F, then |C’| < m?; if C’ is defined over F, then

C'] < g+ 14 (m—1)(m—2)\/q.

Hence [C'| < ¢+ 14 (m —1)(m —2),/q.Since5 <m <q+1—-k < %\/q— Z,
s0 ¢ > 256. Suppose that

Ym—4)(g+1)+q+1+2/g<g+1+(m—1)(m—2)/q  (6.80)
Then, either
m< g+ 3 +1/(4yq) - H(a—11)2 +2/g — 20/ /g + 1/q — 83}*/2
or
m> g+ 5 +1/(4ya) + (Vg — 112 +2/g — 20/ /g +1/q — 83}'/2.

For ¢ > 1024, the inequality 2,/q — 20/,/q + 1/q — 83 > 0 holds. Hence, for
q > 1024, either

m < va+s+1/(yve) - 1(va—11) =] +1/(4y/q)
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or
m>va+s+ Va1 =4vg- .

This contradicts that 5 < m < }./q — 5. For ¢ = 256, the inequality (6.80) is

satisfied; for ¢ = 512, (6.80) and the inequality 5 < m < g¢+1—k < é\/q — i give

m = 10 and k = 503; for ¢ = 1024, (6.80) is in contradictionto 5 < m < 3 ,/g— 2.

Let C” be an absolutely irreducible component of degree four of C. If C” is not
defined over Fy, then |C”| < 16 < 2(g+1). If C” is defined over F;, then the bound
IC"| < g4 14 6,/q holds; so |C"| < 2(¢q + 1), for ¢ > 32. Hence |C"| < 2(¢q + 1)
is always true.

Now suppose that, over Fy, the curve C neither contains a line nor consists en-
tirely of conics and irreducible quartic curves. Suppose also that g ¢ {256,512}. Let
[ be the number of absolutely irreducible components of degree three and let « be
the number of absolutely irreducible components of degree at least five. If a = 0,
then, since ¢ + 3 — k = tis even, /3 is even and so o + 3 is even. Also oo + 3 > 0.
By the preceding sections,

Cl < 3(t =38 —4a)(g+ 1)+ (a+B)(g+1+2/g).
Further, note that 2(q + 1 4+ 2,/q) < 3(¢ + 1). If o + B is odd, so o # 0; then
Cl<it—a-3)(g+1)+q+1+2/g< Lt —4)(g+1)+q+1+2y/q
If o + 3 is even, so o + B > 2; then
C] < J(t—a—06)(g+1)+2(¢+1+2Vq)
< 5(E=6)(g+1)+2(¢+1+2Vq).
Thus, in both cases,

Cl < 3(t—=6)(g+1)+2(¢+1+2q)
= g—k=3)(q+1)+2(q+1+2q).

Consequently,
sk(g+3—k) < 5(t—6)(g+1)+2(¢+1+2Vq).
So, either
k<q+2—{2¢—8yq+3}'?

or
k>q+2+{2¢—8y/q+3}2

This contradicts ¢ — /g + § < k < ¢+ 1. Hence, for ¢ ¢ {256,512}, C contains

over F either a linear component or consists entirely of conics and absolutely irre-

ducible quartic curves. Let C consist of € conics and § absolutely irreducible quartic
curves, with § > 1. If ¢ = 32, then t = 3 and so k is even; hence ¢ > 64. Since
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3(t—40)(g+1) + (g +1+6/q) = (g +3—k)(g+1)+3d(—¢—1+6y/q)

(@+3—-Fk)(g+1)—q—1+6q,

IA

SO
Vk(g+3—k)<|CI<3(g+3—k)(g+1)—qg—1+6y/q.

Consequently, either
k<q+2-{2¢—12/q+3}'

or
k>q+ 24 {2¢—12/q + 3}/2

This contradicts
q—é\/q+2<k<q+1.

So over F,, and with ¢ ¢ {256,512}, the curve C either contains a line or consists
entirely of conics.

Let ¢ be a line of C, and suppose that ¢ is not defined over ;. Then |¢| < 1. Let
7; be a plane of K not passing through a point of ¢ over F,. The line ¢/ = 7 N 7;
intersects m; N @ and so @, only in points over F,. Hence the intersection of £ and ¢/
is a point over F, a contradiction.

Now suppose that C consists of ¢/2 conics, p of which are not defined over F,,
with p > 1. Then

yk(g+3—k) <[C] < 3(g+3—k—2p)(qg+1)+4p
<5(g+1-k)(g+1)+4
Hence, either
k<q+2—(2¢—5)2

or
k>q+2+(2q—5)"2,

a contradiction. Consequently, for ¢ ¢ {256, 512}, the curve C either contains a line
over F, or consists of /2 conics over F.

Let ¢ = 512. Then (6.80) together with 5 < m < ¢+ 1 —k < },/q —  gives
m = 10 and & = 503. So suppose that m = 10 and t = 12. If C does not contain a
line, then

1kt = 1(503.12) < |C| < (¢ + 1) + (¢ + 1 + 72,/q) = 1026 + 72v/512,

a contradiction. Now, in the same way as for ¢ ¢ {256,512}, the curve C contains a
linear component over the ground field F,. If ¢ = 512 and if (6.80) is not satisfied
for m > 4, then the procedure is as in the case ¢ ¢ {256,512}.

Finally, let ¢ = 256. Since 2 < t < é\/q + i with ¢ even, then, from the bound
4 <m < t—1,itfollows thatt = 8and m € {5,6}.If t = 8, m = 5, and C does
not contain a line, then
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dkt=1(251.8) < [C| < (¢+1+12/q) + (g + 1+ 2\/q) = 738,
a contradiction; if ¢ = 8, m = 6, and C does not contain a line, then
skt =1(251.8) < [C| < (¢+1+20/q) + (g+ 1) =834,

also a contradiction. As for g ¢ {256, 512}, the curve C contains a linear component
over the ground field F,. If ¢ = 256 and if there is no absolutely irreducible com-
ponent with m > 4, then proceed as in the case ¢ ¢ {256,512} with « = 0 and
a+p=p>2 O

Theorem 6.69. If ¢ — é\/q + 2 < k < q+ 1andk is odd, then ® contains a plane
as component over ¥ or consists of (¢ + 3 — k) /2 hyperbolic quadrics over F,.

Proof. If ® contains a plane £ as component, then, for each plane 7; of /K, the line
&N is an S-line; so & contains at least £ lines over 'y and consequently ¢ is defined
over F,. Suppose therefore that ® does not contain a linear component. From the
proof of Theorem 6.66, there is at least one plane which does not contain a line of
®. Let 7 be a plane for which & N7 = C consists of t/2 conics over F;. First it is
shown that no two of these conics coincide. Therefore suppose that at least two of
the conics do coincide. Then

sk(g+3—k) <|CI < 3(g+1—k)(g+1).
So, either
k<q+2—(2q+3)"/?

or
k>q+24 (2 +3)V2.

This contradicts g — %\/q + Z < k < g+ 1. Hence the t/2 conics are distinct. The
number of points common to at least two of these conics is at most

At/2)(t/2-1)/2= 5t(t = 2) < 5 (3va + D5va—3) <a/s.

Let C; be one of the conics and let P be a point of 7, with P ¢ C;, and P distinct
from the nucleus of C;. Then there is at least one line ¢ of 7 through P which neither
contains a point over F; of C1 nor contains a point over F; common to at least two
conics. For this line ¢, each point of £ N @ is a simple point for ®. Over F,

Nne|<t—2<3yq— 3.

Since ® does not contain a linear component, at each point of /N ® the tangent plane
of @ contains at most ¢ different lines of ®. Hence each point of £ N ® is contained
in at most ¢ lines of ®. Consequently, the number of planes 7’ through ¢ for which
7' N @ contains a line as component over F, is at most

(t=2)t < (3va—DGVa+3) = 30— 34— 13 < 14— 33/a
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It follows that, for more than g+ 1 — }lq + 411 Va > iq + i\/q planes 7’ through /, the
curve N7’ consists over Fy of t/2 conics. Hence, over Fy, the two conjugate points
in the set /Ny are contained in more than (3¢ +/q)/4 conics of ®, all defined over
F,, lying in different planes through ¢. Let C1,Co, . . ., C, be these conics, and let &;
be the plane of C;.

For any S-line ¢;, let ¢; be the number of conics of {C1,Ca,...,C,} = V con-
taining at least (and so exactly one) point of ¢;. The number of points of {; N ® not
belonging to an S-line is at most

ptg+1) —th/2=1(t—2)/2< , (530 + Dva— 1) < 30— gV
Hence the number IV; of points of C; belonging to an S-line satisfies
N;>qg+1- §q+§\/q> gq—&-;\/q.

As each point of ® is on zero or two S-lines, it now follows that

> ti> 1B8q+/a) J(Ta+ /g) -2 = (214> + 10q,/q + q). (6.81)

The number of S-lines is equal to (g+3—k)k. Since the function f(x) = (¢+3—z)x
is strictly decreasing for z > (¢ + 3)/2, so

(@+3-kk<(tva+ - Ltya+?)
— lavg+ La+ 3 /g + 2. (6.82)

From (6.81) and (6.82), it now follows that

F= (" t)/{(q+3— h)k}
> {21¢* + 10q+/q + q} /{8q+/q + 8q + 12,/q + 27}
> (21/q)/8 — 2.

Hence there is an S-line ¢’ which has a point in common with more than 21, /q/8 —2
conics of the set V, say with C1,Co, ..., Cs.

The common points of C1,Ca, . . ., C, are denoted by @@ and @Q’. Recall that Q, Q’
are conjugate points over F,. For i = 2,3, let R; be the common point of ¢’ and
C; and let mo, m/, be the tangent lines of Cy at the respective points @, @’. The
absolutely irreducible quadric (over F,) containing C1, Ro, R3 and having mg, m
as tangent lines is denoted by Q. Since Ry € Q and since the tangent lines mz, m}
of Cy are tangent lines of Q, the conic Cs belongs to Q. Since ¢’ has at least three
points in common with Q, it also belongs to Q.

The common point of ¢' and C; is denoted by R;, and the tangent lines of C;
at the points @, Q' are denoted by m;, m/, withi = 1,2,...,s. The tangent plane
of @ at Q is mymq and the tangent plane of Q at )" is m}m/). Therefore, the tan-
gent lines m; = mymo N§; and m;, = mimb N&; of C;, are also tangent lines of
Q,i = 3,4,...,s. Since also R; € Q, the conic C; belongs to Q, ¢ = 3,4,...,s.
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Consequently, the s conics C1,Ca, . ..,Cs belong to Q. As 2s > 21\/q/4 —4 > 2t,
so @ C ¢ by Bézout’s theorem.

Instead of C; take any other conic of ® N 7. It then follows that ® consists of
t/2 absolutely irreducible quadrics over F,. For any plane m; € K, the curve m; N @
consists of ¢ different S-lines and so necessarily 7; contains exactly two different
lines of any of the ¢/2 quadrics. It follows that any of the quadrics contains at least
2k > 2q—/q+ g lines, and hence is hyperbolic. Therefore ¢ either contains a plane
as component over F;, or consists of (¢ + 3 — k)/2 hyperbolic quadrics over Fy. O

Theorem 6.70. Any k-arc K of ¥ = PG(3,q), with q even, k odd, and such that
q— é\/q —+ Z < k < g+ 1, can be extended to a (k + 1)-arc.

Proof. The hypotheses imply that ¢ > 64. By Theorem 6.69, ® contains a plane as
component over F, or consists of (¢ + 3 — k)/2 hyperbolic quadrics over F .

If ® contains a plane as component over F,, then, by Theorem 6.59, K can
be extended to a (k + 1)-arc. Now suppose that ® consists of ¢/2 hyperbolic
quadrics. By Theorem 6.59(v), the arc K is complete. Consider a k-arc of planes
K={m,...,m%}.

Let A1, As be distinct hyperbolic quadrics algebraically contained in ®. The &
planes 7; are tangent planes of A; and A,. Using any correlation 6 of X3, consider the
situation that a k-arc XCO of points of PG(3, ¢) lies on the intersection ¥; N Wy =C
of the two quadrics W1, ¥, where ¥; = A0, i = 1, 2. The extension of the curve
C to the algebraic closure F is denoted by C.

There are three possible cases.

() C contains as a component a line or a conic but not an irreducible cubic curve
In this case, for any k-arc in C the result is that k£ < 8. However, since
1 9
q+1>k>q— 5\/q+
and k is odd, so £ > 63 and a contradiction is obtained.
(I1) C factors into a twisted cubic curve C' and a line ¢

In this case |C’ N K| > 61; so the points of C' in PG(3,¢) form a (¢ + 1)-arc
K’ put K" = KO NC'; then |[K”| > k—2 > qg— }/q+ ). Since ¢ > 64 so
IK"| > q— 3\/a+ } > (q+4)/2. By the dual of Theorem 6.59(vi), all points of
KO lie on the (g + 1)-arc K'. By duality, K itself lies on a (¢ + 1)-arc and is not
complete, a contradiction.

(D C is an irreducible quartic

Let 7 be any plane of X not containing P; where ;0 = P;, 1 < i < k, and where
Py is non-singular for C, noting that C has at most one singular point. Projecting C
from P; onto 7 gives an irreducible cubic C’ over F,in 7. If, for ¢ > 1, the meet
PiPNnm={Q;},then {Q2,...,Qr} = Lisa(k— 1)-arc of points of 7 contained
in the curve C'.
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First suppose that C’ has genus 1. Then, from the Hasse—~Weil formula, Corollary
2.27 of PGOFF2, |C'| < ¢+ 1+ 2,/q. For a giveni > 1, at least

(k—2) ={IC'| = (k= 1)}

lines Q;Q;, 1 < j # 1, contain exactly two points of C’. So, at points of £ the
curve C' has at least (2k — 3 — |C'|)(k — 1)/2 = F(k) distinct tangents. From the
Hasse—Weil formula, F'(k) > (2k —3 — q —2,/q — 1)(k — 1)/2 = G(k). Therefore
G(k) < q+1+2,/q.Since k > q— 1 /q+ 9, s0 8¢>—28¢,/q+10¢g—64,/g—11 < 0,
a contradiction as ¢ > 64.

Next suppose that C’ has genus 0. Then, as for cubics in Section 11.4 of PGOFF2,
IC’| < g+2.Foragiveni > 1,atleast (k—2)—{|C'|—(k—1)}lines Q;Q;,1 < j # 1,
contain exactly two points of C’. Since at most one point of £ is singular for C’, the
curve C’ has at least (k — 2)(2k —4 —|C’|) /2 = F'(k) distinct tangents at points of £
which are simple for C’. As |C'| < g+2s0 F(k) > (k—2)(2k—4—q—2)/2 = G(k).
Since C’ has at most g + 1 simple points, G(k) < g + 1; hence

(k—2)(2k—q—6) < 2¢+2.

Since k > q — }/q + . it follows that 8¢> — 12¢\/q — 22¢ + 4,/g — 19 < 0, a
contradiction.

From (I), (I), (IIT), ® does not consist of ¢/2 hyperbolic quadrics; so K extends
toa (k + 1)-arc. O

Theorem 6.71. Let K be any k-arc of points or planes in PG(3,q), q even and
q#2.Ifk >q— é\/q + Z, then K can be completed to a (q + 1)-arc L, which is
uniquely determined by K.

Proof. Assume that ¢ — ;\/q + 2 < k < q+ 1. By Theorems 6.67 and 6.70, the
k-arc K is not complete and so it extends to a (k + 1)-arc K. If k + 1 = ¢ + 1, the
result is proved. If k+1 < g+ 1 then, since k+1 > q— é\/q+ Z, the arc K’ extends
to a (k4 2)-arc K. Proceeding in this way, K can be extended to a (¢+ 1)-arc £. By
Theorem 6.59(vi), £ is uniquely determined by /C since ¢ — é\/q + Z > (qg+4)/2.

O

Before proceeding to n dimensions, it is necessary to consider the analogue of
Theorem 6.59 in PG(4, ¢). Then, using the result of Theorem 6.49 that a (¢ + 1)-arc
in PG(4, ¢) is a normal rational curve, Theorem 6.38 can be applied.

First, Theorems 6.57 and 6.58 are restated for n = 4.

Theorem 6.72. Let K = {m1,..., 7w} be a k-arc of solids in ¥ = PG(4, q), with
q = 2°. For i, j,m distinct, let Z;;,, denote the set of t = q + 4 — k points on the
line m; N m; N Ty, that lie on no other solid of K. Then

(i) there exists a curve Cy; = Cj; of degree t in the plane m; N 7; such that the
intersection Cij N\ Ty, = Zijm;

(ii) for fixed i, the algebraic curves C;; are algebraically contained in an algebraic
surface ®; of degree t in m; with ®; N m; = Cyj;
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(iii) all the algebraic surfaces ®; are algebraically contained in a hypersurface
& = ®(K) for which ®(IC) N m; = Oy

@iv) if k > (q + 6)/2, the hypersurface ®(K) is unique;

W) if L = KU{Tkt1,...,7u} is an arc of solids with u > k and if k > (¢+6)/2,

the hypersurface ®(K) factors into ®(L), Ty1, - -, Tu;

(vi) if K > (q + 6)/2, there is a bijection between solids of ¥ extending K to a
(k + 1)-arc and linear components over ¥, of ®;

(vii) if k > (q + 6)/2, the arc K is contained in a unique complete arc of PG(4, q).

Theorem 6.73. Let K be a k-arc of solids in ¥ = PG(4, q), q = 2", with cardinality
k>q—23a+ "2 andt=q+4—k Then

(i) @; factors over ¥, into t — 2 planes o1, a2, . . ., 0 +—2, called S-planes, and
a hyperbolic quadric V;, called an S-quadric;
(ii) the t — 2 S-planes in 7; form an arc of planes;
(iii) in m; N7y, © # j, there are exactly two lines {;; and m;; which are lines of ¥;;
(iv) also, in m; N m;, © # j, the lines {;; and m; together with the t — 2 lines
T NG1, ..., TNy —o and the k — 2 lines m; Nw; Ny, v € N\ {4, j} form
a (q + 2)-arc of lines;
(v) each plane a;; contains two lines of U;;
(vi) in an S-plane o, of m;, the lines s N 0y, S # u, the lines oys N5, 7 # j,
and the two lines of U; in «;s form a (q + 2)-arc of lines;
(vii) the 2(q + 1) generators of U; are the 2(k — 1) lines of ¥; N7;, j # 4, and the
2(t — 2) lines of ¥; N cus;
(viii) at most two members of the set V of the (t — 2)k + k planes o;; and surfaces
W, contain any line of 3;
(ix) for any S-plane cv;s of ; and any point P of cv;s, there are at most two S-planes
containing P and meeting o5 in a line.

Proof. By Theorem 6.40, k < g + 1 for ¢ > 4; for ¢ = 4, also k < 6 from Section
6.1. Since k > g — 5/q+ '}, it follows that ¢ > 32; also k > (g + 6)/2.

(i), (i) Since K is an arc, for a fixed ¢, the £ — 1 planes 7; N 7,4 # j, form an arc
M of planes in ;. Since k > ¢ — %\/q—&- 143, sok—1=|M|>k>q— %\/q+ Z.
By Theorem 6.71 M is embedded in a (¢ + 1)-arc £ of planes in 7;. The planes
of L\ M are the S-planes in 7;. Since L is a (¢ + 1)-arc, then from the structure of
®(L) the S-quadric in 7; as in Theorem 6.61(ii) is obtained.

(iii) This follows from Theorem 6.61(iii).

(iv)—(vii) These all follow from (iii) and (iv) of Theorem 6.61.

(viii) Since the S-planes in a given solid 7; form an arc of planes in 7;, no three S-
planes of a given solid have a common line. From (vi), it cannot be that two S-planes
in 7; and the S-quadric ¥; of 7; all contain a common line.

Let m be any line of X lying in an S-plane o;. Then oy lies in a unique solid
of I, say m;; so o1 is one of the S-planes ;s in ;. Suppose that m lies in some
other S-plane o9 not in 7;. Then o5 is in 7;, say, with j # 4. Now m; N 7; is a
plane 7;; containing m. In 7;, the plane «;s meets 7;; in exactly one line: this must
be m. From (iv), there are no other S-planes or S-quadrics containing m. A similar
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argument handles the case that m lies in «;s and in W;, j # 4, or lies in W; and in
In summary, if m lies in an element of ) from 7; and in an element of V from

m;, j # 1, then m lies in exactly two elements of V. If the only elements of VV

containing m lie in a given arc solid, say 7;, then again m lies in at most two elements

from V.

(ix) An argument similar to that proving (viii) applies. a

Theorem 6.74. Let K = {m1,..., 7} be a k-arc of solids in ¥ = PG(4,q), for
q=2" withq>k>q— é\/q + 143. Then K can be extended to a q-arc.

Proof. Since ¢ > k > q — %\/q + 143, so g > 128 and k > (q + 6)/2. By way
of contradiction, assume that C is complete. Since k > ¢ — é\/q + 143, the results
of the previous theorem apply. Any S-plane of 7;, 7 > 1, meets 7; in a line of
m1 N ;. This line lies either in an S-plane of 7, or in the quadric ¥;. Now, there are
exactly two lines of ¥y in m; N 7;. Therefore, putting t = g 4+ 4 — k, the number of
S-planes not in 7, and having a line in common with some S-plane in 7 is at least
(k—1)(t—2)—2(k—1) = (k—1)(t—4). Recall that each solid contains exactly ¢ — 2
S-planes. Hence there exists an S-plane av = a1 in 71 having a line in common with
atleast (k—1)(t —4)/(t — 2) S-planes not in 71. Thus the total number of S-planes
having at least one line in common with « is at least (k—1)(t —4)/(t —2) + (t — 2).
Denote the set of such planes by V' = {f1, B2, ...} with

{B1,..., Br—2} ={a11,..., a2}, f1 = a1 =«

and 3; Na = ¢, for B; # . Since k < g, sot > 4;hence (k—1)(t—4)/(t—2) > 1.
Let the line ¢;_; of « lie in 7}, say, j # 1. Put

Vi=Aaj, ... 052, Y} ={dj1,..., 61}

Let p,, be the number of planes of V' containing a line of ¢;,,. Since any two S-planes
of V; meet in a line and any S-plane of V; contains a line (actually two lines) of ¥;
by Theorem 6.73(v),

D= (k=1)(t—4)/(t—=2)+ (t—2)— 1+ (t—1).

Averaging gives p > [(k — 1)(t — 4)/(t — 2) + 2t — 4]/(t — 1). So there exists an
element 0, for which

pu > [k = 1)(t = 4)/(t — 2) + 2t — 4]/ (¢ - 1).

Note that, in obtaining ) | p,,, the fact that each plane of V not in 7; meets exactly
one element of V; in a line is used.

Now two cases are considered.
Case l:t < [(k—=1)(t—4)/(t—2)+2t—4]/(t—1).

Then §;, = V¥; or an S-plane of 7;. Assume that d;,, = V¥;. The S-plane o
in 7 meets 7, N 7; in a unique line /,_; and ¢;_; lies on a unique S-plane 7;
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of m;. Now, ¥; meets m; N 7; in exactly two lines ¢, ¢’ both different from ¢;_;.
The lines ¢, ¢', ¢,y are part of an arc of lines in 7y N 7; by Theorem 6.73(iv). So
UiNa={l_1N¢ li_y N} Any S-plane containing a line of ¥; and a line of
o must pass through ¢, N ¢ or ¢;_1 N ¢'. One such S-plane is ;. So, by Theorem
6.73(ix), there are at most three S-planes altogether meeting ¥; and « each in lines.
Therefore 3 > (k — 1)(t —4)/(t — 2) + (2t — 4) > t; so 3 > t, contradicting the
factthat ¢ > 5 sincet = ¢ + 4 — k and k < ¢ by hypothesis.

Next assume that 6;,, is an S-plane, say ;1. If a1 is the unique S-plane 7; of
m; containing £y, then the planes a and «j; lie in a II3. From Theorem 6.73(viii),
£4_1 lies in no other S-plane. Then any other S-plane containing a line of a and a1
lies in this II3. Therefore this II3 contains more than ¢ S-planes and so is a linear
component of . From Theorem 6.72(vi), this 113 is a solid of ¥ extending K. This
contradicts the initial assumption that /C is complete. Therefore «;; is distinct from
755 $0 aj1 N« is a point P. Any S-plane containing a line of aj; and « contains P.
It follows that there are more than ¢ S-planes containing P and intersecting « in a
line, contradicting Theorem 6.73(ix) as t > 2.
Case2: t > [(k—1)(t —4)/(t —2)+2t —4]/(t —1).

This means that

t3— 4t — (¢ —3)t+49+4>0. (6.83)
From the hypothesis, since t = ¢ + 4 — k,
d<t<y/g+73. (6.84)

For t = 5,6, 7, the inequality (6.83) implies that ¢ < 32, a contradiction in each
case. So
8<t< g+ 13. (6.85)

Rewriting (6.83) gives
(t2 — q)t +4q > 4t* — 3t — 4. (6.86)
For t > 2, the right-hand side of (6.86) is positive. However, from (6.85),

(=)t +4q < (3va+7)° — )t +4q
=i(Va+i-at+4q
<6(va+i—a) +4g
=—2¢+6\/q+
< 0.
This gives the desired contradiction.
It has thus been shown that K extends to a (k + 1)-arc K'. If k + 1 < ¢, then

since k+1>¢— 1,/qg+ '3, the arc K’ extends to a (k + 2)-arc K. This process
shows that /C can be extended to a g-arc. a

Using the notation above, the following result is shown.
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Theorem 6.75. Any q-arc of solids in ¥ = PG(4,q), ¢ = 2", q¢ > 64, can be
extended to a (q + 1)-arc.

Proof. Let K = {m1,...,mq} be a g-arc of solids in X. By way of contradiction,
assume that /C is complete. The number of S-planes not in m; and having a line in
common with some S-plane in 71, or with Wy, is exactly (¢ — 1)(t — 2) = 2(q — 1).
So one of a1, g2 or ¥y has a line in common with at least 2(¢ — 1)/3 of these
S-planes.

There are two possibilities:

(a) i1 or ao has a line in common with at least 2(¢ — 1)/3 of these S-planes;
(b) Uy has a line in common with at least 2(¢ — 1)/3 of these S-planes.

In case (b), there are two further possibilities.
() For each solid 7;,1 > 1, at most one of the planes o1, oo contains a line of ¥

Then at least ¢ — 1 of the planes o1, o2, @ > 1, contain a line of one of a;1, aj2. So
at least one of 1, a2 contains a line of at least é(q — 1) S-planes not contained in
1.

(IT) There is a solid 7;, 1 > 1, for which the two S-planes «;1 and a2 contain a line
Of\lll

Then at least (2(¢ — 1)/3 — 2)/3 S-planes not in 71 and 7; contain a line of ¥; and
one of a1, @2, ¥;. From Theorem 6.73, in 71 N 7;, the intersection ®(KC) Ny N
contains exactly four lines ¢1, {5, /3, ¢4 with no three concurrent. Also, suppose that
{1 and ¢5 lie in U4 and that {3 and ¢4 lie in ¥5. So ¥ meets W5 in four points no
three of which are collinear. An analysis shows that through each of these four points
there is at most one S-plane not in 71 or m; and having a line in common with ¥
and ¥,. Since (2(q — 1)/3 —2)/3 = (2¢ — 8)/9 is larger than 4, at least (2¢ — 8)/9
S-planes not in 7r; and 7; contain a line of W and one of a1, a;o.
Each solid of K contains two S-planes. Since

min{2(q — 1)/3, (g — 1)/2. (2q - 8)/9} +2 = (24 + 10)/9,

it follows from (a) and (b) that there exists an S-plane o = «; having a line in
common with at least (2¢ +10)/9 S-planes. Let the set of these S-planes be denoted
by V = {ﬁl,ﬁg, .. .}, with {51,ﬁ2} = {Oéjl,OéjQ}, b1 = aj1 = «; also denote
Bi Na by ¢;, when 3; # «. Note that (2¢ — 8)/9 > 0. Then let ¢35 lie in 7y, g # j.
Put V, = {ag1, 42, ¥y} = {0g1,042,d43}. Let p,, be the number of planes of V'
containing a line of d,,,. Then, as in the previous theorem,

> pn > (2¢+10)/9 — 143 = (2q+28)/9.

Averaging gives p > (2q + 28)/27. Therefore there is an element d,,, for which
pn > (2q +28)/27. Note that t = 4 < (2¢g + 28)/27.
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Suppose, for example, that 64, = ¥,. Recall that & meets 7; N7, in just one line
¢35 which, by assumption, lies in exactly one of the planes d41 or d42. Therefore ¥,
has no line in common with « but meets « in exactly two points lying on ¢3. Then,
from Theorem 6.73(ix), there are at most three S-planes intersecting ¥, and o in a
line one of which is the S-plane of 7, through (3. So (2¢ + 28)/27 < 3 and ¢ < 16,
contradicting ¢ > 64. Therefore é,4, is an S-plane, say ag1. If oy is the (unique)
S-plane of 7, containing ¢3 then the planes ay; and « are contained in a solid Ils.
Since, from Theorem 6.73(viii), /3 is in just two S-planes, this solid contains at least
(2g+28)/27 S-planes. Since (2¢+ 28)/27 > 4 = t and ®(K) has degree t = 4, the
solid II3 is a linear component of ®(K). From Theorem 6.72(vi), this solid extends
IC, contradicting that K is complete. Therefore g1 does not contain the line /3; so
a1 Mo is a point P. Any S-plane containing a line of «j; and « contains P. It
follows that there are at least (2¢ + 28)/27 S-planes containing P and intersecting
« in a line, contradicting Theorem 6.73(ix). O

Theorem 6.76. Let K be a k-arc of points in PG(4,q), ¢ = 2", ¢ # 2. If also
k>q-— é\/q + f’, then K can be completed uniquely to a (q + 1)-arc that is a
normal rational curve.

Proof. Since k > q — %\/q + f’, so q # 4. By Theorem 6.40, k < q + 1 for ¢ > 4;
sok>q— é\/q+ 143 implies that ¢ > 32and k > 33.If ¢ > ¢ — é\/q+ 143,then
q > 64. From the previous two theorems, K lies in a (¢ + 1)-arc, which is complete
by Theorem 6.40 and which is a normal rational curve by Theorem 6.49. a

This gives the climactic result of this section.

Theorem 6.77. In PG(n, q), ¢ = 2", ¢ #2, n > 4,

) if K is a k-arc with k > q — ;\/q +n— i, then IC lies on a unique normal
rational curve;
(i) if g > (2n — )2, every (q + 1)-arc is a normal rational curve;

(iii) if g > (2n — )%, then m(n,q) = ¢ + 1.
Proof. (1) This follows by induction from Theorems 6.38 and 6.76.

(i) g+1>q—2y/g+n—3 < q>(2n—1)>2%
(iii) This follows from Theorem 6.39(ii) and part (ii). O

Corollary 6.78. In PG(n,q), ¢ =2", ¢ #2, n>q— 5\/g— '],

(1) if K is a k-arc with k > n + 6, then IC lies on a unique normal rational curve;
(ii) if n < q — 5, then every (q + 1)-arc is a normal rational curve;
(iil) ifn < g — 4, then m(n,q) = q + 1.

Proof. These follow from Theorem 6.77, Theorems 6.33 and 6.35, and Corollary
6.37. O
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6.8 Notes and References

Section 6.1

The bound (6.1) is due to Bose [35]; it follows from Lemma 6.20. It is also immediate
that a 2"-cap in PG(n, 2) is the complement of a hyperplane. The bound (6.2) is also
due to Bose [35] and is discussed in Sections 8.1-8.2 of PGOFF2. The bound (6.3) is
due to Bose [35] for ¢ odd and to Qvist [268] for g even; see Section 16.1 of FPSOTD
for the bound, and for the characterisation when ¢ is odd or ¢ = 4, and Section 16.4
of FPSOTD for another example of a (q2 + 1)-cap when ¢ = 2" hodd and h > 3.
For ¢ = 8, every (¢* + 1)-cap is one of these two types, Fellagara [131].

For ¢ = 16, every (¢* + 1)-cap is an elliptic quadric, O’Keefe and Penttila [248].
The bound (6.4) is due to Pellegrino [261] and the bound (6.5) is due to Hill [166];
the classification in PG(4,3) is due to Hill [169] and in PG(5,3) is due to Hill
[168]. For the bound in PG(4, 4), see Tallini [305], Edel and Bierbrauer [128, 129],
Bierbrauer and Edel [27].

The bounds (6.12) and (6.13) for m/(2, ¢) are due to Segre [280] and proved in
Chapter 10 of PGOFF2. The improvement from (6.12) to (6.11) is due to Thas [332].
The exact value for m(2, q), g an even square, is due to Fisher, Hirschfeld and Thas
[135] and to Boros and Sz&nyi [34] independently.

The bound (6.15) is due to Voloch [392], and by similar methods (6.16) and
(6.17) are due to Voloch [393]. The results (6.15)—(6.17) depend on an improvement
to the Hasse—Weil theorem as in Section 10.2 of PGOFF2, which gives an upper
bound on the number of points on a non-singular, irreducible, projective, algebraic
curve with a fixed-point-free linear series. This result, due to Stohr and Voloch [297],
depends on ¢, on the genus g, on the order and dimension of the linear series, and
on the Frobenius order sequence. For (6.18)—(6.23), see Hirschfeld, Korchmaros and
Torres [176, Chapter 13].

Section 6.2

This is entirely based on Hill [168], apart from Theorem 6.15, which is due to Meshu-
lam [236].

Section 6.3

The proof of Theorem 6.16 is taken from Tallini [302]. The remainder of the section
is taken from Hirschfeld [172]; the essence of the argument is found in Segre [280].
The argument used to obtain the final result, Theorem 6.19, depends intricately on
the upper bound used for m’(2, ¢). This is both explicit in the proof of Theorem 6.19
and implicit in Theorem 6.17, on which the result heavily depends. Throughout, the
bound (6.12) is used. The nature of the argument given precludes a formula or a
bound for msy(n, q) in terms of m’(2, q); a change in the bound for m/(2, ¢) means
a complete reworking of the argument. This can be done separately for the bounds
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(6.11), (6.15), (6.16), (6.18)—(6.23). For example, if ¢ is a sufficiently large prime
and n > 4, then J. E. Voloch (personal communication) has shown that

ma(n,q) < 1953¢" 1 4+ O(¢"2).

For many other bounds, see Hirschfeld and Storme [177].

Section 6.4

Lemma 6.23 and Theorem 6.24 are taken from Chao [71].

Hirschfeld and Thas [181] contains the details of Theorem 6.25. For Theorem
6.26, part (ii) is taken from Ferret and Storme [133], part (iii) from Cao and Ou
[66] and part (i) from Thas (2015, unpublished). The proof of Theorem 6.27 pro-
ceeds as in the proof of Theorem 27.4.5 in GGGI1 or Theorem 4.1 in Hirschfeld
and Thas [181], using Chao’s bound for m} (3, ¢). Theorem 6.28(i) and (ii) is taken
from Thas (2015, unpublished); Theorem 6.28(iii) comes from Cao and Ou [66].
Theorem 6.29(iii) is taken from Ferret and Storme [133]; parts (iv)—(v) come from
Storme, Thas and Vereecke [301].

Section 6.5

The first part is an amalgam of Section 21.1 of FPSOTD and Segre [275]. The proof
of Theorem 6.32(i) is based on Kaneta and Maruta [190]. The remainder of the sec-
tion is taken from Thas [311], although this proof of Theorem 6.33 is taken from
Halder and Heise [146].

Section 6.6

Theorem 6.40 is due to Segre [275] for ¢ odd and to Casse [69] for ¢ even. Theo-
rem 6.41 is due to Thas [310], although the treatment here and hence the necessary
Theorems 6.38 and 6.39 follow Kaneta and Maruta [190]; part (iii) is an improve-
ment of Thas’s result from ¢ > (4n — 5)? to (4n — 9)2. Theorem 6.42(ii) is due to
Glynn [140]. Lemmas 6.44 to 6.48, Corollary 6.47, and Theorem 6.49 follow Casse
and Glynn [70]. Included in this paper is an elementary proof of the result that a
g-arc in PG(3, q), ¢ even, is contained in a (¢ + 1)-arc; see also Kaneta and Maruta
[189]. Theorem 6.50 implies that m(5, q) = ¢ + 1 for ¢ even and ¢ > 8. Maruta and
Kaneta [223] have shown, for ¢ even and ¢ > 16, that (i) in PG(3,¢), a (¢ — 1)-
arc is contained in a unique (¢ + 1)-arc; (ii) in PG(4, ¢), a g-arc is contained in a
unique (g + 1)-arc; (iii) in PG(5, ¢), a (¢ + 1)-arc is a normal rational curve; (iv)
m(6,q) = ¢q + 1. These results are dependent on those in Section 6.7. Theorem
6.51(i) is due to Ball and De Beule [9], parts (ii) and (iii) to Ball [8].
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Section 6.7

This is based on three papers: Bruen, Thas and Blokhuis [53], Blokhuis, Bruen and
Thas [31], and Storme and Thas [300]. In [31], Theorems 6.54 and 6.56 are also
applied to the case of ¢ odd. This gives the following result analogous to Theorem
6.58.

Theorem 6.79. Let K be a k-arc in PG(n, q) withn > 3 and q odd. If the cardinality
k> 2(q—1) + n, then K is contained in a unique complete arc.

Using other bounds for m/(2, ¢) from Section 6.1, improvements of parts of The-
orems 6.41 and 6.77 should be obtainable.



7

Ovoids, spreads and m-systems of finite classical polar
spaces

7.1 Finite classical polar spaces

In this chapter, ovoids, spreads and m-systems of finite classical polar spaces are
introduced. Also SPG-reguli, SPG-systems, BLT-sets and sets with the BLT-property
are defined. The main results on these topics are given, all without proof.

There are five types of finite classical polar spaces S = (P, B).

(1) Wy (q): the elements of P are the points of PG(n,¢), n odd and n > 3; the
elements of B3 are the subspaces of the self-polar (n — 1)/2-dimensional spaces
of a null polarity of PG(n, q); therank r = (n + 1) /2.

(2) P(2n,q): the elements of P are the points of a non-singular quadric Ps,, of
PG(2n,q), n > 2; the elements of B are the subspaces of the (n — 1)-
dimensional spaces on Ps,,; the rank r = n.

(3) H(2n + 1,q): the elements of P are the points of a non-singular hyperbolic
quadric Hap1 of PG(2n 4+ 1,¢), n > 1; the elements of B are the subspaces
of the n-dimensional spaces on Ha,,41; the rank r = n + 1.

(4) £(2n+ 1, q): the elements of P are the points of a non-singular elliptic quadric
Eont1 of PG(2n + 1,¢), n > 2; the elements of B are the subspaces of the
(n — 1)-dimensional spaces on Ea,,1; the rank r = n.

(5) U(n,q*): the elements of P are the points of a non-singular Hermitian variety
U,, of PG(n,¢?), n > 3; when n is odd, the elements of B are the subspaces of
the }(n — 1)-dimensional spaces on U/, and the rank r = }(n + 1); when n is
even, the elements of 53 are the subspaces of the (;n — 1)-dimensional spaces
on U, and the rank r = n /2.

Definition 7.1. For a polar space S of rank r, the subspaces of dimension  — 1 are
the generators of S.

Theorem 7.2. With G(S) the set of generators of the finite classical polar space S,
the numbers of points and generators are given in Table 7.1.
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Table 7.1. Classical polar spaces
S P G(S)|
Whal(q) (@ =1)/(¢—1) (a+1)(¢* + 1) (g2 4 1)
P2nq) (™" -1)/(¢—1) (@+1)(@*+1)-(¢"+1)
H(2n+1.q) (¢" +1(¢"" —1)/(g—1) 2+ (P +1)---(¢" +1)
E@2n+1,q) (" -1 +1)/(a—1) @+ 1P +1) (" +1)
Uen,@®) (@ D@ =D/ =) (@ D@ D) (@ D)
Un+1,¢%) (" =@ +1)/(¢* = 1) (¢ +1)(¢° +1) - (¢ +1)

7.2 Ovoids and spreads of finite classical polar spaces

Definition 7.3. Let S be a finite classical polar space of rank r > 2.

(1) An ovoid O of S is a point set that meets every generator in exactly one point.
(2) A spread T of S is a set of generators that partitions the point set of S.

Theorem 7.4. The sizes of ovoids O and spreads T are given in Table 7.2.

Table 7.2. Sizes of ovoids and spreads

S 0] =IT]
Wh(q) q(n+1)/2 +1
P(2n,q) q" +1
H(2n +1,q) " +1
E(2n+1,q) Tt +1
U?2n, ¢*) A |
U22n+1,¢°%) @t 41

Definition 7.5. The number of points of a hypothetical ovoid O of S is the ovoid
number of S.
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The existence and non-existence of ovoids O in a finite classical polar space S is
described in Table 7.3.
Any ovoid of PG(3, ¢), ¢ even, is an ovoid of some Wj5(q) and, conversely.

Table 7.3. Existence of ovoids

S
Ws(q), q even
Ws(q), g odd
Wh(q), n=2t+1landt > 1
P(4,q9)
P(6,q), qprime, g > 3
P(6,q), ¢ = 3"
P(2n,q), n > 2 and q even
P(2n,q), n > 3 and g odd
H(3,4q)
H(5,q)
H(7,q), g odd, with ¢ prime

org=0or2 (mod 3)

H(7,q), qeven

H(2n +1,q), n >3, ¢ =p", pprime and

E2n+1,q9), n>1
U(s,q%)
U?2n,q¢%), n>2
U2n+1,¢%), n>1, ¢ =p", pprime and
n n 2 n —
p2 A > @ni?) - (22:-1:-11
Us,4)
7.4 Existence of spreads

P> () - (50

)2

Existence of O

References

(312]
[312]
[328]

[213], [191], [259, 260],
[350], [263]

[10]

[326, 328], [191]
[328]

[145]

Table 15.10 of FPSOTD
[125], [326, 328]

[192], [193], [191], [287],
[74], [238] (%)

[326, 328]

[33]

[328]
[329], [259, 260], [350]
[328]
[239]

(83]

The existence and non-existence of spreads 7 in a finite classical polar space S is
described in Table 7.4.
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Table 7.4. Existence of spreads

S Existence of T References

Whi(q), n=2t+1andt >1 Yes [213], [323], [191], [5], [350], [263]

P(2n,q), n > 2 and g even Yes [125], [326, 328], [350]

P(6,q), qodd, with ¢ prime Yes See (x) in Table 7.3
org=0or2 (mod 3)

P(4n,q), g odd No [312], [334]

H(3,q) Yes

H(7,q), qodd, with g prime Yes See (x) in Table 7.3
org=0or2 (mod 3)

H(4n + 3,q), q even Yes [125], [326, 328]

H(dn +1,q) No

E(5,q) Yes [329], [259, 260], [350]

E(2n+1,q), n > 2, geven Yes [125], [326, 328]

U4, 4) No

U2n +1,¢%) No (328], [334]

A spread of W,,(q), n = 2t + 1, is also a ¢-spread of PG(n,q). For every
n = 2t + 1, the polar space W,,(q) has a spread that is also a regular ¢-spread of
PG(n,q).

Any non-singular hyperbolic quadric of PG(2n + 1, ¢), n > 1, has two families
of generators; see Section 1.4. If 7, 7’ are generators, then they belong to the same
family if and only if the dimension of their intersection has the same parity as n. It
follows that H(4n + 1, ¢) has no spread.

7.5 Open problems

For ovoids, establish the existence or non-existence in the following cases:

(a) P(6,q), qodd, ¢ # 3" and ¢ not prime;
(b) H(7,q), godd, g =1 (mod 3) and ¢ not prime;
(c) H(2n+1,q), n >3, ¢ =p", pprime and

n 2n+p 2n+p—2
p" < - ;
2n+1 2n+1

(d) U(2n+1,¢%), (n,q) # (2,2), ¢ =p", p prime and

2 2
p2”+1< 2n+p B n+p—1
~\2n+1 2n+1 '
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For spreads, establish the existence or non-existence in the following cases:

(a) P(6,q), qodd with ¢ =1 (mod 3) and ¢ not prime;
(b) P(4n +2,q), q odd, forn > 1;

(c) H(7,q), godd with g =1 (mod 3) and ¢ not prime;
(d) H(4n + 3,q), qodd, forn > 1;

(e) £(2n+1,q), n > 2, and q odd,;

(f) U(4,4?), for g > 2;

(g) U(2n,q?), forn > 2.

7.6 m-systems and partial m-systems of finite classical polar
spaces

Definition 7.6. Let S be a finite classical polar space of rank r, with r > 2.

(1) A partial m-system of S, with 0 < m < r — 1, is any set {my, 7o, ..., 7} of
m-dimensional subspaces of S such that no generator containing 7; has a point
in common with (my Umg U -+ Umy)\mg, withi =1,2,... k.

(2) A partial O-system of size k is also called a partial ovoid, or a cap, or a k-cap.
(3) A partial (r — 1)-system is also called a partial spread.

Theorem 7.7. An upper bound for the size of a partial m-system M of the classical
polar space S is given by the following table:

S M| <
Wany1(q) ¢t 41
P(2n,q) q"+1
H(2n+1,q) q"+1
E@2n+1,9) "t 41
U(2n,q*) ¢+
U@2n +1,¢°) ¢t 41

Definition 7.8. A partial m-system M of the finite classical polar space S is an m-
system if the upper bound in Theorem 7.7 is attained.

For m = 0, the m-system is an ovoid of S; for m = r — 1, with r the rank of S,
the m-system M is a spread of S. The fact that |M] is independent of m explains
why an ovoid and a spread of a finite classical polar space S have the same size.

Theorem 7.9. Let M be a partial m-system of the finite classical polar space S of
rank v with m < r — 1. Then the number N4 of (m + 1)-dimensional subspaces of
S containing an element of M and a given point P of S not in an element of M is
independent of the choice of P; it is given by the following table:
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S N
Want1(q) "+ 1
P(2n,q) |
H(2n+1,q) g
ECn+1q) 41
u(2n’q2) an—Qm—l + 1
Z/I(Qn + 17q2) q2n—2m—1 + 1

Remark 7.10. If P is a point of S not in an element of the m-system M, then, for
m <r—1andS # Wha,+1(q), Theorem 7.9 says that the tangent hyperplane of S
at P contains exactly N, elements of M; form < r — 1 and S = Wh,,+1(q), the
hyperplane P, that is, PZ with Z the null polarity defining S, contains exactly N,
elements of M.

7.7 Intersections with hyperplanes and generators

In this section, S is a finite classical polar space of rank r, with » > 2, and M is an
m-system of S.

Theorem 7.11. For S # Wan11(q), let Raq be the number of elements of M con-
tained in a hyperplane 7 which is not tangent to S; for S = Wan11(q), let R be
the number of elements of M contained in a hyperplane P+, with P a point not in
an element of M. This number is given in the following table:

S Nam = Rm
Wani1(q) "+ 1
P(2n,q) "+
and mNP(2n,q) = H(2n —1,q)
E2n+1,q) g™+ 1
u(2n’ q2) q2n—2m—1 +1

Remark 7.12. 1. When S = P(2n, ¢) and also # NP (2n,q) = £(2n — 1, q), then
R = 0form =n — 1, and R depends on the choice of w form < n — 1.

2. When § = H(2n + 1,q), then Ry = 0 for m = n, and Ry depends on the
choice of 7w form < n.

3. When & = U(2n + 1,¢?), then Rypq = 0 for m = n, and R depends on the
choice of 7 for m < n.

Theorem 7.13. For S = Way,11(q), £(2n + 1,q), U(2n,¢?), again Nyg = Rag;
that is, any hyperplane contains either one or Naq elements of M. Hence the
union M of the elements of M has two intersection numbers (1, B2 with respect
to hyperplanes:
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(l)fO}”S = W2n+1(q)v

m+1 n
ﬁlz(q qi)gq +1)_qn’ By =

(¢t =1)(¢" + 1)
q—1 ’

(i) for S = £(2n + 1, q),

(g™t =1)(¢"+1) (gt =1)(¢"+ 1)
Bl_ q_]. - q, ﬁQ_ q—]. )

(iii) for S = U(2n, ¢%),

2m+2 2n—1
q —1 q +1 n
51 - ( 2)( 1 ) q2 13 ﬁQ -

(q2m+2 _ 1)(q2n71 4 1)
> -1

Corollary 7.14. For S = Wa,,11(q), £E(2n + 1, q),U(2n, ¢°), any m-system defines
a strongly regular graph and a linear projective two-weight code.

Remark 7.15. For more details on these graphs and codes, see Section 7.10.

Theorem 7.16. Let M be an m-system of the finite classical polar space S over F g,
and let M be the union of the elements of M. Then, for any generator v of S,

yAM|= (" ~1)/(q—1).

Definition 7.17. Let S be a finite, not necessarily classical, polar space of rank 7,
with » > 2. Hence S may be a non-classical generalised quadrangle. A point set
K of S is a k-ovoid of S if each generator of S contains exactly & points of IC. A
1-ovoid is just an ovoid.

Corollary 7.18. The union of all elements of an m-system of S over ¥, is a k-ovoid
with k = (g™t —1)/(q - 1).

7.8 Bounds on partial m-systems and non-existence of 1m-systems

Notation 7.19. Write
@ c(n,r) = (7);

(b) b(ry,72,73,74) = c(c(r1,r2) +173,74);
(¢) b’ (m1,ma, m3, ma, ms, mg) = c(c(my, ma) — c(ms, my) + ms, mg).

Theorem 7.20. If IC is a partial ovoid of size k of the finite classical polar space S
in PG(n, q), with ¢ = p" and p prime, then

E<clp+n—1,n)"+1. (7.1)
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(1) If § comes from a quadric in PG(n, q), then (7.1) can be improved to
k<lc(p+n—1,n)—clp+n—3n)"+1. (7.2)

(ii) If S arises from a quadric in PG(n, q) and if n and q are both even, then (7.2)
can be improved to
k<nh+1.

(i) If S = U(n, ¢*), with g = p", p prime, then (7.1) can be improved to
k<lcp+n-— 1,n)? —c(p—|—n—2,n)2]h—|—1.
Remark 7.21. Some results of Table 7.3 are deduced from Theorem 7.20.

Theorem 7.20 can be extended to m-systems of finite classical polar spaces. First,
a useful theorem on subspaces of PG(n, ¢) is stated.

Theorem 7.22. Consider in PG(n,q), n > 2, with ¢ = p", p prime, a set of m-
dimensional subspaces 71,7, ..., 7 and a set of (n — m — 1)-dimensional sub-
spaces T, h, ..., ), withm < (n —1)/2, where m; N7, # 0 and wj N7, = ( for
alli,j =1,2,... kwithi # j. Then

E<bn+1,m+1,p—2,p—1)"+1. (7.3)

Theorem 7.23. (i) If M is a partial m-system of size k of the finite classical polar
space S in PG(n, q), with ¢ = p", p prime, then

E<bn+1lm+1p—2p—1"+1. (7.4)

(a) For § = P(n,q), H(n,q), E(n,q), with q odd, and for S = W, (q), with
q and m odd, the inequality (7.4) can be improved to

E<(b(n+1,m+1,p—2,p—1)=bn+1,m+1,p—4,p—3)"+1.
(b) When S = U(n, ¢°), then (7.4) can be improved to
k< (bn+1l,m+1,p-2,p-1)*=b(n+1,m+1,p-3,p-2)")"+1.

(i) If S admits an m-system, then the following hold:
(@) for S = Wan11(q), q = p" and with m even if p is odd,

Pt <b@n+2,m+1,p—2,p—1);
(b) for S = Wan+1(q), ¢ = p"* odd and m odd,
"t <b@n+2,m+1,p—2,p—1)—b2n+2,m+1,p—4,p—3);
(c) for S = P(2n,q), q = 2",

2" <c(2n+1,m+1);
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(d) for S = H(2n+1,q), ¢ = 2",
2" <e(2n+2,m+1);
(e)forS =E(2n+1,q), q = 2",
2"t < c(2n+2,m +1);
(f) for S = P(2n,q), q = p" and q odd,
p"<b2n+1,m+1,p—2,p—1)—b2n+1,m+1,p—4,p—3);
() for S = H(2n +1,q), ¢ = p" and q odd,
p"<b2n+2,m+1,p—2,p—1)—b2n+2,m+1,p—4,p—3);
(h) for S = E(2n+1,q), q = p" and q odd,
"t <b@n+2,m+1,p—2,p—1)—b2n+2,m+1,p—4,p— 3);
(i) for S =U(2n,q*), ¢ = p",
P <b@2n+1,m+1,p—2,p—1)2 —=b2n+1,m+1,p—3,p—2)%
() for S =U(2n +1,¢°), ¢ =p",
PPt <b2n+2,m+1,p—2,p—1)>—b2n+2,m+1,p—3,p—2)%

Theorem 7.24. (i) Let M be a partial m-system of size k of Wan+1(q), ¢ = p"
and m > 0.

(a) For p odd with m even and for p = 2,
E<b@2n+2m+12n+2m—-1,p—2,p—1)"+1.
(b) For p odd with m odd,
E<[b'@n+2,m+1,2n+2,m—1,p—2,p—1)
—b@n+2,m+1,2n+2,m—1,p—4,p—3)]" +1.
(c) If M is a partial m-system of size k of P(2n,q), withm > 0 and q = 2",
then
k< [e(2n,m+1) —c(2n,m—1)]" +1.

(i) If Wan 11(q) admits an m-system, q = p" and m > 0, then
(a) for p odd with m even and for p = 2,

P <Y (2n4+2,m+1,2n+2,m—1,p—2,p—1);
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(b) for p odd with m odd,

PP 2n+2,m+1,2n+2,m—1,p—2,p—1)
~b'(2n+2,m+1,2n+2,m—1,p—4,p— 3).

(iii) If P(2n, q) with q even admits an m-system, with m > 0, then
2" <ce(2n,m+1) —c(2n,m — 1).

The bound (7.3) has been improved and, as a corollary, a better bound for partial
m-systems has been obtained. However, this formula is more complicated than that
of (7.4).

Theorem 7.25. If M is a partial m-system of size k of the finite classical polar space
S in PG(n, q), with ¢ = p"* and p prime, then

—H:I:[i{: (n—&-l)(n—k(p—l)?(lm—!—l)—ip)’ 75)

where K = Vmﬂz)?(”*l)J and | s| is the integer part of s.

Remark 7.26. For m = 0, the inequality (7.5) becomes (7.1).

7.9 m/-systems arising from a given m-system
Here the constructions of m/’-systems arising from a given m-system are surveyed.
Definition 7.27. The 0-system (or spread, ovoid) of
Pa, Es, H1, U, W1 = PG(1,q)
is the set of all their points.

Notation 7.28. In the context of polar spaces,

P(2,q) = P2,
£(3,q) = &,
H(1,q) = Hi,
U?2,q) = Us.

The sets Po, &, Hi, U, Wi are also polar spaces of rank 1 or projective index 0.

Theorem 7.29. (i) If€£(2n+1,q), n > 1, has an m-system, then also P(2n+2, q)
and H(2n + 3, q) have m-systems; if P(2n + 2,q), n > 0, has an m-system,
then H(2n + 3, q) also has an m-system.
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(ii) If the polar space S,,, n > 4,in PG(n, q) admits an ovoid, then the polar space
Sn—2 in PG(n — 2,q), of the same type as S,,, admits an ovoid.

(i) If H(4n — 1,q), n > 1, admits a spread, then P (4n — 2, q) admits a spread; if
P(2n,q), n > 2, admits a spread, then £(2n — 1, q) admits a spread.

Corollary 7.30. The spaces P(4,q), H(5,q), H(3,q) each admit an ovoid.
Proof. Put (n,m) = (1,0), (0,0) in Theorem 7.29(i). O

Theorem 7.31. For q even, the polar space P(2n,q), n > 1, has an m-system if
and only if Way,—1(q) has an m-system.

Theorem 7.32. Let Sy and Ss be spreads of H(7, q), where the generators of S1 and
the generators of S belong to different systems of generators of H(7,q). Then,

(i) for each € S1, there is exactly one ©' € Sy with m N\ 7' a plane;
(ii) these ¢> + 1 planes T N 7’ form a 2-system of H(7, q).

Theorem 7.33. If H(4n + 3, q) admits a 2n-system, n > 0, then it admits a spread.
This spread is obtained by considering all generators of a given system of generators
of H(4n + 3, q) containing an element of the 2n-system.

Theorem 7.34. (i) If P(2n, ¢), with n > 1 and q odd, admits an m-system M,
then H(4n + 1, q) admits a (2m + 1)-system M.
(i) If P(2n, ¢*), with n > 1 and q even, admits an m-system M., then P(4n,q),
and hence also H(4n + 1, q), admits a (2m + 1)-system M’
(i) IfE(2n+ 1, ¢%), with n > 1, admits an m-system M, then £(2e(n+1) —1,q)
admits an (me + e — 1)-system M’

Corollary 7.35. (i) There exists a 1-system in H(5, q) and H(9, q).
(ii) For q even, there is a spread in P (4, q).
(iil) There is an (e — 1)-system in E(de — 1, q).

Proof. (i), (ii) Putm = 0 and n € {1, 2} in Theorem 7.34(i).
(iii) Put m = 0 and n = 1 in Theorem 7.34(ii). a

Theorem 7.36. If Wa,_1(q%), n > 1, admits an m-system M, then Wapne_1(q)
admits an (me + e — 1)-system M’.

Corollary 7.37. The space Wac_1(q) admits an (e — 1)-system.
Proof. Put (n,m) = (1,0) in Theorem 7.36. O

Theorem 7.38. If U(2n, ¢*¢), with n. > 1 and e odd, admits an m-system M, then
U(2ne + e — 1,¢%) admits an (me + e — 1)-system M.

Corollary 7.39. The space U(3e — 1,q?), with e odd, admits an (e — 1)-system.

Proof. Put (n,m) = (1,0) in Theorem 7.38. O
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Theorem 7.40. (i) IfU(2n,q%), n > 1, admits an m-system M, then £(4n+1, q)
admits a (2m + 1)-system M’
(i) IfU(2n+ 1, ¢?) admits an m-system M, then H(4n + 3, q) admits a (2m +1)-
system M’

Corollary 7.41. Both £(5, q) and H(7, q) admit 1-systems.
Proof. Put (n,m) = (1,0) in Theorem 7.40. O

Theorem 7.42. IfU(2n, ¢*), n > 1, admits an m-system M, then Wi, 1(q) admits
a (2m + 1)-system M’.

Corollary 7.43. W5(q) admits a 1-system.
Proof. Put (n,m) = (1,0) in Theorem 7.42. O

Remark 7.44. Many infinite classes of examples can be constructed using the results
of this section.

7.10 m-systems, strongly regular graphs and linear projective
two-weight codes

Let V C PG(n,q), with n > 2, such that, for any hyperplane ,
|7T N V| S {ﬁlvﬁQ}a

with 3y # fBs.
Let PG(n, ¢) be embedded in PG(n + 1, ¢); then two distinct points P;, P, of

PG(n+1,9)\PG(n, q) are adjacent if the line P, P, contains a point of V. With this
adjacency, PG(n + 1, ¢)\PG(n, ¢) becomes a strongly regular graph.

LetV = {Pl, Py, ... ,Rg}, with P, = P(Z‘L), xr; = (l‘io, Tily e l‘m) and
i =1,2,...,s. Then the matrix

G=ayzy -z

generates a linear projective [s, n + 1], code C' whose words can only have weights
s — f1 and s — 2. Recall that a linear code C' is projective if and only if any two
columns of a generator matrix are linearly independent, that is, if and only if the
minimum weight of the dual code C is at least 3. Conversely, any linear projective
two-weight [s, n + 1], code C defines a set V of s points in PG(n, ¢), which has two
intersection numbers with respect to hyperplanes.

By Theorem 7.13 for any m-system M of the polar space S, where S is one of
Want1(q), E2n+1,q), U(2n,¢*), n > 1, the union M of the elements of M is
a set with two intersection numbers (31, 82 with respect to hyperplanes.

Expressing that the strongly regular graph arising from an m-system of these
polar spaces has A > 0 gives the following result.
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Theorem 7.45. An m-system of Wan11(q), £(2n+1,q), U(2n,¢?), n > 1, satisfies
n<2m-+1.

Corollary 7.46. An m-system of P(2n + 2, q), with q even, satisfies n < 2m + 1.
From m-systems, other sets with two intersection numbers can be constructed.

Theorem 7.47. Let M, be an m;-system of Way+1(q), i = 1,2,...,k, for some
integerk > 1. Fori=1,2,... k, let
(@™ = 1)(¢" +1)
a; = .
q—1
(i) If, for all i # j, M; and M are disjoint, that is, Mvi N MJJ = (), then the set
le U Mvg U---u ka has two intersection numbers a1 + as + - -+ + ap and
a1+ as + -+ + ar — q" with respect to hyperplanes in PG(2n + 1, q).
(i) If M; is covered by M, 1, that is, every element of M is a subspace of a
unique element of M1, 1 =1,2,...,k — 1, then
(a) if k is even, the set

K = (Mi\Mj—1) U (Mp_2\Mj_3) U -+ U (Mz\ M)

has two intersection numbers aj, — aj—1+ Qjp—2 — Ap—3 + -+ -+ a9 —ay and
Ak — ap—1+ ap—2 — ax—3+ - -+ as — ay — q" with respect to hyperplanes
of PG(2n + 1, q);

(b) if k is odd, the set

K= (M\Mj—1) U (Mp_2\Mj_3) U -+ - U (M5\ M) UM,

has two intersection numbers ay — -1 +ar—2 —ap—3+---+az—az+a;
and ayp, — ag—1 + ap—o — ap_3 + -+ - + as — as + a1 — q" with respect to
hyperplanes of PG(2n + 1, q).

Theorem 7.48. Let M; be an m;-system of E(2n+ 1,q), i = 1,2,... k, for some
integer k > 1. Fori = 1,2,...,k, let a; be as in Theorem 7.47. Then the same
conclusions hold.

Theorem 7.49. Let M; be an m;-system of U(2n,q%), i = 1,2,...,k, for some
integer k > 1. Fori=1,2,... k, define

(quﬂr? _ 1)(q2n71 4 1)
> —1

a; =

(i) If M; and M j are disjoint for all i # j, then the set le UMQ U--- Uka has
two intersection numbers ay + as + - -+ ap and a1 + ag + - - + ap, — ¢*" L
with respect to hyperplanes of PG(2n, ¢?).

(ii) If M, is covered by M1, i =1,2,...,k — 1, then
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(a) if k is even, the set
K=(Mp\Mp_1) U Mp_2\Mg_3)U---U(Mx\Mj)

has two intersection numbers ay — ag_1 + ap—2 — Ax—3 + -+ -+ a2 — a1
and aj, — ap—1 + Qp—o — ap_3 + - + az — a; — ¢>" ! with respect to
hyperplanes of PG(2n, ¢%);

(b) if k is odd, the set

K = (M\Mj—_1) U (Mp_2\Mj_3) U--- U (Ms\Mz) UM,

has two intersection numbers ay — -1 +ar—2 —ap—3+---+az—az+a;
and ay — a1 + Qp—2 — Q3 + - - + a3 — ag + a1 — ¢>" ! with respect
to hyperplanes of PG(2n, ¢?).

Example 7.50. (a) There are no examples of an mj-system M; and an msq-system
M of the finite classical polar space S € {Wan11(q),E(2n + 1,9),U(2n,¢%)}
with M{ N My = 0.

(b) For ¢ even and for sq, ss, ..., Sk, t, with 51 < s9 < --- < s where s;
divides s; 41 fori = 1,2,...,k — 1, s; < s and st > s; + 1, there exists a chain
of (st — s; — 1)-systems M, of £(2st — 1,q), i = 1,2,..., k, where each element
M is covered by M1, i =1,2,...,k— 1.

7.11 m-systems and maximal arcs

Maximal arcs in PG(2, q) were defined in Section 12.1 of PGOFF2. For general
planes of order ¢, not necessarily Desarguesian, maximal arcs are defined in a similar
way. Translation planes of order ¢ can be constructed from n-spreads of the space
PG(2n + 1,q); see Section 4.7. Such a plane is Desarguesian if and only if the
n-spread is regular.

Theorem 7.51. Let S be a spread of the polar space E(2n+ 1,q) of PG(2n+ 1, q),
with n > 0. Suppose there exists an n-spread S = {mi,mo,... , Tyn+141} Of
PG(2n + 1, q) such that

S={EmpiNm|i=1,2,....¢" " +1}.

Embed PG(2n+1, q) as a hyperplane in PG(2n+ 2, q) and choose some point P in
PG(2n+2,9)\PG(2n+1, q). Let K be the set of all points not in PG(2n+1, q) of
the cone P&y, 1 1. Then K is a maximal (¢*" 1 —q" 1 +q"; q")-arc in the projective
translation plane 7(S) of order q"* determined by the n-spread S.

Remark 7.52. 1. Theorem 7.51 also holds if, for n = 1, the quadric &3 is replaced
by any ovoid of PG(3, ¢).
2. For ¢ odd, a pair (.5, S) as in Theorem 7.51 does not exist.



7.11 m-systems and maximal arcs 377

3. For S regular, the maximal arc K of the Desarguesian plane 7 (S) can also be
constructed as in Theorem 12.12 of PGOFF2.

4. For g even, the n-spread S is always a spread of the polar space Wh,,+1(q) defined
by the polar space £(2n + 1, ¢). Also, S is an (n — 1)-system of Way,11(q).

5. Let g be even, let Pz, 12 be a non-singular quadric of PG(2n+ 2, ¢) and let E,4+1
be contained in Pay,4o. If S* is any spread of P(2n + 2,¢), then S* induces
a spread S of £(2n + 1, ¢). By projection from the nucleus of Pa,, 2 onto the
hyperplane PG(2n + 1, ¢q) containing £(2n + 1, q), the spread S* yields an n-
spread S of PG(2n + 1, ¢) with the desired property. All possible pairs (S, S) are
obtained in this way.

Theorem 7.53. (a) Let M be an m-system of the polar space Way,+1(q) in the space
PG(2n+1,q), n > 0.

(b) Suppose there exists a spread S of Wan+1(q) such that M is covered by S.
Embed the space PG(2n + 1, q) in PG(2n + 2, q) and choose some point P in
the difference PG(2n + 2, q)\PG(2n + 1, q).

(¢) Let K be the set of all points not in PG(2n + 1, q) of the cone PM, with M the
set of all points contained in elements of M.

Then K is a maximal (q"t™+2 — gqntl 4 gm+L g™+ arc in the projective

translation plane 7(S) of order ¢" ' determined by the n-spread S.

Remark 7.54. Consider an (n — 1)-system of £(2n + 1,¢*), q even, covered by a
spread of the associated Wh;,11(¢®), as in Theorem 7.51. By Remark 7.52(4), this
(n — 1)-system is also an (n — 1)-system of Wh,,11(q). It follows that there exists
an (ns — 1)-system of Way,s125—1(q) covered by a spread of Way,s125—1(q); see
Theorem 7.36. However, the translation plane and maximal arc thus obtained are
isomorphic to the original translation plane and maximal arc. So nothing new is
constructed.

Consider a non-singular quadric Hy,—1 of PG(4n — 1,¢), n > 2 and g even,
and let Py, o be a non-singular parabolic quadric on H 4y, —1.

1. Let N be the nucleus of Pgy,_o. Project Py,_o from N onto a hyperplane
PG(4n — 3,q) of the subspace PG(4n — 2,¢) containing Pay,—o, with N not
in PG(4n — 3, ¢). Then the subspaces on P, are projected onto the subspaces
of a polar space Wy, —3(q).

2. Let S be a spread of Wy,,—3(q). To S there corresponds a spread S’ of the quadric
P(4n — 2, q). The generators of a chosen system of generators of H4,,—1, which
contain the elements of S’, constitute a spread S of H(4n — 1, ¢).

3. Now considering a non-singular parabolic quadric Pj},,_5 on H4,_1 and inter-
secting it with the elements of S gives a spread S*' of P* (4n —2,q).

4. Projecting again from the nucleus N* of P}, _, gives a spread S* of some
Wi _3(q). Such a spread S* is a cousin of S.

5. The projective translation plane 7(S*) of order ¢>*~! arising from S* is a cousin
of the projective translation plane 7(S5).
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Let S be a spread of Wy,,—3(q), n > 2 and ¢ even. Then four cases are distin-
guished:

I N*=N;

(II) N* # N, N* € NZ, with Z the null polarity defined by H4,,—1;
(III) N* # N, and the line N N* meets H4,—1 in two distinct points;
(IV) N* 4 Nand NN* N Hyp_1 = 0.

For S regular, spreads S* corresponding to different classes yield non-iso-
morphic translation planes 7(S*) of order ¢>"~1; spreads corresponding to the same
class do not necessarily yield isomorphic translation planes. It follows that, for .S
regular and so 7(S) Desarguesian, and N* # N, the plane 7(S*) is always non-
Desarguesian.

Theorem 7.55. Let M be an m-system of a polar space E(4n — 3, q) in the space
PG(4n—3,q), n > 2 and q even. Suppose that the associated polar space W, —3(q)
admits a spread S such that M is covered by S. Then the m-system gives rise to
maximal (¢*"+™ — ¢®>" =1 + ¢" L g™ Y -arcs in at least q of the projective planes
arising from the cousins of class (IV) of S.

Corollary 7.56. Let s,t be positive integers, with t > 1, such that st is odd. Then,
for q even, there exist maximal (¢*5'=° — q°t + ¢**=%; ¢*'=%)-arcs in at least q of the

cousins of class IV) of PG(2, ¢°").

Remark 7.57. When s = 1, the maximal arcs of Corollary 7.56 are the maximal arcs
described in Theorem 7.51. However, for s > 1, the maximal arcs are new.

This procedure can also be applied to non-Desarguesian planes of order ¢*¢. But
the isomorphism problem for cousins of type (IV) has been solved only in the De-
sarguesian case, so that only in this case the maximal arcs can be identified as new.

7.12 Partial m-systems, BLT-sets and sets with the BLT-property

Definition 7.58. (1) A BLT-set is a non-empty set B3 of disjoint lines of W5(q), with
the property that every line of Ws(q) which is not a member of B meets non-
trivially exactly either two or none of the lines of 5.

(2) The dual concept in the generalised quadrangle P (4, ¢), which is the dual of the
generalised quadrangle Ws(q), is a dual BLT-set.

(3) More generally, a BLT-ser of PG(m, ¢)’s is a non-empty collection B of disjoint
subspaces of a polar space S of rank r > 2, having the property that each line of
S not contained in a member of 3 meets non-trivially exactly either zero or two
members of 5.

Remark 7.59. 1. BLT-sets play a key role in the theory of translation planes and in
the theory of generalised quadrangles; see Section 7.15.
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2. A BLT-set of points of S is a subset of the points of S with each line of S contain-
ing either zero or two points of this subset. Examples are the 56-cap on £(5, 3)
and the union of two disjoint ovoids of (3, ¢°).

Theorem 7.60. A BLT- set B of PG(m, q)’s, with m > 0, of a polar space S exists
only in the following cases:

(@ m=1and S = Ws(q), qodd, with |B| = ¢+ 1;
(b)ym =1andS = £(5,q), qodd, with |B| = ¢* + 1.

Remark 7.61. 1. For Ws(q), ¢ odd, many non-isomorphic BLT-sets are known.
They lead to new generalised quadrangles, new projective planes, new ovoids of
H(5, q) and new ovoids of P(4, q).

2. For £(5,q), qodd, aunique example is known. Let 7w and 7’ be two disjoint planes
of PG(5, ¢) which are conjugate with respect to F 2 over F; that is, {m, 7'} is
an orbit of the Galois group with respect to this extension. Let C' be a conic of
7 and let C’ be the conic of 7’ consisting of the points conjugate to those of C.
Joining the points of C to their conjugates gives ¢ + 1 lines of PG(5, q). For ¢
o0dd, these lines are contained in a £(5, ¢) and form a BLT-set; these lines are also
contained in a (5, ¢), and the union of the ¢ + 1 lines is the intersection of &5
and Hs. Under the Klein correspondence with the Klein quadric H5, the points on
these lines are the images of all tangent lines of some &3.

Definition 7.62. A non-empty set B of disjoint m-dimensional subspaces of a polar
space S of rank r > 2 possesses the BLT-property if there is no line of S meeting
three distinct members of 3 non-trivially.

From partial m-systems of suitable size possessing the BLT-property, generalised
quadrangles can be constructed. A summary is given of all possible m-systems, hav-
ing the BLT-property, which yield a generalised quadrangle; there are some interest-
ing open problems.

1. S = W;s(q), q odd, and B is a 1-system of ¢° + 1 lines. The corresponding
generalised quadrangle has order (q2, ¢®). It was shown that there is exactly one
such B, and the corresponding generalised quadrangle is isomorphic to 2/ (4, ¢?).

2. 8§ = H(5,q), q odd, and B is a 1-system of ¢® + 1 lines. The corresponding
generalised quadrangle has order (¢2, ¢?). It was shown that there is exactly one
such B, and the corresponding generalised quadrangle is isomorphic to P (4, ¢?).

3. S = H(9,q), q odd, and B is a 2-system of ¢* + 1 planes. The correspond-
ing generalised quadrangle has order (g3, ¢*). No such generalised quadrangle is
known.

4. § =E(4r—>5,q), r > 3,and Bis an (r—2)-system of (r —2)-dimensional spaces
in number ¢"~2 + 1. For each value of 7 one such B is known; the corresponding
generalised quadrangle is isomorphic to £(5,¢"~1). It has been established that,
for r = 3, the 1-system B of £(7, ¢) is unique.

5. 8§ =U(9,q?) and Bis a 2-system of ¢” + 1 planes. The corresponding generalised
quadrangle has order (¢°, ¢°). No such B is known.
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7.13 m-systems and SPG-reguli

Definition 7.63. An SPG-regulus is a set R of subspaces 71,7, ..., 7, © > 1, all
m-dimensional, of PG(n, q), n > 1, satisfying the following conditions:

(a) m; Ny =0 foralli # jwithi,j € {1,2,...,r};

(b) if PG(m+1, ¢) contains 7;, with i € {1,2,...,r}, then it has a point in common
with either 0 or & > 0 spaces in R\{m;};

(c) if such a PG(m + 1, ¢) has no point in common with 7; for all j # ¢, thenitis a
tangent (m + 1)-space of R at 7;;

(d) if the point P of PG(n, q) is not contained in an element of R, then it is contained
in a constant number ¢ > 0 of tangent (m + 1)-spaces of R.

By (a), n > 2m + 1; if n = 2m + 1 then there are no tangent (m + 1)-spaces,
andsoa =7r — 1.
It can be shown that

afq — 1) divides (r — 1)(¢™ " — 1)

nd
' g (ol = 1)~ (r = (g™ 1))rg
al(gn — ) et —1)

Hence = 0 if and only if a(¢"~™ — 1) = (r — 1)(¢"™*! — 1).
From an SPG-regulus a semi-partial geometry S with parameters

s=q¢q" -1, t=r—1, p=(-0a

can be constructed. Then § is a partial geometry if and only if § = 0; if S is not a
partial geometry, that is, if @ # 0, or, equivalently, a(¢" ™ —1) # (r—1)(¢g™+1—1),
then, by Theorem 5.145,¢ > s, and so r > qm“.

Example 7.64. (a) n = 2m + 1. Then the SPG-regulus has no tangent (m + 1)-
spaces; hence & = r — 1 and 6 = 0. In this case, the semi-partial geometry is a
net of order ¢t and degree r; see Section 5.6.

(b) n = 2m + 2. If 6 # 0, then the corresponding semi-partial geometry has param-
eters

s=qm -1, t=r—1,
rA(@m = 1) = (g = D@ 4 2) + ¢ -1
o r(gmt = 1) = (¢~ 1) |
(=1 =1 = (¢ + 1))
S R Ui R
Theorem 7.65. Let ‘R be a set of m-dimensional subspaces w1, o, ..., T, with r

at least 2, of PG(2m + 2, q) satisfying (a) and (b) of Definition 7.63. If R admits
tangent (m + 1)-spaces, then
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a(r(g™? = 1) = (¢~ 1))
STQ(qm+1_1)_r(qm—s-l_1)(qm-‘,-1_"_2)_|_(q2m+3_1)7

with equality if and only if R is an SPG-regulus.

Remark 7.66. Theorem 7.65 can be generalised to PG(n, ¢) by assuming that, for
all 4, each tangent (m + 1)-space at ; intersects at most v tangent (m + 1)-spaces at
the other r — 1 elements of R. In particular, this applies if each tangent (m+1)-space
at ; intersects exactly  tangent (m + 1)-spaces at 7;, for all j # . One case is if
two tangent (m + 1)-spaces at different elements of R intersect.

Definition 7.67. (1) An SPG-regulus R satisfies the polar property if
(a) it has tangent (m + 1)-spaces,

d)yn >2m+1,
(c) the union of the tangent (m + 1)-spaces at each element m; of R is an
(n —m — 1)-dimensional subspace 7;, withi = 1,2,...,r.

(2) The subspace 7; is the fangent (n — m — 1)-space of R at ;.
Remark 7.68. 1. If an SPG-regulus R satisfies the polar property, then
r = aqn72m71 41,

2. Let R be a set of m-dimensional subspaces m1, 72, ..., 7., r > 1, of PG(n,q)
satisfying (a) and (b) of Definition 7.63. Assume also that R has tangent (m + 1)-
spaces and that for all i = 1,2,...,r, the union of all tangent (m + 1)-spaces at
7; is an (n — m — 1)-dimensional subspace. Then r < 1+ ¢("*1/2 with equality
if and only if R is an SPG-regulus.

3. If an SPG-regulus R has the polar property, then the corresponding semi-partial
geometry S has parameters

(n+1)/2’ 2m—(n/2)+3/2’ m+1( m—+1 _ 1)

s=q"" =1, t=g¢q a=q B=gq q

It follows that 4m > n — 3.

Theorem 7.69. (a) Let R = {m1,ma,..., 7}, with r > 1, be a set of r disjoint
m-dimensional subspaces in PG(n,q), with n. > 2m + 1, such that, for each
i = 1,2,...,r, there is an (m + 1)-dimensional subspace containing m; and
disjoint from all m;, j # i.

(b) Assume that, for each i, the union of these (m + 1)-dimensional subspaces con-
taining m; and disjoint from all wj, j # i, contains an (n — m — 1)-dimensional
space ;.

Then the following hold when |R| = 1 + ¢("+1)/2

(i) the set R is an SPG-regulus satisfying the polar property;
(ii) the r subspaces T; form an SPG-regulus R* satisfying the polar property in the
dual space of PG(n, q).
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Theorem 7.70. Let

@R = {m,mo,...,m}, with r > 1, be an SPG-regulus satisfying the po-
lar property, with 71, Ta, . . ., 7 all m-dimensional subspaces of PG(n, q) and
=14 gnrh/2,

(b) 7; be the tangent (n — m — 1)-space of R at m;;

(c) the tangent (n —m — 1)-spaces 11, T2, . .., Ts have a PG(n —2m —2,q) = win
common;

(@) {71, 72, ..., 7s} be a set of disjoint m-dimensional subspaces covering the same
point set as Ty, T, ..., Ts.

Then

R = (RU{r1,m2 ..., ws )\{m1, 72, ..., s}

is also an SPG-regulus satisfying the polar property, and is said to be derived from
R.

The relation between m-systems and SPG-reguli is given by the following theo-
rem.

Theorem 7.71. An m-system M of a polar space S in PG(N, q) is an SPG-regulus
in the following cases:

HS=&2n+1,9) CcPG2n+1,q), n > 0;
(i) S = Want1(q) C PG(2n +1,q), n > 0;
(i) S = U(2n, ¢*) C PG(2n,¢?), n > 0.

Remark 7.72. It follows from Section 7.7 that the m-systems in Theorem 7.71 are
the only ones which are also SPG-reguli.

7.14 Small cases

Theorem 7.73. (i) Up to isomorphism, the polar space W5(2) admits a unique
1-system and a unique spread. Hence each symplectic 2-spread of PG(5,2),
that is, each 2-spread whose elements are self-polar for some null polarity, is
regular.

(i) Up to isomorphism, the polar space Wr(2) admits a unique 1-system, a unique
2-system and a unique spread. Hence all symplectic 3-spreads of PG(7,2) are
regular.

(iii) The polar space Wy(2) admits no 1-systems and no 2-systems. Up to isomor-
phism Wy(2) admits exactly two spreads and ten 3-systems.

Theorem 7.74. The only cases that a k-cap K is an SPG-regulus are as follows:

(1) Kisa (q+ 2)-arc of PG(2,q), qeven;
(ii) K is an ovoid of PG(3, q);
(iii) K is the projectively unique 11-cap in PG(4, 3);
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(iv) KC is the projectively unique 56-cap in PG(5, 3);
(v) K is aparticular 78-cap in PG(5, 4), an example of which has been constructed,
(vi) IC is a particular 430-cap in PG(6, 4), whose existence is unknown.

Remark 7.75. The semi-partial geometries corresponding to the SPG-reguli (i)—(vi)
have respective parameters as follows:

(q_17Q+1711q+2)7 (q_lqualqu_Q)a (27107172)3
(2,55,1,20), (3,77,1,14), (3,429,1,110).

Theorem 7.76. There exists an SPG-regulus consisting of 21 lines in PG(5, 3), with
o =2, 0 =0. Its partial geometry has parameters s = 8, t = 20, o = 2.

7.15 Notes and references

Section 7.1

For the size of orbits of subspaces under the symplectic group, see Wan [395]. In
particular these give |G(W,,(q))|-

For similar results on orbits under the pseudo-symplectic group, see Liu and Wan
[208], Pless [265, 266].

Sections 7.2-7.5

Apart from the references in Tables 7.3 and 7.4, see also the surveys by Thas [336,
341, 312, 323] and De Beule, Klein and Metsch [82]. The non-existence of spreads
in/(4,4) is a computer result of A. E. Brouwer (unpublished, 1981).

Section 7.6

Partial m-systems and m-systems were introduced by Shult and Thas [289], who
proved Theorems 7.7 and 7.9.

Section 7.7

This is taken from Shult and Thas [289]. For rank » = 2, the concept of a k-ovoid
was introduced by Thas [333]. Results on k-ovoids are also contained in Bamberg,
Kelly, Law and Penttila [13], and Bamberg, Law, Penttila [14].

Section 7.8

Theorem 7.20 is due to Blokhuis and Moorhouse [33] and Moorhouse [239]. They
rely on a classical result of Hamada [149] on the rank of the incidence matrix of
points and m-dimensional subspaces of a PG(n, ¢); see also Goethals and Delsarte
[143], MacWilliams and Mann [221], and Smith [294]. From [33] and [239], Shult
and Thas [291] obtain Theorems 7.22, 7.23 and 7.24. Theorem 7.25 is due to Sin
[292].
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Section 7.9

This is taken from Shult and Thas [289, 290]; they also show that partial m-systems
can be constructed from m-systems.

Section 7.10

The relation between strongly regular graphs, linear projective two-weight codes and
sets of points in PG(n, ¢) with two intersection numbers with respect to hyperplanes
is due to Delsarte [115]; see also Calderbank and Kantor [62]. Theorem 7.45 is due
to Hamilton and Mathon [150]. Theorems 7.47 to 7.49 and Examples 7.50 are taken
from Hamilton and Quinn [153].

Section 7.11

Theorem 7.51 and Remarks 1, 4, 5 of 7.52 are due to Thas [316, 326]. Remark
2 of 7.52 is taken from Blokhuis, Hamilton and Wilbrink [32] and Remark 3 of
7.52 from Hamilton and Penttila [152]. Theorems 7.53 and 7.55, Corollary 7.56 and
Remarks 7.54 and 7.57 are due to Hamilton and Quinn [153]. The description of
the construction of cousins of spreads of Wy, —3(q) follows that given in Kantor’s
Kerdock set papers [192, 193].

Material related to Theorem 7.51 is also contained in Maschietti [224, 225], and
Bader and Lunardon [6].

Section 7.12

BLT-sets were introduced by Bader, Lunardon and Thas [7]; the name is due to Kan-
tor [195]. In [7] it is shown that, from any flock of a cone PPy with vertex P in
PG(3,q), ¢ odd, that is, a partition of PP;\{P} into ¢ disjoint conics, ¢ derived
flocks can be constructed. Crucial to the construction is a dual BLT-set coming from
the given flock. BLT-sets and flocks gave rise to many new translation planes and
generalised quadrangles. In Shult and Thas [290], BLT-sets of m-dimensional sub-
spaces were defined; BLT-sets of lines in polar spaces of rank 2 were previously
introduced by Knarr [198]. In a paper on characterisations of generalised quadran-
gles of order (s, s + 2), De Soete and Thas [101] introduced dual BLT-sets, which
they called {0, 2}-sets, in generalised quadrangles of order (s, ¢), but their definition
is conceptually distinct from the definition given here.

For a description of the Hill’s 56-cap, see Hill [166] or Section 19.3 of FPSOTD.
For disjoint ovoids of (3, ¢?), see Hamilton and Quinn [153]. For m = 1, Theorem
7.60 is due to Thas: the proof is contained in Knarr [198]. For m > 1, the proof is
in Shult and Thas [290]. For the relationships between BLT-sets, projective planes
and ovoids, see Bader, Lunardon and Thas [7], Kantor [195], Thas, K. Thas and Van
Maldeghem [352], and Payne and Thas [260]; many results on BLT-sets of lines of
£(5,q), q odd, are contained in Thas [345]. Definition 7.62 and the list of m-systems,
having the BLT-property, which yield a generalised quadrangle, is due to Shult and
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Thas [290]. The uniqueness of the 1-system of lines of Ws(q) satisfying the BLT-
property, with ¢ odd, is due to Thas [343]; the uniqueness of the 1-system of lines
of H(5, ¢), g odd, is due to Shult and Thas [290]; the uniqueness of the 1-system of
lines of £(7, q) is due to Luyckx and Thas [216, 220].

Section 7.13

Definition 7.63 and Examples 7.64 are taken from Thas [329], and Theorem 7.65 is
taken from Thas [342]. The results on SPG-reguli satisfying the polar property are
also taken from [329]. Theorems 7.69 and 7.70 are due to De Winter and Thas [107],
and Theorem 7.71 to Luyckx [214].

Section 7.14

Theorem 7.73 is due to Hamilton and Mathon [150] and Theorem 7.74 is taken from
Cameron [63], Calderbank [61], Coxeter [80], Hill [166, 167], Pellegrino [262], and
Tzanakis and Wolfskill [387]. Finally, Theorem 7.76 is taken from De Clerck, De-
lanote, Hamilton and Mathon [90].

Other papers relevant to this chapter are Bamberg and Penttila [15], Bloemen,
Thas and Van Maldeghem [30], Cardinali, Lunardon, Polverino and Trombetti [67],
Cardinali and Trombetti [68], De Winter and Thas [106], Luyckx and Thas [215,
217, 219, 218, 220], Lunardon and Polverino [212], Offer [243, 244, 245], Offer,
K. Thas and Van Maldeghem [246], Offer and Van Maldeghem [247], O’Keefe and
Thas [250], and Thas [338, 341, 344]. In particular, related material is contained in
Thas [342] and Thas, K. Thas and Van Maldeghem [352], where SPG-systems are
introduced and eggs are studied in great detail.
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(0, ov)-geometries, 272-299 singular space, 70
(k;r, s;n, q)-set, 305 tangent cone at a point, 78
complete, 305 m-system, 367-383
maximum, 305
10-arc in PG(4,9), 334 amended weight, 311
B-line, 42 amended weight distribution, 311
S-line, 343 arcs, 305-307
S-plane, 355 Arf invariant of quadric, 3
S-quadric, 355

BLT-set, 378-379
broken grid, 257

3"1;"2
maximal space, 208
maximal subspace, 208
Vi
conic plane, 149
contact hyperplane, 152

nucleus, 152 unisecant, 320
tangent line, 150 cap-code, 308

tangent plane, 151 caps, 307-325
m-number, 168 ;

spectrum, 168

cap
bisecant, 320
external line, 320
tangent, 320

character of quadric, 12-17
characterisation of quadric, 42-53

I"-arc, 154 code

I'-plane, 154 extension, 309

I-tangent, 154 projective, 308

i-secant, 42 residual, 309

k-arc, 306 codes, 307-314

k-cap, 305 equivalent, 308

krn,q, 69 cone, 3
non-singular, 70 conic, 2
plane sections, 70 conic plane of V3, 149
polar hyperplane, 78 conic plane of V,,, 153
regular, 73 conjugate points, 8
residual, 82 contact hyperplane of V3, 152
singular, 70 coordinates
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Grassmann, 99—-107 triad of points, 228
Pliicker, 99-107 generator of quadric, 13-19
cousin of a spread, 377 generators
cubic surface, 249 equivalent, 18
curve Grassmann coordinates, 99—-107
normal rational, 326 elementary quadratic relations, 104
rational, 326 Grassmann space
embedded, 137
discriminant of quadric, 3 of index r, 123
double-six, 249 Grassmann spaces
collineation, 124
Eckardt point, 249 isomorphism, 124
elation generalised quadrangle, 263 Grassmann variety, 107-141
elliptic quadric, 1 fundamental polarity, 110
extension of a code, 309 maximal space, 113
external space, 40 Grassmannian, 107
Greek space, 114
generalised hexagon, 55 Greek system, 114
generalised homology, 264 grid, 225
generalised quadrangle, 223, 226-232, group
253-266 orthogonal, 21-29
3-regular point, 254 unitary, 63
anti-regular pair, 253
anti-regular point, 253 Hermitian cap, 198
centre of triad, 228 Hermitian form, 57
characterisation, 253-266 Hermitian variety, 57-96
classical, 226 characterisation, 69-80
closure of pair, 253 conjugate points, 60
co-regular point, 253 conjugate spaces, 60
collinear points, 227 generator, 64
concurrent lines, 227 number, 57
elation, 263 on PG(1,q), 58
grid, 225 on PG(2,q), 58
hyperbolic line, 228 on PG(3,q), 58
linear variety, 260 on PG(4, q), 58
Moufang, 262-266 on PG(5, q), 58
order of, 223 polar hyperplane, 60
orthogonal points, 228 polarity, 58-63
ovoid, 253 projective index, 64
parameters, 223 section by subspace, 65-69
perpendicular points, 228 sub-generator, 64
proper subquadrangle, 256 tangent, 58
quadrilateral, 262 tangent hyperplane, 58-63
regular point, 253 tangent space, 60
semi-regular point, 260 Hermitian Veronesean, 196-201
span of point pair, 228 r-representation, 197
spread, 254 elliptic space, 198
subquadrangle, 256 quotient, 199

trace of point pair, 228 Higman’s inequality, 229



hyperbolic quadric, 1
hyperplane

polar, 8

tangent, 8
hypersurface

for an arc, 338

internal space, 40
invariant of a quadric, 3-7

Klein quadric, 107
Krein inequalities, 267

Latin space, 114
Latin system, 114
linear space (LS), 122

Main Conjecture for Arcs, 306

matroid, 262

maximal arc, 376-378

maximal space of Sy ;n,, 208

maximal subspace of Sy, ;n,, 208

mixed partitions, 221

Moufang generalised quadrangle, 262-266

net, 258

non-degenerate quadratic form, 1

non-nuclear space, 41

non-singular quadric, 1

normal rational curve, 326
tangent, 326

nuclear space, 41

nucleus of V3, 152

nucleus of quadric, 8

number of quadrics, 21-23

orthogonal group, 21-29
ovoid, 43, 364-367
ovoid number, 364
ovoidal embedding, 200

parabolic quadric, 1
parabolic sections of quadric, 39-42
partial m-system, 367
partial geometries, 266-299
partial geometry
projective, 269
partial linear space, 121
collinear points, 122
covering, 122

Index

irreducible, 122
maximal subspace, 122
proper, 122
subspace, 122
partial ovoid, 367
partial spread, 367
Pliicker coordinates, 99—-107
polar hyperplane, 8
polar space, 223-226, 363-383
generator, 363
ovoid number, 364
projective index, 223
rank, 223
rank 3, 225
subspace, 223
polarity of quadric, 9, 29-31
Principle of Triality, 53-54
projection of quadric
characterisation, 80-96
projective code, 308
projective index
of Hermitian variety, 64
of quadric, 13-14
projective partial geometry, 269
projective Shult space, 83, 232
projective space
homomorphism, 137
proper partial linear space
connected, 122
proper partial linear space (PPLS), 122

quadratic form, 1
non-degenerate, 1

quadratic set, 43
generator, 44
perspective, 43
projective index, 45
singular, 43
singular point, 43
sub-generator, 45
tangent space, 43
Witt index, 45

quadric
Arf invariant, 3
character, 12-17
characterisation, 42-53
conjugate points, 8
discriminant, 3
elliptic, 1
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external space, 40 adjacent points, 225, 233
generator, 13-19 ambient space, 232
group, 21-29 classical, 249
hyperbolic, 1 collar, 238
internal space, 40 collinear points, 225
invariant, 3-7 lax embedding, 247-253
non-nuclear space, 41 linear closure, 241
non-singular, 1 linearly closed subset, 241
nuclear space, 41 non-degenerate, 83, 225
nucleus, 8 polar, 238
parabolic, 1 projective, 83, 232
parabolic sections, 39—42 projective index, 225
polarity, 9, 29-31 radical, 225
projective index, 13-14 rank, 225
sections, 31-39 secant, 235
stereographic projection, 17-19 subspace, 225
Study, 53-54 tangent, 235
subspaces, 19-21 tangent hyperplane, 237
tangent, 7 tangent set, 235
tangent hyperplane, 8 space
tangent space, 8, 10 polar, 223-226, 363-383
Witt index, 13 Shult, 82-83, 88-89, 225-226, 232-253
quadric Veronesean, 143-196 SPG-regulus, 380-382
quadrics spread, 364-367
number, 21-23 cousin, 377
number of distinct, 2 Steiner surface, 220
stereographic projection, 17-19
rational curve, 326 strongly regular graph, 369, 374-376
residual code, 309 Study quadric, 53-54
subspaces on a quadric, 19-21
sections of quadric, 31-39 support of a point, 83
Segre product, 201
Segre variety, 201-219 tangent hyperplane, 8, 315
regular spread, 214 tangent line of V3, 150
regulus, 212 tangent plane of Vs, 151
spread, 212 tangent space of quadric, 10
semi-ovaloid, 245-247 tangent to quadric, 7
semi-partial geometries, 272-299 trace, 4
semi-quadratic set, 245 Triality, 53-55
radical, 245 trihedral pair, 249
singular point, 245 trilinear correspondence, 54
semi-quadric, 87 tritangent plane, 249
set of type (0,1,2,q + 1), 51 twisted cubic, 332
non-singular space, 51 two-weight code, 369, 374-376
singular space, 51
set of type (r1,72,...,7s), 42 unitary group, 63
Shult space, 82-83, 88-89, 225-226,
232-253 variety

(fully) embedded, 232 Grassmann, 107-141



Hermitian, 57-96

Segre, 201-219

Veronese, 143-196
Veblen—Pasch axiom, 259, 271
Veronese variety, 143—-196

tangent line, 150

tangent plane, 150
Veronesean

characterisation, 153-196

conic plane, 153

Hermitian, 196-201
Veronesean cap, 155

dimension, 155
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Veronesean of quadrics, 143
Veronesean set of subspaces, 166
hyperovoidal, 166
ovoidal, 166
proper, 166

weight

distribution, 310
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weight of an r-space, 140
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