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PREFACE

The present monograph is the outcome of a research project concerning the
analysis of random walks and queueing systems with a two-dimensional state space.
It started around 1978. At that time only a few studies concerning such models
were available in literature, and a general approach did not yet exist. The authors
have succeeded in developing an analytic technique which seems to be very promising
for the analysis of a large class of two-dimensional models, and the numerical evalu-
ation of the analytic results so obtained can be effectuated rather easily.

The authors are very much indebted to F.M. Elbertsen for his careful reading
of the manuscript and his contributions to the numerical calculations. Many thanks
are also due to P. van de Castel and G.J.K. Regterschot for their assistance in some
of the calculations in part IV, and to Mrs. Jacqueline Vermey for her help in typing
the manuscript.

Utrecht, 1982 J.W. Cohen
0.J. Boxma
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NOTE ON NOTATIONS AND REFERENCING

Throughout the text, all symbols indicating stochastic variables are underlined.
The symbol “:=" stands for the defining equality sign.

References to formulas are given according to the following rule. A reference
to, say, relation (3.1) (the first numbered relation of section 3) in chapter 2 of part
I is denoted by (3.1) in that chapter, by (2.3.1) in another chapter of part I and by

(1.2.3.1) in another part. A similar rule applies for references to sections, theorems,
etc.
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GENERAL INTRODUCTION

At present much experience is available concerning the ap-
propriate mathematical techniques for a fruitful analysis of
Markov processes with a one—dimensional state space. The
literature on the basic models of queueing, inventory and
reliability theory provides a large variety of the applications
of these techniques, and the results obtained have proved their
usefulness in engineering and management.

The situation is rather different for Markov processes with
a two-dimensional state space. The development of techniques
for the mathematical analysis of such processes has been
started fairly recently. The purpose of the present monograph
is to contribute to the development of such analytical techniques.

To sketch the contours of the type of problems encountered in the
analysis of Markov processes with a two-dimensional state space
consider such a process with a discrete time parameter n, say,
and with state space the set of lattice points {0,1,2,...} x
{0,1,2,...} in the first quadrant of R,. Denote the stochastic
process Dby {(in’Y-n)’ n=20,1,2,...} and its initial position

by (x,y), i.e.

(1) _)EO = X, zo A

x and y being non-negative integers. The process 1s assumed to
be a Markov process,hence all its finite-dimensional joint dis-

tributions can be determined if the function

™8

b Y
L n n n _ -
(2) 4 (r,pl,pQ).- r E{p1 P, [xO =Xy ¥g 7 y}

n=0

is known for |p11 <1, [p2| <1, |r| <1.
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In (2) X, and y, are bgth nonnegative, integer valued stochastic
variables, hence E{pl—np2¥n|50 =z x, Yo 2 y} is for every fixed Py
with |p2| < 1 a regular function of p,; in [pll < 1 which is con-
tinuous in |p1| < 1, similarly with p, and p, interchanged.
Obviously E{pl_np2 n]§O =X, ¥ 7 y} is bounded by one. Conse-
quently, it follows that for fixed |r| < 1 the function

¢xy (r,pl,pz) is:

(3) i. for fixed p, with |p2| < 1 regular in |P1| <1,

continuous in |p,| <13

ii. for fixed p, with |p,| <1 regular in |p,| <1,

continuous in |p,| < 1.

Naxt to these conditions the function @xy(r,pl,pQ) has to
satisfy one or more functional relations. These relations stem

from the stochastic structure and the sample function properties

of the process {(in,xn), nao,l,...}. As an important example
consider the case that for n = 0,1,2,...,
(4) = Ix *g0"
Zne1 T HEpTEpd o
= [ +
Yner 7 [Zptnglss

where {én’ﬂn}’ n=20,1,2,..., is a sequence of independent,
identically distributed stochastic vectors with integer valued
components and §n+1 =9, ﬂn+1 2 0 with probability one. Then

¢Xv(r,p1,p2) has to satisfy the functional relation

(5) x+1 _y+1

Z(P,Pl,PQ)dDXy(r,pl,Pz) =Py Py +I‘(1—p1)(1—p2)‘Y(D,D)(I)Xy(r,o,

- v(l—Pz)W(p1=U)¢Xy(r,p1,0) - P(l—pl)W(O,p2)¢xy(r,0,pz),

h |I‘| <13|P1| <13|p2| <1,
wnere
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g 1 n +i

(7) Z2(r,p spy): = PP, - rW(pl,pz).

The function Z(r,pl,pz) is the so called kernel of the
functional equation (5). Note that it is determined by the
probabilistic structure of the one-step displacement of the
random walk from out an interior point of the state-space.

The analysis of Z(r,pl,pz) is the starting point for the
determination of the function @Xy(r,pl,pQ) satisfying (3)

and (5). The conditions (3)i and ii imply that ¢xy(r,p1,p2),

lpyl <1, lp,| <1, |r| <1 is finite, so that for (q,,q,) a zero

of the kernel, i.e.
(8) Z(PaqlsQQ) = 0, |qil < 1,|q2| <1,|r] <1,
it is seen that the condition (5) implies that

(9) r(l—qz)W(ql,O)¢Xy(r,q1,0) + r(l—ql)W(O,q2)¢xy(r,0,q2)

x+1 +1
a,”

= g + r‘(l-ql)(1—q2)\l’(0,0)®xy(r,0,0).

1

Consequently, every zero of the kernel Z(r,pl,pQ) in the
domain of its definition leads to the condition (3) for the
unknown functions @xy(r,pl,o) and ¢xy(r,0,p2). Next to

this condition the conditions (3) imply that for fixed r with

r| < 1:
(10) i. ®xy(r,p1,0) should be regular in 19 for |p1| <1

and continuous in p; for [p,| <13

ii. ¢xy(r,0,p2) should be regular in P, for |p2| <1

and continuous in p, for lp2| < 1.
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The structure of the problem formulated by (9) and (10) re-
sembles in some aspects that of a Riemann type boundary value
problem, which may be characterized as follows.

Let L be a given smooth, finite contour such that its interior
L* and its exterior L~ both are simply connected domains in the
complex z-plane. The function Q(2z) should satisfy the following

conditions:
(11) i. Q(z) should be regular for z € L+, continuous for

z € LU L+;

ii. Q(z) should be regular for z € L , continuous for
z € L UL, with prescribed behaviour for |z| -+ =,

assuming that z @ « € L—;

(12) at)et(H+b()” () = c(t), t € L,

where
ot (t): = 1im Qz), Q@7(t):= lim Q(z),
z>t€L z+t€L
z€L z€L

and a(.) , b(.), <(.) are known functions defined on L.

The resemblance between the problems formulated by (9), (10) and
by (11) and (12) is the determination of regular functions in
prescribed domains; these functions, moreover, satisfying a
linear relation.

Indeed, the problem formulated by (9), (10) can be transformed
into a boundary value problem. The basic idea is the follcwing.
It is shown that a function g(r,s) exists such that for fixed

r with |r| <1 and every s with |s| = 1, (p,»p,) with
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(13) Pyt = g(r,s)s,

p2: = g(r’,s)s_l,

is a zero of the kernel, cf.(8).

For these functions (13) the following boundary value problem
is considered.

Determine a smooth contour L(r) in the z-plane and a real

function A(r,z), z € L(r) such that

(14) i. g(r,eiA(P’Z))eiX(P’Z)

is the boundary value of a
function pl(r,z) which is regular for z € L+(r) and con-

tinuous for z € L(r) U L+(P);

lA(P’Z))e-lA(P’Z) is the boundary value of a

ii. g(r,e
function pz(r,z) which is regular for z € L (r) and con-
tinuous for z € L{r) V L (r).

If this boundary value problem possesses a solution—and for

rather mild conditions it does—then (pl,p2) with: for

z € L(I‘):
(15) pl = Pl(raZ)’ PQ = Pz(raZ)a

is a zero of the kernel (8). Consequently, the relation (9)

should hold with
(16) q = pl(r,z), q, = pQ(r,z), z € L(r).

If it can be shown that ®xy(r,p1(r,z),0) is regular for
z € L+(r), continuous for z € L(r) U L+(r), and that
¢xy(r,0,p2(r,z)) is regular for z € L (r), continuous for
z € L(r) Y L (r) then the determination of these functions

has been reduced to a Riemann type boundary value problem.

The above described approach of transforming the problem
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formulated by (9)and (10) into a Riemann type boundary value
problem is the result of a number of researches initiated

in the studies of Fayolle and Iasnogorodski, see [18], [20]

and [21]. In the problems studied by them the kernel
Z(r,pl,pz) has a rather simple structure, viz. an algebraic
form of the second degree in each of its variables Py and p,.
This simple algebraic structure facilitates the study of the
singularities of the zeros of the kernel, and once the
location of these singularities is known the problem is

ripe for a formulation as a Riemann-Hilbert problem as Fayolle
and Iasnogorodski have shown. They considered queueing

models with the basic distributions being negative exponential,
this leads to simple kernels.

The fact that the random walk modeling the imbedded Markov
chain of the queue length at the departure epochs of an M/G/1
queueing model can be completely analyzed without any
detailed specification of the service time distribution,
and the results obtained by Fayolle and Iasnogorodski gave
rise to the conjecture that for a type of kernel Z(P,pl,pz)
reflecting the Poisson character of the arrival process in
the M/G/1 model, the problem formulated by (9) and (10)
can be reduced to a Riemann(-Hilbert) type boundary value
problem without knowing explicitly the kernel. This conjecture
turned out to be correct, cf.[15].

The kernel Z(r,p,,p,), Ip1| <1, |p2| <1, [r| <1 1is

called a Poisson kernel if
“1n Z(r,p,sPy) = PyPy ~ rB{X(l—rlpl - r,p)}s
with
A>0,1r

20, r, 20, r, +r, 81,
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and

B(p) := J et dB(t), Re p 2 0,

B(.) being a {(not further specified) distribution function
with support contained in (0,x).

The case with a Poisson kernel represents a special
case of a homogeneous random walk on the lattice in the
first quadrant of RQ, which is continuous (skipfree ) to
the West, to the South-West and to the South. By this it is

meant that, cf.(4),

> -
(18) Kool = Xp 1,
Ine1 7 Ip Z- 5
{for every nm 0,1,2,..., i.e. per one-step transition the

displacement in the horizontal as well as in the vertical
direction is at least equal to - 1.

The problem formulated by (9) and (10) is characteristic
for these random walks, and the approach sketched above to
transform (9) and (10) into a Riemann or a Riemann-Hilbert
boundary value problem seems to provide a general technique
for their analysis. It will constitute a main subject of the

present monograph.

The monograph consists of four parts. Part I reviews
parts of the theory of Riemann(-Hilbert) type boundary
value problems, and further some concepts and theorems of
the theory of complex functions and of conformal mappings.
The books by Gakhov [6] and Muskhelishvili [7] are at
present the most importantand elaborate texts on boundary

value problems;they contain the sedimentof boundary value prob-
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lems as encountered in mathematical physics. The books by
Evgrafoy [1], Titchmarsh [2], Nehari {3], Golusin [8] and
Gaier [9] have been used as reference texts for the theory

of complex functions and conformal mappings.

Part II is exclusively devoted to the analysis of the
random walk {(ﬁn,xn), n=20,1,2,...} as defined by (4). The
first chapter of part II formulates a number of concepts for
this random walk.

Concerning W(pl,p2), ef.(6), a number of assumptions
has been introduced to guarantee that the random walk is
aperiodic and that its state space is irreducible. Further
assumptions concern the zeros of W(pl,pQ), the most important
one being that ¥(0,0) is assumed to be positive. The case
¥(0,0) @ 0 is discussed in sections II.3.10,...,12.

Chapter II.2 discusses the symmetric case, i.e. &
and Np» cf. below (4), are exchangeable variables. The
separation of the discussion of this case from that of the
general case, to be treated in chapter II1.3, has several tech-
nical advantages, the main one being the fact that the contour
L(r) (see above (14)) is then a circle, while X(r,z) is
then determindd as the solution of Theodorsen's integral equa-
tion.

The analysis of the symmetric random walk as presented
in chapter II.2 shows clearly all aspects which play an es-
sential role in the solution of the problem formulated by
(9) and (10) for the more general random walk defined by (4),
The function ¢xy(r,p1,p2), cf.(2), is explicitly determined,
and it may serve as the starting point for the investigation
of probabilistic aspects of the random walk. Because in the

present monograph our main interest concerns the technique of
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the analysis of problems of the type (9), (10), only a few

of these aspects have been discussed, e.g. the return time
distribution of the zero state. Also the behaviour of
E{Pl_nPQ n|50 B x,y, B Y} for n » » has been considered only
for the case that the random walk is positive recurrent, a
detailed investigation of the general case would require a
rather elaborate asymptotic analysis, it has been omitted.
For the case of a Poisson kernel the complete asymptotic ana-
lysis has been treated by Blanc [16].

The generating function of the stationary joint distri-
bution, which exists if E{gn} <0, E{gn} < 0, has been derived,
once as a limiting result, once by starting directly from the
relevant problem formulation; with some minor but interesting
modifications the solution proceeds along the same lines as
that for the time dependent case.

In chapter II.3 the analysis of the general random walk,
skipfree to the West, South-West and South is discussed. The
approach is not essentially different from that in chapter
II.2. However, the question concerning the existence of
the contour L(r) and the functions A(r,z), pl(r,z), DQ(r,z) cf.(14)
and (15), is not so easily answered as in the symmetrié case.

A critical point is the character of the curves defined by (13)
for s traversing the unit circle. These curves can have singula-
rities and it is an open question whether they always bound
simply connected domains. To limit the number of possibilities
some assumptions on W(pl,pQ) have been introduced so that the
existence of L(r), A(r,z), pl(r,z) and p2(r,z) can be proved.
Further research is here, however, needed.

The determination of the contour L(r) and the function
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A(r,z) requires the solution of two simultaneous integral
equations, these integral equations befng a generalisation of
Thecdorsen's integral equation for the symmetric case. Their
numerical solution is investigated in part IV.

In chapter II.4 the analysis of the random walk with
a Poisson kernel, cf. (17), is exposed. Although this case
can be discussed along the lines of chapter II.3 and also via
a simple transformation, cf. remark II.4%.1.2, along those of
chapter II.2, another approach which is based on the special
structure of the Poisson kernel is presented, see also [15].
The analysis of the random walk with a Poisson kernel can be
less global than that for the general kernel, cf. chapters
II.2 and II.3, because the singularities, in casu the branch
points, of the zeros (pl,pz) of the kernel (17) can be ex-
plicitly located without having detailed knowledge about the
distribution B(.). The final solution contains a function
which has to be determined as the solution of Theodorsen's
integral equation for conformal mappings. The results obtained
are extremely promising for the analysis of a large class of
two-dimensional queueing models with Poissonian arrival
streams, the more so because the numerical analysis invelved
in evaluating the characteristic quantities can be easily

carried out, see chapter IV.1.

Part III is concerned with the analysis of four different
queueing models with a two-dimensional state space. Although
there is obviously a close connection with the two-dimensional
random walk the four problems to be discussed differ in
several aspects from those in part II. The main difference

is the fact that the kernels occurring in these problems
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are specified in greater detail than those in part II. This
implies that the analysis can be less global.

The first model, to be discussed in chapter III.1,
concerns "Two queues in parallel”; it is characterized as
follows. Customers arrive according to a Poisson process at
a service facility consisting of two servers, if an arriving
customer can not be served immediately he enters the queue
in front of server one or that in front of server two, de-
pending on which one is the shorter. If both queues have an
equal number of waiting customers one of the queues is chosen
with probability 3. The service times provided by both ser-
vers are independent and negative exponentially distributed
with the same parameter.

For this model the kernel Z(r,pl,pz) is a polynomial
of the second degree in each of its variables Py and Py

A fairly complete mathematical analysis of this model
has been given by J. Groeneveld in 1959, unfertunately it has
never been published. Groeneveld applied the "uniformi-
sation" technique to describe the zeros of the kernel, and
solved the functional equation (9) by using elliptic funections.
Kingman [17] in 1961 and Flatto and McKean [19] in 1977 con-
sidered the same model but investigated only the stationary
case. Their analysis is, however, in principle the same as
that applied by Groeneveld. The approach by "uniformisation"
requires explicit knowledge of the kernel Z(r,pl,pz), more-
over it should be of a fairly simple algebraic structure.

No information is at present available on the possibility
of generalisation of this approach for the case that the

kernel is not explicitly known.
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Fayolle and Iasnogorodski show in their basic studies
[20], [21] that the analysis of the "Two queues in parallel"
model can be reduced to that of a Riemann-Hilbert boundary
value problem, actually it can be formulated as two Dirich-
let problems. A very detailed analysis is possible, and the
exposure in chapter III.1, which is based on tha ideas des-
cribed in [18], may be regarded as a characteristic example
of the analysis of cases with a sufficiently simple kernel.

Actually Fayolle and Tasnogorodski studied the asymmet-
rical "Two queues in parallel" model, i.e. with unequal ser-
vice rates. Theresulting boundary value problem is not of a
standard type and interesting research remains to be done here.

The "Alternating service discipline" model, to be dis-
cussed in chapter III.2, is an excellent example of a queueing
model with a Poisson kernel, see for another example the
study of Blanc [16]. It has been incorporated also because
it is a suitable model for the investigation of various as-
pects related to the numerical evaluation of the analytical
results for models with a Poisson kernel, see for this chap-
ter IV.1.

The "Alternating service discipline" model has been
originally investigated by Eisenberg [36] whose approach by
transforming the problem into a singular integral equation
is important. Unfortunately the analysis in [36] is somewhat
incomplete.

Because boundary value problems of the Riemann~Hilbert
type can be frequently transformed into singular integral
equations, ¢f, [6], [7] it is actwally of great interest to
investigate the possibility of formulating directly the in-

herent problem of the analysis of a two-dimensional random
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walk as a singular integral equation, or a system of such
equations; the more so in the light of the recent develop-
ments in the theory of singular integral equations, cf. [u],
(51, [37].

In chapter III.3 the "coupled processor" model is ana-
lyzed. It consistsof twoM/G/1 queueing systems; the servers
act independently of each other as longas both are busy, but
if one server becomes idle the other server changes its ser-
vice speed. When the situation with both servers busy
returns the service speeds are switched back to normal. The
model stems from a computer performance analysis and has
for the first time been studied by Fayolle and Iasnogorodski
[18] for the case of negative exponential service time dis-
tributions, a special case has been also investigated in [27].
The stochastic process studied in [18] is that described by
the queue lengths in front of each server, and the inherent
problem is reduced to a Riemann-Hilbert problem along the
same lines as discussed in chapter IIT.1.

In the present study the stochastic process characterized
by the workloads of both servers is investigated, i.e. the

state space is the first quadrant in R This approach leads

9
to a Wiener-Hopf type of boundary value problem instead of

one of the Riemann-Hilbert type. Because in the present mono-
graph our main interest is directed towards the development

of analytic techniques for random walks with a two-dimensional
state space we have only investigated the stationary process,
assuming that it exists. It is surprising that the conditions

which guarantee the existence of a stationary distribution are

intuitively not so easy to understand.
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The advantage of studying the workloads instead of the
queue lengths is that there is less need to assume that the
service times are negative exponentially distributed, for the
present analysis they need no specification.

A similar effect occurs in analyzing the M/G/2 queueing
model by means of the workloads, ¢f. chapter III.4 (here again
the Wiener-Hopf technique is the essential tool). It may be
conjectured that in general a state space description by means
of the workloads instead of that by the queue lengths, if
possible, leads to a simpler and more general analysis, in
particular if the arrival processes are Poissonian.

Another noticeable aspect in the study of the models in
chapters III.3 and III.4 is the analysis of the kernels by
using the properties of the "busy period" distribution of the
M/G /1 queueing model.

In parts II and III it has been shown that the analysis
of "two-dimensional"” random walk and queueing models leads
to boundary value problems. The applicability of the analy-
tical results obtained by solving these boundary value
problems depends on the possibility to evaluate these results
numerically. Such a numerical evaluation presents several
aspects which are usually not encountered in random walk
and queueing analysis. Therefore we have devoted a separate
part of the present monograph to the numerical analysis of
some of the most crucial points. A very profound discussion
of these aspects is not the immediate goal, the main purpose
is to investigate whether a numerical evaluation is possible
at alljdetailed analysis of perhaps subtle points is subject

of future research.
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The numerical analysis is concentrated on the "Alter-
nating service discipline" model, because this model can be
analyzed along the lines of chapter IT.3 as well as along
those of chapter II.4 and chapter III.2.

In chapter IV.1 the numerical analysis is based on the
results of chapter III.2, i.e.for a random walk with a
Poisson kernel. The basic problem is here the numerical solu-
tion of Theodorsen's integral equation. This problem has
been extensively discussed in the literature on the numerical
evaluation of conformal mappings, see Gaier [9]. The techniques
described in [9] could be successfully applied to the present case,

The solution of Theodorsen's integral equation is needed
in chapter II.4 to determine a conformal mapping. Various tech-
niques have been investigated to approximate such mappings.
Some of them have been discussed in section IV.1.4. and the
resulting approximations are numerically compared with the
exact approach. The approximations so obtained appear to
be very satisfactory, in particular the "nearly circular" ap-
proximation yields excellent results without much computational

effort.

Chapter IV.1 closes with an asymptotic analysis of the
results of chapter III.2 for the case that the arrival rate
of one of the two types of customers is small compared to that
of the other type. The numerical results obtained are very good
and show an unexpected robustness of theasymptotic approxi-~
mation.

In chapter IV.2 the discussion starts from the results
described in chapter II.3 by considering the "Alternating

service model" as a random walk. The analysis requires
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here the numerical solution of a pair of simultaneous integral
equations, viz. for the determination of the contour L and the
unknown real function A(.) defined on L. An iterative scheme
similar to that for the Theodorsen integral equation has been
used and the final results are on the whole satisfying, but
depending on the chosen values of the parameters subtle numer-
ical questions can arise, actually due to the numerical
integration of singular contour integrals.

The present monograph indicates c¢learly the possibili-
ties of the described and developed analytical techniques.
Many points, however, have still to be investigated and the
variety of special cases is very large; morecover the prob-
abilistic aspects and consequences of the solution obtained
have been hardly considered. A large field for further re-
search is here available. A challenging problem arises if
the condition of continuity to the West, South-West and
South, made in the analysis of part IT is dropped.

It may be concluded, however, that the developed analytic
approach is very promising for the investigation of a large
class of queueing and random walk models; models which could
before be only evaluated by the difficult and costly method

of simulation.
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I.1. SINGULAR INTEGRALS

I.1.1.  Introduction
The integral
bog
;=X o <a<g <b <w,
a

does not exist as a proper or improper Riemann integral. It
is called a singular integral and as such it will be defined

by its Cauchy principal value:

b E-e b
) E?E := lim { f §¥L tJ f?* }
a e+0  a *TE g ¥7E
(1.1) = lim { log 5= + log 25
40 t-a €
g lin { log g;g + log % }= log %E% s

e+0

here the principal value of the logarithm is chosen such that
log ¢ is real for ¢ > 0.

Next let ¢(+) be a function defined on [a,b] and integrable
in each of the intervals a €S X S £ - g, £ + ¢ €x €b for all
g > 0. The Cauchy principal value of

b

I 6(x) dx

a
is now defined by

b E-¢

b
S ¢(x)dx = lim { § ¢(x)dx + J ¢(x)dx},
a e¥0 a Et+e
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if the limit exists.
It is said that a function ¢(x) defined on [a,b] satisfies

the H&lder condition on [a,b]l if for any twe points X%, € [a,bl,
(1.2) |¢(x2)—¢(xi)|<ZA|x2—x1|u,
where A and u are positive numbers with

0 <pys<1,

A is the Hélder constant and n the H&lder index of ¢(.) on [a,b].

Theorem 1.1 Let ¢(-) satisfy on [a,b] the Hdlder condition

then the singular integral

b
fg(x)ix, co < g <E <D <o,

a X_E

exists as a Cauchy principal value integral.

Proof
? ¢(x)dx - f o (x)- tb(éj)1 v 6E) ? dx
3 x5 a x=% a X%

Because of the HOlder condition

-1
|$O=0LE) | < a [x-g M7,

so that the second integral above exists as an improper integral
if w <1, and as a proper integral if u=1; the last integral

exists as a Cauchy principal value integral.

For the discussion of boundary value problems we actually
need the concept of a singular line integral, i.e. the path of
integration is part of a curve in the xy-plane. Such integrals

will be discussed in the next sections.
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In section 5 the singular Cauchy integral is defined. This
integral, and in particular the Plemelj-Sokhotski formulas
(section 6) plays a key role in the boundary value problems to
be discussed in the next chapters. As a first illustration a
special case of the Riemann boundary value problem is studied in
section 7. There is a strong connection between Riemann-(Hilbert)
boundary value problems and singular integral equations; an

illustration of this statement can be found in section 8.
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1.1.2.  Smooth arcs and contours

Consider a rectangular coordinate system (x,y) in the

complex plane € ={z : 2 = x + iy }. The set of points
L := {t=x+iy: x=x(s8), y=y(s),se€ [sa,sb]},

with s, and s, finite constants, s, < and with x(-) and

Sh»
y(+) continuous on [Sa’sb] is called a smooth are if:

i. x(#) and y(-) have continuous derivatives on [sa,sb], which
are never simultan2ously zero (smoothness); the derivatives

at s, and sy, are defined as the limits ofé% x{s) and é% y(s) for
s¥s and s+sb, respectively.

ii. there does not exist a pair 5418, E[sa,sb] with slqes2 such

that

x(sl) a x(sQ) and y(sl) a y(s2).
If i. is omitted, L is called a Jordan arec.
The points

a := {x(sa),y(sa)} , b := {x(sb),y(sb)},

are the so-called endpoints of L.
Obviously (cf.i) L is rectifiable so that for s can be
taken the arc length between a fixed and variable point of L,

and then

(2.1) (x P e0? v v P r1%: 1.

The positive direction on L is chosen suohTthat it is counter-
clockwise and the arc length is measuredpositively inthis direction.
The positive x- and y-axis are as shown in figure 1.The positive
direction on the tangent of L at s is the same as that on L.

Denote by 6 the angle between the tangent and the positive

x-axis measured positively counterclockwise then

This will be our standard convention throughout the text.
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cos 0 = x(l)(s), sin 0 = y(l)(s).
y

yis)|— = — — — _

Figure 1
The set L, cf. (2.1),is called a smooth contour if i.
above holds, if 1ii. above with [sa,sb) replaced by (sa,sb) holds

and if

(1)

a=b , x(l)(sa+) = x(l)(sb—) s Y (

1
(sa+) =y )(sb-).

When L is a (smooth) contour the domain "left®” of L (with
respect to the positive direction on L) is indicated by L+, that
"right" of L by L ; here L+, L and L~ are disjoint sets, see
figure 2.

From the definitions above -
it is seen that smooth arcs and
contours are simply connected
curves (no double points), with Figure 2
continuously varying tangents. A simply connected curve con-
sisting of a finite number of smooth arcs is said to be piecewise
smooth.

A smooth arc or contour is called an analytiec arc or
contour if in some neighbourhood Is—sol < ¢ of every soe(sa,sb)
both x(s) and y(s) possess convergent power series expansions

(cf. [3], p. 186),
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an(s—so)n , y(s) 1 Z bn(s—so)n.

x(s) = Z
=0 n=0

n
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1.1.3.  The Hélder condition

Let ¢(-) be a function defined on an arc or contour L.

If for all pairs ty.ty, € Lt

2

(3.1) loCty) - ¢(t1)|<A|t2-t1|“
with A and p both positive constants and 0 < p < 1 then ¢(*)

is saidto satisfy on L the HFdlder condition H(ud); A is the

Hblder constant,y the H8lder index.

Obviously if ¢(*) satisfies the H(8lder) condition on L then
it iscontinuous on Lj; if ¢(-) has a finite continuous derivative
everywhere on L then it satisfies H(1). Sufficient conditions
for the H-condition to be satisfied are discussed in [7] p. 13.
We quote a few results. If ¢1(.) and ¢2(.) both satisfy the
H-condition on L so do their sum. and product and also their
quotient ¢1(')/¢2(-) provided ¢92(t)#0 for vt € L. Further if
$(*) satisfies the H-condition on L, if f(u) is defined for all
u=¢(t), t € L and if f(u) has here a bounded derivative then
f(¢(-)) satisfies the H-condition on L with the same index as

(..
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1.1.4. The Cauchy integral

Let ¢(*) be defined on L, a smooth arc or contour, and
assume that ¢(t) is uniformly bounded in t for t € L and that
it is integrable with respect to s, the arc cnordinate of

t = t(s) € L. The so called Cauchy integral

1 s (t)
2mi L t-z

-5

(4.1) d(z) :=

dt, z € L,

is then well-defined, note that L has finite length, see section 2.
It is well known (cf. [1] p. 39 , [2] p. 99) that &(z) is

regular, i.e. analytic and single valued at every point z€ L,

in other words for every z, ¢ L a neighourhood of z, exlsts in

which ¢(z), z € L possesses a convergent series expansion

z cn(z-zo)n. Further

n=0
l'l@ '

w2y L2 oo ?551§H;Tdt, nz0,1,....5 z & L,
dz L t-z

and because L has finite length

(4.3) (z) = O(T%T) for |z|+w.
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I.1.5.  The singular Cauchy integral

The integral discussed in the previous section has no meaning
for z € L, below it will be given a meaning for functions ¢ ()
satisfying the H-condition. For other function classes see [U4]
and [51].

Let L be a smooth arc or contour and ¢(-) a function
defined on L satisfying the H-condition of section 3.

For ty€ L (not an endpoint) the singular Cauchy integral

1 o (t)
(5.1) ®(t,) 1= 5= [ I=—=dt,
0 21r1t Ellt_to

is defined by its prineipal value,

(5.2) 2—3;1.- i) i—f{—)dt = lim%i- S %E—i—)-dt ,
teL "t ry0 t €IN1 0

rr

here 1 is that part of L cut from L by
a small circle with center at ty and
radius r, see figure 3.

To prove the validity of the
definition note first that t, is

0
not an endpoint of L, so that r can

be chosen so small that 1C L. The Figure 3
primitive of(t'to)-i is log(t-t;), which b

is a many valued function. We therefore
slice the plane by a cut from t, to
infinity, see figure 4; at t the
principal value of log(tl-to) is

taken so that on the slitted plane

log(t—to) is uniquely defined. Figure 4
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It follows
t b
(5.3) — f A - 10g(t-t,) t. log(t-t,)
: 2mil te N1 t-tO 0 > 0 .
2
b-t
B 10g -
a to

To investigate the righthand side of
see figure 5,
t -‘to t, -t

log

+ 1 arg (tl—to) - 1 arg (tQ_to)'

Obvicusly
e
log — g 0 for every r > 0, t
‘t2 tO 1
Figure 5
and because L is smooth at ty
lim {arg(tl—to) - arg(tz-to)} 8 lim (61-62) = T,

r+0 r¥0

Hence the integral in (5.3) has a limit for ri0

and
dt b-t b-to

(5.4) lim f —— = log + it = log —— for a#b

P40 tE N1 t—to a-t tD—a ?

= im for a=b.
Write, cf. (5.2),
e (t)-¢(t,)

(5.5) mr J o EPar sl 5 ot

t€ I\1 0 =AW 0

o(tn)
g Qﬂg / tgz ?
t €L\l 0

and note that the H-condition implies that [¢(t )| is finite

and that for all t€ L:
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¢(t)—¢(t0)

= <A |t-t0|“'1, 0 <u<1.

The second integral in (5.5) exists as a proper integral
and converges for r+0 to the improper integral

_ET ; ¢(t)-¢(t0) .
27r1t EL t—to d

Consequently @(to) is well defined and

1 ¢(t)-¢(t0) ¢(t0) b-t,
- . s
(5.8) ‘I)('tg) = mtéL t_to dt + T log =3 if a¥b,
1 / ¢(t)—¢(to) )
= ———dt + 3¢(t if a=b.
21l e t-t, 2 0

We shall quote two theorems concerning properties of the

singular Cauchy integral.

Theorem 5.1 (cf. [6] p. 17). If the function t=a(t) has
DI

a continuous first derivative o , which does not vanish

anywhere, and o(1) constitutes a one-to-one mapping of L onto L,

then
L, ey . 1 etatene!P
21l ey tTE, 21l e a(T)—a(TO) s

with t0=a(10).

Theorem 5.2 (cf. {6] p. 18). If ¢(t), t € L is a continuously

differentiable function and tg € L. (not an endpoint) then

1 o(t) _ 1 - - o -
VI téL —dt'tg t = 36(ty) 4oy 6(H) Log(b-ty) - ¢(a) logla-ty)}
1 (1) .
- 5= [ ¢ (t) log(t-t,)dt if a#b
2Tl t el 0 ’
= 300ty - or 1 610 loglt-tydat if asb,

t€EL

with the principal branch of the logarithm defined as in

figure 4.
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Remark 5.1 (ef. [6]1 p. 41, [7] p. 49).If ¢(-) has the H(u)-pro-
perty on L, a smooth contour, then <I>(t0),cf-(5.6),satisfies the H(p)-
condition on L if u < 1, and the H(1-¢) condition if u=1,

with € arbitrarily small positive.
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I.1.6.  Limiting values of the Cauchy integral

In this section the limiting behaviour of

_ 1 (L)
(D(z) —mtéh-t_—zdt, ZQL,

for z » t, € L will be considered. It is always assumed that
$(*) satisfies on L the H-condition. We quote the following

theoremn.

Theovem 6.1 (cf.[6]1 p. 20, [7] p. 38). Ffor L a smooth arc or
contour and t; an interior point of L the function

¢(t)—¢(t0)
t-z

¥(z) iz ooe  f
€

5T . € L, z € L,

) at, t,

is continuous on L from the 'left' and from the 'right', i.e.

for z » ty along any path to the left or to the right of L:

1 d)(t)-tp(to)
Y(z) » ¥(t,) = 5= i) ————dt.
0 211 t el t-to
Write with t, € L, z € L:
(t)-¢(t,) p(ty)

1 ¢ 0 0 dt
(6.1) ¥(z) = ==~ [ —dt + : ;S o=

271 teL t-z 2m1 t €L t-z

If L is a smooth contour <(hence closed) then Cauchy's

theorem implies that

. +
5%I i at .4 if z € L, ef. section 2,

=0 if z € L7,

and consequently the theorem above implies that for tg € L:

(6.2) ¢+(t0) :z lim o(z) @ ¢(t0) + 5%T I ¢(ti:i(t0)dt,
27ty t €L 0
ze LY
- . 1 ¢ ()= (ty)
¢ (ty) := lecm <D(Z)=-2—HtéL———?_Tdt.

0
z€ L™
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Because for a smooth contour L with to € L,

cf. (5.4),
1 at  _
(6.3) T ! —t. " %

the Plemelj-Sokhotski formulas are obtained viz. <f L {s a

gmooth contour and ¢(.) satisfies the H-condition on L then

for tg €L:
(6.4)  o*(ty) = Jolty) + ooy L %é;c:—;dt,
07 (t,) =-30(ty) + = téL {%;dt,
and equivalently
(6.5) 0¥ (ty) = 0T(ty) = olty),
of(ty) + 07(ry) = Iy téLth; t.

These formulas will play a key role in the boundary value
problemsto be discussed in subsequent chapters. Generalizations
of these "PS" formulas are possible in several directions, viz.
i. for L a piecewise smooth contour,
ii. for L a union of a finite number of non-intersecting smooth
contours and/or arcs, see [6] and [7],
iii. for a larger class of functions ¢(+) than those satisfying
the H-condition, cf. [#], ..., [7], and in particular [8] chapter
10.

Finally we quote the following result from [6], p. 38,

[71, p. u9.

Lemma 6.1 If ¢(-) satisfies the H(p) condition on a smooth contour

L then
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+ -
o (tO) and ¢ (to), t, € L

satisfy on L the H(A) condition with A=y if y < 1, and with
A=zl-g where € > 0 butarbitrarily small if p=1 (cf. remark 5.1).

Concerning the continuity behaviour of

o1 ¢ {t)
@(Z) = m f Wdt

t €L

for z>t, € L see [7] chapter 2 and [8] chapter 10.

Remark 6.1 The Plemelj-Sokhotski formulas (6.4) also apply if
L is an open smooth curve and tO is not an endpoint of L, cf.

F6] p. 25.
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I.1.7.  The basic boundary value problem

As an immediate application of the PS formulas of the pre-

ceding section we consider the following boundary value problem.

For L a smooth contour and ¢(.) defined on L and satisfying
the H-condition determine a function &(z) regular (cf. section 4.2)
for z € Q\L, continuous for z € LYUL and for z € L7UL, vanishing

at infinity and satisfying
ot (t) - Tt = oty , t € L.

From the results of the preceding sections (cf. (6.5) and

section 4) it follows immediately that

_ 1 ¢(t)
®(z) = Ty f —ﬁ—d‘t

is a solution. It is the unique solution. Because if ¢,(+) is a
second solution then ¢(z) - 9,(z) is regular for z € f\L, is
continuous for z € L+U L, and also for z € L U L, moreover for

t € L:
st(ey - 87(E) = 87(E) - #I(1).

Hence ¢(z) - ¢1(z) is regular for all z € €, and vanishes at
infinity. Hence by Liouville's theorem, cf. [2] p. 82,

¢(z) - @1(2) = 0 for every z € (.



I.1.8. Singular integrals 35

1.1.8.  The basic singular integral equation

Let ¢(*) satisfy on the smooth contour L the H-condition.
It is required to determine a function ¢(-) defined on L, satis-

fying here the H-condition, and such that

1 (L) -
(8.1) T . éL, E?¥Edt = w(to) . ty € L.

To solve this singular integral equation define

o1 )
(8.2) ¢(z) = m— téL %Z—-dt s z ¢ L.

It follows from (6.5),

+ - -
(8.3) o (to) + 0 () = vy, tg € L
so that with

(8.14) ¥(z) o(z) , z e L,

-4(z), z €L,

it is seen using the definitions (6.2) that

+ - -
(8.5) ¥ (to) - ¥ (to) = w(to) , ty € L.

The results of the preceding section yield

1 P(t)
(8.6) ¥(z) = 5= [ L=t , z & L.
271 tEL t-z
From (8.2), (6.5), (8.4) and (8.6) for tg € L,
= ot - %" =yt - = 4 ()
(8.7) 0Ctg) = @7 (ty) = @ Cty) = ¥ (ry) + ¥ (ry) = théL%:¥gdt.

Hence (8.1) implies (8.7), and analogously (8.7) leads to (8.1),

Consequently, the solution of (8.1) is unique and given by (8.7).
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1.19. Conditions for analytic continuation of a
function given on the boundary

Let ¢(+) be defined on a smooth contour L and let it satisfy
the H-condition. What are the necessary and sufficient conditions
to be satisfied by ¢(.) is order that i. it is the boundary
value of a function regular in L+, continuous in LU LY or ii.
it is the boundary value of a function regular in L, continuous
in LUL ™ and vanishing at infinity?

Consider

(s.1) 0(2) = 2 S %é%}dt, z @ L.

If ¢(t) is the boundary value of a function regular in L* then

it follows from Cauchy's theorem,

+ -
) (tO) = ¢(t0) for t, € L,

and hence by the PS formula, cf. (6.4),

1 (L)
p(ty) = 3o(ty) + == [ =4t
0 2 0 2m1 teL t t0
l.e.,
1 $(t)
(9.2) 16(t,) = = J ~——-dt , Vt, € L.
0 27l teL t 1:0 0

Obviously, the condition (9.2) is necessary. Next suppose ¢ (.)

satisfies (9.2) then from (6.5), (9.1) and (9.2)
o) = 0¥ (ty) - o7 (ty) = o (xp).

Consequently the condition (8.2) answers the question 1. above.

Similarly it is proved that the condition

1 ()
(9.3) -30(t)) = oy téL %;_%-Edt, vt, € L,

is the answer to question ii. above,
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If it is required in question ii. that ¢(z) has at infinity

a given principal part, i.e.
= 1
$(z) = y(z) + 0(3) for |z |+,

with y(z) a polynomial, instead of vanishing at infinity then

the condition which answers the modified question ii, becomes

_ 1 p(t)
(9.4) -30(ty) = =~ [
2 0 ten T "ty

at - y(ty), vty € L,

a result which is readily derived from (9.3) by considering

¢(z) - y(z), =z € L~ instead of ¢(z).
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1.1.10. Derivatives of singular integrals

Let ¢(+) be defined on the smooth contour L and suppose
that the mth derivative ¢(m)(') exists on L and that ¢(m)(')
satisfies the H-condition., From [6] p. 29,..., 31 we quote the

following results.

For
1 (t)
3(z) = 3=~ f t
271 tEL t-z 2
we have
(m) m! $(t) 1 m) 4y
'™ (zy = By g at = o= 5 & _(8) 4 L
ML el (t-z)™H 2rl ey t-z » 2 # L,

and for tO € L:

(m)
+ (m) (m) 1 (t)
) (to)] = 1¢ (tg) + VLS . ét,é?:¥6——dt’

(m)
- (m) _ _,,(m) 1 (t)
(e (ty)] = -3¢ (to) * T i) t

ten % ’

o™ (£ 1"

(m) -
(¢ (ty)]



1.2, THE RIEMANN BOUNDARY VALUE PROBLEM
12.1. Formulation of the problem

Let L be a smooth contour, G(:) and g(-) functions defined

on L, both satisfying a H6lder condition, and
(1.1) G(t)# 0 for every t € L

The Riemann boundary value problem for L is: Determine a function

o(.) such that

(1.2) i. $(z2) Zs regular for z € L,
i8 continuous for z € LU L+ 3
ii. ©(z) ts regular for z € L~ ,

is continuoue for z € LUL™

iii. ¢(z) A for |z| + = with A a constant ;
iv. ot (t) = G(EIeT (L) + g(t) for t € L,
with
ot () 1= 1im  e(z) 5 &7 (t) :=  lim &(z).
z>t€L z-+t €L
z €L z €L

Note that for G(t)=1, t € L and A=0 the solution has been given
in section 1.7.

The homogeneous problem (i.e., g(t) = 0, t € L) will be
discussed in section 3, and the inhomogeneous problem in
section 4. A simple generalization of the boundary value problem

(1.2) is considered in section 5.
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122. Theindex of G(t), t EL

In the analysis of the problem formulated in the preceding

section the concept indez ¥ of G(:) on L is needed. This index

is the increment of the argument of G(t), when t traverses L

once in the positive direction, divided by 2w. Because G(*)

is continuous on L it is seen that

. 21 1
(2.1) x = ind6(t) = = . éll d{argG(t)} B UL

hence ¥ is an integer if G(t) # 0 for every t € L.

[ a{laogG(t)},
t €L

Consider the case that G(t), t € L is the boundary value

of a function G(z), z € L* which is regular in Lt except for

a finite number of poles in L*. Then the index of G(*) on L is

equal to the number of zeros of G(-) in L' less the number of

. + . .
poles in L, the zeros and poles counted according to their

multiplicity, for a proof see [1] p. 99.
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1.2.3,  The homogeneous problem

In this section the homogeneous problem (1.2) of section 1

is discussed, i.e. we consider here

(3.1) glt)=0 , t € L.

It follows from (1.2) iv and (3.1) that for t € L:
(3.2) loget(t) = logB(t) + logd (t).

Because of (1.2) i,ii the relation (3.2) implies that
(3.3) x 8 NY+NT,

with N¥ the number of zeros of &(.) in LY, N~ that of &(-) in
L™, with x the index of G(-), note that ¢ (t), t € L is the
boundary value of a function regular in L+, similarly for

87 (t) with L* replaced by L .

Consequently we should have,
(3.4) x=0,

which implies that if y B indG(-) < 0 then the homogeneous
problem has no solution, except for the trivial null solution.
The cases x=0 and x > 0 are discussed separately.
Case A. x=0. Hence
Nfa N =0,
so that logé(z) has no zeros for z € L+, and also no zeros in L .
Consequently, it follows from (1.2) i, ii, iii with A# 0 that
(3.5) i. 1log ¢(z) should be regular for z € L+,
continuous for z € LYU L,
ii. log ¢(z) should be regular for z € L,
continuous for z € L' U L,

bounded for |z| - e.
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Next note that G(-) satisfies on L the H-condition and
does not vanish on L so that log G(t) satisfies on L the H-con-
dition (see section 1.3 and [7] p. 16,80). Hence by writing

(3.2) as

+ -
¢ (t) ¢ (t)
X - log__A_ = log G(t) , t € L,

(3.6) log

it is seen that the problem of determining a function ¢(-) satis-
fying (3.5) and (3.6) is identical with that formulated in section
1.7. It follows that the solution of the homogeneous problem

(1.2) (with (3.1)) in the case X=0 <8 unique and given by

I lo%_g(t)dt

2Tl
(3.7) 0(z) = Ae  CtEL , z €L,
1
=t s log G(t)it
Tl te L t-z _
= Ae » 2 €L .

Note that in (3.7) it is irrelevant which branch of log G(t)
is chosen. Obviously, if A=0, cf. (1.2) iii, then the null

solution is the only solution.

Remark 3.1 1If for the homogeneous problem the condition (1.2)

iii is replaced by

(3.8) |#(z)| = 0(|z|X) for |z|>w=, k >0, an integer, then
the general solution reads

Ly(z) -
(3.9) ®(z) = e Pk(z), z € L UL,

where Pk(z) is an arbitrary polynomial in z of degree k and

(3.10) rg(z) t= e 0 2088 s e oyl
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Proof Obviously &(z) as given by (3.9) satisfies (3.8). The

PS formulas, cf. (1.6.4), applied to (3.9) yield for t € L,

- e%log G(t) + rg(t)

(3.11) ot (1) P(E)

o™ (1) = o-¥log 6() + To0p (1),

and hence (1.2) i,...,iv with g(t)=0 and (1.2) iii replaced
by (3.8) are satisfied. The uniqueness of the solution follows
similarly as in section 1.7. O

Case B. x > 0. Take the origin of the coordinate system in L* and

rewrite (1.2) iv with g(t)=0, cf. (3.1),as

(3.12) o (t) = tX[tTXe()] o7 (t), teL.

Obviously on L
(3.13) ind{t XG(t)} = 0.

Put

.1 log {t™X5(1)} + -
(3.14) I&(Z).-.ﬁaitéL —JiT:;————dt, z € LULUL |

note that log {t XG(t)} satisfies the H-condition on L. Hence
from (1.6.5)

(3.15) F;(t) - P;(t) = log {tXG(t)}, t € L.

Consequently from (1.2) iv with g (t)=0,

ot (1) _ X o7 ()
—_—
e e X

(3.16)

Because

FX(Z) is regular for z € tfulT,

is continuous and finite for z € L+U L,
T (z)
it is seen that (1.2) i, ii and (3.16) imply that &(z)/e X ,
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r (z) _
z€ LY and zX0(z)/e X » z €L areeach other'sanalyric continuations.

Further (1.2)1ii implies

r (z)
(3.17) |zXe(z)/e X | = |A]]z]|X for |z|» .

Consequently Liouville's theorem implies that

T (2) +
(3.18) ®(z) e X P _(2) for z € L,
r (z) _ -
ge X 27 Xp (2) for z € L
with X
(3.19) lim z'XPX<z) = A,

Izl-}oo

where PX(.) is an arbitrary polynomial of degree x satisfying
(3.19). The relations (3.14), (3.18) and (3.19) present the
general solution of the homogeneous boundary value problem (1.2)

for the case x = ind G(-) > 0, but note that the origin of the

. . . +
coordinate system lies in L .
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L2.4.  The nonhomogeneous problem

Inthis sectionit willagain beassumed that the originof the
coordinate system lies in L*.

i. X2 0. Recalling (3.14), i.e.

— i
(4. 1) k(z):=-j+ g teglt 6O, e turLulT,

2TL teL t-2
so that
P;(t) = 3loglit™Xe(t)} + r (), t €L,
(4.2)
F;(t) = -1log{t XG(t)} + Fx(t), t €L,

the relation (1.2) iv,
(4.3) ot (t) = G(t) oT(t) + g(t), t € L,

may be rewritten as,

+ -
(4.4) g L ox28) g{t) for t € L.
eFX(t) eFX(t) STy ()
rreo
Because g(-) satisfies the H-condition on L and so does e ¥ ,

cf. lemma 1.6.1,which is always nonzero on L, we

may and do write

+

. -TO(t) 4 N _
(4.5) ¥(z) 1= == [ g(t) e z € L VLUL .

271 tEL t-z
Hence cf. (1.6.4),

N . -then
(4.86) ¥Re) - ¥ () = gty e X, t € L,
so that (4.4) becomes for t€ L:
-t )

(4.7) ot (t) e X - vty = ety e X - ¥ ().
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+
Because eFX(Z) is never zero for z € L U L¥, and similarly for

eFX(Z), z €L UL, it follows that (note z=0 € LY and x = 0),

(4.8) ®(2) e—FX(Z) - ¥(z2) is regular for z € L*,

. . +
is continuous for z € L U L,

(4.9) 2X6(2) e—FX(Z) - ¥(z) is regular for z € L,

is continuous for z € L U L™,
|2%6(z) e Tx{2) - w(z)] ~ |a]|z|X for |z]+e (cf. (1.2) iii).

Consequently (4.7) together with (4.8) and (4.9) imply that
the expressions in (4.8) and (4.9) are each other's analytic con-
tinuations, and the asymptotic relation in (4.9) together with

Liouville's theorem implies that

(z) e—Fx(Z) - ¥(z) = P&(z) for z € L+,
2Xe(z) e X2 _ y(z) = P&(z) for z € L,
or
(4.10) 2(z) = elx () (y(z) + B}, z€ L,

= 27X M) fyz) 4 P ()}, 2 € L7,
with PX(.) an arbitrary polynomial of degree x 2 0 and such that
(4.11) lim z X P_(z) = A.

|z]|+e X

Consequently, for the case X 2 0 the relations (4.10) and (4.11)
represent the general solution of the inhomogeneous boundary
value problem (1.2), it contains (apart from A) X arbitrary
constants (coefficients of PX(-)). It is readily verified that

it is the unique solution (apart from they arbitrary constants).

ii. ¥ < 0. In this case the velations (4.7),..., (4.9) still hold;
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together with Liouville's theorem they imply that

r (Z) +
(4.12) 0(z) = e X v(z) , zeL,

r.(z)

“Xe X Y(z) , z €L .

=z
Because ¥(z), cf. (4.5), possesses in a neighbourhood of

z B » a convergent series expansion in powers of z—h,

h=0,1,... , i.e. W(%) is regular in a neighbourhood of z=0,

we may write

©o
(4.13) ¥(z) o %=1 chz_h for [z]| sufficiently large.
Hence if
(4.14) c_X=A, ¢y =0 for h=1,...., -x-1, X < -1,
then the inhomogeneous boundary value problem (1.2) has

a unique solution which is then given by (4.12);it is insoluble

if (4.14) does not hold.
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1.2.5. A variant of the boundary value problem (1.2)

The boundary value problem (1.2) may be generalized in
several directions. We shall discuss here a simple generaliza-
tion, see further [6] and [7] for more complicated cases.

Let again L be a smooth contour, g(:) and G(-) functions
defined on L, both satisfying a H-condition on L and with G(-)
non-vanishing on L, x will be the index of G(-) on L, and
L* contains the origin or the coordinate system.

It is required to construct a function ¢(-) such that

(5.1) i, ©(z) is regular for z € Lfu L
is continuous from the left and right at L;
is bounded for |z| -+ «;

m
i1, 0T (o) = L) gee) oT(t) + g(t), te€ L,

(t-8)P
with a € L, B € L, a* 8, and m and p positive

integers.

With FX(Z) as defined in (4.1) we rewrite (5.1) ii as:
for t € L,

rteo)

- T (t)
(5.2) (t-8)Pe X ot () - vr(t) = (t-a)MtXe X T (t) - ¥ (1),
with
+
=T (t)
1 -
(5.3) ¥(z) 1= pr té ] (t-p)Pg(tre X 4Lz e tuLuLT.

As before we obtain by applying Licuville's theorem that

r . (z)
(5.4) #(z) = S———  {¥( P , e LY,
‘ (z-8)P ¥z s x+m(Z)} z
- Fx(Z)
=2 X S (w2 Pom2} - z€L7,

(z-0)
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with Px+m(.) a polynomial of degree x+m and satisfying the condi-

tions:
(5.5) i. t=B 1is a zero of multiplicity p of yree) + P (t) 3

ii. t=o is a zero of multiplicity m of ¥ (t) + Px+m(t)

If the conditions (5.5) i,ii can be satisfied by a proper choice
of the coefficients of PX+m(-), then (5.4) represents the solu-
tion of (5.1) which is bounded for |z|+«. Note that if m > 1

or p>1 the relations of section 1.10 are needed, and g(-)

should possess the relevant derivatives.
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[.3. THE RIEMANN-HILBERT BOUNDARY VALUE PROBLEM

1.3.1. Formulation of the problem

Let L be a smooth contour in the complex plane and a(*),
b(+) and c(+) real functions defined on L; it will always be
assumed that these functions satisfy a H-condition on L and

that for each t € L,
a’(t) + b2(ey#o0.

The Riemann-Hilbert problem for L is: Determine a function

F(z) sueh that:

(1.1) i. F(z) Zs regular for z € Lt
18 continuous for z € LU Lt 3

ii. Re[{a(t) - i b(£)} FY ()] melt), te€L,

or equivalently

a(tiult) + b(Ivit) = clt),
with

FYee) = ule) + i v(t).
This boundary value problem is actually a generalization of
the classical Dirichlet problem, see the next section (a(t)T1, b(t)=0),

In the formulation above L is an arbitrary smooth contour, but

in the present chapter it will be assumed that L is the unit

circle C:
(1.2) Ca{t:t|m1l},

in section 4.3 it will be shown how to analyze the problem

for an arbitrary smooth contour L.
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The classical Dirichlet problem for the unit circle is
studied in section 2, the Dirichlet problem with a pole in
section 3, The concept of the "regularizing factor" (section 4)
enables one to transform the Riemann-Hilbert problem into a
Dirichlet problem (with or without a pole). In section 5 we

obtain in this way the solution of the problem (1.1).
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1.3.2.  The Dirichlet problem

A real function w(z)=w(x,y), z = x+iy € ¢t with continuous

. . . . . . + .
second partial derivatives is said to be harmonic in C if

32 a2 s
(2.1) (—— + =) w(x,y) =0 for 1z € C'.
ax 3y
If
F(z) m u(x,y) + ivi{x,y) , z € C+,

. . + . -
is regular in C , so that the Cauchy-Riemann conditions

ar
<

du _ 9V du _
(2.2) % C 3v = =

<«

%

<

[-3
X

hold for every z € C+, then it is readily seen that Re F(z)
and Im F(z) are both harmonic in c*.

The Dirichlet problem for cuct reads: Determine a harmonic
funetion u(x,y) <in C+, which is continuous in c UCt and for
which the limiting values on the boundary are prescribed, ©.e.
(2.3) lim ulz) @ ult) , |t]=1,

Z tG;C
z€C

with u(.) a given real continuous function on C.

Suppose that u(t), t € C satisfies a H-condition. It is then

readily shown with

1 2m io ei0+z
(2.4) f(z) 1= 5= [ ule) —=—=do+ ivVv
2T 0 10 0
e -z
1 t+z dt +
= = f ult) — — + i v 7z € C
2T tEC t=-z t g >

where vy is a real constant, that
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Re f(z) is a solution of the Dirichlet problem. To see this,
note that from (2.4) and the PS formulas,cf. (1.6.4), it is

seen that

1 dt 2 u(t) .
(2.5) ffe oy multy) - = f w2 5 BPar gy
0 0 2Tl tec t 2ml tec t—tO 0°
[S
tD C
. i¢
Further with t:el¢, ty=e O,
1 -b)=1 sinl -
Re 5 ; u(t)dt 2o ? aﬁ\g(ei¢) cosz(¢0 ¢irl 51n2(¢0 ¢)d¢
2Tl t ec t—t0 2m1 0 —251n5(¢0—¢)
27 .
1
== 1 ue®as = 2 S oun) §
0 tecC
so that

+ - .
Re f (to) = u(to),

the regularity of f(z) follows directly from (2.4), and the

statement above has been proved.

Note that
2m .
(2.86) Im f+(t0) = vy - 7%1 ¢£O u(el¢) cos%(¢0‘¢)d¢.

Actually the expression in (2.4), the so~called Schwarz formula, is
the solution of the Riemann-Hilbert problem (1.1) with a(t)=1,
b(t)=0, c(t)=u(t). The relation (2.6) shows that once the

real part of the boundary value of F(‘) is given its imaginary
part is fully determined apart from a constant, because of the
Cauchy-Riemann conditions this could be expected. So in fact

the formula (2.4) solves a more general problem than the Dirichlet

problem. The solution of the Dirichlet problem can be written as

. 2m 2 .
(2.7 Re f(re*®) = = — ute'®rae, o<r<1,
0 1+r°-2r cos(0-¢)
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the so-called Poisson formula for the circle, and its validity
is independent of the H-condition, above assumed to held for
u(+); for an introductory discussion of the Dirichlet problem
see [1] p. 226. It should be noted that the uniqueness of the
solution givenabove is an immediate consequence of the so -
called maximum principle or maximum modulus theorem for regular
funetions. It reads:

If h(z) is regular in a domain D then |h(z)| cannot obtain
its maximum in D at an interior point of D, unless h(z) reduces
to a constant.

Hence if h(z) is continuous in the closure of D then |h(z)|
reaches its maximum at some point of the boundary of D.

So if h1 is a second solution then also h—h1 is a solution;

this is zeroc on the boundary. Therefore hEhl.
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1.3.3.  Boundary value problem with a pole

For the applications it is worthwhile to consider
the following boundary value problem.

Determine a function H(z), z € c¢* sueh that:

(3.1) i. H(z) is regular for z € ct except for a pole
of order n at z=z, € c*y
ii. H(-) is continuous in {c*U CN{z: z=z24},

iii. Re H'(t) = u(t), t € ¢, with u(*) a real function

satisfying a H-condition on C.

Put

Z_ZO}k Z2=2Z

k=1 1-zz

- 5 A—47,
1-zz
0 0

n
(3.2) Q(z) := 1 vy * > [Ck{

where v is a real constant, Crs k=1, ..., n are arbitrary
complex numbers. It is seen that Q(z) is regular for z € c*
except at z=z,, moreover Re Q(ei¢)=0 for 0<¢ <27 and hence
Q(-) is the general solution of the homogeneous problem. From

the results of the preceding section it follows that the general

solution of the problem (3.1) reads

1 t+z dt
(3.3) H(z) ﬂm téc U(t)%-—z _t— + Q(Z), z € C .
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1.3.4.  Regularizing factor

The solution of the Riemann-Hilbert problem (1.1) may be
obtained by transforming it into a Riemann problem, see
section 2.1, a transformation introduced by Muskhelishvili, cf.
[7], p.100. Here we shall follow the technique used by
Gakhov, cf. [6], chapter IV. This technique requires the
concept of regularizing factor.

Let s represent the arc coordinate on the unit circle C,

t a generic point of C, so that

(4.1) t = t(s).

Put, cf. (1.1),

a(s) a(t(s)), B(s) := b(t(s)) ,

and let G(t) be a complex function defined on C,

(4.2) G(t) a(t)+ib(t), t € C.

In general G(-) will not be the boundary value of a
function regular in ct.
Question Does there exist a function R(.), the »regularizing

factor, defined on C such that

d

(4.3) ot (t) 9¢f qorr(ty, t € ¢,

is the boundary value of a function ®(z) regular in C+,

. . +
continuous in C U C'?

The question will be considered here only for the case

that p(s) = R(t(s)) is a real function of s, i.e.

(4.4) 8% (t(s)) = p(s){a(s)+iB(s)}, t(s) € C;



L3.4. The Riemann-Hilbert boundary value problem 57

it is noted that C' contains the origin.

Because p(s) is real its index is zero, see section 2.2, hence
(4.5) y = ind ¢%(t) = ind{a(s)+iB(s)}.

It follows : if

(4.6)
i. X= 0 then & (z) has no zeros in C+;
ii, X> 0 then ¢ (z) has exactly X zeros in C+;

iii. X< 0 then & (z) cannot be analytic in c*.

ad i. y & 0. Because of (4.6)i we may take

(4.7) o(z): = Y2 et uc,

v(z): w(z) + iwl(z), zectu c,

with w(+) and wl(-) both real and finite; then we should

have on C,

(4.8) p(s){a(s)+iB(s)} = 1Y (t(s)) | e-wl(t(s))eiw(t(s))’
hence
(4.9) p(s){a(s)+82(s)}? = RO

w(t(s)) = arctan E(E)

Because of (4.6)i log ®(z) should be regular for z € c* and

hence (z) is harmonic in C+,its boundary value w(t(s)) is given
by (4.9), as such w(z) is given by the Poisson formula (2.7);
further because a(t) and b(t) satisfy a H-condition,cf. sectioni,
so does w(t(s)), cf. end of section 1.3, hence from

Schwarz' formula (2.4)
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. 1 b(t),t+z dt
(4.10) v(z) B w(z)+ie (2) 8 5 téc tarctan Z55les ¥ -

The regularizing factor p(.) is now given by
—wl(t(s))

(4.11) p(s) = — 5
{a(s)+B“(s)}

[N

If pl(s) is a second regularizing factor then

p,(s) @;(t(s)) _ e-{wll(t(s))-ml(t(s))}

3

p(s) " ¥ (i(s))

so that on C,Im{@i(t(s))/¢+(t(s))} B 0. Because ¢,(2)/¢(z) is
regular for z € c* it follows from the uniqueness of the
solution of the Dirichlet problem that Im{¢1(z)/¢(z)} a0
for all z € C+, i.e. ¢1(z)/¢(z) is constant on C+, hence p(s)

is unique apart from a constant factor.

ad ii. x > 0.

Take
(4.12) 0(z) m 2Xe?Y(2) et U,

then as before

—w, (t(s))
lt(s)|Xe 1

(4.13) p(s) 5 v
{a“(s)+R (8)}

1
2

w(t(s))= arg{t(s)_&a(s)+i6(s)]} = arctan %%2% - X arg t(s).

And as above it follows with y(z) @ w(z)+iw1(z):

(4.14) y(z) = - f {apctan g%%%—— X arg t}

t+z dt
2Tl tec

-z t» 2?2 €&C

The uniqueness is discussed as before.
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ad iii. x < 0.
If we take

(4.15) o(z) = 2%V (2 L ectug,

with y(z) represented by (4.14) but with x < 0, it is seen
from (4.15) that 9(z) is regular for z € ' except at z=0,
where it has a pole of order -y, ¢(z) is continuous at the
boundary C and e (t(s)) m p(s){a(s)+iB(s)} with p(s) given by
(4.13).

In conclusion: it has been shown that if y 2 0 then a real
function p(.) defined on C exists which answers the question
above, cf. (4.3); and p(-) is obtained as the solution of

a Dirichlet problem.
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1.3.5.  Solution of the Riemann-Hilbert problem

By using the results of the preceding section the derivation
of the solution of the Riemann-Hilbert problem (1.1) will be exposed.
Without restricting the generality it may and will

be assumed that

(5.1) a?(t) + bty m 1, tec.
Further
(5.2) x = ind {a(t) + 1 b(t)}.

i. The homogeneous problem, i.e.

(5.3) ce(t) = 0.

Rewrite (1.1) as

+
F (t)
(5.4) Re G 0, t € C.

Divide by the regularizing factor p(s), ef. (4.11) and (4.13), then

+
(5.5) Re —E ) g, t € C.

t&ryt
Because F(z) should be regular in C+, continuous in CLJC+,
because y(z) possesses these properties (cf. preceding section)
it follows from the solution of the Dirichlet problem (see

section 2) that: with vy @ real constant,

(5.6) x=0 = F(z) = 1 voelY(Z) z €C
If x>0 then the boundary value problem above, cf. (5.5), is
of the type discussed in section 3 with zo:o, u(t) = 0, hence

(5.7) X >0 = F(z) = X 1Y (2) [ivy + {ckzk - Ekz'k}].

k=1

M

If x <0 then the null solution is the only solution.



1.3.5. The Riemann-Hilbert boundary value problem 61

ii. The inhomogeneous problem,

Dividing (1.1) by the regularizing factor p(s) yields,

(5.8) Re ;ifgé%%y = |t|—xew1(t) c(t), t €C,
= ewi(t) c(t),

with

(5.9) t & t(s),

where s is the arc coordinate on C. F(z) should be regular
in C+, hence if x=0 we have the Dirichlet problem so that,cf.

section 2, with v, & real constant,

- , t+z dt
(5.10) x=0 = F(z) = & ¥(2) ¢4 vy * 3717{ ;e gt ghy,

z€ C

If x>0 then the inhomogeneous problem is of the type of section

3 and it follows that

. X _ _
(5.11) w >0 = F(z) = 2XeIVE) (i v v B 2N -5 27Ny
0 _ k k
k=1
1 wq (£) t+z dt +
tor Lo e g Thze

vy an arbitrary real constant, Cys k=1,...,n arbitrary complex

constants.

Finally the case X< 0. Obviously the last expression in (5.11)
is with <0 regular in z € C+\{O}, it has in z=0 a pole of
order -¥ , if all Ck=0'

. +
Write for z € C ,

(5.12) —
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='7%T ;W) oy %; + 2%1 o ew1(t) C(tz %;
t €C t €C 1-zt

= -211Tl / ewl(t) e(t) (-it_t+2 z Zk L J ewi(t) c(t)t_k—ldt-
rece k=0 tec

Consequently,if

(5.13) 7lT St cyt™ L g @0 for ko= 0,...,-x-1,
Tl tec

then for x <0,

(5.14) F(z) 1= zXetV(2) ?%I pooe®1 (V) %}% %; , z €ct,
t€l

represents the solution of the Riemann-Hilbert problem (1.1). If the

conditions (5.13) do not hold then the Riemann -Hilbert problem does

not have a solution.

In conclusion the Riemann -Hilbert problem (1.1) for the circle
does always possess asolution ify 203 ifx=0 it is renresentedby (5.10)
containing an arbitrary real constant, if x>0 it is given
by (5.11) containing one real and x complex constants, apart
from these free constants the solution is unique (a direct con-
sequence of the maximum principle, see section 2); if x <0

a solution exists only if the relations (5.13) hold.
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1.4. CONFORMAL MAPPING

14.1. Introduction

The boundary value problems discussed in the two preceding
chapters are rather simply soluble explicitly when the domain
is a circular disk. Actually this situation is a rather special
one, and in general the domain on which the analytic function
is to be constructed is not a c¢ircular disk, but of a more
complicated structure. However,conformal mapping of a domain
onto the unit disk is under rather mild conditions often possible
and moreover an analytic function preserves its analyticity
properties, when considered as a function on the conformally
mapped domain. Hence boundary value problems of the type discussed
in the preceding chapters but with noncircular domains can be
transformed by conformal mapping into those for circular domains.
In this chapter we shall discuss and quote various properties
and theorems in so far these are needed for the main purpose
of the present monograph. For literature on the theory of
conformal mapping, an important subject in the theory of one

complex variable, the reader is referred to the books [1], [2],

(31, [81, [91, [10].
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14.2. The Riemann mapping theorem

Denote by € the complex plane and let D C € be a domatin,
i.e. an open, connected set; note: a set is connected if any
two points of it can be Jjoined by a polygonal line belonging
entirely to the set.
The function f: D » € is said to be regular at zq € D if Zg
possesses a neighbourhood N(zy) such that for every z & N(z,),
f(z) can be represented by a convergent series expansion

(2.1) f(z) =
n

cn(z—zo)n; Zg #F w.

nmM™M8

0
If f is vregular for every z € D then f is said to be regular

in D. Note that regularity at infinity of f(z) is to be understood
as regularity at zero of g(z) := f(1/z). If f is regular at

z, then it is differentiable, i.e.

6]
f(z)—f(zo)

Z=-Z

lim

z+2 0

0
exists and is independent of the route in N(zo) along which z

approaches z Differentiability of f at every point of D is

0"
equivalent with regularity in D. Put

£f(z) = ulx,y)+ivix,y), z = x+iy,

with u(+,+) and v(-,+.) real functions, then necessary and
sufficient conditions for differentiability of f at the point 2z,
are: 1. the existence of the partial derivatives of u(:,:) and
v(+,+) and ii. these derivatives should satisfy the Cauchy-

Riemann relations

3 3 3
(2.2) TRu(xsy) = ~;—yv<x,y), 3R 0KY) B - v(x,y).
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A continuous function f is said to be univalent in D if

z, ¥ z, implies f(zl) # f(22) for all =z € D. Evidently

1 2 1222

f is univalent in D if and only if it has a continuous inverse

defined on f(D):= {w: w = f(z), z € D}. f is said to be univalent

at z = zZg if 2, possesses a neighbourhcod in which f is univalent.
It is known (ef. [1]1, p.109) that if f is regular at z = zg #F o
then univalence of f at zg is equivalent with f(i)(zo) # 0,
i.e. ey # 0, cf. (2.1). If f is regular at Zg = @, i.e.
g(z) := f(%) is regular at z B 0, so that for z sufficiently
large

© d

f(z) = T =2,
n=0 z"

then f is univalent at zy = ® if and only if d1 # 0; similarly
if f has a pole at zj it is univalent at z = Zg if and only

if z

0 is a first order pole.

Any function of a complex variable can be interpreted
as a mapping of one complex plane into another. In particular
mappings effectuated by univalent regular or by univalent
meromorphic functions are important; they are called conformal
mappings. Note that a function that is regular in any closed
region of a domain D with the exception of a finite number of
poles which may be situated on the boundary of D is called a
meromorphic function in D. The term "conformal" stems from the
following property. Let f be regular at z=z, and f‘(zo)#O,so that
it is univalent in some neighbourhood N(zo) of z,. Consider an
infinitesimal triangle in N(ZO) located at Zgs then the image
of this triangle under the mapping w = f(z), z € N(zo) can be

obtained from the pre-image by a rotation and a dilation, the
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angle of rotation being arg f(zo), the coefficient of dilation

df(z)

is l dz |z=zO

- the form of the triangle is not distorted.

The basic theorem in the theory of conformal mappings is:

Riemann's mapping theorem For a simply connected domain whose

boundary consists of at least two points there exists a function

f regular in this domain that maps this domain conformally

onto the unit circle |w| < 1; the function f is uniquely deter-

df(Z)l
dz Z=2

mined by f(zo) = 0, arg = 6, where z, is any point

of the domain and 6 any positive real number.

Note that a connected and bounded set E is said to be simply
connected if the finite region bounded by any closed polygonal
line which belongs entirely to E and which has no double points
is a subset of E; the restriction to bounded sets can be easily
removed, cf., Nehari [3], p. 3; and a Jordan contour divides the
plane into two simply connected domains.

An immediate and obvious consequence of the Riemann mapping
theorem is the fact that two simply connected domains D1 and D2
are conformally equivalent, i.,e., there exists a conformal

mapping from D1 onto D, and vice versa, note that the conformal

2

map of a domain is again a domain, and if one is simply connected
so is the other,

Important in the theory of conformal mappings is the relation
between the boundaries of the image and of the pre-image. A main

theorem is here (cf, Nehari [3], p. 179):
The corresponding boundaries theorem If LI and L; are two do-
mains bounded by smooth contours (cf. section 1.2) then the con-

+
1

a one-to-one correspondence between the points of Ly and L,.

formal mapping LI - L; is continucus in L, U L1 and establishes
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This theorem remains true not only if L1 and I_.2 are
ptecewise smooth contours but also if they are Jordan contours

(see section 1.2).

Next to the corresponding boundaries theorem we quote
the prineiple of corresponding boundaries, cf. [1], p. 109,
{21, p. 201, which is instrumental in proving the univalence
of a regular function in a domain:
Let L+ and L}

1 o be two domains bounded by piecewise smooth con-

tours L, and L,. If f(z) is regular in LI and continuous in

1 2

LI U L1 and maps L, one-to-one onto L then f(z) is univalent

2,
in LI U Li; if f(z) preserves the positive directions on Ly and
Lo then f(z) maps LI conformally onto L;, otherwise onto L;.

For further information concerning the behaviour of the
mapping function and in particular its derivative at the
boundary see [1], p. 264, [8] chapter 2, p. 36, and chapter 10,

also [9], p. 262.
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14.3. Reduction of boundary value problem for
L*to that for a circular region

Let L be a smooth contour but not a circle and let

its parameter representation be given by, cf. section 1.2,
Lo {x,y: x@ x(s), y = y(g), s€ s, »s41%,

with s the arc coordinate of L. Denote by 0(s) the angle between
the tangent of L at s and a fixed direction. It will be assumed
that 0(+) satisfies a H-condition; the contour L is then said

to be a Lyapounov contour.

Let w = f(z) be the conformal map of LY onto the unit
circle ¢t @ {w: [w| < 1} and denote by z = f,(w) the inverse
mapping, i.e. the conformal map of c* onto L*.

In the preceding section it has already been stated that
£f(+) and fo(-) are continuous in LY U L and ¢t u C, respectively.

But actually more is true. Kellogg's theorem (cf. [8], p.375)

4f(2) df o (w)
dz dw

respectively, moreover, with ¢ and s the arc coordinates of

states that and

are continuous on LY U L and ¢* v C,

the corresponding points on C and L, the continuous
derivatives %% and %% exist. This property leads to the conclusion
that if ¢(z), z € L satisfies the H(u) condition on L then
@(fo(w)), w € C, satisfies the same H(uy) condition on C and
vice versa.

Therefore if it is required to solve the Riemann-Hilbert

problem of section 3.1 one first solves the Riemann-Hilbert

problem:
Construct the function H(:) such that

(3.1) i. H(z) is regular for z € c*,

. . +
is continuous for z € C U Cj
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ii. Re[{3(m)-ib()}a"(1)] = S(v), © € ¢,
with for ™ € C,

d(1) := alf ()}, B(r) 1= b{f (1)}, S(1) := elf (T},
Then
(3.2) F(z) = H(£(z)), z € LT,

represents the solution of the Riemann-Hilbert problem

of section 3.1.

Only in a few exceptional cases it is possible to
construct in closed form the conformal map of a domain onto
|z] < 1, usually numerical techniques have to be applied.
In the next section we discuss an approach which has
turned out to be useful in solving boundary value problems

in Queueing Theory.

69
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14.4. Theodorsen’s procedure

There exists a rather extensive literature on the
actual determination of the conformal mapping of a simply
connected domain onto the unit circle C'. For an excellent
account discussing also the numerical analytical aspects the
reader 1s referred to [9]; a useful dictionary of
explicitly known conformal mappings is presented in [10). For
several problems encountered in Queueing Theory it turned
out that Theodorsen's procedure is very useful, it will be
discussed below.

This procedure determines the conformal mapping
w B fo(z) of the unit circle C* onto L which is bounded by
the smooth contour L being represented in polar coordinates

by
(4.1) L= {w: ws= p(@)ele, 0 <0 <21, p(o) > 01},

it is supposed that the origin of the coordinate system in

the w-plane is an interior point of L, and that
(4.2) £,00) = 0, £ () > 0.

It follows from the definition of conformal mapping
and from the corresponding boundaries theorem that fo(z)/z
should be regular for |z| < 1 and continuous for |z| < 1.
Consequently, the same holds for

fo(z)

(4.3) F(z) := log —

s lz| <1,

(the logarithm to be defined real for z B 0) i.e. F(z) with

u(z)+iv(z) := F(z), z € C U C+,



144, Conformal mapping

should be regular for z € c* and continuous for z € C U ¢t

i¢

Suppose the point z @ e maps onto the point

w = p(0(6))e 08

then from (4.3), for 0 < ¢ < 27,
(ho) Plel®) = uiel®yriviel?®) = 10g p(0C)I+il0(8)-0].

Actually F(z) as given by (4.3) should be for |z| B 1 the
boundary value of a function regular in |z| < 1, continuous
in |z| < 1 and satisfying (4.4). This is a problem encountered
in section 1.9. Let us suppose for the present that F(t) for
|t| @ 1 satisfies an H-condition then from (1.9.2) it is seen

that F(to), t., € C should satisfy

0

y = ok p o ELED g t, € C.

(4.5) 1F(t =
2wl tEC t tO

Separation of real and imaginary parts in (4.5) leads directly

to: for 0 < ¢ < 27,

. 2m . 2m .
(4.6) —u(el¢)-+§% I oute™)dw +§%-f vie™™)cot F(w-¢)dw = 0,
0
L 2m . 27T .
(4.7) -v(el¢) +§%-f vie™)du —5% f u(e*®)ycot F(w=0)dw = 0;
0 0

note that the relations (4.6) and (4.7) which are equivalent
with (4.5) are not independent because of the Cauchy-Riemann
conditions.,

Because of (4.2) and Cauchy's integral formula we have

27 . .27 .
1 F(t) 1 i¢ i i¢
= [ ——=2 dt = = [ ule )do +== J v(e 7)d¢
2wl |t‘:1 t 2m 0 2m 0

log £{2(0),

so that, cf. (4.2),
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27 .
3 i¢ -
(4.8) 7 g v(e Y)do = 0.
Hence (4.4), (4.7) and (4.8) require for 0 < ¢ < 27:
1 2w
(4.9) 0(¢) = ¢ - 7?‘f {log p(B(w))lcot I (w-¢)dw.
0

This is Theodorsen's integral equation [9] for 0(¢9), 0 < ¢ < 2m;
it is a nonlinear, singular integral equation. Once 0(.) is

known then, cf. (4.4), u(ei¢) is determined by
(4.10) u(e®®) = log p(0(6)), 0 < ¢ < 2m,

and if u(z), z € C is continuous, the determination of F(z),
z € ¢* amounts to solving the Dirichlet problem for the
unit circle, see section 3.2. It follows by applying the
Schwarz formula, cof. (3.2.4),

21 i¢
1 e T+z
ﬂ .g {log p(@(d)))}—]T d¢’

FC2) _ Lo e -z , 1z < 1.

(4.11) fo(z) =z

It remains to discuss the solution of the integral
equation (4.9) and the above introduced H-condition, in other
words under which conditions to be satisfied by L has (4.9)
a unique solution so that fo(-) as given by (4.11) represents
the conformal map of ¢t onto L+; Riemann's mapping theorem
guarantees the existence of such a mapping.

We shall not discuss here in detail these questions bLut shall
confine ourselves to quoting the relevant conditions, referring

the reader for details to [9], p.66.

i. Let L (cf. (4.1)) be a starshaped Jordan
contour (starshaped: every point of L can be seen from the origin,
cf. [3], p.220) and such that p(0) is absolutely continuous in

[0,2m] with |é% log p(@)| uniformly bounded for almost all
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© € [0,27] then the integral equation (4.9) has exactly one
solution which is continuous in [0,2w]; ii. the integral
equation (4.9) admits of only one solution which is on

[0,27) continuous and strictly increasing.

Note that if L is a smooth, eggshaped contour then the
conditions sub i are satisfied, (4.9) has a unique
continuous solution, and the conformal map from c* onto L*

is given by (4.11). In Hibner [38] , p. 5, it is remarked

that in ii. above the monotonicity condition can be omitted.

It is implied by the continuity condition.
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PART I
ANALYSIS OF TWO-DIMENSIONAL RANDOM WALK

IL.1. The Random Walk

I1.2, The Symmetric Random Walk
II.3. The General Random Walk

I1.4, Random Walk with Poisson Kernel
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IL1.1. 77

II.1. THE RANDOM WALK

I1.1.1. Definitions

{(Qn,ﬂn),n= 0,1,...} shall denote a sequence of independent,
identically distributed stochastic vectors with range space

the lattice
{(-1,0,1,2,...}x{-1,0,1,2,...}.

By (x,y) shall be denoted a stochastic vector having the

same distribution (notation: ~) as (§n+ 1,Qn+ 1), i.e.
(1.1) (x,ydnv(g + 1,n + 1),

gso that with probability one

(1.2) x 20, y=0.

The random walk {(En,xn),nﬂ 0,15...} to be considered is
defined as follows:

for n = 0,1,2,...,

_ +
(1.3) Xnpq G [x *+ &1
_ +
Inye 7 [Xn+ Dn] ?
with
(1.4) Xy 7 X, ¥y B Y, X,y € {0,1,2,...};

here: for real a we notate
[a]+:= max (0,a), [al := min (0,a).

This random walk is said to be continuous to the West, to

the South-West and to the South because per step the displacement
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in the negative x- and/or y direction is at most equal to one.

It follows from (1.3) and (1.4) that

(1.5) Xopq = maxl0,8 LB 4B s e nf ¥ et E LB T L Bt x]

Yne1® max[O,nn,Qn+~ﬂn_1,...,n taoetngent ..t ngt yl.

—n —_

Put for n = 0,1,...,

(1.6) g _:= £O+£+...+£,

n = 21 =n
.07 Ngtngt t0,»
g_lz= 0, 1_1:= 0,
and
X, o= max(0,04,0,5.0059, 159, 7 XD,
Y := max(O,lO,El,...,ln_1,1n+ v).

It follows immediately that

(1.7) CIPI ORI S PP

We introduce for n @& 0,1,..., and for
Ipll <1, IPQI <1, Iqll =1, |q2| =1,
the joint generating function

(n) L Zn In Zph-1 In-i
(1.8) ®py (P15P2»d158p):% Elpy Py g Ty |

Xy = XY, 7 V)

because X, 20, In 2 0, ¢f. (1.3), the righthand side of (1.8) is

well defined.

From (1.3) and (1.8) it follows for nm 0,1,2..., that
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+
(n+1) [5n+£n]

(1.9) xy  (P1>Ppedysdy)= Elpy Py

79

[znm_“]+

In In
.ql q2 li 'X’XO y}

X_tE

g
= E{lp, " T(x,+ £ 20 ¢ (x o+ B < 0)]q "

y.in
Zn -n
.[p2

T
(y,+n,= 0 + (y +n < 0)]q2_“|5 = X595 ¥}

where (A) stands for the indicator function of the event A.

Because x_ € {0,1,2,...} and éne {-1,0,1,2,...} with prob-
ability one, it follows that
= - = 1- = -
(1.10) (x, v+ §,70) B1-(x +§ <0) =1 (x,+ &, = -1

= 1= (x = 0)(g = -1),

and similarly for (zn+ﬂn> 0). Inserting (1.10) in (1.9) and

noting that (zn,zn) and (gn,gn) are independent stochastic vec-

tors, it follows, omitting the lengthy but simple algebra that

(1.11) P1P,4,4, Q;n+1)

y  (P13Pp>21:d,)

= ¥(pyq,5P,4,) ¢x (pl,Pz,ql,q2)+ (1-p)(1-p,)

. ¥(0,0) @(“>

(0,0,9,,9,)
)
- (1-p,) ¥(piq,,0 @;; (p;50,a,,a,)

- (1- pl)W(O,pzqz) é (O,pz,ql,qz)

forn = 0,1,2,..., |p1| <1, ]p2] <1, |q1|

(o) =5 X,V
(1.12) by (P15P2>9158p) = PyPy s
and, cf. (1.1),
A £t on
(1.13) ¥(p;,p,):s= E{p1 P, } o= E{p1 Py

+1

|q2| = 1, with

}, lpil<1= |P2|< 1.

Remark 1.1 Note that for given x,y and given W(pl,pz) the

(n)

functions ¢ (.y.5.5.) are uniquely determined by (41.11) and

xy
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(1.12) and that

(n)
(1.14) |¢xy <p1,p2,q1,q2)1 < 1.
Consequently,
L 2 n, (n)
(1.15) ¢Xy(r,p1,p2,q1,q2).- o T Qxy (P1sPp3Q759)) s
with

Ir] <1, |pgl <1, p,l <1, [qql = 1, g, = 1,

is uniquely determined for given x,y and W(pl,pz) by the

set of recurrence relations (1.11) and (1.12).
From (1.11), (1.12) and (1.1%) it follows for

el <1, Ipyl <1, [p,| <1, lqg] = 1, [q,] =1
that

v ¥(pya,,P93,)} &, (rspy5P51:9450))
x+1

=p1

-r(1- p2) W(plql,O) ¢xy(r,p1,0,q1,q2)

-r(1- py) W(O,PQQQ) @Xy(P,O,pz,ql,QQ).

¢xy(r,p1,p2,q1,q2) as defined in (1.15) has the following
properties:

(1.17) 1i. it satisfies the relation (1.16);
ii. it is regular in p, for p; € Cl+ B {p1:|p1|<11}
. . + .
and continuous in p, for p, € C,7 U C, A {p1.|p1|<JJ with all

the other variables being kept fixed; and similarly for the

1
p2Y 4,9, + r(1-p,)(1-p,) ¥(0,0) @xy(r,O,O,ql,q2)

From the derivations above it is evident that the function

IL1.1,
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variable P,
iii. it is regular in v for r € C* m {r:|r| <1}, all the
other variables being kept fixed.

Put for |r| <1, [p,] <1, |p,| <1,
(1.18) @xy(r,pl,p2):= @Xy(r,pi,PQ,l,l),

then Qxy(r,pl,pQ) satisfies, cf. (1.18),

(1-p,)(1 -p))
p1p2 - r'ly(Pl 3p25

(1.19) @xy(r,pl,pz) =

X+1_  y+1
P1 Py

-l +1 ¥(0,0
(T-p 0= 2008, 0 (,0,0)

W(pi,O) W(O,pz)

-p—l—_—-ﬁl—¢xy(r,p1,0)—r o} (I‘,O,p2)],

1 =P, XY

for |r

<1, |p1| < 1, |p2| <1, and it has the properties (1.17).
The basic problem in the analysis of the random walk
{(ﬁn,ln), n@0,1,...} is the determination of the function
¢xy(r,p1,p2) satisfying (1.17) and (1.19).
In this analysis an essential role is played by the zerocs

(pl’PZ) of the kernel

(1.20) Z(r,pyspy)i= PP,y - v ¥(pysD,), [Pyl <1, Ipy| <1
with |r| <1,

because the regularity of ¢xy(r,p1,p2) in each of its variables
Py and Pys cf. (1.17), requires that such zeros should be also

zeros of the expression between square brackets in (1.19).
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I1.1.2. The component random walk {x

Xp n=0,12,.}

By taking p, m 1 in (1.19) it readily follows that

for [r| <1, |py| <1,

x+1
1-py Py

Py - rW(pl,l) 1- Dy

(2.1) ¢xy(r,p1,1) g -7 W(0,1)¢Xy(r,0,1)].

Because on [p,| = 1, cf.(1.13),
|p1| = 1> |r| > |rW(p1,1)|,

and ¥(p,,1) is regular in [p,| <1, continuous in |p,| <1,
it follows from Rouché's theorem, cf. [1]p.97, that for |r| <1

the kernel Z(r,pl,l), cf. (1.20), has exactly one zero

(2.2) py ® ul(r)

in |p;] <1, and
(2.3) [y (rd| <1 for Ir|] <1,
-1 <y, (r) <1 for -1 <r <1.

The regularity of ¢xy(r,p1,1) in 15 € C+, cf, (1.17), re-
quires that ul(r) should be a zero of the term between square

brackets in (2.1), i.e.
x+1

ul(r)
(2.4) r¥(0,1) <bxy(r,o,1) = —1_—“1(?; , r| < 1.
Remark 2.1 The possibility ¥(0,1) B 0 (and also ¥(1,0) = 0)
shall always be discarded, because otherwise the feature that
the random walk {(zn,xn), n=20,1,2,...} can move to the West
(to the South) is lost.

Therefore, it will always be assumed that

(2.5) ¥(0,1) >0 and ¥(1,0) > 0.
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It is readily proved (cf. also section 2.13) that ul(r)

is continuous in |r| < 1 and that for r + 1, r € c*,

(2.8) uy (= m oy () = 1 if E{x}- 1= E{g } <0,

<1 if > 0.

Moreover ul(l) is a zero of Z(l,pl,l) with multiplicity one

if E{x} # 1, with multiplicity two if E{x} = 1.

The component random walk {in,n=0,1,...} is:
(2.7 non-recurrent if E{x} > 1,
null -recurrent if a1,
positive recurrent if <1,

and aperiodic if and only if
-1
(2.8) p, "¥(p;,1) ¥ 1 for [pll =1, py* 1.

Further it is noted that ul(r) is the generating function
of the return time distribution (in discrete time) of the

zero stateand for |[p,| <1, [r| <1,

X+1
1 ‘Pl p1X+1 ul(r)
(2.9) ¢xy(P,P1,1)- Dy - rw(pl,l){l— pl_ 1- ul(r)}'

If E{x} <1 and (2.8) holds then the component random
walk {5n,n= 0,1,2,...} possesses a unique stationary distri-

bution of which the generating function is given by

1-p
. 1
(2.10) lim(i-r)d 1)ma{1-E < 1.
riT T Xy(r‘,pl, ya [ {X}]W pl’l =7, s |P1|

The results stated above are elementary results in the

theory of Markov chains.

Remark 2.2 - Obviously for 0 <r <1,
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and the last term is for r 4 1 finite if and only if E{x} > 1,
or equivalently E{En} > 0. Consequently, the random walk

{(én,zn),n= 0,1,2,...} 1is non-recurrent if

(2.11) E{x} > 1 and/orp E{y} > 1.
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II.2. THE SYMMETRIC RANDOM WALK

11.2.1. Introduction

The stochastic variables (x,y), cf. (1.1.1), are called

exchangeable if for all nonnegative integers k and h
(1.1 Pr{x=k,y=h} = Pr{x=h,y= k}.

In this chapter it will be assumed that x and y are ex-
changeable variables. Consequently, cf. (1.1.1), it follows that

{gn,gn} are exchangeable variables for every n @ 0,1,..., i.e.

(1.2) Pr{g =k,n =h} = Pr{g =h,n =k}, k,h€{-1,0,1,2,...}.

The relation (1.2) leads to many symmetry properties of the
random walk {(gn,zn),n= 0,1,2,...}., E.g. it implies for any
subset A of the state space of the random walk with (0,0) & A
that the distribution of the first entrance time into A from
out (0,0) is identical with that from out (0,0) into B with the

set B defined by

B = {(x,y) : (y,x) € A},

The assumption also considerably simplifies the deter-
mination of the function @xy(r,pl,pz), cf (1.1.19), as it can
be expected; however, the basic principle of the analysis for
the present case does not differ essentially from that for
the general case, see chapter II.3.

We introduce some notation and further assumptions.

(1.3) ag51= Pr{x=1i,y=173} , i,7€{0,1,2,...},
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so that (1.1) implies

(1.4) a,. = a,..
ij ji
Assumptions:
-] (-]
(1.5) i. ¥(0,1)= _? a0j>>0, ¥(1,0) = ‘? ai0>>0;
1=0 i=0

ii. for [p,| ® 1, [p,| B 1:
5—1 y-1
IE{p1 P, }| =1  if and only if p; B 1, p, =

iii. E{x} < e, E{y} <o,

The assumption (1.5)i1 has already been discussed in the
previous chapter, cf. (1.2.5);
(1.5)ii is equivalent with strong aperiodicity of the random
walk cf. [12], p.42,75, it implies that for nonnegative inte-

gers i,j,h and k a nonnegative integer n exists such that

(1.6) Pr{§n= h,y = k)§0= 1,9, i} >0,
and that
(1.7) a4 <1 for all i,j € {0,1,2,...}.

Remark 1.1 Later on for technical reasons, cf, (5.10), the

following assumptions are introduced:

(1.8) ¥(0,p,) ¥ 0 for |p2| <1, p, ¥ 0,
¥(p,,0) # 0 for |p1[ <1, py ¥ 03

and (with sections II.3.10,...,II1.3.12 excepted) cf. remark 2.1:

(1.9) ¥(0,0) > 0.
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11.2.2. The kernel

The kernel Z(r,pl,pz) of the random walk

{(En’ln)’“z 0,1,2,...} has been defined in (1.1.20):
X
(2.1) Z(r,p,>p,) B p;p,- r¥(p,>P,) B p,p, - v Elp, Tp L},

for |o| <1, |p,] <1, [p,| < 1.

Consider the kernel for

-1
(2.2) Pl = g8y P2 = gs >
with
(2.3 [g] <1, ls] = 1, lr| < 1.
It follows
- Xty X-y
(2.4) Z(r,gs,gs 1) a g2 - r Elg s }
= g2 -7 2 z khgk+h8k_h.
k=0 h=0
It is readily seen that
-1
_ a +a,.gs+a,, gs
(2.5) Z(r,gs,gs i)= 0 © g2=r Oom 1000 01 .
1-r 2 Z akhgk+h_25k-h
k=0 h=0
k+h=>2

Note that (2.3) implies that

0o
k+h-2 k-h
(2.6) lr X Za s I<|r|{1-a - asq- agat <1,
4 . 00~ %107 %01
k=0 h=
k+h=>2

so that the denominator in (3.5) never vanishes.

Lemma 2.1 For |r| <1 and for
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(2.7) = ¥(0,0) > 0:

200

i.  the kernel Z(r,gs,gs_i), |s| = 1, has in |g| <1 exactly

two zeros;

ii. if g(r,s) is a zero so is -g{r,-s);

iii. g = 0 is a zero if and only if v = 0 and then its multipli-
city is two;

iv. For 0< r< 1 and every |s|=1 both zeros are real, one is
positive, the other is negative. and both are continuous

functions of ¢, with s = el¢, 0 < ¢ <2m,

Xty X-y
Proof Because x and y are both nonnegative E{g s } is for

every fixed |s| @ 1 regular in |g| < 1, continuous in |g| <1
and for |g| = 1:

2 Xty x-
[g°] m 1> |r| = |rElg s

H
the first statement follows by applying Rouché's theorem.

The second statement follows from (2.5) by taking in the
denominator the sum firstly over those k and h for which k + h
and k - h are both even and then for which they are both odd.

The third statement follows directly from (2.5) and (2.7).

To prove the fourth statement it is noted that the ex-
changeability of (x,y),cf. (1.1) implies

xty (x-y) x+ty i1¢(x-y) X+
S e

Xty
(2.8) E{g = E{g cos(x-y)¢l}.

} = E{g

The first statement implies that
2 Xty
(2.9) g"-r E{g ecos(x-y)¢}, 0 <r <1, |g|]<1,
has two zeros, so that (2.7) together with the properties of

the graphs of each term in (2.9) shows immediately thHe validity

of the fourth statement. a
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Remark 2.1 We shall not consider here the case agg a0,

ef, (2.7), because as it will be seen in sections II.3.10,...,

IT.3.12 the analysis for the case a,, B 0 requires a slight-

00
ly different approach.

89
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11.2.3. S4(r) and Sx(1) for ¥(0,0)>0,0<r< 1

Denote by g(r,s), |s| B 1 the positive zero, by g,(r,s),
|s] 8 1 the negative zero mentioned in lemma 2.1 of the pre-
ceding section. Obviously if s traverses the unit circle then
g(r,s) traverses twice a finite linear segment 1 of the
positive axis and gz(r,s) does the same but on the negative
axis, on, say, 12.

Define for fixed r with 0 <»r < 1,

(3.1) 8,(r):= {pizplz s glr,s), |s| = 1},

1}.

-1
Sz(r):= {p2:p2= s “g(r,s),|s]|

Remark 3.1 TFrom lemma 2.1 ii it is seen that the sets Sl(r)
and Sz(r) do not change if in (3.1) sg(r,s) and s_lg(r,s) are

replaced by sgz(r,s) and s-lgz(r,s), respectively.

Lemma 3.1 TFor fixed r with 0 <r < 1 the set Sl(r) is a

smooth contour and p; B 0 € Sl+(r), the interior of Sl(r);

analogously for Sz(r).

Proof Because g(r,s) traverses 1, twice when s traverses the

1
unit circle the continuity of g(r,s) immediately shows that
Sl(r) is a closed curve; g(r,s) > 0 implies that Py = 0 is an
interior point of SI(r). From lemma 2.1 it follows further that
glr,s), s @ ei¢, 0 < ¢ < 21 possesses a derivative

x-

Xty Xy
E{(x-y)glr,s)s }
(3.2)

0=

12 pr,e) =
g{r,s) oas 8 787 7

Xty Xy
E{(2-x-y)g(r,s)s” '}

Further lemma 2.1 implies that for every s with |s| = 1
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the zeros g(r,s) and gz(r,s) both have multiplicity one, so

that the denominator in (3.2) is never zero for |s| = 1. Hence
B_as— g(r,s), |s| = 1 is bounded and continuous, i.e. Si(r’) is a
smooth contour. O

Remark 3.2 It is readily verified that
(3.3) glr,s) = glr,s), |s} = 1,

so that Sl(r) and SQ(P) are congruent contours.
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11.24. Ar,z) and L(r)

We consider the following question for ¥(0,0) > 0,
0 <pr < 1. Does there exist in the complex z-plane a smooth
contour L(r) and a real function A(r,z) defined on L(r) such

that for z € L(r):

(4.1) i. p1+(r,z):= g(r,eiA(r’Z))eik(r’Z),

is the boundary value of a function pl(r,z) which is regular
for z € L+(r), the interior of L(r), and continuous for

z € L7(r) UL,

(h.2) i p,T(r,2)i= glp,elr(TiE))emiA )

is the boundary value of a function pz(r,z) which is regular
for z € L (r), the exterior of L(r), and continuous for

z € L (r) U L(r)?

As posed the question is somewhat too general because the
orientation of L(r) with respect to the points z = 0 and z B «
needs specification, and so does pl(r,z) at z 8 0 and at z = ®,
if relevant. The theorem below provides an answer to the guestion
posed for the symmetric random walk {(5n,zn),n= 0,1,2,.,..} for
the case ¥(0,0) >0, 0 <r < 1. It turns out that L(r) exists
and is in fact a circle.

By noting that the righthand sides of (4.1) and (4.2) are
finite and never zero for z € L(r) it may be assumed without

restricting the generality that for every 0 <r <1,

(4.3) z = 0 € L+(r), z = ® €L (r),
and
(4.4) z = 1 € L(r).
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From (4.1) and (4.2) it follows for z € L(r):

(4.

(4.

where the branch of log g(r,e

+
p, (r,z) _ .
5) log—l——————-flog zp, (r,z)= 2 log g(r,elx(r’z)),
z
p1+(r,z) _
6) log——+——-log zp, (r,z)m 2ix(r,z)~ 2 log z;
z

lMP’Z)) is taken such that its

value is real, note g(r,s) > 0 for |s| = 1.

By requiring that p,(r,z)/z for z » 0 and zp,(r,z) for
1 2

|z]| -~ » both have finite limits, the question posed above

leads to the following boundary value problem.

Determine a smooth contour L(r), satisfying (4.3) and

(4.4), and a real function A(r,z) defined on L(r) such that:
(4.7) i. pl(r,z) is regular for z € L+(r), continuous for
z € LY (r) U L(r),
ii. pl(r,z) has a simple zero at z = 0 and
3
-Q"Z-PI(I‘,Z) \Z=U >0,
(4.8) i. pz(r,z) is regular for z € L (r), continuous for
z € L (r) VU L(r),
ii. pQ(P,%) has a simple zero at z = 0 and
w > |1im zpz(r,z)| >0,
{Z|—>oo
(4.9) p1+(r,z) and p2_(r,z) satisfy (4.1), (4.2) or

equivalently (4.5) and (4.6), i.e. they constitute

a zero of the kernel.

Remark 4.1 It will be required that

(4.

10) A(r,1) = 0;
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this does not restrict the generality, it merely positions

the function A(r,z), z € L(r).

Lemma 4.1 If the boundary value problem described by (4.3),
(4.4), (4.7)y...,{(1,10) has a solution then it is the unique

solution.

Proof Suppose pl(r,z), p,(r,z), L(r) and Hl(r,z), 1,(r,z),
A(r) are two solutions. Denote by plO(r’Pl)’ P4 € Sl+(r), the
inverse mapping of pl(r,z), analogously for pzo(r,pz), Hlo(r,pl),

Hzo(r,pQ). Then, from (4.7)i and (4.8)i,

2(z):= pyo(r, T,(r,2)), z € AT (r) U A(D),

1

Pyglr, My(r,z)), z € A (r) U A(p),

is regular for z € ATy U A" (r) and continuous for

z € A+(r) U A(r) as well as for z € A (r) U A(r). Hence by
analytic continuation Z(z) is regular in the whole z-plane.
For p, € 82+(r) it is seen that, cf, (4.8)ii,

1 -1
ZL(z) = {pznzo(r,pz)} p2p20(r,p2) for z = T,,(r,p,).

Because (4,.8)ii implies that

0 <| lim zN,(r,z)| = |1lim p, I  (r,p,)]| < =
e 20 pya0 T2 200702 ’

0 <| lim zp,(r,z)| = |lim p,p, (r,p,)| <=
2% b T2P20 P2 g

|z |+

it follows that Z(z) has a simple pole at infinity.
Consequently the (extended) Liouville theorem implies that
Z(z) @A + Bz,

with A and B independent of z. From (4.7)ii it is seen that

A @0 and from (4.4) that B @ 1. Consequently Hi(r,z) = Pi(r,z)

and hence A(r) = L(pr).
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Note that in the proof of lemma 4.1 the exchangeability

of x and y is not used.

The following theorem describes the solution of the

boundary value problem formulated above.

Theorem 4,1 TFor the symmetric random walk {(En,xn),n= 0,1,2,...
with ¥(0,0) > 0, 0 <r < 1 the boundary value problem (cf.

(4.7)5++.5(4,10)) has a unique solution:

i, L(r) is a circle with radius one and center at z = 0;

ii. Ar,z) with 0 < A{(r,z) < 2w, |z| & 1, is the unique

strictly increasing solution of the integral equation (note

contour integration is anticlockwise)

1 ix(r,z) r,+Z g+1,dg
. —— {log glr,e 22 OH=2— ———}——
(4.11) elA(r,z)= ze’Mt [z]=1 ¢ e-lte o,
lz| = 1,
and AMr,z) is continuous in z \m ei¢, 0 < ¢ < 2m;
7%3 ! {log g(r,elx(r’c))}{%;é E—E}zé
(4.12) py(r,z) = ze lz]=1 )
2] <1,

iA(r,8)yy 542 gtlyde

i {log glr,e
p~(r,z)=z e 2] =1 e-17¢
[z > 1;
(4.13) Ip,(r,2)| <1 for lz] <1,
[pz(r,z)[ <1 for [z] > 13

it

iii. p;(r,z) is a conformal mapping of c* {z: |z] <1} onto

+
1

p,(r,z) is a conformal mapping of c”

S, (r),

{z: [z|[ > 1} onto

u

Sz+(r);
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(4.14%) p,(r,z) = p2(r,%), [z]| < 1.

Proof The condition that L(r) should be a smooth contour
and the requirements (4.7) and (4.8) together with the
principle of corresponding boundaries, of. sectionI.4.2
and lemma 3.1 lead immediately to the conclusion that
pl(r,z) maps LY (r) conformally onto Sl+(r), and similarly
pz(r,z) is the conformal map of L (r) onto 82+(r).

From (3.1) it follows that
(4.15) Py € Si(r) “ Py € 82(r).

Next observe that the mapping z -+ % of ¢¥ onto ¢”, i.e. the
"inversion” with respect to C is a conformal map which maps
z @0 onto z =» and z onto z if |z| = 1.

Hence if L(r) is the unit circle then remark 3.2, (4.15),
the properties of the "inversion" and Riemann's mapping theorem,
cf, sectior I.4.2, imply (4.14) and statement 1ii. Consequently,
lemma 4.1 guarantees that L{r) is the unit circle. Hence (4.1k4)
and the statements 1 and iii of the theorem have been proved.

The construction of the conformal map of c* onto 81+(r)
has actually been discussed in section I.4.4 because the smooth

contour Sl(r) is represented by, cf. section 3,
(4.16) = g(r,s) =M 0 <4 <2
. py= glr,sls, s =e™", ¢ m.

From section I.4.4 it is readily seen that the relation (4.11)

represents Theodorsen's integral equation for the present case

o, by 100000 Lng A(z) by 8(¢)

(replace in (4.11) ¢ by e
with  6(¢) @0, w, ¢ and ¢y real). The properties of g(r,s),

|s| B8 1 discussed in the preceding sections, together with
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theorem 4.1 of section IL.u4.4 show that the integral equation
(4.11) has a unique, strictly monotonic continuous solution.

In particular the existence of %% g(r,ei¢), 0 <¢ <2m,
cf, (3.2), and its higher derivatives leads by using (4.11)
and the remarks in section I.1.10 to the conclusion that i {r,z)

ix(r,z)

is differentiable along [z| B 1, so that A(r,z) and g(r,e )

l>‘(P’Z)) satisfy a Holder condition

and hence also log g(r,e
on |z| = 1.

The validity of the relations (4.12) can be obtained by
applying the results of section I.4.4. A direct proof proceeds
as follows. Because log g(r,eix(r’Z)) satisfies a H8lder con-
dition on |z| = 1 it follows directly that p,(r,z) as represen-
ted by (4.12) satisfies (4.7)i, and as it is readily seen also
(4.7)ii, analogously for pz(r,z) in (4.12).

The Plemelj-Sokhotski formulas, cf (I.1.6.4), may now be
applied to the expressions in (4,12), and it results that
p1+(r,z) and pz_(r,z) for |z| = 1 satisfy (4.5) and (4.6). The
conditions (4.7),(4.8) and (4.10), see also statement iii of
the present theorem, together with Riemann's mapping theorem
guarantee that the relations (4.12) are unique.

Finally, the validity of (4.13) follows from

lA(I’,Z)) <1 on IZI - 1,

|p1*(r,z)| = |P2_(P,Z)| aglr,e
by applying the maximum principle, cf, [3], p.119 for functions

regular in a simply connected domain. O

Remark 4.2 The boundary value problem (4.7),...,(4.10) is

rather characteristic for the analysis of the general random
walk {(zn,zn),n= 0,1,2,...} as it will be seen later, cf.

section 3.6. It is for this reason that we discuss here a slight-

ly different approach (with L(r) the unit circle).
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Define, cf. (4,8)ii,

4.17) d:= 1lim zpz(r,z),
| 2|+
and rewrite (4.5) as

+ - :
p, (v.z) zp, (r,z) 2 ix(r,2z)
(4.18) log=——+ log—2 5 - logh (r’ed )2 e L(p).

Assume that log g(r,eiX(r’Z)) satisfies a Holder condition
on L(r). The conditions on L(r) and the conditions (4.7) and
(4.8) together with (4.18) then formulate a boundary value
problem as discussed in section I.1.7.

From the results in that section it follows immediately

that
p.(r,z) 2 ix(r,z)
1 1 g (r,e >?7) dt +
(4.19) log———= —+ [ log= 2 =, z€ L (r),
z 271 ZEL(D) d L-2°
zp2(r,z) 1 2( eiA(r,c% d _
(4.20) log—Se——= - r f log& i e, e LT ().
d 2mL LEL(D) d r-2?

From (4.1), (4.4), (4.30) and (4.19) by applying the Plemelj-

Sokhotski formula it follows

log p1+(r,1)= log g(r,1)

. dc
1A(r,c))} 7=

C—

T

2
T log g (r,e

{
LEL(r)

- lim e I {log a3dE

21, T open(ny  eTE
z €L (r)

1 2, ix(r,),,dz
(4.21) log d= = [ {log g“(r,e 2=
2mL ren(r) ’ 1
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Insertion of (4.21) into (4.19) and (4.20) leads to the
relations (4.12). From (4.12) p1+(r,z) and pz_(r,z), z € L(r)
are obtained by using the P-S formulas, substitution of these
expressions into (4.6) yields the integral equation (4.11).

Next start from (4.6}, cf. (4.17), i.e. from

+ -
p, (r,z) zp, (r,z)
1 S log z 3 - 21A(r,z) - 2 log z+ log d,

(4.22) log

z € L(r).

Assume that ze_n‘(r’Z)

satisfies a H8lder condition on L(r)
then again a boundary value problem of the type as discussed

in section I.1.7 1is obtained. Its solution reads

pi(r,z) 1 ar
(4.23) log—=—F—= 70r / {2ix(r,z)-21ocgg+log d}-;-_z s
z€L(r)
z € L+(r),
(4.24) Jog 22 0P 1 ; {2iA(r,z)-2logz+log 22
. og—t— = = 2iA(r,r)-2logr+log d—=
d 2Tl rEL(r) ? -z °
z € L (r).
As below (4.20) it follows that, cf., (4.14),
(4.25) log g(r,1) = == /  {2iA(r,z)-21logz} 2%+ log d
- g g(r,1)= 773 ; Bbig-1* o8 <

ZEL(r)

Substitution of (4.25) into (4,23) and (4.24%) yields

1

i 1,4
=1 ! {ir(r,z)-logr} {232 2¥11dt

(4.26) py(r,z) = ze t€L(r) t-z t-17¢ glr,1),

z € LY (r),

ooy S Uikr,o)-loge} (124 SELCE
pz(r,z)= z e ZEL(r) g(r,1),

z €L (r).
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By applying the P-S formulas it follows from (4,26) that
(note that log{z_lelx(r’Z)} satisfies a H8lder condition on

L(r)) for z € L(r),

iA(r,2) + oo [ [HiAr(r,z) - log £} x

(4.27) p, (r,z) = glr,1) e 2Tl el (p)
L+z_ T+lydg
x{—c—:-i c_l} 1s
) id(r,z2) + 5 £ [{ik(r,e) - log g)x
P, (r,z) = g(r,De zEL(r)

X{C-Q-Z C+1 d;].

Substitution of the relations (4.,27) into (4.5) yields: for

z € L(r),

( ix(r,2z) 7%* ;S {ix(r,z) - log C}{Eié- 5—*}75

(4.28) grﬁgﬁﬂr—):e 1 r€L(r) g-1

From the results of section I.,1.8 it is readily seen that
(4.11) and (4.28) are equivalent, and the equivalence of (4.12)
and (4.26) follows readily.
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11.2.5. The functional equation

For, c¢f. lemma 2.1,

(5.1) ¥(0,0) >0, 0<r<i1,

we consider the relation (1.1.19), i.e. for [pl[ <1, ipzl <1,

2(r,py:Py) p, " p, Y o (r0,0)
(5.2) (1'P1)(1'pz @Xy(r,pl,pZ)z (T-5 (17, + p¥(0,0) xy (T
W(pl,O) W(O,pz)
—I‘——,].Tp_l— Qxy(r,pi,O)— r T‘_TQ q)xy(raospz)'

The definition of ®xy(r,p1,p2) implies that @xy(r,pi,pz) should
be for fixed |[r| < 1 regular in Ipll < 1, continuous in lpll <1
for every fixed p, with ]p2[ < 1, and analogously with p, and

P, interchanged. Hence a zero (P1’p2) of the kernel Z(r,pl,p2)
in {p;| <1, |p,| <1 should be a zero of the righthand side

in (5.2).

Hence if we take for z € L(r) = {z:|z| = 1},

iA(r,z))eik(r,z),

11}

(5.3) p; = p1+(r,z) glr,e

P, * Pz_(r,z) = g(r,eiA(P’Z))e-ix(P’Z),

cf. (4.1) and (4.2), then it follows from lemma 2.1 because A(r,z),
lz| 8 1 is real that for |z| B 1:
¥(p, (r,2),0)

(5.4) p—2 % (r,p, (r,z),0)+ T
1- p1+(r,z) *y 1 ’

W(O,pz—(r,z))

1- p2—(r,z)

2

. (ny(r,,o’pz_(r,z)) = PW(O’O)QXY (P,0,0)+ ny(z)

where
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+ X+1 _ y+1
{p1 (r,z)} {p2 (r,z)}

(5.5) ny(z):= |z] = 1.

- 2
{1- p1+(r,z)}{1— p, (r,2)}
From the definition of ¢xy(r,p1,p2) and from theorem 4.1 it

follows readily that

(5.6) i. ¢xy(r,p1(r,z),0) is regular for [z| < 1, continuous
for |z| <1, and
. +

i—i’; Qxy(r,pl(r,f:)ao) = (ny(r’Pl (I’,Z),O), |Z| =13

5] <1

ii, ¢xy(r,0,p2(r,z)) is regular for |z| > 1, continuous
for |z| 21, and

lim.QXy(r,O,pz(r,C)) = ¢xy(r,0,p2_(r,z)), lz] = 1.

Lz
fg] >1

Since the funetion ¥(p;,p,), |p;| <1, [p,| <1, cf (1.1.13)
should be considered as a known function it is seen that the
relations (5.4) and (5.68) represent a Riemann boundary value
problem of a type as formulated in section I.2.1. Actually,
there is aminor difference because of the occurrence of
¢Xy(r,0,0) in the righthand side of (5.4). However, note that
(4.8)ii implies that
(5.7) %iT*w®xy(r,0,p2(r,z)) = @xy(r,0,0).

For the analysis of this Riemann boundary value problem we
have to investigate the index related with the boundary con-
dition (5.4), cf. sections I.2.1,...,I1.2.4, i.e. the index ¥
of

1- p1+(r,z) W(O,pz-(r,z))
(5.8)

— - on |z| = 1.
1- P, (r,z) \y(p1 (r,z),0)
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Note that
+ - .
0 <|py (r,2)] = |p, (r,2)] <1 for [z| = 1,

and that W(pl,O) is regular for Py S Sl+(r) v Sl(r), and
¥(0,p,) is regular for p, € SZ+(P) U s, (r); but W(O,pz-(r,z)),
and similarly W(p1+(r,z),0),can be zero for a =z with |z| = 1,
the index of (5.8) is then not defined.

Further if ¥(0,p,) with |p2| < 1 and/or ¥(p,,0) with
|p1| < 1 has zeros then ¥(0,p,(r,z)) and ¥(p,(r,z),0) can have
zeros in {z:|z|>1} and in {z:|z| <1}, respectively, and the
index X may then differ from zero. Then the general solution
of the Riemann problem formulated above contains a, on X
dependent, number of constants, cf.PX(.) in section I.2.4.

However, if (pl,p2) = (0,q2) is a zero of Z(r,pl,pz),
[p1| <1, |p,| <1then the righthand side in (5.2) becomes identi-
cally zero and then the relation (5.2) implies together with
the continuity of QXy(npi,pz) that
(5.9) ¢Xy(r,0,q2) = lim @ (r,pl,qz)

p,>0

X+1 y+1

) (1- p ) (1- q2) : Py
p1+0p1q2_ rW(plaqzj (1- p17(1 q,)

+ PW(0,0)Qxy(r,0,0)

W(pl,O) W(O,qz)

T‘W‘pxy(r‘ﬂ?l:o)'r’ 1_q2 Qxy(r’aoan)]a

which relation represents next to (5.4),...,(5.7) an extra con-
dition to be satisfied by ¢xy(r,p1,p2). It is not difficult to
see that the number of these extra conditions and the index yx of
the function in (5.8) are linearly dependent. Actually these
extra conditions lead to the determination of the coefficients in

the polynomial PX(.), see above and see also section I.2.4.
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To simplify the analysis it will henceforth be assumed

that, cf. also (5.1),
(5.10) ¥(py,0) + 0 for p, € {p1:|p1]<1,p1¢ 0},
¥(0,p,) * 0 for p, € {p2:]p2l<;1,p2* 0}.

This assumption does restrict somewhat the generality of
our discussion. However, by using the techniques as exposed
in section I.2.4 and the type of reasoning to be exposed in the
following sections it will not be difficult to perform the
analysis if the assumpticn (5.10) is not valid (then due account

should be given to the extra conditions as discussed above).
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[1.2.6. The solution of the boundary value problem

Lemma 6.1 For ¥(0,0) >0, 0 <r <1 and with the assumption

(5.10):
- 1 dg
(6.1) réxy(r,Pl(r,z),O) = {EEI[£|=1 =12 ny(c)}
1-p (r,z)
S ieFearanall |z <1,
. 1. 1
(6.2) r¢xy(r,0,p2(r,z)) = {7?I|£l=1 T E_Z)ny(;)dc}
1- p2(r,z) S
! W(O,pzfr,255 : lz| 1,
_ 1 1 drg
(6.3) rd’xy(r,0,0) = m ml£l=1—i— ny(C)-

Proof By applying the results of section I.2.4 the statements
of the lemma are easily obtained; however, we shall give here
a direct proof.

Because pi(r,z) and W(pl(r,z),O) are both regular for
|z| <1, continuous for |z| < 1 and for |z| <1, lp,(r,2)| <1,
W(pi(r,z),O) ¥ 0, ¢f. theorem 4.1 and (5.10), it is seen
that the righthand side of (6.1) is regular for |z| < 1 and also

continuous for [z| < 1 if the singular integral

1 dg ,
(B.4) mlélzlc—_—z- Hey (@) for |z| =1

is well defined. To show this note, cf. the proof of theorem 4.1,

il(r,z))eik(r,z) iA(r,z))e—iA(r,z)

that g(r,e and g(r,e satisfy
a Hdlder conditicn on |z| @ 1, and hence ny(z), |z| B 1 satis-
fies such a condition.

Analogously, the righthand side of (6.2) is regular for
[z] > 1, continuous for |z| =1.

Because p,(r,z) » 0 for |z] >, cf., (4.12), it is easily
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seen that (6.3) is a direct consequence of (6.2).

By applying the Plemelj-Sokhotskl formulas to (6.1) and
(6.2) for z approaching a point on C from out c* and from out
C’s respectively, it is readily seen that (6.1),...,(6.3) satisfy
the boundary condition (5.4).

Hence, it has been proved that (6.1),...,(6.3) is a solution
of the boundary value problem formulated in the preceding section.
That it is the unique solution is proved by the same arguments
as used in the proof of the uniqueness of the solution of the

Riemann boundary value problem in chapter I.2. 0
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11.2.7. The determination of <I>xy(r,p1 py)

In theorem 4.1 it has been shown that (r,z) maps c* con-
Pq p

formally onto SI(r). Denote by
+
(7.1) zZ = plo(r,pl), Py € S1 (r),

the inverse mapping, that is the conformal map of Sl+(r) onto

C+; analogously
(7.2) z = pzo(r,pz), P, € 82+(r),

shall represent the conformal map of 82+(r) onto C .

Because Si(r) and SQ(r) are smooth contours, cf. lemma 3.1,
the theorem of corresponding boundaries implies that plo(r,»)
maps Sl(r) onto C, and pzo(r,-) maps Sz(r) onto C, cf. section

I.4.2,

Lemma 7.1 Forvy(0,0) >0, 0 <r <1 and assumption (5.10) it

. + +
holds for éxy(r,pl,pz) with p, € 8, (r), p, €8, (r):

1 dg !
7.3 ® »Py50) = {5~ H (@)} g5y
(7.3) re, ., (rspy {2ml£|=1c— P1o(TsPy) XY t)t g Pqs0
1 1 1
.4 ® 0 5= Z- Y (g)dg}
(7.4 POy (50,7, = {2“l£|=1(c T= D, (Top,) xy o
1-p
'W‘T‘o,'p27’
1 1 dg
. ¢ - 1 dz
(7.5) P, (730,00 = grig 2“|£|=1 o H (@)
(1-p,)(1-p,)  p,**1p,Y*?
(7.6) Oy (ToP1aPy) = p,p,- T¥(p ,b,) (1-p,I(1-P,)
1 1 1
R - — }
2 cl:l C-Plo(r’pl) 4 PQO—(r’pz)

7Tl|

-ny(C)dC].
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Proof The relation (7.3) follows directly from (6.1) and (7.1),
analogously for (7.4); (7.5) has been proved in lemma 6.1 . The
relation (7.6) follows by substitution of (7.3),...,(7.5) into
(5.2). ]

Remark 7.1 By letting in (6.1) z approach a point t on |z| @ 1

from out |z|< 1 and by applying the Plemelj-Sokhotski formula it
is possible to obtain an expression for @xy(r,pl,o) with

Py € Sl(r), similarly (7.4) can be extended for P, € Sz(r), and

(7.6) for Py € Sl(r), P, € SQ(P). We shall not do so here but

derive such relations in section 8.

Remark 7.2 The results stated in lemma 7.1 express properties
which the function ¢Xy(r,p1,p2) should possess. However, note
that 8,7 (r) U s, (r) C {py:|p,| <1}, 8,7(r) Us,(r) C {p,:]p,| <1};
it has not yet been shown that éxy(r,pl,pQ) as expressed by (7.6)
is for fixed r, 0 <r < 1 and for fixed |p,| < 1 regular in

lpy| <1, continuous in |p,| < 1, analogously with p, and p, in-

terchanged; neither that for fixed |p1| <1, |p)| €1itisa

(n)
Xy
0,1525..., as defined in (1.1.8). Note that this sequence is

generating function in r of the sequence ¢ (pl,pz,l,l),n=

uniquely determined by the relations (1.1.11) and (1.1.12).
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I1.2.8. Analytic continuation

From lemma 2.1 and from (3.1) it is readily seen that
6 every Py € Sl(r) corresponds a unique P, € Sz(r) such that
(p,>p,) is a zero of the kernel Z(r,p,,p,), |p1| <1, |p2| < 1.

I.e. there exists a bijection

(8.1) Py * Pl(r,pz), P, € Sz(r) > Py S Sl(r),
(8.2) P, * PQ(r,pi), P, € Sl(r) > P, € Sz(r),
with Pl(r,pz) and Pz(r,pl) each other's inverses and

(8.3) (Pl(r,pz),pz), P, € Sz(r), is a zero of Z(r,pl,pQ),
Ip1| <1, |p2| < 1, analogously for (pi’P2(r’P1))’ p; € 8,(r).

Because Z(r,p ,P,)» |Py| <1, |p,| <1 is for fixed |r| <1
regular in each of its variables p, and p, it follows readily
that the following derivatives exist

E{(z—l)Plﬁ(r,pz)pzx}

3
(8.4) D,a— log P, (r,p,)= , P, € S, (),
29p, LU B0 P (r,p,dp, 2 2
3 E{(z—l)plész(r,pi)}
(8.5) p,m— log P, (r,p,)= s P, € S, (r),
19py 2 1 E{(l—z)p15?2x(r,p1)} 1 1

and that the denominator in (8.4%) 1is never zero for P, € Sz(r),
because Pz(r,pl) as a zero of Z(r,pl,pz) at py € Sl(r) has
multiplicity one; similarly for the denominator in (8.5).

These facts allow the application of the implicit function
theorem, cf, [1] p.101. It implies that there exist for every
P, € 82(r) a neighbourhood N(r,p2) of P, and a uniquely determined
function P, (r,q,), q, € N(r,p2) c {pz: |p2|<:1} which is regular

atp, (cf. section I.4.2) and which satisfies for all q, € N(r,pz),

(8.6) Z(r,P (r,q,),q9,) B 0, [Pl(r,q2)| <1,
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Consequently, P (r, ), p, € S (r) possesses an analytic
q Py 9

continuation into p, € U N(r,q,), and here (P (r,p Y,p,) is a
2 2 2 2
q,€8,(r)

zero of Z(r,p,,p,), lp, | <1, |p2[ <1,

The function P (r,pz), P, € S (r) is obviously a "function
element™, cf. 1), p.53, of the function P (r,p2 |p2| < 1 which
represents the zeros of Z(r,p,,p,), |p2| <1 in |p1| . Because
Z(r,p;sP,y), Iyl <1, |p2[ <1 is for fixed |r| < 1 regular in
each of its variables, this function Pl(r,pz), |p2| <1 is an
analytic (possibly many valued) function of p, in |p2] <1, con-
tinuous in |p,| <1 and with at most a finite number of singu-
larities, the singularities being branch points. Since we know a
function element of P, (r,p,), |p2[ <1, viz. for p, € S,(r),
the whole function Pl(r,pz), [p2[ < 1 can be obtained by analytic
continuation from this function element. Above such an analytic
continuation has been initiated and it can be continued in
|p2[ <1 as long as|P1(r,p2)| is bounded by 1. In this respect
we formulate the following lemma for Pl(r,pz), the analogous

one applies for Pz(r,pl)

Lemma 8.1 The kernel Z(r,p,,p,) has for fixed |r}< 1 and every
fixed p, with |p2[ 8 1 exactly one zero P,(r,p,) in |p1|< 1, its

multiplicity is one.

Proof For fixed |r| <1 and |p2| = 1 we have for every p, with
Ip, |
Ippyl = Iyl = 2> |2 > x| |E(p,Sp, L},

so that by noting that E{plipzx}, |p2| a 1 is regular for
Ip,| <1, continuous for |p;| < 1 the statement follows from

Rouché's theorem, cf.[3] p.128. o
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Denote by Ez(r) the set of points P, in C2+ U ¢, =
{p2:|p2|<jj for which Z(r,p,,p,) has a zero in |p1] < 1, then
E2(P) is a connected set, cf. [3] p.2, i.e. any two points of
Ez(r) can be connected by a polygonal line belonging completely
to E,(r), because P, (r,p,), |p2| < 1 is an analytic function

of P, € int Ez(r). Obviously,
(8.7) Sz(r) - Ez(r),

and 02 is the outer boundary of Ez(r);denote its inner boundary

by R,(r), so that
(8.8) R,(r) C sz*m Us,(r).

Completely analogous definitions and properties hold when
in the discussion above the roles of Py and p, are interchanged;
in the relevant symbols the indices "1" and "2" should then be
interchanged.

It then follows from lemma 8.1 and the definition of

Pl(r,pz) that

(8.9) Ry(r) @ {py:py= P, (r,p,),1p,| =1},
(8.10) El(P) ] {p1:p1= Pi(r,pz), p,€ Ez(r)}.

Next we shall investigate the analytic continuation of

pz(r,z), |z] 2 1 into |z| < 1, cf. (4.12).

Lemma 8.2 Tor ¥(0,0) >0 and 0 < r < 1 the contours Sl(r)

and Sz(r) are both analytic contours.

Proof From lemma 2.1 and (3.2) it is readily seen that gl(r,s),

i¢

smEe ", 0€¢ <2m, possesses derivatives with respect to ¢ of

any order for every ¢€[0,21). The lemma now follows from



112 Analysis of two-dimensional random walk 11.2.8.
the definition of analytic contour, cf.sectionI.1.2. O

Because p,(r,z), |z| # 1 maps C” = {z:|z|>1} conformally
onto 82+(r), cf. theorem 4.1 and because C= {z:|z|= 1} and §,(r)
are both analytic contours it follows that pz(r,z) can be
continued analytically across |z| B 1, i.e. into a domain con-
tained in C'= {z:|z| <1}, of [3], p. 186. This analytic continu-
ation will be represented by the same symbol, i.e. p2(r,z).

Let z, with |zll <1 be a point such that p,(r,z;) with
lpz(r,zi)l < 1 is defined by analytic continuation across
|z| = 1, i.e. there exists a continuous simple curve between
z, and a point on |z| ® 1 along which pz(r,z) is defined by ana-
lytic continuation. Because {pl(r,z),pz(r,z)} is for every |z| = 1
a zero of Z(r,pl,pz) and because Z(r,pl,pz) is for fixed
0 <r <1 regular in each of its variables with |p1| <1,

[p2| < 1 it follows from the principle of permanence, cf.[3], p.

106, 107, (or by using repeatedly the implicit function theorem,

see above in this section) that
(8.11) (pl(r,zl),pz(r,zi)) is a zero of Z(r,pl,pQ).

Denote by Fz(r) the set of points in |z| < 1 where pz(r,z)
can be continued analytically across |z]| = 1 and such that
|p2(r,z)| < 1, note that p,(r,z) so defined is not necessarily

single valued in Fz(r). It follows from (8.11) that

(8.12) (pl(r,z),pz(r,z)), z € Fz(r) is a zero of Z(r,pl,pz),

ol <1, [p,l <1,

note that Z(r,p,,p,) is continuous in |p,| <1 for |r| <1,

P 1, ixed.,
1l =1 pg fi
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Completely analogous definitions and properties hold for
p,(r,z) and its analytic continuation in |z| > 1 across [z| @ 1.
Its domain of analytic continuation into |z| > 1 and such that
Ipl(r,z)| < 1 is analogously indicated by F, (r).

The function z = pzo(r,pz), cf. (7.2), maps S2+(r) u Sz(r)
one-to-one onto |z| 2 1, and its inverse is p,(r,z), [z| = 1.
From lemma 8.2 it follows that p2o(r,p2), Py € S2+(r) v 82(r)
can be continued analytically across Sz(r) into a region con-
tained in 82-(rﬁ N {p2:|p2[ < 1}. This analytic continuation

will be denoted by the same symbol i.e. by p20(r,p2).

Lemma 8.3 Pl(r,pz) and pzo(r,pz) are both regular in
p, € {Sz(r) U 82-(r)} n {p2:|p2| < 1} and continuous in the clo-

sure of this set; similarly for PZ(P’pl) and plo(r,pl).

Proof Let 0, be a point on Sz(r), the line through Py = 0 and
p, = 0, intersects C, = {p2:|p2| = 1} at, say, Y,; denote by T,
the linear segment (0,,Y,). Pygl{r,0,) is regular at o, so there
exlists a neighbourhood N(cz) of o, such that pzo(r,pz),

P, € N(oz) is regular, so it is single valued for P, € N(OQ)F1T2

and for such a Py
z = pyy(r,p,) € {z:]z| < 1}.
Consequently
4
pi(r,pQO(r,p2)) € 81 (r),

and by the principle of permanence

(py(r,p,(r,p,)),p,) is a zero of Z(r,p,,p,), [p1| <1,

|p2| < 1.
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Hence from the definition of Pl(r,pz) it follows that

_ +
(8.13) pl(r,pQO(r,pz))— Pl(r,pz) € S1 (r), P, € N(cz) n T2.

If the above defined analytic continuation of Pl(r,p2)from
out p, € Sz(r) is considered along T, starting at p, = 0, then
this branch is single valued on T2 if T2 does not contain a
singularity of Pl(r,pz); but if Pl(r,pz) is on T2 single valued,
then on(r’pQ) should here also be single valued because pl(r,z)
is univalent for |z|<1; it is a conformal map of |z| <1 onto

+

S1 (r).

So it suffices to prove that T, cannot contain a point P,
which is a singularity for the analytic continuation of Pl(r,pz)
starting from p,= o, and with |P1(r,p2)| < 1. Suppose that

§ € T2 is such a singularity and that it is the only singularity
on T,. Because Z(r,p;,p,), ]p1| <1, ]p2| < 1 is regular in each
of its variables p, and p,, the singularity py= 8 is then ne-
cessarily a branch point of Pl(r,pz); suppose it is a second or-
der branch point. Because the branch points of Pl(r,pz),

p, € E,(r) have no limiting point in [p,| <1, see below (8.6),
it is possible to construct a small circle with center at P, = 8
and radius € > 0 so that in this circle P, = 8§ is the only
branch point of Pl(r,pz).

Consider the two arcs l1 and l2 obtained from T2 by re-
placing the linear segment inside thecircle with center §,
radius €, by the semi-circular arcs of this circle. Then P1&3p2)
when continued analytically along these arcs becomes two valued

for P, € T2 and between § + € and Y2. This leads, however, to a

contradiction,
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To see this note first that Pl(r,p2) at p, avy, is uniquely
defined by lemma 8.1 as the unique zero of Z(r,pl,yz) in
|p1] < 1. So P (r,p,), with P, = eim,possesses derivatives with
respect to w of any order, hence (use the implicit function theo-
rem) Pl(r,pQ) is regular, i.e. single valued, in the inter-

section of T, with a neighbourhood of Y- So the contradiction

2
has been shown if it has been shown that for each branch
[Pér,pz)l <1 with p, € T, and between § + ¢ and y,. That this
is true is proved as follows. From (8.13) it is seen that ini-
tially |P1(r,p2)| <1 for p, € T, and close to 0,, because
Si+(r) C C1+. If |P1(r,p2)| would reach the value one, i.e.
Pl(r,pz) € Cyo when continued analytically along 1y and/or 1,
then the graph of Pl(r,pQ) must have crossed Si(r), i.e. there
exists a point q, # 0, on 11 or on 12 for which Pi(r,qz) € Sl(r).
This is impossible by the definition of 1, and 1, and because
Pl(r,pz) is a one-to-one mapping of Sz(r) onto Sl(r).
Consequently the analytic continuation of Pi(r,pz) cannot
have one singularity on T,; that it cannot have two or more is
proved analogously. Hence the discussion above implies that
P,(r,p,) and p,,(r,p,) are regular in p, € {Sz(r)L!SZ_(r)}f\C2+.
The continuity statement follows from the fact that
Z(r,p 5Py |p1| < 1,|p2| < 1 is continuous in each of its va-

riables Py>Py- B

In figure 6 we have illustrated the various mappings which
have been introduced above.

L(r) is here actually the unit circle {z:|z| a 1}, LY (r)
and L (r) its interior and exterior, respectively. L+(r) is con-

formally mapped by pl(r,z) onto Sl+(r) and, similarly, L (r) by
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pl—plane pz-plane

z-plane

Figure 6



11.2.8. The symmetric random walk 117

pz(r,z) onto 82+(r); the mappings of the boundaries L(r) - Sl(r)
and L(r) - Sz(r) are bijective. Note that in figure 6 all curves
have been drawn as circles for the sake of simplicity, however,
only C;®8 {pi:[pil = 1} is actually a circle, while L(r) is it
here because the random walk is symmetric, cf. for the general
case section 3.3.

Pz(r,pl), with inverse Pl(r,pz),is the one-to-one map of
Sl(r) onto Sz(r) and El(r) is the set where the analytic con-
tinuation of P,(r,p;) in |py| <1 with |P,(r,p,)| <1 is defined.

F2(r) is the set of points in L+(r) where the analytic con-
tinuation of pz(r,z) with |p2(r,z)|< 1 can be defined, its bound-
ary F2(r) in L¥(r) has again been drawn as a circle, similarly
for Fl(r), Rl(r) and Rz(r). Note that it has not been shown that

these curves are not self-intersecting.
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I1.2.9. The expression for d)xy(r,pl,p—,) with
v(0,00>0,0<r<1

By using the analytic continuations discussed in the pre-
ceding section the expression for the function @xy(r,pi,pz)

defined by (1.1.15) and (1.1.18) can now be derived.

Theorem 9.1 For ¥(0,0) >0, 0 <r <1 and with the assumptions

(5.10):
] 1- D, p1x+1p2y+1(r,p1)
(8.1) P8,y (P50 = gro—gyle (P g P (1= P (r,p.))
1 1 2 1
1 1
+ s [ H d f
V| 1T B My (96T o Il
1- P, (r,p2)pQY+1
(9.2) o,y (rs0,p,) —775_ﬂ€(p2(1—P(rﬂb)ﬂl-pp
1 1 1 .
P S IS YH_ (£)dg} for |p,|
Ty
2T g =18 87 Pyplrspy) T xy 2
=1 1 az
(9.3) r@xy(r,O,O)-\y(O,O) mlé'l:l 4 ny(C),
with
+ x+1 _ y+1
{py (rs2)}  {p, (r,2)}
(9.4) H  (2)= lz] = 13

Y {1-p, " (r,2)}H1-p, " (r,2)}
and for Ipll <1, |p,| <1 and (p,>P,) not a zero of the kernel

Z(r,pl,pz):

(9.5) @xy(r,pl,pz)

+1 +1
(1-p,) (1-p,) rplX p,” ; ’

= L '_*'f =
P4P, - r¥{p,,D,) (1-p, ) (1-p,) 2ﬁl|c|=1{zj_510ZP’P15
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1
e CI YO H (gladg
- P20 I’:PQ } Xy

X+1F’y+1 x+1 y+1

e, (p.) Py , By (o) Py (rupy)py ]
191 (1—p1)(1—P2(r,p1D 252 (1—P1(r,p2))(1-p27 i

with

- + o +
El(pl).— 0 for P, € S1 (r), 62(p2).— 0 for P, € 82 (r),

El(pl):= 1 for Py € Sl(r) s 62(p2):' for p, € 82(r) s

1
Nl

_ - +
Ei(pl)'_ 1 for p, € 5, (r)y N {c,” v Cl},

B o - . +
€,(p,):= 1 for P, €S, (r) N {C," U C,};

2 2

note that terms with ei(.) = 0 should be deleted in the formulas
above; ®xy(r,p1,p2) as given by (8.5) is the unigue solution of
(1.1.19) satisfying (1.1.17)ii and iii.

Remark 9.1 The expression for @Xy(r,pl,pZ) if (pl,p2) is a zero
of Z(r,pl,pz) can be obtained from (9.5) by an appropriate limit-
ing procedure, i.e. by letting P, PQ(r,pl); the resulting
expression will not be given here, see for a similar case sec-

tion 15.

Proof The relation (9.1) for Py € Sl+(r) is identical with

(7.3). By letting p, approach from out Sl+(r) a point on Sl(r),

by applying the Plemelj-Sokhotski formulas, cf. (I.1.6.4), to

(7.3) and by noting that

Py =Dy (rypy g (0,py))s Po(r,p,) =, (0,0, (r,py)), by € S (1),
together with (5.5) it is seen that the limit in the righthand side

of (7.3) is given by (9.1) with 81(p1)= 1; so that (9.1) for
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Py € Sl(r) has been proved because @Xy(r,pi,o) should be con-
tinuous for |p1| < 1.

Because plo(r,pi) and IE(r,pl) are regular for p, € Si-(r)n
cl+, of. lemma 8.3, and P,(r,p,) € 82+(r) and because H,  (z)
satisfies a Hdlder condition on |z| = 1 it follows that the
righthand side of (9.1) is regular for p, € §, (r) N C1+,
U Cl}’ the point p; B 1 being ex-

con-

+

tinuous for p, € 5,7 (r) N {C,

1
cluded. This righthand side has a 1limit for Py tending to a

point on 8,(r) from out Sl_(r). This limit, being evaluated by
applying the Plemelj-Sokhotski formulas,is readily seen to be
equal to the righthand side of (8.1) with el(pl)n 2. Hence the
righthand side of (9.1) for Py € Sl-(r) N C1+ is continuous at
its inner boundary Si(r). ¢xy(r,p1,0) should be regular for
|p1| < 1, continuous for |p1| < 1, and so is ¥(p,,0). Hence
analytic continuation and the assumption (5.10) prove (9.1) for

€ e - +
Py €5, (r) n {C1

U Cl}'

The relation (9.2) is proved similarly, while (9.3) is
identical with (7.5). The relation (9.5) follows by substituting
the relations(9.1), (9.2) and (9.3) into (1.1.19).

To prove that ¢xy(r,p1,p2) for fixed 0 <r < 1 is regular
in |p;| <1 for fixed |p,| <1 and similarly in lp,| <1 for
fixed |pll < 1, it is sufficient to show that every zero
(p1sP,) in |p1| <1, |p2[ < 1 of Z(r,p;,pPy) = DyP,- r¥(Dy5P,)

0 <r <1, is a zero of the term between square brackets in the
righthand side of (9.5). If p, € {p1:1p1| <1} then (p,,P,(r,p,)
is a zero of Z(r,p,,p,) in lp,| <1, lp2[ < 1 because the def-
inition of Pz(r,pl), which is based on analytic continuation,

implies that the principle of permanence, cf [3],P. 106, is
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valid, see preceding section. Further Pz(r,pl) € SQ(P) if

[S
Py Sl(r) and then

plo(r,pl) =z = pQO(P,PQ(r,pl)),

and again this relation remains true under analytic continuation
by using the principle of permanence.

It follows that for every zero (pl,PZ(r,pl)) of Z(r,pl,pz)
constructed by analytic continuation starting from out Si(r) in-
deed the term between square brackets in (9.5) is zero. For Py
varying along Sl(r) all zeros of Z(r,pl,pz) in |p2| < 1 are
located on Sz(r), i.e. P2(r,p1), Py € Sl(r) is a function ele-
ment of the zeros P,(r,p,) of Z(r,p ,p,) in |p2| < 1, as a func-
tion of plwith |p1| < 1. Hence it follows that all zeros of
Z(r,p »P,) in |p2| < 1 are obtained by analytic continuation
from out Sl(r).

It should be noted that the arguments above also apply if
Pz(r,pl) is a zero of multiplicity two of Z(r,pl,pz), then it is
also a zero of the same multiplicity of the term between square
brackets in (9.5).

The continuity of Qxy(r,pl,pz) in |p1| < 1 for fixed
|p2| < 1 follows readily from that of Z(r,p,,p,) in ]p1| <1
for fixed ]p2| < 1 and the defined analytic continuations. Also
the continuity of ¢xy(r,p1,p2) in r € (0,1) for fixed |p1[ <1,
|p2| < 1 and the existence of its derivatives with respect to r

can be proved by noting first that for 0 <r < 1:
Xty Xy

1 3g(r,s) _ 1 E{g (r,s)s” "}

g(r,s) ar “r Xty X

E{(2-x-y)g (r,s)s .}

(9.86) . |Sl a1l
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as the definition of g(r,s), cf. section 2, implies. Because
of lemma 2.1, iv the denominator in (9.6) is nonzeroc . Hence
g(r,s) possesses with respect to r derivatives of any order. By
starting from this observation it may be shown that the right-
hand side of (9.5) possesses derivatives of any order with re-
spect to r. However, the following argument is more simple to
complete the proof.

The construction of the expression (9.5) for @Xy(r,pl,pQ)
with fixed r € (0,1) has been shown to be unique, i.e. it is
the unique solution satisfying (1.1.17)ii and iii. On the other
hand, cf. remark 1.1.1, the function @Xy(r,pl,pz) as defined by

(1.1.15) and (1.1.18) is unique, hence it is expressed by (9.5).0

Remark 9.2 The theorem above provides the solution of the prob-
lem formulated in section 1.1 for the conditions mentioned in
the theorem. The meaning of the conditions (5.10) has been al-
ready discussed in section 5. Concerning the other conditions

it is firstly remarked that if ¥(0,0) = 0 then the analysis of
the problem becomes slightly different, this case will be dis-
cussed in sections 3.10,...,3.12., Secondly, concerning the con-
dition 0 < r <1 it should be noted that by analytic continua-
tion of @xy(r,pi,pz) as given by (9.5) the expression for

|r| <1 can in principle be obtained. Further, if the assumption
0 <r <1 is not made so that |r| < 1 then the analysis of the
problem posed in section U4 becomes more intricate because

L(r) will in general not be a circle, and for an analysis

coping with such a situation the reader is referred to chapter 3.
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11.2.10. On @, (r,p;,p2,q;.9))

The function ¢Xy(r,p1,p2,q1,q2) defined in (1.1.15) has
to satisfy the functional relation (1.1.16). By considering
Py P2
. 152 . <
the function @Xy(r,ql,qz,qi,qz) with |r| <1, ]pl/qll <1,
|p2/q2[ < 1, ]qll = 1, lq2| g 1, it is readily seen from
(1.1.16) that the latter function satisfies a functional equa-
tion of exactly the same type as @xy(r,pl,pQ) does, cf. (1.1.19).

Proceeding in this way it is readily found from the

results of the preceding sections with ¥(0,0) >0, 0 <r <1,

and assumptions (5.10) that for lqll o 1,|q2| =1, py € 81+(r),
+

P, € Sy (r):

P1 Py
10-1) o] s s s >
( Xy(r 1,°3, a, q2)

P P

1 2

(1-—)(1-—=) x+1_ y+1
d1 47 1 Py P

= - ¥ ( )
P1P2 ProPalla %e,” (1 21y P,
q

1 2

IR 1 i 1
inlC[=1 z - plo(r,pl) g - pzo(r,pQ)

+ o x#1 _ y+1
{p1 r,z)} {p2 (r,z)}
dg
- 2
Py (r,0) p, (r,e)  a;%q,”
{1- - }
qq LY,

and similar results as in theorem 9.1 may be obtained for other
p, and p, with ]p1| <1, |p2| < 1; we shall omit here such ex-

presgsions.
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Remark 10.1 Define for n=0,1,...,

(10.2) U o:= min(O,gO,...,gn

)y

V_ := min(0,7t

v, Tgsreeok )3

n

it follows readily that for n=0,1,...,

(10.3) x, ¢+ 8] =0 with U_

-n-1 ~n-1° 1

"
o

Yo * Ypog  Inopo with V_y

Hence from (1.1.8) for (pl/qi) € Sl+(r), (p2/q2) € 82+(r),

la, | 21, g, 21, ¢ <1,

P, P @ X v U
1 72 n =n n_ -n-1
(10.4) QOO(P,——,—;,ql,q2)=n§§ E{p1 Py, Q n

y-n—l
QJ_ q q2 |EO=O’XO=O}’

and the latter relation provides for 50=0, ¥0=0 another prob-

abilistic interpretation of (10.1).
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I1.2.11. Theiandom walk {(u,.».), n=0,1,2,...}

ntn

From the relation (10.1) it follows that, note p, @ 0 €

Sl+(r), p,=0 €5 *(r), cf. lemma 3.1, (with ¥(0,0) > 0 and

2

assumptions (5.10))

(11.1) rW(O,O)éOD(r,O,O,ql,qZ)
Y 0p, T (0,0
2Mh g =1 ® p, () P, (r,7)
{1- -
ay a,

for 0 <r <1, Iqll =] |q2| = 1.
To discuss this relaticn it is first noted that, cf.

section 4,

+

(11.2) p, (r,2) €5,(x) Cc,", p ;

2"(r,z) €58,(r) CC

foer |z| = 1.

Consequently it is found by simple contour integration that

for k = 0,1,...3h=0,1,...,

2 : k=1 h-1
(11.3) () ® 7 ) L 9 r¥(0,0)8,(r,050,q,,4,)dq,da,
Iqll” ’ q2 -
= 1 dg,  + k+l, - h+1
= 7?I|£|=177{p1 (r,z)} {p2 (r,z)} .

To interpret the lefthand side of (11.3) it is noted that
En & -1, i 2 -1, n@0,1,..., cf., section 1.1, and consequently

(1.1.5) and (1.1.6) imply that for n = 1,2,...,

(11.4) {En: 0,y,= 0:%5= 0,y,= 0} = -n <o € 0,-n<T1 <0.
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Hence from (1.1.7), (1.1.8), (1.1.15) and (11.3), for 0 < <1,

K = 0,1,.003h = 0,150.4,

(11.5) r¥(0,0)Z OrnPr{gn_1= -KsT o4 = ~hax, = 05y, = 0]
n=
X8y, *® 0}
=I"*’(0,0)§_OrnPr{gn_1= KT, q= DX 4= 0¥ =0
X" ¥ °© 0}
1 dag + k+1 - h+1
== J ={p, (r,5)} {p, (r,g)} .
2TTll;I=1C 1 3 2
Observe that
n-1 )
(11.8) {c__.==-n} = N {g.==-(3+1)},
-n-1 320 3j
n-1 ')
{r =-nt @ N {1.=-G+D)}.
-n-1 3=0 ]

Hence from (11.5), (11.6) and (4.1),(4.2), for k B 0,1,...,

(11.7) r¥(0,0F r'Prig _ =1

Tpo1 ™ KX 0,37 0lxg = yp = 04
n=k

_ 1 dg, + - k+1
_7?I|é|=1c {p1 (r,2)p, (r,z)}

1 dg IA(r,T),,2k+2
'2ﬂi|£|=1C {g(r,e )} .

By using the relations (1.1.1), (1.1.6), (2.4) and the def-

inition of g(r,s), cf. first sentence, section 3, the latter

relation may be written as:

-]
n-k . o _ - - -
(11.8) w(o,o)n:ckr Prig, _4=1, 9% ~K:X _4=Y 4= 0|X_;=Y_ = 0}

: g, +T, +2(k+1)
-1 E{{g(r,en‘(r’c))}"k -k
gl=1"

= 7%{ elA(r,c)(gk-lk)} ,

|



IL.2.11. The symmetric random walk 127

for k = 0,1,..., 0<r <1, ¥(0,0) >0 and (5.10); summing

(11.7) over k® 0,1,..., and noting (11.4) it is found that

oo

n _ - _
(11.9) rW(0,0)izor Prig =1, _4>X,_470,¥ _,=70|
.)_(._1:__1:0}
iXr,g) & +n,+2
se 1+ £ LR[1- pE{{g(r,e S St
QﬂllC.I:lE

ir(r,g)(g.-n ) _
e 0 =0 1 1

The relations (11.8) and (11.9) have an interesting inter-
pretation for the symmetric random walk {thgn),nz 0y1yeeals

defined by: for n = 0,1,...,

Bnyg 7 Bp F én’

2n+1 =Y, Dy,
with

E[):O’E:O’

of which the state space is obviously the lattice in RZ'

For this random walk

X _,=Y .=0,X 0}

Ln-17 Zn-1 -17 L7

represents the event of starting in {0,0} and of not leaving
the third quadrant during the first n steps, n = 1,2,...; the
event {gn_1= ln—l} obviously is the event that at time n the
random walk is at a point situated on the main diagonal in R,.
Evidently, the relations (11.8) and (11.9) present the
generating function of the probability of not leaving the third

quadrant during the first n transitions and being after the last
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transition at a point of the main diagonal when starting at
state (0,0),

For r = 1, E{x} = E{y} <1 it is not difficult to show
by using lemmas 13.2 and 13.3 that the expectation in the
righthand side of (11.8) is bounded by one. Hence the right-
hand side of (11.8) is finite. Consequently (11.8) implies
by using the Borel-Cantelli lemma [14] p. 228 that for every

k@ 0,150..,

~k,X_ L=

X _,=¥ _,=0, i.0} =0,

(11.10) Prio 41,47

for the random walk {(Hn,gn),n= 0,1,...} with ¥(0,0) > 0 and

(5.10).

By using lemmas 2.1, 13.2 and 13.3 and the asymptotic
relations (14.5) and (14.6) it is not difficult to show that

the righthand side of (11.9) becomes infinite for r 4 1.
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11.2.12. The return time

We introduce for the random walk {(5n,zn),n= 0,1,...}
the return time of the "zero" state (0,0),
(12.1) .= i : =
n m:_Ln{ln.inannolﬁo yo®@o0}.
n=1,2,...

Tt follows from renewal theory that for |r| <1, |q | &1,

quI = 1:
(12.2) > r"E{(x_my @0) n-1 1“'11 zy.= 0}
D1 IS In "4y 9 X% Ig*
n T
- n-1_ -—-n-1
_ E{rq, = "q, = }
n T
1- Elr q, 2 %, = 1y

Hence from (11.1) for 0 <r <1, Iqll =1, ]qzl = 1

n g T
B2 _2_1 _2_1 . 1 dzg
(12.3) E{rq, = "q, }=1 rW(o,O)[§;I|é|=1zf

p1+(r,;)p2_(r,c) -t

+ -
py (rs2) - p, (r,t)

{1- 1, } 1

with ¥(0,0) > 0 and (5.10).

The relations (11.4) and (11.6) imply that the lefthand
side of (12.3) is regular in |q1|>'1, continuous in |q1|> 1
for fixed |q2| = 1, and similarly with q, and q, interchanged.
The same holds for the righthand side of (12.3), cf (4.1) and
(4.2), so by analytic continuation (12.3) holds for O <r <1,

la | =1, g, = 1.
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By definition of n it further follows that the lefthand
side of (12.3) is defined by continuity for 0 < r € 1, and con-
sequently the righthand side of (12.3) must have a limit for

r 4 1,

Theorem 12.1 For the two-dimensional symmetric random

walk {(gn,zn),n= 0,1,...} with ¥(0,0) > 0 and assumptions (5.10)
the generating function of the return time of the zero state
(0,0) and of the "displacement" On-1 in the x-direction and
T, in the y-direction is for 0 < r <1, [q] = 1,]q,| =1
gzven by (12.3), and

I 1 dzg
(12.4) E{r } = 1—1”‘}'(0,0)[m S e
=1
+ -
py (r,0)p, (r,z) -1
. s -
{1- Py (r,g)}{1- P, (r,z)}
n
(12.5) Elr (g _ =2, 4200} = 1-— dEW(Q;O) — s
T o =/ = 7p, (r,0)p, (r,7)
7T |08 C1 2
. 1 dg
(12.86) Prin<e} = 1-¥(0,0){lim === S ==
= rr1 2™ gf=1®
+ -—
Pl (Pac)PZ (r,z) ]_1

. {1- p1+(r‘,2;)}{1— pz—(p,;)}

(12.7) Pr’{£<°°,_czﬂ_1 = 12_1 = 0}
sq - wéo,o)+
lim w= / Sk p Y(r,00p, (r,2)

rt1 lz|=1%
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Proof The statement concerning (12.3) has been proved above.
By letting ]qil + o the relations (12.4) and (12.5) follow
directly from (12.3) and the regularity in a4 and qys Iqll > 1,
|q2| > 1; (12.6) follows from (12.4), similarly (12.7) from
(12.5).

Remark 12.1 The lefthand side of (12.7) represents for

the random walk {(En,gn),n= 0,1,...}, cf. preceding section,
the probability, when starting in state (0,0),0f a return

to (0,0) and of not leaving the first quadrant (x- and y-
axis included) during this excursion.

To prove this note that (10.3) and gn_1=0, x,=0 imply !n—1=0’

so that

{u = 0,0 = 0} » {g_n_ = 0,0 = 0}

-n-1 =n-1 20500050

0

> O""9E1 2 0},
and similarly

{v = 0,7

—n-1 —n-1 = 0}.

"
o
—
$
-~
|<
ju]
I
o
<

2 0,...,V
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11.2.13. The kernel withr =1, E{x} = E{y} <1

To investigate the behaviour of the expression for
¢Xy(r,p1,p2) obtained in section 9 1t 1s necessary to know
the behaviour of Pl(r,pQ), Pz(r,pi) and g(r,s) for r ¢+ 1. The
following lemmas provide the information needed (cf. also

lemma 8.1, assumptions (5.10)).

Lemma 13.1 The kernel Z(1,p,,p,) has in [p1| < 1! for
i. !p2| =1, p, ¥ 1 exactly one zero P,(1,p,), its multi-

plicity is one and 0 < IPl(l,p2)| <1 (cf. (1.5)11);

ii. p, = 1 and E{x} < 1 exactly one zero P1(1,1), its mul-
tiplicity is one and Pl(l,l) a1,

and
iii, Pl(r,pQ) has for » ¢+ 1 a limit which is P1(1’p2)'

Proof For [p,| = 1, $ 1 it is seen from (1,5)ii that for

P,
lp,l = 1:

[py1 & [pyp,l = 1> [E{p,p, L},

so that by applying Rouché's theorem and assumptions (5.10) the
first statement follows,

To prove the second statement it is readily seen that
P,(1,1) @1 is a zero in [p,| < 1; that it is the unique zero
in -1 S Py < 1 for E{x} <1 and has multiplicity one. To show
that it is the only zero in |p;| <1 the "argument principle"
will be used, cf. [3], p.128.

Because E{p %} is regular in |p| <1 , continuous in |p| <1
it follows from the argument principle that the number of

zeros of Z(1,p,1) in |p| <1 counted according to their multipli-
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city is equal to the increment of 5% arg Zz(1,p,1) when p

traverses the unit circle once in the positive direction, i.e.

it is equal to (with 'A' standing for increment)

1 1
(13.1) == A log Z(1,p,1) B == A log p
2 ? 2
" pl=1 ™ pl=2
1 x-1
* T A i log {1- E{p 11,
lpl=1

.provided Z(1,p,1) does not contain zeros on |p| B 1. If it
does the argument principle can still be used if such zeros
are counted with half their multiplicity.
By noting that for E{x} <1,
x-1
(13.2) E{p. } = 1-E{x-1}(1-p) for p ~ 1,
and that Z(1,p,1) has no other zercs on |p| = 1 than p B 1,

cf. (1.5)ii, it follows from (13.1) that

1

Q_WIA lOg Z(l,p,l) = 1—%“%.

lpl=1
Hence P,(1,1) is the only zero of Z(1,p,1) in |[p] <1, this
proves the second statement.

The third statement follows directly from the continuity
of Z(r,pl,pz) with fixed P, in each of its variables r € [0,1]

and p; with |p1| < 1.

Lemma 13.2 TFor r = 1, ¥(0,0) > 0, E{x} @ E{y} <1:

i. the kernel Z(l,gs,gs_l), |s| @1 has in |g| < 1 exactly

two zeros each with multiplicity one;

ii, if g(1,s) is a zero so 1is =-g(l,-s);

iii. both zeros are real, one, say g(i,s), |s| @ 1, is always
positive, the other is always negative and 0 <g(1,s) < 1 for

sl = 1, s # 1, whereas g(1,1) & 1;



134 Analysis of two-dimensional random walk 11.2.13.

iv. g(r,s) has for every fixed |s| B 1 a limit for » + 1 which
is g(1,s).

The proof of this lemma is omitted because it uses the
same type of arguments as used in the proof of lemmas 2.1
and 13.1.

With the function g(1,s),|s| B 1, as described in the
lemma above we construct, analogously with (3.1), the contours
81(1) and 82(1). The discussions in sections 3 and U4
may be now repeated literally for these contours 81(1) and
82(1) and lead to the same results, in particular theorem 4.1
holds for the conformal mappings pl(l,z): c* onto Sl+(1) and

p,(1,2): ¢” onto S,7(1), but note that

2
+ + -
(13.3) p, (1,1) = 1, |p1 (1,2)] <1 for |z|=1, z % 1,
pz-(l,i) =1, {pz-(l,z)| <1 for |z|=1, z % 1.

Remark 13.1 That 81(1) and 82(1) are indeed smooth follows
directly from (3.2) for |s| = 1, s # 1; and also for s B 1
by noting that g(1,1) = 1 and E{x} <1, E{y} <1 in the present
case.

The family of conformal mappings {pl(r,z),o <rpr <1} of
ct is a family ofunivalent and uniformly bounded mappings,
because |p1(r,z)[ <1 for [z] < 1. As such it has the property
that every sequence, say, {pl(rm,z),m= 1,2,...} with ro + 1,
which is a subset of this family, contains a convergent sub-
sequence, say, for m = Mys Myseres with m > @ for k » », More-
over, the limiting function, say, Hl(z) of this subsequence is
a regular and alsc a univalent function on {z:|z]| <1}, unless

it is a constant on {z:|z| <1}, cf [3], p.143 and 217. It
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+
cannot be a constant, because pi(rm,D) B 0 and py (rm,s)
glr_,s)s, |s| = 1, and glr ,s) # 0 for r# 0, cf lemma 2.1,
iii,

From lemma 13.2 above it follows that g(rm ,$) > g(l,s) for k-e
k

1
that Py - = Sl+(r) for every r € (0,1] it follows from Cara-

for every fixed s with |s| = 1, i.e. § (rmk) + §,(1). By noting
theodory's theorem for convergent sequences of conformal mappings
of the unit circle onto a convergent sequence of simply connec-
ted domains, cf. [8], p.46, that Hl(Z) maps ct conformally

onto Sl+(l)' Because Sl+(1) is a simply connected domain bounded
by the smooth contour 81(1) it follows that Hl(Z) is continuous
in {z:]|z]| <1} and that it maps C one-to-cne on $,(1), cf.

theorem of corresponding boundaries, section I.4.2.

By noting that Hl(O) = 0, Hl(l) = 1 it follows from the
uniqueness assertion of Riemann's mapping thecrem that Hl(-) and
pl(.) are identical. Analogous results hold for the class of
conformal mappings {p2(r,z),0<ir<11}.

Because every subsequence of pl(rm,z) and of pz(rm,z),
m=1,2,... converges to pi(l,z) and p2(1,z), respectively, it

follows readily that

+ +
Py (rm,z) Py (1,2)
2i)(rm,z) = log ————— =+ log ——— @ 2iA(1,z)
P, (rm,z) P, (1,2)
for m + = and every z with |z| = 1, and rot 1.

Hence the validity of the following lemma has been shown.

Lemma 13.3 TFor ¥(0,0) > 0, E{x} = E{y} < 1:

i, forr 4 1, 0 <r <1, the following limits exist, and
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lim p (r,2z) = p,(1,2), [z <1,
lim p,(r,2z) = p,(1,2), [z]| >1,
lim p;(r,z) = p;(l,z), lim p; (r,z) = pg (1,z), |z]| =1,
Lim S,(r) = 8,(1) , lim Sy(r) = S,(1),

lim A(r,z) = A(1,z) , |z}

"
-
o

ii. the statements of theorem 4.1 all hold with pl(r,z),
p2(r,z), g(r,s) and A(r,z) being replaced by pl(l,z), p2(1,z),

g{l,8) and A(1,2).

The validity of lemma 8.2 is based on the existence and
finiteness of the derivatives of any order of g(r,ei¢), 0 < ¢ < 2m,
with respect t¢ ¢. For the present case, i.e. r = 1 these deri-
vatives do exist and are finite except possibly for ¢ B 0. Be-
cause E{x} = E{y} <1, é% g(l,ei¢) exists for all ¢ € [0,27]
but the existence and finiteness of the higher derivatives re-
quires the finiteness of the higher moments B{ik} = E{Xk},k=2,3,....

To simplify the analysis (cf also remark 13.2 below) <t will

be assumed henceforth that

(13.4) Y(gs,gs_l) is for g @ 1 regular at s @ 1, and for

s @ 1 regular at g = 1,

This assumption implies that Z(i,gs,gs—l) is for g B 1
regular at s @1, and for s @m 1 regular at g @ 1; in particular

it follows that
(13.5) 81(1) and 82(1) are both analytic contours

The existence of the analytic continuations in section
8 1s based on lemma 8.2. From (13.5) it is now readily seen

that the arguments used in gection 8 in establishing the
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various analytic continuations can be used also for the present
case, i.e. r @ 1, and they lead to analogous results for
p,(1,2), pzo(i,p2), Pl(i’pQ) and so on, i.e. pl(l,z) is de-
fined by analytic continuation for z € Fl(l); pzo(l,pQ) and
Pl(l’pQ) are defined by analytic continuation for P, € {82(1) U
§, (1Y N {p,:lp,| <1},

It follows further from (13.5) that

(13.6) p4(r,2z) and p,(r,z) are both regular for [z] =1

for every fixed r € (0,1].

Hence

p1+(r,z)
log —— = 2ix(r,z), |z| = 1, 0 <r <1,
Py (r,z)
implies that
(13.7) AMr,z) is regular for every z with |z| = 1, r€ (0,11,

Combined with (9.6) a further consequence of the assumption
(13.4) is that the derivatives of any order of g(r,s), |s| = 1
with respect to r exist, particularly at s B 1. By noting that
A(r,z) satisfies the integral equation (4.11) for r € (0,1] it
is now readily proved by using the remarks in section I.1.10

that
(13.8) g% Ar,z) exists for r € (0,11, |z| = 1;

actually also the higher derivatives of A(r,z) with respect

to r exist at |z| = 1.

Remark 13.2 Actually the assumption (13.4) is not needed to

establish the analytic continuations of pl(l,z), p20(1,p2) and
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Pi(l,p2) because the point z = 1 and similarly p, B 1 are at
the boundaries of these domains of analytic continuation. The
assumption is much more relevant for the validity of (13.6),...
(13.8), which assertions are actually too strong for the pur-
pose for which they are used, cf. sections 14 and 16. The
requirement that jgf g(l,ei¢) exists at ¢ = 0 is already suf-
ficiently strong as it may be seen by using Kellogg's theorem,

cf. (8], p.374. For the details of such an approach the reader is

referred to [16], where a similar problem is discussed.
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I1.2.14. The case E{x} = E{y} <1

In this section we shall investigate the random walk
{(zn,zn),rw 0,1,...} for n » = for the case that ¥(0,0) > 0, that
(5.10) and (13.4) hold and

(14.1) E{x} = E{y} < 1.
The starting point is the integral in (12.4) for which the

following relation holds, cf. (4.1) and (4.2), for 0 <pr < 1:
+ -
(14.2) N -4 Py (720)P, (0)
211710 {1-p, (r,0)}1-p, " (r, 00}

S a
2ﬂl|C|=1C
gz(r,eix(r’;))
e g, e D) AN 1 MR, iR,y

To investigate the integral in (14.2) for r 4+ 1 we first

analyze the terms in the integrand of (14.2) for 0 <r < 1 with

r~ 1 and [1-¢| < €, |g| = 1,

€ > 0 but small.
As 1t has been remarked in (9.6), the following derivative

exists, and for 0 <r <1, |s] B 1:

( Xty ) E'X}
9 _ glr,s) E{g (r,s)s
(1‘4.3) ﬁg(r,s) = T X+ X=

Xty Xy
E{(2- x-y)g (r,s)s '}

Consequently it follows from (3.2), lemma 13.2 and (1.1) that

forr t+ 1, |s|] B 1, s~ 1:

(184 .4) glr,s) = 1- (1-r) f{z—:lx—-g* 0(1-r) + 0(1-8)

1- (1-r) 7ET%:_§T +o0(1-r)+ o0(1-8).
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Note that (1.1) implies the absence of order terms
0(1-s) and 0((1-r)(1-s)) in (1h4.4).

From (4.11), lemma 13.3 and the implications (13.6),...,
(13.8) of (13.4) and by noting that (4.10) implies

{—ag; A(r,z)} _, =0 it follows that for r t 1, lz] B 1, z + 1:

2
14- (1-r)(1- z){ )\(r* z)} =
1

3
(14.5) Alr,z) = —(1-z){a—zx(r,z>} 1
1

t 0(1-r) + o(1-z),

iAryz) | g z)l{ ZA(r,2)},_ (14 0(1-r)) + o(1-1)

r-1
+o(i-2).

Consequently, (14.4) and (14.5) yield that for r ¢+ 1, z - 1 with

A
(14.86) 1- g(r el (P Z)) lA(r Z) = (1-r) —T?:—E—TZT

* (1-2)i { A(l z)} (1+ 0(1-r)) + o(l-r)+o0o(i-z),

1_g(11,el)\(r,z)) ~ix(r,z)_ - (1- r)—{——T

- (1~ z)l{ -A (1, z)} 4(1+0(1-1)) + o(Ll-r) + 0 (1-2).

Define for 0 <r < 1:

p,  (r,0)p, " (2,2)

1 [¢14
(14.7) I, (r,e): -
2MICI=1 ¢ {1—p1+(r,c)}{1—p2_(r,c)}
|1-z| > ¢
Yo, 0)ps (e,
I (r E) 1 EE pl aC PQ E
R {(1-p, (0,0 }{1-p, (r,0)}

[1-z| <€

For € > 0 but sufficiently small it follows from (14.6) and

(14.7) with r » 1, 0 <pr < 1 that
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1-r 1
(14.8) Iz(I‘,E) -—TE
{1~ -2—"}
1 dzg 1 1
= = S == { +
2n1l _ [4 1-1r 1-r
z|=1 1+ c=-7 -1+ c+z
!1_€|<€ f{z_z(--l i E[2"5-ll

+ 0(e)+ 0(1-r)},

with

(14.9) et iz i{éLA(l,z)}
z Z

-2 i¢
L= g (1,et ), > 0,

note A(l,ei¢), 0 € ¢ <21 is real and strietly increasing, cf.
(4.10) and theorems I.1.4.1 and 4.1.

For r = 1 the two first terms in (14.8) both lead to a
singular integral. By applying the Plemelj-Sokhotski formulas,
cf. (I.1.6.4) and remark I.1.6.1, or by a direct calculation as in
section I.1.5, it follows that the righthand side in (14.8) has

a limit for r 4+ 1 and

1-r
(14.10) :ﬂl I,(r,e) —xm% =3+ 3 +o0(e) =1+ ole)
v E{1- ==}

Because
|p1+(r,z)| <1, |p2_(r,z)[ <1 for r € (0,11,
|1-z| = e >0,

it follows readily that for € > 0:

(14.11) 1lim (1- r) Il(r,e) = 0.
r+l

The results obtained above lead to the following theorem.

Theorem 14.1 TFor ¥(0,0) > 0, E{x} = E{y} <1 and assumptions
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(5.10) and (13.4):

i. Prin <=}:1,

ii. Bln} = L8 L mv,00leli- Bx1IT
1—E{~T}
iii. The random walk {(én,xn),n= 0,1,...} is positive recurrent.

Proof From (12.%), (14.2), (14.7), (14.10) and (14.11) the
first statement follows immediately. Again by using these

relations and by noting that

1 - E{rZ}

E{n} = lim T ,

rtl

the second statement results. Because the state space of the
Markov chain{(ﬁn,xn),n= 0,1,...} is irreducible, cf (1.6), the
third statement follows from the already proved first asser-

tion.
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11.2.15. The stationary distribution with ¥(0,0) > 0

Theorem 15.1 For ¥(0,0) > 0, E{x}= E{y} <1 and the assumptions
(5.10), (13.4) the symmetric random walk {(ﬁn,zn), n=0,1,...}
is positive recurrent and it possesses a unique stationary dis-

tribution of which the joint generating function is given by

NA
(15.1) lim (1-r)8, (r,p,py) = lim (1- DI r E{p1 p,
r+l rtl n=0

Xy = %Yy = v}

(1—p1)(1—p2) 1 1
- - }
ly<p1=p7 plp2 1- plo(l’pl) 1- PQOﬁaPp

X+
c{1- E{—}—i}}

for Ipll <1, ]p2| < 1 and (p;»py) not a zero of p,p, - ¥(P sP,)3

for [pll <1, |p2[ < 1 with (p;»P,) @ zero of PPy~ ‘V(pl,pz):

(15.2) Lim (1-r) ¢ (r,p,p,)
r+l
X+y
(1_p1)(1—p2) c E{l———}
_ {1-p,,(1,p, 0 Hp,4(2,p,) - 1} X x ¥y’
10 1 20 2 E{(1- ==)p, p, }

here plo(l,pl) is the conformal mapping of Sl+(1) onto the unit
circle, plO(l’pl) for ]pll < 1 is the analytic continuation of
0(1:p), p; € Sl+(1) U s, (1) into {p1:|p1|<1}; analogously,
p20(1,p2) is the conformal mapping of 32+(1) onto {z:|z|>1},
and for lp2| < 1 it is the analytic continuation of this confor-
mal mapping,ecf, (7.1) and (7.2); the inverse mappings, i.e.
p,(1,2) of ¢’ onto Sl+(1) and p,(1,z) of ¢~ onto 82+(1) are

described in theorem 4.1.
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Proof That the random walk is positive recurrent has already
been asserted in theorem 14.1, hence it possesses a unique
stationary distribution, so that

Pr{znn k,xn= 1'1[5O = X,y 0 v}
has a limit for n + «, and a wellknown Abelian theorem con-
cerning generating functions leads to the first part of (15.1).
To calculate the limit in (15.1) the relation (9.5) is used.
Multiplying it by 1 - r and letting r ¢+ 1 it is seen that the

only limit which is not zero is (assuming that PPy~ W(pl,pQ)* 0)

(15.3) lim 2% g 1

- 1
- J { = - - }H (C)dc.
i 2"llC|=1 4 pio(r,pl) [4 pzo(r,pz) Xy

An analysis of (15.3) completely analogous to that of (14.2)
then leads to (15.1) for [p,| <1, [p,| <1 and by continuity
it then follows for [plf <1, |p2| < 1; (p,»>p,) not being a zero
of pypy- W(pl,pQ).

If it is a zero then (15.2) follows from (15.1) by a proper

continuity argument and the properties of the kernel Z(r,pl,p2).
Remark 15.1 Note that (7.1), (7.2) and (4.14) imply

- 1
Poo (2P} * 75,

+ . . .
for P, € Sy (r) and by analytic continuation also for P, €

{p,:lp,| < 1}.

Denote by X, Y a pair of stochastic variables with joint
distribution the stationary distribution of the random walk
{(x,y,)>,n@0,1,...}, see the theorem above, then for |py| <1,

|p2| < 1:
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v (1- pl)(l— p2) 1 1

X ) -
(15.4) Elp;=py=} = T(b,5,) - D;P, 1 Pyo(1:Dy) 1-p20(1,p2)}

Xty
. C E{l-—*z——}a
with the righthand side replaced by its appropriate limit if
(pl,p2) is a zero of PPy~ W(pl,pz).

Because

p10(1’0)= 0, (1,0)@3 «

Pog

it follows that for |p| < 1:

X

(15.5) ¥(p,0) E{p (¥=0)} ?-%'—%? ¢ E{1~ x},
TR

Pr{x=y=0} PriX=Y=0} = ¢ E{1-x} = ¢ E{1-y},

Pri{x=0|y= 0} Pr{X=0|Y=0} = ¢,

and symmetrically with X and Y, xand y interchanged.
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11.2.16. Direct derivation of the stationary distribution with
¥ (0,0) >0

In section 7 the solution of the functional equation for
¢xy(r,p1,p2) has been presented, it has been obtained by
formulating the problem as a Riemann boundary value problem. To
illustrate this approach again we shall apply this technique
for a direct derivation of the stationary distribution obtained
in the preceding section.

If the random walk possesses a stationary distribution then
its generating function ®(p1,p2) is given by
(16.1) 0(p,,pyl:= ii? (1-r) ¢Xy(r,p1,p2), [p1| <1, Ip2| < 1.

It should then satisfy, cf. (1.1.19),for |p1| <1, [p,| <1

(1=~ pl)(l- Py) W(pl,o)
16.2 . = . » -— )
( ) <I>(p1 p2) N W(P15P27{W(0 0)8(0,0) 1= 5, <I>(p1 0)
¥(0 )
- __;p_z_@(D,Pz)}a
1—p2
(16.3) $(1,1)m 1,

Assume again that (5.10) holds and that
(16.4) ¥(0,0) >0, E{x} = Ely} <1.

By taking p, = 1 and then p; t+ 1, and similarly with p, and p,

interchanged (16.2),...,(16.4) lead to

(16.5) ¥(1,0)8(1,0)

E{1-y},
¥(0,1)¢(0,1)

E{1- x}.

As in section 5 it should hold that
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,0) W(O,pz)

W(p1
(16.6) (1- pl)(l— p2)[—T:———— @(p1,0)+

5 ¢(0,p2)

1- P,
- ¥(0,0)%(0,0)] = 0,
for every (pl,p2) which is a zero of

(16.7) P4Py - ¥(py»Py)s [Py <1, [p,]| < 1.

From the definition of pl(l,z) and pz(l,ZL cf. sections 4

and 13, it follows that (16.6) should hold for
(16.8) p, = py (1,2), p, B D, (1,2), [z = 1.

Because of theorem 4.1, lemmas 13.2 and 13.3 and of (4.1),

(4.2), (4,9), (14.6) and (16.5) it follows that

(16.9) P1+(1,1) =1, p2—(1,1) = 1,
+
1-p, (1,2)

. 1 ’ _o,d_+ o1
1im ————— = {HEP1 (1,2)}2:1 =2
z+1
HE:

1-p, (1,2)

. Y -1
lim ——F——— "{EZPQ (1,2)}z=1 =- -
z>1
[z]=1

Hence the conditions (16.6) and (16.7) imply that for every
z with |z| = 1:

1-2z

(16.10) SR r—
1- Py (1,2)

w<p1*(1,z),o> ®(p, " (1,2),0)

-(1-2z) ¥(0,0) %(0,0)

-- ___JL:JE—__-W(o,p2‘(1,z)) 2(0,p, (1,2)).

1-p, (1,2)
Because p,(1,2) is regular for [z{< 1, continuous for
|z] <1 and p,(1,2z) is regular for |z| > 1, continuous for

lz| 2 1, it follows that, cf (16.9),
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1- 2 .
(16.11) TTTEZTITET W(pi(l,z),o) ¢(p1(1,z),0) is regular
for |z| <1, continuous for |z| < 1;
1~z :
Tt_EETTTET W(O,pz(i,Z)) @(O,pz(l,z)) is regular
for |z| > 1, continuous for |z]| = 1;

analogously for W(pl(l,z),o) and W(O,pz(i,z)).
The relations (16.10) and (16.11) formulate again a
Riemann boundary value problem for the contour {z:|z| @ 1}.

By using the assumptions (5.10) (cf, the discussion in

section &) and by noting that
(16.12) p,(1,2) » 0 for [z]| » =,

a direct application of Liouville's theorem leads to, cf. (16.10)

and (16.11),

1-z
(16.13) m ‘P(pl(l,z),O) Cb(Pl(l,Z),O)
- (1-2) ¥(0,0) #(0,0)= (1-2) C, +C, for z € ¢c¥,
1~
(16.14) - T'——p;%ZT ¥(0,p,(1,2)) #(0,p,(1,2))
B (1-2) C, +C, for z € C |

where C1 and C2 are constants.
Because

(16.15) p1(1’2)|z:0 =0,

it follows from (16.13) that

(16.186) C, +C, a0
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For |z| + =, (16.14) implies that

(16.17) ~- C, @ ¥(0,0) 9(0,0).

1

It remains to determine Cl,C2 and ¢(0,0). By letting z + 1,
|z] <1 it is seen from (16.5), (16.9), (16.13), (16.16) and

(16.17) that
(16.18) C, = =C, = ¢ ¥(1,0) ®(1,0) = ¢ E{1~ X}= ¥(o,0) €(0,0).

Hence

1- pl(i,z) W_l

(16.19) @(pi(l,z),0)= -2 (pi(l,Z),O) c E{l—l},
z € C+,
1-p,(1,2) _y
@(0,p2(1,z))= — ¥ (O,pz(l,z)) ¢ E{1-x},
1- 2z

z € C

By noting that pi(l,z) maps c* conformally onto Sl+(1)’ that
the inverse mapping is pio(l,pi), Py € 81+(1) it follows that
1—p1 1 x+
?(p,,0) = TT5,(1e; ¥ 7 (py,0) ¢ E{1 - T}’

+
p, € 5,7 (D).

By analytic continuation the latter expression is seen to
hold for p, with |p1| < 1, and by continuity also for |p1| <1,
note (5.10).

Consequently it follows that

i-p
_ 1 -1
(16.20) ¢(p,,0) = T=5,,(50, ¥ (py,0) ¢ E{1-y}, fpll <1,
1 -P,

(0,p,) = v 10,p,) ¢ El1-x), |p,] <1,

1—p2’01(1,p2)
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(the second relation in (16.20) is derived analogously).
Substitution of (16.20) in (16.2) leads to, for
[p1| <1, |p2| <1, and (p,sP,) not a zero of the kernel:
2 (p. p.) = (1- pl)(i— p,) 1 ) 1 )
? - - - -
1°P2° T Wp ,p,) - P4P, 1- P(Tp)  T-p,y0(1,p,)

X+
. C E{l——_—z—x—},

(16.21)

which is the result already obtained in the preceding section.

Remark 16.1 To prove directly that (16.21) represents the
generating function of the stationary joint distribution of the
random walk for the assumed conditions it is firstly remarked
that the random walk can have only one stationary distribution
because of (1.1.15). Secondly it should satisfy (16.2) and (16.3)
and possess the regularity properties stemming from its
definition.

In this section it has been shown that ¢(p1,p2) is uniquely

determined by these conditions.
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11.3. THE GENERAL RANDOM WALK
I1.3.1. Introduction

In this chapter we shall investigate the functional equation
(1.1.19) for the general random walk, i.e. the nonsymmetric case,
which means that the assumption expressed by (2.1.1) shall not be

made.
For the same reasons as in the preceding chapter it will in

the present chapter always be assumed that, cf. (2.1.5}), for

lp,l &1, [p,| =1
-1 y-1 _ . .
(1.1) IE{PT P% } = 1 if and only if p, 81, p, @l

The generality of the discussion is hardly influenced by

taking r in (1.1.19) real and nonnegative, i.e.
(1.2) 0 <r <1,

because if ¢Xy(r,p1,p2) is known for r € (0,1) it can be found
for |r| < 1 by analytic continuation.
For the same reasons as in section 2.5 it will in the present
chapter be assumed that (cf, (2.5.10) and (2.1.5) i)
(1.3 ¥(p,,0) # 0 for p, € {py : |p1| <1, p; * 0},

¥(0,p,) # 0 for p, € {p, : |p2] <1, p, # 0}.
The two cases

¥(0,0) >0 and VY(0,0) = 0O,

need separate discussions. Therefore in sections 2,...,9 it

will be assumed that

(1.4) ¥(0,0) > 0,
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whereas the case
(1.5) ¥(0,0) = 0,

will be discussed in sections 10,...,12.

The analysis of the nonsymmetric random walk presents some
new aspects, which are reflected in possible singularities of the
curves Sl(r) and 32(P), cf. section 2. If such singularities
do occur the analysis becomes more complicated, i.e. we encounter
Riemann boundary value problems with singularities on the contour,
cf. [6],chapter VI, and [7], chapter IV. In the present monograph
we shall not enter a discussion of the functional equation (1.1.19)
if such complications arise, and shall therefore exclude them by
introducing an additional assumption, see (2.26).

Finally, it will be always assumed that
(1.6) E{x} <1 and E{y} < 1.

Although (1.6) is not needed in the analysis with r € (0,1) it
is important if r t+ 1. The cases with E{x} # 1 and/or E{y} > 1
and r + 1 will not be discussed in the present monograph, cf.

[16] for a discussion of such cases in an analogous problem.
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11.3.2. The kernel with ¥(0,0) >0

For the kernel

(2.1) Z(P,pl,pQ) Bpp, -7 W(pi,pQ), ir| <1, tpll < 1,[p2| <1,

we have the following

Lemma 2.1 For 0 < < 1, ¥(0,0) >0, E{x} <1, E{y} <1

i.  The kernel Z(r,gs,gs_l), |s| B 1 has in |g] € 1 exactly two
zeros, which are both real for s B %1;

ii. if g(r,s) is a zero so is -g(r,-s) with |s| @ 1;

iii. gB@ 0 is a zero if and only if r @ O.

Proof The proof is identical with those of the analogous state-

ments of lemmas 2.2.1 and 2.13.2 and it is therefore omitted. O

Put for lsl a1, Igl < 1:
(2.2) Alg,s) := E{(i-é)g§+ls§'1},
B(g,s) := E{(1-y)gZX XY},

From the lemma above it follows readily with g(r,s), |s| = lazero

of Z(r,gs,gs_l) in |g| < 1, that if

(2.3) Alg(r,sY,s) + B(g(r,s),s) = E{(2-x-y)gX L(r,s)s L} # 0,

then, cf. also (2.3.2),
E{(ﬁ—x)g5+z(r,s)s5—x}

9
(2.4) s =={log g(r,s)} = -
os E{(2~5—X)g§+x(r,s)s5 Ly
_ Blglr,s),s)-Alg(r,s),s)
® Blg(r,s),s ) +A(glr,s),s)’
and
] - B(g(r,s),s)
(2.8) s 35 loglsg(r,s)} = 25151y 5, 53+Alg(r,s),8)"

A(g(r,s),s)
Blg(r,s),s)+Alg(r,s),s)’

log{s-ig(r,s)} = =2

(0]
Wl
0n
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and moreover, g{r,s) is a zero with multiplicity one.

i¢

Put with s = e™ 7,

(2.6) wlr,¢) := arg g(r,ei¢),
¥ (r,¢):= arg {g(r,ei¢)ei¢} = w(r,) + ¢,
WZ(P,¢):= arg {g(r,ei¢)e_i¢} = w(r,)-¢.

It follows from (2.4) (if (2.3) applies) that

(2.7

_ B(g(r,s),s)-Alg(r,s),s)
- wlr,9) = R B(g(r,s),s)+A(g(r,s),5) s=ei¢,

Q)IQ)
©

] - Blglr,s),s) |

75 Y1700 = 7Re 5gtr Ve vAle(r,8) 58] i¢”
3 - - Alg(r,s),s) |

55 Y2(rs0) = -2Re B<gﬁ,s),s>iA<g<r,s>,s>|s=ei¢-

With aij as defined in (2.1.3) (note that in the present case

(2.1.4) does not hold) put

o« 0

(2.8) D(g,s) := 2 Z akhgk+h—25k-h, lgl <1, |s| = 1,
k=0 k=0
k+h=2
so that
_1 _
Z(r,gs,gs ~) = 0
is equivalent with : for |g| < 1, |s| = 1,
(2.9) {1-r D(g,s)} 2-r(a s+a 8_1) -ra =0
: g,8778 10%%%01 g=ragg :

The latter relation shows that the zeros, say, gi(r,s),i = 1,2

in the lemma above satisfy (note |r D(g,s)| <1, cf.(2.2.6)),

-1 -1,2 2 3
r(a, . .s+a~,s J+[(a, s+a,.8 ) v +ira . {1-rD(g.(r,s),s)}]
(2.10) g, (r,s) = 1077701 =107 %01 00 1 T80

2 {1-r D(gi(r,s),s)}
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(2.11) D(g,s) = D(-g,-s).

To distinguish the zeros gi(r,s) for all |s| B 1, we choose

for s = 1 the indices so that, cf. lemma 2.1.1,

(2.12) 0 < gl(r,l) <1, -1 < gz(r,l) < 0.

Suppose that (2.3) holds for all s with |s| = 1, then it is

readily seen, because ﬂrugs,gs_l) possesses derivatives with

respect to g of any order, that to every so,lso[ B 1 corresponds

a neighbourhood |s—sol <e on |s] B 1 with ¢>0 but sufficiently

small such that g(r,s) can be expanded into a power series of

powers of s-sg with coefficients depending on the derivatives w.r.t.

s of g(r,s) at s = Sg» and this power series is uniquely determined.
Consequently if (2.3) holds for all |s| ® 1, so that the

zZeros gi(r,s) have multiplicity one, it follows from (2.10),...,

(2.12), by noting that the "+" sign in (2.10) corresponds to

g,(r,s), that for |s] = 1:

(2.13) gl(r,s)= -gz(r,-s),

sgl(r,s) = gz(r,-s)(-s).

Because ¥(0,0) > 0 implies that g,(r,-1) and g,(r,-1) have

opposite signs it is seen from (2.12) and (2.13) that
(2.14) g, (r,-1) > 0.

From now on we shall write

(2.15) gl{r,s) = gl(r,s),

and for s | =1

(2.18) pl(r,s) := g{r,s)s,

p,(r,s) g(r,s)s_l,
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so that (p,(r,s), p,(r,s)) is a zero of Z(D,pl,pz) with |p1| <1,
JPQJ <1

It follows from (2.6), (2.7) and (2.16) that for 0 < ¢ < 27,

5 i, _ B(6) 1B($)| 24A(4)IB(8)
(2.17) & arg p,(r,e”") = 2 Re = 2 Re
3% 1 BLaY+Ald) [BC$)+A(d) 12

. 2 —_
] i¢, _ _ A(o) .. AP | “+A(0)B(d)
3¢ 2¥e py(r,e”7)= -2 Re g S EINCY) 2 Re |B(¢)+A(¢)|2 R

with
(2.18) B(¢):= B(g(r,e ?),e®), Ags):z Alg(n,el?), &%),

if, of. (2.3),

(2.19) A($)+ B(d) # 0 for all ¢ € [0,2m).
Note that,
{ Xy }
. 2E{(1-y)g (r,1)
d ie . ’
(2.20) e (r,e =
3¢ arg Pl )Jb=0 X+y_ 3

E{@-x-y)g (r,1)}

Xty
E{(1-x)g ~(r,1)}

§$ arg p2(r,eMUL_D:- Xy
i E{2-x-y)g "~ (r,1)}

Put for 0 < ¢ < 2m,

(2.21) E(r,¢):= A(0)B(9) + A($IB(¢) + 2 min{ [A(0) (2, (B($)[°},

and suppose that for all ¢ < ¢ < 27,

(2.22)  E(r,0) >0 or E(r,¢) < 0.

It then follows that

(2.23) A(¢)+ B(¢) *+ 0 for all ¢ € [0,2m),

i.e. (2.22) implies that (2.3) holds for all ¢,
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and (2.17) implies that for j = 1,2:
(2.24) arg pj(r,el¢) is monotonic in¢ on [0,2m).

Remark 2.1 The condition (2.22) can be weakened somewhat, i.e.
for instance E{(r,¢)e 0 for some ¢ can be admitted if for such
a ¢

|acor| * [BCoI[;
then (2.23) and (2.24) still hold.
Put, cf. (2.3.1),
(2.25) S, (r):= {pl:plﬂ glr,sl)s, |s|=1},
S,(r):= {p,:p,= g(r,s)s_l, |s|=1}.

Remark 2.2 If in (2.25) g(r,s) is replaced by gz(r,s)= ~g(r,-s)
then the curves Sl(r) and Sz(r) do not change, cf, (2.13).
Because ¥(0,0) > 0, so that p,=0 & Sl(r),it is seen
from (2.12), (2.14) and (2.15) and from (2.24) that Sl(r)
is a starshaped curve with respect to Py= 0, cf [3],p.220,
i.e. all points of Sl(r) can be seen from Pq* 0. The analogous
conclusion holds for SQ(r).
We formulate the following
Lemma 2.2 TFor ¥(0,0) >0, E{x} <1, E{y} <1 and fixed r with
0 <r < 1:

if, cf.(2.21), (and remark 2.2) for all ¢ €[0,2m)
(2.26) E{r,¢) >0 or E(r,$ <0,

then Sl(r) and Sz(r) are both smooth, and analytic contours,

except perhaps for r B 1 at py = 1 and p, = 13
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(2.27) p, = 0 €58, (m), p, B0 €S, (r).

Prooy That S,(r) and S,(r) are both Jordan curves if (2.26)
holds has already been shown above, see below (2.25), similarly
for (2.27)., To show that they are analytic curves, cf. section
I.1.2, it suffices to remark that (2.3) is implied by (2.28)
and Z(r,gs,gs-l), |s| B 1, possesses derivatives of any order

with respect to s if 0 < r <1, and also for r = 1 if g + 1. 0O

Lemma 2.3 Tor the conditions of lemma 2.2 there exist func-
tions Pl(r,pz) and Pz(r,pl) such that

Pl(r,pz) maps Sz(r) one-to-one onto Sl(r),

P2(r,p1) maps Sl(r) one-to-one onto Sz(r),
(Pl(r,p2),p2), P, € 82(r), and similarly (pl,Pz(r,pl)),

p, € 8,(r), are zeros of Z(r,p,,p,) in |p,| <1, lp2| < 1.

Proof If P, € Sz(r) is given its argument w2(r,¢) is known;
because it is continuous in ¢ and also monotone, ¢, i.e. s

*

follows uniquely, so that
2
Pl(r,pz) P= P,ys

is uniquely defined. This proves the lemma. o
Lemma 2.4 TFor the conditions of lemma 2.2,

3
(2.28) 352 P2(r’P1) ¥ 0 for 1201 € Sl(r),

and Pz(r,pl) is regular for Dy € Sl(r) with the possible
exception of the point py =1 if r B8 1, similarly for Pl(r,pz),

p, € Sz(r).

Proof From (2.8.5) and (2.2) it is seen that for |s| = 1

with Py * g(r,s)s,
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E{(l-g)plzPQX(r,pl)}

)
(2.29) p, x—log P, (r,p,) =~
1 9py 2 1 E{(l—z)plszx(r,pl)}

_ A(g,s) / B(g,s)
Al(g,s)+B(g,s) A(g,s)+B(g,s)’

g = glr,s).

Note that p, @ g(r,s)s % 0 for |s| mland that (2.26), which

implies (2.23), leads to, ecf.(2.17), (2.24),

A( ,S) B( ,S) =
(2.30) Re 2,50 75(g.s ¥ 0, Re A(E,5)+5(g.5 ¥ 0, |s] = 1.

It is seen that (2.28) follows.

Z(r,p,,p,) is regular in p, with |p1] < 1 for fixed
|p2|< 1, and similarly with p; and p, interchanged, so that
the implicit function theorem,cf. [1] p.101, together with
(2.30) implies that PZ(r,pl) is regular for Py € Sl(r),
0 <r <1, and also for r = 1 if p, a1 is excepted. Note that
Pz(r,pl) has for r m 1, p, @ 1 a derivative with respect to P4
because E{x} < 1, E{y} <1, the existence of its higher deriva-

tives requires the finiteness of higher moments of x and y.

Remark 2.3 If g(r,s), |s| m 1 is a zero of the kernel then

obviously,

X+y x+x X-y

(2.31) gz(r,s)- rE{:7: g (r,s)s  }

X+ X+ Xy
= rE{(l—:j—) g (r,s) s }.

For E{x} <1, E{y} <1 it is readily seen by applying

Rouché's theorem that for |s| = 1:
Xty Xy X-y
(2.32) g°-rE{—— g s '}, 0<r<t,

has exactly two zeros in |g| < 1. It may happen that such
zeros are also zeros of the kernel, then the definition of

the curves Sl(r) and Sz(r) becomes more complicated. They
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may contain points at which they are not smooth, moreover
it is possible that they are selfintersecting (note that this

situation is excluded if (2.3) holds). This occurs e.g. if

56 160 2

30 ° 109 5100 %017 §70° 222¥ w100

5
00 810°

and all other a,. B 0; the critical points are s = *i with

kh
g(l,+i) = £11,

If such critical points do occur, the analysis to be
discussed in the next sections can possibly be extended by
using the theory of boundary value problems for more com-

plicated boundaries, cf. [6] and [7]; however, we shall not

enter such a discussion in the present monograph.
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1133. A conformal mapping of S] () and of 8 (r)

We consider the following problem. Do there exist in
the complex z~-plane a smooth contour L(r) and a pair of

functions pl(r,.), p2(r,) such that

(3.1) i. pl(r,z) is regular and univalent for z € L+(r),
continuous for z € LY (r) U L{r),
pz(r,z) is regular and univalent for z € L (r),

continuous for z € L™ (r) VU L(r),
here L+(r) and L™ (r) are the interior and exterior of L{r);

ii. pl(r,z) maps LY (r) conformally onto Sl+(r),

p,(r,z) maps L™ (r) conformally onto 82+(r)5

iii, for every z € L(r), cf.lemma 2.3 (for the notation
see (I.1.6.2)),
p1+(r,z) a Pl(r,pz_(r,z)),
pz_(r,z) = P2(r,p1+(r,z)),
i.e. (p1+(r,z),p2_(r,z)), z € L(r) is a zero of
Z(r,pl,p2);

€ s, (m

iv. pl(r,D) acy. g% pl(r,z)'zzO >0 for a ey 1 .

pylr,®) = 0, 0 < limjzp,(r,z)| < .
[2]e
Note that we can always choose the origin of the z-plane so
that it belongs to L¥(r) if L(r) exists. Because of (2.27) we

may and do assume that
(3.2) c, = 0.

Remark 3.1 If L(r), P (r,.), pylr,.) is a solution then ob-

viously A(r), Hl(r,.), Hz(r,.) with
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Ar):= {z:z2= Ag,LE€ L(r)},

ﬂl(r,z):= pi(r,Az) , z € L+(r),

H?(r,z): pz(r,AZ) , z €L (),

where A is a finite nonzero constant, is also a solution.

The answer to the question posed above 1s provided by
the following

Theorem 3.1 For 0 <r <1 and assuming that:

(3.3) i. ¥¢0,0) >0,
ii. BE{x} <1, E{y} <1,
iii. E(r,6) > 0 or E(r,$)<0 for all ¢ € [0,27),

iv. the conditions (1.1) and (1.3) held,

there exist a pair of functions pl(r,z), pz(r,z) and a Jordan
contour L(r) satisfying (3.1)i,...,iv; apart from a finite non-
zero constant, cf. remark 3.1 above, pl(r,.), p2(r,.) and L(r)
are uniquely determined, and L(r) is an analytic contour.

The statement also holds for r = 1 with the additional

condition

(3.4) the kernel Z(i,pl,pz) is for Py B 1 regular at P, a1,

and for p, B 1 vregular at py = 1.

For the proof of this theorem see section 5.

+
Remark 3.2. z = plo(r,pi), Py € S1 (r) and z & pzo(r,pz),
Py € 82+(r) shall denote the inverses of pl(r,z) and p,(r,z),

respectively.
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Remark 3.3 The condition (3.4) is equivalent with the same
condition for W(pl,pz).

It actually implies that all moments E{Eg}, E{zh},
ko 0,1,...5 h =0,1,..., are finite. The condition is in
fact too strong. It suffices already that E{zz} <,
E{zz} < o, and this can be further weakened, see section 5,

remark 5.1. Concerning the elimination of condition (3.3)iii

see remark 8.2.
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I1.3.4. Boundary value problem with a shift

For the proof of theorem 3.1 we need a result con-
cerning a boundary value problem with a shift. The formula~
tion of this problem reads as follows. For D the unit circle
in the complex w-plane determine two functions 91(W) and QZ(W)

such that

(4.1) i. Ql(w) is regular for w € D+, continuous for

wep up;

ii. Qz(w) is regular for w € D°, continuous for

w € D" UD and

1
Q,(w) B vy + Y w + 0() for fw| > oo

0
iti. 9, (xw)) = 2, (w) for w € D;

here Y, and Y, are finite constants with v, * O,
0 1 1

Yw) @ lim 9, (v), R, (w) B 1lim 2,(v), w € D,
V"*W V"’W_
véD vED

and oa(w) is a function defined on D, mapping D one-to-one
onto itself, such that the direction is preserved, and a(w)
possesses a derivative which satisfies a H&lder condition and
which vanishes nowhere on D.

The construction of the solution of this boundary value
problem is discussed in [6],p.126; we quote the results there
obtained (see also remark 4.2).

92-(w) is determined as the unique solution of the
Fredholm integral equation, for w € D:

- 2w
(4.2) 92 (W)"—r f {m-—}ﬂ (M)du)"YO Yl w = 0.
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The solution of (4.2) is given by, for w € D:

- - 1 B
(4.3) Ry (W)= yg+ YW+ o= ;Cg(w,w){y0+ Ylw}dw,

where R(w,w) is the resolvent of the integral equation (4.2).

The solution of the boundary value problem is represented

by,
Q. (o, (w))
(4.1) Qe 20 gy, w € p',
™ WED " W
1 Q2 (w)
(4.5) Q (W) = === [ S du + Y, t YW w €D
2 271 wep W- W 0 17 >

where ao(.) is the inverse of a(.) on D; and it is the unique
solution of (4.1) 1i,...,,iii.

Obviously Ql(W) as given by (4.4) satisfies (4.1)i, simi-
larly 92(w) as represented by (4.5) fulfills (4.1)ii. To show
that (4.1)iii is also satisfied let v + olw) with v € D' and

w € D. By using the Plemelj-Sokhotski formulas it then follows

that for w € D,

2, (a(w)) = lim 0, (v)

v»aiw)‘i
vE€ED _
Q. (a,(w))
- - 1 2 0
= 1 92 (w)4—7?1 ieD TG — dw
- d
1 92 (w)aa(w)

=

Q2 (w) + 2m1 iED alw) - alw) dw.

Hence by using (4.2) and again the Plemelj-Sokhotski for-

mulas applied to (4.5) it is seen that for w € D:

N _ _ 4 92_(m)
-1 ————
Q7 (alw)) = 30,7 (W) + 9,7 (W) + 5ix Q{GD w=w 4w
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this proves (4,1)iii.

In [6],p.131,133 it is shown that Ql(') maps p* conformally
onto a domain L+, that 92(.) maps D conformally onto a do-
main M, that LY ana M~ have a common boundary L and that
M @l . Further,because D is the unit circle, it is shown
that L is a smooth contour of which the angle formed by the
tangent to the contour and a fixed direction satisfies a

Holder condition, that is L is a Lyapounov contour.

Remark 4.1 The integral equation (4.2) may be rewritten as,

for w € D:
- 1 a a{w) - alw) -
(4.8) 92 (W)—"z—,n,—i' f: {d_w 10g —U':w—} QQ ((.U)du)
W=D
+ (Y0+ Y1W)'

Put for w = el¢, ¢ € [0,2m),

(4.7) §(6):= alel?),

r(e):i= 0. (a1,

2

Then (4.6) leads to, for ¢ € [0,2W):
2m
.1 d S(y) - 8§(¢)
(‘4.8) F((b) _"'2,”1 w=0 {'a—,\D lOg :%T?T}F(U))dw

+ (YO + Yiei¢’).

Assume that a(w), w € 0} is regular for every w € D,
i.e. for every ¢O € [0,27) there exists a neighbourhood
N(¢O) Clo0,2m)of % such that &§(¢) with ¢ € N(¢0) possesses
a convergent series expansion in powers of ¢-¢0. It then
follows readily, because é% alw) ¥ 0, w € D, so that §%6(¢) ¥ 0
for ¢ € [0,2m), that the derivatives of the integral .in (4.8)

can be expressed by the integral of the derivatives since the
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integrand and its derivatives are continuocus. Hence by noting
that T(¢) is bounded for ¢ € [0,27) it is not difficult to
show that 92_(w), w € D is regular for every w € D (a fact

to be used in the next section).

Remark 4.2 The derivation of the integral equation (4.2)
proceeds as follows. The conditions (4.1)i,ii together with

the relations of section I.1.9 imply that for w € D:

.
g, (W)
1 + 1 1
(4.9)  Qy (W)= 5> J ———— dw =0
2" 271 wep W™ ¥ ’
Q,” (w)
1 1 2
7% Wt [ emw 90 YT M R 0

if 9. " (w) and 92_(w) both satisfy a Hdlder condition on D.

1
Define
Q. (w)
o1 2 _ _ +
(4.10) Al(w).— =T izD—z;fw— dw Yoo YqWs w €D,
= +
1 Ql (w) _
A2(W).-m£ED—Fw— dw, w €D

By applying the Plemelj-Sokhotski formulas to (4.10) it is

seen that for w € D:

+
W
(4.11) A;(w)=-—91+(w)+2—1-f -Q—l—_:dw= 0,
T wep W=V
Q. (w)
+ 1 - 1 2
Aw)= £ Q, (W +es— [ ——— dw - Yy,-Y,waB 0.
1 2 72 271 WED w-w 0 1
It follows that for w € D:
gt _ A 21 - 1 + _ _
(4.12) 0= Al(W) Az(d(w))- 5 92 (w) + 5 Ql (alw)) Yo~ YqW
- +
+—3w-f ?z—iﬁi dw- . Ql () dw
2m 1 wep W W 271 W€D W= (W) ’

and by using (4.1)iii it is seen that (4.12) is equivalent
with (4.2). The assumption that Ql+(W)’ QQ—(w),w € D satisfy
a Hdlder condition, which is introduced above, is actually

irrelevant, cf, [6],p.124, 127.



168 Analysis of two-dimensional random walk 11.3.5.
11.3.5. Proof of theorem 3.1

To prove theorem 3.1 we introduce the conformal mappings

+ +
Hlo(r,pl), Py € S1 (r) and Hzo(r,pz), P, € 82 (r) such that

+

(5.1) i, My ,(e,8, () = DY,

10

- 3 .
HlO(P’O) = 0, b Hlo(r,p)|p=0 > 03

.« + -
ii. H2O(r,82 (r)) =D,

M,p(r,0) = =, > |1im pHZO(r,p)l >0,
p»0
D being the unit circle in the w-plane.

The existence and uniqueness of the mappings Hio(r,.)
and Hzo(r,.) follow from lemma 2.2, Riemann's mapping theorem
and the conditions (5.1). Because Sl(r) and SQ(P) are smooth
contours, cf. lemma 2.2, and D is also smooth,the corre-
sponding boundaries theorem implies that the mappings
Sl(r) + D and Sz(r) + D are both one-to-one; Sl(r) and D
are traversed in the same direction, while Sz(r) and D are
traversed in opposite directions.

For Py € Sl(r) put

(5.2) W

9 Hzo(r,Pz(r,pl)),

Wy = Tp(rspyds

with PQ(P’pl)’ P4 € Sl(r) as constructed in lemma 2.3.
Because “10(P’P1)’ Py € Sl(r) and Hzo(r,pz), P, S Sz(r)
are both univalent it follows from lemma 2.3 that (5.2) de-

fines a one-to-one correspondence between Wy and Wy Hence

we may put

(5.3) wy = a(w2), w, €D, w, €D,
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and a(,) possesses an inverse, say, ao(.).

By noting that p, B Pz(r,pl) traverses Sz(r) clockwise
if Py traverses Sl(r) anticlockwise, cf (2.16), (2.25) and
(2.26), it is seen from what has been stated below (5.1)
that if p, traverses Sl(r) anticlockwise then w, and wy both
traverse D also anticlockwise.

For the present we take
(5.4) 0 <r <1,

then, cf. lemma 2,2, Si(r), Sz(r), and also the circle D are
analytic contours. It follows that Hlo(r,pl) is regular and
univalent for Py € Sl(r), similarly for Hzo(r,pz), P, € Sz(r),

so that for Py € Sl(r) and P, € Sz(r),
(5.5) 2L, (r,p.) t 0, == I (r,p) % O
. 3p, 10 7°F1 > 3p, 200 P2 :

Hence for the conditions (3.3) it follows from lemma 2.4% and
(5.2),...,(5.5) that a(w), w O et? possesses derivatives

of any order, that it is regular for w € D and that

d
(5.86) T alw) ¥ 0 for w € D.

We may now apply the results of the preceding section,
i.e. for arbitrary Yq and Y5 Yq # 0, and a(.) as defined in
(5.3) there exist a smooth contour L(r) and two functions
Ql(r,w), w € D+, Qz(r,w), w € D which satisfy (4.1)i and
(4.1)ii, respectively, which map " onto L¥(r) and D~

onto L (r) conformally, and for which holds, for all Py € Sl(r),

+ -
(5.7) 91 (r,HlO(r,pl))= Q, (r,HZO(r,PQ(r,pl))).
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Put

+
(5.8) plo(r,pl): 91‘r’“10(r’P1))= Py €5, (r),

+
pQO(r,pz): Qz(r,ﬂzo(r,pz)), P, € 82 (r).

It then follows that plo(r,pl) maps Sl+(r) conformally onto
L¥(r), that Py (r,p,) maps 82+(r) conformally onto L(r) and
that for (pl,pz) with Py € Sl(r), P, a Pz(r,pl) a zero of the

kernel Z(r,pl,p2):

(5.9) plo(r,pl) = pzo(r,pz).
Obviously, (4.1)ii and (5.1)ii imply that
(5.10) P, (r,0) = », »>| lim p p,,(r,p)| > 0.
20 0 20
p-»J

Denote by p,(r,z), z € LY (r) and by p,(r,z), z € L ()

the inverse mappings of plo(r,pi), p, € Sl+(r) and of
+ .

pzo(r,pQ), P, € 82 (r), respectively.

These conformal mappings depend on Yo and Y- The con-
dition pi(r,O) = 0 leads to a relation between Yo and Yy
so there remains only one free constant; this is in agreement
with remark 3.1. Note that 92(P,.) depends linearly on Yy and
Yqo cf. (4.3), and so do plg(r,.) and pzo(r,.).

Hence it has been shown for the conditions of theorem
3.1 with 0 < r < 1, cf. (5.4), that the contour L(r) and
the functions pl(r,z) and pz(r,z) satisfying (3.1)i,..., iv
can be constructed. That they are uniquely determined in the
sense of remark 3.1 follows by a similar reasoning as used in
the proof of lemma 2.%4%.1,

To show that L(r) is an analytic contour note that it

has been proved already that a(w), w € D is regular, see
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below (5.5), and hence remark 4.1 implies that L(r) is
analytic.

For r = 1 the proof is analogous because the condition
(3.4) implies that 81(1) and 82(1) are both analytic contours,
so that HlO(l’pl)’ Py € 81(1) and Hzo(l,pz), P, € 82(1) are
both regular and univalent. The condition (3.4) implies that
the exceptional case in lemma 2.4 does not occur, so that the

proof continues as for 0 <pr < 1.

Remark 6.1 The proof of the regularity of a(w) and the non-
vanishing of é% alw), w € D with 0 < r <1 also holds for r =

with the exception of the point w B W
It is for this point that the condition (3.4) has been intro-
duced, cf. in this respect also remark 2.13.1.

Actually, it may be conjectured that the condition (3.4)
can be weakened. Suppose that instead of (3.4) it is assumed
that g% g(1,s) satisfies for s B ei¢,— ¢O<§¢ < ¢y a Holder
condition with ¢ > 0 but small., It is then readily proved
that g(1,s) satisfies a HBlder condition on |s| B 1, because
g(l,s), |s| m1, s # 1 is continuously differentiable,cf. (3.3)
iii which implies (2.23). It may now be shown that 81(1) and
82(1) are both Lyapounovcontours, and by applying Kellogg's
theorem, cf. [1],p.265 or [8],p.374 it then follows readily
that gﬁ; Hlo(i,pl) exists, is finite and nonzero for Py |1,
and satisfies on 81(1) a Hélder condition; similarly for

4
dp2
the relation (5.6) follows again.

M,0(1,p,). Because (5.5) holds for r & 1 and all p, €5,(2

A further analysis of (2.29) then shows that é% a{w)

satisfies a Hdlder condition on w € D in a neighbourhood

of the point w = Wy corresponding to the point Dy = 1. Then,

1

corresponding to Py = 1.

)
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because as before ow), w € D\{wo} is regular, it is proved
by the same argumentation as used in the proof of theorem 3.1
that L(1) exists and that it is an analytic contour except

possibly at the point corresponding to w = wg-

Remark 6.2 The proof given above contains the information to
calculate pl(r,.), p2(r,.) and L(r). Viz. first determine the
conformal mapping of Sl+(r) onto {w:|w|< 1} and that of S2+(r)
onto {w:|w|>1}, of, (5.1)i,ii. Next o(w) can be determined and
then Ql(') and 92(.) according to the construction discussed
in section 4.

In the next section we shall present another approach
for the determination of pl(r,.), p2(r,.) and L(r), it leads
to a set of integral equations which seem to be more

attractive from a numerical point of view.
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I1.3.6. The integral equations

The problem formulated in section 3 has a unique solution,
cf. theorem 3,1, in the sense of remark 3.1. This section will
be concerned with the determination of L(r).

For z € L(r), (p1+(r,z),p2_(r,z)) is a zero of Z(r,pl,pQL
Ip,| <1, |p,| <1 with p,"(r,2) €5, (x), p, (r,z) € 5,(r),
cf. (3.1).

Hence we may write, cf. (2.25), for z € L(r):

(6.1) p1+(r,z) . g(r,eik(r,z))eik(r,z),

p, (r,2) = g(p,etr(rs2)y —idlr,z)

with for every fixed r € (0,117,
(6.2) A(r,z) a real function of z € L(r).

Write

2{ix(r,z)-1log z} p1+(r,z)

(6.3) e ———7?———/{2 P, (r,z)}.

Because pl(r,z) has a single zero at z = 0, pz(r,z) a single
zero at z ® «, because pl(r,z) is regular for z € L+(r),
pz(r,z) is regular for z € L™ (r) and because L(r) is a (simply
connected) contour with 0 ELﬁ(P), cf, (3.1), it follows from

(6.3) that

(6.4) A(r,z) increases monotonically if z traverses L(r) anti-

clockwise, the increase is equal to 27 if z traverses L(r) once.

By noting remark 3.1 it is seen that we still have some
freedom in the determination of L(r). This freedom is equivalent
with the specification of one value of A(r,z), say for z =

zg €L, e.g.
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(6.5) A(r,zo) = 0 for 1z, € L(r).

0

Again remark 3.1 shows that we may take

(6.6) a1,

2y

as we shall do from now on.

From lemma 2.2 it is seen that Si(r) and SQ(P) should
be both starshaped contours, so that (6.1) implies that for

z traversing L(r):
(6.7) Mr,z) is strictly monotonic on L(r).

For r € (0,1) Sl(r) and L(r) are both analytic contours,
this implies that pl(r,z) is regular for z € L(r), so that
the existence of %% g(r,ei¢), 0 < ¢ <2m, ef (2.4), implies
that A(r,z) should have on L(r) a derivative with respect

to the arc coordinate on L(r). Consequently for fixed r € (0,1):

(6.8) g(r,elx(r’Z)) and A(r,z) satisfy on L{r) a HBlder
condition.
Note that
(6.9) g(1,1) = 1,

so that cf, (6.1), (6.5) and (6.6),
(6.10)  p,"(1,1) = p, (1,1) & 1.

For r = 1 as above, (6.8) remains true for every arc on L(1)
which does not contain the point z = 1,

Rewrite (6.1) as: for z € L(r), fixed r € (0,1]:

p1+(r,z) z p2_(r,z) gz(r,

(6.11) log = + log 3 = log 3 ,

eil(r,z))
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p1+(r,z) z p2_(r,z)

(6.12) log - log e 2ix(r,2z) -2 log z- log d,

Z

where, cf, (3.1)iv,
(6.13) d:= 1lim z pz(r,z) ¥ 0.
|z]>e

The relation (6.11) together with the conditions that
i-pl(r,z) is regular for z € L+(r), continuous for z € L(r) U
L+(r) and ii. pz(r,z) is regular for z € L™ (r), continuous
for z € L(r) U L (r) and the existence of the limit formulate
a boundary value problem with boundary L(r). It is of the
type as discussed in section I.1.7. Its solution reads, for

fixed r € (0,11:

2 {logg(r,eix(r’g%}{éég - E;l}g—
znlCEL(r) C=< [ g
(6.14) pl(r,z)= zZ e R
z € L+(r),

-1 s {logg(r,elx(r’c5}%§§ - Eil}dC

_, 7nt =17
pylr,z) =z e Z€L(r) s
z € L (r),
7%+ / {log g(r,elx(r’CB}{%;% - %;1}%5
iMr,2) o, 0 TTEL(R)

(6.15) e
z € L(r).

For details about the derivation of (6.14) cfi remark 2.4.2;
the relation (6.15) follows by applying the Plemelj-Sokhotski
formulas to the relations (6.14) and substituting the relations
so obtained in (6.12).

Similarly, by starting from (6.12) as boundary condition

(cf. remark 2.4.2 for details) it is found, for fixed r € (0,1]:

1 . z+z  r+1,dg
z—ﬂfcéL(r){l)\(I‘,C)' lOgC}{E—m}T
(6.16) pl(r,z)= z e g(r,1),

z € L*(r),
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2§1 / {ix(r,2) - logg}{&¥2_ &+ dL
(r,z)= 2z 1e GEL(M t-z 1%
p2 r,z}= 12 e g(r,l),
z € L (r),

1 : + +1,dg
, 2/ {iX(p,r) -logg}{2fZ. tt1yde
(6.17) glo,et?(Fs2)y . g(r’l)ez“lceur) ’ t-z T-1°%

z € L(r).

+

Because p,(r,z) maps the contour L(r) one-to-one onto the con-
tour Sl(r), and because pl(r,z) as given by (6.14) is regular
for z € L(r)LJL+(r), it follows from the principle of cor-
responding boundaries that pl(r,z) as given by (6.14) maps

+
L (r) conformally onto SI(P). Similarly for pz(r,z).

For given L(r) the relations (6.14) represent the unique
solution of the boundary value problem characterized above, i.e.
with boundary condition (6.11); analogously for that with bound-
ary condition (6.12).

For the boundary value problem with boundary condition
(6.11) the relation (6.12) presents a side condition, and it
leads to the characterization, cf. (6.15), of the (simply

connected) contour L(r), i.e. for r € (0,1]:
(6.18) Lir):= {z:2= o(r,p)e ¥, 0<y<2n}.

Note that (6.15) leads to two simultaneous integral equations
for the real functions p(r,¥), 9 € [0,2m) and A(r,z), z € L(r),
cf, (6.5), (6.8), by separating in (6,15) real and imaginary
parts.

Similar arguments apply for the boundary value problem
with boundary condition (6.12) and side condition (6.11). By
inversion of the integral equation (6.15), cf. section I.1.8
it is readily seen that (6.15) and (6.17) are equivalent;

it results that also (6.14%) and (6.16) are equivalent.
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Remark 6.1 Theorem 3.1 guarantees for the conditions there
stated that the integral equation (6.15) possesses a unique

solution A(r,z), L{(r) such that A(r,z) satisfies (6.2),

(6.4),...,(6.7) and that L(r) is a simply connected, smooth
contour. The integral equation (6.15) cannot have two of

such sclutions which differ from each other. To prove this
suppose two of such solutions exist. Then for each of them the
functions (6.14) may be constructed. By using the same argument
as that in the proof of theorem 3.1 and lemma 2.4.1 it is readi-

ly seen that a contradiction is obtained.

Remark 6.2 The definiton of the principal branches of the log-
arithm occurring in the integral expressions above is
actually irrelevant, it does not influence the values of the
righthand sides of (6.14),...,(6.17).

Further it is seen, cf.below (6.10), that the integrals
in (6.14),...,(6.,17) are all well defined for z = 1, irre-
spective of the fact whether X(1,z) satisfies a H8lder condition

on an arc of L(1) containing the point z B 1.

Remark 6.3 By replacing in (6.14) z by %,C by %, Alr,z)

by —A(r,%) it is seen that the expressions for pl(r,z) and
pz(r,z) interchange, of course the contour L(r) is then re-
placed by another contour, which is exactly the one obtained
from L(r) by inversion with respect to the unit circle |[z] = 1.

The transformation mentioned amounts to the interchange of the

role of x and y.

Conclusion:Theorem 3.1 states for the conditions formulated,
that the problem posed in section 3 has, in the sense of re-
mark 3.1, a unique solution, which is characterized by (6.14)

and (6.15),cf (6.18), or equivalently by (6.16) and (6.17).
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11.3.7. Analytic continuation

For the present case, i.e. the nonsymmetric random walk,
we shall discuss shortly the analytic continuations analogous
to those in sections 2.8 and 2.13.

It is first observed that lemmas 2.8.1 and 2.13.1 also
hold for the present case, note that Pl(r,pz), |p2| = 1, and
P, (r,py), |p1| = 1 are here defined similarly.

As insection 2.8 it is proved that for fixed r € (0,1]
pl(r,z), z € L(r) U L+(r) can be continued analytically
across L(r) into a region Fl(r) C L (r), analogously for
pz(r,z). Pl(r,pz) can be continued analytically starting from
Sz(r) into a region Ez(r), and pzo(r,pz) can be continued
across S,(r) into |p2| < 1.

These analytic continuations are based on the fact that
Sl(r), SQ(P) and L(r) are analytic contours for fixed r € (0,1]
with the possible exception of the points p; = 1 € 81(1),

p, B 1€ 82(1) and z B 1 € L(1) if r @ 15 cf (2.13.4) and the
discussion below it.

Because pl(r,z) and p2(r,z) so defined are both regular in
z € Fz(r) UL(r) V Fl(r) and

P1+(P’Z) 2ix(r,z)
—= e , 2 € L(r),

P, (r,z)
it follows that A(r,z) can be continued analytically from
z € L(r) into Fz(r) U L(r) V Fl(r), note p,(r,z) * 0 for
z € Fl(r), because it is univalent in L™ (r).

Similarly, it follows from

1A(r,z)),

- 2
p1+(r,z)p2 (r,z) =g (r,e z € L(r),

ix(r,2z)

that g(r,e ) can be continued analytically from L(r)
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into F ,(r) VU L(r) U Fio.
Denoting these analytic continuations by the same symbols

it follows that for z € Fz(r) U L(r) U Fl(r):

(7.1) pl(r’Z) - g(r,eiA(P’Z))ei)‘(r’Z)’

ix(r,z), -ix(r,z)

pz(r,z) = g(r,e e

and that (pl(r,z), P,(r,2z)) is a zero of Z(r,p,sP,), ]p1| <1,

Ip,| <1 for every z € Fo(r) U L(x) U F,(r), r € (0,1].
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I1.3.8. The functional equation with ¥ (0,0)>0,0<r< |

As in section 2.5 it follows that for fixed r € (0,1) and
z € L(r):
W(p1+(r,z),0) W(O,pQ_(r,z))

(8.1) % (r,p1+(r,z),0)+ r—
1~ Py (r,z) ¥ 1-p, (r,z)

-¢xy(r,0,p2—(r,z)) = r¥(0,0) d>xy(r,0,0)+ ny(z),

where
+ x+1 y+1
{p1 (r,z)} {p, (r,z2%

(8.2) H (z)= , 2 € Lir).
Xy

{1- p1+(r,z)}{1— Pz-(P’Z)}
It is first noted that the maximum modulus principle implies

that

(8.3) Ip,(r,2)| <1 for z € L'(x),

lpz(r,z)| <1 for z € L (),

because pl(r,z) is regular in LY (r), continuous in L(r)V L¥(r) and
|p1(r,z)| <1 for z € L(r), analogously for p,(r,z).
From the definition of @xy(r,pl,pz) it follows that for

fixed r € (0,1):

(8.4) ¢xy(r,p1(r,z),0) should be regular for z € L+(r),

continuous for z € L(r) U L+(r),

. +
lim ¢Xy(r,p1(r,§),0) o y(r,p1 (r,z),0), z € L(r);

gz, *
ZEL (1)
(8.5) @Xy(r,O,pz(r,zD should be regular for z € L™ (r),

continuous for z € L(r) U L™ (1),

%i?_ ¢xy(r,0,p2(r,c))= Qxy(r,o,p2 (r,z)), z € L(r).
Z€L (r)
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The conditions (8.1), (8.4) and (8.5) formulate a
Riemann boundary value problem of the type as formulated in

section I.2.1, note that (3.1)iv implies

(8.6) @xy(r,U,O) = lim ¢xy(r,0,p2(r,z)).

Iz]—>00
To simplify the analysis it will again be assumed, cf.

(1.3), that

(8.7) W(pl,o) # 0 for Py € {plzlpj < 1,p4 # 0},

W(O,p2) # 0 for p, € {p2:|p2] < 1,p, # 0},

cf. the discussion in section 2.5 which has led to the same
assumptions.

As in lemma 2.6.1 it is now easily derived that, for

r € (0,1):
1-rp,(r,z)
1 dg 17
8.8 ] > s ),O = oy —=— H
( ) r Xy(l” pl(r Z ) {211'1_ £EL(P)C_ Z XY(C)}W’
z € L+(r),
(8.9) 0 (r,0,p,(r,2)) = {miy / (2- 25 H ()
4 t€L(r) y
1-pylr,z) -
"¥(0,3, (7,200 2 € L (r),
. 1 1 dg
(8.10) P@Xy(P,U,O) = mm S THXY(C)’

Z€EL(r)

here pl(r,z) and p,(r,z) are given by (6.14).

Remark 8.1 The solution (8.8),...,(8.10) is completely analogous
with that discussed in section 2.6, the only difference being
that the contour of integration in section 2.6, i.e. the circle

|z] B 1 is now replaced by the contour L(r).
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The same holds for the results in sections 2.7, 2.9 and
it is for this reason that the analogous considerations of
these sections for the present nonsymmetric case are all
omitted. In particular theorem 9.1 with the integration
contour |¢| B 1 replaced by L(r) yields the expression for
@Xy(r,pl,pQ) with |p1| <1, |p21 < 1.

Similarly the discussions in sections 2.10,..., 2.12 arve

not repeated.

Remark 8.2 The solution (8.8),...,(8.10) is based on the

condition (3.3)iii of theorem 3.1. Actually this condition
may be eliminated as follows. From (2.8) and (2.2.6) it is
seen that |[D(g(r,s),s)| <1 for |r| <1, |s]| B 1. Hence it

follows readily from (2.9) or (2.10) with 0 < r < 1 that for

|s] = 1 and r ¢ 0,
-1

= 1

(8.11) glr,s) = /5[/a00+ 3/rla s+ agys )
r (alos"ams_lz -
+ 7{¢a00 D(glr,s),s) + }+ 0(rvyr)].
4va
00
From (8.11) it is readily seen for r € (D,ro) with r, > 0 but
sufficiently small that for s, # s,, [s;] = 1, [s,| = 1:
(8.12) (r,s,)s, # g(r ,s,)s (r,s,08, % # glr,s,)s, 7"
y BiT»S178 ) F giX 587789, £1158415, ANV AN

Consequently, Sl(r) and Sz(r) are both contours, with

p,&0 € Sl+(r), p,=0 € 82+(r). Hence for r € (O,PO) the
relations (8.8),...,(8.10) are valid without condition (3.3)iii ,
So we may determine Qxy(v,pl,pz), |p1[ <1, |p2| < 1 for

r € (O,ro). Because the solution so constructed is unique

and because Qxy(r,pl,pQL |p1| <1, |p2| < 1 is regular for
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[r| <1, cf. (1.1.17)iii and (1.1.18), it may be obtained from
@xy(r,pl,pz) with r € (O,PO) by analytic continuation. This
proves that we can do without condition (3.3)iii. However, an
explicit construction of that analytic continuation requires
quite some analysis, because if condition (3.3)iii does not
hold Sl+(r) and/or S2+(r) may be not simply sheeted domains,
but multiply sheeted domains. It is also possible that the
curves Sl(r) and/or Sz(r) have cusps, or,even worse, have loops.
If Sl+(r) and 82+(r) are multiply sheeted domains it is
strongly conjectured that theorem 3.1 without condition
(3.3)1ii holds provided in (3.1)1 the univalency and in

(3.1)ii the "schlicht" conformality are not reguired.
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11.3.9. The stationary distribution with ¥ (0,0) > 0,
{E x}<{LLE y}<1

In section 2.15 the stationary distribution for the
symmetric case has been obtained by investigating
(1-1) @xy(r,pl,pQ) for r 4+ 1, assuming that the condition
(2.13.4) holds.

Such an approach is here also possible; however, it is
more intricate because in the expressions of theorem 2.9.1
the integration contour has to be replaced by L(r), cf. remark
8.1, so that also the contour of integration depends on r;
a fact which makes the investigation of (1-r) ¢xy(r,p1,p2)
more complicated. We shall not discuss here this problem;
for the discussion of an analogous problem see [16].

Instead of such an approach we shall follow here the
lines of section 2.16. As in that section it will here also

be assumed that, cf. (2.13.4),

(9.1) W(gs,gs_l) is for g @ 1 regular at s = 1, and

for s B 1 regular at g @ 1.

This condition is equivalent with (3.4). It is actually
rather strong although in most applications it will be
fulfilled, see also section 2.13 and remark 3.3.

As in section 2.13 the condition (9.1) implies, cf. theo-
rem 3.1, that for the present case the contours 81(1), 82(1)
and L(1) are also analytic at py = 1 p, B 1 and z = 1. Hence
pi(l,z) and pz(l,z) are both regular at z=1, plO(l’pl) and
pzo(l,pz) are regular at Pq* 1 and p,= 1, respectively.

It follows as in section 2.14 that A(1,z) has at z = 1

a derivative, cf. (2.14.9),
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-1 _ L,9x(1,2)
(9.2) c = l{——iﬁf——}z=1 > 0.

The derivation of the expression for the generating func-
tion @(pl,pQ), [pll <1, [p2| < 1 of the stationary joint
distribution is now completely analogous with that in section
2.16, the sets |z| <1, |z| @ 1, |z| >1 have to be replaced
by L¥(1), L(1) and L7(1). The proof of the existence and
uniqueness of that distribution does not differ from that
in section 2.16.

The result is as follows,

For E{x} <1, E{y} <1, ¥(0,0) >0 with the assumptions

(8.7) and (9.1): for |p1] <1, lp2| <1,

X ¥
i. if (Pl’pZ) is not a zero of PP, - E{p1 P, } then
(1-p)(1=-p,)

1 2 1 1

(9.3 ®(py5Py) = Y I -p.D, T-p.(1,0;,) 1-D,(2,p y}
1°P2 172 Pio* 0Py 20" 7°P2
§+
. c E{1- ——1,

ii. if (py5P,) is a zero of pyp,- E{piéPQX} then

(9.4) Q(P13P2) a {1_p10(1,p1ﬂ{1-pzo(l’Pz)}

2 Xry XtYoox
¢“El1 - = IE((1 - —5)p, %p,Y)

°

E{(x- 1)p15p2X}E{(1— z)plﬁp2z}

X+y

2

(9.5) $(0,0) = ¢ E{1- Y/ wo,0),

here Pyg(1,p4), [pll < 1 1is the analytic continuation of

the inverse mapping of pl(l,z), z € LY(1) onto Sl+(1)’ and

P,o(1sp,), Ipzl < 1 is the analytic continuation of the inverse
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mapping of p2(1,z), z € (1) onto 82+(1), cf. remark 3.2 and

section 7; further

(9.6) p10(1’0) o Q, pzo(l,o) g o,

Remark 9.1 If En and n, are independent, so that
(9.7) \P(pl,p2)= lP(pi,l)‘y(l,p2) nE{plz} E{pQX},
lpyl <1, [py| <1,
then obviously for Ipll <1, (p2[ < 1,ef. (1.2.10),
(9.8) @(pl,p2)= ¢(p1,1)®(1,p2)

1-p 1-p
- 1 2 E{1-x} E{1-y}.
E{pl—}— P, E{pzz}— D,

By equating the righthand sides of (9.3) and (9.8) it follows

readily that

Xty
(9.9) ¢ E{1- —=1= E{1- x} E{1-y},

and for |p,| <1, |p,| < 1:

(9.10) R el - T - '
P1o° P21’ 1-p, /E(p,%) P20">P27 1-E(p, YV,

Obviously both members in (9.10) should be equal to a constant
which is evidently zero, take Pq* 0, and note that ¥(0,0) =
¥(0,1)¥(1,0) > 0.

It follows that
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Py

(9.11) plo(l,p1)=—7 s Ipll <1,
E{pi—}
E{p,?} _

Because for |z,| < 1 the function
X
P1:21 E{pi_}a |P1| <1a

has exactly one zero ul(zl), ef, (1.2.2) it follows by noting

that pl(l,z) is the inverse of z= plO(l’pl)’ |z| <1 that

(9.12) p,(1,z,) = ul(zl), Izll <1,

1

Py(1,2,) = u2(22- ), lz,| =1,

the second relation of (9.12) being proved analogously.
It should be observed that for [z| = 1, cf. (9.11)

and (9.12),

1

Py = muy(2), py=u (2 ), 2] = 1,

present a zero (pl,pz) of the kernel
X Y
Z(1,p45P,) = pyp, - Elp, } Elp, }, Ip, | <1, |p,| <1,

if x and y are independent. Because ul(z) is regular for

|z] < 1, continuous for |z| < 1, and analogously for uz(z_l)
with |z| > 1 (> 1),this parametrization of the zeros of the
kernel may be used for the analysis of ¢(p1,p2) along the same

lines as in section 2.16,
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I1.3.10. The case ¥ (0,0)=agy = 0

In the analysis of the preceding sections it has always
been assumed that ¥(0,0) >0. In this and the following sec-

tions it will be assumed that, cf. (2.1.3),

(10.1) agg = ¥(0,0) = 0,
and
(10.2) ajgtag, 0.

Note that agg = a10 = agq

E{x} = 1 and/or E{y} = 1.

= 0 implies that E{x+ y} = 2, so that

The assumption (10.1) instead of ¥(0,0) > 0 leads to
some rather essential differences in the analysis of the
random walk {(ﬁn,zn),n = 0,1,2,...}.

We start with the following
Lemma 10.1 For ¥(0,0) = 0 and 0 <pr < 1:

i.  the kernel Z(r,gs,gs-l), [s| = 1 has in |g| < 1 exactly
two zeros g(r,s) and gz(r,s);
iil. g,(r,s) = 0 for every s, s| B 13

iii. g(r,s) satisfies

(10.3) g(r,s) = -glr,-s), |s| = 1,
and -1
a,.s+a.,s
10 01
(10.4) g(r,s) = v — sy E o |s| 1;
1-r I I a,.g (r,s)s
k=0 h=o KB ’
k+h=2

iv. g(r,s) # 0, |s| @1, if and only if a, # ag s and if

a,, B a then for |s| B 1:

10 01

g(r,s) 8 0 » s 8 1.
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Proof The first statement follows by a direct application of
Rouché's theorem. The second and third statements follow direct-
ly from (2.2.5) and (10.1), whereas the last one follows from

(2.2.8), (10.4) and 0 <y < 1.

From (10.4) it follows for |s| = 1, 0 < r <1, that
(10.5) log glr,s) = log{a1052+ aOJ}- log s+ log v
© o k+h-2 k~h
- log{i-r Z z 31 p8 (r,s)s 1.
k=0 h=0
k+h=2

on |s| @ 1 the argument of the last logarithm in (10.5) never

vanishes, cf. (2.2.6); further a1052+ agy and s are both

regular in |s| € 1. It follows, cf. section I.2.2 that

(10.6) ind g(r,s) m -1 for ay, > ay4;
|s]=1
= 0 for ag4 = g3
- <
= 1 for agy < ayg-
Hence
(10.7) i. ind g(r,s)s = 0, ind g(r,s)s_i B -2 for ag, :>a10;
ls|=1 |s]=1
ii. = 1 = - = i
> 1 for agq a9
iii. | - 4 =
s 0 for agq < ag-

im

From (10.3) it is seen that for t® se™ ', |s| = 1,

(10.8) g{r,sl)s = g(r,t)t,

g(r,s)s T = glr, )t L,

and consequently each of the curves
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(10.9) §,(r):= {py:p; = glr,s)s, |s| = 1},

SZ(I‘):= {P21P2 = g(raS)s_la ISI =1},

is traversed twice if s traverses the unit circle |s| = 1
once.

In section 2 conditions have been investigated which
guarantee that in the case ¥(0,0) >0, cf. (2.22), the
closed curves Sl(r) and SQ(P) are not selfintersecting.
In the present case the situation can be more complicated be-
cause of the variety of the possible locations of Py 0 and
D, = 0 with respect to Sl(r) and 82(r), respectively.

Therefore we shall assume henceforth that
(10.10) Sl(r) and Sz(r) are both Jordan contours.

Lemma 10.2 If agg = 0, agq 249

and Sz(r) are both Jordan contours then they are both

# 0, 0 <r <1 and if Sl(r)

smooth contours, they are analytic curves, each is traversed

twice if s traverses the unit circle once and:

. _ - ~ .t
i. ag, > a5 %Py =0F€ Sy (r)s py 0 € Sy (r),
ii. agy T @499 ® Py T 0 € 81 (r), Py = 0 € S2 (r),

iii. agy <a 0 €3, (r).

2

_ +
10 ® Py ° 0 € S1 (r), P,

Proof Because g-lz(r,gs,gs-l) has for |s| ® 1 in |g| <1
exactly one zero g(r,s) it follows that, cf. (2.4),
Xty -y
(10.11) E{(2-x-y)g (r,s)s” '} # 0 for all s with |s| = 1.
The assumption that Sl(r) is a Jordan contour implies
because of (10.11) and (2.4) that it is a smooth contour;
that it is an analytic contour results from (10.11) since

the following holds for the relevant zero g(r,s):
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lg(r,s)|] < 1for r€(9,1), [s|= 1. Hence the interior S;Yr) and
exterior Sl_(r) of Sl(r) are well defined. Analogously for
Sz(r). That Sl(r) is traversed twice if s traverses the unit
circle once has been shown above, see below (10.8).

Suppose a <a then from (10.7)iii it follows that

01 10
log py for py € Sl(r) increases by 4mi if s traverses the
unit circle |s| = 1 once, while Sl(r) is then traversed

twice, so that it follows that py = 0 € Sl+(r). The other

statements 1, ii and iii are proved analogously.

Remark 10.1 It is readily seen that if s traverses the unit

circle then Sl(r) and Sz(r) are traversed in opposite direc-
ticns, cf. (10.7), relative to each other.

Remark 10.2 As in lemma 2.3 it may be shown that there exist

functions Pl(r,pz) and Pz(r,pl) such that

Pl(r,pz) maps Sz(r) one-to-one onto Sl(r),

Pz(r,pl) maps Sl(r) one-to-one onto SQ(r);

(Pl(r,pz),pQ), P, S Sz(r) and similarly (pl,PQ(r,pl)), P4 € Sl(r)

are zeros of Z(r.p,,p,) in |p1| < 1, |p2| < 1.

Next we shall consider for each of the three cases
mentioned in lemma 10.2 the problem formulated in section 3:
Do there exist a smooth contour L(r) and functions

py(r,z),z € L") U L, p,(r,z),z € L' (r) U L(r), such that

(10.12) 1. pl(r,z) is regular and univalent for z € L+(r),
continuocus for z € LY (r) U L(r),
pz(r,z) is regular and univalent for z € L (r),

continuous for z € L™ (r) U L(r);
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ii. pl(r,z) maps LYoy conformally onto Sl+(r),

p,(r,z) maps L™ (r) conformally onto 82+(r);

iii. for every z € L(r):
p, (ry2) = P (r,p, (r,2)),
p, (r,2) 8 P, (r,p," (r,2)),
i.e. (p1+(r,z),p2_(r,z)), z € L(r) is a zero of Z(r,pl,pz).

Note that in (10.12) the analogue of condition (3.1)iv
has not yet been formulated. It will be formulated when dis-
cussing the three cases of lemma 10.2 in more detail, see
sections 11 and 12.

For the present suppose that there exist an L(r) and
funections pl(r,z), pz(r,z) satisfying the conditions
(10.12)4i,...,iii.

From (10.9) it is then seen that a real function i(r,z)

defined on L(r) exists such that for z € L(r):

(r,z)
(10.13) Jir(p,z), PaTPe®)
nd p;(r,z)
(10.14) PI(P,Z) = g(r,e%ik(r,z))e%ik(r,z),

p;(P,Z) a g(r,e%iA(r,z))e-%iA(r,z).

Note that (10.14) differs slightly from (6.1), this difference
being due to the fact that for the present case ag, @ 0 the
contours Sl(r) and Sz(r) are traversed twice if s traverses
|s] m 1 once, so if z traverses L{r) once then A(r,z) changes

with 2m.

It follows from (10.7) that
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(10

.15) i. ind pl"(r,z) @ 0, ind po(r,z) @ -1, if a;, > a

193

b
Z€L(r) ZEL(r) 10
ii. = 7 = -3, if a = a
2 2 01 10,
iii. ail, m 0, if a4 < ajg-

Note in case ii. Py * 0 € Sl(r). For such a case the concept

of index has not been defined in section I.2.2 but its

definition can be straightforwardly extended for smooth

curves.

the

(10.

(10.

log

log

log

log

log

log

with the main branches of the

To prepare the derivation of the integral equation for
three cases, see the next two sections, we write, cf.

14), for z € L(r):

16) i. for agq > ag’

2 logi{vz g(r,e%il(r’Z))}

3

p1+(r,z)+ log{z p2'(r,z)}

p1+(r,z)- log{z p2-(r,z)} = ix(r,z) - log 2z

ii. for a01 = ayg and z # 0:
P +(r z)

b - 13

i + log{vz P, (r,2)} = 2 log g(r,ezlA(P’Z)),
vz

p1+(r,z) _

———75——- - log{vz P, (r,z)} = iA(r,2z) - log z;
iii. for agq < ap°

p, F(r,z)

b - =1 13
—l—E———— +log p, (r,z) =2 log{z 5g(r,e"sl)‘(r’Z))},
P +(r z)

9 -

_1_2__—_ - log P, (r,z) = ix(r,2z) - log z;

(later onit will be seen that it is irrelevant which branch

is taken, see remark 11.2).

logarithms appropriately defined



194 Analysis of two-dimensional random walk 1.3.10.

The argument for expressing the relations (10.14) in the
forms of (10.16) for the three cases is the following.
By taking the origin in the z-plane so that
2z = 0 €L%r) in the cases i and iii, and z B 0 € L(r) in
the case 1i, all the righthand sides of the relations (10.16)
have a "zero increase" if z traverses L(r), and also each
of the terms in the lefthand sides then has a "zero increase".
These properties are needed to derive the integral
equation for the determination of L(r) and A(r,z) by a
technique analogous to that used in section 6, see also the
analysis of the Riemann problem with index > 0, section

1.2.3, case B.
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11.3.11. The case agg = 0, ag1 ¢a10,0<r<1

Next to the conditiens (10.12)i,...,iii to be satisfied

by L{r), pl(r,z) and p2(r,z) it is required that:

(11.2) for ag, < aig¢

z=0 € L (),

(r,0)=0 {EL p.(r,z)} >0
PqiFs00 = Ty gz Pt ®i g0 7 0
yi= lim p,(r,z) € 8,7 (r);

|2 ]+

(11.2) for agq > agt

z=0€ L (),

py(r,®) =0, 0 < lim |z p2(r,z)i < w,

| 2]

+ 3
p,(r,0) €5,7(x), {77 py(r,2)}, 4 > 0.

Again L(r) will be chosen such that, cf. remark 3.1,
(11.3) z @1 € L(r) and A(r,1) @ 0.

Consider the case agy < a;q- Then the conditions (10.12)i, ii,
iii, and (11.1) together with the assumption (10.10) formulate
for L(r), pl(r,z) and p2(r,z) a problem of a similar type

as that posed in section 3. By a similar technique as used

for the proof of theorem 3.1 it may be shown that the smooth
contour L(r) and the functions pl(r,z), pz(r,z) do exist and
are unique if (11.3) holds, moreover L(r) is an analytic

contour for r € (0,1).

As in (6.8) it is proved for the present case that
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1ix(r,z)

(11.4) glr,e ) and A(r,z) satisfy on L(r) a

Hdlder condition.

Obviously, the function, cf. (10.12), (10.14%) and (11.1),

p1+(r,z)

- 14
= = log z 1g(r,ezlx(r’Z)H- 3ix(r,z),

(11.5) log
z € L(r),

should be the boundary value of a function regular in L+(r),

whereas

(11.86) log pz_(r,z) = log g(r,e%ix(r,z))_

Fix(r,z),

z € L(r),

should be the boundary value of a function regular in L (r)
and which is finite and nonzero at infinity, cf. (11.1). By

using section I.1.9 these conditions lead to, for z € L(r):

%ix(r,z))

(11.7)  jlog B2 + 1{iA(r,2) - log z}
= 7%3 Cei(rglog g(r,ejgx(r,c)) + 3irx(r,z) - log C}]f¥% ,
-3log g(r’e%jx(r’Z)) + 1{ix(r,2) - log z)
= 7%? Ee{(rglog g(r,iijk(r,C)) - 3{ir(r,2) - log C}]é¥% - log ¥.

Hence by addition and subtraction of these relations,

(11.8) H{ix(r,z) - log z}

3ix(r,z)
s 52 [ {log B{Ea® )y 4L

ZEL(r) G Loz

- log v, z € L(r),
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e%ik(r,z))

vz

< o1 d {ir(r,g) - log C}—d_cz + log v, z € L(r).
ZEL(r) 5

By using (11.3) it follows that

g &,

a(r e%ik(r,c))

(11.9) log Y8 o=r [/ {log > }é¥%
Z€L(r) T
- s dzg
=log g(r,1) - 7;; J {ix(r,z) - logc}—:T
ZEL(r) ¢
The solution of the Riemann problem:
+ .
p, (r,z) _ $ix(r,z)
log Sl S log p, (r,z)=2 log glr,e ),
Z 2 s
2
z € L(r),
pl(r,z) +
with log - regular for z € L (r), continuous for

z € L(r) U L+(r), and log pz(r,z) regular for z € L™ (r), con-
tinuous for z € L{r) VU L (r) and finite at infinity is now

given by:

for a <a

01 10° .
S [{log g(P’e%lA(r’C))}x
(11.10) p,(r,2) = z ™ LEL(x) Vi3
x{zf z - %}%], z € L (),
3ix(r,z)
I / [{log glr,e” )} x
2(r,z): ZEL(r) YT

x{;+ zZ c+1} 1,

T z € L7 (r).

The integral equation for the determination of L(r) and

A(r,2) reads, cf. (11.8), for z € L(r):

Fix(r,z)
ir(r,z) 7%? / [{log alr,e )}x
(11.11) e *“lzz e ZEL(r) VT
£+ 2z _ g+i,dg
X{E_ Z ‘_‘—C 1}€ ]a
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and an equivalent integral equation is, ef. (11.8), (11.9),
for z € L(r):

1
%ik(r,z)) 5%; 5 [{ix(r, ) - logL} x

(11.12) glr,e ZEL(r)
glr,1)v/z
g+ z _ g+l1,dg
x{; -z 1}_2"]'

From (11.10) it is seen by applying the Plemelj-Sokhotski

formulas that for z € L(r):

11 ;
(11.13) p1+(r,z) = g(r,ezlA(P’Z))e%lX(r’Z),
- 13 =11

B, (r,2) = g(r,ezlk(r’Z))e zlk(r,z),
and
(11.14) lp,(ry2)| <1, z € L'(r) U L,

[p,(rs2)| <1, z € L (r) U L(r).
Hence the relations (11.10) represent for the case a4 < a1po

0 <r <1 assuming (10.10) to hold, the solution of the prob-
lem formulated by (10.12), (10.16)iii, (11.1) and (11.3),
with L{r) and A(r,z), z € L(r) determined by (11.11). As in
section 6 it is argued that the solution of the integral
equation (11.11) is unique.
In exactly the same way it is shown that for the case
> a 0 <r <1 and (10.10) the solution of the problem

%01 10°
formulated by (10.12), (10.16)i, (11.2) and (11.3) is given by:

for agq > a4p¢
1s
f%f ! [[log{/Zg(r,eElA(r’c)ﬂ] x
(11.18%) pl(r,z)= e z€L(r)
t+ 2z _ g+l dg +
i i S N I RO
Vs
L cmer [ [llog{yTg(r,e? A (M0}
p,(r,z)=Ze 2™ TeL(r)

{ L+ 2 C+1}d; 1,

T=7 T-1°7% 2z €L (r);
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L(r) and A(r,z) are uniquely determined by:

2 3ix(r,z)
: 5 [/ [[ log{/Tg(r,e? 27y} x
(11.186) IArsz) 2T er

R §+1}%§],

Tz T-1 z € L{r),

or equivalently by
;

%i)\(r,z)) 2—% s [{ix(r,g) - logt} x
(11.17) FICIS N = e zEL(r)

z € L(r).

Remark 11.1 The formulas (11.10), and also (11.15), are of
the same structure as (6.14). Similarly, those corresponding

to (6.16) can be derived here.

Remark 11.2 Note that in all the relations above the definition
of the main branch of the various logarithms is irrelevant,
because if another branch is taken then the exponent of e in,

say (11.15), increases with a multiple of 2mi.

To determine ®xy(r,p1,p2), cf. (1.1.19) we write, note

¥(0,0) = 0 in the present case,

+
(1 —pl)(l —pz) plX 1p2y+1

PPy~ rW(pl,pZT[(l— p17(T— pz)

(11.18) @xy(r,pl,p2)=

Py
1- P4
Py
1- P,

¥ (py,008, (r,p,,0)

- r

W2(O,p2)¢xy(r,0,p2)]
for 0 <r <1, |p1| <1, |p,| <1, with

1 1
(11.19) Wl(pl,O):= EI W(pl,O), W2(0,p2h= 5; W(O,pz).
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Note that ¥,(p,,0), |p;| <1 and ¥,(0,p,), [p,| <1 are
both regular because ¥(0,0) = 0.

As before, cf. section 2.5, it should hold for every

z € L(r):
p1+(r,z) + +
(11.20) r I————:————— ‘Vl(p1 (r,z),O)@xy(r,p1 (r,z),0)
- by (r,z)
Py (r,2) (0,p,” ( “(r,2))
+tp —— ¥, (0,p, (r,z))0d r,0,p r,z
1- P, (r,z) 2°7°2 Xy B ’
= xy(z),
with
{p1+(r,z)}X+%p27r,sz+1
(11.21) ny(z):= s 2 € L(p).

{1- p1+(r,z)}{1- pz_(r,z)}

Obviously the first term in (11.20) should be regular
for z € L+(r), cf. (11.19), and continuous for z € L(r) VY L (r),
similarly the second term in (11.20) should be regular for
z € L (r), continuous for z € L(r) U L (r).

By noting the assumptions (1.3) it is seen that the
determination of Qxy(r,pl(r,z),o) and ¢Xy(r,0,p2(r,z)) re-
quires the solution of a Riemann boundary value problem with
boundary condition (11.20).

To solve it note that

pz(r,z)
(11.22) r TTTEET?TET W2(0,p2(r,z))¢Xy(r,0,p2(r,z))

has for |z|> = a finite limit A(r), and cf. (11.1) and (11.2),

(11.23) Alr) £ 0 for anq

=0 for agq > a4p3

< a40>
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observe that the maximum modulus principle implies that

(11.2u) lpy(ry2)| <1 for z € L, (r).

Consequently, from (11.20),

pl(r,z)
(11.25) I’m ‘Vl(pl(r',z),O)@Xy(r,pl(r,z),O)

'
-
)
(&7

Lo

+
= 5= H () -A(r), z €L (r)
2m1 LEL(r) -2 Xy s

pz(r,z)
(11.26) I‘WP,—ZY l1’2(0,pz(I‘,Z))<I>Xy(1",0,1:)2(I‘,Z))

1 dg H
2TL -2 Xy
ZE€L(r)

(z) +A(), z € L (r).

By taking z = 0 in (11.28) it follows that

1 dg .
(11.27) A(r) 8 5= /f = H_ () if a <a,,-
2ni CEL(r)C Xy 01 10

Hence from (11.25),...,(11.27), and by using (11.10) with

z + 0: for a < a

01 10°?
pl(r,z) ,
(11.28) r T_—I')T(P—,?Y ‘f’l(pl(r,_z),O)(ny(r‘,pl(r,z),o
Z dzg +
H  (z), z €L (r),
2m1 CEL(P);(c- Z) Xy
p2(r,z)

r m \!’2(0,p2(r’,z))d>xy(r,0 ,pz(r’,z))

z dg -
-2 H_  (zy, z €EL (r)
2m1 ;EL(r)cic— z) Xy ’

and

(11,29) rWl(0,0)éxy(r,0,0)=
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g(r,e%ik(r,c)) iz

2
7T L {log 7z YD
L€L(r) 1 dz
= e VI J -5 HX (ﬁ),
z€L(r) y

note that Wl(0,0) # 0, and that pl(r,z), pz(r,z) are given
by (11.10), (11.11).

Similarly (but use now (11.15) for|z|» =):

for agy > asgs
pl(r,z)
(11.30) e b, (%2 Wl(pl(r,z),O)¢xy(r,p1(r,z),0)
1 dg +
= = [ —= H__ (1), z € L (),
27l rEL(r) -2 Xy
pz(r,z)
r Tj—E;T;TET WQ(O,pz(r,z))¢xy(r,0,p2(r,z))
1, dzg -
= - H_  (z) z €L (r),
2m1 cGL(r)g— z Xy ’
and
(11.31) ¥, (0,000 (r,0,0)
- 14
F4 1 lloglVEgr,e? (8 dL
ZEL(r) 1 .
= e y=—g H S d(,,
2T LEL(r) Xy

with pl(r,z) and pz(r,z) given by (11.15), (11.16).

The function ¢Xy(r,p1(r,z), pz(r,z))can now be determined

<

01 %10
(11.31) if agq > a0 and the further analysis proceeds as in

from (11.18) and (11.28), (11.29) if a and (11.30),
sections 7,2.7-9. Also for r = 1,E{x} <1, E{y} <1 the analysis
of the stationary distribution can be given along the lines of
section 9; it is omitted here and left as an exercise for the

interested reader.
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I1.3.12. The case agq = 0, a9y = a10=/=0,0<r<1

The case

(12.1) a = ¥(0,0) = 0, a = a

01 # 0,

00 10

requires an analysis slightly different from that in the
preceding section because of the occurrence of a singularity
of the integrand on the contour L(r), note that (10.15)ii
implies z = 0 € L(r).

In the present case, cf. lemma 10.2, we have

py = 0 € Sl(r), p, = 0 € SQ(r), so it is seen that

(12.2) log pl(r,z) is regular for z € L+(r),

p,"(r,2) = 0 for z B 0 € L(r),

(12.3) log p2(r,z) is regular for z € L (r),
p, (r,z) = 0 for z = 0 € L(r),

and

(12.4) 0 < |lim pz(r,z)[ < oy

’ZI 00
observe that p,(r,z) € 82+(r) for z € L (r) and that SQ+(F)
is a bounded domain not containing p, = O.

Again (note that z = 0 has to be excluded) cf. (10.14),

'
(12.5) log p1+(r,z) = log g(r,eélA(P’Z))+ lix(r,z),

z € L(I’)\{O},

should be the boundary value of a function regular in L+(r),

and



204 Analysis of two-dimensional random walk {L.3.12.

- 13
(12.6) log p, (r,z) = log g(r,eilk(r°2))- 1ix(r,z),

z € L(r)\{0},

should be the boundary value of a function regular in L (r),
satisfying (12.4).

To handle these conditions results as derived in section
I.1.9 are needed. However, these results cannot be applied
directly, because g(r,e%iX(r’Z)) has a zero on L(r) (cf. lemma
10.1.iv for s = *i, or (10.15)ii) so that its logarithm has
a singularity on L(r). We shall, therefore, first proceed
rather formally, i.e. we do assume that (I.1.9.2) and (I.1.9.4%)
apply, and we shall later on discuss the validity of the
results derived.

So from (I.1.9.2), (I.1.9.4), (12.5) and (12.6) we are

led to, for z € L(r)\{0}:

.
(12.7) 1log glr,e? M (Ta2)y L aih(n 2y
1 1ix(r,T) . dc
T {log gl(r,e? 50y 4 3,0 12,
2T reL(r) -z
“3log glr,e? A (Fs2)y 4 1y 0y
1 14 ) d
=l {log g(r,ezlk(r,i))-%1A(r,C)}E:£z— logy,

zE€L(r)
with
Y:= lim pz(r,z).
2o
By adding and subtracting the relations (12.7) it follows, for
z € L(r)\{0}:

(12.8) log g(r,e%ix(r’Z))= 1 / ix(r,T)

dzg
211 v el (r) &=

Z+ logy,
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2

%iA(P,C)) dg
271

o5 - losv.

15 =
(12.9) 1ix(r,2z) T-z

S log glr,e
L€L(r)

To discuss the validity of the relations (12.8) and
(12.9) it is first observed that (12.1) and lemma 10.1 imply

that
(12.10) glr,s)l _,; = 03

seccndly (10.14),(12.10) and the fact that A(r,z) should change
with 27 if z traverses L(r) once, cf. (6.4), leads to (cf.

also (11.3)),
(12.11) Alr,0-)=-m, A(r,0+) = m,

with A(r,0-)(A(r,0+)) the value of A(r,z) at z = 0 if z
traverses L(r) from z @1 to z B 0 clockwise(anticlockwise);
note that z = 0 can be the only discontinuity point of A(r,z).
By using the same technique, with only minor modifications,
as applied in constructing the proof of theorem 3.1, cf.
section 5, it can be shown that the contour L(r) and the func-
tionspl(r,z), pz(r,z) satisfying (10.12), (12.2),...,(12.4)
and z @1 € L(r) exist and are unique (cf. remark 3.1),
{(assuming that (10.10) holds) and that L(r) is an analytic
contour. As in section 6, cf. (6.8), it is shown for the
present case that g(r,e%ix(r’Z)) and A(r,z) satisfy the H(1)-
condition on L(r) but log g(r,e%ix(r’Z)) satisfies it only
on L(r)\{0}, because of (12.10) the point z B 0 € L(r) should
be excluded.
It can now be shown, cf. [6], p.55, p.407, and [7), p.74
that the integral in the righthand side of (12.8) is well de-

fined for z € L(r), z # 0, and that for z + 0, z € L(r),
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iA(r,0+)~ iX(r,0-)
2m1

(12.12) i. 5ir f (e, 03

2T reL(r) togz+ gtz

ﬂlogz+90(zh

where QO(Z) is a function bounded in the vicinity of z = 0
and tending to a definite limit if z approaches the point "Q"
along any path, and where by log z is to be understood any
branch, one-valued near z = 0 in the z-plane cut from z = 0

to g

ii. the integral in (12.12) as a function of z is regular for
z € LY(r) as well as for z € L™ (r) and for z + t € L(x)\ {0}
the Plemelj-Sokhotski formulas, cf.(I.1.6.4), apply.

The integrand of the integral in (12.9) is also not con-

tinuous atg = 0+ and atg = 0-. To define this integral write

for z # 0:
1 ix(r,z) | _dg
(12.13) - [ log g(r,e 2P )=
2m1 €L (1) ? -2
3id(r,z)
o1 g(p, et °=7) dr
1= = [ [log 2 + logt] .
271 tEL(r) z SNEY

It is not difficult to show by using (10.4) and the same
type of arguments as applied in section 6 that
log{g(r,e%iX(P’C))/c} has a limit if ¢ tends to 0- along L(r)
as well as that it has a limit if ¢ tends to 0+ along L(r);

1ix(r,n)

and it is readily proved, because g(r,e ) satisfies the

H(1)-condition on L(r) that the singular integral

.
51>\(r‘ C)

(12.14) ol log &{¥a€ ) gt

LEL(r) ¢ to 2

1
,egl}\(r,c)) dg

. 1 glr
= lim 5= [ log
040 2™ ABCDA & t-z
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exists, of. fig. 7, where
im CfO
C = pe s AN
D= p, T
Am pe_%lTT
For p + 0: C »~ 0+, A » 0-; fig. 7
for the logarithm in (12.14%) take any branch in the z-plane
cut from 0 to =,
Further it is easily verified that
(12.15) 7%1 S log ¢ cicz= lim 7%; J log ¢ C{Cz
z€EL(r) p+0 ABCDA
= log z for z € L+(r),
= % log z for z € L(I’)\{O}s
=0 for z € L™ (r),

log z being defined in the plane as cut in fig. 7.

Consequently,

1

3ix(r,z), dg
(12.16) s log g(r,e2?* )
2Tl Z€L(r) -2
= log z + Ql(z), z € L+(P),

= $log z+ 92(2)’

= Qg(z),

z € L{r)\{0},

z € L (r),

where 91(.) is regular for z € L+(r), 93(.) is regular for

z € L (r) and Q,(z) is bounded on L(r) and has a limit if

z - 0 along L(r); it is readily verified that if in (12.16)

207
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z » t € L(I\0} from out L' (r) or L7(r) then the Plemelj-
Sokhotski formulas (I.1.6.4) apply.

The integrals in (12.8) and (12.9) thus have been
defined and as in section I.1.9 it is seen that the relations
(12.8) and (12.9) formulate the necessary and sufficient con-
ditions in order that the righthand sides of (12.5) and (12.86)
are boundary values of regular functions. This result can
also be reached by an application of Priwalow's theorem,
cf. [8], chapter X.

Because z B 0 € L(r), the constant A in remark 3.1 needed
to fix the position of L(r) has still to be determined, it is

chosen so that
(12.47) Alr,1) = 0.

It then follows from (12.8) and (12.9) that

(12.18) logy = 7%? s log g(r,e%ix(r’g))zggi
z€L(r)
1 : 14
= log glr,1)~- 5~ [ iX(r,g)s—=2=.
T2 ren(r) e-1

The Riemann boundary value problem formulated by

(12.2),...,(12.4) with boundary condition, for z € L(r)\{0}:

1
(12.18) log p,y(r,z)+ log p,(r,z) = 2log g(r,ezlA(P’Z)),

log pl(r,z)- log pz(r,z)n iix(r,z),

cf. also (10.16)ii, is now readily solved and its solution

reads as follows, see also the preceding section.

For a a a

01 (assuming (10.10) holds):

10
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L
o {log glr,e? A (M eyt z_tr Lide
(12.20) p (r,2) = e“™ f€L(r) ¢ &

z € LYo,

1
i ! I, (EEE- Byt
= e EEL(I’) g(p,l)’
z € LY (p),
1 JiIN(r, Dy L+ z_ g+ 1,de
— {log glr,e? OHz—= - =
py(r,z)=e 271 el (r) ’ t-=z t-1¢
z € L (),
1 - -
w2r I iMr,c){g_;- %}%
z e z€L(r) glr,1),
z € L (r),
14 14
p1+(r,z)= g(r,ele(r’z))ezlA(r’z), z € L(r),
- 13 -13
b, (r,z) = g(r,e? (122 2l (mz) z € L(r).

The integral equation for the determination of L(r) and

A(r,z) reads, for z € L(r)\{0}:

2

-
zid(r,z) t+z_t+1,4d7
irr,z) _ eZﬂl {log glr,e ’ )}{C- }C

z -1

r
A2.21) e Z€L(r)

L(r) and A(r,z) are uniquely determined by (12.21) with A(r,z)
strictly increasing on L(r), A(r,1) m 0, X (r,0-) = -m,
AMr,0+) = m,

The integral equation equivalent with (12.21) reads,for

z € L(rm\{0},

Z_C I}dC
zz~-1" ¢

271

;
1ir(r,z) =2r f ire,) (&L
glr,e” ) - e z€L(r) &=

(12.22)

g(r,1)

Further
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(12.23) Ip, (ry2)| <1 for  z € L'(r) U L),

lp,(r,2)| <1 for z € L (r) U L(r).

To determine ¢xy(r,p1,p2), cf. (1.1.19) and also (11.18),
we have to solve the Riemann boundary value problem described
by (11.20) as boundary condition with pl(r,z) and pz(r,z)
given by (12.20). In the same way as (11.25) and (11.26) have

been derived, using the assumptions (1.3) it follows that

pl(r,z)
(12.24%) I‘TW ‘l’l(Pl(r’,Z),O)(ny(r‘,Pl(r‘,Z),O)
= _1._ _._d; [ + 3
2m éEL(r)C' Z ey (80 + B, 2 € LG
pz(r,z)
(12.25) o PZ(P,Z Wz(O,pz(r,z))¢xy(r,0,p2(r,z))
1 dg -
= - = H - B € .
VTEl LeL(mE- 2 xy(l;) (r), z €L (r)

By letting z » 0, z € L+(r) the lefthand side in (12.24)
tends to zero, and the righthand side yields by applying

the Plemelj-Sokhotski formula, cf. (I.1.6.4),
_ 1 dg
(12.286) 0 = 3 H (0)+ =~ [ H (z)==+ B(p).
WM ey ¥R
Because, cf. (11.21), (12.2) and (12.3),
(12.27) ny(U) = 0,

it follows that

_ 1 dg
(12.28) B(r) = = 5= [ H (g)==.
2T Ten(py YT
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This result is also obtained if we start from (12.25)

by letting z + 0, z € L (r).

It follows:
py(r,2)
(12.29) PT:~§IT?TET Wl(pl(r,z),OJQXy(r,pl(r,z),D)
. _z dg o,
= o éEL(r)E(c- 23 By (80 z € L (),
pz(r,z)
(12.30) PTT~§;TFTET Wz(O,pz(r,z))éxy(r,o,pQ(r,z))
- e H (1) 2 € LT (m).
271 CEL(P)C(C— 2) Xy >

To determine ¢Xy(r,0,0) let in (12.29) z + 0, z € L+(r)
and apply the Plemelj-Sokhotski formula, then

p,y(r,2) Ho (z)

i 2 oy XY
(12.31) r¥, (0,000, (r,0,0) iig — ; X 12:0
2€L T(r)
1, dg
+ (C)‘—' .
2Tl CGL(I’) Xy cz

Because of (11.21), (12.2) and (12.3) and because pl(r,z) is

regular on the analytic contour L(r) it follows that

Hx (z)
(12.32) e P L
hence
= 11 z
(12.33) rW1(0,0)¢xy(P,0,0) { zig plzr,zi}
zeLt ()
1 dg
. = H (C)_.
271 ren(ry X2

211
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From (12.1), (12.20), (12.21) and lemma 10.1 and because of the

continuity of pi(r,z) in z € L'(r) U L(r) it follows

+
. Pl(r’;Z) . Pl(P,Z)
(12.34) lim —m@a lim —
z>0 z z~+0 z
z€L" (r) z€L(p)

%ik(r,z))e%ik(r,z)

. 1
lim Zg(r,e

z+0
z€L(r)
- {gL (o, s)}| ak(géz) elA(r,z)H
) “Tiqg {ax(p z)}i
- - = - H
1 r{a11 a,g aoz} z=0
note that {3&&2;52} exists, is finite and nonzero because

pl(r,z) and hence A(r,z) is regular at z B 0 (apply the same
argument as in section 6). We shall not continue here the
analysis of the present case, it proceeds analogously to that

in section 9.

Remark 12.1 If in the present case x and y are exchangeable
variables, cf. section 2.1, then L(r) is the circle with radius

3 and center at z @ 3 (for 0<<r<1). To prove this put

K:i= {z:2 = ‘z(l+ei¢), 0 < ¢ <2m},

and denote by Hl(r,z) the mapping which maps Kt conformally

onto Sl+(r), such that

0 = Hl(r,D), g(r,1) = Hl(r,l).
Riemann's mapping theorem implies that this map exists and

that it is unique because Si(r) is symmetric with respect to

the real axis.
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Define for p > 0:
t(z) = 3(1+ p_le_l¢) for z = I(1+ pel¢).

Then Hl(r,c(z)) maps K~ conformally onto Sl+(r). Because
the exchangeability of x and y implies that g(r,s),|s! B 1 is

real, so that
p, = Po(r,p) B8 51 for p, € 8,(r),

it follows that Hl(r,g(z)) maps K~ conformally onto 82 (r).

Further (pl,p2) with

Py = Hl(r,z), P, = Hl(r,c(z)) = Hi(r,z) =Py

is a zero of the kernel Z(r,pl,pz).

Consequently by taking

pl(r,z) Hl(r,z), zexu K,

p,(r,z) = M (r,z(z)),z € K~ UK,

it is seen that pl(r,z) and pz(r,z) satisfy the conditions

(12.2),...,(12.6). As before the uniqueness of Dl(r,.), pz(r,.

and L(r) 1s established, so that L(r) = K.

213
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I1.4. RANDOM WALK WITH POISSON KERNEL

11.4.1. Introduction

In queueing models quite often the arrival process of the
customers is characterized by a Poisson process. For such models
with a two-dimensional state space the kernel is of a very special
type, and this allows a type of analysis which is somewhat less
intricate than that for the general case described in the
preceding chapters.

We shall discuss one thing and another in this chapter.

Let B(.) be a probability distribution with support (0,«), it is
always assumed that B(.) is not a lattice distribution.

Put
(1.1) 8(p) := f e PYaB(t), Re p 2 0,
0

B := tdB(t).

o= 3

In the following A will be a positive number, r, and r, will

be such that

(1.2) r, +r, a1, 0< ry <1, i= 1,2,
Further
(1.3) a:= riAB , 181,22,

The kernel Z(r,pl,pz), cef.(1.1.20), is said to be a Poisson
kernel if the joint distribution of (x,y), cf. (1.1.1), is given

by : for k = 0,1,2,...3 h = 0,1,2,...,



11.4.1. Random walk with Poisson kernel 215

(Arlt)k (Arzt)h

(1.4) Pr{ix = k, y = h} = [ e_ktdB(t);
t=0 k! h!
then
(1.5) Z(r,py>p,) = p1p2—rB{A(1—r1p1—r2p2)}, |p1| <1, |p2[ <1,
[r| < 1.

Remark 1,1 Note that Z(r,pl,pQ) can be defined by analytic

continuation for

(1.6) r

<
1Re py + rzRe P, 1.

Remark 1,2 By putting
4q = 274Pgs Qp T 20pPys
the kernel (1.5) can be written as
QqQy - Hrrar, BIA(I-3(qu*ta M)}, oyl <1, lq,l <1,

and it is seen that this form is symmetric in Q4 and Qs SO

that the technique developed in chapter II.2 may be applied.
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I1.4.2. The Poisson kernel
Denote by
(2.1) g m glr,s), |s| = 1,
again for 0 <r <1 the zero of

(2.2) Z(r,gs,gs—l) = gz—rB{A(l—(rls+rzs_1)g)}, |s|

u
[y
"

in |g| < 1 which satisfies, of. lemma 2.3.1,

(2.3) g(r,1) > 0.

Put

(2.4 § := (rls+r25_1)g(r,s), ls| = 1,

and

(2.5) D iz {8: § = (pys+rys Dglr,s), |s| = 1l.

From (2,2) and (2.4) for § € D and |s| = 1:

(2.6) 5 - (r,s+r,s H/EBE(A(1-6)) = 0.

2

Because for |§| + =, Re § < 1:

(2.7 [8{r(1-8)}] -~ 0,

it follows that for r€(0,1) and |r15+r2s_1|

(2.6) has exactly one root in Re § < 1; apply Rouché's theorem to the

< 1, the equation

contour consisting of Red = 1 and the semicircle § =p el¢,p > 1,
-i7 < ¢ < }v and note that on this contour |R{A(1-8)}] < 1,
B{A(1~8)} being regular for Re § < 1, continuous for Re § < 1;

so that

2 1

-1,2
§° - r(rls+r28 )

B{r(1-8)}, Js] =1, 0<r <1,



1.4.2. Random walk with Poisson kernel 217

has exactly two zeros in Re § < 1.
Consider (2.6) for Re § < 1 as a quadratic equation in s then
its roots 51(5) and 32(6) are given by: for Re § < 1 and

B{X(1-8)} # 0:

(2.8) s, (8) = S+ AT
2r1/r81k(1—35F
s,(8) = 2= /AL, EY
2r1/rB]AZ1-35F
where
(2.9) b(r,8):= 6% yr v r8{A(1-6)}, Re 6 < 1.

Without restricting the generality of the analysis we may

and do assume that, cf. (1.2),

(2.10) r, > r,;

then it follows from (2.6), (2.8) and (2.9) that

r
)
(2.11)  s,(8(1) =& 1, 5,(8(1)) = =,

N

where (1) is that zero of (2.6) in Re 8§ < 1 corresponding to s=1.

By continuity.sl(é) is the inverse of the map given by (2.4),(2.,5):
(2.12) |s,(6)| m 1 for § € D.

Note that in general

(2.13) |s,(8)] # 1 for 6 € D.

By using (2.u4), (2.6), (2.8) and (2.12) it follows for § € D:

(2.14) €,(8) 1= glr,s,(8))5,(8) = =—{6+/BTF, 07},
1
- -1 - 1 e
£,(8) 1= glr,s,(8))s 7(8) = 5;;{6 ISR
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Consequently for § € D:

(2.15) rlel(é) + rzez(d) = 8,
and
(2.16) 51(6)52(6) = rg{A(1-8)},

i.e. (61(6),62(5)) is for every 8 € D a zero of Z(r,pl,pz),

lp, | <1, |p,| < 1.

From (2.9) it is readily seen that the righthand sides of
(2.14) are well defined for Re § € 1. By analytic continuation
we shall next extend the domain of 61(6) and of 52(6).

Consider, therefore, the function
(2.17) § - 2/rr1r2cos¢6%{k(1—6)}

for Re § € 1 with 0 <r <1, 0 < ¢ < 2m,
By applying Rouché's theorem, see below (2.6), it is directly

seen that (2.,17) has exactly one zero, say § B §(r,¢),in Re § < 1,

Put
(2.18) G := {8: 6§ @ &(r,¢), 0 < ¢ <21},
and
(2.19) E := {6: Re § <1, § & G},

E

the closure of E.

Obviously, the righthand sides of (2.14) are regular in § € E,

continuous in E, and hence define the analytic continuations

of 81(6) and of €,(8) into E. These analytic continuations will
be represented by the same symbols, i.e. (2.14) is defined for

§ € E, so in the set Re § < 1 without the "slit" G. Obviocusly,
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(2.15) and (2.16) now hold for § € E.

Remark 2.1 Consider the Riemann surface consisting of two
§-planes connected in the usual way along the common slit G,
cef. (2.18),

On this Riemann surface 61(5) and €,(6) with Re § € 1 and
defined according to (2.14) satisfy (2.15) and

(2.16), i.e. for every 8 with Re § < 1, (81(6),62(6)) is a
zero of Z(r,pl,pz).

Conversely, we have

Lemma 2.1 Every zero (p;,p,) of Z(r,p,,p,), |P1] <1,
|p2| < 1, 0<r<1, has a representation as in (2.14) with

Re § < 1.
Proof Let (pl,pz) be such a zero then (1.2) implies that
la] <1
with
d := r1p1+r2p2,
and
ryPy+T,Py = rr1r26{k(1—d)};
so that r Py and r,p, are the zeros of the gquadratic function
2
P —dp+rr1r26{k(1-d)},

and hence the statement follows. O

For future use we introduce here the mapping

(2.20) M:={6§>w:wm &+ /b(8), § €E}.
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From (2.20) and the definition of 8(r,¢$), cf. below (2.17),
it is readily seen that the slit G is mapped by M onto

the curve F with:

(2.21) F := 1lim M{&: § € E}
§+8(ry¢)
0<p<27
= {w: w = ei¢2¢rr1r28%{x(1-6(r,¢))}, 0 < ¢ < 271}

i¢
= {w: w = E%E_a §(r,¢0), 0 < ¢ < 27}.

It is readily verified that T is a smooth contour, contained

in the unit circle {w: |w| < i} and if w € F then w € F.
Remark 2.2 It follows from (2.,17) that
(2.22) 0 <r <1 = 6§(r,9) is real for 0 < ¢ < 2w.

Lemma 2.2 Ffor 0 < r < 1 the conformal mapping w B fo(z) of

the unit disk c'

{z: |z] <1} onto F*, the interior of F,

with £,(0) @ 0, W = fO(E), is given by: for |z| <1,

6. (z)
fo(z) = ze 0 s
21 iw
QO(Z) 1= éL I {log G(P,O(w))} eim+z dw,
T o cos O(w) e -z

with 0(¢), 0 < ¢ < 2m, being uniquely determined as the continuous

solution of the Theodorsen integral equation: for 0 < ¢ < 2w,

{log é-(—2-199—022} cot I(w-¢)dw,

=4 - L
o) =0 Zm cos O(w)

D"s;’

6{(¢) is a strictly increasing and continuous function of ¢ and

0(¢) = -0(-¢).
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Proof TFrom (2.21) it is seen that w = 0 € F+, and by using
(2.22) the statement of the lemma follows directly from the

results of section I.H.4.

221
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11.4.3. The functional equation

Because (81(6),22(6)) with 81(6) and 62(6) as given by
(2.14) is a zero of Z(r,p,,p,), [py| <1, |p,| <1 for
every 8§ € D, it follows from the fact that @Xy(r,pl,pz)
should be regular for |p1| <1, ]p2| <1, ef., (1.1,17),(1.,1.19),

that for 0 <r < 1 and § € D:

(3.1 fTTeed e + (1-e ()} {1-e, () }rpla}e, (r,0,0)
= r{l—sz(d)}ﬁ{k(l—rlel(d))}@Xy(r,al(d),o)
+ r{l—el(d)}B{X(l—r252(6))}¢Xy(r,0,£2(6)).

In the preceding section it has been shown that 51(6)
and 62(6) possess analytic continuations into E, and these
continuations are represented by (2.14) for 8§ € E. Consequently,
the righthand side of (3.1) has an analytic continuation into E.

Because (2.14) implies that for § € E:
€,(8)e,(8) = rB{A(1-8)],
so that, note 0 <r <1,
le(8)]]e,(8)] <1 for Re § <1,
it follows that for § € E:
(3.2) le;(8)] <1 for at least one i = 1,2.

Consequently, because ¢xy(r,p,0) and @xy(r,o,p) are regular for
|p| €1, for every § € E one of the two terms in the righthand
side of (3.1) is regular at such a 83 so that the righthand side
of (3.,1) being regular for § € E, the other term in the righthand

side of (38.1) is also regular for such a 8. Hence Qxy(r,el(ﬁ),O)
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and ¢xy(r,0,€2(6)), § € D possess analytic continuations into
E, these analytic continuations are represented by the same
symbols, and (3.1) holds for § € E.
Next let § € E approach a point 6(r,¢) of the slit G,
cf. (2.18); then it is readily seen from (2.9), (2.14),
(2.17) that
i -i¢
(3.3) e (8) » = I0) o gy e T 8n,0)
cos ¢ 2r1 cos ¢ 2r2
Hence for 0 <r < 1 it is seen from (2.21), (2.22) and (3.1)

that for w € TF:

W x+1 w y+1
(=) (o)
i ) B{A}O_ (r,0,0)
(3.4) = + 1 r,
(1~ o) (1= 5 Xy ’
1 2
BIA(1 - 1w)} W B{A(1-1w)} w
= FoNS 2V —_— AN 2¥/J —_—
=p » @Xy(r,zrl,O) + - 0y (rs0si),
N Lo,
1 2

if w # 2r2, i,e, if

(3.5) 2r2 & F.
Note that 2r1 =1, of. (2.10), so that, cf. (2.21), always
(3.6) 2r1 & I,

the condition (3.5) will be discussed below, see remark 3.2
and section IV,1.5.
From (2,21) it is seen that
(3.7) w, 1= sup |w| < 2/rr,r, € Vr < 1;
0 172
w€F
W i er* he interior of F.
so that Qxy(r’7F;’O) is regular for w F', the interi
Further it is seen that the first three terms in (3.4) are all

finite for w € F and hence its last term is finite, i.e.



224 Aralysis of two-dimensional random walk 11.4.3,

Yo
(3.8) léxy(r,o,ﬁ?)l <oo,

and this implies, because ¢Xy(r,0,p) with 0 < r < 1 has a
power series expansion in p with nonnegative coefficients,that
W . + -
L €
¢xy(r,0,2r2) is regular for w F' . Similariy, ®xy(r,p,0) has
such a power series expansion.

Define for w € T U F+:

o G- 3w) W
(3.9) wl(w) 1= - ¢xy(r’2r ,0)

1- 2ry

B{A(1-3w)} W
+ [} (P,O,zrz),

- Xy
1 2r2
- B{Xx(1-3w)} W
mz(w) r ——————;2——— Qxy(r’f?—’O)
1= 5o 1
2r1

_ o B{A(1 - 3w} W
r 1 W Qxy(r’0’2r2)’
T 7v
2
and

(3.10) K (W) —

"
=
m
o

this leads to

Theorem 3.1 For 0 <r < 1, ry = Ty

(3.11) Re wl(w) B Re ny(w) + rB{A}QXy(r,O,O),
(3.12) Im w,(w) B Im ny(w),

for w € F and w #=2r2 if 2r, € Iy

i, if 2r, & F U ' then wl(W) and mZ(w) are both regular for w € F+,

continuous for w € F U P+,
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ii. if 2r2 € r* then wl(w) and w2(w) are both regular for w € F+,

continuous for w € F U F¥ except for a simple pole at w = 2r2,

iii. if 2r2 € I then wl(w) and wz(w) are both regular for w € P+,

continuous for w € F U F¥ except for a simple pole at the

boundary, i.e. at w = 2r2.

Proof Because for 0 <r <1, ¢Xy(r,p,0), ®xy(r,0,p) have power

series expansions in p with nonnegative coefficients it follows

that

@xer,p,OS = Qxy(r,E,O),

also, cf. (1.1),
BIA(1-w)Y = B{r(1-w)},

and (3.11) and (3.12) follow directly from (3.4), (3.9) and (3.10).
The statements i, ii and iii are a direct consequence of the

. W W . +
regularity of @xy(r’iFI’O)’ @xy(r,0,7;;), B{r(1-3w)} for w € T,

and their continuity for w € F U rt. 0

Remark 3.1 For the case that 2r2 € F UF' the theorem above formulates for
wl(w) as well as for wz(w) a simple Riemann-Hilbert boundary value problem ,
cf. section I.3.2, actually it is a Dirichlet problem. This is readily
solved and hence @xy(r,7¥;,0), ¢xy(r’0’7¥;) for 0 <r <1 can be
determined from (3.9). Because w = 0 € F+, Qxy(r,PlsU), |P1| <1
and @Xy(r,O,pz), |p2] < 1 can be found and hence from (1.1.19)
¢xy(r,p1,p2) follows for |p1| <1, |p2| <1 and 0 <r < 1; by
analytic continuation with respect to r the latter function is
determined for |r| < 1.

If 2r2 € " the determination of wl(w) and wz(w) leads to

the type of problem discussed in section I.3.3. In the case that

2r2 € F the boundary value problem should be formulatéd slightly
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W

2r2

differently, viz. by first multiplying (3.4) by (1 - (1 -

W
2r1 )

the resulting relation leads easily to a Riemann-
Hilbert boundary value problem of a type as discussed in
section I.3.5.
By using the conformal transformation z B f(w) of " onto
the unit disk, which is the inverse of the conformal transformation
W = fO(z), mentioned in lemma 2.2, the boundary value problems
just mentioned can be solved; see [15], where a queueing model
with a Poisson kernel is discussed in detail, and where the
numerical analysis is exposed; for the numerical analysis see
also chapter IV.1. 1In the next two sections the stationary

case will be analyzed.

Remark 3.2 TFrom the above, cf. theorem 3.1, it is seen that

the location of the point w B 2p with respect to the [

2

contour is rather critical for the technique to be applied to
solve the various boundary value problems. Actually all three

cases, i.e. 2r, € F*, 2r, € F and 2r, € F~ can occur, their

2 2

occurrence being dependent on the values of AB, P and r;

2

€ F, whereas 2r, € r*

< %3 for

for r sufficiently close to zero 2r2

for r sufficiently close to one, a; < 1 and r,

r, @ 3 and 0 < r < 1 always 2r2 € I, of. for further details

the end of the next section, see also section IV.1.5.

Remark 3.3 Due to the special structure of (3.4) another
somewhat more direct approach is possible for its analysis.
For such an approach see the next section, formulas

(4.20) and (4.21).

Remark 3.4 Note that if r,8r,n 3 then by symmetry
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(3.13) ¢Xy(r,w,0) = @yx(r,O,w),
so that if x = y then

(3.14) wz(w) = 03

note that x and y are exchangeable variables

section 2.1.

if

r

1

227
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11.4.4. The functional equation for the stationary case

In this section we shall analyze the functional equation

for the stationary situation of the random walk {(En’xn)’n = 0,1,...}.

It will be assumed that, cf. (1.3),

(4.1) a, = Elx} <1, a,=Ely} <1

for a more general discussion (transient analysis) the reader is

referred to [ 16].

As in section 2.16 it is seen that the joint generating
function #(p,,p,), |p1[ <1, |p2| < 1, of the stationary
distribution should satisfy

(1-—p1) ( 1-p2)
(4.2) 8(py,p,y) = {B{r}Ye(0,0)
plPQ—B{A(i—rlpl—PZPZ)}

B{rx{1-r p.)} B{r(1-v,p,)}
-1 e(p0) - —— 22 (0,p,)3,
1—p1 1—p2

(4.3) e(1,1) = 1,
and cf. (2.16.5),
(4.4) BUAP,)8(1,0) = E{1-y} = 1-a,,

6(Ar1)¢(0,1) = E{1-x} = 1-a1.
With, cf. (2.9),
(4.5) b(§) := b(1,8) = &2 - b v, BA(1-6)), Re § < 1,

we introduce again, cf. (2.14), for Re § < 1:
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1
(4.6) €,(8) m o, {8 + /B(&Y1,
" - /0SS

and assume, cf. (2.10), that

>
4.7) r, r,.

Note that

(4.8) 51(1) = 1, 82(1) | 1.

As in (2.17) 8(¢) is defined as the unique zero in Re § < 1

of the function

(4.9) § - 2/T T c089 82 (A(1-8)}, 0 < ¢ < om.
Note that

(4.10) -1 < 68(¢9) < 2/?;?;,

and

(4.11) §(0) < 2¢r1r2 if ry #* v

29
'= 1 if ry =, = $

The slit G is again defined by

(4.12) G := {8: 8§ = 8(¢p), 0 < ¢ <27},

and further

(4.13) E := {6: Re 8§ < 1, &§ € G}.

Note that

(4.14) § = 1 € G if and only if ry =, = 3.
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The definition of the contour F is analogous to that in

(2.21), i.e.
ei¢

(4.15) Fi= {w: w = §(¢), 0 < ¢ < 27},
cos ¢

and

(4.16) [w] <1 for w € Ty

the equality sign in (4.16) applies only if ry =, = 7 and

wa 1.

As in the preceding section, cf. (3.4), it is derived that

(wo1py  BRAGAZRN) G ¥ oy BIACZW) 40, W) L grateco,0),
L ' -7y
1 2

for w € F, w = 2r, excluded if 2r2 € F.

2

As in the preceding section it is shown that:

(4.18) ¢(7¥—,0) and ¢(0,5¥;) are regular for w € r* ana
1

. +
continuous for w € F U F |,

To analyze (4.17) and (4.18) the conformal mapping z = f(w)

of F* onto the unit disk is needed. Its inverse mapping w = fo(z)
is described in lemma 2.2 with &8(r,¢) replaced by 8(¢), cf. (4.9).
Note that fo(%), |z| > 1 maps the exterior of |z| B 1 onto

F+, and that
- 1
(4.19) £,0z) = £,(2) = £,(2) for |z] = 1.

Put

fo(z)
B{A(l—%fo(z))}¢( ,o), |z <1,

(4.20) Al(Z) 2r1

£(2)
1 0
Ay(z) := B{A(l—%fo(z))}¢(0 ,—7;§—), lz] = 1,
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then from (4.17) and (4.19) it is seen that

(4.21) S S— Ay(z) + —_— hy(z) = 8{1}8(0,0),
1—f0(z)/2r1 1—f0(z)/2r2

for |z| B 1, with the exception of that point z for which
fo(%) = 2r, if 2r, € F. From (4.18) and (4.20) it is seen by using

the corresponding boundaries theorem, cf. section I.4.2 that

(4.22) A (z) is regular for lz] < 1, continuous for |z| < 1,

A,y(z) is regular for |z| > 1, continuous for |z| > 1.

The relations (4.21) and (4.22) again represent a boundary
value problem; it will be analyzed in the next section. This
boundary value problem is actually of the same structure as

that described in the preceding section, cf. also remark 3.3.
Next it will be shown that (2.10) and (4.1) imply that
(4.23) 2r, € j if r, >1>0p

= > - - 1
(4.24) 2ry = 1 €T if ry = or, = 3.

The relation (4.24) is rather obvious, cf. (4.11) and (4.15).
Before we prove (4.23) it is of some interest to consider the

following argument.

With wl(w) and mz(w) as defined in (3.9) but now for r = 1

it follows from (4.17) that

B{Ar}8(0,0),

(4.25) Re wl(w)

Im w2(w) 0,

and: wl(w) and mz(w) are both regular for w € P+,continuous for

we€TFU F+,if 2r2 € F UF". It follows immediately from section

I.3.2 that
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(4.26) wl(W) B{A}8(0,0) + iCl,

wZ(W) C

2’

with C1 and C2 real constants. Because
(4.27) w,C0) = 28{x}e(C,0), w,(0) B 0,

it follows from (4.26) that ¢(0,0) = 0. This implies that
no stationary distribution exists, which is a contradiction

because of (4.1), hence 2r, € F U rt.

To prove 2r. € F¥ note that, cf. (4.9), for r, # r.:

2 1 2

(4.28) N FFo= 2r, > 2/5;r28%{k(1-2r2)}

1-B{x(r1—r2)}
hid r, -, < rl{l-B{)\(l-Zr‘Q)}}Q 1 < ABrl _—_—

(rl—rz)ks
Because Asrl B a, <1, cf. (4.1) and for ry * Ty,
1-g{x(r,-r,)} ® =x(r -r )t t
(no29) ——1 2=y 17 (3 (1-p(D)at) <1,
(r,-r,)xB 0 0
172

it is seen that the last inequality in (4.28) cannot be true.

This proves (4.23).
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I1.4.5. The stationary distribution

Denote by z, the point, cf. (4.23) and (4.24),

(5.1) 2y i® f(2r2), 2r2 = fO(ZO)’
so that
+ .
(5.2) zg € ¢ if ry > r,,
- - - 1
zg = 1 if ry = r, = 3

To analyze the boundary value problem (4.21), (4.22) first

note that
(5.3) Al(O) = g{r}e(0,0) = lim A,(z).
[z |+
Next multiply (4.21) by E%? and integrate over |z| = 1, then
(5.4) 1 .__ﬁ.ﬂ_ dz _:.L_,_ f _._.._.Ai(i)_. dz_
2T 1Z)=1 1-£.(2)/20, 276 2T g a1 1-f (Ly/op, 27T
0 1 0z 2

= 5113 f -Zi_%s{x}@(o,m.
lz]|=1

According. to (5.2) two cases have to be considered.

, +
i. 2z, €c,

By noting that the integrand of the second integral in (5.4) has
a simple pole at z @ éL it follows from (4.22), (5.3) and (5.4)

0
that for |t]| < 1:

AL (E)
(5.5) 1 -
1—f0(t)/2r‘1 Z—O -t 2

"
o
-

and for [t| > 1:
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1
Ay () Az(EE) 21,
(5.6) - T -7 NEN) + g{A}a(0,0) = 0.
1—f0(¥)/2r2 EE -t zOfO (zo)

From (4.22), (5.3), (5.5) and (5.6) it follows that for

ry > ry:
IWED
%9
(5.7) g{r}e(0,0) m 2y —y—— >
ZOfO (zo)
l—fo(t)/2r1
A () = ————= B{r}e(0,0), [t] < 1,
1-z .t
0
1-£,(3)/2r,
Ay () = - ————= 2zt g{A}e(0,0), [t] = 1.
1—zOt
ii, 2g = 1, so that ry a r, = 3.

In this case both integrands in the first two integrals of

(5.4) have a simple pole at z B 1, hence for |t| < 1:

ALt
(5.8) () -, Ay ; Ay (1) 1 -,
1-£4 () ey It -t £V

and for [t| > 1:

A (D 1 Az(t) s Az(l)

(5.9) -
1 1 2
f0 (1) 1-t 1—f0(¥) : 1-t f

+ B{Ar}8(0,0) = 0.

nf=

By noting that the symmetry implies that
(5.10) Al(l) B A (D),

it follows from (5.3) that

A2(1)

(5.11) g{r}e(0,0) = )
f515<1>
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1-£,(t)
A () = g{rreco,0, Jt| <1,
1-t
1-F,(1/1)
A (t) = ————— g{A}0(0,0), [t] > 13
1-1/t

a result which agrees with (5.7) by taking there zg = 1,
= 1
r, = r,® 3.

From (4.20), (5.7) and (5.11) it follows for ry > r,

that
W
Lo
Y1 2r1 +
(5.12) B{A(1—%w1)}¢(7——,0) = — B{A}®(0,0), w, € F,
r 1
1 1—zof(w1)
\'Y
L2
w2 2r2 +
B(A(l—%wQ)}Q(O,T;—) = 1 g{1}¢(0,0), W, € F .
2 1-=—=f(w,)
z0 2

The results obtained above lead to the following

Theorem 5.1 For a, <1, a, < 1 the joint generating function
®(p sPy)> |p1| <1, |p2| < 1 of the stationary distribution

of the random walk Kﬁn,xg, n=0,1,2,...} with Poisson kernel
(5.13) Z(pyspy) = p1p2—8{x(1—-r1p1—r2p2)}, ry+r, 81, 1<r <1,
a, = rlks, a, = rZAB,

is given by:

1-f(2r )f(2r2p2) 1-py 1-p,

1P1
1
B{A(l-rlpl—rzpz)}-plp2 1—zOf(2r1p1) 1-=£(2r,p,)

(5.14) @(pi,pz) =

g{rle(o,0),
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for |p1| <1, |p2| <1 and (p;,p,) not a zero of Z(p,,p,),

with

(5.15) zg = f(2r2) = f_1(2r1), and zg = 1 for ry = r, = i,

(5.16) 8{216¢0,0) = 2r, £ (2n vz  (1-a,) = 20, £ (2r )z (1-a.);
: » 2 2% 1 1 102g(1-a,)s

z = f(w) is the conformal mapping of F* onto the unit circle,

the boundary F of 3 is given by

ei¢
(5.17) F = {W: W=m5(¢), 0<¢<2T{},
with 8(¢) the unique zero in |§] < 1 of

(5.18) § - 2/ r,cos¢ B%{A(l—d)};

f(w) has a regular analytic continuation in 0 < w < 2r1, the inverse

mapping w @ fO(Z) is given by

¢O(z)
(5.19) f4(z) mze s z] <1,
27 1w
¢0(Z) - fL J {1og 6(G(m))} e _*Z 4,
T 1w
0 cos@(w) e -z

with 0(4) a strictly increasing and continuous function on
[0,27], uniquely determined as the continuous solution of the

Theodorsen integral equation: for 0 < ¢ < 2w,

2m
(5.20) 0(¢) = ¢ - = J[;{log —5(9;‘2’);} cotd(w-9)dw.
CcOSs w

Proof Putting in (5.12)

w, @ 2r1p1,

w, 8 2r

2 2Po>

it follows that
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1- P 1 +
(5.21) B{A(l—rlpl)}¢(p1,0) = —— = g{A}2(0,0), 2r,py €T,
1—zof(2r1p1)
1-p 2 +
(5.22) B{r(1-r.p,)}%(0,p,) = B{r}e(0,0), 2r,p, € F .
252 2 1
1-———f(2r2p2)
Zn

Because F is an analytic contour f(2r1p1), 2r1p1 erfur
possesses an analytic continuation from out F* UF into a domain
contained in F . By noting that the lefthand side of (5.21) is
regular for |p1| < 1, it is seen that £f(2r;p,) has an analytic
continuation for p, € I'n {p :|p| <1}, which is regular for all

those Py € [0,1) for which B{A(1-r )}@(pl,O) # 0. The series

1P1
expansions in p, of B{A(l-rlpl)} and @(pl,O) have nonnegative
coefficients and B{A}#(0,0) > 0 so that f(2r1p1) is regular for
0 < Py <1, i.e. f(w) is regular for 0 < w < 2r1.

Further B{A(l—rl)}¢(1,0) > 0 so that by continuity f(?rl) = 251
and hence (5.15) follows, cf. also (5.1).

The relation (5.14) is a direct result of (4.2) and (5.21),
(5.22) if (pl,pz) is not a zero of Z(pl,pz); if it is a zero then
¢(p1,p2) is given by the appropriate limit, cf. theorem 2.15.1.

The relation (5.16) is a direct consequence of (4.4). The
relations (5.17),...,(5.20) result from (4.9), (4.15) and the
immediate extension of lemma 2.2 for r = 1.

That ¢(p1,p2) as represented by (5.14) is unique follows from
the fact that the random walk_possesses a unique stationary

distribution if a; <1, a, < 1 and from the fact that all arguments

used in deriving (5.14) lead to a unique determination of (IJ(pl,pz).l:|

Remark 5.1 Because F and C = {z: |z| = 1} are beth analytic
contours, cf. section I.1.2, f(w) can be continued analytically
from F¥ U F into a domain belonging to F~. For § € G we have,

cf. (5.17) and (5.18),



238 Analysis of two-dimensional random walk 11.4.5.

waé + /D(s), wa s - /B(8),

and from (4.19) it follows that for § € G:

(5.23) F(8+VDENIE(S-vB(8Y) = 1.

By using the principle of permanence and analytic continuation
the relation (5.23) is seen to hold for every § with Re § < 1.
Because at least one of the terms §+/b(8), §-vB(8) has a norm
less than or equal to one the relation (5.23) may be used to

calculate this analytic continuation of f(w).
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III.1. TWO QUEUES IN PARALLEL

1II.1.1, The model

The service facility consists of two servers. Customers
arrive according to a Poisson process with arrival rate A
at the service facility. The service time of a customer served
by server j,j = 1,2, is negative exponentially distributed
with mean Bj. An arriving customer joins the shorter queue
if at his arrival the queues in front of the two servers are
unequal, if they are equal he chooses server j with probabi-

lity IIj,j a2 1,2,

(1.1) Hl + H2 = 1.

Once a customer has entered a queue he stays in that queue
and waits here for service. It will be assumed that the
service times of the customers are independent variables and
that these variables are also independent of the interarrival
times.

Put
(1.2) a.,t= \B., o= 1,2,

Obviously the service rate at server j is equal to 1/Bj, so
that 1/, + 1/B, is the total service rate of the service

facility. Consequently,

1 1
A< + =,
By By
i.e.

> 1

W||—\

(1.3) 3— +
1 2

k)

guarantees that the two servers can handle the arrival stream.
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Denote by Et(j) the number of customers present at time t
at server j, i.e. the number of waiting customers plus the one
being served. Because interarrival times and service times are
all negative exponentially distributed and independent it follows

(1),5t(2),t€[0,W)} is a birth-— and death pro-

that the process {x,
cess with state space {0,1,2,...}x{0,1,2,...}; the state space be-
ing irreducible.

It will be assumed that this process is stationary and by

X4sX, shall be denoted two stochastic variables of which the joint

distribution is the stationary distribution of the

{z_t(l) ’51:(2) ,t€[0,=)} process.
It is easily derived that for |p1| <1, ]p2| < 1:
X, X
=1_ =2 1 1 1 1
(1.4) E{p1 P, (x4 > §2)}{p2 + b - - - 1}

L I S e )

1, 1 1 1
a4y Py %

X X
+ Elp, " 'p, “lx, < x)Hp, +

X X

+ Elp, 'p, “(x; 8 x)HI,p, + Mypy + o -3

a1y &Py 2 FH

X X
% . 1,,_ 1 %1 1., _ 1
+ E{p2 (51 = O)}al(i pl) + E{p1 (x, B 0)}a2(1 p2) o 0.

By taking in (1.4) p; = p, =p with |p| €1 it follows that

X + X

=1 =2 1.1 1
1.5 E 1 - —(=— + —
(1.5) {p M- Gt )

x x
+ E{p_z(;g1 =O)}315 + E{p_1(52 z 0)}515 = 0.
1 2

Hence for p m 1:

-1:= L . 1 -
3, 1= = Prix;= 0} + == Prix, = 0}.

(1.6) é; +
1 1 2

Consequently, the condition (1.3) is necessary for the process

{it(l),ét(Z),tE[O,w)} to possess a stationary distribution.



m.1.2. Two queues in parallel 243

I11.1.2. Analysis of the functional equation

To analyze the functional equation (1.4) put

Pq

(2.1 5 7 Py Ppu 1% Ppo
P
= <1, loul < 1.

Then from (1.4)

(2.2) P(pl,DQ,u)

X
1= E{Dl

1 Xp XXy Py u 1 1
p, ‘u (xy > x )=+ +

agpq  @peu & &y

X
=2 _ 1 u
+ E{(uoz) (51-0)}5—1'(1-a)u

X, X
=1, =2 P1 u 1
+ Blp, 7o, (x,mx I, —= + -1 1t
1 P2 1729 1w tae; T, T
X, X, Xo-X
=1, T2, 1 u 1 1
g -[E{p, “p, “u (x,>x,)}Hup, + + I
1 2 1 =2 2 a2u02 aipl al a2
P, X
1,71 20)1-L (gt
+ E{(T) (52—0)}612(1 Upz)u

1 1
a_u_ - ;—- - Hl}u].

X1 %2
+ E{p, e, (§1=52)}{H2u92 + 5
272 2

For p, and p, fixed with [pll <1, Ip2| <1 it is seen
that the second member in (2.2) is regular for |u| <1, con-
tinuous for |u| < 1, whereas the last member in (2.2) is re-
gular for |[u| > 1, continuous for |u| = 1. Consequently
P(01,02,\1) is regular in the whole u-plane and because the last
member in (2.2) behaves as Iul2 for |u|l + « it follows from

Liouville's theorem that P(Dl,pz,u) is a polynomial of the

second degree in u, i.e. for [p,| <1, |p,| <1:

(2.3) P(pl,pz,u) = A(pl,02 )u2 + B(Ql,oz)u + C(pl,pz),

1
- = - ——-1}u
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with A(pl,p2), B(pl,pz) and C(pl,p2) independent of u.

Define for |p | <1, [p,| <1:

X X
.= =1 =2 -
(2.4) ¢,(p P, = Elpy "o, (x,=x,01},
Oa\3 Po\E (X, +x,)/79
2)2 ( 2\2 24722 .
<) 6, (p,p, )2l —=) E{(p,p,) (x,-%,=131},
(pl 21°P1P2 b,/ 172 X7%
P1N2 Pq\3 (x4+%,)/2
(5—> ¢11<p1p2):=(5—) E{(p0,) (x,-%,° D)3,
2 2
] p (X, +%,)/2
5—2 0y, P py)es p—2 E{(p4p,) =172 (52—51=2)},
1 1
p p (x,+x,)/2
1 | X174 .
5; ®12(p1p2).- 5; E{(pipz) (51 52-2)}.

Consider now in the second and third member of (2.2) the series
expansions in powers of u and of u_i, respectively. Equating

coefficients of equal powers leads to

(2.5) A(Ol,DQ) = - H202¢0({)102)
= 1 8 (0.0.) Prix. =x. =0} + “2Prix =1,x,20}
= = - =x. = £ =1,x,=
ap 07172 apy T2 a =2 1
p 5 p
2)2 1.1 2 1
- {=5V o, (p.o ) (=—+=+1) + =0 _,(p,p,) (P t—5)
(01 2177172 ay a2 pl 22 7172 1 a’2p2 ?
1 1 e =
(2.8) B(pl,pz) a (bO(plpZ)(a_zHIl) - -a—zpr{§1-§2—0}
(pl)%¢ ©.0.)(p 4=—1)
- = PP P +—
Py 1112 27a b,

:O}

=- 1 1, -
= ¢0(0102)(a1+n2) + Prix =x,

1

(pz>%¢ (0 .0.)(p  4—1)
* \5 p.p P +t——),
pl 21 172 1 a292

p
Prix, =x,=0} - z2Pr{x,=1,x,70)

= 1
(2.7 S CPPEP A A CPLPY) + X47 X, )

1
12 a2D2 a2p2

P,y 2 p
1\2 1,1 1 1
+ Q—>¢ ©.p)(=—+—+1) - =0, (p.p, )0, 4—)
02 117 1 2 ay a2 0, 127172 2 alp1

= H101¢0(p 102).
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From (2.6) it follows that

) 1 1 1 1 -y =
(2.8) 2 Blpysp,) B ¢O(p1p2){5;—§;+nl_n2} - (EE-EI)PP{51—52—O}

1

z
- (plpz) {¢1l(p1p2) - ¢21(plp2)}
(p,p )_%{j;Q (p,p )-Lo (p,p,)}
172 a1 117172 a2 217152 >
so we may define
(2.9) B(plpz):= B(pl,pz).

Divide (2.2) by u then it follows from (2.2), (2.3) and

(2.9) by taking py B U, py = rz/u, [u] = 1 that for ]r1| <1,
|r2| < 1:
X X
=1_ =2 1 1 1 1
(2.10) E{r, r (x,>x, ) Hr, + + 1}
1 2 =2" =1 1 alrl a2r2 a; a,
X
X0 oyl 1
1 1
+ & (r, v ){II,r, + 1 —j;—H } - B{r,r,) B O
07172 272 a,r, a 2 1°2 >
171 71
X X
=1 =2 1 1 1 1
(2.11) E{r, v, “(x,>x,)Hr, + + 1}
1 2 =1~ =2 2 a,r, a1r1 a; a,
X
e P |
+ E{r-1 (52-0)}55(1 ;ﬁ)

2

1 1 -
+ éo(rlrQ){H1r1+a2r _EE_Hl} + B(rlrz) = 0.
Note that
- - 1 =
(2.12) a; = a,, I, m I, = 3 = B(r1r2) 0.

To investigate (2.10) and (2.11) put

o¥}
s1)
N

(2.13) Qq:* Qpi= s

I
o

and



246 Analysis of various queueing models I.1.2.

.= 2 _ -1 ,
(2.14) £i(ryary)i= ayr, {1+a1+(1 = )ql}r1+1,

. 2 _ 1
fz(rl,r2).- a,r, {1+a2+(1 ri)q2}r2+1’

and further —(1-§;)q
(2.15) s,(r,):i= Ele 2

1B1/84 1
| b, Reli-=1 > 0,

v -(1-r—1)q222/62 12

Sz(rl):= E{e 1, Re{l—;z} 20,

where Rj stands for the busy period of an M/M/1 queue with
traffic load aj. It is well known, cf.[22] p.180, that 61(r2)

is the unique zero of (2.14) in |r1| <1 if Re{l—é;} >0, and

2
1
(2.186) [8,¢r )| <1 for Re|i-=—| >0, r,¥1,
1
[8,(r )] <1 for Re|1-;z| >0, r ¥,
Because
X X X X=X
X1 X ) X1 7%
(2.17) E{r, v, “(x,>x40} = El(ryr)) vy (x,> %01,

it is seen that the lefthand side of (2.17) is regular in
-1 . .
r, for lr, | \.I;;I for fixed r, with |r2| <1,
Consequently it follows from (2.10) that for }r2| <1,

Re {1-1 > 0:
Ty

Xy 217
(2.18) E{r, “(x,=00} = [rl-l{B(rlrz)
1 1
-{n + - ==-T1,}¢ (r.r )}] N
22 Tar T E T T2 02 ey = 8, (),

and analogously for |r1[ <1, Re{l—g;} >0:
1

%1 3272 )
(2.19) E{r, 1(x,=0)} = [;;:T{—B(rlrz

1 1
-{I.r,+ —-—-10,}¢.(r,r )}] -
171 a,r, a, 170 7172 T, Gz(rl).

The discriminant of fi(rlrz) becomes zero for

r, = rz(O) and r, = rz(i)

2 with
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1 1

(2.20) P2(0)2= {1+q2(1+/35)2} ) rz(i):= {1+q2(1—/31)2} ,
that of f2(r1,r2) for r, = rl(O) and ry = ri(l),

(0) 2,71 (1) —.2,71
(2.21) ry = {1+q1(1+/35) o, r, = {1+q1(1-/a2) }

Define the slits G1 and G, by:

. 0
(2.22) G,:= {r2:r € [PZ( ),p2(1)]}’ 6. := {p

2 1° 1771 1
then the Riemann surface for 61(r2) con -
sists of two sheets connected along the slit G2, analogouslv
for that of 52(r1). At the slit 62 the two branches of 51(r2)
have conjugate values.

For |r|<1 it is seen from (2.4), (2.8) and (2.9) that
2,(r) and B(r) are regular for jr] < 1. Also E{r2§2(51=0)}

is regular for |r,| < 1, which implies that the righthand side

ol
of (2.18) can be continued analytically into |r,| <1,
Re{l—g;} < 0. Because ¢,(r) and B(r) exist for Ir| <1,
1 .
Re{l—?r} < 0 it follows that ¢,(r,8,(r,)) and B(r,s,(r,)) should

have analytic continuations into |[r

Ll <1, Re{l—;l—-} <0, and
2

€ r, 0 0 (D

3

.. 1
similarly for ¢,(r,é,(r;)), B(r,8,(r )) for |r1| <1, Re{l-;;} < 0.

Note that if @O(r) exists for some r B R > 0 then it exists
for every r with [r| < R.

X
Because E{r2_2(51=0)} is real for real r, it follows from

€ G,:

(2.18) that for r, )

r
1 1 1

(2.23) Im[ {B(r,r.)-{lI,r +————-0,}0. (v, )}]

r1—1 1°2 272 a;ry al 2°70° 7172 r.26.(r.)

177172
and analogously for Ty € Gl:
T2 11 } }

(2.24) Im[————{—B(r r,)-{,r,+——-—=—-0,10.(r.r,) ]

r,-1 172 1"17a,p a1 0 12 128, (r,)

Because

0

5
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(2.25) fl(rlrz) =0 =

Analysis of various queueing models

1-r

1-r a

11.1.2.

:EZ_P.Z(ap
17 171

2 -1),

1

the relation (2.23) may be rewritten as:

E .
for r, G2.

a ry
Im[ 1
T4

(2.26) 1=

and similarly (2.24) for ry S G1

a,r

B(r r, )+ {H2(alrl-l)aQrz—l}Qo(rlrz)] =0;

r1=61(r2)

2°2 -
(2.27) Im[_l-r B(rlrz) + {Hl(a2r2—1)a1r1—1}®0(r1r2)] ) =0.
2 r,=8,(r.)
2 7271
Put for j @ 1,2,
1 0 1 0
(2.28) vy = 7(rj( )+rj(1)) + 2 vj(rj( )—rj( Yy, 1< v, <1
then
_2—+v2(1+ai+ai)
1 1 /EI 1 %2
(2.29) r261(r2) = = {
a,va
21 /{1+§;+£;)2—£L /{i+§;+£;)2 3
1 72 1 1 72 1
. 2
- i /1y, 1,
iy (14+)
1 L T
rlﬁz(rl) = /__
ay
s Aot
1 2
. 2
i/1-v, .
Define the ellipses E, and E, by
. . (x-x.)2 o2
(2.30) Ej-= {z=x+iy: : + 17 =1}, § = 1,2,
3 "3
with
2 -1
(2.31) X, 1= 32;— {(1+-3;+-§;) -t Yo,
J 122 1 %2 a3-4
(1+é;+é;)2
62 o %3-3 1 92
177 (a,an? {(1ee 222
172 a, a, a3_j
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B2, _23-3 1
T (aga? (il
e 3-9

Next introduce the mappings Hj’ j=1,2,

defined by

(2.32) H1 Pry > 2z, z B x + 1y

n €
riéz(ll), ry Gl’
H, : r, > 2, z = x + iy @& r261(r2), r, € Gy

It follows from (2.28) and (2.29) that for j = 1,2,

2x+-}—
a.
(2.33) vy = 7 ETe
and
(2.34) H.(G.)®m E..
J ] ]
The relation (2.26) transforms under HQinto:
[ _ . c
(2.35) ImLfoz)B(z)+{ 1+H2P1(Z)}¢O(u) e 0 for z El’
and (2.27) underH1 into:
(2.36) Im{—zQQ(z)B(z)+{—1+n1P2(z)}QO(Z)] B 0 for z € Ez,
where for jm 1,2, and z € Ej:
(1+—1—+L)Z - —1_._ —2—Rez
a; a, aja, a;
(2.37) P. (z):= T — ,
] (I+—+)—
a1 3 #4%
1 1
1+—a—'+a—
Qs(2) 1= —— : f T 1
J ——tiRez - ——(1+-+-)z
192 25 3 1 %2

Because ¢0(z) and B(z) should be finite for zj = xj + Ej’ it

follows that ¢0(z) and B(z) are regular for |z| < max (21,22),

cf. (2.4), (2.8) and (2.9), and continuous for |z| < max (zl,zz);



250 Analysis of various queueing models 1.1.2.

note that zj is that point of Ej with largest distance

to z m 0.

Consequently the determination of QO(Z) and B(z) requires
solving the simultaneous boundary value problem described by
the boundary conditions (2.35) and (2.36) and the regularity
conditions for |z| < max (z,52,).

The present boundary value problem for ay ¥ a, is a rather

intricateone and we shall not continue here with its analysis. The

reader is referred to [ 20] for further information; for the general

theory of simultaneous boundary value problems see [7] and [23].

The boundary value problem simplifies essentially if a; = a,,
because then by adding and substracting (2.35) and (2.36) the
boundary value problem degenerates into two boundary value
problems each in one unknown, see also the next section.

For comments on another analytic approach of the present

model see section 5.
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HL1.3. Thecasea; =ay =a, I} = 1) = 1
- 2
In this section we shall analyze the case

(3.1) a:= a, = a, <2, n, =0, = 3.

2

From (2.12) and (2.35) it follows that (by dropping the

indices "1" and "2")

(3.2) i. Im{(-2 + P(z))@o(z)} = 0, z €EE,
ii, QO(Z) is regular for z € E+, continuous for
z € 5" VE,
with )
__2 2a 4+3a
(3.3) P(z) - 2 :=a“z - 753 Re 2 - 5y
2
(x-x,)
E:= {2z =x+ 1y 1 + ¥ o 1},
2 2
€ n
o iz 2 g2.0 L(2ray? 2., 1
] .= 5 s L )
1 a2+u a2ty a(a2+u)

To solve the boundary value problem (3.2) we need the
conformal map t B f(z) of theellipse £ (interior of E) onto the

unit circle |t| < 1. We choose this mapping so that

(3.4) f(—2—) m o0, £(2) m 2.

a“+u4

This conformal map is described by, cf.[3] p.296 or [10]

p.177, for z € ET:

2
(3.5) t|mf(z) B /K sn(Z arcsin 222002 1) oy,
2/(a"+4)
where
(3.6) x = sn(u,k)

is the Jacobi elliptic function, cf.[25] p.340,
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with
o 2n 8
2 1+ \
(3.7) k“:= 16q 1T { —1
n=1 1+q2n 1 0 <k <1,

K! /2
Y @ (&2N}2 g (2ra-va 4?2

£+n 5
2+a+ 512+L\L

q:= e

N
1

sn(K,k), %? = en(K+iK', k).

Remark 3.1 The representation of theellipse E in polar co-

ordinates reads

H
(2+a)yYa-2acosd
it may be useful for the numerical evaluation of the conformal

map of |t| < 1 onto E' via Theodorsen's procedure,

cf.section I.4.4.

Denote by
(3.8) z B f£,(), [t] <1,
the inverse of the conformal map t = f(z), then (3.2) trans-

forms into the following Riemann-Hilbert boundary value problem:
(3.9) i. Im{R(LIQ(LI} = 0O, [t] = 1,

ii. Q(t) regular for |t| <1, continuous for [t <1,
where for [t]| < 1:

(3.10) Q) := QO(fD(t)),



1L1.3. Two queues in parallel 253
R(t):= P(fo(t)) - 2.

The relation (3.9)1 is equivalent with

3

.2 a
(3.11) Re{ [ia Imfo(t) * 53 Re f (t) -

4+3a

i)t =0, (t| B 1.

We now apply the results of sections I.3.1 and I.3.5, cf.
(I.3.5.6).
For theindex y we have, as it will be shown below, cf.(3.35),
(3.12) X = ind R(t) = ind{P(2)-2} = 0.
|t]=1 zEE

Hence for |t| <1

(3.13) Q(t) m voeiY(t),

with vy an arbitrary real constant and

(3.14) Y(t) = mir f { apctan D(T)y T+t dT

-t t°
2m1 |T|=1 a(r -t T
with for |1
a3 4+3a 2
(3.15) a(t):= VY Re fo(r) - Fra b(t):= -a“° Im fO(T).

Hence it follows from (3.20), (3.13) and (3.14) that for

z € £Y:
i%’f {arctan 5%%%}T+f(z) ij
(3.16) ¢0(2)= VO e IT[:l ,

and because ¢0(z) is continuous for z € E U E+, the Plemelj-

Sokhotski formula applied t¢ (3.16) yields for z € E:

b(T)}r+f(z) dT

. b(f(z)) 1
i arctan ET?T%TT 7—{ =1 {arctan—T?j T-f(z) T

(3.17) Qo(z) = vae e .

0
To determine vy note that the definition of 61(r2), cef.(2.14),

implies that with a; = a, @a:
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(3.18) if a <1,

51(r2)|r2=1 =1
l "
a

a =21,

Hence from (2.12), (2.18) and (2.25) by continuity for r, - 1

2 bl
(3.19) E{(x,=00} = {1- Fa(a-1)} ¢,(1) if a €1,
= o (L) if1€a <2
0'a :
From (1.6) it follows for a; Ba, =a that
. _ 1
(3.20) E{(x,=0)} = 5(2-a),
=1 2
so that
1
(3.21) ¢0(1) B 13 for a €1,
INESI 2a "1 <a <2,

An analysis of (2.10) with r, = 1 and then r, = 1 yields

Prix, >x,} = 3ao (1),
so that the first relation of (3.21) also holds for a< 2.

It is, cf.(3.3), readily verified that,

(3.22) z=1€cg" if a <1,
€ E if a @1,
and
z = <egt if 1 <a<o2.

Hence from (3.16), (3.17), (3.21) and (3.22) Vg, can be obtained

and it follows that

b(t), T+f(1) drt

1 s {arctan } ar

(3.23) vy = T%‘ e 77T |11 alty)’ T-f(1) T
a

if a <1,
1

b(t) T+f(5) daT

- 17 {arctan 25} —3 &

- 2-a e 7% ITI=1 alt 1 T

T—f(g)
if 1 €£a <2,
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To analyze the expression (3.16) further, it is noted

that for [t} = 1,
L b(t) _ 1 a(t)+ib(t)
(3.24) e(t):= arctan =) © 77 1°8 to-In(D
(1+a)F TEY - £,() - (443a)/a’
e log
21 (1+a)f () - T,TE) - (4+3a)/a’

Hence for z € E,

(1+a)z - z - (4+3a)/a2
(1+a)z - z - (l++3a)/a2

1
(3.25) e(£(2)) @ 2 log

Note that for z € E, ef.(3.3),

4+3a _ 2+a
a2 = {P(z)-21}.

a

(3.26) (1+a)z -z~

To investigate the analytic continuation of €(f(z)) repre-

sent the ellipse E as
(3.27) {z:z=x,+& cos ¢+1in sin ¢, 0 <¢ < 2m}.

It follows from

{z~ e in sin ¢}2 o 52{1— sir? o},
that
(3.28) sin ¢ & 21 2{in(z—x1)+ E¢£2- nz— (z—xl)z}.
£°-n

Henee, by using (3.3) for z € E:

(3.29) z~-z B 2in sin ¢
1 afsu | (ea)/atew ST
= = - Z + z(z ) .
a 2a 2a a2+u

Substitution of (3.29) into (3.25) leads to:

for z € E:
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1 en(z)
(3.30) E(f(ZJ)z—Z—i- lOg w,

with for z € E:

(3.31) ed(z):= % + (2-a)z - Ya"+4 vz(z- g )y = - %{P(Z)-Q},

a“+y

(3.32) e (2):= §<z+a>— (a2+a+2)z + (1+a)/alen Vo (z- —)

a“+h

= - 2{p(D) - 2},

The analytic continuation of Ed(z) and En(z) can now readily

be constructed on the Riemann surface Sconsisting of two sheets

both cut along [0, ; 1 and crosswise joined along these cuts.
At the upper sheetat;: analytic continuations of ad(z) and of
en(z) are determined by taking in (3.31) and (3.32) the positive
value of the rcot of z(Z-ul(a2+4)), at the lower sheet the
negative value of this root.

It is readily verified that sd(z) has two zeros zy and z,

and an(z) two zeros Zq and z):

= -1 = 4
(3.33) 24 = 3> Z, = az’

these zeros of Ed(Z) belong to the range of ad(z) at the upper
sheet, those of sn(z) to the range of en(z) at the lower sheet;
a fact which is verified by straightforward computation. It
also follows that

¢EuUEt.

U +
(3.34) 2, EEVE", gz,

Next we show that (3.12) holds. By using the analytic con-

tinuation of ed(z) on § it follows from(3.34) with the contour T
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as shown in fig. 8 and located in the upper sheet of § and by

noting that log ed(z) is regular in ENT* that

y

22 X
Figure 8
(3.35) X = 2_1* [ d log {P(z)-2} = 2—}; / 4 log e,(2)
Tzep 2 lzep 2
_H_
17 a1 ) = 1 ()[l) +log e (z) |2 M=o
ﬂm.’e ZOgEd(Z = ngidz og a = 1
z€T 4 -
z2=— z=0
a +4

and hence (3.12) has been verified.

For the analysis of ¢0(z) we need some properties of f(z),
cf.(3.5), which will be described below.

The Jacobi elliptic function sn(u,k), cf. (3.6) is a doubly
periodic, meromorphic function:

form= 0, + 1, + 2,...3 n=20, +1, + 2,.
(3.36) sn(u+ 4mK+ 2inK',k) = sn(u,k),

sn{2mK+ 2inK',k) @ Q,

sn{2mK+ i(2n+ 1)K',k) & =,

the zeros and poles all have multiplicityone, c¢f.[25], p. 341.
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It follows from (3.5) that f(z) has simple poles at

1L.1.3.

1

(3.37) 2= —— {1+1 sinh 2L B a0, 41, 4 2,

a“+4
and simple zeros at

2 o K! 3
z = — {1+1i sinh m R—ﬂ}, m=0, +1, * 2, 3

a“+u

further f(z) is regular at z @ 0 and z = ; , the foci of the
a‘+h

ellipse E. Hence
(3.38) f(z) 28 a meromorphic function of z.

Consequently it follows from (3.16), (3.24) and (3.30) that for

2 €ET:
— {log £ns) f(Z)+£(a) df(T)
(3.39) @O(Z) = VO e WTYJ.EC_E Ed(C) f(?;)"f(Z) f(C)
with, cf.(3.23),
e_(z)
- n F(gy+£(1) Af(g)
1 Eﬁ{;és{lOg €4t YEOSED T
(3.40) vyt oio e )
a
for a <1,
1 e (6) F@I+EE) 4o
- = { {log } .
. J-a3 . L””‘;EE Ed(C> f(l;)—f(-i—) fzc(j_

for 1 €a <2,

By applying the Plemelj—Sokhotski formula, of.(I.1.6.4),

3

see also (3.51) below, it follows from (3.39) that for z € E:
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(3.41) 1 enlD) f(+f(2) dF(e)
) e (z) 1/2 Imi QGE{lOg sd(gf} f(z)-f(2) TQ%_
<I>O(z) = VO{W} e

The relations (3.39),...,(3.41) determine ¢O(z) for

+
z € EUE . However,

(3.42) ze 1 ekr’ e a <1,

Z 1 €E A aB\1,
so that if 1 < a < 2 then @O(z), which by definition should be
regular for |z] < 1, continuous for |z| < 1, is not yet fully

expressed by (3.39),...,(3.41). To determine @O(z) for this case

we construct the analytic continuation of(3.41) for z €E . For this
we need the relation between u and v satisfying
(3.43) f(u) @ f(v).

To obtain this relation note that (3.5), (3.36) and (3.43) imply

u=~ 2 v - 2
2K . a2+4 . 2K . a2+u
— arcsin —s—— = 4 n K+ 2 1imK'+ =— arcsin .
m 2 m 2

a2+u a2+u
so that
2 2
us = My
1
_2a_+l+ = sin {2 nT+i m-}iK— T+ arcsin —?ﬁ-};
a2+u a2+u

from which it follows for m m 0, +1, +2,...,

(3.44) u- ;%;; = (v~ a;iq) cosh m%%!n
. K!'
+ Vv(v- a2+L+) sinh me= T,
or
(3.45) (u- 5 )2—2(u— 5 (v - g ) cosh m %g T+

a“+h a“+4 a“+4
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1
+ (v~=- 2 )2+ 24 sinh2m X m= 0,

a“+4 (a +u)2 K

From (3.44) it is seen that for every fixed m = 0,+ 1,
+2,..., u as a function of v can be defined as an analytic func=
tion of v on the Riemann surface S introduced above (e.g. the
"+" gign in (3.44) corresponding with the upper sheet), note
that u = v for m B 0 and that positive and negative values

of m need not to be distinguished.

Denote for fixed m this mapping by

(3.46) u = Mm(v)

and put for m @ 0,1,...,

(3.47) Em:= {usus= Mm(v), vEE}, E := E,

T

o {u:us= Mm(v), vET = [0,—%L—], counted twicel.
4

Obviously, Mm(v) being analytic on § maps the simply con-
nected set EY onto a simply connected domain on 8, which con-
tains EVE' and is bounded by Bm; by Em+ we shall denote that
part of Em which is located at the upper sheet of §, similarly

Tt is defined. It follows from the regularity and univalence

of £(z) for z € E UE' that T L4 ME 0,1,..., are all

m+’E

simply connected and disjoint contours, nested in the following

order, cf.(3.44),

E T

14° E T E

(3.48) T 100 Tou

0° ~o0°? 242"

By {Tm+’ Em+} we shall denote the interior of the domain
T
bounded by T ., and E__, analogously for {E(m_1)+, m+} and

{E, }.

+ Eme)s
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The analytic continuation of ¢0(z) can now be constructed
as follows. By noting (3.38) it is readily seen that the inte-

grand in (3.39), i.e.

£ (C) df ()
(3.49) {log - (c)}f(¢>*f(2) (c-2) - L, cex,
f(g)-£(z) f(zg)

is regular for every z except those z for which f(z) € E,
cf.(3.43), which occurs if z € Em+ form = 0,1,..

By applying the Plemelj-Sokhotski formula (cf.(I.1.6.4))
it results readily that the analytic continuation of QO(Z)
from z € E into {E, T1+} is given by, cf.(3.u41),
n¢) £ +E(z) af(@)

1 J; {lo
en(z) Ll = g ¢ (C) f()-f(z) ()
e ]

(3.50) @O(z)= 2 ed(z

z E{E,T1+} >

if z # z z ¥ z cf.(3.33). The relation (3.50) obviously

1 22
represents also the analytic continuation of ¢0(z) for

z €{T }. By passing from {T } into E and into

1+’ 1+ 1+’ 1+ 1+

{E +} the Plemelj-Sokhotski formula has to be used again

1407

and generally it follows for the analytic continuation of Qo(z)

that (C
L f {log oh L £(R)+E(z) dE()
(3.51) o (0 v {En(Z)}m e LEE € (C) f(g)-f(z) £(z)
: 0 -0 EETET €

z €{E E .},

(m-1)+, "+

! (log () £(D)+£(2) dfR)
r€E eq(t’ f(g)-£(2)

jH

=
E
[

e _(z)

=V{ﬁ'—}

z € E(m—1)+’
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m=1,2,..., but z # zys 2 ¥ Zys cf.(3.33). All contours
Em+ are located at the upper sheet of §, so that ¢0(z) has

at z @ zla.pole of multiplicity m if z, € Em, analogously

1

for z = Zy.
With 9,(z) being determined by (3.40) and (3.51)

E{P2_2(§1= 0)} can now be found from (2.18), i.e. from,

ef.(2.25) and (3.31),

X
(3.52) E{r2_2(51= 00} = [{1+3 a ry(1-ar)}o (rr,)] )
r1—61(r2)
= % sd(z) @O(z),
with
(3.53) 2 = r261(p2),
so that, cf.(2.14),
(3.54) 2= 5= [(2+a)ry- 1= V(4+a®)r, 2~ 2(2va)r, + 11,
2+a a“+u4 [/ 4
r,7 =5— zZ = z(z - ).
2 2 2 a2+u

Note that for r, = 1:

z=1 if a €1, Z = % if 1 <a <2.

Xaq X
It is remarked that E{ri—lr _2(52:>51)} can be found

2
from (2.10), (2.12) and the relations for ¢0(z) and

X
E{r2_2(§1= 0)} derived above.

From (1.5) , with p A and (3.52) the generating

23
function of the distribution of the total number of cus-

tomers in the system can be obtained:

X, +X

X
LS RS N X0,
(3.55) E{r2 }= 7-ar, E{r2 (%= 0)lm
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_ 2 a
* 77ar, & eq(z)0,(2), |r2| <1,
with Z = r251(r2); hence by using (3.20),
- 2 a
(3.56) E{x *x,} = 2E{x;} B 25 E{x,(x,80)} + .
Putting r, = 1, respectively r, = 1 in (2.10) yields
% a
(3.57) Elr, (52>51)}=7 r, ¢.(r,) , |r2| <1,
Xy oy (r )-3(2-a)
(3.58) Elr,  (x,>x)}= ar-1 ; eyl < 1.
Hence
(3.59) E{x,(x,>x.0}=%a 6 (1) + 3a o P (1)
: =2'=2" = 2 0 2 0
a 1 (D
AGETV I (1),
(3.60) Bix, (x, <20} = ECx, (> x) deerde 0 (1 (1) 4 2
: Lot Xy ™ Xy )P E R Xy T X)) IE T 7(1-a
Moreover, by the definition of ¢O(r),
- - (1) .
(3.61) E{xy (%)= x50} = 0,777 (1)
summation of (3.59),...,(3.61) yields
(1+a) (1)
(3.62) E{x, }a—2 -2 ) (1)
%205 0l | 2(ma) Yo ’

which agrees with (3.56).

263
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III.1.4. Analysis of integral expressions

For the numerical evaluation of the results derived in

the preceding section the integral
af(g)

(x)
1 €n dg
W I gy [ e oy mmeE

dg,

has to be calculated. It can be performed by direct numerical
contour integration., However, as it will be shown below, two
other expressions for I(z) can be obtained of which the nu-
merical evaluation does not require contour integration. We

shall derive here these expressions.

1. Remembering that E is located in the upper sheet of the
Riemann surface $ the integration contour in (4.1) can be re-
placed by the contour T, see fig.8. For z in the domain G

bounded by E and T the integrand in (4.1) has a simple pole

df(g)
dg

log{en(c)/ed(;)} is regular for gz € G. Hence by applying

at ¢ B z because is regular for ¢ € E' and

Cauchy's theorem it follows that for z € G:

en(z) 1 en(C) _ii%ﬁl
(4.2) I1(z) = log EET57+ 7T éGTlog Ed(C) TI-7(2) dg.

Because E, and also T, is located in the upper sheet of $

in the first term in the righthand side of (4.2) the positive

roots in the expressions (3.31) and (3.32) have to be taken.
In (4.2) the path T can be replaced by the path

0,—%L—,O, the contributions along the small semicircles

a“+4
tend to zero with their radius tending to zero. Then { B x

at the upper part of T and ¢ B xe2TTl at the lower part.



111.1.4. Two queues in parallel

By noting that T is located in the upper sheet of $

and that /x(x- 5 ) is purely imaginary for x € (0, ; )
a“+4 a“+4

it follows from (3.31) and (3.32) and their analytic con-

tinuation that:

I
En(Z) 1 a’+u W Ed(X)
(4.3) I(z)=logw+mé {1og(€ X en(x))}
d
df (x)
dx

FOO - Fzy X for z € G,

i
a2+H € _(x) €,(x) df(x)
0 sn(x) edix5
for z € E U E,
e (z) €.(z)
:% log(———n "——S‘Ed(z )
enZZS . d
2 df(x)
a‘+h € _(x) e.(x) —_—t
tmir S {log(—2 d ) dx dx
271 0 en(x) EET;j f(x)-£f(z)
for z € [0, ; 1.
a‘+u

The last equality in (4.3) is obtained from the first
one by letting z with Im z > 0 approach a point of (0,‘—$L—)
a +4
and by applying the Plemelj-Sokhotski formula.

It is noted that

ed(x) Enfx5 Im ed(x)

log( ) @ 21 arctan Re e (O
ed3x5 e, (x) Re e 4(x

Im e_(x)

-2i arctan 5
Re en(x5

265
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defining the principal value of the logarithm in (4.3) is
hardly relevant because I(z) enters the formula (3.51) as
an e-power; it is defined so that the logarithm is real for

real argument.

2. Next we shall replace the contour E in the integral

(3.41) by a contour F.» see fig.9 and below, Fm for the

greater part consisting of Tm+'
In order to apply Cauchy's theorem when replacing E by

Fm in (3.41) we have to consider the singularities in

{E,Fm} of the integrand in (4.1).

i. €,(z), c£.(3.32), is regular in EVY E" on the upper

sheet of § and has here no zeros, so log En(z) is here

regular; ed(z) is here also regular but has for m sufficiently

large two zeros z, and z

1 2

two singularities at z= zy and z= z, for large m. For this

reason the indentations in Fm have been made, cf.fig.9.

cf.(3.33), so that log Ed(z) has

ii. f(r) is meromorphic,cf.(3.38), hence g%éél/{f(c)— £(z)}
has simple poles, see (3.37), if f(z)- f(z) # 0. Denote these
poles by Pj’ j=0, +1, *#2,... . It is readily verified that
the residues at these poles are all equal to -1. These poles
do not belong tomE+U E and hence neither to {Tm+’Em+}’ S0 they

are located in ngl{E(m-1)+ » T ,} in sofar poles in the upper

sheet of § are concerned. Because (2.44) and (3.46) imply

(4 .4) VG{E0+3T1+} - Mm(V)G{Em+’T(m+1)+}’
it follows that
(4.5) ij{Ej+,T(j+1)+} ) J o= 0,1,... .
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iii, For z € E' the zeros of f(g) - f(2z) are given by

T = Mh(Z)’ h=0,1,...,cf.(3.46). For such a zero the residue

of Q%égl/{f(c)- £(z)} is obviously equal to one.
y
F
m
E
B[ %1 //?\ Zy A
Y Set—— 70
N 2 )P "
Figure 9
With Fm the contour A B 21 CD 22 A it follows from

the above that for z € E+, Im z # 0 (see below(4.10) for

Im z=0),

df(z)

1 e, (2)
(4.6) I(Z)-Z—f é lOg Ed(g7 (- (2) dg
m

3

m-1 e _(p.) m-1 e (M. ,(z))
1
+-§ log n —_ .‘_E lOg%—J‘F—(—Ty
J=0 EdszS j=0 €4 Mj+1 4
Let m > = then for ¢ € E__ we have || » = and we
may put
en(C)
(4.7) c:= 1lim log y
tlsm - Eal®)

where c is a finite constant, cf.(3.31) and (3.32). Assuming

for the present that the following limits exist then



268 Analysis of various queueing models M. 1.4.

daf(z)
(4.8) ! ~—(—y£ i ey
4.8 lim-——-— lo dzg
moo m & Z -f(z
= .= lim S d log{f(g)-f(z)} .
T °
mre  F

m

Because f(z) is meromorphic the last integral is equal to

2711 times the difference of the number of zeros and the number
of poles of f(g)-f(z) inside F . From ii and iii above it is
seen that f(z)-f(z) for z € E* nas exactly one zero in E+,
one zero in {Tm+’Em+}’ one pole in {E(m-1)+’rm+} for
m=1,2,... . Because Im z # 0 so that no zeros of f(g)-f(z)

are located in (-W,zl) or (zz,w), cf.(3.44), it is seen that

4.9) f 4 log{f(r)-f(2)}=0, m=1,2,... .

m

2n1

If Im z=0 and (zz,m) contains zeros of f(L)-f(z),
then it is readily seen that

£ (C)} a{f(z)-f(z)}
€ (;)

1
(4.10) oy F(I-F(2)

2wl

S {log==
DZ2AD

is equal to the sum of the residues at these zerocs added to
the number of zeros in DZ2AD because log ed(c) for ¢ € 22A

differs by 271 from that for 7 € DZ Note that if Im z=20

2"
then the residues of the zeros inside DZZAD do not enter
in the last sum of (4.6).

It follows readily from (4.7) and (4.9) that the
limits in (4.8) exist for Im z ¥ 0. So that because I(z)
is independent of m it is seen that

m=-1 sn(pj) sd(Mj+1(z))

lim Z  log{ .
mre  §=z0 n(Mj+1(z)7 ed(pj)
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exists. Hence for z € E+, Im z *# 0,

(4.11)

I(z) = log'ﬁ {

j=0

en(pj)

ed(Mj+1(z))

en(Mj+1(27Y’

ed(pj)

From what has been said above concerning the case

269

Imz B30, z € E+, it is not difficult to deduce that (4.11)

also applies for z € E+, Im z @ 0.

It remains to consider the analytic continuation of

I(z) into E UV E™.

and Mj(z) are located at z B8 0 and z =

Because the branching points of ed(z), En(z)

u/(a2+u) it is readily

seen that the analytic continuation of the righthand side of

(4.11) across E into E U E is possible. Providing E U E~

with the appropriate cuts to take into account the logarithmic

singularities stemming from the zeros of ed(Mj+1(z)), the

Riemann surface for such an analytic continuation can be

constructed.

It is seen that the relations (3.39),

yield for z € g*

1
Qo(z)n T3

+a

e

2-a e
2

I(z)- I(1)

1
I(z)~ I(E)

for a

<1,

(3.40) and (4.1)

so that by using the relations (4.3) and (4.11) expressions

for ¢0(z) are obtained which are free of contour integrals;

in particular from (4.

it is seen that for =z

(4.12) @O(z)

1
1+a

~N

11) and the remarks below (4.11),

€

ff
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E+:

sn(Mj+1(1))

ed(Mj+1(z))

for a < 1,

en(Mj+1(277

sd(Mj+1(1))

gd(Mj+1(Z))

for 1

1

<a<2,.
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II1.1.5. Some comments concerning another approach

Rewrite for the case a; = a, = a, TI1 mll, = 1 the relation

(2,10),by noting (2.12), as

X%
(5.1) E{rl r, (52 > 51)}{r1r2 -

2 1 1
Xl X r1r2 + EI’ + EI’
+

-

rz(rl—l) X, r, 1

- - - — - —-|

= E{r, (51'0)} + ;:1{%r1r2+a(1 r,) zrl}éo(r1r2),
a

for |r1| <1, [r2| <1,

Observe that for |r,[ <1, lr,| <1,

Lz{r
1+=
a

2

(5.2) 1

1 1
Ty t gyt Ehy!

represents the joint generating function of the stochastic

vector (x,y) with distribution

(5.3) Pr{_&:l,x:ﬂ} = %,
Pr{x=0,y=1} = 7%3,
Prix=2,y=1} = 5.

Consequently the relation (5.1) has a kernel
(5.1 T4¥y - I%z{rir2 IR R

a
which is of the same type as that encountered in the functional
equation (II.1.1.19). This observation suggests an analysis of
the functional equation (5.,1) similar to that used for the
relation (II.1.1,19), Note that the kernel (5.4) is of the type
discussed in section II.3.11, It is also of interest to inves-
tigate the simultaneous set of functional equations (2.10) and

(2.11) from this viewpoint.
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II1.2. THE ALTERNATING SERVICE DISCIPLINE

I11.2.1. The model

Customers of type i, i = 1,2, arrive according to a Poisson
process at a single server, the arrival rate is indicated by Ai'
The service times of all customers are independent stochastic
variables, those of customers of type i are identically distrib-
uted with distribution Bi(.). If a customer of type 1 has been
fully served (and leaves the system) then the next customer to be
served is of type 2, if type 2 customers are then present, otherwise
1 type 1 customer is served when present, if not the server becomes
idle. Analogously, if a type 2 customer leaves the system. Hence
the service sequence of type 1 and 2 customersis governed by an
alternating service discipline.

Define for i m 1,2,

(1.1) A= Ai + Xz, r.ois Ai/X,

B.(p) := [ e PYaB. (1), Re p =0,
i 9 i

oo

= (2) _ 7 .2
Bi = f tdBi(t), Bi = [ 0t dBi(t),
0 0
a; 1= AiBi, a := a1+ ays
B;(pysPy) 7 Bi{k(l—rlpl—r2p2)}, Re p; <1 3

for the sake of simplicity it will be always assumed that
Bi(0+) a 0,

and that Bi(.) is not a lattice distribution.
Denote by Eél) the number of type i customers left behind
in the system at the nth departure; and let hn characterize the

type of the nth departing customer, so hn g i if he is of type i.
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(1 (2)

Obviously, {gn s 2,

,hn,n = 1,2,...} is a discrete time
parameter Markov chain with stationary transition prob-
abilities and state space {0,1,...} x {0,1,...} x {1,2}. The
present model and the M/G/1 queue with arrival rate XA and
service time distribution rlBl(.) + PQBQ(.) obviously have the
same distribution of the number of customers served in a busy

period and also the same idle time distribution. Consequently,

él), (2), h,n=1,2,...} possesses a unique

the process {z n h

z

stationary distribution if and only if
(1.2) a<1.

For the present it will be assumed that (1.2) holds. Note that
if (1.2) does not hold it is still possible that the process
{gél), n=1,2,...} possesses a stationary distribution.

It will henceforth be assumed that the process

{gil),géz), ﬁn’ nail,2,...} is stationary so that we may and
do define for i m 1,2 and n = 1,2,...,
Z(1) Z(2)
(1.3) 1, ,p.) = BEp." p0 (b m D}, |p.] <1
' 1°P27 ¢ Py Py My > 1P .

By considering the various possible states of the system at

two successive departure epochs and by using the assumed

(1) (2)
=n

stationarity of the {z °7,

s h n@i,2,...} process it

n’

follows, omitting the lengthy calculations,that for Ipi[ < 1,

(1) 1 (2 (1)
(1.%) 1 (pysPy) = 5; Bi(pi,pz)[ﬂ )(pi,pQ) + 1 (pl,O)

- H(2)(O,p2) + Myrypy - H(l)(0,0)],

(2)

and analogously for I (pl,pz), with

(1.5) m, = prizlt =0, 282 =01 = 10,00 + 1P

0 (0,0).
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From (1.4) and its symmetrical analogue it follows readily that
for |p;| <1,

{P2_B2(pi’pz)}81(p1’p2),

(1) . i
b 5 TR op,0B, (5, p, 0 01 P T 92(P)

(1.6) i (pi,pz)

1-r, p,-Y,p
11 " 282
-1 + ),
0 5;:5575275;7{p2 B,(pyspy) 1}l

(

and symmetrically for I 2)(p1’p2) , with

(1)

I r (090)’ lpll <1’

(1)
(1.7) Ol(pl) g r4Py * 21 (pl,O) - I

€2) (2)
0,(p,) = Iy rop, + 20°°7(0,py) = T (0,00, |p,| < 1.
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111.2.2. The functional equation

Define
t
(2.1) B(t) := f Bl(t-T)dBQ(T), t =20,
0
:O, t<0,
and
_ 7 et
2.2) B(p) 1= [ e dB(t), Re p 2 0,
0
so that

B(p) = Bl(p)Bz(p), Re p 2 0,
and for [p,;| <1,
(2.3) B(py»Dp,) := B{A(l—rlpl—rzpz)} a 61(p1’p2)82(p1’P2)‘

Because H(l)(pl,pz), cf. (1.3), should be for every fixed P,
with |p,| <1 regular for |p1| <1, continuous for |p,| <1,

and similarly with P4 and Py interchanged, it follows that

every zero (pl,pz) of the kernel
(2.4)  Z(pysPy). i= PyP, = B(P1sPy)s lPil <1,

should be a zero of the term between square brackets in the
righthand side of (1.6). It will be shown below that this
condition leads to a functional equation for Ul(pl) and 02(p2).
This equation together with the fact that ci(pi),should by
definition be regular for |p.| <1, continuous for lp; | <1
leads to a unique determination of ci(pi). A .similar argument

(2)

applies for I (pl,p2), however, the resulting functional

equation is the same.
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The kernel Z(pl,pz) is a Poisson kernel because B(.) is a
probability distribution with support (0,»). This type of kernel
has been analyzed in chapter II. 4, see section II.4.2 and in
particular section II.4.4, the latter section concernsthe Poisson
kernel for the stationary process.

Put,cf. (2.2) and (II.4.4.5), (II.4.4.6),

(2.5)  b(8) :=¢° - ur,r B{A(1-6)}, Re § <1,

=4 /BTET =L s - /EUET
81(6) = ir‘—l{ § + }, 52((5) := 21‘2{6 },

r, Z2r

2’
then the condition of regularity of H(l)(pl,pz) discussed above
yields, omitting some algebra cf. sections II.4.2 and II.4.Uu,

that for § € E (see (II.U4.4.13) for the definition of E):

§+vb(3) §-vb(&87,_
(2.6) 01(_—2_1"—)_ OZ(T)- P(§) + vB(&) Q(d),

1 2
with
. (1-a) (1-8)
(2.7 QU8) 2 I I-5)1 47,8, 1A (=87 1-3 Re.§ < 1,

P(s)

[rlﬁl{k(l-é)}-PZBQ{k(l-d)}]Q(d), Re § < 1,

note that Q(8) and P(8) are regular for Re § < 1, continuous for
Re § € 1, because (1.2) implies that the denominator in (2.7)
has no zeros for Re 6 < 1.

If 6 € E approaches the slit G, cf. (II.4.4.12)a continuity
argument shows that (2.6) should also hold on G. With &(¢) as
defined by (II.4.4.9), i.e. 8(¢) is the unique zero in Re § <1

of
(2.8) § - 2Vr1r2 cos ¢ B%{X(i—G)}, 0 < ¢ < 27,

it follows from (2.6) by putting
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(2.9) w = & + /b(8), 8§ = 6(¢) € G,

that for w € F

(2.10) o, (%) - 02(2—"11-;) = P(Rew) + i(Imw) Q(Re w),

where, cf. (II.4.4.15),

i¢
(2.11) F = {w : w=o—268(¢), 0 < ¢ < 27},

cos ¢
Put
.= W w_
(2.12) uﬁ(w) t= 61(2r1) + 02(2r2)’
. Wy - W
wz(w) = 01(2r1) 02(2r2)’

then, because P(Re w) and Q(Re w) are both real and oi(p) has
in its series expansion in powers of p for |p| <1, cf. (1.7),
only nonnegative coefficients, it follows from (2.10),...,(2.12)

that for w € T

(2.13) Im wl(W) = (Im w) Q(Re w),

P(Re w).

(2.14) Re wz(w)

Because

wl(O) = 01(0) + 02(0) = HO

and HO is the probability of the zero state in an M/G/1 queue

with arrival rate A and service time distribution rlBl(.) + 1, BZ('

it follows from (1.1) and (1.5) that
(2.15) wl(O) g 1-a.

Further (2.12) implies that
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(2.16) w2(w) is real for real w.

We have with F* the interior of F

Theorem 2.1

. . + .
i. wl(w) is regular for w € F', continuous for w € F U F' and

satisfies (2.15) and (2.13) for w € T;

ii. wz(w) is regular for w € F+, continuous for w € F U F' and

satisfies (2.16) and (2.14) for w € F.

Proof The statements concerning (2.13),...,(2.16) have been
motivated above, it remains to prove the regularity and continuity.
The definition of oi(w), cf. (1.7), implies that oi(w) is regular
for lwl < 1, continuous for le < 1, hence the regularity and

continuity follow for r, B r, = } by noting that
1 2 y g

(2.17) |[w| €1 forw €F, r, 2 r

1 2°
It may and will be assumed henceforth that ry = r,. To consider

the case ry > r, first note that

(2.18) 6(0) = max |w| < 1,
wEF

so that 01(?¥—) is regular for w € F+, continuous for w € F U F'.
1

Further from (2.8),

(2.19) 13— /BT > 50 for 5 € [500),1].
1 1

Because (2.6) holds for 6§ € (§(0),1] C E the finiteness of

02(%%91) is implied by continuity and the finiteness of the other
2

three terms in (2.6). The fact that the coefficients in the series

expansion of 02(w) are nonnegative motivates together with (2.18)

the stated regularity and continuity of 02(7¥f). 0
2
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I11.2.3. The solution of the functional equation

The relation (2.12) and theorem 2.1 show that the determination
of ci(p), i = 1,2 reduces to the determination of the solution
of two Dirichlet problems both for the domain F* bounded by the
contour F. The solution of these Dirichlet problems proceeds as
follows.

With z = f(w) the conformal mapping of F* onto the unit circle

lz| <1, with w & fq(z) its inverse mapping, cf. (II.4.5.19) and
(3.1) Qi(z) 1= wi(fo(z)), i=1,2,
it follows from theorem 2.1 that

(3.2) i.0.(2) is regular for |z] <1, continuous for |z|< 1;

ii,Im ©,(2) = {Im £(2)} Q(Re f4(2)), [z| = 1,

Re 92(2) 1.

P(Re £, (z)), |z|

Consequently from section I.3.2 or section I.3.5.1ii it follows that

(3.3) -i@,(z) = 7%—{ l fl %—%— {Im £,()}Q(Re £(2)) dg + iC,
z(=1

(3.8) Qy(2) = =y [ =22 %— P(Re f,(r)) dg + iC,,

where C, and 02 are real constants (note that it is readily

1
verified that the righthand sides in (3.2) ii satisfy the Hdlder
condition on |z| = 1).

We now have
Theorem 3.1 The functions oi(p), |[p| < 1 are uniquely determined
by : for w € F+,

2 g
1 2r1 2n1lcl=1

—~
w
(3]
-~
Q
~~
E
~
1

__(_H_gﬁw [P(Re £,(£))+i{Im £,(5)}Q(Ref ()] + D

Wy Ll a y
02(F2) = 2"ilc|f=1 CW[P(Re fn(;)) i{Im fO(C)}Q(RefO(C))] + D
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with
o 1

(3.6) Dl.—%(l-a)-m lc_f":lcp(REf (z)) - l I w{lmf (C)}Q(Ref (C))
1 dTp(ger _1 dz

(3.7) DZ'—;(:L >+ﬁ_’ﬂ'_{ I§ﬁ=1TP(ReO(C)) QWlelzlc_—f(D—)-{Imfo(C)}Q(RefO(C)),

here z B f(w) is the conformal map of F' onto |z| <1, w = £,(2)

its inverse mapping and such that

(3.8) f(w) = £(w), £(c) = O,

. . +
¢ an arbitrary real point of F

Remark 3.1 If we take in (3.8) ¢ B 0 then fo(z) is determined by
the relations (II.%.5.19)and (II.%.5.20). Because frequently

F can be extremely well approximated by a nearly circular curve

in which case an excellent approximation for fO(Z) can be derived

if ¢ # 0, the relations (3.6),(3.7) have been formulated for generic
real values of ¢. See for this nearly circular approximation of

F section IV.1l.4.

Note that (3.8) implies

1 -
(3.9) cm 0= [cfl = f(O){Im £, (z)} Q(Rre £, (z)) = 0.

Proof TFrom (3.1), (3.3) and (3.4) it follows for w € F* that

. .1 c+f(w) 1 .
(3.10) —1w1(w) = oni lCl r;_f(w_F z {Im fO(C)}Q(Re fO(C))dC + lCla
. - 1 g+f(w) 1
(3.11) Lu?.(w) =g lc.fizl m = P(Re f (g))dg + 1C2

The real constants C1 and C2 are determined by the conditions

(2.15) and (2.16). By noting that f(w) is real for real w, cf.(3.8),
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it follows readily that the second term in (3.11) is real for real

w hence

(3.12) c, = 0.

From (2.15) and (3.10) for w = 0

- —(1- L g+£(0) 1

(3.13) C1 = (1-a) + o l;lj;l m ?{Im fO(C)} Q(Re fO(C)) dz
= -(1-a) if ¢ = 0,

because Im fo(ei¢) = -Im fo(e_i¢), Re fo(ei¢) s Re fo(e—i¢), ef.

(3.9). From (3.10),...,(3.13) combined with (2.12) the relations
(3.5),...,(3.7) follow.

To prove that the expressions (3.5),,..,(3.7) for ci(7¥—)
determine the Gi(p), defined in (1.7), it is noted that f(w) is
regular for w € rt and uniquely determined by (3.8), cf. Riemann's

mapping theorem, hence 0. (s2-) are regular for w € F* (cf. also

1'2r,
theorem 2.1). Hence oi(p) aslgiven by (3.5) possess a unique series
expansion in powers of p, note that wma 0 €r*. Because the solution
of the above Dirichlet problem is unique and because the Kolmogorov
equations for the stationary distribution of the process
{Eél),EEZ), h> n=1,2,..}have a unique bounded solution (when

normalized), note that (1.4) and its symmetrical relation are

equivalent with these Kolmogorov relations, it follows that (3.5),

r++,(3.7) determine o,(p), i@ 1,2. 0O

The relations (3.5) hold for w € F' and because
F* UF C {w : |w| < 1} these expressions for oi(7¥7) can only
be used directly for the calculation of oi(p) if Z;ip = w € F+;
i.e. if ry > r, then 01(1), and similarly for 02(1) if 2r2 '3 F+,
cannot be calculated directly from the righthand sides of (3.5).

It is therefore necessary to determine the analytic continuation
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Wy
of 0,(5;-) into |w| < 2r That

1 1 2

these analytic continuations exist follows from the definition

Wy
and of 02(7;;) into |w| < 2r

(1.7) of oi(p).

Remark 3.2 For r, > r, it is indeed possible that 2r, EF U F+,Cf-

1 2
section IV.1.5. Note that o, ( ) follows from (2.6) once
1

W
(2r2

o ) is known for w €F'

2

The just mentioned analytic continuations may be constructed
via the series expansions of oi(p) in powers of p, the coefficients
in these series expansions can be found from (3.5) because w B 0 € F*.

The following theorem provides explicit expressions for these

analytic continuations (for ry =7, = 3 see remark 3.4 below).

Theorem 3.2 TFor ry > r, with D, and D, being given by (3.6),(3.7):

i. for w € F, f(w) is regular and

) !
(3.14) 01(2r ) = D2 7??1 ﬁ ) E——T——[P(Re f (g))- 1{Imf (c)}Q(Ref (z))1]
-
+ 3[P(Re w) + i{Im w}Q(Re w)],
d
(3.15) 02(%2) =Dy +goy [ —SE I P(Re £,(2))+i{Infy(5)}Q(Refy(0))]

lz]=1 C‘—(—T

- 3[P(Re w) - i{Im w}Q(Re w)l;

ii. for v € {v : |v| < r, k0 P,

———3——[P(Re f (c)) i{Im f (c)}Q(Re £, (g,

1
(3.186) 01(2r 2'2n1
1 lzl=1 c-575y

1 —9& [p(Re £ G (E)+ilIm £,(0)}Q(Re £,(eN)],

1 2ﬁllcl 1 ¢- o

with £f(v), v € {v : [v| <2r } N F~ uniquely determined as the

(3.17) 02(2p2) =D

analytic continuation of f(w), w € F UF
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Remark 3.3 For the numerical application of the theorem above
it is necessary to calculate the analytic continuation of f(w).
This can be effectuated by a series expansion of f(w) starting

from a point w € F U F¥ or by using remark II.4.5.1.

Proof By applying the Plemelj-Sokhotski formula, cf. (I.1.6.4),

it follows from (3.5) that for w € F

(3.18) 02<—ﬂ—> - D, =3[P(Re w) - i{Im w}Q(Re w)]
)
1 dz .
- §FI[éﬁ:12:fTWY [P(Re fO(C)) - i{Im fO(C)}Q(Re fO(C)H.

By using (2.10) it results from (3.18) that for w € F, so w € F

(3.19) 01(5¥;) - Db, B I[P(Re w) - i{Im w}Q(Re w)]
-t 9 [p(Re £.(2)) - i{Im £.(£)}Q(Re £ (z))];
7L ||y TEGD 0 0 0 820

by noting that

(3.20) £(w) @ TG = f}w) for w € T,

(3.18) leads to (3.14) and (3.15) is proved analogously.
By definition, cf. (1.7), 01(7¥—) is regular in |w| < 2r,

and continuous in |w| < 2r and hence the lefthand side of

1’
(3.14) possesses an analytic continuation into |w| < 2r1 which

domain contains F+;note that

(3.21) lw] <1 for w€ F if r, > r,,

for w€ F, w# 1 1if r,8r, 8 1.

Next we show that the righthand side of (3.14) can be continued
analytically from out F.

From the definition of F, eof. (2.11), it is seen that T is an
analytic contour, cf. section I.1.2, so that f(w) is regular for

w €F, cf. [ 3] p.186. Consequently, for every w € F exists a



111.2.3. The alternating service discipline 283

neighbourhood N(w) into which f(w) can be continued analytically.
For v in such a neighbourhood N(w) the analytic continuation

of f(w) will also be indicated by f(v). For every v in
(3.22) N Gw) o= N(w) NFE,

the function

(3.23) I 95 [P(Re £,(2) = i{Im £,(2)}Q(Re £ (2]

le]=1 S-rr5y

1
27l

is regular in v. The Plemelj-Sokhotski formula,cf.(I.1.6.4),

yields, cf. (3.20), forw €F

(3.24)  1im Elalfl —dg_— [P(Re £, (£))-i{In £,(2)}Q(Re £,(1))]
VW izl ¢
vEN, @) fv)

=-1[P(Re w) + i{Im wlQ(Re w)]

1 dg .
+ mlcflﬂ - 17— [P(Re £,080) = i{Im £,(2)}1Q(Re fO(C))].

£w)
Consequently it follows from (3.14), (3.23) and (3.24) that for

vE({v: |v|]< 2r1}r1{ U Nl(W)}
w€EF

f dz
1
A 1))

- i{Im fO(C)} Q(Re fO(C))].

v -
(3.25) o© (—;—) =D [P(Re fo(C))

_ 1
2 27Til

The lefthand side of (3.25) is regular for |v| < 2r, so the

1

righthand has an analytic continuation into {v : [v| < 2r1} nFE,

further the integral in (3.25) is not singular and because f(w)

is regular for w € F the domain of analytic continuation of

f(w) will certainly contain {w : |w| < 2r1}. This proves (3.16).
The relation (3.17) is similarly proved, but for one

aspect; viz. the just proved existence of the analytic continuation

of f(w) into |w| < 2r1, which implies the regularity of the
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integral of (3.17) in this domain, leads to the existence of the

analytic continuation of g,(5——) into |v| < 2r,. O
2 2r2 1

Remark 3.4 For r,=r,ma 1 theorem 3.2 remains true if the regularity

of f(w) at w=1 is excepted; the regularity of f(w) at w=1 depends

on the finiteness of the higher moments of B(.).
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111.2.4. The symmetric case

It is of interest to consider the results obtained in the

previous section for the case

(4.1) r, =T, = 3, Bl(') a B2(.).
It follows from (2.7) that

(4.2) P(8) = 0.

Hence from theorem 3.1 and the Plemelj-Sokhotski formula:
for w € F+,
1

1
Jo T - wry!

(4.3) 0 (w)=o,(w)=}(1-a) + g?l
«{Im fO(c)} Q(Re fo(c))dc H

for w € F, .

(4.y) ol(w) = Gz(w) = 3(1-a) + % {Im w} Q(Re w)

1 1
T lCflzl{;-ﬂw) T T-I(0

'H

+

)}{Im £,(2)}Q(Re £,(2))dL;

N

note (3.9), with , cf. (2.7),

} 1-8
(4.5) Q(G) = (1-a) m, Re § < 1.

From (4.3) it follows immediately that for w € F+,

d 1 df(w) dg
(4.6) =— o, (W)= =— ] ———— Im{f(0)}Q(Re £.(T)).
dw -1 2r  aw lc]=1 {C_f(w)}z 0 0

Apply partial integration to the integral in (4.6). It follows,
noting that the path of integration is closed and that the

derivative of
In £,(e™®) Q(Re £(e™®))
with respect to.-¢ satisfies the H6lder condition, cf. also

theorem T.1.5.2, that for w € F,
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d .1 df(w) d d_
MW7) g oo w) = g S lc{=1 Z??%GT dc[{Im £,(0)}Q(Re £,(2N)],

the derivative in the integrand is the derivative along the
contour lC| = 1.

To obtain %W Gl(W) for w € F we can start from (4.7) and apply
the Plemelj-Sokhotski formula or we can apply the relations in
section I.1.10. It follows that for w € I,

d +._ 4 d_
(4.8) (HW 01(W)) = lim o= 01(X)
X2 w
xE€F*

=11 %ﬁ [{Im w} Q(Re w))]

1 df(w)
T T o] E‘?TWT dc[{Im f.(2)} Q(Re £, (1,

with %ﬁ the derivative along F.

We specify the conformal map z = f(w) by taking c @ 0,
cf . remark 3.1, so that f;(z), |z| = 1,is given by, cf. (II.4.5.19)
and (IT.4.5.20),

- i¢y _ _16(¢) 8(8(¢))
(4.9) fO(O) = 0, fo(e ) = e m, 0< ¢ < 27.

It follows from (2.8), (4.1) and (4.5) that

(4.10) am £y (e ®qRe £,(e1)) = (1-acot } 6(g)HI-5C8 (eI}

So for ¢ = el¢,

d
(4.11) EE[{Im fO(C)}Q(Re fo(c)ﬂ
2o (1-a) ie 1 %$[{1-s(e(¢)>}cot 1 8 (o).

Hence from (4.4), (4.9), (4.10) (and leaving out details, cf. (3.9)),

1-a 2

+ 7

iei¢
;15:1{1—6<e(¢))}00t 1 6(¢) d¢

(4.12) 0 (1) = 3(1-a)
2m

= J(1-a){1+ o=/ cot 30 cot 18($). 4-6(8($))}1de).
0

o3
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Because w & f(z), |z| <1 is the inverse mapping of z = f(w),

i¢

w €F UF' we have for w € F, 2z = e,

df(w),-1 g d_ - —je-ie d (1809 8C6(¢))
(u.13){—a—w—} L 7 fO(Z) = -ie d(b{ Kg;(w}

Hence (4.8) and (4.11) yield, because 6(6(0)) = 1,

§1(6¢0)) = (1-a)™T (note 6(0) = 0, cf. (IT.u4.5.20)),

—(1-a)ie  T¢ QE[cot 18(8){1-6(8($))}]

(1) N i |
(4. 14) D=7 : B T6(3) 380317 lg = 0
cos 0(¢)
1-a df(w) 2m d
* lo=1 {){cot 30 - ilggcot 38(0){1-6(8(¢))11de
= 31-a) 6P oo = 3,

a result which can be derived directly for the present case
from (2.5) and (2.6) by differentiating (2.6) with respect to

§ and letting & approach 1 in the resulting expression.
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111.3. A COUPLED PROCESSOR MODEL
I11.3.1. The model

The following model has recently occurred in computer
performance modeling. The system consists of two servers.
Server i, i = 1,2, serves a Poissonian arrival stream of
customers with arrival rate Ai and required service times
independent and identically distributed with distribution
Bi(.). The arrival processes 1 and 2 and the families of
required service times in both streams are independent of
each other.

Whenever both servers are busy, server i serves with
a service intensity r, >0, i.e. riA t is the amount of
work provided in t ¥ t + At to a customer in service. How-
ever, if server 2 is idle then the service intensity provided

by server 1 is rl*, whereas if server 1 is idle server 2 acts
*

5+

This model has been investigated by Fayolle and

with a service intensity »

Iasnogorodski [18], seealso [20], [21} and by Konheim,
Meilijson and Melkman [27]. In both studies it is assumed that
the service time distributions Bi(.) are negative exponential.
This assumption makes it possible to formulate the

involved stochastic process with state space characterized

by the numbers of customers present in each queue as a two-
dimengional birth- and death process. Fayolle and Iasnogo-
rodski handle the problem of the determination of the inherent
generating function by reducing it to a Riemann-Hilbert bound-

ary value problem, along lines similar to those exposed in
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chapter 1. Konheim, Meilijson and Melkman apply the uni-
formisation technique.

If the service timedistributions are not specified
the queue length process at both servers cannot be described
as a birth- and death process nor does the process contain
an imbedded process which is sufficiently accessible to permit
a fruitful analysis.

In this chapter we shall investigate the queueing

process by characterizing the state of the process by the

(1) (2)
t t

time t. This process description permits an interesting ana-

workloads v of server 1 and of server 2 at

and v,
lysis of the model with general service time distributions.
However, the main reason for the incorporation of the present
model in this monograph is the type of functional equation

to be solved, its analysis is of methodological interest.

For this reason we shall also restrict the discussion to

the case that
*
(1.1) r. /ri =1,

a case which is-also from the practical point of view of

the greater interest.
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II1.3.2. The functional equation

(L)
t

follows from the model description in the preceding section

With v the workload of server 1 at time t it

that for At > 0 but sufficiently small

(1) _ (1) . (1) (2)
(2.1) Vigat © Yt - rlAt if Vi >0, Vi >0 and no
type 1 arrival in t ¥ t + At,
(1 . (1) (2)_
= vy -ry At if Vi >0, Vi = 0 and no
type 1 arrival in t ¥ t + At,
_ (1) (1), (1) (2)
= V. rlA.t+£ if Vi >0, Vi >0 and a
type 1 arrival in t * t + At,
= 0 if Xt(l)“ 0 and no type 1
arrival in t ¥ t + At,
here 1(1) stands for the required service time of a type 1
arrival.

(1)

This numeration of the possible relations between Visht

and Xt(l) as given in (2.1) is not exhaustive, but from the
ones given in (2.1) the reader can easily complete the list.
: (2) (2)
Analogous relations hold between Visat and Ve .
We shall study the expression
(1) (2)
-S4V -s,V
(2.2) Efe 1=t 2=t [Xo(1)= v(lz XO(2)= v(?)},
£ >0, v\ >0,
which exists for
; =
(2.3) Re s, 2 0, Re S, 0.

For the sake of notation we shall in the following

DL @ @ @)

suppress the conditioning event v Y
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Obviously, we have for Re s, 2 0, Re s, =0,

1
(1) (2)
-S.V -S .,V
(2.4) E{e ITTFAT TZ2TTHAT,
(1) (2)
-8,V -5,V
- £{e 1--t+At 2_t+At[(Xt(1)>'Oth(2)>'0)
+(Xt(1)>°’it(2)= o)
1) _ (2)
+yv, =0,v. " 7>0)
(1) _ (2) _
(v, =0,v, = 0)1}.

Consider the four terms in the righthand side of (2.4)

separately. Because the process {Xt(l)a t(2)

continuous time parameter Markov process with state space

[0,2)x[0,») it follows from (2.1) for At+ 0 and neglecting

terms of o(At) that

(1 (2)
"5 ¥ieatTSY

(2.5) E{e 2_t+At(Xt(1)>0’y_t(2)>0)}

D) (2)

-5, (v

R R R 2

—rzAt)

e (v, P >0y,

Zt
A1~ AlAt}{l- >\2At}

(1)
t

s t g (v Per aty

v
+Ele

1 -riAt)-s1

(1) (2)
Sy >0,y > 00 At {1 - h At

s cu, D (2) (2

Ve _PlAt)-SQ(xt

-r,At)=-s
+E{e 2 2

(1D (2>
v >0,y T > 003 at{1- A At)

'Slxt(l)‘szit(Z)

- He (v, > 0,5, >0 1 x

v :t>0} is a

291

>0)}
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x{1+[rls +r

1 259" Al(l— 81(81))— Az(l— 82(52))]At},

where

(2.6) B.(s):= [ e ®%aB,(t) , Res >0.
i 0 i
It will always be assumed that for i = 1,2,

(2.7) Bi(0+) = 0, B.:=

i td Bi(t) < o,

o 8

and that Bi(.) is not a lattice distribution.

Further, ey (1)-5 y (2)
1I—t+At 2—t+At(V (1)_ O,V (2)>O)}

(2.8) Efe Vi vy

(2)—r2*At)

(Ve

-sz(xt

=E{e W0,y 2> 00

A1- AlAt}{l— szt}

(2)

*
t -r, At)

-s, (v
2 Y (v

(1), (2)
+8,(s,) Ele S,y >0

AlAt{i— AzAt}

(2) *
-s, (v -r, At)
+B,(s,) Efe 2 ¢ 2 (zt(i): O’Xt(2)>>0)}

.AzAt{l- AlAt}

=S,V (2)
Cre P Do,y (D0

*
A1+ [r2 S,- Ai(l— 81(51))_ Az(i- 82(32))]At},

Loy (g, (2
(2.9) Efe 1-t+At 2—‘t+At(v

-t

(2) _

(1):>0’Xt =0} =
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(1)
-5,V (2)
1—t (v (1)>0’¥t = 0))

= Efe t

*
AL+ Iry sy - 2, (1-8,(s)) = A, (1-8,(5,))18t],

(1) (2)
-5,V ~s,V
(2.10) Ele 1—t+At 2—t+At(V (1)

-t

= O’Xt(Z) = 0)}

1 (2)

- (
By, t

= 0,v, "% = 0)H1- D (1-8,(5,))

+ Xz(l—Bz(sz))]At}.

By noting that

(Xt(l) >0) = 1 - (_V_t(i) a 0), i=1,2,...,

it is readily proved by inserting (2.5),(2.8),...,(2.10),

into (2.%) and then letting At¢ 0 that

(1 (2)
d c T8q¥y TSV
(2.11) It Ede }
= {rlsl- )\1(1-61(51)) + T8, A2(1-62(32))}
(1) (2)
-5,V -s,v
. E{e 1-t 2—t }
. ey (D
+{(r-1 - rl)sl- r252} E{e 1=t (xt(2)= 0)}
o, @
* v
+{(r, -r,)s,-r;s,} Efe 2=t (xt(1)= 0)}
_{(Pl*_ rl)sl+ (r2*— rz)sz} E{(xt(i) = O,Xt(z) = 0)},

for t 2 0, Re Sy 2 0, Re S, 2 0. The initialcondition for

the differential equation (2.11) reads

‘Slit(l)'szit(z) -siv(l)-s2v(2)
(2.12) Ele Hioge=e

Resl>O,Re52>0.
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Put for i = 1,2, cf.(1.1),
., ¥
(2.13) p.1= ?i— =1,
then without restricting the generality of the discussion

it may and will be assumed that
(2.14) r;@1, im1,2,

actually this implies a rescaling of the distributions Bi(')'

2 .
(1)3Y_£ ),‘c> 0} possesses a stationary

If the process {v,
distribution, then by introducing the stochastic variables
Vs Yo with joint distribution this stationary distribution,

it is seen with

"81¥178,Y,
},

(2.15) W(sl,sz):= E{e Re Sy 2 0, Re s, 20,
¥g:= E{(y,=0,v,= 0},
Lo 52Yp
‘Pl(sz):= Efe (x1=0)}, Re s, 20,
-5,V
¥ (s ):= E{e 1_1(32= 0)}, Re s, 20,

that W(sl,sz) should satisfy for Re Y Z 0, Re s, 2 0:

1-81(81) 1-82(82)
(2.16) {al_“-EI___— - s, +a, __—3;—___- SZ} ¥(sy,8,)

= —{(p1-1)51+ (pz—l)sz}vo
+{(p1-1)sl- sz}Wz(s1)+ {(02-1)32- sl}Wl(sz),

where

(2.17) aji= AB; >0, 1= 1,2,

From (2.15) it is seen that



1.3.2.

(2.18) i.
tinuous in Re s

with s, and s

A coupled processor model 295

¥(s,,s,) should be regular in Re Sq > 0, con-

2 0 for fixed s, with Re s 2 (03 similarly

2

interchanged;

1 2
ii, ¥,(s,) should be regular for Re s, >0, con-
tinuous for Re s, 2 0, analogously for Wz(sl);
(2.19) ¥(0,0) = 1.
Taking s, B 0 in (2.16), dividing the resulting ex-

1

pression by s,

and letting then s

+ 0, (similarly with s

2 1

and s, interchanged) leads with (2.19) to

(2.20)

—{‘Pl(o) - ‘1/0} + (pl—l){WQ(o) -y

The linear
-1

p1 + p2 = 1

(2.21) N
P1

Further if

(2.22) 1
Py .

then

(2.23) Ly,
P1
1
—{¥
92{ 2

Wwhere

(2.24) b1:=
b2:=

(p,=1){¥,(0) = ¥} - {¥,(0) - ¥} B ¥, - (1-a,),

O} = ¥y - (1-a1).

equations (2.20) should be dependent if

and this yields

L1 s oy =a1- 22
Py P Po
RS
Py

1 1 1,

Q) - = L f1- -2 ¥ - (1-b,)
(@)= ¥} = pli-gmm ) Yy s
1 1 1,71
(0) -¥4} = —{1-—=- =} {WO-(l—bl)},

P1Py P1 Po
a,
1 2
1- = -y
al( p2)+ pz,
a4

1
—+ 1- =),
5, az( pl)
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Remark 2.1 Suppose a
(2)

p, <1 and p, = 1, then obviously the
process{y_t , t 20} is the virtual waiting time process
of the M/G/1 queueing model and it possesses a unique sta-

tionary distribution and in this case a, is the stationary

2
probability that server 2 is busy. Consequently
a S (1-a,) El
2 Bl 2 Bl

is then the average service rate which can be provided by

server 1, this rate should be larger than Al in order that

the process {zt(l)

This leads to the condition b2 <1.

111.3.2.

,t= 0} can have a stationary distribution.
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I11.3.3. The kernel

The kernel is defined by, cf.(2.16),

1-8,(s,) 1-8,(s,)
- 171 2°72
(3.1) Z(Sl,Sz)-— alT- Si+ a2_§'2—_—_ 52,

For arbitrary w define

1—81(8)
.= - =
(3.2) ¢1(s,w). a, ——izf—— s + w, Re s 0,
1—32(8)
¢2(s,w):= a, ——EE——— -5 - W, Re s 2 0,
so that
(3.3) Z(sl,sz) = ¢f81’W) + ¢2(52,w).

From [22] p. 548 it follows that

(3.4) i. ¢1(s,w) has for Re w 2 0, w ¥ 0 in Re s =0

exactly one zero 61(w), its multiplicity is one;

ii. ¢1(s,0) has in Re s 2 0:
if a, < 1 exactly one zero 61(0) = 0, multiplicity 1,
wa, =1 " "o o800 =0, " 2,
if a; > 1 exactly two zeros 6,(0) and 81(0) both with
multiplicity one and

§,(0) >0, €,(0) = 03

iii. similarly for ¢2(s,w) but with Re w 2 0
replaced by Re w < 03
(3.5) Gl(w) is regular in Re w > 0, continuous in Re w 2 0,

Gz(w) is regular in Re w < 0, continuous in Re w < 0,
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The case a1>1.and/or’a2>j.needssome further investigation.

For Re s & 0 we have

3 ® t -5t
(3.6) Ty ¢1(s,w) | a s T e d Bl(t) - 1.
0 "1
It is readily seen that %5 ¢1(s,w) has for real s =2 0:
(3.7) no zero if ay <1,
only one zero, viz. s, & 0, if a; = 1,
n n n 1 1"
viz. s >0, a, > 1.

Suppose that a, <1 and a, > 1 then for s 2 0 the

functions ¢,(s,w) + w and ¢, (s,w) - w have graphs as drawn in
2 1

figure 10.
“wol
L I R
P
§.(0)=0 % o i §.(0)
= = .l 4
2 ' 5 €,(0)=0 e 0w S, Gll(w) E—
|
w————
a2<1 ¢2(s,w +W a1>1 ¢1(s,w)-w

Figure 10

For this case it is readily seen that Z(sl,sz) in 54 >0,
52> 0 can have two sets of zeros, viz. those indicated by
|
(P1,Q2) and (P, ,Qz).

Obviously if a, 2 1 then the point
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1-8.(s,)
1°70
(3.8) Won sO—al _81—'—,

is a second order branch point of the analytic continuation of

Gl(w), Re w 2 0 into Re w < 0.

Remark 3.1 Because the existence of a stationary distribution
requires that at least one of the ay is less than one there

will be no need to consider the case that a; =1, i=1,2.

For a,

of ¢1(s,w) in [0,61(0)] will be indicated by el(w) and Bl(w) and

<1, ay 21 and w G[WO,O] the two zeros (cf. (3.4))

such that
(3.9) gl(w) maps [wO,O] onto [0,50],
§,(w) maps [w;,0] onto [SOs%(Dﬂ;

note that these mappings are one-to-cne and that for w€[w0,01:

(3.10) 0 < Gz(w), 0 < el(w) < Gl(w),

6,(0) = 0, 08 e (0) < gtwy) B d,(wy) < 61(0).

1

For Re w = 0, (51,52) = (él(w),éz(w)) is a zero of the
kernel. This leads to an expression (which will be stated in
section 4) involving W2(61(w)) and Wl(dz(w)). Wl(.) and
¥,0.) will be determined by using a Wiener-Hopf decomposition.
We now make preparations for this.

Denote by Ei(v) the residual busy period of an M/G/1
queueing system with arrival rate Ai’ service time distribution
Bi(.) and initial workload v > 0. Then, cf.[22]p.548,

-wgl(v) —v61(w)

(3.11) E{e } = e for Rew =0,
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wp, (V) -vé, (w)
Ef{e 2 } = e 2 for Re w < 0.
Further with B3 the busy period started by an arriving

customer who meets an empty system, cf.(3.2),

-wp o -wp, (v) o =y, (w)
(3.12) E{fe '} = /Ele ' }aB(V) : /e T aBy(v)
a0 0
1

= B, (8,(w)) B 1+ (w- Gl(w))kl' for Re w # 0,

WPy -1

E{e } o= 82(62(w)) g1+ (-w~ 62(w)))\2 for Re w < 0.
From

. 1- 81(61(W)) - w

AN R O
1 6161 W 61 W
. 1- 82(52(W)) g

-
2 82523w5 32(w5’
1- B:(3)
and by noting that ——Egé—i—is the Laplace-Stieltjes transform
i

of a probability distribution with support (0,») it is readily

seen that

; W
(3.13) }1m G0 - 1,

,w’+m 1
Re w>0

lim rvé;’—y = -1,

Iw|+w 2
Re w<0

For the stochastic variables v, and v, introduced above,

1
cf.(2.15), define

o

_[;-Pr{p_l(vi)<p1} dler{g1<v1,z2= 0}, p, >0,

(3.14) Dz(pl):

D, (py): é_Pr{22<v2)<p2} dVQPr{x2<v2,xi=0}, p,~> 0.
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It follows by using Fubini's theorem that for Re w 2 0, cf.(3.11),

®  -wp, i —le(vl)
(3.15) é_e db, (p,) ® éE{e }dv1 Pr{x1<v1,x2= o}
oo -v151(w) ~
= é’_e dvl Priv, <v,,v,= 0} = ¥, (8, (),
(3.186) é_e le(pz) -] W1(62(W)) for Re w < 0.

Consequently (cf. also (2.18) and (3.5)),

(3.17) ¥,(8,(w)) is regular for Re w > 0, continuous for
Re w = 0,
¥,(8,(w)) is regular for Re w < 0, continuous for

Re w < 0.

From (2.15), (3.13), cf. also (3.15) and (3.16), it is seen that

(3.18) lim ‘Pz(él(w)) = ‘1’0,
|w|+oo
Re w>0
lim \P1(62(w)) = ‘PO.
[w |+

Re w<0
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11.3.4. The functional equation, continuation

For Re w = 0, (51,32) ] (Gl(w), dz(w)), with Sl(w)
and Gz(w) as defined in (3.4) i and ii, is a zero of the
kernel Z(sl,sz) and hence it follows from (2.16) that for

Re w = 0:

(+.1) {(pl-l)dl(w)- Gz(w)}WQ(Gl(w))+ {(pz—l)éz(w)- Gl(w)}

. Wl(dz(w)) = {(pl—l)al(w)+ (p2-1)62(w)}W0.

The relation (4.1) is equivalent with, for Re w = O0:

(4.2) [(pl—l)dl(w)- 62(w)][W2(61(w))- W0]+ [(02-1)62(w)
=8 ) IY, (8, (w)) - ¥l = 18, (w)+ 6, (w1,

It is seen that the conditions (3.17), (3.18) and (4.2) for-
mulate a Riemann-Hilbert type boundary value problem for the
arc Re w B 0, actuallyit is a so-called Wiener-Hopf problem,

cf.[28].

Remark 4.1 In deriving (4.2) only the zeros 61(w), 62(w) with
Re w 8 0 have been used and this does not guarantee that a
solution of (3.17), (3.18) and (4.2) will determine the joint

distribution of v, and v, completely, as it will be seen below,

2

cf. sections 5.1ii and 6.ii.
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1,1 _
111.3.5. The casep1 +p2 1

In this section we shall consider the case

_1_.4._1_91_

(5.1)
P Py

Because of (5.1) the functional relation (4.2) may be rewritten

as: for Re w s 0

1 1 -
(5.2) BZ{wZ(dl(W))_ WO} - B;{Wi(éz(w))— WO} = H(W)WO,

with WO given by (2.21) and

Gl(w)+ Gz(w)

(5.3) H(w):= 9151(W)' p262(w7

W, W
1 %(w) 62(w5
=pp , Re w B 0,
172 W -0
+
p151(w5 p262(w)

From (3.2) and (3.4) it follows that for Re w @ 0:

ay 1- Bl(Sl(w))

(5.4) W + W = 1-ot e r—
pléi(w) 0262(W) CH 8161 W

a, 1-8,(8, )

TR Wy
Py Bpdylw
Because {1- Bi(s)}/Bis is the Laplace-Stieltjes transform of a
probability distribution with support (0,w) it follows from
(3.2) and (3.4) that for Re w & 0:

1-8;(8,(w))

so that, by noting (2.21) with ¥, > 0, it is seen that H(w) is

0
well defined for Re w m 0 and that it possesses a derivative,
Hence it satisfies the HOlder condition on Re w = 0, cf.

section I.1.3.
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By applying the Plemelj-Sokhotski formulas, cf. section
I.1.6, it is readily seen that the functional equation (5.2)
together with the conditions (3.17) and (3.18) possesses a

unique solution, which is given by

(5.6) :—2{w2(51<w))- ¥} = - % }{egon(m | ke w >0,
i 4
= 1 HY, - o £e£=OH(£) =,
Re w = 0,
(5.7) Dy (oG- d s -l s HE) A5, Re w <0
p1 1°72 0 2T Re£=0 -W ?
=-%H(w)‘l’0-—w—1$i- rooHE &
Re&=
Rew = 0,
with
(5.8) WO = 1- ;l - ;g.
1 2

In order to continue with the analysis of the relation
(2.16) for the present case, cf.(5.1), we have to distinguish

between the cases

<1, a, <1 and a

a 1

1 ? =1, a, <1,

because the zeros of Z(S1’S2) in Re s, 2 0, Re s, 2 0, have

1 2
different properties in these cases, cf. section 3 and remark
4.1,
i, First consider the case
(5.9) a, <1, a, <1.

In this case it is seen from (3.2) and (3.4) that
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(5.10) 51(0) =0, 62(0) a 0,
d o1 d .1
a8 (Wl = e av %2V lveo = T-a,’
so that from (5.3),
a, a
(5.11)  H(0) = —= 1-2 |
p1P2 al a2
4~ —- %
P1 Py
Because of (3.5) the mapping
(5.12) W+ s, = 62(w) of Re w <€ 0 into Re s, 20,
1- 82(82)
has a unique inverse a, —F—— - 8, SO that 62(0) =0

implies that the relation (5.7) determines Wl(s2), Re s, =20

uniquely; the analogous conclusion holds for Wz(sl), Re =h 20,
ii. Next
(5.13) a1 >1, a, <1,
In this case
(5.14) 61(0) >0, 62(0) a0,

and as in i. above it is seen that (5.7) again determines

¥,(s,), Re s, = 0 uniquely. Also (5.6) determines W2(sl)

2
uniquely but only for Re ch = 61(0).

To determine Wz(sl) for 0 € Re sy < 61(0) we need the
fact that (El(w), 62(w))and (61(w), 62(w)) for wiE[wD,O]
are also zeros of the kernel Z(si,s2), Re s4 2 0, Re s, >0,
cf. section 3. This leads to, for wff[wO,O], cf.(5.2),

1 1 _
(5.15) B;[Wz(el(w))-wol = EI[Wl(Gz(w)) Wol + K(w)WO,
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1 1 _
(5.186) B;[w2(61(w))— WOJ = EI[Wl(dz(w)) WO] + HGY,,
where for we [wO,O]:

61(W)+ 8, (w)
(5.17) H(w):=

plngw)- 0262(w)
e (w)+ &8, (w)
K(w):= 1 2

plsl(w)- p262(w)
By using (5.7) it is seen that the righthand sides of (5.15)
and (5.16) are known, so the lefthand sides are known. Con-
sequently, it is seen from (3.9) that W2(s) forse[O,sO] is
determined by (5.7) and (5.15), for s¢& [80,51(0>] by (5.7)
and (5.16) and for s =2 61(0) by (5.6); hence it is by analytic
continuation uniquely determined for Re s 2 0. Therefore W(sl,s2)
follows uniquely from (2.16).

So it has been shown that if (5.1) holds then (2.16)
together with the conditions (2.18) and (2.19) has a uniquely

determined solution with WO >0 if
(5.18) 61+—,<1,

(note the case a, @ 1, a, < 1 has not been discussed explicitly,
but it is readily seen that the statement is also correct for

this case).

Because (5.18) is equivalent with 0 < WO <1, eof.(2.21)

and because for the process {Xt(i),zt(z)

,t 2 0} the empty state
is a regenerative state 1t follows that Zf (5.1) holds then
(5.18) 73 a necessary and sufficient condition for the existence
of a unique stationary distribution.

If a, <1, a, < 1 then Wl(éz(w)) and Wz(dl(w)) are given
by (5.6) and (5.7), and these relations together with (2.16)

yield for Re u > 0, Re v < 0:



I11.3.5. A coupled processor model 307

6,Cud+ 8,(v)

(5.19) W(Gl(u), 62(v))= WO
u-v
Y0 dg
H{p8,(u) = py8, (W)} 5o }{ei:ol—i(i)( TR

whereas for Re u= 0, Re v = 0, u ¥ v,

61(u) + 52(V)
(5.20) ‘{’(Gl(u) ,Gz(v)) a TR T E— \l’O
. pldl(u)— pzﬁz(v) ¥

0 1 1
— [5== f H(&)dg (7=~ 7=}
u=- v 271 Ref=0 E-u E-v

- %WO{H(u) + Hw) M,

Ifa1>1,a

and (5.16) determine W1(s) and W2(s) for Re s 2 0, W(s1’32)’

? < 1 then the relations (5.8), (5.7), (5.15)

Re s, 2 0, Re s, # 0 follows again from (2.16).
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113.6. Thecased +L1 #1
L)
In this section it will be assumed that
(6.1) — + — % 1,

Rewrite (4.2) for Re w B 0 as

1 W
(6.2) [(1-Q—1)W -—(——)-][ {"1’2(5 (W))-‘y}
¥ 1
p4P 11
172 1 6.7 2,
1
- Yo S ] =0.
PiPy g L. L
P P2

From (3.2) it follows that for Re w = 0:
- By (6 (w))
1 1% 1 1 - o1 _1
(6:3) -5y T 5, 5, - 1T )_‘3‘787—5“"

a, 1- 62(62(w))

a, 1- 81(61(w))

1 1 W 1
- 1- = — ey
-5, oyt 5, 3,60 5, B1oi(w
1-8, (8, ()
_ 202
B AR PPy OB

From (3.11) and (5.5) it is readily seen by using Fubini's

theorem that

1-B,(8, (w)) 0 -y (t) t
144 Bq 1 _
(6.4) = E{S e — f{1- 8B, (1)}dr}
?
B &, () t=0 % 81 0 1

Re w = 0,
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1-8,(8,(w)) ©  wp,(t) t
(6.5) _B_g_(%fn E{f e 2 Bi f{i B (T)}dT}
272 t=0 0

Re w < 0.

Take w B -iu, u real then it follows, by noting that
p,(t) >0, p,(t) > 0 with probability one for every t >0, that
the lefthand sides of (6.4) and (6.5) are characteristic func-
tions of probability distributions with supports contained in
(0,»] and [-*,0) respectively. These distributions may be de-
fective (viz. if Gi(0)3>0) and they are continuous.

Because of (2.13) and (2.24) it follows that two (indepen-

dent) stochastic variables x, and x, can be introduced such

1 =2
that for Re w = 0:
~Wx 1- B, (8, (w))
=1 1 1 171
(6.6) E{e } == [a (1——-)—(1-—‘
b1 1 Py 6151 W
a, 1-B8,(8,(w))
L2 ] 2°°2 1,
P2 28,0
-wWx 1- B (6 (w)) B, (8,(w))
(6.7) E{e _2} = gL [51 ——?—3—7—7———+ a (4-1;)——E—§—T—Y——
2 171

Obviously the distribution of %, and that of X, are
continuous and have support in [-w,»].

From now on it will be assumed that

(6.8) b, <1, b, <1,

It follows that (6.2) may be rewritten as, for Re w = 0:

¥

1 1 0 1
(6.9) T {¥, (8, (W) - ¥y} 5255 1_L_L]
1—b1E{e } Py Py
v
- 1 1 _ _ o 1 ]
. =5, s {8,000 - ¥} = oo —
1-b,E{e ~°} 1- ==~
? pl pz

To analyze (6.9) further we introduce the sequences,
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(6.10) gn(l), ne 1,2...., im1,2,

of stochastic variables with independent increments and with
characteristic functions, for Re w B 0:
(i)

-wgn —Wl('. n
(6.11) Ele } = [E{e 1)1 , ne 1,2,...

Put, note (6.8),

© bn -Wo 1 .
(5.12) PGz X L oE(e 7 (0, <o)}, Re w <0,
- bn
o, =32 L e a0,
n=1
R, (w):= Z — E{e T (o >0)}, Rew = 0 -
i n=1 n -n

Because X5 has a continuous distribution,

(6.13) Q; = 0.

By noting that
-,
(6.14) 1-b; E{e } # 0, Re w = 0,
-wx;
log{1- bi E{e 11 o - Pi(w)- Ri(w), Rew = 0,

it follows from (6.9) that for Re w & 0:

Ryw) = Ry(w) 1 ¥,
(6.15) e [9—2{‘i’2(61(w))— ‘1’0}— 1_L_.1_ ‘31"2]
Pl Py
-p W)+ B (W) Y
_ 1 2 1 _ _ 1 0
- e [pl{Wl(Sz(w)) WO} 1. L p1p2]
P1 Py

From (3.17) and (6.12) 1t is seen that the lefthand side
is regular for Re w > 0, continuous for Re w = 0, similarly

the righthand side of (6.15) is regular for Re w < 0, continuous
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for Re w < 0, note 0 < b, < 1. Consequently both sides of
(6.15) are each other's analytic continuations. From (3.18)
and (6.12) it is seen that both sides of (6.15) have

limits for |w|+ « with Re w > 0 and Re w < 0, respectively.
These limits are finite and nonzero so that by Liouville's

theorem both sides of (6.15) are constant, i.e.

¥ /(p,p4) ~R (W) + R, (w)
(6.16) Ly s, =¥ a2 172 ,pe t 2,
02 271 0 1__1__L
P1 Py
Re w =2 0,
¥ /(p,p,) P,(w) - P, (w)
(6.17) Ly s -y b= L 12 4 pet 2,
oy 172 0 1- FE
p 0
1 2 Re w < 0,

with D a constant.
A stationary distribution can only exist if at least one

of the a; < 1, so suppose

(6.18) a, < 1.

It then follows that 62(0) = 0 so that from (2.23), (6.14) and

(6.17),
P (0)- F_(0)
(6.19) De ! 277, 4 1?  (1-b,)
PP 1-=—- =
Pr1 Py
o L . -P,(0) - R,(0)
PPy g L _ 1 ’
so that
-P,(0) - R,(0)
(6.20) D= - L e ! z
P1P2 1- = - =
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Because for [w| + =, Re w > 0 the lefthand side of (6.16) tends
to zero, cf.(3.18), it follows that

-Pl(O)— R2(0)

(6.21) ¥, | e >0,
_Pl(O)'Rz(O)
1 1 e
(6.22) -P—;{‘PZ(Gi(W))- ‘!’0} o 5,5, ) —T T
P1 Py
—Rl(w)+ Rz(w)
ql-e }, Re w = 0,

-Pl(O)- RQ(O)

1 _ 1 e
(6.23) EI{Wl(Gz(w)) WO} z 5.5, P

Pl(w)— Pz(w)
f1-e b, Re w < 0,
As in section 5 we have here also to distinguish the

<1 and a, = 1.

cases a
1 1

i. a; <1, a, < 1. (the statement below (5.18) applies for a,=1)

In this case 61(0) a 0 and 62(0) g 0 and as in section 5
it is seen that the relations (6.22) and (6.23) determine Wl(s)

and Wz(s) for Re s 2 0 uniquely.

.. <
ii. ay 21, a, 1.

In this case we have, cf. (6.2), the two relations: for
w € [wO,O],

1 1

Wiy w 1w gl -
(6.24) [(1 91)52@) o, el(m][pz{\yz(sl(w)) ¥y}

g 1 ]
P1Pp - L L
1 P

+
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1, w 1 1
Y 1 .
P1Pyp g1 1 ’
P1 P2
(6.25)  [(1--- ST L m” ERAPICPICIRER Y
¥ 1 ]
PePy 4 L . L
1 P

1 w 1 1

¥y

P1Py 4 -

; 3;] = 0.

P1 P
Completely analogously with the discussion in section

5,11, it is seen that ‘5’1(8), Re s = 0, and ‘5’2(8) for

Re s € [0,50], Re s € [50,61(0)] and Re s > 61(0) are now

determined uniquely by therelations (6.22),..., (6.25).
Once ‘Yl(s) and ‘1‘2(3), Re s 2 0 are known W(sl,SQ),

Re s, 2 0, Re s, 2 0 follows from (2.16).

Consequently it has been shown above that if

a, <1, by <1, b, <1 and 242 49, ¢F.(2.13), then (2.16)
2 1 o1 Py

together with the conditions (2.18), (2.19) has a unique

solution with ¥. satisfying (6.21).

0
Hence for a, <1, b:1 <1, b2 < 1, andanalogously for

2
(1 (2) .5
ay <1, b, <1, b, < 1, the process {—Yt 2V ,t= 0} possesses

a unique stationary distribution. The construction of this

solution has been described above.
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Remark 6.1 In the analysis of the Wiener-Hopf equation we have
used a factorisation based on (6.12). In this respect it should

be noted that the relevant factorisation may also be expressed

by
-1 & 1 3
(6.26) P, (w) = = [ —=log{~ (1——) t 5o 1,
2 Zni Regz0E¥ ZZS Py 51z€5

Re w <0,

1 d& g
R (w) = == [ —logl{~(1- ——) 1,
2 271 ReE=0&™W ( pl 13 £)
Re w > 0,

the integrals are well defined because of (6.7).
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II1.3.7. The ergodicity conditions

In the previous section there were stated sufficient con-
ditions for the existence of a stationary distribution of the
workloads at both queues. Although a detailed discussion of the
necessary and sufficient conditions for ergodicity is outside the
scope of the present study, these conditions and their inter-
pretation are interesting enough to justify a short consideration.

Hereto introduce

1
2y

(7.1) Diz = + 1 _ g,
Pq

In the present chapter we are only concerned with the case
pyq =1, ), 2 1, This still leaves open the three possibilities
D<0, DB 0, D>0. The sign of D is connected to the relative
positions of the lines b1 = 1 and b2 B 1 with respect to each
other in the (al,az)— plane. Both lines go through the point
(al,az) g (1,1), and they coincide if D m 0 (cf.(2.2u4);
see figures 1la, 11b).

Below (5.18) it was observed that if D m 0, b1(=b2) <1 is
a necessary and sufficient condition for the existence of a
unique stationary joint distribution of the workloads. For the
case D # 0 it has been remarked in section 6 that, if a, <1,
(at least one of the a; must be less than one for the system

to be ergodic) then b1 <1, b, <1 is a suffietent condition

2
for a unique stationary distribution to exist.
The following intuitive argument leads to a necessary

condition. Again assume that ay < 1. Since p, > 1, the workload

process at server 1 is obviously ergodic. Suppose that the work-

load process at server 2 is not ergodic, i.e.



[+
~
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Pr{y,;=0} = 0.
*
Then server 1 will never work with service intensity Py s and

Pr{11=0} = 1-ay,

and hence for the average service rate of server 2 holds:

1
(7.2) a, EE + (1-a 9+

p
1)i<x
By

Inequality (7.2) is equivalent with b1 2 1, This reasoning

implies that, in case a, < 1, b, <1 is a necessary condition for

1 1
the existence of a stationary virtual waiting time distribution

at server 2. Similarly, if a, <1, b2 < 1 is a necessary condition.

Next eonsider the sufficient conditions for both D > 0 and

DO, IfD>0 it is easily seen that for a, <1, b, <1 is

1 2

implied by b, <1, while for a, <1, by, <1 is implied by b, <1

1
(cf.fig. 11a). Hence for D > 0 the necessary and sufficient con-

ditions coincide into the condition (al,az) € A, the doubly-lined
region of fig.lla. If D < 0, there is a gap between the
necessary condition derived above, and the sufficient conditions

b1 <1, b, < 1, which for a, < 1 reduce to b, <1, and for

2

a, <1 tob, <1. See fig. 11b.

1

Figure 1la - The case D > 0 Figure 11b - The case D < 0
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Remark 7.1 A few special cases allow for considerable simpli-
fications. See e.g. remark 2.1, and see the following example.

In the symmetric case X, = Ao Bl(') = Bz(.) and

1

Py =Py it follows from (2.24) that, with a; = a,,

and a, < 1 is a necessary and sufficient condition. In fact much

more can be said about this system. Simple calculations, starting
from (2.16), lead to the following.

i. Substitute s, = s, @ s, then differentiate w.r.t. s:

1 2
_ 1 (1) - .
(7.3) E[Xl"‘X?] —2—(-1—_—a—1)[>\182 +(2-p1) E[Xi(xz—o)]],
ii. Substitute s, = 0, then s, @ 0:
Pr{gln 0} 1-p1
(7.4) 1 = -3, A PP{X1>O’X2=O}5
1
iii. Substitute s, @ 0, then differentiate w.r.t. Sq ¢
)\182(1) )\182(1)
(7.5) E{v,} = ———— Prly =0} + —5—0 (1-0,)
2(1—a1) 2(1—a1)
'Pr{Y1>U’X2= 0}
1—p1
— - F
+ T-a, [31(x2n0)].

Combining (7.3),...,(7.5) and noting that due to the

symmetry E{-Yl} a E{Xz},the following simple relation is obtained:
>\182(1) .
(7.6) E{Xl} = E{v,} = 5 1-a, p—l—.

Observe that if py =P, 8 2 (D=0), E[X1+X2] is for the

symmetric case the mean workload in an ordinary M/G/1 queue;
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in fact it can be shown that the distribution of Vit oy, is in
this special case identical to the workload distribution of
an M/G/1 queue with arrival rate kl and service time distri-

bution Bl(')'
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II1.4. THE M/G/2 QUEUEING MODEL

111.4.1. Introduction

Cne of the more difficult problems in Queuveing Theory is
the analysis of the many server queue. Far reaching results
have been obtained by Pollaczek [29]. His analysis actually
provides means to calculate waiting time quantities, but the
effort needed to obtain numerical results is considerable.

Recent work of de Smit [30] has led to substantial improvements;
he formulates the essential functional equatior as a simul-
taneous set of Wiener-Hopf equations.

Pollaczek's starting point is the sequence of the ‘actual
waiting times of sucessively arriving customers. The question
ariseswhether an analysis of the workloads at the various servers
would not lead to a more simple discussion of the problem at
least for the many server system with Poisgsonian arrival stream.

In the present section such an approach will be discussed
for the M/G/2 queueing system for the case that the service
time distribution is a mixture of m negative exponential
distributions. Actually it turns out that indeed a rather simple
analysis is possible, its results are very suitable for
numerical evaluation. The assumption made concerning the
character of the service time distribution is not essential,
the analysis can be easily extended *to the case where the
service time distribution has a rational Laplace-Stieltjes
transform+. The M/G/2 model has also been investigated by

Hokstad [ 34] using the "supplementary variable" technique,

the state space of the Markov process being described by the

+ S.J. de Klein, Master Thesis, Univ. of Utrecht, 1981.
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number of customers present and the remaining service times of
the customers being served. This approach is of much interest,
but unfortunately the essential analytical problem is not
solved in [34]. Actually the "phase type" method is used to
guess the form of the solution for the case that the service
time distribution has a rational Laplace-Stieltjes transform;
moreover an essential question concerning the location of the
zeros of the main determinant of an important set of linear
equations remains unsolved.

For further related literature see Smith [42] and in partic-
ular the work done by Neuts [31] who has developed a numerical
analysis for models with phase type service and interarrival
distributions.

The analysis of the M/G/2 queueing model to be presented
here, cf. also [35], leads to a type of functional equation
which has many features in common with the functional relations
studied in the preceding chapters, this being the main reason

for incorporating this M/G/2 model in the present monograph.



11.4.2. The M/G/2 queueing model 321

I11.4.2. The functional equation
By o we shall denote the average interarrival time of the

arrival process. B(.) stands for the service time distribution and

(2.1) t dB(t), a:=z B/a, B :=1.

o]
1l
o 8

It is assumed that B(s), the Laplace-Stieltjes transform of B(.),

is a rational function of the following type: for Re s =2 0,

© _ m-1 r ¢
(2.2) B(s):= [ e StaB(t) = X n < w,
0 k=0 570k
m-1 Pks
y(s) := {1-B(s)}/B = - z st
k=0 k
with
(2.3) 0 >f:[J > L4 > ... >cm_1>-°°; -1 < r <0y k= 0,...,m1,
m-1 m~1 Pk
Er’kﬂ—l, z -C*—UB=1.
k=0 k=0 k

Hence B(.) is a mixture of negative exponential distributions. The

assumption that the ¢, are all different is not essential for the

k

following analysis.

Denote by Xl(f) and v,(t) the workload at counter one and two

at time t. We shall consider the "first come, first served"
discipline, so that an arriving customer will be served ultimately
by that counter, which has at the moment of his arrival the
smaller workload. Since the service times are independent,
identically distributed variables it is seen that the process
{Xl(t)’XQ(t)’ t > 0} is a Markov process. For this process we

-5 Vl(t)_SQXQ(t)}

1=
the number of arrivals in (t, t + At] so that for At+0,

shall consider the functional E{e

Denote by VAt

(2.4) Priv,, = i} = 1 - At/a + oCAt) for j = 0,

= At/a + o(At) for j 1,

PP{XAt > 1} = o(At).



322 Analysis of various queueing models 111.4.2,

+
For v = 0 we have Xi(t+At) = [xi(t) - At] . Hence

At

-s. v, (t+At)~-s,v, (t+AL)
(2.5) Ele % =2 lvyp = 0}

-84V, (t)-s,v, (1)

= {1+(s +s,)At} Ele 1 (v (£) > 0,v,(t) > 0)}
—slgl(t)
+ {1+s,At} E{e (v, (t) > 0,v, (t) = 0)}
1 -1 2
-s2x2(t)

+

{1+32At} E{e (Xl(t) = OaXQ(t) > 0)}

+

E{(y (1) = 0,v,(t) = 0)}+ olat)

-5, v, (t)-s v, (t)
= {1+(s,+s,)0t} Efe 1= 22

-s, v, (t) =s,v, ()

ms bt Ele 11 (v, (t) = 0)} - s At Efe (v, (£) = 0)}+o(at).

For v = 1 we have

At

vy (teat) = [y (0)-at1" + 1 if v (1) > v (1),
= [y, 0-atl? if v, (1) <y, (1),
= T with prob. % if xl(t) = Xz(t) = 0,
= 0 with prob. } if Xl(t) z Xz(t) = 0,

where 1 is the required service time of the arriving customer
in (t, t+At]l. Since 1 is independent of Xl(t)9X2(t) and since its

distribution is absolutely continuous (cf. (2.2)) it follows that
(2.8) Priv,(t) = v, (t) >0} = 0.
Hence for At+Y0,

-5, Vv, (t+At) -5, v, (t+At)
(2.7) E{e 171 2=2
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=]

v, (t+At)-s, v, (t+At)
= E{e -1 2—2

* [y, () > v, (£)) + (g,(t) <y ()

v (t) = v (1) = Oy, = 1}

(t)
(v, (1) > v, (£}

=S

vi(t)-s
= B(s,) Efle

1 2Y,

-s, v, (t)-s v, (t)
+ B(s,) Ele 1 272wyt < v, (e}

0} + o(at).

+ %{8(51) + 6(52)} Pr{xi(t) = v, (1)

From

-s, v, (t+At)-s, v, (t+At)
E{e 1-1 2=2

—sixl(t+At)—32X2(t+At) . ]
E{e |Vpe = 31 Priv,. = i),

"
"~ g

j=0
and from (2.4),...,(2.7) it follows readily that for t > 0, and
Re sy 2 0, Re 5, 20,

3 =5,V (t)=s,v, (%)

(2.8) T‘EE{e

=54V, (t)-s,v, (1)
{s +s,-ay(s )} Efe (v, (£) > v, (t))}

-slzl(t)—s

vt
+ {sl+52-ay(s2)} E{e

2
(v,(t) <y (£}
-s. v, (1) -s

v, {(t)
T, s ) - ) Ele 27

2 (v, (t) = 0)}

=Py E{e
+{s +s,-3ay(s )-3ay(s )} Priy, (1) = v,(t) = O}.
From the results obtained in [32] it may be shown that whenever

a < 2, which will be always assumed, then the process

{Xl(t),zz(t), t > 0} possesses a unique stationary distribution.
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Let v, and XQbetwostochastic variables with joint distribution this
T81¥1750Y

stationary distribution, so that Efe } satisfies (2.8)
with its lefthand side replaced by zero. Define for Re sy 20,

Re Sy =0,

(2.9) Tyi= Priv,=0, v,=0},
m -5,V, =5,V
+ .M 1¥175,Y)
H (81,52).- -t E{e (X1>X2)}’
m S,V,~8,V
- .. _O 1-1 "2=2
H (Sl,sz).— - * E{e (v1 < XZ)},

it then follows from (2.8) with its lefthand side replaced by

zero that for Re 54 > 0, Re s, 2 0:

(2.10) {si+s2-ay(sl)} H_(sl,s2)+{sl+s2-ay(sz)} H+(sl,s2)

S,V -8,V

s, Ble Py, = 0} - 5, Ble Ty, = 0} = 0,

TS1 Z1789Y)
The relation (2.10) is the functional equation for E{e },

its solution will be discussed in the next section.

For future reference we derive from (2.10) the following relations.

Taking s, =8, 8s in (2.10) leads to
-s(v, +v,) -3 Vv
(2.1 {1 -5 X8y pre TPy mrfe Ty, = 0}, Re s > 0.

Hence from (2.11) for s¢0:

(2.12) Pri{v, = 0} = Pr{v, = 0} = }(2 - a).
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Taking in (2.10) s, = s, s, = 0, yields for Re s = 0,

(2.13)  Ble 1 - a¥22 [0 4 pre Iy, <v )l - 32 - a) = 0,
s 2 -1 -2

from which it follows by taking s = 0,

(2.14) Priv, < vyl = Pr'{x2 <X1} =3 -y
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11.4.3. The solution of the functional equation
In this section we shall solve the relation (2.10) by means of

a Wiener-Hopf decomposition. From (2.9) we have for Re(01+1) = 0,

Re(02-t) 2 0,

(3.1) H-(01+T,02—T) = 2§+E e 7141 02&2_T(v1—22)(x1 < zz)},
H+(01+T,02—T) = ;§+E{e °1¥17%2% T(Xi-XQ)(Xl > v2)}

Consequently for fixed g5 Oy with Re o, > 0, Re g, =0

(3.2) H—(c1+r,02-r) ig regular in 1 for Re 1 < 0,

is continuous in 1 for Re 1 < 0,

H+(01+T,G -1) is regular in t for Re 7 > 0,

2

is continuous in 1t for Re T =2 0.

Put,cf. (2.2),
m~-1

(3.3) YQ(S):= kHo(s-r,k) s Yi(s):: y(s)Yz(s),

so that Yl(.) and Y2(-) are both polynomials of degree m and

Yl(S)

(3.4) Y(S) = m .
2

Define for Re(c1 + 1) =0, Re(o2 - 1) 20 and Re T B8 0,

P (o, +1,0,-1)
(3.5) 122

Y2(01+1)Y2(02-?):= o tay-ay(o +1)} B (o 41,0,-1)

-(0,-T)y,
- (o +1) Ele (v, = OO},
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+
P (o, +1,0,-1)
(3.6) 1o 2

—aY(oz—r)} H+(01+T,0 -7)

- [Hoy+o 2

?;?01+T)72(02-T) 2

-(g,+1)Vv
T, = o).

- (o,-1) E{e ?

Hence from (3.2) and (3.3) with oy and g, fixed and Re 9y =0,

Re 0, > 0 it is seen that P has the same property as H mentioned

2
in (3.2), and similarly for P and BY. From (2.10), (3.5) and (3.6)

it follows that for Re oy > 0, Re o, =0,

(3.7) P_(01+T,G -1t) @ P+(01+T,0 -t) for Re T = 0.

2 2

Define with Re o4 20, Re o

>0,

2

(3.8) P(0,+1,0,-T) :=P-(01+T,02'T) for Re 1 < 0,

2
:=P+(01+T,02-T) for Re T 2 0,

then it follows by analytic continuation that P(01+T,02'T) is for

fixed 0450, with Re o, 2 0, Re 02>Da. regular function in the
whole T-plane.

From (3.1) it is seen that

T
(3.9 |H*] - — for |1} » =, Jarg1 < %,
0 r
2 2

and consequently from (3.5) and (3.6),

[H7| = = for |1] @ », 5 <argt< 1},

2m+1

(3.10) [P ~ myl ] for |t| » =, |argT] < %,

2m+1

[P7] ~ myfrl for |t1| = =, % < argt < 1im.

Since P is wregular. in the whole t-plane it follows from (3.,10)

by applying Liouville's theorem that P(01+T,02—T) is a polynomial
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in 1 of degree 2m+l1 for every fixed 040, with Re oy 2 0, Re g, = 0.

From (3.5), (3.6) and (3.8) it follows that
-8,V P(s,,8,)
2—2 12772
s.Efe (v,=0)} + NCRIACH)]
1 -1 Yo(81)7,(8,

(3.11) H_(sl,s Y =

’ , Re 17 <0,
s,+85 -ay(sl)

1 72
-5,V P(s,,8,)
1=-1 1°792
spEle 70 - ey, (E,T
2 =2 Y, (s Y2(s2

+
H (sl,sz) ] , Re 1 Z 0,

s1+s2—ay(52)
with

(3.12)
Since y(.)is rational the function
(3.13) X +y - ay(x)

has for fixed y exactly m+l zeros zj(y), 3 =0, +0u. 5 m.
Denote by zo(y) the zero with largest real part. It is wellknown

(cf.[22] p.548) that, since B(.) is not a lattice distribution,

(3.14) Re zO(y) > 0, Re zj(y) <0, 3j=ly...,mif Rey <0, y #0,

(note that for y m 0, a = 1, also just one of the zj(O), j =1

is zero) and that

(3.15)  zg(y) = -y +%{1—E{ey2}}, Re y < 0,

where p stands for the busy period of an M/G/1 queueing system
with service time distribution B(.).

Because for Re s, = 0 the definition of H-(sl,sz) (cf.(2.9)) implies

that H-(Sl’SQ) is regular. in sy for Re s, =2 0 it follows from

1
(3.11) that
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-5,V P(Sl,SQ)

22, - -
(v, = O} = - —=5 5,72 (5,) for Re s,20.

(3.16) Y2(52) E{e o
12771

Note that (cf.{22], p.5u48) ,
zO(O) g 0 if a <1,
>0 1if a > 1,
so that (3.5) and (3.7) imply that S, = 0 is not a singularity
of the righthand side of (3.16).
Obviously (3.15) implies that YZ(ZO(SQ)) is regular and

continuous for Re S, < 0. Now take in (3.8),

1 S,
(3.17) T B =S,y 0, = 0, o, 8 a(l—E{e 1), Re S, <0,
then
(3.18) P(cl+r,02-1) =z P(sl,sz) ) )
81—20(52)

so that, since the lefthand side of (3.8) 1is a polynomial in T,
it follows that the righthand side of (3.16) is regular and

continuous for Re s, < 0, Since the lefthand side of (3.16) is also

regular and continuous for Re s, 2 0, it follows from (3.16) that
its lefthand side and its righthand side are each other's analytic

continuation in Re s, < 0 and in Re s, = 0, respectively.

2 2
It is easily seen that

-S,V, m m
(3.19) v,(s,)E{e (vy=00} ~ WO|82| for |s2| + =, |arg sz| < 3.
Since
SoR m
|[E{e 7} » 0 for |52| + @, 7 <arg s, < 1}m, and because
P(01+T,02—T) is a polynomial in T of degree 2m+l it follows from

(3.17) and (3.18) that

P(sl,sz)

m m
sly2(315 s %2 (s J ~'TFOISZI for |32|+ © , y< arg s, < 13m
17%¢0 =27
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Consequently by applying Liouville's theorem we have that both

sides of (3.16) are a polynomial in s_, i.e.

D(s,)
(3.20) 2 2

E{e =0)} =

1 Re s

=2
(v )

¥ 5 (s,)
with D(sz) a polynomial in s, of degree m.

Next define

we may put

>0,

(3.21) Q-(Sl,SZ) = 5,D(8,)y,(8,) + P(s,,8,),
+
Q (51’52) SQD(Sl)YZ(SQ) - P(sl,sz),
so that for Re s, =2 0, Re 5, 2 0,

1 2

_ Q (31,52)/Y2(sl) 1
s,ts,-av(s,) yzfszi’

Q+(sl,sz)/Y2(s2) 1

s1+sz-ay(s2) YZ(sl)'

(3.22) H-(sl,sz)

+
H (51,52)

Note that from (3.16),

(3.23) Q (51,52) 51:20(52)

From (3.21) we have for Re o, = 0, Re ©

1 2

(3.24) Q (01+02-ck,ck) =

Q" (2350140572

so that since, cf. (3.8),

(3.25) P(sl,sz) -] —P(s2,sl),

we have

- +
(3.26) Q (01+02-ck,ck) a Q (ck,01+02-ck), k agd,.

From (3.21), (3.5) and (3.8) we have for Re 1<0, Re o

Q_(01+T,02'T)

(3:21) 315 3T (5,70

Hence for |1| + =, Irm < arg 1 < 1}m,

>0,

(01+02—§k)Y2(01+02—

(01+02-;k)Y2(01+02-

g 0 for Re S, < 0.

L )D(E I+P (o +0,-T) 50 ),

Ck)D(Ck)-P(gk,cl+02-Ck),

.. ,m=1,

=0, Re 0,20,

1 2

{01+02-ay(01+r)}H—(01+r,02-1).
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Q_(01+r,02—r)

3 - >
(3.28) Y2(01+T)y2(02—rj > 2ﬂ0(01+02 al, Re o, 0, Re g, 2 0.
Similarly for |t| + =, |arg t| < iw,
Q+(01+T’02_T)
1 -
(3.29) Y, (0,17, (0,-1) > zmglogto,-al.

From (3.14) we have

s1+32—aY(si)

m
(3.30) Yz(Sl) Wﬂ I:'[

; {Sl—Zj(S2)},

1

s for Re s, < 0, it follows

that the lefthand side of (3.30) is never zero for Re s

and since Re zj(sz) <0, j=1s...,m
,<0, Re 5,>0.
Consequently, H—(sl,sz) has for Re Sl>0 a partial frdction expansion
with respect to the zeros of Y2(52). Trom (2.2), (3.22), (3.26),
(3.28), (3.29) we obtain for Re oy 2 0, Re 9, =0,

m-1 qk(01+02)

(3.31) H—(01+T,0 -T) = im + Z , Re T < 0,

2 0 k=0 OQ—T-Ck
m-1 q, (o, +0,)
+ k71 72
H (o ,+1,0,-1) = 3n  t Z ———"m Re T 2 0,
1 2 0 k=0 01+T Ck
with for k = 0,1,...,m-1,
Q (04+0)-%y52y) Ty Sy

(3.32) qk(01+02) 1z - 01+02-aY(01+02'§k) BYfﬁk)Y2(°1+°2'Ck)
+

Q (5, ,0,%0,-5, ) Ty by

9170,73v(0,¥0,-8Y B, (507,00 30,70)

Next we introduce the unknowns Gk,k = 0,...,m-1, such that
(cf.(3.20)), for Re s > 0,

-8V, -svy m-1 6k
(3.33) Efe (v,=0)} B E{e (v,=)} = 7+ T ——
-1 =2 0 k=0 57%y

Insert the relations (3.31) and (3.32) in (2.10), this yields for

Re g, 20, Re g, 20, Re 1 = 0,

1 2
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m-1 bl+r)rk . (cQ—T)rk

(3.34) 13 K 42
B 0 k=0 9177 Ty G,mT T,
m-1 1
* kf s [ogro,mavo +1)lqu (o +0)) - (o 4108, ]
=0 "2 k
m-1 1
+ kfo EZ:?:E; [{01+02—ay(02—1)}qk(01+02) - (0,-1)8,] = 0.

By analytic continuation it is readily seen that (3.34) holds in
the whole 1-plane except at the poles 1 ®m gk-ol,r = OQ—Ck,k=0,...,m-1.

Therefore by letting |T| =+ = in (3.34%), and also by multiplying

(3.34) by o, + T - g and then taking T = Ly = O we obtain
m-1

(3.35) kfo Gk = 1 amgs

and for k = 0,...,m~1, Re 0 2 0,

1 - - - -
(3.36) 3 amr oy (20 ck)6k+{20 ay(2o ;k)}qk(20)
m-1 qh(20)
tarng I g = 0.
R R
The relation (3.36) may be considered as a set of m linear

equations for the unknowns qk(20). To investigate the relation

(3.36) we introduce for Re ¢ 2 0 the matrix

(3.37) M(20) := [mij(20)], i,j = 0440, sm=1,
Ti%5 o
mij(20):= B(20-¢.) +7T5:EET for 1 = 7,

= ———fifi— for 1 #* j
20—Ci-cj I

and the column vectors

(3.38) q(2g) : [qk(20), k @ 0,...,m—1]T,

6= L8,k = 0,...,m-1]7,
.= _ _17T
€ : [gkdk + 3 amy T4 k =0,...,m-1]".

Hence (3.36) may be rewritten as:
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(3.39) {(2¢0-a)I + aM(20)t q(20) = 208-¢, Re ¢ =0,
where I is the identity matrix. Denote by

Aj(20), j = 0,...,m1,

the eigenvalues of M(20). In section 5 (cf.(5.12))it is shown

that for Re ¢ 2 0,

(3.40) A, (20) = B(o), [Aj(Zo)l < B(Re o), § = 1,...,m-1.

Consequently, (3.39) implies that qi(20) ig the quotient of the

determinant of the matrix Di(20) with (note dhjjs Kronecker's symbol)

(3.41) {Di(20)}hj (20—a)6hj + amhj(QO) for 9%+ i,

= (Zod-e)j for j= 1,
and the determinant
(3.42) det{(20-a)I+aM(20)} = amill:lz{?i; + 2 (200},
From (2.9) with s, = s, = 0 and (3.31) with 1 @ 0 it follows that

1 2
qk(20) is a regular function of o for Re ¢ 2 0. Consequently,

since Dk(20)is regular. for Re 0 2 0, cf.(3.37) and (3.41), it
follows that every Ak(20) is regular for Re ¢ 2 0. Hence the

functions fk(Qc), k = 0y...,m-1,

._ 20-a
(3.43) fk(20) 1= relld Xk(Qo), Re ¢ =2 0,

are regular in Re g = 0. We show that for every k = 0,...,m-1,fk(.)

has exactly one zero O in Re o 2 0 and 60 a 0., That 8, 8 0 follows

k 0
directly from (3.40) and a wellknown result for the M/G/1 queue since
a < 2. For k 2 1 consider the contour consisting of the imaginary

axis between -iR and iR and the semicircle ¢ = Relu,larg ul < m/2.

From (3.40) it follows that on the contour [20-a| > a|A, (20)] for
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R sufficiently large. Hence from Rouché's theorem the existence and

follows. In section 5 it is shown that all &, are real.

uniqueness of §& k

k
Remark 3.1 Since Ak(Qc) are zeros of a polynomial with rational
coefficients in o there cannot exist 1in Re o 2 0 isolated values
of ¢ for which Ak(Qo) o )\h(ZG), k # h, otherwise such a ¢ would be
a branch point of )\k(.) contradicting the fact that )\k(ZO) is
regular for Re o 2 0. It is still possible that >\k(20) = Ah(20),
k # h for allowith Re 20 2 0, but a closer examination of the
determinant of —B%E)X(c) M(20) X_l(c) (see formula (5.2)) which is
asymmetric in risty excludes this possibility also.

The regularity of qk(20) for Re ¢ = 0, consequently requires that

for every o = aj, 38 0,...,m=1,

(3.u44) det Di(zaj) =0, 1=0,...,m"1.

It is readily proved that the conditions (3.44) lead tc m
independent relations for the unknowns Gh,h = 0,...,m=1 and that
one of these relations, i.e. the one for 50(=0) is equivalent with
(3.35), see (4.12) for k m 0. Hence the dk are uniquely determined
and the qk(20) also because of (3.39); all cSk are real, cf. section 5. It
remains to determine T which is obViously obtained from the norming condition or
equivalently from(2.12). From (2.12) and (3.33) it follows that

m-1 §
(3.45) my = 3(2-a) + % 35.

k=0 "k

Hence H+(Sl’82) and H-(Sl,SQ) are uniquely determined.
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111.4.4. The waiting time distribution

(

Denote by v k)(20) and p(k)

(20), kx @ 0,...,m-1, the right- and
left eigenvectors of M(20) belonging to the eigenvalue Ak(20).
Since for Re ¢ 2 0 no two of the Ak(20), ka0,...,m-1 are equal
there are m right- and m left eigenvectors and such that for the

vector product holds

(k)

(4.1) u(h)(20)v (20) = 0 for h # k,-

a1 for h = k.

(x)

Further denote by n(k)(Qc) and m (20) the right- and left

eigenvectors of Y(o), e¢f.(5.2), then it is readily seen from (5.2)

that

(k) e

.2) v 20 = x om0, 1020 = (2 )X(a).

Since {B(o)}™% YT(O) is for o > 0 a stochastic matrix it is readily

seen that for Re g =2 0,

r.g

i

——i_
2
(o-5.)
(4.3) nj(_O)(20) = m——llTC—— ) m;O)(Qo) =1, 1 =0,...,m-1,
T -1l
j= 0 -7,
] (o C])
(0) s el (0) (0) .1
v, (20) = (o-gn. " (20), 0 (20) = RN
Define for k @ 0,...,m=-1, the matrix
(4.4) A (20) := [vék)(Zo)ugk)(Qc)], i,3€00, ... m-1),
so that
(4.5) Ak(2c)Ah(20) = Ak(20) for k 8 h,
=0 for k # h.

It is wellknown that the spectral decomposition of M7 (20),n = 0,1,...

now reads for Re ¢ 2 0,
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n m-1 n
(4.6) M (20) = Z A, (20) A _(20),
k=0 k k

with
.7y M9 26y =T

For Re 0 > 0 and 0 # ¢ ko 0,...,m-1, the matrix (20-a)I+aM(20)

k’
has an inverse, cf. (3.42), and because
m-1
iMC20)1 = max Z |m,.(20)]
iz0,...,m-1 j=0 1]

is uniformly bounded in o for Re v 2 0, it follows that for Re ¢

sufficientiy large

o]
-1 _ 1 -3 n . n
(4.8) {(20-a)I+a M(20)} ~ = == nfo{zo'a} M (20)

m-1

-1 -a ,h ,n

= 50—-—8 p ? {ZG-a} )\k<20) Ak(ZO)
k=0 n=0

i mil Ak(ZG)

= 2o-a+ar (2a) °

k=0 20 a+axk 20

Consequently, from (3.33) for Re o sufficiently large,

m-1
- 1 -
(4.9) q(20) = kfo m Ak(20')(20'(5 ).
From (3.41) and (3.42) we have for Re g = 0,
m-1

(4.10) q(20) m [ T {20-a+ak, (200} 7] {det Dy(20),...,det D__, (20)}7,
k=0 m=

with det Di(26j) =0, i,j @ 0,...,m-1, Since the righthand side

of (4.10) is regular. for Re o 2 0, and since (4.8) implies that
the righthand side of (4.9) is regular for Re ¢ sufficiently large
it follows by analytic continuation that Ak(ZO) is regular for

Re ¢ 2 0, that the vectors § and & should satisfy
(4.11) Ak(26k)(26k5-s) a(, k = 0,...,m=1,

and that (4.9) holds for Re ¢ # 0. From (4.3), (4.4) and (3.38)
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it is readily seen that (4.11) is equivalent with
12y T w9055 ) (96 -z, = 3 an
. s X k~k3705 T 2 amg

) E ugk)(ZG )r ;
3=0 j=0

0

for k = 0,1,...,m-1. It should be noted that(4.12) for k = 0
leads to (3.35), apply (4.3) with 80 = 0. In the relation (4.9)
A0(20) may be eliminated by using (4.7).

Recapitulating we have for Re ¢ 2 0,

m—l

m——(—y A (20)(206=-¢)

(4.13) q(20)

m-1 a{B(o)-kk(Zc)}Ak(20)(206—e)
{20—a+a8(0)}{20—a+akk(20)} >

_ (208-¢) ‘
T 20-a+af(o)

z
k=1
the Gj,j = 0,...,m-1, (cf.(3.38)), being determined by (4.12),
with T determined by the norming condition or equivalently,
cf. (2.12) and (3.33),

m=-1
(4.,14) 7 = 3(2-a) + Z &./C..
0 j=0 J J

From (2.9) and (3.31) it is seen that the Laplace-Stieltjes transform
of the stationary waiting time distribution is given by
-qVv m-1 qk(a)

-0wW -1
=} = ©.+2 E{e (v, <v, )} = 1, +2 X =
0 1~ Y2 0 "0 T

(4.15) Efe , Re 0 20,

where w is a stochastic variable with distribution that of the
stationary waiting time.
It follows from (4.13) and (4.15), using (3.35), (4.3) and (4.4)

that for Re ¢ =2 0,

1
m-l §.-zarm.r. m-1
oWy _ _ 1 3 2073 (0) -
(4.18) E{e =} LI —E 1B/ 0 Yo i?ovi (0)/(-g )
2 " o/2 1= ] :
m-1 1 m-1 -1
-2 kfi S=avax, (o) jEO z {Ak(o)(od-e)}j}
m-1
2 % §./(- g )
_j=0 3 -

: 1—@(572)
1-7 o/2
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m 1 2af{B(c/2)- A (o)} m-1

-1
T yzq To- a+aB(o/2)}{c -at+al, (o)} jE %5 {Ak(O)(Gé_E)}j'

The expression (4.16) for the Laplace-Stieltjes transform of the
stationary waiting time distribution is a very intricate one,
although some of its terms have known interpretations, as it may

be seen from the following remarks.

The factor
1
(4.17) 2 T-8(o72)
2 /2

is actually a Laplace-Stieltjes transform and closely related to
the Laplace-Stieltjes transform of the stationary waiting time
distribution of an M/G/1 queuelng system with load a/2.

The second factor in (4.16) may be expressed as, cf. (3.33) and (2.2)

m-1 8,-3am,r, ~30Y,y a. 1-8(c/2)
(4.18) 32 —J-———l E{e (v, > v, = O+ 3ny =55,
whereas, cf. (2.2) and (4.3),

-1 vio)(o) 1-§(g/2)
(4.19) T 3 = d; .

i=0 i _2558(0/2)

Further it is readily seen from (2.3), (4.3) and (4.14) that for

g ¥ 0,
m—1 §.- oL m-1 (0)
(4.20) m { —JTJ-} v (og)/(-z.,) ~ 1 - TTO,
2 T o072 e 1=0 '

so that the second term in the first expression of (4.16) tends
to zero for o + 0.

Since, cf. (2.12), for ¢ real,

(4.21) Pr{w=0} - my = Pr{(v,=0)U(y,=00} - m, = Priy,=0} + Pr{v,=0}

- PP{X1=O:X2=O} - . = 2-a-2m, = lim E{e %¥} - 1

0 0% 0°

and, cf. (4.14),
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m-1
2 X §.)(-z.)
BERSAE St
(b4.22) éig T2 TGN 2—a—2n0,
/2

it is seen that the last term in (4.16) tends to zero for o » =.

A lengthy but direct calculation shows that this last term in
2+a

(4.16) tends tc -1 + =2 "o for o v+ 0, 1.e.
mn-
2 2 68./(-z.
- —on 520 J ( C]) 2+a
(4.28) Lim Ele 7y - mg - LSrpreyyy * 70 o7l
2 /2

From the remarks above it follows that for Re ¢ 2 0,
(1-a/2)(1—ﬂ0)

(4.24) ©_ +
0 _a 1- §10/25’
13 ag/2

represents the Laplace-Stieltjes transform of a probability
distribution with support [0,»). It may be conjectured that the
tail of this distribution is a good approximation for the tail of
the stationary waiting time distribution. Further research is here

desirable. Finally we derive an expression for the average waiting

time E{g};
E{w} = 2 E{y, (v, < v}

This relation is easily obtained from (2.11), (2.13) and (3.33)

by noting that E{!l} = E{X2}° It follows

(4.25) E{w} =

which can be calculated when the Gj are known, <of. (4.12) and (4.14).

Similarly, expressions for the higher moments can be obtained.
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[1.4.5. The matrix M(20)
The matrix M(20) has been defined in (3.37), we shall investigate

here a number of its properties already used in the preceding section

We introduce the diagonal matrix,
(5.1) X(og) := [xij(o)], i,3 = 04...,m-13 Re 0 2 0,

X,.:= , Xij:z 0 for 1 # j.

Define for Re ¢ 2 0,

(5.2) Y(o) = X(OMQaX (o),

then a simple but lengthy calculation using (2.2) shows that

r.Zg.
_ izi . .
(5.3)(Y(c))ij B(20 Qi) t 3 1) for 1 8 j,

rity i%i
- — for 1 # j.
el ¥ 2o [N Cj

r.0,

By using again (2.2) it follows for Re ¢ 2 0, that
m=-1

(5.4) Z (Y(o))ij = B(a) for i 8 0,...,m~1.
i=0

Denote by
(5.5) Ak(20), k8 0,...,m1,

the eigenvalues of M(2g), hence they are also the eigenvalues of
MT(ZO), of Y¥(g) and of Y (o) . Obviously, for o > 0 all elements

of YT(O) are nonnegative, so that from (5.4)

1 T
(5.6) FICh) Y (o), 0 20,

is a stochastic matrix which is obviously irreducible and aperiodi
so that it has one eigenvalue one, whereas all other eigenvalues

are in absoclute value less than one. Consequently, for o 2 0,

(5.7) x0(20)= g(a), |Ak(2o)1< B(o)y, k = 1,...,m~1.

For Re ¢ 2 0 we obviously have, cf. (3.37),
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(5.8) m s (2Re o) > Imij(2c)| for all i,3 = 0,...,m-1.

Fan's theorem (ef.[33], p. 152) now implies because of (5.8)
that every eigenvalue of M(2¢) lies at least in one of the

circular disks
(5.9) |z—mii(2cﬂ= w-m.(2Reo), im80,...,m1,
where p is the maximum eigenvalue of M (2Re g), i.e., cf. (5.7),
(5.10) u = AO(Re 2c) = B(Re o).
Consequently from (5.9) we have for Re o > 0,
(5.11) A, (20)] € max {B(Re 0)-m..(Re 20)+|m..(20)|}<B(Re o).
K . - 33 33
Jj=0,...,m-1
From (5.4) it follows that Y(o) has for Re o = 0 an eigenvalue

B(o), and since in (5.8) the inequality sign holds for o nonreal

it is seen from (5.17) and (5.11) that

(5.12) A, (20) = B(0), |Ak(20)| <B(Re 0), k = 1,...,m-1.

By introducing the matrix Z = [Zij] with

m-1 3
- 2 . - .
(5.13) zij .—{kEO rkgk} for 1 = j,
k#1
= 0 fOI‘i?&j,

cf. (2.3), it is readily verified that ZM(QO)Z-l is for 0 2 0 a
real symmetric matrix. Hence its eigenvalues, which are the same
as the eigenvalues of M(20), are all real, i.e. Ak(20),

k @ 0,1,...,m-1 are real for o = 0. This fact together with the
fact that (3.43) has one and only one zero&k in Re ¢ 2 0 proves
that all Gk,k g 0,...,m-1 are real. Hence it is seen from (3.41)
that the condition (3.44) represents a set of linear equations
with real coefficients for the unknown dj,j a 0,...,m=-1.

Consequently these dj are all real.
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IV.1. THE ALTERNATING SERVICE DISCIPLINE

IV.1.1. Introduction

In this part we return to the queueing model of a single
server who alternatingly serves customers of two different types
(section IIT.2.1). Our goal is the investigation of the numerical
analysis needed to evaluate numerically the characteristics of
the model, in particular the mean queue lengths E{ﬁ(i)} of type
i customers (i=1,2),

The relevant numerical problems concern mainly the numerical
evaluation of conformal mappings and singular integral equations,
Much experience is available in the numerical literature on con-
tinuum mechanics. The following textbooks and surveys provide an
access: Beckenbach [11], Delves and Walsh [41], Gaier [9] and
Ivanov [ 24].

Starting-point in the present chapter is theorem III.2,3.1
which uniquely determines the functions oi(p), lp] <1, the
basic functions of the model (see (III.2.1.7)). In the formulas
for oi(w/2ri) in theorem III.2.3.1 a key role is played by the
conformal mapping f(.) of F* onto C+, the interior of the unit
circle, and by its inverse fU(')' If ¢=0 is taken in (III.2.3.7)
then fo(c) is according to remark III.2.3.1 determined by the

relation (ITI.4.5.19),

(1.1) fo(c) =z exp(@o(ﬁ)), lz] <1,
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with
1 27
(1.2) QO(Q) S é {log

5(8(w) elu,, do,

2 cos 6(w) R

with 6(.) given by (II.4.,5.18) and with 8(.) a strictly increasing
and continuous function on [0,27], uniquely determined as the contin-
uous solution of Theodorsen's integral equation (cf. section I.W.4),

m

2
(1.3) 6(d) = ¢ - Q_%T J {1og 3L8Cw)
0

m} cot I(w-¢) dw,

In general 6(¢) cannot be determined explicitly. We therefore
solve Theodorsen's integral equation numerically, Subsequently
we evaluate fo(g) numerically, and then calculate ci(l), i=1,2,
which will finally allow the calculation of the mean queue
lengths E{ﬁ(i)}.

The organization of this chapter is as follows. In section
2 an expression for E{ﬁ(i)} is derived. The general numerical
approach is discussed in section 3, It was observed in remark
III.2.3.1 that in many cases the nearly circular approximation
of the conformal map fD(c) may yield accurate results, This
approximation (and also some others) is considered in section 4,

Section 5 is devoted to the question whether the peint 2r, does

2
belong to F* (see also theorem III.2.3.1).

Numerical results are presented in section 6. The accuracy
of the approximation for E{§(i)} based on the nearly circular
representation of the conformal map is assessed in this section
and in section 7, where an asymptotic analysis of the mean queue
length formulas for the case PQiO is presented, both for the
exact and the nearly circular representation, Our results show
that the nearly circular approximation is very useful in the

analysis of the alternating service model, the more so because

the numerical effort required for its application is slight.
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IV.1.2. Expressions for the mean queue lengths

H(i)(pl,pz), i=1,2, are defined in (III.2.1.3) as the joint
generating functions of queue length distributions of type-1
and type-2 customers, immediately after the departure of a
type-i customer. It is not hard to show that the generating
function of the queue length distribution of type-1 customers

(1) (2)

at an arbitrary epoch is I (pl,l)/r1 (and T (1,p2)/r for

2

type-2 customers). The argument may be based on the fact that

the arrival process is a Poisson process (see Melamed [38] for

a general discussion of similar results; see also Eilsenberg [38]).
Another approach is to derive from scratch the generating func-
tion of the joint queue length distribution P(i)(pl,pz) at an
arbitrary epoch, It can be shown, using a supplementary variable
approach, that analysis of P(i)(pl,p2) leads to a Riemann-Hilbert
problem which is almost identical to the one studied in chapter
IIT.2 for H(i)(pl,pz). Details of this approach for a similar
problem can be found in Blanc [16]. Using the following relations

for the mean queue lengths E{i(l)} at an arbitrary epoch,

(1), _ 1.4 (1)

(2.1) E{i } = i{ﬁﬂ (21,1)}'21=1,
(2) 1,.d (2)

E{i } P—Q—{dzz I (1,22)}|22=1,

and (III,2.1.6) and its symmetrical analogue, it follows that

(i), _ 1 (2) (2) T
(2.2) E{x } o= a; + GT[%Ai(AlBl + A8, T) + g aja,
i 3-1
43-1 .
- 2_1‘-*_11(01'_(1) - (1-a)ri), 1=1,2,
3-1i71

with
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(2.3) u., =1 - a. -

- imil,2,

(see section III.2.1 for the notation used).
Only Gi(l), i=1,2, is here yet unknown, 05(1) follows from

theorem III,2.3.1: If w=2r, € F', then

2

(2.4 Oé(l) = —2r2f'(2r2)

dg

————=————— [P(Re £,(£)) - i{Im £,(z)}Q(Re SINCSDIIS
[z]=1 (C—f(QPQ))

1

*o2mi

oi(l) cannot be immediately obtained from this theorem, because
w=2r, € F+; however, cf. (ITI.2.2.6) (and using (III.2.2.5),

1
(I11.2.2.7)) we derive the following relation between o} (1)

and 0%(1):
1-a 177
(2.5) 0j(1) = _E; [1 + == 2(a -a,)
v, -r u
1 72,2 (2) (2) 1
+ ( -2 ) )\()\161 + }\282 )] - g Oé(l)n

For future use we also mention that from (III.2.2.6),
(2.6) 01(1) = 2(r1—r2) + 02(1),

and from (III.2.1.7),

2.7) 01(0) 1-a - 02(0)0

The relations above show that the evaluation of E{ﬁ(l)}
requires the calculation of the quantities in the righthand side

of (2.4).
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IV.1.3., The numerical approach of Theodorsen’s integral equation

In this section it is assumed that 2r2 € r*. From (2.2), (2.4)
(1)
I,

and (2.5) it then follows that E{x E{§(2)} are known once
(2.4) is evaluated. Hence fo(c), lz] <1, f(2r2) and f'(2r2) are
to be determined.

fO(C), Izl <1, is given by (1.1), (1.2); applying the Plemelj-

Sokhotski formula to (1.1) yields:

(3.1) fo(ei¢) = expli¢ + log p(06(¢))
1 2m
+ 5T é log p(8{w)) cot I(w-¢) dw]
e N YCITI R 0<¢ < om,
with
(3.2) pla) := &§(a)/cos(a),

the distance from the origin to a point of F with angular coor-
dinate o (cf. (III.2.2.11)); the second equality sign in (3.1)
follows from (1.3).

The zero &8(a) has been evaluated numerically in a straight-
forward manner. The unknown function in (1.1) and (3.1) is 8(¢).
It has to be determined numerically from Theodorsen's integral
equation (1.3). The numerical solution of this singular integral
equation has been the subject of many discussions in literature.
See in particular the survey by Gaier [9] and the study of
Hiibner[38].

Our choice is the following iteration procedure (see Gaier

{9]l, p.67):
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2n

(3.3) 8 . (¢) = ¢ - —2—1? /' log p(6_(w)) cot }(w-¢) du,
0

n+l
n=0,1,,.., 0 < ¢ < 2m,
eo(qb) = 4.

(Concerning another possibility to start the iteration see
section 4).

A detailed discussion concerning the convergence of the
procedure, and further references, can be found in Gaier [9].
The amount of computation involved can be reduced by observing

that for 8(¢) and for all iterations in (3.3),
6(¢) = - 6(-¢),

or equivalently,
8(dp) - ¢ = -[8(2m=-9) - (2m=-¢)].

For a direct proof, consider (1.3) for 6(¢) and -8(-4) and use
the uniqueness of the solution of (1.3).
The integrand in (3.3) has a singularity at w = ¢. Care was

taken of this singularity by rewriting the integrand:
{log p(8, (w)) - log p(en(¢))} cot 3(w-¢) + log p(8 (9)) cot }(w-¢).

The integral of the last term equals zero; the value of the first
integrand at w = ¢ can easily be determined. Subsequently the
resulting integral can be evaluated using a standard numerical
integration procedure (e.g., the trapezium rule, which in this

case seems to be preferable above Simpson's formula).

Convergence of the iteration procedure turned out to be rather

fast. Iteration was continued until the differences between suc-

cessive iterations of 6(.) were in absolute value less than 10_6.
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In the six cases which were studied the number of iterations
varied between 7 and 12.

£4020, |z] <1, is now calculated from (3.1). It remains to
determine f(2r2) and f'(2r2). When z (real) increases from 0 to
1, fo(;) increases from 0 to 6(0) (cf. (III.2.2.8)). It is easy
to determine numerically the unique value of ¢ (:f(2r2)) for

which fo(c) - 2r, a0 (g€ [0,1]). Finally, f'(2r2) can be ob-

2
tained by observing that for t = f(2r2), f'(2r2) = 1/f6(t).
Differentiation of (1.1) yields for |z| < 1:

f () 27 iw

1 2e
fl(z) m + £.(g) 5= f log p(8(w)) —r————= dw
0 [4 0 2m 0 (elw—g)z >
80
2r 1 2m 2eiw 1
(3.4) £'(2v,) = [ + 2r, = J log p(8(w)) ———=5——— du)
2 f 2r2 2 2m 0 (elw—f(2r2))2

Remark 3.1 (on numerical computations)

Because f(2r2) <1 (for 2r, € F+), the integrals in (2,4) and

2
(3.4) in which (g - f(2r2))2 appears in the denominator are non-
singular. However, when f(2r2) is close to one, these integrals
almost behave like singular integrals. For example, the second

part of the integrand in (2.4),
Im fO(C) Q(Re fO(E))

(g - £l2ry 0’ g=el?’

although being equal to zero when w = 0, 2w, can have rather sharp
extrema for w =~ 1 - f(2r2), w > 27 - (1 - f(2r2)). Therefore the
numerical integration of (2.4%) and (3.4) has to be adapted at
these points., In order to obtain a sufficient accuracy a finer
subdivision in the neighbourhood of ¢ @ 1 is required. Our ex-

perience shows that more satisfying results are obtained by also

subtracting the "almost-singularity", i.e., from the above in=-
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tegrand we subtract:

d
Im £,(1) Q(Re £ (1)) + (z-1){lIm £(5) Q(Re £yt _,

(¢ - £2r,))?

Subsequently the contour integral of the subtracted term is added
again, and evaluated separately by using Cauchy's formula (in
fact Im fo(l) = 03 the derivative in the above expression con-

tains a factor %E B (w) for which we have substituted 6(w)/w

w=0"
evaluated at the first integration point past w @ 0).
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TABLE 3.1
en(¢>, n=0,1,2, the "exact! e(¢) (:610<¢)) and eapp(¢)

(see section 4) for the case:

A= 0.44, = 5/6,
B (p) = e™®, B (p) = (1450/3)7°,  Re p >0,
with ¢ = % , k=0,3,6,...,30.

(Note that ei(¢) - ¢ = -[ei(zn—¢) - (2m=-¢)1).

k 60(¢)=¢ 61(¢) 62(¢) 8(¢) Sapp(¢)

3 0.62832 0.81882 0.84568 0.83970 0.75999

6 1.25664 1.50652 1.49354 1.48789 1.46968

9 1.88486 2.09480 2.06310 2.06338 2.09800

12 2.51327 2.62969 2.60662 2.60851 2.64494

15 3.14159 3.14158 3.14158 3.14159 3.14159

18 3.76981 3.65350 3.67656 3.67468 3.63824

21 4.39823 4.18838 4.22008 4.219789 4.18518

24 5.02655 4.77667 4.78964 4.738530 4.81350

217 5.65487 5.46437 5.43750 5.44349 5.52320

30 6.28319 6.28319 6.28319 6.28318 6.28319
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IV.1.4. The nearly circular approximation

If a smooth contour T is nearly circular then one can de-
rive a rather sharp approximation for the conformal mappings
£(.) and fO(.) of the interior F' of F onto C* and vice versa.
Nehari [ 3] states the following results.

Let Cy be a nearly circular contour with representation in

polar coordinates:
(4.1) Cqy:® {u:fu|=1 + ep(8), 0 <8 < 27},

where € is a constant with 0 <e< 1, and p(8) bounded and piece-
wise continuous, then
2m 18

(4.2) c(wizull - o=/ S5 p(e) del + ole),
0 e " -u

maps CS conformally onto the unit cirecle |f| < 1. The inverse
mapping co(c) of c(u) is given by:

e 2m eie+c
(4.3) co(;):=;[1 A é ele—c p(8) as] + o(e).

From (4.2) it is readily deduced that if Cy is a nearly circular

ellipse,

£? 2

2+n=1s
(1+€)

then (ef. [3], p. 265),
(4.4) c(u) = u(l - %(1+u2)) + o(e).

The contour F which actually occurs in the analysis of the
alternating service problem is given by (III.2.2.11). The linear

transformation,
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N, := {w> u=g+in : us= 1 w}
1 2/r T, ’
transforms the contour [ into H,
(4.5) Hoi= ((g,m): £24n°= BON1-2/T,7,E0) ),

with B(p) B Bl(p)ﬁz(p), cf. (IIT.2.2.2).

In the following we assume that

(4.86) 0<r, < 3.
If r, < 1 then 2/r1r2 is small and H is nearly circular, and

hence so is F. We can now apply (4.4) to F. Consider the nearly

circular ellipse E,
2 2
(4.7 E = {(g,m: =228 v 0w gy,
b (1+e) b
0 <g¢ <1, b,d and € yet unknown, to be an approximation of H.

From (4.4):
(4.8) p=otw = 201 - S DD s oe), e v o0,

maps o conformally onto the unit circle [z]| < 1. Hence

w-2dvr W= 2d¢r r,
(4.9) r = f(w) = W [1 - ——(1+(—7——) )]+ O(E)
is to be taken as the approximation of the conformal map of 120
onto [¢| < 1. It follows that the approximation of the inverse

mapping is:

(4.10)  w = £,() = 2a/T T, + 2bVE,T,C (1 + £a1+2?)) + ole).

It now remains to determine b,d and € as functions of A,

ry5T,, 81(.) and 82(.). First consider the two zeros £+ and &,
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with -1 <£~ <0 <g¥ <1, of (cf. (4.5)),

(+.21)  £% - BOI(1-2/F T,E)).

Putting for h=0,1,2,3,

At

(4.12) v, =y ) = S e oo a(B,*B,) (1) ,

o 8

a calculation, the details of which can be found in [15]), shows

that
LI YoY
E + & _ 2 '0'3 2
=y, yo.r, [1 + v.v (2y, + £ —=)] + 0(r)),
(5.13) Z 1771 152 22 3 7Y, 2
A 1 2
> = Yy [1+ rlrz(y2 + Z_YE)I + 0(ry).
From (4.5),
2 2
n- o= B(k(l-ZVrlrzg)) - £°.

An expansion of the righthand side of this expression in powers
of r, yields for & = (¥ + £7)/2 (and in fact also for that value

of £ for which the derivative of the expression in (4.11) becomes

zZero):
2 2 2
(4.14) UL CR A PEE PEP O(r2)
We therefore take,
2
/ AE]
(4.15) b = Yg [1 + 773 r1r2].

+

Obviously b(l+e) = (¢ - £ )/2 and d & (£+ +£7)/2, so from

(4.13) and (4.15),
(4.16) E = TP, Y,,

(4.17) d

YvryPy [1 4 ryry 2y + 5 ——

Yo
)
Y1
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Concluding, fo(g), lz] <1, and f(2r2) and f‘(2r2) follow from
(4.9) and (4.10) with b, ¢ and 4 given by (4.15), (4.16) and
(4.17). See figure 12 for two realizations of F and its nearly

circular approximation.

Remark 4.1 Other possibilities for approximations of the con-
formal mapping functions are the following.

i. Approximation of £ (g) via 8(¢) = ¢.

Proceed exactly as in section 3, but with 6(¢) = 60(¢) = 9,

0 < ¢ < 2.

ii. Approximation of fo(g) via 6(¢) = ¢ + C sin ¢.

From (3.3),
1 2w B
(4.18) 6,(¢) = ¢ - 5=/ logl2/r v, 82(A(1-8))] cot 3(w-¢) du,
0

with § = §{(w) as defined by (II.4.4,9), see also (III.2.2.8).

When r, is small compared with 3, then § is also small, and we

2

may write:

(4.18)  logl 2/F,F, B(A(1-6))1= logl 2/F,F, B2(M)] + C cos u,

172
with
- d 3
(4.20)  Ci= - MWET, L35 B(I/BT0) [ .

Substitution of (4.19) into (4.18) results in the approximation:

(4.21) 81(¢) ~ eapp(¢) := ¢ + C sin ¢, 0 € ¢ < 2m.

It might be used as a starting function in the iteration for

solving Theodorsen's integral equation.

Remark 4.2 See [9], p. 106, and [15], section 9.6, for some

interesting relations between the nearly circular approximation,
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Figure 12:
The contour F (—) and its nearly circular approximation (xxx)

for the following two cases:

-p BZD -3
B.(p) = e P, B (p) @ (1L + —2) ", Rep=0,
1 2 3
and
A B0.09, r, = 5/9 ,8, = 10 (fig. 12a),
A= 0ubb, vy =1O/11,B2 = 1 (fig. 12b).
N‘
bd
{ x Fig. 12a
0 1
X
>/
i J Fig. 12b
0 1
L
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th t ch and 6 (¢).
e exact approa a app [0}

Remark 4.3 All three approximations discussed above can be used
to evaluate E{i(l)}, E{i(z)} in specific cases. The procedure is
as sketched in section 3, with one exception: in the nearly

circular case f(2r2) and f'(2r2) follow immediately from (4.9).
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IV.1.5. Conditions for 2r) EF*

We have already mentioned the fact that the point 2r2 can be
located inside, on or outside F, and it is not immediately clear
which of these three cases occurs in an actual situation. This
location is important, because formula (III.2.3.5) for 02(w/2r2)
is valid for w € F+, but may not be used directly to determine
02(1) and 0%(1) when 2r, € r*. It is for this reason that in the
present section we pay some attention to conditions concerning

the location of the point 2r, with respect to F.

2
As always we assume that r, < T 2
, € F* iff 2r, < 6(0), with §(0) the rightmost point of F;

hence 2r, < 1. Clearly
2r

6(0) 1s determined by the relation (cf. (II1.2.2.8)),
(5.1) §(0) = 2/F,F, BE(A(1-6(0))).

Because
2

g (x) 1= x7, gy(x) = bryr, BA(L-x)),
are non-decreasing and convex in [0,1] with gl(o) < gZ(O) and

gl(l) > g2(1) if r, #1r

9 10 it is clear that for y € [0,1],

y <600 * y® <urr, BOA(1-y));

hence
2w, €F° - 4r§ < ur,r, B(A(1-2r,)),
80
(5.2) 20, € FT e AL (8, +8.) A <1
: 2 1°81*82) X TR %) :

. + .
A necessary condition for 2r2 € F 1is A1(81+62) = a+(l1—X2)82 =1,
because

1 - B(Xl—kz)

<1,
O =X, (B, +B,)
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as is apparent from its interpretation as the Laplace-Stieltjes
transform of a probability distribution on [0,«).
In the next section we meet an example in which the Laplace-

Stieltjes transforms of the service time distributions are given

by -0 ) -
Bl(p) = e s BQ(D) = (1 + T) N Re p 2 0,

A o= 0.u44, r. = 1/11.
(5.2) shows that in this case 2r, = 2/11 € F' (although a=0.8 < 1).
Remark 5.1 Tor r2¢0, from (5.1),

§(0) = 2/FF,; BE(0) + ol¥r,),

and hence 2r2 < 8(0)3 so 2r2 € ' for very small values of r,.

For r, @ 1 - 1e, 0<eg <1, from (5.2),

+ 1 - B(Xxe)
wp @ l-e §F® A (Bi*By) Terg e,y < L

S0

+ 2€
2r2 EF e 1 - g(re) < T -

For €40 this condition is equivalent with the condition,
1
(5.3) IA(B +8,) < 1.

But for €+0 (5.3) coincides with the ergodicity condition a < 1.

Hence for 2r2¢1 we again have 2r2 € r*.
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IV.1.6. Numerical results

In this section we shall present numerical results for the
present model. The computer programs were written in Fortran
and the calculations were performed on a Cyber 175 computer.

For the service time distributions Bl(t)’ Bz(t) of the two types
of customers we have chosen the degenerate distribution at t=1

and the Erlang - 3 distribution, respectively, so

- - Brp _
(6.1) B (p) = e P1P = &P, g (o) = (1 4 257, Rep >0,

The choice of these service time distributions is motivated by
the fact that Eisenberg [36] and Kihn [43] have in fact

also obtained numerical results for this particular case;
Eisenberg's solution was based on singular integral equations
whereas Kihn's results were obtained by simulation.

In tables 6.1-6, choosing the service time distributions
specified in (6.1) with various parameter combinations of i, ry
and B,, we have displayed E{E(i)} but also f(2r2), f'(2r2),
oi(O), ci(l), oi(l), i=1,2, both for the exact approach of sec-
tion 3 and for the approximations of section 4. The comparison

which is thus made possible allows for the following

Conclusions

i. The nearly circular approximation is extremely good for r,
small, but it is even very acceptable for the example with
r, = 4/9. This is important, because the numerical effort
in applying the nearly circular approximation is small com-
pared with that in the exact approach.

ii. The approximation based on eapp(¢) is rather good, in par-

ticular when r, is small.

2
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iii, 05(1) is rather sensitive, especially when 82 is large;
ci(l), E{i(l)} and E{é(Q)} are very insensitive to errors

in oé(l) when r, is small. Errors in these last three terms

2

are for r, a 1/11 and for r, @ 1/6 generally below 2% for

all three approximations.

Remark 6.1 The total CPU time involved in calculating the exact
results for one particular example averaged just below two seconds.
Each iteration step in the procedure to determine 6(¢) took 0.18
seconds. Stopping this iteration after 62(¢) resulted generally

in very small changes in the relevant quantities, except for

the case of table 6.6; here the following results are obtained

using 6,(¢): oh(1) @ 0.48519, ol(1) = 0.47279, E{x‘*)} = 0.601ss,

E{x 0.23740.

Remark 6,2 As has been observed in section 5, 2r, & F* in the

2

case A = 0.,ub, r, = 1/11, 82 g 10, Formula (II1I.2.3.5) for

oz(w/2r2) cannot be applied directly to yield oé(l). However,

it does yield expressions for oén)(O), nal,l,..., and the
series

02(0) + cé(O) + %03(0) + e,

turns out to converge quickly for this small value of Ty We

have approximated 02(1) and 05(1) by

02(1) * 9,(0) + ay(0) + %05(0) = 0.02065,

05 (1) = 01(0) + o¥(0) + 30577(0) = 0.01801,
leading to

E{E(l)} = 9.53620, E{_)_(_(Z)} @ 0.63305,
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Kihn [43] has simulated this case, finding the following estimates

(100000 calls per simulation, 95% confidence interval):
E(xP) = 9,99 & 1.25, E(x‘?) = 0.638 + 0.0282.

Remark 6.3 It should be noted that there is an excellent agree-
ment between Kihn's and our results. Unfortunately no precise
comparison with Eisenberg's results [36] is possible, because

he only displayed his results graphically.
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TABLE 6.1

The case A =

The altemnating service discipline

O.44,

1

o 10/11,

(1—a)r‘2 = 0.,05091, a @ 0,44,

8

2

s 1:

appr. based on fo(t) appr.

exact 8(¢p)=¢ eapp(¢) giiZi{ar
f(2r2) 0.44852 O.44347 0.44792 0.30985
f'(2P2) 2.28237 2.26645 2.27846 2,58584
02(0) 0.04925 0.,04513 0.04900 0.04928
01(0) 0.51075 0.51487 0.51100 0.51072
02(1) 0.10u424 0.09743 0.10246 0.10430
01(1) 1.74060 1.733789 1.73882 1.74066
Oé(l) 0.05509 0.05048 0,05323 0.05500
Oi(i) 1.49621 1.49721 1.49662 1.49623
E(x‘?’3 | o.0s059 | 0.05170 | 0.05104 | 0.05062
E{§(1)} 0.56750 0.566u40 0.56706 0.56748

Note that the f(2r2) and f'(2r,) results for the nearly
circular approximation should not be compared with those

for the three other cases in Tables 6.1-6.

365



366

TABLE 6.2

The case X @ 0,44, r

Aspects of numerical analysis

1

10/11,

(1—a)r‘2 o 0.03636, a = 0.60.

B

2

g 5:

appr. based on fo(t) appr.

exact 8(¢)=¢ Gapp(db) ziizi{ar
f(2r2) 0.76562 0.75884 0.76408 0.67978
f'(2P2) 3.52506 3.57216 3.53036 4.66093
02(0) 0.01052 0.00824 0.01034 0.01053
01(0) 0.38948 0.39176 0.,38966 0.38947
02(1) 0.0u4968 0.043686 0.04747 0.04956
01(1) 1.68604 1.68002 1.68383 1.68592
Gé(l) 0.,03992 0.03348 0.03691 0.03949
Oi(l) 2.70989 2.69806 2.70436 2.70911
E{x'?’} | 0.25511 | 0.25697 | 0.25598 | 0.25524
E(x1) | 1.w2vnn | 1.w1s1u | 1.u2000 | 1.42382

IV.1.6.
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TABLE 6.3

The case A B 0,4k, r, = 5/6, 82 = 1:

(1-—&1)1’*2 g 0.09333, a = 0.u4,

appr. based on fo(t) appr.

exact 8(o)=0 | B, (4 giigi{ar
£(2r,) 0.59499 | 0.58u48 | 0.59281 | 0.43885
£'(2r,) | 1.53708 |1.53272 | 1.53231 | 1.94237
0, (0) 0.09128 | 0.08508 | 0.09063 | 0.0913y
5,(0) 0.46872 | 0.47492 | 0.46937 | 0.u6865
0, (1) 0.19960 | 0.18435 | 0.19366 | 0.19957
o, (1) 1.53293 | 1.51768 | 1.52699 | 1.53230
a1 (1) 0.10948 | 0.09377 | 0.10213 | 0.10883
01 (1) 1.27043 | 1.27534 | 1.27273 | 1.27064
E(x??} | 0.09543 0.09948 | 0.09732 | 0.09560
elx1’}y  |o0.52703 |o0.52298 | o0.52514 | 0.52686
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TABLE 6.4

The case A

Aspects of numerical analysis

= 0.4, v

1

B 5/6, 8,

51

(1—a)r2 = 0,04444, a B 0,73333.
appr. based on fo(t) appr.
exact 8(¢)=¢ 8 app (9 giigi{ar
f(2r2) 0.93978 0.93418 0,93762 0.92654
f'(2r2) 1.94731 2,10122 2.00304 3.29002
02(0) 0.01340 0.01042 0.01296 0.01344
01(0) 0.25327 0.25625 0.25371 0.25323
02(1) 0.06568 0.05382 0.05943 0.065u8
01(1) 1.39902 1.38715 1.39276 1.39881
Oé(i) 0.05408 0.03908 0.0u4451 0.05363
ci(l) 4.27329 4.24116 4.25279 4.27232
E{§(2)} 0.53496 0.60085 0.59872 0.5951Y4
E{E(l)} 3.09049 3.06103 3.071689 3.08960

IV.1.6
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The alternating service discipline

TABLE 6.5

The case X = 0,24, ry = 5/6, 82 = 10:

(1—a)r2 = 0.06666, a m 0.60.

appr. based on f,(t) ‘appr.
cact | 5@ | oy | By

f(2r2) 0.91822 0.91151 0.91569 0.89215
f'(2r2) 1.95820 2.08629 2.00233 3.19377
02(0) 0.01557 0.01306 0.01522 0.01561
01(0) 0.38443 0.38694 0.38478 0.38439
02(1) 0.08149 0.07771 0.08437 0.,08112
01(1) ‘1n42u83 1.41104 1.41770 1.42445
05(1) 0.07820 0.05854y 0.06646 0.07749
Oi(l) 3.04059 2,99847 3.01542 3.03806
E{E(Z)} 0.62372 0.62793 0.62624 0.62387
E{i(i)} 2,11281 2,07069 2.08764 2.11128

Simulation results by P.J. Kihn [43]:

E(x‘?)1= 0.617 + 0.0174

x)e

2.

14+ 0.153

369
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TABLE 6.6

The case A = (.09, r, @ 5/9, 32 o 10:

(1-a)r, = 0.244kk, a @ 0.45,

appr. based on fo(t) appr.
exact 8(¢pl)=¢ Bapp(¢) giigi{ar

f(2r2) 0.94125 0.83129 0.83625 0.95682
f'(2r2) 0.63382 6.72084 0.87u492 1.25691
02(0) 0.16325 0.16750 0.,16469 0.16282
01(0) 0.38675 0.38250 0.38531 0.38718
02(1) 0.53909Y 0.52836 0.55034 0.58160
01(1) 0.81316 0.75058 0.77256 0.80382
Oé(l) 0.50012 0.350u44 0.39980 0.46706
di(l) 0.46079 0.58107 0.54141 0.48736
E{f(Z)} 0.60029 0.61232 0.60835 0.6029Y
E{x1)) 0.24939 | 0.12912 | 0.16878 | 0,22283

Simulation results by P.J, Kihn [43]:

E{

E{

(),

2
§(1)}

0.601 + 0.0161

0.246 + 0.0093

3

IV.1.6.
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IV.1.7. Asymptotic results

This section contains an asymptotic analysis of the expres-
sions for mean queue length and in particular of those for ¢,(0),
02(1) and oé(l),for the case r2¢0 with A fixed, i.e., the arrival
rate of type-2 customers is much lower than the arrival rate of
type-1 customers. Our goal is to obtain more insight into
i. the structure of the solution 6(¢) of Theodorsen's integral

equation, of the conformal mapping fo(t) and of the functions

ci(.).
ii. the accuracy of the nearly circular approximation for small

values of r,.

For this purpose we study for r2¢0 the asymptotic behaviour of
0(), fO(t), 02(0), 02(1) and cé(l) and we show that for the
nearly circular approximation the asymptotic results for 02(0),
02(1) and cé(l) agree up to the rg—terms inclusive with those

obtained via the exact approach.

Remark 7.1 1In view of the goals formulated above we have decided
to omit a formal proof of the fact that all asymptotic expansions

in powers of r, which are used do indeed exist.

Remark 7.2 The global asymptotic behaviour of 02(0), 02(1) and
05(1) can already be surmised from formula (III1.2.1.7), see also

(IIT.2.1.31):

(1),

n

(7.1 0,0 = 120,00 = Prizit=0,2{?=0,n =2}

= r Pr{gé1)=0,gé2)=0[hn=2},

2

_ (1) _ _ _ _
(7.2) 02(1) = (1—a)r'2 + 2Pr{£n -0,hn-2} 02(0) =
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- (1) (2) _
= (1-adr, + 0,(0) + 2r, Priz "7"=0,2 >0lhn'2}’
(7.3) o)(1) = (1-adr, + 20,E(z (2 P0=0) |n =2}

The above formulas suggest that for r2¢0,

(7.4) 3,(0) = 0(r,),
(7.5) 0,(1) = 6,(0) = (1-a)p, + o(rdy,
(7.6) 0l(1) = (1-a)r, + o<r§>.

Note that from (7.2) and (7.3), cé(l) > 02(1) - 02(0) > (1—-a)r2
(compare this with the results of tables 6.1-8). Furthermcre,

from (2.2) and (7.6),

(2), _ (2) 2
(7.7) E{x } o= PQ(XBQ + %xxlsl )+ O(r2), r.40.

i. Asymptotice based on Theodorsen's integral equation

Starting-point is Lagrange's expansion theorem (cf. Whittaker
and Watson [40], p. 132); it implies that the function §(8(¢))
(cf. (III.2.2.8)) can be expressed for |2/r1r2 cos 8(¢)| <1 by

(2¢r1r2 cos 8(p)H™ dm—1

(7.8) §¢8(8)) = 3 {Bm/z(l(l-x))}L .
= =0

1 m! dxm-l

Substitution of this expression in Theodorsen's integral equation
(1.3) yields after lengthy calculations (use a Taylor series

expansion cos 68(w) B cos w - (8(w) - w)sin w + ...):

2
Y Y Y
(7.9) 8(¢) - ¢ =¢r1r2 77% sin ¢ + r1r2(77% + —%) sin 2¢
3
v
3’2 Y30 Y1 .
+ (ryry) [(——7—— - ;;377) sin ¢

. 0
3

Y YqYy YV

b (s 124 20) sin 36] + 0(rd), 1,405
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Y is defined in (4.12).

Remark 7.3 Note that the first term in the righthand side of

(7.9) is equal to C sin ¢, cf. expression (4.21) for eapp(¢).

Relation (7.9) allows us to obtain asymptotic expansions for

is(¢)

Re fo(ei¢) = Ref{e 8(8(9))/cos 8($)} = §(8(¢$)) and for

§(8(¢)) sin B8(¢)/cos 8(¢), and also, using (1.1)

In £,(e*®)
and (1.2), for fo(c), |z| < 1. The results are combined in the

following statement:

(7.10) £,(0) = 2/EE, VAL + 2mr,y L 4
2
+ 2(r1r2)3/2 [z:(Yz}/YO §;ég) + C3(Y2/YO + 711)]
+ 2(r1r2) [¢c (—QY— + 11;—2 - :—5) + c”(% + %Yﬂz + YOY3)]
+otxy’?), o] <1, 0.

Concerning fo(c) for |z| < 1 we are mainly interested in that

value of r for which fo(c) g 2r, (7 = f(2r2)). A simple calcu-

2

lation shows that for rzio,

2

) 3/2, Y1 Y2 M1
(7.11) f(2r2) = ——7~— [ Vo 4Ty ¥ (r r, ) (776 -5 T PIY0)]

+ O(r;/z),

2
(7.12) f'(Zr )= 1 [‘(r r, ) o + /7, (— '1 - —Zl— - ZZ)]
. = 7;6 uyo rlYO Yy
+ O(r*a/2

It follows from (III.2.3.6) with f(0) ® 0, and from (7.10) and

(7.11),
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(7.13) 02(0) = 3(1-a) - 3iP(0) - %rlrzyoP"(D)
2
2 (3) Yo ()
- 3o e ) Tygy,P (0 + vy, P U (0) + o PTUO(0)]

+ 0(rd), r. 40,

2
(7.14) 6, (1) = 0,(0) = ry(QLO) = P'(0))
+ 02001€0) - (3+y.r)P"(0) + Iy.r, (Q"(0) - P30
+ 0(r)), r,40.

P(.) and Q(.) are defined in (III.2.2.7); note that

Q0) = P'(0) = 1 - a + 0(r,), r0,
and compare (7.14) with (7.5).
Finally from (2.4) and (7.10),...,(7.12),
(7.15) 03(1) = £, (QU0) = P'(0)) + r2(2Q'(0) - (1+y,r,)P"(0)

+ ygr, @0 - 300 + 0y, ryb0.

it. Asymptotice based on the nearly circular approximation

The relations (4.9), (4.10) and (4.15),...,(4.17) immediately
yield for r,40 asymptotic expansions of £(0), f(2r2), f'(2r2)
and fo(c), [cl < 1. These expansions are not of particular inter-
est to us, since they are not directly compatible with those
sub i (where f(0) 0 is chosen). However, their substitution
in (III.2.3.8) and (2.4%) yields asymptotic expansions for r,{0
of 02(0), 02(1) - 02(0) and oé(l), and lengthy but straight-
forward calculations show that these expansions agree up to a

O(rg) term with those based on Theodorsen's integral equation.
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This result, which confirms the extreme accuracy of the nearly

circular approximation for small values of r is already

99
reflected in the figures of tables 6.1-5,

In tables 7.1 and 7.2 we display oi(O), oi(l), oi(l) and
E{é(i)}, i=1,2, based on the exact approach, on the nearly cir-
cular approximation and on the asymptotic expansions in (7.13),
eee3(7.15) (omitting the order terms). The examples of table
6.1 (r2 = 1/11) and 6.6 (r2 = 4/9) are considered. Even for the

case r, 8 4/9 the asymptotic expressions yield remarkably good

2
results. Note that the numerical results suggest that the coef-

ficients of rg

and Ué(i) based on the approaches sub i, and sub ii. will differ.

in the asymptotic expansions of 02(0), 02(1)—02(0)
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TABLE 7.1

The case A = 0,4k, r, @ 10/11, 62 a 1,
exact gearly asymp=

circular totic
02(0) 0.04925 0.04928 0.04828
01(0) 0.51075 0.51072 0.51072
02(1) 0.10u42Y4 0.10430 0.,10453
01(1) 1.74060 1.74066 1.74089
05(1) 0.,05509 0,05500 0.05539
ci(l) 1.49621 1.49623 1.49615
E{§(2)} 0.05059 0.050862 0.050562

(1)
E{x } 0.56750 0.56748 0.56757
TABLE 7.2

The case A @ 0,09, r, B 5/9, 62 = 10.
exact Qearly asymp-

circular totic
02(0) 0.1633 0.1628 0.1623
01(0) 0.3868 0.3872 0.3877
02(1) 0.5909 0.5816 0.5630
01(1) 0.8132 0.8038 0.7853
05(1) 0.5001 0. 4671 0.u431y
oi(l) 0.4608 0.4874 0.5160

(2)

E{x } 0.6003 0.6029 0.6058
E{E(l)} 0.249L 0.2228 0,1942
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IV.2. THE ALTERNATING SERVICE DISCIPLINE - A RANDOM WALK
APPROACH

IV.2.1. Introduction

The preceding chapter has been devoted to the analysis of the
two-dimensional queue length process of the alternating service
model. This process cannot be immediately identified with a two-
dimensional random walk of the type studied in part II, due to
the complicated dependency introduced by the alternating charac-
ter of the service discipline, However, the kernel of the process

(see (ITI.2,2.4) and cf, chapter III.2 for the notation used),
(1.1) Z(P1’p2) = pyP, - B(pl,p2)

8 pyp, - Bi(k(l—ripl-r2p2)) BZ(A(l-rlpl—rzpz)),
lp | <1, [p,] <1,
can be interpreted as the kernel of a two-dimensional random walk
of the type studied in part II; actually it is a Poisson kernel,
This last fact has been exploited in chapter III.2, on which the
numerical analysis of the preceding chapter was based.

In the present chapter we make no use of these specific
properties of the kernel Z(pl,pz). We only observe that Z(pl,pz)
can be viewed as the kernel of a two-dimensional random walk of
the general type considered in chapter II.3. In the analysis of
this random walk an essential role is played by the complex
singular integral equation (II.3.6.15), the solution of which
yields a contour L and a function A(z) defined on this contour
(in the exchangeable case of chapter II.2 L is a circle and the

integral equation reduces to Theodorsen's integral equation).
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The investigation of the problem of the numerical determi-
nation of L and X(z) is the main goal of this chapter., We have
decided to perform this investigation not for an arbitrary random
walk but for the alternating service model, because for this
model numerical test material has been obtained in chapter 1.

For testing purposes we thus again consider ci(O), ci(l) and
01(1), and finally the mean queue lengths E{z(i)} (ef., (1.2.2)

and (1.2.5)).

Remark 1.1 In fact we shall restrict ourselves to three of the
six cases considered in section 1.6, viz. those of tables 1.6.1,

1.6.3, 1.6.6. In these cases, with the random walk notation (x,y),

5
E{x} = 2 : |
x} 5 B(pq pz)p1=1,p2=1

5
5%, B(Pi,P2)lp

In the other three cases E{x} > 1, E{y} < 1. This seems to imply

Ar1(61+82) <1,

E{y}

) ) Ar2(61+62) <1.
1—1,p2—1

that in the three omitted cases the random walk is non-recurrent;
however, the two-dimensional queue length process of the alter-
nating service model is ergodic for these cases, because
aam kiﬁi + A262 < 1., We meet here a phenomenon which deserves some
explanation.

The random walk studied in part II is homogeneous, in the

sense that x X (zn+1 - Xn) is independent of whether Xn=0

n+l - Zn

or y. >0 (x_=0 or x >0); the boundary behaviour is not basically
In =n =n

different from the behaviour in the interior of the lattice,

except for the impossibility of crossing the boundaries. The cru-

cial observation is that there exist infinitely many random walks

with the same kernel, hence with the same behaviour in the
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interior of the lattice, but without the homogeneity property,
i.e. with a deviating behaviour on the boundaries, The inhomogen=
eity may be such that, although there is a drift to, say, the
south-east on the interior of the lattice (E{x} > 1, E{y} < 1),
a strong drift to the west along the x-axis compensates the
drift to the east to make the process ergodic.

This phenomenon occurs in three of the six cases considered
for the alternating service model. To see this, again consider
its random walk interpretation with the kernel (1.1). Roughly
speaking, as long as at least one customer of each type is pres-
ent (the interior of the lattice) service is alternating; the
kernel in fact corresponds to a queueing model in which service
is given in batches of size two (one customer of each type) with
service time distribution B,(.) * B,(.). But when only type-1
(type~-2) customers are present (the boundaries), there may be a
succession of - mostly relatively short - services of these cus-
tomers, with service time distribution Bi(') (BZ('))' In the case of
tables 1.6.2, 1.6.4=5, E{x}=ir (B, +8,) > 1, E{y}=ar,(8,;+8,) <1,
and the drift to the west on the x-axis makes the queue length
process ergodic.

A similar phenomenon occurs in the coupled processors model,
cf. section III.3.7; the work load process is ergodic if e.g.
< 1 but b, <1 (server 1 works at a different speed

a, > 1, a

1 2 2
when server 2 is idle - inhomogeneity).

The inhomogeneity property causes no complications for the
numerical analysis when E{x} < 1, E{y} <1, but it does when

E{x} > 1. Since we have restricted ourselves in chapter II.3 to

the case E{x} <1, E{y} <1, and our main goal in the present
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chapter is to expose the numerical analysis of L and A(z) for
the random walk of chapter II.3, we have decided to omit further

consideration of the three cases of tables 1.6.2, 1.6.4, 1.6.5.

The organization of the chapter is as follows. At the end of
this section we collect those results of chapter IT.3 which are
most important for the sequel. In section 2 oi(O), oi(l) and
0&(1) are expressed as contour integrals over the contour L,
thus establishing the link with chapter II,3., The numerical analy-
sis of both the basic integral equation for L and jA(z), and the
expressions for oi(O), 0;(1) and oi(l) is discussed in section 3.
Numerical results are presented in section 4. It will turn out
that the numerical results for the mean queue lengths show an
excellent agreement with those obtained in section 1.6. However,
as can be expected, not making use of the specific properties of
the kernel does complicate the numerical analysis, in comparison
with that of section 1.3.

In the following we want to apply theorem II.3.3.1, the main
theorem of chapter II.3. First we check that the conditions of

the theorem are fulfilled. It is easy to show that
(1.2) p(0,0) = sl(x) BQ(A) > 0.

Also, conditions (11.3.1.1), (II.3.1.3) and (II.3.3.4) (for r=1)
are trivially satisfied for the service time distributions chosen
in section 1.6 and section 4, Furthermore, as remarked above, in
the examples of section 4 E{x} <1, E{y} <1, Verification of
(IT.3.2.26) for r=1, which guarantees smoothness of the contours
81:=Sl(1) and 82:=82(1), is more difficult. The functions A(g,s)

and B(g,s), cof. (IT.3.2.2), are for the service time distributions
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chosen in section 4 given by

2 3 Boh -1
Alg,s) mg’ - g Als[B1 + 82{1+———(1—r1gs-r2gs )1,
3

- BoA -
Bl(g,s) = g2 - g3xzs 1[B1 + 62{1+—§—(1-r1gs—r2gs 1)}].

Substituting the parameter values chosen in the three cases of
section 4, it can be checked that indeed here for all s=ei¢,

0 <¢ < 2m, cf. (II.3.2.17), Re[A(g,s)/(A(g,s) + B(g,s))] > 0,
Re[B(g,s)/(A(g,s) + B(g,s))] > 0, hence S, and S, are smooth,

The plot figures of S1 and S2 confirm this (see figure 13).

Figure 13

The contours S, (——) and 82(---) for the case of table 1.6.1:

1

A = 0.44, v, @ 10/11, B, & 1.

1
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We are now ready to apply theorem II1,3.3.1. This theorem
states that there exist a pair of functions pl(z):=p1(1,z),
pz(z):=p2(1,z) and a smooth contour L:=L(1), satisfying (II.3.3.1)
1yea.,1vs

(1.3)
i, pi(z) is regular and univalent for z € L+,

continuous for z € L' U L,
P,(2z) is regular and univalent for z € L,

continuous for z € L™ U L;

ii, pi(z) maps Lt conformally onto S

p,(2) maps L~ conformally onto S,3
iii. (pI(Z),p;(z)) is a zero of the kernel Z(1,p1,p2) vz € L;

iv. pl(O) = 0, %E Pl(Z) >0,
z=0
P,(®) = 0, 0 <1lim |zp,(2)| < w;
moreover with g(1,s) defined by lemma II.3.2.1 and (II.3.2.15),

we may write:

(1.4) pI(z) i)‘(Z)) eiA(Z),

g(l,e

b2) - g(1,eiM (@) i@

with A(z):=1(1,2z) a real monotonic function of z € L, increasing
by 2m if z traverses L once anti-clockwise; by specifying A(1)=0,
L is uniquely determined,

pi(z) and pz(z) are given by (II,3.6.14) with L and A(z)
determined by the complex singular integral equation (II.3,6,15)

(or the equivalent integral equation (II.3.6.17)):

. _ ! ix(g)y otz _ g+l,dg
(1.5) ix(z) - In z = 7FIcéL{log g(1,e )}[E:E E:T]TT’

z € L,
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with
(1.8) L= {z: z:p(¢>)ei¢, 0 < ¢ < 2w}y
(1.7 8(6) := Alp(¢)e’®), 0 <¢ < 2m.

Separating real and imaginary parts in (1,5) leads to two singu-
lar integral equations in the two unknown functions p(.) and

8(.).
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1V.2.2. Preparatory results

In this section oi(.) will be expressed as contour integrals

over the contour L. From (III.2.1.8) it follows for z € L:

(2.1) ol(pl(z)) - 02(p2(2)) = HOH(Z),

with ‘ _
1 -rpy(2) - ropy(z) ¥ -
(2.2) H(z) = — m ~ [pz(z) + 82(p1(z),p2(z))],
pz(z) - Bz(pl(z),pz(z))

z € L,

and (cf. (III.2.2.15) and the discussion preceding it),

(2.3) HO = 1-a @ 1—A161—X282.

The regularity properties of 01(.) and 62(.) implied by
(ITI.2.1.7), the results for pl(.) and p2(.) stated in (1.3) and

the fact that

lp,(2)] <1, z €1', |pj(2)| <1, z €1,

lp,(2)| <1, z € L7, [py(2)] <1, z €1,

imply that
(2.4) Ol(pl(Z)) is regular for z € L+, continuous for z € L+UL,
Gl(Pl(Z)) o E 01(0);
2=0
(2.5) 0,(py(2)) is regular for z € L~, continuous for z € L UL,
02(p2(z)) . = 02(0).

The relation (2.,1) together with the conditions (2.4), (2,5)
constitutes a Riemann boundary value problem for the contour L:

Determine a function ¢ such that
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¥(z) m 01(p1(2)) - 0,(0) is regular for z € Lt

. +
continuous for z € L UL,

¢(z) B 0,(p,y(2)) - 0,(0) is regular for z € L,

continuous for z € L UL,
®(z) »~ 0 for |z| » o,
ot () - ¢T(t) = (1-a)H(t), t € L.

The function H(z) (and H'(z)) satisfies a H6lder condition on L.
Hereto first note that, according to section II.3.7, pI(z) and
p;(z) are regular on L; next apply the results listed at the end
of section I.1.3; for z=1 the denominator of the expression in
(2.2) is zero, but H(1) and H'(1l) exist and are finite.

The solution of the boundary value problem is given by:

1-a H(g) -
¢(z) = J dz, z € L UL
2'n' C,EL [ 3
hence
1-a H(g) +
(2.8) g.(p,(2)) = 5= [ dg + o, (0), z €L,
1¥1 2mL ZEL =2

_ 1-a H(g) -
(2.7) 02(p2(z)) 2 5T géL -7 dg + g, (o), z €L,

and, using the Plemelj-Sokhotski formulas (I.1.6.4), for z € L:

H(Z)

1l-a l-a
(2.8) o (pi(z)) = 22 H(z) + =2 7 g + 0,00,
1'P1 2 2mi €L [/
- _1-a 1-a H(Z)
(2.9) cz(pz(z)) =-22 H(z) + 5T géL e dz + 02(0).

We can now determine ci(O), oi(l) and 0%(1). Letting z-+ 0

in (2.8) yields:
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HCE) dg + 02(0).

;
gL ©

Y

01(0) = 5 ==

Combination of this relation with (1.2.7) shows that

_ _ 1 H(g)
1 H(g)
2.11 = 1(1- -1 H(Z) )
( ) 02(0) i(t-a) [t VTS ;éL : dzl

Taking z=1 in (2.9) yields

l-a H(z) - H(1)
(2.12) 0,(1) = 5= J —F——=2dg + 0,(0).
2 2m1 ZEL [4 1 2

An expression for 01(1) follows from (2.12) and (1.2.6), or from
(2.8) (a comparison of both derivations, or a straightforward
calculation, shows that H(1) m 2(r1-r2)/(1—a)). From (2.9) and

section I.1.10 (note that H'(z) satisfies a Hdlder condition on

L):
d - dH(z) 1-a H'(z)
-— o,(p,(z)) =-1(1-a) + 53— [ === dg.
dz %o P2l 7T CE AR T N T
Since pg(l) =1,
- - 1
(2.13) 0}(1) = (1/(p;(1 ") [~3-a)ar() + 222 ; By

2T rEL z-1

(1/¢pyn ") 1573 L O

271 dzl.

Similarly oi(l) can be determined (see also (1.2.5)). Finally,

the mean queue lengths E{ﬁ(l)} follow from (1.2.2).
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1V.2.3. The numerical approach

In this section we discuss the numerical analysis of both
the integral equation (1.5) for L and A(z), and the expressions
(2.10)4,04.,(2,13) for ci(O), 02(1) and oé(l). Our numerical ex-
periments as described below show the possibility of obtaining
accurate numerical information concerning the alternating ser-
vice model by starting from the theory exposed in chapter II.3,
However, as will become clear in the sequel, there are still
several numerical questions left open, like the optimal choice
of iteration procedure, of integration procedure, etc. A detailed
investigation of these questions is considered to be outside
the scope of the present study.

The main problem to be studied in this section is the numeri-
cal solution of the complex singular integral equation (1,5) to
determine L and A(z), or p(¢) and 6(¢). Equation (1.5) may be
regarded as a generalization of Theodorsen's integral equation,
which in section 1.3 has been solved by an iterative procedure,
which turned out to converge rapidly (see Gaier [9] for a dis-
cussion of convergence conditions).

Denoting by Ti(p,e)(¢), T2(p,8)(¢) the real and imaginary
part of the righthand side of (1.5) we can rewrite this equation

in the following way:

(3.1) p(d)

exp[-T,(p,8)($)] ,

8(¢) ¢ = Tz(p,e)(¢).

We solve (3.1) by the following iteration procedure:
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(3.2) pn+1(¢) = exp[-Tl(pn,Bn)(¢)],

en+1(¢) - ¢ = Tz(pn,en)(¢),

n=20,1,..., 0 €¢ <2m,

with

p0(¢)
8,(¢)

1,

¢

Two observations are in order concerning this procedure. Firstly,
we have not proved that the procedure converges to the right
solution, although it will appear to do so in the cases con-
sidered. Secondly, several other iteration procedures can be

and have been studied; procedure (3.2) has been chosen because
of its convergence qualities and because it seems to be the most
natural generalization of (1.3.3).

Convergence turned out to be genérally somewhat slower than
in (1,3.3); this holds in particular for p(.). Iteration was
continued until the differences between successive iterations

5

of both p(.) and 6(.) were in absolute value less than 10 °.

In one case this required as much as 19 iterations.

Remark 3.1 The integral equation for the real functions p(¢)
and 6(¢) can be written as an integral equation for one complex

function. To achieve this we put
(3.3) n($) := §(¢) - i log p(B(4)), 0 < ¢ < 2m,

where B(¢) denotes the inverse of 68(¢) (note that 8(¢), being
strictly monotonic, has an inverse), and substitution into (1.5)
yields:

2m .
(3.4) ng) = ¢ + 5% / log g(1,e™®) {cot 3(n(a)-n(¢))
0

- cot in(adin'(a) da, 0 < ¢ < 2m,
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Note that, cf. (1.6) and (1.7),

L = {z: z=ein(¢), 0 < ¢ <21},

A(z) = ANy L (B ()it

When g(l,ela) is real and positive, (3.4) is equivalent with
Theodorsen's integral equation.

One can solve (3.4) with an iteration method completely
analogous to (1.3,3). Preliminary numerical experiments suggest that

convergence may in many cases be faster than via (3.2).

As in chapter 1, all integrals have been evaluated using
the trapezium rule. Again care has to be taken of the singular-
ities; in particular in (1.5) we subtract from the integrand in

the righthand side:

ir(z)y z#z 1
z=z  °

log g(1,e
the contour integral of this term equals zero., The zero g(i,s),
occurring in this and many other formulas, has been evaluated
using a procedure based on the secant method.
In performing the integrations for the iterations of (1.5),

there is no need to consider the interval [T,2m]. This is implied

by the following lemma,

Lemma 3.1
i. g(1,8) mgll,s), fs| = 13
ii. z €L =7z €L, A(Z) = 21 - A(z), z € L.

Proof The lemma in fact holds for the general random walk of
chapter II,3. Statement i, then follows from the definition of

g(1,8), cf. (IT.3.2.10) and (II.3.2.15), By putting n=z in
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(1.5) it follows that

(3.5) exp{ir(z) ~ 1n z} = exp{- == J_  1log g(l,eik(n))
n€L

+

'|I3|
|

N
=3
+
[y
—
Ia
=
—
w

z € L,

=3
N
=3
1
o

with T the reflection of L w.r.t. the real axis. Relation (3.5)

is equivalent with

(3.8) exp{i(2m - A(z) - 1n 2)} = exp{-ix(z) - 1n Z}
= exp{giv /_log g(l,elx(n)){nié - H;%Fi%}, z € L.
ml neL n-z n

Using i. it follows that, if ii. is correct, then A(z) and L
are determined by (3.6). The uniqueness of L and X(z) now proves

the statement. m)

Remark 3.2 In a similar way the following is proved (see also
remark II.3.6.3), If in the general random walk of chapter II.3
x and y are interchanged (in our special case this amounts to
interchanging ry and rz) and if g(1,s), A(z) and T correspond to

the thus transformed random walk then for r=1,

~

g(l,s) = g(1,%);

Ta{z: % € L} , (the inverse of L w.r.t. the unit circle)
T2y = D) = - ady, z €T,

zZ
(or 2m = A(%), depending on convention).

According to lemma 3.1 we can restrict ourselves in (3.2) to
¢ € [0,m). Numerical calculations show that the functions p(¢)

and 6(¢) generally change more rapidly for ¢ close to 0 than for
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other values of ¢. Therefore in the numerical integration a finer
subdivision has been chosen for the interval [0,1] (60 points)
than for the interval [%,W] (24 points).

Once p(.) and 6(.) have been evaluated, 02(0), 02(1) and
05(1) (and hence E{§(i)}, i=1,2) can be determined using (2.11),
cse3(2.13). All three integrals have been calculated using the
trapezium rule.

The evaluation of the expression in (2.11) is completely
straightforward. The evaluation of the expressions in (2.12) and
(2.13) raises some problems, mainly connected with the behaviour
of H(g) (cf. (2.2)) near =1, H(Z) = H(p(¢)ei¢) may be rather
sharply peaked at ¢=0 (and ¢=27m) (with H(1) = Z(rl—rz)(l—a), cf.
below (2.12)). This complicates the numerical evaluation of the
integrand near and at z=1 in (2.12) and (2.,13). Obviously H'(1)
and H'"(1), respectively, should be substituted for the integrand
values at =1 in (2.12) and (2.13). Again they could be sub-
tracted from these integrands (the contour integrals of the sub-
tracted terms equal zero). The effect of the subtraction on the
value of 02(1) is negligible, but not so on the value of oé(l);
however, as far as mean queue lengths is concerned, the insen-
sitivity of E{i(i)}, i=1,2, w.r.t. 0})(1) (cf. section 1.6)
removes this effect again. We have actually not subtracted H'(1)
and H"(1), but in one case we have doubled the number of inte-
gration points for Ué(i)' If a very high accuracy is needed in

the evaluation of the integrals (2.12) and (2.13), then a more

extensive investigation is required.

Remark 3.3 Several derivatives have to be evaluated, For g'(1,s)
an explicit expression has been derived, The other derivatives

have mostly been determined using cubic splines.
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1V.2.4. Numerical results

For the sake of comparison with the results of chapter 1 we

have again chosen, cf. (1.6.1),

(4.1) B,(p) = e B1P = 7P, By(p) = (1 + E)‘S’, Re o > 0,
for the LST's of the service time distributions of the two types
of customers. As observed in remark 1.1, only three of the six
examples of section 1.6 have been considered, i.e., those corre-
sponding to tables 1.6.1, 1.6,3, 1.6.6, The contour L has been
plotted in figure 14 for the first of these three cases (see
also figure 13 for plots of the corresponding S1 and 82). Our
experiments with the three cases suggest that L differs more
from the unit circle (the exchangeable case) as r,-r, grows (and
also the iteration procedure appears to converge slower).

The computer programs were written in Fortran and the cal-
culations were performed on a Cyber 175 computer, The values
obtained for ci(O), Gi(l), cl(1) and E{E(i)} in the three cases
under consideration are listed in table 4,1, together
with the values obtained for these cases in chapter 1. The agree-
ment is generally good. However, a drawback of the method of the
present chapter appears to be a sensitivity of 02(1), 01(1) and
in particular of oé(l) for the correct values of the p(.) func-
tion determining L (see also the discussion concerning the
behaviour of H(Z) near =1 in (2.12) and (2.13)). This effect
could explain the differences between the values found here and
those in the preceding chapter. The agreement between ci(l) and
mean queue length values is generally still excellent, due to

the insensitivity of these quantities for small values of r, (see
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the conclusions in section 1.63; see also the case with r2=4/9).

Remark 4,1 The total CPU time involved in calculating the exact
results for one particular example did not exceed 15 seconds,

Each iteration of p(.) and 8(.) demanded 0.6 seconds CPU time.

Summarizing, the numerical experiments of this chapter show
that it is indeed possible to obtain accurate numerical values
for quantities related to the two-dimensional random walk stud-
ied in chapter II.3. For the mere purpose of studying the alter-
nating service model the direct approach of chapter 1 is better
suited. In particular the numerical analysis of the complex
singular integral equation (II.3.6.15) is considerably more
complicated than that of Theodorsen's integral equation (compare

also the statements in remark 1.6.1 and remark 4.1).

Figure 1k
The contour L (——) for the case of table 1.6.1:
A= 0.44, ry = 10/11, 62 a 1 (--- denotes the

unit circle) .
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TABLE 4.1

v.24

Comparison of results obtained via the methods of the present

chapter and of chapter 1, for

the cases

.

A. A B 0,L4b, r, | 10/11, 62 = 1 (table 1,6.1),
B. A m 0,4y, r, = 5/6 82 = 1 (table 1.6.3),
Ce X = 0.09, ry = 5/9 , 62 = 10 (table 1.6.6).
Case A Case B Case C
chap. 2 | chap. 1 chap. 2 | chap. 1 chap. 2 | chap. 1
02(0) 0.04911 [ 0.04925 0.09117 [ 0.09128 0,16323 [ 0.16325
01(0) 0.51089 | 0.51075 0.46883 | 0.46872 0.38677 | 0.38675
02(1) 0.10523 {0.10424 0.20045 1 0.19960 0.59097 | 0.59094
61(1) 1.74159 | 1,74060 1.53378 | 1,53293 0.81319{ 0.81318
0%(1) 0.05563 | 0.05509 0.10851 | 0.10948 0.49974 | 0.50012
ci(i) 1.49610 [1.49621 1.27042 [ 1.27043 0.46110 | 0.46079
E{i(z)} 0.05047 | 0.05059 0.09542 | 0.09543 0.60032 | 0.60029
E{E(l)} 0.56763 |{0.56750 0.52704 [ 0.52703 0.24909 | 0.24939
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Alternating service discipline, 12, 271, 345, 377

Analytic, 26

~ arc, 23

~ continuation, 36, 110

~ contour, 23

Aperiodicity, see strong aperiodicity
Arc length, 22

Argument principle, 132

Birth- and death process, 242
Boundary value problem, 7, 34
- with a pole, 55
- with a shift, 1614
simultaneous -, 250
Dirichlet -, see Dirichlet
Riemann -, see Riemann
Riemann-Hilbert -, see Riemann-Hilbert
Wiener-Hopf -, see Wiener-Hopf
Busy period, [p],
- of an M/G/1 gqueue, 300, 328
- of an M/M/1 queue, 246
residual - of an M/G/1 queue, 299
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Caratheodory's theorem, 135
Cauchy integral, 26

singular -, 27
Cauchy principal value, 19, 27
Cauchy-Riemann conditions, 52
Complex integral equation, see integral equation (simultaneous)
Component random walk, see random walk '
Conformal mapping, 8, 63, 65
Conformally equivalent, 66
Connected set, 64, 111
Corresponding boundaries principle, 67
Corresponding boundaries theorem, 66
Counterclockwise, 22

Coupled processors, 13, 288

Derivative of singular integral, see singular integral
Dirichlet problem, 52, 225, 278
Domain, 64

Exchangeable, 85

Fan's theorem, 341
Fredholm integral equation, see integral equation
Function element, 110
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Harmonic, 52

Hdélder condition, 20, 25
Holder constant. 20, 25
Hdlder index, 20, 25

Homogeneous random walk, see random walk

Implicit function theorem, 109
Index, 40
Indicator function, 79
Inhomogeneous random walk, see random walk
Integral equation
Fredholm -, 165
simultaneous -, 176, 197, 209, 382
Theodorsen's, 72, 96, 220, 236, 346

Jacobi elliptic funetion, [sn], 251
Jordan arc, 22

Jordan contour, 67

Kellogg 's theorem, 68
Kernel, 3, 81, 87, 132, 153’ 1889 2703 27"‘[’ 297

Liouville's theorem, 34
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Lower sheet, see sheet

Lyapounov contour, 68

Many server queue, 319
Maximum modulus theorem, 54
Maximum principle, 54
Meromorphic, 65

M/G/1 queue, 272, 296, 317
M/G/2 queue, 14, 319

Nearly circular approximation, 15, 279, 35l

Non-recurrent, 83

Null-recurrent, 83

Number of customers present in the system, see queue length
Numerical evaluation,

- of conformal mapping, 345

- of singular integral equations, 345

Phase type method, 320

Piecewise smooth, 23

Plemelj-Sokhotski formula(s), 32, 33

Poisson formula, 54

Poisson kernel, 6, 21k, 275

Positive recurrent, 83, 142

Principal value, see Cauchy principal value

Principle of corresponding boundaries, see corresponding
boundaries

Principle of permanence, 112
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Priwalow's theorem, 208
PS formula(s), see Plemelj-Sokhotski formula(s)

Queue length

- at time t, [Et]’
alternating service discipline, 347
queues in parallel, 242

- immediately after departure, [En],
alternating service discipline, 271, 347
mean -,

alternating service discipline, 347

Queues in parallel, 11, 241

Random walk,
component -, 82
homogeneous -, 378
inhomogeneous -, 379
two-dimensional ~, 77, 377
symmetric two-dimensional -, 85
general two-dimensional -, 151
Rectifiable, 22
Regular at a point, 26, 64
Regular in a domain, 64
Regularizing factor, 56
Return time, 129
Riemann boundary value problem, 4, 39, 102, 148, 181, 197,
200, 208, 210, 384
homogeneous -, U1
inhomogeneous -, 45
Riemann~Hilbert boundary value problem, 50, 225, 252

homogeneous -, 60



404 Subject index

inhomogeneous -, 61
Riemann mapping theorem, 66

Rouché's theorem, 82

Schwarz formula, 53
Sheet,
lower sheet, 256
upper sheet, 256
Simultaneous integral equations, see integral equation
Simply connected curve, 23
Simply connected set, 66
Singular Cauchy integral, see Cauchy integral
Singular integral, 19
derivative of -, 38
Singular integral equation, 35
Skipfree, 7
S1lit, 218, 275
Smooth arc, 22
Smooth contour, 23
Sn-function, 251
Starshaped contour, 72, 157
Strong aperiodicity, 86

Theodorsen's integral equation, see integral equation
numerical analysis of -, 349
Theodorsen's procedure, 70

Two-dimensional random walk, see random walk
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Univalent at a point, 65
Univalent in a domain, 65

Upper sheet, see sheet

Waiting time in M/G/2, [w], 337
Wiener-Hopf boundary value problem, 302
Wiener-Hopf decomposition, 299, 326
Workload, [v.],

- of coupled processor model, 289

- of M/G/2 queue, 321
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