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Preface 

Combinatorics and graph theory have mushroomed in recent years. Many 
overlapping or equivalent results have been produced. Some of these are 
special cases of unformulated or unrecognized general theorems. The body 
of knowledge has now reached a stage where approaches toward unification 
are overdue. To paraphrase Professor Gian-Carlo Rota (Toronto, 1967), 
"Combinatorics needs fewer theorems and more theory." 

In this book we are doing two things at the same time: 

A. We are presenting a unified treatment of much of combinatorics 
and graph theory. We have constructed a concise algebraically­
based, but otherwise self-contained theory, which at one time 
embraces the basic theorems that one normally wishes to prove 
while giving a common terminology and framework for the develop­
ment of further more specialized results. 

B. We are writing a textbook whereby a student of mathematics or a 
mathematician with another specialty can learn combinatorics and 
graph theory. We want this learning to be done in a much more 
unified way than has generally been possible from the existing 
literature. 

Our most difficult problem in the course of writing this book has been to 
keep A and B in balance. On the one hand, this book would be useless as a 
textbook if certain intuitively appealing, classical combinatorial results were 
either overlooked or were treated only at a level of abstraction rendering 
them beyond all recognition. On the other hand, we maintain our position 
that such results can all find a home as part of a larger, more general structure. 

To convey more explicitly what this text is accomplishing, let us compare 
combinatorics with another mathematical area which, like combinatorics, has 
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Preface 

been realized as a field in the present century, namely topology. The basic 
unification of topology occurred with the acceptance of what we now call a 
"topology" as the underlying object. This concept was general enough to 
encompass most of the objects which people wished to study, strong enough 
to include many of the basic theorems, and simple enough so that additional 
conditions could be added without undue complications or repetition. 

We believe that in this sense the concept of a" system" is the right unifying 
choice for combinatorics and graph theory. A system consists of a finite set 
of objects called "vertices," another finite set of objects called "blocks," and 
an "incidence" function assigning to each block a subset of the set of vertices. 
Thus graphs are systems with blocksize two; designs are systems with con­
stant blocksize satisfying certain conditions; matroids are also systems; and 
a system is the natural setting for matchings and inclusion-exclusion. Some 
important notions are studied in this most general setting, such as connectivity 
and orthogonality as well as the parameters and vector spaces of a system. 
Connectivity is important in both graph theory and matroid theory, and 
parallel theorems are now avoided. The vector spaces of a system have 
important applications in all of these topics, and again much duplication is 
avoided. 

One other unifying technique employed is a single notation consistent 
throughout the book. In attempting to construct such a notation, one must 
face many different levels in the hierarchy of sets (elements, sets of elements, 
collections of sets, families of collections, etc.) as well as other objects 
(systems, functions, sets offunctions, lists, etc.). We decided insofar as possible 
to use different types of letters for different types of objects. Since each topic 
covered usually involves only a few types of objects, there is a strong tempta­
tion to adopt a simpler notation for that section regardless of how it fits in 
with the rest of the book. We have resisted this temptation. Consequently, 
once the notational system is mastered, the reader will be able to flip from 
chapter to chapter, understanding at glance the diverse roles played in the 
middle and later chapters by the concepts introduced in the earlier chapters. 

An undergraduate course in linear algebra is prerequisite to the com­
prehension of most of this book. Basic group theory is needed for sections 
lIE and XlC. A deeper appreciation of sections IlIE, lIlG, VIlC, and VIln 
will be gained by the reader who has had a year of topology. All of these 
sections may be omitted, however, without destroying the continuity of the 
rest of the text. 

The level of exposition is set for the beginning graduate student in the 
mathematical sciences. It is also appropriate for the specialist in another 
mathematical field who wishes to learn combinatorics from scratch but from 
a sophisticated point of view. 

It has been our experience while teaching from the notes that have evolved 
into this text, that it would take approximately three semesters of three 
hours classroom contact per week to cover all of the material that we have 
presented. A perusal of the Table of Contents and of the" Flow Chart of the 
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Sections" following this Preface will suggest the numerous ways in which a 
subset of the sections can be covered in a subset of three semesters. A List of 
Symbols and an Index of Terms are provided to assist the reader who may have 
skipped over the section in which a symbol or term was defined. 

As indicated in the figure below, a one-semester course can be formed 
from Chapters I, II, IX, and XI. However, the instructor must provide some 
elementary graph theory in a few instances. The dashed lines in the figure 
below as well as in the Flow Chart of the Sections indicate a rather weak 
dependency. 

I II III 

IX XI VII ---->- VIII VI 

If a two-semester sequence is desired, we urge that Chapters I, II, and III 
be treated in sequence in the first semester, since they comprise the theoretical 
core of the book. The reader should not be discouraged by the apparent 
dryness of Chapter II. There is a dividend which is compounded and paid 
back chapter by chapter. We recommend also that Chapters IV, V, and VI 
be studied in sequence; they are variations on a theme, a kind of minimax or 
maximin principle, which is an important combinatorial notion. Since 
Chapter X brings together notions from the first six chapters with allusions to 
Chapters VII and IX, it would be a suitable finale. 

There has been no attempt on our part to be encyclopedic. We have even 
slighted topics dear to our respective hearts, such as integer programming 
and automorphism groups of graphs. We apologize to our colleagues whose 
favorite topics have been similarly slighted. 

There has been a concerted effort to keep the technical vocabulary lean. 
Formal definitions are not allotted to terms which are used for only a little 
while and then never again. Such terms are often written between quotation 
marks. Quotation marks are also used in intuitive discussions for terms which 
have yet to be defined precisely. 

The terms which do form part of our technical vocabulary appear in 
bold-face type when they are formally defined, and they are listed in the Index. 

There are two kinds of exercises. When the term "Exercise" appears in 
bold-face type, then those assertions in italics following it will be invoked in 
subsequent arguments in the text. They almost always consist of straight­
forward proofs with which we prefer not to get bogged down and thereby 
lose too much momentum. The word "Exercise" (in italics) generally 
indicates a specific application of a principle, or it may represent a digression 
which the limitations of time and space have forced us not to pursue. In 
principle, all of the exercises are important for a deeper understanding of and 
insight into the theory. 

Chapters are numbered with Roman numerals; the sections within each 
chapter are denoted by capital letters; and items (theorems, exercises, figures, 
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etc.} are numbered consecutively regardless of type within each section. If 
an item has more than one part, then the parts are denoted by lower case 
Latin letters. For references within a chapter, the chapter number will be 
suppressed, while in references to items in other chapters, the chapter number 
will be italicized. For example, within Chapter III, Euler's Formula is 
referred to as F2b, but when it is invoked in Chapter VII, it is denoted by 
IIIF2b. 

Relatively few of the results in this text are entirely new, although many 
represent new formulations or syntheses of published results. We have also 
given many new proofs of old results and some new exercises without any 
special indication to this effect. We have done our best to give credit where 
it is due, except in the case of what are generally considered to be results 
"from the folklore". 

A special acknowledgement is due our typist, Mrs. Louise Capra, and to 
three of our former graduate students who have given generously of their time 
and personal care for the well-being of this book: John Kevin Doyle, Clare 
Heidema, and Charles J. Leska. Thanks are also due to the students we have 
had in class, who have learned from and taught us from our notes. Finally, 
we express our gratitude to our families, who may be glad to see us again. 

Syracuse, N. Y. 
April, 1977 
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Jack E. Graver 
Mark E. Watkins 
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CHAPTER I 

Finite Sets 

IA Conventions and Basic Notation 
The symbols 1\1, 7L., Q, IR, II< will always denote, respectively, the natural num­
bers (including 0), the integers, the rational numbers, the real numbers, and 
the field of order 2. In each of these systems, 0 and 1 denote, respectively, the 
additive and multiplicative identities. 

If U is a set, &(U) will denote the collection of all subsets of U. It is called 
the power set of U. In general, the more common, conventional terminology 
and notation of set theory will be used throughout except occasionally as 
noted. One such instance is the following usage: while " U 5;;; W" will con­
tinue to mean that U is a subset of W, we shall write "U c W" when 
U 5;;; Wand U =F W. (Thus U can be empty if W is not empty.) The cardi­
nality of the set U will be denoted by I U I, and &m( U) will denote the collec­
tion of all subsets of U with cardinality m. A set of cardinality m is called 
an m-set. 

The binary operation of sum (Boolean sum) of sets Sand Tin &(U) is 
denoted by S + T, where 

S + T = {x: XES U T; x ¢ S ('\ T}. 

In particular, S + U is the complement of S in U, and no other notation for 
complementation will be required. Since the sum is the most frequently used 
set-operation in this text, we include a list of properties which can be easily 
verified. 

For R, S, TE&(U), 

At S+T=T+8 

A2 (R + S) + T = R + (8 + T) 
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I Finite Sets 

A3 S+T=S~T=0 

A4 S + T = 0 ~ S = T 

AS S + T = (S u T) + (S f"\ T) 

M RU~+T)2~U~+~UT) 

A7 R f"\ (S + T) = (R f"\ S) + (R f"\ T) 

M R+~f"\T)2~+~f"\~+T) 

A9 (R + S) f"\ (R + T) £ R + (S u T) £ (R + S) u (R + T) 

AIO Exercise. Show that the inclusions in A6, AS, and A9 cannot, in general, 
be reversed. 

Because of Al and A2, the sum LSE.9' S where [/' £ &l( U) is well-defined 
if [/' i: 0. If [/' = 0, we understand this sum to be 0 . 

As usual, the cartesian product of sets Xl>"" Xm will be denoted by 
Xl X ••• X Xm. Thus 

Xl X ••• X Xm = {(Xl> ••• ,xm):xjEXjfori = I, ... ,m}. 

A function f from X into Y is a subset of X x Y such that 
If f"\ ({x} x Y)I = I for all x E X. Following established convention, 
f: X -+ Y will mean that f is a function from X into Y. For each x E X, 
f(x) is the second component of the unique element of f f"\ ({x} x Y). We 
shall adhere to the terms injection if If f"\ (X x {y})J ~ 1 for all y E Y; 
surjectioniflfn(X x {y})1 ~ lforallYE Y;andbijectioniflff"\(X x {y})J 
= 1 for all y E Y. 

We say sets X and Yare isomorphic if there exists a bijection b: X -+ Y, 
and we note that X and Yare isomorphic if and only if IXI = I YI. 

A (binary) relation on U is a subset of U x U. Let R j be a relation on Uj 

for i = 1,2. We say that (Ul> R l ) is isomorphic to (U2 , R2 ) if there exists a 
bijection b: Ul -+ U2 such that (x, y) E Rl if and only if (b(x), bey»~ E R2 • 

A binary relation R on U is reftexive if (u, u) E Rfor all U E U; R is symmetric 
if (u, v) E R implies (v, u) E R for all u, v E U; R is transitive if (u, v) E Rand 
(v, w) E R together imply (u, w) E R for all u, v, WE U. R is an equivalence 
relation if it is reflexive, symmetric, and transitive. 

Problems involving categories being outside the scope of this book, we 
find it best to ignore them, and we shall freely use such terms as "equivalent" 
and "equivalence relation" in regard to objects from various categories 
and not only to elements of some given set. Such disregard for categorical 
problems will be particularly flagrant as we treat in turn various notions of 
"isomorphism." For example, the "relation" of "is isomorphic to" is 
clearly an "equivalence relation" on the category of sets. 

We denote the set of all functions from Xinto Yby yx. Since 0 x Y = 0, 
ylli consists of a single function 0 which is an injection; in case Y = 0, 
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IA Conventions and Basic Notation 

it is a bijection, of course. If S s::: X, then the restricticm off to S, denoted by 
fis, belongs to ys and satisfies fis(x) ::= f(x) for all XES. 

A bijection b: U -+ U is called a permutatioR of U. The set of all permuta­
tions of U is denoted by II(U). The ideatity on U is the function lu E II(U) 
given by lu(x) = x for all x E U. 

The function f: X -+ Y induces two corresponding functions between 
.9'( X) and .9'( Y). One of these is also denoted by J, and f: .9'( X) -+ .9'( Y) is 
given by 

f[S] = {f(x): XES}, for all S E .9'(X). 

(Note that the choice of parentheses or brackets to surround the argument 
determines which of the two functions denoted by the symbolfis intended.) 
The set f[S] is the image of S Ullder f In particular, f[X] is the image off 
The other function induced by fis the functionf-1: 9(Y) -+ 9(X) given by 

f-1[T] = {X:f(X)ET}, forallTE9(Y). 

Iff is a bijection, its inverse, also denoted by f- 1, is a function f- 1: Y -+ X. 
By our convention, if y E Y,J-1[y] (= f-1[{y}]) denotes a subset of X, but 
iffis a bijection,j-1(y) denotes an element of X.fm.aps S iato Tiff[S] s::: T 
and ODto T iff[S] = T. We say fis a constantflUlCtion if If[X]1 ::;; 1. 

Let f: X -+ Y; S, T E .9'( X); U, WE.9'( Y). The following basic proper­
ties of functions and sets are readily verified: 

All f[S u T] = f[S] U f[T] 

All f[S n T] s::: f[S] nf[T] 

A13 f- 1[Uu W] =f-1[U] uf-1[W] 

A14 f- 1[U n W] = f- 1[U] nf- 1[W] 

A15 f[S + T] 2 f[S] + f[T] 

A16 f-1[U + W] = f- 1[U] + f- 1[W] 

A17 Exercise. Show that the inclusions in Al2 and A15 cannot, in general, 
be reversed. 

Let X, Y, and Z be sets. Let f E yx and g E ZY. The composite off by g 
will be denoted by gf. Clearly gfE ZX. We conclude the present section with 
a rapid review of some elementary properties of functions and some termi­
nology. 

A18 If bothf and g are injections (respectively, surjections, bijections), then 
so is gf. 

A19 

AlO g is an injection if and only if there exists h E yz such that hg = ly. 
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A21 Let g be an injection. If gil = gj2 for 11'/2 E yx, then 11 = 12' The 
converse holds if IXI ~ 2. 

A22 I is a surjection if and only if there exists j E XY such that.fJ = ly. 

A23 Let I be a surjection. If gd = gd for gl, g2 E ZY, then gl = g2' The 
converse holds if IZ I ~ 2. 

A24 I is a bijection if and only if there exists b E XY such that bl = Ix and 
Ib = I y. In this case b = 1-1, and so b is unique. 

A25 If X is finite and hE Xx, then h is a surjection if and only if h is an 
injection. 

If S s; X and h E Xx, we say h fixes S if h[S] s; S. If his = Is, we say 
h fixes S pointwise. 

If * is a binary operation on Y, then * induces a binary operation on yx 
which is also denoted by *. Thus 

(/1 * 12)(x) = 11(x) * lix), for all 11'/2 E yx, X E X. 

Note that if * on Y enjoys any of the properties of associativity, commu­
tativity, or existence of an identity, then that property is also enjoyed by * 
on yx. 

One final important convention: henceforth, all arbitrarily chosen sets 
will be finite unless explicitly stated otherwise. 

A26 Exercise. Let I: X --+ Y. Show that if I is an injection (respectively, 
surjection, bijection), then so is the induced function I: glI(X) --+ glI( Y), and 
conversely. 

A27 Exercise. Let I: X --+ Y. Show that if I is an injection (respectively, 
surjection, bijection), then /- 1 : glI( Y) --+ glI(X) is a surjection (respectively, 
injection, bijection), and conversely. 

IB Selections and Partitions 

Let U be a set and let S E glI( U). The characteristic function of S is the func­
tion 

given by 

Bl { I if XES; 
cs(x) = 0 if x E U + S. 

B2 Proposition. The lunction a: IK U --+ glI( U) given by 

4 
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is a bijection. Moreover, a- 1(S) = cslor all S E glI(U). 



IB Selections and Partitions 

PROOF. Clearly a is an injection. If S E 9(U), then a(cs) = S. Hence a is a 
~~. 0 

B3 Exercise. Let S, T E 9(U). Prove that 

and express CSuT in terms of Cs and CT. 

For a set U, a function s E NU is called a selection from U. If x E U, the 
number s(x) is the "number of times x is selected by s". The number 

lsi = 2: s(x) 
xeU 

is the cardinality (weight) of the selection s. If Is I = m, we say that s is an 
m-selection. The set of all m-selections from U is denoted by §m(U), and we 
let 

B4 

co 

§(U) = U §m(U) = NU. 
m=O 

If S E 9( U), we define the characteristic selection of S by 

( ) _ {I if XES; 
Ss X - o ifxE U + S. 

The difference between BI and B4 is subtle but important. In B4, the 
symbols 0 and I denote elements of N rather than II{. Of course, Cs and Ss 

are closely related, but since I + I gives a different "answer" in N than 
in IK, the characteristic function and characteristic selection are not the same 
thing. In particular, the correspondence S ~ Ss gives a natural injection of 
9( U) into §( U) under which S + T is not necessarily mapped onto Ss + ST, 

even though S n T is always mapped onto SSST for all S, T E 9(U). (Cf. B3.) 
A subcollection !2 s 9( U) of nonempty subsets of U is called a partition 

of Uif 

and 

Q n R = 0, for all Q, R E !2; Q =F R. 

The elements of !2 are called the cells of fl. If 1!21 = m, we call fl 
an m-partition of U. The collection of all m-partitions of U is denoted 
by IPm(U); IP(U) denotes the collection of all partitions of U. A 
fundamental identity satisfied by any partition !2 E IP( U) is 

B5 lUI = 2: IQI· 
Qe~ 
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I Finite Sets 

There is a natural multiplication on I?(U). Let ~,fA E P(U) and let 
flfA be the collection of nonempty subsets of the form Q n R where Q E fl 

and R EfA. 

B6 Exercise. Prove that if ~ E I? m( U) and fA E I? ,,( U), then ~fA E I? p( U) for 
some p :$; mn. Show, moreover, that this multiplication is commutative and 
associative and admits an identity in I?( U). 

The next result delineates the fundamental relationship between parti­
tions and equivalence relations. 

B7 Proposition. A necessary and sufficient condition that a relation R on a 
set U be an equivalence relation is that there exist a partition ~ E I?(U) 
such that (x, y) E R if and only if x and yare elements of the same cell 
of fl. 

PROOF. Let R be an equivalence relation on U. For each x E U let Sx = 
{w E U: (x, w) E R}. Since R is reflexive, x E Sx and so Sx :#= 0 for each 
x E U. Let x, Y E U and suppose WE Sx n Sy. Thus (x, w) and (y, w) E R. 
Since R is symmetric, (w, y) E R, and since R is transitive, (x, y) E R. Now 
let Z E Sy; hence (y, z) E R. Again by transitivity, (x, z) E Rand Z E SX' This 
proves that Sy £ SX' By a symmetrical argument we see that Sx £ Sy. Thus 
exactly one of the following holds for any x, y E U: Sx = Sy or Sx n Sy = 0. 
If !2 = {S: S = Sx for some x E U}, then !2 E IfJl{U). 

Conversely, let ~ E I?(U). Define the relation R on U by: (x, y) E R 
if x, Y E Q for some Q E fl. One readily verifies that R is an equivalence 
relation. 0 

B8 Proposition. Let f: B-,; U. Then {f-l[X]: x Ef[B]} is a If[B]I-partition 
ofB. 

PROOF. For each bE B, b Ef-l[X] if and only if x = f(b). Hence 
LXE/IBd-1[x] = B andf-l[x] nf-l[y] = 0 for x :#= y. Finally,J-l[x] :#= 0 
if and only if x Ef[B]. 0 

B9 Proposition. Let f: B -'; U. Let s: U -'; N be defined by s(x) = If-1[x]l. 
Then s is a IBI-selectionfrom U. 

PROOF. Clearly s E §(U). We have that 

lsi = L: If-1[x]1 = L: If- 1[x]1 = IBI· 
XEU xE/eB) 

The first equality here is the definition of lsi; the second follows from the 
fact that 101 = 0 and f-l[X] = 0 for x ¢f[B]; the third equality follows 
from B5 and B8. 0 
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IB Selections and Partitions 

If f: B -+ U, then the partition offis {f-1[X]: x Ef[B]}, and the selection 
offis the function s: U -+ N given by s(x) = If- 1[x]l. 

B10 Exercise. Prove that the functions f: B -+ U and g: C -+ U have the 
same selection if and only if there is a bijection b: B -+ C such thatf = gb. 

Bll Exercise. Prove that the functions f: B -+ U and h: B -+ W have the 
same partition if and only if there is a bijection b: f[B] -+ h[B] such that bf = h. 

B12 Exercise. Let f: X -+ Y. Define f1: §( Y) -+ §( X) by f1 (s) = sf for all 
s E §(Y). Show that f is an injection (respectively, surjection, bijection) if 
and only if f1 is a surjection (respectively, injection, bijection). 

B13 Exercise. Letf: X -+ Y. Definef2: I?( Y) -+ I?(X) as follows: if!l E I?( Y), 
thenf2(!l) consists ofthe nonempty members of the collection {f-1[Q]: Q E !l}. 
First verify thatf2(!l) E I?(X); then show thatfis an injection (respectively, 
surjection, bijection) if and only if f2 is a surjection (respectively, injection, 
bijection). 

The remainder of this section is concerned with the notion of "isomor­
phism" between objects of the kinds we have been considering. 

Functions f: B -+ U and g: C -+ Ware isomorphic if there exist bijections 
p: B -+ C and q: U -+ W such that f = q-1gp. The pair (p, q) is called a 
function-isomorphism. The selections s E §( U) and t E §( W) are isomorphic 
if there exists a bijection q: U -+ W such that s = tq. Such a bijection is 
called a selection-isomorphism. (These two definitions are illustrated by the 
commutative diagrams B14. In this and other such diagrams bijections are 
indicated by the symbol ~.) Partitions !l E I?(B) and ge E I?(C) are isomorphic 
if there exists a bijection p: B -+ C such that p[Q] E ge for all Q E.2. The 
bijection p is a partition-isomorphism. 

B14 f q 
B )U U ~ W 

+ + ~-/ 
C W 

N 
g 

B15 Exercise. Prove that in each of the above definitions, "isomorphism" is 
an equivalence relation. 

B16 Proposition. Let f: B -+ U and g: C -+ W. Let p: B -+ C and q: U -+ W 
be bijections. 

(a) If (p, q) is a function-isomorphism from f to g, then p is a partition­
isomorphism from the partition off to the partition of g and q is a selection­
isomorphism from the selection off to the selection of g. 
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I Finite Sets 

(b) If q is a selection-isomorphism from the selection off to the selection 
of g, then there exists a bijection p': B -+ C such that (p', q) is a function­
isomorphism from fto g. 

(c) Ifp is a partition-isomorphism from the partition off to the partition 
of g and if I U I = I WI, then there exists a bijection q': U -+ W such that 
(p, q') is a function-isomorphism from f to g. 

PROOF. (a) Let S be a cell of the partition of J, i.e., S = f- 1 [x] for some 
x E U. By A19, p[S] = p[J-l[X]] = g-l[q(X)], which is a cell of the par­
tition of g. Let s be the selection off and t the selection of g. Let x E U. By 
definition and A19, 

t(q(x)) = Ig-l[q(x)]1 = Ip-l[g-l[q(X)]]1 = If-1[x]1 = s(x). 

Thus tq = s. 
(b) With sand t as in the proof of (a), we assume tq = s. For any x E U, 

If- 1 [x]1 = s(x) = tq(x) = Ig-l[q(x)]I. 

Hence there exists a bijection Px:f-l[X] -+ g-l[q(X)]. These bijections for 
all x E U determine a bijectionp': B -+ C by p'(w) = Px(w) where w Ef-l[X]. 
Clearly f = q-lgp'. 

( c) Since p is a partition-isomorphism from the partition off to the par­
tition of g, we have 

{g-l[X]: x E W} = {p[J-l[X]]: x E U}. 

We may define q":f[B] -+ g[C] by choosing q"(x) to be the unique YEW 
such that g-l[y] = p[J-l[X]]. Clearly q" as defined is a bijection, and since 
lUI = I WI, it may be extended to a bijection q': U -+ W. One may easily 
verify that q'J = gpo 0 

A more succinct but somewhat weaker formulation of the above proposi­
tion is the following. 

B17 Corollary. Let f: B -+ U and g: C -+ W. Then the following statements 
are equivalent: 

(a) f and g are isomorphic,· 
(b) the selections off and g are isomorphic,· 
(c) I U I = I WI and the partitions off and g are isomorphic. 

We return briefly to cartesian products presented in the first section and 
list some readily verifiable properties. Let W, X, and Y be sets. Then 

BIS X x Y and Y x X are set-isomorphic. 

B19 W x (X x Y) and (W x X) x Yare set-isomorphic to W x X x Y. 

B20 12 E IP(Y) if and only if {X x Q: Q E il} E IP(X x Y). 
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Ie Fundamentals of Enumeration 

B21 If {Xl> ... , Xm} E II1(X), then the function f't--7 (jjXl' ... ,jjxm) is a set­
isomorphism between yx and yXl x ... X yxm• 

Given the cartesian product Xl x ... X Xm, the ith-coordinate projection 
is the function from Xl x ... X Xm into Xi given by (Xl> ... , xm) 't--7 Xt. 

B22 Exercise. Describe the selections and partitions of the coordinate pro­
jections of the cartesian product X x Y. 

Ie Fundamentals of Enumeration 

We begin this section with a list of some of the more basic properties of finite 
cardinals. Some of these were mentioned in the preceding sections. 

Cl If S E &( U), then I S I :::; I U I. 
C2 If f2 E II1(U), then lUI = LQE.2IQI. 

C3 

C4 

C5 

C6 

For sets X and Y, 

IXU YI + IXn YI = IXI + IYI 
IXu YI-IXn YI = IX+ YI 
IX+ YI + 21Xn YI = IXI + IYI 
IX x YI = IXIIYI. 

C7 Proposition. For any sets X and Y, 

PROOF. Let X be an m-set. We first dispense with the case where m = O. If 
also Y = 0, then the Proposition holds if we adopt the convention that 
0° = 1. If Y ¥- 0, then I YI101 = 1, as required. 

Now suppose m > 0, and consider the m-partition {{Xl} • ... , {xm}} of X. 
By B21 and C6, 

I YXI = I y{x1l X ••• X Y{Xmll = I Y{X1ll· .... 1 y{Xmll. 

Clearly I Y{Xjll = I YI for all i, and so I YXI = I Ylm = I YIIXI. 0 

C8 Corollary. I&(U)I = 21U1 for any set U. 

PROOF. Use C7 and B2. o 
Because of C8, one often finds in the literature the symbol 2u in use in 

place of the symbol &(U). 

C9 Exercise. Let S E &(U). How many functions in UU fix S? How many 
fix S pointwise? 

9 



I Finite Sets 

CIO Exercise. Let S E &J(X) and T E &J( Y). How many functions in yx 
map S into T? 

Cll Exercise. Let {Slo ... , Sm} E I?(X) and {Tlo ... , Tm} E I?( Y). How many 
functions in yx map S, into 11 for all i = 1, ... , m? 

Cll Exercise. Let S, TE&J(U). How many subsets of U contain S? How 
many avoid S (R avoids S if R () S = 0)? How many meet S (R meets S 
if R () S =F 0)? How many meet both Sand T? 

Three important cardinality questions about the set yx are how many 
elements are injections, how many are surjections, and how many are bi­
jections. For convenience we denote 

inj(YX) = {fE YX:fis an injection} 

sur(YX) = {IE yX:fis a surjection} 

bij(YX) = {IE YX:fis a bijection}. 

We now proceed to resolve the first and third of these questions. The 
second question is deceptively more complicated and will not be resolved 
until §E. By convention, O! = 1 and n! = n(n - I)! for n EN + {O}. 

Cl3 Proposition. For sets X and Y, 

{
o ifIXI>IYI; 

linj( yX)1 = I YI ! 
(I YI - IX!)! iflXI:;:; I YI· 

PROOF. Obviously inj( YX) = 0 if I XI > I YI· Suppose I XI :;:; I YI. If X = 0, 
then both linj(Yx)1 and I YI !/(I YI - IXI)! equal 1. If IXI = 1, then 
inj(YX) = yx, and by C7, linj(yX)1 = I YI'x, = I YI = I YI !/(I YI - I)!. 

We continue by induction on lXI, assuming the proposition to hold when­
ever IXI :;:; m for some integer m :e:: 1. Suppose IXI = m + 1. Fix x EX 
and let X' = X + {x}. Let Y = {Ylo' .. , Yn} and let 

Y, = Y + {y,}, j = 1, ... , n. 

Since m = IX'I = IXI - 1 :;:; I YI - 1 = I Y,I, the induction hypothesis 
implies that 

C14 I· '(yx')I_ IY,I! - (n - I)! U 1 ) 
InJ, - (lY,I-IX'I)! - (n - 1 _ m)! = , ... ,n. 

If we define 

I, = {fE inj(Yx):f(x) = y,}, U = 1, ... , n), 

it is clear that {Il , ••• , In} E I?(inj( yX». Moreover, the correspondence 
ff-+ fix' is clearly a bijection from I, onto inj( Y/') for each j = 1, ... , n. 
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Ie Fundamentals of Enumeration 

Combining this fact with C2 and C14, we obtain 

n 

linj( Yx)1 = 2: IIil 
i=1 

n 

= 2: linj(Y/')1 
i=1 

(n - I)! n! 
= n· (n _ 1 _ m)! = (7""n-_--;-(m-+.....,I~»:-7! 

IYI! 
= (I YI - IX!)!" o 

From the above formula one immediately obtains 

CI5 Corollary. For sets X and Y, 

{o if IXI oft I YI; 
Ibij(Yx)1 = I YI! if IXI = I YI. 

Since bij(XX) = TI(X) we have 

CI6 Corollary. If X is an n-set, ITI(X)I = n! 

CI7 Exercise. Let X be an n-set and let S E .9'k(X). How many permuta­
tions of X fix S pointwise? How many fix S (set-wise)? How many map 
some given point x E X onto some point of S? 

For m, n E N it is conventional to write 

( n) { n! ifm~n; 
m = mo! (n - m)! 

ifm > n. 

CIS Corollary. For any set X, l.9'm(X)I = (1;1). 

PROOF. Let M be some fixed m-set. For each S E .9'm(X), let Bs = bij(SM). 
Then clearly {Bs: S E .9'm(X)} E lFD(inj(XM). By C13, C2, and then CIS, 

IXI! _ I' '(XM)I - " I I ImJ ( )1 ' (I XI - m)' - In] - L.. Bs = 17m X m .. 
• Se8'm(X) 

o 

Numbers of the form (;:.) are called binomial coefficients because they arise 
also from the binomial theorem of elementary algebra, as will presently be 
demonstrated. A vast amount of literature has been devoted to proving 
"binomial identities." The following corollary and some of the ensuing 

11 



I Finite Sets 

exercises in this section provide examples of some of the easier and more 
useful such identities. 

C19 Corollary. 

i (~) = 2", 
1-0 I 

PROOF. Let X be an n-set. Then {&l(x): i = 0, 1, ... , n} e 1P(9'(X». The 
result follows from C2 and CS. 0 

ClO Corollary. 

PROOF. Let U be an n-set and choose x e U. The collection of m-subsets of 
U which do not contain x is precisely 9'm(U + {x}), while the collection of 
those that do is set-isomorphic to 9'm-l(U + {x}). Hence 19'm-l(U + {x}) I + 
19'm(U + {x}) I = 19'm(U)I· 0 

Of course one could also have obtained this corollary from the definition 
by simple computation. It is, however, of interest to see a combinatorial 
argument as well. 

e2l Binomial Theorem. Let a and b be elements of a commutative ring with 
identity. Then 

PROOF. To each functionf: {I, 2, ... , n} --+- {a, b} there corresponds a unique 
term of the product (a + b)", namely a,,-1[allbl/-l[II11. Thus 

(a + b)" = 2: a"-l[allbl/-l[II11, wherefe {a, b}{1·2 ..... "}. 
I 

Hence 

" (a + b)" = 2: Hf: If- 1[a]1 = i}lalb"-1 
1=0 

" = 2: 1&l({I, 2, ... , n})lalb"-' 
1=0 

o 

By choosing the ring to be 1. and letting a = -1, and b = 1 above, we 
obtain the following identity: 
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Cll Corollary. 

i (-I)I(~) = on, 
1=0 I 

for all n eN; equivqJently, 

for any set U. 

L: (_I)IBI = OIUI, 
BeS'(U) 

Cl3 Exercise. How many subsets in &J(U) have even (respectively, odd) 
cardinality? 

As we have indicated, we will evaluate Isur(YX)1 in §E after having 
developed more powerful techniques. Enumeration of the m-partitions of a 
set must also be deferred. In fact, I IPm(U) I and Isur(Yx)1 are closely related 
as we see in the next result. 

C14 Proposition. If M is an m-set, then 

I IPm(U) I = Isur(~U)I. 
m. 

PROOF. Let cp: sur(MU) ~ IPm(U) by defining cp(f) to be the partition off 
By Proposition B8, cp(f) is a If[U] I-partition. Since f is a surjection, cp(f) 
is an m-partition. Since cp is clearly a surjection, we also have from B8 that 
{cp-l[~]: ~ e IPm(U)} is a partition of sur(MU). Thus 

Isur(MU)1 = L: Icp-l[~]I· 
..feP",(U) 

It remains only to show that Icp-l[~]1 = m! for all ~ e IPm(U). 
Fix ~ e IPm(U) and g e cp-l[~]. If he n(M), then clearly cp(hg) = cp(g), 

i.e., hg e cp-l[~]. Hence we have a function y: n(M) ~ cp-l[~] defined by 
y(h) = hg. Since g is a surjection, we have by A23 that if h1g = h2g then 
hI = h2 • Hence y is an injection. Finally, it follows from Bll that for any 
fe cp-l[~], there exists he n(M) such that f = hg. We conclude that y is 
a bijection, and Icp-l[~]1 = In(M)1 = ml. 0 

In order that the reader may become aware of the difficulties in counting 
surjections, he is asked in the next exercise to work out the two easiest non­
trivial cases. 

Cl5 Exercise. Compute Isur(YX)1 where I YI = IXI - i for i = 1,2. 

Of the fundamental objects that we have introduced, only the selections 
remain to be considered. 
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C26 Proposition. l§m(U)1 = (IUI+,:-l), except that l§o(0)1 = 1. 

PROOF. Let U = {Ul' ... , u,,} and let X = {I, 2, ... , n + m - I}. We con-
struct a function cp: &:'-l(X) -+ §m(U) as follows. Let Y = {Yl> ... , Y"-l} E 

&:'-l(X) where the elements of Yare indexed so that Y1 < Y2 < ... < Y"-l. 
Letting Yo = 0 and Y" = n + m, we define cp(Y) to be the selection s E §(U) 
given by 

S(UI) = YI - YI-1 - 1, for i = 1, ... , n. 
Note that 

" " lsi = L: S(UI) = L: (YI - YI-1 - 1) = m, 
1=1 1=1 

i.e., cp(Y) E §m(U). 
It suffices to show that cp is a bijection, since 

cp is an injection. Suppose that cp( Y) = S = cp(W). We have Y = 
{Yl> ... , Y"-l}' W = {W1' ... , W"_l} E ~-l(X), and 

Yi - Yi-1 - 1 = S(UI) = WI - WI-1 - 1, fori = 1, ... ,n. 

By induction on i one readily verifies that the system of equations YI - YI-1 -
I = WI - WI-1 - I for i = 1, ... , n, and Yo = wo, Y" = W" has exactly one 
solution: Yi = Wi for i = 0, I, ... , n. Hence Y = W. 

cp is a surjection. Let S E §III(U) and define YI = i + :LJ=l S(uf). One may 
easily verify that Yo = 0, Y" = n + m, and 0 < Yl < Y2 < ... < Y,,-l < 
n + m. Thus {Yl> ... , Y"-l} E 9..-1(X), and CP({Yl> ... , Y"-l}) = s. 0 

C27 Exercise. ComputeL:;'=o l§m(U)1 where r is any positive integer. (Hint: 
use Corollary C20.) 

C28 Exercise. How many elements of §m(U) select all elements of U at 
least once? How many select all elements an even (respectively, odd) num­
ber of times? 

The last counting problem that we wish to discuss at this time is the 
following: how many functions in yx are distinct up to isomorphism? In 
other words, given that function-isomorphism is an equivalence relation on 
yx (BI5), how many equivalence classes are there? Generally speaking, 
the equivalence classes will be of varying sizes. For instance, the set of 
bijections, if any, will form a single equivalence class of size IXI!. On the 
other hand, the constant functions form an equivalence class of size I YI. 
Because these equivalence classes are not of uniform cardinality, we are 
unable to use that old "cowboy" technique applied in C24; in effect to 
"count their legs and divide by 4". However, it is clear that isomorphic 
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functions will have isomorphic partitions and vice versa (BI7). While the 
same can be said of the selections of isomorphic functions, it is more fruit­
ful to consider partitions. 

We have then that q>: yx --+ iP'{X), where q>(f) is the partition of J, is an 
injection which maps isomorphism classes onto isomorphism classes. What 
is the image of q>? Clearly a partition !2 = q>{f) for some f if and only if 
1!21 ::;; I YI. Hence the image of q> is iP'l{X) u iP'2{X) u ... u iP'q(X) where q = 
min{IXI, I YI}. It is also clear that isomorphic partitions are of equal cardin­
ality. Hence the problem reduces to counting the isomorphism classes of 
iP'm{X) for each m. In fact, each isomorphism class can be uniquely represented 
by a selection s from N + {O} where s{i) is the number of cells of cardinality i. 
This leads us to define a partition of the positive integer n to be a selection 
s E §{N + {O}) such that 'Lt"'= 1 is{i) = n. If Is I = m, then s is called an 
m-partition of n. 

As an example, let X be a 19-set, and suppose !l E iP'7{X) has two single 
element cells, a 2-cell, three 3-cells, and a 6-cell. The selection corresponding 
to !l is a 7-selection with s{I) = 2, s(2) = 1, s(3) = 3, s(4) = s(5) = 0, 
s(6) = 1, and s{i) = 0 for i > 6. 

We combine the results in this discussion in the following proposition. 

C29 Proposition. Let Pm{n) denote the number of m-partitions of the positive 
integer n while p{n) denotes the total number of partitions of n. Let X be 
an n-set. Then the number of isomorphism classes in iP'm{X) is Pm{n). The 
number of isomorphism classes in iP'{X) is p(n). If I YI ::;; n, the number of 
isomorphism classes in yx is 'L~~lPm(n); if I YI ;::: n, the number of iso­
morphism classes in yx is p(n). 

C30 Exercise. Show that the number of isomorphism classes in §m(X) is 
Pn(m), where X is an n-set. 

We close this section with a small but representative assortment of prob­
lems analogous to the" word problems" of high school algebra or elementary 
calculus, insofar as their difficulty lies in translating the language of the 
stated problem into the abstract terminology of the theory. Observe that 
in some of these problems, the question "how many" does not always make 
precise a unique answer which is sought. When such ambiguity arises, the 
reader should investigate all alternative interpretations of the question. 

C31 Problem. Prove the identity (::.)(~) = (~)(::.-=-\) where k ::;; m ::;; n by enu­
meration of appropriate sets rather than by direct computation (cf. the 
comment following C20). 

C32 Problem. From a list of his party's n most generous contributors, the 
newly-elected President was expected to appoint three ambassadors (to 
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different countries), a Commissioner of Indian Affairs, and a Fundraising 
Committee of five people. In how many ways could he have made his ap­
pointments? 

C33 Problem. A candy company manufactures sour balls in tangy orange, 
refreshing lemon, cool lime, artificial cherry, and imitation grape flavors. 
They are randomly packaged iIi cellophane bags each containing a dozen 
sour balls. What is the probability of a bag containing at least one sour ball 
of each of the U.S. certified flavors? 

C34 Problem. Let m, k E l. How many solutions (Xl>' •• , xn) are there to 
the equation 

Xl + ... + Xn = m 

where XI is an integer and XI ;;::: k (i = 1, ... , n)? 

C35 Problem. A word is a sequence of letters. How many four-letter-words 
from the Latin alphabet have four distinct letters, at least one of which is a 
vowel? (An exhaustive list is beyond the scope of this book.) 

C36 Problem. How many ways can the numbers {I, 2, ... , n} be arranged 
on a "roulette" wheel? How many ways can alternate numbers lie in black 
(as opposed to red) sectors? 

C37 Problem. Compute P3(n). 

C38 Problem. What fraction of all 5-card poker hands have 4-of-a-kind? 
a full-house? 3-of-a-kind? 2-of-a-kind? a straight flush? a flush? a straight? 
none of these? 

Two good sources for more problems of this type are C. L. Liu [t.2, 
pp. 19-23] and Kemeny, Snell, and Thompson [k.2, pp. 97-99, 102-104, 
106-108, 111-113, 136-139]. 

ID Systems 

A system A is a triple (V,/, E) where V and E are disjoint sets andf: E ~ .9'(V). 
The elements of E are called the blocks of A and the elements of V are called 
the vertices of A. If X Ef(e), we say that the block e "contains" the vertex X, 

or that X and e are incident with each other. If S E .9'(V), we say that the 
block e "contains" S ("is contained in" S) if S £. f(e) (f(e) £. S). Simi­
larly we say that the block e "is contained in" the block e' if f(e) £. f(e'). 
The size of a block e is the natural number If(e)l. If all the blocks of A have 
size k, we say A has blocksize k. 

The systems A = (V,/, E) and n = (W, g, F) are isomorphic if there exist 
bijections p: E ~ F, q: V ~ W such that q[f(e)] = g(p(e)) for all e E E 
(see Figure DI). The pair (p, q) is then called a system-isomorphism. 
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Dl f 
V &,(V) ( E 

+ + + 
W &'(W) ( F 

g 

D2 Exercise. Show that system-isomorphism is an equivalence relation. 

Whenever (V,!, E) and (W, g, F) are isomorphic systems, then f and g 
are isomorphic functions. The converse of this statement is false, since a 
bijection from &'( V) onto &'( W) need not be induced by a bijection from 
V onto W. 

If A = (V,!, E) is a system and if f is an injection, then A is called a 
set system. For example, if C s; &'( K) and if the "inclusion function" 
j: C -+ &,(V) is defined by j(S) = S for ea~h SEC, then (V,j, C) is a set 
system. In this case, the functionj is suppressed and the set system is denoted 
simply by the pair (V, C). 

Let (V,!, E) be any set system. Let C = f[E] and letj: C -+ &,(V) be the 
inclusion function. Since f is an injection, f': E -+ C given by f'(e) = f(e) 
for all e E E is a bijection. Then the pair (f', Iv) is a system-isomorphism 
between (V,!, E) and (V, C) = (V,J[E]). 

If V and E are sets and f: E -+ &'( V), the function f*: V -+ &,(E) given 
by f*(x) = {e E E: x Ef(e)} is called the transpose off. Since 

D3 x Ef(e) -¢> e Ef*(X), for all x E V, e E E, 

we havef** = f. If A = (V,!, E), then the system A* = (E,f*, V) is called 
the transpose of A. Since f** =!, A ** = A. 

D4 Proposition. If (V,!, E) is isomorphic to (W, g, F), then (E, f*, V) is 
isomorphic to (F, g*, W). 

PROOF. Assume that (p, q) is a system-isomorphism from (V,!, E) to 
(W, g, F). We assert that (q,p) is a system-isomorphism from (E,f*, V) to 
(F, g*, W). Let x E V. Then 

p[f*(x)] = p[{e E E: x Ef(e)}], 
= p[{e E E: q(x) E q[f(e)]}], 
= p[{e E E: q(x) E g(p(e»}], 
= {p(e): q(x) E g(p(e»}, 
= {d E F: q(x) E g(d)}, 
= g*(q(x», as required. o 

For A = (V,!, E) and x, y E V, one has f*(x) = f*(y) if and only if 
x and yare incident with precisely the same blocks. This motivates the 
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following definition: a system A distinguishes vertices if for every two dis­
tinct vertices there is a block which contains exactly one of them. In this 
terminology, 

DS A * is a set system if and only if A distinguishes vertices. 

It is interesting to note that this property is analogous to the topological 
property To (given a pair of distinct points in a To-topological space there is 
an open set containing one but not the other). This analogy may be extended. 
We could say that a system is "Ti" if given any two distinct vertices x and y, 
there is a block containing x but not y and vice versa. 

D6 Exercise. Show that a system A is "Ti" if and only if A * has the property 
that no block contains any other block. 

A system of blocksize 2 is called a multigraph. If it is also a set system, it 
is called a graph. The blocks of a multigraph are called edges. Some mathe­
maticians, taking the reverse approach from the one adopted here, have 
begun with a study of multigraphs and subsequently treated systems as 
generalizations of multigraphs. In particular, Berge [b.5] has defined the 
term hypergraph to denote a system (V,f, E) with the two additional proper­
ties thatf(e) # 0 for all e E E and thatf*(x) # 0 for all x E V. 

A graph (V, C) is said to be bipartite if I VI :5: 1 or if there exists a parti­
tion {Vlo V2} E 1?2(V) such that IE n Vii = IE n V21 = 1 for all E E tff. If 
(V, tff) is a bipartite graph, the partition {Vlo V2} need not be unique. When 
we wish to specify the partition we shall write: (V, C) is a bipartite graph 
with respect to {Vlo V2}, or ({Vlo V2}, C) is a bipartite graph. 

There is a natural correlation between systems and bipartite graphs. If 
(U,f, D) is a system, we may define V = Uu D and let C = {{x, d}: x Ef(d)}. 
Since U n D = 0, (V, C) is a bipartite graph called the bipartite graph of 
(U,f, D). From D3 it follows that (U,f, D) and (D,f*, U) have the same 
bipartite graph. Conversely, if (V, C) is a bipartite graph with respect to 
{Vlo V2}, then (V, C) is the bipartite graph of (at least) two systems, namely: 
(Vlof, V2) where f(V2) = {v: {v, V2} E C} and (V2 , g, Vi) where g(Vi) = 

{v: {Vlo v} E C}. In fact, g = f*. 
Another method for representing a system (V,f, E) is obtained by index­

ing both V and E; thus V = {Xlo' .. , xv}, E = {elo e2, ... , eb}' We then con­
struct the v x b matrix M where 1 is the (i,j)-entry if XI Ef(ej); otherwise 
the (i,j)-entry is 0. M is called an incidence matrix of the system (V,f, E). 
It is not difficult to see that any v x b {a, 1 }-matrix is an incidence matrix 
of some system. Furthermore, systems (V,f, E) and (W, g, F) are isomorphic 
if and only if for some indexing of V,E, W,and Fthe corresponding incidence 
matrices are identical. Two {a, l}-matrices Mi and M2 are incidence 
matrices for isomorphic systems if and only if M2 may be obtained from 
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Ml by row- or column-permutations. Clearly if M is an incidence matrix 
for A, then the transpose of M (denoted by M*) is an incidence matrix for 
A*. 

A system n = (W, g, F) is a subsystem of the system A = (V,j, E) if: 
W s;; V, F s;; E, and for all e E Fit holds that g(e) = f(e) s;; W. For example, 
let A = (V,j, E) and suppose F S;; E. Then AF = (W, g, F), where W = 

UdeF f(d) and g = fiF, is a subsystem of A. AF is called the subsystem in­
duced by F. We let A(F) = (V,fiE+F' E + F). If W s;; V, the subsystem in­
duced by W is the subsystem Aw = (W,g, F) where F = {e E E:f(e) s;; W} 
and g = fiFo We let A(w) = Av+w. 

D7 Exercise. Let M be the incidence matrix for the system A = (V, j, E) 
corresponding to the indexing V = {Xl> ... , xv} and E = {el> ... , eb}. If 
M* M = [mij], show that mlJ = If(ej) nf(ej)1 for all i,j E {I, ... , b}. Inter­
pret the entries of MM*. 

IE Parameters of Systems 

If A = (V,j, E) is a system, recall that the selection of the function f is 

s: &,(V) -+ N 

given by 

s(S) = If-1[S]1 for all S E &'(V). 

For convenience, this selection will also be called the selection of the system 
A. When the symbol s is used to denote the selection of A, the selection of A * 
will be denoted by s*. If A is the set system (V, C), then s = sc, the charac­
teristic selection of C. 

We shall presently see that if two systems have the same selection, then 
they are isomorphic; however, two systems having isomorphic selections 
can still be nonisomorphic. This is consistent with the fact that two systems 
(V,j, E) and (W, g, F) need not be system-isomorphic even thoughf and g 
may be function-isomorphic. (See the discussion following D2.) The next 
proposition makes these remarks precise. 

El Proposition. Let (V,j, E) and (W, g, F) be systems with selections sand t, 
respectively. The following three statements are equivalent: 

(a) (V,j, E) and (W,g, F) are system-isomorphic. 
(b) There exists a bijection q: V -+ W such that s(S) = t(q[S]) for all 

S S;; v. (See Figure E2a.) 
(c) There exists a bijection p: E -+ F such that s*(S) = t*(p[A]) for all 

A S;; E. (See Figure E2b.) 
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El q 
V ----::-'''''---+~ W 

P 
E ---""'--+, F 

= 
£P(V) q ~ £P(W) 

(a) ~~/ (b) 

PROOF. We need only demonstrate the equivalence of (a) and (b); the equiva­
lence of (a) and (c) will then follow from this result and Proposition D4. 

Assume that (a) holds. There exist bijections p: E -+ F and q: V -+ W 
such that 

q[f(e)] = g(p(e», for all e E E. 

Thus (p, q) is a function-isomorphism fromfto g. By B16a, q is a selection­
isomorphism from s to t. 

Conversely, assume that (b) holds. By B 16b there exists a bijection p': E -+ 
F such that (p', q) is a function-isomorphism fromfto g. The result follows 
from the definition of system-isomorphism. 0 

For any given selection s E §(£P(V», a system (V,J, E) having s as its 
selection can always be constructed. For each S E £P(V), let E8 be an s(S)­
set, and let all the sets E8 be disjoint from V and from each other. Let 

E= U Es. 
Setl'(V) 

Now define f: E -+ £P(V) by fee) = S if e E E8 • The selection of this system 
is obviously s. Moreover, this system is unique up to isomorphism. We may 
therefore identify systems having vertex set V with elements of §(£p(V». 

From another point of view, the selection s of a system A = (V,J, E) 
may be regarded as a list of parameters. For each S E £P(V), each value s(S) 
is a parameter in the list, namely, the number of blocks which "coincide" 
with S. This list of parameters is a "complete list," inasmuch as A is uniquely 
determined (up to isomorphism) by the selection s. In the same way, the 
selection s* determines the transpose A * (up to isomorphism), and therefore 
by D4, the values of s* on £p(E) form another complete list of parameters 
determining A. 

We now consider a third complete set of parameters which determines A 
(up to isomorphism, continuing to be understood). Unlike sand s*, each 
of which tells the number of blocks "coinciding" with a given set, the 
function we are about to define will tell the number of blocks containing 
each given set. 

For subsets S, T E £P(V), let [S, T] E N be given by 

[S T] = {I if S s; T; 
, 0 otherwise. 
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E3 Exercise. Show that for any S, T, WE 9(V), 

[S, T][T, W] = [S + T, S + W][S, W]. 

For any selection s E §(9(V», we define & E §(9(V» in terms of s by: 

E4 &(S) = L: [S, T]s(T}, for all S E 9(V). 
Te9'(V) 

E5 Lemma. For S, WE9(V), 

L: (_I)IS+TI[S, T][T, W] = OIS+WI. 
Te9'(V) 

PROOF. 

L: (_I)IB+TI[S, T][T, W] = L: (_l)IS+TI[S + T, S + W][S, W] 
Te9'(V) Te9'(V) 

= L: (_l)IBI [R, S + W][S, W] 
Be9'(V) 

= [ L: (-I)IBI][S, W] 
Be9'CS+W) 

= OIS+wl[S, W] 

= OIS+wl. 

byC22 

o 
The next result is the inverse of E4; it allows us to recover s when & is 

given. 

E6 Proposition. Let s E §(9(V». Then 

s(S) = L: (_l)IS+TI[S, T]&(T), for all S E 9(V). 
Te9'(V) 

PROOF. Let S E 9(V). Then by definition of &, 

L: (_l)IS+TI[S, T]&(T) = L: (_l)IS+TI[S, T] L: [T, W]s(W) 
Te9'(V) Te9'(V) We.,¥<V) 

= Z [ L: (_I)ls+TI[S, T][T, W]]S(W) 
We9'(V) Te9'(v) 

= L: OIB+Wls(W) = s(S). 0 
We9"(v) . 

Since a system A is determined by the values of its selection s and since, 
by the above proposition, the values of s are in tum determined by the 
values of &, it follows that the values of & form another "complete list of 
parameters" for A, as promised. Similarly, the values of s* form a com­
plete list of parameters for A *, and hence also for A. 

E7 Exercise. Show that the function <I> from §(9(V» to itself given by 
<I>(s) = & is an injection and satisfies tb.e "linearity" condition: 

<I>(ms + nl) = m<l>(s) + n<l>(t) 
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for all s, t e §(91'(V» and m, n e Z. Show further that () is never a surjection 
when IVI ~ 2. 

When s is the selection of a system A, the values of the four selections 
s, s*, s, and s* have important set-theoretical interpretations in terms of A, 
as summarized by the next result. 

E8 Proposition. Let s be the selection of the system (V,/, E). Let S e 91'(V), 
and A e 91'(E). Then: 

(a) s(S) = I{e e E:f(e) = S}I; 
(b) s(S) = I{e e E:f(e) 2 S}I; 
(c) s*(A) = l(neeAf(e» n (neeE+A (V + f(e»)I; 
(d) s*(A) = IneeAf(e)l. 

PROOF. (a) is, of course, the definition of s. 
(b) represents the underlying motivation for defining s as we have. From 

the definitions of sand s, 

s(S) = 2: s(T) = 2: I{e e E:f(e) = T}I, 

whence the result. 
(c) By definition, 

Vi2Ti28 Vi2Ti2S 

s*(A) = I{x e V:f*(x) = A}I 
= I{x e V: {e e E: x ef(e)} = A}I 
= I{x e V: x ef(e) - e e A}I 
= I{x e V: e e A * x ef(e); e e E + A => X e V + f(e)}1 
= I{x e V: x ef(e) for all e e A} 

n {x e V: x e V + f(e) for all e e E + A}I 

= I(nf(e») n ( n (V + f(e») I· 
eeA .eE+A 

(d) Again by definition, 

s*(A) = 2: s*(C) = 2: I{x e V: {e e E: x ef(e)} = c}1. 
ASCSE A~C~E 

Let C1, C2 e [JIJ(E) and let VI = {x e V: {e e E: x ef(e)} = CI} for i = 1,2. 
Then V1 n V2 = 0 if C1 =t= C2• Hence by C2, 

2: I{x e V: {e e E: x ef(e)} = C}I 
A~C~E 

= I U {x e V: {e e E: x ef(e)} = C} 1 
A~C~E 

= I{x e V: {ee E: x ef(e)} 2 AI 
= I{x e V: x ef(e) for all e e A}I, 

whence the result. 
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We are now prepared, at least mathematically, to state and prove a major 
theorem in combinatorial theory. Since the statement of this result in the 
generality in which it will be given is probably less than transparent, we insert 
here an example and two exercises which should better familiarize the reader 
with the four selections considered in this section. 

E9 Example. Consider the system A = (V,J, E) where E = {elo e2, ea}. Let 
S, = feel) (i = 1,2,3), and let V, S1> S2, Sa be represented by the Venn 
diagram ElO, where no, . .. , n12a represent the cardinalities of the subsets 
corresponding to the regions in which they have been written. 

EIO 

If 8 is the selection of A, then with i and j being distinct indices, 

8*(0) = no 

s*({e,}) = n, 

8*({e" ej}) = nil 

8*(0) = IVI 
s*({e,}) = IS" 

s*({e" ei}) = IS, n Sil 

Ell Exercise. If A is the set system (V, ~(V», determine the selection 8 

of A and show that for all S E &( V), 

{
o iflSI > k; 

8(S) = (I ~1--11~1) if lSI::; k. 

El2 Exercise. Let A = (V,J, E) have selection 8. Show that 8(S) < m for 

all S E ~(V) if and only if 8*(A) < t for all A E &m(E). 

We now present a fundamental counting theorem. Observe that its second 
statement is dual to the first. 
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E13 Tbeorem (Tbe Principle of Inclusion-Exclusion). Let (V,I, E) be a sys­
tem with selection s. 

(a) For r = 0, 1, ... , lEI, the number oj vertices belonging to precisely 
r blocks is 

2: (_1)1 r ~ l 2: s*(A). 
IEI-, ( .) 

1=0 l IAI =r+1 

(b) For k = 0, 1, ... , lVI, the number oJblocks oJsize k is 

I~k (_ly(k -: i) 2: s(S). 
1=0 l lSI =k+l 

PROOF. As remarked above, it suffices to prove (a) alone. 
If A E &leE), then by E8c, s*(A) represents the number of vertices which 

belong to every block in A but to no other block. Thus the number of ver­
tices which belong to precisely r blocks is LIAI =r s*(A). By applying Proposi­
tion E6 to s*, we get 

2: s*(A) = 2: 2: (_I)IC+AI[A, C]s*(C) 
IAI=r IAI=r CE~(E) 

= 2: ( 2: (_I)IC+AI[A, C])s*(C) 
ICI:', IAI=r 

= 2: (_I)ICI-r(ICI)s*(c) 
ICI:.r r 

= IE~' 2: (-I)ICI-,(I;I)s*(c) 
1=0 ICI=I+, 

= 2: (-1)1 r ~ l 2: s*(C). 
IEI-r ( .) 

1=0 l ICi=r+l 
o 

Returning to Example E9, let us now apply the Principle of Inclusion­
Exclusion. The number of vertices belonging to precisely r = I block is 

I~ (-lye; i) IAI~+I s*(A) = (~)(ISII + IS21 + ISal) 

- G)(ISI n S21 + IS2 n Sal + lSI n Sal) + G) lSI n S2 n Sal, 

which after substitution reduces to nI + n2 + na. 
Since s*(A) is the number of vertices belonging to every block in A (see 

E8d), part (a) of the Principle of Inclusion-Exclusion gives the number of 
vertices contained in precisely r blocks in terms of the number of vertices 
contained in sets of r or more blocks. First we "include" the vertices belong­
ing to at least r blocks, but because we have counted some of these more 
than once, we then "exclude" those belonging to at least r + I blocks. 
Having now excluded too much, we "reinclude" those vertices belonging 
to at least r + 2 blocks, and so on. Dually, since s(S) is simply the number 
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of blocks containing S, part (b) gives the number of blocks of fixed size k 
in terms of the number of blocks containing subset S of V of size at least k. 

The Principle of Inclusion-Exclusion has a wide range of applications. 
The remainder of this chapter is devoted to some of them. We begin by 
completing the answer to the question raised just after C12. 

E14 Proposition. For sets X and Y, 

Isur(YX)1 = (-I)IYI ~ (_I)1(I~I)iIXI. 
f=O l 

PROOF. Let the function <1>: yx -+ &'(Y) be given by <I>(f) = Y + f[X] for 
allfe yx. Then (Y, <1>, YX) is a system. Let s denote its selection. Note that 
fe yx is a surjection if and only if <I>(f) = 0. Hence Isur(YX)1 is the num­
ber of blocks of size k = O. By Theorem E13b, 

By E8b, 

by C7. Thus 

IU 
Isur(Yx)1 = 2: (-1)1 2 8(S). 

1=0 ISI=1 

8(S) = Hfe yx: <I>(f) 2 S}I 
= l{fe YX:f[X] !: Y + S}I 
=IY+SIIXI, 

Isur(YX)1 = ~ (-1)1 2 I Y + SIIXI = ~ (_1)1(1 ~I)(I YI - j)lxl. 
1-0 lSI =1 1-0 ] 

Substituting i for I YI - j completes the proof. D 

Combining this result with C24, we have 

EIS Corollary. 

In the literature the numbers IlPm(V)I, usually denoted by S(I VI, m), are 
called the Stirling numbers of the second kind. Another sequence of numbers 
well enough known to have been given a name is the sequence {Dn: n eN} 
of derangement numbers. For each n eN, Dn is the number of derangements, 
i.e., permutations with no fixed points, of an n-set. The derangement num­
bers arise as a special case of the following result. 

E16 Proposition. The number of permutations of an n-set which have precisely 
r fixed-points is 

n!n-'(-I)f ,2-·-, . r. f=O l. 

25 



I Finite Sets 

PROOF. Let B be an n-set and let the function f: B ~ 9'(lI(B» be given by 
feb) = {9' E lI(B): 9'(b) = b}. Thus (lI(B),!, B) is a system, and a given 
permutation 9' belongs to a block b if and only if b is a fixed-point of 9'. 
Hence we seek the number of vertices (i.e., permutations) which lie in 
exactly r blocks. This number is given in El3a; we now compute its value. 

First we deduce from E8d that if A s;; B, then s*(A) is the number of 
permutations of B which fix A pointwise. Clearly this is (iBI - IAI)!. Hence 

L s*(A) = ( +n .)(n - (r + i»! = ( :! ')" 
IAI=.+( r I r I. 

Substituting this into E13a yields 

L (-I)' r + I n. = n. L -"-r ( .) , ,,,-r ( I)' 
'=0 i (r + i)! r! '=0 iI' 

Letting r = Oin EI6 we obtain 

E17 Corollary. 

" (-I)' 
D" = n! L -.,-. 

'=0 I. 

D 

By convention, Do = I, and this corroborates the corollary. Observe that, 
D,,/n! is the (n + I)-st partial sum of the power series expansion of e- l , 

and so lim,,_oo (D,,/n!) = e- l . In other words, and perhaps contrary to 
intuition, when n is large, approximately l/e of all permutations of an n-set 
are derangements. 

The next three exercises are concerned with derangements. 

E18 Exercise. Prove that for n ~ 2, at least one-third of the permutations 
of an n-set are derangements. 

E19 Exercise. Prove the following identities by set enumeration (cf. C31): 

(a) D" = (n - 1)(D"_l + D"-2) for n ~ 2; 

(b) i (~)D, = n!. 
'=0 I 

E20 Exercise. Prove that for any n-set V, n > 0, 

I " (n) IIJlI(V)1 = -; L (n - i)" . D,. 
n. '=0 I 

Our final application of the Principle of Inclusion-Exclusion is to derive 
a classical result from number theory. The function 9': N + {O} ~ N given 
by 

9'(n) = I{b EN: 0 < b ::5: n; b is relatively prime to n}l, 
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for all n EN + {O}, is known as the "Euler !p-function". For example, 
cp(n) = n - 1 whenever n is prime. 

Ell Theorem. Let n E N, and let V be the set of prime divisors of n. Then 

!pen) = nO (1 - !). 
peV P 

PROOF. Clearly CP(1) = 1. If n ~ 2, let B = {I, 2, ... , n}, and let the func­
tion f: B --+- &'(V) be given by feb) = {p E V: p divides b}, for each bE B. 
Thus, (V,/, B) is a system, and cp(n) is the number of blocks of size O. Let 
s be the selection of (V,/, B). By E8b, for each S E &,(V), 8(S) is the number 
of blocks divisible by every prime in S. Thus 8(S) = nlDpes p. Substituting 
this into El3b with k = 0, we have 

!pen) = ~ (-1)1 L: _n_ = n L: O.=! = nO (1 - !). ,= 0 lSI =, Dpes p Se8'(V) peS P peV P 

this last step requiring only algebraic manipulation. D 

We close with two exercises of a general nature. 

E22 Exercise. Verify that if (V, 8) is a set system, then 

, ~ 

I U EI = L (_1)1+1 L: InEI· 
Eel ,= 1 . .,e8'I(I> Ee.!llf 

E23 Exercise. Let s E §(&'(V» and let <I> be the function from §(&'(V) to 
itself given by <I>(s) = 8 where 

8(S) = L: [T, S]s(T), for all S E &,(V). 
Tea'(V) 

State and prove results analogous to E6, E7, E8b, and E13b. 
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CHAPTER II 

Algebraic Structures on Finite Sets 

IIA Vector Spaces of Finite Sets 

In IB we introduced the characteristic functions Cs for subsets S of a set U 
and proved (IB2) that the function Cs 1-* S is a bijection between lKu and 
fJJ( U). Subsequently it was to be verified (Exercise IB3) that this same bijec­
tion made the assignments Cs + CT 1-* S + T and CSCT 1-* S n T. We have 
thereby that (fJJ( U), +, n) is "algebra-isomorphic" to the commutative alge­
bra (IKU, +, .), and hence (fJJ(U), +, n) is a commutative algebra over the 
field IK. In particular, (fJJ(U), +) is a vector space over IK, while 
(fJJ(U), +, n) is a commutative ring; 0 is the additive identity and U itself 
is the multiplicative identity. For the present we shall be concerned only 
with the vector space structure. 

For the reader who has studied vector spaces only over real or complex 
fields, we should remark that most of the results concerning such concepts 
as independence, spanning sets, bases, and dimension are not dependent 
upon the particular field in question but only upon the axioms common to 
all fields. These results are valid for (fJJ(U), +) over IK, too. However, 
some results involving the inner product often not only involve properties 
characteristic of the real or complex numbers, but explicitly preclude the 
field IK. 

We denote the dimension of a finite-dimensional vector space "f/" by 
dim("f/"). For any set U, dim(fJJ(U)) = lUI. This follows since dim(IKU) = lUI, 
but may also be seen directly by observing that the subcollection 9/i(U) is 
a basis for fJJ(U). 

For each S £; U, fJJ(S) is a subspace of fJJ(U). A subspace of this form 
is called a coordinate subspace. 
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Another subspace of interest consists of all the subsets of even cardi­
nality: 

8(U) = {S E a'(U): lSI is even}. 

At Proposition.ljU =F 0, then8(U) is a subspace oja'(U) anddim(8(U» = 
lUI - 1. Ij U = 0, then 8(U) = a'(U). 

PROOF. Clearly 0 E 8(U). If U = 0, then 8(U) = {0} = a'(U). We suppose 
U =F 0. 

By IC5, if S, TE 8(U), then S + TE 8(U); also OS = 0 and IS = S 
belong to 8( U). Since 8( U) is closed with respect to + and scalar multi­
plication, 8(U) is a subspace of a'(U). 

Select Xo E U. One can easily verify that if fJI = {{xo, x}: x E U + {xo}}, 
then fJI is independent and IfJll = lUI - 1. Hence dim(8(U» ~ lUI - 1. 
However, since U =F 0, 8(U) =F a'(U), so dim(8(U» < dim(a'(U» = lUI· 0 

The following corollary offers a different approach to Exercise IC23. 

A2 Corollary. If U =F 0, then 18(U)1 = 1a'(U) + 8(U)1 = 2IUI - 1• 

PROOF. Let W be a (I UI - I)-set. By the proposition, IC7, and ICg, 

18(U)1 = Il!<wl = IIKIIWI = 21UI - 1 = 1a'(U)I/2. 

So 1a'(U) + 8(U)1 = 1a'(U) 1/2. 0 

A3 Exercise. Let ~ = (a'mCU», i.e., thesubspaceoja'(U) spanned by a'm(U). 
Show that 

!a'(U) 

8(U) 
.9'm = {0} 

{0, U} 

i/O < m < I UI and m is odd; 

i/O < m < lUI andm is even; 

i/m = 0; 

i/m = lUI· 

A4 Exercise. Letj: U ~ V. Recall (§IA) the functionsj: a'(U) ~ a'(V) and 
j-1: a'(V) ~ a'(U) induced by f First consider the vector spaces (a'(U), +) 
and (a'(V), +) and determine when j and j-1 are linear transformations 
and, in particular, nonsingular linear transformations. Then determine 
when j and j-1 are algebra-homomorphisms and, in particular, algebra­
isomorphisms between the algebras (a'(U), +, f"'\) and (a'(V), +, f"'\). 
Finally, show that there can be no other algebra-isomorphisms. 

AS Exercise. Determine all subspaces of a'(U) left invariant under the set 
of linear transformations induced by elements of n(U). 
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For any set U we define a function (#J(U) x (#J(U) ~ 11<, called the inner 
product on (#J(U), as follows: ifS, T e (#J(U), then 

S.T = {O if IS f"I TI is even; 
1 if IS f"I TI is odd. 

It follows at once from the definition, IA7, and ICS, that for all R, S, Te 
(#J(U), 

R·S = S·R; 

R·(S + T) = (R·S) + (R·T). 

Furthermore, 

R·S= 0 forallSe{#J(U)<=>R = 0. 

We say Sis orthogoual to T if S· T = O. If [/ £ (#J( U), then the orthogonal 
complement of [/ is 

[/L = {Te{#J(U):S.T= OforallSe.9'}. 

Observe that [/L is always a subspace of (#J(U) and that ([/L)L is a subspace 
of (#J(U) which contains!/. In fact, [/ is a subspace of (#J(U) if and only if 
([/L)L = !/. Another important result concerning orthogonal complements 
(regardless of the characteristic of the field) is 

A6 dim(d) + dim(dL) = I UI, for all subspaces d £ (#J(U). 

The foregoing properties of inner products are all that will be required 
in this text. In a vector space over a subfield of the real numbers with the 
standard inner product, a subspace and its orthogonal complement have only 
the O-vector in common. This is certainly not the case in the following example 
where the underlying field is II<. 

Example. Let lUI = n and let.91 be the subspace of (#J(U) spanned by a 
[n/2]-collection of pairwise-disjoint elements of .9!a(U). Then dim(d) = 
[n/2]. Observe that if n is even, thend = .9IL • If n is odd, then.9lL is spanned 
by.91 together with the I-set ~ontained in no element of d, and so.91 c .9IL • 

A7 Exercise. Show that ({0, U})L = 8(U). 

A subspace of (#J(U) is even if all its elements are sets of even cardinality. 
This concept allows us to state the important algebraic result which under­
lies the classical Euler Theorem for graphs. This latter theorem will be en­
countered in its more traditional setting in §IIIA. 

A8 Proposition. Let .91 be any subspace of (#J( U). Then U e .91. if and only if 
.91 L is even. 
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PROOF. Since d is a subspace, d = (d.l).l. Hence: 

UEd ~S·U = 0 for all SEd.l 
~ IS II UI == 0 (modulo 2) for all S E d.l 
~ISI isevenforallSEd.l. 0 

If!/ s;;; [ljJ(U), the foundation of !/ is the set Fnd(!/) = USES" S. If d and 
E!4 are subspace of [ljJ(U), then clearly their intersection d II E!4 is a subspace 
of [ljJ(U). Their join (also referred to as "sum") given by 

d V E!4 = {S + T: SEd; TEE!4} 

is also a subspace of [ljJ( U). Clearly V is a commutative and associative 
operation on the collection of subspaces of [ljJ( U). In the special case where 
the foundations of d and E!4 are disjoint, the subspace d V E!4 is called the 
coordinate sum of d and E!4 and is denoted by d EB E!4. 

The following is a standard result from linear algebra: 

A9 dim(d V E!4) + dim(d II E!4) = dim(d) + dim(E!4). 

In particular, 

dim(d EB E!4) = dim(d) + dim(E!4). 

We use the shorthand notation 

n 

EB~ 
1=1 

to represent ~ EB d:a EB ..• EB ~. 
It is easy to see that for each S s;;; U, 

[ljJ( U) = [ljJ(S) EB [ljJ( U + S). 

There is a function 7TS: [ljJ(U) -+ [ljJ(S) given by 7Ts(T) = Til S for all 
T E [ljJ(U). It can be readily demonstrated using IA 7 that TTS is a linear trans­
formation. It is a surjection, its kernel is [ljJ( U + S), and it fixes [ljJ(S) point­
wise. In vector space terminology, "7TS projects [ljJ(U) onto [ljJ(S) along 
[ljJ(U + S)." 

If d is a subspace of [ljJ(U) and if S s;;; U, then 7Ts[d] is a subspace of 
[ljJ(S). Since the kernel of the restriction 7Tsl.9I is [ljJ(U + S) II d, we have 

AIO dim([ljJ(U + S) II d) + dim(7Ts[d]) = dim(d). 

Since TTS fixes [ljJ(S) pointwise, 

All 

Of interest are those sets S E [ljJ(U) for which equality holds in All. The 
following result shows them to correspond to "summands" in a coordinate 
sum. 
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All Proposition. Let d be a subspace of fiJ( U). 
(a) If d = flI EB r-c and if B = Fnd(~, then 7TB[d] = fiJ(B) ("\ d = flI. 
(b) Conversely, if BE fiJ(U) and if 7TB[d] = fiJ(B) ("\ d, then 

Al3 7TU+B[d] = fiJ(U + B) ("\ d, 

and 

PROOF. (a) Let d = flI EB r-c and B = Fnd(~. By these assumptions and 
All, flI s;; fiJ(B) ("\ d S;; 7TB[d]. It suffices to show that 7TB[d] S;; flI. 

Let 8 E d. Then 8 = 81 + 82 for some 81 E flI and 82 E r-c. By definition 
of EB, B ("\ 82 = 0. Hence 

7TB(8) = 8 ("\ B = SI E flI. 

(b) Let BE fiJ(U) and assume that 7TB[d] = fiJ(B) ("\ d. 
By All, fiJ(U + B) ("\ d S;; 7Tu+B[d]. By AlO and our assumption, 

dim(fiJ(U + B) ("\ d) = dim(d) - dim(7TB[d]) 
= dim(d) - dim(fiJ(B) ("\ d) 
= dim(7Tu+B[d]), 

and Al3 follows. 
The coordinate sum (fiJ(B) ("\ d) EB (fiJ(U + B) ("\ d) is clearly a sub­

space of d. Moreover, by A9, A13, and AIO, 

dim(fiJ(B) ("\ d) EB (fiJ(U + B) ("\ d)) 
= dim(fiJ(B) ("\ d) + dim(fiJ(U + B) ("\ d) 
= dim(fiJ(B) ("\ d) + dim(7TU+B[d]) 
= dim(d). 

Hence d = (fiJ(B) ("\ d) EB (fiJ(U + B) ("\ d), which in turn equals 
7TB[d] EB 7TU+B[d] by A13. D 

Al4 Corollary. Let d be a subspace of fiJ(U) and let flI be a subspace of d 
with B = Fnd(~. Then d = flI EB r-c for some subspace r-c of fiJ(U) if 
and only if 7TB[d] S;; flI. 

PROOF. By All, flI S;; fiJ(B) ("\ d S;; 7TB[d]. If 7TB[d] S;; flI, then by part (b) 
of the Proposition, we may let r-c = TTU +B[d]. The converse follows from 
part (a) of the Proposition. D 

Al5 Exercise. Let V s;; U and let f/ be a subspace of fiJ(U). Prove that 
7TV[f/.L] is the orthogonal complement in fiJ(V) of fiJ(V) ("\ !7. (Hint: use AIO 
and A6.) 
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lIB Ordering 

A partial order on a finite or infinite set U is a relation R on U which is 
reflexive, transitive, and antisymmetric, i.e., 

(x, y) E Rand (y, x) E R imply x = y. 

A partial order is frequently designated by a symbol such as ~ which will 
be used in the following way. Instead of writing: (x, y) E ~, one writes: 
x ~ y. In this context, the symbol < will be used to mean: x ~ y and x =F y. 
(Compare the use of sand c.) Clearly < is also a relation on U. 

A pair (U, ~), where U is a finite or infinite set and ~ is a partial order 
on U, is called a partially-ordered set. (U, ~) is a totally-ordered set and ~ 
is a total order if either x ~ y or y ~ x for all x, y E U. Isomorphism between 
sets with relations was defined in §/A. 

Bl Exercise. If (U, ~) is a partially-ordereq set, show that < is antisym­
metric and transitive on U. 

Certainly if (U, ~) is a partially-ordered set, and if S E ~(U), then the 
intersection of ~ with S x S is a partial order on S. We abuse notation and 
designate such a partially-ordered set by (S, ~). 

The structures we have been considering readily provide examples of 
partial orderings. 

Example. (~(U), s) and (~(U), 2) are partially-ordered sets. 

B2 Example. A partially-ordered set (Y, ~) determines a partially-ordered 
set (yx, ~) for any set X: iff, g E yx, we say I ~ g if I(x) ~ g(x) for all 
x EX. In particular, for any set U, §(U) will be regarded as a partially­
ordered set, the partial order being determined by the total order on N. 

Let ~:r s ~(U). We say!/' refines :r, or !/' is a refinement of:r, if for 
every S E!/' and T E:r, either S n T = 0 or S n T = S. Observe that 
refinement as a relation on ~(~(U) is generally not reflexive. In fact, 

B3 !/' refines itself if and only if the elements of !/' are pairwise-disjoint. Thus 
refinement is reflexive on IJl(U). 

We say that!/' covers U, or !/' is a covering of U, if U s Fnd(!/'). 

B4 Exercise. Show that if !/' and:r are coverings of U, and if each refines 
the other, then !/' = :r E 1Jl( U). 

Thus refinement is anti symmetric on the set of coverings (and hence on 
the set of partitions) of any set. 
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BS Exercise. Suppose 81, ~ fT s;; fP(U) and that f/ covers U. Show that 
if 81 refines f/ and f/ refines !T, then 81 refines !T. 

We conclude that refinement is transitive on the set of coverings (and 
hence on the set of partitions) of any set, but one can readily verify that 
refinement need not be transitive on fP(fP(U». From B3, B4, and B5 we 
conclude: 

B6 Proposition. For any set U, refinement is a partial order on /?(U). 

Thus each of fPC U), §( U), and /?( U) admits a partial order in a rather 
natural way. Having defined various operations on these objects in the first 
chapter, let us observe how they relate to these objects as partially-ordered 
sets. 

B7 For all R, S, Te fPC U), 

Sf"'ITs;; T, 

and 

if S s;; T, then S f"'I R s;; T f"'I R. 

B8 For all 81, ~ fT e /?(U), with S denoting refinement, 

f/fT S !T, 
and 

if f/ s!T, then f/Bl S fTat. 

B9 For all r, s, t e §(U), 

s+t~t 

and 
if s ~ t, then s + r ~ t + r. 

BIO Exercise. Reconsider B7 with the operation f"'I replaced by u (respec­
tively, +), and reconsider B9 with addition replaced by multiplication. In 
each case prove or disprove the analogous assertions. 

Let (U, s) be a finite or infinite partially-ordered set. We sayan ele­
ment x of (U, ::;) is minimal (respectively, maximal) if there exists no x' e U 
such that x' < x (respectively, x' > x). An element x of (U, s) is the 
minimum (respectively, the maximum) element of (U, ::;) if x ::; x' (respec­
tively, x ~ x') for all x' e U. Two facts are immediate: first, a partially­
ordered set need not have a minimum (respectively, maximum) element; 
second, if a partially-ordered set does have a minimum (respectively, maxi­
mum) element, then that element is the unique minimal (respectively, maximal) 
element of the partially-ordered set. The converse of this second remark is 
also true (see B12 below). Iff: Y -+- 1'1, we say ye Y is a smallest (respec-
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tively, largest) element of Y (relative to f being understood) if f(y) ~ f(y') 
(respectively,J(y) 2!: f(y')) for all y' E Y. 

Example. Let U = {a, b, c, d} and let f/' consist of the sets {a}, {b}, {a, b}, 
{b, c}, {c, d}, {a, b, c}, {b, c, d}, {a, c, d}. Then (9; £;) has neither a minimum 
nor a maximum element. The 3-sets in f/' are all maximal (with respect to 
inclusion) and largest (with respect to cardinality). Similarly the I-sets in f/' 
are minimal and smallest. However, the set {c, d} is also minimal but it is not 
smallest. 

We return to the convention that all sets are presumed to be finite. If 
(U, ~) is a partially-ordered set, a totally ordered m-subset S of U is called 
a chain or, more specifically, an m-chain. The collection of all chains on 
(U, ~) is partially-ordered by the usual set-inclusion, and the term maximal 
chain denotes a maximal element of this ordered collection. 

Clearly a maximal chain of (U, ~) contains both a unique maximal ele­
ment of (U, ~) and a unique minimal element of (U, ~). For let S = 
{Xlo X2, ••• , xm} and suppose Xl < X2 < ... < xm• If Xm is not maximal in 
(U, ~), then Xm < w for some WE U. It follows that S + {w} is also a 
chain and S c S + {w}. Similarly one shows that Xl is minimal in (U, ~). 
Now let X E U. Since {x} itself is a chain, the collection of all chains contain­
ing x is not empty and hence contains a largest member S. Clearly S is also 
a maximal chain. We have proved: 

Btl Proposition. Let (U, ~) be a partially-ordered set. If x E U, then x is 
an element of some maximal chain in (U, ~). Moreover, y ~ x ~ z for 
some minimal element y E U and some maximal element Z E U. 

B12 Exercise. If the partially-ordered set (U, ~) has a unique minimal (respec­
tively, maximal) element x, prove x is the minimum (respectively, maximum) 
element of(U, ~). 

The next proposition gives a further connection between partial orders 
and algebraic structures. 

Bt3 Proposition. Let (U, ~) be a partially-ordered set and let 0 be a com­
mutative, associative operation on U such that x 0 x' ~ x for all x, x' E U. 
If S is a nonempty subset of U closed under 0, then (S, ~) has a minimum 
element. 

PROOF. Let S £; U be closed under 0 and let Xo be the "product" of all 
elements in S. (Since 0 is commutative and associative, Xo is well-defined.) 
Clearly Xo ~ x for all XES, and of course Xo E S. 0 

Note that the finiteness of S is essential to the above proof. As an im­
mediate application, we have: 
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B14 Corollary. Any nonempty subcollection of (&'(U), S;) which is closed 
under n (respectively, u) contains a minimum (respectively, maximum) 
subset. 

B15 Corollary. Any nonempty subcollection of IP(U) which is closed under 
multiplication of partitions contains a minimum partition (with respect to 
refinement). 

B16 Proposition. Let g S; f!l'(U) and let:::; denote refinement on f!l'(f!l'(U». 
Then {fl E IP( U): g :::; fl} has a minimum element and {fl E IP( U): fl :::; g} 
has a maximum element. 

PROOF. Let Bl10 Bl2 E IP(U) and suppose g :::; Bll and g :::; Bl2. We show 
that g :::; Bl1B12• An arbitrary cell of BlIB12 is of the form Rl n R2 where 
R; E Bli • Let S E .'7. If S n R j =P 0, then S S; R j by the definition of refine­
ment. It is immediate that either S S; Rl n R2 or S n Rl n R2 = 0. Hence 
{fl E IP(U): g :::; fl} is closed under multiplication. By B15 it contains a 
minimum element. 

To complete the proof, we define a relation ,.., on U whereby x ,.., y 
if 

B17 XES -¢> YES, for all S E .'7. 

Obviously is an equivalence relation on U, the equivalence classes of 
which form a partition flo E IP(U). Moreover flo :::; .'7. If fl E IP(U) and 
fl :::; Y, and if x, y belong to the same cell of fl, then indeed B17 holds, and 
x ,.., y. Hence x and y belong to the same cell of flo. It follows that fl :::; flo, 
and flo is the required maximum element. 0 

If g s; f!l'(U), the minimum and maximum partitions guaranteed by Bl6 
are called the coarse partition of g and the fine partition of Y, respectively. 
Thus the coarse partition of g is the "finest" partition refined by Y, and 
the fine partition of g is the "coarsest" of the partitions which refine .'7. 
This is just fine, of course. If g has fine partition flo and coarse partition 
fll' it follows from B5 that 

B18 flo :::; flh whenever g is a covering of U, 

and from B4 and B5 that 

B19 flo = fll -¢> g E IP(U), whenever g is a covering of U. 

B20 Exercise. Show that the condition that g be a covering of U is essen­
tial in both B18 and B19. 

B21 Exercise. Let g be a covering of U. 
(a) If g has the property that 

Sh S2 E g => SI n S2 =P 0, 

what is the coarse partition of g? 
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(b) Let [I' have the property that the system (U, [1') distinguishes vertices. 
What is the fine partition of [I'? 

(c) Give examples of collections [I' having both of the above properties. 

A collection [I' s fJ!( U) is said to be incommensurable if no element of 
[I' is a subset of any other element of Y'. (Cf. ID6.) 

B22 Exercise. Let .flo, .fll E IJD(U) be given with .flo :::; .fl1. Determine when 
there exists [I' S fJ!( U) such that .flo is the fine partition of [I' and .fll is 
the coarse partition of Y'. What is the answer if it is imposed further that [I' 
be incommensurable? 

B23 Exercise (Sperner [s.7]). Show that any largest incommensurable sub­
collection of fJ!( U) has cardinality 

( [:~:l) 
(Hint: Let ~ be the set of (I UI + I)-chains in (fJ!(U), S). For each S E fJ!(U), 
let ~s consist of those chains in ~ of which S is an element. Begin by showing 
that if [I' s fJ!(U) is incommensurable, then I~I ~ 2SEsP l~sl.) 

A pair (V, D), where V is a set and D S (V x V) + {(v, v): v E V}, is 
called a directed graph. The elements of V are called vertices and the ele­
ments of D are called edges. A sequence of vertices and edges of the form 

from (V, D) is called a vovk-path. The length of a path is the number of edges 
it contains. In particular, a single vertex constitutes a path of length O. If 
v E V, a vv-path is called a directed circuit. A directed graph is acyclic if all 
its directed circuits have length O. 

B24 Proposition. Let (V, D) be a directed graph. Define the relation :::; on 
V by: u :::; v if (V, D) admits a uv-path. Then:::; is reflexive and transitive. 
Moreover, (V, D) is acyclic if and only if (V, :::;) is a partially-ordered set. 

PROOF. Trivially :::; is reflexive. 
If u :::; v and v :::; w, then (V, D) admits a uv-path: 

and a vw-path: 

The following sequence is a uw-path: 

Hence :::; is transitive. 
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Now suppose v ~ wand w ~ v. A repetition of the above construction 
yields a vv-path, and if v i= w, this path will have positive length. Hence if 
(V, D) is acyclic, then ~ is antisymmetric. Conversely, if there exists a 
directed circuit through distinct vertices v and w, then v ~ wand w ~ v. 0 

From the previous result we have that every acyclic directed graph uniquely 
determines a partially-ordered set. Conversely, every partially-ordered set 
can be obtained in this way. However, a given partially-ordered set may be 
determined by many different directed graphs. For let (V, ~) be a partially­
ordered set and let D = {(v, w) E V x V: v ~ w}. Clearly (V, D) is an acyclic 
directed graph which yields (V, ~) in the manner ofthe proof of the previous 
proposition. In this case, (V, D) is the directed graph of (V, ~) which has 
the largest possible number of edges. 

Given (V, ~), we say that w is a successor of v if v < wand if v ~ x ~ w 
implies x = v or x = w. 

B25 Exercise. Given (V, ~), let Do = {(v, w): w is a successor of v}. Show 
that the partial order determined by the directed graph (V, Do) is precisely 
(V, ~). Moreover, Do s.;; Dl s.;; D if and only if (V, D1) determines (V, ~). 

Let (U, ~) be a finite or infinite partially-ordered set. If x, y E U, we 
define the meet of x and y, denoted by x A y, to be the maximum element of 
{z E U: z ~ x; z ~ y}, if it exists. We define the join of x and y, denoted by 
x V y, to be the minimum element of {z E U: x ~ z; y ~ z}, if it exists. 
A partially-ordered set (U, ~) is called a lattice if x 1\ y and x V y exist for 
all x, yE U. 

B26 Example. For any set U, the partially-ordered set (&'(U), s.;;) is a 
lattice, where the usual set-theoretic intersection and union are the two 
lattice operations of meet and join, respectively. Any lattice which is iso­
morphic to (&'(U), s.;;) for some set U is called a Boolean lattice. 

B27 Example. Consider the partially-ordered set (U, I) of all positive integral 
divisors of the positive integer n, where I means "divides." The join of any 
two elements of U is their least common multiple and their meet is their 
greatest common divisor. It is not difficult to see that (U, I) is a lattice, and 
it is Boolean if and only if n is divisible by no perfect square greater than 1. 

We shall have frequent recourse to the following two examples. 

B28 Example. Let 5(1) denote the set of all subspaces of the vector space 
-r. If d, 91 E 5('f'"), let d ~ 91 mean that d is a subspace of 91. With the 
join of d and 91 as defined in the previous section and their meet defined to 
be their intersection, (5('f'"), ~) becomes a lattice. The verification involves 
only elementary linear algebra. It will be shown subsequently that these 
lattices are not Boolean when 1'f'"1 ~ 2. 
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B29 Example. Let S(A) denote the set of all subsystems of the system 
A = (V,f, E). If 01> O2 E S(A), then 0 1 ::; O2 means that 0 1 is a subsystem 
of O2 • Clearly (S(A), ::;) is a partially-ordered set. Let 0 1 = (Wj, gh Fj ) 

for i = 1,2, and define 

0 1 A O2 = (WI n W2,jjF lf\F2' F1 n F2); 

0 1 V O2 = (WI U W2,JJ FI UF2' F1 U F2). 

It is straightforward to verify that (S(A), ::;) now becomes a lattice. 

BJO Exercise. Show that for any set U, the partially-ordered set (I?(U), ::;) 
is a lattice. 

If (U, ::;) is a finite or infinite partially-ordered set, we define the dual 
order ~ on U by: x ~ y if and only if y ::; x, for all x, y E U. Then (U, ~) 
is also a partially-ordered set. In particular, if (U, ::;) is a lattice with meet 
and join denoted by A and V, respectively, then (U, ~) is its dual lattice, 
with meet and join given by V and A, respectively, as can be easily verified 
from the definitions. For example, (&J(U), 2) is dual to (&J(U), s;;) in 
Example B26, where the roles of union and intersection have been inter­
changed. Clearly the dual of the dual of a lattice is the original lattice. 

The next exercise is a list of algebraic properties to be verified for all 
lattices. They follow from basic definitions. The concept of duality can be 
used t<5 substantially shorten the work. 

B31 Exercise. Let (U, ::;) be a lattice. Show that for all x, y, z E U, 
(a) A and V are idempotent (i.e., x A x = x V x = x); 
(b) A and V are commutative and associative; 
(c) x A (x V y) = x = x V (x A y); 
(d) x ::; y implies both x A z ::; y A z and x V z ::; y V z; 
(e) (x A y) V (x A z) ::; x A (y V z); 
(f) x V (y A z) ::; (x V y) A (x V z). 

If W is any finite subset of U, then part (b) above yields that the meet of 
all the elements of W, denoted /\XEW x, is well-defined. Analogously, we 
write V XEW x. Henceforth, all lattices are assumed to be finite. We may now 
define two distinguished elements 0 = /\XEU x and 1 = V XEU x. Thus 
o ::; x ::; 1 for all x E U. Every (finite) lattice has a minimum element and a 
maximum element. In Examples B26, B27, and B28, the minimum elements 
are 0, 1, and {O}, respectively, while the maximum elements are U, n, and 'i'; 
respectively. 

B32 Proposition. The following statements are equivalent for any lattice 
(U, ::;): 

(a) (x A y) V (x A z) = x A (y V z)for all x, y, z E U; 
(b) (x V y) A (x V z) = x V (y A z)for all x, y, z E U; 
(c) (x V y) A z ::; x V (y A z)for all x, y, z E U. 
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PROOF. (a) ::? (b). Assume (a) to hold and substitute x V y for x and x for y, 
obtaining 

~V~A~V~V~A~=~V~A~v4 

The left-hand member becomes 

x V [(x V y) A z], by B3lb and c; 
= x V [(x A z) V (y A z)], by assumption (with x and z interchanged); 
= x V (y A z), byB3lbandc. 

(b) => (c). Since z ::;; x V z, B31d followed by our assumption (b) yields 
~V~AZ::;;~V~A~V~=XV~A4 

(c) ::? (a). We need only prove that (c) implies the reverse inequality of 
B3lf. With appropriate substitutions, two successive applications of assump­
tion (c) yield 

(x V y) A (x V z) ::;; x V [y A (x V z)] 
::;; x V [x V (y A z)] 
= x V (y A z), as required. o 

A lattice which satisfies anyone (and hence all three) of the conditions 
of Proposition B32 is called a distributive lattice. 

B33 Example. (.9(U), s;;) is a distributive lattice for any set U. Hence all 
Boolean lattices are distributive. 

B34 Exercise. Prove that 
(a) If U is a set with at least two elements, then the lattice (S(.9(U», ::;;) 

is not distributive (and hence not Boolean). 
(b) (S(A), ::;;) is a distributive lattice for any system A. 

B35 Exercise. Determine whether the lattice (OJl(U), ::;;) is distributive. 

A lattice (U, ::;;) is said to be complemented if for each x E U there exists 
x' E U such that x A x' = 0 and x V x' = 1. In this case x' is called a 
complement of x. 

B36 Example. In the lattice (.9(U), s;;), the complement in the lattice of 
any set S E .9(U) is its set-theoretic complement U + S. Hence all Boolean 
lattices are complemented. 

When (U, ::;;) is distributive, one may speak of the complement of x, for 
if both y and z were complements of x, one would have by B32c and b that 
y = y A 1 = Y A (x V z) ::;; (x A y) V z = 0 V z = z. By symmetry z ::;; y, 
and so y = z. Hence x" = x for all complemented elements x. 
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B37 Exercise. Let (U, ~) be a distributive lattice. Let a, b E U and let a ~ b. 
Let W = {x E U: a ~ x ~ b}. Show that 

(a) (W, ~) is a distributive lattice. 
(b) For each x E W there exists at most one element y E U such that 

x A y = a and x V y = b. 
(c) If(U, ~) is complemented, then (W, ~) is complemented. 

If(U, ~) is a partially-ordered set and if(W, ~) is a lattice where W s; U, 
then (W, ~) is a sublattice of (U, ~). 

B38 Lemma. Let (U, ~) be a lattice and let W s; U. If x A y, x V YEW 
for all x, YEW, then (W, ~) is a sublattice of (U, ~). 

PROOF. By definition, 

x A Y = max{z E U: z ~ x; z ~ y} 
~ max{z E W: z ~ x; z ~ y} ~ x A y, 

since x AyE W. The argument for x V y is analogous. o 
When (U, ~) is a distributive lattice, we shall write Xl EB X2 EB ... EB Xm 

for Xl V X2 V .•• V Xm if XI A Xj = 0 for 1 ~ i < j ~ m. Clearly if 
x EB y = 1, then x and yare complements. 

B39 Exercise. Show that for any elements x, y, z of a distributive lattice, 
(x EB y) EB z = x EB y EB z. 

B40 Proposition. Let (U, ~) be a distributive lattice. Then the set of comple­
mented elements of U forms a complemented distributive sublattice of 
(U, ~). 

PROOF. Denote the set of complemented elements of U by W. Surely if 
(W, ~) is a sublattice of (U, ~), then it is distributive and complemented. 
It suffices, therefore, to show that the meet of any two elements of W is 
complemented and so belongs to W. (The analogous proof for the join fol­
lows by duality.) Specifically, we show that for x, YEW, (x A y)' = x' V y'. 
We use B32a: 

(x A y) A (x' V y') = x A [y A (x' V y')] 
= x A [(y A x') V (y A y')] 
= x A [(y A x') V 0] 
= x A Y A x' = o. 

We next use B32b: 

as required. 

(x A y) V (x' V y') = [(x A y) V x'] V y' 
= [(x V x') A (y V x')] V y' 
= [1 A (y V x')] V y' 
=yvx'vy'=1 

o 
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An atom of a lattice (U, ::;;) is a minimal element of the partially-ordered 
set (U + {O}, ::;;). In Examples B26, B27, and B28, the atoms are, respec­
tively, the I-subsets of U, the prime divisors of n, and the I-dimensional sub­
spaces of 1': Note that if a and b are distinct atoms of (U, ::;;), then a 1\ b = 0, 
a < a V b, and b < a V b. 

B41 Proposition. Let (U, ::;;) be a complemented distributive lattice, and let 
A be the set of atoms of(U, ::;;). Letf: &P(A) ~ U be given by 

f(B) = EB·a for each BE &P(A), 
aeB 

where the join of an empty collection is understood to be O. Then f is a 
bijection. 

PROOF. Since the meet of any two atoms is 0, f is a well-defined function. 
To prove thatfis surjective, we first prove that I is the join of all the atoms 
in U. For suppose that EBaeA a = x for some x < 1. Then a ::;; x for all a E A. 
Since (U, ::;;) is complemented, x' exists, and x' > O. Hence the set 
{z E U: z ::;; x'} contains at least one atom a. Thus a ::;; x', and since a ::;; x, 
we have a ::;; x 1\ x' = 0, which is absurd. Hence EBaeA a = 1. 

Now let x E U and consider the set W = {z E U: z ::;; x}. By Exercise B37, 
(W, ::;;) is a complemented distributive sublattice of (U, ::;;). Moreover, if 
B is the set of atoms of W, then B S;;; A. Applying the argument of the 
preceding paragraph to (W, ::;;), we obtain x = EBaeB a = f(B). 

To prove that f is injective, let Band C be distinct subsets of A such 
thatf(B) = f(C). We may pick z E B + C; say Z E Band z ¢ C. Then 

z 1\ EB a = V (z 1\ a) = Z 
aeB aeB 

while 

z 1\ EB a = V (z 1\ a) = O. o 
GeO GeO 

B42 Corollary. Thefunctionf: (&P(A), s;;;) ~ (U, ::;;) of the above proposition 
is a lattice-isomorphism. 

PROOF. It has already been established that f is a bijection. We need only 
verify that f is an isomorphism of partially-ordered sets. 

Let B, C E &P(A) such that C S;;; B. Clearly EBaeo a ::;; EBaeB a. 
Conversely, let x, y E U such that y ::;; x. Then y = EBceo c and x = 

EBbeB b for some subsets C, BE &P(A). Since y 1\ x = y, we have by "dis­
tributivity", Vcec,beB(C 1\ b) = (Vcecc) 1\ (VbeBb) = EBcecc. Each term 
c 1\ b clearly equals either c or O. Specifically, V ceO,DeB (c 1\ b) = EBaecnB a. 
Thusf(C ('\ B) = f(C), and sincefis injective, C ('\ B = C. Hence C S;;; B. 0 

B43 Corollary. A lattice is Boolean if and only if it is complemented and 
distributive. 
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HC Connectedness and Components 

In the previous section we considered minimal, nonzero elements of a 
lattice (" atoms"); in this section we begin by considering the collection 
Jt(d) of minimal, nonempty subsets belonging to a collection d of sets. 
Like the set of atoms of a lattice, Jt(d) is an incommensurable collection. 
These subsets are called the elementary sets in d. For example, 
Jt(fJJ(U» = fJJl(U) and Jt(C(U» = ~(U). It holds not only in these two 
examples, but in general, that if d is a subspace of fJJ(U), then Jt(d) spans 
d. We shall look to Jt(d) to yield further properties about d. Throughout 
this section d will denote a subspace of (fJJ(U), +). 

Cl Lemma. Every subset in d is the sum of pairwise-disjoint elementary 
subsets in d. 

PROOF. Let SEd. We proceed by induction on lSI. If S = 0, then S is 
the sum over the empty collection. Let n be a positive integer, and assume 
the conclusion holds for T whenever TEd and ITI < n. Now assume 
lSI = n. By Proposition BII, there exists an elementary set M s; S. Thus 
IS + M I = I S I - I M I < n, and by the induction hypothesis, there exist 
pairwise-disjoint subsets Ml> ... , Mk EJt(d) such that S + M = Ml + ... 
+ Mk. Hence S = Ml + ... + Mk + M is the required sum. 0 

The incommensurability of Jt(d) plays an important role in proving the 
next result. 

C2 Lemma. Let M l , M2 E Jt(d) such that Ml n M2 =I 0. Given Xl E Ml 
and X2 E M2, there exists ME Jt(d) such that {Xl> X2} s; M. 

PROOF. We proceed by induction on IMl U M21. If IMl u M21 ~ 2, the 
result is obviously true. Let m > 2 be given and suppose the lemma holds 
whenever IMl u M21 < m. 

Suppose IMl u M21 = m, and let Xl> X2 be given. Clearly if Xi E M j for 
some i =I j, there remains nothing to prove. We suppose therefore that 
Xl> X2 E Ml + M2. 

By Lemma Cl, Ml + M2 = Nl + ... + Nk for some pairwise-disjoint 
elementary subsets Nl , ... , Nk. If one of these sets Nj contains {Xl> X2}, 
then set M = Ni • Hence we may assume without loss of generality that 
Xl E Nl and X2 E N2. Because Jt(d) is incommensurable, [Mj + (Ml n M2)] n 
N j =I 0 for all i = 1,2; j = 1, ... , k. Hence Nl U M2 C Ml U M2. We 
may therefore apply the induction hypothesis to Nl U M 2, since Xl E Nl , 
X2 E M2, and Nl n M2 =I 0. Hence {Xl> X2} s; M for some set ME Jt(d). 0 

C3 Lemma. If d = E8~=1 8B; and 8B; =I {0}for all i, then 

{Jt(8B;): i = 1, ... , k} E IJlk(Jt(d». 
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PROOF. We give a proof when k = 2; the general case then follows easily 
by induction. That .A(~1) (') .A(~;) = 0, is immediate. Hence we wish to 
prove .A(d) = .A(~1) U .A(~2). Let BI = Fnd(~) for i = 1, 2. Let 
A E .A(d), and suppose that A (') BI :F 0 for some i. By A12a, A (') BI E 
7TB,[d] = ~I £; .91. By the minimality of A, we must have A (') BI = A, and 
so A £; BI . Hence A E .A(~). Conversely, let A E .A(~) for some i. Then 
A Ed since ~ £; d. If A ¢ .A(d), then 0 c C c A for some C E.9I. But 
then C E d (') fYJ(BI) £; 7TB,[d] = ~ by All and A12a, contrary to the 
minimality of A. 0 

We are now ready to define some basic concepts of this chapter. 
A subspace ~ is a direct summand of d if d = ~ EE> ~ for some sub­

space~. Clearly {0} and d are always direct summands of d. The subspace 
d is said to be connected if these are the only direct summands of.91. Finally, 
we define a component of d to be a connected direct summand of d other 
than {0}. 

C4 Example. If 0 eSc U, then fYJ(U) = fYJ(S) EE> fYJ(U + S). Hence fYJ(S) 
and fYJ(U + S) are direct summands of fYJ(U). It follows that fYJ(U) is con­
nected if and only if lUI :::;; 1. Therefore the components of fYJ(U) are all 
the subspaces of the form fYJ({x}) where x E U. It is true not only in this 
example, but in general, that the foundations of disjoint direct summands 
are disjoint. 

C5 Lemma. If d = EE>~ = 1 ~ and ~I :F {0} for all i, then 

{Fnd(~): i = 1, ... , k} E Pk(Fnd(d)). 

PROOF. For 1 :::;; i < j S k, we have ~ (') ~i = {0}, and so Fnd(~) (') 
Fnd(~i) = 0. Since ~ :F {0}, Fnd(~) :F 0. Finally let x E Fnd(d). Then 
x E A for some A E .A(d). By Lemma C3, A E ~ for some i, whence 
x E Fnd(~) as required. 0 

Given two systems AI = (Vb};, EI ) for i = 1, 2 where V1 (') V2 = 0 = 
E1 (') E2, the system A = (VI U V2,f, El U E2) where f(e) = };(e) for 
e E EI is called the direct sum of A1 and A2 and is denoted by Al EE> A2. 
Since the operation EE> on systems is commutative and associative, this 
definition may again be extended to any finite number of systems AI = 
(Vb};' Ej), i = 1, ... , k, as long as VI (') Vi = EI (') Ei = 0 for all i :F j. 
The resulting system A is called the direct sum of Ah ... , Ak and is denoted 
by EE>~=1 A.. Note that each A. is a subsystem of EE>~=1 AI. Each AI is called 
a direct summand of A. The system (0,J, 0) is called the trivial system. 
Clearly A itself and the trivial system are always direct summands of A. 
Hence we say that A is connected if these are its only direct summands. 
Finally, a connected nontrivial direct summand of A is called a component 
of A. 

44 



lIC Connectedness and Components 

Direct summands for subspaces are closely related to those of systems, 
as we shall now see. If d is a subspace of .9(V), we define A(d) to be 
(Fnd(.!#), Jt(d)). 

C6 Proposition. Let d be a subspace of .9(V). 

(a) If d = EB~=l~' then A(d) = EB~=l A(~). 
(b) If A(d) = EB~=l A, where AI = (~, tS;), then Ai = A(d () .9(VI )) 

for i = 1, ... , k. Furthermore d = EB~ = 1 (d () .9( VI))' 

PROOF. (a) This follows at once from Lemmas C3 and C5 and the definitions. 
(b) Let ~ = d () .9(VI) for i = 1, ... , k. Clearly Fnd(36';) £; ~. Hence 

EB~ = 1 ~ is a well-defined subspace of d. Now let A Ed. By Lemma C 1, A = 
2J=1 HI> where HI is a sum of sets in tS; () Jt(d). Since for i = 1, ... , k, 
HI Ed and HI £; VI> we have HI E~. Thus A E EB~ = 1 ~, and we conclude 
thatd = EB~=l~' By part (a) above, A(.!#) = EB~=l A(36,;). Since Fnd(~) £; 

Vi for i = 1, ... , k, we must have VI = Fnd(~) and tS; = Jt(36';). 0 

C7 Proposition. Let A1> ... , Ak be the components of the system A. A sub­
system n of A is a direct summand of A if and only if n = EBles AI for some 

subset S £; {I, ... , k}. In particular, A = EB~=l AI' 

PROOF. Let D(A) denote the collection of direct summands of A. This is 
precisely the set of complemented elements of the lattice (S(A), ~) presented 
in Example B29. By B34b and B40, (D(A), ~) is a distributive complemented 
sublattice of (S(A), ~). The atoms of (D(A), ~) are precisely the com­
ponents of A, and the result follows from Corollary B42. 0 

This result combined with C6 yields: 

C8 Corollary. Let ~1> ... , ~k be the components of d. A subspace 81 of d is 
a direct summand of d if and only if 81 = EB ieS ~ for some subset S £; 

{I, ... , k}. In particular d = EB~= 1 ~. 

It follows from this Corollary and Lemma C5 that {Fnd(~): ~ is a com­
ponent of d} is a partition of Fnd(d). This partition is called the component 
partition of the subspace d. 

C9 Example. Let U = {s, t, u, v, w, x, y, z} and let d be spanned by Sl = 
{s, t, u, v}, S2 = {s, t, w}, S3 = {u, v, w, x, y, z}. Then d consists of all possible 
sums of these three sets. The remaining sets in dare: 0, Sl + S2 = {u, v, w}, 
Sl + S3 = {s, t, w, x, y, z}, S2 + S3 = {s, t, u, v, x, y, z}, and Sl + S2 + 
S3 = {x, y, z}. Since the sets in the list are all distinct, Idl = 23 , and so 
dim(.!#) = 3. Let 2- = {Q1> Q2} where Q1 = {s, t, u, v, w} and Q2 = {x, y, z}. 
Then .9(Q1) () d = {0, S1> S2, Sl + S2} has dimension 2 and .9(Q2) n d = 
{0, Sl + S2 + S3} has dimension 1. Each of these two subspaces is connected. 
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Also, d = (&'(QI) n d) EEl (&'(Q2) n d). Thus &'(QI) n d and &'(Q2) n d 
are the components of d, and !!2 is the component partition of d. 

CIO Exercise. Prove: 
(a) The component partition of d is the coarse partition of .K(d). 
(b) If {x} Ed for some x E Fnd(d), then &'({x}) is a component of d. 
(c) If x E U + Fnd(d), then &'({x}) is a component of dl.. 

Cll Lemma. Let I UI ~ 2. Fnd(d) = U and.Jil is connected if and only if 
Fnd(.JiIl.) = U and dl. is connected. 

PROOF. Clearly by duality it suffices to prove this lemma in just one direction. 
Suppose Fnd(d) = U and that.Jil is connected, and let x E U + Fnd(.JiIl.). 
By Exercise CI0c, &'({x}) is a component of d. Since I UI ~ 2, d is not 
connected, contrary to assumption. Hence Fnd(dl.) = U. 

Suppose .Jill. = !!II EEl !!I2' Let dt be the orthogonal complement of ~ in 
&,(Fnd(~») for i = 1,2. For all A Edt and A' E dL, 

IA nA'l = IA n (A' n Fnd(!!II)1 + IA n (A' n Fnd(!!I2))I 
= IA n (A' n Fnd(~»1 == 0 (mod 2). 

Hence A Ed, whence dt :::;; d. Since Fnd(~) n Fnd(d2) = 0, ~ EEl ~ :::;; 
d. To prove the reverse inequality, we use A6: 

dim(dt) = IFnd(~)1 - dim(~) i = 1,2. 

Since Fnd(dl.) = U, we have dim(~ EEl~) = lUI - dim(!!II EEl !!I2) = 
lUI - dim(dl.) = dim(d), and so ~ EEl ~ = d. If dt = {0}, then for 

j E {l, 2} + {i}, U = Fnd(d) = Fnd(dj) £; Fnd(!!Ij) = U + Fnd(~), and so 
Fnd(~) = 0, whence!!lj = {0}. This proves that if !!II and!!l2 are nontrivial, 
then .JiI is not connected, which completes the proof. 0 

Cll Proposition.Let~h"" ~kbethecomponentsof.Jil and let U + Fnd(d) = 

{Yh' .. , Yp}. Let .!'}i be the orthogonal complement of ~ in &,(Fnd(~)), 
i = 1, ... , k. Then the components of .Jill. are &'({yj}) for i = 1, ... , p and 
the nontrivial spaces among !74for i = 1, ... , k. In particular, ifFnd(d) = 
Fnd(dl.), then d is connected if and only if.Jill. is connected. 

PROOF. If A Ed and DE.!'}h then IA n DI = I1TFnd('lt><A) n DI == 0 (mod 2), 
since the projection of A belongs to ~ (i = 1, ... , k). Hence D EdL, and so 
!74 :::;; dl. for i = 1, ... , k. By CI0c, &'({Yj}) is a component of .Jill. and so 

(]I = [ffi~=I.!');] EEl [ffi~=1 &'({yj})] :::;; dl.. Since dim(~) = IFnd(~)1 - dim(!74) 
for i = 1, ... , k, we have 
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and so PA = .911.. Hence each subspace .@j is a direct summand of .91\ and 
by the lemma, it is a component whenever it is nontrivial. The rest is im­
mediate. D 

Cl3 Exercise. Prove 
(a) C(U) is connected for any set U. 
(b) If lUI;::: 3, then C(U) is the only connected (I UI - I)-dimensional 

subspace of &(U). 

Continuing our notation, let Mj be an incidence matrix for the direct 
summand Aj for i = 1, ... , k. Then the matrix 

o 
M= 

o .~ 

is clearly an incidence matrix of EB~ = 1 Ah provided none of the systems Aj 
has an empty vertex set or empty block set. Its transpose M* has the same 
form except that Mj* replaces the submatrix Mj for i = 1, ... , k. From this 
argument the following is clear: 

Cl4 Proposition. Let AI> ... , Ak be hypergraphs. If their direct sum is defined, 
then the direct sum of their transposes is defined, and 

(~Ajr = ~ Aj*. 

Since a system is trivial if and only if its transpose is trivial, we have 

CIS Corollary. A system is connected if and only if its transpose is connected. 

Cl6 Exercise. Show that if n = (W, fiF, F) is a direct summand of A = 
(V,J, E) then n = Aw = AF whenever W =I 0 =I F. 

Cl7 Exercise. Let A = (V,J, E) be a system such that f(e) = 0 for some 
e E E. Prove A is connected if and only if V = 0 and lEI = 1. 

Let AI>"" Ak be the components of the system A = (V,J, E) and write 
Aj = (Vh };, Ej)for i = 1, ... , k. By C7, A = EB~=l Ah and so if Ajl"'" Ajm 
are the components with nonempty vertex sets, we have {V;1' ... , Vjm} E !J=D(V). 
This partition is called the component partition of A. 
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C18 Exercise: Continuing this notation, find the component partition of 
A*. 

Let A = (V, J, E) be a system, and let s, t E VuE. An st-path is a sequence 
s = so, Sh ••• , s,. = t of elements of VuE such that: 

(a) any three consecutive terms of the sequence are distinct; 
(b) {Sj-h Si} is an edge of the bipartite graph of A for j = I, ... , n. 

For example, if x, y E V, an xy-path is an alternating sequence x = xo, eh X2, 

ea, ... , e,.-h x,. = y of vertices and blocks such that {Xb X1+2} £: f(eI+1) for 
i = 0,2, ... , n - 2. Note that a single vertex or block is itself a path; such 
a path is said to be trivial. A path is said to be elementary if all of its terms 
are distinct. 

C19 Exercise. (a) Let A = (V, J, E) be a system and let s, t E VuE. Show 
that if A admits an st-path, then it admits an elementary st-path. 

(b) Define the relation /'OJ on VuE by: s /'OJ t if and only if there exists an 
st-path in A. Show that /'OJ is an equivalence relation. 

C20 Proposition. The component partition of A = (V,J, E) is the partition of 
the equivalence relation /'OJ of CI9b restricted to V. 

PROOF. Assume AV1"'" Av/c are the components of A = (V,J, E) and let 
FI = {e E E: fCe) s; VI}' Let 8 E VI and t E Vi for some' =F j. Suppose 8 = 80, 

Sl, .•. , 8,. = t is an st-path, and let Sk be the last term in the path in VI U 

Fl' If Sk is a vertex, then Sk Ef(Sk+1) where Sk E VI and Sk+1 ¢ Fj. Since 
AV" ••• , Av/c are the components of A, Sk+1 E Fq for some q =F i and 
f(Sk+1) £: Vq , i.e., f(Sk+1) n VI = 0. This is clearly impossible. If Sk is a 
block, then Sk+1 Ef(Sk)' butf(sk) £: Vi while Sk ¢ FI which is impossible. We 
conclude that there exists no st-path. Hence the partition defined by /'OJ 

refines the component partition. 
Now suppose s, t E Vi for some i. Let S = {r E VI u FI: there is an sr­

path}. Observe that if rES n Flo then f(r) £: S and hence fer) £: S n VI' 
On the other hand if r E FI + (S n FI), then f(r) n S = 0, i.e., f(r) E VI + 
(S n Vj). We conclude that 0 1 = (S n Vh jjSrlFI' S n FI) and O2 = 

(VI + (S n VI), jjFI + (SrlFlh FI + (S n Fj)) are both well-defined subsystems 
of A. Furthermore, 0 1 1\ O2 = {0, J, 0} and 0 1 V O2 = Av" i.e., 0 1 E8 
O2 = Av,. However Av" being a component, is connected. Hence 0 1 or O2 

is trivial. Since S E S, 0 1 is not trivial. Thus t E VI £: S, and S /'OJ t. D 

C2l Corollary. Let A = (V,J, E). Thefollowing three conditions are equivalent: 
(a) A is connected. 
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(b) fee) =1= 0 for all e E F, and for every s, t E V there is an st-path. 
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C22 Proposition. (a) A necessary and sufficient condition for a subspace d to 
be connected is that given Xl> X2 E Fnd(d), there exists ME Jt(d) such 
that {Xl' X2} s;; M. 

(b) The relation'" on Fnd(d) given by 

X '" Y <::> {x, y} S;; A for some A E Jt(d) 

is an equivalence relation. The equivalence classes are precisely the cells of 
the component partition. 

PROOF. The sufficiency of the condition in (a) is immediate. 
By repeated application of Lemma C2, we see that there exists an xlx2-path 

in A(d) if and only if {Xl> X2} S;; M for some ME Jt(d), whence the necessity 
follows. Part (b) is merely a restatement of this principle. D 

Let r be the bipartite graph of the system A. The terms of a path in A are 
precisely the vertices of a path in the system r, and conversely. Consequently 
by C17 we have: 

Cll Proposition. Let r be the bipartite graph of the system A. r is connected 
if and only if A is connected. 

C24 Exercise. Prove that if r j is the bipartite graph of the system ~ for 
i = 0, 1, ... , n, then A1> ... , An are the components of Ao if and only if 
r 1> ... , r n are the components of r o. 

C25 Exercise. Show that a bipartite graph is connected if and only if it is 
bipartite with respect to a unique partition. 

C26 Exercise. Show that a bipartite graph with k components is the bipartite 
graph of precisely 2k systems (but of at most 2k nonisomorphic systems). 

C27 Exercise. Let n be a subsystem of a system A. Show that n is a com­
ponent of A if and only if n* is a component of A*, thereby extending C14 
to all systems. 

llD The Spaces of a System 

Let A = (V,J, E) be a system. The function J, when extended by linearity, 
yields a linear transformation}: 9(E) -+ 9(V) given by 

J(A) = 2: fee) for all A s;; E. 
eeA 

As a linear transformation,] determines two important subspaces. The image 
of J, denoted by 'W(A), is called the space of A, and the kernel of J, denoted 
by .2'(A), is called the cycle space of A. The space I!?/(A) is, of course, the 
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subspace of &I(V) spanned by f[E]. The space .2'(A), on the other hand, 
is a subspace of &I(E). Let A S;; E. Then 

Dl A e ~(A) if and only if 2: f(e) = (O. 
eeA 

The orthogonal complements tlV.l(A) and ~.l(A) of tlV(A) and .2'(A) are 
called the cospace of A and the cocycle space of A, respectively. An element 
of ~(A) is called a cycle of A and an element of ~.l(A) is called a cocycle of A. 

D2 Exercise. Let R = {a, b, c, d, e,f}. Let S = {a, b}, T = {a, c}, U = {b, d}, 
V = {c, d}, W = {b, c}, X = {d, e}, Y = {e,j}, Z = {d,j}. Let 8 = 
{S, T, U, V, W, X, Y, Z}, and let r be the graph (R, 8). Determine tlV(r), 
~(r), tlV.l(r), and .2'.l(r). Compare these findings with your results in 
Example C9. 

We display some immediate consequences of the definitions of these spaces. 
Since the dimension of the domain of/is lEI, we have 

D3 

From A6, we have 

D4 

and 

D5 

dim(.2'(A» + dim(tlV(A» = lEI. 

dim(~(A» + dim(~.l(A» = lEI, 

dim(tlV(A» + dim(tlV.l(A» = I VI. 
Combining D3, D4, and D5, we have 

D6 dim(tlV(A» = dim(,qz'.l(A» = lEI - dim(,qz'(A» = I VI - dim(tlV.l(A». 

D7 Proposition. Let A be a system. Then 

tlV(A*) = ~.l(A) and ~(A*) = tlV.l(A). 

PROOF. Let A = (V,J, E) and A e ~(A). We show that A is orthogonal to 
each element oftlV(A*) by showing that A is orthogonal to each element of 
its spanning set {f*(x): x e V}. By Dl, 2.eeAf(e) = (O. That is to say, for 
each x e V, x ef(e) for an even number of blocks e e A. Thus Ij*(x) n AI = 
He e A: x ef(e)}1 is even, i.e., A-f*(x) = O. Hence ~(A) S;; tlV.l(A*), whence 
tlV(A*) S;; ~.l(A). Dually we have tlV(A) s;; ~.l(A*). By these two inclusions 
and D6, we have: 

dim(tlV(A» ~ dim(~.l(A*» = dim(tlV(A*» ~ dim(~.l(A» = dim(tlV(A». 

Equality must then hold throughout and in the above inclusions. D 

The following example ties together many of these notions. 

D8 Example. Let n ~ 3 be an odd integer, and let E = {el> ... , e,,} and V = 

{Xl> . .. , x,,} be disjoint n-sets. Let A = (V,J, E) be the set system where 
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f(el) = V + {XI} for i = 1, ... , n. Since f[E] = &:'-l(V), ~(A) = C(V) by 
A3. Hence dim(~(A» = n - 1, by AI. By D3, dim(~(A» = n - (n - 1) = 
1. Since XI E fee,) if and only if i :F j, each vertex is incident with an even 
number (namely, n - 1) of the blocks. Hence L~=l f(el) = 0, and E E ~(A). 
Since dim(~(A» = 1, ~(A) = {0, E}. By Exercise A7, if you were diligent, 
the cospace ~L(A) = {0, V} while ~L(A) = C(E). (If you were not diligent, 
you could still obtain these two results. By AS, V E ~L(A), and by D5 
dim(~L(A» = 1. By AS, ~L(A) is even, and by D4, dim(~L(A» = n - 1. 
By CII, ~L(A) is connected, and the result follows by CI3b.) Now consider 
A* = (E,J*, V). Thusf*(xj) = E + {el} for i = 1, ... , n. Letp: E-+ Vbe 
given by p(el) = Xj (i = 1, ... , n). Clearly (p, p-l) is a system-isomorphism 
from A to A *. By the above discussion with the roles of Vand E interchanged, 
~(A*) = C(E) while ~(A*) = {0, V}. We have verified Proposition D7 for 
this example directly. 

D9 Proposition. Let A = (V,J, E) be a hypergraph, and suppose A = Al E9 
A2. Then ~(A) = ~(Al) E9 ~(A2)' ~(A) = ~(Al) E9 ~(A2)' ~L(A) = 
~L(Al) E9 ~L(A2)' and ~L(A) = ~L(Al) E9 ~L(A2). 

PROOF. Let AI = (Vh!t, EI) (i = 1,2). Sincej(e) = !tee) S;; VI for all e E Eh 
and since ~(AI) is spanned by {fee): e E Etl, we have that Fnd(~(At) S;; VI. 
Thus ~(Al) and ~(A2) have disjoint foundations, and ~(Al) E9 ~(A2) is 
well-defined. That this equals ~(A) follows when we observe that 
{fee): e EEl} + {fee): e E E2} spans ~(A). 

Since Fnd(~(At» s;; Eb ~(Al) E9 ~(A2) is well-defined. Since ~(AI) is 
clearly a subspace of ~(A), 

DIO 

ByD3, 

dim(~(Al) E9 ~(A2) = IEll - dim(~(Al») + IE21 - dim(~(A2» 

= IEl + E21 - dim(~(A» 

= dim(~(A»). 

Thus equality holds in DIO. The last two parts of the proposition follow from 
the first two parts, CI4, and D7. 0 

Dll Corollary. Let A be a hypergraph. If anyone of the spaces ~(A), ~(A), 
~L(A), or ~L(A) is connected, then A is connected. 

D12 Exercise. (a) Determine ~(r) for the graph r = (V, &'2(V». 
(b) Fix X E V, and for each {y, z} E ~(V + {x}), let 

~a = {{x, y}, {x, z}, {y, z}}. 

Show that {~a: {y, z} E ~(V + {x})} is a basis for ~(r). 
(c) In what remains of your youth, determine a basis for ~L(r). 
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Dl3 Exercise. Let n = (W, g, F) be a subsystem of a system A. Prove: 
(a) ~(n) = EJ'(F) n ~(A). 
(b) ~.l(n) = 17F[~.l(A)]. (Hint: see AI5.) 
(c) dim(~(n)) ;S; dim(~(A)) and dim(~.l(n)) ;S; dim(~.l(A)). 

TIE The Automorphism Groups of Systems 

In ID we considered isomorphisms between two systems. In the present 
section we turn our attention to the isomorphisms between a system A = 
(V,f, E) and itself. (It will always be assumed that V #= 0 or E #= 0.) Such 
a system-isomorphism is called an automorphism of A. The set of auto­
morphisms is precisely: 

G(A) = {(p, q): p E II(E); q E II(V); q[f(e)] = f(p(e)) for all e E E}. 

Under the operation of componentwise composition 

(P2, q2)(Pl, ql) = (P2Pb q2ql), 

it is immediate that G(A) is a group, and we call G(A) the automorphism 
group of A. Clearly G(A) ~ G(A*). 

Note: the isomorphism indicated here as well as the isomorphisms below 
are to be interpreted in terms of the abstract group structure, and not neces­
sarily of the permutation group structure. 

Let 

Go(A) = {q E II(V): (p, q) E G(A) for some P E II(E)} 

and 

G1(A) = {p E II(E): (p, q) E G(A) for some q E II(V)}. 

Under composition Go(A) is a subgroup of II(V) and G1(A) is a subgroup of 
II(E). Go(A) is the vertex group of A, and G1(A) is the block group of A. 
Their elements are, respectively, vertex-automorphisms and block-auto­
morphisms of A. Observe that 

EI 

E2 Proposition. Let A be a system. A is a set system if and only if Go(A) ~ 
G(A). 

PROOF. Define 17: G(A) -+ Go(A) by 17(P, q) = q for all (p, q) E G(A). It is 
immediate that 17 is an epimorphism. The groups G(A) and Go(A) will be 
isomorphic if and only if 17 is injective. If (p, q) is in the kernel of 17, then 
q = Iv. Hence G(A) ~ Go(A) if and only if 

(p, Iv) E ker(17) => p = IE' 
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Suppose A is a set system, and let (p, Iv) E ker(IT). By definition of G(A), 

E3 fee) = Iv[J(e)] = f{p(e)), for all e E E. 

Sincefis an injection, pee) = e for all e E E. Hence p = IE. 
If A is not a set system, there exists a set {el> e2} E ~(E) such thatf{el) = 

f(e2). We define 

{
e2 if e = el; 

pee) = el ife = e2; 

e if e E E + {el> e2}. 

Clearly p satisfies E3, and so (p, Iv) E ker(71). But p oF IE. o 

E4 Corollary. Let A be a system. A distinguishes vertices if and only ifG(A) ~ 
GI(A). 

PROOF. By E2, A * is a set system if and only if G(A *) = Go(A *). The corollary 
follows from EI and IDS. 0 

E5 Corollary [w.S]. Let A be a set system. A distinguishes vertices if and only 
if Go{A) ~ GI{A). 

PROOF. Apply E2 and E4. o 

It can happen that Go(A) ~ GI(A), where the groups are isomorphic 
even as permutation groups while A neither is a set system nor distinguishes 
vertices. Suppose, for example, that V = {Xl> ... , X5} and E = {el' ... , e4}, 
and let 

feel) = f(e2) = {Xl> X2, X5} and f(e3) = f{e4) = {X3' X4, X5}. 

In this case A is connected. One straightforwardly verifies that Go{A) is 
generated by the cyclic permutations ql = (Xl> X3, X2, X4) and q2 = (Xl> X2), 
which satisfy the relationsql4 = q22 = (qlq2)2 = Iv. Thus Go(A) is isomorphic 
to the dihedral group D4. Similarly, GI(A) is generated by PI = (el> e3, e2, e4) 
and P2 = (el> e2), satisfyingpl4 = P22 = (PlP2)2 = IE. We see that Go{A) and 
GI(A) are isomorphic as abstract groups. In fact, if the vertex X5 were to be 
removed, they would be isomorphic permutation groups. However, A neither 
is a set system nor does A distinguish vertices. Of course, neither group is 
isomorphic to G(A). 

E6 Exercise. Determine G(A) in the above example. 

E7 Exercise. Let A be a system and let TJ: Go(A) -+ GI(A) be a function which 
satisfies 

(TJ(q), q) E G(A) for all q E Go(A). 
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Such a function clearly exists. 
Prove: 
(a) If A distinguishes vertices, then 1] is an injection. 
(b) If A is a set system, then 1] is uniquely determined and is a (group) 

epimorphism. 
(c) For any A, there exists a homomorphism 1]: Go(A) ~ GI(A) such 

that (1](q), q) E G(A) for all q E Go(A). 

E8 Exercise. Show that if A is allowed to be infinite, then the two-way 
implication in Corollary E5 need hold in only one sense [L. Babai, L. Lovasz]. 

Consider an st-path s = so, Sb ••• , Sn = t in A, and let us say, for definite­
ness, that s E V. One easily verifies that for any (p, q) E G(A), the sequence 
q(so), P(SI), q(S2), ... , P(S2'-I), q(S2')' ... , p(t) or q(t) is also a path in A. 
From this together with C20 we immediately deduce: 

E9 Proposition. Let A = EB~ = 1 At with components At = (~, ii, E,) for i = 

1, ... , n.If(p, q) E G(A), then to each i E {I, ... , n} there corresponds some 
j E {I, ... , n} such that q[V,] = VI and p[E,] = Ei. Moreover, (PIE" qlVJ 
is a system-isomorphism from At to Ai. 

If X is a set and if G is a subgroup of II(X), then G is said to be transitive 
on ¥ if for each x, y E X, there exists some pEG such that p(x) = y. The 
system A = (V,f, E) is vertex-transitive if Go(A) is transitive on V; A is 
block-transitive if G1(A) is transitive on E. 

EIO Exercise. Let A = EB~=l At with components At = (~,ii, E,) for i = 
1, ... , n. Show that if A block-transitive (respectively, vertex-transitive) and 
if E, :F 0 :F Ei (respectively, V, :F 0 :F Vi), then At and Ai are isomorphic 
subsystems. 

Ell Proposition. Let Al be a component of the system A. If A is vertex-
transitive (respectively, block-transitive), then so is AI. 

PROOF. Suppose A is vertex-transitive, and let Al = (Vb fb E1). If x, Y E Vb 
then q(x) = y for some q E Go(A), whence (p, q) E G(A) for some p E GI(A). 
By E9, (PIEl' qlVJ is a system-automorphism of AI. Hence qlvl E GO(A1) and 
maps x onto y. 

If A is block-transitive, then A· is vertex-transitive, and by what we have 
just proved, AI· is also vertex-transitive. By CI4, Al is block-transitive. 0 

We may suspect when studying vertex-transitive or block-transitive systems, 
that one could assume for all practical purposes that they are connected 
systems. The next proposition bears this out. It is essentially a theorem on 
permutation groups. As such, it is not truly in the domain of this book. It is 
therefore stated without proof. Let II(n) denote the permutation group 
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ll({I, ... , n}). If G and G' are permutation groups, let G wreath q' denote 
the wreath product of G by G'. 

Ell Proposition. Denote the set of components of a system A by 

{At/:i= l, ... ,nl;j= I, ... ,r} 

where A'I and At'I' are system-isomorphic if and only if j = j'. Let AtJ = 
(VII,fll, EiJ)foreach i, j. Let mOl = I{i: Vii =i: 0}1 andm11 = Hi: E'i =i: 0}1· 
Thenfor h = 0, 1, 

r 

G,,(A) = EB (ll(mM) wreath G,,(A1J)) 
1=1 

(Here EB denotes the direct product of permutation groups.) 

If Go(A) = {Iv}, then A is said to be asymmetric. If A is not asymmetric 
but if every element of Go(A) is a derangement of V, then A is said to be 
fixed-point free. 

The next result was first proved by G. Sabidussi [s.3] for the special case 
of graphs. 

El3 Proposition. Let A be fixed-point free. If A is not connected, then at most 
tWi) components A1 and A2 have nonempty vertex sets, and A1 and A2 are 
each asymmetric. 

PROOF. Let A = EB~=l Ab where At = (Vb jj, E,) for i = 1, ... , k are the 
components of A, and Vh V2 =i: 0. Suppose some component, say Ah is 
not asymmetric. Then GO(A1) contains some vertex-automorphism q1 =i: I v1• 

Now define q E ll(V) by 

q(x) = {q1(X) ~f x E V1; 
X IfxE V + V1 • 

To show that q E Go(A), define p E ll(E) by letting p(e) = e for e E E + E1 
and p(e) = P1(e) if e E Eh where (Ph q1) E G(A1)' Then (p, q) E G(A). Thus 
q =i: 1 v but q has a fixed-point, contrary to hypothesis. Hence each component 
of A is asymmetric. 

Now suppose k ~ 3, that Vh V2, Va =i: 0, and that (P1, q1) is an isomor­
phism from A1 to A2. Define p and q by 

if e EEl; 

ifeEE2 ; 

if e E E + (E1 U E2); 

ifXE V1 ; 

if XE V2 ; 

if x E V + (V1 U V2). 
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Clearly (p, q) E G(A), and so q E Go(A). But q ¥: Iv while q(x) = x for some 
x E Va, contrary to hypothesis. 0 

E14 Exercise. Let A be fixed-point free and let Al and A2 be distinct com­
ponents with nonempty vertex sets. Show that if Go(A) is nontrivial, then (a) 
Al and A2 are isomorphic; (b) I Go(A) I = 2; (c) if A is a set system with 
I VI ~ 3, then IG1(A)1 = 2. 
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CHAPTER III 

Multigrapbs 

Throughout this chapter the symbol r = (V,J, E) will be used exclusively 
to denote a multigraph. Multigraphs have been studied far more than any 
other kind of system. They are the simplest interesting systems, since those 
with blocksize :$ 1 have only trivial components. Another and perhaps more 
important reason for the extensive research in multigraphs is that they are 
the abstract mathematical objects which lie behind the many diagrams one 
often draws. Historically, multigraphs were first studied as topological objects. 

I ~ IX 

~ 
II ~ XI 

~ 
III ~ VII 

~ ~ 
IV VIII 

~~ 
V VI 

~/ 
X 

H H 
I I 
C-C 

1/ ~ 
H-C C-H 

\ / 
C=C 
I I 
H H 

The vertices were points in the plane or 3-space, and the edges were simple 
arcs joining the vertices. As a result of these" graphic" beginnings, much of 
the terminology is geometric in spirit, and most of the results can be geomet­
rically motivated. The reader is encouraged to draw pictures and to use them 
as an aid in following the proofs and doing the exercises. 

In this chapter we are mainly interested in the particular results of graph 
theory which arise as a consequence of considering multigraphs as systems. 
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Some of our results can be stated and proved for more general systems; 
others cannot. The reader is encouraged to make appropriate generalizations 
whenever possible. 

IDA The Spaces of a Multigraph 

The number of components of the system r will be denoted by v_I (r). We 
shall let vo(r) denote the number of vertices of rand Vl(r) the number of 
edges. When there is no risk of confusion, we shall write briefly v _ l> Yo, and VI. 

If s is the selection of r and x is a vertex of r, then s({x}) is called the 
valence of x and is denoted by p(x). If p(x) = 0, x is an isolated vertex; if 
p(x) = I, x is a pendant vertex. If for some kEN, p(x) = k for all x E V, 
then r is k-valent. r is isovalent if it is k-valent for some k. (In the literature, 
the word "regular" is often used in place of "isovalent ".) 

Let M be an incidence matrix for r. Counting the I's in M by rows, we 
get L:XEV p(x). Since there are precisely two I's in each column, this number 
is also 2Vl(r). Hence 

At 

It follows from Al that the number of vertices with odd valence is even. 
In view of AI, it is reasonable to define the average valence of r to be 

(r) = 2Vl(r) 
p vo(r)· 

A2 Exercise. Prove that if r is a graph with vo(r) ~ 2, then there exist at 
least two vertices with the same valence. Describe all graphs which have 
exactly two vertices of the same valence. 

A3 Exercise. Prove that for each n > 2 there exists a multigraph r with 
vo(r) = n which has no two vertices of the same valence. For each n, find a 
multigraph r satisfying these properties for which VI (r) is as small as possible. 

In §IIC we defined a path for an arbitrary system. For a multigraph we 
use path exclusively for paths which have vertices as both initial and final 
terms and wherein all edges are distinct. 

We now show that the space of a multigraph r = (V,/, E) has a par­
ticularly simple structure. From IIC20 and the definition of "component," 
we see that x, y E V lie in the same component of r if and only if r admits 
an xy-path. If x =1= y and if x, el> Xl> e2, ... , Xk-l> ek, Xk = Y is such a path, 
then L:~=lf(ei) = {x, y}. Hence if r is connected, then C(V) s <?¥(r). On the 
other hand, <?¥(r) is spanned by {f(e): e E E}, and If(e) I is even for all e E E. 
Hence <?¥(r) s C(V), and equality holds when r is connected. Thus by IID9, 
we have 
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A4 Proposition. If r is a multigraph with components r l = (VI> j;, E1), 

(i = 1, ... , k), then qJj(r) = EB~=1 C(VI)' 

If A is a system, a subsystem r which is a multigraph (respectively, graph) 
is called a submultigrapb (respectively, subgraph) of A. By a circuit we shall 
mean a nontrivial path Xo, el> Xl> ••. , ek, Xk = Xo where all of the edges are 
distinct. Such a circuit is said to be elementary if Xo, Xlo ••• , Xk -1 are all distinct. 
The length of a path (and hence of a circuit) is the number of edges in the 
path. 

Observe that the vertices and edges of a path (elementary path) in r form 
a submultigraph (subgraph) of r. We will often identify the path with this 
corresponding submultigraph. Note that many paths may correspond to the 
sUbmultigraph of a given path. To say that one path or circuit is contained 
in another path or circuit means that the submultigraph of the one is con­
tained in the submultigraph of the other. The graph consisting of a single 
elementary circuit of length k will be denoted by I::!k' 

A5 Exercise. Prove that every circuit of length k contains I::!nfor some n ::; k. 

A6 Exercise. Prove: 
(a) If p(x) ;::: 2 for every vertex x of the multigraph r, then r contains a 

circuit. 
(b) If p(x) ;::: 2 for every vertex x of the multigraph r, and if there exists 

a vertex of r in no circuit, then r contains two disjoint circuits. 
(c) If p(r) ;::: 2, then r contains a circuit. 
(d) Let r be a connected multigraph. Then r contains a circuit if and 

only if p(r) ;::: 2. 
(e) Let r be a connected multigraph. Then r contains exactly one circuit 

if and only if p(r) = 2. 

A 7 Exercise. Let (fl, j;, E1) be a circuit ofr for i = 1, 2. Suppose El (\ E2 = 0 , 

but VI (\ V2 =/:- 0. Show that (VI U V2J, El + E2), where f(e) = j;(e) for 
all e E Eio is a circuit. 

AS Exercise. Prove that in a multigraph, every circuit has even length if and 
only if every elementary circuit has even length. 

A9 Proposition. If Xo, elo Xl, ... , ek, Xo is a circuit (respectively, an elementary 
circuit) of r, then {elo ... , ek} is a cycle (respectively, an elementary cycle) 
of r. Conversely, all elementary cycles of r are the edge sets of elementary 
circuits. 

PROOF. Let Xo, elo ••• , ek, Xk = Xo be a circuit. Since f(ei) = {Xi-lo xA for 
eachj = 1, ... , k, we have 2.~=lf(ei) = 0. Hence by IID1, {elo"" ek} is a 
cycle. Assume the circuit is elementary, and assume that f(el) belongs to a 
subset of {f(el), ... , f(ek)} whose sum is zero. Th~n that subset must also 
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includef(el+l) in order to "cancel out" Xi (the indices being read modulo k). 
We conclude that {eh ... , ek} is elementary. 

Conversely, assume that Z is an elementary cycle of r. Since Leez f( e) = 0, 
the vertices of r z all have valence 2 or more. By Exercise A6a, r z contains a 
circuit, the edges of which form a cycle Z' E ~(r z) £ ~(r). Clearly Z' £ Z. 
Since Z is elementary, Z' = Z, and r z is a circuit. 0 

Note that the "converse" in this proposition is only a "partial converse." 
It is not in fact true that every cycle is the set of edges of some circuit. For 
example, the edges of two disjoint circuits taken together form such a cycle. 
The strongest possible" converse" is given in the next proposition. 

AIO Proposition. IjZ E ~(r) + {0} and if the submultigraph r z is connected, 
then r z is a circuit. 

PROOF. By lICI, Z is the sum of pairwise-disjoint elementary cycles. Hence 
by A9, r z contains a circuit. If r z is not itself a circuit, let t:.. be a largest 
circuit in r z. The set Z" of the edges of t:.. is a cycle by A9. Clearly Z" c Z, 
and Z" is disjoint from the cycle Z' = Z + Z". Let t:..' = r z,. If t:.. and t:..' 
have no common vertex, then r z = t:.. EB t:..', contrary to hypothesis. Thus there 
exists a vertex X common to t:.. and t:..'. By lICI, Z' = Zl' + ... + Zk' where 
each cycle Z/ is elementary. Let t:../ = r Zj' for i = I, ... , k. We may 
assume without loss of generality that x is a vertex of t:..1 '. Hence by A 7, t:.. and 
t:../ yield a circuit in r z larger than t:... D 

With the relationship between cycles and circuits on a firm footing, we 
may now explore the graph-theoretical significance of the cocycle space. By 
lID7, the cocycle space ~.l(r) = l!9'(r*). Recall that l!9'(r*) is spanned by 
the images under f* of the blocks of P, i.e., of the vertices of r. For each 
x E V, the setf*(x) = {e E E: x Ef(e)} is called a vertex cocyc1e. Since r is a 
multigraph, each edge is an element of precisely two vertex cocycles. Hence 

All 2: f*(x) = 0. 
xeV 

This relation shows that while the collection of vertex cocycles spans ~ .l(r), 
it is too large to be a basis. Two more observations of use are that 
Fnd(~.l(r)) = UxeV f*(x) = E, and that If*(x) I = p(x) for all x E V. 

We now use these algebraic tools to prove perhaps the oldest theorem in 
graph theory. A circuit in a multigraph is called an Euler circuit if it includes 
every edge and every vertex. A multigraph which contains an Euler circuit 
is said to be Eulerian. Intuitively, an Eulerian graph can be "drawn" com­
pletely without having either to retrace any" edge" or withdraw one's quill 
from one's parchment. For the interesting historical background of the next 
result, see [b.8]. 
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All Theorem (L. Euler [e.S], 1736). A multigraph is Eulerian if and only if it 
is connected and every vertex has even valence. 

PROOF. Let r = (V,f, E) be a multigraph. By lIAS, E E ~(r) if and only if 
~ .L(r) is even, i.e., if and only if each vertex has even valence. If r is con­
nected and if E is a cycle, then by Proposition AI0, r is an Euler circuit. 
Conversely, if r has an Euler circuit, it is connected. Moreover, the set E 
of the edges of the Euler circuit is a cycle. D 

The traditional proof of Euler's Theorem is constructive. The algebraic 
proof, however, has the advantage that it shows that Euler's Theorem and 
the following well-known result are really" dual" to one another. 

At3 Theorem. A multigraph is bipartite if and only if every circuit has even 
length. 

PROOF. Let r = (V,/, E). To say that every circuit has even length is by 
AS and A9 to say that ..2"(r) is an even space, which is equivalent (lIAS again) 
to saying that E E ~.L(r). Equivalently, E = Lxeu f*(x) for some Us; V. 
This means that each edge is incident with exactly one vertex in U and that 
{U, V + U} is the required partition of V. Conversely, if r is bipartite with 
partition {U, V + U}, then E = Lxeu f*(x), and one pursues the chain of 
equivalent statements in the reverse direction. D 

At4 Exercise. A path in a multigraph is said to be an Euler path if it contains 
each edge exactly once and each vertex at least once. State and prove a 
proposition about Euler paths analogous to Euler's Theorem. 

At5 Proposition. For any multigraph with space dJI and cycle space ..2": 
(a) dim(dJI) = dim(~.L) = Vo - V-I; 
(b) dim(..2") = VI - Vo + V-I; 
(c) dim(dJI.L) = V-I. 

PROOF. (a) is an immediate consequence of IID6, A4, and IIAI. (b) follows 
from (a) and IID3. (c) follows from (a) and IID5. D 

At6 Corollary. If r = (V,/, E) is connected and Xo E V, then ~ = 
{f*(x): x E V + {xo}} is a basis for ~.L(r). 

PROOF. By All, ~ spans ~.L(r). Since V_I(r) = 1, we have I~I = Vo - 1 = 
dim(~.L(r». D 

At7 Exercise. Determine dJI.L(r). 

Propositions A9 and AI0 gave precise graph-theoretical interpretations of 
the algebraic notion of a cycle. The following proposition attempts to give a 
corresponding interpretation for cocycles. However, we must first introduce 
some notation. 

Let F S; E and recall that r(F) is the submultigraph (V, fiE+F, E + F). If 
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F = {e} we write I'(e) for I'«e)). Note that I'(F) and I'E+F differ only in that 
I'(F) may contain some vertices in addition to those in I' E+F. Since none of 
these vertices is incident with edges in E +- F, they are isolated vertices in 
I'(F). There are precisely V_l(I'(F» - V-l(I'E+F) of them. It follows that 
~(I'(F» = ~(I'E+F) and ~.L(I'(F» = ~.L(I'E+F). 

A18 Proposition. Let F be a set of edges of the multigraph 1'. 
-(a) F contains a nonempty cocycle if and only ifv-l(I'(F» > V_l(I'). 
(b) F is an elementary cocycle if and only if V-l(I'(F» > V_l(I') and 

V-l(I'(F+le))) = v_l(I')for every e E F, i.e., F is minimal with respect to the 
property given in (a). 

PROOF. (a) If C is an arbitrary vertex cocycle of 1', then 1TE+F[C] = C n 
(E + F) is a vertex cocycle of I'(F). Moreover, all vertex cocycles of I'(F) are 
of this form. Thus 1TE+F: ~.L(I') ~ ~.L(I'(F» is a surjection. Hence dim(~.L(I'» 
= dim(ker 1TE+F) + dim(~.L(I'(F») = dim(~.L(I') n &1(F» + dim(~.L(I'(F»). 
Thus by Proposition A15a, 

dim(~.L(I') n &1(F» = (vo(I') - V_l(I'» - (vo(I'(F» - V-l(I'(F») 
= V-l(I'(F» - V_l(I'). 

Hence V-l(I'(F» > V_l(I') if and only if dim(~.L(I') n &1(F» > 0, i.e., if and 
only if F contains a nonempty cocycle. 

(b) If V-l(I'(F» > V_l(I'), then F contains a nonempty cocycle (by (a) 
above). Also, if V-l(I'(FHe))) = V_l(I'), then F + {e} contains no nonempty 
cocycle, for each e E F. Hence F is an elementary cocycle. Conversely, if F 
is a nonempty cocycle, V-l(I'(F» > V_l(I'). If in addition, F is elementary, 
then F + {e} contains no nonempty cocycle and V-l(I'(FHe))) = V_l(I') for 
all eEF. 0 

An edge e E F is called an isthmus of I' if the I-set {e} is a cocycle. A vertex 
x of I' is called an articulation vertex if the vertex cocycle f*(x) is not an 
elementary cocycle. 

Example. In Figure A19, the vertices x, y, and z are articulation vertices. 

A19 

x 
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To see that z is an articulation vertex, note that the cocycle f*(u') + f*(v') 
is a proper subset of f*(z). We may also observe that e is an isthmus, for 
{e} = f*(u) + f*(v) + f*(x). The edge e' is also an isthmus; in this case w 
is a pendant vertex and {e'} = f*(w). 

A20 Exercise. If a vertex x is incident with an isthmus in a multigraph, show 
that x is either an articulation vertex or a pendant vertex. 

All Exercise. Show that Fnd(.;:t(r) = E + I, where I is the set of isthmuses 
ofr. 

IIIB Biconnectedness 

When a connected multigraph with at least two edges has no articulation 
vertex, it is said to be biconnected. Thus, a multigraph containing two or more 
edges is biconnected if and only if it is connected and every vertex co cycle is 
elementary. We shall see that there is a close relationship between the structure 
of the cycle space and biconnectedness. Also there is an interesting parallel 
between the relationship of paths to connectedness (cf. §lIC) and the relation­
ship of elementary circuits to biconnectedness. 

B1 Lemma. If .;:t.l(r) is connected, then r has no articulation vertex. 

PROOF. There is no loss of generality in assuming that r has no isolated 
vertices and hence is a hypergraph. Thus by lID 11 , r is connected. Suppose 
that Xo is an articulation vertex of r. Let C1 be an elementary cocycle such 
that C1 c f*(xo), and let C2 = f*(xo} + C1 . By A16, C1 = 2XEUl f*(x) for 
some U1 c V + {xo}. Let U2 = V + {xo} + U1• Thus 

B2 C1 + :2 f*(x) = 0, and C2 + :2 f*(x) = 0. 
XEUl xeU2 

(The second equation is obtained by addition of the first equation to All.) 
Let 81, be the subspace of .;:t.l(r) spanned by {f*(x): x E Ui}, for i = 1,2. 
Since each edge belongs to exactly two vertex cocycles, B2 implies that 811 

and 812 have disjoint foundations. Hence 811 EB 812 is well-defined. It follows 
from A16 that 811 EB 812 = .;:t .l(r). Finally, since Ci E ~ for i = 1, 2, fJI.. is not 
trivial, and .;:t .l(r) is not connected. 0 

B3 Proposition. Let r have at least two edges but no isolated vertices. The 
following are equivalent: 

(a) r is biconnected; 
(b) .;:t .l(r) is connected; 
(c) .fl'(r) is connected and Fnd(.;:t(r» = E; 
(d) every two edges ofr are in a common elementary circuit. 

PROOF. (a) ~ (b). Assume r is biconnected and that .;:t.l(r) = fJ#1 EB fJ#2. 

Since r is biconnected, the vertex cocycles are the elementary cocycles. By 
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IIC3, each vertex cocycle lies in exactly one of f1i1 and f1i2 • Let U, = 
{x E V:f*(x) E~} for i = 1, 2. Thus U1 n U2 = 0. Therefore no edge is 
incident with both a vertex from U1 and a vertex from U2 • Hence all the 
vertices of any path lie entirely in U1 or entirely in U2 • Since r is connected, 
we conclude that either U1 or U2 is empty, and hence that either f1i1 or f1i2 

is trivial. Thus ~ .l(r) is connected. 
(b) ~ (c). Since ~ .l(r) is connected and I E I ~ 2, r has no isthmuses by 

IIClOb. By Exercise A21, Fnd(~(r» = E = Fnd(~.l(r». By IICI2, ~(r) 
is connected. 

(c) ~ (b). Since Fnd(~.l(r» = E, the result follows from IICI2. 
(c) <=> (d). This follows from IIC22a. 
(b) ~ (a). Assume that ~.l(r) is connected. It follows from Bl that r 

contains no articulation vertex. Now let x and x' be any two vertices of r; 
we must show that there exists an xx' -path. Since r has no isolated vertices, 
we may choose edges e, e' incident with x and x', respectively. Since (b) 
implies (d), e and e' (and hence x and x') are in a common elementary circuit. 
Thus there exists an xx'-path, and r is connected. D 

B4 Lemma. (a) ~(rF) = ~(r(E+F» = ~(r) n &(F),Jor all F £ E; 
(b) ~.l(rF) = ~.l(r(E+F» = 7TF[~.l(r)],Jor all F £ E. 

PROOF. Let Z be any elementary cycle of r. By A9, r z is an elementary 
circuit of r. Thus 

Z E ~(rF) <=> r z is a submultigraph of r F, 
<=>Z s;; F, 
<=> Z E ~(r) n &(F), 

as required to prove (a). Taking the orthogonal complement of each term in 
(a) and applying IIAIS, we get (b). D 

Let fl be the component partition of the space ~.l(r). For each Q E fl, 
r Q is called a lobe of r; a subgraph consisting of an isolated vertex of r is 
also called a lobe of r. By B4a, IICI2, and the definition of component of a 
space, we have \ 

B5 ~(r) = EB ~(rQ) and ~.l(r) = EB ~.l(rQ). 
Qe~ Qe~ 

Let us consider the internal structure of the lobes r Q of r. First note that 
distinct lobes have no common edges. If Q = {e}, then e is an isthmus. 
Conversely, if an edge e is an isthmus, then by IICI0b and IlC22b, {e} is a 
cell of the component partition of ~.l(r). We have shown: 

B6 Lemma. An edge e is an isthmus of r if and only if {e} induces a lobe of r. 

B7 Lemma. A biconnected submultigraph r' = (V',!" E') ofr is a submulti­
graph of some lobe of r. 
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PROOF. By B3, any two edges of r' belong to a common elementary circuit. 
By IIC3, E' s; Q for some cell Q of the component partition of 1l'(r). It 
follows that r' is a submultigraph of the lobe induced by Q. 0 

B8 Lemma. Let r Q be a lobe of r with I QI > 1. Then r Q is biconnected. 
, 

PROOF. Since Q is a cell of the component partition of 1l'(r), we have by IIC22a, 
that every two edges in Q belong to a common elementary cycle. By A9, 
every two edges in Q belong to a common elementary circuit. Finally by B3, 
r Q is biconnected. 0 

B9 Proposition. A submultigraph r' of r is a lobe of r if and only if r' is 
induced by an isolated vertex or r' is induced by an isthmus or r' is a maximal 
biconnected submultigraph of r. 

PROOF. Let r' be a lobe of r which is not induced by an isolated vertex, 
i.e., r' = r Q for some cell Q of the component partition of 1l'.l(r). If I QI = 1 
then by B6, r' is induced by an isthmus. If I QI > 1, then by B8, r' is bicon­
nected, and by B7, r' is a maximal biconnected sUbmultigraph of r. 

Conversely, if r' is induced by an isthmus, then it is a lobe by B6. If 
r' is a maximal biconnected submultigraph of r, then it is a lobe by B7 
and B8. 0 

Observe that the multigraph in Figure A19 has exactly six lobes, two of 
which are isthmuses and four of which are maximal biconnected submulti­
graphs. 

BIO Exercise. Prove that a biconnected multigraph r with p(r) = 2 is an 
elementary circuit. 

Bll Exercise. Let r be a multigraph and let x E V. Prove that the following 
three statements are equivalent: 

(a) x is an articulation vertex; 
(b) x is a vertex of more than one lobe ofr; 
(c) there exist vertices y, Z E V + {x} such that there exists a yz-path and 

every yz-path contains x. 

B12 Exercise. Prove that two distinct lobes have at most one common vertex. 

B13 Exercise. Assuming that Vl(r) ~ 2, prove that the following seven state­
ments are equivalent: 

(a) r is biconnected. 
(b) r consists of a single lobe. 
(c) Every two vertices ofr belong to a common elementary circuit. 
(d) Each vertex and each edge from r belong to a common elementary 

circuit. 
(e) Given any x, y E V and any e E E, there exists an elementary xy-path 

containing e. 

65 



III MuItigraphs 

(f) Given distinct x, y, Z E V, there exists an elementary xy-path containing z. 
(g) Given distinct x, y, Z E V, there exists an elementary xy-path avoiding z. 

B14 Exercise. Prove that if a multigraph has an odd circuit, then it has an 
odd elementary circuit. 

BIS Exercise. Prove that a biconnected multigraph is either bipartite or has 
the property that each edge lies on an odd elementary circuit. 

B16 Exercise [w.1]. Prove that a biconnected multigraph either is an odd 
circuit or contains an elementary even circuit. 

B17 Exercise [0.1]. For each vertex x of r let i(x) = V_l(ry +{X}) - V-l(r). 
Prove that the number of lobes of r is (2XEY i(x» + l. 

B18 Exercise. Let r be a biconnected multigraph with dim(~(r» ~ 2. Prove 
that every edge of r belongs to at least two distinct elementary circuits. 

A graph is geodetic if given any two vertices x and y, there exists a unique 
xy-path of smallest length. 

B19 Exercise. Prove that: 
(a) r is geodetic if and only if every lobe of r is geodetic. 
(b) If r is geodetic and biconnected, then dim(~(r» =F 2. 

me Forests 

A multigraph r is said to be a forest if ~(r) = {0}. A connected forest is 
called a tree. Clearly every forest is a graph; for if f(e) = f(e') for distinct 
e, e' E E, thenf(e) + f(e') = 0, i.e., {e, e'} E ~(r). We will show that every 
multigraph r contains certain special subgraphs which are forests (trees if 
the multigraph is connected), and that these subgraphs give particular 
information about the structure of r itself. These subgraphs will be con­
structed by removing, one at a time, edges which belong to circuits, thereby 
destroying all the circuits. We start our discussion by considering the algebraic 
consequences of deleting a single edge from a multigraph. 

Cl Proposition. Let e be an edge of the muitigraph r. Then: 
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{o if e is an isthmus,' 
(a) dim(~(r» - dim(~(r(.») = 1 

otherwise. 

{ I if e is an isthmus,' 
(b) dim(~.L(r» - dim(~.L(r(.») = 0 

otherwise. 

(c) { I if e is an isthmus; 
V-l(r(e» - V_l(r) = 0 otherwise. 



HIe Forests 

PROOF. By IIAIO, dim(.fl'(r)) = dim('/T{e}[.fl'(r)]) + dim(&J(E + {e}) n .fl'(r». 
By B4a,&J(E + {e}) n .fl'(r) = .fl'(r(e}). Combining these, we get 

Cl dim(.fl'(r» - dim(.fl'(r(e») = m, 

where m = dim('/T{e}[.fl'(r)]). By IIA6, dim(.fl'(r» + dim(.fl'.L(r» = VI(r) 
while dim(.fl'(r(e») + dim(.fl'.L(r(e») = VI(r) - 1. Substituting these into C2 
yields 

C3 dim(.fl'.L(r» - dim(.fl'.L(r(e») = 1 - m. 

By A1Sa, dim(.fl'.L(r)) = vo(r) - V_I(r) while dim(.fl'.L(r(e») = vo(r(e» -
V_I(r(e» = vo(r) - V_I(r(e». Substituting these into C3 yields 

C4 V_I(r(e» - V_I(r) = 1 - m. 

If e is an isthmus, no cycle contains e. Hence '/T{e}[.fl'(r)] = {0}, and m = O. 
If e is not an isthmus, some cycle contains e; hence '/T{e}[.fl'(r)] = &J({e}) and 
m = 1. Thus C2, C3, and C4 give (a), (b), and (c), respectively. 0 

C5 Corollary. For each integer j = 0, 1, ... , dim(.fl'(r), there exists a subset 
F £; E such that dim(.fl'(r(F»)) = j while dim(.fl'.L(r(F») = dim(.fl'.L(r» and 
V_I(r(F» = V_I(r). 

PROOF. We proceed by induction on dim(.fl'(r». If dim(.fl'(r» = 0, then 
F = 0 and the result is valid. Let n > 0 and suppose the result is valid when­
ever dim(.fl'(r» < n. If dim(.fl'(r» = n, there exists a nonempty cycle and 
hence an edge e which is not an isthmus. By the proposition, dim(.fl'(r(e») = 
dim(.fl'(r» - 1, while dim(.fl'.L(r(e») = dim(.fl'.L(r» and V_I(r(e» = V_I(r). 
Letjbe an integer such that 0 ~ j ~ dim(.fl'(r».Ifj = dim(.fl'(r», let F = 0. 
If j < dim(.fl'(r», we apply the induction hypothesis to rIel to choose F' £; 

E + {e} so that with F = F' + {e}, dim(.fl'(r(F»)) = j, dim(.fl'.L(r(F»)) = 
dim(.fl'.L(r(e») = dim(.fl'.L(r», and V_I(r(F» = V_I(r(e» = V_I(r). Since F £; 

E, we are done. 0 

Implicit in the foregoing proof is the following result: 

C6 Corollary. ifF£; E, then 
(a) V-I(r(F» ~ V_I(r); 
(b) dim(.fl'.L(r(F») ~ dim(.fl'.L(r»; 
(c) dim(.fl'(r(F»)) ~ dim(.2"(r)). 
Moreover, equality holds in (a) if and only ifit holds in (b); equality holds 

simultaneously in (a), (b), and (c) if and only ifF = 0. 

C7 Corollary. Let C £; E. C is an elementary cocycle of r if and only if 
V_I(r{C» = V_I(r) + 1 and V-I(r(c+{e») = v_I(r)for every e E C; i.e., the 
subset C is minimal with respect to the first equality. 

PROOF. Apply Al8b and Clc. o 
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C8 Exercise. Show that if r is a multi graph with at least one edge, then 
dim(,;'l') < VI. Characterize all multigraphs for which dim(.:z') = VI - 1. 

C9 Proposition. For a multigraph r, conditions (a), (b), and (c) below are 
equivalent. If two of the conditions hold including at least one from among 
(d) and (e), then all five hold. In particular, ifr is a tree, then all five hold. 

(a) r is aforest. 
(b) Every edge is an isthmus. 
(c) dim(.:z'.L) = VI. 
(d) r is connected. 
(e) VI = Vo - 1. 

PROOF. It follows directly from the definitions that each of (a), (b), and (c) 
is equivalent to .:z'.L = &1(E). Hence they are equivalent to each other. 

Note that (d) is equivalent to V-I = 1. Thus by A15a, any two of the 
conditions (c), (d), (e) imply the third. If r is a tree, then (a) and (d) hold. 0 

In Figure CIO, graph (a) satisfies only conditions (a), (b), and (c) above; 
graph (b) satisfies only condition (d); graph (c) satisfies only condition (e). 

Cl0 

We call a subgraph of r which is a forest or tree a subforest or a subtree, 
respectively. If T is a subforest (subtree) of the multigraph r such that 
vo(T) = vo(r) and v-leT) = V_I(r), we call T a spanning forest (spanning tree). 
It follows directly from Corollary C5 withj = 0 that every multigraph con­
tains a spanning forest and that every connected multigraph contains a 
spanning tree. 

Cll Proposition. Let F S;; E and let T = r(E+F). Then the following six state-
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ments are equivalent: 
(a) IFI = dim(.:z'.L(T» = dim(.:z'.L(r»; 
(b) T is a spanning forest of r; 
(c) F is a maximal subset of E which contains no nonempty cycle of r; 
(d) F is a minimal subset of E which meets each nonempty cocycle ofr; 
(e) .:z'(r) admits a basis {Ze: e E E + F} such that for each e E E + F, 

Ze n (E + F) = {e}; 
(f) .:z' .L(r) admits a basis {Ce : e E F} such that for each e E F, Ce n F = 

{e}. 



IIIC Forests 

PROOF. Let E2 c E1 £; E and let r, = r(E+E\) (i = 1,2.) By C6 we have 

C12 V_1(r1) ~ V_1(r); dim(.2".L(r1)) ~ dim(.2".L(r)); 

Cl3 dim(.2"(r 1)) ~ dim(.2"(r)); 

Cl4 V_1(r2) ~ V_1(r1); dim(.2".L(r2)) ~ dim(.2".L(r1)); 

CIS dim(.2"(r 2)) ~ dim(.2"(r 1))' 

Equality must hold or fail simultaneously for the two inequalities in each of 
CI2 and C14. Furthermore, equality cannot hold in both CI4 and CIS. 
Finally, equality holds in both Cl2 and C13 if and only if r 1 = r. 

(a) :::> (b). Let r 1 = T, and note that the second equality in (a) implies 
v_1(T) = V_1(r). By C9, the first equality in (a) implies T is a forest. Finally, 
since vo(T) = vo(r), T is a spanning forest. 

(b) :::> (c). If T is a spanning forest, then, of course, F contains no non­
empty cycle. If T = r, we are done. Otherwise, let r 2 = T and let E1 satisfy 
FeEl £; E. Since T is a spanning forest, v_1(T) = V_1(r), and so v_1(T) = 
V_1(r1). Hence equality holds in CI4 and fails in CIS. We conclude that 
dim(.2"(r1)) > 0 and E1 contains a nonempty cycle. 

(b) :::> (d). Let r 1 = T and let E2 c F. Since Tis a spanning tree, v_1(T) = 
V-1(r) and dim(.2"(T)) = O. Thus equality holds in Cl2 and CIS and fails in 
C14. Thus V_1(r2) < V_1(r). By A18a, E + Fcontains no nonempty cocycle 
while E + E2 contains at least one nonempty cocycle, i.e., F meets every 
nonempty cocycle, but no proper subset E2 of F has this property. 

(c) :::> (e). For each e E E + F there exists Ze E .2"(r) + {0} such that 
Ze £; F + {e}. Since F contains no nonempty cycle, Ze n (E + F) = {e}. 
Clearly {Ze: e E E + F} is an independent set. Let Z E .2"(r). Since the cycle 
Z + LeeZn(E+Fl Ze £; F, it must be empty, i.e., Z = LeeZn(E+Fl Ze' It follows 
that {Ze: e E E + F} spans .2"(r) and hence is a basis. 

(d) :::> (f). For each e E F, there exists Ce E .2".L(r) + {0} such that Ce n 
(F + {e}) = 0. Since Ce n F '# 0, Ce n F = {e}. Clearly {Ce: e E F} is an 
independent set. To show that this collection spans .2".L(r), let C E .2".L(r). 
Then the cocycle C + LeecH; Ce is disjoint from F and hence must be empty, 
i.e., C = LeecnF Ceo Thus {Ce: e E F} spans .2".L(r) and hence is a basis. 

(e) :::> (a). Since {Ze: e E E + F} is a basis for .2"(r), dim(.2"(r)) = 
IE + FI, which implies dim(.2".L(r)) = IFI. Clearly E + F meets every non­
empty sum of cycles in this basis. Hence F contains no nonempty cycle. It 
follows from B4a that .2"(T) = {0} and hence dim(.2".L(T)) = IFI. 

(f) :::> (a). Since {Ce: e E F} is a basis for .2".L(r), dim(.2".L(r)) = IFI. To 
complete the proof we need only show that F contains no nonempty cycles. 
Let A £; F be any nonempty subset of F. Then IA n Cel = I for each e E A. 
Hence A is not orthogonal to Ce and cannot be a cycle. D 

Cl6 Exercise. Let r F be a spanning forest of r. Show that for any e E E + F, 
there exists e' E F such that r F + (e,e') is a spanning forest of r. (This is called 
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the Exchange Property because a new spanning forest is obtained from an old 
one by the" exchange" of one edge for another. It will be generalized in §XA.) 

Cl7 Exercise. Show that any spanning forest of r can be obtained from any 
other spanning forest by a finite number of applications of the Exchange 
Property. 

If reF) is a spanning forest of r, then r(E+F) is a spanning coforest. (The 
edge set of a spanning coforest is called a "dendroid" by Tutte [1.6].) The 
following result is dual to CII and should be proved as an exercise. 

Cl8 Proposition. Let F s;;; E. The following six statements are equivalent: 
(a) IFI = dim(;z'(r(E+F»)) = dim(;z'(r)); 
(b) r(E+F) is a spanning coforest; 
(c) F is a maximal subset of E which contains no nonempty co cycle ofr; 
(d) F is a minimal subset of E which meets every nonempty cycle of r; 
(e) ;z'(r) admits a basis {Ze: e E F} such that for each eEF,Ze n F = {e}; 
(f) ;z' .L(r) admits a basis {Ce: e E E + F} such that for each e E E + F, 

Ce n (E + F) = {e}. 

Cl9 Exercise. State and prove an "Exchange Property" for coforests. 

HID Graphic Spaces 

Since the concept of the cycle space of a multigraph is easy to grasp in­
tuitively, it is a natural question to ask: under what conditions will an 
arbitrary subspace d s;;; &(E) be the cycle space of some multigraph r = 

(V, I, E)? Since the cycle space of r is the orthogonal complement of its 
cocycle space, this question is clearly equivalent to asking whether d.L can 
be realized as the co cycle space of r. It turns out that necessary and sufficient 
conditions are more easily stated in terms of the cocycle space. 

When the term "vertex cocycle" was defined, it was noted that every 
cocycle of r is a sum of vertex cocycles f*(x) for x E V. Also, every edge 
belongs to f*(x) for exactly two vertices x E V. Note our cautious wording 
both here and in Proposition D3 below; we will not say, "Every edge belongs 
to exactly two vertex cocycles." Although an edge belongs to the vertex 
cocycle of two distinct vertices, it may belong to only one vertex cocycle. 
For example, we may have, for some e E E, f(e) = {x, y} where f*(x) = 
f*(y). In this case r has a component r' = ({x, y}, k,f*(x)) where k is the 
constant function onto {x, y}. 

DI Exercise. Prove that for a multigraph r = (V, f, E), the following state­
ments are equivalent: 

(a) f* is an injection; 
(b) no component of r contains exactly two vertices, and r has no more 

than one isolated vertex. 
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Prove also that these statements must hold if r is connected and vo(r) ~ 3. 

D2 Exercise. Prove that the vertex group and the edge group of a finite graph 
are group-isomorphic if and only if the graph has at most one isolated vertex 
and no component has exactly one edge. [Hint: use IIE5.] Show that this 
statement is false for infinite graphs. (The result is due to Sabidussi [s.2] 
and Harary and Palmer [h.6]. The suggested method of proof appears in 
[w.5].) 

D3 Proposition. Let E be a set, let Cl> ... , Cm E (!J(E), and let d be a subspace 
of (!J(E). d is the co cycle space of a multigraph whose edge set is E and 
whose vertex co cycles are Cl> ... , Cm if and only if 

(a) {C1 , ••• , Cm} spansd; and 
(b) if e E E, then e E Cl for exactly two indices i. 

Furthermore, if d is the cocycle space of some multigraph, then d is the 
cocycle space of a connected multigraph. 

PROOF. If d = ~.L(r), we have seen that the sets f*(x) for x E V satisfy 
condition (a) and condition (b). 

Conversely, assume the existence of Cl> ... , Cm Ed satisfying (a) and (b). 
Let V = {I, ... , m} and definef:E -+ (!J(V) by 

f(e) = {i E V: e E Ci}, for all e E E. 

By (b), the system r = (V,J, E) is a multigraph. Since f*(i) = Cl for all 
i E V, and since ~ .L(r) is spanned by the set of all vertex cocycles, condition 
(a) implies ~.L(r) = d. 

We may reindex Cl>"" Cm so that for some k ~ m, {Cl>"" C/c} is a 
basis for d. Since Fnd(d) = E, each edge belongs to at least one set Cl with 
1 ::; i ::; k. Then the set C' = C1 + C2 + ... + C/c consists of those edges 
which belong to exactly one of the sets Cl>"" C/c' Hence C1 , ••• , C/c, C' 
satisfies condition (b). Since it clearly satisfies (a), we have shown that we 
may take m = k + 1 = dim(d) + 1. In this case dim(~.L(r) = m - 1 = 
vo(r) - 1, and by A15a, r is connected. D 

The subsets Cl>' .. , Cm in the above proposition form what is called a 
graphical realization of d, and d is said to be a graphic subspace. It is natural 
to ask, under what conditions will the choice of Cl> ... , Cm be uniquely 
determined (up to permutation)? In other words, under what conditions will 
a multigraph be determined by its cocycle space (or, equivalently, by its cycle 
space)? This, the second question of this section, was answered by H. Whitney 
[w.lO] in 1933. However, his proof did not capitalize on the linear algebra. 
Rather, he posed the question in nonalgebraic terms: under what conditions 
can a bijection between the edge sets of two mUltigraphs which takes the edge 
set of an elementary circuit onto the edge set of an elementary circuit be 
"extended" to a system-isomorphism? 

Before we answer these questions, let us consider some examples. First of 
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all, if r' is an arbitrary multigraph and if d = fC .L(r'), the constructions in 
the proof of Proposition D3 applied to d will yield anew a connected multi­
graph r with the same edge set, the same cocycle space, and the same cycle 
space as r'. We can restate our second question as, what are sufficient con­
ditions on r' to assure that r will be system-isomorphic to r'? Since r is 
connected, it is clearly necessary that r' be connected. Connectivity alone, 
however, is not sufficient. The first three multigraphs in Figure D4 are all 
nonisomorphic but have identical cocycle spaces. Observe that both r 2 and 
r 3 are connected. 

D4 

1~2 ¥ I. 4~ 
r [2 

1 2 

1 

[ 2 
3 

None of these graphs is biconnected, and we may inquire whether perhaps 
biconnectivity will suffice. It does not; r 4 and r 5 are biconnected, non­
isomorphic, and have identical cycle and cocycle spaces. We observe in this 
example that while {t, 3, 4} is a vertex cocycle of r 4, it is not a vertex co cycle 
of r 5 • We wish then to find conditions on a multigraph so that its vertex 
cocycles may be distinguished algebraically from the other cocycles. 

Let r be connected and let C be an elementary cocycle. By C7, r(C) has 
two components. If C is not a vertex cocycle, both of these components 
contain edges, and so fC.L(r(c») is not connected. (For example, let C = {4,5} 
in r 4 of the Figure.) We have shown: 

D5 Proposition. If C is an elementary co cycle of the biconnected multigraph r, 
and if fC.L(r(d is connected, then C is a vertex cocycle. 

For example, if C = {t, 2} in r = r 4 (Figure D4), then fC.L(r(c») is con­
nected. By the proposition, {t, 2} must be a vertex cocycle in both r 4 and 
r 5 as well as in any other graphical realization of fC .L(r 4)' The following 
corollary restates the above proposition in terms of the cocycle space of r 
rather than the co cycle space of r(C)' 
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D6 Corollary. If C is an elementary cocycle of the biconnected multigraph r, 
and if 'ITE+C£.2'.l(r)] is connected, then C is a vertex cocycle of r. 

PROOF. By B4b, 'ITE+C£.2'.l(r)] = .2'.l(r(C». Now apply the proposition. 0 

A multigraph r is triconnected if for each x E V, the submultigraph 
r v +(x) is biconnected. 

D7 Exercise. Show that every triconnected multigraph r (a) is biconnected 
and hence connected, (b) has at least three vertices, and (c) satisfies 
dim(.2' .l(r» ~ 2. 

D8 Proposition. Let r be a triconnected multigraph, and let r' be a multigraph 
with no isolated vertices. If .2'(r') = .2'(r), then rand r' are system­
isomorphic. 

PROOF. Let r = (V,J, E) and r' = (U, g, E) satisfy the hypotheses. Then 
for any x E V, rv+{x} is biconnected. Since the submultigraphs rv+(x) and 
r(f'(x» differ only insofar as the latter includes the isolated vertex x, the two 
submultigraphs have equal cocycle spaces, which by B3 must be connected. 
Also 1l'.l(r'(fO(x») is connected, since by B4b it is equal to 'ITE+fO(X)[,fl'.l(r')] = 
,fl'.l(r(f"(x»). Sincef*(x) is an elementary cocycle of r, and hence of r', we 
may apply Proposition D5 to r' to deduce thatf*(x) is also a vertex cocycle 
ofr'. 

Since VI (r') = VI (r) ~ 2 (r is tticonnected and hence biconnected by 
Exercise D7), since r' was presumed to have no isolated vertices, and since 
.2'.l(r') is connected, we infer from B3 that r' is connected. By D7, 
dim(.~.l(r'» = dim(.2'.l(r» ~ 2, and so by A15a, vo(r') ~ 3. By DI, g* is 
an injection. Therefore, the function q: V ~ U given by 

g*(q(x» = f*(x), for all x E V 

is well-defined, and Figure D9 is a commutative diagram. 

D9 f* 
V------ &J(E) 

+ + 
U -----:--~, &J(E) 

g* 

E 

+ 
E 

It remains only to show that q is a bijection. It is clearly an injection, 
since bothf* and g* are. Since every element e E E belongs to f*(x) for two 
distinct values of x E V, e belongs to g*(q(x» for two distinct values of 
x E V. Hence e can belong to no other vertex cocycle of r'. Since r' has no 
isolated vertices, g*(u) =F 0 for all u E U. It follows that q is a surjection. 0 
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We recast the above proposition in the language of Whitney's original 
paper [w.lO]. 

DIO Corollary. (H. Whitney). Let r = (V,f, E) be triconnected, and let 0 = 

(U, h, F) be a multigraph with no isolated vertices. Let there be a bijection 
p: E -+ F such that Z is the edge set of a circuit in r if and only if p[Z] is 
the edge set of a circuit in 0. Then rand 0 are system-isomorphic. 

PROOF. Define g = hp, and observe that the lower rectangle in Figure DII 
commutes. 

Dll 
.9'(V) .. f V 

ql~ 
U 

lu l~ 
U 

-----E 

ql~ 
.9'(U) 0( 

g IE1~ 
-----E 

Iu l~ pl~ 
h 0(------ E .9'(U) ( 

p 

Thus r' = (U, g, E) and 0 are system-isomorphic. By this and the hypothesis, 
p[iZ'(r')] = .,q['(0) = p[~(r)]. Since p is a bijection, ~(r') = ~(r). Hence 
~ l.(r') = iZ'l.(r), and the result follows from the proposition. 0 

If V is an n-set for n > 0, any graph which is isomorphic to the graph 
(V, ~(V» is called a complete graph of order n, and the symbol Kn is always 
used to denote such a graph. Thus, Kn is connected and dim(~(Kn» = 
m - n + I = (n21). 

D12 Exercise. Let Kn = (V, ~(V» and let d,. = ~(Kn)' Show that: 
(a) d,. is spanned by {~(W): W E ~(V)}. [Hint: use induction on n.] 
(b) d,. is connected for all n, and hence Kn is biconnected for all n ~ 3. 
(c) If r' is a mu/tigraph such that ~l.(r') = d,., then ~l.(r'([p2(W))) is 

connected and ~(W) is a vertex cocycle ofr' for all W E ~(V). 
(d) Each edge ofr' belongs to ~(W)for exactly n - 2 sets WE~(V). 
(e) Combine parts (a)-(d) of this exercise to deduce: 

Dl3 Proposition. ~(Kn) is graphic if and only if n ::;; 4. 

Dl4 Exercise. Prove that for any set E, the space SeE) is graphic. 

DIS Exercise. Let E = {I, 2, ... , 7}. Let d be the subspace of .9'(E) spanned 
by 

{{I, 2, 3, 4}, {2, 4, 5, 6}, {3, 4, 6, 7}}. 

Show that neither d nor dl. is graphic. 
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DIE Planar Multigraphs 
Intuitively, a "planar multigraph" is a multigraph which can be represented 
in the plane in such a way that edges meet only at vertices. One can be more 
rigorous in topological language, but it requires regarding a multigraph as a 
topological object, namely as a I-dimensional simplicial complex (except that 
two vertices may be joined by more than a single edge), an edge being regarded 
as a homeomorph of a closed real interval. Such a topological "multigraph" 
is called planar if it can be homeomorphically embedded into 2-dimensional 
Euclidean space, or equivalently, into the 2-sphere. Our approach here, 
however, will be combinatorial and ultimately algebraic. Demonstrating the 
equivalence of various mathematical approaches to planarity is no easy or 
elegant matter. Since one cannot seem to exploit the best from all possible 
mathematical worlds simultaneously, we will confine our rigor to com­
binatorics (except in §VIID and §VIIE). Nonetheless we will freely use more 
pictorial language for both motivation and reinforcement. 

Working unrigorously, the reader may observe by trial and error that K n, 

for example, can be drawn in the plane if and only if n ~ 4. In particular, K5 
must be drawn with some edges meeting other than at common vertices 
(Figure Ela). With care the number of these "cross-overs" can be reduced 
to just one (Figure Elb). 

After the reader has spent some time on this trial-and-error method, the 
difficulties of demonstrating for instance, that K5 is "nonplanar" become 

El 

(b) 

apparent, and the lack of a rigorous terminology should no doubt contribute 
to the frustration. Among the various combinatorial developments of 
planarity, ours will most closely parallel the work of S. MacLane [m.l] and 
will be closely related also to the approach of H. Whitney [w.9]. 

The first observation related to MacLane's approach to planarity is that 
when a multigraph r is realized in the plane (without" cross-overs "), there 
are certain cycles which playa special role. The set-theoretic complement in 
the plane of the realization of r has connected components, which are usually 
called "regions." The boundaries of these "regions," except when they con­
tain isthmuses, correspond to circuits of r. The edge sets of these circuits, 
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as noted in §A, belong to the cycle space of r and have algebraic significance 
in this space. These topological regions will be identified with their bounding 
cycles. MacLane used these cycles to characterize planarity. 

We illustrate for a specific multigraph r, MacLane's "bounding cycles." 
Let r be the multigraph drawn in Figure E2. Its "regions" are: 

E2 

We observe that 
(a) this set of cycles spans ;'l(r), and 
(b) each edge of r is an element of exactly two of these cycles. 

Observe how these properties are precisely dual to the properties of vertex 
cocycles in Proposition D3. What MacLane proved is that, in general, the 
existence of a list of cycles of r satisfying conditions (a) and (b) is equivalent 
to the existence of a topological realization of the graph in the plane. The 
approach of this text, however, is combinatorial rather than topological. 
What we will do is to use MacLane's combinatorial characterization of 
planarity as the definition of planarity. 

A sequence Zlo ... ,Zk of cycles of the mUltigraph r is called a planar 
imbedding of r if: 

(a) {Zlo ... , Zk} spans ;'l(r), and 
(b) if e E Fnd(;'l(r)), then e E Zj for precisely two indices i E {l, ... , k}. 

We say that r is planar if it admits a planar imbedding. 
An isthmus of a multigraph of course belongs to no cycle while (cf. A21) 

all other edges belong to Fnd(;'l(r)). By condition (b), 

E3 

holds for any planar imbedding Zh ... , Zk. We return to this development 
after a brief look at Whitney's approach. 

The motivation behind Whitney's development is that when a multigraph 
r without isthmuses is realized in the plane, there is a "natural" construction 
which leads to a realization of a second multigraph 0 (whose edges are those 
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of r). Whitney called 0 a "combinatorial dual" to r. The algebraic relation 
between rand 0 is that ;'l'1.(0) = ;'l'(r). For this reason we prefer to say that 
o is "orthogonal" to r, rather than "dual" to r. Having characterized 
orthogonal mUltigraphs in purely combinatorial terms, Whitney then proved 
that a realization of a mUltigraph is planar in the topological sense if and only 
if some multigraph is orthogonal to it. 

An orthogonal multigraph 0 is shown in Figure E4 in solid lines super­
imposed on r (cf. Figure E2) in broken lines. Solid and broken edges crossing 
each other receive the same label. Note how the "regions" of r are precisely 

E4 

r 
0-- -
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the vertex cocycles of 0, and vice versa. Surely the relationship between rand 
o here is intuitively apparent. To obtain a realization of 0 from a realization 
of r, place a vertex in the interior of each "region" ofr. These are the vertices 
of 0. Then across each edge e of r draw an edge of 0 joining the two vertices 
of0 in the two regions of r having e on their boundary. Note that at the same 
time one vertex of r appears in each "region" of 0. Had this construction 
been carried out beginning with 0, one would thereby have obtained r. We 
may rightly perceive at this juncture as did Whitney the equivalence between 
the planarity of r and the existence of a multigraph 0 "orthogonal" to it. 

When this same multi graph r is realized in the plane with different 
"regions" as in Figure E5a, however, the mUltigraph 0 obtained by the 
above method has instead the form of Figure E5b, which is obviously not 
isomorphic to the 0 of Figure E4. Comparing Figures E4 and E5b with r 4 

and r 5 in Figure D4, one observes that the two constructions of 0 have the 
same cycle space and the same .cocycle space. Whitney's result DIO suggests 
that triconnectedness may be required to insure the uniqueness of the con­
struction of 0. Observe also that each vertex cocycle of 0 in each of the two 
constructions consists of edges corresponding to edges of a "region" of r, 
and each vertex cocycle of r determines a "region" of the appropriately 
constructed 0. 
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E5 

(b) 

Let the multigraphs rand 0 have a common edge set E. We say that r 
is orthogonal to 0, and write r .1 0 if ,q'(r) = ,q'.L(0). 

Some consequences of the assertion r .1 0 are immediate. First of all, 
o .1 r. Secondly, E = Fnd(,q'.L(r» = Fnd(,q'(r», and so neither r nor 0 
may have an isthmus. Thirdly, if neither graph has isolated vertices, it then 
follows from B3 that r is biconnected if and only if 0 is biconnected. Fourthly, 
if r ..1 0' also holds, then 0 and 0' have identical cycle space and cocycle 
space. 

Because we have given a combinatorial definition for planarity, we obtain 
a short proof of Whitney's characterization of planar multigraphs. 

E6 Theorem. (H. Whitney). Let the mu/tigraph r contain no isthmus. r is 
planar if and only if there exists a multigraph 0 such that r .1 0. 

PROOF. The theorem is an immediate consequence of the definition of a planar 
imbedding, the fact that Fnd(,q'(r» = Fnd(,q'.L(r» = E, and Proposition 
D3. D 

If Z10 ... , Zm is a planar imbedding of a connected muItigraph r without 
isthmus, then the multigraph 0 whose vertex cocycles are Z1> ... , Zm is called 
the multigraph orthogonal to r with respect to (the planar imbedding) Z10 ... , 
Zn. One observes that 0 is already furnished with an imbedding C10 ... , Cn 
(which are the vertex cocycles of r) and that r is the multigraph orthogonal 
to 0 with respect to this imbedding. 

A planar imbedding Z1> ... , Zk is elementary if each cycle Zi is an 
elementary cycle; it is a simple imbedding if E3 is the only relation among 
Zl, ... ' Zk; i.e., dim(,q'(r» = k - 1. 

Example. Let r be represented by Figure E7. Then Z = {e1o e2} and 
Z' = {e3 , e4, e5} are the only elementary cycles of r. The list Z, Z', Z + Z' 
is a simple imbedding but it is not elementary, while Z, Z, Z', Z' is an 
elementary imbedding which is not simple. Up to reordering the cycles, these 
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E7 

are the only planar imbeddings of r. Observe (in anticipation of Proposition 
E9) that .fe(r) is not connected. 

E8 Exercise. Prove that every planar multigraph admits an elementary 
imbedding and a simple imbedding. 

E9 Proposition. Let r be a planar multigraph. Every planar imbedding of r 
is both simple and elementary if and only if .fe(r) is connected. 

PROOF. Suppose that Z1> ... , Zk is a planar imbedding of r which is not 
simple, in which case, for some reordering of the cycles, 

h 

EIO L: ZI = 0 for some h < k. 
1=1 

Let gj1 and gj2 be the subspaces spanned by {Z1' ... , Zh} and {Zh+1> ... , Zk}, 
respectively, and let Bj = Fnd(gjj) for j = 1,2. These subspaces are not 
trivial. If e E Bl () B2 , then by the definition of a planar imbedding, e belongs 
to only one of the cycles Z1> ... , Z", contrary to EIO. Hence B1 () B2 = 0, 
and gj1 EB gj2 is a well-defined subspace of .fe(r). On the other hand, if 
Z E .fe(r), then for some a1> ... , ak E 11<, we have Z = ~~ = 1 alZ, = ~r = 1 a,Z, + 
~~=h+1 lljZ, E gj1 EB gj2. Hence .fe(r) is not connected. 

If we suppose instead that the planar imbedding Z1, ... , Zk is not elemen­
tary, then some cycle, say Zk, is not elementary, and by lICI, Zk = ~f=1 ~ 
where W1> ... , Wn are pairwise-disjoint elementary cycles, and n > 1. Hence 
Z1> ... , Zk-1> W1> ... , Wn is a planar imbedding of r with more than 
dim(.fe(r» - 1 cycles. Thus the existence of a planar imbedding which is not 
elementary implies the existence of one which is not simple, and we proceed 
as in the previous paragraph. 

Conversely, if .fe(r) is a nontrivial direct sum gj1 EB gj2, we suppose that 
the planar imbedding Z1> ... , Zk of r is elementary. By lIC3, we may reindex 
this imbedding so that Z1> ... , Zh E gj1 while Zh+l, ... , Zk E gj2 for some h 
satisfying 1 :s; h :s; k - 1. But since gj1 and gj2 have disjoint foundations, 
the definition of a planar imbedding implies that EIO must hold. Therefore, 
the imbedding is not simple. 0 
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One of the important and topologically obvious properties of planar 
multigraphs is that their submultigraphs are also planar, as are the multi­
graphs obtainable therefrom by identifying a pair of vertices incident with a 
common edge. 

A system r' = (V',!', E') is a contraction of the multigraph r = (V,/, E) 
if 

(a) V' E IJl(V) and rw is connected for all WE V'; 
(b) E' = {e E E: f(e) $ W for all WE V'}; 
(c) f'(e) = {WE V':f(e) f'I W =F 0}, for all e E E'. 

A contraction of a multigraph is clearly a mUltigraph, but a contraction 
of a graph need not itself be a graph. The contraction r' is uniquely deter­
mined by r and V'. Every multigraph is obviously a contraction of itself. 
In Figure Ell, each of the last three multigraphs is a contraction of the first. 

Ell 

U.....------"t {S,t,u,V) <=>{w} 
V ....... ---....... w 

A subcontraction of a multigraph r is a submultigraph of a contraction of· 
r. For example, every sUbmultigraph of r is also a subcontraction of r. 

The next two exercises cover most of the elementary but essential properties 
of contractions and subcontractions. 

Ell Exercise. Let r 1 be a subcontraction ofr. Prove: 
(a) IfZl E .2"(r1), then Zl S;;; Zfor some Z E .2"(r). 
(b) If an edge e of r 1 is an isthmus of r, then e is an isthmus of r l' 

El3 Exercise. Prove: 
(a) If r 2 is a contraction of r 1 and if r 1 is a contraction of r, then r 2 is a 

contraction of r. 
(b) If r 2 is a sub contraction of r, then there exists a submultigraph r 1 of 

r such that r 2 is a contraction of r l' 
(c) Let r 1, • , ., r k be multigraphs such that r I is either a submultigraph 

or a contraction ofrj - 1 (i = 2, .. " k). Then r k is a subcontraction ofr1• 

(d) Ifr' is a subcontraction ofr, then there exists a sequence of multi graphs 
r = rl>"" r k = r' such that for each i = 2, ... , k, r j = (Vhfi, E1) is one 
of the following: 

(i) (r j -l)(X) where x is an isolated vertex of r 1-1 ; 
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(ii) (r 1_ l)(e) for some e E E, - 1 ; 

(iii) the contraction of r j -1 obtained by identifying two vertices x, y E VI - 1 

incident with a common edge. Thus 

Vi = {{w}: WE Vj - 1 + {x, y}} u {{x, y}} 

and 

E14 Lemma. Ifr1 = (VI,!!> E1) is a contraction ofr, then 

PROOF. In the light of Exercise E13a and the fact that every contraction of r 
may be obtained by iterating the procedure of EI3d(iii), we may assume that 
r 1 has been obtained from r by just one application of this procedure. Thus 

VI = {{w}: WE V + {x, y}} u {{x, y}} 

and 

El = {e E E: f(e) =p {x, y}}. 

1Z .l(r 1) is spanned by the collection of its vertex cocycles, and these are 

fl*({W}) = f*(w) for WE V + {x, y} 

fl * ({x, y)} = f*(x) + f*(y)· 

We show that this very same collection spans 1Z.l(r) n fJJ(El)' For if 
C E 1Z.l(r) n fJJ(E1), then C = L:weu f*(w) for some U ~ V. Since C ~ E!> 
either {x, y} s; U or {x, y} n U = 0. Hence 2.p(r1 ) = 1Z.l(r) n [!jI(El)' 

The second equality follows from the first and IIAI5. 0 

Comparing this lemma with IID 13a and b, we see that the roles of the 
cycle space and cocycle space are interchanged, and one may infer a duality 
between contractions of rand submultigraphs of r. This principle recurs in 
Exercise E16. 

E15 Proposition. Every subcontraction of a planar multigraph is planar. 

PROOF. Let r = (V,J, E) be a planar multigraph. By Exercise E13d, it 
suffices to prove that the multigraph r' is planar if r' is obtained from r by 
one of the following three operations: (i) deletion of an isolated vertex, (ii) 
deletion of an edge, (iii) identification of two vertices incident with a common 
edge. 

Clearly if 1Z(r) = 1Z(r'), then any planar imbedding for r is also a planar 
imbedding for r'. This is indeed the case when r' is obtained from r by 
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operation (i) or by operations (ii) or (iii) where the edge in question is an 
isthmus. Therefore, let e E Fnd(.;!"(r)}-recall A2I-and let Z1, ... , Zk be a 
planar imbedding of r such that e E Z1 n Z2' 

To show that Z1 + Z2, Z3, ... , Zk spans .;!"(r(e», let Z = ~J = 1 alZI for 
some a1> ... , ak ElK. If Z E .;!"(r(e», then a1 = a2, and Z = a1(Z1 + Z2) + 
~~=3 alZI as required. It follows that each edge in Fnd(.;!"(r(e») belongs to at 
least one of the cycles Z1 + Z2, Z3, ... , Zk' Since Z1> ... , Zk is a planar 
imbedding, each such edge is in at most two of Z1 + Z2, Z3, ... , Zk' Finally, 
since (Z1 + Z2) + Z3 + ... + Zk = 0 (by E3), each edge in Fnd(.;!"(r(e») lies 
in exactly two ofthe cycles. Hence Z1 + Z2, Z3, ... , Zk is a planar imbedding 
ofr(e)' 

If r' is obtained by identification of the two vertict:s in f(e), let F = 
Fnd(.;!"(r» + f-1[f(e)]. By Lemma E14, .;!"(r') = '7TF[.;!"(r)], which implies 
that Z1 n F, ... , Zk n F spans .;!"(r'). As in the previous paragraph, one 
easily demonstrates that part (b) of the definition of planar imbedding is 
satisfied. 0 

E16 Exercise. Let 0 = (W, g, E). 
(a) Let r ..1 0, and let e be in their (common) edge set. Let r' be obtained 

from r by identification of the vertices incident with e. Prove that r' ..1 
0(g-1[g(e)]), thereby showing that the deletion of the edges having a given 
common image and the identification of their two incident vertices are dual 
operations. 

(b) Let r ..1 0 and let r' be a subcontraction of r without isthmuses. 
Then r' ...L 0' for some subcontraction 0' of 0. 

E17 Corollary. r is planar if and only if every lobe ofr is planar. 

PROOF. If r is planar, then by the proposition, every lobe is also planar. 
Conversely, let r 1, ••• , r m be the lobes of r which are not isolated vertices 
or isthmuses, and let ZI,1> ... , Zl,kl be a planar imbedding of r l (i= 1, ... , m). 
Since .;!"(r) = EB~= 1 .;!"(rl) by B5, the list Z1,1>"" Z1,kl' Z2,1> ... , Z2.k2' 
•.. , Zm,km of cycles clearly spans .;!"(r). If e E Fnd(.;!"(r», then e E Fnd(.;!"(rl» 
for exactly one lobe rl' Hence e E ZI,I for exactly two indices j, and e is in 
no other cycle of the planar imbedding. 0 

E18 Exercise. Show that the same cycle Z can occur twice in a planar imbedding 
of r if and only if r z is a lobe of r. 

In the light ofthis exercise, whenever dim(.;!"(0» > 1 for each lobe 0 of r, 
one can treat every planar imbedding of r as a set of cycles rather than as a 
list of cycles. 

The symbol Km,n will denote the bipartite graph ({Vl> V2 }, &) where 
1V11 = m, 1V21 = n, and tff = {{Xl> X2}: XI E ~}. Such a graph is called a 
complete bipartite graph. 
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El9 Exercise. Prove that: 
(a) Ifm ~ 2 or n ~ 2, then K...,n is planar; 
(b) Ifn ~ 4 then Kn is planar. 

IIIE Planar Multigraphs 

In the next section it will be shown (F9) that neither part of E19 can be 
sharpened. 

E20 Exercise. In §VIE we will prove: if r is a triconnected graph and if 
r ..l 0, then 0 is likewise a triconnected graph. Assuming this result, show 
that if r is a triconnected planar graph, then the set of regions of a planar 
imbedding is unique and that there exists only one connected multigraph 0 
such that r ..l 0. 

Let lLn denote the cyclic group with n elements. A cyclic ordering of an 
n-set U is a bijection x: lLn ~ U; the image of i under x is then denoted by XI' 

E21 Lemma. Let r = (V,J, E) be a biconnected multigraph. Given any planar 
imbedding for r, for each vertex x of r there exists a cyclic ordering 
eo, ... , ep(x) -1 of the elements of f*(x) such that e, and el + 1 lie in a common 
cycle of the imbedding for i = 0, ... , p(x) - 1. 

PROOF. Let Z1> ... , Zk be a planar imbedding for r, and let x be a vertex 
of r. By reordering if necessary, we may suppose that Z1> ' .. , Zh are the 
cycles of the imbedding which contain edges incident with x. Since r is 
biconnected, the imbedding is elementary by B3 and E9. Hence for i = 1, 
... , h, the cycle Zi contains exactly two edges belonging to f*(x). Let eo E ZI () 

f*(x). Then the edge el E (ZI ()f*(x» + {eo} is uniquely determined. We 
suppose then that eo, e1> ... , em have been selected and that Z10 ... , Zh have 
been reordered so that e, E Z'-1 () Z, () f*(x) for i = 1, ... , m, where 
2 ~ m ~ h - 1. It suffices merely to show that eo ¢ Zm. 

If eo E Zm, then there exists an edge em+l E f*(x) such that em+l ¢ Ur=1 Z,. 
Since r is biconnected, we deduce from B3 that em+l and eo lie on some 
common elementary circuit. By A9, em +l and eo belong to a common 
elementary cycle Z. Let us write Z = L~=la,Zh where al,"" ak E II<. Since 
therefore e1> ... , em-l ¢ Z, we must have al = ... = am' But eo E Zm () Z1> 
which implies that eo ¢ Z. 0 

Let r have a planar imbedding and let 1:1 and 1:1' be elementary circuits 
with Z and Z' as corresponding cycles. We say 1:1 and 1:1' cross at a vertex x if 
the two edges inf*(x) () Z and the two edges inf*(x) () Z' alternate in any 
cyclic ordering for f*(x) constructed as in Lemma E21. We may now state 
and prove: 

E22 Theorem (Jordan Curve Theorem for Planar Multigraphs). Let r be a 
planar multigraph. If two elementary circuits 1:1 and 1:1' of r cross at a vertex 
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III Multigraphs 

in some planar imbedding of r, then they have at least one other vertex in 
common. 

PROOF. Let Z10 ••• , Zk be a planar imbedding in which fl. and fl.' cross at a 
vertex. We write Z = Zr=l alZ" where Z is the cycle of fl.. Each edge of r 
is then of one of three types: an edge is of type j (j = 0, 1,2) if it belongs 
to exactly j cycles Z; having coefficient al = 1. Clearly the edges of type 1 
are the edges in Z. By the lemma, if the vertex x is not in fl., then the edges in 
f*(x) are either all of type 0 or all of type 2. 

Now let fl.' be given by xo, e10 X10 ••• , en, Xn = xo, and suppose fl. and fl.' 
cross at Xo. By the lemma we may assume without loss of generality that el 
is of type 0 and en is of type 2. Thus there is a first index i > 1 such that el is 
not of type O. The vertex XI-I =F Xo is then a vertex common to fl. and fl.'. 0 

To conclude this section, we give a heuristic proof of the result of MacLane 
stated at the beginning of the section, namely that our combinatorial definition 
of planarity is equivalent to the usual topological definition. 

Consider first the case where r is an arbitrary biconnected multigraph and, 
by our definition, planar. Let ZI> ... , Zk be the regions of a planar imbedding 
of r. By B3 and E9, ZI> ... , Zk are all elementary. Hence r h defined to be 
r ZI' is an elementary circuit of r. Let DI be a topological disk whose boundary 
is a topological realization of rl. Identify DI with Dj along each edge and 
each vertex that r, and rj have in common. Let K denote the resulting cell 
complex. Clearly each point of K which is not a vertex of r has a neighbor­
hood homeomorphic with a disk. By Lemma E2I, each vertex of r also has 
a neighborhood in K homeomorphic with a disk. Hence K is a surface. To 
see that K is in fact a sphere, observe that the topological imbedding of r 
into K yields a cell decomposition of K with Euler characteristic 

k - VI(r) + vo(r) = dim(~(r» - VI(r) + vo(r) + I, 

which equals 2 by A15b. 
Now assume r is an arbitrary planar muItigraph (again by our definition). 

By El7 each lobe of r is planar, and by the above argument each lobe of r 
is planar in the topological sense. Since the statement of EI7 is also valid 
when the terms are understood topologically, r is therefore planar in the 
topological sense. 

Conversely, if r is any multigraph which is planar in the topological sense, 
we need only delete the isthmuses. The bounding cycles of the regions then 
form a planar imbedding by our definition. 

It should be apparent now that our special treatment of isthmuses is 
necessitated by the fact that no I-subset of edges can be a cycle in a multi­
graph-as we have defined multigraphs. In order to accommodate such 
cycles, we would have to introduce "loops," i.e., edges which join a vertex 
to itself. In Figure E23 we carry out, for a mUltigraph r with isthmuses, the 
topological construction of an orthogonal mUltigraph, illustrating that 
"loops" must then be included. 
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E24 Exercise. Let r be a connected planar multigraph. Let Z be a cycle of 
r which is not a region of some planar imbedding of r, and let U be the set of 
vertices incident with edges in Z. Show that if r u is an elementary circuit, then 
r(U) is not connected. 

IllF Euler's Formula 

We have seen by example in the previous section that a planar multigraph 
need not uniquely determine which cycles will be regions of a simple planar 
imbedding. It does, however, determine the number of regions in any simple 
planar imbedding. 

Fl Proposition. The number of regions in any simple planar imbedding of a 
multigraph r is 

Vl(r) - vo(r) + V_l(r) + 1. 

PROOF. If Z1o ... , Zk is a simple planar imbedding of r, then by the definition 
and AISb, 

The number of regions in a simple planar imbedding of r is thus a param­
eter of r and is denoted by V2(r), abbreviated by V2 when there is no risk of 
confusion. We now state a result familiar to both graph theorists and topol­
ogists, according to how the symbols are interpreted. 

F2 Corollary. (a) For any planar multigraph, 

(b) (The Euler Formula). For any connected planar multigraph, 

8S 



III Multigraphs 

For the remainder of this section it will be understood that r = (V, J, E) 
denotes a planar multigraph. We define the average covalence of r to be the 
number 

F3 l.(r) = 2V1 (r) 
p vir)' 

writing simply pl. when there is no risk of confusion. In terms of p = per) 
and p\ the Euler Formula has another useful form: 

F4 Corollary. For a connected planar multigraph with V1 > 0, 

1 1 1 1 -+-=-+-P pl. 2 V1· 

PROOF. One merely substitutes into the Euler Formula the values Vo = 2V1! p 
and V2 = 2V1!Pl. from Al and F3, respectively, and then divides by 2V1. D 

Suppose now that I is the set of isthmuses of r and that Zh ... , ZY2(f') is 
a planar imbedding of r. The covalence of the region Zj is the integer pl.( Zj) = 
IZd. Note that if r(I) .L 0 where 0 = (U, g, E + I) and Zj = g*(Uj) for 
Uj E U (i = 1, ... , V2(r(I)), then the covalence of g*(Uj) is precisely the valence 
of Uj. Thus not only do we have 

F5 

but from AI, 

F6 

F7 Proposition. Let Zl, ... , ZY2 be a planar imbedding for r. 
(a) If r has no isthmuses, then 

1 Y2(f') 
pl.(r) = V2(r) I~ Pl.(ZI). 

(b) There exists some index i such that Pl.(ZI) ::; pl.(r). 

PROOF. From F6 we have 

2(V1 - IIi) = 1. i: pl.(Zj). 
V2 V2 1= 1 

Hence 

pl.(r) - 2111 = 1.. i: pl.(Zj), 
V2 V21=1 

and (a) follows when I = 0. If pl.(Zj) > pl.(r) for all i, then 

2111 I Y2 
pl.(r) - - = - L: Pl.(ZI) > pl.(r), 

V2 V2 1= 1 

which is impossible. 
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I1IF Euler's Formula 

Suppose that r is without isthmuses and that Z10 ... , ZV2(r) is a simple 
planar imbedding of r. If for some kEN, pJ.(Zj) = k for all i = 1, ... , V2(r), 
then the planar imbedding is said to be k-covalent. If for some kEN, every 
simple planar imbedding of r is k-covalent, we say that r is k-covalent. We 
say that r is isocovalent if it is k-covalent for some kEN. 

Examples. The circuit ~" is n-covalent. K4 is both 3-valent and 3-covalent. 
A multigraph with Vo = 2 and VI ~ 2 is vI-valent and 2-covalent. The multi­
graph shown in Figure F8 has a 3-covalent planar imbedding, as shown in 
F8a, but it is not a 3-covalent multigraph, as seen by F8b. 

F8 

The following necessary condition for planarity is known as the" Kuratow­
ski criterion." The proof of its sufficiency is much more difficult and will be 
given in the next section. 

F9 Proposition. Any graph having Ks or Ka,a as a subcontraction is not 
planar. 

PROOF. By E15 it suffices to prove only that neither Ks nor Ka.a is planar. 
By D 13, ,qz'(Ks) is not graphic, and since Ks has no isthmus, Ks is not 

planar, by Proposition E6. 
Now suppose that Ka,a is planar. By substituting vI(Ka,a) = 9 and 

p(Ka,a) = 3 into F4, we obtain pJ.(Ka.a) = \8 < 4. Hence some cycle of Ka,a 
consists of three or fewer edges, which is impossible since Ka.a is a bipartite 
graph. 0 

FlO Exercise. Prove that Ks is not planar directly from F4. 

Fll Proposition. Let r = (V, f, E) be a planar multigraph. 
(a) If pJ.(r) ~ 3, then p(x) :::; 5 for some x E V. 
(b) If p(r) ~ 3, then every planar imbedding contains a region Z such that 

pJ.(Z) :::; 5. 
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PROOF. (a) Since l/pi(r) ~ t, F4 yields 

1 1 1 1 I 
per) ~ 2 + VIer) - 3 > 6' 

Hence per) < 6, and p(x) < 6 for at least one vertex x E V. 
(b) Similarly, if per) ~ 3, then pier) < 6. The result then follows by 

Corollary F7b. 0 

F12 Corollary. Every planar graph has a vertex of valence at most 5. 

PROOF. Every nonempty cycle of a graph r has covalence at least 3. By F7b, 
pier) ~ 3. The result follows from FIla above. 0 

F13 Exercise. Show that if a planar graph has smallest valence 5, then it has 
at least 12 vertices of valence 5. 

F14 Exercise. Let r be a planar graph with vo(r) ~ 4. Then r has at least 
four vertices of valence at most 5. 

F15 Proposition. Let r be a planar isovalent multigraph without isthmuses or 
isolated vertices, and let r have an m-covalent imbedding for some m. Then 
the parameters vo, Vb V2, p, pi of r must conform to one of the seven types 
in Table F16, where k is any integer greater than 1. 

F16 Type Vo VI V2 P pi 

I 2 k k k 2 
II k k 2 2 k 

III 4 6 4 3 3 
IV 6 12 8 4 3 
V 8 12 6 3 4 

VI 12 30 20 5 3 
VII 20 30 12 3 5 

PROOF. Since r is isovalent, p is an integer. Since r has no isolated vertices 
or isthmuses, p > 1. By F7a, pi is likewise an integer greater than 1. The 
parameters Vb p, and pi of r thus form an integral solution to the system of 
inequalities: 

F17 p ~ 2, 
1 1 I 1 

and - + - - - + -' P pi - 2 VI' 

this last equation is from Corollary F4. 
If p ~ 4 and pi ~ 4, we have (1/ p) + (1/ pi) ~ -! and the last equality in 

F17 cannot hold. Hence either p ~ 3 or pi ~ 3. We should also observe 
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that the system F17 is symmetric in p and pL. Thus if we find the solutions 
with p :2: pL, we may obtain all other solutions by interchanging the values 
of p and pL. 

Case 1: pL = 2. Then FI7 becomes: 

p :2: 2, 
1 1 

This yields the solutions p = Vl = k, pL = 2, for k = 2, 3, .... 
Case 2: pL = 3. Then F17 becomes: 

p :2: 3, 
1 1 1 ---+­p - 6 Vl' 

Clearly we must have p < 6, i.e., p = 3, 4, or 5, whence the solutions: 

p = 3, 

p = 4, 

p = 5, 

We have then a total of 4 solutions with p :2: pL and we get three more 
by symmetry. Using the definitions of average valence and average covalence, 
we may compute Vo and V2 and fill in the table. 0 

FI8 Proposition. For each integer k :2: 2, there is a unique planar multigraph of 
each of the Types I and II in Table F16. 

PROOF. Suppose r = (V, I. E) is of Type 1. Since Vo = 2, fee) = V for all 
e E E. Since Vl = k, r is uniquely determined. To prove existence, let r = 

(V,f, E) where Vo = 2, E = {e1>"" ek} andf(ej) = V for all i = I, ... , k. 
It is easy to see that .£?l'(r) = C(E). It is also easy to see that 

{ZI = {eh ej+l}: i = 1, ... , k - I} 

is a basis for .£?l'(r). It follows at once that Z1> ... , Zk, where Zk = {ek' el}, 
is a planar imbedding of r and that r is of Type 1. 

The remainder of the proof (for Type II) is left as an exercise for the 
reader. 0 

A planar multigraph of one of the five remaining types is, in fact, a graph 
and is called a Platonic graph. This name comes from the fact that the 1-
skeletons of the five Platonic solids are graphs of these five types. They are 
illustrated in Figures Fl9 through F23. Actually, these are the only multi­
graphs of these types, i.e., there are precisely five Platonic graphs. We will 
prove the uniqueness for Types III, IV, and V, leaving the "dirty" cases of 
Types VI and VII as exercises for the reader. 
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F19 

Tetrahedron Type III 

FlO 

Octahedron Type IV 

Cube Type V 

F22 

Icosahedron Type VI 
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Dodecahedron Type VII 

F24 Lemma. If r is a Platonic graph, there exists a connected Platonic graph 
o such that r 1.. 0. 

PROOF. Let r be a Platonic graph and let Z10 ... , Z" be the regions of an 
isocovalent imbedding of r. By the definition and 03, Z1o' .. , Z" form the 
vertex cocycles of a connected multigraph 0 orthogonal to r. Clearly 0 is 
isovalent without isthmuses or isolated vertices. The vertex cocycles of r 
form a p(r)-covalent imbedding of 0. Hence by FIS, 0 is of one ofthe types 
in Table F16. Since p(0) = p.l(r) and p.l(0) = p(r), 0 is Platonic. D 

F25 Lemma. Every Platonic graph is biconnected. 

PROOF. By two successive applications of the foregoing Lemma, we infer the 
existence of a connected Platonic graph r of each type. 

If p(r) = 3, let Xo be an articulation vertex of r. Since f*(xo) is not 
elementary, while If*(xo)1 = 3, at least one of the edges inf*(xo} is an isthmus. 
But by the definition of a Platonic graph, r contains no isthmuses. If p(r) > 3, 
then by the lemma, there exists a Platonic graph 0 such that 0 1.. r. From 
F16 we see that p(0) = p.l(r) = 3. Hence 0 is biconnected and it follows that 
r is biconnected. D 

F26 Lemma. Ifr = (V,J, E) is Platonic and p(r) = 3, then r is a graph. 

PROOF. Suppose f(el) = f(e2) = {x, y}. Since p(x) = 3, there is a third edge 
e3 such that x ef(e3)' Hence f*(x) = {e1o e2, e3}' For any region Z of an 
isocovalent imbedding of r, IZ n {e1o e2, ea}1 is even. Since, in addition, each 
of these edges belongs to two regions, there exist regions Z10 Z2, Za such that 
Z, nf*(x) = {ejo e,,} for {i,j, k} = {I, 2, 3}. Hence Za contains the cycle 
{el' e2}' Since p.l(r) ~ 3, Za is not elementary. But since r is biconnected, each 
region must be elementary by E9. D 

F27 Proposition. There is only one Platonic graph of each of the Types III, 
IV, and V. Furthermore, each is an isocovalent graph. 
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PROOF. Assume r is of Type III. By F26, it is a graph. Since it has 4 vertices 
each of valence 3, it must be K 4, which is isocovalent since it has a unique 
planar imbedding. 

Assume r is of Type V. It is also a graph by F26. Furthermore, ~(r) is 
even, and hence by A13, r is bipartite, say with respect to {V~, V2}. Since 
r is isovalent, IVII = 1V21. Thus r is a subgraph of K4,4. Since VI(r) = 12 = 
vI(K4 •4) - 4, r must be obtained by deleting 4 edges from K4•4 which 
reduces the valence of each vertex by 1. This can be done in essentially one 
way, yielding the cube (F21). 

Assume r is of Type IV. Let 0 be Platonic and let 0 .1 r. We have just 
shown that 0 is the cube. Since the cube has no cocycle consisting of two 
edges, r has no cycle of length 2 and is therefore a graph. Hence r is a sub­
graph ofKe. Since VI(r) = vI(Ke) - 3, r must be obtained by deleting three 
edges from Ke in such a way as to reduce the valence of each vertex by 1. 
This can be done in only one way (up to system-isomorphism) yielding the 
octahedron (F20). One may easily verify that the cube and the octahedron 
have each only one planar imbedding and hence are isocovalent. 0 

mG Kuratowski's Theorem 

This section is devoted to proving: 

Gl Theorem (Kuratowski [k.6]). A necessary and sufficient condition for a 
multigraph r to be planar is that neither K5 nor K 3 •3 is a subcontraction ofr. 

Actually Kuratowski's original formulation was slightly different: 

A necessary and sufficient condition for a graph to be planar is that it have 
no subgraph "homeomorphic" to K5 or K3 •3 • 

Our combinatorial (and therefore nontopological) approach to graph 
theory precludes our proving the theorem in its original form. To understand 
better the relationship between Th~orem Gland Kuratowski's original 
statement, consider the graph obtained by replacing some of the edges of K5 
(or K3 •3) by elementary paths of length more than 1. The resulting graph is 
"homeomorphic" to K5 (or K3 •3) but only the appropriate contraction of it is 
K5 (or K3 •3). The closest we can come to Kuratowski's original statement is: 

G2 Corollary. If r is a non planar multigraph with p(x) ~ 3 for every vertex x 
and such that every subgraph (other than r itself) is planar, then r is K5 
or K 3 •3 • 

The proofs of these results will come at the end of this section. 
Let r = (V,J, E) be a connected multigraph. A set W £; V is called a 

separating set of r ifV_I(r(W» > 1. In E17, we proved that a graph is planar 
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if and only if its lobes are planar. In the next proposition we extend this 
result to biconnected and triconnected multigraphs. 

G3 Proposition. Let r = (V,f, E) be a connected multigraph, let W be a 
minimal separating set such that I WI ::s; 3. Let U1 be the vertex set of a 
component of r(W), and let U2 = V + W + U1• Then r is planar if and 
only if the contraction r j obtained by contracting Uj to a single vertex is 
planar for j = 1, 2. 

PROOF. If r is planar, then so are r 1 and r 2 by E15. 
The converse follows from E17 in the case I WI = 1. We will prove the 

converse in the case I WI = 3, leaving the simpler case I WI = 2 to the reader. 
Let W = {Xl> X2, X3}, and let {xo, el> e2, e3} be a set of four distinct 

elements disjoint from all sets in question. For j = 1,2, let Vj = Uj + W + 
{xo}; letF1 be the edge set of r w+ Ul; let F2 = E + F1; let Ej = Fj U {el> e2, e3}; 
and finally let 0 j = (Vj,fj, Ej ) where 

J;(e) = {{xo, XI} if e = el (i = 1,2,3); 
j f(e) otherwise 

(see Figure G4). One easily sees that 0 j is a subcontraction of r. 

G4 

rj and 0 j may differ only in that rj may admit more than one edge whose 
image is {xo, XI}' By assumption r j is planar, and so by E15, 0 j is planar. 

Let Z/, ... , Zm/ be a simple imbedding of 0 j (j = 1, 2). If el were an 
isthmus in either 0 1 or O2 , then Xi would be an articulation vertex of r, 
contrary to the minimality of W. Hence el is contained in two of the cycles 
of the imbedding of 0 j (i = 1,2, 3;j = 1,2). Since p(xo) = 3, any cycle 
containing one of el> e2, e3 contains exactly two of these edges. We may 
therefore assume without loss of generality that {e2' e3} £ Z/, {el> e3} £ Z2 j , 

and {el> e2} £ Z3 j for j = 1,2. Now consider the list 

G5 Z11 + Z12,Zl + Z22,Z31 + Z32,Zl, .. "Zm/,Z42"",Zm22. 

We assert that this list is a planar imbedding of r. 
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Part 1: The cycles in G5 are all in ~(r) and each edge of r which is not an 
isthmus belongs to exactly two of these cycles. 

For i ;;:: 4, j = 1,2, Z/ s;; Fj and hence is a cycle of (0 j )uj+w = ru;+w. 

But any cycle of rUJ+w is a cycle of r. We observe that Z/ + {e2' e3} is the 
edge set of an x2x3-path in r UJ+ w. Thus, Z l l + Z12 is the edge set of a circuit 
in r passing through X2 and X3, and by A9, Z l l + Z12 E ~(r). Similarly 
Z21 + Z 22 and Z31 + Z 33 are cycles of r. 

Observe that E is the disjoint union of F1 and F2 , and that if e E Fj is an 
isthmus of 0 j , then it is an isthmus of r. Thus if e E Fj and is not an isthmus 
of r, it belongs to two of the cycles Z/, ... , Zm/, and hence to two of the 
cycles in G5. 

Part 2: The set of cycles in G5 spans ~(r). 
SinceZ/, ... ,Zm/isa simple imbedding of0" we have by Euler's Formula: 

m; - v1(0 j ) + vo(0 j ) = 2, for j = 1,2. 

Adding these two equations together yields 

m1 + m2 - (V1(r) + 6) + (vo(r) + 5) = 4, 

which in tum yields by A15b, 

m1 + m2 - 3 = V1(r) - vo(r) + 2 = dim(~(r)) + 1. 

Thus there are exactly dim(~(r)) + 1 cycles in G5. It suffices to show that 
there is only one nontrivial relation over IK among these cycles. Assume 

3 2 mJ 

G6 L aj1(Z/ + Z,2) + L L a/Z/ = 0, 
1=1 /=11=4 

wherea/ElKforj= 1,2;i= 1, ... ,mj.Then 

ml m2 L aj1ZI1 + L al 2Z j 2 = 0, 
1=1 1=1 

where al2 = a/ for i = 1,2,3. From this we conclude 

ml m2 

L al1Zj1 = L aj2Zj2 = Z, 
1=1 1=1 

where Z is a cycle in E1 ('\ E2 = {eh e2, e3}. It follows that Z = 0. Since 
Z/, ... , Zm/ is a simple imbedding of 0 j , it follows that a/ = a/ = ... = 
am/ forj = 1,2. But all = a12 , hence all of the coefficients in G6 are equal. D 

A subcontraction 0 of r is proper if 0 is not isomorphic to r. 

G7 Exercise. Let r be a nonplanar multigraph with the property that every 
proper subcontraction is planar. Prove that then: 

(a) r is a triconnected graph; 
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(b) If W is any separating 3-set, then W is the set of vertices incident with 
a vertex of valence 3. 

G8 Lemma. Let r = (V, 8) be a non planar graph such that every proper sub­
contraction is planar. If for some edge the subgraph obtained by deleting the 
two vertices incident with that edge is an elementary circuit, then r is K5 
or Ka,a. 

PROOF. Let V = {Yl> Y2, Xl>"" Xk}, and suppose {Yl> Y2}, {Xb XI+l} E 8, the 
indices being read modulo k, and that there are no other edges of the form 
{Xb Xi}' 

Case 1: Three or more of the vertices Xl> ... , Xk have valence 4 (i.e., are 
incident with both Yl and Y2)' Say Xl> Xp, and Xq all have valence 4 (1 < P < q :5; k). 
Then the contraction defined by the partition 

{{Xl>"" Xp-l}, {xp ,"" Xq-l}, {xq, ..• , Xk}, {Yl}, {Y2}} 

of V contains K5 as a subgraph. We conclude r is K5. 
Case 2: At most two of the vertices in {Xl> ••. , Xk} have valence 4. Since 

I VI > 4 by E19b, and since each vertex of r has valence at least 3 by G7a, 
we may assume Xl is incident with Yl and not with Y2 and that Xk is incident 
with Y2' Now let p be the least index such that xp is incident with Y2, and let 
q be the first index in cyclic order after p such that Xq is incident with Yl' If 
q = k or 1, we assert that r is planar, contrary to assumption. We have 
illustrated this fact in Figure G9, leaving the reader to list the cycles of this 
imbedding. We assume then that Xl> Xp, Xq, and Xk are distinct. Then the con­
traction defined by the partition 

{{Xl>"" Xp-l}, {xp,"" Xq-l}, {xq, •.• , Xk-l}, {Xk}, {Yl}, {Y2}} 

has a subgraph isomorphic to Ka,a' We conclude r is Ka,a. 

G9 X k-l 

o 

G10 Exercise. Prove that if r is a triconnected graph such that for each edge 
the two vertices incident with that edge are also incident with a common vertex 
of valence 3, then r is K,. 
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Gil Proposition. If r = (V, tS') is a non planar graph such that every proper 
subcontraction is planar, then r is Ks or Ks,s. 

PROOF. By Exercise G7a, r is triconnected. If {x, y} = E E tS' and if rV+E 
(the graph obtained by deleting the vertices x and y) is not biconnected, then 
by G7b, x and y are incident with a common vertex of valence 3. It follows 
from ExerCise GIO that there exists at least one edge Eo = {Xl> X2} such that 
rV +Eo is biconnected. . 

Let {Eo, El, Ei, ••• , Em/} be the edges incident with Xi U = 1,2), and 
let tS" be the set of edges incident with neither Xl nor X2. Let Xo be an element 
distinct from all other objects under consideration, let F/ = E/ + {Xo; Xi} 
for j = 1,2; i = 1, ... , mit and let fF = {F/:j = 1,2; i = 1, ... , mil. 
Finally let 0 = (V + {xo, Xl> X2}, tS" u fF}. Thus 0 is isomorphic with a slib­
graph of the contraction of r obtained by contracting {Xl> X2} to a single 
vertex. By assumption 0 is planar. 

Let Zl> ... , Zm be a planar imbedding of 0. Since r is biconnected, 0 is 
biconnected, and by E9 and B3, this imbedding is both simple and elemen­
tary. Thus each region Z, contains exactly two or none of the edges in !F. 
Assume that Zl> ... , Z/c are the cycles in the list avoiding !F, and let Z = 
Zk+l + ... + Zm. We assert that Zh ... , Z/c, Z is a planar imbedding of 
0(xo) = (V + {X1X2}, tS"). 

Since each edge of fF is contained in two of the cyclesZ/c +1, ••• ,Zm and since 
each of these cycles contains two of the edges in!F, IfFl = m - k. Hence 

dim(.~(0(xo») = vl(0(xo» - vo(0(xo» + 1 
= (vl(0) - IfF!) - (vo(0) - 1) + 1 
= dim(.!?l'(0» + 1 - IfFl = k. 

Furthermore, one easily sees that Zh ... , Z/c, Z satisfies only one nontrivial 
relation over II<. (Any relation among Zl> ... , Z/c, Z yields a relation among 
Zl> ... , Zm.) We conclude that Zl> ... , ZIct Z spans .!?l'(0(xo» and that every 
edge of 0(xo) belongs to a positive even number of the cycles in this list. 
Finally, no edge of 0(xo) can belong to more than two of the cycles Zh 
••• ,Z/c, Z. Thus Zl> ... , Z/c, Z is a planar imbedding of 0(xo). Since by 
assumption 0(xo) = rV+Eo is biconnected, this imbedding is elementary, and 
in particular Z is an elementary cycle. 

Let tS'It = tS' + tS" (Le., the set of edges of r incident with Xl or X2) and 
consider the subgraph rZ+"". If r = rz+"'", then r satisfies the hypothesis 
of Lemma G8 and we conclude r is Ks or Ks,s. We suppose then that r z + "'­
is a proper subgraph of r and show that this supposition leads to a contra­
diction. 

By hypothesis, r z+"', is planar. There exists a planar imbedding 
Zh ... , Zn + 1 of r Z+ "'". Since r Z+ "', is clearly biconnected, this imbedding is 
both simple and elementary. Thus 
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By direct computation, exactly P(Xl) + P(X2) - 2 cycles contain edges in 8". 
Thus one cycle in the list, say Z,,+b is contained entirely in Z, i.e., Z,,+l = Z. 

We wish to show that Zb ... , Z", Zl', ... , Z,,' is a planar imbedding of r. 
These are clearly cycles of r. Every edge in Z + 8' belongs to two of the 
cycles Zh ... , Z". Every edge in 8" belongs to two of the cycles Zl', ... , Z,,', 
and every edge in Z belongs to one of the cycles from each list. Finally, 
Zh ... , Z", Zl', ... , Z,,' spans .2'(r) since these cycles clearly satisfy only one 
relation and since 

dim(o!!"(r» = Vl(r) - vo(r) + I 
= vl(0(xo) + 18"1) - (vo(0(xo» + 2) + I 
= (dim ;z'(0(xo» + 18"1 - 2 = k + n - 1. 0 

The necessity of Kuratowski's Theorem as we have stated it follows from 
Proposition F9. The sufficiency follows from Proposition GIL We leave the 
proof of Corollary G2 as an exercise for the reader. 
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CHAPfER IV 

Networks 

IVA Algebraic Preliminaries 
Let X be a set. In §IIA we discussed the algebraic structure of !Kx, and we 
demonstrated an isomorphism from !Kx onto &,(X). In this section, we 
develop an analogous theory for ax. Many of the following results admit 
immediate generalizations to u::x where IF is an arbitrary field or at least an 
arbitrary ordered field. 

The set ax is a commutative algebra under the usual operations. For 
hI' h2 E lOx, we have addition of functions: 

(hI + h2)(X) = hl(x) + h2(X) for all x EX; 

multiplication of functions: 

(hlh2)(X) = hl (x)h2(x) for all x E X; 

and scalar multiplication: 

(T}hl)(x) = T}hl(x) for alIT} E a, x E X. 

Characteristic functions Cs for S ~ X as defined in IBI acquire a different 
meaning since the symbols 0 and 1 are now understood to be in 10 instead 
of in II<. When S = {x}, we shall supress the braces and write Cx for C{x}. The 
reader should verify that the set {cx: x E X} is a basis for lOx (as it was for 
!KX), that Cm is the additive identity of the vector space lOx, and that Cx is 
the mUltiplicative identity of the algebra lOx. No confusion should arise from 
our use of the symbols 0 and 1 also to designate the identities C(lJ and Cx, 

respectively. 
The algebra lOx yields a rather natural inner product: 

At hI ·h2 =: 2: hl(x)h2(x), for all hl' h2 E lOx. 
xeX 
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Observe that when Q is replaced by IK, then Al reduces to the inner product 
on .9'(X) defined in §/IA. The support function u: QX --+ .9'(X) is given by 

u(h) = {x E X: hex) E Q + {O}}, for all h E QX, 

and the set u(h) is called the support of h. Thus when 'Q is replaced by IK, 
u is the algebra isomorphism from (IKX, +, .) onto (.9'(X) , +, n) discussed 
at the beginning of §/IA. However, in the present case, u need not be an 
injection. Even still there is a relationship between QX and .9'(X), and this is 
the subject matter of the present section. 

Let L be a subspace of QX and let 

.AI(L) = {u(h): h EL}. 

As a subcollection of .9'(X), .AI(L) inherits the partial order s. We let .A(L) 
denote the collection of elementary sets in .AI(L). If hE Land u(h) E .A(L), 
we say that h is a minimal function of L. 

A2 Proposition. Let L be a subspace ofQx. Let hI> h2 E L, where hl is a minimal 
function of Land U(h2) S u(h1). Then h2 = 7Jhl for some 7J E Q. 

PROOF. By hypothesis, u(h1) -# 0, and so we may fix x E u(h1). Let 

h2(X) 
h3 = h2 - h1(x) h1. 

Clearly h3 ELand U(h3) S u(h1) U U(h2) = u(h1). In fact, U(h3) c u(h1) since 
x E u(h1) but h3(X) = O. But since u(h1) E .A(L), U(h3) = 0. Hence ha = 0 
and 

Let Y s X and consider the injectionj: QY --+ QX given by 

C(h»(x) = {heX) ~f x E Y; 
J 0 IfxEX+ Y, 

o 

for h E QY. We say thatj(h) is the "extension by 0" of h to a function on X. 
Clearly j is a nonsingular linear transformation. Hence QY is isomorphic to, 
j[QY], which is the subspace of QX consisting of all functions hE QX with 
u(h) s Y. Identifying QY with j[QY], we henceforth consider QY as a sub­
algebra of QX. It is in fact an ideal of QX. 

The above identification is analogous to the fact that f!J( Y) is a subspace 
of f!J(X). While such "coordinate subspaces" QY could provide a theory of 
connectedness for subspaces of QX analogous to the theory in §/IC, we shall 
have different aims and emphases in the present chapter. Nonetheless, many 
of our techniques will be reminiscent of earlier ones, and a perusal of §/IA 
and §/IC is recommended, with an eye toward comparing present and past 
results as we proceed. 
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For each subset Y £; X, we define the projection '/Ty: QX ~ QY where 
'/Ty(h) is the product hcy for each hE QX. Thus '/Ty(h) is the restriction h1y 
extended by 0 to all of X. The image of '/Ty has been identified with QY. Its 
kernel is QX+Y. Thus '/Ty[L] is a subspace of QY whenever L is a subspace 
of QX. Since L n QX+Y is the kernel of the restriction '/TYIL, we have 

A3 dim(L n QX+Y) + dim('/Ty[L]) = dim(L). 

A4 Exercise. Prove that for any subspace L £; QX and any Y £; X, 

(L n Qy).Lr = '/Ty[L.L] 

and 
('/Ty[L]).Lr = U n QY, 

where ..ir indicates the orthogonal complement in QY. 

A5 Exercise. For Y £; X and L a subspace of QX, prove that the minimal 
functions of L n QY are precisely the minimal functions of L with support 
contained in Y. 

The next proposition, which is parallel to Proposition lIel, is the central 
result of this section. 

A6 Proposition. Let L be a subspace of QX, and let h E L. Then h = 2:;": 1 hi 
where hi ELfor i = 1, ... , m, and 

(a) u(h,) E Jt(L); 
(b) u{h,) £; u(h); 
(c) ht(x)h(x) ~ 0 for all x E X. 

PROOF. We proceed by induction on lu(h)l. If u(h) = 0, then h = 0, and the 
proposition is trivially satisfied with m = O. 

Now assume that 1 u(h) 1 = n > 0 and, as the induction hypothesis, that 
the conclusion holds for all gEL with lu(g)1 < n. 

If u(h) E Jt(L), we are done; so assume u(h) f/: Jt(L). We shall demonstrate 
the existence of a function gEL having simultaneously the following three 
properties: 

(i) u(g) £; u(h); 
(ii) u(g) E Jt(L); 

(iii) g(x)h(x) ~ 0 for all x E X. 

By lIB 1 1, we may select a function gN satisfying (i) and (ii). Assuming (iii) 
to fail for g", let 

Y = {x E X: gN(x)h(x) < O}. 

Hence Y # 0, and one may let 

{ h(X) } 
p. = max g"(x): x E Y . 
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Then p. < O. Let g' = h - p.g". Since u(h) 1: .A(L), g" is not a scalar mUltiple 
of h, and so g' oF o. Clearly g' satisfies (i). 

We next show that g' satisfies (iii). If x E X, then g'(x)h(x) = [h(X)]2 -
p.g"(x)h(x), which is clearly nonnegative when x E X + Y. If x E Y, then 
h(x)/g"(x) ~ p. < 0, and so 

as required. 

g'(x)h(x) = [h(X)]2 _ p.g"(x) [h(X)]2 
hex) 

= [h(X)]2( 1 - p.%;;~») ~ 0 

For some point y E Y, p. = h(y)/g"(y), and this point y lies in u(h) + u(g'). 
Hence lu(g')1 < lu(h)l, and we may apply the induction hypothesis to g' to 
obtain 

p 

g' = 2: g;, 
1=1 

where gj satisfies (i) and (ii) and gj(x)g'(x) ~ 0 for each i = 1, ... , p. Thus 
for each x EX, gl(x) and g'(x) never have opposite sign. We have already 
shown that g'(x) and hex) never have opposite sign. It follows that gh ... , gp 
also satisfy (iii). For definiteness, let g = gl, and we have the desired function. 

Let v = min{h(x)/g(x): x E u(g)}, and let 

hl = vg and h' = h - hl. 

Since g satisfies (iii), v ~ 0; but in fact since g also satisfies (i), v > O. Hence 

hl(x)h(x) = vg(x)h(x) ~ 0, for all x EX. 

If x E u(g), then clearly v ~ h(x)/g(x), whence 

A7 vg(x)h(x) ~ [h(X)]2. 

When x EX + u(g), the left-hand member of A7 is 0, and so A7 holds for 
all x E X. Hence for all x E X, 

AS 0 ~ [h(X)]2 - vg(x)h(x) = h(x)(h(x) - vg(x» = h(x)h'(x). 

For some point Xo E u(g), h(xo) = vg(xo), and hence h'(xo) = O. Thus 
u(h') c u(h). Applying the induction hypothesis to h', we obtain 

m 

h' = 2: hi 
1=2 

where h, E .A(L), u(h,) S; U(h') C u(h), and 

A9 h,(x)h'(x) ~ 0, for all x E X; i = 2, ... , m. 

Clearly 
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as required. The condition required in (c) now follows from the definition 
of hI> A8, and A9. 0 

The decomposition of h guaranteed by Proposition A6 is called an 
.A-decomposition of h. 

The following is immediate. 

AIO Corollary. If L is a subspace of QX and if {hI> ... , hm} is an .A-decom­
position of h E L, then 

m 

Ih(x) I = L Ih,(x)l, for all x EX. 
1=1 

All Corollary. Let L be a subspace of QX, let Y s;; X, and let g be a minimal 
function of 71'y[ L]. Then g = 71'y(h) for some minimal function h of L. 

PROOF. Since g E 71'y[L], g = h' Cy for some function h' E L. Applying the 
proposition, let {hl> ... ' hm} be an .A-decomposition of h'. Clearly, 

m 

g = h'cy = L h,cy, 
1=1 

and a(hjcy) s;; a(g). By Proposition A2, there exists 7]1 E 10 such that h,cy = 
7];g (i = 1, ... , m). Since g "# 0,7], "# 0 for some index i; say 7]1 "# O. Let 

1 
h = - hI. 

7]1 

Then h is a minimal function of Land g = hcy = 71'y(h). o 
If L is a subspace of lOX and if h is a minimal function of L, then there 

exists a smallest positive number 8 E 10 such that the function g = 8h is 
integer-valued. Such a function g is called an elementary function of L. We 
list some immediate consequences of this definition: 

All A function gEL is an elementary function of L if and only if g is an 
integer-valued minimal function of L with the property that 1 is the greatest 
common divisor of the set {g(x): x E a(g )}. 

Al3 For each set S E .A(L), there are precisely two elementary functions of 
L whose support is S. If g is one such function, then - g is the other. 

Al4 There are finitely many elementary functions of L. 

With the notion of "elementary function," Proposition A6 yields: 

Al5 Corollary. Let L be a subspace of lOX and let h E L. Then 
m 

h = L 7];g1 
1=1 
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where '1, is a positive rational number, g, is an elementary function of L, and 
g,(x)h(x) ~ 0 for all x E X and all i = I, ... , m. 

PROOF. Apply the proposition to h. By A2 and A13, each minimal function 
h, may be replaced by '1.g, where '1, > 0 and g, is an elementary function 
(i = I, ... , m). 

A subspaceL ofQx is unimodularifg[X) 5; {O, I,-I} for every elementary 
function g of L. 

Al6 Example. Let L = {f E QX: L.xex f(x) = O}. One easily verifies that L is 
a subspace of QX and that JI(L) = .9ta(X). An elementary function f with 
a(f) = {x, y} has the form 

{
+I ifu=x 

f(u) = + I If u = y 

o ifUE X + {x, y}. 

Thus L is unimodular. Observe that V- is the subspace of the constant 
functions in QX. Note that {a(f): f E L} = tS'(X), and {a(f): f E V} = {0, X} 
(cf. IIA7). 

Al7 Exercise. Let L be a subspace of QX and let h EL n lX. Prove that 
h = L.r=l g, where g, is an elementary function of L, a(g,) 5; a(h), and 
g,(x)h(x) ~ Of or all x E X and all i = I, ... , m. [Hint: Prove by induction on 
L.xex I h(x) I using A6.] 

Al8 Exercise. Prove that if L is a unimodular subspace of QX and if Y 5; X, 
then both L n QY and 1Ty[L] are unimodular subs paces. 

Al9 Proposition. Let L be a subspace of QX. If L is unimodular, then £i is 
unimodular. 

PROOF. We shall assume that I XI ~ 2 since otherwise the result is trivial. 
Assuming L to be unimodular, let us first resolve the special case where V­

has the properties: 

A20 dim(£i) = I; Fnd(L.L) = X. 

Let Xo E X. It is evident that £i has a basis {h} where a(h) = X and h(xo) = I, 
and it suffices to prove that h[X] 5; {I, -I}. 

If gEL, then g·h = 0, and if g =F 0, one must have la(g)1 =F 1. Arbitrarily 
select Xl E X + {xo}, and define ' 

if x = Xo; 

ifx = Xl; 

if x E X + {xo, Xl}' 
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Since gl . h = h(XI) - h(xl ) = 0, gl E L. Furthermore, since la(gl)1 = 2, gl is 
a minimal function of L and hence by A2, gl is a multiple of some elementary 
function with the same support. Since L is unimodular, the fact that gl(XI) = 
-1 implies that h(Xl) = gl(XO) = ± 1. Since Xl was arbitrarily chosen and 
h(xo) = I, we conclude that h[X] S; {I, -I}. Hence U is unimodular. 

Now let the conditions A20 on U be relaxed, and let h be any minimal 
function of U. (We assume U =p {O}, since trivial subspaces are trivially 
unimodular.) Let S = a(h) and let M = 7Ts[L]. By Exercise A4, Mis = 

U 11 lOS, where -is denotes orthogonal complements in lOS. Since S E .A'(Li), 
it follows from this and Proposition A2 that Mis = {7Jh: 7J E iQ}. By Exercise 
A18, M is unimodular and hence we may invoke the special case above (with 
M in place of Land S in place of X) to conclude that Mis is unimodular. 
Hence h[S] S; {8, - 8} for some 8 E 10, and so h[X] S; {a, 8, - 8}. U is 
therefore unimodular. 0 

IVB The Flow Space 

Let V be a set, and fix the letter W = (V x V) + {(x, x): x E V} throughout 
this chapter. Recall that a basis for the vector space iQv is {cx: x E V}, and so 
a basis for lOW is {c(X,y): (x, y) E W}. 

We define 8(c(x,y» = Cy - Cx for all (x, y) E Wand extend by linearity, 
i.e., 

if h = 

We thus obtain a linear transformation 8: lOW -+ iQv, called the boundary 
operator on W. 

Bl Exercise. For h E 10 wand Xo E V, verify that 

(8(h»(xo) = L (h(x, xo) - h(xo, x». 
xev+{xo} 

The kernel of 8 is called the flow space, and is denoted by F(V) or simply 
by F. By B1, 

B2 L hex, xo) = L h(xo, x), for all h E F and all Xo E V. 
xeV + {Xo} xeV + {Xo} 

An intuitive description of a flow space F(V) may be given as follows. 
Consider the directed graph (V, W), and let hE lOW. For each (x, y) E W, 
imagine hex, y) to measure a "flow" of fluid or current or a commodity 
through the edge (x, y) in the direction from x to y. If h E F, Equation B2 
can be interpreted to mean that the total "flow" into any vertex Xo equals 
the total "flow" out of Xo. This is a sort of principle of conservation of 
matter or energy or money. It is this situation which has historically motivated 
the abstract notion of a flow space, an element of which is called a flow. A 
minimal (elementary) flow is a minimal (elementary) function in F. 
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For the remainder of this chapter, r will denote the multi graph (V, f, W), 
where for each (x, y) E W, we definef(x, y) = {x, y}. 

B3 Exercise. The three diagrams B4 below all depict the directed graph (V, W) 
or equally well the multigraph r = (V, f, W), where the arrow on an "edge" 
from, say, u to v is to designate the edge (u, v) E Wrather than the edge (v, u). 
The number beside an "edge" in the ith diagram indicates the value of hi 
on that "edge" (i = 1,2,3). Compute the value of o(ht) for i = 1,2,3. When 
is hi E F(V)? 

B4 

B5 Proposition. (a) dim(F) = (I VI - 1)2; (b) dim(£-l-) = I VI - I. 

PROOF. (a) From the fundamental result 

dim(QW) = dim(ker a) + dim(o[QW)), 

it follows that 

dim(F) = I WI - dim(o[QW)) = IVI2 - IVI - dim(o[QW)). 

LetL = {g E QV: 2:XEV g(x) = O}. Clearly L is the kernel of the transformation 
h 1-+ LXEV h(x) from QV onto Q. Hence 

B6 dim(L) = dim(QV) - dim(Q) = I VI - 1, 

and to prove (a) it will suffice to prove that L = o[QW]. 
From BI we have that for each h E QW, 

L (oh)(x) = L L (h(y, x) - h(x, y» = o. 
XEV XEV YEV + {x} 

Hence o[QW] £ L. On the other hand, for any fixed Xo E V, 

{o(c(Xo.Y»: Y E V + {xo}} 

is an independent (I VI - I)-set contained in L. By B6, it is a basis for L 
which is contained in o[QW]. Hence o[QW] = L. 

(b) dim(F.l) = dim(QW) - dim(F) 

= (IV1 2 - IVI) - (IVI - 1)2 = IVI - I. 0 
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Let xo, el> Xl> e2, ... , em, Xm = Xo be a circuit of r. In the present context 
we need to distinguish between different cyclic orderings corresponding to 
the same submultigraph. Therefore, we shall denote this cyclically-ordered 
circuit by the symbol D instead of by the usual capital Greek letter used for 
submultigraphs. We define the function ho E QW by 

{
I if e = (XI-l> XI) for some i = 1, ... , m; 

ho(e) = -1 if e = (XI> XI-I) for some i = 1, ... , m; 

° if e E W + {el> ... , em}. 

B7 Lemma. If D is a circuit in r, then ho E F(V). 

PROOF. As above, represent D by the list: xo, el> Xl> e2, ... , em, Xm = Xo and 
let {I, J} be a 2-partition of {I, ... , m} where 

By definition, ho = Lie! ce, - LleJ ce,. Hence, 

since Xo = Xm. 

m 

= L (cx , - CX'_l) = 0, 
1=1 

o 

B8 Proposition. F(V) is a unimodular subspace of QW. Moreover, a function 
hE QW is an elementary flow if and only if h = ho for some elementary 
circuit D of r. 

PROOF. Let h be a minimal flow and let Xo be a vertex of the subgraph r u(h)' 

By B2, Lxev + {Xo} (h(x, xo) - h(xo, x» = 0. Since some term h(x, xo) or h(xo, x) 
is nonzero, there must be at least two such nonzero terms. Hence Xo has 
valence p(xo) ~ 2. By Exercise IIIA6a, r u(h) contains an elementary circuit, 
which we can represent by the list D. Hence a(ho) s; a(h). By B7 and A2, 
ho = TJh for some "1 E Q. Since ho =F 0, "1 =F 0, and we observe that h[W] S; 

{O, 1/"1, -I/TJ}. This proves that F is unimodular. 
If, moreover, h is an elementary flow, then necessarily "1 = ± I, and so 

h = ±ho. If h = -ho, then h = ho', where D' is the list D in the reverse 
order. 

Conversely, let D be an elementary circuit of r. By Lemma B7, ho is a 
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flow. In order to show that ho is an elementary flow, it suffices to prove that 
ho is a minimal flow, since by definition, ho[W] ~ {O, 1, -I}. We select 
a minimal flow h such that a(h) ~ a(ho). By the first part of this same proof, 
there exists an elementary circuit 0" such that a(hO N ) ~ a(h), and so a(hO N) ~ 
a(ho). By IIIA9, both a(hON ) and a(ho) are elementary cycles of r. Hence 

a(ho) = a(h) = a(hO N) E vII(F). o 

As an immediate consequence of this proposition and IIIA9 we have 

B9 Corollary. vII(F) is the set of elementary cycles of r. 

The close relationship between flows and cycles of r delineated by B7, 
B8, and B9 suggests that p1- may be related to the cocycle space of r. This is 
indeed the case. 

For each vertex x E V, define gx E QW by 

Clearly a(gx) = f*(x). 

{
I ifu=x; 

gxCu, v) = -1 if v = x; 

° otherwise. 

BIO Exercise. Show that gx E FL for all x E V. [Hint: Show that gx·ho = ° 
for any elementary circuit 0 of r; then use Proposition A6.] 

Bll Lemma. Let g = LXEU TJxgx where U ~ V and "Ix E Q + {O}. Then 
LXEU f*(x) ~ a(g). Furthermore, equality holds if and only if "Ix = "111 for 
all x, y E U. 

PROOF. Let e = (x, y) and let Y = {x, y} n U. Then e E LUEU f*(u) if and 
only if I YI = 1. On the other hand, 

(

0 

"Ix 
gee) = 

-"111 

"Ix - "111 

if Y= 0; 

if Y = {x}; 

if Y = {y}; 

if Y = {x, y}. 

Hence e E a(g) if and only if either I YI = 1 or I YI = 2 with "Ix i= "I'll' 0 

B12 Proposition. 
(a) FL is spanned by {gx: x E V}. 
(b) LXEV gx = ° is the only relation among the functions gx for x E V. 
(c) LXEU gx is an elementary function of FL if and only if Lxeu f*(x) is 

an elementary cocycle of r. 
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(d) Jt(F.l) is the set of elementary co cycles of r. 
(e) F.l is unimodular. 

PROOF. (a) and (b). Let G be the subspace of QW spanned by {gx: x E V}. 
Suppose that g = LXEV 7]xgx = O. By the lemma, 0 = a(g) 2 LXEU f*(x), 
where U = {x: 7]x =F O}. Furthermore, a(g) = LXEU f*(x) and g = LXEU 7]gx 
for some fixed 7] E Q + {O}. Since (V,/, W) is connected, we have from 
IIIAII and IIIAI6 that LXEU f*(x) = 0 if and only if U = 0 or U = V. 
Hence the only (nontrivial) relation among the functions in the set {gx: x E V} 
is 7] LXEV gx = 0, or LXEU gx = O. We conclude that dim(G) = I VI - 1. But 
by Exercise BlO, G ~ F.l and by Proposition B5b, dim(F.l) = I VI - 1. We 
conclude that G = Fi, and that (a) and (b) hold. 

(c) and (d). It follows from the lemma and part (a) that if g E F.l + {O}, 
then a(g) contains a nonempty cocycle of r and that if C E fZ .l(r), then C = 
a(g) for some g E F.l. Hence Jt(P) = {C E fZ.l(r): C is elementary}. On the 
other hand, if C is an elementary cocycle of r, then C = LXEU f*(x) for some 
Us; V. Since g = LXEU gx takes on only the values 0, + 1, -1, and since 
a(g) = C, g is elementary. Furthermore, - g = LXEU + V gx. Hence by A13, 
these are all of the elementary functions of F.l. 

(e) This follows from B8 and AI9. 0 

B13 Exercise. Prove that in Proposition BI2, conclusion (e) follows directly 
from (a)-(d), i.e., without the use of AI9. 

IVC Max-Flow-Min-Cut 

A network is a pair (V, k) where Vis a set, and k E QW with k(e) ~ 0 for all 
e E W. The function k is called the capacity, and the value k(e) is called the 
capacity of e. A flow h E F(V) is said to be feasible if 

o ~ h(e) ~ k(e) for all e E W. 

If (V, k) is a network and K = a(k), then (V, K) is a directed graph. It is a 
" sub-directed graph" of the directed graph (V, W) discussed at the beginning 
of the previous section. In line with the interpretation developed there, the 
values of the capacity function represent the actual" capacities" of the various 
links in the highway system or pipeline, etc. When two" vertices" are joined 
by no road or pipe, we assign a capacity of 0 to the corresponding edge. The 
directed graph (V, K) is then an abstraction of the highway system or pipeline, 
etc. If h is a feasible flow, the numbers assigned to each edge of (V, K) are 
nonnegative but do not exceed the capacity of that edge. The sum of these 
numbers over the edges entering a vertex equals the sum of the numbers 
assigned to the edges leaving that vertex. Hence a feasible flow represents a 
possible flow of traffic or fluid or money, etc. through the system. 
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A cut of (V, k) is a cocycle of the multigraph r = (V,I, W) and a cut 
through e will mean, of course, a cut containing the edge e. 

Let C be any cut through eo = (Yo, xo). Then for some U £; V, C = 
Lxeu f*(x). Replacing U by V + U if necessary, we may assume Xo E U £; 

V + {Yo}. For all (x, y) E W, define: 

{
I if {x, y} (') U = {x}; 

Cl gu(x, y) = -1 if {x, y} (') U = {y}; 

o otherwise. 

Clearly gu = Lxeu gx. Hence gu E pl- by B12a, and gu(eo) = -1. Further­
more, since r is connected, U is uniquely determined by C and eo. In terms 
of this function gu, we define the capacity of the cut C through eo to be 

k(C; eo) = 2: k(e). 
gu(e)= 1 

C2 Proposition. Let eo E W. Then h(eo) ~ k(C; eo) for every feasible flow h 
and every cut C through eo. 

PROOF. Let hE F be feasible, let C be a cut, and let g be the function gu 
determined by C and eo as above. Since Since g E Flo, we have 

0= h·g = L h(e)g(e) = L h(e) - L h(e). 
eeW g(e)=l g(e)=-l 

Hence Lg(e) = 1 h(e) = L9(e)=-l h(e). Since h is feasible, 

h(eo) ~ L h(e) = L h(e) ~ L k(e) = k(C; eo), 
g(e)=-l g(e) = 1 g(e)=l 

as required. 0 

If eo E W, a feasible flow h is said to be a maximum flow through eo if 
h(eo) ~ h'(eo) for any feasible flow h'. Clearly if h is a feasible flow and 
if h(eo) = k(eo), then h is a maximum flow through eo. A cut through eo is said 
to be a minimum cut through eo if k(C; eo) ~ k(C'; eo) for any cut C' through 
eo. The following result is immediate from these definitions. 

C3 Corollary. Let eo E W, let h be afeasible flow, and let C be a cut through eo. 
Ifh(eo) = k(C; eo), then h is a maximumflow through eo and C is a minimum 
cut through eo. 

Example. Let V = {I, 2, ... , 9}. Define k E lOw to be 0 except as follows: 
k(l,2) = 3, k(l,3) = 1, k(3, 1) = 2, k(4, 1) = 1, k(5, 1) = 1, k(I,7) = 5, 
k(l,9) = 5, k(9, 8) = 6, k(8, 2) = 6, k(2,3) = 7, k(3,4) = 4, k(4,5) = 3, 
k(5,6) = 1, k(6, 7) = 1 and k(7, 8) = 1. We have drawn the directed graph 
(V, K) in Figure C4, listing the capacity of each edge beside it. 
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Define h(i, j) to be 1 either if j = i + land i = 2, 3, ... , 7 or if (i, j) = (8, 2), 
and to be 0 otherwise. This may be visualized as a flow of one unit" around 
the outer rim" of the figure. It is clearly a feasible flow. If eo = (8,2), the 
cut C determined by U = {l, 2, 3, 4} is a cut through eo. The edges which 
appear in the figure and belong to Care (8, 2), (1, 9), (1, 7), (5, 1), and (4, 5). 
Furthermore, k(C; eo) = 13. 

C5 Problem. Find an integer-valued feasible flow for the network described 
in C4 which has support as large as is possible. Let 

C = {(8, 2), (1, 2), (1, 3), (3, 1), (3, 4)}. 

What is its capacity as a cut through (8,2)1 through (3, 1)1 Verify 
Proposition C2 for this flow and these cuts. Find a maximum flow through 
(8, 2) and a minimum cut through (8, 2). 

A function hE Ow is said to be integral if h E 7L.w. We may thus speak of 
an integral capacity and an integral flow. A network (V, k) is an integral 
network if k is an integral capacity. 

The next theorem is the main result of the present chapter. It is also the 
point of departure for both Chapters V and VI. 

C6 The Max-Flow-Min-Cut Theorem. Let (V, k) be a network and let 
eo = (Yo, xo) E W. Then there exists a maximum flow h through eo such that 

h(eo) = min({k(eo)} U {k(C; eo): C is a cut through eo}). 

Furthermore, if (V, k) is an integral network, h may be taken to be an 
integral flow. 

PROOF. Let n be the least positive integer such that nk is integral. Let 

F' = {h E F: h is feasible; nh is integral}. 
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Then for all h' E F' and all e E W, 

h'(e) E {O, lin, 21n, ... , k(e)}. 

Moreover, 

C7 (a) h'(e) > 0 => h'(e) ~ lin; (b) h'(e) < k(e) => h'(e) ::; k(e) - lIn. 

Clearly there exists a flow hE F' such that h(eo) ~ h'(eo) for all h' E F'. 
In particular, if k is integral, then n = 1 and h is integral. If h(eo) = k(eo), 
then h is a maximum flow through eo and the theorem is proved. Hence 
suppose 

C8 

An xox-path Xo, eh Xl, ... , em, X is said to be unsaturated with respect to 
h if 

el i= eo for i = I, ... , m; 

e, = (XI-l> XI) => h(el) < k(el); 

el = (Xt. XI-I) => h(el) > O. 

Let U = {x E V: there exists an unsaturated xox-path}. Trivially Xo E U. Also 
if X E U, then so is every vertex on an unsaturated xox-path. 

Case 1: Yo E U. Let xo, el> Xl> ... , em, Yo be an unsaturated xoyo-path, and 
let 0 be the circuit Xo, el> Xl> ... , em, Yo, eo, Xo. From the definition of "un-
saturated", C8, and C7, it follows thath + {lln)ho E F'. This is a contradiction 
since (h + (1In)ho)(eo) = h(eo) + lin> h(eo). 

Case 2: Yo ¢ U. The cocycle C = 2xeu f*(x) is then a cut through eo. 
Let gu be defined as in C1. Since gu E pl- and h E F, 

C9 o = 2: h(e)gu(e) = 2: h(e) - 2: h(e). 
eeW gu(e) = 1 gu(e) = -1 

Let e = (X, y) and suppose gu(x, y) = 1. Thus X E U and y ¢ U. Hence 
there exists an unsaturated xox-path xo, er. ... , em, x. If h(e) < k(e), the 
xoy-path xo, el> ... , em, x, e, y would be unsaturated, which is impossible 
since y ¢ U. We conclude that if gu(e) = 1, then h(e) = k(e). Similarly one 
can show that if gu(e) = -I and e i= eo, then h(e) = O. Substituting these 
values into C9 we get 

o = ( L k(e)) - h(eo) = k(C; eo) - h(eo). 
g(e) = 1 

Thus h(eo) = k(C; eo). By C3, h is a maximum flow through eo and C is a 
minimum cut through eo. 0 

CIO Problem. Let (V, k) be defined by Figure C4. Find a maximum flow 
Through (1,9) and the corresponding minimum cut. (Hint: Start with the 
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flow you produced in C5 and try to find an unsaturated path from 9 to 1. 
If you can find such a path, increase the flow by one unit as in Case 1 above. 
If there is no such path, construct the cut as in Case 2 above.) 

IVD The Flow Algorithm 

Let (V, k) be any network. As in the proof of the Max-Flow-Min-Cut 
Theorem, let n be the least positive integer such that nk is integral. Then 
(V, nk) is an integral network. Furthermore, h is a feasible flow in (V, k) if 
and only if nh is a feasible flow in (V, nk). Finally, for any eo E W, h is a 
maximum flow through eo in (V, k) if and only if nh is a maximum flow 
through eo in (V, nk). It should thus be clear that for the purposes of actually 
computing maximum flows, it suffices to restrict oneself to integral networks. 

Dl Proposition. Let (V, k) be an integral network. Let h be a feasible flow 
which is not a maximum flow through eo. Then there exists an elementary 
circuit D of r such that ho( eo) = 1 and h + ho is a feasible flow. 

PROOF. By the Max-Flow-Min-Cut Theorem (C6), there exists an integral 
maximum flow h' through eo. By AI?, the integral flow h' - h admits an 
.A-decomposition {gl, ... , gm} where gj is elementary, a(gj) S;;; a(h' - h), and 
(h' - h)(e)gj(e) ~ 0 for all e E Wand all i = 1,2, ... , m. Since h'(eo) > h(eo) 
by assumption, gieo) = I for some j. By B8, gj = ho for some elementary 
circuit D of r, and so ho(eo) = 1. Since h + ho is a flow, it remains only to 
prove that it is feasible. Let e E W. 

Case 1: (h' - h)(e) = O. Since a(ho) S;;; a(h' - h), ho(e) = o. It follows 
that (h + ho)(e) = h(e), which lies between 0 and k(e). 

Case 2: (h' - h)(e) > o. Then h'(e) ~ h(e) + I, and ho(e) = 0 or 1. 
Hence 0 ~ h(e) ~ (h + ho)(e) ~ h'(e) ~ k(e). 

Case 3: (h' - h)(e) < o. Then h'(e) ~ h(e) - 1 and ho(e) = 0 or -1. 
Hence 0 ~ h'(e) ~ (h + ho)(e) ~ h(e) ~ k(e). 0 

Both the Max-Flow-Min Cut Theorem and the foregoing proposition are 
assertions concerning existence. In particular, the former asserts the existence 
of a maximum flow through a given edge eo and gives the value of that flow 
through eo. On the other hand, the Flow Algorithm below is actually a 
procedure for obtaining a maximum flow through eo. It is basically an 
"improvement process" and is motivated by Proposition D 1. 

If h is a feasible flow for an integral network (V, k), a circuit D of r is 
said to be unsaturated with respect to h and eo if ho(eo) = 1 and h + ho is 
feasible. 

D2 Exercise. Prove that a circuit xo, el> Xl> ••• , em, Yo, eo, Xo is unsaturated 
with respect to h and eo if and only if h(eo) < k(eo) and the path Xo, e1 , Xl> ••• , 

em. Yo is unsaturated with respect to h. 
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We can now state: 

D3 The Flow Algorithm. Let (V, k) be an integral network and let eo E W. 
Step 1: Select a feasible flow h for (V, k). (This is always possible, since 

the zero-function is always a feasible flow.) 
Step 2: Search for an elementary circuit 0 which is unsaturated with respect 

to h and eo. 
Step 3: If such a circuit 0 exists, replace h by h + ho and return to Step 2. 
Step 4: Ifno such 0 exists then h is a maximum flow through eo by Dl. 

This algorithm is indicated schematically in Figure D4. 

D4 

smrt ~ ---------+ 

G finish 

Before investigating the details of the Flow Algorithm we show: 

D5 Proposition. Let (V, k) be an integral network, eo E W, and h a feasible 
flow. With h as initial feasible flow, the Flow Algorithm yields a maximum 
flow through eo within at most k(eo) - h(eo) iterations. 

PROOF. Let ho = h, and let hi be the feasible flow obtained in the ith iteration 
of Step 3 of the Flow Algorithm. By the definition of hi> h.( eo) = hi- 1 (eo) + 1 
for i ~ 1. Thus hi(eo) = h(eo) + i. Since hj is feasible, k(eo) ~ hj(eo) for all i, 
and so the maximum number of iterations possible is k(eo) - h(eo). 0 

Evidently the efficiency of the Flow Algorithm depends upon the efficiency 
of the search technique used in implementing Step 2. There is a search technique 
implicit in the proof of the Max-Flow-Min-Cut Theorem; it is the one most 
often associated with the Flow Algorithm in the literature. This section con­
cludes with a description of this search technique. 

Let (V, k) be an integral network, eo = (Yo, xo) E W, and h an integral 
feasible flow. We seek either to construct an elementary circuit in r which is 
unsaturated with respect to h and eo or to show that such a circuit cannot 
exist. 

If h(eo) = k(eo), then there exists no unsaturated circuit. Assume then that 
h(eo) < k(eo). By Exercise D2, it suffices either to find an unsaturated 

113 



IV Networks 

xoyo-path (with respect to h, henceforth being understood) or to show that 
such a path cannot exist. For i = 0, 1,2, ... , let 

D6 U, = {x E V: there exists an unsaturated xox-path of length i 
but none of shorter length}. 

Clearly Yo E U, for some i if and only if there is an unsaturated xoyo-path. 
Since U, Ii UI = 0 for i #: j, U, #: 0 for only finitely many indices i. 
Moreover, if U, = 0, then UI = 0 for allj ~ i. 

The sets U, admit an inductive construction as follows. Let Uo = {xo}, 
and assume U, has been constructed. Then U, + 1 is the collection of all 
x E V + Uo + U1 + ... + U, such that for some y E U" one has either 
h(y, x) < k(y, x) or h(x, y) > o. One readily sees that this construction is 
consistent with D6. 

Let m be the smallest integer such that either Um = 0 or Yo E Um• If 
Um = 0, then no unsaturated xoyo-path exists. If Yo E Um, then an unsaturated 
xoyo-path exists and one may be constructed as follows. Write Xm = Yo, and 
for j = m - 1, m - 2, ... , 0, one may inductively select XI E U, and e, + 1 E W 
such that either 

e/+l = (XI' X/+l) and h(e/+l) < k(e/+l), or 

e/+l = (X/+h XI) and h(e/+l) > O. 

In using the Flow Algorithm with this" subroutine" as the search technique, 
we terminate the process when a feasible flow has been constructed such that 
either h(eo) = k(eo) or h(eo) = k(C; eo) for some cut C through eo. In the 
latter case such a cut C is actually constructible by means of this subroutine, 
since there exists no xoyo-path unsaturated with respect to h. Hence Um = 0 

in the last iteration of the subroutine. The set U = Uo + U1 + ... + Um- 1 

is then the very same set U defined in the proof of the Max-Flow-Min-Cut 
Theorem (C6). The required cut is C = ~xeu f*(x). 

Example. Consider (V, k) as in Figure C4. We will use the Flow Algorithm 
with the above subroutine to find a maximum flow through eo = (8, 2). Start 
with h equal to the zero-function. Searching for an unsaturated 2,8-path, 
we have Uo = {2}, U1 = {3}, U2 = {I, 4}, Ua = {5, 7, 9}, U4 = {6, 8}. This 
yields among others the elementary cycle 0 = 2, (2, 3), 3, (3, 1), 1, (1, 9), 9, 
(9,8),8, (8, 2), 2, and we replace h by h + ho, which is a unit flow through D. 
Returning to Step 2, we start our search again. However, there is a short cut. 
We have just constructed 0 and we could check to see whether it is un­
saturated with respect to the new h. It is, and we replace h by h + ho again. 
As we return to Step 3 our flow is h + 2ho. Since 0 is saturated with respect 
to this flow (h(3, 1) = 2 = k(3, 1», we must make another search: 

Uo = {2}, U1 = {3}, U2 = {4}, Ua = {I, 5}, U4 = {6, 7, 9}, U5 = {8}. 
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A new circuit D is 2, (2, 3), 3, (3, 4), 4, (4, 1), 1, (1, 9), 9, (9, 8), 8, (8, 2), 2. 
Adding this flow to h yields the flow whose values are underlined in Figure D7. 

The next search yields: Uo = {2}, U1 = {3}, U2 = {4}, Us = {5}, U4 = 
{1,6}, U5 = {7,9}, U6 = {8}, which in turn yields a circuit D = 2, (2, 3), 3, 
(3,4), 4, (4, 5), 5, (5, 1), 1, (1, 7), 7, (7, 8), 8, (8, 2), 2. The new flow h + ho 
is then underlined in Figure D8. 

Repeating the "subroutine" again yields: Uo = {2}, U1 = {3}, U2 = {4}, 
Us = {5}, U4 = {6}, U5 = {7}, U6 = {I}, U7 = {9}, and Us = {8}. This 
clearly determines uniquely the circuit 

2, (2, 3), 3, ... , 6, (6, 7), 7, (1, 7), 1, (1, 9), 9, ... ,2. 

Note the edge (1, 7); it is our first example of a "back flow." The new flow 
is depicted in Figure D9. 
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The final application of the subroutine now yields a minimum cut C. We 
have Uo = {2}, U1 = {3}, U2 = {4}, Us = {5}, U4 = 0. Hence U = {2, 3,4, 5}. 
The edges of C which appear in D9 are (8,2), (1, 2), (1,3), (3, 1), (4, 1), (5, 1), 
and (5,6). One easily checks that k(C; eo) = 5 = h(eo). 

IVE The Qassical Form of the Max-Flow­
Min-Cut Theorem 

The Max-Flow-Min-Cut Theorem was developed, stated, and proved in this 
chapter in such a way as to be consistent with the algebraic structure of this 
book. For completeness we reformulate this result in the traditional form. 
This is the form in which the reader is most likely to encounter it in the 
literature, especially in the context of optimization problems. 

Rather than the muitigraph r = (V,/, W) considered in the previous 
sections, we now deal with an arbitrary directed graph (V, D) and use the 
term" a capacity for (V, D)" to indicate any function k: D -+ N. Two vertices 
xo, Yo E V are distinguished and are called the" source" and "sink", respec­
tively. A "network" now denotes a 4-tuple «V, D), k, xo, Yo). 

A function!: D -+ N is called a "feasible flow" for this network if 
(a) 0 ::;; !(x, y) ::;; k(x, y) for all (x, y) E D, and 
(b) 2.1Iev,(X,1I)eD !(x, y) = 2.1Iev,(1I,X)eD !(y, x), for all x E V + {xo, Yo}. 

As before, the zero-function is still a feasible flow. If! is a feasible flow, we 
define its "value" to be 

v(f) = L !(xo, y) - L !(y, xo). 
1IeV 1IeV 

(xo,1I)eD (1I,xo)eD 

Of course, the zero-function has value O. 
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El Exercise. Show that if/is a feasible flow, then 

v(f) = L /(y, Yo) -
yeV 

(y.yo)eD 

L /(Yo, y). 
yeV 

(yo.y)eD 

Recall how a cut in a network was expressed as the sum of vertex cocycles 
over a subset of V. Classically, a cut is identified with that subset. Thus, by a 
"cut" we shall mean a subset U £; V such that Xo E U £; V + {Yo}. The 
"capacity of U" is the number 

k(U) = L k(x, y). 
(x.y)eD 

xeU 
yeV+U 

E2 Max-Flow-Min-Cut Theorem: Classical Form (L. R. Ford, Jr. and D. R. 
Fulkerson [f.3]). In any network «V, D), k, xo, Yo), max{v(f):/is a/easible 
flow} = min{k(U): U is a cut}. 

E3 Exercise. Prove that E2 and C6 are equivalent for integral networks. 

Often E2 is stated and proved in the case where the capacity function and 
the feasible flows are defined as functions from D into the nonnegative ele­
ments of Q or IR. The proof of C6 takes care of the rational case of E2, but 
not the real case. The difficulty in the real case is that the iteration process 
need not increase the value of the flow by a fixed minimum amount and hence 
may never terminate. If the process does not terminate, suppose ho, hlo ... 
is a sequence of feasible flows constructed via this iteration process. Since 
the sequence is bounded above by k, there is a function h E ~D such that 
limj .. "" hj(x, y) = h(x, y) for all (x, y) E D. While it is not difficult to show 
that h is a feasible flow, it cannot be shown-in fact, it need not even be true­
that h is a maximum flow. The existence of a maximum flow in the real case 
must be proved using the fact that (under the product topology on IRD) the 
set of feasible flows is a closed and bounded subset and that the value 
function v is continuous. Once the existence of a maximum flow is established, 
the proof of C6 may be adapted to show that its value equals the capacity of 
a "minimum" cut. 

IVF The Vertex Form of Max-F1ow-Min-Cut 

A variant of the Max-Flow-Min-Cut Theorem is obtained by assigning 
capacities to the vertices of a directed graph. One then considers cuts as 
consisting of sets of vertices which interrupt all directed circuits through a 
given vertex rather than as sets of edges which interrupt all directed circuits 
through a given edge. In this section we prove that the" edge form" C6 of 
the theorem implies the "vertex form." The latter is particularly important 
as it affords an elegant proof of Menger's Theorem in VIA below. The cycle 
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of equivalence will be completed in the same section. There Menger's Theorem 
will in turn be used to give another proof of Theorem C6. 

Let (V, D) be a directed graph and letj: V -i>- N. The functionj is called 
a vertex capacity for (V, D). By a flow in (V, D) we shall mean a flow h in 
F(V) such that a(h) S; D. The value of the flow h at the vertex x is denoted by 
hex) and defined by 

hex) = 2: h(y,x). 
l/eV+{x} 

Since the" inflow" equals the" outflow" at x, we have by B2 that 

Fl hex) = 2: hex, y). 
lIeV+{x} 

A flow h in (V, D) is said to be feasible if 0 ::::; hex, y) for each (x, y) E W 
while hex) ::::; j(x) for all x E V. Finally, h is said to be a maximum flow through 
Xo if h is a feasible flow and if h(xo) ~ h'(xo) for every feasible flow h' in 
(V, D). A vertex-cut through Xo is a subset Us; V + {xo} such that every 
directed circuit through Xo contains an element of U. Clearly V + {xo} is a 
vertex-cut through Xo. If there are no directed circuits through xo, then 0 
is a vertex-cut through Xo. The capacity of a vertex-cut U is 

j(U) = 2: j(x). 
xeU 

F2 Max-Flow-Min-Cut Theorem (Vertex Form). Let (V, D) be a directed 
graph. Let j be a vertex capacity for (V, D), and let Xo E V. Then there exists 
a maximum flow h through Xo such that 

h(xo) = min(U(xo)} V U(U): U is a vertex-cut through xo}). 

PROOF. Let X = V x {I, 2}. For (x, i) E X we write Xl. Let Y = (X x X) + 
{(Xl, Xl): Xl E X}, and let /L denote some integer greater than Lxev j(x). Let 
k: Y -i>- N be given by 

k(XI, yI) = 0 for all x, y E V, i E {t, 2}; 

k( 1 2) = {/L if(x,Y)ED; 
x ,y 0 if (x, y) Eft D; 

k(x2 , yl) = {j(X) ~f x = y; 
o If x =F y. 

The pair (X, k) is then a network. As was indicated in Figure C4, a network 
(X, k) may be viewed in terms of the directed graph (X, a(k». In Figure F3 
we indicate how (X, a(k» may be constructed locally from (V, D). The 
numbers beside the edges in Figure F3b represent the values of k. 
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F3 (a) (V, D) 

z 

w 

(b) (X, u(k» 

V2 j(V) Vi 

X2 j (X) Xl ~ Z2 j(z) 
Wi w2 j(w) 

Let h be a feasible flow in (V, D). We define Ii: Y -+ N by 

Ii(xl, yI) = 0 for all x, y E V, i E {t, 2}; 

Ii(xl, y2) = hex, y) for all x, y E V; 

li(x2 , yl) = {heX) ~f x = y; 
o If xi: y. 

Zl 

By this definition, the definition of feasible flow in (V, D), and F1, we have 
that Ii is a feasible flow in the network (X, k). In fact, one easily verifies that 
the mapping h 1--+ Ii is a bijection from the set of feasible flows on (V, D) 
onto the set of feasible flows on (X, k). Furthermore, since h(xo) = Ii(eo) 
where eo = (X02, XOI), we have 

F4 max{h(xo): h is a feasible flow in (V, D)} 
= max{li(eo): Ii is a feasible flow in (X, k)}. 

Define g: Y -+ ~(X) by g(XI, ym) = {Xl, ym}, and let @ denote the multi­
graph (X, g, Y). A cut C through eo in (X, k) is then of the form C = 

~XIES g*(xl) for some subset S s;; X such that XOI E Sand xo2 E X + S. Let 
Tl = {x E V: Xl E S} for i = 1,2. The edges (Xl, ym) E C which contribute to 
k(C; eo), the capacity of C, are those for which Xl E Sand ym E X + S. These 
edges fall into two classes: 

CI = {(xl, y2): x E TI ; y E V + T2; (x, y) ED}, 

C2 = {(x2, Xl): x E T2 n (V + TI)}. 
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Each edge in CI contributes the quantity p. to k(C; eo), while each edge 
(X2, Xl) E C2 contributes the quantity j(x). Thus k(C; eo) ~ p. if CI -# 50, 
while if CI = 50 and U = T2 + (V + TI), then 

F5 k(C; eo) = 2: j(x) = j(U) < p.. 
xeu 

If there exists at least one cut C through eo with CI = 50, then any mini­
mum cut must also have that property. Hence we may assume for the cuts 
under consideration that CI = 50. We will show that cuts of this type do 
exist and that they in fact correspond to vertex-cuts of (V, D). 

Let C = Lx'es g*(xl ) and assume that CI = 50. Let Tl> T2 be defined as 
above in terms of S. We proceed to show that U = T2 II (V + TI) is a vertex­
cut of (V, D). Let xo, (xo, Xl), Xl> ... , (xm, XO), Xo be an arbitrary directed 
circuit through Xo. We may assume XI -# Xo for i = I, ... , m, for if not we 
may replace the above circuit by a shorter one. This path induces an XOIX02-
path in 0: 

Since XOI E S while X02 E V + S, some edge in F6 has its "first vertex" in S 
and its "second vertex" in V + S; such an edge is in C. Since CI = 50, this 
edge must be of the form (Xi2 , x/) for some i = I, ... , m. Thus XI -# Xo, 
Xi E T2 , XI 1= TI • In other words, U -# 50. 

We next show that for every vertex-cut Us;; V + {xo}, there exists a cut C 
in (X, k) such that k(C; eo) = j(U). Let U be a vertex-cut of (V, D). Let 
UI = {x E V: there exists a directed xox-path containing no vertex of U}, 
and let U2 = U + UI + {xo}. Thus Xo E Ul> Xo 1= U2 , and U = U2 II 

(V + UI). Let S = (UI x {I}) U (U2 x {2}), and let C = Lx'es g*(xl). Since 
XOI E Sand X02 E V + S, C is a cut through eo in 0. It suffices to show that 
CI = 50. Suppose that (xl, y2) E CI • Since X E Ul> there exists a directed 
xox-path "avoiding" U, which may clearly be extended via (x, y) to a 
directed xoy-path. Since y 1= U2 , the extended path avoids U. Therefore y E U, 
which is only possible if y = Xo. But this means that the extended path is a 
directed circuit through Xo avoiding U, contrary to our assumption that U 
is a vertex-cut. 

Combining these last two arguments and F5, we have 

min{k(C; eo): C is a cut through eo in (X, k)} 
= minU(U): U is a vertex-cut through Xo in (V, D)}. 

Since k(eo) = j(xo), 

F7 min({k(eo)} u {k(C; eo): C is a cut through eo in (X, k)}) 
= min(U(xo)} u U(U): U is a vertex-cut through Xo in (V, D)}). 

By Theorem C6, the left-hand number of F7 equals the right-hand member 
of F4. This string of equalities proves the theorem. D 
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IVG Doubly·Capacitated Networks and 
Dilworth's Theorem 

A doubly-capacitated network is a triple (V, kh k 2) where k j E 7Lw for i = 1,2, 
and kl(e) ::; k2(e) for all e E W. The functions kl and k2 are called, respectively, 
the lower and upper capacities. An integral flow h is said to be feasible if 

kl(e) ::; h(e) ::; k2(e) for all e E W. 

If eo E W, h is a maximum flow through eo if h is a feasible flow and h(eo) ~ 
h'(eo) for any feasible flow h'. An integral network (V, k) as defined in §C 
can be regarded as the doubly-capacitated network (V, 0, k) where 0 denotes 
the zero function in 7Lw. It follows from the discussion at the beginning of 
§D that the results of the present section hold as well with 7L replaced by 0. 

Consider a system of pipelines where k2(e) represents the capacity of a 
link e as did k(e) in §C. Suppose, however, that to prevent deterioration, each 
link e must carry a certain minimum flow kl(e). The doubly-capacitated net­
work (V, kh k 2) can be regarded as an abstraction of just such a situation as 
this. While in this situation kl and k2 are nonnegative functions, it is not 
required that they always be so. 

It should be emphasized that in general a doubly-capacitated network 
need not always admit a feasible flow. In Figure GI, for example, where 
I VI = 5, suppose that kl(e) = I and k2(e) = 2 for every edge e represented 
in the figure, while kl(e) = k2(e) = 0 for every other edge. If there existed a 
feasible flow, the "inflow" into the vertex x could be at most 2 while its 
"outflow" must be at least 3. 

Gl 

x~-------------------------~~-------------------------~ 

Let eo = (Yo, xo) E W. A cut C through eo in the doubly-capacitated net­
work (V, kb k 2) is defined exactly as it is for a network; it is of the form 
C = LXEU f*(x) where Xo E Us;; V + {Yo}. With gu as defined in CI, the 
upper capacity of C through eo is defined as 

k 2(C; eo) = L k2(e)-
gu(e)= 1 

L k1(e), 
e .. eo 

gu(e)= -1 

121 



IV Networks 

and the lower capacity of C through eo as 

k 1(C; eo} = L: k1(e}-
gu(e)= 1 

If h is a feasible flow, 

L: k2(e}. 
e .. eo 

gu(e)= -1 

0= h·gu = L: h(e} - L: h(e}::; k 2(C; eo} - h(eo}. 
gu(e)=1 lIu(e)=-1 

G2 

for any feasible flow h and any cut C through eo. 

G3 Max-F1ow-Min-Cut Theorem (Doubly-Capacitated Form). If eo E Wand 
if the doubly-capacitated network (V, kb k 2) admits a feasible flow, then it 
admits a maximum flow h through eo and 

h(eo} = min({k2(eo}} U {k2(C; eo}: C is a cut through eo}}. 

PROOF. The proof of C6 may be adapted to prove this result with the following 
modest changes. First, replace k by k2 throughout. Second, alter the third 
condition in the definition of "unsaturated path" to read: el = (Xh XI-1) => 

h(e} > k1(e). 0 

The first inequality in G2 gives a lower bound for flows through eo. We 
are thus led to call a feasible flow h a minimum flow through eo if h(eo) ::; 
h'(eo) for any feasible flow h'. Clearly if kl is a flow, then it is a minimum flow 
through each edge. However, when k1 is not a flow, the following result is 
nontrivial. 

G4 Min-F1ow-Max-Cut Theorem. If eo E Wand if the doubly-capacitated 
network (V, kb k 2) admits a feasible flow, then it admits a minimum flow 
h through eo, and 

h(eo} = max({k1(eo}} U {k1(C; eo}: C is a cut through eo}}. 

PROOF. Let k 1' = -k2 and k 2' = -k1. Then (V, k 1', k 2') is also a doubly­
capacitated network. Moreover, a flow h is feasible (minimum through eo) 
in (V, kb k 2) if and only if -h is feasible (maximum through eo) in (V, k 1', k 2'). 

Finally, for any cut C through eo, k1(C; eo) = -k2'(C; eo). Thus 

max({k1(eo}} u {k1(C; eo}: C is a cut through eo}} 
= -min({k2'(eo)} u {k2'(C; eo}: C is a cut through eo}}, 

and the result follows from Theorem G3. o 
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The existence of a feasible flow in a doubly-capacitated network (V, klo k 2) 
is the essential question, for without it, Theorems G3 and G4 add nothing 
to what has already been said. Let eo E Wand let a cut C = Lxeu f*(x) 
through eo be given. If h is a feasible flow, then by G2, 

k 2(C; eo) ::::: h(eo) ::::: k1(eo), 

and so 

G5 o ::::; k 2(C; eo) - k1(eo) = L: k2(e) - L: kl(e). 
gu(e)=l gu(e)=-l 

If k(U) denotes the right-hand quantity in G5, then the assertion: k(U) ::::: 0 
whenever 0 cUe V, is a necessary condition for the existence of a feasible 
flow. Indeed, it is also sufficient. 

G6 Exercise. Prove that (V, klo k 2) admits a feasible flow if and only if 
k(U) ::::: 0 for all U £; V. [Hint: construct a new doubly-capacitated network 
as foIlows. Let xo, Yo be two vertices not in V and let V' = V + {xo, Yo}. Let 

if e E W; 

otherwise; 

if e E W; 

if e = (Yo, xo), (xo, x), or (x, Yo) for x E V; 

otherwise; 

where /L is a fixed integer greater than Leev k2(e). Show that (V', k/, k 2') has 
a feasible flow and hence a minimum flow h through eo = (Yo. xo). Observe 
that if h(eo) = 0, then h1w is a feasible flow on (V, klo k 2), while if h(eo) > 0, 
then there exists no feasible flow on (V, klo k2)'] 

Let (X, ::::;) be a partiaIly-ordered set and recaIl the definition of a chain 
from §IIB. The notion of an incommensurable set defined prior to Exercise 
IIB22 is generalized here to denote a set S £; X such that x < y fails for all 
X,YES. 

G7 Theorem (R. P. Dilworth [d.2], 1950). Let (X, ::::;) be a partially-ordered 
set. Then 

max{ISI: S is incommensurable in (X, ::::;)} 
= min{I.2I: .2 E iP>(X); Q is a chain for all Q E .2}. 

PROOF. Let V = (X x {I, 2}) u {xo, Yo} where Xo and Yo are distinct objects 
which are not elements of X x {I, 2}. As in §F, we write Xl for the element 
(x, i) E V. We form the doubly-capacitated network (V, klo k2), where if 
eE W, then 

{ I if e = (xl, x 2) for some x EX; 
kl(e) = 0 

otherwise; 
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and 

1 if kl(e) = 1; 
IXI if e = (XO, Xl) or (X2, Yo) for some x EX; 

k2(e) = IXI if e = (Yo, Xo); 
IXI if e = (X2, yl) for x, y E X and x < y; 

o otherwise. 

(For example, let X = {x, y, z} and suppose x < y < z. In Figure 08 the 
directed graph (V, a(k2)) is shown where the integer beside the edge e represents 
k2(e).) 

G8 

We assert that (V, klo k2) admits a feasible flow. Indeed the function Ii 
given by 

{
I if e = (xo, Xl), (xl, X2), or (x2, Yo) for some x E X; 

Ii(e) = IXI if e = (Yo, xo); 

o otherwise; 

is a feasible flow. Hence Theorem 04 applies to (V, klo k2) nonvacuously. 
Let h be any feasible flow in (V, klo k2). Then h is nonnegative since kl is. 

By Exercise AI?, we can write 

m 

h = L: g, 
'=1 

where g, is a nonnegative elementary flow and a(g,) S;; a(h) for i = 1, ... , m. 
Let i now be fixed. By B8, g, = ho for some circuit 0 of r = (V,f, W). 
Since ho is nonnegative, 0 must assume the form 

Xo, (xo, XII), XII, (XII, XI2), X12, (XI2, xl), X2\ (xl, X22), X22, ... 
. . . , xl, (xl, Xj2), Xj2, (XJ2, Yo), Yo, (Yo, Xo), Xo, 
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where Xl < X2 < ... < XJ for some j ~ 1. Thus h is a sum of elementary 
flows, each of which corresponds to a chain in (X, ~). But since h is a feasible 
flow, h(x\ r) = I for all X E X. This implies that the set of chains corre­
sponding to elementary flows gb ... , gm is an m-partition of X. Conversely, 
each partition .P- E IJl>(X) whose cells are nonempty chains corresponds to a 
feasible flow whose value at eo is I.P-I. We have proved: 

G9 min{h(eo): h is a feasible flow} 
= min{I.P-I: .P- E IJl>(X); Q is a chain, for all Q E .P-}. 

Consider an arbitrary cut C = 2xeu f*(x) through eo, where it may be 
assumed that Xo E U s; V + {Yo}. Let 

S = {x E X: Xl E U; rEV + U}, 

T = {X E X: Xl E V + U; r E U}, 

D = {(X, y) E X x X: X < y; rEV + U; yl E U}. 

By definition, 

GIO k1(C; eo) = L: k1(u, v) - L: k2(u, v) = lSI - (ITI + IDIIXI). 
ueU ueV+ U 

veV+U veU 

Since lSI ~ lXI, k1(C; eo) ~ 0 whenever D oF 0. If i, ji E S, then i 2 E 
V + U and jil E U. Hence if (i, ji) ¢ D, then i < ji fails. Thus if D = 0, 
then X < Y fails for all x, YES, i.e., S is incommensurable. Since k1(eo) = 0, 
we have proved: 

Gll max({k1(eo)} U {k1(C; eo): C is a cut through eo}) 
~ max{ISI: S is incommensurable in (X, ~)}. 

On the other hand, let So be any incommensurable set and define 

U = {Xl E X x {I}: X ~ Y for some y E So} 
U {r E X x {2}: X < y for some y E So} U {xo}. 

One readily observes that S = So and D = T = 0. By GlO, kl(C; eo) = ISol. 
This proves that equality indeed holds in GIl. This equality combined with 
G9 and Theorem G4 yield a string of equalities which proves the theorem. D 
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CHAPfERV 

Matchings and Related Structures 

The spaces of a system were studied in Chapter II; in Chapter III they were 
interpreted in the context of multigraphs and in Chapter IV in the context 
of networks. Once again we shall see how a single combinatorial notion 
transcends the peculiarities of the model which serves as the vehicle for its 
presentation. The Main Matching Theorem, to be presented and proved in 
the first section of this chapter, is the keystone for the rest of the chapter. 
Initially the vehicle for presentation is the bipartite graph. In the subsequent 
sections, the Main Matching Theorem will give information about many 
outwardly dissimilar yet nearly equivalent structures. 

Since our proof of the Main Matching Theorem will be facilitated by the 
Max-Flow-Min-Cut Theorem, the reader is advised to refamiliarize himself 
with the definitions and the statements of results in §IVB and §IVC before 
proceeding. 

VA Matchings in Bipartite Graphs 
Let (V, 8) denote a graph. The notion of incidence introduced earlier was a 
" relation" between the sets V and 8. We now extend it to a reflexive and 
symmetric relation on V U 8 as follows. For X10 X2 E V and E10 E2 E 8: 

Xl is incident with E1 if Xl E E1 ; 

Xl is incident with X2 if either Xl = X2 or {X1o X2} E 8; 

E1 is incident with E2 if E1 n E2 =1= 0. 

A set S ~ V U 8 is a vertex-covering set (respectively, edge-coveriog set) 
if each vertex of positive valence (respectively, edge) is incident with some 
element of S. Observe that supersets of vertex- (respectively, edge-) covering 
sets are also vertex- (respectively, edge-) covering sets. 
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A set S s;; V u 8 is independent if no two distinct elements of S are 
incident. Clearly subsets of independent sets are also independent. An 
independent vertex set (also called an "internally stable set") is an independ­
ent subset of V. The cardinality of a largest independent vertex set in r is 
called the vertex-independence number (or "internal stability") of r and is 
denoted by ao(r), or simply by ao. An independent edge set is defined 
analogously, and the edge-independence number is denoted by al(r), or simply 
al' We define the function N: 9i'( V) -+ 9i'( V) whereby for each U E 9i'( V), 

N(U) = {y E V + U: {x, y} E 8 for some x E U}. 

In this section we are concerned only with the bipartite graph B = 
({ Vh V2}, 8), the significance of these letters being hereby fixed for all of this 
section. If U s;; Vl or U s;; V2 , we define the deficiency of U to be the integer 

8(U) = lUI - IN(U)I, 

and we define 

81(B) = max{8(U): Us;; VI} (i = 1,2), 

writing briefly 81 when B is understood from the context. 
Since 8(0) = 0,81 2:: 0 for any bipartite graph. A subset Us;; Vi such that 

8( U) = 81(B) is called a critical set. An independent set tI' S;; tI is called a 
matching. If UI S;; VI for i = 1,2, a matching tI' is a matching of Ul into U2 if 

(a) 18'1 = lUll, and 
(b) each edge in 8' is incident with one vertex in Ul and one vertex in U2• 

Of course, the condition I Ull ~ I U2 1 is necessary though hardly sufficient 
for such a matching to exist. When we say briefly, "a matching of Uh " one 
should understand "a matching of U1 into V2 ." 

Recall that to say that a matching 8' in B is largest means that no other 
matching tI" of any subset of Vl whatever satisfies ItI'l < 18"1. 

At Main Matching Theorem. In the bipartite graph B = ({Vh V2},8), 
al(B) = I V11 - 8l(B) = I V2 1 - 82(B). 

PROOF. Form the set V = Vl U V2 U {a, z}, where a and z are "new" objects 
not in Vl U V2. Let p. be some integer greater than I V12. We then form the 
integral network (V, k) where 

1
1 if e = (a, Xl) or (X2' z) for some XI E Vb 

or if e = (Xh X2) for XI E VI and {Xl' X2} E tI; 
k(e) = 

p. if e = (z, a); 

o otherwise. 

(In Figure A2 we show a bipartite graph B together with the directed graph 
(V, u{k» obtained as described. All edges shown except (z, a) have capacity 1.) 
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A2 

z 

If h is an integer-valued feasible flow on (V, k), then clearly h assigns 0 or 1 
to every element of W = (V x V) + {(x, x): x E V} except perhaps to (z, a). 
Since h is a flow, one sees by the structure of (V, k) that 

h(z, a) = I{(xl> X2): XI E VI; h(xl> X2) = I}I 

= L: L: h(xl> X2). 
"'leVl "'2eV2 

Also the set C' = {{Xl' X2 } E C: h(Xl> X2 ) = I} is a matching in B of cardinality 
h(z, a). Conversely, any matching in B of an m-subset of VI determines a 
feasible flow h in (V, k) with h(z, a) = m. This proves that 

A3 a:I(B) = max{h(z, a): h is a feasible flow in (V, k)}. 

Let the set U satisfy a E Us; V + {z}, and let UI = Un VI (i= 1,2). Let 
C be the cut determined by U. Then C is a cut through (z, a), and its capacity 
satisfies 

k(C; (z, a)) = /VI + U11 + L: k(xl> X2) + I U21 

"'leUl 
"'2eV2+ U2 

~ I VI + U11 + IN(U1) + (N(U1) n U2)1 + I U21 

~ /VI + U11 + IN(U1)1 

= I VII - (i U11 - IN(U1)i) 

= I VII - S(U1) ~ I VII - SI(B). 

In particular, suppose U1 is a critical subset of VI. Then the set U = {a} + 
U1 + N(U1) determines a cut C through (z, a) of capacity I VII - SI(B). This 
proves 

A4 I VII - SI(B) = min{k(C; (z, a)): C is a cut through (z, a)}. 
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By the Max-Flow-Min-Cut Theorem (IVC6), A3, and A4, one has al(B) = 

I V11 - Sl(B). The other equality is proved symmetrically. D 

AS Corollary. For any bipartite graph, Vo = 2al + Sl + S2' 

A6 Corollary. A necessary and sufficient condition for B to admit a matching 
of VI is 

U £ VI => lUI ::; IN(U)I (i = 1,2). 

PROOF: Sufficiency. The condition is clearly equivalent to the assertion that 
S(U) ::; 0 for all U £ VI> i.e., that SI(B) = O. Now apply the theorem. 

Necessity. Suppose that B admits a matching of VI and let U £ Vi' By 
the theorem, 

o = SI(B) ~ S(U) = lUI - IN(U)I, 

whence the condition follows. D 

A7 Corollary. If in B one has C =1= 0 and P(Xl) ~ P(X2) for all Xl E VI> then 
there exists a matching of V1• 

PROOF. Let m = min{p(x): X E V1}, and let U £ V1 • Since any edge incident 
with a vertex in U is also incident with a vertex in N(U), one has 

AS ml UI ::; L: P(Xl)::; L: P(X2)::; mIN(U)I, 
X1EU X2EN(U) 

the last inequality in A8 holding since P(X2) ::; m for all X2 E V2. Since C =1= 0, 
P(X2) > 0 for some X2 E V2. Hence m > 0, and A8 implies 8(U) ::; O. The 
result follows from the preceding corollary. D 

The reader may wish to find other sufficient conditions on B for there to 
exist a matching of V1 • A particularly easy case presents itself when B is 
m-valent for some m > O. Then ml V11 = ICI = ml V2 1, and every matching 
of V1 into V2 is also a matching of V2 into V1• Such a matching is called a 
mutual matching. 

A9 Exercise. Prove that ifB is m-valent, then there exists an m-partition of C, 
each cell of which is a mutual matching. 

AIO Exercise. Given m, n E N with m ::; n, prove that there exists an m-valent 
bipartite graph ({Vb V2}, C) with I V11 = I V2 1 = n. 

For any multigraph r, the largest valence among the vertices in r will be 
denoted by per) or briefly by p when there is no risk of ambiguity. Similarly, 
per) will denote the smallest valence in r. The next proposition shows how a 
bipartite graph B may be extended to an isovalent bipartite graph with the 
same largest valence without "joining by an edge" any vertices of B not 
already so joined. 
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All Proposition. Given any bipartite graph B, there exists a P(B )-valent 
bipartite graph A = ({WI> W2}, §) such that VI £; WI for i = 1,2 and 
B = AVluVa' 

PROOF. Let V/ be formed from VI by adjoining sufficiently many new vertices 
to VI (i = 1,2) so that I V1'1 = I V2 '1 and that 

All P(B) - 1 ::;; P(B)I V1'1 - Itli. 

Then B' = ({V/, V2'}, tI) is a bipartite graph. Its valence function, being the 
extension by zero of p, will also be denoted by p. 

Let n denote the right-hand member of AI2. By Exercise AIO, there exists 
a (P(B) - I)-valent bipartite graph B" = ({VI"' V2"}, tI") with !VI" I = 
!V2"1 = n. We may assume that B" is disjoint from B'. 

For each i = 1, 2, 

2: (P(B) - p(x)) = P(B)I Vt'l - Itli = n. 
xeVj' 

Hence for j E {I, 2}, j =F i, V/ admits a partition {U",: x E V/; p(x) < P(B)} 
wherein each cell U", has (positive) cardinality I U",I = P(B) - p(x). Now let 

tI' = {{x, y}: x E V/ u V2'; y E U",}, 

~ = CUC'UC", 

and WI = V/ u vt for i = 1,2. 
Then A = ({WI> W2}'~) is the required bipartite graph. (See Figure 

A13.) D 

Al3 

B 

\ 
• 

• • 

\ 
~ 
D 

• • 

P(B) = 2, Itli = 4,n = 2 

The set tI of edges of a bipartite graph B clearly admits a partition each 
of whose cells is a matching. Indeed, each matching could consist of a single 
edge, and we would have a ICI-partition. At the other extreme, no such 
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partition could have fewer than p(B) cells. The next result shows that this 
bound is "best possible" in general and not only in the case of an isovalent 
bipartite graph (cf. A9). 

At4 Proposition. For any bipartite graph B there exists a pCB )-partition of Iff 
each of whose cells is a matching. 

PROOF. By Proposition All we may let A = ({W!, W2}'~) be a p(B)-valent 
bipartite graph such that VI £:: Wi (i = 1,2) and B = AYluY2' By Exercise A9, 
there exists a partition {~, ... , ~(BJ of :IF, each of whose cells is a mutual 
matching of WI' Since B contains a vertex incident with precisely pCB) edges 
in Iff, it is readily seen that for each i = 1, ... , pCB), the set Iff n $i is a 
nonempty matching in B. Hence {6" n ~, ... , 6" n ~(B)} is the required 
partition. 0 

The remainder of this section is concerned with the properties of critical 
sets and the role that they play in matchings. 

First we observe that for any U!, U2 £:: V!, one has 

At5 

while 

At6 

(Cf. JAIl and JAI2.) That strict inequality may hold in AI6 is seen by the 
example in Figure AI7. (Cf. JAI7.) 

At7 

''----------. 
,'-__ -=-__ ----. ,....._-----.J/ 

N(~) 

Evaluating cardinalities in AI5 and AI6 and then adding gives 

IN(U! U U2 )1 + IN(U! n U2)1 ~ IN(U!) U N(U2)1 + IN(Ul) n N(U2) I 
= IN(Ul)1 + IN(U2)1· 
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When this inequality is subtracted from 

lUI U U21 + lUI (') U21 = lOll + IU21 

(cf. IC3), one obtains 

Al8 8(U1) + 8(U2) ~ 8(U1 U U2) + 8(U1 (') U2). 

Al9 Exercise. 
(a) Prove that N(U1) + N(U2) £ N(U1 + U2). (Cf. IAI5.) 
(b) Determine what inequality, if any, relates 8(U1 + U2) with 8(U1) + 

8(U2). 

A20 Proposition. The set of critical subsets of VI is closed with respect to union 
and intersection. 

PROOF. If U1 and U2 are critical sets, Al8 gives 

281 ~ 8( U1 U U2) + 8( U1 (') U2). 

Since no set has deficiency greater than 81> it must hold that 8(U1 U U2) = 
81 = 8( U1 (') U2). 0 

Since the Main Matching Theorem establishes the cardinality of a largest 
matching as I VII - 81> we know that certain overly large subsets of VI 
cannot be "matched," i.e., if fewer than 81 vertices of VI are deleted, the 
remaining set is still too big to admit a matching. The next proposition, on 
the other hand, gives affirmative information; it says that the complement 
in VI of any critical set U has a matching and that, moreover, the vertices of 
N(U) are not required for it. 

A21 Proposition. If U £ VI and U is a critical set in the bipartite graph B, 
then there exists a matching of VI + U into V2 + N( U). 

PROOF. Let Ube a critical set and let B' = ({VI + U, V2 + N(U)}, rS') be the 
subgraph of B induced by (VI + U) U (V2 + N(U». Let N' denote the 
function for B' analogous to N for B, and let 8' denote deficiencies in B'. 

If T £ VI + U, then 

8'(T) = ITI - IN'(T)I 
= ITI - IN(T) + (N(U) (') N(T» I 
= 8(U) + ITI - (IN(T)I - IN(U) (') N(T)/) - 8(U) 
= lUI + ITI - (IN(U)I + IN(T)I - IN(U) (') N(T)/) - 8(U) 
= lUI + ITI - IN(U U T)I - 8(U) (A15 and IC3) 
= 8(Uu T) - 81(B) ~ 0 

since U is critical and U (') T = 0. The proposition now follows from 
Corollary A6. 0 
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The abundance of existence results above notwithstanding, it is worthwhile 
to note that in any bipartite graph one can actually construct a largest 
matching, merely by applying the Flow Algorithm (IVD3) to the network 
constructed in the proof of the Main Matching Theorem. 

VB I-Factors 

The notions developed for bipartite graphs in the previous section admit 
extensions to arbitrary graphs. Analogously to the concept of a mutual 
matching, we define a l-factor of a graph r = (V, C) to be a subset of C 
which is at once both independent and vertex-covering. Thus the existence 
of a I-factor in r is equivalent to vo(r) = 2al(r) and implies that r has no 
isolated vertices. 

For any subset U E 9(V), we consider the components of r u which contain 
an odd number of vertices and we let II U II denote the number of such 
components. In case U is independent, then II U II = I U I, and so our definition 

S(U) = II UII - IN(U)I 

as the deficiency of U is clearly seen to include the definition of deficiency in 
§A as a special case. Analogously we define 

S(r) = max{S(U): UE9(V)} 

and note that S(r) ;;:: 0 since S(0) = O. 
Analogous to a critical set of §A is the following notion: U is extremal if 

S(U) = S(r). The precise relationship between these two terms will be made 
clear in the following proof. 

Bl Proposition. For any bipartite graph, S = Sl + S2. 

PROOF. Let B = ({Vb V2}, C) be a bipartite graph. We first show that if 
U s:; VI U V2 is a smallest extremal set in B, then U is independent. Let W 
be the vertex set of a component of Bu and let Wi = W n Vi (i = 1,2). For 
definiteness suppose that I Wli :::;; I W21. One readily verifies that II U + WI!! = 
/I U/I - e + I W2 1, where e = 1 if I WI is odd and e = 0 if I WI is even. Since 
W2 # 0, we have N(U + WI) s:; N(U) + WI. Hence 

S(U + WI) = IIU + WIll - IN(U + Wl)1 
;;:: IIU/I - IN(U)I + IW21 - IWll - e ;;:: 8(B), 

which is contrary to the choice of U unless WI = 0 and U is independent. 
Therefore, 

8(B) = IU n VII + IU n V21 - IN(U n Vl)1 - IN(U n V2 )1 

= Sl(U n VI) + S2(U n V2) :::;; Sl(B) + S2(B). 
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To prove the reverse inequality, let UI and U2 be critical subsets of VI 
and V2 , respectively, and let W = (UI () N(U2» u (U2 () N(Ul ». Then 

8l (B) + 82(B) = lUll + I U2 1 - (IN(UI)I + IN(U2)1) 
= lUI + U21 - (IN(UI + U2)1 + I WI) 
~ IIUI + U2 11 + IWI -IN(UI + U2)1 - IWI 
= 8(UI + U2) ~ 8(B). D 

B2 Corollary. For any bipartite graph, Vo = 2aI + 8. 

PROOF. Combine the above proposition with Corollary AS. D 

Much of the work of the present section is motivated by the fact (Theorem 
BI4 below) that the identity in B2 holds for all graphs. 

Since I UI is odd if and only if ru has an odd number of components with 
odd vertex sets, one has 

B3 IU + N(U)I - 8(U) == lUI - IIUII == 0 (mod 2). 

B4 Lemma. For any extremal set U there exists an extremal set W containing 
U such that W + N(W) = V and II UII ~ ~ WII. 

PROOF. If U is extremal, let W = V + N(U). Clearly Us;; W, and every 
component of ru is a component of rw. Hence 11U11 ~ II WII while N(U) = 
N(W). Thus 8(W) ~ 8(U), and so Wis extremal. D 

B5 Lemma. For any graph, Vo ~ 2al + 8. 

PROOF. Let U be an extremal set of r = (V, C) and let Ch ••• , Cm be the odd 
vertex sets from among the components of r u. Let F be an independent 
aI-subset of C. Note that if each vertex in Cj is incident with some edge in:F, 
then at least one edge in F is incident with both a vertex in Cj and a vertex 
in N(U) (i = I, ... , m). Since F is independent, there cannot be more than 
IN(U)I such edges. Hence at least m - IN(U)I sets Cj contain a vertex 
incident with no edge in §'. In other words, at least m - IN(U)I = 11U11 -
IN(U)I = 8(r) vertices are incident with no edge in:F. Hence 21FI + 8 ~ Vo. 

D 

B6 Example. Consider the graph r = (V, C) shown in the figure: 

b x 

a 

~c~--~--~~--~--~---------g 
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Let U = {a, b, c, d, e,/, g}, and so N(U) = {x, y}. We let C1 = {a, b, c}, 
C2 = {d}, and C3 = {e,/, g}. Thus 8(U) = II UII - IN(U)I = 3 - 2 = 1. 
By Lemma B5, 8 S; Vo - 20:1 = 9 - 2·4 = 1, and so U is extremal. 

An obvious necessary condition for a graph r = (V, tff) to admit a I-factor 
is that vo(r) be even. If, however, r has the property that r(X) admits a I-factor 
for all x E V, then certainly vo(r) is odd, but r is as close to admitting a 
I-factor as an odd graph can be. Such graphs are said to be almost factorable. 
For example, for all n, the graph K 2n admits a I-factor, and so K2n + 1 is 
almost factorable. 

A subset U s;; V is said to be normal if it is extremal, V = U + N(U), 
and every component of r u is itself almost factorable (and hence odd). 
Clearly the set U in Example B6 is normal. However, the graph r in the 
example is not almost factorable since r(y) has no I-factor. 

B7 Exercise. Prove that a graph r = (V, tff) is almost factorable if and only 
if it is connected, vo(r) is odd, and V is a normal set. 

B8 Exercise. 
(a) Let e be a spanning subgraph of r. Show that if e is almost factorable, 

then so is r. 
(b) Find all "edge-minimal" almost factorable graphs on s; 5 vertices. 

Corresponding to any normal subset U of V, there exists a bipartite 
multigraph Bu of particular interest. Bu is a subcontraction of r and is 
constructed as follows. First delete any and all edges incident only to vertices 
in N(U). Let the vertices of Bu consist of the singletons {x} for x E N(U) and 
of the vertex sets of the odd components of r u. Thus Bu is a bipartite multi­
graph, but need not be a graph as we shall see presently. (Clearly all the 
results of §A, although stated only for graphs, are extendable in an obvious 
way to multigraphs.) The multi graph Bu corresponding to U and r of 
Example B6 has the form of Figure B9. Observe that it is not a graph. 

B9 

{x} {V} 

BlO Theorem. If r admits a normal set U, then vo(r) = 20:1(r) + 8(r). 
Moreover, the associated bipartite multigraph Bu admits a matching of the 
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set {{x}: x E N(U)}. Finally, each largest independent set §' of edges of r 
can be constructed as follows,' 

(a) Let §" be a matching of {{x}: x E N(U)} in Bu. 
(b) Let C be the vertex set of a component of r u. Regarding C as a vertex 

ofBu, 
(i) if C is incident with an edge E E §", then let Xc be the vertex in C 

incident with E in r. 
(ii) if C is incident with no edge in §", then arbitrarily select Xc E C. 

(c) Since U is normal, there exists a l-factor $0 in the component ofru 
with vertex set C. 

(d) Let §' = §" + ~c $0. 

Before proving this theorem, let us first illustrate how the construction of 
§' works for the graph r and set U of Example B6. First we must consider 
the graph Bu of Figure B9. Let §" = {Eb E5}' Then XCI = band XC2 = d. 
Let us arbitrarily choose xCs = f Then $01 = {{a, en, $02 = 0, and $Oa = 
{{e, gn. Hence §' = {Eb E5 , {a, c}, {e, gn. 
PROOF OF THEOREM BIO. In the graph Bu, let VI = {C: C is the vertex set of 
a component of r u}, and let V2 denote the set of vertices complementary to VI' 
Since U is extremal, 81(Bu) ~ 8(V1) ~ II U~ - IN(U)I = 8(U) = 8(B u). By 
Proposition Bl, 81(Bu) = 8(Bu) and 82(Bu) = O. We may obviously identify 
V2 with N(U), and by the Main Matching Theorem, there exists a matching 
§" of N(U) into VI' It is clear that steps (b), (c), and (d) can now be carried 
out to yield an independent edge set .'F of cardinality 

I§'I = IN(U)I + 2: O:I(rC) = IN(U)I + 2: t(ICI - I) 
c c 

= t[2IN(U)1 + vo(r) - IN(U)I - II UII] = t(vo(r) - 8(U)). 

By Lemma BS it follows that §' is indeed a largest independent set of edges. 
It is now straightforward to verify that every largest independent set of edges 
can be constructed in exactly this way. The details are left to the reader. D 

The following result appears in papers by T. Gallai [g.3], J. Edmonds [e.2], 
and W. Mader [m.4]. 

B11 Theorem. Every graph admits a normal set of vertices. 

PROOF. The method of proof is by induction on vo(r). The assertion is trivially 
valid in case vo(r) = 1. Let r = (V, 8) be given and suppose as induction 
hypothesis that every proper subgraph of r admits a normal set. By Lemma 
B4 we may let U be an extremal set such that U + N( U) = V. Subject to 
this condition, we may assume that II U II is as large as possible. 

We first show that every component of r u has an odd number of vertices. 
For let C be the vertex set of a component of r u, suppose that C is even, 
and let x E C. Since C + {x} is odd, we have II U + {x} II ~ 1/ UI/ + 1. Meanwhile, 
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since x is incident to some other vertex in C, we have N(U + {x}) £; N(U) + 
{x}. Thus 8(U + {x}) ~ 8(U), and so U + {x} is extremal. By B4 there exists 
an extremal set W containing U + {x} such that W + N(W) = V and 
II WII ~ II U + {x} II > II UII, contrary to the maximality of II UII· 

To show that the set U is normal, it remains only to show that every 
component of r u is almost factorable. We have two cases. 

Case 1: U = V and r is connected. In this case r = r v consists of a single 
odd component, and so 8(r) = II V II - 101 = 1. Suppose that r is not 
almost factorable; there exists a vertex x E V such that r(X) admits no I-factor. 
By the induction hypothesis, r(X) admits a normal set W, and so by Theorem 
BlO, 8(r(x») = vo(r(X») - 2a1(r(X»). Since this quantity is even and positive, 
8(r(x») ~ 2. Let N(x) and 8(x) denote the functions for r(X) corresponding to 
Nand 8. Since W is normal, W + N(xlW) = V + {x}. 

If x E N(W), then 8(W) = II WII - IN(W)I = II WII - (IN(xiW)1 + 1) = 
8(xiW) - 1 ~ 1. Hence W is an extremal set in r, and II WII = 8(W) + 
IN(W)I > 1 = IJVII, giving a contradiction. If x ¢ N(W), then II W u {x} II = 

II WII + I, while N(W + {x}) = N(x)(W). Hence 8(W + {xD = II WII + I -
IN(x)(W)1 = 8(x)(W) + 1 ~ 3, contrary to the fact that 8(r) = 1. 

Case 2: U c V, or U = V and r is not connected. Let C be the vertex set 
of some component of r u. Then C c V and by the induction hypothesis, 
rc admits a normal set W. Hence W + Nc(W) = C, where Nc is the re­
striction of N to r c. We define 8c analogously. Thus 

B12 8c(W) = II WII - INc(W)1 = II WII - (ICI - I WI) ~ 1 

by B3 since I CJ is odd. Let X = U + W. Then 

B13 (a) 

(b) 

N(X) s; N(U) + Nc(W) 

IIXII = (IIUII - 1) + II WII· 

Thus 8(X) = IIXII - IN(X)I ~ 11U11 + II WI) - 1 - )N(U)I - INc(W)1 = 
8(U) + 8c(W) - 1 ~ 8(U) by BI3a and BI2. Since U is extremal, strict 
equality must hold throughout this chain and hence in BI3a as well. We 
see that X is extremal and that X + N(X) = V. Therefore IIXII :::; IIUII, 
which by B13b implies that II WII :::; 1. Hence W = C by BI2, and r c is 
almost factorable by Exercise B7. 0 

Combining Theorems BlO and BII we have 

B14 Theorem (C. Berge. [b.3]). For any graph, Vo = 2a1 + 8. 

Since 8(r) = 0 if and only if r admits a I-factor, we deduce immediately 

B15 Corollary (W. T. Tutte [t.4]). The graph r = (V, C) admits a I-factor if 
and only if llUil :::; IN(U)lfor all U £; V. 
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Note in particular how Tutte's result generalizes Corollary A6 from 
bipartite graphs to all graphs. 

Bl6 Exercise. Let r = (V, C) be a graph with vo(r) even. Show that r admits 
a I-factor if and only if II UII ~ IN(U)I + I for all Us; v. 
Bl7 Exercise (Errera [e.7]). Let r be a connected trivalent graph in which 
all isthmuses lie on a single path. Show that r has a I-factor. [Hint: use 
Exercise BI6.] 

BIS Exercise (C. Berge [b.5]). Let r = (V, C) be h-valent and suppose that 
whenever {O c: S c: V, then the number of edges incident with exactly one 
element of S is at least h - 1. Show that r either admits a I-factor or is 
almost factorable. 

Bl9 Exercise. Show that 1X1 ~ min{[vo/2], P} for any graph. 

B20 Exercise (P. Erd5s and T. Gallai [e.4]). Prove for any graph 

(~) + 1X1(VO - 1X1) if (51X1 + 2)/2 < Vo. 

For further information on I-factors, see Lovasz [1.5]. 

VC Coverings and Independ~nt Sets in Graphs 
Throughout this section, r = (V, C) denotes a graph. An externally stable set 
(also called a "dominating set") is a vertex-covering subset of V. The 
cardinality of a smallest externally stable set in V is denoted by poo(r), or 
simply Poo, and is called the external stability of r. In a like manner, but 
without specific names, we define: 

POl(r) = cardinality of a smallest edge-covering subset of V; 
PlO(r) = cardinality of a smallest vertex-covering subset of C; 
PH (r) = cardinality of a smallest edge-covering subset of C. 

Example. The graph in Figure CI has Vo = 9, VI = 11, 1X0 = 5, 1X1 = 4, 
Poo = 3, POI = 4, PlO = 5, PH = 2. 

CI 

138 



VC Coverings and Independent Sets in Graphs 

C2 Exercise. Compute each of the above parameters for: 
(a) the complete graph K,,; 
(b) the n-circuit d", n ~ 3; 
(c) the graph obtained by removing an elementary n-cycle from K", n ~ 3. 

C3 Exercise. Find two nonisomorphic connected graphs r 1 and r 2 for 
which a,(r 1) = a;(r 2) and p,/(r 1) = Pii(r 2) for all i, j E {O, I}. 

C4 Exercise. Show that if r has no isolated vertices and if W is any minimal 
externally stable set, then V + W contains another minimal externally stable 
set, and hence Poo :$ vo/2. 

CS Exercise. Let W S;;; V. Show that W is an independent vertex set if and 
only if V + W is an edge-covering set. 

The present section is concerned with the relationships of various graph­
theoretical parameters to each other. Theorem Bl4 of the previous section 
was the first of the present sequence of identities and inequalities. 

C6 Proposition. For any graph with k isolated vertices, 
(a) PI0 + k = al + 8; 
(b) 8 :$ ao :$ PI0 + k. 

PROOF. (a) Let ofF be a vertex-covering Pl0-set of edges. By the minimality of 
:F, r oF must be a forest. Since its cycle space is trivial, IIIA15b yields vo(r) = 

vo(r oF) = VI (r oF) + V-I (r oF) :$ PI0(r) + al (r) + k, since the selection of one 
edge from each component of r oF yields an independent set. Combining this 
with Theorem B14 yields al + 8 :$ PI0 + k. To obtain the reverse inequality, 
let ofF denote instead an independent al-set of edges. By Theorem B14, 
there are precisely 8 vertices incident with no edge in :F. If for each of the 
8 - k nonisolated vertices, an edge is adjoined to ofF which is incident with 
that vertex, the resulting set is vertex-covering and contains al + 8 - k 
edges. Hence PI0 :$ al + 8 - k. 

(b) By Theorem B14, exactly 8 vertices are incident with no edge of a 
largest independent edge set. Such a 8-set of vertices must be independent. 
Hence 8 :$ ao. If the isolated vertices of r are deleted, then each edge of a 
vertex-covering PIO-set of edges is incident with at most one vertex of any 
independent set of vertices. Hence ao - k :$ PIO. 0 

If d S;;; (!J(U), let d = {U + T: TEd}. Then a set TS;;; U is a minimal 
element of (d, s;;;) if and only if U + T is maximal in (d, s;;;). It follows that 
for any d S;;; (!J(U), 

C7 min{ITI: TEd} + max{lTI: TEd} = lUI. 

The first part of the next proposition is a direct application of this principle. 
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C8 Theorem. (T. Gallai [g.2], 1959). 
(a) For any graph, ao + fiOl = Vo. 
(b) For any graph without isolated vertices, al + filO = Vo. 

PROOF. (a) Letd = {WE,9I(V): Wis edge-covering}. By C5, d = {WE,9I(V): 
W is independent}. Then by C7, 

fiOl + ao = min{!W!: WEd} + max{!W!: WEd} = Vo. 

(b) Eliminate 8 from B14 and C6a. o 
C9 Proposition. For any graph without isolated vertices, the following in-

equalities hold: 
(a) ao :$; filO :$; ao + al; 
(b) al :$; fiOl :$; 2al; 
(c) al :$; Vo - ao :$; 2al' 

Furthermore, if equality holds in anyone of the left-hand inequalities above, 
then it holds in all three of the left-hand inequalities. If equality holds in any 
one of the right-hand inequalities or in the inequality 8 :$; ao (cf. C6b), then 
it holds in all three right-hand inequalities and 8 = ao. 

PROOF. From the two parts of Gallai's theorem, filO - ao = fiOl - al = 
Vo - ao - aI, and by Proposition C6b, filO - ao ~ O. This establishes the 
three left-hand inequalities as well as the fact that if equality holds in any 
one of them, then it holds in all three. By Theorem B14 and Proposition C6b, 
2al - (vo - ao) = ao - 8 ~ O. This establishes (c) and that equality holds 
in the right-hand inequality of (c) if and only if 8 = ao. The rest follows 
by substitution from Gallai's theorem. D 

Actually portions of the above proposition hold when the prohibition 
against isolated vertices is relaxed. These are the portions not requiring C8b. 
The greater generality obtained by sorting them out, however, is in our 
opinion not worth the effort. 

The following is an equivalent formulation of the Main Matching 
Theorem. 

CIO Theorem (D. Konig [k.5], 1936). In a bipartite graph, al = fiOl' 

PROOF. Let r = ({Vb V2}), @"). By Proposition C9b, al :$; fiOb and so it 
suffices to find an edge-covering aI-subset of VI U V2 • Clearly al is the 
cardinality of a largest matching in r. By the Main Matching Theorem, 
al = ! VI! - 81 , Let U £; VI be a critical set. One observes that VI + U + 
N(U) is an edge-covering set with cardinality 

D 

Cll Corollary. In a bipartite graph without isolated vertices, ao = filO and 
ao + al = Vo· 
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Cll Proposition. In any graph, 
(a) fJoo :5; ao; 
(b) fJll :5; al; 
(c) fJoo :5; al if there are no isolated vertices. 

PROOF. (a) Clearly every maximal independent vertex set is externally stable. 
(b) The argument is the same as in (a). 
(c) Consider a smallest externally stable set VI of vertices of r and let 

V2 = V + VI' Let $' be the subset of C consisting of edges incident with one 
vertex in VI and one vertex in V2 • Then B = ({VI> V2}, $') is a bipartite 
graph, and by the Main Matching Theorem, 

fJoo(r) - SI(B) = I VII - SI(B) = al(B) :5; al(r). 

It suffices to show that SI(B) = O. Suppose that in B, S(U) > 0 for some 
U ~ VI> and let W = VI + U + N(U). Then I WI < lVII, and since r has 
no isolated vertices, W is externally stable, contrary to the definition of 
Vl' 0 

Cl3 Exercise. From C6 and C9 we deduce that for j i= k, we have al :5; fJ"k 
in three of the four possible cases. From C12, we infer fJ", :5; al in three of 
four possible cases. Determine whether the remaining inequalities, namely 
ao :5; fJOI and fJll :5; ao, are true or false, and show that in any graph without 
isolated vertices, we have the weaker result fJll :5; fJOI' 

Cl4 Exercise. Let a(r) = max{1 UI: U ~ V; r u is a forest}, and let fJ(r) = 

min{1 UI: U ~ V; every circuit in r meets U}. Prove a(r) + fJ(r) = vo(r). 

CIS Exercise. State and prove a result analogous to C14 with V replaced by 
C in the definitions of a(r) and fJ(r). 

Cl6 Exercise. Show that in a graph without isolated vertices, the cardinality 
of a minimum subset $' ~ C with the property that $' excludes at most one 
edge from each vertex cocycle is fJIO - Vl + Vo. 

Cl7 Exercise. Prove: 
(a) Every smallest vertex-covering edge set contains a largest independent 

edge set. 
(b) Every largest independent edge set is contained in a smallest vertex­

covering edge set. 

VD Systems with Representatives 

For this section A = (V,f, E) will denote an arbitrary system. We define a 
list of distinct representatives (LDR) for A to be an injection .:\: E -+ V such 
that .:\(e) Ef(e) for all e E E. A system admitting an LDR is called a system 
with distinct representatives (SDR). The fundamental result in the literature 
concerning SDR's is the following: 
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Dl Theorem (Philip Hall [h.4], 1935). The system (V,/, E) is an SDR if 
and only if 

F £ E => IFI :::;; 1 U J(e) I· 
eeF 

The Philip Hall Theorem should readily be seen to be equivalent to Corol­
lary A6 above. For let r = ({V, F}, If) be the bipartite graph of A. If F £ E, 
then N(F) = UeeFJ(e), and the equivalence is immediate. It should be re­
marked that Philip Hall's theorem is strictly a statement of existence. It 
indicates neither how an LDR can be found nor, when an LDR does exist, 
how many distinct LDR's A may have. The enumerative problem is considered 
below in §F. When an LDR exists, it can be found in the following way. Since 
an LDR A: E ~ V of A exists if and only if the set of edges {{e, A(e)}: e E E} 
is a matching of E in r, the algorithm for constructing a largest matching in 
r can thus be employed to find a "longest" LDR for A. 

D2 Exercise. Just as the Philip Hall Theorem is the analog for systems of 
Corollary A6, devise and justify system analogs Jor: 

(a) The Main Matching Theorem; 
(b) Corollary A 7; 
(c) The Konig Theorem (ClO). 

D3 Exercise. Let fJI be an independent subset of the vector space ((/J(U), +). 
Prove that the set system (U, fJI) is an SDR. 

Let Vbe a fixed set and consider two systems AI = (V,};, EI) for i = 1,2. 
A list of common representatives (LCR) for the two systems is a pair (A1> A2) 

where AI is an LDR for AI (i = 1,2) and A1[Ed = A2[E2]. An obvious neces­
sary condition for the existence of a LCR is that IE11 = IE21. 

D4 Proposition. Let the systems A1 = (V,Jb E1) and A2 = (V,J2' E2) be 
given with IE11 = IE21 = m. A necessary and sufficient condition Jor A1 
and A2 to have an LCR is that Jor all D1 £ E1 and D2 £ E2, 

PROOF. Necessity. Suppose that (A1> A2) is an LCR for A1 and A2, and let 
D1 £ E1 and D2 £ E2. Clearly IA1[Dd U A2[D2]1 :::;; m, while A1[Dd 11 

A2[D2] £ (UeeDl J(e)) 11 (UeeD2 J(e)). Hence 

ID11 + ID21 = IA1[Ddl + IA2[D211 

= IA1[D11 U A2[D2]1 + IA1[Dd 11 A2[D2 ]1 

:::;; m + 1 ( U J(e)) 11 (U J(e)) I· 
eeDl eeDa 
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Sufficiency. Let V' be a I VI-set disjoint from V and all other sets in 
question. There is a bijection V-+- V' given by x 1-+ x'. If S ~ V, let S' = 
{x' E V': XE V}. We now form the bipartite graph B = {{V U E1, V' U E2}, 8), 
where 

8 = {{x, x'}: x E V} U {{x, e}: e E E2; x Ef2(e)} U {{e, x'}: e EEl; x Ef1(e)}. 

Observe that lVu Ell = IV' U E21. See Figure D5. 

D5 

The bipartite graph of A2 The bipartite graph of Al 
(isomorphic copy) 

Let us first suppose that B admits a mutual matching. Let U denote the 
set of vertices in V thereby matched with elements of E2 • Thus U E &'m(V). 
It follows that V + U is matched with (V + U)" and so U' is necessarily 
matched with E1• For i = 1,2, define "I: EI -+- U so that for each e E E10 
"1(e)' is the vertex in U' matched with e, while for each e E E2, "2(e) is the 
vertex in U matched with e. Clearly (A1' A2) is an LCR. 

It suffices therefore to prove that B admits a mutual matching. By 
Corollary A6, this is equivalent to showing that 8(A) ~ 0 for all A ~ V U E1• 

We may write A = W + D1, where W ~ V and D1 ~ E1. Then 

N(A) = W' U (u f1(e»)' + {e E E2:f2(e) ('\ WoF 0}. 
eEDl 

Let D2 = {e E E2:f2(e) ~ V + W}. Invoking the condition, we compute 

8(A) = IAI - I N(A) I 

= ID11 + I WI - (IW'I + 1 (hd/1(e»), ('\ (V + W)'I + (IE21 - ID21» 

= ID11 + ID21 - m -I C~ h(e») ('\ (V + W)I 

~ I (u f1(e») ('\ (U h(e») I-I (U f1(e») ('\ (V + W) I ~ o. 0 
eED1 'EDi eEDl 
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D6 Exercise. Let Al = (V,It, EI) be a system with IEII = m for i = 1, ... , k. 
An LCR (A1> •.• , Ak ) for these systems is defined in the obvious way. Consider 
the condition 

(a) Show that this condition is necessary for the existence of an LCR. 
(b) Show that it is sufficient for the existence of "pairwise LCR's" (AI> Aj) 

for Al and Aj when 1 :s:: i < j :s:: k. 
(c) Give a counter-example to show that this condition is not sufficient 

for the existence of an LCR when k = 3 and m = 2. 

D7 Exercise (H. J. Ryser [r.9]). Let.02i E lP>m(U) for i = 1,2. 
(a) Prove that (U, .021) and (U, .022) admit an LCR if and only if for all 

f/ £; .021 U .022 , 

f/ covers U => If/I ~ m. 

(b) Prove that if .021 u .022 £; &:,(U) for some n, then (U, .021) and (U, .022) 

admit an LCR. 

D8 Exercise. Let G be a finite group, let H be an arbitrary subgroup, and let 
m be the index of H in G. Prove that there exist Xl, ••• , Xm E G such that 

m m 

G = UxIH= UHXI' 
1=1 1=1 

We conclude this section with an application of the foregoing theory. 
An r x s Latin rectangle is a rectangular array of symbols with r rows 

and s columns such that each symbol appears at most once in each row and 
each column. A Latin square of order n is an n x n Latin rectangle on n 
symbols. 

D9 Proposition. If r < s, an r x s Latin rectangle on s symbols can always be 
extended to a Latin square of order s. 

PROOF. Let V = {I, 2, ... , s} be the set of symbols of the given rectangle. Let 
E = {eh ... , es} be an arbitrary s-set and define f: E ---')- flJ(V) by lettingf(el) 
be the (s - r )-set of symbols not appearing in the ith column. Since each 
symbol j E V appears precisely once in each of the r rows, it must appear in 
precisely r columns. Hence j is absent in precisely s - r columns. By the 
analog for systems of Corollary A7 (see Exercise D2b), if r < s then the 
system (V,f, E) admits an LDR A, and an (r + 1)-st row A(e1), ••• , A(es) 

may be adjoined to the Latin rectangle to form an (r + 1) x s Latin rectangle. 
If r + 1 < s, the above argument may be repeated until a Latin square of 
order s is obtained. 0 
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VE {O, l}-Matrices 

In this section M = [mil] will denote an r x s matrix where mil = ° or I 
for all (i,j) E{l, ... , r} x {I, ... , s}. Such a matrix is called a {O, I}-matrix. 
By a line of M is meant either a row or a column of M. 

We shall now define a rather broad "incidence relation" among lines and 
positions in a {O, l}-matrix. The reader should perceive that this definition 
is motivated by the definitions of incidence in mUltigraphs (§A) and of 
incidence matrix of a system (§ID). 

We say that the ith row andjth column of M are incident if mil = 1. The 
ith and jth rows are incident if their inner product satisfies 

(Thus mlk = I = mik for some k E {I, ... , s}.) Similarly two columns are 
incident if their inner product is positive. We say that the position (i,j) is 
incident with the ith row and with the jth ~olumn. Finally, two positions on a 
common line are incident. 

The number of lines of an r x s matrix M is denoted by 1I'(M) = r + s. 
If M is an incidence matrix of a system A = (V, /, E), then the matrix 

MM* = A = [ali] is called a vertex-vertex incidence matrix (or an adjacency 
matrix) of A. The set V = {Xl' ... , X,} may be indexed so that for i, j E 
{I, ... , r}, 

El Exercise. Show that a multigraph is uniquely determined (up to isomorphism) 
by anyone o/its adjacency matrices. Show that this does not hold for systems 
in general. 

A block-block incidence matrix of a system (V,/, E) with incidence matrix 
M is the matrix M* M = H = [hll]. The set E = {el> ... , es} may be indexed 
so that for i, j E {I, ... , s}, 

hll = I/(el) n/(el)1 = I{x E V: {e" ei} S;; /*(x)}I. 

(The significance of these entries Oti and hlf will be pursued in Chapter IX.) 

E2 Exercise. Characterize all graphs not uniquely determined (up to isomor­
phism) by their block-block incidence matrices. 

Let r = (V, tf) be a graph with V = {Xl> ... , x,} and tf = {El> ... , EB}. 

Let M = [mlf] be the incidence matrix of r which conforms to this indexing. 
Then the entry ali in the corresponding adjacency matrix A = MM* of r is 

if i = j; 
if i =F j and {x" Xi} ¢ tf; 

if i =F j and {XI> Xi} E C. 
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Moreover, 

In the block-block incidence matrix of r, the diagonal entries are all 2 and 
the others are each 0 or 1. Graphs are not the only systems with the property 
that the nondiagonal entries in these two matrices are 0 or 1, as we see in the 
following exercise. 

E3 Exercise. Prove that for any {O, I }-matrix M the following three statements 
are equivalent. 

(a) The nondiagonal entries on MM* are 0 or 1. 
(b) The nondiagonal entries of M* Mare 0 or 1. 
(c) M has no 2 x 2 submatrix of the form 

E4 Exercise. Let A be the adjacency matrix of a graph r = (V, tI) which 
corresponds to the indexing {Xb .•• , xr } = V. Let B be obtained from A by 
replacing all the diagonal entries with O. For n EN, consider the nth power 
Bn = [blJ(n)] of B. Show that there exists an xlxrpath of length at most n 
if and only if bjj(n) > O. If in the definition of path (§IJC) we relax the con­
dition that two consecutive edges must be distinct, show that blAn) is the 
precise number of " xlxrpaths" of length n. 

Consider the bipartite graph r = ({Vb V2}, e) where I VII = rl' Its (vertex­
edge) incidence matrices are incidence matrices of the set system (VI U V2 , e) 
and are not of great interest; they assume the form of Figure ES, where the 
rl x lei submatrix MI has exactly one I in each column and at most rl U :f: i) 

e 

E5 ~: [-~:--] 
l's in each row. The adjacency matrices of r, on the other hand, have the 
form of Figure E6, where DI is a diagonal matrix whose diagonal is a list of 

VI V2 

VI [-E-i-l-~-] 
V2 M : D2 

E6 

the valences of the vertices in VI (i = 1,2) and M is a {O, J}-matrix of order 
rl x r2' Observe that M is an incidence matrix of a system for which r is the 
bipartite graph. In the light of Exercise El, M alone suffices to characterize r. 
In fact, there is a natural identification of the set of all rl x r2 {O, l}-matrices 
with the set of all subgraphs of r obtained from KT1 ,r2 by deleting edges only. 
Permutations of rows or of columns of M correspond to automorphisms of 
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the system r leaving Vl and V2 fixed setwise. It is thus natural that some of 
the graph-theoretical parameters introduced in §A and §C yield the following 
interpretations, which may be considered as definitions, in the context of the 
{O, 1 }-matrices: 

ao(M) = max({rlo r2} U {'IT(L): L is a zero-submatrix of M}). 

al (M) = cardinality of a largest set of positions occupied by 1 's 
in M, no two of which are incident. (This parameter 
is called "term rank" in the literature, notably by 
H. J. Ryser [r.9].) 

fl01(M) = cardinality of a smallest set of lines of M such that 
every position occupied by a 1 is incident with a line 
in the set. 

fl10(M) = cardinality of a smallest set of positions occupied by 
1 's in M at least one of which lies on every line 
containing a 1. 

The parameters floo and flu do not appear to have interesting matrix 
analogs. Clearly equivalent to the Konig Theorem (CIO) is 

E7 Theorem (Egarvary [e.3]). In a {O, 1}-matrix, the cardinality of a largest 
set of positions occupied by 1 's no two of which are incident equals the 
cardinality of a smallest set of lines such that every position occupied by 
a 1 is incident with a line in the set. 

Occasionally we may require a matrix over an arbitrary integral domain, 
in which case the symbol 1 in the above theorem can be replaced by the words 
"nonzero element." 

An isolated vertex of the bipartite graph r corresponds to a line of D's 
in each of its adjacency matrices. Thus the analog of Corollary Cll is: 

E8 Proposition. If there is a 1 in each line of an r1 x r2 {O, 1}-matrix M, 
then the cardinality of a smallest set of positions occupied by 1 's at least one 
of which lies on every line equals ao(M), and 

ao(M) + al(M) = 'IT(M). 

Applying Theorem C8 to bipartite graphs yields 

E9 Proposition. For a {O, 1}-matrix M, 

ao(M) + flOl(M) = 'IT(M), 

and if there is a I in each line of M, then a1(M) + fllO(M) = 'IT(M). 

We state an analog for matrices of Corollary A6. 
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EIO Proposition. Given any r1 x r2 {O, l}-matrix with r1 ~ r2, there exist r1 
positions occupied by 1 's, no two oj which are incident, if and only if every 
n x r2 submatrix has at most r2 - n columns oJO's (n = I, ... , r2)' 

The four parameters and four results in this section pertain to {O, I}­
matrices in general, i.e., not just to those matrices reflecting the particular 
kind of incidence defined for systems in §A. These results should therefore 
yield information about arbitrary systems associated, by some yet-to-be­
defined kind of incidence, with some given {O, I}-matrix. The reader may 
find it fruitful to explore various types of incidence in mUltigraphs or other 
systems, interpreting such "incidence matrices" as edge-cycle, edge-cocycle, 
cycle-spanning forest, vertex-circuit, etc. Perhaps the results of this section 
will yield some new results or at least some short proofs of old results. This 
is indeed a very open-ended problem. 

Ell Exercise. Let L be a {O, l}-matrix and let n be the largest number of l's 
in any line. Prove that L is a submatrix of a {O, 1 }-matrix each of whose lines 
contains exactly n 1 'so 

VF Enumerative Considerations 

The results in the first four sections of this chapter have been largely con­
cerned with questions of existence-existence of matchings, of LDR's, of sets 
of lines in matrices with given properties, and so forth. Here in the final 
section of the chapter, we consider questions of the form, "Given existence, 
how many are there?" The flavor is reminiscent of §IC, but the earlier sections 
of this chapter permit extension again of our numerical answers to a wide 
variety of superficially dissimilar models. 

Let M = emu] be an r x s matrix over some integral domain. If r ~ s, 
the permanent of M is given by 

perm(M) = 2: m1,<p(1)' .... mr,<p(r) 
<P 

where the summation is over all injections 

rp: {I, ... , r}~{l, ... , s}. 

By Proposition IC13, perm(M) is the sum of s!/(s - r)! products. If r = s, 
then perm(M) can be thought of as the" unsigned determinant" of M. The 
following proposition should be evident. 

Fl Proposition. Let A = (V,J, E) be a system with lEI ~ IVI. Let r = 
({E, V}, Iff) be the bipartite graph oj A and let M be an incidence matrix oj 
A. Then perm(M) equals both the number oj LDR's oj A and the number 
oj matchings oj E in r. 
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Before the next theorem, due to Marshall Hall, it may be well to stand off 
for a moment and consider the logical relationships among the results of 
Chapters IV, V, and VI. The Max-Flow-Min-Cut Theorem was proved in 
Chapter IV essentially from first principles developed in Chapters I, II, and 
III. From it we deduced the Main Matching Theorem, one of whose corol­
laries (A6) has been demonstrated (§C, §D, §E) to be equivalent to various 
other results, notably the Philip Hall Theorem. The Main Matching Theorem 
can straightforwardly be shown to imply the Max-Flow-Min-Cut Theorem. 
Looking ahead to Chapter VI, we anticipate proving the equivalence between 
the Max-Flow-Min-Cut Theorem and the Menger Theorem for separation 
in graphs. Marshall Hall's theorem below is totally independent of this 
logical chain. It will be proved from first principles; yet it yields the Philip 
Hall Theorem as a trivial corollary. Marshall Hall's theorem, therefore, 
might have been used as our logical starting point rather than Max-Flow­
Min-Cut. The choice of a starting point for this presentation is very much 
a matter of taste. 

F2 Theorem (Marshall Hall [h.1], 1948). Let q E '" + to}. Let the system 
A = (V, J, E) satisfy 

F3 D £ E=> IDI ~ I Uf(e) I, 
BeD 

and suppose that all blocks have size at least q. The number of LDR' s admitted 
by A is at least: 

(a) q! ifq < lEI; 
(b) q!/(q - IE!)! if lEI ~ q. 

PROOF. (Adapted from H. B. Mann and H. J. Ryser [m.6].) We proceed by 
induction on lEI. If E = tel, then lEI ~ q and A admits exactly If(e)1 LDR's, 
where If(e) I ~ q = q!/(q - I)! as required. The induction hypothesis is that 
the theorem holds for all systems with fewer than m blocks. We assume 
lEI = m. Condition F3 can be broken into two cases. 

Case 1: 0 cDc E => I DI < I UBeDf(e)l. Let eo E E. Since If(eo)1 ~ q ~ 1, 
pick Xo Ef(eo). Let E' = E + {eo} and V' = V + {xo}, and form the sub­
system A' = (V',/" E') where 

/,(e) = f(e) () V', for all e E E'. 

If D £ E', then by assumption 

IDI ~ I Uf(e)l- 1 ~ I Uf'(e) I, 
BeD BeD 

i.e., A' satisfies F3. Clearly q < lEI if and only if q - 1 < IE'I. By the 
induction hypothesis, A' admits at least (q - I)! LDR's if q < lEI and at 
least 

(q - I)! (q - I)! 
[(q - 1) - IE'Il! = (q - IE!)! 
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LOR's if q ~ lEI. To each LOR A' of A' corresponds the unique LOR A of 
A given by 

A(e) = . { A'(e) if e E E'; 
Xo If e = eo. 

As there exist at least q initial choices for xo, A admits at least q times as 
many LOR's as A' does, as required. 

Case 2: there exists non-empty DeE such thaI IDI = IUeeDf(e)l. In this 
case,foralleED,onehasq ~ If(e) I ~ IDI < lEI. By the induction hypoth­
esis, the subsystem AD admits at least q! LOR's. Now form another sub­
system e = (W, g, E + D) where W = V + UeeD fee) and gee) = fee) n W 
for all e E E + D. 

We show that e satisfies F3. Suppose that for some A s;; E + D it held 
that IAI > IUeeA g(e)l. Since DnA = 0, our various assumptions give 

< IDI + IAI = ID + AI, 

contrary to the assumption that A satisfies F3. 
Since e satisfies F3, it satisfies the hypothesis of the theorem with 1 in 

place of q. By the induction hypothesis, e admits at least one LOR A1 • (Note: 
A1 could have been obtained here by the Philip Hall Theorem, but as we said 
in the foregoing remarks, we wished to give this result an independent proof.) 
Let Ao be an LOR for AD and define A: E -+ V by 

A(e) = {Ao(e) if e ED; 
A1(e) if e E E + D. 

Since AD and e have disjoint vertex sets, A is an injection, and hence A is an 
LOR of A. Since AD admits at least q! LOR's, so does A. 0 

The next three corollaries are immediate consequences of Marshall Hall's 
theorem and other results of this chapter. Their proofs are left to the reader. 
From the proof of 09 we obtain 

F4 Corollary (Marshall Hall [h.3], 1945). If 1 ~ r < s, the number of ways 
to extend an r x s Latin rectangle on s symbols to an (r + I) x s Latin 
rectangle is at least (s - r)!. 

F5 Exercise. If I ~ r < s, determine lower bounds for the number of r x s 
Latin rectangles on s symbols and for the number of Latin squares of order s. 

F6 Corollary. Let r = ({Vh V2}, 8) be a bipartite graph, let q E N, and suppose 
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p(x) ~ q for all x E Vl. If r admits a matching of Vl, then the number of 
such matchings is at least 

(a) q! ifq < IVll; 
(b) q!/(q - IVlD! ifq ~ IVll· 

F7 Exercise. Apply Corollary F6 to complete bipartite graphs and thereby 
obtain "half" of Proposition IC13, namely that 

linj(Yx)1 ~ (IYII~II!XD! iflXI::;; IYI· 

The ith row-sum of an r x s matrix A = [al,] over an integral domain is 
PI = L1~l fltjo and the jth column-sum is a, = L~=l alJ. We say that A has 
constant row-sums (respectively, has constant column-sums) if PI = PI 
(respectively, al = a/) for all i, j. 

F8 Corollary. Let M be an r x s {O, 1}-matrix and let q EN + {O} be a lower 
bound for the row-sums of M. If perm(M) '" 0, then 

{ q! ifq < r; 
perm(M) ~ q!/(q _ r)! if q ~ r. 

ApermutationmatrixPisanr x s{O, 1}-matrixsuchthatPP* = I" where 

denotes the identity matrix of order r. It is a well-known fact of linear algebra 
that if P is an r x s permutation matrix, then r S s. Moreover, r = s if and 
only if all row- and column-sums are 1. Clearly perm(P) = 1. 

F9 Proposition. Let A be a nonzero r x s matrix whose entries are nonnegative 
elements of some field IF s::: Ill. Let r ::;; s and suppose A has constant row­
sums and constant column-sums. Then there exist r x s permutation 
matrices Pl> . .. , P" and positive elements Clo ••• , C" E IF such that 

PROOF. Let all row-sums equal P and all column-sums equal a. 
If r < s, let J be the (s - r) x s matrix each of whose entries equals 1. 

Consider the augmented matrix 
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which also has the property that its entries are nonnegative elements of IF. 
Since Ll,f ali = rp = sa, the column-sums of A' are all equal to a + 
(s - r)pjs = p; i.e., all line sums are equal to p. Clearly if the proposition 
holds for A', then it holds for A. We may therefore assume that A is an 
r x r matrix with all line-sums equal to p. 

We assert that A has an r-set of positions occupied by positive elements, 
no two of which are incident. Were this not so, one could invoke Theorem E7 
and the remark following it to infer: some set of fewer than r lines of A, say 
p rows and q columns with p + q < r, would be incident with every position 
occupied by a positive entry in A. Hence 

rp = L ali ::;; {p + q)p < rp, 
I" 

which is absurd. 
Let PI be the r x r matrix with l's in the aforementioned r-set of positions 

and O's elsewhere. Then PI is a permutation matrix. Let CI be the least of the 
entries of A occupying one of these r positions. Hence CI > 0, and A - CIPI 

is also an r x r matrix whose entries are nonnegative elements of IF and has 
constant line-sums p - CI' 

The foregoing argument may be repeated with A - CIPI in place of A. 
Since A - CIPI has more O's than A, this process must terminate in a finite 
number of steps. 0 

FlO Corollary. Let M be a {O, l}-matrix of order r with constant line-sums p. 
Then there exist distinct permutation matrices P lo ••• , Pp such that 

PROOF. In the proof of the proposition, CI = I and each successive coefficient 
c, in the jth iteration of the argument is also 1. The process must terminate 
in exactly p steps. 0 

Fll Corollary. Let A = (V,J, E) be a system with lEI::;; I VI and with 
blocksize k. Suppose that A * has constant blocksize. Then A admits a k-set of 
LDR's A1o ••• , Ak such that AI(e) =F Aie)for all e E E and I ::;; i < j ::;; k. 

Systems satisfying the hypothesis of this corollary are of particular interest 
and will be studied in some depth in Chapter IX. 
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CHAPI'ERVI 

Separation and Connectivity in 
Multigraphs 

The present chapter will deal with multigraphs, principally graphs, and with 
directed graphs. What will be done here is, in a sense, "dirty" graph theory, 
since it will lack the elegance that comes from showing that graphs inherit 
properties froin more general and more abstract combinatorial models. The 
motivation will come rather from pictorial representations of multigraphs or 
directed graphs, and we shall rarely escape from this vein in the course of the 
proofs. 

There are several reasons for inserting this chapter at this point. 

1. The "lead off" theorem is the now classical Menger Theorem, but our 
proof is not classical; it will employ the Max-Flow-Min-Cut Theorem, 
which will be shown in tum to follow from Menger's theorem. 

2. The notion of k-connectivity, introduced here, generalizes the concepts of 
biconnectivity and triconnectivity introduced in Chapter III. 

3. Connectivity is not only of some interest itself in graph theory, but is 
prerequisite to the study of further- graph-theoretical topics, including 
chromatic problems to be presented in Chapters VII and VIII. 

VIA De Menger Deorem 

In this section and the next, r will denote either the multigraph (V, f, E) or 
the directed graph (V, D). 

Let A, Z s;; V and A () Z = 0. If r is (V, f, E) (respectively, (V, D)), the 
term AZ-patb will denote an elementary (directed) az-path such that a E A, 
Z E Z, and no other vertex of it is in A + Z. An AZ-edge is an AZ-path of 
length 1. Possibly A is a singleton {a} or Z = {z}, in which case we shall 
suppress the braces and speak of an aZ-path, az-edge, etc. (Cf. §IIB and §IIIA.) 
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VI Separation and Connectivity in Muitigraphs 

A set S s;; V + A + Z separates Z from A if res) contains no AZ-path. 
(If r = (V, D), we understand res) = (V + S, Dr. [(V + S) x (V + S)]).) 
Such a set S is called a separating set of Z from A. The cardinality of a 
smallest separating set of Z from A, if one exists, will be denoted by a(A, Z). 
Clearly such a set exists if and only if there exists no AZ-edge. If there exists 
no AZ-path in r, then of course a(A, Z)= O. If r = (V,/. E), then a(A, Z) = 
a(Z,A). 

An m-family of paths is opemy-disjoint if whenever two members have any 
common vertex at all, then that vertex is for each of the paths either an initial 
or a terminal vertex. 

At Theorem (K. Menger [m.9], 1927). Given r, let a, z E V, a :f: z. Suppose 
r contains no az-edge. If a(a, z) ~ m then r contains an openly-disjoint 
m:family of az-paths. 

PROOF. If the theorem is true for graphs, then it is obviously true for multi­
graphs. Moreover, if it is true for directed graphs, then it is true for graphs, 
since any graph (V, tI) can be replaced by the directed graph (V, D) where 
D = {(x, y): {x, y} E tI}. Thus (x, y) E D ~ (y, x) E D, and every path in 
(V, tI) corresponds to a directed path in (V, D). The theorem will now be 
proved for the case r = (V, D). We assume the hypothesis of the theorem. 

Let Xo be some object not in V and let V' = V + {a, z, xo}. Let D' S;; 

V' X V' consist of all edges of the form: 

(x, y) if (x, y) E D and {x, y} r. {a, z} = [2$; 
(xo, y) if (a, y) ED; 
(x, xo) if (x, z) E D. 

Let r ' = (V', D'). (For example, see Figure A2.) 

A2 

There is an obvious bijection assigning to each az-path in r a unique directed 
circuit in r' through xo, obtained by "fusing" a and z. In order to apply 
the vertex form of the Max-Flow-Min-Cut Theorem (IVF2), we define a 
vertex capacity j: V' ~ N by 

154 

j(x) = {I ~f x :f: Xo; 
IVI If x = xo. 



VIA The Menger Theorem 

Every openly-disjoint m-family of az-paths in r yields a feasible flow in r' 
whose value at xI) is m. Conversely, let h be an integral feasible flow in r' 
with h(xl)) = m. By IVAI7, h is the sum of elementary flows. The supports 
of these elementary flows correspond to directed circuits in r' and no two 
of them have any common vertex except possibly XI). In fact, exactly m of 
them pass through XI). Hence they correspond to an openly-disjoint m-family 
of az-paths in r. Thus, 

A3 max{m: there exists an openly-disjoint m-family of az-paths in r} 
= max{h(xl)): h is a feasible flow in r'}. 

We have observed that a set S s;; V' + {XI)} meets every directed circuit 
through XI) in r' if and only if S meets every az-path in r. For such a set, 
j(S) = L.xesj(x) = lSI. Thus, 

A4 minU(S): S is a cut through Xo in r'} 
= min{ISI: S separates z from a in r} = o{a, z). 

The result follows from A3, IVF2, and A4. D 

Assuming the Menger Theorem to hold, we now indicate a proof of the 
Max-Flow-Min-Cut Theorem based on it. By the same reasoning as in our 
first proof of the Max-Flow-Min-Cut Theorem (IVC6), we see that it suffices 
to prove the theorem for an arbitrary integral network (V, k). Let W = 
{(x, y) E V x V: X :F y} as in Chapter IV, and let eo = (Yo, xo) E W. 

For each e E W, let Ue be a k(e)-set and assume that U. n U.' = 0 when 
e :F e'. Let a and z be two additional objects, and let 

U = {a, z} U U Ue • 
• eW 

We form the directed graph (U, D) where 

D = ({a} x Ueo) + U (U(w.X) x U(X.II») + U (U(II.'lI0) X {z}). 
w,x,yeV lIeV 
(x.llj+eO 

For an example of thi.s construction see Figure AS. 

AS 

r 

.-, 
~~~~~~'~'~--~Z 

Vif,vo> 
The following exercise is straightforward but it is essential to our proof. 
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A6 Exercise. In the above notation, show 
(a) max{h(eo): h is a feasible flow in (V, k)} = max{m: (U, D) admits an 

openly-disjoint m-family of az-paths}. 
(b) a(a, z) = min({k(eo)} u {k(C; eo): C is a cut through eo in (V, k)}). 

The Max-Flow-Min-Cut Theorem follows at once from this exercise and 
the Menger Theorem. 

vm Generalizations of the Menger Theorem 

We continue with the convention that r will denote either the multigraph 
(V,/, E) or the directed graph (V, D). When in the Menger Theorem the 
vertices a and z are replaced by arbitrary disjoint subsets of V, one obtains 
the following: 

Bl Proposition. Let r be given and let A, Z C V, A ('\ Z = 0. Suppose r 
contains no AZ-edge. If a(A, Z) ~ m, then r contains an openly-disjoint 
m-family of AZ-paths. 

PROOF. From r = (V, D) we form e = (U, C) as follows. Let U = V + A + 
Z + {a, z}, where a and z are new objects not in V. Let 

C = (D ('\ [(V + A + Z) x (V + A + Z)]) 
u {(a, y): y E V + A + Z and (x, y) ED for some x E A} 
u {(x, z): x E V + A + Z and (x, y) E D for some y E Z}. 

If r = (V, /, E), then 0 is the contraction of r given by the partition {A, Z} u 
{{x}: x E V + A + Z}. Intuitively speaking, e is obtained from r by the 
coalescing of A and Z to single vertices a and z, respectively, and the elimina­
tion of all edges both of whose incident vertices belong to A or Z. Clearly 
the sets separating Z from A in r are identical to those separating z from a 
in e, and vice versa. By the Menger Theorem, e contains an openly-disjoint 
m-family of az-paths. These determine the required AZ-paths in r. D 

In order to present a powerful generalization of Menger's theorem, due to 
G. A. Dirac, we shall require a broader interpretation of the notion of a 
separating set. Let S s:; VuE (respectively, S s:; V u D). In the directed 
case we let r(S) acquire the meaning 

(V + (V ('\ S), [D + (D ('\ S)] ('\ [(V + (V ('\ S)) x (V + (V ('\ S))]). 

In both the directed and "undirected" cases, r(S) is obtained by the deletion 
of all elements of S and all edges incident with vertices in S. Now let A and Z 
be nonempty disjoint proper subsets of V. Then S separates Z from A if 

(a) r(S) contains no AZ-path, 
(b) S contains neither A nor Z. 
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B2 Theorem (Dirac [d.6], 1960). Let r = (V,/, E) or (V, D). Let 0 c A, 
Z c V, and A n Z = 0. Suppose that whenever S c VuE separates Z 
from A, then lSI ~ m. Then 

(a) r contains an openly-disjoint m-family ~ of AZ-paths. 
(b) The family ~ may be chosen to satisfy both of the following conditions: 

(i) If IAI ~ m, then no two paths in ~ have a common vertex in A. 
IfIAI < m and if g: A ~ N + {O} satisfies ~aeAg(a) = m, then 
each a E A is the initial vertex of precisely g(a) paths in !F. 

(U) If I Z I ~ m, then no two paths in ~ have a common vertex in Z. 
If IZI < m and if h: Z ~ N + {O} satisfies ~2ez h(z) = m, then 
each z E Z is the terminal vertex of precisely h(z) paths in !F. 

PROOF. Let A and Z be given as in the hypothesis. 
(a) We form from r a new directed graph r' = (V', D') where V' = 

VuE (respectively, V u D) and D' consists of all pairs of the following 
forms: 

(x, e) if x Ef(e) (respectively, e = (x, y) E D for some y E V), 

and 

(e, y) if y Ef(e) (respectively, e = (x, y) E D for some x E V). 

(For example, see Figure B3.) Observe that r' contains no AZ-edge. Suppose 
S s;; V' separates Z from A in r'. Then S surely separates Z from A in r. 
By hypothesis, lSI ~ m and by Proposition Bl, r' admits an openly-disjoint 

B3 

r = (V, D) 

I 
I 

I 

\ 

\ 

I 

, , 
... 

r' = (V', D') 

..... , , . , 
\ 

m-family of AZ-paths. It is immediate that r also admits such a family. For 
if an AZ-path in r' has the form 
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then the corresponding path in r is simply 

(b) (i) First suppose IAI ~ m. We form a new mUltigraph r' = (V'.!', E') 
(respectively, a new directed graph r') from r by letting V' = V u {c}, where 
c is a new vertex. We let E' = E u {{c, a}: a E A} and let/, be the appropriate 
extension off (respectively, let D' = D u {(c, a): a E A}). See Figure B4. Let 
S' separate Z from c in r'. Corresponding to S' is a set S s;; VuE (respec­
tively, V u D) given by S = [S' ('\ (V u E)] u {a E A: {c, a} E S'}. 

B4 

I 
I 
I 
I 
I 
\>_ r-~-....J"'" 

r = (V, D) r' = (V', D') 

Hence IS'I ~ lSI, with a nearly identical argument from here on if r is a 
directed graph. 

If S did not separate Z from A in r, there would exist an AZ-path II in 
r(S) whose initial vertex is some a E A + (A n S). This would imply that 
neither a nor {c, a} (respectively, (c, a» belongs to S'. By adjoining c and 
{c, a} (respectively, (c, a» to II, one obtains a cZ-path in r'(S'), and so S' 
fails to separate Z from c in r' as assumed. Hence S separates Z from A in r. 
By hypothesis, lSI ~ m. Therefore IS'I ~ m. 

Since every set separating Z from c in r' has cardinality at least m, part 
(a) of this proposition assures the existence of an openly-disjoint m-family 
of cZ-paths in r'. Since no two of these intersect in A, the required AZ-paths 
in r are clearly obtainable from these paths. 

Now suppose IAI < m. Let the function g be given as in (i). We transform 
r into a directed graph in two stages. First we form r' = (V', D') precisely 
as in the proof of part (a) above. From r' we obtain r" = (V", D") as follows. 
Let A" = {aJ: a E A;j = 1, ... , g(a)} be disjoint from V' and let V" = 
(V' + A) u A"; let 

D" = {(x, y) ED': x, Y E V + A} u {(aJ' y): (a, y) E D';j = 1, ... , g(a)} 
u {(x, aJ): (x, a) ED';j = 1, ... , g(a)}. 

(See Figure B5.) 
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B5 

r' = (V', D') 

Note that 

B6 

VIB Generalizations of the Menger Theorem 

gta)==2 1 
I 
I 

I I :a2 
I I 

I 
I 
I I 

g(3')==1 :a1 : 
( ~I -~--"r-
'-

r" = (V", D") 

IA"I = 2: g(a) = m. 
aeA 

Now let S" c V" separate Z from A" in r". Corresponding to S" is a set 
S' £; V' u D' given by 

S' = [S" n (V'u D')] U {(a, x): a E A; (aj, x) E S" for some j = 1, ... , g(a)} 
U {a E A: {alo ... , ag(a)} £; S"l. 

Hence IS"I ~ IS'I· 
We assert that IS"I ~ m. Were that not so, we would have A" $ S" by B6, 

and consequently A $ S'. Also IS'I < m, implying, by the way that r' 
was constructed from r and by the hypothesis, that S' fails to separate Z 
from A in r'. Hence there would exist an AZ-path TI' in r'(S') whose initial 
vertex is some a E A + (A n S'). Also TI' contains an edge (a, x) for some 
x E V'. It follows that for somej E {I, ... , g(a)}, neither aj nor the edge (aj, x) 
is an element of S". If a and (a, x) are replaced in TI' by aj and (aj, x), one 
obtains an A"Z-path in r"(S")' and so S" fails to separate Z from A" as 
assumed. 

Since every set separating Z from A" in r" has cardinality at least m, the 
first case in part (b )(i) assures the existence of an openly-disjoint m-family of 
A"Z-paths in r" having no common vertex in A". The reader can straight­
forwardly deduce how this family determines the family of AZ-paths required. 

(ii) Let r denote the graph r' or r" constructed in part (i) according as 
IAI ~ m or IAI < m, respectively. The proof is completed by applying the 
appropriate construction from (i) where one interchanges the roles of Z and 
A' or A", respectively. 0 
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Suppose that the sets A and Z in the above theorem are each m-subsets of 
Vand that any set separating Z from A is at least an m-set. Then r admits an 
m-family of disjoint AZ-paths. It is not hard to see that the converse is also 
true. Another condition equivalent to these two lies implicitly in various 
arguments of M. J. Piff [p.4] and is stated explicitly as follows. 

B7 Proposition. Let r = (V, I. E) or (V, D) and let A, Z E .9Ji V). There exists 
an m-family of disjoint AZ-paths in r if and only if there exists a bijection 
b: V + Z -+ V + A such that for each x E V + Z, either b(x) = x or, 
when r = (V,1. E) then {x, b(x)} Ef[E], and when r = (V, D) then 
(x, b(x» E D. 

PROOF. As in earlier proofs in this chapter, we may assume that r = (V, D). 
Suppose that an m-family !F of disjoint AZ-paths has been given. Since 

we have not assumed that A and Z are disjoint, !F may contain some paths 
of length o. Any vertex comprising such a trivial path belongs to neither 
V + Z nor V + A, and so we may assume that if x E V + Z, then either x 
lies on no path in !F or there exists an edge (x, x') on some path in IF. In the 
former case, let b(x) = x and in the latter case let b(x) = x'. The paths are 
disjoint and, except for the trivial ones, they are [A () (V + Z)][Z () (V + A)]­
paths. Hence b is a bijection. 

Conversely, let the bijection b be given. Let A = {ab . .. , am} and let 

V. _ {{al} . if al E Z; 
1- {bi(al):jEN;Y-l(al)EV+Z} ifaIEV+Z. 

Since b: V + Z -+ V + A is a bijection, the sets Vb ... ' V mare pairwise­
disjoint. If al E Z, we take a path of length 0 from al to itself. Otherwise, VI 
has the form {ah b(al), b2(al), ... , b"(al)}, where all the jl + 1 elements are 
distinct and only the last one listed belongs to Z. In this case, form the path 
ah (ah b(al», b(al), ... , b"(al). This construction yields the required m-family 
of disjoint paths. 0 

B8 Exercise. Suppose that whenever S separates Z from A in r = (V, If) 
and S s; If, then lSI ~ m. Prove that r admits an m-family of AZ-paths no 
two of which have a common edge. 

VIC Connectivity 

In this section, r = (V, If) will denote a graph. If S s; V u If, then r(S) 

denotes (r(V"S»(.t"S). 
Every graph is O-connected. If I VI ~ m + 1, then r is m-connected if 

S s; V, lSI < m => r(S) is connected. 

By convention, the complete graph Kl is I-connected. 
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VIC Connectivity 

Thus r is connected if and only if r is I-connected. If r is n-connected 
and 0 ~ m ~ n, then r is m-connected. 

If r is n-connected but not (n + I)-connected, we say that r has con­
nectivity (sometimes called "vertex-connectivity") equal n, and we write, 

K(D = n. 

For example, K(K,.) = n - 1 for n = 2, 3, .... 

Cl 

(aM (bl[:><j (Cl4;p 

(dlD (el~ (fl~ 

(g) 

In Figure CI, graphs (a) and (b) have connectivity 1, (c) and (d) have 
connectivity 2, (e) and (f) have connectivity 3, and (g) has connectivity 4. 

If r is m-connected and if a and z are nonincident vertices of r, then 
a(a, z) ~ m. On the other hand, if r is not complete, then there exist a, 
z E V and a K(r)-subset of V which separates z from a. Hence 

Cl K(r) = min{a(a, z): {a, z} E ~(V) + tS'} 

whenever r is not complete. In particular, if K(D = I and I VI ;:: 3, then r 
has an articulation vertex (cf. Exercise IIlin I). The terms "biconnected" 
and "2-connected" are equivalent for graphs. Similarly, the terms "tri­
connected" and "3-connected" are equivalent for graphs. 

If I VI ~ 2, then 

C3 
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with equality holding if and only if r is complete. We observe that 

C4 

CS Proposition. Let r be m-connected for some m ~ 1. Let x E V and E E 8. 
Then the subgraphs rex) and reEl are each (m - I)-connected. 

PROOF. If rex) is complete, then K(r(x» = I VI - 2 ~ K(r) - 1 by C3. If 
rex) is not complete, we let 8 E 9I'm_2(V + {x}). Since 18 + {x} I = m - 1, 
(r(X»(S) = r(s+{x» is connected. Hence rex) is (m - I)-connected. 

Let E = {x, y}, and suppose that reEl is not (m - I)-connected. Since r 
is m-connected, IVI ~ m + 1 by C3. Hence there exists 8 E 9I'm-2(V) such 
that r(SU{E}) is not connected. Select a and z in different components of 
r(SU{E»' We may choose {a, z} =F {x, y}, for otherwise V = S u {x, y}, which 
implies that IVI ::;; lSI + 2 = m. We may suppose x ¢ {a, z}. Now S does 
not separate z from a in r. It follows that every az-path in r must include 
E, and hence include x. But then S U {x} separates z from a in r while 
IS u {xli ::;; m - 1, contrary to the hypothesis that r is m-connected. D 

C6 Exercise. Let 8 S;; V u 8. Prove that 

The basic theorem on connectivity of graphs is the following: 

C7 Theorem (H. Whitney [w.8], 1932). A necessary and sufficient condition 
for a graph r = (V, 8) to be m-connected is: 

C8 For any {a, z} E 9I!a(V) there exists an openly-disjoint m-/amily of az-paths 
in r. 

PROOF. If r is the complete graph K", then obviously both C8 holds and r 
is m-connected if and only if m ::;; n - 1. Suppose, therefore, that r is not 
complete. Since the theorem is trivial for m = 0 and 1, we suppose m ~ 2. 

Necessity. Let r be m-connected and let {a, z} E 9I!a(V) be given. First 
suppose {a,z} rit9. By C2, a(a,z) > m. Theorem Al assures the existence of 
an openly-disjoint m-family of az-paths. On the other hand, if E - { a, z } E t9, 
then by Proposition C5, the subgraph reEl is (m - I)-connected. Since rIEl 
has no az-edge and since a(a, z) ~ m - 1 in reEl' Theorem Al assures the 
existence of an openly-disjoint (m - I)-family" of az-paths in rIEl' Adjoin­
ing to ., the path a, E, z gives the required m-family for r. 

Sufficiency. Assume that Condition C8 holds for some m ~ 2. Let S s;;; V 
and suppose that res) is not connected. Select a and z in different components 
of res)' By C8, there exists an openly-disjoint m-family !F of az-paths in r. 
Since no path in !F lies entirely in res), each of the m paths in ., contains a 
vertex in S. Since a, z ¢ Sand., is openly-disjoint, one obtains lSI ~ m, 
and r is m-connected. 0 
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VIC Connectivity 

The following result is essentially an adaptation of Theorem B2 to the 
terminology of the present section. 

C9 Proposition. Let r be m-connected. Let A, Z c V such that A n Z = 0 
and IAI, IZI ~ m. Let there exist functions g: A ~ N + {O} and h: Z ~ 
N + {O} such that 

L g(a) = m = L h(z). 
aeA 2eZ 

Then r admits an openly-disjoint m-family /F of AZ-paths such that for each 
a E A and z E Z, precisely g(a) of the paths in /F contain a and precisely 
h(z) of the paths contain z. 

Observe carefully what the above proposition does not say. It does not 
imply that for some given ao E A and Zo E Z, the family /F includes an aozo-
path. Such a condition is of a fundamentally different nature, and demands 
much more from a graph, as the next result indicates. 

We shall say that r satisfies the condition On (n = 1,2, ... ) if I VI ~ 2n 
and, given {al> .•• , an> Zl> ... , zn} E ~n(V), there exists an openly-disjoint 
n-family {fil> ... , fin} of paths such that fil is an alzl-path (i = I, ... , n). 
Clearly On implies Om if n > m. 

CIO Theorem [w.3]. If r satisfies On, then K(r) ~ 2n - 1. 

PROOF. Suppose K(r) ~ 2n - 2, and let k = [K(r)/2]. V contains a separating 
set S = {al> ••• , ak, Zl> ... , zm} where 

{ k if K(r) is even; 
m= k+l ifK(r) is odd. 

If K(r) is even, k ~ n - 1. Choose vertices ak+l and Zk+l in different 
components of r(S). Clearly r does not satisfy Ok+l. Hence r does not satisfy 
On. 

If K(r) is odd, k ~ n - 2. Choose ak+2 and Zk+2 in different components 
of r(S) and let ak+l be any other vertex in V + S. Since r does not satisfy 
Ok+2, it does not satisfy On. 0 

Note that K(K2n) = 2n - I and that K2n satisfies On. This shows that the 
inequality in Theorem CIO cannot be sharpened. The reader interested in the 
"On Problem" may read [w.3], [j.I], [6".1]. 

We now give an application of Proposition C9. 

Cll Theorem (G. A. Dirac [d.7], 1960). Jfr = (V, 8) is n-connectedfor some 
n ~ 2 and ifl ~ m ~ n, thenfor any S E &'m(V), there exists an elementary 
circuit in r which contains S. 

PROOF. The proof is by induction on m. Since r is assumed to be a bicon­
nected graph, I VI ~ 3, and the result holds for m = 1, 2 by Exercise IIIBI3. 
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Suppose now that 3 :::;; m :::;; n and that the conclusion holds for m - 1. 
Let S = {Zb"" zm} £ Vbe given, and letZ = {Zb"" Zm-l}' By the induc­
tion hypothesis there exists an elementary circuit ll. which contains Z, and 
we may assume that Zm is not on ll.. Let us reindex Z so that Zb"" Zm-l 

appear in cyclic order as one proceeds around ll.. 
Case 1: every vertex in ll. is in Z. Since r is (m - I)-connected, we have 

by Proposition C9 that r admits an openly-disjoint (m - I)-family of zmZ­

paths {TIl, ... , TIm- l} such that TIl is a zmz,-path for i = 1, ... , m - 1. Let 
TIo be the elementary path obtained when the edge {Zm-b Zl} is removed from 
ll.. An elementary circuit containing S is obtained by linking up the paths 
TIb TIo, and TI m- l in the obvious way. 

Case 2: ll. contains a vertex U E V + S. Since r is m-connected, Proposition 
C9 assures the existence of an openly-disjoint m-family {TIb ... , TIm} of 
Zm(Z + {uD-paths, where TI b ... , TI m- l are as in Case 1 and TIm is a ZmU­

path. Proceeding along TIl from Zm, let YI be the first vertex in ll. encountered 
(i = 1, ... , m). Now ll. is formed from an openly-disjoint (m - I)-family of 
paths ll.b ... , ll.m -1 linked up "end-to-end" where ll.1 is a ZIZ!+ l-path for 
i = 1, ... , n - 2 and ll.m-l is a Zm_lzl-path. Since the union of the sets of 
vertices of these m - 1 paths ll.1 includes the m vertices Yl, ... , Ym, some one 
of these paths, say ll." contains (the old Pigeon-hole Principle!) two of these 
vertices, say Ys and Yt. (See Figure CI2.) 

ell 

Now consider the YsYt-path contained in ll. which contains all the paths 
ll.1 for i =F r, and hence all of Z. The elementary circuit obtained by properly 
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linking up this path with ll. and llt is an elementary circuit containing all 
of S as required. (This circuit is shown in "railroad tracks" in Figure 
C12.) 0 

Let ,(r) denote the largest integer m for which it holds nonvacuously that 
if U E 9'm(V), then there is an elementary circuit in r which contains U. 
Theorem Cll asserts that if K(r) ~ 2, then 

Cl3 ,(r) ~ K(r). 

Cl4 Exercise. Show that for each n ~ 2, the graph r such that ,(r) = 
K(r) = n having the fewest vertices and the fewest edges is the complete 
bipartite graph K n•n + 1• 

The above exercise shows that C13 cannot be sharpened, but the graphs 
Kn•n +1 serve also as prototypes for all graphs for which equality holds in C13. 
These have been characterized [w.6] when K(r) ~ 3 as possessing a K(r)­
subset S of V such that 

v _l(r (8» ~ K(r) + 1. 

When K(r) = 2, then r is one of three types. The smallest representative of 
each type is shown in Figure C15. 

CIS 

At the other extreme, a moment's reflection will yield examples of graphs r 
with ,(r) - K(r) equal to the upper bound of ,(r) - 2. If ,(r) = vo(r), then 
r is said to be hamiltonian, and a circuit which contains V is called a hamilton 
circuit. Conditions for a graph to be hamiltonian are generally rather com­
plicated and lead to a whole area of graph theory not included in this text. 
The interested reader may consult [c.3]. 

Another but equivalent definition of m-connectedness was given by O. Ore 
[0.1]. Let the graph r = (V, C) be given, and let e = (U,~) be a subgraph 
of r. If x E V, we say x is an interior vertex of e if ~ contains the vertex­
cocycle of x. We say x is an exterior vertex of e if C + ~ contains the vertex­
cocycle of x. Otherwise, x is an attacbment vertex of e. The following 
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exercise consists of proving the equivalence between Ore's definition and the 
one we have adopted. 

C16 Exercise. Let I' be connected and not complete. 
(a) Show that I' is m-connected if and only if every subgraph e of I' having 

at least one interior vertex and one exterior vertex has at least m attachment 
vertices. 

(b) Prove that (a) holds when" subgraph" has been replaced by "vertex­
induced subgraph." 

We shall require this exercise as we prove the following proposition, which 
generalizes Whitney's theorem in much the way that Dirac generalized 
Menger's theorem. A partial converse of Proposition C9 is hereby obtained. 
(The "full" converse is false. See Exercise CI9 below.) 

C17 Theorem [m.1O]. Let m be a positive integer, and let I' = (V, G) be a 
graph with vo(I') ~ m + I. The following 2m statements are equivalent: 

A. I' is m-connected. 
B" (k = I, ... , m). Given {a, Zh ••• , z,,} E BItc+1(V), there exists an openly 

disjoint m-family of a{zh ... , z,,}-paths of which m - k + I are azl-paths 
and one is an az,-path for each i = 2, ... , k. 

C" (k = I, ... , m - 1). Given S E BItc(V), and {a, z} E ~(V + S), there 
exists an openly-disjoint (m - k)-family of az-paths in 1'(8). 

PROOF. Observe that if n ~ m + I, then all the 2m statements are true for 
Kn. We assume, therefore, that r is not complete. The entanglement of the 
implications that we prove is indicated by the directed graph in Figure CIS. 
(It is "strongly connected.") 

C18 

A => B" (k = I, ... , m). This is precisely Proposition C9 with 
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B1 => A. The condition B1 is precisely CS. The implication follows from 
Whitney's theorem (C7). 

Bk=> Ck - 1 (k = 2, ... ,m). Let SE~-1(V) and {a,z}E~(V+ S) be 
given. Assume Bk with z = Z1 and S = {Zlo .•. , Zk}' This provides an openly­
disjoint [m - (k - 1)]-family of az-paths which avoid S. 

Ck => A (k = 1, ... , m - 1). Let Us;; V, and suppose that a is an interior 
vertex of r u and that z is an exterior vertex of r u. Let S be the set of attach­
ment vertices of r u. By the definitions, every az-path contains a vertex in S. 

Suppose lSI ~ k. By Ck , there exists an openly-disjoint (m - k)-family 
of az-paths in r(S), and since m - k > 0, this family is not empty; i.e., some 
az-path contains no vertex of S. Hence lSI> k. Let TE~(S). Similarly, 
there exists an openly-disjoint (m - k}family of az-paths in r(T)' Since no two 
of these paths contain the same vertex in S + T,wehavem - k ~ IS + TI = 
lSI - k. Hence ru has lSI;;:: m attachment vertices, and r is m-connected 
by Exercise C16. 0 

Cl9 Exercise (A. C. Green). Construct a graph r such that for each 
{a, Z1, Z2, zs} E ~(V), there is an openly-disjoint 6-family of a{zlo Z2, zs}-paths, 
two of which are aZj-paths for each i = 1,2,3, but r is not 6-connected. 

If r is connected, we define a distance function d: V x V -+ N by letting 
d(x, y) denote the least number of edges in an xy-path. 

C10 Exercise. Prove that d is a metric on V; i.e., for all x, y, z E V, (a) 
d(x, y) = 0 if and only if x = y, (b) d(x, y) = dey, x), and (c) d(x, z) ~ 
d(x, y) + dey, z). 

If r is connected, we define the diameter of r by 

8(r) = max{d(x, y): (x, y) E V X V}. 

The following proposition is an elementary application of Whitney's 
theorem. Its proof is an exercise. Intuitively, it states that if vo(r) is fixed, 
then diameter and connectivity vary inversely; if r is "long" it must be 
" thin" and vice versa. 

C21 Proposition [w.2]. (8) If r is connected and vo(r) ;;:: 2, then 

Vo ;;:: 1C(8 - 1) + 2. 

(b) Given integers n > k, k ;;:: 1, and d;;:: 1 satisfying n = ked - 1) + 2, 
there exists a graph r with vo(r) = n, lC(r) = k, and 8(r) = d. 

VID Fragments 
In §IIIB it was seen how the edges of a graph admit a decomposition into 
edge sets of lobes while vertices lying in more than one lobe were found to 
be articulation vertices. Each such vertex comprises in itself a set which 
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separates the graph. Thus lobe" decompositions" of a graph are of interest 
only when the connectivity of the graph is at most I. This section presents a 
method for decomposing a graph which is of interest as well for highly. 
connected graphs. 

Since complete graphs do not admit separating sets, we shall assume for 
the rest of this section that r is connected and not complete. 

Let 9"(r) denote the set of separating sets of r aIld let Yo(r) denote the 
subset of 9"(r) consisting of the smallest separating sets of r. Thus lSI =K(r) 
for all S E Yo(r). 

If W s; V, we write W = V + W + N(W). If W, W =P 0, then N(W)E 
9"(r), and so 

K(r) = min{IN(W)I: W, W =P 0}. 

A fragment of r is a subset W s; V such that W, W =P 0 and IN(W)I = K(r). 

Dl Exercise. 
(a) Show that W is a fragment of r if and only if W is a fragment of r. 
Let WI and W2 be fragments of r. Show that 

(b) N(Wt) = N(Wt); (c) Wt = WI; 
(d) N(WI n W2) s; (WI n N(W2» + (N(WI) n W2) + (N(WI) n N(W2»; 
(e) N(WI U W2) = (WI n N(W2» + (N(WI) n W2) + (N(WI) n N(W2»; 
(f) WI U W2 = WI (\ W2 ; 

(g) WI U W2 s; WI (\ W2 • 

Which of (b )-(g) hold if we allow WI and W2 to be arbitrary subsets of V? 

D2 Proposition. Let WI and W2 be fragments of the graph r and suppose that 
WI n W2 =P 0. If IWII < IW2 1, then both WI n W2 and Wl U W2 are 

fragments. 

PROOF. For i,j E {I, 2} and i =P j, define 

From these definitions, the fact that WI n W2 , WI n W2 =P 0 (by DIg), and 
Exercise DId, we have 

Hence 

D4 

If it were so that Wl n W2 = 0, then D4 would yield 

IWII = IWI n W2 1 + S2 + IWI n W2 1 > t1 + IWI (\ W2 1 = IW2 1, 
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contrary to hypothesis. Hence WI ("\ W2 ::;. 0, and so by Exercise DI(a,d) 
together with D4, 

D5 IN(WI ("\ W2)1 ::s;; tl + q + t2 ::s;; S2 + q + t2 = IN(W2)1. 
Since W2 is a fragment, equality must hold throughout D5, which implies 

that WI ("\ W2 is also a fragment. By Exercise DI(f,a), WI U W2 is a fragment. 
Equality in D5 implies equality in D4 and hence in D3. Since WI is a 
fragment, so is WI ("\ W2• 0 

Let us define a(f) = min{1 WI: W is a fragment of f}. A fragment Wof 
r is called an atom if I WI = a(r). 

D6 Corollary. If A is an atom and W is a fragment of f, then exactly one of 
the following holds: A £; W; A £; W; or A £; N(W). 

:PROOF. Suppose A $ N(W). The!) A ("\P =F 0, where P = Wor P = W. 
By D2, A ("\ P is a fragment, but by definition,of an atom, A = A ("\ P, whence 
A£;~ 0 

In particular, 

D7 Corollary. In any graph, distinct atoms are disjoint. 

D8 Corollary. If A is an atom and U is a union of atoms of f, then exactly 
one of the following holds: A£; U, A£; D, or A£; N(U). 

PROOF. Suppose A ("\ N(U) ::;. 0. Then there exists an atom B £; U such that 
some vertex of A is incident with some vertex of B. By D6, A £; N(B) £; 

U + N(U). Since U is a union of atoms, D7 implies A s N(U). 0 

D9 Exercise. Show that if the condition I WII < IW2 1 is removed from the 
hypothesis of D2, then one can obtain that either the conclusion of D2 
holds or that WI ("\ W2 and WI ("\ W2 are fragments if they are not empty. 

DI0 Proposition. Let WI and W2 be fragments of f such that WI £; N(W2). 
Then 2a ::s;; 1(. 

PROOF. Recall the symbols q, s" and tj from the proof of D2. Thus a ::s;; 

IWII ::s;; S2. 
We assert that a ::s;; Sl. For if this were not so and if WI ("\ W2 = 0, then 

W2 = N(WI ) ("\ W2, and so I W2 1 = Sl < a, which is impossible. On the 
other hand, if WI ("\ W2 ::;. 0, then by Dl(b,d), 

IN(WI ("\ W2)1 ::s;; t2 + q + Sl = (IN(W2)1 - s~ + Sl 

< (I( - a) + a = 1(, 

which is also impossible. 
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Hence a :S Sl. With W2 in place of W2, the same argument yields a :S 11• 

Hence 2a :S Sl + t1 :S IN(W1)1 = Ie. 0 

If each vertex of r is an element of some atom of r, then by D7, the atoms 
of r form a unique partition of V, called the atomic partition. When it exists, 
the atomic partition always has more than a single cell. Graphs admitting 
the atomic partition must therefore contain an edge meeting each of two 
atoms, each of which (by D6) lies in the image under N of the other. By DI0 
it follows that 2a :S Ie. 

On the other hand, let x E A, where A is an atom of r. Then x is incident 
with at most a-I vertices in A and at most I N(A) I vertices in V + A. 
Hence p(x) :S Ie + a-I. Since Ie :S P (by C4), we have shown 

D11 Proposition. If r admits the atomic partition, then 

2a :S p(x) :S Ie + a-I, for all x E V. 

D12 Exercise. Show that the following are equivalent for any connected 
graph r: 

(a) a(r) ~ 2; 
(b) Ie(r) < p(r); 
(c) N({x}) ¢ ~(r) for all x e V. 

D13 Proposition. Let Ie(r) be represented as Ie = ma + b where m ~ 1 and 
o s b < ct:. Then for any vertex x in an atom, 

m + 1 b p(x):s --Ie - 1 --. 
m m 

Moreover, if r admits the atomic partition, then b = 0 and m ~ 2. 

PROOF. If x e A for some atom A, then by D11, 

Ie-b m+l b 
p(x) :S (a - 1) + Ie = -- - 1 + Ie = -- Ie - 1 - -. m m m 

If r admits the atomic partition, then by 06, N(A) is a union of atoms. Hence 
a divides Ie, whence b = O. By 011, Ie ~ a + 1 > a. Hence m ~ 2. 0 

D14 Corollary. Let r be a graph which admits the atomic partition. Then 
Pile < t, and the bound of t is best possible but is never attained. 

PROOF. By 013, Pile :S 1 + 11m - l/le < t. To show that t - Pile can be 
an arbitrarily small positive number, consider the graph r constructed as 
follows. 

Let Vo, Vb . .. , Vp -1 be p disjoint n-sets where p ~ 4 and n ~ I. Let 
V = Vo U ... U Vp - 1 • Let 

G = {{x,y}e&'2(V):xe V,;ye Vj;j - i == 0, ±I (modp)}. 
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Let r = (V, 8). Then r is p-valent with p = 3n - 1. The elements of 7o(r) 
are of the form VI + Vi where j - i ~ 0, ± 1 (mod p). Hence K == 2n and 
the atoms are the sets VI (i = 0, ... , p - 1). Thus! - p/K = 1/2n, and n 
may be chosen arbitrarily large. 0 

Clearly every graph which is vertex-transitive admits the atomic partition. 
Such a graph is, moreover, p-valent, and so the last two propositions and 
corollary apply in particular to vertex-transitive graphs. 

D1S Exercise. Show that in a vertex-transitive graph any two atoms induce 
isomorphic subgraphs which are themselves vertex-transitive graphs. If you 
are acquainted with the rudiments of permutation groups, show further that 
the atomic partition of a vertex-transitive graph is a complete system of 
imprimitivity for Go(r). 

D16 Exercise. Suppose that r admits the atomic partition and that K(r) < 
p(r). 

(a) Determine the graph r such that vo(r) is minimal, and show that it is 
unique. 

(b) Show that K(r) cannot be prime and that p(r) cannot equal 4 or 6. 
(c) Show that if p = 8, then r is a graph of the form in the proof of D14 

with n = 3. 
(d) Show that if p = 7, then K = 6 and either 1% = 2 or 1% = 3; in the 

latter case the atoms induce paths of length 2. Construct examples in both 
cases. 

D17 Exercise. Show that if r admits the atomic partition, then p - p < 1%. 

The results in the section were brought together from the following papers: 
[j.1], [j.2], [j.3], [m.2], [m.3], and [w.4]. 

VIE Tutte Connectivity and Connectivity of 
Subspaces 

Throughout this section, r will denote the multigraph (V,/, E). We extend 
to multigraphs the definition of connectivity defined for graphs in §C. Thus 

K(r) _ {K(V,J[E]) if/eEl C &!a(V); 
- vo(r) - 2 + min{I/-l[S]I: S E &!a(V)} if/eEl = &!a(V). 

This extension is designed to conform with Whitney's theorem (C7), for one 
can easily see that this the()rem is now valid for multigraphs. 

The symbol BII for n E N + {O} is the multigraph with vo(BII) = 2 and 
vl(BII) = n. Clearly, K(BII) = n. 

In this section we study a different concept of connectivity due to W. T. 
Tutte [t.7]. 
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Let 0 = (U, g, F) be a submultigraph of r. Let A(0) denote the set of 
attachment vertices of 0. (The extension to multigraphs of this term defined 
in §C is obvious: an attachment vertex of 0 is a vertex incident with an edge 
in F and an edge in E + F.) r is k-separated if there exists a proper non~mpty 
submultigraph 0 = (U, g, F) of r such that 

(a) k ::; vI(0) ::; VI(r) - k; 
(b) IA(0)1 = k. 

El Exercise. Assume that 0 = (U,f, F) satisfies (a) in the above definition. 
Show that 

(a) Both r F and r E+F satisfy (a) above; 
(b) A(rF ) = A(rE +F) = A(0). 

The Tutte connectivity of r is defined by 

T(r) = min{k: r is k-separated} 

(where the minimum over the empty set is (0). The multigraph r is m-Tutte 
connected if m ::; T(r). 

Observe that both T(r) and K(r) represent cardinalities of smallest sets of 
attachment vertices of submultigraphs of r. The fine difference lies in the 
collection of submultigraphs considered. For T(r), one considers submulti­
graphs which both include and exclude at least as many edges as they have 
attachment vertices. For K(r), except when every two vertices are incident, 
one considers submultigraphs having at least one interior and one exterior 
vertex. 

El Exercise. Show that T(r) = 00 for r = Klo K2, Ks, B2 and B3 • 

E3 Exercise. Suppose r oF KI, K2 , Ks, B2, Bs. If K(r) or T(r) is 0 or 1, then 
K(r) = T(r). 

E4 Proposition. If r is a muitigraph in which every two vertices are incident, 
then 

{
oo ifr = Klo K2, Ks, B2, Bs; 

T(r) = 3 ifr = Knfor n ~ 4; 
2 otherwise. 

PROOF. If r satisfies the hypothesis and VI (r) < 4, then r is one of Klo K2 , Ks, 
B2, Bs and we use Exercise E2. Hence we assume Vl(r) ~ 4. Since K(r) > 1, 
we have T(r) > 1 by E3. Let {elo e2} E ~(E). Let 0 = r{el.e2). Thenf(el) U 

f(e2) = A(0), and IA(0)1 ~ 2. In fact, IA(0)1 = 2 if and only iff(el) = f(e2). 
Hence T(r) = 2 if r is not a graph, and T(r) > 2 if r is a graph. Suppose 
then r is a graph, i.e., r = KII for n ~ 4. Then Vl(r) ~ 6. If 0 = r u where 
U E -9a(V), then 3 = vl(0) ::; Vl(r) - 3, and IA(0)1 = 3. 0 

E5 Lemma. If r oF Klo K2 , K3, B2, Bs, then T(r) ::; K(r). 
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PROOF. By E4, we may assume that some two vertices are not incident. By 
Exercise C16, there exists a submultigraph 0 of r with an interior vertex a, 
an exterior vertex z, and IA(0)1 = lC(r). By C4, lC(r) :s;; pea) :s;; vl(0), and 
lC(r) :s;; p(z) :s;; Vl(r) - vl(0). So lC(r) :s;; vl(0) :s;; Vl(r) - lC(r). Hence T(r) :s;; 
IA(0)1 = lC(r). 0 

The girth of r is the cardinality of a smallest nonempty cycle of r and is 
denoted by ,,(r). We adopt the convention that ,,(r) = 00 if r is a forest. 
Clearly y(r) ~ 2 for any multigraph r, and y(r) ~ 3 if and only if r is a 
graph. 

E6 Lemma. If r =1= Klo K2 , K3, B2 , B3 , then T(r) :s;; y(r). 

PROOF. If r contains a vertex of valence 2 or less, and if r is not one of the 
"forbidden" multigraphs, then by E5, T(r) :s;; lC(r) :s;; 2 :s;; y(r). Hence assume 
that the smallest valence is at least 3. We may also assumevl(r) ~ 4, since the 
only multigraph with smallest valence 3 and Vl(r) < 4 is B3 • By Exercise 
IIIA6a, r contains a nonempty cycle. Let Z E 1l'(r) such that I Z I = ,,(r). The 
circuit r z is clearly an elementary circuit, and hence vo(r z) = VI (r z) = ,,(r). 
Since each vertex of r z has valence at least 3 in r, each vertex of r z is in­
cident with an edge in E + Z. If I Z I ~ 3, these edges are obviously distinct. 
If IZI = 2, then IE + ZI ~ 2. Thus IE + ZI ~ IZI = y(r). It also follows 
that each vertex of r z is a vertex of attachment, and so IA(r z)1 = I Z I. Thus 
r is ,,(r)-separated. 0 

E7 Proposition. Ifr =1= Klo K2, K3, B2, B3 , then T(r) = min{lC(r), y(r)}. 

PROOF. If r = Kn or Bn for n ~ 4 the conclusion holds by Proposition E4. 
Assume then that r =1= Kn, r =1= Bn for n ~ I, and hence by E5, T(r) is finite. 
Let 0 = (U, g, F) be a subgraph of r such that T(r) :s;; vl(0) :s;; Vl(r) - T(r) 
and IA(0)1 = T(r). From Exercise EI and the definition of T(r) we have 
T(r) :s;; Vl(r E+F) :s;; Vl(r) - T(r) and IA(r E+F)I = T(r). 

If U = A(0), then vo(0) = T(r) :s;; vl(0), and 0 contains an elementary 
cycle Z by IIIAI5b. But then y(r) :s;; I Z I :s;; vo(0) = T(r), and by E6, ,,(r) = 
T(r). By a symmetric argument, T(r) = ,,(r) also holds if the vertex set of 
r E+F equals A(0). 

Assume then in the light of E6 that T(r) < y(r). By the argument just 
concluded, 0 admits both an interior and an exterior vertex. By C16, IA(0)1 ~ 

~~~~=~ 0 

Example. Let r 1 be the cube (Figure IIJF21), let r 2 denote the octahedron 
(Figure IIJF20), and let r 3 be the graph in Figure E8. Then we have the 
following values. 

IC " 'T 
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E8 

E9 Corollary. Ifr is a graph, then r is 3-connected if and only ifris 3-Tutte 
connected. 

We have observed (Exercise El) that for any submultigraph 0 = (U, g, F) 
of r, A(e) :2 A(r F), and equality holds if IA(e)1 = T(r). Hence if T(r) :::;; 
Vl(e) :::;; Vl(r) - T(r) and T(r) = IAce)l, then Tcr) :::;; Vl(r F) :::;; Vl(r) - T(r) 
and T(r) = I A(r F) I. We note that 0 consists only of isolated vertices if and 
only if F = 0. We have shown that if r has no isolated vertices, then T(r) 
can be determined by considering only those subgraphs of r which are 
induced by a nonempty proper subset of E. We state this formally as follows. 

EIO Lemma. Suppose r contains no isolated vertex. Then r is k-separated if 
and only if there exists FeE, F "# 0, such that 

(a) k ::;; min{IFI, IE + FI}; 
(b) k = IA(rF)1 = IA(rE+F)I. 

We observe that 

IA(r F)I = vo(r) - I{x:f*(x) s;; F}I - I{x:f*(x) s;; E + F}I. 

Hence by IIIAI5a, we have the following result. 

Ell Lemma. If r is connected and 0 c FeE, then 
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Recall that r is biconnected if and only if ~1.(r) is connected. We introduce 
a general concept of connectivity of a subspace in such a way that for any 
multigraph r, the connectivity of ~1.(r) is less by 1 than T(r). A subspace 
.91 s;; fJ'(E) is m-separated if there exists {Flo F2} E iPl2(E) such that 

(a) m < min{lF11, IF2 1}; 
(b) m = dim(.9I) - dim(.91 n fJ'(F1» - dim(.91 n fJ'(F2»' 

The connectivity of the subspace .91 is defined analogously as T(d) = 
min{m: .91 is m-separated}. 

El2 Proposition. If r is a connected multigraph, then T(r) = T(~1.(r» + 1. 

PROOF. Let r be connected. The result is trivial if vo(r) = 1. By Lemmas 
ElO and Ell, r is k-separated if and only if there exists FeE, F # 0, 
such that 

(a) k ~ min{IFI, IE + FI}; 
(b) k = dim(~1.(r» + 1 - dim(~1.(r) n fJ'(F» 

-dim(~1.(r) n fJ'(E + F). 
Thus r is k-separated if and only if there exists {Flo F2} E iPl2(E) such that 

(c) k - 1 < min{IF11, IF2 1}; 
(d) k - 1 = dim(~1.(r» - dim(~1.(r) n fJ'(Fl» - dim(~1.(r) n fJ'(F2»' 

Therefore, r is k-separated if and only if ~1.(r) is a (k - I)-separated 
subspace of fJ'(E). 0 

El3 Exercise. Prove that a subspace .91 s;; fJ'(E) is a connected subspace if 
and only if T(.9I) ~ 1. 

El4 Proposition. If.91 is a subspace of fJ'(E), then T(.9I) = T(.9I1.). 

PROOF. Let {Flo F2} E iPl2(E). From IIA6, IIAIO, and IIA15 we have for 
{i, j} = {I, 2}, 

dim(.91 n fJ'(FI» = IFII - dim(7TF'[.9I1.]) 

and 

Thus, 

dim(.9I) - dim(.91 n fJ'(F1» - dim(.91 n fJ'(F2» 
= dim(.9I) - [IFll - dim(7TF.[.9I1.])] - [lF21 - dim(7TF2[.9I1.])] 
= dim(.9I) - lEI + dim(7TF1[.9I1.]) + dim(7TF2[.9I1.]) 
= -dim(.9I1.) + [dim(.9I1.) - dim(.9I1. n fJ'(F2»] 

+ [dim(.9I1.) - dim(.9I1. n fJ'(Fl»] 
= dim(.9I1.) - dim(.9I1. n fJ'(Fl» - dim(.9I1. n fJ'(F2»' 

Therefore .91 and .911. are m-separated for the same values of m. 0 

From the definition of orthogonal multigraphs we have 
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lns Corollary. If r and 0 are connected multigraphs with r ..10, then 
T(I') = T(0). 

Combining this and Corollary E9, we obtain the result anticipated in 
Exercise IIIE20. 

E16 Corollary (Whitney [w.9]). If r ..10 and each are without isolated 
vertices, then r is 3-connected if and only if 0 is 3-connected. 

E17 Exercise. Prove that if r is a planar multigraph, then T(r) :$ 3. [Hint: 
use JlIF4.] 

Using the results from §IIA summarized in the proof of E14, one easily 
proves: 

E18 Lemma. Let .91 s; @(E) be a subspace and let {Flo F2} E i?2(E). Then 

dim(.9I) - dim(d n @(Fl» - dim(d n @(F2» 
= IFII - dim(d n @(FI» - dim(d.L n @(FI» 

for i = 1,2. 

E19 Lemma. T(.9I) < 00 if and only if .91 U .91.1 contains a pair of nonempty 
disjoint elements. 

PROOF. If .91 is m-separated, there exists {Flo F2} E i?2(E) such that 

Combining this inequality with Lemma E18, we have for i = 1,2, 
dim(d n @(FI) + dim(d.L n @(FI» > O. Hence for i = 1,2, there exists 
AI Ed U d.L, such that AI =F $0 and AI S; Fj. Clearly Al n A2 = $0. 

Conversely, assume that for i = 1,2, there exists AI Ed U .91.1 such that 
AI =F $0 and Al n A2 = $0. Let Fl = Al and F2 = E + Fl. One easily 
verifies that .91 is m-separated for m = dim(d) - dim(d n @(Fl» -
dim(d n @(F2». 0 

E20 Proposition. T(.9I) = 00 ifand only iflEI:$ 3 and either .91 or .91.1 = {$O, E}. 

PROOF. We first dispose of the case where .91 = {$O, S} for some S S; E, and 
so .91.1 = G(S) EB@(E + S). If $0 eSc E, or if S = $0 and lEI> 1, then 
.91.1 is not connected, and T(d) = T(d.L) = 0 by E14 and E13. If S = E and 
lEI> 3, then T(d) < 00 by E19. Conversely, supposed = {$O, E} and 
lEI :$ 3. Since .91.1 = G(E), Lemma E19 implies that T(.9I) = 00. 

We may now assume that dim(d) ~ 2, and by symmetry, dim(.9I) :$ 

dim(d.L). We assume T(d) = 00. Let F be an elementary set in .91. Then 
dim(d n (!P(F» = 1. It follows that 7TF[d.L], the orthogonal complement of 
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d n 9(F) in 9(F), is C(F). On the other hand, dim(dJ) = dim(1TF[d.l.]) + 
dim(d.l. n 9(E + F)). But by Lemma E19, dim(d.l. n 9(E + F)) = O. Hence 
dim(d.l.) = dim(1TF[d.l.]) = dim(C(F)) = IFI - 1 by IIAL We conclude 
that every elementary set FEd has cardinality dim(d.l.) + 1, and by sym­
metry, every elementary set in d.l. has cardinality dim(d) + l. 

Now let Fbe an elementary set in.r#. Since dim(d.l.) ;;:: 2, we have IFI ;;:: 3, 
and we may choose {Xo, Xl, X2} E ~(F). We may also choose HI E d.l. such 
that 1TF[HI] = HI n F = {xo, XI} for i = 1, 2. Since IHd ;;:: dim(d) + 1, we 
have IFU HII = IFI + IHd - 2 ;;:: dim(d.l.) + dim(d) = lEI. SoFu HI = 
E. Hence {Xl> X2} = HI + H2 E dl., and so 2 = I{xl> x2}1 ;;:: dim(d) + 1, 
contrary to our assumption. 0 

If d = ,q'(r) then y(r) = min{JFI: FEd + {0}}. Hence it is natural to 
define the girth of a subspace d as 

y(d) = min{IFI: FEd + {0}}. 

E2l Exercise. Prove that 7{d) ::; min{y(d), y(d.l.)}. 
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CHAPTER VII 

Chromatic Theory of Graphs 

VllA Basic Concepts and Critical Graphs 

Throughout this section r will denote the graph (V, C). A vertex m-coloring 
of r is a surjection h of V onto an m-set C, subject to the condition: If 
{Xl> X2} E ,92(V) and h(Xl) = h(X2), then Xl and X2 are not incident. The 
elements of C are called colors and the sets h-l[j] for jE C are called color 
classes. If X E V and h(x) = j, one also says, "x has been coloredj." We say 
that r is vertex m-colorable if r admits a vertex m-coloring. The vertex 
chromatic number of r is 

xo(r) = min{m: r has a vertex m-coloring}. 

One says that r is vertex m-chromatic if xo(r) = m. Clearly r has a vertex 
m-coloring if and only if xo(r) ~ m ~ vo(r), and equality holds throughout 
if and only if r is a complete graph. 

In dual fashion we define an edge m-coloring of r to be a surjection h of 
C onto an m-set C subject to the condition: If {Eh E2} E ~(r) and h(El) = 
h(E2), then El and E2 are not incident, or equivalently, that El n E2 = 0. 
The terms color and color class are defined analogously for edge colorings. 
The edge chromatic number of r is defined by 

Xl(r) = min{m: r has an edge m-coloring}. 

r has an edge m-coloring if and only if Xl(r) ~ m ~ Vl(r). Equality holds 
throughout if and only if r is either K3 or a tree of diameter 2. 

The following assertions are in the nature of observations and are easily 
verified. Here i = 0 or I. 

At If0 is a subgraph olr, then XI(0) ~ XI(r). 

A2 XI(r) = max{xl(0): 0 is a component olr}. 
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A3 CLl ) = {2 ifn is even; 
Xi n 3 ifn is odd. 

A4 A color class, be it of vertices or of edges, is always an independent set. 

A5 

A6 

atcr)Xicr) ~ Vt(r)· 

Xo(r) :s; 2 if and only if r is bipartite. 

A 7 Exercise. Prove: if S s;; V, then 0 :s; Xo(r) - Xo(r(S» :s; I S I; if ff s;; C 
then 0 :s; Xl(r) - Xl(r(.9"» :s; Iffl· 

For m ~ 2, we say that r is m-critical if Xo(r) = m but xo(0) < m for all 
proper subgraphs 0 of r. We call r a critical graph if r is m-critical for 
some m ~ 2. The complete graph Km is clearly m-critical, and K2 is the only 
2-critical graph. 

A8 Exercise. Show that the odd circuits are the only 3-critical graphs. 

At this point we begin a succession of results relating the chromatic number 
of a graph to the graph structure. The first of these is due to G. A. Dirac [d.3]. 

A9 Lemma. For any graph r, either KXo(r) is a subgraph of r or Xo(r) :s; 
vo(r) - 2. 

PROOF. Let vo(r) = n and suppose Kn - l is not a subgraph of r. There exists 
{x, y} E&'2(V) + C. Let U = V + {x, y}. If r u is not complete, thenxoCru) :s; 
n - 3, and any vertex (n - 3)-coloring of r u can be extended to a vertex 
(n - 2)-coloring of r. Assume, therefore, that r u = Kn _ 2' Since Kn -1 is not 
a subgraph of r, there exist v, WE U such that {x, v} ¢= C and {y, w} ¢= C. 
Hence any vertex (n - 2)-coloring h of r u can be extended to a vertex (n - 2)­
coloring of r by assigning hex) = h(v) and hey) = hew). D 

AIO Exercise. Show that for any graph r, either Kxo(r) is a subgraph of r or 
Xo(r) :s; vo(r) - ao(r), thus proving Lemma A9. 

All Lemma. Let r be a vertex m-chromatic. Let Xo E V and suppose ho is a 
vertex m-coloring of r with respect to which {xo} is a color class. Then 
(a) Xo is incident with at least one vertex of each color except ho(xo). 

Hence p(xo) ~ m - 1. 
(b) If p(xo) = m - I and if {xo, Xl} E C, then Xl is incident with at least 

one vertex of every color except ho(xl)' In this case P(Xl) ~ m - 1. More­
over, if y and z are incident with Xo, then y and z belong to the same com­
ponent of rho -1[ho[{J/.2m. 

(c) If P(Xl) = m - 1 and if {Xl> X2} E C, then X2 is incident with at least 
one vertex of every color except ho(x2) and perhaps ho(xo). In this case 
P(X2) ~ m - 1. 
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PROOF. (a) For definiteness, suppose ho: V ~ {I, ... , m} and that ho(xo) = m. 
If Xo were incident with no vertex of color, say j E {I, ... , m - I}, then one 
could define an (m - I)-coloring h of r by changing the color of Xo from m 
to j, contrary to assumption. Hence p(xo) ~ m - 1. 

(b) If p(xo) = m - 1, then clearly Xo is incident with exactly one vertex 
of each of the colors 1, ... ,m - 1. Let Xl be incident with Xo. For definiteness, 
suppose that hO(Xl) = 1. If Xl is incident with no vertex of some color 
j E {2, ... , m - I}, then one could define a vertex (m - I)-coloring h of r by 

Eo(X) ~ X E V + {xo, Xl}; 

hex) = 1 If X = Xo; 
. ifx = Xb 

contrary to assumption. Hence P(Xl) ~ m - 1. 
Let y and z be given as in the statement. Let (W, F) be the component of 

r llo - 1£ho[(I1.2}]] containing y, but suppose z ¢ W. Define a vertex (m - 1)­
coloring h of r by 

{
ho(X) if X ¢ W + {xo}; 

hex) = ho(z) if X E W () ho -l[ho(Y)]; 
ho(Y) if X E W () ho -l[ho(z)] + {xo}, 

contrary to assumption. 
(c) If P(Xl) = m - 1, then Xl is clearly incident with exactly one vertex 

of each color 2, ... , m. By an argument like that in the proof of (b), one deduces 
that every vertex X2 incident with Xl has valence at least m - 2, since X2 
must be incident with a vertex of each color except the colors hO(Xl) and 
possibly ho(xo). If P(X2) = m - 2, then X2 is incident with exactly one vertex 
of each of the other m - 2 colors. Supposing for definiteness that hO(X2) = 2, 
one easily verifies that the following is an (m - I)-coloring of r: 

{
ho(X) if X E V + {xo, Xb X2}; 

hex) = 21 if X = Xo or X2; 
if X = Xl, 

contrary to assumption. D 

The above arguments do not apply as well to a vertex Xa incident with 
X2 if one merely assumes that p(xJ = m - 1. This is because unlike Xo and 
Xl, the vertex X2 need not be incident with representatives of m - 1 different 
color classes. 

Components of the subgraphs induced by the union of two color-classes 
are referred to in the literature as Kempe chains. Observe that a new m­
coloring can always be obtained when the two colors used in a Kempe chain 
are interchanged on that Kempe chain alone. 

If r is m-critical, then given any vertex X E V, there exists an m-coloring 
of r with respect to which {x} is a color class. Hence p(x) ~ m - 1 for all 
X E V. We have proved 
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AU Corollary. For a critical graph, Xo ::::; P + 1. 

The next corollary will be useful in the following section. 

Al3 Corollary. Let m be a positive integer. If p(0) ::::; m - I for some XoCr)­
critical subgraph 0 of r, then xocr) ::::; m. 

PROOF. Applying Al2 to the subgraph 0, we obtain xocr) = xo(0) ::::; 
p(0) + I ::::; m. 0 

From AI2 and IIIAI we readily deduce 

Al4 Corollary. For a critical graph, 2Vl ~ Cxo - I)vo. 

We shall presently prove two inequalities stronger than Corollary AI4 
and shall obtain further results about valences of critical graphs. In order 
to do this, we shall require some information relating chromatic properties 
and connectedness. 

Al5 Proposition. Let r be connected, let S £; V be a separating set of r, let 
Wl>"" Wk be the vertex sets of the components ofr(s), and let 0 1 = r wl +s. 
Suppose that for each i = I, ... , k, there exists a xo(01)-coloring of01 which 
is injective when restricted to S. Then 

XoCr) = max{xoC0 j ): i = 1, ... , k}. 

PROOF. Let m = max{xo(0 j ): i = I, ... , k}. Let S = {Xl>"" XISI}' For each 
i = I, ... , k, let hj : Wt + S -+ {I, ... , xo(01)} be a xoC0 j)-coloring. Without 
loss of generality we may impose that hl(xJ = j for j = I, ... , lSI and i = 
I, ... , k. Define h: V -+{I, ... , m} by hex) = ht(x) if XE WI + S. Then h is 
clearly an m-coloring, and by AI, Xocr) = m. 0 

Al6 Corollary. Let r be critical, and let S £; V be a separating set. Then r S 

is not complete. 

In particular, if lSI = I, this corollary yields 

Al7 Corollary. If r is critical, then either r = K2 or r is biconnected. 

Al8 Corollary. XoCr) = max{xo(0): 0 is a lobe of r}. 

Al9 Exercise. Show that AI7 cannot be sharpened; show aforaori that for 
each m ~ 2, there exists an m-critical graph which is not triconnected. 

We are now prepared to state a major result in chromatic graph theory, 
which will be seen to be considerably stronger than Corollary A14. It is due 
to G. A. Dirac [dA]. The proof given here is due to H. V. Kronk and J. 
Mitchem [k.6]. It is much shorter than the original one. 
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A20 Theorem. Every m-critical graph (m ~ 4) which is not complete satisfies 

2Vl ~ (m - I)vo + m - 3. 

PROOF. Let an integer m ~ 4 be given. If the assertion is false, there exists an 
m-critical graph r = (V, S) which is not Km, and 

A2l 2Vl ~ (m - I)vo + m - 4. 

Since r is m-critical, A21 together with Corollary AI4 imply that the 
average valence p of r satisfies 

m - 1 ~ p ~ m - 1 + (m - 4)/vo. 

Hence if we define U = {x E V: p(x) ~ m}, then 

A22 lUI ~ m - 4 < Vo. 

By Corollary AI2, p(x) = m - 1 for all x E V + U. Arbitrarily choose 
Xo E V + U. Since r(Xo) is (m - I)-colorable, r admits an m-coloring 
h: V -+{I, ... , m} such that h-l[m] = {xo}. Lemma Al1(a,b) applies. Let 
Xl, ... , xm- l denote all the vertices incident with xo, where h(xl) = i for 
i = 1, ... , m - 1, and let 0 1i = 0 11 = (WiI, ~1) denote the Kempe chain 
between Xi and Xi for 1 ~ i < j ~ m - 1. 

Since r is m-critical and not complete, r does not contain Km as a subgraph. 
Hence there exist vertices Xa and Xb incident with Xo but not incident with 
each other. 

Let n = m - 1 - Ih[U]I. From A22 one deduces 

A23 3~n~m-1. 

Assume for definiteness that {I, ... , n} is the complement in {I, ... , m - I} 
of h[U], and so Xl>"" Xn E V + U. By Lemma Allb, XI is incident with 
exactly one vertex of each color except i, for i = 1, ... , n. 

We next show: 

A24 1 ~ i < j ~ n => 0ij is an elementary xlxrpath. 

Observe that Wli s;;; V + U. Clearly within 01i both XI and Xi have valence 1. 
Proceeding from XI along any xlxrpath in 01i, let y be the first vertex en­
countered whose valence in 0 11 exceeds 2. Then y is incident with at least 
three vertices of colorj or i depending upon whether h(y) = i orj, respectively. 
Since p(y) = m - 1, y is incident with no vertex of some color 

rE{I, ... ,m - I} + {i,j}. 

If we define 

A25 h'(x) = {h(X) ~f X E V + {y}, 
r If X = y, 

then h' is an m-coloring of r with respect to which {xo} is a color class, and 
yet 01i (with respect to h') contains no xlxrpath, contrary to Lemma Allb. 
This proves A24. 
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We assert 

A26 

If Y E JfiJ n Jfik, then h(y) = i. If y ':I x" then y is incident (by A24) with 
two vertices colored j and two vertices colored k. Since p(y) = m - 1, y is 
incident with no vertex of some color r E {I, ... , m - I} + {i,j, k}. Defining 
hi as in A2S, we obtain an m-coloring with respect to which Lemma All b 
is again contradicted, whence A26 holds. 

We next demonstrate 

A27 

For definiteness, suppose {Xlo X2} ¢ G and let z e Wl ,2 be incident with Xl. 
Since 0 1,2 is an xlx2-path by A24, and since n ~ 3 by A23, the following 
function hi is an m-coloring of r with respect to which {xo} is a color class: 

{
h(X) if X E V + WI,S; 

h'(X) = 1 if XE WI,S n h-l[3]; 
3 if X E WI,S n h-l[l]. 

In effect hi reverses the colors 1 and 3 in 0 l ,s. However, with respect to hi, 
the vertex z lies in Wl ,2 n W2 ,s, contrary to A26, whence A27 holds. 

We define a subset P of the set {I, ... , m - I} of colors: 

P = {i: I :s; i :s; m - I; Xa and Xb are each incident 
with exactly one vertex of color i}. 

Clearly a, b ¢ P. We shall prove 

A28 Pn{I,2, ... ,n} ':10. 

If this were false, one would have P S; h[U]. For each of the m - <I P I + 3) 
colors not in P + {a, b, m}, either Xa or Xb is incident with at least two 
vertices of that color. Hence 

P(Xa) + P(Xb) ~ 2(m - 1) + m - IPI - 3. 

We also have p(x) ~ m - I for all X E Vby Corollary A12. In addition, there 
would be at least one vertex in U + {xa, xb} (that is, with valence greater than 
m - 1) of each of the colors in P. Summing all the valences would yield 

2Vl = 2: p(x) ~ [2(m - I) + m - IPI - 3] + (vo - 2)(m - 1) + IPI 
xeV 

= (m - I)vo + m - 3, 

contrary to A21. This proves A28. Without loss of generality, one may assume 
that I eP. 

We assert 

A29 Either {Xlo xa} ¢ G or {Xlo xb} ¢ G. 

If both 2-sets were edges of r, then since I E P, Xl would be the unique 
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vertex in h- 1[1] incident with Xa as well as the unique vertex in h- 1[1] 
incident with Xb' If we define 

{
hex) ~f x E V + {Xl> X a}; 

hl(x) = a lfx = Xl; 
1 if X = Xa, 

then Xb is incident with no vertex in hl -1[1], contrary to Lemma Allb. For 
definiteness, we may assume that {Xl' Xb} ¢ ~. 

For each i E {2, ... , n}, consider the Kempe chain 0 1b • By the argument 
used to prove A24, if 0 1b is not an elementary x,xb-path, then it contains a 
vertex X E U () h-1[b]. If X lies in 0 jb for k different colorsj E {2, ... , n}, then 
p(x) ~ m - 1 + k. 

Suppose for the moment that 

L p(x) ~ (m - 1)1 U () h- 1 [b]1 + n - 1. 
xeUn/l- 1[bl 

Since lUI - IU () h- 1 [bJI = IU + (U () h-l[b])1 ~ Ih[U]1 - 1, we obtain 

2Vl = L p(x) + L p(x) + L p(x) 
xeUn/l- 1[bl xeU xeV+ U 

/I(x)*b 

~ (m - 1)1 U () h- 1 [bJI + n - 1 + ml U + (U () h- 1 [b])1 
+ (m - 1)(vo - lUI) 

= (rn - l)vo + lUI - I U () h-l[bJI + n - 1 
~ (m - l)vo + (lh[U]1 - 1) + n - 1 
~ (m - l)vo + m - 3, 

contrary to A21. Hence 

A30 L p(x) :::; (m - 1)IU () h-l[bJI + n - 2. 
xeUn/l- 1[bl 

This inequality proves that 0 1b is an elementary x,xb-path for at least one 
color i E {2, ... , n}, and we suppose now that 0 1b is an elementary x,xb-path 
for all i = 2, .. . ,p. 

Let WE W1,b be incident with Xl' Then hew) = b and by assumption, 
w =F Xb' We shall show that 

All 

For if A31 were false, we would have pew) ~ (m - 1) + (p - 1). For each 
i E {2, ... , n} such that 0 1b is not an elementary path, there is a vertex in 
U () h- 1 [bJ () WI,b' The sum of the valences of such vertices is at least 
(m - 1) + (n - p). Hence 

L p(x) ~ (m - 1)1 U () h- 1 [bJI + (p - 1) + (n - p), 
xeUn/l- 1[bl 

contrary to A30. This proves A31. For definiteness, suppose w ¢ W2,b' 
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We define 

{
hex) if x E V + W2•b ; 

h2(x) = b if x E W2 •b () h- I [2); 
2 if x E W2 •b () h-l[b). 

Then h2 is an m-coloring of r, since O2.b is a Kempe chain. Since w ¢ W2.b, 

h2(W) = b = h2(X2)' By A27, {Xl> X2} E 8. Hence, Xl is incident with two 
vertices in h2 -l[b), contrary to Lemma Allb. 0 

Our first coroliary is a now classical result in chromatic graph theory 
known as "Brooks' theorem." 

A32 Corollary (R. L. Brooks, [b.18]). Let m ~ 4 be an integer. If no com­
ponent of r is the complete graph Km, and if p(x) ::;; m - I for all X E V, 
then xo(r) ::;; m ~ 1. 

PROOF. Let m ~ 4 be given and let 0 be a graph satisfying the hypothesis. 
Let r = (V, 8) be a xo(0)-critical subgraph of 0. Then r satisfies the hypo­
thesis, too. By A12, xo - I ::;; p(x) ::;; m - I for all x E V. If xo = m, then r is an 
m-critical,(m - I)-valent graph different from Km. By IIIAI,2vI = (m - I)vo. 
But by Theorem A20 

2VI ~ (m - I)vo + m - 3 > (m - I)vo 

since m ~ 4. Hence Xo ::;; m - 1. o 

A33 Exercise. Show that Brooks' theorem is equivalent to the following: 
Every m-critica1 graph (m ~ 4) which is not complete satisfies: 

2VI ~ (m - I)vo + 1. 

Kronk's and Mitchem's proof of Dirac's theorem (A20) reduces to a proof 
of Brooks' theorem as formulated in A33 when the set U in their proof is 
empty and so n = m - I. The ultimate contradiction is then attained with 
the proof of A27. (See L. S. Mel'nikov and V. G. Vizing, [m.8].) 

An immediate consequence of Brooks' theorem is 

A34 Corollary. If r is connected but not complete and if per) ~ 3, then 

Xo(r) ::;; per). 

If per) = 2, this last inequality may fail; the odd circuits are counter­
examples. However, if p(r) ~ 3, then the difference between the two sides in 
the inequality can be made arbitrarily large, as the next exercise indicates. 

A35 Exercise (Dirac [d.4]). Let r be an integer, r ~ 3. Construct a 4-critical 
graph r = (V, 8) such that p(xo) = r for some Xo E V and p(x) = 3 for all 
xe V + {xo} .. 
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A36 Exercise. Determine whether the following statement is true or false: 
K4 is the only critical 3-valent graph. 

The best analog to A34 for edge colorings is due to V. G. Vizing. We state 
it without proof. 

A37 Theorem (y. G. Vizing, [v.1]). For any multigraph 0 = (V,J, E) with 
selection s, 

xI(0) :5 P(0) + max.{s(U): Us;; V}. 

To see that Vizing's theorem cannot be strengthened, consider the multi­
graph obtained by replicating exactly r times each edge of the complete graph 
Ka. Then since any two edges are incident, Xl = VI = 3r = 2r + r, but 
p = P = 2r. 

A38 Exercise. Let the multigraph 0 be obtained from ~2k + I (k ~ 2) by 
replicating each edge exactly r times. Determine XI(0). 

Clearly the inequality 

A39 

gives a lower bound for the edge chromatic number of any multigraph 0. 
It, too, cannot be sharpened, for let 0 be obtained by replicating exactly r 
times the edges of any even circuit. Then p = p = 2r = Xl. From A37 we 
deduce 

A40 Corollary. For any graph, p :5 Xl :5 P + 1. 

Each bound in A40 can be attained; it suffices to consider even or odd 
circuits, respectively. 

A41 Exercise. Prove that if 0 is a bipartite multigraph, then XI(0) = P(0). 
[Hint: use a result from §VC.] 

Particular attention has been paid for about a century to the edge chromatic 
number of (3-valent) graphs. In 1880, P. G. Tait [tJ] conjectured that if r 
is trivalent and has no isthmus, then XI(r) = 3. Consequently the name Tait 
coloring has come to mean an edge 3-coloring of a trivalent graph. In 1898, 
J. Petersen [p.3] disproved Tait's conjecture. His counter-example, shown in 
two isomorphic representations in Figure A42, is known as the Petersen 
graph. This graph recurs in numerous far-flung contexts. For example, it is 
the smallest trivalent graph of girth 5. (See also §/XE below.) 
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A43 Exercise. Show that if a graph admits a Tait coloring, then it is bicon­
nected. 

A44 Exercise. Let r be a trivalent graph. Prove that if r has a Hamilton 
circuit, then r has a Tait coloring, but that the converse is false. 

A45 Exercise. Show that the Petersen graph is the unique smallest biconnected, 
trivalent graph with edge chromatic number 4. What if the condition of 
biconnectedness were relaxed? 

A46 Exercise (J. Petersen-B. Descartes). Let h: tf --+ {I, 2, 3} be a Tait coloring 
of the trivalent graph r, and let , be any minimal nonempty cocycle of r. 
Prove that the three integers I' f"I h-1[i]lfor i = 1,2,3 are pairwise congruent 
modulo 2. 

A47 Exercise. Let r = (V, tf). 
(a) (Ore, [0.2, p. 122].) Prove that xo(r) ::;; 4 if and only if there exists a 

set S £; V such that rs and rv +s are bipartite. 
(b) (Woodall, [w.13].) Prove that xo(r) ::;; 4 if and only if there exists a set 

, £; 8, such that r(,> and r(4'+'> are each bipartite. 

Further Reference 

Blanche Descartes, [d.1]. 

VIIB Chromatic Theory of Planar Graphs 

The most noteworthy achievement in combinatorics in 1976 was the decision, 
in the affirmative, of the so-called 

Bl Four-Color Conjecture. Xo(r) ::;; 4 for every planar graph r. 

For over one hundred years many mathematicians had labored on this 
problem. An entire lengthy book by Oystein Ore [0.2] is devoted to its history 
and such progress as had been made toward its solution, equivalent for­
mulations, and generalizations. Since much of this theory is of interest 
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in its own right, we present some of these results in the first part of this 
section. 

The proof of BI announced by K. Appel and W. Haken [a.1] requires 
some thousands of hours of computer time and consequently is not within 
the scope of this book. Nonetheless, a general description of their approach 
together with an example or two are very much in the spirit of this chapter 
and will be presented in the second part of this section. Since we do not in­
clude any formal proof of the Four-Color "Theorem," it is reasonable to 
treat it as only a conjecture while presenting some of the more classical 
results. The form of many of these is in effect that B1 is equivalent to some 
other condition. We now know, however, that the other condition always 
holds, too. 

Originally, the Four-Color Problem was posed concerning the coloring of 
the regions of a planar imbedding of a graph, subject to the condition that 
two regions incident with a common edge be assigned different colors. As such 
the problem was motivated by the question of coloring the countries of an 
idealized map so that countries with a common boundary receive different 
colors. We say" idealized" since on the one hand we require that all countries 
be connected (e.g., Pakistan is acceptable only since 1972), while on the other 
hand no rules apply for noncontiguous regions (e.g., the Atlantic Ocean need 
not be the same color as Lake Ontario, but may be the same color as Hungary). 
Of course, the face-coloring problem is entirely "orthogonal" to the vertex 
problem which we have already stated and to which we now tum our 
attention. 

BZ Lemma (The Six-Color Theorem). fir is planar, then xo(r) :s; 6. 

PROOF. Let r be planar, and let 0 be a Xo(r)-critica1 subgraph of r. By 
IIIE15, 0 is planar, and so by fIIF12, p(0) :s; 5. The result follows by A13. 0 

B3 Theorem (The Five-Color Theorem). If r is planar, then xo(r) :s; 5. 

PROOF. If xo(r) > 5, then Xo(r) = 6 by B2, and we select a 6-critical subgraph 
o = (V, 8) of r. By IIIE15, 0 is planar, and by IIIFI2, 0 admits a vertex 
Xo of valence at most 5. By A12, p(xo) = 5 (in 0). Since 0 is 6-critical, it 
admitsa6-coloringho: V ~{O, 1, ... , 5} withrespectto which {xo} = ho -1[0]. 

Let Xl, ... , Xs be the vertices incident with Xo where the indices are such 
that the edges {xo, XI} and {xo, X'+l} are incident with a common face ZI of 
a planar imbedding of0 (i = 1, ... ,5; Xs = Xl)' (See Figure B4.) By Lemma 
Alia, we may assume without loss of generality that ho(x,) = i for i = 
1, ... ,5. By virtue of Lemma Allb, we may let 0 1 be an elementary xlxs-path 
lying in 0"O-1[(1,S}] and let O2 be an elementary x2x4"path lying in 0"O-1[(2,4}j. 
Then the circuit consisting of Xs, {xs, xo}, Xo, {xo, Xl} followed by 0 1 and the 
circuit consisting of X4, {X4' xo}, Xo, {xo, x2} followed by O2 cross at the vertex 
Xo and have no other common vertex. This is impossible by IIIE22. 0 
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B4 

The technique used in the above proof can be adapted to prove the 
following. 

B5 Proposition. Let r be planar and let Xo be a vertex ofr such that p(xo) ~ 4. 
If xo(r(Xo» ~ 4, then xo(r) ~ 4. 

PROOF. Let Xl, ... , Xm be the vertices incident with Xo and let h: V + {xo} ~ 
{I, 2, 3, 4} be a xo(r(Xo»-coloring of r(Xo)' If Ih[V + {Xo}] I < 4, then it is clear 
that h can be extended to a vertex n-coloring of r with n ~ 4. Hence it may 
be assumed that m = 4 and that h is a 4-coloring of r(Xo) such that h(xt) = i 
(i = 1, 2, 3,4). If xo(r) > 4, then there exists as-coloring ho: V ~ {O, 1, ... , 4} 
of r such that 

ho(x) = {O if X = Xo; 
hex) if x E V + {xo}. 

Without loss of generality, assume that there are faces Zt incident with edges 
{Xo, Xi} and {xo, X!+l} (i = 1, ... ,4; X5 = Xl)' We again invoke Lemma Allb 
and continue exactly as in the proof of Theorem B3. 0 

If a planar graph r were a counter-example to the Four-Color Conjecture, 
then by BS, any subgraph of r obtained by deleting vertices of valence 4 or 
less would also be a counter-example. (Cf. B9 below.) 

The method of proof of BS is inadequate if the hypothesis is changed to 
allow p(xo) = S. Let us consider why. In any vertex 4-coloring of r(Xo)' the 
five vertices incident with Xo would represent at most four colors. When we 
then extend a 4-coloring of r(Xo) to a S-coloring of r by coloring the vertex 
Xo a new color, the hypothesis of Lemma Allb is not fulfilled, and we are 
not assured of the existence of the necessary Kempe chains. 

189 



VII Chromatic Theory of Graphs 

B6 Corollary. If r is planar and vo(r) s; 11, then xo(r) s; 4. 

PROOF. By IIIF12 and IIIFI3, p(0) s; 4 for any subgraph 0 of r. Let So = V. 
Inductively, for i ;::: 0, there exists a vertex XI E SI = SI-l + {XI-I} whose 
valence in r s, is at most 4. Clearly xo(r Sk) S; 4 for some k. By B5, if Xo(r s,) 
S; 4, then xo(r s, -1) :5 4 and the result follows by induction. 0 

B7 Corollary. If r is planar and y(r) ;::: 4, then Xo(r) :5 4. 

PROOF. Without loss of generality one may assume that r is connected. Let 
o be any connected subgraph of r with vl(0) > O. Since y(0) ;::: 4, p.l(0) ;::: 4, 
and so by IIIF4, 

1 1 1 1 
p(0) ;::: 4. + vl(0) > 4' 

whence p(0) :5 p(0) < 4. Let V = So, Sh ... , Sk be constructed inductively 
as in the previous corollary, where ISkl < 12. The result follows from B6 
by k iterations of B5. 0 

B8 Exercise. Prove: if r is planar and y(r) ;::: 6, then xo(r) :5 3. 

Actually a much weaker hypothesis than y(r) ;::: 6 is sufficient for xo(r) :5 
3. H. Grotzsch [g.7] proved in 1958 that y(r) ;::: 4 is sufficient. (See especially 
O. Ore, [0.2, Chapter 13].) 

For the remainder of this section we consider some of the many equivalent 
formulations of the Four-Color Conjecture (Bl). The first three of these are 
in the form of the comment following the proof of B5, namely: the Four­
Color Conjecture is true in general if it is true for a certain subclass of planar 
graphs. 

B9 Proposition. The Four-Color Conjecture is true if and only if all planar graphs 
r with p(r) = 5 are vertex 4-colorable. 

PROOF. Suppose that 

B10 p(r) = 5 =:> Xo(r) :5 4 

is true for all planar graphs r. Let 0 be a planar graph with the least possible 
number of vertices such that p(0) :5 4 but xo(0) = 5. Let Xo be a vertex of 
o such that p(xo) :5 4. If p(0(xo» = 5 then Xo(0(xo» :5 4 by BIO. If p(0(xo» ~ 
4, then Xo(0(xo» ~ 4 by the assumption of minimality on vo(0). Either way, 
we deduce from B5 that xo(0) = 4, giving a contradiction. 

The converse is obvious. 0 

A planar imbedding of a graph is called a triangular imbedding if I Z I = 3 
for every region Z of the imbedding. I. Fary [f.l] proved in 1948 that if a 
graph is planar, then it can be realized in the plane in such a way that every 
edge is a segment of a straight line. Consequently, if a graph admits a tri-
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angular imbedding, then it admits the intuitively appealing realization wherein 
every region is a geometric triangle. 

Btl Exercise. Prove that every planar graph without isthmus which admits 
a triangular imbedding is biconnected, and with the exception of Ka, is 
triconnected. 

Btl Proposition. The Four-Color Conjecture is true if and only if all planar 
graphs which admit a triangular imbedding are vertex 4-colorable. 

PROOF. Suppose that xo(0) ~ 4 for every planar graph 0 which admits a 
triangular imbedding. Were there to exist a planar graph with vertex chro­
matic number 5, consider a 5-critical subgraph r = (V, 8) of it, and let 
{Zlo' .. , Zm} be a planar imbedding of r. 

By A17, r is biconnected. Hence by IIIB3 and IIIE9 each region ZI is an 
elementary cycle, and so by IIIA9, ZI induces an elementary circuit 

in r for each i = 1, ... , m. Let Ylo ... , Ym be m distinct objects not in V 
and define 

U = VU {Ylo"" Ym}, 

F = 8 U {{XI,i' y,}:j = 1, ... , ql; i = 1, ... , m}, 

and n = (U, F). 

Since r = ny, it suffices to prove that n admits a triangular imbedding. 
We define 

B13 
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(See Figure BI3.) It is then straightforward to verify that the collection 

{ZI.,:j = 0, ... , ql - 1; i = 1, ... , m} 

is a triangular imbedding of 0. 
Once again, the converse is obvious. o 

D14 Proposition. Let r be planar with vo(r) ~ 4. A necessary and sufficient 
condition for Xo(r) ~ 4 is that there exist three pairwise-disjoint subsets 
Sl> S2, S3 £; te such that te = tel + S2 + S3' and if Z is any region of a 
planar imbedding ofr, then IZ (i Sll == IZ (i te21 == IZ (i S31 (mod 2). 

PROOF. Necessity. Suppose xo(r) ~ 4 and let 

ho: V-+IK x IK 

be a vertex 4-coloring of r. We represent the four elements of IK x IK in the 
natural way: (0, 0), (0, 1), (1, 0), and (1, 1). Based on ho, we define a function 
hl : S -+ {CO, 1), (1, 0), (1, I)} given by 

hl({x, y}) = ho(x) + ho(Y) for each {x, y} E S. 

(In general hl will not be an edge coloring.) We define 

DIS Sl = hl-l[(O, 1)], S2 = hl - l [(1, 0)], and S3 = hl - l [(I, 1)]. 

Now let Z be a region of some imbedding of r. By IIeI, Z is a sum of pair­
wise-disjoint elementary cycles; let Z' be one of these. By IIIA9, Z' determines 
an elementary circuit Xo, {xo, Xl}, Xl> {Xl> X2}, ... , {Xk-l> Xk}, Xk = Xo. 

In the vector space IK x IK, 
k-1 

IZ' n S11(0, 1) + IZ' n S21(1, 0) + IZ' (i S31(1, 1) = L h1({Xh XI + l}) 
1=0 

k-l 

= 2 L ho(xl) = (0, 0). 
1=0 

Hence IZ' (i Sll + IZ' (i S31 == 0 (mod 2) and IZ' (i S21 + IZ' (i S31 == 
o (mod 2). By addition, these same congruences hold for Z. 

Sufficiency. Let the sets tel> S2, S3 be given and let them determine a function 
hl: S -+ {CO, I), (1, 0), (1, I)} consistent with B15. We prove thathl determines 
a vertex coloring ho: V -+ IK x II<. 

Arbitrarily choose Xo E V and define ho(xo) = (0, 0). If y E V is in the same 
component of r as Xo, let Xo, {xo, Xl}, Xl> {Xl> X2},"" {Xk-l> Xk}, Xk = Y be 
an xoy-path in r. Define 

k-l 

ho(Y) = L: hl({Xh XI+1})' 
1=0 

We assert that ho is well-defined, for the sum of the edge sets of any two 
xoy-paths is a cycle, which in tum is a sum of regions. It follows from our 
assumption that the sum of the values of hl on any region is O. This process 
may be carried out for each component of r. It is immediate that ho is a 
vertex coloring. 0 
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The condition of the above proposition implies that if a region Z is a 
3-cycle, then Z contains exactly one edge in each set tft. Thus tft :F [0 and 
{til' tl2' tla} E lPa(tI). In particular, when all the regions are 3-cycles, we have 
the following. 

B16 Corollary. Let I' be a planar graph without isthmus having a triangular 
imbedding {Zl, ... , Zm}. A necessary and sufficient condition for Xo(r) ~ 4 
is that the graph 0 orthogonal to I' with respect to {Zh •.. , Zm} admit a 
Tait coloring. 

PROOF. Since by definition, {Zh ... , Zm} is the set of vertex cocycles of 0, 
we have that 0 is trivalent. The sets ,f1> tl2, tla of the proposition correspond 
to the color classes of a Tait coloring of 0 (cf. Exercise A46), whence the 
result follows. 0 

B17 Corollary (p. G. Tait [tJ], 1880). The Four-Color Conjecture is equivalent 
to the following conjecture; every planar trivalent graph without isthmus 
admits a Tait coloring. 

PROOF. By the definition of a graph orthogonal with respect to an imbedding, 
we have that each trivalent graph without isthmus which admits a planar 
imbedding is orthogonal, with respect to that imbedding, to a graph without 
isthmus admitting a triangular imbedding, and conversely. By Proposition 
B12, the Four-Color Conjecture is equivalenttothe proposition that Xo(r) ~ 4 
for every graph I' admitting a triangular imbedding. The corollary now 
follows from Corollary B16. 0 

As though it was not already obvious from Figure A42, let us give a quick 
but rigorous proof that the Petersen graph II is nonplanar. With Vo = 10 
and Vl = 15, we deduce from the Euler Formula IIIF2b that if II were indeed 
planar, then vo(l') = 7 where I' 1. II. By B6, Xo(l') s 4. Since II has no 
isthmus, it follows from Bl6 that II admits a Tait coloring, contrary to 
Exercise A45. 

B18 Exercise. For each integer n ;::: 6 construct a planar graph I' such that 
vo(l') = n, Xo(l') = 4, and I' does not contain K4 as a subgraph. 

B19 Exercise. Show that if I' is planar, 01. 1', and 0 admits a Hamilton 
circuit, then xo(r) ~ 4. Show also that the converse is false. 

Two other conjectures equivalent to BI corne readily from Exercise A47. 
Many further equivalent formulations are presented in T. L. Saaty [s.1]. 

The effect of many of the foregoing results is to tell us that if we are to 
search for a counter-example r to the Four-Color Conjecture, then we lose 
no generality in making a number of graph-theoretical assumptions about 
1'. Not only do we have that vo(r) ;::: 12 and xo(r) = 5, but we may assume 
that r belongs to a class which we shall call G consisting of all planar, 5-
chromatic graphs I' on m vertices having a triangular imbedding, where all 
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planar graphs r with vo(r) < m satisfy Xo(r) S 4. The approach of Appel 
and Haken, like that of their predecessors, was to show, naturally, that G 
is empty. 

Let r = (V, 4) and let S £ V. We say a pair (r, S) is a configuration if rs 
is an elementary circuit and r(S) is connected. (Each graph r l in Figure B20 
becomes a configuration when paired with the set of vertices SI indicated 
in the figure as bounding its exterior region.) A configuration (r, S) is said 
to be immersed in the graph @ if r is a subgraph of@ and r(S) is a component 
of @(S). A configuration (r, S) is said to be reducible if any planar graph @ 
with vo(@) = m and in which (r, S) can be immersed satisfies xo(@) s 4. 
Clearly a reducible configuration cannot be immersed in any graph in G. 
Finally, a collection H of configurations is unavoidable if each graph in G has 
a configuration from H immersed in it. 

Thus if a configuration is reducible and belongs to an unavoidable 
collection H, its removal from H will result in a smaller unavoidable collection. 
Hence G is empty if and only if there exists a nonempty unavoidable collec­
tion of reducible configurations. 

Yo 

Yo ":»---~Y3 

Kempe [k.2] had quite correctly shown that the collection consisting of the 
single configuration (r 1> S1) in Figure B20 is unavoidable. (His error lay in 
his "proof" that (r 1, S1) is reducible.) The Appel-Haken approach is similar 
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in that it consists of constructing an unavoidable collection of reducible 
configurations. Their collection, however, has about 2000 of them. (Apparently 
it was easier to construct this collection than to prove directly that (r 10 Sl) 
is reducible!) What we shall do here is to present another unavoidable 
collection, this one consisting of just two configurations, and to demonstrate 
that a third configuration is reducible. Our purpose is to demonstrate some 
of the Appel-Haken techniques and thereby to give some of the flavor of 
their work. To do this, we require three lemmas which have been standard 
tools of the trade. 

Bll Lemma. If Z is a 3-cycle of a graph rEG, then Z is a region for every 
planar imbedding of r. 

PROOF. Consider a planar imbedding of r which does not include Z as a 
region. By Exercise IIIE24, the set S of vertices incident with the edges in Z 
form a separating set of r. Since rs is complete, the restriction to S of any 
coloring of a subgraph of r containing S is an injection. By Proposition A15 
and the definition of G, Xo(r) :::;; 4, contrary to assumption. 0 

B22 Lemma. Let r belong to G, and let x be a vertex of r. Then r N(x) is an 
elementary circuit. 

PROOF. Since r contains a 5-critical subgraph on the same vertex set, it is 
biconnected. By Lemma IIIE21, the edges in the vertex cocycle of x may be 
denoted by Eo, E1o ••• , Ep(x)-l so that for some triangular imbedding, E, 
and EI+I lie on a common region (where subscripts are read modulo p(x». 
Let E, = {x, YI} for i = 0, 1, ... , p(x) - 1. Since every region is a 3-cycle, 
{{Yo, Yl}, {YI, Y2}, ... , {YP(X)-1o Yo}} is a cycle of r. 

If {y" yA is an edge of r, then since the three edges E" {y" Yi}' E j determine 
a region by Lemma B2l and since every edge of a biconnected graph belongs 
to exactly two regions, Yi must be YI±I (subscripts read modulo p(x». 0 

B23 Lemma. Every graph in G admits either (i) a pair of incident 5-valent 
vertices or (ii) a pair of incident 6-valent vertices both of which are incident 
with a common 5-valent vertex. 

PROOF. Let r = (V, iff) be a graph in G which satisfies neither condition, 
and define f: V -+ 7L. by f(x) = 6 - p(x) for all x E V. Since r admits a 
triangular imbedding, V2 = 2VI/3, which when substituted into the Euler 
Formula IIIF2b, yields Vo - (vI/3) = 2. Thus 

L: f(x) = 6vo - L: p(x) = 6vo - 2VI = 12. 
xeV xeV 

For x E V, let U(x) denote the set of 5-valent vertices in N(x), and let U = 
Uxev U(x). For each U E U, let n(u) denote the number of vertices in N(u) 
whose valence is at least 7. Since condition (i) fails, there are (5 - n(u» 
6-valent vertices in N(u) for each u E U. No two of these 6-valent vertices are 
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incident, since condition (ii) fails. By Lemma B22, each such yertex u is 
incident with at most two 6-valent vertices. Thus 3 ~ n(u) ~ 5 for all u E U. 

Let us now define g: V -+ Q by 

{

-I 

g(x) = 0 

ue~x) Ijn(u) 

if p(x) = 5, 

if p(x) = 6, 

if p(x) ~ 7. 

Appel and Haken refer to g as a "discharging function '.'; one imagines each 
vertex of r as possessing a certain amount of" charge ,., and that the function 
g removes one unit of charge from each 5-valent vertex u and redistributes 
it by transferring Ijn(u) units to each of the n(u) vertices incident with u 
having valence at least 7. Thus there is no net change in "charge" of the 
whole graph. In other words, Lxev g(x) = O. Now let us define h: V -+ Q 
by h = f + g, whence it follows that Lxev h(x) = 12. We shall obtain a 
contradiction by showing that h(x) ~ 0 for all x E V. 

One verifies easily that h(x) = 0 if p(x) = 5 or 6. Let x E V and suppose 
p(x) ~ 7. Since no two 5-valent vertices are incident while r N(x) is an elemen­
tary circuit, it follows that I U(x) I ~ p(x)j2. Since n(u) ~ 3 for all U E U(x), 
we have 

g(x) = ~ _1_ s [p(x)j2] s p(x). 
ueU(x) n(u) 3 6 

If p(x) = 7, then h(x) ~ -1 + 1 = 0, while if p(x) ~ 8, then h(x) ~ 6 -
(Sp(x)j6) < O. 0 

B24 Proposition. The two configurations (r 2, S2) and (r a, Sa) of Figure B20 
form an unavoidable collection. 

PROOF. Let e belong to G. Referring to Lemma B23, we assert that if e 
satisfies (i), then (r 2, S2) can be immersed in e, while if e satisfies (ii), then 
(r a, Sa) can be immersed in e. We demonstrate the first assertion, leaving the 
second to be completed by the reader. 

Let Xo and Xl be a pair of incident 5-valent vertices. Then eN(Xo) and 0 N(Xl) 

are both 5-circuits. Since 0 admits a triangular imbedding, there exist 
vertices Yo and Yl such that {{xo, Xl}, {Xl> Yo}, {Yo, xo}} and {{xo, Xl}, {Xl> Yl}, 
{Yl' xo}} are regions; this follows from Lemma IIJE21, B21, and B22. This 
yields the graph r 2 as a subgraph of 0. Furthermore, the vertices in r 2 

account for all vertices incident with Xo and Xl' Hence, r(8a) = r{XO,Xl) is a 
component of 0(8a)' 0 

B25 Proposition. The configuration (r., S.) of Figure B20 is reducible. 

PROOF. Let 0 be a planar graph with vo(0) = m, and suppose that the con­
figuration (r., S.) is immersed in 0. We must show that xo(e) ~ 4. We 
suppose that xo(0) > 4. By Lemma B21, every 3-cycle of 0 is a region of 
any planar imbedding of 0. The 3-cyc1es of r. are also 3-cycles of 0; their 

196 



vIle The Imbedding Index 

sum is the cycle {{Yo, Yl}, {Y1o Y2}, ... , {Y5' Yo}}. (The set of vertices on the 
corresponding circuit is 84,) It follows that e({XO ••••• X4}) has a planar imbedding 
in which this cycle is a region. Let e' be formed from e({Xo ....• X4})' by adjoining 
any of the edges {Yo, Y2}, {Yo, Ya}, {Yo, Y4} not already in e. Clearly e' is 
planar. Since voce') < voce) = m, there exists a vertex k-coloring h of e' for 
some k ~ 4. Clearly h is also a k-coloring of e«Xo •. ".X4})' Using colors from 
the set {O, 1,2, 3}, we list in Table B26 the six possible restrictions of h to 84 
subject to permutations of the colors or the permutation on 84 given by 
(Y1o Y5)(Y2, Y 4), which is extendable to a vertex-automorphism of r 4' In all 
but the first case, h is easily extended to a 4-coloring of e, as indicated in the 
table, yielding a contradiction. Hence, the restriction to 84 of every vertex 

B26 Yo Y1 Y2 Ya Y4 Y5 Xo Xl X2 Xa X4 

Case 1 0 1 2 1 2 1 
Case 2 0 1 2 1 2 3 2 0 1 3 0 
Case 3 0 1 2 1 3 1 0 2 3 2 3 
Case 4 0 1 2 1 3 2 3 0 1 2 0 
Case 5 0 1 2 3 1 2 1 0 3 2 0 
Case 6 0 1 2 3 2 1 1 0 2 3 0 

k-coloring of e' must yield the values of Case 1 of Table B26, subject to the 
above permutation. If there exists a Y2Y4-Kempe chain in e with colors 0 
and 2, then there can exist no Y1Ya-Kempe chain with colors 1 and 3, the argu­
ment being identical to that of the Five-Color Theorem. In this case, the 
color of Ya may be changed to 3 without affecting any other vertices of 84, 
and we return to Case 6 of Table B26. Since there is no such Y2Y4-Kempe 
chain, there exists either no YOY2-Kempe chain or no YOY4-Kempe chain. 
If there exists no YOY4-Kempe chain, then Y4 may be recolored with O. Note 
that in e, {Yo, Y4} need not be an edge, and so we must consider a vertex 
coloring h/ S4 not listed in the table. However, the assignments h(xo) = 0, 
h(X1) = 2, h(X2) = 3, h(xa) = 2, and h(X4) = 3 extend h to a vertex 4-coloring 
of e. If there exists no YOY2-Kempe chain, the argument is symmetric. 0 

B27 Exercise. (a) Using B25 and arguments similar to those in the proof of 
B23, show that the m defined above is at least 16, i.e., show that if r is planar 
and vo(r) < 16, then xo(r) ~ 4. 

(b) By showing that the only triangulated planar graph on 16 vertices 
with twelve 5-valent vertices and four 6-valent vertices is 4-chromatic, show 
that m ~ 17. 

VIle The Imbedding Index 
In Chapter III, we gave a purely combinatorial definition of a planar im­
bedding of a graph. The fundamental observation leading to this definition 
is that the edge sets of the boundaries of the regions of a topological 

197 



VII Chromatic Theory of Graphs 

imbedding of a graph r include every edge twice and span the cycle space of 
r. In §IIIE, we showed that any set Y of cycles which 

(a) spans ,:;z'(r), and 
(b) includes each edge, except isthmuses, exactly twice 

may be taken as the set of boundaries of the regions of a topological im­
bedding of r -with suitable adjustments for isthmuses. 

It is natural to attempt to extend this combinatorial approach to imbeddings 
in other surfaces. (A surface is a compact, connected topological space in 
which every point has a neighborhood homeomorphic to an open disk in 
the Euclidean plane. It is also called a "compact 2-manifold.") On surfaces 
other than the sphere, there exist circuits which are not homotopically trivial. 
On the other hand, condition (a) above means, in the light of §IIIE, that all 
circuits are homotopically trivial. The natural extension therefore, is simply 
to relax condition (a). We do this in the definition of a "cycle cover" below. 
The difficulty with this approach is that, while one always obtains an imbed­
ding in a finite 2-dimensional cell complex, this complex need not be a surface. 
In particular, the vertices of the graph may appear as singular points on this 
complex. 

A purely combinatorial definition of an imbedding in an orientable surface 
has been given by Edmonds [e.l] and will be discussed in §E, where the 
topological approach of §IIIE will be extended to arbitrary surfaces. For the 
present, we confine ourselves to a combinatorial substitute for the genus of a 
topological imbedding, called the "imbedding index." The main result of 
this section is a general theorem which has Heawood's inequality and 
Ringel's analog for the Euler characteristic as special cases. 

A cycle cover of a graph r is a sequence Zl' ... , Zm E ,:;z'(r) + {0} such 
that each edge of r belongs to Zj for at most two indices i. Observe that if 
the cycle Zl + ... + Zm is not empty and is appended to a cycle cover 
Zl' .. " Zm, then the new sequence is also a cycle cover. We define 
V2(Zl, ... , Zm) = 1 + dime ({Zl' ... , Zm}» and 

,(Z1> ... , Zm) = dim(,:;z'(r)/({Z1> ... , Zm}». 

By IIIAI5b, 

Cl ,(Z1>' ",Zm) = I + V_l(r) - vo(r) + Vl(r) - V2(Z1>""Zm)' 

We let V2(r) and ,(r) denote respectively the maximum of V2( Z1> ... , Zm) and 
the minimum of I(Z1>"" Zm), taken over all cycle covers Z1>"" Zm of r. 
The parameter I(r) is called the imbedding index of r, and hence is given by 

C2 

C3 Exercise. Prove that I(r) ~ 0, with equality holding if and only if r is 
planar. 

C4 Proposition.lj0 is a subgraph ojr, then 1(0) s: I(r). 
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PROOF. Any subgraph of r may be obtained by first deleting some edges of 
r and then deleting some isolated vertices. Since isolated vertices affect 
neither the dimension of a cycle space nor the size of a cycle cover, we need 
show only that ,(r(E» ::;; ,(r) for any edge E of r. 

By IIlCla, dim(~(r(E») = dim(~(r» - 1 unless E is an isthmus, in 
which case dim(~(r(E») = dim(~(r». Turning to cycle covers, we note that 
every cycle cover of r(E) is a cycle cover of r, and if E is an isthmus, the 
converse also holds. Hence V2(r) ~ V2(r(E»' with equality holding if E is an 
isthmus. Hence ,(r(E» = ,(r) for E an isthmus. If E is not an isthmus, then 
because of C2, it suffices to show that vir) ::;; V2(r(E» + 1. 

Suppose V2(r) = V2(Zlo ... , Zm). If E 1= Ur~ 1 Z" then Zlo ... , Zm is also a 
cycle cover of r(E), and V2(r) = V2(r(E». If E E U~ 1 Z" then by including 
ZI + ... + Zm if necessary, we may assume that E belongs to exactly two of 
the cycles, say Zm-l and Zm. It follows that Zlo ... , Zm-l, (Zm-l + Zm) is a 
cycle cover of r(E), and therefore V2(r) - 1 ::;; V2(r(E». 0 

Define the function G by GU) = 2j/(j - 2) for each integer j ~ 3, and 
define G(oo) = limj-+oo GU) = 2. If kEN, we define the integer-valued 
function 

{ 
[G(j) + 1 + V G2(j) - 6GU) + 1 + 4GU)k] 

HU,k) = 2 

{G(j)} 

for k ~ 2; 

for k = 0, 1, 

where for x E IR, {x} denotes the least integer such that x ::;; {x}. The reader 
already familiar with Heawood's inequality will recognize that H(3,2k) is 
the Heawood number of the orientable surface of genus k. We will use the 
function H(j, k) to derive a generalization of the Heawood inequality. In 
order to do this we must prove some preliminary results. 

One obtains by direct calculation 

C5 HU,2) = [G(j) + 1] ~ {G(j)} = H(j, 1) = H(j,O). 

C6 Lemma. H(j, k) is nonincreasing in the first variable and nondecreasing in 
the second variable. 

PROOF. Since GU) is nonincreasing in j, H(j, k) is clearly nonincreasing in j 
for k = 0, 1,2 (by CS). On the other hand, HU, k) is nondecreasing in G(j) 
for k ~ 2, and therefore nonincreasing inj. Since GU) > 0, HU, k) is strictly 
increasing in k for k ~ 2. The rest follows from CS. 0 

C7 Lemma. For any graph r, per) < H(y(r), ,(r». 
PROOF. Let V2(r) = V2(Zlo ... , Zm). Adjoining Zl + ... + Zm to this cover if 
necessary, we may assume that {Zlo ... , Zm} is dependent. Thus m ~ V2(r), 
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and so by C2 (with the argument r suppressed)" ~ VI - Vo + 2 - m. From 
the definitions of cycle cover and girth, my =:; 2Vl, from which we deduce 

C8 

Recall from the definition of average valence that 

C9 pVo = 2Vl' 
Case 1: , =:; 2. Using C9 to eliminate Vo from C8 we obtain 

!~_1_+2-' 
P G(,,) 2Vl' 

If , = 0 or I, p < G(,,) =:; {G(,,)} = H(", ,). If , = 2, then p = G(,,) < 
[G(,,) + 1] = H(", 2) by CS. 

Case 2: , > 2. Using C9 to eliminate VI from C8, we obtain 

CIO ( , - 2) 
p =:; G(,,) 1 + --;;;- . 

We define the functionf(x) = G(,,)(1 + «, ...;. 2)/x» for all real x > O. Since 
fis a decreasing function, there exists a least Ho E "I such thatf(Ho + 1) < 
Ho. We assert that p < Ho; for if Vo S Ho, then p < Vo =:; Ho; while if 
1:'0 > Ho, then Jlo ~ Ho + 1, and by CI0, p =:; f(vo) =:; f(Ho + 1) < Ho. It 
remains only to show that Ho = H(", ,). 

By definition, Ho is the smallest positive integer satisfying 

H. G( ) + G(,,)(, - 2) 
0>" Ho + 1 ' 

or equivalently, H02 - (G(,,) - I)Ho - G(,,)(, - 1) > O. That is to say that 
Ho is the least integer greater than the larger root of the quadratic equation 

r - (G(,,) - l)x - G(,,)(, - 1) = O. 

In other words, Ho = [xo + 1] where, by the quadratic formula; 

G(,,) - 1 + "'(G(,,) - 1)2 + 4G(,,)(, - 1) 
Xo = 2 . 

The lemma follows directly by algebraic manipulation. o 
ell Proposition. For any graph r, xo(r) =:; H(Y(r), ,(r». 
PROOF. Let 0 be a xo(r)-critical subgraph of r. By C7, p(0) =:; p(0) < 
H(y(0), ,(0)}. Clearly y(0) ~ y(r), , while by C4, ,(0) =:; ,(r). Hence by C6 
H(y(0), ,(0» =:; H(,,(r), ,(r». The proposition follows from A13. 0 

Combining this proPQsition with Lemma C6 yields 

Cll Corollary. Given j an integer ~ 3 or j = ex> and given kEN, let r be any 
graph satisfying y(r) ~ j and ,(r) ~ k. Then xo(r) =:; HU, k). 

200 



VIID The Euler Characteristic and Genus of a Graph 

Note that for k ~ 1, H(3, k) = [(7 + vi + 24k)/2]. Hence by CI2 and 
Exercise C3, we have 

C13 Corollary. If r is a non planar graph, then 

(r) [ 7 + vI + 24&(r)] 
Xo ~ 2 . 

Observe that if CI3 were also valid for planar graphs, it would imply the 
Four-Color Conjecture. However, since H(3, 0) = {G(3)} = 6, we obtain no 
new information in the planar case. 

From lllAI5b and C6 we obtain: 

C14 Corollary. If r is a connected non planar graph and if Zl, ... , Zm is any 
cycle cover of r, then 

[ 7 + V 49 - 24(vg(Zh ... , zm> - V1 + vo)] 
~~ 2 . 

CIS Corollary. Let r be any graph with &(r) < 2.lfy(r) ~ 4, then Xo(r) ~ 4; 
if y(r) ~ 6, then xo(r) ~ 3. (Cf. B7 and B8.) 

Quite possibly the reader will immediately recognize that CI4 differs 
from Heawood's formula [h.7] only insofar as V9(Zh ••• , Zm) - V1 + Vo 

stands in place of the Euler characteristic. The relationship between these 
two parameters is considered in the next section. 

VIID The Euler Characteristic and Genus of a 
Graph 

Prerequisite to an understanding of this and the next section are some basic 
point-set topology and an acquaintance with the classification of surfaces. 
(This material is not presumed for lhe other sections of this text.) In particular, 
it will be assumed that the reader is acquainted with the Euler characteristic 
e(S) of a surfact: S. If S is an orientable surface, it is convenient to work with 
its genus l1(S) given by 

Dl l1(S) = 1 - teeS). 

If S denotes the 2-dimensional sphere, for example, then e(S) = 2 and 
l1(S) = O. While not absolutely essential, some familiarity with the funda­
mental homotopy group would also be helpful. We recommend as a topo­
logical referepce, W. S. Massey [m.7]. 

Throughout this section, r = (V, C) will denote a graph. As suggested in 
§lllE, r may be identified with a I-manifold, called a topological realization 
of r. A topological imbedding of r in a sprface S is a homeomorphism from a 
topological realization of r into S. A region of a topological imbedding of 
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r is a connected component of the complement in S of the image of the 
topological imbedding of r. If every such region is homeomorphic to an 
open disk, the topological imbedding is called a 2-cell imbedding. By abuse 
of terminology, the vertices and edges of r are identified with the images 
under a topological imbedding of their corresponding subspaces in a topo­
logical realization of r. If R is a region, the set of edges, each of which 
belongs to the boundary of both R and some region other than R, corresponds 
to a cycle of r, called the cycle of R. 

We begin by indicating rather intuitively how an arbitrary graph r always 
has a topological imbedding in some orientable surface. Consider a topological 
realization of r in 3-space and "thicken" it in the sense that edges become 
rods. Clearly r can be topologically imbedded on the surface of such a 
structure. 

The genus 1](r) of the graph r is the genus of the orientable surface S of 
least genus such that r can be topologically imbedded in S. An imbedding 
of r in an orientable surface of genus 1](r) is called a minimal imbedding. 
The Euler characteristic e(r) of r is the Euler characteristic of the surface S 
of greatest Euler characteristic such that r can be topologically imbedded in 
S. An imbedding of r in a surface of Euler characteristic e(r) is called a 
simplest imbedding. Clearly e(0) ~ e(r) and 1](0) ::;; 1](r) for any subgraph 
o ofr. 

We next indicate how a minimal imbedding of a connected graph is always 
a 2-cell imbedding. If there were a region R of the imbedding which were not 
a 2-cell, one could imbed a closed loop (homeomorphic image of a I-sphere) 
which is homotopically nontrivial in S so that it lies entirely within Rand 
hence is disjoint from the realization of r. Now cut S along this loop and 
cap off both ends with disks. We have produced a surface T with 1](T) < 
1](S) = 1](r), and yet r is topologically imbedded in T, which is absurd. A 
similar argument clearly can be used to show that any simplest imbedding of 
r must also be a 2-cell imbedding. (See J. W. T. Youngs [y.l] for a rigorous 
treatment of these notions.) If a graph has a 2-cell imbedding, then the graph 
must be connected. 

Let R1> ... , Rm be the regions of a topological imbedding of r in the 
surface S. Let ZI be the cycle of Rb and let RI be the closure in S of RI. If 
M £ {I, ... , m}, then the boundary of UIEM RI corresponds to the cycle 
2:IEM ZI. Since UIEM RI has a nonempty boundary if and only if)21 c M C 

{I, ... , m}, it follows that 2:1'=1 ZI = )21 is the only relation holding among 
the list of cycles Z1> ... , Zm. We have just shown that V2(Z1> ... , Zm) = m 
when Z10 ... , Zm are the cycles of the regions of a topological imbedding. 

We presume that the reader is acquainted with the fact that if a graph r 
admits a 2-cell imbedding on a surface S with precisely V2 regions, then 

D2 

Equation D2 is known as the Euler Formula, and IIIF2b is but the planar 
case. 
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D3 Proposition. For any graph r, 2 - e(r) :$; 2'1'}(r), and if r is connected, 
then ,(r) :$; 2 - e(r). 

PROOF. In determining e(r) one is not restricted to consideration of orientable 
manifolds. Hence the first ineqUality follows from 01. 

Now suppose that r is connected. Let Zl> ... , Zm be the cycles of the 
regions of some simplest-and hence 2-cell-imbedding of r. Since V_1(r) = 
1, Cl and 02 yield 

,(r) :$; ,(Zl> ... , Zm) = 2 - vo(r) + V1(r) - m = 2 - e(r). 0 

D4 Corollary. For any non planar graph r, 

( 1'\ [7 + V 49 - 24e(r)] [7 + vi + 48'1'}(r)] 
Xo .L J :$; 2 :$; 2 . 

PROOF. The right-hand inequality follows from 03 and C6. By A2, r has a 
component 0 such that xo(0) = xo(r). If 0 is planar, then xo(r) = xo(0) :$; 

5 < 6 :$; H(3, 2 - e(r», since e(r) :$; 'l. If 0 is nonplanar, then by C13, 
C6, 03, and the fact that e(0) ~ e(r), we have xo(r) = Xo(0) :$; H(3, ,(0» :$; 

H(3, 2 - e(0» :$; H(3, 2 - e(r». This proves the left-hand inequality. 0 

D5 Exercise. Prove that the connectedness hypothesis may be dropped in 
Proposition 03. 

Equality need not hold among the three terms " 2 - e, and 2'1'} of Proposi­
tion 03. For example, Ks can be topologically imbedded in both the projective 
plane and the torus but (see IIIF9) not on the sphere. Hence 2 - e(K5) = 1 
while 2'1'}(K5) = 2. More strongly yet, Auslander, Brown, and Youngs [a.2] 
have produced a sequence of graphs r n (n = 1, 2, ... ) which can be imbedded 
in the projective plane, yielding 2 - e(r n) = 1, but with genus 'I'}(r n) = n. 

That ,(r) < 2 - e(r) can hold is shown by the next exercise. 

D6 Exercise. Let V = {XI,/: i = 1,2,3, 4;j = 1, 2} and let 

tff = {{XI,i' Xp,q}: either j = q and i ::F p or i = P andj ::F q}. 

Let r = (V, tff), Show that ,(r) = 1 while e(r) = O. 

For any surface S we define 

Xo(S) = max{xo(r): r is topologically imbeddable in S}, 

It is presumed that the reader knows that if S1 and S2 are orientable surfaces 
with 'I'}(S1) :$; 'I'}(S2), then any graph topologically imbeddable in S1 is also 
topologically imbeddable in S2' It follows immediately that 

D7 'I'}(S1) :$; 'I'}(S2) => XO(S1) :$; XO(S2)' 
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D8 Theorem (P. J. Heawood [h.7], 1890). If S is an orientable surface with 
7](S) ;::: 1, then 

Xo(S) :::; [ 7 + V 1 ; 487](S) J. 
PROOF. By the definition of xo(S), one may select a graph r which is topo­
logically imbeddable in S and such that xo(r) = xo(S). Clearly 7](r) :::; 7](S). 
The result now follows from 04. 0 

In his 1890 paper, Heawood asserted (but did not in general prove) that, 
moreover, 

D9 

i.e., that equality holds in 08. This equality 09 came to be known as the 
"Heawood conjecture." The first major advance in proving it was initiated 
by Gerhard Ringel in the 1950's when he divided the problem into twelve 
cases according to the congruence class modulo 12 of Xo(S). A few of these 
cases were easily disposed of, but the last three cases (the congruence classes 
2, 8, and 11) were finally resolved in 1967-68 through the joint work of 
Ringel and J. W. T. Youngs. Somewhat surprisingly, the corresponding 
result for nonorientable surfaces had been completed much more easily by 
Ringel [rAJ in 1959. Combining Ringel's result with 01 and 09 yields 

DIO Theorem. If S is any surface with e(S) :::; 1 (i.e., except for the 2-sphere), 
then 

Combining the Four-Color Theorem, with Theorem 010 yields 

Dll Theorem. If S is a surface, then 

(S) [ 7 + V 49 - 24e(S)] 
Xo:::; 2 . 

For a self-contained and comprehensive proof of 09 and 010, the reader 
should consult Ringel [r.5]. 

DIl Proposition. For all integers n ;::: 3, 

(K) { (n - 3)(n - 4)} 
7] k;::: 12 . 

PROOF. For some minimal imbedding of K n, let nj denote the number of 
regions which are incident with exactly i edges (i ;::: 3). Hence the total 
number of regions is 
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whence 
co co 

2VI(Kn) = L i~ = 3V2 + L (i - 3)~. 
'=3 '=3 

Suppressing the argument K n, we remark that Vo = n and VI = n(n - 1)/2. 
Combining these equalities with Dl and D2, one straightforwardly obtains 

(K Vo VI 1 (2 1 ~ (. 3») 7J n) = 1 - - + - - - - VI - - L.. I - ", 
2 2 2 3 3 '=3 

_ 1 n + n(n - 1) + 1 ~ (. 3) - -- -L.. 1- n, 
2 12 6'=3 

(n - 3)(n - 4) 
~ 12 . 

The proposition now follows since 7J(Kn) is an integer. o 
The Ringel-Youngs proof of Heawood's conjecture (D9) was accomplished 

by proving that, in fact, 

D13 { (n - 3)(n - 4)} 
7J(Kn) = 12 for all n ~ 3. 

Let us see how D9 may be derived from D13. 
We define the two functions 

( ) _ {(X - 3)(x - 4)} d h() _ [7 + VI + 48Y] 
g x - 12 an y - 2 . 

Clearly for all x, g(x) is the least integer satisfying 

D14 (x - 3)(x - 4) :S 12g(x). 

On the other hand, applying the quadratic formula to compute the zeros of 
the polynomial in t, (t - 3)(t - 4) - 12y, yields that h(y) is the largest 
integer such that 

DIS (h(y) - 3)(h(y) - 4) :s 12y. 

Now let S be any orientable surface with 7J(S) ~ 1, and let Tbe an orientable 
surface such that 7J(T) = g(h(7J(S»). It is, of course, necessary to note that 
g(h(y» ~ 1 if y ~ 1, and so T exists and 7J(T) ~ 1. Substituting n = h(7J(S» 
into D13 yields 7J(Kn) = 7J(T), and so 

D16 h(7J(S» = n = Xo(Kn) :S Xo(T). 

Letting y = 7J(S) in DIS gives 

(h(7J(S» - 3)(h(7J(S» - 4) :S 127J(S). 

But letting x = h(7J(S» in D14 gives that g(h(7J(S») is the least integer 
satisfying 

(h(7J(S» - 3)(h(7J(S» - 4) :S 12g(h(7J(S»). 

205 



VII Chromatic Theory of Graphs 

Hence 7](T) = g(h(7](S») S; 7](S). By D7 and D16, h(TJ(S» S; Xo(S), i.e., 

(S) > [7 + v'1 + 487](S)] 
xO - 2 ' 

which is just the reverse inequality of D8, whence D9 follows. 
We next present a result due to Dirac, first published in 1952 [d.3]. The 

short proof below [d.5] appeared in 1957, well before DI0 was proved, which 
would have made the proof even a little shorter. We nonetheless use the 1957 
proof to underline that D 10 is not essential. Taking this naive approach, we 
define a function 

h(S) = H(7 + v' 49 - 248(S»] 

for any surface S, ignoring temporarily that h(S) = Xo(S), but bearing in 
mind from D4 that, if any nonplanar graph r is topologically imbeddable 
in S, then xo(r) S; h(S). 

D17 Theorem (G. A. Dirac). Let S be a surface such that either e(S) = 0 or 
8(S) S; - 2. Suppose that the graph r can be topologically imbedded in S 
and that Xo(r) = h(S). Then r contains a complete subgraph on Xo(r) 
vertices. 

PROOF. Let r be topologically imbedded in S and let 0 be a xo(r)-critical 
subgraph of r. Thus 0 is topologically imbedded in S, and it suffices to prove 
the theorem for 0. Let V2 denote the number of regions of such an imbedding, 
and suppose that 0 ::/= Kh(s). We suppress the argument 0 for the remainder 
of the proof. 

Since each region is incident with at least three edges of 0 while each 
edge is incident with at most 2 regions, we have V2 S; 2Vl/3. We substitute 
this into D2 and, since 0 is critical but not complete, we also invoke Theorem 
A20 to obtain 

<Xo - l)vo + xo - 3 S; 2Vl S; 6vo - 6e(S), 

whence 

D18 <Xo - 7)vo + Xo - 3 + 6e(S) S; O. 

Let us at this point dispose of two special cases. If 8(S) = 0, then Xo = 
h(S) = 7, but this yields an absurdity when substituted into D18. If e(S) = 
-2, then Xo = h(S) = 8, which yields Vo S; 7 when substituted into D18. 
But xo S; Vo always. 

Recalling that K,to is not a subgraph of0, we combine A9 with D18 to get 

xo2 - 4Xo - 17 + 68(S) S; O. 

By the quadratic formula, 

D19 
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Now suppose that e(S) ~ -10. One verifies by elementary operations that 
this assumption implies 

v21 - 6e(S) ~ t(1 + V 49 - 248(S», 

and so by 019, 

Xo ~ 2 + [t(1 + V 49 - 248(S))] = h(S) - 1, 

contrary to hypothesis. One can dispose of the remaining cases - 9 ~ e(S) ~ 
- 3 one by one in a similar fashion. D 

D10 Exercise. Verify 017 for -9 ~ e(S) ~ -3, but show that it fails when 
e(S) = 2. 

Feigning naivete no longer, we may combine 010 with 017, to obtain 

Dll Corollary. Let S be a surface such that either e(S) = 0 or e(S) ~ - 2. 
The only xo(S)-critical graph topologically imbeddable in S is complete. 

We use the Heawood Theorem once again to show that a graph r with 
e(r) ~ - 2 can always be colored in such a way that some one vertex itself 
comprises a color class. 

Dll Proposition (N. Sider [s.6], 1971). Let S be a surface such that e(S) ~ - 2. 
Suppose that the graph r can be topologically imbedded in S. Then there 
exists a vertex x of r such that xo(r(X» < Xo(S). 

PROOF. We shall assume that xo(r) = Xo(S) and that vo(r) ~ 2xo(r); other­
wise the result is immediate. 

By 010, xo(r) > t(5 + v"7.49;;----::2:-:"4e"""';(S=», whence 

D13 

If e(S) ~ - 3, then xo(r) ~ 9, which implies 

<Xo(r»2 - 9xo(r) + 6 > O. 

Adding this to 023 and dividing by 2xo(r) yields 

D14 Xo(r) - 1 > 6(1 - 2~:~~»)' 
If e(S) = - 2, then Xo(S) = 8, and one verifies directly that 024 still holds. 

We next prove that for any subgraph 0 of r 

DlS 6( 1 - :o\~») ~ p(0). 

Consider a simplest imbedding of 0. If 0 is not connected, we adjoin addi­
tional edges to 0 in order to obtain a connected graph 0' imbeddable on the 
same surface. Since e(0) = e(0'), vo(0) = vo(0'), and p(0) ~ p(0'), we may 
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assume that 0 is connected and that this topological imbedding is a 2-cell 
imbedding. Let V2 denote the number of regions of this topological imbedding. 
Again as in the proof ofDl7, V2 ~ 2V1/3. By definition, p(0)vo(0) = 2V1(0) ~ 
2V1' These two inequalities together with D2 yield D25. 

Suppose now that 0 is any subgraph of r such that vo(0) ;;?: 2xo(r). Since 
e(0) ;;?: e(r), 

e(r) e(0) 
--->---

2xo(r) - vo(0)' 

and so by D24 and D25, 

vo(0) ;;?: 2Xo(r) => Xo(r) - 2 ;;?: p(0). 

Thus whenever vo(0) ;;?: 2Xo(r), 0 admits a vertex incident with at most 
xo(r) - 2 other vertices in 0. Specifically, if p = vo(r) - 2xo(r) + 1, then 
r admits a sequence Xl> ••• , xp E V such that the valence of XI in r y +{x, + 1 ..... Xp } 

is at most Xo(r) - 2, for i = 1, .. . ,p - 1. 
Let ho: V + {Xl> ... , xp} ~ {I, .. , Xo(r)} bea vertex coloring ofr y+{Xl ..... Xp }. 

Since I V + {Xl> ••• , xp}1 = 2xo(r) - 1, there exists a vertex X E V + 
{Xl' ... , xp} and a color j E {I, ... , xo(r)} such that {x} = ho -l[j). 

We proceed by induction to extend ho to a vertex coloring h of r such 
that the property {x} = h- 1 [j] holds. It will then be evident that xo(r(.~») < 
xo(r) as required. Assume that ho has been extended to a vertex coloring 
h; -1 of r y +{x, .... x p } such that {x} = ht-\ [j), where i E {I, ... , pl. Because the 
valence of XI in r y+{XI+l ..... Xp} is at most xo(r) - 2, at least two color classes 
contain no vertex incident with XI' Therefore, it is possible to extend h,_ 1 

to a vertex coloring hi ofr y + {XI +l ..... X p} so that hl(xl) "# j. In particular, it still 
holds that {x} = hl - 1[j), which completes the induction. 0 

Using D25 and arguments similar to those in the above proof, Sider was 
able further to prove: 

D26 Exercise. Given any graph r = (V, Iff), there exists a subset Us;;; V such 
that lUI ~ 6Ie(r)1 andxo(ry+u) ~ 7. 

Further Reference 

J. Battle, F. Harary, Y. Kodama and J. W. T. Youngs [b.1). 

VIlE The Edmonds Imbedding Technique 
In this section we describe a procedure for producing all the 2-cell imbeddings 
in orientable surfaces of an arbitrary graph. Since this method was first 
announced by Jack Edmonds [e.1) it has come to be known as the "Edmonds 
imbedding technique." 

Let r = (V, Iff) denote an arbitrary connected graph. For each vertex 
X E V, let x* denote the vertex-cocycle of x and let 7T X denote some given 
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permutation on x*. We tum our attention to alternating "cyclic" lists of 
vertices and edges of the form 

El 0 = (xo, Eo, X1> E1>"" Ek-1> Xk = xo) 
where all subscripts are to be understood modulo k, and EI = {XI> XI+1} for 
all i E 7L.k • (The cyclic list 0 need not denote a true circuit, since condition 
(a) in the definition of an st-path (§IIC) is not required to be satisfied.) By a 
"cyclic" list, we mean that 0 is identified with 

(x" E" XJ+l' EJ+1>"" Ek-1> XO, Eo, ..• , Ei -1> Xi) 
for any j = 1, ... , k - 1. Such a cyclic list will be called admissible (with 
respect to {7Tx : X E V}) if 

EI = 7Txj(E1_ l ), for all i E 7L.k , 

and its length will be said to be k. For the present, let d denote the set of 
all admissible cyclic lists. 

Let E = {x, y} E tf. Given the sequence x, E, y, it should be clear how to 
extend it to an admissible sequence. One begins with x, E, y, 7TiE), 7T'J/(E) + 
{y}, and continues until the vertex x appears again immediately following the 
edge 7Tx -leE). We have shown that the sequence x, E, y thus determines a 
unique element of d. Moreover, each edge E = {x, y} yields two sequences 
x, E, y and y, E, x, each of which determines an admissible cyclic list. These 
two cyclic lists need not be distinct; they never are if E is an isthmus, as the 
reader can readily verify. We conclude that the sequences x, E, y, and y, E, x 
each appear exactly once in the totality of cyclic lists in d. 

For each cyclic list 0, Ed of length k" let D, be a copy of the unit disk 
whose boundary is a topological imbedding of the k/'circuit" 0,. A cell 
complex can then be constructed when identically labeled vertices and edges 
on the boundaries of the various disks, or 2-cells, are identified. Intuitively 
speaking, two 2-cells are "sewn together" along the length of a commonly 
labeled edge so that the endpoints also match up, or in the case that x, E, y 
and y, E, x, for example, appear in the same cyclic list 0" then the two 
portions of the boundary of D j are "sewn together." Clearly the cell complex 
so constructed is locally a surface at every point with the possible exception 
of those points corresponding to vertices of r. Moreover, if x E V, then the 
cell complex will be locally a surface at the point corresponding to x if and 
only if the permutation 7T x consists of a single cycle of length p(x). In this 
case, we have constructed a 2-cell imbedding of r in some surface. 

E2 Exercise. Continuing the notation of the foregoing description, show that 
each admissible cyclic list contains no sequence of the form E, x, E if and 
only if none of the permutations 7T x has a fixed point. 

We assert that the above-constructed 2-cell imbedding is always in an 
orientable surface. An orientation for each 2-cell D, is induced by the corre­
sponding cyclic list 0,. Then, as we have mentioned, each edge appears twice, 
once with each possible orientation, as is required for orientability. 
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On the other hand, suppose now that a graph r = (V, &) has a 2-cell 
imbedding in some orientable surface S, and let one of the two possible 
orientations (" clockwise" or "counterclockwise") be chosen. This orienta­
tion induces in a natural way a cyclic permutation 1T x of x* at each vertex 
x E V; to wit, for each E E x*, 1TiE) is the "next" edge in x* after E in the 
sense of the given orientation. The set {1Tx : X E V} of permutations determined 
in this way determines in turn the original 2-cell imbedding with which we 
started. Thus every 2-cell imbedding of r in an orientable surface can be 
obtained from a set {1Tx E II(x*): x E V} of cyclic permutations. 

To illustrate the above abstract description, we shall apply the Edmonds 
imbedding technique to construct a 2-cell imbedding in the torus of the graph 
r represented by Figure E3. It should be emphasized that we do not know 
beforehand that the surface obtained will be the torus; we only know that 
it will be orientable. 

E3 a 

b 
In the interest of brevity we shall abuse notation by identifying each edge 

E = {x, y} with the vertex y when in the context of the vertex cocycle x* and 
by x when in the context of y*. Thus we may list one cyclic permutation at 
each vertex of r as follows: 

E4 
1Ta = (b, g, d, c) 
1Ta = (a,g,/,e) 

1Tb = (a, c, e, g) 
1Te = (b,d,/,g) 
1Tg = (a, b, e,/, c, d). 

1Tc = (a, g,/, b) 
1Tt = (c, g, e, d) 

The following admissible cyclic lists are obtained (the symbols for the edges 
will be suppressed): 

E5 
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Dl = (a, b, c, a) 
D3 = (a, d, g, a) 
D5 = (b, g, e, b) 
D7 = (d, e,/, d) 

D2 = (a, c, g, d,/, c, b, e, d, a) 
D4 = (a, g, b, a) 
D6 = (c,/, g, c) 
D8 = (e, g,/, e). 
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(Although it is not particularly instructive, the reader may wish to sing these 
cyclic lists, or he may see if some labeling and 2-cell imbedding corresponds 
to his favorite symphonic theme.) These admissible cyclic lists yield in tum 
the 2-cell imbedding on the torus of Figure E6. Comparing Figure E6 with 
the set of permutations E4, we see that the permutations arise from this 
2-cell imbedding when a clockwise orientation at each point on the surface 
is taken. (On the other hand, the cyclic lists E5 induce a counterclockwise 
orientation on each 2-cell.) 

E6 d 

c~------------~~------~----~c 

E7 Exercise. 
(a) In the above example, there are clearly (p(a) - I)! = 6 possible choices 

for 71"a if 71"a is to be cyclic. Keeping 71"b,"" 71"g as in E4, find the other five 
2-cell imbeddings of r. Are they all toroidal? 

(b) Give an upper bound for the number of distinct 2-cell imbeddings in 
orientable surfaces for an arbitrary graph. 

E8 Exercise. Determine the genus of the Petersen graph. 

E9 Exercise. Let the vertices of the complete graph Kn be denoted by the 
elements of the additive group ~no and let 71"0 = (Xl>' •• , Xn -1) be a cyclic 
permutation of {I, ... , n - l}, where again notation is abused as in E4. A 
2-cell imbedding of Kn in an orientable surface is then defined by assigning 

71"1 = (Xl + i"",Xn-1 + i) fori = I, ... ,n - 1. 

(a) Prove that the cyclic permutation (Xl, ••• , Xn-1) determines a tri­
angular imbedding of Kn if and only if 

XI = XI-1 + Xj-1 where Xj = -XI-1 

holds for all i = 1, ... , n - 1. 
(b) Verify that (1, 3, 2, 6, 4, 5) yields a triangular imbedding of K7 on the 

torus, and construct it. 
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EtO Exercise. Prove: 
(a) If Kn admits a triangular imbedding on some surface, then n == 0, 3, 4, 

or 7 (modulo 12). 
(b) Under the assumption that n == 0,3,4, or 7 (modulo 12), Kn has a 

triangular imbedding if and only if 

(K ) = {(n - 3)(n - 4)} 
TJ n 12' 

(c) Use the sequence (1,11,14,13,15,3,8,9,7,4,17,10,18,5,16,12,2,6) 
to prove that TJ(K19) = 20. 

(d) Prove that TJ(K12) = 6. 

Further References 

E. A. Nordhaus, [n.1], and A. T. White, [w.7]. 
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CHAPTERvm 

Two Famous Problems 

In the first section of this chapter two new graph-theoretical parameters are 
introduced, and their relationship to the vertex independence number ao and 
the vertex chromatic number Xo are discussed. 

In the second section we give a formal proof of a classical combinatorial 
theorem known as Ramsey's Theorem and include two applications of 
Ramsey's Theorem which are not graph-theoretical. 

Various graph-theoretical applications of Ramsey's Theorem are the 
subject of §C. 

All four graph-theoretical parameters playa role in the final sections of 
this chapter as we give a proof of the "weak Berge conjecture" and discuss 
the "strong Berge conjecture." 

VIllA Cliques and Scatterings 
Let r = (V, iff) be a graph. The complement of r, denoted by r', is the 
graph r' = (V, ~(V) + iff). Clearly (r')' = r, and (r')s = (rs)' for all 
Sr;;;. V. 

At Exercise. For any graph r, prove that either r or r' has diameter at 
most 3. (If r is not connected, its diameter is understood to be 00.) 

A subset S r;;;. V will be called a complete set if ~(S) r;;;. iff; i.e., r s is a 
complete subgraph. A largest complete set in r is called a clique, and w(r) 
will be used to denote its cardinality. A largest independent subset of V will 
be called a scattering. Its cardinality, of course, is ao(r). A subset S r;;;. V is 
independent in r if and only if S is a complete set in r'. Thus 

A2 ao(r) = w(r'). 
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The least integer m such that there exists a surjection h: V -? {I, 2, ... , m} 
such that h-l[i] is a complete set for each i = I, ... , m is denoted by O(r). 
Since h is such a surjection if and only if it is a vertex m-coloring of r', we 
have 

A3 o(r) = xo(r'). 

In a vertex coloring of r, no two vertices of the same complete set receive 
the same color. Hence 

A4 

which together with A2 and A3 yields 

AS 

Applying complements to VIlAS with i = 0 one obtains 

A6 

Ramsey's Theorem is one of the two main results in this chapter. A 
special case of it yields an upper bound for Vo in terms of the parameters ao 
and w. The second main result, conjectured by C. Berge and proved by 
L. Lovasz, states that w(r s) = xo(r s) for all S ~ V if and only if ao(r s) = 
O(r s) for all S ~ V. 

VIllB Ramsey's Theorem 

Let integers qh ... , qm, S be given such that 

Bl 1 :::; s :::; q! (i = 1, ... , m) 

where m ;::: 1. Let V be any set, and let H be the set of all functions h of the 
form 

h: &!(V) -? {I, 2, ... , m}. 

The Ramsey number n( qh ... , qm: s), when it exists, is defined by 

B2 n(ql, ... ,qm:s) 
= min{lVl: (Yh E H)(3i E {I, ... , m})(3U E ~I(V»[&!(U) S;; h-l[i]]}. 

Otherwise, we write n(qh ... , qm: s) = 00. An equivalent formulation in 
words would be: n( qh ... , qm: s) is greater by 1 than the cardinality of a 
largest set V, if such a set exists, for which there exists an "ordered partition" 
of its s-subsets into at most m cells such that no q!-subset of V has all of its 
s-subsets belonging to the ith cell. 

The essence of Ramsey's Theorem is that all Ramsey numbers are finite. 
That is not to say that explicit formulas exist for calculating them. On the 
contrary, relatively few actual Ramsey numbers are known. (The known 
Ramsey numbers when s = 2 are presented in the next section.) There is some 
literature, however, concerning asymptotic approximations and upper and 
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lower bounds for certain classes of Ramsey numbers. Prior to the main proof, 
we obtain some essential preliminary results. 

First, it is immediate that if n( ql, ... , qm: s) exists, then any set W such 
that I W I ~ n( ql> ... , qm: s) also satisfies the condition stated in the right-hand 
member of B2. Also, if ql ~ iii for i = 1, ... , m, then n(ql> ... , qm: s) ~ 
n(iil>···, iim: s). 

Next we note that if m = 1, and if 1 ~ s ~ q, then 

B3 n(q: s) = q. then 

The next result is sometimes called the "pigeon-hole principle" or the 
"box principle." 

n(ql> .. ·,qm: 1) = (i ql) - m + 1. 
1=1 

B4 Lemma. 

PROOF. One may regard any h E H as a function from V into {I, ... , m}. It is 
clear that IVI < n(ql> ... , qm: 1) if and only iffor all hE H, Ih- 1 [i]1 ~ ql - 1 
for each i = I, ... , m; that is, if and only if I VI ~ (~\"=l ql) - m. 0 

B5 Exercise. Show that 
(a) Ifm ~ 2, and ifBI is satisfied, then 

n(ql> ... ,qm-l:S) = n(ql> ... ,qm-l>s:s). 

In particular, ifm = 2, then n(q, s: s) = q. 
(b) If'TT E I1({I, ... , m}), then 

n(ql> ... , qm: s) = n(q,,(l), ... , q,,(m): s). 

We are now ready to state and prove a major combinatorial theorem. 

B6 Theorem (P. P. Ramsey [r.2], 1930). If 1 ~ s ~ ql for all i = 1, ... , m, 
then the Ramsey number n(ql> ... , qm: s) is finite. 

PROOF. We proceed by induction on the variable m. The step m = 1 is 
precisely B3. 

Suppose now that m = 2. This is the most complex step, for here we 
proceed by a double induction on the two variables ql + q2 and s. Using 
B4 and B5 for the initial stages, our induction hypothesis is the following: for 
some integers ql> q2, and s with ql> q2 > S ~ 2, the Ramsey number n(kl> k2: t) 
is finite whenever t < s and whenever both t = sand kl + k2 < ql + q2. 
The induction hypothesis implies in particular the finiteness of the following 
three Ramsey numbers: 

PI = n(ql - l,q2: s), P2 = n(ql>q2 - I:s), and Po = n(Pl>P2:s - 1). 

We shall prove the finiteness of n(ql> q2: s). 
Suppose that V is a (Po + I)-set and let h: &.(V) ~ {I, 2}. Let x E V and 

define g: &'-l(V + {x}) ~ {I, 2} by 

g(S) = h(S + {xD for all S E &'-1(V + {x}). 
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Since V + {x} is a po-set, the definition B2 implies existence for some i E {I, 2} 
ofa set Uj E~lV + {x}) such that~_l(Uj) £; g-1[i]. Without loss ofgener­
ality we may assume the existence of the P1-subset U1• By the definition of P1 

and consideration of the restriction of h to ~(U1), we infer the existence of 
either a set T1 E ~l -1 (U1) such that ~(T1) £; h -1[1] or a set T2 E ~2( U2) with 
~(T2) £; h-1[2]. 

If the set T1 exists, then T1 + {x} E ~1(U1 + {x}), and ~(T1 + {x}) £; 

h-1[1]. Thus we have the existence of either a subset T1 + {x} E ~l(V) such 
that ~(T1 + {x}) £; h-1[l] or a subset T2 E ~2(V) such that ~(T2) £; h- 1[2]. 
We have in fact shown that 

B7 

and so n( ql> q2: s) is finite. 
Suppose now that m ~ 3 and that the Ramsey number n( ql> •.. , q,,: s) 

is finite whenever BI holds and k < m. We shall prove the fiiliteness of 
n(ql>"" qm: s). From the case m = 2 above, we have the finiteness of the 
Ramsey number q = n(qm-l> qm: s), and by our assumption we have the 
finiteness of the Ramsey number p = n(ql> ... , qm-2, q: s). 

Let V be a p-set and let h: ~(V) -+ {I, ... , m}. By the definition of p, 
either for some i E {I, ... , m - 2} there exists a subset Ti E ~,(V) such that 
~(Tj) £; h-1[i] or there exists a subset U E ~(V) such that ~(U) £; 

h-1[{m - I, m}]. In the latter case, for some i = m - 1 or m, there 
exists a subset TjE~lU) such that ~(Tj) £; h-1[i]. We have shown that 
n(ql> ... ,qm: s )5,p. 0 

The following application of the Ramsey theorem to a problem of plane 
geometry is due to Erdos and Szekeres [e.6]. The proof requires two 
preliminary results offered as exercises. 

B8 Exercise. If five points in the plane have no three points collinear, then 
four of the points are the vertices of a convex quadrilateral. 

B9 Exercise. If m points in the plane have no three points collinear and if all 
the quadrilaterals formed by 4-subsets of these m points are convex, then the 
m points are the vertices of a convex m-gon. 

BIO Proposition. Let the function f be defined by f(3) = 3 and f(m) = 

n( 5, m: 4) for m ~ 4. If m ~ 3 and p ~ f(m), then any p-set of points in 
the plane, no three of which are collinear, contains an m-subset which is the 
set of vertices of a convex polygon. 

PROOF. We may assume that m ~ 4. Let p ~ n(5, m: 4) and let V be a p-set 
of points in the plane such that no three are collinear. Define h: ~(V) -+ {I, 2} 
by h(U) = 2 if U determines a convex quadrilateral and h(U) = 1 otherwise. 
By Exercise B8, there exists no 5-subset of V none of whose 4-subsets deter­
mines a convex quadrilateral. Since p ~ n(5, m: 4), there exists a subset 
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U E .9'm(V) each of whose 4-subsets determines a .convex quadrilateral. By 
Exercise B9, U determines a convex m-gon. 0 

It is believed that the above functionfis not best possible. 
The next result is due to I. Schur [s.4]: 

B11 Proposition. If !l E i?(N + {O}) and l!ll < 00, then there exists Q E !l 
and x, y E Q such that x + y E Q. 

Schur's result follows as an immediate corollary of the next proposition. 

B12 Proposition. Given m and k ~ n(qh"" qm: 2) - I where ql = ... = 
qm = 3, then for any!l E i?m({l, 2, ... , k}) there exists Q E!l and x, y E Q 
such that x + y E Q. 

PROOF. Denote {I, 2, ... , k + I} by V and let !l E i?m({l, 2, ... , k}). Define 
f: ~(V)-+{I, ... , k} by f({a, b}) = /a - bl. Sincefis clearly surjective, there 
exists fJl E i?m(~(V» whose cells are f- 1 [Q], Q E!l. Since k + 1 ~ 
n(qlo"" qm: 2), there exists a cell Q E!l and a subset {a, b, c} E &a(V) such 
that {a, b}, {a, c}, {b, c} Ef-l[Q]. We may assume a < b < c, and we then 
have x = b - a, y = c - b, and z = c - a, all belonging to Q. Thus 
x, y E Q and x + y = Z E Q. 0 

The reader interested in the history of this problem should see the 
expository paper by L. Mirsky [m.I2]. 

It is natural to define for each m the number S(m) as the smallest integer 
such that any m-partition of {I, 2, ... , S(m)} contains a cell which in tum 
contains two (not necessarily distinct) integers and their sum. We have shown 
that S(m) :s; n(ql' ... , qm: 2) - 1, where ql = ... = qm = 3. The Ramsey 
numbers n(3, 3, ... , 3: 2) will be encountered in a different context in the 
next section. 

B13 Exercise. (a) Show that S(l) = 2 and that S(2) = 5. (b) Show that 
S(m) ~ 2m. (c) Find S(3). 

vmc The Ramsey Theorem for Graphs 
For brevity in this section, let us write n(qh ... , qm) for the Ramsey number 
n(qlo"" qm: 2). Thus we are going to restrict ourselves to the case where 
s = 2. In all other respects we continue the notation of the previous section. 
Now the tools of graph theory are at our disposal, for with s = 2, the func­
tions h: ~(V) -+ {I, ... , m} correspond to ordered m-partitions of the edges 
of the complete graph K 1V1 • The number n(qh ... , qm) may be interpreted as 
the number of vertices in a smallest complete graph such that for any assign­
ment h of its edges ~o "colors" 1, ... , m, the subgraph induced by those 
edges of some" color" i will contain Kq, as a subgraph. 
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When moreover m = 2, the graph-theoretical problem takes on a new 
appearance, for one may consider h as an assignment of the 2-subsets of V 
to either a graph P = (V, 8) or its complement P'. Since a complete set in 
pI is an independent set in P, the number n(qh q2) has the following 
interpretation: 

Cl n(qh q2) = 1 + max{vo(r): w(r) < ql and «o(r) < q2}, 

if such a maximum exists. Were Cl taken as a definition, it would make sense 
in spite of BI to allow ql or q2 to equal 1. For the sake of ease in proving 
the next proposition it is convenient to do so, and we have immediately that 

Cl 

The" Ramsey Theorem for Graphs" which follows is certainly a special case 
of B6. Despite its redundance, its graph-theoretical proof may add insight 
to the proof of the general theorem. 

C3 Theorem. For all qh q2 ~ I, n(qh q~ exists. For all qh q2 ~ 2, 

n(qb q2) ::::; n(ql - 1, q2) + n(qh q2 - 1). 

PROOF. We proceed by induction on the variable k = ql + q2' By C2 and 
BSa, we know that the theorem holds for k = 2, 3, 4. As induction hypothesis, 
we choose k ~ S and suppose that the theorem holds whenever ql + q2 < k. 

Now suppose ql + q2 = k and let r = (V, 8) be any graph such that 
w(r) < ql and a:o(r) < Q2' Let x E V, let S = N(x), and let T = V + S + {x}. 
We assert that w(P s) < w(P), for if U is a complete set in P s, then U + {x} is 
a complete set in P. Thus w(P s) < ql - I and «o(P s) ::::; «o(P) < q2' It follows 
that 

C4 

On the other hand, if U is independent in r T, then U + {x} is independent in 
r. So «o(rT) < q2 - 1, while WerT) ::::; w(r) < qlJ and so 

C5 vo(rT) ::::; n(qhq2 - 1) - 1. 

We point out that the Ramsey numbers n(ql - I, q2) and n(ql' q2 - 1) both 
exist by the induction hypothesis. 

Adding C4 and CS, we get 

vo(r)= vo(Ps) + vo(rT) + 1 
::::; n(ql - l,q~ + n(qlJq2 - 1) - 1. 

Since r is an arbitrary graph satisfying w(r) < ql and ao(r) < Q2, the 
theorem follows from Cl. 0 

C6 Exercise. Show that the inequality stated in Proposition C3 follows from 
B7 and B4. 

218 



VIlle The Ramsey Theorem for Graphs 

C7 Exercise. Prove the following inequalities: 

m 

(b) n(ql> ... , qm) ~ 2: n(ql - 811, q2 - 8210 ••• , qm - 8m,), 
1=1 

where the Kronecker delta 8jl = 0 ifj =F i and 1 ifj = i; 

(c) 

We introduce some working terminology for the present section. A graph 
r will be called a (ql, q2)-graph if w(r) < ql and ao(r) < q2. A (qb q2)-graph 
will be called d-deficient, or will be said to have deficiency d, if d = n(ql> q2) -
vo(r) - 1. Clearly d ~ O. 

C8 Exercise. (a) Show that n(3, 3) = 6. 
(b) Show that the 5-circuit is the only O-deficient (3, 3)-graph. 
(c) Determine alII-deficient (3, 3)-graphs, and show that of these only the 

path of length 3 has exactly three edges. 

C9 Lemma. Let r = (V, C) be ad-deficient (ql> q2)-graph and let x E V. Let 
S = N(x) and let T = V + S + {x}. Then 

(a) rSisa(ql - I,q2)-graphandrT isa(ql>q2 - I)-graph. 
(b) If r s is a d1-deficient (ql - 1, q2)-graph and r T is a d2-deficient 

(ql> q2 - I)-graph, then 

d1 + d2 = d + n(ql - 1, q2) + n(ql> q2 - 1) - n(ql> q2). 

(c) n(ql - 1, q2) - 1 ~ p(x) ~ n(ql> q2) - n(ql> q2 - 1) - d - 1. 

PROOF. (a) is embodied in the proof of C3. 
To prove (b) we merely add up the three equations: 

d1 = n(ql - I,q2) - lSI - 1 

d2 = n(ql>q2 - 1) - ITI - 1 

0= d - n(ql> q2) + vo(r) + 1. 

(c) follows from the equation p(x) = lSI = n(ql - 1, q2) - 1 - d1 and 
the inequality 0 ~ d1 ~ d + n(ql - 1, q2) + n(ql> q2 - 1) - n(qb q2). 0 

CIO Proposition. n(3, 4) = 9. 

PROOF. By B5a, C8a, and C3, n(3, 4) ~ n(2, 4) + n(3, 3) = 4 + 6 = 10. Sup­
posing n(3, 4) = 10, let r be a (3, 4)-graph with vo(r) = 9; i.e., suppose r is 
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O-deficient. By Lemma C9c, r is 3-valent, which is impossible since vo(r) is 
odd. Hence n(3, 4) ~ 9. But equality holds since the graphs in Figure CII 
are (3, 4)-graphs with eight vertices. 0 

ell 
Jr------iil 

ell Proposition. The only O-deficient (3, 4)-graphs are 0 8 , 0 6', and 0 8 " 

represented in Figure Cll. 

PROOF. Let r = (V, &) be a O-deficient (3,4)-graph; thus vo(r) = S. Let 
x E V. By Lemma C9c, 3 :2: p(x) :2: 2. 

Case 1: there exists a vertex of valence 2. Let p(x) = 2 and let y and z be 
incident with x. If T = V + {x, y, z}, then by Lemma C9a, r T is a O-deficient 
(3, 3)-graph, which by Exercise CSb must be a 5-circuit. Thus r must contain 
the subgraph shown in Figure C13, together with a set .fF of edges such that 

el3 a 

y 

e b 
x 

z 

for each FE.fF, one vertex of F is in {y, z} and the other is in {a, b, c, d, e}. 
Since by C9c each vertex has valence 2 or 3, y and z must each be incident 
with either one or two edges in .fF, and each of a, b, c, d, and e can be incident 
with at most one edge in .fF. We conclude that one, two, or three of the 
vertices a, b, c, d, and e are incident with no edge in .fF. Without loss of 
generality we may assume that a is incident with neither y nor z. If c (or d) 
were incident with neither y nor z, then {a, c, y, z} (or {a, d, y, z}) would be 
an independent 4-set-which is impossible. Similarly it is not possible that 
both band e are incident with neither y nor z. Hence we may assume that a 
alone or a and b are the only vertices of r T which are incident with neither y 
nor z. 
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We may further assume without loss of generality that z has valence 3. 
Since r contains no complete 3-set, z is incident with band d or with c and e. 
For definiteness say z is incident with c and e. Finally, y is incident with d 
and possibly with b. Without the edge {y, b} we have 0 8 and with {y, b} we 
have 0 8'. 

Case 2: all vertices are 3-valent. Let WE V and suppose W is incident with 
x, y, and z. Let T = V + {w, x, y, z}. Since {x, y, z} must be an independent 
set, the number of edges in rT is 1tS'1 - (p(x) + p(y) + p(z» = 12 - 9 = 3. 
By Exercise C8c, r T is a path of length 3. Thus r must contain the subgraph 
in Figure C14, together with six edges each having one vertex in T and the 

C14 a 
x 

b 
WIE-------ey 

c 

d 
other in {x, y, z}. Since r contains no complete 3-set, the two vertices of r T 

joined to each vertex in {x, y, z} must be one of the three pairs {a, c}, {b, d}, 
and {a, d}. Moreover, each pair must be used exactly once in order to preserve 
isovalence. For example, the six edges in question could be: {x, a}, {x, c}, 
{y, b}, {y, d}, {z, a}, {z, d}, but any of the 3! possibilities yields the graph 
~ D 

CIS Exercise. Consider the graph 0 13 = (Z13, /F) where §" = {{x, y}: x -
y = 1 or 5}. Show that 0 13 is the only (3, 5)-graph with 13 vertices. 

C16 Proposition. n(3, 5) = 14. 

PROOF. By B5a, ClO, and C3, n(3, 5) ;5; 14. Equality follows from Exercise 
Cl~ D 

C17 Exercise. Show that the graph 017 = (Z17' §") where §" = {{x, y}: x -
y = 1,2,4, or 8} is a (4, 4)-graph. 

CIS Proposition. n(4, 4) = 18. 

PROOF. The proposition follows from ClO, B5b, C3, and C17. D 

The only other known Ramsey numbers of the form n(q1, q2) with q1 ;5; q2 
are n(3, 6) = 18 (see Exercise C20 below) and n(3, 7) = 23. Some estimates 
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for other numbers are readily obtainable by C3, C9c, and various ad hoc 
techniques. Table Cl9 summarizes the known results for ql :::;; q2 and is 
footnoted by bibliographical references. 

ql q2 1 2 3 4 5 6 7 8 9 

1 1 1 1 1 1 1 1 1 1 
C19 2 2 3 4 5 6 7 8 9 

3 6t 9t 14t 18t* 23* 27-30 36-37 
4 18t :::;;30* 

t R. E. Greenwood and A. M. Gleason [g.6]. 
t J. G. Kalbfleisch [k.I]. 
* J. E. Graver and J. Yackel [g.5]. 

Graver and Yackel showed further that for ql ~ 3, there exists a constant 
C such that 

n(q q):::;; Cq (Ill -1) (log log q2) . 
10 2 2 logq2 

C20 Exercise. Show that n(3, 6) = 18 by carrying out the following steps. 
Step 1. Show that n(3, 6) :::;; 19. 
Step 2. Show that if r = (V,~) is a (3,6)-graph on 18 vertices, then 

p(x) = 4 or 5 for all x E V. Show that if p(x) = 4 and T = V + N(x) + {x}, 
then r T is 013' Observe from this that each vertex of valence 4 must be 
incident with at least three other vertices of valence 4 and not incident with 
at most one vertex of valence 4. Then show that r is 5-valent. 

Step 3. Show that r T is a (3, 5)-graph with vo(rT) = 12 and Vl(rT) = 20. 
Step 4. Show that any (3, 5)-graph on 12 vertices with 20 edges has exactly 

4 vertices of valence 4, 8 vertices of valence 3, 4 edges between vertices of 
valence 4, 8 edges between vertices of valence 3, and 8 edges between vertices 
of valence 3 and vertices of valence 4. 

Step 5. Count the 5-circuits in r through x (each such 5-circuit has exactly 
one edge in r T), and observe that this number is not divisible by 5. From this 
conclude that a (3, 6)-graph on 18 vertices cannot exist. 

Step 6. Verify that A' = (V', ~') as described below is a (3, 6)-graph on 
17 vertices. Let V' = {O, 1, ... ,12,0', 1',8', 9'}, ~' = {{a, b}: a - b == 1 or 
5 (mod 13)} u {(a, b'}: a - b == 1 or 5 (mod 13)} u {{O, 9'}, {O', 9}, {I, 8'}, 
{I', 8}}. Note A{O.1 •.... 12} = 0 13, 0 

We conclude this section with a look at Ramsey numbers of the form 
n{3, .•. , 3), which we have already encountered in Proposition BI2. Let us 
write n(3(m») for n(qlo ••. , qm), where ql = ... = qm = 3. Intuitively one may 
think of finding a smallest complete graph such that every edge m-coloring 
admits a monochromatic triangle. 
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ell Proposition. n(3(m+ll) :s; (m + 1)[n(3(ml) - 1] + 2,/or all m ~ 1. 

PROOF. We proceed by induction on m. If m = 1, then in fact equality holds 
by C8a and B3. 

As induction hypothesis, suppose that the given inequality holds for some 
m ~ 1. Let P = (m + 1)[n(3(ml) - 1] + 2, and let V be a p-set. Arbitrarily 
choose h: ~(V) ~{1, ... , m + I}. 

Let x E V, and define for each i = I, ... , m + I, 

QI = {y E V + {x}: h({x, y}) = i}. 

Noting that (p - I)/(m + 1) = n(3(ml) - 1 + 1/(m + 1), we infer that 
I QII ~ n(3(ml) for some i = I, ... , m + 1. 

If h({y, z}) = i for some y, Z E Qh then U = {x, y, z} is a 3-subset such 
that .9'2(U) s;;; h-l[i]. Otherwise, consider the restriction hi of h, namely 
hi: .9'2(QI) ~ {I, ... , m + I} + {i}. But since I QII ~ n(3(ml), there exists a 
subsetTE~(QI)suchthat~(T) s;;; h-1U]forsomejE{I, ... ,m + I} + {i}. 
Hence n(3(m+1l) :s; p. D 

Greenwood and Gleason [g.6] have determined the only other known 
Ramsey number as follows. 

el2 Proposition. n(3(Sl) = 17. 

PROOF. By C8a and C21 with m = 2, we obtain n(3(Sl) :s; 17. 
Let V = {O, x, x2 , ••• , Xl5 = I} = GF(24), the field with 16 elements, 

where x satisfies X4 + x + 1 = 0. We use the fact that the cubic residues of 
GF(24) are the set 

Thus IRol = 5 and, moreover, Ro is a subgroup of the multiplicative group 
G of GF(24). Hence GIRo ~ 71..s. Let {Ro, Rh R2} be the corresponding coset 
decomposition of G, and define h: ~(V) ~ {O, 1, 2} by 

h({a, b}) = i <:> a + b E Rio i = 0, 1, 2. 

Suppose .9'2(U) s;;; h-l[i] for some i and some U E ~(V). Without loss of 
generality, say U = {O, 1, a}, and so i = 0. Thus a, 1 - aERo. One sees by 
inspection of Ro that this cannot happen. Hence n(3(Sl) > 16. D 

It follows from Proposition C21 that n(3(4l) :s; 66. It has been shown by 
Jon Folkman [f.2] that n(3(4l) :s; 65. Greenwood and Gleason have shown 
that n(3hll) > 41. 

e23 Exercise. Prove the following inequalities: (a) n(3(ml) :s; 3(ml). (b) 
n(3(ml) :s; m I e + 1. 
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VllID Perfect Graphs 

A graph r = (V, tC) is said to be color-perfect if w(r s) = xo(r s) for all 
S E fJJ(V). By A2 and A3, r' is color-perfect if and only if <xo(r s) = O(r s) for 
all S E fJJ(V). A graph r is said to be perfect if both rand r' are color-perfect 
In 1961, C. Berge first published [bA] the following conjecture: 

Dl The Berge Conjecture. Every color-perfect graph is perfect. 

In its complementary form, D I asserts: 

D2 A graph is color-perfect if and only if its complement is color perfect. 

It is immediate that if r = (V, tC) is color-perfect (respectively: perfect), 
then so is r s for all S E fJJ(V). 

D3 Proposition. All bipartite graphs are perfect. 

PROOF. Let r be bipartite and let S be a set of vertices of r. If S is independent, 
then w(r s) = I = xo(r s), and <xo(r s) = I S I = O(r s). If S is not independent, 
then since rs is also bipartite, w(rs) = 2 = xo(rs). (Cf. VIIA6.) Since 
suppressing the isolated vertices of r s would decrease <xo(r s) and O(r s) each 
by the exact number of such vertices, we may assume that r s has no isolated 
vertices. Hence O(rs) is precisely PIO(rS), and by VCll, P10(rS) = <xo(rs). 

A graph r will be defined to be crucial if r is not color-perfect, but r(X) 
is color-perfect for every vertex x of r. 

D4 Corollary. Odd circuits of length at least 5 and their complements are 
crucial. 

PROOF. Let a = (V, tC) be a (2n + I)-circuit for n ;::: 2. Thus 

w(a) = 2; Xo(a) = 3; <xo(a) = n; O(a) = n + 1. 

Neither a nor a' is color-perfect. On the other hand, for any x E V, the 
subgraph a(X) is bipartite. By the proposition, both a(X) and a(X) are color­
perfect. 0 

The notion of a crucial graph is somewhat analogous to the notion of a 
critical graph with respect to vertex-colorings. 

D5 Exercise. Prove that every crucial graph r satisfies xo(r) = Xo(r(X») + I 
for every vertex x of r. 

Still another formulation of the Berge Conjecture is that crucial graphs 
are closed under complementation. The only crucial graphs known are those 
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described in Corollary D4. Since the latter class of graphs is closed with 
respect to complementation, the following sharper conjecture is indicated. 

D6 Strong Berge Conjecture. The only crucial graphs are the odd circuits of 
length at least 5 and their complements. 

In the remainder of this section we prove the Berge Conjecture (D 1) and 
we obtain some further properties of crucial graphs. Most of these results 
are due to L. Lovasz [t.3] and [t.4], but their presentation here has been 
considerably transformed. Those lemmas below which we have ascribed to 
Lovasz constitute various fragments of his original proof of the conjecture. 

Let r = (V, 8) be any graph, let W be a set, and let g: W -+ V be a 
function. We define the Lovasz graph A determined by the triple (r, W, g) 
to be the graph A = (W, fF) where 

fF = {F E &'2(W): g[F] E 8 u 91(v)}. 

We wi1l1ater require tbe following immediate consequence of this definition. 

D7 Lemma. If A is the LovOsz graph determined by (r, W, g) and if T s; W, 
then AT is the Lovdsz graph determined by both (r, T, glT) and (rg[T]' T, gIT)' 

We make some elementary observations concerning A. Suppose Us; W. 
The set U is a complete set in A if and only if g[U] is a complete set in r. 
Moreover, if Sis a complete set in r, theng-I[S] is a complete (~xes Ig-l[xJl)­
set in A. Hence w{A) ~ w{rg[Wl)' If U is independent in A, then g[U] is inde­
pendent in r; in that case glu is injective. Hence IXo{A) ::;; IXo{r). 

D8 Lemma. Let r = (V, 8) be a color-perfect graph. Then the Lovdsz graph 
determined by (r, W, g)for any set Wand any g E VW is also color-perfect. 

PROOF. Let A = (W,!F) be tbe Lovasz grapb in question. Tbe proof is by 
induction on I WI. If I WI = 1, then A is clearly perfect. 

Suppose I WI > 1, and as induction hypothesis, suppose that Au is 
color-perfect whenever U c W. 

The lemma follows if g is injective, for then A would be isomorphic to r g[Wl' 
Suppose therefore that g(uo) = g(uI) for some two distinct vertices uo, UI E W. 
Note that by definition of A, {u, UI} E fF if and only if either g(u) = g(uo) or 
{u, uo} E!F. Let U = W + {Ul}' By the induction hypothesis, Au is color­
perfect. 

Case 1: Uo E Kfor some clique K of Au. Since K + {UI} is thus a clique in 
A, it follows that w(A) = w(Au) + 1. On the other hand, any Xo{Au)­
coloring of Au can be extended to a coloring of A by assigning Ul to a "new" 
color. Hence Xo(A) ::;; Xo(Au} + 1 = w(Au) + 1 = w(r). Combining this 
inequality with A4, we have xo(A) = w(A). 

Case 2: Uo belongs to no clique of Au. Let h: U -+ {I, ... , Xo(Au)} be a 
vertex coloring of Au. and suppose h(uo) = 1. Since w(Au} = xo(Au), each 
clique K of Au must meet each color class h -I [i); i.e., hlK is always a bijection 
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onto the set of colors. Since Uo belongs to no clique of Au, the set T = 

h-l[l] + {uo} also meets each clique of Au. Hence w(Au+T) = w(Au) - 1, 
and so Xo(Au+T) = Xo(Au) - 1. Let hl : U + T -+ {2, ... , Xo(Au)} be a vertex 
coloring of A U +T ' Since T + {u1} is independent, hl can be extended to a 
vertex xo(Au)-coloring hl' of A by assigning hl'(u) = 1 for all u E T + {Ul}' 
Thus Xo(A) = Xo(Au) = w(Au) :s; w(A), which together with A4 yields 
Xo(A) = w(A). 0 

An independent set of vertices of a graph which meets every clique is 
called a spread. A complete set which meets every scattering is called a clump. 
Clearly if S is a spread in a graph r, then S is a clump in r'. Moreover, if S 
is a spread in r and Cis a clump in r, then w(r(S») = w(r) - 1 and ao(r(e») = 
ao(r) - 1. 

D9 Lemma (L. Lovasz). If a graph r = (V, tB') is color-perfect and if 0 c 
U £; V, then r u contains a clump. 

PROOF. The proof is by induction on I VI. The result is trivial if I VI = I. Let 
I VI > 1, and suppose that r is color-perfect. As induction hypothesis, 
assume that whenever 0 cUe V, then (since r u is color-perfect) the sub­
graph r u contains a clump. Suppose that r itself, however, contains no 
clump. 

Let ~ be the collection of complete sets in r. For each complete set C E~, 
there exists a scattering Se such that Se n C = 0. For each C E~, let We 
be an ao(r)-set, let ge: We -+ Se be a bijection, and assume that the sets 
{We: C E~} are pairwise disjoint. Let W = UeE'lf We and define g: W -+ V 
by g(w) = ge(w) ifw E We. Let A be the Lovaszgraphdetermined by(r, W, g). 

Let K be a complete set in A. Since g[K] is complete in r, I g[K] n S I :s; I 
for any scattering Sin r. Hence IK n Wei :s; 1 for any complete set CEre 
(cf. IAI4). In particular, however, since g[K] n S9[Kl = 0, we have K n 
W9[Kl = 0. Hence IKI :s; I~I - I, and we conclude that w(A) < I~I. 

By Lemma D8, Xo(A) = w(A), and so xo(A)ao(A) < 1~lao(r) = I WI = 
vo(A), contrary to VIlAS. 0 

DIO Lemma (L. Lovasz). Let r = (V, tB'). If r u contains a spread whenever 
o c U £; V, then r is color-perfect. 

PROOF. The proof again proceeds by induction on I VI and is trivial for 
I VI = 1. Now suppose I VI > I and suppose that r u contains a spread when­
ever 0 c U £; V. Applying the induction hypothesis to r u for 0 cUe V, 
we have that r u is color perfect. 

Let S be a spread in r. Since r(S) is color-perfect, xo(r(S») = w(r(S») = 
w(r) - 1. Clearly any vertex (w(r) - I)-coloring of r(S) can be extended to 
a vertex w(r)-coloring of r by the assignment of every vertex in S to the one 
"new" color. Hence Xo(r) :s; w(r), which together with A4 yields that r is 
color-perfect. 0 
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These two lemmas by Lovasz allow us to prove the Berge Conjecture D2, 
which we present more comprehensively as follows: 

Dll Theorem. Let r = (V, Iff) be a graph. The following four statements are 
equivalent: 

(a) r is color-perfect; 
(b) r u contains a clump whenever 0 c U s;; V; 
(c) r' is color-perfect; 
(d) r u contains a spread whenever 0 c U s;; V. 

PROOF. (a) => (b) by Lemma D9. 
(b) => (c) by Lemma DIO applied to r/. 
(c) => (d) by Lemma D9 applied to r/. 
(d) => (a) by Lemma DIO. o 

A characterization of crucial graphs is an immediate consequence of this 
theorem. 

D12 Corollary. A graph r = (V, Iff) is crucial if and only if r contains no 
spread and no clump, but whenever 0 cUe V, then r u contains both a 
spread and a clump. 

In order to give a further characterization of crucial graphs, we require 
the following lemma. 

D13 Lemma (Lovasz). Let r = (V, Iff). Suppose that r u is perfect whenever 
U c V and that vo(r) ::; IXo(r)w{r). Then for any Lovasz graph A deter­
mined by r, vo(A) ::; IXo{A)w{A). 

PROOF. Let A be determined by (r, W, g). We proceed by induction on I WI. 
When I WI = 1, the desired inequality reads 1 ::; 1. Assume as induction 
hypothesis that VO{AT) ::; IXo{AT)W{AT) whenever T c W. 

If g is not surjective, then r g[Wl is perfect by the hypothesis of this lemma. 
Since A is also determined by (r g[Wj, W, g), Lemma D8 yields that A is 
color-perfect, and the desired inequality follows from VIlAS. 

We assume, therefore, that g is a surjection. It may be presumed that g 
is not an injection, for otherwise r and A would be isomorphic graphs. 
Therefore, there exists x E V such that g-l[X] = C where ICJ > 1. As 
mentioned earlier, C must be complete in A. Fix u E C, and observe that since 
the function glW+(u} is also a surjection (onto V), ao(A(u» = ao(r) = ao{A). 
(See the remark preceding Lemma D8.) This together with the induction hy­
pothesis yields 

vo(A) - 1 = vo(Acu» ::; ao{ACu})w(ACu» ::; ao(A)w(A). 

Thus if the desired inequality fails for A, then it fails only by 1; i.e., we may 
suppose 
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DI4 vo(A) = ao(A)w(A) + 1. 

Since ~C) is the Lovasz graph determined by (p(x), W + e, glw+c) and 
since p(x) is perfect, Lemma D8 yields that ~C) is color-perfect. Since 
xo(~C» = w(A(c» ~ w(A), there exists a vertex coloring h: W + e ~ 
{I, ... , w(A)} of ~C). By DI4, 

m(A) 

ao(A)w(A) = vo(~C» + Ie! - 1 = L Ih- 1[i]1 + lei - 1. 
1-1 

Since no color class h-l[i] contains more than ao(A) vertices, at most Ie! - 1 
color classes fail to be scatterings. Let T denote the union of exactly w(A) -
I e I + 1 color classes in W + e with respect to h which are scatterings. Thus 

IT + {u}1 = ao(A)(w(A) - Ie! + 1) + 1. 

But by the induction hypothesis, vo(AT+(u}) ~ ao(AT+(u})w(AT+(u}) ~ 
ao(A)w(AT+<U»' whence 

DIS w(A) - Ie! + 1 < w(AT+(u}). 

Recall that by the definition of T, W(AT) ~ w(A) - Ie! + 1. Combining this 
with DI5 yields w(AT+(u}) > W(AT). Therefore u E e' for some clique e' of 
AT+(u}. Since e' u e is a complete set, w(A) ~ Ie' U e! = le'l + lei -
1 = W(AT+<U» + Ie! - 1, contrary to DI5. 0 

D16 Theorem (Lovasz). A graph P = (V, 8) is perfect if and only if vo(P s) ~ 
ao(P s)w(r s) for all S E fJIl( V). 

PROOF. Suppose that P is perfect, and let S E &'( V). Since Psis then perfect, 
too, we have by VIIA5, vo(P s) ~ ao(P s)xo(r s) = ao(P s)w(P s). 

We prove the converse by induction on I VI. The assertion being trivial 
for IVI = 1, we assume that Ps is perfect whenever 0 eSc V and that 
vo(P) ~ ao(P)w(P). 

Suppose that P is not perfect. By Theorem D 11, P contains no clump. 
We now repeat precisely the construction in the proof of Lemma D9. Thus 
all the symbols ~, Sc, Wc, gc, W, g, and A will reassume their previous 
meanings, and by the same argument as in the proof of D9, we obtain: 

D17 w(A) < I~I. 

However, by Lemma DI3 together with the means by which A is constructed, 
we have 

ao(A)w(A) ~ I WI = 1~lao(P) ~ 1~lao(A), 

and so I~I ~ w(A), contrary to DI7. 

D18 Corollary. If P is crucial, then 

vo(r) = ao(r)w(P) + 1. 
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PROOF. If r is crucial, then certainly vo(r) > 1. Thus if x is a vertex of r, 
then r(X) is perfect while r is not perfect. By the theorem 

vo(r) = vo(r(X)) + 1 s (Xo(r(X))w(r(X)) + 1 
s (Xo(r)w(r) + 1 
S vo(r). o 

It is easy to see that for any crucial graph r, (Xo(r) ~ 2 and w(r) ~ 2. 

D19 Exercise. Let r be crucial. Prove that if w(r) = 2, then r is an odd 
circuit of length at least 5, and if (Xo(r) = 2, then r' is an odd circuit of 
length at least 5. 

D20 Exercise. A graph r = (V, tt) is a comparability graph if there exists a 
transitive, antisymmetric relation R on V such that {x, y} E G if and only if 
either (x, y) E R or (y, x) E R. Using Dilworth's theorem IVG7, show that 
every comparability graph is color-perfect, and hence perfect. 
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CHAPTER IX 

Designs 

Most of the combinatorial objects studied in this book have been defined as 
systems satisfying certain conditions. The term "design" is reserved for a 
system A = (V,/, E) with selection s such that sand s* are constant on some 
of the collections &:(V)(I = 1, ... , IVI - 1) and &:,(E) (a = 1, ... , lEI - 1) 
respectively. The reader may wish before proceeding to review the properties 
of the functions sand s* in §IE. 

IXA Parameters of Designs 

Throughout this chapter A = (V, /, E) will denote a system such that V :F 0 
and E :F 0, and s will denote the selection of A. We also fix the letters v = IVI 
and b = lEI. 

Let {II' ... , Ip} and {a1> ••. , aq} be sets of integers, at least one of which is 
nonempty, and suppose that 0 < 11 < ... < Ip < v and 0 < a1 < ... < 
aq < b. We say that the system A is a (11) .•• ' Ip; a1> ••• , aq)-design if s is a 

positive constant on &:lV) for i = 1, .. . ,p, and s* is a positive constant on 
flJalE) for i = 1, ... , q. For each such design we define functions 
'\: {O, 11> ••• , Ip} -+ N + {O} and ,\*: {O, a1> •.. , aq} -+ N + {O} by 

'\(0) = s(0) = b; ,\* = S*(0) = v; 

'\(/1) = s(T) for all Te&:I(V), i = 1, .. . ,p; and 

'\*(al) = s*(A) for all A e flJal(E), i = 1, ... , q. 

The functions ,\ and ,\* are called the design parameters of A. When q = 0, 
we write that A is a (11) ••• , Ip ;)-design, and when p = 0, we write that A is a 
(; a1> ..• , aq)-design. Such designs are called one-sided and will be considered 
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lXA Parameters of Designs 

at the end of the next section. If pq > 0, then A is two-sided. Observe that 
A is a (tlo ... , tp; al, ... , aq)-design if and only if A * is a (al' ... , aq; tlo ... , tp)­
design. 

Suppose that A is a (11"", Ip; al , ••• , aq)-design and let 0 < 11' < ... < 
1m' < V and 0 < al' < ... < an' < b. Consider the following two statements: 

Al {I/, ... , tm'} s;; {tlo .•. , tp} and {al', ... , an') S;; {ab"" aq}. 

A2 A is a (tl', ... , tm'; al', ... , an')-design. 

Clearly At implies A2. Whenever for a design A, A2 implies AI, we say 
that (tlo ... , tp; alo ... , aq) is the design-type of A. 

The design A is said to be degenerate if either s(V) > 0 or s*(E) > O. By 
IE8 this means that either some vertex lies in every block or some block 
contains every vertex. Clearly A is degenerate if and only if A * is degenerate. 
Degenerate designs are pursued in the next section. 

We shall say that A is a complete design (respectively, transposed-complete 
design) iffor some positive integer k < v (respectively, k < b), A (respectively, 
A*) is isomorphic to the set system (V, &k(V», (Observe that if k = 2, then 
A is a complete graph on v vertices. Thus complete designs are generalizations 

of complete graphs.) If A = (V, .9,.(V», then clearly s*(A) = k for A E .9l.(E). 
It follows from this and Exercise IEII that A is a (1, 2, ... , k; I)-design with 
parameters 

A3 
( V - I) A(t) = k _ I for t = 0, 1, ... , k; 

'\*(0) = b; ,\*(1) = k. 

Furthermore, A is not a (t;)-design for t > k. If k < v-I and a > 1, it 
can be readily verified that A is not a (; a)-design. If k < v-I, then 
(1,2, ... , k; 1) is the design type of A. However, when k = v-I, then 
A is isomorphic to A *, and both designs have design-type 

(1, ... , v-I; 1, ... , v-I). 

A design isomorphic to (V, 9ft-l(V» is called a trivial design. 
Since A is a (110 "" Ip; a1> ... , aq)-design if and only if A * is a 

(alo ... , aq ; flo ••. , tp)-design, there corresponds to any assertion regarding the 
properties of one of the design parameters of A an obvious assertion regarding 
the properties of the other design parameter. In the arguments and assertions 
which follow, we will not always include both a statement and its "transpose," 
but we shall always feel free to use one if the other has been presented. (Cf. 
Proposition ID4.) 

Observe that a (; I)-design has (constant) blocksize ,\*(1). Following 
established convention, we shall (in this chapter) reserve the letter k for this 
quantity. Every incidence matrix of a (; I)-design A has constant column 
sum k. Dually, a (1 ;)-design A has the property that every vertex is contained 
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in exactly ,\(1) blocks. One traditionally denotes '\(1) by r, called the replica­
tion number of A, and it is the constant row sum of any incidence matrix for a 
(I ;)-design. 

Our first substantial result shows that for a design A with blocksize k, 
the vah~~ of s on ~(V) where t ::s; k determines the value of s on all subsets 
of V with cardinality less than t. 

A4 Lemma. Let A be a (; I)-design. If S s;; Vand tEN satisfy lSI ::s; t ::s; k, 
then 

PROOF. The argument consists of the following chain of equalities, which rely 
only on the definition of s and the fact that s(U) = 0 for lUI #: k. 

s(S) = L [S, U]s(U) 
Ue,//.V) 

- (k -liS I) L I{T E fl',(Y): S" T" u}1'(U} 
Ue,,.(V) 

t -lSI 

- (k IISI) L L [S, TIT, U}!(U} 
-. Ue,,.(V) Te,,(V) 

t -lSI 

~ (k ~ lSI) L [S, TJ L [T, UJo(U} 
Te,,(V) Ue,,.(V) 

t -lSI 

~ (k _I lSI) L [S, TJi(T), 
Te,,(V) 

t -lSI 
o 

AS Proposition. Let A be a (t; I)-design where t ::s; k. Then A is a (1, ... , t; 1)­
design, andfor each i = 0,1, ... , t, 

( V -~) 
. t - I 

'\(1) = (k _ ~) '\(t). 
t - I 

PROOF. Let i E {O, 1, ... , t} be given and let S E ~(V). By Lemma A4 and the 
assumption that s is constant on ~(V), 

i(S) - (k ~) L [S, T)A(t) 
I Te,,(V) 

t - i 
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- (k ~I.) (~ ::: :)A(t), 
I - I 

Thus s(S) is determined only by lSI = i; that is, A is an (i;)-design. D 

A nondegenerate (I; I)-design is called a I-design. It follows that a I-design 
is a t'-design for each t' = 1, ... , t. If A is a I-design, then each I-subset of 
V is contained in exactly '\(/) blocks. Since '\(t) > ° by definition, and since 
the blocksize of A is assumed to be k, we have 

A6 If A is a t-design, then t :S k. 

A7 Exercise. Characterize all k-designs. 

The following corollary to Proposition AS is immediate. 

A8 Corollary. If A is a (t; a)-design where eilher t = 1 or a = 1, then A has 
design-type (1, ... , t'; 1, ... , a') for somt: t' ~ t and some a' ~ a. 

A9 Exercise. Show that if A is a t-design, then 

'\(i + 1) = k - ~ '\(i) for all i = 0, 1, ... , t - 1, v - I 

and hence ,\ is a decreasing function. 

A10 Exercise. Show that if A is a t-design, then 

'\(i) = ((~)) b for i = 0, 1, ... , I. 

~ 
Another term for a nondegenerate I-design in the literature is tactical 

configuration. A p-valent graph is a tactical configuration with r = p and 
k = 2. "Partially-balanced incomplete block designs" and "partial geom­
etries," the topics of §E and §F, respectively, are also tactical configurations. 
Traditionally, however, the class of 2-designs has received much more 
attention. A 2-design which is not complete is called a balanced incomplete 
block design, or BIB-design. Such designs will be studied in §C. 

Having already obtained some information about (; I)-designs we now 
consider (; 2)-designs. If A is a (; 2)-design, the intersection of the images 
underfofany two blocks has precisely ,\*(2) elements. Supposef(el) = f(e2) 
for some distinct el, e2 E E. Then If(el)I = ,\*(2) andj(el) nf(e) = f(el) for 
all e E E. Hence neeEf(e) = f(el) =F {O (since ,\*(2) > 0). We have proved: 

All Proposition. If A is a (; 2)-design, and if s*(E) = 0, then A is a set system. 

The next result is sometimes known as "Fisher's inequality" [r.9]. 
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AU Theorem. If A is a (; 2)-design and if s*(E) = 0, then b :s; v. 

PROOF (D. R. Woodall [w.12], 1970). We may clearly assume that b > 1. 
Let M be an incidence matrix for A. Thus M is a v x b matrix, whose jth 
column sum we denote by aJ. Since the usual inner product of any two distinct 
columns, regarded as vectors, is exactly '\*(2), we have aJ ~ ,\*(2) for j = 
I, ... , b. Equality can hold only if M has two identical columns. This is 
impossible since by All, A is a set system. Hence, 

A13 aJ - ,\*(2) > 0, j = I, ... , b. 

If we suppose v < b, then we can extend M to a b x b matrix N by ad­
joining b - v rows of O's at the bottom of M. Since det(N) = 0, we have 
det(N* N) = O. This latter matrix is of the form 

'\*(2)] 

a" 
Its main diagonal is (at> .•• , a,,) while all other entries are ,\*(2). Next we 
evaluate det(N* N) again, this time by still more elementary methods. 

First subtract the first column from all of the other columns. Then, for 
each i = 2, ... , b, add to the first row the ith row multiplied by 

(a1 - ,\*(2»J(a, - ,\*(2». 

Since only O's remain above the main diagonal, the product of the entries 
on the main diagonal gives det(N* N). But each of these entries except the 
first is of the form al - '\*(2), while the first term is 

" a1 + (a1 - ,\*(2»,\*(2) L: (al - ,\*(2»-1. 
1m 2 

By AI3 every term is positive. Hence det(N* N) > 0, giving a contradic­
tion. 0 

The above proposition was proved independently by H. J. Ryser [r.lO]. 
We indicate his proof. Since N*N = M*M, one may prove det(M*M) > 0 
by the same arguments as before. Then b = rank(M* M) :s; rank(M) :s; v, 
as required. 

By duality we immediately obtain: 

A14 Corollary. A nondegenerate (2; 2)-design satisfies the condition b = v. 

A15 Proposition. If A = (V, 8) is a nondegenerate (2; 2)-design, then 

,\(2) = ,\*(2). 

234 



IXB Design-Types 

PROOF. Consider the set of ordered pairs: 

S = {(T, {Eh E2 }): TE~(V); {Eh E2} E~(4'); T s; El () E2}. 

Let ,\(2) = m and ,\*(2) = n. For each T E ~(V) there are exactly m blocks 
containing T, and hence (T, {Eh E2}) E S for exactly (~) 2-sets {Eh E2} E 912(4'). 
Thus lSI = (~)(~). Bya symmetric argument one verifies that lSI = a)(~). 
By Corollary A14, m = n. D 

A t-design with t ~ 2 which is also a (; 2)-design is by Proposition AS a 
(1,2; 1, 2)-design. Such a design is called a symmetric block design and will 
receive attention in §C when we consider BIB-designs. A symmetric '\-linked 
design is a nondegenerate, nontrivial (2; 2)-design which is not at-design 
for any t. 

At6 Exercise. Show that the system (V, 4') where v ~ 4, Xo E V, and 

4' = {{xo, x}: x E V + {xoH U {V + {xoH 

is a symmetric ,\-linked design. 

IXB Design-Types 

We begin the classification of designs by first obtaining information about 
the design parameters of degenerate designs. 

Bt Proposition. Let A be a (t;)-design, and suppose that s*(E) > O. Then/or 
SE9I(V), 

s(s) = {'\(t) if lSI = v; 
o if t ~ lSI ~ v-I. 

PROOF. By hypothesis, we may select Xo E neeE/(e). Let TE~_l(V + {xo}). 
Since Xo belongs to every block and A is assumed by hypothesis to be a 
(t;)-design, seT) = seT + {xo}) = '\(t). Now let Xl E V + T. Since T + {Xl} E 
~(V), we have seT + {Xl}) = '\(t) = seT). Since every block which contains 
T + {Xl} also contains T, we conclude that T and T + {Xl} are contained in 
the very same blocks. However, Xl was chosen arbitrarily in V + T, which 
implies that any block containing T must contain all of V. Thus s(V) = 
s(V) = seT) = '\(t). 

Recall that T was chosen arbitrarily in ~-l(V + {xo}). Now let S E 91(V) 
where t ~ lSI ~ v-I. Clearly S contains some set TE~_l(V + {xo}). 
Hence if S is the image of a block, it contains V, which is impossible. We 
conclude that s(S) = O. D 

B2 Corollary. If A is a (t;)-design and s*(E) > 0, then A is a (t, t + 1, ... , 
v-I ;)-design. 
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By definition, a design may be degenerate for either of two reasons: either 
s*(E) > 0 or s(V) > O. We have just proved, allowing duality to play its role, 
that if a (t; a)-design is degenerate for one reason, then it is degenerate for 
the other reason as well. More precisely, 

B3 Corollary. If A is a degenerate (t; a)-design, then s(V) = .\(t) and s*(E) = 
.\*(a). 

B4 Exercise. Let A = (V,J, E) be a (t;)-design. Prove: 
(a) If .\(t) > s(V) > 0, then the subsystem (V,fip, F) where F = 

{e E E:f(e) =F V} is a nondegenerate (t;)-design. 
(b) If A is not degenerate, then A is a subsystem of some degenerate (t;)­

design with vertex set V. 
(c) Let Wand Fbe any disjoint sets such that I WI > t and IFI > a. Then 

there exists a function f: F -+ &J(W) such that (W, J, F) is a degenerate 
(t; a)-design. 

BS Exercise. Determine the design-types impossible for degenerate two-sided 
designs. 

The following is a generalization of Theorem AI2. 

B6 Theorem. Let A be a (; a)-design no vertex of which is incident with every 
block. 

(a) If a ~ 2, then v ~ b. 
(b) If a ~ 3, then v = b if and only if A is a trivial design. 

PROOF. The proof is by induction on a. Theorem AI2 serves as the first step, 
with a = 2. For our induction hypothesis, we assume that the theorem is valid 
for all (; a)-designs where a is some fixed integer at least 2 and no vertex is 
incident with every block. 

Suppose that A is a (; a + I)-design such that s*(E) = o. Select eo E E, 
and consider the subsystem Ao = (f(eo)'/o, E + {eo}), wherefo(e) = f(eo) ("\ 
f(e) for all e E E + {eo}. Since any a-set of blocks of Ao becomes an (a + 1)­
set of blocks of A when eo is adjoined to it, Ao is a (; a)-design. Were some 
vertex of Ao incident with every block of Ao, then that vertex would be 
incident with every block of A, contrary to assumption. Applying, as we 
now may, the induction hypothesis to Ao, we obtain: 

B7 b - 1 = IE + {eo} I :5 If(eo)I :5 v. 

Thus either b - 1 = v or b :5 v. In the former case, equality holds across B7, 
independently of the arbitrary choice of the block eo. Thus f(e) = V for all 

e E E, and s*(E) = v > o. Hence b :5 v, proving (a). 
If b = v, then B7 implies that all blocks have size either v or v-I. Let 

M be an incidence matrix for A. Each of the b columns of M has at most one 
0, but since no vertex is incident with every block, each of the v rows contains 

236 



IXB Design-Types 

at least one O. If m is the number of O's in M, then v ~ m ~ b. By our assump­
tion that b = v, there must be exactly one 0 in each row and each column. 
But then M is an incidence matrix of the set system (V, ~_I(V», We have 
already noted (A3) that b = v for trivial designs. D 

The property of being a (t; a)-design when both t ~ 2 and a ~ 2 and one 
of these values is > 2 is very restrictive, as we shall presently see. 

B8 Corollary. Let A be a (t; a)-design with t ~ 2 and a ~ 2. If ta > 4, then 
A is degenerate or trivial. 

PROOF. Suppose that A is nondegenerate. From Theorem B6a and its trans­
pose, we infer that b = v. If ta > 4, we apply B6b or its transpose to infer 
that A is trivial. D 

Up to this point no effort has been made to identify those design-types 
which are possible. Using Proposition AS and Corollary B8 we can com­
pletely identify the design-types of all two-sided designs. 

B9 Theorem. Every nondegenerate 2-sided design has one of the following 
design-types: 

(a) (1, ... , t; 1), t ~ 1, (nontrivial t-design) 
(b) (1; I, ... , a), a ~ 1, (transpose of (a» 
(c) (1, 2; 1,2), (nontrivial symmetric block design) 
(d) (2; 2), (symmetric >'-linked design) 
(e) (1, ... , v-I; 1, ... , v-I), (trivial design). 

BIO Exercise. Prove Theorem B9. 

We shall presently see that no restrictions such as in Theorem B9 can be 
put on the design-types of one-sided designs. 

Btl Exercise. Let v ~ 3 and let V = {Xh' .. , xv}. Show that (1 ;) is the design­
type of the set systems (V, tt) and (V, tt') with 

tt = {Sh"" S,,-h Th ••• , T"_I} 

where SI = {Xh"" XI} and 11 = V + SI for i = 1, ... , v-I, and with 
tt' = tt + {V}. 

B12 Proposition (J. K. Doyle and C. J. Leska [d.8]). Let integers th ... , tp, v 
be given with 0 < tl < ... < tp < v and v ~ 3. Then there exists a de­
generate design and a nondegenerate design on v vertices with design-type 
(th ••• , tp;). 

PROOF. In light of Bll we may assume tp > 1. We construct the required 
designs inductively. Let Vbe a v-set. The constructions for the degenerate and 
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nondegenerate cases differ only in the initial stages. In order to construct a 
nondegenerate design, let Eo denote a (f,,)-set and let fo: Eo -+ &:,,(V) be a 
bijection. In order to construct a degenerate design in the case Ip = v-I, 
let Eo denote a v-set and letfo(e) = V for all e E Eo. In order to construct a 
degenerate design when Ip < v-I, let Eo denote a «f,,) - (";,,1) + 2)-set 
and let fo: Eo -+ (&:,,(V) + &:,,(V'» u {V, V'} be a bijection where V' is a 
(v - I)-subset of V. 

In all cases, let Ao = (V,Jo, Eo). We observe that Ao is a (/p;)-design but 
is not a (/;)-design for Ip < I < v. (We emphasize that this property will be 
unaffected by the adjoining to Eo of blocks of size less than Ip.) This 
has been the initial step, j = 0, for a proof by induction. Now let 0 ~ 
j ~ Ip - 1, and let the following be our induction hypothesis: There exisls a 
syslem AJ = (V,fj, EJ) such Ihal for all I ~ Ip - j, AJ is a (/;)-design if and 
only ifl E {/lo ... , Ip}. We shall adjoin blocks to EJ and extendfj appropriately 
in order to form a design AJ+ 1 which satisfies the condition of the induction 
hypothesis for all I ~ Ip - (j + 1). 

Case 1: Ip - (j + I)E{/Io •• • ,/p- 1}. Let us say Ip - (j + 1) = II. If & is 
constant on &:I(V), we are done. Suppose, therefore, that & is not constant on 
&:I(V). Let m = max{&(S): S E &:I(V)}, and let 

n = L: (m - &(S». 
Se(Jl'tl(V) 

Let F be an n-set disjoint from EJ and define EJ+ 1 = EJ U F. Define 
11+1: EJ+l -+ &(V) so that11+1IEI = fj and11+1[F] s;; &:lV) with the property 
that for each set SE&:(V), IJiI+HS]1 = m - &(S). This is clearly possible. 
The system AJ+l = (V,11+1, EJ+l) has the desired property. 

Case 2: Ip - U + 1) 1ft {/lo ... , Ip}. For brevity let u = Ip - (j + 1). If & 
is not constant on ~(V), we are done. If & is constant on ~(V), then AJ is a 
(u;)-design, and we proceed to destroy this property as follows. Let U E ~(V) 
and let eJ+l be some object not in EJ• Define EJ+l = EJ U {eJ+l}, and define 
11+1: EJ+l -+ &(V) by 

I" () _ {fj(e) if e E EJ ; 
JJ+l e - . 

U if e = ej+l. 

Then AJ+l = (V,fj+lo EJ+l) has the desired property. 
By continuing this construction, we obtain a design A = (V,I, E) which 

is a (/;)-design if and only if IE {Ilo ... , Ip}. It remains to show that A is not a 
(; a)-design for all a ~ 1. We first show that if A is a (; I)-design, then A can 
be replaced by another design A' which is also a (/;)-design if and only if 
IE {/lo ... , Ip}, but which does not have constant blocksize. If A is a (; 1)­
design, then A is a (1, 2, ... , Ip ;)-design by Proposition AS, in which case E 
is the set Eo postulated at the beginning of this proof. Let F be a v-set disjoint 
from E and let E' = E U F. Define!': E' -+ &(V) so that fiE = f and 
f;F:F-+~(V) is a bijection. Since Ip> 1, A' = (V,!"E') has the same 
properties as A but does not have constant blocksize. 
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We may thus assume that A is a (; a)-design with a ~ 2. By B6, v ~ b. 
But v s IEol s b, with IEol = b only if tl = i for all i = 1, .. . ,p, while 
v = IEol only if tp = v-I. But if both equalities hold simultaneously, then 
b ~ 2v by our construction, giving a contradiction. Hence A has design-type 
(t1> ... , tp;). 0 

The degenerate design constructed in the above theorem has the property 
that s(V) > O. Due to Corollary B2, however, it generally will not have the 
property that s*(E) > O. 

A careful reading of the above proof also reveals that the design A con­
structed therein will be a set system when the design is nondegenerate and 
the integers t1> . .. , tp are consecutive. Otherwise A will in general not be a 
set system. Actually, set systems of type (t1> ... , tp;) are also constructible 
under a slightly more general hypothesis than this. 

B13 Proposition. Let integers tlo . .. , tp, v be given such that 0 < t1 < ... < 
tp < v and v ~ 3 and such that tl + 1 = tl + 1 holds for all indices i E 

{2, ... , p - I}. Then there exists a set system with v vertices and design-type 
(t1> ... , tp;). 

PROOF. If tlo ••• , tp are consecutive, we refer to B12. Otherwise, the integers 
t1> ... , tp can be represented as 

t1, t2, t2 + 1, ... , t2 + (p - 2) = tp, where 11 < 12 - 1. 

Let V be a v-set. Let S E &:2- 1(V) and let R E &:1- 1(S). Define 

8 = &:p(V) + [&:l(V) + ~l(S)] + {R, S}, 

and let A = (V, 8). 
It is immediate that for 2 SiS p, '\(11) = (t~ __ tl,), since the only blocks 

containing a tl-set have size 11'. We assert that '\(t1) = (t~:~'i) + 1, since in 
addition to the blocks of size tp , every t1-set is contained in one additional 
block of size t2 - 1 or 11> depending upon whether or not it is a subset of S. 
Hence A is a (11' ... , tp ;)-design. 

Clearly A is no (I ;)-design for I > 11'. Suppose 11 < I < 12. If T E ~(S), 
then s(T) = (t~ __ tt) + 1, but if T E ~(V) + ~(S), then s(T) = (t~ __ tt). Finally 
suppose I < 11. For T E ~(S), let T(T) denote the number of blocks of size t1 
containing T. We readily compute 

T(T) = (v - I) _ (12 - 1) - t). 
11 - I 11 - t 

If T E ~(R), then ,r(T) = (t~:.tt) + T(T) + 2, while if T E ~(S) + ~(R), then 

s(T) = (~= ~) + T(T) + 1. 

Hence A is not a (I;)-design for all t ¢ {t1> . .. , Ip}. 
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One shows that A is no (; a)-design exactly as in the proof of Proposition 
B12. Hence A has design-type (t1> ... , tp;). 0 

B14 Exercise. Let t1> t2 , t3, v be integers such that 0 < t1 < t2 < t3 < v, and 
t3 - t1 - 1 < 2t2 • Construct a set system on v vertices with design-type 
(t1> t2 , t3 ;). 

B15 Exercise. Determine the design-types and design parameters for each 
of the following systems introduced in proofs in §/E. 

(a) (Y, 11>, yX) in Proposition lE14. 
(b) (II(B),f, B) in Proposition lE16. 
(c) (V,f, B) in Theorem IE21. 

IXC t-Designs 

Of all designs, it is unquestionably the t-designs that have been subjected to 
the greatest amount of study. There are applications of the theory of t-designs 
to algebra, geometry, number theory, and statistics. 

Unless a t-design is a symmetric block design, the cardinality of the 
intersection of the images of any two blocks is not constant. Nonetheless, 
t-designs all have the following property as a consequence of the Principle 
of Inclusion-Exclusion (lEl3): 

Cl Exercise. Show that if A is a t-design with design parameter .\, if 0 ::s; 
j ::s; i ::s; t, and if S E .o/t( V), then the number of blocks whose images meet S in a 
j-set is 

!~ (-l)hi! .\(h + j) 
L.. h' '1 (. h ')1' h=O .J. 1 - - J . 

All t-designs readily generate other t-designs, as the next three propositions 
indicate. 

C2 Proposition. Let A = (V, f, E) be a t-design. Define I(e) = V + fee) for 
all e E E. Then A = (V,/, E) is a i-deSign where i = min{t, v - k}. 

PROOF. Clearly A has block size v - k. Hence A is a (; I)-design. Let d be its 
selection. Since 1 ::s; t, Exercise CI with i = 1 and j = 0 implies that d is 
constant on &i(V). Since 1 ::s; v - k, d is not zero on &i(V). Hence A is a 
(1; I)-design. Since the blocksize of A is less than v, d(V) = O. By applying 
Corollary B3 to A, we conclude that A is nondegenerate. 0 

A is called the complementary design of A. Clearly A = A 

C3 Proposition. If the set system (V, Iff) is a noncomplete t-design with block­
size k, then A = (V, 9HV) + Iff) is at-design. 
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PROOF. Clearly X has blocksize k. Let X denote the appropriate design 
parameter of X. One readily verifies that X(t) = a:D - A(t). That X is 
nondegenerate follows as in the previous proposition. D 

C4 Proposition. Let AI = (V,h, E,), i = 1, 2, be t-designs with the same 
blocksize k and E1 ('\ E2 = 0. Then Ao = (V,/, E1 U E2) where f(e) = 
h(e) for e E E, is a t-design with blocksize k. Furthermore, Ao = A1 + A2, 
where AI is the corresponding design-parameter of At (i = 0, 1,2). 

PROOF. Clearly Ao has blocksize k. Also if S1> S2, and So are the selections of 
A1, A2, and Ao, respectively, and if S s;; V, then so(S) = S1(S) + S2(S), D 

We call Ao as in the above proposition the sum of A1 and A2 and denote 
it by A1 + A2 • This leads at once to the concept of the nth multiple nA of a 
design A, obtained by replicating each block n times. If A is not the sum of 
two other designs we say A is indecomposable. Otherwise we say A is 
decomposable. 

C5 Exercise. Let Dt.k(V) denote the collection of all isomorphism classes of 
t-designs with vertex set V and blocksize k. (Recall that each isomorphism 
class is uniquely determined by its selection.) Define the sum of two isomor­
phism classes to be the isomorphism class of the sum of any representatives 
of the two classes. Define the nth multiple of a class analogously. Show that: 

(a) Dt.k(V) is closed under addition and scalar multiplication by a positive 
integer and these operations are well-defined; 

(b) addition is commutative and associative; 
(c) scalar multiplication distributes over addition; 
(d) every design in Dt•k is a sum of indecomposable designs in Dt•k • 

The three propositions C2, C3, and C4 facilitate in classification of t­
designs, since our investigations can be narrowed as follows. By C2, we may 
restrict ourselves to the case k ~ v/2. By C4 we may restrict ourselves to a 
search for indecomposable designs. Finally in the case of designs which are 
set systems, we may by C3 restrict ourselves to the case b ~ J(~). These 
restrictions are substantial. In particular, Graver and Jurkat [g.4] have shown 
that for any t and k, the number of indecomposable designs in Dt.k is finite. 
(Clearly Dt•k is always infinite for t ~ k.) 

Very little is known about t-designs for large values of t. In fact, the com­
plete designs are the only known t-designs for t > 5 which are set systems. 
On the other hand, infinite classes of indecomposable noncomplete 3-, 4-, 
and 5-designs are known (see Alltop [a.O]). 

C6 Exercise. The following is an incidence matrix for a t-design. Determine 
the design-type and the design parameters of this design. Check your results 
against the values predicted in Proposition A5. 
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1 1 1 1 1 0 0 0 0 0 0 

1 1 0 0 0 1 1 1 0 0 0 
1 0 0 1 1 0 1 0 0 1 1 0 
1 0 0 0 0 1 0 1 1 1 1 0 
0 1 0 1 0 0 1 1 0 1 0 1 
0 1 0 0 1 1 0 0 1 1 0 1 
0 0 1 1 0 1 0 1 0 0 1 1 
0 0 1 0 1 0 1 0 0 1 1 

From A9 with i = 0, we obtain the identity 

C7 vr = bk 

for all t-designs. 
Of greatest and broadest interest among all designs are balanced incom­

plete block-designs. They are the objects of our attention for the rest of this 
section. Acceding to existing convention, we shall abbreviate A(2) by A. This 
will cause no confusion since we shall not be interested in the value of A(i) 
for i > 2 even if it should happen in some instances to be well-defined. 
H. J. Ryser [r.9] refers to a BIB-design as a "(b, v, r, k, A)-configuration." But 
care must be taken, for while these five values may in a sense name a design, 
they need not characterize it. For example there are two nonisomorphic (26, 
13,6,3, I)-configurations. 

The 5 values b, v, r, k, A are by no means independent. In addition to C7, 
we have 

C8 (v - I)A = (k - l)r, 

which follows at once from A9 with i = 1. 
Both C7 and C8 may also be obtained by the following simple counting 

arguments. Counting the 1 's in an incidence matrix M for A by rows yields 
vr. Counting by columns yields bk. To obtain the second identity, fix a row 
Ro and count the number of pairs (R, C) consisting of one row R :1= Ro and 
one column C such that C is incident with both R and RD. We may choose R 
in v-I ways and the pair may be completed in A ways. On the other hand, 
we may choose C in r ways and the pair may then be completed in k - 1 
ways. 

It follows from C7 and C8 that given any three of the values b, v, r, k, A, 
one can easily compute the other two. However, one cannot begin to construct 
a BIB-design by arbitrarily choosing three parameter values, since C7 and C8 
need not always yield positive integral values for the other two. 

By A6, k ~ 2 for every BIB-design. However, if A is a 2-design with 
blocksize 2, then since every 2-subset of V must be contained in the same 
number of blocks, A is isomorphic to n( V, f?jJ 2{ V» for some positive integer n. 
Hence k ~ 3 for every BIB-design. 
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A BIB-design with k = 3 is called a triple system. When, moreover, A = 1, 
we have a Steiner triple system. Equation C8 becomes 

v-I = 2r, 

and so v must be odd. Solving for r and substituting into C7 gives 

b = v(v - 1) 
6 . 

Since b must be an integer, we have proved: 

C9 Proposition. A necessary condition for the existence of a Steiner triple 
system with v vertices is that 

v == 1 or 3 (modulo 6). 

When v > 6, this condition is also sufficient, as was first shown by Kirkman 
[k.4] as early as 1847. 

CIO Exercise. Give the analogous necessary condition for the existence of a 
triple system with A = 2. 

The condition to be determined in Exercise CIO is again sufficient for 
existence. Thus for all 5-tuples (b, v, r, 3, A) of positive integers satisfying C7 
and C8 with A < 3, there exists a (b, v, r, 3, A)-configuration. The same is 
true for k = 4 (cf. Hanani [h.5]). The corresponding result for k = 5 is false. 
No (21, 15, 7, 5, 2)-configuration exists. 

Since t-designs are by definition nondegenerate, a Steiner triple system A 
cannot have I or 3 vertices. Hence by C9, v ~ 7. The incidence matrix shown 
in Figure CII is for the Steiner triple system whose parameter values are 
b = v = 7, r = k = 3, A = 1. This particular configuration will keep re­
appearing under various disguises. For example, it is also a symmetric block 
design, the projective plane of order 2, an Hadamard design, and a matroid 
of some interest. 

1 0 0 0 0 
0 0 1 I 0 0 

I 0 0 0 0 I 

Cll 0 0 1 0 I 0 
0 1 0 0 1 0 1 

0 0 1 1 0 0 1 

0 0 1 0 0 

Cl2 Exercise. Show that there is, up to isomorphism, only one Steiner triple 
system on 7 vertices. 

Cl3 Exercise. Find the "smallest" nontrivial triple system with A = 2. 
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C14 Proposition. If A is a symmetric block design, then 
(a) k = r; 
(b) (v - 1),\ = k(k - 1); 
(c) ,\*(2) = '\. 

PROOF. (a) and (b) are immediate consequences of A14, C7, and CS. (c) was 
proved in AlS. 0 

This proposition shows why symmetric block designs are also called 
"(v, k, '\)-configurations." Its converse is false, unlike the situation with 
Steiner triple systems. The mere existence of positive integers satisfying the 
above three equations does not imply the existence of a symmetric block 
design with the given numbers as parameters. For example there is no 
symmetric block design with b = v = 22, r = k = 7, and ,\*(2) = ,\ = 2. 
[See Exercise C23 below.] 

C15 Exercise. Let M be an incidence matrix of a design A. 
(a) Let J denote a matrix (of appropriate dimensions) wherein every entry 

is 1. Let nb n2 E fill such that 0 < n2 < n1 < v. Prove: 

M*M = (n1 - nJI + n2J 

if and only if A is a (; 1, 2)-design with k = n1 and ,\*(2) = n2. 
(b) If A is a (; 1, 2)-design, then 

det(M*M) = [k + (b - l)'\*(2)](k - '\*(2»"-1. 

C16 Theorem (H. J. Ryser [r.S], 1950). Let A be a (; 1, 2)-design for which 
b = v and ,\*(2) < k < v. If M is an incidence matrix of A, then MM* = 
M*M. 

PROOF. Let us abbreviate ,\*(2) by ,\*. By hypothesis, M is a square matrix. 
By Exercise ClSa, 

C17 M*M = (k - ,\*)1 + '\*J. 

By Exercise CISb and the hypothesis, 

det(M*) det(M) = det(M* M) =F O. 

Hence Mis nonsingular. From the fact that M has constant column sum k, 
we have 

kJ=JM, 

whence 

CIS JM-l = kJ. 

Since J is a v x v matrix, J2 = vJ, and so by CI7 followed by CIS, 
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JM* = JM*MM- 1 

= J[(k - A*)I - A*J]M-l 
= (k - A*)JM-l - A*vJM- 1 

k - A* + A*V 
= k J. 

Taking the transpose gives 

Cl9 k - A* + A*V 
MJ= k J. 

Equation C19 implies that the matrix M has constant row sums 
(k - A* + A*v)/k, and hence A is a (1; 1, 2)-design. Since b = v, equation 
C7 gives 

k - A* + A*V 
k = k ' 

whence C19 becomes 

C20 MJ= kJ. 

Hence by C17, CIS, and C20, 

MM* = MM*MM-l 
= M[(k - A*)I + A*J]M-l 
= (k - A*)I + A*J 
=M*M. D 

C21 Corollary (Ryser, ibid). Let A be a (; 1, 2)-designfor which b = v and 
A*(2) < k < v. Then A is a symmetric block design. 

PROOF. Let M be an incidence matrix of A. By Exercise C15a, 

M* M = (k - A*(2))1 + A*(2)J. 

By the theorem, this quantity is equal to MM*. Again by the exercise, M* 
is an incidence matrix of a (; 1, 2)-design. Hence M is an incidence matrix of a 
(1,2;)-design; i.e., A is a (1,2; 1, 2)-design. Since k = r < b = v, A is 
nondegenerate. D 

C22 Exercise. Prove that if a set system A is a t-design with t + k ~ v, then 
A is a complete design. 

C23 Exercise. Prove that if A is a symmetric block design and if v is even, 
then k - A is a square. (Chowla and Ryser [c.2] and Shrikhande [s.5].) 

C24 Exercise. Let A be a symmetric block design and let eo E E. For i = 1,2, 
determine the design-types and parameters of the designs ~ = (Vh };, E + {eo}) 
formed from A as follows: 

};(e) = fee) r. VI for i = 1,2; e E E + {eo}. 
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The designs Al and A2 constructed from A in Exercise C24 are called, 
respectively, the residual design and the derived design of A with respect to eo. 
It should be pointed out that different choices of eo may result in nonisomor­
phic residual designs or nonisomorphic derived designs. (See K. N. 
Bhattacharya [b.7] and W. S. Connor and M. Hall [c.4].) 

C25 Exercise (M. Hall, Jr. [h.2]). Determine whether A is isomorphic to A *, 
where A has the following as an incidence matrix. 

1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 
1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 
1 1 1 0 0 0 0 0 0 0 0 1 111 
100 1 100 1 100 1 100 
100 1 1 0 0 0 0 1 100 1 1 
1 0 000 1 1 101 0 1 0 1 0 
1 0 0 001 101 0 1 0 1 0 1 
o 1 0 1 0 1 0 1 1 0 000 1 1 
o 1 0 1 0 1 000 1 1 1 100 
o 1 001 0 1 100 1 0 1 1 0 
o 1 0 0 1 0 1 0 1 1 0 1 001 
001 100 1 1 0 1 0 0 1 0 1 
001 100 1 0 1 0 1 101 0 
o 0 1 0 1 1 0 1 001 100 1 
00101 100 1 100 1 1 0 

We conclude this section with a brief discussion of a class of symmetric 
block designs known as "Hadamard designs," so called because the existence 
of an Hadamard design with m - 1 vertices is equivalent to the existence of 
an m x m "Hadamard matrix." 

An m x m matrix Hover l whose entries are ± 1 is called an Hadamard 
matrix if 

C26 MM* = mI, 

where I is the m x m identity matrix. 
If H is an m x m Hadamard matrix, then any matrix H' obtainable from 

H by a permutation of rows, a permutation of columns, or multiplication of 
a line by - 1 is said to be equivalent to H. Clearly H' is also an m x m 
Hadamard matrix, and this relation of" equivalence" is indeed an equivalence 
relation on the set of all m x m Hadamard matrices. An Hadamard matrix 
is said to be normalized if all the entries in the first row and the first column 
are + 1. Every Hadamard matrix is clearly equivalent to a normalized 
Hadamard matrix. In Figure C27 are shown some normalized Hadamard 
matrices. 
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C27 [1], [1 
1 
1 

-1 
-1 

1 
-1 

1 
-1 

-!] -1 
1 

From the definition of an m x m Hadamard matrix, it follows that the 
inner product of two distinct rows is always O. Hence each row other than 
the first row of a normalized Hadamard matrix must have as many entries 
equal + 1 as - 1. It follows that if m > 1, then m is even. In fact a stronger 
condition holds. 

C28 Proposition. If H is an m x m Hadamard matrix, then m = 1, or m = 2, 
or m == 0 (modulo 4). 

PROOF. By the above remarks and C27, we may assume that His normalized 
and that m ~ 4. In the 3 x m submatrix formed by the first three rows of 
H, exactly four types of columns are possible, namely 

U]. U]. [-:]. and [J' 
which we presume to occur Ch C2, Ca, and C4 times, respectively. Clearly 

C29 

From the inner products of rows 1 and 2, rows 1 and 3, and rows 2 and 3, 
respectively, we obtain 

Cl + C2 - Ca - C4 = 0 

Cl - C2 + Ca - C4 = 0 

Cl - C2 - Ca + C4 = 0, 

which together with C29 yield the unique solution Cj = m/4, i = 1, ... , 4. 
Since each Cj is integral, m == 0 (modulo 4). 0 

It is not at present known whether the condition m == 0 (modulo 4) is also 
sufficient for the existence of an m x m Hadamard matrix. 

The precise relationship between Hadamard matrices and symmetric block 
designs is given by the next result. 

C30 Proposition. For each integer q ~ 2, the equivalence classes of 4q x 4q 
Hadamard matrices are in one-to-one correspondence with the symmetric 
block design with parameters v = 4q - 1, k = 2q - 1, .\ = q - 1. 

PROOF. Let M be an incidence matrix of a symmetric block design with 
parameters v = 4q - 1, k = 2q - 1, and .\ = q - 1. This is equivalent by 
CISa, C16, and C14 to 
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C31 MM* = q/ + (q - 1).1. 

Let Hl = 2M - J where, as before, J denotes the matrix whose every entry 
is 1. Then Hl is a (4q - 1) x (4q - 1) matrix whose entries are ± 1 and 
whose line sums are -1. Beginning with C31 we derive the following sequence 
of equations, which are equivalent under our assumptions on M or on H l : 

4MM* - (4q - 4).1 = 4q/ 
4MM* - 2(2q - 1).1 - 2(2q - 1).1 + (4q - 1).1 = 4q/ - J 

4MM* - 21M - 2JM* + J2 = 4q/ - J 
(Hl + J)(Hl* + J) - J(Hl + J) - J(Hl* + J) + J2 = 4q/ - J 

C32 HlHl * = 4q/ - J. 

Let H be the 4q x 4q matrix such that every entry in the first row and 
first column is 1, and when these two lines are suppressed, the remaining 
matrix is Hl . One easily verifies that H is a 4q x 4q matrix satisfying C26 if 
and only if Hl is a (4q - 1) x (4q - 1) matrix whose entries are ± 1, whose 
line sums are -1, and which satisfies C32. Finally, we observe that permuting 
the rows or the columns of M has an identical effect on H and vice versa, 
while the multiplication of any line of M by - 1 yields a matrix without 
constant row sums while the same operation on H yields an equivalent 
Hadamard matrix. 0 

The above symmetric block designs as well as those obtainable from them 
by the procedure of Proposition C2 are known as Hadamard designs. 

If M = [mit] and N are any two matrices, the Kronecker product of M by 
N, denoted by M x N, is defined to be the matrix 

[
mllN ml2N ... mlqNl 

M x N = m~lN m~2N ... m2tN . 

mplN mp2N ... mpqN 

C33 Exercise. (a) Show that if M and N are both {O, l}-matrices, then both 
M x Nand N x M are incidence matrices of the same system. 

(b) Show that if MI is an incidence matrix of a (1; I)-design AI (i = 1,2), 
then Ml x M2 is also an incidence matrix of some (1; I)-design; determine 
its parameters in terms of those of Al and A2 • Prove that one cannot replace 
(1; 1) with BIB. 

Observe that for matrices M and N, 

C34 (M x N)* = M* x N*. 

C35 Exercise. Prove that/or matrices M l , M 2 , Nb N 2 , o/suitable dimensions, 

(Ml x N l)(M2 x N 2) = (MlM 2) x (NlN2). 

C36 Proposition. The Kronecker product 0/ two Hadamard matrices is an 
Hadamard matrix. 
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PROOF. Let HI be an ml x ml Hadamard matrix (i = 1,2). Then 

(HI x H2)(HI x H2)* = (HI x H2)(HI* X H2*) 
= HIHI* X H2H2* 
= mIlm1 x ml X m2Im2 x m2 

= mIm2Imlm2xmlm2' 

by C34 
by C35 
by C26 

D 

C37 Corollary. For all n EN, there exists a 2n x 2n Hadamard matrix. 

Consequently, there exists an Hadamard design with (4· 2n) - 1 vertices 
for all n ;:::: 1. In the next exercise we revisit the smallest Hadamard design: 

C38 Exercise. Using the Kronecker product, construct an 8 x 8 Hadamard 
matrix. Show that the corresponding Hadamard design has CII as an 
incidence matrix. Conclude that all 8 x 8 Hadamard matrices are equivalent. 

IXD Finite Projective Planes 

A finite projective plane is a symmetric block design A with v ;:::: 4 an d 
A = 1. It is traditional in this context to substitute the terms point for" vertex" 
and line for "block." From Proposition Cl4b we obtain 

V=k2_k+1. 

The number n = k - 1 is called the order of A. Thus we have 

Dl b = v = n2 + n + 1; r = k = n + 1, 

for a finite projective plane of order n. It follows from Dl and the condition 
v ;:::: 4, that the order of a finite projective plane is at least 2 and that the 
blocksize is at least 3. 

D2 Exercise. Prove that all finite projective planes are nontrivial designs. 

As previously remarked, the Steiner triple system given by the matrix CII 
is a finite projective plane of order 2. Furthermore by Exercise Cl2 it is the 
only finite projective plane of order 2. 

The next result shows the equivalence between the definition of a finite 
projective plane given here and the more classical definition. It is convenient 
to say that a set of points is collinear if it is contained in some line. 

D3 Proposition. A set system A = (V, <if) is a finite projective plane if and 
only if the following three conditions hold: 

(a) Every pair of points is contained in exactly one line. 
(b) Every pair of lines intersects in exactly one point. 
(c) There exists a 4-subset of V no 3-subset of which is collinear. 

PROOF. It is immediate that (a) and (b) are equivalent to saying that A is a 
(2; 2)-design with A(2) = A*(2) = 1. 
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Suppose first that A is a finite projective plane, in which case (a) and (b) 
hold, as we have noted. Since r = k ~ 3 we may choose a point Xo and two 
lines Ll and L2 containing it. Now choose Xl and Xa on Ll distinct from xo, 
and choose X2 and X4 on L2 distinct from Xo. One easily verifies that 
{Xl' .•• , X4} satisfies condition (c). (See Figure D4.) 

D4 

Conversely, suppose A satisfies (a), (b), and (c). Then A is a (2; 2)-design 
with v ~ 4, and it suffices, due to AS, to prove that A is a (; I)-design. We 
do this by arbitrarily choosing two lines and establishing a bijection between 
them. 

We assert that given any two lines Land L', there exists a point Xo rI L u L'. 
For let {Xl> X2, Xa, X4} be a set postulated by (c). If {Xl> ••• , X4} $ L u L', 
then clearly one may choose Xo E {Xl> .•• , X4}. If {Xl> ••. , X4} s;; L u L'. we 
may assume that Xl, X2 E L + (L ('\ L') and Xa, X4 E L' + (L ('\ L'). Let L1 
be the line through Xl and Xa and let L2 be the line through X2 and x~ as 
required by (a). Let Xo ELl ('\ L2• By (b), Xo 1= L u L'. 

Now define the function !p: L -+ L' as follows. If X E L, let Lx denote the 
unique line (by virtue of (b» which contains X and xo, and let !p(x) be the 
unique point (by virtue of (a» which is contained in Lx ('\ L'. (See Figure D5.) 
By (b), !p is an injection, since exactly one line contains both Xo and !p(x). 
Thus ILl :s; IL'I. and by symmetry equality must hold. 0 

D5 L 

D6 Exercise. Prove that Proposition D3 also holds when condition (c) is 
replaced by 

(c') There exists a 4-subset of lines, every 3-subset of which has an empty 
intersection. 
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D7 Exercise. Use Proposition D3 to give a constructive proof that there exists 
only one projective plane of order 2. 

D8 Exercise. Let A be a nondegenerate design. Prove that A satisfies condi­
tions (a) and (b) but not (c) of Proposition D3 if and only if A is either 
(V, &:'-l(V» for v = 3 or A is the symmetric '\-linked design described in 
Exercise AI6. 

We now tum to the question of existence of finite projective planes. The 
following exercise gives a construction for a projective plane of order n 
whenever there exists a finite field of order n; i.e., whenever n = pm where p 
is prime and m is a positive integer. 

D9 Exercise. Let V be the 3-dimensional vector space over the finite field 
IF where IIFI = n. Let V be the set of I-dimensional subspaces of V and let E 
be the set of 2-dimensional subspaces of V. Letf: E ~ 9'(V) be defined for 
each e E E by fee) = {x E V: x is a subspace of e}. Prove that (V,/, E) is a 
finite projective plane of order n. 

The finite projective plane of order 2 can be constructed from the field II< 
in the manner of Exercise D9. Although not all finite projective planes are 
constructible in this way (see M. Hall, Jr. [h.3, p. 175]), all known finite 
projective planes do have a prime power order. Exercise D9 shows that there 
are finite projective planes of order n with n = 2,3,4,5, 7, 8, 9. It has been 
proved [t.2] that there exists no finite projective plane of order 6. The least 
order for which the existence of a finite projective plane is stilI open is 10. The 
existence question for finite projective planes may be studied by 'means of 
Latin squares, which were introduced in § VD3. 

Let n ~ 2 and let 11..." be the set of all Latin squares of order n with entries 
from {I, 2, ... , n}. Let Sl' S2 Ell..." and let ad" denote the entry in S",lying in 
the ith row and thejth column (h = 1,2; i,j = 1, ... , n). We say {Sl, S2} is 
orthogonal if the n2 ordered pairs (alit, lZtl) for i, j E {I, ... , n} are all distinct. 
A subset of 11..." is said to be orthogonal if it is not empty and all of its 2-subsets 
are orthogonal. In particular, all I-subsets of 11..." are orthogonal. 

By Proposition VD9, 11..." oF 0 for all n. Thus 11..." always contains an 
orthogonal t-set for some t ~ 1. The next exercise gives an upper bound for 
t, but not always a least upper bound. 

D10 Exercise. Prove: if IL,. admits an orthogonal t-set, then t ~ n - 1. 

An orthogonal (n - I)-subset of 11..." is called a complete orthogonal set. 
Such a set exists trivially when n = 2 and one can be easily constructed when 
n = 3. A complete orthogonal set for 11...4 is shown in DII. 

Dll [~~ f~] [H ~!] [~! ~ n 
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Being unable to construct an orthogonal 2-subset of 1L6' Euler conjectured 
in 1779 that ILn admitted no orthogonal 2-subset when n == 2 (modulo 4). 
This conjecture was confirmed for the special case n = 6 by C. Tarry [t.2] 
in 1901, but R. C. Bose and S. S. Shirkhande [b.17], E. T. Parker [p.l], and 
all three jointly [b.15], proved in 1959-1960 that Euler's conjecture is false 
for all other values of n in this congruence class. When n 1= 2 (modulo 4), an 
orthogonal 2-subset always exists, as H. B. Mann [m.5] showed in 1942. (A 
concise development of this theory is to be found in H. J. Ryser [r.9, 
Chapter 7].) We now prove a powerful result relating complete orthogonal 
sets of Latin squares to finite projective planes. 

D12 Theorem (R. C. Bose [b. 10], 1939). Let n";? 2 be an integer. There 
exists a finite projective plane of order n if and only if ILn admits a complete 
orthogonal set. 

PROOF. Let A be a finite projective plane of order n. Let 

Loo = {xo, Xl> ••• , Xn-l> xoo} 
be a line of A. Let Rl> ••• , Rn denote the remaining n lines of A through xo, 
and let Cl , •.. , Cn denote the remaining n lines through Xoo. Let Xii be the 
unique point on R j n Cj , by virtue of D3b. By D3a, the set 

{Xii: i,jE{I, 2, ... , n}} 

consists of n2 distinct points. These are all of the vertices in V + Loo. We will 
associate the point Xii with the (i, j)-position in an n x n array. (See Figure 
D13.) 

D13 

Xu Xu Xtn Rl 

X21 X22 X2n R2 
• • ••••• • • 

Xn1 Xn2 Xnn Rn 

C1 C2 Cn 
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With each point x, on La> other than Xo and Xa> we associate a Latin square 
S" E ln as follows. Label the remaining n lines through x" (other than La» 
by L"h ... , L"n. Denoting the ijth entry of S" by a,l, we define tltl = q if 
X'i E L"q. Since L"q intersects each R, and each CJ exactly once, the entry q 
occurs exactly once in each row and each column of S". Thus S" is a Latin 
square for h = 1, ... , n - 1. 

To see that {S,,: h = 1, ... , n - I} is an orthogonal set, observe that 
(a,l, a,l) = (p, q) if and only if X'i is the point of intersection of L"p and Lkq• 

Conversely, starting with a set of n2 + n + 1 points and 2n + 1 lines as 
in Figure 013 and a complete orthogonal set {Sh ... , Sn-l} of Latin squares 
from ln' we reverse the above construction, using S" to define the remaining 
n lines through x" for each h = 1, .... n - 1. The details are left to the 
reader. [] 

IXE Partially-Balanced Incomplete Block 
Designs 

The object of study in this section is a class of tactical configurations (non­
degenerate (l; I)-designs). This class will be defined by imposing some 
additional structure, but in general not enough structure, to bring the design­
type to anything above (l; 1). 

Let ..\1 > ..\2 > ... > ..\m ~ 0 be integers. For each i = 1, ... , m and each 
x E V, we define the function lIj: V ~ N by 

lIj(x) = I{y E V + {x}: s({x, y}) = "'}I. 
A set system A = (V, 8) is a partially-balanced incomplete block. design with 
m classes or more briefly, an m-class PBm-design if it is a tactical configura­
tion with s[~(V)] = {..\h ... , ..\m} and such that each of the functions 
nh ... , nm is constant on V. Henceforth we write n, for n,(x). 

For the rest of this section A = (V, tI) will be presumed to be an m-c1ass 
PBIB-design. Note that if m = I and ..\1 > 0, then A is actually a 2-design. 

If {x, y} E ~(V) and s({x, y}) = "', we say that x and yare ith-associates. 
Thus each vertex in A has n, ith associates for i = 1, ... , m. It is convenient 
to make the convention that each vertex be a Oth-associate of itself, and so 
no = 1. It is immediate that 

m 

El V = L: lIj. 
1=0 

If x and yare ith associates, then exactly ..\, blocks contain {x, y}, and so 
..\0 = r. Since A is nondegenerate, ..\0 > ..\1. 

Let M be an incidence matrix of A. Then MM· is a v x v matrix with 
the entry ..\" in the ith row,jth column if the elements of V associated with the 
ith and jth rows of Mare hth-associates. We observe that the sum of the 
terms in any row· (and by symmetry in any column) of MM· is 

m 

2: ",lIj = 2: s({x, y}), 
1=0 !leV 
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where x is some fixed element of V. Subtracting "0 from each side yields 
m 

2: "Inl = 2: s({x, y}), 
1=1 lIeV+{x} 

and by the definition of s we obtain 
m 

2: "In, = 2: s(T) 2: [{x, y}, T] 
1=1 Te&'(V) lIeV + {x} 

2: s(T)(iT/ - 1). 
xeTe&'(V) 

Since A has blocksize k and replication number r, this becomes 
m 

E2 2: -'tn, = r(k - 1), 
1=1 

the analog for PBIB-designs of e8. 
An example of a 2-class PBIB-design is any p-valent graph which is not 

complete. Two vertices are first associates if they are incident and second 
associates otherwise. The parameters are as follows: v = vo, b = VI> r = p, 

k = 2, "I = 1, n1 = p, "2 = 0, and n2 = Vo - P - 1. 
The cube (Figure IIIF21) provides an example of a 3-class PBIB-design. 

Let V be the set of the eight vertices of the cube; the blocks are the 4-sets of 
vertices which lie on a common face. Two vertices will be first associates if 
they are the end-points of an edge. They will be second associates if they lie 
on a common face but not on a common edge. Otherwise they are third 
associates. We have v = 8, b = 6, r = 3, k = 4, Al = 2, nl = 3, A2 = 1, 
n2 = 3, "3 = 0, and n3 = 1. Observe that in this example two vertices are 
ith-associated whenever the distance between them is exactly i. This notion 
of distance may be used in some instances to derive a PBIB-design from a 
graph which has the property that the number nl of vertices at a distance i 
from any vertex is independent of the choice of vertex. 

E3 Exercise. Taking as blocks the sets of vertices incident with the regions, 
show that the other Platonic solids (§IIIF) yield PBIB-designs. Determine 
their parameters. 

At this point we introduce a new combinatorial object called an "associ­
ation scheme." Association schemes may appear at first to be quite unrelated 
to PBIB-designs. However, neither of these two concepts, for reasons 
presently to become obvious, appears in the existing literature without some 
allusion to the other. An m-class association scheme is an ordered pair 
(V, g), where ~ E iP>i~(V)) subject to the conditions E4 and E5 below. Let 
~ = {QI> .•. , Qm}. 

E4 For each i E {I, ... , m}, there exists a positive integer n, such that for every 
XE V, 

/{y E V + {x}: {x, y} E QI}/ = n,. 
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E5 For i, j, k E {I, 2, ... , m}, there exists a nonnegative integer p}/c such that 
for any {x, y} EQh 

I{z E v: {x, z} E Q, and {y, z} E Q/c}1 = p}/c. 

If {x, y} E Qh we say that x and yare ith-associates. Condition E4 states 
that for each i every vertex has the same number of ith associates. Observe 
that the ith associates in a PBIB-design also satisfy this condition as restated. 
With this terminology, let us restate E5 as it was first formulated by Bose and 
Nair [b.14] in 1939, except that in their agronomical context they wrote 
"variety" for vertex. 

E6 "Given two vertices which are ith-associates, the number of vertices 
which are common to the jth-associates of one and the kth associates of the 
other is independent of the pair of ith associates with which we start. This 
number is denoted by pj/c." 

It is immediate that for i, j k E {I, 2, ... , m}, 

E7 

The numbers nj and p}/c (i, j, k E {I, 2 ... , m}) are the parameters of the 
association scheme. It is convenient to display the ma parameters pj/c in 
m x m matrices P1 , ••• , Pm wherein the entry in the jth row, kth column 
of PI is p}/c' 

Let us return briefly to the example of the cube. Using the notion of ith 
associate described just before E3, we see that we have a 3-class association 
scheme with the following parameters: n1 = n2 = 3, na = 1 and 

E8 P1 = [~ ~ ~], 
010 

[2 0 1] 
P2 = 0 2 0 , 

100 
[0 3 0] 

Pa = 3 0 0 . 
000 

This example illustrates the following principle: 

E9 Exercise. Show that if A is an m-class P BIB-design whose ith associates 
satisfy condition E6 for i = I, ... , m, then there exists a unique m-class 
association scheme on the same vertex set with the same pairs ofith associates. 

Insofar as we have not imposed condition E6 as part of the definition of 
PBIB-design, we have departed from the literature. Exercise E9 shows that 
without this departure, every m-class PBIB-design would determine an m-class 
association scheme. This is no loss, however, since it is the reverse problem 
that is of greater interest, namely, when and how can a PBIB-design be 
constructed from an association scheme. Involved first of all is the selection 
of a set of blocks ~ S;; 9't(V) for some appropriate k such that each element 
of V belongs to the same number r of elements of ~. Secondly there is the 
determination of distinct integers A1>' •• , Am E N such that each pair of ith 
associates is contained in exactly AI elements of ~ (i = 1, ... , m). Frustrated 
by the requirement that A1 , ••• , Am be distinct, Bose and Shimamoto [b.16] 

255 



IX Designs 

simply dropped it, thereby generalizing the definition of PBIB-design. We 
will not need to do so here since we will not be probing so deeply into the 
same problems. 

We listed above m + m3 parameters for an m-c1ass association scheme. 
As with PBIB-designs, the parameters are not all independent. Equation E7 
has already reduced this number by (m21). Let us now obtain some further 
relations for the parameters of an m-c1ass association scheme and simultane­
ously some further relations for m-c1ass PBIB-designs satisfying E6. 

If (V, oP) is an m-c1ass association scheme on v vertices, then the parameters 
nh ••. , nm, as defined in E4, satisfy E1. Next we obtain: 

EIO Proposition. If (V, oP) is an m-class association scheme, then for i, j E 

{I, ... , m}, 

~ j _ {nj - 1 if j = i; 
k.fI Pik - nj if j =F i. 

PROOF. Let {x, y} E Qj. Of the (ni - 1) ith associates of x other than y, 
precisely plk of them are kth associates of y, for each k = 1, ... , m. If j =F i, 
then of the nj jth associates of x, precisely P~k are kth associates of y, for each 
k = 1, ... ,m. 0 

Ell Proposition. If (V, oP) is an m-class association scheme, then for 
i,j, k E {I, 2, ... , m}, 

~P~k = njPki = nkPt· 

PROOF. Let x E V and let Nh = {y E V: {x, y} E Qh}' So INhl = nh for h = 
1, ... , m. Now let i, j, k be given and let 

S = {(y, z): {y, z} E Qk; y E Ni ; Z E N f }. 

For each y E Njo (y, z) E S for precisely P}k vertices z. Hence lSI = nIP}k' 
Symmetrically, for each Z E Njo (y, z) E S for precisely P{k vertices y, giving 
lSI = njp{k' This together with E7 establishes the first equality. The second 
follows similarly. 0 

Ell Exercise. Let A = (V, rC) be a PBIB-design satisfying E6. Show that the 
complementary design A is also a PBIB-design satisfying E6, and find its 
parameters. 

E13 Exercise. Is the design given in C6 a PBIB-design? If so does it satisfy 
E6? 

E14 Exercise. Let (V, oP) be an m-c1ass association scheme. Let V = 

{Xh' .. , xv} and let oP = {Ql ... , Qm}. For h = 0, 1, ... , m, we define the 
symmetric v x v matrices Bh = [b7j] as follows: 

Bo = I; and for h = 1, ... , m, 

bh = {I if i =F j and {Xi> Xj} E Qh; 
Ii 0 otherwise. 
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Verify the following assertions: 
(a) 2;;'=0 Bh = J. 
(b) BsBt = 2;;'=op~tBh' wherep~t = astn., for st > o. 
(c) {Bo, Bl , ... , Bm} is a basis for an (m + I)-dimensional commutative 

algebra over Q. (W. A. Thompson, Jr. [t.3] and R. C. Bose and D. M. Mesner 
[b.l3]). In the latter paper it is further shown that if Bo = I, Bl , ... , Bm are 
any symmetric matrices satisfying (a) and (b) for some coefficients p~t. then 
there exists an m-class association scheme with parameters P~t yielding the 
matrices Bo, Bl , ... , Bm in the manner described.) 

In general, m-class association schemes have been studied in depth only 
for small values of m, in particular when m = 2. For this case, the definition 
of an association scheme is stronger than it needs to be, as we now prove. 

E15 Theorem (Bose and Clatworthy [b.l2]). Let V be a set and let !l = 
{Ql> Q2} E iP>i.9'2(V». Suppose that E4 is satisfied for m = 2. For 
i, j, k E {I, 2}, define the eight functions 

P}lc: {(x, y) E V x V:'{x, y} E Qi} ~ N 

by 

pMx, y) = I{z E V: {x, z} E Qj; {y, z} E Qlc}l. 

For i E {I, 2}, if pil is a constant function, then so are pi2' P~l and P~2' 
and, moreover, E7 holds. 

PROOF. Suppose i = 1. Let {x, y} E Ql. By the same arguments used to 
prove E10 for m = 2, we obtain 

E16 

E17 

E18 

pMx, y) + pMx, y) = nl - 1, 

pMx, y) + pMx, y) = nl - 1, and 

pMx, y) + pMx, y) = n2· 

If we assume that pir(x, y) has constant value (which we denote by PIl), 
then El6 and El7 give 

E19 pMx, y) = nl - 1 - Pil = pMx, y). 

From EI8 and EI9, we obtainpMx, y) = n2 - (nl - 1 - PIl), as required. 
When i = 2, the argument is analogous, the details being left to the 

reader. [] 

E20 Corollary. Let V be a set and let!l = {Ql> Q2} E iP>2(~(V». Suppose that 
E4 is satisfiedfor m = 2 and that for i = 1,2 there exists pil E N such that 
for all {x, y} E Qh 

pil = I{z E v: {x, z}, {y, z} E Ql}l. 

Then (V, !l) is a 2-c/ass association scheme. 

As the next exercise indicates, the hypothesis of Corollary E20 can be 
weakened even further. 
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E21 Exercise. Let V, fl, and the functions plik be as given in the statement 
of Theorem EI5. Show that the conclusion of Corollary E20 also holds if 
instead of requiring the constancy specifically of pi1 and P~1o we merely 
require the constancy of some one function P}k and some one function pfh . 

Bose and Clatworthy [b.I2] show further that to assume the constancy 
of some arbitrary pair of the eight functions pjk is not sufficient for a 2-class 
association scheme. Their counter-example, being a PBIB-design (in our 
sense, not theirs) of blocksize 2, can be represented by the graph in Figure 
E22, where the blocks coincide with the edges. The PBIB-design parameters 
are v = 7, b = 14, r = 4, k = 2, A1 = 1, n1 = 4, A2 = 0, n2 = 2. The four 

E22 

functions pfJ are all constant, with P~l = 3, P~2 = P~l = 1, and P~2 = 0. 
However,plI(xo, Xl) = 1 while piI(xo, xa) = 2. In the light of Exercise E21, 
none of the functions pfJ is constant. Observe also that if one considers the 
complementary graph, then each of the functions is Pt, is constant but none 
of the functions p5 is. 

We now present in the form of exercises, three kinds of association 
schemes from which PBIB-designs satisfying E6 may be obtained. Each 
exercise consists of obtaining the parameters both of the association scheme 
and the design. 

E23 Exercise. Let A = (V, Iff) be a BIB-design with A = 1. We form a 2-class 
association scheme with Iff as vertex set. We shall say that distinct elements 
E10 E2 E Iff are first associates if E1 n E2 i= 0 and second associates if 
E1 n E2 = 0. Then A * is a 2-class PBIB-design satisfying E6 and based 
upon this scheme (S. Shrikhande [s.5]). 
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E24 Exercise. Let m, n E Nand 2 < m < n. Let v = mn, and let V be a 
v-set whose elements are displayed in an m x n array. Two elements of V 
will be first associates if they lie in the same row of this array, second 
associates if they lie in the same column, and third associates otherwise. This 
yields a 3-class association scheme. A PBIB-design satisfying E6 can be 
formed letting each union of one row and one column of the array be a block 
(Bose and Nair [b. 14]). 

E25 Exercise. Let N = {I, 2, ... , n} and let {Sh"" St} E H..II be orthogonal. 
Write Sh = [at]. Let V = N x N. We shall say that two distinct elements 
(i, j) and (i', j') of V are first associates if anyone of the following three 
conditions holds: 

(a) i = i'; 
(b)j=j'; 
(c) for some h E {I, ... , t}, at = ~J" 

Otherwise (i, j) and (i', j') are second associates. From this 2-class association 
scheme, we form a 2-class PBIB-design satisfying E6 in the following way. 
Let (i, j) E V. The following sets are the blocks incident with (i, j): 

(d) {(i,j'):j' = I, ... ,n}; 
(e) {(i',j):i' = I, ... ,n}; 
(f) {(i',j'): a~J' = ""J}, h = I, ... , t. 

E26 Exercise. Prove that if {Sh ... , St} in Exercise E25 is a complete orthog­
onal set, then the above PBIB design is in fact the residual design of the finite 
projective plane determined by Sh"" St (cf. D12) with respect to Loo. 

Another model of a 2-class association scheme (V, ~) where ~ = {Qh Q2} 
is the graph r = (V, Ql) in which a pair of vertices comprise an edge if and 
only if the vertices are first associates. Such a graph is called a strongly 
isovalent graph (" strongly regular graph" by Bose et al.). It is clearly nl-valent 
with vo(r) = nl + n2 + 1 (cf. E1) and Vl(r) = !nl(nl + n2 + 1) by IIIAL 

E27 Proposition. Let r be a strongly isovalent graph. 
(a) If r is connected, then its diameter is at most 2. 
(b) If r is not connected, then each component is a complete graph on 

Pil + 2 vertices. 

PROOF. (a) If the distance between some two vertices of r is precisely 2, then 
P~l > O. Hence no two vertices can be at distance more than 2, since there 
would then exist second associates having no common first associate. 

(b) If r is not connected, then consideration of two vertices in distinct 
components yields P~l = O. In this case each component has diameter at 
most 1. Actually it must be exactly 1 for if some component had no edges, 
then r being isovalent would have no edges, and Ql would be empty, contrary 
to the definition of a partition. The rest of the assertion is now immediate. 0 
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From the graph-theoretical standpoint, disconnected strongly isovalent 
graphs are not very interesting. They arise from what Bose called "group 
divisible designs," which are constructed as follows. Let V be a bk-set and 
consider a b-partition of V, b 2::: 2, wherein each cell is a k-subset. Let two 
vertices be first associates if they are elements of the same cell and second 
associates otherwise. We then have a 2-class association scheme with 
parameters 

[k - 2 0] 
PI = 0 (b - l)k ' [ Ok-I] 

P2 = k - I (b - 2)k . 

As a PBIB-design, the parameters are v = bk, b, r = I, k, Al = I, nl = 
k - 1, A2 = 0, and n2 = (b - l)k. 

Suppose that in a set of people, each individual has the same number of 
acquaintances and every two people have exactly one mutual acquaintance. 
How many people are in the set? The answer is the so-called "Friendship 
Theorem" credited to Erdos, Renyi, and Sos [e.5]. Our results on strongly 
isovalent graphs yield a short proof as follows. 

E28 Proposition. The only strongly isovalent graph with Pil = P~l = 1 is Ka. 

PROOF. By Ell we have 

E29 

By EIO, 

ptl + ph = nl - 1 and P~l + P~2 = nl> 

which yield Pi2 = nl - 2 and P~2 = nl - 1. Substituting these values into 
E29 with n2 = Vo - nl - 1, we obtain 

EJO Vo = n12 - nl + 1 and Vo = (2n12 - 2nl - 1)/(nl - 1). 

Eliminating Vo from this pair of equations yields nl(nl - 2)2 = O. Under 
our assumptions, nl = 2 is the only solution, which by E30 gives Vo = 3. D 

E3l Exercise. Determine a class of graphs other than K3 in which every two 
vertices belong to a unique 3-circuit. 

To conclude this section, let us consider a small but interesting class of 
connected strongly isovalent graphs. Suppose that r = (V, G) is p-valent 
with diameter O. Let Xo e V and define 

VI = {ye V: d(xo, y) = i}, i = 0, 1, ... , o. 
Thus Vo = {xo} and 

E32 !VII ~ p(p - 1)1-\ i = 1, ... , o. 
Summing over i, we obtain 
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6 

E33 vo(r) ::;; 1 + P L (p - 1)1-1. 

1=1 

If equality holds in E33, then r is called a Moore graph of type (p, 8). 
It is immediate that equality in E33 implies equality in E32 for all i = 

1, ... , 8. In this case it follows inductively for i = 1, ... , 8 - 1 that each 
vertex in VI is incident with exactly one vertex in VI -1 and p - 1 vertices in 
Vl+l. Vertices in Va are incident with one vertex in Va- 1 and with p - 1 
other vertices in Va. Since vo(r) and p are independent of xo, equality in E33 
imposes, moreover, that the structure just described obtains independently 
of the initially chosen vertex Xo with respect to which the sets VI are defined. 
It follows that Moore graphs have girth precisely 28 + 1. 

E34 Proposition. The Moore graphs of type (p, 2) are strongly isovalent. 

PROOF. Let r be a Moore graph of type (p, 2). Thus p = nl and by Theorem 
El5 it suffices to prove that ptl and P~1 are constant. Let Xo E V and let 
Vo, VI> and V2 be as above. Let y E VI and Z E V2 • Due to the structure of a 
Moore graph, pMxo, y) = 0 and pMxo, z) = 1. The result follows since 
Xo was chosen arbitrarily, y was an arbitrary first associate of xo, and z was 
an arbitrary second associate of Xo. 0 

E35 Exercise. Show that all Moore graphs are geodetic. 

Hoffman and Singleton [h.8] have shown by powerful algebraic methods 
that if 8 ::;; 3, then the only Moore graphs of type (p, 8) which exist are of 
types (2, 2), (3,2), (7,2), and (2,3), with the existence of a Moore graph of 
type (57, 2) remaining undecided. The graph ~5 is of type (2, 2), ~7 is of type 
(2, 3), and the Petersen graph (Figure VIIA42) is of type (3, 2). These graphs 
are the unique representatives of their respective types. 

IXF Partial Geometries 

In the preceding section one obtains the definition of a PBIB-design from 
that of a BIB-design by replacing the condition that & be constant on ~(V) 
with a somewhat weaker condition. By similarly relaxing the requirement 
that every two points be on a line we may obtain" partial geometries" from 
finite projective planes. The terms "line" and "point" will again be used for 
"block" and" vertex," respectively. 

A partial geometry is a tactical configuration A = (V,J, E) such that 

Fl 
and 

&(S) ::;; 1 for all S E ~(V), 

F2 there exists a positive integer t such that given any eo E E and Xo E V + 
f(eo), /{e E E: XO Ef(e);f(e) nf(eo) =1= 0}/ = t. 
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It is useful to note that the transpose of FI is also valid for a partial 
geometry, for if the intersection of some two lines contained a 2-set S, then 
&(S) ~ 2. Hence 

F3 s*(A) ~ I for all A e ~(E). 

It follows at once that A is a set system. We write A = (V,!l') and rewrite 
F2 as follows: 

F4 There exists a positive integer t such that given any line Lo and any point 
Xo not on L o, there exist exactly t lines through Xo which meet Lo. 

The symbols b, v, r, and k retain their conventional meanings. The symbol 
t will retain its meaning from F2. 

F5 Proposition. If A is a partial geometry with parameters b, v, r, k, and t, 
then 

(a) bk = vr; 
(b) t ~ r; 
(c) t ~ k; 
(d) (v - k)t = k(k - 1)(r - I); 
(e) (b - r)t = r(k - I)(r - I). 

PROOF. Equation (a) is precisely C7 and (b) is immediate. To prove (c), let 
Lo e!l' and Xo e V + Lo. By F2, XO lies on at least t lines. Hence, t ~ r. 
By F3, no two of these lines can intersect in any point other than Xo. 
Hence they meet Lo in t distinct points, and so t :S k. 

To prove (d), we fix Lo e.It' and enumerate the set 

{(x,L):xeLf"I(V+Lo);Lf"ILo =F 0} 

in two ways. First we may choose x e V + Lo in (v - k) ways and then 
choose L, by virtue of F2, in t ways. Secondly, we choose the number of lines 
L =F Lo which meet Lo in k(r - I) ways and then choose x on each such line 
in (k - I) ways. Equation (e) is easily obtained from (d) by multiplying by 
r/k and substituting b = vr/k from (a). 0 

By equations (d) and (e) above, it is clear that once r, k, and t are known, 
v and b can be computed. Following Bose [b.ll], we shall use the triple 
(r, k, t) to indicate the parameters of a partial geometry. 

F6 Exercise. Let A be a partial geometry with parameters (r, k, k). Is A or 
A * a BIB-design? Is A ever a finite projective plane? If so what is its order? 

By definition, the transpose of a tactical configuration is a tactical configura­
tion. We have observed that for a partial geometry A, the dual conditions FI 
and F3 both hold. We also observe that the set of equalities and inequalities in 
F5 are" self dual"; i.e., if b and v as well as rand k are interchanged, the set 
of equalities and inequalities remains unchanged. It is not surprising then 
that the dual of condition F4 obtained by interchanging the notions point 
and line is also valid. To see this, define the "dual line" x* = {L e!l': x ELl 
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for each x e V. Let Lo e !l' and let xo'" be a dual line such that Lo ~ xo"'. Since 
Xo ~ Lo, there exists at-set .r of lines through Xo which meet Lo. For each 
L e 9", let XL e L n Lo. By F3, these points XL are all distinct. It is clear then 
that each of the t dual lines in {XL"': L eff} contains Lo and meets xo"'. Also 
no other dual lines through Lo meet xo"'. We have proved: 

F7 Proposition. If A is (l partial geometry with parameters (r, k, t), then A'" 
is a partial geometry with parameters (k, r, t). 

F8 Proposition. A partial geometry A = (V,!l') is a two-class PBIB-design 
satisfying E6 with the additional parameters .\1 = 1, nl = r(k - 1), 
.\2 = 0, n2 = (k - t)(k - 1)(r - 1)/t, Pil = (t - l)(r - 1) + k - 2, and 
P¥l = rt. 

PROOF. It is immediate from Fl that .\1 = 1 and .\2 = 0. Each point X e V 
is incident with exactly r lines, each of which contains exactly k - 1 points 
other than x. Thus each point has precisely nl = r(k - 1) first associates. 
Substituting this value and the value of v from F5d into n2 = v - nl - 1 
(cf. El), we obtain n2 = (k - t)(k - I)(r - 1)/t. 

If X and y are first associates, then the unique line containing them contains 
exactly k - 2 common first associates. Each of the r - I other lines through 
X contains exactly t - 1 first associates of yother than x. Hence pll = k -
2 + (r - 1)(t - 1). 

If x and yare second associates, that is to say, x and yare not collinear, 
then each of the r lines through x contains exactly t first associates of y. 
Hence P¥l = rt. By Corollary E20, the proof is complete. D 

We state the following result without proof. 

F9 Lemma (R. C. Bose and D. M. Mesner [b.l3].1f M is an incidence matrix 
for a connected 2-class PBIB-design satisfying E6, then MM'" has exactly 
three characteristic roots with multiplicities 1, 0;, and fJ, where 

for 

We make two observations regarding this lemma. First, the values 0; and fJ 
are independent of .\10 .\2, and r. Hence when a 2-class PBIB-design A with 
incidence matrix M is derived from a 2-class association scheme (V, j!), then 
0; and fJ depend only upon the parameters of (V, j!) and are the same for all 
designs derivable from (V, j!). Secondly, a necessary condition for (V, j!) 
to yield a 2-class PBIB-design at all is that 0; and fJ be positive integers. 
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FlO Exercise. If A is a partial geometry with parameters (r, k, t) then 

rk(r - 1)(k - 1) 
a; = t(k + r - t - 1)" 

This exercise along with the fact that a; must be a positive integer and 
Proposition F4(d,e) imply 

Fll Theorem (R. C. Bose [b. 11 ]). A necessary condition for the existence of a 
partial geometry with parameters (r, k, t) is that 

k(r - I)(k - 1) 
t 

he positive integers. 

r(r - I)(k - 1) d rk(r -I)(k -1) 
t ,an t(k + r - t - 1) 

This condition is not sufficient. If (r, k, t) = (3, 11, 1), then v = 231, 
h = 63, and a; = 55. However, no partial geometry with these parameters 
exists (see R. C. Bose and W. H. Clatworthy [b.I2]). 
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CHAPTER X 

Matroid Theory 

In his paper [w.11] entitled "On the abstract properties of linear dependence" 
published in 1935, H. Whitney defined systems called "matroids" and 
endowed them with certain properties abstracted from coordinatized vector 
spaces. The next notable contribution to "matroid theory" did not make its 
appearance until 1958-59 with three papers by W. T. Tutte; his work was 
revised and reappeared [t.6] in 1965. 

Most of the main results of this chapter were first formulated in the above­
mentioned papers and in the publication Combinatorial Geometries by 
H. Crapo and G.-C. Rota [c.5]. 

XA Exchange Systems 
Throughout this section, A = (V, d) will denote a set system. For i = 1,2, 
we shall say that A is an exchange system of type i, if for every triple (Al> A 2, Xl) 

such that Al> A2 E.9I, IAll = IA21, and Xl E Al + (Al (') A2) all hold, there 
exists X2 E A2 + (Al (') A2) such that AI + {Xl> X2} Ed. In other words, in 
an exchange system of type 1, one obtains a new block by finding some vertex 
X2 to replace Xl in Al> while in an exchange system of type 2, a new block 
is obtained by letting the given vertex Xl replace some vertex X2 in A2. 

Given A, one defines the set system A = (V, {V + A: A Ed}); cf. IXC2. 
Clearly the mapping A f-+ A takes A onto A for every set system A. It can 
be straightforwardly shown: 

At Exercise. A is an exchange system of type 1 if and only if A is an exchange 
system of type 2. 

A2 Proposition. A set system is an exchange system of type 1 if and only if it 
is an exchange system of type 2. 
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PROOF. Suppose that A is an exchange system of type 1. Let Al> A2 Ed such 
that IAII = IA21 = k and let Xl E Al + (AI ('\ A2). Let 

9'" = {A Ed ('\ E1HV): Xl E A; A {'\ A2 2 Al {'\ A2}. 

Then 9'" =1= 0 since Al E §; Select Ao E 9'" so that lAo {'\ A21 is as large as 
possible. Since Xl E Ao but Xl f/: A2, while IAol = IA21, there exists y E Ao + 
(Ao ('\ A2). Suppose y =1= Xl and consider the triple (Ao, A2, y). Since A is an 
exchange system of type 1, there exists Z E A2 + (Ao ('\ A2) such that Aa = 
Ao + {y, z} E d. Now IAal = k and Xl E Aa. Moreover, Aa {'\ A2 = 
(Ao ('\ A2) + {z} ::> Ao {'\ A2. Hence Aa E ofF, but the maximality of lAo {'\ A21 
has been contradicted. Therefore y must be Xl; that is, Ao + (Ao ('\ A2) = {Xl}. 
Since IAol = IA21, there exists X2 E V such that {X2} = A2 + (Ao ('\ A2), 
whence A2 + {X2} = Ao {'\ A2. Hence A2 + {Xl> X2} = (Ao ('\ A2) + {Xl} = 
AoEd. 

Conversely, if A is an exchange system of type 2, then by Exercise Al 
followed by the first part of this proof, A is also an exchange system of type 2. 
Another application of Al completes the proof. 0 

It now makes sense to define a set system to be an exchange system if it 
is an exchange system of either type and hence of both types, 1 and 2. 

A3 Corollary. A is an exchange system if and only if A is. 

A4 Exercise. Show that (V, d) is an exchange system if and only iffor all k, 
(V, d ('\ &HV» is an exchange system. 

AS Example. Let r be a multigraph with edge set E, and let 9'" be the collec­
tion of edge sets of the spanning forests of r. We assert that (E,9'") is an 
exchange system. For let Flo F2 E ofF, and let e E FI + (FI ('\ F2). We assume 
also that IFII = IF21, although this is automatic by JIlCI1. Applying the 
Exchange Property of IlJCl6 to F2 and e, we infer that (E, 9'") is an exchange 
system (oftype 2). The solution to JIlCl9 for spanning coforests now follows 
from this example and Corollary A3. 

A6 Example. The complete design (V, ~(V» is an exchange system for 
o ::; k ::; I VI. If 0 ::; j < k ::; I VI, then (V, 9'}(V) + ~(V» is also an 
exchange system. 

A7 Example. Let V be a finite spanning set of the vector space "f'" over a 
field IF. Let 

J = {J E &(V) : J is independent}, 
y = {S E &(V): S spans "f'"}, 
PA = {B E &(V): B is a basis for "f'"}. 

We assert that (V, J), (V, Y), and (V, fA) are all exchange systems. For if 
JI and J2 are independent sets of equal cardinality k and if Xl E JI + (JI ('\ J2), 
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then J l + {Xl} is a basis for a (k - I)-dimensional subspace of "f/" which 
cannot contain J2 , since J2 spans some k-dimensional subspace. Hence 
Jl + {Xl> X2} is independent for some X2 E J2 + (Jl n J2). Thus (V,.F) is an 
exchange system, and by Exercise A4, so is (V, gjj). If Sl and S2 are spanning 
k-subsets of"f/" and Xl E Sl + (Sl n S2), then dim<Sl + {Xl}) = dim(-r) or 
dim("f/") - 1. In the first case, choose any X2 E S2 + (Sl n S2). In the second 
case, there exists some X2 E S2 + (Sl n S2) such that X2 ¢ <Sl + {Xl}). Hence 
Sl + {Xl> X2} spans "Y. 

AS Exercise. Let ~ E IFP(V) and let d 2 = {A2 E &,(V): Al n A2 =1= 0 for all 
Al E ~}. Show that (V, d) is an exchange system when d is each of the 
following: 

(a) ~; 
(b) A(d2); 

(c) {A E &,(V): Al $ A for all Al E ~}. 

We conclude this batch of examples of exchange systems with one that 
will play an important role in §E below. Let r = (V, tC) be a graph and let 
§ be an independent subset of tC (in the sense of Chapter V). Then the set 
UEeF E is called a matched set. Clearly the largest matched sets of r have 
cardinality 2CXl(r). 

A9 Proposition. Let r = (V, tC) be a graph and let d be the collection of 
largest matched sets of r. Then (V, d) is an exchange system. 

PROOF. Let Al and A2 be distinct matched sets and let Xl E Al + (AI n A2). 
Let SIi be an independent edge set such that 

AI = U E, i = 1, 2. 
EeF, 

There exists X2 E Al n A2 such that {Xl> X2} E~. With this beginning, we 
construct the sequence Xl> X2, ... , Xk of distinct vertices of r so that {XI> Xl+l} E 

~ if i is odd and {XI> XI +l} E ~ if i is even. Since these vertices are distinct, 
this process necessarily terminates at some vertex Xk. Let 

tC' = {{XI> Xl+l}: i = 1, ... , k - I}. 

If k is even, then ltC' n ~I = tk while ltC' n ~I = tk - 1. Hence 
I~ + tC'l = I~I + 1 > CXl(r), which is impossible since, as one easily 
verifies, ~ + tC' is independent. Therefore k is odd, and so Xk E A2 + 
(AI n A2). In this case ltC' n ~I = ltC' n ~I, and so I~ + tC'l = I~I. 
Since ~ + tC' is a largest independent edge set, we have 

Al + {Xl> Xk} = 2: E E d. 
EeF1 +tI' 

Thus (V, d) is an exchange system (of type 1). D 
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A maximal independent set of edges of a graph need not be a largest 
independent set. By adapting the above proof, however, one can show the 
following: 

AIO Exercise. Every maximal matched set of a graph r is a largest matched 
set ofr. 

All Lemma. Let A = (V,d) where .91 S;;; E1fc(V). Then A is an exchange 
system if and only If(V, UAeJl/9(A» is an exchange system. 

PROOF. If (V, UAeJl/9(A» is an exchange system, then so is A, by Exercise A4. 
Conversely, suppose that A is an exchange system. It suffices to prove that 

(V, UAeJl/ E1fc-I(A» is an exchange system; the rest follows by repeated 
application of this result and Exercise A4. Let Ab A2 E UAeJl/ E1fc-I(A), and 
let Xl E Al + (AI r. A2)' 

Case 1: there exists Y E V such that Al + {Y}, A2 + {y} Ed. Then 
Xl E (AI + {y}) + [(AI + {y}) r. (A2 + {y})]. Since A is an exchange system, 
there exists X2 E (A2 + {y}) + [(AI + {y}) r. (A2 + {y})] such that Al + 
{y, Xl> X2} Ed. Since X2 ¢ Al + {y}, we have 

Al + {Xl> X2} E E1fc-I(AI + {y, Xl> X2}) 

as required. 
Case 2: for all yE V, either Al + {y}¢d or A2 + {y}¢d. For i = 

1, 2, there exists YI such that AI + {YI} Ed. If YI E A2, then Al + {Xl> YI} 
is a (k - I)-subset of Al + {YI} as required. Hence suppose YI ¢ A2 • 

Since A is an exchange system, the triple (AI + {YI}, A2 + {Y2}, YI) yields 
X2 E (A2 + {Y2}) + [(AI + {YI}) r. (A2 + {Y2})] such that Al + {X2} = 
(AI + {YI}) + {Yl> X2} Ed. We know that X2 =F Y2, or else Case 1 would 
apply. Hence X2 E A2 + (AI r. A2), while Al + {Xl> X2} E E1fc-I(AI + {X2})' D 

Let w: V ~ {x E R: X ~ O}. For each U E 9(V), define w(U) = ~ueu w(u). 
Thus w: 9(V) ~ {x E R: X ~ O} is a "weight function." Given a set system 
A = (V, d), we seek a procedure for determining a "heaviest block"; that 
is, a block Ao Ed such that w(Ao) ~ w(A) for all A E d. The procedure we 
shall describe is very naive. J. Edmonds [e.2] has named it the greedy 
algorithm. It goes as follows. 

Enlarging .91 to include all subsets of every set in .91 yields an equivalent 
problem. We therefore make the assumption that 

All .91 = U9(A). 
AeJl/ 

Choose xo, Xl' ... E V so that for each i, {xo, ... , xa Ed and 

w(XI) = max{w(x): X E V + {xo, ... , XI-l}; {xo,"" XI-l> x} Ed}. 

The procedure terminates when a set Ao = {xo, ... , Xk} in .91 has been 
constructed and Ao U {x} ¢ .91 for all X E V + Ao. Certainly unless some 
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conditions are imposed on A, there is no reason to believe that Ao is a 
heaviest block. We can only be sure that Ao is a "local maximum" in the 
sense of the following exercise. 

A13 Exercise. Let Ao E.!II be a set obtained by application of the greedy 
algorithm. Let A1 E.!II and suppose that lAo + All s 2. Then W(A1) S w(Ao). 

The next result generalizes a theorem of D. Gale [g.I]. 

A14 Theorem. Let A = (V,.!II) be a set system satisfying A12, and let ffI be 
the collection of largest sets in .!II. The greedy algorithm yields a heaviest set 
in Afor every weight function if and only if the following two conditions hold: 

(8) For every A E .!II, there exists B E ffI such that A 5; B. 
(b) (V, fJI) is an exchange system. 

PROOF. Suppose that A satisfies conditions (a) and (b), and let w be any 
weight function. Since ill 5; U2 5; V implies w(U1) S w(U2), it is clear by 
(a) that the greedy algorithm will always terminate with a set in ffI. Also, 
some heaviest set must belong to ffI. 

Suppose the greedy algorithm terminates with the set Bo = {xo, ... , Xk}, 
where w(xo) ~ ... ~ W(Xk). Let B1 = {Yo, ... , Yk} be any set in ffI, and assume 
w(Yo) ~ ... ~ W(Yk). We show that w(XI) ~ W(YI) for i = 0, ... , k, and hence 
w(Bo) ~ w(Bd. For let h be the smallest index if any for which W(Xh) < W(Yh). 
By the greedy algorithm, h ~ I, and we define nonempty sets A1 = {xo, ... , Xh} 
and A2 = {Yo, ... , Yh} E UBeN &:,(B). Note that Xh E A1 + (A1 n A2) since 
w(Yh -1) ~ W(Yh) > W(Xh). 

Since (V, fJI) is an exchange system by (b), Lemma All yields that 
(V, UBeaf f#J(B» is an exchange system, and so with respect to the triple 
(Ab A2, Xh), we obtain Z E A2 + (A1 n A2) such that A1 + {Xh' z} 5; B' for 
some B' E ffI. But z = YI for some ish, and so w({xo, ... , Xh-b z}) = 
W(A1) - W(Xh) + W(YI) > w(A1), contrary to the greedy algorithm. 

Conversely, suppose that either (a) or (b) fails. If (a) fails, choose a maximal 
set A E.!II contained in no set in ffI and choose B E ffI. If (b) fails, choose 
B, B' E ffI and Xl E B' + (B n B') such that the triple (B', B, Xl) yields no 
appropriate X2 required of an exchange system, and let A = B' + {Xl}. Let 
1 < t < IBIIIAI, and let the weight function W be defined by 

{
t if xEA; 

w(x) = I ifxEB + (A nB); ° if x E V + (A U B). 

Since W(X1) = 0, A is contained in no (lAI + I)-set in.!ll of greater weight. 
Hence the greedy algorithm terminates with some set A' such that A 5; A' 
and w(A) = w(A'). However, w(A) = IAlt < IBI, although B has weight 
w(B) = IBI + (t - l)IA n BI ~ IBI. 

269 



X Matroid Theory 

As an application of the greedy algorithm, the reader is referred to the 
"connector problem" or "minimum tree problem." (See Berge [b.5, p. 470].) 
In this case one seeks to link together various cities by a single (connected) 
communications network as cheaply as possible, where to each pair of cities 
some cost function assigns the cost of joining them. One procedure is to use 
a weight function which is the reciprocal of the cost function to construct a 
spanning forest (the cities being the vertices) whose edge set is a heaviest set. 
Alternatively (though less efficiently if the number of vertices exceeds 4) is to 
use the given cost function as a weight function to construct a heaviest 
spanning coforest-then throw it away and use what is left. 

XB Matroids 

In this section four types of set systems will be presented. It will become 
evident that they are very closely interrelated. The first three will turn out 
to be types of exchange systems. The fourth one generally is not, but it is 
this one that will be given the name of "matroid." 

A set system (V, d) is called an independence system if it satisfies conditions 
Bl and B2: 

BI d = U &(A); 
Aed 

B2 If Alo A2 Ed and if IAll < IA21, then there exists x E A2 + (Al () A2) 
such that Al + {x} Ed. 

B3 Proposition. Every independence system is an exchange system. 

PROOF. Let A = (V, d) be an independence system. Let Alo A2 Ed such 
that IAll = IA21 and let Xl E Al + (Al () A2)' By condition Bl, Al + {Xl} Ed. 
By condition B2, there exists X2 E A2 + (Al () A2) such that Al + {Xlo X2} E 

d. 0 

A set system (V, d) is called a spanning system if it satisfies conditions B4 
and B5: 

B4 If Al Ed and Al S;; A2 S;; V, then A2 Ed; 

B5 If Alo A2 Ed and if IAll < IA21, then there exists x E A2 + (Al () A2) 
such that A2 + {x} Ed. 

One proves straightforwardly: 

B6 Lemma. A is an independence system if and only if A is a spanning system. 

By this lemma, Proposition B3, and Corollary A3, we have 

B7 Corollary. Every spanning system is an exchange system. 

An exchange system of constant blocksize is called a basis system. 
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B8 Example. In Example A7, (V,.I) is an independence system, (V, .9') is a 
spanning system, and (V, f!i) is a basis system. Obviously the terminology of 
vector spaces has inspired the terminology of matroid theory. 

B9 Exercise. Which of the exchange systems in Exercise AS are independence 
systems, spanning systems, or basis systems? 

The next result shows how one can always obtain an independence system 
from a basis system and vice-versa. Its corollary in a similar way relates 
spanning systems to basis systems. 

BIO Proposition. Let .F, fII s; flJ( V). Then the following two statements are 
equivalent: 

(a) (V,.I) is an independence system and fII is the collection of largest 
sets in of; 

(b) (V, f!i) is a basis system and of = UBeai' flJ(B). 

PROOF. If we assume (a), then (V, f!i) is an exchange system by B3 and A4, 
and hence (V, f!i) is a basis system. If A E.F, then by repeated application of 
condition B2, a set BE fII is obtained such that A s; B. 

Conversely, let (b) be assumed. It is immediate that fII is the collection of 
largest sets in .F, and hence condition BI holds for J. To verify B2, let 
AI, A2 E of and suppose IAII < IA21. We may pick BE fII such that Al S; B, 
and pick x E B + AI. If x E A2, then since Al + {x} E.F, we are done. If 
x If: A2, then let A2' be a subset of A2 of cardinality IAII + l. By Lemma All, 
(V, of) is an exchange system, and so for the triple (AI + {x}, A2', x) we 
obtain y E A2' + (AI ("\ A2') S; A2 + (AI ("\ A2) such that Al + {y} S; Al + 
{x, y}EJ. 0 

Bll Corollary. Let Y, fII S; flJ(V). Then the following two statements are 
equivalent: 

(a) (V, 9') is a spanning system and fII is the collection of smallest sets 
in f/. 

(b) (V, fII) is a basis system and.9' = {S E flJ(V): S:2 Bfor some B E fII}. 

PROOF. Use the proposition and Lemma B6. o 
B12 Corollary. The greedy algorithm with weight function identically 1 always 

yields a largest set in an independence system. 

The complete designs (cf. A6) are basis systems. Examples of basis 
systems coming from graph theory are those given by the spanning forests, 
the spanning coforests (cf. A5), and the largest matched sets (cf. A9). There 
are many other examples of basis systems, but these are particularly" natural" 
ones. Using the above proposition and corollary, the reader should determine 
from these basis systems the associated independence systems and spanning 
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systems. Note in particular that if (V, fJIJ) is the basis system of the largest 
matched sets of a graph, then by Exercise AlO, the blocks of the associated 
independence system include all the matched sets of the graph. 

Let (V,.9I) be a set system. A triple (Ab A2, y) will be called admissible 
for (V,.9I) if Ab A2 Ed, Al =F A2, andy E A] f"'I A2. The 4-tuple (Ab A2, X, y) 
will be called admissible if (Ab A2, y) is an admissible triple and x E Al + 
(Al f"'I A2). 

Let us consider the following conditions applicable to a set system (V, .91): 

B13 .91 is incommensurable. 

B14 Given the admissible triple CAb A2, y), there exists Aa Ed such that 
Aa =1= 0 and Aa S;; (Al U A2) + {y}. 

B15 Given the admissible 4-tuple (Ab A2, x, y), there exists Aa Ed such that 
x E Aa and Aa S;; (Al U A2) + {y}. (See Figure BI6.) 

B16 
v 

B17 Lemma. Let (V,.9I) be a set system. 
(a) If (V,.9I) satisfies B14, then (V, ""(.91) satisfies B13 and B15. 
(b) If (V,.9I) satisfies B15, then (V, ""(.91» satisfies B13 and B14, and 

every set in .91 is a union of sets in Jt(.9I). 

PROOF. (a) It is obvious that Jt(.9I) is incommensurable. Supposing B15 to 
fail for (V, Jt(.9I), consider the (nonempty) set of admissible 4-tuples 
(M!> M2, x, y) for (V, Jt(.9I) such that there exists no ME Jt(.9I) with the 
properties that both x E M and M S;; (Ml U M2) + {y}. Among these, select 
a 4-tuple (M!> M2, x, y) with IMl U M21 as small as possible. 

By B14, there exists A Ed such that 0 =1= A S;; (Ml U M2) + {y}. The 
set A contains some set ME Jt(.9I), and by our choice of the 4-tuple, x f/: M. 
Since Jt(.9I) is incommensurable, M '* M!> and so there exists Z E M f"'I M2 
with z f/: M l. The 4-tuple (M2' M, y, z) is admissible. By the minimality of 
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IMI U M21, there exists M' E Jt(d) such that y E M' and M' s; (M2 U M) 
+ {z}. Now (MI' M', X, y) is admissible for (V, Jt(d)), and Ml U M' C 

Ml U M2 since z ¢ Ml U M'. Again by the minimality assumption, there 
exists M" E Jt(d) such that x E M" and M" s; (Ml U M') + {y} s; 
(Ml U M 2) + {y}, which provides a contradiction. 

(b) It is immediate that (V, Jt(d») satisfies B13 and that (V, d) satisfies 
B14. Hence (V, Jt(d)) satisfies B15 by part (a), whence it also satisfies B14. 

If the remainder of the assertion is false, we pick a smallest nonempty set 
A Ed which is not a union of sets in Jt(d). Thus Jt(d) (') .9(A) fails to 
cover A; there exists x E A such that x ¢ U Me.ll(W)n&(A) M. However, A con­
tains some set ME Jt(d). Letting y E M, we form the admissible 4-tuple 
(A, M, x, y) for (V, d). There exists a set A' Ed such that x E A' and 
A's; A + {y}. Since IA'I < IAI, A' is a union of sets in Jt(d). One of these 
sets M' contains x, and x E M' s; A' s; A, giving a contradiction. 0 

Ifa set system (V, d) satisfies B13, thend = Jt(d), and the above lemma 
implies that it satisfies B14 if and only if it satisfies B15. Thus we define a 
cycle system to be a set system (V, d) satisfying B13 and either B14 or B15, 
with the added condition that d ¥: {0}. 

Example. The complete design (V, .91cCV)) is a cycle system if 1 ::; k ::; IVI. 
Despite this example, cycle systems need not generally be exchange systems, 
as mentioned earlier. Note, too, that (V, 0) is a cycle system, but by definition, 
(V, {0}) is not a cycle system. 

The following example is the prototype for cycle systems just as Example 
A 7 was the prototype for the other three systems studied in this section. 

BI8 Example. For a set U and an arbitrary field IF, we define the support 
function u: lFu -+ .9(U) by 

u(h) = {x E U: hex) ¥: O}, for h E lFu. 

(The only difference between this definition and those in §IIA and §JV A is 
that here IF is not necessarily II{ or 0.) Let:t> be a subspace of lFu, and let d = 
{u(h): h E 9"}. Let us verify that the set system (U, d) satisfies condition B14. 
Given distinct supports AI. A2 Ed and y E Al (') A 2, there must exist distinct 
functions hI' h2 E 9" having Al and A2 as their respective supports. Thus 
h = hl(y)h2 - h2(y)hl E 9" and hey) = O. Hence A = u(h) S; (AI U A 2) + 
{y}. Since u(h) ~ Al + A 2, A¥:0. Thus (U, Jt(d)) is a cycle system by 
Lemma B17a, and u(h) is a union of minimal nonempty supports of functions 
in 9" by B17b. (Cf. JVA6(a,b).) 

An important special case of the above example arises when IF = K In 
this case, the function h is given by h = hl + h2 • Since by IB2, .9( U) and II{ U 

are identified, each function may be identified with its support. Thus A = 
Al + A 2 • In fact, given any subspace d of .9(U), it becomes easy to verify 
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directly that (U, .A(d) is a cycle system. Condition B13 holds by definition, 
and if (Mb M2, X, y) is an admissible 4-tuple, then certainly x E MI + M2 S;; 

(MI U M2) + {y}. Since d is a subspace, MI + M2 E d. By IICI, MI + M2 
is a sum of pairwise-disjoint elements of .A(d). One of these, say M, contains 
x. Thus x EMs;; (MI U M2) + {y}, and we have verified BI4 for (U, .A(d). 

If r = (V,/, E) is a multigraph, then ,q};'(r) and ,q};'J.(r) are two very 
important subspaces of &J(E). Thus (E, .A(,q};'(r») and (E, .A(,q};'J.(r») are 
very important cycle systems. Their blocks are respectively the elementary 
cycles and the elementary cocycles of r. Note that here the blocks of r become 
the vertices of the cycle system. 

B19 Proposition. Let J, .A s;; &J(V). Then the following two statements are 
equivalent: 

(a) (V, f) is an independence system and.A = .,II(&J(V) + f). 
(b) (V,.A) is a cycle system and oF = {J E &J(V): J ~ Mfor all M E .A}. 

PROOF. If we assume (a), then it is immediate both that oF consists of those 
sets which contain no set in .A and that.A is incommensurable. To complete 
the proof of (b), it suffices to show that (V, .A) satisfies the condition B14. 
Let (Mb M 2, y) be an admissible triple. 

First suppose that (MI U M2) + {y} E J. Since .A is incommensurable, 
we may select x E MI + (MI r. M2)' Since MI + {x} C M I, MI + {x} E J. 
Since M2 $ Mb we have IMI + {X} I < I(MI U M2) + {y}l. By B2 applied 
repeatedly, we obtain eventually that (MI U M2) + {x} E J, which is im­
possible since M2 s;; (MI U M2) + {x}. Hence (Ml U M2) + {y} rf: oF and 
there exists ME.A such that 0 oF M s;; (MI U M2) + {y}. 

Conversely, let (b) be assumed. Clearly.A = .A(&J(V) + f), and oF is 
closed with respect to subsets; i.e., BI holds for J. It remains to verify B2, 
which if false implies the existence of J b J2 E oF with IJII < IJ2 1 such that 
JI + {x} rf: oF for all x E J2 + (JI r. J2). We select such sets J1 and J2 with 
IJI + (JI r. J2)1 as small as possible. Certainly JI $ J2. 

LetYEJI + (JI r. J2). ThenJI + {y} is independent, and by ourminimality 
assumption, JI + {y, Xl} E oF for some Xl E J2 + (JI r. J2). Since 

I(JI + {y, Xl}) + [(JI + {y, Xl}) r. J211 < IJI + (JI r. J2)1 

and IJI + {y, xI}1 < IJ21, there exists X2 E J2 + (JI r. J2) + {Xl} such that 
JI + {y, Xl> X2} E J. Hence JI + {y, X2} E J. By our assumption, since for 
i = 1,2 we have JI + {Xi} rf: J, there exists Mi E.A such that {y, Xi} S;; M\ s;; 
JI + {Xl}' Thus (Mb M2, Xl, y) is admissible. It follows that there exists 
ME.,II such that M S;; MI U M2 + {y} S;; JI + {y, Xb X2} E J, which is 
impossible. D 

B20 Example. Let.A be the collection of minimal dependent sets in Example 
A7. Then (V,.A) is a cycle system. 

We have defined and considered four kinds of set systems in this section: 
independence systems, spanning systems, basis systems, and cycle systems. 
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By means of Proposition BIO, Corollary BII, and Proposition B19, we have 
seen how any set system of one of these kinds uniquely determines a set 
system of each of the other three kinds and that in each case, by reversing 
this determination process, one recovers the original system. In the next 
section three more equivalent structures will be introduced. Each one of 
these seven objects has been designated as a "matroid" somewhere in the 
literature. We will choose to use the term "matroid" to designate a cycle 
system. While this choice appears from the logical point of view to be 
arbitrary, it seems to make a difference in the way one thinks of matroids, in 
particular, in the way that one abstracts the concepts of linear algebra. 

To abstract the concepts of linear algebra for independence systems, basis 
systems, and spanning systems, we identify, as in Example A7, the vertices 
of these systems with the vectors in a vector space and reuse the terms 
"independent set," "spanning set," and "basis" in this context. The sets 
in the corresponding cycle system then become the minimal dependent sets 
(cf. B20). One may think of them as the minimal sets of vectors satisfying a 
nontrivial relation. On the other hand, the prototype for cycle systems was 
Example B18. Here via the support function, each block corresponds to a 
single vector rather than to a set of vectors. The vertices of this system 
correspond to the coordinates of this coordinatized I VI-dimensional vector 
space in the following sense. If x is a vertex and M is a block in a cycle 
system, then to say x E M means that M has a nonzero x-coordinate while 
x rj: M means that the x-coordinate of M is O. Of course, both interpretations 
lack the full algebraic power of the prototype vector space. Nonetheless, 
many of the results from linear algebra can still be carried over, and thinking 
in terms of the appropriate prototype often helps in understanding and 
proving these results. 

Henceforth the terms matroid and cycle system will be synonymous. If 
A = (V, Jf) is a matroid, then the elements of.A will be called cycles of A. 
Following Proposition B19, we let J(A) = {J E &'(V): J ~ Mfor all M E JI}. 
The elements of J(A) are called the independent sets of A. Following Propo­
sition BlO, we let 8I1(A) be the collection of largest independent sets. The 
elements of 8I1(A) are called bases of A. The rank of A, denoted by r(A), is 
the cardinality of a basis. Following Corollary Bll, we let 9'(A) be the 
collection of supersets of bases. Its elements are called the spanning sets 
of A. Of course (V, J(A» is an independence system, etc. 

Bll Example. If A = (V, 0), then J(A) = &,(V) and 8I1(A) = 9'(A) = {V}. 

We have already noted that the complete designs of positive blocksize are 
matroids; they are called complete matroids. 

Bll Exercise. If A = (V, &f.(V»for k > 0, 
(a) Show that 8I1(A) = &f.-l(V)' 
(b) Find J(A) and 9'(A). 
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The following example of a matroid will tum out to be very important. 

B23 Example. Consider the set system A = (V, vH), where A denotes the 
projective plane of order 2 (cf. IXCI2). Recall that I VI = IAI = 7. One 
verifies straightforwardly that A is a matroid; it may be helpful to refer to 
Figure B24, where the six straight line segments and the arc of a circle repre­
sent the lines of A. Since every 2-subset of V is contained in some line, every 

B24 

5-subset contains the complement of a line. Every 4-subset either is the 
complement of a line (i.e., a cycle) or contains a line. The latter 4-subsets 
together with all k-subsets for k < 4 comprise J(A). 81(A) is the set of 
4-subsets which contain a line, and r(A) = 4 . .9'(A) consists of 81(A) together 
with all k-subsets for k > 4. This matroid is called the Fano matroid of rank 4. 

There is a second matroid often associated with the projective plane of 
order 2, called the Fano matroid of rank 3. Here the cycles are all lines and all 
complements of lines. 

B25 Exercise. If A is the Fano matroid of rank 3, determine J(A), 81(A), 
and .9'(A). 

B26 Exercise. Let r = (V,f, E) be a multigraph. Let A = (E, A(~(r))). 
Show that 81(A) consists of the edge sets of the spanning forests ofr. Similarly 
show that if A = (E, A(~J.(r))), then 81(A) consists of the edge sets of the 
spanning coforests of r. 

If r = (V, I, E) is a multigraph, then (E, A(~(r))) is called the cycle 
matroid of rand (E, A(~J.(r))) is called the cocycle matroid of r. By Exercise 
B26, IIICII, and IIICI8 one derives 

B27 
r(E, A(~(r))) = vo(r) - V_l(r); 

r(E, A(~J.(r))) = Vl(r) - vo(r) + V_l(r). 

The next proposition generalizes parts of the graph-theoretical results 
II/Cll and II/CI8. 
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B28 Proposition. Let A = (V,.K) be a matroid. 
(a) If BE at(A), then to each x E V + B there corresponds a unique cycle 

Mx E A such that x E Mx £ B + {x}. 
(b) If MEA, then to each x E M there corresponds a basis Bx E at(A) 

such that M £ Bx + {x}. 
(c) Let S E &(V). Then S E 9"(A) if and only if to each x E V + S there 

corresponds a cycle Mx such that x E Mx £ S + {x}. 

PROOF. (a) Let BE at(A) and let x E V + B. Since B + {x} ¢ J(A), there 
exists Mx E A such that Mx £ B + {x} by Proposition B19. Since Mx $ B, 
we must have x E Mx. Now suppose that x E M £ B + {x}. If M =1= Mx, then 
(M, Mx, x) is an admissible triple. There exists M' E A such that M' £ 

(M u Mx) + {x} £ B, which is impossible. 
(b) Let MEA and let x E M. Then M + {x} E J(A), and hence M + 

{x} £ Bx for some Bx E at(A). Since M $ Bx, we have x ¢ Bx. Hence M £ 
Bx + {x}. 

(c) Let S E 9"(A) and x E V + S. By Corollary B11, S contains some basis 
B. By part (a) above, x E Mx £ B + {x} £ S + {x} for some Mx E A. 

Conversely, suppose that S E &(V), and that to each x E V + S there 
corresponds a cycle Mx such that x E Mx £ S + {x}. It suffices to prove that 
S contains a basis. Let J be a maximal independent subset of S. We wish to 
show that J + {x} ¢ J(A) for all x E V + J. This is the case if XES, by 
definition of J. Hence suppose x E V + S. 

By our assumption, there exists Mx E A such that x E Mx £ S + {x}. 
Subject to this condition, let Mx be chosen so that IMx + (Mx () J)I is as 
small as possible. Indeed IMx + (Mx () J)I > 1 oreIseJ + {X};2 Mx ¢ J(A). 
Hence there exists y E Mx + (Mx () J) + {x}. Since Mx £ S + {x}, YES. 
Therefore J + {y} ¢ J(A) and y E My £ J + {y} for some My E A. Since 
(Mx, My, x, y) is admissible, there exists MEA such that x E M £ 
(Mx u My) + {y} £ S + {x}. However, [M + (M ()J)] c [Mx + (Mx ()J)] 
since the former set does not contain y. This contradicts the minimality of 
Mx + (Mx + J). D 

The following lemma generalizes the principle from linear algebra that if 
~ and ~ are finite-dimensional subspaces of some vector space, if dim(~) ::s; 
dim(d2), and if ~ £ ~, then ~ = d 2 • 

B29 Lemma. If AI = (V,~) is a matroid for i = 1,2 with r(AI) ::s; r(A2) 
and if for each MEAl one can write M = UNEA" N for some .AI" £ A 2, 
then Al = A2 • 

PROOF. Let J E &(V). If J ¢ J(AI)' then J ;2 M for some ME Ah whence 
J;2 N for some N E A 2. This implies that J ¢ J(A2)' We have proved that 
J(A2) £ J(AI)' 

If B E at(A2)' then BE J(AI) by the preceding paragraph, and so IBI ::s; 
r(AI) ::s; r(A2) = IBI. Thus BE at(AI) and so at(A2) £ at(AI)' 
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Let N E.A2 and let x E N. By Proposition B28, there exists BE f!A(A2) such 
that N £; B + {x}, and N is the unique cycle of A2 such that x EN£; B + {x}. 
Since BE f!A(AI), there exists a cycle ME.AI such that x EM£; B + {x}. 
Since, moreover, M is a union of cycles of A2 and since N is the only cycle of 
A2 contained in B + {x}, N = M. Thus N E.Al> and so .A2 £; .AI. 

To obtain the reverse inclusion, let ME .AI. By hypothesis there exists 
N E .A2 such that N £; M. But N E .Al> and so N = M. Thus.AI = .A2 • 0 

XC Rank and Closure 

In the previous section we alluded to the other structures equivalent to 
matroids. Unlike the four structures discussed there, these three new struc­
tures are not systems. In fact, one of them will be a lattice while the other 
two will be ordered pairs consisting of a set and a function. Each of these 
structures will have its own axioms. 

Let V be a set and let r be a selection of 9fI(V). We say that (V, r) is a 
rank structure if for all U E 9fI(V) and all Xl> X2 E V + U: 

Cl r(0) = 0; 

C2 0 ~ r(U + {Xl}) - r(U) ~ 1; 

C3 r(U) = r(U + {Xl}) = r(U + {X2}) implies r(U) = r(U + {Xl> X2}). 

Let us first prove some elementary properties of rank structures. 

C4 Lemma. Let (V, r) be a rank structure and let U E 9fI(V). Then: 
(a) 1fT £; U, then r(T) ~ r(U) ~ r(T) + lUI - ITI; 
(b) 0 ~ r(U) ~ lUI; 
(c) If W £; V + U and r(U) = r(U + {w})for all WE W, then r(U) = 

r(U + W). 

PROOF. (a) Let U + T = {Ul> .•. , Uk}. By C2 we have 

o ~ r(T + {UI}) - r(T) ~ 1, 
o ~ r(T + {Ul> ••• , ui}) - r(T + {UI> •.• , UI-I}) ~ 1, i = 2, ... , k. 

Summing these k inequalities gives 

o ~ r(U) - r(T) ~ lUI - ITI 

as required. 
(b) This follows from part (a) above by letting T = 0 and invoking Cl. 
(c) The result is trivial if I WI = 1. Suppose W = {WI> ..• , Wk} for some 

k ~ 2, and proceed by induction. We assume that 

r(U) = r(U + {WI> ..• , Wk-l}) = r(U + {WI> •.• , Wk-2, Wk}). 

Then by C3, r(U) = r(U + {WI> •.• , Wk-2}) = r(U + W). 0 
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C5 Exercise. If(V, r) is a rank structure, prove that 
(8) If U1 S; U2 , X E V + U2 , and r(U1 + {x}) = r(U1), then r(U2 + {x}) = 

r(UJ. 
(b) r(U1 U U2) + r(U1 n U2) ~ r(U1) + r(U2)for all Ulo U2 E .9(V). 

We are now prepared to relate rank structures to matroids-via inde­
pendence systems. 

C6 Proposition. Let J S; .9(V) and let r be a selection of .9(V). Then the 
following two statements are equivalent: 

(8) (V, J) is an independence system and 

r(U) = max{IJI:JEJ;JS; U}, UE.9(V); 

(b) (V, r) is a rank structure and 

J = {J E .9(V): r(J) = IJI}. 

PROOF. Assuming (a), we have CI immediately. Let U E .9(V) and x E V + U 
be given. By definition, clearly r(U) ~ r(U + {x}). Now pick J S; U + {x} 
such that IJI = r(U + {x}).lfx ¢J, thenr(U) = IJI.lfxEJ, thenJ + {X}E J 
and r(U) ~ IJ + {xli. In either case, we have r(U) ~ IJI - I = r(U + {x}) 
- l. Thus C2 holds. 

To verify C3, let J be a largest set in J such that J S; U. If r(U) < 
r(U + {Xlo X2}), then there exists a largest set J' E J such that J' s; U + 
{Xl' X2} and IJI < IJ'I. Invoking B2, we assert the existence of a vertex x E 

J' + (J n J') such that J + {x} EJ. By the maximality of IJI, x ¢ U. Hence 
x = XI for i = I or 2. Since J + {XI} S; U + {XI}, we have r(U) = IJI < 
IJ + {XI} I ~ r(U + {XI}). 

It is immediate that J = {J E .9(V): r(J) = IJI}. 
Conversely, let (b) be assumed. Let J E J and suppose J' S; J. By C4a, 

IJI = r(J) ~ r(J') + IJI - IJ'I. Hence IJ'I ~ r(J') which combined with 
C4b yields J' E J. We have verified BI for (V, J). 

To prove that B2 holds, suppose J1,]2 E J with IJ1 1 < IJ21 but that 
J1 + {x} ¢ J for all X E J2 + (Jl n J2). By C2, this means that r(J1) = 
r(J1 + {x}) for all x E J2 + (J1 n J2), and so by C4(a,c), IJ11 = r(J1) = 
r(J1 + J2 + (J1 n J2» ~ r(J2) = IJ2 1, which is a contradiction. 

If U E .9(V) + {0}, let J be a largest set in J such that J S; U. If r(J) < 
r(U), then by C4c, r(J) < r(J + {x}) for some x E U + J. But r(J) == IJI 
and so by C2, r(J + {x}) = IJI + l. This implies that J + {x} E J, contrary 
to the maximality of IJI. Hence r(U) = max{IJI: J E J; J s; U}. D 

If A = (V,.K) is a matroid, it now makes sense to define the rank function 
r: .9(V) -+ N of A by 

r(U) = max{IJI: J E J(A); J S; U}. 
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Since the bases are the largest sets B such that reB) = IBI, our definition is 
consistent with the definition of the rank of a matroid as defined in the previous 
section. 

The next result enables us to relate the rank function of a matroid to the 
cycles of the matroid directly. 

C7 Corollary. Let A = (V,..It) be a matroid with rank function r. Let U E 

EfJ( V) and x E V + U. There exists a cycle ME JI such that x EMs;; U + 
{x} if and only ifr(U) = r(U + {x}). 

PROOF. Suppose that x EMs;; U + {x} for some ME JI. Pick a largest 
independent set J of A such that J s;; U + {x}. Then IJI = r(U + {x}) by 
the above proposition. By Proposition B19a, M + {x} E J(A). Since M + 
{x} s;; U,ifiM + {x}l = IJI,thenr(U) ~ IJI, and by C2,r(U) = r(U + {x}). 
On the other hand, if 1M + {x} I < IJI, then by repeated applications of B2, 
one constructs an independent set J' by adjoining to M + {x} elements of J, 
one by one. Thus IJ'I = IJI. Furthermore, if x E J', then M s;; J', which is 
impossible. Thus J' s;; U and, as above, r(U) = r(U + {x}). 

Conversely, suppose r(U) = r(U + {x}). Then by the proposition, r(U) = 
IJI for someJ E J(A) such thatJ s;; U. If J + {x} E J(A), then r(U + {x}) ~ 
I J + {x} I > r(U). Hence J + {x} is not independent and so M s;; J + {x} 
for some ME JI. By Proposition B19, M $ J. Hence x E M. 0 

C8 Exercise. Let r be the rank function of the matroid A = (V,..It). Let 
U E EfJ(V). Show that: 

(a) r(U) = rCA) if and only if U E .9'(A). 
(b) r(U) = lUI - I = r(U + {x})for all x E U if and only if U E JI. 

Let V be a set and let c: EfJ(V) ~ EfJ(V). We say that (V, c) is a closure 
structure if the following three conditions hold: 

C9 Us;; c(U), for all U E EfJ(V); 

CIO If UI S;; c(U2), then c(UI ) s;; c(U2), for all Ul> U2 E EfJ(V); 

Cll If U E EfJ( V) and Xl> X2 E V + U and if X2 E c( U + {Xl}) while X2 ¢ c( U), 
then Xl E c(U + {X2}). 

If (V, c) is a closure structure, a set U E EfJ(V) is said to be closed if 
c(U) = U. 

Let us first consider some elementary properties of closure structures. 

Cll Exercise. Let (V, c) be a closure structure. If Ul> U2 E EfJ(V), prove: 
(a) V is closed. 
(b) c( U) is closed for all U E EfJ( V). 
(c) If UI S;; U2, then c(UI ) s;; c(U2). 
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(d) c(Ul (') U2) £; c(Ul) (') c(U2), and equality holds if Ul and U2 are 
closed. 

(e) c(Ul ) U c(U2 ) £; c(Ul U U2 ). 

(f) If U E (JJ(V) and Xl> X2 E V + U, then c(c(U + {Xl}) + {X2}) = 
c(U + {Xl> X2}). 

The closure operator in a topological space satisfies conditions C9 and 
ClO. However, the function c in a closure structure (V, c) need not induce a 
topology on V. In particular we do not necessarily have that C(0) = 0 nor 
does equality always hold in C12e, both of which always hold for topological 
closure operators. The following examples shows how a closure structure may 
fail to determine a topological space in each of these respects. 

Cl3 Example. Let m be an integer such that 0 ::; m ::; I VI and define 
c: (JJ( V) -+ (JJ( V) by 

c(U) = {U if lUI < m; 
V if lUI;;:: m. 

One verifies easily that (V, c) is a closure structure. If I < m < I VI, it is 
possible to choose sets Ul> U2 E (JJ(V) such that I U11, I U21 < m but m ::; 
I Ul U U2 1 < I VI. Observe that c(Ul) U c(U2) = Ul U U2 C V = c(Ul U U2). 
In the case that m = 0, we have C(0) = V. 

Cl4 Lemma. Let (V, c) be a closure structure. Let U E (JJ(V) and Xl E V + U. 
If for some set S E (JJ(V) it holds that c(S) c c(U) £; c(S + {Xl}), then 
U $ c(S) and c(U) = c(S + {Xl}) = c(S + {X2}) for all X2 E U + 
(U (') c(S». 

PROOF. If U £; c(S), then by CIO, c(U) £; c(S) c c(U), which is absurd. 
Hence we may arbitrarily choose X2 E U + (U (') c(S». 

Since X2 E U £; c(S + {Xl}) and X2 ¢ c(S), we have by Cll that Xl E 

c(S + {X2})' Thus S + {Xl} £; c(S + {X2}). Also S + {X2} £; c(U). Finally by 
ClO, c(S + {X2}) £; c(U) £; c(S + {Xl}) £; c(S + {X2}), and so equality holds 
throughout. 0 

We now relate closure structures to matroids by relating them to rank 
structures. 

CIS Proposition. Let V be a set and let c: (JJ(V) -+ (JJ(V) and r: (JJ(V) -+ N 
be functions. Then the following two statements are equivalent: 

(a) (V, c) is a closure structure and 

r(U) = min{ITI: T E (JJ(V); c(T) = c(U)}, for all U E (JJ(V). 

(b) (V, r) is a rank structure and 

c(U) = U + {x E V + U: r(U) = r(U + {x})}, for all U E (JJ(V). 
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PROOF. Assuming (a) we deduce trivially from the definition of r in terms of 
c that r(0) = O. Observe that if two sets have the same closure, then they 
have equal rank. We assert that 

C16 r(U) = min{ITI: T S; U; c(T) = c(U)} for all U E 9P(V). 

For let T be a subset of V such that c(T) = c( U) and I TI = r( U); subject to 
these conditions, let IT + (T n U)I be as small as possible. If this quantity 
is positive, let Xl E T + (T n U) and let S = T + {Xl}' By C12c, c(S) S; 

c(T) = c(U), but since lSI < ITI = r(U), we must have c(S) c c(U). Hence 
by Cto and C12b, U 1: c(S). Let X2 E U + (U + c(S», Since c(U) = 
c(S + {Xl}), Lemma CI4 implies that c(S + {X2}) = c(U). Furthermore, 
r(U) = ITI = IS + {x2}1. However, I(S + {X2}) + [(S + {X2}) n U]I < 
IT + (T n U)I, contrary to our assumption. This proves C16. 

To verify C2, let U E 9P(V) and X E V + U. By CI6 we choose T S; U + 
{x} such that r(U + {x}) = ITI and c(U + {x}) = c(T). If T S; U, then 
c(U + {x}) = c(T) S; c(U). Hencec(U) = C(U + {x})andr(U) = r(U + {x}). 
Otherwise, x E T. Let S = T + {x}, and so S S; U. If c(S) c c(U), then by 
Lemma C14, c(U) = c(S + {x}) = c(T) = c(U + {x}), and so r(U) = 
r(U + {x}). If c(S) = c(U), then r(U) ~ lSI < ITI = r(U + {x}). Hence 
o ~ r(U + {x}) - r(U). 

By CI6 we may select To S; U such that c(To) = c(U) and r(U) = ITol. 
By C9, To + {x} S; U + {x} S; c(To) + {x} S; c(To + {x}). Hence c(To + x) = 
c(U + {x}) by CI2b,c. Hence r(U + {x}) ~ ITo + {x} I = ITol + I = r(U) + 
I, as required. 

To verify C3, let Xl> X2 E V + U. For i = 1,2, suppose that r(U) = 
r(U + {XI})' By CI6 there exists Ii S; U + {XI} such that c(TI) = c(U + {XI}) 
and r(U + {XI}) = IIiI. If TI S; U for some i, we may take TI = T2 = T. 
In this case U + {Xl> X2} S; c(T), and so by CIO, c(U + {Xl' X2}) s; c(T) = 
c(U) S; c(U + {Xl> X2})' Hence r(U + {Xl> X2}) = ITI by C2. Otherwise, let 
SI = TI + {xtl. Since SI S; U, c(SI) S; c(U). If c(SI) = c(U), then r(U) ~ 
ISII < IIiI = r(U + {XI}), contrary to assumption. Hence c(SI) c c(U) S; 

c(U + {XI}) = c(SI + {XI})' By Lemma C14, c(U) = c(U + {XI})' It fol­
lows that U + {Xl> X2} S; c(U), and so c(U + {Xl> X2}) S; c(U). Hence 
r(U + {Xl> x2}) = r(U). Thus (V, r) is a rank structure. 

Finally let XEc(U). Then c(Uu{x}) = c(U) and so r(Uu{x}) = r(U). 
Conversely, let X E V + U and suppose r(U + {x}) = r(U). By CI6 we may 
select T s; U + {x} such that c(T) = c(U + {x}) and ITI = r(U + {x}). As 
in our verification of C2, we get c(T) = c(U), and so x E c(U). 

Conversely, let (b) be assumed. Then C9 is immediate. Let Ul> U2 E 9P(V) 
and suppose that UI S; c(U2). If CIO fails, we may select x E c(UI ) such that 
x £F c(U2). Since x E c(UI ) + Ul> we have r(UI ) = r(UI + {x}). By Exercises 
C4a, C5a, then C4c, r(U2 + {x}) ~ r(c(U2) + {x}) = r(c(U2» = r(U2), 

whence x E c(U2), giving a contradiction. Hence CIO holds. 
Let Xl> X2 E V + U. Suppose that X2 E c(U + {Xl}) and X2 £F c(U), but that 

Xl £F c(U + {X2})' By C2, 
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Cl7 

ClS 

Cl9 

r(U + {Xl> X2}) - r(U + {Xl}) = 0, 

r(U + {X2}) - r(U) = 1, 

r(U + {Xl> X2}) - r(U + {X2}) = 1. 

By successive substitutions of CI8, CI9, then CI7, 

r(U) = r(U + {X2}) - 1 
= r(U + {Xl> X2}) - 2 
= r(U + {Xl}) - 2, 

contrary to C2. Hence (V, c) is a closure structure. 
Finally, let us define s: &,(V) -+ N by 

s(U) = min{ITI:TE&'(U);c(T) = c(U)}. 

Since (a) implies (b) in this proposition, (V, s) is a rank structure, and it 
suffices to prove r = s. We proceed by induction on I UI. By CI, r(0) = ° = 
S(0). Suppose that r(U) = s(U) for some set U E &,(V) but that r(U + {x}) =f. 

s(U + {xD for some X E V + U. By C2 exactly one of the following two 
equations holds: 

r(U + {x}) = r(U); s(U + {xD = s(U). 

However, if X E c(U), then both equations hold, while if X rt c(U) then both 
equations fail. We arrive at a contradiction either way. Hence r = s. 0 

If A = (V, vii) is a matroid whose rank function is r, it now makes sense 
to define the closure operator c: &'( V) -+ &'( V) of A by 

c(U) = U + {x E V + U: r(U) = r(U + {x})}, for all u E &,(V). 

We let <ef(A) denote the collection of closed sets of the closure structure (V, c). 
The following result directly relates the closure operator of a matroid to 

the blocks of the matroid. 

C20 Corollary. Let A = (V, vii) be a matroid. Let c: t?l'(V) -+ t?l'(V) be given 
by 

c(U) = U + {x E V + U: x EMs;; U + {x} for some ME .A}. 

Then c is the closure operator of A. 

PROOF. Let r be the rank function of A and let U E &,(V). By Corollary C7, 

{x E V + U: x EMs;; U + {x} for some ME.A} 
= {x E V + U: r(U) = r(U + {x}). 

The result now follows immediately from the above proposition. 0 

C2l Example. In Example B20, let c be the closure operator of A = (V,.A) 
and let U E &,(V). Then c(U) is the intersection of V with the subspace of 
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j/" spanned by U, and ~(A) is the collection of intersections of V with sub­
spaces of"//'. 

C22 Example. Let A = (E, .A'(.!Z'(r))) be the cycle matroid of r = (V,J, E). 
Then r(F) is the cardinality of a largest subset of FE fJJ(E) containing no 
cycle. Thus r(F) is the number of edges in a spanning forest of r p , and (cf. 
B27) we have r(F) = vo(rp) - V_l(rp). On the other hand, 

c(F) = F + {e E E + F: e E Z s;;; F + {e} for some Z E ~(r)}. 

In other words, if e E c(F) then the vertices in f(e) are joined by a path all 
of whose edges are in F. If Wh ••• , Wk are the vertex sets of the components 
of r p, then c(F) is the set of edges of EB~= 1 r WI' 

C23 Exercise. Determine the closed sets of the cocycle matroid of a multi­
graph. 

A matroid A = (V,.A') is called a geometry if ~(V) + .9i(V) s;;; ~(A). 
(Crapo and Rota [c.S] use the term "pregeometry" for a matroid.) Both of 
the Fano matroids, for example, are geometries. Their closed sets are 
precisely the "geometric objects" such as the points, the lines, the entire 
plane, and of course 0. The same is true of the matroid in Example C21. 

The interest in geometries lies in the fact that they correspond in a nice 
way to a class of lattices, as we shall see at the end of this section. Further­
more, any matroid need be only slightly modified to yield a geometry: first 
delete all vertices in the closure of 0; second observe that the relation y ,..., x 
if y E c({x}) is an equivalence relation. (To prove symmetry, use CII with 
U = 0.) Then identify all vertices within each equivalence class. 

To understand what is going on, let us just for the moment admit loops 
in our multigraphs. The loops would form c(0) in the cycle matroid of r. 
Our first step is analogous to deleting all loops. An edge e' is in the closure 
of the edge e if and only if f(e) = f(e') E ~(E). Our second step is analogous 
to replacing a multigraph by its underlying graph. Finally, just as the graph 
underlying a multigraph preserves most of the interesting structure of the 
multigraph, the geometry underlying a matroid preserves most of the 
interesting structure of that matroid. 

C24 Exercise. Show that a matroid is a geometry if and only if the cardinality 
of every block is at least 3. (In particular, the cycle matroid of a graph is a 
geometry.) 

C25 Exercise. Show that the rank of a geometry with a nonempty vertex set 
is at least 2. 

A lattice is said to be semimodular if whenever both x and yare successors 
of x " y, then x V y is a successor of both x and y. If L = (U, ;:5;) is semi­
modular, then the sublattice Lr.x,y] = ({u E U: x ;:5; U ;:5; y},;:5;) is clearly 
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semimodular. A matroid lattice (U, :S;) is a semimodular lattice with the 
further condition that every element x E U can be expressed as x = V GeA a 
where A is a set of atoms. In particular, A may be taken as {a E V: aisan atom; 
a :S; x} (see [b.9]). The lattice shown in Figure C26a is semimodular, but the 
elements bl> b2 , and 1 are not joins of a set of atoms. In the lattice shown 
in Figure C26b, every element is a join of atoms, but the lattice is not semi­
modular since a1 V a2 = 1 is not a successor of a1 or a2' 

C26 1 
(a) (b) 

o o 
07 Exercise. Verify that every Boolean lattice is a matroid lattice. 

C28 Lemma. Let L = (U, :S;) be a semimodular lattice and let x, y E U. 
(a) If x :S; y, then all maximal chains in L[%.II] have the same length. 
(b) Ifx is an atom and x$. y, then x V y is a successor ofy. 

PROOF. (a) We proceed by induction on I UI. The result holds if lUI :S; 2. 
If it is not the case that x = 0 and y = 1, then since Lr.%.II] is semimodular, 
all maximal chains in L[%.II] have the same length. Now consider maximal 
chains 0 = Xo, ... , x" = 1 and 0 = Yo, ... , Yle = 1 in L. If Xl ::F Y1, let 
Z = Xl V Y1' Since both Xl and Y1 are successors of 0, Z must be a successor 
of both Xl and Y1' If Z = Z2, Za,"" Zm, 1 is a maximal chain in L[2.1], then 
Xl> Z2, ••• , Zm, 1 and Xl> X2, ••• , x", 1 are maximal chains in L[%l.l)' By the 
induction hypothesis h = m. Similarly one shows that k = m. If Xl = Y1, the 
above argument yields h = k directly, whence the result. 

(b) Assuming that x is an atom and x :$ y, we proceed by induction on 
the length of a maximal chain in L[O.II]' The assertion is trivial if Y = O. If 
Y > 0, then Y is a successor of some element W E U. Since x :$ w, the induction 
h~othesis implies that x V W is a successor of w. Since Lis semimodular, 
(x V w) V Y is a successor of both (x V w) and y. But (x V w) V Y = 
x V (w V y) = x V y as required. 0 

If rt is the collection of closed sets of the closure structure (V, c), then 
(rt, s;) is a partially-ordered subset of (t1'(V), s;). We shall see that (rt, s;) 
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is in fact a lattice, although it need not be a sublattice of (&(V), ~). If Ul> 
U2 E~, their meet in (&(U), £) is of course UI n U2 , and by C12d, UI n U2 = 
c(UI n U2) E~. The join of UI and U2 in &(V) is, of course UI U U2 , but 
in (~, £) it is c(UI U V2) which, as we already know, need not equal 
UI U U2 • Since (~ £) characterizes a closure structure, it characterizes the 
matroid derivable from it; the matroid is unique up to isomorphism. 

C29 Lemma. Let ~ be the collection of closed sets of a closure structure (V, c), 
and let Ul> U2 E~. Then U2 is a successor of UI in (~, £) if and only if 
U2 = c(UI + {x})for some x E U2 + UI • 

PROOF. Suppose that U2 is a successor of UI and choose x E U2 + UI • Since 
UI + {x} £ U2, we have UI c c(UI + {x}) £ c(U2) = U2• Since U2 is a 
successor of Ul> we cannot have c(UI + {x}) C U2 • 

Conversely, suppose that U2 = c(UI + {Xl}) for some Xl E U2 + UI • We 
must show that if UI c T £ U2 for some T E ~, then T = U2 • Let X2 E T + 
UI • Thus X2 E c(UI + {Xl}), but X2 ¢ c(UI ). By Cll, Xl E c(UI + {X2}). Thus 
UI + {Xl} £ c(UI + {X2}) £ c(T) = T, and so U2 = c(UI + {Xl}) £ T by 
Cl~ D 

C30 Theorem. Let L be a lattice. Then the following are eqUivalent: 
(a) L is isomorphic to the partially-ordered collection of the closed sets 

of a closure structure derived from a geometry. 
(b) L is a matroid lattice. 

Moreover, if either condition holds, then the geometry in (a) is unique up to 
isomorphism. 

In proving that (a) implies (b) it is not necessary to assume that our 
matroid is in fact a geometry. We prove instead the following slightly stronger 
result. 

C31 Lemma. If~ is the collection of closed sets of the closure structure (V, c), 
then (~, £) is a matroid lattice with UI II U2 = UI n U2 and UI V U2 = 

c(UI U U2). 

PROOF. Let ~ be the collection of closed sets of the closure structure (V, c). 
We have already remarked that (~, £) is a partially-ordered subset of the 
lattice (&(V), £). Let Uh U2 E~. Since UI n UI E ~ by C12d, we have 
proved (cf. IIB38) that UI II U2 is defined in (~, £) and equals UI n U2 • 

We assert that UI V U2 also exists and that it equals c(UI U U2). By Cl2b, 
c(UI U U2) E ~ and by C9, UI £ c(UI U U2) and U2 £ c(UI U U2). If 
UI £ C and U2 £ C for some CE~, then UI U U2 £ C and by ClO, 
c(UI U U2) £ c(C) = C. Hence (~, £) is a lattice. 

We observe that for Ul> ... , Uk E~, /\f=l U, = nf=l U, and Vf=l U, = 
C(Uf=1 U,). In particular, 0 = /\ue'C U = C(0). We next show that if 
X E V + C(0), then c({x}) is an atom of (~, £). For suppose C(0) < U:::; 
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c({X}). For any y E U + c(0), we have c(0) < c({y}) :s; c({x}). Thus y E 

C(0 + {x}) and y ¢ C(0). By CII, x E c({y}) and so c({x}) = c({y}). If U E~, 
then by ClO, c({x}) s;; U for all x E U. Thus U = c(0) + Uxeu+C(0) {x} = 
Uxeu+C(0) c({x}) = C(Uxeu+C(0) c({x}» = V xeU+C(0) c({x}). Thus each ele­
ment of ~ is the join of a set of atoms. 

To prove semimodularity, let Ul> U2 E ~ be distinct successors of U = 
Ul " U2. By C29, there exists x, E U, + U such that U, = c(U + {x,}) for 
i = 1,2. Suppose Xl E U2. Then U c Ul = c(U + {Xl}) S;; c(U2) = U2, and 
since U2 is a successor of U, we have U2 = Ul> contrary to assumption. Thus 
Xl ¢ U2 and similarly X2 ¢ Ul . ByC29again,c(Ul + {X2}) = c(U + {Xl> X2}) = 
c(U2 + {Xl}) is a successor of both Ul and U2. It remains only to show that 
Ul V U2 = c(U + {Xl> X2})' Clearly since U, S;; c(U + {Xl> X2}) for i = I, 2, 
we have Ul V U2 S;; c(U + {Xl' X2})' Since U, c Ul V U2 S;; c(U + {Xl' X2}) 
and c(U + {Xl> X2}) is a successor of U" the required equality holds. 0 

PROOF OF THEOREM C30: (b) implies (a). Suppose that L = (S, :s;) is a mat­
roid lattice. Let V denote the set of atoms of L and define a function c: (/J( V)-+ 
(/J(V) by 

c(U) = {x E V: X :s; Va}, U E (/J(V). 
/lEU 

We first show that (V, c) is a closure structure. Let U E (/J(V) and let 
z = Vaeu a. Clearly X :s; z for all X E U, which implies that Us;; c(U). To 
verify ClO, let Ul> U2 E (/J(V), suppose Ul S;; c(U2), and let X E c(Ul). If 
a E Ul> then a :s; V beU2 b. Hence X :s; Vaeul a :s; V beU2 b and so X E c(U2). 
To verify CII, let Xl, X2 E V + Uandsupposex2 E c(U + {xl})butx2 ¢ c(U); 
that is, X2 :s; z V Xl and X2 :I> z. Hence z < z V X2 :s; z V Xl' This implies 
that Xl i. z, and so by Lemma C28b, z V Xl is a successor of z. Hence 
z V X2 = Z V Xl> or Xl :s; z V X2, which means that Xl E c(U + {X2})' 

Since the join over an empty set is 0, c(0) = 0. If X E V, then c({x}) = {x}. 
The unique matroid (V, Jt) of which c is the closure operator is thus a 
geometry. 

Let ~ be the collection of closed sets of the closure structure (V, c). By 
Lemma C31, we know that (~, s;;) is a lattice, and we now establish a lattice­
isomorphism h from (~ s;;) to (S, :s;). For each set U E~, let h(U) = Vaeu a. 
If S E Sand U = {a E V: a :s; s}, then c(U) = U E rc and h(U) = s. Hence 
h is a surjection. Clearly if Ul> U2 E rc and Ul :F U2 , then by the definitions 
of c and h, h(Ul) :F h(U2). Hence h is a bijection. We leave as a straight­
forward exercise for the reader the following three assertions if Ul> U2 E~: 

Ul S;; U2 ~ h(Ul) :s; h(U2); 

h(Ul " U2) = h(Ul) 1\ h(U2); 

h(Ul u U2) = h(Ul) V h(U2). 

The proof is then complete. o 
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A rank function r can now be defined on the set of elements of a semi­
modular lattice, L = (S, ~). Specifically rex) for XES is the length of any 
maximal chain in L[o,x]' 

C32 Exercise. Let r be the rank function of the geometry A = (V, vf() and 
let h be the lattice-isomorphism in the above proof. If r' is the rank function 
of the lattice L (same proof), show that r(U) = r'(h(U)) for all closed sets 
Uof A. 

A lattice L = (S, ~) is said to be relatively complemented if L[x,y] is com­
plemented for all x, YES, X ~ y. 

C33 Exercise. (a) Show that matroid lattices are relatively complemented. 
(b) Interpret this notion in the context of geometries. 

XD Orthogonality and Minors 

Let V be an n-set and let A = (V, vf() be a matroid of rank r. We define 

.1iJ'.L(A) = {B E tJJ(V): V + BE .1iJ'(A)}. 

By Corollary A3, it follows that (V, .1iJ'.L(A)) is a basis system. If we now define 

Dl J.L(A) = U tJJ(B) and ,A.L = ,A(tJJ(V) + J.L(A)), 
BeSl.LCA) 

then by Propositions BIO and BI9, A.L = (V, vIt.L) is a matroid of rank 
n - r; it is called the matroid orthogonal to A. 

It is immediate that for any matroid A = (V, vIt), 

D2 (a) (A.L).L = A; 
(b) r(A) + r(A.L) = I VI; 
(c) A is isomorphic to 0 if and only if A.L is isomorphic to 0.L. 

Example. Recall that edge sets of the spanning forests of a multigraph 
r = (V,f, E) are the complements of the edge sets of the spanning coforests 
of A and that these collections are the collections of bases for the cycle 
matroid of r and the cocycle matroid of r, respectively. (Cf. Exercise B26.) 
These two matroids are therefore orthogonal. In symbols, 

D3 (E, ,A(~(r)w = (E, ,A(~.L(r))). 

In addition to DI, one can easily prove the following: 

D4 Exercise. Prove: 
(a) The following are equivalent: 

(i) UEJ(A); 
(ii) V + U E 9'(A.L); 
(iii) Un B = 0 for some BE .1iJ'.L(A). 
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(b) 86'( A 1-) is the collection of minimal sets which meet each cycle of A. 
(c) .A1. is the collection of minimal sets which meet every basis of A. 
(d) .. 1{A1.) = {J E &(V): J n B = 0 for some BE 86'(A)}. 
(e) If r1. is the rank function of A1. and U E &(V), then r1.(U) = lUI + 

reV + U) - reV). 

If U = V in D4e, we obtain D2b. 
In the above terminology we can restate Proposition B28b as follows: 

If M E.A, then to each x E M there corresponds a basis B of A1. such that 
M n B = {x}. Using this fact, we now characterize.A1. directly in terms of .A, 
rather than via f(A), 86'(A), 86'1.(A), and f1.(A). 

D5 Proposition. Let A = (V,.A) and let .91 = {A E &(V): IA n MI =1= 1 for 
all M E .A}. Then.A1. = .A(d), and each set in .91 is a union of sets in .A1.. 

PROOF. Proceeding naively, let.Al" = .A(d). Our first step is to prove that 
(V, d) satisfies condition B15. We will actually prove the stronger result: 
if (AI' A2 , y) is an admissible triple for (V;d), then there exists A Ed such 
that Al + A2 s A S (AI U A2) + {y}. Thus if (AI' A 2, x, y) is an admissible 
4-tuple, then x E A. Let (AI' A2, y) be an admissible triple and let 

x = {x E (AI U A 2) + {y}: Mx n [(AI U A 2) + {y}] = {x} for some Mx E.A}. 

If x EX n Al and x 1= A2, then for some Mx E.A, either Mx n Al = {x} or 
Mx n A2 = {y}, contrary to the definition of d. The argument is the same 
if x E X n A2 and x 1= AI' Hence X n (AI + A2) = 0. We let A = 
(AI U A2) + X + {y}. Since Al + A2 s A, it remains to show that A Ed. 

Suppose A ¢ d, and select M E.A such that I X n M I is as small as 
possible subject to the condition that IA n MI = 1. Let us say An M = {z}. 
If x EX n M, then (M, M x , z, x) is admissible for A, and so there exists 
M' E.A such that Z E M' s (M U Mx) + {x}. Now IA n M'I = 1, but 
(X n M') c (X n M) since x ¢ X n M', giving a contradiction. Hence 
X n M = 0, which implies that M n [(AI U A2) + {y}] = {z}, and so 
Z E X by definition. Since X n A = 0, this is a contradiction. 

Since (V, d) satisfies B 15, it follows by Lemma B 17b that 0 = (V, %) is a 
matroid and that every set in .91 is a union of sets in .AI: It remains to show 
that 0 = A1.. We shall do this by showing that 86'(A) = 86'(01.). 

Let BE 86'(A) and fix x E B. By Proposition B28a, to each v E V + B there 
corresponds a unique cycle Mv E.A such that (V + B) n Mv = {v}. We 
defineNx = {VE V + B: xEMv} + {x}. ThusNx =1= 0,sincecertainlyxENx' 

Suppose that Nx 1= d. Then INx n MI = 1 for some ME.A, and we 
may select M subject to this condition so that I(V + B) n MI is as small as 
possible. If Nx n M = {x}, then (V + B) n M =1= 0 or else M S B, which 
is impossible. Hence let y E (V + B) n M. Then y ¢ Nx and so x ¢ My. 
Therefore the 4-tuple (M, My, x, y) is admissible. On the other hand, if 
Nx n M = {y} for some yE V + B, then XEMy and x¢M. Hence 
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(My, M, x, y) is admissible. Either way, there exists a cycle M' E..It such 
that x E M' s;;; (M U My) + {y}. Thus INx n M'I = 1. But then (V + B) n 
M' S;;; [(V + B) n M] + fy}, contrary to our minimality assumption. We 
have shown that Nx E d. 

If 0 c N' c Nx, one easily verifies that IN' n Mvl = 1 for some v E Nx + 
{x}. Hence Nx is a minimal set in d; i.e., Nx E %. 

Let N E.;V and let v E N. If V + B ;2 N, then N n Mv = {v}, contrary 
to the definition of %. Hence V + B contains no cycle of 0. Thus V + BE 
.Jf(0). To prove that V + B is a maximal independent set of 0, we note that 
for any x E B, we have Nx S;;; (V + B) + {x}, and we have just shown that 
Nx is a cycle of 0. Hence V + BE £il(0), and so BE £il(0.1). 

Let 

d' = {A E .9'(V): IA n NI :f: 1 for all N E';v} 

and consider the set system <I> = (V, .;V') where';v' = ..It(d'). By the above 
argument, <I> is a matroid, and every set in d' is a union of sets in ';v'. Just 
as we have shown that £il(A) S;;; £il(0.1), it follows that £il(0) S;;; £il(<I>.1). Hence 
by D2a, £il(A) s;;; £il(0.1) s;;; £il(<I», whence 

D6 r(A) = r(<I». 

Let ME..It. Since IA n MI :f: 1 for all A Ed, it holds that IN n MI :f: 1 
for all N E %. Thus ME d'. Hence ..It S;;; d', and so every set in M is also 
a union of sets in .;V'. This together with D6 yields A = <1>, by Lemma B29. 
Hence fJI(A) = £il(0.1). D 

D7 Exercise. Using only the results of the first three sections of this chapter 
(including the exercises and examples), give direct proofs of Propositions 
II/Cll and II/CI8, resorting as little to "graph theory" as possible. 

D8 Exercise. (a) Describe all matroids with five vertices. (b) Describe all 
matroids with n vertices having ranks 0, 1, n - 1, and n. 

Before proceeding further we present a summary of the relationships be­
tween the eight set systems associated with a matroid established thus far. 
The references in parentheses indicate the first explicit appearance of the 
result. 

D9 Theorem. Let A = (V,..It) be a matroid. (We suppress the argument A 
and write .JfL, £ilL, [/.1 for .Jf(A.1), £il(A.1), [/(A.1), respectively.) 
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(a) .Jf = {A E.9'(V): As;;; Bfor some BE£il}; (BIO) 
[/ = {A E .9'(V): A ;2 B for some BE £il}; (Bll) 
£il is the collection of largest sets of.Jf; (BIO) 
£il is the collection of smallest sets of Y. (BII) 

(b) £il = .Jf n Y. 
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(c) vii is the collection of minimal nonempty sets of ,o/J(V) + of; 
of = {A E ,o/J(V): A ;j2 M for all M Evil}. (BI9) 

(d) flI1. is the collection of complements of sets of flI; 
of 1. is the collection of complements of sets of :7; (D4a) 
:71. is the collection of complements of sets in .f. 

(e) flI1. is the collection of minimal sets which meet every set in vii; (D4b) 
:71. is the collection of sets which meet every set in vii; 
vII1. is the collection of minimal sets which meet every set in flI; (D4c) 
of 1. is the collection of sets that avoid some set in flI. (D4d) 

(f) vII1. is the collection of minimal sets which meet no set in vii in a I-set. 
(D5) 

In §IIA we introduced the projection 7Tu: ,o/J(V) ~ ,o/J(U) (where Us;; V) 
given by 7Tu(S) = U r. S for all S E ,o/J(V). If A = (V, tC) is a set system and 
if U £; V, we shall use the symbol AWl to denote the set system (U, vII(7TU[tC])). 
We shall concern ourselves with the systems of the form AWl and Au, the 
latter being truly a subsystem of A. 

DIO Proposition. If A = (V, vii) is a matroid and if U E ,o/J(V), then Au and 
AWl are matroids. Furthermore, if ME vii, then M r. U is a union of cycles 
of AWl' 

PROOF. Let us write Au = (U, viiI)' Recall that viiI = vii r. ,o/J(U). Since vii 
is incommensurable, so is viiI' To verify B15 for Au, let (Mb M 2, X, y) be an 
admissible 4-tuple. Since A is a matroid, x EMs;; (MI V M 2) + {y} for some 
ME vii. Clearly ME viiI' 

To prove that AWl is a matroid, let (AI. A2 , x, y) be an admissible 4-tuple 
for the system (U, 7Tu[vIID. There exist distinct Mb M2 E vii such that Al = 
MI r. U and A2 = M2 r. U. Then (Mb M 2, x, y) is an admissible 4-tuple for 
A, and so x EMs;; (MI V M 2) + {y} for some ME vii. Let A = M r. U. 
Then x E A, and A S;; (AI V A2) + {y}. Hence (U, 7Tu[vIID satisfies B15. The 
result follows by B17b. 0 

Dll Exercise. Let A = (V, vii) be a matroid, let x E V, and let A[V+{x}] = 
(V + {x}, .p). Prove that: 

(a) If L E !l', then either L E vii or L + {x} Evil. 
(b) If MEvII and XE M, then M + {x} E!fl. 

(c) If x ¢ M, and ME vii, then either ME.!Z' or M = LI V L2 where 
Ll + {x} E J( for i = 1,2. 

If A is one of the other kinds of systems studied in §B, it does not always 
hold that both Au and A[Ul are the same kind of system as A. We glance at 
this phenomenon in the next exercise, which together with Exercise D21 
below, presents further arguments in favor of the selection of cycle systems 
as matroids. 
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D12 Exercise. Let A = (V, Jt) be a matroid with rank function r and let 
U E 9I'(V). Prove: 

(a) f(Au) = f(A) n 9I'(U). Thus if0 = (V, f) is an independence system, 
then so is 0 u. 

(b) Y(A[UJ) = 1Tu[Y(A)]. Thus if0 = (V, Y) is a spanning system, then so 
is 0[UJ. 

(c) The rank function ru of Au is given by ru = rl.¥(U). 
(d) The rank function r[U) of A[UJ is given by 

r[U)(S) = reV + U + S) - reV + U), S E 9I'(U). 

(e) PA(Au) = {B n U: BE PA(A); IB n UI = ru(Au)}. 
(f) PA(A[UJ) = {B n U: BE PA(A): IB n UI = r[UJ(A[UJ)}. 
(g) If J1 E f(A[uJ) and J2 E f(Av+ u), then J1 + J2 E f(A). 

D13 Proposition. Let A = (V, Jt) be a matroid and let U E 9I'(V). Then 
(a) (A[U)ol = (Aol)u; 
(b) (Au)ol = (Aol)[u). 

PROOF. (a) We show that the two matroids in question have the same collec­
tion of independent sets by means of the following string of equivalent 
statements. 

J E f«A[U)l) «> J E fol( A[UJ) 
«> U + J E Y(A[U) 
«> U + J = S n U for some S E YeA) 
«>J = (V + S) n U for some S E YeA) 
«>J = J' n U for some J' E fol(A) 
«>J£. U and JEfol(A) 
«> J E f«Aol)u). 

byD9d 
by D12b 

by D9d 
by Bl 

(b) Let 0 = Aol. By D2a and part (a) above, (Au)ol = «0ol)u)ol = 

~~=~~ D 

D14 Proposition. Let A = (V, Jt) and let T £. U £. V. Then 
(a) (AU)T = AT; 
(b) (A[UJ)[T) = A[TJ; 
(c) (A[U)T = (AV+U+T)[T); 
(d) (Au)[TJ = (Arv+U+T)T. 

PROOF. (a) and (b) are immediate consequences of the definitions. To prove 
(c) we show that the two matroids in question have the same cycles, again by 
means of a string of equivalent statements. 

Mis a cycle of(A[uJ)T«> M £. T and MEJt(1TU[Jt]) 
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«> M £. T and ME Jt({M' n U: M' E Jt}) 
«> ME Jt({M' n T: M' E..It and M' £. V + U + T}) 
«> ME ..It({M' n T: M' is a cycle of Av+ U+T}) 
«> M is a cycle of (Av+ U+T)[T). 
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To prove (d), let U' = V + U + T. Then T S;;; U' and U = V + U' + T. 
By part (c), (Au)[T] = (AV+U'+T)[TI = (A[U/I)T = (A[V+U+T])T' 0 

By successive applications of the various parts of the above proposition 
we obtain: 

D15 Corollary. Let Nil = (V" ~)for i = 0, ... , n be a sequence ofmatroids 
such that for each i = 1, ... , n, VI S;;; VI- 1 and either Nil = AV\-l) or 
Nil = A1~~l). Then there exist T, U E 9(Vo) containing VII such that Nil) = 
(Af¥DvII = (A<8»[V"I' 

If A = (V,.I) is a matroid, then any matroid of the form (Au)[T]' or 
equivalently of the form (A[uI)T' where T S;;; Us;;; V, is called a minor of A. 

D16 Exercise. Let r be a graph and let e be a subcontraction of r. 
(a) Show that the cycle matroid (cocycle matroid) of e is a minor of the 

cycle matroid (cocycle matroid) of r. 
(b) Show that every minor of the cocycle matroid of r is the cocycle 

matroid of a subcontraction of r. 
(c) Find necessary and sufficient conditions under which a minor of the 

cycle matroid of r is the cycle matroid of a subcontraction of r. 
D17 Exercise. Show that all minors of a complete matroid are complete 
matroids and give a formula for their rank. 

D1S Proposition. A set system is a matroid if and only if all of its components 
are matroids. 

PROOF. Let A = @f=l At, where AI = (Vt,.A;) for i = 1, ... , n, and A = 
(V,.I). Thus AI = Av\ for i = 1, ... , n. If A is a matroid then so is A vl, 
by Proposition 010; in particular, so is any component. 

Conversely, suppose AI is a matroid for i = 1, ... , n. Since J( = ~f-l ~ 
and .At () ~ = 0 for i ¥= j, it is obvious that J( is incommensurable. Let 
(Mlo M2, x, y) be an admissible 4-tupJe for A. Then Ml E.A; and M2 E ~ 
for some indices i, j. Since y E Ml () M 2 , we must have i = j. Condition B15 
now holds for J( since it is assumed to hold for .At. 0 

If A = (V, II) is a set system, a subsystem of A which is a matroid is called 
a submatroid of A. For example, if A is a matroid and Us;;; V, then (Proposi­
tion 010) Au is a submatroid and so is any direct summand of A. In general 
the matroid A[UI is not a subsystem of A with the following notable exception. 

D19 Exercise. Let A = (V,.I) be a matroid and let U E 9(V) + {0}. Prove: 
(a) Au is a direct summand of A if and only if Au = A[uI' 
(b) Ifr(Au) = r(A[UJ), then Au is a direct summand of A. [Hint: use 010 

followed by B29 and part (a).] 
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(c) Ifr(Au) + r(Av+u) = rCA), then Au is a direct summand of A. [Hint: 
use DI2d.] 

D20 Exercise. If Al>' .. , A" are matroids whose vertex sets are pairwise­
disjoint, prove that 

ffl A,L = (~1\y. 
The next exercise shows why one cannot substitute the words" independ­

ence system," "basis system," or "spanning system" for "matroid" in 018 
or 019. 

D21 Exercise. Let A = (V,.K) be a matroid with rank function r. Let A = 
Al E8 A2, where Ai = (Vb .A;) and r, is the rank function for 1\ (i = 1,2). 
Show that 

(a) J(A) = {Jl U J2 : J, E J(1\), i = 1,2}; 
(b) ffI(A) = {Bl U B2 : B, E ffI(1\), i = 1,2}; 
(c) .9'(A) = {Sl U S2: S, E .9'(1\), i = 1,2}; 
(d) r(U) = rl(U n Vl ) + r2(U n V2)'/or all U E fIJ(V). 

It was pointed out above in §B that if d is a subspace of fIJ(V), then 
(Fnd(d), vIt(d» is an example of a matroid. A necessary and sufficient 
condition for (Fnd(d), vIt(d» to be connected is given by Proposition ]Je22. 
The next proposition shows that this same condition characterizes connected­
ness for arbitrary matroids. 

D22 Proposition. A necessary and sufficient condition for a matroid (V, .K) 
to be connected is that for every Xl, X2 E V, there exists ME vIt such that 
{Xl> X2} s; M. 

PROOF: Necessity. If (V,.K) = (Vl> .41) E8 (V2' vl(2) and if one can select 
Xl E Vl and X2 E V2, then clearly {Xl> X2} $ M for all ME vltl + vlt2 = vIt. 

SUfficiency. Suppose that A = (V,.K) is connected, and let Xl E V. It 
follows that each vertex of A belongs to some cycle. Let U = U{M EvIt: Xl EM}. 
We must show U = V. 

We first show that if ME vIt and M n U =F 0, then M s;;; U. For if this 
were not so, one could select M l, M2 E vIt such that Xl E Ml> Z E M2 + (M2 n 
U), and Ml n M2 =F 0 hold while \Ml U M2\ is as small as possible. Note that 
Xl ¢ M2. Hence for any y E Ml n M2, the 4-tuple (Ml> M2, Xl> y) is admis­
sible. Since A is a matroid, there exists M E vIt such that Xl EMs;;; (Ml U M 2) 

+ {y}. Since vIt is incommensurable, M $ Ml> and so M n M2 =F 0. By 
our minimality assumption, \M U M2\ ~ \Ml U M2\. This implies that 
M 2 Ml + (All n M 2). Since (M2, Ml> Z, y) is also admissible, there exists 
M' E vIt such that Z E M' S;;; (Ml U M2) + {y}. Since M' 1: M 2, we have 
M' n (Ml + (Ml n M2» =F 0. It follows that M n M' =F 0 and that 
MuM's;;; (Ml U M2) + {y}, contrary to our minimality assumption. 
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We have shown that 1Tu[.H] s;; .H and in fact that Au = A[UJ. Hence Au 
is a direct summand of A. Since U # 0 and A is connected, Au = A. Hence 
U = V as required. 0 

D23 Exercise. Describe all connected matroids with not more than six 
vertices. 

D24 Exercise. (a) Under what conditions are complete matroids connected? 
(b) Under what conditions is the matroid of matched sets (of a multigraph) 
connected? 

Analogous to Tutte connectivity for multigraphs (cf. § VIE), one can define 
m-connectedness for matroids (see [t.8]). If A = (V, .H) is a matroid with 
rank function r, we say that A is m-separated ifthere exists U E &J(V) such that 

(a) m < min{1 UI, I V + UI}; 
(b) m = r(U) + reV + U) - reV). 

The connectivity of A is given by 

T(A) = min{m EN: A is m-separated} 

with T(A) = 00 if A is m-separated for no mEN. 

D25 Proposition. For any matroid A, T(A) = T(AL). 

PROOF. Let r1. denote the rank function of AL, and let U E &J(V). Then by 
D4e, 

r1.(U) + r1.(V + U) - r1.(V) 
= (lUI + reV + U) - reV)) 

+ (I V + UI + r(U) - reV»~ - (I VI + r(0) - reV»~ 
= r(U) + reV + U) - reV), 

and the result follows. o 

D26 Exercise. Show that the matroid A is connected if and only if T(A) :2:: 1. 

D27 Exercise. Compute T(A) for (a) the complete matroid of rank r with n 
vertices, and (b) the two Fano matroids. 

XE Transversal Matroids 

This section is a synthesis of results extracted from the following founda­
tional papers: L. Mirsky and H. Perfect [m.ll], H. Perfect [p.2], and R. Rado 
[r.l]. 

Let A = (V,/, E) be a system. A transversal of A is a subset of V of the 
form A[F] where F s;; E and A: F -+ UeeF fee) is an LDR of AF • The largest 
transversals of A have cardinality lEI if and only if A admits an LDR. 

295 



X Matroid Theory 

Recall that if fJ4 is the collection of largest matched sets of a graph r = 
(V, C), then (V, fJ4) is a basis system. The matroid 0 such that fJ4(0) = fJ4 is 
called the matching matroid of r. 

El Lemma. Let /T be the set of transversals of a system A = (V, /, E). Then 
(V, /T) is an independence system. 

PROOF. Let r = ([V, E), $") be the bipartite graph of the system A. Let 
o = (V u E, Jt) denote the matching matroid of r. We shall show that 
/T = .I"(0v). 

A subset T £; V is in /T if and only if for some E' £; E and some matching 
$"' £; ofF, we have T u E' = UFejO' F; that is to say, T u E' is a matched set 
of r. By Exercise AlO, this is equivalent to saying that T u E' is contained 
in some member of fJ4, or equivalently, T u E' E .1"(0). Hence T E .1"(0) n 
&J(V) = .I"(0v), by Exercise D12a. Conversely, if T E .I"(0v), then T E .1"(0). 
Hence T is contained in some member of fJ4, and using the definition of fJ4, 
we return through the above chain of equivalent statements. 0 

If A = (V,/, E) is a system, then the matroid 0 such that .1"(0) is the set 
of all transversals of A is called the transversal matroid of A. Clearly fJ4(0) 
is the set of largest transversals. Thus r(0) ;5; lEI, with equality holding if 
and only if A admits an LDR. 

E2 Exercise. If0 is the transversal matroid of a system A = (V,/, E), prove 
that the rank function r of 0 is given by 

r(U) = 101- max{ISI-IUf*(x)I:S£; U}, for all UE&J(V). 
xeS 

E3 Lemma. Let 0 be the matching matroid of a bipartite graph r = 
([Vl, V2), C). Then 0 = 0 V1 EB 0 V2 ' and r(0) = 2r(0v1) = 2r(0v2). 

PROOF. By definition of the matching matroid, r(0) = 2CX1(r). It follows by 
Exercise D12c that r(0v J = r(0V2) = CXl(r). By Exercise D19c, 0 V1 and 0 V2 

are direct summands of 0, whence the lemma. 0 

An immediate consequence of this lemma is the following: 

E4 Lemma. Let 0 be the transversal matroid of the system A and let <I> be 
the transversal matroid of A *. Then 0 EB <I> is the matching matroid of the 
bipartite graph of A, and r(0) = r(<I». 

E5 Proposition. Every transversal matroid of rank b is the transversal matroid 
of a system with exactly b blocks. 

PROOF. Let 0 be the transversal matroid of A = (V,/, E) and suppose 
r(0) = b. Let <I> be the transversal matroid of A *, and let F £; E be a basis 
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for <1>. Let Us;; V be a basis for 0. By Lemma E4, 0 EB <I> is the matching 
matroid of the bipartite graph of A. By Exercise D21 b, U u F is a basis of 
o EB <1>. That means that U u F is the set of vertices of a matching from F 
onto U. We have shown that Uis a transversal of the system (V, fiF, F). Hence 
every transversal of A is also a transversal of (V, fiF, F). Finally, any trans­
versal of (V, fiF, F) is clearly a transversal of A. 0 

Certainly the present discussion of matchings, LDR's, etc., must have 
suggested to the reader that transversal matroids are related to the Phillip 
Hall Theorem (VDl). The next proposition gives the connection. A system 
and a matroid are given which have the same vertex set V. A necessary and 
sufficient condition is given for the existence of an LDR which has a particular 
property relative to the matroid. Note that if the matroid is (V, 0), then its 
rank function is merely the cardinality function, and the result reduces to the 
Phillip Hall Theorem. 

E6 Proposition (R. Rado [r.I]). Let A = (V, J, E) be a system and let 0 = 
(V, JI) be a matroid with rank function r. A necessary and sufficient con­
ditionfor there to exist an LDR A of A such that A[E] E .)f(0) is that 

r(U fee») ~ IFI for all FE flJ(E). 
eeF 

PROOF: Necessity. Let A be an LDR of A and suppose that A[E] E .)f(0). If 
F s;; E, then certainly A[F] E .)f(0). Since A[F] s;; UeeF fee), we have IFI = 
I A[F]I = r(A[F]) ~ r(UeeF fee)). 

Sufficiency. We assume the condition to hold and proceed by induction 
on the number of blocks in A. To begin, suppose that E = {e}. Since r(f(e)) > 
0, it is clear that the required LDR exists. Suppose therefore that lEI > 1 
and, as induction hypothesis, that the condition is sufficient for all matroids 
with fewer than lEI blocks. 

Case 1: r(UeeF fee)) > IFI whenever 0 c FeE. Let eo E F. Since 
r(f(eo)) > I, there exists Xo Ef(eo) such that {xo} E .)f(0). Let A' = 

(V + {xo},J', E + {eo}), wheref'(e) = fee) n (V + {xo}) for all e E E + {eo}. 
Let FE flJ(E + {eo}), and let r[v+{xo)) denote the rank function of 0[v+{xo)). 
By DI2d, we have 

r[v+{xo))(U f'(e)) = reV + (V + {xo}) + U f'(e) - reV + (V + {xo})) 
eeF eeF 

= r({xo} + U f'(e)) - I 
eeF 

= r({xo} u U fee)~ - I 
eeF 

~ r(U fee)) - I ~ IFI. 
eeF 
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By the induction hypothesis, A' admits an LDR A' such that >.'[E + {eo}] E 

J(01v + (xo)))' Defining A: E -+ V by 

A(e) = {A(e) ~f e E E + {eo}, 
Xo If e = eo, 

we have that A is an LDR of A. Finally, since {xo} E J(0) and A(E) + 
{xo} E J{0[v+{xoJl)' we have by DI2g that A{E) E J(0). 

Case 2: there exists EI such that r(UeeElf(e» = IEII and 0 c EI C E. 
Let Al = (VI, fr, EI) = AE1. Let V2 = V + VI> E2 = E + EI, andh(e) = 
fee) n V2 for all e E E2. Let A2 = (V2' h, E2)' By DI2c, we may apply the 
induction hypothesis to AI; there exists an LDR Al of Al such that Al[Ed E 
J(0vJ. 

If F E f!)J(E2), then by D 12d, 

r[V21(U f2(e» = reV + V2 + U f2(e» - reV + V2) 
eeF eeF 

= r([U fee)] + [U h(e))) - r(Vl) 
eeEl eeF 

= r( U fee»~ - r(Vl) 
eeEl +F 

We apply the induction hypothesis to A2 ; there exists an LDR A2 of A2 
such that A2[E2] E J(0[V21)' One easily verifies that the function A given by: 
A(e) = Aj(e) if e E Ej (i = 1,2) is an LDR of A. It follows from Dl2g that 
A[E] = A[El] + A[E2J E J(0). 0 

The above proposition affords us a characterization of a pair of systems 
admitting an LCR which is "nicer" than Proposition VD4. Observe in the 
next result that the subscripts 1 and 2 are clearly interchangeable. 

E7 Corollary. A necessary and sufficient condition for the pair of systems 
Aj = (V, ft, Ej)for i = 1,2 with IEll = IE21 to admit an LCR is that 

rl(U f2(e» ~ IFI, for all FE f!)J{E2), 
eeF 

where rl is the rank function of the transversal matroid of AI' 

PROOF. Let 0 be the transversal matroid of AI' By the above proposition, 
the condition given in this corollary is equivalent to the existence of an LD R 
A2 of All such that A2[E2] E ..1(0), i.e., such that A[ElI ] is a transversal of AI' 
This is equivalent by definition to the existence of an LDR Al of Al such that 
Al[El] = A2[ElI ]. 0 
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E8 Exercise. Derive Proposition VD4 from the above Corollary. [Hint: use 
Exercise E2.] 

E9 Exercise. For i = 1,2, let Aj = (V,,/;, Ej ) where IEII = IE21 = m, and 
let rl denote the rank function of the transversal matroid of AI. Prove that a 
necessary and sufficient condition for the existence of an LCR for the systems 
Al and A2 is that rl(S) + r2(V + S) ~ m for all S £ V. 

EIO Exercise. Let AI> ... , An be systems with the same vertex set V. Let 
~ be the collection of transversals of AI (i = 1, ... , n). Under the assumption 
that (V, nf,;f ~ is an independence system, state and prove a necessary 
and sufficient condition for the existence of an LCR ('\I> ... , '\n) for the 
systems AI> ... , An. 

The above exercise should give some insight into the difficulty in formulat­
ing a "nice" necessary and sufficient condition for the existence of an LCR 
for more than two systems. The condition that the intersection of the trans­
versals of all but one of the systems form an independence system is indeed 
rather strong. Unfortunately it appears indispensible. Let us look at a simple 
case. 

Example. Let V = {xo, Xl, X2, X3}. For i = 1,2,3, let EI = {xo, XI}, let 
tS; = {Eh V + EI}, and let AI be the set system (V, tS;). One easily verifies that 
the pair of systems Al and A2 admits exactly two LCR's ('\I> '\2) and (""'I> ""'2), 
where '\i(EI) = xO, '\I(V + EI) = X3 and ""'1(EI) = Xl = ""'2(V + E2), 
""'1(V + EI) = X2 = ""'2(E2). The largest transversals common to Al and A2 
are To = {xo, X3} and TI = {Xl' X2}. We note that (V, {To, TI}) is not an inde­
pendence system since Condition B2 fails. Furthermore, neither To nor TI 
is a transversal of A3 • By the symmetry of this example, it is clear that any 
two of AI> A2, and A3 admit an LCR, but there exists no LCR for all three 
systems. 

Having considered a class of matroids closely related to the Phillip Hall 
Theorem, namely transversal matroids, we turn to a class of matroids related 
to the Menger Theorem. 

Ell Proposition. Let (V, D) be a directed graph, let Z £ V, and let 

.91 = {A E &(V): there exists a IAI-family of pairwise-disjoint AZ-paths}. 

Then (V,.9I) is an independence system, and the matroid corresponding to 
it has rank IZI. 

PROOF. Condition Bl is satisfied by (V,.9I), since clearly any subset of a set 
in .91 also belongs to .91. Clearly if A E .91, then no edge of an AZ-path can be 
of the form (z, x) where z E Z. Without loss of generality we may assume that 
(V, D) admits no such edges. It follows that a vertex in Z can only be a ter­
minal vertex of a path in (V, D). 
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Suppose now that when d is defined in terms of some set Z S V, then 
(V, d) fails to satisfy B2. Clearly IZ I > 1, for if IZ I = 1, then d s &HV) 
and B2 holds vacuously. We may therefore assume that IZI is minimal with 
respect to the condition that (V, d) does not satisfy B2. It follows that for 
some sets AI> A2 Ed with IAll < IA21, we have that Al + {x} ¢d for all 
x E A2 + (Al n A2). 

SupposethatAl nZ =1= 0.LetZ' = Z + (Al nZ).ThenO < IZ'I ~ IZI. 
We define 

d' = {A E.9'(V): there exists alAI-family of pairwise-disjoint AZ'-paths}. 

Letting Al ' = Al + (Al n Z), we have Al ' Ed'. Consider a IA21-family of 
pairwise-disjoint A2Z-paths, and let A2' be the set of initial vertices of those 
paths in the family which terminate in Z'. Clearly A2' Ed', and IA2'1 ;;:; 
IA21 - IAl n ZI > IAll - IAl n ZI = IAl'l. By the minimality of IZI, 
there exists x E A2' + (A l ' n A2') such that Al ' + {x} Ed'. Since no 
(A/ + {x})Z'-path can meet Z + Z', it is immediate that Al + {x} E d, 
contrary to assumption. Hence Al n Z = 0. 

For each A Ed, let us define d(A) to be the minimum, taken over all IA 1-
families of pairwise-disjoint AZ-paths, of the sum of the lengths of the paths 
in the family. We may assume without loss of generality that if IAI < IA21 
and if A + {x} ¢ d for all x E A2 + (A n A2), then d(A) ;;:; deAl)' Since 
Al n Z = 0, we have deAl) ;;:; lAd. 

Since IAll < IA21, we note that Al does not separate Z from A2; i.e., there 
exists an A2Z-path which avoids A l • Let w denote the initial vertex of such a 
path, and note that Al + {w}¢d. Let us write m = IAll. If w¢'Z, then 
(Al + {w}) n Z = 0 and we may invoke Dirac's generalization of the 
Menger Theorem, namely Theorem VIB2, to obtain a set T s V U D such 
that ITI < m + 1 and T separates Z from Al + {w}. If, on the other hand, 
WE Z, then there exists no m-family of pairwise-disjoint Al(Z + {w})-paths. 
Again by VIB2, there exists a set T' S VU D such that IT'I < m and T' 
separates Z + {w} from A l • In this case, let T = T' + {w}. In either case, 
ITI ~ m and T =1= Al . We define 

S = (T n V) U {v E V: (u, v) E Tn D for some u E V}. 

Thus S s V, lSI ~ ITI, and S separates Z from Al + {w}. Since S also 
separates Z from Al and since Al Ed, we have in fact that I S I = I TI = 

IAll = m. 
Let ill, ... , ilrn be an m-family of pairwise-disjoint AlZ-paths, and let 

s, be the first vertex of S encountered on ill when one proceeds from Al 
(i = 1, ... , m). By considering the portions of these paths between Sand Z, 
we conclude that SEd. Moreover, since S =1= AI> we have deS) < deAl)' By 
our assumption of the minimality of deAl), we infer that S + {x} Ed for 
some x E A2 + (S n A2). Clearly x E A2 + (Al n A2)' There exists an 
(m + I)-family of pairwise-disjoint (S + {x})Z-paths. Let us denote them by 
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~l' ... , ~m+l. Since lSI = m, we may suppose that Sl is the initial vertex of~1 
for i = 1, ... , m and that x is the initial vertex of~m+l. 

Let TIl" ... , TIm' be the m-family of A1S-paths obtained by truncating the 
paths TI1o ••• , TIm, respectively. We assert that if TI/ and ~J nave a common 
vertex, then i = j and that vertex must be SI. For if they shared some other 
common vertex t ¢ S, then consider the path formed by proceeding from Al 
along TI/ to t and then following ~j from t to Z. This path would be an 
A1Z-path which avoids S. 

We may now construct an (m + I)-family of pairwise-disjoint (Al + {x})Z­
paths as follows. For i = 1, ... , m, form the path consisting of TI/ followed 
by ~I. (These are joined at SI.) To this family add the path ~m+l. Hence 
Al + {x} Ed. 

Since Z E.9I while no element of.91 has cardinality greater than IZI, it is 
clear that the matroid A with .1"(A) = .91 has rank IZI. 0 

Let (V, D) be a directed graph, and let Z s; V. The matroid A = (V,.K) 
such that .1"(A) = {A E &'(V): there exists a IAI-family of pairwise-disjoint 
AZ-paths} is called a strict gammoid, and any submatroid Au for U s; V is 
called a gammoid. Thus 0 = (U,,AI) is a gammoid if .1"(0) = {A E (!J(U): there 
exists an IAI-family of pairwise disjoint AZ-paths in (V, D)}; this follows from 
Exercise D12a. This section concludes with some results relating transversal 
matroids and gammoids, and so, in a sense, relating the Philip Hall Theorem 
and the Menger Theorem. 

Ell Lemma. Every transversal matroid is a gammoid. 

PROOF. Let 0 be a transversal matroid. By Proposition E5, 0 is the transversal 
matroid of a system A = (V,J, E), where lEI = r(0). Consider the directed 
graph (V U E, D), where D = {(x, e): x E f(e)}. Let .91 = {U E (!J(V): there 
exists a lUI-family of pairwise-disjoint UE-paths in (V U E, D)}. By definition, 
the matroid <I> = (V,.K) such that .1"(<1» = .91 is a gammoid, and by Proposi­
tion Ell, r(<I» = lEI = r(0). We leave it to the reader to complete the 
verification of the fact that 0 = <1>. 0 

E13 Theorem. Let 0 be a matroid. Then 0 is a transversal matroid if and only if 
0.l is a strict gammoid. 

PROOF. By Proposition E5, we may suppose that 0 is the transversal matroid 
of a system A = (V,J, E) and that lEI = r(0). Hence A admits an LDR A, 
and the image B = A[E] is a basis of 0. We form the directed graph (V, D), 
where D = {(x, y): x E B; y E (V + B) (') f(A -l(X))}. From (V, D) we form 
the strict gammoid <I> such that .1"(<1» = {A E (!J(V): there exists alAI-family' 
of pairwise-disjoint A(V + B)-paths}. We will show that 0.l = <I> by showing 
that the two matroids have the same bases. 
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Suppose V + A E a/(0.L), or equivalently (cf. 09d) that A E 81(0). Then 
A = K[E] for some LOR K of A, and we consider the bijection fJ = K.\ -1: B-+ 
A. Since fJ(x) E f(.\ -lex)) for all x E B, we have that either fJ(x) = x or 
(x, fJ(x)) E D. Proposition VIB7 implies the existence in (V, D) of a I V + AI­
family of pairwise-disjoint (V + A)(V + B)-paths, and so V + A E 81(<1». 
On the other hand, if V + A E 81(<1», retracing our argument in the reverse 
direction yields a bijection fJ: B -+ A such that fJ(x) Ef(.\ -lex)) for all x E B. 
Let K = fJ.\. Then K: E -+ A is a bijection, and for each e E E, K(e) = 
fJ(.\(e)) Ef(.\ -l(.\(e))) = fee). Hence K is an LOR of A. Since lEI = r(0), A 
is a largest transversal of 0, whence A E 81(0). Thus V + A E a/(0.L). 

Conversely, suppose that the matroid <I> is a strict gammoid formed from 
a directed graph (V, D) and a set Z s;; V, as in the definition of a gammoid. 
Let E be a I V + ZI-set disjoint from all other sets considered thus far, and 
let .\: E -+ V + Z be a bijection. We form the system A = (V, J, E) by 
defining 

fee) = {x EZ: (.\(e), x) E D} u {.\(e)}. 

Let 0 be the transversal matroid of A. We will show that 0.L = <1>. 
By our construction, .\ is clearly an LOR of A, and V + Z = '\[E] is a 

largest transversal of A. Let 

Dl = {(x, y) E D: x E V + Z; Y EZ nf(.\-l(x))}. 

The directed graph (V, Dl) and the set Z yield a strict gammoid, and by 
the argument of the first half of this proof, this strict gammoid is none 
other than 0.L. A close look at our terminology yields that for x E V + Z, 
f(.\ -lex)) = {y E Z: (x, y) ED} u {x}, and so Dl = {(x, y) E D: x E V + Z}. 
We see that no edge of (V, D) coming from D + Dl can occur in any path 
in a IZI-family of pairwise-disjoint AZ-paths, where A E &1zl(V). It follows 
that (V, D) and (V, Dl), with the same set Z, yield the same gammoid. D 

E14 Exercise. Show that 
(a) any minor of a gammoid is a gammoid; 
(b) any gammoid may be obtained from a transversal matroid by succes­

sive operations of taking minors or taking orthogonal complements. 

}OF llepresentab~ty 

Let A = (V,.H) be a matroid, and let IF be a field. A Whitney function for A 
over IF is a function w: V -+ ~ where "Y is a vector space over IF, such that 
for each set U E &'(V), w[U] is a basis for"Y if and only if U E 8I(A). Equiv­
alently, w is a Whitney function if wrY] spans "Yand w[U] is independent 
in "f/" if and only if U E J(A). 

Fl Example. If A = (E, .H(~(r))) is the cycle matroid of a multigraph r, 
then the function w: E -+ &,(E)/~(r), where wee) is the coset {e} + ~(r) for 
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each e e E, is a Whitney function. This is shown by the following sequence of 
equivalent statements. Let F s;; E. 

Fe J(A) <=? r F is a subforest of r. 

Moreover, 

<=? If G s;; F and G e .2'(r), then G = 50. 
<=? If G s;; F and ~eeG ({e} +' .2'(r» = .2'(r), then G = 50. 
<=? If ~eeF ae({e} + .2'(r» = .2'(r), then ae = 0 for all e e F. 
<=? {{e} + .2'(r): e e F} is independent in fJ'(E)/.2'(r). 
<=? w[F] is independent in fJ'(E)/.2'(r). 

dim(9(E)/.2'(r» = dim(9(E» - dim(!l'(r» 
= Vl(r) - (Vl(r) - vo(r) + V_l(r» = rCA) 

by B27. Hence w maps bases only onto bases. 

F2 Exercise. Given a vector space 1'; a set V, and any function w e j/'v, show 
that w is a Whitney function for some matroid A = (V, Jt) and that A is 
unique up to isomorphism. 

Again let A = (V, Jt) be a matroid and let IF be a field. A Tutte subspace 
for A over IF is a subspace fT s;; P such that Jt = Jt(a[fT]), i.e., Jt is the 
collection of minimal, nonempty subsets of V which are supports of functions 
in fT. This concept can be illustrated as well by Example FI, using the fact 
(cf. IB2) that the support function is an isomorphism from IKE to 9(E). 

F3 Lemma. Let A = (V, Jt) be a matroid. Let IF be a field and let fT be a 
subspace o/P. Let the/unction w: V ~ PlfT be given by w(x) = tx + fT. 
where tx(Y) = 0 if y 1: x and tx(x) = I (cf. IBI and IB4). Then fT is a 
Tutte subspace for A if and only if w is a Whitney function for A. 

PROOF. Suppose thatfT is a Tutte subspace for A. Since the image w[V] spans 
PIfT. one proves that w is a Whitney function for A by a sequence of 
equivalent statements identical to that of Example F2 above, except that V 
replaces E, P replaces 9(E), and fT replaces .2'(r). 

Conversely, suppose that w is a Whitney function for A, and let Me JI. 
Then M + {x} e J(A) for all x e M. Hence w[M + {x}] is an independent 
set of vectors in P 1fT. This means that for any indexed set {ay : y e M + {x}} 
of elements of IF, ~yeM+{X} ayty efT if and only if ay = 0 for all y e M + {x}. 
This shows that no proper subset of M is the support of a function in fT. 
On the other hand, since M ¢ J(A), the definition of wand the previous 
argument imply that ~yeM ayty efT for some indexed set {ay: y e M} of 
nonzero elements of IF. Thus M is the support of ~lIeM ayty. D 

Let w: V ~ j/' be a Whitney function. If fT is the kernel of the extension 
by linearity of w to P ~ 1'; i.e., w(f) = ~xev /(x)w(x) for / E P, then this 
lemma may be formulated more succinctly as follows: 
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F4 Proposition. A matroid admits a Tutte subspace over IF if and only if it admits 
a Whitney function over IF. 

If a matroid admits a Tutte subspace over IF or, equivalently, a Whitney 
function over IF, then it is said to be representable over IF. If !T is a Tutte 
subspace of the matroid A and if w: V -+ u:v /!T is the corresponding Whitney 
function, then r(A) = dim(U:V/.'T) = I VI - dim(.'T). Thus 

F5 r(A) + dim(.'T) = IVI. 

If V is a set and.91 is a subspace of U:V, then we write .911. to indicate the 
orthogonal complement of.91 under the standard inner product, i.e., 

.911. = {gejl": Lf(x)g(x) = Of or all fed}. 
xeV 

The inner product of §IIA is the special case of this notion when IF = IK. 
Equation IIA6 still applies. 

F6 Proposition. Let A = (V,.A) be a matroid which is representable over IF. 
(a) If!T S;; u:v is a Tutte subspace for A, then !Tl. is a Tutte subspace 

forAl.. 
(b) Every minor of A is representable over IF. 

PROOF. (a) Let!T be a Tutte subspace for A and let .IV be the set of minimal 
nonempty supports of functions in!Tl.. Following Example BI8, 0 = (V,.IV) 
is a matroid, and!Tl. is a Tutte subspace for 0. 

Let Me.A and N E.If: Then M = a(f) and N = a(g) for some f E !T 
and g e!T 1.. If there exisits y e M n N, then 0 = !xeV + (Y}f(x)g(x) + f(y)g(y). 
Thus f(x)g(x) =1= 0 for some x e V + {y}, which implies that 1M n NI > 1. 
Thus .IV S;; {A e 9i'(V): IA n MI =1= 1 for all Me.A}. By Proposition D5, 
every set in .IV is a union of sets in .Al.. We have by F5 and D2b that 
r(0) = IVI - dim(!Tl.) = dim(!T) = IVI - r(A) = r(Al.), whence 0 = Al. 
by Lemma B29. 

(b) If w is a Whitney function for A and Us;; V, we assert that wlu 

is a Whitney function for Au. This is clear since by Exercise DI2a, a set 
J e J(Au) if and only if J e J(A) and J S;; U, which is equivalent to saying 
that WIU[J] = w[J] is independent in lFu. Hence Au is representable over IF. 
This result and part (a) above imply that «Al.)u)l. is representable over IF. 
Hence by Proposition D13a, AWl is representable over IF. It follows that any 
minor of a matroid representable over IF is representable over IF. 0 

We have shown that if a matroid A is representable over IF, then so is Al.. 
A matroid is said to be regular if it is representable over every field. We 
therefore have 

F7 Corollary. A matroid A is regular if and only if Al. is regular. 

F8 Exercise. Show that the two Fano matroids are not regular by showing that 
they are not representable over Q. 
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F9 Proposition. The cycle and cocycle matroids oj any multigraph are regular~ 

PROOF. Let IF be a field and let r = (V,/, E) be a multigraph. For each 
x E V, we choose a function ix: E ~ IF satisfying 

ix(e) = 0 if x ¢J(e); 

i:x(e) = ± 1 if x EJ(e); 

i:x(e)ill(e) = -1 if J(e) = {x, y}. 

The function ix for x E V in effect orients the edges in the vertex cocycle of x. 
Let cp: P ~ F be defined so that for each h E IFE, its image cp(h) is given 

by cp(h)(x) = ~eEE i:x(e)h(e). It is immediate that cp is a linear transformation. 
Let 9" denote the kernel of cpo We will show that the minimal nonempty 
supports of functions in 9" are precisely the elementary cycles of r; that is, 
we show that 9" is a Tutte subspace over IF for (E, Jt(.!l'(r))). 

Let Z be an elementary cycle of r where r z is the elementary circuit 
XOelXle2 ... enXn = Xo. Let us define 

{
I if e = el; 

h(e) = -ixj(e,)h(e,)ixj(ej+l) if e = ej+l U = I, ... , n - 1); 
o otherwise. 

Clearly u{h) = Z, and one can verify that h is well-defined and that cp(h)(x) = 
o for all x E V. Thus h E 9: That Z is a minimal, nonempty support follows 
since Z is an elementary cycle. If h E:T, then since cp(h) = 0, we must have 
per l1(h») ~ 2. Thus r l1(h) contains an elementary circuit, by IIIA6a. Hence 
a(h) contains an elementary cycle. 0 

It was remarked in the above proof that the functions ix serve to orient 
the edges with which x is incident. On this" oriented mUltigraph" the function 
cp is in effect a boundary operator (cf. §/VB). Its kernel, the Tutte subspace, 
looks like a flow space. Indeed if IF = 0 and if r is a graph, then this is 
precisely what happens. Let us sketch how the notions of §/VA and §/VB 
can be exploited to prove the more limited result, that the cycle and cocycle 
matroids of a graph 0 = (V, C) are realizable over O. 

Letting W = (V x V) + {(x, x): x E V} as in §/VB, we orient the edges 
by defining i: C ~ W so that if E = {x, y} E C, then i(E) E {(x, y), (y, x)}. 
The function i induces a natural imbedding of 0 4 in 0 w when the elements of 
0 4 are extended by zero. Abusing notation, let 0 4 also denote this subspace 
of Ow, and let 9" = 0 4 n ker(o), where 0 is the boundary operator (§/VB). 
By Exercise /VAI8 and Proposition IVB8, 9" is a unimodular subspace, and a 
function h E 9" is elementary if and only if it assumes values of ± 1 on some 
elementary cycle of 0 and the value 0 elsewhere. Thus Jt(a[9"]) = Jt(~(0)). 
Actually we have shown that (C, Jt(.!l'(0))) has a unimodular Tutte subspace 
over O. By Proposition F6a and IVA19, the cocycle matroid of 0 also has a 
unimodular subspace over Q. 

The next exercise shows that when 0 is replaced by an arbitrary field IF 
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in Proposition IVA6 and if 9' is a subspace of F, then any function hE 9' 
has a decomposition satisfying conditions (a) and (b) of IVA6. If f is an 
ordered field, then condition (c) also holds, but we shall not require this fact. 

FlO Exercise. Let 9' be a subspace of F and let h E 9'. Prove that h = 21"= 1 hi 
where for i = 1, ... , m, hi E 9' and: 

(a) u(hi) E Jf({O'(g): g E 9'}) = Jf(O'[9']); 
(b) O'(hj ) S;; O'(h). 

Realizability of a matroid over Q is almost a sufficient condition for 
regularity, as we now see. 

Fll Proposition. If some Tuite subspace over Q for the matroid A is uni-
modular, then A is regular. 

PROOF. Let.r be a unimodular Tutte subspace over Q for A = (V, J() and 
let f be an arbitrary field. By Proposition IVAI9,.r1. is a unimodular sub­
space of Q v, and by F6a, .r 1. is a Tutte subspace over Q for A 1.. We consider 
a mapping h f-+ Ii from the set {h E QV: h[V] S;; {-I, 0, I}} into F (cf. §IVA) 
whereby h(x) = Ii(x) for all x E V; i.e., the integers -1,0, 1 are reinterpreted 
as elements of f, with the understanding that -1 = 1 if f has characteristic 2. 
Clearly u(h) = O'(Fz). Let ~ denote the subspace of F spanned by the set 

{Fz E fV: h E.r; h is elementary}, 

and let ~ be the subspace spanned by 

{Ii E F: h E.r1.; h is elementary}. 

Following Example BI8, the set systems 0, = (V, Jf(O'[~])) for j = 1,2 are 
matroids. 

If ME Jf, then M = u(h) for some hE.r. By the definition we may assume 
that h is elementary. Hence Ii E 9;., and by Exercise FlO, M = 0'(1i) is a union 
of cycles of 0 1 , In particular if a subset of V contains a cycle of A, then it 
contains a cycle of 0 1 , Equivalently, every independent set of 0 1 is an 
independent set of A, whence 

F12 

Bya similar argument, by picking an elementary function in.r\ we deduce 

Fl3 

Let h1 E.r and h2 E.r1. be elementary. Then 2xev h1(x)h2(x) = 0, and so 
2xev 1i1(x)Fz2(x) = 0. By the definitions of 9;. and~, it follows that ~ S;; 9;.1.. 
Hence 

Fl4 dim(~) ~ dim(9;.1.). 

Combining successively FI2, D2b,F13, FS, and F14, we obtain: 

r(01) ~ r(A) = I VI - r(A1.) ~ I VI - r(02) = dim(~) ~ dim«9;.)1.) 
= I VI - dim(9;.) = r(01), 
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whence r(01) = r(A). By our previous remarks, we may invoke Lemma B29, 
concluding that A = 0 1 , Thus A is representable over IF. 0 

F15 Exercise. Let A = (V, vft) be a matroid and suppose that A = EBr=l At, 
where At = (Vb J4)for i = 1, ... , k. Prove that 

(a) If ff is a Tutte subspace over IF for A, and Us V, then {hlu: h Eff} 
is a Tutte subspace over IF for AWl' In particular, if U = Vb then {hi u: h E ff} = 
ffn!FYl. 

(b) If .r; is a Tutte subspace over IF for AI (i = I, ... , k), then EBr=l .r; 
is a Tutte subspace over IF for A. 

(c) If .r; is a subspace of QV1 (i = I, ... , k), then EBr= 1 .r; is unimodular 
if and only if .r; is unimodular,for i = I, ... , k. (Cf. Exercise IVAIS.) 

Of particular interest is the question of whether a given matroid A is 
representable over the field K If so, then A is called a binary matroid. We 
have seen in Example Fl that the cycle matroid of a multigraph is a binary 
matroid. By Proposition F6a (even without Proposition F9), the cocycle 
matroid of a multigraph is therefore binary, too. Let us first consider two 
easy characterizations of binary matroids. 

F16 Proposition. A matroid A = (V, vft) is binary if and only if vIt = vIt(.9I) 
for some subspace d of .9'(V). 

PROOF. This result is an immediate consequence of the definition and the fact 
(IB2 and IB3) that the support function (1: IKv -+ .9'(V) is a vector space 
isomorphism. 0 

F17 Corollary. Let A = (V, vft) be a matroid. 
(a) If A is binary and Mb ... , Mk E vIt, then 2:r= 1 MI can be expressed 

as the sum of pairwise-disjoint cycles of A. 
(b) Suppose that Ml + M2 can be expressed as the sum of pairwise­

disjoint cycles of A whenever Mb M2 E vIt. Then A is binary. 

The proof is a restatement of various properties of the vector space 
(.9'(V), +) over IK; the details are left to the reader. 

A more interesting characterization of binary matroids will now be given 
in terms of a particular" forbidden" minor. 

F18 Example. Let V be a 4-set. Then the complete matroid (V, -9a(V» is not 
binary. This is evident by the criterion of Corollary F17a. This particular 
matroid of rank 2 will be denoted by O2 , One easily checks that every matroid 
with 3 or fewer vertices is binary. 

F19 Theorem (W. T. Tutte [t.6]). A matroid is binary if and only ifno minor 
is isomorphic to O2 , 

PROOF. By Proposition F6b, every minor of a binary matroid is also binary. 
Since O2 is not binary, it cannot be a minor of a binary matroid. 
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Given a matroid which is not binary, some minor A = (V, Jt) is also not 
binary. We choose A so that I VI is as small as possible. Thus every proper 
minor of A is a binary matroid. By Corollary F17b, there exist cycles M1> 
M2 E vIt such that Ml + M2 cannot be expressed as a sum of pairwise­
disjoint cycles of A. In particular, Ml + M21= vIt. Since Ml and M2 are also 
cycles of 0MIUM2' it follows that 0MIUM2 cannot be a binary matroid. By the 
minimality of I VI, we have Ml U M2 = V. By our assumption, Ml () M2 # 0. 

We first show that Ml + M2 E J(A). For suppose that M £; Ml + M2 
for some ME vIt. Then M c Ml + M2 since Ml + M21= vIt. Hence for some 
i = 1,2, we have M U M j # V; let us say M U M2 C V. Since AMUM2 is 
binary, we have by Corollary FI7a that M + M2 can be expressed as the sum 
of pairwise-disjoint cycles N1>"" Nk E vIt, and N j £; M + M2 for i = 
I, ... , k. Clearly Ml + (M + M 2) = Ml + Nl + ... + Nk , and Ml U 

Nl U ... U Nk = Ml U (M + M2) c V, since M must contain at least one 
element of M2 + (M1 () M2)' Applying FI7a again, we have that Ml + 
Nl + ... + Nk is a sum of pairwise-disjoint cycles Nt', ... , Nk,' E vIt. Hence 

Ml + M2 = N1 ' + ... + Nk,' + M. 

But M () N/ = 0 for i = I, ... , k', contrary to our initial assumption 
concerning Ml + M 2 • 

Let x E Ml () M 2 • Thus A[V+{x}] = (V + {x},.!l) is a binary matroid. By 
Exercise Dllb, Ml + {x} and M2 + {x} belong to !l', and so Ml + M2 = 
(Ml + {x}) + (M2 + {x}) is a sum of pairwise-disjoint cycles L1> ... , Lm E JtJ. 
Since L j £; Ml + M 2, we have L j 1= vIt. Hence by Dlla, LI + {x} E vIt for i = 
1, ... , m. If m ~ 2, then (L1 + {x}, L2 + {x}, x) is an admissible triple, 
yielding a cycle M £; Ll U L2 £; Ml + M2, which is impossible. Thus 
Ml + M2 + {x} = Ll + {x} E vIt for all x E Ml () M2. Hence Ml + M2 E 
8I(A). By the incommensurability of vIt, Ml $ Ml + M2 + {x}, which 
implies that there exists some vertex WE (Ml () M 2) + {x}. 

Let Ma = Ml + M2 + {x} and M4 = Ml + M2 + {w}. Since Ma + 
M4 = {w, x} C M 1 , Ma + M4 E J(A), and so Ma + M4 is not a sum of 
pairwise-disjoint cycles. Hence Ma U M4 = V, whence Ml () M2 = {w, x}. 

Since Ml and Ma are a pair of cycles of A whose union is V, Ml + Ma 
cannot be expressed as a union of pairwise-disjoint cycles. Hence all of the 
arguments applied in this proof to Ml and M2 may also be applied to Ml 
and Ma. In particular, IMI () Mal = 2. One vertex in Ml () Ma is x; let y 
denote the other vertex. Since Ml = M2 + Ma + {x} £; M2 U Ma, we have 
Ml = (Ml () M2) U (Ml () Ma) = {w, x, y}. Similarly, working with M2 
and Ma, we deduce M2 () Ma = {x, z} for some z E V and M2 = {w, x, z}. 
Thus Ma = {x, y, z} and M4 = {w, y, z}. We have shown that A is O2 , D 

F20 Exercise. Show that the matroid O2 is representable over every field 
except II{. 

F21 Exercise. Show that every binary matroid with not more than six 
vertices is regular. 
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There exist a number of interesting and powerful results on represent­
ability of matroids which have not been presented in this section. By com­
bining some further results of W. T. Tutte [t.6] with Proposition Fll, we 
can formulate the following strong characterization of regular matroids. 

F22 Theorem. Let A be a matroid. Then the following are equivalent: 
(a) A is regular. 
(b) A admits a unimodular Tuite subspace (over Q). 
(c) A is binary and no minor of A is a Fano matroid. 

M. J. Piff and D. J. A. Welsh [p.5] have shown that every gammoid, and 
hence every transversal matroid, is representable over all sufficiently large 
fields. We close by presenting in the form of an exercise an example of a 
matroid which is representable over no field at all. The reader may recognize 
part (b) as part of the classical theorem of Desargues. 

F23 Exercise. Let V consist of the 10 points and let .fR consist of the 9 lines 
shown in Figure F24. Let IF be an arbitrary field. 

(a) Show that (V, ~(V) + .fR) is a basis system. 
(b) Show that if V s;; P and if each set L E .fR were contained in a line in 

1F3, then {a", b", c"} would be contained in a line in P. 
(c) Let A be the matroid such that 8l(A) = ~(V) + !l'. Show that there 

exists no Whitney function over IF for A. 
(d) In the case that IF = IK, describe the minors of A which are isomorphic 

to O2 , 

F24 

o 
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CHAPTER XI 

Enumeration Theory 

Some basic principles of enumeration were presented in §IE. Several well­
known methods of enumeration are presented in the four sections of this 
chapter. 

The second section presents generating functions and recurrence tech­
niques. It is necessarily preceded by a section on the theory of formal power 
series, due originally to E. T. Bell [b.2]. In the third section we present 
Polya's "Fundamental Theorem of Combinatorial Enumeration," which 
enables one to count isomorphism classes of objects rather than just the 
objects themselves. The final section introduces inversion techniques, which 
generalize the Principle of Inclusion-Exclusion. 

XIA Formal Power Series 
In this section we shall be concerned with the vector space eN of infinite 
sequences of complex numbers. Bowing to tradition as well as for reasons 
of convenience, we shall denote a sequence a: N ~ e by the "formal power 
series" 

"" 
a = a(x) = 2: aJxi 

J=O 

where aJ denotes aU) for allj EN. Viewed abstractly, the symbol x is merely 
a sort of placeholder. Its presence, however, will help underline many 
analogies to the theory of analytic functions, which we will derive quite 
independently for formal power series. 

We have in eN the basic operations of addition: 

"" "" "" 
At a(x) + b(x) = 2: aJxi + 2: bJxi = 2: (aJ + bJ)xl = (a + b)(x) 

1=0 1=0 1=0 
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for all a, b E CN, arid scalar multiplication: 

00 00 

za(x) = z ~ a,x1 = ~ za,x1 = (za)(x) 
'=0 '=0 

for all z E C. With respect to these two operations, CN is a vector space, with 
additive identity 0 being the sequence whose every value is O. 

If a, b E CN, we define a product 

A3 

which is clearly commutative. To verify that it is associative, let a, b, c E CN 
and observe that by A3 the term «ab)c)" is 

which is precisely (a(bc»". The multiplicative identity 1 is the sequence that 
assigns 1 to 0 and assigns 0 to everything else. One can straightforwardly 
verify that multiplication distributes over addition and that (z(ab»(x) = 
«za)b)(x) for all z E C and a, b E CN. We thus obtain the standard algebraic 
result: 

A4 Proposition. Under the operations At, A2, and A3, CN is a commutative 
algebra over C. 

If n E N, a formal power series a E CN such that a" =1= 0 but aJ = 0 for 
all j > n is called a polynomial of degree n, while 0 is by definition the poly­
nomial of degree -1. We let /MI" denote the set of polynomials of degree less 
than n. If a E /MIm and be /MI", then ab E /MIm+"-l' Clearly U:'=o /MI" (whose 
elements are called polynomials) is an infinite-dimensional subalgebra of CN, 
while /MI" is an n-dimensional subspace of CN. Finally a 1-+ ao defines an 
algebra-isomorphism from /MIl onto C; in this case we identify a with ao 
and regard C as a subalgebra of CN. Thus A2 becomes a special case of A3. 

An element of an algebra is called a unit if it has a mUltiplicative inverse. 
Surely all the elements of C + {O} are units. Since the following is a standard 
algebraic result, we omit the proof. 
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AS Proposition. If a E CN, then a is a unit if and only if ao =F o. 

If a is a unit of CN, its inverse will be denoted by l[a. If a and b are poly­
nomials and ao =F 0, then b[a = b(1[a) is a rational function. 

A6 Exercise. Show that if a is a polynomial of degree m with ao =F 0, if b is a 
polynomial of degree n, and if m ::;; n, then b[a = d + c/a where d is a poly­
nomial of degree n - m and c E Mm. 

If z E C and n > 0, then 1 - zx71 is a unit by Proposition AS. It is partic­
ularly useful to know the form of its inverse. 

A7 Lemma. 1/(1 - zx7l) = 'Li'=o zlx7lj for all Z E C and n > O. 

PROOF. By A3, 

00 00 00 

(1 - zx7l) L: z'x7l' = L: z1X7l1 - L: zH1X7l(J+1) = 1. 0 
'=0 1=0 1=0 

The reader surely must have noticed the formal similarity between the 
formal power series 'Li'=o ZIX7l1 and the Taylor series expansion of 1/(1 - zx7l) 
about zero for Ixl < (1[lzl)l'7I. In particular, we have 

A8 Examples. 
(a) 1[(1 - x) = 'Li'=o Xl; 
(b) 1[(1 + x) = 'Li'=o (-IYxf; 
(c) 1[(1 - x2) = 1[(1 - x)(1 + x) = 'Li'=o X2i• 

A9 Exercise. Prove: 
(a) [a/(1 - x)]71 = 'L1=0 aJ for any a E CN; 
(b) 1[(1 - x)7I = 'Li'=o (7I+l- 1)x1; 
(c) x7l[(1 - X)7I+l = 'Li'=71 WxJ. 

We define the function D: CN ~ CN by D(a)(x) = 'Li'=o (j + l)aHlxl. 
It is easy to verify that D(a + zb) = D(a) + zD(b) for all a, b E CN and all 
z E C, and so D is linear. The analogies between the function D and the 
differential operator go much further. We list some of these in the following 
exercise; observe that the proofs rely in no way upon any results from the 
calculus. 

AIO Exercise. Prove for all a, bE CN and kEN, 
(a) DIc(a)(x) = 'Li=o [(j + k)!/j!]aHlcxJ; 
(b) a(x) = 'Li=o ([U(a)]o/j!}xi; 
(c) D(ab) = D(a)b + aD(b); 
(d) D(1/b) = - D(b)/b2; [Hint: use (c) to compute D(b(1[b)).] 
(e) D(a/b) = (D(a)b - aD(b))/b2 • 

(f) D(a7l) = na7l - 1D(a)for all n E 7L. 

312 



XIA Formal Power Series 

All Exercise. Let a, b E CN. Prove that if a is a polynomial or if bo = 0, then 
~i=o alb(x))f E CN. 

When ~i=o alb(x))' is a formal power series, it is denoted by a 0 band 
is called the composition of a by b. As in the calculus, composition is associ­
ative and a "chain rule" applies. 

A12 Exercise. Prove for all a, b, C E CN with bo = Co = 0, 
(a) (a 0 b) 0 C = a 0 (b 0 c); 
(b) D(a 0 b) = (D(a) 0 b)D(b). 

The identity for composition is the polynomial x. The condition given in 
Exercise All is sufficient but not necessary for the existence of a 0 b. For 
example, if an = bn = lin! then a 0 b has the form of the MacLauren series 
for exp(exp(x)), yet a and b are not polynomials and ao = bo = 1. 

The concluding result of this section gives necessary and sufficient condi­
tions for the existence of an nth root of a formal power series. 

A13 Proposition. Let a E CN and let n ~ 2 be an integer. There exists b E CN 
such that a = bn if and only if the least j for which aj # 0 is an integral 
multiple of n. 

In lieu of a proof, we give a demonstration for n = 2, leaving the generaliza­
tion to the reader as an Exercise. 

Let a = b2 and let k be the least integer for which bk # O. If j is the least 
integer such that aj # 0, then clearly j = 2k. 

Conversely, suppose 2k is the least integer such that a2k # O. Then a(x) = 
X2k J.,J=o CjXf, where cj = aj-2k and Co oft O. It suffices to show that c(x) = 
~i=o CjXf = [f(x)]2 for somefE CN. We letfo = ± v'Ca and define 

By solving this equation for Cj' one sees that Cj = ([f(X)]2)j. 

A14 Exercise. Prove for all a E CN and all q E Q such that aq is defined, we have 
D(aq) = qaq-1D(a). [Hint: first consider the case where q = lin for n E 
N + {O}.] 

A15 Exercise. Define A: CN~ CN by A(a) = ~k=l (ak_llk)xk. Show that 
(a) A is a linear injection but is not surjective. 
(b) D(A(a)) = a for all a E CN. 
(c) A(D(a)) # a for some a E CN, and characterize the formal power 

series a having this property. 
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XIB Generating Functions 

If a, b E CN, we say that b(x) = ~j..o bJx1 is a generating function for the 
sequence a if there exists a vector space isomorphism cp: CN -+ CN such that 
cp(a) = b. (Thus cp respects the two operations defined by Al and A2.) 
Obviously a given sequence may have many different generating functions. 
In this section we shall confine our attention to the two most commonly used 
generating functions. If cp is the identity function, then cp(a) is called the 
ordinary generating function for a. If cp is given by cp(a) = ~j=o (aJlj!)xi , then 
cp(a) is called the exponential generating function for a. In the latter case, 

while 

and so cp is not an algebra-isomorphism. 

Bl Examples. 
(a) The ordinary generating function for the sequence of binomial 

coefficients m for j = 0, 1, ... , n is (1 + x)". 
(b) By Exercise A9b, 1/(1 - x)" is the ordinary generating function for 

the sequence I §J(X) I forjE N, where Xis an n-set. 
(c) If z E C and af = Zi for allj EN, then the ordinary generating function 

for a is 1/(1 - zx). The exponential generating function for a is 27=0 (zx)flj!, 
which we recognize as the form of the Taylor series about 0 for the function 
exp(zx). As the following exercise will show, it is not unreasonable to designate 
this exponential generating function by the symbol exp(zx). 

Bl Exercise. Prove by the rules of formal power series: 
(a) exp(zlx) exp(z2x) = exp«zl + Z2)X) for all Zl> Z2 E C; 
(b) [exp(zx)]q = exp(qzx) for all z E C and q E Q; 
(c) D"(exp(zx» = z" exp(zx) for all z E C and n E N. 

Analogous to Exercise AlOb, one easily shows 

B3 Lemma. If b is the exponential generating function for a, then b(x) = 

2,i=0 [U(a)]oxf. 

B4 Example. Recall (lEI 7) the nth derangement number D" = n! ~1=0 (-lY/i!. 
The ordinary generating function for the sequence of derangement numbers 
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does not have a particularly elegant form, but let us consider its exponential 
generating function: 

= (~(-XY)(~ Xi) 
1=0 j! i=O 

by A3 

= exp( - x)/(l - x). 

B5 Lemma. 'L7=k m(k) = (~)2"-k where 0 s; k s; n. 

If U is an n-set, then Lemma B5 merely equates two different enumerations 
of the set 

{(S, T): S £ T £ U; lSI = k}. 

It may be instructive, however, to give a proof using generating functions. 

PROOF OF LEMMA B5. By Example Bla, we have 

(1 + x)" = i (~)x" 
J=O J 

to which we apply Dk (cf. AIOa) and divide by k!: 

n. (1 )"-k _ '" n J. ..I-k f " ( ) ·f 
k!(n-k)! +x - f;,. j k!(j_k)!x . 

By Exercise All, we may compose both sides of this equation with the 
constant polynomial 1, which yields the lemma. 0 

B6 Exercise. Prove 'L7=k (-1)'(1)(0 = 0, where 0 s; k S; n. 

Let kEN. A recurrence may be defined as a function f: N x CN -+ C. 
If a E CN, we say that a satisfies the recurrence f if 

f(n, ao, a1> ... , a", 0, 0, ... ) = 0 for all n ~ k, 

and a is said to be a "solution" of the recurrence. In general, if a recurrence 
has a solution, the solution need not be unique. In the examples which 
follow, however, once the terms ao, a1, ... , ak-1 are specified, the solution 
will be unique. The uniqueness problem in its full generality is not within the 
scope of this text; the interested reader is advised to consult [r.5]. Our inten­
tion for the remainder of this section is to show how recurrences can be 
exploited to obtain enumeration formulas for various combinatorial objects. 
Most of our examples are objects already encountered in the early chapters of 
this book. 
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The easiest type of recurrence is the linear homeogeneous kind. Specific­
ally, if the sequence a satisfies such a recurrence, then there exist Co, ••• , Ck E C 
such that 

k 

B7 2 C/1n-j = 0 
j=O 

for all n ~ k. As an example of this kind, we consider the sequence whose 
first two terms are 1 and every subsequent term is the sum of its two im­
mediate predecessors. Thus k = 2 and B7 assumes the form 

B8 an - an-1 - an-2 = 0 for n ~ 2. 

From B8 we obtain the power series equation 

DO DO DO 

2 ajxj - 2 aj_1xj - 2 aj_2xj = 0 
j=2 j=2 j=2 

whence 
DO DO DO 

2 ajxl - x 2 a}x! - x2 2 a}x! = O. 
}=2 }=1 1=0 

Since a(x) = 2:j=o ajxl by definition, we obtain with ao = a1 = 1, 

a(x) - (1 + x) - x(a(x) - 1) - x2a(x) = 0 

and solving yields a(x) = 1/(1 - x - x2). The roots of 1 - x - x 2 are 

-1+VS -l-VS 
r1 = 2 and r2 = 2 . 

Hence 

__ 1 [! ~ (~)j _! DO (~)1] 
- VS r1/=0 r1 r2 1~ r2 

1 DO r!+l _ r!+l --2 2 1 x j 

- VS 1=0 (r1r2Y+1 

= ~ (-IY (r{+l _ r~+l)xj. 
1=0 VS 

The number aj = (_I)I(r{+l - r~+l)/VS is called the jth Fibonacci number, 
after the medieval Italian mathematician who first observed some of these 
numbers' arithmetic properties. The recurrence B8 with ao = a1 = 1 
obviously generates a sequence of positive integers, which makes the above 
formula for al rather surprising. 
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A linear but nonhomogeneous recurrence arises from the problem of 
determining the ordinary generating function for the sequence a where a" = 
2.1=oP for n EN. We have the recurrence a" - a,,-1 - n2 = 0 with ao = 0, 
which yields in the manner of the previous example 

00 00 00 

L: a"x" = L: a..-1X" + L: n2x". ,,=1 ,,=1 ,,=1 
Thus a(x) = xa(x) + 2.:'=1 n2x", whence 

00 

B9 a(x) = L: n2x"/(1 - x) 
,,=1 

and the problem reduces to expressing 2.:'=1 n2x" as a rational function. This 
may be done in two ways and we illustrate them both. 

Method 1. Beginning with 1/(1 - x) = 2.:'=0 x", we apply D and then 
"multiply by x," obtaining 

x 00 

(1 - )2 = L: nx". x ,,=1 
Repeating this pair of operations yields 

X+x2_~2" 
(1 _ )3 - L. n x . x ,,=1 

Method 2. From Exercise A9b (with n = 3) and A9c (with n = 2) we 
obtain: 

x + X23 = X ~ (2 :- i)x1 + ~ (i)x1 
(1 - x) 1=0 J 1=2 2 

= i (~+ 1)x1 + ! (i)x1 
1=1 J - 1 1=2 2 

Either way, B9 becomes a(x) = (x + x2)/(1 - x)'. By pursuing these 
calculations, one can obtain a nice formula for 2.1=oP. 

x+x2 1 3 2 
a(x) = (1 - x)' = (1 - X)2 (1 - X)3 + (1 - x)~ 

= I~ [(i; 1) - 3(i; 2) + 2(i; 3) ]XI byA9b 

00 ·U + 1)(2· + 1) = 2: J 'J Xl. 
1-0 6 
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Thus 

BI0 ip = n(n + 1)(2n + I), 
1=0 6 

as one can also verify by induction. 

B11 Exercise. Obtain ordinary generating functions for an = 2.7=oj and 
an = 2.7=oP as well as formulas for these sums similar to BIO. 

For our next example, we consider the recurrence 

B12 an - nan-l - (-I)n = 0, 

with the condition ao = 1. If b is the exponential generating function for a, 
then 

GO GO GO ( I)n 
b(x) - 1 = 2: "'; xn = 2: an-I, xn + 2: -=T- xn. 

n=l n. n=l (n - I). n=l n. 

Thus 
b(x) - 1 = xb(x) + exp( -x) - 1 

whence 

b(x) = exp( - x)/(l - x). 

Comparing this equation with example B4 implies that an = Dn and that 
B12 holds for the derangement numbers. Another recurrence for the derange­
ment numbers is IEI9a. 

B13 Exercise. Show that if a E eN and if 
(a) an - nan-l - 1 = 0 with ao = 1, then an = n! 2.7=0 l/j! 
(b) an - 2an - 1 - 3 = 0 with ao = 1, then an = 2n+2 - 3. 

Let * denote a binary operation on some set X, let Xl> ••• , Xn E X, and let 
an denote the number of ways that n - 1 (pairs of) parentheses can be 
inserted in the expression Xl * X2 * ... * Xn so that just two terms are com­
bined at a time. Thus a2 = I, and aa = 2 since we can have (Xl * X2) * Xa and 
Xl * (X2 * xa). The reader can easily check that a4 = 5. It is reasonable to 
adopt the convention that a1 = 1. Under this assumption we derive the 
nonlinear recurrence an = 2.7=1 a~n_I' With the further convention that 
ao = 0, we obtain 

whence 
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Thus [a(x)]2 - a(x) + 1/4 = 1/4 - x, and by Proposition A13, this quadratic 
equation has the two solutions a(x) = 1/2 ± vI - 4x/2. The boundary 
condition ao = 0 determines that 

a(x) = ~ _ vI ;- 4x. 

This is the ordinary generating function for the sequence ao, ab ... , and 
it remains only to use Exercise AlOb and AI4 to get a general formula for a7l • 

FromD(a) = (1 - 4x)-1/2 we deriveinductively D7I(a) = 271 - 1.1.3.5 .... 
. (2n - 3)(1 - 4X)-7I+1/2 for n ;?; 2, whence 

271 - 1 (2n - 2)! 1 (2n - 2) 
= 1iT'271 - 1(n - I)! = ii n - 1 . 

For our final application of the notions of this section, we return to the 
doubly-indexed sequence Pk(n) (k, n EN), the number of k-partitions of the 
integer n. We first obtain the ordinary generating function for Pk(O), Pk(1), .... 

DI4 Proposition. For each integer k ;?; 1, 

PROOF. We proceed by induction on k, first noting that PkU) = 0 when 
j < k and PIU) = 1 whenever j ;?; 1. Thus for k = 1, 

00 00 00 

2: PIU)XI = 2: Xl = x 2: Xl = x/(l - x). 
1=0 1=1 1=0 

Now let k ;?; 2, and as induction hypothesis, assume that 

DI5 

For each integer j ;?; k, the number of k-partitions s of j with s(1) ;?; 1 is 
Pk-IU - 1). The k-partitions s of j with s(l) = 0 are in one-to-one corre­
spondence s ~ s' with the k-partitions s' of j - k where s'(m) = s(m + 1) 
for all m, since j = L:=1 (m + I)s(m + I) = L:=1 (m + I)s'(m) = 
L:=1 ms'(m) + k. Thus we have the recurrence 
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whence 
<Xl <Xl <Xl 

2: PkU)Xi = 2: Pk-1U - l)xi + 2: PkU - k)Xi, 
J=k i=k i=k 

or 
<Xl <Xl <Xl 

2: PkU)Xi = x 2: Pk -1 U)Xi + Xk 2: PkU)Xi. 
i=O i=O i=O 

By B15, we have 

<Xl <Xl /k-1 
(1 - x k) i~ PkU)Xi = X i~ Pk_1U)Xi = r [l (1 - xi), 

whence the result. o 
The following corollary enables us to enumerate the partitions of an 

integer j into not more than a given number n of parts. 

B16 Corollary. For each integer n ~ 1, 

f~ C~ PkU»)Xi = I/O (1 - Xi). 

PROOF. The proof is by induction on n. By convention, Po(O) = 1 and 
PoU) = 0 for j ~ 1. Thus for n = 1, 2.~=oPkU) = 1 for allj. Hence 

f~ C~O PkU) )xi = i~ xi = 1/(1 - x). 

If the identity holds for n - 1, then by the proposition, 

i~ C~O PkU) ) xi = ~o (~PkU)Xi) 

= ~: (~oPkU)Xi) + i~ PnU)xi 

xn 
- n-1 + -n----

]]1 (1 - xi) JJ. (1 - xi) 

1 
n JJ. (1 - xi) o 

In Chapter I we indicated how difficult it is to enumerate even the 3-
partitions of an integer n. Let us now use B14 to determine pin). (Cf. IC37.) 

B17 Corollary. For any integer n ~ 3, 
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PROOF. By Proposition B14, 

00 x3 

"~P3(n)x,, = (1 - x)(1 - x2)(1 - x3) 

1 { -1 -18 12 -9 8(2 + x) } 
= 72 1 - x + (1 - X)2 + (1 - X)3 + 1 + x + 1 + x + x2 • 

Now 

2+x 2-x-x2 (2 2)~ 3" 
:----~= 3 = -x-x L,.x 
1 + x + x2 1 - x ,,=0 

(by Lemma A 7) 

= (2 _ x _ x2) ,,~ ([ n ~ 3] _ [n ~ 2])x" 

,,~{2[n ~ 3] _ 3[n ~ 2] + [~]}x" 

= -3 ~ {[~] - [~]}X1L + 2 ~ x". 
,,=0 3 3 ,,=0 

Hence by A8 and A9b, 

00 1 {OO 00 00 n2 + 3n + 2 
n~o P3(n)Xn = 72 - n~o x" - 18 n~o (n + l)xn + 12 ,,~ 2 xn 

-9 ~ (-I)"x" - 24 ~ ([~] - [~])xn + 16 ~ xn} 
,,=0 n=O 3 3 n=O 

= .l{9 ~ [1 - (-I)"]xn + 6 ~ n2x" 
72 n=O ,,=0 

- 24 n~o ([n ; 2] - [~])xn} 

= 112 n~ {3([n ~ 1] - [~]) + n2 - 4([n ~ 2] - [j]) }x~ 
The following exercise is relatively difficult. 

B18 Exercise. Show that hen) = fen) + g(n), where f is a polynomial of 
degree k - 1 and g depends only upon the congruence class of n modulo k. 

B19 Lemma. The number of partitions of the integer n having largest summand k 
is hen). 

PROOF. To each k-partition s of n, there corresponds a unique nondecreasing 
sequence nl>" ., nk in which exactly sCm) terms are equal to m. To this 
sequence corresponds a unique k x nk {O, l}-matrix M = [mlj] such that 

mlj = { I ifj::;; nj; 

o ifj > n;. 
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(The number of l's in M is then ~~=l nj = n.) Its transpose represents an 
nk-partition of n whose largest summand is k. 0 

Letting qk(n) denote the number of partitions of n in which no summand 
exceeds k, we have by Lemma B19 that qk(n) = ~7=opt<n). If k ~ n, then 
qk(n) = p(n) where, as in Chapter I, p(n) denotes the total number of partitions 
of n. From Corollary Bl6 it follows immediately that 

B20 Proposition. I/D7=l (1 - xi) = ~:'=o qk(n)x". 

B21 Exercise. Prove ~:'=op(n)x" = IID:'=l (1 - x"). 

B22 Exercise. Compute qa(n) for n EN. 

Further References 
C. Berge [b.6] and J. Riordan [r.6]. 

XIC P61ya Theory 

As motivation for the study of P6lya's theory of counting, we first present a 
problem which is not solved by this method, that of counting" labeled trees." 
It is perhaps one of the oldest graph-enumeration problems. It was first 
resolved by A. Cayley [c.l] in 1889, who was concerned with the relation_ 
between multigraphs and schematic diagrams of chemical structures. Thus 
we let V = {Xh .•• , x,,} and ask how many trees have V as vertex set? The 
problem can be reformulated as follows. 

Cl Theorem (Cayley). The complete graph Kn admits n,,-2 distinct subgraphs 
which are spanning trees. 

INDICATION OF PROOF. The method sketched here is due to H. Priifer [p.7]. 
Let V = {I, ... , n} denote the vertex set of Kn. We describe a function from 
the set of spanning subtrees of K.. into the cartesian product V,,-2 and leave 
to the reader the proof that this function is a bijection. Let Tl = (V, f/i') be a 
spanning subtree of Kn. Some vertex of Tl has valence 1 in Tl . Letting V 
be ordered in the natural way, we fill the first position of the (n - 2)-tuple 
assigned to T 1 with the name Xl of the unique vertex joined by an edge to the 
least vertex Yl of valence 1. Let T 2 denote the subtree of T 1 spanned by 
V + {Yl}, and fill the second position of our (n - 2)-tuple with the vertex 
of T 2 joined by an edge to the least vertex of T 2 having valence 1 (in T 2)' 

This process is repeated until an (n - 2)-tuple is completed. 0 

More often than not one is less interested in the labeling of spanning trees 
than in their graphical structure. For example, n!/2 of the trees counted 
above are paths of length n - 1, but they in effect all look alike. We are 
not interested in counting trees but in counting isomorphism classes of trees. 
Thus the n !/2 paths count as a single class. Clearly the n" - 2 spanning subtrees 
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ofKn are not divided equally into isomorphism classes. (For example, another 
class comprises only the n trees consisting of a single vertex of valence n - I 
which is joined by an edge to each of the others.) Thus our problem is 
considerably more difficult than the labeled problem. We find that the groups 
of automorphisms of systems (§IIE) playa significant role. 

Let G be any group, let e denote its identity, and let X be a set. We say 
that G acts on X if there exists a function G x X -+ X given by (g, x) ~ gx 
such that for all x E X and all gl, g2 E G, 

(a) ex = x 
(b) (g2g1)X = g2(glX). 

Of particular interest to us will be the case where G is a subgroup of II(X), 
the group of all permutations on X. In this case, gx becomes g(x) for all 
(g, x) E G x X. 

Suppose that G acts on X and let S S;; X. Generalizing a notion from §IA, 
we say that g fixes S if gx E S for all XES. If every element of G fixes S, 
then S is a fixed set of G. Certainly 0 and X are always fixed sets. If [/ 
denotes the collection of fixed sets, then the cells of the fine partition of [/ 
are called the orbits of G. If S i= X, we say that G acts transitively on S if 
given x, yES, there exists g E G such that gx = y. (Cf. §IIE.) If x E X, we 
define the stabilizer of x to be Gx = {g E G: gx = x}. Clearly, Gx is a sub­
group of G. 

The following is a pair of standard results concerning groups acting on sets. 

C2 Exercise. Let G act on X. Suppose that S S;; X, and let XES. Show that: 
(a) S is an orbit if and only if S is a maximal set on which G acts transitively. 
(b) If S is an orbit, then IGxllSI = IGI. 

As in §IA, an element x E X is called a fixed-point of g if gx = x. The 
set of fixed-points of g will be denoted by F(g). For example, x E ngeG F(g) 
if and only if {x} is an orbit of G. 

C3 Lemma (W. Burnside [b.20], 1911). If G acts on X, then G has exactly 
IGI-1 2geG IF(g)1 orbits. 

PROOF. Let Xl> ... , Xq be the orbits of G. Then 

2: IF(g)1 = I{(g, x): g E G; x EX; gx = x}1 
geG 

q 

= 2: IGxl = 2: 2: IGxl 
xeX 1=1 xeX, 

q 

= 2: IX11(IGI/IX1i) byC2b 
1= 1 

= qlGI, 
whence the result. o 
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If g E G and G acts on X, then we write (g) to denote the (cyclic) subgroup 
of G generated by {g}. Clearly (g) acts on X; we let OJ(g) denote the number 
of orbits of (g) of cardinality j and let O(g) = ~~l OJ(g). 

C4 Example. Let X = {xo, Xl>"" Xm-l} and let p E II(X) be given by 
P(XI) = Xl+l for i = 0, ... , m - I, where subscripts are read modulo m. 
Then F(pl) = 0 for i = 1, ... , m - 1 while F(1v) = X. Not surprisingly, 
C3 tells us that O(P) = 1. More generally, ifi ~ 0 (modulo m), then O(PI) = 
gcd(i, m), the greatest common divisor of i and m, and OJ(Pl) = O(pI) if 
j = m/O(pl). Let r E II(X) be given by r(xl) = Xm-I' Then F(r) = {xo} if m 
isodd,andF(r) = {xo,xm/2}ifmiseven.Alsor 2 = Iv,ol(r) = (3 + (-I)m)/2, 
02(r) = [em - 1)/2], and oj(r) = 0 for j > 2. 

Suppose now that G is a subgroup of II(X) and let Y be any set. We 
consider the relation ,.., on yx given by: fl ,.., f2 if and only if there exists a 
function-isomorphism fromfl to f2 of the form (g, Iy), where g E G. Clearly 
,.., is an equivalence relation. The cells of the partition of yx induced by ,.., 
are called patterns (with respect to G). This partition clearly refines the 
collection of isomorphism classes of yx. Implicit in the equationfl = f2K 
is a definition of an action of G on yx, where g(f) = fg for all fE yx and 
g E G. The orbits of G in yx are precisely the patterns we have just defined. 
Clearly the number of such patterns is determined only by I YI and the action 
of G. Thus when G is a subgroup of II(X), the number of these patterns may 
be denoted by 'lTIYI(G). 

C5 Lemma. If G is a subgroup of II(X), then 
ao 

'lTIYI(G) = IGI- l ~ I YIO(II). 

PROOF. The group G may be regarded as acting on the set yx, taking (g,J) 
into the compositionfg for allfE yx. With respect to this action, suppose 
fE F(g), and let Xl> X2 be two elements of some orbit SI of (g). Then 
f(g(x» = f(x) for all x E X and gf(Xl) = X2 for some j. In particular.!(xl) = 
f(g(Xl» = f(g(g(Xl») = ... = f(gf(Xl» = f(X2)' Thus f maps all the ele­
ments of SI onto a common image in Y. We see that F(g) is in one-to-one 
correspondence with the set Y{1·····0(II)}. The lemma now follows from Lemma 
C3. 0 

If Y = {Yl> ... , Yn}, it is convenient to regard the elements Yl> ... , Yn as 
indeterminants and consider the commutative ring of multinomials 
f[Yl>"" Yn], where f is any field containing O. We define a weight function 
w: yx ~ f[Yh ... , Yn] given by 

w(f) = rIf(x) forfE yx, 
:JCeX 
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and w(J) is called the weight off, One easily verifies that w(J) = TIf=1 yi,-l[l/lll, 
and that 

C6 w(f) = w(fg) for all g e ll(X),fe yx. 

It follows that if G is a subgroup of ll(X) and if Q S; yx is a pattern with 
respect to G, then any two functions in Q have the same weight. One may 
therefore speak of the "weight of the pattern Q," and let w(Q) = w(J) where 
feQ. 

We are now ready to prove the main result of this section. 

C7 Theorem (G. P6lya [p.6]). Let G be a subgroup ofll(X), and let 9. e P(YX) 
be the set of patterns with respect to G. Then 

~ w(Q) = IGI-l ~j] (~Yl)O"). 
PROOF. Let Y e IF[Yl> •.. , Yn] be of the form TIf=1 YIBI• Then w- 1[y] is a 
union of patterns with respect to G. The exact number of such patterns is 
obtained by regarding G as a subgroup of ll( YX) (see just before C5), 
restricting G to w- 1 [y], and applying Burnside's lemma (C5). For g e G, the 
set of "fixed-points of g" becomes 

F(g) = lfe YX:f=fg}, 

and so the number of orbits of G contained in w- 1 [y], that is, the number of 
patterns contained in w- 1 [y], becomes 

Hence 

IGI-l '5' IF(g) n w- 1[Y]I. 
~ 

2: w(Q) = IGI- 1 ')' 2: IF(g) n w- 1 [Y]IY· 
Qeof ~ fI 

It remains to show 

C8 ~ IF(g) n w- 1 [y]ly = tJ c~Ylrig) for all ge G. 
Let g e G, and let Xl> ... , Xq be the orbits of (g) in X. As in the proof of 

Lemma C5,f = fg if and only iffis constant on X" for each h = 1, ... , n. 
Thus for eachy, F(g) n w- 1[y] = lfeyx:fis constant on X" (h = 1, ... , q); 
w(f) = y}. If feF(g) n w- 1[y], then y = TIf=1 yif-l[l/lll , and the list 
f- 1 [Yl], ... ,f-l[Yn] is an ordered partition of X, except that some of the 
cells may be empty. Moreover, each cell is a union of orbits of (g). Con­
versely, if y is of this form, then y = w(f) for some fe F(g). We therefore 
can easily verify that the left-hand member of C8 has the form 

(y~Xll + ykXll + ... + y~X11)(y~X21 + ykX21 + ... + y~X:aI) ..• 

•• • (y~XQI + ykXQ, + ... + yl:QI), 
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and so 

C9 f IF(g) n W- 1[y]ly = n (~y\Xhl). 
By grouping together those orbits XII of equal length j, we see that the right­
hand member of C9 is just 

00 (n ) os<g) TI 2Y/ , 
i= 1 != 1 

as required. D 

Observe that P6lya's theorem reduces to Lemma C5 if we set y! = 1 for 
all i = 1, ... , n. 

We interrupt the theoretical development at this point in order to demon­
strate an application to the easily stated problem, how many necklaces is it 
possible to string with m beads of n different colors? An equivalent problem 
in terms of more standard combinatorial objects is, what is the largest 
number of functions from the set X = {xo, Xl> ••• , Xm -1} of vertices of the 
circuit ~m into an n-set Y = {Yl> ... ,Yn} such that if h1 and h2 are any two 
such functions, then h2 =1= h1g for all g E G = Go(~m)? (See §IIE.) 

In this case, G is the dihedral group Dm, of order 2m, generated by p and r 
as defined in Example C4. Its elements are 

rip!, i = 0, 1, ... , m - 1; j = 0, 1. 

Since <p> is transitive, G has a single orbit in X, and one can easily verify Burn­
side's lemma by noting that IF(e)1 = m and W(i) I = 0 for i = 1, ... , m - 1. 
If m is odd, then I F(rp!) I = 1, while if m is even, then I F(rp!) I = 0 or 2, de­
pending upon the parity of i. Thus LgeDm F(g)/IDml = (m + m·l)/2m = 1. 

Let us next use Lemma C5 to count the number of patterns induced by 
G on yx. Referring to Example C4 we have 

O(e) = m 

O(i) = gcd(i, m) for i = 1, ... , m - 1; 

{
Cm + 1)/2 if m is odd; 

O(ri) = (m + 2)/2 if m is even and i is even; 
m/2 if m is even and i is odd. 

Hence the number of patterns is 

CI0 (nm + mn(m + 1)/2 + ~l ngCd(!.m») / 2m 

if m is odd, and 

cn (nm + mn(m + 2)/2/2 + mnm/2/2 + ~~1 ngCd(!.m») / 2m 

if m is even. 
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For example, if m = 3, then CIO yields TT,,(G) = (n3 + 3n2 + 2n)/6. Thus 
TT2(G) = 4. One may consider Yas a set of colors; Figure Cl2 shows one 
representative of each of the four patterns we have just counted. 

If m = 4, then TT,,(G) is determined by Cll: 

TT,,(G) = (n4 + 2n3 + 3n2 + 2n)/8. 

Thus TT2(G) = 6, and representatives are shown in Figure C13. The reader 
should list representatives of the 21 patterns when n = 3. 

Cl3 

DDDDDD 
Cl4 Exercise. If m is an odd prime, show that the number of patterns induced 
by G = Go(Llm) when Y is an n-set is 

TT,,(G) = (nm- 1 + mn(m-l)/2 + m - l)n/2m. 

Let us refine the necklace question as follows. Given kb k 2 , ••• EN, 
how many necklaces can one string using exactly kl beads of color i, where 
it is of course understood that L:j';,l kl is finite? P6lya's theorem addresses 
itself to this question while the lemmas of this section are inadequate. What 
we are in fact asking is, how many patterns Q have been given weight w(Q) = 
TIj';,l Ylk ,? The answer is to be found by determining the coefficient of 
TIj';,l Ylk , in the right-hand member of the formula in Theorem C7. 

For example, how many necklaces can be made with two orange beads, 
two blue beads and one white bead? With m = 5, kl = k2 = 2, ka = I, and 
IGI = 10, we shudder at the prospect of having to use P6yla's formula, but 
since in this case oa(g) = 04(g) = 0 for all g E G, our problem reduces to 
finding the coefficient of Y12Y22Y3 in 

(L; (Yl + Y2 + Ya)Ol(g)(Y12 + Y22 + Ya2)02(g)(h5 + Y25 + Ya5)05(g)}/10 
l1eG 

= {(Yl + Y2 + Y3)5 + 5(Yl + Y2 + Ya)(Y12 + Y22 + Ya2)2 

+ 4(Y15 + Y25 + Ya5)}/IO. 

The answer is (30 + 5·2)/10 = 4. Representatives of these patterns are shown 
in Figure CI5. Note that only one of these corresponds to a vertex 3-coloring 
of Ll5' showing that such a vertex coloring is essentially unique. 
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B B ~ 0 B ~ 

C16 Exercise. Show that the number of necklaces that can be made with kl 
orange beads and k2 blue beads, where kl + k2 is an odd prime is 

1 (kl + k2) + ! (kl + k2 - 1)/2) 
2(kl + k2) kl 2 [kI /2] . 

No doubt the reader has already surmised that as a practical counting 
tool, the P61ya Theorem is hardly the epitome of simplicity and efficiency. 
Even so simple a situation as the necklace problem can lead to a considerable 
quantity of tedious calculations. In the following exercise we suggest some 
other patterns to enumerate which are relatively simple. The reader is 
encouraged to attempt variations on these. 

C17 Exercise. (a) Count the patterns of functions into an n-set from the set 
of vertices (respectively, edges, faces) of the regular tetrahedron under all 
symmetries of the tetrahedron. [Remarks: A decision must be made whether 
"symmetries" include only physically possible rigid motions in Euclidean 3-
space, or whether reflections are also permitted. If reflections are allowed, then 
G is the symmetric group on a 4-set, and IGI = 24. Without reflections, Gis 
the alternating group of order 12. Do the problem both ways. The reader will 
quickly recognize that the problem is identical when faces instead of vertices 
are considered. When edges ·are considered, then G ~ G1(K4)-ifreflections 
are acceptable. Since K4 is a connected graph, G1(K4) ~ GO(K4) by Exercise 
IIID2, but notice that the isomorphism refers only to the abstract group 
structure and not to the action of groups of permutations. For example, the 
stabilizer of a vertex is of order 6 (the symmetric group on a 3-set), while the 
stabilizer of an edge is of order 4 (the Klein 4-group).] 

(b) Repeat part (a) for the cube. [Arguing via the orthogonal graph, we 
see that group of symmetries is again the same abstract group for all three 
cases-vertices, edges, and faces-but is a different permutation group in all 
three cases. The problem for the regular octahedron is resolved in the process.] 

Further Reference 
N. G. de Bruijn [b.l9]. 

XID Mobius Functions 
A basic notion in §IE was the injective function N9'(u) ~ N9'(u), where U was 
a finite set, which assigned to each selection s another selection s. In this 
section we shall generalize this linear function as well as many of its properties. 
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On the whole, this section follows the work of G.-C. Rota [r.8], although we 
shall forgo Rota's fullest generality in some instances. 

The partially-ordered set (&I'(U), s;) of §IE is a Boolean lattice. This 
notion will be superseded in this section by that of a partially-ordered set 
(U, :;:;), where U is a finite or infinite set throughout this section, and (U, :;:;) 
is locally finite, i.e., for all x, y E U, the segment 

U[X,y] = {z E U: x ::; Z :;:; y} 

is finite. The collection of finite subsets of U will be denoted by .9}(U). Thus 
(.9J( U), s;) is an example of a locally finite partially-ordered set, but (&1'( U), s;) 
is not locally finite if U is infinite. The next exercise gives another useful 
example. 

Dl Exercise. For i = I, ... , n, let (Uh :;:; I) be a locally finite partially-ordered 
set. Let U = U1 x ... X Un and define (U, :;:;) by (Xl>"" xn) :;:; (Y1,"" Yn) 
if XI :;:; I YI for i = I, ... , n. Show that (U, :;:;) is a locally finite partially-
ordered set. 

Let us extend the "bracket function" U x U -+ I\J defined in §IE; if 
x, y E U, then 

[X, ] = {I ~f X :;:; y; 
y 0 If x:l; y. 

If (U, :;:;) has a maximum element, then IE4 may be generalized; for any 
selection s E §(U) = l\Ju, we define 

sex) = L: [x, u]s(u) for all x E U. 
ueU 

Because U is locally finite and has a maximum element, [x, u] =1= 0 for only 
finitely many u E U, and so sex) is always well-defined. Dually, if(U, :;:;) has a 
minimum element, then for each s E §(U) we define 

sex) = L: [u, x]s(u), for all x E U. 
ueU 

(The selection s generalizes the selection defined in Exercise IE23.) Often 
(U, :;:;) is a finite lattice, in which case both the functions s f---* sand s f---* S 
are always well-defined. 

If an ordered field IF replaces I\J in the discussion thus far, then the func­
tions s f---* sand s f---* s when well-defined become functions from the vector 
space lFu into itself. (We leave it to the reader to show that they are in fact 
injective linear transformations. Cf. Exercise IE7.) Actually the functions 
s f---* sand s f---* S are injective in any case. Let U have a maximum element 
and a minimum element in IF, and let us define 

§(U) = {s: s E §(U)}; §(U) = {s: s E §(U)}. 
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The injectivity will be demonstrated constructively; the inverse functions 

S f---7 S from §(U) onto §(U) and S f---7 S from §(U) onto §(U) will presently 
be given explicitly. We will thereby generalize Proposition IE6. 

The Mobius function of a partially-ordered set (U, :::;) is the function 
f': U x U -+ 7L defined inductively as follows: 

D2 

D3 

f'(x, x) = 1 for all x E U; 

f'(x, y) = - L f'(x, u) for all x, Y E U. 
X,,"U<II 

Since the sum over an empty set is 0, it follows from D3 that 

D4 f'(x, y) = 0 if x $; y. 

Let SX.II denote the Kronecker delta. We also have 

D5 L f'(x, u)[u, y] = L f'(x, u) = SX.II for all x, y E U. 
ueU X,,"U:SII 

Example. Let X be a finite set, and let us determine the Mobius function 
for (.9'(X), £). Let S, T E .9'(X). It should quickly become apparent that if 
S £ T, then f'(S, T) is dependent only upon IS + TI, the length of a chain 
from S to T in the Boolean lattice (.9'(X), £). We prove inductively that 

D7 f'(S,T) = (-I)ls+TI[S,T] forallS,TE.9'(X). 

By D2 and D3, f'(S, S + {xD = -1 for all x E U + S. Now suppose f'(S, R) = 
(_I)IS+8I[S, R] for all sets R such that S £ R c Tand such that IRI :::; k for 
some k < ITI. If Q E .9'1c+l(T) and S £ Q, then 

f'(S, Q) = - L f'(S, R) = - Icf' (k -: 1 - ISI)( -1)1 = (_I)Ic+l-lsl 
SsBc:Q 1= 0 1 - lSI 

by Corollary IC22, as required. 

In the light of the foregoing example, the reader should recognize the 
following lemma as a generalization of Lemma IE5. 

D8 Lemma. Iff' is the Mobiusfunctionfor (U, :::;), thenfor x, Y E U, 

L [x, u]f'(u, y) = SX.II· 
ueU 

PROOF. We define {L: U x U -+ 7L inductively by 

(L(x, x) = 1, for all x E U; 

(L(x, y) = - L (L(u, y) for all x, y E U. 
X<U""II 

Dual to D5 we have 

D9 L [x, u]{L(u, y) = SX.II for all x, y E U. 
ueU 
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We show that I-' = p,. By D9 and D5, for all x, y E U, 

I-'(x, y) = 2: I-'(x, w)8w•1I = 2: I-'(x, w) ~ [w, z]p,(z, y) 
_u _u ~ 

= 2: p,(z, y) 2: I-'(x, w)[w, z] = 2: p,(z, y)8X •2 = p,(x, y). 0 
2eU weU aeU 

The following is the main result of this section. 

DIO Theorem (Inversion Formulas). Let I-' be the Mobiusfunction of(U, :::;). 
For any selection s E §(U) andfor all x E U, 

(a) s(x) = ~"eu I-'(x, u)s(u) if(U, :::;) has a maximum element; 
(b) s(x) = ~"eu I-'(u, x)S(u) If(U, :::;) has a minimu"; element. 

PROOF. (a) Using D5 and the definition of s, we have 

2: I-'(x, u)s(u) = 2: I-'(x, u) 2: [u, y]s(y) 
"eU "eU lieU 

= 2: s(y) 2: I-'(x, u)[u, y] 
lieU "eU 

= 2: s(y)8x.1I = s(x). 
lieU 

(b) Using Lemma D9 and the definition of s, one proceeds in a manner 
similar to (a) above. The details are left to the reader. 0 

The above theorem makes evident that the question of determining any 
two of s, s, and s when the third selection is given reduces to determining the 
Mobius function of the appropriate partially-ordered set. For the rest of this 
section, we shall be concerned mainly with just that, the computation of 
certain Mobius functions. 

Dll Exercise. Let (U, :::;) be a lattice with Mobiusfunction 1-'. Show that for 
any x, y E U with x :::; y, the Mobius function of (U[x.llj, :::;) is the restriction 
of I-' to U[x.llj X U[x.llj. Show that U[x.llj may be replaced by a set of the form 
{u E U: x :::; u} or {u E U: u :::; x}. 

D12 Exercise. Determine the Mobius function for (&1(U), :::;). 

D13 Proposition. For i = 1, ... , k, let (Ub :::;1) be a locally finite partially­
ordered set with Mobius function 1-'1. Let I-' be the Mobius function for 
(U, :::;), where U = U1 X ••• X Uk, and (Xl> ... , xk) :::; (Yl>' .. , Yk) means 
that XI :::;, ydor i = 1, ... , k. Then I-' is given by I-'«Xl> ... , x,,), (Yl' ... , y,,» 
= n~=ll-'l(Xb YI)' 

PROOF. The proof will be given for k = 2; the general case will then follow 
straightforwardly by induction. By Exercise Dl, everything is well-defined. 
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Clearly JL«Xl> X2), (Xl> X2» = 1 = JLl(Xl> Xl)JL2(X2, X2). Now suppose 
(Xl> X2) < (Yl> Y2) and that JL«Xl> X2), (Ul> U2» = JLl(Xl , Ul )JL2(X2, u2) when­
ever 

(Xl> X2) ::;; (Ul> U2) < (Yl> Y2). 

Summing over all (Ul> U2) satisfying the above inequality, we have by 03, 

JL«Xl> X2), (Yl> Y2» = - 2: JLl(Xl> Ul)JL2(X2, U2). 

This in turn equals 

2: 2: JLl(Xh Ul)JL2(X2, U2) 
X1SUl <Ill XllSU2<1I11. 

- JLl(Xl> Yl) 2: JL2(X2, U2) - JL2(X2,Y2) 2: JLl(Xh Ul) 
~S_<h ~S~<h 

= -JL1(Xh Yl)JL2(X2, Y2) + 2JL1(Xl, Yl)JL2(X2, Y2) 

= JLl(Xh Yl)JL2(X2, Y2). D 

If (Ul> ::;;1) = (Uh ::;;t) for i = 1, ... , k, then ::;; will be understood to 
indicate the partial order given above for (U", ::;;). 

D14 Corollary. The Mobiusfunction JLfor (Nk, ::;;) andfor (71.", ::;;) is given by 

{
( -l)!,(",-m,) ifmt::;; nt ::;; mt + 1 

JL«mh ... , mk), (n, ... , nk» = for i = 1, ... , k; 
o otherwise. 

PROOF. The Mobius function JLo for (7L., ::;;) and (N, ::;;) is clearly given by 

{
I ifm = n; 

JLo(m, n) = -01 if n = m + 1; 
otherwise. 

Now apply the theorem. D 

The Mobius function as defined in this chapter is a generalization of a 
classical function used in number theory. It is the Mobius function for the 
partially ordered set (N + {O}, D. (Cf. Example IIB27.) 

D15 Proposition. The Mobiusfunction JLfor (N + {O}, D is given by 

{
( - 1)f if n/m is a product of j > 0 distinct primes; 

JL(m, n) = 1 ifm = n; 
o otherwise. 

PROOF. Let m, n E N + {O}. In the light of 02 and 04, we may assume that 
n/m = Plel •• • Pkek, where Pl, ... , Pk are distinct primes and eh •.. , ek E N + 
{O}. One easily verifies that the segment NIl.,,] of (N + {O}, D is isomorphic 
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to the segment N~o, ... ,o),(elo ... ,ek)l of (Nk, :::;) under the isomorphism m ~ 
(db"" dk ), where m = Pldl •• ,Pkdk• It follows from this and Exercise Dll 
that if p.' is the Mobius function for (Nk, :::;), then 

p.(m, n) = p.'«dl> ... , dk), (el> ... , ek))' 

However, p.' can be evaluated easily by means of Corollary D14, and the 
proposition follows. 0 

Dt6 Corollary. Jim, n EN + to} and ifmln, then p.(I, m) = p.(n/m, n). 

Dt7 Exercise. Show that (N + to}, \) is a locally finite lattice with minimum 
element 1. 

As an application of the Mobius function for (N + to}, \), we shall give 
another proof of Theorem JE2l, which is a formula for the Euler q?-function. 

The function g> is a selection; g> E §(N + to}). Since (N + to}, \) has the 
properties described in Exercise D17, we may compute for any mEN + to}, 

1>(m) = 2 [k, m]g>(k) = 2 g>(k) = 2 g>(m/k). 
keN+{O} kim kim 

For each divisor k of m, let Sk = {j E N[l,ml: gcd(j, m) = k}. Then ISkl = 
g>(m/k) and {Sk: kim} E P({l, ... , m}). It follows that 1>(m) = L.klm g>(m/k) = m 
for all mEN + to}. For any n EN + to}, if D denotes the collection of prime 
divisors of n, then 

g>(n) = 2 p.(m, n)1>(m) (Theorem D 1 Ob) 
meN+{O} 

= 2 p.(m, n)m 
min 

(proposition D15) 

= 2 p.(n/m, n)n/m 
min 

= n L: p.(l, m)jm (Corollary D16) 
min 

= n 2 (-l)ICI/TIp 
Ce!Y(D) peC 

= n TI (1 - ljp), 
peD 

the last step requiring the same algebraic manipulation which we also evaded 
in the proof of JE2l. 

In § VF the permanent of a matrix was introduced. Its value was shown in 
Proposition VFl to be equal to two other enumerations, neither of which was 
given by an explicit formula. As our final application of Mobius functions, 
we shall derive a formula for the permanent. The partially-ordered set for 
which the Mobius function will be computed is the lattice of partitions of a 
finite set ordered by refinement. 
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Let (1Jl>(X), ~)be the lattice of partitions of the finite set X, ordered by 
refinement (cf. Exercise IIB30). If !2,91 E 1Jl>(X) and !2 ~ 91, then for any 
R E 91, we have {Q E !2: Q S;; R} E IJl>(R). This partition is called the restriction 
of !2 to R and is denoted by !2(R). 

D18 Proposition. TheMiibiusfunction p.for the lattice (1Jl>(X), ~) is 

p.(!2,91) = TI (_I)I.t(B)I-l(I!2(R)1 - I)!. 
Bellt 

PROOF. Let gJ = {Rlo ... , Rk } E 1Jl>(X), and suppose !2 ::::; 91. For each i = 
1, ... , k, let !2, = !2(R,). One easily sees that the segment 1Jl>(X)[.!.1JtJ of 
(IJl>(X), ~) is isomorphic to the direct product 

IJl>(Rl)[.tl.{Rl}] X ••• X IJl>(Rk)[.!k.{Bkll 

of segments, which is in turn a segment of (IJl>(Rl)' ~) x ... x (IJl>(Rk)' ~). 
Since each segment 1Jl>(.Rt)[.th{Bdl is isomorphic to the segment 1Jl>(!2')[S'l(.tI).{.tdl' 
it follows that IJl>(X)[.t.lltl is isomorphic to 

1Jl>(!2l)[S'l(.tl).{.tlll x ... x 1Jl>(!2k)lS'l(.ttc).{.t/c}]. 

Hence p.(!2, 91) = rn-l P.C,9iC!2b), {!21}) by D13, where p., is the Mobius func­
tion for (1Jl>( !21), ~), for i = 1, ... , k. The proof therefore reduces to proving 
that for any finite set S, the Mobius function P.o of (IJl>(S), ~) satisfies 

D19 J.£oCB/iCS), {S}) = C _1)ISI-l(ISI - I)!. 

We proceed by induction on lSI. When lSI = 1, both sides ofD19 reduce 
to 1. Let S be given with lSI> 1, and as induction hypothesis assume that 
D19 holds for sets Twhere ITI < lSI. 

If B/i(S) ~ !2 < {S}, then by the same arguments as before, IJl>(S)[S'l(S) . .tJ 

is isomorphic to a cartesian product of segments of the form 1Jl>(T)[S'l(T).{T}] 

where T is a set such that ITI < lSI. Hence by the induction hypothesis, 

p.o(B/i(S), !2) = TI (_I)IQI-l(1 QI - I)!. 
Qe.t 

Combining this with D3, we see that we must prove 

D20 2: TI (_I)IQI-l(IQI - I)! = 0 for lSI> 1. 
.teP<S) Qe.t 

Fix XES. Every partition of S may be regarded as the union of the trivial 
partition of a set containing x with a partition of the complement of that set. 
In this way, D20 is seen to be equivalent to 

D21 2: [(-I)IQI- 1CIQI-l)! 2: TI(-I),B,-l(IRI-l)!l =0. 
xeQeS'(S) IJteP(S + Q) Bellt -

If IS + QI > 1, then the induction hypothesis applied to D20 implies that 
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the second summation in D21 is O. That summation clearly reduces to \ S \ - 1 
if \S + Q\ = 1. Hence the left-hand member of D2l reduces to 

(_1)181-1(\S\ - I)! + (-1)181- 2(ISI - 2)! (lSI - 1), 

where the first term comes from the case Q = S. But this expression is 
identically O. 0 

Armed with the above proposition, we proceed to compute perm(A), where 
A = [au] is an n x m matrix over C. Let N = {I, ... , n}. For each!!l. E IP(N), 
let 

H(!!l.) = {h E NN: h(i) = hU) if and only if i, j E Q for some Q E !!l.}. 

and define 

n 

t(!!l.) = L fI tlt.AU)· 
heH(.t) t-l 

We observe that H([J{(N» = II(N), and so t([J{(N» = perm(A) as defined 
in §VF. 

Let s: IP(N) ~ C be given by 

m 

D22 s(!!l.) = fI L fI ali' 
Qe.t i=l teQ 

(If I QI = 2, say Q = {il> i2}, then LT"l TIteQ ati reduces to the inner product 
of the i1-th and i2-th rows.) The functions sand t are generalizations of the 
notion of a selection, since their range is in C rather than N. Nonetheless, the 
inversion formula DlOa can still be applied, as the reader is now asked to 
show. 

D23 Exercise. Continuing the above notation, show that for all !!l. E IP(N), 
(a) s(!!l.) = L.tdt t(Bl) (i.e., s = 1); 
(b) t(!!l.) = ~eP(N) p.(!!l., Bl)s(Bl). 

D24 Proposition. Let A = [tlti] be an n x m matrix over C and let N = 
{I, ... , n}. Then 

m 

perm(A) = ') fI (_I)<lBI-l)(IRI - I)! L fI ali' 
flta:tN) Befit i = 1 leB 

PROOF. From Exercise D23b with!!l. = [J{(N) we have 

perm(A) = t([J{(N» = L p.([J{(N), Bl)s(Bl), 
BeP(N) 

into which we substitute p.(fI{(N), Bl) = TIBe9t (-l)IBI-l(IRI - I)! from 
Proposition 018 and substitute s(Bl) from D22. 0 
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b 230 
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