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Synopsis

The purpose of this book is to present in a uniform way commutator theory for
universal algebra. We are interested in the logical perspective of the research—
emphasis is put on an analysis of the interconnections holding between the
commutator and equational logic. This book thus qualifies as belonging to abstract
algebraic logic (AAL), the area of research that explores to a large extent the
methods provided by the general theory of deductive systems.1 The notion of
a commutator equation2 is introduced, and it plays a central role in the theory
to be expounded. This book is therefore concerned with the meanings the term
“commutator equation” receives in the models provided by theory and clarifies the
contexts in which these meanings occur. Purely syntactic aspects of the theory of
the commutator are underlined.

This book is mainly addressed to algebraists and logicians.

1From the viewpoint of AAL, universal algebra is the study of (reduced) models of equational
logics. The latter are defined as structural and finitary strengthenings of the basic equational
Birkhoff’s logic.
2The term “commutator equation” denotes in this book a certain equation from the first-order
language of a given algebraic signature. In the literature, this term is also used with the following
different meaning: it refers to any equation of the language involving lattice-operation symbols as
well as the symbol of the commutator operation; each such equation is interpreted in congruence-
lattices, which are additionally augmented with the binary commutator operation (see Section 9.2).
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Chapter 1
Introduction

Commutator theory is a part of universal algebra. It is rooted in the theories of
groups and rings. From the general algebraic perspective the commutator was
first investigated in the seventies by J. Smith for Mal’cev varieties. (Mal’cev
varieties are characterized by the condition that all congruences on their algebras
permute.) Further was done by the German algebraists H.P. Gumm, J. Hagemann
and C. Herrmann in the eighties. They discovered that congruence-modular varieties
(CM varieties, for short) form a natural environment for the commutator. Hagemann
and Herrmann’s approach is lattice-theoretical. Gumm’s approach is based on
an analogy between commutator theory and affine geometry which allowed him
to discover many of the basic facts about the commutator from the geometric
perspective. Freese and McKenzie (1987) summarize earlier results and establish
a complementary paradigm for commutator theory in universal algebra. Kearnes
and McKenzie (1992) subsequently extended the theory from congruence-modular
varieties onto relatively congruence-modular quasivarieties.

In this book the theory of the commutator from the perspective of abstract
algebraic logic (AAL) is investigated. AAL offers a very general conception of the
commutator defined for any n-dimensional deductive system in the sense of Blok
and Pigozzi (1989) (see Czelakowski 2006). The AAL perspective encompasses
the above approaches as particular cases. An account of the commutator operation
associated with equational deductive systems is presented. In this context an
emphasis is put on logical aspects of the commutator for equational systems
determined by quasivarieties of algebras. The book is therefore mainly addressed to
algebraists and logicians interested in recent advancements in the area of equational
logic and in the methods AAL provides.

The focus of this book is on the following problems:

(1) the definition of a commutator equation for an arbitrary class of algebras;
(2) the definition of the equationally defined commutator;
(3) a discussion of general properties of the equationally defined commutator;
(4) a discussion of various centralization relations for relative congruences;

© Springer International Publishing Switzerland 2015
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2 1 Introduction

(5) a discussion of the additivity and correspondence properties of the equationally-
defined commutator;

(6) the behaviour of the equationally defined commutator in finitely generated
quasivarieties;

(7) a discussion of other properties of the equationally defined commutator.

Starting with (1) and (2), the definition of a commutator equation for a class of
algebras is introduced. The notion of a commutator equation seems to have not been
considered in the literature. Some properties of commutator equations are discussed
at length. The crucial notion of the equationally defined commutator, based on
commutator equations, is defined for any class of algebras.

The importance of quaternary commutator equations (with parameters) in the
context of additivity and other properties of the equationally defined commutator is
underlined. It is proved that for any relatively congruence-modular quasivariety of
algebras (abbreviated RCM), the equationally defined commutator coincides with
the one promoted by Kearnes and McKenzie (1992) . An emphasis is put on the
role of the equational logics associated with classes of algebras in the study of the
equationally defined commutator. More specifically, for each class K of � -algebras,
the equational consequence operation Kˆ associated with K is defined and its
properties are thoroughly investigated, especially in the context of the equationally
defined commutator for theories of Kˆ. (The consequence Kˆ operates on the set
of equations Eq.�/ of a given signature � .)

The commutator for any congruence-modular variety is equationally defined by
a set of equations derived either from quaternary Day terms or ternary Gumm terms
(see, e.g., Proposition 4.2 in Freese and McKenzie (1987) or Theorem 6.4.2 in this
book). As to (3), the focus of this book is on providing a uniform treatment of
the equationally defined commutator for any quasivariety in terms of commutator
equations. This definition encompasses congruence-modular varieties as a particular
case. It also gives a new insight into the Kearnes-McKenzie’s theory because it
shows that the commutator defined by them for RCM quasivarieties is equationally
defined.

As to (4), the book deals with the issue of equivalence of different concepts
of centralization relations provided by the theory in the context of quasivarieties
with the relative shifting property. Since the equationally defined commutator of
two relative congruences is also determined by appropriate centralization relations,
much space is devoted to the discussion of various forms of such relations.

In the context of centralization relations, the focus is on the idea of applying a
general notion of an implication for equational logics viewed as a set of quaternary
equations having jointly the detachment property relative to a given equational
system. In particular, the significance of Day implication systems in commutator
theory is highlighted. This idea was outlined in Czelakowski and Dziobiak (1996)
and applied in the author’s monograph (2001) to various problems in the theory of
quasivarieties of algebras. We begin with a certain implication system )D (viewed
as a finite set of quaternary equations in four variables x, y, z, w and possibly
some other variables u called parameters) for the equational logic .Eq.�/; Qˆ/
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associated with a given quasivariety Q. The system )D is assumed to possess
certain natural properties with respect to Qˆ. The set of equations )D is then called
a Day implication system for Qˆ. More specifically, a finite set of equations in four
variables

D D fpi.x; y; z; w/ � qi.x; y; z; w/ W i 2 Ig;

more suggestively denoted by x � y )D z � w, is called a Day implication system
for Qˆ if the following conditions are met1

z � w 2 Qˆ.x � y; x � y )D z � w/; (iD1)

i.e., )D has the detachment property relative to Qˆ,

x � y )D x � y � Qˆ.;/; (iD2)

i.e., )D has the identity property relative to Qˆ, and

x � x )D y � y � Qˆ.;/: (iD3)

The above conditions are expressed in the standard notation as follows:

the implication .x � y/ ^
^

i2I

pi.x; y; z; w/ � qi.x; y; z; w/ ! .z � w/ (iD1)�

is Q-valid;

for every i 2 I; the equation pi.x; y; x; y/ � qi.x; y; x; y/ is Q-valid; (iD2)�

for every i 2 I; the equation pi.x; x; y; y/ � qi.x; x; y; y/ is Q-valid: (iD3)�

Condition (iD3) is equivalent to the condition

x � y )D z � w � Qˆ.x � y; z � w/: (iD3)��

The significance of a Day implication for equational logics stems from the fact
that )D characterizes congruence-modular varieties of algebras and, more widely,
in the context of quasivarieties of algebras, it characterizes the relative shifting
property. The notion of a Day implication, although not defined by Day himself, can
be shown to be equivalent to a Mal’cev type characterization of congruence-modular
varieties provided by Day (1969). These and other issues are discussed in Chapter 3.

1This understanding of implication departs from the traditional concept according to which
implication is viewed as a sentential connective conjoining two sentential formulas and thereby
yielding a new formula. AAL provides a more general meaning of the term “implication”. In
particular, in equational logic, an implication (without parameters) is any set ) of quaternary
equations having the detachment property with respect to a given consequence operation Qˆ.
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The presence of a Day implication )D in the equational logic Qˆ enables one
to simplify considerably the description of the centralization relations. (The latter
relations are certain congruences defined on the algebras from the quasivariety Q.)

Commutator theory isolates several centralization relations. These relations are
strictly conjoined with the properties of the standard or the equationally defined
commutator and play an important role in the theory. For example, in many varieties
V and for any algebra A from the class V, the commutator (in whatever meaning of
the word) of two congruences ˚ and � of A is the least congruence � such that
˚ centralizes � with respect to � for a suitably selected centralization relation.
In this work seven definitions of centralization relations for relative congruences in
quasivarieties of algebras are discussed. The main results (Theorems 4.1.2 and 4.2.2)
show that in the presence of a Day implication system, the first four of them are
equivalent for quasivarieties and all seven are equivalent for varieties. Some further
refinements of relevant notions in this context are also discussed in Chapter 4.

As to (5), the presence of a Day implication system for a quasivariety of algebras
is generally too weak to yield a workable commutator theory. Another property, viz.
the additivity of the equationally defined commutator is needed. A characterization
of the additivity of the equationally defined commutator via quaternary commutator
equations is presented. The additivity property already implies the correspondence
property for the equationally defined commutator (Theorem 5.1.1). The notion of
a generating set of quaternary commutator equations for the additive equationally
defined commutator is isolated.

The theory of the commutator for congruence-modular varieties of algebras is
developed in Freese and McKenzie (1987). This theory was subsequently extended
to relative congruence-modular quasivarieties by Kearnes and McKenzie (1992).
Every RCM quasivariety possesses a Day implication system. Moreover, the
Kearnes-McKenzie commutator is additive for any RCM quasivariety. It is proved
in this book that for RCM quasivarieties, the equationally defined commutator and
the one defined by Kearnes and McKenzie (1992) coincide. We may therefore speak
of the commutator for any RCM quasivariety.

The central part of the book tackles the problem of syntactical characterization of
the additivity of the equationally defined commutator. Various conditions equivalent
to additivity are presented in Chapter 5, the main part of the book. The property
of the restricted distributivity of the lattice of theories of the equational logic Qˆ
associated with a quasivariety Q is isolated. This property plays a crucial role
in commutator theory. The central theorem of the book—Theorem 5.3.7—states
that for any quasivariety Q for which the lattice of equational theories of Qˆ is
distributive in the restricted sense, the equationally defined commutator is additive.
Though the restricted distributivity is not a lattice-theoretic property (this property
merely reflects a logical aspect of equational systems), it turns out that the lattice
of equational theories of the consequence operation Qˆ associated with any RCM
quasivariety Q is distributive in the restricted sense. (But restricted distributivity has
a wider scope and there are non-modular quasivarieties whose lattices of equational
theories obey this law.) It then follows that the equationally defined commutator
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for any RCM quasivariety is additive. Since the said commutator is the same as
the one investigated by Kearnes and McKenzie, the additivity of the Kearnes-
McKenzie commutator follows. The above reasoning therefore provides a new proof
of additivity property of the commutator for any RCM quasivariety.

Our treatment of the commutator for equational systems was greatly inspired
by the above two seminal works. They both contain many deep, highly non-trivial
results concerning the commutator. Our contribution to the area of equational logics
consists mainly in introducing the notion of the equationally defined commutator
and an attempt to disentangle various intricate (often syntactic) characterizations of
this commutator and related notions and to put them in a more transparent logical
form provided by the conceptual framework of contemporary abstract algebraic
logic.

As to (6), it is proved that every finitely generated quasivariety possesses a finite
generating set of commutator equations. It follows that the equationally defined
commutator of any finitely generated RCM quasivariety has a finite generating set.

As to (7), specialized classes of quasivarieties whose definitions are derived
from the properties of the commutator, e.g., abelian or nilpotent quasivarieties, are
studied. Each such defining property can be expressed in terms of appropriate sets
of quaternary commutator equations.

This book has the following structure. The (hyper)class of quasivarieties of
algebras forms the conceptual environment for the equationally defined commutator.
There is a natural one-to-one correspondence between equational logics and their
model classes, viz. quasivarieties of algebras. We therefore frequently switch from
equational logics to their model classes and vice versa. Chapter 2 contains a brief
introduction to the theory of quasivarieties and the associated equational logics.
In Chapter 3 the theory of the equationally defined commutator for quasivarieties
is developed. Chapter 4 provides several definitions of centralization relations and
proves their equivalence for some classes of quasivarieties. Chapter 5 contains
the basic results that characterize the additivity property of the equationally
defined commutator. Chapter 6 is devoted to modularity and RCM quasivarieties.
Chapter 7 is concerned with relatively congruence-distributive subquasivarieties
of quasivarieties whose equationally defined commutator is additive. In Chapter 8
some basic properties of the equationally defined commutator for finitely generated
quasivarieties are outlined. Chapter 9 deals with special properties of the lattices
of relative congruences and of the equationally defined commutator. The three
appendices provide the reader with a more specialized knowledge of some aspects
of the expounded theory.

The book is rather self-contained in the matters concerning the equationally
defined commutator. As far as universal algebra is concerned, the books by Burris
and Sankappanavar (1981), McKenzie et al. (1987), and the yet unpublished book by
Ježek (2008) (available on the internet) give a good introduction to the subject. The
book by Grätzer (2008) gives an account of classical results in universal algebra. The
books by Freese and McKenzie (1987), Hobby and McKenzie (1988), and Kearnes
and Kiss (2013) are suggested to the reader wanting to learn more about universal
algebra and the commutator.



6 1 Introduction

The classical monograph by Blok and Pigozzi (1989) is recommended for the
reader interested in abstract algebraic logic and basic logical issues. The monograph
by Czelakowski (2001) provides a comprehensive and detailed exposition of AAL
and outlines the theory of quasivarieties from the perspective of AAL (Chapter Q).
A survey paper by Font et al. (2003) together with its update (2009) as well as
the introductory chapter Font (2014) familiarizes the reader with a broad spectrum
of issues AAL deals with. The textbook by Font (2016) is a good introduction to
the subject. The book by Font and Jansana (2009) and Jansana shows algebraic
semantics for sentential logics from the general perspective of closure systems.

In this book the standard algebraic notation is adopted. In the context of
quasivarieties, terminology is modelled after Pigozzi (1988). This terminology is
also used in Czelakowski (2001).

The logical notation and terminology does not depart from that used in AAL—
see, e.g., Wójcicki (1988) or Czelakowski (2001).

Some of the results of this book were presented in abstracted form in
Czelakowski (2006).

The author is greatly indebted to Keith Kearnes and Piotr Wojtylak for valuable
and inspiring comments on some aspects of the presented theory.

As a non-native speaker of English, the author is indebted to dr. Matthew
Carmody for proof-reading the whole text of the book and for making appropriate
linguistic recommendations and amendments.



Chapter 2
Basic Properties of Quasivarieties

This chapter supplies basic facts concerning quasivarieties and the equational
systems associated with quasivarieties. Many of these facts are of syntactical
character. An equational logic is an extension of the familiar Birkhoff’s logic. The
narrative structure of the book is strictly linked with the properties of lattices of
theories of equational logics. Examining these lattice requires formal tools. They
are introduced in this part; some of them are new.

2.1 Quasi-Identities

! is the set of natural numbers (with zero). An algebraic signature is a pair
� WD hF; ai, where F is a set (of operation symbols), and a W F ! ! is a function
(assigning arity). An algebra of signature � is a pair A WD hA; FAi, where A is
a non-empty set, called the universe of A, and for each f 2 F with a.f / D m,
there is m-ary operation f A W Am ! A. The operations f A are called the basic (or
fundamental) operations of A. If a.f / D 0, f is also called a constant symbol. f A is
then an element of A.

An algebra A of signature � will often be referred to as a � -algebra.
Hom.A; B/ is the set of all homomorphisms from a � -algebra A to � -algebra B.
Let � be a fixed algebraic signature and let L� be the corresponding first-order

language with equality �. Var D fvn W n 2 !g is the set of individual variables
of L� . Te� is the algebra of terms of L� and Eq.�/ is the set of equations of L� .

If t D t.x1; : : : ; xn/ is a term in at most n individual variables x D x1; : : : ; xn, and
a D a1; : : : ; an is a sequence of elements of a � -algebra A, then tA.a1; : : : ; an/ is the
value of the term t for a D a1; : : : ; an in A. tA.a1; : : : ; an/ is defined in the standard
way by induction on complexity of terms. We shall also use the abbreviation tA.a/

for tA.a1; : : : ; an/ often omitting the superscript ‘A’ when the algebra is clear from
context.

© Springer International Publishing Switzerland 2015
J. Czelakowski, The Equationally-Defined Commutator,
DOI 10.1007/978-3-319-21200-5_2
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8 2 Basic Properties of Quasivarieties

A quasi-equation is a formula of the form

˛1 � ˇ1 ^ : : : ^ ˛n � ˇn ! ˛ � ˇ;

where ˛1; ˇ1; : : : ; ˛n; ˇn; ˛; ˇ are terms. n D 0 is possible so every equation
qualifies as a quasi-equation.

A universally quantified quasi-equation is called a quasi-identity. As is custom-
ary, the universal quantifiers in quasi-identities are usually not explicitly written.
It is left to the context to distinguish quasi-identities from quasi-equations.

Any class of algebras defined by a set of quasi-identities is called a quasivariety.
If Q is a quasivariety, then any set � of quasi-identities defining Q is called a base
for Q; we then write Q D Mod.� /.

The symbols I, H, S, P, and Pu, respectively, denote the operations of forming
isomorphic images, homomorphic images, subalgebras, direct products and ultra-
products. (The class operations S, P and Pu are interpreted in the inclusive sense
which means that they also comprise isomorphic copies of algebras; for example,
Pu.K/ is the class of all algebras isomorphic to an ultraproduct of a system of
algebras from K.)

Let Q be a class closed under isomorphisms. By a well-known result due to
Mal’cev, Q is a quasivariety if and only if Q is closed under the operations S, P
and Pu.

If K is a class of algebras, then Qv.K/ is the smallest quasivariety containing
K; the class K is then said to generate the quasivariety Qv.K/. Va.K/ is the variety
generated by K. The equalities Qv.K/ D SPPu.K/ and Va.K/ D HSP.K/ holding
for any class K are classical results of universal algebra.

A quasivariety Q is finitely generated if Q D Qv.K/ for a finite set K of finite
algebras. In this case Qv.K/ D SP.K/.

2.2 Rules of Inference

Let � be a fixed signature. A rule of inference r in Eq.�/ is a set of pairs h˙; �i,
where ˙ is a (possibly infinite) set of equations and � is a single equation. (The pair
h˙; �i is read: From the set of equations ˙ infer the equation � .) Any pair h˙; �i
belonging to r is called an instance of r.

Let e be a substitution in Te� (i.e., e is an endomorphism of the term algebra).
e is fully determined by its values on the set of individual variables of Te� . Given
a set of equations ˙ and an equation ˛ � ˇ, we put: e˙ D fe� W � 2 ˙g and
e.˛ � ˇ/ WD e˛ � eˇ.

A rule r is schematic if there exists a single pair h˙0; �0i such that r is equal to
the set of all instances of h˙0; �0i, i.e.,

r D fhe˙0; e�0i W e 2 Hom.Te� ; Te� /g: (1)
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The pair h˙0; �0i is then called a scheme of the rule r. A schematic rule r is finitary
(or standard) if for one its schemes h˙0; �0i (equivalently, for all schemes), the set
˙0 is finite. A schematic rule r is proper (or non-axiomatic) if ˙0 is non-empty;
otherwise, r is called axiomatic.

The equations in e˙0 are called premises of the rule r and the equation e�0 is the
conclusion of r, for any e.

Any schematic rule r is usually identified with its scheme. Therefore any sche-
matic rule r (with a scheme h˙0; �0i is often presented in the form

˙0=�0

or, more explicitly, as

f˛i � ˇi W i 2 Ig=˛ � ˇ (2)

where ˙0 D f˛i � ˇi W i 2 Ig and �0 is ˛ � ˇ.
In particular, following common practice adopted in metalogic, if r is schematic

with a scheme h˙0; �0i, where ˙0 is finite, ˙0 D f˛1 � ˇ1; : : : ; ˛k � ˇkg, and �0

is ˛ � ˇ, then the standard rule r is usually presented in the form

˛1 � ˇ1; : : : ; ˛k � ˇk=˛ � ˇ:1 (3)

Thus, formally, (3) is the set consisting of ordered pairs

hfe˛1 � eˇ1; : : : ; e˛k � eˇkg; e˛ � eˇi
called instances of (3), with e ranging over the set of endomorphisms of Te� .

If (2) is axiomatic (and hence the set I is empty), then (2) is written as

=˛ � ˇ: (4)

Birkhoff’s rules are the following schematic rules

=x � x; (identity axiom)

x � y=y � x; (symmetry)

x � y; y � z=x � z; (transitivity)

and

x1 � y1; : : : ; xm � ym=f .x1; : : : ; xm/ � f .y1; : : : ; ym/; (functionality)

for each operation symbol f of arbitrary arity m. The identity axiom is also referred
to as the reflexivity rule. (This rule is axiomatic, with the empty set of premises.)

1A similar ‘forward slash’ notation is sometimes applied to substitutions in the algebra of terms
but this should not lead to confusion.
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If the signature � is finite, the above set of standard rules is finite as well. The set
of Birkhoff’s rules is denoted by Birkhoff.�/.

A set of equations ˙ is closed with respect to a schematic rule r W f˛i � ˇi W i 2
Ig= ˛ � ˇ if and only if for every endomorphism e W Te� ! Te� , fe˛i � eˇi W i 2
Ig � ˙ implies that e˛ � eˇ 2 ˙ .

If ˙ and � are sets of equations, then ˙=� denotes the set of rules ˙=� , where
� ranges over the set � .

Let R be a set of standard rules in Eq.�/. We assume that R includes the set
of Birkhoff’s rules Birkhoff.�/. (This assumption may be overridden, but then one
assumes instead that Birkhoff.�/ is among secondary rules of the consequence
operation Ceq

R determined by R—see the definition below.) Let ˙ be a set of
equations. An R-proof from ˙ is any finite sequence of equations

p1 � q1; : : : ; pn � qn (5)

satisfying the following condition:

(p1) p1 � q1 2 ˙ or p1 � q1 is of the form x � x for some variable x,
(p2) for every i (1 < i 6 n/, either pi � qi 2 ˙ or pi � qi is of the form x � x,

or there are indices i1;: : :; ik smaller than i and a rule r W ˛1 � ˇ1^: : :^˛k �
ˇk= ˛ � ˇ in R such that pi � qi is obtained from pi1 � qi1 ; : : : ; pik � qik
by an application of r.

(The phrase “application of a rule” is commonly used in the proof-theoretic
parlance. Formally, the meaning of the phrase “pi � qi is obtained from pi1 �
qi1 ; : : : ; pik � qik by an application of r” is that the pair hfpi1 � qi1 ; : : : ; pik �
qik g; pi � qii is an instance of r.)

Let p � q be an equation. An R-proof from ˙ is called an R-proof of p � q from
˙ if p � q is the last element of this proof. p � q is R-provable from ˙ if there
exists an R-proof of p � q from ˙ .

For every set ˙ � Eq.�/ we define:

Ceq
R .˙/ WD fp � q 2 Eq.�/ W p � q is R-provable from ˙g:

Ceq
R is a structural and finitary consequence operation defined on Eq.�/ which

validates the set of rules R (see below). In particular Ceq
R validates Birkhoff’s rules

for equality Birkhoff.�/.

2.3 Equational Logics

}.Eq.�// is the power set of Eq.�/, i.e., the family of all subsets of Eq.�/.
A mapping Ceq W }.Eq.�// ! }.Eq.�// is a consequence operation on Eq.�/

if it satisfies, for all X; Y � Eq.�/:

(Co1) X � Ceq.X/ (reflexivity)
(Co2) Ceq.X/ � Ceq.Y/ whenever X � Y (monotonicity)
(Co3) Ceq.Ceq.X// � Ceq.X/ (idempotency).
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A consequence Ceq is finitary if for all X � Eq.�/:

(Co4) Ceq.X/ D SfCeq.Xf / W Xf is a finite subset of Xg (finitariness).

(Note that (Co4) already implies (Co2).)
A consequence Ceq is structural if for all X � Eq.�/:

(Co5) eCeq.X/ � Ceq.eX/ for every endomorphism e W Te� ! Te� (structurality).

B� stands for the consequence operation (on Eq.�/) determined only by the set
of rules Birkhoff.�/ in the standard way. B� is referred to as Birkhoff’s logic in the
signature � .

By an equational logic we shall understand any structural consequence operation
Ceq defined on Eq.�/ which validates Birkhoff’s rules for equality Birkhoff.�/, and
possibly some other rules. This means that B� .X/ � Ceq.X/, for all X � Eq.�/.
Birkhoff’s logic B� is the least equational logic (in the sense of the above inclusions).
Thus the class of equational logics in a given signature � comprises exactly all
strengthenings of the logic B� .

The terms “equational logic” and “equational deductive system” will be treated
as synonyms.

Any set of equations ˙ such that Ceq.˙/ D ˙ is called a closed theory of Ceq,
or shortly, a theory of Ceq.

Th.Ceq/

is the set of all theories of Ceq. Since Th.Ceq/ is a closure system, it forms a complete
lattice with respect to inclusion. This lattice is denoted by

Th.Ceq/:

Given a class K of � -algebras, we let

Kˆ

denote the consequence operation on the set of � -equations determined by K. Thus,
for f˛i � ˇi W i 2 Ig [ f˛ � ˇg � Eq.�/,

˛ � ˇ 2 Kˆ.f˛i � ˇi W i 2 Ig if and only if, for every algebra A 2 K and
every h 2 Hom.Te� ; A/, h.˛/ D h.ˇ/ whenever h.˛i/ D h.ˇi/ for all i 2 I.

˛ � ˇ 2 Kˆ.f˛i � ˇi W i 2 Ig is read: ˛ � ˇ follows from f˛i � ˇi W i 2 Ig
relative to K.

The consequence operation Kˆ is structural, i.e., ˛ � ˇ 2 Kˆ.f˛i � ˇi W i 2 Ig/
implies that e˛ � eˇ 2 Kˆ.fe˛i � eˇi W i 2 Ig/ for all endomorphisms e of the
term algebra Te� and all sets f˛i � ˇi W i 2 Ig. As Kˆ validates Birkhoff’s rules,
Kˆ is an equational logic. Furthermore, if K is closed under the formation of
ultraproducts, the consequence Kˆ is finitary. Note that ˛ � ˇ 2 Kˆ.;/ means
that the equation ˛ � ˇ is valid in the class K.
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Following common practice we suppress parentheses as much as possible and in
case of finite sets of equations we usually write

˛ � ˇ 2 Kˆ.˛1 � ˇ1; : : : ; ˛k � ˇk/

instead of ˛ � ˇ 2 Kˆ.f˛1 � ˇ1; : : : ; ˛k � ˇkg/.
Kˆ.f˛i � ˇi W i 2 Ig/ is thus the set of all equations ˛ � ˇ which follow from

f˛i � ˇi W i 2 Ig relative to the class K.
A schematic rule r W f˛i � ˇi W i 2 Ig=˛ � ˇ is said to be a rule of the

consequence Kˆ if ˛ � ˇ 2 Kˆ.f˛i � ˇi W i 2 Ig/. In this case we also say that r
is a rule of the class K.

Every equational logic Ceq on Eq.�/ is characterized semantically by some class
of algebras, i.e., there exists a class K of � -algebras such that Ceq D Kˆ, and there
always exists the largest such class K. Furthermore, if Ceq is finitary, K can be
assumed to be a quasivariety. These, rather simple observations, form the content
of the completeness theorem for equational logics. Consequently, when we are
dealing with equational logics, we shall mainly consider consequences Kˆ already
determined by some fixed class K of algebras.

Any set of equations ˙ such that Kˆ.˙/ D ˙ is called a closed theory of Kˆ,
or shortly, a theory of Kˆ. A set of equations ˙ is a theory of Kˆ if and only if ˙

is closed with respect to the set of rules of Kˆ.
According to the adopted notation, Th.Kˆ/ is the set of all theories of Kˆ.

Th.Kˆ/ forms a complete lattice with respect to inclusion. This lattice is denoted by

Th.Kˆ/:

For any class K it is the case that Kˆ D inffAˆ W A 2 Kg, which means that
Kˆ.˙/ D TfAˆ.˙/ W A 2 Kg, for any set of equations ˙ . (Here Aˆ is, in
accordance with the definition, fAgˆ.) Equivalently, Th.Kˆ/ is the closure system
generated by

SfTh.Aˆ/ W A 2 Kg.
There is an obvious translation of Kˆ into the language of quasi-identities

over Te� :

˛ � ˇ 2 Kˆ.˛1 � ˇ1; : : : ; ˛k � ˇk/ if and only if the implication
˛1 � ˇ1 ^ : : : ^ ˛k � ˇk ! ˛ � ˇ is valid in K.

This observation enables one to express the properties of the consequence operation
Kˆ on finite sets in terms of quasi-equations valid in K. The definitions given below
are formulated in terms of standard rules; but they can be easily reformulated in
terms of quasi-identities. The key is in assigning to each standard rule

r W ˛1 � ˇ1 ^ : : : ^ ˛k � ˇk=˛ � ˇ

the quasi-identity

.r/ W ˛1 � ˇ1 ^ : : : ^ ˛k � ˇk ! ˛ � ˇ:

Thus r is a rule of Kˆ if and only if .r/ is universally valid in K.
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Although quasi-identities and standard rules of inference are interdefinable
concepts, in purely syntactic contexts, when one works with consequence relations
defined on equations, the notion of a standard rule of inference often appears to be
convenient and useful.

For every quasivariety Q, the logic Qˆ is characterized proof-theoretically by
a set R of standard rules. That is, for every Q there is a set R of standard rules
including Birkhoff.�/ such that

Qˆ D Ceq
R : (1)

(As R one may take the set consisting of all standard rules of Qˆ.) If (1) holds, then
R is called an inferential base for Qˆ.

Since the notions of a standard rule of Qˆ and of a quasi-identity of Q are
interdefinable, the fact that a set of rules R is an inferential base of Qˆ is equivalent
to the statement that the set of quasi-equations f.r/ W r 2 Rg corresponding to the
rules of R forms an axiomatization of Q.

In what follows we shall interchangeably speak of inferential bases for Qˆ and
axiomatic bases for Q. (The latter bases consist of sets of quasi-identities.)

2.4 Relative Congruences

Let � be a signature. Let R be a binary relation defined on a � -algebra A. R is closed
under a schematic rule r W f˛i � ˇi W i 2 Ig=˛ � ˇ if, for any a 2 Ak, R contains
the pair h˛A.a/; ˇA.a/i whenever it contains the pairs h˛A

i .a/; ˇA
i .a/i, for all i 2 I.

(Here k is the length of a sequence x D x1; x2; : : : which includes every variable
occurring in one of the terms of the equations f˛i � ˇi W i 2 Ig and ˛ � ˇ. k may
be infinite. In this case we assume that k D !.)

If the rule r is standard, r D ˛1 � ˇ1; : : : ; ˛k � ˇk=˛ � ˇ, then we shall
interchangeably use the phrases ‘R is closed under r’ and ‘R is closed under the
quasi-equation ˛1 � ˇ1 ^ : : : ^ ˛k � ˇk ! ˛ � ˇ’.

A binary relation R on a � -algebra A is a congruence relation (of A) if R is closed
under Birkhoff’s rules Birkhoff.�/.

If ˚ is a congruence of A and a 2 A, then a=˚ is the equivalence class of a with
respect to ˚ . A=˚ is the quotient algebra whose elements are equivalence classes
a=˚ , a 2 A.

If ˚ is a congruence of A, then ˚ is closed under the rule ˛1 � ˇ1; : : : : ;

˛k � ˇk=˛ � ˇ if and only if the quotient algebra A=˚ validates the quasi-identity
.8x/.˛1 � ˇ1 ^ : : : ^ ˛k � ˇk ! ˛ � ˇ/.

Note. Each equation may be identified with a pair of terms. We may therefore
identify a set of equations ˙ with a set of pairs of terms; ˙ is thus a binary relation
on the term algebra Te� . Consequently, the fact that ˙ is closed with respect to
a rule r is an instance of the above general definition. In particular, ˙ is closed
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with respect to Birkhoff’s rules Birkhoff.�/ if and only if the set of ordered pairs
fh˛; ˇi W ˛ � ˇ 2 ˙g is a congruence of the term algebra Te� . ut

If A is an algebra, then Con.A/ is the set of congruences of A. Con.A/ forms an
algebraic lattice, denoted by Con.A/. If ˚; � 2 Con.A/, then ˚ C � marks their
join in Con.A/. The lattice meet of ˚; � in Con.A/ coincides with the intersection
˚ \ � . If X � A2, �A.X/ denotes the least congruence of A that contains X.

Let Q be a quasivariety of � -algebras and A a � -algebra, not necessarily
in Q. A congruence ˚ on A is called a Q-congruence if A=˚ 2 Q. The set
of Q-congruences is denoted by ConQ.A/. Thus ConQ.A/ D f˚ 2 Con.A/ W
A=˚ 2 Qg. If Q is not a variety, the elements of ConQ.A/ are also called relative
congruence. ConQ.A/ contains the universal congruence 1A WD A2 and it contains
the smallest Q-congruence being the intersection of all Q-congruences of A. This
smallest Q-congruence is the identity congruence 0A (= diagonal relation on A) if
and only if A 2 Q.

It is easy to see that if � is an axiomatic base for Q, then ˚ is a Q-congruence if
and only if ˚ is closed under every quasi-identity from the base. It follows from this
observation that ConQ.A/ is closed under arbitrary intersections and the union of
directed sets; in other words, ConQ.A/ is a finitary closure system on A2. (This also
follows from the fact that Q is closed under subdirect products and ultraproducts.)
ConQ.A/ therefore forms the universe of an algebraic lattice ConQ.A/ called the
lattice of Q-congruences.

If ˚; � 2 ConQ.A/, then ˚ CQ � denotes their join in ConQ.A/. ˚ CQ � is
generally larger than ˚ C � . The lattice meet of ˚; � in ConQ.A/ coincides with
their intersection ˚ \ � .

If V is a variety, and A is an algebra of type � , then ConV.A/ forms a principal
filter in the lattice Con.A/ of all congruences of A. But if A is in V, then ConV.A/

coincides with Con.A/.
For any X � A2, �A

Q.X/ denotes the least Q-congruence of A that contains X.
Thus

�A
Q.X/ D

\
f˚ 2 ConQ.A/ W X � ˚g:

The congruence �A.X/ is a subset of �A
Q.X/.

Id.Q/ denotes the set of all identities valid in Q.
The following characterization of �A

Q.X/ proves convenient in applications:

Theorem 2.1. Let Q be a quasivariety of algebras of type � and � a set of quasi-
identities which are not identities such that Q D Mod.Id.Q/ [ � /. Then for any
algebra A, any set X � A2 and any a; b 2 A,

a � b.�A
Q.X// if and only if there exists a finite sequence

ha1; b1i; : : : ; han; bni (�)
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of elements of A2 such that han; bni D ha; bi and, for every i, 1 6 i 6 n, either
hai; bii 2 X or ai D bi or there exist a set J � f1; : : : ; i�1g, a quasi-equation
r1.x/ � s1.x/ ^ : : : ^ rm.x/ � sm.x/ ! r.x/ � s.x/ 2 � [ Birkhoff .�/,
where x D x1; : : : ; xp, and a sequence c D c1; : : : ; cp of elements of A such
that

fhrk.c/; sk.c/i W 1 6 k 6 mg D fhaj; bji W j 2 Jg and hr.c/; s.c/i D hai; bii:

Proof. See Czelakowski and Dziobiak (1996) or Gorbunov (1984). See also
Czelakowski (2001), Lemma Q.2.1. ut

The sequence (�) is called a Q-generating sequence of the pair ha; bi from the
set X.

Proposition 2.2. Let Q be a quasivariety. Suppose that

˛ � ˇ 2 Qˆ.f˛i � ˇi W i 2 Ig/

for some set of equations f˛i � ˇi W i 2 Ig and an equation ˛ � ˇ. Let A be
a � -algebra and h W Te� ! A a homomorphism. Then

hh.˛/; h.ˇ/i 2 �A
Q.fhh.˛i/; h.ˇi/i W i 2 Ig/:

Proof. Put ˚ WD �A
Q.fhh.˛i/; h.ˇi/i W i 2 Ig/. Let g be the composition of h and

of the canonical homomorphism from A to the Q-algebra A=˚ . As g validates
the equations ˛i � ˇi, i 2 I, it follows that g.˛/ D g.ˇ/. So hh.˛/; h.ˇ/i 2
�A

Q.fhh.˛i/; h.ˇi/i W i 2 Ig/. ut

2.5 Free Algebras

Let K be a class of � -algebras. FK.!/ denotes the free algebra in K freely generated
by a countably infinite set of generators. FK.!/ is also free in the variety Va.K/.
FK.!/ need not belong to K, but FK.!/ is in Qv.K/. We therefore have that
FK.!/ D FQv.K/.!/ D FVa.K/.!/.

Let ˝0 be the congruence relation defined on the term algebra Te� as follows:
for any terms ˛; ˇ,

˛ � ˇ .mod ˝0/ ,df ˛ � ˇ 2 Kˆ.;/ ., ˛ � ˇ is valid in K/:

The equivalence class of any term t with respect to ˝0 is denoted by Œt	. (Thus
˛ � ˇ is valid in K if and only if Œ˛	 D Œˇ	.)

Proposition 2.3. The quotient algebra Te� =˝0 is free in the class K and hence in
the variety Va.K/. Moreover fŒx	 W x 2 Varg is the set of free generators of Te� =˝0.
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Proof. The congruence ˝0 is invariant, i.e., for any terms ˛; ˇ, if ˛ � ˇ.mod ˝0/,
then e˛ � eˇ .mod ˝0/, for all endomorphisms e of the term algebra Te� . Hence
Te� =˝0 is free in K. ut

A class K is trivial if it contains only one-element algebras; otherwise, K is non-
trivial.

We shall identify FK.!/ with Te� =˝0. Since the congruence ˝0 does not paste
together different variables (unless K is trivial), the free generators of FK.!/ are
often identified with individual variables.

Proposition 2.4. Let Q be a quasivariety of algebras. For any set � of equations
and any equation ˛ � ˇ,

˛ � ˇ 2 Qˆ.� / if and only if hŒ˛	; Œˇ	i 2 �F
Q.fhŒs	; Œt	i W s � t 2 � g/;

where F WD FQ.!/.

The proof is easy and is omitted. ut

Let Q be a quasivariety and let ˝ be the mapping which to each (closed) theory
˙ of the consequence operation Qˆ assigns the congruence

˝.˙/ WD fh˛; ˇi W ˛ � ˇ 2 ˙g
on the algebra of terms Te� . (˝0 thus coincides with ˝.Qˆ.;//.)

In turn, let � be the mapping which to each (closed) theory ˙ of the
consequence operation Qˆ assigns the set of pairs

� .˙/ WD fhŒ˛	; Œˇ	i W ˛ � ˇ 2 ˙g
of the free algebra FQ.!/. � .˙/ is a congruence of FQ.!/. � .˙/ is equal to the
quotient congruence ˝.˙/=˝0.

Proposition 2.5. Let Q be a quasivariety. The mapping � establishes an isomor-
phism between the lattice of closed theories of Qˆ and the congruence lattice
ConQ.FQ.!//.

Proof. Straightforward. ut
Proposition 2.6. Let F WD FQ.X/ be a free algebra in a non-trivial quasivariety Q
with the set X of free generators and Z � X2. Then �F

Q.Z/ D �F.Z/, i.e., the least
congruence in F containing X is a Q-congruence.

Proof. �F.Z/ is equal to �F.R.Z//, where R.Z/ is the least equivalence relation
on X that includes Z. Let Y be a set of selectors for the abstraction classes of R.Z/.
Thus, for every x 2 X there is a unique y 2 Y such that x R.Z/ y. The quotient
algebra F=�F.Z/ is isomorphic with the free algebra FQ.Y/. This fact follows from
the observation that the mapping h0 W X ! Y defined by:

h0.x/ WD the unique y 2 Y such that x R.Z/ y;
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extends to a homomorphism h from F to FQ.Y/ and ker.h/ D �F.R.Z//. Since
FQ.Y/ belongs to Q, �F.Z/ is a Q-congruence. (See also, e.g., Czelakowski 2001,
Chapter Q, Lemma Q.2.3.) ut

It follows from the above proposition that for any free generators x and y of F,
�.x; y/ is a Q-congruence of F. But it is not true that every congruence ˚ � �.x; y/

is a Q-congruence. The following example is due to Keith Kearnes2. Let Q be the
quasivariety of torsion-free Abelian groups. Q is known to be relatively congruence-
modular. The congruence ˚ WD �.2x; 2y/ is a proper subset of �.x; y/, and it is not
a Q-congruence. To see this, it is enough to note that x � y is a nonzero torsion
element of F=˚ , so F=˚ is not in Q.

2.6 More on Congruences

Let A and B be sets and h W A ! B a function. If Y is a subset of B2,
then h�1.Y/ WD fha; bi 2 A2 W hha; hbi 2 Yg. Similarly, if X is a subset of A2, then
h.X/ WD fhha; hbi 2 B2 W ha; bi 2 Xg.

If h W A ! B is a homomorphism between algebras A and B, then

ker.h/ WD fha; bi 2 A2 W ha D hbg:

ker.h/ is a congruence of A. It is clear that ker.h/ D h�1.0B/.

Proposition 2.7. (The correspondence property). Let h W A ! B be a homomor-
phism between arbitrary algebras A and B. If ˚ 2 Con.A/ and ker.h/ � ˚ , then
h�1h.˚/ D ˚ .

Proof. (�). Suppose ha; bi 2 ˚ . Then hha; hbi 2 h.˚/. It follows that
ha; bi2h�1h.˚/.

(�). Assume ha; bi 2 h�1h.˚/. Then hha; hbi 2 h.˚/. It follows that there are
x; y 2 A such that hha; hbi D hhx; hyi and hx; yi 2 ˚ . As ha D hx, hb D hy, we
get that ha; xi, hb; yi 2 ker.h/ � ˚ . Hence hx; yi, ha; xi, hb; yi 2 ˚ . This gives that
ha; bi 2 ˚ . ut
Note. Let Q be a quasivariety. Let h W A ! B be a homomorphism, where A and B
are arbitrary algebras. If ˚ 2 ConQ.B/, then h�1.˚/ is a Q-congruence on A, i.e.,
h�1.˚/ 2 ConQ.A/. This follows from the fact that the relation h�1.˚/ is closed
under the rules of Qeqˆ. Indeed, let r W ˛1 � ˇ1; : : : ; ˛n � ˇn=˛ � ˇ be a rule
of Qeqˆ and let g W Te� ! A be a homomorphism such that hg˛i; gˇii 2 h�1.˚/

for i D 1; : : : ; n. Hence hhg˛i; hgˇii 2 � for i D 1; : : : ; n. As hg W Te� ! B is a
homomorphism and �, being a Q-congruence, is closed with respect to r, we get
that hhg˛; hgˇi 2 ˚ . Hence hg˛; gˇi 2 h�1.˚/.

2Personal correspondence.
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In particular, if B 2 Q, then ker.h/ (D h�1.0B/) is a Q-congruence on A. ut
Corollary 2.8. Let Q be a quasivariety of algebras of a signature � . Let h W A ! B
be a homomorphism between arbitrary � -algebras and let ˚ 2 Con.A/ be a
congruence such that ker.h/ � ˚ .

(a) If h is surjective and ˚ 2 ConQ.A/, then h.˚/ 2 ConQ.B/.
(b) If h.˚/ 2 ConQ.B/, then ˚ 2 ConQ.A/.
(c) If h is surjective, then ˚ 2 ConQ.A/ if and only if h.˚/ 2 ConQ.B/.

Proof. As ker.h/ � ˚ , we have that h�1h.˚/ D ˚ , by the correspondence prop-
erty. It follows that the algebra A=˚ is embeddable into B=h.˚/. (The embedding is
established by the mapping 
 which to each equivalence class a=˚ 2 A=˚ assigns
the equivalence class ha=h.˚/, a 2 A.)

If h.˚/ 2 ConQ.B/, then B=h.˚/ 2 Q. It follows that A=˚ 2 Q, because it is
isomorphic with a subalgebra of the Q-algebra B=h.˚/. This proves (b).

If h is surjective, then the above mapping is an isomorphism between A=˚ and
B=h.˚/. If ˚ 2 ConQ.A/, then A=˚ belongs to Q, and hence B=h.˚/ belongs to
Q as well. Hence h.˚/ 2 ConQ.B/. This proves (a).

(c) follows from (a) and (b). ut
Proposition 2.9. Let Q be a quasivariety of algebras of a signature � . Let
h W A ! B be a homomorphism between arbitrary � -algebras. Then for every
set X � A2,

h.�A
Q.X// � �B

Q.h.X//:

Proof. As A=h�1.�B
Q.h.X/// is isomorphic with a subalgebra of B=.�B

Q.h.X///2Q,
it follows that A=h�1.�B

Q.h.X/// 2 Q. Hence h�1.�B
Q.h.X/// is a Q-congruence

on A. Since X � h�1.�B
Q.h.X///, we therefore get that �A

Q.X/ � h�1.�B
Q.h.X///.

Consequently, h.�A
Q.X/ � �B

Q.h.X//.
(An alternative proof of the above inclusion is based on Theorem 2.1. For let

ha; bi 2 �A
Q.X/ and let ha1; b1i; : : : ; han; bni be a Q-generating sequence of ha; bi

from X in A. Then hha1; hb1i; : : : ; hhan; hbni is a Q-generating sequence of hha; hbi
from h.X/ in B. Hence ha; bi 2 �B

Q.h.X//.) ut
Note. Proposition 2.9 implies that for any set of equations X and any equation
˛ � ˇ, if ˛ � ˇ 2 Qeqˆ.X/, then for any � -algebra A and any homomorphism
h W Te� ! A it is the case that hh.˛/; h.ˇ/i 2 �A

Q.fhh.˛/; h.ˇ/i W � � ı 2 Xg/. ut
Let Q be a quasivariety of � -algebras, A, B arbitrary � -algebras, and h W A ! B

a homomorphism. We define:

kerQ.h/ WD h�1.�B
Q.0B//;

i.e., kerQ.h/ is the h-preimage of the least Q-congruence of B. As A= kerQ.h/ is
isomorphic with a subalgebra of B=�B

Q.0B/ 2 Q, kerQ.h/ is a Q-congruence on A.
If B 2 Q, then kerQ.h/ D ker.h/, because �B

Q.0B/ D 0B.
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Proposition 2.10. Let Q be a quasivariety of � -algebras, A, B arbitrary
� -algebras, and h W A ! B a surjective homomorphism. Then for any set X � A2,

h.�A
Q.X/ CQ kerQ.h// D �B

Q.h.X//: (�)

Note. If B 2 Q, then kerQ.h/ D ker.h/. Hence (�) implies that

h.�A
Q.X/ CQ ker.h// D �B

Q.h.X//: ut

Proof. Since kerQ.h/ is a Q-congruence on A, therefore ˚ WD �A
Q.X/ CQ kerQ.h/

is a well-defined Q-congruence on A. As ker.h/ � kerQ.h/ 2 ConQ.A/,
Corollary 2.8.(a) implies that h.˚/ is a Q-congruence on B. Since X � ˚ , we
get that h.�A

Q.X/ CQ kerQ.h// D h.˚/ � �B
Q.h.X//.

On the other hand, as h.�A
Q.X/ � �B

Q.h.X// and h.kerQ.h// D �B
Q.0B/, we get

that h.�A
Q.X/ CQ kerQ.h// D h.�A

Q.X [ kerQ.h// � �B
Q.h.X/ [ h.kerQ.h/// D

�B
Q.h.X//, by Proposition 2.9. ut

Corollary 2.11. Let Q be a quasivariety, A, B be arbitrary � -algebras, and
h W A! B a surjective homomorphism. Then for any set X � A2,

h�1.�B
Q.hX// D kerQ.h/ CQ �A

Q.X/: ut (��)

Proof. Since B 2 Q, ker.h/ D kerQ.h/. ut
Corollary 2.12. Let Q be a quasivariety, let A, B be arbitrary � -algebras, and
h W A ! B a surjective homomorphism. Then for any ˚; � 2 ConQ.B/,

h�1.˚ CQ �/ D h�1.˚/ CQ h�1.�/:

Proof. As h is “onto”, hh�1.˚/ D ˚ and hh�1.�/ D � . Moreover kerQ.h/ �
h�1.˚/ and kerQ.h/ � h�1.�/. Applying Corollary 2.11 we get:

h�1.˚ CQ �/ D h�1.�B
Q.˚ [ �// D h�1.�B

Q.hh�1.˚/ [ hh�1.�/// D
h�1.�B

Q.h.h�1.˚/ [ h�1.�//// D kerQ.h/ CQ �A
Q.h�1.˚/ [ h�1.�// D

kerQ.h/ CQ �A
Q.h�1.˚// CQ �A

Q.h�1.�// D kerQ.h/ CQ h�1.˚/ CQ h�1.�/ D
h�1.˚/ CQ h�1.�/: ut

Let F be a non-trivial infinitely generated free algebra and let h W F ! F be an
epimorphism. Let x and y be arbitrary free generators of F. Assume F is free in a
quasivariety Q. We know that �F.x; y/ is a Q-congruence of F. The kernel ker.h/

is also a Q-congruence of F. Question: Is ker.h/ C �F.x; y/ a Q-congruence of F?
(“C” stands for the least upper bound in the lattice of congruences of F.) If hx and
hy are free generators, then indeed ker.h/ C �F.x; y/ is a Q-congruence. But if hx
and hy are not free generators, the answer may be: No! Here is a simple example
provided by Keith Kearnes.
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Let Q be the quasivariety in the language with only two constant symbols 0,
1 (and no other operations) that is axiomatized by the quasi-identity 0 � 1 !
x � y. Let F be the free algebra in Q with free generators fx0; x1; : : :g. Then F D
f0; 1; x0; x1; : : :g.

Let h W F ! F be the function which x0 and 0 maps to 0, x1 and 1 maps to 1,
and xnC1 maps to xn for all n > 1. h is an epimorphism and ker.h/ D f0; x0g2 [
f1; x1g2 [ 0F.

The join ker.h/ C �F.x0; x1/ equals f0; 1; x0; x1g2 [ 0F, i.e., it relates the four
elements 0; 1; x0; x1 and relates no other pair of distinct elements. But the Q-join
ker.h/ CQ �F.x0; x1/ is F 	 F. Hence ker.h/ C �F.x0; x1/ is not a Q-congruence.

Other useful facts and aspects of the theory of quasivarieties can be found, e.g., in
Pigozzi (1988), Czelakowski and Dziobiak (1996), Czelakowski (2001) and Kearnes
and McKenzie (1992).

2.7 Properties of Equational Theories

The theory of the equationally defined commutator to a large extent uses syntactical
tools derived from the properties of the equational consequences associated with
quasivarieties. In this subsection we shall present some of these properties.

The facts presented in the above section on relative congruences have their
counterparts for the theories of Qˆ, where Q is a quasivariety of a signature � .

Let e W Te� ! Te� be a function. If X is a set of equations, then

e.X/ WD fep � eq W p � q 2 Xg:
e�1.X/ WD fp � q 2 Eq.�/ W ep � eq 2 Xg:

We shall mark the theory Qˆ.˙1 [ ˙2/ as

˙1 CQ ˙2;

thus using the notation applied to Q-congruences. (˙1 and ˙2 are arbitrary theories
of Qˆ.)

If e W Te� ! Te� is an endomorphism and ˙ is a theory of Qˆ, then e�1.˙/ is a
theory of Qˆ as well. This follows from the fact that the set of equations e�1.˙/ is
closed with respect to the rules of Qˆ (cf. Note following Proposition 2.7).

Some care is needed when one wants to define the kernel of an endomorphism e
of the term algebra. The set fp � q 2 Eq.�/ W the term ep is identical with eqg is a
theory of Birkhoff’s consequence B� . Not much can be said about the properties of
this set when one wants to connect it with a non-trivial quasivariety. We therefore
adopt the following definition.
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If e W Te� ! Te� is an endomorphism, then

kerQ.e/ WD e�1.Qˆ.;//:

kerQ.e/ is called the kernel of the endomorphism e relative to Q. Thus p � q 2
kerQ.e/ if and only if the equation ep � eq is valid in Q. One may directly verify
that kerQ.e/ is closed with respect to the rules of Qˆ and hence it is a theory of Qˆ.
We obviously have that fp � q 2 Eq.�/ W ep D eqg � kerQ.e/.

The consequence operation Va.Q/ˆ is weaker than Qˆ but both operations agree
on ;, that is, Qˆ.;/ D Va.Q/ˆ.;/. From the purely inferential viewpoint, Va.Q/ˆ
is the consequence operation determined by the set of all Q-valid equations and the
rules of inference of the Birkhoff’s logic B� . In other words, Va.Q/ˆ is an axiomatic
strengthening of Birkhoff’s logic B� (in the signature of Q).

As Qˆ.;/ D Va.Q/ˆ.;/, it follows that

kerQ.e/ D kerVa.Q/.e/:

Proposition 2.13. (The correspondence property for equational theories). Let Q be
a quasivariety of � -algebras and e W Te� ! Te� an endomorphism. If ˙ is a theory
of Qˆ and kerQ.e/ � ˙ , then e�1e.˙/ D ˙ . ut
Corollary 2.14. Let Q be a quasivariety of � -algebras and e W Te� ! Te� an
endomorphism. Let ˙ be a theory of Birkhoff’s logic B� in Te� , i.e., ˙ 2 Th.B� /,
such that kerQ.e/ � ˙ .

(a) If e is surjective and ˙ 2 Th.Qˆ/, then e.˙/ 2 Th.Qˆ/.
(b) If e.˙/ 2 Th.Qˆ/, then ˙ 2 Th.Qˆ/.
(c) If e is surjective, then ˙ 2 Th.Qˆ/ if and only if e.˙/ 2 Th.Qˆ/. ut
Proposition 2.15. Let Q be a quasivariety of � -algebras and e W Te� ! Te� an
epimorphism. Then

e.Qˆ.X/ CQ kerQ.e// D Qˆ.e.X//

for any set of equations X. ut
Corollary 2.16. Let Q be a quasivariety of � -algebras and let e W Te� ! Te� be an
epimorphism. Then for any set of equations X,

e�1.Qˆ.eX// D kerQ.e/ CQ Qˆ.X/: ut

Corollary 2.17. Let Q be a quasivariety of � -algebras and e W Te� ! Te� an
epimorphism. Then for any theories ˙1 and ˙2 of Qˆ,

e�1.˙1 CQ ˙2/ D e�1.˙1/ CQ e�1.˙2/

in the term algebra Te� . ut
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Proposition 2.18. Let X be a set of equations of variables, i.e., X D fxi � yi W i 2
Ig, where xi, yi .i 2 I/ are individual variables. Then Va.Q/ˆ.X/ is a theory of Qˆ
for any non-trivial quasivariety Q. ut

Va.Q/ˆ.X/ is a theory of the consequence Va.Q/ˆ. The proposition states that
Va.Q/ˆ.X/ is a closed theory of the stronger consequence operation Qˆ.

The proofs of the above facts are easy modifications of the corresponding results
from the preceding subsection.

2.8 Epimorphisms and Isomorphic Embeddings
of the Lattice of Theories

Let Q be a quasivariety of � -algebras and let e W Te� ! Te� be an endomorphism.
We define the function f e W Th.Qˆ/ ! Th.Qˆ/ by

f e.˙/ WD e�1.˙/ for all ˙ 2 Th.Qˆ/:

As e�1.˙/, the e-preimage of ˙ , is a closed theory, f e is well-defined.
The following fact is immediate:

Lemma 2.19. For any epimorphism e W Te� ! Te� , the function f e is an isomorphic
embedding of the lattice Th.Qˆ/ into Th.Qˆ/.

Proof. Let ˙1 and ˙2 be theories of Qˆ. Corollary 2.17 yields that

f e.˙1 CQ ˙2/ D e�1.˙1 CQ ˙2/ D e�1.˙1/ CQ e�1.˙2/ D f e.˙1/ CQ f e.˙2/;

f e.˙1 \ ˙2/ D e�1.˙1 \ ˙2/ D e�1.˙1/ \ e�1.˙2/ D f e.˙1/ \ f e.˙2/:

The verification that f e is one-to-one is also straightforward. ut
We define: The.Qˆ/ WD f˙ 2 Th.Qˆ/ W kerQ.e/ � ˙g. The set The.Qˆ/

forms a sublattice The.Qˆ/ of Th.Qˆ/. The theory kerQ.e/ is the least element of
The.Qˆ/.

Corollary 2.20. For any epimorphism e W Te� ! Te� , the function f e is an
isomorphism between the lattices Th.Qˆ/ and The.Qˆ/.

Proof. It suffices to check that f e is a surjection from Th.Qˆ/ onto The.Qˆ/.
Suppose Y 2 The.Qˆ/. We claim that Y D f e.X/ for some X 2 Th.Qˆ/. We
put: X WD Qˆ.eY/. Then, by Corollary 2.16, f e.X/ D e�1.X/ D e�1.Qˆ.eY// D
kerQ.e/ CQ Qˆ.Y/ D kerQ.e/ CQ Y D Y . ut

It follows from the correspondence property (Proposition 2.13) that the function
ge W The.Qˆ/ ! Th.Qˆ/ given by

ge.˙/ WD e.˙/ .D fe.�/ W � 2 ˙g/; for all ˙ 2 The.Qˆ/;

is the inverse of the isomorphism f e.
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The function ke W Th.Qˆ/ ! The.Qˆ/ given by

ke.˙/ WD kerQ.e/ CQ ˙; ˙ 2 Th.Qˆ/;

is a retraction, that is ke is a surjection and ke is the identity map on the sublattice
The.Qˆ/. ke need not be a lattice homomorphism: ke preserves joins but does not
preserve meets of theories.

2.9 The Kernels of Epimorphisms

Let Q be a quasivariety of � -algebras. Var is the (countably infinite) set of individual
variables of Te� .

We know that for every endomorphism e W Te� ! Te�

kerQ.e/ WD e�1.Qˆ.;//

is a closed theory of Qˆ. As Qˆ.;/ D Va.Q/ˆ.;/, kerQ.e/ is also a theory of
Va.Q/ˆ.;/. (Va.Q/ˆ is the consequence operation determined by the set of all
Q-valid equations and the rules of inference of Birkhoff’s logic B� .)

Let e W Te� ! Te� be an endomorphism. We define:

Ve WD fx 2 Var W e.x/ 2 Varg:

Thus Ve WD e�1.Var/.
From now on we assume e W Te� ! Te� is a fixed epimorphism, i.e., a surjective

endomorphism. Then the set Ve is infinite and e surjectively maps Ve onto Var.
Moreover, e assigns a compound term to each variable x 2 Var n Ve.

Te� .Ve/ is the set of all terms of Te� in the variables Ve and Te� .Ve/ is the
corresponding subalgebra of Te� .

For each variable x 2 Var we mark the term e.x/ as tx. If x 2 Ve, then tx is a
variable, not necessarily in Ve. It is clear that then there is a variable sx 2 Ve such
that e.sx/ D tx .D e.x//, viz., sx WD x. If x 2 Var n Ve, the term tx is compound,
and we write tx D tx.y/, where y D y1; : : : ; yn is the list of variables occurring
in tx. There are (different) variables x D x1; : : : ; xn in Ve such that y D e.x/, that
is, y1 D e.x1/; : : : ; yn D e.xn/. Then e.x/ D tx D tx.y/ D tx.e.x// D e.tx.x//.
Hence the term e.x/ is identical with e.tx.x//. Let us denote the term tx.x/ by sx. We
thus get:

Fact 1. For every variable x 2 Var there is a term sx 2 Te� .Ve/ such that the term
e.x/ is identical with e.sx/. If x 2 Ve, then sx is the variable x. If x 2 Var n Ve, the
term sx is compound. ut

To simplify notation, we shall omit parentheses in the symbols like ‘e.x/’.
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e surjectively maps Ve onto Var but it may glue some variables of Ve. We then
put:

A0 WD fx � sx W x 2 Var n Veg [ fx � y W x; y 2 Ve and ex D eyg [
fx � y W x; y 2 Var n Ve and ex D eyg;

where, for each x 2 Var n Ve, sx is an arbitrary but fixed term in Te� .Ve/ such that
ex D esx.

The following observation, which seems to have not been considered in the
literature, provides a canonical characterization of sets of equations generating the
kernel of an arbitrary epimorphism of the term algebra. This characterization will
be applied in Chapters 5 and 6.

Theorem 2.21. kerQ.e/ D Va.Q/ˆ.A0/.

Notes. 1. If e injectively maps Ve onto Var, the set fx � y W x; y 2 Ve and ex D eyg,
being a component of A0, reduces to fx � x W x 2 Veg and therefore it may be
disregarded in the above definition. Similarly, if e does not paste together different
variables in Var n Ve, the set fx � y W x; y 2 Var n Ve and ex D eyg may be omitted
too.

2. The theorem implies that kerQ.e/ D Qˆ.A0/, because kerQ.e/ is a theory
of Qˆ. ut
Proof. To simplify notation we put C WD Qˆ. We also put: C0 WD Va.Q/ˆ. The
definitions of A0 and kerQ.e/ immediately give that A0 � kerQ.e/. Hence C0.A0/ �
kerQ.e/. We shall show that kerQ.e/ � C0.A0/.

Claim 1. If x; y 2 Var n Ve and ex is identical with ey, then sx � sy 2 C0.A0/.

Proof (of the claim). We have: x � sx, y � sy 2 A0. Moreover x � y 2 A0, because
ex D ey. It follows that sx � sy 2 C0.A0/. ut
Claim 2. For each term t 2 Te� there is a term st 2 Te� .Ve/ such that t � st 2
C0.A0/. Moreover, et is identical with est.

Proof. We use induction on the complexity of terms. Assume t is a variable x. If
x 2 Ve, then sx is identical with x. Hence trivially x � sx 2 C0.A0/. If x 2 Var n Ve,
we take the compound term sx 2 Te� .Ve/ corresponding to x and defined as above.
Then ex D esx and x � sx 2 A0, by the definition of A0. Hence x � sx 2 C0.A0/.

Let t be a compound term F.t1 : : : tk/, where F is a k-ary function symbol, and
assume the thesis holds for the terms t1; : : : ; tk. There are terms st1 ; : : : ; stk 2 Te� .Ve/

such that t1 � st1 ; : : : : ; tk � stk 2 C0.A0/ and et1 D est1 ; : : : : ; etk D estk . We put
st WD F.st1 : : : stk /. We have: st 2 Te� .Ve/, t � st 2 C0.t1 � st1 ; �; tk � stk / 2
C0.A0/ by functionality rules, and et D est. ut

It should be noted that if t is in Te� .Ve/, then it follows from the above definitions
that t is identical with st.
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Claim 3. Let r and s be terms in Te� .Ve/ such that er � es 2 C0.;/. Then
r � s 2 C0.A0/.

Proof. Write r D r.x/, s D s.x/, where x D x1; : : : ; xn. As r and s are in Te� .Ve/,
the substitution e merely replaces the variables of x by a block of other variables
y D ex1; : : : ; exn (but not necessarily in a one-to-one way). As er � es is identical
with r.y/ � s.y/, we see that r.y/ � s.y/ 2 C0.;/ implies that r.x/ � s.x/ 2
C0.fxi � xj W 1 6 i < j 6 n and exi D exjg/. Since fxi � xj W 1 6 i < j 6 n and
exi D exjg 2 A0, it follows that r � s 2 C0.A0/. ut
Claim 4. Let p and q be arbitrary terms in Te� such that ep � eq 2 C0.;/. Then
p � q 2 C0.A0/.

Proof. According to Claim 2, there are terms sp; sq 2 Te� .Ve/ such that p � sp,
q � sq 2 C0.A0/ and ep D esp, eq D esq. As ep � eq 2 C0.;/, we trivially get that
esp � esq 2 C0.;/. Hence, by Claim 3, sp � sq 2 C0.A0/. This fact together with
p � sp, q � sq 2 C0.A0/ yields that p � q 2 C0.A0/. ut

From the above claim the theorem follows. ut
Example. Let p.y/ and q.y/ be two different compound terms in variables y and
x, y be different variables. Let e W Te� ! Te� be an epimorphism such that ex D p,
ey D q and e bijectively maps Var n fx; yg onto Var. Then Ve D Var n fx; yg. Let x
be the set of variables of Ve such that ex D y.

Let Q be an arbitrary quasivariety. It follows from the above theorem that the set

A0 WD fx � p.x/; y � q.x/g

generates the kernel kerQ.e/, that is,

kerQ.e/ D Va.Q/ˆ.A0/:

Note. In reference to Theorem 2.21 we also note the following distributivity law
involving the kernels of epimorphisms.

The following notions will be used in the chapters devoted to the equationally
defined commutator. A set of equations of variables is any set fxi � yi W i 2 Ig,
where xi and yi are variables for i 2 I and the variables occurring in the equations
xi � yi (i 2 I) are all pairwise different. Two sets X and Y of equations of variables
are separated if the equations of X and Y do not share a common variable.

Theorem 2.22. Let Q be a quasivariety and e W Te� ! Te� an epimorphism. Define
the set Ve as above. Let X and Y be separated sets of equations of variables from Ve.
If e is injective on the set of variables occurring in X [ Y, then

.kerQ.e/ CQ Qˆ.X// \ .kerQ.e/ CQ Qˆ.Y// D kerQ.e/ CQ Qˆ.X/ \ Qˆ.Y/:
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The above theorem can be proved rather easily by applying Theorem 2.21 and
working with the kernel kerQ.e/ (cf. also Lemma 5.2.10). Another proof of the
theorem is presented in Section 3.3 (see Theorem 3.3.7). ut

The thesis of Theorem 2.22 holds for any relatively congruence-distributive
quasivariety Q (without any restrictions imposed on X, Y and e).



Chapter 3
Commutator Equations and the
Equationally-Defined Commutator

3.1 Commutator Equations and the Equationally-Defined
Commutator of Congruences

If s D s1; : : : ; sm, and t D t1; : : : ; tm are sequences of terms (both sequences of the
same length m) and X is a set of equations then

s � t 2 X

abbreviates the fact that si � ti 2 X for i D 1; : : : ; m.)
Let m and n be positive integers and let x D x1;: : :; xm, y D y1;: : :; ym,

z D z1;: : :; zn, w D w1; : : : ; wn, and u D u1; : : : ; uk be sequences of pairwise distinct
individual variables. The lengths of the strings x and y are equal, jxj D jyj D m and,
similarly, jzj D jwj D n, juj D k.

Let

˛.x; y; z; w; u/ WD ˛.x1; : : : ; xm; y1; : : : ; ym; z1; : : : ; zn; w1; : : : ; wn; u1; : : : ; uk/

and

ˇ.x; y; z; w; u/ WD ˇ.x1; : : : ; xm; y1; : : : ; ym; z1; : : : ; zn; w1; : : : ; wn; u1; : : : ; uk/

be terms in Te� built up with at most the variables x D x1; : : : ; xm, y D y1; : : : ; ym,
z D z1; : : : ; zn, w D w1; : : : ; wn, and u D u1; : : : ; uk.

Definition 3.1.1. Let K be a class of algebras. ˛.x; y; z; w; u/ � ˇ.x; y; z; w; u/ is
called a commutator equation for K in the variables x; y, and z; w if the following
quasi-equations are valid in K:

x1 � y1 ^ : : : ^ xm � ym ! ˛.x; y; z; w; u/ � ˇ.x; y; z; w; u/

z1 � w1 ^ : : : ^ zn � wn ! ˛.x; y; z; w; u/ � ˇ.x; y; z; w; u/:
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Equivalently, ˛.x; y; z; w; u/ � ˇ.x; y; z; w; u/ is a commutator equation for K in the
variables x; y and z; w if and only if K validates the equations

˛.x; x; z; w; u/ � ˇ.x; x; z; w; u/ and ˛.x; y; z; z; u/ � ˇ.x; y; z; z; u/:

CoEq.K/ is the set of all commutator equations for K.
A quaternary commutator equation for K (with parameters) is any commutator

equation ˛.x; y; z; w; u/ � ˇ.x; y; z; w; u/ for K in the variables x; y and z; w.
An equivalent definition of a commutator equation is formulated in terms of

inference rules: ˛.x; y; z; w; u/ � ˇ.x; y; z; w; u/ is a commutator equation for K
in the variables x; y and z; w if and only if

x1 � y1 ^ : : : ^ xm � ym=˛.x; y; z; w; u/ � ˇ.x; y; z; w; u/

and

z1 � w1 ^ : : : ^ zn � wn=˛.x; y; z; w; u/ � ˇ.x; y; z; w; u/:

are rules of the consequence operation Kˆ. They are called absorption rules for
˛ � ˇ. ut
Notes.

1. It follows from the above definition that ˛.x; y; z; w; u/ � ˇ.x; y; z; w; u/ is a
commutator equation for K (in the variables x; y and z; w) if and only if it is
a commutator equation (in the variables x; y and z; w) for the variety Va.K/

generated by K. Consequently, the classes K, Qv.K/ and Va.K/ possess the
same commutator equations.

2. Definition 3.1.1 is reformulated in terms of the consequence operation Kˆ as
follows: for fixed m; n > 1,

Kˆ.x1 � y1; : : : ; xm � ym/ \ Kˆ.z1 � w1; : : : ; zn � wn/

is the set of all commutator equations in the variables x D x1; : : : ; xm, y D
y1; : : : ; ym, z D z1; : : : ; zn, w D w1; : : : ; wn. In particular

Kˆ.x � y/ \ Kˆ.z � w/

is the set of all quaternary commutator equations for K (with parameters) in the
variables x; y and z and w.

The definition of Kˆ directly implies that Kˆ.x1 � y1; : : : : ; xm � ym/ D
Va.K/ˆ.x1 � y1; : : : ; xm � ym/ for any variables x1; : : : ; xm, y1; : : : ; ym (see
Proposition 2.18). It follows that for any m; n > 1,

Kˆ.x1 � y1; : : : ; xm � ym/ \ Kˆ.z1 � w1; : : : ; zn � wn/ D
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Va.K/ˆ.x1 � y1; : : : ; xm � ym/ \ Va.K/ˆ.z1 � w1; : : : ; zn � wn/:

In particular,

Kˆ.x � y/ \ Kˆ.z � w/ D Va.K/ˆ.x � y/ \ Va.K/ˆ.z � w/: ut
The following lemma is a straightforward consequence of the above definition:

Lemma 3.1.2.

(1) Let ˛ WD ˛.x; y; z; w; u/ be any term. Then ˛ � ˛ is a commutator equation for
K in x; y and z; w.

(2) More generally, if ˛ � ˇ is an identity of K, then it is a commutator equation
for K (in whatever variables x; y and z; w).

(3) If ˛ � ˇ is a commutator equation for K in x; y and z; w, then so is ˇ � ˛.
(4) If ˛ � ˇ is a commutator equation for K in x; y and z; w, and ˛0 � ˇ0 is an

equation K-deductively equivalent to ˛ � ˇ, then ˛0 � ˇ0 is a commutator
equation for K in the same variables x; y and z; w.

(5) If ˛ � ˇ and ˇ � � are commutator equations in x; y and z; w, then ˛ � � is
a commutator equation in x; y and z; w. ut

Lemma 3.1.3. Let

˛i.xi; yi; zi; wi; ui/ � ˇi.xi; yi; zi; wi; ui/

be a commutator equation for K in xi; yi and zi; wi, for i D 1; : : : ; k. Let f be a
k-ary operation symbol of � and let x WD the union of x1; : : : ; xk, y WD the union of
y1; : : : ; yk, z WD the union of z1; : : : ; zk, w WD the union of w1; : : : ; wk, u WD the union
of u1; : : : ; uk. [The sets x; y; z; w and u are assumed to be pairwise disjoint.] Let

˛.x; y; z; w; u/ WD f .˛1; : : : ; ˛k/ and ˇ.x; y; z; w; u/ WD f .ˇ1; : : : ; ˇk/:

Then

˛.x; y; z; w; u/ � ˇ.x; y; z; w; u/

is a commutator equation for K in x; y and z; w.1

The above lemma states that the set of commutator equations for K has the
substitution property.

Proof (of the lemma). In the proof, the symbol “K ˆ 
” denotes the validity of a
first-order formula 
 of L� in the class K. We will present the proof in the case where

1In the above notation there is some ambiguity. x is for finite sequences of variables without
repetitions. To simplify notation, each such a sequence x is identified here with the set of variables
which occur in x.
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k D 2 and xi D xi, yi D yi, zi D zi, wi D wi and ui D ;, i D 1; 2. (The proof of
the general case is a straightforward modification of the reasoning presented below.)
We then have ˛i D ˛i.xi; yi; zi; wi/, ˇi D ˇi.xi; yi; zi; wi/ for i D 1; 2, and

K ˆ x1 � y1 ! ˛1.x1; y1; z1; w1/ � ˇ1.x1; y1; z1; w1/I (1)

K ˆ z1 � w1 ! ˛1.x1; y1; z1; w1/ � ˇ1.x1; y1; z1; w1/I (2)

K ˆ x2 � y2 ! ˛2.x2; y2; z2; w2/ � ˇ2.x2; y2; z2; w2/I (3)

K ˆ z2 � w2 ! ˛2.x2; y2; z2; w2/ � ˇ2.x2; y2; z2; w2/: (4)

We wish to show that

K ˆ x1 � y1 ^ x2 � y2 ! f .˛1; ˛2/ � f .ˇ1; ˇ2/ (5)

and

K ˆ z1 � w1 ^ z2 � w2 ! f .˛1; ˛2/ � f .ˇ1; ˇ2/: (6)

We have:

K ˆ x1 � y1 ^ x2 � y2 ! ˛1 � ˇ1 by (1)I (7)

K ˆ x1 � y1 ^ x2 � y2 ! ˛2 � ˇ2 by (3): (8)

But K ˆ ˛1 � ˇ1 ! f .˛1; ˛2/ � f .ˇ1; ˛2/. Hence, by (7) and the transitivity of �,

K ˆ x1 � y1 ^ x2 � y2 ! f .˛1; ˛2/ � f .ˇ1; ˛2/: (9)

But also K ˆ ˛2 � ˇ2 ! f .ˇ1; ˛2/ � f .ˇ1; ˇ2/. Hence, by (8),

K ˆ x1 � y1 ^ x2 � y2 ! f .ˇ1; ˛2/ � f .ˇ1; ˇ2/: (10)

(9) and (10) imply (5). The implication (6) is proved in a similar manner. ut
Let A be a non-empty set. If X � A2 is a set of pairs of elements of A and

a D ha1; : : : ; ami, b D hb1; : : : ; bmi are sequences of elements of A of the same
length, we write

a � b .X/

to indicate that hai; bii 2 X for i D 1; : : : ; m. We shall also occasionally write
.a; b/ 2 X.

The above notation is extensively used for algebras and congruences. Thus if A
is an algebra, ˚ is a congruence of A, and a D ha1; : : : ; ami, b D hb1; : : : ; bmi are
sequences of elements of A of the same length, we write

a � b .˚/
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to mark that ai is congruent to bi modulo ˚ for i D 1; : : : ; m, i.e., hai; bii 2 ˚ for
i D 1; : : : ; m.

Let A 2 K and let ˚; � be fixed congruences on A. ComK.˚; �/ is the binary
relation on A defined as follows:

hf ; gi 2 ComK.˚; �/ if and only if there exist a commutator equation
˛.x; y; z; w; u/ � ˇ.x; y; z; w; u/ for K (in some variables x; y and z; w) and
strings a; b; c; d; e of elements of A such that

a � b .˚/; c � d .�/; and f D ˛.x; y; z; w; u/; g D ˇ.x; y; z; w; u/:

Lemma 3.1.4. The relation ComK.˚; �/ is a tolerance, i.e., it is reflexive, symmet-
ric on A and has the substitution property.

Proof (of the lemma). Reflexivity of ComK.˚; �/ follows from the fact that x �
x is a commutator equation in whatever variables x; y and z; w. The symmetry
of ComK.˚; �/ follows from Lemma 3.1.2.(iii). The substitution property is a
consequence of Lemma 3.1.3. ut

It is an open problem when ComK.˚; �/ is a congruence relation of A.
Before passing to presentation of other definitions and theorems we adopt a

certain notational convention we shall adhere to throughout the paper.

Convention 1. Let � D f˛i.x; y; z; w; u/ � ˇi.x; y; z; w; u/ W i 2 Ig be a set of
commutator equations (in the variables x; y and z; w) for a class K of signature � .
Let A be an algebra of signature � and suppose a; b; c; d; e are sequences of elements
of A whose lengths are equal to the length of the strings x; y; z; w; u, respectively. The
set of pairs

f˛i.a; b; c; d; e/ � ˇi.a; b; c; d; e/ W i 2 Ig;

which is a subset of A2, is denoted by �A.a; b; c; d; e/, for short. ut
According to the above notation we have that

ComK.˚; �/ D
[

f�A.a; b; c; d; e/ W a � b .˚/; c � d .�/; e 2 A!g;

where � WD CoEq.Q/ is the set of all commutator equations for K.
To shorten notation, we shall often use the phrase “c.e.” as an abbreviation for

“commutator equation”.

Convention 2. We shall make a further step and we shall write down the set of
pairs

Sf�A.a; b; c; d; e/ W e 2 A!g in a more compact way as

.8e/ �A.a; b; c; d; e/:

(The superscript ‘A’ is often omitted when A is clear from context.) ut
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Consequently, we may write the above equality in a more compact form as

ComK.˚; �/ D
[

f.8e/ �A.a; b; c; d; e/ W a � b .˚/; c � d .�/g:

Definition 3.1.5. Let Q be a quasivariety of algebras of signature � . Let A be an
algebra of type � , and let ˚ and � be Q-congruences on A. The equationally defined
commutator of ˚ and � on A relative to Q, in symbols

Œ˚; �	Aedc.Q/

is the least Q-congruence on A which contains the following set of pairs:

fh˛.a; b; c; d; e/; ˇ.a; b; c; d; e/i W ˛.x; y; z; w; u/ � ˇ.x; y; z; w; u/

is a c.e. for Q; a � b .˚/; c � d .�/; and e 2 A!g:

Equivalently, Œ˚; �	Aedc.Q/ is the least Q-congruence of A which contains the
relation ComQ.˚; �/, i.e.,

Œ˚; �	Aedc.Q/ WD �A
Q.ComQ.˚; �// D

�A
Q.
[

f.8e/ �A.a; b; c; d; e/ W a � b .˚/; c � d .�/g/: ut

Comments. The use of the name equationally defined commutator is justified by
the fact that the above definition is formulated in terms of commutator equations.

The definition of the equationally defined commutator for Q refers to the set of
all commutator equations for Q. But, in fact, the definition of Œ˚; �	Aedc.Q/ is more
parsimonious in the number of involved commutator equations.

Let X D fxn � yn W n 2 Ng and Y D fzn � wn W n 2 Ng be infinite
sets of equations of variables, where all involved variables are pairwise different.
In particular, the equations of X and Y do not share a common variable. Then
evidently Qˆ.X/ \ Qˆ.Y/ is the set of all commutator equations ˛.x; y; z; w; u/ �
ˇ.x; y; z; w; u/ with x � y 2 X and z � w 2 Y . (According to the adopted
earlier notation, if x D x1; : : : ; xm, and y D y1; : : : ; ym sequences of variables, then
x � y 2 X abbreviates the fact that xi � yi 2 X for i D 1; : : : ; n.)

Let ˚ and � be any Q-congruences on a � -algebra A. The set Qˆ.X/ \ Qˆ.Y/
determines the commutator Œ˚; �	Aedc.Q/ in the following sense:

Œ˚; �	Aedc.Q/ is the Q-congruence generated by the set of pairs

fh˛.a; b; c; d; e/; ˇ.a; b; c; d; e/i W ˛.x; y; z; w; u/ � ˇ.x; y; z; w; u/ 2 Qˆ.X/ \ Qˆ.Y/;

a � b .˚/; c � d .�/; and e 2 A<!g: (a)
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This follows from the fact that any commutator equation ˛0.x0; y0; z0; w0; u0/ �
ˇ0.x0; y0; z0; w0; u0/ can be transformed into an equation in Qˆ.X/ \ Qˆ.Y/ by way
of renaming the variables occurring in x0; y0; z0; w0; u0 in a one-to-one way. It is clear
that ˛0 � ˇ0 and the transformed equation yield the same pairs when computed on
the same sequences of elements of A.

But one may even go further. Let � be an arbitrary set of equations such that
Qˆ.�/ D Qˆ.X/ \ Qˆ.Y/. We then obtain that

Œ˚; �	Aedc.Q/ is the Q-congruence generated by the set of pairs

fh˛.a; b; c; d; e/; ˇ.a; b; c; d; e/i W ˛.x; y; z; w; u/ � ˇ.x; y; z; w; u/ 2 �;

a � b .˚/; c � d .�/; and e 2 A<!g: (b)

The equivalence of (a) and (b) is a direct consequence of Note following
Proposition 2.9.

2. After the identification of the free algebra F WD FQ.!/ with the quotient
algebra Te� =˝0, the carrier of the free algebra F WD FQ.!/ is equal to fŒt	 W t 2 Te� g
and then fŒx	 W x 2 Varg is the set of free generators of F.

If ˙ is a set of equations, then

Œ˙	 WD fhŒs	; Œt	i W s � t 2 ˙g:
Œ˙	 is thus a subset of F 	 F.

In many algebraic contexts we shall operate with congruences defined on the free
algebra FQ.!/. Since the lattice of Q-congruences on FQ.!/ is isomorphic with the
lattice of (closed) theories of Qˆ (Proposition 2.4), we shall often identify the set
of commutator equations Qˆ.x1 � y1; : : : ; xm � ym/ \ Qˆ.z1 � w1; : : : ; zn � wn/

with the corresponding Q-congruence

�F
Q.hŒx1	; Œy1	i; : : : ; hŒxm	; Œym	i/ \ �F

Q.hŒz1	; Œw1	i; : : : ; hŒzn	; Œwn	i/: (�)

In view of Proposition 2.6, the last congruence is equal to

�F.hŒx1	; Œy1	i; : : : ; hŒxm	; Œym	i/ \ �F.hŒz1	; Œw1	i; : : : ; hŒzn	; Œwn	i/:
Following common practice, each free generator Œx	 of F is identified with the

individual variable x. We shall therefore write the congruence (�) in a more compact
way as

�F.hx1; y1i; : : : ; hxm; ymi/ \ �F.hz1; w1i; : : : ; hzn; wni/: (��)

Let X D fhxi; yii W i 2 Ig, Y D fhzj; wji W j 2 Jg be possibly infinite sets of pairs of
free generators of F, where the generators occurring in the pairs belonging to each
set are pairwise different. We say that X and Y are separated if moreover the pairs
of X and Y do not have a common generator. For example, if Q is non-trivial, then
the above sets fhx1; y1i; : : : ; hxm; ymig and fhz1; w1i; : : : ; hzn; wnig are separated.
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We accordingly call the congruence (��) the commutator congruence determined
by the separated sets fhx1; y1i; : : : ; hxm; ymig and fhz1; w1i; : : : ; hzn; wnig of pairs of
free generators of F.

(We suppress parentheses here as much as possible.) ut
Convention 3. The notation

Œ˚; �	Aedc.Q/

though fully informative, will be simplified when Q or A are clear from context.
Accordingly, the equationally defined commutator Œ˚; �	Aedc.Q/ is often simply
marked as

Œ˚; �	edc.Q/

if A is clear from context. We also write

Œ˚; �	A

when Q is fixed. We shall even write

Œ˚; �	

when both Q and A are fixed.
In what follows we shall uniformly use these simplified symbols unless stated

otherwise. ut
Theorem 3.1.6. Let Q be a quasivariety of algebras of type � , let A be an algebra
of type � , and ˚; � 2 ConQ.A/. Then:

(i) Œ˚; �	 is a Q-congruence on AI
(ii) Œ˚; �	 � ˚ \ � I

(iii) Œ˚; �	 D Œ�; ˚	I
(iv) The commutator is monotone in both arguments, i.e., if ˚; ˚1; ˚2 and

�; �1; �2 are Q-congruences on A, ˚1 � ˚2, and �1 � �2, then Œ˚1; �	 �
Œ˚2; �	 and Œ˚; �1	 � Œ˚; �2	I

(v) The commutator is order-continuous, i.e., if f˚i W i 2 Ig is a directed family
of Q-congruences on A and � 2 ConQ.A/, then

Œ
[

f˚i W i 2 Ig; � 	 D
[

fŒ˚i; � 	 W i 2 Ig:

(vi) If B is a subalgebra of A, then Œ˚ \ B2; � \ B2	B � B2 \ Œ˚; �	AI
(vii) If a; b; c; d 2 A, then Œ�A

Q.a; b/; �A
Q.c; d/	A D SfŒ�B

Q.a; b/; �B
Q.c; d/	B W

B is a countably generated subalgebra of A and a; b; c; d 2 BgI
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(viii) Œ�A
Q.X/; �A

Q.Y/	A D SfŒ�B
Q.X0/; �B

Q.Y 0/	B W X0 and Y 0 are countable subsets
of X and Y, respectively, and B is a countably generated subalgebra of A
which includes X0 [ Y 0g.

Note. (viii) is also formulated in the following equivalent form:

(viii)* Œ�A
Q.X/; �A

Q.Y/	A D SfŒ�B
Q.X0/; �B

Q.Y 0/	B W X0 and Y 0 are finite subsets of
X and Y , respectively, and B is a finitely generated subalgebra of A which
includes X0 [ Y 0g.

The algebras B mentioned in (viii) or (viii)* need not be generated by X0 [ Y 0. ut
Proof. Let us denote for brevity by � the set CoEq.Q/ of all commutator equations
for Q. We note that if ˚; � are Q-congruences on A, then

Œ˚; �	 D �A
Q.ComQ.˚; �// D

�A
Q.
[

f.8e/�.a; b; c; d; e/ W a � b .˚/; c � d .�/g/:

(i) is a part of the definition of the commutator.
(ii) Let ˛.x; y; z; w; u/ � ˇ.x; y; z; w; u/ be a commutator equation for Q. Fur-
thermore, let a � b .˚/; c � d .�/ and e 2 Ak. Since ˛.x; y; z; w; u/ �
ˇ.x; y; z; w; u/ 2 Qˆ.x � y/, a � b .˚/, and ˚ is a Q-congruence, we
have that ˛.a; b; c; d; e/ � ˇ.a; b; c; d; e/ .˚/. Similarly, since ˛.x; y; z; w; u/ �
ˇ.x; y; z; w; u/ 2 Qˆ.z � w/, c � d .�/ and � is a Q-congruence, we
have that ˛.a; b; c; d; e/ � ˇ.a; b; c; d; e/ .�/. It follows that ˛.a; b; c; d; e/ �
ˇ.a; b; c; d; e/ .˚ \ �/. Hence Œ˚; �	 � ˚ \ � .
(iii) To prove symmetry, it suffices to show that ComQ.˚; �/ D ComQ.�; ˚/

because then Œ˚; �	 D �A
Q.ComQ.˚; �// D �A

Q.ComQ.�; ˚// D Œ�; ˚	.

Assume ha; bi 2 ComQ.˚; �/. Hence

a D ˛.a; b; c; d; e/; b D ˇ.a; b; c; d; e/

for some commutator equation ˛.x; y; z; w; u/ � ˇ.x; y; z; w; u/ for Q (in the
variables x; y and z; w) and strings a; b; c; d; e of elements of A of appropriate length
such that a � b .˚/; c � d .�/.

We shall rename the variables occurring in the equation ˛ � ˇ. Let x0; y0; z0; w0 be
new sequences of variables such that jx0j D jzj, jy0j D jwj, jz0j D jxj, and jw0j D jyj.
Let

˛0.x0; y0; z0; w0; u/ WD ˛.x=z0; y=w0; z=x0; w=y0; u/

and

ˇ0.x0; y0; z0; w0; u/ WD ˇ.x=z0; y=w0; z=x0; w=y0; u/:
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It is clear that ˛0 � ˇ0 is a commutator equation in x0; y0 and z0; w0. Then

˛0.c; d; a; b; e/ WD ˛0.x0=c; y0=d; z0=a; w0=b; u=e/ D ˛.a; b; c; d; e/ D a

and

ˇ0.c; d; a; b; e/ WD ˇ0.x0=c; y0=d; z0=a; w0=b; u=e/ D ˇ.a; b; c; d; e/ D b:

This shows that ha; bi 2 ComQ.�; ˚/. Hence ComQ.˚; �/ � ComQ.�; ˚/. In a
similar manner one proves the opposite inclusion.

As (iv) follows from (iii) and (v), we shall prove (v). Let f˚i W i 2 Ig be a
directed (in the sense of inclusion) family of Q-congruences of A. It follows from
the definition of the commutator and the fact that every term has a finite length that
the family of Q-congruences fŒ˚i; � 	 W i 2 Ig is directed as well. Since the operator
�A

Q is finitary, it follows that both sets
S

i2I ˚i and
S

i2I Œ˚i; � 	 are Q-congruences
of A. We compute:

Œ
[

i2I

˚i; � 	 D

�A
Q.
[

f.8e/�.a; b; c; d; e/ W a � b .
[

i2I

˚i/; c � d .�/g/ D

�A
Q.
[

i2I

[
f.8e/�.a; b; c; d; e/ W a � b .˚i/; c � d .�/g/ D

[

i2I

�A
Q.
[

f.8e/�.a; b; c; d; e/ W a � b .˚i/; c � d .�/g/ D
[

i2I

Œ˚i; � 	:

The third equality follows from the fact that the operator �A
Q.
/ is finitary and the

family of sets
Sf.8e/�.a; b; c; d; e/ W a � b .˚i/; c � d .�/g, i 2 I, is directed.

(vi) directly follows from the definition by comparing the equationally defined
commutator in B and A.

(vii) follows from (viii). We shall give a proof of (viii).

(�). Let X0 � X, Y 0 � Y and let B be a subalgebra of A which includes
the set of elements occurring in the pairs of X0 [ Y 0. As �B

Q.X0/ � �A
Q.X0/ and

�B
Q.Y 0/ � �A

Q.Y 0/, we then have:

Œ�B
Q.X0/; �B

Q.Y 0/	B D
�B

Q.
[

f.8e/�B.a; b; c; d; e/ W a � b .�B
Q.X0//; c � d .�B

Q.Y 0//g/ �

�A
Q.
[

f.8e/�B.a; b; c; d; e/ W a � b .�B
Q.X0//; c � d .�B

Q.Y 0//g/ �

�A
Q.
[

f.8e/�A.a; b; c; d; e/ W a � b .�A
Q.X0//; c � d .�A

Q.Y 0//g/ �
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�A
Q.
[

f.8e/�A.a; b; c; d; e/ W a � b .�A
Q.X//; c � d .�A

Q.Y//g/ D
Œ�A

Q.X/; �A
Q.Y/	A:

From the above facts the �-part of the equality (viii) follows.
(If X0 and Y 0 are finite, B can be taken to be any finitely generated subalgebra of A
containing the elements occurring in the pairs of X0 [ Y 0.)

(�) Suppose hu; vi 2 Œ�A
Q.X/; �A

Q.Y/	A, i.e.,

hu; vi 2 Œ�A
Q.
[

f.8e/�A.a; b; c; d; e/ W a � b .�A
Q.X//; c � d .�A

Q.Y//g/: (1)

As the operator �A
Q. 
 / is finitary, (1) implies that there exist a finite subset

�0.x; y; z; w; u/ of �, where jxj D jyj D k, jzj D jwj D l, juj D r, and finitely
many sequences ai; bi and ci; di, ei of elements of A, where i D 1; 2; : : : ; m, such
that

jaij D jbij D k; jcij D jdij D l; jeij D r;

ai � bi .�A
Q.X//; ci � di .�A

Q.Y// for i D 1; 2; : : : ; m (2)

and

hu; vi 2 Œ�A
Q.
[

f�0.ai; bi; ci; di; ei/ W i D 1; 2; : : : ; mg/: (3)

We may write:

ai D .ai;1; : : : ; ai;k/; bi D .bi;1; : : : ; bi;k/;

ci D .ci;1; : : : ; ci;l/; di D .di;1; : : : ; di;l/;

ei D .ei;1; : : : ; ei;r/;

for i D 1; 2; : : : ; m.
Let X0 be the set of pairs hai;j; bi;ji for i D 1; 2; : : : ; m, j D 1; 2; : : : ; k, and let

Y 0 be the set of pairs hci;j; di;ji, for i D 1; 2; : : : ; m, j D 1; 2; : : : ; l. Furthermore, let
Ef WD fei W i D 1; 2; : : : ; mg.

It follows from (3) that

hu; vi 2 �A
Q.
[

f�0.a; b; c; d; e/ W a � b .X0/; c � d .Y 0/; e 2 Ef g/: (4)

(a � b .X/ means that for a D .a1; : : : ; ak/, b D .b1; : : : ; bk/ it is the case that
haj; bji 2 X for j D 1; 2; : : : ; k.)

It is clear that in view of (4) there exists a countably generated subalgebra B of
A (in fact, B is finitely generated) with the following properties:
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B contains the elements of A occurring in the pairs of X0; Y 0 and in the

sequences of Ef : (5)

(Equivalently, B contains the elements of A occurring in ai, bi, ci, di, ei for
i D 1; 2;: : :; m. (5) implies that the finite set

Sf�0.a; b; c; d; e/ W a � b .X0/;
c � d .Y 0/; e 2 Ef g is included in B.)

B contains all elements of A that appear in the definition of a Q-generating

sequence of the pair hu; vi from the set (6)

[
f�0.a; b; c; d; e/ W a � b .X0/; c � d .Y 0/; e 2 Ef g

(see (4) and Theorem 2.1).
Conditions (5) and (6) give that

hu; vi 2 �B
Q.
[

f�B
0 .a; b; c; d; e/ W a � b .X0/; c � d .Y 0/; e 2 Ef g/

� �B
Q.
[

f.8e/�B
0 .a; b; c; d; e/ W a � b .�B

Q.X0//; c � d .�B
Q.Y 0//g/

� �B
Q.
[

f.8e/�B.a; b; c; d; e/ W a � b .�B
Q.X0//; c � d .�B

Q.Y 0//g/
D Œ�B

Q.X0/; �B
Q.Y 0/	B:

Hence hu; vi 2 Œ�B
Q.X0/; �B

Q.Y 0/	B.
This concludes the proof of (viii). The theorem has been proved. ut
The property expressed in (v) is referred to as the order-continuity of the

commutator. In Chapter 5 we shall investigate a stronger property than order-
continuity, namely the additivity of the commutator.

Theorem 3.1.7. Let Q be a quasivariety of � -algebras and h W A ! B a
homomorphism, where A and B are arbitrary � -algebras. Then for any sets
X; Y � A2,

h.Œ�A
Q.X/; �A

Q.Y/	A/ � Œ�B
Q.hX/; �B

Q.hY/	B:

Note. The above theorem states the property of structurality of the equationally
defined commutator is analogous to the property of structurality studied in meta-
logic.

Proof. It suffices to show that for any c.e. ˛.x; y; z; w; u/ � ˇ.x; y; z; w; u/ and any
sequences a � b .�A

Q.X//; c � d .�A
Q.Y// and e of elements of A (of appropriate

lengths) it is the case that

hh˛.a; b; c; d; e/; hˇ.a; b; c; d; e/i 2 Œ�B
Q.hX/; �B

Q.hY/	B:
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But a � b .�A
Q.X//; c � d .�A

Q.Y// imply that ha � hb .�A
Q.hX//; hc � hd

.�A
Q.hY//. As

hh˛.a; b; c; d; e/; hˇ.a; b; c; d; e/i D h˛.ha; hb; hc; hd; he/; ˇ.ha; hb; hc; hd; he/i

and the second pair belongs to Œ�B
Q.hX/; �B

Q.hY/	B, the theorem follows. ut
Theorem 3.1.8. Let Q be a quasivariety of � -algebras and h W A ! B a surjective
homomorphism. Then for any ˚; � 2 ConQ.A/,

kerQ.h/ CQ ŒkerQ.h/ CQ ˚; kerQ.h/ CQ �	A D h�1.Œ�B
Q.h˚/; �B

Q.h�/	B/:

(A and B are arbitrary � -algebras; they need not belong to Q.)
A stronger version of the above equality when the equationally defined commu-

tator is additive is discussed in Chapter 5 (cf. Theorem 5.1.1).

Proof. Suppose ˚; � 2 ConQ.A/. kerQ.h/Dh�1.�B
Q.0B// is a Q-congruence on A.

Let ˚� WD kerQ.h/ CQ ˚ and ˚� WD kerQ.h/ CQ � . Clearly, ˚� and � �
are Q-congruences on A. But, more importantly, as ker.h/ � kerQ.h/, the h-
images h˚� and h� � are Q-congruences on B, by Corollary 2.8.(a). Moreover,
h˚� D �B

Q.h˚/ and h� � D �B
Q.h�/. Indeed, �B

Q.h˚/Dh.�A
Q.˚/CQ kerQ.h//D

h.˚ C Q kerQ.h// D h˚�, by Proposition 2.10. The proof of the equality h� � D
�B

Q.h�/ is similar. We also have that h�1.h˚�/ D ˚� and h�1.h� �/ D � �, by
Proposition 2.7.

We define:

X WD
[

˛�ˇ2CoEq.Q/

fh˛.a; b; c; d; e/; ˇ.a; b; c; d; ei/ W

a � b .mod ˚�/; c � d .mod � �/; e 2 A<!g:

Thus �A
Q.X/ D Œ˚�; � �	A, by the definition of the equationally defined

commutator.
We have:

h�1.Œ�B
Q.h˚/; �B

Q.h�/	B/ D h�1.Œh˚�; h� �	B/ D (by the definition of
the equationally defined commutator)

h�1.�B
Q.

[

˛�ˇ2CoEq.Q/

fh˛.a�; b�; c�; d�; e�/; ˇ.a�; b�; c�; d�; e�i/ W

a� � b� .mod h˚�/; c� � d� .mod h� �/; e 2 Bkg// D (by surjectivity of h)
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h�1.�B
Q.

[

˛�ˇ2CoEq.Q/

fh˛.ha; hb; hc; hd; he/; ˇ.ha; hb; hc; hd; hei/ W

ha � hb .mod h˚�/; hc � hd .mod h� �/; e 2 A<!g// D

h�1.�B
Q.

[

˛�ˇ2CoEq.Q/

fh˛.ha; hb; hc; hd; he/; ˇ.ha; hb; hc; hd; hei/ W

a � b .mod ˚�/; c � d .mod � �/; e 2 A<!g// D

h�1.�B
Q.hX// D (by Corollary 2.11) �A

Q.X/ CQ kerQ.h/ D
Œ˚�; � �	A CQ kerQ.h/ D kerQ.h/ CQ ŒkerQ.h/ CQ ˚; kerQ.h/ CQ �	A:

It follows that h�1.Œ�B
Q.h˚/; �B

Q.h�/	B/ D kerQ.h/ CQ ŒkerQ.h/ CQ ˚;

kerQ.h/ CQ �	A. ut
Corollary 3.1.9. Let Q be a quasivariety in a signature � . Let A, B be any
� -algebras and h W A ! B a surjective homomorphism. Then for any ˚; � 2
ConQ.B/,

h�1.Œ˚; �/	B/ D kerQ.h/ CQ Œh�1.˚/; h�1.�/	A:

Proof. Since ker.h/ � kerQ.h/, we have that ker.h/ � h�1.˚/ and ker.h/ �
h�1.�/. As h is a surjection, hh�1.˚/ D ˚ and hh�1.�/ D � . In view of Note
following Proposition 2.7, h�1.˚/ and h�1.�/ are Q-congruences on A. Applying
Theorem 3.1.8 we get:

kerQ.h/ CQ Œh�1.˚/; h�1.�/	A D
kerQ.h/ CQ ŒkerQ.h/ CQ h�1.˚/; kerQ.h/ CQ h�1.�/	A D

h�1.Œ�B
Q.hh�1.˚//; �B

Q.hh�1.�//	B/ D h�1.Œ�B
Q.˚/; �B

Q.�/	B/ D
h�1.Œ˚; �	B/: ut

Note. Corollary 3.1.9 and Theorem 3.1.8 are equivalent conditions. It suffices to
check that Corollary 3.1.9 implies this theorem. Indeed, let ˚; � be Q-congruences
on A. Then �B

Q.h.˚// and �B
Q.h.�// are Q-congruences on B. Corollary 3.1.9 and

Corollary 2.11 then give:

h�1.Œ�B
Q.h˚/; �B

Q.h�/	B/ D kerQ.h/ CQ Œh�1.�B
Q.h˚//; h�1.�B

Q.h�//	A D
kerQ.h/ CQ ŒkerQ.h/ CQ ˚; kerQ.h/ CQ �	A: ut
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Let Q be an arbitrary quasivariety. As Va.Q/ is also a quasivariety, the definition
of the equationally defined commutator in the sense of Va.Q/ is also meaningful
for arbitrary Va.Q/- congruences on any � -algebra. Thus to each quasivariety Q
not being a variety, two equationally defined congruences on the class of � -algebras
are assigned. The first commutator is

Œ 
 	edc.Q/

which we have defined above. Œ 
 	edc.Q/ operates on Q-congruences ˚; � on an
arbitrary algebra A and the value Œ˚; �	edc.Q/ is a Q-congruence of A. The other
commutator is

Œ 
 	edc.Va.Q//:

According to Definition 3.1.5, the commutator Œ 
 	edc.Va.Q// assigns to any Va.Q/-
congruences ˚ , � on arbitrary algebra A a certain Va.Q/-congruence on A. More
precisely, let A be an algebra of type � , and let ˚ and � be Va.Q/-congruences on
A. Œ˚; �	edc.Va.Q// is the least Va.Q/-congruence on A which contains the following
set of pairs:

fh˛.a; b; c; d; e/; ˇ.a; b; c; d; e/i W ˛.x; y; z; w; u/ � ˇ.x; y; z; w; u/

is a c.e. for Va.Q/; a � b .˚/; c � d .�/; and e 2 A<!g:

Equivalently, Œ˚; �	edc.Va.Q// is the least Va.Q/-congruence of A which contains the
relation ComVa.Q/.˚; �/.

All the above theorems also apply to the commutator Œ 
 	edc.Va.Q// and to the
lattices of Va.Q/-congruences.

If A is in Va.Q/, the family ConVa.Q/.A/ of Va.Q/-congruences coincides with
the set of all congruences of A. In this case the commutator Œ 
 	edc.Va.Q// assigns to
arbitrary congruences ˚; � on A a congruence on A.

We have an embarrassment of riches here—there are two equationally defined
commutators determined by the same commutator equations on any � -algebra A,
viz. Œ 
 	edc.Q/ and Œ 
 	edc.Va.Q//. The difference between them is that Œ 
 	edc.Q/

is defined only for Q-congruences of A and its values are Q-congruences while
Œ 
 	edc.Va.Q// is defined for the larger set of Va.Q/-congruences of A and its
values are Va.Q/-congruences of A. It is therefore quite natural to ask about
interrelations holding between the two commutators. For example, the question
arises as to whether Œ 
 	edc.Q/ is the restriction of Œ 
 	edc.Va.Q// to Q-congruences
of A; that is, whether Œ˚; �	edc.Va.Q// is already a Q-congruence whenever ˚; � are
Q-congruences of A. This seems to be a difficult problem and it is natural to try
to solve it under additional assumptions such as the additivity of the equationally
defined commutator for Q. (The additivity property is investigated in Chapter 5.)
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As Q and Va.Q/ share the same commutator equations, it is possible to compare
the properties of Œ˚; �	edc.Va.Q// with those of the commutator Œ˚; �	edc.Q/ for any
congruences ˚; � 2 ConQ.A/ on the algebras A of Va.Q/. We shall formulate the
following identity in Section 5.3:

For any algebra A 2 Va.Q/ and any congruences ˚; � 2 Con.A/;

�A
Q.Œ˚; �	edc.Va.Q/// D Œ�A

Q.˚/; �A
Q.�/	edc.Q/;

called the Extension Principle for the Equationally defined Commutator (see
Theorem 5.3.8).

3.1.1 The Standard Commutator

Let Q be an RCM quasivariety in a signature � . Suppose that A 2 Q and
˚; � 2 Con.A/. A.˚/ denotes the subalgebra of A 	 A whose universe is ˚ . In
turn, �˚;� is the congruence on A.˚/ generated by identifying the pairs ha; ai and
hb; bi whenever ha; bi 2 � .

Definition 3.1.10. The commutator of the congruences ˚; � in the sense of Smith-
Hagemann-Herrmann-Kearnes-McKenzie in the algebra A, hereafter called the
standard commutator, in symbols:

Œ˚; �	st;

is the set of all ordered pairs ha; bi 2 A 	 A such that ha; bi is congruent to ha; ai
modulo the Q-congruence �

A.˚/

Q .�˚;� /. ut
According to Lemma 2.6 in Kearnes and McKenzie (1992), Œ˚; �	st is a

congruence on A. If ˚ 2 ConQ.A/, then Œ˚; �	st is a Q-congruence. If both
˚; � 2 ConQ.A/, then Œ˚; �	st � ˚ \ � .

The standard commutator in itself is not the main object of study in this book.
Its theory for quasivarieties is expounded in Kearnes and McKenzie (1992). But
the standard commutator plays a very significant role here as a reference point—in
many contexts the equationally defined commutator is compared with the standard
one. In fact, we are also interested here with the issue of identity of these two
notions.

The above observations give rise to the following three questions:

1. Does the equationally defined commutator coincide with the standard commu-
tator for quasivarieties defined by Kearnes and McKenzie (1992)?

2. When is the equationally defined commutator additive?
3. What new, non-trivial facts can be established with the help of the equationally-

defined commutator?

The above questions determine the logical and narrative structure of this book.
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In the following subsections of Chapter 3 as well as in Chapter 4 we will answer
the first of the above questions. Our purpose is to prove the following fact:

Theorem A. Let Q be a relatively congruence-modular quasivariety. The equa-
tionally defined commutator for Q coincides with the commutator for Q in the sense
of Kearnes and McKenzie. ut

The proof we shall give in Chapter 3 takes a circuitous journey through geomet-
rical properties of the equationally defined commutator and various centralization
relations but offers a better understanding of the behaviour of this commutator in
the context of RCM quasivarieties.

The second question will answered in Chapters 5 and 6. A partial answer to the
third question will be provided in the final chapters.

3.2 The Equationally-Defined Commutator of Equational
Theories

Let Q be a quasivariety of � -algebras. The equationally defined commutator (in
the sense of Q) is defined in any algebra A similar to the algebras of Q. We are
mainly interested in examining the properties of the commutator in the algebras
of Q and, occasionally, in the algebras belonging to the variety Va.Q/ generated
by Q. One important exception is the term algebra Te� , which plays a distinguished
role in the investigation of logical properties of the commutator, especially for
finitely generated quasivarieties. The equationally defined commutator in the term
algebra is defined for Q-congruences of Te� but it is also defined for (closed)
equational theories of the consequence operation Qˆ. The lattice of theories of
Qˆ is isomorphic with the lattice of Q-congruences of Te� via the map ˝ which to
each theory T of Qˆ assigns the Q-congruence ˝T , where p � q .mod ˝T/ if
and only if p � q 2 T , for all terms p and q. However, in metalogical applications it
is often more convenient to work rather with the commutator defined for equational
theories than the one defined for the Q-congruences of Te� .

Definition 3.2.1. Suppose T1 and T2 are theories of Qˆ. Then, by definition,

ŒT1; T2	 WD Qˆ.f˛.p; q; r; s; t/ � ˇ.p; q; r; s; t/ W
˛.x; y; z; w; u/ � ˇ.x; y; z; w; u/ is a c.e. for Q;

p; q; r; s are sequences of terms such that p � q 2 T1; r � s 2 T2;

and t is an arbitrary sequence of termsg/: (1)

(If p D p1; : : : ; pm and q D q1; : : : ; qm, then “p � q 2 T” abbreviates “p1 � q1 2
T; : : : ; pm � qm 2 T”.)

ŒT1; T2	 is called the equationally defined commutator of the theories T1 and T2.
ut
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The equationally defined commutator of theories of Qˆ and the equationally
defined commutator defined for Q-congruences of Te� are “isomorphic” objects
because the above map ˝ , being a lattice isomorphism, also preserves the com-
mutator operation in the sense that for any theories T1; T2 of Qˆ, ˝ ŒT1; T2	 D
Œ˝T1; ˝T2	 as one can easily check. (On the right side of the above equation the
commutator is defined for Q-congruences of Te� .)

The following observation directly follows from the above remarks:

Proposition 3.2.2. Let Q be a quasivariety of algebras of type � . The theory
commutator for Qˆ has the same properties as the equationally defined commutator
for the Q-congruences on � -algebras exhibited in Theorem 3.1.6 ut

(One may also produce a direct proof of Proposition 3.2.2 by emulating the proof
of Theorem 3.1.6.)

Proposition 3.2.3. For any positive integers m and n and for any disjoint sequences
x; y; z; w of pairwise different variables, where x D x1; : : : ; xm, y D y1; : : : ; ym, and
z D z1; : : : ; zn, w D w1; : : : ; wn,

ŒQˆ.x1 � y1; : : : ; xm � ym/; Qˆ.z1 � w1; : : : ; zn � wn/	 D (2)

Qˆ.x1 � y1; : : : ; xm � ym/ \ Qˆ.z1 � w1; : : : ; zn � wn/:

In particular, if x; y; z; w are different variables, then

ŒQˆ.x � y/; Qˆ.z � w/	 D Qˆ.x � y/ \ Qˆ.z � w/:

Proof. To prove (2), we put: T1 WD Qˆ.x1 � y1;: : :; xm � ym/ and
T2 WD Qˆ.z1 � w1; : : : ; zn � wn/. In view of Proposition 3.2.2, we have that
ŒT1; T2	 � T1 \ T2.

(We also give a direct proof of the inclusion ŒT1; T2	 � T1 \ T2. To prove
it, suppose ˛ � ˇ is an arbitrary commutator equation for Q in the variables
x D x1; : : : ; xk, y D y1; : : : ; yk, and z D z1; : : : ; zl, w D w1; : : : ; wl and u. Let p D
p1; : : : ; pk and q D q1; : : : ; qk and r D r1; : : : ; rl and s D s1; : : : ; sl be sequences of
terms such that p � q 2 T1, r � s 2 T2, and let t be an arbitrary sequence of terms

of the length of u. As ˛.x; y; z; w; u/ � ˇ.x; y; z; w; u/ 2 Qˆ.x � y/, structurality

gives that ˛.p; q; r; s; t/ � ˇ.p; q; r; s; t/ 2 Qˆ.p � q/. Similarly ˛.p; q; r; s; t/ �
ˇ.p; q; r; s; t/ 2 Qˆ.r � s/. It follows that ˛.p; q; r; s; t/�ˇ.p; q; r; s; t/2 Qˆ.p �
q/ \ Qˆ.r � s/ � T1 \ T2.)

“�”. Since T1 \ T2 is the set of commutator equations in the variables x; y and
z; w (and hence a subset of the set of all commutator equations) and x � y 2 T1,
z � w 2 T2, definition (1) gives that

ŒT1; T2	 �
Qˆ.f˛.x; y; z; w; t/ � ˇ.x; y; z; w; t/ W ˛.x; y; z; w; u/ � ˇ.x; y; z; w; u/ 2 T1 \ T2

and t is an arbitrary sequence of termsg/ �
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Qˆ.f˛.x; y; z; w; u/ � ˇ.x; y; z; w; u/W ˛.x; y; z; w; u/ � ˇ.x; y; z; w; u/ 2 T1 \ T2g/D
T1 \ T2:

So (2) holds. ut
Theorem 3.1.7 implies:

Corollary 3.2.4. Let e W Te� ! Te� be an endomorphism and X; Y—sets of
equations of Eq.�/. Then

e.ŒQˆ.X/; Qˆ.Y/	/ � ŒQˆ.eX/; Qˆ.eY/	: ut

The property of the equationally defined commutator in the lattice Th.Qˆ/

encapsulated in Corollary 3.2.4 is referred to as the structurality of the theory-
defined commutator.

Theorem 3.1.8 and Corollary 3.1.9 yield:

Corollary 3.2.5. Let e W Te� ! Te� be an epimorphism. For any sets of equations
X and Y of Eq.�/,

kerQ.e/ CQ ŒkerQ.e/ CQ Qˆ.X/; kerQ.e/ CQ Qˆ.Y/	

D e�1.ŒQˆ.eX/; Qˆ.eY/	/I

equivalently, for any X and Y,

e�1.ŒQˆ.X/; Qˆ.Y/	/ D kerQ.e/ CQ Œe�1.Qˆ.X//; e�1.Qˆ.Y//	: ut

One may look at the above corollary from the perspective of the isomorphism
f e W Th.Qˆ/ ! The.Qˆ/, where f e.˙/ WD e�1.˙/ for all ˙ 2 Th.Qˆ/ (see
Corollary 2.20). The second equation of Corollary 3.2.5 states that for any closed
theories ˙1 and ˙2 of Qˆ:

e�1.Œ˙1; ˙2	/ D kerQ.e/ CQ Œe�1.˙1/; e�1.˙2/	; (�)

that is,

f e.Œ˙1; ˙2	/ D kerQ.e/ CQ Œf e.˙1/; f e.˙2/	:

3.3 More on Epimorphisms and the Equationally-Defined
Commutator

Var is the (infinite) set of individual variables of Te� . Var absolutely freely generates
the term algebra Te� .
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Let e W Te� ! Te� be an epimorphism, i.e., a surjective endomorphism. Then for
every x 2 Var,

ft 2 Te� W et is identical with xg

is a non-empty set of variables. We recall that

Ve WD fx 2 Var W e.x/ 2 Varg:

Thus Ve WD e�1.Var/. The set Ve is infinite and e surjectively maps Ve onto Var.
(e may glue together some variables belonging to Ve.) Moreover, e assigns a
compound term to each variable x 2 Var n Ve.

For each x 2 Var we select a variable x0 2 ft 2 Te� W et D xg. This choice
function is denoted by g. Thus gx D x0 for each x 2 Var. Let V WD gŒVar	 � Ve be
the set of so selected variables. (The Principle of Countable Choice AC! , a weaker
version of the Axiom of Choice, is used here to show the existence of g.) g is a
bijection from Var onto V and e.g.x// D x for all x 2 Var. V is an infinite subset of
Ve and the restriction of e to V is a bijection from V onto Var. It is the inverse of g.
(The set Var n V may be non-empty.) Let T be the set of terms generated by V . T
forms a subalgebra T of the term algebra Te� .

Let f be the restriction of e to T ,

f WD edT:

f is an isomorphism from T onto Te� ,

f W T Š Te� :

It follows that the extension of g onto the terms of T , which is denoted by the same
letter g, is the inverse of f , g WD f �1. Thus g is an isomorphism from Te� onto T.

g W Te� Š T:

We therefore have that

eg.t/ D t

for all terms t 2 Te� .
If t D t.x1; : : : ; xn/ is a term of Te� , then gt D t.x1=gx1; : : : ; xn=gxn/ is

in T . (We shall mark the last term as t.gx1; : : : ; gxn/ for brevity.) Moreover gt
is a variant of t, which means that t.gx1; : : : ; gxn/ results from t.x1; : : : ; xn/ by
an application of a one-to-one substitution of variables for variables, viz. the
substitution x1=gx1; : : : ; xn=gxn that assigns the variable gxi to the variable xi for
i D 1; : : : ; n.



3.3 More on Epimorphisms and the Equationally-Defined Commutator 47

The composition

k WD g ı e

assigns to each term in Te� a term in T . k is a retraction from Te� onto T, that is,
k is a surjective homomorphism from Te� onto T being the identity map on the
subalgebra T. k is an idempotent operation: k ı k D k.

Similarly to e, the retraction k surjectively maps the set Ve onto V . Indeed, if
x 2 Ve, then e.x/ is a variable, say y. Hence, by the definition of g, g.y/ is a variable
in V . So k.x/ D .g ı e/.x/ 2 V . Now, if x0 2 V , then x0 D k.x0/, because k is the
identity map on V . As V � Ve, this proves the claim. If x 2 Var n Ve, then e.x/ is a
compound term, hence k.x/ is compound as well. Thus k maps exactly the variables
in Ve onto V .

Let Q be a quasivariety of � -algebras. To simplify notation, we put

C WD Qˆ

and

C0 WD Va.Q/ˆ:

C0 is thus the consequence operation determined by the set of all Q-valid equations
and the rules of inference of Birkhoff’s logic B� .

We know that kerQ.e/ WD e�1.C.;// is a closed theory of C. (This fact directly
follows from structurality of C.) As C.;/ D C0.;/, kerQ.e/ is also a theory of C0.

Since C.;/ D C0.;/, we immediately get that kerQ.e/ D kerVa.Q/.e/.

Lemma 3.3.1. Let Q be a quasivariety of � -algebras. and let e W Te� ! Te� be an
epimorphism. Define T and the retraction k W Te� ! T as above. Then kerQ.k/ D
kerQ.e/.

Proof. Let p; q 2 Te� . Then

p � q 2 kerQ.k/ ,
kp � kq 2 C.;/ ,
g.ep/ � g.eq/ 2 C.;/ ,
ep � eq 2 C.;/ ,
p � q 2 kerQ.e/:

(The third equivalence follows from the fact that C.;/ D Qˆ.;/ is an invariant
set of equations and g is an isomorphism from Te� onto T. In other words, the
difference between the equation g.ep/ � g.eq/ and the equation ep � eq is such that
g.ep/ � g.eq/ results from ep � eq by renaming the variables occurring ep � eq
in a one-to-one way. Consequently, g.ep/ � g.eq/ 2 C.;/ if and only if ep � eq 2
C.;/.) Hence kerQ.k/ D kerQ.e/. ut
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Lemma 3.3.2. For every variable x 2 Var, x � kx 2 kerQ.k/.

Proof. The lemma directly follows from the fact that k is an idempotent operation.
ut

Corollary 3.3.3. For every term t 2 Te� , t � kt 2 kerQ.k/.

Proof. Use induction on the complexity of terms and the above lemma. ut
Corollary 3.3.4. Let X be any set of equations of Eq.�/. Then

kerQ.k/ CQ C.X/ D kerQ.k/ CQ C.kX/:

Here kerQ.k/ CQ C.Z/ stands for C.kerQ.k/ [ C.Z// .D C.kerQ.k/ [ Z//.

Proof. Use Corollary 3.3.3. ut
We shall prove the following theorem:

Theorem 3.3.5. Let Q be a quasivariety of � -algebras and e W Te� ! Te� an
epimorphism. Given a choice function g.x/ 2 fx0 2 Var W ex0 D xg, for all x 2 Var,
define the term algebra T as above. Let X and Y be any sets of equations of Eq.T/.
Then

kerQ.e/ CQ ŒkerQ.e/ CQ Qˆ.X/; kerQ.e/ CQ Qˆ.Y/	

D kerQ.e/ CQ ŒQˆ.X/; Qˆ.Y/	

in the term algebra Te� .

The above theorem strengthens Corollary 3.2.5 but at the same time it restricts
its scope to the equations of terms from the set T .

Proof. Throughout the proof we put: C WD Qˆ. As kerQ.e/ D kerQ.k/, it suffices
to prove the following lemma:

Lemma 3.3.6. Let X and Y be any set of equations of Eq.T/. Then

kerQ.k/ CQ ŒkerQ.k/ CQ C.X/; kerQ.k/ CQ C.Y/	 D kerQ.k/ CQ ŒC.X/; C.Y/	 (�)

in the term algebra Te� .

Proof (of the lemma). Since the theory on the RHS of (�) is included in the theory
on the LHS, we only need to prove the inclusion

ŒkerQ.k/ CQ C.X/; kerQ.k/ CQ C.Y/	 � kerQ.k/ CQ ŒC.X/; C.Y/	:

Let C0 be the restriction of C to Eq.T/.

Claim 1. ŒkerQ.k/ CQ C.X/; kerQ.k/ CQ C.Y/	 D k�1.ŒC0.X/; C0.Y/	T/.
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Proof (of the claim). It directly follows from Theorem 3.1.8, when applied to the
algebras Te� and T, that

ŒkerQ.k/ CQ C.Z/; kerQ.k/ CQ C.W/	 D k�1.ŒC0.kZ/; C0.kW/	T/;

for all sets of equations Z; W in Eq.�/. As X and Y are sets of equations of Eq.T/

and k is the identity map on the subalgebra T, the claim follows. ut
Claim 2. k�1.ŒC0.X/; C0.Y/	T/ � kerQ.k/ CQ ŒC.X/; C.Y/	.

Proof (of the claim). The definition of the equationally defined commutator and the
fact that k is the identity map when restricted to T give:

k�1.ŒC0.X/; C0.Y/	T/ D
k�1.C0.

[

˛�ˇ2CoEq.Q/

f˛.p; q; r; s; t/ � ˇ.p; q; r; s; t/ W p; q; r; s are sequences

of terms of T such that p � q 2 C0.X/; r � s 2 C0.Y/

and t is an arbitrary sequence of terms of Tg// D
k�1.C0.k.

[

˛�ˇ2CoEq.Q/

f˛.p; q; r; s; t/ � ˇ.p; q; r; s; t/ W p; q; r; s are sequences

of terms of T such that p � q 2 C0.X/; r � s 2 C0.Y/;

t is an arbitrary sequence of terms of Tg/// D
(by Corollary 2.11 applied to the algebras Te� and T)

kerQ.k/ CQ C.
[

˛�ˇ2CoEq.Q/

f˛.p; q; r; s; t/ � ˇ.p; q; r; s; t/ W p; q; r; s are

sequences of terms of T such that p � q 2 C0.X/; r � s 2 C0.Y/;

t is an arbitrary sequence of terms of Tg/ �
kerQ.k/ CQ C.

[

˛�ˇ2CoEq.Q/

f˛.p; q; r; s; t/ � ˇ.p; q; r; s; t/ W p; q; r; s are

sequences of terms of T such that p � q 2 C.X/; r � s 2 C.Y/;

t is an arbitrary sequence of terms of Tg/ �
kerQ.k/ CQ C.

[

˛�ˇ2CoEq.Q/

f˛.p; q; r; s; t/ � ˇ.p; q; r; s; t/ W p; q; r; s are

sequences of terms of Te� such that p � q 2 C.X/; r � s 2 C.Y/;

t is an arbitrary sequence of terms of Te� g/ D
kerQ CQŒC.X/; C.Y/	:
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The last inclusion is due to the fact that T � Te� and the next to last one follows
from the fact that C0.Z/ � C.Z/ for any set Z � Eq.T/. ut

From the claims the lemma follows. ut
The proof of the theorem is concluded. ut
Applying the above reasoning we also prove:

Theorem 3.3.7. (This is Theorem 2.22 repeated.) Let Q be a quasivariety of
� -algebras and e W Te� ! Te� an epimorphism. Define the set Ve as above. Then for
any separated sets X and Y of equations of variables from Ve such that e is injective
on Var.X [ Y/ it is the case that

.kerQ.e/ CQ Qˆ.X// \ .kerQ.e/ CQ Qˆ.Y// D kerQ.e/ CQ Qˆ.X/ \ Qˆ.Y/:

Proof. Let X and Y be separated equations of variables from Ve. The inclusion

.kerQ.e/ CQ C.X// \ .kerQ.e/ CQ C.Y// � kerQ.e/ CQ C.X/ \ C.Y/: (1)

is a non-trivial part of the theorem. Moreover, it suffices to prove this inclusion
only for finite sets X and Y . Let X D fx � yg, Y D fz � wg, where fx � yg D
fx1 � y1; : : : ; xm � ymg, fz � wg D fz1 � w1; : : : ; zn � wng.

We assume e is injective on Var.X [ Y/. Let V0 WD Var.X [ Y/ D fx1; : : : ; xmg [
fy1; : : : ; ymg [ fz1; : : : ; zng [ fw1; : : : ; wng.

Given the epimorphism e W Te� ! Te� , we define T, the mappings g, f and the
retraction k W Te� ! T as above. The carrier of T contains exactly the terms in the
variables from an infinite set V of variables, viz. V D g.Var/. As e is one-to-one on
the set V0 we may also assume that the selector g is so defined that V0 � V .

Let C0 be the restriction of C to the term algebra T, i.e., C0.˙/ D C.˙/\Eq.T/,
where Eq.T/ is the set of all equations of terms of T. We select a set �.x; y; z; w; u/

of equations in Eq.T/ such that

C0.x � y/ \ C0.z � w/ D C0.�.x; y; z; w; u//:

Then

�.x; y; z; w; u/ � C.x � y/ \ C.z � w/; (2)

because �.x; y; z; w; u/ � C0.x � y/ \ C0.z � w/ � C.x � y/ \ C.z � w/.
To prove (1), assume p � q 2 kerQ.e/ CQ C.x � y/ D C.x � y [ kerQ.e// and

p � q 2 kerQ.e/ CQ C.z � w/ D C.z � w [ kerQ.e//.
Lemma 3.3.1, structurality and the fact that k is the identity map on T give:

kp � kq 2 C0.kx � ky [ k.kerQ.e/// D C0.x � y [ k.kerQ.k/// D C0.x � y/
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and

kp � kq 2 C0.kz � kw [ k.kerQ.e/// D C0.z � w [ k.kerQ.k/// D C0.z � w/:

Hence

kp � kq 2 C0.x � y/ \ C0.z � w/ D C0.�.x; y; z; w; u//: (3)

As k is the identity map on the variables x; y; z; w and u, we also have:

C0.�.x; y; z; w; u// D C0.�.kx; ky; kz; kw; ku// D
C0.k.�.x; y; z; w; u/// � C.k.�.x; y; z; w; u///:

This and (3) give that

kp � kq 2 C.k.�.x; y; z; w; u///;

i.e.,

p � q 2 k�1C.k.�.x; y; z; w; u///: (4)

As k W Te� ! T is surjective, applying Proposition 2.5 and Corollary 2.16 to (4)
we obtain:

p � q 2 kerQ.k/ CQ C.�.x; y; z; w; u// � kerQ.e/ CQ C.x � y/ \ C.z � w/;

by (2). So (1) holds. This proves the theorem. ut
Note. A theorem analogous (and equivalent) to Theorem 3.3.5 is formulated below
in terms of congruences generated by separated sets of pairs of free generators in
the free algebra F.

Let B be a subalgebra of an algebra A. A retraction of A onto B is a surjective
epimorphism k W A ! B being the identity map on the subalgebra B, i.e., k.b/ D b
for all b 2 B. B is then called a retract of A.

Every free subalgebra G of a free algebra F is a retract of F. (G is generated by
a subset of the set of free generators of F.)

The following facts are reformulations for free algebras of the above results
established for the consequence Qˆ.

Retraction Lemma. Let F be a free algebra and h W F ! F an epimorphism. There
exists a free subalgebra G of F, generated by a subset of the set of free generators
of F, and a retraction k W F ! G such that ker.k/ D ker.h/. Moreover, if F has an
infinite set of free generators, then so does G.
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The above lemma trivializes if F has only finitely many generators because h is
then an automorphism of F. Consequently, G D F and k is the identity mapping.

Theorem 1.3.5*. Let Q be a quasivariety and h W F ! F an epimorphism of the
free algebra F D FQ.!/. Let G be the free subalgebra of F defined as in the above
lemma with the infinite set V of free generators. Let X and Y be subsets of G 	 G.
Then

ker.h/ CQ Œ�F.X/ CQ ker.h/; �F.Y/ CQ ker.h/	F D
ker.h/ CQ �F.X/ \ �F.Y/: ut (1)

(As F 2 Q, ker.h/ is Q-congruence of F.)
In a similar manner one may paraphrase Theorem 3.3.7.

3.4 The Relative Shifting Property and the Commutator

In this section logical aspects of the geometrical approach to the theory of
quasivarieties are examined. The shifting and cube properties play a central role in
this approach. These properties were defined by H.P. Gumm (1983) for varieties of
algebras and then extended to quasivarieties by Kearnes and McKenzie (1992). For a
variety, the validity of the shifting property is equivalent to congruence-modularity,
a result proved by Gumm (1983).

Let Q be a quasivariety of algebras with signature � . The relative shifting
property of Q (see, e.g., Kearnes and McKenzie 1992) is the following statement:

Suppose that A 2 Q, ˚; �; � 2 ConQ.A/, and that a; b; c; d 2 A satisfy
ha; bi; hc; di 2 ˚; ha; ci; hb; di 2 � , and ha; bi 2 � . Then hc; di 2 � C
Q.˚ \ �/.

This statement is expressed pictorially in Fig. 3.1:
In diagrams like this, lines are assumed to be labeled by any label appearing on

a parallel line.

a

b

c

d

a

b

c

d

F

Y

Y

X F implies F

Y

Y

X F X +Q (F∩Y )

Fig. 3.1 The relative shifting property.
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The adjective “relative” is usually dropped when we speak of the relative shifting
property for varieties of algebras.

The following theorem is a combination of two results due to A. Day (1969),
and recalled as the equivalence of conditions (1) and (3) below, and H.P. Gumm
(1983), respectively. It shows that the shifting property for varieties is equivalent to
congruence-modularity

Theorem 3.4.1. For any variety V of algebras the following conditions are
equivalent:

(1) V is congruence-modular;
(2) V has the shifting property;
(3) For some n there are terms m0.x; y; z; w/; : : : ; mn.x; y; z; w/ such that V satisfies

(i) m0.x; y; z; w/ � z, mn.x; y; z; w/ � w,
(ii) mi.x; x; z; z/ � z, i 6 n,

(iii) mi.x; y; x; y/ � miC1.x; y; x; y/ for all even i < n,
(iv) mi.x; x; z; w/ � miC1.x; x; z; w/ for all odd i < n.

Proof. See, e.g., Freese and McKenzie (1987) or Czelakowski (2001). ut
Notes 3.4.2.
(1). The terms m0.x; y; z; w/; : : : ; mn.x; y; z; w/ satisfying condition (3) of Theo-
rem 3.4.1 are called Day terms.
(2). Equations (i)–(iv) depart from the standard formulation of Day equations for
congruence-modular varieties given, e.g., in Freese and McKenzie (1987), Theorem
2.2. But the above equations are equivalent to the standard ones (up to a permutation
of variables). Indeed, taking the permutation � of fx; y; z; wg given by �.x/ WD y,
�.y/ WD z, �.z/ WD x, �.w/ WD w, it is not difficult to check that the terms
�m0.x; y; z; w/; : : : ; �mn.x; y; z; w/ satisfy the equations given in Theorem 2.2 of
Freese and McKenzie (1987).

The reason for displaying Day equations in the form (i)–(iv) is explained
in Section 3.5.

(3). The implication (1) ) (2) also holds for relatively congruence-modular
quasivarieties of algebras (RCM quasivarieties, for short). Consequently,

Every RCM quasivariety has the relative shifting property.

Proposition 6.1.7 supplies a short proof of the above fact. The relative shifting
property need not imply relative congruence-modularity unless a quasivariety Q
is a variety.

(4). A quasivariety Q satisfies the Extension Principle if for every algebra A 2 Q
the operator �Q. 
 / is homomorphism from the lattice Con.A/ to the lattice
ConQ.A/. Equivalently, Q satisfies the Extension Principle if for every algebra
A 2 Q and for every pair of congruences ˚; � 2 Con.A/, it is the case that
�Q.˚ \ �/ D �Q.˚/ \ �Q.�/.
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Kearnes and McKenzie (1992) have proved a surprising result:

A quasivariety Q is RCM if and only if it has the relative shifting property and
satisfies the Extension Principle. ut

We shall return to the Extension Principle in Chapter 6.

3.5 Day Implication Systems and the Relative Shifting
Property

We investigate quasivarieties Q such that the associated equational logic Qˆ
is endowed with a Day implication system. A Day implication )D for Qˆ is
a finite set of quaternary equations which collectively possess the detachment
property relative to the equational logic Qˆ and furthermore satisfy two other
natural conditions. A Day implication is the notion extracted from the well-known
Mal’cev-style characterization of congruence-modular varieties due to Day (1969)
and recalled in Theorem 3.4.1 above. The fact that a variety has a Day implication
is equivalent to congruence-modularity.

In this section we show that for quasivarieties of algebras, the geometrical
properties discovered by Gumm are naturally linked with the presence of Day
implication: the relative shifting property for Q is equivalent to the existence of
a Day implication system for Qˆ. Furthermore, Day implication provides a simple
syntactic characterization of the cube property. These observations show the logical
perspective of Gumm’s approach and shed new light on the results proved by
Kearnes and McKenzie (1992).

We shall give an intrinsic characterization of the relative shifting property for
a quasivariety Q in terms of properties of the equational logic Qˆ associated with Q.

The relative shifting property is defined in terms of relative congruences of a
quasivariety. But the definition of the relative shifting property also makes sense for
(closed) theories of equational consequence operations.

Let Q be a quasivariety. The relative shifting property for the theories of Qˆ says
that for any theories X; Y; Z 2Th.Qˆ/ and any terms ˛; ˇ; �; ı; the conditions ˛ �ˇ,
� � ı 2 X, ˛ � �; ˇ � ı 2 Y and ˛ � ˇ 2 Z imply that � � ı 2 Qˆ.Z[.X\Y//.

A finite set of equations in four variables

fpi.x; y; z; w/ � qi.x; y; z; w/ W i 2 Ig; (Impl)

more suggestively denoted by x � y ) z � w or simply by ), is called an
implication system for the equational logic Qˆ if it satisfies two conditions:

z � w 2 Qˆ.x � y; x � y ) z � w/; (iD1)

i.e., ) has the detachment property relative to Qˆ, and

x � y ) x � y 2 Qˆ.;/; (iD2)
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i.e., ) has the identity property relative to Qˆ.
If ) additionally satisfies

x � x ) y � y 2 Q.;/; (iD3)

then it is called a Day implication system for Qˆ, or simply a Day implication.
(iD2) thus states that fpi.x; y; x; y/ � qi.x; y; x; y/ W i 2 Ig � Qˆ.;/, i.e., Q

validates the equations

pi.x; y; x; y/ � qi.x; y; x; y/; i 2 I:

Similarly, (iD3) states that fpi.x; x; y; y/ � qi.x; x; y; y/ W i 2 Ig � Qˆ.;/, i.e., the
equations

pi.x; x; y; y/ � qi.x; x; y; y/; i 2 I;

are valid in Q.
(iD3) is equivalent to the fact that x � y; z � w=x � y ) z � w is a set of rules

of Qˆ.
Any Day implication will be more suggestively marked by )D.
The following theorem relates the shifting property to the syntactic notion of a

Day implication system:

Theorem 3.5.1. For any quasivariety Q of � -algebras the following conditions are
equivalent:

(A) The relative shifting property holds for QI
(B) The relative shifting property holds for the Q-congruences of the free algebra

FQ.!/I
(C) The relative shifting property holds for the equational theories of QˆI
(D) The consequence operation Qˆ has a finite Day implication system )DI
Proof. We first prove the following fact:

Lemma 3.5.2. For any quasivariety Q, the following conditions are equivalent:

(i) The relative shifting property for the theories of Qˆ.
(ii) For any (equivalently, for some) different variables x; y; z; w,

z � w 2 Qˆ.fx � yg [ Qˆ.x � y; z � w/ \ Qˆ.x � z; y � w//:

(iii) The consequence operation Qˆ has a finite Day implication system )D.

Proof (of the lemma). (i) ) (ii). This is trivial.

(ii) ) (iii). Assume (ii) for some x; y; z; w. (ii) implies that there exists a finite set
of equations ˙.x; y; z; w; u/ such that z � w 2 Qˆ.fx � yg [ ˙.x; y; z; w; u// and
˙.x; y; z; w; u/ � Qˆ.x � y; z � w/, ˙.x; y; z; w; u/ � Qˆ.x � z; y � w/. Taking
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a substitution e being the identity map on x; y; z; w and which assigns the variable x
to each variable of u, we have that z � w 2 Qˆ.fx � yg [ ˙.x; y; z; w; eu// and
˙.x; y; z; w; eu/ � Qˆ.x � y; z � w/, ˙.x; y; z; w; eu/ � Qˆ.x � z; y � w/, by
the structurality of Qˆ. Putting

x � y )D z � w WD ˙.x; y; z; w; eu/;

we see that z � w 2 Qˆ.x � y; x � y )D z � w/, x � y )D z � w � Qˆ.x �
y; z � w/, and x � y )D z � w � Qˆ.x � z; y � w/. Applying structurality to the
last two inclusions we get that x � x )D y � y � Qˆ.x � x; y � y/ D Qˆ.;/ and
x � y )D x � y � Qˆ.x � x; y � y/ D Qˆ.;/, respectively. Thus )D satisfies
(iD1), (iD3), and (iD2). This proves (iii).

(iii) ) (i). Suppose that for X; Y; Z 2 Th.Qˆ/ and terms ˛; ˇ; �; ı, it is the case
that ˛ � ˇ, � � ı 2 X, ˛ � �; ˇ � ı 2 Y and ˛ � ˇ 2 Z. We shall show that
� � ı 2 Qˆ.Z [ .X \ Y//. Let x � y )D z � w be a Day implication for Qˆ.

Claim. p.˛; ˇ; �; ı/ � q.˛; ˇ; �; ı/ 2 X \ Y, for any equation p � q in )D.

Proof (of the claim). Let p � q be in )D. Since ˛ � ˇ; � � ı 2 X, we have that
p.˛; ˇ; �; ı/ � p.˛; ˛; �; �/ 2 X and q.˛; ˇ; �; ı/ � q.˛; ˛; �; �/ 2 X. But by (iD3),
p.˛; ˛; �; �/ � q.˛; ˛; �; �/ 2 Qˆ.;/. It follows that

p.˛; ˇ; �; ı/ � q.˛; ˇ; �; ı/ 2 X: (a)

Furthermore, as ˛ � � , ˇ � ı 2 Y , we also have that p.˛; ˇ; �; ı/ �
p.˛; ˇ; ˛; ˇ/ 2 X and q.˛; ˇ; �; ı/ � q.˛; ˇ; ˛; ˇ/ 2 Y . But by (iD2),
p.˛; ˇ; ˛; ˇ/ � q.˛; ˇ; ˛; ˇ/ 2 Qˆ.;/. Consequently,

p.˛; ˇ; �; ı/ � q.˛; ˇ; �; ı/ 2 Y: (b)

The claim follows from (a) and (b). ut
(iD1), the claim and ˛ � ˇ 2 Z imply that

� � ı 2 Qˆ.f˛ � ˇg [ ˛ � ˇ )D � � ı/ � Qˆ.Z [ .X \ Y//: ut
We now pass to the proof of the theorem.
Implication (A) ) (B) is trivial. The equivalence of (B) and (C) follows

from Proposition 2.5. Implication (C) ) (D) follows from the above lemma.
The implication (D) ) (A) is proved by a straightforward modification of the
proof of implication (iii) ) (i) of Lemma 3.5.2. (See also Czelakowski 2001,
Theorem Q.10.4.) ut
Notes.
1. Since for every Day implication system )D for a quasivariety Q, x � y; z �
w=x � y )D z � w is a set of rules of Qˆ, it follows that for any terms ˛; ˇ; �; ı;

˛ � ˇ; � � ı 2 Qˆ.;/ implies ˛ � ˇ )D � � ı 2 Qˆ.;/:

(This fact also follows from the proof of condition (a) of the above claim.)



3.5 Day Implication Systems and the Relative Shifting Property 57

2. Condition (ii) of Lemma 3.5.2 is equivalent to the following identity:

Qˆ.fx � yg [ Qˆ.x � y; z � w/ \ Qˆ.x � z; y � w// D
Qˆ.fz � wg [ Qˆ.x � y; z � w/ \ Qˆ.x � z; y � w//: (ii)�

Indeed, by applying the permutation � of the individual variables, where �.x/ D z,
�.y/ D w, �.z/ D x, �.w/ D y and � does not move the remaining variables, to
inclusion (ii) we see that

x � y 2 Qˆ.fz � wg [ Qˆ.z � w; x � y/ \ Qˆ.z � x; w � y// D
Qˆ.fz � wg [ Qˆ.x � y; z � w/ \ Qˆ.x � z; y � w//:

This together with (ii) gives (ii)�. Trivially, (ii)� implies (ii). ut
3. Let ˘.x; y; z; w; u/ be a set of equations (possibly with parameters u) such

that

Qˆ.˘.x; y; z; w; u// D Qˆ.x � y; z � w/ \ Qˆ.x � z; y � w//: (eq)

Marking the set ˘.x; y; z; w; u/ as x � y ,u z � w (note the occurrence of
parameters), we see that condition (ii) of Lemma 3.5.2 implies that the following
are rules for Qˆ:

x � y; x � y ,u z � w=z � w and z � w; x � y ,u z � w=x � y: (eD1)

x � y ,u z � w may be called a parameterized equivalence system for the
consequence Qˆ; (eD1) are detachment rules for the equivalence x � y ,u z � w.
(eq) implies that Qˆ.x � y ,u z � w/ D Qˆ.z � w ,u x � y/ which means that

x � y ,u z � w=z � w ,u x � y

and

z � w ,u x � y=x � y ,u z � w

are sets of rules of Qˆ. These are commutativity rules for the equivalence system
x � y ,u z � w. Moreover, ,u retains the characteristic properties of any Day
implication system, viz.,

x � y ,u x � y � Qˆ.;/ (eD2)

and

x � x ,u y � y � Qˆ.;/: (eD3)
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(eD3) is equivalent to the fact that

x � y; z � w=x � y ,u z � w (eD3)G

is a set of rules of Qˆ.
By an analogy to propositional logic, the rules (eD3)G may be collectively called

Gödel rules for Qˆ.
Let x � y , z � w be the set of equations which results from x � y ,u

z � w by the uniform substitution of the variable x for each parameter of u. (The
equations x � y , z � w therefore do not involve parameters.) It follows from
structurality that x � y , z � w shares properties (eD1)–(eD3) and (eD3)G with
x � y ,u z � w. But (eq) need not hold for x � y , z � w, that is, Qˆ.x � y ,
z � w/ may be a proper subset of Qˆ.x � y; z � w/ \ Qˆ.x � z; y � w/.

The set x � y , z � w may be infinite, but from the definition a Day implication
system )D for Qˆ.;/ we get that

x � y )D z � w � Qˆ.x � y , z � w/:

(eD1)–(eD3) give an equivalent characterization of the relative shifting property.
ut

The above result provides Mal’cev-type conditions which characterize the
relative shifting property. Theorem 3.5.1 is essentially due to Kearnes and McKenzie
(1992, Theorem 2.1). They do not use the term “Day implication system”, but their
syntactic characterization of the relative shifting property is, after making suitable
rearrangements of variables, equivalent to the above three properties (iD1)–(iD3)
that define Day implications.

Corollary 3.5.3. Let Q0 and Q be quasivarieties of � -algebras such that Q0 � Q.
If the relative shifting property holds for Q, then it also holds for Q0.

Proof. Assume Qˆ has a Day implication system )D. By the inclusion Q0 � Q,
)D is also a Day implication system for Q0ˆ. ut
Note 3.5.4. Let V be a congruence-modular variety and let m0.x; y; z; w/; : : : ;

mn.x; y; z; w/ be Day terms for V. Define:
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Fig. 3.2 The relative cube property
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x � y )D z � w WD fmi.x; y; z; w/ � miC1.x; y; z; w/ W i < n; i eveng:
We claim that x � y )D z � w is a Day implication system for Vˆ.

We apply conditions (i)–(iv) of Theorem 3.4.1.(3). As the equations
mi.x; y; x; y/ � miC1.x; y; x; y/, i < n, i even, are valid in V (by (iii), we see
that x � y )D z � w satisfies (iD2). But by (ii) the equations mi.x; x; y; y/ �
miC1.x; x; y; y/, i < n, also hold in V. Hence the system x � y )D z � w satisfies
(iD3). Finally, suppose that for any algebra A 2 V and a; c; d 2 A it is the case
that mi.a; a; c; d/ D miC1.a; a; c; d/, i < n, i even. In view of condition (iv) of
Theorem 3.4.1.(3), it follows that mi.a; a; c; d/ D miC1.a; a; c; d/, for all i < n.
Consequently, c D m0.a; a; c; d/ D mn.a; a; c; d/ D d. Hence c D d. This shows
that x � y )D z � w satisfies (iD1).

This implication system actually satisfies a stronger system of equations than
(iD3), viz.

mi.x; x; y; y/ � y � miC1.x; x; y; y/; i < n; i even (iD4)

(see also Theorem 4.2.2). ut

3.6 The Relative Cube Property

Let Q be a quasivariety of algebras of a given signature � . The relative cube property
of Q is the following statement:

Suppose that A 2 Q, that ˚; �; � 2 ConQ.A/, and that a1; a2; a3; a4,
b1, b2, b3, b4 2 A satisfy ha1; a3i, ha2; a4i, hb1; b3i, hb2; b4i 2 ˚ ,
ha1; a2i; ha3; a4i; hb1; b2i; hb3; b4i 2 � , and ha1; b1i; ha2; b2i; ha3; b3i 2 � .
Then ha4; b4i 2 � CQ ˚ \ � .

This statement is expressed pictorially in Fig. 3.2:
The following theorem is essentially due to Kearnes and McKenzie (1992)

(modulo a permutation of the variables in condition (B) below):

Theorem 3.6.1. For any quasivariety Q of � -algebras the following conditions are
equivalent:

(A) The relative cube property holds for Q;
(B) There exists a finite set of equations ˙c.x1; x2; x3; x4; y1; y2; y3; y4/ in eight

variables such that

(˛)* ˙c.x1; x2; x1; x2; y1; y2; y1; y2/ � Qˆ.;/

(ˇ)* ˙c.x1; x1; x3; x3; y1; y1; y3; y3/ � Qˆ.;/

and
(ı)* x4 � y4 2 Qˆ.˙c.x1; x2; x3; x4; x1; x2; x3; y4//:
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Proof. (B) ) (A). Let A 2 Q, ˚; �; � 2 ConQ.A/ and a1; a2; a3; a4; b1; b2; b3;

b4 2 A so that the hypothesis of the relative cube property is satisfied. Let
˙c.x1; x2; x3; x4; y1; y2; y3; y4/ be the set of equations supplied by (B). We show
that

For every equation p � q 2 ˙c;

p.a1; a2; a3; a4; a1; a2; a3; b4/ � q.a1; a2; a3; a4; a1; a2; a3; b4/ .mod ˚ \ � CQ �/:

Let p � q 2 ˙c. We have:

p.a1; a2; a3; a4; b1; b2; b3; b4/ �˚ p.a1; a2; a1; a2; b1; b2; b1; b2/ D (by (˛)*)

q.a1; a2; a1; a2; b1; b2; b1; b2/ �˚ q.a1; a2; a3; a4; b1; b2; b3; b4/

and

p.a1; a2; a3; a4; b1; b2; b3; b4/ �� p.a1; a1; a3; a3; b1; b1; b3; b3/ D (by (ˇ)*)

q.a1; a1; a3; a3; b1; b1; b3; b3/ �� q.a1; a2; a3; a4; b1; b2; b3; b4/:

Thus

p.a1; a2; a3; a4; b1; b2; b3; b4/ �˚\� q.a1; a2; a3; a4; b1; b2; b3; b4/: (2)

Furthermore

p.a1; a2; a3; a4; a1; a2; a3; b4/ �� p.a1; a2; a3; a4; b1; b2; b3; b4/ (3)

and

p.a1; a2; a3; a4; a1; a2; a3; b4/ �� p.a1; a2; a3; a4; b1; b2; b3; b4/: (4)

From (2), (3), and (4) the condition (1) follows.
Applying now (ı)* to (1) we see that a4 � b4.mod ˚ \ � CQ �/. So (A) holds.
(A) ) (B). Let F be the free algebra in Q, freely generated by x1, x2, x3, x4; y1,

y2, y3, y4. We define:

˚ WD the congruence of F generated by fhx1; x3i; hx2; x4i; hy1; y3i; hy2; y4ig,
� WD the congruence of F generated by fhx1; x2i; hx3; x4i; hy1; y2i; hy3; y4ig,
� WD the congruence of F generated by fhx1; y1i; hx2; y2i; hx3; y3ig.
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˚; � and � are Q-congruences because every congruence relation of F generated
by some equivalence relation on a set of free generators is a Q-congruence (see
Proposition 2.6). Applying the relative cube property of Q to this situation, we have
that

hx4; y4i 2 � CQ ˚ \ �:

Since the operator �Q is finitary, there exists a finite set T of ordered pairs contained
in ˚ \ � such that hx4; y4i belongs to �Q.fhx1; y1i; hx2; y2i; hx3; y3ig [ T/. We can
write

T D fhpF.x1; x2; x3; x4; y1; y2; y3; y4/; qF.x1; x2; x3; x4; y1; y2; y3; y4/i W hp; qi 2 ˙cg

for a finite set ˙c of equations.
Conditions (˛)* and (ˇ)* hold because T is a subset of ˚ \ � . Condition (ı)*

holds because hx4; y4i is in the Q-congruence of F generated by T together with the
pairs hx1; y1i; hx2; y2i; hx3; y3i (see Proposition 2.5). ut

3.6.1 The Relative Shifting Property and the Relative Cube
Property are Equivalent Properties

Theorem 3.6.2. Let Q be a quasivariety with the relative shifting property. Then
there exists a finite set of equations in eight variables ˙c.x1; x2; x3; x4; y1; y2; y3; y4/

such that the sets of equations

˙c.x1; x2; x1; x2; y1; y2; y1; y2/ (˛)*

˙c.x1; x1; x3; x3; y1; y1; y3; y3/ (ˇ)*

˙c.x1; x2; x3; x4; x1; x2; x3; x4/ (� )*

are valid in Q. Furthermore

x4 � y4 2 Qˆ.˙c.x1; x2; x3; x4; x1; x2; x3; y4//: (ı)*

Consequently, any quasivariety with the relative shifting property has the relative
cube property.

(Note that the set ˙c additionally satisfies condition (� )* which is not mentioned in
the characterization of the relative cube property.)

Proof. Let x � y )D z � w be a Day implication system for Qˆ. We define the
set of equations:

˙c.x1; x2; x3; x4; y1; y2; y3; y4/ W D
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[
fp.x1; y1; x2; y2/ � q.x1; y1; x2; y2/ )D p.x3; y3; x4; y4/ � q.x3; y3; x4; y4/ W

p � q 2 x � y )D z � wg:

˙c is obtained from x � y )D z � w by the uniform substitution of the term
p.x1; y1; x2; y2/ for x, the term q.x1; y1; x2; y2/ for y, p.x3; y3; x4; y4/ for z and q.x3; y3;

x4; y4/ for w in each equation of x � y )D z � w. The set ˙c is also written down
in a more compact form as

.x1 � y1 )D x2 � y2/ )D .x3 � y3 )D x4 � y4/:

Lemma 3.6.3. The following sets of equations are valid in Q:

.x1 � y1 )D x2 � y2/ )D .x1 � y1 )D x2 � y2/; (˛)

.x1 � y1 )D x1 � y1/ )D .x3 � y3 )D x3 � y3/; (ˇ)

.x1 � x1 )D x2 � x2/ )D .x3 � x3 )D x4 � x4/: (� )

Moreover,

x4 � y4 2 Qˆ..x1 � x1 )D x2 � x2/ )D .x3 � x3 )D x4 � y4//: (ı)

Proof (of the lemma). The set of equations defined in (˛) is equal to

[
fp.x1; y1; x2; y2/ � q.x1; y1; x2; y2/ ) Dp.x1; y1; x2; y2/ � q.x1; y1; x2; y2/ W

p � q 2 x � y )D z � wg:

The above set is contained in the union of the following sets of equations

s � t )D s � t; (1)

with s, t ranging over arbitrary terms. The equations of (1) are Q-valid by (iD2).
Hence the equations of (˛) are Q-valid as well.

The set of equations defined in (ˇ) is equal to

[
fp.x1; y1; x1; y1/ � q.x1; y1; x1; y1/ ) Dp.x3; y3; x3; y3/ � q.x3; y3; x3; y3/ W

p � q 2 x � y )D z � wg:

But, by (iD2), the equations

p.x1; y1; x1; y1/ � q.x1; y1; x1; y1/
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and

p.x3; y3; x3; y3/ � q.x3; y3; x3; y3/

are Q-valid, for all p � q 2 x � y )D z � w. The set of equations (ˇ) is therefore
equivalent (on the basis of Qˆ) to the set

[
fp.x1; y1; x1; y1/ � p.x1; y1; x1; y1/ ) Dp.x3; y3; x3; y3/ � p.x3; y3; x3; y3/ W

p � q 2 x � y )D z � wg:

The last set is contained in the union of the sets of equations

s � s )D t � t; (2)

where s, t are arbitrary terms. The equations of (2) are Q-valid by (iD3). Hence the
equations of (ˇ) are Q-valid as well.

The set of equations defined in (� ) is equal to

[
fp.x1; x1; x2; x2/ � q.x1; x1; x2; x2/ )D p.x3; x3; x4; x4/ � q.x3; x3; x4; x4/ W

p � q 2 x � y )D z � wg:

But, by (iD3), the equations

p.x1; x1; x2; x2/ � q.x1; x1; x2; x2/ and p.x3; x3; x4; x4/ � q.x3; x3; x4; x4/

are Q-valid, for all p � q 2 x � y )D z � w. Hence the set of equations (� ) is
equivalent (on the basis of Qˆ) to the set

[
fp.x1; x1; x2; x2/ � p.x1; x1; x2; x2/ ) Dp.x3; x3; x4; x4/ � p.x3; x3; x4; x4/ W

p � q 2 x � y )D z � wg:

This set is contained in the union of all sets (2). Since the latter set is Q-valid, the
former is Q-valid as well. This shows that the equations of (� ) are valid in Q.

We now show the validity of (ı). By virtue of (iD3) we have that the set of
equations x1 � x1 )D x2 � x2 is Q-valid, i.e.,

x1 � x1 )D x2 � x2 2 Qˆ.;/: (3)

Using (iD1) and (3) we obtain

x3 � x3 )D x4 � y4 � Qˆ..x1 � x1 )D x2 � x2/

)D .x3 � x3 )D x4 � y4//: (4)
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Since x3 � x3 is trivially Q-valid, applying again (iD1) we derive from (4) that

x4 � y4 2 Qˆ..x1 � x1 )D x2 � x2/ )D .x3 � x3 )D x4 � y4//:

So (ı) holds. ut
The theorem follows from Lemma 3.6.3. ut
The proof of Theorem 3.6.2 shows that the cube property is a consequence of

some simple iterations of Day’s implication (Lemma 3.6.3). The above considera-
tions show the logical side of this genuinely geometric property.

The converse of Theorem 3.6.2 is also true; that is, the relative cube property
implies the relative shifting property under the additional assumption that the set
of equations ˙c supplied by Theorem 3.6.1, which characterize the relative cube
property, apart of conditions (˛)*, (ˇ)* and (ı)* satisfies condition (� )* as well. We
have:

Theorem 3.6.4. Let Q be a quasivariety and suppose there exists a finite set of
equations ˙c in eight variables which satisfies (˛)*, (ˇ)*, (� )* and (ı)*. Define
x � y )D z � w WD ˙c.x; x; x; z; y; y; y; w/. The system x � y )D z � w is a Day
implication for Q. Consequently, Q has the relative shifting property.

Proof. We shall check that )D satisfies conditions (iD1)–(iD3) with respect to Qˆ.
x � y )D x � y is equal to ˙c.x; x; x; x; y; y; y; y/. The last set of equations is

Q-valid by (˛)* or (ˇ)*. So )D satisfies (iD2).
x � x )D y � y is equal to ˙c.x; x; x; y; x; x; x; y/. The last set of equations is

Q-valid by (� )*. So )D satisfies (iD3).
Finally, we observe that )D satisfies (iD1) by (ı)*. ut

Corollary 3.6.5. A quasivariety Q has the relative shifting property if and only if it
has the relative cube property. ut



Chapter 4
Centralization Relations

4.1 Four Centralization Relations for Quasivarieties

This section is devoted to the study of various forms of the ternary relation of
centralization holding on congruences, viz. ˚ centralizes � modulo � , where
˚; �; � are congruences on an algebra. We show the logical dimensions of this
relation by linking these relations with Day implication systems and commutator
equations.

Let A be a Q-algebra. Let ˚; �; � be congruences of A. We write:

Z4;com.˚; � I �/

(˚ centralizes � modulo � in the sense of quaternary commutator equations).
By definition,

Z4;com.˚; � I �/ ,df for any quadruple a; b; c; d of elements of A, the
conditions

a � b.mod ˚/ and c � d.mod �/ imply p.a; b; c; d; e/ � q.a; b; c; d; e/.mod �/

for any quaternary commutator equation p.x; y; z; w; u/ � q.x; y; z; w; u/ for Q
and any sequence e of elements of A of the length of u.

The ternary relation Z4;com on congruences is called the centralization relation in
the sense of quaternary commutator equations for Q.

We also write:

Zcom.˚; � I �/
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(˚ centralizes � modulo � in the sense of arbitrary commutator equations).
By definition,

Zcom.˚; � I �/ ,df for any m; n > 1, any m-tuples a; b, any n-tuples
c; d of elements of A,

a � b .mod ˚/ and c � d .mod �/ imply that p.a; b; c; d; e/ � q.a; b; c; d; e/.mod �/

for any commutator equation p.x; y; z; w; u/ � q.x; y; z; w; u/ for Q with
jxj D jyj D m, jzj D jwj D n, and any sequence e of elements of A of the
length of u.

The ternary relation Zcom is called the centralization relation in the sense of
arbitrary commutator equations for Q.

We have: Z4;com.˚; � I �/ , Z4;com.�; ˚ I �/ and Zcom.˚; � I �/ , Zcom

.�; ˚ I �/. It is also obvious that Zcom.˚; � I �/ implies Z4;com.˚; � I �/.

Proposition 4.1.1. Let Q be an arbitrary quasivariety and A an algebra in Q. Then,
for any Q-congruences ˚; �; �i .i 2 I/ of A:

(i) if Zcom.˚; � I �i/ for all i 2 I, then Zcom.˚; � ITi2I �i/.
(ii) Œ˚; �	A D Tf� 2 ConQ.A/ W Zcom.˚; � I �/g.

Proof. Immediate. ut
We need two more definitions. We write

Z2;2.˚; � I �/

(˚ centralizes � modulo � in the sense of the classical two-binary term condition).
We put:

Z2;2.˚; � I �/ ,df for any pairs ha; bi 2 ˚ , hc; di 2 � , any two terms
f .x; y; u/, g.x; y; u/, and any sequence e of elements of A of the length of u,
the conditions

f .a; c; e/ � g.a; c; e/.mod �/;

f .a; d; e/ � g.a; d; e/.mod �/;

f .b; c; e/ � g.b; c; e/.mod �/

imply

f .b; d; e/ � g.b; d; e/.mod �/:

The ternary relation Z2;2 is called the centralization relation in the sense of the
classical two-binary term condition.
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Note 1. Z2;2.˚; � I �/ is equivalently expresses in terms of binary polynomial
operation of A: for all pairs ha; bi 2 ˚ , hc; di 2 � , for all polynomial operations
f .x; y/, g.x; y/ of A, the conditions

f .a; c/ � g.a; c/.mod �/;

f .a; d/ � g.a; d/.mod �/;

f .b; c/ � g.b; c/.mod �/

imply

f .b; d/ � g.b; d/.mod �/: ut

We also define

Z2.˚; � I �/

(˚ centralizes � modulo � in the sense of the two-term condition). We put:

Z2.˚; � I �/ ,df for any m; n > 1, any m-tuples a; b, any n-tuples c; d
of elements of A such that a � b.mod ˚/ and c � d.mod �/, any terms
f .x; y; v/, g.x; y; v/, where jxj D m, jyj D n, and any sequence e of elements
of A of the length of v, the conditions

f .a; c; e/ � g.a; c; e/.mod �/

f .a; d; e/ � g.a; d; e/.mod �/

f .b; c; e/ � g.b; c; e/.mod �/

imply

f .b; d; e/ � g.b; d; e/.mod �/:

The relation Z2 is called the centralization relation in the sense of the two-term
condition.

Note 2. We have:

Z2;2.˚; � I �/ , Z2;2.�; ˚ I �/ and Z2.˚; � I �/ , Z2.�; ˚ I �/:

For the sake of completeness, we prove the second equivalence. We assume
˚ , � , � 2 ConQ.A/ so that Z2.˚; � I �/. To show that Z2.�; ˚ I �/, suppose
f .x; y; v/, g.x; y; v/ are arbitrary terms, where jxj D m > 1, jyj D n > 1, and
let a; b be m-tuples and c; d—n-tuples of elements of A such that a � b .mod �/,
c � d .mod ˚/, and let e be a sequence of elements of A of the length of v, so that
the conditions
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f .a; c; e/ � g.a; c; e/.mod �/ (a)

f .a; d; e/ � g.a; d; e/.mod �/

f .b; c; e/ � g.b; c; e/.mod �/

hold. We claim that

f .b; d; e/ � g.b; d; e/.mod �/:

We select two sequences of new and different variables x0 and y0 such that jx0j D jyj
and jy0j D jxj and put

f 0 D f 0.x0; y0; u/ WD f .x=y0; y=x0; u/; g0 D g0.x0; y0; u/ WD g.x=y0; y=x0; u/:

We then have:

f 0.c; a; e/ D f 0.x0=c; y0=a; u=e/ D f .x=a; y=c; u=e/ D f .a; c; e/I (b)

g0.c; a; e/ D g0.x0=c; y0=a; u=e/ D g.x=a; y=c; u=e/ D g.a; c; e/I
f 0.d; a; e/ D f 0.x0=d; y0=a; u=e/ D f .x=a; y=d; u=e/ D f .a; d; e/I
g0.d; a; e/ D g0.x0=d; y0=a; u=e/ D g.x=a; y=d; u=e/ D g.a; d; e/I
f 0.c; b; e/ D f 0.x0=c; y0=b; u=e/ D f .x=b; y=c; u=e/ D f .b; c; e/I
g0.c; b; e/ D g0.x0=x; y0=b; u=e/ D g.x=b; y=c; u=e/ D g.b; c; e/I
f 0.d; b; e/ D f 0.x0=d; y0=b; u=e/ D f .x=b; y=d; u=e/ D f .b; d; e/:

g0.d; b; e/ D g0.x0=d; y0=b; u=e/ D g.x=b; y=d; u=e/ D g.b; d; e/:

(a) and the first six identities of (b) give:

f 0.c; a; e/ � g0.c; a; e/.mod �/ (c)

f 0.c; b; e/ � g0.c; b; e/.mod �/

f 0.d; a; e/ � g0.d; a; e/.mod �/:

As c � d .mod ˚/ and a � b .mod �/, the assumption Z2.˚; � I �/ and (c) yield
that

f 0.d; b; e/ � g0.d; b; e/.mod �/:

Hence

f .b; d; e/ � g.b; d; e/.mod �/;

by the last two identities of (b). So Z2.�; ˚ I �/ holds.
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By a symmetric argument one proves the reverse implication: Z2.�; ˚ I �/ )
Z2.˚; � I �/. ut

The following theorem is a crucial result of this section. It shows that for every
quasivariety with the relative shifting property all the four centralization relations
coincide.

Theorem 4.1.2. Let Q be a quasivariety with the relative shifting property. Then
for any algebra A 2 Q and any Q-congruences ˚; �; � of A,

Z4;com.˚; � I �/ , Zcom.˚; � I �/ , Z2;2.˚; � I �/ , Z2.˚; � I �/:

Proof. The implications “Zcom.˚; � I �/ implies Z4;com.˚; � I �/” and “Z2.˚; � I �/

implies Z2;2.˚; � I �/” are trivial. The proof of the remaining implications is based
on several simple lemmas.

Lemma 4.1.3. Let Q be any quasivariety. Z2.˚; � I �/ implies Zcom.˚; � I �/,
for any algebra A 2 Q and any Q-congruences ˚; �; � of A.

Proof. Fix A 2 Q and Q-congruences ˚; �; � of A. Assume Z2.˚; � I �/. Suppose
that a � b .mod ˚/, c � d .mod �/ for sequences a; b; c; d of elements of A,
where jaj D jbj D m, jcj D jdj D n, and let p.x; y; z; w; u/ � q.x; y; z; w; u/ be
any commutator equation for Q with jxj D jyj D m, jzj D jwj D n. Let e be a
sequence of elements of A whose length is juj. We must show that p.a; b; c; d/ �
q.a; b; c; d/.mod �/.

We consider the following terms:

f .x; y; v/ WD p.v1; x; v2; y; u/; g.x; y; v/ WD q.v1; x; v2; y; u/;

where v1 and v2 are sequences of distinct variables not occurring on the list x C
y C z C w C u such that jv1j D m, jv2j D n, and v WD v1 C v2 C u (see the
footnote on p. 29). The variables of v are thus treated as parametric variables in
f and g. We define the list of elements of A: e0 WD a C c C e. By the fact that
p � q is a commutator equation for Q, we have that f .a; c; e0/ D p.a; a; c; c; e/ D
q.a; a; c; c; e/ D g.a; c; e0/. Hence evidently,

f .a; c; e0/ � g.a; c; e0/.mod �/: (1)

Furthermore f .a; d; e0/ D p.a; a; c; d; e/ D q.a; a; c; d; e/ D g.a; d; e0/. Hence
trivially

f .a; d; e0/ � g.a; d; e0/.mod �/: (2)

We also have f .b; c; e0/ D p.a; b; c; c; e/ D q.a; b; c; c; e/ D g.b; c; e0/. Hence

f .b; c; e0/ � g.b; c; e0/.mod �/: (3)
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Then (1), (2), (3), a � b .mod ˚/, c � d .mod �/ and Z2.˚; � I �/ imply

f .b; d; e0/ � g.b; d; e0/.mod �/

which means that

p.a; b; c; d/ � q.a; b; c; d/.mod �/:

So Zcom.˚; � I �/. ut
As a particular case of the above proof, we obtain:

Lemma 4.1.4. Let Q be any quasivariety. Z2;2.˚; � I �/ implies Z4;com.˚; � I �/,
for any algebra A 2 Q and any Q-congruences ˚; �; � of A. ut
Lemma 4.1.5. Let Q be any quasivariety with the relative shifting property. Then
Zcom.˚; � I �/ implies Z2.˚; � I �/, for every algebra A 2 Q and any Q-congruen-
ces ˚; �; � of A.

Proof. By Theorem 3.6.2, Q has the relative cube property. Let ˙c be the set of
pairs of terms in 8 variables supplied by Theorem 3.6.1, and let (˛)*, (ˇ)*, and (ı)*
be the equations and the quasi-equations provided by that theorem.

Let A 2 Q and assume Zcom.˚; � I �/, a � b .mod ˚/, c � d .mod �/ for
tuples a; b; c; d of elements of A, where jaj D jbj D m, jcj D jdj D n. Let f .x; y; v/,
g.x; y; v/ be terms and let e be a sequence of elements of A of the length of v.
Furthermore, let us assume that

f .a; c; e/ � g.a; c; e/.mod �/; f .a; d; e/ � g.a; d; e/.mod �/; and (�)

f .b; c; e/ � g.b; c; e/.mod �/:

We shall show that f .b; d; e/ � g.b; d; e/.mod �/.
For each pair hp; qi 2 ˙c define:

p0.x; y; z; w; v/ WD
p.f .x; z; v/; f .x; w; v/; f .y; z; v/; f .y; w; v/; g.x; z; v/; g.x; w; v/; g.y; z; v/; g.y; w; v//;

q0.x; y; z; w; v/ WD
q.f .x; z; v/; f .x; w; v/; f .y; z; v/; f .y; w; v/; g.x; z; v/; g.x; w; v/; g.y; z; v/; g.y; w; v//;

Claim. p0 � q0 is a commutator equation for Q in x; y and z; w.

Proof (of the claim). To show that p0.x; x; z; w; v/ � q0.x; x; z; w; v/ holds in Q,
observe that for any A in Q and any sequences a; b; c; d; e of elements of A:
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p0.a; a; c; d; e/ D
p.f .a; c; e/; f .a; d; e/; f .a; c; e/; f .a; d; e/; g.a; c; e/; g.a; d; e/; g.a; c; e/; g.a; d; e//;

D (by (˛)*)

q.f .a; c; e/; f .a; d; e/; f .a; c; e/; f .a; d; e/; g.a; c; e/; g.a; d; e/; g.a; c; e/; g.a; d; e//;

D q0.a; a; c; d; e/:

To show that p0.x; y; z; z; v/ � q0.x; y; z; z; v/ holds in Q, observe that in A:

p0.a; b; c; c; e/ D
p.f .a; c; d/; f .a; c; d/; f .b; c; e/; f .b; c; e/; g.a; c; e/; g.a; c; e/; g.b; c; e/; g.b; c; e//;

D (by (ˇ)*)

q.f .a; c; e/; f .a; c; e/; f .b; c; e/; f .b; c; e/; g.a; c; e/; g.a; c; e/; g.b; c; e/; g.b; c; e//;

D q0.a; b; c; c; e/:

This proves the claim. ut
Since a � b .mod ˚/ and c � d .mod �/, the above claim and the fact that

Zcom.˚; � I �/ holds imply

p0.a; b; c; d; e/ � q0.a; b; c; d; e/.mod �/: (1)

We put:

a WD f .b; d; e/;

e1 WD f .a; c; e/; e2 WD f .a; d; e/; e3 WD f .b; c; e/;

b WD g.b; d; e/;

e0
1 WD g.a; c; e/; e0

2 WD g.a; d; e/; e0
3 WD g.b; c; e/:

(1) thus states that

p.e1; e2; e3; a; e0
1; e0

2; e0
3; b/ � q.e1; e2; e3; a; e0

1; e0
2; e0

3; b/.mod �/ (2)

for all hp; qi 2 ˙c. But (�) means that

e1 � e0
1 .mod �/; e2 � e0

2 .mod �/; e3 � e0
3 .mod �/:

This together with (2) gives that

p.e1; e2; e3; a; e1; e2; e3; b/ � q.e1; e2; e3; a; e1; e2; e3; b/.mod �/;

for all hp; qi 2 ˙c. Now applying (ı)*, we obtain that a � b .mod �/. Thus
f .b; d; e/ � g.b; d; e/.mod �/ as required. So Z2.˚; � I �/ holds. ut
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Repeating the above proof for binary terms with parameters f .x; z; v/, g.x; z; v/,
we obtain:

Lemma 4.1.6. Let Q be any quasivariety with the relative shifting property. Then
Z4;com.˚; � I �/ implies Z2;2.˚; � I �/, for every algebra A 2 Q and any Q-con-
gruences ˚; �; � of A. ut

The proof of the next lemma is more involved:

Lemma 4.1.7. Let Q be a quasivariety of algebras with the relative shifting
property. Let ˚; � , and � be Q-congruences of an algebra A 2 Q. Then
Z4;com.˚; � I �/ implies Zcom.˚; � I �/.

Proof. Let A 2 Q and assume that Z4;com.˚; � I �/. We apply Theorem 3.5.1. We
prove the following statement P.m; n/:

P.m; n/ For any commutator equation ˛.x; y; z; w; u/ � ˇ.x; y; z; w; u/ for Q with
jxj D jyj D m and jzj D jwj D n, and for any four sequences a; b; c; d
elements of A such that jaj D jbj D m and jcj D jdj D n, the conditions

a � b .mod ˚/ and c � d .mod �/ imply

˛.a; b; c; d; e/ � ˇ.a; b; c; d; e/.mod �/ for any sequence e of elements

of A of the length of u.

Lemma 4.1.7 will be proved once we show P.m; n/ for all possible values of m
and n. P.m; n/ is proved by induction on m for n D 1, and then by induction on n.

Sublemma 1. P.m; 1/, for all m > 1.

Proof (of the sublemma). The case m D 1 is covered by the assumption
Z4;com.˚; � I �/. Now suppose the sublemma is true for a certain m. Let a D a1; : : : ;

am; amC1 and b D b1; : : : ; bm; bmC1 be .m C 1/-tuples, let c; d be elements such that
a � b .mod ˚/ and c � d .mod �/, and let ˛.x; y; z; w; u/ � ˇ.x; y; z; w; u/ be
a commutator equation for Q with x D x1; : : : ; xm; xmC1, y D y1; : : : ; ym; ymC1.
Let e be sequence of elements of A of the length of u. We need to show that
˛.a; b; c; d; e/ � ˇ.a; b; c; d; e/ .mod �/. We prove it in two stages.

Put x0 WD x1; : : : ; xm, y
0

WD y1; : : : ; ym. Let v be a sequence of variables (of
length m C 1) not occurring in x; y; z; w; u, and let v be a single variable not
occurring in x; y; z; w; u; v. We define the list v0 WD u C v C v. Consider the Day

implication x � y )D z � w for the consequence operation Qˆ. For each equation
p.x; y; z; w/ � q.x; y; z; w/ belonging to )D we define the following two terms:

p0.x0; y
0
; z; w; v0/ WD

p.˛.v; x0v; z; w; u/; ˇ.v; x0v; z; w; u/; ˛.v; y
0
v; z; w; u/; ˇ.v; y

0
v; z; w; u//;
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q0.x0; y
0
; z; w; v0/ WD

q.˛.v; x0v; z; w; u/; ˇ.v; x0v; z; w; u/; ˛.v; y
0
v; z; w; u/; ˇ.v; y

0
v; z; w; u//:

Claim 1. p0.x0; y
0
; z; w; v0/ � q0.x0; y

0
; z; w; v0/ is a commutator equation for Q in

the variables x0; y
0

and z; w.

Proof (of the claim). The equation p0.x0; x0; z; w; v0/ � q0.x0; x0; z; w; v0/ coincides
with

p.˛.v; x0v; z; w; u/; ˇ.v; x0v; z; w; u/; ˛.v; x0v; z; w; u/; ˇ.v; x0v; z; w; u// �
q.˛.v; x0v; z; w; u/; ˇ.v; x0v; z; w; u/; ˛.v; x0v; z; w; u/; ˇ.v; x0v; z; w; u//:

The last equation is Q-valid by (iD2) since it is of the form p.s; t; s; t/ � q.s; t; s; t/.
The equation p0.x0; y

0
; z; z; v0/ � q0.x0; y

0
; z; z; v0/ coincides with

p.˛.v; x0v; z; z; u/; ˇ.v; x0v; z; z; u/; ˛.v; y
0
v; z; z; u/; ˇ.v; y

0
v; z; z; u// � (1)

q.˛.v; x0v; z; z; u/; ˇ.v; x0v; z; z; u/; ˛.v; y
0
v; z; z; u/; ˇ.v; y

0
v; z; z; u//:

Since the equations ˛.v; x0v; z; z; u/ � ˇ.v; x0v; z; z; u/ and ˛.v; y
0
v; z; z; u/ �

ˇ.v; y
0
v; z; z; u/ are Q-valid because ˛ � ˇ is a commutator equation for Q, we see

that the equation (1) is Q-valid if and only if the equation

p.˛.v; x0v; z; z; u/; ˛.v; x0v; z; z; u/; ˛.v; y
0
v; z; z; u/; ˛.v; y

0
v; z; z; u// �

q.˛.v; x0v; z; z; u/; ˛.v; x0v; z; z; u/; ˛.v; y
0
v; z; z; u/; ˛.v; y

0
v; z; z; u//:

is Q-valid. But the last equation is Q-valid by (iD3) since it is of the form
p.s; s; t; t/ � q.s; s; t; t/. ut

If f ; g; k; l are polynomials over an algebra A, then we write hf ; gi )D hk; li to
denote the set of pairs fhp.f ; g; k; l/; q.f ; g; k; l/i W p � q 2 x � y )D z � wg.

Let a0 WD a1; : : : ; am, b0 WD b1; : : : ; bm and e0 WD e C a C amC1. By the above
claim and the inductive hypothesis (in the proof of Sublemma 1), we obtain that

p0.a0; b0; c; d; e0/ � q0.a0; b0; c; d; e0/ .mod �/:

This means that

p.˛.a; a
0
amC1; c; d; e/; ˇ.a; a

0
amC1; c; d; e/; ˛.a; b

0
amC1; c; d; e/; ˇ.a; b

0
amC1; c; d; e//��

q.˛.a; a
0
amC1; c; d; e/; ˇ.a; a

0
amC1; c; d; e/; ˛.a; b

0
amC1; c; d; e/; ˇ.a; b

0
amC1; c; d; e//;
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that is,

p.˛.a; a; c; d; e/; ˇ.a; a; c; d; e/; ˛.a; b0amC1; c; d; e/; ˇ.a; b0amC1; c; d; e// �� (2)

q.˛.a; a; c; d; e/; ˇ.a; a; c; d; e/; ˛.a; b0amC1; c; d; e/; ˇ.a; b0amC1; c; d; e//:

Since (2) holds for an arbitrary member p � q of )D, we may write

h˛.a; a; c; d; e/; ˇ.a; a; c; d; e/i
)D h˛.a; b0amC1; c; d; e/; ˇ.a; b0amC1; c; d; e/i � �:

But evidently h˛.a; a; c; d; e/; ˇ.a; a; c; d; e/i 2 � , again by the fact that ˛ � ˇ

is a commutator equation for Q. Hence, applying (iD1) to the above situation, we
conclude that

h˛.a; b0amC1; c; d; e/; ˇ.a; b0amC1; c; d; e/i 2 �: (3)

In the second stage, for each equation p.x; y; z; w/ � q.x; y; z; w/ belonging to
)D, we define the following two terms:

p0.x; y; z; w; v0/WDp.˛.v; v
0
x; z; w; u/; ˇ.v; v

0
x; z; w; u/; ˛.v; v

0
y; z; w; u/; ˇ.v; v

0
y; z; w; u//;

q0.x; y; z; w; v0/WDp.˛.v; v
0
x; z; w; u/; ˇ.v; v

0
x; z; w; u/; ˛.v; v

0
y; z; w; u/; ˇ.v; v

0
y; z; w; u//;

where:

v is a sequence of variables (of length m C 1) not occurring in x; y; z; w; u,
v0 is a sequence of variables (of length m) not occurring in x; y; z; w; u; v,
and
v0 WD u C v C v0.

Claim 2. p0.x; y; z; w; v0/ � q0.x; y; z; w; v0/ is a quaternary commutator equation
for Q.

Proof (of the claim). The equation p0.x; x; z; w; v0/ � q0.x; x; z; w; v0/ coincides with

p.˛.v; v0x; z; w; u/; ˇ.v; v0x; z; w; u/; ˛.v; v0x; z; w; u/; ˇ.v; v0x; z; w; u// �
q.˛.v; v0x; z; w; u/; ˇ.v; v0x; z; w; u/; ˛.v; v0x; z; w; u/; ˇ.v; v0x; z; w; u//:

It is Q-valid by (iD2) since it is of the form p.s; t; s; t/ � q.s; t; s; t/.
The equation p0.x; y; z; z; v0/ � q0.x; y; z; z; v0/ coincides with

p.˛.v; v0x; z; z; u/; ˇ.v; v0x; z; z; u/; ˛.v; v0y; z; z; u/; ˇ.v; v0y; z; z; u// � (4)

q.˛.v; v0x; z; z; u/; ˇ.v; v0x; z; z; u/; ˛.v; v0y; z; z; u/; ˇ.v; v0y; z; z; u//:
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Since the equations ˛.v; v0x; z; z; u/ � ˇ.v; v0x; z; z; u/ and ˛.v; v0y; z; z; u/ �
ˇ.v; v0y; z; z; u/ are Q-valid because ˛ � ˇ is a commutator equation for Q, we see
that the Q-validity of (4) is equivalent to the Q-validity of the equation

p.˛.v; v0x; z; z; u/; ˛.v; v0x; z; z; u/; ˛.v; v0y; z; z; u/; ˛.v; v0y; z; z; u// �
q.˛.v; v0x; z; z; u/; ˛.v; v0x; z; z; u/; ˛.v; v0y; z; z; u/; ˛.v; v0y; z; z; u//:

But the last equation is Q-valid by (iD3) since it is of the form p.s; s; t; t/ �
q.s; s; t; t/. ut

By the above claim and the inductive hypothesis (in the proof of Sublemma 1),
we obtain that

p0.amC1; bmC1; c; d; e0/ � q0.amC1; bmC1; c; d; e0/ .mod �/;

where e0 is the list e C a C b0. This means that

p.˛.a; b
0
amC1; c; d; e/; ˇ.a; b

0
amC1; c; d; e/; ˛.a; b

0
bmC1; c; d; e/; ˇ.a; b

0
bmC1; c; d; e//��

q.˛.a; b
0
amC1; c; d; e/; ˇ.a; b

0
amC1; c; d; e/; ˛.a; b

0
bmC1; c; d; e/; ˇ.a; b

0
bmC1; c; d; e//

i.e.,

p.˛.a; b
0
amC1; c; d; e/; ˇ.a; b

0
amC1; c; d; e/; ˛.a; b; c; d; e/; ˇ.a; b; c; d; e// (5)

�� q.˛.a; b
0
amC1; c; d; e/; ˇ.a; b

0
amC1; c; d; e/; ˛.a; b; c; d; e/; ˇ.a; b; c; d; e//:

Since (5) holds for an arbitrary member p � q of )D, we may write

h˛.a; b
0
amC1; c; d; e/; ˇ.a; b

0
amC1; c; d; e/i

)D h˛.a; b; c; d; e/; ˇ.˛.a; b; c; d; e/i � �:

Now using (3) and applying (iD1) to the above situation, we infer that
h˛.a; b; c; d; e/; ˇ.˛.a; b; c; d; e/i 2 �:

The inductive proof of P.m; 1/ for any positive value of m is complete.
Sublemma 1 has been proved. ut
Sublemma 2. Let m be an arbitrary but fixed positive integer. Then P.m; n/ holds,
for all n > 1.

Proof (of the sublemma). P.m; 1/ holds by Sublemma 1. Now suppose the sub-
lemma is true for a certain n. Let a D a1; : : : ; am and b D b1; : : : ; bm be m-tuples,
c D c1; : : : ; cn; cnC1 and d D d1; : : : ; dn; dnC1 be .n C 1/-tuples of elements of
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A such that a � b .mod ˚/ and c � d .mod �/, and let ˛.x; y; z; w; u/ �
ˇ.x; y; z; w; u/ be a commutator equation for Q with x D x1; : : : ; xm, y D y1; : : : ; ym,
z D z1; : : : ; zn; znC1 and w D w1; : : : ; wn; wnC1. Let e be sequence of elements of A
of the length of u. We need to show that ˛.a; b; c; d; e/ � ˇ.a; b; c; d; e/.mod �/.
We prove it in two stages.

Put z
0

WD z1; : : : ; zn, w0 WD w1; : : : ; wn. Let v be a sequence of variables (of
length nC1) not occurring in x; y; z; w; u, and let v be a single variable not occurring
in x; y; z; w; u; v. Put v0 WD uCvCv. Consider the Day implication x � y )D z � w

for the consequence Qˆ. For each equation p.x; y; z; w/ � q.x; y; z; w/ belonging to
)D we define the following two terms:

p0.x; y; z
0
; w0; v0/ WD

p.˛.x; y; v; z
0
v; u/; ˇ.˛.x; y; v; z

0
v; u/; ˛.x; y; v; w0v; u/; ˇ.x; y; v; w0v; u//;

q0.x; y; z
0
; w0; v0/ WD

q.˛.x; y; v; z
0
v; u/; ˇ.˛.x; y; v; z

0
v; u/; ˛.x; y; v; w0v; u/; ˇ.x; y; v; w0v; u//:

Claim 3. p0.x; y; z
0
; w0; v0/ � q0.x; y; z

0
; w0; v0/ is a commutator equation for Q in

the variables x; y and z
0
; w0.

The proof of the claim is left as an exercise to the reader. ut

By the above claim and the inductive hypothesis (in the proof of Sublemma 2),
we obtain that

p0.a; b; c0; d0; e0/ � q0.a; b; c0; d0; e0/ .mod �/;

where e0 WD e C c C cnC1. This means that

p.˛.a; b; c; c
0
cnC1; e/; ˇ.a; b; c; c

0
cnC1; e/; ˛.a; b; c; d

0
cnC1; e/; ˇ.a; b; c; d

0
cnC1; e// ��

q.˛.a; b; c; c
0
cnC1; e/; ˇ.a; b; c; c

0
cnC1; e/; ˛.a; b; c; d

0
cnC1; e/; ˇ.a; b; c; d

0
cnC1; e//;

i.e.,

p.˛.a; b; c; c; e/; ˇ.a; b; c; c; e/; ˛.a; b; c; d
0
cnC1; e/; ˇ.a; b; c; d

0
cnC1; e// �� (6)

q.˛.a; b; c; c; e/; ˇ.a; b; c; c; e/; ˛.a; b; c; d
0
cnC1; e/; ˇ.a; b; c; d

0
cnC1; e//:

Since (6) holds for an arbitrary member p � q of )D, we may write

h˛.a; b; c; c; e/; ˇ.a; b; c; c; e/i
)D h˛.a; b; c; d

0
cnC1; e/; ˇ.a; b; c; d

0
cnC1; e/i � �:
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But evidently h˛.a; b; c; c; e/; ˇ.a; b; c; c; e/i 2 � , again by the fact that ˛ � ˇ is a
commutator equation for Q. Hence, applying (iD1) to the above situation, we obtain
that

h˛.a; b; c; d
0
cnC1; e/; ˇ.a; b; c; d

0
cnC1; e/i 2 �: (7)

In the second stage, for each equation p.x; y; z; w/ � q.x; y; z; w/ belonging to
)D, we define the following two terms:

p0.x; y; z; w; v0/ WD
p.˛.x; y; v; v0z; u/; ˇ.x; y; v; v0z; u/; ˛.x; y; v; v0w; u/; ˇ.x; y; v; v0w; u//;

q0.x; y; z; w; v0/ WD
q.˛.x; y; v; v0z; u/; ˇ.x; y; v; v0z; u/; ˛.x; y; v; v0w; u/; ˇ.x; y; v; v0w; u//:

where:

v is a sequence of variables (of length n C 1) not occurring in x; y; z; w; u,
v0 is a sequence of variables (of length n) not occurring in x; y; z; w; u; v,
v0 WD u C v C v0.

Claim 4. p0.x; y; z; w; v0/ � q0.x; y; z; w; v0/ is a commutator equation for Q in the
variables x; y and z; w.

The proof of the claim is left as an exercise. ut

By the above claim and the inductive hypothesis (in the proof of Sublemma 2),
we obtain that

p0.a; b; cmC1; dmC1; e0/ � q0.a; b; cmC1; dmC1; e0/ .mod �/;

where e0 D e C c C d0. This means that

p.˛.a; b; c; d
0
cnC1; e/; ˇ.a; b; c; d

0
cnC1; e/; ˛.a; b; c; d

0
dnC1; e/; ˇ.a; b; c; d

0
dnC1; e// ��

q.˛.a; b; c; d
0
cnC1; e/; ˇ.a; b; c; d

0
cnC1; e/; ˛.a; b; c; d

0
dnC1; e/; ˇ.a; b; c; d

0
dnC1; e//;

i.e.,

p.˛.a; b; c; d
0
cnC1; e/; ˇ.a; b; c; d

0
cnC1; e/; ˛.a; b; c; d; e/; ˇ.a; b; c; d; e// �� (8)

q.˛.a; b; c; d
0
cnC1; e/; ˇ.a; b; c; d

0
cnC1; e/; ˛.a; b; c; d; e/; ˇ.a; b; c; d; e//:

Since (8) holds for an arbitrary member p � q of )D, we may write

h˛.a; b; c; d
0
cnC1; e/; ˇ.a; b; c; d

0
cnC1; e/i

)D h˛.a; b; c; d; e/; ˇ.a; b; c; d; e/i � �

Now using (7) and applying (iD1) to the above situation, we obtain that h˛.a; b; c;

d; e/; ˇ.a; b; c; d; e/i 2 �:
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The inductive proof that P.m; n/ holds for any positive value of n is complete.
Sublemma 2 has been proved. ut

This concludes the proof of Lemma 4.1.7. ut
The theorem is an easy consequence of the above lemmas. In virtue of

Lemmas 4.1.3 and 4.1.5, Z2.˚; � I �/ is equivalent to Zcom.˚; � I �/. In turn
Z2;2.˚; � I �/ is equivalent to Z4;com.˚; � I �/ by Lemmas 4.1.4 and 4.1.6.
Zcom.˚; � I �/ is equivalent to Z4;com.˚; � I �/ by Lemma 4.1.7. Thus all the
four conditions are equivalent. ut
Note. Conditions Z2.˚; � I �/ and Z2;2.˚; � I �/ were essentially formulated by
Kearnes and McKenzie (1992) in terms of polynomials of algebras. They proved that
these conditions are equivalent for any algebra belonging to a relatively congruence-
modular quasivariety. The conditions Zcom.˚; � I �/ and Z4;com.˚; � I �/ seem to
have not been considered in the literature. ut
Corollary 4.1.8. Let Q be a quasivariety with the relative shifting property. Then
for any algebra A 2 Q and any Q-congruences ˚; � of A,

Œ˚; �	 D
\

f� 2 ConQ.A/ W Z.˚; � I �/g;
where Z is an arbitrary but fixed centralization relation from the above list of four
centralization relations. ut

The following observation is useful:

Corollary 4.1.9. Let Q be a quasivariety with the relative shifting property. Then
for any algebra A 2 Q and any Q-congruences ˚; � of A,

Œ˚; �	 D �Q.fh˛.a; b; c; d; e/; ˇ.a; b; c; d; e/i W ˛.x; y; z; w; u/ � ˇ.x; y; z; w; u/

is a quaternary commutator equation Q; a � b .˚/; c � d .�/; and e 2 A<!g/:

Proof. Take the centralization relation Z4;com and apply the above corollary. ut
On the right-hand side of the above corollary one may even take a subset of

the set of all quaternary commutator equations in x; y and z; w. E.g. one may take
the quaternary equations belonging to any set � such that Qˆ.�/ D Qˆ.x �
y/\Qˆ.z � w/ (see Theorem 4.3.9) and even smaller sets (Theorem 4.1.11 below).

Theorem 4.1.2 implies:

Corollary 4.1.10. Let Q be a quasivariety with the relative shifting property. Then
for any algebra A 2 Q and all ˚; � 2 ConQ.A/:

Œ˚; �	A D supfŒ�Q.a; b/; �Q.c; d/	A W a � b .˚/; c � d .�/g:

(The supremum on the right-hand side of the above formula is taken in the lattice
ConQ.A/.)
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Proof. Let � be the set of all quaternary commutator equations for Q. Suppose
A 2 Q and ˚; � 2 ConQ.A/. It is easy to see that

�Q.
[

f.8e/�.a; b; c; d; e/ W a � b .˚/; c � d .�/g/:

is the least Q-congruence � of A for which Z4;com.˚; � I �/ holds. Hence

Œ˚; �	A D �Q.
[

f.8e/�.a; b; c; d; e/ W a � b .˚/; c � d .�/g/

by Corollary 4.1.8.
Let a; b; c; d 2 A. By the above remark, the least Q-congruence � of A for which

Z4;com.�Q.a; b/; �Q.c; d/I �/ holds coincides with

�Q.
[

f.8e/�.a0; b0; c0; d0; e/ W a0 � b0 .mod �Q.a; b//; c0 � d0 .mod �Q.c; d//g/:

But Œ�Q.a; b/; �Q.c; d/	A is the least Q-congruence � of A for which Z4;com

.�Q.a; b/; �Q.c; d/I �/ holds, again by Corollary 4.1.8. It follows that

�Q.
[

f.8e/�.a; b; c; d; e/ W a � b .˚/; c � d .�/g/ D

supf�Q.
[

f.8e//�.a0; b0; c0; d0; e/ W a0 � b0 .�Q.a; b//; c0 � d0 .�Q.c; d//g/ W
a � b .˚/; c � d .�/g/ D

supfŒ�Q.a; b/; �Q.c; d/	A W a � b .˚/; c � d .�/g: ut

Let Q be a quasivariety with the relative shifting property. Let x � y )D z � w
be a Day implication system for Q. By Theorem 3.6.2, Q has the relative cube
property. Let ˙c.x1; x2; x3; x4; y1; y2; y3; y4/ be the set of equations in 8 variables
supplied by Theorem 3.6.1 and let (˛)*, (ˇ)*, and (ı)* be the equations and the rule
of inference of Qˆ provided by that theorem.

For each equation p � q 2 ˙c, for any m-tuple t D t1; : : : ; tm of terms, and any
two terms f .x; y; u/, g.x; y; u/, we define the following terms:

p0 WD p.f .x; z; t/; f .x; w; t/; f .y; z; t/; f .y; w; t/; g.x; z; t/; g.x; w; t/; g.y; z; t/; g.y; w; t//;

q0 WD q.f .x; z; t/; f .x; w; t/; f .y; z; t/; f .y; w; t/; g.x; z; t/; g.x; w; t/; g.y; z; t/; g.y; w; t//

(see the proof of Lemma 4.1.5).
Let �c.x; y; z; w; u/ be the set of all equations of the form p0 � q0 with p0 and q0

defined as above, f and g ranging over .m C 2/-ary terms (for all m), and t ranging
over strings of terms. The set �c is infinite.

In a more compact form, �c is the union of the following finite sets of equations

˙c.f .x; z; t/; f .x; w; t/; f .y; z; t/; f .y; w; t/; g.x; z; t/; g.x; w; t/; g.y; z; t/; g.y; w; t//
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obtained from the equations of ˙c.x1; x2; x3; x4; y1; y2; y3; y4/ by the uniform sub-
stitution of the terms f .x; z; t/, f .x; w; t/, f .y; z; t/, f .y; w; t/, g.x; z; t/, g.x; w; t/,
g.y; z; t/, g.y; w; t/ for the variables x1; x2; x3; x4; y1; y2; y3; y4, respectively.

Applying the notation adopted in the proof of Theorem 3.6.2 we may write:

�c.x; y; z; w; u/ WD
[

f.f .x; z; t/ � g.x; z; t/ )D f .x; w; t/ � g.x; w; t//

)D .f .y; z; t/ � g.y; z; t/ )D f .y; w; t/ � g.y; w; t// W f and g range

over .m C 2/-ary terms (for all m) and t ranges over strings of termsg:

Note. The set �c.x; y; z; w; u/ has the following absolute invariance property: it is
the same in any quasivariety Q for which x � y )D z � w is a Day implication sys-
tem. This fact directly follows from the definitions of ˙c.x1; x2; x3; x4; y1; y2; y3; y4/

and �c. ut
Theorem 4.1.11. Let Q be a quasivariety with the relative shifting property. Let
x � y )D z � w be a Day implication system for Q. Define the set of equations �c

as above. �c is a set of quaternary commutator equations for Q such that for every
algebra A 2 Q and any ˚; � 2 ConQ.A/:

Œ˚; �	A D �Q.
[

f.8e/�c.a; b; c; d; e/ W a � b .˚/; c � d .�/g/:

�c is called the set of quaternary commutator equations for Q supplied by the
(relative) cube property and the centralization relation in the sense of the classical
two-binary term condition.

Proof. The fact that �c is indeed a set of quaternary commutator equations for Q
follows from the claim being a part of the proof of Lemma 4.1.5.

To prove the above equality, we shall make use of the centralization relations
Z4;com and Z2;2 (defined in the algebras of Q). Suppose A 2 Q and ˚; � 2 ConQ.A/.
We let �0 denote the congruence �Q.

Sf.8e/ �c.a; b; c; d; e/ W a � b .˚/;

c � d .�/g/.
Since �c.x; y; z; w; u/ is a set of quaternary commutator equations for Q, it

immediately follows that �0 is included in any Q-congruence � of A such that
Z4;com.˚; � I �/ (see the definition of Z4;com). It follows, by Theorem 4.1.2, that
�0 is included in any Q-congruence � of A such that Z2;2.˚; � I �/. To prove the
theorem, it therefore suffices to show that

Z2;2.˚; � I �0/: (1)

To show (1), assume f .x; y; u/, g.x; y; u/ are arbitrary terms, where u D u1; : : : ; um,
a � b .˚/; c � d .�/ and let e D e1; : : : ; em be a sequence of terms. Suppose that
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the pairs hf .a; c; e/; g.a; c; e/i; hf .a; d; e/; g.a; d; e/i; (2)

hf .b; c; e/; g.b; c; e/i belong to �0:

We must show that hf .b; d; e/; g.b; d; e/i 2 �0.
But by the definitions of �c and �0 we have that

˙c.f .a; c; e/; f .a; d; e/; f .b; c; e/; f .b; d; e/;

g.a; c; e/; g.a; d; e/; g.b; c; e/; g.b; d; e// � �0: (3)

(2) and (3) imply

˙c.f .a; c; e/; f .a; d; e/; f .b; c; e/; f .b; d; e/;

f .a; c; e/; f .a; d; e/; f .b; c; e/; g.b; d; e// � �0: (4)

But by condition (ı)* (see Theorem 3.6.2) we have that

hf .b; d; e/; g.b; d; e/i 2 �Q.˙c.f .a; c; e/; f .a; d; e/; f .b; c; e/; f .b; d; e/;

f .a; c; e/; f .a; d; e/; f .b; c; e/; g.b; d; e/// (5)

(4) and (5) imply that

hf .b; d; e/; g.b; d; e/ 2 �0:

So (1) holds. The theorem has been proved. ut
It follows from Theorem 4.1.2 that the definition of the equationally defined

commutator, adopted in this paper, is equivalent to the definition provided by
Kearnes and McKenzie (1992) for relatively congruence-modular quasivarieties.
Theorem 4.1.2 is a main tool which, in the presence of the facts established
by Kearnes and McKenzie (1992), enables us to derive the crucial Theorem A
announced in the beginning of this section:

Theorem 4.1.12. (This is Theorem A repeated.) Let Q be a relatively congruence-
modular quasivariety. The equationally defined commutator for Q coincides with
the commutator for Q in the sense of Kearnes and McKenzie.

Proof. Let Q be an RCM quasivariety of algebras. Let A 2 Q. Then, for any
Q-congruences ˚; � of A, the commutator of ˚ and � in the sense of Kearnes and
McKenzie coincides with the Q-congruence

Tf� 2 ConQ.A/ W Z2;2.˚; � I �/g
(Theorem 2.13(3) of Kearnes and McKenzie 1992). But Q has the relative shifting
property. It follows from Theorem 4.1.2 and Proposition 4.1.1 that
\

f� 2 ConQ.A/ W Z2;2.˚; � I �/g D
\

f� 2 ConQ.A/ W Zcom.˚; � I �/g D Œ˚; �	A:

From the last two equalities the thesis follows. ut
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4.2 Centralization Relations in the Sense of One-Term
Conditions

4.2.1 Three More Centralization Relations

We shall examine three more centralization relations. Let A be an arbitrary algebra
and let ˚; �; � be congruences of A. We write:

Z1.˚; � I �/

(˚ centralizes � modulo � in the sense of the classical one-term condition).
By definition,

Z1.˚; � I �/ ,df for any positive integers m; n, for any term t.x; y; u/

with x D x1; : : : ; xm, y D y1; : : : ; yn, for any two m-tuples a, b of elements of
A and any two n-tuples c, d of elements of A such that a � b .mod ˚/ and
c � d .mod �/,

t.a; c; e/ � t.a; d; e/ .mod �/ implies t.b; c; e/ � t.b; d; e/ .mod �/;

for any sequence e of elements of A of the length of u.

We also define

Z0:5.˚; � I �/;

a relaxation of the above condition Z1.˚; � I �/. We put:

Z0:5.˚; � I �/ ,df for any positive integer n, for every term t.x; y; u/

with y D y1; : : : ; yn, for every pair a, b and any two n-tuples c; d of elements
of A such that a � b .mod ˚/ and c � d .mod �/,

t.a; c; e/ � t.a; d; e/ .mod �/ implies t.b; c; e/ � t.b; d; e/ .mod �/;

for any sequence e of elements of A of the length of u.

While the centralization relation Z0:5 only plays an auxiliary role in our consider-
ations, the subsequent centralization relation Z0 we define plays a significant role in
the theory of congruence-modular varieties (see, e.g., McKenzie 1987). Z0.˚; � I �/

is a relaxation of the above condition Z0:5.˚; � I �/. We put:

Z0.˚; � I �/ ,df for every term t.x; y; u/, for every quadruple a; b; c; d
of elements of A such that a � b .mod ˚/ and c � d .mod �/, and for any
sequence e of elements of A of the length of u,

t.a; c; e/ � t.a; d; e/ .mod �/ implies t.b; c; e/ � t.b; d; e/ .mod �/:
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Trivially, Z1.˚; � I �/ implies Z0:5.˚; � I �/ and Z0:5.˚; � I �/ implies
Z0.˚; � I �/.

The next theorem establishes the equivalence of the above three centralization
relations for a wide class of quasivarieties.

Theorem 4.2.1. Let Q be a quasivariety with the relative shifting property. Then,
for every algebra A 2 Q and any congruences ˚; �; � 2 ConQ.A/,

(a) Z1.˚; � I �/ , Z0:5.˚; � I �/ , Z0.˚; � I �/.
(b) Zcom.˚; � I �/ implies Z1.˚; � I �/, i.e., the fact that ˚ centralizes � modulo

� in the sense of arbitrary commutator equations implies that ˚ centralizes �

modulo � in the sense of the one-term condition.

Proof. Suppose A 2 Q and ˚; �; � 2 ConQ.A/. To show (a), we first prove the
following lemma.

Lemma 1. Z1.˚; � I �/ , Z0:5.˚; � I �/.

Proof (of the lemma). Evidently Z1.˚; � I �/ implies Z0:5.˚; � I �/. The proof the
reverse implication is similar to the proof of Lemma 4.1.6. We apply Theorem 3.5.1.
Assuming Z0:5.˚; � I �/, we prove the following sentence .8m/ T.m/, where T.m/

is formulated in terms of polynomials over A:

T.m/ For any polynomial t.x; y/ over A with jxj D m, and for any sequences
a, b, c, d elements of A such that jaj D jbj D m, jcj D jdj D jyj
and a � b .mod ˚/ and c � d .mod �/, the condition
t.a; c/ � t.a; d/ .mod �/ implies t.b; c/ � t.b; d/ .mod �/.

(a) will be proved once we show T.m/ for all possible values of m. T.m/ is proved
by induction on m.

Sublemma. T.m/, for all m > 1.

Proof (of the sublemma). The case m D 1 is covered by the assumption
Z0:5.˚; � I �/. Now suppose the sublemma is true for a certain m. Let a D
a1; : : : ; am; amC1 and b D b1; : : : ; bm; bmC1 be .m C 1/-tuples, c and d arbitrary
sequences of elements of the same length such that a � b .mod ˚/ and c �
d .mod �/, and let t.x; y/ be a polynomial over A with x D x1; : : : ; xm; xmC1 and
jyj D jcj D jdj. Assume that t.a; c/ � t.a; d/ .mod �/. We need to show that
t.b; c/ � t.b; d/ .mod �/. We prove it in two stages.

Put x0 WD x1; : : : ; xm and a0 WD a1; : : : ; am, b0 WD b1; : : : ; bm. For each
equation p.x; y; z; w/ � q.x; y; z; w/ belonging to the Day implication )D for the
consequence Qˆ, we define the following two polynomials over A:

p0.x0; y/ WD p.t.a; y/; t.a; d/; t.x0amC1; y/; t.x0amC1; d//;

q0.x0; y/ WD q.t.a; y/; t.a; d/; t.x0amC1; y/; t.x0amC1; d//:

Claim 1. Let p � q be in )D. Then p0.a0; c/ � p0.a0; d/ .mod �/ and q0.a0; c/ �
q0.a0; d/ .mod �/.
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Proof (of the claim). We have:

p0.a0; c/ D p.t.a; c/; t.a; d/; t.a0amC1; c/; t.a0amC1; d// D
p.t.a; c/; t.a; d/; t.a; c/; t.a; d// �� (by the assumption)

p.t.a; d/; t.a; d/; t.a; d/; t.a; d// D p0.a0; d/:

The second condition is similarly proved. ut
It follows from the claim and the inductive hypothesis that

p0.b0; c/ � p0.b0; d/ .mod �/ and q0.b0; c/ � q0.b0; d/ .mod �/;

for any p � q in )D, which means that

p.t.a; c/; t.a; d/; t.b0amC1; c/; t.a0amC1; d// ��

p.t.a; d/; t.a; d/; t.b0amC1; d/; t.b0amC1; d// (1)

and

q.t.a; c/; t.a; d/; t.b0amC1; c/; t.a0amC1; d// ��

q.t.a; d/; t.a; d/; t.b0amC1; d/; t.b0amC1; d// (2)

for all p � q in )D. But evidently, by (iD3), the elements standing on the right-hand
sides of (1) and (2) are identical, i.e.,

p.t.a; d/; t.a; d/; t.b0amC1; d/; t.b0amC1; d// D
q.t.a; d/; t.a; d/; t.b0amC1; d/; t.b0amC1; d//:

Consequently, the elements standing on the left-hand sides of (1) and (2) must be
� -congruent, i.e.,

p.t.a; c/; t.a; d/; t.b0amC1; c/; t.b0amC1; d// ��

q.t.a; c/; t.a; d/; t.b0amC1; c/; t.b0amC1; d//

for all p � q in )D. This shows that ht.a; c/; t.a; d/i )D ht.b0amC1; c/; t.b0amC1;

d/i � � . Since, by the assumption, t.a; c/ �� t.a; d/, we thus obtain that

t.b0amC1; c/ �� t.b0amC1; d/; (3)

by (iD1).
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In the second stage, for each equation p.x; y; z; w/ � q.x; y; z; w/ belonging to
)D, we define the following two polynomials:

p0.x; y/ WD p.t.a; y/; t.a; d/; t.b0x; y/; t.b0x; d//;

q0.x; y/ WD q.t.a; y/; t.a; d/; t.b0x; y/; t.b0x; d//:

Claim 2. Let p � q be in )D. Then

p0.amC1; c/ �� p0.amC1; d/ and q0.amC1; c/ �� q0.amC1; d/:

Proof (of the claim). By (3) and the assumption we have:

p0.amC1; c/ D p.t.a; c/; t.a; d/; t.b0amC1; c/; t.b0amC1; d// ��

p.t.a; d/; t.a; d/; t.b0amC1; d/; t.b0amC1; d// D p0.amC1; d/:

The second condition is similarly proved. ut
It follows from the claim and the inductive hypothesis that

p0.bmC1; c/ �� p0.bmC1; d/ and q0.bmC1; c/ �� q0.bmC1; d/;

for all p � q in )D, which means that

p.t.a; c/; t.a; d/; t.b; c/; t.b; d// �� p.t.a; d/; t.a; d/; t.b; d/; t.b; d// (4)

and

q.t.a; c/; t.a; d/; t.b; c/; t.b; d// �� q.t.a; d/; t.a; d/; t.b; d/; t.b; d//; (5)

for all p � q in )D. But the elements standing on the right-hand sides of (4) and (5)
are equal by (iD3). Hence the elements standing on the left-hand sides of (5) and (5)
are � -congruent, i.e.,

p.t.a; c/; t.a; d/; t.b; c/; t.b; d// �� q.t.a; c/; t.a; d/; t.b; c/; t.b; d//;

for all p � q in )D. This shows that ht.a; c/; t.a; d/i )D ht.b; c/; t.b; d/i � � .
But t.a; c/ �� t.a; d/, again by the assumption. Hence, using (iD1), we infer from
the above that t.b; c/ �� t.b; d/. This proves the sublemma and at the same time
concludes the proof of Lemma 1. ut
Lemma 2. Z0:5.˚; � I �/ if and only if Z0.˚; � I �/.
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Proof (of the lemma). Evidently Z0:5.˚; � I �/ implies Z0.˚; � I �/. To prove the
reverse implication, we assume Z0.˚; � I �/ and we prove the following sentence
.8m/ T.m/, where T.m/ is formulated in terms of polynomials over A:

T.m/ For any polynomial t.x; y/ over A with jyj D m, and for any a; b 2 A, for any
sequences c; d elements of A such that jcj D jdj D jyj, a � b .mod ˚/ and
c � d .mod �/, the condition t.a; c/ � t.a; d/ .mod �/ implies t.b; c/ �
t.b; d/ .mod �/.

The lemma will be proved once we show T.m/ for all positive values of m. T.m/

is proved by induction on m.

Sublemma. T.m/, for all m > 1.

Proof (of the sublemma). The case m D 1 is covered by the assumption
Z0.˚; � I �/. Now suppose the sublemma is true for a certain m. Let c D
c1; : : : : ; cm; cmC1 and d D d1; : : : ; dm; dmC1 be .m C 1/-tuples of elements of
A such that a � b .mod ˚/ and c � d .mod �/, and let t.x; y/ be a polynomial of
A with y D y1; : : : ; ym; ymC1. We assume that t.a; c/ � t.a; d/ .mod �/. We need
to show that t.b; c/ � t.b; d/ .mod �/.

We define y
0

WD y1; : : : ; ym and c0 WD c1; : : : ; cm, d0 WD d1; : : : ; dm. For each
equation p.x; y; z; w/ � q.x; y; z; w/ belonging to the Day implication )D for the
consequence Qˆ, we define the following two polynomials:

p.x; y
0
/ WD p.t.a; c/; t.a; d/; t.x; y

0
cmC1/; t.x; d//;

q.x; y
0
/ WD q.t.a; c/; t.a; d/; t.x; y

0
cmC1/; t.x; d//:

Claim A. Let p � q be in )D. Then p0.a; c0/ � q0.a; c0/ .mod �/.

Proof (of the claim). We have:

p0.a; c0/ D p.t.a; c/; t.a; d/; t.a; c/; t.a; d//

and

q0.a; c0/ D q.t.a; c/; t.a; d/; t.a; c/; t.a; d//:

As Q validates (iD2), we have that

p.t.a; c/; t.a; d/; t.a; c/; t.a; d// D q.t.a; c/; t.a; d/; t.a; c/; t.a; d//:

Hence p0.a; c0/ D q0.a; c0/ which trivially implies that p0.a; c0/ �� q0.a; c0/. ut
It follows from the claim and the induction hypothesis that p0.b; c0/ �� q0.b; c0/

for all p � q in )D. This means that

p.t.a; c/; t.a; d/; t.b; c/; t.b; d// �� q.t.a; c/; t.a; d/; t.b; c/; t.b; d//
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for all p � q in )D. But, by assumption, t.a; c/ �� t.a; d/ .mod �/. Applying
condition (iD1) to the above situation, we conclude that t.b; c/ � t.b; d/ .mod �/.
So T.m C 1/ holds. This proves the sublemma and at the same time concludes the
proof of Lemma 2. ut

The part (a) of Theorem 4.2.1 has been proved.

Proof of (b). Assume Zcom.˚; � I �/ holds. Assume a � b .mod ˚/,
c � d .mod �/ for some m-tuples a; b and some n-tuples c; d of elements of A,
and let t.a; c; e/ � t.a; d; e/ .mod �/, where t.x; y; u/ is a term with jxj D m and
jyj D n.

Consider the Day implication x � y )D z � w for the consequence Qˆ. For
each equation p.x; y; z; w/ � q.x; y; z; w/ belonging to )D we define the following
two terms:

p0.x; y; z; w; u/ WD p.t.x; z; u/; t.x; w; u/; t.y; z; u/; t.y; w; u//;

q0.x; y; z; w; u/ WD q.t.x; z; u/; t.x; w; u/; t.y; z; u/; t.y; w; u//:

Claim B. p0 � q0 is a commutator equation for Q, for all p � q belonging to )D.

Proof (of the claim). Let p � q be in )D. We have:

p0.x; x; z; w; u/ D p.t.x; z; u/; t.x; w; u/; t.x; z; u/; t.x; w; u// and

q0.x; x; z; w; u/ D q.t.x; z; u/; t.x; w; u/; t.x; z; u/; t.x; w; u//:

Thus the equation p0.x; x; z; w; u/ � q0.x; x; z; w; u/ is Q-valid by (iD2) since it is of
the form p.s; t; s; t/ � q.s; t; s; t/.

Similarly,

p0.x; y; z; z; u/ D p.t.x; z; u/; t.x; z; u/; t.y; z; u/; t.y; z; u// and

q0.x; y; z; z; u/ D q.t.x; z; u/; t.x; z; u/; t.y; z; u/; t.y; z; u//:

The equation p0.x; y; z; z; u/ � q0.x; y; z; z; u/ is thus Q-valid by (iD3) since it is of
the form p.s; s; t; t/ � q.s; s; t; t/. ut

The assumptions that a � b .mod ˚/, c � d .mod �/, Zcom.˚; � I �/, and the
above claim imply that p0.a; b; c; d; e/ � q0.a; b; c; d; e/ .mod �/, for all p � q
belonging to )D and all sequences e of elements of A. Thus

p.t.a; c; e/; t.a; d; e/; t.b; c; e/; t.b; d; e// �� q.t.a; c; e/; t.a; d; e/; t.b; c; e/; t.b; d; e//;

for all equations p � q in )D and all strings e. Since t.a; c; e/ � t.a; d; e/ mod �/,
we thus obtain that t.b; c; e/ � t.b; d; e/ .mod �/, by (iD1). So Z1.˚; � I �/ holds.

This completes the proof of the theorem. ut
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For varieties of algebras the shifting property is equivalent to congruence-
modularity. In this case both Theorems 4.1.2 and 4.2.1 can be considerably
strengthened and lifted to the form of equivalence:

Theorem 4.2.2. Let V be a congruence-modular variety. Then, for any algebra
A 2 V, all the seven centralization relations defined as above coincide.

Proof. As V has the shifting property, in virtue of Theorem 4.1.2 the four central-
ization relations Z4;com, Zcom, Z2;2, and Z2 coincide for V. In view of Theorem 4.2.1,
Zcom � Z1 D Z0:5 D Z0 for any algebra A � V. Thus, in order to prove the above
theorem, it suffices to show that Z0 � Z4;com.

Let x � y )D z � w be the Day implication system for the consequence Vˆ
supplied by Day equations for V. We know that this implication system satisfies a
stronger system of equations than (iD3), viz. the equations

p.x; x; y; y/ � y � q.x; x; y; y/; (iD4)

for all p � q in x � y )D z � w (see Note 3.5.4).
Let A be an algebra in V, and ˚; �; � congruences of A. Assume that

Z0.˚; � I�/ holds. This means that

(1) for every term t.x; y; u/, for every quadruple a; b; c; d of elements of A such that
a � b .mod ˚/ and c � d .mod �/,

t.a; c; e/ � t.a; d; e/ .mod �/ implies t.b; c; e/ � t.b; d; e/ .mod �/;

for any sequence e of elements of A of the length of u.

We claim that Z4;com.˚; � I �/ holds in A. Let p.x; y; z; w; u/ � q.x; y; z; w; u/ be
a quaternary commutator equation for V and let a; b; c; d be a quadruple of elements
of A such that

a � b .mod ˚/ and c � d .mod �/:

We must show that

p.a; b; c; d; e/ � q.a; b; c; d; e/ .mod �/

for any sequence e of elements of A of the length of u:

In the proof that follows we shall be working with polynomials over the algebra
A rather than with terms. This will simplify the proof and, as is easy to check, we
will not lose generality of the argument.
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For each even i define the following two polynomials over A:

ti.x; y; u/ WD mi.p.a; x; c; y; u/; q.a; x; c; y; u/; p.a; x; c; d; u/; q.a; x; c; d; u//;

tiC1.x; y; u/ WD miC1.p.a; x; c; y; u/; q.a; x; c; y; u/; p.a; x; c; d; u/; q.a; x; c; d; u//:

Let e be a sequence of elements of A of the length of u.

Claim 1. ti.a; c; e/ D ti.a; d; e/ and tiC1.a; c; e/ D tiC1.a; d; e/ for any even i.

Proof (of the claim). Fix even i. We compute:

ti.a; c; e/ D mi.p.a; a; c; c; e/; q.a; a; c; c; e/; p.a; a; c; d; e/; q.a; a; c; d; e// D
mi.p.a; a; c; c; e/; p.a; a; c; c; e/; p.a; a; c; d; e/; p.a; a; c; d; e// D p.a; a; c; d; e/:

(The second equality follows from the fact that p.x; y; z; w; u/ � q.x; y; z; w; u/

is a commutator equation for V and hence p.a; a; c; c; e/ D q.a; a; c; c; e/ and
p.a; a; c; d; e/D q.a; a; c; d; e/. The third equality follows from (iD4).)

Similarly,

ti.a; d; e/ D mi.p.a; a; c; d; e/; q.a; a; c; d; e/; p.a; a; c; d; e/; q.a; a; c; d; e// D
mi.p.a; a; c; d; e/; p.a; a; c; d; e/; p.a; a; c; d; e/; p.a; a; c; d; e// D p.a; a; c; d; e/;

by the same argument. Consequently, ti.a; c; e/ D ti.a; d; e/.
The proof of the equality tiC1.a; c; e/ D tiC1.a; d; e/ is fully analogous. ut

Claim 2. ti.b; c; e/ � ti.b; d; e/ .mod �/ and tiC1.b; c; e/ � tiC1.b; d; e/

.mod �/ for any even i.

Proof (of the claim). It trivially follows from Claim 1 that ti.a; c; e/ � ti.a; d; e/

.mod �/ and tiC1.a; c; e/ � tiC1.a; d; e/ .mod �/ for an even i. Then use (1). ut
But ti.b; c; e/ � ti.b; d; e/ .mod �/ means that

mi.p.a; b; c; c; e/; q.a; b; c; c; e/; p.a; b; c; d; e/; q.a; b; c; d; e// �� (2)

mi.p.a; b; c; d; e/; q.a; b; c; d; e/; p.a; b; c; d; e/; q.a; b; c; d; e// for i even:

Similarly and tiC1.a; c; e/ � tiC1.a; d; e/ .mod �/ means that

miC1.p.a; b; c; c; e/; q.a; b; c; c; e/; p.a; b; c; d; e/; q.a; b; c; d; e// �� (3)

miC1.p.a; b; c; d; e/; q.a; b; c; d; e/; p.a; b; c; d; e/; q.a; b; c; d; e// for i even.

Moreover

mi.p.a; b; c; d; e/; q.a; b; c; d; e/; p.a; b; c; d; e/; q.a; b; c; d; e// D (4)

miC1.p.a; b; c; d; e/; q.a; b; c; d; e/; p.a; b; c; d; e/; q.a; b; c; d; e// for i even,
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because x � y )D z w satisfies (iD2), which means that the equations
mi.x; y; x; y/ � miC1.x; y; x; y/, i even, are valid in V.

It follows from (2), (3), and (4) that

mi.p.a; b; c; c; e/; q.a; b; c; c; e/; p.a; b; c; d; e/; q.a; b; c; d; e// �� (5)

miC1.p.a; b; c; c; e/; q.a; b; c; c; e/; p.a; b; c; d; e/; q.a; b; c; d; e// for i even.

But p.a; b; c; c; e/ D q.a; b; c; c; e/, because p � q is a commutator equation for V.
Hence trivially

p.a; b; c; c; e/ �� q.a; b; c; c; e/: (6)

Applying the detachment property (iD1) of x � y )D z � w to (5) and (6) we
conclude that p.a; b; c; d; e/ �� q.a; b; c; d; e/, which is what was to be shown.

This completes the proof of Theorem 4.2.2. ut
Corollary 4.2.3. Let V be a congruence-modular variety. Then for every algebra
A 2 V and any congruences ˚; � of A,

Œ˚; �	A D
\

f� 2 Con.A/ W Z.˚; � I �/g;

where Z is an arbitrary but fixed centralization relation from the above list of seven
centralization relations.

Theorem 4.2.2 and Corollary 4.2.3 imply that the equationally defined commuta-
tor for congruence-modular varieties coincides with the “standard” one—see Freese
and McKenzie (1987) . But this fact also follows from Theorem 4.2.1 and the results
presented in Kearnes and McKenzie (1992).

4.3 Generating Sets of Commutator Equations

We first adopt another notational convention.

Convention 4. The notation introduced in Convention 2 is extended to the term
algebra Te� . Let �0.x; y; z; w; u/ be a set of quaternary equations with k parame-
ters u. For any terms ˛; ˇ; �; ı, the set of equations

[
f�0.˛; ˇ; �; ı; �/ W � 2 Skg

is written as

.8u/�0.˛; ˇ; �; ı; u/: ut
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The four definitions of centralization relations formulated for Q-congruences
in Section 4.1 are also applicable, after suitable modifications, to the term algebra
Te� and to equational theories of the consequence operation Qˆ, where Q is an
arbitrary quasivariety. For example, let X; Y; Z be theories of Qˆ. We write:

Z4;com.X; YI Z/

(X centralizes Y modulo Z in the sense of quaternary commutator equations).
By definition,

Z4;com.X; YI Z/ ,df for any quadruple ˛; ˇ; �; ı of terms, the conditions

˛ � ˇ 2 X and � � ı 2 Y imply p.˛; ˇ; �; ı; t/ � q.˛; ˇ; �; ı; t/ 2 Z

for any quaternary commutator equation p.x; y; z; w; u/ � q.x; y; z; w; u/ for Q
and for any sequence t of terms of the length of u.

In turn, we write:

Z2;2.X; YI Z/

(X centralizes Y modulo Z in the sense of the classical two-binary term condition).
By definition,

Z2;2.X; YI Z/ ,df for any equations ˛ � ˇ 2 X and � � ı 2 Y , any
two terms f .x; y; u/, g.x; y; u/, and any sequence t of terms (of the length of u),

f .˛; �; t/ � g.˛; �; t/ 2 Z;

f .˛; ı; t/ � g.˛; ı; t/ 2 Z;

f .ˇ; �; t/ � g.ˇ; �; t/ 2 Z

imply

f .ˇ; ı; t/ � g.ˇ; ı; t/ 2 Z:

Z2;2 is called the centralization relation in the sense of the classical two-binary
term condition.

Keeping in mind the remaining, original definitions of centralization relations
for Q-congruences, viz. Zcom, and Z2, one can easily reformulate them in terms of
equational theories of Qˆ: This is a simple task and the details are omitted.

Similar remarks concern the three additional definitions of centralization rela-
tions adopted for congruence-modular varieties V, viz. Z1; Z0:5, and Z0. They are
also redefined so that they are applicable for equational theories of Vˆ.

The main theorems of the previous paragraph, which show the equivalence of
various centralization relations for congruences, continue to hold for the theories
of Qˆ if one adopts the above modified definitions of centralization relations
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for equational theories. The proofs of these new theorems are straightforward
adaptations of the proofs presented above for congruences.

We have the following counterparts of Theorems 4.1.2 and 4.2.2 for equational
theories:

Theorem 4.3.1. Let Q be a quasivariety with the relative shifting property. Then
for any theories X; Y; Z of Qˆ:

Z4;com.X; YI Z/ , Zcom.X; YI Z/ , Z2;2.X; YI Z/ , Z2.X; YI Z/: (1)

Moreover, the universal closure of (1) (quantified over all theories X; Y; Z of Qˆ)
is equivalent to the universal closure of the formula

Z4;com.˚; � I �/ , Zcom.˚; � I �/ , Z2;2.˚; � I �/ , Z2.˚; � I �/ (2)

(quantified over all algebras A 2 Q and all Q-congruences ˚; �; � of A).

Proof. Given theories X; Y; Z of Qˆ, one proves (1) by emulating the proof of
Theorem 4.1.2 for the theories of Qˆ. In the next step one proves that for any
two centralization relations Z1, Z2 from the above list of four such relations, the
condition

For any theories X; Y; Z of Qˆ, Z1.X; YI Z/ , Z2.X; YI Z/ (a)

is equivalent to

For all algebras A 2 Q and all Q-congruences ˚; �; � of A,

Z1.˚; � I �/ , Z2.˚; � I �/: (b)

The proof of the equivalence of (a) and (b) makes use of the fact that the mapping
˝ given by ˝.� / WD fhŒ˛	; Œˇ	i W ˛ � ˇ 2 � g is an isomorphism from the
lattice of closed theories of the consequence operation Qˆ onto the lattice ConQ.F/

(Proposition 2.4).
Assuming (a), one first proves the equivalence (b) for the Q-congruences of

the free algebra FQ.!/, then one extends (b) onto the Q-congruences of arbitrary
countably generated algebras of Q, and, finally, onto the set of all Q-congruences
of an arbitrary algebra of Q. We omit the details.

The proof of the reverse implication (b) ) (a) is immediate.
Then (1) and (a) , (b) give (2). ut

Theorem 4.3.2. Let V be a congruence-modular variety. Then in the algebra of
terms, all the seven centralization relations for equational theories of Vˆ defined
as above coincide. Moreover, the equivalence of (1) and (2) continue to hold for the
remaining three centralization relations defined for varieties.
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The proof of Theorem 4.3.2 is similar. ut

We have the following counterparts of Corollaries 4.1.8 and 4.2.3 for equational
theories.

Corollary 4.3.3. Let Q be a quasivariety with a Day implication system. Then for
any theories X; Y 2 Th.Qˆ/,

ŒX; Y	 D
\

fZ 2 Th.Qˆ/ W R.X; YI Z/g;

where R is an arbitrary but fixed centralization relation among Z4;com, Zcom, Z2;2, Z2

for the theories of Qˆ.
If V is a congruence-modular variety, then

ŒX; Y	 D
\

fZ 2 Th.Vˆ/ W R.X; YI Z/g;

where R is any centralization relation from the above list of seven centralization
relations. ut

We also have:

Proposition 4.3.4. Let Q be an arbitrary quasivariety. Let �0.x; y; z; w; u/ be a set
of quaternary commutator equations for Q. The following conditions are equivalent:

(i) ŒX; Y	 D Qˆ.
Sf.8u/ �0.˛; ˇ; �; ı; u/ W ˛ � ˇ 2 X; � � ı 2 Yg/

for every pair X; Y of theories of Qˆ,
(ii) Œ˚; �	A D �A

Q.
Sf.8e/ �A

0 .a; b; c; d; e/ W ha; bi 2 ˚; hc; di 2 �g/
for all algebras A 2 Q and all ˚; � 2 ConQ.A/.

Proof (an outline). (ii) ) (i). Let F be the free algebra FQ.!/. (ii) implies that

(iii) Œ˚; �	F D �F
Q.
Sf.8e/�F

0 .a; b; c; d; e/ W ha; bi 2 ˚; hc; di 2 �g/
for all ˚; � 2 ConQ.F/.

Then (i) holds, by Proposition 2.4.

(i) ) (ii). (i) implies (iii). Then, one extends (iii) onto countably generated
algebras, and, finally, onto algebras of arbitrary cardinality. This shows (ii). ut

In this section the focus is on some syntactic aspects of the theory of the
commutator, namely the axiomatization of the equational theory Qˆ.x � y/ \
Qˆ.z � w/ of all quaternary commutator equations for a quasivariety Q.

Proposition 4.3.5. Let Q be an arbitrary quasivariety and F D FQ.!/ the
!-generated free algebra in Q. For any positive integers m and n, the equationally
defined commutator of the congruences �F

Q.hŒx1	; Œy1	i; : : : ; hŒxm	; Œym	i/ and
�F

Q.hŒz1	; Œw1	i; : : : ; hŒzn	; Œwn	i/ in F coincides with their meet.
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Proof. We apply Propositions 2.5 and 3.2.3. It suffices to show that

�F
Q.hŒx1	; Œy1	i; : : : ; hŒxm	; Œym	i/ \ �F

Q.hŒz1	; Œw1	i; : : : ; hŒzn	; Œwn	i/ �
Œ�F

Q.hŒx1	; Œy1	i; : : : ; hŒxm	; Œym	i/; �F
Q.hŒz1	; Œw1	i; : : : ; hŒzn	; Œwn	i/	:

We shall make use of the mapping ˝ defined as above on the equational theories
of Qeqˆ.

Let � WD Qˆ.x1 � y1; : : : ; xm � ym/ \ Qˆ.z1 � w1; : : : ; zn � wn/. � is the set
of all commutator equations of Q in the variables x D x1; : : : ; xm, y D y1; : : : ; ym

and z D z1; : : : ; zn, w D w1; : : : ; wn. � is also a closed theory of Qˆ. We have:

Œ�F
Q.hŒx1	; Œy1	i; : : : ; hŒxm	; Œym	i/; �F

Q.hŒz1	; Œw1	i; : : : ; hŒzn	; Œwn	i/	 �
�F

Q..8e/ �F.Œx	; Œy	; Œz	; Œw	; e// D
�F

Q.fhŒ˛	; Œˇ	i W ˛ � ˇ 2 �g/ D
fhŒ˛	; Œˇ	i W ˛ � ˇ 2 �g D ˝.�/ D

˝.Qˆ.x1 � y1; : : : ; xm � ym/ \ Qˆ.z1 � w1; : : : ; zn � wn// D
˝Qˆ.x1 � y1; : : : ; xm � ym/ \ ˝Qˆ.z1 � w1; : : : ; zn � wn/ D

�F
Q.hŒx1	; Œy1	i; : : : ; hŒxm	; Œym	i/ \ �F

Q.hŒz1	; Œw1	i; : : : ; hŒzn	; Œwn	i/:

The reverse inclusion holds by Theorem 3.1.6.(ii). ut
Proposition 4.3.6. Let Q be an arbitrary quasivariety and F D FQ.!/ the
!-generated free algebra in Q. Let m and n be positive integers and let �0 be a
subset of Qˆ.x1 � y1; : : : ; xm � ym/ \ Qˆ.z1 � w1; : : : ; zn � wn/. The following
conditions are equivalent:

(i) Qˆ.�0/ D Qˆ.x1 � y1; : : : ; xm � ym/ \ Qˆ.z1 � w1; : : : ; zn � wn/:

�F
Q.fhŒ˛	; Œˇ	i W ˛ � ˇ 2 �0g/ D

(ii) �F
Q.hŒx1	; Œy1	i; : : : ; hŒxm	; Œym	i/ \ �F

Q.hŒz1	; Œw1	i; : : : ; hŒzn	; Œwn	i/:

Proof. This immediately follows from Proposition 2.5. ut
Before passing to other results we shall introduce the following definition.

Definition 4.3.7. Let K be a class of algebras. Any set �.x; y; z; w; u/ of equations
such that

Kˆ.x � y/ \ Kˆ.z � w/ D Kˆ..8u/ �.x; y; z; w; u//

is called a generating set of quaternary commutator equations for K. ut



4.3 Generating Sets of Commutator Equations 95

Note. The variables x; y; z; w are assumed to be different and u D u1; u2; : : : is
a possibly infinite string of variables (of length k, where k 6 !). The variables
of u are called parametric variables. (We recall that the equations belonging to
Kˆ.x � y/ \ Kˆ.z � w/ are called quaternary commutator equations in the
variables x; y; z; w with parameters for the class K.) It is clear that a generating set
�.x; y; z; w; u/ exists (as �.x; y; z; w; u/ we may take Kˆ.x � y/\Kˆ.z � w//. ut

Let Q be a quasivariety. As Qˆ.x � y/ D Va.Q/ˆ.x � y/ for any variables x
and y, it follows that the classes Q and Va.Q/ have the same quaternary commutator
equations in the variables x; y; z; w with parameters. (This also directly follows from
the definition of a commutator equation for Q.) As the consequence operations Qˆ
and Qv.Q/ˆ coincide on the equations x � y and z � w it follows that the classes
Q and Qv.Q/ have the same generating sets of quaternary commutator equations.
We therefore interchangeably use the terms:

“generating set of quaternary commutator equations for Q”,
“generating set of quaternary commutator equations for Qˆ”,
“generating set of quaternary commutator equations for Va.Q/” etc.

In particular, if Q is a quasivariety, then according to the above definition, any
set �0.x; y; z; w; u/ with the property that

Qˆ..8u/�0.x; y; z; w; u/ D Qˆ.x � y/ \ Qˆ.z � w/

is also called a generating set of quaternary commutator equations for the (equatio-
nally-defined) commutator of Q. ut
Proposition 4.3.8. Let Q be a quasivariety and �0.x; y; z; w; u/ a generating set of
quaternary equations for Q. Let Q0 be a quasivariety such that Q0 � Q � Va.Q0/.
Then �0.x; y; z; w; u/ is also a generating set of quaternary equations for Q0, i.e.,

Q0ˆ..8u/ �0.x; y; z; w; u// D Q0ˆ.x � y/ \ Q0ˆ.z � w/:

Proof. The inclusion

�0.x; y; z; w; u/ � Q0ˆ.x � y/ \ Q0ˆ.z � w/

follows from the fact that the equations �0.x; x; z; w; u/ and �0.x; y; z; z; u/ are valid
in Q and hence in Q0 (because Va.Q/ D Va.Q0/). Consequently,

Q0ˆ..8u/ �0.x; y; z; w; u// � Q0ˆ.x � y/ \ Q0ˆ.z � w/:

As Q0 � Q and Va.Q/ D Va.Q0/, we also have:

Q0ˆ.x � y/ \ Q0ˆ.z � w/ D Va.Q0/ˆ.x � y/ \ Va.Q0/ˆ.z � w/ D
Va.Q/ˆ.x � y/ \ Va.Q/ˆ.z � w/ D Qˆ.x � y/ \ Qˆ.z � w/ D

Qˆ..8u/ �0.x; y; z; w; u// � Q0ˆ..8u/ �0.x; y; z; w; u//:
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Hence Q0ˆ.x � y/ \ Q0ˆ.z � w/ D Q0ˆ..8u/ �0.x; y; z; w; u//. ut
Let K be a class of algebras. Putting Q WD Va.K/ and Q0 WD Qv.K/, we have

that Q0 � Q D Va.Q0/. Applying the above proposition, we get that for any set
�0.x; y; z; w; u/ such that Qˆ..8u/ �0.x; y; z; w; u// D Qˆ.x � y/ \ Qˆ.z � w/,
it is also the case that Q0ˆ..8u/ �0.x; y; z; w; u// D Q0ˆ.x � y/\Q0ˆ.z � w/, i.e..

Va.K/ˆ..8u/ �0.x; y; z; w; u// D Va.K/ˆ.x � y/ \ Va.K/ˆ.z � w/

implies that

Qv.K/ˆ..8u/ �0.x; y; z; w; u// D Qv.K/ˆ.x � y/ \ Qv.K/ˆ.z � w/:

As Va.K/ˆ.x � y/ D Qv.K/ˆ.x � y/ and Va.K/ˆ.z � w/ D Qv.K/ˆ.z �
w/, we thus see that Va.K/ˆ..8u/ �0.x; y; z; w; u// is a theory of the consequence
Qv.K/ˆ.

The equationally defined commutator is characterized for quasivarieties with the
relative shifting property by generating sets in the following way:

Theorem 4.3.9. Let Q be a quasivariety with the relative shifting property and
�0.x; y; z; w; u/ a generating set of quaternary commutator equations for Q. Then

Œ˚; �	A D �A
Q.
[

f.8e/ �A
0 .a; b; c; d; e/ W ha; bi 2 ˚; hc; di 2 �g/

for all algebras A 2 Q and all ˚; � 2 ConQ.A/.

Proof. In view of Proposition 4.3.4 it suffices to show that

ŒX; Y	 D Qˆ.
[

f.8u/ �0.˛; ˇ; �; ı; u/ W ˛ � ˇ 2 X; � � ı 2 Yg/ (1)

for every pair X; Y of theories of Qˆ.
Fix theories X and Y of Qˆ. Suppose ˛ � ˇ 2 X, � � ı 2 Y . As �0 is a

generating set, we have that

p.x; y; z; w; v/ � q.x; y; z; w; v/ 2 Qˆ..8u/ �0.x; y; z; w; u//;

for every quaternary commutator equation p.x; y; z; w; v/ � q.x; y; z; w; v/ for Q.
It follows, by structurality, that

p.˛; ˇ; �; ı; t/ � q.˛; ˇ; �; ı; t/ 2 Qˆ..8u/ �0.˛; ˇ; �; ı; u//; (2)

for any sequence t of terms of the length of v.
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Applying Theorem 4.3.1, Corollary 4.3.3, and the centralization relation Z4;com

for theories, we see that (2) yields

ŒX; Y	 D
Qˆ.fp.˛; ˇ; �; ı; t/ � q.˛; ˇ; �; ı; t/ W ˛ � ˇ 2 X; � � ı 2 Y; p � q is

a quaternary commutator equation for Q and t a sequence of termsg/ �
Qˆ.

[
f.8u/ �0.˛; ˇ; �; ı; u// W ˛ � ˇ 2 X; � � ı 2 Yg/:

But the last inclusion is reversible, because �0.x; y; z; w; u/ is a set of quaternary
commutator equations. So (1) holds.

This proves the theorem. ut
Proposition 4.3.10. Let Q be a quasivariety with the relative shifting property.
Let �c.x; y; z; w; u/ be the set of quaternary commutator equations for Q supplied by
the relative cube property and the centralization relation in the sense of the classical
two-binary term condition (as in Theorem 4.1.11). Then

[
f.8u/ �c.p; q; r; s; u/ W p � q 2 Qˆ.x � y/; r � s 2 Qˆ.z � w/g

is a generating set of quaternary commutator equations for Q.

Proof. In view of Theorem 4.1.11 and Proposition 4.3.4,

Qˆ.
[

f.8u/ �c.p; q; r; s; u/ W p � q 2 Qˆ.x � y/; r � s 2 Qˆ.z � w/g/ D
ŒQˆ.x � y/; Qˆ.z � w/	 D Qˆ.x � y/ \ Qˆ.z � w/: ut



Chapter 5
Additivity of the Equationally-Defined
Commutator

In this chapter we are concerned with the problem of additivity of the equationally
defined commutator.

5.1 Conditions (C1) and (C2)

Let � be an algebraic signature. Let Q be a quasivariety of � -algebras and let A be
an arbitrary � -algebra, not necessarily in Q. The equationally defined commutator
of Q is additive on A if for any ˚1; ˚2; � 2 ConQ.A/:

(C1) Œ˚1 CQ ˚2; �	 D Œ˚1; �	 CQ Œ˚2; �	:

(C1), quantified over all algebras of Q, is referred to as the additivity property of the
commutator. (C1) implies that

(C1)fin Œ˚1 CQ : : : CQ ˚n; � 	 D Œ˚1; �	 CQ : : : CQ Œ˚n; � 	:

for any finite set f˚1; : : : ; ˚ng of Q-congruences on A and any � 2 ConQ.A/.
(C1) also implies that for any non-empty set f˚i W i 2 Ig of Q-congruences of A

and for any � 2 ConQ.A/,

(C1)1 Œsup Qf˚i W i 2 Ig; � 	 D sup QfŒ˚i; � 	 W i 2 Ig:

in the lattice ConQ.A/; equivalently

Œ�A
Q.
[

f˚i W i 2 Ig/; � 	 D �A
Q.
[

fŒ˚i; � 	 W i 2 Ig/:
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If f˚i W i 2 Ig is a directed family, then (C1)1 holds in virtue of Theorem
3.1.6.(v). Additivity thus postulates that (C1)1 holds for an arbitrary non-empty
family of Q-congruences.

(C1)1 follows from (C1)fin and the definition of the equationally defined
commutator. The inclusion (�) in (C1)1 always holds by the monotonicity of the
commutator. To show the reverse inclusion, suppose that ha; bi 2 Œ�A

Q.
Sf˚i W i 2

Ig/; � 	. It follows from Definition 3.1.5 that there is a finite subset If � I such that
ha; bi 2 Œ�A

Q.
Sf˚i W i 2 If g/; � 	. (C1)fin then gives that ha; bi 2 �A

Q.
SfŒ˚i; � 	 W

i 2 If g/. Hence ha; bi 2 �A
Q.
SfŒ˚i; � 	 W i 2 Ig/. So (C1)1 holds.

The equationally defined commutator of Q is additive on Q if it is additive on
every algebra A 2 Q. We then say that the equationally defined commutator satisfies
(C1) on Q.

We need one more property of the commutator:

(C2) If h W A ! B is a surjective homomorphism between Q-algebras and ˚; � 2
ConQ.A/, then

kerQ.h/ CQ Œ˚; �	A D h�1.Œ�B
Q.h˚/; �B

Q.h�/	B/:

(C2), quantified over all algebras A; B of Q, is referred to as the correspondence
property of the commutator. The above conditions are extensively applied in the
commutator theory—see Freese and McKenzie (1987) or Kearnes and McKenzie
(1992).

(C2) is stronger than the statement of Theorem 3.1.8.
It turns out that for any quasivariety Q, (C1) implies (C2). More precisely:

Theorem 5.1.1. For any quasivariety Q, if the equationally defined commutator is
additive on Q, then it has the correspondence property.

Proof. Let h W A ! B be a surjective homomorphism between � -algebras, and
˚; � 2 ConQ.A/. According to Theorem 3.1.8,

kerQ.h/ CQ ŒkerQ.h/ CQ ˚; kerQ.h/ CQ �	A D h�1.Œ�B
Q.h˚/; �B

Q.h�/	B/

Thus, to prove (C2), it suffices to show that

kerQ.h/ CQ ŒkerQ.h/ CQ ˚; kerQ.h/ CQ �	A D kerQ.h/ CQ Œ˚; �	A: (�)

As kerQ.h/ 2 ConQ.A/, (C1) implies that kerQ.h/ CQ ŒkerQ.h/ CQ ˚;

kerQ.h/ CQ �	A D kerQ.h/ CQ ŒkerQ.h/; kerQ.h/	A CQ ŒkerQ.h/; � 	A CQ

Œ˚; kerQ.h/	ACQ Œ˚; �	A D kerQ.h/CQ Œ˚; �	A, because ŒkerQ.h/; kerQ.h/	A �
kerQ.h/, ŒkerQ.h/; � 	A � kerQ.h/, and Œ˚; kerQ.h/	A � kerQ.h/. This proves (�).

It follows that h�1.Œ�B
Q.h˚/; �B

Q.h�/	B/ D kerQ.h/CQ Œ˚; �	A. So (C2) holds.
ut
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The following theorem, being one of the crucial results of this section, charac-
terizes the additivity property of the equationally defined commutator in terms of
quaternary commutator equations.

Theorem 5.1.2. Let Q be a quasivariety of algebras. The following conditions are
equivalent:

(1) The equationally defined commutator for Q is additive, i.e., it satisfies (C1) in
any � -algebra A;

(2) There exists a set �0.x; y; z; w; u/ of quaternary commutator equations for Q in
x; y and z; w (possibly with k parameters u D u1; u2; : : :, k 6 !) such that for
every � -algebra A and for every pair of sets X; Y � A2,

Œ�A
Q.X/; �A

Q.Y/	 D �A
Q.
[

f.8e/ �A
0 .a; b; c; d; e/ W ha; bi 2 X; hc; di 2 Yg/:

Note that condition (2) is stronger than Theorem 4.3.9—see Example 4 in Sec-
tion 6.4.

Notes. (a). We apply here the convention adopted in Chapter 3. We may rewrite
the above equality in a more developed form as

Œ�A
Q.X/; �A

Q.Y/	A D �A
Q.fh˛.a; b; c; d; e/; ˇ.a; b; c; d; e/i W
˛ � ˇ 2 �0; ha; bi 2 X; hc; di 2 Y; e 2 Akg/: ut

(b). Condition (2) immediately implies that

Œ�A
Q.a; b/; �A

Q.c; d/	A D �A
Q..8e/ �A

0 .a; b; c; d; e//

for any algebra A and anya; b; c; d 2 A. This in turn implies that �0.x; y; z; w; u/

is a generating set for the equational commutator of Q. ut
Proof. (1) ) (2). Assume (1). In view of Theorem 5.1.1, the equationally defined
commutator for Q also satisfies (C2).

Let �0 D �0.x; y; z; w; u/ be an arbitrary set of quaternary commutator equations
for Q such that Qˆ.�0/ D Qˆ.x � y/ \ Qˆ.z � w/. �0 is therefore a generating
set for the equational commutator of Q. Let k 6 ! be the length of u D u1; u2; : : :.
In view of Propositions 4.3.4–4.3.5 we have that

Œ�F
Q.Œx	; Œy	/; �F

Q.Œz	; Œw	/	F D �F
Q.�F

0 .Œx	; Œy	; Œz	; Œw	; Œu	//

in the free algebra F WD FQ.!). (Here Œu	 WD Œu1	; Œu2	; : : :.)
We prove the following string of claims.

Claim 1. Let B be any countably generated � -algebra and a; b; c; d 2 B. Then

Œ�B
Q.a; b/; �B

Q.c; d/	B D �B
Q..8e/ �B

0 .a; b; c; d; e//:
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Proof (of the claim). Since �0.x; y; z; w; u/ is a set of commutator equations, the
definition of the equationally defined commutator gives:

�B
Q.�0.a; b; c; d; e// � Œ�B

Q.a; b/; �B
Q.c; d/	B; (a)

for all sequences e D e1; e2; : : : ; ek of elements of B of length k.
To simplify notation we shall identify the free generators Œx	; Œy	; Œz	; Œw	, and

Œu	 D Œu1	; Œu2	; : : : of F with x; y; z; w, and u D u1; u2; : : :, respectively.
Let e 2 Bk be an arbitrary but fixed sequence of length k. Since B is countably

generated, there exists a surjective homomorphism h W F ! B such that hx D a,
hy D b, hz D c, hw D d. Let ej WD huj for j D 1; : : : ; k. (h is arbitrarily defined for
the remaining free generators.) Then

�B
Q.hx; hy/ D �B

Q.h.�F
Q.x; y/// and �B

Q.hz; hw/ D �B
Q.h.�F

Q.z; w///:

Indeed, putting X WD �F
Q.x; y/, and applying Proposition 2.9 we obtain that

h.�F
Q.x; y/CQ kerQ.h// D h.�F

Q.�F
Q.x; y//CQ ker.h// D �B

Q.h.�F
Q.x; y///. But the

congruence h.�F
Q.x; y/ CQ kerQ.h// is equal to �B

Q.hx; hy/, also by Proposition 2.9.
Hence �B

Q.hx; hy/ D �B
Q.h.�F

Q.x; y///. The proof of the other equality is similar.
We then have:

h�1.Œ�B
Q.a; b/; �B

Q.c; d/	B/ D h�1.Œ�B
Q.hx; hy/; �B

Q.hz; hw/	B/ D (b)

h�1.Œ�B
Q.h.�F

Q.x; y///; �B
Q.h.�F

Q.z; w///	B/ D (by (C2)

kerQ.h/ CQ Œ�F
Q.x; y/; �F

Q.z; w/	F D
kerQ.h/ CQ �F

Q.�0.x; y; z; w; u//:

On the other hand, Proposition 2.9 also gives:

h�1.�B
Q.�0.a; b; c; d; e/// D h�1.�B

Q.�0.hx; hy; hz; hw; hu/// D (c)

h�1.h.kerQ.h/ CQ �F
Q.�0.x; y; z; w; u//// D

kerQ.h/ CQ �F
Q.�0.x; y; z; w; u//:

It follows that the first congruence of (b) is equal to the first congruence of (c), i.e.,

h�1.Œ�B
Q.a; b/; �B

Q.c; d/	B/ D h�1.�B
Q.�0.a; b; c; d; e///:

Consequently,

Œ�B
Q.a; b/; �B

Q.c; d/	B D �B
Q.�0.a; b; c; d; e//: (d)
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As e 2 Bk is arbitrary, it follows from (d) that

Œ�B
Q.a; b/; �B

Q.c; d/	B D �B
Q..8e/ �0.a; b; c; d; e//:

The last equality combined with (a) gives the thesis of the claim. ut
Claim 1 continues to hold regardless of the cardinality of B:

Claim 2. Let A be an arbitrary � -algebra and a; b; c; d 2 A. Then

Œ�A
Q.a; b/; �A

Q.c; d/	A D �A
Q..8e/ �A

0 .a; b; c; d; e//:

Proof (of the claim). As �0.x; y; z; w; u/ is a set of commutator equations for Q,
the definition of the equational commutator gives the inclusion:

Œ�A
Q.a; b/; �A

Q.a; b/	A � �A
Q..8e/ �A

0 .a; b; c; d; e//:

We shall prove the opposite inclusion. According to Theorem 3.1.6.(vii) and
Claim 1 we have:

Œ�A
Q.a; b/; �A

Q.c; d/	A D
[

fŒ�B
Q.a; b/; �B

Q.c; d/	B W B is a countably generated subalgebra

of A and a; b; c; d 2 Bg D
[

f�B
Q.�0.a; b; c; d; e//B W Bis a countably generated subalgebra

of A containing a; b; c; d 2 B and e 2 Bkg:
Suppose that a�, b� are elements of A and ha�; b�i 2 Œ�A

Q.a; b/; �A
Q.a; b/	A. It

follows from the above equations that there exists a countably generated subal-
gebra B � A containing a; b; c; d and a string e 2 Bk such that ha�; b�i 2
�B

Q.�0.a; b; c; d; e//. But evidently

�B
Q.�0.a; b; c; d; e// � B2 \ �A

Q.�0.a; b; c; d; e//:

Hence ha�; b�i 2 �A
Q.�0.a; b; c; d; e//. Consequently,

ha�; b�i 2 �A
Q.
[

f�0.a; b; c; d; e/ W e 2 Akg/:

This proves the claim. ut
Claim 3. Let A be any Q-algebra and a1; : : : ; an, b1; : : : ; bn, a; b; c; d 2 A. If a � b
.�A

Q.ha1; b1i; : : : ; han; bni/, then

.8e/ �0.a; b; c; d; e/ � �A
Q..8e/ �0.a1; b1; c; d; e/[ : : :[ .8e/ �0.an; bn; c; d; e//:



104 5 Additivity of the Equationally-Defined Commutator

Proof (of the claim). The assumption a � b .�A
Q.ha1; b1i; : : : ; han; bni/ implies that

Œ�A
Q.a; b/; �A

Q.c; d/	A � Œ�A
Q.ha1; b1i; : : : ; han; bni/; �A

Q.c; d/	A; (�)

by the monotonicity of the commutator.
We have:

�A
Q..8e/ �0.a; b; c; d; e// D (by Claim 2)

Œ�A
Q.a; b/; �A

Q.c; d/	A � (by (�))

Œ�A
Q.ha1; b1i; : : : ; han; bni/; �A

Q.c; d/	A D (by (C1)

Œ�A
Q.a1; b1/; �A

Q.c; d/	A CQ : : : CQ Œ�A
Q.an; bn/; �A

Q.c; d/	A D (by Claim 2)

�A
Q..8e/ �0.a1; b1; c; d; e// CQ : : : CQ �A

Q..8e/ �0.an; bn; c; d; e// D
�A

Q..8e/ �0.a1; b1; c; d; e/ [ : : : [ .8e/ �0.an; bn; c; d; e//: ut

Claim 4. Let A be any � -algebra and X; Y � A2. Then

Œ�A
Q.X/; �A

Q.Y/	A D �A
Q.
[

f.8e/ �0.a; b; c; d; e/ W ha; bi 2 X; hc; di 2 Yg/:

We note that Claim 4 is the same as the thesis of condition (2).

Proof (of the claim). It suffices to show that the congruence on the left side is
included in the congruence on the right side.

According to (C1) and Claim 2

Œ�A
Q.X/; �A

Q.Y/	A D (˛)

sup QfŒ�A
Q.a; b/; �A

Q.c; d/	A W ha; bi 2 �A
Q.X/; hc; di 2 �A

Q.Y/g D
�A

Q.
[

f.8e/ �0.a; b; c; d; e/ W ha; bi 2 �A
Q.X/; hc; di 2 �A

Q.Y/g:

(sup Q denotes the supremum in the sense of the lattice ConQ.A/.)
Assume ha�; b�i 2 �A

Q.X/ and hc�; d�i 2 �A
Q.Y/. Then there exist finite sets

X� � X and Y� � Y such that ha�; b�i 2 �A
Q.X�/ and hc�; d�i 2 �A

Q.Y�/.
According to Claim 3 we then have:

.8e/ �0.a�; b�; c�; d�; e/ � �A
Q.
[

f.8e/ �0.a; b; c�; d�; e/ W ha; bi 2 X�g/; (ˇ)

because ha�; b�i 2 �A
Q.X�/. But we also have that for every pair ha; bi 2 X�,
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.8e/ �0.a; b; c�; d�; e/ � �A
Q.
[

f.8e/ �0.a; b; c; d; e/ W hc; di 2 Y�g/; (� )

because hc�; d�i 2 �A
Q.Y�/.

Conditions (ˇ) and (� ) imply that

.8e/ �0.a�; b�; c�; d�; e/ � (ı)

�A
Q.
[

f.8e/ �0.a; b; c; d; e/ W ha; bi 2 X�; hc; di 2 Y�g/ �

�A
Q.
[

f.8e/ �0.a; b; c; d; e/ W ha; bi 2 X; hc; di 2 Yg/:

Taking into account (˛), (ı) and the fact that ha�; b�i and hc�; d�i are arbitrary
elements of �A

Q.X/ and �A
Q.Y/, respectively, we obtain that

Œ�A
Q.X/; �A

Q.Y/	A � �A
Q.
[

f.8e/ �0.a; b; c; d; e/ W ha; bi 2 X; hc; di 2 Yg/:

This proves the claim. ut
Now, by Claim 4, condition (2) is satisfied for the set �0.x; y; z; w; u/ of equations

defined as above.
(2) ) (1). We assume (2) holds. We show that the equational commutator for Q

is additive.
Let ˚i, i 2 I, be a family of Q-congruences on an algebra A 2 Q and

� 2ConQ.A/. We claim that

Œ�A
Q.
[

f˚i W i 2 Ig/; � 	A D �A
Q.
[

fŒ˚i; � 	A W i 2 Ig/

in the lattice ConQ.A/.
We have:

Œ�A
Q.
[

f˚i W i 2 Ig/; � 	A D (by (2))

�A
Q.
[

f.8e/ �0.a; b; c; d; e/ W ha; bi 2
[

f˚i W i 2 Ig; hc; di 2 �g/ D

�A
Q.
[

f
[

f.8e/ �0.a; b; c; d; e/ W ha; bi 2 ˚i; hc; di 2 �g W i 2 Ig/ D

�A
Q.
[

f�A
Q.
[

f.8e/ �0.a; b; c; d; e/ W ha; bi 2 ˚i; hc; di 2 �g/g W i 2 Ig/ D

�A
Q.
[

fŒ˚i; � 	A W i 2 Ig/:

This concludes the proof of the theorem. ut
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Corollary 5.1.3. Let Q be a quasivariety whose equationally defined commutator
is additive. Let �0.x; y; z; w; u/ be a generating set of quaternary equations for the
equational commutator of Q. Then for any � -algebra A and any a; b; c; d 2 A,

Œ�Q.a; b/; �Q.c; d/	A D �Q..8e/ �0.a; b; c; d; e//:

Proof. This follows from the proof of the implication (1) ) (2) above. ut
The next observation supplements Theorem 5.1.2.

Theorem 5.1.4. Let Q be a quasivariety of algebras. The following conditions are
equivalent:

(1) The equationally defined commutator of Q is additive (on Q);
(2) There exists a set �0.x; y; z; w; u/ of (parameterized) quaternary commutator

equations for Q such that for any � -algebra A:

(2).(i) If ˚; � 2 ConQ.A/, then

Œ˚; �	A D �A
Q.
[

f.8e/ �0.a; b; c; d; e/ W a � b .˚/; c � d .�/g/

and
(2).(ii) For all a1; : : : ; an, b1; : : : ; bn,a; b; c; d 2 A, if

a � b .�A
Q.ha1; b1i; : : : ; han; bni/;

then

.8e/ �0.a; b; c; d; e/ � �A
Q..8e/ �0.a1; b1; c; d; e/[: : :[.8e/ �0.an; bn; c; d; e//:

Proof. (1) ) (2). Assume (1) holds. Let �0.x; y; z; w; u/ be a generating set of
quaternary commutator equations for Q, i.e., Qˆ..8u/ �0.x; y; z; w; u// D Qˆ.x �
y/ \ Qˆ.z � w/.

Let A 2 Q. To prove (2).(i), assume ˚; � 2 ConQ.A/. Putting X WD ˚ and
Y WD � , we immediately infer condition (2).(i) from the above theorem.

As to (2).(ii), we assume that a � b .�A
Q.ha1; b1i; : : : ;han; bni// for some

a1; : : : ; an, b1; : : : ; bn, a; b; c; d 2 A. Theorem 5.1.2.(2) gives that

�A
Q..8e/ �0.a1; b1; c; d; e/ [ : : : [ .8e/ �0.an; bn; c; d; e// D (�)

Œ�A
Q.a1; b1/ CQ : : : CQ �A

Q.an; bn/; �A
Q.c; d/	:

As �A
Q.a; b/ � �A

Q.a1; b1/ CQ : : : CQ �A
Q.an; bn/, the monotonicity of the

commutator yields that

Œ�A
Q.a; b/; �A

Q.c; d/	 � Œ�A
Q.a1; b1/ CQ : : : CQ �A

Q.an; bn/; �A
Q.c; d/	:



5.1 Conditions (C1) and (C2) 107

But Œ�A
Q.a; b/; �A

Q.c; d/	 D �A
Q..8e/ �0.a; b; c; d; e//. Hence, applying (�), we

deduce the thesis of (2).(ii).
(2) ) (1). The proof of this implication is based on the following lemma:

Lemma 5.1.5. Let Q be an arbitrary quasivariety of algebras and �0.x; y; z; w; u/

a set of (parameterized) quaternary commutator equations for Q. Suppose
�0.x; y; z; w; u/ validates the above condition (2).(ii) in the algebras of Q. Then
for any � -algebra A and every pair of sets X; Y � A2,

�A
Q.
[

f.8e/ �0.a; b; c; d; e/ W a � b .�A
Q.X//; c � d .�A

Q.Y//g/ D

�A
Q.
[

f.8e/ �0.a; b; c; d; e/ W ha; bi 2 X; hc; di 2 Yg/:

Proof (of the lemma). Suppose A 2 Q and X; Y � A2. Let ˚ WD �A
Q.X/ and

� WD �A
Q.Y/. We trivially have:

�A
Q.
[

f.8e/ �0.a; b; c; d; e/ W a � b .˚/; c � d .�/g/ �

�A
Q.
[

.8e/ �0.a; b; c; d; e/ W ha; bi 2 X; hc; di 2 Yg/:

We shall show that the above inclusion can be reversed. Suppose

ha0; b0i 2 �A
Q.
[

f.8e/ �0.a; b; c; d; e/ W a � b .˚/; c � d .�/g/:

As the closure operator �A
Q. 
 / is finitary on subsets of A2, there exist four n-tuples

a1; : : : ; an, b1; : : : ; bn, c1; : : : ; cn, d1; : : : ; dn 2 A such that ai � bi .˚/, ci � di .�/

for i D 1; : : : ; n and

ha0; b0i 2 �A
Q.
[

f.8e/ �0.ai; bi; ci; di; e/ W i D 1; : : : ; ng/: (a)

Since the Q-congruences ˚ and � are generated by X and Y , respectively, there
exist finite subsets Xf � X and Yf � Y such that

hai; bii 2 �A
Q.Xf / for i D 1; : : : ; n; (b1)

and

hci; dii 2 �A
Q.Yf / for i D 1; : : : ; n: (b2)

But (b1) and (2).(ii) imply that for each i (i D 1; : : : ; n)



108 5 Additivity of the Equationally-Defined Commutator

.8e/ �0.ai; bi; ci; di; e/ � �A
Q.
[

f.8e/ �0.a; b; ci; di; e/ W ha; bi 2 Xf g/: (c)

Similarly, by (b2) and (2).(ii) we also have that for each i (i D 1; : : : ; n) and each
ha; bi 2 Xf ,

.8e/ �0.a; b; ci; di; e/ � �A
Q.
[

f.8e/ �0.a; b; c; d; e/ W hc; di 2 Yf g/: (d)

Combining together (c) and (d) we deduce that

[
f.8e/ �0.ai; bi; ci; di; e/ W i D 1; : : : ; ng �

�A
Q.
[

f.8e/ �0.a; b; c; d; e/ W ha; bi 2 Xf ; hc; di 2 Yf g/: (e)

In the presence of (a), condition (e) gives that

ha0; b0i 2 �A
Q.
[

f.8e/ �0.a; b; c; d; e/ W ha; bi 2 Xf ; hc; di 2 Yf g/:

Consequently,

ha0; b0i 2 �A
Q.
[

f.8e/ �0.a; b; c; d; e/ W ha; bi 2 X; hc; di 2 Yg/:

This proves that

�A
Q.
[

f.8e/ �0.a; b; c; d; e/ W a � b .˚/; c � d .�/g/ �

�A
Q.
[

f.8e/ �0.a; b; c; d; e/ W ha; bi 2 X; hc; di 2 Yg: ut

Having established the lemma, we prove the implication (2) ) (1). Assume (2)
holds. Suppose A is a � -algebra and X; Y � A2. Let ˚ WD �A

Q.X/ and � WD �A
Q.Y/.

According to condition 2.(i) and Lemma 5.1.5 we have that

Œ˚; �	A D �A
Q.
[

f.8e/ �0.a; b; c; d; e/ W a � b .˚/; c � d .�/g/ D

�A
Q.
[

f.8e/ �0.a; b; c; d; e/ W ha; bi 2 X; hc; di 2 Yg/:

This proves that the equationally defined commutator of Q satisfies condition (2) of
Theorem 5.1.2. It follows that the commutator for Q is additive. ut
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Notes. (a). In the above theorem the existence of a Day implication system for the
consequence operation Qˆ is not assumed. On the other hand, if Qˆ possesses a
Day implication, (equivalently, Q has the relative shifting property), then Q satisfies
condition (2).(i) for some quaternary set of commutator equations �0.x; y; z; w; u/.
As �0.x; y; z; w; u/ one may take the set �c of quaternary commutator equations
supplied by the cube property (see Theorem 4.1.11).

(b). It may happen that (2).(i) is satisfied by some set �0.x; y; z; w; u/ and the
equationally defined commutator for Q is additive, but implication (2).(ii) does not
hold. An appropriate example is provided by the variety of equivalence algebras
in Section 6.4 (Example 4). ut
Corollary 5.1.6. Let Q be a quasivariety with the relative shifting property.
Suppose that the equationally defined commutator for Q is additive. Let Z be any
of the four (equivalent) centralization relations defined as in Theorem 4.1.2. Then
for any algebra A 2 Q, for any sets X � A2, Y � A2 and any congruence
� 2 ConQ.A/:

Z.�A
Q.X/; �A

Q.Y/I �/ if and only if

Z.�A
Q.a; b/; �A

Q.c; d/I �/ for all pairs ha; bi 2 X; hc; di 2 Y:

Moreover, if Q is a congruence-modular variety, then the above holds for any of
the seven equivalent centralization relations defined as in Theorem 4.2.2.

Proof. Let A, X; Y and � be as above. In view of Theorem 4.1.2 and
Proposition 4.1.1, Œ�A

Q.X/; �A
Q.Y/	 is the least Q-congruence in A for which

Z.�A
Q.X/; �A

Q.Y/I �/ holds. Trivially, if Z.�A
Q.X/; �A

Q.Y/I �1/ and �1 � �2, then
Z.�A

Q.X/; �A
Q.Y/I �2/, for all congruences �1; �2 on A. Hence, by the additivity of

the commutator, the following conditions are equivalent:

Z.�A
Q.X/; �A

Q.Y/I �/;

Œ�A
Q.X/; �A

Q.Y/	 � �;

Z.�A
Q.a; b/; �A

Q.c; d/I �/ for all pairs ha; bi 2 X; hc; di 2 Y:

To prove the second statement, apply also Theorem 4.2.2. ut

5.2 Additivity of the Equationally-Defined Commutator
of Equational Theories

An interest into the equationally defined commutator of equational theories is
motivated by investigations concerning purely syntactical aspects of this notion.
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The equationally defined commutator for Q is additive in the lattice Th.Qˆ/ if

(C1)theories ŒX1 CQ X2; Y	 D ŒX1; Y	 CQ ŒX2; Y	;

for any closed theories X1; X2; Y of Qˆ.
The above condition is equivalently formulated in the infinite form:

ŒQˆ.
[

i2I

Xi/; Y	 D Qˆ.
[

i2I

ŒXi; Y	/;

for any family Xi, i 2 I, of closed theories of Qˆ and any closed theory Y .
It is easy to see that (C1) implies:

For any epimorphism e W Te� ! Te� and any sets of equation X and Y,

(C2)theories kerQ.e/ CQ ŒQˆ.eX/; Qˆ.eY/		 D e�1.ŒQˆ.eX/; Qˆ.eY/	/: ut
As

e�1.ŒQˆ.eX/; Qˆ.eY/	/ D kerQ.e/ CQ ŒkerQ.e/ CQ Qˆ.X/; kerQ.e/ CQ Qˆ.Y/	;

holds for any quasivariety Q (see Corollary 3.2.5), condition (C2)theories is equiva-
lently formulated as the equation

kerQ.e/ CQ ŒX; Y	 D kerQ.e/ CQ ŒkerQ.e/ CQ X; kerQ.e/ CQ Y	;

holding for any closed theories X; Y and any epimorphism e W Te� ! Te� .
We recall that, for a given epimorphism e, ke W Th.Qˆ/ ! The.Qˆ/ is the

retraction defined by ke.˙/ WD kerQ.e/ CQ ˙ , for all ˙ 2 Th.Qˆ/. The above
equation thus states that

ke.ŒX; Y	/ D ke.Œke.X/; ke.Y/	/;

for any closed theories X; Y .
The following observation supplements Theorem 5.1.2:

Theorem 5.2.1. Let Q be a quasivariety of algebras. The following conditions are
equivalent:

(1) The equationally defined commutator for Q is additive, i.e., it satisfies (C1) in
any algebra A 2 Q;

(2) The equationally defined commutator for Q is additive in the lattice Th.Qˆ/;
(3) There exists a set �0.x; y; z; w; u/ of quaternary commutator equations for Q in

x; y and z; w (possibly with k parameters u D u1; u2; : : :, k 6 !) such that

ŒQˆ.X/; Qˆ.Y/	 D Qˆ.
[

f.8u/ �0.˛; ˇ; �; ı; u/ W ˛ � ˇ 2 X; � � ı 2 Yg/;

for any sets of equations X; Y.
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Proof. The theorem follows from Theorem 5.1.2 and the following strengthening
of Proposition 4.3.4:

Lemma 5.2.2. Let Q be an arbitrary quasivariety. Let �0.x; y; z; w; u/ be a set of
quaternary commutator equations for Q with juj D k 6 !. The following conditions
are equivalent:

(i) ŒQˆ.X/; Qˆ.Y/	DQˆ.
[

f.8u/ �0.˛; ˇ; �; ı; u/ W ˛ � ˇ 2 X; � � ı 2 Yg/
for every pair X; Y of sets of equations,

(ii) Œ�A
Q.X/; �A

Q.Y/	A D �A
Q.
[

f.8e/ �A
0 .a; b; c; d; e/ W ha; bi 2 X; hc; di 2 Yg/

for all algebras A 2 Q and all sets X; Y � A2.

Lemma 5.2.2 states that the equational commutator for Q is additive if and only
it is additive in the lattice of equational theories of Qeqˆ.

Proof (of the lemma). In view of Proposition 2.5, (i) is equivalent to the fact that

(i)* Œ�F
Q.X/; �F

Q.Y/	F D �F
Q.
[

f.8e/ �F
0 .a; b; c; d; e/ W ha; bi 2 X; hc; di 2 Yg/

for the free algebra F WD FQ.!/ and all sets X; Y � F2.

By repeating the (1) ) (2)-part of the proof of Theorem 5.1.2, we get that
(i)* implies (ii). Hence (i) implies (ii). The reverse implication is also immediate,
because (ii) implies (i)* and hence (i). ut

We now pass to the proof of Theorem 5.2.1. (1) implies (2), because (2) is
equivalent to the additivity of the equational commutator on the Q-congruences of
the free algebra FQ.!/. (2) implies (3) by modifying the proof of the (2) ) (1) part
of Theorem 5.1.2. In turn (1) is equivalent to condition (ii) of Lemma 5.2.2. (This is
the content of Theorem 5.1.2.) Hence, by Lemma 5.2.2, we get the equivalence of
(3) with (1). ut

The following observation is also useful.

Theorem 5.2.3. Let Q be a quasivariety of algebras. The following conditions are
equivalent:

(1) The equationally defined commutator of Q is additive (on Q);
(2) There exists a set �0 of quaternary commutator equations for Q (possibly with

parameters u) such that for every pair X; Y of theories of Qˆ it is the case that

(2).(i) ŒX; Y	 D Qˆ.
Sf.8u/ �0.˛; ˇ; �; ı; u/ W ˛ � ˇ 2 X; � � ı 2 Yg/

and
(2).(ii) For any terms ˛1; : : : ; ˛n, ˇ1; : : : ; ˇn, ˛; ˇ and any variables z and w

not occurring in these terms, if

˛ � ˇ 2 Qˆ.˛1 � ˇ1; : : : ; ˛n � ˇn/;
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then
.8u/ �0.˛; ˇ; z; w; u/ �
Qˆ..8u/ �0.˛1; ˇ1; z; w; u/ [ : : : [ .8u/ �0.˛n; ˇn; z; w; u//:

The proof of this theorem is an easy modification of the proofs presented in Sec-
tion 5.1. (1) implies that the equationally defined commutator for Q is additive in
the lattice Th.Qˆ/. Then (2) follows. In the proof of the implication (2) ) (1) one
proves that (2).(i)–(2).(ii) imply that

ŒQˆ.X/; Qˆ.Y/	 D Qˆ.
[

f.8u/ �0.˛; ˇ; �; ı; u/ W ˛ � ˇ 2 X; � � ı 2 Yg/
for every pair X; Y of sets of equations.

(One argues as in the proof of the implication (2) ) (1) of Theorem 5.1.4.) We omit
the details. Conditions (1) and (2) are therefore equivalent. ut
Note 5.2.4. In condition (2).(ii) of the above theorem we may restrict ourselves to
a set of standard rules forming an inferential base of Qˆ, that is:

Let R be a set of standard rules such that Ceq
R D Qˆ.

(2).(ii)R Suppose that for every rule ˛1 � ˇ1; : : : ; ˛n � ˇn=˛ � ˇ of R and any
variables z and w not occurring in the equations ˛1 � ˇ1; : : : ; ˛n � ˇn

and ˛ � ˇ it is the case that

.8u/ �0.˛; ˇ; z; w; u/ �
Qˆ..8u/ �0.˛1; ˇ1; z; w; u/ [ : : : [ .8u/ �0.˛n; ˇn; z; w; u//:

Then (2).(i) and (2).(ii)R imply that the equationally defined commutator
for Q is additive. In fact,

(�) ŒQˆ.X/; Qˆ.Y/	DQˆ.
[

f.8u/ �0.˛; ˇ; �; ı; u/ W˛ � ˇ2 X; � � ı 2 Yg/;
for any sets of equations X; Y. ut

Note that the equality (�) implies that �0 is a generating set for the commutator

of Q because for X D fx � yg, Y D fz � wg we get that

Qˆ.x � y/ \ Qˆ.z � w/ D ŒQˆ.x � y/; Qˆ.z � w/	 D Qˆ..8u/ �0.x; y; z; w; u//:

Conversely, if �0 is a generating set and R is an inferential base for Qˆ, then the
additivity of the commutator and condition (2).(i) already imply (2).(ii)R.

Remark. Some care is needed when one operates with standard rules. Each rule
r W ˛1 � ˇ1; : : : ; ˛n � ˇn=˛ � ˇ is given in a schematic way—the pair hf˛1 �
ˇ1; : : : ; ˛n � ˇng; ˛ � ˇi is a scheme of the rule and all pairs belonging to this
rule are of the form hfe˛1 � eˇ1; : : : ; e˛n � eˇng; e˛ � eˇi, where e ranges
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over endomorphisms of the term algebra Te� . Any other scheme of r is of the form
hfa˛1 � aˇ1; : : : ; a˛n � aˇng; a˛ � aˇi, where a is an arbitrary automorphism of
the term algebra. It then follows by structurality that condition (2).(ii)R is ‘scheme-
independent’ in the following sense: if hf˛0

1 � ˇ0
1; : : : ; ˛0

n � ˇ0
ng; ˛0 � ˇ0i is an

arbitrary scheme of r and z and w are any variables separated from the variables
occurring in ˛0

1 � ˇ0
1; : : : ; ˛0

n � ˇ0
n, then (2).(ii)R also means that

.8u/ �0.˛0; ˇ0; z; w; u/ �
Qˆ..8u/ �0.˛0

1; ˇ0
1; z; w; u/ [ : : : [ .8u/ �0.˛0

n; ˇ0
n; z; w; u//: ut

Note 5.2.5. Taking as �0 in Theorem 5.2.3 the (infinite) set �c of quaternary
commutator equations for Q supplied by the (relative) cube property and the
centralization relation in the sense of the classical two-binary term condition, we
conclude that if �c satisfies (2).(ii), then it satisfies (�), and hence the equationally
defined commutator of Q is additive. ut

Let r W ˛1 � ˇ1; : : : ; ˛n � ˇn=˛ � ˇ be a rule of Qˆ and let z and w be variables
not occurring in the equations ˛1 � ˇ1; : : : ; ˛n � ˇn and ˛ � ˇ. The set of rules

.8u/ �0.˛1; ˇ1; z; w; u/ [ : : : [ .8u/ �0.˛n; ˇn; z; w; u/=�0.x; y; z; w; u/

is called the �0-transform of r. This set of rules may be infinite (if the set �0.x; y; z;
w; u/ is infinite). Moreover, if the string u of parameters is non-empty, the above
rules may be infinitistic. If the �0-transforms of r are rules of Qˆ, then, taking
into account the fact that the consequence Qˆ is finitary, a finitarization procedure
can be applied to the �0-transform of r so as to replace the above set by its finitary
counterparts. More precisely, taking an arbitrary rule .8u/ �0.˛1; ˇ1; z; w; u/[: : :[
.8u/ �0.˛n; ˇn; z; w; u/=� � ı with � � ı 2 �0.x; y; z; w; u/, there exists a finite
subset

X��ı � .8u/ �0.˛1; ˇ1; z; w; u/ [ : : : [ .8u/ �0.˛n; ˇn; z; w; u/

such that X��ı=� � ı is a standard rule of Qˆ. The set of all such rules X��ı=� � ı

with � � ı ranging over �0.x; y; z; w; u/ is called a finitarization of a given �0-
transform of r. This set is finite whenever �0.x; y; z; w; u/ is finite.

We underline the fact that the finitarization procedure makes sense if the �0-
transform of a given finitary rule r of Qˆ are (possibly infinitistic) rules of Qˆ.
In particular, this procedure can be applied for any rule of consequence Qˆ
corresponding to any quasivariety Q whose equationally defined commutator is
additive.
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Theorem 5.2.6. Let Q be a quasivariety (in a given signature � ) with the relative
shifting property. Let �0.x; y; z; w; u/ be a generating set. Then for every rule
r 2 Birkhoff .�/ of Birkhoff’s logic B� , the �0-transform of r consist of rules of
Qˆ as well.

As Qˆ is stronger than the consequence Va.Q/ˆ, the latter being an axiomatic
strengthening of Birkoff’s logic B� , it follows that every Birkhoff’s rule r is a rule
of Qˆ. (Generally, Qˆ may also have other rules not being rules of B� .) The theorem
states that the �0-transform of any Birkhoff’s rule r yields a set of rules of Qˆ.

Proof. As Q has the shifting property and �0.x; y; z; w; u/ is a generating set,
Theorem 4.3.9 (see formula (1) in the proof of it) imply that ŒX; Y	 D Qˆ.

Sf.8u/

�0.˛; ˇ; �; ı; u/ W ˛ � ˇ 2 X; � � ı 2 Yg/ for every pair X; Y of theories of Qˆ:

The �0-transform of the axiomatic rule =x � x consists of the equations
�0.x; x; z; w; u/ which are obviously Q-valid.

As Qˆ.x � y/ D Qˆ.y � x/, we have that Qˆ.y � x/ \ Qˆ.z �
w/ D Qˆ.x � y/ \ Qˆ.y � x/. Consequently, Qˆ..8u/ �0.y; x; z; w; u// D
Qˆ..8u/ �0.x; y; z; w; u//. The �0-transforms of the rule x � y=y � x consists
of the rules .8u/ �0.x; y; z; w; u/= �0.y; x; z; w; u/. Since �0.y; x; z; w; u/ �
Qˆ.x � y/ \ Qˆ.z � w/ D Qˆ..8u/ �0.x; y; z; w; u//, the members of
.8u/ �0.x; y; z; w; u/=�0.y; x; z; w; u/ are Qˆ-rules.

The case of other rules is less trivial. We shall prove the following two lemmas,
interesting in their own right.

Lemma 5.2.7. Let Q be a quasivariety possessing a Day implication system )D.
Let x0; y0; z0; z; w be different variables. Then

Qˆ.x0 � z0/ \ Qˆ.z � w/ � Qˆ.x0 � y0/ \ Qˆ.z � w/

CQQˆ.y0 � z0/ \ Qˆ.z � w/:

Proof (of the lemma). We write: x�y)D z�wDfpi.x; y; z; w/�qi.x; y; z; w/ W i2 Ig.
Let �0 D �0.x; y; z; w; u/ be a set of quaternary commutator equations for Q such
that Qˆ.x � y/ \ Qˆ.z � w/ D Qˆ.�0.x; y; z; w; u//. (The variables x; y are
assumed to be different from x0; y0; z0; z; w.) Then

Qˆ.x0 � z0/ \ Qˆ.z � w/ D Qˆ.�0.x0; z0; z; w; u//;

Qˆ.x0 � y0/ \ Qˆ.z � w/ D Qˆ.�0.x0; y0; z; w; u//;

Qˆ.y0 � z0/ \ Qˆ.z � w/ D Qˆ.�0.y0; z0; z; w; u//;

by the structurality of Qˆ.
Thus the lemma equivalently states that the �0-transform of the transitivity rule

x0 � y0; y0 � z0=x0 � z0, viz.,

�0.x0; y0; z; w; u/ [ �0.y0; z0; z; w; u/=�0.x0; z0; z; w; u/; (1)
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is a set of rules of Qˆ as well. The variables x0; y0; z0; x; y; z; w are all different.
For brevity, the consequence operation Qˆ is marked by C.

We define a set of equations as follows: in each equation pi.x; y; z; w/ �
qi.x; y; z; w/ belonging to )D the variables x1 and y1 are substituted for x; y,
respectively, while for the variables z; w in the equation pi.x; y; z; w/ � qi.x; y; z; w/

one substitutes the terms pj.x2; y2; x3; y3/ and qj.x2; y2; x3; y3/, respectively, for each
j. The obtained equation in the developed form can be written down as

pi.x1; y1; pj.x2; y2; x3; y3/; qj.x2; y2; x3; y3// � (2)

qi.x1; y1; pj.x2; y2; x3; y3/; qj.x2; y2; x3; y3//:

The resulting set of equations, for all possible choices of i and j in I is marked here
for brevity as

x1 � y1 )D .x2 � y2 )D x3 � y3/; (3)

(cf. the notation adopted in the proof of Theorem 3.6.2).
We then make further substitutions in the equations of (3). Let ˛.x; y; z; w; u/ �

ˇ.x; y; z; w; u/ be an arbitrary but fixed equation belonging to �0.x; y; z; w; u/.
We define the substitution

x1=˛.x0; y0; z; w; u/

y1=ˇ.x0; y0; z; w; u/

x2=˛.y0; z0; z; w; u/

y2=ˇ.y0; z0; z; w; u/

x3=˛.x0; z0; z; w; u/

y3=ˇ.x0; z0; z; w; u/:

We apply this substitution to the equations belonging to (3). We then repeat the
above substitution procedure for all equations ˛.x; y; z; w; u/ � ˇ.x; y; z; w; u/ in
�0. The resulting set of equations obtained from (3) is denoted by

�0.x0; y0; z; w; u/ )D .�0.y0; z0; z; w; u/ )D �0.x0; z0; z; w; u//: (4)

The equations in the set (4) contain the variables x0; y0; z0; z; w and possibly some
other parameters. To simplify notation we shall mark the set (4) as

�.x0; y0; z; w; v/

treating, e.g. z0 together with the other variables different from x0; y0; z; w as
parametric variables.
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Claim 1. �.x0; y0; z; w; v/ is a set of quaternary commutator equations in the
variables x0; y0 and z; w.

Proof (of the claim). We must show that the equations �.x0; x0; z; w; v/ and
�.x0; y0; z; z; v/ hold in Q.

The set �.x0; x0; z; w; v/ is equal to

�0.x0; x0; z; w; u/ )D .�0.x0; z0; z; w; u/ )D �0.x0; z0; z; w; u//: (5)

The equations of �0.x0; x0; z; w; u/ are valid in Q, because �0.x0; y0; z; w; u/ is a
set of quaternary commutator equations in x0; y0 and z; w. In turn, the definition
of (4) and condition (iD1) for )D implies that equations of �0.x0; z0; z; w; u/ )D

�0.x0; z0; z; w; u/ are valid in Q. According to Note 1 following Theorem 3.5.1, the
equations of .p � q/ )D .r � s/ are Q-valid whenever the equations p � q and
r � s are Q-valid, Consequently, (5) is a set of Q-valid equations.

The set �.x0; y0; z; z; v/ is equal to

�0.x0; y0; z; z; u/ )D .�0.y0; z0; z; z; u/ )D �0.x0; z0; z; z; u//: (6)

As the sets �0.x0; y0; z; z; u/, �0.y0; z0; z; z; u/ and �0.x0; z0; z; z; u/ consist of Q-valid
equations, it follows that (6) consists of Q-valid equations only.

This proves the claim. ut
It follows from the claim that �.x0; y0; z; w; v/ � C.x0 � y0/ \ C.z � w/ D

C.�0.x0; y0; z; w; u//. We immediately get from this inclusion, by enlarging the set
on the right-hand side, that

Claim 2. �.x0; y0; z; w; v/ � C.�0.x0; y0; z; w; u/ [ �0.y0; z0; z; w; u//. ut
(1) then follows from the above claim. Indeed, according to Claim 2 we have that

�0.x0; y0; z; w; u/ )D .�0.y0; z0; z; w; u/ )D �0.x0; z0; z; w; u// �
C.�0.x0; y0; z; w; u/ [ �0.y0; z0; z; w; u//: (7)

Applying twice the detachment rule for )D, it is easy to see that (7) implies

�0.x0; z0; z; w; u/ � C.�0.x0; y0; z; w; u/ [ �0.y0; z0; z; w; u//:

So (1) holds. The lemma has been proved. ut
In the following lemma �0 D �0.x; y; z; w; u/ is assumed to be a set of

quaternary commutator equations for Q such that Q .̂x � y/ \ Q .̂z � w/ D
Qˆ.�0.x; y; z; w; u//.

Lemma 5.2.8. Let Q be an arbitrary quasivariety. Let f be an m-ary operation
symbol from the signature of Q. Let z D z1; : : : ; zm be different variables disjoint
from x; y; z; w. Then for any i (i D 1; : : : ; m)
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�0.f .zi�1
xziC1

/; f .zi�1
yziC1

/; z; w; u/ � Qˆ.�0.x; y; z; w; u// (8)i

where zi�1
WD z1; : : : ; zi�1 and ziC1

WD ziC1; : : : ; zm.

Proof (of the lemma). Let �0 D �0.x; y; z; w; u/ be as above.
Let z D z1; : : : ; zm be different variables disjoint from x; y; z; w. Then for any i

(i D 1; : : : ; m) we trivially have:

Qˆ.f .zi�1
xziC1

/ � f .zi�1
yziC1

// � Qˆ.x � y/:

Hence, multiplying both sides by Qˆ.z � w/ we get the inclusion:

Qˆ.f .zi�1
xziC1

/ � f .zi�1
yziC1

// \ Qˆ.z � w/ (9)

� Qˆ.x � y/ \ Qˆ.z � w/:

It follows that

�0.f .zi�1
xziC1

/; f .zi�1
yziC1

/; z; w; u/ �
Qˆ.f .zi�1

xziC1
/ � f .zzi�1

yziC1
// \ Qˆ.z � w/ �

Qˆ.x � y/ \ Qˆ.z � w/ D Qˆ.�0.x; y; z; w; u//:

Hence (8)i follows. ut
From the above remarks and the two lemmas the theorem follows. ut

Corollary 5.2.9. Let V be a congruence-modular variety. Then the equationally
defined commutator for V is additive.

It follows from Theorem 4.1.12 that the standard commutator coincides with
the equationally defined commutator for any congruence-modular variety. Corol-
lary 5.2.9 yields the classical result that the standard commutator in any CM variety
V is additive (see, e.g., Freese and McKenzie 1987 , Proposition 4.3).

Proof. As V is congruence-modular, it has the relative shifting property. Let R be
the set consisting of the rules of Birkhoff’s logic B� and the axiomatic rules Id.Q/.
(Each identity ˛ � ˇ valid in Q is identified with the axiomatic rule =˛ � ˇ.) R is
thus an inferential base of the consequence operation Vˆ.

Let �0.x; y; z; w; u/ be a set of equations such that

Vˆ.x � y/ \ Vˆ.z � w/ D Vˆ.�0.x; y; z; w; u//:

Let ˛ � ˇ be an equations which is valid in V. Then, by the properties of
commutator equations, the equations in �0.˛; ˇ; z; w; u/ are V-valid as well. This
simply means that the �0-transform of each axiomatic rule ˛ � ˇ in Id.V/, viz. the
set �0.˛; ˇ; z; w; u/, is a set of axiomatic rules of Vˆ.
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In view of the above theorem, the �0-transform of each Birkhoff’s rule r consists
of rules of Vˆ.

Thus, for every rule r 2 R, the �0-transform of r is a set of rules of Vˆ.
By applying Note 5.2.4, the theorem follows. ut

The above corollary also directly follows from Theorem 6.3.3 in the next
paragraph and the fact that for varieties of algebras, the relative shifting property
is equivalent to congruence modularity.

5.2.1 The Equationally-Defined Commutator on the Free
Algebra FQ.!/

This section is devoted to a syntactic characterization of additivity of the equa-
tionally defined commutator. We shall investigate special equational theories of
quasivarieties, viz. theories generated by equalities of separated individual variables.
We shall first provide some simple observations on the equational commutator on
the free algebra FQ.!/.

Let Q be a quasivariety and C WD Qˆ the equational consequence associated
with Q. C0 WD Va.Q/ˆ is the equational logic associated with the variety Va.Q/.

If X is a set of equations, then Var.X/ is the set of individual variables occurring
in the equations of X. Two sets of equations X and Y are said to have separated
variables if Var.X/ \ Var.Y/ D ;.

C0 is an axiomatic extension of Birkhoff’s consequence B� in the signature � of
Q and C0.X/ � C.X/ for any set of equations X and C0.;/ D C0.;/. Moreover,
if X D fxi � yi W i 2 Ig is a set of equations, where xi, yi (i 2 I) are individual
variables, then C0.X/ D C.X/. The theories of the form C.X/ with X D fxi � yi W
i 2 Ig as above are determined by the equations of X in the following sense: suppose
X D fxi � yi W i 2 Ig and Y D fzj � wj W j 2 Jg, where the variables occurring in
the equations of X are all pairwise different and the same holds for the variables
occurring in the equations of Y . Then

C.X/ D C.Y/ if and only if X D Y;

provided that Q is non-trivial (see also Lemma 6.3.5.(2)).
The following simple lemma is crucial for the investigations into the additivity

property of the equationally defined commutator.

Lemma 5.2.10. Let Q be an arbitrary quasivariety. Let X D fxi � yi W i 2 Ig,
where xi; yi, i 2 I, are pairwise different individual variables. Let Y and Z be
arbitrary sets of equations whose variables are separated from the variables of X,
i.e., Var.X/ \ .Var.Y/ [ Var.Z// D ;. Then

.Qˆ.X/ CQ Qˆ.Y// \ .Qˆ.X/ CQ Qˆ.Z// D Qˆ.X/ CQ Qˆ.Y/ \ Qˆ.Z/:
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Proof (of the lemma). Let C WD Qˆ. The inclusion “�” is immediate. To prove the
reverse inclusion, let us assume that ˛ � ˇ 2 .C.X/ CQ C.Y// \ .C.X/ CQ C.Z//,
that is, ˛ � ˇ 2 C.X [ Y/ and ˛ � ˇ 2 C.X [ Z/. Let e W Te� ! Te� be the
endomorphism such that exi D xi and eyi D xi for all i 2 I, and e is the identity
map on the remaining variables. In particular, e is the identity map on the variables
occurring in Y and Z. Then, by the structurality of C and the fact that eX � C.;/,
we get that e˛ � eˇ 2 C.e.X [ Y// D C.eX [ eY/ D C.eY/ D C.Y/ and, likewise,
e˛ � eˇ 2 C.e.X [ Z// D C.eX [ eZ/ D C.eZ/ D C.Z/. Hence

e˛ � eˇ 2 C.Y/ \ C.Z/: (a)

To show that ˛ � ˇ 2 C.X[.C.Y/\C.Z///, suppose A 2 Q and let h W Te� ! A
be a homomorphism which validates the equations of X [ .C.Y/ \ C.Z//. We claim
that h˛ D hˇ. We have that

hyi D hxi for all i 2 I; (b)

because h validates X. As h also validates C.Y/ \ C.Z/, (a) gives that

he˛ D heˇ: (c)

But (b) and the definition of e yield that het D ht for every term t. (Use induction
on the complexity of terms.) In particular, he˛ D h˛ and heˇ D hˇ. This and (c)
give that h˛ D hˇ. ut
Corollary 5.2.11. Let Q be an arbitrary quasivariety. Let X D fxi � yi W i 2 Ig
be a set of equations of pairwise different variables. Then for every finite non-empty
family fY1; : : : ; Yng of arbitrary sets of equations of terms such that the variables
occurring in the terms of Y1 [ : : : [ Yn are separated from the variables of X, i.e.,
Var.X/ \ .Var.Y1/ [ : : : [ Var.Yn// D ;, it is the case that

(�)n Qˆ.X [ Y1/ \ : : : \ Qˆ.X [ Yn/ D Qˆ.X/ CQ Qˆ.Y1/ \ : : : \ Qˆ.Yn/:

Proof. Let C D Qˆ. The inclusion “�” is obvious. To prove the reverse inclusion,
suppose that ˛ � ˇ 2 C.X [ Y1/\ : : :\ C.X [ Yn/. Then suitably modify the above
proof of Lemma 5.2.10 to show that ˛ � ˇ 2 C.X/ CQ C.Y1/ \ : : : \ C.Yn/. ut

In Section 5.3 we shall examine a condition which is dual of the statement
of the above lemma. This dual property, however, does not universally hold
for all quasivarieties. But, more importantly, it retains its validity for all RCM
quasivarieties.

For finite sequences of equations and C WD Qˆ we introduce the following
abbreviations:

p
m

� q
m

WD hp1 � q1; : : : ; pm � qmi;
C.p

m
� q

m
/ WD C.p1 � q1; : : : ; pm � qm/:
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Thus if rn � sn WD hr1 � s1; : : : ; rn � sni, then

C.p
m

� q
m
/ \ C.rn � sn/ D C.p1 � q1; : : : ; pm � qm/ \ C.r1 � s1; : : : ; rn � sn/:

We shall consider the following condition:

Let m and n be arbitrary positive integers. For any disjoint finite sequences
xm; y

m
; zn; wn of pairwise different individual variables, where xm D x1; : : : ; xm,

y
m

D y1; : : : ; ym; zn D z1; : : : ; zn, wn D w1; : : : ; wn,

(EqDistr)m;n C.xm � y
m
/\ C.zn � wn/ D C.

[

16i6m;16j6n

C.xi � yi/\ C.zj \ wj//:

In particular, for m D 2 and n D 1, we obtain:

C.x1 � y1; x2 � y2/ \ C.z1 � w1; / D
(EqDistr)2;1 C.C.x1 � y1/ \ C.z1 � w1/ [ C.x2 � y2/ \ C.z1 � w1//:

(EqDistr)m;n for m > 1 and n > 1 are certain restricted laws of distributivity
tailored for the simplest atomic equations. Conditions (EqDistr)m;n do not continue
to hold (with the exception of the trivial case m D 1 and n D 1) if the
individual variables occurring in these laws are uniformly replaced by arbitrary
terms. In particular, the laws (EqDistr)m;n should not be confused with congruence-
distributivity. As we shall later see, the infinite number of equations (EqDistr)m;n

does not imply the distributivity of the lattice of equational theories of Q (or,
equivalently—the distributivity of the lattices of Q-congruences on the algebras of
Q.) However, if Q is relatively congruence-modular, it validates (EqDistr)m;n for all
m > 1 and all n > 1 (Theorems 5.2.16 and 6.3.2).

The above formulas continue to hold for infinite sets of equations (or pairs of free
generators). Let X D fxi � yi W i 2 Ig, Y D fzj � wj W j 2 Jg be possibly infinite
sets of equations of variables, where the variables xi; yi (i 2 I) are pairwise different
and zj; wi (j 2 J) are also pairwise different. We say that X and Y are separated if
the equations in X and Y do not contain a common variable. This definition extends
in an obvious way on sets X and Y of pairs of free generators of F.

(EqDistr)1 is the following condition:

(EqDistr)1 Let X D fxi � yi W i 2 Ig, Y D fzj � wj W j 2 Jg be possibly infinite,
separated set of equations of variables. Then

C.X/ \ C.Y/ D C.
[

i2I;j2J

C.xi � yi/ \ C.zj � wj//:

Lemma 5.2.12. For any quasivariety Q, condition (EqDistr)1 holds if and only if,
for all positive m; n, condition (EqDistr)m;n holds.

Proof. Use the fact that the consequence C is finitary. ut
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Notes.

(1). (EqDistr)1 implies that for any separated sets X1; X2; Y of equations of
variables:

.C.X1/ CQ C.X2// \ C.Y/ D C.X1/ \ C.Y/ CQ C.X2/ \ C.Y/; (�)

In fact, (�) is equivalent to (EqDistr)1 as one can easily check, because (�)
implies condition (��) below:

.C.X1/ CQ C.X2// \ .C.Y1/ CQ C.Y2// D
C.X1/ \ C.Y1/ CQ C.X1/ \ C.Y2/ CQ C.X2/ \ C.Y1/ CQ C.X2/ \ C.Y2//:

(��)

for any separated sets X1; X2; Y1; Y2 of equations of variables. (�) yields
(EqDistr)1.
The dual equality to (�), viz.

C.X1/ \ C.X2/ CQ C.Y/ D .C.X1/ CQ C.Y// \ .C.X2/ CQ C.Y//;

holds for any quasivariety Q, because it follows from Lemma 5.2.10.
(2). As C0.X/ D C.X/ for any set X D fxi � yi W i 2 Ig, we may rewrite

(EqDistr)m;n and (EqDistr)1 in an equivalent form as

C0.xm � y
m
/ \ C0.zn � wn/ D C.

[

16i6m;16j6n

C0.xi � yi/ \ C0.zj � wj//

and

C0.X/ \ C0.Y/ D C.
[

i2I;j2J

C0.xi � yi/ \ C0.zj � wj//;

respectively.
(3). We are concerned with congruences on the free algebra F WD FQ.!/. If

X � F2, then �F.X/ and �F
Q.X/ stand for the congruence of F generated by X

and the Q-congruence of F generated by X, respectively. If X D fhxi; yii W
i 2 Ig is a set of pairs of free generators of F, then �F.X/ D �F

Q.X/

(Proposition 2.6).

Condition (EqDistr)m;n can be equivalently paraphrased as a property of the
congruences generated by finite sets of pairs of free generators in the free algebra
F WD FQ.!/. In other words, the lattice of Q-congruences of the free algebra F
obeys the following form of distributivity:

(FreeGenDistr)m;n Let m and n be arbitrary positive integers. For any disjoint
finite sequences x; y; z; w of pairwise different free generators
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of F, where x D x1; : : : ; xm, y D y1; : : : ; ym, z D z1; : : : ; zn,
w D w1; : : : ; wn,

�F.hx1; y1i; : : : ; hxm; ymi/ \ �F.hz1; w1i; : : : ; hzn; wni/ D
�F

Q.
[

16i6m;16j6n

�F.xi; yi/ \ �F.zj; wj//:

As �F.hx1; y1i; : : : ; hxm; ymi/ is a Q-congruence, therefore it is not necessary to
put the subscript ‘Q’ at ‘�F’. But this subscript occurs on the right-hand side of
(FreeGenDistr)m;n.

The law (FreeGenDistr)m;n is equivalently expressed in terms of sets of pairs of
free generators of the algebra F as follows.

(FreeGenDistr)1 Let X D fhxi; yii W i 2 Ig, Y D fhzj; wji W j 2 Jg be separated
sets of pairs of free generators of F. Then

�F.X/ \ �F.Y/ D �F
Q.

[

i2I;j2J

�F.xi; yi/ \ �F.zj; wj//:

(4) (FreeGenDistr)1 is equivalent, for any Q, to the following conditions:

Let X; Y; Z; W be arbitrary pairwise separated sets of pairs of free
generators. Then

�F.X [ Y/ \ �F.Z [ W/

D �F
Q.�F.X/ \ �F.Z/ [ �F.X/ \ �F.W/

[�F.Y/ \ �F.Z/ [ �F.Y/ \ �F.W//:

All the conditions introduced in this note are therefore mutually equivalent, for
any Q. ut
Proposition 5.2.13. Let Q be a quasivariety validating conditions (EqDistr)m;n for
all positive integers m and n. Then for every algebra A 2 Q and any ˚; � 2
ConQ.A/,

Œ˚; �	A D supfŒ�Q.a; b/; �Q.c; d/	A W a � b .˚/; c � d .�/g:

(Here the supremum is taken in the lattice ConQ.A/.)

Note. The statement of the above proposition, which is weaker than additivity, is the
same as the thesis of Corollary 4.1.10. Thus, the equations (EqDistr)m;n, m; n > 1,
yield the same result as the relative shifting property which was (implicitly) used
in the proof of Corollary 4.1.10. However, it should be noted that conditions
(EqDistr)m;n, m; n > 1, do not imply the relative shifting property. For let � be the
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empty signature. Birkhoff’s logic B� in this signature reduces to the pure identity
theory and B� .;/ D fx � x W x is an individual variableg. The corresponding
quasivariety (which is actually a variety) is formed by the class of all non-empty
sets. Congruences on any non-empty set A are equivalence relations of A. B� has
trivial commutator equations. It follows that the equationally defined commutator
Œ˚; �	A of any two equivalence relations ˚; � on any set A reduces to the diagonal
relation of A. This trivial commutator is additive. But the relative shifting property
fails for B� . ut
Proof (of Proposition 5.2.13). Let

x D x1; x2; : : :

y D y1; y2; : : :

z D z1; z2; : : :

w D w1; w2; : : :

be four infinite sequences of pairwise different individual variables. As above, C
stands for the consequence operation Qˆ.

Let �0.x; y; z; w; u/ be a generating set of C.x � y/ \ C.z � w/, where x; y; z; w
are different variables, i.e., C..8u/ �0.x; y; z; w; u// D C.x � y/ \ C.z � w/. Then
C..8u/ �0.xi; yi; zj; wj; u// D C.xi � yi/ \ C.zj � wj/, for all i; j, by structurality.

Let � be C.x � y/ \ C.z � w/. Conditions (EqDistr)m;n, m; n > 1, imply that

C.�/ D C.
[

m;n>1

.8u/ �0.xm; ym; zn; wn; u//: (1)

Let X and Y be theories of C. In view of the comments following Definition 3.1.5
we have that

ŒX; Y	 D C.f˛.p; q; r; s; t/ � ˇ.p; q; r; s; t/ W (2)

˛ � ˇ 2 �; p � q 2 X; r � s 2 Y; t 2 Te<!
� g/:

But (1) and the structurality of C imply that

C.f˛.p; q; r; s; t/ � ˇ.p; q; r; s; t/ W (3)

˛ � ˇ 2 �; p � q 2 X; r � s 2 Y; t 2 Te<!
� g/ D

C.
[

f�0.p; q; r; s; t/ W p � q 2 X; r � s � Y; t 2 Te<!
� g/:
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(2) and (3) give that

ŒX; Y	 D C.
[

f�0.p; q; r; s; t/ W p � q 2 X; r � s � Y; t 2 Te<!
� g/ D (4)

C.
[

f.8u/ �0.p; q; r; s; u/ W p � q 2 X; r � s 2 Yg/:

As .8u/ �0.p; q; r; s; u/ � ŒC.p � q/; C.r � s/	, for all terms p; q; r; s, (4)
implies

ŒX; Y	 � C.
[

fŒC.p � q/; C.r � s/	 W p � q 2 X; r � s 2 Yg/:

Since the opposite inclusion holds in the virtue of the monotonicity of the
equationally defined commutator, we obtain that

ŒX; Y	 D C.
[

fŒC.p � q/; C.r � s/	 W p � q 2 X; r � s 2 Yg/: (5)

(5) carries over to Q-congruences of the free algebra F D FQ.!/, i.e.,

Œ˚; �	F D sup QfŒ�Q.a; b/; �Q.c; d/	F W a � b .˚/; c � d .�/g;

for any ˚; � 2 ConQ.F/. Then suitably modifying the argumentation presented in
the proof of Lemma 5.2.2, one arrives at the thesis of the proposition. ut
Problem. Show that the relative shifting property does not imply the condition
.8m; n > 1/(EqDistr)m;n. ut
Note. Equations (EqDistr)m;n need not be preserved on passing to equational theo-
ries obtained by substituting arbitrary terms for the variables x1; : : : ; xm, y1; : : : ; ym,
z1; : : : ; zn, and w1; : : : ; wn, because this would imply the distributivity of the lattice
of theories of Qˆ. In particular, (EqDistr)m;n does not hold if the strings x; y; z; w
do not form disjoint sets of variables. E.g., in view of the above proposition the
equation

Vˆ.x1 � y1; x2 � y2/ \ Vˆ.z � w/ D
Vˆ.Vˆ.x1 � y1/ \ Vˆ.z � w/ [ Vˆ.x2 � y2/ \ Vˆ.z � w//

holds for every CM variety V but the formula

Vˆ.x � z; x � w/ \ Vˆ.z � w/ D
Vˆ.Veqˆ.x � z/ \ Vˆ.z � w/ [ Vˆ.x � w/ \ Vˆ.z � w//

does not, because it implies congruence-distributivity of V. (To see this, note first
that Vˆ.x � z; x � w/\ Vˆ.z � w/ D Vˆ.z � w/ and then repeat the proof of the
well-known Jónsson’s Theorem characterizing congruence-distributive varieties.)

ut
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The following corollary follows from the proof of Proposition 5.2.13. (cf.
Theorem 5.1.4):

Corollary 5.2.14. Let Q be a quasivariety validating conditions (EqDistr)m;n for
all positive integers m and n. Let x; y; z; w be arbitrary different variables and
�0.x; y; z; w; u/ a set of equations such that Qˆ..8u/ �0.x; y; z; w; u// D Qˆ
.x � y/ \ Qˆ.z � w/. Then for every algebra A 2 Q and any ˚; � 2 ConQ.A/,

Œ˚; �	A D �A
Q.
[

f.8e/ �0.a; b; c; d; e/ W a � b .˚/; c � d .�/g/: ut

According to the definition of the equationally defined commutator (Defini-
tion 3.1.5), if Q is an arbitrary quasivariety Q, A 2 Q, and ˚; � 2 ConQ.A/, then
Œ˚; �	A is the least Q-congruence � such that Zcom.˚; � I �/, i.e., ˚ centralizes �

relative to � in the sense of arbitrary commutator equations. The above corollary is
a stronger result: it states that if Q validates (EqDistr)m;n for all positive m and n, then
Œ˚; �	A is the least Q-congruence � such that Z4;com.˚; � I �/, i.e., ˚ centralizes
� relative to � in the sense of arbitrary quaternary commutator equations for Q. In
fact, the proof of Proposition 5.2.13 yields:

Corollary 5.2.15. Let Q be a quasivariety validating conditions (EqDistr)m;n for all
positive integers m and n. Then the centralization relations Zcom and Z4;com coincide
on ConQ.A/ in any algebra A 2 Q. ut

If one additionally assumes the relative shifting property for Q, then the above
equivalence extends to the remaining centralization relations examined in Chapter 4
(Theorem 4.1.2).

Yet another condition we shall introduce is a weakening of (C2). We shall restrict
it to the free algebra F; or, equivalently, to the term algebra Te� .

We recall that if e W Te� ! Te� is an endomorphism, then kerQ.e/ WD
e�1.Qˆ.;// (see the remarks preceding Proposition 2.13). Let m and n be positive
integers. We define:

(Epi)m;n Let xm; y
m
; zn; wn be sequences of pairwise different individual variables,

where xm D x1; : : : ; xm, y
m

D y1; : : : ; ym, zn D z1; : : : ; zn, wn D
w1; : : : ; wn. Then for every epimorphism e W Te� ! Te� ,

kerQ.e/ CQ Qˆ.xm � y
m
/ \ Qˆ.zn � wn//

D e�1.ŒQˆ.exm � ey
m
/; Q.ezn � ewn/	/:

The universal closure .8m; n > 1/(Epi)m;n is equivalent to the following condition
involving possibly infinite separated sets of equations of individual variables:

(Epi)1 Let X and Y be separated sets of equations of pairwise different individual
variables.Then for any epimorphism e W Te� ! Te� ,

kerQ.e/ CQ Qˆ.X/ \ Qˆ.Y/ D e�1.ŒQˆ.eX/; Qˆ.eY/	/:
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In view of Theorem 3.1.8, (Epi)1 is equivalent to the condition:

Let X and Y be separated sets of equations of pairwise different individual
variables. Then for any epimorphism e W Te� ! Te� ,

kerQ.e/ CQ Qˆ.X/ \ Qˆ.Y/ D
kerQ.e/ CQ ŒkerQ.e/ CQ Qˆ.X/; kerQ.e/ CQ Qˆ.X/	:

Note. (Epi)m;n and (Epi)1 can be equivalently paraphrased in terms of properties
of congruences of the free algebra F:

(EpiFreeGen)m;n Let m and n be arbitrary positive integers. Let xm; y
m
; zn; wn

be sequences of pairwise different free generators of F, where
xm D x1; : : : ; xm, y

m
D y1; : : : ; ym, zn D z1; : : : ; zn, wn D

w1; : : : ; wn. Then for every epimorphism h W F ! F,

ker.h/ CQ �F.hxm; y
m
i/ \ �F.hzn; wni/ D

h�1.Œ�F
Q.hhxm; hy

m
i/; �F

Q.hhzn; hwni/:

The universal closure .8m; n > 1/(EpiFreeGen)m;n is equivalent to the following
condition formulated in terms of possibly infinite separated sets of pairs of free
generators:

(EpiFreeGen)1 Let X and Y be separated sets of pairs of different free generators
of F. Then for every epimorphism h W F ! F,

ker.h/ CQ �F.X/ \ �F.Y/ D h�1.Œ�F
Q.hX/; �F

Q.hY/	/:

According to Theorem 3.1.8 (EpiFreeGen)1 is equivalent to the condition:

Let X and Y be separated sets of pairs of different free generators of F. Then
for every epimorphism h W F ! F,

ker.h/ CQ �F.X/ \ �F.Y/ D ker.h/ CQ Œker.h/ CQ �F.X/; ker.h/ CQ �F.Y/	:

Theorem 5.2.16. Let Q be an arbitrary quasivariety. The following conditions are
equivalent:

(A) The equationally defined commutator of Q is additive (on the algebras of Q);
(B) The equationally defined commutator validates conditions (EqDistr)m;n and

(Epi)m;n for all positive integers m and n.
(C) The equationally defined commutator validates conditions (EqDistr)1

and (Epi)1.

Proof. We put C WD Qˆ. The equivalence of (B) and (C) has been already
established.
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(A) ) (B). Assume (A). Fix m and let x; y; z; w be as in (B). In view of
Proposition 3.2.3 and additivity we have that

C.x1 � y1; : : : ; xm � ym/ \ C.z1 � w1; : : : ; zn � wn/ D
ŒC.x1 � y1; : : : ; xm � ym/; C.z1 : : : w1; : : : ; zn � wn/	 D

C.
[

16i6m;16j6n

ŒC.xi � yi/; C.zj � wj/	/ D

C.
[

16i6m;16j6n

C.xi � yi/ \ C.zj � wj//:

So (EqDistr)m;n holds.
Since that additivity of the equational commutator implies condition (C2), which

in turn implies (Epi)m;n, we see that (B) holds as well.
(C) ) (A). The proof of this implication is longer. Throughout the proof of this

implication Q is assumed to be a quasivariety satisfying (C).

Lemma 1. Let ˚1; ˚2; � 2 ConQ.F/. Then Œ˚1 CQ ˚2; �	 D Œ˚1; �	 CQ Œ˚2; �	.

Proof (of the lemma). It suffices to prove the lemma for finitely generated congru-
ences ˚1; ˚2; � 2 ConQ.F/.

Select three finite sets X1; X2 and Y of mutually separated sets of pairs of free
generators of F and a surjective endomorphism h W F ! F such that �F

Q.hX1/ D
˚1, �F

Q.hX2/ D ˚2, and �F
Q.hY/ D � . Then:

h�1.Œ˚1 CQ ˚2; �	/ D
h�1.Œ�F

Q.hX1/ CQ �F
Q.hX2/; �F

Q.hY/	/ D
h�1.Œ�F

Q.h.X1 [ X2/; �F
Q.hY/	/ D (by (EpiFreeGen)1 )

ker.h/ CQ �F.X1 [ X2/ \ �F.Y/ D (by (FreeGenDistr)1)

ker.h/ CQ �F.X1/ \ �F.Y/ CQ �F.X2/ \ �F.Y/ D
ker.h/ CQ �F.X1/ \ �F.Y/ CQ ker.h/ CQ �F.X2/ \ �F.Y/ D

(by (EpiFreeGen)1 )

h�1.Œ˚1; �	/ CQ h�1.Œ˚2; �	/ D
h�1.Œ˚1; �	 CQ Œ˚2; �	/:

As h is surjective, it follows that Œ˚1 CQ ˚2; �	 D Œ˚1; �	 CQ Œ˚2; �	. ut
Lemma 2. Let A be a countably generated algebra in Q and ˚1; ˚2; � 2 ConQ.A/.
Then Œ˚1 CQ ˚2; �	A D Œ˚1 CQ �	A CQ Œ˚2 CQ �	A.

Proof. Let h W F ! A be an arbitrary epimorphism. Then:
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h�1.Œ˚1 CQ ˚2; �	A/ D (Corollary 3.1.9)

ker.h/ CQ Œh�1.˚1 CQ ˚2/; h�1.�/	F D
ker.h/ CQ Œh�1.˚1/ CQ h�1.˚2/; h�1.�/	F D (Lemma 1)

ker.h/ CQ Œh�1.˚1/; h�1.�/	F CQ Œh�1.˚2/; h�1.�/	F D
ker.h/ CQ Œh�1.˚1/; h�1.�/	F CQ ker.h/ CQ Œh�1.˚2/; h�1.�/	F D

(Corollary 3.1.9)

h�1.Œ˚1; �	A/ CQ h�1.Œ˚2; �	A/ D
h�1.Œ˚1; �	A CQ Œ˚2; �	A/:

Hence Œ˚1 CQ ˚2; �	A D Œ˚1 CQ �	A CQ Œ˚2 CQ �	A. ut
Lemma 3. Let A be an arbitrary algebra in Q and ˚1; ˚2; � 2 ConQ.A/. Then
Œ˚1 CQ ˚2; �	A D Œ˚1 CQ �	A CQ Œ˚2 CQ �	A.

Proof. Use Lemma 2 and Theorem 3.1.6.(viii). ut
Lemma 3 concludes the proof of (A). The theorem has been proved. ut

Note 5.2.17. Suppose Q is a quasivariety whose equationally defined commutator
is additive. The additivity of the commutator entails yet another distributivity
property of equational theories of Qˆ. We shall discuss it briefly. Put C WD Qˆ.
Let x; y; z; w be finite disjoint sets of variables such that jxj D jyj D m, jzj D jwj
and let ˙ D fpi � qi W i 2 Ig be a non-empty set of equations such that

C.x � y/ D C.˙/:

Then

C.x � y/ \ C.z � w/ D C.
[

i2I

C.pi � qi/ \ C.z � w//: (Distr)˙

Proof. We have:

C.x � y/ \ C.z � w/ D ŒC.x � y/; C.z � w/	 D
ŒC.˙/; C.z � w/	 D (by additivity)

C.
[

i2I

ŒC.pi � qi/; C.z � w/	/ �

C.
[

i2I

C.pi � qi/ \ C.z � w// �

C.˙/ \ C.z � w/ D C.x � y/ \ C.z � w/:
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The above inclusions give that C.x � y/ \ C.z � w/ � C.
S

i2I C.pi � qi/ \
C.z � w//�C.x � y/ \ C.z � w/. Hence (�) follows. ut

It is not difficult to reformulate (Distr)˙ in terms of congruences of the free
algebra FQ.!/ generated by pairs of separated free generators.

5.3 Restricted Distributivity and Additivity
of the Equationally-Defined Commutator

According to Lemma 5.2.10, if X D fxi � yi W i 2 Ig is a set of equations of
pairwise different variables and Y and Z are arbitrary sets of equations of terms
whose variables are separated from the variables of X, that is, Var.X/\Var.Y[Z/ D
;, then for any quasivariety Q and for C WD Qˆ it is the case that

.C.X/ CQ C.Y// \ .C.X/ CQ C.Z// D C.X/ CQ C.Y/ \ C.Z/: (�)

The dual form of this simple equality is of basic importance for the theory of the
equationally defined commutator. We therefore define the following condition:

Let Q be a quasivariety and C WD Qˆ. Let X D fxi � yi W i 2 Ig, where xi; yi,
i 2 I, are pairwise different individual variables. Let Y and Z be arbitrary sets
of equations of terms such that the variables occurring in the terms of Y [ Z
are separated from the variables of X. Then:

C.X/ \ C.Y/ CQ C.X/ \ C.Z/ D C.X/ \ .C.Y/ CQ C.Z//:

We call this condition the restricted distributivity of the lattice Th.Qˆ/.
We shall discuss in this paragraph several aspects of this notion. The crucial fact

we shall prove is Theorem 5.3.8 which states that the restricted distributivity of
the lattice Th.Qˆ/ implies the additivity of the equationally defined commutator
for Q. The proof of this theorem exhibits structural properties of the kernels of
epimorphisms of the term algebra Te� .

The restricted distributivity can be suitably reformulated in terms of Q-congruen-
ces of the free algebra F WD FQ.!/ and separation of free generators. It follows that
the restricted distributivity holds for the lattice Th.Qˆ/ if and only if its counterpart
formulated for Q-congruences of F holds for the lattice ConQ.F/.

Note. Restricted distributivity is a property that is essentially weaker than relative
congruence-modularity. This issue is discussed in the next chapter. But here we want
to elucidate another aspect of the former property. We return to the example from
the note following the statement of Proposition 5.2.13.

Let � be the empty signature. Birkhoff’s logic B� in this signature is the pure
identity theory. The corresponding quasivariety (which is actually a variety) is
formed by the class of all non-empty sets and it is called the variety of sets. Each



130 5 Additivity of the Equationally-Defined Commutator

B� -congruence on any non-empty set A is an equivalence relation on A. As B� has
trivial commutator equations, the equationally defined commutator Œ˚; �	A of any
two equivalence relations ˚; � on any set A, is equal to the diagonal relation of A.
This trivial commutator is additive. The lattice Th.B� / is the same as the lattice
of equivalence relations on the countably infinite set of variables Var. Equations
of variables are identified with ordered pairs of variables. From a more abstract
perspective we consider the following situation. Let A be a non-empty set and let
X; Y; Z � A2 be sets of ordered pairs of elements of A. Suppose that X is separated
from Y [ Z in the sense that the set of elements of A that occur in the pairs of X
is disjoint from the set of elements of A that occur in the pairs of the union Y [ Z.
Let D be the operation of generating equivalence relations on A. Then D.X/\D.Y/,
D.X/\D.Z/ and D.X/\.D.Y/[D.Z// are all the diagonal relations of A. It follows
that D.X/\ .D.Y/[D.Z// D D.D.X/\D.Y/[D.X/\D.Z// D the diagonal of A.
This observation implies that

the lattice Th.B� / is distributive in the restricted sense.

As Th.B� / is isomorphic with the set of all partitions of Var,

Th.B� / does not satisfy any non-trivial lattice theoretic identity;

in particular Th.B� / is not modular.1 Equivalently we may say that the !-generated
free algebra in the variety of sets validates restricted distributivity.

The above example shows that restricted distributivity is not expressible as a
lattice-theoretic identity; it is a specific property of congruence lattices.

The above reasoning carries over to the equational logic B� whose signature �

contains only unary operation symbols. We therefore get:

If � contains only unary operation symbols, then the lattice Th.B� / is distribu-
tive in the restrictive sense.

It is an open question how large the (hyper)class of quasivarieties Q is for which
the lattice Th.Qˆ/ validates the restricted distributivity. In other words, we ask for
which Q Lemma 5.2.10 entails its dual form. In view of von Neumann’s Theorem
(Theorem 6.3.1) for modular lattices this question has a positive answer for any
RCM quasivariety. We thus ask whether a lattice-theoretic property weaker than
modularity also entails this form of duality. ut
Theorem 5.3.1. Let Q be a quasivariety such that Th.Qˆ/ is distributive in the
restricted sense. Let X D fxi � yi W i 2 Ig be a set of equations of pairwise different
variables and let, for n > 2, Y1; : : : ; Yn be arbitrary sets of equations of terms such
that the variables occurring in the terms of Y1 [ : : : [ Yn are separated from the
variables of X, i.e., Var.X/ \ .Var.Y1/ [ : : : [ Var.Yn// D ;. Then

Qˆ.X/\Qˆ.Y1/CQ : : :CQ Qˆ.X/\Qˆ.Yn/ D Qˆ.X/\Qˆ.Y1 [ : : :[Yn/: (1)n

1The lattice of partitions of any set satisfies, however, the condition of semimodularity. This
condition is not expressible as a lattice-theoretic identity.
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Proof. We put C WD Qˆ. The case n D 2 is covered by restricted distributivity. We
assume the theorem holds for n. We prove it holds for n C 1. Let X; Y1; : : : ; Yn; YnC1

satisfy the assumption of the theorem, i.e., Var.X/ \ .Var.Y1/ [ : : : [ Var.Yn/ [
Var.YnC1// D ;. As Var.X/ \ .Var.Y1/ [ : : : [ Var.Yn// D ;, the induction
hypothesis yields (1)n. Moreover, by restricted distributivity we also have that

C.X/ \ C.Y1 [ : : : [ Yn/ CQ C.X/ \ C.YnC1/

D C.X/ \ C.Y1 [ : : : [ Yn [ YnC1/: (2)

It follows that

C.X/ \ C.Y1/ CQ : : : CQ C.X/ \ C.Yn/ CQ C.X/ \ C.YnC1/ D (by (1)n)

C.X/ \ C.Y1 [ : : : [ Yn/ CQ C.X/ \ C.YnC1/ D (by (2)

C.X/ \ C.Y1 [ : : : [ Yn [ YnC1/:

So (1)nC1 holds. ut
Corollary 5.3.2. Let Q be a quasivariety. The following conditions are equivalent:

(a) The lattice Th.Qˆ/ is distributive in the restricted sense.
(b) For any finite set of equations X, any non-empty finite sets of pairwise different

variables of the same cardinality z D z1; : : : ; zm, w D w1; : : : ; wm separated
from Var.X/ and for any equation r � s, if r � s 2 Qˆ.X/, then

Qˆ.r � s/ \ Qˆ.z � w/ � Qˆ.
[

p�q2X

Qˆ.p � q/ \ Qˆ.z � w//:

(c) Th.Qˆ/ satisfies the conjunction of the following two conditions:

(c1) For any finite set of equations X, for any two variables z and w separated
from Var.X/ and any equation r � s, if r � s 2 Qˆ.X/, then

Qˆ.r � s/ \ Qˆ.z � w/ � Qˆ.
[

p�q2X

Qˆ.p � q/ \ Qˆ.z � w//

and
(c2) for any equation p � q and for any non-empty finite sets of pairwise dif-

ferent variables of the same cardinality z1; : : : ; zm; w1; : : : ; wm separated
from Var.p � q/,

Qˆ.p � q/ \ Qˆ.z � w/ D
Qˆ.p � q/ \ Qˆ.z1 � w1/ CQ : : : CQ Qˆ.p � q/ \ Qˆ.zm � wm/:

(Here z � w WD fz1 � w1; : : : ; zm � wmg.)
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Proof. We shall prove the following chains of implications:

.a/ ) .b/ ) .a/; .a/ ) .c/ ) .b/:

We put C WD Qˆ.
(a) ) (b). This is easy. Assume r � s 2 C.X/, X finite. (a) gives that

C.r � s/ \ C.z � w/ � C.X/ \ C.z � w/ D C.
[

p�q2X

C.p � q/ \ C.z � w//:

So (b) holds.
(b) ) (a). We assume (b). Due to the fact that the lattice Th.Qˆ/ is algebraic,

the restricted distributivity of Th.Qˆ/ will be proved once we show that

C.p1 � q1; : : : ; pn � qn/ \ C.z � w/ �
C.p1 � q1/ \ C.z � w/ CQ : : : CQ C.pn � qn/ \ C.z � w/:

for any finite set p1 � q1; : : : ; pn � qn of equations and any finite disjoint sets
z D z1; : : : ; zm, w D w1; : : : ; wm of variables separated from the variables occurring
in p1 � q1; : : : ; pn � rn.

So fix p1 � q1; : : : ; pn � qn; z; w and suppose

r � s 2 C.p1 � q1; : : : ; pn � qn/ \ C.z � w/:

Since r � s 2 C.p1 � q1; : : : ; pn � qn/, (b) gives that

C.r � s/ \ C.z � w/ �
C.p1 � q1/ \ C.z � w/ CQ : : : CQ C.pn � qn/ \ C.z � w/: (�)

As r � s 2 C.z � w/, we have that r � s 2 C.r � s/ \ C.z � w/. This and (�)
imply that

r � s 2 C.p1 � q1/ \ C.z � w/ CQ : : : CQ C.pn � qn/ \ C.z � w/:

So (a) holds.
(a) ) (c). This is also immediate.
(c) ) (b). We assume (b) and consider the following formula T.m/ with m

ranging over positive integers:

T.m/ For any finite set of equations X, and any pairwise different 2m variables zm D
z1; : : : ; zm and wm D w1; : : : ; wm separated from Var.X/ and any equation
r � s, if r � s 2 C.X/, then
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C.r � s/ \ C.zm � wm/ � C.
[

p�q2X

C.p � q/ \ C.zm � wm//:

Claim 1. T.m/ implies that

C.
[

p�q2X

C.p � q/ \ C.zm � wm/ D C.X/ \ C.zm � wm/

for all finite sets of equations X and any 2m variables zm D z1;: : :; zm,
wm D w1;: : :; wm separated from Var.X/.

Proof (of the claim). Assume T.m/. Suppose r � s 2 C.X/ \ C.zm � wm/. As
r � s 2 C.X/, T.m/ gives that C.r � s/ \ C.zm � wm/ � C.

S
p�q2X C.p � q/ \

C.zm � wm//. Since r � s 2 C.zm � wm/, we have that r � s 2 C.r � s/ \
C.zm � wm/. Hence r � s 2 C.

S
p�q2X C.p � q/ \ C.zm � wm//. ut

Claim 2. T.m/ holds for all m > 1.

Proof (of the claim).
Induction base. T.1/.
This holds in virtue of (c1).
Inductive step. Fix m > 1. T.m/ implies T.m C 1/.
We assume T.m/. To prove T.m C 1/, let X be a finite set of equations X, let z; w

and zm D z1; : : : ; zm, wm D w1; : : : ; wm be pairwise different variables separated
from Var.X/, and let r � s be an equation such that r � s 2 C.X/. We claim that

C.r � s/ \ C.zm � wm; z � w/

� C.
[

p�q2X

C.p � q/ \ C.zm � wm; z � w//: (1)

According to T.m/ and Claim 1 we have that

C.X/ \ C.zm � wm/ D C.
[

p�q2X

C.p � q/ \ C.zm � wm//: (2)

To prove T.m C 1/ we compute:

C.
[

p�q2X

C.p � q/ \ C.zm � wm; z � w// D

C.
[

p�q2X

.C.p � q/ \ C.zm � wm/ CQ C.z � w/// D (by (c2))

C.
[

p�q2X

.C.p � q/ \ C.zm � wm/ CQ C.p � q/ \ C.z � w/// D
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C.
[

p�q2X

.C.p � q/ \ C.zm � wm/ CQ C..
[

p�q2X

C.p � q/ \ C.z � w/// D

(by (2), T.1/, and Claim 1 for m D 1)

C.X/ \ C.zm � wm/ CQ C.X/ \ C.z � w/:

Thus

C.
[

p�q2X

C.p � q/ \ C.zm � wm; z � w// D

C.X/ \ C.zm � wm/ CQ C.X/ \ C.z � w/: (3)

On the other hand, (c2) also gives

C.r � s/ \ C.zm � wm; z � w/ D
C.r � s/ \ C.zm � wm/ CQ C.r � s/ \ C.z � w/: (4)

As C.r � s/ \ C.zm � wm/ � C.X/ \ C.zm � wm/ and C.r � s/ \ C.z � w/ �
C.X/ \ C.z � w/, we see that (3) and (4) imply that

C.r � s/ \ C.zm � wm; z � w/ � C.
[

p�q2X

C.p � q/ \ C.zm � wm; z � w//

So (1) holds. This concludes the proof of Claim 2. ut
From Claim 2 condition (b) follows. ut

Note. In the above corollary, condition (c1) cannot be replaced by the following
statement:

For any finite set of equations X and any equations a � b; c � d,
if a � b 2 Qˆ.X/, then

Qˆ.a � b/ \ Qˆ.c � d/ � Qˆ.
[

p�q2X

Qˆ.p � q/ \ Qˆ.c � d//

because one then obtains a condition which is equivalent to relative congruence-
distributivity of Q (see, e.g., Czelakowski 1985). ut
Conjecture. Let Q be a quasivariety such that the lattice Th.Qˆ/ is distributive
in the restricted sense. Let X D fxi � yi W i 2 Ig be a non-empty set of equations
of pairwise different variables and let Y be an arbitrary non-empty set of equations
of terms such that the variables occurring in the terms of Y are separated from
the variables of X, i.e., Var.X/ \ .Var.Y/ D ;. Then fQˆ.xi � yi/ W i 2 Ig [
fQˆ.p � q/ W p � q 2 Yg generates a distributive sublattice of Th.Qˆ/.
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A weaker version of the above conjecture holds for RCM quasivarieties—see
Theorem 6.3.8. ut

We recall condition (Distr)˙ from Note 5.2.17. Let Q be a quasivariety and
C WD Qeqˆ. Let x; y; z; w be finite disjoint sets of variables such that jxj D jyj D m,
jzj D jwj and let ˙ D fpi � qi W i 2 Ig be a non-empty set of equations such that

C.x � y/ D C.˙/:

Then

C.x � y/ \ C.z � w/ D C.
[

i2I

C.pi � qi/ \ C.z � w//: (Distr)˙

Corollary 5.3.3. Let Q be an arbitrary quasivariety. Suppose the lattice Th.Qeqˆ/

is distributive in the restricted sense. Then (Distr)˙ holds for any set of equations ˙ .

Note. (Distr)˙ does not directly follow from Theorem 5.3.1, because the variables
occurring in the equations of ˙ need not be separated from the variables of z and w.

ut
Proof. It suffices to prove (Distr)˙ for ˙ finite. So let

˙ D fp1 � q1; : : : ; pk � qkg

be a finite set of equations such that C.˙/ D C.x � y/ for some finite sets of
pairwise different variables x D fx1; : : : ; xmg, y D fy1; : : : ; ymg.

Let z D fz1; : : : ; zng and w D fw1; : : : ; wng be sets of different variables. We
claim that

C.x � y/ \ C.z � w/ D C.p1 � q1/ \ C.z � w/

CQ : : : CQ C.pk � qk/ \ C.z � w/: (1)

We write ˙ D fp1.x; y; u/ � q1.x; y; u/; : : : ; pk.x; y; u/ � qk.x; y; u/g, where u is
the set of variables which occur in ˙ and are different from those in x and y. (u are
parametric variables.)

We first select 2n pairwise different variables

z0 D fz0
1; : : : ; z0

ng; w0 D fw0
1; : : : ; w0

ng;

separated from x; z; u; z and w. According to Theorem 5.3.1 we have that

C.˙/ \ C.z0 � w0/ D C.p1 � q1/ \ C.z0 � w0/ CQ : : : CQ C.pk � qk/ \ C.z0 � w0/:

As C.˙/ D C.x � y/, we therefore obtain that
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C.x � y/ \ C.z0 � w0/ D
C.p1 � q1/ \ C.z0 � w0/ CQ : : : CQ C.pk � qk/ � C.z0 � w0/: (2)

Select a set of equations �mn.x; y; z0; w0; v/ such that

C.�mn.x; y; z0; w0; v// D C.x � y/ \ C.z0 � w0/: (3)

Let e W Te� ! Te� be the endomorphism such that ez0
i WD zi, ew0

i WD wi for
i D 1; : : : ; n and e is the identity map on the remaining variables. In particular, e is
the identity map on the variables of x; y; u; z; w and v. As

C.�mn.x; y; z0; w0; v// D
C.p1 � q1/ \ C.z0 � w0/ CQ : : : CQ C.pk � qk/ \ C.z0 � w0/; (4)

we see that by applying the above substitution to (4) we get

C.�mn.x; y; z; w; v// �
C.p1 � q1/ \ C.z � w/ CQ : : : CQ C.pk � qk/ \ C.z � w/;

by structurality. But C.�mn.x; y; z; w; v// D C.x � y/ \ C.z � w/. Hence

C.x � y/ \ C.z � w/ �
C.p1 � q1/ \ C.z � w/ CQ : : : CQ C.pk � qk/ \ C.z � w/: (5)

Since C.p1 � q1/ \ C.z � w/ CQ : : : CQ C.pk � qk/ \ C.z � w/ � C.˙/\
C.z � w/, the corollary follows. ut

According to Theorem 5.2.16, conditions (EqDistr)m;n and (Epi)m;n, universally
quantified over all positive integers m and n, jointly provide a necessary and
sufficient condition for the equationally defined commutator to be additive. The
crucial fact in the theory of the equationally defined commutator is that the restricted
distributivity of the lattice Th.Qˆ/ implies both (EqDistr)m;n and (Epi)m;n, for all
m; n. We shall prove these facts below.

Theorem 5.3.4. Let Q be a quasivariety such that the lattice Th.Qˆ/ is distributive
in the restricted sense. Then the lattice Th.Qˆ/ validates (EqDistr)m;n for all
positive m; n.

Proof. We put C WD Qeqˆ. The restricted distributivity implies that

.C.X1/ CQ C.X2// \ C.Y/ D C.X1/ \ C.Y/ CQ C.X2/ \ C.Y/ (�)
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for any separated sets X1; X2; Y of equations of variables.
According to Notes following Lemma 5.2.12, (�) entails the condition

.C.X1/ CQ C.X2// \ .C.Y1/ CQ C.Y2// D (��)

C.X1/ \ C.Y1/ CQ C.X1/ \ C.Y2/ CQ C.X2/ \ C.Y1/ CQ C.X2/ \ C.Y2/

for any separated sets X1; X2; Y1; Y2 of equations of variables. It is easy to see
that (��) yields (EqDistr)1. The thesis follows. ut
Note. Appendix B contains a (longer) proof of the above theorem for any RCM
quasivariety. In this proof conditions (EqDistr)m;n are directly computed. The proof
given there involves some purely syntactical techniques which are also useful in
other contexts. ut

The next step consists in showing that every quasivariety Q whose lattice
Th.Qˆ/ is distributive in the restricted sense validates (Epi)m;n, for all positive m; n.
The proof of this fact is more intricate.

Theorem 5.3.5. Let Q be any quasivariety such that the lattice Th.Qˆ/ is dis-
tributive in the restricted sense. Let X and Y be finite separated sets of equations of
pairwise different variables of Var. Then for any epimorphism e W Te� ! Te� ,

ŒQˆ.eX/; Qˆ.eY/	 D Qˆ.e.Qˆ.X/ \ Qˆ.Y///: (1)

Notes. A. By taking the e-preimage of the theories on the both sides of (1) we
obtain the equivalent equality

e�1ŒQˆ.eX/; Qˆ.eY/	 D kerQ.e/ CQ Qˆ.X/ \ Qˆ.Y/:

Theorem 5.3.5 is therefore equivalent to (Epi)1—see Corollary 5.3.6.
B. (1) cannot be replaced by the stronger identity:

Qˆ.eX/ \ Qˆ.eY/ D Qˆ.e.Qˆ.X/ \ Qˆ.Y///; (1)*

holding for all finite sets of equations of separated variables X and Y , because (1)*
implies, in the presence of .8m; n > 1/ (EqDistr)m;n, the distributivity of the
lattice Th.Qˆ/. ut
Proof (of the theorem). Write C WD Qˆ and let us assume that X D x � y, Y D
z � w, where x D fx1; : : : ; xmg, y D fy1; : : : ; ymg, z D fz1; : : : ; zng and w D
fw1; : : : ; wng for some m; n > 1. We also write

ex � ey WD fex1 � ey1; : : : ; exm � eymg and ez � ew WD fez1 � ew1; : : : ; ezn � ewng:

We must show that

ŒC.ex � ey/; C.ez � ew/	 D C.e.C.x � y/ \ C.z � w///: (2)

Passing to the e-preimages of the theories on both sides of (2), we get
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Claim 1. (2) is equivalent to

kerQ.e/ CQ ŒkerQ.e/ CQ C.x � y/; kerQ.e/ CQ C.z � w/	 D
kerQ.e/ CQ ŒC.x � y/; C.z � w/	: (3)

(see the remarks following Corollary 5.2.15).

Proof (of the claim). We apply Corollary 3.2.5 and argue as follows.
(2) ) (3). Assuming (2) we get:

kerQ.e/ CQ ŒkerQ.e/ CQ C.x � y/; kerQ.e/ CQ C.z � w/	 D
(by Corollary 3.2.5)

e�1.ŒC.ex � ey/; C.ez � ew/	/ D (by (2))

D e�1C.e.C.x � y/ \ C.z � w/// D
kerQ.e/ CQ C.x � y/ \ C.z � w/ D kerQ.e/ CQ ŒC.x � y/; C.z � w/	:

So (3) holds and therefore (2) implies (3).
(3) ) (2). Now assume (3). We then have that

e�1.ŒC.ex � ey/; C.ez � ew/	/ D (by Corollary 3.2.5)

kerQ.e/ CQ ŒkerQ.e/ CQ C.x � y/; kerQ.e/ CQ C.z � w/	 D (by (3)

kerQ.e/ CQ ŒC.x � y/; C.z � w/	 D
kerQ.e/ CQ C.x � y/ \ C.z � w/ D

e�1.C.e.C.x � y/ \ C.z � w///:

It follows from the above equalities that e�1.ŒC.ex � ey/; C.ez � ew/	/ D
e�1.C.e.C.x � y/ \ C.z � w///. Hence ŒC.ex � ey/; C.ez � ew/	/ D C.e.C.x �
y/ \ C.z � w/// which means that (2) holds.

This proves the claim. ut
Let �0.x; y; z; w; u/ be any set of equations such that

C.x � y/ \ C.z � w/ D C.�0.x; y; z; w; u//: (�)

�0 may be infinite. We recall that if u 2 Vark, where k 6 !, then

.8u/�0.ex; ey; ez; ew; u/ WD
[

f�0.x=ex; y=ey; z=ez; w=ew; u=t// W t 2 Tek
� g:
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As �0.x; y; z; w; u/ � C.x � y/ and �0.x; y; z; w; u/ � C.z � w/, struc-
turality gives that .8u/ �0.x; y; z; w; u/ � C.x � y/ \ C.z � w/. Since
C.�0.x; y; z; w; u// � C..8u/ �0.x; y; z; w; u//, it follows that C.x � y/ \ C.z �
w/ D C.�0.x; y; z; w; u// � C..8u/�0.x; y; z; w; u// � C.x � y/ \ C.z � w/.
Hence

C.x � y/ \ C.z � w/ D C..8u/�0.x; y; z; w; u//: (��)

(2) (equivalently, (3)) continues to hold if e is replaced by any other epimorphism
e0 W Te� ! Te� which agrees with e on the variables x; y; z; w because both sides
of (2) are unambiguously determined by the values of e on the variables x; y; z; w
displayed there. This remark is encapsulated in the following claim.

Claim 2. Let e0 W Te� ! Te� be an epimorphism which coincides with e on the
variables x; y; z; w. Then

ŒC.ex � ey/; C.ez � ew/	 D ŒC.e0x � e0y/; C.e0z � e0w/	

and

C.e.C.x � y/ \ C.z � w/// D C.e0.C.x � y/ \ C.z � w///:

Proof (of the claim). We obviously have ŒC.ex � ey/; C.ez � ew/	 D ŒC.e0x �
e0y/; C.e0z � e0w/	. To prove the other equality we define �0.x; y; z; w; u/ as above
and compute:

C.e.C.x � y/ \ C.z � w/// D (by (��))

C.e.C..8u/ �0.x; y; z; w; u//// D (by structurality)

C.e.8u/ �0.x; y; z; w; u// D
C..8u/ �0.ex; ey; ez; ew; u// D

C..8u/ �0.e0x; e0y; e0z; e0w; u// D
C.e0.8u/ �0.x; y; z; w; u// D

C.e0.C..8u/ �0.x; y; z; w; u//// D (by (��))

C.e0.C.x � y/ \ C.z � w///:

Consequently,

C.e.C.x � y/ \ C.z � w/// D C.e0.C.x � y/ \ C.z � w///:

This proves the claim. ut
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Thus to prove (2) (equivalently, (3)) it suffices to find at least one epimorphism
e0 W Te� ! Te� which coincides with e on the variables x; y; z; w and for which

ŒC.e0x � e0y/; C.e0z � e0w/	 D C.e0.C.x � y/ \ C.z � w///:

We shall take a closer look at (3). We write

pi.x; y; z; w; v/ WD exi; qi.x; y; z; w; v/ WD eyi for i D 1; : : : ; m; (4)

and

rj.x; y; z; w; v/ WD ezj; sj.x; y; z; w; v/ WD ewj for j D 1; : : : ; n; (5)

where v is the set of variables different from those in x; y; z, and w that may occur
in the above terms pi; qi; rj; sj (i D 1; : : : ; m, j D 1; : : : ; n).

We apply Theorem 2.21 and the remarks following the formulation of this
theorem. In view of Claim 2, we may assume that Var n x [ y [ z [ w � Ve.
(Thus e assigns a variable to each variable belonging to Var n x [ y [ z [ w; but it
may also happen that ev is a variable for some v 2 x [ y [ z [ w.) Moreover we
may assume that e is the identity map on the set of parameters v, and e bijectively
maps Ve onto Var. We therefore have that Var n Ve � x [ y [ z [ w.

Let x0
i; y0

i; z0
j; w0

j be the (unique) variables such that xi D ex0
i, yi D ey0

j, zj D ez0
j,

wj D ew0
j for i D 1; : : : ; m, j D 1; : : : ; n. They are pairwise different. In view of

Claim 2 we may also assume, without loss of generality, that all x0
i; y0

i; z0
j; w0

j are also
different from x [ y [ z [ w. We write:

x0 WD fx0
1; : : : ; x0

mg; y0 WD fy0
1; : : : ; y0

mg; z0 WD fz0
1; : : : ; z0

mg; w0 WD fw0
1; : : : ; w0

mg:

We also define:

p0
i WD pi.x

0; y0; z0; w0; v/; q0
i WD qi.x

0; y0; z0; w0; v/;

r0
j WD rj.x

0; y0; z0; w0; v/; s0
j WD sj.x

0; y0; z0; w0; v/;

for i D 1; : : : ; m, j D 1; : : : ; n. (The above terms are thus obtained by making
appropriate substitutions in the terms pi; qi; rj; sj (for i D 1; : : : ; m, j D 1; : : : ; n),
viz., replacing the variables x by x0, y by y0 etc.) Thus p0

i; q0
i; r0

j and s0
j are terms in the

variables in Ve for which

exi D ep0
i; eyi D eq0

i; ezj D er0
j ; ewj D es0

j

for i D 1; : : : ; m, j D 1; : : : ; n. (Here “D” means the identity of terms.)
We also put:

p WD hp1.x; y; z; w; v/; : : : ; pm.x; y; z; w; v/i;
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q WD hq1.x; y; z; w; v/; : : : ; qm.x; y; z; w; v/i;
r WD hr1.x; y; z; w; v/; : : : ; rn.x; y; z; w; v/i;
s WD hs1.x; y; z; w; v/; : : : ; sn.x; y; z; w; v/i;

p0 WD hp1.x0; y0; z0; w0; v0/; : : : ; pm.x0; y0; z0; w0; v0/i;
q0 WD hq1.x0; y0; z0; w0; v0/; : : : ; qm.x0; y0; z0; w0; v0/i;
r0 WD hr1.x0; y0; z0; w0; v0/; : : : ; rn.x0; y0; z0; w0; v0/i;
s0 WD hs1.x0; y0; z0; w0; v0/; : : : ; sn.x0; y0; z0; w0; v0/i:

It may happen that some terms occurring in the concatenation of the sequence
p; q; r; s repeat. It therefore follows from Theorem 2.21 that kerQ.e/ is generated by

A0 D fxi � pi.x
0; y0; z0; w0; v/; yi � qi.x

0; y0; z0; w0; v/ W i D 1; : : : ; mg[
fzj � rj.x

0; y0; z0; w0; v/; wj � sj.x
0; y0; z0; w0; v/ W j D 1; : : : ; ng[

fx00 � y00 W x00; y00 2 x [ y [ z [ w and the terms ex00 and ey00

(among those in p; q; r; s) are identicalg: (6)

i.e.,

kerQ.e/ D C.A0/; (7)

(The set fx00 � y00 W x00; y00 2 x [ y [ z [ w and the terms ex00 and ey00 are identicalg
may contain only trivial equations.) Thus

kerQ.e/ D P CQ R; (8)

where

P WD C.fxi � pi.x
0; y0; z0; w0; v/; yi � qi.x

0; y0; z0; w0; v/ W i D 1; : : : ; mg[ (9)

fzj � rj.x
0; y0; z0; w0; v/; wj � sj.x

0; y0; z0; w0; v/ W j D 1; : : : ; ng/ and

R WD C.fx00 � y00 W x00; y00 2 x [ y [ z [ w and the terms ex00 and ey00

among those in p; q; r; s are identicalg/:

In virtue of (8) we see that to prove (3) it suffices to show that
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kerQ.e/ CQ ŒP CQ C.x � y/ CQ R; P CQ C.z � w/ CQ R	 D
P CQ C.x � y/ \ C.z � w/ CQ R: (10)

But

P CQ C.x � y/ D P CQ C.p0 � q0/ and P CQ C.z � w/ D P CQ C.r0 � s0/:

We may therefore rewrite (10) as

kerQ.e/ CQ ŒP CQ C.p0 � q0/ CQ R; P CQ C.r0 � s0/ CQ R	 D
P CQ C.x � y/ \ C.z � w/ CQ R;

that is,

kerQ.e/ CQ ŒkerQ.e/ CQ C.p0 � q0/; kerQ.e/ CQ C.r0 � s0/	 D
kerQ.e/ CQ C.x � y/ \ C.z � w/: (11)

We recall that �0.x; y; z; w; u/ is the set of equations defined in (�) above. Thus (��)
holds. We then proceed as follows. e is the identity map on the set of parameters v.
As the assignment xi ! x0

i, yi ! y0
j, zj ! z0

j, wj ! w0
j for i D 1; : : : ; m, j D 1; : : : ; n,

is well-defined and one-to-one, we extend it to a choice function g from Var to the
family fu0 2 Var W eu0 D ug W u 2 Varg so that gu 2 fu0 2 Var W eu0 D ug, for all
u 2 Var and g is the identity map on v. Let V WD gŒVar	 and let T be the subalgebra
of Te� generated by the variables of V (see Section 3.3). Since x [ y [ z [ w [ u0 is
a subset of V , the terms of p0; q0; r0; s0 belong to the term algebra T generated by V .
Theorem 3.3.5 applies to this situation and it implies that the LHS of (11) is equal
to kerQ.e/ CQ ŒC.p0 � q0/; C.r0 � s0/	. Thus (11) is equivalent to

kerQ.e/ CQ ŒC.p0 � q0/; C.r0 � s0/	 D kerQ.e/ CQ C.x � y/ \ C.z � w/: (12)

But the inclusion “�” in (12) is immediate because:

kerQ.e/ CQ ŒC.p0 � q0/; C.r0 � s0/	 D
P CQ R CQ ŒC.p0 � q0/; C.r0 � s0/	 �

P CQ R CQ C..8u/ �0.p0; q0; r0; s0; u// �
P CQ C..8u/ �0.p0; q0; r0; s0; u// �

C..8u/ �0.x; y; z; w// D C.x � y/ \ C.z � w/;
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by the definition of P. We thus see that (12) is equivalent to the inclusion:

ŒC.p0 � q0/; C.r0 � s0/	 � kerQ.e/ CQ C.x � y/ \ C.z � w/;

i.e.,

ŒC.p0 � q0/; C.r0 � s0/	 � P CQ C.x � y/ \ C.z � w/ CQ R: (13)

Once we show (13), our theorem will be proved. To show (13), it suffices to check
that C.p0 � q0/ centralizes C.r0 � s0/ relative the theory T WD P CQ C.x � y/

\ C.z � w/ in the sense of the centralization relation Z4;com, defined as in
Chapter 2 (see Corollary 5.2.14). Z4;com is the centralization relation in the sense of
quaternary commutator equations of Q (see Chapter 1). (13) then follows, because,
by definition, the equationally defined commutator ŒC.p0 � q0/; C.r0 � s0/	 is the
least equational theory ˙ of C such that C.p0 � q0/ centralizes C.r0 � s0/ relative
to ˙ in the sense Zcom and hence in the sense of Z4;com, by Corollary 5.2.15. As the
theory T is included in kerQ.e/ CQ C.x � y/ \ C.z � w/, (13) will follow. The
following lemma elaborates this idea.

Lemma. Let

A WD C.p0 � q0/; B WD C.r0 � s0/:

T WD C.x � p0; y � q0; z � r0; w � s0/ CQ C.x � y/ \ C.z � w/:

Then Z4;com.A; BI T/.

Proof (of the lemma).

Claim A. Suppose that a; b; c; d are arbitrary sequences of terms such that

a � b 2 C.p0 � q0/ and c � d 2 C.r0 � s0/; (14)

where a � b D ha1 � b1; : : : ; am � bmi and c � d D hc1 � d1; : : : ; cn � dni.
Then

C..8u/ �0.a; b; c; d; u// � T: (15)

Proof (of the claim). Let

Y WD fx � p0g [ fy � q0g and Z WD fz � r0g [ fw � s0g:

The first conjunct of (14) gives that

a � b 2 C.p0 � q0/ � C.Y/ CQ C.x � y/:
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Hence

C.a � b/ � C.Y/ CQ C.x � y/: (16)

As the variables z and w are separated from the variables occurring in Y [ x � y,
we apply Theorem 5.3.1 to the theory C.Y/ CQ C.x � y/. (16) then yields that

C..8u/ �0.a; b; z; w; u// � C.a � b/ \ C.z � w/ �
.C.Y/ CQ C.x � y// \ C.z � w/ D (by Theorem 5.3.1)

C.Y/ \ C.z � w/ CQ C.x � y/ \ C.z � w/ D
C.Y/ \ C.z � w/ CQ C..8u/ �0.x; y; z; w; u// �

C.Y/ CQ C..8u/ �0.x; y; z; w; u//:

Hence

C..8u/ �0.a; b; z; w; u// � C.Y/ CQ C..8u/ �0.x; y; z; w; u//: (17)

By applying the substitution z=c, w=d to (17), we get

C..8u/ �0.a; b; c; d; u// � C.Y/ CQ C..8u/ �0.x; y; c; d; u//; (18)

by structurality.
In turn, the second conjunct of (15) gives that

c � d 2 C.r0 � s0/ � C.Z/ CQ C.z � w/:

Hence

C.c � d/ � C.Z/ CQ C.z � w/: (19)

As x and y are separated from the variables occurring in Z [ z � w, we again apply
Theorem 5.3.1 but this time to the theory C.Z/ CQ C.z � w/. (19) then yields that:

C..8u/ �0.x; y; c; d; u// � C.c � d/ \ C.x � y/ �
.C.Z/ CQ C.z � w// \ C.x � y/ D (by Theorem 5.3.1)

C.Z/ \ C.x � y/ CQ C.z � w/ \ C.x � y/ D
C.Z/ \ C.x � y/ CQ C..8u/ �0.x; y; z; w; u// �

C.Z/ CQ C..8u/ �0.x; y; z; w; u//:
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Hence

C..8u/ �0.x; y; c; d; u// � C.Z/ CQ C..8u/ �0.x; y; z; w; u//: (20)

Combining (18) and (20) we get that

C..8u/ �0.a; b; c; d; u// � C.Y/ CQ C..8u/ �0.x; y; c; d; u// �
C.Y/ CQ C.Z/ CQ C..8u/ �0.x; y; z; w; u// D
C.Y/ CQ C.Z/ CQ C.x � y/ \ C.z � w/ D T:

Thus C..8u/ �0.a; b; c; d; u// � T . As T � kerQ.e/ CQ C.x � y/ \ C.z � w/, the
claim follows. ut
Claim B. Z4;com.A; BI T/.

Proof. Let x; y; z; w be four distinct variables and let �0.x; y; z; w; u0/ be a set of
equations such that C.x � y/ \ C.z � w/ D C..8u0/ �0.x; y; z; w; u0//.

To prove the claim, we apply Corollary 5.2.14. We then have:

ŒA; B	 D
ŒC.p0 � q0/; C.r0 � s0/	 D C.

[
f.8u0/ �0.a; b; c; d; u0/ W

a � b 2 C.p0 � q0/ and c � d 2 C.r0 � s0/g/:

As C.x � y/ \ C.z � w/ D C..8u0/ �0.x; y; z; w; u0//, the fact Z4;com.A; BI T/ will
be proved once we show that

.8u0/ �0.a; b; c; d; u0/ � T whenever

a � b 2 C.p0 � q0/ and c � d 2 C.r0 � s0/: (21)

As Q validates (EqDistr)m;n (by Theorem 5.3.5), we also have that

C..8u/ �0.x; y; z; w; u// D C.
[

16i6m;16j6n

.8u0/ �0.xi; yi; zj; wj; u0//: (22)

To show (21), assume a � b 2 C.p0 � q0/ and c � d 2 C.r0 � s0/. Let

a WD ha; : : : ; ai; b WD hb; : : : ; bi; (a and b repeated m times)

c WD hc; : : : ; ci; d WD hd; : : : ; di; (c and d repeated n times).
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As a � b 2 C.p0 � q0/ and c � d 2 C.r0 � s0/, Claim A gives that

C..8u/ �0.a; b; c; d; u// � T:

But (22) and the structurality of C give that

C..8u0/ �0.a; b; c; d; u0// D C..8u/ �0.a; b; c; d; u//:

It then follows that C..8u0/ �0.a; b; c; d; u0// � T . So Claim B holds. ut
The lemma has been proved. This concludes the proof of the theorem. ut

Corollary 5.3.6. Let Q be a quasivariety such that Th.Qˆ/ is distributive in the
restricted sense. Then Th.Qˆ/ validates (Epi)m;n, for all positive m, n.

Proof. Let X and Y be separated finite sets of equations of individual variables and
e W Te� ! Te� an epimorphism. Put: C WD Qˆ.

According to the above theorem, we have that

ŒC.eX/; C.eY/	 D C.e.C.X/ \ C.Y///:

Taking the e-preimages of both sides we get that

e�1.ŒC.eX/; C.eY/	/ D e�1.C.e.C.X/ \ C.Y//// D kerQ.e/ CQ C.X/ \ C.Y/:

Hence

kerQ.e/ CQ C.X/ \ C.Y/ D e�1.ŒC.eX/; C.eY/	/

So (Epi)m;n holds for all positive m; n. ut
We thus arrive at the crucial result of this book:

Theorem 5.3.7. Let Q be a quasivariety such that the lattice Th.Qˆ/ is distributive
in the restricted sense. The equationally defined commutator for Q is additive.

Proof. The thesis directly follows from Theorem 5.3.4, Corollary 5.3.6 and Theo-
rem 5.2.16. ut

The question as to whether the additivity of the equationally defined commutator
for Q is essentially weaker than the restricted distributivity of Th.Qˆ/ appears to
be open. In other words, we ask if there is an example of a quasivariety Q whose
equationally defined commutator is additive but where the lattice Th.Qˆ/ is not
distributive in the restricted sense.

In the next chapter we shall show that for every relatively congruence-modular
quasivariety Q, the lattice Th.Qˆ/ is distributive in the restricted sense. From
this fact and Theorem 5.3.7 we shall immediately get that for every relatively
congruence-modular quasivariety the equationally defined commutator is additive.
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We close this section with a comparison of the properties of the commutator
Œ˚; �	edc.Va.Q// with those of the commutator Œ˚; �	edc.Q/ for ˚; � 2 ConQ.A/ in
any algebra A—see Section 3.1, Definition 3.1.10. We first pose the following:

Problem. Suppose that the equationally defined commutator for Q is additive. Let
˚ and � be Q-congruences of � -algebra A. Is it true that Œ˚; �	edc.Va.Q// is a Q-
congruence?

Leaving aside the problem, we shall just prove the Extension Principle for the
Equationally defined Commutator here.

Theorem 5.3.8. Let Q be a quasivariety whose equationally defined commutator is
additive. Then for any algebra A 2 Va.Q/ and any congruences ˚; � 2 Con.A/,

�A
Q.Œ˚; �	edc.Va.Q/// D Œ�A

Q.˚/; �A
Q.�/	edc.Q/:

Proof. We shall first prove the above theorem for principal congruences:

Lemma 5.3.9. Let A 2 Va.Q/ and a; b; c; d 2 A. Then

Œ�A
Q.a; b/; �A

Q.c; d/	edc.Q/ D �A
Q.Œ�.a; b/; �.c; d/	edc.Va.Q///:

Proof. The inclusion “�” is immediate because �A
Q.a; b/ � �.a; b/, �A

Q.c; d/ �
�.c; d/ and hence

Œ�A
Q.a; b/; �A

Q.c; d/	edc.Q/ D �A
Q.Œ�A

Q.a; b/; �A
Q.c; d/	edc.Va.Q/// �

�A
Q.Œ�.a; b/; �.c; d/	edc.Va.Q///;

by the monotonicity of Œ 
 	edc.Va.Q//.
To prove the reverse inclusion, suppose that �.x; y; z; w; u/ is a generating set for

the equationally defined commutator of Q. As Œ 
 	edc.Q/ is additive on Q-congruences
of the algebras of Va.Q/, we have that

Œ�A
Q.a; b/; �A

Q.c; d/	edc.Q/ D �A
Q.
[

f.8e/ �.a; b; c; d; e/ W e 2 Akg/

in the lattice ConQ.A/. We must therefore show that

�A
Q.
[

f.8e/ �.a; b; c; d; e/ W e 2 Akg/ � �A
Q.Œ�.a; b/; �.c; d/	edc.Va.Q///:

To prove the above inclusion it suffices to show that

hp.a; b; c; d; e/; q.a; b; c; d; e/i 2 Œ�.a; b/; �.c; d/	edc.Va.Q//; (�)

for all p � q 2 �.x; y; z; w; u/ and all sequences e of elements of A.
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Fix p � q and e. We have:

p.a; a; c; d; e/ � p.a; b; c; d; e/ .mod �.a; b// (1)

q.a; b; c; c; e/ � q.a; b; c; d; e/ .mod �.c; d// (2)

Since p � q is a commutator equation for Va.Q/ and A 2 Va.Q/, we also have that

p.a; a; c; d; e/ D q.a; a; c; d; e/ (3)

and

p.a; b; c; c; e/ D q.a; b; c; c; e/: (4)

(1) and (3) imply that

p.a; b; c; d; e/ � q.a; a; c; d; e/ .mod �.a; b//: (5)

In turn, (2) and (4) give that

q.a; b; c; d; e/ � p.a; b; c; c; e/ .mod �.c; d//: (6)

But trivially,

q.a; a; c; d; e/ � q.a; b; c; d; e/ .mod �.a; b// (7)

and

p.a; b; c; d; e/ � p.a; b; c; c; e/ .mod �.c; d//: (8)

(5) and (7) imply that

p.a; b; c; d; e/ � q.a; b; c; d; e/ .mod �.a; b//;

while (6) and (8) give that

p.a; b; c; d; e/ � q.a; b; c; d; e/ .mod �.c; d//:

Hence

p.a; b; c; d; e/ � q.a; b; c; d; e/ .mod Œ�.a; b/; �.c; d/	edc.Va.Q///;

by the definition of Œ�.a; b/; �.c; d/	edc.Va.Q//. So (�) holds.
This proves the lemma. ut
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We pass to the proof of the theorem. The inclusion

�A
Q.Œ˚; �	edc.Va.Q/// � Œ�A

Q.˚/; �A
Q.�/	edc.Q/

is immediate. To prove the opposite inclusion, we argue as follows.

Œ�A
Q.˚/; �A

Q.�/	edc.Q/ D (by the additivity of Œ 
 	edc.Q/)

sup Q.
[

fŒ�A
Q.a; b/; �A

Q.c; d/	edc.Q/ W ha; bi 2 ˚; hc; di 2 �g/ D
(by the lemma)

�A
Q.
[

f�A
Q.Œ�.a; b/; �.c; d/	edc.Va.Q/// W ha; bi 2 ˚; hc; di 2 �g/ D

�A
Q.
[

fŒ�.a; b/; �.c; d/	edc.Va.Q/// W ha; bi 2 ˚; hc; di 2 �g/ D

�A
Q.�A.

[
fŒ�.a; b/; �.c; d/	edc.Va.Q/// W ha; bi 2 ˚; hc; di 2 �g/ �

�A
Q.Œ˚; �	edc.Va.Q///:

This concludes the proof of the theorem. ut

5.4 Semilattices and Restricted Distributivity

Let S be the variety of semilattices. Each semilattice is endowed with a single binary
operation 
 that is idempotent, commutative, and associative. S is minimal and it is
not congruence-modular.

Theorem 5.4.1. Let S be the variety of semilattices. The lattice Th.Sˆ/ obeys the
law of distributivity in the restricted sense.

Proof. We shall sketch the idea of the proof. Hereafter the term ‘term’ refers to any
term in the signature of S. We shall use simplified notation and for any terms p; q
we write pq instead .p 
 q/ omitting the dot 
 and parentheses as much as possible.
In particular we write x1x2 in place of .x1 
 x2/. By a block of variables we shall
mean any term of the form .: : : .x1x2/ : : : xn/, where x1; x2; : : : ; xn is a sequence
(without repetitions) of pairwise different variables. Thus, if � is a permutation of
the set f1; : : : ; ng, then .: : : .x�.1/x�.2// : : : x�.n// is also a block. It is clear that for
any term t D t.x1; x2; : : : ; xn/, where all variables of t are displayed, the equality
t.x1; x2; : : : ; xn/ � .: : : .x1x2/ : : : xn/ is valid in S, that is, every term is ‘equivalent’
to a block.

To simplify matters we assume that 2 is the two-element meet-semilattice. (This
assumption is not restrictive—we could work with 2 treated as a join-semilattice as
well. But then in the proofs we present below one should replace 0 by 1 and 1 by 0.)



150 5 Additivity of the Equationally-Defined Commutator

Lemma 1. Let s1 and s2 be arbitrary terms. Then s1 � s2 is valid in S if and only
if Var.s1/ D Var.s2/.

Proof. Immediate – use 2. ut
We put: C WD Sˆ.

Lemma 2. Let x and y be different variables and p � q 2 C.x � y/. If p � q is not
in C.;/, then there is (a possibly empty) block of variables a not containing x and y
such that

either C.p � q/ D C.xa � ya/ or C.p � q/ D C.xa � yxa/

or C.p � q/ D C.xya � ya/:

Proof (of the claim). We first note that for an arbitrary block of variables a not
containing x and y we have that

xa � ya 2 C.x � y/; xa � yxa 2 C.x � y/; xya � ya 2 C.x � y/:

The claim shows that up to deductive equivalence with respect to C these are the
only possible cases.

As p � q 62 C.;/, we have that Var.p/ 6D Var.q/. We first show

fx; yg 6� Var.p/ \ Var.q/: (a)

Suppose that fx; yg � Var.p/ \ Var.q/. Hence we may write that p and q are of
the form xya and xyb, where a and b are blocks of variables not containing x and y.
As xya � xyb 2 C.x � y/, we get that xxa � xxb is valid in S. Hence xa � xb
is also valid in S, by idempotency. It follows that a and b are blocks of the same
variables (i.e., a and b are equal up to a permutation of variables). Consequently,
C.p � q/ D C.xya � xya/. Hence p � q 2 C.;/. A contradiction.

fx; yg \ .Var.p/ [ Var.q// 6D ;: (b)

Suppose that fx; yg \ .Var.p/ [ Var.q// D ;. Hence neither x nor y occurs in
p and q. As p � q 62 C.;/, there is an assignment h in a semilattice A such that
hp 6D hq. Since the sets of variables fx; yg and Var.p/ [ Var.q/ are disjoint, we
may at the same time assume that hx D hy. It follows that p � q 62 C.x � y/. A
contradiction.

fx; yg � Var.p/; Var.q/ contains exactly one variable from fx; yg or (c)

fx; yg � Var.q/; Var.p/ contains exactly one variable from fx; yg or

both Var.p/; Var.q/ contain exactly one (but not the same) variable

from fx; yg:
In view of (a) and (b), to prove (c) it suffices to exclude the following four cases:
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fx; yg � Var.p/; fx; yg \ Var.q/ D ;; (d1)

fx; yg � Var.q/; fx; yg \ Var.p/ D ;; (d2)

Var.p/ \ fx; yg is a singleton, fx; yg \ Var.q/ D ;; (d3)

Var.q/ \ fx; yg is a singleton, fx; yg \ Var.p/ D ;: (d4)

As to (d1), suppose fx; yg � Var.p/, fx; yg \ Var.q/ D ;. Hence there are blocks
of variables a and b not containing x and y such that C.p � q/ D C.xya � b/.
As p � q 2 C.x � y/, we therefore get that xya � b 2 C.x � y/. Let us
take an assignment h in the two-element semilattice 2 such that ha D hb D 1 and
hx D hy D 0. Then hxya D 0. As hb D 1, it follows that xya � b 62 C.x � y/. A
contradiction.

(d2) is proved similarly.
As to (d3), suppose first that x 2 Var.p/, y 62 Var.p/ and fx; yg \ Var.q/ D ;.

Hence there are blocks of variables a and b not containing x and y such that C.p �
q/ D C.xa � b/. As p � q 2 C.x � y/, we get that xa � b 2 C.x � y/. Let
h be an assignment in the two-element semilattice 2 such that ha D hb D 1 and
hx D hy D 0. Then hxa D 0. As hb D 1, it follows that xa � b 62 C.x � y/. A
contradiction.

The case when x 62 Var.p/, y 2 Var.p/ and fx; yg \ Var.q/ D ; is similarly
handled.

(d4) is left as an exercise.
From (a), (b), (c) the claim follows. Indeed, assume first that fx; yg � Var.p/ and

Var.q/ contains exactly one variable from fx; yg, say x. Then C.p�q/DC.xya�xb/

for some blocks of variables a and b not containing x and y. We then have that
xya � xb 2 C.x � y/. Substituting x for y we therefore get that xxa � xb 2 C.;/.
Hence xa � xb 2 C.;/. It follows that the blocs a and b contain the same variables.
So without loss of generality we may assume that they are identical. We therefore
have that C.p � q/ D C.xya � xa/.

The other cases are handled in a similar way. They all yield one of the cases
of the statement of the claim. For instance, let us also check the last case when
both Var.p/ and Var.q/ contain exactly one (but not the same) variable from fx; yg.
In this situation C.p � q/ D C.xa � yb/ for some blocks a and b not containing
x and y. As xa � yb 2 C.x � y/, we get that xa � xb 2 C.;/. From this it
follows that a and b contain the same variables. Hence a � b 2 C.;/. Consequently,
C.p � q/ D C.xa � ya/. ut
Lemma 3. Let X be any finite set of equations of terms and let Y be any finite set
of equations of variables separated from X, that is, Var.X/ \ Var.Y/ D ;. Then
C.X/ \ C.Y/ D C.;/.

Proof. The lemma is reformulated as the statement:

Let m and n be arbitrary positive integers. For any sequences of terms
p

m
D p1; : : : ; pm, q

m
D q1; : : : ; qm and any sequences xn D x1; : : : ; xn,
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y
n

D y1; : : : ; yn of pairwise different individual variables separated from the
variables occurring in the terms of p

m
and q

m
,

(T)m;n C.p
m

� q
m
/ \ C.xn � y

n
/ D C.;/:

Proof. We prove (T)m;n by double induction on m and n.

Claim 1. (T)m;1 holds for all m.

Proof (of the claim). Fix m > 1 and let p
m

D p1; : : : ; pm, q
m

D q1; : : : ; qm be
sequences of terms. Let x and y be two variables separated from the variables of p

m
and q

m
. To prove (T)m;1 suppose by way of contradiction that r � s 2 C.p

m
� q

m
/

\C.x � y/ but r � s 62 C.;/. As r � s 2 C.x � y/, Lemma 2 applies. We therefore
consider three cases.

Case 1. C.p � q/ D C.xa � ya/.

So we have xa � ya 2 C.p
m

� q
m
/. As x and y do not occur in a, p

m
and

q
m

, we take an assignment h in 2 such that hx D 1, hy D 0 and ha D hp1 D
: : : D hpm D hq1 D : : : D hqm D 1. As hxa D 1 and hya D 0, we see that
xa � ya 62 C.p

m
� q

m
/. A contradiction.

Case 2. C.p � q/ D C.xa � yxa/.

Then we have that xa � yxa 2 C.p
m

� q
m
/. Taking an assignment h in 2 such

that hx D 1, hy D 1 and ha D hp1 D : : : D hpm D hq1 D : : : D hqm D 1, we get
that hxa D 1 and hyxa D 0. Hence xa � yxa 62 C.p

m
� q

m
/. A contradiction.

Case 3. C.p � q/ D C.xya � ya/.

Then xya � ya 2 C.p
m

� q
m
/. Then taking an assignment h in 2 such that

hx D 0, hy D 1 and ha D hp1 D : : : D hpm D hq1 D : : : D hqm D 1, we get that
hxya D 0 and hya D 1. It follows that xa � yxa 62 C.p

m
� q

m
/. A contradiction.

This proves the claim. ut
Claim 2. Fix m. Then (T)m;n holds for all n.

Proof. This is proved by induction on n. The case n D 1 is established by Claim 1.
Fix n > 1 and assume (T)m;n. We shall prove (T)m;nC1. Fix terms p

m
D p1; : : : ; pm,

q
m

D q1; : : : ; qm and variables xn D x1; : : : ; xn, y
n

D y1; : : : ; yn and let x and y
be two new variables separated from the variables of p

m
and q

m
. We claim that

C.p
m

� q
m
/ \ C.xn � y

n
; x � y/ D C.;/. Assume r � s 2 C.p

m
� q

m
/ \

C.xn � y
n
; x � y/ and suppose r � s is not in C.;/. Let e be a substitution

such that ex D x, ey D x and e is the identity map on the remaining variables.
Then er �es 2 C.ep

m
�eq

m
/ \ C.xn �y

n
/ D C.p

m
� q

m
/ \ C.xn � y

n
/ D C.;/,

because e is the identity map on the variables of p
m

� q
m

and by (T)m;n. Hence
er � es 2 C.;/, i.e., r � s 2 kerS.e/. But from the definition of e and Theorem 2.21
it follows that kerS.e/ D C.x�y/. Thus r � s 2 C.x�y/. As r � s 2 C.p

m
� q

m
/,

we therefore get that r � s 2 C.p
m

� q
m
/ \ C.x � y/. But as the variables x
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and y are separated from the variables of p
m

and q
m

, (T)m;1 yields that C.p
m

�
q

m
/ \ C.x \ y/ D C.;/. So r � s 2 C.;/. A contradiction. ut
From Claims 1–2 the lemma follows. ut
The above lemma implies the theorem. For let X D fxi � yi W i 2 Ig, where

xi; yi, i 2 I, are pairwise different individual variables. Let Y and Z be arbitrary
sets of equations of terms such that the variables occurring in the terms of Y [ Z
are separated from the variables of X. Then Lemma 3 gives that C.X/ \ .C.Y/ CQ

C.Z// D C.;/, C.X/ \ C.Y/ D C.;/ and C.X/ \ C.Z/ D C.;/. Hence

C.X/ \ C.Y/ CQ C.X/ \ C.Z/ D C.X/ \ .C.Y/ CQ C.Z//;

which means that Th.Sˆ/ validates the restricted distributivity. ut
The above Lemma 3 shows that the law of restricted distributivity of Th.Sˆ/

trivializes because its constituents are equal to the theory C.;/. This fact also
implies:

Corollary 5.4.2. The equationally defined commutator for the variety of semilat-
tices S is the zero commutator: for every semilattice A and any two congruences
˚; � 2 Con.A/, Œ˚; �	edc.S/ D 0A.

Proof. This follows from the fact that for any positive integers m and n and any
sequences of pairwise distinct individual variables x D x1; : : : ; xm, y D y1; : : : ; ym

and z D z1; : : : ; zn, w D w1; : : : ; wn it is the case that

Sˆ.x � y/ \ Sˆ.z � w/ D Sˆ.;/:

This is a particular case of Lemma 3. Thus the set of commutator equations for S
reduces to the identities of S. ut

5.5 A Characterization of the Equationally-Defined
Commutator

The following theorem states that if the equationally defined commutator is additive,
then it is the largest one among all additive operations defined in the lattices of
relative congruences and satisfying (C2):

Theorem 5.5.1. Let Q be a quasivariety of algebras whose equationally defined
commutator is additive. Suppose that � is a binary operation defined in the lattices
ConQ.A/, A 2 Q, such that for any algebra A 2 Q, � satisfies

(C1)� ˚ �A � � ˚ \ � ,
(C2)� ˚ �A sup Q.X/ D sup Qf˚ �A � W � 2 Xg,

for any ˚; � 2 ConQ.A/ and any set X � ConQ.A/.
If, furthermore, � satisfies
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(C3)� If h W A ! B is a surjective homomorphism between Q-algebras and
˚; � 2 ConQ.A/, then

ker.h/ CQ .˚ �A �/ D h�1.h˚ �A h�/;

then the operation � is included in the equationally defined commutator, i.e.,
˚ � � � Œ˚; �	A, for any A 2 Q and any ˚; � 2 ConQ.A/.

(In (C1)� the supremum is taken in the lattice ConQ.A/. (C1)� and (C2)� are the
�-counterparts of (C1) and (C2) for the equationally defined commutator.)

To prove the theorem, one repeats the reasoning carried out for the equationally
defined commutator in Section 3.1. One first selects four distinct variables x; y; z; w
and defines �0.x; y; z; w; u/ to be any set of equations such that Qˆ.�0/ D
Qˆ.x � y/ � Qˆ.z � w/. (The definition of � makes sense in the lattice of
equational theories of Qˆ as well. But �0 need not be a generating set for the
equationally defined commutator of Q.)

(C0)� implies that Qˆ.�0/ � Qˆ.x � y/ \ Qˆ.z � w/, i.e., �0 is a set of
quaternary commutator equations of Q. In turn, (C1)� and (C2)� imply that

For every algebra A 2 Q and for every pair of sets X; Y � A2;

�A
Q.X/ �A �A

Q.Y/ D �A
Q.
[

f.8e/ �A
0 .a; b; c; d; e/ W ha; bi 2 X; hc; di 2 Yg/: (a)

(Argue as in the (1) ) (2)-part of the proof of Theorem 5.1.2.)
(a) and the fact that the equationally defined commutator of Q is additive imply

that

For every algebra A 2 Q and for every pair of sets X; Y 2 A2;

�A
Q.X/ �A �A

Q.Y/ � Œ�A
Q.X/; �A

Q.Y/	A; (b)

because �0 is a set of quaternary commutator equations.
(b) readily implies that ˚ �A � � Œ˚; �	A, for any A 2 Q and any ˚; � 2

ConQ.A/. ut



Chapter 6
Modularity and Related Topics

6.1 Relative Congruence-Modularity and the
Equationally-Defined Commutator

Definition 6.1.1. A lattice L D .L; ^; _/ is modular if it satisfies the following
modularity identity:

.x ^ z/ _ .y ^ z/ � z ^ .x _ .y ^ z// (M)

or, equivalently, it satisfies the dual identity

.x _ z/ ^ .y _ z/ � z _ .x ^ .y _ z//: (M)d

It is easy to see that L is modular if and only if the following implication is true
in L:

z 6 x ! z _ .x ^ y/ � x ^ .y _ z/: ut (M)0

A quasivariety Q of algebras is called relatively congruence-modular (RCM, for
short) if, for any algebra A 2 Q, the lattice ConQ.A/ is modular.

One can prove that Q is RCM if and only if the lattice of Q-congruences on the
free algebra in Q with ! free generators FQ.!/ is modular.

A lattice L is distributive it satisfies the following distributivity identity

.x ^ z/ _ .y ^ z/ � .x _ y/ ^ z (D)

or, equivalently, it satisfies the dual identity

.x _ z/ ^ .y _ z/ � .x ^ y/ _ z: (D)d
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A quasivariety Q of algebras is called relatively congruence-distributive (abbre-
viated RCD) if, for any algebra A 2 Q, the lattice ConQ.A/ is distributive.

Q is RCD if and only if the lattice of Q-congruences on the free algebra FQ.!/

is distributive.
Examples of congruence-modular varieties: any variety of groups, any variety

of rings, any variety of equivalence algebras (see Section 6.4). More generally, any
point-regular variety is congruence-modular. Any congruence-permutable variety is
also congruence-modular.

General fact due to Kearnes and McKenzie (1992): If Q is a locally finite, RCM
subquasivariety of a semisimple congruence-modular variety, then Q is a variety.

Examples of relatively congruence-modular quasivarieties. According to
Kearnes and McKenzie (1992), every RCM quasivariety of semigroups satisfies the
cancellation laws: xy � xz ! y � z and a non-trivial equation. Conversely, any
quasivariety of semigroups axiomatized by the cancellation laws and a non-trivial
equation is RCM. ut

The following theorem, already mentioned in this book, is a non-trivial result in
the theory of the commutator.

Theorem 6.1.2 (Kearnes and McKenzie (1992)). Let Q be an RCM quasivariety
of algebras. Then, for every algebra A 2 Q, the commutator in the sense of Kearnes
and McKenzie satisfies conditions (C1) and (C2) on the lattice ConQ.A/. ut

We recall that conditions (C1) and (C2) have been defined in Section 5.1.
But according to Theorem 4.1.12, for any RCM quasivariety the Kearnes-

McKenzie and equationally defined commutators coincide. We thus have:

Corollary 6.1.3. Let Q be an RCM quasivariety of algebras. For any algebra
A 2 Q, the equationally defined commutator is additive on the lattice ConQ.A/. ut
Open Problem Suppose that a quasivariety Q has the relative shifting property
and the equationally defined commutator for Q satisfies (C1). Is Q an RCM
quasivariety?

It is easy to see that (C1) alone does not imply relative congruence-modularity.
For, let � be the empty signature (no operation symbols). Let us take Birkhoff’s logic
B� (see remarks placed in Section 5.3). Its models coincide with “bare” non-empty
sets (no operations on them) with equivalence relations as congruences. B� has the
zero equational commutator—the equationally defined commutator Œ˚; �	A of any
two equivalence relations is the identity relation in A. Trivially, the commutator
satisfies (C1). But the class of lattices of equivalence relations on all sets does not
satisfy a non-trivial lattice-theoretic identity. It follows that B� is not congruence-
modular.

The above variety fails to have the shifting property because otherwise it would
be congruence-modular, which is excluded.

Corollary 6.1.3 is a consequence of the fact that for any RCM quasivariety Q,
the equationally defined commutator and the commutator in the sense of Kearnes-
McKenzie coincide (Theorem 4.1.12). Hence the former is additive because the
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latter has this property. But the proof of Theorem 4.1.12 is indirect because it
makes heavy use of the results from the theory of centralization relations presented
in Chapter 4.

The rest of this section is devoted to a direct proof of the fact that, for any RCM
quasivariety, the equationally defined commutator is additive, without resort to the
theory of Kearnes and McKenzie.

We begin with the following simple observations concerning modular lattices.
Let x; x1; : : : ; xn; : : : be an infinite sequence of pairwise distinct individual

variables of the language of lattice theory. We inductively define the following
infinite sequence of terms

x � .x1; : : : ; xn/ for n D 1; 2; : : : :

(see Erné 1988):

x � .x1/ WD x ^ x1

x � .x1; : : : ; xn; xnC1/ WD x ^ .xnC1 _ .x � .x1; : : : ; xn///;

for all n > 1.
Thus

x � .x1; x2/ is x ^ .x2 _ .x ^ x1//;

x � .x1; x2; x3/ is x ^ .x3 _ .x ^ .x2 _ .x ^ x1//// etc.

Every lattice L validates the inequalities

.x ^ x1/ _ : : : _ .x ^ xn/ 6 x � .x1; : : : ; xn/ 6 x ^ .x1 _ : : : _ xn/

for all n > 1. (The proof is by induction on n.)

Theorem 6.1.4. A lattice L is modular if and only if L universally validates the
equations

x � .x1; : : : ; xn/ � .x ^ x1/ _ : : : _ .x ^ xn/

for all n > 1.

Notice that if L is modular and .a; b1; : : : ; bn/ 2 LnC1 then, in view of the above
theorem, a � .b1; : : : ; bn/ D a � .b�.1/; : : : ; b�.n// for any permutation � of the set
f1; 2; : : : ; ng, because .a ^ b1/ _ : : : _ .a ^ bn/ is invariant under permutations of
f1; 2; : : : ; ng. (The interpretation of � in L is denoted by the same symbol.)

Proof. ()). Assume L is modular and a 2 L. We prove by induction:

T(n): a � .b1; : : : ; bn/ D .a ^ b1/ _ : : : _ .a ^ bn/; for all .b1; : : : ; bn/ 2 Ln:
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T(1) is trivial. To show T(2), assume .b1; b2/ 2 L2. Let c WD a ^ b1. As c 6 a,
modularity gives that a ^ .b2 _ .a ^ b1// D a ^ .b2 _ c/ D .a ^ b2/ _ c D
.a ^ b2/ _ .a ^ b1/. So T(2) holds.

Assume T(n) holds. Let .b1; : : : ; bn; bnC1/ 2 LnC1. We compute:

a � .b1; : : : ; bn; bnC1/ WD a ^ .bnC1 _ .a � .b1; : : : ; bn/// D (IH) (a)

a ^ .bnC1 _ ..a ^ b1/ _ : : : _ .a ^ bn///:

Putting c WD .a ^ b1/ _ : : : _ .a ^ bn/, we have that c 6 a. Hence, by modularity,

a ^ .bnC1 _ ..a ^ b1/ _ : : : _ .a ^ bn/// D a ^ .bnC1 _ c/ D (b)

a ^ bnC1/ _ c D .a ^ bnC1/ _ .a ^ b1/ _ : : : _ .a ^ bn/ D
.a ^ b1/ _ : : : _ .a ^ bn/ _ .a ^ bnC1/:

Combining together (a) and (b) we see that T(n C 1) holds.
()). As T(2) holds, we have that

a ^ .b2 _ .a ^ b1// D .a ^ b2/ _ .a ^ b1/;

for all a; b1; b2 2 L. Hence

a ^ .b2 _ .b1 ^ a// D .b2 ^ a/ _ .b1 ^ a/:

It follows that L validates modularity law

.x ^ z/ _ .y ^ z/ � z ^ .x _ .y ^ z//: ut

Note. On the basis of the axioms of lattice theory, modularity is equivalent to the
identity x � .x1; x2/ � .x ^ x1/_ .x ^ x2/. The remaining identities x � .x1; : : : ; xn/ �
.x ^ x1/ _ : : : _ .x ^ xn/, n > 3, are consequences of it. ut

Let �d be the term operation dual to �. Thus

x �d .x1/ WD x _ x1

x �d .x1; : : : ; xn; xnC1/ WD x _ .xnC1 ^ .x �d .x1; : : : ; xn///;

for all n > 1 and .x1; : : : ; xn; xnC1/ 2 LnC1.
In particular,

x �d .x1; x2/ is x _ .x2 ^ .x _ x1//;

x �d .x1; x2; x3/ D x _ .x3 ^ .x _ .x2 ^ .x _ x1//// etc.
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Every lattice L validates the inequalities

x _ .x1 ^ : : : ^ xn/ 6 x �d .x1; : : : ; xn/ 6 .x _ x1/ ^ : : : ^ .x _ xn/

for all n > 1.
The reverse of the second inequality is equivalent to modularity:

Corollary 6.1.5. A lattice L is modular if and only if L universally validates the
equations

x �d .x1; : : : ; xn/ � .x _ x1/ ^ : : : ^ .x _ xn/;

for all n > 1.

Proof. This can directly verified by emulating the proof of Theorem 6.1.4 for its
dual counterpart or directly by using Theorem 6.1.4 and the duality principle for
modular lattices in the following version (see Appendix A): a lattice equation s � t
is universally valid in the class of modular lattices if and only if its dual sd � td is
universally valid in this class. ut
Corollary 6.1.6. Let Q be an RCM quasivariety, A 2 Q, ˚ 2 ConQ.A/. Let
B WD A=˚ and h W A ! B be the canonical homomorphism. Then for any n > 1

and a1; : : : ; an, b1; : : : ; bn 2 A,

˚ �d .�A
Q.a1; b1/; �A

Q.a2; b2/; : : : ; �A
Q.an; bn// D h�1.

\

16i6n

�B
Q.ai=˚; bi=˚//:

Proof.

˚ �d .�A
Q.a1; b1/; �A

Q.a2; b2/; : : : ; �A
Q.an; bn// D (by Corollary 6.1.5)

\

16i6n

.˚ CQ �A
Q.ai; bi// D

\

16i6n

.h�1.�B
Q.ai=˚; bi=˚// D

h�1.
\

16i6n

�B
Q.ai=˚; bi=˚//: ut

We also note the following fact:

Proposition 6.1.7. Let Q be an RCM quasivariety. Then Q has the relative shifting
property.

Proof. In view of Lemma 3.5.2, it suffices to show that:

For any (equivalently, for some) different variables x; y; z; w,

z � w 2 Qˆ.fx � yg [ Qˆ.x � y; z � w/ \ Qˆ.x � z; y � w//:
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Fix x; y; z; w and put:

C WD Qˆ.fx � yg/; A WD Qˆ.x � y; z � w/; B WD Qˆ.x � z; y � w/:

Then z � w 2 A, z � w 2 Qˆ.B[C/ and C � A. By modularity, A\Qˆ.B[C/ D
.A\B/_C. Hence z � w 2 Qˆ.fx � yg[Qˆ.x � y; z � w/\Qˆ.x � z; y � w//.

ut
The relative shifting property is essentially a weaker property than relative

congruence-modularity. There exists a congruence-modular variety V with a sub-
quasivariety Q that fails to be relatively congruence-modular (Kearnes and McKen-
zie 1992, Example 3.3.) Since the relative shifting property is inherited by subqua-
sivarieties (Corollary 3.5.3), we see that Q has the relative shifting property and Q
is not an RCM quasivariety.

6.2 The Extension Principle

We recall that a quasivariety Q satisfies the Extension Principle if for every algebra
A 2 Q, the operator �Q. 
 / is a homomorphism from the lattice Con.A/ to
the lattice ConQ.A/. Equivalently, Q satisfies the Extension Principle if for every
algebra A 2 Q and for every pair of congruences ˚; � 2 Con.A/, it is the case that
�Q.˚ \ �/ D �Q.˚/ \ �Q.�/.

Kearnes and McKenzie (1992) have proved a surprising result:

A quasivariety Q is RCM if and only if it has the relative shifting property and
satisfies the Extension Principle.

We shall first broaden the scope of the Extension Principle a little bit as compared
with the original proof given in Kearnes and McKenzie (1992).

Let � be a fixed algebraic signature, let Q be a quasivariety of � -algebras, and
A a � -algebra, not necessarily in Q. If ˚ 2 Con.A/, then ˚ 0 denotes the least
Q-congruence of A that includes ˚ . (This congruence is usually denoted by �A

Q.˚/

but we shall use the more compact notation ˚ 0 because Q is clear from context.).
Thus ˚ 0 is the least congruence � of A such that ˚ � � and A=� 2 Q. Clearly,
00

A is the least Q-congruence of A. If A 2 Q, then 00
A D 0A.

Theorem 6.2.1. (The Extension Principle). Let Q be an RCM quasivariety. Then
for every algebra A 2 Va.Q/ and any congruences ˚; � 2 Con.A/, .˚ \ �/0 D
˚ 0 \ � 0.

If .˚ \ �/0 D ˚ 0 \ � 0 holds for any ˚; � 2 Con.A/, we say that A satisfies the
Extension Principle with respect to Q.

Before proving the theorem we shall present some general remarks on
quasivarieties.
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Proposition 6.2.2. Let Q be an arbitrary quasivariety of a signature � . Let
h W A ! B be a surjective homomorphism between � -algebras. Then .h�1.�//0 D
h�1.� 0/, for all � 2 Con.B/.

(Here, for any a; b 2 A, ha; bi 2 h�1.�/ if and only if hha; hbi 2 � .)

Proof (of the proposition). Assume � 2 Con.B/. As B=� 0 2 Q and A=h�1.� 0/ Š
B=� 0, we have that h�1.� 0/ is a Q-congruence of A. As h�1.�/ � h�1.� 0/, it
follows that .h�1.�//0 � h�1.� 0/, because .h�1.�//0 is the least Q-congruence
containing h�1.�/.

It remains to show that h�1.� 0/ � .h�1.�//0.
We have that for every X � A2

h.�A
Q.X/ CQ kerQ.h// D �B

Q.hX/:

Hence, putting X WD h�1.�/, we get that

h..h�1.�//0 CQ kerQ.h// D .hh�1.�//0: (a)

But ker.h/ � h�1.�/. Indeed, suppose ha; bi 2 ker.h/, i.e., ha D hb. Then
trivially, hha; hbi 2 � , which gives that ha; bi 2 h�1.�/. It follows that kerQ.h/ �
.h�1.�//0. This and (a) give that

h..h�1.�//0/ D .hh�1.�//0:

Since h is surjective, hh�1.�/ D � and hence .hh�1.�//0 D � 0. Thus

h..h�1.�//0/ D � 0: (b)

To show the inclusion h�1.� 0/ � .h�1.�//0, assume ha; bi 2 h�1.� 0/, i.e.,
hha; hbi 2 � 0. Hence, by (b), we get that hha; hbi 2 h..h�1.�//0/. Consequently,
there exist x; y 2 A such that ha D hx, hb D hy and hx; yi 2 .h�1.�//0. But ha; xi 2
ker.h/ � h�1.�/ � .h�1.�//0 and hb; yi 2 ker.h/ � h�1.�/ � .h�1.�//0. Hence

ha; xi 2 .h�1.�//0; hb; yi 2 .h�1.�//0; hx; yi 2 .h�1.�//0: (c)

It follows from (c) that ha; bi 2 .h�1.�//0.
This proves the lemma. ut
We prove the following fact providing a necessary and sufficient condition for

the Extension Principle to hold in a variety.

Theorem 6.2.3. Let Q be an arbitrary quasivariety. Then every algebra in the
variety Va.Q/ satisfies the Extension Principle with respect to Q if and only if the
free algebra F WD FQ.!/ satisfies the Extension Principle relative to Q.
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The “)”-part of the proof is obvious. The proof of the reverse implication “(”
is based on two simple lemmas. Throughout the proof Q is an arbitrary but fixed
quasivariety of a signature � .

Lemma 1. Let h W A ! B be an epimorphism between algebras, where A 2 Va.Q/.
If A satisfies the Extension Principle with respect to Q, then so does B.

Proof (of the lemma). Let ˚; � 2 Con.B/. Then:

h�1..˚ \ �/0/ D (by Proposition 6.2.2) .h�1.˚ \ �//0 D
.h�1.˚/ \ h�1.�//0 D (by the assumption)

.h�1.˚//0 \ .h�1.�//0 D (by Proposition 6.2.2)

h�1.˚ 0/ \ h�1.� 0/ D h�1.˚ 0 \ � 0/:

As h is “onto” it follows that .˚ \ �/0 D ˚ 0 \ � 0. ut
Lemma 2. Suppose that every countably generated algebra in Va.Q/ satisfies
the Extension Principle. Then every algebra in Va.Q/ satisfies this principle with
respect to Q.

Proof (of the lemma). Let A be an algebra in Va.Q/ and ˚; � 2 Con.A/. Suppose
a � b .˚ 0 \ � 0/. We shall show that a � b ..˚ \ �/0/.

As a � b .˚ 0/ and a � b .� 0/, there exist finite sequences

ha0
1; b0

1i; : : : ; ha0
m; b0

mi 2 ˚

and

ha00
1 ; b00

1 i; : : : ; ha00
n ; b00

n i 2 �

such that a�b .�A
Q.ha0

1; b0
1i; : : : ; ha0

m; b0
mi// and a � b .�A

Q.ha00
1 ; b00

1 i; : : : ; ha00
n ; b00

n i//.
Then there exists a countably generated subalgebra B of A which includes the pairs
ha0

1; b0
1i;: : :; ha0

m; b0
mi; ha00

1 ; b00
1 i;: : :; ha00

n ; b00
n i such that a�b.�B

Q.ha0
1; b0

1i;: : :; ha0
m; b0

mi//
and a � b .�B

Q.ha00
1 ; b00

1 i; : : : ; ha00
n ; b00

n i//.
Let ˚0 WD �B

Q.ha0
1; b0

1i; : : : ; ha0
m; b0

mi/ and �0 WD �B
Q.ha00

1 ; b00
1 i; : : : ; ha00

n ; b00
n i/.

Thus a � b .�B
Q.˚0// and a � b .�B

Q.�0//. As B satisfies the Extension Principle,
a � b .�B

Q.˚0 \ �0//. But �B
Q.˚0 \ �0/ � B2 \ �A

Q.˚0 \ �0/ � �A
Q.˚ \ �/.

Hence a � b ..˚ \ �/0/. ut
To conclude the proof of Theorem 6.2.3, let us assume that the free algebra

F D FQ.!/ (D FVa.Q/.!/) satisfies the Extension Principle relative to Q. It follows
from Lemma 1 that every countably generated algebra in Va.Q/, being a homomor-
phic image of F, satisfies the Extension Principle. Then Lemma 2 yields that every
algebra in Va.Q/ satisfies this principle. ut

We shall pass to the proof of Theorem 6.2.1. To prove the theorem it suffices to
show that the free algebra F WD FQ.!/ satisfies this principle relative to Q.
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We are concerned with congruences on the free algebra F WD FQ.!/. If X � F2,
then �F.X/ and �F

Q.X/ stand for the congruence of F generated by X and the
Q-congruence of F generated by X, respectively. If X D fhxi; yii W i 2 Ig is a
set of pairs of free generators of F, then �F.X/ D �F

Q.X/, by Proposition 2.6.

Lemma 3. Suppose ˚ 2 Con.F/. Let X be a set of pairs of free generators of F
and h W F ! F an epimorphism such that ˚ D �F.hX/. Then

h�1.˚/ D �F.X/ C ker.h/ and h�1.˚ 0/ D �F.X/ CQ ker.h/:

Proof (of the lemma). It is clear that the required epimorphism h and X always exist.
(One may simply take X to be an infinite set of pairs of free generators, map first X
onto ˚ and then, assuming that there are infinitely many free generators not involved
in X, map surjectively the remaining free generators onto F.) Thus ˚ D h�F.X/.
But the claim below shows that then ˚ D �F.hX/.

Claim. If ˚ D h.�F.X//, then ˚ D �F.hX/.

Proof (of the claim). We have: ˚ D h.�F.X// and hX � h.�F.X//. Proposition 2.9
gives: ˚ D h.�F.X// � �F.hX/ � �F.h.�F.X// D �F.˚/ D ˚ . ut

It should be also noted that for any epimorphism h W F ! F, ker.h/ is a
Q-congruence because the quotient algebra F= ker.h/ is isomorphic with F and
F 2 Q.

We have:

˚ D �F.hX/ D h.�F.X/ C ker.h//;

by the claim and Proposition 2.10 applied to Va.Q/.
Passing to the h-preimages, we get: h�1.˚/ D h�1.h.�F.X/ C ker.h/// D

�F.X/ C ker.h/, because h is surjective.
The proof of the other equality is similar:

˚ 0 D .�F.hX//0 D �F
Q.hX/ D h.�F.X/ CQ ker.h//;

by Proposition 2.10 applied to Q (see Note following Proposition 2.10). Taking the
h-preimages, we get

h�1.˚ 0/ D h�1.h.�F.X/ CQ ker.h/// D �F.X/ CQ ker.h/: ut

We shall pass to the proof of the Extension Principle for RCM quasivarieties.
We shall make use of Theorem 6.2.3. The following lemma is crucial:

Lemma 4. Let Q be an RCM quasivariety. Then the free algebra F D FQ.!/

satisfies the Extension Principle.

Proof (of the lemma). The lemma is proved in two steps.
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Claim 1. Let ˚; � 2 Con.F/. Then .˚ \ �/0 D ˚ 0 \ � 0.

Proof (of the claim). It is clear that .˚ \ � 0/ � ˚ 0 \ � 0. To prove the reverse
inclusion, let X and Y be separated sets of pairs of free generators of F and let
h W F ! F be an epimorphism such that ˚ D �F.hX/ and � D �F.hY/. Then

h�1..˚ \ � 0/0/ D (by Proposition 6.2.2)

.h�1.˚ \ � 0//0 D
.h�1.˚/ \ h�1.� 0//0 D (by Lemma 3)

..ker.h/ C �F.X// \ .ker.h/ CQ �F.Y///0:

On the other hand,

h�1.˚ 0 \ � 0/ D h�1.˚ 0/ \ h�1.� 0/ D (by Proposition 6.2.2)

.h�1.˚//0 \ .h�1.�//0 D (by Lemma 3)

.ker.h/ CQ �F.X// \ .ker.h/ CQ �F.Y//:

It follows that the inclusion ˚ 0 \ � 0 � .˚ \ � 0/0 is equivalent to

.ker.h/ CQ �F.X// \ .ker.h/ CQ �F.Y// �
�F

Q..ker.h/ C �F.X// \ .ker.h/ CQ �F.Y///: (1)

Since Q is RCM, the congruence on the left-hand side of (1) equals ker.h/ CQ

.�F.X/\.ker.h/CQ �F.Y/// (see Corollary 6.1.5). Consequently, (1) is equivalent
to the inclusion

ker.h/ CQ .�F.X/ \ .ker.h/ CQ �F.Y/// �
�F

Q..ker.h/ C �F.X// \ .ker.h/ CQ �F.Y///: (2)

As ker.h/ is included in the congruence on the right-hand side of (2), to prove (2),
it suffices to show that

�F.X/ \ .ker.h/ CQ �F.Y// � �F
Q..ker.h/ C �F.X// \ .ker.h/ CQ �F.Y///:

But this inclusion trivially holds. ut
Claim 2. Let ˚; � 2 Con.F/. Then .˚ \ �/0 D ˚ 0 \ � 0.

Proof (of the claim). The inclusion .˚ \ � 0/ � ˚ 0 \ � 0 is obvious. To prove the
reverse inclusion, suppose X and Y are separated sets of pairs of free generators of
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F and let h W F ! F be an epimorphism such that ˚ D �F.hX/ and � D �F.hY/.
Then, arguing as in Claim 1, we get that

h�1..˚ \ �/0/ D ..ker.h/ C �F.X// \ .ker.h/ C �F.Y///0

and

h�1.˚ 0 \ � 0/ D .ker.h/ CQ �F.X// \ .ker.h/ CQ �F.Y//:

It follows that the inclusion ˚ 0 \ � 0 � .˚ \ �/0 is equivalent to

.ker.h/ CQ �F.X// \ .ker.h/ C �F.Y// �
�F

Q..ker.h/ C �F.X// \ .ker.h/ C �F.Y///: (3)

Corollary 6.1.5 gives that

.ker.h/ CQ �F.X// \ .ker.h/ CQ �F.Y// D ker.h/ �d .�F.Y/; �F.X// D
ker.h/ CQ .�F.X/ \ .ker.h/ CQ �F.Y///:

Consequently, (3) is equivalent to the inclusion

ker.h/ CQ .�F.X/ \ .ker.h/ CQ �F.Y/// �
�F

Q..ker.h/ C �F.X// \ .ker.h/ C �F.Y///: (4)

To prove (4), it suffices to show that

.�F.X/ \ .ker.h/ CQ �F.Y/// �
�F

Q..ker.h/ C �F.X// \ .ker.h/ C �F.Y///: (5)

We shall apply Claim 1 to the congruences ˚0 WD ker.h/ C �F.Y/ and
�0 WD �F.X/. As �0 is a Q-congruence, Claim 1 gives that ˚ 0

0 \ �0 D ˚ 0
0 \ � 0

0 D
.˚0 \ � 0

0/0 D .˚0 \ �0/0, i.e., ˚ 0
0 \ �0 D .˚0 \ �0/0. Hence

�F.X/ \ .ker.h/ CQ �F.Y// D �F
Q.�F.X/ \ .ker.h/ C �F.Y/// �

�F
Q..ker.h/ C �F.X// \ .ker.h/ C �F.Y///:

So (5) holds. This proves the claim and concludes the proof of the lemma. ut
Theorem 6.2.1 follows from Lemma 4 and Theorem 6.2.3. ut
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6.3 Distributivity in the Lattice of Equational Theories
of RCM Quasivarieties

The theorems presented in this section exhibit various interrelations holding
between RCM quasivarieties Q and some restricted forms of distributivity law
for Qˆ-theories generated by equations of separated variables (equivalently, for
the congruences of the free algebra FQ.!/ generated by separated pairs of free
generators).

The following observation is due to von Neumann (1936–1937).

Theorem 6.3.1. Let L be a modular lattice and a; b; c 2 L. The following
conditions are equivalent:

(1) The sublattice of L generated by fa; b; cg is distributive.
(2) a ^ .b _ c/ D .a ^ b/ _ .a ^ c/:

(3) a _ .b ^ c/ D .a _ b/ ^ .a _ c/:

Proof. The proof of the equivalence of (1) and (2) can be found in Grätzer (1978),
Theorem 12, Chapter IV.

(1) ) (3). This is trivial.
(3) ) (1). Let Ld be the lattice dual to L. Since L is modular, Ld is modular as

well. The sublattice L0 of L generated fa; b; cg has the same carrier as the sublattice
Ld

0 of Ld dual to L0, that is, Ld
0 is generated by the same set fa; b; cg. Moreover,

by duality, L0 is distributive if and only if Ld
0 is distributive. The equivalence of

(1) and (2) when applied to Ld implies that the sublattice Ld
0 is distributive if and

only if a _ .b ^ c/ D .a _ b/ ^ .a _ c/. Hence, assuming (3), we obtain that Ld
0 is

distributive. It follows that L0 is distributive as well. So (1) holds. ut
The following theorem is a basic tool in the commutator theory for RCM

quasivarieties:

Theorem 6.3.2. Let Q be an RCM quasivariety. The lattice Th.Qˆ/ is distributive
in the restricted sense.

Proof. Put C WD Qˆ. Let X D fxi � yi W i 2 Ig be a set of equations of pairwise
different variables and let Y and Z be arbitrary sets of equations of terms whose
variables are separated from the variables of X, that is, Var.X/ \ Var.Y [ Z/ D ;.
According to Lemma 5.2.10,

.C.X/ CQ C.Y// \ .C.X/ CQ C.Z// D C.X/ CQ C.Y/ \ C.Z/: (�)

Theorem 6.3.1 and (�) imply that the sublattice of Th.Qˆ/ generated by
fC.X/; C.Y/; C.Z/g is distributive. Hence

C.X/ \ C.Y/ CQ C.X/ \ C.Z/ D C.X/ \ .C.Y/ CQ C.Z//:

Thus Th.Qˆ/ validates the restrictive distributivity. ut
It follows from the above observation that Theorem 5.3.1 applies to any RCM

quasivariety. We shall make use of it several times.
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Theorem 6.3.3. Let Q be an RCM quasivariety. The equationally defined commu-
tator for Q is additive.

Proof. In view of the above theorem the lattice Th.Qˆ/ is distributive in the
restricted sense. Then apply Theorem 5.3.7. ut
Notes 6.3.4.

(1). According to Theorem 4.1.12, the equationally defined commutator for any
RCM quasivariety coincides with the commutator in the sense of Kearnes and
McKenzie. (The latter commutator is simply referred to as the commutator in
the literature.) Theorem 6.3.3 thus provides a new proof of the additivity of the
commutator for any RCM quasivariety.

(2). Although there are non-RCM quasivarieties for which the thesis of Theorem
6.3.3 holds, the above proof of this theorem cannot be extended onto non-RCM
quasivarieties. The above proof makes use of Theorems 6.3.1–6.3.2 and is
based on the fact that any modular lattice L validates the following equivalence:

for any a; b; c 2 L; a ^ .b _ c/ D .a ^ b/ _ .a ^ c/ if and only if (�)

a _ .b ^ c/ D .a _ b/ ^ .a _ c/:

The equivalence (�) fails to hold in any non-modular lattice (take the pen-
tagon). In fact, (�) characterizes modularity: a lattice L validates (�) if and only
if L is modular. It follows that Theorem 6.3.1 does not hold for non-modular
lattices. Consequently, if Q is not an RCM quasivariety, Theorem 6.3.1 cannot
be used to show that the lattice Th.Qˆ/ is distributive in the restricted sense.
It is an open question as to whether there is a lattice-theoretic condition weaker
than modularity and implying the restricted distributivity of the lattice Th.Qˆ/.

ut
In the second part of this paragraph we shall isolate some distributive sublattices

of the lattice Th.Qˆ/ for any RCM quasivariety Q. We begin with some preliminary
observations.

Lemma 6.3.5. Let Q be an arbitrary non-trivial quasivariety. Let fxi � yi W i 2 Ig
be a non-empty set consisting of equations of pairwise different variables. For each
non-empty set J � I define

˙ .J/ WD Qˆ.fxi � yi W i 2 Jg/:
Then for all non-empty subsets A; B; C � I:

(1) A � B if and only if ˙ .A/ � ˙ .B/ W
(2) A D B if and only if ˙ .A/ D ˙ .B/I
(3) ˙ .A [ B/ D ˙ .A/ CQ ˙ .B/I
(4) ˙ .A \ B/ � ˙ .A/ \ ˙ .B/:

(5) if A \ .B [ C/ D ;, then
.˙ .A/ CQ ˙ .B// \ .˙ .A/ CQ ˙ .C// D ˙ .A/ CQ ˙ .B/ \ ˙ .C/.
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Proof. As the set of individual variables is countably infinite, the set I is countable
too.

(1). The implication ‘())’ is immediate. To prove the reverse, assume
˙ .A/ � ˙ .B/ and suppose A is not included in B. There is an equation xi � yi

such that xi � yi 2 A and xi � yi 62 B. As Q is non-trivial and xi � yi is separated
from B, there is an algebra A 2 Q and a valuation h of variables in A which validates
B and for which hxi 6D hyi. Hence xi � yi 62 ˙ .B/. Consequently, xi � yi 62 ˙ .A/,
a contradiction.

(2), (3), and (4) are immediate. (5) follows from Lemma 5.2.10. ut
Note. We shall later show that the assumption that A \ .B [ C/ is non-empty in (5)
can be dropped if Q is RCM. Consequently, in any RCM quasivariety, the family
f˙ .J/ W ; 6D J � Ig generates a bounded and closed distributive sublattice of
Th.Qˆ/ (Theorem 6.3.8 below). Moreover, (4) can be replaced by the equality:

˙ .A/ \ ˙ .B/ D Qˆ.
[

fQˆ.xi � yi/ \ Qˆ.xj � yj/ W i; j 2 A \ Bg/: ut

Lemma 6.3.6. Let Q be an arbitrary quasivariety. Let fxi � yi W i 2 Ig be a non-
empty set consisting of equations of pairwise different variables. If I is infinite, then

\

i2I

Qˆ.xi � yi/ D Qˆ.;/:

Proof. As the set of individual variables is countably infinite, the lemma is
equivalently reformulated as follows:

Lemma 4.3.6*. Let fxn W n 2 !g be an infinite set of individual variables. Then
\

n2!

Qˆ.x2n � x2nC1/ D Qˆ.;/:

The inclusion ‘�’ is obvious. To prove the reverse inclusion, assume p � q 2T
n2! Qˆ.x2n � x2nC1/. We write p D p.x0; : : : ; x2nC1; u/, q D q.x0; : : : ; x2nC1; u/,

where x0; : : : ; x2nC1 contains all variables among fxn W n 2 !g which at most occur
in p and q and u is the set of the remaining variables outside fxn W n 2 !g occurring
in p and q. (The set fxn W n 2 !g need not contain all individual variables.)

The assumption implies in particular that

p.x0; : : : ; x2nC1; u/ � q.x0; : : : ; x2nC1; u/ 2 Qˆ.x2nC2 � x2nC3/:

Let e be an endomorphism of Te� which is the identity map on the variables
x0; : : : ; x2nC2; u, and ex2nC3 D x2nC2. e is well defined because the variables of
x0; : : : ; x2nC1; x2nC2; x2nC3 and u are all pairwise different. Hence, by structurality,

p.x0; : : : ; x2nC1; u/ � q.x0; : : : ; x2nC1; u/ 2 Qˆ.ex2nC2 � ex2nC3/ D Qˆ.;/: ut
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Lemma 6.3.7. Let fx0; x1; : : : ; x2nC1g be a finite set of individual variables. Then
Qˆ.x0 � x1/\Qˆ.x2 � x3/\: : :\Qˆ.x2n � x2nC1/ 6D Qˆ.;/ if and only if there
exist terms p D p.x0; : : : ; x2nC1; u/, q D q.x0; : : : ; x2nC1; u/ containing the variables
x0; : : : ; x2nC1 and possibly some other variables u such that p � q 62 Qˆ.;/ but
p.x2iC1=x2i/ � q.x2iC1=x2i/ 2 Qˆ.;/ for i D 0; : : : ; n.

Proof. ()). If Qˆ.x0 � x1/ \ : : : \ Qˆ.x2n � x2nC1/ 6D Qˆ.;/, we select an
equation p � q 2 Qˆ.x0 � x1/ \ : : : \ Qˆ.x2n � x2nC1/ n Qˆ.;/. Let x be the set
of variables among x0; x1; : : : ; x2nC1 that occur in p � q and let u be the set of the
remaining variables occurring in this equation.

Suppose that the list x is shorter than x0; x1; : : : ; x2nC1. Hence for some k
.0 6 k 6 2n C 1/ the variable xk is not in x. If k is even, k D 2l, then p � q 2
Qˆ.x2l � x2lC1/. We then define a substitution e which is the identity map on the
variables of x and u such ex2l D x2lC1 and ex2lC1 D x2lC1. Hence, by structurality,
p � q 2 Qˆ.ex2l � ex2lC1/ D Qˆ.;/. A contradiction. A similar argument is
applied when k is odd, k D 2l C 1. Then work with the variables x2l and x2lC1. In
this case we also arrive at a contradiction.

It is clear that p.x2iC1=x2i/ � q.x2iC1=x2i/ 2 Qˆ.;/ for i D 0; : : : ; n.
((). Assume pDp.x0;: : :; x2nC1; u/ and qDq.x0;: : :; x2nC1; u/ are terms satisfy-

ing the RHS and suppose a contrario that Qˆ.x0 �x1/ \: : :\ Qˆ.x2n �x2nC1/D
Qˆ.;/. As p � q 62 Qˆ.;/, it follows that p � q 62 Qˆ.x2i � x2iC1/ for
some i 0 6 i 6 n). Consequently, p.x2iC1=x2i/ � q.x2iC1=x2i/ 62 Qˆ.;/.
A contradiction. ut

Before reading the proof of the next theorem the reader is advised to have a look
at Appendix A.

Let M and L be complete lattices such that M is a subset of L. M is a closed
sublattice of L if for every non-empty subset X of M, the elements sup.X/ and
inf.X/, as computed in L, are actually in M. If M is a closed sublattice of L, then
M is a sublattice of L but M may not be a bounded sublattice of L—the zero and
the unit elements of M need not coincide with their counterparts in L. If moreover,
the zero and the unit elements of L belong to M, the sublattice M is called a complete
sublattice of L. Thus a sublattice M of L is a complete sublattice of L if for every
subset X of M, the elements sup.X/ and inf.X/, when computed in L, belong to M.

If L is a complete lattice and X a non-empty subset of L, then there exist the least
closed sublattice of L that includes X and the least complete sublattice of L that
contains X.

Theorem 6.3.8. Let Q be an RCM quasivariety. Let fxi � yi W i 2 Ig be any non-
empty set of equations of pairwise different variables. The least closed and bounded
sublattice L of Th.Qˆ/ that contains the family X D fQˆ.xi � yi/ W i 2 Ig is
algebraic and distributive.

Notes.
1. The theorem trivially holds if Q is an RCD quasivariety.
2. Under the assumption that Q is RCM, the statement of the theorem is equivalently
paraphrased in terms of free generators of the free algebra FQ.!/ as follows:



170 6 Modularity and Related Topics

Let fhxi; yii W i 2 Ig be any non-empty set of pairs of pairwise distinct free
generators of FQ.!/. The closed sublattice of ConQ.FQ.!// with zero and
unity containing the family of Q-congruences f�.xi; yi/ W i 2 Ig is algebraic
and distributive.

3. The assumption that the free generators occurring in the pairs fhxi; yii W i 2 Ig
are pairwise different cannot be dropped in the above theorem. If Q is a variety,
the fact that for any non-empty set fhxi; yii W i 2 Ig of pairs of free generators
f�.xi; yi/ W i 2 Ig generates a distributive sublattice of the lattice ConQ.FQ.!//

implies that Q is a congruence-distributive—see the proof of the well-known
Jónsson’s characterization of CD varieties. ut
Proof (of the theorem). Some additional facts concerning modular lattices are
needed. We first prove:

Lemma 1. The family X D fQˆ.xi � yi/ W i 2 Ig generates a distributive
sublattice of Th.Qˆ/.

Proof (of the lemma). We shall apply the classical result due to Jónsson (1955) (with
simplifications made by Balbes 1969) which characterizes distributive sublattices of
modular lattices (see also Tamura 1971):

A non-empty subset X of a modular lattice generates a distributive sublattice if
and only if

.a1 _ : : : _ am/ ^ .b1 ^ : : : ^ bn/ D a1 ^ .b1 ^ : : : ^ bn/ _ : : : _ am ^ .b1 ^ : : : ^ bn/

(1)

whenever a1; : : : ; am; b1; : : : ; bn 2 X, for all positive integers m; n.

Accordingly, we show that (1) holds for any m; n > 1 and any finite non-empty
subsets fa1; : : : ; amg, fb1; : : : ; bng of X D fQˆ.xi � yi/ W i 2 Ig. The family X
is countable. Note that if the intersection fa1; : : : ; amg \ fb1; : : : ; bng is non-empty,
then the theory on the left-hand side of (1) equals b1 \ : : : \ bn, which in turn is
equal to the equational theory on the right-hand side of (1), so in this case (1) holds.
It therefore suffices to consider the case when the sets fa1; : : : ; amg, fb1; : : : ; bng are
disjoint.

We prove the following statement (T)m;n by double induction on m and n:

For any disjoint subsets fa1; : : : ; amg; fb1; : : : ; bng of X;

.a1 CQ : : : CQ am/ \ .b1 \ : : : \ bn/ D
(T)m;n a1 \ .b1 \ : : : \ bn/ CQ : : : CQ am \ .b1 \ : : : \ bn/:

(T)1;1 is immediate. (T)m;1 follows from Theorems 6.3.2 and 5.3.1. (T)1;n is also
immediate for all n.

Claim 1. (T)m;2 holds for all m > 1.
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Proof (of the claim). (T)1;2 is obvious. We prove (T)2;2, that is, we show that

(T)2;2 For any disjoint subsets fa1; a2g, fb1; b2g of X,

.a1 CQ a2/ \ .b1 \ b2/ D a1 \ .b1 \ b2/ CQ a2 \ .b1 \ b2/:

We put: C WD Qˆ. Let ai WD C.xi � yi/ for i D 1; 2 and bj WD C.zj � wj/ for
j D 1; 2. We claim that

C.x1 � y1; x2 � y2/ \ C.z1 � w1/ \ C.z2 � w2/ D
C.x1 � y1/ \ C.z1 � w1/ \ C.z2 � yw/ CQ C.x2 � y2/ \ C.z1 � w1/ \ C.z2 � w2/:

We apply Theorem 5.3.1. Let

X WD C.z1 � w1/ \ C.z2 � w2/; Y WD C.x1 � y1/; Z WD C.x2 � y2/:

We have:

C.x1 � y1; x2 � y2/ \ C.z1 � w1/ \ C.z2 � w2/ D
.Y CQ Z/ \ X D (by Theorem 5.3.1)

Y \ X CQ Z \ X D
C.x1 � y1/ \ C.z1 � w1/ \ C.z2 � y2/ CQ C.x2 � y2/ \ C.z1 � w1/ \ C.z2 � w2/:

So (T)2;2 holds.
Let m > 2. We prove that (T)m;2 implies (T)mC1;2. Assume (T)m;2. Let fa1; : : : ;

am; amC1g, fb1; b2g be disjoint subsets of X. We put:

X WD b1 \ b2; Y WD a1 CQ : : : CQ am; Z WD amC1:

We compute:

.a1 CQ : : : CQ am CQ am/ \ .b1 \ b2/ D .Y CQ Z/ \ X D (by Theorem 5.3.1)

Y \ X CQ Z \ X D .a1 CQ : : : CQ am/\.b1 \ b2/ CQ amC1\.b1 \ b2/ D (by (T)m;2)

a1 \ .b1 \ b2/ CQ : : : CQ am \ .b1 \ b2/ CQ amC1 \ .b1 \ b2/:

So (T)mC1;2 holds. ut
It remains to prove:

Claim 2. (T)m;n holds for all m; n > 2.

Proof (of the claim). Fix m > 2 and assume that (T)m;n holds, where n > 2. We
prove (T)m;nC1. Let fa1; : : : ; amg, fb1; : : : ; bn; bnC1g be disjoint subsets of X. We
put:

Xi WD ai \ .b1 \ : : : \ bn/ for i D 1; : : : ; m; Y WD bnC1:



172 6 Modularity and Related Topics

We compute:

.a1 CQ : : : CQ am/ \ .b1 \ b2 \ : : : \ bnC1/ D
.a1 CQ : : : CQ am/ \ .b1 \ : : : \ bn/ \ bnC1 D (by (T)m;n)

.a1 \ .b1 \ : : : \ bn/ CQ : : : CQ am \ .b1 \ : : : \ bn// \ bnC1 D
.X1 CQ : : : CQ Xm/ \ Y D (by Theorem 5.3.1)

.X1 \ Y/ CQ : : : CQ .Xm \ Y/ D
a1 \ .b1 \ : : : \ bn \ bnC1/ CQ : : : CQ am \ .b1 \ : : : \ bn \ bnC1/:

So (T)m;nC1 holds.
This completes the proof of the lemma. ut
Let L0 be the (distributive) sublattice of Th.Qˆ/ generated by the family

X D fQˆ.xi � yi/ W i 2 Ig.

Note. For each finite and non-empty set J � I define L0.J/ to be the (finite)
sublattice of L0 generated by the set fQˆ.xi � yi/ W i 2 Jg. L0 is thus the union of
the directed family of lattices fL0.J/ W ; 6D J � I; J finiteg. ut

If the set I is finite, the lattice L0 is finite bounded (and hence algebraic) with
the zero 0 D TfQˆ.xi � yi/ W i 2 Ig and the unit 1 D Qˆ.fxi � yi W i 2 Ig/
and the theorem follows. Note that 1 need not be the unit element of the lattice
Th.Qˆ/ which is Eq.�/. Likewise, 0 need not coincide with Qeqˆ.;/ being the
zero of Th.Qˆ/. But nevertheless L0 is a closed sublattice of Th.Qˆ/.

If I is infinite, some other constructions are needed. Suppose that I is infinite.
Then, by Lemma 6.3.6,

\
fQˆ.xi � yi/ W i 2 Ig D Qˆ.;/:

It is easy to see that due to distributivity, the lattice L0 consists of all elements of
the form

a1 CQ : : : CQ am; (1)

where m > 1 and

ak WD
\

fQˆ.xi � yi/ W i 2 Akg (2)

for some finite non-empty sets Ak � I for k D 1; : : : ; m.
The lattice L0 is augmented with the zero element 0 WD Qˆ.;/ and the unit

element 1 WD Qˆ.fxi � yi W i 2 Ig/. This extended lattice is still distributive.
(To simplify matters we shall assume that 0 and 1 are already in L0.) Of course, 0
is also the zero element of Th.Qˆ/ but 1 need not coincide with the top element
Eq.�/ of Th.Qˆ/.
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Let .Ideal.L0/; �/ be the extension of L0 by ideals. For each ideal I of L0 define:

h.I/ WD sup.I/;

where sup.I/ is taken in the lattice Th.Qˆ/. Thus sup.I/ D Qˆ.
S

I/. Note that
h.f0g/ D 0 and h.L0/ D Qˆ.

S
i2I Qˆ.xi � yi// D Qˆ.fxi � yi W i 2 Ig/. The last

theory need not coincide with the top element of Th.Qˆ/.

Lemma 2. h is a closed embedding of the algebraic lattice .Ideal.L0/; �/ into
Th.Qˆ/. Moreover h preserves the zero elements.

Proof. h is well defined.

Claim 1. I � J if and only if h.I/ 6 h.J/, for any I; J 2 Ideal.L0/.

Proof (of the claim). The implication ()) is obvious.
((). Assume h.I/ 6 h.J/. Let a 2 I. Trivially a 6 sup.I/. Hence a 6 sup.J/.

As Th.Qˆ/ is algebraic, there is a finite subset Jf � J such that a 6 sup.Jf /. Since
Jf � J, sup.Jf / belongs to J. Hence a 2 J. This proves the inclusion I � J. ut
Claim 2. h is injective.

Proof (of the claim). This directly follows from Claim 1. ut
Claim 3. Let fIt W t 2 Tg be a non-empty family of ideals of L0. Then

h.sup.fIt W t 2 Tg/ D sup.fh.It/ W t 2 Tg/ (3)

and

h.inf.fIt W t 2 Tg/ D inf.fh.It/ W t 2 Tg/ (4)

Proof (of the claim). (3) is obvious.
(4). Claim 1 implies that h.

T
t2 T It/ 6

T
t2 T h.It/. We have: h.inf.fIt W t 2

Tg/ D h.
T

t2 T It/ and inf.fh.It/ W t 2 Tg/ D inf.fh.It/ W t 2 Tg/ in the lattice
Th.Qˆ/.

Let a be a compact element of the lattice Th.Qˆ/ and suppose a 6
T

t2 T h.It/.
This means that a 6 sup.It/ for all t 2 T . Hence, for every t 2 T , there is a
finite subset Ift � It such that a 6 sup.Ift / in the algebraic lattice Th.Qˆ/. But
evidently, sup.Ift / 2 It for all t 2 T . It follows that a 2 It for all t 2 T , and
consequently, a 2 T

t2T It. This implies that a 6 supfTt2 T Itg/ D h.
T

t2 T It/.
Thus

T
t2 T h.It/ 6 h.

T
t2 T It/. ut

The above three claims prove Lemma 2. ut
Note that Claim 3.(4) does not hold if fIt W t 2 Tg is empty.

Let L be the h-image of the lattice .Ideal.L0/; �/. In view of Lemma 2, L is an
algebraic, distributive lattice, and a closed sublattice of Th.Qˆ/ with the same zero
element as Th.Qˆ/. The zero in the lattice L is

TfQˆ.xi � yi/ W i 2 Ig D Qˆ.;/.
But one can say more about the structure of L.
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Claim 4. The set of non-zero elements of L consists of all elements of the form

supfat W t 2 Tg; (5)

where T ranges over non-empty sets of positive integers and

at WD
\

fQˆ.xi � yi/ W i 2 Atg

for some finite non-empty set At � I, for all t 2 T.

(If At is infinite, we get at D 0 D Qˆ.;/, by Lemma 6.3.6, so we may disregard
this case. The supremum is taken in Th.Qˆ/.)

Proof (of the claim). The set of compact elements in L is equal to L0, that is,
compact elements in L are the zero 0 together with all elements of the form (5)
with T finite (see (1) and (2)). It follows that for any ideal I of L0, the element
h.I/ D sup.I/ is of the form (5) for an appropriate T (T may be now infinite.)
Hence every non-zero element of L is of the form (5). ut

It directly follows from the above claim that L is a closed sublattice of
every complete sublattice L0 of Th.Qˆ/ such that L0 includes the family
X D fQˆ.xi � yi/ W i 2 Ig. Thus L is the least closed sublattice of Th.Qˆ/ (with
the same zero as Th.Qˆ// that includes X. As L is algebraic and distributive, the
theorem follows. ut

Though L is a (distributive) sublattice of Th.Qˆ/ if Q is RCM, it is unclear when
L is closed with respect to the commutator operation. (If Q is RCD, the answer is
positive, because the commutator operation reduces to the meet of Q-theories.)

6.4 Generating Sets of Commutator Equations in Varieties

The main focus on the book is on quasivarieties but readers may also be interested
to learn that the results of this book lead to novel conclusions in the simpler context
of varieties. This section is devoted to the exposition of some results in this area.

The theorems placed in Chapter 5 show a significant role of generating sets in
the theory of the equationally defined commutator.

Trivially, for any quasivariety Q, the infinite set Qˆ.x � y/ \ Qˆ.z � w/ is a
generating set for the equationally defined commutator of Q. If Q has the relative
shifting property, yet another generating set was defined in Section 4.3. According
to Theorem 4.1.11 and Proposition 4.3.10, the set

�0 WD
[

f.8u/ �c.p; q; r; s; u/ W p � q 2 Qˆ.x � y/; r � s 2 Qˆ.z � w/g

is also a generating set for the equationally defined commutator of Q. Here �c is the
set of quaternary commutator equations for Q supplied by the relative cube property
in the sense of a classical two-binary term condition.
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In this section further examples of generating sets are presented for congruence
modular varieties.

6.4.1 Gumm Terms

The following theorem is due to H. P. Gumm (1983):

Theorem 6.4.1. A variety V is congruence-modular iff there exists a natural
number n and ternary terms q0.x; y; z/; : : : ; qn.x; y; z/; p.x; y; z/ in the language of
V such that the following equations hold in V:

(1) q0.x; y; z/ � x;

(2) qi.x; y; x/ � x for 0 6 i 6 n;

(3) qi.x; y; y/ � qiC1.x; y; y/ for i even;

(4) qi.x; x; y/ � qiC1.x; x; y/ for i odd;

(5) qn.x; y; y/ � p.x; y; y/;

(6) p.x; x; y/ � y: ut
Note. In the above theorem n may be assumed to be an even natural number because
if it is odd then equations (3) and (5) imply that qn�1.x; y; y/ � p.x; y; y/ and thus
the term qn could be omitted (see Freese and McKenzie 1987, p. 60). ut

Let V be a congruence-modular variety with Gumm terms q0.x; y; z/;: : :;

qn.x; y; z/, p.x; y; z/. Let t D t.x; y; u1; : : : ; um/ be an .m C 2/-ary term (for any
m) in the language of V. We write u for the m-tuple u1; : : : ; um. We then define the
following set �t of 2n C 3 equations in the variables x; y; z; w; u:

p.t.x; z; u/; t.y; z; u/; t.y; w; u// � p.t.x; w; u/; t.y; w; u/; t.y; w; u//; (a)

qi.t.x; w; u/; t.x; z; u/; t.y; w; u// � qi.t.x; w; u/; t.x; w; u/; t.y; w; u//; (b)

qi.t.x; w; u/; t.y; z; u/; t.y; w; u// � qi.t.x; w; u/; t.y; w; u/; t.y; w; u//; (c)

for i D 0; : : : ; n.
Let �0 be the union of the sets �t with t ranging over .m C 2/-ary terms (for

all m). The set �0 is infinite.

Theorem 6.4.2. Let V be a congruence-modular variety. The set �0, defined as
above, is a generating set of quaternary commutator equations for the commutator
of V.

Proof. The theorem is basically due to McKenzie (1987), Corollary 2.10.(2).
He proves that for any algebra A 2 V and any congruences ˚ and � on A,

Œ˚; �	 D �A.
[

f.8e/ �0.a; b; c; d; e/ W a � b .˚/; c � d .�/g/ (d)

and, moreover, for any a; b; c; d 2 A,

Œ�A.a; b/; �A.c; d/	 D �A..8e/ �0.a; b; c; d; e//: (e)
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In particular, taking the free algebra F D FV.!/ we get from (ii) that

�F.Œx	; Œy	/ \ �F.Œz	; Œw	/	 D
Œ�F.Œx	; Œy	/; �F.Œz	; Œw	/	 D �F..8e/ �0.Œx	; Œy	; Œz	; Œw	; e//:

In view of Proposition 4.3.5 the above equations imply that

Vˆ..8u/ �0.x; y; z; w; u// D Vˆ.x � y/ \ Vˆ.z � w/: (f)

This proves that �0.x; y; z; w; u/ is a generating set for the commutator of V.
Due to congruence-modularity of V and the fact that the equational commutator

for V is additive, (e) also gives that for any algebra A in V and all sets X; Y � A2,

Œ�A.X/; �A.Y/	 D �A.
[

f.8e/ �0.a; b; c; d; e/ W ha; bi 2 X; hc; di 2 Yg/:

(To prove the last equality, one may simply repeat the (1) ) (2)-part of the proof
of Theorem 5.1.2. (e) is the same as Claim 1 there. Then automatically repeat the
proof of Claims 2–4.) ut
Notes. 1. As �0.x; y; z; w; s/ � �0.x; y; z; w; u/ for any string s of terms, we obtain
that �0.x; y; z; w; u/ D .8u/ �0.x; y; z; w; u/ in the algebra Te� . Consequently, we
get a stronger equality than (f), viz.

Vˆ.�0.x; y; z; w; u// D Vˆ.x � y/ \ Vˆ.z � w/:

2. In view of Theorem 4.3.9, (e) implies (d) because V has the shifting property.
Indeed, as shown above, (e) implies that �0.x; y; z; w; u/ is a generating set for the
commutator of V (cf. Corollary 5.1.3). Hence, applying Theorem 4.3.9 we get (d).

The fact that �0.x; y; z; w; u/ are commutator equations for V can be also directly
checked. We shall do that below.

Given a term t.x; y; u1; : : : ; um/, we first show that (a)–(c) are (quaternary)
commutator equations for V. As to (a), we must show that after the identification of
x and y in (a), the resulting equation

p.t.x; z; u/; t.x; z; u/; t.x; w; u// � p.t.x; w; u/; t.x; w; u/; t.x; w; u// (i)

is valid in V.
It follows from (6) that the equations

p.t.x; z; u/; t.x; z; u/; t.x; w; u// � t.x; w; u/

and

p.t.x; w; u/; t.x; w; u/; t.x; w; u// � t.x; w; u/

hold in V. Taking into account left sides of the above two equations, we see that (i)
holds.
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We must also show that after identification of z and w in (a), the equation

p.t.x; z; u/; t.y; z; u/; t.y; w; u// � p.t.x; z; u/; t.y; z; u/; t.y; w; u// (ii)

is valid in V. But (ii) is a tautology of any equational logic.
As to (b), we must show that after the identification of x and y in (b), the resulting

equation

qi.t.x; w; u/; t.x; z; u/; t.x; w; u// � qi.t.x; w; u/; t.x; w; u/; t.x; w; u// (iii)

is valid in V for i D 0; : : : ; n.
Fix i. It follows from (2) that the equations

qi.t.x; w; u/; t.x; z; u/; t.x; w; u// � t.x; w; u/

and

qi.t.x; w; u/; t.x; w; u/; t.x; w; u// � t.x; w; u/

are valid in V. Taking into account left sides of the above two equations, we see that
(iii) holds in V.

We must also show that after identification of z and w in (b), the resulting
equation

qi.t.x; z; u/; t.x; z; u/; t.y; z; u// � qi.t.x; z; u/; t.x; z; u/; t.y; z; u// (iv)

is V-valid for i D 0; : : : ; n. But (iv) is a tautology of any equational logic.
As to (c), we must show that after the identification of x and y in (c), the resulting

equation

qi.t.x; w; u/; t.x; z; u/; t.x; w; u// � qi.t.x; w; u/; t.x; w; u/; t.x; w; u// (v)

is valid in V for i D 0; : : : ; n. But (v) is exactly the equation (iii), which, as shown
above, holds in V.

We must also show that after identification of z and w in (c), the resulting equation

qi.t.x; z; u/; t.y; z; u/; t.y; z; u// � qi.t.x; z; u/; t.y; z; u/; t.y; z; u// (vi)

is V-valid for i D 0; : : : ; n. But (vi) is a tautology of any equational logic.
This proves that �0 is a set of commutator equations for V. ut

6.4.2 Varieties with Congruence-Permutable Congruences

Let V be a variety with permutable congruences. V is congruence-modular and, in
view of the well-known Mal’cev’s Theorem, there exists a ternary term p.x; y; z/
such that V validates the identities p.x; y; y/ � x and p.x; x; y/ � y. p.x; y; z/ is
called a Mal’cev term for V.
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Any equational class with permutable congruences is also called a Mal’cev
variety. Commutator theory for Mal’cev varieties is presented in Bergman (2011).

It is easy to see that the single equation

z � p.w; p.y; x; z/; z/

forms a Day implication system for Vˆ.
Let q0.x; y; z/ be the variable x. The set fq0.x; y; z/; p.x; y; z/g forms a system of

Gumm terms for V with n D 0. (Conditions (3)–(4) of Theorem 6.4.1 are vacuously
satisfied.)

Theorem 6.4.2 implies that the infinite set �0.x; y; z; w; u/ consisting of all
equations of the form

p.t.x; z; u/; t.y; z; u/; t.y; w; u// � p.t.x; w; u/; t.y; w; u/; t.y; w; u//; (*)

where t.x; y; u/ ranges over arbitrary terms, is a generating set for the commutator
of V.

Since V validates p.x; y; y/ � x, the term on the right side of (*) can be replaced
by the equivalent term t.x; w; u/ (on the basis of V). We therefore get:

Corollary 6.4.3. Let V be a congruence-permutable variety with a Mal’cev term
p.x; y; z/. The infinite set �0.x; y; z; w; u/ consisting of all equations of the form

p.t.x; z; u/; t.y; z; u/; t.y; w; u// � t.x; w; u/;

where t.x; y; u/ ranges over arbitrary terms, is a generating set for the commutator
of V. ut

6.4.3 Groups

For each group A D .A; 
; �1; 1/ (in the multiplicative notation) and a; b 2 A we
define: a $ b WD a 
 b�1 (the dot will be omitted). For any normal subgroup F � A,
we also define:

˝A.F/ WD fha; bi W a $ b 2 Fg:

˝A.F/ is a congruence of A and it is the largest congruence of A compatible with F.
(The notation adopted in abstract algebraic logic is applied here. A congruence ˚ 2
Con.A/ is compatible with F if for all a; b 2 A, a � b .mod ˚/ implies that a 2 F
if and only if b 2 F.)

The operator ˝A establishes an isomorphism between the lattice of normal
subgroups of A and the lattice of congruences of A. The mapping HA given by

HA.˚/ WD fa 2 A W a � 1 .mod ˚/g; ˚ 2 Con.A/;

is the inverse of ˝A.
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In group theory, one investigates the formally simpler commutator defined for
normal subgroups rather than for congruences. The “standard” commutator of
normal subgroups F and G of A is defined as follows:

ŒF; G	 WD the subgroup of A generated by the set fab $ ba W a 2 F; b 2 Gg: (1)

(As yx $ xy � .xy $ yx/�1 holds in all groups, it follows that ŒF; G	 includes the
set fba $ ab W a 2 F; b 2 Gg.)

Since the variety G of groups is congruence-modular, it is endowed with the
additive commutator operation for congruences. This commutator coincides with
the equationally defined commutator for G.

Apart from the property of preserving lattice operations, the operator ˝A pre-
serves the commutator operations in the following sense: for any normal subgroups
F and G of A,

˝A.ŒF; G	/ D Œ˝A.F/; ˝A.G/	; (2)

where on the right side, the commutator is defined for congruences of A. We also
have

HA.Œ˚; �	/ D ŒHA.˚/; HA.�/	;

for all ˚; � 2 Con.A/.
Since groups have permutable congruences with p.x; y; z/ WD x.y�1z/ as a

Mal’cev term, Corollary 6.4.3 defines an infinite generating set of commutator
equations for G, viz. the infinite set �0.x; y; z; w; u/ consisting of all equations of
the form

t.x; z; u/ 
 .t.y; z; u/�1 
 t.y; w; u// � t.x; w; u/ (3)

where t.x; y; u/ ranges over arbitrary terms, is a generating set for the commutator
of G.

After making appropriate simplifications in (3), we get the following sequence
of equivalent equations (modulo the axioms of groups), viz.

t.x; z; u/ 
 .t.y; z; u/�1 
 t.y; w; u// � t.x; w; u/

.t.x; z; u/ 
 t.y; z; u/�1/ 
 t.y; w; u/ � t.x; w; u/

t.x; z; u/ 
 t.y; z; u/�1 � t.x; w; u/ 
 t.y; w; u/�1

It follows that the equations

t.x; z; u/ 
 t.y; z; u/�1 � t.x; w; u/ 
 t.y; w; u/�1
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with t ranging over arbitrary terms, form a generating set for the (congruence)
commutator of G. This set is infinite. But it can be shown that in fact the commutator
for G has a one-element generating set, viz. the set consisting of the following
equation (with one parameter u; parentheses omitted):

z�1wu�1x�1yu � u�1x�1yuz�1w (4)

(see, e.g., the remarks following Corollary 2.10 in McKenzie 1987). ut

6.4.4 Equivalence Algebras

An intuitionistic equivalence algebra is an algebra A D .A; $/ (endowed with one
binary operation) satisfying the following equations:

.x $ x/ $ y � y (e1)

..x $ y/ $ z/ $ z � .x $ y/ $ .y $ z/; (e2)

..x $ y/ $ ..x $ z/ $ z// $ ..x $ z/ $ z/ � x $ y (e3)

(see, e.g., Idziak et al. 2011). EA is the variety of intuitionistic equivalence algebras.
EA is pointed (1 WD x $ x is a distinguished constant of EA) and point-regular
(relative to 1). EA is the algebraic counterpart of the purely equivalential fragment
of the intuitionistic propositional calculus. EA is locally finite. Moreover, every
quasivariety contained in EA is a variety—a result proved by Słomczyńska (1996).

In the theory of EA one usually adopts the conventions of ignoring the operation
sign $ in the terms of Te� and also left bracketing which means that the terms
lacking parentheses are to be associated with the left. For example, axioms (e1)–(e3)
are written down as

(e1) xxy � y; (e2) xyzz � xy.yz/; (e3) xy.xzz/.xzz/ � xy:

A filter F of an equivalence algebra A is a subset F � A such that, for all a; b 2 A,

(f1) 1 2 F; (f2) if a; ab 2 F; then b 2 F (f3) if a 2 F; then abb 2 F:

((f3) is referred to as the Tax property.)
For each equivalence algebra A and a filter F � A, one defines:

˝A.F/ WD fha; bi W ab 2 Fg:

˝A.F/ is a congruence of A. The operator ˝A establishes an isomorphism between
the lattice of filters of A and the lattice of congruences of A. The mapping HA

given by
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HA.˚/ WD fa 2 A W a � 1 .mod ˚/g; ˚ 2 Con.A/;

is the inverse of ˝A.
Since the variety EA is point-regular, it is congruence-modular. In fact, EA

has permutable congruences with p.x; y; z/ WD xyz.xzzx/ being a Mal’cev term
(Idziak 1991). EA is therefore endowed with the additive commutator operation.
This commutator coincides with the equationally defined commutator for EA.

In the theory of EA one investigates the formally simpler commutator defined
for filters rather than for congruences. This is due to the fact that the operator ˝A

preserves the commutator operations in the following sense: for any filters F and
G of A,

˝A.ŒF; G	/ D Œ˝A.F/; ˝A.G/	; (1)

where on the right side, the commutator is defined for congruences of A. We also
have

HA.Œ˚; �	/ D ŒHA.˚/; HA.˚/	;

for all ˚; � 2 Con.A/.
Applying (1), it can be proved that the “standard” commutator of filters F and G

of A is defined as follows:

ŒF; G	 D the filter of A generated by the setfabba; baab W a 2 F; b 2 Gg: (2)

(Idziak et al. 2011).
(2) cannot be replaced by the stronger formula:

ŒFi.X/; Fi.Y/	 D the filter of A generated by the set (3)

fabba; baab W a 2 X; b 2 Yg; for any sets X; Y � A:

(Idziak, Słomczyńska and Wroński, personal correspondence.) Fi.Z/ stands for the
filter of A generated by Z.

Taking into account the above Mal’cev term p.x; y; z/ for EA and Corollary 6.4.3,
we see that the infinite set �0.x; y; z; w; u/ consisting of all equations of the form

t.x; z; u/ t.y; z; u/ t.y; w; u/ .t.x; z; u/ t.y; w; u/ t.y; w; u/ t.x; z; u// � t.x; w; u/:

where t.x; y; u/ ranges over arbitrary terms, is a generating set for the (congruence)
commutator of EA. ut
Open problem. Let Q be a quasivariety of algebras with the relative congruence
extension property. Then the equationally defined commutator has a generating set
of equations �0.x; y; z; w/ in four variables only (without parameters). ut
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6.5 Various Commutators in Varieties

In the literature one finds a definition of the “Term Condition” (TC) commutator,
the one called C.˚; �/ in Freese and McKenzie (1987) (and Œ˚; �/	 in the second
edition). C.˚; �/ is the commutator arising from the centralization relation Z1 of
the present book (but in the context of all algebras of a given signature). To avoid
confusion with the equationally defined commutator, we shall mark this commutator
as Œ 
 	1. Thus, for any algebra A and any congruences ˚; � of A,

Œ˚; �	1 WD the least congruence � of A such that Z1.˚; � I �/ holds.

Z1.˚; � I �/ means here that for any positive integers m; n, for any term t.x; y; u/

with x D x1; : : : ; xm, y D y1; : : : ; yn, for any two m-tuples a; b of elements of A
and any two n-tuples c; d of elements of A such that a � b .mod ˚/ and c �
d .mod �/,

t.a; c; e/ � t.a; d; e/ .mod �/ implies t.b; c; e/ � t.b; d; e/ .mod �/;

for any sequence e of elements of A of the length of u.
The definition of Z1.˚; � I �/ is often rendered in a matrix form as follows.

Let ˚; � , and � be in Con.A/.
M.˚; �/ is the set of all square 2 	 2 matrices

 
t.a; c; e/ t.a; d; e/

t.b; c; e/ t.b; d; e/

!

where t.x; y; u/ with x D x1; : : : ; xm, y D y1; : : : ; yn is an arbitrary term of Te�

with positive m and n, a; b are arbitrary m-tuples of elements of A such that a �
b .mod ˚/, c; d are arbitrary n-tuples of elements of A such that c � d .mod �/,
and e is an arbitrary sequence of elements of A of the length of u.

It is then easy to check that

Z1.˚; � I �/ , for every matrix

 
u11 u12

u21 u22

!
in M.˚; �/;

u11 � u12 .mod �/ implies u21 � u22 .mod �/:

Let M.˚; �/T be the set of transposed matrices of M.˚; �/.

Lemma 6.5.1. M.˚; �/T D M.�; ˚/ for all ˚; � in Con.A/.

Proof. Let
 

t.a; c; e/ t.a; d; e/

t.b; c; e/ t.b; d; e/

!
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be a matrix in M.˚; �/. We show that its transposition, viz.,

 
t.a; c; e/ t.b; c; e/

t.a; d; e/ t.b; d; e/

!

belongs to M.�; ˚/.
We may write t D t.x; y; u/ with x D x1; : : : ; xm, y D y1; : : : ; yn. We select

sequences of new different variables x0 and y0 such that jx0j D jyj and jy0j D jxj and
put:

t0 D t0.x0; y0; u/ WD t.x=y0; y=x0; u/:

We have:

t0.c; a; e/ D t0.x0=c; y0=a; u=e/ D t.x=a; y=c; u=e/ D t.a; c; e/

t0.d; a; e/ D t0.x0=d; y0=a; u=e/ D t.x=a; y=d; u=e/ D t.a; d; e/

t0.c; b; e/ D t0.x0=c; y0=b; u=e/ D t.x=b; y=c; u=e/ D t.b; c; e/

t0.d; b; e/ D t0.x0=d; y0=b; u=e/ D t.x=b; y=d; u=e/ D t.b; d; e/:

Hence the matrix
 

t.a; c; e/ t.a; d; e/

t.b; c; e/ t.b; d; e/

!
is identical with

 
t0.c; a; e/ t0.d; a; e/

t0.c; b; e/ t0.d; b; e/

!
:

After transposition we get that

 
t.a; c; e/ t.b; c; e/

t.a; d; e/ t.b; d; e/

!
is identical with

 
t0.c; a; e/ t0.c; b; e/

t0.d; a; e/ t0.d; b; e/

!
:

But the second matrix belongs to M.�; ˚/. This proves that M.˚; �/T � M.�; ˚/.
By a symmetric argument we get that M.�; ˚/T � M.˚; �/. Hence M.�; ˚/ D

M.�; ˚/TT � M.˚; �/T . This shows that M.˚; �/T D M.�; ˚/. ut
The definition of Œ˚; �	1 is absolute; the commutator Œ˚; �	1 does not depend on

a variety to which A belongs. The commutator Œ 
 	1, defined by the centralization Z1,
is studied in the literature by its own right. Generally, Œ 
 	1 need not be a symmetric
function!

We take a step farther and define yet another commutator, viz., the “Two-Term
Condition” (2TC) commutator Œ 
 	2 determined by the centralization Z2 in the sense
of the two-term condition in arbitrary algebras. Thus, for any algebra A and any
congruences ˚; � of A,

Œ˚; �	2 WD the least congruence � of A such that Z2.˚; � I �/ holds.
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(Z2.˚; � I �/ means here that for any m; n > 1, any two m-tuples a; b, any two
n-tuples c; d of elements of A such that a � b .mod ˚/ and c � d .mod �/, any
terms f .x; y; v/, g.x; y; v/, where jxj D m, jyj D n, and any sequence e of elements
of A of the length of v,

f .a; c; e/ � g.a; c; e/ .mod �/

f .a; d; e/ � g.a; d; e/ .mod �/

f .b; c; e/ � g.b; c; e/ .mod �/

imply

f .b; d; e/ � g.b; d; e/ .mod �/:/

By the same token, the definition of Œ˚; �	2 is absolute; the commutator Œ˚; �	2
does not depend on a variety to which A belongs. Œ 
 	2 is, however, a symmetric
function (see Note 2 following Proposition 4.1.1).

For the sake of the present comments, if V is a variety (not necessarily CM),
A 2 V, and ˚; � 2 Con.A/, then Œ˚; �	4;edc.V/ is the commutator defined by means
of quaternary commutator equations in the sense of V. Thus

Œ˚; �	4;edc.V/ WD the least congruence � of A such that Z4;com.˚; � I �/ holds.

Here Z4;com.˚; � I �/ means that for any quadruple a; b; c; d of elements of A, the
conditions

a � b .mod ˚/ and c � d .mod �/ imply p.a; b; c; d; e/ � q.a; b; c; d; e/ .mod �/

for any quaternary commutator equation p.x; y; z; w; u/ � q.x; y; z; w; u/ in the
sense of V and any sequence e of elements of A of the length of u.

We recall that Œ˚; �	edc.V/ is the commutator defined by means of arbitrary
commutator equations in the sense of V. Thus, if A 2 V, and ˚; � 2 Con.A/,
then

Œ˚; �	edc.V/ WD the least congruence � of A such that Zcom.˚; � I �/ holds

(see Section 4.1).
Theorem 4.3.2 implies:

Theorem 6.5.2. Let V be a congruence-modular variety. Then for any algebra
A 2 V and any congruences ˚; � of A,

Œ˚; �	1 D Œ˚; �	2 D Œ˚; �	edc.V/ D Œ˚; �	4;edc.V/: ut
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A part of the above result was proved by Kiss (1992)—he showed that Œ 
 	1 D Œ 
 	2
holds in any CM variety.

Since the above definitions of congruences Œ˚; �	1 and Œ˚; �	2 are variety
independent, it therefore follows from the above theorem that if V1 and V2 are CM
varieties, then for any algebra A 2 V1\V2 and any ˚; � 2 Con.A/, the equationally
defined commutators of ˚; � in the sense of V1 and V2, respectively, coincide,
that is, Œ˚; �	edc.V1/ D Œ˚; �	edc.V2/ despite the fact that the sets of commutator
equations of V1 and V2, respectively, are generally different. Since the definition of
congruences Œ˚; �	1 and Œ˚; �	2 do not depend on V but merely on the structural
properties of the algebra A, we see that the equationally defined commutator of ˚; �

is stable in the sense that it is the same congruence whenever it is computed in any
CM variety to which A belongs.

Let V be a variety, not necessarily congruence-modular. Then Œ˚; �	4;edc.V/ �
Œ˚; �	edc.V/ for any algebra A 2 V and any ˚; � 2 Con.A/. In turn, Lemma 4.1.3
gives that Œ˚; �	edc.V/ � Œ˚; �	2. We may therefore abbreviate the above inclu-
sions as

Œ 
 	4;edc.V/ 6 Œ 
 	edc.V/ 6 Œ 
 	2

for any variety V.
As far as non-CM varieties V are concerned, it is not clear to what extent the

commutators Œ 
 	1, Œ 
 	2, Œ 
 	4;edc.V/ and Œ 
 	edc.V/ are different. If V is the “empty”
variety consisting of all non-empty sets (no operations), then Œ 
 	4;edc.V/ and Œ 
 	edc.V/

coincide. Œ 
 	4;edc.V/ D Œ 
 	edc.V/ also holds in “free” varieties satisfying no non-
trivial identity, because in this case the equationally defined commutator is a zero
commutator. These are Birkhoff’s logics in all possible signatures. (More, generally,
if V is a variety whose free algebra FV.!/ satisfies conditions (FreeGenDistr)m;n for
all positive integers m and n, as defined in Section 5.2, then Œ 
 	4;edc.V/ D Œ 
 	edc.V/.
This follows from Corollary 5.2.15.) We do not know how the above commutators
behave in monadic varieties (with only unary fundamental operations).

The symmetric commutator of ˚ and � , written Œ˚; �	sym, is the least � such
that Z1.˚; � I �/ and Z1.�; ˚ I �/ hold. Let Œ 
 	sym be the symmetrization of Œ 
 	1. We
have Œ˚; �	1 � Œ˚; �	sym D Œ�; ˚	sym. Moreover, both operations Œ 
 	1 and Œ 
 	sym

are monotone in each variable.
According to Freese and McKenzie (1987), Proposition 4.2, the equation

Œ˚; �	1 D Œ˚; �	sym holds in every congruence modular variety. (This also directly
follows from Theorem 4.2.2.) This equation holds for an algebra exactly when
the operation Œ 
 	sym is symmetric. It is shown in Kearnes (1995) that the identity
Œ 
 	1 D Œ 
 	sym holds in any variety with a difference term, but it fails in some
varieties with a weak difference term, such as the variety of inverse semigroups.

If V is an idempotent variety satisfying a non-trivial Mal’cev condition, then
Œ 
 	2 D Œ 
 	sym throughout V (see Kearnes and Szendrei 1998). But as Œ 
 	edc.V/ 6 Œ 
 	2,
we have that Œ 
 	edc.V/ 6 Œ 
 	sym in such varieties V. In particular, if Œ 
 	1 is symmetric
in V, then Œ 
 	edc.V/ 6 Œ 
 	1 in the algebras of V.
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The variety S of semilattices is minimal and it is not congruence-modular.
Kearnes (2000) has proved that, up to term equivalence, the only minimal idempo-
tent varieties that are not congruence-modular are the variety of sets and the variety
of semilattices. (The variety of sets has the empty signature—this is the variety with
no fundamental operations—see also Section 5.3.) Œ 
 	edc.S/ is the zero commutator,
the fact established by Corollary 5.4.2.

The following corollary is an immediate consequence of the above result of
Kearnes and of Theorems 5.4.1 and 6.3.2:

Theorem 6.5.3. For every minimal idempotent variety V, the lattice Con.FV.!//

validates the law of restricted distributivity. Consequently, the equationally defined
commutator for V is additive. ut

The following theorem is due to Keith Kearnes (unpublished):

Theorem 6.5.4. Suppose that V is a locally finite variety and that Œ 
 	edc.V/ D Œ 
 	1
throughout V (or just only Œ 
 	edc.V/ D Œ 
 	sym throughout V). Then:

(a) V omits type 5 in the sense of Hobby and McKenzie (1988).
(b) If V satisfies some non-trivial idempotent Mal’cev condition (that is, V omits

type 1), then congruences of algebras in V satisfy some non-trivial lattice
identity (that is, V omits types 1 and 5 (see also Kearnes 2001, in particular
Theorem 2.4).

(c) If V is congruence meet semidistributive and satisfies some non-trivial idem-
potent Mal’cev condition, then V is congruence join semidistributive (Kearnes
2001, Theorem 2.6). ut

Since (b) and (c) do not mention tame congruence theory, it is conceivable that
they hold for arbitrary varieties, not just locally finite varieties. This is an open
problem and perhaps a solution can be obtained in a relatively simple way using the
methods of Kearnes and Kiss (2013) .

Yet another direction of investigation is to see how the commutators behave in
varieties V which are not congruence modular but whose congruence lattices still
satisfy a non-trivial lattice theoretic identity. Interesting test cases are 4-permutable
varieties, e.g., Polin’s variety (see Day and Freese 1980) or the variant of Polin’s
variety with Abelian groups as “internal algebras” (see Example A3 in Exercise 6.23
in Hobby and McKenzie 1988). The crucial issue is that of the additivity of Œ 
 	edc.V/

(see Chapter 5).



Chapter 7
Additivity of the Equationally-Defined
Commutator and Relatively
Congruence-Distributive
Subquasivarieties

7.1 Relatively Finitely Subdirectly Irreducible Algebras

Let Q be a quasivariety. The notation A Š A0 �SD ˘i2IBi means that the algebra A
is isomorphic to a subdirect product of a system Bi, i 2 I, of algebras in Q.

A non-trivial algebra A 2 Q is (finitely) subdirectly irreducible relative to Q if
it is not isomorphic to a subdirect product of a (finite) system Bi, i 2 I, of algebras
in Q, unless at least one of the algebras Bi is isomorphic with A. When Q is clear
from context, A is also called relatively (finitely) subdirectly irreducible.

A 2 Q is relatively (finitely) subdirectly irreducible iff the identity congruence
0A is (finitely) meet-irreducible in the lattice ConQ.A/. Since ConQ.A/ is algebraic,
every Q-congruence on A is the meet of a family of finitely meet-irreducible
Q-congruences.

Theorem 7.1.1. Let Q be a quasivariety. Any algebra in Q is isomorphic with
a subdirect product of relatively finitely subdirectly irreducible members of Q. ut

The class of relatively (finitely) subdirectly irreducible algebras of Q is denoted
by QRSI (QRFSI, respectively). It is clear that QRSI � QRFSI. Moreover, if Q is a sub-
quasivariety of a quasivariety Q0, then Q \ Q0

RSI � QRSI and Q \ Q0
RFSI � QRFSI.

Theorem 7.1.2. Let K be any class of algebras. Then Qv.K/RFSI � SPu.K/.

Proof. See, e.g., Czelakowski and Dziobiak (1990). ut
The following observation is due to Pigozzi (1988), Lemma 2.1; see also the

proof of Proposition 7.2.2 below.

Proposition 7.1.3. Let Q be a quasivariety and let �.x; y; z; w; u/ be a possibly
infinite set of quaternary equations (with parameters). The following conditions are
equivalent:
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(1) For all A 2 Q and for all a; b; c; d 2 A,

�A
Q.a; b/ \ �A

Q.c; d/ D �A
Q..8e/ �A.a; b; c; d; u//I

(2) For all A 2 Q and for all a; b; c; d 2 A,

�A
Q.a; b/ \ �A

Q.c; d/ D 0A , A ˆ .8u/
^

�.x; y; z; w; u/Œa; b; c; d	I

(3) QRFSI ˆ .8xyzw/..8u/ �.x; y; z; w; u/ $ x � y _ z � w/.

Proof. The proof is omitted. ut
A quasivariety Q has (universally) parameterized equationally definable relative

principal meets (parameterized EDPM for short) if any (and hence all) of the
conditions Proposition 7.1.3 hold for some set �.x; y; z; w; u/ of parameterized
quaternary equations.

A class of algebras is elementary if it is definable by a (possibly infinite) set of
sentences of a first-order language.

The following theorem was independently proved by Pigozzi (1988) and
Czelakowski and Dziobiak (1990):

Theorem 7.1.4. A quasivariety Q has parameterized EDPM if and only if Q is
relatively congruence-distributive.

Q has parameterized EDPM with respect to a finite set �.x; y; z; w; u/ if and only
if Q is relatively congruence-distributive and QRFSI is an elementary class. ut

If Q is relatively congruence-distributive, then each member of QRFSI is finitely
subdirectly irreducible in the absolute sense, which means that QRFSI � Va.Q/FSI.
(In fact, this inclusion holds for any relatively congruence-modular quasivariety
Q—see Kearnes and McKenzie 1992.)

The following theorem provides a purely syntactic characterization of quasivari-
eties with EDPM.

Theorem 7.1.5. Let Q be a quasivariety. Let � be a set of proper quasi-equations
such that Q D Mod.Id.Q/ [ � /. Let �.x; y; z; w; u/ be a parameterized set of
quaternary equations. The following assertions are equivalent:

(1) Q has EDPM with respect to �.x; y; z; w; u/.
(2) The following are sets of rules of Qˆ W

(2)(a) x � y=�.x; y; z; w; u/ (absorption rules)
(2)(b) .8u/ �.x; y; z; w; u/=�.z; w; x; y; u/ (commutativity rules)
(2)(c) .8u/ �.x; y; x; y; u/=x � y (idempotency rule).

Moreover, for every proper quasi-equation � W ˛1 � ˇ1; : : : ; ˛n � ˇn ! ˛ � ˇ

belonging to � [ Birkhoff .�/, its �-transform



7.1 Relatively Finitely Subdirectly Irreducible Algebras 189

(2)(d)� .8u/ �.˛1; ˇ1; z1; w1; u/ [ : : : [ .8u/ �.˛n; ˇn; z1; w1; u/=�.˛; ˇ; z1; w1; u/

is a set of rules of Qˆ. (Here z1 and w1 are arbitrary but fixed variables not
occurring in �.)

Note. The rules of (2)(b), the rule (2)(c), and the rules of (2)(d)� are infinite. Since
the equational consequence operation Qˆ determined by Q is finitary, the above
rules are subject to the finitarization procedure and can be replaced by sets of finitary
rules valid in Q.

If the set �.x; y; z; w; u/ is finite, there are only finitely many rules in (2)(a) and
(2)(b). Moreover, for every rule �, the set of rules (2)(d)� is finite. ut
Open problem. Let �.x; y; z; w; u/ be a set of equations. Give a set of inference
rules characterizing the consequence operation Qˆ of the largest quasivariety
Q whose equationally defined commutator is additive and �.x; y; z; w; u/ is a
generating set. It is convenient to reformulate syntactic conditions (2)(a), (2)(b) and,
for each rule �, (2)(d)� uniformly in terms of equational inference rules. The rule
(2)(c) is a problem. ut
Proof. (1) ) (2). Assume (1). We use the facts and notation presented in the
proof of the implication (B) ) (C) of Theorem 3.5.1. Taking the free alge-
bra F WD FQ.!/ we see that (1) gives that �F

Q.Œx	; Œy	/ \ �F
Q.Œz	; Œw	/ D

�F
Q..8e/ �F.Œx	; Œy	; Œz	; Œw	; e//. This readily implies that Qˆ.�.x; y; z; w; u// �

Qˆ.x � y/. Hence (2)(a) holds.
EDPM implies that �F

Q..8e/�F.Œx	; Œy	; Œz	; Œw	; e//D�F
Q.Œx	; Œy	/\�F

Q.Œz	; Œw	/D
�F

Q.Œz	; Œw	/ \ �F
Q.Œx	; Œy	/ D �F

Q..8e/ �F.Œz	; Œw	; Œx	; Œy	; e//. Hence

Qˆ..8u/ �.x; y; z; w; u// D Qˆ..8u/ �.z; w; x; y; u//;

by Proposition 2.5. From the above equality 2(b) follows.
In view of Theorem 7.1.4, the quasivariety Q is relatively congruence-

distributive. Suppose � W ˛1 � ˇ1 ^ : : : ^ ˛n � ˇn ! ˛ � ˇ is a quasi-equation
of Q. Hence ˛ � ˇ 2 Qˆ.˛1 � ˇ1; : : : ; ˛n � ˇn/. This fact implies (2)(d)�.
Indeed, we have

�F
Q.Œ˛	; Œˇ	/ � �F

Q.hŒ˛1	; Œˇ1	i; : : : ; hŒ˛n	; Œˇn	i/:

It follows that

�F
Q.Œ˛	; Œˇ	/ \ �F

Q.Œ�	; Œı	/ �
�F

Q.Œ˛1	; Œˇ1	/ \ �F
Q.Œ�	; Œı	/ CQ : : : CQ �F

Q.Œ˛n	; Œˇn	/ \ �F
Q.Œ�	; Œı	/;
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by the distributivity of the lattice ConQ.F/. EDPM then gives that

�F
Q..8e/ �F.Œ˛	; Œˇ	; Œ�	; Œı	; e// �

�F
Q..8e/ �F.Œ˛1	; Œˇ1	; Œ�	; Œı	; e// CQ : : :CQ �F

Q..8e/ �F.Œ˛n	; Œˇn	; Œ�	; Œı	; e// D
�F

Q..8e/ �F.Œ˛1	; Œˇ1	; Œ�	; Œı	; e/ [ : : : [ .8e/ �F.Œ˛n	; Œˇn	; Œ�	; Œı	; e//:

Applying Proposition 2.5 to the above inclusion we get that

.8u/ �.˛; ˇ; �; ı; u/ �
Qˆ..8u/ �.˛1; ˇ1; �; ı; u/ [ : : : [ .8u/ �.˛n; ˇn; �; ı; u//

for every equation � � ı. So (2)(d)� holds.
EDPM also implies that

�F
Q..8e/ �F.Œx	; Œy	; Œx	; Œy	; e// D �F

Q.Œx	; Œy	/:

Hence

Qˆ.x � y/ D Qˆ..8u/ �.x; y; x; y; u//;

again by Proposition 2.5. So (2)(c) holds.
(2) ) (1). Assume (2).

Claim 1. (2)(e) z � w=�.x; y; z; w; u/

is a set of rules of Qˆ.

Proof (of the claim). By (2)(b) and structurality,

.8u/ �.z; w; x; y; u/=�.x; y; z; w; u/ (*)

are rules of Qˆ. In turn, (2)(a) and structurality give that

z � w=�.z; w; x; y; u/

are rules of Qˆ. It follows that

z � w=.8u/ �.z; w; x; y; u/ (**)

is a set of rules of Qˆ. (*) and (**) imply that

z � w=�.x; y; z; w; u/

is a set of rules of Qˆ as well. ut
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Note that (2)(a) and (2)(e) jointly state that �.x; y; z; w; u/ is a set of commutator
equations for Q.

Claim 2. (2)(e) .8u/ �.z; w; x; y; u/=�.x; y; z; w; u/

is a set of rules of Qˆ.

Proof (of the claim). This follows from (2)(b) and structurality. ut
(2)(b), (2)(e) and structurality imply that � satisfies the following equality:

Qˆ..8u/ �.x; y; z; w; u// D Qˆ..8u/ �.z; w; x; y; u// (commutativity).

Consequently, for any algebra A 2 Q and all a; b; c; d 2 A,

�A
Q..8e/ �.a; b; c; d; e// D �A

Q..8e/ �.c; d; a; b; e//:

We now pass to the proof that Q has EDPM with respect to �.x; y; z; w; u/. Let
A be an algebra in Q and a; b; c; d 2 A. The inclusion

�A
Q..8e/ �.a; b; c; d; e// � �A

Q.a; b/ \ �A
Q.c; d/

holds because (2)(a) and (2)(f) are sets of rules of Qˆ.
The proof of the reverse inclusion is harder. Suppose that he; f i 2 �A

Q.a; b/ \
�A

Q.c; d/. According to Theorem 2.1, there exist finite sequences of pairs of
elements of A

ha1; b1i; : : : ; ham; bmi (1)

and

hc1; d1i; : : : ; hcn; dni (2)

being Q-proofs of he; f i from ha; bi and hc; di, respectively.
Taking (1) into account, we first inductively prove that

�A
Q..8e/ �.ai; bi; c; d; e// � �A

Q..8e/ �.a; b; c; d; e// (3)

for i D 1; 2; : : : ; m.
For i D 1, we have that ha1; b1i D ha; bi or a1 D b1. If ha1; b1i D ha; bi,

then evidently .8e/ �.a1; b1; c; d; e/ � .8e/ �.a; b; c; d; e/. If a1 D b1, then
.8e/ �.a1; b1; c; d; e/ D 0A � .8e/ �.a; b; c; d; e/, because in view of (2)(a),
x � y=�.x; y; z; w; u/ is a set of rules of Q. Now fix i > 1 and suppose that

�A
Q..8e/ �.aj; bj; c; d; e// � �A

Q..8e/ �.a; b; c; d; e// for all j < i: (4)
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It remains to consider the case when there exist a set J � f1; : : : ; i � 1g, a
quasi-equation � W r1.x/ � s1.x/ ^ : : : ^ rk.x/ � sk.x/ ! r.x/ � s.x/ in
� [ Birkhoff.�/, where x D x1; : : : ; xp, and a sequence c D c1; : : : ; cp such that
fhrt.c/; st.c/i W 1 6 t 6 kg D fhaj; bji W j 2 Jg and hr.c/; s.c/i D hai; bii. These
relations together with (4) imply that

�A
Q..8e/ �.rt.c/; st.c/; c; d; e// � �A

Q..8e/ �.a; b; c; d; e//

for all t; 1 6 t 6 k: (5)

Since (2)(d)� is a set of rules of Qˆ, we get that

�A
Q..8e/ �.r.c/; s.c/; c; d; e// �

�A
Q.
[

f.8e/ �.rt.c/; st.c/; c; d; e/ W 1 6 t 6 kg/: (6)

(5) and (6) imply that

�A
Q..8e/ �.r.c/; s.c/; c; d; e// � �A

Q..8e/ �.a; b; c; d; e//;

i.e.,

�A
Q..8e/ �.ai; bi; c; d; e// � �A

Q..8e/ �.a; b; c; d; e//;

So (3) holds. In particular, for i D m, we obtain

�A
Q..8e/ �.e; f ; c; d; e// � �A

Q..8e/ �.a; b; c; d; e//: (7)

Having established (7), we inductively prove that

�A
Q..8e/ �.e; f ; cj; dj; e// � �A

Q..8e/ �.e; f ; c; d; e// (8)

for all j, (1 6 j 6 n).
For j D 1 we have that hc1; d1i D hc; di or c1 D d1. If hc1; d1i D hc; di,

then evidently .8e/ �.e; f ; c1; d1; e/ �.8e/ �.e; f ; c; d; e/. If c1 D d1, then
.8e/ �.e; f ; c1; d1; e/ D 0A � .8e/ �.e; f ; c; d; e/, because by (2)(e) (Claim 2),
z � w ` �.x; y; z; w; u/ is a set of rules of Qˆ. Now fix j > 1 and suppose that

�A
Q..8e/ �.e; f ; ci; di; e// � �A

Q..8e/ �.e; f ; c; d; e// for all i < j: (9)
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It remains to consider the case where there exists a set I � f1; : : : ; j � 1g,
a quasi-equation � W r1.x/ � s1.x/ ^ : : : ^ rk.x/ � sk.x/ ! r.x/ � s.x/ in
� [ Birkhoff.�/, where x D x1; : : : ; xp, and a sequence c D c1; : : : ; cp such that
fhrt.c/; st.c/i W 1 6 t 6 kg D fhai; bii W i 2 Ig and hr.c/; s.c/i D haj; bji. These
relations together with (9) imply that

�A
Q..8e/ �.e; f ; rt.c/; st.c/; e// � �A

Q..8e/ �.e; f ; c; d; e//

for all t; 1 6 t 6 k: (10)

But according to (2)(d)�

.8u/ �.r1; s1; z1; w1; u/ [ : : : [ .8u/ �.rk; sk; z1; w1; u/ ` �.r; s; z1; w1; u/ (�)

is a set of rules of Qˆ, where z1 and w1 are different variables not occurring in x.
Since

Qˆ..8u/ �.x; y; z; w; u// D Qˆ..8u/ �.z; w; x; y; u//

(see the remarks following Claim 2), and hence

.8u/ �.x; y; z; w; u/=�.z; w; x; y; u/ and .8u/ �.z; w; x; y; u/=�.x; y; z; w; u/

are sets of rules of Qˆ, it follows from (�) that

.8u/ �.z; w; r1; s1; u/ [ : : : [ .8u/ �.z; w; rk; sk; u/=�.z; w; r; s; u/

is a set of rules of Qˆ as well. Consequently,

�A
Q..8e/ �.e; f ; r.c/; s.c/; e// �

�A
Q.
[

f.8e/ �.e; f ; rt.c/; st.c/; e/ W 1 6 t 6 kg/: (11)

(10) and (11) imply that

�A
Q..8e/ �.e; f ; r.c/; s.c/; e// � �A

Q..8e/ �.e; f ; c; d; e//

i.e.,

�A
Q..8e/ �.e; f ; cj; dj; e// � �A

Q..8e/ �.e; f ; c; d; e//:
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So (8) holds. In particular, for j D n, we obtain

�A
Q..8e/ �.e; f ; e; f ; e// � �A

Q..8e/ �.e; f ; c; d; e//:

Hence, taking (7) into account, we get that

�A
Q..8e/ �.e; f ; e; f ; e// � �A

Q..8e/ �.a; b; c; d; e//: (12)

Since (2)(c) is a rule of Qˆ, we have that

he; f i 2 �A
Q..8e/ �.e; f ; e; f ; e//: (13)

(12) and (13) imply that he; f i 2 �A
Q..8e/ �.a; b; c; d; e//.

This proves the inclusion �A
Q..8e/ �.a; b; c; d; e// � �A

Q.a; b/ \ �A
Q.c; d/.

It follows that �A
Q.a; b/ \ �A

Q.c; d/ D �A
Q..8e/ �.a; b; c; d; e//. Since A is an

arbitrary algebra in Q, we see that Q has EDPM with respect to the set of equations
�.x; y; z; w; u/.

The proof of the theorem is completed. ut
The following observation is a simple corollary to Theorem 7.1.4:

Theorem 7.1.6. Let Q be an RCD quasivariety. Then the equational commutator of
any two relative congruences coincides with their meet, i.e., for any algebra A 2 Q
and for all ˚; � 2 ConQ.A/, Œ˚; �	A D ˚ \ � .

Proof. As Q has EDPM with respect to some set �.x; y; z; w; u/, it follows that
�.x; y; z; w; u/ is a set of quaternary commutator equations for Q. Hence, for all
A 2 Q and for all a; b; c; d 2 A,

�A
Q.a; b/ \ �A

Q.c; d/ D �A
Q..8e/ �A.a; b; c; d; e// �

Œ�A
Q.a; b/; �A

Q.c; d/	A � �A
Q.a; b/ \ �A

Q.c; d/:

It follows that

Œ�A
Q.a; b/; �A

Q.c; d/	A D �A
Q.a; b/ \ �A

Q.c; d/:

Then, making use of the fact that the lattice ConQ.A/ is algebraic and distributive,
we get that Œ˚; �	A D ˚ \ � , for all ˚; � 2 ConQ.A/. ut
Corollary 7.1.7. Let Q be a quasivariety whose equationally defined commutator
is additive. Q is RCD if and only if Œ˚; �	A D ˚ \ � for any algebra A 2 Q and
for all ˚; � 2 ConQ.A/. ut
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7.2 Prime Algebras

Let Q be a quasivariety and A an algebra in Q. Let ˚ be a Q-congruence on A. ˚ is
said to be prime (in the lattice ConQ.A// if, for any congruences ˚1; ˚2 2 ConQ.A/,
Œ˚1; ˚2	A � ˚ implies that ˚1 � ˚ or ˚2 � ˚ . (Here Œ˚1; ˚2	A denotes the
equationally defined commutator of the congruences ˚1; ˚2 in A in the sense of Q.)

A 2 Q is said to be prime (in Q) if the identity congruence 0A is prime in
ConQ.A/. Thus A is prime in Q if and only if Œ˚1; ˚2	 D 0A holds for no pair
of nonzero congruences ˚1; ˚2 2 ConQ.A/.

QPRIME denotes the class of all prime algebras in Q.

Proposition 7.2.1. For every quasivariety Q, QPRIME � QRFSI.

Proof. Suppose A 2 QPRIME and let �A
Q.a; b/ \ �A

Q.c; d/ D 0A for some a; b; c; d 2
A. Then Œ�A

Q.a; b/; �A
Q.c; d/	 D 0A. It follows that a D b or c D d. So A 2 QRFSI.

ut
If Q is an RCD quasivariety, Theorem 7.1.6 implies that

QPRIME D QRFSI:

Proposition 7.2.2. Let Q be quasivariety whose equationally defined commutator
is additive. Let �.x; y; z; w; u/ be a generating set. Let A be an algebra in Q and
˚ 2 ConQ.A/. Then the following conditions are equivalent:

(i) ˚ is prime in ConQ.A/;
(ii) For all a; b; c; d 2 A,

Œ�A
Q.a; b/; �A

Q.c; d/	 � ˚ implies ha; bi 2 ˚ or hc; di 2 ˚ I

(iii) For all a; b; c; d 2 A,

�A
Q..8e/ �.a; b; c; d; e// � ˚ implies ha; bi 2 ˚ or hc; di 2 ˚:

Proof. Obviously (i) implies (ii).
(ii) ) (iii). Assume (ii). �.x; y; z; w; u/ is a generating set for Q, i.e.,

Qˆ..8u/ �0.x; y; z; w; u// D Qˆ.x � y/ \ Qˆ.z � w/. But this implies
that Œ�A

Q.a; b/; �A
Q.c; d/	A D �A

Q..8e/ �.a; b; c; d; e// for all a; b; c; d 2 A, by
Corollary 5.1.3. From (ii) and this observation condition (iii) follows.

(iii) ) (i). Assume (iii) holds for ˚ and suppose ˚1; ˚2 2 ConQ.A/ so that
Œ˚1; ˚2	 � ˚ . Let us assume that ˚1 D �A

Q.X/ and ˚2 D �A
Q.Y/ for some sets X

and Y . Then, by additivity, Œ˚1; ˚2	 D �A
Q.
Sf.8e/ �A

0 .a; b; c; d; e/ W ha; bi 2 X;

hc; di 2 Yg/ (see Theorem 5.1.2). It follows that for any ha; bi 2 X, hc; di 2 Y , it is
the case that ha; bi 2 ˚ or hc; di 2 ˚ . Hence, X � ˚ or Y � ˚ . This gives that
˚1 � ˚ or ˚2 � ˚ . ut
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Corollary 7.2.3. Let Q and �.x; y; z; w; u/ be as above. Then for any algebra A 2
Q and any ˚ 2 ConQ.A/, ˚ is prime in ConQ.A/ if and only if the algebra A=˚ is
prime in Q. Moreover, the following conditions are equivalent:

(i) A is prime in Q;
(ii) A ˆ .8xyzw/..8u/

V
�.x; y; z; w; u/ $ x � y _ z � w/. ut

The aim of this chapter is to prove the following theorem:

Theorem 7.2.4. Let Q be a quasivariety whose equationally defined commutator is
additive and has a finite generating set. The class SP.QPRIME/ is the largest RCD
quasivariety included in Q.

Proof. We have: QPRIME � SP.QPRIME/ � Q.
Let �.x; y; z; w; u/ be a finite generating set of quaternary commutator equations

for Q. As � is finite, the sentence .8xyzw/..8u/
V

�.x; y; x; y; u/ $ x � y/ is
elementary. It then follows from Corollary 7.2.3 that the class QPRIME is closed
under the formation of ultraproducts. Hence

Q� WD SP.QPRIME/

is a quasivariety included in Q.

Lemma 7.2.5. Q� has EDPM with respect to �.x; y; z; w; u/ and hence it is an
RCD quasivariety.

Proof (of the lemma). We shall apply Theorem 7.1.5 to Q�.

Claim 1. (2)(a) is a set of rules of Q�ˆ.

Proof (of the claim). Since �.x; y; z; w; u/ is a set of quaternary commutator
equations for Q, it follows that x � y=�.x; y; z; w; u/ is a set of rules of Qˆ.
Consequently, x � y=�.x; y; z; w; u/ is a set of rules of Q�ˆ, because Q� � Q. ut
Claim 2. (2)(b) is a set of rules of Q�.

Proof (of the claim). Since �.x; y; z; w; u/ is a generating set of equations for the
equationally defined commutator of Q, it follows that Qˆ..8u/ �.x; y; z; w; u// D
Qˆ..8u/�.z; w; x; y; u//—see Corollary 5.1.3. Consequently, .8u/�.x; y; z; w; u/=

�.z; w; x; y; u/ is a set of rules of Qˆ. Hence it is a set of rules of Q�ˆ. ut
Claim 3. (2)(c) is a rule of Q�ˆ.

Proof (of the claim). According to Corollary 7.2.3.(iii), the class QPRIME validates
the universal-existential first-order sentence

.8xy/..8u/
^

�.x; y; x; y; u/ ! x � y/: (�)

As QPRIME is closed under ultraproducts, a straightforward ultraproduct argument
shows that there exists a finite set of finite sequences of terms t1; : : : ; tn (all of the
same length) such that the class QPRIME validates the quasi-identity
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� W .8xy/.8u/.�.x; y; x; y; t1/ ^ : : : ^ �.x; y; x; y; tn/ ! x � y/:

Hence � is valid in the quasivariety Q� D SP.QPRIME/. Consequently,

�.x; y; x; y; t1/ [ : : : [ �.x; y; x; y; tn/=x � y:

is a rule of Q�ˆ and hence

.8u/ �.x; y; x; y; u/=x � y

is a rule of Q�ˆ as well.
(Yet another justification of the claim runs as follows. Since the sentence (�) is

valid in QPRIME, .8u/.�.x; y; x; y; u/=x � y is a rule of the consequence operation
Qˆ

PRIME. As QPRIME is closed with respect to Pu, the consequence operation Qˆ
PRIME

is finitary. Hence there exists a finite subset ˙f � .8u/ �.x; y; x; y; u/ such that

˙f =x � y is a rule of Qˆ
PRIME. It follows that ˙f =x � y is also a rule of

SP.QPRIME/ˆ D Q�ˆ. Consequently, .8u/ �.x; y; x; y; u/=x � y is a rule of Q�ˆ.)
ut

Claim 4. For every quasi-equation � of Q�, (2)(d)� is a set of rules of Q�ˆ.

Proof (of the claim). Suppose that a quasi-equation � W r1 � s1 ^ : : : ^ rk � sk !
r � s is valid in Q�ˆ. We must show that

.8u/ �.r1; s1; z; w; u/ [ : : : [ .8u/ �.rk; sk; z; w; u/=�.r; s; z; w; u/ (2)(d)�

is a set of rules of Q�ˆ, where z; w are different variables not occurring in �.
It suffices to show that the rules of (2)(d)� are validated in the algebras of QPRIME,
because, having established this fact, arguing as in the proof of Claim 3 one shows
that (2)(d)� is validated in Q�.

Let A 2 QPRIME and suppose x D x1; : : : ; xp is a sequence of variables occurring
in the equations of r. Let c D c1; : : : ; cp be a sequence of elements of A and let
c; d 2 A so that

A ˆ .8u/ �.rj; sj; z; w; u/Œc; c; d	 for j D 1; : : : ; k:

This means that

.8e/ �A.r1.c/; s1.c/; c; d; e/ [ : : : [ .8e/ �.rk.c/; sk.c/; c; d; e/ is a subset of 0A:

But Corollary 7.2.3.(iii) implies that for every j (1 6 j 6 k), either rj.c/ D sj.c/ or
c D d. Hence c D d or rj.c/ D sj.c/ for all j (1 6 j 6 k). If c D d, then taking into
account the fact that z � w=�.x; y; z; w; u/ is a set of rules of Q�ˆ, we have that
.8e/ �.r.c/; s.c/; c; d; e/ is a subset of 0A. If rj.c/ D sj.c/ for all j (1 6 j 6 k), then
r.c/ D s.c/, because � is a rule of Q�ˆ. It follows that .8e/ �.r.c/; s.c/; c; d; e/
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is also a subset of 0A, because x � y=�.x; y; z; w; u/ is a set of rules of Q�ˆ. This
proves the claim. ut

The above claims and Theorem 7.1.5 imply that Q� has EDPM with respect to
�.x; y; x; y; u/ and hence Q� is an RCD quasivariety. This proves the lemma. ut
Lemma 7.2.6. Q�

RFSI D QPRIME.

Proof (of the lemma). (�). As Q� has EDPM with respect to �.x; y; x; y; u/,
Proposition 7.1.3 implies that for any algebra A 2 Q�,

A 2 Q�
RFSI ,

A ˆ .8xyzw/..8u/
^

�.x; y; z; w; u/ $ x � y _ z � w/: (�)

Hence, if A 2 Q�
RFSI, then A 2 Q and (�) holds. So A 2 QPRIME, by Corollary 7.2.3.

(�). Suppose A 2 QPRIME. As QPRIME � Q�, we have that A 2 Q�. But

A ˆ .8xyzw/..8u/
^

�.x; y; z; w; u/ $ x � y _ z � w/:

As Q� has EDPM with respect to �.x; y; z; w; u/, we get that A 2 Q�
RFSI, by

Proposition 7.1.3. ut
Lemma 7.2.7. The class SP.QPRIME/ is a unique RCD quasivariety Q0 with the
following properties: QPRIME � Q0 � Q and Q0 has EDPM with respect to
�.x; y; z; w; u/. Consequently, Q0

RFSI D QPRIME.

Proof (of the lemma). Suppose Q0 is a quasivariety such that QPRIME � Q0 � Q
and Q0 has EDPM with respect to �.x; y; z; w; u/. Since Q0 is an RCD quasivariety,
we have that Q0

RFSI D Q0
PRIME.

Claim. Q0
PRIME � QPRIME.

Proof (of the claim). Suppose A 2 Q0
PRIME. So A 2 Q0

RFSI. Hence A 2 Q0 � Q
and A validates the sentence .8xyzw/..8u/

V
�.x; y; z; w; u/ $ x � y _ z � w/.

Hence A 2 QPRIME. ut
We then have: Q0 D SP.Q0

RFSI/ D SP.Q0
PRIME/ � SP.QPRIME/. On the other

hand, as QPRIME � Q0, we also have that SP.QPRIME/ � SP.Q0/ D Q0. So

Q0 D SP.QPRIME/:

As Q0 coincides with SP.QPRIME/ D Q�, we get that Q0
RFSI D Q�

RFSI D QPRIME, by
Lemma 7.2.6. ut

The class QPRIME does not determine the quasivariety Q in an unambiguous
way. In other words, there exist different quasivarieties whose equationally defined
commutators are additive (and are determined by the same set of quaternary
equations with parameters) such that the corresponding classes of prime algebras
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coincide. For let Q be any RCM quasivariety which is not relatively congruence-
distributive and whose equationally defined commutator is determined by some
finite set �.x; y; z; w; u/ of quaternary commutator equations (see Theorem 8.1.1). It
follows from Lemma 7.2.7 that the (distinct) quasivarieties Q and SP.QPRIME/ have
the same classes of prime algebras.

The following lemma is crucial:

Lemma 7.2.8. Let Q be a quasivariety whose equationally defined commutator
additive and has a finite generating set �.x; y; z; w; u/. Let Q0 be a quasivariety
included in Q. Then the following conditions are equivalent:

(1) Q0 is RCD.
(2) Q0 has EDPM with respect to �.x; y; z; w; u/.
(3) Q0

RFSI � QPRIME.

Proof (of the lemma). (3) ) (1). Suppose Q0
RFSI � QPRIME. Then evidently Q0 D

SP.Q0
RFSI/ � SP.QPRIME/. But QPRIME and hence also the class Q0

RFSI satisfy the
universal-existential sentence .8xyzw/..8u/

V
�.x; y; z; w; u/ $ x � y _ z � w/.

Proposition 7.1.3 then implies that Q0 has EDPM with respect to �.x; y; x; y; u/.
Hence Q0 is RCD.

(1) ) (2). Suppose Q0 is RCD. As Q0 satisfies the Extension Principle (see
Note 3.4.2.(4) and Section 6.2) and Q0 � Q, we have that for any algebra A 2 Q0
and all a; b; c; d 2 A,

�A
Q0.a; b/ \ �A

Q0.c; d/ D
�A

Q0.�
A
Q.a; b// \ �A

Q0.�
A
Q.c; d// D

�A
Q0.�

A
Q.a; b/ \ �A

Q.c; d// D
�A

Q0.�
A
Q..8e/ �.a; b; c; d; e/// D

�A
Q0..8e/ �.a; b; c; d; e//:

This shows that Q0 has EDPM with respect to �.x; y; x; y; u/.
(2) ) (3). Assume (2). Applying Proposition 7.1.3 to Q0, we obtain that Q0

RFSI
validates the sentence .8xyzw/..8u/

V
�.x; y; z; w; u/ $ x � y _ z � w/. As

Q0
RFSI �Q, it follows that Q0

RFSI � QPRIME. ut
We can now conclude the proof of Theorem 7.2.4.
In view of Lemma 7.2.5, SP.QPRIME/ is an RCD quasivariety included in Q.
Now suppose Q0 is an RCD quasivariety such that Q0 � Q. Lemma 7.2.8 implies

that Q0
RFSI � QPRIME. It follows that Q0 D SP.Q0

RFSI/ � SP.QPRIME/.
The theorem has been proved. ut
Theorem 7.1.5 provides a syntactic characterization of the equational logic Qˆ

associated with any quasivariety Q with EDPM. Thus for Q to have EDPM with
respect to �.x; y; z; w; u/, it is necessary that for any standard rule r W ˛1 � ˇ1; : : : ;

˛n � ˇn=˛ � ˇ of Qˆ, the �-transform



200 7 Additivity of the Equationally-Defined Commutator

.8u/ �.˛1; ˇ1; z1; w1; u/ [ : : : [ .8u/ �.˛n; ˇn; z1; w1; u/=�.x; y; z1; w1; u/ (*)

be a set of rules of Qˆ as well. (Here z1; w1 are arbitrary but fixed variables not
occurring in the above scheme of r.) The rules of (*) are infinitistic when � is
infinite or the set of parametric variables u is non-empty. But after applying the
finitarization procedure with respect to Qˆ, we see that (*) yields a (possibly
infinite) set of standard rules of Qˆ. Let us denote this set by �.r/. But again, the
�-transform of each rule of �.r/ defines a new set of rules of Qˆ. The finitarization
procedure, when applied to the �-transforms of the rules �.r/, produces a family
of sets of standard rules of Qˆ which we shall denote by �2.r/. Continuing this
pattern, that is, applying the �-transforms and then the finitarization procedure, we
define an infinite sequence �n.r/ of families of sets of standard rules of Qˆ. The
question arises: Is it necessary to iterate the above procedure infinitely many times?
Does the above procedure terminate in finitely many steps in the sense that the
rules obtained at some level n suffice to generate the rules of the level n C 1? The
answer is: Yes—even one step suffices. This is due to the fact that the system Qˆ
associated with Q with EDPC validates certain rules determined by � which are
called associativity rules for Qˆ. We shall briefly elucidate this issue (but without
going into details), because it is one of crucial points in the proof of the finite basis
theorem for finitely generated RCD quasivarieties due to Pigozzi (1988) (see also
Czelakowski and Dziobiak 1990).

What are associativity rules? For didactic reasons, we shall first present them on
the level of propositional logic. Let L be a propositional language endowed with
one binary connective _ (and possibly some other connectives). The associativity
rule for _ is the two-sided one-premiss rule of inference .p _ q/ _ r==p _ .q _ r/
in L (applied in both directions), where p; q; r are propositional variables. This rule
is obviously valid in classical and intuitionistic propositional logics for _ being the
disjunction connective.

Let r W ˛1;: : :; ˛n=˛ be any (proper) rule of inference in L. The (right)
_-transform of r is the rule r_ W ˛1 _ p; : : : ; ˛n _ p=˛ _ p, where p is a variable
not occurring in the formulas ˛1; : : : ; ˛n; ˛. In turn, the _-transform of r_ is the
rule r__ W .˛1 _ p/ _ q; : : : ; .˛n _ p/ _ q=.˛ _ p/ _ q, where q is a fresh variable
not occurring in the formulas ˛1 _ p; : : : ; ˛n _ p; ˛ _ p. Continuing, we define _-
transforms of r of higher ranks. But in the presence of the associativity rule for _,
the rule r__ (as well as the other successive _-transforms of r) is already derivable
from r and r_. For we have: from the formulas .˛1 _ p/ _ q; : : : ; .˛n _ p/ _ q we
derive the formulas ˛1 _ .p _ q/; : : : ; ˛n _ .p _ q/, by associativity. Then, using
the transform r_ and making a suitable substitution, from the last set of formulas
we derive the single formula ˛ _ .p _ q/. Applying again the associativity rule (but
in the reverse order) to ˛ _ .p _ q/, we derive .˛ _ p/ _ q. Thus, in logical terms,
r__ is a secondary rule of the propositional logical system based on r, r_ and the
associativity rule for _.

The above remarks can be appropriately lifted to the level of equational logics
and applied to the system Qˆ associated with any quasivariety Q that has EDPC.
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But the role of _ is played there by any set of equations �.x; y; z; w; u/ which
defines EDPC for Q. A detailed elaboration of this idea is presented in Czelakowski
and Dziobiak (1990) (in case when � does not involve parameters) and in the
seminal Pigozzi’s paper [1988] in the general case. To simplify our narration, we
shall consider only finite sets �.x; y; z; w; u/.

Let �.x; y; z; w; u/ be a finite set of quaternary equations in x; y; z; w and in
some parametric variables u. Let Q be a quasivariety with EDPM with respect to
�.x; y; z; w; u/. By the associativity rules determined by �.x; y; z; w; u/ we shall
mean the following two sets of rules:

[
f.8u/ �.˛; ˇ; z2; w2; u/ W ˛ � ˇ 2 .8u/ �.x; y; z1; w1; u/g=

[
f�.x; y; ˛; ˇ; u1/ W ˛ � ˇ 2 �.z1; w1; z2; w2; u2/g (1)

and

[
f.8u/ �.x; y; ˛; ˇ; u/ W ˛ � ˇ 2 .8u/ �.z1; w1; z2; w2; u/g=

[
f�.˛; ˇ; z2; w2; u1/ W ˛ � ˇ 2 �.x; y; z1; w1; u2/g; (2)

where u1 and u1 are separated k-element sets of variables different form x; y; z; w,
and k is the cardinality of u. Here .8u/�.˛; ˇ; z2; w2; u/ abbreviates

Sf�.x=˛; y=ˇ;

z=z2; w=w2; u=t/ W t is a sequence of terms whose length is kg. (Note that the sets (1)
and (2) are finite because � is finite.)

The crucial fact is that if a quasivariety Q has EDPM with respect to �,
then (1) and (2) are rules of Qˆ (see Pigozzi 1988). This directly follows from
Proposition 7.2.2 and the fact that finitely meet-irreducible Q-congruences in the
algebras of Q coincide with prime congruences.

The above rules are infinitistic if � involves parameters u, but they are replaced
by their finitistic variants for Qˆ by applying the above finitarization procedures.
The so modified rules are called finitary associativity rules for Qˆ determined
by �. They are of course standard rules of Qˆ. The above standard rules can be
equivalently replaced by two sets of quasi-equations.

The following observation supplements Theorem 7.2.4. Let Q be a quasivariety
whose equationally defined commutator is additive. Suppose that Q has a finite
generating set � D �.x; y; z; w; u/ of quaternary commutator equations of Q
with k being the length of u. (Thus Qˆ..8u/ �.x; y; x; y; u// D Qˆ.x � y/

\Qˆ.z � w/:/ The quasivariety SP.QPRIME/ is RCD and it has EDPM with respect
to � (Lemma 7.2.5).

Let R0 be an inferential base for the equational logic Qˆ, i.e., Qˆ D Ceq
R0

.
The absorption rules

x � y=�.x; y; z; w; u/



202 7 Additivity of the Equationally-Defined Commutator

and the following finitarizations (with respect to Qˆ) of the commutativity rules

�.x; y; z; w; T/=�.z; w; x; y; u/;

where T is a finite set of k-tuples of terms, are all secondary rules in the system Ceq
R0

,
i.e., they all are provable by means of R0. The same remark applies to the Birkhoff’s
rules Birkhoff.�/ and the axiomatic rules Id.Q/. Moreover, Theorem 5.2.3.(2).(ii)
implies that for every proper rule

� W ˛1 � ˇ1; : : : ; ˛n � ˇn ! ˛ � ˇ

of the system Ceq
R0

,

�.˛1; ˇ1; z; w; T/ [ : : : [ �.˛n; ˇn; z; w; T/=�.˛; ˇ; z; w; u/

is a set of standard rules of Ceq
R0

as well, for some set T (depending on the rule �).
(Here z and w are arbitrary variables not occurring in ˛1; ˇ1; : : : ; ˛n; ˇn; ˛; ˇ.)
All these rules are also secondary in Ceq

R0
.

Summing up, as the equationally defined commutator for Q is additive and � is
a finite generating set, it follows from Theorem 5.2.3.(2).(ii) that the finitarizations
of the �-transform of the rules of Qˆ (with respect to Qˆ) are already rules of Qˆ
and hence they are secondary rules with respect to R0 (because R0 is a base of Qˆ).
Hence all these rules are also rules of the stronger logic SP.QPRIME/ˆ.

In view of Corollary 7.2.3, the infinite idempotency rule .8u/�.x; y; x; y; u/= x �
y is a rule of SP.QPRIME/ˆ. Since the equational logic SP.QPRIME/ˆ is finitary, there
exists a finite set T of k-tuples of terms such that �.x; y; x; y; T/=x � y is a standard
rule of SP.QPRIME/ˆ. (Formally, �.x; y; x; y; T/=x � y is the rule

Sf�.x; y; x; y; t/ W
t 2 Tg=x � y.) Let us denote the last rule by ridem. We call ridem the idempotency
rule. Thus ridem is a finitarization of .8u/ �.x; y; x; y; u/=x � y with respect to
SP.QPRIME/ˆ. Equivalently, the quasi-identity �idem corresponding to ridem is valid
in the quasivariety SP.QPRIME/.

According to Theorem 7.1.5, the �-transform of ridem produces rules of
SP.QPRIME/ˆ. We take the set of rules �fin.ridem/ being finitarizations (with respect
to SP.QPRIME/ˆ) of the rules of �.ridem/. We also take the finitary associativity
rules for SP.QPRIME/ˆ determined by � together with finitarizations of their �-
transforms with respect to SP.QPRIME/ˆ. The resulting set of standard rules is
denoted by R1. (Note that if � is finite, R1 is finite as well.)

Let R WD R0 [ R1. Let Q0 be the quasivariety axiomatized by the quasi-equations
corresponding to the rules of R. The rules of R form a base of the consequence Q0ˆ,
i.e., Q0ˆ D Ceq

R . As R is a base for Q0ˆ, the identities belonging to Id.Q0/ are all
provable in the system Ceq

R .
Due to the presence of the above finitary associativity rules in R1, the iterations of

�-transform of arbitrary rank of the rules of R produce rules of Ceq
R . Thus, in view

of the above remarks, condition (2) of Theorem 7.1.5 is satisfied for the system Ceq
R .
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It follows from this theorem that Q0 has EDPM with respect to �.x; y; z; w; u/. Thus
Q0 is a relatively congruence-distributive quasivariety included in Q.

We thus arrive at the following theorem:

Theorem 7.2.9. Let Q be a quasivariety whose equationally defined commutator
is additive. Suppose that there exists a finite generating set � D �.x; y; z; w; u/ of
quaternary commutator equations of Q. The quasivariety SP.QPRIME/ is axioma-
tized relative to Q by the quasi-identities corresponding to the set of standard rules
formed by finitarizations of the idempotence rule and the associativity rules with
respect to � together with finitarizations of the �-transform of these rules.

Moreover SP.QPRIME/ is finitely based relative to Q.

Proof. The rules of R are so defined that they are also rules of SP.QPRIME/ˆ. Hence
the quasi-identities corresponding to the rules of R are all valid in SP.QPRIME/.
As the quasi-equations corresponding to R form a base of Q0, we obtain that
SP.QPRIME/ � Q0.

In virtue of the above inclusion, Lemma 7.2.7 and the fact that Q0 is RCD, we
get that Q0 D SP.QPRIME/. This concludes the proof of the theorem. ut
Note. RCD subquasivarieties of various quasivarieties are investigated, e.g., in
Czelakowski and Dziobiak (1990). Kearnes (1990) provides characterizations of
RCD subquasivarieties of congruence-modular varieties. ut
Open Problem If K is a class of algebras closed under the formation of subdirect
products, then for any algebra A of the type of K, the family ConK.A/ of
K-congruences on A forms a complete lattice (but not necessarily algebraic). PS.K/

is the class of subdirect products of families of members of K.
Suppose that Q is a quasivariety whose equationally defined commutator is

additive. Let �.x; y; x; y; u/ be a generating set. (It is not assumed that � is finite.)
Is it true that PS.QPRIME/ is the largest subclass K � Q closed with respect to

the operation PS such that for all A 2 K and all a; b; c; d 2 A,

�A
K.a; b/ \ �A

K.c; d/ D �A
K..8e/ �A.a; b; c; d; e//‹

Conclude that then the lattices of PS.QPRIME/-congruences are distributive.
Decide the analogous problem for the class SP.QPRIME/. ut

7.3 Semiprime Algebras

Let Q be a quasivariety and A an algebra in Q. Let ˚ be a Q-congruence on A.
˚ is called semiprime if for every congruence � 2 ConQ.A/, Œ�; �	 D ˚ implies
that � D ˚ .

A 2 Q is semiprime (in Q) if the identity congruence 0A is semiprime in
ConQ.A/. (Equivalently, Œ˚; ˚	 D 0A holds for no nonzero ˚ 2 ConQ.A/.)
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QSEMIPRIME denotes the class of semiprime members of Q. Evidently, QPRIME �
QSEMIPRIME.

Proposition 7.3.1. For every quasivariety Q, QPRIME D QRFSI \ QSEMIPRIME.

Proof. QPRIME � QRFSI, by Proposition 7.2.1. Let A 2 QRFSI \ QSEMIPRIME. To
show that A is prime suppose that Œ˚1; ˚2	 D 0A for some ˚1; ˚2 2 ConQ.A/. Then
Œ˚1 \ ˚2; ˚1 \ ˚2	 D 0A. It follows that ˚1 \ ˚2 D 0A, because A is semiprime.
But then ˚1 D 0A or ˚2 D 0A, because A 2 QRFSI. Thus A 2 QPRIME. ut
Proposition 7.3.2. Let Q be quasivariety with the additive equationally defined
commutator and generating set �.x; y; z; w; u/. Let A be an algebra in Q and
˚ 2 ConQ.A/. Then the following conditions are equivalent:

(i) ˚ is semiprime in ConQ.A/I
(ii) For all a; b 2 A, Œ�A

Q.a; b/; �A
Q.a; b/	A � ˚ implies ha; bi 2 ˚ I

(iii) For all a; b 2 A, �A
Q..8e/ �.a; b; a; b; e// � ˚ implies ha; bi 2 ˚:

Proof. Immediate. ut
Corollary 7.3.3. Let Q be as above. Then for any algebra A 2 Q and any
˚ 2 ConQ.A/, ˚ is semiprime in ConQ.A/ if and only if the algebra A=˚ is
semiprime in Q. Moreover, the following are equivalent:

(iv) A is semiprime in QI
(v) The congruence 0A is semiprimeI

(vi) A ˆ .8xy/..8u/
V

�.x; y; x; y; u/ $ x � y/: ut
If Q is an RCD quasivariety, then Corollaries 7.3.3 and 7.1.7 imply that

QSEMIPRIME D Q:

The following observation supplements Theorem 7.2.4.

Theorem 7.3.4. Let Q be a quasivariety whose equationally defined commutator
is additive. Suppose that Q possesses a finite generating set �.x; y; z; w; u/ of
quaternary commutator equations. Then SP.QPRIME/ � S.QSEMIPRIME/ and
S.QSEMIPRIME/ is a quasivariety contained in Q.

Proof. Let �.x; y; z; w; u/ be as above. Corollary 7.3.3 states that the class
QSEMIPRIME is axiomatized by the quasi-identities of Q and the universal-existential
sentence

.8xy/..8u/
^

�.x; y; x; y; u/ ! x � y/: (�)

QSEMIPRIME is therefore an elementary class and hence closed under the formation
of ultraproducts Pu. But Corollary 7.3.3.(vi) also implies that QSEMIPRIME is closed
under the formation of subdirect products (as one can directly check) and hence
direct products. Therefore SPPu.QSEMIPRIME/ D S.QSEMIPRIME/. It follows that
S.QSEMIPRIME/ is a quasivariety.
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As QPRIME � QSEMIPRIME, we get that SP.QPRIME/ � SP.QSEMIPRIME/ D
S.QSEMIPRIME/. Hence SP.QPRIME/ � S.QSEMIPRIME/. ut

Corollary 7.3.3 implies that the class QSEMIPRIME validates quasi-identities of
Q and a single quasi-equation �idem of the form

V
�.x; y; x; y; T/ ! x � y

obtained from (�) by deleting the block of quantifiers “.8u/” and substituting for
u k-tuples of terms from an appropriate finite set T . (k is the length of u.) As
S.QSEMIPRIME/ validates � and, as shown above, SP.QPRIME/ � S.QSEMIPRIME/,
the class SP.QPRIME/ validates �idem as well. In fact, we obtain

Corollary 7.3.5. The quasivariety S.QSEMIPRIME/ is axiomatized relative to Q by
the single quasi-equation �idem. ut

In other words, any inferential base of Qˆ enriched with the standard ruleSf�.x; y; x; y; t 2 Tg=x � y (being a finitarization of .8u/ �.x; y; x; y; u/=x � y/

forms a base of the equational logic S.QSEMIPRIME/ˆ.

Examples

1. Groups. According to Section 6.4, Example 3, the set �0.x; y; z; w; u/ consist-
ing of equations

t.x; z; u/ 
 t.y; z; u/�1 � t.x; w; u/ 
 t.y; w; u/�1

with t.x; y; u/ ranging over arbitrary terms form a generating set for the
(congruence) commutator of the class G of groups. But we can also take the
single equation, viz.

z�1wu�1x�1yu � u�1x�1yuz�1w

as a generating set.
It follows from Corollary 7.2.3 that a group A is prime (in G) if and only if it

validates the universal-existential sentence

.8xyzw/..8u/ z�1wu�1x�1yu � u�1x�1yuz�1w ! x � y _ z � w/:

The class SP.GPRIME/ is the largest RCD quasivariety included in G.
In view of Corollary 7.3.3, a group A is semiprime (in G) if and only if it
validates the following universal-existential sentence

.8xy/..8u/ x�1yu�1x�1yu � u�1x�1yux�1y ! x � y/:

2. Equivalence algebras. According to Section 6.4, the set �0.x; y; z; w; u/
consisting of all equations of the form

t.x; z; u/ t.y; z; u/ t.y; w; u/ .t.x; z; u/ t.y; w; u/ t.y; w; u/ t.x; z; u// � t.x; w; u/

where t.x; y; u/ ranges over arbitrary terms, is a generating set for the (congru-
ence) commutator of EA.
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An equivalence algebra A is prime (in EA) if and only if it validates the
(infinite) sentence .8xyzw/..8u/

V
�0.x; y; z; w; u/ ! x � y _ z � w/.

SP.EAPRIME/ is the largest RCD quasivariety included in the variety EA. (In
fact SP.EAPRIME/ is a variety.)

An equivalence algebra A is semiprime (in EA) if and only if it vali-
dates the infinite sentence .8xy/..8u/

V
�0.x; y; x; y; u/ ! x � y/, where

�0.x; y; x; y; u/ consists of equations of the form

t.x; x; u/ t.y; x; u/ t.y; y; u/ .t.x; x; u/ t.y; y; u/ t.y; y; u/ t.x; x; u// � t.x; y; u/;

with t ranging over arbitrary terms. ut



Chapter 8
More on Finitely Generated
Quasivarieties

8.1 Generating Sets for the Equationally-Defined
Commutator in Finitely Generated Quasivarieties

We begin with the following observation concerning arbitrary finitely generated
quasivarieties:

Theorem 8.1.1. Let Q be a finitely generated quasivariety. Then there exists a finite
set �0.x; y; z; w; u/ of quaternary equations (possibly with parameters) such that

Qˆ.x � y/ \ Qˆ.z � w/ D Qˆ.�0.x; y; z; w; u//:

Consequently, Q has a finite generating set of quaternary commutator equations
with parameters.

Proof. K be a finite class of finite algebras such that Q D Qv.K/. Furthermore,
let m be the least positive integer k such that all algebras of K are of power 6 k, i.e.,
jAj 6 m, for every algebra A 2 K. We clearly have that Qˆ D Kˆ.

Let �.x; y; z; w; u/ be a possibly infinite set of quaternary equations such that
Qˆ.x � y/ \ Qˆ.z � w/ D Qˆ.�.x; y; z; w; u//. In order to define a finite set of
quaternary commutator equations for Q which satisfies the thesis of the theorem
we shall apply to �.x; y; z; w; u/ a simple reduction procedure yielding a set of
equations �0.x; y; z; w; u/ with the required property.

We may write u D u1; u2; u3; : : :, i.e., the variables of u are indexed by
consecutive positive integers. The latter form a set N � !. (Thus N is either finite
or coincides with the set of natural numbers !.)

For each function � W N ! f1; 2; : : : ; mg, where m is given as above, we define
the strings of variables

u� WD u�.1/; u�.2/; u�.3/; : : :

© Springer International Publishing Switzerland 2015
J. Czelakowski, The Equationally-Defined Commutator,
DOI 10.1007/978-3-319-21200-5_8
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Let �.x; y; z; w; u� / be the resulting set of equations obtained from �.x; y; z; w; u/

by uniformly replacing each parameter uk of u by the corresponding parameter u�.k/,
for all k 2 N.

Let

�1 WD
[

f�.x; y; z; w; u� / W � 2 f1; 2; : : : ; mgNg:
�1 is a set of equations in the variables x; y; z; w and m parametric variables
u1; u2; u3; : : : ; um. We write

�1 D �1.x; y; z; w; u1; u2; u3; : : : ; um/:

Lemma 1. Kˆ.x � y/ \ Kˆ.z � w/ D Kˆ.�1/.

Proof. We have:

Claim 1. �1 is a set of quaternary commutator equations for K, i.e.,

�1 � Kˆ.x � y/ \ Kˆ.z � w/:

Proof (of the claim). For every mapping � 2 f1; 2; : : : ; mgN , the set �.x; y; z; w; u� /

consists of quaternary commutator equations for K, because the substitution of
parameters determined by � preserves the property of being a commutator equation
for K. It follows that �1 is a set of quaternary commutator equations for Q as well.

ut
Claim 2. � � Kˆ.�1/.

Proof (of the claim). Let A 2 K and let h W Te� ! A be a homomorphism
validating the equations of �1. As jAj 6 m, it follows that there is a mapping � 2
f1; 2; : : : ; mgN such that h.uk/ D h.u�.k//, for all k 2 N. As �.x; y; z; w; u� / � �1,
h validates �.x; y; z; w; u� / as well and, consequently, h validates �. ut

It follows from Claims 1–2 and the definition of � that

Kˆ.x � y/ \ Kˆ.z � w/ D Kˆ.�/ � Kˆ.�1/

� Kˆ.x � y/ \ Kˆ.z � w/:

Hence Kˆ.x � y/ \ Kˆ.z � w/ D Keqˆ.�1/.
The lemma has been proved. ut
Having defined the m-parameterized generating set �1 of quaternary commutator

equations for Q, we make the next step.
We define the relation ˝ on the algebra of terms Te� as follows:

˛ � ˇ .mod ˝/ iff the equation ˛ � ˇ is K-valid (i.e., ˛ � ˇ 2 Kˆ.;/),

for ˛; ˇ 2 Te� . Trivially, ˝ is a congruence relation and the quotient algebra Te� =˝

is the !-generated free algebra FK.!/ in the variety Va.K/.
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Let T be the subalgebra of the term algebra Te� generated by the variables
x; y; z; w; u1; u2; u3; : : : ; um. We consider the subset F of FK.!/ consisting of the
abstraction classes of ˝ determined by the terms of T. Thus

F WD fŒt	 W t 2 Tg:

F forms a subalgebra F of FK.!/ that is the image of the algebra T under the
canonical map from Te� to Te� =˝ .

Claim. The algebra F is finite.

Proof. Let A1; A2; : : : ; Ak be a list of pairwise nonisomorphic algebras of K such
that every algebra of K is isomorphic with some algebra from the list. For each i,
1 6 i 6 k, define the relation �i on T:

s �i t iff every homomorphism h W F ! Ai validates the equation s � t.

Each �i has a finite index and ˝ D T
16i6k �i. Consequently, ˝ has a finite

index too. ut
Let S be a selector of the finite set F. S is a mapping which from each equivalence

class Œt	, t 2 T , picks out a term t0 2 Œt	.
Given an m-parameterized generating set �1 D �1.x; y; z; w; u1; u2; : : : ; um/ of

quaternary commutator equations for Q, defined as above, we form a new set �0 of
equations. We put

�0 WD f˛0 � ˇ0 W ˛ � ˇ 2 �1g:

Lemma 2. Qˆ.x � y/ \ Qˆ.z � w/ D Qˆ.�0.x; y; z; w; u//.

Proof. It is clear that the set �0 is finite. As each equation ˛ � ˇ 2 �1 is
deductively equivalent to ˛0 � ˇ0 on the basis of Kˆ, i.e., Kˆ.˛ � ˇ/ D
Kˆ.˛0 � ˇ0/, it follows that �0 is a finite set of quaternary commutator equations
for Q. Moreover, �0 is deductively equivalent to �1 with respect to Kˆ, i.e.,
Kˆ.�0/ D Kˆ.�1/. Applying Lemma 1, we get the thesis of Lemma 2. ut

The proof of the theorem is concluded (see Definition 4.3.7). ut
Note 1. Let Q be a quasivariety and suppose that a set of equations �0.x; y; z; w; u/

has the property that

Va.Q/ˆ.x � y/ \ Va.Q/ˆ.z � w/ D Va.Q/ˆ.�0.x; y; z; w; u//:

Then

Qˆ.x � y/ \ Qˆ.z � w/ D Qˆ.�0.x; y; z; w; u//:
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Indeed, as Id.Q/ D Id.Va.Q//, �0.x; y; z; w; u/ is a set of commutator equations for
Q, i.e., �0.x; y; z; w; u/ � Qˆ.x � y/ \ Qˆ.z � w/. Then

Va.Q/ˆ.x � y/ \ Va.Q/ˆ.z � w/ D Qˆ.x � y/ \ Qˆ.z � w/ �
Qˆ.�0.x; y; z; w; u// � Va.Q/ˆ.�0.x; y; z; w; u// D

Va.Q/ˆ.x � y/ \ Va.Q/ˆ.z � w/:

Hence Qˆ.x � y/ \ Qˆ.z � w/ D Qˆ.�0.x; y; z; w; u//.
It follows from the above observation that, in terms of congruence generation,

if in the free algebra FQ.!/ the congruence �.x; y/ \ �.z; w/ is finitely generated
in the absolute sense (i.e., in the sense of the closure system Con.FQ.!//), then
it is finitely generated in the relative sense (i.e., in the sense of the closure
system ConQ.FQ.!//). Equivalently, if �.x; y/ \ �.z; w/ is compact in the lattice
Con.FQ.!//, then it is compact in ConQ.FQ.!//.

The above implication cannot be reversed. There are varieties of algebras
generated by a single, finite algebra A such that the congruence �.x; y/ \ �.z; w/ is
compact in the lattice ConQ.FQ.!// but non-compact in the lattice Con.FQ.!//,
where Q D Qv.A/. An appropriate example is due to Keith Kearnes (personal
correspondence). ut
Note 2. Applying basically the same argument as in the proof of Theorem 8.1.1,
one can prove the following, more general facts:

Corollary 8.1.2. Let Q be a finitely generated quasivariety. Then for each pair
m; n of positive natural numbers and any four sequences of different variables x D
x1; : : : ; xm, y D y1; : : : ; ym, z D z1; : : : ; zn, w D w1; : : : ; wn, there exists a finite set
�0.x; y; z; w; u/ of commutator equations (with parameters) for Q in the variables
x; y and z; w such that

Qˆ.x1 � y1; : : : ; xm � ym/ \ Qˆ.z1 � w1; : : : ; zn � wn/ D
Qˆ.�0.x; y; z; w; u//: ut

(See also Definition 3.1.1 and Notes following it.)

Corollary 8.1.3. Let Q be a finitely generated quasivariety. Then for each natural
number m > 2 and any two sequences of different variables x D x1; : : : ; xm,
y D y1; : : : ; ym of length m, the theory

Qˆ.x1 � y1/ \ : : : \ Qˆ.xm � ym/

has a finite generating set. ut
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The following corollary is an intermediate consequence of Theorems 8.1.1
and 4.3.9:

Corollary 8.1.4. Let Q be a finitely generated quasivariety with the relative shifting
property. Then there exists a finite set �0.x; y; z; w; u/ of quaternary equations
(possibly with parameters) such that

Œ˚; �	A D �A
Q.
[

f.8e/ �A
0 .a; b; c; d; e/ W ha; bi 2 ˚; hc; di 2 �g/

for all algebras A 2 Q and all ˚; � 2 ConQ.A/. ut
The following corollary is crucial:

Corollary 8.1.5. Let Q be a finitely generated quasivariety such that the lattice
Th.Qˆ/ validates the law of restricted distributivity. Then there exists a finite set
�0.x; y; z; w; u/ of quaternary equations (with parameters) such that

Œ�A
Q.X/; �A

Q.Y/	A D �A
Q.
[

f.8e/ �A
0 .a; b; c; d; e/ W ha; bi 2 X; hc; di 2 Yg/ (�)

for all algebras A and all sets X; Y � A2.
In particular,

ŒQˆ.X/; Qˆ.Y/	 D Qˆ.
[

f.8u/ �A
0 .˛; ˇ; �; ı; u/ W ˛ � ˇ 2 X; � � ı 2 Yg/

(��)
for any sets of equations X and Y.

Proof. In view of Theorem 5.3.7, the equationally defined commutator for Q is
additive. As Qˆ.x � y/ \ Qˆ.z � w/ D Qˆ.�0.x; y; z; w; u//, (�) follows from
the proof of Theorem 5.1.2.(1) ) (2).

(��) follows from (�) and Lemma 5.2.2. ut
We also note:

Corollary 8.1.6. Let Q be a finitely generated quasivariety whose equationally
defined commutator is additive. Then SP.QPRIME/ is the largest RCD quasivariety
included in Q.

Proof. Apply Theorems 7.2.4 and 8.1.1. ut

8.2 Triangular Irreducibility of Congruences

Let Q be a quasivariety, A 2 Q and let a1; : : : ; am be a finite sequence of elements
of A (possibly with repetitions) of length m > 3. In what follows we shall make use
of the following triangle table of Q-congruences on A:
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�Q.a1; a2/; �Q.a1; a3/; �Q.a1; a4/; . . . . . . . . . . . . �Q.a1; am/;

�Q.a2; a3/; �Q.a2; a4/; . . . . . . . . . . . . �Q.a2; am/;

: : :
:::

�Q.ai; aiC1/; . . . . . . �Q.ai; am/;

: : :
:::

�Q.am�1; am/;

This table contains r WD m.m � 1/=2 elements. It is called the triangular table of
relatively principal congruences corresponding to the sequence a1; : : : ; am.

The Q-congruence
T

16i<j6m �A
Q.ai; aj/, being the intersection of the above

congruences, is called the triangular intersection.

Definition 8.2.1. Let m > 3 be a natural number. Let Q be a quasivariety, A 2 Q
and ˚ 2 ConQ.A/. The congruence ˚ is said to be m-triangularily irreducible in
the lattice ConQ.A/ if for every sequence a1; : : : ; am of elements of A (possibly with
repetitions) of length m, if

T
16i<j6m.�A

Q.ai; aj/ CQ ˚/ D ˚ then ai � aj .˚/ for
some i and j, 1 6 i < j 6 m. ut

In particular, the congruence 0A is m-triangularily irreducible in the lattice
ConQ.A/ iff for every sequence a1; : : : ; am of elements of A of length m, ifT

16i<j6m �A
Q.ai; aj/ D 0A, then ai D aj for some i and j, 1 6 i < j 6 m.

In what follows we shall make use of the following simple observation, being an
instance of Proposition 2.9:

Fact. Let Q be a quasivariety, let A 2 Q, and ˚ 2 ConQ.A/. Let B WD A=˚ be the
quotient algebra and let h W A ! B be the canonical homomorphism. Then

h�1.�B
Q.a=˚; b=˚// D ˚ CQ �A

Q.a; b/: ut

Lemma 8.2.2. Let Q be a quasivariety, A 2 Q and ˚ 2 ConQ.A/. ˚ is m-trian-
gularily irreducible in the lattice ConQ.A/ if and only if the congruence 0A=˚ is
m-triangularily irreducible in the lattice ConQ.A=˚/.

Proof. Let h W A ! A=˚ be the canonical homomorphism. Then, by the above fact,

h�1.�
A=˚

Q .a=˚; b=˚// D ˚ CQ �A
Q.a; b/ (*)

for all a; b 2 A.
(*) and the surjectivity of h imply that for any a1; : : : ; am 2 A the following

conditions are equivalent:

\

16i<j6m

.�A
Q.ai; aj/ CQ ˚/ D ˚;

\

16i<j6m

.h�1.�
A=˚

Q .ai=˚; aj=˚// D h�1.0A=˚ /;
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h�1.
\

16i<j6m

�
A=˚

Q .ai=˚; aj=˚/ D h�1.0A=˚ /;

\

16i<j6m

�
A=˚

Q .ai=˚; aj=˚/ D 0A=˚ :

From these conditions we get the equivalence of the following statements:

˚ is m-triangularily irreducible in the lattice ConQ.A/,

.8a1; : : : ; am 2 A/.
\

16i<j6m

.�A
Q.ai; aj/ CQ ˚/ D ˚ )

ai � aj .˚/ for some i and j/;

.8a1; : : : ; am 2 A/.
\

16i<j6m

�
A=˚

Q .ai=˚; aj=˚/ D 0A=˚ )

ai � aj .˚/ for some i and j/;

.8a1; : : : ; am 2 A/.
\

16i<j6m

�
A=˚

Q .ai=˚; aj=˚/ D 0A=˚ )

ai=˚ D aj=˚ for some i and j/;

0A=˚ is m-triangularily irreducible in the lattice ConQ.A=˚/: ut

We recall that QRFSI is the class of non-trivial relatively finitely subdirectly
irreducible algebras of Q.

Lemma 8.2.3. Let Q be a quasivariety and m a natural number, m > 3. If A 2
QRFSI, then 0A is m-triangularily irreducible in ConQ.A/.

Proof. Immediate. ut
We define

Qm�TRI

to be the class of all members A of a quasivariety Q for which the congruence 0A is
m-triangularily irreducible in ConQ.A/.

It follows from the above lemma that every quasivariety Q has enough algebras A
with m-triangularily irreducible zero congruences 0A in the sense that every algebra
of Q is isomorphic with a subdirect product of a family of algebras from the class
Qm�TRI, for each m > 3.

Let K be a class of algebras. PS.K/ denotes the class of isomorphic copies of
subdirect products of families of algebras from K.
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Corollary 8.2.4. Let Q be a quasivariety. Then for every positive integer m, m > 3,

Q D SP.Qm�TRI/ D PS.Qm�TRI/: ut

The theorem below provides a characterization of finitely generated quasivari-
eties in terms of triangular intersections of relatively principal congruences:

Theorem 8.2.5. Let Q be an arbitrary quasivariety and m > 3 a positive integer.
The following conditions are equivalent:

(i) Q is generated by a finite class of algebras each of which has at most m � 1

elements.
(ii) For every algebra A 2 Q and for any sequence a1; : : : ; am of elements of A of

length m (possibly with repetitions) it is the case that
\

16i<j6m

�A
Q.ai; aj/ D 0A:

(iii) For every algebra A 2 Q, for any congruence ˚ 2 ConQ.A/, and any
sequence a1; : : : ; am of elements of A of length m (possibly with repetitions)
it is the case that

\

16i<j6m

.˚ CQ �A
Q.ai; aj// D ˚:

(iv) For any sequence x1; : : : ; xm of m different free generators of the free algebra
F WD FQ.!/ and any congruence ˚ 2 ConQ.F/,

\

16i<j6m

.˚ CQ �F
Q.xi; xj// D ˚:

Note. In view of Proposition 2.5, condition (iv) is equivalent to

(iv)* For any sequence x1; x2; : : : ; xm of m different individual variables and any
set of equations X,

\

16i<j6m

Qˆ.X [ fxi � xjg/ D Qˆ.X/:

Equivalently, (iv)* holds for any finite set of equations X. But in view of the
above theorem, (iv)* is equivalent to

(iv)** For any sequence ˛1; ˛2; : : : ; ˛m of terms and any set of equations X,
\

16i<j6m

Qˆ.X [ f˛i � ˛jg/ D Qˆ.X/:

Indeed, (iv)** trivially implies (iv)*. Conversely, assume (iv)*. As (iv)* is equiva-
lent to (iv), the theorem implies that (iii) holds. In particular, we get that (iii) holds
for the free algebra FQ.!/. But the last condition is equivalent to (iv)**. So (iv)**
holds. ut



8.2 Triangular Irreducibility of Congruences 215

Proof. (i) ) (iv). Assuming (i), we prove (iv)*. There is a finite class of algebras
K such that each algebra in K is of power < m and Q D SP.K/. Consequently,
Qˆ D Kˆ. Let X be a theory of Qˆ. It suffices to show that

T
16i<j6m Qˆ.X[fxi �

xjg/ � X.
Let m be as above and suppose that ˛ � ˇ 62 X. There exists an algebra A 2 K

and a homomorphism v W Te� ! A such that v validates X and v.˛/ 6D v.ˇ/.
As jAj < m, we have that v.xi/ D v.xj/ for some 1 6 i; j 6 m, i < j. It follows
that ˛ � ˇ 62 Qˆ.X [ fxi � xjg/, by the definition of Qˆ, and consequently,
˛ � ˇ 62 T16i<j6m Qˆ.X [ fxi � xjg/. So (iv)* holds.

(iv) ) (ii). The proof of this implication is based on two claims. Assume (iv).

Claim 1. For every countably generated algebra A 2 Q and for any sequence
a1; : : : ; am of elements of A of length m (possibly with repetitions),

\

16i<j6m

�A
Q.ai; aj/ D 0A:

Proof (of the claim). Assume A 2 Q is countably generated. Let a1; : : : ; am be a
sequence of elements of A.

Let h W F ! A be a surjective homomorphism such that h.xi/ D ai for
iD1; 2;: : :; m. Let ˚ be the kernel of h. ˚ is a Q-congruence of F because the
quotient algebra F=˚ is isomorphic with A.

The fact following Definition 8.2.1 and the surjectivity of h imply that the
following conditions are equivalent:

\

16i<j6m

.˚ CQ �F
Q.xi; xj// D ˚;

\

16i<j6m

h�1.�
F=˚

Q .xi=˚; xj=˚// D ˚;

\

16i<j6m

h�1.�
F=˚

Q .xi=˚; xj=˚// D h�1.0F=˚ /;

h�1.
\

16i<j6m

�
F=˚

Q .xi=˚; xj=˚/ D h�1.0F=˚ /;

h�1.
\

16i<j6m

�A
Q.ai; aj/ D h�1.0A/;

\

16i<j6m

�A
Q.ai; aj/ D 0A;

As the first equality holds by (iv), the last one holds as well. This proves the claim.
ut

Claim 1 continues to hold for arbitrary algebras of Q.
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Claim 2. For every algebra A 2 Q and for any sequence a1; : : : ; am of elements of
A of length m (possibly with repetitions),

\

16i<j6m

�A
Q.ai; aj/ D 0A:

Proof (of the claim). Let A 2 Q and let a1; : : : ; am be a sequence of elements of
A. Suppose ha; bi 2 T

16i<j6m �A
Q.ai; aj/. By Theorem 2.1 for each pair i < j there

exists a finite generating sequence

hcij;k; dij;ki; k D 1; : : : ; nij; (�)ij

of the pair ha; bi from the pair hai; aji in the algebra A.
Let B be the subalgebra of A generated by the elements of A that are involved in

the definition of the sequence (�)ij, for all pairs i < j. (In particular, B contains the
elements that occur in the pairs (�)ij. But B also contains elements of A that were
employed by the quasi-identities applied in the definition of (�)ij.) B is countably
generated. It follows from the definition of B that (�)ij is also a generating sequence
of ha; bi from the pair hai; aji in the algebra B, for all pairs i < j. Consequently,
ha; bi 2 T16i<j6m �B

Q.ai; aj/. But Claim 1 implies that a D b. ut
This proves (ii).
(ii) ) (iii). Suppose A 2 Q, ˚ 2 ConQ.A/, a1; : : : ; am 2 A. Let B WD A=˚ . Let

h W A ! B be the canonical homomorphism. Hence ker.h/ D ˚ and B 2 Q. Then
by the above Fact,

\

16i<j6m

.˚ CQ �A
Q.ai; aj// D

\

16i<j6m

.h�1.�B
Q.ai=˚; aj=˚// D

h�1.
\

16i<j6m

�B
Q.ai=˚; aj=˚// D h�1.0B/ D ˚:

It follows that
T

16i<j6m.˚ CQ �A
Q.ai; aj// D ˚ .

(iii) ) (ii). This is obvious.
(ii) ) (i). Assume (ii). To prove (i) it suffices to show the following

Claim 3. Every algebra in Qm�TRI is of power < m.

Proof (of the claim). Let A 2 Qm�TRI is and suppose a contrario that there are
m distinct elements in A, say a1; : : : ; am. (ii) gives that

T
16i<j6m �A

Q.ai; aj/ D 0A.
As A 2 Qm�TRI, it follows that ai D aj for some i and j, 1 6 i < j 6 m. So A has
fewer than m elements. A contradiction. ut

This concludes the proof of the theorem. ut
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Corollary 8.2.6. Suppose that Q is a quasivariety generated by a finite class of
algebras each of which has at most m � 1 elements, m > 3. For every algebra
A 2 Q, the following conditions are equivalent:

(1) A 2 Qm�TRI,
(2) A has at most m � 1 elements.

Proof. Let A 2 Q.
(1) ) (2). Assume (1). Suppose a contrario that there are m distinct elements in

A, say a1; : : : ; am. Theorem 7.1.5 implies that
T

16i<j6m �A
Q.ai; aj/ D 0A. It follows

by (1) that ai D aj for some i and j, 1 6 i < j 6 m. So A has fewer than m elements.
(2) ) (1). Assume (2). Let a1; : : : ; am be a sequence of elements A of length m

(possibly with repetitions). (2) trivially implies ai D aj for some i and j, 16 i< j6m.
Hence the implication

\

16i<j6m

�A
Q.ai; aj/ D 0A ) ai D aj for some i and j, 1 6 i < j 6 m

is true, i.e., (1) holds. ut
Theorem 8.2.7. Suppose that Q is a quasivariety in a finite signature generated by
a finite class K of algebras each of which has at most m � 1 elements, m 6 3. Then
Qm�TRI is a finitely axiomatizable class.

Proof. In view of Corollary 8.2.6, Qm�TRI is the class of all at most .m�1/-element
algebras of Q. It follows that Qm�TRI is axiomatized by any set of quasi-identities
which axiomatizes Q together with a single universal sentence

.8x1/.8x2/ : : : .8xm/
_

fxi � xj W 1 6 i < j 6 mg;

To show that Qm�TRI is indeed finitely axiomatizable, we notice that, up to
isomorphism, Qm�TRI consists of finitely many finite algebras. Evidently, Qm�TRI

and its complement are algebraic classes, i.e., they are closed under isomorphisms.
The trivial ultraproduct argument shows that both Qm�TRI and the complement of
Qm�TRI are closed under the formation of ultraproducts. It follows from Corol-
lary 6.1.16 in Chang and Keisler (1973) that Qm�TRI is a finitely axiomatizable
class. ut

8.3 Equationally-Definable m-Triangular Meets of Relatively
Principal Congruences (m-EDTPM)

The following observation is modelled after Lemma 2.1 in Pigozzi (1988), see also
Proposition 7.1.3.
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Proposition 8.3.1. Let m > 3 be a natural number and 
 D 
.x1; x2; : : : ; xm; u/

a set of equations in variables x1; x2; : : : ; xm (and possibly some parameters u). Let
Q be a quasivariety. The following conditions are equivalent:

(1) For all A 2 Q and for any sequence a1; : : : ; am of elements A of length m,

\

16i<j6m

�A
Q.ai; aj/ D �A

Q..8e/ 
A.a1; a2; : : : ; am; e//I

(2) For all A 2 Q and for any sequence a1; : : : ; am of elements A of length m,

\

16i<j6m

�A
Q.ai; aj/ D 0A ,

A ˆ .8u/
^


.x1; x2; : : : ; xm; u/Œa1; a2; : : : ; am	I

(3) Qm�TRI validates the first-order sentence

.8x1/.8x2/ : : : .8xm/..8u/
^


.x1; x2; : : : ; xm; u/

$
_

fxi � xj W 1 6 i < j 6 mgI

(4) For every pair i; j, .1 6 i < j 6 m/, Q validates the equations


.xi=x; xj=x/

and for any algebra A 2 Q and any sequence a1; : : : ; am of elements A,

\

16i<j6m

�A
Q.ai; aj/ � �A

Q..8e/ 
A.a1; a2; : : : ; am; e//:


.xi=x; xj=x/ results from 
.x1; x2; : : : ; xm; u/ by the uniform substitution of the
variable x for the variables xi and xj, where x is different from x1; x2; : : : ; xm and u.
(If the string u is infinite, we can always rename the parametric variables u so that
there are still infinitely many variables different from those of u.)

In (3), the symbol “$” is the equivalence connective from the first-order
language associated with the signature of Q.

Proof. We recall that

�A
Q..8e/ 
A.a1; a2; : : : ; am; e// WD

�A
Q.fh˛.a1; a2; : : : ; am; e//; ˇ.a1; a2; : : : ; am; e/i W ˛ � ˇ 2 
; e 2 Akg/:

The implications (1) ) (2) ) (3) are immediate.
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(3) ) (4). (3) implies that for each pair i; j .1 6 i < j 6 m/, Qm�TRI validates
the equations 
.xi=x; xj=x/ and hence so does Q.

Now let A 2 Q and let a1; : : : ; am be a sequence of elements of A. To prove the
inclusion

\

16i<j6m

�A
Q.ai; aj/ � �A

Q..8e/ 
A.a1; a2; : : : ; am; e//;

it suffices to show that for every m-triangularily irreducible congruence ˚ in the
lattice ConQ.A/,

˚ � �A
Q..8e/ 
A.a1; a2; : : : ; am; e// implies that

˚ �
\

16i<j6m

�A
Q.ai; aj/: (�)

Suppose the first inclusion holds. Then

˛.b1; c1; b2; c2; : : : ; br; cr; e/=˚ D ˇ.b1; c1; b2; c2; : : : ; br; cr; e/=˚

for all ˛ � ˇ 2 
 and all sequences e 2 Ak. Thus

A=˚ ˆ .8u/
^


.x1; x2; : : : ; xm; u/Œa1; a2; : : : ; am	:

As A=˚ 2 Qm�TRI, it follows by (3) that ai=˚ D aj=˚ for some 1 6 i < j 6 m.
So �A

Q.ai; aj/ � ˚ for some i < j. Consequently, ˚ � T
16i<j6m �A

Q.ai; aj/. So (�)
holds.

(4) ) (1). Let A 2 Q and let a1; : : : ; am be a sequence of elements A. Fix a
pair i; j .1 6 i < j 6 m/ and let ˚0 WD �A

Q.ai; aj/. The quotient algebra A=˚0

belongs to Q. By the first conjunct of (4) we get that ˛.a1; a2; : : : ; am; e/=˚0 D
ˇ.a1; a2; : : : ; am; e/=˚0 for all ˛ � ˇ 2 
 and all sequences e 2 Ak, It follows that
�A

Q..8e/ 
A.a1; a2; : : : ; am; e// � �A
Q.ai; aj/. This proves the “�”-inclusion of the

two inclusions of (1).
As the other inclusion is assumed by (4), condition (1) follows. ut

Definition 8.3.2. Let m > 3 be a natural number and 
.x1; x2; : : : ; xm; u/ a set
of equations. A quasivariety Q is said to have equationally definable m-triangular
meets of (relatively) principal congruences by 
.x1; x2; : : : ; xm; u/ if Q satisfies any
of the equivalent conditions of the above proposition.

Q is said to have equationally definable m-triangular meets of (relatively)
principal congruences (m-EDTPM, for short) if there is a set of equations

.x1; x2;: : :; xm; u/ which defines m-triangular meets of (relatively) principal
congruences in the algebras of Q. ut
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Theorem 8.3.3. Let m > 3 be a natural number. For any quasivariety Q the
following conditions are equivalent:

(i) Q has m-EDTPM.
(ii) For every algebra A 2 Q, for any sequence a1; : : : ; am of elements of A of

length m (possibly with repetitions) and any congruence ˚ 2 ConQ.A/,

˚ CQ

\

16i<j6m

�A
Q.ai; aj/ D

\

16i<j6m

.˚ CQ �A
Q.ai; aj//:

(iii) For any sequence x1; : : : ; xm of m different free generators of the free algebra
F WD FQ.!/ and any congruence ˚ 2 ConQ.F/,

˚ CQ

\

16i<j6m

�F
Q.xi; xj/ D

\

16i<j6m

.˚ CQ �F
Q.xi; xj//:

Note. Condition (iii) of the above theorem is equivalently expressed in terms of the
consequence Qˆ as:

(iii)* Qˆ.X [
\

16i<j6m

Qˆ.xi � xj// D
\

16i<j6m

Qˆ.X [ fxi � xjg/;
for any set of equations X.

(Here x1; x2; : : : ; xm is an arbitrary but fixed sequence of m different individual
variables.) But it is easy to see that (iii)* is equivalent to

(iii)** Qˆ.X [
\

16i<j6m

Qˆ.˛i � ˛j// D
\

16i<j6m

Qˆ.X [ f˛i � ˛jg/;
for any set of equations X and any sequence of terms ˛1; ˛2; : : : ; ˛m.

Trivially (iii)** implies (iii)*. To prove the converse, assume (iii)*. But (iii)* is
equivalent to condition (iii) of the above theorem, and hence to condition (ii). Thus
(iii)* implies (ii). But (ii) holds in particular for the free algebra FQ.!/. The last
fact implies (iii)**. ut
Proof. (i) ) (ii). Assume Q has m-EDTPM with respect to a set of equations

 D 
.x1; x2; : : : ; xm; u/. Let A be an algebra in Q, ˚ 2 ConQ.A/, and a1; : : : ; am

sequence of elements of A of length m. Let B WD A=˚ . As B 2 Q, (i) implies that
\

16i<j6m

�B
Q.ai=˚; aj=˚/ D �B

Q..8e/ 
B.a1=˚; a2=˚; : : : ; am=˚; e=˚//: (a)

Let h W A ! B be the canonical homomorphism. Then

h�1.�B
Q.a=˚; b=˚// D ˚ CQ �A

Q.a; b/ (b)

for all a; b 2 A.
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(b) and the surjectivity of h imply that

h�1.
\

16i<j6m

�B
Q.ai=˚; aj=˚// D (c)

\

16i<j6m

h�1.�B
Q.ai=˚; aj=˚// D

\

16i<j6m

.˚ CQ �a
Q.ai; aj//:

On the other hand, we also get

h�1.�B
Q..8e/ 
B.a1=˚; a2=˚; : : : ; am=˚; e=˚/// D (d)

h�1.sup Qf�B
Q.
B.a1=˚; a2=˚; : : : ; am=˚; e=˚// W e 2 Akg/ D

sup Qfh�1.�B
Q.
B.a1=˚; a2=˚; : : : ; am=˚; e=˚/// W e 2 Akg D

sup Qf˚ CQ �A
Q.
A.a1; a2; : : : ; am; e// W e 2 Akg D

˚ CQ sup Qf�A
Q.
A.a1; a2; : : : ; ar; e// W e 2 Akg D

˚ CQ �A
Q..8e/ 
A.a1; a2; : : : ; am; e// D
˚ CQ

\

16i<j6m

�A
Q.ai; aj/:

(Here sup Q is the supremum in the lattice ConQ.A/.) But in view of (a), the first
congruences of (c) and (d) are identical. Consequently, the last congruences of (c)
and (d) are the same. Thus

\

16i<j6m

.˚ CQ �A
Q.ai; aj// D ˚ CQ

\

16i<j6m

˚A
Q.ai; aj/:

So (ii) holds.
The implication (ii) ) (iii) is immediate.
(iii) ) (i). Let x1; x2; : : : ; xm be a finite sequence of pairwise different individual

variables. Let 
.x1; x2; : : : ; xm; u/ be a set of equations such that

\

16i<j6m

Qˆ.xi � xj/ D Qˆ.
.x1; x2; : : : ; xm; u//:

Passing to the algebra F we therefore have that

\

16i<j6m

�F
Q.xi; xj/ D �A

Q.
F.x1; x2; : : : ; xm; u//:

(We identify here terms of the language of Q with elements of the free algebra F.)
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Let A be a countably generated algebra in Q, let a1; a2; : : : ; am be a fixed
sequence of elements of A. Moreover, let e 2 Ak be an arbitrary sequence of length k.

Let h W F ! A be a surjective homomorphism such that h.x1/ D a1; : : : : ;

h.xm/ D am and h.u/ D e. (h is arbitrarily defined for the remaining free generators
of F.) Let ˚ 2 ConQ.F/ be the relation-kernel of h. Then, assuming (iii), we have:

h�1.
\

16i<j6m

�A
Q.ai; aj// D (e)

\

16i<j6m

h�1.�A
Q.ai; aj// D

\

16i<j6m

.˚ CQ �F
Q.xi; xj// D (by (iii))

�F
Q.˚ [

\

16i<j6m

�F
Q.xi; xj// D

�F
Q.
.x1; x2; : : : ; xm; u// CQ ˚ D
h�1.�A

Q.
.a1; a2; : : : ; am; e///:

(e) gives that

\

16i<j6m

�A
Q.ai; aj/ D �A

Q.
.a1; a2; : : : ; am; e// for any sequence e 2 Ak:

It follows that

For every countably generated A 2 Q and all a1; a2; : : : ; am 2 A W
\

16i<j6m

�A
Q.ai; aj/ D 0A , �A

Q.
.a1; a2; : : : ; am; e// D 0A

for all sequences e 2 Ak: (f)

We then observe that (f) continues to hold for algebras A 2 Q of arbitrary
cardinality.

For any algebra A 2 Q and any a1; a2; : : : ; am 2 A W (g)
\

16i<j6m

�A
Q.ai; aj/ D 0A , �A

Q.
.a1; a2; : : : ; am; e// D 0A for all e 2 Ak:

For let a1; a2; : : : ; am 2 A. Let us first assume that
T

16i<j6m �A
Q.ai; aj/ D 0A.

Let e 2 Ak be an arbitrary sequence.
T

16i<j6m �A
Q.ai; aj/ D 0A implies
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that
T

16i<j6m �B
Q.ai; aj/ D 0B for some countably generated subalgebra

B of A that contains a1; a2; : : : ; am and e. Hence, by (f), we have that
�B

Q.
.a1; a2; : : : ; am; e// D 0B. It follows that �A
Q.
.a1; a2; : : : ; am; e// D 0A

because B is a subalgebra of A.
Conversely, suppose that �A

Q.
.a1; a2; : : : ; am; e// D 0A, for all e 2 Ak. Let B
be an arbitrary countably generated subalgebra of A which contains a1; a2; : : : ; am.
Then evidently, �B

Q.
.a1; a2; : : : ; am; e// D 0B for all e 2 Bk. (f) thus gives that

\

16i<j6m

�B
Q.ai; aj/ D 0B in every countably generated subalgebra (�)

B of A which contains a1; a2; : : : ; am:

We then get that
\

16i<j6m

�A
Q.ai; aj/ D 0A: (��)

Indeed, if hc; di 2 T
16i<j6m �A

Q.ai; aj/, then Theorem 2.1 implies that there is
a countably generated subalgebra B of A which includes a1; a2; : : : ; am and c; d
such that hc; di 2 T

16i<j6m �B
Q.ai; aj/. It follows by (�) that c D d. Hence (��)

holds. This proves (g).
But (g) is equivalent to condition (2) of Proposition 8.3.1. It follows that Q has

m-EDTPM. ut
The following corollary is immediate (cf. Corollary 8.2.6):

Corollary 8.3.4. Let m > 3 be a natural number. Let Q be a quasivariety with
m-EDTPM with respect to a set of equations 
 D 
.x1; x2; : : : ; xm; u/. Then for
any algebra A 2 Q, the following conditions are equivalent:

(1) A 2 Qm�TRI.
(2) For every sequence a1;: : :; am of elements of A, if �A

Q.
.a1; a2;: : :; am; e/D
0A, for all e 2 Ak, then aiDaj for some 1 6 i < j 6 m.

Proof. (1) ) (2). Assume (1). Let a1; : : : : ; am be a sequence of elements
of A such that �A

Q.
.a1; a2; : : : : ; am; e/ D 0A, for all e 2 Ak. But m-EDTPM
gives that �A

Q..8e/ 
.a1; a2; : : : : ; am; e// D T
16i<j6m �A

Q.ai; aj/. It follows thatT
16i<j6m �A

Q.ai; aj/ D 0A. As A 2 Qm�TRI, we get that ai D aj, for some i; j,
.1 6 i < j 6 m/. So (2) holds.

(2) ) (1). The proof of this implication is similar. Assume (2). We must
show that 0A is m-triangularily irreducible in ConQ.A/. Let a1; : : : ; am be
a sequence of elements of A such that

T
16i<j6m �A

Q.ai; aj/ D 0A. But by
m-EDTPM,

T
16i<j6m �A

Q.ai; aj/ D �A
Q..8e/ 
.a1; a2; : : : ; am; e//. Hence

�A
Q..8e/ 
.a1; a2; : : : ; am; e// D 0A. (2) implies that ai D aj, for some i; j,

.1 6 i < j 6 m/. Thus (1) holds. ut
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It follows from Theorems 8.2.5 and 8.3.3 that:

Every finitely generated quasivariety has m-EDTPM for some m > 3.

Indeed, assume Q is generated by a finite set of finite algebras, each of power
less than m. Suppose A 2 Q, ˚ 2 ConQ.A/, and a1; : : : ; am is a sequence of
elements of A. By Theorem 8.2.5 we have that

T
16i<j6m �A

Q.ai; aj/ D 0A andT
16i<j6m.˚ CQ �A

Q.ai; aj// D ˚ . Consequently, ˚ CQ
T

16i<j6m �A
Q.ai; aj/ D

˚ D T
16i<j6m.˚ CQ �A

Q.ai; aj//. So Q has m-EDTPM, by Theorem 8.3.3.
The following observations supplement Theorem 8.2.5:

Theorem 8.3.5. Let Q be an arbitrary quasivariety and let m, m > 3, be a fixed
natural number. The following conditions are equivalent:

(1) Q is generated by a finite class consisting of algebras each of which has at
most m � 1 elements.

(2) Q has m-EDTPM and
T

16i<j6m �F
Q.xi; xj/ D 0F for any sequence

x1;: : :; xm of m different free generators of the free algebra F WD FQ.!/.

Proof. (1) ) (2). Assume (1). The first conjunct of (2) follows from Theorem 8.2.5
and the second conjunct is a particular case of condition (iii) of Theorem 8.2.5.

(2) ) (1). Assume (2). Let x1; : : : ; xm be a sequence of m different free
generators of the free algebra F D FQ.!/. The fact that Q has m-EDTPM and
Theorem 8.3.3 imply that

˚ CQ

\

16i<j6m

�F
Q.xi; xj/ D

\

16i<j6m

.˚ CQ �F
Q.xi; xj//;

for any Q-congruence ˚ of F. This and the second conjunct of (2) give that

˚ D
\

16i<j6m

.˚ CQ �F
Q.xi; xj//;

for any Q-congruence ˚ of F. So (1) holds by Theorem 8.2.5. ut
Notes. 1. The second conjunct of (2) is equivalently formulated in terms of the
consequence operation Qeqˆ as

\

16i<j6m

Qˆ.xi � xj/ D Qˆ.;/: (a)

In the presence of the first conjunct, it is equivalent to the condition:

\

16i<j6m

Qˆ.˛i � ˛j/ D Qˆ.;/; for any sequence of terms ˛1; ˛2; : : : ; ˛m: (b)
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In view of the above theorems, the property of having m-EDTPM for some m is
essentially weaker than the property of being a finitely generated quasivariety.

2. It follows from Theorem 8.3.3.(ii) that every RCD quasivariety Q has
m-EDTPM for all m > 3. (Q need not be finitely generated.) This observation does
not extend onto RCM quasivarieties.

More facts concerning m-EDTPM one may found in Czelakowski (2014). ut
Theorem 8.3.6. Let m > 3 be a natural number. Let Q be a quasivariety with
m-EDTPM with respect to a set of equations 
 D 
.x1; x2; : : : ; xm; u/. The
following conditions are equivalent:

(1) Q is generated by a finite class of algebras each of which has at most m � 1

elements.
(2) Q validates the equations 
.x1; x2; : : : ; xm; u/.

Proof. (1) ) (2). Assume (1). It follows from Theorem 8.3.5.(ii) thatT
16i<j6m �F

Q.xi; xj/ D 0F, where x1; : : : ; xm is an arbitrary but fixed sequence
of m different free generators of the free algebra F WD FQ.!/. As Q has m-EDTPM
with respect to 
 we therefore get that �F

Q..8e/ 
F.x1; x2; : : : ; xm; e// D 0F.

This is equivalent to Qˆ..8u/ 
.x1; x2; : : : ; xm; u// D Qˆ.;/. It follows that
Qˆ.
.x1; x2; : : : ; xm; u// D Qˆ.;/. So (2) holds.

(2) ) (1). (2) implies that �A
Q..8e/ 
.a1; a2; : : : : ; am; e// D 0A, for any

A 2 Q and any sequence a1; : : : : ; am of elements of A. But
T

16i<j6m �A
Q.ai; aj/ D

�A
Q..8e/ 
.a1; a2; : : : ; am; e// because Q has m-EDTPM with respect to 
. It

follows that
T

16i<j6m �A
Q.ai; aj/ D 0A, for any A 2 Q and any sequence

a1; : : : ; am of elements of A. This gives (1), by Theorem 8.2.5. ut
We already know that every finitely generated quasivariety Q has the m-EDTPM

property for sufficiently large m. But, more interestingly, Q has m-EDTPM with
respect to a finite set of trivial equations:

Theorem 8.3.7. Let m > 3 be a natural number. Suppose that Q is a quasivariety
generated by a finite class consisting of algebras each of which has at most m � 1

elements. Then Q has m-EDTPM with respect to the following finite set of trivial
equations


.x1; x2; : : : ; xm/ WD fx1 � x1; x2 � x2; : : : ; xm � xmg:

Proof. Let Q be as above. It is clear that for any A 2 Q and any
a1; : : : ; am 2 A, �A

Q.
.a1; a2; : : : ; am// D 0A. This means that A ˆV

.x1; x2; : : : ; xm/Œa1; a2; : : : ; am	. On the other hand,

T
16i<j6m �A

Q.ai; aj/ D 0A,
by Theorem 8.2.5.(ii). It follows that any A 2 Q and any a1; : : : ; am 2 A, the
equivalence
\

16i<j6m

�A
Q.ai; aj/ D 0A , A ˆ

^

.x1; x2; : : : ; xm/Œa1; a2; : : : ; am	:

is true because its both sides are true.



226 8 More on Finitely Generated Quasivarieties

Thus any algebra A 2 Q validates condition (2) of Proposition 8.3.1. It follows
that Q has m-EDTPM with respect to 
.x1; x2; : : : ; xm/. ut

The above proof shows that one cannot expect much from the m-EDTPM in
general while studying specific properties of finitely generated quasivarieties Q—
the equations of 
.x1; x2; : : : ; xm/ from Theorem 8.3.7 are not conjoined with the
intrinsic structure of the algebras of Q. Consequently, the m-EDTPM property
trivializes for Q. But if one imposes a further constraint on m-EDTPM viz. by
requiring that Q has m-EDTPM with respect to a certain specific set of equations

.x1; x2; : : : ; xm/, the problem becomes less trivial.

On the other hand, the fact that a quasivariety Q has m-EDTPM with respect to
a set of equations 
.x1; x2; : : : ; xm; u/ need not imply that Q has m-EDTPM with
respect to trivial equations fx1 � x1; x2 � x2; : : : ; xm � xmg. For instance, as Q one
may take any non-finitely generated RCD quasivariety.

The following characterization of the m-EDTPM property in terms of equational
consequence operations has some interesting consequences:

Theorem 8.3.8. Let m > 3 be a natural number and 
 D 
.x1; x2; : : : ; xm; u/ a set
of equations. Then for any quasivariety Q the following conditions are equivalent:

(1) Q has m-EDTPM with respect to 
.x1; x2; : : : ; xm; u/,

(2) Qˆ.X [ .8u/ 
.x1; x2; : : : ; xm; u// D
\

16i<j6m

Qˆ.X [ fxi � xjg/
for any set of equations X (equivalently, for any finite set of equations X),

(3) Qˆ.X [ .8u/ 
.˛1; ˛2; : : : ; ˛m; u// D
\

16i<j6m

Qˆ.X [ f˛i � ˛jg/
for any sequence of terms ˛1; ˛2; : : : ; ˛m and any set of equations X (equiva-
lently, any finite set of equations X).

Proof. (1) implies (3) (see Note following Theorem 8.3.3) and (3) trivially implies
(2). In turn, (2) implies (1) because (2) is equivalent to condition (iii) of Theorem
8.3.3. ut

8.4 Properties Related to m-EDTPM

In view of Theorem 8.3.3 and the remarks following it, the fact that a quasivariety
has m-EDTPM is equivalent to the following equality holding for the consequence
operation Qˆ:

Qˆ.X [
\

16i<j6m

Qˆ.xi � xj// D
\

16i<j6m

Qˆ.X [ fxi � xjg/; (1)m

for any set of equations X and any string of m different individual variables
x1; x2; : : : ; xm. One may relax m-EDTPM by assuming additionally that the variables
x1; x2; : : : ; xm are separated from the variables occurring in the equations of X.
This leads to the following definition:
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Definition 8.4.1. Let m be a positive integer, m > 3. A quasivariety Q is said to
have equationally definable separated m-triangular meets of (relatively) principal
congruences (in short: Q has the separated m-EDTPM) if (1)m holds for any set
of equations X and any string of m different individual variables x1; x2; : : : ; xm not
occurring in the equations of X. ut
Theorem 8.4.2. Let Q be any quasivariety. Then Q has separated m-EDTPM for
all m > 3.

Proof. Apply Corollary 5.2.11. ut
We thus see that the above property trivializes for all quasivarieties. But one may

also consider the dual property to the separated m-EDTPM.

Definition 8.4.3. Let m be a positive integer, m > 3. A quasivariety Q is said to
satisfy the dual separated m-EDTPM if the consequence operation Qˆ obeys the
equality dual to (1)m, viz.,

Qˆ.X/ \ Qˆ.
[

16i<j6m

Qˆ.xi � xj// D Qˆ.
[

16i<j6m

Qˆ.X/ \ Qˆ.xi � xj//; (2)m

for any set of equations X and any string of m different individual variables
x1; x2; : : : ; xm not occurring in the equations of X. ut
Theorem 8.4.4. Let Q be an arbitrary quasivariety such that the lattice Th.Qˆ/

validates the restricted distributivity property. Then Q has the dual separated
m-EDTPM, for all m > 3.

Proof. This directly follows from Corollary 5.3.2. ut
Corollary 8.4.5. Let Q be an arbitrary RCM quasivariety. Then Q has the dual
separated m-EDTPM, for all m > 3.

Proof. Use Theorems 6.3.2 and 8.4.4. ut



Chapter 9
Commutator Laws in Finitely
Generated Quasivarieties

9.1 Iterations of Generating Sets

Let K be a class of algebras. Suppose � D �.x; y; z; w; u/ is a set of quaternary
commutator equations for K such that

Kˆ.x � y/ \ Kˆ.z � w/ D Kˆ.�.x; y; z; w; u//: (1)

If � satisfies (1), it is a generating set for the equationally defined commutator
for Q (see Definition 4.3.7).

We partition the set of individual variables Var into infinite (disjoint) subsets
V; U1; U2; : : : ; Un; : : :. We assume that x; y; z, and w belong to V . Then, for each
positive integer i we select a string ui D ui;1; ui;2; : : : of distinct variables in Ui of
length k (= the length of u). k may be equal to !. But if � is finite, then k 2 !.
For each positive integer i we also select two different variables xi and yi in V
different from the fixed variables x; y; z and w. We thus have two infinite sequences
of variables

x1; x2; x3; : : : ; xn; xnC1; : : :

y1; y2; y3; : : : ; yn; ynC1; : : : :

We then inductively define an infinite sequence of sets of equations

�1; �2; : : :

such that

(a) �n is built from the variables x1; : : : ; xnC1; y1; : : : ; ynC1 and the variables vn WD
u1 [ : : : [ un for n D 1; 2; : : :. We therefore write

�n D �n.x1; y1; : : : ; xnC1; ynC1; vn/:

© Springer International Publishing Switzerland 2015
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The variables occurring in vn are called parametric variables of �n. The length
of vn is n 
 k.
We put:

(b) �1.x1; y1; x2; y2; v1/ is equal to �.x=x1; y=y1; z=x2; w=y2; u=v1/, i.e.,
�1.x1; y1; x2; y2; v1/ is the result of the uniform replacing of x by x1, y by
y1, z by x2, w by y2, and the parametric variables u in � by the consecutive
variables of v1. (Note that v1 D u1 and vn WD vn�1 [ un for n > 2.)

(c) �nC1 WD Sf�.x=˛; y=ˇ; z=xnC2; w=ynC2; u=unC1/ W ˛ � ˇ 2 �ng, for all
n > 1.

Lemma 9.1.1. If the set � is finite, then so are the sets �n.x1; y1; : : : ; xnC1;

ynC1; vn/, for all n.

Proof. Immediate. ut
Let E be a collection of substitutions e W Te� ! Te� such that

e.x2/ D x3; e.x3/ D x4; : : : ; e.xn/ D xnC1; : : :

e.y2/ D y3; e.y3/ D y4; : : : ; e.yn/ D ynC1; : : :

e.u1/ D u2; e.u2/ D u3; : : : ; e.un/ D unC1; : : :

and whose values for x1 any y1 range over the equations of �1, i..e.,

(*) for each e 2 E, the equation e.x1/ � e.y1/ belongs to �1,
and
(**) for every equation ˛ � ˇ 2 �1 there is a substitution e 2 E such that

e.x1/ D ˛, e.y1/ D ˇ.

It is clear that such a set E exists.
For each positive integer n we define recursively the following sequence of

equations:

˙1 WD �1.x1; y1; x2; y2; v1/

˙nC1 WD
[

feŒ˙n	 W e 2 Eg:

Lemma 9.1.2. �n D ˙n, for all n > 1.

Proof. The lemma is proved by induction on n.
Induction base.
�1 D ˙1, by definition. We show �2 D ˙2. We have:

�2 WD
[

f�.x=˛; y=ˇ; z=x3; w=y3; u=u2/ W ˛ � ˇ 2 �1.x1; y1; x2; y2; v1/g D
[

f�1.x1=˛; y1=ˇ; x2=x3; y2=y3; v1=u2/ W ˛ � ˇ 2 �1.x1; y1; x2; y2; v1/g D
[

feŒ�1	 W e 2 Eg D
[

feŒ˙1	 W e 2 Eg D ˙2:
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Inductive step. Let n be a positive integer, n > 2. We assume that �k D ˙k, for
all positive k 6 n. We claim that �nC1 D ˙nC1. We compute:

�nC1 D
[

f�.x=˛; y=ˇ; z=xnC2; w=ynC2; u=unC1/ W ˛ � ˇ 2 �ng D (by (IH))
[

f�.x=˛; y=ˇ; z=xnC2; w=ynC2; u=unC1/ W ˛ � ˇ 2 ˙ng D
[

f�.˛; ˇ; xnC2; ynC2; unC1/ W ˛ � ˇ 2
[

feŒ˙n�1	 W e 2 Egg D
[

f
[

f�.˛; ˇ; xnC2; ynC2; unC1/ W ˛ � ˇ 2 eŒ˙n�1	g W e 2 Eg D
[

f
[

f�.˛; ˇ; exnC1; eynC1; eun/ W ˛ � ˇ 2 eŒ˙n�1	g W e 2 Eg D
[

f
[

f�.e�; eı; exnC1; eynC1; eun/ W � � ı 2 ˙n�1g W e 2 Eg D
[

f
[

feŒ�.�; ı; xnC1; ynC1; un/	 W � � ı 2 ˙n�1g W e 2 Eg D
[

feŒ
[

f�.�; ı; xnC1; ynC1; un/ W � � ı 2 ˙n�1g	 W e 2 Eg D (by (IH))
[

feŒ
[

f�.�; ı; xnC1; ynC1; un/ W � � ı 2 �n�1g	 W e 2 Eg D
[

feŒ�n	 W e 2 Eg D (by (IH))
[

feŒ˙n	 W e 2 Eg D ˙nC1:

The lemma is proved. ut
Note. The above lemma is the equational counterpart of a simple algebraic fact.
Suppose _ is a binary operation symbol. Let x be an individual variable and let
x1; x2; x3; : : : ; xn; xnC1; : : : be an infinite sequence of pairwise distinct variables, all
different from x. Define recursively the following sequence of terms:

t1 WD .x1 _ x2/;

tnC1 WD .tn _ xnC2/; for all n > 1:

Thus tn equals ..: : : ..x1 _ x2/ _ x3/ _ : : :/ _ xnC1/, for all n > 1.
The same sequence can be defined in a different way. Let e W Te� ! Te� be a

substitution such that

e.x1/ WD .x1 _ x2/;

e.xnC1/ D xnC2; for all n > 1:
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We define the following sequence of terms:

s1 WD e.x1/;

snC1 WD e.sn/; for all n > 1:

The terms tn and sn coincide for all n > 1. (We recall that if t.z1; : : : ; zn/ is a term
in variables z1; : : : ; zn and e is a substitution, then e.t/ is the term t.z1=e.z1/; : : : ;

zn=e.zn//.) ut
Lemma 9.1.3. Let K be a class of algebras. Let �.x; y; z; w; u/ be a set of
quaternary commutator equations for K satisfying (1). Define the sets �1; �2; : : :

as above. Then

(a) Kˆ.�1/ D Kˆ.x1 � y1/ \ Kˆ.x2 � y2/,
(b) Kˆ.�n/ � Kˆ.x1 � y1/ \ : : : \ Kˆ.xnC1 � ynC1/

and
(c) �nC1 � Kˆ.�n/ for n D 1; 2; : : :

Proof. As Kˆ.x � y/ \ Kˆ.z � w/ D Kˆ.�.x; y; z; w; u//, we get that
�.x; y; z; w; u/ � Kˆ.x � y/ and �.x; y; z; w; u/ � Kˆ.z � w/. Then the struc-
turality of Kˆ and the definition of u1 give that �.x1; y1; x2; y2; u1/ � Kˆ.x1 � y1/

and s�.x1; y1; x2; y2; u1/ � Kˆ.x2 � y2/. Hence Kˆ.�1/ � Kˆ.x1 � y1/ \
Kˆ.x2 � y2/.

Now assume that s � t 2 Kˆ.x1 � y1/ \ Kˆ.x2 � y2/, i.e., s � t 2 Kˆ.x1 � y1/

and s � t 2 Kˆ.x2 � y2/. Let e1 be a substitution which is a permutation of
individual variables such that e1.x1/ D x, e1.y1/ D y, e1.x2/ D z, e1.y2/ D w, and
e1.u1/ D u. Then, by structurality, e1.s � t/ 2 Kˆ.x � y/ and e1.s � t/ 2 Kˆ.z �
w/. It follows that

e1.s/ � e1.t/ 2 Kˆ.x � y/ \ Kˆ.z � w/ D Kˆ.�.x; y; z; w; u//:

Hence

e1.s/ � e1.t/ 2 Kˆ.�.x; y; z; w; u//: (�)

Let e2 be the inverse of e1. (�) and e1.u1/ D u imply that e2.u/ D u1 and

s � t D e2.e1.s// � e2.e1.t// 2 Kˆ.e2.�.x; y; z; w; u/// D
Kˆ.�.x=e2.x/; y=e2.y/; z=e2.z/; w=e2.w/; u=e2.u/// D

Kˆ.�.x1; y1; x2; y2; u1//:

This proves that K .̂x1 � y1/ \ K .̂x2 � y2/ � K .̂�.x1; y1; x2; y2; u1//. So
Kˆ.�1/D Kˆ.x1 � y1/ \ Kˆ.x2 � y2/, i.e., (a) holds.

(b) follows from the definition of �n.
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To prove (c), fix n > 1. Let A be an algebra in K and let h W Te� ! A be a
homomorphism such that h validates every equation in �n D �n.x1; y1; : : : ; xnC1;

ynC1; vn/. We claim h validates every equation in �nC1 D �nC1.x1;

y1; : : : ; xnC1; ynC1; xnC2; ynC2; vnC1/. As h˛ D hˇ for all ˛ � ˇ 2 �n, the fact that
�.x; y; z; w; u/ is a set of commutator equations for K implies that every equation
in �.x=˛; y=ˇ; z=znC1; w=wnC1; u=unC1/ is validated by h, for all ˛ � ˇ 2 �n.
Consequently, h validates the set �nC1. ut

In view of the above lemma,

Kˆ.�1/ � Kˆ.�2/ � : : : � Kˆ.�n/ � : : : (2)

i.e., Kˆ.�1/; Kˆ.�2/; : : : is a descending chain of theories of the equational
consequence Kˆ and �1 is a generating set of quaternary commutator equations.

Lemma 9.1.4. Let K be a class of algebras. Let �.x; y; z; w; u/ be a set of
quaternary commutator equations for K satisfying (1). Define the sets �1; �2; : : :

as above. Suppose that there exists a positive integer m such that Kˆ.�mC1/ D
Kˆ.�m/. Then Kˆ.�n/ D Kˆ.�m/ for all n > m.

Proof. Define the set E of substitutions as in the proof of Lemma 9.1.2.
We let vn � u denote, for each positive n > 2, the truncated string of variables

obtained from vn by deletion of the variables occurring in u. Thus vn � u D vn � v1,
for all n > 2. Note that e.vn/ D vnC1 � u, for all n > 1, and all e 2 E.

We prove by induction that Kˆ.�nC1/ D Kˆ.�n/ for all positive integers
n > m. The induction base (for n D m) holds in virtue of the assumption. To
make the inductive step, fix n > m and assume that Kˆ.�nC1/ D Kˆ.�n/ holds.
We claim that Kˆ.�nC2/ D Kˆ.�nC1/ holds as well. It suffices to show that
�nC1 � Kˆ.�nC2/. We have that

�n.x1; y1; x2; y2; : : : ; xnC1; ynC1; vn/ �
Kˆ.�nC1.x1; y1; x2; y2; : : : ; xnC1; ynC1; xnC2; ynC2; vnC1//; (a)

by the induction hypothesis.
(a) and the structurality of Kˆ imply that

�n.ex1; ey1; ex2; ey2; : : : ; exnC1; eynC1; evn/ �
Kˆ.�nC1.ex1; ey1; ex2; ey2; : : : ; exnC1; eynC1; exnC2; eynC2; evnC1//:

for all e 2 E. (Parentheses are suppressed as much as possible here.) This means
that

�n.˛; ˇ; x3; y3; : : : ; xnC2; ynC2; vnC1 � u/ �
Kˆ.�nC1.˛; ˇ; x3; y3; : : : ; xnC2; ynC2; xnC3; ynC3; vnC2 � u//;



234 9 Commutator Laws in Finitely Generated Quasivarieties

for all ˛ � ˇ 2 �1.x1; y1; x2; y2; v1/. Consequently,
[

f�n.˛; ˇ; x3; y3; : : : ; xnC2; ynC2; vnC1 � u/ W (b)

˛ � ˇ 2 �1.x1; y1; x2; y2; v1/g �
Kˆ.

[
f�nC1.˛; ˇ; x3; y3; : : : ; xnC2; ynC2; xnC3; ynC3; vnC2 � u/ W

˛ � ˇ 2 �1.x1; y1; x2; y2; v1/g/:
But according to Lemma 9.1.2,

[
f�n.˛; ˇ; x3; y3; : : : ; xnC2; ynC2; vnC1 � u/ W (c)

˛ � ˇ 2 �1.x1; y1; x2; y2; v1/g D �nC1; for all positive n:

(b) and (c) imply that �nC1 � Kˆ.�nC2/. This completes the proof of the
lemma. ut
Theorem 9.1.5. Let K be a class of algebras. Let �.x; y; z; w; u/ be a set of
quaternary commutator equations for K satisfying (1). Define the sets �1; �2; : : :

as above. Then either

Kˆ.�1/; Kˆ.�2/; : : :

is a strictly descending infinite chain of theories or there exists a positive integer m
such that

Kˆ.�n/ D Kˆ.�m/ for all n > m:

Proof. In view of Lemma 9.1.3, Kˆ.�1/; Kˆ.�2/; : : : is a descending chain of
theories. Suppose that the first disjunct of the statement of the theorem does not
hold. Thus the above chain is not strictly descending. Hence there exists a positive
integer m such that Kˆ.�mC1/ D Kˆ.�m/. This, in view of Lemma 9.1.4, implies
that Kˆ.�n/ D Kˆ.�m/ for all n > m. So the second disjunct of the statement
holds. ut

Theorem 9.1.5 and the lemmas preceding it neither assume the additivity of the
equationally defined commutator nor the finiteness of the set �.x; y; z; w; u/. (The
above proof encompasses the case �.x; y; z; w; u/ is infinite. But in this general case,
the sets �n, n 2 !, are infinite as well.)

However, the assumption that the set � is finite together with additivity of the
equationally defined commutator will be to a large extent explored in the next
section.

Example 9.1.6. The symbol 2 stands for a two-element Boolean algebra. BA
denotes the variety of Boolean algebras, BA D ISP.2/. As BA is congruence-
distributive, the commutator of any two congruences on a Boolean algebra coincides
with the meet of the two congruences. Let ˛ � ˇ be the equation

.x $ y/ _ .z $ w/ � 1:
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(Here $; _ and 1 stand for the operation symbols of Boolean operations of
equivalence and join, respectively. 1 stands for the unit element.) It is clear that
˛ � ˇ is a quaternary commutator equation for BA. Moreover, the singleton set
�.x; y; z; w; u/WDf˛ � ˇg generates the (equational) commutator for BA, i.e.,

BAˆ.˛ � ˇ/ D BAˆ.x � y/ \ BAˆ.z � w/:

(�.x; y; z; w/ does not contain parametric variables.)
We define the sets �n.x1; y1; x2; y2; : : : ; xnC1; ynC1/ for n D 1; 2; : : : as above.

Each set �n is a singleton, �n D f˛n � ˇng, where ˇn is the constant 1 and the
term ˛n.x1; y1; x2; y2; : : : ; xnC1; ynC1/ is inductively defined as follows:

˛1.x1; y1; x2; y2/ WD .x1 $ y1/ _ .x2 $ y2/;

˛nC1.x1; y1; : : : ; xnC2; ynC2/ WD .˛n $ 1/ _ .xnC2 $ ynC2/

for n D 1; 2; : : :

We claim that

BAˆ.�1/; BAˆ.�2/; : : :

is a strictly descending infinite chain of equational theories.
In view of the above remarks, we have that

BAˆ.�1/ � BAˆ.�2/ � : : : � BAˆ.�n/ � : : :

Fix n > 1. To prove that BAˆ.�nC1/ is a proper subset of BAˆ.�n/, it suffices
to show that ˛n � ˇn 62 BAˆ.˛nC1 � ˇnC1/. Select a homomorphism h W Te� ! 2
so that h.x1/ D h.x2/ D : : : D h.xnC1/ D 0, h.y1/ D h.y2/ D : : : D h.ynC1/ D 1,
and h.xnC2/ D h.ynC2/. Then h.˛i/ D 0 for i D 1; 2; : : : ; n but h.˛nC1/ D 1. It
follows that h.˛nC1/ D h.ˇnC1/ D 1 but 0 D h.˛n/ 6D h.ˇn/ D 1.

We also note that

BAˆ.�n/ D BAˆ.x1 � y1/ \ : : : \ BAˆ.xnC1 � ynC1/

for all n > 1. ut

9.2 Pure Commutator Terms and Their Interpretations

In this section x1; : : : ; xn; : : : is a countably infinite set of congruence variables.
They range over the set of congruences of algebras.

The set of pure commutator terms is defined as follows:

(i) every congruence variable is a pure commutator term,
(ii) if t1 and t2 are pure commutator terms, then so is the expression Œt1; t2�,

(iii) nothing else is a pure commutator term.
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We shall often use the well-known convention of suppressing parentheses if it
does not lead to misunderstanding.

By a pure commutator law for the commutator we shall mean any formula of
the form t1 � t2, where t1 and t2 are commutator terms. E.g., ŒŒx1; x2�; x3� �
Œx1; Œx2; x3�� and Œx1; x2� � Œx2; x1� are pure commutator laws.

Let Q be a quasivariety and A 2 Q. hConQ.A/; Œ 
 	Ai stands for the algebraic
lattice ConQ.A/ enriched with the equationally defined commutator operation Œ 
 	A

defined on the set of Q-congruences of A.
If t.x1; : : : ; xn/ is a commutator term containing at most the variables among

x1; : : : ; xn, and ˚1; : : : ; ˚n 2 ConQ.A/, then tA.˚1; : : : ; ˚n/ is the value of t
computed for ˚1; : : : ; ˚n in the commutator lattice hConQ.A/; Œ 
 	Ai. tA.˚1; : : : ; ˚n/

is defined by induction on the length of t. If t is Œx1; x2�, then tA.˚1; ˚2/ D
Œ˚1; ˚2	A.

The fact that the equationally defined commutator for Q is additive implies that
for any pure commutator term t.x1; : : : ; xn/, the operation tA is additive in each
argument for any algebra A 2 Q.

The following theorem provides syntactical tools enabling one to express various
properties of the equationally defined commutator in terms of sets of equations
of Eq.�/.

Theorem 9.2.1. Let Q be a quasivariety with the additive equationally defined
commutator. For every positive integer n and for any pure n-ary commutator term
t.x1; : : : ; xn/ there exists a set of equations ˙t.x1; y1; : : : ; xn; yn; u/ of Eq.�/ in 2n
variables x1; y1; : : : ; xn; yn (and possibly with some parameters u) such that for any
algebra A 2 Q and any sets X1; : : : ; Xn � A2,

tA.�Q.X1/; : : : ; �Q.Xn// D (t)*

�Q.
[

f.8e/ ˙t.a1; b1; : : : ; an; bn; e/ W ha1; b1i 2 X1; : : : ; han; bni 2 Xng/:

Moreover, if Q is finitely generated, then the sets ˙t can be assumed to be finite.

Proof. Let � D �.x; y; z; w; u/ be a set of quaternary commutator equations for Q
so that condition (1) of Section 9.1 is satisfied. We select two infinite sequences of
pairwise different individual variables

x1; x2; x3; : : : ; xn; xnC1; : : :

y1; y2; y3; : : : ; yn; ynC1; : : : :

It is assumed that there are also infinitely many individual variables lying outside
the set of those which belong to the two sequences. We therefore assume that V
is an infinite set of variables occurring neither in x1; x2; x3; : : : ; xn; xnC1; : : : nor
in y1; y2; y3; : : : ; yn; ynC1; : : : : Moreover, the variables x; y; z; w; u all belong to V .
(By renaming the parameters u, we assume that there are still infinitely many
variables in V that are different from those of u.)
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The proof of .t/* is by induction on the complexity of commutator terms.
If (t)* is the i-th term variable xi, then we put ˙t WD fxi � yig. Then .t/* trivially

holds.
Let t1 and t2 be pure commutator terms and ˙1; ˙2 the corresponding sets of

equations. We assume that .t1/* and .t2/* hold. Let t WD Œt1; t2�. We define:

˙t WD
[

f�.˛; ˇ; �; ı; u/ W ˛ � ˇ 2 ˙1; � � ı 2 ˙2g:

We claim that .t/* holds.
Suppose that the term t D Œt1; t2� is n-ary, t D t.x1; : : : ; xn/. Then t1 and t2 are at

most in the variables x1; : : : ; xn. We first prove:

Claim. Let (t)* be as above. For any A 2 Q and a1; b1; : : : ; an; bn 2 A,

tA.�Q.a1; b1/; : : : ; �Q.an; bn// D �Q..8e/ ˙t.a1; b1; : : : ; an; bn; e//: (t)**

Proof (of the claim). Fix A 2 Q and assume that a1; b1; : : : ; an; bn 2 A. By the
induction hypothesis we have that

tA1 .�Q.a1; b1/; : : : ; �Q.an; bn// D �Q..8e0/ ˙1.a1; b1; : : : ; an; bn; e0//

and

tA2 .�Q.a1; b1/; : : : ; �Q.an; bn// D �Q..8e00/ ˙2.a1; b1; : : : ; an; bn; e00//:

To simplify notation, we mark the sequence a1; b1; : : : ; an; bn as a; b. We work in
the lattice ConQ.A/. Then

tA.�Q.a1; b1/; : : : ; �Q.an; bn// D
ŒtA1 .�Q.a1; b1/; : : : ; �Q.an; bn//; tA2 .�Q.a1; b1/; : : : ; �Q.an; bn//	A D

Œ�Q..8e0/ ˙1.a1; b1; : : : ; an; bn; e0//; �Q..8e00/ ˙2.a1; b1; : : : ; an; bn; e00//	A D
(by additivity)

sup QfŒ�Q.˛.a; b; e0/; ˇ.a; b; e0//; �Q.�.a; b; e00/; ı.a; b; e00//	A W (a)

˛ � ˇ 2 ˙1; � � ı 2 ˙2; e0 2 A<!; e00 2 A<!g:

(The supremum is taken in ConQ.A/.) Since Œ�Q.a0; b0/; �Q.c0; d0/	A D
�Q..8f / �.a0; b0; c0; d0; f // for any a0; b0; c0; d0 2 A, the element (a) is equal to

sup Qf�Q..8f / �.˛.a; b; e0/; ˇ.a; b; e0/; �.a; b; e00/; ı.a; b; e00/; f // W (b)

˛ � ˇ 2 ˙1; � � ı 2 ˙2; e0 2 A<!; e00 2 A<!g:
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But the element (b) is equal to �Q..8e/ ˙t.a; b; e//, by the definition of ˙t.
Consequently,

tA.�Q.a1; b1/; : : : ; �Q.an; bn// D �Q..8e/ ˙t.a; b; e//: ut

Since the operation tA is additive in each argument, .t/* follows from the above
claim (see also the proof of Proposition 9.2.6).

This concludes the proof of the theorem. ut
We shall now extend the set of pure commutator terms by adding to the

vocabulary two constants 0; 1, representing the zero and the full congruences
respectively and the symbol “�” representing the intersection of congruences. The
recursive definition of the new, extended set of terms is obvious.

The properties of a set of quaternary commutator equations �0.x; y; z; w; u/ have
an impact on the behaviour of the equationally defined commutator itself. In the
simplest cases one may additionally assume that �0 is finite or it has no parameters
at all. The first case is investigated in Chapter 8 in the context of finitely generated
quasivarieties. Freese and McKenzie (1987) made the following list of commutator
identities they investigate for congruence modular varieties of algebras:

x � Œy; y� � Œx � y; y�: (CI1)

Œx; y� � x � y � Œ1; 1�: (CI2)

Œx; y� � x � y: (CI3)

Œx; y� � 0: (CI4)

Œ1; 1� � 0: (CI5)

Œ1; Œ1; 1�� � 0: (CI6)

ŒŒ1; 1�; Œ1; 1�� � 0: (CI7)

Œx; 1� � x: (CI8)

1 represents the largest congruence on the algebra, 0 is interpreted as the iden-
tity congruence, and the variables x; y; z represent arbitrary congruences. The
identity (CI3), which is equivalent to relative congruence distributivity, is also
investigated in Chapter 6 of this paper. If (CI5) holds in an algebra A, then A is
called Abelian.

The crucial observation made by Kearnes and McKenzie (1992, Thm. 3.1) is that
the commutator in every finitely generated RCM quasivariety obeys (CI1).

Commutator equations as well as other derived equations are a convenient tool
enabling one to characterize syntactically various properties of the commutator.
Below we shall investigate some of such commutator properties.

Given a sequence of variables x1; x2; : : : ranging over congruences, we define the
following sequence of pure commutator terms cn.x1; x2; : : : ; xnC1/, n D 1; 2; : : ::
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c1 is Œx1; x2�;

cnC1 WD Œcn; xnC2�; for n D 1; 2; : : :

cn is thus the term ŒŒ : : : ŒŒx1; x2�; x3�; : : : �; xnC1�, for n D 1; 2; : : :.
The following observation establishes the relationship between equations

�n.x1; y1; x2; y2; : : : ; xnC1; ynC1; vn/ defined earlier and the commutator term cn for
all n.

Theorem 9.2.2. Let Q be a quasivariety whose equationally defined commutator is
additive. Define the set �n D �n.x1; y1; x2; y2; : : : ; xnC1; ynC1; vn/ for each positive
n as in Section 9.1 above. Then for every algebra A in Q, for every n > 1, and any
c1; d1; : : : ; cnC1; dnC1 2 A,

cA
n .�Q.c1; d1/; �Q.c2; d2/; : : : ; �Q.cnC1; dnC1// D

sup Qf�Q.�n.c1; d1; c2; d2; : : : ; cnC1; dnC1; f
n
// W f

n
2 Ankg:

(The supremum is taken in the lattice ConQ.A/.)

The proof is based on two lemmas.
Given an algebra A in Q and two sequences a1; : : : ; ak; : : : and b1; : : : ; bk; : : : of

elements of A (finite or infinite but of the same length) we inductively define the
following sequence of Q-congruences of A:

�1 WD Œ�Q.a1; b1/; �Q.a2; b2/	A;

�nC1 WD Œ�n; �Q.anC2; bnC2/	A; for any n > 1:

The first lemma follows immediately from the definition of the sequence �n,
n > 1:

Lemma 9.2.3. Let A be an algebra in Q, and let a1; : : : ; ak; : : : and b1; : : : ; bk; : : :

be sequences of elements of A of the same length. Define the congruences �n, n > 1,
as above. Then, for all n > 1,

�nC1 � �n: (3n)

Proof. Fix n. (3n) follows from the properties of the commutator. (Additivity is not
needed here.)

We have: �nC1 D Œ�n; �Q.anC2; bnC2/	A � �n \ �Q.anC2; bnC2/ � �n. ut
Lemma 9.2.4. Let A be an algebra in Q and let a1; : : : ; ak; : : : and b1; : : : ; bk; : : :

be sequences of elements of A of the same length. Then for every n,

�n D sup Qf�Q.�n.a1; b1; : : : ; anC1; bnC1; f
n
// W f

n
2 Ankg: (4n)

Proof. Induction on n.
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Induction base. For n D 1 we have

�1 D Œ�Q.a1; b1/; �Q.a2; b2/	A D sup Qf�Q.�.a1; b1; a2; b2; e// W e 2 Akg;

by the fact that � is a generating set of quaternary commutator equations.
But �Q.�.a1; b1; a2; b2; e// D �Q.�1.a1; b1; a2; b2; e//, for all sequences
e 2 Ak. It follows that sup Qf�Q.�.a1; b1; a2; b2; e// W e 2 Akg D
sup Qf�Q.�1.a1; b1; a2; b2; e// W e 2 Akg. So (41) holds.

Inductive step. Assume (4n) holds. We prove (4nC1). Letting anC1; bnC1 denote
the sequence a1; b1; : : : ; anC1; bnC1, respectively, we have:

�nC1 D Œ�n; �Q.anC2; bnC2/	A D (by IH)

Œsup Qf�Q.�n.anC1; bnC1; f
n
// W f

n
2 Ankg; �Q.anC2; bnC2/	A D (additivity)

sup QfŒ�Q.�n.anC1; bnC1; f
n
//; �Q.anC2; bnC2/	A W f

n
2 Ankg D

sup QfŒsup Qf�Q.˛.anC1; bnC1; f
n
/; ˇ.anC1; bnC1; f

n
// W

˛ � ˇ 2 �ng; �Q.anC2; bnC2/	A W f
n

2 Ankg/ D (additivity)

sup QfŒ�Q.˛.anC1; bnC1; f
n
/; ˇ.anC1; bnC1; f

n
//; �Q.anC2; bnC2/	A W
˛ � ˇ 2 �n; f

n
2 Ankg D

sup Qfsup Qf�Q.�.˛.anC1; bnC1; f
n
/; ˇ.anC1; bnC1; f

n
/; anC2; bnC2; e/ W

e 2 Akg W ˛ � ˇ 2 �n; f
n

2 Ankg D
sup Qf�Q.�.˛.anC1; bnC1; f

n
/; ˇ.anC1; bnC1; f

n
/; anC2; bnC2; e/ W

˛ � ˇ 2 �n; f
n

2 Ank; e 2 Akg D
sup Qf�Q.�nC1.anC1; bnC1; anC2; bnC2; f

n
; e// W f

n
2 Ank; e 2 Akg D

sup Qf�Q.�nC1.a1; b1; : : : ; anC1; bnC1; anC2; bnC2; f
nC1

// W f
nC1

2 A.nC1/kg:

So (4nC1) holds.
This proves the lemma. ut
The theorem follows from Lemma 9.2.4 and the definition of the commutator

terms cn, n D 1; 2; : : :. ut
The suitably modified versions of the above lemmas also hold for equational

theories of the consequence operation Qˆ. To simplify notation, we let C denote
the consequence Qˆ.
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Corollary 9.2.5. Let Q be a quasivariety whose equationally defined commutator
is additive. Then for all n and any two sequences of terms s1; : : : ; snC1; t1; : : : ; tnC1

of Te�

cn.C.s1 � t1/; C.s2 � t2/; : : : ; C.snC1 � tnC1// D (4n)

C..8vn/ �n.s1; t1; : : : ; snC1; tnC1; vn//: ut

Note. If Q is relatively congruence-distributive or Abelian, then for any n > 1 and
any different variables x1; : : : ; xnC1, y1; : : : ; ynC1,

cn.C.x1 � y1/; C.x2 � y2/; : : : ; C.xnC1 � ynC1// D
C.x1 � y1/ \ C.x2 � y2/ \ : : : \ C.xnC1 � ynC1/: (5n)

(51) holds for any quasivariety. For n D 2, we get

ŒŒC.x1 � y1/; C.x2 � y2/	; C.x3 � y3/	 D C.x1 � y1/ \ C.x2 � y2/ \ C.x3 � y3/;

i.e.,

ŒC.x1 � y1/ \ C.x2 � y2/; C.x3 � y3/	 D C.x1 � y1/ \ C.x2 � y2/ \ C.x3 � y3/:

The last identity implies the following form of associativity:

ŒŒC.x1 � y1/; C.x2 � y2/	; C.x3 � y3/	 D ŒC.x1 � y1/; ŒC.x2 � y2/; C.x3 � y3/		:

It is an open problem if (5n) .n > 2/ holds for other algebraically interesting
quasivarieties. ut

We recall that .8vn/ �n.s1; t1; : : : ; snC1; tnC1; vn/ equals

[
f�n.s1; t1; : : : ; snC1; tnC1; en/ W en is a sequence of terms of the length of vng:

Proposition 9.2.6. Let Q be a quasivariety whose equationally defined commutator
is additive. Let A 2 Q. Let n be a positive integer n, ˚1; : : : ; ˚nC1 2 ConQ.A/ and
let X1; : : : ; XnC1 be sets such that ˚1 D �Q.X1/; : : : ; ˚nC1 D �Q.XnC1/. Then

cA
n .˚1; : : : ; ˚nC1/ D sup QfcA

n .�Q.a1; b1/; : : : ; �Q.anC1; bnC1// W (�)n

ha1; b1i 2 X1; : : : ; hanC1; bnC1i 2 XnC1g:

A formula analogous to (�)n holds for the term algebra Te� and for the equational
theories of Qˆ.

(The supremum is taken in the lattice ConQ.A/.)
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Proof. Induction on n.
Base step. n D 1.

c1.˚1; ˚2/ D Œ˚1; ˚2	A D Œ�Q.X1/; �Q.X2/	A D (by additivity)

sup QfŒ�Q.a1; b1/; �Q.a2; b2/	A W ha1; b1i 2 X1; ha2; b2i 2 X2g D
sup Qfc1.�Q.a1; b1/; �Q.a2; b2// W ha1; b1i 2 X1; ha2; b2i 2 X2g:

Inductive step. Suppose (�)n holds. We show (�)nC1. We have:

cnC1.˚1; : : : ; ˚nC1; ˚nC2/ D Œcn.˚1; : : : ; ˚nC1/; ˚nC2	A D (IH)

Œsup Qfcn.�Q.a1; b1/; : : : ; �Q.anC1; bnC1// W
ha1; b1i 2 X1; : : : ; hanC1; bnC1i 2 XnC1g; ˚nC2	A D

sup QfŒcn.�Q.a1; b1/; : : : ; �Q.anC1; bnC1//; ˚nC2	A W
ha1; b1i 2 X1; : : : ; hanC1; bnC1i 2 XnC1g D

sup QfŒcn.�Q.a1; b1/; : : : ; �Q.anC1; bnC1//; �Q.anC2; bnC2/	A W
ha1; b1i 2 X1; : : : ; hanC1; bnC1i 2 XnC1; hanC2; bnC2i 2 XnC2g D

sup QfcnC1.�Q.a1; b1/; : : : ; �Q.anC1; bnC1/; �Q.anC2; bnC2/ W
ha1; b1i 2 X1; : : : ; hanC1; bnC1i 2 XnC1; hanC2; bnC2i 2 XnC2g:

So (�)nC1 holds. ut
Theorem 9.2.7. Let Q be a quasivariety whose equationally defined commutator is
additive. Let m be a positive integer. The following conditions are equivalent:

(1) Qˆ.�m/ D Qˆ.�mC1/,
(2) �mC1=�m is a set of rules of Qˆ,
(3) The lattices of Q-congruences on the algebras of Q obey the commutator law:

cmC1 � cm:

Consequently, if at least one of (1)–(3) holds, the above lattices also obey the
laws: cn � cm, for all n > m.

Proof. (1) ) (2). This is trivial.
(2) ) (1). Use Lemma 9.1.3.
(1) ) (3). Assume (1). Let A be an algebra in Q and let �1; : : : ; �mC1; �mC2 be

Q-congruences on A. We must show that

cmC1.�1; : : : ; �mC1; �mC2/ D cm.�1; : : : ; �mC1/:
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Select sets of pairs Y1; : : : ; YmC1; YmC2 � A2 such that �k D �Q.Yk/ for k D
1; 2; : : : ; m C 2. We work in the lattice ConQ.A/.

(1) implies that

sup Qf�Q.�mC1.a1; b1; : : : ; amC2; bmC2; f
mC1

// W f
mC1

2 A.mC1/kg D
sup Qf�Q.�m.a1; b1; : : : ; amC1; bmC1; f

m
// W f

m
2 Amkg;

for all a1; : : : ; amC1; amC2; b1; : : : ; bmC1; bmC2 2 A. Hence, applying Theorem 9.2.2,
we get that

cmC1.�Q.a1; b1/; : : : ; �Q.amC1; bmC1/; �Q.amC2; bmC2// D
sup Qf�Q.�mC1.a1; b1; : : : ; amC2; bmC2; f

mC1
// W f

mC1
2 A.mC1/kg D

sup Qf�Q.�m.a1; b1; : : : ; amC1; bmC1; f
m
// W f

m
2 Amkg D

cm.�Q.a1; b1/; : : : ; �Q.amC1; bmC1//;

for all ha1; b1i 2 Y1; : : : ; hcmC1; dmC1i 2 YmC1, and hcmC2; dmC2i 2 YmC2. Then, by
Proposition 9.2.6, (3) follows.

(3) ) (1). Assume (3). (3) implies that in any algebra A in Q and for all
a1; : : : ; amC1; amC2; b1; : : : ; bmC1; bmC2 2 A it is the case that

cmC1.�Q.a1; b1/; : : : ; �Q.amC1; bmC1/; �Q.amC2; bmC2// D
cm.�Q.a1; b1/; : : : ; �Q.amC1; bmC1//:

Taking into account Theorem 9.2.2, we see that the above equality is equivalent to

sup Qf�Q.�mC1.a1; b1; : : : ; amC2; bmC2; f
mC1

// W f
mC1

2 A.mC1/kg D
sup Qf�Q.�m.a1; b1; : : : ; amC1; bmC1; f

m
// W f

m
2 Amkg:

But the last equality implies (1). So (1) holds.
As to the last statement, it is proved by induction on i that the (universal)

validity of cmC1 � cm for the Q-congruences on the algebras of Q implies the
universal validity of cmCi � cm, for all positive integers i. Use Lemma 9.1.4 and
Theorem 9.1.5.

We shall give a short proof of this statement without resort to Lemma 9.1.4.
Assume

cn�1.x1; x2; : : : ; xn/ � cn.x1; x2; : : : ; xn; xnC1/ (a)

is Q-valid, i.e., it is validated by the lattices of Q-congruences on the algebras of Q.
We claim that

cn.x1; x2; : : : ; xn; xnC1/ � cnC1.x1; x2; : : : ; xn; xnC1; xnC2/ (b)

is Q-valid as well.
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As cn�1.x1; x2; : : : ; xn/ � Œcn�1.x1; x2; : : : : ; xn/; xnC1� is Q-valid, substituting
a variable u for xnC1, we see that

cn�1.x1; x2; : : : ; xn/ � Œcn�1.x1; x2; : : : ; xn/; u� (c)

is Q-valid too. Hence, multiplying both sides of (c) by xnC2, we get that

Œcn�1.x1; x2; : : : ; xn/; xnC2� � ŒŒcn�1.x1; x2; : : : ; xn/; u�; xnC2� (d)

is Q-valid. (u is a congruence variables different from x1; x2; : : : ; xnC1; xnC2.)
On the other hand, substituting xnC2 for u in (c) and applying (a), we get that

Œcn�1.x1; x2; : : : ; xn/; xnC2� � cn�1.x1; x2; : : : ; xn/ � cn.x1; x2; : : : ; xn; xnC1/ (e)

are Q-valid.
In turn, substituting xnC1 for u in (c) gives that

Œcn�1.x1; x2; : : : ; xn/; xnC2� � ŒŒcn�1.x1; x2; : : : ; xn/; xnC1�; xnC2� (f)

is Q-valid.
(e) and (f) give that cn.x1; x2; : : : ; xn; xnC1/ � ŒŒcn�1.x1; x2; : : : ; xn/; xnC1�; xnC2�

is Q-valid. So (b) holds. ut

9.3 Nilpotency

We recall that the constants 1 and 0 denote the universal and zero congruences on
any algebra, respectively.

Let m be a positive integer. A quasivariety Q is .m � 1/-nilpotent, if there exists
a positive integer m such that the equational commutator for Q obeys the law

cm.1; : : : ; 1/ � 0: (Nil)m

(1 occurs here .m C 1/-times.) Thus if Q is .m � 1/-nilpotent, it is also n-nilpotent
for all n > m � 1.

(Nil)m implies the identity:

cm � 0

(i.e., cm.x1; x2; : : : ; xmC1/ � 0 for all (Q-congruences) x1; x2; : : : ; xmC1). Moreover,
if the equationally defined commutator for Q is additive, then the converse also
holds, i.e., cm � 0 implies (Nil)m.

Theorem 9.3.1. Let Q be a quasivariety whose equationally defined commutator
is additive. Suppose that �.x; y; z; w; u/ satisfies condition (1) of Section 9.1, i.e.,
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Qˆ.x � y/ \ Qˆ.z � w/ D Qˆ.�.x; y; z; w; u//. Then Q is .m � 1/-nilpotent if
and only if the equations �m.x1; y1; x2; y2; : : : ; xmC1; ymC1; vm/ are valid in Q.

Proof. Use Theorem 9.2.1. ut
The following observation is immediate:

Proposition 9.3.2. If Q is an .m � 1/-nilpotent quasivariety, then its equationally
defined commutator satisfies the law cmC1 � cm and, consequently, it also satisfies
the laws: cn � cm, for all n > m. ut

0-nilpotent quasivarieties are also called Abelian quasivarieties. Thus a quasivari-
ety Q is Abelian if it satisfies the identity c1.1; 1/ � 0, i.e., Œ1; 1� � 0. Equivalently,
a quasivariety with the additive equationally defined commutator is Abelian if and
only if Œ�Q.a; b/; �Q.c; d/	 is the identity congruence in any algebra A 2 Q, for all
a; b; c; d 2 A.

Theorem 9.3.3. Let Q be a quasivariety whose equationally defined commutator is
additive. Suppose that a set �.x; y; z; w; u/ satisfies condition (1) of Section 9.1, i.e.,
Qˆ.x � y/ \ Qˆ.z � w/ D Qˆ.�.x; y; z; w; u//. Then Q is Abelian if and only if
Q validates the equations �.x; y; z; w; u/. ut

The above corollary states that Abelian quasivarieties whose equationally
defined commutator is additive are characterized by the condition that
Q .̂x�y/ \ Q .̂z�w/is the trivial equational theory.

Example 9.1.6 shows that the variety BA of Boolean algebras obeys the law
cmC1 � cm for no positive integer m. Hence BA is .m � 1/-nilpotent for no m.

9.4 Identities Weaker than Nilpotency

The identity cmC1 � cm is of rather a special character. By modifying the above
reasoning we shall formulate weaker commutator identities which hold in relative
congruence lattices of finitely generated quasivarieties with the additive equationally
defined commutator.

Let �.x; y; z; w; u/ be a set of parameterized quaternary equations. We define for
any n > 1 the following sets of equations:

�1.x; y; z; w; u/ WD �.x; y; z; w; u/;

�nC1.x; y; z; w; u/ WD
[

f�.˛; ˇ; z; w; u/ W ˛ � ˇ 2 �n.x; y; z; w; u/g:

Proposition 9.4.1. Let Q be a quasivariety. Let �.x; y; z; w; u/ be a set of quater-
nary commutator equations for Q. Then:

(1) �n.x; y; z; w; u/ is a set of quaternary commutator equations for Q,
for all n > 1,

(2) If � is finite, then so are the sets �n, for all n,
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(3) Qˆ.�nC1/ � Qˆ.�n/, for all n > 1,
(4) Suppose that Qˆ.�mC1/ D Qˆ.�m/ for some m > 1. Then

Qˆ.�n/ D Qˆ.�m/ for all n > m.

Proof. Straightforward. ut
Theorem 9.4.2. Let Q be a finitely generated quasivariety whose equationally
defined commutator is additive. Let �.x; y; z; w; u/ be a finite set of commutator
equations which satisfies condition (1) of Section 9.1. Then there exists a positive
integer m such that Qˆ.�n/ D Qˆ.�m/ for all n > m.

Proof. We have: Q D SP.K/ for some finite set K of finite algebras. In view of
Theorem 8.1.1, there exists a finite set �.x; y; z; w; u/ which satisfies condition (1)
of Section 9.1, where u D u1; u2; : : : ; uk for some k > 0. Proposition 9.4.1 states
that

Qˆ.�1/ � Qˆ.�2/ � : : : � Qˆ.�n/ � : : :

is a descending chain of theories Suppose a contrario that Qˆ.�nC1/ is a proper
subset of Qˆ.�n/ for all n. Hence for each n > 1 there exists an equation
˛n � ˇn 2 �n such that ˛n � ˇn 62 Qˆ.�nC1/. Let T be the subalgebra of Te�

generated by the variables x; y; z; w and u1; u2; : : : ; uk. It follows that for each
n > 1 there exists a homomorphism hn of T into an algebra A 2 K such that hn

validates �nC1 and falsifies ˛n � ˇn. But the above assumptions made about K and
�.x; y; z; w; u/ imply that the set fhn W n > 1g is actually finite. We may therefore
write fhn W n > 1g D fhn W 1 6 n 6 m0g for some sufficiently large m0. It follows
that there exists i, 1 6 i 6 m0, such that the set fn > 1 W hn D hig is infinite.
Select two numbers m and n from this set, where m < n. We have hm D hn. Let
us consider the equation ˛n � ˇn. According to the definition of hn we have that
hn.˛n/ 6D hn.ˇn/. Hence hm.˛n/ 6D hm.ˇn/, because hm D hn. On the other hand,
˛n � ˇn 2 �n � Qˆ.�m/, because m < n. This gives that ˛n � ˇn 2 Qˆ.�m/. But
as hm validates �m, we get hm.˛n/ D hm.ˇn/. A contradiction.

It follows from the above reasoning that there exists m > 1 such that Qˆ.�m/ D
Qˆ.�mC1/. Consequently, Qˆ.�n/ D Qˆ.�m/ for all n > m. ut

We define the following sequence of binary commutator terms dn.x; y/,
n D 1; 2; : : ::

d1 WD Œx; y�;

dnC1 WD Œdn; y�; for n D 1; 2; : : :

dn is thus the term ŒŒ : : : ŒŒx; y�; y�; : : : �; y�, where y occurs n times, for n D 1; 2; : : :.

Lemma 9.4.3. Let Q be a quasivariety whose equationally defined commutator is
additive. Define the set �n D �n.x; y; z; w; u/ for each positive n as above. Then, for
every algebra A in Q, for every positive n, and for all a; b; c; d 2 A,
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dn.�Q.a; b/; �Q.c; d/; : : : ; �Q.c; d//

D sup Qf�Q.�n.a; b; c; d; e// W e 2 Akg:

Proof. Immediate. ut
Theorem 9.4.4. Let Q be a quasivariety whose equationally defined commutator is
additive. Let m be a positive integer. Then the following conditions are equivalent:

(a) Qˆ.�m/ D Qˆ.�mC1/.
(b) The lattices of Q-congruences on the algebras of Q obey the commutator law

dmC1 � dm:

Consequently, they also obey the laws: dn � dm, for all n > m.

(a) can be restated by saying that �mC1=�m is a set of rules of Q.

Proof. By Lemma 9.4.3 and Proposition 9.4.1. ut
Corollary 9.4.5. Let Q be a finitely generated quasivariety whose equationally
defined commutator is additive. Then there exists a positive integer m such that
Qˆ.�m/ D Qˆ.�mC1/. Consequently, Q obeys the commutator laws dn � dm, for
all n > m.

Proof. By Theorems 9.4.2 and 9.4.4. ut
We define the following sequence of unary commutator terms en.x/, n D

1; 2; : : ::

e1 WD Œx; x�;

enC1 WD Œen; x�; for n D 1; 2; : : :

en is thus the term ŒŒ : : : ŒŒx; x�; x�; : : : �; x�, where x occurs n C 1 times, for n D
1; 2; : : :. en is called the nth-potent term.

It is clear that every quasivariety obeys the laws: enC1.x/ 6 en.x/ for all positive
n and e1.x/ 6 x.

Lemma 9.4.6. Let Q be a quasivariety whose equationally defined commuta-
tor is additive. Put � 0

n .x; y; u/ WD �n.x; y; x; y; u/ for each positive n, where
�n.x; y; z; w; u/ is defined as above. Then, for every algebra A in Q, for every positive
n, and for all a; b 2 A,

en.�Q.a; b/; �Q.a; b/; : : : ; �Q.a; b// D sup Qf�Q.� 0
n .a; b; e// W e 2 Akg:

(The congruence �Q.a; b/ on the left-hand side occurs n C 1 times. � 0
1 .x; y; u/

coincides with �.x; y; x; y; u/. The supremum is taken in the lattice ConQ.A/.)

Proof. Immediate. ut
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Theorem 9.4.7. Let Q be a quasivariety whose equationally defined commutator is
additive. Let m be a positive integer. Then the following conditions are equivalent:

(a) Qˆ.� 0
m/ D Qˆ.� 0

mC1/.
(b) The lattices of Q-congruences on the algebras of Q obey the commutator law

emC1 � em. Consequently, they also obey the laws: en � em, for all n > m.

(a) can be restated by saying that � 0
mC1=� 0

m is a set of rules of Qˆ.

Proof. By Lemma 9.4.6 and Theorem 9.4.4. ut
Corollary 9.4.8. Let Q be a finitely generated quasivariety whose equationally
defined commutator is additive. Then there exists a positive integer m such that
Qˆ.� 0

m/ D Qˆ.� 0
mC1/. Consequently, Q obeys the commutator laws en � em, for

all n > m. It follows that Q validates the commutator quasi-equation:

emC1.x/ � 0 ! em.x/ � 0: ut

For every RCD quasivariety Q it is the case that e1.˚; ˚/ D ˚ , for any
A 2 Q and ˚ 2 ConQ.A/. Hence every RCD quasivariety (not necessarily finitely
generated) satisfies the commutator quasi-equation e1.x/ � 0 ! x � 0. But this
quasi-equation itself does not entail congruence-distributivity—see Kearnes (1990).

9.5 Commutator Identities in Finitely Generated
Quasivarieties

We shall use the commutator terms cn.x1; x2; : : : ; xnC1/, n D 1; 2; : : : defined as
above. cn is the term ŒŒ : : : ŒŒx1; x2�; x3�; : : : �; xnC1�, for n D 1; 2; : : :.

The following observation is crucial:

Theorem 9.5.1. Let Q be a finitely generated quasivariety, generated by a class
consisting of algebras each of which has at most m � 1 elements, where m > 3.
Suppose that the equationally defined commutator of Q is additive. Let A 2 Q and
let a1; : : : ; am be a sequence of elements of A of length m (possibly with repetitions).
Let hbi; cii .1 6 i 6 r; r D m.m � 1/=2/ be an enumeration of the pairs hai; aji,
where 1 6 i < j 6 m. Then

cr�1.�A
Q.b1; c1/; : : : ; �A

Q.br; cr// D 0A:

In particular, if x1; : : : ; xm are free generators in the free algebra F WD FQ.!/ and
hyi; zii .1 6 i 6 r/ is an enumeration of the pairs hxi; xji, where 1 6 i < j 6 m, then

cr�1.�F.y1; z1/; : : : ; �F.yr; zr// D 0F:

Proof. In view of Theorem 8.2.5 we have that
T

16i<j6m �A
Q.ai; aj/ D 0A. As
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cr�1.�A
Q.b1; c1/; : : : ; �A

Q.bn; cn// �
\

16i<j6m

�A
Q.ai; aj/ D 0A;

the theorem follows. ut
It is an open problem how to express the above equality as a commutator identity

(cf. Theorem 9.2.1).

Example. Let Q be as above with m D 4, A 2 Q and a1; a2; a3; a4 be a sequence
of elements of A. Then r D 6 and let us assume that the sequence �Q.bi; ci/
.1 6 i 6 6/ equals �Q.a1; a2/, �Q.a1; a3/, �Q.a1; a4/, �Q.a2; a3/, �Q.a2; a4/,
�Q.a3; a4/. Since Q is generated by a class of algebras each of which has at most 3
elements, it follows that

c5.�Q.b1; c1/; : : : ; �Q.b6; c6// D
c5.�Q.a1; a2/; �Q.a1; a3/; �Q.a1; a4/; �Q.a2; a3/; �Q.a2; a4/; �Q.a3; a4// D 0A:

The above equality trivially holds because ai D aj for some i < j. Hence
�A

Q.ai; aj/ D 0A and, consequently, c5.�A
Q.b1; c1/; : : : ; �A

Q.b6; c6// D 0A. ut
In the next step we shall use the sets of equations

�n D �n.x1; y1; x2; y2; : : : ; xnC1; ynC1; vn/;

for n D 1; 2; : : : from Section 9.1 to encode the above corollary in terms of
commutator equations.

Let Q be a quasivariety whose equationally defined commutator is additive
and let �.x; y; z; w; u/ be a set of quaternary commutator equations for Q sat-
isfying condition (1) in Section 9.1. Let m > 3 be a positive integer. Fix a
sequence x1; : : : ; xm of m different individual variables. (We may use the variables
x1; x2; : : : ; xnC1 occurring in the equations of �n for a sufficiently large n). Let
hzi; wii .1 6 i 6 r; r D m.m � 1/=2/ be an enumeration of the pairs hxi; xji,
where 1 6 i < j 6 m. We put v WD vr�1 and


m.x1; x2; : : : ; xm; v/ WD �r�1.z1; w1; z2; w2; : : : ; zr; wr; vr�1/:

In other words �r�1.z1; w1; z2; w2; : : : ; zr; wr; vr�1/ results from �r�1 D
�r�1.x1; y1; x2; y2; : : : ; xr; yr; vr�1/ by the uniform substitution of the variables
from the enumeration hzi; wii .1 6 i 6 r; r D m.m � 1/=2/ for the consecutive
variables xi and yi occurring in �r�1.

Different enumerations hzi; wii .1 6 i 6 r/ of the pairs hxi; xji, where
16 i< j6m, yield different sets of equations �r1.z1; w1; z2; w2; : : : ; zr; wr; vr�1/

because each time different substitutions are applied to the variables occurring in
�r�1.x1; y1; x2; y2; : : : ; xr; yr; vn/ to obtain the set of equations 
m.x1; : : : ; xm; v/ D
�r�1.z1; w1; z2; w2; : : : ; zr; wr; vr�1/. (The parametric variables vr�1 are not
touched.)
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The set 
m.x1; x2; : : : ; xm; v/ is finite whenever the set �.x; y; z; w; u/ is
finite. If Q is finitely generated, we may assume that �.x; y; z; w; u/ is finite,
by Theorem 8.1.1.

Theorem 9.5.2. Let Q be a finitely generated quasivariety whose equationally
defined commutator is additive. Let �.x; y; z; w; u/ be a finite set of quaternary
commutator equations satisfying condition (1) in Section 9.1. Suppose that Q is
generated by a class consisting of algebras each of which has at most m�1 elements,
where m > 3 is a positive integer. Define 
m.x1; x2; : : : ; xm; v/ as above. Let A 2 Q
and let a1; : : : ; am be an arbitrary sequence of elements of A. Then

�A
Q.
m.a1; : : : ; am; e// D 0A;

for all sequences e 2 A.r�1/k.
In particular, if x1; : : : ; xm are free generators of the free algebra F WD FQ.!/,

then

�F
Q.
m.x1; : : : ; xm; e// D 0F;

for all e 2 F.r�1/k.

Proof. Let hbi; cii .1 6 i 6 r/ be an enumeration of the pairs hai; aji, where
1 6 i < j 6 m, compatible with the enumeration hzi; wii .1 6 i 6 r/ of the pairs
hxi; xji, where 1 6 i < j 6 m:/ In view of Theorem 9.2.1,

cr�1.�A
Q.b1; c1/; : : : ; �A

Q.br; cr// D
sup Qf�A

Q.�r�1.b1; c1; b2; c2; : : : ; br; cr; er�1// W er�1 2 A.r�1/kg D
sup Qf�A

Q.
m.a1; : : : ; am; er�1// W e 2 A.r�1/kg:

(The suprema are taken in the lattice ConQ.A/.) Then apply Theorem 9.5.1. ut
Corollary 9.5.3. Let Q, �, and 
m.x1; : : : ; xm; v/ be defined as above. Then Va.Q/

validates the equations 
m.x1; : : : ; xm; v/. ut
Example 9.5.4. For instance, suppose that in the above corollary m D 3 and
x1; x2; x3 are different variables. Then r D m.m � 1/=2 D 3. Let hx1; x2i, hx1; x3i,
hx2; x3i be an enumeration of the pairs hxi; xji, 1 6 i < j 6 3.

We return to Example 9.1.6. In this case we have that �.x; y; z; w/ D f.x $ y/ _
.z $ w/ � 1g (no parameters occur) and, consequently,

�1.x1; y1; x2; y2/ D f.x1 $ y1/ _ .x2 $ y2/ � 1g;
�2.x1; y1; x2; y2; x3; y3/ D

[
f�.x=˛; y=ˇ; z=x3; w=y3/ W ˛ � ˇ 2 �1g D

f.˛ $ ˇ/ _ .x3 $ y3/ � 1 W ˛ � ˇ 2 �1g D
f...x1 $ y1/ _ .x2 $ y2// $ 1/ _ .x3 $ y3/ � 1g:
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As BA is generated (as a quasivariety) by a two-element Boolean algebra, it
follows from the above corollary that BA validates the equations 
3.x1; x2; x3/ WD
�2.x1; x2; x1; x3; x2; x3/. (In fact, this set consists of a single equation.) We have:


3.x1; x2; x3/ D �2.x1; x2; x1; x3; x2; x3/ D
f...x1 $ x2/ _ .x1 $ x3// $ 1/ _ .x2 $ x3/ � 1g:

One can directly verify that indeed the equation

...x1 $ x2/ _ .x1 $ x3// $ 1/ _ .x2 $ x3/ � 1 (�)

holds in BA.
Since BA validates the equation x $ 1 � x, equation (�) is equivalent

(in BAˆ/ to

.x1 $ x2/ _ .x1 $ x3/ _ .x2 $ x3/ � 1

(some parentheses are omitted). ut
Theorem 9.5.5. Let m > 3 be a fixed natural number. Suppose that Q is a (finitely
generated) quasivariety generated by a finite class K of algebras, where each
algebra in K has at most m � 1 elements. If the equationally defined commutator
for Q is additive, then Q has m-EDTPM with respect to the finite set of equations

m.x1; x2; : : : ; xm; v/ defined as above, i.e.,

\
f�A

Q.ai; aj/ W 1 6 i < j 6 mg D �A
Q..8e/.
m.a1; a2; : : : ; am; e//;

for any algebra A 2 Q and any a1; : : : ; am 2 A.

Proof. The assumptions and Corollary 9.5.3 imply that Q validates the equa-
tions 
m.x1; x2;: : :; xm; v/. Thus, if A 2 Q and a1;: : :; am 2 A, then A ˆ
.8v/

V
.
m.x1; x2;: : :; xm; v/Œa1; a2; : : : ; am	.

According to Theorem 8.2.5 it is also the case that
Tf�A

Q.ai; aj/ W 16 i< j6mg D
0A. It follows that the equivalence

\
f�A

Q.ai; aj/ W 1 6 i < j 6 mg D 0A ,

A ˆ .8v/
^

.
m.x1; x2; : : : ; xm; v/Œa1; a2; : : : ; am	:

is true because its both components are true.
Thus any algebra A 2 Q validates condition (2) of Proposition 8.3.1. This shows

that Q has m-EDTPM with respect to 
m.x1; x2; : : : ; xm; v/, by Definition 8.3.2. ut
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Theorem 9.5.5 concludes the presentation of the equationally defined commuta-
tor for quasivarieties.

Final Remarks

This book outlines the theory of the equationally defined commutator. The
approach presented here appears to have not been considered in the literature.
The basic notions and results are new. From the logical viewpoint the focus of
the book is on central theorems. This focus determines the narrative structure of the
book. Secondary threads have not been investigated in more detail; many of them
have been left open and identified as problems for further scrutiny. Some of these
problems seem to be difficult and they are a challenge for algebraists and logicians.
The following problem, referred to as Pigozzi’s conjecture, is central:

Problem. Let � be a finite signature. Let Q be a finitely generated and relatively
congruence-modular quasivariety of � -algebras. Prove Q is finitely based. ut



Appendix A
Algebraic Lattices

A.1 Partially Ordered Sets

Let P be a set. A binary relation 6 on P is an order (or partial order) on P if and
only if 6 satisfies the following conditions:

(i) 6 is reflexive, i.e., a 6 a, for all a 2 A;
(ii) 6 is transitive, i.e., a 6 b and b 6 c implies a 6 c, for all a; b; c 2 A;

(iii) 6 is antisymmetric, i.e., a 6 b and b 6 a implies a 6 b, for all a; b 2 A.

A partially ordered set, a poset, for short, is a set with an order defined on it.
Each order relation 6 on P gives rise to a relation < of strict order: a < b in P if

and only if a 6 b and a 6D b.
Let P D .P;6/ be a poset and X a subset of P. Then X inherits an order relation

from P: given x; y 2 X, x 6 y in X if and only if x 6 y in P. We then also say that
the order on X is induced by the order from P.

(1) An element u 2 P is called an upper bound of the set X if x 6 u, for all x 2 X.
(2) An element l 2 P is called a lower bound of the set X if l 6 x, for all x 2 X.
(3) An element a 2 P is called the least upper bound of the set X if a is an upper

bound of X and a 6 u for every upper bound u of X.
If X has a least upper bound, this is called the supremum of X and is written
“sup.X/”.

(4) An element b 2 P is called the greatest lower bound of the set X if b is a lower
bound of X and l 6 b for every lower bound l of X.
If X has a greatest lower bound, this is called the infimum of X and is written
“inf.X/”.

Instead of “sup.X/” and “inf.X/” we shall often write “
W

X” and “
V

X”; in
particular, we write “a _ b” and “a ^ b” instead of “sup.fa; bg/” and “inf.fa; bg/”.

If the poset P itself has an upper bound u, then it is the only upper bound. u is then
called the greatest element of P or the top element of P. In an analogous way the
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notion of the least element of P is defined. The least element of P is often denoted
by 0 and is also called the zero or the bottom element of the poset P.

A set X � P is:

(a) an upper directed subset of P if for every pair a; b 2 X there exists an element
c 2 X such that a 6 c and b 6 c (or, equivalently, if every finite non-empty
subset of X has an upper bound which is an element of X);

(b) a chain in P if, for every pair a; b 2 X, either a 6 b or b 6 a (that is, if any two
elements of X are comparable);

(c) a well-ordered subset of P (or: a well-ordered chain in P) if X is a chain in
which every non-empty subset Y � X has the least element (in Y).

Equivalently, in the presence of the Axiom of Dependent Choices from set theory,
X is well-ordered if and only if it is a chain and there is no infinite strictly decreasing
sequence c0 > c1 > : : : > cn > : : : of elements of X.

Every well-ordered set X is isomorphic with a unique ordinal, called the type
of X.

A subset directed downwards is defined similarly; when nothing to the contrary
is said, “directed” will always mean “directed upwards”.

If the poset .P;6/ itself is a chain or directed, then it is simply called a chain or
a directed poset.

Definition A.1.1. Let P D .P;6/ be a poset.

(1) P is directed-complete if for every non-empty directed subset D � P,
the supremum sup.D/ exists in P.

(2) P is chain-complete (or inductive) if for every non-empty chain C � P,
the supremum sup.C/ exists in P.

(3) P is well-orderably-complete if for every well-ordered non-empty chain C � P,
the supremum sup.C/ exists in P. ut

Every directed-complete poset is chain-complete and every inductive poset is
well-orderably complete. It is known from set theory that in the presence of the
Axiom of Choice they are mutually equivalent.

Note. The empty subset of a poset is usually assumed to be well-ordered. However,
if P D .P;6/ is well orderably complete in the above sense, then the supremum of
the empty subset may not exist. But if it exists, it is the least element in P.

Analogously, in inductive posets and directed-complete posets the zero may not
exist.

In the literature, directed-complete posets are also called continuous posets
and the often used abbreviation “.P;6/ is a cpo” marks that the poset .P;6/ is
continuous.
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A.2 Semilattices and Lattices

A non-empty poset P D .P;6/ is a join-semilattice, if for any two elements a; b 2
P, sup.fa; bg/ exists in P.

Join-semilattices are equivalently defined as algebras P D .P; _/ of signature (2)
satisfying the following identities:

x _ x � x; x _ y � y _ x; x _ .y _ z/ � .x _ y/ _ z:

A non-empty poset P D .P;6/ is a lattice, if for any two elements a; b 2 P,
sup.fa; bg/ and inf.fa; bg/ exist in P.

Lattices are equivalently defined as algebras P D .P; ^; _/ of signature .2; 2/

satisfying the identities:

x ^ x � x; x ^ y � y ^ x; x ^ .y ^ z/ � .x ^ y/ ^ z;

x _ x � x; x _ y � y _ x; x _ .y _ z/ � .x _ y/ _ z;

x ^ .x _ y/ � x; x _ .x ^ y/ � x:

Thus for every lattice P D .P; ^; _/, its reduct .P; _/ is a join-semilattice, and the
reduct .P; ^/ is a meet-semilattice, the notion dual to the first one. Moreover the two
semilattices are conjoined by the last two axioms.

A non-empty poset P D .P;6/ is a complete lattice if every subset X � P has
both a least upper greatest lower bound sup.X/ (the supremum, also called the join)
and a greatest lower bound inf.X/ (the infimum, also called the meet) in P. It is
assumed that inf.;/ is the top element of P and sup.;/ is the zero element in P. The
join and the meet of X are often denoted by

_
X and

^
X;

respectively.
Every complete lattice is a lattice, and every finite lattice is a complete lattice.

Theorem A.2.1. Every directed-complete join-semilattice L D .L;6; 0/ with zero
is a complete lattice.

Proof. If E is a non-empty set E � L, then define D WD fsup.Ef / W Ef is a
finite subset of Eg. D is well-defined and directed. As sup.D/ exists in L and
sup.E/ D sup.D/, it follows that for every non-empty set E � L, sup.E/ exists
in L. It is then easy to verify that inf.E/ also exists in L. For let B WD fb 2 L W
b is a lower bound of Eg. Then 0 2 B and sup.B/ D inf.E/. ut

A sublattice M of a complete lattice L is called a closed sublattice of L if for
every non-empty subset X of M, the elements sup.X/ and inf.X/, as computed in
L, are actually in M. If moreover, the zero and the unit elements of L belong to M,
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the sublattice M is called a complete sublattice of L. Thus a sublattice M of L is a
complete sublattice of L if for every subset X of M, the elements sup.X/ and inf.X/,
as computed in L, belong to M. It follows that every complete sublattice M of L has
the same zero and unit elements as L and M itself is a complete lattice. It should be
noted that a closed sublattice M of a complete lattice L need not possess the zero
and the unit elements, but even if M has them, they need not coincide with their
counterparts in L.

If P D .P;6/ is a poset, then .P;>/ is also a poset, where > is the dual of 6:

a > b ,df b 6 a;

for all a; b 2 P. The poset .P;>/ is called the dual of P and denoted by Pd.
If P D .P;6/ is a lattice, then the dual poset Pd D .P;>/ is a lattice as well. If P

is viewed as an algebra .P; ^; _/ satisfying the above axioms, then Pd becomes the
algebra .P; _; ^/. Thus Pd results from P by interchanging ^ and _.

If a lattice P is represented by a Hasse diagram, then the Hasse diagram of Pd is
obtained by turning upside down the diagram of P.

The above facts yield the Principle of Duality for lattices, which states that if �

is a statement that is true in every lattice and �d is the statement obtained from � by
interchanging 6 and > and interchanging ^ and _, then �d is true in every lattice.

In some cases one may obtain a specialized versions of the Duality Principle
obtained by restricting the above general quantifier ‘in every lattice’ to some proper
subclasses of lattices. Examples are the classes of distributive and modular lattices.
Thus, in particular, the Principle of Duality for modular lattices states that � is true
in every modular lattice if and only if the dual statement �d is true in all modular
lattices.

The equational class of distributive lattices is defined by the identity:

x ^ .y _ z/ � .x ^ y/ _ .x ^ z/:

Equivalently, the class of distributive lattices is defined by the dual equation:

x _ .y ^ z/ � .x _ y/ ^ .x _ z/:

The class of modular lattices is defined by the identity:

..x ^ z/ _ y/ ^ z � .x ^ z/ _ .y ^ z/:

Equivalently, this class is defined by the dual condition:

..x _ z/ ^ y/ _ z � .x _ z/ ^ .y _ z/:

Modular lattices form an equational class. The following theorem is attributed to
Dedekind (see McKenzie et al. (1987), Theorem 2.25):
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a

b

c

1

0

Fig. A.1 The lattice N5.

Theorem A.2.2. For any lattice L the following conditions are equivalent:

(1) L is modular.
(2) L validates the quasi-identity z 6 x ! x ^ .y _ z/ � .x ^ y/ _ z.
(3) L validates the identity ..x ^ z/ _ y/ ^ z � .x ^ z/ _ .y ^ c/.
(4) For any a; b; c 2 L, if a 6 b, a ^ c D b ^ c, and a _ c D b _ c, then a D b.
(5) L has no sublattice isomorphic to N5 (Fig. A.1).

Each of conditions (2)–(5) can be replaced by their duals.

A.3 Extensions by Ideals. Algebraic Lattices

Let L D .L;6/ be a complete lattice. An element x 2 L is compact if, whenever
D is a directed and non-empty subset of L and x 6 sup.D/, there is an element
d 2 D such that x 6 d. Equivalently, an element x 2 L is compact if, for every
non-empty set E � L, if x 6 sup.E/, then x 6 sup.Ef / for some finite set Ef � E.
The equivalence of these two conditions follows from the (already noted) fact that
for any non-empty set E � L, the set D WD fsup.Ef / W Ef is a finite subset of Eg is
directed and sup.E/ D sup.D/ in L.

We let K.L/ denote the set of compact elements of L.
As L D .L;6/ contains zero 0, we note that 0 is compact. Moreover, if x and y

are compact, then x _ y is compact as well.
For every a 2 L, define the set K.a/ WD fx 2 K.L/ W x 6 ag. The set K.a/ is

non-empty (because it contains 0) and directed. In fact, K.a/ is a join-semilattice.

Definition A.3.1. A complete lattice L D .L;6/ is said to be algebraic if for every
a 2 L, sup.K.a// D a. ut

Thus, in any algebraic lattice each element is a directed limit of its compact
approximations.
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Examples. The power set }.X/ of every set X forms an algebraic lattice with zero
under inclusion relation. The set K.}.X// coincides the family of finite subsets of X.

Let I be the unit interval of real numbers, I WD fx 2 R W 0 6 x 6 1g. The lattice
.Q \ I;6/ formed by the rational numbers of I with the standard ordering 6 is not
complete. The lattice .I;6/ is complete but it is not algebraic. One can easily check
that the number 0 is the only compact element in .I;6/. ut
Definition A.3.2. Let P0 D .P0;6; 0/ be a join-semilattice with zero. A subset
I � P0 is called an ideal of P0 if, for all a; b 2 P0, the following conditions hold:

(i1) If a; b 2 I, then a _ b 2 I;
(i2) If a 2 I and b 6 a, then b 2 I.
(i3) 0 2 I. ut

Ideal.P0/ denotes the set of all ideals of P0.
P0 is the largest ideal in P0 and f0g—the smallest one. The intersection of any

non-empty family of ideals is an ideal too. This means the family Ideal.P0/, ordered
by inclusion, is a closure system and hence it forms a complete lattice. It is assumed
that f0g is the intersection of the empty family of ideals.

It is easy to see that in the lattice hIdeal.P0/; ^; _i of ideals of P0 it is the case
that

I ^ J WD I \ J;

I _ J WD fx 2 P0 W x 6 i _ j; for some i 2 I; j 2 Jg:

for all ideals I; J.
For every a 2 P0, the set

# a WD fx 2 P0 W x 6 ag

is an ideal. # a is called the principal ideal generated by a.
Here are simple observations about the lattices of ideals.

Theorem A.3.3. Let P0 D .P0;6; 0/ be an arbitrary join-semilattice with zero. The
poset .Ideal.P0/; �/ of ideals of P0 is an algebraic lattice. Moreover, the subposet
.K.Ideal.P0//; �/ consisting of compact elements of the lattice .Ideal.P0/; �/ forms
a join-semilattice which is isomorphic with P0.

Proof. As the family Ideal.P0/ is a closure system, the poset .Ideal.P0/; �/ is a
complete lattice. If .X; �/ is a non-empty directed family of ideals, then the unionS

X is also an ideal of P0. Clearly,
S

X is the supremum of the family X in the
sense of .Ideal.P0/; �/.

We prove that the family f# a W a 2 L0g of principal ideals of P0 coincides with
the family K.Ideal.P0//. Let a 2 P0 and let X be a directed non-empty family of
ideals such that # a � S

X. It follows that there exists an ideal I 2 X such that
a 2 I. Hence # a � I. This shows that # a is compact in the poset .Ideal.P0/; �/.
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To prove the converse, we notice that I D Sf# a W a 2 Ig for every ideal I.
Furthermore, the family f# a W a 2 Ig is directed and non-empty. Thus every ideal
is a supremum of a non-empty family of compact ideals.

Now, if an ideal I is a compact element in .Ideal.P0/; �/, it follows from the
above equality that I �# a for some a 2 I. Hence I D# a.

The above facts prove that the lattice .Ideal.P0/; �/ is algebraic.
It is clear that the mapping 
 W P0 ! Ideal.P0/ given by


.a/ WD# a; a 2 P0;

establishes an isomorphism between the join-semilattices P0 and .K.Ideal.P0//; �/.
ut

The order structure of any algebraic lattice is fully determined by the order
structure of the join-semilattice of its compact elements. This fact is established
by the following theorem:

Theorem A.3.4. Let P D .P;6/ and Q D .Q;6/ be algebraic lattices. P and Q
are isomorphic if and only if the join-semilattices .K.P/;6; 0/ and .K.Q/;6; 0/ of
their compact elements are isomorphic.

The proof is based on several simple lemmas.

Lemma A.3.5. Let P0 D .P0;6; 0/, Q0 D .Q0;6; 0/ be isomorphic join-
semilattices with zero and let f W P0 Š Q0 be an isomorphism between them. The
mapping f � given by the formula

f �.J/ WD f �1.J/; for all J 2 Ideal.Q0/;

is an isomorphism between the complete lattices .Ideal.Q0/;�/ and .Ideal.P0/;�/,
symbolically,

f � W .Ideal.Q0/; �/ Š .Ideal.P0/; �/:

The proof is easy and omitted. ut
Lemma A.3.6. Let L D .L;6/ be an algebraic lattice. L is isomorphic with the
lattice .Ideal.K.L/; �/ of ideals of the join-semilattice .K.L/;6; 0/ of compact
elements of L.

Proof (of the lemma). For every a 2 L define K.a/ as above, i.e.,

K.a/ WD fx 2 K.L/ W x 6 ag:

Since L is algebraic, K.a/ is an ideal of the join-semilattice .K.L/;6/.

Claim 1. Let I be an ideal of the join-semilattice .K.L/;6/. Then I D K.a/ for
some a 2 L.
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Proof (of the claim). As I is a (non-empty) subset of .K.L/;6/, and hence of L,
sup.I/ exists in L. (If I D f0g, then sup.I/ D 0.) We define: a WD sup.I/. Evidently,
I � K.a/ because I contains only compact elements and every element of I is equal
or smaller than a. Now, let x 2 K.a/. So x is compact and x 6 a D sup.I/. Hence
x 6 i for some i 2 I, by compactness. Since I is an ideal, we therefore have that
x 2 I. So K.a/ � I. Consequently, I D K.a/. This proves the claim. ut
Claim 2. Let a; b 2 L. Then K.a/ � K.b/ if and only if a 6 b.

Proof (of the claim). Use the fact that a D sup.K.a// and b D sup.K.b//.
To prove the lemma, we define the mapping h W L ! Ideal.K.L/ by:

h.a/ WD K.a/; for all a 2 L:

Clearly, h is well-defined. By Claim 1, h is surjective. By Claim 2, h is an
isomorphism between the lattices L and .Ideal.K.L/; �/ and hence it is also one-
to-one. ut
Lemma A.3.7. Let P D .P;6/ and Q D .Q;6/ be algebraic lattices. If P and Q
are isomorphic, then so are the join-semilattices of compact elements .K.P/;6; 0/

and .K.Q/;6; 0/.

Proof (of the lemma). Let f W P Š Q be an isomorphism. It suffices to prove that f
maps K.P/ onto K.Q/. Thus we need to show that, for every a 2 P, a 2 K.P/ if and
only if f .a/ 2 K.Q/. A tedious verification of this condition is left to the reader. ut

We pass to the proof of Theorem A.3.4.
((). We assume that

.K.P/;6; 0/ Š .K.Q/;6; 0/:

The second statement of Lemma A.3.5 implies that

.Ideal.K.P//; �/ Š .Ideal.K.Q//; �/:

In turn, Lemma A.3.6 gives that

P Š .Ideal.K.P//; �/ and Q Š .Ideal.K.Q//; �/:

Consequently, P Š Q.
()). This is the content of Lemma A.3.7.
The theorem has been proved. ut
The following result follows from Theorems A.3.3–A.3.4:

Theorem A.3.8. Let P0 D .P0;6; 0/ be an arbitrary join-semilattice with zero.
There exists a unique (up to isomorphism) complete lattice P D .P;6/ with the
following properties:
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(1) P is algebraic.
(2) The poset K.P/ of compact elements of P is isomorphic with P0.

Proof. In view of Theorem A.3.3, the poset .Ideal.P0/; �/ of ideals of P0 satisfies
(1) and (2). In virtue of Theorem A.3.4, there is only one (up to isomorphism) poset
P which satisfies (1)–(2). ut
Corollary A.3.9. Let L0 D .L0;6; 0/ be an arbitrary lattice with zero. There exists
a unique (up to isomorphism) complete lattice L D .L;6/ with the following
properties :

(1) L is algebraic.
(2) The poset K.L/ of compact elements of L is a lattice isomorphic with L0.

The unique algebraic lattice L D .L;6/ satisfying conditions (1)–(2) of the
above corollary is called the algebraic completion of the lattice L0 D .L0;6; 0/.
In view of Theorems A.3.3–A.3.4, the lattice .Ideal.L0/; �/ of ideals of L0 is
the algebraic extension of L0 since it is unique. .Ideal.L0/; �/ is also called the
algebraic extension of L0 by ideals.

According to the above corollary, every lattice with zero L0 D .L0;6; 0/

is embeddable in the complete algebraic lattice .Ideal.L0/; �/ via the map

 W L0 ! Ideal.L0/ given by


.a/ WD# a; a 2 L0:

It should be noted 
 is not a complete embedding L0 into .Ideal.L0/; �/ because
it does not preserve supremums of infinite subsets of L0, that is, if A � L0 and
sup.A/ exists in L0, then 
.sup.A// may be strictly greater than sup.f
.a/ W a 2 Ag/.
Indeed, if L0 D .L0;6; 0/ itself is an algebraic lattice, then .Ideal.L0/; �/ is a
proper extension of L0, because every element of L0 becomes a compact element in
.Ideal.L0/; �/, by the above corollary. If 
 preserved supremums, then every non-
compact element of L0 would be non-compact in .Ideal.L0/; �/, which is excluded
by Corollary A.3.9.(2).

Lemma A.3.10. For any lattice with zero L0 the embedding 
 W L0 ! Ideal.L0/

preserves arbitrary meets in L0.

Proof. Let B be a non-empty subset of a lattice L0 and assume inf.B/ exists in L0.
As 
 is monotone, we have that 
.inf.B// � inf.f
.b/ W b 2 Bg/. We shall show
that 
.inf.B// is the g.l.b. of the set f
.b/ W b 2 Bg in .Ideal.L0/; �/. Suppose
I 2 Ideal.L0/ so that I is a lower bound of f
.b/ W b 2 Bg. This means that I �# b,
for all b 2 B. Hence I �# inf.B/, i.e., I � 
.inf.B//. ut

In this context it is natural to speak of L0-complete ideals (in L0). Let
L0 D .L0;6; 0/ be a lattice with zero. An ideal I 2 Ideal.L0/ is L0-complete if,
for any non-empty set A � L0 such that sup.A/ exists in L0, sup.A/ 2 I whenever
A � I.

Let Idealc.L0/ be the set of all L0-complete ideals. This set is non-empty, because
the ideals f0g, L0 and # a, for all a 2 L0 are L0-complete. As the intersection of
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any non-empty family of L0-complete ideals is an L0-complete ideal, Idealc.L0/ is a
closure system on L0. (The ideal f0g is the intersection of the void family.) It follows
that .Idealc; �/ is a complete lattice with f0g and L0 as the bottom and top elements,
respectively. If L0 is a complete lattice, L0-complete ideals are exactly the ideals of
the form # a, where a 2 L0.

Lemma A.3.11. For any lattice with zero L0 the mapping 
 W L0 ! Idealc.L0/

is a complete isomorphic embedding, i.e., it is one-to-one and preserves arbitrary
joins and meets in L0.

Proof. It is clear that 
 is well-defined, one-to-one and monotone. From the proof
of Lemma A.3.10 it follows that 
 preserves meets in L0. We show 
 preserves
arbitrary joins in L0.

Let A be a non-empty subset of L0 and assume sup.A/ exist in L0. As 
 is
monotone, we have that sup.f
.a/ W a 2 Ag/ � 
.sup.A//. We shall show
that 
.sup.A// is the l.u.b. of the set f
.a/ W a 2 Ag in .Idealc.L0/; �/. For let
I 2 Idealc.L0/ be an upper bound of f
.a/ W a 2 Ag. This means that # a � I, for
all a 2 A. It follows that A � I. As I is L0-complete, we get that sup.A/ 2 I. Hence
# sup.A/ � I. This shows that 
.sup.A// is the l.u.b. of f
.a/ W a 2 Ag. ut

.Idealc.L0/; �/ though being a complete lattice need not be a sublattice of
.Ideal.L0/; �/. For instance, given two ideals I; J 2 Idealc.L0/, the ideal K WD
fx 2 L0 W x 6 i _ j; for some i 2 I; j 2 Jg is the join of I and J in the lattice
.Ideal.L0/; �/.

If L0 is a complete lattice, L0-complete ideals are exactly the ideals of the form
# a, where a 2 L0. In this case the embedding 
 trivializes, because the lattice
.Idealc.L0/; �/ is identified with L0. This case also shows that .Idealc.L0/; �/

need not be an algebraic lattice. On the other hand, .Ideal.L0/; �/ is an algebraic
lattice being a proper extension of L0 and hence of .Idealc.L0/; �/. From the above
remarks it follows that .Idealc.L0/; �/, though being a sublattice of .Ideal.L0/; �/

for any complete lattice L0, is not a complete sublattice, that is, meets and joins of
infinite subsets of Idealc.L0/ may differ from the corresponding meets and joins in
.Ideal.L0/; �/.

A.4 Distributive and Modular Algebraic Lattices

Let P is a join-semilattice with 0, and a; b 2 P. We define:

M.a; b/ ,df for all c; d 2 P, b 6 a _ c and b 6 a _ d imply that
.9e 2 P/.b 6 a _ e & e 6 c & e 6 a _ d/.

Theorem A.4.1. Let P be a join-semilattice with 0. The lattice .Ideal.P/; �/ is
modular if and only if M.a; b/ holds for all a; b 2 P.

Proof. ((). Let I; J; K be ideals of P, and suppose M.a; b/ holds, for all a; b 2 P.
We want to show
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.I _ J/ ^ .I _ K/ D I _ ..I _ J/ ^ K/:

The inclusion ‘�’ holds in any lattice, so we only need to show the reverse inclusion
‘�’. Let x 2 .I _ J/ ^ .I _ K/. Then x 6 i _ j, x 6 i0 _ k, with i; i0 2 I, j 2 J and
k 2 K. Therefore i00 WD i _ i0 2 I and x 6 i00 _ j, x 6 i00 _ k. By M.i00; x/, there exists
l 2 P such that l 6 k; l 6 i00 _ j, and x 6 i00 _ l. But l 2 .I _ J/ ^ K and i00 2 I, and
hence x 2 I _ ..I _ J/ ^ K/.

()). Assume .Ideal.P/; �/ is modular, and let a; b 2 P. To show M.a; b/, let
c; d 2 P and suppose b 6 a_c and b 6 a_d. Then b 2 .# a_ # c/ ^ .# a_ # d/ D
(by modularity) # a _ ..# d_ # a/^ # c/, that is, b 6 f _ e with f 6 a and
e 6 .# d_ # a/^ # c. Thus b 6 a _ e, e 6 c and e 6 a _ d. ut

In virtue of Lemma A.3.6, every algebraic lattice L is isomorphic with the lattice
of ideals of the join-semilattice of compact elements of L. Therefore Theorem A.4.1
implies:

Corollary A.4.2. Let L be an algebraic lattice. L is modular if and only if M.a; b/

holds for all compact elements a; b of L. ut
The next lemma is useful in commutator theory:

Lemma A.4.3. Let P be a join-semilattice with 0 generated by a set X � P. If
M.a; b/ holds for all a; b 2 X, then M.a; b/ holds for all a; b 2 P.

Proof. First we show M.a; b/ holds for all a 2 X and all b 2 P. Let a 2 X, and let

b D
_

0<i<n

xi;

where xi 2 X, for 0 < i < n. We show by induction on n that M.a; b/ holds. If n D 1,
then b 2 X and M.a; b/ holds by assumption. Now let n > 2, b0 WD W

0<i<n�1 xi,
and assume M.a; b0/ holds. To prove that M.a; b/ holds, let c; d be elements of P so
that b 6 a _ c, b 6 a _ d. Then trivially b0 6 a _ c, b0 6 a _ d, so by M.a; b0/ there
exists e0 2 P such that

b0 6 a _ e0; e0 6 c; e0 6 a _ d: (1)

Also xn�1 6 a _ c, xn�1 6 a _ d, and since M.a; xn�1/ holds, there exists e00 2 P
such that

e00 6 c; e00 6 a _ d; xn�1 6 a _ e00: (2)

Let e WD e0 _ e00; then by (1) and (2), e 6 c, e 6 a _ d and b D b0 _ xn�1 6
a _ e0 _ a _ e00 D a _ e.

Next we prove that M.a; b/ holds for all a; b 2 P. Let
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a D
_

0<i<n

xi;

where xi 2 X for i < n, and b 2 P. If n D 1, then a 2 X and M.a; b/ holds by the
first part of the proof. If n > 2, then write a0 WD W

0<i<n�1 xi, and assume M.a0; b/

holds. Let c; d 2 P such that b 6 a _ c, b 6 a _ d. Then b 6 a0 _ xn�1 _ c,
b 6 a0 _ xn�1 _ d, so by M.a0; b/ there exists e0 2 P such that

b 6 a0 _ e0; e0 6 xn�1 _ c; e0 6 a0 _ xn�1 _ d: (3)

Since, by the first part of the proof, M.xn�1; e0/ holds, there is an e 2 P such that

e0 6 xn�1 _ e; e 6 c; e 6 xn�1 _ .a0 _ d/: (4)

(3) and (4) imply that b 6 a0 _ e0 6 a0 _ xn�1 _ e D a _ e. Since e 6 c and
e 6 xn�1 _ .a0 _ d/ D a _ d, we thus see that M.a; b/ holds. ut

Let P be a join-semilattice with 0 and a; b 2 P. We also define:

D.a; b/ ,df for all c; d 2 L, b 6 a _ c and b 6 a _ d imply
.9e 2 L/.e 6 c & e 6 d & b 6 a _ e/.

Theorem A.4.4. Let P be a join-semilattice with 0. The lattice .Ideal.P/; �/ is
distributive if and only if D.a; b/ holds for all a; b 2 P.

Proof. Suitably modify the above proof of Theorem A.4.1. ut
Theorem A.4.5. Let L0 D .L0;6; 0/ be an arbitrary distributive (modular) lattice
with zero. The unique algebraic completion L D .L;6/ of L0 is distributive
(modular) as well.

Proof. We assume L0 is modular. It is easy to see that M.a; b/ holds in L0 (treated
as a join-semilattice with zero), for all a; b 2 L0, by modularity. Hence, by
Theorem A.4.1, the algebraic lattice .Ideal.L0/; �/ is modular. As .Ideal.L0/; �/

is the unique algebraic completion of L0, the theorem follows.
A similar argument applies when L0 is distributive. ut
Theorem A.4.1 and the results following it were proved in Czelakowski (1998).



Appendix B
A Proof of Theorem 3.3.4 for Relatively
Congruence-Modular Quasivarieties

This appendix contains a proof of a special case of Theorem 5.3.4 in which
conditions (EqDistr)m;n are directly computed for any RCM quasivariety. The proof
involves some purely syntactical techniques which are useful in other contexts and
it does not make use of von Neumann’s Theorem (Theorem 6.3.1).

Theorem 5.3.4*. Let Q be an RCM quasivariety. The consequence Qˆ vali-
dates (EqDistr)m;n for any positive integers m and n.

Proof. To simplify notation, we mark the consequence Qˆ by C. We are to show
that

(EqDistr)m;n C.x1 � y1; : : : ; xm � ym/ \ C.z1 � w1; : : : ; zn � wn/ D
C.

[

16i6m; 16j6n

C.xi � yi/ \ C.zj � wj//;

where m and n are arbitrary positive integers and x D x1; : : : ; xm, y D y1; : : : ; ym,
z D z1; : : : ; zn, w D w1; : : : ; wn are disjoint sequences of pairwise different
individual variables. The proof of (EqDistr)m;n is on double induction on m and n.

To give an insight into the proof, we shall first consider a simple special case
with m D 2 and n D 1:

(EqDistr)2;1 C.x1 � y1; x2 � y2/ \ C.z � w/ D

C.C.x2 � y2/ \ C.z � w/ [ C.x1 � y1/ \ C.z � w//:

Let us put: B1 WD C.x1 � y1/, B2 WD C.x2 � y2/, A WD C.z � w/.
Then (EqDistr)2;1 takes the form

.B1 _ B2/ \ A D .B2 \ A/ _ .B1 \ A/:
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We have:

.B1 \ A/ _ .B2 \ A/ D A \ .B2 _ .A \ B1//;

by modularity. Therefore it suffices to show that

.B1 _ B2/ \ A � A \ .B2 _ .A \ B1//: (1)2;1

Suppose ˛.x1; y1; x2; y2; z; w; u/ � ˇ.x1; y1; x2; y2; z; w; u/ belongs to the set on
the left-hand side of (1)2;1. So ˛ � ˇ 2 C.z � w/ and ˛ � ˇ 2 C.x1 � y1; x2 �
y2/. Let e W Te� ! Te� be an endomorphism (a substitution) such that ey2 D x2 and
e is the identity map on the remaining variables. As ˛ � ˇ 2 C.x1 � y1; x2 � y2/,
we get that e˛ � eˇ 2 C.ex1 � ey1; ex2 � ey2/ D C.x1 � y1/ and e˛ � eˇ 2
C.ez � ew/ D C.z � w/. Hence e˛ � eˇ 2 C.z � w/ \ C.x1 � y1/, i.e.,

e˛ � eˇ 2 A \ B1: (�)

Claim 1. ˛ � ˇ 2 B2 _ .A \ B1/.

Proof (of the claim). We have: B2 _ .A \ B1/ D C.fx2 � y2g [ A \ B1/.
Let A 2 Q and h W Te� ! A be a homomorphism which validates the equations

of fx2 � y2g[A\B1. Trivially hx2 D hy2 and h validates A\B1. But then (�) yields
that h validates e˛ � eˇ, i.e., he˛ D heˇ. We also that he˛ D h˛ and heˇ D hˇ,
because hx2 D hy2. It follows that h˛ D hˇ. This proves the claim. ut

As ˛ � ˇ 2 A, (1)2;1 follows from the claim.
The general case is a modification of the above proof. We first prove:

Lemma B.1. C D Qˆ validates

(EqDistr)m;1

C.x1 � y1; : : : ; xm � ym/ \ C.z � w/ D C.
[

16i6m

C.xi � yi/ \ C.z � w//;

for all m > 2.

Proof (of the lemma). For a given m > 2 we adopt the following notation:

x � y WD fx1 � y1; : : : ; xm � ymg;
A WD C.z � w/;

B1 WD C.x1 � y1/;

:::

Bm WD C.xm � ym/;

BmC1 WD C.xmC1 � ymC1/:
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(EqDistr)m;1 then takes the form:

.B1 _ : : : _ Bm/ \ A D C.
[

16i6m

C.xi � yi/ \ C.z � w//;

But in view of Theorem 4.1.4,

C.
[

16i6m

C.xi � yi/ \ C.z � w// D A � .B1; : : : ; Bm/:

It therefore suffices to show that

.B1 _ : : : _ Bm/ \ A � A � .B1; : : : ; Bm/; (1)m;1

for all m > 2, because the reverse inclusion trivially holds.
The proof of (1)m;1 for m D 2 has just been given. To make an inductive step,

assume m is a positive integer, m > 2, and (1)m;1 holds. We show

.B1 _ : : : _ Bm _ BmC1/ \ A � A � .B1; : : : ; Bm; BmC1/; (1)mC1;1

But, by the definition of �, A�.B1;: : :; Bm; BmC1/ WDA\.BmC1_.A�.B1;: : :; Bm///.
We therefore must show that

.B1 _ : : : _ Bm _ BmC1/ \ A � A \ .BmC1 _ .A � .B1; : : : ; Bm///: (2)

Suppose ˛ � ˇ belongs to the set on the left-hand side of 2. So ˛ � ˇ 2
C.z � w/ and ˛ � ˇ 2 C.x � y; xmC1 � ymC1/. Let e W Te� ! Te� be the
endomorphism such that eymC1 D xmC1 and e is the identity map on the remaining
variables. As ˛ � ˇ 2 C.x � y; xmC1 � ymC1/, we get that e˛ � eˇ 2 C.ex �
ey; exmC1 � eymC1/ D C.x � y/ and e˛ � eˇ 2 C.ez � ew/ D C.z � w/. Hence
e˛ � eˇ 2 C.z � w/ \ C.x � y/ D .B1 _ : : : _ Bm/ \ A. This implies, by IH, that

e˛ � eˇ 2 A � .B1; : : : ; Bm/; (��)

Claim 2. ˛ � ˇ 2 BmC1 _ .A � .B1; : : : ; Bm//.

Proof (of the claim). We must show that

˛ � ˇ 2 C.fxmC1 _ ymC1g [ .A � .B1; : : : ; Bm///:

Let A 2 Q and h W Te� ! A be a homomorphism which validates the equations
of fxmC1 � ymC1g [ A � .B1; : : : ; Bm/. Trivially hxmC1 D hymC1 and h validates
A � .B1; : : : ; Bm/. But (��) yields that h validates e˛ � eˇ, i.e., he˛ D heˇ. We
therefore have that he˛ D h˛ and heˇ D hˇ, because hxmC1 D hymC1. It follows
that h˛ D hˇ. This proves the claim. ut
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(2) follows from the claim and the assumption that ˛ � ˇ 2 C.z � w/ D A.

So (2)mC1;1 holds. We have thus proved (2)m;1 for all m, which means
that (EqDistr)m;1 holds for all m. This proves Lemma B.1. ut
Lemma B.2. Fix m. Then C D Qˆ validates (EqDistr)m;n for all n.

Proof (of the lemma). The base of induction, viz. (EqDistr)m;1 has been proved.
To make an the inductive step, assume

(EqDistr)m;n C.x1 � y1; : : : ; xm � ym/ \ C.z1 � w1; : : : ; zn � wn/ D

C.
[

16i6m; 16j6n

C.xi � yi/ � C.zj � wj//;

We are to show that

(EqDistr)m;nC1 C.x1 � y1; : : : ; xm � ym/ \ C.z1 � w1; : : : ; zn � wn; znC1 � wnC1/

D C.
[

16i6m; 16j6nC1

C.xi � yi/ \ C.zj � wj//:

To simplify notation, we introduce the following abbreviations:

x � y WD fx1 � y1; : : : ; xm � ymg;
z � w WD fz1 � w1; : : : ; zn � wng;
A WD C.x1 � y1; : : : ; xm � ym/ .D C.x � y//;

B1 WD C.z1 � w1; : : : ; zn � wn/ .D C.z � w//;

B2 WD C.znC1 � wnC1/:

(EqDistr)m;nC1 then takes the form

A \ .B1 _ B2/ D C.
[

16i6m; 16j6nC1

C.xi � yi/ \ C.zj � wj//: (2)m;nC1

By modularity, (EqDistr)m;n and (EqDistr)m;1 we get:

A � .B1; B2/ D .A \ B1/ _ .A \ B2/ D
C.x � y/ \ C.z � w/ _ C.x � y/ \ C.znC1 � wnC1/ D
C.

[

16i6m; 16j6n

C.xi � yi/ \ C.zj � wj// _ C.
[

16i6m

C.xi � yi/ \ C.znC1 � wnC1// D

C.
[

16i6m; 16j6nC1

C.xi � yi/ \ C.zj � wj//:
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The last theory is the same as the set on the right side of (2)m;nC1. Thus in order
to prove the lemma it suffices to show:

Claim. A \ .B1 _ B2/ � A � .B1; B2/.

Proof (of the claim). Suppose ˛ � ˇ 2 A \ .B1 _ B2/. This means that

˛ � ˇ 2 C.x � y/ (a)

and

˛ � ˇ 2 C.z � w; znC1 � wnC1/: (b)

Let e W Te� ! Te� be the endomorphism given by ewnC1 D znC1 and ex D x for
all variables x 6D wnC1. (a) and (b) imply that

e˛ � eˇ 2 C.ex � ey/ D C.x � y/ D A

and

e˛ � eˇ 2 C.ez � ew; eznC1 � ewnC1/ D C.z � w/ D B1;

because eznC1 � ewnC1 is the trivial equation znC1 � znC1. Consequently,

e˛ � eˇ 2 A \ B1: (c)

We want to prove that ˛ � ˇ 2 A � .B1; B2/ WD A \ .B2 _ .A \ B1//. As
˛ � ˇ 2 A, by (a), it remains to show that ˛ � ˇ 2 B2 _ .A \ B1/, i.e.,

˛ � ˇ 2 C.fznC1 � wnC1g [ C.x � y/ \ C.z � w//: (d)

Let A 2 Q and h W Te� ! A be a homomorphism which validates the equations
of fznC1 � wnC1g [ C.x � y/ \ C.z � w/. We wish to show that h˛ D hˇ. We
have that hznC1 D hwnC1 and h validates C.x � y/ \ C.z � w/ D A \ B1. This fact
and (c) imply that h validates e˛ � eˇ, i.e., he˛ D heˇ. As hznC1 D hwnC1, we
obviously have that he˛ D h˛ and heˇ D hˇ. The identities he˛ D heˇ, he˛ D h˛

and heˇ D hˇ imply h˛ D hˇ. So (d) holds.
This proves the claim and at the same time concludes the proof of (2)m;nC1. ut
Thus Lemma B.2 has been proved. ut
As the inductive proof of (EqDistr)m;n for all positive m; n is completed,

Theorem 5.3.4* has been proved. ut



Appendix C
Inferential Bases for Relatively
Congruence-Modular Quasivarieties

The focus of this appendix is on inferential bases of the equational system Qˆ
associated with any RCM quasivariety Q.

Let Q be a quasivariety of algebras of signature � . A finite set P D P.x; y; z; w; u/

of equations (where u D u1; : : : ; un) is said to have the detachment property with
respect to Qˆ if

z � w 2 Qˆ.P [ fx � yg/: (�)P

Any set P with the detachment property is also denoted by .x � y/ )u .z � w/.
(�)P states that

P [ fx � yg=z � w (MP)P

is a rule of inference of the equational logic Qˆ. The rule (MP)P is called the
detachment rule corresponding to P. This rule is also marked as

x � y; .x � y/ )u .z � w/=z � w:

Any set of equations with the detachment property is also called an implication
system for Qˆ. Q usually possesses many implication sets. This is a consequence
of Theorem C.1 below.

Let P be a family of finite sets of equations with the detachment property.
We shall say that the consequence Qˆ admits the Parameterized Local Deduction
Theorem (PLDT, for short) with respect to P if for every set ˙ [ fp � q; r � sg of
equations the following equivalence holds:

r � s 2 Qˆ.˙ [ fp � qg/ , there exists a set P.x; y; z; w; u1; : : : ; un/ 2
P and a sequence of terms .t1; : : : ; tn/ of Te� such that ˛.p; q; r; s; t1; : : : ; tn/ �
ˇ.p; q; r; s; t1; : : : ; tn/ 2 Qˆ.˙/ for all equations ˛ � ˇ of P.
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(˛.p; q; r; s; t1; : : : ; tn/ is the result of simultaneous substituting the terms
p; q; r; s; t1; : : : ; tn for the variables x; y; z; w; u1; : : : ; un in the term ˛.x; y; z; w; u1;

: : : ; un/, respectively.)
The following theorems were proved in Czelakowski and Dziobiak (1996):

Theorem C.1. For every quasivariety Q there exists a family P of finite sets of
equations with the detachment property such that Qˆ admits the Parameterized
Local Deduction Theorem with respect to P . ut
Theorem C.2. Let Q be any quasivariety. Suppose P D fPi.x; y; z; w; ui/ W i 2 Ig
is a family of finite sets of equations with the detachment property for Qˆ such that
Qˆ admits the Parameterized Local Deduction Theorem with respect to P . Then the
set Id.Q/ together with the set of rules

ri W fx � yg [ Pi.x; y; z; w; ui/=z � w

.i 2 I/ forms an inferential base for Qˆ. ut
Theorem C.3. Let Q be any quasivariety. Qˆ has an inferential base consisting
of the set of equations Id.Q/, the rules of Birkhoff’s logic, and a countable set of
(parameterized) rules of the form Pi.x; y; ui/=x � y .i 2 I/, where each Pi.x; y; ui/ is
a finite set of equations in two variables x and y (and possibly with parameters ui).

The theorem states that in order to axiomatize Qˆ it suffices to strengthen any
base for the variety Va.Q/ by the above rules Pi.x; y; ui/=x � y .i 2 I/.

Proof. We first prove the following lemma:

Lemma C.4. Let Q be a quasivariety and let P D fQi.x; y; z; w; vi/ W i 2 Ig be
a family of finite sets of equations which determines PLDT for Qˆ. For each i 2 I
define the set of equations: Ri.x; z; w; vi/ WD Qi.x; y=x; z; w; vi/. Then the set of rules

ri W Ri.x; z; w; vi/=z � w

.i 2 I/ together with Birkhoff’s rules and the equations of Id.Q/ forms an inferential
base for Qˆ.

Proof (of the lemma). To simplify notation, we put: C WD Qˆ. As P determines
PLDT for C, Theorem C.2 gives that C is axiomatized by Id.Q/ and the set of the
following rules:

r0
i W x � y; Qi.x; y; z; w; vi/=z � w

.i 2 I/. (Brikhoff’s rules are then derivable from Id.Q/ and the rules r0
i .i 2 I/.)

Let C0 be the equational consequence determined by the rules ri .i 2 I/, the
rules of Birkhoff and the set of axioms Id.Q/. As C0 validates Birkhoff’s rules, C0

is a finitary equational logic. This implies that C0 is semantically determined by
some quasivariety Q0, that is C0 D Qˆ

0 . (In fact, Q0 is the largest class of models
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for C0.) It is clear that C0 6 C, because each rule ri is an instantiation of the rule
r0

i . Consequently, Q � Q0. To show that C0 D C, and hence Q � Q0, it suffices
to prove that C0 validates each rule r0

i .i 2 I/. Suppose otherwise that z � w 62
C0.x � y; Qi.x; y; z; w; vi// for some i 2 I. There exists an algebra A 2 Q0 and
a homomorphism h W Te� ! A such that hx D hy, h validates the equations of
Qi.x; y; z; w; vi/ and hz 6D hw. But as hx D hy, we get that h validates the equations
of Ri.x; z; w; vi/ as well. Since ri is a rule of C0 and A is a model for C0, we obtain
that hz D hw. A contradiction.

This proves the lemma. ut
In the final step, for each i 2 I we make the substitution x=ui, z=x, w=y in the set

Ri.x; z; w; vi/ and define:

Pi.x; y; ui/ WD Ri.x=ui; z=x; w=y; vi/ .n 2 N0/:

Here ui is a variable different from x; z; w; vi. ui is thus a parametric variable added
to vi. (So ui D vi [ fuig for each i.) Moreover, we can safely assume that the new
parametric variables ui and uj are pairwise different whenever i 6D j, for all i; j 2 I).

The theorem follows from the above lemma and the definition of Pi.x; y; ui/,
i 2 I. ut

The following theorem, being the main result of this appendix, provides a
structural description of an inferential base for the equational logic Qˆ associated
with an arbitrary RCM quasivariety Q. The proof makes use of some theorems on
PLDT for any RCM quasivariety Q given in Czelakowski (1998, 2001).

Theorem C.5. Let Q be any RCM quasivariety. Qˆ has an inferential base
consisting of the set of equations Id.Q/, the rules of Birkhoff’s logic and a countable
set of (parameterized) rules of the form

rn W Pn.x; y; un/=x � y

(n 2 N0, where N0 is an initial segment of !) such that

(1) for each n 2 N0, Pn.x; y; un/ is a finite set of equations in variables x; y (and
possibly with some other parametric variables un)I

(2) for any different m; n 2 N0 the parameters um and un of Pm and Pn are
separatedI

(3) for each n 2 N0, there exists a sequence of terms tn such that

Pn.x; x; tn/ � Id.Q/I

(4) for each non-terminal number n in N0, there exists a sequence of terms tnC1

such that

PnC1.x; y; tnC1/ � Qˆ.Pn.x; y; un//:
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The theorem states that a base for Qˆ is obtained from any base for Va.Q/ by
adjoining a certain set of rules Pn.x; y; un/=x � y .n 2 N0/ that satisfy conditions
(1)–(4).

Proof. Let Q be an arbitrary but fixed RCM quasivariety. To simplify notation
we put C WD Qˆ. We shall need the following observation which is crucial for
inferential bases of C:

Lemma C.6. Every family P of finite sets of equations which determines PLDT for
C satisfies the following condition: for any P1.x; y; z; w; u1/, P2.x; y; z; w; u2/ 2 P
there exists a set P.x; y; z; w; u/ 2 P and a sequence t of terms such that

P.x; y; z; w; t/ � C.P1.x; y; z; w; u1/ and (mod)

P.x; y; z; w; t/ � C.P2.x; y; z; w; u2/ [ fx � yg/: ut

Lemma C.6 is a consequence of Corollary A.4.2 of Appendix A (see also
Czelakowski 1998, 2001).

We shall first prove the following fact:

Lemma C.7. Let Q be any RCM quasivariety. Qˆ has an inferential base consist-
ing of the set of equations Id.Q/, the rules of Birkhoff’s logic and a countable set of
(parameterized) rules of the form

rn W P00
n .x; z; w; vn/=z � w

(n 2 N0, where N0 is an initial segment of !) such that

(1)00 for each n 2 N0, P00
n .x; z; w; vn/ is a finite set of equations in variables x; z; w

and possibly some other parametric variables vnI
(2)00 for any different m; n 2 N0 the parameters vm and vn of P00

m and P00
n are

separatedI
(3)00 for each n 2 N0, there exists a sequence of terms tn such that

P00
n .x; z; z; tn/ � Id.Q/I

(4)00 for each non-terminal number n in N0, there exists a sequence of terms tnC1

such that

P00
nC1.x; z; w; tnC1/ � Qˆ.P00

n .x; z; w; vn//:

The lemma states that a base for Qˆ is obtained from any base for Va.Q/ by
adjoining a certain set of rules rn W P00

n .x; z; w; vn/=z � w .n 2 N0/ that satisfy
conditions (1)00–(4)00.

Proof (of the lemma). Let P0 be a family of finite sets of equations which determines
PLDT for C. We assume that a Day implication system .x � y/ )D .z � w/
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for Q is in P0 since otherwise it may always be adjoined to P0. We may also
assume without loss of generality that different sets in P0 have separated parametric
variables. (This can be achieved by making appropriate substitutions for parametric
variables.) We then define:

Q WD fR.x; y; z; w; uR/ 2 P0 W .9tR/ R.x; y; z; w; uR=tR/

� C.x � y; .x � y/)D .z � w//g:

The family Q is non-empty, because .x � y/ )D .z � w/ 2 Q. (The set .x � y/

)D .z � w/ does not involve parameters.)

Claim 1. Q determines PLDT for C.

Proof (of the claim). Let p; q; r; s be arbitrary terms and X a set of equations.
Assume r � s 2 C.X; p � q/. We claim that R.x; y; z; w; t/ � C.X/ for some
R.x; y; z; w; u/ 2 Q and a sequence of terms t. As P0 determines PLDT for C, there
exists R0.x; y; z; w; u0/ 2 P0 and a sequence of terms t0 such that R0.p; q; r; s; t0/ �
C.X/. But according to Lemma C.6, there also exists R.x; y; z; w; u/ 2 P0 and a
sequence of terms t00 such that

R.x; y; z; w; t00/ � C.R0.x; y; z; w; u0// (a)

and

R.x; y; z; w; t00/ � C.x � y; .x � y/ )D .z � w//: (b)

For the above sets R and R0, we select a substitution e W Te� ! Te� which
sends the parametric variables u0 to t0 and e is the identity map on the remaining
variables. (a) implies that

R.x; y; z; w; et00/ � C.R0.x; y; z; w; eu0// D C.R0.x; y; z; w; t0// � C.X/:

Putting t WD et00, we have that R.x; y; z; w; t/ � C.X/. Moreover, (b) yields that
R.x; y; z; w; t/ � C.x � y; .x � y/ )D .z � w//, which means that R.x; y; z; w; u/

is in Q. This proves the claim. ut
As Q is countable, we may enumerate it by natural numbers from an initial

segment N0 of !,

Q D fQn.x; y; z; w; vn/ W n 2 N0g:

(Thus either N0 D ! if Q is infinite or N0 D f0; : : : ; kg for some k if Q is finite.)
Moreover we can assume that Q0.x; y; z; w; v0/ coincides with the Day implication
system .x � y/ )D .z � w/.

According to Lemma C.6 and the above claim, for any two numbers m; n 2
N0 there exists k 2 N0, m 6 k, n 6 k, and a sequence of terms tk such
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that Qk.x; y; z; w; tk/ � C.Qm.x; y; z; w; vm// and Qk.x; y; z; w; tk/ � C.x �
y; Qn.x; y; z; w; vn//. We then recursively define a subfamily

P WD fP0
n.x; y; z; w; vn/ W n 2 N0g

of Q as follows. We put: P0
0.x; y; z; w; v0/ WD Q0.x; y; z; w; v0/ (D .x � y/ )D .z �

w/). (The set of parameters v0 is empty.)
Suppose n 2 N0 and the sets P0

0.x; y; z; w; v0/; : : : ; P0
n.x; y; z; w; vn/ have

been defined. If n is not the greatest number in N0, we consider the sets
P0

n.x; y; z; w; vn/ and QnC1.x; y; z; w; vnC1/. As P0
n and QnC1 are in Q, there is a

set Q.x; y; z; w; u/ in Q and a sequence of terms t such that Q.x; y; z; w; t/ � C.x �
y; P0

n.x; y; z; w; vn// and Q.x; y; z; w; t/ � C.QnC1.x; y; z; w; vnC1//. We then put:
P0

nC1.x; y; z; w; vnC1/ WD Q.x; y; z; w; u/. If n is the greatest number in N0, the
recursive procedure terminates.

We therefore have that P0
0.x; y; z; w; v0/ WD Q0.x; y; z; w; v0/ and for any positive

n 2 N0 there is a sequence of terms tn such that

P0
n.x; y; z; w; tn/ � C.Qn.x; y; z; w; vn//: (c)

We therefore get that for any non-terminal n 2 N0 there is a sequence of terms snC1

such that

P0
nC1.x; y; z; w; snC1/ � C.x � y; P0

n.x; y; z; w; vn//: (d)

Indeed, (d) holds for n D 0 directly from the definition of P0
1. Assuming

that (d) holds for n, we show it holds for n C 1. We have: P0
nC2.x; y; z; w; vnC1/ D

Q.x; y; z; w; u/, where Q.x; y; z; w; u/ is a set in Q such that Q.x; y; z; w; t/ �
C.x � y; P0

nC1.x; y; z; w; vnC1// for some sequence of terms t. It follows, by
structurality, that there is a sequence of terms snC2 such that P0

nC2.x; y; z; w; snC2/ D
Q.x; y; z; w; t/ � C.x � y; P0

nC1.x; y; z; w; vnC1//. So (d) holds.

Claim 2. P determines PLDT for C.

Proof (of the claim). Indeed, suppose that r � s 2 C.X; p � q/ for some terms
p; q; r; s and a set of equations X. We claim that there is n 2 N0 and a sequence of
terms t0n such that P0

n.p; q; r; s; t0n/ � C.X/.
According to Claim 1, there exists n 2 N0 and a sequence of terms sn such that

Qn.p; q; r; s; sn/ � C.X/: (e)

If n D 0, sn is empty, then P0
0.x; y; z; w/ D Q0.x; y; z; w/ � C.X/ and we are done.

If n is positive, we apply to (c) a substitution such that x=p, y=q, z=r, w=s and vn=sn.
Then, by structurality, there is a sequence of terms t0n such that P0

n.p; q; r; s; t0n/ �
C.Qn.p; q; r; s; sn//. Consequently, P0

n.p; q; r; s; t0n/ � C.X/, by (e). This proves the
claim. ut
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In the next step we define the family of sets

fP0
n.x; y=x; z; w; vn/ W P0

n.x; y; z; w; vn/ 2 Pg

and mark this family as

fP00
n .x; z; w; vn/ W n 2 N0g:

As P determines PLDT for C, Lemma C.4 yields that C is axiomatized by Id.Q/,
the rules of Birkhoff’s logic, and the rules

rn W P00
n .x; z; w; vn/=z � w;

n 2 N0.
We shall check conditions (1)00–(4)00. (1)00 and (2)00 are immediate.
As to (3)00, the definitions of P and of the family fP00

n .x; z; w; vn/ W n 2 N0g yield
that for each n 2 N0 there is a sequence of terms tn such that

P00
n .x; z; w; tn/ � C..x � x/ )D .z � w//: (f)

((f) is proved by induction on n with the help of (d).) But .x � x/ )D .z � w/ �
C.z � w/. Indeed, according to the definition of )D, we have that .x � y/ )D

.z � w/ � C.x � y; z � w/ \ C.x � z; y � w/. After identifying y with x, we
see that structurality gives that .x � x/ )D .z � w/ � C.x � x; z � w/ \ C.x �
z; x � w/ � C.z � w/. We therefore have that

P00
n .x; z; w; tn/ � C.z � w/:

(3) then follows.
As to (4)00, the definition of P gives that for each non-terminal n 2 N0

there exists a sequence of terms snC1 such that P0
nC1.x; y; z; w; snC1/ � C.x �

y; P0
n.x; y; z; w; vn//. Hence, by structurality, there exists a sequence of terms t0nC1

such that P0
nC1.x; y=x; z; w; t0nC1/ � C.P0

n.x; y=x; z; w; vn//. From this inclusion
condition (4)00 follows.

The lemma has been proved. ut
In the last step, for each n 2 N0 we define the substitution x=un, z=x, w=y for the

set P00
n .x; z; w; vn/ and put:

Pn.x; y; un/ WD P0
n.x=un; z=x; w=y; vn/ .n 2 N0/:

Here un is a variable different from x; z; w; vn. un is thus a parametric variable added
to vn. (So un D vn [ fung.) Moreover, we can safely assume that the new parametric
variables um and un are pairwise different whenever m 6D n, for all m; n 2 N0).
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The theorem follows from the above lemma and the definition of Pn.x; y; un/,
n 2 N0. ut
Corollary C.8. Let Q be any RCM quasivariety. Let R be the set of rules defined as
in the above theorem. Then for each pair of natural numbers n; m 2 N0 such that n <

m there exists a sequence of terms sm;n for which Pm.x; y; sm;n/ � Qˆ.Pn.x; y; un//.

Proof. Fix n 2 N0. Then the induction on k with n C k 2 N0 gives that there is
a sequence of terms rnCk such that

PnCk.x; y; rnCk/ � C.Pn.x; y; un//: (�)nCk

The case k D 1 follows from (4). Assume (�)nCk holds. We show (�)nC.kC1/.
(4) gives that there is a sequence of terms tnCkC1 such that

PnCkC1.x; y; tnCkC1/ � C.PnCk.x; y; unCk//:

Taking a suitable substitution e we then get that

PnCkC1.x; y; e.tnCkC1// � C.PnCk.x; y; rnCk//: (1)

Hence putting rnCkC1 WD e.tnCkC1/, we obtain that

PnCkC1.x; y; rnCkC1/ � C.Pn.x; y; un//;

by (1) and (�)nCk. So (�)nC.kC1/ holds.
The corollary thus follows. ut
A quasivariety Q has the relative congruence extension property (RCEP), if for

any algebras A0; A with A 2 Q and A0 being a subalgebra of A, every congruence
˚0 2 ConQ.A0/ can be extended to a Q-congruence on A, that is, there is a
congruence ˚ 2 ConQ.A/ such that the restriction of ˚ to A0 is equal to ˚0.

Corollary C.9. Let Q be an RCM quasivariety. If Q has RCEP, then Qˆ is
axiomatized by the set of equations Id.Q/, the rules of Birkhoff’s logic and a
countable set of rules of the form

rn W Pn.x; y/=x � y

.n 2 N0/, where N0 is an initial segment of !, such that

(1)* for each n 2 N0, Pn.x; y/ is a finite set of equations in variables x and y onlyI
(1)* for each n 2 N0,

Pn.x; x/ � Id.Q/I
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(2)* for each non-terminal number n 2 N0

PnC1.x; y/ � Qˆ.Pn.x; y//:

Proof. As Q has RCEP, there exists a family P0 of finite sets of equations in the
four variables x; y; z; w only which determines LDT for C. We assume that a Day
implication system .x � y/ )D .z � w/ for Q is in P0. Then proceed as in the
proof of the above theorem. ut
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