
Elementary
Functions
Algorithms and Implementation

Third Edition

Jean-Michel Muller

Elementary Functions

Jean-Michel Muller

Elementary Functions
Algorithms and Implementation

Jean-Michel Muller
Laboratoire de l’Informatique du
Parallélisme (LIP)

École Normale Supérieure de Lyon CNRS
Lyon
France

ISBN 978-1-4899-7981-0 ISBN 978-1-4899-7983-4 (eBook)
DOI 10.1007/978-1-4899-7983-4

Library of Congress Control Number: 2016949097

Mathematics Subject Classification (2010): 65Y04, 65D15, 65D20, 68M07

1st edition: © Birkhäuser Boston 1997
2nd edition: © Birkhäuser Boston 2006
© Springer Science+Business Media New York 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are
exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in
this book are believed to be true and accurate at the date of publication. Neither the publisher nor
the authors or the editors give a warranty, express or implied, with respect to the material
contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This book is published under the trade name Birkhauser, www.birkhauser-science.com
The registered company is Springer Science+Business Media LLC New York

http://www.birkhauser-science.com

Preface to the Third Edition

Since the publication of the second edition of this book, in 2006, several
important changes have occurred in the domain of computer arithmetic.

First, a new version of the IEEE-754 Standard for Floating-Point Arith-
metic was adopted in June 2008. This new version was merged with the
previous binary (754) and “radix independent” (854) standards, resolved
some ambiguities of the previous release, standardized the fused multiply–
add (FMA) instruction, and included new formats (among them, the bina-
ry128 format, previously called “quad precision”). An appendix to this new
IEEE 754-2008 standard also makes some important recommendations
concerning the elementary functions.

New tools have been released that make much easier the work of a pro-
grammer eager to implement very accurate functions. A typical example is
Sollya.1 Sollya offers, among many interesting features, a certified supremum
norm of the difference between a polynomial and a function. It also computes
very good polynomial approximations with constraints (such as requiring the
coefficients to be exactly representable in a given format). Another example
is Gappa,2 which simplifies the calculation of error bounds for small
“straight-line” numerical programs (such as those designed for evaluating
elementary functions), and makes it possible to use proof checkers such as
Coq for certifying these bounds. FloPoCo3 is a wonderful tool for imple-
menting floating-point functions on FPGAs.

Research in this area is still very active. To cite a few examples: Harrison
designed clever techniques for implementing decimal transcendental func-
tions using the binary functions; Chevillard, Harrison, Joldes, and Lauter
introduced a new algorithm for computing certified supremum norms of
approximation errors; Johansson designed new algorithms for implementing
functions in the “medium precision” range; Brunie et al. designed code
generators for mathematical functions; several authors (especially de Dine-
chin) introduced hardware-oriented techniques targeted at FPGA imple-
mentation; Brisebarre and colleagues introduced methods for rigorous
polynomial approximation.

1Available at http://sollya.gforge.inria.fr.
2Available at http://gappa.gforge.inria.fr.
3Available at http://flopoco.gforge.inria.fr.

v

Acknowledgments

I have benefited much from discussion with my colleagues and students.
Especially, I am grateful to Jean-Claude Bajard, Jean-Luc Beuchat, Sylvie
Boldo, Nicolas Brisebarre, Laurent-Stéphane Didier, Florent de Dinechin,
Miloš Ercegovac, Stef Graillat, Guillaume Hanrot, Claude-Pierre Jeannerod,
Mioara Joldes, Peter Kornerup, Christoph Lauter, Vincent Lefèvre, Nicolas
Louvet, Erik Martin-Dorel, Guillaume Melquiond, Marc Mezzarobba,
Adrien Panhaleux, Antoine Plet, Valentina Popescu, Bruno Salvy, Peter
Tang, Arnaud Tisserand, and Serge Torres.

As usual, working with Birkhäuser’s staff on the publication of a book is a
pleasure.

This third edition was prepared in LaTeX on an Apple MacBook Pro
laptop. I used the book document class of LaTeX with a few modifications,
and the Xfig drawing tool, the TikZ package, GNU-Plot, or Maple for most
figures. The text editor I used is TeXShop.

Lyon Jean-Michel Muller
April 2016

vi Preface to the Third Edition

Preface to the Second Edition

Since the publication of the first edition of this book, many authors have
introduced new techniques or improved existing ones. Examples are the
bipartite table method, originally suggested by DasSarma and Matula in a
seminal paper that led Schulte and Stine, and De Dinechin and Tisserand to
design interesting improvements, the work on formal proofs of floating-point
algorithms by (among others) John Harrison, David Russinoff, Laurent
Théry, Marc Daumas and Sylvie Boldo, the design of very accurate
elementary function libraries by people such as Peter Markstein, Shane
Story, Peter Tang, David Defour and Florent de Dinechin, and the recently
obtained results on the table maker’s dilemma by Vincent Lefèvre. I there-
fore decided to present these new results in a new edition. Also, several
colleagues and readers told me that a chapter devoted to multiple-precision
arithmetic was missing in the previous edition. Chapter 7 now deals with that
topic.

Computer arithmetic is changing rapidly. While I am writing these lines,
the IEEE-754 Standard for Floating Point Arithmetic is being revised.4

Various technological evolutions have a deep impact on determining which
algorithms are interesting and which are not. The complexity of the archi-
tecture of recent processors must be taken into account if we wish to design
high-quality function software: we cannot ignore the notions of pipelining,
memory cache and branch prediction and still write efficient software. Also,
the possible availability of a fused multiply-accumulate instruction is an
important parameter to consider when choosing an elementary function
algorithm.

A detailed presentation of the contents is given in the introduction. After a
preliminary chapter that presents a few notions on computer arithmetic, the
book is divided into three major parts. The first part consists of three chapters
and is devoted to algorithms using polynomial or rational approximations
of the elementary functions and, possibly, tables. The last chapter of the first
part deals with multiple-precision arithmetic. The second part consists of
three chapters, and deals with “shift-and-add” algorithms, i.e.,
hardware-oriented algorithms that use additions and shifts only. The last part
consists of four chapters. The first two chapters discuss issues that are

4For information, see http://754r.ucbtest.org/.

vii

important when accuracy is a major goal (namely, range reduction, mono-
tonicity and correct rounding). The third one mainly deals with exceptions.
The last chapter gives some examples of implementation.

Acknowledgments

I would like to thank all those who suggested corrections and improvements
to the first edition, or whose comments helped me to prepare this one.
Discussions with Nick Higham, John Harrison and William Kahan have been
enlightening. Shane Story, Paul Zimmermann, Vincent Lefèvre, Brian
Shoemaker, Timm Ahrendt, Nelson H.F. Beebe, Tom Lynch suggested many
corrections/modifications of the first edition. Nick Higham, Paul Zimmer-
mann, Vincent Lefèvre, Florent de Dinechin, Sylvie Boldo, Nicolas Brise-
barre, Miloš Ercegovac, Nathalie revol read preliminary versions of this one.
Working and conversing everyday with Jean-Luc Beuchat, Catherine Dar-
amy, Marc Daumas, David Defour and Arnaud Tisserand has significantly
deepened my knowledge of floating-point arithmetic and function
calculation.

I owe a big “thank you” to Michel Cosnard, Miloš Ercegovac, Peter
Kornerup and Tomas Lang. They helped me greatly when I was a young
researcher, and with the passing years they have become good friends.

Working with Birkhäuser’s staff on the publication of this edition and the
previous one has been a pleasure. I have been impressed by the quality of the
help they provide their authors.

Since the writing of the first edition, my life has changed a lot: two
wonderful daughters, Émilie and Camille, are now enlightening my exis-
tence. This book is dedicated to them and to my wife Marie Laure.

This second edition was typeset in LaTeX on a DELL laptop. I used the
book document style with a few modifications, and the Xfig drawing tool or
Maple for most figures. The text editor I used is the excellent WinEdt soft-
ware, by Aleksander Simonic (see http://www.winedt.com).

Lyon Jean-Michel Muller
April 2005

viii Preface to the Second Edition

Preface to the First Edition

The elementary functions (sine, cosine, exponentials, logarithms…) are the
most commonly used mathematical functions. Computing them quickly and
accurately is a major goal in computer arithmetic. This book gives the the-
oretical background necessary to understand and/or build algorithms for
computing these functions, presents algorithms (hardware-oriented as well as
software-oriented), and discusses issues related to the accurate floating-point
implementation of these functions. My purpose was not to give “cooking
recipes” that allow to implement some given functions on some given
floating-point systems, but to provide the reader with the knowledge that is
necessary to build, or adapt algorithms to his or her computing environment.

When writing this book, I have had in mind two different audiences:
specialists, who will have to design floating-point systems (hardware or
software parts) or to do research on algorithms, and inquiring minds, who
just want to know what kind of methods are used to compute the math
functions in current computers or pocket calculators. Because of this, the
book is intended to be helpful as well for postgraduate and advanced
undergraduate students in computer science or applied mathematics as for
professionals engaged in the design of algorithms, programs or circuits that
implement floating-point arithmetic, or simply for engineers or scientists who
want to improve their culture in that domain. Much of the book can be
understood with only a basic grounding in computer science and mathe-
matics: the basic notions on computer arithmetic that are necessary to
understand are recalled in the first chapter.

The previous books on the same topic (mainly Hart et al. book Computer
Approximation and Cody and Waite’s book Software Manual for the
Elementary Functions) contained many coefficients of polynomial or rational
approximations of the elementary functions. I have included relatively few
such coefficients here, firstly to reduce the length of the book – since I also
wanted to present the shift-and-add algorithms –, and secondly because today
it is very easy to obtain them using Maple or a similar system: my primary
concern is to explain how they can be computed and how they can be used.
Moreover, the previous books on elementary functions essentially focused on
software implementations and polynomial or rational approximations,
whereas now these functions are frequently implemented (at least partially) in
hardware, using different methods (table-based methods or shift-and-add
algorithms, such as CORDIC): I have wanted to show a large spectrum

ix

of methods. Whereas some years ago a library providing elementary
functions with one or two incorrect bits only was considered adequate,
current systems must be much more accurate. The next step will be to pro-
vide correctly rounded functions (at least for some functions, in some
domains), i.e., the returned result should always be the “machine number”
that is closest to the exact result. This goal has already been reached by some
implementations in single precision. I try to show that it can be reached in
higher precisions.

Acknowledgments

Many people helped me during the process of writing this book. Many others
gave me, during enlightening conversations, some views on the problem that
deeply influenced me. It is not possible to cite everybody, but among those
persons, I would especially like to thank:

• Jean-Marc Delosme, Warren Ferguson, Tomas Lang, Steve Sommars,
Naofumi Takagi, Roger Woods and Dan Zuras, who volunteered to read
parts of this book and gave me good advice, and Charles Dunham, who
provided me with interesting information;

• my former and current students Jean-Claude Bajard, Catherine Billet,
Marc Daumas, Yvan Herreros, Sylvanus Kla, Vincent Lefèvre Christophe
Mazenc, Xavier Merrheim (who invented the tale presented at the
beginning of Chapter 8), Arnaud Tisserand and Hong-Jin Yeh;

• the staff of the Computer Science Department and LIP laboratory at ENS
Lyon.

Working with Birkhäuser on the publication of this book was a pleasure.
And of course, I thank my wife, Marie Laure, to whom this book is

dedicated, for her patience and help during the preparation of the manuscript.
This book was typeset in LaTeX on a SUN workstation and an Apple

Macintosh. I used the book document style. The text editors I used are
Keheler’s Alpha and GNU Emacs (Free Software Foundation).

Lyon Jean-Michel Muller
March 1997

x Preface to the First Edition

Contents

1 Introduction . 1

2 Introduction to Computer Arithmetic 7
2.1 Basic Notions of Floating-Point Arithmetic 7

2.1.1 Basic Notions . 7
2.1.2 Rounding Functions. 9
2.1.3 ULPs . 12
2.1.4 Infinitely Precise Significand 13
2.1.5 Fused Multiply–Add Operations 14
2.1.6 The Formats Specified by the IEEE-754-2008

Standard for Floating-Point Arithmetic 15
2.1.7 Testing Your Computational Environment 16

2.2 Advanced Manipulation of FP Numbers. 17
2.2.1 Error-Free Transforms: Computing the Error

of a FP Addition or Multiplication. 17
2.2.2 Manipulating Double-Word

or Triple-Word Numbers 18
2.2.3 An Example that Illustrates What We Have

Learnt so Far . 21
2.2.4 The GAPPA Tool . 24
2.2.5 Maple Programs that Compute binary32

and binary64 Approximations 27
2.2.6 The Future of Floating-Point Arithmetic 29

2.3 Redundant Number Systems . 30
2.3.1 Signed-Digit Number Systems 30
2.3.2 The Carry-Save and Borrow-Save Number

Systems . 32
2.3.3 Canonical Recoding. 33

Part I Algorithms Based on Polynomial Approximation
and/or Table Lookup, Multiple-Precision Evaluation
of Functions

3 The Classical Theory of Polynomial
or Rational Approximations . 39
3.1 What About Interpolation? . 40
3.2 Least Squares Polynomial Approximations 41

3.2.1 Legendre Polynomials 42
3.2.2 Chebyshev Polynomials 42

xi

3.2.3 Jacobi Polynomials . 44
3.2.4 Laguerre Polynomials 44
3.2.5 Using These Orthogonal Polynomials

in Any Interval . 44
3.3 Least Maximum Polynomial Approximations 45
3.4 Some Examples . 46
3.5 Speed of Convergence . 52
3.6 Remez’s Algorithm . 52
3.7 Minimizing the Maximum Relative Error 57
3.8 Rational Approximations . 58
3.9 Accurately Computing Supremum Norms. 61
3.10 Actual Computation of Approximations 63

4 Polynomial Approximations with Special Constraints 67
4.1 Polynomials with Exactly Representable Coefficients. . . 71

4.1.1 An Iterative Method 71
4.1.2 An Exact Method (For Small Degrees). 72
4.1.3 A Method Based on Lattice-Reduction. 73

4.2 Getting Nearly Best Approximations Using Sollya 75
4.3 Miscellaneous . 79

5 Polynomial Evaluation . 81
5.1 Sequential Evaluation of Polynomials 81

5.1.1 Horner’s Scheme. 81
5.1.2 Preprocessing of the Coefficients. 82

5.2 Evaluating Polynomials When Some Parallelism
is Available . 84
5.2.1 Generalizations of Horner’s Scheme 84
5.2.2 Estrin’s Method . 84
5.2.3 Evaluating Polynomials on Modern

Processors . 85
5.3 Computing Bounds on the Evaluation Error 87

5.3.1 Evaluation Error Assuming Horner’s Scheme
is Used . 88

5.3.2 Evaluation Error with Methods Different
than Horner’s Scheme 96

5.3.3 When High Accuracy is Needed 97
5.4 Polynomial Evaluation by Specific Hardware 98

5.4.1 The E-Method . 98
5.4.2 Custom Precision Function Evaluation

on Embedded Processors 100
5.4.3 Polynomial Evaluation on FPGAs 100

6 Table-Based Methods . 101
6.1 Introduction . 101
6.2 Table-Driven Algorithms . 103

6.2.1 Tang’s Algorithm for expðxÞ in IEEE
Floating-Point Arithmetic 104

6.2.2 lnðxÞ on ½1; 2� . 105
6.2.3 sinðxÞ on ½0;π=4� . 106

xii Contents

6.3 Gal’s Accurate Tables Method 107
6.4 Use of Pythagorean Triples . 110
6.5 Table Methods Requiring Specialized Hardware 111

6.5.1 Wong and Goto’s Algorithm for Computing
Logarithms . 111

6.5.2 Wong and Goto’s Algorithm for Computing
Exponentials . 114

6.5.3 Ercegovac et al.’s Algorithm. 115
6.5.4 Bipartite and Multipartite Methods 117

6.6 ðM; p; kÞ-Friendly Points: A Method Dedicated
to Trigonometric Functions. 119

7 Multiple-Precision Evaluation of Functions 121
7.1 Introduction . 121
7.2 Just a Few Words on Multiple-Precision

Multiplication . 122
7.2.1 Karatsuba’s Method. 122
7.2.2 The Toom-Cook Family of Multiplication

Algorithms . 123
7.2.3 FFT-Based Methods 126

7.3 Multiple-Precision Division and Square-Root 126
7.3.1 The Newton–Raphson Iteration 126

7.4 Algorithms Based on the Evaluation
of Power Series . 128
7.4.1 Binary Splitting Techniques 129

7.5 The Arithmetic–Geometric Mean (AGM) 130
7.5.1 Presentation of the AGM 130
7.5.2 Computing Logarithms with the AGM. 131
7.5.3 Computing Exponentials with the AGM. 133
7.5.4 Very Fast Computation

of Trigonometric Functions. 133

Part II Shift-and-Add Algorithms

8 Introduction to Shift-and-Add Algorithms 139
8.1 The Restoring and Nonrestoring Algorithms 140
8.2 Simple Algorithms for Exponentials and Logarithms . . . 145

8.2.1 The Restoring Algorithm for Exponentials 145
8.2.2 The Restoring Algorithm for Logarithms 146

8.3 Faster Shift-and-Add Algorithms. 147
8.3.1 Faster Computation of Exponentials. 147
8.3.2 Faster Computation of Logarithms. 152

8.4 Baker’s Predictive Algorithm 155
8.5 Bibliographic Notes. 163

9 The CORDIC Algorithm . 165
9.1 Introduction . 165
9.2 The Conventional CORDIC Iteration 165
9.3 Acceleration of the Last Iterations 170
9.4 Scale Factor Compensation. 170

Contents xiii

9.5 CORDIC With Redundant Number Systems
and a Variable Factor . 172
9.5.1 Signed-Digit Implementation. 173
9.5.2 Carry-Save Implementation. 174
9.5.3 The Variable Scale Factor Problem 174

9.6 The Double Rotation Method 174
9.7 The Branching CORDIC Algorithm. 177
9.8 The Differential CORDIC Algorithm 177
9.9 The “CORDIC II” Approach 180
9.10 Computation of cos�1 and sin�1 Using CORDIC 181
9.11 Variations on CORDIC . 183

10 Some Other Shift-and-Add Algorithms 185
10.1 High-Radix Algorithms . 185

10.1.1 Ercegovac’s Radix-16 Algorithms 185
10.2 The BKM Algorithm . 189

10.2.1 The BKM Iteration . 189
10.2.2 Computation of the Exponential

Function (E-mode) . 190
10.2.3 Computation of the Logarithm

Function (L-mode) . 193
10.2.4 Application to the Computation

of Elementary Functions. 194

Part III Range Reduction, Final Rounding and Exceptions

11 Range Reduction . 199
11.1 Introduction . 199
11.2 Cody and Waite’s Method for Range Reduction 203

11.2.1 The Classical Cody–Waite Reduction. 203
11.2.2 When a Fused Multiply-add (FMA)

Instruction is Available 204
11.3 Finding Worst Cases for Range Reduction? 206

11.3.1 A Few Basic Notions On Continued
Fractions . 206

11.3.2 Finding Worst Cases Using Continued
Fractions . 208

11.4 The Payne and Hanek Reduction Algorithm 211
11.5 Modular Range Reduction Algorithms 213

11.5.1 The MRR Algorithm 213
11.5.2 The Double Residue Modular Range

Reduction (DRMRR) Algorithm 216
11.5.3 High Radix Modular Reduction. 217

12 Final Rounding. 219
12.1 Introduction . 219
12.2 Monotonicity . 220
12.3 Correct Rounding: Presentation of the Problem 221
12.4 Ziv’s Rounding Test . 224
12.5 Some Experiments . 225
12.6 A “Probabilistic” Approach to the Problem 226

xiv Contents

12.7 Upper Bounds on m . 229
12.7.1 Algebraic Functions. 229
12.7.2 Transcendental Functions 229

12.8 Solving the TMD in Practice 232
12.8.1 Special Input Values 232
12.8.2 The L-Algorithm . 232
12.8.3 The SLZ Algorithm . 232
12.8.4 Nontrivial Hardest-to-Round Points

Found So Far . 233

13 Miscellaneous . 245
13.1 Exceptions . 245

13.1.1 NaNs . 246
13.1.2 Exact Results . 247

13.2 Notes on xy . 248
13.3 Special Functions, Functions of Complex Numbers 250

14 Examples of Implementation . 253
14.1 First Example: The Cyrix FastMath Processor. 253
14.2 The INTEL Functions Designed for the Itanium

Processor . 254
14.2.1 Sine and Cosine . 255
14.2.2 Arctangent . 255

14.3 The LIBULTIM Library. 256
14.4 The CRLIBM Library . 257

14.4.1 Computation of sinðxÞ or cosðxÞ
(Quick Step) . 257

14.4.2 Computation of lnðxÞ 258
14.5 SUN’s Former LIBMCR Library. 260
14.6 The HP-UX Compiler for the Itanium Processor 260
14.7 The METALIBM Project . 261

Bibliography . 263

Index . 279

Contents xv

List of Figures

Figure 2.1 Different possible roundings of a real number x
in a radix-β floating-point system. In this example,
x[0.. 10

Figure 2.2 Above is the set of the nonnegative, normal
floating-point numbers (assuming radix 2
and 2-bit significands). In that set, a� b
is not exactly representable, and the floating-point
computation of a� b will return 0 with the round
to nearest, round to 0 , or round to �1 rounding
functions. Below is the same set with subnormal
numbers. Now, a� b is exactly representable,
and the properties a 6¼ b and a� b 6¼ 0
(where a� b denotes the computed value of a� b)
become equivalent.. 12

Figure 2.3 Computation of 153120þ 112616 using
Avizienis’ algorithm in radix r ¼ 10 with a ¼ 6. 31

Figure 2.4 A full-adder (FA) cell. From three bits x, y, and z, it
computes two bits
t and u such that xþ yþ z ¼ 2tþ u. 32

Figure 2.5 A carry-save adder (bottom), compared
to a carry-propagate adder (top). 32

Figure 2.6 A PPM cell. From three bits x, y, and z, it computes
two bits t and u such that xþ y� z ¼ 2t � u. 33

Figure 2.7 A borrow-save adder. 34
Figure 2.8 A structure for adding a borrow-save number

and a nonredundant number (bottom), compared
to a carry-propagate subtractor (top). 34

Figure 3.1 Interpolation of expðxÞ at the 13 Chebyshev
points cosðkπ=12Þ , k ¼ 0;1; 2; . . .; 12, compared
to the degree- 12 minimax approximation
to expðxÞ in ½�1; 1�. The interpolation polynomial
is nearly as good as the minimax polynomial. 40

Figure 3.2 Interpolation of expðxÞ at 13 regularly spaced
points, compared to the degree- 12 minimax
approximation to expðxÞ in ½�1; 1�. The minimax
polynomial is much better than the interpolation
polynomial, especially near both ends
of the interval.. 41

xvii

Figure 3.3 Graph of the polynomial T7ðxÞ: 43
Figure 3.4 The expð�x2Þ function and its degree- 3 minimax

approximation on the interval ½0; 3� (dashed line).
There are five values where the maximum
approximation error is reached with alternate
signs. 46

Figure 3.5 The difference between the expð�x2Þ function
and its degree- 3 minimax approximation
on the interval ½0; 3�. 47

Figure 3.6 The minimax polynomial approximations
of degrees 3 and 5 to sinðxÞ in ½0; 4π�. Notice that
sinðxÞ � p3ðxÞ has 6 extrema. From Chebyshev's
theorem, we know that it must have at least 5
extrema. 47

Figure 3.7 Errors of various degree-2 approximations
to ex on ½�1; 1�. Legendre approximation is better
on average, and Chebyshev approximation
is close to the minimax approximation. 50

Figure 3.8 Comparison of Legendre, Chebyshev, and minimax
degree-2 approximations to jxj. 51

Figure 3.9 Number of significant bits (obtained as
� log2ðerrorÞ) of the minimax polynomial
approximations to various functions on ½0; 1�. 53

Figure 3.10 Difference between Pð1ÞðxÞ and sinðexpðxÞÞ
on ½0; 2�. 56

Figure 3.11 Difference between Pð2ÞðxÞ and sinðexpðxÞÞ
on ½0; 2�. 56

Figure 4.1 Plot of the difference between arctanðxÞ and its
degree- 25 minimax approximation on ½0; 1�. As
predicted by Chebyshev's Theorem, the curve
oscillates, and the extremum is attained 26 times
(the leftmost and rightmost extrema are difficult to
see on the plot, but they are here,
at values 0 and 1). 69

Figure 4.2 Plot of the difference between arctanðxÞ and its
degree- 25 minimax approximation on ½0; 1� with
coefficients rounded to the binary64 format. We
have lost the “equioscillating” property, and the
accuracy of approximation is much poorer. 69

Figure 4.3 Plot of the difference between arctanðxÞ and
a degree- 25 polynomial approximation with
binary64 coefficients generated by Sollya. The
accuracy of the approximation is almost as good as
that of the minimax polynomial, and we have almost
found again the “equioscillating” property. 69

Figure 6.1 An incorrectly rounded result deduced from a 56-bit
value that is within 0.5 ULPs from the exact result.
We assume that rounding to the nearest was
desired. 113

xviii List of Figures

Figure 6.2 The computation of f ðAÞ using Ercegovac et al.'s
algorithm. 116

Figure 6.3 The bipartite method is a piecewise linear
approximation for which the slopes of the
approximating straight lines are constants
in intervals sharing the same value of x0. 119

Figure 8.1 Value of E3 versus t. 141
Figure 8.2 Value of E5 versus t. 141
Figure 8.3 Value of E11 versus t. 142
Figure 8.4 The restoring algorithm. The weights are either

unused or put on the pan that does not contain
the loaf of bread being weighed. In this example,
the weight of the loaf of bread is
w1 þw3 þw4 þw5 þ � � �. 143

Figure 8.5 The nonrestoring algorithm. All the weights are
used, and they can be put on both pans. In this
example, the weight of the loaf of bread is
w1 � w2 þw3 þw4 þw5 � w6 þ � � �. 144

Figure 8.6 Robertson diagram of the “redundant exponential”
algorithm. 149

Figure 8.7 Robertson diagram for the logarithm. The three
straight lines give λnþ 1 ¼ λnð1þ dn2�nÞþ dn2�n

for dn ¼ �1; 0; 1. 153
Figure 9.1 One iteration of the CORDIC algorithm. 167
Figure 9.2 Robertson diagram of CORDIC. 172
Figure 9.3 One iteration of the double rotation method. 175
Figure 9.4 Computation of the values sign ð̂ziÞ in the

differential CORDIC algorithm (rotation mode)
[130].. 178

Figure 10.1 Robertson diagram of the radix-16 algorithm
for computing exponentials. Tk is the smallest value
of Ln for which the value dn ¼ k is allowable.
Uk is the largest one. 186

Figure 10.2 The Robertson diagram for Lxn [25].. 191
Figure 10.3 The Robertson diagram for Lyn [25].. 192
Figure 12.1 Ziv's multilevel strategy. 223

List of Figures xix

List of Tables

Table 2.1 Basic parameters of various floating-point systems
(p, the precision, is the size of the
significand expressed in number of digits
in the radix of the computer system). The “+1”
is due to the hidden bit convention. The binary32
and binary64 formats were called “single precision”
and “double precision” in the 1985 release
of the IEEE-754 standard. 9

Table 2.2 Widths of the various fields and main parameters
of the binary interchange formats of size
up to 128 bits specified by the 754-2008
standard . 15

Table 2.3 Main parameters of the decimal interchange formats
of size up to 128 bits specified by the 754-2008
standard [245]. 15

Table 2.4 The set of rules that generate the Booth recoding
fn fn�1 fn�2 � � � f0 of a binary number dn�1dn�2 � � � d0
(with di 2 f0; 1g and fi 2 f�1; 0; 1g). By convention
dn ¼ d�1 ¼ 0.. 35

Table 2.5 Reitwiesner’s algorithm: the set of rules that
generate the canonical recoding fn fn�1 fn�2 � � � f0
of a binary number dn�1dn�2 � � � d0 (with di 2 f0; 1g
and fi 2 f�1; 0; 1g). The process is initialized
by setting c0 ¼ 0, and by convention dn ¼ 0. 36

Table 3.1 Maximum absolute errors for various degree-2
polynomial approximations to ex on ½�1; 1�.. 49

Table 3.2 Maximum absolute errors for various degree-2
polynomial approximations to |x| on ½�1; 1�.. 52

Table 3.3 Number of significant bits
(obtained as � log2ðabsolute errorÞ) of the minimax
approximations to various functions on
[0, 1] by polynomials of degree 2 to 8. The accuracy
of the approximation changes drastically
with the function being approximated. 52

Table 3.4 Absolute errors obtained by approximating
the square root on [0, 1] by a minimax
polynomial. 59

xxi

Table 3.5 Latencies of some floating-point instructions
in double-precision/binary64 arithmetic for various
processors, after [120, 144, 192, 421, 422].. 60

Table 3.6 Errors obtained when evaluating frac1 ðxÞ,
frac2 ðxÞ, or frac3 ðxÞ in double-precision at
500000 regularly spaced values
between 0 and 1. 61

Table 5.1 The scheduling of the various operations involved by
the evaluation of pðxÞ ¼
a7x7 þ a6x6 þ � � � þ a1xþ a0 on a 5-cycle pipelined
FMA operator, such as one of those available
on the Itanium processor [115]. 86

Table 5.2 The scheduling of the various operations involved
by the evaluation of pðxÞ ¼
a7x7 þ a6x6 þ � � � þ a1xþ a0 with two 5-cycle
pipelined FMA operators, such as the ones available
on the Itanium processor [115]. 86

Table 6.1 Absolute error of the minimax polynomial
approximations to some functions on the interval
[0, a]. The error decreases rapidly when
a becomes small. 103

Table 6.2 Degrees of the minimax polynomial approximations
that are required to approximate some functions
with absolute error less than 10�5 on the interval
[0, a]. When a becomes small, a very low degree
suffices. 103

Table 6.3 Approximations to ln ð1þ r=2Þ=ð1� r=2Þð Þ
on [0, 1 / 128].. 106

Table 6.4 Approximations to sinðrÞ on ½�1=32; 1=32� with
binary64 coefficients. 107

Table 6.5 Approximations to cosðrÞ on ½�1=32; 1=32�
with binary64 coefficients. 107

Table 7.1 The first terms of the sequence pk generated by the
Brent–Salamin algorithm. That sequence converges
to π quadratically. 133

Table 7.2 First terms of the sequence xn generated by the NR
iteration for computing expðaÞ, given here with
a ¼ 1 and x0 ¼ 2:718. The sequence goes
to e quadratically.. 134

Table 7.3 Time complexity of the evaluation of some functions
in multiple-precision arithmetic (extracted from
Table 7.1 of [51]). M(n) is the complexity of n-bit
multiplication. 135

Table 8.1 The filing of the different weights. 140
Table 8.2 First 10 values and limit values of 2nsn, 2nrn, 2nAn,

2nBn, 2nAn, and 2nBn. 149
Table 8.3 First 5 values and limit values of 2nsn, 2nrn, 2nAn,

2nBn, 2nCn, and 2nDn. 154

xxii List of Tables

Table 8.4 The first digits of the first 15 values wi ¼ lnð1þ 2�iÞ.
As i increases, wi gets closer to 2�i. 155

Table 8.5 Comparison among the binary representations
and the decompositions (given by the restoring
algorithm) on the discrete bases lnð1þ 2�iÞ and
arctan 2�i for some values of x. When x is very small
the different decompositions have many common
terms. 156

Table 8.6 Table obtained for n ¼ 4 using our Maple
program. 162

Table 9.1 Computability of different functions using
CORDIC.. 169

Table 9.2 Values of σðnÞ in Eq. (9.11) and Table 9.1. 169
Table 9.3 First values αi that can be used in Despain’s scale

factor compensation method. 171
Table 9.4 First four values of 2nrn, 2nAn and 2nBn. 173
Table 10.1 First four values of 16n �mink¼�10...9 Uk

n � Tkþ 1
n

� �

and 16n �maxk¼�10...9 Uk
n � Tkþ 1

n

� �
, and limit

values for n ! 1. 187
Table 10.2 The interval 16n � Tk

n ;U
k
n

� �
, represented for various

values of n and k. The integer k always belongs to
that interval. 188

Table 10.3 Convenient values of ‘ for x 2 ½0; lnð2Þ�. They are
chosen such that x� ‘ 2 ½T�8

2 ;U8
2 � and a

multiplication by expð‘Þ is easily performed. 189
Table 11.1 sinðxÞ for x ¼ 1022 on various (in general, old)

systems [362]. It is worth noticing that x is exactly
representable in the IEEE-754 binary64 format
(1022 is equal to 4768371582031250� 221). With a
system working in the IEEE-754 binary32 format,
the correct answer would be the sine of the
floating-point number that is closest to 1022; that is,
sinð9999999778196308361216Þ � �0:73408. As
pointed out by the authors of [362, 363], the values
listed in this table were contributed by various
Internet volunteers. Hence, they are not the official
views of the listed computer system vendors, the
author of [362, 363] or his employer, nor are they
those of the author of this book. 202

Table 11.2 Worst cases for range reduction for various
floating-point systems and reduction constants C. 211

Table 12.1 Actual and expected numbers of digit chains of
length k of the form 1000 � � � 0 or 0111 � � � 1 just after
the p-th bit of the infinitely precise significand of
sines of floating-point numbers of precision p ¼ 24
between 1 / 2 and 1 [356]. 228

List of Tables xxiii

Table 12.2 Some bounds [295] on the size of the largest digit
chain of the form 1000 � � � 0 or 0111 � � � 1 just after
the p-th bit of the infinitely precise significand of
f(x) (or f(x, y)), for some simple algebraic functions.
An upper bound on m is p plus the number given in
this table.. 230

Table 12.3 Upper bounds on m for various values of p, obtained
from Theorem 22 and assuming input values
between � lnð2Þ and lnð2Þ. 231

Table 12.4 Some results for small values in the
double-precision/binary64 format, assuming
rounding to nearest (some of these results are
extracted from [356]). These results make finding
hardest-to-round points useless for numbers of tiny
absolute value. The number α ¼ RNð31=3Þ � 2�26 is
approximately equal to 1:4422 � � � � 2�26, and
η � 1:1447� 2�26. If x is a real number, we let
x� denote the largest floating-point number strictly
less than x. 233

Table 12.5 Some results for small values in the
double-precision/binary64 format, assuming
rounding toward �1 (some of these results are
extracted from [356]). These results make finding
hardest-to-round points useless for numbers of tiny
absolute value. If x is a real number, we let x�

denote the largest floating-point number strictly less
than x. The number τ ¼ RNð61=3Þ � 2�26 is
approximately equal to 1:817 � � � � 2�26. 234

Table 12.6 Hardest-to-round points for functions ex, ex � 1, 2x,
and 10x. The values given here and the results
given in Tables 12.4 and 12.5 suffice to round
functions ex, 2x and 10x correctly in the full
binary64/double-precision range (for function ex the
input values between �2�53 and 2�52 are so small
that the results given in Tables 12.4 and 12.5 can be
applied, so they are omitted here) [308]. Radix-β
exponentials of numbers less than logβð2�1074Þ are
less than the smallest positive machine number.
Radix-β exponentials of numbers larger than
logβð21024Þ are overflows. 235

Table 12.7 Hardest-to-round points for functions lnðxÞ and
lnð1þ xÞ. The values given here suffice to round
functions lnðxÞ and lnð1þ xÞ correctly in the full
binary64/double-precision range. 236

Table 12.8 Hardest-to-round points for functions log2ðxÞ and
log10ðxÞ. The values given here suffice to round
functions log2ðxÞ and log10ðxÞ correctly in the full
binary64/double-precision range. 237

xxiv List of Tables

Table 12.9 Hardest-to-round points for functions sinhðxÞ and
coshðxÞ. The values given here suffice to round these
functions correctly in the full
binary64/double-precision range. If x is small
enough, the results given in Tables 12.4 and 12.5
can be applied. If x is large enough, we can use the
results obtained for the exponential function. 238

Table 12.10 Hardest-to-round points for inverse hyperbolic
functions in binary64/double precision. Concerning
function sinh�1, if the input values are small enough,
there is no need to compute the Hardest-to-round
points: the results given in Tables 12.4 and 12.5 can
be applied.. 239

Table 12.11 Hardest-to-round points for the trigonometric
functions in binary64/double precision. So far,
we only have hardest-to-round points in the
following domains: 2�25; u

� �
where

u ¼ 1:10010010000112 � 21 for the sine function
(u ¼ 3:14135742187510 is slightly less than π);
0; arccosð2�26Þ� �[arccosð�2�27Þ; 22½ Þ for the
cosine function; and 2�25;π=2

� �
for the tangent

function. Sines of numbers of absolute value less
than 2�25 are easily handled using the results given
in Tables 12.4 and 12.5. 240

Table 12.12 Hardest-to-round points for the inverse
trigonometric functions in binary64/double
precision. Concerning the arcsine function, the
results given in Tables 12.4 and 12.5 and in this
table make it possible to correctly round the function
in its whole domain of definition. 241

Table 12.13 Hardest-to-round points for functions sinpi
ðxÞ ¼ sinðπxÞ and asinpi ðxÞ ¼ 1

π
arcsinðxÞ in

binary64/double precision. The domains considered
here suffice for implementing these functions in the
full binary64 range: for instance if x\2�57, a simple
continued fraction argument shows that
RNðsinpiðxÞ ¼ RNðπxÞ. The computation of
RNðπxÞ is easily performed (see [67]). 242

Table 13.1 Error, expressed in ulps, obtained by computing xy

as expðy lnðxÞÞ for various x and y assuming that exp
and ln are correctly rounded to the nearest, in
IEEE-754 binary64 floating-point arithmetic. The
worst case found during our experimentations was

1200.13 ulps for 34823062188649005575=2
45
, but it is

almost certain that there are worse cases. 249

List of Tables xxv

1Introduction

This book is devoted to the computation of the elementary functions. Here, we call elementary
functions the most commonly used mathematical functions: sin, cos, tan, sin−1, cos−1, tan−1, sinh,
cosh, tanh, sinh−1, cosh−1, tanh−1, exponentials, and logarithms (we should merely say “elementary
transcendental functions”: from a mathematical point of view, 1/x is an elementary function as well
as ex . We do not deal with the basic arithmetic functions in this book). Theoretically, the elementary
functions are not much harder to compute than quotients: it was shown by Alt [5] that these functions
are equivalent to division with respect to Boolean circuit depth. This means that, roughly speaking, a
circuit can output n digits of a sine, cosine, or logarithm in a time proportional to log n (see also Okabe
et al. [368], and Beame et al. [32]). For practical implementations, however, it is quite different, and
much care is necessary if we want fast and accurate elementary functions.

This topic has already been dealt with, among others, by Cody andWaite [93], and Hart et al. [225],
but at times those functions were implemented in software only and there was no standard for floating-
point arithmetic. Since the Intel 8087 floating-point unit, elementary functions have sometimes been
implemented, at least partially, in hardware, a fact that induces serious algorithmic changes. Even if
now, for general-purpose computing, software is favored because of its versatility, there is still a clear
need of hardwired functions for implementation on special-purpose architectures.

Furthermore, the emergence of high-quality arithmetic standards (such as the IEEE-754 standard
for floating-point arithmetic), and the decisive work of mathematicians and computer scientists such
as W. Kahan, W. Cody, H. Kuki, P. Markstein, and P. Tang have accustomed users to very accurate
results. Twenty years ago a library providing elementary functions with one or two incorrect bits
only was considered adequate [37], but current circuit or library designers must build algorithms and
architectures that are guaranteed to be much more accurate (at least for general-purpose systems). A
few libraries even offer correctly rounded functions: the returned result is always equal to the machine
number nearest the exact result. Among the various properties that are desirable, one can cite the
following:

• speed;
• accuracy;
• reasonable amount of resource (ROM/RAM, silicon area used by a dedicated hardware, even power

consumption in some cases…);
• preservation of important mathematical properties such as monotonicity, and symmetry. As pointed

out by Silverstein et al. [425], monotonicity failures can cause problems in evaluating divided
differences;

© Springer Science+Business Media New York 2016
J.-M. Muller, Elementary Functions, DOI 10.1007/978-1-4899-7983-4_1

1

2 1 Introduction

• preservation of the direction of rounding: for instance, if the chosen rounding function is round
toward −∞ (see Section2.1.2), the returned result must be less than or equal to the exact result.
This is essential for implementing interval arithmetic;

• range limits: getting a sine larger than 1 may lead to unpleasant surprises, for instance, when
computing [425] √

1 − sin2 x .

Let us deal with the problem of accuracy. The 1985 version of the IEEE-754 standard for floating-
point arithmetic [6]—which was the first version of that standard (see Section2.1) greatly helped
to improve the reliability and portability of numerical software. And yet it said nothing about the
elementary functions. Concerning these functions, a standard cannot be widely accepted if some
implementations are better than the standard. This means that when computing f (x) we must try to
provide the “best possible” result, that is, the exact rounding or correct rounding — see Chapter2 for
an explanation of “correct rounding” — of the exact result (when that result exists), for all possible
input arguments.1 This has already been mentioned in 1976 by Paul and Wilson [380]:

The numerical result of each elementary function will be equal to the nearest machine-representable value which
best approximates (rounded or truncated as appropriate) the infinite precision function value for that exact finite
precision argument for all possible machine-representable input operands in the legal domain of the function.

As noticed byAgarwal et al. [2], correct rounding facilitates the preservation ofmonotonicity and, in
round-to-nearest mode, symmetry requirements. And yet, for a few functions, correct rounding might
prevent satisfying range limits (see Chapter12 for an example). Also, correctly rounded functions are
more difficult to implement. They may sometimes require very accurate intermediate computations.
Consider for example the following number (represented in radix 2, with the exponent in radix 10).

1.1110010001011001011001010010011010111111100101001101 × 2−10

This number is exactly representable in the IEEE-754 double-precision format (see Chapter 2). Its
radix-2 exponential is

53 bits
︷ ︸︸ ︷
1.000000000101001111111100 · · · 0011 0

59 ones
︷ ︸︸ ︷
111111111111 · · · 111111111111 010 · · ·

which is very close to the middle of two consecutive floating-point numbers: deciding whether this
value is above or below that middle (and hence, deciding what value should be returned in round-to-
nearest mode) requires a very careful and accurate intermediate computation. A discussion on what
could and/or should be put in a standardization of mathematical function implementation in floating-
point arithmetic was given in [146]. The 2008 release of the IEEE-754 standard for floating-point
arithmetic [245], in its appendix, now recommends (yet does not require) that a correctly rounded
version of some functions should be available (see Chapter12).

There is another difference between this book and those previously published which have dealt
with the same topic: the latter have contained many coefficients of polynomial and/or rational approx-

1A usual objection to this is that most of the floating-point variables in a program are results of computations and/or
measurements; thus they are not exact values. Therefore, when the least significant digit of such a floating-point number
has a weight larger than π , its sine, cosine, or tangent have no meaning at all. Of course, this will be frequently true, but
my feeling is that the designer of a circuit/library has no right to assume that the users are stupid. If someone wants to
compute the sine of a very large number, he or she may have a good reason for doing this and the software/hardware
must provide the best possible value.

http://dx.doi.org/10.1007/978-1-4899-7983-4_2
http://dx.doi.org/10.1007/978-1-4899-7983-4_2
http://dx.doi.org/10.1007/978-1-4899-7983-4_2
http://dx.doi.org/10.1007/978-1-4899-7983-4_12
http://dx.doi.org/10.1007/978-1-4899-7983-4_2
http://dx.doi.org/10.1007/978-1-4899-7983-4_12

1 Introduction 3

imations of functions. Nowadays, software such as Maple2 [78] or Sollya3 [85] readily compute such
coefficients with very good accuracy, requiring a few seconds of CPU time on a laptop. Therefore, the
goal of this book is to present various algorithms and to provide the reader with the preliminary knowl-
edge needed to design his or her own software and/or hardware systems for evaluating elementary
functions.

When designing such a system, three different cases can occur, depending on the underlying arith-
metic:

• the arithmetic operators are designed specifically for the elementary function system;
• the accuracy of the underlying arithmetic is significantly higher than the target accuracy of the ele-

mentary function system (for instance, binary32/single-precision functions are programmed using
binary64/double-precision arithmetic, or binary64/double-precision functions are programmed
using binary128 arithmetic);

• the underlying arithmetic is not significantly more accurate than the elementary function system
(this occurs when designing routines for the highest available precision).

In the third case, the implementation requires much care if we wish to achieve last-bit accuracy.
Some table-based algorithms have been designed to deal with this case, and a good knowledge of
floating-point arithmetic allows one to avoid loosing accuracy in the intermediate calculations.

Chapter 2 of this book outlines several elements of computer arithmetic that are necessary to under-
stand the following chapters. It is a brief introduction to floating-point arithmetic and redundant number
systems. The reader accustomed to these topics can skip that chapter. That chapter cannot replace a
textbook on computer arithmetic: someone who has to implement some elementary functions on a cir-
cuit or an FPGAmay have to choose between different addition/multiplication/division algorithms and
architectures. Several books devoted to computer arithmetic have been written by Swartzlander [439,
440, 442], Koren [277], Omondi [370], Parhami [378], Ercegovac and Lang [180], and Kornerup
and Matula [282]. Division and square-root algorithms and architectures are dealt with in a book by
Ercegovac and Lang [179]. The reader who wishes to deepen his or her knowledge of floating-point
arithmetic can consult the recent Handbook of Floating-Point Arithmetic [356]. The reader can also
find useful information in the proceedings of the IEEE Symposia on Computer Arithmetic, as well as
in journals such as the IEEE Transactions on Computers, the Journal of VLSI Signal Processing, and
the Journal of Parallel and Distributed Computing.

Aside from a few cases, the elementary functions cannot be computed exactly. Theymust be approx-
imated. Most algorithms consist either of evaluating piecewise polynomial or rational approximations
of the function being computed, or of building sequences that converge to the result.

Part 1 deals with the algorithms that are based on polynomial or rational approximation of the
elementary functions, and/or tabulation of those functions. The classical theory of the approximation
of functions by polynomials or rational functions goes back to the end of the nineteenth century. The
only functions of one variable that can be computed using a finite number of additions, subtractions,
and multiplications are polynomials. By adding division to the set of the allowed basic operations, we
can compute nothing more than rational functions. As a consequence, it is natural to try to approximate
the elementary functions by polynomial or rational functions. Such approximations were used much
before the appearance of our modern electronic computers. However, it is only recently that we have
been able to tackle more challenging problems such as finding best or nearly best approximations

2Maple is a registered trademark of Waterloo Maple Software.
3Sollya is a library for safe floating-point code development. It is especially targeted to the automatized implementation
of mathematical floating-point libraries. It can be freely accessed at http://sollya.gforge.inria.fr.

http://dx.doi.org/10.1007/978-1-4899-7983-4_2
http://sollya.gforge.inria.fr

4 1 Introduction

with specific constraints on the coefficients such as being exactly representable in a given floating-
point or fixed-point format. We will present these methods, and discuss the problem of evaluating the
polynomials that have been chosen for approximating functions. Of special importance is the control
of the numerical error due to the evaluation of the polynomials in finite precision arithmetic. Recent
tools such as Gappa4 are extremely useful for bounding that error and guaranteeing the bounds.

Accurate polynomial approximation to a function in a rather large interval may require a polynomial
of large degree. For instance, approximating function ln(1 + x) in [−1/2,+1/2] with an error less
than 10−8 requires a polynomial of degree 12. This increases the computational delay and may also
induce problems of round-off error propagation, sincemany arithmetic operations need to be performed
(unless a somewhat higher precision is used for the intermediate calculations). A solution to avoid these
drawbacks is to use tables. However, this must be done with caution: possible cache misses due to
large tables may totally destroy performance. Tabulating a function for all possible input values can
be done for small word lengths (say, up to 20 bits). It cannot — at least with current technology —
be done for larger word lengths: with 32-bit floating-point numbers, 16G-bytes of memory would be
required for each function. For such word-lengths, one has to combine tabulation and polynomial (or
rational) approximation. The basic method when computing f (x) (after a possible preliminary range
reduction), is to first locate in the table the value x0 that is closest to x . Following this, f (x) is taken as

f (x) = f (x0) + correction(x, x0),

where f (x0) is stored in the table, and correction(x, x0) — which is much smaller than f (x0) — is
approximated by a low-degree polynomial. There are many possible compromises between the size of
the table and the degree of the polynomial approximation. Choosing a good compromise may require
to take into account the architecture of the target processor (in particular, the cachememory size [144]).
This kind ofmethod is efficient andwidely used, yet some care is required to obtain very good accuracy.

When very high accuracy is required (thousands to billions of bits), the conventional methods are
no longer efficient. One must use algorithms adapted to multiple-precision arithmetic. For instance, in
2002, Kanada’s team from Tokyo University computed the first 1, 241, 100, 000, 000 decimal digits
of π , using the following two formulas [16, 49]:

π = 48 arctan
1

49
+ 128 arctan

1

57
− 20 arctan

1

239
+ 48 arctan

1

110443

π = 176 arctan
1

57
+ 28 arctan

1

239
− 48 arctan

1

682
+ 96 arctan

1

12943
.

This required 600 hours of calculation on a parallel Hitachi computer with 64 processors. At the
time I am writing these lines, the record is around 13.3 × 1012 digits,5 using formulas such as the
following one, due to the Chudnovsky brothers [89]:

1

π
=

√
10005

4270934400

∞∑

k=0

(−1)k
(6k)!

(k!)3(3k)!
13591409 + 545140134k

6403203k
.

4Gappa is a tool intended to help verifying and formally proving properties on numerical programs dealing with floating-
point or fixed-point arithmetic. It can be freely obtained at http://gappa.gforge.inria.fr.
5See http://www.numberworld.org/y-cruncher/.

http://gappa.gforge.inria.fr
http://www.numberworld.org/y-cruncher/

1 Introduction 5

Part 2 is devoted to the presentation of shift-and-add methods, also called convergence methods.
These methods are based on simple elementary steps, additions and shifts (i.e., multiplications by a
power of the radix of the number system used), and date back to the seventeenth century. Henry Briggs
(1561–1631), a contemporary of Napier (who discovered the logarithms), invented an algorithm that
made it possible to build the first tables of logarithms. For instance, to compute the logarithm of x
in radix-2 arithmetic, numerous methods (including that of Briggs, adapted to this radix) essentially
consist of finding a sequence dk = −1, 0, 1, such that

x
n∏

k=1

(1 + dk2
−k) ≈ 1.

Then

ln(x) ≈ −
n∑

k=1

ln(1 + dk2
−k).

The values ln(1+dk2−k) are precomputed and stored. Another method belonging to the shift-and-add
class is the CORDIC algorithm, introduced in 1959 by J. Volder and then generalized by J. Walther.
CORDIC has great historical importance: as pointed out in [475], it has enabled pocket calculators
to compute most elementary functions, making tables and slide rules obsolete. Nowadays, CORDIC
is less frequently employed than table-based methods, but more recent developments on “redundant
CORDIC” algorithms might one day change this situation. Moreover, CORDIC has a nice feature that
is interesting for some applications: it directly computes functions of more than two variables such
as rotations or lengths of 2-D vectors. Shift-and-add methods require less hardware than the methods
presented in Part 1. Yet, they may be slower, and they are less versatile: they apply to some elementary
functions only (i.e., functions f that satisfy some algebraic property allowing us to easily deduce
f (x + y) or f (xy) from f (x) and f (y)), whereas the methods based on polynomial approximation
and/or tabulation can be used to design algorithms and architectures for any continuous function.

Another important step when computing an elementary function is range reduction. Most approx-
imations of functions are valid in a small interval only. To compute f (x) for any input value x , one
must first find a number y such that f (x) can easily be deduced from f (y) (or more generally from
an associated function g(y)), and such that y belongs to the interval where the approximation holds.
This operation is called range reduction, and y is called the reduced argument. For many functions
(especially the sine, cosine, and tangent functions), range reduction must be performed cautiously, it
may be the most important source of errors.

The last part of this book deals with the problem of range reduction and the problem of getting
correctly rounded final results, and give some examples of implementation.

To illustrate some of the various concepts presented in this introduction, let us look at an example.
Assume that we use a radix-10 floating-point number system6 with 4-digit significands,7 and suppose
that we want to compute the sine of x = 88.34.

The first step, range reduction, consists of finding a value x∗ belonging to some interval I such that
we have a polynomial approximation or a shift-and-add algorithm for evaluating the sine or cosine
function in I , and such that we are able to deduce sin(x) from sin(x∗) or cos(x∗). In this example,

6Of course, in this book, we mainly focus on radix-2 implementations, but radix 10 leads to examples that are easier to
understand. Radix 10 is also frequently used in pocket calculators.
7The word “significand” is more appropriate than the more frequently used word “mantissa”. A system with p-digit
significands will be said “of precision p.”

6 1 Introduction

assume that I = [−π/4,+π/4]. The number x∗ is the only value x − kπ/2 (k is an integer) that lies
between −π/4 and +π/4. We can easily find k = 56, a consequence of which is sin(x) = sin(x∗).
After this, there are many various possibilities; let us consider some of them.

1. We simply evaluate x∗ = x−56π/2 in the arithmetic of our number system, π/2 being represented
by its closest 4-digit approximation, namely, 1.571. Assuming that the arithmetic operations always
return correctly rounded-to-the-nearest results, we get X∗

1 = 0.3640. This gives one significant digit
only, since the exact result is x∗ = 0.375405699485789 · · · . Obviously, such an inaccurate method
should be prohibited.

2. Using more digits for the intermediate calculations, we obtain the 4-digit number that is closest to
x∗, namely, X∗

2 = 0.3754.
3. To make the next step more accurate, we compute an 8-digit approximation of x∗; that is, X∗

3 =
0.37540570.

4. To make the next step even more accurate, we compute a 10-digit approximation of x∗; that is,
X∗
4 = 0.3754056995.

During the second step, we evaluate sin(x∗) using a polynomial approximation, a table-based
method, or a shift-and-add algorithm.We assume that, to be consistent, we perform this approximation
with the same accuracy as that of the range reduction.

1. From X∗
1 there is no hope of getting an accurate result: sin(X∗

1) equals 0.3560 · · · , whereas the
correct result is sin(x∗) = 0.3666500053966 · · · .

2. From X∗
2 , we get 0.3666. It is not the correctly rounded result.

3. From X∗
3 , we get 0.366650006. If we assume an error bounded by 0.5× 10−8 from the polynomial

approximation and the round-off error due to the evaluation of the polynomial, and an error bounded
by the same value from the range reduction, the global error committed when approximating sin(x∗)
by the computed value may be as large as 10−8. This does not suffice to round the result correctly:
we only know that the exact result belongs to the interval [0.366649996, 0.366650016].

4. From X∗
4 ,we get 0.36665000541. Ifwe assume an error bounded by 0.5×10−10 from the polynomial

approximation and the possible round-off error due to the evaluation of the polynomial, and an error
boundedby the samevalue from the range reduction, the global error committedwhen approximating
sin(x∗) by the computed value is bounded by 10−10. From this we deduce that the exact result is
greater than 0.3666500053; we can now give the correctly rounded result, namely, 0.3667.

Although frequently overlooked, range reduction is the most critical point when trying to design
very accurate libraries, especially in the case of trigonometric functions.

The techniques presented in this bookwill of course be of interest for the implementer of elementary
function libraries or circuits. They will also help many programmers of numerical applications. If you
need to evaluate a “compound” function such as f (x) = exp(

√
x2 + 1) in a given domain (say [0, 1])

only a few times and if very high accuracy is not a big issue, then it is certainly preferable to use the exp
and √ functions available on the mathematical library of your system. And yet, if the same function
is computed a zillion times in a loop and/or if it must be computed as accurately as possible, it might
be better to directly compute a polynomial approximation to f using for instance the methods given
in Chapter3.

http://dx.doi.org/10.1007/978-1-4899-7983-4_3

2Introduction to Computer Arithmetic

2.1 Basic Notions of Floating-Point Arithmetic

The aim of this section is to provide the reader with some basic concepts of floating-point arithmetic,
and to define notations that are used throughout the book. For further information, the reader is referred
to the IEEE-754-2008 Standard on Floating-Point Arithmetic [245] and to our Handbook on Floating-
Point Arithmetic [356]. Interesting and useful material can be found in Goldberg’s paper [206] and
Kahan’s lecture notes [265]. Further information can be found in [55, 95, 102, 103, 180, 217, 232,
266, 277, 286, 370, 373, 378, 469, 477]. Here we mainly focus on the binary formats specified by the
2008 release of the IEEE-754 standard for floating-point arithmetic. The first release of IEEE 754 [6],
that goes back to 1985, was a key factor in improving the quality of the computational environment
available to programmers. Before the standard, floating-point arithmetic was a mere set of cooking
recipes that sometimes worked well and sometimes did not work at all.1

2.1.1 Basic Notions

Everybody knows that a radix-β, precision-p floating-point number is a number of the form

±m × βe, (2.1)

where m is represented with p digits in radix β, m < β, and e is an integer. However, being able to
build trustable algorithms and proofs requires a more formal definition.

A floating-point format is partly2 characterized by four integers:

• a radix (or base) β ≥ 2;
• a precision p ≥ 2 (p is the number of “significant digits” of the representation);
• two extremal exponents emin and emax such that emin < emax. In all practical cases, emin < 0 < emax.

1We should mention a few exceptions, such as some HP pocket calculators and the Intel 8087 coprocessor, that were
precursors of the standard.
2Partly only, because bit strings must be reserved for representing exceptional values, such as the results of forbidden
operations (e.g., 0/0) and infinities.

© Springer Science+Business Media New York 2016
J.-M. Muller, Elementary Functions, DOI 10.1007/978-1-4899-7983-4_2

7

8 2 Introduction to Computer Arithmetic

A finite floating-point number in such a format is a number x for which there exists at least one
representation (M, e) that satisfies

x = M · βe−p+1, (2.2)

where

• M is an integer of absolute value less than or equal to β p − 1. It is called the integral significand
of the representation of x ;

• e is an integer such that emin ≤ e ≤ emax is called the exponent of the representation of x .

We can now go back to (2.1), and notice that if we define m = |M | · β1−p and s = 0 if x ≥ 0, 1
otherwise, then

x = (−1)s · m · βe.

• m is called the real significand (or, more simply, the significand of the representation). It has one
digit before the radix point, and at most p − 1 digits after; and

• s is the sign of x .

Notice that for some numbers x , there may exist several possible representations (M, e) or (s,m, e).
Just consider the “toy format”β = 10 and p = 4. In that formatM = 4560 and e = −1, andM = 0456
and e = 0 are valid representations of the number 0.456.

It is frequently desirable to require unique representations. In order to have a unique representation,
one may want to normalize the finite nonzero floating-point numbers by choosing the representation
for which the exponent is minimum (yet larger than or equal to emin). The obtained representation will
be called a normalized representation. Two cases may occur.

• In general, such a representation satisfies 1 ≤ |m| < β, or, equivalently, β p−1 ≤ |M | < β p. In
such a case, one says that x is a normal number.

• Otherwise, one necessarily has e = emin, and the corresponding value x is called a subnormal
number (the term denormal number is often used too). In that case, |m| < 1 or, equivalently,
|M | ≤ β p−1 − 1. Notice that a subnormal number is of absolute value less than βemin : subnormal
numbers are very tiny numbers.

An interesting consequence of that normalization, when the radix β is equal to 2, is that the first
bit of the significand of a normal number must always be “1”, and the first bit of the significand of
a subnormal number must always be “0”. Hence if we have information3 on the normality of x there
is no need to store its first significand bit, and in many computer systems, it is actually not stored
(this is called the “hidden bit” or “implicit bit” convention). Table2.1 gives the basic parameters of
the floating-point systems that have been implemented in various machines. Those figures have been
taken from references [232, 265, 277, 370]. For instance, the largest representable finite number in the
IEEE-754 double-precision/binary64 format [245] is

(
2 − 2−52

)
× 21023 ≈ 1.7976931348623157 × 10308,

3In practice that information is encoded in the exponent field, see Section2.1.6.

2.1 Basic Notions of Floating-Point Arithmetic 9

Table 2.1 Basic parameters of various floating-point systems (p, the precision, is the size of the significand, expressed
in number of digits in the radix of the computer system). The “+1” is due to the hidden bit convention. The binary32 and
binary64 formats were called “single precision” and “double precision” in the 1985 release of the IEEE-754 standard.

System β p emin emax max. value

DEC VAX 2 24 −128 126 1.7 · · · × 1038

(D format) 2 56 −128 126 1.7 · · · × 1038

HP 28, 48G 10 12 −500 498 9.9 · · · × 10498

IBM 370 16 6 (24 bits) −65 62 7.2 · · · × 1075

and 3090 16 14 (56 bits) −65 62 7.2 · · · × 1075

IEEE-754 binary32 2 23+1 −126 127 3.4 · · · × 1038

IEEE-754 binary64 2 52+1 −1022 1023 1.8 · · · × 10308

IEEE-754 binary128 2 112+1 −16382 16383 1.2 · · · × 104932

IEEE-754 decimal64 10 16 −383 384 9.999 · · · 9 × 10384

the smallest positive number is

2−1074 ≈ 4.940656458412465 × 10−324,

and the smallest positive normal number is

2−1022 ≈ 2.225073858507201 × 10−308.

Arithmetic based on radix 10 has frequently been used in pocket calculators.4 Also, it is used in
financial calculations, and several decimal formats are specified by the 2008 version of IEEE 754.
Decimal arithmetic remains an object of active study [114, 117, 183, 222, 453]. A Russian computer
named SETUN [72] used radix 3 with digits−1, 0, and 1 (this is called the balanced ternary system). It
was built5 at Moscow University, during the 1960s [275]. Almost all other current computing systems
use base 2. Various studies [55, 95, 286] have shown that radix 2 with the hidden bit convention gives
better accuracy than all other radices (by the way, this does not imply that operations—e.g., divisions or
square roots—cannot benefit from being done in a higher radix inside the arithmetic operators [181]).

2.1.2 Rounding Functions

Let us define a machine number to be a number that can be exactly represented in the floating-point
system under consideration. In general, the sum, the product, and the quotient of two machine numbers
is not a machine number and the result of such an arithmetic operation must be rounded.

In a floating-point system that follows the IEEE-754 standard, the user can choose a rounding
function (also called rounding mode) from:

4A major difference between computers and pocket calculators is that usually computers do much computation between
input and output of data, so that the time needed to perform a radix conversion is negligible compared to the whole
processing time. If pocket calculators used radix 2, they would perform radix conversions before and after almost every
arithmetic operation. Another reason for using radix 10 in pocket calculators is the fact that many simple decimal numbers
such as 0.1 are not exactly representable in radix 2.
5See http://www.computer-museum.ru/english/setun.htm.

http://www.computer-museum.ru/english/setun.htm

10 2 Introduction to Computer Arithmetic

Figure 2.1 Different
possible roundings of a
real number x in a radix-β
floating-point system. In
this example, x > 0.

RU(x)
RZ(x)
RN (x)
RD(x)

x

�

βk

• rounding towards −∞: RD(x) is the largest machine number less than or equal to x ;
• rounding towards +∞: RU(x) is the smallest machine number greater than or equal to x ;
• rounding towards 0: RZ(x) is equal to RD(x) if x ≥ 0, and to RU(x) if x < 0;
• rounding to nearest: RN(x) is the machine number that is the closest to x (if x is exactly halfway

between two consecutive machine numbers, the default convention is to return the “even” one, i.e.,
the one whose last significand digit is even—a zero in radix 2).

This is illustrated using the example in Figure2.1.
If the active rounding function is denoted by �, and u and v aremachine numbers, then the IEEE-754

standard [6, 109] requires that the obtained result should always be � (u�v) when computing u�v (�
is+,−,×, or÷). Thus the systemmust behave as if the result were first computed exactly, with infinite
precision, and then rounded. Operations that satisfy this property are called “correctly rounded” (or,
sometimes, “exactly rounded”). There is a similar requirement for the square root. Such a requirement
has a number of advantages:

• it leads to full compatibility6 between computing systems: the same program will give the same
values on different computers;

• many algorithms can be designed that use this property. Examples include performing large precision
arithmetic [22, 231, 389, 423], designing “compensated” algorithms for evaluating with excellent
accuracy the sum of several floating-point numbers [8, 264, 274, 386, 389, 404, 405], or making
decisions in computational geometry [341, 387, 423];

• one can easily implement interval arithmetic [287, 288, 349], or more generally one can get lower
or upper bounds on the exact result of a sequence of arithmetic operations;

• the mere fact that the arithmetic operations become fully specified makes it possible to elaborate
formal proofs of programs and algorithms, which is very useful for certifying the behavior of
numerical software used in critical applications [39, 41–44, 129, 133, 216–220, 315, 339, 340].

In radix-β, precision-p floating-point arithmetic, if an arithmetic operation is correctly rounded and
there is no overflow or underflow7 then the relative error of that operation is bounded by

6At least in theory: one must make sure that the order of execution of the operations is not changed by the compiler, that
there are no phenomenons of “double roundings” due to the possible use of a wider format in intermediate calculations,
and that an FMA instruction is called only if one has decided to use it.
7Let us say, as does the IEEE-754 standard, that an operation underflows when the result is subnormal and inexact.

2.1 Basic Notions of Floating-Point Arithmetic 11

1

2
β1−p,

if the rounding function is round to nearest, and

β1−p

with the other rounding functions.
Very useful algorithms that can be proved assuming correct rounding are the error-free transforms

presented in Section2.2.1 (the first ideas that underlie them go back to Møller [346]).
An important property of the various rounding functions defined by the IEEE-754 standard is that

they are monotonic. For instance, if x ≤ y, then RN(x) ≤ RN(y).
In the 1985 version of the IEEE-754 standard, there was no correct rounding requirement for the

elementary functions, probably because it had been believed for many years that correct rounding of
the elementary functions would be much too expensive. The situation has changed significantly in the
recent years [125, 131, 136] and with the 2008 release of the IEEE-754 standard, correct rounding of
some functions becomes recommended (yet not mandatory). These functions are:

ex , ex − 1, 2x , 2x − 1, 10x , 10x − 1,
ln(x), log2(x), log10(x), ln(1 + x), log2(1 + x), log10(1 + x),√

x2 + y2, 1/
√
x, (1 + x)n, xn, x1/n(n is an integer), x y,

sin(πx), cos(πx), arctan(x)/π, arctan(y/x)/π,

sin(x), cos(x), tan(x), arcsin(x), arccos(x), arctan(x), arctan(y/x),
sinh(x), cosh(x), tanh(x), sinh−1(x), cosh−1(x), tanh−1(x).

We analyze the problem of correctly rounding the elementary functions in Chapter12. Another
frequently used notion is faithful rounding: a function is faithfully rounded if the returned result is
always one of the two floating-point numbers that surround the exact result, and is equal to the exact
result whenever this one is exactly representable. Faithful rounding cannot rigourously be called a
rounding since it is not a deterministic function.

The availability of subnormal numbers (see Section2.1.1) is a feature of the IEEE-754 standard
that offers nice properties at the price of a slight complication of some arithmetic operators. It allows
underflow to be gradual (see Figure2.2). The minimum subnormal positive number in the IEEE-754
double-precision/binary64 floating-point format is

2−1074 ≈ 4.94065645841246544 × 10−324.

In a floating-point system with correct rounding and subnormal numbers, the following theorem
holds.

Theorem 1 (Sterbenz Lemma) In a floating-point system with correct rounding and subnormal num-
bers, if x and y are floating-point numbers such that

x/2 ≤ y ≤ 2x,

then x − y is a floating-point number, which implies that it will be computed exactly, with any rounding
function.

http://dx.doi.org/10.1007/978-1-4899-7983-4_12

12 2 Introduction to Computer Arithmetic

0 2emin 2emin +1 2emin +2

0 2emin 2emin +1 2emin +2

aa− b b

aa− b b

Figure 2.2 Above is the set of the nonnegative, normal floating-point numbers (assuming radix 2 and 2-bit significands).
In that set, a − b is not exactly representable, and the floating-point computation of a − b will return 0 with the round
to nearest, round to 0, or round to −∞ rounding functions. Below is the same set with subnormal numbers. Now, a − b
is exactly representable, and the properties a 	= b and a
 b 	= 0 (where a
 b denotes the computed value of a − b)
become equivalent.

This result is extremely useful when computing accurate error bounds for some elementary function
algorithms.

The IEEE-754 standard also defines special representations for exceptions:

• NaN (Not a Number) is the result of an invalid arithmetic operation such as 0/0,
√−5, ∞/∞,

+∞ + (−∞), …;
• ±∞ can be the result of an overflow, or the exact result of the division of a nonzero number by

zero; and
• ±0: there are two signed zeroes that can be the result of an underflow, or the exact result of a division

by ±∞.

The reader is referred to [265, 356] for an in-depth discussion on these topics. Subnormal numbers
and exceptions must not be neglected by the designer of an elementary function circuit and/or library.
They may of course be used as input values, and the circuit/library must be able to produce them as
output values when needed.

2.1.3 ULPs

If x is exactly representable in a floating-point format and is not an integer power of the radix β, the
term ulp (x) (for unit in the last place) denotes the magnitude of the last significand digit of x . That
is, if,

x = ±x0.x1x2 · · · xp−1 × βex

2.1 Basic Notions of Floating-Point Arithmetic 13

then ulp (x) = βex−p+1. Defining ulp (x) for all reals x (and not only for the floating-point numbers)
is desirable, since the error bounds for functions frequently need to be expressed in terms of ulps.
There are several slightly different definitions in the literature [206, 217, 247, 267, 331, 373]. They
differ when x is very near a power of β, and they sometimes have counterintuitive properties.

In this book, we will use the following definition.

Definition 1 (ulp of a real number in radix-β, precision-p arithmetic of minimum exponent emin) If
x is a nonzero number, |x | ∈ [βe, βe+1), then ulp (x) = βmax(e,emin)−p+1. Furthermore, ulp (0) =
βemin−p+1.

The major advantage of this definition (at least, in radix-2 arithmetic) is that in all cases (even the
most tricky), rounding to nearest corresponds to an error of at most 1/2 ulp of the real value. More
precisely, we have

Property 1 In radix 2, if X is a floating-point number, then

|X − x | <
1

2
ulp (x) ⇒ X = RN(x).

(beware: that property does not always hold in radix-10 arithmetic)

Property 2 For any radix,

X = RN(x) ⇒ |X − x | ≤ 1

2
ulp (x).

We also have,

Property 3 For any radix,

X = RN(x) ⇒ |X − x | ≤ 1

2
ulp (X).

(the differencewith the previous property is thatwehaveused the ulp of the computedvalue).Notice that
ulp (t) is a monotonic function of |t |: if |t1| ≤ |t2| then ulp (t1) ≤ ulp (t2). This has an interesting and
useful consequence: if we know that the result of a correctly rounded (with round-to-nearest rounding
function) arithmetic operation belongs to some interval [a, b], then the rounding error due to that
operation is bounded by

1

2
· max { ulp (a), ulp (b)} = 1

2
· ulp (max{|a|, |b|}) .

2.1.4 Infinitely Precise Significand

Implicitly assuming radix 2, we will extend the notion of significand to all real numbers as follows.
Let x be a real number. If x = 0, then the infinitely precise significand of x equals 0, otherwise, it
equals

x

2log2 |x |� .

The infinitely precise significand of a nonzero real number has an absolute value between 1 and 2. If
x is a normal floating-point number, then its infinitely precise significand is equal to its significand.

14 2 Introduction to Computer Arithmetic

2.1.5 Fused Multiply–Add Operations

The FMA instruction evaluates expressions of the form ab+ c with one rounding error instead of two
(that is, if ◦ is the rounding function, FMA(a, b, c) = ◦(ab+c)). That instructionwas first implemented
on the IBM RS/6000 processor [235, 348]. It was then implemented on several processors such as the
IBM PowerPC [256], the HP/Intel Itanium [115], the Fujitsu SPARC64 VI, and the STI Cell, and is
available on current processors such as the Intel Haswell and theAMDBulldozer.More importantly, the
FMA instruction is included in the 2008 release of the IEEE-754 standard for floating-point arithmetic
[245], so that within a few years, it will probably be available on most general-purpose processors.

Such an instruction may be extremely helpful for the designer of arithmetic algorithms:

• it facilitates the exact computation of division remainders, which allows the design of efficient
software for correctly rounded division [68, 113, 115, 265, 331, 333];

• it makes the evaluation of polynomials faster and—in general—more accurate: when usingHorner’s
scheme,8 the number of necessary operations (hence, the number of roundings) is halved. This is
extremely important for elementary function evaluation, since polynomial approximations to these
functions are frequently used (see Chapter 3). Markstein, and Cornea, Harrison, and Tang devoted
very interesting books to the evaluation of elementary functions using the fused multiply–add
operations that are available on the HP/Intel Itanium processor [115, 331];

• as noticed by Karp and Markstein [269], it makes it possible to easily get the exact product of two
floating-point variables. More precisely, once we have computed the floating-point product π of two
variables a and b (which is RN(ab) if we assume that the rounding function is round to nearest), one
FMA operation suffices to compute the error of that floating-point multiplication, namely ab − π

(see Section2.2.1).

And yet, as noticed by Kahan [265] a clumsy use (by an unexperienced programmer or a compiler)
of a fusedmultiply–add operationmay lead to problems. Depending on how it is implemented, function

f (x, y) =
√
x2 − y2

may sometimes return an NaN when x = y. Consider the following as an example:

x = y = 1 + 2−52.

In binary64/double-precision arithmetic this number is exactly representable. The binary64 number
that is closest to x2 is

S = 2251799813685249

2251799813685248
= 251 + 1

251
,

and the binary64 number that is closest to S − y2 is

− 1

20282409603651670423947251286016
= −2−104.

8Horner’s scheme consists in evaluating a degree-n polynomial anxn + an−1xn−1 + · · · + a0 as (· · · (((anx + an−1)x +
an−2)x +an−3) · · ·)x +a0. This requires n multiplications and n additions if we use conventional operations, or n fused
multiply–add operations. See Chapter5 for more information.

http://dx.doi.org/10.1007/978-1-4899-7983-4_3
http://dx.doi.org/10.1007/978-1-4899-7983-4_5

2.1 Basic Notions of Floating-Point Arithmetic 15

Hence, if the floating-point computation of x2 − y2 is implemented as RN(RN(x2) − y × y), then the
obtained result will be less than 0 and computing its square root will generate a NaN, whereas the exact
result is 0. The problem does not occur if we do not use the FMA operation: the rounding functions
are monotonic, so that if |x | ≥ |y| then the computed value of x2 will be larger than or equal to the
computed value of y2.

2.1.6 The Formats Specified by the IEEE-754-2008 Standard for Floating-Point
Arithmetic

Table2.2 gives the widths of the various fields (significand, exponent) and the main parameters of
the binary interchange formats specified by IEEE 754, and Table2.3 gives the main parameters of the
decimal formats. Let us describe the internal encoding of numbers represented in the binary formats
of the Standard (for the internal encodings of decimal numbers, see [356]). The ordering of bits in
the encodings is as follows. The most significant bit is the sign (0 for positive values, 1 for negative
ones), followed by the exponent (represented as explained below), followed by the significand (with
the hidden bit convention: what is actually stored is the “trailing significand,” i.e., the significand
without its leftmost bit). This ordering allows one to compare floating-point numbers as if they were
sign-magnitude integers.

Table 2.2 Widths of the various fields and main parameters of the binary interchange formats of size up to 128 bits
specified by the 754-2008 standard. [245]

IEEE 754-2008 name binary16 binary32 binary64 binary128

Former name N/A Single precision Double precision Quad precision

Storage width 16 32 64 128

Trailing significand
width

10 23 52 112

WE , exponent field
width

5 8 11 15

b, bias 15 127 1023 16383

Precision p 11 24 53 113

emax +15 +127 +1023 +16383

emin −14 −126 −1022 −16382

Largest finite number 65504 2128 − 2104

≈ 3.403 × 1038
21024 − 2971

≈ 1.798 × 10308
216384 − 216271

≈ 1.190 × 104932

Smallest positive
normal number

2−14 ≈ 6.104 × 10−5 2−126

≈ 1.175 × 10−38
2−1022

≈ 2.225 × 10−308
2−16382

≈ 3.362 × 10−4932

Smallest positive
number

2−24 ≈ 5.960 × 10−8 2−149

≈ 1.401 × 10−45
2−1074

≈ 4.941 × 10−324
2−16494

≈ 6.475 × 10−4966

Table 2.3 Main parameters of the decimal interchange formats of size up to 128 bits specified by the 754-2008 standard
[245].

IEEE-754-2008 name decimal32 decimal64 (basic) decimal128 (basic)

p 7 16 34

emax +96 +384 +6144

emin −95 −383 −6143

16 2 Introduction to Computer Arithmetic

The exponents are represented using a bias. Assume the exponent is stored with WE bits, and
regard these bits as the binary representation of an unsigned integer Ne. Unless Ne = 0 (which
corresponds to subnormal numbers and the two signed zeros), the (real) exponent of the floating-point
representation is Ne − b, where b = 2WE−1 − 1 is the bias. The value of that bias b is given in
Table2.2. Ne is called the biased exponent. All actual exponents from emin to emax are represented by
Ne between 1 and 2WE − 2 = 1111 · · · 1102. With WE bits, one could represent integers from 0 to
2WE −1 = 1111 · · · 1112. The two extremal values 0 and 2WE −1, not needed for representing normal
numbers, are used as follows.

• The extremal value 0 is reserved for subnormal numbers and ±0. The bit encoding for a zero is the
appropriate sign (0 for +0 and 1 for −0), followed by a string of zeros in the exponent field as well
as in the significand field.

• The extremal value 2WE − 1 is reserved for infinities and NaNs:

– The bit encoding for infinities is the appropriate sign, followed by Ne = 2WE − 1 (i.e., a string
of ones) in the exponent field, followed by a string of zeros in the significand field.

– The bit encoding for NaNs is an arbitrary sign, followed by 2WE − 1 (i.e., a string of ones) in
the exponent field, followed by any bit string different from 000 · · · 00 in the significand field.
Hence, there are several possible encodings for NaNs. This allows the implementer to distinguish
between quiet and signaling NaNs (see [6, 245, 356] for a definition).

This encoding of binary floating-point numbers has a nice property: one obtains the successor of a
floating-point number by considering its binary representation as the binary representation of an integer,
and adding one to that integer.

2.1.7 Testing Your Computational Environment

The various parameters (radix, significand and exponent lengths, rounding functions…) of the floating-
point arithmetic of a computing system may strongly influence the result of a numerical program. An
amusing example of this is the following program, given by Malcolm [204, 330], that returns the radix
of the floating-point system being used (beware: an aggressively “optimizing” compiler might decide
to replace ((A+1.0)-A)-1.0 by 0).

A := 1.0;
B := 1.0;
while ((A+1.0)-A)-1.0 = 0.0 do A := 2*A;
while ((A+B)-A)-B <> 0.0 do B := B+1.0;
return(B)

Similar—yet much more sophisticated—algorithms are used in rather old inquiry programs such
as MACHAR [98] and PARANOIA [270], that provide a means for examining your computational
environment. Other programs for checking conformity of your computational system to the IEEE
Standard for Floating Point Arithmetic are Hough’s UCBTEST (available at http://www.netlib.org/fp/
ucbtest.tgz), and a more recent tool presented by Verdonk, Cuyt and Verschaeren [462, 463].

http://www.netlib.org/fp/ucbtest.tgz
http://www.netlib.org/fp/ucbtest.tgz

2.2 Advanced Manipulation of FP Numbers 17

2.2 Advanced Manipulation of FP Numbers

2.2.1 Error-Free Transforms: Computing the Error of a FP Addition or
Multiplication

Let a and b be two precision-p floating-point numbers, and define s = RN(a+b), i.e., a+b correctly
rounded to the nearest precision-p floating-point number. It can be shown that if the addition of a and
b does not overflow, then the error of that floating-point addition, namely (a + b) − s, is a precision-p
floating-point number.9 Interestingly enough, that error can be computed by very simple algorithms,
as shown below.

Theorem 2 (Fast2Sum algorithm) ([148], and Theorem C of [275], p. 236). Assume the radix β of the
floating-point system being considered is less than or equal to 3, and that the used arithmetic provides
correct rounding with rounding to the nearest. Let a and b be floating-point numbers, and assume that
the exponent of a is larger than or equal to that of b. Algorithm 1 below computes two floating-point
numbers s and t that satisfy:

• s + t = a + b exactly;
• s is the10 floating-point number that is closest to a + b.

Algorithm 1 The Fast2Sum algorithm [148].
s ← RN(a + b)
z ← RN(s − a)

t ← RN(b − z)

Algorithm 1 requires that the exponent of a should be larger than or equal to that of b. That condition
is satisfied when |a| ≥ |b|. When we do not have preliminary information on a and b that allows us to
make sure that the condition is satisfied, usingAlgorithm 1 requires a preliminary comparison of |a| and
|b|, followed by a possible swap of these variables. In most modern architectures, this comparison and
this swap may significantly hinder performance, so that in general, it is preferable to use Algorithm 2
below, which gives a correct result whatever the ordering of |a| and |b| is.

Algorithm 2 The 2Sum algorithm.
s ← RN(a + b)
a′ ← RN(s − b)
b′ ← RN(s − a′)
δa ← RN(a − a′)
δb ← RN(b − b′)
t ← RN(δa + δb)

9Beware: that property is not always true with rounding functions different fromRN. The error of a floating-point addition
with one of these other rounding functions may not sometimes be exactly representable by a floating-point number of
the same format.
10As a matter of fact there can be two such numbers (if a + b is the exact middle of two consecutive floating-point
numbers).

18 2 Introduction to Computer Arithmetic

We have [41, 275, 346],

Theorem 3 If a and b are normal floating-point numbers, then for any radix β, provided that no
overflow occurs, the values returned by Algorithm 2 satisfy a + b = s + t .

One can show that Algorithm 2 is optimal in terms of number of operations [280]. Algorithms 1
and 2 make it possible to compute the error of a floating-point addition. Interestingly enough, it is also
possible to compute the error of a floating-point multiplication. Unless overflow occurs, Algorithm 3
below returns two values p and ρ such that p is the floating-point number that is closest to ab, and
p + ρ = ab exactly, provided that ea + eb ≥ emin + p − 1 (where emin is the minimum exponent of
the floating-point format being used, ea and eb are the exponents of a and b, and p is the precision).
It requires one multiplication and one fused multiply–add (FMA). Although I present it with the
round-to-nearest function, it works as well with the other rounding functions.

Algorithm 3 The Fast2MultFMA algorithm.

π ← RN(ab);
ρ ← RN(ab − π)

Performing a similar calculation without a fused multiply–add operation is possible [148] but
requires 17 floating-point operations instead of 2. Some other interesting arithmetic functions are
easily implementable when a fused multiply–add is available [45, 67, 253].

Algorithms 1, 2, and 3 can be used for building compensated algorithms, i.e., algorithms in which
the errors of “critical” operations are computed to be later on “re-injected” in the calculation, in order
to partly compensate for these errors. For example, several authors have suggested “compensated
summation” algorithms (see for instance [261, 367, 386]). Another example is the following (notice
that the first two lines are nothing but Algorithm 3):

Algorithm 4 Kahan’s way to compute x = ad − bc with fused multiply–adds.
w ← RN(bc)
e ← RN(w − bc) // this operation is exact: e = ŵ − bc.
f ← RN(ad − w)

x ← RN(f + e)
return x

In [253], it is shown that in precision-p binary floating-point arithmetic, the relative error of
Algorithm 4 is bounded by 2−p+1, and that the error in ulps is bounded by 3/2 ulps.

2.2.2 Manipulating Double-Word or Triple-Word Numbers

As we will see in Chapter3, the elementary functions are very often approximated by polynomials.
Hence, an important part of the function evaluation reduces to the evaluation of a polynomial. This
requires a sequence of additions andmultiplications (or a sequence of FMAs). However, when wewant
a very accurate result, it may not suffice to represent the coefficients of the approximating polynomial
in the “target format.”11 Furthermore, to avoid a too large accumulation of rounding errors, it may

11Throughout the book, we call “target format” the floating-point format specified for the returned result, and “target
precision” its precision.

http://dx.doi.org/10.1007/978-1-4899-7983-4_3

2.2 Advanced Manipulation of FP Numbers 19

sometimes be necessary to represent intermediate variables of the polynomial evaluation algorithmwith
a precision larger than the target precision. All this is easily handled when a wider floating-point format
is available in hardware. When this is not the case, one can represent some high-precision variables
as the unevaluated sum of two or three floating-point numbers. Such unevaluated sums are called
“double-word” or “triple-word” numbers. Since the floating-point format used for implementing such
numbers is almost always the binary64 format, previously called “double precision,” these numbers
are often called “double double” or “triple double” numbers in the literature.

Algorithms 1, 2, and 3 are the basic building blocks that allow one to manipulate double-word or
triple-word numbers. For instance, Dekker’s algorithm for adding two double-word numbers (xh, x�)

and (yh, y�) is shown in Algorithm 5 below.

Algorithm 5 Dekker’s algorithm for adding two double-word numbers (xh, x�) and (yh, y�) [148].
if |xh | ≥ |yh | then
(rh, r�) ← Fast2Sum(xh, yh)
s ← RN(RN(r� + y�) + x�)

else
(rh, r�) ← Fast2Sum(yh, xh)
s ← RN(RN(r� + x�) + y�)
end if
(th, t�) ← Fast2Sum(rh, s)
return (th, t�)

The most accurate algorithm for double-word addition in Bailey’s QD library, as presented in [317],
is Algorithm 6 below.

Algorithm 6 The most accurate algorithm implemented in Bailey’s QD library for adding two double-
word numbers x = (xh, x�) and y = (yh, y�) [317].

(sh, s�) ← 2Sum(xh , yh)
(th, t�) ← 2Sum(x�, y�)
c ← RN(s� + th)
(vh, v�) ← Fast2Sum(sh, c)
w ← RN(t� + v�)

(zh, z�) ← Fast2Sum(vh, w)

return (zh, z�)

Assuming |x�| ≤ 2−p · |x |, where p is the precision of the binary floating-point arithmetic being
used, one can show that the relative error of Algorithm 6 is bounded by

2−2p · (
3 + 13 · 2−p) ,

(the bound is valid provided that p ≥ 3, which always holds in practice).
Bailey’s algorithm for multiplying a double-word number by a floating-point number is given below

(here, we assume that an FMA is available, so that we can use Algorithm 3 to represent the product of
two floating-point numbers by a double-word number).

20 2 Introduction to Computer Arithmetic

Algorithm7The algorithm implemented in Bailey’s QD library formultiplying a double-word number
x = (xh, x�) by a floating-point number y [317]. Here, we assume that an FMA instruction is available,
so that we can use the Fast2MultFMA algorithm (Algorithm 3).

(ch, c�1) ← Fast2MultFMA(xh, y)
c�2 ← RN(x� · y)
(th, t�1) ← Fast2Sum(ch, c�2)

t�2 ← RN(t�1 + c�1)

(zh, z�) ← Fast2Sum(th, t�2)
return (zh, z�)

Assuming |x�| ≤ 2−p · |x |, one can show that the relative error of Algorithm 7 is bounded by

2 · 2−2p

Lauter [300] gives basic building blocks for a triple-word arithmetic. These blocks have been used
for implementing critical parts in the CRLIBM library for correctly rounded elementary functions in
binary64/double-precision arithmetic (seeSection14.4). For instance, here is one ofLauter’s algorithms
for adding two triple-word numbers and obtaining the result as a triple-word number.

Algorithm 8 An algorithm suggested by Lauter [300] for adding two triple-word numbers a =
(ah, am, a�) and b = (bh, bm, b�)—a and b must satisfy the conditions of Theorem 4 below.

(rh, t1) ← Fast2Sum(ah, bh)
(t2, t3) ← 2Sum(am , bm)

(t7, t4) ← 2Sum(t1, t2)
t6 ← RN(a� + b�)

t5 ← RN(t3 + t4)
t8 ← RN(t5 + t6)
(rm , r�) ← 2Sum(t7, t8)
return (rh, rm , r�)

Lauter showed the following result.

Theorem 4 If Algorithm 8 is run in binary64 arithmetic with two input triple-word numbers a =
(ah, am, a�) and (b = (bh, bm, b�) satisfying:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|bh | ≤ (3/4) · |ah |
|am | ≤ 2−α0 · |ah |, with α0 ≥ 4
|a�| ≤ 2−αu · |am |, with αu ≥ 1
|bm | ≤ 2−β0 · |bh |, with β0 ≥ 4
|b�| ≤ 2−βu · |bm |, with βu ≥ 1

then the returned result (rh, rm, r�) satisfies

⎧⎪⎪⎨
⎪⎪⎩

rh + rm + r� = ((ah + am + a�) + (bh + bm + b�)) · (1 + ε),

with |ε| ≤ 2−min(α0+αu ,β0+βu)−47 + 2−min(α0,β0)−98,

|rm | ≤ 2−min(α0,β0)+5 · |rh |,
|r�| ≤ 2−53 · |rm |.

http://dx.doi.org/10.1007/978-1-4899-7983-4_14

2.2 Advanced Manipulation of FP Numbers 21

The following is one of Lauter’s algorithms for multiplying two double-word numbers and getting
the result as a triple-word number.

Algorithm 9 An algorithm suggested by Lauter [300] for multiplying two double-word numbers
a = (ah, a�) and b = (bh, b�), assuming a binary64 underlying arithmetic, and obtaining the product as
a triple-word number—a and bmust satisfy the conditions of Theorem 5 below.ADD22 isAlgorithm 5.

(rh, t1) ← Fast2MultFMA(ah , bh)
(t2, t3) ← Fast2MultFMA(ah, b�)

(t4, t5) ← Fast2MultFMA(a�, bh)
t6 ← RN(a�b�)

(t7, t8) ← ADD22((t2, t3), (t4, t5))
(t9, t10) ← 2Sum(t1, t6)
(rm , r�) ← ADD22((t7, t8), (t9, t10))
return (rh, rm , r�)

Lauter showed the following result.

Theorem 5 If Algorithm 9 is run in binary64 arithmetic with two input double-word numbers a =
(ah, a�) and b = (bh, b�) satisfying |a�| ≤ 2−53|ah | and |b�| ≤ 2−53|bh |, then the returned result
(rh, rm, r�) satisfies ⎧⎪⎪⎨

⎪⎪⎩

rh + rm + r� = ((ah + a�) · (bh + b�)) · (1 + ε),

with |ε| ≤ 2−149,

|rm | ≤ 2−48 · |rh |,
|r�| ≤ 2−53 · |rm |.

2.2.3 An Example that Illustrates What We Have Learnt so Far

The following polynomial, generated by the Sollya tool (see Section4.2) approximates function cos(x),
for x ∈ [−0.0123,+0.0123] (that domain is a tight enclosure of [−π/256,+π/256]), with an error
less than 1.9 × 10−16:

P(x) = 1 + a2x
2 + a4x

4,

where a2 and a4 are the following binary64/double-precision numbers:

{
a2 = −2251799813622611 × 2−52 ≈ −0.499999999986091
a4 = 1501189276987675 × 2−55 ≈ 0.04166637249080271

Here we wish to have a tight upper bound on the error committed if we evaluate P as follows
(Algorithm 10) in binary64/double-precision arithmetic. We wish to obtain the result as a double-word
number (sh, s�).

Algorithm 10 This algorithm returns an approximation to P(x) as a double-word number (sh, s�). We
assume that an FMA instruction is available to compute RN(a2 + a4y) in line 2.
y ← RN(x2)
s1 ← RN(a2 + a4y)
s2 ← RN(s1y)
(sh, s�) ← Fast2Sum(1, s2)
return (sh, s�)

http://dx.doi.org/10.1007/978-1-4899-7983-4_4

22 2 Introduction to Computer Arithmetic

Since roundings are monotonic functions, we have

0 ≤ y ≤ RN(0.01232).

Let us call by that bound, i.e.,

by = 1395403955455759

9223372036854775808
.

We have ulp (y) ≤ ulp (by) = 2−65, therefore, since the computation of y is the result of a
correctly rounded floating-point multiplication:

|y − x2| ≤ 1

2
ulp (by) = 2−66. (2.3)

So we have bounded the error committed at the first line of Algorithm 10. Let us now deal with the
second line. We have

a2 + a4y ∈ [a2, a2 + a4by]

therefore
s1 = RN(a2 + a4y)

∈ [RN(a2),RN(a2 + a4by)] =
[
a2,−4503542848513793

253

]
.

(2.4)

Thus ulp (s1) ≤ ulp (max{|a2|, |a2 + a4by |}) = ulp (|a2|) = 2−54, from which we deduce

|s1 − (a2 + a4y)| ≤ 2−55.

This gives
|s1 − (a2 + a4x2)| ≤ |s1 − (a2 + a4y)| + |(a2 + a4y) − (a2 + a4x2)|

≤ 2−55 + a4 · |y − x2|,

from which we deduce, using (2.3),

|s1 − (a2 + a4x
2)| ≤ 2−55 + a4 · 2−66. (2.5)

We are now ready to tackle the third line of the algorithm. We have,

s1y ∈
[
a2y,−4503542848513793

253
· y

]
,

which implies,
s1y ∈ [

a2 · by, 0
]
,

therefore,
s2 = RN(s1 · y) ∈ [

RN
(
a2 · by

)
, 0

]
,

2.2 Advanced Manipulation of FP Numbers 23

therefore,

s2 ∈
[
−5581615821667775

266
, 0

]
. (2.6)

from this we deduce that ulp (s2) ≤ 2−66, which implies

|s2 − s1y| ≤ 2−67. (2.7)

We now have

|s2 − (a2x2 + a4x4)| ≤ |s2 − s1y| + |s1y − s1x2| + |s1x2 − (a2x2 + a4x4)|
≤ 2−67 + |s1| · |y − x2| + x2 · |s1 − (a2 + a4y)|
≤ 2−67 + |a2| · 2−66 + 0.01232 · (2−55 + a4 · 2−66)

using (2.3), (2.4), and (2.5).
Finally, (2.6) implies |s2| < 1, therefore Algorithm Fast2Sum is legitimately used at line 4 of the

algorithm, so that sh + s� = 1 + s2. We can therefore deduce a bound on the error committed when
evaluating polynomial P using Algorithm 10:

|(sh + s�) − P(x)| ≤ 2−67 + |a2| · 2−66 + 0.01232 · (2−55 + a4 · 2−66)

≤ 1.77518 × 10−20.
(2.8)

The obtained bound (2.8) is rather tight: for instance, if we apply Algorithm 10 to the input value
x = 1772616811707781/257, the evaluation error is 1.76697 × 10−20.

The “toy” example we have considered here can be generalized to the evaluation of polynomials
of larger degree, possibly using different evaluation schemes (see Chapter 5): the underlying idea is
to compute interval enclosures of all intermediate variables, which allows to compute bounds on the
rounding errors of the arithmetic operations. It can be adapted to compute relative error bounds instead
of absolute ones. However, the idea of computing evaluation errors as we just have done here has some
limitations:

• the process was already tedious and error prone with our toy example. In practical cases (degrees
of polynomials that can be as large as a few tens, with some coefficients that can be double-word
numbers), it may become almost impractical. Furthermore, to avoid inherent overestimations of
enclosures that occur in interval arithmetic, one may need to split the input domain into many
subintervals and redo the calculation for each of them;

• as we will see in Chapter5, when some parallelism is available on the target processor (pipelined
operators, several FPUs)—which is always the case with recent processors—many different eval-
uation schemes are possible (when the degree of the polynomial is large, the number of possible
schemes is huge). In general, choosing which evaluation scheme will be implemented results from a
compromise between the latency or throughput and accuracy. To find a good compromise, one may
wish to get, in reasonable time, a tight bound on the evaluation error for several tens of evaluation
schemes;

• if the function we are implementing is to be used in critical applications, one needs confidence in
the obtained error bounds, which is not so obvious when they are derived from long and tedious
calculations. One may even wish certified error bounds.

http://dx.doi.org/10.1007/978-1-4899-7983-4_5
http://dx.doi.org/10.1007/978-1-4899-7983-4_5

24 2 Introduction to Computer Arithmetic

These remarks call for an automation of the calculation of error bounds for small “straight-line”
numerical programs (such as those used for evaluating elementary functions), and for the possibility of
using proof checkers for certifying these bounds. These needs are fulfilled by the Gappa tool, presented
in the next section.

2.2.4 The GAPPA Tool

Thanks to the IEEE-754 standard, we now have an accurate definition of floating-point formats and
operations. This allows the use of formal proofs to verify pieces of mathematical software. For in-
stance, Harrison used HOL Light to formalize floating-point arithmetic [217] and check floating-point
trigonometric functions [218] for the Intel-HP IA64 architecture. Russinoff [406] used the ACL2
prover to check the AMD-K7 Floating-Point Multiplication, Division, and Square Root instructions.
Boldo, Daumas and Théry use the Coq proof assistant to formalize floating-point arithmetic and prove
properties of arithmetic algorithms [42, 315].

The Gappa tool [128, 339] can be downloaded at http://gappa.gforge.inria.fr. It was designed by
Melquiond to help to prove properties of small (up to a few hundreds of operations) yet complicated
floating-point programs. Typical useful properties Gappa helps to prove are the fact that some value
stays within a given range (which is important in many cases, for instance if we wish to guarantee that
there will be no overflow), or that it is computed with a well-bounded relative error. The paper [134]
explains how Gappa has been used to certify functions of the CRLIBM library of correctly rounded
elementary functions. Gappa uses interval arithmetic, a database of rewriting rules, and hints given
by the user to prove a property, and generates a formal proof that can be mechanically checked by an
external proof checker. This was considered important by the authors of CRLIBM: as explained by de
Dinechin et al. [134], in the first versions of the library, the complete paper and pencil proof of a single
function required tens of pages, which inevitably cast some doubts on the trustability of the proof.

The following Gappa file automatically computes a bound on the error committed when eval-
uating the polynomial P of the previous section using Algorithm 10, with an input value in
[−0.0123,+0.0123]. It is made up of three parts: the first one describes the numerical algorithm,
the second one describes the exact value we are approximating, and the third one describes the theo-
rem we wish to prove. For more complex algorithms, we may need a fourth part that describes hints
given to Gappa.

@RN = float<ieee_64,ne>;
defines RN as round-to-nearest in binary64 arithmetic

x = RN(xx);
a2 = -2251799813622611b-52;
a4 = 1501189276987675b-55;

description of the program

y RN = x * x;
now, we describe the action of the FMA
s1beforernd = a2 + a4*y;
s1 = RN(s1beforernd);
s2 RN = s1*y;
s = 1 + s2; # no rounding: Fast2Sum is an exact transformation

description of the exact value we are approximating
convention: an "M" as a prefix of the names of "exact" variables

http://gappa.gforge.inria.fr

2.2 Advanced Manipulation of FP Numbers 25

My = x * x;
Ms1 = a2 + a4 * My;
Ms2 = Ms1 * My;
Ms = 1 + Ms2;
epsilon = (Ms-s);

description of what we want to prove

{
input hypothesis
|x| <= 1.23e-02

->
goal to prove
|epsilon| in ?
/\ |s2| <= 1

first line of goal: bound we wish to obtain
second line: necessary to allow one to use Fast2Sum
}

When running this file with Gappa, we obtain

Results:
|epsilon| in [0, 94384511554069319b-122 {1.77518e-20, 2ˆ(-65.6106)}]

Concerning the first goal |epsilon| in ?, Gappa found the same error bound as the one we have
computed in the previous section (which is not surprising: it probably uses the same method). There is
no answer to our second goal |s2|<= 1 which, in Gappa’s syntax, just means that the answer was
true.

For more complex programs, the way we have written the previous Gappa file is dangerous. We
wanted to have an estimate of the error committedwhen evaluating 1+a2x2+a4x4 usingAlgorithm 10.
Imagine we have committed an error in the description of the program (hence quite possibly in the
program itself), and that we have written

s1beforernd = a2 + a4*x;

instead of

s1beforernd = a2 + a4*y;

since the part of the Gappa file that describes the exact value was just obtained by directly rewriting,
without roundings, the description of the program, we would very likely have also written

Ms1 = a2 + a4 * x;

instead of

Ms1 = a2 + a4 * My;

so that Gappa would have concluded that the computation is very accurate, although we do not at all
compute what we wished to compute! The solution to that problem is to have a very simple description
of the exact value, as close as possible to the mathematical definition and as independent as possible
from the algorithm being used. We could for instance replace the four lines that describe the exact
value by

Ms = 1 + a2*x*x + a4*x*x*x*x;

Unfortunately, if we just do that, we obtain a poor error bound. Gappa returns

26 2 Introduction to Computer Arithmetic

Results:
|epsilon| in [0, 174426593954067b-60 {0.000151291, 2ˆ(-12.6904)}]

The solution is to give a hint toGappa, i.e., to explain how themathematical definition and the algorithm
are related. This is done very simply, just by adding the line

Ms -> 1 + (a2 + a4*(x*x))*(x*x);

Gappa will try to check that the expressions 1 + a2*x*x + a4*x*x*x*x and 1 + (a2 +
a4*(x*x))*(x*x) are equivalent, warn us if it does not succeed, and use the hint to compute a
much better error bound, very close to the first one:

Results:
|epsilon| in [0, 94391651810570331b-122 {1.77531e-20, 2ˆ(-65.6105)}]

Hence, our final Gappa file is as follows.

@RN = float<ieee_64,ne>;
defines RN as round to the nearest in binary64 arithmetic

x = RN(xx);
a2 = -2251799813622611b-52;
a4 = 1501189276987675b-55;

description of the program

y RN = x * x;
now, we describe the action of the FMA
s1beforernd = a2 + a4*y;
s1 = RN(s1beforernd);
s2 RN = s1*y;
s = 1 + s2; # no rounding: Fast2Sum is an exact transformation

description of the exact value we are approximating
convention: an "M" as a prefix of the names of "exact" variables

Ms = 1 + a2*x*x + a4*x*x*x*x;
epsilon = (Ms-s);

description of what we want to prove

{
input hypothesis
|x| <= 1.23e-02

->
goal to prove
|epsilon| in ?
/\ |s2| <= 1

first line of goal: bound we wish to obtain
second line: necessary to allow use of Fast2Sum

}

Now some hints to help Gappa

Ms -> 1 + (a2 + a4*(x*x))*(x*x);

As we can see, compared to our approach of the previous section, Gappa frees us from long and
error-prone calculations. Furthermore, once the initial Gappa input file is written, small modifications

2.2 Advanced Manipulation of FP Numbers 27

allow one to easily explore variants of the evaluation scheme. The most important issue, however, is
that if called with option -Bcoq, Gappa generates a formal proof of the returned result. That proof
can then be verified by the Coq proof checker.12

2.2.5 Maple Programs that Compute binary32 and binary64 Approximations

The following Maple programs implement the round-to-nearest-even rounding functions in binary32/
single-precision and binary64/double-precision. They compute the binary32 and binary64 floating-
point numbers that are closest to t for any real number t (and they use the “round-to-nearest ties to
even” tie-breaking rule).

RN function, binary32 arithmetic
nearest_binary32 := proc(xx)
local x, sign, logabsx, exponent, mantissa, infmantissa, powermin,
expmin, powermax, expmax, powermiddle, expmiddle;
Digits := 100;
x := evalf(xx);
if (x=0) then sign, exponent, mantissa := 1, -126, 0
else

if (x < 0) then sign := -1
else sign := 1
fi:
x := abs(x);
if x >= 2ˆ(127)*(2-2ˆ(-24)) then mantissa := infinity; exponent := 127
else if x <= 2ˆ(-150) then mantissa := 0; exponent := -126

else
if x <= 2ˆ(-126) then exponent := -126
else

x is between 2ˆ(-126) and 2ˆ(128)
powermin := 2ˆ(-126); expmin := -126;
powermax := 2ˆ128; expmax := 128;
while (expmax-expmin > 1) do

expmiddle := round((expmax+expmin)/2);
powermiddle := 2ˆexpmiddle;
if x >= powermiddle then

powermin := powermiddle;
expmin := expmiddle

else
powermax := powermiddle;
expmax := expmiddle

fi
od;

now, expmax - expmin = 1
and powermin <= x < powermax
powermin = 2ˆexpmin
and powermax = 2ˆexpmax
so expmin is the exponent of x

exponent := expmin;
fi;
infmantissa := x*2ˆ(23-exponent);
if frac(infmantissa) <> 0.5 then mantissa := round(infmantissa)

else
mantissa := floor(infmantissa);
if type(mantissa,odd) then mantissa := mantissa+1 fi

12Coq can be downloaded at https://coq.inria.fr.

https://coq.inria.fr

28 2 Introduction to Computer Arithmetic

fi;
mantissa := mantissa*2ˆ(-23);

fi;
fi;

fi;
sign*mantissa*2ˆexponent;
end:

RN function, binary64 arithmetic

nearest_binary64 := proc(xx)
local x, sign, logabsx, exponent, mantissa, infmantissa,
powermin, expmin, powermax,expmax, powermiddle, expmiddle;
Digits := 100;
x := evalf(xx);
if (x=0) then sign, exponent, mantissa := 1, -1022, 0
else

if (x < 0) then sign := -1
else sign := 1
fi:
x := abs(x);
if x >= 2ˆ(1023)*(2-2ˆ(-53)) then mantissa := infinity; exponent := 1023
else if x <= 2ˆ(-1075) then mantissa := 0; exponent := -1022

else
if x <= 2ˆ(-1022) then exponent := -1022
else

x is between 2ˆ(-1022) and 2ˆ(1024)
powermin := 2ˆ(-1022); expmin := -1022;
powermax := 2ˆ1024; expmax := 1024;
while (expmax-expmin > 1) do

expmiddle := round((expmax+expmin)/2);
powermiddle := 2ˆexpmiddle;
if x >= powermiddle then

powermin := powermiddle;
expmin := expmiddle

else
powermax := powermiddle;
expmax := expmiddle

fi
od;

now, expmax - expmin = 1
and powermin <= x < powermax
powermin = 2ˆexpmin
and powermax = 2ˆexpmax
so expmin is the exponent of x

exponent := expmin;
fi;
infmantissa := x*2ˆ(52-exponent);
if frac(infmantissa) <> 0.5 then mantissa := round(infmantissa)

else
mantissa := floor(infmantissa);
if type(mantissa,odd) then mantissa := mantissa+1 fi

fi;
mantissa := mantissa*2ˆ(-52);

fi;
fi;

fi;
sign*mantissa*2ˆexponent;
end:

2.2 Advanced Manipulation of FP Numbers 29

The following programs evaluates ulp (t) for any real number t , in binary32 and binary64 floating-
point arithmetic.

ULP function, binary32 arithmetic

ulp_in_binary_32 := proc(t)
local x, res, expmin, expmax, expmiddle;
x := abs(t);
if x < 2ˆ(-125) then res := 2ˆ(-149)

else if x > (1-2ˆ(-24))*2ˆ(128) then res := 2ˆ104
else

expmin := -125; expmax := 128;
x is between 2ˆexpmin and 2ˆexpmax

while (expmax-expmin > 1) do
expmiddle := round((expmax+expmin)/2);
if x >= 2ˆexpmiddle then

expmin := expmiddle
else expmax := expmiddle
fi;

od;
now, expmax - expmin = 1
and 2ˆexpmin <= x < 2ˆexpmax

res := 2ˆ(expmin-23)
fi;
fi; res;
end:

ULP function, binary64 arithmetic

ulp_in_binary_64 := proc(t)
local x, res, expmin, expmax, expmiddle;
x := abs(t);
if x < 2ˆ(-1021) then res := 2ˆ(-1074)

else if x > (1-2ˆ(-53))*2ˆ(1024) then res := 2ˆ971
else

expmin := -1021; expmax := 1024;
x is between 2ˆexpmin and 2ˆexpmax

while (expmax-expmin > 1) do
expmiddle := round((expmax+expmin)/2);
if x >= 2ˆexpmiddle then

expmin := expmiddle
else expmax := expmiddle
fi;

od;
now, expmax - expmin = 1
and 2ˆexpmin <= x < 2ˆexpmax

res := 2ˆ(expmin-52)
fi;
fi:
res;
end:

2.2.6 The Future of Floating-Point Arithmetic

Floating-point arithmetic, as it is known nowadays, results from a compromise between several require-
ments, in terms of range, accuracy, ease of use, ease of implementation, ease of verification/certification,

30 2 Introduction to Computer Arithmetic

speed, memory consumption…. As technology evolves, many parameters involved in that compromise
change with time. A simple example is the ratio between the delay of a memory access and the delay
of an arithmetic operation. This ratio has considerably increased during the last years. Ultimately, this
evolution will almost certainly lead to changes in the way we represent and manipulate real numbers
on computers. However, it is difficult to forecast the magnitude of these changes: will we use slightly
modified versions of our current floating-point systems, or will we use very different number systems?
Over the years, various alternatives to conventional floating-point arithmetic have been suggested: ta-
pered floating-point arithmetic [13, 350], level index arithmetic [91, 369], logarithmic number systems
[272, 441], slash number systems [344], etc. Recently, Gustafson [211] suggested an interesting variant
of tapered floating-point arithmetic, called the Unum number system, with an “exact” bit added to the
representation of the numbers, and a subtle interval interpretation of the nonexact representations.

2.3 Redundant Number Systems

In general, when we represent numbers in radix r , we use the digits 0, 1, 2, … r − 1. And yet,
sometimes, number systems using a different set of digits naturally arise. In 1840, Cauchy suggested
the use of digits−5 to+5 in radix 10 to simplify multiplications [73]. Booth recoding [47] (a technique
sometimes used by multiplier designers) generates numbers represented in radix 2, with digits −1, 0,
and +1. Digit-recurrence algorithms for division and square root [179, 399] also generate results in a
“signed-digit” representation.

Some of these exotic number systems allow carry-free addition. This is what we are going to
investigate in this section.

First, assume that we want to compute the sum s = snsn−1sn−2 . . . s0 of two integers x =
xn−1xn−2 . . . x0 and y = yn−1yn−2 . . . y0 represented in the conventional binary number system.
By examining the well-known equation that describes the addition process (“∨” is the boolean “or”
and “⊕” is the “exclusive or”):

c0 = 0

si = xi ⊕ yi ⊕ ci
ci+1 = xi yi ∨ xi ci ∨ yi ci

(2.9)

we see that there is a dependency relation between ci , the incoming carry at position i , and ci+1. This
does not mean that the addition process is intrinsically sequential, and that the sum of two numbers
is computed in a time that grows linearly with the size of the operands: the addition algorithms
and architectures proposed in the literature [180, 191, 277, 370, 378] and implemented in current
microprocessors are much faster than a straightforward, purely sequential, implementation of (2.9).
Nevertheless, the dependency relation between the carries makes a fully parallel addition impossible
in the conventional number systems.

2.3.1 Signed-Digit Number Systems

In 1961, Avizienis [12] studied different number systems called signed-digit number systems. Let us
assume that we use radix r . In a signed-digit number system, the numbers are no longer represented
using digits between 0 and r − 1, but with digits between −a and a, where a ≤ r − 1. Every number
is representable in such a system, if 2a ≥ r − 1. For instance, in radix 10 with digits between −5 and

2.3 Redundant Number Systems 31

Figure 2.3 Computation
of 153120 + 112616 using
Avizienis’ algorithm in
radix r = 10 with a = 6.

xi 1 5 3 1 2 0

yi 1 1 2 6 1 6

xi + yi 2 −6 1 7 −1 −6

ti+1 0 −1 0 1 0 −1

wi 2 4 1 −3 −1 4

si 1 4 2 3 2 4

+5, every number is representable. The number 15725 can be represented by the digit chain 24325
(we use 4 to represent the digit −4); i.e., 15725 = 2× 104 + (−4)× 103 + (−3)× 102 + 2× 101 + 5.

The same number can also be represented by the digit chain 24335. If 2a ≥ r , then some numbers
have several possible representations, which means that the number system is redundant. As shown
later, this is an important property.

Avizienis also proposed addition algorithms for these number systems. Algorithm 11 performs the
addition of two n-digit numbers x = xn−1xn−2 · · · x0 and y = yn−1yn−2 · · · y0 represented in radix r
with digits between −a and a, where a ≤ r − 1 and13 2a ≥ r + 1.

Algorithm 11 Avizienis’ algorithm
Input : x = xn−1xn−2 · · · x0 and y = yn−1yn−2 · · · y0
Output : s = snsn−1sn−2 · · · s0 = x + y

1. in parallel, for i = 0, . . . , n − 1, compute ti+1 (carry) and wi (intermediate sum) satisfying:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ti+1 =

⎧
⎪⎨
⎪⎩

+1 if xi + yi ≥ a

0 if −a + 1 ≤ xi + yi ≤ a − 1

−1 if xi + yi ≤ −a

wi = xi + yi − r × ti+1.

(2.10)

2. in parallel, for i = 0, . . . , n, compute si = wi + ti , with wn = t0 = 0.

By examining the algorithm, we can see that the carry ti+1 does not depend on ti . There is no
longer any carry propagation: all digits of the result can be generated simultaneously. The conditions
“2a ≥ r +1” and “a ≤ r −1” cannot be simultaneously satisfied in radix 2. Nevertheless, it is possible
to perform parallel, carry-free additions in radix 2 with digits equal to −1, 0, or 1, by using another
algorithm, also due to Avizienis (or by using the borrow-save adder presented in the following).

Figure2.3 presents an example of the execution of Avizienis’ algorithm in the case r = 10, a = 6.
Redundant number systems are used inmany instances: recoding ofmultipliers, quotients in division

and division-like operations, online arithmetic [182], etc. Redundant additions are commonly used
within arithmetic operators such as multipliers and dividers (the input and output data of such operators
are represented in a nonredundant number system, but the internal calculations are performed in
a redundant number system). For instance, most multipliers use (at least implicitly) the carry-save
number system, whereas digit-recurrence dividers actually use two different number systems: the
partial remainders are represented, in general, in carry-save, and the quotient digits are represented in

13This condition is stronger than the condition 2a ≥ r − 1 that is required to represent every number.

32 2 Introduction to Computer Arithmetic

a signed-digit number system of radix 2k , where k is a small integer [179]. The reader interested in
redundant number systems can find useful information in [12, 180, 375, 376, 377, 382].

2.3.2 The Carry-Save and Borrow-Save Number Systems

Now let us focus on the particular case of radix 2. In this radix, the two common redundant number
systems are the carry-save (CS) number system, and the signed-digit number system. In the carry-save
number system, numbers are represented with digits 0, 1, and 2, and each digit d is represented by two
bits d(1) and d(2) whose sum equals d. In the signed-digit number system, numbers are representedwith
digits−1, 0, and 1. In that system, we can represent the digits with the borrow-save (BS) encoding, also
called (p, n) encoding [375]: each digit d is represented by two bits d+ and d− such that d+ −d− = d
(different encodings of the digits also lead to fast and simple arithmetic operators [88, 443]). Those two
number systems allow very fast additions and subtractions. The carry-save adder (see, for instance,
[277]) is a very well-known structure used for adding a number represented in the carry-save system
and a number represented in the conventional binary system. It consists of a row of full-adder cells,
where a full-adder cell computes two bits t and u, from three bits x , y, and z, such that 2t + u equals
x + y + z (see Figure2.4). A carry-save adder is presented in Figure2.5.

t = xy + xz + yz

u = x ⊕ y ⊕ z

ut

zyx

FA

Figure 2.4 A full-adder (FA) cell. From three bits x , y, and z, it computes two bits t and u such that x + y+ z = 2t +u.

AF AF AF AF

AF AFFAFA

0

s(1)4 s(2)0s(1)0s(2)1s(1)1s(2)2s(1)2s(2)3s(1)3s(2)4

a(1)0a(1)1a(1)2a(1)3 a(2)0a(2)1a(2)2a(2)3 b0b3

a3 b3 a2 b2 a1 b1 a0 b0 0

s0s1s2s3s4

b2 b1

0

Figure 2.5 A carry-save adder (bottom), compared to a carry-propagate adder (top).

2.3 Redundant Number Systems 33

t = xy+ xz̄+ yz̄
+
+−

−
−++

+

x y z x y z

t uut

−
−

u = x ⊕ y ⊕ z

Figure 2.6 A PPM cell. From three bits x , y, and z, it computes two bits t and u such that x + y − z = 2t − u.

An adder structure for the borrow-save number system can easily be built using elementary cells
slightly different from the FA cell. Algorithm 12 adds two BS numbers.

Algorithm 12 Borrow-Save addition
• input: two BS numbers a = an−1an−2 · · · a0 and b = bn−1bn−2 · · · b0, where the digits ai and bi belong to {−1, 0, 1},

each digit d being represented by two bits d+ and d− such that d+ − d− = d.
• output: a BS number s = snsn−1 · · · s0 satisfying s = a + b.

For each i = 0, . . . , n − 1, compute two bits c+
i+1 and c−

i such that 2c+
i+1 − c−

i = a+
i + b+

i − a−
i ;

For each i = 0, . . . , n − 1, compute s−
i+1 and s+

i such that 2s−
i+1 − s+

i = c−
i + b−

i − c+
i (with c+

0 = c−
n = 0, and

s+
n = c+

n).

Both steps of this algorithm require the same elementary computation: from three bits x , y, and
z we must find two bits t and u such that 2t − u = x + y − z. This can be done using a PPM cell
(“PPM” stands for “Plus Plus Minus”), depicted in Figure2.6, which is very similar to the FA cell
previously described. Using PPM cells, one can easily derive the borrow-save adder of Figure2.7 from
the algorithm. It is possible to add a number represented in the borrow-save system and a number
represented in the conventional, nonredundant, binary system by using only one row of PPM cells.14

This is described in Figure2.8. More details on borrow-save based arithmetic operators can be found
in [24].

2.3.3 Canonical Recoding

Multiplying a given number a by a binary number b = bn−1bn−2 · · · b0 = ∑n−1
i=0 bi2i reduces to

computing
n−1∑
i=0

bi · (a2i),

i.e., we need to add as many shifted copies of a as there are nonzero values bi . Very soon (first for
accelerating multiplications when they were performed in software, using additions and shifts, and
later on for accelerating hardwired multiplication and reducing the area of multipliers), authors tried
to recode the operand b in order to reduce its number of nonzero digits. With the conventional binary
representation (for which the only values allowed for bi are 0 and 1), we have only one possible

14The carry-save and borrow-save systems are roughly equivalent: everything that is computable using one of these
systems is computable at approximately the same cost as with the other one.

34 2 Introduction to Computer Arithmetic

0

0
− +

− − +
− +

− − +
− +

− − +
− +

− − +

+ −
+ + −

+ −
+ + −

+ −
+ + −

+ −
+ + −

a+3 a+2 a+1 a+0b+3 b+2 b+1 b+0a−
3 a−

2 a−
1 a−

0b−
3 b−

2 b−
1 b−

0

s+4 s+3 s+2 s+1 s+0s−4 s−3 s−2 s−1 s−0

Figure 2.7 A borrow-save adder.

0

s−4 s+0s−0s+1s−1s+2s−2s+3s−3s+4

a−0a−1a−2a−3 a+0a+1a+2a+3 b0b3

+ +−
+ −

+ +−
+ −

+ +−
+ −

+ +−
+ −

+ +−
+ −

+ +−
+ −

+ +−
+ −

+ +−
+ −

a3 b3 a2 b2 a1 b1 a0 b0 0

s0s1s2s3s4

b2 b1

0

Figure 2.8 A structure for adding a borrow-save number and a nonredundant number (bottom), compared to a carry-
propagate subtractor (top).

representation for each integer b, so attempting to reduce the number of nonzero digits makes no
sense, but as we have seen before, if we allow digits from the larger digit set {−1, 0, 1}, we obtain a
redundant number system: numbers have several possible representations, so that it makes sense to try
to minimize the number of nonzero digits. In our initial multiplication problem, when bi = −1, the
number a2i is subtracted, which can be done with approximately the same delay and/or silicon area as
an addition. For instance (still using the symbol 1 for representing the digit “−1”), the binary number

11101001111

can be “recoded”
100101010001,

2.3 Redundant Number Systems 35

and it can be shown (it is a consequence of Theorem 6, below) that the number of nonzero digits of this
last representation is minimal. Booth [47] first suggested to recode the initial binary chain by replacing
all sub-strings of the form

0 1 · · · 111︸ ︷︷ ︸
k ones

by
1 0 · · · 00︸ ︷︷ ︸
k−1 zeros

1.

More formally, assuming that the initial n-bit binary chain is dn−1dn−2 · · · d0, the Booth-recoded,
n + 1-digit chain, fn fn−1 fn−2 · · · f0 is obtained using the set of rules given in Table2.4.

Unfortunately, that set of rules does not always generate a digit string with a minimal number of
nonzero digits. Indeed, the “recoded” digit chain may even have more nonzero digits than the initial
one. Just consider the input chain

10101010101,

whose Booth recoding is
111111111111.

Several authors suggested different recodings that are guaranteed to have less than �n/2� nonzero digits
(where n is the length of the original binary chain). In his seminal paper [393], Reitwiesner suggested
a recoding algorithm that generates digit chains that are “minimal,” i.e., they have the smallest possible
number of nonzero digits. Such digit chains are called Canonical recodings. Reitwiesner’s algorithm
consists in performing the transformation presented in Table2.5. Looking at the table, one easily checks
that we always have

2ci+1 + fi = ci + di ,

from which we immediately deduce that

n∑
i=0

fi2
i =

n−1∑
i=0

di2
i ,

i.e., the algorithm effectively generates a digit string that represents the input number.
Looking at the table, we can immediately find the following basic property of the digit strings

generated by Reitwiesner’s algorithm (which explains why the generated digit string is sometimes
called nonadjacent form [208]).

Table 2.4 The set of rules that generate the Booth recoding fn fn−1 fn−2 · · · f0 of a binary number dn−1dn−2 · · · d0
(with di ∈ {0, 1} and fi ∈ {−1, 0, 1}). By convention dn = d−1 = 0.

dn dn−1 fn

0 0 0

0 1 1

1 0 1

1 1 0

36 2 Introduction to Computer Arithmetic

Table 2.5 Reitwiesner’s algorithm: the set of rules that generate the canonical recoding fn fn−1 fn−2 · · · f0 of a binary
number dn−1dn−2 · · · d0 (with di ∈ {0, 1} and fi ∈ {−1, 0, 1}). The process is initialized by setting c0 = 0, and by
convention dn = 0.

ci di+1 di fi ci+1

0 0 0 0 0

0 0 1 1 0

0 1 0 0 0

0 1 1 1 1

1 0 0 1 0

1 0 1 0 1

1 1 0 1 1

1 1 1 0 1

Property 4 (The nonzero digits of a digit string generated by Reitwiesner’s algorithm are nonadja-
cent.) If fn fn−1 · · · f0 is the recoding of the binary string dn−1 · · · d0 deduced from the set of rules
presented in Table2.5 then for any i , fi · fi+1 = 0.

A first consequence of this is that the canonical recoding of an n-bit binary string has at most �n/2�
nonzero digits. A second consequence, due to Theorem 6 below, is that the digit strings generated by
Reitwiesner’s algorithm are minimal: they have the smallest possible number of nonzero digits.

Theorem 6 (Reitwiesner’s theorem [393]: minimality of nonadjacent digit chains) Assume an integer
x is represented by a nonadjacent binary digit chain, i.e.,

x = fn fn−1 fn−2 · · · f0

with

∀i,
{

fi ∈ {−1, 0, 1},
fi · fi+1 = 0

Any binary representation of x with digits in {−1, 0, 1} will contain as least as many nonzero digits as
the digit chain fn fn−1 fn−2 · · · f0.

Part I

Algorithms Based on Polynomial
Approximation and/or Table Lookup,

Multiple-Precision Evaluation
of Functions

3The Classical Theory of Polynomial
or Rational Approximations

Using a finite number of additions, subtractions, multiplications, and comparisons, the only functions
of one variable that one can compute are piecewise polynomials. If we add division to the set of
available operations, the only functions one can compute are piecewise rational functions. Therefore,
it is natural to try to approximate the elementary functions by polynomials or rational functions. The
questions that immediately spring to mind are:

• How can we compute such polynomial or rational approximations?
• What is the best way (in terms of accuracy and/or speed) to evaluate a polynomial or a rational

function?
• The final error will be the sum of two errors: the approximation error (i.e., the “distance” between the

function being approximated and the polynomial or rational function), and the evaluation error due
to the fact that the polynomial or rational functions are evaluated in finite precision floating-point
arithmetic. Can we compute tight bounds on these errors?

We will try to address these questions in this chapter, and in Chapters4 and 5. Throughout this
chapter, we denote by Pn the set of the polynomials of degree less than or equal to n with real
coefficients, and by Rp,q the set of the rational functions with real coefficients whose numerator and
denominator have degrees less than or equal to p and q, respectively.

Let us focus first on the problem of building polynomial approximations. Of course, it is crucial to
compute the coefficients of such approximations using a precision significantly higher than the “target
precision” (i.e., the precision of the final result). We want to approximate a function f by an element
p∗ of Pn on an interval [a, b]. The methods presented in this chapter can be applied to any continuous
function f (they are not limited to the elementary functions). Two kinds of approximations are consid-
ered here: the approximations that minimize the “average error,” called least squares approximations,
and the approximations that minimize the worst-case error, called least maximum approximations, or
minimax approximations. In both cases, we want to minimize a “distance” ||p∗ − f ||. For least squares
approximations, that distance is

||p∗ − f ||2,[a,b] =
√∫ b

a
w(x) (f (x) − p∗(x))2 dx,

© Springer Science+Business Media New York 2016
J.-M. Muller, Elementary Functions, DOI 10.1007/978-1-4899-7983-4_3

39

http://dx.doi.org/10.1007/978-1-4899-7983-4_4
http://dx.doi.org/10.1007/978-1-4899-7983-4_5

40 3 The Classical Theory of Polynomial or Rational Approximations

-8x10-14

-6x10-14

-4x10-14

-2x10-14

 0

 2x10-14

 4x10-14

 6x10-14

 8x10-14

-1 -0.5 0 0.5 1

interpolation at Chebyshev points
minimax polynomial

Figure 3.1 Interpolation of exp(x) at the 13 Chebyshev points cos(kπ/12), k = 0, 1, 2, . . . , 12, compared to the
degree-12 minimax approximation to exp(x) in [−1, 1]. The interpolation polynomial is nearly as good as the minimax
polynomial.

where w is a continuous, nonnegative, weight function, that can be used to select parts of [a, b] where
we want the approximation to be more accurate. For minimax approximations,1 the distance is

||p∗ − f ||∞,[a,b] = max
a≤x≤b

w(x)|p∗(x) − f (x)|,

where w = 1 when we are interested in minimizing absolute errors, and w(x) = 1/ f (x) when we are
interested in minimizing relative errors.

For the sake of simplicity, when there is no ambiguity on the interval of approximation, we will
write ||p∗ − f ||2 instead of ||p∗ − f ||2,[a,b], and ||p∗ − f ||∞ instead of ||p∗ − f ||∞,[a,b].

3.1 What About Interpolation?

If one tries to approximate a continuous function by a polynomial, the first two ideas one has are,
in general, to use Taylor series or to interpolate the function at some points. We will see later on in
this chapter that in general Taylor series is not a good solution (at least for fixed-precision imple-
mentations: when multiple precision arithmetic is at stake, this may be quite different). Interpolation
at cleverly chosen points could be a sensible solution: interpolating a function at Chebyshev points
gives a polynomial almost as good as the minimax (see Section3.3) polynomial, this is illustrated by
Figure3.1. Chebyshev interpolation is a very interesting tool, with nice mathematical properties and

1This kind of approximation is sometimes called Chebyshev approximation. Throughout this book, Chebyshev approxi-
mation means least squares approximation using Chebyshev polynomials. Chebyshev worked on both kinds of approx-
imation.

3.1 What About Interpolation? 41

-8x10-13

-6x10-13

-4x10-13

-2x10-13

 0

 2x10-13

 4x10-13

 6x10-13

 8x10-13

-1 -0.5 0 0.5 1

interpolation at regularly-spaced points
minimax polynomial

Figure 3.2 Interpolation of exp(x) at 13 regularly spaced points, compared to the degree-12 minimax approximation
to exp(x) in [−1, 1]. The minimax polynomial is much better than the interpolation polynomial, especially near both
ends of the interval.

many useful applications [459]. The reader interested by this topic can consult the excellent book by
Trefethen [458] and try the Chebfun software system.2 Trefethen notices in that book that for very
large degrees, interpolating a function at Chebyshev points is much faster than computing its minimax
approximation. This explains why for many (most?) numerical applications interpolation is preferable.
However, the context of our work is particular: as function implementers, we never deal with degrees
larger than a few tens. Furthermore, we can afford to spend time for building once for all finely tuned
approximations that will be used millions of times: this leads us to favor approximation methods.

Notice that, although interpolation atChebyshev points is a sensible option, interpolation at regularly
spaced points is a catastrophic solution that will in general result in very poor approximations. This is
illustrated by Figure3.2.

3.2 Least Squares Polynomial Approximations

We are looking for a polynomial of degree ≤ n,

p∗(x) = p∗
nx

n + p∗
n−1x

n−1 + · · · + p∗
1x + p∗

0

that satisfies ∫ b

a
w(x)

(
f (x) − p∗(x)

)2
dx = min

p∈Pn

∫ b

a
w(x) (f (x) − p(x))2 dx . (3.1)

Define 〈 f, g〉 as

2Chebfun is available at www.chebfun.org.

www.chebfun.org

42 3 The Classical Theory of Polynomial or Rational Approximations

〈 f, g〉 =
∫ b

a
w(x) f (x)g(x)dx .

The approximation p∗ can be computed as follows:

• build a sequence (Tm), (m ≤ n) of polynomials such that (Tm) is of degree m, and such that
〈Ti , Tj 〉 = 0 for i �= j . Such polynomials are called orthogonal polynomials;

• compute the coefficients:

ai = 〈 f, Ti 〉
〈Ti , Ti 〉 ; (3.2)

• compute

p∗ =
n∑

i=0

ai Ti .

The proof is rather obvious and can be found in most textbooks on numerical analysis [202]. Some
sequences of orthogonal polynomials, associated with simple weight functions w, are well known,
so there is no need to compute them again. Let us now present some of them. More information on
orthogonal polynomials can be found in [1, 203].

3.2.1 Legendre Polynomials

• weight function: w(x) = 1;
• interval [a, b] = [−1, 1];
• definition: ⎧⎪⎨

⎪⎩

T0(x) = 1
T1(x) = x

Tn(x) = 2n − 1

n
xTn−1(x) − n − 1

n
Tn−2(x);

• values of the scalar products:

〈Ti , Tj 〉 =
⎧⎨
⎩
0 if i �= j

2

2i + 1
otherwise.

3.2.2 Chebyshev Polynomials

• weight function: w(x) = 1/
√
1 − x2;

• interval [a, b] = [−1, 1];
• definition: ⎧⎨

⎩
T0(x) = 1
T1(x) = x
Tn(x) = 2xTn−1(x) − Tn−2(x) = cos

(
n cos−1 x

) ;

• values of the scalar products:

3.2 Least Squares Polynomial Approximations 43

-1

-0.5

 0

 0.5

-1 -0.5 0 0.5 1

Figure 3.3 Graph of the polynomial T7(x).

〈Ti , Tj 〉 =
⎧⎨
⎩
0 if i �= j
π if i = j = 0
π/2 otherwise.

An example of a Chebyshev polynomial (T7) is plotted in Figure3.3.
Chebyshev polynomials play a central role in approximation theory. Among their many proper-

ties, the following three are frequently used. A much more detailed presentation of the Chebyshev
polynomials can be found in [52, 398, 458].

Theorem 7 For n ≥ 0, we have

Tn(x) = n

2

n/2�∑
k=0

(−1)k
(n − k − 1)!
k!(n − 2k)! (2x)n−2k .

Hence, the leading coefficient of Tn is 2n−1. Tn has n real roots, all strictly between −1 and 1.

Theorem 8 There are n + 1 points x0, x1, x2, . . . , xn satisfying

−1 = x0 < x1 < x2 < · · · < xn = 1

such that
Tn(xi) = (−1)n−i max

x∈[−1,1] |Tn(x)| ∀i, i = 0, . . . , n.

44 3 The Classical Theory of Polynomial or Rational Approximations

That is, the maximum absolute value of Tn is attained at the xi ’s, and the sign of Tn alternates at these
points.

Let us call a monic polynomial a polynomial whose leading coefficient is 1. We have,

Theorem 9 (Monic polynomials of smallest norm) Let a, b be real numbers, with a ≤ b. The monic
degree-n polynomial P that minimizes

max
x∈[a,b] |P(x)|

is
(b − a)n

22n−1 Tn

(
2x − b − a

b − a

)
.

3.2.3 Jacobi Polynomials

• weight function: w(x) = (1 − x)α(1 + x)β (α, β > 1);
• interval [a, b] = [−1, 1];
• definition:

Tn(x) = 1

2n

n∑
m=0

(
n + α

m

)(
n + β

n − m

)
(x − 1)n−m(x + 1)m;

• values of the scalar products:

〈Ti , Tj 〉 =
{
0 if i �= j
hi otherwise.

with

hi = 2α+β+1

2i + α + β + 1

�(i + α + 1)�(i + β + 1)

i !�(i + α + β + 1)
.

3.2.4 Laguerre Polynomials

• weight function: w(x) = e−x ;
• interval [a, b] = [0,+∞];
• definition:

Tn(x) = ex

n!
dn

dxn
(xne−x);

• values of the scalar products:

〈Ti , Tj 〉 =
{
0 if i �= j
1 otherwise.

3.2.5 UsingThese Orthogonal Polynomials in Any Interval

Except for the Laguerre polynomials, for which [a, b] = [0,+∞], the orthogonal polynomials we have
given are for the interval [−1, 1]. Getting an approximation for another interval [a, b] is straightforward:

3.2 Least Squares Polynomial Approximations 45

• for u ∈ [−1, 1], define
g(u) = f

(
b − a

2
u + a + b

2

)
;

notice that x = ((b − a)/2)u + ((a + b)/2) ∈ [a, b];
• compute a least squares polynomial approximation q∗ to g in [−1, 1];
• get the least squares approximation to f , say p∗, as

p∗(x) = q∗
(

2

b − a
x − a + b

b − a

)
.

3.3 Least Maximum Polynomial Approximations

As in the previous section, we want to approximate a continuous function f by a polynomial p∗ ∈
Pn on a closed interval [a, b]. Let us assume the weight function w(x) equals 1. In the following,
|| f − p||∞,[a,b] (or || f − p||∞ for short when there is no ambiguity on the interval of approximation)
denotes the distance:

|| f − p||∞,[a,b] = max
a≤x≤b

| f (x) − p(x)|.

The norm || · ||∞ is often called supremum norm, or L∞ norm. We look for a polynomial p∗ that
satisfies

|| f − p∗||∞ = min
p∈Pn

|| f − p||∞.

The polynomial p∗ exists and is unique. It is called theminimax degree-n polynomial approximation
to f on [a, b]. In 1885, Weierstrass proved the following theorem, which shows that a continuous
function can be approximated as accurately as desired by a polynomial.

Theorem 10 (Weierstrass 1885) Let f be a continuous function on [a, b]. For any ε > 0 there exists
a polynomial p such that ||p − f ||∞,[a,b] ≤ ε.

Another theorem, due to Chebyshev,3 gives a characterization of the minimax approximations to a
function.

Theorem 11 (Chebyshev) p∗ is the minimax degree-n approximation to f on [a, b] if and only if
there exist at least n + 2 values

a ≤ x0 < x1 < x2 < · · · < xn+1 ≤ b

such that
p∗(xi) − f (xi) = (−1)i

[
p∗(x0) − f (x0)

] = ±|| f − p∗||∞.

See for instance [458] or [388] for a proof. The books by Cheney [81] and Phillips [385] are also good
references. Theorem 11 is illustrated in Figures3.4 and 3.5 for the case n = 3.

3According to Trefethen [458], that result was known by Chebyshev but the first proof was given by Kirchberger in his
Ph.D. dissertation [273].

46 3 The Classical Theory of Polynomial or Rational Approximations

Figure 3.4 The exp(−x2)
function and its degree-3
minimax approximation on
the interval [0, 3] (dashed
line). There are five values
where the maximum
approximation error is
reached with alternate
signs.

32.521.510.5

1

0.8

0.6

0.4

0.2

0

Chebyshev’s theorem shows that if p∗ is the minimax degree-n approximation to f , then the
largest approximation error is reached at least n + 2 times, and that the sign of the error alternates.
That “equioscillating” property allows us to directly find p∗ in some particular cases, as we show
in Section3.4. It is used by an algorithm, due to Remez [225, 394] (see Section3.6), that computes
the minimax degree-n approximation to a continuous function iteratively. The reader can consult the
seminal work by de La Vallée Poussin [140], Rice’s book [396], and a survey by Fraser [196].

It is worth noticing that in some cases, p∗ − f may have more than n + 2 extrema. Figure3.6
presents the minimax polynomial approximations of degrees 3 and 5 to the sine function in [0, 4π].
For instance, sin(x) − p∗

3(x) (where p∗
3 is the degree-3 minimax approximation) has 6 extrema in

[0, 4π].

3.4 Some Examples

Example 1 (Approximations to ex by Degree-2 Polynomials) Assume now that we want to compute a
degree-2 polynomial approximation to the exponential function on the interval [−1, 1]. We use some
of the methods previously presented, to compute and compare various approximations.

3.4 Some Examples 47

Figure 3.5 The difference
between the exp(−x2)
function and its degree-3
minimax approximation on
the interval [0, 3].

32.521.510.5

0.06

0.04

0.02

0

-0.02

-0.04

-0.06

Figure 3.6 The minimax
polynomial approximations
of degrees 3 and 5 to sin(x)
in [0, 4π]. Notice that
sin(x) − p3(x) has 6
extrema. From Chebyshev’s
theorem, we know that it
must have at least 5
extrema.

x
216 104

0,5

0 2

-1

8

1

0

-0,5

sin(x)

degree-3 approximation

degree-5 approximation

48 3 The Classical Theory of Polynomial or Rational Approximations

Least squares approximation using Legendre polynomials

The first three Legendre polynomials are

T0(x) = 1
T1(x) = x
T2(x) = 3

2 x
2 − 1

2 .

The scalar product associated with Legendre approximation is

〈 f, g〉 =
∫ 1

−1
f (x)g(x)dx .

One easily gets

〈ex , T0〉 = e − 1/e
〈ex , T1〉 = 2/e
〈ex , T2〉 = e − 7/e
〈T0, T0〉 = 2
〈T1, T1〉 = 2/3
〈T2, T2〉 = 2/5.

Therefore, the coefficients ai of Eq. (3.2) are a0 = (1/2) (e − 1/e), a1 = 3/e, a2 = (5/2) (e − 7/e),
and the polynomial p∗ = a0T0 + a1T1 + a2T2 is equal to

15

4

(
e − 7

e

)
x2 + 3

e
x + 33

4e
− 3e

4
 0.5367215x2 + 1.103683x + 0.9962940.

Least squares approximation using Chebyshev polynomials

The first three Chebyshev polynomials are:

T0(x) = 1
T1(x) = x
T2(x) = 2x2 − 1.

The scalar product associated with Chebyshev approximation is

〈 f, g〉 =
∫ 1

−1

f (x)g(x)√
1 − x2

dx .

Using any numerical integration algorithm, one can get

〈ex , T0〉 = 3.977463261 · · ·
〈ex , T1〉 = 1.775499689 · · ·
〈ex , T2〉 = 0.426463882 · · · .

Therefore, since 〈T0, T0〉 = π , and 〈Ti , Ti 〉 = π/2 for i > 0, the coefficients ai of Eq. (3.2) are a0 =
1.266065878, a1 = 1.130318208, a2 = 0.2714953395, and the polynomial p∗ = a0T0 +a1T1 +a2T2
is approximately equal to

3.4 Some Examples 49

0.5429906776x2 + 1.130318208x + 0.9945705392.

Minimax approximation

Assume that p∗(x) = a0 + a1x + a2x2 is the minimax approximation to ex on [−1, 1]. From
Theorem 11, there exist at least four values x0, x1, x2, and x3 where the maximum approximation
error is reached with alternate signs. The convexity of the exponential function implies x0 = −1 and
x3 = +1. Moreover, the derivative of ex − p∗(x) is equal to zero for x = x1 and x2. This gives

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a0 − a1 + a2 − 1/e = ε

a0 + a1x1 + a1x21 − ex1 = −ε

a0 + a1x2 + a2x22 − ex2 = ε

a0 + a1 + a2 − e = −ε

a1 + 2a2x1 − ex1 = 0
a1 + 2a2x2 − ex2 = 0.

(3.3)

The solution of this nonlinear system of equations is

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a0 = 0.98903973 · · ·
a1 = 1.13018381 · · ·
a2 = 0.55404091 · · ·
x1 = −0.43695806 · · ·
x2 = 0.56005776 · · ·
ε = 0.04501739 · · ·

(3.4)

Therefore, the best minimax degree-2 polynomial approximation to ex in [−1, 1] is 0.98903973 +
1.13018381x + 0.55404091x2, and the largest approximation error is 0.045.

Table3.1 presents the maximum errors obtained for the various polynomial approximations exam-
ined in this example, and the error obtained by approximating the exponential function by its degree-2
Taylor expansion at 0, namely,

ex ≈ 1 + x + x2

2
.

One can see that the Taylor expansion is much worse than the other approximations. This happens
usually: Taylor expansions only give local (i.e., around one value) approximations, and should not in
general be used for global (i.e., on an interval) approximations. The differences between the exponential
function and its approximants are plotted in Figure3.7: we see that Legendre approximation is the best
“on average,” that the minimax approximation is the best in the worst cases, and that Chebyshev
approximation is very close to the minimax approximation.

Table 3.1 Maximum absolute errors for various degree-2 polynomial approximations to ex on [−1, 1].
Taylor Legendre Chebyshev Minimax

Max. error 0.218 0.081 0.050 0.045

50 3 The Classical Theory of Polynomial or Rational Approximations

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

exp(x)-Legendre
exp(x)-Chebyshev

exp(x)-Minimax

Figure 3.7 Errors of various degree-2 approximations to ex on [−1, 1]. Legendre approximation is better on average,
and Chebyshev approximation is close to the minimax approximation.

As shown in the previous example, Taylor expansions generally give poor polynomial approxima-
tions when the degree is sufficiently high, and should be avoided.4 Let us consider another example.We
wish to approximate the sine function in [0, π/4] by a degree-11 polynomial. The error of the minimax
approximation is 0.5× 10−17, and the maximum error of the Taylor expansion is 0.7× 10−11. In this
example, the Taylor expansion is more than one million times less accurate.

It is sometimes believed that the minimax polynomial approximation to a function f is obtained
by computing an expansion of f on the Chebyshev polynomials. This confusion is probably due not
only to the fact that Chebyshev worked on both kinds of approximations, but also to the following
property. As pointed out by Hart et al. [225], if the function being approximated is regular enough,
then its Chebyshev approximation is very close to its minimax approximation (this is the case for the
exponential function, see Figure3.7). More precisely, if p∗

n is the minimax degree-n approximation
to some continuous function f on [−1, 1], and if pn is its degree-n Chebyshev approximation, then
(Trefethen [458]),

|| f − pn||∞,[−1,1] ≤
(
4 + 4

π
log(n + 1)

)
· || f − p∗

n ||∞,[−1,1].

If f is very regular, an even closer bound can be shown: Li [314] showed that when the function being
approximated is an elementary function, the minimax approximation is at most one bit more accurate
than the Chebyshev approximation.

We must notice, however, that for an irregular enough function, the Chebyshev approximation is
not so close to the minimax approximation: this is illustrated by the next example.

4An exception is multiple precision computations (see Chapter7), since it is not possible to precompute and store least
squares or minimax approximations for all possible precisions.

http://dx.doi.org/10.1007/978-1-4899-7983-4_7

3.4 Some Examples 51

Example 2 (Approximations to |x | by Degree-2 Polynomials)
In the previous example, we tried to approximate a very regular function (the exponential) by a

polynomial. We saw that even with polynomials of degree as small as 2, the approximations were quite
good. Irregular functions are more difficult to approximate. Let us study the case of the approximation
to |x |, between −1 and +1, by a degree-2 polynomial. By performing computations similar to those
of the previous example, we get

• Legendre approximation:
15

16
x2 + 3

16
= 0.9375x2 + 0.1875;

• Chebyshev approximation:

8

3π
x2 + 2

3π
 0.8488263x2 + 0.21220659;

• Minimax approximation:

x2 + 1

8
.

Those functions are plotted in Figure3.8, and the worst-case errors are presented in Table3.2.
Table3.2 and Figure3.8 show that in the case of the function |x |, the Chebyshev and the minimax

approximations are quite different (the worst-case error is less for the Legendre approximation than
for the Chebyshev approximation).

Figure 3.8 Comparison
of Legendre, Chebyshev,
and minimax degree-2
approximations to |x |.

0

0.2

0.4

0.6

0.8

1

1.2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

|x|
minimax

Chebyshev
Legendre

52 3 The Classical Theory of Polynomial or Rational Approximations

Table 3.2 Maximum absolute errors for various degree-2 polynomial approximations to |x | on [−1, 1].
Legendre Chebyshev Minimax

Max. error 0.1875 0.2122 0.125

Table 3.3 Number of significant bits (obtained as − log2(absolute error)) of the minimax approximations to various
functions on [0, 1] by polynomials of degree 2 to 8. The accuracy of the approximation changes drastically with the
function being approximated.

Function\degree 2 3 4 5 6 7 8 9

sin(x) 7.8 12.7 16.1 21.6 25.5 31.3 35.7 41.9

ex 6.8 10.8 15.1 19.8 24.6 29.6 34.7 40.1

ln(1 + x) 8.2 11.1 14.0 16.8 19.6 22.3 25.0 27.7

(x + 1)x 6.3 8.5 11.9 14.4 18.1 20.0 22.7 25.1

arctan(x) 8.7 9.8 13.2 15.5 17.2 21.2 22.3 24.5

tan(x) 4.8 6.9 8.9 10.9 12.9 14.9 16.9 19.0√
x 3.9 4.4 4.8 5.2 5.4 5.6 5.8 6.0

arcsin(x) 3.4 4.0 4.4 4.7 4.9 5.1 5.3 5.5

3.5 Speed of Convergence

We have seen in the previous sections that any continuous function can be approximated as closely
as desired by a polynomial. Unfortunately, when the function is not regular enough, to reach a given
approximation error, the degree of the required approximation polynomial may be quite large. A
theorem due to Bernstein [225] shows that the convergence of the degree-n minimax approximations
toward the function may be very slow. If we select a “speed of convergence” by choosing a decreasing
sequence (εn) of positive real numbers such that εn → 0, there exists a continuous function f such
that the approximation error of the minimax degree-n polynomial approximation to f is equal to εn ;
that is, the sequence of minimax polynomials converges to f with the “speed of convergence” that we
have chosen.

Table3.3 presents the speed of convergence of the polynomial approximations to some usual func-
tions. One can see that the speed of convergence seems difficult to predict (there are, however, results
that show that the speed depends on the function being analytic, or entire, or not [458]). Figure3.9
plots the figures given in the table.

3.6 Remez’s Algorithm

Since Remez’s algorithm plays a central role in least maximum approximation theory, we give a brief
presentation of it. We must warn the reader that, even if the outlines of the algorithm are reasonably
simple, making sure that an implementation will always return a valid result is sometimes quite diffi-
cult [196]. An experienced user might prefer to write his/her ownminimax approximation programs, to
have a better control of the various parameters. A beginner or an occasional user will probably be well
advised to use the polynomial approximation routines provided by softwares such as Sollya, Maple,
or Mathematica.

For approximating a function f in the interval [a, b], Remez’s algorithm consists in iteratively
building the set of points x0, x1, …, xn+1 of Theorem 11. We proceed as follows.

3.6 Remez’s Algorithm 53

0

5

10

15

20

25

30

35

2 3 4 5 6 7 8

N
u
m
b
e
r

o
f

b
i
t
s

Degree of the approximation

exp(x)
log(1+x)
sqrt(x)
tan(x)

Figure3.9 Number of significant bits (obtained as− log2(error)) of theminimax polynomial approximations to various
functions on [0, 1].

1. We start from an initial set of points x0, x1, …, xn+1 in [a, b].
2. We consider the linear system of equations

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p0 + p1x0 + p2x20 + · · · + pnxn0 − f (x0) = +ε

p0 + p1x1 + p2x21 + · · · + pnxn1 − f (x1) = −ε

p0 + p1x2 + p2x22 + · · · + pnxn2 − f (x2) = +ε

· · · · · ·
p0 + p1xn+1 + · · · + pnxnn+1 − f (xn+1) = (−1)n+1ε.

(3.5)

It is a system of n + 2 linear equations, with n + 2 unknowns: p0, p1, p2, . . . , pn , and ε. That
system is never singular (the corresponding matrix is a Vandermonde matrix [327]). Hence, it will
have exactly one solution (p0, p1, . . . , pn, ε). Solving this system gives a polynomial P(x) =
p0 + p1x + · · · + pnxn .

3. We now compute the set of points yi in [a, b] where P − f has its extremes, and we start again
(step 2), replacing the x ′

i s by the yi ’s.

It can be shown [196] that this is a convergent process, and that the speed of convergence is
quadratic [461]. In general, starting from the initial set of points

xi = a + b

2
+ (b − a)

2
cos

(
iπ

n + 1

)
, 0 ≤ i ≤ n + 1,

i.e., the points at which |Tn+1((2x − b − a)/(b − a))| = 1, where Ti is the Chebyshev polynomial of
degree i , is advisable. This comes from the fact that minimax approximation and approximation using

54 3 The Classical Theory of Polynomial or Rational Approximations

Chebyshev polynomials are very close in most usual cases. The following Maple program, derived
from one due to Paul Zimmermann, implements this algorithm. It is a “toy program” whose purpose
is to help the reader to play with the algorithm. It will work reasonably well provided that we always
find exactly n + 2 points in [a, b] where P − f has its extremes, and that a and b are among these
points. This will be the case in general.

First, this is a procedure that computes all roots of a given function g in the interval [a, b], assuming
that no interval of the form [a + kh, a + (k + 1)h], where h = (b − a)/200, contains more than one
root.

AllRootsOf := proc(g,a,b);
divides [a,b] into 200 subintervals
and assumes each subinterval contains at most
one root of function g
ListOfSol := [];
h := (b-a)/200;
for k from 0 to 199 do
left := a+k*h;
right := left+h;
if evalf(g(left)*g(right)) <= 0 then

sol := fsolve(g(x),x,left..right);
ListOfSol := [op(ListOfSol),sol]

end if;
end do;
ListOfSol
end;

Now, here is Remez’s algorithm.

Remez := proc(f, x, n, a, b)
P := add(p[i]*xˆi, i = 0 .. n);
pts := sort([seq(evalf(1/2*a + 1/2*b

+ 1/2*(b - a)*cos(Pi*i/(n + 1))),
i = 0 .. n + 1)]);

we initialize the set of points xi with the Chebyshev
points

ratio := 2;
Count := 1; threshold := 1.000005;

while ratio > threshold do
sys := {seq(evalf(subs(x =

op(i + 1, pts), P - f)) = (-1)ˆi*eps,
i = 0 .. n + 1)};

printf("ITERATION NUMBER: %a\n",Count);
printf("Current list of points: %a\n",pts);
Count := Count+1;
printf("Linear system: %a\n",sys);

sys := solve(sys, {eps, seq(p[i], i = 0 .. n)});
we compute the polynomial associated with the list of
points

oldq := q;
q := subs(sys, P);
printf("Current polynomial: %a\n",q);

we now compute the new list of points
by looking for the extremes of q-f
derivative := unapply(diff(q-f,x),x);
pts := AllRootsOf(derivative,a,b);
no := nops(pts);
if no > n+2 then print("Too many extreme values,

3.6 Remez’s Algorithm 55

try larger degree")
elif no = n then pts := [a,op(pts),b]
elif no = n+1 then

if abs((q-f)(a)) > abs((q-f)(b))
then pts := [a,op(pts)]

else pts := [op(pts),b]
end if

elif no < n then print("Not enough oscillations")
end if;
lprint(pts);
Emax := evalf(subs(x=pts[1],abs (q-f)));

Emin := Emax;
for i from 2 to (n+2) do

Ecurr := evalf(subs(x=pts[i],abs (q-f)));
if Ecurr > Emax then Emax := Ecurr
elif Ecurr < Emin then Emin := Ecurr fi

end do;
ratio := Emax/Emin;

We consider that we have found the Minimax polynomial
(i.e., that the conditions of Chebyshev’s
theorem are met)
when 1 < Emax/Emin < threshold
threshold must be very slightly above 1

printf("error: %a\n",Emax);
end do;
q

end proc;

To illustrate the behavior of Remez’s algorithm, let us consider the computation, with the above given
Maple program, of a degree-4 minimax approximation to sin(exp(x)) in [0, 2].

We start from the following list of points: 0, 0.1909830057, 0.6909830062, 1.309016994,
1.809016994, 2, i.e., the points

1 + cos

(
iπ

5

)
, i = 0, . . . , 5,

that is, the points at which |T5(x − 1)| = 1.
The corresponding linear system is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p0 −0.8414709848 = ε

p0 +0.1909830057p1 +0.03647450847p2 +0.00696601126p3
+0.00133038977p4 −0.9357708449 = −ε

p0 +0.6909830062p1 +0.4774575149p2 +0.3299150289p3
+0.2279656785p4 −0.9110882027 = ε

p0 +1.309016994p1 +1.713525491p2 +2.243033987p3
+2.936169607p4 +0.5319820928 = −ε

p0 +1.809016994p1 +3.272542485p2 +5.920084968p3
+10.70953431p4 +0.1777912944 = ε

p0 +2p1 +4p2 +8p3
+16p4 −0.8938549549 = −ε.

Solving this system gives the following polynomial:

P(1)(x) = 0.7808077493 + 1.357210937x
−0.7996276765x2 − 2.295982186x3 + 1.189103547x4.

56 3 The Classical Theory of Polynomial or Rational Approximations

–0.1

0

0.1

0.2

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x

Figure 3.10 Difference between P(1)(x) and sin(exp(x)) on [0, 2].

The difference P(1)(x) − sin(exp(x)) is plotted in Figure3.10.
We now compute the extremes of P(1)(x)−sin(exp(x)) in [0, 2], which gives the following new list

of points: 0, 0.3305112886, 0.9756471625, 1.554268282, 1.902075854, 2. Solving the linear system
associated to this list of points gives the polynomial

P(2)(x) = 0.6800889007 + 2.144092090x
−1.631367834x2 − 2.226220290x3 + 1.276387351x4.

The difference P(2)(x) − sin(exp(x)) is plotted in Figure3.11. One immediately sees that the extreme
values of |P(2)(x) − sin(exp(x))| are very close together: P(2) “almost” satisfies the condition of

–0.15

–0.1

–0.05

0

0.05

0.1

0.15

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x

Figure 3.11 Difference between P(2)(x) and sin(exp(x)) on [0, 2].

3.6 Remez’s Algorithm 57

Theorem 11. This illustrates the fast convergence of Remez’s algorithm: after two iterations, we already
have a polynomial that is very close to the minimax polynomial.

Computing the extremes of P(2)(x) − sin(exp(x)) in [0, 2], gives the following new list of points:
0, 0.3949555564, 1.048154245, 1.556144609, 1.879537115, 2. From that list, we get the polynomial

P(3)(x) = 0.6751785998 + 2.123809689x
−1.548829933x2 − 2.293147068x3 + 1.292365352x4.

The next polynomial

P(4)(x) = 0.6751752198 + 2.123585326x
−1.548341910x2 − 2.293483579x3 + 1.292440070x4

is such that the ratio between the largest distance |P(4)(x) − sin(exp(x))| at one of the extremes and
the smallest other distance is less than 1.000005: we can sensibly consider that we have found the
minimax polynomial.

3.7 Minimizing theMaximum Relative Error

We have previously dealt with the best approximation, for the norm

|| · ||∞,[a,b] = max
x∈[a,b] | f (x) − P(x)|,

of a function f by a polynomial P of degree n, i.e., a linear combination of the monomials 1, x , x2,
x3,…, xn . Interestingly enough,most of what we have seen (Chebyshev’s theorem, Remez’s algorithm,
etc.) can be relatively easily generalized to the approximation of a function by a linear combination of
functions ϕ0, ϕ1, ϕ2, …, ϕn , provided that they satisfy the following condition:
Haar Condition [52, 81] For any choice of n + 1 values x0 < x1 < x2 < · · · < xn in [a, b], the
determinant ∣∣∣∣∣∣∣∣∣

ϕ0(x0) ϕ1(x0) · · · ϕn(x0)
ϕ0(x1) ϕ1(x1) · · · ϕn(x1)

...
...

. . .
...

ϕ0(xn) ϕ1(xn) · · · ϕn(xn)

∣∣∣∣∣∣∣∣∣

is nonzero. In the polynomial case (ϕk(x) = xk), that determinant is the determinant of the linear
system (3.5).

With choices such as ϕk(x) = cos(kx), Remez’s algorithm has many important applications in
signal processing. Here, we are mainly interested in choosing

ϕk(x) = xk

f (x)
, (3.6)

since if these functions satisfy the Haar condition, then we can compute a best minimax approximation
to the constant function 1 by a sum of the form

58 3 The Classical Theory of Polynomial or Rational Approximations

a0 · 1

f (x)
+ a1 · x

f (x)
+ a2 · x2

f (x)
+ · · · + an · xn

f (x)
.

By doing this, we find the values a0, a1, …, an that minimize

max
a≤x≤b

∣∣∣∣1 −
(
a0 · 1

f (x)
+ a1 · x

f (x)
+ a2 · x2

f (x)
+ · · · + an · xn

f (x)

)∣∣∣∣ ,

which is equivalent to finding the polynomial P∗(x) = a0 + a1x + · · · + anxn that minimizes

max
a≤x≤b

∣∣∣∣
f (x) − P∗(x)

f (x)

∣∣∣∣ ,

i.e., we find the polynomial of degree less than or equal to n that minimizes themaximum relative error
of approximation of f .

More generally, assume that one is interested in finding “the” polynomial P∗ that minimizes

max
a≤x≤b

w(x) · | f (x) − p(x)|,

wherew is a continuous and positiveweight function. The existence and unicity of P∗ will bewarranted
if the functions ϕk(x) = w(x) · xk , for 0 ≤ k ≤ n, satisfy the Haar condition, and the coefficients
of P∗ will be found using Remez’s algorithm to obtain an approximation to w(x) · f (x) as a linear
combination of the functions ϕk .

3.8 Rational Approximations

Table3.4 gives the various errors obtained by approximating the square root on [0, 1] by polynomials.
Even with degree-12 polynomials, the approximations are bad. A rough estimation can show that to
approximate the square root on [0, 1] by a polynomial5 with an absolute error smaller than 10−7, one
needs a polynomial of degree 54.

One could believe that this phenomenon is due to the infinite derivative of the square root function
at 0. This is only partially true: a similar, yet less spectacular, phenomenon appears if we look for
approximations on [1/4, 1]. The minimax degree-25 polynomial approximation to

√
x on [1/4, 1]

has an approximation error equal to 0.13 × 10−14, whereas the minimax approximation of the same
function by a rational function whose denominator and numerator have degrees less than or equal to 5
gives a better approximation error, namely, 0.28× 10−15. This shows that for some functions in some

5Of course, this is not the right way to implement the square root function: first, it is straightforward to reduce the
domain to [1/4, 1], second, Newton–Raphson’s iteration for √

a:

xn+1 = 1

2

(
xn + a

xn

)
,

or (to avoid divisions) Newton–Raphson’s iteration for 1/
√
a:

xn+1 = xn
2

(
3 − ax2n

)

followed by a multiplication by a, or digit recurrence methods [179] are preferable.

3.8 Rational Approximations 59

Table 3.4 Absolute errors
obtained by approximating
the square root on [0, 1] by
a minimax polynomial.

Degree Error

4 0.034

5 0.028

6 0.023

7 0.020

8 0.017

9 0.016

10 0.014

11 0.013

12 0.012

domains, polynomial approximations may not be suitable. One has to try rational approximations.6

Concerning rational approximations, there is a characterization theorem, similar to Theorem 11, that
is also due to Chebyshev. Remind that Rp,q is the set of the rational functions with real coefficients
whose numerator and denominator have degrees less than or equal to p and q, respectively.

Theorem 12 (Chebyshev) An irreducible rational function R∗ = P/Q is the minimax rational
approximation to f on [a, b] among the rational functions belonging to Rn,m if and only if there
exist at least

k = 2 + max {m + degree(P), n + degree(Q)}

values
a ≤ x0 < x1 < x2 < · · · < xk−1 ≤ b

such that
R∗(xi) − f (xi) = (−1)i

[
R∗(x0) − f (x0)

] = ±|| f − R∗||∞.

There exists a variant of Remez’s algorithm for computing such approximations. See [225, 322, 388]
for more details. Litvinov [322] notices that the problem of determining the coefficients is frequently
“ill-posed,” so the obtained coefficientsmaybequite different from the exact coefficients of theminimax
approximation. And yet, it turns out that the computed fractions are high-quality approximants whose
errors are close to the best possible. This is due to a phenomenon of “autocorrection,” analyzed by
Litvinov.

Another solution for getting rational approximations is to compute Padé approximants [26, 27],
but such approximants have the same drawbacks as Taylor expansions: they are local (i.e., around one
value) approximations only.7 Algorithms that give “nearly best” approximations (even in regions of
the complex plane) are given in [169]. There also exists a notion of orthogonal rational functions [71,
156]. See [35] for recent suggestions on rational approximation.

It seems quite difficult to predict if a given function will be much better approximated by rational
functions than by polynomials. It makes sense to think that functions that have a behavior that is “highly
nonpolynomial” (finite limits at ±∞, poles, infinite derivatives…) will be poorly approximated by
polynomials.

6Another solution is to drastically reduce the size of the interval where the function is being approximated. This is studied
in Chapter6.
7And yet, they can have better global behavior than expected. See for instance reference [190].

http://dx.doi.org/10.1007/978-1-4899-7983-4_6

60 3 The Classical Theory of Polynomial or Rational Approximations

Table 3.5 Latencies of some floating-point instructions in double-precision/binary64 arithmetic for various processors,
after [120, 144, 192, 421, 422].

Processor FP add FP mult FP div

Pentium III 3 5 32

Pentium IV 5 7 38

Intel Core i7 Nehalem 3 5 27

Intel Haswell 3 5 24

PowerPC 750 3 4 31

MIPS R10000 2–3 2–3 11–18

UltraSPARC III 4 4 24

Cyrix 5 × 86 and 6 × 86 4–9 4–9 24–34

Alpha21264 4 4 15

Athlon K6-III 3 3 20

AMD Bulldozer 5–6 5–6 42

AMD K10 4 4 31

For instance, the minimax degree-13 polynomial approximation of tan x in [−π/4,+π/4] is

1.00000014609x + 0.333324808x3 + 0.13347672x5 + 0.0529139x7

+ 0.0257829x9 + 0.0013562x11 + 0.010269x13

with an absolute approximation error equal to 8× 10−9, whereas the minimax rational approximation
with numerator of degree 3 and denominator of degree 4 of the same function is

0.9999999328x − 0.095875045x3

1 − 0.429209672x2 + 0.009743234x4

with an absolute approximation error equal to 7 × 10−9. In this case, to get the same accuracy, we
need to perform 14 arithmetic operations if we use the polynomial approximation,8 and 8 if we use
the rational approximation.

Of course, the choice between polynomial or rational approximations highly depends on the ratio
between the cost of multiplication and the cost of division. Table3.5 gives typical figures for some
processors. Those figures clearly show that for themoment, division ismuch slower thanmultiplication,
so it is frequently preferable to use polynomial approximations.9 This might change in the future:
studies by Oberman and Flynn [364, 365] tend to show that fast division units could contribute to
better performance in many areas.10 As a consequence, future processors might offer faster divisions.

8Assuming that Horner’s scheme is used, and that we first compute x2.
9Unless some parallelism is available in the processor being used or the circuit being designed. For instance, as pointed
out by Koren and Zinaty [278], if we can perform an addition and a multiplication simultaneously, then we can compute
rational functions by performing in parallel an add operation for evaluating the numerator and a multiply operation for
evaluating the denominator (and vice versa). If the degrees of the numerator and denominator are large enough, the delay
due to the division may become negligible. However, we will see in Chapter 5 that the availability of parallelism also
makes it possible to very significantly accelerate the evaluation of polynomials.
10The basic idea behind this is that, although division is less frequently called than multiplication, it is so slow (on most
existing computers) that the time spent by some numerical programs in performing divisions is not at all negligible
compared to the time spent in performing other arithmetic operations.

http://dx.doi.org/10.1007/978-1-4899-7983-4_5

3.8 Rational Approximations 61

Table 3.6 Errors obtained when evaluating frac1 (x), frac2 (x), or frac3 (x) in double-precision at 500000 regularly
spaced values between 0 and 1.

frac1 frac2 frac3

Worst-case error 0.3110887e–14 0.1227446e–14 0.1486132e–14

Average error 0.3378607e–15 0.1847124e–15 0.2050626e–15

Another advantage of rational approximations is their flexibility: there are many ways of writing
the same rational function. For instance, the expressions

frac1 (x) = 3 − 9x + 15x2 − 12x3 + 7x4

1 − x + x2
,

frac2 (x) = 3 − 5x + 7x2 − x

1 − x + x2
,

frac3 (x) = 3 + x × −6 + 12x − 12x2 + 7x3

1 − x + x2
,

represent the same function. One may try to use this property to find, among the various equivalent
expressions, the one that minimizes the round-off error. This idea seems due to Cody [97]. It has been
used by Hamada [213]. For instance, I evaluated the previous rational fraction in double-precision
arithmetic (without using extended precision registers) using the three forms given previously, with
the following parentheses (Pascal-like syntax):

function frac1(x: real):real;
begin
frac1 := ((((7*x -12)*x+15)*x-9)*x+3) / ((x*x) - x + 1)

end;

function frac2(x:real):real;
begin
frac2 := ((7*x -5)*x+3) - (x / ((x*x) - x + 1))

end;

function frac3(x:real):real;
begin
frac3 := 3 + (x * (((7 * x-12)*x+12)*x -6))

/ ((x*x) - x + 1)
end;

The fraction was evaluated at 500000 regularly spaced values between 0 and 1, and compared with
the exact result. The errors are given in Table3.6. We immediately see that in [0, 1], expression frac2
is significantly better than frac1, and slightly better than frac3.

3.9 Accurately Computing SupremumNorms

Being able to compute the supremum norm

||g||∞,[a,b] = max
a≤x≤b

|g(x)|

62 3 The Classical Theory of Polynomial or Rational Approximations

of a continuous function is of uttermost importance. The polynomial of rational approximations we
design will constitute the core of elementary function software that may sometimes be used in critical
applications. If we approximate function f by a polynomial p, then

• underestimating the approximation error || f − p||∞,[a,b] may lead to misbehavior: the software will
be less accurate than what believed, so that some expected properties (such as correct rounding, or
the absolute value of a sine being less than 1, or the preservation of monotonicity, etc.) may not be
satisfied;

• overestimating the approximation error may lead to loss of performance: maybe the expected accu-
racy could have been achieved with a polynomial of lower degree, or a larger interval of approxi-
mation [a, b] could have been used, resulting in a simpler and less often used range reduction.

The infnorm function of Maple is useful. It computes a tight approximation to the supremum norm
of a function. It is part of the numapprox package.

For instance, the command lines

> Digits := 15:
> infnorm(2ˆx - (0.999994405231621+0.693499150991505*x
+ 0.236778616969717* xˆ2 + 0.0661546610793498*xˆ3),x = 0..0.5);

ask for an approximation to ||2x − p(x)||∞,[0,1/2], where

p(x) = 0.999994405231621 + 0.693499150991505 · x
+0.236778616969717 · x2 + 0.0661546610793498 · x3.

the returned result is0.00000559524053604871. It is an accurate overestimate of the actual value
0.0000055952405359444265 · · · .

On the other hand, the command lines

> Digits := 10:
> infnorm(sin(x)+exp(-x)-(1+xˆ2/2),x=0..1/4);

will return 0.005045257674, which is a slight underestimate of the actual value 0.0050452576740
72202 · · · .

For critical applications, one needs certainty: the best solution would be to obtain a very tight
interval that is guaranteed to contain the supremum norm. This is what Sollya does. The Sollya package
(available at http://sollya.gforge.inria.fr) was designed by Lauter et al. [85]. Among many interesting
features, it offers a certified supremumnormof the difference between a polynomial and a function, that
uses an algorithm designed by Chevillard, Harrison, Joldeş, and Lauter [83, 84, 86], and it computes
nearly best polynomial approximations under constraints (using a method developed by Chevillard
and Brisebarre [63])—this is an issue that we will investigate later on, in Chapter 4. By “certified”
supremum norm, we mean that it provides a tight interval that is guaranteed to contain the supremum
norm. The authors of [83] also wanted their method to allow for the possibility of generating a complete
formal proof of their bounds without much effort, which is an important point if one wishes to certify
a piece of software used in critical applications.

With Sollya, the first of the two examples we have examined is handled with the following command
line:

> supnorm(0.999994405231621+0.693499150991505*x + 0.236778616969717* xˆ2
+ 0.0661546610793498*xˆ3,2ˆx,[0;0.5],absolute,2ˆ(-80));

http://sollya.gforge.inria.fr
http://dx.doi.org/10.1007/978-1-4899-7983-4_4

3.9 Accurately Computing Supremum Norms 63

where absolutemeans that we are interested in absolute errors (one can also ask for relative errors),
and the “2ˆ(-80)” indicates the order of magnitude of the width of the interval that will enclose the
supremum norm. Sollya returns

[5.5952405359444265339207925994263096250947202120162e-6;
5.5952405359444265339207970830672255946350223987183118e-6],

the supremum norm is guaranteed to lie in that interval. The algorithm used by Sollya is rather complex
and the interested reader should have a look on [83]. Roughly speaking, an upper bound on || f −
p||∞,[a,b] is computed as follows:

• first, a very accurate, high-degree, polynomial approximation T to f is computed, for which we
know an upper bound on ||T − f ||∞,[a,b]. Typically, T will be a Taylor expansion of f , for which
we have an explicit bound on the approximation error, or what is called a “Taylor model” [259,
329]. T is chosen such that ||T − f ||∞,[a,b] is much less than the expected (possibly approximately
estimated using classical numerical methods) value of || f − p||∞,[a,b];

• we know that || f − p||∞,[a,b] ≤ ||T − f ||∞,[a,b] + ||T − p||∞,[a,b], so our problem is reduced to
computing a bound on ||T − p||∞,[a,b]: this is much easier than the initial problem since T − p is
a polynomial;

• now, if ε is the upper bound on ||T − p||∞,[a,b] we have hinted, actually proving that ||T − p||∞,[a,b]
is less than ε reduces to proving the nonnegativity of the two polynomials ε − T + p and ε − p+ T
on [a, b]. There are several methods in the literature that allow one to show the nonnegativity of a
polynomial, one of them (that is especially convenient for generating a simple formal proof) consists
in expressing it as a sum of squares [221].11

An accurate and up-to-date presentation of rigorous methods for polynomial approximation is the
Ph.D. dissertation of Joldeş [259].

3.10 Actual Computation of Approximations

It is no longer necessary to write specific software or to perform long paper and pencil calculations
in order to compute polynomial or rational approximations of functions. Software such as Maple [78]
readily computes minimax or Chebyshev approximations, and a tool such as Sollya [85] is entirely
devoted to the approximation of functions (it computes certified polynomial approximations, supremum
norms, plots functions, etc.). For instance, using Maple, the minimax polynomial approximants of
degree 1 to 3 of the exponential function on [0, 1] and the corresponding errors are obtained as follows:

> with(numapprox);

[chebpade, chebyshev, confracform, hornerform, infnorm,
laurent, minimax, pade, remez, taylor]

> Digits:=40;

Digits := 40

11A polynomial equal to a sum of squares of polynomials is nonnegative on all the real line, not only on [a, b]. To show
nonnegativity on [a, b] only, a change of variables may be necessary. Nonnegativity of the degree-n polynomial P(x)
for x ∈ [a, b] is equivalent to nonnegativity of the polynomial Q(y) = (1 + y2)n · P((a + by2)/(1 + y2)) for y ∈ R.
Hence, it is Q, not P that one should try to express as a sum of squares.

64 3 The Classical Theory of Polynomial or Rational Approximations

> for i from 1 to 3
> do
> minimax(exp(x),x=0..1,[i,0],1,’err’);
> err;
> od;

.8940665837605580966094830294702438342075

+ 1.718281828459045235360287471352662497757 x

.105933416239441903390516970529756165793

1.008756022111995144557594671802439543032 + (

.8547425734137733779593711082348038561836

+ .8460272108212815682857270195129795555104 x) x

.008756022111995144557594671802439543032

.9994552084356675209500290036688779203157 + (

1.016602326350653740263964831809759812173 + (

.4217030131291780394406041742700751700336

+ .279976488979213455655718465272827515552 x) x) x

.000544791564332589764342588176415270745

The line
minimax(exp(x),x=0..1,[i,0],1,’err’);

means that we are looking for a minimax approximation of the exponential function on [0, 1] by a
rational function with a degree-i numerator and a degree-0 denominator (i.e., a degree-i polynomial !)
with a weight function equal to 1, and that we want the variable err to be equal to the approxima-
tion error. From this example, one can see that the absolute error obtained when approximating the
exponential function by a degree-3 minimax polynomial on [0, 1] is 5.4 × 10−4.

Using Sollya,12 the same minimax approximants of degree 1 to 3 of the exponential function on
[0, 1] are obtained as follows:

> P1 = remez(exp(x),1,[0;1]);
> P2 = remez(exp(x),2,[0;1]);
> P3 = remez(exp(x),3,[0;1]);

> P1;
0.89406658399928255003969107406115435882562358497491
+ x * 1.71828182845904523536028747135266249775724709369998

> supnorm(P1,exp(x),[0;1],absolute,2ˆ(-40));
[0.105933416514849070575246536840552380454028025269508;
0.105933416514942405647524341885566418643579058988112]

12The Sollya package is available at http://sollya.gforge.inria.fr.

http://sollya.gforge.inria.fr

3.10 Actual Computation of Approximations 65

> P2;
1.00875602211368932283041805215474175509109915735213
+ x * (0.8547425734330620925091910630754128835666392172855
+ x * 0.84602721079860449719026030396776610400840956171021)

> supnorm(P2,exp(x),[0;1],absolute,2ˆ(-40));
[8.7560221166872556798751667250790831076301401481032e-3;
8.7560221166949703744825336883068055774537427730688e-3]

> P3;
0.99945520842817029314254348598886281872860835239916
+ x * (1.01660232638589555870596955394194619558760370445
+ x * (0.42170301302379284328592780485228595873226086289258
+ x * 0.279976489049356833368390112558430343437382526357365))

> supnorm(P3,exp(x),[0;1],absolute,2ˆ(-40));
[5.4479157201619934861594940142537346616791182896122e-4;
5.4479157201667934975650870197190391568950038212765e-4]

The line

> supnorm(P1,exp(x),[0;1],absolute,2ˆ(-40));

means that we want Sollya to return an interval of size around 2−40 that contains the maximum
value of |P1(x) − ex | on [0, 1]. The term absolute means that we are interested in absolute error.
If we had replaced that term by relative, Sollya would have computed the maximum value of
|(P1(x) − ex)/ex |.

4Polynomial Approximations
with Special Constraints

In the previous chapter, we have explained how Remez’s algorithm can be used to compute minimax
polynomial approximations to functions. Assume that wewant to compute a polynomial approximation
of degree n to some function f on interval [a, b], in order to build a program that will be used later on
for evaluating f . Also assume that wewish to use precision-p floating-point arithmetic in that program.
There is no reason for the minimax polynomial approximation to have coefficients that fit exactly in
precision p. In general, the coefficients of the “ideal,” exact, minimax approximation to an elementary
function on some interval are real numbers that cannot be exactly represented in any finite precision
arithmetic. In practice, or course, Remez’s algorithm is run using finite precision arithmetic, and if we
want the obtained polynomial to be accurate enough, it is strongly advised to run Remez’s algorithm
in a precision q significantly larger than p. We therefore obtain a polynomial P with precision-q
coefficients: how can we proceed to deduce an approximation with precision-p coefficients?

The first idea that springs tomind is to round each coefficient of P separately to the nearest precision-
p floating-point number. This gives a new polynomial P1. If P1 is an approximation to f that is accurate
enough for our purposes, there is no need to go further. However, it happens that || f − P1||∞,[a,b]
is much larger than || f − P||∞,[a,b]. When this occurs, it means that we have lost a significant part
of the quality of approximation when rounding the coefficients of P . Fortunately, in many cases, a
better polynomial exists: there is no reason for the best approximating polynomial with precision-p
coefficients to be equal to the minimax polynomial with coefficients rounded to precision p. We will
see how such a better polynomial can be computed in Section 4.1, but in the meanwhile, let us consider
an example.

Let P be the minimax degree-25 polynomial approximation to arctan(x) in [0, 1], obtained with
the Sollya command line

> P = remez(atan(x),25,[0;1]);

We have (using the supnorm command of Sollya)

||P − arctan ||∞,[0,1] ∈ [4.251 · 10−19, 4.252 · 10−19].

Let us separately round each of the coefficients of P to the nearest binary64 number. This gives a
polynomial P1. Sollya easily computes that polynomial

-8829299595920683 * 2ˆ(-114) + x * (4503599627370499 * 2ˆ(-52)
+ x * (-5159882142170469 * 2ˆ(-95) + x * (-3002399751474879 * 2ˆ(-53)
+ x * (-2703938931241909 * 2ˆ(-82) + x * (1801439998904177 * 2ˆ(-53)

© Springer Science+Business Media New York 2016
J.-M. Muller, Elementary Functions, DOI 10.1007/978-1-4899-7983-4_4

67

68 4 Polynomial Approximations with Special Constraints

+ x * (-382606754743915 * 2ˆ(-70) + x * (-40209430131455 * 2ˆ(-48)
+ x * (-6987424401035279 * 2ˆ(-67) + x * (8033486607699933 * 2ˆ(-56)
+ x * (-1340893611715303 * 2ˆ(-59) + x * (-5729819855457205 * 2ˆ(-56)
+ x * (-6431143148353343 * 2ˆ(-57) + x * (490042705331721 * 2ˆ(-51)
+ x * (-805603107731421 * 2ˆ(-51) + x * (5988052293807227 * 2ˆ(-53)
+ x * (-5365331010775569 * 2ˆ(-52) + x * (3546463639287455 * 2ˆ(-51)
+ x * (-817810858300185 * 2ˆ(-49) + x * (4134637789596061 * 2ˆ(-52)
+ x * (-6664544602627907 * 2ˆ(-54) + x * (1203328901139637 * 2ˆ(-54)
+ x * (4942984695889011 * 2ˆ(-58) + x * (-259019472710037 * 2ˆ(-54)
+ x * (270784414594763 * 2ˆ(-56)
+ x * (-7034512471776993 * 2ˆ(-64)))))))))))))))))))))))))).

We have
||P1 − arctan ||∞,[0,1] ∈ [7.621 · 10−17, 7.622 · 10−17].

By rounding the coefficients to binary64 arithmetic, we have lost much accuracy: the approximation
error is now around 179 times larger. Fortunately, P1 is far from being the best degree-25 approximation
to arctan, in [0, 1], with binary64 coefficients. Consider the following polynomial P2 (obtained using
a technique developed by Brisebarre and Chevillard [63], and implemented in the Sollya package1)

-5597150764730203 * 2ˆ(-113) + x * (4503599627370499 * 2ˆ(-52)
+ x * (-5708274822853675 * 2ˆ(-95) + x * (-6004799502933023 * 2ˆ(-54)
+ x * (-89755795110261 * 2ˆ(-77) + x * (900720003180065 * 2ˆ(-52)
+ x * (-6377312872219227 * 2ˆ(-74) + x * (-5146801287351833 * 2ˆ(-55)
+ x * (-899685045909025 * 2ˆ(-64) + x * (4017095024498131 * 2ˆ(-55)
+ x * (-2742551287191647 * 2ˆ(-60) + x * (-5713436721939779 * 2ˆ(-56)
+ x * (-3272670461076033 * 2ˆ(-56) + x * (3960850419627441 * 2ˆ(-54)
+ x * (-6538895617370347 * 2ˆ(-54) + x * (759706282506979 * 2ˆ(-50)
+ x * (-5435319972600825 * 2ˆ(-52) + x * (7182338603671099 * 2ˆ(-52)
+ x * (-6635313536967241 * 2ˆ(-52) + x * (8424322978787643 * 2ˆ(-53)
+ x * (-429351662775197 * 2ˆ(-50) + x * (2616431948988341 * 2ˆ(-55)
+ x * (4303243131076383 * 2ˆ(-58) + x * (-3973278851291135 * 2ˆ(-58)
+ x * (8436312858769189 * 2ˆ(-61)
+ x * (-6890517557888927 * 2ˆ(-64)))))))))))))))))))))))))).

We have
||P2 − arctan ||∞,[0,1] ∈ [5.389 · 10−19, 5.390 · 10−19].

P2 is more than 141 times better than P1: the improvement is not negligible at all! There is a small
loss of accuracy compared to P , but the polynomial P cannot be used “as is”: its coefficients cannot
be represented in binary64 arithmetic. What happens may be easier to see on graphs. Figure 4.1 is a
plot of the difference arctan(x) − P(x). We see the equioscillating curve predicted by Chebyshev’s
Theorem (Theorem11).

Figure 4.2 is a plot of arctan(x) − P1(x). Its shape is totally different. By rounding the coefficients
of P to the binary64 format, we have lost the equioscillating behavior.

Figure 4.3 is a plot of arctan(x) − P2(x). Although it is not exactly equioscillating (otherwise it
would be equal to the minimax polynomial, by Chebyshev’s Theorem), it is extremely similar to the
plot of Figure 4.1.

1There is no warranty that it is the best polynomial with binary64 coefficients. It is just a very good one.

http://dx.doi.org/10.1007/978-1-4899-7983-4_3

4 Polynomial Approximations with Special Constraints 69

Figure 4.1 Plot of the
difference between
arctan(x) and its degree-25
minimax approximation on
[0, 1]. As predicted by
Chebyshev’s Theorem, the
curve oscillates, and the
extremum is attained 26
times (the leftmost and
rightmost extrema are
difficult to see on the plot,
but they are here, at values
0 and 1).

-5e-19

-4e-19

-3e-19

-2e-19

-1e-19

0

1e-19

2e-19

3e-19

4e-19

5e-19

0 0.2 0.4 0.6 0.8 1

Figure 4.2 Plot of the
difference between
arctan(x) and its degree-25
minimax approximation on
[0, 1] with coefficients
rounded to the binary64
format. We have lost the
“equioscillating” property,
and the accuracy of
approximation is much
poorer.

-8e-17

-6e-17

-4e-17

-2e-17

0

2e-17

4e-17

6e-17

8e-17

0 0.2 0.4 0.6 0.8 1

Figure 4.3 Plot of the
difference between
arctan(x) and a degree-25
polynomial approximation
with binary64 coefficients
generated by Sollya. The
accuracy of the
approximation is almost as
good as that of the minimax
polynomial, and we have
almost found again the
“equioscillating” property.

-6e-19

-4e-19

-2e-19

0

2e-19

4e-19

6e-19

0 0.2 0.4 0.6 0.8 1

Importantly enough, onewould probably not use Polynomial P2 for actually implementing the arctan
function. Indeed, another request onemay have on the coefficients of a polynomial approximation is the
following. If f is an even (resp. odd) function, one may wish its approximating polynomial to be even
(resp. odd) too. This preserves symmetry and makes the number of multiplications used for evaluation
smaller). That request is not so difficult to satisfy. As a matter of fact, the minimax approximation
to an even (resp. odd) function on an interval that is symmetrical around zero is an even (resp. odd)
polynomial. It is easy to convince oneself of that property: if P(x) is the best polynomial approximation

70 4 Polynomial Approximations with Special Constraints

to sin(x) on [−π/2,+π/2], and if ||P − sin ||∞,[−π/2,π/2] = ε, then Q(x) = −P(−x) too is a
polynomial approximation to sin(x) on [−π/2,+π/2] with maximum error ε. Since the minimax
approximation is unique, we necessarily have Q(x) = P(x). Notice that the minimax polynomial
approximation to an even (resp. odd) function numerically computed in practice will have tiny yet
nonzero odd-order (resp. even-order) coefficients. These nonzero coefficients are just numerical noise,
and can be discarded.When computing the minimax approximation P to sin(x) on [−π/2, π/2] using
the remez function of Sollya, we get

-1.4198552932567808e-16 + x * (0.99969677313904359
+ x * (1.3389005866132525e-15 + x * (-0.16567307932054534
+ x * (-1.1305009912441752e-15 + x * 7.5143771782993267e-3))))

and the approximation error lies in the interval

[6.7706 · 10−5, 6.7707 · 10−5].

We effectively have very tiny even-order coefficients. They are just due to roundoff errors. If we discard
them, we obtain the following polynomial P1:

P1 = x * (0.99969677313904359 + xˆ2*(-0.16567307932054534
+ xˆ2* 7.5143771782993267e-3));

and using the supnorm function of Sollya, we find that

||P1 − sin ||∞,[−π/2,+π/2] ∈ [6.7706 · 10−5, 6.7707 · 10−5],

i.e., it is the same approximation error.
However, even if the final goal is to use the approximation for positive values of x only, one should

not start from an approximation to sin(x) in [0, π/2] (i.e., we really need a interval that is symmetrical
around 0). When computing the minimax approximation P to sin(x) on [0, π/2] using the remez
function of Sollya, we obtain the following polynomial P2:

7.0685185941109779e-6 + x * (0.999689864433651
+ x * (2.1937161796562626e-3 + x * (-0.17223886510877676
+ x * (6.0973836901399977e-3 + x * 5.7217240503332698e-3))))

The error ||P2 − sin ||∞,[0,+π/2] lies in [7.0685 · 10−6, 7.0686 · 10−6] (it is smaller than ||P −
sin ||∞,[0,+π/2], which is not surprising since the interval of approximation is smaller). However, if we
discard in P2 the even-order coefficients to get a new polynomial P3, we have

||P3 − sin ||∞,[−π/2,+π/2] ∈ [4.2534 · 10−2, 4.2535 · 10−2],

i.e., the approximation is now very poor.
A last request onemay have is to impose the value of a very few low-order coefficients (typically, the

value would be the value of the corresponding coefficients in the Taylor expansion of the function), in
order to impose the behavior of the approximation near zero. Such approximations have been studied
by Dunham [159, 161, 162, 164, 165, 166].

Combining all these requests leads for instance to trying to find approximations to the sine function
of the form x + x3 p(x2) where the coefficients of p are floating-point numbers.

4.1 Polynomials with Exactly Representable Coefficients 71

4.1 Polynomials with Exactly Representable Coefficients

Let us now show how we can compute polynomial approximations with coefficients that are exactly
representable in a given precision. We will briefly present three methods that have been suggested to
deal with this problem. Assume we want to approximate function f on interval [a, b].

4.1.1 An Iterative Method

As explained above, it is important to get polynomial approximations whose coefficients are floating-
point numbers in the desired format,2 and in many cases the polynomial obtained by just rounding the
coefficients of the minimax polynomial is not a fully satisfying approximation. The following method
was probably invented by Kahan and his students (it was not published in the open literature, but it is
part of the computer arithmetic folklore).

Compute the minimax approximation to f on [a, b] with extra precision, round the coefficient of
order 0 to the nearest number in the desired format, say a0, then recompute an approximation P(1),
where you impose the order 0 coefficient to be a0.

Define P̂(1) as the polynomial obtained by rounding all the coefficients of P(1). If the approximation
error

||P̂(1) − f ||∞,[a,b]

is not significantly larger than ||P(1) − f ||∞,[a,b] then P̂(1) is the desired polynomial. Otherwise,
define a1 as the coefficient of order 1 of P̂(1) (equal to the coefficient of order 1 of P(1) rounded), and
compute an approximation P(2), where you impose the first two coefficients to be a0 and a1. Continue
until there is no significant difference between ||P̂(i) − f ||∞,[a,b] and ||P(i) − f ||∞,[a,b] (i.e., until
rounding the coefficients has no significant effect).

Example 3 (Computation of 2x) Assume that we wish to approximate 2x on [0, 1/32] by a polyno-
mial a0 + a1x + a2x2 + a3x3 of degree 3, and that we plan to use the approximation in IEEE-754
binary32/single-precision arithmetic. Using the minimax function of Maple, we first compute, in a
significantly wider precision arithmetic the minimax approximation

.999999999927558511254956761285+(.693147254659769878047982577583
+(.240214666378173867533469143950
+0.561090023893935052398844196228e-1*x)*x)*x.

After this, we impose the coefficient of degree 0 to be

a0 = RN(0.999999999927558511254956761285) = 1.

If ε is the approximation error of the new approximation we wish to compute, and if we define p(x) to
be the degree-2 polynomial a1 + a2x + a3x2, we want

∣
∣
(

2x − a0
) − xp(x)

∣
∣ ≤ ε.

2Or the sum of two machine numbers, at least for the leading coefficients, when very high accuracy is at stake.

72 4 Polynomial Approximations with Special Constraints

This is equivalent to ∣
∣
∣
∣

2x − a0
x

− p(x)

∣
∣
∣
∣
· x ≤ ε.

Therefore it suffices to compute a degree-2 minimax approximation to

2x − a0
x

with a weight function x. In Maple, this is done with the command line

minimax((2ˆx-1)/x,x=0..1/32,[2,0],x,’err’);

and this gives

.693147234930309852689080196056+(.240215961912910986166070981685
+0.560849766217597431698702570574e-1*x)*x

We continue by choosing a1 =RN(0.693147234930309852689080196056) = 11629081/16777216, and by
looking for a degree-1 minimax approximation to

2x − a0 − a1x

x2

with a weight function x2. This gives

.240215057046252382183162007004+0.561094355336852235183806436094e-1*x.

We now choose
a2 =RN(0.240215057046252382183162007004) = 16120527/67108864.

The next step gives a3 =7533447/134217728, and we check that

∣
∣
∣

∣
∣
∣2x −

(

a0 + a1x + a2x
2 + a3x

3
)∣
∣
∣

∣
∣
∣∞,[0,1/32] ≈ 1.454 · 10−10.

We can easily check that if we had just rounded each of the coefficients of the initial polynomial to the
nearest binary32 floating-point number, the approximation errorwould have been around 3.988·10−10.

4.1.2 An Exact Method (For Small Degrees)

In general, the method we have just dealt with does not give best approximations, it only gives good
ones. Let us now describe how to get such best approximations. The following method was suggested
by Brisebarre, Muller, and Tisserand [69]. It works when the degree of the polynomial is not too large.
Assume we wish to find the best polynomial approximation p∗(x) = p∗

0 + p∗
1x + · · · + p∗

nx
n to f (x)

in [a, b], with the constraint that p∗
i must be a multiple of 2−mi (that is, its binary representation has

at most mi fractional bits). Define p as the usual minimax approximation to f in [a, b] without that
constraint, and p̂ as the polynomial obtained by rounding the degree-i coefficient of p to the nearest
multiple of 2−mi , for all i . Define

4.1 Polynomials with Exactly Representable Coefficients 73

ε = maxx∈[a,b]| f (x) − p(x)|
ε̂ = maxx∈[a,b]| f (x) − p̂(x)|.

We obviously have
ε ≤ max

x∈[a,b] | f (x) − p∗(x)| ≤ ε̂.

The technique suggested in [69] consists in first finding a polytope (i.e., a bounded polyhedron) where
p∗ necessarily lies,3 and then to scan all possible candidate polynomials (a candidate polynomial is
a degree-n polynomial whose degree i coefficient is a multiple of 2−mi for all i , and that lies inside
the polytope. These constraints imply that the number of candidate polynomials is finite) using recent
scanning algorithms [7, 105, 451], and computing the distance to f for each of these polynomials. If
we look for a polynomial p∗ such that

max
x∈[a,b] | f (x) − p∗(x)| ≤ K ,

then one can build a polytope by choosing at least n + 1 points

a ≤ x0 < x1 < x2 < · · · < xm ≤ b,m ≥ n

and imposing the linear4 constraints5

f (x j) − K ≤ p∗
0 + p∗

1x j + p∗
2x

2
j + · · · + p∗

nx
n
j ≤ f (x j) + K , ∀ j. (4.1)

If K < ε, then the polytope defined by (4.1) contains no candidate polynomial. If K ≥ ε̂, it contains
at least one candidate polynomial (that is, p̂), and in practice it may contain too many candidate
polynomials, which would make the scanning of the polytope very long. In practice, one has to start
the algorithm with K significantly less than ε̂. See [69] for more details.

Roughly speaking, the number of candidate polynomials to be examinedwill increasewith the degree
exponentially. This makes the method unpractical for polynomial approximations of large degrees. The
next method will not, in general, return the best approximation with exactly representable coefficients,
but it will always return a good one.

4.1.3 AMethod Based on Lattice-Reduction

The following method is due to Brisebarre and Chevillard [63]. It was implemented in the Sollya
software. Since its presentation is rather technical, the reader who is just interested in using the method
can skip this section and directly go to Section 4.2.

3The polytope is located in a space of dimension n+1. A degree-n polynomial is a point in that space, whose coordinates
are its coefficients.
4Linear in the coefficients p∗

i .
5In practice, we use slightly different constraints: we modify (4.1) so that we can work with rational numbers only.

74 4 Polynomial Approximations with Special Constraints

Euclidean lattices

Let b1, b2, …, bd be linearly independent elements of Rd . The Euclidean lattice L (called Lattice for
short) generated by (b1, b2, . . . , bd) is the set of the linear combinations of the vectors bi with integer
coefficients

L = {λ1b1 + λ2b2 + · · · + λdbd | λ1, λ2, . . . , λd ∈ Z} .

We will say that (b1, b2, . . . , bd) is a basis of L , and d is the dimension of the lattice.
Euclidean lattices have many interesting applications in number theory and cryptography. They

also have been used for finding hardest-to-round cases for the most common elementary functions (see
Chapter 12 and [432, 433]). A lattice of dimension larger than or equal to 2 has infinitely many bases.
However, they are not equally interesting from an algorithmic point of view. For many applications,
we need bases made up with vectors that are as small as possible. An algorithm called LLL (after the
names of its inventors, Lenstra, Lenstra, and Lovász [313]) computes a basis with reasonably short
vectors (called a reduced basis) in polynomial time.

Assume || · || is a norm onRn . Many problems linked with lattices reduce to the following problem,
called Closest vector problem (CVP):

Let L be a lattice of dimension d (given by one of its bases), and let x be an element of Rd . Find y ∈ L such that
||x − y|| = minz∈L ||x − z||.

In practice, that problem is much too hard to solve (it is NP-hard). Instead of trying to solve CVP, we
try to solve the following associated approximation problem:

Find y ∈ L such that ||x − y|| ≤ γ · minz∈L ||x − z||, where γ > 1 is fixed.

Babai [14] introduced an algorithm for solving that approximation problem, with γ = 2d/2. Babai’s
algorithm uses a reduced basis of the lattice (hence, we must first run the LLL algorithm).

Application to Our Problem

Our problem of finding degree-n polynomial approximations with exactly representable coefficients
can be rewritten as follows: given integers m1, m2, . . . , mn , find a polynomial

p∗ = a0
2m0

+ a1
2m1

+ · · · + an
2mn

,

where the ai are integers that minimize (or at least make small) || f − p∗||∞,[a,b] (see [63] for an
explanation of why we can fix the value of the mi ’s). We can discretize that problem: if x1, x2, …, x�

are adequately chosen points of [a, b], we want each of the values p∗(xi) to be as close as possible to
f (xi), that is we want the dimension-� vector

a0 ·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
2m0

1
2m0

...

1
2m0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

+ a1 ·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

x1
2m1

x2
2m1

...

x�

2m1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

+ · · · + an ·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

xn1
2mn

xn2
2mn

...

xn�
2mn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

http://dx.doi.org/10.1007/978-1-4899-7983-4_12

4.1 Polynomials with Exactly Representable Coefficients 75

to be as close as possible to the vector
⎛

⎜
⎜
⎜
⎜
⎝

f (x1)

f (x2)
...

f (xn)

⎞

⎟
⎟
⎟
⎟
⎠

.

Clearly, this is an instance of CVP. Brisebarre and Chevillard suggest to choose as points xi finite
precision values as close as possible to the (real) values where f and its minimax polynomial ap-
proximation are equal (Chevyshev’s theorem implies that there are at least n + 1 such points). They
use Babai’s algorithm to solve an approximation to the CVP problem. Their method, implemented in
Sollya, works well and allows to tackle approximations of large degrees.

4.2 Getting Nearly Best Approximations Using Sollya

As a first example, assume that we wish to compute a polynomial approximation to function 2x in the
interval [0, 1/32]. Under the Sollya environment, we can type

> Premez = remez(1,3,[0;1/32],2ˆ(-x));

which means that we want to find the polynomial p∗ of degree less than or equal to 3 that minimizes

max
x∈[0,1/32]

∣
∣p∗(x) · 2−x − 1

∣
∣ = max

x∈[0,1/32]

∣
∣
∣
∣

p∗(x) − 2x

2x

∣
∣
∣
∣
,

using Remez’s algorithm. We can display the obtained polynomial by typing

> Premez;

which gives

0.99999999992833969012490146234825301922563977887262
+ x * (0.69314725420872850397378954914175310756621257309927
+ x * (0.24021470491338404661352112040401957279342133236739
+ x * 5.6108179710916013034589492945198138199203506149126e-2)).

The error of that approximation is obtained as follows:

> supnorm(Premez,2ˆx,[0;1/32],relative,2ˆ(-40));

where “relative” indicates that we want to compute a relative error, and “2−40” gives to Sollya
an order of magnitude on the tightness of the returned interval that contains the maximum of the
approximation error. The obtained result is

[7.1660309898306796091005805061106047210432896943377e-11;
7.1660309898369934054680098838175773370451793208364e-11].

The obtained result is a certified enclosure of the approximation error. We can compare the obtained
result with the output of the following sequence of Maple commands:

Digits := 70:
P := x -> 0.99999999992833969012490146234825301922563977887262
+ x * (0.69314725420872850397378954914175310756621257309927

76 4 Polynomial Approximations with Special Constraints

+ x * (0.24021470491338404661352112040401957279342133236739
+ x * 5.6108179710916013034589492945198138199203506149126e-2)):
infnorm((P(x)-2ˆx)/2ˆx,x=0..1/32);

which returns
7.166030989830675381814527337963902345685
962873818056214898736708795099 · 10−11.

Here, the infnorm function of Maple gives a result that is very close to the maximum approximation
error, but that very slightly underestimates it. This requires caution if one wishes to build elementary
function software with guaranteed error bounds.

Now, let us ask Sollya to build an approximation with constraints. For example, by typing

> P1 := fpminimax(2ˆx,3,[|1,24...|],[0;1/32],relative);

we ask for a degree-3 polynomial approximation to 2x in the interval [0, 1/32] that minimizes the
maximum relative error, with a first (i.e., degree-0) coefficient that fits in a 1-bit-significand floating-
point number (which is in practice a way of requiring that coefficient to be equal to 1), and the other
coefficients that fit in 24-bit-significand floating-point numbers (i.e., they are required to be single-
precision/binary32 floating-point numbers). Let us display the obtained polynomial

> P1;
1 + x * (0.693147242069244384765625
+ x * (0.24021531641483306884765625
+ x * 5.6098647415637969970703125e-2))

We can display it in a somehow more readable form by typing

> display=powers!;
> P1;
1 + x * (11629081 * 2ˆ(-24)
+ x * (16120577 * 2ˆ(-26)
+ x * (7529433 * 2ˆ(-27))))

The approximation error is obtained as previously:

> supnorm(P1,2ˆx,[0;1/32],relative,2ˆ(-40));

[1.0249057964924591731791269199589585554757004137727e-10;
1.0249057964933621899961117291373676049702400642323e-10]

We see that even after having required very strong constraints on the polynomial (the first coefficient
is 1, and the other ones are single-precision numbers), we have not lost that much on the approximation
error.

Now, let us try to obtain a much more accurate approximation to 2x . To be able to return correctly
rounded results (see Chapter 12, and more precisely Table 12.6), let us assume that we wish to ap-
proximate function 2x in the interval [0, 1/64]with relative accuracy better than 2−114 ≈ 4.8×10−35.
We will use a polynomial of degree 10 (a call to remez with degree 9 shows that we need at least
degree 10). We still impose the coefficient of degree 0 to be equal to 1 (this is again obtained by re-
quiring the significant of that coefficient to fit in one bit). Let us start by imposing all other coefficients
to be “double-double” numbers, or “double-word numbers” in the double-precision/binary64 format
(that is, we require them to be representable as the unevaluated sum of two double-precision/binary
64 floating-point numbers—see Section 2.2.2). In Sollya, this is done by typing

http://dx.doi.org/10.1007/978-1-4899-7983-4_12
http://dx.doi.org/10.1007/978-1-4899-7983-4_12
http://dx.doi.org/10.1007/978-1-4899-7983-4_2

4.2 Getting Nearly Best Approximations Using Sollya 77

> P2 = fpminimax(2ˆx,10,[|1,DD...|],[0;1/64],relative);

(the “DD” stands for “double-double”) followed—to know the relative approximation error—by

> supnorm(P2,2ˆx,[0;1/64],relative,2ˆ(-40));

we get the following result:

[3.0793528957562374143099702483997593817727460439831e-36;
3.0793528957589505489803128135820436734300680602559e-36]

which shows that the obtained polynomial suffices for our purposes (provided that when we add the
evaluation error to that approximation error we do not exceed 2−114: we will deal with evaluation
errors in Chapter 5). However, since the interval under consideration is [0, 1/64], the contribution
of the coefficients of high degree to the final result is small: perhaps it is useless to represent these
coefficients with very high precision. Hence, let us try to require only the coefficients of degrees 1,
2, and 3 to be double-double numbers, and the coefficients of higher degrees to be double-precision
numbers. This is done by typing

> P3 = fpminimax(2ˆx,10,[|1,DD,DD,DD,D...|],[0;1/64],relative);

the error estimated by supnorm is

[4.88495476940616209365251134576477501320448643521625e-32;
4.8849547694104660953686499184371878152315606713498e-32]

which shows that the obtained polynomial is not accurate enough. If we allow the coefficient of degree
4 too to be a double-double number, that is, if we type

> P4 = fpminimax(2ˆx,10,[|1,DD,DD,DD,DD,D...|],[0;1/64],
relative);

then the error estimated by supnorm is

[4.0536120186669205111871488383459366455490248075711e-36;
4.0536120186704920392582313221895136293643418298482e-36]

we now have a polynomial that suits our purposes.

If a function is even (resp. odd), we can ask Sollya to compute polynomial approximations with
coefficients of even order (resp. odd order) only. For instance, the polynomial

1 − 2251799813622611 · 2−52 · x2 + 1501189276987675 · 2−55 · x4

that was used for building the example of Section 2.2.4 is an approximation to cos(x) in the interval
[−0.0123,+0.0123]. It was generated by typing the following line in Sollya:

> P := fpminimax(cos(x),[|0,2,4|],[|1,D,D|],[-0.0123;0.0123],
relative);

where [|0,2,4|] indicates that we want a polynomial made up with monomials of degrees 0, 2,
and 4 only (i.e., a degree-4 polynomial whose coefficients of degrees 1 and 3 are zero). Sollya tells us
that the maximum relative approximation error of this polynomial is in the interval

[1.899908785048 · 10−16, 1.899908785051 · 10−16].

http://dx.doi.org/10.1007/978-1-4899-7983-4_5
http://dx.doi.org/10.1007/978-1-4899-7983-4_2

78 4 Polynomial Approximations with Special Constraints

Now, let us try to do something similar with an odd function: let us try to approximate sin(x), for
x ∈ [0, π/8], by an odd polynomial of degree 5. If we type the command

> Q := fpminimax(sin(x),[|1,3,5|],[|D...|],[0;pi/8],relative);

then Sollya fails to find an approximation. Fortunately, we have two possible turn-arounds. The first
one is the following: if Q is an odd polynomial, then it can be written P · x , where P is an even
polynomial, and

sin(x) − Q(x)

sin(x)
= ε

is equivalent to
sin(x)

x
− P(x)

sin(x)

x

= ε,

which means that approximating sin(x) by Q(x) with some maximum relative error is equivalent to
approximating sin(x)/x by P(x) with the same maximum relative error. Now, if we type

> P := fpminimax(sin(x)/x,[|0,2,4|],[|1,D...|],[0;pi/8],relative);

we obtain

P(x) = 1 − 1501181244204129 · 2−53 · x2 + 298697310996351 · 2−55 · x4,

which means that

Q(x) = x − 1501181244204129 · 2−53 · x3 + 298697310996351 · 2−55 · x5.

We can now obtain the enclosure of the maximum relative approximation error by typing

> supnorm(Q,sin(x),[0;pi/8],relative,2ˆ(-40));

and conclude that Q(x) approximates sin(x) in [0, π/8] with a maximum relative error in

[2.903562688025 · 10−8, 2.903562688028 · 10−8].

The second turn-around—much simpler to implement—is the following. The initial problem is due
to the fact that Sollya probably had difficulties to notice that the relative error (sin(x) − p(x))/ sin(x)
can have a finite limit at zero. Assume the variable x of the polynomial we are building is a binary64
floating-point number. It will be either zero or a number of magnitude larger than 2−1074. Hence, we
can try the Sollya command line

> Q := fpminimax(sin(x),[|1,3,5|],[|1,D...|],[2ˆ(-1074);pi/8],
relative);

and we will get exactly the same polynomial as with the other turn-around. These turn-arounds look
suspicious? This is not a problem: Sollya provides a certified supremum norm, therefore all strange
tricks can be used to find the approximating polynomial: what matters is that ultimately we can safely
check, with the certified supremum norm, that the approximation error is within the desired range.
Sollya has been used by several authors to build convenient approximations to elementary [452, 70]
or special [299] functions, or for more general applications such as spacecraft control [142].

4.3 Miscellaneous 79

4.3 Miscellaneous

Polynomial and rational approximations of functions have been widely studied [90, 93, 94, 140,
160, 169, 188, 189, 196, 225, 278, 388, 394]. Good references on approximation are the books
by Cheney [80], Rice [396], Rivlin [397], Laurent [298], Phillips [385], Powell [388], and Tre-
fethen [458]. Some of the ideas presented in this chapter can be extended to complex elementary
functions. Braune [54] and Krämer [284] suggested algorithms that evaluate standard functions and
inverse standard functions for real and complex point and interval arguments with dynamic accuracy.
Midy and Yakovlev [345] and Hull et al. [242] suggested algorithms for computing elementary func-
tions of a complex variable. The CELEFUNT package, designed byW.J. Cody [101], is a collection of
test programs for the complex floating-point elementary functions: now it is outdated but many ideas
are still of interest. Minimax approximation by polynomials on the unit circle is considered in [23,
460], with applications to digital filtering. When evaluating a given polynomial may lead to underflow
or overflow, there exist scaling procedures [214] that prevent overflow and reduce the probability of
occurrence of underflow.

5Polynomial Evaluation

In Chapters 3 and 4, we have studied how a function can be approximated by a polynomial or a rational
function. When actually implementing the approximation, one has to select the way to evaluate a
polynomial in order to minimize the error and/or to maximize the speed. The adequate choices may
differ depending on whether we wish to design a “general” function library, that will be used on
different processor architectures, or a function library aimed to best work on a particular architecture
or family of architectures for which basic properties (amount of available parallelism, pipeline depths,
availability of an FMA instruction…) are known. An important current trend in computer arithmetic
research consists in trying to automate asmuch as possible the choice of the evaluation algorithm [351].

5.1 Sequential Evaluation of Polynomials

Let us temporarily assume that no parallelism is available. Onmodern architectures this is an unrealistic
assumption: even a single pipelined arithmetic operator has an inherent parallelism, since it can start
performing an operation before the previous one has terminated. We will deal with parallel evaluation
of polynomials later on, in Section 5.2. Before going further, here is some elementary advice never
evaluate a polynomial

a4x4 + a3x3 + a2x2 + a1x + a0

using the sequence of operations

a_4*x*x*x*x + a_3*x*x*x + a_2*x*x + a_1*x + a_0;

there are evaluation methods that are faster. The simplest and most popular is Horner’s scheme, pre-
sented below.

5.1.1 Horner’s Scheme

Horner’s scheme consists in evaluating a polynomial

an xn + an−1xn−1 + an−2xn−2 + · · · + a0, (5.1)

© Springer Science+Business Media New York 2016
J.-M. Muller, Elementary Functions, DOI 10.1007/978-1-4899-7983-4_5

81

http://dx.doi.org/10.1007/978-1-4899-7983-4_3
http://dx.doi.org/10.1007/978-1-4899-7983-4_4

82 5 Polynomial Evaluation

by the following algorithm:

Algorithm 13 Horner’s scheme.
y ← an · x + an−1
for i = n − 2 downto 0 do

y ← y · x + ai
end for
return y

which corresponds to the following way of parenthesizing (5.1):

(((· · · (an x + an−1)x + an−2)x + an−3)x + · · ·)x + a0.

Although commonly attributed to Horner [236], this method was used previously by Newton [275],
and seems to have been known 2000 years before Horner by Chinese mathematicians of the Han
dynasty [473]. To evaluate a polynomial of degree n, Horner’s scheme requires n multiplications and n
additions. This was shown to be optimal if the coefficients ai are not known in advance (which of course
is not really the case here): more precisely, Ostrowski [372] showed that we need at least n additions,1

and Pan [374] showed that we need at least n multiplications. See also [392]. If the ai ’s are known
in advance, some improvement is possible (a method due to Knuth is presented in Section 5.1.2), but
the improvement is somehow limited: there are degree-n polynomials for which we need at least n/2
multiplications2. Hence, if no parallelism is available, Horner’s scheme is a good solution. Notice that
most recent processors have a “fused multiply–add” (FMA) instruction (see Section 2.1.5); that is, an
expression of the form a × x ± b can be evaluated just with one instruction, and there is only one
rounding error at the end. That instruction allows one to implement Horner’s scheme very efficiently.

5.1.2 Preprocessing of the Coefficients

If the degree of the polynomial is large,3 one can use a method called “adaptation of coefficients,” that
was analyzed by Knuth [275]. This method consists of computing once and for all some “transforma-
tion” of the polynomial that will be used later on for evaluating it using fewer multiplications than with
Horner’s scheme. It is based on the following theorem.

Theorem 13 (Knuth) Let u(x) be a degree-n polynomial

u(x) = un xn + un−1xn−1 + · · · + u1x + u0.

1Even in the very simple case when x = 1 and we just have to compute a0 + · · · + an . Of course we immediately see
that there is a simplification if the ai ’s are known in advance!
2Even if specific polynomials, such as xn , can be evaluated with much fewer multiplications.
3Which sometimes occurs, see for instance [115], page 267.

http://dx.doi.org/10.1007/978-1-4899-7983-4_2

5.1 Sequential Evaluation of Polynomials 83

Let m = �n/2� − 1. There exist parameters c, α0, α1, . . . , αm and β0, β1, . . . , βm such that u(x) can
be evaluated using at most �n/2� + 2 multiplications and n additions by performing the following
calculations:

y = x + c
w = y2

z = (un y + α0)y + β0 if n is even
z = un y + β0 if n is odd
u(x) = (. . . ((z(w − α1) + β1)(w − α2) + β2) . . .)(w − αm) + βm .

For instance, if n = 7 and if we choose c = 1, the values α0, α1, . . . , αm and β0, β1, . . . , βm can be
obtained by solving the following system of equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u7 = 8u8 + α0
u6 = 25u8 + 7α0 + β0 + u8(1 − α1) + u8(1 − α2) + u8(1 − α3)

u5 = 38u8 + 18α0 + 6β0 + (2u8 + α0)(1 − α1) + 4u8(1 − α1)

+(4u8 + α0)(1 − α2) + 2u8(1 − α2) + (6u8 + α0)(1 − α3)

u4 = (u8 + α0 + β0)(1 − α1) + β1 + 28u8 + 20α0 + 12β0
+4(2u8 + α0)(1 − α1) + (5u8 + 3α0 + β0 + u8(1 − α1))(1 − α2)

+4u8(1 − α1) + 2(4u8 + α0)(1 − α2)+
(13u8 + 5α0 + β0 + u8(1 − α1) + u8(1 − α2))(1 − α3)

u3 = 4(u8 + α0 + β0)(1 − α1) + 4β1 + (2u8 + 2α0 + 2β0 + (2u8
+α0)(1 − α1))(1 − α2) + 8u8 + 8α0 + 8β0 + 4(2u8 + α0)(1 − α1)

+2(5u8 + 3α0 + β0 + u8(1 − α1))(1 − α2)

+(12u8 + 8α0 + 4β0 + (2u8 + α0)(1 − α1)

+2u8(1 − α1) + (4u8 + α0)(1 − α2))(1 − α3)

u2 = ((u8 + α0 + β0)(1 − α1) + β1)(1 − α2) + β2
+4(u8 + α0 + β0)(1 − α1) + 4β1
+2(2u8 + 2α0 + 2β0 + (2u8 + α0)(1 − α1))(1 − α2)

+((u8 + α0 + β0)(1 − α1) + β1 + 4u8 + 4α0 + 4β0
+2(2u8 + α0)(1 − α1)

+(5u8 + 3α0 + β0 + u8(1 − α1))(1 − α2))(1 − α3)

u1 = 2((u8 + α0 + β0)(1 − α1) + β1)(1 − α2) + 2β2
+(2(u8 + α0 + β0)(1 − α1) + 2β1
+(2u8 + 2α0 + 2β0 + (2u8 + α0)(1 − α1))(1 − α2))(1 − α3)

u0 = (((u8 + α0 + β0)(1 − α1) + β1)(1 − α2) + β2)(1 − α3) + β3.

Computing the coefficients c, α0, α1, α2, . . . , αm and β0, β1, β2, . . . , βm is rather complicated. In
practice, it may be a long trial-and-error process (most values of c will give inconvenient solutions),
but this is done once and for all. For instance, if n = 7, ui = 1/ i for i ≥ 1, u0 = 1, and c = 1, there
are several solutions to the system of equations. One of them is

α0 = −0.85714285714286
α1 = −1.01861477121502
α2 = 0
α3 = −4.58138522878498
β0 = 1.96666666666667
β1 = −6.09666666666667
β2 = 20.7534008337147
β3 = −94.7138478361582.

In this case, the transformation allows us to evaluate the polynomial using six multiplications,
instead of eight with Horner’s scheme. I am not aware of any use of that method for implementing

84 5 Polynomial Evaluation

elementary functions in floating-point arithmetic. This is probably due to the fact that in practice,
there is always some parallelism available, so that the simpler methods presented in next section
become preferable. Also, the preprocessing of the coefficients may of course introduce some accuracy
loss. Another polynomial evaluation algorithm based on some preprocessing of the coefficients was
introduced by Paterson and Stockmeyer [379].

5.2 Evaluating PolynomialsWhen Some Parallelism is Available

5.2.1 Generalizations of Horner’s Scheme

Afirst parallel solution is the second order Horner’s scheme, that consists in splitting up the polynomial
into its odd and even parts. Consider for instance the evaluation of

p(x) = a7x7 + a6x6 + · · · + a0.

One can first evaluate y = x2, then (using Horner’s scheme), in parallel:

peven = ((a6y + a4) · y + a2) · y + a0,

and
podd = ((a7y + a5) · y + a3) · y + a1,

and obtain the final result as
p(x) = peven + x · podd.

This ideawas generalized byDorn [158].Assumewewish to evaluatean xn+an−1xn−1+· · · +a1x+a0.
Let k be an integer between 2 and n/2. Dorn’s method consists in precalculating α = xk , and then
(possibly using Horner’s scheme), in computing in parallel

b0 = a0 + akα + a2kα
2 + a3kα

3 + · · · ,
b1 = a1 + ak+1α + a2k+1α

2 + a3k+1α
3 + · · · ,

b2 = a2 + ak+2α + a2k+2α
2 + a3k+2α

3 + · · · ,
· · · · · · · · ·
bk−1 = ak−1 + a2k−1α + a3k−1α

2 + a4k−1α
3 + · · · .

We then obtain p(x) as
p(x) = b0 + b1x + b2x2 + . . . + bk−1xk−1.

Another way of parallelizing the evaluation of a polynomial was due to Estrin. Let us introduce it
now.

5.2.2 Estrin’s Method

Assume that we want to evaluate a degree-7 polynomial:

a7x7 + a6x6 + · · · + a1x + a0.

5.2 Evaluating PolynomialsWhen Some Parallelism is Available 85

If we are able to perform multiplications and accumulations in parallel (or in a pipelined fashion),
we can use Estrin’s algorithm [184, 275], easy to generalize to degrees higher than 7 and especially
regular for degrees of the form 2k − 1:

Algorithm 14 Estrin’s algorithm
• input values: a7, a6, a5, a4, a3, a2, a1, a0, and x ,
• output value: p(x) = a7x7 + a6x6 + · · · + a1x + a0.

Perform the following steps:

1. In parallel, compute X (1) = x2, a(1)
3 = a7x + a6, a(1)

2 = a5x + a4, a(1)
1 = a3x + a2, and a(1)

0 = a1x + a0,

2. in parallel, compute X (2) = (
X (1)

)2
, a(2)

1 = a(1)
3 X (1) + a(1)

2 , and a(2)
0 = a(1)

1 X (1) + a(1)
0 ,

3. compute p(x) = a(2)
1 X (2) + a(2)

0 .

Estrin’s method was used for instance in some of INTEL’s elementary function programs for the
Itanium [115] (in fact, the authors used an exhaustive testing strategy to find the evaluation scheme
that was optimal for the various polynomials they had to evaluate and their processor, and it sometimes
turned out that the best scheme was Estrin’s method).

Assume for instance that we use FMA operators with a 5-cycle latency (which was the case on
the Itanium Processor). Table 5.1 shows that, using Estrin’s algorithm, we can evaluate a degree-7
polynomial in 19 cycles using one operator, and Table 5.2 shows that with two operators this can be
done in 17 cycles.

Notice that Estrin’s method can also be used in hardware: the basic idea behind thePolynomier [167]
consists of performing the multiplications and accumulations required by Estrin’s method in pipeline,
using a modified Braun’s multiplier [53, 244].

5.2.3 Evaluating Polynomials onModern Processors

In Sections 5.2.1 and 5.2.2, we have studied classical methods for evaluating polynomials when some
parallelism is available. In practice, these methods will not always give the best possible solution:
we need to adapt the evaluation strategy to the particular context (How many arithmetic operators
are available? Is there an efficient FMA operator? What is the depth of the pipeline of the arithmetic
operators?). Also, a solution that may seem interesting from the point of view of speed may lead,
with the particular coefficients of the polynomial being evaluated and the range of the input value,
to an unacceptable evaluation error. From that point of view, the possible availability of a larger
precision without delay penalty (such as the “double-extended” precision that was available on Intel
X86 architectures) is an important point: as mentioned in [224], the extra precision implies that the
order of evaluation of the polynomial becomes much less important as far as accuracy is concerned,
so that we can fully utilize the available parallelism, and focus on evaluation delay only. However, in
general, there is no fast way of deciding which evaluation strategy leads to the best compromise delay
versus accuracy. We need to compare various different evaluation schemes.

86 5 Polynomial Evaluation

Table 5.1 The scheduling of the various operations involved by the evaluation of p(x) = a7x7 +a6x6 +· · · +a1x +a0
on a 5-cycle pipelined FMA operator, such as one of those available on the Itanium processor [115].

At cycle we start computing we obtain

0 x2 –

1 a(1)
3 = a7x + a6 –

2 a(1)
2 = a5x + a4 –

3 a(1)
1 = a3x + a2 –

4 a(1)
0 = a1x + a0 –

5 x4 = x2 · x2 x2

6 – a(1)
3 = a7x + a6

7 a(2)
1 = a(1)

3 x2 + a(1)
2 a(1)

2 = a5x + a4
8 – a(1)

1 = a3x + a2
9 a(2)

0 = a(1)
1 x2 + a(1)

0 a(1)
0 = a1x + a0

10 – x4

11 – –

12 – a(2)
1 = a7x3 + a6x2 + a5x + a4

13 – –

14 p(x) = a(2)
1 x4 + a(2)

0 a(2)
0 = a3x3 + a2x2 + a1x + a0

15 – –

16 – –

17 – –

18 – –

19 –
p(x) = a7x7 + a6x6 + a5x5

+a4x4 + a3x3 + a2x2 + a1x + a0

Table 5.2 The scheduling of the various operations involved by the evaluation of p(x) = a7x7 +a6x6 +· · · +a1x +a0
with two 5-cycle pipelined FMA operators, such as the ones available on the Itanium processor [115].

At cycle we start computing
(operator 1)

we start computing
(operator 2)

we obtain (operator 1) we obtain (operator 2)

0 x2 a(1)
3 = a7x + a6 – –

1 a(1)
2 = a5x + a4 a(1)

1 = a3x + a2 – –

2 a(1)
0 = a1x + a0 – – –

3 – – – –

4 – – – –

5 x4 = x2 · x2 – x2 a(1)
3

6 a(2)
1 = a(1)

3 x2 + a(1)
2 – a(1)

2 a(1)
1

7 a(2)
0 = a(1)

1 x2 + a(1)
0 – a(1)

0 –

8 – – – –

9 – – – –

10 – – x4 –

11 – – a(2)
1 –

12 p(x) = a(2)
1 x4 + a(2)

0 – a(2)
0 –

13 – – – –

14 – – – –

15 – – – –

16 – – – –

17 – – p(x) –

5.2 Evaluating PolynomialsWhen Some Parallelism is Available 87

When the degree of the polynomial is small, and if we restrict somehow the space of the possi-
ble evaluation schemes (for instance by only allowing FMAs), a brute force strategy (comparison of
all possible evaluation schemes) is possible. This was done for polynomial evaluation on the INTEL
Itanium [224]. Unfortunately, when the degree of the polynomial becomes large, the number of evalua-
tion schemes increases drastically. Mouilleron and Révy [351] found 1304066578 possible evaluation
schemes for a degree-6 polynomial. And the situation will probably not improve in the forthcoming
years: first, we tend to use polynomials of larger and larger degree (to limit memory access), and
second, we may want4 to be able to chose the evaluation scheme at compile time, which prevents from
doing exhaustive or almost-exhaustive search.

The CGPE tool5 was designed by Révy, Mouilleron and Najahi in order to help in synthesizing
fast and certified codes for the evaluation of polynomials, that are optimized for a specific target
architecture. Currently, it is adapted to fixed-point arithmetic, but the techniques used by the authors
(partly described in [351]) could readily be adapted to floating-point arithmetic. The idea behind the
tool is to find good heuristics to reduce the number of evaluation schemes that are compared. CGPE
was used successfuly for generating a significant part of the code of the FLIP (Floating-point Library
for Integer Processors) library [36, 255].6

5.3 Computing Bounds on the Evaluation Error

In Chapters 3 and 4, we have focused on the maximum error obtained when approximating a function
by a polynomial. Another error must be taken into account: when the polynomial approximation is
evaluated in finite precision arithmetic, rounding errorswill occur at (almost) each arithmetic operation,
resulting in a global evaluation error. We therefore have to find sharp bounds on that polynomial
evaluation error, which is the goal of this section.

Once we know the polynomial evaluation error, combining the approximation error and the poly-
nomial evaluation error is done as follows. Assume that f is the function being approximated, P is the
approximating polynomial, and P̂(x) is the computed (i.e., with rounding errors) value of P at point
x .

• if we discuss in terms of absolute error bounds, if ε1 is the bound on the approximation error
and ε2 is the bound on the polynomial evaluation error, then for any x , | f (x) − P(x)| ≤ ε1 and
|P(x) − P̂(x)| ≤ ε2, so that the final absolute error satisfies

| f (x) − P̂(x)| ≤ ε1 + ε2;

• if we discuss in terms of relative error bounds if ε1 is the bound on the approximation error and ε2
is the bound on the polynomial evaluation error, then for any x , | f (x) − P(x)|/| f (x)| ≤ ε1 and
|P(x) − P̂(x)|/|P(x)] ≤ ε2, so that the final relative error satisfies

| f (x) − P̂(x)|
| f (x)| ≤ ε1 + ε2 + ε1ε2.

4At the time I am writing these lines, we are still far from this goal.
5Available at http://cgpe.gforge.inria.fr/.
6FLIP is available at http://flip.gforge.inria.fr.

http://dx.doi.org/10.1007/978-1-4899-7983-4_3
http://dx.doi.org/10.1007/978-1-4899-7983-4_4
http://cgpe.gforge.inria.fr/
http://flip.gforge.inria.fr

88 5 Polynomial Evaluation

This last value is of course very close to ε1 + ε2 in all practical cases, and yet, if one wishes to
provide certain results, one should not blindly add relative errors.

In the following, we assume that the computations are performed using binary, precision-p, floating-
point arithmetic.

Let
P(x) = an xn + an−1xn−1 + · · · + a1x + a0

be a degree-n polynomial.We assume that the ai ’s are exactly representable in the floating-point format
being used. We wish to tightly bound the largest possible evaluation error, for x ∈ [xmin, xmax].

5.3.1 Evaluation Error Assuming Horner’s Scheme is Used

If P is evaluated using Horner’s scheme, the classical result is the following
(see Higham’s book [232] for more information):

Theorem 14 Assume radix-2 and precision-p, rounded to nearest, floating-point arithmetic. The
absolute error in the evaluation of

an xn + an−1xn−1 + · · · + a1x + a0

using Horner’s scheme (with separate additions and multiplications, i.e., no FMAs) is bounded by

γ2n ·
n∑

i=0

|ai | · |x |i ,

where γk is defined as k · 2−p/(1 − k · 2−p).

In a recent paper [402], Rump, Bünger, and Jeannerod improved on this last result, and proved the
following theorem:

Theorem 15 (Adaptation to radix-2 arithmetic of Theorem 1.3 of [402]) Assume radix-2 and
precision-p, rounded to nearest, floating-point arithmetic. The absolute error in the evaluation of

an xn + an−1xn−1 + · · · + a1x + a0

using Horner’s scheme (with separate additions and multiplications, i.e., no FMAs) is bounded by

n · 2−p+1 ·
n∑

i=0

|ai | · |x |i ,

if n < (1/2) · (
2p/2 − 1

)
.

The constraint n < (1/2) · (2p/2 − 1) is not too restrictive. The bound given by Theorem 15 is
valid for polynomials of degree less than or equal to 2047 in binary32/single precision arithmetic, and
less than or equal to 47453132 in binary64/double precision arithmetic: in practice, for approximating
elementary functions, we use polynomials of a much smaller degree.

5.3 Computing Bounds on the Evaluation Error 89

This last result might suffice when a very tight bound is not needed (for instance, when the interme-
diate calculations are performed with a precision that is significantly larger than the target precision).
When a very sharp bound is needed, we must use other techniques such as the one we are going to
examine now. It can of course be used for computing error bounds by paper and pencil calculations.
And yet, that would be so tedious and error-prone, that I strongly recommend that these calculations
be automated7. Below, I give small and simple Maple programs for performing them. These programs
can be generalized to cases where algorithms such as the Fast2Sum and Fast2Mult algorithms (see
Chapter 2) are used—at least with the leading coefficients—to get very accurate results. They use
the rounding and ulp functions given in Section 2.2.5. Let us first assume that the polynomial will be
evaluated using conventional floating-point additions and multiplications (that is, there is no available
fused multiply–add instruction).

Evaluation using floating-point additions and multiplications
We assume that we evaluate p(x) using Horner’s rule. We also assume that the basic operations used
are floating-point additions andmultiplications, and that round-to-nearest rounding function is selected
(adaptation to other rounding functions is rather straightforward). Define

{
P∗[i] = an xn−i+1 + an−1xn−i + · · · + ai x
S∗[i − 1] = an xn−i+1 + an−1xn−i + · · · + ai x + ai−1.

These variables denote the “exact” values that would be successively computed (from i = n to 0),
during Horner’s evaluation of p(x), for a given x ∈ [xmin, xmax] if there were no rounding errors.
The exact value of p(x) is S∗[0]. We will also denote P[i] and S[i] the computed values of P∗[i] and
S∗[i], using the relations {

P[i − 1] = RN(S[i − 1] · x)

S[i − 1] = RN(P[i] + ai−1),

with S[n] = an . The computed value of p(x) is S[0]. We are going to build lower bounds Pmin[i]
and Smin[i], and upper bounds Pmax [i] and Smax [i], on P[i] and S[i]. These bounds, of course, will
hold for any x ∈ [xmin, xmax]. To compute them, we will need other variables: P̂min[i] and P̂max [i]
will bound the exact value of S[i]x , and Ŝmin[i − 1] and Ŝmax [i − 1] will bound the exact value of
P[i] + ai−1.

To compute an upper bound on the error occurringwhen evaluating p(x) in floating-point arithmetic,
we will need to evaluate the following intermediate error bounds:

• δ[i] is an upper bound on the error due to the floating-point multiplication of S[i] by x ;
• ε[i − 1] is an upper bound on the error due to the floating-point addition of P[i] and ai−1.

Now, define err [i] as an upper bound on |S∗[i] − S[i]|. We wish to compute the value of err [0]: this
is the bound on the final evaluation error we are looking for. We will compute it iteratively, starting
from err [n] = 0.

We first start from the straightforward values Smin[n] = Smax [n] = an , and we define err [n] = 0.
Now, assume that we know Smin[i], Smax [i], and err [i]. Let us see how to deduce Smin[i − 1],
Smax [i − 1], and err [i − 1]. First, we obviously find (this is the usual interval multiplication)

P̂min[i] = min {Smin[i]xmin, Smin[i]xmax , Smax [i]xmin, Smax [i]xmax } ,

7As a matter of fact, similar calculations are done by the Gappa software, presented in Section 2.2.4, so in practice the
best solution is to use Gappa.

http://dx.doi.org/10.1007/978-1-4899-7983-4_2
http://dx.doi.org/10.1007/978-1-4899-7983-4_2
http://dx.doi.org/10.1007/978-1-4899-7983-4_2

90 5 Polynomial Evaluation

and
P̂max [i] = max {Smin[i]xmin, Smin[i]xmax , Smax [i]xmin, Smax [i]xmax } .

Sincewe use correctly roundedmultiplication, in round-to-nearest mode, the rounding error that occurs
when computing P[i] = RN(S[i] · x) is upper bounded by

1

2
ulp (S[i]x).

Since ulp (t) is an increasing function of |t |, and since S[i]x ∈ [P̂min[i], P̂max [i]], we get the following
bound on that rounding error

δ[i] = 1

2
ulp

(
max

{
|P̂min[i]|, |P̂max [i]|

})
.

From
P̂min[i] ≤ S[i]x ≤ P̂max [i]

and the monotonicity of the RN function, we deduce

RN
(

P̂min[i]
)

≤ P[i] = RN (S[i]x) ≤ RN
(

P̂max [i]
)

,

which leads us to the following choices for the lower and upper bounds on P[i]:
⎧⎨
⎩

Pmin[i] = RN
(

P̂min[i]
)

Pmax [i] = RN
(

P̂max [i]
)

.

Similarly, we find
Ŝmin[i − 1] = Pmin[i] + ai−1

and
Ŝmax [i − 1] = Pmax [i] + ai−1.

From these values, we deduce a bound on the error that occurs when computing S[i −1] = RN(P[i]+
ai−1):

ε[i − 1] = 1

2
ulp

(
max

{
|Ŝmin[i − 1]|, |Ŝmax [i − 1]|

})
,

We also find the following lower and upper bounds on S[i − 1]:
⎧⎨
⎩

Smin[i − 1] = RN
(

Ŝmin[i − 1]
)

Smax [i − 1] = RN
(

Ŝmax [i − 1]
)

.

We now have all the information we need to choose an adequate value for err [i − 1]. We have,

5.3 Computing Bounds on the Evaluation Error 91

|S∗[i − 1] − S[i − 1]| = |P∗[i] + ai−1 − S[i − 1]|
= |S∗[i]x + ai−1 − S[i − 1]|
≤ |S∗[i] − S[i]| · |x | + |S[i]x + ai−1 − S[i − 1]|
≤ err [i] · |x | + |S[i]x − P[i]| + |P[i] + ai−1 − S[i − 1]| ,

which immediately leads us to the following choice:

err [i − 1] = err [i]max {|xmin|, |xmax |} + δ[i] + ε[i − 1].

The following Maple program uses these relations for deducing err [0] from an array a con-
taining the coefficients of p (a[i] is the coefficient of degree i), a variable n representing the
degree of p, and the bounds xmin and xmax on x . It uses the functions nearest_binary32
and ulp_in_binary_32 presented in Section 2.2.5, hence it computes error bounds assum-
ing the polynomial evaluation will be done in binary32/single precision arithmetic. To adapt it to
calculations performed in binary64 arithmetic, it suffices to replace these functions by functions
nearest_binary64 and ulp_in_binary_64.

Errevalpol := proc(a,n,xmin,xmax);
smin[n]:= a[n];
smax[n]:= a[n];
err[n]:= 0;
for i from n by -1 to 1 do

pminhat[i] := min(smin[i]*xmin,smin[i]*xmax,smax[i]*xmin,
smax[i]*xmax);

pmaxhat[i] := max(smin[i]*xmin,smin[i]*xmax,smax[i]*xmin,
smax[i]*xmax);

delta[i]:=0.5*ulp_in_binary_32(max(abs(pminhat[i]),abs(pmaxhat[i])));
pmin[i] := nearest_binary32(pminhat[i]);
pmax[i] := nearest_binary32(pmaxhat[i]);
sminhat[i-1] := pmin[i]+a[i-1];
smaxhat[i-1] := pmax[i]+a[i-1];
epsilon[i-1] := 0.5*ulp_in_binary_32(max(abs(sminhat[i-1]),

abs(smaxhat[i-1])));
smin[i-1] := nearest_binary32(sminhat[i-1]);
smax[i-1] := nearest_binary32(smaxhat[i-1]);
err[i-1] := err[i]*max(abs(xmin),abs(xmax))

+epsilon[i-1]+delta[i]
od;

err[0];
end;

Let us now give two examples that illustrate this method and compare it with other solutions.

Example 4 Consider the polynomial

P(x) = 1 + x + x2

2
+ 5592383

225
· x3 + 701583

224
· x4.

The coefficients of that polynomial are exactly representable in the binary32 format. That polynomial
(generated by Sollya) is an approximation to function ex in the domain [0, ln(2)/64]. Assume one
wishes to bound the error committed when evaluating that polynomial in binary32 floating-point
arithmetic, using Horner’s scheme (without FMAs), for x ∈ [2−7, ln(2)/64]. Let us compare four
different solutions for bounding that error.

http://dx.doi.org/10.1007/978-1-4899-7983-4_2

92 5 Polynomial Evaluation

Use of Theorem 15 First, the bound given by Theorem 15 is

4 · 2−23 ·
(
1 + ρ + ρ2

2
+ 5592383

225
· ρ3 + 701583

224
· ρ4

)
,

with ρ = ln(2)/64. This gives 4.821 × 10−7.
Use of our method Using the Errevalpol Maple program we have just given, we obtain a sig-

nificantly smaller bound: 6.073 × 10−8.
Use of Gappa The Gappa software, presented in Section 2.2.4, can be called with the following

input file (that describes what we actually compute and what we want to compute):

@RN = float<ieee_32,ne>;
defines RN as round-to-nearest in binary32 arithmetic

x = RN(xx);
a0 = 1;
a1 = 1;
a2 = 1/2;
a3 = 5592383b-25;
a4 = 701583b-24;

description of the program

p4 = RN(a4*x);
s3 = RN(a3+p4);
p3 = RN(s3*x);
s2 = RN(a2+p3);
p2 = RN(s2*x);
s1 = RN(a1+p2);
p1 = RN(s1*x);
s0 = RN(a0+p1);

description of the exact value we are approximating
convention: an "m" as a prefix of the names of "exact" variables
mp4, ms3, mp3, ms2, , ms0 are just here
to help describing the hint to Gappa

mp4 = (a4*x);
ms3 = (a3+mp4);
mp3 = (ms3*x);
ms2 = (a2+mp3);
mp2 = (ms2*x);
ms1 = (a1+mp2);
mp1 = (ms1*x);
ms0 = (a0+mp1);
mpolynomial = a4*x*x*x*x + a3*x*x*x + a2 *x*x + a1*x + a0;
epsilon = (mpolynomial-s0);

description of what we want to prove

{
input hypothesis
x in [1b-7,1453635b-27]

->
goal to prove

http://dx.doi.org/10.1007/978-1-4899-7983-4_2

5.3 Computing Bounds on the Evaluation Error 93

|epsilon| in ?
}

hint to Gappa
mpolynomial -> ms0 ;

Notice that to get a relative error bound, it would have sufficed to replace the line

epsilon = (mpolynomial-s0);

by the line

epsilon = (mpolynomial-s0)/mpolynomial;

Called with that input file, Gappa will return

|epsilon| in [0, 293650037469320933b-82
{6.07254e-08, 2ˆ(-23.9731)}]

Hence the bound given by Gappa is the same as the one we obtained with our method: 6.073×10−8.
This is not surprising: it is very likely that Gappa uses a similar strategy for computing the error
bound. An important advantage of Gappa is that if called with option -Bcoq it generates a formal
proof of the bound, that can be checked with the Coq proof checker.

Exhaustive testing There are only 3240472 binary32 numbers between 2−7 and ln(2)/64: it takes a
few minutes only to evaluate the polynomial in binary32 arithmetic and exactly (using for instance
Maple) for all these numbers, and find that the largest attained evaluation error is 6.06955×10−8.

On this example, Gappa and our Errevalpol program give a very tight error bound, and the
bound given by Theorem 15, although slightly pessimistic, remains reasonable. Notice that frequently,
for floating-point formats not wider than binary32, performing exhaustive tests is a sound solution. Let
us now switch to another example.

Example 5 Consider, for x ∈ [1/2, 1], and assuming binary64/double precision arithmetic, the poly-
nomial

q(x) = 4502715367124429

252
− 5094120834338589

253
x

+3943097548915637

252
x2 − 272563672039763

249
x3

+6289926120511169

255
x4.

It is an (rather poor, but this does not matter here) approximation to x ! = �(x +1). The bound provided
by Theorem 15 is 1.479 × 10−6. Using function Errevalpol (adapted to the binary64 format), we
get a much smaller error bound, equal to 3.4695 × 10−16, the bound given by Gappa is the same.
An exhaustive test is not possible in binary64 arithmetic, however, the largest error we have actually
obtained through experiments is around 2.546 × 10−16, which is significantly less than the computed
bounds.

This large difference comes from awell-known problem in interval arithmetic. The bounds P̂min[i] and
P̂max [i] are obtained by an interval multiplication of [Smin[i], Smax [i]] by [xmin, xmax]. For getting
the bounds of that interval product, depending on i , it is sometimes xmin that is used, and sometimes
xmax : we lose the essential information that, in actual polynomial evaluations, it is “the same x” that

94 5 Polynomial Evaluation

is used at all steps of Horner’s method. This problem did not occur in Example 4, because, since the
polynomial coefficients were all positive, and since xmin ≥ 0, it was always xmin that was used to get
the lower bounds P̂min[i], and it was always xmax that was used to get the upper bounds P̂max [i].

The best way to make that problem negligible is to split the input interval [xmin, xmax] into several
subintervals, to useErrevalpol in each subdomain, and to consider the largest returned error bound.
This is done by the following Maple program:

RefinedErrPol := proc(a,n,xmin,xmax,NumbOfIntervals);
errmax := 0;
Size := (xmax-xmin)/NumbOfIntervals;
for i from 0 to NumbOfIntervals-1 do
err := Errevalpol(a,n,xmin+i*Size,xmin+(i+1)*Size);
if err > errmax then errmax := err fi

od;
errmax
end;

In our example, ifwe cut the initial input interval into 128 subintervals, by callingRefinedErrPol
(a,4,1/2,1,128), we get a better error bound: 2.919 × 10−16. Gappa does the domain splitting
in 128 subintervals if, at the end of the input file, we add the hint

$ x in 128;
and we then obtain the bound 2.9165 × 10−16. If we ask Gappa to split the input domain into 1024
subintervals, it takes a few seconds to obtain an even better bound: 2.91494 × 10−16.

Evaluation using fused multiply–accumulate instructions
Let us now assume that on the target architecture a fused multiply–accumulate (FMA) instruction is
available, and that we use that instruction to implement the polynomial evaluation by Horner’s scheme.

As previously, we define

S∗[i] = an xn−i + an−1xn−i−1 + · · · + ai ,

we also define S[i] as the computed value, for a given x , of S∗[i] obtained by iteratively using

S[i − 1] = RN (S[i]x + ai−1) ,

with S[n] = an . We will compute lower and upper bounds Smin[i] and Smax [i] on S[i]. To do that, we
use intermediate variables Ŝmin[i − 1] and Ŝmax [i − 1] that bound the exact value of (S[i]x + ai−1),
and a variable ε[i] that bounds the rounding error occurring when computing S[i] from S[i + 1].

As in Section 5.3.1, err [i] is an upper bound on |S∗[i] − S[i]|. We wish to compute err [0]: this is
the bound we are looking for on the final evaluation error. We will compute it iteratively, starting from
err [n] = 0. The iterative process that gives err [0] is very similar to the one described in Section 5.3.1.
We first start from the straightforward values: Smin[n] = Smax [n] = an and err [n] = 0.

Now, assume that we know Smin[i], Smax [i] and err [i]. Let us see how to deduce Smin[i − 1],
Smax [i − 1] and err [i − 1]. We find

Ŝmin[i − 1] = ai−1 + min {Smin[i]xmin, Smin[i]xmax , Smax [i]xmin, Smax [i]xmax }

and
Ŝmax [i − 1] = ai−1 + max {Smin[i]xmin, Smin[i]xmax , Smax [i]xmin, Smax [i]xmax } .

5.3 Computing Bounds on the Evaluation Error 95

We then deduce

ε[i − 1] = 1

2
ulp

(
max

{
|Ŝmin[i − 1]|, |Ŝmax [i − 1]|

})
.

Also, since RN is a monotonic function, from Ŝmin[i − 1] ≤ ai−1 + S[i]x ≤ Ŝmax [i − 1], we deduce

RN
(

Ŝmin[i − 1]
)

≤ RN (ai−1 + S[i]x) = S[i − 1] ≤ RN
(

Ŝmax [i − 1]
)

.

Hence, a natural choice is ⎧⎨
⎩

Smin[i − 1] = RN
(

Ŝmin[i − 1]
)

Smax [i − 1] = RN
(

Ŝmax [i − 1]
)

.

We now have all the information we need to choose an adequate value for err [i − 1]:

err [i − 1] = err [i]max {|xmin|, |xmax |} + ε[i − 1].

The following Maple program uses these relations for deducing err [0] from an array a containing
the coefficients of p, a variable n representing the degree of p, and the bounds xmin and xmax on x .
It uses the functions nearest_binary32 and ulp_in_binary_32 presented in Section 2.2.5,
hence it computes error bounds assuming the polynomial evaluation will be done in binary32/single
precision arithmetic. To adapt it to calculations performed in binary64 arithmetic, it suffices to replace
these functions by functions nearest_binary64 and ulp_in_binary_64.

ErrevalpolFMA := proc(a,n,xmin,xmax);
smin[n]:= a[n];
smax[n]:= a[n];
err[n]:= 0;
for i from n by -1 to 1 do

sminhat[i-1] := a[i-1] + min(smin[i]*xmin,smin[i]*xmax,
smax[i]*xmin,smax[i]*xmax);

smaxhat[i-1] := a[i-1] + max(smin[i]*xmin,smin[i]*xmax,
smax[i]*xmin,smax[i]*xmax);

epsilon[i-1] := 0.5*ulp_in_binary_32(max(abs(sminhat[i-1]),
abs(smaxhat[i-1])));

smin[i-1] := nearest_binary32(sminhat[i-1]);
smax[i-1] := nearest_binary32(smaxhat[i-1]);
err[i-1] := err[i]*max(abs(xmin),abs(xmax))+epsilon[i-1]

od;
err[0];
end;

Example 6 • With the polynomial of Example 4, the Maple program ErrevalpolFMA and Gappa
return the same bound 6.026× 10−8. An exhaustive testing shows that the largest attained error is
6.021 × 10−8.

• With the polynomial of Example 5, the Maple program ErrevalpolFMA (adapted to binary64
calculations) returns 2.2205 × 10−16 without splitting of the input domain, and 1.9451 × 10−16 if
we split the input domain into 128 parts. Gappa gives the same figures. Exhaustive testing is out of
reach, but the largest error we have encountered in our experiments was 1.7787 × 10−16.
These examples show again that we can obtain very tight bounds on the evaluation error. Incidentally,

these examples also illustrate something that frequently happens. The use of an FMA operator allows
one to halve the number of operations needed to perform the polynomial evaluation: one could expect

http://dx.doi.org/10.1007/978-1-4899-7983-4_2

96 5 Polynomial Evaluation

significant gains in terms of delay and accuracy. The gains in terms of delay are here, and yet the gains
in terms of accuracy, although not negligible, are rather small.

5.3.2 Evaluation Error with Methods Different than Horner’s Scheme

As we have seen before, as soon as its degree is large, the number of possible evaluation strategies for
a given polynomial is huge. We cannot try to find and prove a theoretical result such as Theorem 15
for each of these evaluation strategies. It is possible to build ad hoc programs similar to the Maple
programs of the previous section for computing error bounds for a given strategy. In general, one should
avoid that (the only possible exception being the case when we know we will use the same strategy for
many functions), because it is a tedious and error-prone process. Gappa, with its versatility, its ability
to generate a formal proof, and with the useful fact that it can be called from other tools is certainly
the best current solution. Consider, for example, a degree-4 polynomial

P(x) = a4x4 + a3x3 + a2x2 + a1x + a0.

If enough parallelism is available and there is an FMA instruction, one may consider evaluating it as
follows:

Algorithm 15 Evaluation strategy for a degree-4 polynomial, that exhibits some parallelism
y ← RN(x2)
b1 ← RN(a4x + a3)
b0 ← RN(a2x + a1)
c ← RN(b1y + b0)
s ← RN(cx + a0)

the advantage being that the first three lines can be executed in parallel. A very simple modification
of the Gappa input file we have presented in Example 4 allows to deal with this evaluation scheme.
For instance, the polynomial of Example 4, with inputs in [2−7, ln(2)/64], is dealt with the following
Gappa input file.

@RN = float<ieee_32,ne>;
defines RN as round-to-nearest in binary32 arithmetic

x = RN(xx);
a0 = 1;
a1 = 1;
a2 = 1/2;
a3 = 5592383b-25;
a4 = 701583b-24;

description of the program

y = RN(x*x);
b1 = RN(a4*x+a3);
b0 = RN(a2*x+a1);
c = RN(b1*y+b0);
s = RN(c*x+a0);

description of the exact value we are approximating

5.3 Computing Bounds on the Evaluation Error 97

convention: an "M" as a prefix of the names of "exact" variables

My = (x*x);
Mb1 = (a4*x+a3);
Mb0 = (a2*x+a1);
Mc = (Mb1*My+Mb0);
Ms = (Mc*x+a0);
Mpolynomial = a4*x*x*x*x + a3*x*x*x + a2*x*x + a1*x + a0;
epsilon = (Mpolynomial-s);

description of what we want to prove

{
input hypothesis
x in [1b-7,1453635b-27]

->
goal to prove
|epsilon| in ?

}

hint to Gappa

Mpolynomial -> Ms;

The returned bound is 6.08958×10−8, which is close to the error bounds of Horner’s scheme (with
or without FMA) with the same polynomial. The actual largest error, obtained through exhaustive
calculations is around 6.0678 × 10−8.

If we use the same evaluation scheme with the polynomial and input domain of Example 5, the
obtained error bound (with a splitting into 128 subintervals) is 1.8417 × 10−16. Exhaustive tests are
out of reach, but the largest error found in large simulations was 1.6695 × 10−16.

Incidentally, this shows that general prediction on the numerical quality of evaluation strategies is a
difficult exercise: with the first polynomial, Algorithm 15 is (very slightly) less accurate than the FMA
version of Horner’s algorithm, and with the second polynomial it seems more accurate (although we
have no certainty: the only sure fact is that the bounds are lower).

5.3.3 When High Accuracy is Needed

We frequently need to evaluate a polynomial with a precision somehow higher than the target precision.
This typically occurs when the result of the polynomial evaluation is not the final result to be returned
(for instance, when we have performed a range reduction and we need to deduce the value of the
function at the initial argument from its value at the reduced argument), or when we want to guarantee
correct rounding and we need to make sure that the value of the function is far enough from a point
where the rounding function changes (see Chapter 12). Fortunately, in many cases, it is rather easy to
obtain that extra precision. Consider a polynomial

p(x) = a0 + a1x + a2x2 + · · · + an xn, (5.2)

it frequently happens, with the particular polynomials used for approximating the elementary functions,
that the “head” in (5.2), say a0 or a0+a1x , has a large absolute value compared to the “tail” a1x +· · · +

http://dx.doi.org/10.1007/978-1-4899-7983-4_12

98 5 Polynomial Evaluation

an xn or a2x2+· · · +an xn , either because the range reduction being used before polynomial evaluation
leads to small values of |x |, or because the sequence |ai | quickly decreases. In such cases a simple way
to save some extra precision is to evaluate the tail separately, and then to return a double-word result
(yh, y), in general obtained by applying the Fast2Sum or the 2Sum algorithm (see Section 2.2.1,) to
the pair (head,tail). This double-word result can be used later on to perform further calculations, or
to perform a Ziv rounding test (see Section 12.4) to quickly check if we have enough information to
return a correctly rounded result.

The following example illustrates this strategy:

Example 7 The following polynomial, whose coefficients are binary64 numbers, approximates 2x ,
for x ∈ [0, 1/512] with a relative error less than 8.387 × 10−20:

P(x) = 1 + 6243314768165347

253
· x + 8655072058047061

255
· x2

+3999491778607567

256
· x3 + 5548134412280811

259
· x4.

Define ai as the degree-i coefficient of P. Evaluating P(x) in binary64 arithmetic using Horner’s
scheme with an FMA instruction, i.e., as

RN(a0 + x · RN(a1 + x · RN(a2 + x · RN(a3 + x · a4)))),

results in a relative evaluation error less than (but frequently close to) 1.113 × 10−16, which is large
relative to the approximation error. Now, if we evaluate P(x) as follows:

• we first evaluate the tail a1x + · · · + an xn using Horner’s scheme, i.e., as

t = RN(x · RN(a1 + x · RN(a2 + x · RN(a3 + x · a4))))

• and we return the double-word
(yh, y) = Fast2Sum(a0, t),

then the relative evaluation error becomes less than (but frequently close to) 2.170 × 10−19, which is
much better.

5.4 Polynomial Evaluation by Specific Hardware

When designing or using specific hardware, it may be possible to use some algorithms and architec-
tures for evaluating polynomials that have been proposed in the literature. Let us examine some such
solutions.

5.4.1 The E-Method

The E-method, introduced byM.D. Ercegovac in [172, 173], allows efficient evaluation of polynomials
and certain rational functions on simple and regular hardware. Here we concentrate on the evaluation
of polynomials assuming radix-2 arithmetic.

http://dx.doi.org/10.1007/978-1-4899-7983-4_2
http://dx.doi.org/10.1007/978-1-4899-7983-4_12

5.4 Polynomial Evaluation by Specific Hardware 99

Consider the evaluation of p(x) = pn xn + pn−1xn−1 + · · · + p0. One can easily show that p(x)

is equal to y0, where [y0, y1, . . . , yn]t is the solution of the following linear system:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −x 0 · · · 0
0 1 −x 0 · · · 0
0 0 1 −x 0 · · · 0

. . .
. . .

. . .
. . .

...

. . .
. . .

. . .
. . . 0

...
. . .

. . .
. . . 0
1 −x

0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0
y1
y2

...

yn−1

yn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p0
p1
p2

...

pn−1

pn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.3)

The radix-2 E-method consists of solving this linear system by means of the basic recursion

w(0) = [p0, p1, . . . , pn]t

w(j) = 2 × [
w(j−1) − Ad(j−1)

]
,

(5.4)

where A is the matrix of the linear system. This gives, for i = 0, . . . , n,

w
(j)
i = 2 ×

[
w

(j−1)
i − d(j−1)

i + d(j−1)
i+1 x

]
,

where d(j)
i ∈ {−1, 0, 1}. Define the number

D(j)
i = d(0)

i .d(1)
i d(2)

i . . . d(j)
i .

The d(k)
i are the digits of a radix-2 signed-digit (see Chapter 2) representation of D(j)

i . One can show

that if for any i the sequences |w(j)
i | are bounded, then D(j)

i goes to yi as j goes to infinity.

The problem at step j is to find a selection function that gives a value of the terms d(j)
i from the

terms w
(j)
i such that the values w

(j+1)
i remain bounded. In [173], the following selection function (a

form of rounding) is proposed,

s(x) =
{
sign (x) × �|x + 1/2|� , if |x | ≤ 1
sign (x) × �|x |� , otherwise,

(5.5)

and applied to the following cases:

1. d(j)
i = s(w(j)

i); that is, the selection requires nonredundant w(j)
i ;

2. d(j)
i = s(ŵ(j)

i), where ŵ
(j)
i is an approximation of w

(j)
i . In practice, ŵ

(j)
i is deduced from a few

digits of w
(j)
i by means of a rounding to the nearest or a truncation.

Assume ⎧
⎨
⎩

∀i, |pi | ≤ ξ

|x | ≤ α

|w(j)
i − ŵ

(j)
i | ≤ �

2 .

http://dx.doi.org/10.1007/978-1-4899-7983-4_2

100 5 Polynomial Evaluation

The E-method gives a correct result if the previously defined bounds ξ, α, and � satisfy

⎧⎨
⎩

ξ = 1
2 (1 + �)

0 < � < 1
α ≤ 1

4 (1 − �).

(5.6)

For instance, if � = 1/2, one can evaluate p(x) for x ≤ 1/8 and max |pi | ≤ 3/4. Those bounds
may seem quite restrictive, but in practice there exist scaling techniques [173] that allow us to compute
p(x) for any x and p.

5.4.2 Custom Precision Function Evaluation on Embedded Processors

Lee and Villasenor [304] approximate functions by polynomials that are to be evaluated on fixed-point
processors. They use analytical approaches to allow the designer to customize the precision. They
evaluate the polynomials using Horner’s scheme.

5.4.3 Polynomial Evaluation on FPGAs

Using FPGAs, one can size each arithmetic operator so that it offers the necessary precision and works
on the required range, but notmore. FloPoCo,8 coordinated by deDinechin [137], is a generator of arith-
metic cores for FPGAs. There is a significant literature on the implementation on FPGAs of elementary
functions through the use of polynomial approximations. Langhammer and Pasca [296] implement the
Horner scheme with a “fused” operator (that saves the area and delay usually necessitated by the align-
ments and normalization that are needed in individual floating-point operations). They also design
floating-point polynomial operators dedicated to a restricted input range (the one needed for a given
function), which allows for significant savings in terms of operator size [297]. Thomas implements
faithfully rounded (see Chapter 12) functions on FPGAs using polynomial approximations [452].

8FloPoCo is freely available at http://flopoco.gforge.inria.fr.

http://dx.doi.org/10.1007/978-1-4899-7983-4_12
http://flopoco.gforge.inria.fr

6Table-BasedMethods

6.1 Introduction

As explained in Chapter 1, for evaluating a function in a large domain (possibly made up with all
floating-point numbers of a given format), we first perform one or several range reduction steps,
to reduce our initial problem to the evaluation of a function in one or several (sometimes, many!)
smaller intervals. In each of these intervals, either the function is approximated by a polynomial whose
coefficients are tabulated, or we have to store the value of the function at some point of the interval, and
use identities such as exp(a + b) = exp(a) · exp(b) or trigonometric identities to reduce the problem
to evaluating the function near zero. Choosing the size of these intervals is not an easy task:

• large intervals will make range reduction simpler and require smaller tables. However, they will
require polynomials of large degrees, whose evaluation takes more clock cycles, and for which
guaranteeing a tight bound on the evaluation error may be more difficult;

• small intervals have the advantage of requiring very small polynomials quickly evaluated. However,
possible cachemisses due to the large tables they requiremay totally destroy performance. See [143,
144] for a discussion on this problem.

To illustrate this, assume one wishes to implement function 2x in binary64 arithmetic. First, a
preliminary reduction to the interval [0, 1) is straightforward: if k = �x� and f = x − k, then
2x = 2 f 2k , and multiplying by 2k reduces to a simple exponent manipulation. If one wishes to use
polynomial approximations of relative accuracy better than 2−54 ≈ 5.55 × 10−17, and if we add the
constraint that the degree-0 coefficient of the polynomial approximation should be 1, and that all the
other coefficients should be binary64 numbers, different choices are possible, among them:

• one can use the following degree-11 polynomial that approximates 2x with relative error at most
3.385 × 10−18 on the whole interval [0, 1):

1 + x * (6243314768165365 * 2ˆ(-53)
+ x * (4327536028901397 * 2ˆ(-54)
+ x * (7998985059327887 * 2ˆ(-57)
+ x * (5544473936422889 * 2ˆ(-59)
+ x * (3074509296366713 * 2ˆ(-61)
+ x * (5682892945237327 * 2ˆ(-65)
+ x * (9003886559762327 * 2ˆ(-69)

© Springer Science+Business Media New York 2016
J.-M. Muller, Elementary Functions, DOI 10.1007/978-1-4899-7983-4_6

101

http://dx.doi.org/10.1007/978-1-4899-7983-4_1

102 6 Table-Based Methods

+ x * (6237463724831189 * 2ˆ(-72)
+ x * (7747239597825951 * 2ˆ(-76)
+ x * (7929123815494859 * 2ˆ(-80)
+ x * (6058874616061415 * 2ˆ(-83))))))))))))

• one can have all values ci = 2i/256, 1 ≤ i ≤ 255, stored in a table (possibly as double-word
numbers), use the following degree-4 polynomial, that approximates 2x with relative error at most
2.786 × 10−18 on the interval [0, 1/256), so that if t = i/256 + η, with η ∈ [0, 1/256), 2t is
computed as ci · 2η:

1 + x * (6243314768165159 * 2ˆ(-53)
+ x * (4327536029886647 * 2ˆ(-54)
+ x * (499936188037589 * 2ˆ(-53)
+ x * (5551817238983839 * 2ˆ(-59))))).

Depending on the properties of the underlying hardware (size of caches, speed of the arithmetic
operations vs speed of memory access, available parallelism…) and on the requirements in terms
of accuracy, speed, and memory consumption, the spectrum of chosen compromises ranges from
table-only solutions such as the bipartite method, presented in Section 6.5.4 to no-table solutions: for
instance the arctangent function described in [115, 224] and designed for the IA-64 architecture uses
a polynomial of degree 47 and no table.

Another example that illustrates the link between interval size and polynomial degree is the follow-
ing.

Wewish to approximate function ln
(
1 + e−x

)
in binary64 arithmetic, in the interval [0, 1], with rel-

ative error less than 2−54 ≈ 5.55×10−17. We require all coefficients of the polynomial approximation
to be binary64 floating-point numbers. The following solutions lead to similar accuracies:

• one polynomial, for the whole domain [0, 1] of degree 14;
• four degree-9 polynomials, for the intervals [0,1/4], [1/4,1/2], [1/2,3/4], and [3/4,1], respectively.

These examples show that a significant amount of polynomial evaluation time can be saved by
splitting the original domain. Many compromises between the amount of computation and the amount
of memory access can be found. Much care is needed at the boundaries of the subdomains if we wish to
preserve properties such as monotonicity. Tables 6.1 and 6.2 show for various functions that reducing
the size of the interval where a function is approximated allows the use of a polynomial of small degree.
With the simplest functions, it is not necessary to recalculate and store a new polynomial or rational
approximation for each subinterval; one can use some simple algebraic properties such as ea+b = eaeb.
For more complex functions such as �(x) or log(1+ e−x), we need a different approximation for each
subinterval.

In this chapter, we study three different classes of table-based methods. The choice among the
different methods depends on the kind of implementation (software, hardware) and on the possible
availability of a “working precision” (i.e., the precision used for the intermediate calculations) signif-
icantly higher than the “target precision” (i.e., the output format):

• first, methods using a “standard table” (i.e., the function is tabulated at regularly spaced values),
and a polynomial or rational approximation. To provide last-bit accuracy, those methods must be

6.1 Introduction 103

Table 6.1 Absolute error of the minimax polynomial approximations to some functions on the interval [0, a]. The error
decreases rapidly when a becomes small.

a arctan, degree 10 exp, degree 4 ln(1 + x), degree 5

5 0.00011 0.83 0.0021

2 1.0 × 10−6 0.0015 0.00013

1 1.9 × 10−9 0.000027 8.7 × 10−6

0.1 3.6 × 10−19 1.7 × 10−10 6.1 × 10−11

0.01 4.3 × 10−30 1.6 × 10−15 7.9 × 10−17

Table 6.2 Degrees of the minimax polynomial approximations that are required to approximate some functions with
absolute error less than 10−5 on the interval [0, a]. When a becomes small, a very low degree suffices.

a arctan exp ln(1 + x)

10 19 16 15

1 6 5 5

0.1 3 2 3

0.01 1 1 1

implemented using (or simulating—see Section 2.2.2) a precision that is somewhat larger than the
target precision; by simply tabulating the function in the target precision, an error that can be very
close to 1/2 ulp is already committed, so that there is no hope of having the final error bounded by
1/2 ulp or slightly more than 1/2 ulp. Due to this problem, such methods are better suited either for
hardwired implementation, or when a larger precision is available at reasonable cost. If the target
is binary64 precision, this is the case with the x86 instruction set on Intel processors that offer,
since the 8087, an internal 80-bit format. Tang’s “table-driven” algorithms [447, 448, 449, 450] (see
Section 6.2) belong to this class of methods;

• second, methods that use “accurate tables” (i.e., the function is tabulated at almost regularly spaced
points, for which the value of the function is very close to a machine number). Such methods are
attractive for software implementations. With some care, they can be implemented using the target
precision only. Gal’s “accurate tables method” (see Section 6.3) belongs to this class of methods;

• third, methods using several consecutive lookups in tables and dedicated operators. Examples of
such methods are Wong and Goto’s algorithms, presented in Section 6.5.1 or the bipartite method,
presented in Section 6.5.4. Such methods may be more suited for a hardware implementation.

6.2 Table-Driven Algorithms

In [447, 448, 449, 450], P.T.P. Tang proposes some guidelines for the implementation of the elemen-
tary functions using table lookup algorithms. For the computation of f (x), his algorithms use three
elementary steps:

reduction: from the input argument x (after a possible preliminary range reduction; see Chapter 11),
one deduces a variable y belonging to a very small domain, such that f (x) can easily be deduced
from f (y) (or, possibly, from some function g(y)). This step can be merged with the preliminary
range reduction;

http://dx.doi.org/10.1007/978-1-4899-7983-4_2
http://dx.doi.org/10.1007/978-1-4899-7983-4_11

104 6 Table-Based Methods

approximation: f (y) (or g(y)) is computed using a low-degree polynomial approximation;
reconstruction: f (x) is deduced from f (y) (or g(y)).

Now we consider some examples. We first examine in detail the algorithm suggested by Tang for
exp(x) in double-precision IEEE floating-point arithmetic [447]. After this, we briefly give Tang’s
guidelines for ln(x) and sin(x) [449].

6.2.1 Tang’s Algorithm for exp(x) in IEEE Floating-Point Arithmetic

Assume we wish to evaluate exp(x) in IEEE double-precision floating-point arithmetic.1 Tang [447]
suggests first reducing the input argument to a value r in the interval

[− ln(2)

64
,+ ln(2)

64
],

second to approximate exp(r) − 1 by a polynomial p(r), and finally to reconstruct exp(x) by the
formula

exp(x) = 2m(2 j/32 + 2 j/32 p(r)),

where j and m are such that

x = (32m + j)
ln(2)

32
+ r, 0 ≤ j ≤ 31. (6.1)

These various steps are implemented as follows.

reduction: Tomake the computationmore accurate, Tang represents the reduced argument r as the sum
of two floating-point numbers r1 and r2 such that r2 � r1 and r1 + r2 approximates r to a precision
higher than the working precision. To do this, Tang uses a method inspired from Cody and Waite’s
argument reduction algorithm (see Section 11.2). More precisely, he defines three floating-point
numbers Lleft, Lright and �, such that:

• � is 32/ ln(2) rounded to double-precision;
• Lleft has a few trailing zeros;
• Lright � Lleft, and Lleft + Lright approximates ln(2)/32 to a precision much higher than the

working one.

The numbers r1 and r2 are computed as follows. Let N be x × � rounded to the nearest integer.
Define N2 = N mod 32 and N1 = N − N2. We compute, in the working precision:

r1 = x − N × Lleft

1For single-precision, see [447].

http://dx.doi.org/10.1007/978-1-4899-7983-4_11

6.2 Table-Driven Algorithms 105

and
r2 = −N × Lright.

The values m and j of (6.1) are m = N1/32 and j = N2. An analysis of this reduction method is
given in reference [186]. Other reduction methods, that may be more accurate for large values of x ,
are presented in Chapter 11.

approximation: p(r) is computed as follows. First, we compute r = r1+r2 in the working precision.
Second, we compute

Q = r × r × (a1 + r × (a2 + r × (a3 + r × (a4 + r × a5)))),

where the ai are the coefficients of a minimax approximation. Finally, we get

p(r) = r1 + (r2 + Q).

The term r2 is used at order 1 only.
reconstruction: The values s j = 2 j/32, j = 0, . . . , 31, are precomputed in higher precision and

represented by two double-precision numbers sleftj and s
right
j such that:

• sleftj � s
right
j ;

• the six trailing bits of sleftj are equal to zero;

• s j = sleftj + s
right
j to around 100 bits.

Let S j be the double-precision approximation of s j . We compute

exp(x) = 2m ×
(
sleftj +

(
s
right
j + S j × p(r)

))
.

6.2.2 ln(x) on [1, 2]
reduction: If x − 1 is very small (Tang suggests the threshold e1/16 for x), then we approximate ln x

by a polynomial. Otherwise, we find “breakpoints” ck = 1 + k/64, k = 1, 2, . . . , 64, such that

|x − ck | ≤ 1

128
.

We define r = 2 (x − ck) / (x + ck). Hence |r | ≤ 1/128.
approximation: we approximate

ln

(
x

ck

)
= ln

(
1 + r/2

1 − r/2

)

for r ∈ [0, 1/128] by a polynomial p(r) of the variable r . Depending on the required accuracy, one
can use one of the polynomials (with binary64 coefficients) given in Table 6.3.

http://dx.doi.org/10.1007/978-1-4899-7983-4_11

106 6 Table-Based Methods

Table 6.3 Approximations to ln ((1 + r/2)/(1 − r/2)) on [0, 1/128].
Degree Relative error Polynomial

3 8.085 × 10−12 r

+6004845316577347 × 2−56 · r3

5 2.005 × 10−17
r

+6004799502898513 × 2−56 · r3
+900733669546681 × 2−56 · r5

7 8.036 × 10−23

r

+6004799503160663 × 2−56 · r3
+450359962663711 × 2−55 · r5

+5147094262912473 × 2−61 · r7

9 1.685 × 10−23

r

+6004799503160661 × 2−56 · r3
+1801439851004373 × 2−57 · r5
+5146948095108811 × 2−61 · r7
+4731161337446337 × 2−63 · r9

reconstruction: we get ln(x) from

ln(x) = ln(ck) + ln(x/ck)
≈ ln(ck) + p(r).

The values ln(ck) are tabulated.

If a better accuracy is required, one can use more breakpoints; with 256 breakpoints and a poly-
nomial (with binary64 coefficients, and still with the degree-1 coefficient being 1) of degree 7, the
approximation error will be 1.803 × 10−24. Using 512 breakpoints, the approximation error will be
4.503× 10−25 with a polynomial of degree 7, and 2.632 × 10−25 with a polynomial of degree 9. The
improvement is not tremendous: this is because imposing the coefficients to be binary64 numbers is a
significant constraint. Much better approximations are obtained by allowing the degree-3 coefficient
to be a double-word number.

6.2.3 sin(x) on [0, π/4]
reduction: If |x | is small enough (the threshold chosen by Tang in [449] is 1/16), then sin x is

approximated by a polynomial. Otherwise, we find the “breakpoint” c jk = 2− j (1 + k/8), with
j = 1, 2, 3, 4 and k = 0, 1, 2, . . . , 7, that is closest to x . Define r = x − c jk . We have |r | ≤ 1/32.

approximation: We approximate sin(r) and cos(r) by polynomials of the form r +a3r3+a5r5+· · ·
and 1+a2r2+a4r4+· · · respectively, for instance, using one of the polynomials given in Table 6.4
for the sine, and one of the polynomials given in Table 6.5 for the cosine.

reconstruction: We reconstruct sin(x) using:

sin(x) = sin(c jk) cos(r) + cos(c jk) sin(r).

6.3 Gal’s Accurate Tables Method 107

Table 6.4 Approximations to sin(r) on [−1/32, 1/32] with binary64 coefficients.

Degree Relative error Polynomial

3 1.380 × 10−9 r

−6004555168758405 × 2−55 · r3

5 7.300 × 10−15
r

−6004799500178007 × 2−55 · r3
+2401841613992359 × 2−58 · r5

7 2.366 × 10−20

r

−1501199875790161 × 2−53 · r3
+75059993762881 × 2−53 · r5

−3659972533832221 × 2−64 · r7

9 5.392 × 10−22

r

−6004799503160661 × 2−55 · r3
+2401919801250219 × 2−58 · r5
−1830033418144863 × 2−63 · r7
+1603920471354595 × 2−69 · r9

Table 6.5 Approximations to cos(r) on [−1/32, 1/32] with binary64 coefficients.

Degree Relative error Polynomial

4 5.111 × 10−14
1

−9007199244301055 × 2−54 · r2
+3002262920973185 × 2−56 · r4

6 2.130 × 10−19

1

−4503599627370457 × 2−53 · r2
+6004799499326321 × 2−57 · r4
−3202452033253347 × 2−61 · r6

8 9.766 × 10−25

1

−1/2 · r2
+3002399751580325 × 2−56 · r4
−6405119468272123 × 2−62 · r6
+7319966033052175 × 2−68 · r8

10 3.381 × 10−26

1

−1/2 · r2
+6004799503160661 × 2−57 · r4
−3202559734995187 × 2−61 · r6
+7320132211411081 × 2−68 · r8

−2539688046502537 × 2−73 · r10

6.3 Gal’s Accurate Tables Method

This method is due to Gal [198] and was implemented for IBM/370-type machines [2]. A more
recent implementation, especially suited for machines using the IEEE-754 floating-point arithmetic,
was described by Gal and Bachelis [199] in 1991. It is very attractive when the accuracy used for
the intermediate calculations is equal to the target accuracy.2 It consists of tabulating the function

2We call target accuracy the accuracy of the number system used for representing the results.

108 6 Table-Based Methods

being computed at almost-regularly spaced points that are “machine numbers” (i.e., that are exactly
representable in the floating-point system being used), where the value of the function is very close to
a machine number.3 By doing this, we simulate a larger accuracy. Let us consider the following toy
example.

Example 8 (computation of the exponential function). Assume that we use a base-10 floating-point
system with 4-digit significands, and that we want to evaluate the exponential function on the
interval [1/2, 1]. A first solution is to store the five values e0.55, e0.65, e0.75, e0.85, and e0.95 in a
table, and to approximate, in the interval [i/10, (i + 1)/10](i = 5, . . . , 9), the exponential of x by
exp((i + 1/2)/10) (which is stored) plus — or times — a polynomial function of y = x − i+1/2

10 . The
values stored in the table are:

x ex Value Stored | Absolute error |
0.55 1.733253 · · · 1.733 2.53 × 10−4

0.65 1.915540 · · · 1.916 4.60 × 10−4

0.75 2.117000 · · · 2.117 1.7 × 10−8

0.85 2.339646 · · · 2.340 3.54 × 10−4

0.95 2.585709 · · · 2.586 2.91 × 10−4

The rounding error committed when storing the values is 4.6 × 10−4 in the worst case, and has an
average value equal to 2.7 × 10−4. Now let us try to use Gal’s method. We store the values of the
exponential at points Xi that satisfy the following conditions.

1. They should be exactly representable in the number system being used (base 10, 4-digit signifi-
cands);

2. they should be close to the values that were previously stored;
3. eXi should be very close to a number that is exactly representable in the number system being used.

Such values can be found by an exhaustive or a random search. One can take the values:

Xi eXi Value Stored | Error |
0.5487 1.73100125 · · · 1.731 1.25 × 10−6

0.6518 1.91899190 · · · 1.919 8.10 × 10−6

0.7500 2.11700001 · · · 2.117 1.7 × 10−8

0.8493 2.33800967 · · · 2.338 9.67 × 10−6

0.9505 2.58700283 · · · 2.587 2.83 × 10−6

Now, the rounding error becomes 9.67 × 10−6 in the worst case, and has an average value equal to
4.3× 10−6. Thus this table is 60 times more accurate than the previous one for the average case, and
47 times for the worst case.

Now let us study Gal and Bachelis’ algorithm for computing sines and cosines in IEEE-754
binary64/double-precision floating-point arithmetic [199]. We assume that a range reduction has been

3We must notice that with the most common functions (exp, ln, sin, cos, arctan), there are no nontrivial
machine numbers where the value of the function is exactly a machine number. This is a consequence
of a theorem due to Lindemann, which shows that the exponential of a possibly complex algebraic
nonzero number is not algebraic. This property is also used in Chapter 12.

http://dx.doi.org/10.1007/978-1-4899-7983-4_12

6.3 Gal’s Accurate Tables Method 109

performed (see Chapter 11), so that our problem is reduced to evaluating the sine or cosine of u + du,
where u is a “machine number” of absolute value less than π/4, and du is a correction term, much
smaller than u.

• To compute sin(u + du), if u is small enough (in Gal and Bachelis’ method the bound is 83/512),
it suffices to use a polynomial approximation of the form

(((C9 × u2 + C7) × u2 + C5) × u2 + C3) × u2 × u + du + u,

where u2 = u2. Now, if u is larger, we must use “accurate tables.” Gal and Bachelis use values
sin(Xi) and cos(Xi), where the terms Xi = i/256 + εi (for 16 ≤ i ≤ 201), are chosen so that
sin(Xi) and cos(Xi) should contain at least 11 zeros after bit 53. After this, if i is the integer that
is nearest to 256u, and if4 z = (u − Xi) + du, we use the well-known formula

sin(Xi + z) = sin(Xi) × cos(z) + cos(Xi) × sin(z),

where sin(z) and cos(z) are evaluated using polynomial approximations of low degrees (4 for cos(z)
and 5 for sin(z)).

• To compute cos(u + du), in a similar fashion, Gal and Bachelis use a polynomial approximation if
u is small enough, and the formula

cos(Xi + z) = cos(Xi) × cos(z) − sin(Xi) × sin(z)

for larger values of u.

Using this method, Gal and Bachelis obtained last-bit accuracy in about 99.9 % of the tested cases.
This shows that for software implementation, a careful programming of the accurate tables method is
an interesting choice.5

Now let us concentrate on the cost of producing such accurate tables. We are looking for “machine
numbers” Xi such that the value of one or more functions6 at the point Xi is very close to a machine
number. Let us assume that we use a p-bit-significand, radix-2, floating-point number system. We
assume that if f is one of the usual elementary functions and x is a machine number, then the bits of
f (x) after position p can be viewed as if theywere random sequences of 0s and 1s, with probability 1/2
for 0 as well as for 1 (wemake the same assumption in Chapter 12 for studying the possibility of always
computing correctly rounded results). We also assume that when we need to tabulate several functions
f1, f2, . . . , fk , the bits of f1(x), f2(x), …, fk(x) after position p can be viewed as “independent.”
Using our assumptions, one can easily see that the “probability” of having n zeros or n ones after

position p in f1(x), f2(x), …, fk(x) is 2−kn+k . There are two consequences of this:

• if we want q such values Xi , and if we try to find them by means of an exhaustive or random
search, we will have to try around q × 2kn−k values. For instance, to find values Xi suitable for Gal
and Bachelis’ algorithm for sines and cosines (given previously), for which k = 2, q = 185, and
n = 11, we have to try a number of values whose order of magnitude is 2 × 108;

4A consequence of Sterbenz Lemma—Theorem 1, page 15—is that u − Xi is computed exactly.
5But it seems difficult to always get correctly rounded results without performing the intermediate
calculations using or simulating an accuracy that is significantly larger than the target accuracy.
6We need one function for computing exponentials, two for computing sines or cosines.

http://dx.doi.org/10.1007/978-1-4899-7983-4_11
http://dx.doi.org/10.1007/978-1-4899-7983-4_12
http://dx.doi.org/10.1007/978-1-4899-7983-4_1

110 6 Table-Based Methods

• we want the values Xi to be “almost regularly spaced;” that is, each value Xi must be located in
an interval of size, say, 2ε. Assuming that in this interval all floating-point numbers have the same
exponent α, the number of machine numbers included in the interval is around 2p−αε. Therefore,
to make sure that there exist such values Xi , 2kn−k must be small compared to 2p−αε.

Luther [324] described a fast method for obtaining highly accurate tables by using Bresenham’s algo-
rithm.Stehlé andZimmermann suggested significant improvements to the accurate tablesmethod [434].
Using algorithms originally designed for finding worst cases of the table maker’s dilemma (see
Chapter 12 and references [306, 308, 311, 433]), they generate values Xi that are extremely good
values, faster than when using Gal’s original searching method.

6.4 Use of PythagoreanTriples

The following method was suggested by de Lassus Saint-Geniès, Defour, and Revy [141]. It is adapted
to the calculation of trigonometric functions and could probably be extended to hyperbolic functions.
Assume an input value x of absolute value less thanπ/2. That input value will in general be the result of
a preliminary range reduction (see Chapter 11), and we assume that it is represented by a double-word
number (see Section 2.2.2) xh + x�. De Lassus et al. assume that we have stored in table values sin(Ti)
and cos(Ti) for which we have exactly

sin(Ti) = si/k,
cos(Ti) = ci/k,

(6.2)

where si , ci , and k are integers (we even require si and ci to fit into one word), and k is the same
for all entries of the table. In practice the numbers Ti are irrational numbers, so that we only store
approximations to them, and yet, the sines and cosines of the Ti s are rational numbers with the same
denominator.

A few most significant bits of xh will be used to locate into the table a number Ti that is almost7

nearest xh , to obtain the corresponding values si = k · sin(Ti) and ci = k · cos(Ti), and to compute a
“correcting term” δ ≈ Ti − xh , so that

x = xh + x� ≈ Ti + (x� − δ).

The sine and cosine of x are then approximated by

si · Pcos(x� − δ) + ci · Psin(x� − δ)

and
ci · Pcos(x� − δ) − si · Psin(x� − δ),

where Pcos(t) and Psin(t) are polynomial approximations to cos(t)/k and sin(t)/k respectively,
valid for |t | less than or equal to the maximum possible value of |x� − δ|. All the difficulty is to
make that maximum possible value small, which implies finding values Ti that are well distributed
in [−π/2,+π/2]. Lassus Saint-Geniès, Defour, and Revy suggest an algorithm for that based on the
properties of Pythagorean triples (i.e., triples (a, b, c) of integers satisfying a2 + b2 = c2).

7Requiring Ti to be the element of the table nearest xh would require using all the bits of xh .

http://dx.doi.org/10.1007/978-1-4899-7983-4_12
http://dx.doi.org/10.1007/978-1-4899-7983-4_11
http://dx.doi.org/10.1007/978-1-4899-7983-4_2

6.5 Table Methods Requiring Specialized Hardware 111

6.5 Table Methods Requiring Specialized Hardware

The methods previously presented in this chapter may be implemented in software as well as in
hardware. Now if we want to take advantage of a hardware implementation, we may try to find
methods that are faster, but that require specialized hardware. Wong and Goto [475] suggested using a
specialized hardware for implementing a table-based method. To evaluate the elementary functions in
the IEEE-754 binary64/double-precision floating-point format (see Chapter 2), they use a rectangular
multiplier, more precisely, a 16 × 56-bit multiplier8 that truncates the final result to 56 bits. As they
point out, such multipliers have already been implemented in floating-point processors: the Cyrix
83D87 coprocessor had a 17 × 69 bit multiply and add array [62]. A rectangular multiplier is faster
than a full binary64 multiplier. According to Wong and Goto, the rectangular multipliers required
by their algorithms operate in slightly more than half the time required to perform a full binary64
multiplication. Let us now examine some of Wong and Goto’s algorithms.

6.5.1 Wong and Goto’s Algorithm for Computing Logarithms

Assume we wish to compute the logarithm of a normal IEEE-754 binary64 floating-point number:

x = m × 2exponent .

We evaluate ln x as follows. First, we evaluate lnm. Then we add lnm and exponent × ln 2 (the
number exponent × ln 2 can be found in a table or computed using a rectangular multiplier). If
exponent = −1, this final addition may lead to a catastrophic cancelation.9 To avoid this, we assume
exponent 	= −1: if exponent = −1, then m is one bit right-shifted, and exponent is replaced by
zero. As a consequence, we must assume10:

1

2
≤ m < 2.

In the following,
[z]a−b

denotes the number obtained by zeroing all the bits of z but the bits a to b. For instance, if m =
m0.m1m2m3m4 . . ., then

[m]1−3 = 0.m1m2m3000

8For most of their algorithms, a 12 × 56 bit rectangular multiplier suffices.
9A catastrophic cancelation is the total loss of accuracy that may occur when two numbers that are
very close to each other are subtracted. It is worth noticing that there may be an error only in the case
where at least one of the operands is inexact (i.e., it is the rounded result of a previous computation).
Otherwise, the result of the subtraction is exact. As we have seen in Chapter 2 (Theorem 1), if x and y
are floating-point numbers in the same format such that x/2 ≤ y ≤ 2x , and if the arithmetic operations
are correctly rounded, then the subtraction y − x is exactly performed.
10But we must keep in mind that 1/2 ≤ m < 1 if exponent = 0 only; otherwise, we could have a
catastrophic cancelation for exponent = 1 and m close to 1/2.

http://dx.doi.org/10.1007/978-1-4899-7983-4_2
http://dx.doi.org/10.1007/978-1-4899-7983-4_2
http://dx.doi.org/10.1007/978-1-4899-7983-4_1

112 6 Table-Based Methods

Let us focus on the computation of lnm. The basic trick consists of finding a number K1 such that
K1m ≈ 1, and such that the multiplication K1 × m can be performed using a rectangular multiplier
(i.e., K1 must be representable with a few bits only, and close to 1/m). This gives:

ln(m) = ln(K1m) − ln(K1),

where ln(K1) is looked up in a table. Then we continue: we find a number K2 such that K1K2m is
even closer to 1. After this our problem is reduced to evaluate the logarithm of (K1K2m). We continue
until our problem is reduced to the evaluation of a number that is so close to 1 that a simple low-order
Taylor expansion suffices to get its logarithm. Now let us give the algorithm with more details (proofs
can be found in [475]).

1. First, we obtain from tables the numbers

K1 =
[

1

[m]0−10 + 2−10

]

0−10

and
[ln (K1)]1−56 ;

2. using a rectangularmultiplier, wemultiplym by K1. The result is equal to 1−α, where 0 < α < 2−8.
Since we now want to find a value K2 such that K1K2m is very close to 1, K2 = 1 + α would be
convenient (this would give |K1K2m − 1| = |(1 − α2) − 1| < 2−16). Unfortunately, multiplying
K1m by 1+α would require a full binary64 multiplier. To avoid this, we choose a slightly different
value of K2, representable with 10-bits. If α is equal to 0.00000000α9α10 · · ·α18α19 · · · , we define
a 10-bit number a = 0.00000000a9a10 · · · a18:

a9a10 · · · a18 =
{

α9α10 · · · α17α18 + 1 if α9 = 1
α9α10 · · · α170 otherwise,

(6.3)

and we choose K2 equal to 1.00000000a9a10 · · · a18. Then, from tables, we obtain [ln(K2)]1−56.
3. Using a rectangular multiplier, wemultiply (mK1) by K2. The result is equal to 1−β, where (thanks

to (6.3)) 0 ≤ β < 2−16. From tables, we obtain

[ln(1.0000000000000000β17β18β19 · · · β26)]1−56 .

Now, as in the previous step, we define a 10-bit number

b = 0.0000000000000000b17b18 · · · b26

as follows

b9b17 · · · b26 =
{

β17β18β19 · · ·β25β26 + 1 if β17 = 1
β17β18β19 · · ·β250 otherwise,

(6.4)

and we define K3 as 1.0000000000000000b17b18b19 · · · b26. From tables, we obtain [ln K3]1−56.

6.5 Table Methods Requiring Specialized Hardware 113

4. Using a rectangular multiplier, we multiply (mK1K2) by K3. The result is equal to 1 − γ , where
0 ≤ γ < 2−24. Now 1 − γ is so close to 1 that the degree-3 Taylor approximation

ln(1 − γ) ≈ −γ − γ 2

2
− γ 3

3

suffices to get its logarithm with good accuracy.
5. Using a full multiplication, we compute [

γ 2

2

]

1−56

and from tables, we obtain ⎡
⎣

[
γ
]3
25−33

3

⎤
⎦
1−56

.

6. We then compute the final result:

ln(x) ≈ exponent × ln(2) − ln K1 − ln K2

− ln K3 − γ −
[
γ 2

2

]

1−56
−

⎡
⎣

[
γ
]3
25−33

3

⎤
⎦
1−56

.

In [475] Wong and Goto give an error analysis of this algorithm, and claim that the error is within
0.5 ulps (see Chapter 2 for an explanation of what a ulp is). This is slightly misleading. They actually
compute a 56-bit number that is within 0.5 ulps of the “target format” (i.e., the 53-significand bit
IEEE binary64 format). When rounding the 56-bit result to the target format, an extra rounding error
is committed; hence the final 53-bit result is within 1 ulp of the exact result. Figure 6.1 illustrates this.
Getting correctly rounded results would require an intermediate computation with many more than 56
bits (see Chapter 12 for a discussion of this topic).

should have been returned
53-bit value that

56-bit value to the nearest
obtained by rounding the
returned 53-bit result

56-bit computed value

exact result56-bit numbers

53-bit numbers

Figure 6.1 An incorrectly rounded result deduced from a 56-bit value that is within 0.5 ULPs from the exact result. We
assume that rounding to the nearest was desired.

http://dx.doi.org/10.1007/978-1-4899-7983-4_2
http://dx.doi.org/10.1007/978-1-4899-7983-4_12

114 6 Table-Based Methods

The algorithm we have given here computes natural logarithms. Slight (and rather straightforward)
modifications would give algorithms for base-2 or base-10 logarithms. Adaptations to smaller (single-
precision) or larger (extended or quad-precision) formats can also be derived.

6.5.2 Wong and Goto’s Algorithm for Computing Exponentials

Assume that we want to compute ex , where x is a normal binary64/double-precision floating-point
number:

x = s × m × 2exponent .

The largest representable finite number in the IEEE-754 binary64 format is

(
1 − 2−53

)
× 22

10 ≈ 1.7976931348623157 × 10308,

the logarithm of which is A = 709.7827128933839967 · · · . Therefore, if x is larger than A, when we
evaluate exp(x), we must return11 +∞.

Thereforewe can assume that x can be rewritten as the sumof a 10-bit integer and a 56-bit fixed-point
fractional number:

x ≈ x̂ = s × (h + 0.x1x2x3 · · · x56) , 1 ≤ h < 210, s = ±1.

If |x | ≥ 1/8, this is done without any loss of accuracy, and if |x | < 1/8, we have

∣∣∣ex − ex̂
∣∣∣ ≤ 2−57e1/8 ≤ 1.14 × 2−57,

assuming that x is rounded to the nearest to get x̂ . Therefore we can replace x by x̂ .
The basic idea behind the algorithm consists of rewriting the number 0.x1x2x3 · · · x56 as a sum

α1 + α2 + · · · + αn,

where n is small, and where the αi s are representable using a few bits only, so that we can look eαi up
in a table of reasonable size. Then

ex = eh × f1 × f2 × · · · × fn, (6.5)

where fi = eαi .
Unfortunately, this cannot be done without modifications since (6.5) would require full binary64

multiplications. We have to get values fi that are representable with a few bits only. To do this we
proceed as follows. First, α1 is the number constituted by the first 9 bits of 0.x1x2x3 · · · x56. Second,
we look up in a table the value:

f1 = [
eα1

]
(−1)−9 .

11Unless we wish to evaluate the exponential function in round towards 0 or round towards−∞mode:
in such a case, we must return the largest finite representable number, that is,

(
1 − 2−53

)×22
10
, unless

x is equal to +∞.

6.5 Table Methods Requiring Specialized Hardware 115

Using a rectangular multiplier, we can compute K1 = eh × f1. Since f1 is an approximation to eα1

only, ex is not equal to K1 × e0.000000000x10x11···x56 , therefore we have to perform a slight correction by
looking up in a table ln f1 ≈ α1, and computing

r1 = 0.x1x2x3 · · · x56 − ln f1.

After this, ex = K1 × er1 , and we continue by choosing α2 equal to the 9 most significant bits of r1.
Let us now give the algorithm with more details.

1. Rewrite x in a 56-fractional-bit, 10-integer-bit fixed-point representation:

x = s × (h + 0.x1x2x3 · · · x56) , 1 ≤ h < 210.

If x is too large to do that, return +∞ (if s = +1) or 0 (if s = −1), or the largest representable
number, or the smallest nonzero positive number, depending on the rounding mode.

2. Look the following values up from tables.

• f0 = eh if s = +1, or e−h if s = −1,
• f1 = [eα1]0−9, where α1 = 0.x1x2 · · · x9,
• l f1 = [ln f1]1−56.

3. Compute r1 = 0.x1x2 · · · x56 − l f1. One can show that r1 < 2−8. Look the following values up
from tables.

• f2 = [eα2]0−17, where α2 = 0.00000000r1,9r1,10r1,11 · · · r1,17,
• l f2 = [ln f2]1−56.

4. Compute r2 = r1 − l f2. One can show that r2 < 2−16. Then get the final result:

ex ≈ f0 × f1 × f2×[
1 + r2 + [r2]17−24

2

(
[r2]25−32 + [r2]33−40

)

+ [r2]217−24

2
+ [r2]225−32

2
+ [r2]317−24

6

]
.

6.5.3 Ercegovac et al.’s Algorithm

Let f be a function whose first Taylor coefficients C0, C1, C2, and C3 are either powers of two, or
very simple rational numbers (so that multiplication by Ci is straightforward). For computing f , with
around k bits of accuracy, Ercegovac, Lang, Muller, and Tisserand [170] suggest to first perform a
range reduction so that the input argument A becomes less than 2−k . For computation of reciprocals,
square roots and square root reciprocals, this is done by computing

A = Y × R̂ − 1,

where Y is the initial input argument (assumed between 1 and 2) and R̂ is a (k + 1)-bit approximation
to 1/Y , obtained through table lookup in a table addressed by the first k bits of Y .

116 6 Table-Based Methods

After that, for computing f (A), where

A = A2z
2 + A3z

3 + A4z
4 + · · · , with z = 2−k,

and the Ai are k-bit numbers, and using the Taylor expansion of f

f (A) = C0 + C1A + C2A
2 + C3A

3 + · · · , (6.6)

they use the following formula:

f (A) ≈ C0A + C1A + C2A
2
2z

4 + 2C2A2A3z
5 + C3A

3
2z

6. (6.7)

That formula is obtained by expanding the series (6.6) and dropping the terms of the formWz j that
are less than or equal to 2−4k .

For instance, for square root, we get

√
1 + A ≈ 1 + A

2
− 1

8
A2
2z

4 − 1

4
A2A3z

5 + 1

16
A3
2z

6,

while for reciprocals, we get

1

1 + A
≈ (1 − A) + A2

2z
4 + 2A2A3z

5 − A3
2z

6.

In practice, when computing (6.7), another approximation is made: to compute A3
2, once A2

2 is
obtained, we take the k most significant bits of A2

2 only, and multiply them by A2. Figure 6.2 presents
the “evaluation module” that computes f (A).

Figure 6.2 The
computation of f (A) using
Ercegovac et al.’s
algorithm. 00 · · · 0 A2 A3 A4

k-bit
squarer

k× k-bit
multiplier

k× k-bit
multiplier

Add and shift

k

3k
k

2k

A3
2 A2

2 A2A3 A

6.5 Table Methods Requiring Specialized Hardware 117

6.5.4 Bipartite andMultipartite Methods

In [437], Sunderland et al. needed to approximate the sine of a 12-bit number x less than π/2 using
tables. They decided to split the binary fixed-point representation of x into three 4-bit words, and to
approximate the sine of x = A + B + C , where A < π/2, B < 2−3 and C < 2−7, using

sin(A + B + C) ≈ sin(A + B) + cos(A) sin(C). (6.8)

By doing that, instead of one table with 12 address bits (i.e., with 212 elements), one needed two
tables (one for sin(A + B) and one for cos(A) sin(C)), each of them with 8 address bits only. To my
knowledge, this was the first use of what is now called the bipartite method.

That method was rediscovered (and named bipartite) by DasSarma and Matula [409]. Their aim
was to quickly generate seed values for computing reciprocals using the Newton–Raphson iteration.

Assume we want to evaluate function f and that the input and output values are represented on a
p-bit fixed-point format and belong to [α, 1), where α > 0 is some real number. Also, assume p = 3k.
A straightforward tabulation of function f would require a table with p address bits. The size of that
table would be p × 2p bits. The first idea behind the bipartite method consists of splitting the input
p-bit value x into three k-bit subwords x0, x1, and x2. We have

x = x0 + 2−k x1 + 2−2k x2

where xi is a multiple of 2−k and 0 ≤ xi < 1. The order-1 Taylor expansion of f near x0 + 2−k x1
gives

f (x) = f (x0 + 2−k x1) + 2−2k x2. f
′(x0 + 2−k x1) + ε1

where |ε1| ≤ 2−4k−1 max[α,1] | f ′′|. Now,we can replace f ′(x0+2−k x1) by its order-0 Taylor expansion
near x0:

f ′(x0 + 2−k x1) = f ′(x0) + ε2

where |ε2| ≤ 2−k max[α,1] | f ′′|. This gives the bipartite formula:

f (x) = A(x0, x1) + B(x0, x2) + ε

where
A(x0, x1) = f (x0 + 2−k x1)
B(x0, x2) = 2−2k x2. f ′(x0)
ε ≤ (

2−4k−1 + 2−3k
)
max[α,1] | f ′′|.

(6.9)

If the second derivative of f has the same order of magnitude as f itself, then the error ε of this
approximation is of the order of the representation error of this number system (namely around 2−3k).
The second idea behind the bipartite method consists of tabulating A and B instead of tabulating f .
Since A and B are functions of 2k = 2p/3 bits only, if A is rounded to the nearest p-bit number, if
22k B is rounded to the nearest k = p/3-bit number, and if the values of A and B are less than 1, then
the total table size is (

4p

3

)
22p/3 bits

118 6 Table-Based Methods

which is a very significant improvement. Here, we implicitly assume that f , f ′, and f ′′ have orders of
magnitude that are close together. In other cases, the method must be modified. For p = 15, the table
size is 60 kbytes with a straightforward tabulation, and 2.5 kbytes with the bipartite method. The error
of the approximation will be ε plus the error due to the rounding of functions A and B. It will then be
bounded by (

2−4k−1 + 2−3k
)
max[α,1] | f ′′| + 2−3k

(
max[α,1] | f | + max[α,1] | f ′|

)
.

For instance, for getting approximations to 1/x (which was Das Sarma and Matula’s goal), we choose
f (x) = 1/x and α = 1/2. Hence,

⎧⎨
⎩

A(x0, x1) = 1/(x0 + 2−k x1)
B(x0, x2) = −2−2k x2/x20
ε ≤ 16

(
2−4k−1 + 2−3k

)
.

To get better approximations, one can store A and B with some additional guard bits. Also, p can
be chosen slightly larger than the actual word size. A compromise must be found between table size
and accuracy. Of course, that compromise depends much on the function being tabulated.

Schulte and Stine [414, 415] gave the general formula (6.9). They also suggested several improve-
ments. The major one was to perform the first Taylor expansion near12 x0 + 2−k x1 + 2−2k−1 instead
of x0 + 2−k x1, and the second one near x0 + 2−k−1 instead of x0:

• this makes the maximum possible absolute value of the remaining term (namely, 2−2k x2 − 2−2k−1)
smaller, so that the error terms ε1 and ε2 become smaller;

• B becomes a symmetric function of 2−2k x2 −2−2k−1. Hence we can store its values for the positive
entries only. This allows us to halve the size of the corresponding table.

The bipartite method can be viewed as a piecewise linear approximation for which the slopes of the
approximating straight lines are constants in intervals sharing the same value of x0. This is illustrated
by Figure 6.3. Let us now give an example.

Example 9 (Cosine function on [0, π/4].) Assume we wish to provide the cosine of 16-bit numbers
between 0 and π/4. We use the bipartite method, with the improvements suggested by Schulte and
Stine. Since 16 is not a multiple of 3, we choose k = 6 and we split x into subwords of different sizes:
x0 and x1 are 6-bit numbers, and x2 is a 4-bit number. The functions A and B that will be tabulated
are {

A(x0, x1) = cos(x0 + 2−k x1 + 2−2k−1)

B(x0, x2) = −(2−2k x2 − 2−2k−1) sin(x0 + 2−k−1).

If A and B were stored exactly (which, of course, is impossible), the approximation error ε would be
less than or equal to 2−3k−2 + 2−4k−3 = 2−20 + 2−27. Assume the tables for functions A and B store
values correctly rounded up to the bit of weight 2−20. The total error, including the rounding of the
values stored in the tables, becomes less than 2−19 + 2−27. Since each word of A is stored with 20 bits
of precision and each word of B is stored with 8 bits of precision (including the sign bit), the size of
the tables is

20 × 212 + 8 × 210 bits = 11 kbytes .

12That is, near the middle of the interval constituted by the numbers whose first bits are those of x0
and x1, instead of near the smallest value of that interval.

6.5 Table Methods Requiring Specialized Hardware 119

Figure 6.3 The bipartite
method is a piecewise
linear approximation for
which the slopes of the
approximating straight
lines are constants in
intervals sharing the same
value of x0.

These input numbers
share the same x1

These input numbers
share the same x0

Obtaining a similar accuracy with a direct tabulation would require a table with

18 × 216 bits = 144 kbytes .

Schulte and Stine [416, 435] and Muller [355] independently generalized the bipartite table method
to various multipartite table methods. With these methods, the results are obtained by summing values
looked up in parallel in three tables or more. De Dinechin and Tisserand [138, 139] improved these
multipartite methods and showed that optimal (in terms of total table size) multipartite table methods
can be designed at a reasonable cost. A description of their method, as well as a Java program that
builds the tables can be obtained at

http://www.ens-lyon.fr/LIP/Arenaire/Ware/Multipartite/.
The AMD-K7 floating-point unit used bipartite ROM tables for the reciprocal and square root initial

approximations [366].
Matula and Panu [355] recently suggested to “prescale” the input value before using the bipar-

tite algorithm to obtain a single-precision ulp accurate reciprocal. They applied this idea to division
algorithms: generalization to elementary functions is still to be investigated.

6.6 (M, p, k)-Friendly Points: AMethod Dedicated toTrigonometric Functions

The followingmethodwas introduced byBrisebarre, Ercegovac, andMuller [65], and later on improved
and implemented by the same authors and Wang [472]. The underlying idea is the following. We first
define “friendly points and angles” as follows.

http://www.ens-lyon.fr/LIP/Arenaire/Ware/Multipartite/

120 6 Table-Based Methods

Definition 2 A pair of integers (a, b) is an (M, p, k)-friendly point if:

1. 0 ≤ a ≤ M and 0 ≤ b ≤ M;
2. the number z = 1/

√
a2 + b2 can be written

2e · 1.z1z2z3 · · · z pz p+1z p+2 · · · =
∑

zi2
e−i ,

where e is an integer, zi ∈ {−1, 0, 1}, z1 	= −1, and the number of terms zi such that 1 ≤ i ≤ p
and zi 	= 0 is less than or equal to k.

Definition 3 The number α, 0 ≤ α ≤ π/2 is an (M, p, k)-friendly angle if either α = 0 or
α = arctan(b/a), where (a, b) is an (M, p, k)-friendly point.

Given an input angle x and parameters p, k and M , with (M, p, k)-friendly points precomputed
and stored in a table, the algorithm for computing sin(x) and cos(x) consists of:

• looking up in a table, addressed by a few leading bits of x , an (M, p, k)-friendly angle x̂ and the
associated values a, b, and z (in canonical form—see Section 2.3.3);

• computing, using the bipartite method, sin(θ) and cos(θ), where θ = x − x̂ ;
• computing C = a cos(θ) − b sin(θ) and S = b cos(θ) + a sin(θ) using a very few additions/

subtractions—since a and b are less than M , multiplying by a and b requires at most 1
2

⌈
log2 M

⌉
additions/subtractions that can be performedwithout carry propagation using redundant (e.g., carry-
save) arithmetic;

• finally,multiplyingC and S by z by adding a very few (atmost k)multiples ofC (S), using redundant
(carry-free) adders followed by a carry-propagate adder (which may be omitted if the results can
be used in redundant form).

What makes the method working is that, in practice, θ can be quite small for not-too-large values of
the parametersM and k. For instance, forM = 255, p = 24, and k = 5,we can have |θ | < 2−6.353 [65].

http://dx.doi.org/10.1007/978-1-4899-7983-4_2

7Multiple-Precision Evaluation of Functions

7.1 Introduction

Multiple-precision arithmetic is a useful tool in many domains of contemporary science. Some numer-
ical applications are known to sometimes require significantly more precision than provided by the
usual binary32/single-precision, binary-64/double precision, and Intel extended-precision formats [22].
Some computations in Mathematical physics [19, 20, 31] or in “experimental mathematics” [19, 49]
need to be performed with hundreds or thousands of bits of precision. For instance, multiple-precision
calculations allowed Borwein, Plouffe, and Bailey to find an algorithm for computing individual1

hexadecimal digits of π . The study of dynamical system also sometimes requires large precision [260].
Multiple-precision arithmetic is also an invaluable tool for tuning algorithms and approximations that
will be used, later on, in basic precision arithmetic. For instance, when we design algorithms for
computing functions in the binary32, binary64, extended, or binary128 floating-point formats, the
various constants used in these algorithms (e.g., minimax polynomial or rational coefficients) need to
be computed using a precision that is significantly higher than the target precision. For that purpose,
the Gappa and Sollya tools presented in Chapters 2 and 3 use the GNU-MPFR multiple-precision
package. Also, the availability of an efficient and reliable multiple-precision library is of great help for
testing floating-point software [60]. It may be useful to mix multiple-precision arithmetic with interval
arithmetic, where the intervals may become too large if we use standard (i.e., fixed-precision) interval
arithmetic [349, 395]. Various examples of applications where multiple-precision is interesting can be
found in [17, 19, 48].

A full account of multiple-precision calculation algorithms for the elementary functions is beyond
the purpose of this book (it would probably require another full book). And yet, the reader may be
interested in knowing, at least roughly, the basic principles of the algorithms used by the existing
multiple-precision packages. Additional information can be found in [22, 480], and in the excellent
book by Brent and Zimmermann [61].

In this domain, the pioneering work was done by Brent [56, 57] and Salamin [408]. Brent designed
an arithmetic package namedMP [58, 59]. It was the first widely diffused package that was portable and
contained routines for all common elementary and special functions. Bailey designed three packages,

1That is, there is no need to compute any of the previous digits. For instance [49], the 2.5× 1014th hexadecimal digit of
π is an E.

© Springer Science+Business Media New York 2016
J.-M. Muller, Elementary Functions, DOI 10.1007/978-1-4899-7983-4_7

121

http://dx.doi.org/10.1007/978-1-4899-7983-4_2
http://dx.doi.org/10.1007/978-1-4899-7983-4_3

122 7 Multiple-Precision Evaluation of Functions

MPFUN [15], ARPREC [22] and, more recently, MPFUN2015 [18].2 The PARI package3, originally
designed by Cohen and his research group, was especially designed for number theory and multiple-
precision. The GNU-MPFR4 library [194] designed by Zimmermann and his research group is a
C library for multiple-precision floating-point computations with correct rounding. It is based on
Granlund’s GMP [210] multiple-precision library.MPFI, written by Revol and Rouiller, is an extension
of MPFR that implements multiple-precision interval arithmetic [395]. Sage5 [30] is a free, open-
source, computer algebra system that does multiple-precision calculations using GMP and GNU-
MPFR.

In general, when the required precision is not huge (say, when we only want up to a few hundreds
or thousands of bits), Taylor series of the elementary functions are used. For very large precision
calculations, quadratically convergent methods that are based on the arithmetic–geometric mean (see
Section 7.5) are sometimes used.

The number of digits used for representing data in a multiple-precision computation depends much
on the problem being dealt with. Many numerical applications only require, for critical parts of cal-
culations, a precision that is slightly larger than the available (binary64 or binary128) floating-point
precisions (i.e., a few hundreds of bits only). On the other hand, experiments in number theory may
require the manipulation of numbers represented by millions of bits.

7.2 Just a FewWords onMultiple-PrecisionMultiplication

It may seem strange to discuss multiplication algorithms in a book devoted to transcendental functions.
Multiplication is not what we usually call an elementary function6, but the performance of a multiple-
precision system dependsmuch on the performance of themultiplication programs: all other operations
(including division, as we will see in Section 7.3) and functions use multiplications. For very low
precisions, the grammar school method is used. When the desired precision is around a few hundreds
of bits, Karatsuba’s method (or one of its variants) is preferable. For very high precisions (thousands
of bits), methods based on the Fast Fourier Transform (FFT) are used.

7.2.1 Karatsuba’s Method

Assume we want to multiply two n-bit integers7

A = an−1an−2an−3 · · · a0

and
B = bn−1bn−2bn−3 · · · b0,

2MPFUN2015 is available at http://www.davidhbailey.com/dhbsoftware/
3See http://pari.math.u-bordeaux.fr/.
4Available at http://www.mpfr.org.
5See http://www.sagemath.org
6In fact, it is an elementary function. The functions we deal with in this book should be called elementary transcendental
functions.
7I give this presentation assuming radix 2 is used. Generalization to other radices is straightforward.

http://www.davidhbailey.com/dhbsoftware/
http://pari.math.u-bordeaux.fr/
http://www.mpfr.org
http://www.sagemath.org

7.2 Just a FewWords on Multiple-Precision Multiplication 123

and assume that n is even. We want to compute AB using n/2-bit × n/2-bit multiplications. Define the
following n/2-bit numbers, obtained by splitting the binary representations of A and B

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

A(1) = an−1an−2an−3 · · · an/2

A(0) = an/2−1an/2−2an/2−3 · · · a0

B(1) = bn−1bn−2bn−3 · · · bn/2

B(0) = bn/2−1bn/2−2bn/2−3 · · · b0.

A is obviously equal to 2n/2A(1) + A(0), and B is equal to 2n/2B(1) + B(0). Therefore,

AB = 2n A(1) B(1) + 2n/2(A(1) B(0) + A(0)B(1)) + A(0)B(0). (7.1)

Hence, we can perform one n × n-bit multiplication using four (n/2) × (n/2)-bit multiplications. If
we do that recursively (by decomposing the (n/2) × (n/2)-bit multiplications into (n/4) × (n/4)-bit
multiplications and so on), we end-up with an algorithm that multiplies two n-bit numbers in a time
proportional to n2, which is not better than the usual pencil and paper algorithm. And yet, we can bring
significant improvements.

In 1962, Karatsuba and Ofman [268] noticed that8

AB = 2n A(1) B(1)

+ 2n/2
(
(A(1) − A(0))(B(0) − B(1)) + A(0)B(0) + A(1) B(1)

)

+ A(0)B(0).

(7.2)

Using (7.2), we can perform one n × n-bit multiplication using three (n/2) × (n/2)-bit multiplica-
tions only: we compute the products A(1)B(1), A(0) B(0), and (A(1) − A(0))(B(0) − B(1)). When this
decomposition is applied recursively, this leads to an algorithm that multiplies two n-bit numbers in a
time proportional to

n
ln(3)
ln(2) ≈ n1.585.

Montgomery [347] presented several Karatsuba-like formulae.

7.2.2 TheToom-Cook Family of Multiplication Algorithms

Karatsuba’s method can be generalized. Similar (and asymptotically more efficient) decompositions
of a product can be found in the literature [107, 275, 457, 483]. Let us present here the Toom-Cook
family of algorithms. These algorithms are based on two ideas:

• transforming our initial problem of multiplying two integers into the problem of multiplying two
adequately chosen polynomials;

• multiplying the two polynomials through a combination of polynomial evaluation and interpolation
at adequately chosen points.

8This is not exactly Katatsuba and Ofman’s presentation. I give here Knuth’s version of the algorithm [275], which is
slightly better.

124 7 Multiple-Precision Evaluation of Functions

Assume we wish to multiply two n-bit integers a = an−1an−2 · · · a0 and b = bn−1bn−2 · · · b0. We will
first split the binary representations of a and b into m ν-bit parts:9

an−1an−2 · · · an−ν
︸ ︷︷ ︸

Am−1

an−ν−1an−ν−2 · · · an−2ν
︸ ︷︷ ︸

Am−2

· · · aν−1aν−2 · · · a0
︸ ︷︷ ︸

A0

and
bn−1bn−2 · · · bn−ν
︸ ︷︷ ︸

Bm−1

bn−ν−1bn−ν−2 · · · bn−2ν
︸ ︷︷ ︸

Bm−2

· · · bν−1bν−2 · · · b0
︸ ︷︷ ︸

B0

.

The digit chains Am−1 · · · A0 and Bm−1 · · · B0 are radix-2ν representations of a and b. To these two
digit chains we will associate two polynomials

A(X) = Am−1Xm−1 + Am−2Xm−2 + · · · + A0,

and
B(X) = Bm−1Xm−1 + Bm−2Xm−2 + · · · + B0.

We have a = A(2ν) and b = B(2ν). We would like to compute the coefficients of the polynomial
C(X) = A(X) · B(X). This would almost immediately give the value of the product c = ab since
c = C(2ν) and since the multiplications involved in the evaluation of a polynomial at point 2ν are
mere shifts.

We will first evaluate the polynomials A and B at 2m − 1 points x1, x2, x3, …, x2m−1, chosen such
that

• A and B are very easily evaluated at these points;
• the values A(xi) and B(xi) are very small in front of a and b;

andwewill compute the value ofC at these points. Thiswill require the computation of 2m−1 products,
but these products will be multiplications of terms much smaller than a and b, so that computing these
2m − 1 products will be significantly faster than directly computing ab—and we can use the same
strategy for computing these products recursively. In practice, the values xi are very small integers
(typically, −2, −1, 0, 1, 2). A convenient choice is also ∞ (which is just a way of saying that we take
the coefficient of highest degree of the polynomial: we define A(∞) as Am−1). Other possible choices
could be the reciprocals of very small powers of 2, or ±i , ±2i , etc. Notice that Karatsuba’s method
corresponds to the case m = 2 with the points 0, −1, and ∞.

Since the polynomial C is of degree 2m − 2, knowing its value at 2m − 1 points suffices to find its
coefficients (below, we are going to see how this is done). Let us consider an example. For some sizes
of the input operands, the GMP software uses m = 3, with the following values10 xi : 0, 1, −1, 2, and
∞. We have

9To simplify we assume n = mν exactly. In practice, if needed, we add a few zero bits at the left of the binary
representations of a and b, and we choose ν = �n/m�.
10See https://gmplib.org/manual/Toom-3_002dWay-Multiplication.html

https://gmplib.org/manual/Toom-3_002dWay-Multiplication.html

7.2 Just a FewWords on Multiple-Precision Multiplication 125

A(0) = A0,

A(1) = A2 + A1 + A0,

A(−1) = A2 − A1 + A0,

A(2) = 4A2 + 2A1 + A0,

A(∞) = A2.

(7.3)

and a similar equation for the values B(xi). Hence, computing the values A(xi) and B(xi) requires
a few additions and shifts only. Also, the largest absolute value that the terms A(xi) and B(xi) can
take is (4 + 2 + 1) · (2ν − 1): hence A(xi) and B(xi) fit in at most ν + 3 bits, which means that
the computation of the terms C(xi) = A(xi) · B(xi) is done through multiplication of �n/3� + 3-bit
numbers. We finally need to retrieve the coefficients of the polynomial C from the values C(xi). That
polynomial is of degree 4, and if we denote Ci its degree-i coefficient, we have

C(0) = C0,

C(1) = C4 + C3 + C2 + C1 + C0,

C(−1) = C4 − C3 + C2 − C1 + C0,

C(2) = 16C4 + 8C3 + 4C2 + 2C1 + C0,

C(∞) = C4.

(7.4)

Equation (7.4) is a linear system of Matrix

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 1

1 1 1 1 1

1 −1 1 −1 1

16 8 4 2 1

1 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Matrix M is invertible (it is a special case of a Vandermonde matrix [327]), and its inverse is (fortu-
nately!) very simple

M−1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 1

1/2 −1/2 −1/6 1/6 −2

−1 1/2 1/2 0 −1

−1/2 1 −1/3 −1/6 2

1 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

so that
C4 = C(∞),

C3 = 1
2C(0) − 1

2C(1) − 1
6C(−1) + 1

6C(2) − 2C(∞),

C2 = −C(0) + 1
2C(1) + 1

2C(−1) − C(∞),

C1 = − 1
2C(0) + C(1) − 1

3C(−1) − 1
6C(2) + 2C(∞),

C0 = C(0).

(7.5)

126 7 Multiple-Precision Evaluation of Functions

In (7.5), the multiplications by 2 or 1/2 are simple shifts. The division by 3 is very easily done
too (and since we know that the final value Ci is an integer, we do not need to compute it with many
fractional bits). The division by 6 is a one bit shift followed by a division by 3.

To sum-up, the multiplication of two n-bit numbers reduces to five multiplications (the products
A(xi)·B(xi)) of �n/3�+3-bit numbers. If we apply the same strategy recursively to these five products,
we end up with a time proportional to

n
log(5)
log(3) ≈ n1.465.

In the general case (i.e., an arbitrary value of m), we obtain an algorithm with a delay proportional
to

n
log(2m−1)
log(m) ,

however, big values of m are never used in practice (the algorithm becomes too complex). A good
reference on Toom–Cook multiplication is the paper by Bodrato [38].

7.2.3 FFT-BasedMethods

We have seen in the previous section that the idea behind the Toom–Cook family of algorithms con-
sists in reducing a multiplication algorithm to two polynomial evaluations followed by a polynomial
interpolation, using evaluation/interpolation points of the form 0, ±1, ±2, ….

A. Schönhage andV. Strassen [413] noticed that if we choose the roots of unity (either in the complex
field or in some carefully chosen finite ring), we can use a very efficient algorithm for evaluating a
polynomial at these points: the Fast Fourier Transform (FFT) [108]. They introduce two algorithms:
an algorithm based on the FFT in the complex field that multiplies two n-bit numbers in time11

n ln n ln ln n ln ln ln n · · · 2O log∗(n), and an algorithm based on the FFT in the ring of integers modulo
22

m + 1, that multiplies two n-bit numbers in time O(n ln n ln ln n). Another, asymptotically faster,
FFT-based multiplication algorithm, of complexity n ln(n)2O(log∗(n)) was suggested by Fürer [197],
and optimized by Harvey, Van der Hoeven, and Lecerf [226]. Schönhage and Strassen’s algorithms are
the fastest algorithms that are actually implemented in significantly distributed tools.

FFT-based multiplications require significantly more memory than Karatsuba-like methods. As
noted by Bailey and Borwein [49], in several of his record-breaking computations of π , Kanada used
a Karatsuba method at the highest precision levels, and switched to a FFT-based scheme only when
the recursion reached a precision level for which there was enough memory to use FFTs.

In the following, we show how to build several functions upon multiple-precision multiplication,
and we call M(n) the delay of n-bit multiplication.

7.3 Multiple-Precision Division and Square-Root

7.3.1 The Newton–Raphson Iteration

The Newton–Raphson iteration (NR for short) is a well-known and very efficient technique for finding
roots of functions. It was introduced by Newton around 1669 [361], who improved an older method
due to Vieta, to solve polynomial equations (without an explicit use of the derivative). It was then

11From n, compute ln(n), then ln(ln(n)), then ln(ln(ln(n))), etc., until you get a result less than one. The number of
iterations is log∗ n.

7.3 Multiple-Precision Division and Square-Root 127

transformed into an iterative scheme by Raphson a few years later [419]. The modern presentation,
with derivatives and possible application to nonpolynomial equations is due to Simpson. The interested
reader can consult references [155, 479]. NR-based division and/or square-root have been implemented
on many recent processors [331, 333, 366, 391, 406].

Assume we want to compute a root α of some function ϕ. The NR iteration consists in building a
sequence

xn+1 = xn − ϕ(xn)

ϕ′(xn)
. (7.6)

If ϕ has a continuous derivative and if α is a single root (that is, ϕ(α) = 0 and ϕ′(α) �= 0), then
the sequence converges quadratically to α, provided that x0 is close enough to α: notice that global
convergence (i.e., for any x0) is not guaranteed.

Interestingly enough, the classical NR iteration for evaluating square-roots,

xn+1 = 1

2

(

xn + a

xn

)

,

obtained by choosing ϕ = x2 − a, goes back to very ancient times. Al-Khwarizmi mentions this
method in his arithmetic book [123]. Moreover, it was already used by Heron of Alexandria (this is
why it is frequently quoted as “Heron iteration”), and seems to have been known by the Babylonians
2000 years before Heron [195].

The NR iteration is frequently used for evaluating some arithmetic and algebraic functions. For
instance

• By choosing

ϕ(x) = 1

x
− a

one gets
xn+1 = xn(2 − axn).

This sequence goes to 1/a: hence it can be used for computing reciprocals and performing divisions.
• As said above, by choosing

ϕ(x) = x2 − a

one gets

xn+1 = 1

2

(

xn + a

xn

)

.

This sequence goes to
√

a. Note that this iteration requires a division, an operation that is more
expensive than a multiplication, and thus often avoided.

• By choosing

ϕ(x) = 1

x2
− a

one gets

xn+1 = xn

2

(
3 − ax2n

)
.

128 7 Multiple-Precision Evaluation of Functions

This sequence goes to 1/
√

a. It is also frequently used to compute
√

a, obtained by multiplying the
final result by a.

A very interesting property of the NR iteration is that it is “self-correcting”: a small error in the
computation of xn does not change the value of the limit. This makes it possible to start the iterations
with a very small precision, and to double the precision with each iteration. A consequence of this is
that under reasonable hypotheses12, the complexity of square root evaluation or division is the same
as that of multiplication: the time required to get n = 2k bits of a quotient is

O (
M(1) + M(2) + M(4) + M(8) + · · · + M

(
2k−1

) + M
(
2k

))

= O (
M

(
2k

)) = O(M(n)).

Of course there is a hidden constant in the “O”, but it is not too large. In practice, the cost of an
NR-based division is the cost of a very few multiplications.

7.4 Algorithms Based on the Evaluation of Power Series

When a rather moderate precision (say, up to a few hundreds of bits) is at stake, power series are
frequently used to approximate functions (it is of course not possible to dynamically generate minimax
or least-squares polynomials for all possible precisions, therefore, the methods of Chapter 3 cannot be
used).

For instance, in Bailey’s MPFUN library [15], the evaluation of exp(x) is done as follows.

• range reduction We compute

r = x − n × ln(2)

256

where n is an integer, chosen such that

− ln(2)

512
≤ r ≤ ln(2)

512
;

• Taylor approximation

exp(x) =
(

1 + r + r2

2! + r3

3! + r4

4! + . . .

)256

× 2n = exp(r)256 × 2n,

where elevating exp(r) to the power 256 only requires 8 consecutive squarings, since

a256 =

⎛

⎜
⎜
⎝

⎛

⎜
⎝

⎛

⎜
⎝

⎛

⎝

(((
a2

)2
)2

)2
⎞

⎠

2
⎞

⎟
⎠

2⎞

⎟
⎠

2⎞

⎟
⎟
⎠

2

; (7.7)

12It is assumed that there exist two constants α and β, 0 < α, β < 1, such that the delay M(n) of n-bit multiplication
satisfies M(αn) ≤ βM(n) if n is large enough [57]. This assumption is satisfied by the grammar school multiplication
method, as well as by the Karatsuba-like, the Toom–Cook, and the FFT-based algorithms.

http://dx.doi.org/10.1007/978-1-4899-7983-4_3

7.4 Algorithms Based on the Evaluation of Power Series 129

whereas the logarithm of a is computed using the previous algorithm and the Newton iteration (7.6)
with ϕ(x) = exp(x) − a:

xn+1 = xn + a − exp(xn)

exp(xn)
.

This gives
xn → ln(a).

7.4.1 Binary Splitting Techniques

It is worth being noticed that a technique called binary splitting [61, 207, 212], that consists in carefully
adjusting the sizes of all the various terms that occur in a calculation, may allow one to evaluate series
up to a very large precision. For instance, to approximate exp(x) by its order-n Taylor expansion

1 + x + x2

2! + · · · + xn

n! , (7.8)

Smith [427], decomposes the calculation as follows:

exp(x) = 1 + x j

j ! + x2 j

(2 j)! + . . .

+ x
[

1 + x j

(j + 1)! + x2 j

(2 j + 1)! + . . .
]

+ x2
[1

2! + x j

(j + 2)! + x2 j

(2 j + 2)! + . . .
]

...
...

...
...

+ x j−1
[1

(j − 1)! + x j

(2 j − 1)! + x2 j

(3 j − 1)! + . . .
]
.

(7.9)

The first step of the algorithm consists of evaluating the j partial sums

Sk = 1

k! + x j

(j + k)! + x2 j

(2 j + k)! + . . . (7.10)

that correspond to the rows in (7.9). In order to do that, each term xi j/(i j + k)!, for k �= 0, is deduced
from the term xi j/(i j + k − 1)! in the row immediately above by the means of a (cheap—its cost is
linear in the size of the largest operand) division by the small integer k, and accumulated in the partial
sum that will deliver Sk . If k = 0, xi j/(i j + k)! is deduced from the last term, x (i−1) j/(i j − 1)!, of the
previous column in (7.9), by the means of a multiplication by the (precomputed) term x j and a (cheap)
division by the small integer i j . Hence, adding a new term to each partial sum Sk in (7.10) needs one
multiplication by x j , j divisions by a small integer, and j additions. A fast exponentiation algorithm
(see for instance [275]) allows one to evaluate x j by performing at most 2 log2 j − 1 multiplications.
The final result is obtained by evaluating, using Horner’s scheme, the polynomial

exp(x) ≈ S0 + x(S1 + x(S2 + · · · + x(S j−2 + x S j−1) · · ·)).

130 7 Multiple-Precision Evaluation of Functions

To evaluate the order-n Taylor expansion (7.8), this scheme needs O(n/j + j) multiplications, plus
O(n) operations whose cost is comparable to the cost of an addition. Smith deduces the time required
to evaluate the exponential of y with around t bits of accuracy as follows. If from the initial value y
in some bounded interval we use a formula of the form (7.7) to reduce the argument to a number x of
absolute value less than 2−k , we will need to perform O(k) multiplications. The value of n such that
the order-n Taylor expansion approximates ex with accuracy better than 2−t satisfies

(2−k)n

n! ≈ 2−t ,

which gives (using Stirling’s formula13)

n ≈ t ln(2)

ln(t) + k ln(2)
.

Therefore, the total number of multiplications to be performed is

O
(

t ln(2)

j (ln(t) + k ln(2))
+ j + k

)

.

Choosing j and k that minimize this gives j ≈ t1/3 and k ≈ t1/3−ln(t)/ ln(2), which results inO(t1/3)
multiplications. Therefore, using Smith’s algorithm, computing around t bits of exp(y) is done in time
O(t1/3M(t)).

Johansson [257, 258] uses an improved version of Smith’s splitting strategy [427] to provide very
fast elementary functions for the medium precision range (up to approximately 4096 bits).

7.5 The Arithmetic–Geometric Mean (AGM)

7.5.1 Presentation of the AGM

When a very high precision is required14, Taylor series are no longer of interest, and we must use the
arithmetic–geometric mean [50], defined as follows. Given two positive real numbers a0 and b0, one
can easily show that the two sequences (an) and (bn) defined below have a common limit, and that
their convergence is quadratic ⎧

⎨

⎩

an+1 = an + bn

2
bn+1 = √

anbn .

Define A(a0, b0) as the common limit of these sequences, A(a0, b0) is called the arithmetic–geometric
mean (AGM for short) of a0 and b0. Gauss noticed that A(1, x) is equal to

π

2F(x)
,

13n! ≈ √
2nπ(n/e)n .

14According to Borwein and Borwein [51], the switchover is somewhere in the 100 to 1000 decimal digit range.

7.5 The Arithmetic–Geometric Mean (AGM) 131

where F is the elliptic function:

F(x) =
∫ π/2

0

dθ
√
1 − (1 − x2) sin2 θ

.

It is worth noticing that the AGM iteration is not self-correcting: we cannot use the trick of doubling
the precision at each iteration, that we use with the Newton–Raphson iterations. All iterations must be
performed with full precision.

7.5.2 Computing Logarithms with the AGM

The AGM gives a fast way of computing function F(x). This might seem of little use, but now, if we
notice that

F(4/s) = ln(s) + 4 ln(s) − 4

s2

+36 ln(s) − 42

s4
+ 1200 ln(s) − 1480

3s6

+O
(
1

s8

)

,

(7.11)

we can see that if s is “large enough”, then F(4/s) is a good approximation to ln(s). One can easily see
what “large enough” means here: if we wish around p bits of accuracy in the result, then the second
term of the series (7.11) must be at least 2p times smaller than the leading term, i.e., s2 must be larger
than 2p. To evaluate ln(x)with around p bits of accuracy, we will therefore first compute a real number
s and an integer m such that s = x2m > 2p/2. Then, ln(x) will be obtained as

ln(x) ≈ π

2A(1, 4/s)
− m ln(2). (7.12)

Example: computation of ln(25).

Assume that we wish to evaluate ln(25) with around 1000 bits of accuracy (i.e., slightly more than 301
decimal digits), using the previous method.

The smallest integer m such that

25 × 2m > 2500

is 496. Therefore, we choose

{
m = 496

s = 25 × 2496.

We therefore have to compute A(1, 4/s) using the AGM iteration, with

132 7 Multiple-Precision Evaluation of Functions

4/s = 7.820637090558987986053067246626861311460871015865156

25956765160776010656390328437171675452187651898433760

03908955915959176137047751789669625219407723543497974

54654516566458501688411107378001622274090262189901259

48905897827823885444189434604211742729022741015352086

3867397426179826271260399111884428996564061487 · · ·
×10−151

After 16 iterations, we get

A(1, 4/s) = 0.0045265312714725009607298302105133029129827347015

838281713121606744869043995737579479233857801905741

770037145467600936407413152647303583085784505801479

749735211920340350195806608450270179187235763847014

380400860627155440407449068573750007868721884144720

106915779836916467810901775610571341899657231876311

04650339 · · ·

Hence,
ln(25) ≈ π

2A(1,4/s) − m ln(2)

≈ 3.218875824868200749201518666452375279051202708537035

4438252957829483579754153155292602677561863592215

9993260604343112579944801045864935239926723323492

7411455104359274994366491306985712404683050114540

3103872017595547794513763870814255323094624436190

5589704258564271611944513534457057448092317889635

67822511421 · · ·

All the digits displayed above but the last nine coincide with those of the decimal representation of
ln(25). The obtained relative error is 2−992.5.

Computation of π and ln(2).

Using (7.12) requires the knowledge of at least p bits ofπ and ln(2). For small values of p, these bitswill
be precomputed and stored, but for large values, they will be dynamically computed. Concerning ln(2)
we can directly use (7.11): if we want around p bits of accuracy, we approximate ln(2p/2) = p ln(2)/2
by F(2−p/2+2) using (7.11) and the AGM iteration. This gives

ln(2) ≈ π

p A(1, 2−p/2+2)
. (7.13)

7.5 The Arithmetic–Geometric Mean (AGM) 133

Table 7.1 The first terms of the sequence pk generated by the Brent–Salamin algorithm. That sequence converges to π

quadratically.

k pk

1 3.18767264271210862720192997052536923265105357185936922648763

2 3.14168029329765329391807042456000938279571943881540283264419

3 3.14159265389544649600291475881804348610887923726131158965110

4 3.14159265358979323846636060270663132175770241134242935648685

5 3.14159265358979323846264338327950288419716994916472660583470

6 3.14159265358979323846264338327950288419716939937510582097494

There are several ways of computing π [21]. We can for instance use the following algorithm, due
to Brent [57] and Salamin [408], based on the AGM:

a0 = 1

b0 = 1√
2

s0 = 1

2
ak = ak−1 + bk−1

2
bk = √

ak−1bk−1

sk = sk−1 − 2k(a2
k − b2k)

pk = 2a2
k

sk
.

The sequence pk , whose first terms are given in Table 7.1, converges quadratically to π .

7.5.3 Computing Exponentials with the AGM

The exponential of x is computed using the previous algorithm for evaluating logarithms and the
Newton–Raphson iteration. More precisely, to compute exp(a), we use iteration (7.6) with ϕ(x) =
ln(x) − a. This gives

xn+1 = xn (1 + a − ln(xn)) , (7.14)

where ln(xn) is evaluated using the method given in Section 7.5.2. An example (computation of
exp(1)) is given in Table 7.2. A fast and easy way of generating a seed value x0 close to exp(a) is to
compute in conventional (single- or double-precision) floating-point arithmetic an approximation to
the exponential of the floating-point number that is nearest a.

7.5.4 Very Fast Computation of Trigonometric Functions

The methods presented in the previous sections, based on the AGM, for computing logarithms and
exponentials, can be extended to trigonometric functions (which is not surprising: (7.11) remains true
if s is a complex number). Several variants have been suggested for these functions. Here is Brent’s

134 7 Multiple-Precision Evaluation of Functions

Table 7.2 First terms of the sequence xn generated by the NR iteration for computing exp(a), given here with a = 1
and x0 = 2.718. The sequence goes to e quadratically.

n xn

1 2.71828181384870854839394204546332554936588598573150616522 · · ·
2 2.71828182845904519609615815000766898668384995737383488643 · · ·
3 2.71828182845904523536028747135266221418255751906243823415 · · ·
4 2.71828182845904523536028747135266249775724709369995957496 · · ·
5 2.71828182845904523536028747135266249775724709369995957496 · · ·

algorithm for computing arctan(x), with 0 < x ≤ 1, to approximately p bits of precision. We first
start with ⎧

⎪⎪⎨

⎪⎪⎩

s0 = 2−p/2

v0 = x/(1 + √
1 + x2)

q0 = 1

and we iterate: ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qi+1 = 2qi/(1 + si)

ai = 2sivi/(1 + v2i)

bi = ai/

(

1 +
√

1 − a2
i

)

ci = (vi + bi)/(1 − vi bi)

vi+1 = ci/

(

1 +
√

1 + c2i

)

si+1 = 2
√

si/(1 + si)

until 1 − s j ≤ 2−p. We then have

arctan(x) ≈ q j ln

(
1 + v j

1 − v j

)

.

The convergence is quadratic, and using this algorithm we can evaluate n bits of an arctangent
in time O (M(n) ln n) [57]. Using the Newton–Raphson iteration, we can now evaluate the tangent
function: assume we wish to compute tan(θ). With ϕ(x) = arctan(x) − θ , iteration (7.6) becomes

xn+1 = xn −
(
1 + x2n

)
(arctan(xn) − θ) . (7.15)

The sequence xn converges to tan(θ) quadratically provided that x0 is close enough to tan(θ). Again,
a good seed value x0 is easily obtained by computing tan(θ) in conventional floating-point arithmetic.
Using the “self-correcting” property of the Newton–Raphson iteration, as we did with division, we
double the working precision at each iteration, performing the last iteration only with full precision,
so that computing a tangent is done in time O(M(n) ln n) [57], i.e., with the same complexity as the
arctangent function. As suggested by Brent, sin(θ), and tan(θ) can then be computed using

7.5 The Arithmetic–Geometric Mean (AGM) 135

Table 7.3 Time complexity of the evaluation of some functions in multiple-precision arithmetic (extracted from Table
7.1 of [51]). M(n) is the complexity of n-bit multiplication.

function complexity

addition O(n)

multiplication O(n ln(n) ln ln(n)))

division, sqrt O(M(n))

ln, exp O(M(n) ln(n))

sin, cos, arctan O(M(n) ln(n))

x = tan

(
θ

2

)

sin(θ) = 2x

1 + x2

cos(θ) = 1 − x2

1 + x2
.

There are similar algorithms for many usual functions. Table 7.3 gives the time complexity for the
evaluation of the most common ones.

Part II

Shift-and-Add Algorithms

8Introduction to Shift-and-Add Algorithms

At the beginning of the seventeenth century, there was a terrible food shortage. To curb it, the King
decided to implement a tax on bread consumption. The tax would be proportional to the exponential
of the weight of the bread! Bakers and mathematicians had the same question in mind: how could they
quickly compute the price of bread? An old mathematician, called Briggs, found a convenient solution.
He said to the King,

“To calculate the tax, all I need is a pair of scales and a file.”

Rather surprised, the King nevertheless asked his servants to give him the required material. First,
Briggs spent some time filing the different weights of the pair of scales. (Table 8.1 gives the weight of
the different weights after the filing). Then he said,

“Give me a loaf of bread.”

Heweighed the loaf of bread, and found an apparent weight— remember, theweightswere filed !—
equal to 0.572 pounds. Then he said,

“I write 0.572; I replace the leading zero by a one; this gives 1.572. Now I calculate the product of the first two
fractional digits (i.e., 5 × 7), and I divide this by 1, 000. This gives 0.035. I calculate the product of the first and
the third fractional digits (i.e., 5 × 2), and I divide this by 10, 000. This gives 0.001. I add 0.035 and 0.001 to
1.572, and I obtain the exponential of the weight, which is 1.608.”

The King was rather skeptical. He asked his servants to find the actual weight of the bread (using
unfiled weights!), and they came up with 0.475 pounds. Next he asked his mathematicians to compute
the exponential of 0.475.After long calculations, they found the result: 1.608014 · · · Briggs’ estimation
was not too bad!

Let us explain howBriggs’ method worked: first, the weights were filed so that a weight of x pounds
actually weighed ln(1+ x) pounds after the filing. Therefore if the “apparent” weight of the bread was,
say, 0.x1x2x3 pounds, then its real weight was:

ln
(
1 + x1

10

)
+ ln

(
1 + x2

100

)
+ ln

(
1 + x3

1, 000

)

pounds, the exponential of which is:

(
1 + x1

10

) (
1 + x2

100

) (
1 + x3

1, 000

)

� 1 + x1
10

+ x2
100

+ x3
1, 000

+ x1x2
1, 000

+ x1x3
10, 000

.

© Springer Science+Business Media New York 2016
J.-M. Muller, Elementary Functions, DOI 10.1007/978-1-4899-7983-4_8

139

140 8 Introduction to Shift-and-Add Algorithms

Table 8.1 The filing of the
different weights.

Original Weight Weight After Filing

0.5 0.405

0.4 0.336

0.3 0.262

0.2 0.182

0.1 0.095

0.09 0.086

0.08 0.077

0.07 0.068

0.06 0.058

0.05 0.048

0.04 0.039

less than 0.03 unchanged

Although this story is pure fiction (it was invented by Xavier Merrheim to defend his Ph.D. dis-
sertation [342]), Henry Briggs (1561–1631) did actually exist. He was a contemporary of Napier
(1550–1617, the inventor of the logarithms), and he designed the first convenient algorithms for com-
puting logarithms [411]. He published 14-digit accurate tables in his Arithmetica Logarithmica (1624).
A fascinating description of the various methods used by Briggs for building his tables is given by
Roegel [401].

Briggs’ algorithm was the first shift-and-add algorithm. Shift-and-add algorithms allow the eval-
uation of elementary functions using very simple elementary operations: addition, multiplication by
a power of the radix of the number system being used (in fixed-point arithmetic, such multiplications
are performed by the means of simple shifts), and multiplication by one radix-r digit. In this chapter,
we present simple shift-and-add algorithms in order to introduce basic notions that are used in the
following chapters. This class of algorithms is interesting mainly for hardware implementations.

8.1 The Restoring and Nonrestoring Algorithms

Now let us examine a very simple algorithm (quite close to Briggs’ algorithm) to exhibit the properties
that make it work.

Algorithm 16 Algorithm exponential 1
input values: t, N (N is the number of steps)
output value: EN
define

t0 = 0
E0 = 1;

build two sequences tn and En as follows

tn+1 = tn + dn ln
(
1 + 2−n

)
En+1 = En

(
1 + dn2−n

) = En + dn En2−n

dn =
{
1 if tn + ln

(
1 + 2−n

) ≤ t
0 otherwise.

(8.1)

8.1 The Restoring and Nonrestoring Algorithms 141

Figure 8.1 Value of E3
versus t .

1

1.5

2

2.5

3

3.5

4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 8.2 Value of E5
versus t .

1

1.5

2

2.5

3

3.5

4

4.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

This algorithm only requires additions and multiplications by powers of 2. Such multiplications
reduce to shifts when implemented in radix-2 arithmetic. Figures 8.1, 8.2 and 8.3 plot the values of
E3, E5, and E11 versus t .

By examining those figures, one can see that there is an interval I ≈ [0, 1.56] in which En seems
to converge toward a regular function of t as n goes toward infinity. Let us temporarily admit that this
function is the exponential function. One can easily verify that En is always equal to etn . Therefore, a
consequence of our temporary assumption is

limn→+∞ tn = t. (8.2)

142 8 Introduction to Shift-and-Add Algorithms

Figure 8.3 Value of E11
versus t .

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Since tn is obviously equal to
∑n−1

i=0 dn ln
(
1 + 2−n

)
, this implies

t =
∞∑
i=0

dn ln
(
1 + 2−n) . (8.3)

Thus it seems that our algorithm makes it possible to decompose any number t belonging to I into a
sum

t = d0w0 + d1w1 + d2w2 + · · · ,

where wi = ln
(
1 + 2−i

)
. Now let us try to characterize sequences (wi) such that similar decomposi-

tions are possible, and to find algorithms that lead to those decompositions. We already know one such
sequence: if wi = 2−i , then the selection of the digits of the binary expansion of t for the di s provides
a decomposition of any t ∈ [0, 2) into a sum of diwi s.

The following theorem gives an algorithm for computing such a decomposition, provided that the
sequence (wi) satisfies some simple properties. This algorithm can be viewed as equivalent to the
weighing of t using a pair of scales, and weights (the terms wi) that are either unused or put in the pan
that does not contain t . Figure 8.4 illustrates this.

Theorem 16 (restoring decomposition algorithm). Let (wn) be a decreasing sequence of positive real
numbers such that the power series

∑∞
i=0 wi converges. If

∀n, wn ≤
∞∑

k=n+1

wk, (8.4)

then for any t ∈ [
0,

∑∞
k=0 wk

]
, the sequences (tn) and (dn) defined as

8.1 The Restoring and Nonrestoring Algorithms 143

w1

w3
w4 w5

w2

w6
w7

Figure 8.4 The restoring algorithm. The weights are either unused or put on the pan that does not contain the loaf of
bread being weighed. In this example, the weight of the loaf of bread is w1 + w3 + w4 + w5 + · · · .

t0 = 0
tn+1 = tn + dnwn

dn =
{
1 i f tn + wn ≤ t
0 otherwise

(8.5)

satisfy

t =
∞∑
n=0

dnwn = lim
n→∞ tn .

Proof of Theorem 16
Let us prove by induction that for any n,

0 ≤ t − tn ≤
∞∑
k=n

wk . (8.6)

Since the power series
∑∞

i=0 wi converges, the remainder
∑∞

k=n wk goes to zero as n goes to infinity;
therefore proving (8.6) would suffice to prove the theorem. Relation (8.6) is obviously true for n = 0.
Let us assume it is true for some n.

• If dn = 0, then tn+1 = tn , and tn satisfies tn + wn > t . Therefore 0 ≤ t − tn+1 = t − tn < wn .
Using (8.4), we get 0 ≤ t − tn+1 ≤ ∑∞

k=n+1 wk .
• If dn = 1, then tn+1 = tn + wn ; therefore t − tn+1 ≤ ∑∞

k=n wk − wn = ∑∞
k=n+1 wk . Moreover

(after the choice of dn), tn + wn ≤ t ; therefore t − tn+1 = t − tn − wn ≥ 0, q.e.d.

A sequence (wn) that satisfies the conditions of Theorem 16 is called a discrete base [352, 353,
354].

The algorithm given by (8.5) is called here the “restoring algorithm”, by analogy with the restoring
division algorithm [179] (if we choose wi = y2−i , we get the restoring division algorithm; we obtain
t = ∑∞

i=0 di y2
−i , which gives t/y = d0.d1d2d3 · · ·). To our knowledge, this analogy between some

division algorithms and most shift-and-add elementary function algorithms was first pointed out by

144 8 Introduction to Shift-and-Add Algorithms

Meggitt [337], who presented algorithms similar to those in this chapter as “pseudomultiplication”
and “pseudodivision” methods. Other “pseudodivision” algorithms were suggested by Sarkar and
Krishnamurthy [407]. An algorithm very similar to the restoring exponential algorithm was suggested
by Chen [79]. The following theorem presents another algorithm that gives decompositions with values
of the di s equal to −1 or +1. This algorithm, called the “nonrestoring algorithm” by analogy with the
nonrestoring division algorithm, is used in the CORDIC algorithm (see Chapter 9).

Theorem 17 (nonrestoring decomposition algorithm). Let (wn) be a decreasing sequence of positive
real numbers such that

∑∞
i=0 wi converges. If

∀n, wn ≤
∞∑

k=n+1

wk, (8.7)

then for any t ∈ [−∑∞
k=0 wk,

∑∞
k=0 wk

]
, the sequences (tn) and (dn) defined as

t0 = 0
tn+1 = tn + dnwn

dn =
{

1 if tn ≤ t
−1 otherwise

(8.8)

satisfy

t =
∞∑
n=0

dnwn = lim
n→∞ tn .

The proof of this theorem is very similar to the proof of Theorem 16. The nonrestoring algorithm
can be viewed as the weighing of t using a pair of scales, and weights (the terms wi) which must be
put in one of the pans (no weight is unused). Figure 8.5 illustrates this.

Figure 8.5 The
nonrestoring algorithm. All
the weights are used, and
they can be put on both
pans. In this example, the
weight of the loaf of bread
is w1 − w2 + w3 + w4 +
w5 − w6 + · · · .

w4 w5

w6

w2
w3

w1

http://dx.doi.org/10.1007/978-1-4899-7983-4_9

8.2 Simple Algorithms for Exponentials and Logarithms 145

8.2 Simple Algorithms for Exponentials and Logarithms

8.2.1 The Restoring Algorithm for Exponentials

We admit that the sequences ln
(
1 + 2−n

)
and arctan 2−n are discrete bases, that is, that they satisfy

the conditions of Theorems 16 and 17 (see [352] for proof). Now let us again find Algorithm 8.1 using
Theorem 16. We use the discrete base wn = ln

(
1 + 2−n

)
. Let t ∈ [

0,
∑∞

k=0 wk
] ≈ [0, 1.56202 · · ·].

From Theorem 16, the sequences (tn) and (dn) defined as

t0 = 0
tn+1 = tn + dn ln

(
1 + 2−n

)

dn =
{
1 if tn + ln

(
1 + 2−n

) ≤ t
0 otherwise

satisfy

t =
∞∑
n=0

dn ln
(
1 + 2−n) = lim

n→∞ tn .

Now let us try to build a sequence En such that at any step n of the algorithm,

En = exp (tn) . (8.9)

Since t0 = 0, E0 must be equal to 1.When tn+1 is different from tn (i.e., when dn = 1), tn+1 is equal
to tn + ln

(
1 + 2−n

)
. To keep relation (8.9) invariable, one must multiply En by exp ln

(
1 + 2−n

) =(
1 + 2−n

)
. Since tn goes to t , En goes to et , and we find Algorithm 8.1 again.

It is worth noticing that when building this algorithm, we never really used the fact that the log-
arithms that appear are natural (i.e., base-e) logarithms. If we replace, in the algorithm, the con-
stants ln

(
1 + 2−n

)
by loga

(
1 + 2−n

)
, then we obtain an algorithm for computing at . Its convergence

domain is

[0,
∞∑
n=0

loga
(
1 + 2−n)].

Error evaluation

Let us estimate the error on the result En if we stop at step n of the algorithm, that is, if we approximate
the exponential of t by En . From the proof of Theorem 16, we have 0 ≤ t − tn ≤ ∑∞

k=n ln
(
1 + 2−k

)
.

Since ln(1 + x) < x for any x > 0, we have

∞∑
k=n

ln
(
1 + 2−k

)
≤

∞∑
k=n

2−k = 2−n+1.

Therefore 0 ≤ t − tn ≤ 2−n+1. Now from En = exp (tn) we deduce:

1 ≤ exp (t − tn) ≤ exp
(
2−n+1

)
.

146 8 Introduction to Shift-and-Add Algorithms

This gives
∣∣∣∣
et − En

et

∣∣∣∣ ≤ 1 − e−2−n+1 ≤ 2−n+1. (8.10)

Therefore, when stopping at step n, the relative error on the result1 is bounded by 2−n+1 (i.e., we
roughly have n − 1 significant bits).

8.2.2 The Restoring Algorithm for Logarithms

From the previous algorithm, we can easily deduce another algorithm that evaluates logarithms. Let us
assume that wewant to compute � = ln(x). First, assuming that � is known, we compute its exponential
x using the previously studied algorithm. This gives:

t0 = 0
E1 = 1
tn+1 = tn + dn ln

(
1 + 2−n

)
En+1 = En + dnEn2−n

(8.11)

with

dn =
{
1 if tn + ln

(
1 + 2−n

) ≤ �

0 otherwise.
(8.12)

The previous study shows that, using this algorithm:

limn→∞ tn = �

limn→∞ En = exp(�) = x .

Of course, this algorithm cannot be used to compute � since (8.12) requires the knowledge of �!
However, since the sequence En was built such that at any step n, En = exp (tn), the test performed
in (8.12) is equivalent to the test:

dn =
{
1 if En × (

1 + 2−n
) ≤ x

0 otherwise.
(8.13)

Consequently, if we replace (8.12) by (8.13) in the previous algorithm, we will get the same results
(including the convergence of the sequence tn to �) without now having to know � in advance!. This
gives the restoring logarithm algorithm.

1In this estimation,wedonot take the rounding errors into account. Theywill dependon the precision used for representing
the intermediate variables of the algorithm.

8.2 Simple Algorithms for Exponentials and Logarithms 147

Algorithm 17 Restoring logarithm algorithm
• input values: x, n (n is the number of steps), with

1 ≤ x ≤
∞∏
i=0

(
1 + 2−i

)
≈ 4.768;

• output value: tn ≈ ln x .

Define t0 = 0 and E0 = 1.
Build two sequences ti and Ei as follows

ti+1 = ti + ln
(
1 + di2−i

)
Ei+1 = Ei

(
1 + di2−i

) = Ei + di Ei2−i

di =
{
1 if Ei + Ei2−i ≤ x
0 otherwise.

(8.14)

As in the previous section, if we replace, in the algorithm, the constants ln
(
1 + 2−n

)
by loga(

1 + 2−n
)
, we get an algorithm that evaluates base-a logarithms.

Error evaluation

From the proof of Theorem 16, we have

0 ≤ � − tn ≤
∞∑
k=n

ln
(
1 + 2−k

)
≤ 2−n+1.

Therefore, if we stop the algorithm at step n, the absolute error on the result is bounded2 by 2−n+1.

8.3 Faster Shift-and-Add Algorithms

In the previous sections we studied algorithms that were similar to the restoring and nonrestoring
division algorithms. Our aim now is to design faster algorithms, similar to the SRT division algo-
rithms [179, 399, 400], using redundant number systems. The algorithms presented in this section are
slight variations of algorithms proposed by N. Takagi in his Ph.D. dissertation [443].

8.3.1 Faster Computation of Exponentials

First, we try to compute exponentials in a more efficient way. Let us start from the basic iteration (8.1).
Defining Ln = t − tn and noticing that

dn ln
(
1 + 2−n) = ln

(
1 + dn2

−n)

for dn = 0 or 1, we get:

2In this estimation,wedonot take the rounding errors into account. Theywill dependon the precision used for representing
the intermediate variables of the algorithm.

148 8 Introduction to Shift-and-Add Algorithms

Ln+1 = Ln − ln
(
1 + dn2−n

)
En+1 = En

(
1 + dn2−n

)

dn =
{
1 if Ln ≥ ln

(
1 + 2−n

)
0 otherwise.

(8.15)

If L0 = t is less than
∑∞

n=0 ln
(
1 + 2−n

)
, this gives:

Ln → 0
n → +∞.

and
En → E0eL0

n → +∞.

To accelerate the computation, we try to perform this iteration using a redundant (e.g., carry-save
or signed-digit) number system (see Chapter 2). The additions that appear in this iteration are quickly
performed, without carry propagation. Unfortunately, the test “Ln ≥ ln

(
1 + 2−n

)
” may require the

examination of a number of digits that may be close to the word length.3 This problem is solved
by adding some “redundancy” to the algorithm. Instead of only allowing the values di = 0, 1, we
also allow di = −1. Since ln

(
1 − 2−0

)
is not defined, we must start at step n = 1. To ensure that

the algorithm converges, we must find values dn such that Ln will go to zero. This can be done by
arranging that Ln ∈ [sn, rn], where

rn =
∞∑
k=n

ln
(
1 + 2−k

)

sn =
∞∑
k=n

ln
(
1 − 2−k

)
.

(8.16)

Figure 8.6 presents the different possible values of Ln+1 versus Ln (following (8.15)) depending on
the choice of dn . This figure is very close to the Robertson diagrams that appear in the SRT division
algorithm [179, 399], sowe call it theRobertson diagram of iteration (8.15). Assume that Ln ∈ [sn, rn].
We want Ln+1 to be in [sn+1, rn+1]. The diagram shows that we may select:

• dn = −1 if Ln ≤ An ;
• dn = 0 if Bn ≤ Ln ≤ Bn ;
• dn = 1 if Ln ≥ An .

The values An , Bn , An , and Bn of Figure 8.6 satisfy:

⎧⎪⎪⎨
⎪⎪⎩

An = sn+1 + ln
(
1 + 2−n

)
Bn = rn+1

An = rn+1 + ln
(
1 − 2−n

)
Bn = sn+1.

(8.17)

3If dn was chosen by means of a comparison, computation would be slowed down — the time saved by performing
fully parallel additions would be lost — and huge tables would be required if dn was given by a table lookup — and,
incidentally, if we were able to implement such huge tables efficiently, we would rather directly tabulate the exponential
function.

http://dx.doi.org/10.1007/978-1-4899-7983-4_2

8.3 Faster Shift-and-Add Algorithms 149

dn = 1

dn = 0

dn = −1

Bn

An

AnBn

rn+1

sn+1

rnsn

Ln+1

Ln

Figure 8.6 Robertson diagram of the “redundant exponential” algorithm.

Table 8.2 First 10 values and limit values of 2nsn , 2nrn , 2n An , 2n Bn , 2n An , and 2n Bn .

n 2nsn 2nrn 2n Bn 2n An 2n An 2n Bn

1 −2.484 1.738 −1.098 −0.460 −0.287 0.927

2 −2.196 1.854 −1.045 −0.190 −0.152 0.961

3 −2.090 1.922 −1.022 −0.088 −0.079 0.980

4 −2.043 1.960 −1.011 −0.043 −0.041 0.990

5 −2.021 1.980 −1.005 −0.021 −0.021 0.995

6 −2.011 1.990 −1.003 −0.010 −0.010 0.997

7 −2.005 1.995 −1.001 −0.005 −0.005 0.999

8 −2.003 1.997 −1.001 −0.003 −0.003 0.999

9 −2.001 1.999 −1.000 −0.001 −0.001 1.000

10 −2.001 1.999 −1.000 −0.001 −0.001 1.000

∞ −2 2 −1 0 0 1

Using these relations and the Taylor expansion of the function ln(1 + x), one can show that:

⎧
⎪⎪⎨
⎪⎪⎩

2n An ≤ 0
2n Bn ≥ 1/2
2n An ≥ −1/2
2n Bn ≤ −1.

(8.18)

Table 8.2 gives the first 10 values of 2nsn , 2nrn , 2n An , 2n Bn , 2n An , and 2n Bn .
We can see that there is an overlap between the area where dn = −1 is a correct choice and the area

where dn = 0 is a correct choice. There is another overlap between the area where dn = 0 is a correct
choice and the area where dn = +1 is a correct choice. This allows us to choose a convenient value of

150 8 Introduction to Shift-and-Add Algorithms

dn by examining a few digits of Ln only. Let us see how this choice can be carried out in signed-digit
and carry-save arithmetic.

Signed-digit implementation

Assume we use the signed-digit system. Define L∗
n as 2nLn truncated after the first fractional digit.

We have ∣∣L∗
n − 2nLn

∣∣ ≤ 1/2.

Therefore if we choose4

dn =
⎧⎨
⎩

−1 if L∗
n ≤ −1

0 if −1/2 ≤ L∗
n ≤ 0

1 if L∗
n ≥ 1/2,

(8.19)

then Ln+1 will be between sn+1 and rn+1.

Proof

• If L∗
n ≤ −1, then 2nLn ≤ −1/2; therefore 2nLn ≤ 2n An . This implies Ln ≤ An ; therefore (see

Figure 8.6) choosing dn = −1 will ensure sn+1 ≤ Ln+1 ≤ rn+1.
• If −1/2 ≤ L∗

n ≤ 0, then5 −1 ≤ 2nLn ≤ 1/2; therefore Bn ≤ Ln ≤ Bn . Therefore choosing
dn = 0 will ensure sn+1 ≤ Ln+1 ≤ rn+1.

• If L∗
n ≥ 1/2, then 2nLn ≥ 0; therefore Ln ≥ An , and choosing dn = 1 will ensure sn+1 ≤ Ln+1 ≤

rn+1.

Therefore one fractional digit of L∗
n suffices to choose a correct value of dn . Now let us see how

many digits of the integer part we need to examine. One can easily show:

{−5/2 < 2nsn
2nrn < 2; (8.20)

therefore, for any n,
−5/2 < 2nLn < 2.

Since |2nLn − L∗
n| ≤ 1/2, we get

−3 < L∗
n <

5

2
,

and, since L∗
n is a multiple of 1/2,

−5

2
≤ L∗

n ≤ 2.

Define L̂∗
n as the 4-digit number obtained by truncating the digits of L∗

n of a weight greater than or
equal to 8 = 23; that is, if

L∗
n = · · · L∗

n,4L
∗
n,3L

∗
n,2L

∗
n,1L

∗
n,0.L

∗
n,−1,

4Remember, L∗
n is a multiple of 1/2; therefore L∗

n > −1 implies L∗
n ≥ −1/2.

5Since L∗
n is a multiple of 1/2, “−1/2 ≤ L∗

n ≤ 0” is equivalent to “L∗
n ∈ {−1/2, 0}.”

8.3 Faster Shift-and-Add Algorithms 151

then
L̂∗
n = L∗

n,2L
∗
n,1L

∗
n,0.L

∗
n,−1.

It is worth noticing that L̂∗
n and L∗

n may have different signs: for instance, if L∗
n = 1101.0, then L∗

n is
negative, whereas L̂∗

n = 101.0 is positive.
We have

• −8 + 1/2 ≤ L̂∗
n ≤ 8 − 1/2;

• L∗
n − L̂∗

n is a multiple of 8.

Therefore,

• If−8+1/2 ≤ L̂∗
n ≤ −6, then the only possibility compatible with−5/2 ≤ L∗

n ≤ 2 is L∗
n = L̂∗

n+8.
This gives 1/2 ≤ L∗

n ≤ 2. Therefore dn = 1 is a correct choice.
• If −6 + 1/2 ≤ L̂∗

n ≤ −3, there is no possibility compatible with −5/2 ≤ L∗
n ≤ 2. This is an

impossible case.
• If −5/2 ≤ L̂∗

n ≤ −1, then the only possibility is L∗
n = L̂∗

n . Therefore dn = −1 is a correct choice.
• If −1/2 ≤ L̂∗

n ≤ 0, then the only possibility is L∗
n = L̂∗

n . Therefore dn = 0 is a correct choice.
• If 1/2 ≤ L̂∗

n ≤ 2, then the only possibility is L∗
n = L̂∗

n , and dn = 1 is a correct choice.
• If 2+1/2 ≤ L̂∗

n ≤ 5, there is no possibility compatible with−5/2 ≤ L∗
n ≤ 2. This is an impossible

case.
• If 5 + 1/2 ≤ L̂∗

n ≤ 7, then the only possibility is L∗
n = L̂∗

n − 8. This gives −5/2 ≤ L∗
n ≤ −1.

Therefore dn = −1 is a correct choice.
• If L̂∗

n = 7 + 1/2, then the only possibility is L∗
n = L̂∗

n − 8. This gives L∗
n = −1/2. Therefore

dn = 0 is a correct choice.

Therefore, the choice of dn only needs the examination of four digits of Ln . This choice can be
implemented by first converting L̂∗

n to nonredundant representation (using a fast 4-bit adder), then by
looking up in a 4-address bit table, or by directly looking up in a 8-address bit table, without preliminary
addition. The digits of weight greater than or equal to 23 of 2nLn will never be used again; therefore
there is no need to store them. This algorithm is very similar to an SRT division [179]. A slightly
different solution, used by Takagi [443], consists of rewriting Ln so that the digit L∗

n,2 becomes null.
This is always possible since |2nLn| is less than 5/2. After this, we only need to examine three digits
of Ln at each step, instead of four. Takagi’s solution is explained with more details in Section 9.6.

Carry-Save implementation

Assume now that we use the carry-save system. Define L∗
n as 2

nLn truncated after the first fractional
digit. We have

0 ≤ 2nLn − L∗
n ≤ 1;

therefore, if we choose

dn =
⎧⎨
⎩

−1 if L∗
n ≤ −3/2

0 if −1 ≤ L∗
n ≤ −1/2

1 if L∗
n ≥ 0,

(8.21)

then Ln+1 will be between sn+1 and rn+1. The proof is very similar to the proof of the signed-digit
algorithm.

http://dx.doi.org/10.1007/978-1-4899-7983-4_9

152 8 Introduction to Shift-and-Add Algorithms

As in the previous section, we define L̂∗
n as the 4-digit number obtained by truncating, in the

carry-save representation of L∗
n , the digits of a weight greater than or equal to 23; that is, if

L∗
n = · · · L∗

n,4L
∗
n,3L

∗
n,2L

∗
n,1L

∗
n,0.L

∗
n,−1

with L∗
n,3 = 0, 1, 2, then

L̂∗
n = L∗

n,2L
∗
n,1L

∗
n,0.L

∗
n,−1.

We have

• 0 ≤ L̂∗
n ≤ 15,

• L∗
n − L̂∗

n is a multiple of 8.

Moreover, from −5/2 < 2nLn < 2 and 0 ≤ 2nLn − L∗
n ≤ 1, we get −7/2 < L∗

n < 2 and, since L∗
n

is a multiple of 1/2, this gives −3 ≤ L∗
n ≤ 3/2. Therefore:

• If 0 ≤ L̂∗
n ≤ 3/2, then the only possibility compatible with −3 ≤ L∗

n ≤ 3/2 is L∗
n = L̂∗

n ; therefore
dn = 1 is a correct choice.

• If 2 ≤ L̂∗
n ≤ 4+1/2, there is no possibility compatible with−3 ≤ L∗

n ≤ 3/2. This is an impossible
case.

• If 5 ≤ L̂∗
n ≤ 6 + 1/2, then L∗

n = L̂∗
n + 8 and dn = −1 is a correct choice.

• If 7 ≤ L̂∗
n ≤ 7 + 1/2, then L∗

n = L̂∗
n + 8 and dn = 0 is a correct choice.

• If 8 ≤ L̂∗
n ≤ 9 + 1/2, then L∗

n = L̂∗
n + 8 and dn = 1 is a correct choice.

• If 10 ≤ L̂∗
n ≤ 12 + 1/2, there is no possibility compatible with −3 ≤ L∗

n ≤ 3/2. This is an
impossible case.

• If 13 ≤ L̂∗
n ≤ 14 + 1/2, then L∗

n = L̂∗
n + 16 and dn = −1 is a correct choice.

• If L̂∗
n = 15, then L̂∗

n = −1 and dn = 0 is a correct choice.

Therefore the choice of dn only needs the examination of four digits of Ln . As for the signed-
digit version of the algorithm, this choice can be implemented by first converting L̂∗

n to nonredundant
representation (using a fast 4-digit adder), then by looking up in a 4-address bit table.

8.3.2 Faster Computation of Logarithms

Now assume that we want to compute logarithms quickly. Some notations adopted here are taken
from [357], and Asger-Munk Nielsen helped to perform this study. We start from (8.17), that is, from
the basic iteration: {

tn+1 = tn + ln
(
1 + dn2−n

)
En+1 = En

(
1 + dn2−n

) = En + dnEn2−n,

with n ≥ 1, and slightly modify it as follows,

{
Ln+1 = Ln − ln

(
1 + dn2−n

)
En+1 = En

(
1 + dn2−n

) = En + dnEn2−n,
(8.22)

where, as in the previous section, Ln = t − tn . Since En × exp(Ln) remains constant, if we are able to
find a sequence of terms dk ∈ {−1, 0, 1} such that En goes to 1, then we will have Ln → L1 + ln (E1).

8.3 Faster Shift-and-Add Algorithms 153

Figure 8.7 Robertson diagram for the logarithm. The three straight lines give λn+1 = λn(1 + dn2−n) + dn2−n for
dn = −1, 0, 1.

Defineλn = En−1.To compute logarithms,wewantλn to go to zero as k goes to infinity. TheRobertson
diagram in Figure 8.7 displays the value of λn+1 versus λn (i.e., λn+1 = λn(1 + dn2−n) + dn2−n),
for all possible values of dn . In this diagram, rn satisfies rn+1 = (

1 − 2−n
)
rn − 2−n , and sn satisfies

sn+1 = (
1 + 2−n

)
sn + 2−n . This gives:

rn =
∞∑
k=n

2−k
k∏

j=n

1

1 − 2− j

sn = −
∞∑
k=n

2−k
k∏

j=n

1

1 + 2− j
.

One can show that rn and sn go to 0 as n goes to +∞. According to this diagram (and assuming
An ≤ Bn ≤ Cn ≤ Dn), any choice of dn that satisfies (8.23) will ensure λn ∈ [sn, rn], which implies
λn → 0. ⎧

⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

if λn < An then dn = 1
if An ≤ λn ≤ Bn then dn = 1 or 0
if Bn < λn < Cn then dn = 0
if Cn ≤ λn ≤ Dn then dn = 0 or − 1
if Dn < λn then dn = −1.

(8.23)

The values An , Bn , Cn , and Dn satisfy

An = sn+1

Bn = rn+1 − 2−n

1 + 2−n

Cn = sn+1 + 2−n

1 − 2−n

Dn = rn+1.

It follows, using these relations, that An < Bn < Cn < Dn for all n ≥ 1. Table 8.3 gives the first
values and limits of 2n times these values.

154 8 Introduction to Shift-and-Add Algorithms

Table 8.3 First 5 values and limit values of 2nsn , 2nrn , 2n An , 2n Bn , 2nCn , and 2n Dn .

n 2nsn 2nrn 2n An 2n Bn 2nCn 2n Dn

1 −1.161 4.925 −0.74 0.30 0.51 1.46

2 −1.483 2.925 −0.85 0.15 0.19 1.19

3 −1.709 2.388 −0.92 0.08 0.09 1.09

4 −1.844 2.179 −0.96 0.04 0.04 1.04

5 −1.920 2.086 −0.98 0.02 0.02 1.02

∞ −2 2 −1 0 0 1

One can show that for any n ≥ 1:
2nsn ≥ −2
2nrn ≤ 5
2n An ≤ −1/2
2n Bn ≥ 0
2nCn ≤ 1
2nDn ≥ 1.

Moreover, if n ≥ 2, then 2nCn ≤ 1/2 and 2nrn ≤ 3. Let us see how the choice of dn can be carried
out using signed-digit arithmetic.

Signed-digit implementation

Assume thatweuse the radix-2 signed-digit system.Defineλ∗
n as 2

nλn truncated after the first fractional
digit. We have

∣∣λ∗
n − 2nλn

∣∣ ≤ 1

2
.

Therefore, if n is greater than or equal to 2, we can choose

dn =
⎧⎨
⎩

+1 if λ∗
n ≤ −1/2

0 if λ∗
n = 0 or 1/2

−1 if λ∗
n ≥ 1.

(8.24)

If n = 1, then we need two fractional digits of the signed-digit representation of λ1. And yet, in
many cases, λ1 will be in conventional (i.e., nonredundant, with digits 0 or 1) binary representation (in
practice, ifwewant to compute the logarithmof afloating-point number x ,λ1 is obtained by suppressing
the leading “1” of the mantissa of x ; incidentally, this “1” may not be stored if the floating-point format
uses the “hidden bit” convention — see Section 2.1.1). Knowing this, if λ∗

1 = 2λ1 truncated after the
first fractional bit, then

0 ≤ λ1 − λ∗
1 ≤ 1/2

and we can choose

d1 =
{

0 if λ∗
1 = 0, 1/2

−1 if λ∗
1 ≥ 1.

Therefore (8.24) can be used for all n, provided that λ1 is represented in the nonredundant binary
number system. The convergence domain of the algorithm is

L1 ∈ [s1 + 1, r1 + 1] = [0.4194 · · · , 3.4627 · · ·].

http://dx.doi.org/10.1007/978-1-4899-7983-4_2

8.4 Baker’s Predictive Algorithm 155

Table 8.4 The first digits of the first 15 values wi = ln(1 + 2−i). As i increases, wi gets closer to 2−i .

8.4 Baker’s Predictive Algorithm

If i is large enough, then ln(1+2−i) and arctan 2−i are very close to 2−i (this can be seen by examining
Table 8.4). Baker’s predictive algorithm [29], originally designed for computing the trigonometric
functions6 but easily generalizable to exponentials and logarithms, is based on this remark. We have
already seenhow the sequence ln(1+2−i) canbeused for computing functions. The sequence arctan 2−i

is used by the CORDIC algorithm (see next chapter).
From the power series

ln(1 + x) = x − 1

2
x2 + 1

3
x3 − 1

4
x4 + · · ·

one can easily show that
0 < 2−i − ln(1 + 2−i) < 2−2i−1. (8.25)

Similarly, one can show that

0 < 2−i − arctan(2−i) <
1

3
2−3i . (8.26)

This means that if x is small enough, the first terms of the decomposition of x on the discrete base
ln(1 + 2−i) or arctan 2−i are likely to be the same as the first terms of its decomposition on the base
(2−i), that is, its binary decomposition. This is illustrated by Table 8.5.

6Using a modified CORDIC algorithm; CORDIC is presented in the next chapter.

156 8 Introduction to Shift-and-Add Algorithms

Table 8.5 Comparison among the binary representations and the decompositions (given by the restoring algorithm) on
the discrete bases ln(1 + 2−i) and arctan 2−i for some values of x . When x is very small the different decompositions
have many common terms.

Let wi be ln(1 + 2−i) or arctan(2−i) depending on the function we wish to compute. Assume that
we are at some step n ≥ 2 of a decomposition method. We have a value xn that satisfies:

0 ≤ xn ≤
∞∑
k=n

wk <

∞∑
k=n

2−k = 2−n+1

and we need to find values dn , dn+1, dn+2 . . . , such that

xn =
∞∑
k=n

dkwk .

Let
0.00000 · · · 0d(n)

n d(n)
n+1d

(n)
n+2d

(n)
n+3 · · ·

be the binary representation of xn , that is,

xn =
∞∑
k=n

d(n)
k 2−k .

Since wp is very close to 2−p, the basic idea is to choose:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dn = d(n)
n

dn+1 = d(n)
n+1

...

d� = d(n)
� ,

(8.27)

for some �. This gives values (di) without having to perform any comparison or table lookup. Of
course, since the sequences (wp) and (2−p) are not exactly equal, this process will not always give a
correct result without modifications. A correction step is necessary. Define

8.4 Baker’s Predictive Algorithm 157

x̃�+1 = xn − dnwn − dn+1wn+1 − · · · − d�w�.

We have:

x̃�+1 = xn −
�∑

k=n

dkwk = xn −
�∑

k=n

dk2
−k +

�∑
k=n

dk(2
−k − wk).

Therefore

0 ≤ x̃�+1 ≤ 2−� +
�∑

k=n

(2−k − wk).

• If wi = ln
(
1 + 2−i

)
, using (8.25), this gives

0 ≤ x̃�+1 < 2−� + 2−2n+1

3
, (8.28)

• and if wi = arctan 2−i , using (8.26), this gives

0 ≤ x̃�+1 < 2−� + 2−3n+3

21
. (8.29)

In both cases, x̃�+1 is small. Now let us find a convenient value for �.

• If wi = ln
(
1 + 2−i

)
, let us choose � = 2n − 1. This gives

0 ≤ x̃2n ≤ 2−2n+1
(
1 + 1

3

)
.

The “correction step” consists of again using the constant w� = w2n−1 in the decomposition.7

Define δ� as 1 if x̃�+1 > wl , else 0, and x2n = x�+1 = x̃�+1 − δ�wl . We get:

– if δ� = 0, then 0 ≤ x�+1 ≤ w� ≤ ∑∞
k=l+1 wk ;

– if δ� = 1, then from (8.28) and the Taylor expansion of the logarithm, we get:

0 ≤ x�+1 = x̃�+1 − wl ≤ 2−2n+1
(
1 + 1

3

)
− 2−2n+1

+1

2
2−4n+2

≤ 2−2n
(
2

3
+ 2−2n+1

)
≤ 2−2n

(since n ≥ 2)

≤
∞∑

k=l+1

wk .

7This can be viewed as the possible use of di = 2 for a few values of i , or as the use of a new discrete base, obtained by
repeating a few terms of the sequence (wi).

158 8 Introduction to Shift-and-Add Algorithms

• If wi = arctan 2−i , let us choose � = 3n − 1. This gives

0 ≤ x̃3n ≤ 2−3n+1
(
1 + 1

3

)
.

The “correction step” consists of using the constantw� = w3n−1 again in the decomposition. Define
δ� as 1 if x̃�+1 > w�, else 0, and x�+1 = x3n = x̃�+1 − δ�w�. We get

– if δ� = 0, then

0 ≤ x�+1 ≤ w� ≤
∞∑

k=�+1

wk;

– if δ� = 1, then, from (8.29) and the Taylor expansion of the arctangent function, we get:

0 ≤ x�+1 = x̃�+1 − w� ≤ 25

21
2−3n+1 − 2−3n+1 + 2−9n+3

3

≤ 2−3n
(

8

21
+ 8

3
2−6n

)

≤ 2−3n(since n ≥ 2)

≤
∞∑

k=�+1

wk .

Therefore, in both cases, we have got a new value n′ (n′ = � + 1) that satisfies:

0 ≤ xn′ ≤
∞∑

k=n′
wk,

and we can start the estimation of the next terms of the decomposition from the binary expansion of
xn′ .

Assume that we use the sequence wn = ln
(
1 + 2−n

)
. We cannot start the method from n = 0 or

n = 1 (n = 0 would give � = −1, and n = 1 would give � = 1). Starting from a small value of n
larger than 1 would not allow us to predict many values di : n = 3 would give � = 5. This would allow
us to find d3, d4, and d5, but we would have to perform a “correction step” immediately afterwards.
To make Baker’s method efficient, we must handle the first values of n using a different algorithm. A
solution is to use a small table. Let us examine how this can be done.

For an m-bit chain (α0, α1, . . . , αm−1) define Iα0,α1,...,αm−1 as the interval containing all the real
numbers whose binary representation starts with α0.α1α2 · · · αm−1, that is,

Iα0,α1,...,αm−1 =
[
α0.α1α2 · · ·αm−1, α0.α1α2 · · ·αm−1 + 2−m−1

]
.

For an n-bit chain (d0, d1, . . . , dn−1), define Jd0,d1,...,dn−1 as the interval

Jd0,...,dn−1 =
[
d0w0 + · · · + dn−1wn−1, d0w0 + · · · + dn−1wn−1 +

∞∑
i=n

wi

]
.

8.4 Baker’s Predictive Algorithm 159

The interval Jd0,d1,...,dn−1 contains the numbers t that can be written

t =
∞∑
k=0

δkwk,

where δk = dk for k ≤ n − 1 and δk = 0, 1 for k ≥ n.
We can start Baker’s algorithm at step n if there exists a number m such that for every possible

m-bit chain (α0, α1, α2, . . . , αm−1) such that x0 = α0.α1α2 · · · αm−1 · · · belongs to the convergence
domain of the restoring algorithm,8 there exists an n-bit chain (d0, d1, . . . , dn−1) such that Jd0,d1,...,dn−1

contains Iα0,α1,...,αm−1 .
If this is true, oncewe have computed d0, . . . , dn−1 for every possible value ofα0, α1, α2, . . . , αm−1,

it suffices to store the values d0, d1, . . . , dn−1 in an m-address bit table. Unfortunately, m turns out to
be too large for convenient values of n: After some experiments, m seems to be larger than 2n (for
2 ≤ n ≤ 8, and wk = ln

(
1 + 2−k

)
, m is equal to 2n + 1). A solution is to perform a correction

step after the initial table lookup. Instead of providing, for each m-bit chain (α0α1α2 · · ·αm−1), an
n-bit chain such that Jd0,d1,...,dn−1 contains Iα0,α1,...,αm−1 , we give an n-bit chain such that J

′
d0,d1,...,dn−1

contains Iα0,α1,...,αm−1 , where J ′
d0,d1,...,dn−1

is the interval

[
d0w0 + · · · + dn−1wn−1, d0w0 + · · · + dn−1wn−1 + wn−1 +

∞∑
i=n

wi

]
.

This requires smaller values of m. For 2 ≤ n ≤ 10, m = n + 1 suffices. Once d0, d1, . . . , dn−1 is
obtained from the table, it suffices to compute

x (0)
n = x0 − d0w0 − d1w1 − · · · − dn−1wn−1

and
x (1)
n = x0 − d0w0 − d1w1 − · · · − dn−1wn−1 − wn−1

using redundant additions and a final conversion to nonredundant representation. Then we can start
Baker’s algorithm from

xn =
{
x (0)
n if x (1)

n < 0

x (1)
n otherwise.

The following Maple program computes the value of m and builds the table from any value of n,
for wk = ln

(
1 + 2−k

)
.

find_Baker := proc(n)
finds the smallest number m of digits of the input number
that allows us to start Baker’s algorithm at step n
and builds the table
we start with m = n+1, if we succeed, we build the table
else we increment m

global m, TAB, failure;
Digits := 30;

8That is, 0 ≤ x0 ≤ ∑∞
k=0 wk .

160 8 Introduction to Shift-and-Add Algorithms

recalculation of the convergence domain [0,A]
A := evalf(log(2));
for i from 1 to 100 do

A := A+evalf(log(1+2ˆ(-i))) od;
First, we build the J intervals

remainder := evalf(log(1+2ˆ(-n)));
for i from (n+1) to 100 do

remainder := remainder+evalf(log(1+2ˆ(-i)))
od;
for counter from 0 to (2ˆn-1) do

computation of d_0, d_1, ... d_n-1
where the d_i’s are the digits of the binary representation
of counter

decomp := counter;
for k from 1 to n do

d[n-k] := decomp mod 2;
decomp := trunc(decomp/2)

od;
Jleft[counter] := evalf(d[0]*log(2));
for i from 1 to (n-1) do

Jleft[counter] := Jleft[counter]
+ evalf(d[i]*log(1+2ˆ(-i)))

od;
Jright[counter] := Jleft[counter]

+ remainder+evalf(log(1+2ˆ(-n+1)));
od;

now we try successive values of m
m := n;
failure := true;

failure = true means that m is not large enough
while (failure) do

m := m+1;
powerof2 := 2ˆ(m-1);
Ileft[0] := 0; Iright[0] := evalf(1/powerof2);
for counter from 1 to 2ˆm-1 do ;

Ileft[counter] := Iright[counter-1];
Iright[counter] := evalf((counter+1)/powerof2);

od;
Now we must check if for each I-interval included in the
convergence domain of the algorithm
there exists a J-interval that
contains it

countermax := trunc(A*2ˆ(m-1))-1;
Jstart := 0;
failure := false;
counter := 0;
while (not failure) and (counter <= countermax) do

while Jright[Jstart] < Iright[counter] do

8.4 Baker’s Predictive Algorithm 161

Jstart := Jstart+1
od;
if Jleft[Jstart] <= Ileft[counter] then

TAB[counter] := Jstart else failure := true
fi;
counter := counter+1

od;
if (failure=false)

then
print (m);
for counter from 0 to countermax do

print(counter,TAB[counter])
od

fi
od;

end;

Now let us examine an example.

Example 10 (Computation of the exponential function). We want to compute the exponential of x =
0.1100101102 = 0.7929687510 using Baker’s method, and we use Table 8.6, which was built using the
previously presented method, with n = 4 and m = 5. In our example, the table gives d0 = 0, d1 = 1,
d2 = 1, and d3 = 0. So we compute

x (0)
4 = x0 − d0w0 − d1w1 − d2w2 − d3w3

and
x (1)
4 = x0 − d0w0 − d1w1 − d2w2 − d3w3 − w3;

this gives

{
x (0)
4 = 0.16436009 · · ·10
x (1)
4 = 0.04657705 · · ·10 .

Since x (1)
4 ≥ 0, we start Baker’s method from x4 = x (1)

4 . Since n = 4, � = 7 so we can deduce
d4, d5, d6, and d7 from the binary representation of x4, that is, 0.0000101111101100011110 · · ·2. This
gives

d4 = 0, d5 = 1, d6 = 0, d7 = 1;

therefore

x̃8 = x4 − d4w4 − d5w5 − d6w6 − d7w7

= 0.0080232558 · · ·10
= 0.0000001000001101110 · · ·2 .

162 8 Introduction to Shift-and-Add Algorithms

Table 8.6 Table obtained
for n = 4 using our Maple
program.

First 5 Bits of x First Terms di

00000 0000

00001 0000

00010 0000

00011 0001

00100 0001

00101 0010

00110 0010

00111 0011

01000 0011

01001 0100

01010 0101

01011 0101

01100 0110

01101 0111

01110 0111

01111 1001

10000 1010

10001 1010

10010 1011

10011 1011

10100 1100

10101 1101

10110 1101

10111 1110

Nowwehave to performacorrection step. Let us subtractw7 from x̃8. This gives0.0002411153 · · ·10,
which is positive. Therefore δ7 = 1 and

x8 = x̃8 − δ7w7

= 0.0002411153 · · ·10
= 0.00000000000011111100110100111110101 · · ·2 .

From the binary representation of x8, we can deduce d8, d9, …, d15. This gives

d8 = d9 = d10 = d11 = d12 = 0, d13 = d14 = d15 = 1.

Therefore, taking into account the correction steps, we find

x = w1 + w2 + w3 tabulation and correction
+w5 + w7 + w7 1st step of Baker ′s method
+w13 + w14 + w15 + . . . 2nd step of Baker ′s method.

8.4 Baker’s Predictive Algorithm 163

This gives

ex =
(
1 + 1

2−1

) (
1 + 1

2−2

) (
1 + 1

2−3

)

(
1 + 1

2−5

) (
1 + 1

2−7

) (
1 + 1

2−7

)

(
1 + 1

2−13

) (
1 + 1

2−14

) (
1 + 1

2−15

)

≈ 2.2099.

8.5 Bibliographic Notes

The CORDIC algorithm (see Chapter 9) is a shift-and-add algorithm that allows evaluation of trigono-
metric and hyperbolic functions. It was introduced by Volder in 1959 [465]. Meggitt [337] presented
the same basic iterations slightly differently, and saw them as “pseudomultiplication” and “pseudodi-
vision” processes. The basic iterations for computing logarithms and exponentials (as well as iterations
similar to CORDIC for the elementary functions) were presented by Specker [429] in 1965. Similar
algorithms were studied by Linhardt and Miller [321]. An analysis of shift-and-add algorithms for
computing the elementary functions was given by DeLugish [151] in 1970.

http://dx.doi.org/10.1007/978-1-4899-7983-4_9

9The CORDIC Algorithm

9.1 Introduction

The CORDIC algorithm was introduced in 1959 by Volder [465, 466]. In Volder’s version, CORDIC
makes it possible to perform rotations (and therefore to compute sine, cosine, and arctangent functions)
and to multiply or divide numbers using only shift-and-add elementary steps. To quote Volder [466],
the CORDIC technique was born out of necessity, the incentive being the replacement of the analog
navigation computer of the B-58 bomber aircraft by a digital computer. The main challenge was the
real-time determination of present position on a spherical earth.

The Hewlett-Packard 9100 desktop calculator, built in 19681, used CORDIC for the trigonometric
functions.

In 1971, Walther [470, 471] generalized this algorithm to compute logarithms, exponentials, and
square roots. CORDIC is not the fastest way to perform multiplications or to compute logarithms and
exponentials but, since the same algorithm allows the computation of most mathematical functions
using very simple basic operations, it is attractive for hardware implementations. CORDIC has been
implemented in many pocket calculators since Hewlett-Packard’s HP 35 [92], and in arithmetic proces-
sors or coprocessors such as the Intel 8087 [359] and some of its followers. Some authors have proposed
the use of CORDIC processors for QR decomposition [318, 323], for signal processing applications
(DFT [33, 154, 200, 482], discrete Hartley transform [77], filtering [152], SVD [74, 75, 178, 239, 323,
294]), for computer graphics [293], or for solving linear systems [4]. In 2009, for the 50th birthday of
CORDIC, Meher et al. gave a very interesting survey [338].

9.2 The Conventional CORDIC Iteration

Volder’s algorithm is based upon the following iteration,

⎧
⎨
⎩

xn+1 = xn − dn yn2−n

yn+1 = yn + dn xn2−n

zn+1 = zn − dn arctan 2−n .

(9.1)

1See http://www.decodesystems.com/hp9100.html.

© Springer Science+Business Media New York 2016
J.-M. Muller, Elementary Functions, DOI 10.1007/978-1-4899-7983-4_9

165

http://www.decodesystems.com/hp9100.html.

166 9 The CORDIC Algorithm

The terms arctan 2−n are precomputed and stored, and the di s are equal to−1 or+1. In the rotation
mode of CORDIC, dn is chosen equal to the sign of zn (i.e., +1 if zn ≥ 0, else −1). If |z0| is less than
or equal to

∞∑
k=0

arctan 2−k = 1.7432866204723400035 · · · ,

then

limn→∞

⎛
⎝

xn

yn

zn

⎞
⎠ = K ×

⎛
⎝

x0 cos z0 − y0 sin z0
x0 sin z0 + y0 cos z0

0

⎞
⎠ , (9.2)

where the scale factor K is equal to
∏∞

n=0

√
1 + 2−2n = 1.646760258121 · · · . For instance, to

compute the sine and the cosine of a number θ , with |θ | ≤ θmax = ∑∞
k=0 arctan 2

−k , we choose

x0 = 1/K = 0.6072529350088812561694 · · ·
y0 = 0
z0 = θ.

The bound
∑∞

k=0 arctan 2
−k = 1.7432866204723400035 · · · is rather comfortable for evaluating

trigonometric functions, since it is larger than π/2.
Now let us show how CORDIC works. That algorithm is based on the decomposition of θ = z0 on

the discrete base (see Chapter 8)wn = arctan 2−n , using the nonrestoring algorithm (see Theorem 17).
The nonrestoring algorithm gives a decomposition of θ

θ =
∞∑

k=0

dkwk, dk = ±1, wk = arctan 2−k .

The basic idea of the rotation mode of CORDIC is to perform a rotation of angle θ as a sequence of
elementary rotations of angles dnwn . We start from (x0, y0), and obtain the point (xn+1, yn+1) from
the point (xn, yn) by a rotation of angle dnwn . This gives:

nonrestoring decomposition
t0 = 0
tn+1 = tn + dnwn

dn =
{

1 if tn ≤ θ

−1 otherwise;

(9.3)

nth rotation (
xn+1

yn+1

)
=

(
cos(dnwn) − sin(dnwn)

sin(dnwn) cos(dnwn)

)(
xn

yn

)
. (9.4)

This can be simplified, first by noticing that, since dn = ±1, cos(dnwn) = cos(wn) and sin(dnwn) =
dn sin(wn), then using the relation tanwn = 2−n . We then replace (9.4) by

(
xn+1

yn+1

)
= cos (wn)

(
1 −dn2−n

dn2−n 1

) (
xn

yn

)
. (9.5)

http://dx.doi.org/10.1007/978-1-4899-7983-4_8

9.2 The Conventional CORDIC Iteration 167

In (9.5), the multiplication by cos(wn) = 1/
√
1 + 2−2n is the only “true” multiplication, since in

radix 2 a multiplication by 2−n reduces to a shift. To avoid this multiplication, instead of (9.5), we
perform

(
xn+1

yn+1

)
=

(
1 −dn2−n

dn2−n 1

) (
xn

yn

)
, (9.6)

which is the basic CORDIC step, in the trigonometric type of iteration. It is no longer a rotation of angle
wn , but a similarity, or a “rotation-extension” (i.e., the combination of a rotation and a multiplication
by a real factor) of angle wn and factor 1/ coswn . The choice of dn given by (9.3) can be slightly
simplified. If we define zn = θ − tn , we get

z0 = θ

zn+1 = zn − dnwn

dn =
{

1 if zn ≥ 0
−1 otherwise.

(9.7)

To sum up, the sequence (xn, yn) defined by Eq. (9.6) and (9.7) will not converge to the rotation of
angle θ of (x0, y0) but to the result of a similarity of angle θ , whose factor is the product K of all the
elementary factors, applied to (x0, y0). This gives (9.2). Figure 9.1 presents one step of the algorithm.

Now let us focus on the vectoring mode of CORDIC. This mode is used for computing arctangents.
Assume that we wish to evaluate θ = arctan y0/x0. The following algorithm converges provided that θ
belongs to the convergence domain of the rotation mode (i.e., |θ | ≤ ∑∞

i=0 arctan 2
−i). To simplify, we

assume here that both x0 and y0 are positive. First, imagine that we already know θ (this is a reasoning
similar to the one used for deducing the restoring algorithm for logarithms from the algorithm for
exponentials in Section 8.2.2). If we start from (x0, y0) and perform a rotation2 of angle −θ , using the
rotation mode, then we compute the sequence

Figure 9.1 One iteration
of the CORDIC algorithm.

(xi+1, yi+1)

(xi, yi)
tan−1 2−i

zi

z0

2Or, more precisely, a similarity.

http://dx.doi.org/10.1007/978-1-4899-7983-4_8

168 9 The CORDIC Algorithm

⎧⎨
⎩

xn+1 = xn − dn yn2−n

yn+1 = yn + dn xn2−n

zn+1 = zn − dn arctan 2−n

with z0 = −θ and

dn =
{

1 if zn ≥ 0
−1 otherwise.

(9.8)

This gives

xn → K
√

x20 + y20
yn → 0
zn → 0.

Now define a new variable z′
n equal to θ + zn . Since zn ≥ 0 ⇔ z′

n ≥ θ , we can perform the same
iteration as previously and get the same results by choosing, instead of (9.8)

dn =
{

1 if z′
n ≥ θ

−1 otherwise
(9.9)

with z′
0 = 0. This gives z′

n → θ .
Now we have to take into account that θ is unknown: it is precisely the value we wish to compute!

z′
n measures the opposite of the angle by which (x0, y0) must be rotated to get3 (xn, yn). If we have
rotated by an angle whose opposite is greater than θ , then (xn, yn) is below the x-axis; hence yn is
negative. Otherwise, yn is positive. Therefore the test z′

n ≥ θ can be replaced by yn ≤ 0.
By doing this, we no longer need to know θ , and we get the vectoring mode of CORDIC. In that

mode, dn is chosen equal to the sign of (−yn) (i.e., +1 if yn ≤ 0, else −1). This gives

lim
n→∞

⎛
⎝

xn

yn

zn

⎞
⎠ =

⎛
⎜⎜⎝

K
√

x20 + y20
0

z0 + arctan
y0
x0

⎞
⎟⎟⎠ , (9.10)

where the constant K is the same as in the rotation mode.
Since trigonometric and hyperbolic functions are closely related, one may expect that a slight

modification of Volder’s algorithm could be used for the computation of hyperbolic functions. In 1971,
John Walther [470] found the correct modification, and obtained the generalized CORDIC iteration:

⎧⎨
⎩

xn+1 = xn − mdn yn2−σ(n)

yn+1 = yn + dn xn2−σ(n)

zn+1 = zn − dnwσ(n),

(9.11)

where the results and the values of dn , m, wn , and σ(n) are presented in Tables 9.1 and 9.2.
In the hyperbolic type of iteration (m = −1), the terms i = 4, 13, 40, . . ., k, 3k + 1, . . . (i.e.,

the terms i = (3 j+1 − 1)/2) of the sequence tanh−1 2−i are used twice (this is why we need to use
the function σ). This is necessary since the sequence tanh−1 2−n does not satisfy the condition of

3Neglecting the scale factor.

9.2 The Conventional CORDIC Iteration 169

Table 9.1 Computability of different functions using CORDIC.

Type m wk dn = signzn (Rotation Mode) dn = −signyn
(Vectoring Mode)

circular 1 arctan 2−k
xn → K (x0 cos z0 − y0 sin z0)

yn → K (y0 cos z0 + x0 sin z0)

zn → 0

xn → K
√

x20 + y20
yn → 0

zn → z0 + arctan y0
x0

linear 0 2−k
xn → x0
yn → y0 + x0z0
zn → 0

xn → x0
yn → 0

zn → z0 + y0
x0

hyperbolic −1 tanh−1 2−k
xn → K ′ (x1 cosh z1 + y1 sinh z1)

yn → K ′ (y1 cosh z1 + x1 sinh z1)

zn → 0

xn → K ′
√

x21 − y21
yn → 0

zn → z1 + tanh−1 y1
x1

Table 9.2 Values of σ(n) in Eq. (9.11) and Table 9.1.

Circular (m = 1) σ(n) = n

Linear (m = 0) σ(n) = n

Hyperbolic (m = −1) σ(n) = n − k where k is the largest integer such that 3k+1 + 2k − 1 ≤ 2n

Theorem 17. The sequence tanh−1 2−σ(n), obtained from the sequence tanh−1 2−n by repeating the
terms 4, 13, 40, . . . satisfies that condition. The new scaling factor

K ′ =
∞∏

i=1

√
1 − 2−2σ(i)

equals 0.82815936096021562707619832 · · · . Therefore, to compute cosh θ and sinh θ , one should
choose

x1 = 1/K ′ = 1.20749706776307212887772 · · ·
y1 = 0
z1 = θ.

In the rotation mode, the maximum value for |θ | is 1.1181730155265 · · · .
In Walther’s version, CORDIC makes it possible to compute many mathematical functions. For

instance, ex is obtained by adding cosh x and sinh x , and ln x is obtained using the relation

ln(x) = 2 tanh−1
(

x − 1

x + 1

)

whereas the square root of x is obtained as

√
x = K ′

√(
x + 1

4K ′2

)2

−
(

x − 1

4K ′2

)2

.

170 9 The CORDIC Algorithm

9.3 Acceleration of the Last Iterations

Assume we perform CORDIC iterations of the “trigonometric type” (9.1), in the rotation mode. From
the well-known series expansion

arctan(x) = x − x3

3
+ x5

5
− x7

7
+ · · · ,

we easily deduce that if, starting from iteration number n0, we replace in (9.1) the term “arctan 2−n ”,
by “2−n” (i.e., with the notation of (9.11), we take wn = 2−n for n ≥ n0), the error committed in the
decomposition of the initial angle θ = z0 is bounded by

1

3
·

∞∑
i=n0

2−3i = 8

21
· 2−3n0 .

That bound is less than 2−m−1 as soon as n0 > m/3+ (4− log2(21))/3 ≈ m/3− 0.130. This means
that if we want that error to be less than 2−m−1 (say, if we plan to perform m CORDIC iterations), we
can replace arctan 2−n by 2−n for n ≥ m/3. This leads to several possible strategies:

• since performing CORDIC iterations in rotation mode withwn = 2−n is equivalent to performing a
multiplication (see Table 9.1), if a fast multiplier is available, we can replace the last 2n/3 iterations
by one multiplication. This was suggested by Ahmed [3];

• for n ≥ n0 = m/3, we can suppress the z-part of iteration (9.1), and choose dn equal to the binary
digit of weight 2−n of zn0 (this is clearly a variant of Baker’s predictive algorithm presented in
Chapter 8). To implement this choice, we can either “recode” zn0 so that its digits are equal to −1
or 1 only, or we can stay with the original digits 0 and 1 of z0, and to avoid variable scale factor
problems (see Section 9.5.3), we can replace the x and y parts of iteration (9.1) by

{
xn+1 = xn(1 − 2−(2n+1)) − dn yn2−n

yn+1 = yn(1 − 2−(2n+1)) + dn xn2−n .
(9.12)

By doing that, since for n large enough4 sin(2−n) ≈ 2−n and cos(2−n) ≈ 1− 2−2n−1, we perform
“true” rotations instead of similarities: this is the scaling free CORDIC scheme introduced by
Maharatna et al. [328] and later on enhanced, using Booth recoding, by Jaime et al. [252].

9.4 Scale Factor Compensation

As we have seen before, in the trigonometric type of iteration, we do not perform a rotation of the
initial vector (x0, y0), but the combination of a rotation and a multiplication by the factor

K =
+∞∏
i=0

√
1 + 2−2i .

4Which is the case here since we assume n ≥ m/3.

http://dx.doi.org/10.1007/978-1-4899-7983-4_8

9.4 Scale Factor Compensation 171

As we have seen previously, if we just want to evaluate sines and cosines, this multiplication by a
scale factor is not a problem. And yet, if we actually want to perform rotations, we have to compensate
for this multiplication. Despain [154] and Haviland and Tuszinsky [228] have suggested finding values
αi = −1, 0,+1, for i = 0, 1, 2 . . . such that

+∞∏
i=0

(1 + αi2
−i) = 1

K

and merging the CORDIC iterations with multiplications (that reduce to shifts and additions) by the
terms (1 + αi2−i), that is, performing iterations of the form

xn+1 = (
xn − dn yn2−n

) (
1 + αn2−n

)
yn+1 = (

yn + dn xn2−n
) (
1 + αn2−n

)
.

There are several possible solutions for the sequence (αn). One of them is given in Table 9.3.
The following Maple session shows how the terms αi can be computed:

> Digits := 30;
Digits := 30

> Ksquare := 1;
Ksquare := 1

> for j from 0 to 60 do
> Ksquare := Ksquare * (1.0 + 2ˆ(-2*j)) od:
> Ksquare;

2.71181934772695876069108846971

> K := sqrt(Ksquare);
K := 1.64676025812106564836605122228

> A := K;
A := 1.64676025812106564836605122228

Table 9.3 First values αi
that can be used in
Despain’s scale factor
compensation method.

i αi

0 0

1 –1

2 1

3 –1

4 1

5 1

6 1

7 –1

8 1

9 1

10 –1

172 9 The CORDIC Algorithm

> for i from 1 to 60 do
> if A > 1 then alpha[i] := -1: A := A*(1-2ˆ(-i))
> else alpha[i] := 1: A := A*(1+2ˆ(-i)) fi od;
> for i from 1 to 4 do print(alpha[i]) od;

-1
1

-1
1

Other scale factor compensation methods have been suggested. For instance, Deprettere, Dewilde,
and Udo [152] choose, instead of rotation angles of the form arctan 2−n , angles of the form
arctan

(
2−n ± 2−m

)
, where the terms ±2−m are chosen so that the scale factor becomes 1 (or 2).

A discussion on scale factor compensation methods can be found in [455].

9.5 CORDIC With Redundant Number Systems and a Variable Factor

In order to accelerate the CORDIC iterations, one can use redundant number systems, as we did for
exponentials and logarithms in the previous chapter, but it is more difficult, because of the scale factor.
With redundant representations, the main problem is the evaluation of dn : the arithmetic operations
themselves are quickly performed. Assume that we are in rotation mode. We want to evaluate dn as
quickly as possible. When performing the “nonredundant” iteration, dn is equal to 1 if zn ≥ 0, and to
−1 otherwise, where zn+1 = zn − dn arctan 2−n . Now we also allow the choice dn = 0. The various
functions zn+1 = zn − dn arctan 2−n (for dn = −1, 0, 1) are drawn on the Robertson diagram given
in Figure 9.2.

The values rn , An , and Bn in Figure 9.2 satisfy:

Figure 9.2 Robertson
diagram of CORDIC.

dn = 1

dn = 0

dn = −1

Bn

An

−An

−Bn

rn+1

−rn+1

−rn rn

zn+1

zn

9.5 CORDIC With Redundant Number Systems and a Variable Factor 173

Table 9.4 First four values of 2nrn , 2n An and 2n Bn .

n 2nrn 2n An 2n Bn

0 1.74328 –0.172490 0.957888

1 1.91577 –0.061186 0.988481

2 1.97696 –0.017134 0.997048

3 1.99409 –0.004417 0.999257

4 1.99851 –0.001113 0.999814

∞ 2 0 1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

rn =
∞∑

k=n

arctan 2−k

Bn = rn+1

An = −rn+1 + arctan 2−n .

Table 9.4 gives the first four values of 2nrn , 2n An , and 2n Bn . One can easily show that

An ≤ 0
2n Bn > 1/2.

The Robertson diagram shows that

• if zn ≤ −An , then dn = −1 is an allowable choice;
• if −Bn ≤ zn ≤ Bn , then dn = 0 is an allowable choice;
• if zn ≥ An , then dn = +1 is an allowable choice.

Now let us see what would be obtained if we tried to implement this redundant CORDIC iteration
in signed-digit or carry-save arithmetic.

9.5.1 Signed-Digit Implementation

Assume that we use the radix-2 signed-digit system to represent zn . Assume that −rn ≤ zn ≤ rn .
Defining z∗

n as 2nzn truncated after its first fractional digit, we have

∣∣z∗
n − 2nzn

∣∣ ≤ 1/2.

Therefore if we choose

dn =
⎧⎨
⎩

−1 if z∗
n < 0

0 if z∗
n = 0

1 if z∗
n > 0,

(9.13)

then zn+1 is between −rn+1 and rn+1; this suffices for the algorithm to converge.

174 9 The CORDIC Algorithm

Proof

• If z∗
n < 0, then, since z∗

n is a 1-fractional digit number, z∗
n ≤ −1/2; therefore 2nzn ≤ 0, and hence

zn ≤ −An . Therefore (see Figure 9.2) choosing dn = −1 will ensure −rn+1 ≤ zn+1 ≤ rn+1.
• If z∗

n = 0, then −1/2 ≤ 2nzn ≤ 1/2; hence −2n Bn ≤ 2nzn ≤ 2n Bn ; that is, −Bn ≤ zn ≤ Bn .
Therefore (see Figure 9.2) choosing dn = 0 will ensure −rn+1 ≤ zn+1 ≤ rn+1.

• If z∗
n > 0, with a similar deduction, one can show that choosing dn = +1 will ensure −rn+1 ≤

zn+1 ≤ rn+1.

9.5.2 Carry-Save Implementation

Assume now that we use the carry-save system for representing zn . Define z∗
n as 2nzn truncated after

its first fractional digit. We have
0 ≤ 2nzn − z∗

n ≤ 1;

therefore, if we choose

dn =
⎧⎨
⎩

−1 if z∗
n < −1/2

0 if z∗
n = −1/2

1 if z∗
n > −1/2,

(9.14)

then zn will be between −rn+1 and rn+1. The proof is similar to the proof for the signed-digit case.

9.5.3 The Variable Scale Factor Problem

Unfortunately, the “redundant methods” previously given cannot be easily used for the following
reason. The scale factor K is equal to

∞∏
i=0

√
1 + d2

k 2
−2k .

If (as in the nonredundant CORDIC algorithm), dn = ±1, then K is a constant. However, if dn is
allowed to be zero, then K is no longer a constant. Two classes of techniques have been proposed to
overcome this drawback:

• one can compute the value of K (or, merely, 1/K , so that the scale factor compensation is imple-
mented by performing a multiplication instead of a division) on the fly, in parallel with the CORDIC
iterations. This was suggested by Ercegovac and Lang [175, 178];

• one can modify the basic CORDIC iterations so that the scaling factor becomes a constant again.

This last solution is examined in the next sections.

9.6 The Double Rotation Method

This method was suggested independently by Takagi et al. [443, 444, 445] and by Delosme [149, 238],
with different purposes. Takagi wanted to get a constant scaling factor when performing the iterations
in a redundant number system, and Delosme wanted to perform simultaneously, in a conventional

9.6 The Double Rotation Method 175

Figure 9.3 One iteration
of the double rotation
method.

(xn+1, yn+1)
(if dn = 1)

wn+1

(xn+1, yn+1)

(xn, yn)

(if dn = 0)

Rn

wn+1

Rn
√
1+ 2−2n

number system, the vectoring operation and the rotation by half the resulting angle. The basic idea
behind the double rotation method, illustrated in Figure 9.3 is to perform the similarities of angle
± arctan 2−i twice. Assume that we are in the circular (m = 1) type of iterations, in rotation mode.
Instead of using the discrete base (see Chapter 8) wn = arctan 2−n , we use the base

w′
n = 2 arctan 2−n−1.

Once dn is found, the elementary similarity of angle 2dn arctan 2−n−1 is performed as follows:

• If dn = 1, then we perform two similarities of angle + arctan 2−n−1;
• if dn = −1, then we perform two similarities of angle − arctan 2−n−1;
• if dn = 0, then we perform a similarity of angle + arctan 2−n−1, followed by a similarity of angle

− arctan 2−n−1.

The basic iteration of the double rotation method becomes

⎧⎨
⎩

xn+1 = xn − dn2−n yn + (1 − 2d2
n)2−2n−2xn

yn+1 = yn + dn2−n xn + (1 − 2d2
n)2−2n−2yn

zn+1 = zn − dnw′
n = zn − 2dn arctan 2−n−1.

(9.15)

The new scaling factor is

Kdouble =
∞∏

i=1

(
1 + 2−2i

)
= 1.3559096738634793803 · · · .

The convergence domain is I = [−A,+A], where

A = 2
∞∑

i=1

arctan 2−i = 1.91577691 · · · .

http://dx.doi.org/10.1007/978-1-4899-7983-4_8

176 9 The CORDIC Algorithm

The constant scale factor redundant CORDIC algorithm that uses the double rotation method was
first suggested by N. Takagi in his Ph.D. dissertation [443]. It consists of performing (9.15) with the
following choice of dn .

dn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1 if
[
z(n−1)

n z(n)
n z(n+1)

n

]
< 0

0 if
[
z(n−1)

n z(n)
n z(n+1)

n

]
= 0

+1 if
[
z(n−1)

n z(n)
n z(n+1)

n

]
> 0,

(9.16)

where zn = z0n .z
1
nz2nz3nz4n · · · . This algorithm works if we make sure that z(n−1)

n is the most significant
digit of zn . This is done by first noticing that

|zn| ≤
∞∑

k=n

(
2 arctan 2−k−1

)
< 2−n+1.

Define ẑn as the number 0.0000 · · · 0z(n−2)
n z(n−1)

n z(n)
n z(n+1)

n · · · obtained by suppressing the possible
digits of zn of weight greater than 2−n+2. The number zn − ẑn is a multiple of 2−n+3, therefore

1. if z(n−2)
n = −1, then

• if z(n−1)
n = −1, then ẑn is between−2−n+3 and−2−n+2; therefore the only possibility compatible

with |zn| < 2−n+1 is zn = ẑn + 2−n+3. Thus we can rewrite zn with the most significant digit
at position n − 1 by replacing z(n−1)

n by 1 and zeroing all the digits of zn at the left of z(n−1)
n (of

course, in practice, these digits are not “physically” zeroed: we just no longer consider them);
• if z(n−1)

n = 0, then ẑn is between −3 × 2−n+1 and −2−n+1; therefore there is no possibility
compatible with |zn| < 2−n+1: this is an impossible case;

• if z(n−1)
n = 1, then ẑn is between −2−n+2 and 0; therefore the only possibility compatible with

|zn| < 2−n+1 is zn = ẑn . Thus we can rewrite zn by replacing z(n−1)
n by −1 and zeroing all the

digits of zn at the left of z(n−1)
n .

2. if zn−2
n = 0, then

• if z(n−1)
n = −1, then ẑn is between −2−n+2 and 0; therefore zn = ẑn . We do not need to modify

z(n−1)
n ;

• similarly, if z(n−1)
n is equal to 0 or 1, there is no need to modify it;

3. if z(n−2)
n = +1, we are in a case that is similar (symmetrical, in fact) to the case z(n−2)

n = −1.

Therefore it suffices to examine z(n−2)
n : if it is nonzero, we negate z(n−1)

n . After this, we can use (9.16)
to find dn using a small table. Of course, another solution is to directly use a larger table that gives dn

as a function of [z(n−2)
n z(n−1)

n z(n)
n z(n+1)

n] as we did, for instance, in Section 8.3.1.
Another redundant CORDIC method with constant scale factor, suggested by Takagi et al. [445], is

the correcting rotation method. With that method, at each step, dn is chosen by examining a “window”
of digits of zn . If the window suffices to make sure that zn ≥ 0, then we choose dn = +1, and if the
window suffices to make sure that zn ≤ 0, then we choose dn = −1. Otherwise, we choose dn equal
to +1 (a similar algorithm is obtained by choosing −1). By doing this, an error may be made, but that

http://dx.doi.org/10.1007/978-1-4899-7983-4_8

9.6 The Double Rotation Method 177

error is small (because the fact that we are not able to find the sign of zn implies that zn is very small).
One can show that this error can be corrected by repeating an extra iteration every m steps, where m
can be an arbitrary integer (of course, the size of the “window” of digits depends on m).

9.7 The Branching CORDIC Algorithm

This algorithm was introduced by Duprat and Muller [168]. Corrections and improvements (a double-
step branching CORDIC) have been suggested by Phatak [383, 384]. To implement the algorithm, we
must assume thatwe have two “CORDICmodules,” that is, thatwe are able to perform two conventional
CORDIC iterations in parallel. The modules are named “module +” and “module −.” The basic idea
is the following: first we perform the conventional CORDIC iterations on one module; the only values
of dn that are allowed are −1 and +1. At step n, we try to estimate dn by examining a “window” of
digits of zn . If this examination suffices to know the sign of zn , then we choose dn = sign(zn), as
usual. Otherwise, we split the computations (this is what we call a “branching”): module “+” tries
dn = +1 and then continues to perform the conventional CORDIC iterations, and module “−” tries
dn = −1. If no module creates a new branching (i.e., if in both modules the “windows” of digits
always suffice to estimate the sign of zk), then both modules give a correct result. If a module creates a
branching, say, at step m, this means that its value of zm is very small, hence the choice of dn tried by
this module at the previous branching was a correct one. Therefore we can stop the computation that
was performed by the other module, both modules are ready to carry on the computations needed by
the new branching. This shows that even if many branchings are created, there is never any need for
more than two modules.

A comparison of some variants of the Branching CORDIC algorithm is provided by Phatak in [462].

9.8 The Differential CORDIC Algorithm

This algorithm was introduced by Dawid and Meyr [130]. It allows a constant scale factor redundant
implementation without additional operations.

First let us focus on the rotation mode. We start from an initial value z0, −∑∞
n=0 arctan 2

−n ≤
z0 ≤ +∑∞

n=0 arctan 2
−n , and the problem is to find, as fast as possible, values dn , dn = ±1, such

that z0 = ∑∞
n=0 dn arctan 2−n . We actually compute the values dn that would have been given by

the conventional algorithm (see Section 9.2), in a faster way. Since dn = ±1, the scaling factor
K = ∏∞

n=0

√
1 + d2

n2−2n remains constant.
Instead of the sequence zn , we manipulate a new sequence (ẑn), defined as ẑn+1 = sign(zn)× zn+1.

From dn = sign(zn) and zn+1 = zn − dn arctan 2−n , we find

zn+1 × sign(zn) = |zn| − arctan 2−n .

Therefore { ∣∣ẑn+1
∣∣ = ∣∣∣∣ẑn

∣∣ − arctan 2−n
∣∣

dn+1 = dn × sign
(
ẑn+1

)
.

(9.17)

Assume that ẑn is represented in the binary signed-digit number system (radix 2, digits −1, 0,
and 1). Relations (9.17) allow us to partially separate the computation of the absolute value of ẑn+1

and the computation of its sign. To compute the absolute value of a binary signed-digit number x =
x0.x1x2x3x4 · · · as well as its sign, we proceed on-line (i.e., in a digit-serial fashion, most significant

178 9 The CORDIC Algorithm

ITERATION 0 ITERATION 1 ITERATION 2

+

+

+

+

+

+

+

+

+

+

+

++

+

+

| · |

| · |

| · |

| · |

| · |

| · |

| · |

| · |

| · |

| · |

| · |

| · |

| · |

| · |

|·||·|

| · |

| · |

| · |

| · |

sign(z0) sign(ẑ2) sign(ẑ3)sign(ẑ1)

− arctan(2−0)0 − arctan(2−1)0 − arctan(2−2)0

Figure 9.4 Computation of the values sign(ẑi) in the differential CORDIC algorithm (rotation mode) [130].

digit first5). We examine its digits from left to right. If the first digits are equal to zero, we do not
immediately know the sign of x , but we can output digits of |x | anyway, it suffices to output zeroes.
As soon as we see a nonzero digit xi , we know the sign of x (it is the sign of that digit), and we can
continue to output the digits of |x |. They are the digits of x if x is positive; otherwise, they are their
negation.

Therefore we can implement iteration (9.17) in a digit-pipelined fashion: as soon as we get digits
of

∣∣ẑn
∣∣, we can subtract (without carry propagation) arctan 2−n from zn and then generate the absolute

value of the result to get digits of
∣∣ẑn+1

∣∣. ∣∣ẑn+1
∣∣ is generated from

∣∣ẑn
∣∣ with on-line delay 1: as soon

as we get the i th digit of
∣∣ẑn

∣∣, we can compute the i − 1st digit of
∣∣ẑn+1

∣∣. This is because adding a
signed-digit binary number (

∣∣ẑn
∣∣) and a number represented in the conventional nonredundant number

system (− arctan 2−n) can be done with on-line delay 1: the i th digit of the sum only depends on the
i th and i + 1st digits of the input operands (more details can be found, for instance, in [24]). This can
be viewed in Figure 2.8.

The on-line delay required to get the sign — that is, to get a new value di using (9.17) — may be
as large as the word length (if the only nonzero digit of a number is the least significant one, its sign is
unknown until all the digits have been scanned), but it is clear from Figure 9.4 that this appears only
once in the beginning. Using the operators depicted in that figure, the following algorithm makes it
possible to perform the CORDIC rotations quickly, with constant scaling factor (the same factor as
that of the conventional iteration).

5On-line arithmetic was introduced in 1977 by Ercegovac and Trivedi [182]. It requires the use of a redundant number
system and introduces parallelism between sequential operations by overlapping them in a digit-serial fashion. See [174]
for a survey.

http://dx.doi.org/10.1007/978-1-4899-7983-4_2

9.8 The Differential CORDIC Algorithm 179

Algorithm 18 Differential CORDIC, rotation mode
• input values: x0, y0 (input vector), z0 (rotation angle),
• output values: xn+1, yn+1 (scaled rotated vector).

ẑ0 = |z0| , d0 = sign (z0)

for i = 0 to n do
⎧⎪⎪⎨
⎪⎪⎩

∣∣ẑi+1
∣∣ = ∣∣∣∣ẑi

∣∣ − arctan 2−i
∣∣

di+1 = di × sign(ẑi+1)

xi+1 = xi − di yi2−i

yi+1 = yi + di xi2−i .

Dawid and Meyr also suggested a slightly more complex algorithm for the vectoring mode (i.e., for
computing arctangents). As in the conventional vectoring mode, the iterations are driven by the sign
of yn , and that sign is computed using variables x̂n and ŷn defined by x̂n+1 = sign(xn) × xn+1 and
ŷn+1 = sign(yn) × yn+1.

The relations allowing us to find the sign of yn are

{ ∣∣ŷn+1
∣∣ = ∣∣∣∣ŷn

∣∣ − x̂n2−n
∣∣

sign(yn+1) = sign(ŷn+1) × sign(yn).

They can be implemented using an architecture very similar to that of Figure 9.4. Using that
architecture, the following algorithm performs the CORDIC iterations in vectoring mode with a
constant scale factor:

Algorithm 19 Differential CORDIC, vectoring mode
• input values: x0, y0 (input vector), z0 = 0,
• output values: xn+1 (scaled magnitude of the input vector),

zn+1 (arctan y0/x0).

x̂0 = x0, ŷ0 = |y0|
for i = 0 to n do

⎧
⎪⎪⎨
⎪⎪⎩

∣∣ŷi+1
∣∣ = ∣∣∣∣ŷi

∣∣ − x̂i2−i
∣∣

di+1 = di × sign(ŷi+1)

x̂i+1 = x̂i + ∣∣ŷi2−i
∣∣

zi+1 = zi + di arctan 2−i .

The differential CORDIC algorithm can be extended to the hyperbolic mode in a straightforward
manner. At first glance, it seems that Dawid and Meyrs’ technique gives nonrestoring decompositions
only; that is, it can be used to find decompositions z0 = ∑∞

n=0 dnwn with dn = ±1 only.

180 9 The CORDIC Algorithm

Yet it would be useful to generalize that technique to get decompositions with dn = 0, 1 (i.e.,
“restoring decompositions”), since they would allow us to get an efficient algorithm for computing
the exponential function6 using wn = ln

(
1 + 2−n

)
(see Chapter 8). Such a generalization is simple.

Assume that we want to get a restoring decomposition of a number x , 0 ≤ x ≤ ∑∞
n=0 wn , that is, to get

x =
∞∑

n=0

dnwn, dn = 0, 1. (9.18)

Defining S = ∑∞
n=0 wn , this gives 2x − S = ∑∞

n=0(2dn − 1)wn, that is,

2x − S =
∞∑

n=0

δnwn, δn = ±1,

with δn = 2dn − 1.
Therefore, to get decomposition (9.18), it suffices to use the architecture described in Figure 9.4

with 2x − S as input. This gives values δn = ±1, and each time we get a new δn , we deduce the
corresponding term dn = 0, 1 as dn = (δn + 1)/2.

9.9 The“CORDIC II”Approach

Garrido, Källström, Kumm, andGustafsson [201] introduced another redundant CORDICmethodwith
constant scale factor. The main idea is to consider iterations of the form

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
xn+1

yn+1

)
=

(
Cn −dn Sn

dn Sn Cn

)
·

(
xn

yn

)
with dn = ±1,

zn+1 = zn − dn arctan

(
Sn

Cn

)
,

(9.19)

where, at step n, Cn and Sn are taken from a “rotation kernel” Rn of possible pairs such that

• all terms Cn and Sn fit into a small number of bits (Garrido et al. present these terms as small
integers),

• for all pairs (Cn, Sn) ∈ Rn , C2
n + S2

n has the same value.

At step n, we perform a combination of a rotation of angle

αn = ± arctan(Sn/Cn),

6If we only wanted to compute exponentials, it would be simpler to implement than the hyperbolic mode of CORDIC.
Of course, if we wished to design an architecture able to compute more functions, CORDIC might be preferred.

http://dx.doi.org/10.1007/978-1-4899-7983-4_8

9.9 The“CORDIC II”Approach 181

where (Sn, Cn) ∈ Rn and a multiplication by a factor

√
C2

n + S2
n

that does not depend on the choice of αn .
Garrido et al. suggest to perform several “rotation stages”:

• first, trivial rotations (that are true rotations, there is no scale factor) by an angle ±pi or ±π/2, so
that the remaining angle belongs to [−π/4,+π/4];

• then, iterations of the form (9.19), with (Cn, Sn) taken in the rotation kernel

{(25, 0), (24, 7), (20, 15)} .

One easily sees that these “rotations” (in fact, similarities) all lead to the same scale factor, since
252 + 02 = 242 + 72 = 202 + 152 = 625;

• then, iterations of the form (9.19), with the rotation kernel

{(129, 0), (128, 16)} ;

• this can be continued with similar iterations. Garrido et al. cleverly notice that at some point we can
use classic CORDIC iterations (or very simple iterations called by them “nano-rotations”) since for
small angles the variation of the scaling factor of the classic redundant CORDIC iteration becomes
negligible (we can even perform scaling-free rotations, as in Section 9.3). See [201] for more details.

9.10 Computation of cos−1 and sin−1 Using CORDIC

Now we present another application [336] of the double rotation method introduced in Section 9.6.
Assume that we want to compute θ = cos−1 t . When we perform a rotation of angle θ of the point
(1, 0)t using CORDIC, we perform

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ0 = 0
x0 = 1
y0 = 0

dn =
{

1 if θn ≤ θ

−1 otherwise(
xn+1

yn+1

)
=

(
1 −dn2−n

dn2−n 1

) (
xn

yn

)

θn+1 = θn + dn arctan 2−n,

(9.20)

and the sequence θn goes to θ as n goes to +∞. Since the value of θ is not known (it is the value that
we want to compute), we cannot perform the test

dn =
{

1 if θn ≤ θ

−1 otherwise
(9.21)

182 9 The CORDIC Algorithm

that appears in Eq. (9.20). However, (9.21) is equivalent to:

dn =
{

sign(yn) if cos(θn) ≥ cos(θ)

−sign(yn) otherwise,
(9.22)

where sign(yn) = 1 if yn ≥ 0, else −1. Since the variables xn and yn obtained at step n satisfy
xn = Kn cos θn and yn = Kn sin θn , where Kn = ∏n−1

i=0

√
1 + 2−2i , (9.22) is equivalent to

dn =
{

sign(yn) if xn ≥ Knt
−sign(yn) otherwise.

(9.23)

If we assume that the values tn = Knt are known, Algorithm 20 below gives θn →n→∞ cos−1 t .

Algorithm 20 cos−1: first attempt
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ0 = 0
x0 = 1
y0 = 0

dn =
{

sign(yn) if xn ≥ tn
−sign(yn) otherwise(

xn+1
yn+1

)
=

(
1 −dn2−n

dn2−n 1

) (
xn
yn

)

θn+1 = θn + dn arctan 2−n

(9.24)

The major drawback of this algorithm is the need to know tn . To compute tn , the relation tn+1 =
tn

√
1 + 2−2n cannot be realistically used since it would imply a multiplication by

√
1 + 2−2n at each

step of the algorithm. We overcome this drawback by performing double rotations: at each step of
the algorithm, we perform two rotations of angle dn arctan 2−n . In step n, the factor of the similarity
becomes 1 + 2−2n ; now a multiplication by this factor reduces to an addition and a shift. We obtain
the following algorithm:

Algorithm 21 cos−1 with double-CORDIC iterations
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ0 = 0
x0 = 1
y0 = 0
t0 = t

dn =
{

sign(yn) if xn ≥ tn
−sign(yn) otherwise(

xn+1
yn+1

)
=

(
1 −dn2−n

dn2−n 1

)2 (
xn
yn

)

θn+1 = θn + 2dn arctan 2−n

tn+1 = tn + tn2−2n .

(9.25)

The final value of θn is cos−1 t with an error close to 2−n , for any t ∈ [−1, 1]. The next algorithm
is similar.

9.10 Computation of cos−1 and sin−1 Using CORDIC 183

Algorithm 22 sin−1 with double-CORDIC iterations
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ0 = 0
x0 = 1
y0 = 0
t0 = t

dn =
{

sign(xn) if yn ≤ tn
−sign(xn) otherwise(

xn+1
yn+1

)
=

(
1 −dn2−n

dn2−n 1

)2 (
xn
yn

)

θn+1 = θn + 2dn arctan 2−n

tn+1 = tn + tn2−2n .

(9.26)

The final value of θn is sin−1 t with an error close to 2−n .
Another method has been suggested by Lang and Antelo [291, 292] to compute sin−1 and cos−1

without the necessity of performing double rotations. This is done by building an approximation Ant
to Knt that is good enough to ensure convergence if used in Equation (9.23) instead of Knt and easy
to calculate.

9.11 Variations on CORDIC

Daggett [122] suggests the use of CORDIC for performing decimal-binary conversion. Schmid and
Bogacki [412] suggest an adaptation ofCORDIC to radix-10 arithmetic. DecimalCORDIC can be used
in pocket calculators.7 Decimal algorithms are briefly presented by Kropa [285]. Radix-4 CORDIC
algorithms are suggested by Antelo et al. [10, 371]. An algorithm for very high radix CORDIC rotation
was suggested later byAntelo, Lang, andBruguera [11]. Shukla andRay [424] obtain goodperformance
by combining radix-4 iterations and the double-step branching CORDIC of Phatak [384].

A software implementation of CORDIC is reported by Andrews and Mraz [9]. CORDIC has been
used for implementing the elementary functions in various coprocessors (such as the Intel 8087 and its
successors until the 486, and the Motorola 68881). CORDIC was chosen for the 8087 because of its
simplicity: the microcode size was limited to about 500 lines for the whole transcendental set [359].
Many other CORDIC chips are reported [106, 116, 153, 228, 438, 456, 478]. Some pipelined CORDIC
architectures are suggested in [152, 276]. Adaptations of CORDIC to perform rotations in spaces of
dimension higher than 2 are suggested by Delosme [150], Hsiao and Delosme [238], and Hsiao, Lau,
and Delosme [237]. An angle recoding method that allows the reduction of the number of iterations
when the angle of rotation is known in advance is suggested by Hu and Naganathan [241], and an
improvement is suggested by Wu, Wu, and Lin [476]. Wang and Swartzlander [474] suggest to pair-
off some iterations to lower the hardware complexity of a CORDIC processor. Timmermann et al.
propose an algorithm [454] that is based on Baker’s prediction method (see Section 8.4). Adaptations
of CORDIC to on-line arithmetic were suggested by Ercegovac and Lang [176, 177, 178], Lin and
Sips [319, 320],Duprat andMuller [168], andHemkumar andCavallaro [230].Kota andCavallaro [283]
notice that in the vectoringmode ofCORDIC small input values can result in large numerical errors, and
they give methods to tackle this problem. Floating-point CORDIC algorithms have been suggested
by Cavallaro and Luk [76], and by Hekstra and Deprettere [229]. An error analysis of CORDIC is

7Pocket calculators frequently use radix 10 for internal calculations and storage to avoid the radix conversion that would
be required during inputs and outputs if they used radix 2.

http://dx.doi.org/10.1007/978-1-4899-7983-4_8

184 9 The CORDIC Algorithm

given by Hu [240]. The survey by Meher et al. [338] should be read by anybody who wants to work
on CORDIC or to implement it.

10Some Other Shift-and-Add Algorithms

10.1 High-Radix Algorithms

The shift-and-add algorithms presented in Chapters 8 and 9 allow us to obtain an n-bit approximation
of the function being computed after about n iterations. This property makes most of these algorithms
rather slow; their major interest lies in the simplicity of implementation, and in the small silicon area
of designs.

One can try to make these algorithms faster by implementing them in radices higher than 2: roughly
speaking, a radix-2k algorithm will only require n/k iterations to give an n-bit approximation of the
function being computed. As for division and square root algorithms [179], the price to pay is more
complicated elementary iterations.

10.1.1 Ercegovac’s Radix-16 Algorithms

The methods presented here are similar to methods suggested by Ercegovac [171]. They are generaliz-
able to higher radices, different from 16. Some variants have been proposed by XavierMerrheim [342].
Assume that we want to compute the exponential of t . To do this, we use a basic iteration very close
to (8.15); that is

Ln+1 = Ln − ln
(
1 + dn16−n

)
En+1 = En

(
1 + dn16−n

)
,

(10.1)

where the di s belong to a “digit set” {−a,−a + 1, . . . , 0, 1, . . . , a}, with 8 ≤ a ≤ 15. Let us focus on
the computation of the exponential function. One can easily see that if the di s are selected such that
Ln converge to 0, then En will converge to E0 exp(L0). As in Section 8.3.1, this is done by arranging
that Ln ∈ [sn, rn], where sn → 0 and rn → 0. Following Ercegovac [171], we choose a = 10. The
Robertson diagram given in Figure 10.1 gives the various possible values of Ln+1 versus Ln , depending
on the choice of dn .

One can easily show that the bounds sn , rn , sn+1, and rn+1 that appear in the diagram of Figure 10.1
satisfy rn+1 = rn − ln

(
1 + 10 × 16−n

)
and sn+1 = sn − ln

(
1 − 10 × 16−n

)
, which gives:

© Springer Science+Business Media New York 2016
J.-M. Muller, Elementary Functions, DOI 10.1007/978-1-4899-7983-4_10

185

http://dx.doi.org/10.1007/978-1-4899-7983-4_8
http://dx.doi.org/10.1007/978-1-4899-7983-4_9
http://dx.doi.org/10.1007/978-1-4899-7983-4_8
http://dx.doi.org/10.1007/978-1-4899-7983-4_8

186 10 Some Other Shift-and-Add Algorithms

rn+1

sn+1

Ln+1

sn rn Ln

dn = k dn = k+ 1 dn = k+ 2

Uk−1
n Uk

n Uk+1
n

Tk
n Tk+1

n Tk+2
n

Figure 10.1 Robertson diagram of the radix-16 algorithm for computing exponentials. Tk is the smallest value of Ln
for which the value dn = k is allowable. Uk is the largest one.

rn =
∞∑
k=n

ln
(
1 + 10 × 16−k

)

sn =
∞∑
k=n

ln
(
1 − 10 × 16−k

)
.

(10.2)

For instance:

r1 =
∞∑
n=1

ln
(
1 + 10 × 16−n) ≈ 0.526427859674

s1 =
∞∑
n=1

ln
(
1 − 10 × 16−n) ≈ −1.023282325006.

(10.3)

Define T k
n as the smallest value of Ln such that the choice dn = k is allowable (i.e., such that Ln+1

belong to [sn+1, rn+1]), and Uk
n as the largest one (see Figure 10.1). We find

T k
n = sn+1 + ln

(
1 + k × 16−n

)
Uk
n = rn+1 + ln

(
1 + k × 16−n

)
.

One can easily deduce from the Robertson diagram that if Uk
n ≥ T k+1

n for any k ∈ {−10, . . . ,+9},
then for any Ln ∈ [sn, rn] it is possible to find a value of dn that is allowable. Moreover, if the values
Uk
n − T k+1

n are large enough, the choice of dn will be possible by examining a small number of digits
of Ln only. Table 10.1 gives 16n × mink=−10...9

(
Uk
n − T k+1

n

)
and 16n × maxk=−10...9

(
Uk
n − T k+1

n

)
for the first values of n.

One can see from Table 10.1 that the condition “Uk
n ≥ T k+1

n ” is not satisfied for all values of k if
n = 1. This means that the first step of the algorithm will have to differ from the following ones.

Define L∗
n as 16

n Ln . We get

10.1 High-Radix Algorithms 187

Table 10.1 First four values of 16n ×mink=−10...9
(
Uk
n − T k+1

n

)
and 16n ×maxk=−10...9

(
Uk
n − T k+1

n

)
, and limit values

for n → ∞.

n 16n × mink=−10...9
(
Uk
n − T k+1

n

)
16n × maxk=−10...9

(
Uk
n − T k+1

n

)

1 −1.13244 0.70644

2 0.29479 0.36911

3 0.33101 0.33565

4 0.33319 0.33348

∞ 1/3 1/3

Table 10.2 The interval 16n × [
T k
n ,Uk

n

]
, represented for various values of n and k. The integer k always belongs to

that interval.

n = 2 n = 3 n = ∞
k = −10 [−10.87,−9.53] [−10.68,−9.35] [−10 − 2

3 ,−10 + 2
3]

k = −9 [−9.83,−8.496] [−9.68,−8.34] [−9 − 2
3 ,−9 + 2

3]
k = −8 [−8.80,−7.4618] [−8.67,−7.34] [−8 − 2

3 ,−8 + 2
3]

k = −7 [−7.76,−6.43] [−7.67,−6.34] [−7 − 2
3 ,−7 + 2

3]
k = −6 [−6.74,−5.41] [−6.67,−5.34] [−6 − 2

3 ,−6 + 2
3]

k = −5 [−5.72,−4.38] [−5.67,−4.34] [−5 − 2
3 ,−5 + 2

3]
k = −4 [−4.70,−3.37] [−4.67,−3.34] [−4 − 2

3 ,−4 + 2
3]

k = −3 [−3.69,−2.35] [−3.67,−2.33] [−3 − 2
3 ,−3 + 2

3]
k = −2 [−2.68,−1.34] [−2.67,−1.33] [−2 − 2

3 ,−2 + 2
3]

k = −1 [−1.67,−0.36] [−1.67,−0.33] [−1 − 2
3 ,−1 + 2

3]
k = 0 [−0.67, 0.67] [−0.67, 0.67] [− 2

3 ,+ 2
3]

k = 1 [0.33, 1.66] [0.33, 1.67] [1 − 2
3 , 1 + 2

3]
k = 2 [1.32, 2.66] [1.33, 2.67] [2 − 2

3 , 2 + 2
3]

k = 3 [2.32, 3.65] [2.33, 3.67] [3 − 2
3 , 3 + 2

3]
k = 4 [3.30, 4.63] [3.33, 4.66] [4 − 2

3 , 4 + 2
3]

k = 5 [4.28, 5.62] [4.33, 5.66] [5 − 2
3 , 5 + 2

3]
k = 6 [5.26, 6.60] [5.33, 6.66] [6 − 2

3 , 6 + 2
3]

k = 7 [6.24, 7.57] [6.33, 7.66] [7 − 2
3 , 7 + 2

3]
k = 8 [7.21, 8.5434] [7.33, 8.66] [8 − 2

3 , 8 + 2
3]

k = 9 [8.18, 9.5113] [8.32, 9.66] [9 − 2
3 , 9 + 2

3]
k = 10 [9.14, 10.48] [9.32, 10.65] [10 − 2

3 , 10 + 2
3]

L∗
n+1 = 16L∗

n − 16n+1 ln
(
1 + dn16

−n) . (10.4)

The choice dn = k is allowable if and only if 16nT k
n ≤ L∗

n ≤ 16nUk
n . One can show that for any

k ≥ 2,
16nT k

n < k < 16nUk
n .

This is illustrated by Table 10.2.
It is worth noticing that for n ≥ 3, or n = 2 and −8 ≤ k ≤ 8, the interval where dn = k is a

convenient choice (i.e., [T k
n ,Uk

n]), is much larger than the interval of the numbers that round to k (i.e.,
[k − 1/2, k + 1/2]). If n ≥ 3, or n = 2 and −8 ≤ k ≤ 8, then

188 10 Some Other Shift-and-Add Algorithms

k + 1/2 + 1/32 < Uk
n

and
k − 1/2 − 1/32 > T k

n .

This means that if n ≥ 3, or n = 2 and T−8
2 ≤ L2 ≤ U 8

2 , dn can be obtained by rounding to the nearest
integer1 either the number obtained by truncating the (nonredundant) binary representation of L∗

n after
its fifth fractional digit, or the number obtained by truncating the carry-save representation of L∗

n after
its sixth fractional digit.

There are two possibilities: First, we can start the iterations with n = 2; the convergence domain
becomes [T−8

2 ,U 8
2] ≈ [−0.03435, 0.03337], which is rather small. Or, we can implement a special

first step. To do this, several solutions are possible. Assume that the input value x belongs to [0, ln(2)]
(range reduction to this domain is fairly easy using the relation exp(x + k ln(2)) = exp(x) × 2k), and
compute from x a new initial value x∗ and a correction factor M defined as follows. If x is between
k/16 and (k + 1)/16, then x∗ = x − (2k + 1)/32 belongs to [T−8

2 ,U 8
2], and exp(x) is obviously equal

to M × exp(x∗), where
M = e(2k+1)/32.

1More precisely, to the nearest integer in {−10, . . . , 10} if n ≥ 3; in {−8, . . . , 8} if n = 2.

10.1 High-Radix Algorithms 189

Table 10.3 Convenient values of � for x ∈ [0, ln(2)]. They are chosen such that x −� ∈ [T−8
2 ,U8

2] and a multiplication
by exp(�) is easily performed.

x ∈ �

[0, 1/32] 0

[1/32, 3/32] ln (1 + 2/32)

[3/32, 4/32] ln (1 + 4/32)

[4/32, 5/32] ln (1 + 5/32)

[5/32, 6/32] ln (1 + 6/32)

[6/32, 7/32] ln (1 + 7/32)

[7/32, 8/32] ln (1 + 9/32)

[8/32, 9/32] ln (1 + 10/32)

[9/32, 10/32] ln (1 + 11/32)

[10/32, 11/32] ln (1 + 13/32)

[11/32, 12/32] ln (1 + 14/32)

[12/32, 14/32] ln (1 + 16/32)

[14/32, 15/32] ln (1 + 19/32)

[15/32, 16/32] ln (1 + 20/32)

[16/32, 17/32] ln (1 + 22/32)

[17/32, 18/32] ln (1 + 24/32)

[18/32, 20/32] ln (1 + 26/32)

[20/32, 21/32] ln (1 + 29/32)

[21/32, 22/32] ln (1 + 31/32)

[22/32, 23/32] ln(2)

There is a probably better solution, one that avoids the multiplication by a complicated factor M . It
consists of finding from x a value � such that x∗ = x − � belongs to [T−8

2 ,U 8
2] and a multiplication by

exp(�) is easily reduced to a multiplication by a very small integer (which is easily performed using a
small dedicated hardware) and a shift. In practice, we choose values of the form

� = ln

(
1 + k

32

)
, k = 1 . . . 32,

and we have

ex = ex
∗
(
1 + k

32

)
.

Convenient values of � are given in Table 10.3.

10.2 The BKM Algorithm

As shown inChapter 9, CORDIC allows the computation ofmany functions. For this reason, it has been
implemented in many pocket calculators and floating-point coprocessors. Its major drawback arises
when performing the iterations using a redundant (e.g., carry-save or signed-digit) number system: to
make the evaluation of dn easier (see Chapter 9), wemust accept dn = 0, and this implies a nonconstant
scale factor K , unless we accept performing more iterations, or more complicated iterations, or unless

http://dx.doi.org/10.1007/978-1-4899-7983-4_9
http://dx.doi.org/10.1007/978-1-4899-7983-4_9

190 10 Some Other Shift-and-Add Algorithms

we use Dawid and Meyr’s method. We now examine an algorithm due to Bajard et al. [25], that allows
us to perform rotations and to compute complex functions without scaling factors.

10.2.1 The BKM Iteration

In the following, we assume a radix-2 conventional or signed-digit number system. Extension to
binary carry-save representation is straightforward. Let us consider the basic step of CORDIC in
trigonometric mode (i.e., iteration (9.1)). If we define a complex number En as En = xn + iyn , we
obtain En+1 = En

(
1 + idn2−n

)
, which is close to the basic step of Algorithm 8.1. This remark

brings us to a generalization of that algorithm: we could perform multiplications by terms of the form(
1 + dn2−n

)
, where the dns are complex numbers, chosen such that a multiplication by dn can be

reduced to a few additions. In the following, we study the iteration:

{
En+1 = En

(
1 + dn2−n

)
Ln+1 = Ln − ln

(
1 + dn2−n

) (10.5)

with dn ∈ {−1, 0, 1,−i, i, 1 − i, 1 + i,−1 − i,−1 + i}.
We define ln z as the number t such that et = z, and whose imaginary part is between −π and π .

Exactly as in Chapter 8

• If we are able to find a sequence dn such that En goes to 1, then we will obtain Ln → L1 + ln(E1).
This iteration mode is the L-mode of the algorithm.

• If we are able to find a sequence dn such that Ln goes to 0, then we will obtain En → E1eL1 . This
is the E-mode of the algorithm.

10.2.2 Computation of the Exponential Function (E-mode)

As pointed out at the end of the previous section, to compute eL1 using BKM, one must find a sequence
dn, dn = −1, 0, 1,−i, i, i −1, i +1,−i −1,−i +1, such that limn→∞ Ln = 0. Defining dxn and dy

n as
the real and imaginary parts of dn (they belong to {−1, 0, 1}) and Lx

n and Ly
n as the real and imaginary

parts of Ln , we find

⎧⎪⎨
⎪⎩
Lx
n+1 = Lx

n − 1

2
ln

[
1 + dxn 2

−n+1 +
(
dxn

2 + dy
n
2
)
2−2n

]

Ly
n+1 = Ly

n − dy
n arctan

(
2−n

1 + dxn 2
−n

)
.

(10.6)

Now we give an algorithm that computes the sequence dn for any L1 belonging to a rectangular set
R1 = [−sx1 , r x1

] + i
[−r y1 , r y1

]
. The proof of the algorithm is based on the construction of a sequence

Rn = [−sxn , r xn
] + i

[−r yn , r yn
]
of rectangular sets that contain zero, whose length goes to zero as n

goes to infinity, and such that for any Ln ∈ Rn , dn ensures that Ln+1 ∈ Rn+1. The “real part” dxn is
chosen by examining a few digits of Lx

n and the “imaginary part” dy
n is chosen by examining a few

digits of Ly
n . These properties allow a simple and fast implementation of the choice of dn .

http://dx.doi.org/10.1007/978-1-4899-7983-4_9
http://dx.doi.org/10.1007/978-1-4899-7983-4_8

10.2 The BKM Algorithm 191

10.2.2.1 Choice of dxn
TheRobertson diagrampresented in Figure 10.2 shows the different parameters involved in determining
dxn . The diagram is constructed as follows.

• We assume that Lx
n belongs to the interval

[−sxn , r xn
]
, which is the real part of Rn .

• Lx
n+1 is equal to Lx

n − (1/2) ln
[
1 + dxn 2

−n+1 +
(
dxn

2 + dy
n
2
)
2−2n

]
, so the value of Lx

n+1 versus

Lx
n is given by various straight lines parameterized by dxn and dy

n .
• dxn must be such that for any possible value of d y

n , Lx
n+1 ∈ [−sxn+1, r

x
n+1

]
.

Lxn

Lxn+1
dn = 1

AnBn

An

rxn+1

Bn

dn = −1± i
dn = −1

dn = ±i
dn = 0

dn = 1± i

rxn−sxn

−sxn+1

Figure 10.2 The Robertson diagram for Lx
n [25].

Parameter r xn is equal to
∞∑
k=n

ln
(
1 + 2−k

)
,

and sxn is equal to

−1

2

∞∑
k=n

ln
(
1 − 2−k+1 + 2−2k+1

)
.

The terms Ān , An , B̄n , and Bn appearing in the diagram shown in Figure 10.2 are

• Ān = r xn+1 + ln(1 − 2−n);
• B̄n = −sxn+1 + (1/2) ln(1 + 2−2n);
• An = −sxn+1 + (1/2) ln(1 + 2−n+1 + 2−2n+1);
• Bn = r xn+1.

One can prove that B̄n < Ān , and that An < Bn . From this, for any Lx
n ∈ [−sxn , r xn

]
, these choices

will give a value of Lx
n+1 between −sxn+1 and r

x
n+1

192 10 Some Other Shift-and-Add Algorithms

−ryn ryn

ryn+1

−ryn+1

−Dn

Dn

dn = −i

dn = 1− i

dn = −1− i

dn = 1+ i
dn = i
dn = −1+ i

Cn

−Cn

Lyn+1

Lyn

Figure 10.3 The Robertson diagram for L y
n [25].

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

if Lx
n < −B̄n then dxn = −1

if −B̄n ≤ Lx
n < Ān then dxn = −1 or 0

if Ān ≤ Lx
n < An then dxn = 0

if An ≤ Lx
n ≤ Bn then dxn = 0 or 1

if Bn < Lx
n then dxn = 1.

(10.7)

10.2.2.2 Choice of d y
n

We use the relation

Ly
n+1 = Ly

n − dy
n arctan

(
2−n

1 + dxn 2
−n

)
.

Figure 10.3 shows the Robertson diagram associated with the choice of dy
n . We want our choice to be

independent of the choice of dxn . From this, we deduce:

r yn =
∞∑
k=n

arctan

(
2−k

1 + 2−k

)
.

The terms Cn and Dn appearing in the diagram are

Cn = −r yn+1 + arctan

(
2−n

1 − 2−n

)

and
Dn = r yn+1.

One can prove that Cn < Dn . Thus, for any Ly
n ∈ [−r yn , r yn

]
, these choices will give a value of

Ly
n+1 between −r yn+1 and +r yn+1

10.2 The BKM Algorithm 193

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

if Ly
n < −Dn then dy

n = −1
if −Dn ≤ Ly

n < −Cn then dy
n = −1 or 0

if −Cn ≤ Ly
n < Cn then dy

n = 0
if Cn ≤ Ly

n ≤ Dn then dy
n = 0 or 1

if Dn < Ly
n then dy

n = 1.

(10.8)

The convergence domain R1 of the algorithm is

−0.8298023738 · · · = −sx1 ≤ Lx
1 ≤ r x1 = 0.8688766517 · · ·

−0.749780302 · · · = −r y1 ≤ Ly
1 ≤ r y1 = 0.749780302 · · · .

10.2.2.3 The Algorithm
Relations (10.7) and (10.8)make it possible to find a sequence dn such that, for L1 ∈ R1, limn→∞ Ln =
0. Now let us try to simplify the choice of dn : (10.7) and (10.8) involve comparisons thatmay require the
examination of all the digits of the variables; we want to replace these comparisons by the examination
of a small number of digits. The parameters Ā = −1/2, A = 1/4, C = 3/4, p1 = 3, and p2 = 4
satisfy, for every n: ⎧⎨

⎩
2n B̄n ≤ Ā − 2−p1 < Ā ≤ 2n Ān

2n An ≤ A < A + 2−p1 ≤ 2n Bn

2nCn ≤ C < C + 2−p2 ≤ 2nDn .

(10.9)

Therefore if we call L̃ x
n the number obtained by truncating 2nLx

n after its p1th fractional digit, and L̃ y
n

the number obtained by truncating 2nL y
n after its p2th fractional digit, we obtain, from (10.7) through

(10.9)

• if L̃ x
n ≤ Ā − 2−p1 , then Lx

n ≤ Ān ; therefore dxn = −1 is a valid choice;
• if Ā ≤ L̃ x

n ≤ A, then B̄n ≤ Lx
n ≤ Bn ; therefore dxn = 0 is a valid choice2;

• if A + 2−p1 ≤ L̃ x
n , then An ≤ Lx

n ; therefore d
x
n = 1 is a valid choice;

• if L̃ y
n ≤ −C − 2−p2 , then Ly

n ≤ −Cn ; therefore d
y
n = −1 is a valid choice;

• if −C ≤ L̃ y
n ≤ C , then −Dn ≤ Ly

n ≤ Dn ; therefore d
y
n = 0 is a valid choice;

• if C + 2−p2 ≤ L̃ y
n , then Cn ≤ Ly

n ; therefore d
y
n = 1 is a valid choice.

10.2.2.4 Number of Iterations
After n iterations of the E-mode, we obtain a relative error approximately equal to 2−n .

10.2.3 Computation of the Logarithm Function (L-mode)

Computing the logarithm of a complex number E1 using the L-mode requires the calculation of a
sequence dn , dn = −1, 0, 1,−i, i, i − 1, i + 1,−i − 1,−i + 1, such that

limn→∞ En = 1. (10.10)

The following algorithm had been found through simulations before being proved. See [25] for more
details.

2Since Ā,A, and L̃ x
n have at most p1 fractional digits, if L̃ x

n > Ā − 2−p1 , then L̃ x
n ≥ Ā.

194 10 Some Other Shift-and-Add Algorithms

10.2.3.1 BKM Algorithm — L-mode
• Start with E1 belonging to the trapezoid T delimited by the straight lines x = 1/2, x = 1.3,

y = x/2, y = −x/2. T is the domain where the convergence is proven, but experimental tests show
that the actual convergence domain of the algorithm is larger.

• Iterate

{
En+1 = En

(
1 + dn2−n

)
Ln+1 = Ln − ln

(
1 + dn2−n

)
with dn = dxn + id y

n chosen as follows:

– define εxn and ε
y
n as the real and imaginary parts of

εn = 2n(En − 1)

and ε̃xn and ε̃
y
n as the values obtained by truncating these numbers after their fourth fractional

digits;
– at step 1 ⎧

⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

if ε̃x1 ≤ −7/16 and 6/16 ≤ ε̃
y
1 then d1 = 1 − i

if ε̃x1 ≤ −7/16 and ε̃
y
1 ≤ −6/16 then d1 = 1 + i

if −6/16 ≤ ε̃x1 and 8/16 ≤ ε̃
y
1 then d1 = −i

if −6/16 ≤ ε̃x1 and ε̃
y
1 ≤ −9/16 then d1 = i

if ε̃x1 ≤ −7/16 and
∣∣ε̃ y1

∣∣ ≤ 5/16 then d1 = 1
if −6/16 ≤ ε̃x1 and

∣∣ε̃ y1
∣∣ ≤ 1/2 then d1 = 0;

– at step n, n ≥ 2 ⎧⎨
⎩

if ε̃xn ≤ −1/2 then dxn = 1
if −1/2 < ε̃xn < 1/2 then dxn = 0
if 1/2 ≤ ε̃xn then dxn = −1

⎧⎨
⎩

if ε̃
y
n ≤ −1/2 then dy

n = 1
if −1/2 < ε̃

y
n < 1/2 then dy

n = 0
if 1/2 ≤ ε̃

y
n then dy

n = −1;

• result: limn→∞ Ln = L1 + ln(E1).

In a practical implementation, instead of computing En and examining the first digits of εn =
2n(En − 1), one would directly compute the sequence εn . See [25] for a proof of the algorithm.

10.2.4 Application to the Computation of Elementary Functions

As shown in the previous sections, the algorithm makes it possible to compute the functions

• in E-mode, E1eL1 , where L1 is a complex number belonging to R1,
• in L-mode, L1 + ln(E1), where E1 belongs to the trapezoid T .

Therefore one can compute the following functions of real variables:

10.2 The BKM Algorithm 195

10.2.4.1 Functions Computable Using One Mode of BKM
• Real sine and cosine functions. In the E-mode, one can compute the exponential of L1 = 0 + iθ

and obtain
En = cos θ + i sin θ ± 2−n .

• Real exponential function. If L1 is a real number belonging to
[−0.8298023738,+0.8688766517], the E-mode will give a value En equal to

E1e
L1 ± 2−n .

• Real logarithm. If E1 is a real number belonging to [0.5, 1.3], the L-mode will give a value Ln

equal to
L1 + ln(E1) ± 2−n .

• 2-D rotations. The 2-D vector (c d)t obtained by rotating (a b)t by an angle θ satisfies: c + id =
(a + ib)eiθ ; therefore (c d)t is computed using the E-mode, with E1 = a + ib and L1 = iθ .

• real arctan function. From the relation

ln(x + iy) =

⎧⎪⎪⎨
⎪⎪⎩

1

2
ln(x2 + y2) + i arctan

y

x
mod(2iπ) (x > 0)

1

2
ln(x2 + y2) + i

(
π + arctan

y

x

)
mod(2iπ) (x < 0)

one can easily deduce that, if x + iy belongs to the convergence domain of the L-mode, then
arctan y/x is the limit value of the imaginary part of Ln , assuming that the L-mode is used with
L1 = 0 and E1 = x + iy. The same operation also gives ln(x2 + y2)/2.

10.2.4.2 Functions Computable Using Two Consecutive Modes of BKM
Using two BKM operations, one can compute many functions. Some of these functions are

• Complex multiplication and division. The product zt is evaluated as z.eln t , and z/t is evaluated
as z.e− ln t . One can compute (ab)ez or (a/b) ez , where a, b, and z are complex numbers, using the
same operator, by choosing Lx

1 equal to the real part of z, and Ly
1 equal to the imaginary part of z.

• Computation of x
√
a and y

√
a in parallel (x , y and a are real numbers): we use the relation√

a = eln(a)/2. One can also compute x/
√
a and y/

√
a.

• Computation of lengths and normalization of 2D-vectors. As shown previously, the L-mode
allows the computation of F = ln(a2 + b2)/2 = ln

√
a2 + b2, where a and b are real numbers.

Using the E-mode, we can compute x · eF or x · e−F .

A generalization of BKM to radix 10 arithmetic was suggested by Imbert, Muller, and Rico [246].
A High-Radix version of BKM was described by Didier and Rico [157].

Part III

Range Reduction, Final Rounding
and Exceptions

11Range Reduction

11.1 Introduction

The algorithms presented in the previous chapters for evaluating the elementary functions only give
correct result if the argument is within a given bounded interval. To evaluate an elementary function
f (x) for any x , two cases may occur

• either there is some algebraic relation (such as ea+b = ea · eb, or the trigonometric formulas), that
allows us to easily deduce the values of the function in the whole domain from its values in a small
interval: in that case, we can reduce our initial problem to computations in that small interval;

• or there is not such a simple algebraic relation: in that case, we must split the input domain into
several (possibly many!) subdomains, and use a different method (or a different polynomial or
rational approximation) in each subinterval. If the input domain is very large, we will have to use
asymptotic expansions—if there exist such usable expansions for the considered function—on both
ends so that the remaining domain becomes of reasonable size. Once we have built approximations
for each subinterval, the first part of the code that will implement the function will consist of
branchings that determine in which domain the input value lies. Recently, Kupriianova and Lauter
suggested an ingenious approach [290] for avoiding these branchings. The index of the interval
where the input value lies is a function g of that input value. They try to approximate g itself by
a polynomial. That method does not always work (and it can certainly be improved); but when it
works, it considerably eases the design of vectorizable implementations.

Fortunately, with the classical elementary functions, we are almost always in the first case, and we
will deal with that case in the following.

Onemust find some “transformation,” deduced from some algebraic relation satisfied by the function
f that makes it possible to deduce f (x) from some value g(x∗), where

• x∗, called the reduced argument, is deduced from x ;
• x∗ belongs to the convergence domain of the algorithm implemented for the evaluation of g.

© Springer Science+Business Media New York 2016
J.-M. Muller, Elementary Functions, DOI 10.1007/978-1-4899-7983-4_11

199

200 11 Range Reduction

In practice, there are two kinds of reduction

• Additive reduction. x∗ is equal to x − kC , where k is an integer and C is a constant (for instance,
for the trigonometric functions, C is a multiple of π/4).

• Multiplicative reduction. x∗ is equal to x/Ck , where k is an integer andC is a constant (for instance,
for the logarithm function, a convenient choice for C is the radix of the number system).

Example 11 (cosine function)Wewant to evaluate cos(x), and the convergence domain of the algorithm
used to evaluate the sine and cosine of the reduced argument contains [−π/4,+π/4]. We choose
C = π/2 and the computation of cos(x) is decomposed in three steps

• compute x∗ and k such that x∗ ∈ [−π/4,+π/4] and x∗ = x − kπ/2;
• compute g(x∗, k) = ⎧

⎪⎪⎨
⎪⎪⎩

cos(x∗) if kmod 4 = 0
− sin(x∗) if kmod 4 = 1
− cos(x∗) if kmod 4 = 2

sin(x∗) if kmod 4 = 3;
(11.1)

• obtain cos(x) = g(x∗, k).

The previous reduction mechanism is an additive range reduction. Let us examine another example
of additive reduction.
Example 12 (exponential function) We want to evaluate ex in a radix-2 number system, and the
convergence domain of the algorithm used to evaluate the exponential of the reduced argument contains
[0, ln(2)].We can choose C = ln(2), and the computation of ex is then decomposed in three steps

• compute x∗ ∈ [0, ln(2)] and k such that x∗ = x − k ln(2);
• compute g(x∗) = ex

∗
;

• compute ex = 2kg(x∗).

The radix-2 number system makes the final multiplication by 2k straightforward.
There are otherways of performing the range reduction for the exponential function.A solution (with

an algorithmwhose convergence domain is [0, 1]) is to choose x∗ = x−�x�, k = �x�, and g(x∗) = ex
∗
.

Then ex = g(x∗) × ek , and ek can either be evaluated by performing a few multiplications—since k
is an integer—or by table lookup. In one of his table-driven algorithms, Tang [450] uses

C = ln(2)

32

so that the argument is reduced to a small interval

[
− ln(2)

64
,+ ln(2)

64

]
.

In any case, range reduction is more a problem for trigonometric functions than for exponentials,
since, in practice, we never have to deal with exponentials of very large numbers: they are overflows!
For instance, in IEEE-754 binary64/double-precision arithmetic and assuming round-to-nearest, when
computing ex

11.1 Introduction 201

• if x ≤ ln
(
2−1075

) ≈ −745.13321910 then 0 must be returned;
• if x ≥ ln

[(
2 − 2−53

) · 21023] ≈ 709.78271289 then +∞ must be returned.

Example 13 (logarithm function) We want to evaluate ln(x), x > 0, in a radix-2 number system,
and the convergence domain of the algorithm used to compute the logarithm of the reduced argument
contains [1/2, 1]. We can choose C = 2, and the computation of ln(x) is then decomposed in three
steps

• compute x∗ ∈ [1/2, 1] and k such that x∗ = x/2k (if x is a normalized radix-2 floating-point
number, x∗ is its significand, and k is its exponent);

• compute g(x∗, k) = ln(x∗);
• compute ln(x) = g(x∗, k) + k ln(2).

The previous mechanism is a multiplicative reduction.
In practice, multiplicative reduction is not a difficult problem: when computing the usual functions,

it only occurs with logarithms and nth roots. With these functions, as in the preceding example, C can
be chosen equal to a power of the radix of the number system. This makes the computation of x/Ck

straightforward and errorless. Therefore, in the following, we concentrate on the problem of additive
range reduction only.

It is worth noticing that, whereas the original argument x is a “machine number,” the com-
puted reduced argument x∗ should, in general, not be a machine number: depending on the kind of
implementation, if we aim at a very accurate result, it should be represented in a larger format, or
by a double-word or triple-word number (see Section 2.2.2). This must be taken into account when
designing an algorithm for evaluating the approximation.

A poor range reduction method may lead to catastrophic accuracy problems when the input argu-
ments are large. Table 11.1 gives the computed value of sin(1022) on various computing systems (the
figures in that table were picked up from [362, 363] and from various contributors belonging to the
Computer Science Department of École Normale Supérieure de Lyon. They are rather old, and the
behavior of modern systems is, in general, much better). Some results are very bad. Returning a NaN is
probably better than returning a totally inaccurate result; however, this is not the right solution. Unless
we design a special-purpose system, for which particular range and accuracy requirements may be
known, we must always return results as close as possible to the exact values. On some machines, what
was actually approximated was not the sine function, but the function

fsin(x) = sin
(πx

π̂

)

where π̂ is the floating-point number that is closest to π (for instance, in Table 11.1, the number
0.8740 · · · returned by the Silicon Graphics Indy computer was equal to fsin(1022)). This of course
made range reduction easier, but there were strange “side effects”: when x is so small that no range
reduction is necessary, returning the floating-point number that is closest to fsin(x) is not equivalent
to returning the floating-point number that is closest to sin(x). For instance, in IEEE-754 binary64
arithmetic, the machine number that is closest to fsin(1/4) is

1114208378708655

4503599627370496

whereas the machine number that is closest to sin(1/4) is

http://dx.doi.org/10.1007/978-1-4899-7983-4_2

202 11 Range Reduction

Table 11.1 sin(x) for x = 1022 on various (in general, old) systems [362]. It is worth noticing that x is exactly
representable in the IEEE-754 binary64 format (1022 is equal to 4768371582031250 × 221). With a system working in
the IEEE-754 binary32 format, the correct answer would be the sine of the floating-point number that is closest to 1022;
that is, sin(9999999778196308361216) ≈ −0.73408. As pointed out by the authors of [362, 363], the values listed in
this table were contributed by various Internet volunteers. Hence, they are not the official views of the listed computer
system vendors, the author of [362, 363] or his employer, nor are they those of the author of this book.

Computing System sin x

Exact result −0.8522008497671888017727 · · ·
Vax VMS (g or h format) −0.852200849 · · ·
HP 48 GX −0.852200849762

HP 700 0.0

HP 375, 425t (4.3 BSD) −0.65365288 · · ·
matlab V.4.2 c.1 for Macintosh 0.8740

matlab V.4.2 c.1 for SPARC −0.8522

Silicon Graphics Indy 0.87402806 · · ·
SPARC −0.85220084976718879

IBM RS/6000 AIX 3005 −0.852200849 · · ·
IBM 3090/600S-VF AIX 370 0.0

PC: Borland TurboC 2.0 4.67734e − 240

Sharp EL5806 −0.090748172

Casio fx-8100, fx180p, fx 6910 G Error

TI 89 Trig. arg. too large

4456833514834619

18014398509481984
.

The difference between both values is equal to 1 ulp.
Even when x is not large, if it is close to a multiple of π/4, then a poor range reduction may lead

to a very inaccurate evaluation of sin(x) or tan(x).
It is easy to understand why a bad range reduction algorithm gives inaccurate results. The naive

method consists of performing the computations

k =
⌊ x

C

⌋

x∗ = RN(x − RN(kC)) or RN(x − kC) if an FMA is available

using the machine precision, where RN is the round-to-nearest rounding function. When kC is close
to x , almost all the accuracy, if not all, is lost when performing the subtraction x − RN(kC). For
instance, on a radix-10 computer of precision 10, if C = π/2 and x = 8248.251512, then x∗ =
−0.0000000000021475836702 · · · . If the range reduction is not accurate enough to make sure that
numbers that small are handled accurately, the computed result may be quite different from the actual
value of x∗.

The first solution consists of usingmultiple-precision arithmetic, but this maymake the computation
significantly slower. Moreover, it is not that easy to predict the accuracy with which the computation
should be performed. The first method presented below is due to Cody andWaite [93, 97]. It works for
rather small input arguments only but is very inexpensive. We then present a variant of that method,
due to Boldo, Daumas, and Li [40], that allows to tackle significantly larger input arguments when a
fused multiply-add instruction (FMA) is available. After this, we introduce an algorithm due to Kahan

11.1 Introduction 203

[262] that allows us to find the worst cases for range reduction. Then we give two algorithms, one due
to Payne and Hanek [381], another one due to Daumas et al. [126, 127] that make it possible to perform
an accurate range reduction with large input arguments, without actually needing multiple-precision
calculations.

11.2 Cody andWaite’s Method for Range Reduction

11.2.1 The Classical Cody–Waite Reduction

The method suggested by Cody and Waite [93, 97] consists of finding two values C1 and C2 that are
exactly representable in the floating-point system being used, and such that

• C1 is very close to C , and is representable using a few digits1 only (i.e., C1 is a machine number
containing the first few digits of C). A consequence is that for values of k that are not too large,
kC1 is exactly representable in the floating-point system.

• C = C1 + C2 to beyond working precision.

Then, instead of evaluating RN(x − RN(kC)), we evaluate2

RN(RN(x − RN(kC1)) − RN(kC2)) (11.2)

When doing this, if k is such that kC1 is exactly representable, the subtraction (x−kC1) is performed
without any error3, i.e., what is actually computed is

RN(x − kC1 − RN(kC2)).

Therefore (11.2) simulates a larger precision (the precision with which C1 + C2 approximates C).
For instance, if C = π , typical values for C1 and C2, given by Cody and Waite [93] are

• in the IEEE-754 binary32 format:

C1 = 201/64 = 3.140625

C2 = 9.67653589793 × 10−4;

• in the IEEE-754 binary64 format:

C1 = 3217/1024 = 3.1416015625

C2 = −8.908910206761537356617 × 10−6.

1In the radix of the floating-point system being used —2 in general.
2Gal and Bachelis [199] use the same kind of range reduction, but slightly differently. Some accuracy is lost when
subtracting RN(kC2) from RN(x − RN(kC1)). To avoid this, they keep these terms separate. This is also done by Tang
(see section 6.2.1).
3Unless subtraction is not correctly rounded. To my knowledge, there is no current computer with such a poor arithmetic.

http://dx.doi.org/10.1007/978-1-4899-7983-4_6

204 11 Range Reduction

Thismethodhelps to reduce the error due to the cancellation at a lowcost. It can easily be generalized:
C can be represented as the sum of three valuesC1,C2 andC3. However, if last-bit accuracy is required,
and if we want to provide a correct result for all possible input values (even if they are very large), it
will be used for small arguments only.

For instance, the binary64 CRLIBM library4 [124] (see Section 14.4) uses four possible methods
for reducing the argument to trigonometric functions (with C = π/256), depending on the magnitude
of the input number:

• Cody and Waite’s method with two constants (the fastest);
• Cody and Waite’s method with three constants (almost as fast);
• Cody and Waite’s method with three constants, using a double-word arithmetic and a 64-bit integer

format for the integer k;
• Payne and Hanek’s algorithm (see Section 11.4) for the largest arguments.

11.2.2 When a FusedMultiply-add (FMA) Instruction is Available

In [40], Boldo, Daumas, and Li give several algorithms and properties that are of much interest when
one wishes to perform range reduction with large input arguments, assuming that an FMA instruction
is available. I will just present here their more accurate algorithm. Assume that we use a binary,
precision-p floating-point arithmetic of minimum exponent emin. Let RN(·) be the round-to-nearest
(ties to even) rounding function. Define
t� as the integer nearest t (with any choice in case of a tie).
Let C be the real constant of the additive range reduction, and assume C > 0. We will build a pair
(C1,C2) of floating-point numbers whose sum is a very accurate approximation to C as follows:5

• define R as RN(1/C);
• define C1 as

C1 =
⌈

1

4 · R · ulp (1/R)

⌋
· 4 · ulp (1/R),

(see Section 2.1.3 for a definition of the ulp function)
• and finally define C2 as

C2 =
⌈

(C − C1)

2−p+4 ulp (C1)

⌋
· 2−p+4 ulp (C1).

The argument reduction itself consists in performing the following algorithm. It calls algorithm
Fast2Sum (Algorithm 1, presented in Section 2.2.1). This reduction algorithm starts like a straight-
forward adaptation of (11.2) to the fact that an FMA instruction is available, i.e., we compute
RN(RN(x − kC1) − kC2. Then, after this, a correction is applied. That correction is computed using
an adaptation of a technique suggested by Boldo and Muller for evaluating the error of an FMA [46].

4http://lipforge.ens-lyon.fr/projects/crlibm/.
5Important notice: one can easily find an even better approximation toC as a sum of two floating-point numbers, however,
it may not satisfy the property presented in Theorem 18, that is, x − k · (C1 + C2) may not be computed exactly by
Algorithm 23.

http://dx.doi.org/10.1007/978-1-4899-7983-4_14
http://dx.doi.org/10.1007/978-1-4899-7983-4_2
http://dx.doi.org/10.1007/978-1-4899-7983-4_2
http://lipforge.ens-lyon.fr/projects/crlibm/

11.2 Cody andWaite’s Method for Range Reduction 205

Algorithm 23 Boldo, Daumas, and Li’s accurate range reduction algorithm [40]. It takes as input
the initial argument x and outputs the reduced argument, represented by the double word (vh, v�). It
requires the availability of an FMA instruction.

k ← RN(RN(3 · 2p−2 + R · x) − 3 · 2p−2)

u ← RN(x − k · C1)

vh ← RN(u − k · C2)

ρh ← RN(k · C2)

ρ� ← RN(k · C2 − ρh) � note: ρh + ρ� = kC2 exactly
(th, t�) = Fast2Sum(u,−ρh)

v� = RN(RN(RN(th − vh) + t�) − ρ�.

return (vh, v�)

We have the following result.

Theorem 18 With the values R, C1, and C2 defined above, and under the following assumptions:

• R is a normal floating-point number (i.e., R ≥ 2emin);
• C1 is not a power of 2;
• C1 > 2emin+p−1;
• the input value x is such that |R · x | ≤ 2p−2 − 1;

The double-word (vh, v�) returned by Algorithm 23 satisfies

vh + v� = x − k · (C1 + C2). (11.3)

Furthermore, we have,
|C − (C1 + C2)| ≤ 2−p+3 ulp (C1). (11.4)

therefore the difference between x − k · (C1 + C2) and x − k · C is of absolute value less than

k · 2−p+3 · ulp (C1). (11.5)

Equation (11.5) and the requirement |R · x | ≤ 2p−2 − 1 help to determine the largest value of |x |
for which the error of the range reduction will be guaranteed to be within some chosen bound ε. For
instance, ifC = π , that largest value is (22p−5ε −1) ·π . It is worth being noticed that many variants of
Algorithm 23 are possible. For instance, if we define C3 as RN(C − (C1 +C2)) then the triple-word6

(vh, v�,RN(−k · C3)) is an even better approximation to the exact reduced argument.
Let us now give an example.

Example 14 (Boldo, Daumas, and Li’s reduction, with C = π). Let us assume that we use binary64
arithmetic (p = 53, and emin = −1022), and that C = π . The above-defined floating-point numbers
R, C1, and C2 are equal to

R = 5734161139222659 · 2−54;
C1 = 884279719003555 · 2−48;
C2 = 4851325781271 · 2−95.

6Beware: RN (−k ·C3) is not necessarily very small in front of v�. If we need that property—which is likely if we want
to evaluate some approximating polynomial at the reduced argument—some further manipulations are needed.

206 11 Range Reduction

If the input value x is equal to 103554, when executing Algorithm 23, we successively obtain

k = 32962;
u = 115820250045757 · 2−47;
vh = 7412496002892089 · 2−53;
ρh = 4997168762570459 · 2−90;
ρ� = 7 · 2−94;
th = 7412496002892089 · 2−53;
t� = −25853282011 · 2−90;
v� = −413652512183 · 2−94.

The computed, double-word, reduced argument vh + v� equals

0.8229523732352737943488003466152497437 · · ·

It approximates x − kπ with error ≈ 5.59 × 10−27. This value should be compared with the error
bound obtained from (11.5), namely 1.31 × 10−26.

11.3 FindingWorst Cases for Range Reduction?

11.3.1 A Few Basic Notions On Continued Fractions

To estimate the potential loss of accuracy that can occur when performing range reduction, we can use
a technique suggested by Kahan [262], based on the theory of continued fractions. We just recall here
the elementary definitions and results on continued fractions that we need in the following. For more
information, good references on continued fractions are Stark’s book [430] and Khinchin’s book [271].

In all this section, let α be an irrational number. The sequence of the convergents to α (or continued
fraction approximations to α) is defined as follows. First, from α we build two sequences (ai) and (ri)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

r0 = α

ai = �ri�
ri+1 = 1

ri − ai
.

(11.6)

These sequences are defined for any i (i.e., ri is never equal to ai ; this is due to the irrationality of
α), and the rational number

Pi
Qi

= a0 + 1

a1 + 1

a2 + 1

a3 + 1

. . . + 1

ai

11.3 FindingWorst Cases for Range Reduction? 207

is called the i th convergent to α. One can easily show that the Pi s and the Qi s can be deduced from
the ai s using the following recurrences,

P0 = a0

P1 = a1a0 + 1

Q0 = 1

Q1 = a1

Pn = Pn−1an + Pn−2

Qn = Qn−1an + Qn−2.

The main interest of continued fractions lies in the following theorem.

Theorem 19 For all irrational α, if the convergents to α are the terms Pi/Qi and if i ≥ 2, then for
any rational number p/q, that satisfies p/q �= Pi/Qi , p/q �= Pi+1/Qi+1, and q ≤ Qi+1, we have

∣∣∣∣α − Pi
Qi

∣∣∣∣ <
q

Qi

∣∣∣∣α − p

q

∣∣∣∣ .

A consequence of this is that if a rational number p/q approximates α better than Pi/Qi , then q > Qi .

In otherwords, Pi/Qi is the best approximation toα among the rational numberswhose denominator
is less than or equal to Qi .

Moreover, one can show that ∣∣∣∣α − Pi
Qi

∣∣∣∣ <
1

Qi Qi+1
.

We write:

α = a0 + 1

a1 + 1

a2 + 1

a3 + 1

. . . .

For instance

π = 3 + 1

7 + 1

15 + 1

1 + 1

292 + 1

. . . ,

which gives the following rational approximations to π ,

P0
Q0

= 3
P1
Q1

= 22

7

P2
Q2

= 333

106

P3
Q3

= 355

113

P4
Q4

= 103993

33102

208 11 Range Reduction

and √
2 = 1 + 1

2 + 1

2 + 1

2 + 1

2 + 1

. . . .

Beyond our current problem of finding worst cases for range reduction, continued fractions are
of interest in many areas of computer arithmetic, such as rational arithmetic [281, 420], exact real
arithmetic [467], correctly-rounded fast multiplication by an arbitrary-precision constant in floating-
point arithmetic [67], or—as we will soon see—test to determine if the sine or cosine of a normal FP
number can underflow.

11.3.2 FindingWorst Cases Using Continued Fractions

Now let us turn to the application of continued fractions to range reduction. We assume we use a
radix-β floating-point system of precision p, and exponents between emin and emax. We also assume
that we want to perform an additive range reduction, and that the constant C is an irrational number
(this is always the case, since in practice, C is π times a power of two—for trigonometric functions—
or a simple rational number times the logarithm of the radix of the number system being used—for
exponentials). Suppose that an input number x is the floating-point number:

x = x0.x1x2x3 · · · xp−1 × βexponent , with x0 �= 0.

We can rewrite x with an integral significand:

x = M × βexponent−p+1,

where M = x0x1x2x3 · · · xp−1 satisfies β p−1 ≤ M ≤ β p − 1. Performing the range reduction is
equivalent to finding an integer k and a real number s, |s| < 1 such that

x

C
= k + s. (11.7)

The number x∗ of the introduction of this chapter is equal to sC . We can rewrite (11.7) as

βexponent−p+1

C
= k

M
+ s

M
.

If the result x∗ of the range reduction is a very small number ε, this means that

βexponent−p+1

C
= k

M
+ ε

MC
≈ k

M
. (11.8)

In such a case, k/M must be a very good rational approximation to the irrational number
βexponent−p+1/C . To estimate the smallest possible value of ε, it suffices to examine the sequence
of the “best” possible rational approximations to βexponent−p+1/C , that is, the sequence of its con-

11.3 FindingWorst Cases for Range Reduction? 209

vergents. We proceed as follows: for each considered value of exponent (of course, the exponents
corresponding to a value of x smaller than C do not need to be considered), we compute the first terms
Pi and Qi of the convergents to βexponent−p+1/C . We then select the approximation Pj/Q j whose
denominator is the largest less than β p. FromTheorem 19, we know that for any rational number P/M ,
with M ≤ β p − 1, we have

M

Q j

∣∣∣∣
P

M
− βexponent−p+1

C

∣∣∣∣ ≥
∣∣∣∣
Pj

Q j
− βexponent−p+1

C

∣∣∣∣ .

Therefore, ∣∣∣∣
P

M
− βexponent−p+1

C

∣∣∣∣ ≥ Q j

M

∣∣∣∣
Pj

Q j
− βexponent−p+1

C

∣∣∣∣ .

Therefore,

MC

∣∣∣∣
P

M
− βexponent−p+1

C

∣∣∣∣ ≥ CQ j

∣∣∣∣
Pj

Q j
− βexponent−p+1

C

∣∣∣∣ .

Hence, the lowest possible value7 of ε is attained for M = Q j and P = Pj , and is equal to

CQ j

∣∣∣∣
Pj

Q j
− βexponent−p+1

C

∣∣∣∣ .

To find the worst case for range reduction, it suffices to compute Pj and Q j for each value of the
exponent that allows the representation of numbers greater than C . This method was first suggested by
Kahan [262] (a C-program that implements thismethodwithout needing extra-precision arithmetic was
written byKahan andMcDonald.As I amwriting this book, it is accessible at http://www.eecs.berkeley.
edu/~wkahan/testpi/nearpi.c). A similar method was found later by Smith [428]. The following Maple
program implements this method:

worstcaseRR := proc(B,p,emin,emax,C,ndigits)
local epsilonmin,powerofBoverC,e,a,Plast,r,Qlast,

Q,P,NewQ,NewP,epsilon,
numbermin,expmin,ell;
epsilonmin := 12345.0 ;
Digits := ndigits;
powerofBoverC := Bˆ(emin-p)/C;
for e from emin-p+1 to emax-p+1 do

powerofBoverC := B*powerofBoverC;
a := floor(powerofBoverC);

7If Q j is less than β p−1, this value does not actually correspond to a floating-point number of exponent exponent . In
such a case, the actual lowest value of ε is larger. However, the value corresponding to Q j is actually attained for another
value of the exponent: let � be the integer such that β p−1 ≤ β�Q j < β p; from

CQ j

∣∣∣∣
Pj

Q j
− βexponent−p+1

C

∣∣∣∣ = Cβ�Q j

∣∣∣∣
Pj

β�Q j
− βexponent−�−p+1

C

∣∣∣∣

we deduce that the value of ε corresponding to Q j is actually attained when the exponent equals exponent−�. Therefore
the fact that Q j may be less than β p−1 has no influence on the final result, that is, the search for the lowest possible
value of ε.

http://www.eecs.berkeley.edu/~wkahan/testpi/nearpi.c
http://www.eecs.berkeley.edu/~wkahan/testpi/nearpi.c

210 11 Range Reduction

Plast := a;
r := 1/(powerofBoverC-a);
a := floor(r);
Qlast := 1;
Q := a;
P := Plast*a+1;
while Q < Bˆp-1 do

r := 1/(r-a);
a := floor(r);
NewQ := Q*a+Qlast;
NewP := P*a+Plast;
Qlast := Q;
Plast := P;
Q := NewQ;
P := NewP

od;
epsilon :=

evalf(C*abs(Plast-Qlast*powerofBoverC));
if epsilon < epsilonmin then

epsilonmin := epsilon; numbermin := Qlast;
expmin := e

fi
od;
print(’significand’,numbermin);
print(’exponent’,expmin);
print(’epsilon’,epsilonmin);
ell := evalf(log(epsilonmin)/log(B),10);
print(’numberofdigits’,ell)

end

Various results obtained using this program are given in Table 11.2. These results can be used to
perform range reduction accurately using one of the algorithms given in the next sections, or simply
to check whether the range reduction is accurately performed in a given package.

In Table 11.2, the number − logβ(ε) makes it possible to deduce the precision with which the
computations must be carried out to get the reduced argument with a given accuracy. Assume that we
want to get the reduced argument x∗ with, say,m significant radix-β digits. Since x∗ may be as small as
ε, it must be computed with an absolute error less than β−m−logβ(ε). Roughly speaking,− logβ(ε) is the
number of “guard digits” that are necessary to perform the range reduction accurately. By examining
Table 11.2, we can see that − logβ(ε) is always close to the number of digits of the number system
(i.e., p plus the number of exponent digits). This is not surprising: if we assume that the digits of the
fractional parts of the reduced arguments are independent random variables with probability 1/β for
each possible digit, then we can show that the most probable value for − logβ(ε) is close to p plus
the radix-β logarithm of the number of exponent digits. A similar probabilistic argument is used when
examining the possibility of correctly rounding the elementary functions (see Section 12.6).

http://dx.doi.org/10.1007/978-1-4899-7983-4_12

11.4 The Payne and Hanek Reduction Algorithm 211

Table 11.2 Worst cases for range reduction for various floating-point systems and reduction constants C .

β p C emax Worst Case − logβ(ε)

2 24 π/2 127 16367173 × 2+72 29.2

2 24 π/4 127 16367173 × 2+71 30.2

2 24 ln(2) 127 8885060 × 2−11 31.6

2 24 ln(10) 127 9054133 × 2−18 28.4

10 10 π/2 99 8248251512 × 10−6 11.7

10 10 π/4 99 4124125756 × 10−6 11.9

10 10 ln(10) 99 7908257897 × 10+30 11.7

2 53 π/2 1023 6381956970095103 × 2+797 60.9

2 53 π/4 1023 6381956970095103 × 2+796 61.9

2 53 ln(2) 1023 5261692873635770 × 2+499 66.8

2 113 π/2 1024 614799· · · 1953734 × 2+797 122.79

11.4 The Payne and Hanek Reduction Algorithm

Payne and Hanek [381] designed a range reduction algorithm for the trigonometric functions that is
very interesting when the input argument is very large. Assume we wish to compute

y = x − kC, (11.9)

where C = 2−tπ is the constant of the range reduction. Assume x is a binary floating-point number of
precision p, and define ex as its exponent and X as its integral significand, so that x = X × 2ex−p+1,
where X is an integer, 2p−1 ≤ |X | ≤ 2p − 1. Equation (11.9) can be rewritten as

y = 2−tπ

(
2t+ex−p+1

π
X − k

)
. (11.10)

Let us denote
0.v1v2v3v4v5v6v7 · · ·

the infinite binary expansion of 1/π . The beginning of that expansion is

0.01010001011111001100000110110111001001110010001000001010100101001111111

000010011101010111110100011111010100110100110111011100000011011011011000

101001010110011001001111000100001110010000010000011111111001010001011 · · ·

The main idea behind Payne and Hanek’s algorithm is to note that when computing y using (11.10),
we do not need to use too many bits of 1/π for evaluating the product 2t+ex−p+1

π
X :

• the bit vi of 1/π is of weight 2−i . Once multiplied by 2t+ex−p+1X , the term vi2−i will become a
multiple of 2t+ex−p+1−i . Hence, once multiplied, later on, by 2−tπ , it will become a multiple of
2ex−p+1−iπ . Therefore, as soon as i ≤ ex − p, the contribution of bit vi in Equation (11.10) will
result in a multiple of 2π : it will have no influence on the trigonometric functions. So, in the product

2t+ex−p+1

π
X,

212 11 Range Reduction

we can replace the bits of 1/π of rank i less than or equal to ex − p by zeros;
• since |X | ≤ 2p − 1, the contribution of all the bits vi , vi+1, vi+2, vi+3, … in the reduced argument

is less than
2−tπ × 2t+ex−p+1 × 2−i+1 × 2p < 2ex−i+4;

therefore, if we want the reduced argument with an absolute error less than 2−�, we can replace the
bits of 1/π of rank i larger than or equal to 4 + � + ex by zeros.

Therefore, Payne and Hanek’s reduction consists in performing the computation (11.10) with only
bits of rank ex − p + 1 to ex + 3 + � of 1/π . This requires a product of a p-bit number (the number
X · 2t+ex−p+1) by a 3+ p + �-bit number. Such a product is easily computed. The last multiplication
by π in 11.10) does not require more than � − t + 2 bits of π .
Example 15 (Payne and Hanek’s algorithm). Assume that we want to evaluate the sine of x = 1.12 ×
2200, that the constant of the range reduction is π/2 (i.e., t = 1), and that we use an IEEE-754 binary64
arithmetic. Also assume that we choose � = 20. We have,

p = 53

ex = 200

X = x × 2p−1−e = 6755399441055744

Only the digits of rank ex − p + 1 = 148 to ex + 3 + � = 223 of 1/π need to be used in the
multiplication. That is, in (11.10), we can replace

2t+ex−p+1

π

by

G = 12749548807077367524469

273
.

The product G · X equals:
38248646421232102573407

222

= 9119187932308221 + 2000223

222
,

therefore, we choose k = �G ·X� = 9119187932308221, and if we use the best binary64 approximation
to π , say π̂ , for performing the final product, the number

y = 2−t π̂ (G · X − k) (11.11)

is equal to 0.7490975716520949311090 · · · , whereas the “exact” reduced argument is
0.7490981151628151254101545 · · · .One easily checks that this corresponds to an accuracy of slightly
more than 20 bits, as required.

11.5 Modular Range Reduction Algorithms 213

11.5 Modular Range Reduction Algorithms

Now, we assume that we have an algorithm able to compute the function g of the introduction of this
chapter in an interval I of the form [−C/2−ε,+C/2+ε] (we call this case “symmetrical reduction”)
or [−ε,C + ε] (we call this case “positive reduction”), with ε ≥ 0. We still want to find x∗ ∈ I and
an integer k such that

x∗ = x − kC. (11.12)

If ε > 0, then x∗ and k are not uniquely defined by Eq. 11.12. In such a case, the problem of deducing
these values from x is called “redundant range reduction”. For example, ifC = π/2, I = [−1, 1], and
x = 2.5, then k = 1 and x∗ = 0.929203 · · · or k = 2 and x∗ = −0.641592 · · · are possible values.
As in many fields of computer arithmetic, redundancy will allow faster algorithms. It is worth noticing
that with all usual algorithms for evaluating the elementary functions, one can assume that the length of
the convergence domain I is greater than C , i.e., that we can perform a redundant range reduction. For
instance, with the CORDIC algorithm, when performing rotations (see Chapter 9), the convergence
domain is [−1.743 . . . ,+1.743 . . .], which is much larger than [−π/2,+π/2]. With polynomial or
rational approximations, the convergence domain can be enlarged if needed by adding one coefficient
to the approximation.

We first present here an algorithm proposed by Daumas et al. [126, 127]. This algorithm is called
the modular range reduction algorithm (MRR). Then, we present variants and improvements due to
Villalba et al. [464], and to Brisebarre et al. [64].

11.5.1 TheMRR Algorithm

11.5.1.1 MRR: Fixed-Point Reduction

First of all, we assume that the input operands are fixed-point radix-2 numbers, less than 2N . These
numbers have an N -bit integer part and a p-bit fractional part. So, the digit chain:

xN−1xN−2xN−3 . . . x0.x−1x−2 · · · x−p, where xi ∈ {0, 1}

represents the number
N−1∑
i=−p

xi2
i .

We assume that we should perform a redundant range reduction, and we call ν the integer such that
2ν < C ≤ 2ν+1.

Let us define, for i ≥ ν, the number mi ∈ [−C/2,C/2) such that (2i − mi)/C is an integer (in the
following, we write “mi ≡ 2i modC”). The Modular Range Reduction (MRR) algorithm consists of
performing the following steps.

http://dx.doi.org/10.1007/978-1-4899-7983-4_9

214 11 Range Reduction

1. First reduction We compute the number8:

r = (xN−1mN−1) + (xN−2mN−2) + . . . + (xνmν)

+xν−1xν−2xν−3 . . . x0.x−1x−2 · · · x−p.
(11.13)

Since the xi s are equal to 0 or 1, this computation is reduced to the sum of at most N − ν + 1 terms.
The result r of this first reduction is between −(N − ν + 2)C/2 and +(N − ν + 2)C/2. This is a
consequence of the fact that all the ximi have an absolute value smaller than C/2, and

xν−1xν−2xν−3 · · · x0.x−1x−2 · · · x−p

has an absolute value less than 2ν , which is less than C .

2. Second reduction We define the ri s as the digits of the result of the first reduction:

r = r�r�−1r�−2 · · · r0.r−1r−2 · · · ,

where � = �log2((N − ν + 2)C/2)�.
We also define r̂ as the number obtained by truncating the binary representation of r after the

− log2(ε)�th fractional bit, that is:

r̂ = r�r�−1r�−2 · · · r0.r−1r−2 · · · r�log2(ε)�;

r̂ is an m-digit number, where the number

m = �log2((N − ν + 2)C/2)� +
− log2(ε)�

is very small in all practical cases (see the following example). If we define k as9 �r̂/C� (resp.,
�r̂/C�) then r − kC will belong to [−C/2 − ε,+C/2 + ε] (resp., [−ε,C + ε]); that is, it will be
the correct result of the symmetrical (resp., positive) range reduction.

Proof

1. In the symmetrical case.We have |k − r̂/C | ≤ 1/2; therefore |r̂ − kC | ≤ C/2. From the definition
of r̂ , we have

|r − r̂ | ≤ 2�log2(ε)� ≤ ε;

therefore:

|r − kC | ≤ C

2
+ ε.

2. In the positive case. We have k ≤ r̂/C < k + 1; therefore 0 ≤ r̂ − kC < C ; therefore −ε ≤
r − kC < C + ε.

8This formula looks correct only for positive values of ν. It would be more correct, although maybe less clear, to write:
r = ∑N−1

i=ν ximi + ∑ν−1
i=−p xi2

i .
9We denote �x� the integer that is nearest to x .

11.5 Modular Range Reduction Algorithms 215

Since k can be deduced from r̂ , this second reduction step will be implemented by looking up the
value kC in a 2m-bit entry table at the address constituted by the bits of r̂ .

During this reduction process, we perform the addition of N − ν + 1 terms. If these terms (namely,
the mi s and the value kC of the second reduction step) are represented in fixed-point with q fractional
bits (i.e., the error on each of these terms is bounded by 2−q−1), then the difference between the result
of the computation and the exact reduced argument is bounded by 2−q−1(N −ν +1). In order to obtain
the reduced argument x∗ with the same absolute accuracy as the input argument x (i.e., p significant
fixed-point fractional digits), one needs to store themi s and the values kC with p+
log2(N − ν + 1)�
fractional bits.
Example 16 Assume we need to compute sines of angles between −220 and 220, and that the algo-
rithm used with the reduced arguments is CORDIC (see Chapter 9). The convergence interval I is
[−1.743, · · · ,+1.743 · · ·]; therefore (since 1.743 > π/2) we have to perform a symmetrical redun-
dant range reduction, with C = π and ε = +1.743 · · · − π/2 = 0.172 · · · > 2−3.We immediately get
the following parameters.

• N = 20 and ν = 2.
• The first range reduction consists of the addition of 19 terms.
• r ∈ [−10π,+10π]; therefore, since 10π < 25, the second reduction step requires a table with

5 +
− log2 ε� = 8 address bits.
• To obtain the reduced argument with p significant fractional bits, one needs to store the mi s and

the values kC with p + 5 bits.

Assume we compute sin(355). The binary representation of 355 is 101100011. Therefore during the
first reduction, we have to compute m8 + m6 + m5 + m1 + 1, where:

• m8 = 256 − 81 × π = 1.530995059226747684 · · ·
• m6 = 64 − 20 × π = 1.1681469282041352307 · · ·
• m5 = 32 − 10 × π = 0.5840734641020676153 · · ·
• m1 = 2 − π = −1.141592653589793238462 · · · .
We get m8 + m6 + m5 + m1 + 1 = 3.1416227979431572921 · · · . The second reduction consists in
subtracting π from that result, which gives

0.00003014435336405372 · · · ,

the sine of which is 0.000030144353359488449 · · · . Therefore

sin(355) = −0.000030144353359488449 · · · .

11.5.1.2 MRR: Floating-Point Reduction

Now assume that the input value x is a radix-2 floating-point number:

x = x0.x1x2x3 · · · xn−1 × 2exponent .

The range reduction can be performed exactly as in the fixed-point case. During the first reduction, we
replace the addition of the terms mi by the addition of the terms mexponent−i ≡ 2exponent−i modC .
During the reductionprocess,we just addnumbers (themi s) of the sameorder ofmagnitude, represented
in fixed-point. This helps to make the reduction accurate. One can easily show that ifmi s and the terms

http://dx.doi.org/10.1007/978-1-4899-7983-4_9

216 11 Range Reduction

kC of the second reduction are represented with q fractional bits, then the absolute error on the reduced
argument is bounded by (n + 1)2−q−1. If we want a reduced argument with at least t significant bits,
and if the number − log2(ε) found using the algorithm presented in Section 11.3.2 is less than some
integer j , then q = j + t − 1 + ⌈

log2(n + 1)
⌉
is convenient.

11.5.1.3 Architectures for theMRR algorithm

The first reduction consists of adding N − ν + 1 numbers. This addition can be performed in a
redundant number system in order to benefit from the carry-free ability of such a system, and/or with
a tree of adders. This problem is obviously closely related to the problem of multiplying two numbers
(multiplying x = ∑q

i=0 xi2
i by y = ∑q

j=0 yi2
j reduces to computing the sum of the q + 1 terms

y j2 j x). Therefore, almost all the classical architectures proposed in the multiplication literature (see
for instance [53, 121, 215, 358, 446, 468]), can be slightly modified in order to be used for range
reduction. This similarity between modular range reduction and multiplication makes it possible to
perform both operations with the same hardware, which can save some silicon area on a circuit. To
accelerate the first reduction, we can perform a Booth recoding [47], or merely a modified Booth
recoding [244], of x . This would give a signed digit (with digits −1, 0, and 1) representation of x with
at least half of the digits equal to zero. Then, the number of terms to be added during the first reduction
would be halved.

A modified version of the MRR algorithm that works “on the fly” was introduced by Lefèvre and
Muller [309].

11.5.2 The Double ResidueModular Range Reduction (DRMRR) Algorithm

The major drawback of the MRR algorithm is the need to perform a second reduction step. Villalba,
Lang, andGonzalez [464] find an ingeniousway of solving that problem, inspired fromdigit-recurrence
division algorithms. Let us assume that we use fixed-point arithmetic (the floating-point case is not
so different), and that C is the constant of the range reduction. Their double residue modular range
reduction (DRMRR) algorithm is as follows. We start from the initial argument

xN−1xN−2xN−3 . . . x0.x−1x−2 · · · x−p, where xi ∈ {0, 1}.

Instead of adding the constants mi = xi · (2i mod C), Villalba, Lang, and Gonzalez consider two
different constants for each value of i :

• m+
i is the number of the form 2i − k · C such that10 0 ≤ m+

i < C and k is an integer;
• m−

i is the number of the form 2i − k · C such that −C ≤ m−
i < 0 and k is an integer.

At step i of the range reduction algorithm, the decision to use m+
N−i or m

−
N−i is taken by examining

the sign of the sum Ri−1 of the already accumulated terms. More precisely, we start from R0 = 0, and
for i = 1, . . . , N + p, we iterate

Ri =
⎧⎨
⎩

Ri−1 + xN−i · m−
N−i if Ri−1 ≥ 0,

Ri−1 + xN−i · m+
N−i if Ri−1 < 0,

(11.14)

10In all practical cases, C is a transcendental number, so that m+
i and m−

i are never equal to −C , 0, or +C .

11.5 Modular Range Reduction Algorithms 217

The reduced argument is RN+p. One easily checks that it is between −C and +C . Villalba, Lang, and
Gonzalez also suggest a redundant variant of their algorithm that is of much interest for a hardware
implementation: assuming that the terms Ri are represented in redundant (say, carry-save or borrow-
save) representation, we make a decision similar to (11.14) on the basis of a small window of digits
of Ri−1 only. See [464] for more details. A variant of their algorithm more suitable for pipelined
computation is proposed in [251]. The DRMRR algorithm is compared to various range reduction
algorithms in [251]. A circuit implementation of a variant of DRMRR is presented in [390].

11.5.3 High Radix Modular Reduction

Brisebarre, Defour, Kornerup, Muller, and Revol [64, 147] present an algorithm for dealing with
arguments of “reasonable size” (for small arguments, variants of Cody and Waite’s algorithm are very
efficient, and for very large arguments they suggest to use Payne and Hanek’s algorithm). Their method
can be viewed as a high radix modular algorithm: the input binary64 argument is split into eight 8-bit
parts, and each part is used to address tables of binary64 numbers. See [64] for more details.

12Final Rounding

12.1 Introduction

This chapter is devoted to the problems of preserving monotonicity and always getting correctly
rounded results when implementing the elementary functions in floating-point arithmetic.

Preserving monotonicity is important. That is, if a function f is monotonically increasing (resp.,
decreasing) over an interval, then its computer approximation must also be monotonically increasing
(resp., decreasing). As pointed out by Silverstein et al. [425], monotonicity failures can cause severe
problems, for example, in evaluating divided differences.

Requiring correctly rounded results not only improves the accuracy of computations: it is the only
way to make numerical software portable. Portability would need a standardization of the elementary
functions, and a standard cannot be widely accepted if some implementations are better than the
standard. Moreover, as noticed by Agarwal et al. [2], correct rounding facilitates the preservation of
useful mathematical properties such as monotonicity,1 symmetry,2 and important identities. And yet,
in some very rare cases, correct rounding may prevent satisfying the range limits requirement [2] (see
Chapter1). For instance, assume that we use an IEEE-754 single-precision/binary32 arithmetic. The
machine number which is closest to π/2 is

� = 13176795

8388608
= 1.57079637050628662109375 >

π

2
.

If the arctangent function is implemented with the round-to-nearest (ties to even or to away) rounding
function, then the computedvalue of the arctangent of anynumber greater thanor equal to 62919776will
be �, and therefore will be larger than π/2. A consequence of that (if the tangent is correctly rounded
too) is that for any single-precision number x ≥ 62919776, the computed value of tan(arctan(x)),
namely

RN [tan (RN (arctan(x)))]

will be equal to
−22877332 = tan(�).

1Rounding functions are increasing functions, therefore, for any rounding function ◦(·), if the “exact function” f is
monotonic, and if correct rounding is provided, then the “computed function” f—equal to ◦(f) is monotonic too.
2Correct rounding preserves symmetry if we round to the nearest or toward zero, that is, if the rounding function itself
is symmetrical.

© Springer Science+Business Media New York 2016
J.-M. Muller, Elementary Functions, DOI 10.1007/978-1-4899-7983-4_12

219

http://dx.doi.org/10.1007/978-1-4899-7983-4_1

220 12 Final Rounding

Reference [146] presents some suggestions on the standardization of elementary functions in
floating-point arithmetic. The 1985 version of the IEEE 754 Standard for Floating-Point Arithmetic
did not specify anything concerning the elementary function. This was because it has been believed for
years that correctly rounded functions would be much too slow at least for some input arguments. The
situation changed since then and the 2008 version of the standard recommends (yet does not require)
that some functions be correctly rounded:

ex , ex − 1, 2x , 2x − 1, 10x , 10x − 1,
ln(x), log2(x), log10(x), ln(1 + x), log2(1 + x), log10(1 + x),√

x2 + y2, 1/
√
x, (1 + x)n, xn, x1/n(n is an integer), x y,

sin(πx), cos(πx), arctan(x)/π, arctan(y/x)/π,

sin(x), cos(x), tan(x), arcsin(x), arccos(x), arctan(x), arctan(y/x),
sinh(x), cosh(x), tanh(x), sinh−1(x), cosh−1(x), tanh−1(x).

In this chapter, we want to implement a function f in a radix-2 floating-point number system of
precision p (i.e., with p-bit significands), and exponents between emin and emax. Let x be a machine
number. We assume that we first compute an approximation F(x) of f (x) with extra accuracy, so
that an error bounded by some ε is committed. After that, this intermediate result is rounded to the
precision-p target format, according to the active rounding function. Our goal is to estimate what value
of ε must be chosen to make sure that the implementation satisfies the monotonicity criterion, or that
the results are always equal to what would be obtained if f (x) were first computed exactly, and then
rounded.

12.2 Monotonicity

Without loss of generality, let us assume that the function f to be computed is increasing in the
considered domain, and that its approximation3 F is such that an absolute error bounded by ε is made.
Let x be a machine number. We have

f (x + ulp(x)) > f (x).

The computed value F (x + ulp(x)) is larger than or equal to f (x + ulp(x)) −ε, and F(x) is less than
or equal to f (x) + ε. Therefore, to make sure that

F (x + ulp(x)) ≥ F(x)

it is sufficient that f (x + ulp(x)) − f (x) ≥ 2ε. There exists a number ξ ∈ [
x, x + ulp(x)

]
such that

f (x + ulp(x)) − f (x) = ulp(x) × f ′(ξ).

Therefore if

ε ≤ 1

2
ulp(x) × min

t∈[x,x+ulp(x)]
∣
∣ f ′(t)

∣
∣ , (12.1)

then the obtained implementation of f will be monotonic. Let us examine an example.

3Computed with a precision somewhat larger than the “target precision.”.

12.2 Monotonicity 221

Example 17 (Monotonic evaluation of sines) Assume that we want to evaluate the sine function on
[−π/4,+π/4]. If f (x) = sin(x), then

min[−π/4,+π/4]
∣
∣ f ′∣∣ = cos

π

4
=

√
2

2
.

Therefore if

ε ≤
√
2

4
× ulp(x),

then condition (12.1) is satisfied. For x ∈ [−π/4,+π/4], we obviously have
ulp(sin(x))

ulp(x)
∈

{
1

2
, 1

}
.

Therefore if
ε

ulp(sin(x))
≤

√
2

4
,

then condition (12.1) is satisfied. This means that if the error of the approximation is less than 0.354
ulps of the target format, then the approximation is monotonic. Roughly speaking, an approximation
of the sine function on [−π/4,+π/4] that is accurate to p + 2 bits of precision will necessarily be
monotonic when rounded to p bits of precision [188].

Ferguson and Brightman [188] gave techniques that can be used to prove that an approximation is
monotonic. Their main result is the following theorem.

Theorem 20 (Ferguson and Brightman). Let f (x) be a monotonic function defined on the interval
[a, b]. Let F(x) be an approximation of f (x) whose associated relative error is less than or equal to
ε, ε < 1. If for every pair m < m+ of consecutive machine numbers in [a, b]

ε <
| f (m+) − f (m)|
| f (m+)| + | f (m)| ,

then F(x) exhibits on the set of machine numbers in [a, b] the same monotonic behavior exhibited by
f (x) on [a, b].

12.3 Correct Rounding: Presentation of the Problem

We assume that from any real number x and any integer m (with m > p), we are able to compute an
approximation to f (x)with an error in its significand y less than or equal to 2−m . The computation can
be carried out using a larger fixed-point or floating-point format, for instance with one of the algorithms
presented in the previous chapters this book.

Therefore the problem is to get a precision-p floating-point correctly rounded result from the
significand y of an approximation of f (x), with error ±2−m . One can easily see that this is not
possible if y has the form:

222 12 Final Rounding

• in rounding to the nearest mode,

m bits
︷ ︸︸ ︷
1.xxxxx · · · xxx︸ ︷︷ ︸

p bits

1000000 · · · 000000 xxx · · ·

or

m bits
︷ ︸︸ ︷
1.xxxxx · · · xxx︸ ︷︷ ︸

p bits

0111111 · · · 111111 xxx · · · ;

• in rounding toward +∞, or toward −∞ modes,

m bits
︷ ︸︸ ︷
1.xxxxx · · · xxx︸ ︷︷ ︸

p bits

0000000 · · · 000000 xxx · · ·

or

m bits
︷ ︸︸ ︷
1.xxxxx · · · xxx︸ ︷︷ ︸

p bits

1111111 · · · 111111 xxx · · · .

This problem is known as the Table Maker’s Dilemma [206]. The name Table Maker’s Dilemma
(TMD) was coined by Kahan [267].

Let us denote 	 the rounding function. We will call a breakpoint a value z where the rounding
function changes, that is, if t1 and t2 are real numbers satisfying t1 < z < t2, then 	(t1) < 	(t2).

For the “directed” rounding functions (i.e., toward +∞, −∞ or 0), the breakpoints are the floating-
point numbers. For the rounding to the nearest rounding functions, they are the exact middle of two
consecutive floating-point numbers. The TMD occurs for function f at point x (x is a floating-point
number) if f (x) is very close to a breakpoint.

For example, assuming a floating-point arithmetic with 6-bit significands,

sin(11.1010) = 0.0 111011 01111110 · · · ,

a problem may occur with rounding to the nearest if the sine function is not computed accurately
enough.

The worst case for the natural logarithm in the full IEEE-754 binary64/double-precision range [308]
is attained for

x = 1.011000101010100010000110000100110110001010
0110110110 × 2678

whose logarithm is

log x =
53 bits

︷ ︸︸ ︷
111010110.0100011110011110101 · · · 110001

000000000000000000 · · · 000000000000000︸ ︷︷ ︸
65 zeros

1110...

12.3 Correct Rounding: Presentation of the Problem 223

This is a “difficult case” with a directed rounding function since it is very near a floating-point number.
One of the two worst cases for radix-2 exponentials in the full double-precision range [08] is

1.1110010001011001011001010010011010111111
100101001101 × 2−10

whose radix-2 exponential is

53 bits
︷ ︸︸ ︷
1.0000000001010011111111000010111 · · · 0011

0 11111111111111111 · · · 1111111111111111︸ ︷︷ ︸
59 ones

0100 · · ·

It is a difficult case for rounding to the nearest, since it is very close to the middle of two consecutive
floating-point numbers.

Ziv’s “multilevel strategy” [481], illustrated in Figure12.1, consists of starting to approximate the
function with relative error ±2−m0 , where m0 is small but larger than p (say, m0 ≈ p+ 10 or p+ 20).
In most cases,4 that approximation will suffice to get the correctly rounded result. If it does not suffice,
then another attempt is made with a significantly larger value of m, say m1. Again, in most cases,

m = n+ 20

m = n+ 40

m = 2n

m =?

correctly rounded result

su
cc
es
s

failure

suc
ces

s

failure

succ
ess

failure

· · ·
succes

s

failure

Figure 12.1 Ziv’s multilevel strategy.

4The probability of a failure is about one over one million with m0 = p + 20.

224 12 Final Rounding

the new approximation will suffice. If it does not, further approximations are computed with larger
and larger values of m. This strategy was implemented in the LIBULTIM library (see Section14.3).
Of course, when m increases, computing the approximations requires more and more time, but the
probability that a very large m is needed is so small that in practice, the average computation time is
only slightly larger than the time required with m = m0. Our problem is to know if the process always
ends (i.e., if there is a maximum value for m), and if this is the case, to know the way in which the
process can be slow (i.e., to estimate the maximum possible value of m). Also, we must have a fast
way of deciding at execution time if an approximation suffices to get a correctly rounded result. We
will tackle this issue in Section12.4. If a maximum value of m exists, it will be called the hardness
to round, and the corresponding values of x will be called hardest-to-round points (HR points). More
formally,

Definition 4 (Hardness to round.) The hardness to round for function f in interval [a, b] is the
smallest integer m such that for all floating-point numbers x ∈ [a, b], either f (x) is a breakpoint or
the infinitely precise significand of f (x) is not within 2−m from a breakpoint.

In 1882, Lindemann showed that the exponential of an algebraic number5 (possibly complex)
different from zero is not algebraic [26]. The machine numbers are rational; thus they are algebraic.
From this we deduce that the sine, cosine, exponential, or arctangent of a machine number different
from zero cannot be a breakpoint, and the logarithm of a machine number different from 1 cannot be a
breakpoint. There is a similar property for functions 2x , 10x , log2(x) and log10(x), since if a machine
number x is not an integer, then 2x and 10x do not have a finite binary representation. Function x y has
many breakpoints, but they are known, so that they can be handled separately if needed [302]. There
is a similar result for some of the most frequent algebraic functions [254] (see Section12.7.1 for a
definition of these functions).

Therefore, with the most common functions, for any x (we do not consider the trivial cases such
as exp(0) = 1 or ln(1) = 0), there exists m such that the TMD cannot occur. Since there is a finite
number of machine numbers x , there exists a value of m such that for all x the TMD does not occur.
Unfortunately, this reasoning does not allow us to know what is the order of magnitude of this value
of m.

In the following, we are going to try to estimate this value of m. Since the cost of evaluating the
elementary functions increases with m, we have to make sure that m is not too large. Before that, let
us explain how we can quickly check if we have enough information to guarantee a correctly rounded
result.

12.4 Ziv’s RoundingTest

Assume that the chosen rounding function is round-to-nearest (ties to even or to away), noted RN,
and that we wish to implement function f with correct rounding in radix-2, precision-p floating-
point arithmetic. We assume that f (x) is not exactly halfway between two consecutive floating-point
numbers. As explained above, with the most common functions, this does not happen, except in rare,
known in advance, cases. We assume that we have been able to build an approximation to y = f (x)

5An algebraic number is a root of a nonzero polynomial with integer coefficients.

http://dx.doi.org/10.1007/978-1-4899-7983-4_14

12.4 Ziv’s Rounding Test 225

with relative error significantly less than 2−p, represented by a double-word number (yh, y�), where
yh and y� are precision-p floating-point numbers. This can be done using a technique similar to the
one presented in Example 7, in Section5.3.3. Hence, we assume

yh + y� = y · (1 + α), with |α| ≤ ε. (12.2)

where ε is a known relative error bound (assumed significantly less than 2−p, otherwise it would make
no sense returning a double word number, and it would be hopeless trying to return a correctly rounded
result). We assume that y� is small enough in front of yh , so that yh = RN(yh + y�), otherwise, it
suffices to use the Fast2Sum algorithm to get into this situation. We wish to find some way of very
quickly checking whether yh = RN(y) or not. If we cannot make sure that yh = RN(y), we will
have to compute another, more accurate, approximation to y. In Ziv’s Accurate Portable Mathlib (or
libultim) library of elementary functions [481], the test being performed to determine if we can be
certain that yh = RN(y) is the following one:

Is yh = RN (yh + RN(y� · e))?

when e is some cleverly chosen “magic constant”. In [135], de Dinechin et al. analyze that test, and
show the following result

Theorem 21 Assume that yh is a floating-point number such that 1
4 ulp (yh) is in the normal range,

and that ε is less than 1/(2p+1 +1). Also assume that yh = RN(yh + y�) and |(yh + y�)− y| < ε · |y|,
with ε < 2−p−1. If

e ≥ 1 + 2−p

1 − ε − 2p+1ε

then yh = RN (yh + RN(y� · e)) implies yh = RN(y).

Hence a natural choice for the magic constant e is

RU

(
1 + 2−p

1 − ε − 2p+1ε

)
.

Choosing a larger value would lead to too many “wrong alarms”, i.e., cases for which yh �=
RN (yh + RN(y� · e)) and yet yh = RN(y), and choosing a smaller value could lead to incorrect
results.

12.5 Some Experiments

Let us now go back to our problem of estimating what is the smallest m such that if the approximation
to f (x) is with error less than or equal to 2−m , then rounding the approximation is equivalent to
rounding the exact result. Schulte and Swartzlander [417, 418] proposed algorithms for producing
correctly rounded results for the functions 1/x , square root, 2x , and log2 x in binary32 arithmetic. To
find the correct value of m, they performed an exhaustive search for p = 16 and p = 24. For p = 16,
they found m = 35 for log2 and m = 29 for 2x , and for p = 24, they found m = 51 for log2 and
m = 48 for 2x . One would like to extrapolate those figures and findm ≈ 2p. To check that assumption,
an exhaustive search was conducted, for some functions and domains, assuming binary64 arithmetic,
in the Arénaire project of LIP laboratory (Lyon, France), using algorithms originally designed by

http://dx.doi.org/10.1007/978-1-4899-7983-4_5

226 12 Final Rounding

Lefèvre [305, 306]. Before giving the obtained results, let us explain why in practice we always find
that the required value of m is around 2p (or slightly above 2p).

12.6 A“Probabilistic”Approach to the Problem

What we are going to do in this section is not rigorous: we are going to apply probabilistic concepts to
a purely deterministic problem. What we want is just to understand why we get m ≈ 2p in practice.
To simplify the presentation, we assume rounding to the nearest only. Generalization to other rounding
modes is straightforward. Such a probabilistic study has been done by Dunham [163] and by Gal
and Bachelis [199]. Stehlé and Zimmermann [434] also use this kind of probabilistic argument to
implement a variant of Gal’s Accurate Tables Method (see Chapter6).

Let f be an elementary function. We assume in the following that when x is a precision-p floating-
point number, the bits of f (x) after the pth position can be viewed as if they were random sequences
of zeroes and ones, with probability 1/2 for 0 as well as for 1. This can be seen as an application of the
results of Feldstein and Goodmann [185], who estimated the statistical distribution of the trailing digits
of the variables of a numerical computation. Formany functions, this assumptionwill not be reasonable
for very small arguments because of the simplicity of their Taylor expansions6 (for instance, if x is
small, then exp(x) is very close to x+1). The case of small arguments must be dealt with separately: we
will deal with it in Section12.8.1.We also assume that the bit patterns (after position p) obtained during
computations of f (x1) and f (x2) for different values of x1 and x2 can be considered “independent.”
We made the same assumption in Chapter6 to estimate the cost of building “accurate tables.” The
infinitely precise significand7 y of f (x) has the form:

y = y0.y1y2 · · · yp−1

kbits
︷ ︸︸ ︷
01111111 · · · 11 xxxxx · · ·

or

y = y0.y1y2 · · · yp−1

kbits
︷ ︸︸ ︷
10000000 · · · 00 xxxxx · · ·

with k ≥ 1. What we want to estimate is the maximum possible value of k. That value, added with p,
will give the value of m that must be chosen. From our probability assumptions, the “probability” of
getting k ≥ k0 is 21−k0 . We assume that there are ne different possible exponents.8 Therefore there
are N = 2 × ne × 2p−1 floating-point numbers. The probability of having at least one input number
leading to a value of k greater than or equal to k0 is:

Pk0 = 1 −
[
1 − 21−k0

]N
. (12.3)

6This should not be viewed as a problem since this will allow us to easily return correctly rounded results for small
arguments (see Tables12.4 and 12.5).
7See Section2.1.4 for a definition.
8That number ne is not necessarily the number of possible exponents of the considered floating-point format. It is the
number of different exponents of the set of the input values for which we want to estimate what largest value of k will
appear. For instance, if f is the cosine function and we only want to know what will be the largest value of k for input
values between 0 and π/2, we will not consider exponents larger than 1.

http://dx.doi.org/10.1007/978-1-4899-7983-4_6
http://dx.doi.org/10.1007/978-1-4899-7983-4_6
http://dx.doi.org/10.1007/978-1-4899-7983-4_2

12.6 A“Probabilistic”Approach to the Problem 227

Now we are looking for the value k0 such that the probability of getting at least one value of k
greater than k0 (among the N different floating-point results) should be less than 1/2. Pk0 ≤ 1/2 as

soon as 1/2 ≤ [
1 − 21−k0

]N
, that is, as soon as

ln
1

2
≤ N × ln

[
1 − 21−k0

]
. (12.4)

Define t as 21−k0 . If t is small enough, we can approximate ln
[
1 − 21−k0

] = ln(1−t) by−t . Therefore
(12.4) is roughly equivalent to

Nt − ln 2 ≤ 0.

Therefore Pk0 ≤ 1/2 as soon as 21−k0 ≤ ln 2/N , that is, when:

k0 ≥ 1 − ln(ln 2)

ln 2
+ log2 N � 1.529 + log2 N ;

that is,
k0 ≥ p + log2(ne) + 1.529. (12.5)

Therefore if we only consider a small number of values of ne (which is the case in practice for many
elementary functions9), the maximum value of k encountered will be (on average) slightly greater than
p. Since the value ofm that must be chosen is equal to p plus the maximum value of k, we deduce that
in practice, m must be slightly greater than 2p. The probabilistic assumptions that we used cannot be
proved, but we can try to check them: Table12.1 shows the actual and expected (from our probabilistic
assumptions) number of occurrences of the different values of k for sin x (with 1 ≤ x < 2) and p = 24.

Until we get sure bounds10 on m, our probabilistic assumptions can help to design algorithms that
are very likely to always return correctly rounded results. Let us examine two examples.

• Assume that wewant to evaluate exponentials of binary64 floating-point numbers, and let us pretend
that we do not already know the hardest-to-round points.11 The largest possible exponent for the
input value is 9 (since e2

10
is too large to be representable). Moreover, if a number x has an absolute

value less than 2−53, then one can easily deduce the value that must be returned (1 in round-to-
nearest mode, 1 + ulp(1) if x > 0 in round toward +∞ mode, etc., see Tables12.4 and 12.5).
Therefore we must consider 63 possible exponents. Thus the number N of floating-point numbers
to be considered in (12.3) is 2 × 63 × 252. If we apply (12.3), we find that

9The exponential of a large number is an overflow, whereas the exponential of a very small number, when rounded to
the nearest is 1. Thus there is no need to consider many different exponents for the exponential function. Concerning the
trigonometric functions, I think that a general-purpose implementation should ideally provide correctly rounded results
whenever the function is mathematically defined. And yet, many may argue that the sine, cosine, or tangent of a huge
number is meaningless and I must recognize that in most cases, it does not make much sense to evaluate a trigonometric
function of a number with a large exponent, unless we know for some reason that that number is exact. Maybe one day
this problem will be solved by attaching an “exact” bit to the representation of the numbers themselves, as suggested for
instance by Gustafson [211].
10For the IEEE-754 binary64/double-precision format, we have obtained the bounds for many functions and domains
(see Section12.8.4). Getting tight bounds for much higher precisions seems out of reach. And yet, recent results tend to
show that getting loose (yet still of interest) bounds for “quad”/binary128 precision might be feasible.
11In fact, we know them: see Table12.6.

228 12 Final Rounding

Table 12.1 Actual and
expected numbers of digit
chains of length k of the
form 1000 · · · 0 or
0111 · · · 1 just after the
p-th bit of the infinitely
precise significand of sines
of floating-point numbers
of precision p = 24
between 1/2 and 1 [356].

k Actual number of
occurrences

Expected number
of occurrences

1 4193834 4194304

2 2098253 2097152

3 1048232 1048576

4 522560 524288

5 263414 262144

6 131231 131072

7 65498 65536

8 32593 32768

9 16527 16384

10 8194 8192

11 4093 4096

12 2066 2048

13 1063 1024

14 498 512

15 272 256

16 141 128

17 57 64

18 32 32

19 25 16

20 14 8

21 6 4

22 5 2

23 0 1

– if m = 113 (i.e., k = 60), then the probability of having incorrectly rounded values is about 0.6;
– if m = 120, then the probability of having incorrectly rounded values is about 0.007.

Concerning this function, theworst cases are known (see Table12.6). For double-precision/binary64
input numbers of absolute values larger than 2−30,m = 114 suffices. For input numbers of absolute
value less than 2−30, our probabilistic assumptions are no longer valid.

• If we want to evaluate sines and cosines of IEEE-754 binary64 floating-point numbers, the largest
possible exponent for the input value is 1023, and if a number x has an absolute value less than
2−26 one can easily deduce the values that must be returned (see Tables12.4 and 12.5). Therefore
we must consider 1051 possible exponents. Thus N equals 2 × 1051× 252. If we apply (12.3), we
find that

– if m = 120 (i.e., k = 67), then the probability of having incorrectly rounded values is about
0.12;

– if m = 128 (i.e., k = 75), then the probability of having incorrectly rounded values is about
0.0005.

12.6 A“Probabilistic”Approach to the Problem 229

Concerning these functions,we still do not knowwhat is theworst case in the full IEEE-754 binary64
range. We only know worst cases for input values of absolute value less than around 1.570796311
for the cosine function, and less than around 3.141357 for the sine function (see Table12.11).

We must understand that in the preceding examples “the probability of having incorrectly rounded
values” does not mean “given x , the probability that exp(x) or sin(x) is not correctly rounded.” This
last probability is much smaller (in the given cases, it is null or of the order of magnitude of 1/N).
What we mean is “the probability that among all the N possible values, at least one is not correctly
rounded.”

12.7 Upper Bounds onm

The probabilistic arguments of the preceding section make it possible to have an intuition of the
accuracy required during the intermediate computation to get a correctly rounded result. They do not
constitute a proof. An exhaustive search has been done for the binary32 format (p = 24). Such an
exhaustive search is partly completed for binary64 (p = 53) [308, 310] (see Section12.8.4), and a few
cases have been found for the decimal64 format [312], and the Intel double-extended precision [433].
However, for larger precisions (e.g., binary128), an exhaustive search is far beyond the abilities of the
most powerful current computers. To manage such cases, there is some hope, concerning methods that
will give loose (yet, hopefully, still of interest) bounds in the forthcoming years. In the meanwhile, let
us now try to check if there are results from number theory that can help us. Although they are not
really the focus of this book, we first give some results concerning the algebraic functions. Then, we
deal with the transcendental functions.

12.7.1 Algebraic Functions

A function f is an algebraic function if there exists a nonzero bivariate polynomial P with integer
coefficients such that for all x in the domain of f we have P(x, f (x)) = 0. Examples of algebraic
functions are x2 + 4,

√
x , x5/4. Iordache and Matula [248] gave some bounds on m for the division,

the square root, and the square root reciprocal functions. Lang and Muller [295] provided bounds for
some other functions. Some of their results are summarized in Table12.2. Brisebarre and Muller give
bounds for functions xr , where r is a rational number [66].

Although the values given in Table12.2 are not always optimal, they are small enough to be of
practical use. Unfortunately, aswe are going to see, this is not the casewith the transcendental functions.

12.7.2 Transcendental Functions

A transcendental function is a function that is not algebraic. Almost all functions dealt with in this
book (sine, cosine, exponentials, and logarithms of bases 2, e, and 10, hyperbolic functions…) are
transcendental.

To the knowledge of the author, the best current result is the following [360]. Before presenting it,
let us define some notation: if α = a/b is a rational number, with b > 0 and gcd(a, b) = 1, we will
define H(α) as max{|a|, b}.

230 12 Final Rounding

Table 12.2 Some bounds [295] on the size of the largest digit chain of the form 1000 · · · 0 or 0111 · · · 1 just after the
p-th bit of the infinitely precise significand of f (x) (or f (x, y)), for some simple algebraic functions. An upper bound
on m is p plus the number given in this table.

Function Size of the largest chain 01111 · · · 1 Size of the largest chain 10000 · · · 0
Reciprocal = p (p odd) = p

≤ p (p even)

Division = p = p

Square root = p + 2 = p

1/
√
x ≤ 2p + 2 ≤ 2p + 2√

x2 + y2 with 1
2 ≤ x, y < 1 = p + 2 = p + 2

x√
x2+y2

with 1
2 ≤ x, y < 1 ≤ 3p + 3 ≤ 3p + 3

Theorem 22 (Y. Nesterenko and M. Waldschmidt [360], specialized here to the rational numbers)
Let α and α′ be rational numbers. Let θ be an arbitrary nonzero real number. Let A, A′, and E be
positive real numbers with12

E ≥ e, A ≥ max (H(α), e) , A′ ≥ H(α′).

Then ∣
∣eθ − α

∣
∣ + |θ − α′| ≥

exp
{
−211 ·

(
ln A′ + ln ln A + 2 ln(E · max{1, |θ |}) + 10

)

·
(
ln A + 2E |θ | + 6 ln E

)
·
(
3.7 + ln E

)
·
(
ln E

)−2}
.

Let us try to apply this theorem to find an upper bound onm for the computation of the exponentials
of numbers of absolute value less than ln(2) in precision-p binary floating-point arithmetic. We will
consider numbers of absolute value larger than 2−p−1 only (since if |x | ≤ 2−p−1, RN(exp(x)) = 1,
see Section12.8.1). Hence we will apply Theorem 22 with the following parameters:

• α′ = θ , and |θ | ∈ [
2−p−1, ln(2)

]
.As a consequence, the possible irreducible rational representations

of |θ | = |α′| with largest numerator and denominator are of the form

p bits
︷ ︸︸ ︷
1xxx · · · x

22p
,

so that H(α′) ≤ 22p;
• α is a midpoint between 1/2 and 2, hence it is of the form

p+1 bits
︷ ︸︸ ︷
1xxx · · · x

2p
or

p+1 bits
︷ ︸︸ ︷
1xxx · · · x

2p+1

so that H(α) ≤ 2p+1;
• E = e.

12Here, e = 2.718 · · · is the base of the natural logarithm.

12.7 Upper Bounds onm 231

We therefore obtain
∣
∣eθ − α

∣
∣ ≥

exp
{
−211 ·

(
2p ln(2) + ln(p + 1) + ln(ln(2)) + 12

)

·
(
(p + 1) ln(2) + 2e ln(2) + 6

)
· 4.7

}
,

i.e., ∣
∣eθ − α

∣
∣ ≥

2
{
−991.7·

(
2p ln(2)+ln(p+1)+ln(ln(2))+12

)
·
(
(p+1)+2e+ 6

ln(2)

)}
,

therefore,

m ≤
⌈
−991.7 · (2p ln(2) + ln(p + 1) + ln(ln(2)) + 12

)

·((p + 1) + 2e + 6
ln(2)

)⌉

≤
⌈
1375p2 + 992p ln(p + 1) + 32287p + 14968 ln(p + 1) + 174124

⌉
.

Table12.3 gives the values of m obtained using this result, for various values of p.
Looking at that table, we may believe that in rare cases, to guarantee correct rounding in bi-

nary64 arithmetic, we may need to compute exponentials or logarithms with a number of bits whose
order of magnitude is a few millions (around 17 millions for exponentials of quad-precision num-
bers less than ln(2)), which is feasible but quite expensive: as I am writing these lines, on a good
laptop, using algorithms based on the arithmetic-geometric mean (AGM, see Chapter7), computing
exponentials of floating-point numbers with 10 million bits of accuracy takes around 20 seconds.
However, we must keep in mind that, following our probabilistic study, the existence of such cases
is extremely unlikely. For instance, in binary64 arithmetic, we are almost certain that it suffices to
evaluate the functions with an intermediate accuracy that is around 120 bits. Hence, although of great
theoretical interest, Theorem 22 is rather disappointing for our purpose. The only way to solve this
problem is to actually compute the hardest-to-round cases, at least for the most common functions and
domains, and/or to isolate somedomains (typically, near 0, see Section12.8.1)where correct rounding is
straightforward.

Table 12.3 Upper bounds on m for various values of p, obtained from Theorem 22 and assuming input values between
− ln(2) and ln(2).

p m

24 1865828

53 6017142

113 17570144

http://dx.doi.org/10.1007/978-1-4899-7983-4_7

232 12 Final Rounding

12.8 Solving the TMD in Practice

12.8.1 Special Input Values

For many functions, we can easily deal with the input arguments that are extremely close to 0. For
example, consider the exponential of a very small positive number ε, on a precision-p binary floating-
point format, assuming rounding to nearest. If 0 ≤ ε < 2−p, then (since ε is a p-bit number),
ε ≤ 2−p − 2−2p. Hence,

eε ≤ 1 + (2−p − 2−2p) + 1

2
(2−p − 2−2p)2 + · · · < 1 + 2−p,

therefore

exp(ε) < 1 + 1

2
ulp (exp(ε)).

Thus, the correctly rounded value of exp(ε) is 1. Now, if −2−p+1 ≤ ε ≤ 0 then

exp(ε) > 1 + ε ≥ 1 − 2−p−1.

so that the correctly rounded value of exp(ε) is 1.
A similar reasoning can be done for other functions and rounding modes. Some results are given in

Tables12.4 and 12.5.

12.8.2 The L-Algorithm

In his Ph.D. dissertation [306], Lefèvre gives an algorithm for finding the hardest-to-round points for
a regular enough function. Let us call that algorithm the L-Algorithm. It uses linear approximations of
the function and massive parallelism. Some improvements have been introduced in [307]. The reader
can find a detailed presentation in [356]. The L-Algorithm has been used for finding the hardest-to-
round points given in Tables12.6, 12.7, 12.8, 12.9, 12.10, 12.11, and 12.12. A fast implementation of
the L-Algorithm on GPUs is presented in [193].

This technique was also used by Harrison for building fast and accurate programs for evaluat-
ing Bessel functions [223] (guaranteeing good relative accuracy required to locate the floating-point
numbers that are nearest a zero of the implemented function).

12.8.3 The SLZ Algorithm

The SLZ algorithm, introduced by Stehlé, Lefèvre, and Zimmermann [431–433], consists of

• approximating the function being considered by degree-d polynomials, in many subintervals, with
an accuracy such that finding hardest-to-round points for function f is equivalent to finding hardest-
to-round points for the polynomials;

• using a technique due to Coppersmith for finding the hardest-to-round points of each polynomial.
Coppersmith’s algorithm,mainly used in cryptanalysis, allows one to find small roots of polynomials
modulo an integer [110, 111].

12.8 Solving the TMD in Practice 233

Table 12.4 Some results for small values in the double-precision/binary64 format, assuming rounding to nearest (some
of these results are extracted from [356]). These results make finding hardest-to-round points useless for numbers of tiny
absolute value. The number α = RN(31/3)×2−26 is approximately equal to 1.4422 · · ·×2−26, and η ≈ 1.1447×2−26.
If x is a real number, we let x− denote the largest floating-point number strictly less than x .

This function Can be replaced by When

exp(ε), ε ≥ 0 1 ε < 2−53

exp(ε), ε ≤ 0 1 |ε| ≤ 2−54

exp(ε) − 1 ε |ε| < RN(
√
2) × 2−53

exp(ε) − 1, ε ≥ 0 ε+ RN(
√
2) × 2−53

≤ ε < RN(
√
3) × 2−52

log1p(ε) = ln(1 + ε) ε |ε| < RN(
√
2) × 2−53

2ε , ε ≥ 0 1 ε < 1.4426 · · · × 2−53

2ε , ε ≤ 0 1 |ε| < 1.4426 · · · × 2−54

10ε , ε ≥ 0 1 ε < 1.7368 × 2−55

10ε , ε ≤ 0 1 |ε| < 1.7368 × 2−56

sin(ε), sinh(ε), sinh−1(ε) ε |ε| ≤ α = RN(31/3) × 2−26

arcsin(ε) ε |ε| < α = RN(31/3) × 2−26

sin(ε), sinh−1(ε) ε− = ε − 2−78 α < ε ≤ 2−25

sinh(ε) ε+ = ε + 2−78 α < ε < 2−25

arcsin(ε) ε+ = ε + 2−78 α ≤ ε < 2−25

cos(ε) 1 |ε| < γ = RN(
√
2) × 2−27

cos(ε) 1− = 1 − 2−53 γ ≤ |ε| ≤ 1.2247 × 2−26

cosh(ε) 1 |ε| < 2−26

cosh(ε) 1+ = 1 + 2−52 2−26 ≤ |ε| ≤ RN(
√
3) × 2−26

cosh(ε) 1++ = 1 + 2−51 RN(
√
3) × 2−26

< |ε| ≤ 1.118 × 2−25

tan(ε), tanh−1(ε) ε |ε|η = RN(121/3) × 2−27

tanh(ε), arctan(ε) ε |ε| ≤ η

tan(ε), tanh−1(ε) ε+ = ε + 2−78 η ≤ ε ≤ 1.650 × 2−26

arctan(ε), tanh(ε) ε− = ε − 2−78 η < ε ≤ 1.650 × 2−26

A description of SLZ can be found in [356]. An implementation of SLZ can be found at http://www.
loria.fr/~zimmerma/software/.

12.8.4 Nontrivial Hardest-to-Round Points Found So Far

A special case: power functions

Vincent Lefèvre ran the L-Algorithm to find hardest-to-round points in binary64 precision for functions
xn (where n is an integer), for 3 ≤ n ≤ 733. Among all these values of n, the hardest-to-round case
was attained for n = 458. It corresponds to

x = 1.0000111100111000110011111010101011001011011100011010

for which we have

http://www.loria.fr/~zimmerma/software/
http://www.loria.fr/~zimmerma/software/

234 12 Final Rounding

Table 12.5 Some results for small values in the double-precision/binary64 format, assuming rounding toward −∞
(some of these results are extracted from [356]). These results make finding hardest-to-round points useless for numbers
of tiny absolute value. If x is a real number, we let x− denote the largest floating-point number strictly less than x . The
number τ = RN(61/3) × 2−26 is approximately equal to 1.817 · · · × 2−26.

This function Can be replaced by When

exp(ε), ε ≥ 0 1 ε < 2−52

exp(ε), ε < 0 1− = 1 − 2−53 |ε| ≤ 2−53

exp(ε) − 1 ε |ε| < RN(
√
2) × 2−52

ln(1 + ε), ε �= 0 ε− −2−52 < ε ≤ RN(
√
2) × 2−52

2ε , ε ≥ 0 1 ε < 1.4426 · · · × 2−52

2ε , ε < 0 1− = 1 − 2−53 |ε| < 1.4426 · · · × 2−53

10ε , ε ≥ 0 1 ε < 1.7368 × 2−54

10ε , ε < 0 1− = 1 − 2−53 |ε| < 1.7368 × 2−55

sin(ε), sinh−1(ε), ε > 0 ε− ε ≤ τ = RN(61/3) × 2−26

sin(ε), sinh−1(ε), ε ≤ 0 ε |ε| ≤ τ

sin(ε), sinh−1(ε), ε > 0 ε−− τ < ε ≤ 2−25

sin(ε), sinh−1(ε), ε < 0 ε+ τ < |ε| ≤ 2−25

arcsin(ε), sinh(ε), ε ≥ 0 ε ε < τ

arcsin(ε), sinh(ε), ε < 0 ε− |ε| < τ

arcsin(ε), sinh(ε), ε ≥ 0 ε+ = ε + 2−78 τ ≤ ε < 2−25

arcsin(ε), sinh(ε), ε < 0 ε−− = ε − 2−77 τ ≤ |ε| < 2−25

cos(ε), ε �= 0 1− = 1 − 2−53 |ε| < 2−26

cosh(ε) 1 |ε| < RN(
√
2) × 2−26

cosh(ε) 1+ = 1 + 2−52 RN(
√
2) × 2−26 ≤ |ε| < 2−25

tan(ε), tanh−1(ε), ε ≥ 0 ε ε ≤ 1.4422 · · · × 2−26

tan(ε), tanh−1(ε), ε < 0 ε− |ε| ≤ 1.4422 · · · × 2−26

tanh(ε), arctan(ε), ε > 0 ε− ε ≤ 1.4422 · · · × 2−26

tanh(ε), arctan(ε), ε ≤ 0 ε |ε| ≤ 1.4422 · · · × 2−26

x458 = 1.0001111100001011000010000111011010111010000000100101︸ ︷︷ ︸
53 bits

1

00000 · · · 00000︸ ︷︷ ︸
61 zeros

1110 · · · × 238

Concerning the “general” power function x y (where y is not constrained to be an integer), we are far
from being able to compute hardest-to-round points. The paper by Lauter and Lefèvre [302] gives a
reasonably fast test that allows to check if x y is a breakpoint. This makes it possible to make sure that
Ziv’s multilevel strategy terminates.

Hardest-to-round points of transcendental functions in binary64 arithmetic

We have run the L-Algorithm to find hardest-to-round points in binary64/double-precision for the most
common functions and domains. The results obtained so far, first partly published in [308] and in a
more complete version in [356] are given in Tables12.6, 12.7, 12.8, 12.9, 12.10, 12.11, 12.12 and
12.13. In these tables, each hardest-to-round point has the following format: the argument (binary64
number) and the truncated result (i.e., the result rounded toward zero in the binary64 format), both in
C99’s hexadecimal format (described below), and then the bits after the significand of the truncated
result. The first bit after the significand is the rounding bit. Then, as these are hard-to-round points,

12.8 Solving the TMD in Practice 235

Ta
b
le

1
2
.6

H
ar
de
st
-t
o-
ro
un
d
po
in
ts
fo
r
fu
nc
ti
on
s
ex
,e

x
−

1,
2x
,a

nd
10

x
.T

he
va
lu
es

gi
ve
n
he
re

an
d
th
e
re
su
lt
s
gi
ve
n
in

Ta
bl
es

12
.4

an
d
12
.5

su
ffi
ce

to
ro
un
d
fu
nc
ti
on
s
ex
,2

x

an
d
10

x
co
rr
ec
tl
y
in
th
e
fu
ll
bi
na
ry
64
/d
ou
bl
e-
pr
ec
is
io
n
ra
ng
e
(f
or

fu
nc
ti
on

ex
th
e
in
pu

tv
al
ue
s
be
tw
ee
n

−2
−5

3
an
d
2−

52
ar
e
so

sm
al
lt
ha

tt
he

re
su
lt
s
gi
ve
n
in
Ta
bl
es

12
.4
an
d
12
.5

ca
n
be

ap
pl
ie
d,
so

th
ey

ar
e
om

it
te
d
he
re
)[
30
8]
.R

ad
ix
-β

ex
po
ne
nt
ia
ls
of
nu
m
be
rs
le
ss
th
an

lo
g β

(2
−1

07
4
)
ar
e
le
ss
th
an

th
e
sm

al
le
st
po
si
ti
ve

m
ac
hi
ne

nu
m
be
r.
R
ad
ix
-β

ex
po

ne
nt
ia
ls

of
nu
m
be
rs

la
rg
er

th
an

lo
g β

(2
10

24
)
ar
e
ov
er
flo
w
s.

Fu
nc
tio

n
D
om

ai
n

A
rg
um

en
t

T
ru
nc
at
ed

re
su
lt

T
ra
ili
ng

bi
ts

ex
p

[lo
g(
2−

10
74

),
−2

−3
6
]

-
1
.
1
2
D
3
1
A
2
0
F
B
3
8
B
P
5

1
.
5
B
0
B
F
3
2
4
4
8
2
0
A
P
-
5
0

0
15

8
00
10

···
-
1
.
A
2
F
E
F
E
F
D
5
8
0
D
F
P
-
1
3

1
.
F
F
E
5
D
0
B
B
7
E
A
B
F
P
-
1

0
05

7
11
00

···
-
1
.
E
D
3
1
8
E
F
B
6
2
7
E
A
P
-
2
7

1
.
F
F
F
F
F
F
8
4
B
3
9
C
4
P
-
1

1
15

9
00
01

···
-
1
.
3
4
7
5
A
C
0
5
C
E
A
D
7
P
-
2
9

1
.
F
F
F
F
F
F
E
C
B
8
A
5
4
P
-
1

0
05

7
10
01

···
[2−

31
,
lo
g(
21

02
5
))

1
.
9
E
9
C
B
B
F
D
6
0
8
0
B
P
-
3
1

1
.
0
0
0
0
0
0
0
3
3
D
3
9
7
P
0

1
05

7
10
10

···
1
.
8
3
D
4
B
C
D
E
B
B
3
F
4
P
2

1
.
A
C
5
0
B
4
0
9
C
8
A
E
E
P
8

0
05

7
10
00

···
(lo

g(
2−

10
74

),
−2

−5
4
]

-
1
.
0
0
0
0
0
0
0
0
0
0
0
0
1
P
-
5
1

1
.
F
F
F
F
F
F
F
F
F
F
F
F
C
P
-
1

0
01

00
10
10

···
[2−

53
,
lo
g(
21

02
5
))

1
.
F
F
F
F
F
F
F
F
F
F
F
F
F
P
-
5
3

1
.
0
0
0
0
0
0
0
0
0
0
0
0
0
P
0

1
11

04
01
01

···
ex
p(
x)

−
1

[2−
35

,
lo
g(
21

02
4
))

1
.
2
7
4
B
B
F
1
E
F
B
1
A
2
P
-
1
0

1
.
2
7
7
6
5
7
2
C
2
5
1
2
9
P
-
1
0

1
05

8
10
00

···
(−∞

,
−2

−3
4
]

-
1
.
1
9
E
5
3
F
C
D
4
9
0
D
0
P
-
2
3

-
1
.
1
9
E
5
3
E
9
6
D
F
F
A
8
P
-
2
3

1
05

6
11
10

···
[2−

51
,
lo
g(
21

02
4
))

1
.
7
F
F
F
F
F
F
F
F
F
F
F
D
P
-
4
9

1
.
8
0
0
0
0
0
0
0
0
0
0
0
5
P
-
4
9

1
19

6
01
10

···
(−∞

,
−2

−5
1
]

-
1
.
8
0
0
0
0
0
0
0
0
0
0
0
3
P
-
4
9

-
1
.
7
F
F
F
F
F
F
F
F
F
F
F
A
P
-
4
9

0
09

6
10
00

···
2x

(−
∞

,
+∞

)
1
.
1
2
B
1
4
A
3
1
8
F
9
0
4
P
-
2
7

1
.
0
0
0
0
0
0
1
7
C
C
E
0
2
P
0

0
05

8
11
01

···
1
.
B
F
B
B
D
E
4
4
E
D
F
C
5
P
-
2
5

1
.
0
0
0
0
0
0
9
B
2
C
3
8
5
P
0

0
05

9
10
11

···
1
.
E
4
5
9
6
5
2
6
B
F
9
4
D
P
-
1
0

1
.
0
0
5
3
F
C
2
E
C
2
B
5
3
P
0

0
15

9
01
00

···
10

x
(0,

lo
g1
0(
21

02
4
))

1
.
D
F
7
6
0
B
2
C
D
E
E
D
3
P
-
4
9

1
.
0
0
0
0
0
0
0
0
0
0
0
2
2
P
0

1
05

8
11
10

···
1
.
A
8
3
B
1
C
F
7
7
9
8
9
0
P
-
2
6

1
.
0
0
0
0
0
0
F
4
3
4
F
A
A
P
0

0
16

0
01
01

···
1
.
7
C
3
D
D
D
2
3
A
C
8
C
A
P
-
1
0

1
.
0
0
D
B
4
0
2
9
1
E
4
F
5
P
0

0
15

8
00
10

···
1
.
A
A
6
E
0
8
1
0
A
7
C
2
9
P
-
2

1
.
4
D
E
C
1
7
3
D
5
0
B
3
E
P
1

0
15

8
00
01

···
1
.
D
7
D
2
7
1
A
B
4
E
E
B
4
P
-
2

1
.
7
1
C
E
4
7
2
E
B
8
4
C
7
P
1

1
16

4
01
11

···
1
.
7
5
F
4
9
C
6
A
D
3
B
A
D
P
0

1
.
C
E
4
1
D
8
F
A
6
6
5
F
9
P
4

1
16

4
01
01

···
(lo

g1
0(
2−

10
74

),
0)

-
1
.
1
4
1
6
C
7
2
A
5
8
8
A
6
P
-
1

1
.
2
7
D
8
3
8
F
2
2
D
0
9
F
P
-
2

1
16

5
00
10

···
-
1
.
F
2
8
E
0
E
2
5
5
7
4
A
5
P
-
3
2

1
.
F
F
F
F
F
F
F
7
0
8
1
1
E
P
-
1

0
05

9
10
11

···

236 12 Final Rounding

Ta
b
le
1
2
.7

H
ar
de
st
-t
o-
ro
un
d
po
in
ts
fo
r
fu
nc
ti
on
s
ln

(x
)
an
d
ln

(1
+
x)
.T

he
va
lu
es

gi
ve
n
he
re

su
ffi
ce

to
ro
un
d
fu
nc
ti
on
s
ln

(x
)
an
d
ln

(1
+
x)

co
rr
ec
tl
y
in

th
e
fu
ll
bi
na

ry
64

/d
ou

bl
e-

pr
ec
is
io
n
ra
ng
e.

Fu
nc
tio

n
D
om

ai
n

A
rg
um

en
t

T
ru
nc
at
ed

re
su
lt

T
ra
ili
ng

bi
ts

ln
[2−

10
74

,
2−

1
)

1
.
E
A
7
1
D
8
5
C
E
E
0
2
0
P
-
5
0
9

-
1
.
6
0
2
9
6
A
6
6
B
4
2
F
F
P
8

1
16

0
00
00

···
1
.
9
4
7
6
E
3
0
4
C
D
7
C
7
P
-
3
8
4

-
1
.
0
9
B
6
0
C
A
F
4
7
B
3
5
P
8

1
06

0
10
10

···
1
.
2
6
E
9
C
4
D
3
2
7
9
6
0
P
-
2
3
2

-
1
.
4
1
5
6
5
8
4
B
C
D
0
8
4
P
7

0
06

0
10
01

···
1
.
6
1
3
9
5
5
D
C
8
0
2
F
8
P
-
3
5

-
1
.
7
F
0
2
F
9
B
A
F
6
0
3
5
P
4

0
16

0
00
11

···
[2−

1
,
21

)
1
.
B
A
D
E
D
3
0
C
B
F
1
C
4
P
-
1

-
1
.
2
9
0
E
A
0
9
E
3
6
4
7
8
P
-
3

1
15

4
01
10

···
[21

,
21

02
5
)

1
.
C
9
0
8
1
0
D
3
5
4
6
1
8
P
2
4
5

1
.
5
4
C
D
1
F
E
A
7
6
6
3
9
P
7

1
16

3
01
01

···
1
.
6
2
A
8
8
6
1
3
6
2
9
B
6
P
6
7
8

1
.
D
6
4
7
9
E
B
A
7
C
9
7
1
P
8

0
06

4
11
10

···
ln

(1
+

x)
[2−

35
,
29

8
]

1
.
A
B
5
0
B
4
0
9
C
8
A
E
E
P
8

1
.
8
3
D
4
B
C
D
E
B
B
3
F
3
P
2

1
16

0
01
01

···
1
.
8
A
A
9
2
B
C
8
4
F
F
9
1
P
5
4

1
.
2
E
E
7
0
2
2
0
F
B
1
C
4
P
5

1
16

0
00
11

···
1
.
0
4
1
0
C
9
5
B
5
8
0
B
9
P
7
1

1
.
8
9
D
5
6
A
0
C
3
8
E
6
F
P
5

0
06

2
10
11

···
[2−

35
,
21

02
4
)

1
.
C
9
0
8
1
0
D
3
5
4
6
1
8
P
2
4
5

1
.
5
4
C
D
1
F
E
A
7
6
6
3
9
P
7

1
16

3
01
01

···
1
.
6
2
A
8
8
6
1
3
6
2
9
B
6
P
6
7
8

1
.
D
6
4
7
9
E
B
A
7
C
9
7
1
P
8

0
06

4
11
10

···
(−1

,
−2

−3
5
]

-
1
.
7
F
F
F
F
3
F
C
F
F
D
0
3
P
-
3
0

-
1
.
7
F
F
F
F
4
0
1
7
F
C
F
E
P
-
3
0

1
05

8
10
01

···
(2−

51
,
21

02
4
)

1
.
8
0
0
0
0
0
0
0
0
0
0
0
3
P
-
5
0

1
.
7
F
F
F
F
F
F
F
F
F
F
F
E
P
-
5
0

1
09

9
10
00

···
(−1

,
−2

−5
1
]

-
1
.
7
F
F
F
F
F
F
F
F
F
F
F
D
P
-
5
0

-
1
.
8
0
0
0
0
0
0
0
0
0
0
0
1
P
-
5
0

0
19

9
01
10

···

12.8 Solving the TMD in Practice 237

Ta
b
le
1
2
.8

H
ar
de
st
-t
o-
ro
un
d
po
in
ts
fo
r
fu
nc
ti
on
s
lo
g 2

(x
)
an
d
lo
g 1

0
(x

).
T
he

va
lu
es

gi
ve
n
he
re
su
ffi
ce

to
ro
un
d
fu
nc
ti
on
s
lo
g 2

(x
)
an
d
lo
g 1

0
(x

)
co
rr
ec
tl
y
in
th
e
fu
ll
bi
na

ry
64

/d
ou

bl
e-

pr
ec
is
io
n
ra
ng
e.

Fu
nc
tio

n
D
om

ai
n

A
rg
um

en
t

T
ru
nc
at
ed

re
su
lt

T
ra
ili
ng

bi
ts

lo
g 2

[2−
1
,
21

02
4
)

1
.
B
4
E
B
E
4
0
C
9
5
A
0
1
P
0

1
.
8
A
D
E
A
C
9
8
1
E
0
0
D
P
-
1

1
05

3
10
11

···
1
.
1
B
A
3
9
F
F
2
8
E
3
E
A
P
2

1
.
1
2
E
E
C
F
7
6
D
6
3
C
D
P
1

0
05

3
10
01

···
1
.
1
B
A
3
9
F
F
2
8
E
3
E
A
P
4

1
.
0
9
7
7
6
7
B
B
6
B
1
E
6
P
2

1
05

4
10
01

···
1
.
6
1
5
5
5
F
7
5
8
8
5
B
4
P
1
2
8

1
.
0
0
E
E
0
5
A
0
7
A
6
E
7
P
7

1
15

3
00
11

···
1
.
D
3
0
A
4
3
7
7
3
D
D
1
B
P
2
5
6

1
.
0
0
D
E
0
E
1
8
9
B
7
2
4
P
8

1
05

3
11
00

···
1
.
6
1
5
5
5
F
7
5
8
8
5
B
4
P
2
5
6

1
.
0
0
7
7
0
2
D
0
3
D
3
7
3
P
8

1
15

4
00
11

···
1
.
6
1
5
5
5
F
7
5
8
8
5
B
4
P
5
1
2

1
.
0
0
3
B
8
1
6
8
1
E
9
B
9
P
9

1
15

5
00
11

···
lo
g 1

0
[2−

10
74

,
2−

1
)

1
.
3
6
5
1
1
6
6
8
6
B
0
7
8
P
-
7
6
5

-
1
.
C
C
6
8
A
4
A
E
E
2
4
0
D
P
7

0
16

1
01
10

···
1
.
8
3
E
5
5
C
0
2
8
5
C
9
6
P
-
7
6
2

-
1
.
C
A
6
8
A
4
A
E
E
2
4
0
D
P
7

0
16

1
01
10

···
1
.
A
8
6
3
9
E
8
9
F
5
E
4
6
P
-
6
2
5

-
1
.
7
7
D
9
3
3
C
1
A
8
8
E
0
P
7

1
16

1
01
01

···
1
.
E
D
8
C
8
7
C
3
B
F
5
C
F
P
-
4
9

-
1
.
C
E
E
4
6
3
9
9
3
9
2
D
6
P
3

0
16

2
00
00

···
1
.
2
7
D
8
3
8
F
2
2
D
0
A
0
P
-
2

-
1
.
1
4
1
6
C
7
2
A
5
8
8
A
5
P
-
1

1
16

5
01
01

···
[2−

1
,
21

)
1
.
B
0
C
F
7
3
6
F
1
A
E
1
D
P
-
1

-
1
.
2
A
E
5
0
5
7
C
D
8
C
4
4
P
-
4

0
15

4
01
10

···
1
.
8
9
8
2
5
F
7
4
A
A
6
B
7
P
0

1
.
7
E
6
4
6
F
3
F
A
B
0
D
0
P
-
3

1
05

7
10
01

···
[21

,
21

02
4
)

1
.
7
1
C
E
4
7
2
E
B
8
4
C
8
P
1

1
.
D
7
D
2
7
1
A
B
4
E
E
B
4
P
-
2

0
06

4
10
10

···
1
.
C
E
4
1
D
8
F
A
6
6
5
F
A
P
4

1
.
7
5
F
4
9
C
6
A
D
3
B
A
D
P
0

0
06

6
10
10

···
1
.
E
1
2
D
6
6
7
4
4
F
F
8
1
P
4
2
9

1
.
0
2
D
4
F
5
3
7
2
9
E
4
4
P
7

1
06

8
10
01

···

238 12 Final Rounding

Ta
b
le

1
2
.9

H
ar
de
st
-t
o-
ro
un
d
po
in
ts
fo
r
fu
nc
ti
on
s
si
nh

(x
)
an
d
co
sh

(x
).
T
he

va
lu
es

gi
ve
n
he
re

su
ffi
ce

to
ro
un

d
th
es
e
fu
nc
ti
on

s
co
rr
ec
tl
y
in

th
e
fu
ll
bi
na

ry
64

/d
ou

bl
e-
pr
ec
is
io
n

ra
ng
e.
If

x
is
sm

al
le
no
ug
h,

th
e
re
su
lt
s
gi
ve
n
in

Ta
bl
es

12
.4

an
d
12
.5

ca
n
be

ap
pl
ie
d.

If
x
is
la
rg
e
en
ou
gh
,w

e
ca
n
us
e
th
e
re
su
lt
s
ob
ta
in
ed

fo
r
th
e
ex
po
ne
nt
ia
lf
un
ct
io
n.

Fu
nc
tio

n
D
om

ai
n

A
rg
um

en
t

T
ru
nc
at
ed

re
su
lt

T
ra
ili
ng

bi
ts

si
nh

[2−
25

,
as
in
h(
21

02
4
))

1
.
D
F
F
F
F
F
F
F
F
F
E
3
E
P
-
2
0

1
.
E
0
0
0
0
0
0
0
0
0
F
D
1
P
-
2
0

1
17

2
00
01

···
1
.
D
F
F
F
F
F
F
F
F
F
8
F
8
P
-
1
9

1
.
E
0
0
0
0
0
0
0
0
3
F
4
7
P
-
1
9

1
16

6
00
01

···
1
.
D
F
F
F
F
F
F
F
F
E
3
E
0
P
-
1
8

1
.
E
0
0
0
0
0
0
0
0
F
D
1
F
P
-
1
8

1
16

0
00
01

···
1
.
6
7
F
F
F
F
F
F
F
D
0
8
A
P
-
1
7

1
.
6
8
0
0
0
0
0
0
1
A
B
2
5
P
-
1
7

1
15

7
00
00

···
1
.
8
9
7
3
7
4
D
7
4
D
E
2
A
P
-
1
3

1
.
8
9
7
3
7
4
F
E
0
7
3
E
1
P
-
1
3

1
05

6
10
11

···
co
sh

[2−
25

,
26

)
1
.
4
6
5
6
5
5
F
1
2
2
F
F
5
P
-
2
4

1
.
0
0
0
0
0
0
0
0
0
0
0
0
C
P
0

1
16

1
00
01

···
1
.
7
F
F
F
F
F
F
F
F
F
F
F
7
P
-
2
3

1
.
0
0
0
0
0
0
0
0
0
0
0
4
7
P
0

1
18

9
00
10

···
1
.
7
F
F
F
F
F
F
F
F
F
F
D
C
P
-
2
2

1
.
0
0
0
0
0
0
0
0
0
0
1
1
F
P
0

1
18

3
00
10

···
1
.
7
F
F
F
F
F
F
F
F
F
F
7
0
P
-
2
1

1
.
0
0
0
0
0
0
0
0
0
0
4
7
F
P
0

1
17

7
00
10

···
1
.
7
F
F
F
F
F
F
F
F
F
D
C
0
P
-
2
0

1
.
0
0
0
0
0
0
0
0
0
1
1
F
F
P
0

1
17

1
00
10

···
1
.
1
F
F
F
F
F
F
F
F
F
F
0
D
P
-
2
0

1
.
0
0
0
0
0
0
0
0
0
0
A
1
F
P
0

1
17

3
01
10

···
1
.
D
F
F
F
F
F
F
F
F
F
B
9
B
P
-
2
0

1
.
0
0
0
0
0
0
0
0
0
1
C
1
F
P
0

1
16

9
00
10

···
1
.
1
F
F
F
F
F
F
F
F
F
C
3
4
P
-
1
9

1
.
0
0
0
0
0
0
0
0
0
2
8
7
F
P
0

1
16

7
01
10

···
1
.
7
F
F
F
F
F
F
F
F
F
7
0
0
P
-
1
9

1
.
0
0
0
0
0
0
0
0
0
4
7
F
F
P
0

1
16

5
00
10

···
1
.
D
F
F
F
F
F
F
F
F
E
E
6
C
P
-
1
9

1
.
0
0
0
0
0
0
0
0
0
7
0
7
F
P
0

1
16

3
00
10

···
1
.
1
F
F
F
F
F
F
F
F
F
0
D
0
P
-
1
8

1
.
0
0
0
0
0
0
0
0
0
A
1
F
F
P
0

1
16

1
01
10

···
1
.
4
F
F
F
F
F
F
F
F
E
7
E
2
P
-
1
8

1
.
0
0
0
0
0
0
0
0
0
D
C
7
F
P
0

1
16

0
00
11

···
1
.
7
F
F
F
F
F
F
F
F
D
C
0
0
P
-
1
8

1
.
0
0
0
0
0
0
0
0
1
1
F
F
F
P
0

1
15

9
00
10

···
1
.
A
F
F
F
F
F
F
F
F
C
C
B
E
P
-
1
8

1
.
0
0
0
0
0
0
0
0
1
6
C
7
F
P
0

1
15

8
00
10

···
1
.
D
F
F
F
F
F
F
F
F
B
9
B
0
P
-
1
8

1
.
0
0
0
0
0
0
0
0
1
C
1
F
F
P
0

1
15

7
00
10

···
1
.
E
A
5
F
2
F
2
E
4
B
0
C
5
P
1

1
.
7
1
0
D
B
0
C
D
0
F
E
D
5
P
4

1
05

7
11
10

···

12.8 Solving the TMD in Practice 239

Ta
b
le

1
2
.1
0

H
ar
de
st
-t
o-
ro
un
d
po
in
ts
fo
r
in
ve
rs
e
hy
pe
rb
ol
ic
fu
nc
ti
on
s
in

bi
na
ry
64
/d
ou
bl
e
pr
ec
is
io
n.

C
on
ce
rn
in
g
fu
nc
ti
on

si
nh

−1
,i
ft
he

in
pu
t
va
lu
es

ar
e
sm

al
le
no
ug
h,

th
er
e
is

no
ne
ed

to
co
m
pu
te
th
e
H
ar
de
st
-t
o-
ro
un
d
po
in
ts
:
th
e
re
su
lt
s
gi
ve
n
in

Ta
bl
es

12
.4
an
d
12
.5
ca
n
be

ap
pl
ie
d.

Fu
nc
tio

n
D
om

ai
n

A
rg
um

en
t

T
ru
nc
at
ed

re
su
lt

T
ra
ili
ng

bi
ts

as
in
h

[2−
25

,
21

02
4
)

1
.
E
0
0
0
0
0
0
0
0
0
F
D
2
P
-
2
0

1
.
D
F
F
F
F
F
F
F
F
F
E
3
E
P
-
2
0

0
07

2
11
10

···
1
.
E
0
0
0
0
0
0
0
0
3
F
4
8
P
-
1
9

1
.
D
F
F
F
F
F
F
F
F
F
8
F
8
P
-
1
9

0
06

6
11
10

···
1
.
C
9
0
8
1
0
D
3
5
4
6
1
8
P
2
4
4

1
.
5
4
C
D
1
F
E
A
7
6
6
3
9
P
7

1
16

3
01
01

···
1
.
8
6
7
0
D
E
0
B
6
8
C
A
D
P
6
5
5

1
.
C
7
2
0
6
C
1
B
7
5
3
E
4
P
8

0
06

2
11
11

···
1
.
6
2
A
8
8
6
1
3
6
2
9
B
6
P
6
7
7

1
.
D
6
4
7
9
E
B
A
7
C
9
7
1
P
8

0
06

4
11
10

···
ac
os
h

[1,
29

1
]

1
.
2
9
7
D
E
3
5
D
0
2
E
9
0
P
1
3

1
.
3
B
5
6
2
D
2
6
5
1
A
5
D
P
3

0
16

1
00
01

···
1
.
9
1
E
C
4
4
1
2
C
3
4
4
F
P
8
5

1
.
E
0
7
E
7
1
B
F
C
F
0
6
E
P
5

1
16

1
01
01

···
[1,

21
02

4
)

1
.
C
9
0
8
1
0
D
3
5
4
6
1
8
P
2
4
4

1
.
5
4
C
D
1
F
E
A
7
6
6
3
9
P
7

1
16

3
01
01

···
1
.
6
2
A
8
8
6
1
3
6
2
9
B
6
P
6
7
7

1
.
D
6
4
7
9
E
B
A
7
C
9
7
1
P
8

0
06

4
11
10

···

240 12 Final Rounding

Ta
b
le

1
2
.1
1

H
ar
de
st
-t
o-
ro
un
d
po
in
ts

fo
r
th
e
tr
ig
on
om

et
ri
c
fu
nc
ti
on
s
in

bi
na
ry
64
/d
ou
bl
e
pr
ec
is
io
n.

So
fa
r,
w
e
on
ly

ha
ve

ha
rd
es
t-
to
-r
ou
nd

po
in
ts

in
th
e
fo
ll
ow

in
g
do
m
ai
ns
:

[2−
25

,
u
)
w
he
re

u
=

1.
10
01
00
10
00
01
1 2

×
21

fo
r
th
e
si
ne

fu
nc
ti
on

(u
=

3.
14
13
57
42
18
75

10
is
sl
ig
ht
ly

le
ss

th
an

π
);

[0,
ar
cc
os

(2
−2

6
))

∪
[ar

cc
os

(−
2−

27
),
22

)
fo
r
th
e
co
si
ne

fu
nc
ti
on
;
an
d

[2−
25

,
π
/
2]

fo
r
th
e
ta
ng
en
tf
un
ct
io
n.

Si
ne
s
of

nu
m
be
rs

of
ab
so
lu
te
va
lu
e
le
ss

th
an

2−
25

ar
e
ea
si
ly
ha

nd
le
d
us
in
g
th
e
re
su
lt
s
gi
ve
n
in

Ta
bl
es

12
.4

an
d
12
.5
.

Fu
nc
tio

n
D
om

ai
n

A
rg
um

en
t

T
ru
nc
at
ed

re
su
lt

T
ra
ili
ng

bi
ts

si
n

[2−
25

,
u
)

1
.
E
0
0
0
0
0
0
0
0
0
1
C
2
P
-
2
0

1
.
D
F
F
F
F
F
F
F
F
F
0
2
E
P
-
2
0

0
07

2
11
10

···
1
.
E
0
0
0
0
0
0
0
0
0
7
0
8
P
-
1
9

1
.
D
F
F
F
F
F
F
F
F
C
0
B
8
P
-
1
9

0
06

6
11
10

···
1
.
E
0
0
0
0
0
0
0
0
1
C
2
0
P
-
1
8

1
.
D
F
F
F
F
F
F
F
F
0
2
E
0
P
-
1
8

0
06

0
11
10

···
1
.
5
9
8
B
A
E
9
E
6
3
2
F
6
P
-
7

1
.
5
9
8
A
0
A
E
A
4
8
9
9
6
P
-
7

0
15

9
00
00

···
1
.
F
E
7
6
7
7
3
9
D
0
F
6
D
P
-
2

1
.
E
9
9
5
0
7
3
0
C
4
6
9
5
P
-
2

1
16

5
00
00

···
co
s

[2−
17

,
ac
os

(2
−2

6
))

∪[ac
os

(−
2−

27
),
22

)
1
.
0
6
B
5
0
5
5
5
0
E
6
B
2
P
-
9

1
.
F
F
F
F
B
C
9
A
3
F
B
F
E
P
-
1

0
05

8
11
00

···
1
.
3
4
E
C
2
F
9
F
C
9
C
0
0
P
1

-
1
.
7
E
2
A
5
C
3
0
E
1
D
6
D
P
-
1

0
15

8
01
10

···
[0,

ac
os

(2
−2

6
))

∪[ac
os

(−
2−

27
),
22

)
1
.
8
0
0
0
0
0
0
0
0
0
0
0
9
P
-
2
3

1
.
F
F
F
F
F
F
F
F
F
F
F
7
0
P
-
1

0
08

8
11
01

···
ta
n

[2−
25

,
π
/
2)

1
.
D
F
F
F
F
F
F
F
F
F
F
1
F
P
-
2
2

1
.
E
0
0
0
0
0
0
0
0
0
1
5
1
P
-
2
2

0
17

8
01
00

···
1
.
D
F
F
F
F
F
F
F
F
F
C
7
C
P
-
2
1

1
.
E
0
0
0
0
0
0
0
0
0
5
4
5
P
-
2
1

1
17

2
01
00

···
1
.
D
F
F
F
F
F
F
F
F
F
1
F
0
P
-
2
0

1
.
E
0
0
0
0
0
0
0
0
1
5
1
7
P
-
2
0

1
16

6
01
00

···
1
.
6
7
F
F
F
F
F
F
F
E
8
4
5
P
-
1
9

1
.
6
8
0
0
0
0
0
0
0
2
3
9
8
P
-
1
9

0
16

3
01
00

···
1
.
D
F
F
F
F
F
F
F
F
C
7
C
0
P
-
1
9

1
.
E
0
0
0
0
0
0
0
0
5
4
5
F
P
-
1
9

1
16

0
01
00

···
1
.
6
7
F
F
F
F
F
F
F
A
1
1
4
P
-
1
8

1
.
6
8
0
0
0
0
0
0
0
8
E
6
1
P
-
1
8

1
15

7
01
00

···
1
.
5
0
4
8
6
B
2
F
8
7
0
1
4
P
-
5

1
.
5
0
7
8
C
E
B
F
F
9
C
7
2
P
-
5

1
05

7
10
01

···

12.8 Solving the TMD in Practice 241

Ta
b
le
1
2
.1
2

H
ar
de
st
-t
o-
ro
un
d
po
in
ts
fo
r
th
e
in
ve
rs
e
tr
ig
on
om

et
ri
c
fu
nc
ti
on
s
in

bi
na
ry
64
/d
ou
bl
e
pr
ec
is
io
n.
C
on
ce
rn
in
g
th
e
ar
cs
in
e
fu
nc
ti
on
,t
he

re
su
lt
s
gi
ve
n
in

Ta
bl
es

12
.4
an
d

12
.5

an
d
in

th
is
ta
bl
e
m
ak
e
it
po

ss
ib
le
to

co
rr
ec
tl
y
ro
un

d
th
e
fu
nc
ti
on

in
it
s
w
ho

le
do

m
ai
n
of

de
fin

it
io
n.

Fu
nc
tio

n
D
om

ai
n

A
rg
um

en
t

T
ru
nc
at
ed

re
su
lt

T
ra
ili
ng

bi
ts

as
in

[2−
25

,
1]

1
.
D
F
F
F
F
F
F
F
F
F
0
2
E
P
-
2
0

1
.
E
0
0
0
0
0
0
0
0
0
1
C
1
P
-
2
0

1
17

2
00
01

···
1
.
D
F
F
F
F
F
F
F
F
C
0
B
8
P
-
1
9

1
.
E
0
0
0
0
0
0
0
0
0
7
0
7
P
-
1
9

1
16

6
00
01

···
1
.
D
F
F
F
F
F
F
F
F
0
2
E
0
P
-
1
8

1
.
E
0
0
0
0
0
0
0
0
1
C
1
F
P
-
1
8

1
16

0
00
01

···
1
.
6
7
F
F
F
F
F
F
E
5
4
D
A
P
-
1
7

1
.
6
8
0
0
0
0
0
0
0
2
F
7
5
P
-
1
7

1
15

7
00
00

···
1
.
C
3
7
3
F
F
4
A
A
D
7
9
B
P
-
1
4

1
.
C
3
7
3
F
F
5
9
4
D
6
5
A
P
-
1
4

1
05

7
10
10

···
1
.
E
9
9
5
0
7
3
0
C
4
6
9
6
P
-
2

1
.
F
E
7
6
7
7
3
9
D
0
F
6
D
P
-
2

0
06

4
10
00

···
ac
os

[2−
26

,
1]

1
.
7
2
8
3
D
5
2
9
A
1
4
6
E
P
-
1
9

1
.
9
2
1
F
8
6
F
3
C
8
2
C
5
P
0

0
05

8
10
00

···
1
.
F
D
7
3
7
B
E
9
1
4
5
7
8
P
-
1
1

1
.
9
1
E
0
0
6
D
4
1
D
8
D
8
P
0

1
16

2
00
10

···
1
.
1
C
D
C
D
1
E
A
2
A
D
3
B
P
-
9

1
.
9
1
9
1
4
6
D
3
F
4
9
2
E
P
0

1
15

7
00
10

···
1
.
6
0
C
B
9
7
6
9
D
9
2
1
8
P
-
8

1
.
9
0
B
E
E
9
3
D
2
D
0
9
C
P
0

0
05

7
10
11

···
1
.
5
3
E
A
6
C
7
2
5
5
E
8
8
P
-
4

1
.
7
C
D
A
C
B
6
B
B
E
7
0
7
P
0

0
15

7
01
01

···
[−1

,
−2

−2
7
]

-
1
.
5
2
F
0
6
3
5
9
6
7
2
C
D
P
-
2

1
.
E
8
7
C
C
C
9
4
B
A
4
1
8
P
0

1
05

6
11
01

···
-
1
.
1
2
4
4
1
1
A
0
E
C
3
2
E
P
-
5

1
.
9
A
B
2
3
E
C
D
D
4
3
6
A
P
0

1
05

6
11
01

···
at
an

(2−
25

,
+∞

)
1
.
E
0
0
0
0
0
0
0
0
0
5
4
6
P
-
2
1

1
.
D
F
F
F
F
F
F
F
F
F
C
7
C
P
-
2
1

0
07

2
10
11

···
1
.
E
0
0
0
0
0
0
0
0
1
5
1
8
P
-
2
0

1
.
D
F
F
F
F
F
F
F
F
F
1
F
0
P
-
2
0

0
06

6
10
11

···
1
.
E
0
0
0
0
0
0
0
0
5
4
6
0
P
-
1
9

1
.
D
F
F
F
F
F
F
F
F
C
7
C
0
P
-
1
9

0
06

0
10
11

···
1
.
6
8
0
0
0
0
0
0
0
8
E
6
2
P
-
1
8

1
.
6
7
F
F
F
F
F
F
F
A
1
1
4
P
-
1
8

0
05

7
10
11

···
1
.
2
2
E
8
D
7
5
E
2
B
C
7
F
P
-
1
1

1
.
2
2
E
8
D
5
6
9
4
A
D
2
B
P
-
1
1

1
05

9
11
01

···
1
.
6
2
9
8
B
5
8
9
6
E
D
3
C
P
1

1
.
3
9
7
0
E
8
2
7
5
0
4
C
6
P
0

1
06

3
11
01

···
1
.
C
7
2
1
F
D
4
8
F
4
4
1
8
P
1
9

1
.
9
2
1
F
A
3
4
4
7
A
F
5
5
P
0

1
05

8
10
11

···
1
.
E
B
1
9
A
7
B
5
C
3
2
9
2
P
2
9

1
.
9
2
1
F
B
5
4
0
1
7
3
D
6
P
0

1
15

9
00
11

···
1
.
C
C
D
A
2
6
A
D
0
C
D
1
C
P
4
7

1
.
9
2
1
F
B
5
4
4
4
2
D
0
6
P
0

0
15

7
01
11

···

242 12 Final Rounding

Ta
b
le

1
2
.1
3

H
ar
de
st
-t
o-
ro
un
d
po
in
ts
fo
r
fu
nc
ti
on
s
si
np
i(
x)

=
si
n(

π
x)

an
d
as
in
pi

(x
)

=
1 π
ar
cs
in

(x
)
in

bi
na
ry
64
/d
ou
bl
e
pr
ec
is
io
n.

T
he

do
m
ai
ns

co
ns
id
er
ed

he
re

su
ffi
ce

fo
r

im
pl
em

en
ti
ng

th
es
e
fu
nc
ti
on
s
in

th
e
fu
ll
bi
na
ry
64

ra
ng
e:

fo
r
in
st
an
ce

if
x

<
2−

57
,a

si
m
pl
e
co
nt
in
ue
d
fr
ac
ti
on

ar
gu
m
en
ts
ho
w
s
th
at

R
N

(s
in
pi

(x
)

=
R
N

(π
x)
.T

he
co
m
pu
ta
ti
on

of
R
N

(π
x)

is
ea
si
ly
pe
rf
or
m
ed

(s
ee

[6
7]
).

Fu
nc
tio

n
D
om

ai
n

A
rg
um

en
t

T
ru
nc
at
ed

re
su
lt

T
ra
ili
ng

bi
ts

si
np
i

[2−
57

,
1]

1
.
3
C
0
5
9
D
3
9
F
1
D
6
1
P
-
4
4

1
.
F
0
6
7
F
5
5
7
4
3
E
A
3
P
-
4
3

1
15

6
00
00

···
1
.
F
3
3
9
A
B
5
7
7
3
1
D
3
P
-
5
0

1
.
8
8
1
7
3
2
4
3
F
B
0
F
4
P
-
4
8

0
15

6
00
10

···
1
.
B
C
0
3
D
F
3
4
E
9
0
2
C
P
-
5
4

1
.
5
C
B
A
8
9
A
F
1
F
8
5
5
P
-
5
2

0
05

8
11
01

···
as
in
pi

[si
n(
2−

57
π

),
1]

1
.
7
7
1
8
5
4
3
A
5
6
0
6
A
P
-
2
9

1
.
D
D
9
5
F
9
1
3
D
2
D
2
2
P
-
3
1

1
05

8
10
11

···
1
.
F
0
6
7
F
5
5
7
4
3
E
A
4
P
-
4
3

1
.
3
C
0
5
9
D
3
9
F
1
D
6
1
P
-
4
4

0
05

6
10
01

···
1
.
D
5
7
C
3
8
1
F
5
4
2
4
3
P
-
4
3

1
.
2
A
E
2
3
2
5
F
4
5
5
8
9
P
-
4
4

0
15

6
01
11

···
1
.
B
2
D
7
8
8
A
5
6
D
A
5
8
P
-
4
6

1
.
1
4
D
4
3
7
5
C
4
0
C
5
0
P
-
4
8

1
15

6
00
00

···
1
.
5
C
B
A
8
9
A
F
1
F
8
5
5
P
-
5
2

1
.
B
C
0
3
D
F
3
4
E
9
0
2
B
P
-
5
5

1
15

7
01
11

···

12.8 Solving the TMD in Practice 243

the rounding bit is followed by a long run of zeros or ones; the value in exponent (superscript) is the
length of this run. Finally, we give the next four bits.

As said above, the argument and the truncated result are written in C99’s hexadecimal format for
concision. Here, each datum consists of:

• a significand, written as a possible “−” if the number is negative, followed by a “1”, followed by a
13-hexadecimal digit number (hence the 1+4×13 = 53 bits of precision), the digits being denoted
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F;

• the letter P (as a separator);
• a binary exponent E , written in decimal, i.e., the significand is to be multiplied by 2E to get the

value.

For instance, the sixth line of Table12.6 contains the argument

1.83D4BCDEBB3F4P2.

That number is equal to

(
1 + 83D4BCDEBB3F416

252

)
· 22 =

(
1 + 231919560030309210

252

)
· 22

= 1705698806918397

248
,

whose exponential is equal to y · 28, with (in binary)

y = 1.1010110001010000101101000000100111001000101011
1011100
000000000001000101100111000110011 · · ·

If a and b belong to the same “binade” (they have the same sign and satisfy 2p ≤ |a|, |b| < 2p+1,
where p is an integer), let us call their significand distance the distance

|a − b|
2p

.

For instance, the significand distance between 14 and 15 is (15−14)/8 = 1/8. Tables12.6, 12.7, 12.8,
12.9, 12.10, 12.11 and 12.12 allow one to deduce properties such as the following ones [308].

Theorem 23 (Computation of exponentials) Let y be the exponential of a binary64 number x. Let y∗
be an approximation to y such that the significand distance13 between y and y∗ is bounded by ε.

• for |x | ≥ 2−30, if ε ≤ 2−53−59−1 = 2−113, then for any of the four rounding modes, rounding y∗ is
equivalent to rounding y;

• for 2−54 ≤ |x | < 2−30, if ε ≤ 2−53−104−1 = 2−158 then rounding y∗ is equivalent to rounding y;

The case |x | < 2−54 is easily dealt with using Tables12.4 and 12.5.

13If one prefers to think in terms of relative error, one can use the following well-known properties: in radix-2 floating-
point arithmetic, if the significand distance between y and y∗ is less than ε, then their relative distance |y − y∗|/|y| is
less than ε. If the relative distance between y and y∗ is less than εr , then their significand distance is less than 2εr .

244 12 Final Rounding

Theorem 24 (Computation of logarithms). Let y be the natural (radix-e) logarithm of a binary64
number x. Let y∗ be an approximation to y such that the significand distance between y and y∗ is
bounded by ε. If ε ≤ 2−53−64−1 = 2−118 then for any of the 4 rounding modes, rounding y∗ is
equivalent to rounding y.

Conclusion

Wehave shown that correct rounding of the elementary functions in binary32 or binary64 floating-point
arithmetic (at least in some domains for this last case) is possible. It may seem expensive if we think
in terms of worst case delay,14 but we have to consider that using Ziv’s multilevel strategy, evaluating
an elementary function with correct rounding usually requires the time needed to evaluate it with an
intermediate precision of slightly more than p bits, that is, the time already needed by current libraries
to compute an elementary function without guaranteed correct rounding.

SUN’s Libmcr former library15 and LIP-Arenaire’s CRLIBM16 libraries provide correct rounding
and have reasonably good performances. The Metalibm project17 [70] provides a tool for the auto-
matic or partly automatic implementation of mathematical functions, that can be used for generating
correctly rounded functions. GNU MPFR (see http://www.mpfr.org) is a C multiple precision library
that provides correctly rounded functions.

Due to the knowledge of the hardest-to-round points, computing correctly rounded elementary
functions will become easier during the next few years. It is therefore high time to think about fully
specifying these functions in a floating-point standard (the 2008 version of IEEE 754 only recommends
correct rounding of some functions in an appendix). Among the many questions that could be raised
when elaborating a standard, there are:

• should the standard provide correct rounding only, or should it also provide “cheaper” rounding
modes for applications where speed prevails?

• what can be done for formats wider than binary64, for which it is unlikely that hardest-to-round
points can be obtained in the forthcoming years?

• if “cheaper” rounding modes are provided, should a flag be raised when the result is not correctly
rounded?

• providing correctly rounded trigonometric functions in the entire floating-point range might be
expensive: the domain where the functions are correctly rounded should be discussed.

These issues have been discussed by de Dinechin and Gast [132]. Defour, Hanrot, Lefèvre, Muller,
Revol and Zimmermann [146] also presented some aspects of what a standard for the implementation
of the mathematical functions could be.

14But not that much: de Dinechin et al. achieve a worst case overhead within a factor 2 to 10 of the best libms [131].
15Still findable on the Internet.
16See https://lipforge.ens-lyon.fr/projects/crlibm/.
17See http://lipforge.ens-lyon.fr/www/metalibm/.

http://www.mpfr.org
https://lipforge.ens-lyon.fr/projects/crlibm/
http://lipforge.ens-lyon.fr/www/metalibm/

13Miscellaneous

13.1 Exceptions

The handling of the exceptional cases (underflow, overflow, Not A Number, “inexact” flag…) requires
even more caution with the elementary functions than with the basic operations +, −, ×, ÷, and the
square root. This is due to the high nonlinearity of the elementary functions: when one obtains +∞ as
the result1 of a calculation that only contains the four basic operations and the square root, this does
not necessarily mean that the exact result is infinite or too large to be representable, but at least the
exact result is likely to be fairly large. Similarly, when one obtains 0, the exact result is likely to be
small.2 With the elementary functions, this is not always true. Consider the following examples.

• Although when X is +∞, the only reasonable value to return when computing ln(X) is +∞, this
may lead to computed results far from the actual results. For instance, in the IEEE-754 binary64
format, the computation of ln(exp(750)) will give +∞, whereas the correct answer should have
been 750;

• similarly, when X is equal to 0, the only reasonable value to be returned as ln(X) is −∞. This may
also lead to computed values far from the exact results.

Furthermore, whereas the four arithmetic operations are almost always mathematically defined (the
only exception is division by zero, and, incidentally, it is actually defined in the IEEE-754 standard),
there are many more values for which the elementary functions are not defined or may underflow or

1Here, we mean +∞ as the result of an overflow, not the “exact” +∞ that results for instance from a division by zero.
2And yet, this is not always true. Consider the following example, due to Lynch and Swartzlander [325] Let us compute

f (x) = x2√
x3 + 1

.

If x is large enough but not too large, the computation of x3 returns +∞, whereas x2 is still finite. As a consequence,
the returned result is 0, and the exact result is large (close to

√
x).

© Springer Science+Business Media New York 2016
J.-M. Muller, Elementary Functions, DOI 10.1007/978-1-4899-7983-4_13

245

246 13 Miscellaneous

overflow, and handling these cases is not always simple. Let us consider the example of the tangent
function. The value tan(x) is infinite if x is π/2 plus an integer multiple of π . In practice, this never
occurs if x is a floating-point number: “machine numbers” are rational numbers, so they cannot be of
the formπ/2+kπ . And yet, a natural question arises: are theremachine numbers x so close to a number
π/2 + kπ that their tangent is too large to be represented in the floating-point format being used? We
can use the results presented in Chapter 11, where we saw (Table 11.2) that the IEEE binary64 number
closest to a multiple of π/2 is 6381956970095103× 2+797, whose tangent is −2.13 · · · × 1018, to see
that the problem can never occur in the IEEE binary64 format.3 The same argument shows that the sine
or cosine of a normalized binary64 floating-point number cannot be a subnormal number. However,
this does not mean that this problem will never occur in other floating-point formats.

13.1.1 NaNs

Each time f (x) is not mathematically defined and cannot be uniquely defined using continuity, NaN
should be returned.4 Examples are sin(±∞), cos±∞, or ln(−1). We must keep in mind that NaN
means “Not a Number,” which is quite different from “the system is unable to deliver the right result.”
For instance, it cannot be used to compensate for the lack of a careful range reduction. There are still
too many systems that return an error message or a NaN when the sine or cosine of a large number
is requested. If the correct result does exist, its adequate representation (normalized or subnormal
number, ±∞, ±0) must be returned. In [265], W. Kahan gives examples of functions for which there
are differences of opinion about whether they should be invalid or defined by convention at internal
continuities. One of these examples is 1.0∞, for which Kahan suggests NaN. Another example for
which deciding which answer is the right one is not straightforward is function sinpi , defined as
sinpi (x) = sin(πx). The first idea that springs in mind, when considering the definition of that
function at argument ±∞, is to choose sinpi (±∞) = NaN, and I tend to favor that idea. This is
also what is recommended by the appendix to the IEEE 754-2008 standard (see [245], Table 9.1).
However, since any large enough floating-point number is an even integer, for all big enough values of
|x |, sinpi (x) will be zero. Hence, to limit a possibly problematic change of behavior of a numerical
programwhen x overflows, onemay legitimately find it safer to define sinpi (±∞) = 0 (and, similarly,
cospi (±∞) = 1). A similar problem occurs for function (−1)x since, again, for any large enough
floating-point number x , x is an even integer so that (−1)x = 1: I tend to favor returning NaN, but
many authors (including the writers of the appendix to IEEE 754-2008, see [245] page 44) suggest to
return 1.

3And it never occurs in the IEEE binary32 or binary128 formats either.
4An exception is 00. There seems to be a general consensus to return 1 (mainly for reasons of “mathematical beauty”:
some mathematical relations that are true for all the integers but 0 remain true for 0 with this convention; this is discussed
in [227]), although it cannot really be defined using continuity: for any positive number y there exist a sequence (un)
and a sequence (vn), both going to zero as n goes to infinity, and such that uvn

n goes to y. One can choose, for instance,
un = 1/n and vn = − ln(y)/ ln(n). Goldberg [206] justifies the choice 00 = 1 by noticing that if f and g are analytical
functions that take on the value 0 at 0, then

lim
x→0

f (x)g(x) = 1.

http://dx.doi.org/10.1007/978-1-4899-7983-4_11
http://dx.doi.org/10.1007/978-1-4899-7983-4_11

13.1 Exceptions 247

13.1.2 Exact Results

It is difficult to know when functions such as x y give an exact result (and yet, Lefèvre and Lauter [302]
show that this problem is less difficult than expected). Using a theorem due to Lindemann,5 one can
show that the sine, cosine, tangent, exponential, or arctangent of a nonzero finite machine number,
or the logarithm of a finite machine number different from 1 is not a machine number, so that its
computation in floating-point arithmetic is always inexact. For some algebraic functions, the “exact
cases” can be listed (see [254]), and for more complicated functions, such as erf, gamma, Bessel, etc.,
we know (almost) nothing. Let us assume a radix-2, precision-p, floating-point system of extremal
exponents emin and emax, and with subnormal numbers allowed. With the most common functions, the
only “exact” operations are:

• for the radix-e logarithm and exponential functions:

1. ln(0) = −∞6;
2. ln(+∞) = +∞;
3. ln(1) = 0;
4. e0 = 1;
5. e−∞ = 0;
6. e+∞ = +∞;

• for the radix-2 logarithm and exponential functions:

1. log2(0) = −∞;
2. log2(+∞) = +∞;
3. log2(1) = 0;
4. for any integer k such that 2k is exactly representable (i.e., k is between emin − p + 1 and emax),

log2(1.0 × 2k) = k;
5. 20 = 1;
6. 2−∞ = 0;
7. 2+∞ = +∞;
8. for any integer k between emin − p + 1 and emax, 2k = 1.0 × 2k ;

• for the sine, cosine, tangent, and arctangent functions:

1. sin(0) = 0;
2. cos(0) = 1;
3. tan(0) = 0;
4. arctan(0) = 0;

• for the hyperbolic sine, cosine, tangent, and arctangent functions:

1. sinh(0) = 0;
2. sinh(−∞) = −∞;

5That theorem, already used in the previous chapter, shows that if x is a nonzero algebraic number, then exp(x) is
transcendental.
6Gal and Bachelis [199] suggest returning NaN when ln(−0) is computed, since −0 can be obtained from a negative
underflow (i.e., the exact result can be a nonzero negative number). I prefer to behave as if the input value were exact.

248 13 Miscellaneous

3. sinh(+∞) = +∞;
4. cosh(0) = 1;
5. cosh(−∞) = +∞;
6. cosh(+∞) = +∞;
7. tanh(0) = 0;
8. tanh(−∞) = −1;
9. tanh(+∞) = 1;

10. tanh−1(0) = 0;
11. tanh−1(−1) = −∞;
12. tanh−1(1) = +∞.

13.2 Notes on x y

The power function f (x, y) = x y is very difficult to implement if we want good accuracy [93, 425].
A straightforward use of the formula

x y = exp(y ln(x))

is to be avoided by all means (unless it is used with a much larger precision than the target precision).
First, it would always produce NaNs for negative values of x , although x y is mathematically defined
when x < 0 and y is an integer.7 Second, unless the intermediate calculations are performed with a
significantly larger precision, that formula may lead to very large relative errors. Assume that y ln(x)
is computed with relative error ε, that is, that the computed value g of y ln(x) satisfies:

g = (1 + ε)y ln(x).

If we neglect the error due to the exponential function itself, we find that the computed value of x y

will be:
exp(g)

= exp(y ln(x) + yε ln(x))
= x y × eεy ln(x).

Therefore, the relative error on the result,

∣∣∣eεy ln(x) − 1
∣∣∣ > εy ln(x)

can be very large.8 We must realize that even if the exp and ln functions were correctly rounded (which
is not yet guaranteed by most existing libraries; see Chapter 12 for a discussion on that problem), the

7We should notice that for this function, although it is the best that can be done, returning the machine number that best
represents the exact result— according to the active rounding mode — can be misleading: there may be some rare cases
where x < 0 and y is an inexact result that is, by chance, approximated by an integer. In such cases, returning a NaN
would be a better solution, but in practice, we do not know whether y is exact. This problem (and similar ones) could
be avoided in the future by attaching an “exact” bit flag in the floating-point representation of numbers, as suggested for
instance by Gustafson [211].
8Some programming languages avoid this problem by simply not offering function x y . Of course, this is the best way to
make sure that most programmers will use the bad solution exp(y ln(x)).

http://dx.doi.org/10.1007/978-1-4899-7983-4_12

13.2 Notes on x y 249

Table 13.1 Error, expressed in ulps, obtained by computing x y as exp(y ln(x)) for various x and y assuming that exp
and ln are correctly rounded to the nearest, in IEEE-754 binary64 floating-point arithmetic. The worst case found during
our experimentations was 1200.13 ulps for 34823062188649005575/2

45
, but it is almost certain that there are worse cases.

x y Error in ulps

(113/64)2745497944039423/2
41

1121.39

2994 718.00

3559 955.17

5441 790.61

56156 1052.15

100149 938.65

220124 889.07

299387 898.33

34823062188649005575/2
45

1200.13

error could be large. Table 13.1 gives the error obtained by computing x y as exp(y ln(x)) in IEEE-754
binary64 arithmetic for various values of x and y and assuming that exp and ln are correctly rounded
to the nearest.

Now, to estimate the accuracy with which the intermediate calculation must be carried out, we have
to see for which values x and y the number y ln(x) is maximum. It is maximum when x y is the largest
representable number, that is,

x y ≈ 2emax+1,

which gives y ln(x) = (emax + 1) ln(2). If we want a relative error on the result less than α, we must
compute y ln(x) with a relative error less than ε, where

∣∣∣eyε ln(x) − 1
∣∣∣ < α,

which is approximately equivalent to
yε ln(x) < α.

This gives

ε <
α

(emax + 1) ln(2)
.

Therefore we must have

− log2(ε) > − log2(α) + log2(emax + 1) + log2(ln(2)).

Thus to get a correct result, we must get ln(x) with a number of additional bits of precision that is
slightly more than the number of exponent bits.

All this shows that, although requiring correct rounding for sin, cos, exp, 2x , ln, log2, arctan, tan, and
the hyperbolic functions would probably be a good step toward high quality arithmetic environments,
such a requirement seems difficult to fulfill for the power function if speed is at stake. The former
SUN LIBMCR (see Section 14.5) library provided a correctly rounded power function in binary64
arithmetic, by increasing the precision of the intermediate calculations until we can guarantee correct
rounding. Unfortunately, since the hardest-to-round cases are not known for this function, this process

http://dx.doi.org/10.1007/978-1-4899-7983-4_14

250 13 Miscellaneous

can sometimes be rather slow. This function should at least be faithfully rounded, that is, the returned
value should be one of the two machine numbers closest to the exact result. In any case, it is important,
when x y is exactly representable in the target format, that it is computed exactly—and we must keep
in mind that detecting such “exact” cases can be done at reasonable cost [302].

Concerning exceptional cases for the power function, Sayed and Fahmy have investigated what
the power function should return when evaluating expressions such as (+∞)−0 or (−1)+∞ [410].
The appendix of the IEEE 754-2008 standard gives similar recommendations, with, however, a few
differences. For instance:

• it recommends implementation of three different functions: function pown (for which the second
argument is necessarily an integer), function pow (supposed as general as possible, and defined on
[−∞,+∞]×[−∞,+∞]), and function powr (defined as exp(y ln(x)). For instance, powr(x, y)
should return a NaN for x < 0 (because ln(x) is undefined), although pow(−3.0, 2.0) should return
9. Also notice the important difference: pow(±0,±0) is 1 whereas powr(±0,±0) is NaN.

• in the case
(−0)noninteger <0,

Sayed and Fahmy recommend to return a NaN, whereas the IEEE 754-2008 appendix recommends
that pow(±0, y) should be +∞.

Notice that integer power functions (i.e., functions (x, n) → xn) are much simpler to implement
than the “general” power function since for these functions, the hardest-to-round cases (in binary64
arithmetic) are known for all values of n of practical interest (up to n = 733, see [279]). Furthermore,
some specific algorithms have been suggested [279], and we also know very tight bounds on the errors
of the classical algorithms that compute these functions [209, 403].

13.3 Special Functions, Functions of Complex Numbers

Ahugework on the evaluation of special functions (such as the gamma, erf, Jacobi andBessel functions)
has been done by Cody, who initially wrote a package named FUNPACK [96], and later wrote a more
portable package, SPECFUN [100]. Macleod designed a package namedMISCFUN for the evaluation
of several special functions which are not used often enough to have been included in the standard
libraries [326]. Cody also worked on the performance evaluation of programs for these functions [99,
104]. Special functions are of particular interest in physics, chemistry, and statistics. They are out of the
scope of this book (although several techniques presented in the previous chapter, especially polynomial
and rational approximation, are frequently used to implement these functions). The interested reader
can consult recent good books on the topic [205, 118]. Marc Mezzarobba’s PdD dissertation [344] and
recent papers [343, 87, 299] are also of interest: they show that the building of accurate programs that
calculate these functions can be at least partly automated. Incidentally, I strongly advise the reader to
have a look at theDynamic Dictionnary of Mathematical Functions (DDMF) [34], accessible at http://
ddmf.msr-inria.inria.fr/1.9.1/ddmf. The work done by the DDMF team is impressive.

The evaluation of functions of a complex variable can be done using the real functions. The most
usual formulas can be found, for instance, in Reference [28], and a discussion on the definition of these
functions can be found in Reference [112]. And yet, a naive use of these formulas will frequently lead
to inaccurate functions, wrong branch cuts, and under/overflows during the intermediate computations.
Kahan’s paper on branch cuts [263] brings this problem to the fore and gives elegant solutions. Hull,
Fairgrieve, and Tang give reliable and accurate algorithms for the common complex elementary func-

http://ddmf.msr-inria.inria.fr/1.9.1/ddmf
http://ddmf.msr-inria.inria.fr/1.9.1/ddmf

13.3 Special Functions, Functions of Complex Numbers 251

tions [242, 243]. Cody wrote a package named CELEFUNT [101] for testing a complex elementary
function library. That package is outdated now but some ideas introduced by Cody in [101] are still of
interest.

One can also define square roots and elementary functions ofmatrices (for instance, an exponential or
cosine of a matrix can be defined by the usual Taylor series). This has many numerical applications, for
solving some differential equations. There is a large literature on this domain. For instance, Cheng and
others deal with the logarithm of a matrix [82], Higham and Smith give an algorithm for computing
cosines of matrices [234], and Iserles and Zanna published a paper on the computation of matrix
exponentials [249]. The interested reader should consult Higham’s book Functions of matrices: Theory
and computation [233].

14Examples of Implementation

This chapter is far from being exhaustive. The implementations it describes may not be the best ones,
and certainly will at least slightly vary between when this chapter is written and when you read it. Also,
the methods used are not always publicized. Some of the implementations presented here are rather
old. My purpose, here, is to show, through some examples, how the various techniques described in
this book can be used.

14.1 First Example:The Cyrix FastMath Processor

In the Cyrix Fastmath processor [119, 187], five “core” functions were directly implemented: sine,
tangent, arctangent, 2x −1, and log2(x+1). The other functions were implemented using the core func-
tions. This simplifies the writing and maintenance of the library of functions, but induces some small
penalty in terms of accuracy and speed. The approximations used were shown to be monotonic [188].
For example:

• to compute 2x − 1 on [−1, 1], a rational approximation of 2x/2 − 1 was first computed, and then
the identity

2x − 1 =
(
2x/2 − 1

) [(
2x/2 − 1

)
+ 2

]

was used;
• to compute sin(x) on [−π/4,+π/4], an odd polynomial approximation of the form x P(x2) was

used (we explain how such odd or even approximations can be built in Chapter 4). The cosine was
obtained1 as

cos(x) = ±
√
1 − sin2(x).

On the Cyrix FastMath processor, the square root was almost as fast as division, so there was little
penalty from using it;

1Incidentally, this shows that the so frequent idea of computing sin2 x + cos2 x for several x to quickly
check if the trigonometric functions are accurate is very naive. In the present case, even if the sine
function had been very poor—which was not the case— the computed value of sin2 x +cos2 x would
always have been very close to 1.

© Springer Science+Business Media New York 2016
J.-M. Muller, Elementary Functions, DOI 10.1007/978-1-4899-7983-4_14

253

http://dx.doi.org/10.1007/978-1-4899-7983-4_4

254 14 Examples of Implementation

• to compute log2(x + 1) on [1/√2 − 1,
√
2 − 1], the number

g = x

x + 2

was computed, so that

log2 (1 + x) = log2

(
1 + g

1 − g

)

become an odd function of g. Then an odd rational approximation of the form g× Q(g2) was used.
Using an odd approximation reduces the number of multiplications required to evaluate it;

• to compute tan(x) on [−π/4,+π/4], an odd polynomial approximation of the form x P(x2)/Q(x2)
was used;

• to compute arctan(x) on [−π/32,+π/32], a five-segment2 odd rational approximation of the form
x P(x2)/Q(x2) was used.

All approximations had the general form x R(x), where R(x) is a rational function or a polynomial.
In each case, the graph of R is relatively flat and stays well away from zero, so R can be efficiently
and accurately evaluated in fixed-point.

14.2 The INTEL Functions Designed for the Itanium Processor

As explained by Harrison, Kubaska, Story, and Tang [224], the IA-64 instruction set, whose first
implementation is the INTEL/HP Itanium processor, has several key features that can be used for
designing fast and/or accurate elementary function algorithms:

• some parallelism is available, since there are several floating-point units, and each of them is
pipelined;

• the internal INTEL extended-precision format can be used tomake binary64 programs very accurate
(notice that this is no longer the case if the SSE2 instruction set is used);

• the fused multiply–add instruction (see Section 2.1.5) makes polynomial evaluation faster and in
general slightly more accurate than what we would get by using separate additions and multipli-
cations. This and the parallelism also make the latency of the “computational part” of the function
evaluation (mainly polynomial evaluation) much shorter than memory references, which must be
taken into account: large tables should be avoided whenever it is possible.

The designers of Intel’s library for the IA-64 architecture [115, 224, 436] therefore made the
following choices:

• to avoid loading constants, a very simple range reduction technique is used;
• polynomials of large degree are favored: this allows the domainwhere they approximatewell enough

the function to be large (which simplifies range reduction and requires less memory), and this is
not a large penalty in terms of speed (since Estrin’s method or variants — see Section 5.2.2 — can
be used thanks to the available parallelism), nor in terms of accuracy when binary64 arithmetic is
at stake (thanks to the availability of an internal extended-precision format).

2The interval was split into five subintervals, and a different approximation was chosen for each
subinterval.

http://dx.doi.org/10.1007/978-1-4899-7983-4_2
http://dx.doi.org/10.1007/978-1-4899-7983-4_5

14.2 The INTEL Functions Designed for the Itanium Processor 255

The latency of their binary64 functions varies from 52 cycles (for the natural logarithm) to 70 cycles
(for the sine or cosine). The accuracy of most of their functions is within 0.51 ulps. The number of
double-extended table entries required varies from none at all (tangent and arctangent) to 256 (natural
logarithm).

Let us now give two examples, drawn from [224].

14.2.1 Sine and Cosine

sin(x) is computed as follows

1. range reduction: compute the closest integer N to 16x/π , then compute

r = (x − N P1) − N P2

using two consecutive fused multiply–adds, where P1 and P2 are extended-precision numbers such
that x − N P1 is exactly computed and P1 + P2 is as close as possible to π/16. This is a variant
of Cody and Waite’s method — see Section 11.2 —, made more accurate by the availability of the
fused multiply–add instruction and the internal extended-precision format;3

2. polynomial approximation: we compute two polynomials, an odd polynomial

p(r) = r + p1r
3 + p2r

5 + · · · + p4r
9

that approximates sin(r) and an even polynomial

q(r) = q1r
2 + q2r

4 + · · · + q4r
8

that approximates cos(r) − 1. Such approximations with particular forms are computed using
methods similar to those presented in Chapter 4;

3. reconstruction: the returned result is

Cp(r) + (S + Sq(r))

where C is cos(Nπ/16) and S is sin(Nπ/16), read from a table.

The cosine is computed very similarly: it suffices to add 8 to N once it is obtained.

14.2.2 Arctangent

No range reduction is performed. Only two cases are considered: |x | ≥ 1 and |x | < 1. Having such
large intervals requires the use of polynomials of large degree. Indeed, a polynomial of degree 47 is
used. The case of input arguments greater than 1 is dealt with using

3It could probably be made even more accurate, using the technique of Boldo, Li and Daumas (see
Section 11.2.2 page 241), which was not known at the time that library of functions was designed.

http://dx.doi.org/10.1007/978-1-4899-7983-4_11
http://dx.doi.org/10.1007/978-1-4899-7983-4_4
http://dx.doi.org/10.1007/978-1-4899-7983-4_11

256 14 Examples of Implementation

arctan(x) = sign (x)
π

2
− arctan

(
1

x

)
(14.1)

but since a direct use of (14.1) might sometimes lead to inaccuracies and requires a time-consuming
division, some care is taken. More precisely:

1. If |x | < 1, the authors of [224] suggest to approximate arctan(x) by a polynomial of the form

x + x3
(
p0 + p1y + p2y

2 + · · · + p22y
22

)

where y = x2. Again, such approximations with particular forms are computed using methods
similar to those presented in Chapter 4.

2. If |x | ≥ 1, arctan(x) is approximated by

sign (x)
π

2
− c45r(β)q(x)

where

• c is an approximation to 1/x (with relative error less than 2−8.886) obtained using the frcpa

instruction that is available on the Itanium;
• β = 1 − xc is close to 0;
• r(β) = 1+ r1β + r2β2 + · · · + r10β10 is a degree-10 polynomial approximation to (1−β)−45;
• q(x) = q0 +q1y+q2y2 +· · · +q22y22, with y = x2, is a degree-44 polynomial approximation

to x45 arctan(1/x).

14.3 The LIBULTIM Library

The LIBULTIM library (also called MathLib) was developed by Ziv and colleagues at IBM. Although
it is no longer supported, that library is of great historical importance, since it was the first one that
provided correctly rounded transcendental functions. Since at the time it was developed, the hardest-
to-round points for correct rounding in binary64 arithmetic were not known (they still are unknown for
some functions and domains), the authors assumed that performing the intermediate calculations with
800 bits of precision was enough, which is almost certainly true according to the probabilistic model
presented in Section 12.6. However, computing with 800 bits of precision is an overkill: it makes the
library of functions very slow at times. Of course, all calculations were not performed with such a huge
precision, Ziv’s “multilevel strategy” [481] (see Chapter 12) was used: the function being considered
was first evaluated with rather low precision, and the precision was increased in case the previous
calculation did not suffice to guarantee correct rounding.

http://dx.doi.org/10.1007/978-1-4899-7983-4_4
http://dx.doi.org/10.1007/978-1-4899-7983-4_12
http://dx.doi.org/10.1007/978-1-4899-7983-4_12

14.4 The CRLIBM Library 257

14.4 The CRLIBM Library

The CRLIBM library4 [124, 125] was developed by the Arenaire5 research group in Lyon, France.
It aims at returning correctly rounded results in binary64 arithmetic, for the four following rounding
functions: toward−∞, toward+∞, toward0, and to the nearest ties-to-even.CRLIBMuses the hardest-
to-round values that have been computed using Lefèvre’s algorithms [306, 308] (see Chapter 12). The
first functions of CRLIBMwere written by Defour during the preparation of his Ph.D. [144], and most
of the current library was written by Lauter during the preparation of his PhD [301, 136]. The writing of
the software was coordinated by de Dinechin.The tools Sollya and Gappa have been used for building
the polynomial approximations, and computing and certifying the error bounds [85, 86, 134].

Ziv’s multilevel strategy is used, but to guarantee correct roundings, two steps only are necessary
here: the knowledge of the hardest to round points allows us to avoid overestimating the necessary
intermediate precision. More precisely:

• during the first step, the function is evaluated with between 60 and 80 bits of accuracy (depend-
ing on the function). The result of this first evaluation is represented as a double-word number
(see Section 2.2.2), i.e., as the unevaluated sum of two binary64 numbers. In most cases, this suf-
fices to return a correctly rounded final result. Ziv’s rounding test, presented in Section 12.4, is used
to check if this is the case. In the following, we call this step the quick step of the algorithm;

• when the quick step does not suffice, we use a more accurate yet slower method, tightly targeted at
the precision given by Lefèvre’s cases. In the following, we call this step the accurate step of the
algorithm.

The authors of CRLIBMpublished, with each function, a proof of its behavior. In the earlier versions
of CRLIBM, an ad hoc multiple-precision library, called SCSLIB [145], was designed for performing
the arithmetic operations needed in the accurate step. Later on, Lauter designed triple-word arithmetic
operations [300] based on binary64 arithmetic for this purpose. This had two advantages over the
previous approach: it was much faster, and made it easier to use information from the first step in the
accurate one.

Although that may seem strange at first glance, the accurate step is simpler than the quick step: first,
performance is not an important issue for the accurate step, since that step will rarely be taken, second,
the SCSLIB library or the triple-word library provide much precision (indeed, significantly more than
what is actually needed), so that we do not need sophisticated evaluation schemes to preserve accuracy,
and the error analysis is somehow simpler. Also, all the special cases (zeroes, underflows, overflows,
NaNs, etc.) are handled before, during the first step. On the other hand, for the quick step, performance
is a primary concern, and tight error bounds must be obtained (using for instance methods such as the
one presented in Section 5.3.1).

The CRLIBM team is now working on a follow-up: MetaLIBM (see Section 14.7).
Let us now give two examples of CRLIBM functions.

14.4.1 Computation of sin(x) or cos(x) (Quick Step)

Assumewewish to evaluate sin(x) or cos(x). The trigonometric range reduction algorithm ofCRLIBM
computes an integer k and a reduced argument y such that

4See http://lipforge.ens-lyon.fr/projects/crlibm/.
5Now called AriC: http://www.ens-lyon.fr/LIP/AriC/.

http://dx.doi.org/10.1007/978-1-4899-7983-4_12
http://dx.doi.org/10.1007/978-1-4899-7983-4_2
http://dx.doi.org/10.1007/978-1-4899-7983-4_12
http://dx.doi.org/10.1007/978-1-4899-7983-4_5
http://lipforge.ens-lyon.fr/projects/crlibm/
http://www.ens-lyon.fr/LIP/AriC/

258 14 Examples of Implementation

x = k · π

256
+ y,

where the reduced argument y is computed as a “double-word” yh+y� (i.e., the unevaluated sumof two
binary64 numbers, see Section 2.2.2), and belongs to [−π/512,+π/512]. Notice that π/512 < 2−7.
That range reduction uses various methods, depending on the magnitude of the initial argument:

• Cody and Waite’s method with two constants (the fastest), for very small arguments;
• Cody and Waite’s method with three constants (almost as fast) for small arguments;
• Cody and Waite’s method with three constants, using a double-word arithmetic and a 64-bit integer

format for representing the integer k, for arguments of moderate magnitude;
• Payne and Hanek’s algorithm (see Section 11.4) for the largest arguments.

Then, we read from a table {
sh(k) + s�(k) ≈ sin(kπ/256)
ch(k) + c�(k) ≈ cos(kπ/256)

and we use {
sin(kπ/256 + y) = sin(kπ/256) cos(y) + cos(kπ/256) sin(y)
cos(kπ/256 + y) = cos(kπ/256) cos(y) − sin(kπ/256) sin(y)

where cos(y) and sin(y) are evaluated by first approximating, using small polynomials, two functions
of y, e(y) and f (y), defined by cos(y) = 1 + e(y) and sin(y) = (yh + y�)(1 + f (y)). The values of
e(y) and f (y) are returned as binary64 numbers. This gives 14 extra bits of accuracy, so this first step
is very accurate.

14.4.2 Computation of ln(x)

Let us assume that the target rounding function is round to nearest, ties to even. The relative error of
the quick step is bounded by 2−62.6. The accurate step is accurate to more than 119 bits, which suffices
to guarantee correct rounding (see Table 12.7). Subnormal input numbers are easily handled using for
instance

ln(x) = −52 · ln(2) + ln
(
252x

)
.

Now, if x is a normal positive floating-point number, range reduction is very simple. From

x = mx · 2ex ,

where mx is the significant of x and ex its exponent, the first idea that springs in mind is to compute
ln(mx) and then to add ex · ln(2) to that result. However, this would result in a very large relative error
when ex = −1 and mx ≈ 2 (as already noticed by various authors, for instance Wong and Goto: see
Section 6.5.1 page 133). To overcome this problem, we define numbers y and E as follows:

E =
{
ex if mx ≤ √

2,
ex + 1 if mx >

√
2,

http://dx.doi.org/10.1007/978-1-4899-7983-4_2
http://dx.doi.org/10.1007/978-1-4899-7983-4_11
http://dx.doi.org/10.1007/978-1-4899-7983-4_12
http://dx.doi.org/10.1007/978-1-4899-7983-4_6

14.4 The CRLIBM Library 259

and

y =
{
mx if mx ≤ √

2,
mx/2 if mx >

√
2.

We will evaluate ln(x) as E · ln(2) + ln(y). The interval (1/
√
2,

√
2) where y lies is split into 128

subintervals. More precisely, from the high-order bits of y considered as an index i , a value ri close to
1/y is read from a table of 128 entries. The number

z = y · ri − 1

is then computed exactly as a double-word number zh + z�. We have

ln(y) = ln(1 + z) − ln(ri).

The 128 possible values ln(ri) are tabulated, and since z is small enough (less than 2−8), ln(1+ z)
can easily be approximated by a polynomial. The quick step uses a polynomial of the form

Pquick(z) = z − z2

2
+ c3z

3 + c4z
4 + c5z

5 + c6z
6

whose coefficients c3 to c6 are binary64 numbers (Chapter 4 explains how such polynomials are
computed). The polynomial is evaluated as follows

• the part c3z3 + c4z4 + c5z5 + c6z6 is evaluated using zh only. More precisely, we first compute
zh,square = RN(z2h), then

p35 = RN(c3 + RN(zh,square · c5)),

p46 = RN(c4 + RN(zh,square · c6)),

zh,cube = RN(zh,square · zh), zh, f our = RN(zh,square · zh,square), and finally

p36 = RN
(
RN(zh,cube · p35) + RN(zh, f our · p46)

)
.

• the remaining parts are added as follows: we compute t1 = RN(− 1
2 zh,square + z�),

t2 = RN(t1 + p36), and we finally obtain the value of the polynomial as a double-word
number:

(ph, p�) = Fast2Sum(zh, t2).

Adding E · ln(2) − ln(ri) to this result is done in double-word arithmetic. Then Ziv’s rounding test
(see Section 12.4, page 263) is performed to check if we need to perform the accurate step.

The accurate step uses a polynomial of degree 14, of the form

Paccurate(z) = z − z2

2
+ c′

3z
3 + c′

4z
4 + c′

5z
5 + · · · + c′

14z
14.

The coefficients c′
3 to c′

9 are double-word numbers, and the coefficients c′
10 to c′

14 are binary64
numbers. The computation of Ptail = c′

5 + c′
6zh + c′

7z
2
h + · · · + c′

14z
9
h is first done using Horner’s

scheme with the usual binary64 arithmetic operations. Then

http://dx.doi.org/10.1007/978-1-4899-7983-4_4
http://dx.doi.org/10.1007/978-1-4899-7983-4_12

260 14 Examples of Implementation

Pmed = c′
3 + c′

4zh + c′
5z

2
h + · · · + c′

9z
6
h + Ptail z

7
h

is evaluated using Horner’s scheme in double-word arithmetic. Finally,

(zh + z�) − 1

2
(zh + z�)

2 + (zh + z�)
3 · Pmed

is calculated in triple-word arithmetic.

14.5 SUN’s Former LIBMCR Library

The LIBMCR library6 was developed by K.C. Ng, N. Toda, and others at SUNMicrosystems. The first
beta version was published in December 2004. It provided correctly rounded functions in binary64
arithmetic.

As an example, let us show how natural logarithms are evaluated by LIBMCR:

• first, the exceptional cases are processed (ln(1) = 0 and ln(+∞) = +∞, ln(0) = −∞,
ln(negative) = NaN);

• then, an “almost correctly rounded” function is called;
• if the result is too close to the middle of two consecutive floating-point numbers,7 then a multiple-

precision program is called with increasing precision until we can guarantee correct rounding.

Let us summarize the “almost correctly rounded” step. Assume we wish to compute ln(x). First, x
is expressed as r × 2n . Then, from a table, we read a value y such that y is close to r (more precisely,
|y − r | < 2−5 + 2−12) and ln(y) is very close to a binary64 number (at a distance less than 2−24 ulps).
This is Gal’s accurate-table method, described in Section 6.3. We therefore have

ln(x) = n ln(2) + ln(y) + ln(r/y).

Define s = (r − y)/(r + y). |s| is less than 0.01575, and ln(r/y) is computed using the Taylor
approximation

ln

(
r

y

)
= ln

(
1 + s

1 − s

)
= 2s + 2

3
s3 + 2

5
s5 + · · · + 2

13
s13.

Much care is taken for evaluating the series with 77-bit accuracy.

14.6 The HP-UX Compiler for the Itanium Processor

As noticed by Markstein [332], it is very frequent that a program invokes both the sine and cosine
routines for the same argument (e.g., in rotations, Fourier transforms, etc). These routines share many
common calculations: range reduction, computation of the sine, and cosine of the reduced argument.
Hence, Markstein suggests using this property for performing these common calculations only once.
TheHP-UXcompiler for Itanium[316] has implemented thismethodology.The librarydoes not provide

6See http://www.sun.com/download/products.xml?id=41797765.
7Assuming rounding to the nearest.

http://dx.doi.org/10.1007/978-1-4899-7983-4_6
http://www.sun.com/download/products.xml?id=41797765.

14.6 The HP-UX Compiler for the Itanium Processor 261

correct rounding, and yet its accuracy is, in general, very good (for instance, the largest observed —
i.e., not proven — error for trigonometric functions in binary64 arithmetic is 0.502 ulps [316]).

Markstein’s algorithms for elementary functions on the Itanium are presented in his excellent
book [331]. For instance, exp(x) is computed as

2mtn2
u,

where m = �x/ ln(2)	, n is constituted by the leading L bits of the fractional part of x/ ln(2), u is the
remaining part of that fractional part, and tn is

2n·2−L

read from a table. A typical value of L is 10. The number 2u is approximated by a polynomial.

14.7 TheMETALIBM Project

When building an elementary function library, writing just one program for each pair (function, format)
is not a fully satisfactory solution:

• first, one would like to obtain good results for the various possible rounding functions. Even if we do
not aim at correct rounding, if the user selects—for instance—the round-to-+∞ rounding function,
it means that he or she wants to be certain that the computed result will be larger than or equal to
the exact result. In general that property will not be satisfied if we just take a program designed
for giving good results with round-to-nearest and change the rounding function to round-to-+∞
(in some cases we may even get extremely poor results). Hence, we need at least a set of programs
for each rounding function;

• we need to provide portable functions, which can run on many different platforms. However, to
gain performance, it would be advisable also to have versions of the programs that take into account
the specificities of a given platform (depth of the pipelines, availability of an FMA, size of cache
memory for table-based methods, possible availability of a floating-point format wider than the
target format, which would allow one to avoid or to limit the need for double-word or triple-word
arithmetic…): the “best” implementation is highly dependent on the technology. Hence, in addition
to a fully “general” set of functions, we may want to have a slightly different, specialized, set of
functions for each family of processors of commercial importance;

• although I strongly recommend the availability of correctly rounded functions whenever it is possi-
ble, there are applications where accuracy and numerical reproducibility are not an important issue,
where we know that, anyway, the values that are input to the functions are not very accurate… in
such cases, it may make sense to provide programs that are slightly less accurate but faster. Con-
cerning speed, one may also want to have functions that can be efficiently vectorized, and to be able
to choose compromises between optimizing throughput and optimizing latency.

Adding to this the fact that we need elementary functions for all available formats (typically binary32,
binary64, and binary128, but decimal formats, if implemented on the target system, need elementary
functions too), we conclude that we should ideally offer many variants for each of the functions of a
typical mathematical library (libm). This represents a huge programming effort.

Furthermore, libms do not contain all functions of practical interest: as noticed in [70], the web
page http://project-mathlibs.web.cern.ch/project-mathlibs/mathTable.html mentions all the functions
that are used by CERN engineers in their calculations. Only a fraction of that list can be found in a

http://project-mathlibs.web.cern.ch/project-mathlibs/mathTable.html

262 14 Examples of Implementation

standard libm: the other functions need to be implemented by programmers who, frequently, do not
have expertise in libm development.

All this clearly shows that several hundreds of function programs are needed. Writing these pro-
grams, maintaining them, certifying their behavior when critical applications are at stake, making sure
that they are quickly—yet, safely!—adapted each time a new processor architecture appears is a huge
task. In themedium and long term, the only solution is to automate the generation of function programs,
so that they can be generated on-demand, and adapted to a specific context. Some tools such as Sollya8

(see Section 3.9 and Chapter 4) and Gappa9 (see Sections 2.2.4 and 5.3) already make it possible to
automatically find a good polynomial approximation to some function in a given interval, provide a
tight yet certain bound on the approximation error, and bound the error of a polynomial evaluation
scheme. The METALIBM project aims at filling the gap toward either full automation (assuming a
nonexpert user who wants a sound implementation of a given function) or computer-assisted function
design (assuming that the user is an experienced libm designer who wants to quickly obtain a fast and
accurate program). Reference [70] presents the state of the project at the time I am writing these lines.
Good results are already obtained on architecture-adapted code generation for polynomial evaluation.
Range reduction remains a difficult problem: when we have no preliminary knowledge of a specific
algebraic property (such as exp(x + y) = exp(x) exp(y) or cos(x + 2π) = cos(x)) that can be used,
it seems that splitting the initial domain into subintervals small enough so that a good polynomial
approximation can be built in each of them is the only alternative. Progress has been done on this
topic [289, 303]. However, this technique cannot be used for very large initial domains, such as the set
of the binary64-representable numbers. Breakthroughs in that domain may come from computer alge-
bra. For instance, in his PhD dissertation [344], Mezzarobba shows, for a large class of functions, how
we can find asymptotic expansions or detect periodicities just from the coefficients of the differential
equation they satisfy. Paper [299] is a very interesting example of what can be done.

8http://sollya.gforge.inria.fr
9http://gappa.gforge.inria.fr

http://dx.doi.org/10.1007/978-1-4899-7983-4_3
http://dx.doi.org/10.1007/978-1-4899-7983-4_4
http://dx.doi.org/10.1007/978-1-4899-7983-4_2
http://dx.doi.org/10.1007/978-1-4899-7983-4_5
http://sollya.gforge.inria.fr
http://gappa.gforge.inria.fr

Bibliography

[1] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical
Tables. Applied Math. Series 55 (National Bureau of Standards, Washington, D.C., 1964)

[2] R.C. Agarwal, J.C. Cooley, F.G. Gustavson, J.B. Shearer, G. Slishman, B. Tuckerman, New scalar and vector
elementary functions for the IBM system/370. IBM J. Res. Dev. 30(2), 126–144 (1986)

[3] H.M.Ahmed,Efficient elementary functiongenerationwithmultipliers, inProceedings of the 9th IEEE Symposium
on Computer Arithmetic (1989), pp. 52–59

[4] H.M. Ahmed, J.M. Delosme, M. Morf, Highly concurrent computing structures for matrix arithmetic and signal
processing. Computer 15(1), 65–82 (1982)

[5] H. Alt, Comparison of arithmetic functions with respect to Boolean circuits, in Proceedings of the 16th ACM
STOC (1984), pp. 466–470

[6] American National Standards Institute and Institute of Electrical and Electronic Engineers. IEEE Standard for
Binary Floating-Point Arithmetic. ANSI/IEEE Standard 754–1985 (1985)

[7] C. Ancourt, F. Irigoin, Scanning polyhedra with do loops, in Proceedings of the 3rd ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP’91), Apr 1991 (ACM Press, New York, NY, 1991),
pp. 39–50

[8] I.J. Anderson, A distillation algorithm for floating-point summation. SIAM J. Sci. Comput. 20(5), 1797–1806
(1999)

[9] M. Andrews, T. Mraz, Unified elementary function generator. Microprocess. Microsyst. 2(5), 270–274 (1978)
[10] E. Antelo, J.D. Bruguera, J. Villalba, E. Zapata, Redundant CORDIC rotator based on parallel prediction, in

Proceedings of the 12th IEEE Symposium on Computer Arithmetic, July 1995, pp. 172–179
[11] E. Antelo, T. Lang, J.D. Bruguera, Very-high radix CORDIC rotation based on selection by rounding. J. VLSI

Signal Process. Syst. 25(2), 141–154 (2000)
[12] A. Avizienis, Signed-digit number representations for fast parallel arithmetic. IRE Trans. Electron. Comput. 10,

389–400 (1961). Reprinted in [440]
[13] A. Azmi, F. Lombardi, On a tapered floating point system, in Proceedings of 9th IEEE Symposium on Computer

Arithmetic, Sept 1989, pp. 2–9
[14] L. Babai, On Lovász’ lattice reduction and the nearest lattice point problem. Combinatorica 6(1), 1–13 (1986)
[15] D.H. Bailey, Algorithm 719, multiprecision translation and execution of FORTRANprograms. ACMTrans.Math.

Softw. 19(3), 288–319 (1993)
[16] D.H. Bailey, Some background on Kanada’s recent pi calculation. Technical report, Lawrence Berkeley National

Laboratory (2003), http://crd.lbl.gov/~dhbailey/dhbpapers/dhb-kanada.pdf
[17] D.H. Bailey, High-precision floating-point arithmetic in scientific computation. Comput. Sci. Eng. 7(3), 54–61

(2005)
[18] D.H. Bailey, A thread-safe arbitrary precision computation package (full documentation) (2015), http://www.

davidhbailey.com/dhbpapers/index.html#Technical-papers
[19] D.H. Bailey, J.M. Borwein, Experimental mathematics: examples, methods and implications. Not. AMS 52(5),

502–514 (2005)
[20] D.H. Bailey, J.M. Borwein, High-precision arithmetic in mathematical physics. Mathematics 3, 337–367 (2015)
[21] D.H. Bailey, J.M. Borwein, P.B. Borwein, S. Plouffe, The quest for pi. Math. Intelligencer 19(1), 50–57 (1997)
[22] D.H. Bailey, Y. Hida, X.S. Li, B. Thompson, ARPREC: an arbitrary precision computation package. Technical

report, Lawrence Berkeley National Laboratory (2002), http://crd.lbl.gov/~dhbailey/dhbpapers/arprec.pdf

© Springer Science+Business Media New York 2016
J.-M. Muller, Elementary Functions, DOI 10.1007/978-1-4899-7983-4

263

http://crd.lbl.gov/~dhbailey/dhbpapers/dhb-kanada.pdf
http://www.davidhbailey.com/dhbpapers/index.html#Technical-papers
http://www.davidhbailey.com/dhbpapers/index.html#Technical-papers
http://crd.lbl.gov/~dhbailey/dhbpapers/arprec.pdf

264 Bibliography

[23] B.L. Bailly, J.P. Thiran, Computing complex polynomial chebyshev approximants on the unit circle by the real
remez algorithm. SIAM J. Numer. Anal. 36(6), 1858–1877 (1999)

[24] J.C. Bajard, J. Duprat, S. Kla, J.M. Muller, Some operators for on-line radix 2 computations. J. Parallel Distrib.
Comput. 22(2), 336–345 (1994)

[25] J.C. Bajard, S. Kla, J.M. Muller, BKM: a new hardware algorithm for complex elementary functions. IEEE Trans.
Comput. 43(8), 955–963 (1994)

[26] G.A. Baker, Essentials of Padé Approximants (Academic Press, New York, 1975)
[27] G.A. Baker, Padé Approximants. Number 59 in Encyclopedia of Mathematics and its Applications (Cambridge

University Press, New York, 1996)
[28] H.G. Baker, Less complex elementary functions. ACM SIGPLAN Not. 27(11), 15–16 (1992)
[29] P.W. Baker, Suggestion for a fast binary sine/cosine generator. IEEE Trans. Comput. C-25(11) (1976)
[30] G.V. Bard, Sage for Undergraduates (American Mathematical Society, 2015)
[31] R. Barrio, A. Dena, W. Tucker, A database of rigorous and high-precision periodic orbits of the Lorenz model.

Comput. Phys. Commun. 194, 76–83 (2015)
[32] P. Beame, S. Cook, H. Hoover, Log depth circuits for division and related problems. SIAM J. Comput. 15,

994–1003 (1986)
[33] M. Bekooij, J. Huisken, K. Nowak, Numerical accuracy of fast fourier transforms with CORDIC arithmetic. J.

VLSI Signal Process. Syst. 25(2), 187–193 (2000)
[34] A. Benoit, F. Chyzak, A. Darrasse, S. Gerhold,M.Mezzarobba, B. Salvy, The dynamic dictionary ofmathematical

functions (DDMF), inMathematical Software—ICMS 2010. LNCS, vol. 6327, ed. byK.Fukuda, J. vanderHoeven,
M. Joswig, N. Takayama (Springer, 2010), pp. 3541

[35] J.-P. Berrut, H. Mittelmann, Adaptive point shifts in rational approximation with optimized denominator. J.
Comput. Appl. Math. 164–165, 81–92 (2004)

[36] C. Bertin, N. Brisebarre, B.D. de Dinechin, C.-P. Jeannerod, C. Monat, J.-M. Muller, S.-K. Raina, A. Tisserand, A
floating-point library for integer processors, inProceedings of SPIE 49th Annual Meeting International Symposium
on Optical Science and Technology, Denver. SPIE, Aug 2004

[37] C.M. Black, R.P. Burton, T.H. Miller, The need for an industry standard of accuracy for elementary-function
programs. ACM Trans. Math. Softw. 10(4), 361–366 (1984)

[38] M. Bodrato, Towards optimal Toom-Cook multiplication for univariate and multivariate polynomials in charac-
teristic 2 and 0, in WAIFI’07 Proceedings. LNCS, vol. 4547, ed. by C. Carlet, B. Sunar (Springer, 2007), pp.
116–133

[39] S. Boldo, Pitfalls of a full floating-point proof: example on the formal proof of the Veltkamp/Dekker algorithms,
in Proceedings of the 3rd International Joint Conference on Automated Reasoning. Lecture Notes in Computer
Science, vol. 4130, ed. by U. Furbach, N. Shankar (2006), pp. 52–66

[40] S. Boldo, M. Daumas, R.-C. Li, Formally verified argument reduction with a fused multiply-add. IEEE Trans.
Comput. 58(8), 1139–1145 (2009)

[41] S. Boldo, M. Daumas, C.Moreau-Finot, L. Théry, Computer validated proofs of a toolset for adaptable arithmetic.
Technical report, École Normale Supérieure de Lyon (2001), http://arxiv.org/pdf/cs.MS/0107025

[42] S. Boldo, M. Daumas, L. Théry, Formal proofs and computations in finite precision arithmetic, in Proceedings of
the 11th Symposium on the Integration of Symbolic Computation and Mechanized Reasoning, ed. by T. Hardin,
R. Rioboo (2003)

[43] S. Boldo, J.-C. Filliâtre, Formal verification of floating-point programs, in Proceedings of the 18th IEEE Sympo-
sium on Computer Arithmetic (2007), pp. 187–194

[44] S. Boldo, G. Melquiond, Emulation of FMA and correctly rounded sums: proved algorithms using rounding to
odd. IEEE Trans. Comput. 57(4), 462–471 (2008)

[45] S. Boldo, J.-M.Muller, Some functions computablewith a fused-mac, inProceedings of the 17th IEEE Symposium
on Computer Arithmetic, June 2005, pp. 52–58

[46] S. Boldo, J.-M. Muller, Exact and approximated error of the FMA. IEEE Trans. Comput. 60, 157–164 (2011)
[47] A.D. Booth, A signed binary multiplication technique. Q. J. Mech. Appl. Math. 4(2), 236–240 (1951). Reprinted

in [439]
[48] F. Bornemann, D. Laurie, S. Wagon, J. Waldvogel, The SIAM 100-Digit Challenge (SIAM, 2004)
[49] J. Borwein, D.H. Bailey, Mathematics by Experiment: Plausible Reasoning in the 21st Century (A. K. Peters,

Natick, MA, 2004)
[50] J.M. Borwein, P.B. Borwein, The arithmetic-geometricmean and fast computation of elementary functions. SIAM

Rev. 26(3), 351–366 (1984)
[51] J.M. Borwein, P.B. Borwein, On the complexity of familiar functions and numbers. SIAM Rev. 30(4), 589–601

(1988)
[52] P. Borwein, T. Erdélyi, Polynomials and Polynomial Inequalities. Graduate Texts in Mathematics, vol. 161

(Springer, New York, 1995)
[53] E.L. Braun, Digital Computer Design (Academic Press, New York, 1963)

http://arxiv.org/pdf/cs.MS/0107025

Bibliography 265

[54] K. Braune, Standard functions for real and complex point and interval arguments with dynamic accuracy. Comput.
Suppl. 6, 159–184 (1988)

[55] R.P. Brent, On the precision attainable with various floating point number systems. IEEE Trans. Comput.C-22(6),
601–607 (1973)

[56] R.P. Brent, Multiple precision zero-finding methods and the complexity of elementary function evaluation, in
Analytic Computational Complexity, ed. by J.F. Traub (Academic Press, New York, 1975)

[57] R.P. Brent, Fast multiple precision evaluation of elementary functions. J. ACM 23, 242–251 (1976)
[58] R.P. Brent, Algorithm 524, MP, a FORTRAN multiple-precision arithmetic package. ACM Trans. Math. Softw.

4(1), 71–81 (1978)
[59] R.P. Brent, A FORTRAN multiple-precision arithmetic package. ACM Trans. Math. Softw. 4(1), 57–70 (1978)
[60] R.P. Brent, Unrestricted algorithms for elementary and special functions, in Information Processing 80, ed. by

S.H. Lavington (North-Holland, Amsterdam, 1980), pp. 613–619
[61] R.P. Brent, P. Zimmermann, Modern Computer Arithmetic. Cambridge Monographs on Applied and Computa-

tional Mathematics, vol. 18 (Cambridge University Press, 2010)
[62] W.S. Briggs, D.W. Matula, A 17 x 69 bit multiply and add unit with redundant binary feedback and single cycle

latency, in Proceedings of the 11th IEEE Symposium on Computer Arithmetic, June 1993, pp. 163–171. Reprinted
in [442]

[63] N. Brisebarre, S. Chevillard, Efficient polynomial L∞ approximations, in Proceedings of the 18th IEEE Sympo-
sium on Computer Arithmetic (2007), pp. 169–176

[64] N. Brisebarre, D. Defour, P. Kornerup, J.-M. Muller, N. Revol, A new range reduction algorithm. IEEE Trans.
Comput. 54(3), 331–339 (2005)

[65] N. Brisebarre, M.D. Ercegovac, J.-M. Muller, (m, p, k)-friendly points: a table-based method for trigonometric
function evaluation, in 2012 IEEE 23rd International Conference on Application-Specific Systems, Architectures
and Processors, Los Alamitos, CA, USA, July 2012, pp. 46–52. IEEE Computer Society

[66] N. Brisebarre, J.-M. Muller, Correct rounding of algebraic functions. Theor. Inf. Appl. 41, 71–83 (2007)
[67] N. Brisebarre, J.-M. Muller, Correctly rounded multiplication by arbitrary precision constants. IEEE Trans. Com-

put. 57(2), 165–174 (2008)
[68] N. Brisebarre, J.-M. Muller, S.-K. Raina, Accelerating correctly rounded floating-point division when the divisor

is known in advance. IEEE Trans. Comput. 53(8), 1069–1072 (2004)
[69] N. Brisebarre, J.-M. Muller, A. Tisserand, Computing machine-efficient polynomial approximations. Draft, LIP

Laboratory (2004), http://perso.ens-lyon.fr/jean-michel.muller/bmt-toms.ps
[70] N. Brunie, F. de Dinechin, O. Kupriianova, C. Lauter, Code generators for mathematical functions, in Proceedings

of the 22nd IEEE Symposium on Computer Arithmetic, June 2015, pp. 66–73
[71] A. Bultheel, P. Gonzales-Vera, E. Hendriksen, O. Njastad, Orthogonal Rational Functions. Cambridge Mono-

graphs on Applied and Computational Mathematics, vol. 5 (Cambridge University Press, New York, 1999)
[72] J.W. Carr III, A.J. Perlis, J.E. Robertson, N.R. Scott, A visit to computation centers in the Soviet Union. Commun.

ACM 2(6), 8–20 (1959)
[73] A. Cauchy, Sur les moyens d’éviter les erreurs dans les calculs numériques. Comptes Rendus de l’Académie des

Sciences, Paris, 11:789–798 (1840). Republished in: Augustin Cauchy, oeuvres complètes, 1ère série, Tome V,
pp. 431–442, http://gallica.bnf.fr/scripts/ConsultationTout.exe?O=N090185

[74] J.R. Cavallaro, N.D. Hemkumar, Efficient complex matrix transformations with CORDIC, in Proceedings of the
11th IEEE Symposium on Computer Arithmetic, June 1993, pp. 122–129

[75] J.R. Cavallaro, F.T. Luk, CORDIC arithmetic for an SVD processor, in Proceedings of the 8th IEEE Symposium
on Computer Arithmetic (1988), pp. 113–120

[76] J.R. Cavallaro, F.T. Luk, Floating-point CORDIC for matrix computations, in Proceedings of the 1988 IEEE
International Conference on Computer Design (1988), pp. 40–42

[77] L.W. Chang, S.W. Lee, Systolic arrays for the discrete Hartley transform. IEEE Trans. Signal Process. 39(11),
2411–2418 (1991)

[78] B.W. Char, K.O. Geddes, G.H. Gonnet, B.L. Leong, M.B. Monagan, S.M. Watt, Maple V Library Reference
Manual (Springer, Berlin, 1991)

[79] T.C. Chen, Automatic computation of logarithms, exponentials, ratios and square roots. IBM J. Res. Dev. 16,
380–388 (1972)

[80] E.W. Cheney, Introduction to Approximation Theory, International Series in Pure and Applied Mathematics
(McGraw Hill, New York, 1966)

[81] E.W. Cheney, Introduction to Approximation Theory, 2nd edn. (AMS Chelsea Publishing, Providence, RI, 1982)
[82] S.H. Cheng, N.J. Higham, C.S. Kenney, A.J. Laub, Approximating the logarithm of a matrix to specified accuracy.

SIAM J. Matrix Anal. Appl. 22(4), 1112–1125 (2001)
[83] S. Chevillard, J. Harrison, M. Joldes, C. Lauter, Efficient and accurate computation of upper bounds of approxi-

mation errors. Theoret. Comput. Sci. 412(16), 1523–1543 (2011)

http://perso.ens-lyon.fr/jean-michel.muller/bmt-toms.ps
http://gallica.bnf.fr/scripts/ConsultationTout.exe?O=N090185

266 Bibliography

[84] S. Chevillard, J. Harrison, M.M. Joldes, C. Lauter, Efficient and accurate computation of upper bounds of ap-
proximation errors. J. Theoret. Comput. Sci. 412(16), 1523–1543 (2011)

[85] S. Chevillard, M. Joldeş, C. Lauter, Sollya: an environment for the development of numerical codes, in Mathemat-
ical Software—ICMS 2010, vol. 6327, Lecture Notes in Computer Science, ed. by K. Fukuda, J. van der Hoeven,
M. Joswig, N. Takayama (Springer, Heidelberg, 2010), pp. 28–31

[86] S. Chevillard, C.Q. Lauter, A certified infinite norm for the implementation of elementary functions, in Seventh
International Conference on Quality Software (QSIC 2007). IEEE (2007), pp. 153–160

[87] S. Chevillard, M. Mezzarobba, Multiple precision evaluation of the Airy Ai function with reduced cancellation,
in Proceedings of the 21st IEEE Symposium on Computer Arithmetic (2013), pp. 175–182

[88] C.Y. Chow, J.E. Robertson, Logical design of a redundant binary adder, inProceedings of the 4th IEEE Symposium
on Computer Arithmetic (1978)

[89] D.V. Chudnovsky, G.V. Chudnovsky, The computation of classical constants. Proc. Nat. Acad. Sci. 86(21), 8178–
8182 (1989)

[90] C.W. Clenshaw, Rational approximations for special functions, in Software for Numerical Mathematics, ed. by
D.J. Evans (Academic Press, New York, 1974)

[91] C.W. Clenshaw, F.W.J. Olver, Beyond floating point. J. ACM 31, 319–328 (1985)
[92] D. Cochran, Algorithms and accuracy in the HP 35. Hewlett Packard J. 23, 10–11 (1972)
[93] W. Cody, W. Waite, Software Manual for the Elementary Functions (Prentice-Hall, Englewood Cliffs, 1980)
[94] W.J. Cody, A survey of practical rational and polynomial approximation of functions. SIAM Rev. 12(3), 400–423

(1970)
[95] W.J. Cody, Static and dynamic numerical characteristics of floating-point arithmetic. IEEE Trans. Comput. C-

22(6), 598–601 (1973)
[96] W.J. Cody, Funpack, a package of special function subroutines. Technical Memorandum 385, Argonne National

Laboratory, Argonne, IL (1981)
[97] W.J. Cody, Implementation and testing of function software, in Problems and Methodologies in Mathematical

Software Production, vol. 142, Lecture Notes in Computer Science, ed. by P.C. Messina, A. Murli (Springer,
Berlin, 1982)

[98] W.J. Cody, MACHAR: a subroutine to dynamically determine machine parameters. ACM Trans. Math. Softw.
14(4), 301–311 (1988)

[99] W.J. Cody, Performance evaluation of programs for the error and complementary error functions. ACM Trans.
Math. Softw. 16(1), 29–37 (1990)

[100] W.J. Cody, Algorithm 715: SPECFUN—a portable FORTRAN package for special function routines and test
drivers. ACM Trans. Math. Softw. 19(1), 22–32 (1993)

[101] W.J. Cody, CELEFUNT: a portable test package for complex elementary functions. ACM Trans. Math. Softw.
19(1), 1–21 (1993)

[102] W.J.Cody, J.T.Coonen,Algorithm722: functions to support the IEEE standard for binaryfloating-point arithmetic.
ACM Trans. Math. Softw. 19(4), 443–451 (1993)

[103] W.J. Cody, J.T. Coonen, D.M. Gay, K. Hanson, D. Hough, W. Kahan, R. Karpinski, J. Palmer, F.N. Ris, D.
Stevenson, A proposed radix-and-word-length-independent standard for floating-point arithmetic. IEEE MICRO
4(4), 86–100 (1984)

[104] W.J. Cody, L. Stoltz, The use of taylor series to test accuracy of function programs. ACM Trans. Math. Softw.
17(1), 55–63 (1991)

[105] J.-F. Collard, P. Feautrier, T. Risset, Construction of do loops from systems of affine constraints. Parallel Process.
Lett. 5, 421–436 (1995)

[106] V. Considine, CORDIC trigonometric function generator for DSP, in Proceedings of 1989 International Confer-
ence on Acoustics, Speech and Signal Processing (1989), pp. 2381–2384

[107] S.A. Cook, On the minimum computation time of functions. PhD thesis, Department of Mathematics, Harvard
University (1966)

[108] J.W. Cooley, J.W. Tukey, An algorithm for the machine calculation of complex Fourier series. Math. Comput.
19(90), 297–301 (1965)

[109] J.T. Coonen, An implementation guide to a proposed standard for floating-point arithmetic. Computer (1980)
[110] D. Coppersmith, Finding a small root of a univariate modular equation, in Proceedings of EUROCRYPT, vol.

1070, Lecture Notes in Computer Science, ed. by U.M. Maurer (Springer, Berlin, 1996), pp. 155–165
[111] D. Coppersmith, Finding small solutions to small degree polynomials, in Proceedings of Cryptography and

Lattices (CaLC), vol. 2146, Lecture Notes in Computer Science, ed. by J.H. Silverman (Springer, Berlin, 2001),
pp. 20–31

[112] R.M. Corless, D.J. Jeffrey, S.M. Watt, J.H. Davenport, “According to Abramowitz and Stegun” or arccoth needn’t
be uncouth. SIGSAM Bull. 34(2), 58–65 (2000)

Bibliography 267

[113] M. Cornea, R.A. Golliver, P. Markstein, Correctness proofs outline for Newton–Raphson-based floating-point
divide and square root algorithms, in Proceedings of the 14th IEEE Symposium on Computer Arithmetic, Apr
1999, pp. 96–105

[114] M. Cornea, J. Harrison, C. Anderson, P.T.P. Tang, E. Schneider, E. Gvozdev, A software implementation of the
IEEE 754R decimal floating-point arithmetic using the binary encoding format. IEEE Trans. Comput. 58(2),
148–162 (2009)

[115] M. Cornea, J. Harrison, P.T.P. Tang, Scientific Computing on Itanium ® -based Systems (Intel Press, Hillsboro,
OR, 2002)

[116] M. Cosnard, A. Guyot, B. Hochet, J.M. Muller, H. Ouaouicha, P. Paul, E. Zysman, The FELIN arithmetic
coprocessor chip, in Proceedings of the 8th IEEE Symposium on Computer Arithmetic, May 1987

[117] M.F. Cowlishaw, Decimal floating-point: algorism for computers, in Proceedings of the 16th IEEE Symposium
on Computer Arithmetic, June 2003, pp. 104–111

[118] A.A. Cuyt, V. Petersen, B. Verdonk, H. Waadeland, W.B. Jones, Handbook of Continued Fractions for Special
Functions, 1st edn. (Springer Publishing Company, Incorporated, 2008)

[119] T. Cyrix Corporation, Richardson. FastMath Accuracy, Report (1989)
[120] T. Cyrix Corporation, Richardson. Cyrix 6x86 Processor Data Book (1996)
[121] L. Dadda, Some schemes for parallel multipliers. Alta Frequenza 34, 349–356 (1965). Reprinted in [439]
[122] D.H. Daggett, Decimal-binary conversion in CORDIC. IRE Trans. Electron. Comput. EC-8(3), 335–339 (1959)
[123] A. Dahan-Dalmedico, J. Pfeiffer, Histoire des Mathématiques (Editions du Seuil, Paris, 1986). In French
[124] C. Daramy, D. Defour, F. de Dinechin, J.-M. Muller, CR-LIBM, a correctly rounded elementary function library,

in SPIE 48th Annual Meeting International Symposium on Optical Science and Technology, Aug 2003
[125] C. Daramy-Loirat, D. Defour, F. de Dinechin, M. Gallet, N. Gast, C.Q. Lauter, J.-M. Muller, CR-LIBM, a library

of correctly-rounded elementary functions in double-precision. Technical report, LIP Laboratory, Arenaire team,
https://lipforge.ens-lyon.fr/frs/download.php/99/crlibm-0.18beta1.pdf, Dec 2006

[126] M. Daumas, C. Mazenc, X. Merrheim, J.-M. Muller, Fast and accurate range reduction for computation of
the elementary functions, in Proceedings of the 14th IMACS World Congress on Computational and Applied
Mathematics. IMACS, Piscataway, NJ (1994), pp. 1196–1198

[127] M. Daumas, C. Mazenc, X. Merrheim, J.-M. Muller, Modular range reduction: a new algorithm for fast and
accurate computation of the elementary functions. J. Univ. Comput. Sci. 1(3), 162–175 (1995)

[128] M. Daumas, G. Melquiond, Certification of bounds on expressions involving rounded operators. ACM Trans.
Math. Softw. 37(1), 2:1–2:20 (2010)

[129] M. Daumas, G. Melquiond, C. Muñoz, Guaranteed proofs using interval arithmetic, in Proceedings of the 17th
IEEE Symposium on Computer Arithmetic (2005), pp. 188–195

[130] H. Dawid, H. Meyr, The differential CORDIC algorithm: constant scale factor redundant implementation without
correcting iterations. IEEE Trans. Comput. 45(3), 307–318 (1996)

[131] F. de Dinechin, A.V. Ershov, N. Gast, Towards the post-ultimate libm, in Proceedings of the 17th IEEE Symposium
on Computer Arithmetic (2005), pp. 288–295

[132] F. de Dinechin, N. Gast, Towards the post-ultimate libm. Research Report 2004-47, LIP, École normale supérieure
de Lyon (2004), http://www.ens-lyon.fr/LIP/Pub/Rapports/RR/RR2004/RR2004-47.pdf

[133] F. deDinechin,C.Lauter,G.Melquiond,Assisted verificationof elementary functions usingGappa, inProceedings
of the 2006 ACM Symposium on Applied Computing, Dijon, France (2006), pp. 1318–1322

[134] F. de Dinechin, C. Lauter, G. Melquiond, Certifying the floating-point implementation of an elementary function
using Gappa. Trans. Comput. 60(2), 242–253 (2011)

[135] F. de Dinechin, C. Lauter, J.-M. Muller, S. Torres, On Ziv’s rounding test. ACM Trans. Math. Softw. 39(4) (2013)
[136] F. de Dinechin, C.Q. Lauter, J.-M. Muller, Fast and correctly rounded logarithms in double-precision. Theor. Inf.

Appl. 41, 85–102 (2007)
[137] F. de Dinechin, B. Pasca, Designing custom arithmetic data paths with FloPoCo. IEEE Des. Test Comput. 28(4),

18–27 (2011)
[138] F. de Dinechin, A. Tisserand, Some improvements on multipartite table methods, in Proceedings of the 15th IEEE

Symposium on Computer Arithmetic (2001), pp. 128–135. Reprinted in [442]
[139] F. de Dinechin, A. Tisserand, Multipartite table methods. IEEE Trans. Comput. 54(3), 319–330 (2005)
[140] C.J. de La Vallée Poussin, L’approximation des Fonctions d’une Variable Réelle (in French) (Gauthier-Villars,

Paris, 1919)
[141] H. de Lassus Saint-Genies, D. Defour, G. Revy, Range reduction based on pythagorean triples for trigonometric

function evaluation, in IEEE 26th International Conference on Application-specific Systems, Architectures and
Processors (ASAP), July 2015, pp. 74–81

[142] G. Deaconu, C. Louembet, A. Theron, Designing continuously constrained spacecraft relative trajectories for
proximity operations. J. Guidance Control Dyn. 38(7), 1208–1217 (2015)

[143] D. Defour, Cache-optimised methods for the evaluation of elementary functions. Technical Report RR2002-38,
LIP Laboratory, ENS Lyon, ftp://ftp.ens-lyon.fr/pub/LIP/Rapports/RR/RR2002/RR2002-38.ps.gz, Oct 2002

https://lipforge.ens-lyon.fr/frs/download.php/99/crlibm-0.18beta1.pdf
http://www.ens-lyon.fr/LIP/Pub/Rapports/RR/RR2004/RR2004-47.pdf
ftp://ftp.ens-lyon.fr/pub/LIP/Rapports/RR/RR2002/RR2002-38.ps.gz

268 Bibliography

[144] D. Defour, Fonctions élémentaires : algorithmes et implémentations efficaces pour l’arrondi correct en double
précision (in French). PhD thesis, École Normale Supérieure de Lyon, Sept 2003

[145] D. Defour, F. de Dinechin, Software carry-save for fast multiple-precision algorithms, in 35th International
Congress of Mathematical Software, Aug 2002, pp. 29–40

[146] D. Defour, G. Hanrot, V. Lefèvre, J.-M. Muller, N. Revol, P. Zimmermann, Proposal for a standardization of
mathematical function implementation in floating-point arithmetic. Numer. Algorithms 37(1–4), 367–375 (2004)

[147] D. Defour, P. Kornerup, J.-M. Muller, N. Revol, A new range reduction algorithm, in Thirty-Fifth Asilomar
Conference on Signals, Systems, and Computers, vol. 2 (2001), pp. 1656–1660

[148] T.J. Dekker, A floating-point technique for extending the available precision. Numer.Math. 18(3), 224–242 (1971)
[149] J.M. Delosme, A processor for two-dimensional symmetric eigenvalue and singular value arrays, in Twenty-First

Asilomar Conference on Circuits, Systems, and Computers, Nov 1987, pp. 217–221
[150] J.M. Delosme, Bit-level systolic algorithms for real symmetric and hermitian eigenvalue problems. J. VLSI Signal

Process. 4, 69–88 (1992)
[151] B. DeLugish, A class of algorithms for automatic evaluation of functions and computations in a digital computer.

PhD thesis, Department of Computer Science, University of Illinois, Urbana-Champaign, IL (1970)
[152] E. Deprettere, P. Dewilde, R. Udo, Pipelined CORDIC architectures for fast VLSI filtering and array processing,

in Proceedings of ICASSP’84 (1984), pp. 41.A.6.1–41.A.6.4
[153] E.F. Deprettere, A.J. de Lange, Design and implementation of a floating-point quasi-systolic general purpose

CORDIC rotator for high-rate parallel data and signal processing, in Proceedings of the 10th IEEE Symposium
on Computer Arithmetic, June 1991, pp. 272–281

[154] A.M. Despain, Fourier transform computers using CORDIC iterations. IEEE Trans. Comput. C-33(5) (1974)
[155] P. Deuflhard, A short history of Newton’s method. Doc. Math. ISMP, 25–30 (2012)
[156] J.V. Deun, A. Bultheel, An interpolation algorithm for orthogonal rational functions. J. Comput. Appl. Math.

164–165, 749–762 (2004)
[157] L. Didier, F. Rico, High radix BKM algorithm. Numer. Algorithms 37(1–4), 113–125 (2004)
[158] W.S. Dorn, Generalizations of Horner’s rule for polynomial evaluation. IBM J. Res. Dev. 6(2), 239–245 (1962)
[159] C.B. Dunham, Rational approximation with a vanishing weight function and with a fixed value at zero. Math.

Comput. 30(133), 45–47 (1976)
[160] C.B. Dunham, Choice of basis for Chebyshev approximation. ACM Trans. Math. Softw. 8(1), 21–25 (1982)
[161] C.B. Dunham, Provably monotone approximations I. SIGNUM Newsl. 22, 6–11 (1987)
[162] C.B. Dunham, Provably monotone approximations, II. SIGNUM Newsl. 22, 30–31 (1987)
[163] C.B. Dunham, Feasibility of “perfect” function evaluation. SIGNUM Newsl. 25(4), 25–26 (1990)
[164] C.B. Dunham, Fitting approximations to the Kuki-Cody-Waite form. Int. J. Comput. Math. 31, 263–265 (1990)
[165] C.B. Dunham, Provably monotone approximations, IV. Technical Report 422, Department of Computer Science,

The University of Western Ontario, London, Canada (1994)
[166] C.B. Dunham, Approximation with taylor matching at the origin. Int. J. Comput. Math. 80(8), 1019–1024 (2003)
[167] J.Duprat, J.-M.Muller,Hardwiredpolynomial evaluation. J. ParallelDistrib.Comput., Special Issue onParallelism

in Computer Arithmetic (5) (1988)
[168] J. Duprat, J.-M.Muller, The CORDIC algorithm: new results for fast VLSI implementation. IEEE Trans. Comput.

42(2), 168–178 (1993)
[169] S.W. Ellacott, On the Faber transform and efficient numerical rational approximation. SIAM J. Numer. Anal.

20(5), 989–1000 (1983)
[170] M. Ercegovac, T. Lang, J.-M. Muller, A. Tisserand, Reciprocation, square root, inverse square root and some

elementary functions using small multipliers. IEEE Trans. Comput. 49(7), 628–637 (2000). Reprinted in [442]
[171] M.D. Ercegovac, Radix 16 evaluation of certain elementary functions. IEEE Trans. Comput. C-22(6), 561–566,

June 1973. Reprinted in [439]
[172] M.D. Ercegovac, A general method for evaluation of functions and computation in a digital computer. PhD thesis,

Department of Computer Science, University of Illinois, Urbana-Champaign, IL (1975)
[173] M.D. Ercegovac, A general hardware-oriented method for evaluation of functions and computations in a digital

computer. IEEE Trans. Comput. C-26(7), 667–680 (1977)
[174] M.D. Ercegovac, On-line arithmetic: an overview, in SPIE, Real Time Signal Processing VII. SPIE-The Interna-

tional Society for Optical Engeneering, Bellingham, WA (1984), pp. 86–93
[175] M.D. Ercegovac, T. Lang, Fast cosine/sine implementation using on-line CORDIC, in Twenty-First Asilomar

Conference on Signals, Systems, and Computers (1987)
[176] M.D. Ercegovac, T. Lang, On-the-fly conversion of redundant into conventional representations. IEEE Trans.

Comput. C-36(7), 895–897 (1987). Reprinted in [440]
[177] M.D. Ercegovac, T. Lang, On-line scheme for computing rotation factors. J. Parallel Distrib. Comput. Special

Issue on Parallelism in Computer Arithmetic (5), 209–227 (1988). Reprinted in [440]
[178] M.D. Ercegovac, T. Lang, Redundant and on-line CORDIC: application to matrix triangularization and SVD.

IEEE Trans. Comput. 39(6), 725–740 (1990)

Bibliography 269

[179] M.D. Ercegovac, T. Lang, Division and Square Root: Digit-Recurrence Algorithms and Implementations (Kluwer
Academic Publishers, Boston, 1994)

[180] M.D. Ercegovac, T. Lang, Digital Arithmetic (Morgan Kaufmann Publishers, San Francisco, 2004)
[181] M.D. Ercegovac, T. Lang, P.Montuschi, Very-high radix division with prescaling and selection by rounding. IEEE

Trans. Comput. 43(8), 909–918 (1994)
[182] M.D. Ercegovac, K.S. Trivedi, On-line algorithms for division and multiplication. IEEE Trans. Comput.C-26(7),

681–687 (1977). Reprinted in [440]
[183] M.A. Erle, M.J. Schulte, B.J. Hickmann, Decimal floating-point multiplication via carry-save addition, in Pro-

ceedings of the 18th IEEE Symposium on Computer Arithmetic, June 2007, pp. 46–55
[184] G. Estrin, Organization of computer systems—the fixed plus variable structure computer, in Proceedings Western

Joint Computing Conference, vol. 17, pp. 33–40 (1960)
[185] A. Feldstein, R. Goodman, Convergence estimates for the distribution of trailing digits. J. ACM 23, 287–297

(1976)
[186] W. Ferguson, Exact computation of a sum or difference with applications to argument reduction, in Proceedings

of the 12th IEEE Symposium on Computer Arithmetic, July 1995, pp. 216–221
[187] W. Ferguson, Private communication. Unpublished (1997)
[188] W. Ferguson, T. Brightman, Accurate and monotone approximations of some transcendental functions, in Pro-

ceedings of the 10th IEEE Symposium on Computer Arithmetic, June 1991, pp. 237–244. Reprinted in [442]
[189] C.T. Fike, Methods for evaluating polynomial approximations in function evaluation routines. Commun. ACM

10(3), 175–178 (1967)
[190] B.P. Flannery, W.H. Press, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes in C, 2nd edn. (Cambridge Uni-

versity Press, New York, 1992)
[191] M.J. Flynn, S.F. Oberman, Advanced Computer Arithmetic Design (Wiley-Interscience, 2001)
[192] A. Fog, The microarchitecture of Intel, AMD and VIA CPUs: an optimization guide for assembly programmers

and compiler makers. Technical report, Technical University of Denmark (2014), http://www.agner.org/optimize/
[193] P. Fortin, M. Gouicem, S. Graillat, Towards solving the table maker’s dilemma on GPU, in 2012 20th Euromicro

International Conference on Parallel, Distributed and Network-Based Processing (PDP), Feb 2012, pp. 407–415
[194] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, P. Zimmermann, MPFR: a multiple-precision binary floating-point

library with correct rounding. ACM Trans. Math. Softw. 33(2) (2007), http://www.mpfr.org/
[195] D. Fowler, E. Robson, Square root approximations in old Babylonian mathematics: YBC 7289 in context. Historia

Mathematica 25, 366–378 (1998)
[196] W.Fraser,A surveyofmethods of computingminimax andnear-minimaxpolynomial approximations for functions

of a single independent variable. J. ACM 12(3), 295–314 (1965)
[197] M. Fürer, Faster integer multiplication, in Proceedings of the 39th Annual ACM Symposium on Theory of Com-

puting, San Diego, CA, ed. by D.S. Johnson, U. Feige, June 2007. ACM, pp. 57–66
[198] S. Gal, Computing elementary functions: a new approach for achieving high accuracy and good performance,

Accurate Scientific Computations, vol. 235, Lecture Notes in Computer Science (Springer, Berlin, 1986), pp. 1–16
[199] S. Gal, B. Bachelis, An accurate elementary mathematical library for the IEEE floating point standard. ACM

Trans. Math. Softw. 17(1), 26–45 (1991)
[200] M. Garrido, J. Grajal, Efficient memoryless CORDIC for FFT computation, in IEEE International Conference

on Acoustics, Speech and Signal Processing, 2007, vol. 2, April 2007, pp. II–113–II–116
[201] M. Garrido, P. Kallstrom, M. Kumm, O. Gustafsson, CORDIC II: a new improved CORDIC algorithm. IEEE

Trans. Circuits Syst. II: express briefs 63(2), 186–190 (2016)
[202] W. Gautschi, Numerical Analysis: An Introduction (Birkhäuser, Boston, 1997)
[203] W. Gautschi, G.H. Golub, G. Opfer (eds.), Applications and Computation of Orthogonal Polynomials (Interna-

tional Series of Numerical Mathematics. Birkhäuser, Basel, 1999)
[204] W.M. Gentleman, S.B. Marovitch, More on algorithms that reveal properties of floating-point arithmetic units.

Commun. ACM 17(5), 276–277 (1974)
[205] A. Gil, J. Segura, N. Temme, Numerical Methods for Special Functions. Society for Industrial and Applied

Mathematics (2007)
[206] D. Goldberg, What every computer scientist should know about floating-point arithmetic. ACM Comput. Surv.

23(1), 5–47, Mar 1991. An edited reprint is available at http://www.physics.ohio-state.edu/~dws/grouplinks/
floating_point_math.pdf from Sun’s Numerical Computation Guide; it contains an addendum Differences Among
IEEE 754 Implementations, http://www.validlab.com/goldberg/addendum.html

[207] X. Gourdon, P. Sebah, Binary splitting methods (2001), http://numbers.computation.free.fr/Constants/
Algorithms/splitting.ps

[208] P.J. Grabner, C. Heuberger, On the number of optimal base 2 representations of integers. Des. Codes Crypt. 40,
25–39 (2006)

[209] S. Graillat, V. Lefèvre, J.-M. Muller, On the maximum relative error when computing integer powers by iterated
multiplications in floating-point arithmetic. Numerical Algorithms (2015), pp. 1–15

http://www.agner.org/optimize/
http://www.mpfr.org/
http://www.physics.ohio-state.edu/~dws/grouplinks/floating_point_math.pdf
http://www.physics.ohio-state.edu/~dws/grouplinks/floating_point_math.pdf
http://www.validlab.com/goldberg/addendum.html
http://numbers.computation.free.fr/Constants/Algorithms/splitting.ps
http://numbers.computation.free.fr/Constants/Algorithms/splitting.ps

270 Bibliography

[210] T. Granlund, The GNU multiple precision arithmetic library, release 4.1.4. Sept 2004, http://gmplib.org/gmp-
man-4.1.4.pdf

[211] J. Gustafson, The End of Error: Unum Computing. Chapman & Hall/CRC Computational Science (Taylor &
Francis, 2015)

[212] B. Haible, T. Papanikolaou, Fast multiprecision evaluation of series of rational numbers, in Algorithmic Number
Theory, vol. 1423, Lecture Notes in Computer Science, ed. by J. Buhler (Springer, Berlin, 1998), pp. 338–350

[213] H. Hamada, A new approximation form for mathematical functions, in Proceedings of SCAN-95, IMACS/GAMM
Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics, Sept 1995

[214] E.R. Hansen, M.L. Patrick, R.L.C. Wang, Polynomial evaluation with scaling. ACM Trans. Math. Softw. 16(1),
86–93 (1990)

[215] Y. Harata, Y. Nakamura, H. Nagase, M. Takigawa, N. Takagi, A high-speed multiplier using a redundant binary
adder tree. IEEE J. Solid-State Circuits SC-22(1), 28–34 (1987). Reprinted in [440]

[216] J. Harrison, Floating-point verification in HOL light: the exponential function. Technical Report 428, University
of Cambridge Computer Laboratory (1997)

[217] J. Harrison, A machine-checked theory of floating-point arithmetic, in Theorem Proving in Higher Order Logics:
12th International Conference, TPHOLs’99, Lecture Notes in Computer Science, vol. 1690, ed. by Y. Bertot, G.
Dowek, A. Hirschowitz, C. Paulin, L. Théry (Springer, Berlin, 1999), pp. 113–130

[218] J. Harrison, Formal verification of floating-point trigonometric functions, in Proceedings of the 3rd International
Conference on Formal Methods in Computer-Aided Design, FMCAD 2000, number 1954 in Lecture Notes in
Computer Science, ed. by W.A. Hunt, S.D. Johnson (Springer, Berlin, 2000), pp. 217–233

[219] J. Harrison, Formal verification of IA-64 division algorithms, in Proceedings of the 13th International Conference
on Theorem Proving in Higher Order Logics, TPHOLs 2000. Lecture Notes in Computer Science, vol. 1869, ed.
by M. Aagaard, J. Harrison (Springer, 2000), pp. 234–251

[220] J. Harrison, Floating-point verification using theorem proving, in Formal Methods for Hardware Verification, 6th
International School on Formal Methods for the Design of Computer, Communication, and Software Systems,
SFM 2006. Lecture Notes in Computer Science, vol. 3965, ed. by M. Bernardo, A. Cimatti (Springer, Bertinoro,
Italy, 2006), pp. 211–242

[221] J. Harrison, Verifying nonlinear real formulas via sums of squares, in Proceedings of the 20th International
Conference on Theorem Proving in Higher Order Logics, TPHOLs 2007. Lecture Notes in Computer Science,
vol. 4732, ed. by K. Schneider, J. Brandt (Springer, Kaiserslautern, Germany, 2007), pp. 102–118

[222] J. Harrison, Decimal transcendentals via binary, in Proceedings of the 19th IEEE Symposium on Computer
Arithmetic, June 2009, pp. 187–194

[223] J. Harrison, Fast and accurate Bessel function computation, in Proceedings of the 19th IEEE Symposium on
Computer Arithmetic (2009), pp. 104–113

[224] J. Harrison, T. Kubaska, S. Story, P.T.P. Tang, The computation of transcendental functions on the IA-64 archi-
tecture. Intel Technol. J. Q4 (1999), http://developer.intel.com/technology/itj/archive/1999.htm

[225] J.F.Hart, E.W.Cheney,C.L.Lawson,H.J.Maehly,C.K.Mesztenyi, J.R.Rice,H.G.Thacher,C.Witzgall,Computer
Approximations (Wiley, New York, 1968)

[226] D. Harvey, J.v.d. Hoeven, G. Lecerf, Even faster integer multiplication. Technical report, ArXiv (2014), http://
arxiv.org/abs/1407.3360

[227] J.R. Hauser, Handling floating-point exceptions in numeric programs. Technical Report UCB//CSD-95-870,
Computer Science Division, University of California, Berkeley, CA, Mar 1995

[228] G.H. Haviland, A.A. Tuszinsky, A CORDIC arithmetic processor chip. IEEE Trans. Comput. C-29(2) (1980)
[229] G.H. Hekstra, E.F.A. Deprettere, Floating-point CORDIC, in Proceedings of the 11th IEEE Symposium on Com-

puter Arithmetic, June 1993, pp. 130–137
[230] N.D. Hemkumar, J.R. Cavallaro, Redundant and on-line CORDIC for unitary transformations. IEEE Trans.

Comput. 43(8), 941–954 (1994)
[231] Y. Hida, X.S. Li, D.H. Bailey, Algorithms for quad-double precision floating-point arithmetic, in Proceedings of

the 15th IEEE Symposium on Computer Arithmetic, June 2001, pp. 155–162
[232] N.J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd edn. (SIAM, Philadelphia, 2002)
[233] N.J. Higham, Functions of Matrices: Theory and Computation. Society for Industrial and Applied Mathematics

(Philadelphia, PA, USA, 2008)
[234] N.J. Higham, M.I. Smith, Computing the matrix cosine. Numer. Algorithms 34, 13–26 (2003)
[235] E. Hokenek, R.K. Montoye, P.W. Cook, Second-generation RISC floating point with multiply-add fused. IEEE

J. Solid-State Circuits 25(5), 1207–1213 (1990)
[236] W.G. Horner, A new method of solving numerical equations of all orders by continuous approximation. Philos.

Trans. R. Soc. Lond. 109, 308–335 (1819), http://www.jstor.org/stable/107508
[237] S. Hsiao, C. Lau, J.-M. Delosme, Redundant constant-factor implementation of multi-dimensional CORDIC and

its application to complex SVD. J. VLSI Signal Process. Syst. 25(2), 155–166 (2000)
[238] S.F. Hsiao, J.M. Delosme, Householder CORDIC algorithms. IEEE Trans. Comput. 44(8), 990–1000 (1995)

http://gmplib.org/gmp-man-4.1.4.pdf
http://gmplib.org/gmp-man-4.1.4.pdf
http://developer.intel.com/technology/itj/archive/1999.htm
http://arxiv.org/abs/1407.3360
http://arxiv.org/abs/1407.3360
http://www.jstor.org/stable/107508

Bibliography 271

[239] X. Hu, S.C. Bass, R.G. Harber, An efficient implementation of singular value decomposition rotation transfor-
mations with CORDIC processors. J. Parallel Distrib. Comput. 17, 360–362 (1993)

[240] Y.H. Hu, The quantization effects of the CORDIC algorithm. IEEE Trans. Signal Process. 40(4), 834–844 (1992)
[241] Y.H.Hu, S. Naganathan, An angle recodingmethod for CORDIC algorithm implementation. IEEETrans. Comput.

42(1), 99–102 (1993)
[242] T.E. Hull, T.F. Fairgrieve, P.T.P. Tang, Implementing complex elementary functions using exception handling.

ACM Trans. Math. Softw. 20(2), 215–244 (1994)
[243] T.E. Hull, T.F. Fairgrieve, P.T.P. Tang, Implementing the complex arcsine and arccosine functions using exception

handling. ACM Trans. Math. Softw. 23(3), 299–335 (1997)
[244] K. Hwang, Computer Arithmetic Principles, Architecture and design (Wiley, New York, 1979)
[245] IEEE Computer Society. IEEE Standard for Floating-Point Arithmetic. IEEE Standard 754-2008, Aug 2008,

http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
[246] L. Imbert, J. Muller, F. Rico, Radix-10 BKM algorithm for computing transcendentals on a pocket computer. J.

VLSI Signal Process. 25(2), 179–186 (2000)
[247] International Organization for Standardization, Information technology— Language independent arithmetic—

Part 2: Elementary numerical functions. ISO/IEC standard 10967–2 (2001)
[248] C. Iordache, D.W. Matula, On infinitely precise rounding for division, square root, reciprocal and square root

reciprocal, in Proceedings of the 14th IEEE Symposium on Computer Arithmetic, Apr 1999, pp. 233–240
[249] A. Iserles, A. Zanna, Efficient computation of the matrix exponential by generalized polar decompositions. SIAM

J. Numer. Anal. 42(5), 2218–2256 (2005)
[250] F. Jaime, M. Sanchez, J. Hormigo, J. Villalba, E. Zapata, High-speed algorithms and architectures for range

reductioncomputation. IEEE Trans. Very Large Scale Integ. (VLSI) Syst. 19(3), 512–516 (2011)
[251] F. Jaime, J. Villalba, J. Hormigo, E. Zapata, Pipelined range reduction for floating point numbers, in Proceedings

of the IEEE International Conference on Application-specific Systems, Architectures and Processors, Sept 2006,
pp. 145–152

[252] F.J. Jaime, M.A. Sánchez, J. Hormigo, J. Villalba, E.L. Zapata, Enhanced scaling-free CORDIC. IEEE Trans.
Circuits Syst. Part I 57(7), 1654–1662 (2010)

[253] C.-P. Jeannerod, N. Louvet, J.-M. Muller, Further analysis of Kahan’s algorithm for the accurate computation of
2 × 2 determinants. Math. Comput. 82(284), 2245–2264 (2013)

[254] C.-P. Jeannerod, N. Louvet, J.-M. Muller, A. Panhaleux, Midpoints and exact points of some algebraic functions
in floating-point arithmetic. IEEE Trans. Comput. 60(2) (2011)

[255] C.-P. Jeannerod, C.Mouilleron, J.-M.Muller, G.Revy,C.Bertin, J. Jourdan-Lu,H.Knochel, C.Monat, Techniques
and tools for implementing IEEE 754 floating-point arithmetic on VLIW integer processors, in Proceedings of
the 4th International Workshop on Parallel and Symbolic Computation, PASCO ’10, New York, NY, USA (ACM,
2010), pp. 1–9

[256] R.M. Jessani, C.H. Olson, The floating-point unit of the PowerPC 603e microprocessor. IBM J. Res. Dev. 40(5),
559–566 (1996)

[257] F. Johansson, Evaluating parametric holonomic sequences using rectangular splitting, in Proceedings of the 39th
International Symposium on Symbolic and Algebraic Computation, ISSAC ’14, New York, NY, USA (ACM,
2014), pp. 256–263

[258] F. Johansson, Efficient implementation of elementary functions in the medium-precision range, in Proceedings
of the 22nd Symposium on Computer Arithmetic, June 2015, pp. 83–89

[259] M. Joldes, Rigorous polynomial approximations and applications. Ph.D. thesis, École Normale Supérieure de
Lyon, Lyon, France (2011)

[260] M. Joldes, V. Popescu, W. Tucker, Searching for sinks for the Henon map using a multiple-precision GPU
arithmetic library. SIGARCH Comput. Archit. News 42(4), 63–68 (2014)

[261] W. Kahan, Pracniques: further remarks on reducing truncation errors. Commun. ACM 8(1), 40 (1965)
[262] W. Kahan, Minimizing q*m-n. Text accessible electronically at http://http.cs.berkeley.edu/~wkahan/. At the be-

ginning of the file “nearpi.c” (1983)
[263] W. Kahan, Branch cuts for complex elementary functions, in The State of the Art in Numerical Analysis, ed. by

A. Iserles, M.J.D. Powell (Clarendon Press, Oxford, 1987), pp. 165–211
[264] W. Kahan, Paradoxes in concepts of accuracy, in Lecture notes from Joint Seminar on Issues and Directions in

Scientific Computations, U.C. Berkeley (1989)
[265] W. Kahan, Lecture notes on the status of IEEE-754. PDF file accessible at http://www.cs.berkeley.edu/~wkahan/

ieee754status/IEEE754.PDF (1996)
[266] W. Kahan, IEEE 754: an interview with William Kahan. Computer 31(3), 114–115 (1998)
[267] W. Kahan, A logarithm too clever by half (2004), http://http.cs.berkeley.edu/~wkahan/LOG10HAF.TXT
[268] A. Karatsuba, Y. Ofman, Multiplication of many-digital numbers by automatic computers. Doklady Akad. Nauk

SSSR 145, 293–294 (1962). Translation in Physics-Doklady 7(595–596) (1963)

http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
http://http.cs.berkeley.edu/~wkahan/
http://www.cs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF
http://www.cs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF
http://http.cs.berkeley.edu/~wkahan/LOG10HAF.TXT

272 Bibliography

[269] A.H. Karp, P. Markstein, High-precision division and square root. ACM Trans. Math. Softw. 23(4), 561–589
(1997)

[270] R. Karpinsky, PARANOIA: a floating-point benchmark. BYTE 10(2) (1985)
[271] A.Y. Khinchin, Continued Fractions (Dover, New York, 1997)
[272] N.G. Kingsbury, P.J.W. Rayner, Digital filtering using logarithmic arithmetic. Electron. Lett. 7, 56–58 (1971).

Reprinted in [439]
[273] P. Kirchberger, Ueber Tchebychefsche Annaeherungsmethoden. Ph.D. thesis, Gottingen (1902)
[274] A. Klein, A generalized Kahan-Babuška-summation-algorithm. Computing 76, 279–293 (2006)
[275] D. Knuth, The Art of Computer Programming, vol. 2, 3rd edn. (Addison-Wesley, Reading, MA, 1998)
[276] D. König, J.F. Böhme, Optimizing the CORDIC algorithm for processors with pipeline architectures, in Sig-

nal Processing V: Theories and Applications, ed. by L. Torres, E. Masgrau, M.A. Lagunas (Elsevier Science,
Amsterdam, 1990)

[277] I. Koren, Computer Arithmetic Algorithms (Prentice-Hall, Englewood Cliffs, 1993)
[278] I. Koren, O. Zinaty, Evaluating elementary functions in a numerical coprocessor based on rational approximations.

IEEE Trans. Comput. 39(8), 1030–1037 (1990)
[279] P. Kornerup, C. Lauter, V. Lefèvre, N. Louvet, J.-M. Muller, Computing correctly rounded integer powers in

floating-point arithmetic. ACM Trans. Math. Softw. 37(1), 4:1–4:23 (2010)
[280] P. Kornerup, V. Lefevre, N. Louvet, J.-M. Muller, On the computation of correctly rounded sums. IEEE Trans.

Comput. 61(3), 289–298 (2012)
[281] P. Kornerup, D.W. Matula, Finite precision lexicographic continued fraction number systems, in Proceedings of

the 7th IEEE Symposium on Computer Arithmetic (1985). Reprinted in [440]
[282] P. Kornerup, D.W. Matula, Finite Precision Number Systems and Arithmetic (Cambridge University Press, 2010).

Cambridge Books Online
[283] K. Kota, J.R. Cavallaro, Numerical accuracy and hardware tradeoffs for CORDIC arithmetic for special-purpose

processors. IEEE Trans. Comput. 42(7), 769–779 (1993)
[284] W. Krämer, Inverse standard functions for real and complex point and interval arguments with dynamic accuracy.

Comput. Suppl. 6, 185–212 (1988)
[285] J. Kropa, Calculator algorithms. Math. Mag. 51(2), 106–109 (1978)
[286] H. Kuki, W.J. Cody, A statistical study of the accuracy of floating-point number systems. Commun. ACM 16(14),

223–230 (1973)
[287] U.W. Kulisch, Mathematical foundation of computer arithmetic. IEEE Trans. Comput. C-26(7), 610–621 (1977)
[288] U.W. Kulisch, W.L. Miranker, Computer Arithmetic in Theory and Practice (Academic Press, New York, 1981)
[289] O. Kupriianova, C. Lauter, A domain splitting algorithm for the mathematical functions code generator, in 48th

Asilomar Conference on Signals, Systems and Computers, Nov 2014, pp. 1271–1275
[290] O. Kupriianova, C. Lauter, Replacing branches by polynomials in vectorizable elementary functions, in Book of

abstracts for 16th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic and
Validated Numerics (2014)

[291] T. Lang, E. Antelo, CORDIC-based computation of arccos and arcsin, in ASAP’97, The IEEE International
Conference on Application-Specific Systems, Architectures and Processors. IEEE Computer Society Press, Los
Alamitos, CA, July 1997

[292] T. Lang, E. Antelo, Cordic-based computation of arccos and
√
1 − t2. J. VLSI Signal Process. Syst. 25(1), 19–38

(2000)
[293] T. Lang, E. Antelo, High-throughput CORDIC-based geometry operations for 3D computer graphics. IEEE Trans.

Comput. 54(3), 347–361 (2005)
[294] T. Lang, J.A. Lee, SVD by constant-factor-redundant CORDIC, in Proceedings of the 10th IEEE Symposium on

Computer Arithmetic, June 1991, pp. 264–271
[295] T. Lang, J.-M. Muller, Bound on run of zeros and ones for algebraic functions, in Proceedings of the 15th IEEE

Symposium on Computer Arithmetic, June 2001, pp. 13–20
[296] M. Langhammer, B. Pasca, Efficient floating-point polynomial evaluation on FPGAs, in Field Programmable

Logic and Applications (FPL’2013) (2013)
[297] M. Langhammer and B. Pasca. Elementary function implementation with optimized sub range polynomial eval-

uation. In Field Programmable Custom Computing Machines 2013 (FCCM’13), pages 202–205, 2013
[298] P.J. Laurent, Approximation et Optimisation. Enseignement des Sciences (in French). Hermann, Paris, France

(1972)
[299] C. Lauter, M. Mezzarobba, Semi-automatic floating-point implementation of special functions, in Proceedings of

the 22nd IEEE Symposium on Computer Arithmetic, June 2015, pp. 58–65
[300] C.Q. Lauter, Basic building blocks for a triple-double intermediate format. Technical Report 2005-38, LIP, École

Normale Supérieure de Lyon, Sept 2005
[301] C.Q. Lauter, Arrondi Correct de Fonctions Mathématiques. Ph.D. thesis, École Normale Supérieure de Lyon,

Lyon, France, Oct 2008. In French, http://www.ens-lyon.fr/LIP/web/

http://www.ens-lyon.fr/LIP/web/

Bibliography 273

[302] C.Q. Lauter, V. Lefèvre, An efficient rounding boundary test for pow(x, y) in double precision. IEEE Trans.
Comput. 58(2), 197–207 (2009)

[303] D.-U. Lee, W. Luk, J. Villasenor, P. Cheung, Hierarchical segmentation schemes for function evaluation, in
Proceedings of the IEEE International Conference on Field-Programmable Technology, Dec 2003, pp. 92–99

[304] D.-U. Lee, J.D. Villasenor, Optimized custom precision function evaluation for embedded processors. IEEETrans.
Comput. 58(1), 46–59 (2009)

[305] V. Lefèvre, Developments in Reliable Computing, chapter An Algorithm that Computes a Lower Bound on the
Distance Between a Segment and Z

2 (Kluwer Academic Publishers, Dordrecht, 1999), pp. 203–212
[306] V. Lefèvre, Moyens Arithmétiques Pour un Calcul Fiable. Ph.D. thesis, École Normale Supérieure de Lyon, Lyon,

France (2000)
[307] V. Lefèvre, New results on the distance between a segment and Z

2. Application to the exact rounding, in Pro-
ceedings of the 17th IEEE Symposium on Computer Arithmetic, June 2005, pp. 68–75

[308] V. Lefèvre, J.-M. Muller, Worst cases for correct rounding of the elementary functions in double precision, in
Proceedings of the 15th IEEE Symposium on Computer Arithmetic, June 2001

[309] V. Lefèvre, J.-M. Muller, On-the-fly range reduction. J. VLSI Signal Process. 33(1/2), 31–35 (2003)
[310] V. Lefèvre, J.-M. Muller, A. Tisserand, Towards correctly rounded transcendentals, in Proceedings of the 13th

IEEE Symposium on Computer Arithmetic (1997)
[311] V. Lefèvre, J.-M. Muller, A. Tisserand, Toward correctly rounded transcendentals. IEEE Trans. Comput. 47(11),

1235–1243 (1998). Reprinted in [442]
[312] V. Lefèvre, D. Stehlé, P. Zimmermann, Worst cases for the exponential function in the IEEE 754r decimal64

format, in Reliable Implementation of Real Number Algorithms: Theory and Practice. Lecture Notes in Computer
Sciences, vol. 5045 (Springer, Berlin, 2008), pp. 114–126

[313] A.K. Lenstra, H.W. Lenstra Jr., L. Lovász, Factoring polynomials with rational coefficients. Math. Ann. 261,
515–534 (1982)

[314] R.-C. Li, Near optimality of Chebyshev interpolation for elementary function computation. IEEE Trans. Comput.
53(6), 678–687 (2004)

[315] R.-C. Li, S. Boldo, M. Daumas, Theorems on efficient argument reduction, in Proceedings of the 16th IEEE
Symposium on Computer Arithmetic, June 2003, pp. 129–136

[316] R.-C. Li, P. Markstein, J. Okada, J. Thomas, The libm library and floating-point arithmetic in hp-ux for itanium 2.
Technical report, Hewlett-Packard Company (2002), http://h21007.www2.hp.com/dspp/files/unprotected/libm.
pdf

[317] X. Li, J. Demmel, D.H. Bailey, G. Henry, Y. Hida, J. Iskandar, W. Kahan, A. Kapur, M. Martin, T. Tung, D.J. Yoo,
Design, implementation and testing of extended and mixed precision BLAS. ACM Trans. Math. Softw. 28(2),
152–205 (2002)

[318] G. Lightbody, R. Woods, R. Walke, Design of a parameterizable silicon intellectual property core for QR-based
RLS filtering. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 11(4), 659–678 (2003)

[319] H. Lin, H.J. Sips, On-line CORDIC algorithms, in Proceedings of the 9th IEEE Symposium on Computer Arith-
metic, Sept 1989, pp. 26–33

[320] H. Lin, H.J. Sips, On-line CORDIC algorithms. IEEE Trans. Comput. 39(8) (1990)
[321] R.J. Linhardt, H.S. Miller, Digit-by-digit transcendental function computation. RCA Rev. 30, 209–247 (1969).

Reprinted in [439]
[322] G.L. Litvinov, Approximate construction of rational approximations and the effect of error autocorrection. Ap-

plications. Technical Report 8, Institute of Mathematics, University of Oslo, May 1993
[323] Z. Liu, K. Dickson, J. McCanny, Application-specific instruction set processor for SoC implementation of modern

signal processing algorithms. IEEE Trans. Circuits Syst. I: Regul. Pap. 52(4), 755–765 (2005)
[324] W. Luther, Highly accurate tables for elementary functions. BIT 35, 352–360 (1995)
[325] T. Lynch, E.E. Swartzlander, A formalization for computer arithmetic, in Computer Arithmetic and Enclosure

Methods, ed. by L. Atanassova, J. Hertzberger (Elsevier Science, Amsterdam, 1992), pp. 137–145
[326] A.J. MacLeod, Algorithm 757; miscfun, a software package to compute uncommon special functions. ACM

Trans. Math. Softw. 22(3), 288–301 (1996)
[327] N. Macon, A. Spitzbart, Inverses of vandermonde matrices. Am. Math. Mon. 65(2), 95–100 (1958)
[328] K. Maharatna, S. Banerjee, E. Grass, M. Krstic, A. Troya, Modified virtually scaling-free adaptive CORDIC

rotator algorithm and architecture. IEEE Trans. Circuits Syst. Video Technol. 15(11), 1463–1474 (2005)
[329] K. Makino, M. Berz, Taylor models and other validated functional inclusion methods. Int. J. Pure Appl. Math.

6(3), 239–312 (2003)
[330] M.A. Malcolm, Algorithms to reveal properties of floating-point arithmetic. Commun. ACM 15(11), 949–951

(1972)
[331] P. Markstein, IA-64 and Elementary Functions: Speed and Precision, Hewlett-Packard professional books

(Prentice-Hall, Englewood Cliffs, 2000)

http://h21007.www2.hp.com/dspp/files/unprotected/libm.pdf
http://h21007.www2.hp.com/dspp/files/unprotected/libm.pdf

274 Bibliography

[332] P. Markstein, Accelerating sine and cosine evaluation with compiler assistance, in Proceedings of the 16th IEEE
Symposium on Computer Arithmetic, June 2003, pp. 137–140

[333] P.W. Markstein, Computation of elementary functions on the IBM RISC System/6000 processor. IBM J. Res.
Dev. 34(1), 111–119 (1990). Reprinted in [442]

[334] D.W. Matula, P. Kornerup, Finite precision rational arithmetic: Slash number systems. IEEE Trans. Comput.
34(1), 3–18 (1985). Reprinted in [440]

[335] D.W. Matula, M.T. Panu, A prescale-lookup-postscale additive procedure for obtaining a single precision ulp
accurate reciprocal, in Proceedings of the 20th IEEE Symposium on Computer Arithmetic (2011), pp. 177–183

[336] C. Mazenc, X. Merrheim, J.M. Muller, Computing functions cos−1 and sin−1 using CORDIC. IEEE Trans.
Comput. 42(1), 118–122 (1993)

[337] J.E. Meggitt, Pseudo division and pseudo multiplication processes. IBM J. Res. Dev. 6, 210–226 (1962)
[338] P. Meher, J. Valls, T.-B. Juang, K. Sridharan, K. Maharatna, 50 years of CORDIC: algorithms, architectures, and

applications. IEEE Trans. Circuits Syst. I: Regul. Pap. 56(9), 1893–1907 (2009)
[339] G. Melquiond, De l’arithmétique d’intervalles à la certification de programmes (in French). Ph.D. thesis, École

Normale Supérieure de Lyon, Nov 2006, http://www.ens-lyon.fr/LIP/Pub/PhD2006.php
[340] G.Melquiond, Proving bounds on real-valued functionswith computations, inProceedings of the 4th International

Joint Conference on Automated Reasoning. Lecture Notes in Artificial Intelligence, vol. 5195, ed. by A. Armando,
P. Baumgartner, G. Dowek (Sydney, Australia, 2008), pp. 2–17

[341] G. Melquiond, S. Pion, Formally certified floating-point filters for homogeneous geometric predicates. Theor. Inf.
Appl. 41(1), 57–69 (2007)

[342] X. Merrheim, Bases discrètes et calcul des fonctions élémentaires par matériel (in French). Ph.D. thesis, École
Normale Supérieure de Lyon and Université Lyon I, France, Feb 1994

[343] M. Mezzarobba, NumGfun: a package for numerical and analytic computation with D-finite functions, in ISSAC
’10, ed. by S.M. Watt. ACM (2010), pp. 139146

[344] M. Mezzarobba, Autour de l’évaluation numérique des fonctions D-finies (in French). Ph.d. dissertation, École
Polytechnique, Palaiseau, France, Nov 2011

[345] P. Midy, Y. Yakovlev, Computing some elementary functions of a complex variable. Math. Comput. Simul. 33,
33–49 (1991)

[346] O. Møller, Quasi double-precision in floating-point addition. BIT 5, 37–50 (1965)
[347] P. Montgomery, Five, six, and seven-term Karatsuba-like formulae. IEEE Trans. Comput. 54(3), 362–369 (2005)
[348] R.K. Montoye, E. Hokonek, S.L. Runyan, Design of the IBM RISC System/6000 floating-point execution unit.

IBM J. Res. Dev. 34(1), 59–70 (1990). Reprinted in [442]
[349] R.E. Moore, Interval Analysis (Prentice-Hall, Englewood Cliffs, 1963)
[350] R. Morris, Tapered floating point: a new floating-point representation. IEEE Trans. Comput. 20(12), 1578–1579

(1971)
[351] C.Mouilleron, G. Revy, Automatic generation of fast and certified code for polynomial evaluation, in Proceedings

of the 20th IEEE Symposium on Computer Arithmetic (2011), pp. 233–242
[352] J.-M. Muller, Discrete basis and computation of elementary functions. IEEE Trans. Comput. C-34(9) (1985)
[353] J.-M. Muller, Méthodologies de calcul des fonctions élémentaires (in French). Ph.D. thesis, Institut National

Polytechnique de Grenoble, France, Sept 1985
[354] J.-M.Muller,Uneméthodologie du calcul hardware des fonctions élémentaires (in French).M2AN 20(4), 667–695

(1986)
[355] J.-M. Muller, A few results on table-based methods. Reliable Comput. 5(3), 279–288 (1999)
[356] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre, G. Melquiond, N. Revol, D. Stehlé,

S. Torres, Handbook of Floating-Point Arithmetic. Birkhäuser Boston (2010). ACM G.1.0; G.1.2; G.4; B.2.0;
B.2.4; F.2.1., ISBN 978-0-8176-4704-9

[357] A. Munk-Nielsen, J.M. Muller, On-line algorithms for computing exponentials and logarithms, in Proceedings
of Europar’96, Lecture Notes in Computer Science 1124 (Springer, Berlin, 1996)

[358] S. Nakamura, Algorithms for iterative array multiplication. IEEE Trans. Comput. C-35(8) (1986)
[359] R. Nave, Implementation of transcendental functions on a numerics processor. Microprocessing Microprogram-

ming 11, 221–225 (1983)
[360] Y.V. Nesterenko, M. Waldschmidt, On the approximation of the values of exponential function and logarithm by

algebraic numbers (in Russian). Mat. Zapiski 2, 23–42 (1996). Available in English at http://www.math.jussieu.
fr/~miw/articles/ps/Nesterenko.ps

[361] I. Newton, Methodus fluxionum et serierum infinitarum, 1664–1671
[362] K.C. Ng, Argument reduction for huge arguments: good to the last bit. Technical report, SunPro (1992)
[363] K.C. Ng, K.H. Bierman, Getting the right answer for the trigonometric functions. SunProgrammer, Spring 1992
[364] S. Oberman, M.J. Flynn, Implementing division and other floating-point operations: a system perspective, in

Scientific Computing and Validated Numerics (Proceedings of SCAN’95), ed. by Alefeld, Frommer, and Lang
(Akademie Verlag, Berlin, 1996), pp. 18–24

http://www.ens-lyon.fr/LIP/Pub/PhD2006.php
http://www.math.jussieu.fr/~miw/articles/ps/Nesterenko.ps
http://www.math.jussieu.fr/~miw/articles/ps/Nesterenko.ps

Bibliography 275

[365] S.F. Oberman, Design issues in high performance floating point arithmetic units. Ph.D. thesis, Department of
Electrical Engineering, Stanford University, Palo Alto, CA, Nov 1996

[366] S.F. Oberman, Floating point division and square root algorithms and implementation in the AMD-K7 micro-
processor, inProceedings of the 14th IEEE Symposium on Computer Arithmetic, Apr 1999, pp. 106–115.Reprinted
in [442]

[367] T. Ogita, S.M. Rump, S. Oishi, Accurate sum and dot product. SIAM J. Sci. Comput. 26(6), 1955–1988 (2005)
[368] Y. Okabe, N. Takagi, S. Yajima, Log-depth circuits for elementary functions using residue number system.

Electron. Commun. Jpn, Part 3, 74, 8 (1991)
[369] F.W.J. Olver, P.R. Turner, Implementation of level-index arithmetic using partial table look-up, in Proceedings of

the 8th IEEE Symposium on Computer Arithmetic, May 1987
[370] A.R. Omondi, Computer Arithmetic Systems, Algorithms, Architecture and Implementations. Prentice-Hall Inter-

national Series in Computer Science (Englewood Cliffs, NJ, 1994)
[371] R.R. Osoroi, E. Antelo, J.D. Bruguera, J. Villalba, E. Zapata, Digit on-line large radix CORDIC rotator, in

Proceedings of the IEEE International Conference on Application Specific Array Processors (Strasbourg, France),
ed. by P. Cappello, C.Mongenet, G.R. Perrin, P. Quinton, Y. Robert (IEEEComputer Society Press, Los Alamitos,
CA, 1995), pp. 246–257

[372] A. Ostrowski, On Two problems in Abstract Algebra Connected with Horner’s Rule (Academic Press, New York,
1954), pp. 40–48

[373] M.L. Overton, Numerical Computing with IEEE Floating-Point Arithmetic (SIAM, Philadelphia, 2001)
[374] V.Y. Pan, Methods of computing values of polynomials. Russ. Math Surv. 21(1), 105–135 (1966)
[375] B. Parhami, Carry-free addition of recoded binary signed-digit numbers. IEEE Trans. Comput. C-37, 1470–1476

(1988)
[376] B. Parhami, Generalized signed-digit number systems: a unifying framework for redundant number representa-

tions. IEEE Trans. Comput. 39(1), 89–98 (1990)
[377] B. Parhami, On the implementation of arithmetic support functions for generalized signed-digit number systems.

IEEE Trans. Comput. 42(3), 379–384 (1993)
[378] B. Parhami,Computer Arithmetic: Algorithms and Hardware Designs (Oxford University Press, NewYork, 2000)
[379] M.S. Paterson, L.J. Stockmeyer, On the number of nonscalar multiplications necessary to evaluate polynomials.

SIAM J. Comput. 2(1), 60–66 (1973)
[380] G. Paul, M.W. Wilson, Should the elementary function library be incorporated into computer instruction sets?

ACM Trans. Math. Softw. 2(2) (1976)
[381] M. Payne, R. Hanek, Radian reduction for trigonometric functions. SIGNUM Newslett. 18, 19–24 (1983)
[382] D. Phatak, T. Goff, I. Koren, Constant-time addition and simultaneous format conversion based on redundant

binary representations. IEEE Trans. Comput. 50(11), 1267–1278 (2001)
[383] D.S. Phatak, Comments on Duprat and Muller’s branching CORDIC. IEEE Trans. Comput. 47(9), 1037–1040

(1998)
[384] D.S. Phatak, Double step branching CORDIC: a new algorithm for fast sine and cosine generation. IEEE Trans.

Comput. 47(5), 587–602 (1998)
[385] G.M. Phillips, Interpolation and Approximation by Polynomials, CMS books in mathematics (Springer, New

York, 2003)
[386] M. Pichat, Correction d’une somme en arithmétique à virgule flottante. Numer. Math. 19, 400–406 (1972). In

French
[387] S. Pion, De la Géométrie Algorithmique au Calcul Géométrique. Ph.D. thesis, Université de Nice Sophia-

Antipolis, France, Nov 1999. In French
[388] M.J.D. Powell, Approximation Theory and Methods (Cambridge University Press, 1981)
[389] D.M. Priest, Algorithms for arbitrary precision floating point arithmetic, in Proceedings of the 10th IEEE Sym-

posium on Computer Arithmetic, June 1991, pp. 132–144
[390] X. Qian, H. Zhang, J. Yang, H. Huang, J. Zhang, D. Fan, Circuit implementation of floating point range reduction

for trigonometric functions, in IEEE International Symposium on Circuits and Systems, May 2007, pp. 3010–3013
[391] C.V. Ramamoorthy, J.R. Goodman, K.H. Kim, Some properties of iterative square-rooting methods using high-

speed multiplication. IEEE Trans. Comput. C-21, 837–847 (1972). Reprinted in [439]
[392] E.M. Reingold, Establishing lower bounds on algorithms—a survey, in Spring Joint Computer Conference (1972),

pp. 471–481
[393] G.W. Reitwiesner, Binary arithmetic. Adv. Comput. 1, 231–308 (1960)
[394] E. Remez, Sur un procédé convergent d’approximations successives pour déterminer les polynômes

d’approximation (in french). C.R. Académie des Sciences, Paris 198, 2063–2065 (1934)
[395] N. Revol, F. Rouillier, Motivations for an arbitrary precision interval arithmetic and the MPFI library. Reliable

Comput. 11, 1–16 (2005)
[396] J.R. Rice, The Approximation of Functions (Addison-Wesley, Reading, 1964)

276 Bibliography

[397] T.J. Rivlin, An Introduction to the Approximation of Functions (Blaisdell Publishing Company, Walham, MA,
1969). Republished by Dover (1981)

[398] T.J. Rivlin, Chebyshev Polynomials. From Approximation Theory to Algebra. Pure and AppliedMathematics, 2nd
edn. (Wiley, New York, 1990)

[399] J.E. Robertson, A new class of digital division methods. IRE Trans. Electron. Comput. EC-7, 218–222 (1958).
Reprinted in [439]

[400] J.E. Robertson, The correspondence between methods of digital division and multiplier recoding procedures.
IEEE Trans. Comput. C-19(8) (1970)

[401] D. Roegel, A reconstruction of the tables of Briggs’ Arithmetica logarithmica (1624). Technical Report inria-
00543939, Inria, France (2010), https://hal.inria.fr/inria-00543939

[402] S. Rump, F. Bunger, C.-P. Jeannerod, Improved error bounds for floating-point products and horners scheme. BIT
Numer. Math. 1–15 (2015)

[403] S. Rump, F. Bunger, C.-P. Jeannerod, Improved error bounds for floating-point products and horners scheme. BIT
Numer. Math. 1–15 (2015)

[404] S.M. Rump, T. Ogita, S. Oishi, Accurate floating-point summation part II: sign, K-fold faithful and rounding to
nearest. SIAM J. Sci. Comput. (2005–2008). Submitted for publication

[405] S.M. Rump, T. Ogita, S. Oishi, Accurate floating-point summation part I: faithful rounding. SIAM J. Sci. Comput.
31(1), 189–224 (2008)

[406] D.M. Russinoff, Amechanically checked proof of IEEE compliance of a register-transfer-level specification of the
AMD-K7 floating-point multiplication, division, and square root instructions. LMS J. Comput. Math. 1, 148–200
(1998)

[407] B.V. Sakar, E.V. Krishnamurthy, Economic pseudodivision processes for obtaining square root, logarithm and
arctan. IEEE Trans. Comput. C-20(12) (1971)

[408] E. Salamin, Computation of π using arithmetic-geometric mean. Math. Comput. 30, 565–570 (1976)
[409] D.D. Sarma, D.W. Matula, Faithful bipartite ROM reciprocal tables, in Proceedings of the 12th IEEE Symposium

on Computer Arithmetic, June 1995, pp. 17–28
[410] W.S. Sayed, H.A.H. Fahmy, What are the correct results for the special values of the operands of the power

operation? ACM Trans. Math. Softw. (to appear)
[411] C.W. Schelin, Calculator function approximation. Am. Math. Mon. 90(5) (1983)
[412] H. Schmid, A. Bogacki, Use decimal CORDIC for generation of many transcendental functions. EDN, pp. 64–73,

Feb 1973
[413] A. Schönhage, V. Strassen, Schnelle Multiplikation Grosser Zahlen. Computing 7, 281–292 (1971). In German
[414] M.J. Schulte, J. Stine, Symmetric bipartite tables for accurate function approximation, in Proceedings of the 13th

IEEE Symposium on Computer Arithmetic (1997)
[415] M.J. Schulte, J.E. Stine, Accurate function evaluation by symmetric table lookup and addition, in Proceedings

of the IEEE International Conference on Application-Specific Systems, Architectures and Processors (Zurich,
Switzerland) (1997), pp. 144–153

[416] M.J. Schulte, J.E. Stine, Approximating elementary functions with symmetric bipartite tables. IEEE Trans. Com-
put. 48(8), 842–847 (1999)

[417] M.J. Schulte, E.E. Swartzlander, Exact rounding of certain elementary functions, in Proceedings of the 11th IEEE
Symposium on Computer Arithmetic, June 1993, pp. 138–145

[418] M.J. Schulte, E.E. Swartzlander, Hardware designs for exactly rounded elementary functions. IEEE Trans. Com-
put. 43(8), 964–973 (1994). Reprinted in [442]

[419] P. Sebah, X. Gourdon, Newton’s method and high-order iterations (2001), http://numbers.computation.free.fr/
Constants/Algorithms/newton.html

[420] R.B. Seidensticker, Continued fractions for high-speed and high-accuracy computer arithmetic, in Proceedings
of the 6th IEEE Symposium on Computer Arithmetic (1983), pp. 184–193

[421] A. Seznec, F. Lloansi, Étude des architectures des microproceseurs MIPS R10000, Ultrasparc et Pentium Pro (in
French). Technical Report 1024, IRISA Rennes, France, May 1996

[422] A. Seznec, T. Vauléon, Étude comparative des architectures des microprocesseurs Intel Pentium et PowerPC 601
(in French). Technical Report 835, IRISA Rennes, France, June 1994

[423] J.R. Shewchuk, Adaptive precision floating-point arithmetic and fast robust geometric predicates. Discrete Com-
put. Geom. 18, 305–363 (1997)

[424] R. Shukla, K.C. Ray, A low latency hybrid CORDIC algorithm. IEEE Trans. Comput. 63(12), 3066–3078 (2014)
[425] J.D. Silverstein, S.E. Sommars, Y.C. Tao, The UNIX systemmath library, a status report, in USENIX — Winter’90

(1990)
[426] A. Singh, D. Phatak, T. Goff, M. Riggs, J. Plusquellic, C. Patel, Comparison of branching CORDIC implemen-

tations, in IEEE International Conference on Application-Specific Systems, Architectures and Processors, June
2003, pp. 215–225

https://hal.inria.fr/inria-00543939
http://numbers.computation.free.fr/Constants/Algorithms/newton.html
http://numbers.computation.free.fr/Constants/Algorithms/newton.html

Bibliography 277

[427] D. Smith, Efficient multiple-precision evaluation of the elementary functions. Math. Comput. 52(185), 131–134
(1989)

[428] R.A. Smith, A continued-fraction analysis of trigonometric argument reduction. IEEE Trans. Comput. 44(11),
1348–1351 (1995)

[429] W.H. Specker, A class of algorithms for ln(x), exp(x), sin(x), cos(x), tan−1(x) and cot−1(x). IEEE Trans.
Electron. Comput. EC-14 (1965). Reprinted in [439]

[430] H.M. Stark, An Introduction to Number Theory (MIT Press, Cambridge, 1981)
[431] D. Stehlé, Algorithmique de la Réduction de Réseaux et Application à la Recherche de Pires Cas pour l’Arrondi

de Fonctions Mathématiques (in French). Ph.D. thesis, Université Henri Poincaré—Nancy 1, France, Dec 2005
[432] D. Stehlé, V. Lefèvre, P. Zimmermann, Worst cases and lattice reduction, in Proceedings of the 16th IEEE

Symposium on Computer Arithmetic, June 2003, pp. 142–147
[433] D. Stehlé, V. Lefèvre, P. Zimmermann, Searching worst cases of a one-variable function. IEEE Trans. Comput.

54(3), 340–346 (2005)
[434] D. Stehlé, P. Zimmermann, Gal’s accurate tables method revisited, in Proceedings of the 17th IEEE Symposium

on Computer Arithmetic, June 2005, pp. 257–264
[435] J.E. Stine,M.J. Schulte, The symmetric table additionmethod for accurate function approximation. J. VLSI Signal

Process. 21, 167–177 (1999)
[436] S. Story, P.T.P. Tang, New algorithms for improved transcendental functions on IA-64, in Proceedings of the 14th

IEEE Symposium on Computer Arithmetic, Apr 1999, pp. 4–11
[437] D.A. Sunderland, R.A. Strauch, S.W. Wharfield, H.T. Peterson, C.R. Cole, CMOS/SOS frequency synthesizer

LSI circuit for spread spectrum communications. IEEE J. Solid State Circuits SC-19(4), 497–506 (1984)
[438] T.Y. Sung, Y.H. Hu, Parallel VLSI implementation of Kalman filters. IEEE Trans. Aerosp. Electron. Syst, AES

23(2) (1987)
[439] E.E. Swartzlander, Computer Arithmetic, vol. 1 (World Scientific Publishing Co., Singapore, 2015)
[440] E.E. Swartzlander, Computer Arithmetic, vol. 2 (World Scientific Publishing Co., Singapore, 2015)
[441] E.E. Swartzlander, A.G. Alexpoulos, The sign-logarithm number system. IEEE Trans. Comput. (1975). Reprinted

in [439]
[442] E.E. Swartzlander, C.E. Lemonds,Computer Arithmetic, vol. 3 (World Scientific PublishingCo., Singapore, 2015)
[443] N. Takagi. Studies on hardware algorithms for arithmetic operations with a redundant binary representation.

Ph.D. thesis, Dept. Info. Sci., Kyoto University, Japan (1987)
[444] N. Takagi, T. Asada, S. Yajima, A hardware algorithm for computing sine and cosine using redundant binary

representation. Syst. Comput. Jpn. 18(8) (1987)
[445] N. Takagi, T. Asada, S. Yajima, Redundant CORDIC methods with a constant scale factor. IEEE Trans. Comput.

40(9), 989–995 (1991)
[446] N. Takagi, H. Yasukura, S. Yajima, High speed multiplication algorithm with a redundant binary addition tree.

IEEE Trans. Comput. C-34(9) (1985)
[447] P.T.P. Tang, Table-driven implementation of the exponential function in IEEE floating-point arithmetic. ACM

Trans. Math. Softw. 15(2), 144–157 (1989)
[448] P.T.P. Tang, Table-driven implementation of the logarithm function in IEEE floating-point arithmetic. ACMTrans.

Math. Softw. 16(4), 378–400 (1990)
[449] P.T.P. Tang, Table lookup algorithms for elementary functions and their error analysis, in Proceedings of the 10th

IEEE Symposium on Computer Arithmetic, June 1991, pp. 232–236
[450] P.T.P. Tang, Table-driven implementation of the expm1 function in IEEE floating-point arithmetic. ACM Trans.

Math. Softw. 18(2), 211–222 (1992)
[451] ThePolylibTeam. Polylib, a library of polyhedral functions, version 5.20.0 (2004), http://icps.u-strasbg.fr/polylib/
[452] D.B. Thomas, A general-purpose method for faithfully rounded floating-point function approximation in FPGAs,

in Proceedings of the 22nd Symposium on Computer Arithmetic (2015), pp. 42–49
[453] J. Thompson, N. Karra, M. Schulte, A 64-bit decimal floating-point adder, in IEEE Computer society Annual

Symposium on VLSI (2004), pp. 297–298
[454] D. Timmermann, H. Hahn, B.J. Hosticka, Low latency time CORDIC algorithms. IEEE Trans. Comput. 41(8),

1010–1015 (1992)
[455] D. Timmermann, H. Hahn, B.J. Hosticka, B. Rix, A new addition scheme and fast scaling factor compensation

methods for CORDIC algorithms. INTEGRATION, VLSI J. 11, 85–100 (1991)
[456] D. Timmermann,H.Hahn, B.J. Hosticka,G. Schmidt, A programmableCORDIC chip for digital signal processing

applications. IEEE J. Solid-State Circuits 26(9), 1317–1321 (1991)
[457] A.L. Toom, The complexity of a scheme of functional elements realizing the multiplication of integers. Sov.Math.

Dokl. 3, 714–716 (1963)
[458] L. Trefethen, Approximation Theory and Approximation Practice (Siam, 2013)
[459] L. Trefethen, Computing numerically with functions instead of numbers. Commun. ACM 58(10), 91–97 (2015)

http://icps.u-strasbg.fr/polylib/

278 Bibliography

[460] C.-Y. Tseng, A multiple-exchange algorithm for complex chebyshev approximation by polynomials on the unit
circle. SIAM J. Numer. Anal. 33(5), 2017–2049 (1996)

[461] L. Veidinger, On the numerical determination of the best approximations in the Chebyshev sense. Numer. Math.
2, 99–105 (1960)

[462] B.Verdonk,A.Cuyt, D.Verschaeren,A precision- and range-independent tool for testing floating-point arithmetic.
I: basic operations, square root, and remainder. ACM Trans. Math. Softw. 27(1), 92–118 (2001)

[463] B.Verdonk,A.Cuyt, D.Verschaeren,A precision- and range-independent tool for testing floating-point arithmetic.
II: conversions. ACM Trans. Math. Softw. 27(1), 119–140 (2001)

[464] J. Villalba, T. Lang, M. Gonzalez, Double-residue modular range reduction for floating-point hardware imple-
mentations. IEEE Trans. Comput. 55(3), 254–267 (2006)

[465] J.E. Volder, The CORDIC computing technique. IRE Trans. Electron. Comput. EC-8(3), 330–334 (1959).
Reprinted in [439]

[466] J.E. Volder, The birth of CORDIC. J. VLSI Signal Process. Syst. 25(2), 101–105 (2000)
[467] J.E. Vuillemin, Exact real computer arithmetic with continued fractions. IEEE Trans. Comput. 39(8) (1990)
[468] C.S. Wallace, A suggestion for a fast multiplier. IEEE Trans. Electron. Comput. 14–17 (1964). Reprinted in [439]
[469] P.J.L. Wallis (ed.), Improving Floating-Point Programming (John Wiley, New York, 1990)
[470] J.S. Walther, A unified algorithm for elementary functions, in Joint Computer Conference Proceedings (1971).

Reprinted in [439]
[471] J.S. Walther, The story of unified CORDIC. J. VLSI Signal Process. Syst. 25(2), 107–112 (2000)
[472] D. Wang, J.-M. Muller, N. Brisebarre, M. Ercegovac, (m, p, k)-friendly points: a table-based method to evaluate

trigonometric function. IEEE Trans. Circuits Syst. II: Express Briefs 61(9), 711–715 (2014)
[473] L. Wang, J. Needham, Horner’s method in chinese mathematics: its origins in the root-extraction procedures of

the han dynasty. T’oung Pao 43(5), 345–401 (1955), http://www.jstor.org/stable/4527405
[474] S. Wang, E.E. Swartzlander, Merged CORDIC algorithm, in 1995 IEEE International Symposium on Circuits

and Systems, Apr 1995, pp. 1988–1991
[475] W.F. Wong, E. Goto, Fast hardware-based algorithms for elementary function computations using rectangular

multipliers. IEEE Trans. Comput. 43(3), 278–294 (1994)
[476] C.-S.Wu, A.-Y.Wu, C.-H. Lin, A high-performance/low-latency vector rotational CORDIC architecture based on

extended elementary angle set and trellis-based searching schemes. IEEE Trans. Circuits Syst. II: Analog Digit.
Signal Process. 50(9), 589–601 (2003)

[477] J.M. Yohe, Roundings in floating-point arithmetic. IEEE Trans. Comput. C-22(6), 577–586 (1973)
[478] H. Yoshimura, T. Nakanishi, H. Tamauchi, A 50MHz geometrical mapping processor, in Proceedings of the 1988

IEEE International Solid-State Circuits Conference (1988)
[479] T.J. Ypma, Historical development of the Newton-Raphson method. SIAM Rev. 37(4), 531–551 (1995)
[480] P. Zimmermann, Arithmétique en précision arbitraire. Réseaux et Systèmes Répartis, Calculateurs Parallèlles

13(4–5), 357–386 (2001). In French
[481] A. Ziv, Fast evaluation of elementary mathematical functions with correctly rounded last bit. ACM Trans. Math.

Softw. 17(3), 410–423 (1991)
[482] F. Zou, P. Kornerup, High speed DCT/IDCT using a pipelined CORDIC algorithm, in Proceedings of the 12th

IEEE Symposium on Computer Arithmetic, July 1995, pp. 180–187
[483] D. Zuras, More on squaring and multiplying large integers. IEEE Trans. Comput. 43(8), 899–908 (1994)

http://www.jstor.org/stable/4527405

Index

A
Accurate tables method, 107
Adaptation of coefficients, 82
Addition, 30
Agarwal, 2, 219
AGM iteration, 130, 231

for ln(2), 132
for π , 133
for exponentials, 133
for logarithms, 131

Algebraic function, 224, 229
Algebraic number, 224
Antelo, 183
Arithmetic-geometric mean, 130, 231
ARPREC, 122
Asymptotic expansions, 199
Avizienis’ algorithm, 31

B
Babai’s algorithm, 74
Bailey, 121, 128
Baker’s predictive algorithm, 155
Balanced ternary, 9
Base, 7
Bias, 16
Biased exponent, 16
Binary128 format, 9, 15
Binary32 format, 9, 15, 27
Binary64 format, 9, 15, 27
Binary splitting, 129
Bipartite method, 117
BKM

algorithm, 189
E-mode, 190
iteration, 190
L-mode, 190, 193

Bogacki, 183
Boldo, Li, and Daumas reduction, 204, 205
Booth recoding, 30, 35
Borrow-save

addition, 33

number system, 32
Branch cuts, 250
Branching cordic algorithm, 177
Braune, 79
Breakpoint, 222, 224
Brent, 121, 133, 134
Brent–Salamin algorithm for π , 133
Briggs, 5, 139, 140
Brisebarre, 68

C
Canonical recoding, 33, 35
Carry propagation, 30
Carry-save

addition, 32
computation of exponentials, 151
number system, 32, 148, 174

Cavallaro, 184
CELEFUNT, 79, 251
CGPE, 87
Chebyshev, 50

approximation to functions, 42
approximation to ex , 48
polynomials, 42, 48
theorem, 45, 49
theorem for rational approximations, 59

Chevillard, 62, 68
Cody, 1, 79, 202, 250
Cohen, 122
Complex arguments, 79
Complex elementary functions, 250
Continued fractions, 206
Convergents, 206, 207, 209
Coppersmith’s algorithm, 232
CORDIC, 5, 144, 165

arcos, 181
arcsin, 181
branching, 177
decimal, 183
differential, 177–179
double rotation, 174

© Springer Science+Business Media New York 2016
J.-M. Muller, Elementary Functions, DOI 10.1007/978-1-4899-7983-4

279

280 Index

exponentials, 169
hyperbolic mode, 168
iteration, 168
logarithms, 169
on line, 184
rotation mode, 166
scale factor compensation, 170
sine and cosine, 165
vectoring mode, 168

CORDIC II, 180
Cornea, 14
Correct rounding, 2, 10, 219, 221
CRLIBM, 20, 24, 204, 244, 257
Cyrix

83D87, 111
FastMath, 253

D
Daggett, 183
Dawid and Meyr, 177
DDMF, 250
De Dinechin, 24, 119, 257
Defour, 244, 257
Delosme, 174, 183
DeLugish, 163
Denormal number, 8
Deprettere, 172, 184
Despain, 171
Dewilde, 172
Differential CORDIC, 177–179
Discrete base, 143, 166
Dorn’s method, 84
Double-double numbers, 19, 76
Double residue modular range reduction, 216
Double rotation method, 174
Double-word, 18, 76, 98, 201, 204–206, 257–261
Double-word addition, 19
Double-word multiplication, 19, 21
DRMRR, 216
Dunham, 70
Dynamic Dictionnary of Mathematical Functions, 250

E
emax, 7
E-method, 98
emin, 7
Ercegovac, 3, 178, 184

E-method, 98
radix-16 algorithms, 185

Estrin’s method, 84, 254
Euclidean lattices, 74
Even polynomial approximation, 69
Exact rounding, 2, 10, 221
Exceptions, 12, 245–247
Exponential

Baker’s method, 161
BKM, 190
fast shift-and-add algorithm, 147

multiple-precision, 128, 133
radix-16, 185
restoring algorithm, 140, 145
table-driven, 104
Tang, 104
Wong and Goto, 114

Extremal exponents, 7

F
Faithful rounding, 11
Fast Fourier Transform, 122, 126
Fast2Mult, 18, 89
Fast2Sum, 17, 89, 98, 225
Feldstein, 226
FFT, 122, 126
FFT-based multiplication, 126
Final rounding, 219
FLIP, 87
Floating-point

division, 60
Floating-point arithmetic, 7, 9, 12, 16

test of, 16
Flynn, 60
FMA, 14, 18, 81, 82, 85, 94, 96, 98, 254, 255
Fourier transform, 165
Fpminimax (Sollya command), 76, 77
FUNPACK, 250
Fused MAC, 14, 18, 82, 254, 255
Fused multiply–add, 14, 18, 82, 254, 255

G
Gal

accurate tables method, 107
Gappa, 24–26, 89, 92–96, 257, 262
GMP, 122, 124
GNU-MPFR, 121, 122, 244
Goldberg, 7
Goodman, 226
Gradual underflow, 11
Granlund, 122
Gustafson, 30

H
Haar condition, 57
Hamada, 61
Hanek, 203
Hardest-to-round points, 224
Hardness to round, 224
Harrison, 14, 24
Hartley transform, 165
Haviland, 171
Hekstra, 184
Hemkumar, 184
Heron iteration, 127
Hewlett Packard’s HP 35, 165
Hidden bit, 8
High-radix algorithms, 185

Index 281

Horner’s scheme, 81–83, 88, 259, 260
second order, 84

HP
Itanium, 14, 85, 87, 254, 260

HP-UX Compiler, 260
HR points, 224
Hsiao, 183
Hu, 183, 184

I
IBM

LIBULTIM, 224, 256
IBM/370, 107
IEEE-754 standard, 1, 2, 8–10, 12, 15, 111, 245
Implicit bit, 8
Infinitely precise significand, 13
Infinity, 12
Integral significand, 8
Intel

8087, 1, 7, 165, 183
Itanium, 14, 85, 87, 254, 260

Interval arguments, 79
Interval arithmetic, 2, 10
Itanium, 14, 85, 87, 254, 260

J
Jacobi

approximation to functions, 44
polynomials, 44

Johansson, 130
Joldeş, 62, 63

K
Kahan, 1, 7, 14, 202, 209, 222, 246, 250
Karatsuba multiplication algorithm, 123
Karp, 14
Knuth, 123
Koren, 3, 60
Kota, 184
Kramer, 79
Krishnamurthy, 144
Kropa, 183
Kuki, 1

L
Laguerre

approximation to functions, 44
polynomials, 44

Lang, 3, 184
Lattice reduction, 73
Lau, 183
Lauter, 20, 21, 62, 199, 234, 257
Least maximum

approximation to ex , 49
approximation to functions, 45

Least squares approximations, 41

Lefèvre, 226, 234, 244, 257
Legendre

approximation to ex , 48
approximation to functions, 42
polynomials, 42, 48

Level index arithmetic, 30
LIBMCR, 249, 260
LIBULTIM, 224, 256
Lin, 184
Lindemann theorem, 224
Linhardt, 163
Litvinov, 59
LLL algorithm, 74
Logarithm

BKM, 193
fast shift-and-add algorithm, 152
multiple-precision, 129, 131
restoring algorithm, 146, 147
table-driven, 105
Tang, 105
Wong and Goto, 111

Logarithmic number systems, 30
Luk, 184
Lynch, 245

M
MACHAR, 16
Malcolm, 16
Maple, 3, 63
Markstein, 1, 14, 260, 261
Matrix

logarithm, 251
square exponential, 251
square root, 251

Matula, 117
Meggitt, 144, 163
Metalibm, 244, 261, 262
Mezzarobba, 262
Miller, 163
Minimax

approximation to ex , 49
Minimax approximations, 45
MISCFUN, 250
Modular range reduction, 213
Monic polynomial, 44
Monotonicity, 1, 2, 219, 220
Montgomery, 123
Motorola

68881, 183
MP, 121
MPFI, 122
MPFR, 121, 122, 244
MPFUN, 122
MPFUN2015, 122
Multipartite methods, 117, 119
Multiple-precision, 121, 202

AGM, 130
division, 126
exponentials, 128, 133

282 Index

logarithms, 129, 131
multiplication, 122
power-series, 128
square-root, 126
trigonometric functions, 133

Multiply–accumulate, 14, 18, 82, 254, 255
Multiply–add, 14, 18, 82, 255

N
Naganathan, 183
NaN (Not a Number), 12, 16, 246
Nesterenko, 230
Newton, 82
Newton–Raphson iteration, 117, 126, 129, 131, 133, 134
Ng, 260
Nonadjacent form, 35
Nonrestoring algorithm, 144, 166
Normalized representation, 8
Normal number, 8

O
Oberman, 60
Odd polynomial approximation, 69
Okabe, 1
Omondi, 3
Orthogonal polynomials, 42
Orthogonal rational functions, 59

P
Padé approximants, 59
PARANOIA, 16
PARI, 122
Payne, 203
Payne and Hanek reduction algorithm, 211, 258
Phatak, 177
Pocket calculators, 9, 165, 183
Polynomial approximations, 39, 41, 42, 44, 45, 46, 50–52,

60
least maximum, 45
least squares, 41
particular form, 255, 256
speed of convergence, 52

Polynomial evaluation
adaptation of coefficients, 82
Dorn’s method, 84
E-method, 98
error, 88
Estrin’s method, 84, 254
second order Horner’s scheme, 84

Polynomier, 85
Polytope, 73
Power function, 248
Precision, 7
Predictive algorithm, 155
Pseudodivision, 144, 163
Pseudomultiplication, 144, 163
Pythagorean triples, 110

Q
Quiet NaN, 16

R
Radix, 7
Radix 3, 9
Radix-16 algorithms, 185
Radix 10 arithmetic, 9
Range limits, 2, 219
Range reduction, 5, 104, 200–203, 209, 210, 213, 216,

246
additive, 200
Cody and Waite, 203, 255, 258
double residue modular, 216
modular, 213
multiplicative, 200
Payne and Hanek, 204, 211, 258
positive, 213
redundant, 213
symmetrical, 213
Tang, 104

Raphson, 127
Rational approximations, 58
Rational approximations, 58–61

equivalent expressions, 61
Reduced argument, 199
Redundant number systems, 30–32, 147, 148, 152, 159,

172–174, 176, 189, 216
Reitwiesner’s algorithm, 35
Remez, 59
Remez’s Algorithm, 46, 52
Restoring algorithm, 142
Revol, 122
Robertson diagrams, 148, 153, 172, 185, 190, 191
Rouiller, 122
Rounding functions, 9, 10
Rounding modes, 9, 221, 222
Rounding test, 98, 224

S
Sage, 122
Salamin, 121, 133
Sarkar, 144
Scale factor compensation, 170
Scaling-free

CORDIC iteration, 170
Schmid, 183
Schönhage, 126
Schulte and Swartzlander, 225
SCSLIB, 257
SETUN computer, 9
Shift-and-add

algorithms, 139, 140, 143, 147, 152, 163, 165, 185
exponentials in a redundant number system, 147
logarithms in a redundant number system, 152

Signaling NaN, 16
Signed-digit

computation of exponentials, 150

Index 283

number system, 30, 32, 148, 173
Signed zeroes, 12
Significand, 8, 9
Significand distance, 243
Simpson, 127
Sine

table-driven, 106
Tang, 106

Sine and cosine
accurate tables, 109
CORDIC, 165

Sips, 184
Slash number systems, 30
SLZ, 232
Smith’s splitting algorithm, 129
Sollya, 3, 62, 64, 68, 75, 76, 257, 262
SPECFUN, 250
Special functions, 250
Specker, 163
Square root, 58, 169
SRT division, 151
Strassen, 126
Subnormal numbers, 8, 16, 246
2Sum, 17, 98
SUN

LIBMCR, 249, 260
Supnorm (Sollya command), 75, 77
SVD, 165
Swartzlander, 3, 245
Symmetry, 1, 219

T
Table-based methods, 101
Table-driven algorithms, 103–106,
Table maker’s dilemma, 219, 222

deterministic approach, 229
probabilistic approach, 226

Takagi, 147, 174, 176
Tang, 1, 14, 103

table-driven algorithms, 103
Tapered floating-point arithmetic, 30
Taylor expansions, 49, 50, 122

Timmermann, 183
Tisserand, 119
TMD, 222
Toom-Cook multiplication, 123, 126
Transcendental function, 229
Triple-double numbers, 19
Triple-word, 18–20, 201, 205, 257, 260, 261
Triple-word addition, 20
Trivedi, 178
Tuszinsky, 171
TwoSum, 17, 98

U
UCBTEST, 16
Udo, 172
ULP (unit in the last place), 12, 13, 89, 90, 113
Unum number system, 30

V
Vieta, 126
Volder, 163, 165

CORDIC iteration, 165

W
Waite, 1, 202
Waldschmidt, 230
Walther, 165

CORDIC iteration, 168
Weierstrass theorem, 45
Weight function, 40, 42, 44, 64, 72
Wong and Goto’s algorithm, 111

Z
Zimmermann, 122
Zinaty, 60
Ziv, 256

multilevel strategy, 223
rounding test, 98, 224

	Preface to the Third Edition
	Acknowledgments

	Preface to the Second Edition
	Acknowledgments

	Preface to the First Edition
	Acknowledgments

	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Introduction to Computer Arithmetic
	2.1 Basic Notions of Floating-Point Arithmetic
	2.1.1 Basic Notions
	2.1.2 Rounding Functions
	2.1.3 ULPs
	2.1.4 Infinitely Precise Significand
	2.1.5 Fused Multiply--Add Operations
	2.1.6 The Formats Specified by the IEEE-754-2008 Standard for Floating-Point Arithmetic
	2.1.7 Testing Your Computational Environment

	2.2 Advanced Manipulation of FP Numbers
	2.2.1 Error-Free Transforms: Computing the Error of a FP Addition or Multiplication
	2.2.2 Manipulating Double-Word or Triple-Word Numbers
	2.2.3 An Example that Illustrates What We Have Learnt so Far
	2.2.4 The GAPPA Tool
	2.2.5 Maple Programs that Compute binary32 and binary64 Approximations
	2.2.6 The Future of Floating-Point Arithmetic

	2.3 Redundant Number Systems
	2.3.1 Signed-Digit Number Systems
	2.3.2 The Carry-Save and Borrow-Save Number Systems
	2.3.3 Canonical Recoding

	Algorithms Based on Polynomial Approximation and/or Table Lookup, Multiple-Precision Evaluation of Functions
	3 The Classical Theory of Polynomial or Rational Approximations
	3.1 What About Interpolation?
	3.2 Least Squares Polynomial Approximations
	3.2.1 Legendre Polynomials
	3.2.2 Chebyshev Polynomials
	3.2.3 Jacobi Polynomials
	3.2.4 Laguerre Polynomials
	3.2.5 Using These Orthogonal Polynomials in Any Interval

	3.3 Least Maximum Polynomial Approximations
	3.4 Some Examples
	3.5 Speed of Convergence
	3.6 Remez's Algorithm
	3.7 Minimizing the Maximum Relative Error
	3.8 Rational Approximations
	3.9 Accurately Computing Supremum Norms
	3.10 Actual Computation of Approximations

	4 Polynomial Approximations with Special Constraints
	4.1 Polynomials with Exactly Representable Coefficients
	4.1.1 An Iterative Method
	4.1.2 An Exact Method (For Small Degrees)
	4.1.3 A Method Based on Lattice-Reduction

	4.2 Getting Nearly Best Approximations Using Sollya
	4.3 Miscellaneous

	5 Polynomial Evaluation
	5.1 Sequential Evaluation of Polynomials
	5.1.1 Horner's Scheme
	5.1.2 Preprocessing of the Coefficients

	5.2 Evaluating Polynomials When Some Parallelism is Available
	5.2.1 Generalizations of Horner's Scheme
	5.2.2 Estrin's Method
	5.2.3 Evaluating Polynomials on Modern Processors

	5.3 Computing Bounds on the Evaluation Error
	5.3.1 Evaluation Error Assuming Horner's Scheme is Used
	5.3.2 Evaluation Error with Methods Different than Horner's Scheme
	5.3.3 When High Accuracy is Needed

	5.4 Polynomial Evaluation by Specific Hardware
	5.4.1 The E-Method
	5.4.2 Custom Precision Function Evaluation on Embedded Processors
	5.4.3 Polynomial Evaluation on FPGAs

	6 Table-Based Methods
	6.1 Introduction
	6.2 Table-Driven Algorithms
	6.2.1 Tang's Algorithm for exp(x) in IEEE Floating-Point Arithmetic
	6.2.2 ln(x) on [1,2]
	6.2.3 sin(x) on [0,π/4]

	6.3 Gal's Accurate Tables Method
	6.4 Use of Pythagorean Triples
	6.5 Table Methods Requiring Specialized Hardware
	6.5.1 Wong and Goto's Algorithm for Computing Logarithms
	6.5.2 Wong and Goto's Algorithm for Computing Exponentials
	6.5.3 Ercegovac et al.'s Algorithm
	6.5.4 Bipartite and Multipartite Methods

	6.6 (M,p,k)-Friendly Points: A Method Dedicated to Trigonometric Functions

	7 Multiple-Precision Evaluation of Functions
	7.1 Introduction
	7.2 Just a Few Words on Multiple-Precision Multiplication
	7.2.1 Karatsuba's Method
	7.2.2 The Toom-Cook Family of Multiplication Algorithms
	7.2.3 FFT-Based Methods

	7.3 Multiple-Precision Division and Square-Root
	7.3.1 The Newton--Raphson Iteration

	7.4 Algorithms Based on the Evaluation of Power Series
	7.4.1 Binary Splitting Techniques

	7.5 The Arithmetic--Geometric Mean (AGM)
	7.5.1 Presentation of the AGM
	7.5.2 Computing Logarithms with the AGM
	7.5.3 Computing Exponentials with the AGM
	7.5.4 Very Fast Computation of Trigonometric Functions

	Shift-and-Add Algorithms
	8 Introduction to Shift-and-Add Algorithms
	8.1 The Restoring and Nonrestoring Algorithms
	8.2 Simple Algorithms for Exponentials and Logarithms
	8.2.1 The Restoring Algorithm for Exponentials
	8.2.2 The Restoring Algorithm for Logarithms

	8.3 Faster Shift-and-Add Algorithms
	8.3.1 Faster Computation of Exponentials
	8.3.2 Faster Computation of Logarithms

	8.4 Baker's Predictive Algorithm
	8.5 Bibliographic Notes

	9 The CORDIC Algorithm
	9.1 Introduction
	9.2 The Conventional CORDIC Iteration
	9.3 Acceleration of the Last Iterations
	9.4 Scale Factor Compensation
	9.5 CORDIC With Redundant Number Systems and a Variable Factor
	9.5.1 Signed-Digit Implementation
	9.5.2 Carry-Save Implementation
	9.5.3 The Variable Scale Factor Problem

	9.6 The Double Rotation Method
	9.7 The Branching CORDIC Algorithm
	9.8 The Differential CORDIC Algorithm
	9.9 The ``CORDIC II'' Approach
	9.10 Computation of cos-1 and sin-1 Using CORDIC
	9.11 Variations on CORDIC

	10 Some Other Shift-and-Add Algorithms
	10.1 High-Radix Algorithms
	10.1.1 Ercegovac's Radix-16 Algorithms

	10.2 The BKM Algorithm
	10.2.1 The BKM Iteration
	10.2.2 Computation of the Exponential Function (E-mode)
	10.2.3 Computation of the Logarithm Function (L-mode)
	10.2.4 Application to the Computation of Elementary Functions

	Range Reduction, Final Rounding and Exceptions
	11 Range Reduction
	11.1 Introduction
	11.2 Cody and Waite's Method for Range Reduction
	11.2.1 The Classical Cody--Waite Reduction
	11.2.2 When a Fused Multiply-add (FMA) Instruction is Available

	11.3 Finding Worst Cases for Range Reduction?
	11.3.1 A Few Basic Notions On Continued Fractions
	11.3.2 Finding Worst Cases Using Continued Fractions

	11.4 The Payne and Hanek Reduction Algorithm
	11.5 Modular Range Reduction Algorithms
	11.5.1 The MRR Algorithm
	11.5.2 The Double Residue Modular Range Reduction (DRMRR) Algorithm
	11.5.3 High Radix Modular Reduction

	12 Final Rounding
	12.1 Introduction
	12.2 Monotonicity
	12.3 Correct Rounding: Presentation of the Problem
	12.4 Ziv's Rounding Test
	12.5 Some Experiments
	12.6 A ``Probabilistic'' Approach to the Problem
	12.7 Upper Bounds on m
	12.7.1 Algebraic Functions
	12.7.2 Transcendental Functions

	12.8 Solving the TMD in Practice
	12.8.1 Special Input Values
	12.8.2 The L-Algorithm
	12.8.3 The SLZ Algorithm
	12.8.4 Nontrivial Hardest-to-Round Points Found So Far

	13 Miscellaneous
	13.1 Exceptions
	13.1.1 NaNs
	13.1.2 Exact Results

	13.2 Notes on xy
	13.3 Special Functions, Functions of Complex Numbers

	14 Examples of Implementation
	14.1 First Example: The Cyrix FastMath Processor
	14.2 The INTEL Functions Designed for the Itanium Processor
	14.2.1 Sine and Cosine
	14.2.2 Arctangent

	14.3 The LIBULTIM Library
	14.4 The CRLIBM Library
	14.4.1 Computation of sin(x) or cos(x) (Quick Step)
	14.4.2 Computation of ln(x)

	14.5 SUN's Former LIBMCR Library
	14.6 The HP-UX Compiler for the Itanium Processor
	14.7 The METALIBM Project

	 Bibliography
	Index

