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Preface

Since the publication in 1976 of my earlier monograph, An Introduction
to Semigroup Theory, much has happened in the theory of semigroups,
too much, indeed, for a general introduction to do more than scrape the
surface of the subject, for its scope has widened remarkably to embrace
many aspects of theoretical computer science. In response to the growth of
the subject in both pure and applied aspects, many more specialist books
have appeared (Eilenberg 1974, 1976; Lallement 1979; Nambooripad 1979;
Lothaire 1983; Berstel and Perrin 1985; Petrich 1984; Pastijn and Petrich
1985; Okninski 1990; Jiirgensen et al. 1991; Pin 1986; Shyr 1991; Higgins
1992; Almeida 1995), and the list of Conference Proceedings volumes on
my shelves (T. E. Hall et al. 1980; Jirgensen et al. 1981; Byleen et al.
1984; Hofmann et ol. 1983; Polldk et al. 1985; Almeida et al. 1990; T. E.
Hall et al. 1991; Rhodes 1991; Howie et al. 1992; Shum and Yuen 1993;
Bonzini et al. 1993) is certainly not exhaustive.

There is, however, still a place for a general introduction, offering both
an overview of the subject for specialist and non-specialist alike, and an
entrée for the graduate student. This is what I have set out to provide. I
have used my earlier volume as a basis, and have been gratified to find that
most of the material there still earns its place in a general introduction to
the subject. Most of that, however, has been substantially rewritten to pro-
vide the perspective that seems most relevant to contemporary research,
and significant amounts of new (post 1976) material have been incorpo-
rated, especially in the exercises.

The emphasis throughout is unashamedly on what might be called
‘pure’ semigroup theory; the inclusion of significant amounts of applica-
tions, for example, to automata, languages and machines, would have in-
volved a huge, and probably unacceptable, increase in the length (and the
price) of the book. The only mild genuflection in the direction of applied
semigroup theory occurs in Chapter 7, where the brief section on variable
length codes gives some hint of a fascinating and continually developing
field.

The first six chapters give what I hope is a reasonably coherent account
of regular semigroups of various kinds. Chapters 1 and 2 develop the fun-
damental language and concepts of the subject, and on those foundations
is then built a fairly natural edifice, consisting of completely (0-)simple
semigroups (Chapter 3), completely regular semigroups (Chapter 4), and
inverse semigroups (Chapter 5). The huge success of inverse semigroup
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theory has naturally given rise to a great deal of work (of varying degrees
of interest, it must be said) on generalizations. In Chapter 6, somewhat
lamely entitled ‘Other classes of regular semigroups’, I give a very brief
account of some of the more interesting types of non-inverse regular semi-
groups. '

Chapter 7, already mentioned above, heralds a change of theme. It give
a brief account of free semigroups and monoids and of variable length codes,
an account which is certainly superficial, but which may whet readers’
appetites and lead them to the excellent specialized texts now available.

The use of module theory and homological algebra in the study of rings
is well known. One of the most encouraging developments of the last two
decades has been the use of what one might call ‘non-additive’ homological
algebra in the study of semigroups. A notable success in this area has been
in the study of semigroup amalgams, and these are the subject of the final
chapter.

The layout of the book is entirely traditional, and the system of ref-
erencing is, I hope, self-explanatory. I attempt to guide the reader by
making a distinction between theorems and propositions, the former term
being reserved for results of greater depth or importance. The distinction
is, however, merely a guide, and should not be taken too seriously. A
few more specialized sections in the earlier chapters have been starred to
indicate that they may safely be omitted in a first reading.

It is a pleasure to record thanks to the University of St Andrews for a
period of research leave during which a significant part of this book was
written, and to the university of Tasmania for taking me in during part of
that leave. Thanks are due to T. E. Hall, P. G. Trotter and James Ren-
shaw, who read and commented on parts of the book, and especially to
Nikola Rugkuc, whose careful reading and frank comments were of enor-
mous service.

The first tentative steps towards the writing of this book had just been
taken when I learned of the death of A. H. Clifford. At an early stage of
my mathematical career, in 1964-65, I spent a year with Alfred Clifford at
Tulane University, and was much influenced by his penetrating mind and
infectious enthusiasm. This book is dedicated, with deep respect, to his
memory.

University of St Andrews J. M. H.
February 1995
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1

Introductory ideas

In this chapter certain basic definitions and results are presented. Reference
will be made to these throughout the book, though it should be noted that
Section 1.8 is referred to only in Section 3.5.

1.1 BASIC DEFINITIONS

A groupoid (S, p) is defined as a non-empty set S on which a binary opera-
tion u—by which we mean a map p: S X § — S— is defined. We say that
(S, 1) is a semigroup if the operation p is associative, that is to say, if, for
all z, y and z in S,

(@Y, 2)p = (2, (y, 2)p) p- (1.1.1)

(Here, and throughout the book, we write mapping symbols on the right.)
This notation is rather cumbersome, and we shall follow the usual algebraic
practice of writing the binary operation as multiplication. Thus (z,y)u
becomes z.y or {more usually) zy, and formula (1.1.1) takes the simple
form

(zy)z = z(yz),

the familiar associative law of elementary algebra. Expressions such as zyz
and z1xs3...x,, where z,v, 2, %1, T2, . - ., L, are elements of .S, then have
unambiguous meanings, and we can use the notation 2 (n € N) to mean
the product of n elements each equal to z. The cardinal number |S|—see
Halmos (1960) for this and other items of basic set theory—will be called
the order of S.

Where the semigroup is written multiplicatively and where the nature
of the multiplication is clear from the context, we shall write simply S
rather than (9,.).

If a semigroup S has the property that, for all 2, y in S,

Ty =y,
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we shall say that S is a commutative semigroup. (The term abelian is also
used, by analogy with the group theoretic term.) If a semigroup S contains
an element 1 with the property that, for all z in S,

zl=le ==z,

we say that 1 is an identity element (or just an identity) of S, and that
S is a semigroup with identity or (more usually) a monoid. A semigroup
S has at most one identity element, since if 1’ also has the property that
zl’ =1’z = z for all x in S, then

1/ =11" (since 1 is an identity)
=1 (since 1’ is an identity).

If S has no identity element then it is very easy to adjoin an extra
element 1 to S to form a monoid. We define

ls=sl=sforallsin S, and 11 =1,

and it is a routine matter to check that S U {1} becomes a monoid. We
now define

gl S if S has an identity element
T 1 SU{1} otherwise.

We refer to S as the monoid obtained from S by adjoining an identity if
necessary.
If a semigroup S with at least two elements contains an element 0 such
that, for all z in 5,
Ox =20 =0,

we say that 0 is a zero element (or just a zero) of S, and that § is a
semigroup with zero. As with identity elements, it is a trivial matter to
verify that there can be at most one such element in a semigroup. The
proviso that § should have at least two elements means merely that we
shall not want to refer to the single element of the ¢rivial semigroup {e}
(in which €% = e) as a zero. (It is an identity!)

Again, if S has no zero it is easy to adjoin an extra element 0. We
define

0s=s0=00=0forall sin S5,

and it is a routine matter to check that associativity survives in the ex-
tended set S U {0}. By analogy with the case of S, we define

S0 — S if S has a zero element
T 1 SU{0} otherwise.

and refer to SO as the semigroup obtained from S by adjoining a zero if
necessary.

Despite the great ease with which we can adjoin an identity and a zero
to a semigroup, we cannot altogether reduce the study of semigroups to
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the study of monoids with zero, for in adjoining the extra elements we may
sacrifice some crucial property of the semigroup. To take a very trivial
example, if we adjoin a zero element to a semigroup which is a group, we
obtain a semigroup which is not a group.

Among semigroups with zero we find the very trivial null semigroups, in
which the product of any two elements is zero. Only slightly less trivially,
on any non-empty set S we can define a multiplication

ab=a (a,bes),

and obtain what is called a left zero semigroup. Right zero semigroups are
defined in an analogous way.
Another easy example arises if on the closed interval I = [0, 1] we define

zy = min(z,y) (a,y € I).

Associativity is clear, and it is easy to see that 0 is a zero element and 1 is
an identity. Many other examples will emerge as we proceed.

If A and B are subsets of a semigroup S, then we write AB to mean
{ab:a € A, be B}. It is easy to verify that, for all subsets A, B, C of S,

(AB)C = A(BC);

hence once again notations such as ABC and A1A;... A, are meaningful.
The usual hazard, namely that A% means {aja : a;,as € A} rather than
{a? : a € A}, should be noted. When dealing with singleton sets we shall
use the notational simplifications that are customary in algebra, writing
(for example) Ab rather than A{b}.

If a is an element of a semigroup S without identity then Sa need not
contain a. The following notations will be standard:

Sta = SaU{a},
aS' = aSU{a}, (1.1.2)
S5taSt = SaS U SaUaS U {a}.

Notice that S'a, aS' and S'aS?! are all subsets of S—they do not contain
the element 1.
If a semigroup S has the property that

(Vae S)aS=Sand Sa=S5 (1.1.3)

we call it a group. This is not the commonest definition of a group, but it
is an easy exercise to show that it is equivalent to the more usual definition
of a group as a semigroup for which

(Je € S) (Va € 9) ea:a,}

(Va € S) (30,_‘1 €9) ala =e. (1.1.4)
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The definition (1.1.3) is given first because it is the one that seems to occur
most often in semigroup theory. It is clearly equivalent to

(Va,b€ S) (3z,y € S) ax = b and ya = b. (1.1.5)

If G is a group, then G° = G U {0} is a semigroup. We shall call a
semigroup formed in this way a 0-group, or group-with-zero.

Proposition 1.1.1 A semigroup with zero is a 0-group if and only if
(Va e S\ {0})aS =S and Sa=S.

Proof Suppose first that S = G, a 0-group, and let a € G = S\ {0}.
Certainly aG = Ga = G. Since aS = aG U {0} and Sa = Ga U {0}, it
follows that aS = Sa = S.

Conversely, suppose that S has the given property, and let G = S\ {0}.
Since S by implication has more than two elements we have G # (. To
show that G is a group we must first show that it is closed with respect to
multiplication. So suppose, by way of contradiction, that there exist a, b
in G such that ab = 0. Then

52 = (Sa)(bS) = S(ab)S = S0S = {0},

and s0 § = aS C §2 = {0}. This is a contradiction, and so G has the
desired closure property. The assumed property implies that for all a, b in
G there exist z, y in S such that ax = b and ya = b. The elements z and y
cannot be zero and so are in G. Thus G satisfies (1.1.5) and so is a group.
O
A non-empty subset T of a semigroup S is called a subsemigroup if it

is closed with respect to multiplication, that is, if

(Ve,yeT) zyeT (1.1.6)

—a condition that can be expressed more compactly as 72 C T. The
associativity condition that holds throughout S certainly holds throughout
T, and so T is itself a semigroup. Among special subsemigroups worth
mentioning are S itself, {0} and {1} where appropriate, and also more
generally {e}, where e is any element of S that is idempotent, that is to
say, for which e? = e.

A subsemigroup of S which is a group with respect to the multipli-
cation inherited from S will be called a subgroup of S; the one-element
subsemigroups {0}, {1} and {e} mentioned in the last paragraph are all
trivial examples. It is not hard to see that a non-empty subset T of S is a
subgroup of S if and only if

(VMaeT)aT =T and Ta="T. (1.1.7)

A non-empty subset A of S is called a left ideal if SA C A, a right ideal
if AS C A, and a (two-sided) ideal if it is both a left and a right ideal.
Evidently every ideal (whether right, left or two-sided) is a subsemigroup,
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but the converse is not the case. Among the ideals are S itself and (if S
has a zero element) {0}. An ideal I such that {0} C I C S (strictly) is
called proper.

A map ¢ : S — T, where (S,.) and (T,.) are semigroups, is called a
morphism (or homomorphism) if, for all z, y in S

(zy)p = (z6)(yd).

If (S,.,1g) and (T,.,17) are monoids, with identity elements 1g, 11 re-
spectively, then ¢ will be called a morphism only if we have the additional
property

15¢ = 1p.

There is a possibility of confusion here, and if there seems any doubt we
shall distinguish between a semigroup morphism and a monoid morphism.

In either event we refer to S as the domain of ¢ and 1" as the codomain.
The #mage (or range) of ¢ is defined as {s¢ : s € S}. If ¢ is one-one we shall
call it a monomorphism; this definition is equivalent to the ‘categorical’
definition of a monomorphism as a right cancellative morphism, that is,
¢ : § — T is a monomorphism if, for all semigroups U and for all morphisms
a,B:U— S,

ap=0¢ = a=p.

(See Mitchell (1965).)

A morphism ¢ : S — T is called an isomorphism if it is invertible, that
is to say, if there exists a morphism ¢~ ! : T' — § such that ¢¢~! is the
identity map of S and ¢~ ¢ is the identity map of T. It is not hard to
show that a morphism ¢ : S — T is an isomorphism if and only if it is
bijective. If there exists an isomorphism ¢ : S — T we say that S and T
are isomorphic, and write S ~ 7.

A morphism ¢ from S into S is called an endomorphism of S, and if it
is one-one and onto it is called an automorphism.

If S and T are semigroups, then the cartesian product S x 7' becomes
a semigroup if we define

(s,t)(8',t)) = (85, tt)).

We refer to this semigroup as the direct product of S and T.

We shall have occasion in Chapter 4 to make use of a more general
notion of direct product. Let {S; : i € I} be a family of semigroups
indexed by the set I. Then P, the direct product of the family, is defined
as the set of all maps p : I — |J,c; Si such that ép € S; for each 7 in I. If we
define the multiplication of two elements p, ¢ in P by the ‘componentwise’
rule

i(pg) = (ip)(iq) (i €l),
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then P becomes a semigroup. For each ¢ in [ there is a projection morphism
m; from P onto S; given by the rule that

pr;=1ip (pe€ P).

Moreover, if T is a semigroup and if there are morphisms =, : T — §;
(i € I, then there is a unique morphism v : T' — P with the property that
~m; = 7; for every ¢ in I. The map <y is defined by the rule that, for every
tin T,

(tv)(@)=tr (Gi€l).
This is expressed in category theory by saying that P is the product of the
semigroups 9;. (See Mitchell (1965).)

If I = {1,2}, then the direct product P essentially coincides with the
direct product S; x Sy as previously defined, for the map p — (1p, 2p) from
P onto S x Sy is an isomorphism. More generally, if I = {1,2,...,n}, then
in the same way we may identify the map p with the n-tuple (1p, 2p, ..., np),
and think of P as consisting of all n-tuples (zy,%2,...,%5), in which
z; € S; (i = 1,2,...,n), with multiplication given by the component-
wise formula

(z1,22, - o) (Y1, Y2y - - Un) = (ZT1Y1, Z2Y25 - - -, TYn)-

Just as groups arise most naturally as groups of permutations of a set,
so semigroups arise from more general mappings of a set into itself. The
analogue of the symmetric group (Gx, o) of all permutations of a set X is
the full transformation semigroup (Tx,o) consisting of all maps from X
into X. The operation in both cases is composition of maps, sometimes
written o, but often just written multiplicatively: if & and 8 are maps from
X into X, then

z(aof) (=z(af)) = (za)8 (z € X).

Tt is clear that Gx, consisting of all bijections from X onto X, is a subgroup
of Tx. Simple combinatorial arguments show that, if | X| = n, then

IQX(:n!, lTle'nn.

If a semigroup S is, for some X, a subsemigroup of Tx, we say that
S is a semigroup of maps, or a transformation semigroup. A morphism ¢
from a semigroup S into some 7Tx is called a representation of S (by maps),
and ¢ is called a faithful representation if it is one-one. In such a case the
image S¢ of ¢ is a transformation semigroup isomorphic to S.

The following theorem, closely analogous to Cayley’s Theorem for
groups—see M. Hall (1959) for this and other items of elementary group
theory—shows that every semigroup is isomorphic to a transformation
semigroup:
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Theorem 1.1.2 If S is a semigroup and X = S* then there is a faithful
representation ¢ : S — Tx.

Proof For each a in S, define a map p, : ST — St by
zp, =zTa (z € SH).
Thus p, € Tx, and so there is a map o : § — Tx given by
ax = p, (a€S).
The map « is one-one, since, for all g, b in S,

ac=ba = py=pp, = za=qzbforall zin S!
= la=1b = a=0.

(Notice that the argument might break down at this point if S rather than
St were used.) Also, « is a morphism, since, for all z in S,

2(paps) = (2pa)pp = (za)b = z(ad) = zpas,
and so (aa)(ba) = (ab)a. O

The representation « introduced in this proof is called the extended
right reqular representation of S. The word ‘extended’ here signifies that
S1 is used for the set X rather than (as in group theory) the more obvious
S. This is necessary to ensure the faithfulness of the representation. (See
Exercise 6.)

To rescue this section from complete triviality, and also to underline the
point that there are interesting semigroups that are totally different from
groups, we close with a somewhat more substantial theorem. We say that
a semigroup S is a rectangular band if aba = a for all a, b in S. Then we
have

Theorem 1.1.3 Let S be a semigroup. Then the following conditions are

equivalent:

(1) S is a rectangular band;

(2) every element of S is idempotent, and abc = ac for all a, b, c in S;

(3) there exist a left zero semigroup L and a right zero semigroup R such
that S ~ L x R;

(4) S is isomorphic to a semigroup of the form A x B, where A and B are
non-empty sets, and where multiplication is given by

(a1,b1)(az, b2) = (a1, b2).
Proof (1) = (2). Let a € S. Then by (1) we have a® = a, and so a* = a2.
Again by (1) we have a = a(a?)a = a*. Hence a® = a as required.
Now let a,b,c € S. From (1) we have a = aba, ¢ = cbc and b = b(ac)b.
Hence

ac = (aba)(chc) = a(bach)e = abe,

as required.
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(2) = (3). Choose and fix an element ¢ of S. Let L = Sc and R = ¢S.
Then, using (2), we see that, for all z = zc and y = tcin L,

Ty = 2ctc = zc? = z¢ =z,

and so L is a left zero semigroup. Similarly, R is a right zero semigroup.
Define ¢: S — L x R by

z¢ = (ze,cx) (z € 9).
Then ¢ is one-one, for if (xe¢, cx) = (ye, cy) then
z =1x* = zcx by (2)
=yer =yey =y° = y.

Also, ¢ is onto, since for all (ac,cb) in L x R, we may use condition (2) to
see that
(ac, cb) = (abe, cab) = (ab)e.

Finally, ¢ is a morphism, since, for all z, y in S,
(zy)¢ = (zyc, cay) = (zc, cy) = (weye, cxey) = (zc, cx)(ye, cy) = (2¢)(y4).
(3) = (4). Suppose that S = L x R, where L is a left zero semigroup
and Y is a right zero semigroup. Then the product of two elements (a, b)
and (¢,d) in § is given by
(a,b)(c,d) = (ac,bd) = (a,d).
Thus we need only take A = L and B = R.

(4) = (1). Let S = A x B, with the given multiplication. Then for all
a=(z,y)and b= (2,¢) in S,

aba = (:r,y)(z,t)(x,y) = ("E’t)(xv y) = (337 y) = a. u

The term ‘rectangular’ comes from the property {4). If we think of (a, b)
and (¢, d) as points in the cartesian plane, then the products (a, b)(c,d) and
(¢,d)(a,b) are placed at the vertices of the rectangle

(¢,b) (c,d)

(a,b) (a,d)
The term ‘band’ is in general use for a semigroup consisting of idempotents.

1.2 MONOGENIC SEMIGROUPS

Let S be a semigroup, and let {U; : i € I'} (with I # §) be an indexed family
of subsemigroups of S. It is easy to see that the intersection U of all the



Monogenic semigroups 9

subsemigroups U;, if non-empty, is again a subsemigroup of S. For every
non-empty subset A of S there is at least one subsemigroup of S containing
A, namely S itself. Hence the intersection of all the subsemigroups of S
containing A is a subsemigroup of S containing A. We denote it by (A}, and
note that it is a subsemigroup defined by the two properties: (1) A C (4);
and (2) if U is a subsemigroup of S containing A, then (4) C U.

The subsemigroup (A) consists of all elements of S that can be expressed
as finite products of elements in A. If (4) = S we say that A is a set of
generators, or a generating set, of S.

Particular interest attaches to the case where A is finite. If A =
{a1,a2,...,a,} then we shall write (A) as (a1,as,...,a,). Especially in-
teresting is the case where A = {a}, a singleton set, when

(a) = {a,a%,a3,...}.

At this point it is worth pausing to note that if S is a monoid then
we can equally well talk of the submonoid of S generated by S. This will
always contain 1, and in the case of a singleton generator we find that

(a) = {1,a,a%,03,...}.

In what follows, however, it will be sufficient to consider the semigroup
case.

We refer to (a) as the monogenic subsemigroup of S generated by the
element a. The order of the element a is defined, as in group theory, as the
order of the subsemigroup (a). If S is a semigroup in which there exists an
element a such that S = {a), then S is said to be a monogenic semigroup.

Clifford and Preston (1961) followed the group-theoretic terminology,
and referred to semigroups with one generator as ‘cyclic’. From what fol-
lows, the reader may judge whether monogenic semigroups are ‘round’
enough to merit the description ‘cyclic.’

Let a be an element of a semigroup S, and consider the monogenic

subsemigroup
{a) = {a,a?%,a3,...}

generated by a. If there are no repetitions in the list a,a?,a?, ..., that is,
if
a" =a" = m=n,

then evidently ({(a),.) is isomorphic to the semigroup (N,+) of natural
numbers with respect to addition. In such a case we say that a is an
infinite monogenic semigroup, and that a has infinite order in S.

Suppose now that there are repetitions among the powers of a. Then
the set

{reN:(JyeN)a®=d¥, z+#y}
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is non-empty and so has a least element. Let us denote this least element
by m and call it the index of the element a. Then the set

{r e N:ag™? = o™}

is non-empty, and so it too has a least element r, which we call the period
of a. We shall also refer to m and r as the index and period, respectively,
of the monogenic semigroup (a).

Let ¢ be an element with index m and period r. Thus

a™ =a™mr. (1.2.1)

It follows that

a™ = am+r = qMaq" = am+rar — am+2r7

and, more generally, that
(Vg € N) @™ = ™",

By the minimality of m and r in (1.2.1) we may deduce that the powers

2 m ,m+l m4r—1
a,a”,...,a ,a ey

are all distinct. For every s > m we can, by the division algorithm, write
s=m 4 qr +u, where ¢ > 0 and 0 < u <r — 1. It then follows that

a’ = am—i—qrau = aMg¥ = am—l—u;

thus
(a) = {a,a?,...,a™ "1}, and |{a)] = m +7 — 1.

We say that a has finite order in this case; the order is given by the rule
order of ¢ = (index of a) + (period of a) — 1.

The subset K, = {a™,a™ + 1,...,a™ "1} of (a) is a subsemigroup,
indeed an ideal, of (a). We call it the kernel of (a), and we shall see in due
course that this use of the word does not conflict with the more general
use of ‘kernel’ in Chapter 3. In fact K, is a subgroup of {a), for if a™**
and @™ are elements of K, then we can find an element ™% in K, for
which

am+uam+z — am—}-v

simply by choosing z so that
r=v—-u-—m(modr) and 0 <z <r—1
Indeed K, is a cyclic group. To see this, notice that the integers

m,m+1,...,m+r—1
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form a complete set of incongruent residues modulo 7. (For this and other
elementary number-theoretic ideas see, for example, Hardy and Wright
(1979).) It follows that there exists g such that

0<g<r—1 and m+g=1(modr). (1.2.2)

Hence k(m + g) = k (mod r) for every k in N, and so the powers (a™9)¥
of ™9, for k =1,2,...,7, exhaust K,. Thus K, is a cyclic group of order
r, generated by the element a™*9.

If we choose z so that

0<z<r—-1 and m+2z=0 (modr), (1.2.3)

then a™*7 is idempotent, and so it is the identity of the group K,.

Example 1.2.1 Let X = {1,2,...,7}, and consider the element

(1234567
*=\2345675
of Tx. (The notation for « is an obvious generalization of the standard

notation for permutations: the import is that la =2,2a=3, ..., 6a =7,
Ta = 5.) It is easy to calculate that

o (1234567 s (1234567
¥ =\3456756)° ¢ T \4567567)°
. (1234567 s (1234567
o = o =

5675675 ) 6756756 )

6 (1234567 , (1234567
@ =\rs567567) ¢ T\5675675)°
and so a has index 4 and period 3. The kernel K, is equal to {a*, a®, a®},
and has Cayley table

Thus of is the identity of K,, in accord with formula (1.2.3), since 6 =
0 (mod 3). Also, in accord with formula (1.2.2), since 4 = 1 (mod 3), a
suitable generator of the cyclic group K, is 4:

(014)2 — as, (a4)3 — C¥6.
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We can visualize (o) as

It is useful to summarize the results in a theorem:

Theorem 1.2.2 Let a be an element of a semigroup S. Then either:

(1) all powers of a are distinct, and the monogenic subsemigroup {a) of
S is isomorphic to the semigroup (N,+) of natural numbers under
addition; or

(2) there exist positive integers m (the index of a) and r (the period of a)
with the following properties:

(a) T‘ .

(b) for all U U in N9, a™*% = g™+ if and only if u = v (mod r);
() ( > {a,a?,...,am+ 1)

(d) Ko = {a™,a™t, ... a™ "1} is a cyclic subgroup of {a). o

Nothing that we have said so far makes it clear that for every pair (m,r)
of positive integers there does in fact exist a semigroup S containing an
element a of index m and period r. This, however, is the case: it is a
routine matter to verify that the element

0= 123... m m+l..m+r—1m+r
S \234..m+1m+2... m+r m+1

of the semigroup 7¢12, . m+r) has index m and period 7.

It is easy to see that if @ and b are elements of finite order in the same or
in different semigroups, then {a) ~ (b) if and only if ¢ and b have the same
index and period. The conclusion is that for each (m,r) in N x N there
is, up to isomorphism, exactly one monogenic semigroup with index m and
period r. We shall feel free to talk of the monogenic semigroup M (m,r)
with index m and period r. Notice that M(1,r) is the cyclic group of
order 7.

A semigroup is called periodic if all its elements are of finite order. A
finite semigroup is necessarily periodic.

Proposition 1.2.3 In a periodic semigroup every element has a power
which is idempotent. Hence in every periodic semigroup—in particular, in
every finite semigroup—there is at least one idempotent.

Proof If a € S, a periodic semigroup, then (a) is finite, and so some

power a™ of a serves as the identity of the group K,. The result follows.
O
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If the hypothesis of periodicity is dropped then we can no longer guar-
antee the existence of an idempotent. The semigroup (N, +) is an obvious
example.

1.3 ORDERED SETS, SEMILATTICES AND LATTICES

A binary relation w on a set X (that is, a subset w of X x X) is called a
(partial) order if
(01) (z,z) € w for all x in X—that is, w is reflexive;
(02) (vVz,y € X) (z,y) € wand (y,z) € w = z = y—that is, w is
antisymmetric;
(03) (Vz,y,z € X) (z,y) € wand (y,2) € w = (z,2) € w—that is, w is
transitive.

Traditionally one writes < y rather than (z,y) € w. We shall fol-
low this convention, and also write z > y, * < y and = > y to mean
(respectively) (y,z) € w, (z,y) €w and z # y, and (y,z) € w and = # y.

A partial order having the extra property

(04) (Vz,ye X))z <y or y<z
will be called a total order. We shall refer to (X, <), or just to X, as a
(partially) ordered set, or (where appropriate) a totally ordered set.

Let Y be a non-empty subset of a partially ordered set (X,<). An
element a of Y is called minimal if there is no element of Y that is strictly
less than a, that is to say, if

VyeY)y<a = y=a.
An element b of Y is called minimum if
VyeY)b<uy.

Evidently a minimum element is minimal, but in a partially ordered set it
is perfectly possible to have minimal elements that are not minimum. The
following elementary facts are easily verified:

Proposition 1.3.1 LetY be a non-empty subset of a partially ordered set
X. Then

(1} Y has at most one minimum element;
(2) if Y is totally ordered, then the terms ‘minimal’ and ‘minimum’ are
equivalent. |

We shall say that (X, <) satisfies the minimal condition if every non-
empty subset of X has a minimal element. A totally ordered set X satis-
fying the minimal condition is said to be well-ordered.

We leave it to the reader to provide the analogous definitions of maxi-
mal, mazimum and the maximal condition.

If Y is a non-empty subset of (X, <), we say that an element ¢ of X is a
lower bound of Y if ¢ < y for every y in Y. If the set of lower bounds of Y
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is non-empty and has a maximum element d, we say that d is the greatest
lower bound, or meet, of Y. The element d is unique if it exists; we write

d:/\{y:yEY}.

IftY = {a,b} then we write d = a A b.
If (X, <) is such that aAb exists for all a, bin X, then we say that (X, <)
is a lower semilattice. If we have the stronger property that A{y:y € Y}
exists for every non-empty subset ¥ of X, then we say that (X, <) is a
complete lower semilattice. In a lower semilattice (X, <) we have that, for
all a, bin X,
a<b ifand only if aAb=a. (1.3.1)

Analogous definitions are easily given for the least upper bound, or join

Vi{v:yev},

for a V b, for an upper semilattice and for a complete upper semilattice.
If (X, <) is both a (complete) upper semilattice and a {complete) lower
semilattice we call it a (complete) lattice. In these circumstances we may
wish to emphasize the lattice structure by writing X = (X, <,A,V). By a
sublattice of X we shall then mean a non-empty subset Y of X such that

a,beY = anbaVvbeY.

Let (E, <) be a lower semilattice. Then it is not hard to verify, for a, b
and ¢ in E, that both (a Ab) Acand a A (b Ac) are greatest lower bounds
of {a, b, ¢}, and we deduce that

(aAbyAe=aA{(bAc).

Thus (E, A) is a semigroup. Since it is obvious that a A a = a for every a
in E, and that a Ab=bAa for all ¢, b in E, we now invoke formula (1.3.1)
and observe that we have proved half of the following proposition:

Proposition 1.3.2 Let (E,<) be a lower semilattice. Then (E,A) is a
commutative semigroup consisting entirely of idempotents, and

(Va,be EYya<b if and only if a ANb=a. (1.3.2)

Conversely, suppose that (E,.) is a commutative semigroup of idempo-
tents. Then the relation < on E defined by

a<b ifand only if ab=a

s a partial order on E, with respect to which (E, <) is a lower semilattice.
In (E, <), the meet of a and b is their product ab.

Proof Let (E,.) be a commutative semigroup of idempotents, and let <
be defined by (1.3.2). Since a? = a we have immediately that a < a for
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every a in E. Suppose now that a < b and b < a; then ab = a and ba = b
and so
a=ab="ba=0.

Next, suppose that ¢ < b and b < ¢, so that ab = a, bc = b. Then
ac = {ab)e = a(bec) = ab = a,

and so @ < ¢. We have shown that < is a partial order.
Since a(ab) = a?b = ab and b(ab) = ab? = ab, we have that ab < a,
ab<b. Ifc<aand ¢c<bthen

c(ab) = (ca)b =cb=¢,

and so ¢ < ab. It follows that ab is the unique greatest lower bound—the
meet, as we have called it—of a and b. O

The effect of this proposition is that the notions of ‘lower semilat-
tice’ and ‘commutative semigroup of idempotents’ are equivalent and in-
terchangeable. We shall use the term ‘semilattice’ with either meaning,
making free and frequent transfers between the semigroup and the ordered
set points of view.

When describing an ordered set (X, <), particularly when X is finite, we
shall sometimes use so-called Hasse diagrams. In such a diagram, elements
of the set are represented by small black circles, and two elements a and b
in X for which o < b and for which there is no z in X such that a < x < b
are depicted thus:

a

That is, b appears above a, and there is a line connecting the two. We thus
build up diagrams such as
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which we can label if necessary. Notice that the given diagram represents
a semilattice.

1.4 BINARY RELATIONS; EQUIVALENCES

In our discussion of ordered sets we have already encountered the idea of
a (binary) relation on a set X, by which we simply mean a subset p of the
cartesian product X x X. At this stage it is convenient to develop the theory
of relations in a somewhat more general and abstract way. Intuitively we
think of elements z and y for which (z,y) € p as being related, and we
frequently prefer to write = p y instead of (z,y) € p. The empty subset
§ of X x X is included among the binary relations on X; other special
relations worthy of mention are the universal relation X x X, in which
everything is related to everything else, and the equality relation

1x = {(z,2): 2 € X}, (1.4.1)

also known as the diagonal relation, in which two elements are related if
and only if they are equal.

Let us denote the set of all binary relations on X by Bx. A binary
operation o is defined on By by the rule that, for all p, ¢ in By,

poo={z,y) e X xX:(3Fze€X)(z,z) € p and (z,y) €0o}. (1.4.2)
It is easy to see that, for all p, o, 7 in By,
pCo = porCooTandTopClrToo0. (1.4.3)

It is easy to see also that the operation o is associative: for all p, ¢, 7 in
Bx,
(pog)or=pofoor),

for

(x,y) € (poojor
< (Jz€ X) (z,2) € poo and {z,y) € T,
— (Jze X)(Fue X) (z,u) €p, (u,2) €c and (z,y) € T,
= (GueX)(z,u)epand (y,y)€coT,
== (z,y) € po(ooT).
We have proved

Proposition 1.4.1 Let Bx be the set of all binary relations on o set X,

and define the operation o on Bx by (1.4.2). Then (Bx,0) is a semigroup.

O

Whilst we shall not normally revert to simple multiplicative notation

when discussing the semigroup (Bx, o), we shall allow ourselves to write
p?, p3, etc., instead of pop, popop, ete.
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For each p € Bx we define the domain dom p by
domp={zxeX:(JyeX)(z,y) € p}, (1.4.4)
and the image im p by
imp={ye X:(3zreX)(zy) < p} (1.4.5)
It is immediate that, for all p, o in By,
pCo = domp Cdomo and imp C imo. (1.4.6)

For each z in X and p in Bx we define a subset xp of X by

zp={y€X:(z,y) €p} (1.4.7)
thus zp # () if and only if z € dom p. If A is a subset of X we define
Ap = U{ap ta € A} (1.4.8)
For each p in Bx, we define p~!, the converse of p, by
pt={(z,y) € X x X : (y,2) € p}. (1.4.9)

Certainly p~! € By, and it is easy to see that, for all p, o, p1, p2,...,pn in
BX7

et = p (1.4.10)
(plop20~~~opn)_1 = p;IOH-op;lop;l, (1.4.11)
pCo = ptCot (1.4.12)
Notice also that
dom(p™) =imp, im(p~!) = domp, (1.4.13)

and that
zp~ ! £ if and only if z € imp.

An element ¢ of Bx is called a partial map of X if |x¢| =1 for all z in
dom ¢, that is, if, for all z, y1, y2 in X,

[(z,y1) € ¢ and (2,92) € ¢] = y1 = va. (1.4.14)

It will not conflict at all with (1.4.7) if we decide in such a case to let
z¢ denote the unique element y such that (z,y) € ¢ (rather than the set
consisting of that element). Notice that the condition (1.4.14) is fulfilled
(vacuously) by the empty relation §), which is therefore included among the
partial maps.

If ¢, ¢ are partial maps of X such that ¢ C 1), we sometimes say
that ¢ is a restriction of 1, or that 1 is an extension of ¢. If, in these
circumstances, dom ¢ = A C dom 1, then we denote ¢ by 9|4 (¥ restricted
to A).
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Proposition 1.4.2 The subset Px of Bx consisting of all partial maps of
X is a subsemigroup of Bx .

Proof Let ¢,¢ € Px, and suppose that (z,y1),{(z,y2) € ¢ o 1. Then
there exist 21, 25 in X such that

(117,21) € ¢7 (217?/1) € 1/1: (1’,22) € ¢a (Zz,yg) € ’lﬁ
The condition (1.4.14) on ¢ implies that z; = 23, and then the same con-
dition on 1 implies that y; = y5. Thus ¢ o9 € Px. a

It is important to note that the converse ¢~ of a partial map ¢ need
not be a partial map. For example, if X = {1,2}, then ¢ = {(1,1),(2,1)}
is & partial map, but ¢! is not.

In view of Proposition 1.4.2 we can talk of (Px, o) as the semigroup of
all partial maps of X. The composition law o in this semigroup is in fact
a fairly natural composition law for partial maps:

Proposition 1.4.3 If ¢,¢ € Px, then
dom(¢ 0 ) = [im ¢ N dom o™,
im(¢ o) = [im ¢ N dom ],
and
(Vz € dom(gov)) z(poy) = (v)y.

Proof Before proving this, we illustrate it in a diagram as follows:

Suppose first that z € dom(¢ o ¢). Then there exist y and z in X such
that (z,2) € ¢, (2,y) € ¥. Clearly z € im¢ N dom, and (2,z) € ¢~ 1.
Hence

z € z¢! C [imé N domaplp?.

Conversely, suppose that z € [im ¢ N dom]¢~. Then there exists z in
im¢ N dom1 such that z € z¢~!, that is, such that (z,2) € ¢. Since
z € dom 1, there exists y in X such that (z,y) € ¥. Hence (z,y) € po ¢
and so z € dom(¢ o). Thus

dom(¢ o 9) = [im ¢ N dom ¢,
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as required. The proof that im(¢ o)) = [im ¢ Ndom 9]¢ is similar. (Notice
that as yet we have used no special properties of partial maps. The char-
acterizations established for dom{¢ o 9) and im(¢ o ¢) apply equally well
to arbitrary relations.)

To complete the proof, notice that (z,y) € ¢ o9 if and only if there
exists z in X such that (z,2) € ¢ and (2,y) € ¢. Since ¢, ¥ and ¢ o ¢ are
partial maps, we have z = z¢, y = 29, and y = (¢ o ¢). Hence

z(¢poy) =y =2y = (z¢)¢,

exactly as required. O

A partial map ¢ is called a map, or a function, if dom¢ = X. Thus
a relation ¢ on X is a map if and only if [z¢| = 1 for every z in X. If ¢
and 1 are maps, it is easy to see that ¢ o1 is again a map, and that the
operation (1.4.2) coincides with ordinary composition of maps. To put it
formally, we have

Proposition 1.4.4 The set Tx of all maps from X into itself is a sub-

semigroup of (Bx, o). |
Once again it is important to note that the converse ¢! of a map need

not be a map. Indeed we have the following easily proved result:

Proposition 1.4.5 Let X be a non-empty set.

(1) If ¢ € Px then ¢=1 € Px if and only if ¢ is one-one.

(2) If ¢ € Tx, then ¢~! € Tx if and only if ¢ is bijective (that is to say,

¢ 1s both one-one and onto). a0

In Section 1.3 we encountered relations, namely order relations, that
are reflexive, anti-symmetric and transitive. We can now express these
properties very compactly as follows. A relation p on a set X is

reflexive if and only if 1x C p,
anti-symmetric if and only if pN p~! = 1x, and
transitive if and only if po p C p.
We now define an egquivalence p on a set X to be a relation that is
reflexive, transitive and symmetric, by which we mean that

(Vz,y € X) (z,9) €p = (y,2) € p.

In compact form this property is expressed as p C p~!. Notice that, by
(1.4.12) and (1.4.10) it then follows that p~! C p; thus the symmetry
condition can equally well be expressed as p~! = p. On the same theme, if
p is an equivalence, then by (1.4.3) we can deduce that

p=1lxopCpop;
thus the transitivity condition can be replaced by po p = p.
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If p is an equivalence on X then, by (1.4.6),
domp2Ddomly =X, imp2imlyx =X,

hence domp =imp = X.
A family = = {A; : i € I} of subsets of a set X is said to form a partition
of X if
{P1) each A; is non-empty;
(P2) for all 4, j in I, either A; = A; or A;NA; =0,
(P3) J{4;:iel}=X.
On the face of it, the notions of ‘partition’ and ‘equivalence’ are quite
different, but in fact they are closely related. The proof of the following
proposition is routine and is omitted.

Proposition 1.4.6 Let p be an equivalence on o set X. Then the family
®(p) ={zp:z€ X}

of subsets of X is a partition of X.
Conversely, if m = {A; 14 € I} is a partition of X, then the relation

U(m)={(z,y) e X x X :(Fiel)z,yc A}

is an equivalence on X.
For every equivalence p on X, U(B(p)) = p, and for every partition 7
of X, ®(¥(x)) = O
If p is an equivalence on X, we shall sometimes write z p y or z =
y (mod p) as alternatives to (z,y) € p. The sets zp that form the partition
associated with the equivalence are called p-classes, or equivalence classes.
The set of p-classes, whose elements are the subsets zp, is called the quotient
set of X by p, and is denoted by X/p. In the next section we shall have
occasion to examine the natural map p' (read ‘p natural’) from X onto
X/p defined by
zt =zp (z€X). (1.4.15)

An important connection between maps and equivalences is given by
Proposition 1.4.7 If ¢ : X — Y is a map, then pod™"! is an equivalence.
Proof The easiest way to see this is to note that

podp l={(z,y) e X x X :(Fz € X) (z,2) € ¢, (y,2) € ¢}
= {(r,y) € X x X : z¢ = yo}.
It is then clear that ¢ o ¢! is reflexive, symmetric and transitive. 0

We call the equivalence ¢pop~! the kernel of ¢, and write popp~! = ker ¢.
Notice that ker p? = p.

If {p; : i € I} is a non-empty family of equivalences on a set X, then, as
may be verified in a routine manner, {{p; : ¢ € I} is again an equivalence.



Binary relations; equivalences 21

If R is any relation at all on X—even the empty relation will do—then the
family of equivalences containing R is non-empty, since X x X is one such;
hence the intersection of all the equivalences containing R is an equiva-
lence, the unique minimum equivalence on X containing R. We call it the
equivalence generated by R, and denote it by Re.

It is frequently necessary to be able to describe R for a given R, and
the foregoing general description is not particularly useful. It is necessary
therefore to develop an alternative description. First, let S be a relation
on X such that 1x C S—a reflexive relation, in fact. Then we have

SCSoSCS8o08eSC -,
which we can write in simpler notation as
scs?csic...
The relation
s° = J{s":n>1} (1.4.16)
is called the transitive closure of the relation S, a term that is justified by
the following lemma:

Lemma 1.4.8 For every reflexive relation S on a set X, the relation S
defined by (1.4.16) is the smallest transitive relation on X containing S.

Proof First, S® is transitive. Suppose that (z,y), (y,2) € S®°. Then
there exist positive integers m and n such that {x,y) € 8™ and (y, z) € 8™.
It follows that

(z,2) € S™ o0 8™ = S™F" C 8§,

It is clear that S contains S! = S.
Finally, if T is a transitive relation containing S, then

S2=80SCToTCT,

and more generally S® C T for all n > 1. Hence 8> C T. o

‘We now have
Proposition 1.4.9 For every relation R on a set X,
R =[RURU1x]™.

Proof From Lemma 1.4.8 we see that the relation E = [RUR™1U1x]®
is transitive and contains R. Since

Ix CRUR !Ulx CE,

E is also reflexive. Certainly the relation S = RUR ™! U 1x is symmetric,
and it follows that, for every n in N,

S — (S—-l)n — (Sn)—l,
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the second equality being a specialization of (1.4.11). Hence S™ is symmet-
ric. It now follows that E = S is symmetric, since

(z,y) € E = (IneN) (z,y) € 8"
= (dn eN) (y,z) e 8"
= (y,z) € E.
We have shown that E is an equivalence relation containing R.

Suppose now that ¢ is an equivalence relation containing R. Then
1x Co,and R~1 C o1 = ¢. Hence

S=RUR !Ulx Co.
Moreover,
SoSCooo=o,

and more generally S™ C ¢ for all n > 1. It follows that E = 8*° C 0. We
have shown that E = [RUR™! U 1x]* is the smallest equivalence on X
containing R. Thus

R°=[RUR T U1x]®
as required. a
In more down-to-earth terms, Proposition 1.4.9 can be rewritten thus:

Proposition 1.4.10 If R is a relation on g set X and RE is the smallest
equivalence on X containing R, then (z,y) € R if and only if eitherx =y
or, for some n in N, there is a sequence of transitions

T=21 — 2>y =Y
in which, for each i in {1,2,...,n — 1}, either (z;,2:41) € R or
(ZH_l,Zi) € R. a

1.5 CONGRUENCES

Let S be a semigroup. A relation R on the set § is called left compatible
(with the operation on 9) if

(Vs,t,a e S) (s,t) e R = (as,at) € R,
and right compatible if
Vs, t,ae S) (s,t) e R = (sa,ta) € R.
It is called compatible if
(Vs,t,s',t' € 8) [(s,t) e Rand (¢,t') e R] = (ss',tt') € R.

A left [right] compatible equivalence is called a left [right] congruence. A
compatible equivalence relation is called a congruence.

Proposition 1.5.1 A relation p on a semigroup S is a congruence if and
only if it is both a left and a right congruence.
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Proof Suppose first that p is a congruence. If (s,t) € p and a € S then
(a,a) € p by reflexivity and so (as, at) € p and (sa,ta) € p by compatibility.
Thus p is both left and right compatible.

Conversely, suppose that p is both a left and a right congruence, and let
(s,1),(s',t') € p. Then (s8',ts’) € p by right compatibility and (ts’,¢t") € p
by left compatibility. Hence (ss',#t') € p by transitivity. Thus p is a
congruence. O

Exercise 11 below explores in more detail the relationship between left
and right compatibility on the one hand and compatibility on the other.

If p is a congruence on a semigroup S then we can define a binary
operation on the quotient set S/p in a natural way as follows:

(ap)(bp) = (ab)p. (1.5.1)

This is well-defined precisely because p is compatible: for all a, a’, b, b’ in
S,

ap=adpandbp=">b'p = (a,a’)epand (b¥)ep
= (ab,d't')ep
S (b = (@b)p.

The operation is easily seen to be associative, and so S/p is a semigroup.
We have proved part of the following theorem:

Theorem 1.5.2 Let S be a semigroup, and let p be a congruence on S.
Then S/p is a semigroup with respect to the operation defined by (1.5.1),
and the map p! from S onto S/p given by (1.4.15) is a morphism.

Now let T' be a semigroup and let ¢ : S — T be a morphism. Then the
relation

kerp =po¢p™t = {(a,b) € S xS :ap=0bg}

is a congruence on S, and there is a monomorphism a : S/ ker ¢ — T such
that ima = im ¢ and the diagram

¢

T
(ker )" o
S/ ker ¢
commautes.

Proof It is easy to verify that p? is a morphism. For the second part,
suppose that ¢ : § — T is a morphism. That ker ¢ is an equivalence
follows from Proposition 1.4.7. To show that it is a congruence, suppose
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that (a,a’), (b,¥’) € ker¢. Then ad = a'¢ and b = b'¢, from which we
deduce that

(ab)¢ = (ad)(bg) = (a'9)(V'¢) = (a'b')¢.
Hence (ab,a’d’) € ker ¢, as required. For brevity, let us denote ker ¢ by &,
and define o : S/k — T by

(ar)a =ap {(a€ ).

Then « is both well-defined and one-one, since

ak = br <= (a,b) € K < ap = be.

It is also a morphism, since, for all a, 6 in 5,

[(ar)(br)la = [(ab)s]a = (ab)¢
= (ag)(b) = [(ar)a][(br)a]-
Clearly ima = im ¢, and from the definition of « it is clear that, for all a
in S,
arlo = aQ. a
The next theorem is concerned with a more general situation, and will
frequently be useful:

Theorem 1.5.3 Let p be a congruence on a semigroup S, and let ¢ : § —
T be a morphism such that p C ker¢. Then there is a unique morphism
B:8/p— T such that im 8 = im ¢ and such that the diagram

s ¢

T

S/p

commautes.

Proof We define 8:S/p— T by
(ap)B=10ap (a€l). (1.5.2)
Then g is well-defined, since, for all a, b in S,
ap="0bp = (a,b) € p = (a,b) €ker¢p = ap = bo.

It is now a routine matter to show that 5 is a morphism, that im 8 = im ¢,
and that p o 8 = ¢. The uniqueness of 3 is also clear, since any morphism
satisfying p! o 8 = ¢ must be defined by the rule (1.5.2). ]
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One application of this theorem is to the situation where p and o are
congruences on S and where p C ¢. The theorem implies that there is a
morphism 3 from S/p onto S/o such that the diagram

i
S—G——>S/O'

o B

S/p

commutes. The morphism 3 is given by
(ap)f=ac (a€S),
and the congruence ker 8 on §/p is given by

ker 3 = {(ap,bp) € S/p x S/p: (a,b) € }.

It is usual to write ker 8 as /p. From Theorem 1.5.2 it now follows that
there is an isomorphism « : (S/p)/(c/p) — S/ defined by

[(ap)(c/p)la =ac (a€S),
and such that the diagram

S/ (5/0)/(0/)
Py el

commutes. We summarize in a theorem:

Theorem 1.5.4 Let p, ¢ be congruences on a semigroup S such that
pCo. Then

o/p={(zp,yp) € S/px S/p: (z,y) € o}
is a congruence on S/p, and (S/p)/(c/p) ~ S/o. |

Since the intersection of a non-empty family of congruences on a semi-
group S is a congruence on S, we can argue exactly as in Section 1.4 and
deduce that for every relation R on S there is a unique smallest congru-
ence R# (read ‘R sharp’) on S containing R, namely the intersection of
the family of all congruences on S containing R. We now seek a result,
analogous to Proposition 1.4.9, that will give us a usable description of R#.

First, for an arbitrary relation R on S we define

R® = {(zay,zby) : 2,y € S, (a,b) € R}.
Then
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Lemma 1.5.5 R s the smallest left and right compatible relation con-
taining R.

Proof First, it is clear that R° contains R. To show that R is left
compatible, suppose that (u,v) € R® and w € S. Then u = zay, v = zby
for some z, y in S! and some (a,b) in R. Hence wu = (wx)ay and wv =
(wzx)by, and so (wu,wv) € R® as required. Right compatibility follows in
a similar way.

Suppose now that S is a left and right compatible relation containing
R. Then for all z, y in S* and all (a,b) in R it follows that (zay, zby) € S.
Hence R° C S, as required. O

Some further easily proved properties of R¢ are encapsulated in the
following lemma:

Lemma 1.5.6 Let R, S be relations on a semigroup S. Then:

(1) RCS = R¢CS

2 BN =R)Y

(3) (RUS)*=R°US". O
Next, we have

Lemma 1.5.7 Let R be a left and right compatible relation on a semigroup

S. Then R™ (= RoRo---oR) is left and right compatible for every n > 1.

Proof Let (s,t) € R™. Then there exist 21, 29,...,2,_1 in S such that

(S,Zl), (Zl,ZQ), ey (Zn_l,t) € R.

Since R is left and right compatible by assumption, it follows that, for
every a in S,

(as,az1), (az1,a29), ..., {azp_1,at) € R,
(sa,z1a), (z10,220), ..., (Zn_10a,ta) € R.
Hence (as, at), (sa,ta) € R™, as required. O

We can now easily obtain the following characterization of R#, the
congruence on S generated by R:

Proposition 1.5.8 For every relation R on a semigroup S, R* = (R®)®.

Proof From Proposition 1.4.9 we know that (R°)¢ is an equivalence re-
lation containing R, and so certainly containing R. To show that (R°)¢
is a congruence, we must show that it is both left and right compatible.
So suppose that (s,t) € (R€)® and a € S. Then, by Proposition 1.4.9,
(s,t) € S™ for some n in N, where S = R°U(R¢)"1U1%. Now, by Lemma
1.5.6, and by the easy observation that 1¢ = 1g,

S=R‘UMRMNUIZ=RUR U1
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Thus S is right and left compatible by Lemma 1.5.5, and hence, by Lemma
1.5.7, so also is S™. It follows that

(as,at) € S* C (R, (sa,ta) € S™ C (R°)®,

and so (R)¢ is a congruence on S containing R.

To show that (R°)¢ is the smallest congruence on S containing R,
consider a congruence x on S containing R. Then ¢ = k by Lemma
1.5.5, and so

R C k=&

We now have that x is an equivalence on S containing R®, and so from
Proposition 1.4.9 it follows that (R°)¢ C k. O

By analogy with Propositions 1.4.9 and 1.4.10 we may write the last
result in more elementary terms. First, if ¢, d in S are such that
c=zay, d=xby,
for some z, y in S!, where either (a,b) or (b,a) belongs to R, we say that
¢ is connected to d by an elementary R-transition. Then we have

Proposition 1.5.9 Let R be a relation on a semigroup S, and leta,b € S.
Then (a,b) € R* if and only if either a = b or, for some n in N, there is
a sequence

a=21— 22— - —2y=0b
of elementary R-transitions connecting a to b. ]

Having used the musical notations i (natural) and # (sharp), we now
complete the scene by using b (flat). We define, for an arbitrary equivalence
E on a semigroup S,

B’ = {(a,b) € S x §: (Vz,y € §") (zay, zby) € E}. (1.5.3)
Then we have

Proposition 1.5.10 Let E be an equivalence on a semigroup S. Then E
is the largest congruence on S contained in E.

Proof First, it is clear that E” is an equivalence. Also, if (a,b) € E
and ¢ € S, then (zcay, zcby) € E for all choices of z and y in S'. Hence
(ca,cb) € EP, and similarly (ac,be) € E’. Thus E’ is a congruence, and
clearly E* C E, since

(a,b) e B = (1al,101) € E = (a,b) € E.
Finally, suppose that 7 is a congruence on S contained in E. Then
(a,b) €n = (Vz,y € SY) (zay, zby) € 7
= (Vz,y € S*) (zay, zby) € E
which implies in turn that (a,b) € E° . O
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Notice carefully that, while R# is defined for an arbitrary relation R,
the congruence E? is defined only for an eguivalence E.

One special case of E? is worthy of particular mention. For every subset
A of a semigroup S there is an associated equivalence 74 whose classes are
A and S\ A. The congruence 7%, given by

7y = {(w,v) € § x S : (V,y € S) [zuy € A if and only if zvy € Al},

is called the syntactic congruence of A. This is of importance in the theory
of automata and languages. See, for example, Howie (1991).

Let S be a semigroup. Then both the set £(S) of equivalences and the
set C(S) of congruences on S are partially ordered by inclusion. In fact
both are lattices. If p,o € £(S) then pno € £(S) and is their greatest
lower bound, while (pU o) is their least upper bound. If p,o € C(S) then
pNo € C(S) and is their greatest lower bound, while (pUc)# is their least
upper bound. Notice now that if p,o € C{S) then Lemma 1.5.6 gives

(pUo)®=p°Uc®=pUoc.

Hence, by Proposition 1.5.8, (p U o)# = (pU 0)®. We may therefore write
pV o unambiguously for the join of p and o either in £(S) or in C(S).

In the foregoing analysis there is no difficulty in replacing the set {p, o'}
by an arbitary family of equivalences or congruences, and so both the lat-
tices £(S) and C(S) are complete. Both lattices have maximum element
S x § and minimum element 1g.

A specialization of Propositions 1.4.10 and 1.5.9 to the case where the
relation R is the union of two equivalences or congruences is worth stating
separately:

Proposition 1.5.11 Let p, o be equivalences on a set S [congruences on
a semigroup S|. Then (a,b) € pV o if and only if, for some n in N, there
exist elements x1,T2,...,Ton—1 i S such thal
(a,z1) € p, (z1,%2) € 0, (T2,23) € p,..., (Tan-1,b) € 0.
Proof The result says effectively that
pVo=(poa)®.

To see that this is so, notice first that the general approach in Propositions
1.4.9 and 1.5.8 gives
pVo =R,

where
R=(pUo)U(pUo)tUlg
=,0U<7Up_1UU“1U1S
=pUco
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(since p=p~ ', 0 =071, 15 C pand 15 C o by assumption). Now p C pUc

and o C pUo, and so poo C (pUc)?. Hence (poo)” C (pUo)? for every
n > 1, and so
(poo)® C(pUa)* =pVo.

To show the converse inclusion, notice that p C po o and ¢ C po o, since
p and o are equivalences. Hence pU o C poo, and so

pVo=(pUoc)® C(poo)™. O
A useful further specialization of this result is provided by

Corollary 1.5.12 Let p, o be equivalences on a set S [congruences on a
semigroup S| such that poo =cop. ThenpVo=poa.

Proof If poo =0op, then
(po0)? =po(sop) oo =(pop)o(coc)=poo,

and more generally (poo)™ = poo for every n in N. Hence (poo)™ = poo,
and the result follows from Proposition 1.5.11. O

1.6 FREE SEMIGROUPS AND MONOIDS; PRESENTATIONS

Let A be a non-empty set. Let AT be the set of all finite, non-empty words
a1as . ..a, in the ‘alphabet’ A. A binary operation is defined on AT by
juxtaposition:

((7,1@2 . am)(blbg “en bn> = ai1a9... amblbg NN bn

With respect to this operation, AT is a semigroup, called the free semigroup
on A. The set A is a generating set for AT. By contrast with the situation
in group theory—see, for example, Kurosh (1956)—the set A is a unique
minimum generating set for A1, since A = AT\ (A7)2. In making this
statement we are of course tacitly identifying each element a of A with the
one-letter word a in A*. This is certainly a reasonable identification, and
we shall almost always want to make it. At other times we shall refer to
the map o : A — AT that associates each a in A with the corresponding
one-letter word in A+ as the standard embedding of A in AT,

If we adjoin an identity 1 to AT we obtain the free monoid on A. We
denote this by A*, and think of 1 as the empty word (containing no letters
at all).

If A = {a} has just one letter, we write a™ rather than {a}T. Note
that a™ = {a,a?a?, ...}, and is simply the infinite monogenic semigroup
already encountered in Section 1.2. If |A| > 1 then A* is not commutative.

An abstract definition of ‘a free semigroup on A’ can be given as follows:
Fis a free semigroup on A if

(F1) there is a map o : A — F;
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(F2) for every semigroup § and every map ¢ : A — S there exists a unique
morphism ¢ : ' — S such that the diagram

2

A

F

¢ (4
(1.6.1)

commutes.

These properties in fact define F' (if it exists) up to isomorphism. Notice
first that if we substitute F' and « for S and ¢ in the above definition then
we see that the unique 9 making the diagram

o

A F

of A
(1.6.2)

commute is the identity map 1p. Suppose now that F’ and o also have
the properties (F1) and (F2). Then we may substitute F’ and o’ for S and
¢ in (1.6.1) and obtain a unique morphism x : F — F’ such that oy = /.
Then, interchanging the roles of F and F’, we similarly obtain a unique
morphism x’ : F” — F such that o’y’ = . This gives us two commutative
diagrams

I3
A—2—F A—Q o p
a 4! and o Ay
F F

and the uniqueness in (1.6.2) (which applies also to F’) then implies that
xx' = 1p and x'x = 1p:. Thus F/ ~ F.

It is easy to see that the free semigroup A™ as defined above does have
the properties (F1) and (F2). For a we take the standard embedding, and
for a given ¢ : A — S we define the morphism ¢ : AT — S by

(arag...am)Y = (a1d)(azd) ... (amd) (a1a9...0m € AT).

It is a routine matter to verify that ¢ is a morphism and that o) = ¢.

If S is a semigroup and A is a generating set for S then the property (F2)
gives us a morphism 1 from A* onto S. Hence S ~ A™/kery. Now, since
we can always find a generating set for S—if all else fails, then S itself will
do—we deduce that every semigroup can be expressed up to isomorphism
as a quotient of a free semigroup by a congruence. The expression is of
course not unique.
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If A={ai,as,...,an} is finite, and if we can find a finite set

R = {(w1,21), (w2, 22), -+, (Wr, 2)}

of elements (w;, z;) in AT x A% such that R# = kerv), then we say that S
is finitely presented, and that it has a finite presentation

(01,02, .. .,0n | W1 = 21, W2 = 22,..., Wy = Zp).
The semigroup has generators ai,as,...,a, and defining relations
W1 = 21, W2 = 22y, Wy = Zp.

We have already in effect come across one important example: the
monogenic semigroup M(m,r) can be expressed as

{a|a™™" =a™).

What we have done for semigroups in this section can be done just as
easily for monoids, with A* replacing AT. We conclude the section by
giving an example of a monoid presentation. Consider the monoid

B={a,b|ab=1) ={a,b}"/p,

where p = {(ab,1)}#. 1t is clear that for any word w in {a,b}* in which b
follows a there is a word w’ such that w’ p w and |w'| < |w|. The elements
of B are p-classes (b™a™)p (m,n > 0), but it is not immediately clear that
these p-classes are all distinct. To show that they are in fact all different
we adopt a rather oblique approach.

Consider the submonoid M = (A, B) of the full transformation monoid

TN where
1234... 1234...
A= (2345...)’ B= (1123...)'
Then by the property (F2) (interpreted for monoids) there is a unique
morphism ¢ : {a,b}* — M such that ay) = A, byy = B. Now

(abyp = AB =1 = 14,

and so (ab,1) € kert. Since ker is a congruence, we deduce that p =
{(ab,1)}* C ker1, and so, by Theorem 1.5.3, there is a morphism ¢ : B —
M given by

[(b™a™)plp = B™A™  (m,n = 0).

Now an easy calculation shows that

B A" — 1 2 ..m+1lm+2m+3...
n+ln+l...n+1n+2n+3...)"°

and from this it follows that the elements B™A™ are all distinct. Hence,

since 9 is a well-defined map, the elements (b™a™)p are also all distinct.
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Notice now that, if we work modulo p, then for all m,n, p, q >0,

bmadTP ifn >p
m . n P9 — -
(b™a™){(bPa?) = {bm—n+paq if n <p.

We can put the two cases together as follows:
(b™a™)(bPa) = o™ eI (¢ = max(n, p)).

The monoid B is thus isomorphic to the monoid N® x N°, with multipli-
cation given by

(m,n)(p,q) = (m — n + max(n,p),q — p + max(n,p)). (1.6.3)

This important semigroup, called the bicyclic semigroup, will feature fre-
quently as we proceed. Notice that we have in effect described it in three
different ways—by means of a presentation, as a semigroup of maps from
N into itself, and as a set of ordered pairs of non-negative integers. For the
most part it will be convenient to use the last of these three descriptions.
Though we have no special word corresponding to ‘monoid’ for a semi-
group with zero, we can repeat the ‘free object’ analysis for semigroups
with zero—or indeed for monoids with zero. The appropriate free object
is AT U {0}, with the obvious multiplication (or A* U {0} in the case of
monoids). The following example introduces another important semigroup.
Let

By = {a,b| a® =b* =0, aba = a, bab =b) = ({a,b}" U {0})/p,

where p = {(a?,0), (b%,0), (aba,a), (bab,b)}#. Then every word in
{a,b}T U {0} is reducible modulo p to exactly one of the five words 0,
a, b, ab, ba. If we denote ab, ba by e, f, respectively, we obtain the Cayley

table
Oabef

000000
al00ela
b0 FObHO
el0alel
floobof

The semigroup Bs can alternatively be realised by means of 2 x 2 matrices
as {0, A, B, E, F}, where

00 01 00
o=loo] +=[oa) #=[ic]
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where the operation is matrix multiplication, or by means of partial maps
of the set {1,2}, where

ootom ()5 ()= () - ()

1.7 IDEALS AND REES CONGRUENCES

The reader is probably familiar with the way in which morphisms in ring
theory are associated with ideals. The corresponding link in semigroup
theory is, as we shall see, less satisfactory, but there is one type of mor-
phism, here called a Rees morphism, that does correspond very closely to
an ideal.

First, if I is a proper ideal of a semigroup S, then

pr=Ixulg

is a congruence on S. To see this, notice that z py v if and only if either
x = y or both  and y belong to I. It is then easy to verify that py is
reflexive, symmetric, transitive and compatible. The quotient semigroup is

S/pr={I}u {{z}:z € S\ I},
which it is convenient to regard as consisting of I together with the elements
of S\ I. In S/ps the product of two elements in S\ I is the same as their
product in S if this lies in S\ I; otherwise the product is I. Since the
element I of S/pj is the zero element of the semigroup, another useful way
of thinking of S/py is as (S\I)U {0}, where all products not falling in S\ 7
are zero.

We shall call a congruence of this type a Rees congruence, and if a
morphism ¢ : S — T is such that ker ¢ is a Rees congruence we shall say
that ¢ is a Rees morphism. We shall normally write S/I rather than S/pr,
and when we talk of the kernel of a Rees morphism we shall mean the ideal
I rather than the congruence py.

It is important to note that not every semigroup morphism is of this
type. Groups are semigroups in good standing, but a morphism ¢ : G — H
between two non-trivial groups cannot possibly be a Rees morphism, since
G has no proper ideals and H has no zero element.

The next result requires only routine verification and its proof is omit-
ted:

Proposition 1.7.1 Let I be a proper ideal of a semigroup S. Let A be the
set of ideals of S containing I and let B be the set of ideals of S/I. Then
the map 6 : J v J/I (J € A) is an inclusion-preserving bijection from A
onto B. O
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1.8 LATTICES OF EQUIVALENCES AND CONGRUENCES*

We have seen that, while the study of lattices of equivalences is in general
hampered by the somewhat complicated way (Proposition 1.5.11) in which
the join of two equivalences is formed, a useful simplification (Corollary
1.5.12) takes place if the equivalences commute. For this reason it is of
interest to record the following result:

Proposition 1.8.1 If G is a group, then poo == g op for any two congru-
ences p, 0 on G.

Proof Let (a,b) € poo. Then there exists ¢ in G such that {a,¢) € p,
(¢,b) € 0. It follows that

a =cc ta =bcla (mod o),
and

be™la = bc™ e = b (mod p).
Thus (a,b) € 0o p. We have shown that poo C o op, and by interchanging
the roles of p and ¢ we may equally well show the opposite inclusion. o

This result can of course be proved in a more traditionally group-
theoretic way. The connection between the general approach via congru-
ences and the traditional approach via normal subgroups is outlined in the
following proposition, whose proof is left to the reader:

Proposition 1.8.2 Let G be a group with identity element e.
(1) If N is a normal subgroup of G, then
on ={(a,0) eGxG:ab"! & N}
is a congruence on G. For each g in G the py-class gpn coincides

with the coset Ng.
2) If p is a congruence on G then N = ep is a normal subgroup of G, and
p g P

p=pN-
(3) If M, N are normal subgroups of G, then

PM O PN = PMAN, PM VPN =PMOPN = PMN- O

The commuting of congruences in a group can therefore be derived as
a consequence of the well-known group-theoretic result—see, for example,
M. Hall (1959)—that normal subgroups commute.

A lattice (L, <, A, V) is called modular if, for all @, b, cin L,

a<e = {aVbh)Aec=aV(bAc). (1.8.1)
Notice that in any lattice whatever, if ¢ < ¢ then
a<aVb and a <e¢,
and so a < (a Vb) Ac; also
bAc<b<aVvb and bAc<eg,
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and so bA ¢ < (aVb)Ac. Hence
aVi{bAc)<({aVb)Ac,

and so we establish that a lattice is modular if we merely show the opposite
inequality, that for all @, b, cin L,

a<c = (aVb)Ac<aV(bAc). (1.8.2)

Proposition 1.8.3 Let K be a sublattice of the lattice (C(S),C,N,V) of
congruences of a semigroup S, and suppose that poo =cop forall p, o
in K. Then K is a modular lattice.

Proof By saying that K is a sublattice of (C(S),C,N, V) we mean that
K is closed under the operations N and V. Let «a, 8,7 € K be such that
a C v, and let

(@,y) e (avp)ny=(aocf)Ny.

Then (z,y) € v, and there exists z in S such that (z,2) € o and {z,y) € 8.
Since « C v and + is an equivalence, we deduce that (z,y) € v. We thus
have (z,z) € @ and (z,y) € BN+, from which we deduce that

(z,9) €ao(BNy)=aV(BNY).
‘We have shown that

(avp)ynyCav(pny),

and so K is modular as required. O

Corollary 1.8.4 The lattice of congruences on a group is modular. a

This result breaks down even for relatively small semigroups. In Exer-
cise 21 below an example is given of a semigroup with four elements having
a non-modular lattice of congruences. Indeed the lattice of congruences of
that semigroup does not even have the weaker property of being semimod-
ular. To explain the concept of semimodularity, first consider two elements
a and b in a lattice L. We say that a covers b, and write a > b, if @ > b and
if there is no « in L such that a > z > b. A lattice L is said to be (upper)
semimodular if, for all a, bin L,

a=aANband b>aAb = aVb=aandaVb>b

We now justify our description of semimodularity as a weaker property
than modularity:

Proposition 1.8.5 Fvery modular lattice is semimodular.
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Proof Let L be a modular lattice, and suppose that a, b in L are such
that a > aAb and b > aAb. Suppose that z (in L) is such that a < z < aVb.

aVb

anb
To show that a V b > a we must show that x = a. Since x > a it is clear
that z Ab > aAb. Alsoz Ab< (aVb)Ab=0), and so
anNb<zAb<b

Now z Ab # b, for x Ab == b would imply that = > b, and this, together with
the assumption that x > g, would give the false conclusion that z > a V b.

Hence
aANb<xAb<b,

and from the assumption that b > a A b we deduce that z Ab=a Ab. By
modularity it now follows, since a < z, that
z={(aVbhrhz=aV(bAz)=aV(aAb)=a.
‘We have shown that a Vb > a, and it follows in a similar way that a Vb > b.
I

For further lattice-theoretic results see, for example Dubreil-Jacotin et
al. (1953). We shall here pursue only those aspects of the subject that have
a direct bearing on the aspects of semigroup theory we shall be studying.
The concept of semimodularity is important for us because of the following
result:

Proposition 1.8.6 The lattice (£(X),C,N,V) of equivalences on a set X
is semimodulor.

Proof Let p, o be equivalences on X such that p > pNo and ¢ > pNo,
and suppose that the p N o-classes are

A]_, AQ, A37 .o
Then there is exactly one p-class that is the union of two pNo-classes, and
so there is no loss of generality in supposing that the p-classes are
AgU A Az, Ay, ...
The same argument also applies to o, but ¢ # p, and so there are two
distinct cases: either the o-classes are

Al’AzyAS UA4>A57"'7

or they are
AI,AQ U Az, Ag, ...
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In the former case the p V o-classes are
A1 UAs A3 U Ay, As, ...
while in the latter case they are
AU As U Az, Ay, As, . ..
In either case pVo = pand pVo > 0. O
If | X| > 5 the lattice £(X) is not modular. See Exercise 22.
If Ly, Lo, ..., L, are lattices, the cartesian product L = LiX Lo X... XLy,
becomes a partially ordered set if we define
(21,22, -, Zn) < (Y1, Y2, -, Yn)
if and only if 21 < y1, 2 < Y, ..., Tn, < Yn. 1t is even a lattice, with
(1,Z2y s Tp) A (Y1, Y2, - -y Yn) = (T AY1, T2 AY2, oo, T AYn),
(1,Z9y . s Tn) V (U1,Y2, -y Yn) = (1 VY1, 22V Y2, .-, T V Un)-
We say that L is the direct product of Ly, Lo, ..., L,. It is easy to see that
(a1,09,..,0n) = {b1,ba,...,by)

in L if and only if a; > b; in L; for some ¢ in {1,2,...,n} and a; = b; for
all § # 4. It is now not hard to deduce
Proposition 1.8.7 The direct product Ly X Ly X ... X L, of semimodular
lattices Ly, Lo, ..., L, is semimodular.

Proof Let z, y beelements of L = Ly x Ly X ... X L, such that z > x Ay,
y > = Ay, and suppose that

x/\y:(ZhZQ,...,Zn).

Then z = (r1,%2,...,Ty), where z; > z; in L; for some 7 in {1,2,...,n},
and xp = 2 otherwise. Equally, ¥ = (¥1,¥2,...,¥n), Where y; > z; for
some j in {1,2,...,n}, and zx = 2z otherwise. If i # j then zVy =
(t1,t2,...,tn), where

t, =z, t; =y; and tp = 2z otherwise;

in this case it is immediate that zVy = x, zVy > y. If i = j then
zVy={u1,us,...,u,), where

u; = x; Vy; and u = zi otherwise.
In this case we have u; = x;, u; > y; in L;, since L; is semimodular, and it
again follows that x Vy >z, 2 Vy > y in L. 0O
1.9 EXERCISES

1. An element e of a semigroup S is called a left identity if ex = x for
every z in S, and a right identity if xe = z for every x in S. An
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element z of S is called a left zero if zx = 2z for all z in S, and a right
zero if zz = z for all z in S.
(a) Show that, if S has a left identity ¢ and a right identity f, then
e = f and e is the unique two-sided identity for S.
(b) Show that, if S has a left zero z and a right zero u, then z = u
and z is the unique two-sided zero for S.
{c) Give an example of a semigroup having two (at least) left identi-
ties and two (at least) right zeros.

Show that the definitions of a group given by equations (1.1.3) and
(1.1.4) are equivalent.

Let X be a countably infinite set and let S be the set of one-one maps
o : X — X with the property that X \ X« is infinite.
(a) Show that S is a subsemigroup of 7x.
(b) Show that for each « in S there is a one-one correspondence
between X \ Xa and Xa \ Xa?.
(¢) Deduce that S has no idempotent elements.
S is called the Baer—Levi semigroup.

Show that a semigroup S is a rectangular band if and only if

(Va,be S)ab=ba = a=0b.

Let ¢ : S — T be a morphism, where S and T are semigroups.
{(a) Show that the image under ¢ of an idempotent in S is an idem-
potent in 7.
(b) Show that the image under ¢ of a subsemigroup of S is a sub-
semigroup of T'.
(c) Show that if ¢ is onto then the image under ¢ of a right ideal [left
ideal, ideal] of S is a right ideal [left ideal, ideal] of T'.
(d) Show that if ¢ is onto then the image under ¢ of the identity
[zero] of S is the identity [zero] of T
(e) Show that in (¢) and (d) the hypothesis that ¢ is onto cannot be
removed.

. A permutation o of {1,2,...,n} is defined as a bijection

o:4{1,2,...,n} = {1,2,...,n}.

Denote by S, the symmetric group Gy 2 .. n} consisting of all such
permutations. In elementary books on group theory it is shown that
every permutation is expressible as a composition of ‘disjoint cycles’.
(A cycle, written (ajaz...a), where a1,aq,...,ar are distinct ele-
ments of {1,2,...,n}, is a map ¢ defined by

aiqS:a,H_l (i=1,2,...,k—1), a,kqb:al,
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37(425:-'17 ("L'¢{(11,(12,.-',0/k}),
and two cycles (a1a2 . .. ag) and (b1by . .. by) are said to be disjoint if the
sets {a1,as,...,ax} and {by,ba,...,b;} are disjoint.) A cycle (a1 az)
of length 2 is called a transposition. To avoid trivialities, suppose that
n > 3.
(a) Show that if & > 3 then
(a1ag...ar) = (a1 a2)o(ayag)o---of{agag),

and deduce that the group S, is generated by the set of all trans-
positions.
(b) Consider the cycles

T=(12), ¢=(12...n).

Show that
C_l — Cn—l‘

Show that
¢(TloTo(=(23),

and more generally that
CHlorol™l=(ii4+1) (i=1,2,...,n—1).
Next, show that, for j =2,3,...,n — 1,
(G i+1)o(G—15)0r-0(28)0(12)0(28)0-0(j j+1) = (1 j+1),
and that, fori =1,2,...,n~1land 7=1,2,...,n — 1,
CHLo (L +1) 0 ¢ = (54 + ).
(¢) Deduce that S, = (1,¢).

7. Let T}, be the full transformation semigroup 713 .. »}, where n > 3.
Let 7 denote the element of 7}, given by

In=2, zr=z (z=23...,n),

and let ¢, 7 be the permutations defined in the previous exercise. For

i# jin {1,2,...,n}, let ||7j] denote the map ¢ for which
=4 zp=z (r#1).

Thus, in particular, = = ||12].

(a) Prove the identities
(Té)ol12jo (L) =2 (= 3),
(2) e lli2lo(25) =114l (5 =3),
(1) o (24) ofjijll o (25) o (14) = |lijl] (3,5 =3, i # j),

(ij)ollijlie @y =il (,5=1,i# 7).
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(b) Let ¢ € Ty, and let [im¢] =7 < n — 1. Let 4, § (with 7 # 7) be

such that i¢ = j¢, and let

z€{1,2,...,n}\im¢.
Show that A
p=1lijlle¢,
where A .
id=2, kd=ks (k#1)

(c) Deduce that T, = (¢, 7, 7).

Show that if S is a semigroup then the (unextended) right regular rep-
resentation « : § — Ts may or may not be faithful. More specifically,
show that it is faithful if S is a right zero semigroup but is not faithful
if S is a left zero semigroup.

A semigroup may be isomorphic to a semigroup of maps in more than
one way. For example, for the semigroup S = {e,a,z,y} with Cayley
table

show that the map ¢ given by

o= (12) o0 (22). 0= (12) 0= (33)

embeds S in 7¢q.01. Show also that ¢, defined by
{1,2}

e = eaacy>’ = cazy)

ceaxy aecyx
. ceaxry _ eaxry

embeds S in Ty o0y} (Notice that ¢ is the right regular representa-
tion of S.)

Let S = (a) = M(m,r), where m > 1. Show that S\ 5% = {a},
and deduce that the generator a of a finite monogenic semigroup S is
uniquely determined by S unless S is a group.

Show that, if | X| = n, then
IBx| = 2”2.
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12. Let ¢ be an element of Px, the semigroup of all partial maps of the
set X. Let Z = X U {0}, where 0 ¢ X, and define ¢* : Z — Z by

x¢*:{z¢ifx€dom¢

0 otherwise.
Show that ¢ — ¢* is an isomorphism from Px onto the subsemigroup
of 77 consisting of all maps a: Z — Z for which O = 0.
Deduce that if X is a finite set containing n elements, then

|Px| = (n+1)".

13. Consider the partial transformation semigroup P, = P(12,. n}, let (,
T and 7 be as in Exercises 6 and 7, and let £ be the partial map

23...n
23...n )"
For each subset Y of X = {1,2,...,n}, define & to be 1x\y; thus
£ =&y
(a) Show that (14)§(14) =&y, (1=2,3,...,n), and that
&y = H iy
i€y
{b) For each « in Py, let &, the completion of a, be given by

R zo if x € doma
zh = .
z otherwise.

Show that, if X \ doma =Y, then a = £y d.
(¢) Deduce that P, = {{,7,7,£).

14. Let S be a semigroup, and let R, C*, C, C and T denote, respectively,
the sets of reflexive, left compatible, right compatible, compatible and
transitive relations on S.

{(a) Show that

CNRC(C'NC"NR, (C'nC)NnTCCNT.
{b) Deduce that
CN(RNT)=(C'NCYN(RNT),

that is to say, show that a reflexive and transitive relation is
compatible if and only if it is both left and right compatible.

(c) Show that each of the inclusions in (a) can be strict. [Hint. Let
S = {1,2} x {1,2} be a rectangular band. Write z = (1,1),
y=1(1,2), 2= (2,1}, t = (2,2), and consider the relations

R =15U{(z,y), (z,2), (v,t), (z,8)}, S ={(z, 1)}
on S.]
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Let X be a finite set with n elements, and let S(n,r) (1 <r < n) be
the number of equivalences p on X such that | X/p| = r. Show that
S{n,1) = S(n,n) =1,
Sn,r)=8n-1r—-1)+rSn-1,r) (2<r<n-1),
and use this information to calculate S(n,r) for 1 <r < n < 6. (The

numbers S{n,r) are the Stirling numbers of the second kind. See, for
example, van Lint and Wilson (1992).)

If A and B are sets then a relation p from A to B may be defined as
a subset of A x B. For each a in A we then define ap in the obvious
way:

ap={be B: (a,b) € p}.

If S and T are semigroups, then a subset x of Sx T is called a relational
morphism from S to T if

(RM1) (Va € S) ap # 05

(RM2) (Va,b € S) (ap)(bp) S (ab)u.
It is called injective if in addition

(RM3) (Va,be S)aunbuy #0 = au = byu.
Show that every relational morphism is a subsemigroup of the direct
product S x T.

We say that S divides T if there exists a subsemigroup U of T and a
morphism v from U onto S. {Thus S is a quotient of a subsemigroup
of T.) Show that S divides T if and only if there exists an injective
relational morphism from S to T'.

For a commutative semigroup S, define the relation 6’;? (n>1) by
a 65 b if and only if (Vz € S™) za = zb.
(a) Show that 6% is a congruence on S, and that
67 CO5Co

(b) Show that 85 = 15 for all n if S is a monoid.
(c) For n=1,2,..., denote S/63 by S,. Show that, for all n > 2,

Sp o Sy /050

(d) Let S = {a) = M(m,r) be a finite monogenic semigroup, where
m > 1. Show that

5/67 ~ M(m —1,7),

and deduce that
5/65 ~ M(m —n,r)
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for all n < m. Show also that S/6; is isomorphic to the cyclic
group of order r for all n > m.

18. Let I, J be ideals of a semigroup S such that I C J. Show that

19.

20.

21.

S/J ~ (S/I)/(J/1).

Let I, J be ideals of a semigroup S. Show that INJ, I U J are ideals
of S. (Notice that IJ C INJ and so INJ # 0.) Show also that

(TUJ))J ~I/(INJ).

Let pm, (m,r > 1) be the congruence {(a™,a™*")}* on the free
monogenic semigroup at. (Thus a™/p is the monogenic semigroup
M(m,r).)
(a) Show that (a?,a?) € p if and only if p,¢ > m and p = ¢ (mod r).
(b) Show that, for all m,n,7,8 > 1, ppr C prs if and only if m > n
and s divides r.
(¢) Deduce that, for all m,n,r,s > 1,

Pm,r () Pr,s = Pmax(m,n),lem(r,s)s

Pm,r N Pn,s = Pmin(m,n),hcf(r,s)-

(Here lem stands for the least common multiple, and hef for the
highest common factor.)

Let S = {e, f,a,b} be the semigroup with multiplication table

Verify that the congruences on S are as follows:

lg, with classes {e}, {a}, {f},{b};
o, with classes {e, f}, {a,b};
i, with classes {e,a}, {f,b};
v, with classes {e}, {a}, {f,b};
w, with the single class {e, f,a,b}.

Draw a Hasse diagram for the lattice (C(S), <, N, V), and deduce that
C(S) is not semimodular.
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22. In Proposition 1.8.6 it is shown that the lattice of equivalences on a
set is semimodular. Let X = {z1,29,23,...}, with | X| > 5. Let «, 3,
v be equivalences on X with classes as follows

a: {z1,22}, {x3,24}, {5}, {T6},. -3
,B H {181,.1‘3}, {.’EQ,.’E5}, {.’134}, {126},...;

v {371,162}, {$3,$4,$5}, {336}1'--

Show that « C «, but that (aV8) Ny # aV (8N+), and deduce that
&(X) is not modular.

1.10 NOTES

Much of this chapter is ‘folklore’, and there is little to be gained in attempt-
ing to track down original sources. The notion of the syntactic congruence
(Section 1.5) goes back in effect to Dubreil (1941), and the idea of a Rees
quotient (Section 1.7) to Rees (1940). The bicyclic semigroup (Section 1.6)
can be traced to Lyapin (1953) and Andersen (1952) The semimodularity of
the lattice of equivalences on a set appears in Dubreil-Jacotin et al.(1953).

The semigroup described in Exercise 3, usually called the Baer-Levi
semigroup, appears in Baer and Levi (1932), where it resolved a ques-
tion in group axiomatics. A fuller and more general account of Baer-Levi
semigroups appears in Clifford and Preston (1967). The isomorphism de-
scribed in Exercise 12 was first observed by Vagner (1956). The idea of a
relational morphism appears in Eilenberg (1976) within the chapters writ-
ten by Tilson, and is much used in applications of semigroups to language
theory—see Pin (1986). It might have been more logical to call it a morphic
relation, but the term ‘relational morphism’ is now standard.

The congruences 0 featuring in Exercise 17 have been studied by
Kopamu (1995).
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Green’s equivalences; regular
semigroups

The notion of ideal mentioned in the last chapter leads naturally to the
consideration of certain equivalence relations on a semigroup. These equiv-
alences, first studied by J. A. Green (1951), have played a fundamental role
in the development of semigroup theory. They are concerned with mutual
divisibility of various kinds, and all of them reduce to the universal equiv-
alence in a group.

Regular semigroups—the definition is copied from von Neumann’s
(1936) definition of a regular ring—are particularly amenable to analysis
using Green’s equivalences. The chapter goes on to consider such semi-
groups, and ends with a brief account of ‘sandwich sets’, a concept due to
Nambooripad (1974, 1975).

2.1 GREEN’S EQUIVALENCES

If a is an element of a semigroup S, the smallest left ideal of S containing
a is Sa U {a}, which, as in (1.1.2), it is convenient to denote by Sla. We
shall call it the principal left ideal generated by a. An equivalence £ on S
is defined by the rule that a £ b if and only if a and b generate the same
principal left ideal, that is, if and only if Sla = S'b.

Similarly, we define the equivalence R by the rule that a R b if and
only if a8t = bS*.

An alternative characterization, making the ‘mutual divisibility’ aspect
of these equivalences more apparent, is given in the following proposition:

Proposition 2.1.1 Let a, b be elements of a semigroup S. Then a L b if
and only if there ezist z, y in S* such that xa = b, yb = a. Also, a R b if
and only if there exist u, v in S' such that au = b, bv = a. O

Another immediate property of £ and R is as follows (see Section 1.5):
Proposition 2.1.2 £ is a right congruence and R is a left congruence. O

We have seen in Section 1.4 that the intersection of two equivalences
is again an equivalence. Since the intersection of £ and R is of great
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importance in the development of the theory, we reserve for it the letter
H. The join £ VR is also of great importance, and we denote it by D. As
we saw in Section 1.5, the join of two equivalences can be rather hard to
describe, but we are saved from these difficulties by the following fortunate
occurrence:

Proposition 2.1.3 The relations £ and R commudte.
Proof Let S be a semigroup, let a,b € §, and suppose that (a,b) € LoR.
Then there exists ¢ in S such that ¢ £ ¢ and ¢ R b. That is, there exist x,
y, u, v in S! such that

ra=1¢ cu=H>h,

yc=a, bv=c

If we now write d for the element ycu of S, we see that
au=yecu =d, dv=ycuv = ybv =yc = q;
hence a R d. Also,
yb=ycu =d, xzd=zycu = z0u=cy=>",
and so d £ b. We deduce that (a,b) € R o L. We have shown that

L oR C RoL; the reverse inclusion follows in a similar way. a

By Corollary 1.5.12 it now follows that
D=LoR=RoLlL=LVR,

and this means that D is a great deal easier to handle than one might have
expected.

Our final equivalence is the two-sided analogue of £ and R. The prin-
cipal two-sided ideal of S generated by a is S'aS!, and we define the
equivalence J by the rule that a J b if and only if S'aS? = 51681, that is
to say, if and only if there exist z, y, u, v in S such that

zay =b, ubv=a.

It is immediate that £ € J and R C J. Hence, since D is the smallest
equivalence containing £ and R, we must have

DCJ. (2.1.1)

An example showing that this inclusion may be strict was given by Green
(1951); a more striking example, from Andersen (1952), appears as Exercise
1 below. In certain classes of semigroups we do have equality: in a group

G we have
H=L=R=D=7J =G xG,

and in a commutative semigroup we have
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Less trivially, we have a result which implies in particular that D = J in
every finite semigroup:

Proposition 2.1.4 If S is a periodic semigroup then D = J.

Proof Suppose that a, b in S are such that ¢ J b. Then there exist z, y,
u, v in S* such that
zay =b, ubv=a. (2.1.2)

To prove the desired result we need to find an element ¢ in S such that
a L ¢, c R b. Tt follows easily from the equations (2.1.2) that

%a(yv)? = (uz)’a(yv)® = -+,

b= (xu)b(’()y) = (zu)zb(vy)Q = (xu)3b(1)y)3 — ...

Since S is periodic we can, by Proposition 1.2.3, find an m for which (uz)™
is idempotent. Then, if we let ¢ = za, we find that

a = (uz)™a(yv)™ = (uz)™(uz)a(yv)™ = (ur)™a = (uz)™ ‘uc,

a = (uz)a(yv) = (uz)

and so a L ¢. Also, cy = zay = b, and if we choose n so that (vy)" is
idempotent, we have

c = za = z(uz)" lalyv)" ! = (zu)" M ray(vy) v

= (zu)™ 1b(vy)* v = (zu)"b(vy)" (vy) o
= bloy)" v,

Hence ¢ R b as required. |

Some preliminaries are necessary before we can describe another im-
portant class of semigroups in which D = 7. First, since the Green equiv-
alences occur so often, it is worth making an exception to the general
notational convention announced in Section 1.4 about equivalence classes:
the L-class [R-class, H-class, D-class, J-class] containing the element a
will be denoted by L, [Ra, Ha, Dg, Jo]. Since £, R and J are defined
in terms of ideals, the inclusion order among these ideals induces a partial
order among the equivalence classes:

Ly, <Ly if S'a C Sy
R, <Ry if aS'CbS (2.1.3)
J, < J, if S'aS'C §ipSt.

We may thus regard S/L, S/R and S/J as partially ordered sets. Notice
that, for all @ in S and for all z, y in 51,

La:a < Laa Ra:l: < Raa Jxay < Ja~ (214)
Notice also that
Lo<Ly = Ju,<Jp, Ry< Ry = Jy <p. (2.1.5)
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We shall say that a semigroup S satisfies the condition miny, ming
or min; according as the partially ordered set S/L, S/R or S/J satisfies
the minimal condition. (See Section 1.3.) These conditions are of course
equivalent, respectively, to the minimal conditions on principal left ideals,
principal right ideals and principal two-sided ideals, and are weaker than
the corresponding conditions on (not necessarily principal) ideals. See the
notes at the end of this chapter for further information on minimal condi-
tions.

Proposition 2.1.5 If S is o semigroup satisfying ming and ming, then

D=J.

Proof Suppose that S satisfies min;, and ming. Then so also does S*,
for S has exactly the same principal left and right ideals as S, except (in
the case where ST # S) for S! itself. So we may assume that S has an
identity element.

Suppose now that a J b, so that there exist p, g, r, s in .S such that

pag =0b, rbs=a.
It follows that the set
X={zeS:(FyeS) zay=10}
is non-empty, and hence so also is the subset
A={L,:z ¢ X}

of §/L. The condition miny, allows us to select a minimal element L, in
A, and we can then choose an element v in § such that uav = b.

Now uruavsv = b, and 80 Ly, € A. From (2.1.4) we have Ly, < Ly,
and it then follows by the minimality of L, in A that

Lu = Luru < Lru < Lu

Hence ru £ u. By Proposition 2.1.2 it follows that ruav £ uav, that is,
b L b.

A similar argument using the condition ming establishes that bs R b,
and then by Proposition 2.1.2 we deduce that rbs R rb. We thus have
aRrb, b Lb, and so a Db as required. 0

2.2 THE STRUCTURE OF D-CLASSES

Each D-class in a semigroup S is a union of L-classes and also a union of
R-classes. The intersection of an L-class and an R-class is either empty or
is an H-class. However, by the very definition of D,

aDb <= R,NLy#0 <= L,N Ry #0.

Hence it is convenient to visualize a D-class as what Clifford and Preston
(1961) have called an ‘eggbox’, in which each row represents an R-class,
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each column represents an L-class, and each cell represents an H-class. (It
is of course possible for the ‘eggbox’ to contain a single row or a single
column of cells, or even to contain only one cell. Also, it may well be an
infinite eggbox.)

If D is an arbitrary D-class in a semigroup S, and if a,b € D are such
that ¢ R b (so that a and b are in the same row of the eggbox), then by
definition of R there exist s, s’ in S* such that

as=b, bs =a.

The right translation ps : § — S thus maps a to b. In fact it maps L, into
Ly, for if x € L, then zs £ as by Proposition 2.1.2, and so xs € L., = L.
Now it is just as easy to show that py maps Ly into L, and if we investigate
the composition psps : Lg — L, we find that for any z = ua in L,,

Tpsps = uass = ubs’ =ua = z.

Thus pspe is the identity map of L,, and we can show in a closely similar
way that pgps is the identity map on L;. We deduce that ps|, and
ps'|L, are mutually inverse bijections from L, onto Lp and L; onto L,
respectively.

We can say even more about these maps: if x € L, then the element
9y = xps of Ly has the property that

y=uxs, T=uys.

Thus y R z, and so the map p; is R-class preserving. It maps each H-class
in L, in a one-one manner onto the corresponding (R-equivalent) H-class
in Lp. Similar remarks apply to pg.

To summarize, we have proved the following result, usually known as
Green’s Lemma:

Lemma 2.2.1 Let a, b be R-equivalent elements in a semigroup S, and
let s, s’ in S1 be such that

as="b, bs =a.

Then the right translations ps|L,, ps'|L, are mutually inverse R-class pre-
serving bijections from L, onto Ly and Ly onto L, respectively. O

It is clear that this result has a left-right dual (also known as Green’s
Lemma) featuring the left translations A, : z = tz and Ay : y — tly:

Lemma 2.2.2 Let a, b be L-equivalent elements in a semigroup S, and let
t, t' in St be such that
ta=b, th=a.
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Then the left translations A\i|r,, Av|r, are mutually inverse L-class pre-
serving bijections from R, onto Ry and Ry onto Ry, respectively. 1

The combined effect of these two lemmas is as follows:

Lemma 2.2.3 If a, b are D-equivalent elements in a semigroup S, then
[Hal = IHb|-

Proof Let ¢ be such that a R c and ¢ £ b, with
as=c¢, cs =a, tc=b th=c

Then by the preceding lemmas p,|z, is a bijection onto H. and Ay, is
a bijection onto Hp. Thus pgA; : x — txs is a bijection from H, onto Hp
(with inverse Ay py : y > t'ys’), and it follows that |H,| = |Hy|. O

A more striking consequence of Lemmas 2.2.1 and 2.2.2 is concerned
with the multiplicative properties of an H-class. A preliminary lemma,
which is just a specialization of Lemmas 2.2.1 and 2.2.2, is useful. We have
seen that if as R «a, then x — xs is a bijection from H, onto H,s. So, in
particular, if as H a then z > xs is a bijection of H, onto itself. This,
together with the dual argument, gives

Lemma 2.2.4 Let x, y be elements of a semigroup S. If xy € H, then
pylH, is a bijection of Hy onto dtself. If xy € Hy then Agz|n, is a bijection
of Hy onto itself. O
Then we have the following result, usually called Green’s Theorem:

Theorem 2.2.5 If H is an H-class in a semigroup S then either H*NH =
0 or H? = H and H 1is a subgroup of S.

Proof Suppose that H2 N H # {}, so that there exist a, b in H such that
ab € H. By the lemma, p, and A, are bijections of H onto itself. Hence
hb € H and ah ¢ H for every h in H. Again by the lemma it follows that
A and pp, are bijections of H onto itself. Hence Hh = hH = H for every h
in H. Certainly H2 = H, and it follows from (1.1.7) that H is a subgroup
of S. m]

We now immediately deduce

Corollary 2.2.6 If e is an idempotent in a semigroup S, then H,. is a
subgroup of S. No H-class in S can contain more than one idempotent. O

2.3 REGULAR D-CLASSES

An element a of a semigroup S is called regular if there exists z in S such
that axa = a. The semigroup S is called reqular if all its elements are
regular. Groups are of course regular semigroups, but the class of regular
semigroups is vastly more extensive than the class of groups. For example,
every rectangular band B (see Theorem 1.1.3) is trivially regular, since
axa = a for all a, x in B.
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If a is a regular element, with aza = a, and if b € L,, then there exist
u, v in St such that ua = b, vb = a, and so

b = ua = uara = bra = b(zv)b,

and so b also is regular. The same conclusion applies to any element in R,,
and so we have

Proposition 2.3.1 Ifa is a reqular element of a semigroup S, then every
element of D, is regular. m]

If, then, D is a D-class then either every element of D is regular or
no element of D is regular; we call the D-class regular if all its elements
are regular, and irregular otherwise. This dichotomy does not apply to
J-classes in general, and of course a single semigroup may contain both
regular and irregular elements. (See Exercise 25 in Chapter 5.)

Since idempotents e are regular (eee = e) it follows that every D-class
containing an idempotent is regular. Conversely, we can show that every
regular D-class must contain at least one idempotent. Indeed we can show
more:

Proposition 2.3.2 In a regular D-class, each L-class and each R-class
contains an idempotent.

Proof If ais a member of a regular D-class, and if z is such that aza = a,
then za is idempotent and za £ a. Similarly, ax is idempotent, and az R a.
O

Proposition 2.3.3 FEvery idempotent e in a semigroup S is a left identity
for R and a right identity for L..

Proof If a € R, then a = ex for some z in S!, and so
ea = e(ex) = e’z = ex = a.
Similarly be = b for all b in L. g

An idea of great importance in semigroup theory is that of an inverse
of an element. If @ is an element of a semigroup S, we say that o’ is an
inverse of o if

ad’a=a, dad =d. (2.3.1)

Notice that an element with an inverse is necessarily regular. Less ob-
viously, every regular element has an inverse: if there exists x such that
axa = a, then define o’ = zax and observe that

ad'a = axaxa = axa = a, a'ad’ = zararaxr = zazraxr = rar =a'.

An element a may well have more than one inverse. Indeed, in a rectan-
gular band (see Theorem 1.1.3) every element is an inverse of every other
element. So the idea of inverse under discussion here is substantially more
general than a group inverse. (Of course, a group inverse ¢s an inverse in
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the sense of {2.3.1).) We shall denote the set of inverses of an element a
by V(a).

The eggbox picture of a D-class is exceedingly useful in the location of
inverses. First, notice that if ¢ is an element of a regular D-class D then
every inverse a’ of a must lie in D, for a R aa’ and aa’ £ o'.

La La'
R, a aa’
Ryl d'a a

We have proved part of

Theorem 2.3.4 Let a be an element of o reqular D-class D in a semigroup

S.

(1) If &/ € V(a), then o’ € D and the two H-classes Rg N Lqr, Lg N Ry
contain, respectively, the idempotents aa’ and a'a.

(2) Ifb in D is such that Ry N Ly and L, N Ry contain idempotents e, f,
respectively, then Hy contains an inverse a* of a such thal aa® = e,
a*a = f.

(3) No H-class contains more than one inverse of a.

Proof It remains to establish the second and third parts.

L, L,
R,| a e
Ryl f a*, b

To prove (2), notice that from a R e it follows by Proposition 2.3.3 that
ea = a. Similarly, from a £ f it follows that af = a. Again from a R e it
follows that there exists z in S! such that ax = e. Let a* = fzxe. Then

ao*a = (af)x(ea) = axa = ea = a,
a*aa* = fz(eaf)ze = fr(az)e = fze® = fre = a*,
and so a* € V{(a). Also
aa* = (af)re = (ax)e = €* = e.
Further, since a £ f, there exists y in S! such that ya = f. Hence

a*a = frea = fra = yaxa = yea = ya = f.
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It now follows easily that
a* eLeﬂLf = Ly N Ry = Hy.

To prove part (3), suppose that both o’ and a* are inverses of a inside
the single H-class Hj. It follows that both aa’ and aa* are idempotents
in the H-class Ry N Ly. Hence aa’ = aa* by Corollary 2.2.6. Similarly
a'a = a*a, and it now follows that

af =a*aa* =a*ad =d'ad =a'. m|

Notice that this theorem allows us to locate the inverses of a regular
element provided we know where the idempotents are. For example, in a
finite semigroup we can say immediately that the number of inverses of an
element s is the number of idempotents in R, multiplied by the number of
idempotents in L,. This idea of deducing properties of the semigroup from
facts about its idempotents is a recurring theme in the study of regular
semigroups, and we shall have occasion to mention it several times. The
following easy consequence of Theorem 2.3.4 will be of considerable use in
later chapters:

Proposition 2.3.5 Let e, f be idempotents in a semigroup S. Then
(e,f) € D if and only if there exist an element a in S and an inverse
a’ of a such that aa’ = e, a'a = f.

Proof Suppose first that (e, f) € D. Then e and f are members of the
same regular D-class.

Ly Le
R.| a e
Rf f a

Let a € R, N Ly. Then by Theorem 2.3.4(2) there is an inverse a’ of a in
Ry N L, such that aa’ = e, a’'a = f.

Conversely, if there exist mutually inverse elements a, a’ such that aa’ =
e and a’a = f, then from Theorem 2.3.4(1) it follows that e R a, a L f.
Hence e D f as required. a

Proposition 2.3.6 If H and K are two group H-classes in the same (reg-
ular) D-class, then H and K are isomorphic.

Proof The method of proof is essentially that used in the proof of Lemma
2.2.3, with a careful (yet obvious) choice of translation maps. Suppose that
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H = H, and K = Hy, where e, f are idempotents and are, respectively,
the identities of the groups H. and Hj.

Let a € R, N Ly (which is non-empty since e D f by assumption); then by
Theorem 2.3.4 there is a unique inverse o’ of a in L. N Ry, and we have

aa' =e, da=f ea=af=a, de=fd =4d.
By Green’s Lemmas (2.2.1 and 2.2.2) it follows that p,|g, is a bijection
from H, onto H, and Ay |m, is a bijection from H, onto Hy. Thus the
map ¢ = pg Ay given by
z¢p =dza (z € H,)
is a bijection from H, onto H;, with inverse given by

y¢~! =ayd (y € Hy).
The bijection ¢ is even an isomorphism, for if 2y, zs € H, then
(z19)(z20) = d'r100d 120 = d'T1eT00 = 0/ (T172)a = (T122) P,
since e is the identity element of the group H.,. a

We close this section with a result that will be required in Chapter 3.

Proposition 2.3.7 Leta, b be elements in a D-class D. Then ab € RyNLy
if and only if L, N Ry contains an idempotent.

Proof Suppose first that ab € R, N L. Then there exists ¢ such that
abe = a, and by Green’s Lemma (2.2.1) the right translation p, : z — zc
maps Hp onto L, N Ry. Thus in particular bc € L, N Rp. The translation
Py 1y — yb maps L, N Ry onto Hp, and is the inverse of p., and it then
follows that be is idempotent, since

(be)? = bpepupe = bp, = be.

Conversely, suppose that L, N R, contains an idempotent e. Then
eb = b by Proposition 2.3.3, and hence the translation z +— zb maps H,
onto R, N L. In particular, ab € R, N Ly. O

2.4 REGULAR SEMIGROUPS

In a regular semigroup S we have a particularly useful way of looking at the
equivalences £ and R. First, notice that if S is regular then a = aza € a9,
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and similarly a € Sa, a € SaS. Hence in describing the Green equivalences
for a regular semigroup we can drop all reference to S', and assert simply

that
a Lb if and only if Sa = 5b,

aRb ifand only if aS =5bS,
aJb ifand only if SaS = SbS.

Next, we have

Proposition 2.4.1 Let a, b be elements of a regular semigroup S. Then

(1) (a,b) € L if and only if there exist o’ in V(a) and b in V(b) such that
a'a =b'b;

(2) (a,b) € R if and only if there exist o’ in V(a) and b’ in V(b) such that
aa’ = bV';

(3) (a,b) € H if and only if there exist o’ in V(a) and b’ in V(b) such that
a'a="btb and ad’ = bb'.

a
a’al b’
b e

Proof (1) Suppose first that (a,b) € L. If ' € V(a) then da’a is an
idempotent in L, = L. The R-class R, contains at least one idempotent e
by Proposition 2.3.2, and then, by Theorem 2.3.4(2), the H-class Rg/q N Re
contains an inverse &’ of b with the property that ¥’b = a’a (and bb' = €).
Notice that we have shown the stronger implication that

(a,b) € L = (Va' € V(a))(3V € V(b)) d'a = bb. (2.4.1)

Conversely, if a’a = b'b for some o’ in V(a) and some b’ in V(b) then a L a'a
and 8’6 £ b by Theorem 2.3.4(1), and so a £ b by transitivity.
Part (2) is similar, and once again we can prove
(a,b) € £L = (Va' € V(a)) (3 € V(b)) aa’ = bb'. (2.4.2)

To prove part (3), suppose that ¢ H b and that o’ € V(a). Then
ad’ € R, = Ry and a’a € L, = Lp. Hence, by Theorem 2.3.4(2), the
H-class Lgqr N Ry, contains an inverse b’ of b such that b0’ = aa’ and
b'b = a’a. Once again we have proved the implication

(a,b) e H = (Vo' € V(a)) (I € V(b)) a’a=b'b and aa’ =bb'. (2.4.3)

The converse half is clear. 0
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If U is a subsemigroup of a (not necessarily regular) semigroup S, and if
a,b € U, there can be some ambiguity about the meaning of (for example)
a L b, since £ may stand for the appropriate Green equivalence either
in S or in U. When confusion of this sort is likely to arise we shall put
superscripts on the symbols to distinguish between the two equivalences.
Thus (a,b) € LY means that there exist u, v in U! such that ua = b,
vb = a, while (a,b) € £% means that there exist s, ¢ in S* such that sa = b,
tb = a. We shall also use the notations

LY ={ucU:(a,u) LY}, LS={seS:(as)cL5}.
It is clear that
LY C LSn(U xU),
and also, with the obvious notations, that
RUCRSN(UxU), HYCHSN(UXxU),
DV CcDISnNWUxU), JYCTn(UxU).
These inclusions may well be proper: for example, if S is the infinite cyclic

group generated by a and if U is the infinite monogenic semigroup of S
consisting of all positive powers of a, then

LU =RV —HU =DV = 7V — 1,
while
LSNUxU)=RSNUXxU)=HN{UxU
=DSNUxU)=T°NUxU)=UxU.
However, we have the following useful result:

Proposition 2.4.2 If U is a reqular subsemigroup of a semigroup S, then
V=r5nWUxu), RV=RSnWUxU), H =H n(U xU).
Proof Suppose that (a,b) € £L5N (U x U), and let o’ and ¥ be inverses

in U of @ and b, respectively. Then
(a'a,a) e LV C L% (¥'b,b) e LV C LF,
and so (a’a,b'd) € £5. By Proposition 2.3.3 each of a’a and b'b is a right
identity for LS,, = L§,; hence in particular
a'ab’b=a'a, bba’a=1"bb.
These equations involve only elements of U, and so may be interpreted as
implying that (a’a,b'd) € LY. But we now have
a LV d'a, d'alV b, ¥bLUb,
and so a LY b as required.

The proof for R is exactly dual, and the result for H is a consequence
of the results for £ and R. a
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The corresponding assertions for D and J are not true. Consider, for
example, the semigroup S = By described at the end of Section 1.6. It
is clear that Bs is regular: the idempotents 0, e, f are certainly regular
elements, and a and b are inverses of each other. The regular subsemigroup
U = {0,e, f} is a semilattice, and so

LV=RVU=HY=DY =Y =1y.

On the other hand, it is easy to check that the RS-classes are {0}, {e,a},
{f,b}, that the £L5-classes are {0}, {e, b}, {f,a}, and hence that the D°-
classes are {0} and {e, f,a,b}. Now J° = D since S is finite (Proposition
2.1.4) and so

(e, eDN(UxU) =T (U x U).

If S is a regular semigroup and p is a congruence on S, then §/p is
regular. Indeed, if o’ is an inverse in S of an element a then a’p is an
inverse of ap in S/p, since

(ap)(a'p)(ap) = (ad'a)p = ap, (a'p)(ap)(a’p) = (a'aa)p = dp.
The following result, usually known as Lallement’s Lemma, is crucial in
the study of regular semigroups:

Lemma 2.4.3 Let p be a congruence on a regular semigroup S, and let ap
be an idempotent in S/p. Then there exists an idempotent e in S such that
ep = ap. Moreover, e can be chosen so that R, < R,, L. < L.

Proof Let ap be an idempotent in S/p. Then (a,a?) € p. Let z be an
inverse of a2:

a’za? =a?, zd’z=1zx.

Let ¢ = axza. Then

e? = a(za’z)a = aza = e,

and so e is idempotent. Also, modulo p,

e=aza = a’za’ =a’® =q,
and so ep = ap. It is clear from equation (2.1.4) that R, < R,, L. < L,.
O

The close correspondence between congruences and morphisms dis-
cussed in Section 1.5 enables us to obtain the following alternative version
of Lallement’s Lemma:

Lemma 2.4.4 Let ¢ : § — T be a morphism from a regular semigroup S
into a semigroup T. Then im ¢ is regular. If f is an idempotent in im ¢
then there exists an idempotent e in S such that e¢p = f. O

We remark that this result may be untrue if we drop the hypothesis of
regularity. There is an obvious morphism from the free monogenic semi-
group a* onto the finite monogenic semigroup M (m, ), but the idempotent
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in M(m,r) cannot have an idempotent counterimage in a¥, for a* has no
idempotents.

If S is a semigroup and ¥ is the set of idempotents of S, then we shall
say that an equivalence p on S is idempotent-separating if

pN(Ex E)y=1g,

that is, if no p-class contains more than one idempotent. By Corollary 2.2.6
we have that H is an idempotent-separating equivalence on any semigroup
S, and so every congruence contained in H is idempotent-separating. In
fact we have:

Proposition 2.4.5 If § is a regular semigroup, then a congruence p on S
is idempotent-separating if and only if p C H. Hence H is the mazimum
idempotent-separating congruence on S.

Proof We have already seen that one half of this result holds in any
semigroup whatever. So suppose that S is regular, and that a p b, where
p 1s an idempotent-separating congruence. We need to show that a H b.
Certainly (ba',aa’) € p, and so, by Lallement’s Lemma (2.4.3) there exists
an idempotent e such that (e, ba’) € p and R. < Rp,. But then (e, ad’) € p,
and so e = aa’, since p is idempotent-separating. Hence

Ra = Raa’ S Rba,’ S Rb'

A similar argument establishes that R, < R,, and we deduce that a R b.
But then an exactly dual argument shows that ¢ £ b, and so a H b as
required. a

Remark The hypothesis that S is regular cannot be removed in the above
proposition. If S = {z,0} is the two element null semigroup, in which

2 =20 =0z =00=0,

then 0 is the only idempotent and H = 1g. The universal congruence S x S
is then idempotent-separating, but is not contained in H.

2.5 THE SANDWICH SET

The concept of inverse that has been a main theme of this chapter is of
course a generalization of the inverse a~! of an element a in a group G.
Within a group we have the very useful property that (ab)~! = b~la71,
and it is reasonable to ask whether some version of this holds in a regular
semigroup. In general it is not the case that V(ab) = V(b)V(a), and indeed
we shall see in Chapter 8 that V(b)V(a) C V{ab) for all @ and b in S if
and only if S is orthodoz, that is, if and only if the set E of idempotents of
S is closed under multiplication. For a generalization that works for every
regular semigroup we need a new concept.
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Proposition 2.5.1 Let S be a regular semigroup with set E of idempo-
tents, and let e, f € E. Then the set S(e, f), defined by

Sle,f)={9€V(ef)NE:ge=fg=g} (2.5.1)
18 non-empty.
Proof Let z € V{ef), and let g = fze. Then
(ef)g(ef) = ef’ze®f = efnef = ef,
g(ef)g = fze’ fPze = f(zefz)e = fre =g,
and so g € V{ef). Also,
9" = f(zefr)e = fre =g,

and so g € . Finally, it is clear that ge = fg = g, and so g € S(e, f).
O

The set S(e, f) is called the sandwich set of e and f. It has an obvious
alternative characterization
S(e,f)={9€E:ge=fg=g, egf = ef}. (25.2)
The next result gives a connection with Green’s equivalences that will
prove useful in Chapter 6:

Proposition 2.5.2 Lete, f and g be idempotents in a regular semigroup.

(1) Ife L f then S(e,g) = S(f,9);
(2) ifeR f then S(g,e) = S(g, f).

Proof [t is obviously sufficient to prove (1), and indeed it will be enough
to show that S(e,g) C S(f,g). Suppose therefore that e £ f and that
h € S(e, g), so that

ef =e, fe=f, he =gh = h, ehg = eg.
Then
h=he=nhef =hf, fhg= fehg= feg= fg,
exactly as required. O

Proposition 2.5.3 Let e, f be idempotents in a regular semigroup S.
Then S(e, f) is a subsemigroup of S and is a rectangular band.

Proof Let g,k € S(e, f). Then
ghg = (9e)h(fg) = g(ehf)g = g(ef)g = (9e)(fg) = ¢° =9.  (2.5.3)
It follows that (gh)? = gh and so gh is idempotent. Also
(gh)e = g(he) = gh, f(gh) = (fg)h = gh,
e(gh)f =egfhf = efhf = ehf =ef,

and so gh € S(e, f). From (2.5.3) we deduce that S{e, f) is a rectangular
band. O
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Finally, we have
Theorem 2.5.4 Let a,b € S, where S is a reqular semigroup. Let a’ €
Via) , bt € V(b) and g € S(d'a,b’). Then b'ga’ € V{ab).
Proof Write a’a = ¢, bl = f, and let g € S(e, f). Then
(ab)(b'ga')(ab) = afgeb = agh = aa’aghb’b = a(egf)b
= a(ef)b = aa’abb’b = ab,
(b'ga’)(ab)(V'ga") = V' gefga’ =V g%a’ = V'gd,

and so b'ga’ € V(ab), as required. O

2.6 EXERCISES

1. Let C be a cancellative semigroup (that is, a semigroup in which, for
alla, b, ¢, ca=chb = a=>bandac=bec = a="0), and suppose that
C has no identity. Show that there cannot be any pair of elements
e, a in C for which ea = a or for which ae = e, and deduce that
L=R=D=1¢.

Show that, with respect to matrix multiplication, the set

al
S:{<b1>.a,beR, a,b>0}

is a cancellative semigroup without identity.
Show that J = § x 5, and deduce that D is properly contained in 7.

Observe that S in not periodic, since (for example)

10\" (10

11/ " \nml)’
Observe also that S does not satisfy min;,. More precisely, denote (i?)
by s,, and observe that

Sle; D Stsg > 8tsg D -

2. In the bicyclic semigroup B = N°® x N°, with multiplication given by
equation (1.6.3), show that
(a) (m,n) R (p,q) if and only if m = p;
(b) (m,n) L (p,q) if and only if n = g;
(c) D=J =B x B.

3. Let e, f be idempotents in a semigroup S. Show that

el f ifandonlyif ef =e, fe=F,
eR f ifandonlyif ef =f, fe=e.
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4. Let S be a semigroup, let A be a right congruence on § contained in
L and let p be a left congruence on S contained in R. Show that
Aop = po A Deduce, using Proposition 1.8.3, that the sublattice
[1s, Hb], consisting of all congruences on S contained in H, is modular.

5. A semigroup S is called right simple if R = S x S, and left simple if
L =S5x5. Tt is called right cancellative if (Va,b,c € S) ac = be =
a = b and left cancellative if (Va,b,c€ S)ca=cb = a=0b.

{(a) Show that a left zero semigroup is left simple and right cancella-
tive, but is neither right simple nor left cancellative.

(b) Show that the Baer-Levi semigroup (Exercise 1(3)) is right simple
and right cancellative, but is neither left simple nor left cancella-
tive.

{(¢) Show that a semigroup is right simple and left simple if and only
if it is a group.

(d) Show that a finite semigroup is right cancellative and left can-
cellative if and only if it is a group.

(e) Show that the word ‘finite’ cannot be removed from (d). In other
words, give an example of an infinite semigroup which is both
right and left cancellative, but is not a group.

6. A semigroup which is right simple and left cancellative is called a right
group. Show that if G is a group and F is a right zero semigroup, then
the direct product G x F is a right group.

Conversely, suppose that S is a right group.

(a) Show that the set E of idempotents in S is non-empty.

{b) Show that E is a right zero subsemigroup of S.

(c) Show that eb = b for every b in S.

{(d) Show that Se is a subgroup of S for every e in E.

(e) Let f be a fixed element of E, and denote the group Sf by G.
Show that the map ¢ : G x E — S defined by

(a,e)p = ae

is an isomorphism.

(f) Deduce that a semigroup is a right group if and only if it is
isomorphic to the direct product of a group and a right zero
semigroup.

7. Define an equivalence £* on a semigroup S by the rule that a £* b if
and only if
(Vz,y € S*) ax =ay < bz =by.
(a) Show that £ C £*, and that £ = £* if S is regular.
(b) Show that £* is a right congruence on S.
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10.

11.

12.

13.

14.
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(c) Show that, for every idempotent e in S, a £* e if and only if
ae = g and (Vz,y € S*) ax = ay = ex = ey. In particular, note
that e acts as a right identity within its £*-class.

. The containment £ C L* noted in the previous exercise may well

be proper. For example, in the cancellative semigroup S defined in
Exercise 1 above, show that L =15, L* =5 x S.

The equivalences R* and H* are defined by analogy with £*. (See
Exercise 7 above.) Show that every H*-class containing an idempotent
is a subsemigroup of S and is a cancellative semigroup with identity
element e.

Let S be an arbitrary semigroup, and let p be a congruence on S such
that p € £. Show that (a,b) € £ in S if and only if (ap,bp) € L
in S/p.

Let S be a regular semigroup. Show that the following statements are
equivalent:

(a) S has exactly one idempotent;

(b) S is cancellative;

{c) S is a group.

Define a cancellative congruence on a semigroup S to be a congruence
p with the property that S/p is a cancellative semigroup. Show that
p is a cancellative congruence if and only if, for all a, b, cin S

(ca,cb) € p = (a,b) €p, (ac,bec) € p = (a,b) € p,

and deduce that the intersection of a family {p; : ¢ € I} of cancellative
congruences is cancellative. Deduce that there is a minimum cancella-
tive congruence on S, and hence deduce that every regular semigroup
possesses a minimum group congruence.

Show now that not every semigroup has a minimum group congruence.
Specifically, consider § = a™, the free monogenic semigroup. Show
that the relation

pn = {(a",a%) : p = ¢ (mod n)}

is a group congruence on S, and show conversely that if p is a group
congruence then there exists n (= min{|r — s| : (a",a®) € p\ {15}})
such that p = p,. Deduce that there is no minimum group congruence

on S.

Show that, if R is a right ideal and L is a left ideal of a semigroup S,
then RN L D RL. Show that equality holds if S is regular.
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15.

16.

17.

18.

19.

20.

Show that the full transformation semigroup 7x and the partial trans-
formation semigroup Px are both regular. Show, however, that the
semigroup Bx of all binary relations on X is not regular. More pre-
cisely, show that the relation p = {(1,1),(1,2),(2,1)} in Byy,9} is not
a regular element of By 23.

Show that, in Tx,
(a) (a, ) € L if and only if ima = im f;
(b) (e, B) € R if and only if ker « = ker 3;
(¢) (o, B) € D if and only if |{imal = |im 8}
(d) D=J.

For a partial map ¢ of X, define ker ¢ to be the relation {(z,y) €
X x X : z,y € dom¢, ¢ = y¢}. This relation is symmetric and
transitive, but is not reflexive unless ¢ € Tx. Show that, with this
interpretation of kernel, parts (a) to {d) of the previous exercise hold
also in Px.

Let p be an equivalence on a set X. A subset A of X is said to be
a cross-section (or a transversal) of p if each p-class contains exactly
one element of A.

In the full transformation semigroup 7x, denote the H-class consisting
of elements o such that imo = A and kera = p by Hj4 ,. Show that
H, , is a group if and only if A is a cross-section of p.

Let V be a vector space over a field and let £(V) be the semigroup of
all linear maps @ : V — V. Let kera = {v € V : var = 0} (the kernel,
or nullspace, of ). Show that £{V) is regular.
Let o, 8 € L{V). Show that
(a) (o, B) € L if and only if im o = im 3;
(b) (o, B) € R if and only if ker o = ker 3;
(¢) (e, ) € D if and only if rank o = rank 3;
(dy D=J.
(e) Denote the H-class consisting of elements o for which ima = A
and kerao = B by H4 p. Show that Hy p is a group if and only
if An B = {0}.

A subset A of a semigroup S is called right unitary if
(Vaec Ay (Vs e S)sac A = sc A,
left unitary if
(Vae A)(Vse S)ase A = se 4,
and unitary if it is both left and right unitary.
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Let E be the set of idempotents of a regular semigroup S, and suppose
that E is a right unitary subset. Show that E is a unitary subsemi-
group. [Hint: show first that if es € E with e in F, then sess’ € E for
every s’ in V{(s).]

21. Define a regular semigroup to be E-unitary if the set E of idempotents
is a unitary subsemigroup of S. Show that if S is E-unitary then, for
all @, b in S,
abe E = bae E.

[Hint: show first that babb’ € E.]

22. Let S be a regular semigroup, let ¢ be a morphism from S onto T,
and let ¢, d be mutually inverse elements of T. Show that, if z, y in S
are such that ¢ = ¢ and y¢ = d, and if v € V(zyzy), then

a = zyvzyr and b = yvzy
are such that a¢ = ¢, b = d, and a and b are mutually inverse in S.

23. Let S be a regular semigroup with set E of idempotents. Show that,
foralln > 1,
V(E™) = B

[Hint: if z = e1eg...€, € E™ and y € V(z), let

fi=e€;...enyer...€5_1;

show that f; is idempotent and that y = yzfn ... fozy € E™*!. Con-
versely, if T = e;...e,p1 € E™) let

g; = €541 ...Ep41YC1 ... €5,

where y € V(z), and show that £ € V(g ... ¢1).]

2.7 NOTES

The results in Sections 2.1 and 2.2 are from Green (1951). Section 2.3
is from Miller and Clifford (1956). Proposition 2.4.2 is due to T. E. Hall
(1972), while Lemmas 2.4.3 and 2.4.4, together with Proposition 2.4.5 are
from Lallement (1966). The concept of the sandwich set is due to Nam-
booripad (1974, 1975).

Minimal conditions, mentioned briefly in Section 1, are the subject of
Section 6.6 in Clifford and Preston (1967). A very thorough study, devel-
oping the ideas in that section and in Munn (1957), appears in Hall and
Munn (1979).

Exercise 1 is from Andersen (1952). Exercise 6 appears in the book by
Clifford and Preston (1961, Section 1.11), who trace it back to Suschke-
witsch (1928). The starred Green equivalences featuring in Exercises 7, 8
and 9 have been extensively studied by Fountain and others: see, for ex-
ample, Fountain (1979, 1982). Exercises 10 and 22 are from Hall (1972).
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Exercises 20 and 21 are from Howie and Lallement (1966). Exercise 23
reports work done independently by Fitz-Gerald (1972) and Eberhart et
al. (1973).
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O-simple semigroups

The chapter begins with some elementary results on simple and 0-simple
semigroups. A decomposition theorem for semigroups in general then in-
dicates why an understanding of simple and 0-simple semigroups is impor-
tant. The main result of the chapter is due to Rees (1940), and applies to
0-simple semigroups containing primitive idempotents. The Rees Theorem,
strongly motivated by the Wedderburn-Artin Theorem for rings (see, for
example, Cohn (1989)) has played a dominant role in the development of
the subject.

Perhaps unfortunately, the word ‘simple’ as used in semigroup theory
does not have the same import as in group theory or ring theory, where
it implies the total absence of proper homomorphic images. By contrast
with ring theory, not every congruence on a semigroup is associated with
an ideal, and so it is normally the case that a simple (or 0-simple) semi-
group has non-trivial congruences. Using the Rees structure theorem we
then describe a classification of the congruences on a completely 0-simple
semigroup. A result on the nature of the lattice of congruences readily
follows, and so also does a classification of the finite congruence-free (i.e.
truly simple) semigroups.

3.1 SIMPLE AND 0-SIMPLE SEMIGROUPS; PRINCIPAL FACTORS

A semigroup without zero is called simple if it has no proper ideals. A
semigroup S with zero is called 0-simple if

(i) {0} and S are its only ideals;

(i) S # {0}.
The latter condition serves only to exclude the two-element null semigroup,
since any larger null semigroup fails to qualify on the grounds of having
proper ideals.

It is easy to see that S is simple if and only if 7 = § x S. The
corresponding criterion for O-simplicity is that §2 # {0} and that {0} and
S\ {0} are the only J-classes.

A simple semigroup can be made into a 0-simple semigroup by merely
adjoining a zero element. Not all O-simple semigroups arise in this way,
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however; the zero element of a 0-simple semigroup cannot always be re-
moved to leave behind a simple semigroup. The removal is in fact possible
only if 0 is a ‘prime’ element in 9, in the sense that

ab=0 = a=0o0rb=0, (3.1.1)

and we shall see that this is not always the case. The implication (3.1.1),
familiar in ring theory as the criterion for a ring to be an integral domain,
is often expressed by saying that S has no proper zero-divisors. Since it
will always be possible, by specializing to the case where the semigroup
has no proper zero-divisors, to deduce a theorem about simple semigroups
from one about 0-simple semigroups, we shall focus attention primarily on
the O-simple case.

The first significant result gives an important alternative characteriza-
tion of O-simple semigroups:

Proposition 3.1.1 A semigroup S is O-simple if and only if SaS =S for
every a # 0 in S, that is, if and only if for every a, b in S\ {0} there exist
xz, y in S such that zay = b.

Proof Suppose first that S is O-simple. Then S2, being an ideal of S,
and being by definition distinct from {0}, must coincide with S, and it
follows that S° = §%25 = 5.8 = S also. Let a be a non-zero element of
S. Then SaS is an ideal of S and so either SaS = S or SaS = {0}. If
SaS = {0} then the set I = {z € S: SzS = {0}} contains the non-zero
element a. Since I is easily seen to be an ideal of S it follows that I = 5,
and so SzS = {0} for every x in S. But this implies that S = {0}, in
contradiction to the already noted fact that S3 = S. Hence SaS = S as
required.

Conversely, suppose that SaS = S for all @ # 0 in S. Then certainly
S% £ {0}. If A is an ideal of S containing a non-zero element a then

S =258aSCSASCA,
and so A = S. Thus S is O-simple. |

As a corollary we have the corresponding statement for simple semi-
groups.
Corollary 3.1.2 A semigroup S is simple if and only if SaS = S for all
a in S, that is, if and only if for every a, b in S there exist x, y in S such
that zay = b. |

By a 0-minimal ideal in a semigroup S we mean an ideal minimal
within the set of all non-zero ideals. The next result shows that 0-simple
semigroups can occur inside more general semigroups.

Proposition 3.1.3 If M is a O-minimal ideal of S then either M? = {0}
or M is a 0-simple semigroup.
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Proof Since M? is an ideal of S contained in M, we must have either
M? = M or M? = {0}. Suppose that M? = M. Then M® = M. Ifais a
non-zero element of M then S'aS', being a non-zero ideal of S contained
in M, must coincide with M. Hence

MaM C S*aS' = M = M3 = M(S§*aSY )M = (MS")a(S*M) C MaM,
and so in fact MaM = M. Thus M is 0-simple by Proposition 3.1.1. O

The specialization of this result to the case of semigroups without zero
is of special interest, since such a semigroup can have at most one minimal
ideal. To see this, suppose that M and N are both minimal ideals of S.
Then M N, being an ideal contained in both M and N, must be equal to
both M and N, which must therefore be equal to each other. Thus either
there are no minimal ideals at all (which can happen—see Exercise 3(1)—)
or there is a unique minimum ideal, which we call the kernel K = K(5)
of S. A simplified version of the proof of Proposition 3.1.3 now gives

Proposition 3.1.4 Let S be a semigroup without zero. If S has a kernel
K, then K is a simple semigroup. a

It is worth remarking that a semigroup with zero does have a kernel,
namely the unique minimum ideal {0}, but in this case the notion is not
particularly useful. More significantly, every finite semigroup has a kernel,
since the alternative to having a kernel is to have infinite descending chains
of ideals, and this alternative is not open to a finite semigroup.

The next result describes another context in which 0-simple semigroups
can occur.

Proposition 3.1.5 If I, J are ideals of a semigroup S such that I C J
and there is no ideal B of S such that I C B C J, then J/I is either
0-simple or null.

Proof By virtue of Proposition 1.7.1, J/I is a O-minimal ideal of S/I,
and so the result is a direct consequence of Proposition 3.1.3. O

This result, while not of any great depth, is the basis of an important
decomposition method for an arbitrary semigroup S. For each a in S,
write the principal ideal S'aS! generated by the element a as J(a), and
recall the natural partial order (2.1.3) among the J-classes of S, whereby
Jz < Jy if and only if J(z) C J(y). Suppose first that .J, is minimal among
the J-classes. Then J(a) is a minimal ideal of S and so it is the unique
minimum ideal K(S). If b € J(a), then S'bS?! is an ideal of S contained in
J(a) and so SbS* = J(a) = S'aS*. Thus b J a. We deduce that

J(a) = J, = K(S) (3.1.2)

(where of course K(S) = {0} in the case where S has a zero element).
If J, is not minimal in S/.7 then the set

I{a) = {be J(a) : Jp < Jo}
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is non-empty. In fact I(a) is an ideal of S, for if b € I(a) and u,v € S then
Jub S Jp < Jay,  Jpw £ Jp < Ja,
and so ub, bv € I(a). Notice that

J(@)=J,UI(a), I(a)=|J{J:b<sa}, (3.1.3)

and that both unions are disjoint.
Suppose now that B is an ideal of S such that

I{a) C B C J(a).

If b € B then J(b) C B, since J(b) is the smallest ideal containing b.
Certainly J(b) C J(a) and so J, < J,. Thus b € I(a). We have shown that
B = I{a), and so J(a) and I(a) satisfy the criteria for Proposition 3.1.5.
We deduce that the Rees quotient J(a)/I(a) is either O-simple or null. The
semigroups K(S), J(a)/I(a) (a € §) are called the principal factors of S.

Obviously, then, if we can find out something about O-simple semi-
groups, we shall have gone some way towards an understanding of the
‘local’ structure of a semigroup. By virtue of (3.1.3) we can think of the
principal factor J{a)/I(a) as consisting of the J-class J, = J(a)\I(a) with
a zero adjoined. If the factor is null then the product of two elements in J,
always falls into a lower J-class. If the factor is 0-simple then the product
may lie in J, or may fall into a lower 7-class.

We summarize these observations in a theorem as follows

Theorem 3.1.6 If a is an element of a semigroup S then either

(1) Jq is the kernel of S; or

(2) the set I{a) = {b € S : Jy < J,} is non-empty and is an ideal of
J(a) (= S'aSt) such that J(a)/I(a) is either 0-simple or null. O

3.2 THE REES THEOREM

Among idempotents in an arbitrary semigroup there is a natural (partial)
order relation defined by the rule that e < f if and only if ef = fe = e.
It is easy to verify that the given relation has the properties (O1), (02)
and {O3) (see Section 1.3) that define an order relation. Certainly it is
clear that e < ¢, and that e < f and f < e together imply that ¢ = f. To
show transitivity, notice that if e < f and f < g, so that ef = fe = e and
fg=gf=f, then

eg=efg=ef =e and ge=gfe= fe=e,

and so e < g.
If S is a semigroup with zero, then the defining properties of a zero
element immediately imply that 0 is the unique minimum idempotent. The
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idempotents that are minimal within the set of non-zero idempotents are
called primitive. Thus a primitive idempotent e has the property that

ef=fe=f#0 = e=f. (3.2.1)

A semigroup will be called completely 0-simple if it is O-simple and has
a primitive idempotent. We immediately record that

Proposition 3.2.1 Every finite 0-simple semigroup is completely O-
simple.

Proof Let S be a finite 0-simple semigroup. By Proposition 1.2.3 every
element, of S has a power which is idempotent. Suppose first that 0 is the
only idempotent. Then every element s in S is nilpotent, in the sense that
there exists a positive integer n with the property that

st ="t =g = = 0,

Let a be a non-zero element of S. Then by Proposition 3.1.2 there exist x,
y in S such that
a = zay = 2%ay? = 2ay® = -

Since x and y are nilpotent, we deduce that a = 0, and so we have a
contradiction. Thus the set of non-zero idempotents of S is non-empty.
It now follows that primitive idempotents exist, for otherwise there would
exist infinite descending chains e; > e3 > e3 > - of non-zero idempotents,
and this is not possible in a finite semigroup. a

We shall see very shortly that infinite completely 0-simple semigroups
also exist. Indeed we have a fairly straightforward recipe, due to Rees
{1940), for constructing completely O-simple semigroups, which we now
describe. Let G be a group with identity element e, and let I, A be non-
empty sets. Let P = (py;) be a A x I matrix with entries in the 0-group
GY (= GU{0}), and suppose that P is regular, in the sense that no row or
column of P consists entirely of zeros. Formally,

(Vi e I)(FX € A) pay # 0,
(VA e A)(Fiel)px #0. (3.2.2)
Let S = (I x G x A)U {0}, and define a composition on S by

: , _ J (apaib,p) if pay #0,
(Z,a»)\)(ﬂ,b»M) = {0 ifp,\j:O,
(i, a, )\)0 = 0(i, a, )\) =00 =0. (3.2.3)

Then we have
Lemma 3.2.2 S is a completely 0-simple semigroup.

Proof It is fairly easy to give a direct verification of the associativity of the
composition (3.2.3), but it is probably more illuminating (and recalls Rees’s
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own approach) to observe that S\ {0} is in one-one correspondence with
the set of I x A matrices (a);» (a € G), where (a);) denotes the matrix with
entry a in the (7, A) position and zeros elsewhere. Since (0);) is independent
of ¢ and A we may simply write it as 0. Thus the correspondence extends
to a correspondence between S and the set

T={(a)n:acG’ icl, €A}
It is now a routine matter to verify that
(@)ixP(b)ju = (apr;b)ip,

where the juxtaposition on the left denotes matrix multiplication in the
usual sense. (The low density of non-zero entries in the matrices means that
no additions become necessary and so no trouble arises from the fact that
the matrix entries lie in a 0-group rather than the more usual ring.) Thus
the composition (3.2.3) in S corresponds in T to the evidently associative
composition o given by

(@)ix 0 (B)ju = (0)r P(b)ju,

and so is itself associative.

To verify that S is 0-simple, note that for any two non-zero elements
(3,a,A) and (J,b, u) of S we may, by the regularity of P, choose v in A and
k in I such that p,; # 0, par # 0, and then easily show that

(4,07 py b v)(4, @, A)(k, Db, 1) = (5,b, ).

Hence by Proposition 3.1.1, S is O-simple.

To complete the proof that S is completely O-simple we must first iden-
tify its idempotents. The non-zero element (é,a, ) is idempotent if and
only if

(i,0,A) = (i,a,\)(i,a, ) = (¢, apxna, A),

that is, if and only if py; # 0 and a = p;«l. If we now take two non-zero
idempotents e = (i,p;il,/\) and f = (4, p;jl,,u), then e < f if and only if
ef = fe = e, that is, if and only if

(6,53 DD » 1) = (G, Dy Puilii > A) = (5,05, 0),
that is, if and only if j = ¢ and A = p, that is if and only if e = f. The

conclusion is that every idempotent is primitive. Certainly there exists a
primitive idempotent, and so S is completely 0-simple. O

The semigroup constructed in accordance with this recipe will, as in
Clifford and Preston (1961), be denoted by MP°[G;I, A; P], and will be
called the I x A Rees matriz semigroup over the 0-group G° with the regular
sandwich matriz P.

The importance of Rees’s recipe lies in its universality: every completely
O-simple semigroup is isomorphic to some MO[G; I, A; P]. To spell it out
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formally, we have the following theorem, of which the easy half has been
proved:

Theorem 3.2.3 (The Rees Theorem) Let GO be a 0-group, let I, A be
non-empty sets and let P = (py;) be a A x I matriz with entries in G°.
Suppose that P is reqular in the sense of (3.2.2). Let S = (I x G x A)u{0},
and define a multiplication on S by (3.2.3). Then S is a completely 0-simple
SEMIGroup.

Conversely, every completely 0-simple semigroup is isomorphic to one
constructed in this way.

Proof Let S be a completely 0-simple semigroup containing a primitive
idempotent e. As a first step towards proving that S is isomorphic to a
Rees matrix semigroup we establish

Lemma 3.2.4 R, = eS'\ {0}.

Proof Certainly any element in R, is a non-zero right multiple of e and
so lies in eS'\ {0}. Thus R, C eS'\ {0}.
Conversely, let a = es be a non-zero element in eS. Then

ea = e’s = es = a. (3.2.4)

Since S is 0-simple, there exist (by Proposition 3.1.1) elements z, ¢ in S such
that e = zat. We can in fact replace the elements z and ¢ by ‘improved’
versions, writing e = xay, where x = eze, y = te. The verification that
this is so is entirely routine, and we also have

er =ge=2, ye=71. (3.2.5)
Now let f = ayx. Then
f? = ayzayz = ayex = ayz = f,

and so f is idempotent. Moreover f # 0, since f = 0 would imply that

e =e? = zayzay = xfay =0,
and we know that this is not so. Now notice that from (3.2.4) and (3.2.5)
it follows that ef = fe = f. That is, f < e, and since e is primitive we
deduce that f = e. Thus e = ayz, and this together with a € eS gives
a € R.. Thus eS'\ {0} C R, as required. ]

In fact the property described in Lemma 3.2.4 holds for every non-zero
element of S:

Lemma 3.2.5 For everya # 0 in S, R, = aS\ {0}.

Proof Again, any element of I, is a non-zero right multiple of a, and so
R, C aS\ {0}. Conversely, suppose that b is a non-zero element of aS.
Now by 0-simplicity there exist z and ¢ in S such that a = zet, where e is a
primitive idempotent. Hence b = zeu for some u in S. Now eu R et by the



The Rees Theorem 73

previous lemma, and so, by the left congruence property of R (Proposition
2.1.2), zeu R zet, that is, b R a. We have shown that aS \ {0} C R,, as
required. |

A dual version of this last lemma can be shown in a similar manner:
Lemma 3.2.6 For everya #0 in S, L, = Sa\ {0}. 0

The next result brings us a step nearer to showing the required connec-
tion between completely O-simple semigroups and Rees matrix semigroups.

Lemma 3.2.7 S is regular, and has exactly two D-classes, namely {0}
and D = S\ {0}. Ifa,b € D, then either ab =0 or ab € R, N Ly. The
latter occurs if and only if L, N Ry contains an idempotent.

Proof Let a,b S\ {0}. Then aSb # {0}, since aSh = {0} would imply
that
5% = (5a8)(SbS) = S(aSh)S = {0},

and we know that this is not the case. Let u in S be such that aub = ¢ # 0.
Then, by Lemmas 3.2.5 and 3.2.6,

c€ (aS\{0}) N (5b\ {0}) = R, N L,

and so a D b. Since the D-class D = S\ {0} contains a (primitive) idem-
potent, it must consist entirely of regular elements (see Section 2.3), and
since 0 also is a regular element we conclude that S is regular.

Finally, if ab # 0 then

ab € (aS\ {0}) N (Sb\ {0}) = Rq N Lp.

By Proposition 2.3.7, this happens precisely when L, N R;, contains an
idempotent. O

Let H be an H-class of S, contained in the D-class D = S\ {0}, and
let a,b € H. Then either ab € R, N Ly = H or ab = 0. In the former case
H is a group by Green’s Theorem (Theorem 2.2.5). In the latter case we
have H? = {0}, for if c and d are arbitrary members of H there exist z, y
in S such that ¢ = za, d = by, and it then follows that

ed = (za)(by) = x{ab)y = 0.

We may therefore refer to the H-classes within D as either group H-classes
or zero H-classes.

We are now ready to begin the process of shaping S into the form of
a Rees matrix semigroup. Denote the set of non-zero R-classes of S by I
and the set of non-zero L-classes by A. As a matter of notation we shall
treat I and A as index sets and write the R-classes as R; (i € I) and the
L-classes as Ly (A € A). The H-class R; N L, is denoted by H;,.

Since D is a regular D-class, it follows by Proposition 2.3.2 that each
R; contains at least one group H-class H;x. Equally each L) contains at
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least one group H-class. Without loss of generality we may suppose that
there is an element 1 € 7 N A such that Hy1 is a group H-class. Denote
the identity of Hy; by e. Notice that the choice of one particular group
H-class rather than another does not affect the abstract properties of the
group, for we have seen (Proposition 2.3.6) that all the group H-classes in
a D-class are isomorphic. The group Hi; will turn out to be the group
figuring in the Rees matrix semigroup we are looking for.

In L)\
Ry Hyp gx
Ri T Hi)\

Now, again in a quite arbitrary way, we select for each ¢ in I and A in
A an element r; in H;; and an element ¢y in Hy).

Since r; £ e we have by Proposition 2.3.3 that r;e = r;,. Hence by
Green’s Lemma (2.2.2) it follows that x — r;xz maps Hy; onto Hy in
a one-one fashion. Similarly, we have eqy = ¢), and again by Green’s
Lemma (2.2.1) it follows that y — yg\ maps H,; onto H;, in a one-one
fashion. Thus (once we have chosen the elements r; and ¢)) we have a
unique expression 7;aq) (a € Hyy) for each element of H;y. Since

S\{0} = J{Hir:i €1, xe A}
and since the union is disjoint, we thus have a bijection
¢Z(IXH11 XA)U{O}—MS

given by
(i,a,\)¢ =r;aqy, 0¢=0.

The final stage in the argument is to introduce a multiplication into
(I x Hy1 x A)U {0} so as to make it into a regular Rees matrix semigroup,
and so that the bijection ¢ becomes an isomorphism. This amounts to
defining a suitable sandwich matrix, and since

(riagx)(r5bq,) = ri(agar;b)qp,
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it seems reasonable to define py; as gar; (1 € I, A € A). By Lemma 3.2.7,
Pxi € Ry, N Ly, = Hyy
if and only if the H-class
Ly, N Ry, = Hi

contains an idempotent, that is, if and only if H;y is a group H-class;
otherwise py; = 0. Hence P = (py;) is a matrix with entries in HY,. It
is, moreover, regular in the sense of (3.2.2), since the already observed
property that each R-class and each L-class in D contains at least one
group H-class translates into exactly the property of regularity for P.

It is now eutirely routine to check that ¢ is an isomorphism from the
Rees matrix semigroup M°[Hys; I, A; P] onto S. O

Another possible approach to the idea of a completely 0-simple semi-
group is via the idea of O-minimal one-sided ideals. A left [right] ideal is
called O-minimal if it is minimal within the set of all non-zero left [right]
ideals. Then we have

Lemma 3.2.8 Let S be a 0-simple semigroup, and suppose that S contains
a 0-minimal left ideal L such that L2 # {0}. Then L = Sa for every a in

L\ {0}.

Proof The set Sa is easily seen to be a left ideal of S contained in L,
and so by the O-minimality of L either Sa = L or Sa = {0}. Suppose first
that Sa = {0}. Then {a,0} is a non-zero left ideal of S contained in L
and so must coincide with L. But then L? = {0,a}? = {0}, contrary to
assumption, and so we conclude that Sa = L. |

Next, we have

Lemma 3.2.9 If S is 0-simple and contains a 0-minimal left ideal, then
S is the union of its O-minimal left ideals.

Proof Let S be a 0-simple semigroup, and let L be a 0-minimal left ideal.
Then LS is an ideal of S and so either LS = {0} or LS = S. Suppose first
that LS = {0}. Then certainly LS C L, and so L is in fact a two-sided
ideal of S. Since L # {0} it follows that L = S, and hence

5% = LS = {0},

a contradiction. We conclude that LS = 5, and so there exists s in S such
that Ls # {0}. Such a ‘translate’ Ls of L is evidently a left ideal, and it is
even O-minimal, for if B is a non-zero left ideal of S contained in Ls, then
A = {a € L: as € B}, being a non-zero left ideal of S contained in L,
coincides with L, and so B = As = Ls.

Now let

M:U{LS:SGS}.
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Then certainly M is a non-zero left ideal. It is actually a two-sided ideal,
for if m € Ls C M then mt € L(st) C M for all ¢ in S. Hence, since S is
0-simple, M = S, and we have shown that S is a union of 0-minimal left
ideals Ls. O

Lemma 3.2.10 Let S be a 0-simple semigroup containing at least one 0-
minimal left ideal and at least one 0-minimal right ideal. For every O-
manimal left ideal L of S there exists o 0-minimal right ideal R such that:

(1) LR=5;

(2) RL is a O-group,

(3) the identity element e of RL is a primitive idempotent.
Thus S is completely 0-simple.

Proof (1) Let L be a 0-minimal left ideal. Now for every 0-minimal right
ideal R the set LR is a two-sided ideal and so either LR = {0} or LR = S.
From the proof of the previous lemma we know that there exists s in S
such that Ls # {0}. From the dual of Lemma 3.2.9 we know that s lies in
some O-minimal right ideal R, and it follows that LR, which contains Ls,
must coincide with S.

(2) We have now chosen R such that LR = S. Notice that RL C RN L.
We show that it is a O-group by showing that RLa = aRL = RL for all
a # 0 in RL. Such an a clearly belongs to R\ {0}, and so R = aS by the
dual to Lemma 3.2.8. Since S = LR = LaS we certainly have La # {0};
hence, as observed in the proof of Lemma 3.2.9, La is a 0-minimal left ideal.
However, La C L since a € RL C L. Hence La = L, and it follows that
RLa = RL. The proof that aRL = RL proceeds in just the same way.

(3) Let e be the identity of the O-group RL, and suppose that f is a
non-zero idempotent in S such that f < e, that is, such that ef = fe= f.
Now since e € RN L it follows by Lemma 3.2.8 that R = eS and L = Se.
Hence eSe = eS% = (eS)(Se) = RL. Hence f = efe € RL, and so f
coincides with e, the unique idempotent in the group RL \ {0}. |

In effect we have now proved part of the following theorem. By a
group-bound semigroup we mean a semigroup S with the property that
every element @ in S has a power a” (n > 1) lying in a subgroup of S.
Notice that every finite semigroup is group-bound, by Proposition 1.2.3.

Theorem 3.2.11 Let S be a 0-simple semigroup. Then the following con-
ditions are equivalent:

(1) S is completely 0-simple;

(2) S is group-bound;

(3) S satisfies miny, and ming;

(4) S contains at least one 0-minimal left ideal and at least one 0-minimal
right ideal.
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Proof We have in fact established that (4) = (1). That (1) = (2)isan
easy consequence of the remarks following the proof of Lemma 3.2.7, since
every non-zero element ¢ either lies in a group H-class or has the property
that a? belongs to the trivial group {0}.

To show that (2) = (3), suppose that S is group-bound, and let a, b
in S\ {0} be such that L, < L. Then there exist z, y and v in S such
that @ = ub and b = zay. Thus

b= (zu)by = -+ = (zu)"by",

and we may assume that n has been chosen so that (zu)” belongs to a
subgroup of S with identity e. For notational simplicity write (zu)™ = g
and denote its inverse within the subgroup by g~'. Then

eb = egby™ = gby™ = b,
and so
b=g tgb=g N (zu)"b= g~ (zw)" tz(ub) = g~ }{zu)" ‘za.

We deduce that L, = L;. We have shown that in the semigroup S we have
the implication L, < L, = L, = L; among the non-zero L-classes, and
this certainly implies the condition minyz,. The property ming is established
in a similar way.

The implication (3) = (4) is clear. O

3.3 COMPLETELY SIMPLE SEMIGROUPS

Let S be a semigroup without zero. We shall say that S is completely
stmple if S is simple and if it contains a primitive idempotent (by which
we now mean an idempotent which is minimal within the set of all idem-
potents of S). The semigroup S is then a completely O-simple semigroup
with a prime zero element, as defined by equation (3.1.1), and so for the
most part we can deduce results about completely simple semigroups from
corresponding results about completely O-simple semigroups. Certainly we
have the following simplified version of the Rees Theorem, due in effect to
Suschkewitsch (1928):

Theorem 3.3.1 Let G be a group, let I, A be non-empty sets and let
P = (pxi) be a A x I matriz with entries in G. Let S = (I x G x A), and
define a multiplication on S by

(i’ a’? A)(j? b’ ll') = (i7apA7?l"L)'

Then S is a completely simple semigroup.
Conversely, every completely simple semigroup is isomorphic to a semi-
group constructed in this way. a

We denote the semigroup I x G x A with the given multiplication by
MI|G; 1, A; Pl.
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We also have a direct analogue of Theorem 3.2.11, but before stating
it we require another definition. The next chapter will be devoted to what
are called ‘completely regular’ semigroups. One possible definition of this
concept (equivalent to the one we shall adopt in Chapter 4 as our main
definition) is that a semigroup is completely reqular if every element a of
S lies in a subgroup of S. Notice that a completely regular semigroup is
certainly group-bound.

Then we have the following analogue of Theorem 3.2.11:

Theorem 3.3.2 Let S be a simple semigroup (without zero). Then the

following conditions are equivalent:

(1) S is completely simple;

(2) S is completely regular;

(3) S satisfies miny, and ming;

(4) S contains at least one minimal left ideal and at least one minimal
right ideal. |

Further characterizations are available:

Theorem 3.3.3 Let S be a semigroup without zero. Then the following
conditions are equivalent:
(1) S is completely simple;
(2) S is regular, and has the ‘weak cancellation’ property: for all a, b, ¢ in
S,
[ca=cb and ac=bc] = a=1b;

(3) S is regular, and for all a in S
aba =a = bab=1b;
(4) S is regular and every idempotent is primitive.

Proof (1) = (2). Certainly a completely simple semigroup S is regular,
since every element of S lies in a subgroup. By the Rees-Suschkewitsch
Theorem (Theorem 3.3.1) we may assume that S = M[G;I,A; P]. Let
a = (4,z,A), b = (4,9, 1), ¢ = (k, z,v), and suppose that ca = cb and
ac = be. Then

(k; 2ZPuiZ, )‘) = (ka ZPuviY, /J,), (Za TPNEZ, V) = (.77 YPuk=, V)a

from which it follows that ¢ = j, A = g and x = y. Thus a = b, as required.
(2) = (3). Suppose that S is regular, and that aba = a. Then

a(bab) = ab and (bab)a = ba;

hence bab = b by the weak cancellative property.

(3) = (4). Since S is regular, it contains an idempotent e. Suppose
that f is an idempotent such that f < e, that is, such that ef = fe = f.
It follows that fef = f and hence efe = e by (3). But the condition that
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f < e gives efe = f. Hence f = e, and so e, which was an arbitrary
idempotent of 9, is primitive.

(4) = (1). In effect we have to show that S is simple. Since S is regu-
lar, every D-class (and so certainly every J-class) contains an idempotent.
Consider a typical J-class J, where e is a (necessarily primitive) idempo-
tent. We show that J. is a minimal J-class. For suppose that Jy < J,
where f is another idempotent. Then f = xey for some z, ¥ in S?, and the
element g = ey fxe has the properties

g’ = eyfxezyfxe = eyf3ace =eyfre=g, eg=ge=yg.

Thus g < e and so g = e. We now have

zey = f, eyfre=ce,

and so Jy = J..

By virtue of the remark preceding the statement of Proposition 3.1.4,
we now conclude that every J-class in S coincides with the kernel K(S5).
Thus S = K(S), and is simple by Proposition 3.1.4. O

It is reasonable to ask whether a regular semigroup with zero in which
every non-zero idempotent is primitive is necessarily completely 0-simple.
In fact it is not, but it is a semigroup whose structure is relatively easy to
describe. The argument above applies to non-zero J-classes J. and Jy, for
we can easily see that if the idempotent ¢ = eyfzre were equal to O then
we could deduce the obviously false result that

f=f= zeyfrey = xgy = 0.

We deduce that if S has the property that all of its non-zero idempotents
are primitive then every non-zero [J-class is minimal within the set of all
non-zero J-classes. Suppose now that J. # Jy, which is equivalent to
saying that J. N Jy = 0. Then for all z in J, and y in Jy,

J:z:y .<_ J87 J:x:y S Jf-
If zy # 0 then the minimality of J. and Jy gives
Je = Ja:y = Jfa

which is impossible. Hence zy = 0. We have shown that J, # J; implies
that J.Jy = {0}.

Now each J. U {0} is a principal factor of S and is clearly not a null
semigroup. Hence it is 0-simple by Theorem 3.1.6, and since it contains the
primitive idempotent e it must be completely 0-simple. In effect we have

shown that
s=J8,
i€l
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where each S; is a completely 0-simple semigroup, and where
Si n Sj = SZSJ = {0}

if i # j. We say that S is a 0-direct union of completely O-simple semi-
groups.

In effect we have now proved half of the following theorem. The converse
half is an easy direct verification.

Theorem 3.3.4 Let S be a semigroup with zero. The following statements
are equivalent:

(1) S is regular and every non-zero idempotent of S is primitive;

(2) S is a O-direct union of completely 0-simple semigroups. 0

3.4 ISOMORPHISM AND NORMALIZATION

There is often room for argument as to what constitutes a satisfactory
structure theory in algebra. In the context of abelian group theory Ka-
plansky (1954) proposed certain test questions that a truly satisfactory
structure theory ought to enable one to answer. Kaplansky’s questions do
not seem very appropriate to semigroup theory, and two questions have
traditionally been asked in the semigroup context. The first is ‘Does there
exist an associated isomorphism theorem?’, and the second is ‘Does the
theory enable one to give an explicit description of the congruences?’ The
first question is inescapable, and applies in every algebraic context, for an
alleged structure theorem that does not have an associated isomorphism
theorem is of little use. If (to be fanciful) we show that some mathematical
object W called a ‘wall’ is built out of n ‘bricks’ By, B, ..., B,, then our
theorem is undoubtedly more useful if one can say that any other decom-
position of the same wall W into bricks Bf, B), ..., B}, must be such that
m = n and B} ~ B; for all i. The second question, regarding the descrip-
tion of congruences, is much more characteristic of semigroup theory. Its
answer often involves work of a tediously detailed nature, and in a book
of modest size it will usually be sufficient to give a reference to the litera-
ture. In the case of the Rees Theorem for completely 0-simple semigroups,
however, it seems reasonable to make an exception, partly because of the
great importance of the theorem in semigroup theory, but also because
the classification of congruences on completely 0-simple semigroups has at-
tracted the attention of several authors. Differing accounts have been given
by Gluskin (1956), Tamura (1960), Preston {1961, 1965), Lallement {1967,
1974) and Kapp and Schneider (1969). The account given in Section 3.5
most closely resembles Lallement’s (1974) version.

First, however, we prove an isomorphism theorem. It is fairly clear that
in our proof that every completely O-simple semigroup S is isomorphic to
some Rees matrix semigroup M°[G; I, A; P, the group G we encountered
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was ‘intrinsic’ and so were the sets I and A (since they index the R- and
L-classes of S, respectively). The elements r; and ¢y are, by contrast,
open to some choice, and so we should expect the entries py; = ¢qar; of the
sandwich matrix to be subject to some variation. In fact we have

Theorem 3.4.1 Two regular Rees matrix semigroups
S = MOG;T,A; P] and T = MO[K;J,M; Q]
are isomorphic if and only if there exist an isomorphism 6 : G — K,
bijections v : I — J, x : A — M and elements u; (i € I}, vy (A € A) such
that
Pl = Ua@ay,ipts (3.4.1)
foralli in I and X in A.

Proof Certainly if we are given 8, 9, x, {u; : 4 € I'} and {vy : A € A}
with the given properties, then it is easy to check that the map ¢ : S —» T
given by

(i,a, M) = (i, ui(aB)vr, Ax) ((5,0,A) € S) (3.4.2)

is an isomorphism.

Conversely, if ¢ : S — T is an isomorphism, it maps the non-zero R-
classes of S in a one-one fashion onto the non-zero R-classes of T, and so
there is a bijection + : I — J such that (i,a, A)¢ € R;y. Similarly there is
a bijection x : A — M such that (i,a, )¢ € Ly,. Moreover, ¢ maps group
‘H-classes onto group H-classes, and so py; # 0 if and only if gy, # 0.

Now choose a group H-class of S, and as in the proof of the Rees The-
orem denote it by Hyp (with 1 € TN A) without essential loss of generality.
Its image under the isomorphism ¢ is the group H-class Hiy,14. We now
have three isomorphisms, an isomorphism « : G — H;y; sending the ele-
ment z of G to (1,p1'11x, 1), an isomorphism § : K — Hyy 1, sending the
element y of K to (14, ql_Xl’wy, 1x), and the isomorphism

By« Hin — Hip 1y

Let
0 = ap|g,8': G — H.

Then 6 is an isomorphism, and has the property that for all z in G

(1,pii e, 1)¢ = zad|g,, = 08 = (1¢,q;)j‘w(x0), 1x).
Now notice that for an arbitrary element (%,a,\) of S we can write
(5,0, ) = (i, &, 1)(L,p11 0, 1)(1, 5115 ).
Define the elements u;, vy in K by
(i, 1) = (i, 5, 1%), (1,01, A = (14, G100 X)-
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Then by the morphism property of ¢ it follows that

(1,8, )¢ = (1%, s, 1) (19, g1y 1(08), 1X) (19, 453 1,02, AX)
= (1%, us(ad)vx, Ax).
Now if py; # 0 then

(i, us(prsf)vr, Ax) = (4,021, A)®
= [(i, e, \) (i, €, \)]¢p = [(4, €, Nl [(4, €, A) @]
= (8, usux, Ax) (i), uux, Ax)
= (g, Ui UNG Ny, ip UiUN, AX),

and from this it follows, since K is a group, that

Dail = UAQrx,ip Ui

as required. Notice finally that if py; = O then gy, iy = 0 also. Thus the
equality (3.4.1) holds in all cases. O

An alternative way of expressing the result is sometimes useful. Here we
consider two Rees matrix semigroups M°[G; I, A; P] and MO[G; I, A; Q). If
there exist a A x A diagonal matrix V with entries v in G and an I x [
diagonal matrix U with entries u; in G such that P = VQU, then the
map (i,a,\) — (i,u;avy,A) is an isomorphism from MO°[G; I, A; P] onto

MOG; 1,05 Q).

The isomorphism theorem can be seen as specifying the degree to which
there is variability in the sandwich matrix P attaching to a completely 0-
simple semigroup. In the case where S is completely simple (without zero)
and where every H-class is a group there is an obvious and natural choice
for the elements r; in Hy; (¢ € I) and ¢y in Hyy (A € A): we simply take r;
as the identity of the group H;; and ¢y as the identity of the group Hi,.
In particular r1 = ¢q; = €, the identity of the group Hy;. Then for all 4 in

Pi1 = qiTy = €ry = €,

since the idempotent r; acts as a right identity within the £-class L, and
similarly py; = e for all X in A. We obtain a sandwich matrix P = (py;)
which is normal, in the sense that every entry in the first row and the first
column of P is equal to e. We have proved

Theorem 3.4.2 If S is a completely simple semigroup then S is isomor-
phic to a Rees matriz semigroup M|G; I, A; P in which the matriz P is
normal. 0O

A normalization theorem is available for the completely O-simple case,
but is necessarily more complicated. Let S = MO°[G;I,A; P] be a com-
pletely O-simple semigroup, and as usual let us denote the identity element
of G by e. Foreach iin I let A; = {\ € A : py; # 0}, and for each A in A
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let In = {i € I : py; # 0}. Then define equivalence relations £;, €4 on I
and A, respectively, by

Er={G)eIxI: A=A}, Ex={0m)eAxA:I =1L}

Denote the &r-class containing ¢ by ¢* and the £,-class containing A by
A*. We can think of the sets I and A as ordered in such a way that the
matrix P = (p);) is partitioned into blocks i* x A*, and the definition of
the equivalences £; and &, ensures that either py; = 0 for all ¢ in 7* and X
in A*, or py; # 0 for all ¢ in ¢* and A in X*. In the latter case we say that
i* X A* is a non-zero block. The regularity of the matrix P (see equation
(3.2.2)) ensures that for every ¢* there exists A* such that i* X A\* is a non-
zero block, and for every A* there exists ¢* such that i* x A\* is a non-zero
block.

Now for every i* choose an £j-class v*(4*) such that i* x v*(i*) is a
non-zero block, and choose an element v(¢*) within the £x-class v*(4*).
Thus p,(s»),; # 0 for all ¢ in 4. Similarly, for every A* choose an &£;-class
n*(X*) such that n*(A*) x X\* is a non-zero block, and choose an element
n(A*) within the £r-class n*(A*). Thus py ,(a«) # 0 for all A in A*.

The matrix P is called normal if (i) for every £;-class ¢* there exists A
such that py; = e for all ¢ in 4*, and (ii) for every £-class A* there exists 5
such that py; = e for all A in A*. Then we have the following theorem:

Theorem 3.4.3 Let S = MO[G;1,A; P be a completely 0-simple semi-
group. Then S ~ MC[G; I, A; R], where R = (ry;) is a normal matriz.

Proof We use the remark following Theorem 3.4.1. Premultiplying P
by a diagonal matrix V! with entries v;l in G in effect multiplies row
A of P by v;l for each A in A. Define v to be py n(x+) for each A in
AX*. Then the A x I matrix @ = (gx;) = V~'P has the property that
drn(x+) = e for every A in A* and every X* in A/Ex. Now define u; to be
Qy(i*),; Tor each ¢ in 7*. Then R = V-'PU~! = (ry;) is a normal matrix,
and (i,a,A) = (4,u;avx,A) is an isomorphism from MPO[G; I, A; P] onto
MO[G; 1, A5 R). m|

3.5 CONGRUENCES ON COMPLETELY 0-SIMPLE SEMIGROUPS*

We now give a description of the congruences on a completely 0-simple
semigroup, or rather (what by the Rees Theorem amounts to the same
thing) on a Rees matrix semigroup MO[G; I, A; P}, in the case where the
sandwich matrix P = (py;) is regular in the sense of (3.2.2).

First, if p is a congruence on a completely O-simple semigroup S then
Op, the p-class containing 0, is easily seen to be an ideal of S. It follows
by the O-simplicity of S that either 0p = {0} or Op = S. In the latter case
p = 5 x 5, the universal congruence, and so there will be little loss if we
restrict attention for the moment to what we shall call proper congruences
p, for which 0p = {0}.
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Let S = M°[G; I, A; P] be a completely 0-simple semigroup. As in the
previous section we define an equivalence relation £; on I by the rule that

(i,j)e&r if AeA:pyy=0}={AeA:py; =0}, (3.5.1)
and an equivalence relation £, on A by the rule that
(Mp)eépr if {iel:py=0}={iel:py, =0} (3.5.2)

If p is a proper congruence on S, we define a relation p; on I by the

rule that (¢,7) € pr if (¢,7) € &7 and if
(6055 A) p (5,037, ) (3.5.3)
for every A such that py; (and hence also py;) is non-zero.

It is clear that p; is reflexive and symmetric. To show that it is transi-
tive, note first that if (4,7) € pr € &r and (4, k) € pr C & then (3, k) € &
by the transitivity of £r. If A is such that py; # O then py; and pyy are
non-zero also, and

(1,035 A) p (D3> A (63 A) p (Ks D> V-
It now follows by the transitivity of p that p; is an equivalence relation

on I.
By analogy, we have an equivalence relation ps on A defined by the rule

that (A, 1) € pa if (A, 1) € € and
(5,05, 2) p (4,0, 1) (3.5.4)

for every i in I such that py; (and hence also p;) is non-zero.
Once again we select an arbitrary group H-class of S and call it (without
loss of generality) Hq1. Let

Ny,={aeG:(1,a,1) p(1l,e, 1)}, (3.5.5)

where e is the identity of G. Then certainly e € N,, and so N, # 0. In
fact,

Lemma 3.5.1 N, is a normal subgroup of G.
Proof Suppose that a,b € N,, so that
(1,a,1) p(1,e,1) and (1,0,1) p(1,e,1).

Then
(170’7 1)(1ap1_12) 1)(17()’ 1) P (1,61 1)(1?171—12» 1)(13 €, l)a

that is,
(1,ab,1) p (1,¢,1).

Thus ab € N,. Again, if a € N, then
(170'7 1)(1,291_11@_1, 1) P (15 €, 1)(1»171—110'—1’ 1)7
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that is, (1,e,1) p (1,a=%,1). Thus ¢=! € N,. We have shown that N, is
a subgroup of G. To show that it is normal, consider a in N, and g in G.
Then

(17 galpfllv 1)(17 a’) 1)(1,]71_119, 1) p (1’9—1171_119 1)(17 e, 1)(1,171—119, 1),
that is, (1,97 ag,1) p (1,e,1). Thus g~tag € N,. 0

Before moving on, let us record the easily verified fact that, for all a, b
in G,
(1,a,1) p (1,b,1) if and only if ab™! € N, (3.5.6)

So far, then, we have seen that a proper congruence p determines equiva-
lence relations py (C &r) and pa (C €) on the sets I, A, respectively, and
a normal subgroup N, of G. These three objects are not independent, and
to describe the nature of their interdependence we now require a notion
due to Lallement (1967). If py;, pui, py; and py,; are all non-zero, then
p,\ip;il p,”-p)_\j1 is an element of G. We call it an extract of the matrix P,
and write

auij = PADp; PuiDig - (3.5.7)
It is easy to verify the following identities, which will be required later:
Dawii Dougk = Dipiks (3.5.8)
and
—1 -1 -1 —1 -1 _—1
Dyi DapigPri - Pui QuuijPui = Dyag DusgPri- (3.5.9)

Then we can prove

Lemma 3.5.2 Let p be a proper congruence on a completely 0-simple
semigroup S = MO[G;I,A; P, and let i, j, A, w be such that pxi, P,
prj ond p,; are all non-zero. If either (i,5) € pr or (A, u) € pa then
Prpij € Np.

Proof Suppose first that (4, 5) € pr. Then

(6,0 1) p (4,0 » 1),
and so
(L, e, N6 m5 )i p3; 1) £ (1, e, X) (G, Py 1) (s D3 1)-
That is,
(1 pkzpm pmp)\J 71) P (1 €, 1)
and 80 gxuij € N,. Similarly, if (A, u) € pa then
(Le, (@035 NG 3 H 1D o (1 e, M) (6ot 1) (G P35 1)
That is,
(1,e,1) p (1, Pripi PusP; » 1)
and so again qxui; € Np. O
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This result motivates the following definition. A triple (N, S,7) con-
sisting of a normal subgroup N of G, an equivalence relation & on I and
an equivalence relation 7 on A will be called linked if

(L1) SCE, T Cén;
(L2) if4,jin I and A, pin A are such that py;, paj, Pu: and p,; are all
non-zero, then gx,;, € N whenever either (4,5) € Sor (A, pu) € 7.

What we have shown thus far is that there exists a map I" from the set of
proper congruences of S into the set of linked triples, associating p with
the linked triple (N,, pr, pa). We shall eventually see that I is a bijection.

As a first step towards a full examination of the map I'" we have
Lemma 3.5.3 If the elements (i,a,\) and (j,b, 1) of S are such that
(i,a,A) p (4,b,p) then (i,7) € pr.
Proof We need to show that (4,7) € £ and that

(i,0556) p (0 )

for every £ in A such that pe; (and hence also pg;) is non-zero. To show the
first of these properties, suppose that € in A is such that pg; = 0. Then

0= (1?6’ 5)(7:’61’ A p (1,€,§)(j, b, ﬂ')y

and so, since p is a proper congruence, (1,e,£)(4,b, ) = 0. We have shown
that pg; = 0 = pg; = 0, and since the opposite implication is provable
in exactly the same way we deduce that (¢,7) € £7. A similar argument
shows that (X, 1) € Ea.

To prove the second part we begin with the given information that
(i,a,)\) p (4,b,p). We premultiply both sides by (1,e,£), where £ is any
element of A such that pg; and pg; are non-zero, and we postmultiply both
sides by (k,p11,1), where k is any element of I such that pyx and pur are
both non-zero. A routine calculation then gives

(L peiaprepr1, 1) p (1, pg5bpurpin, 1)
Writing this for brevity as {1,¢,1) p (1,d,1), we deduce from (3.5.6) that
cd~! € N,. Hence c™!(cd™!)"*c = ¢c~'d € N, by the normality of N,, and
we deduce that (1,¢71,1) p (1,d~1,1). In the original notation this gives
(Lo pee 'pes 1) p (Lo ppe  pg s 1)
Now premultiply the left-hand side of this relation by (%,a,A)(k, e, 1) and

the right-hand side by the p-equivalent element (4, b, u}(k, e, 1), and post-
multiply both sides by (1, pl_ll, £). A routine calculation gives

(i,p,"5€) p (4,257, €),
exactly as required. O

A similar argument establishes
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Lemma 3.5.4 If the elements (i,a,A) and (4,b,4) of S are such that
(Z.7a'7 )‘) P (j»bnu’): then ()‘aﬂ’) € PA- O

T'he next result shows that the map I from the set of proper congruences
on S into the set of linked triples is order-preserving;:

Lemma 3.5.5 If p and o are proper congruences on the completely O-
simple semigroup S = M°[G; I, A; P], then p C o if and only if

pr Cor, pan Copand Ny C N,
Proof It is clear from the definitions of py, pa and N, that if p C o then
pr € o1, pao € oa and N, C N,. Conversely, suppose that p and ¢ are
congruences on S such that p; C o7, po € op and N, C N,;, and suppose
that (i,a,A) p (4,b,1). By the last two lemmas we immediately deduce

that
(i,5) € pr Cor and (A, pu) € pa C o4, (3.5.10)

Also, if we choose z in I and £ in A such that pg; and py, (and hence also pe;
and p,,;) are non-zero, and if we premultiply by (1,e,£) and postmultiply
by (z,e,1), we obtain
(L, pesapaa, 1) p (1, peibpue, 1)
Hence peiapaz (pejbpus) ™' € N, C Ny, and so
(lvpgiap)\wa 1) g (17p€]bpuw7 1)
Now, since (%, 7) € o7 we have that (i,p&l,ﬁ) o (j,pgjl,ﬁ); hence, postmul-
tiplying by (4, pgilpl‘ll, 1), we obtain that
(ivpg_ilpi_lla 1) g (j:pg_jlpl—llv 1)
By a similar argument we have
(L, P17 P3as A o (L, P1 P » 1),
and since ¢ is a congruence it now follows that the elements
(i, P pii> (1, Peiapas, 1) (1, 71 pis, A)
and
P —1 -
(Japgj plll: 1)(1, pe;bppe, 1)(1,171111)“;, 1)
are o-equivalent. That is, (i,a,A) o (4,0, ). |
As a corollary to this result we have that if py = o7, po = oa and

N, = N, then p = o; thus the map I" is one-one. That I" is onto follows
from the next result:

Lemma 3.5.6 Let (N,S,7) be a linked triple and let the relation p on
S\ {0} be defined by the rule that (i,a,\) p (4,6, u) if and only if:

(1) (i,7) €S and (A, p) € T;
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(2) pgiap,\mp;;b_lpg € N for some z in I and £ in A such that pg;, pej,
Pz ond P, are all non-zero.

Then pU {(0,0)} 4s a proper congruence on S such that pr =8, pa =T
and N, = N.

Proof It is clear that p is reflexive. It is also symmetric, since S and 7
are symmetric and since pgiapmp;xlb_lpgjl € N implies that
PeibPusPrs 0~ 05 = (Paapraps b~ 'pg ) T € .

The verification of transitivity presents us with some difficulties, and it
pays first to develop a slightly different characterization of p in which the
words ‘for some’ are replaced by ‘for every’:

Lemma 3.5.7 If p is as defined in the statement of Lemma 3.5.6, then
(i,0,\) p (4,b,1) & and only if
(1) (Gj) €S and (A p) € T;

(2) pgiap)\xp;jb_lpﬁ_jl € N for EVERY z in I and & in A such that pg;,
De¢j, Paz and py, are all non-zero.

Proof It is of course obvious that the new relation defined in this way
is contained in p. To show the reverse conclusion we must show that if
pgiap,\mp;xlb"lpgjl € N and if y in I and 7 in A are such that py;, Py, Py
and py, are all non-zero, then it is also the case that

PridPryPy b ', € N.

Now, a normal subgroup of G has the ‘symmetric’ property that for all ¢,
din &
cde N = dce N

(for clearly dc = ¢ '(cd)c). Hence from the hypothesis that
Peitprpab Py € N

we can deduce that
PraPpab” g peia € N.

Now (A, u) € 7 and the triple (N, S,T) is linked. Hence

QPupyz = p)\yp;ylpuxp;; € N.

By forming the product of these two elements of N we deduce that
PayDyy b g peia € N.

Now, again by the symmetry property of N, we deduce that

ap,\yp;y] b_lpgjlpgi € N.
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Also, since (4,7) € § and since (N, S, 7) is a linked triple, we have that the
element pgilqgnjipgi € N, that is,
Pgi PejPy; Pni € N.

Multiplying these two elements of N together then gives

ap)xyp;;b— 1p;jlp‘l’]i EN,
from which it follows by the symmetry property that

pnz‘apkyp;ylb—lp;jl €N,
exactly as required. |

Returning now to the proof of Lemma 3.5.6, let us suppose that

(i;a,2) p (4,0, ) and (5,6, 1) p (k,c,v).
Then certainly (4,k) € S and (\,v) € 7. Also, if z in [ and £ in A are
such that pg;, per, Paz and py, are all non-zero, then because S C €7 and
T C &y it follows that pe; and p,, are non-zero also. By the lemma just
proved we have
pgiap,\xp;;b_lpgjl € N and pgjbpwp;;c“lpgkl € N.
Multiplying these gives
PeiPrPyaC Py € N,

which is exactly what we require in order to show that (4,a, ) p (k, ¢, v).

We have shown that p is an equivalence relation. To show that
it is a congruence, let (i,a,\),(4,b,u),(k,c,v) € S and suppose that
(4,a,A) p (4,b,1). Then (i,5) € 8 C & and so either p,; = p,; = 0
(in which case both products (k,c,v)(i,a,)) and (k,c,v)(j,b, 1) are zero
and so certainly p-equivalent) or p,; and p,; are both non-zero, in which
case we have to prove that

(k, CPuia, )\) P (ka Cpujb7 l‘l’)

This amounts to proving that, for some x in I and £ in A such that peg,
Paz and py,, are all non-zero, N contains

PekCPuitPralig b 0y ¢ gy (3.5.11)
Now (i,a,A) p (4,b, p), and so by Lemma 3.5.7 we have that
PeiaPraDgb 0z € N

for every = in I and £ in A such that pg;, pej, prz and p,, are all non-zero.
Since we are presently assuming that p,; and p,; are non-zero, we may
substitute v for £ in at this point and deduce that

PuiPralis b 'p, € N
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whenever py; and p,; are non-zero. The desired formula (3.5.11) follows
from this by conjugation. Thus p is a left congruence.
To show that p is a right congruence, once again let

(i7 a’ A)’ (.j’ b’ u)? (k’ c? l/) 6 S’
and suppose that (i,a,A) p (7,0, ). If pag = pux = 0, then
(i’ a? A)(k7 C? V) = (.j? b’ u)(k? C? ’/) = 07

and so the products are certainly p-equivalent. Since (A, u) € T C &, the
only other possibility is that pyx and p,; are both non-zero, and in this
case we begin by noting that

PeiaprkPb o € N

for every £ in A such that pg; and pe; are both non-zero. (Here we have
chosen z = k, as we may.} Hence, if z in [ is such that p,, # 0, then

PeiOPAKCPuaPya ¢ Pk b P € N,
from which it follows that (i,apakc,v) p (4, bpukc,v) as required. Thus
pU{(0,0)} is a proper congruence on S.
It remains to show that p;y = S, pp =7 and N, = N. First, if (4, §) € pr
then (i,p;l-l,)\) P (j,p;jl,)\) for every X such that py; # 0. Hence by the

definition of p we have (i, j) € S. Conversely, if (4,7) € S and py; # 0 then,
by the linked property of the triple, N contains the element

Genij = DeiPx; PaaPirg (P} ) ' De;
for every z in I and & in A such that pg;, pe; and py, are all non-zero. It
follows that (i,p;il,/\) P (j,p;jl,)\), and so (4,7) € p;. Thus pr = S, and a
similar argument shows that ps = 7.

Finally, recall that @ € N, if and only if (1,a,1) p (1,e,1), that is, if
and only if for every z in I and £ in A such that ps1 and pi, are both
non-zero,

Pe1ap1ePi, Py € N,

that is, if and only if a € N. Thus N, = N. 0

We summarize the results of this section in a theorem as follows:

Theorem 3.5.8 Let S = MO[G;I,A; P] be a completely 0-simple semi-
group. Then the mapping I' : p— (N,, pr, pa) is an order-preserving bijec-
tion from the set of proper congruences on S onto the set of
linked triples. 0

If we study completely simple semigroups (without zero) many of the
complications in the foregoing account disappear. In particular, we do not
need to restrict to proper congruences, and the equivalences £; and £ are
unnecessary. A linked triple is then simply a triple (N,S,7) consisting
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of a normal subgroup N of G and equivalence relations S, 7 on I, A,
respectively, with the property that if (¢,7) € S or (A, ) € 7 then gxuij €
N. We then have

Theorem 3.5.9 Let S = M[G; I, A; P| be a completely simple semigroup.
Then the mapping T : p — (N,, pr,pa) is an order-preserving bijection
from the set of proper congruences on S onto the set of linked triples. O

3.6 THE LATTICE OF CONGRUENCES ON A COMPLETELY 0-SIMPLE
SEMIGROUP*

In this section we use the correspondence proved above between the proper
congruences on & completely O-simple semigroup and linked triples to de-
rive information on the nature of the lattice of congruences. If (N,S,T)
is a linked triple of S = MPO[G;I,A; P] we shall write the congruence
(N,S,7)I'"! corresponding to the triple as [N,S, 7] (with square brack-
ets). Thus p = [N, p1, pA]

Lemma 3.6.1 If p and o are proper congruences on a completely 0-simple
semigroup S = MO[G; 1, A; P}, then

pNo =[N,N Ny, prNor,psNoal,
pVo= [NpNg,pI Vaor, pa VUA]‘

Proof To prove the first of these statements, mnotice first that
(N,N Ny, prNoy, paNoy) is a linked triple. For it is clear that prNor C &
and pp Nop C Ep, and if 4, §, A and p are such that pxi, P, Pui, Puj are
all non-zero, then

(i,j)eplna'l = (Zaj)epf and (’l:,j)EO'I
= i € Np and Duij € N,
= (uij € NpﬁNg,

and similarly
(A ) € paNon = @uij € Ny No.

Thus there is a congruence [N, N N, pr N o, pa N ga] which, by Lemma
3.5.6, is contained in p and in ¢ and is the largest congruence with these
properties.

The same approach works for pVo, except that there is more difficulty in
establishing that (N,N,, pr Vor,pa Voa) is a linked triple. Since pr,07 C
Er we do have that p;y Vor C &5, and similarly pp Voa C €x. Also,
by elementary group-theoretic results—see, for example, M. Hall (1959)—
N,N, is a normal subgroup of G and is the smallest normal subgroup
containing both N, and N,. If pxi, Prj, Puis Pu; are all non-zero, and if
(i,4) € pr V o, then by Proposition 1.5.11 there exist 41,%2,...,%2,—1 in T
such that

(ivil) € p1, (7:177:2) €oy,.. -7(i2n—2,7;2n-1) € p1, (i2n—13j) €0r.
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Since p; and o7 are both contained in £ we have that py;. and p,;, are
non-zero for every 7, and by the linked property of the triples (IV,, p1, pa)
and (N,,o7,04) we deduce that

q)\ui’h E Np, q/\;l,’l.llg E NO’) A ’Q/\Mi27072i2,n,..1 E Np7 quzn_lj e No"
Hence the product

Qpriy Dopivia - - - Doppizn—gion—1 Dptizn—1J

belongs to N,N,, that is, gxni; € N,N,, by virtue of equation (3.5.8).
If (A, 1) € pa V oA then there exist A1, Az, ..., Aan—1 such that

(M A1) € pa, (A, A2) €0A,- -5 (A2n—2, A2n—1) € pA, (Aan—1,1) € 04 .

Again, if ¢, j in I are such that pys, Drj, Pus, Duj are all non-zero, then py ;
and py.; are non-zero for every r, and

Drg € Noy @aireis € Noy oo s Qg _odan_1i5 € Nos @ragn_1pis € No.

Hence, since N, and NN, are normal subgroups,

—1 -1 -1
Pxi Da1iiPri € Npy D300 2055005 € Noy oo 3Dy, i@gn1pijPAan—1i € No,

and so the product of these elements is in N,N,. That is, by virtue of
equation (3.5.9), p;ilq;:ijp,\i € N,N,, from which it follows immediately
that gaui; € N,N,, as required.

We have shown that (N,Ny, pr V or,pa V op) is a linked triple, and it
now follows from Lemma 3.5.6 that [N,N,, pr Vor,paVoa] =pVo. ]

We can now establish the following result:

Theorem 3.6.2 The lattice of congruences on a completely 0-simple semi-
group is semimodular.

Proof Let S = MO[G;I,A; P]. Let (NV,n,.) be the lattice of all normal
subgroups of G, let (P,N, V) be the lattice consisting of all equivalences on
I contained in &;, and let (Q,N, V) be the lattice of all equivalences on A
contained in €. Let X = N x P x Q be the direct product of these three
lattices. By Lemma 3.6.1 the subset Y of X' consisting of all linked triples
(N,S,7) in X is a sublattice of X. The effect of Theorem 3.5.9 is to give
us an isomorphism I' between the lattice (KC,1, V) of proper congruences
on S and the lattice V. Now A is semimodular by Corollary 1.8.4 and
Propositions 1.8.5, 1.8.6 and 1.8.7. It will follow that Y is semimodular if
we establish the following result:

Lemma 3.6.3 If (Ny,51,71) and (Na,S2,73) belong to Y, then
(N1,81,T1) covers (N2,82,T2) in YV if and only if (N1,S81,71) covers
(NQ,SQ,E) in X.

Proof One way round this is obvious. The difficulty arises because it is
conceivable that (N1, S1,71) could cover (Na, S, 72) in YV, but that there
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might be an element (N, S8,7) in X \ Y strictly in between. To see that
this cannot in fact happen, notice that if Ny D Ny then (N1, 8s,7T3) is a
linked triple such that

(Nl’Slaﬂ) Z (Nl’32975) > (NZ,SQ?%);
hence, by the covering property, S; = S», 71 = T5.
Equally, if & O 8 then (V1,82,71) is a linked triple such that
(N1,81>,Zi) > (N1782a73.) Z (NZ)SQa%)7

and hence Ny = Ny, Ty = T.

Applying a similar argument to the case where 7; O 75 we draw the
general conclusion that (Nq,S1,77) covers (N2, S2,73) in Y if and only if
either

(a) Ny > Ny inN,81252and7’1:'T2,

or
(b) Ny =Ny, &1 =85 in P and 73 273,

or
(¢) Ny =Ny, S =8 and T; =T, in Q,

that is, if and only if (N1, S1,7q) covers (Ng, S2,73) in X. O

We may now conclude that the lattice K of proper congruences on
§ is semimodular, since it is isomorphic to Y. The lattice C(S) of all
congruences on S is obtained from K by adjoining a single extra maximum
element, the universal congruence § x S. Since the maximum element
can never figure either as a or as b in the hypothesis ‘if @ = a A b and
b= a Ab appearing in the definition of semimodularity, the adjunction of
this element does not destroy the semimodularity property of the lattice.
The proof of Theorem 3.6.2 is thus complete. O

3.7 FINITE CONGRUENCE-FREE SEMIGROUPS*

If a semigroup S has a proper ideal I then the Rees quotient S /I is a proper
homomorphic image of S. Thus if S is to be congruence-free, that is to say,
if S is to have no congruences other than 15 and S x S, then it must in
the first place be simple or 0-simple. In the finite case this implies that S
is completely simple or completely O-simple. (This need not be so in the
infinite case: see the Notes at the end of the chapter.)

If S has a zero we may thus identify it with M°[G; I, A; P]. Now the
triple (G,17,14) is certainly linked, and gives rise to a non-identical con-
gruence unless G = {e}. Thus G = {e} if S is congruence-free. Hence every
Dx: is equal either to e or to 0 and every extract Qxus; 1s equal to e. Thus
({e},é’ I,EA) is a linked triple, and determines a non-identical congruence
unless £ = 17 and &y = 14.

Now in the case we are considering, where G = {e}, to say that (i,7) €
&1 is to say that py; = e if and only if py; = e; so in effect (4,) € € if and
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only if columns ¢ and j of P are identical. Thus to say that & = 1; is to
say that no two columns of P are identical. Similarly, to say that €4 = 15
is to say that no two rows of P are identical.

We can summarize what we have found in the following theorem:

Theorem 3.7.1 Let I ={1,2,...,m} and A ={1,2,...,n} be finite sets
and let P be a reqular n x m matriz of 1s and Os such that no two rows
are identical and no two columns are identical. Let S = (I x A) U {0} and
suppose that a binary operation is defined on S by

(NG = {920

(i, A)0 = 0(i, \) = 00 = 0.

Then S is a congruence-free semigroup of order mn + 1.
Conversely, every finite congruence-free semigroup with zero is isomor-
phic to one of this kind. O

This constitutes a fairly reasonable classification of finite congruence-
free semigroups with zero. It does not appear to be possible to write down
a usable formula for the number of congruence-free semigroups of a given
order, but for small orders it is not too hard to compute. (See Exercise
3.14.)

In the case where S has no zero, a simpler, more striking statement can
be made:

Theorem 3.7.2 If S is a finite congruence-free semigroup without zero
and if | S| > 2, then S is a simple group.

Proof We may take S = M[G; I, A; P]. If N is a proper normal subgroup
of G then (N,15,14) is a linked triple (since gaxi; = @ruii = €) and so
[N,17,14] is a congruence on S distinct from both 15 (= [{e}, 11,14]) and
S xS (: [G,I xIAx A]) Hence if S is congruence-free then either G
is simple or G = {e}. If G = {e} then |[I x A] = |S| > 2 and so either
[I] = |A] = 2 or at least one of I, A (say I) has more than two elements.
In the first case we find linked triples ({e}, 17, A x A) and ({e}, 7 x I,14)
giving rise to non-trivial congruences, while in the second case there exists
an equivalence S on I such that 1; € & C I x I, and this gives rise to a
non-trivial congruence [{e},S,14] on S. Hence if S is congruence-free then
G # {e}.

Thus G is a simple group. If either of I, A contains more than one
element then [G, 17, 14] is a congruence on S distinct from both § x S and
1g. Hence if S is congruence-free we must have |I| = |A] =1 and so S ~ G,
a simple group. O

The classification of finite congruence-free semigroups without zero is thus
reduced to the group-theoretic problem of the classification of finite simple
groups. The solving of this group-theoretic problem is one of the major
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achievements in algebra in recent decades. See, for example, Gorenstein
(1982).

Remark If in Theorem 3.7.2 we drop the proviso that |S| > 2 then we
cannot altogether rule out the possibility that G = {e}. In fact we obtain
a congruence-free semigroup of order 2 when G = {e} if either |I| = 2 and
[A] =1or [I] = 1 and |A| = 2. In the former case we obtain the left zero
semigroup of order 2, and in the latter case the corresponding right zero
semigroup.

3.8 EXERCISES

1. In the infinite monogenic semigroup S = (a), show that every proper
ideal is of the form Sa™, and that

S>8a> 8> -
Deduce that S has no minimal ideals.

2. If S = (@) = M(m,r), a monogenic semigroup with index m and
period r, show that

K(S) = {a™,a™", ... ,a™T 1]

3. Show that if I and J are ideals of a semigroup S then INJ and TU J
are ideals. Show also that (JU J)/J ~1/(INJ).

Let A, B be ideals of a semigroup S such that A C B and such
that there does not exist any ideal C of S for which A C C C B. Let
be B\ A

(a) Show that AU J(b) = B.
(b) Show that I(b) = AN J(b).
(c) Show that B/A ~ J(b)/I(b).

4. Define
S1 258 D2---D85,

to be a principal series of a semigroup S if

(a) each S; is a (two-sided) ideal of S;

(b) there is no ideal of S strictly between S; and S;p1 (i =

1,2,...,m-1)
(c) Sy =8, Sy = K(S).
Show that the factors S1/S2, S2/S3, ... Sm—1/Sm, Sm are isomor-

phic, in some order, to the principal factors of the semigroup. Deduce
that any two principal series have isomorphic factors.

5. A semigroup S is called semisimple if none of its principal factors is

null. Show that S is semisimple if and only if A2 = A for every ideal
A of S.
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0-simple semigroups

. Use the Rees Theorem to show that if S is completely simple and

H = 1g then S is isomorphic to a rectangular band I x A.

Now let S be completely 0-simple and suppose that H = 1g. Show
that 9 is isomorphic to a semigroup (I x A)U{0} whose multiplication
is given in terms of a regular A x I matrix P = (p);) with entries in
{1, 0} as follows:

(@ A0,p) = '
0 ifpy; =0
(1, \)0 = 0(z,A) = 00 = 0.
Such a semigroup is sometimes called a rectangular 0-band.

Let S = MIG; I, A; P] be a completely simple semigroup. Show that
the idempotents of S form a subsemigroup of S if and only if

(V’L,] S I)(V)\,,u c A) Grpij = €.

Let S = M|G; 1, A; P] be a completely simple semigroup in which the
idempotents form a subsemigroup. Choose a fixed ¢ in I and a fixed
Ag in A and for simplicity of notation write ig = A = 1. Show that
if F is the rectangular band I x A then the mapping ¢ : G X £ — §
given by

(ga (7'3 )‘))d) = (i7p1'ilgp11p;1la /\)

is an isomorphism.

. Let T, be the full transformation semigroup 7], where [n] is the finite

set {1,2,...,n}.
(a) Show that T, has n J-classes Ji, Ja, ..., Jn, where

Jo={ael,:|ima|=r} (r=1,2,...,n),

and that
Jy <y <o < Iy

(b) Let K, = {a €T, : |ima| <r} (r =1,2,...,n), so that J, =
K.\ K,_1. Show that the principal factor K,/K,_1 is completely
O-simple (r = 2,3,...,n). Show also that K,,/K,_1 is a 0-group,
and that the kernel J; is a right zero semigroup of order n.

(c) Show that the J-class J, contains () L-classes and S(n,r) R-
classes (where S(n, r) is the Stirling number of the second kind —
see Exercise 1(15)) . Show also that each H-class in J,. contains
r! elements.
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(d) Let H be an H-class within the completely O-simple principal
factor K,/K,i1, and suppose that H is the intersection of the
L-class consisting of all elements with image B = {b1,b2,...,b,}
and the R-class consisting of all elements whose kernel is the
equivalence on [n| with classes A1, 4g,..., A,. Show that every
element o of H is then described completely by a permutation
o of [r], where each element of A; maps to bi, (1 = 1,2,...,7).
Show that H is a group H-class if and only if the elements b;, (i =
1,2,...,r) all belong to different classes 4;. Deduce that if H is
a group H-class then H is isomorphic to the symmetric group S,
on r symbols.

10. (See Exercise 9 above, and also Exercise 2(15).) If X = {1,2,3,4}
then the semigroup Tx has four J-classes JU, J@ JG and J&,
where J®) = {a € Tx : |ima| = i}. Show that

|JO =4, [JPD|=84, [JO|=144, [J?D| =24
The J-class J@ can be enumerated in eggbox fashion as follows:

1222] 1333 11444|2333{2444/3444
211113111 (4111{3222|4222{4333
2122| 3133 |4144,3233|4244|4344
1211) 1311 |1411]2322{2422|3433
2212{ 3313 14414]3323{4424/4434
1121111331]1141]2232(2242|3343
2221 3331 14441]3332|4442|4443
1112} 1113 11114(2223|2224|3334
1122} 1133 (1144/2233|2244,3344
2211} 3311 |4411[3322|4422|4433
1212] 1313 11414/2323|2424)3434
21211 3131 |14141{3232|4242|4343
1221| 1331 1441|2332|2442|3443
2112| 3113 14114[322314224|4334

(We are here using the convention that ajasazas denotes the map o
for which ia =a; (i=1,2,3,4).)

The principal factor J(2) /7 (1) is a 0-simple semigroup and so, be-
ing finite, is completely O-simple. To express it as a Rees matrix semi-
group, note that the H-class in the top left-hand corner is a group
‘H-class. Treat it as H;; and denote its elements by

o (1234 (1234
“\12 /)0 “*T\21 )

Call the R-classes R, ..., R7 (reading from top to bottom) and the £~
classes L1,. .., Lg (reading from left to right). For A =1,...,6, choose
g» as the first-named element in the H-class Hiy,and fori =1,...,7
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let r; be the first-named element of H;;. Then the matrix P = (py;) =
(gars) is ) i
eal00e¢ce
e0alele
e00aeel
Oealeal
0eOaela
| 00ealea]

and J®/JM ~ MO[Hy1;{1,...,7},{1,...,6}; P].

The principal factors corresponding to J) and J*) are easily de-
scribed, since the former is a right zero semigroup and the latter is
a 0-group. The principal factor J®) /(JM U J?)) is a completely 0-
simple semigroup with 6 R-classes, 4 £-classes, and in which each H-
class is of order 6. Find G, I, A and P such that J® /(J1) U J?)) ~
MO[G;1,A; P).

11. Use the Rees Theorem to show that every completely simple right
simple semigroup is a right group. (See Exercise 2(5).)

12. Let ay,a2,...,8, € S, where S is a completely 0-simple semi-
group. Show that if ajaq, asas, ..., ap—16, are all non-zero, then
@182 . ..an, 7 0. Show also that a1as...a, € Ry, N L,,.

13. Let p be a proper congruence on a completely 0-simple semigroup S
(that is to say, a congruence for which 0p = {0}).

(a) Use Proposition 3.1.1 to show that S/p is O-simple.

(b) Show that if e is a primitive idempotent in S then ep is a prim-
itive idempotent in S/p. [Hint: if k € S is such that hp is an
idempotent in S/p and hp < ep, show that (ehe)p = hp. Then
use Lallement’s Lemma (Lemma 2.4.3) to find an idempotent ¢
in S such that gp = (ehe)p, Ly < Lepe, Ry < Repe:]

(¢} Deduce that S/p is completely 0-simple.

14. (a) If K(n) denotes the number of non-isomorphic congruence-free
semigroups with 0 having order n, show that K(5) = 2, K(7) = 2.
(b) Show that the two congruence-free semigroups with 0 having or-
der 7 are anti-isomorphic.
(c) Show that K(p+ 1) = 0 for every prime p.

15. An alternative, direct approach to the proof of Theorem 3.7.2 is given
below. Let S be a finite, congruence-free semigroup without zero, and
suppose that [S] > 2.

(a) Let m = min{|zS|: z € S}. Show that X, defined as {z € S :
|zS| = m}, is a two-sided ideal of S, and deduce that X = 5.
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(b) Show that the relation R is a congruence on S, and deduce that
R=8xS.

(c) From this, and from the dual result concerning £, deduce that S
is a group.

16. Let S = MP®[G; I, A; P] be a completely O-simple semigroup. Let I'(S)
be the graph whose set of vertices is {(i,A) € I X A : H;y is a group}
and where there is an edge between (i, A) and (j, u) if and only if i = j
or A = u. If H;) is a group, denote its identity by e;». Let (E) be the
subsemigroup of S generated by the idempotents.

(a) Show that if e;ne;, # O then there is a path

(#HA) = (4, A) = (G p)
in T'(S).
{b) Show that the graph I'(S) is connected if and only if
(Vi e )(VA € A)(E) N H;y # 0.

The Rees matrix construction M|[S; I, A; P] works even if S is not a group.
If S is a semigroup with zero, then we have to be a little more careful in
defining MO[S; I, A; P]. We form the cartesian product 7 = I x S x A and
define an associative multiplication

(ia a, )‘)(], b, /"’) = (27 a'p)\jb7 /J’)

The subset Z = {(§,0,X) : ¢ € I,A € A} is an ideal of T, and we define
MPO[S; 1, A; P] to be the Rees quotient (I x S x A)/Z. Equivalently, we
can regard MO°[S; I, A; P] as consisting of the elements of I x (S\ {0}) x A
together with 0, where

i, apx;b, if apy;b £ 0,
(z',a,A)(j,b,m:{( ahis) T apnb 7

otherwise.

The remaining exercises explore this idea.

17. Consider a Rees matrix semigroup M[S;I, A; P]. Show that the ele-
ment (4,a, A) is regular if and only if

V(a) N pxjSpui # 0
for some j in I and p in A.

18. Let T = MP°[S;I, A; P, where S is a monoid with zero. Say that the
matrix P = (py;) is ‘semi-regular’ if every row of P contains a right
unit of S and every column of P contains a left unit of S. Show that T
is a regular semigroup if and only if S is regular and P is semi-regular.
Show also that 7" is O-bisimple if and only if S is 0-bisimple and P is
semi-regular.
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19.

20.

21.

0-simple semigroups

Let B denote the bicyclic monoid
(palpg=1)={¢"p" : m,n >0},
and let S = M[B;{1,2},{1,2}; P], where

pz(;g).

Show that S is a bisimple monoid and that it is generated by the four
idempotents (1,1,1), (2,1,1), (1,1,2) and (1,p,2).

Let S be a finite monoid, let I = {1,...,r}, A = {1,...s} and let
P = (p;;) be an s x r matrix over S such that:

(a) the first row and first column of P consist entirely of Is;
(b) the entries p;; (4,7 > 1) include a set of generators for S.

Let T'= M]S; I, A; P]. Show that:
(a) the elements (i,1,1), (1,1,7) (1 <i<r, 1<j<s) are idem-
potents in T
(b) the idempotents (4,1,1), (1,1, ) generate T
(c) the map s+ (1,s,1) embeds S in T}
(d) Deduce that every finite semigroup can be embedded in a finite
semigroup generated by idempotents.

Let
S= {1,@1,0,2, ces ,ak}

be a finite regular monoid, and let
T=M[S;{1,....,k+1}{1,...,k+1}; P],

where
11 1... 1
1a1a2... ar
p=}|laxas... a

1 ar a1 ... g1
Denote the set of idempotents of T" by E.
(a) Show that the map s — (1,s,1) embeds S in T
(b) Show that the elements (i,1,1), (1,1, j) are idempotent (1 < ¢ <
E+1,1<j<k+1).
(c¢) Show that every element of T' is expressible as a product of two
idempotents.
(d) Show that T is regular.

{(e) Deduce that every finite semigroup can be embedded in a finite
regular semigroup T such that T' = E2.



Notes 101

3.9 NOTES

The fundamental ideas in Section 3.1 go back to Suschkewitsch (1928) and
Rees (1940), though the treatment of principal factors is much influenced
by J. A. Green (1951).

The main result in Section 3.2 is due to Rees (1940), but is given in a
version essentially due to Clifford and Preston (1961). The approach via
0-minimal ideals dates back to Clifford (1948). For an exhaustive study of
minimal conditions see Hall and Munn (1979).

As a result of the Rees Theorem certain aspects of the study of com-
pletely O-simple semigroups acquire an essentially combinatorial flavour.
See, for example, Graham (1968), Houghton (1977, 1979), Houghton and
Sullivan (1984), and Howie (1978).

Theorem 3.3.1 is in essence due to Suschkewitsch (1928), and is a special
case of the result of Rees (1940). References for the remainder of Section
3.3 are Croisot (1953), Lallement and Petrich (1966), Steinfeld (1966), and
Venkatesan (1966).

In Section 3.4, the isomorphism theorem and the normalization theorem
for completely simple semigroups are due to Rees (1940). The normaliza-
tion theorem for completely O-simple semigroups is due to Tamura (1956).

In Sections 3.5 and 3.6 the material is drawn from a variety of sources.
See Gluskin (1956, 1957), Tamura (1960), Preston (1961), Lallement (1967,
1974), and Kapp and Schneider (1969).

The main theorem in Section 3.6 is due to Tamura (1956). The problem
of describing infinite congruence-free semigroups is much harder, and many
diverse examples of such semigroups have been described. For example,
see Trotter (1974), Munn (1972, 1974a,1975), T. E. Hall (1979), Howie
(1981a,b}, and Marques (1983).

Exercises 3 and 4 are from J. A. Green (1951), and Exercise 5 is from
Munn (1955).

Meakin (1985a) has written a very useful survey article on the Rees
matrix construction. See also Mdrki (1975), Tran Quy Tien (1975), and
Meakin (1985b). Exercise 15 is due to P. M. Neumann (private communica-
tion). Exercise 16 is from Rusgkuc (1994), and Exercise 17 is from McAlister
(1985). Exercise 18, from (Byleen 1981), describes the ‘fundamental four-
spiral semigroup’ Spy, characterized in a different way by Byleen et al.
(1978). For Exercise 20 see Byleen (1981), Pastijn (1977), Howie (1966),
and Giraldes and Howie (1991). Exercise 21 is due to T. E. Hall (private
communication), and is quoted by Giraldes and Howie (1984).
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Completely regular semigroups

It is well known that a group (G, ) can alternatively be regarded as having
three operations, namely the binary operation p : (a,b) — ab, the unary
operation a — a~!, and the 0-ary operation (the constant) 1. If we wish to
emphasize this aspect, we write G = (G, 1, 71, 1). From this point of view,
a morphism ¢ : G — H between two groups is defined by the properties

(ab)gp = (ag)(b9), (¢ o =(ad)”!, 1p=1;

but it is an elementary exercise in group theory to show that the first of
these properties implies the other two, and it is for this reason that one
does not have to be completely precise about one’s point of view.

A semigroup (S, p) will be called a U-semigroup if a unary operation
a +— o' is defined on S, with the property that

(@) =a

for every @ in S. We write S = (S, u,").

It is of course clear that every semigroup may be regarded as a U-
semigroup: the most obvious approach is to define o’ = a for every a in S.
To be interesting, the unary operation must interact in some way with the
binary operation. Two versions of interaction have been studied. The first,
in which o’ is usually denoted by a*, gives us a x-semigroup, or a semigroup
with involution; here the properties of the unary operation are given by

(@*)Y =a, (ab)* =b"a".

1

The second, in which we shall write a’ as a™", gives us what we shall call

an I-semigroup; here the properties are
(@) '=a, e ta=a.
Notice that, since these equations are to hold for every element of S, it
follows that
e laa =0 o H e =07t

and so a~! is an inverse of a.
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Notice that a group (G, ., 1) is both a *-semigroup and an I-semigroup.
The class of U-semigroups for which the unary operation satisfies the con-
ditions both for a *-semigroup and for an I-semigroup is in fact the class of
inverse semigroups, which will be the subject of Chapter 5. The subject of
this chapter is another important class of I-semigroups, called comgpletely
regular semigroups.

4.1 THE CLIFFORD DECOMPOSITION

A semigroup S will be called completely regular if there exists a unary
operation a +— ¢~ on S with the properties

(@ t=a, aala=a, aa'=a"la. (4.1.1)
More briefly, a completely regular semigroup is an I-semigroup S in which,
for every ain S, aa~! = a"la.

The following result gives us two alternative definitions:

Proposition 4.1.1 Let S be a semigroup. Then the following statements
are equivalent:

(1) S is completely regular;
(2) every element of S lies in a subgroup of S;
(3) every H-class in S is a group.

Proof (1)= (2). Leta € S,andlet aa~! = a~'a = e. Then, by Theorem
234,a€ R.NL, = H,, and H, is a subgroup of S by Corollary 2.2.6.
(2) = (3). Let a € S; then a € G for some subgroup G of S. Denote
the identity element of G by e, and the inverse of a within G by a*. Then
from
ea=ae=a and aa* =a*a=-c¢

it follows that a H e, and hence H, = H,, a group.

(3) = (1). For each a in S, define a! to be the unique inverse of a
within the group H,. (Notice that the element @ may have several inverses
in S, but only one of them lies in H,.) Then it is clear that

(e 1=q, ala=a, aal= a la,

and so S is completely regular. O

We have already encountered one important class of completely regu-
lar semigroups, namely the class of completely simple semigroups. (Com-
pletely O-simple semigroups are not in general completely regular, since
not every H-class in such a semigroup is a group.) The next result gives in
effect two alternative definitions of a completely simple semigroup:
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Proposition 4.1.2 Let S be a semigroup. Then the following statements
are equivalent:

(1) S is completely simple;

(2) S is completely regular, and, for all z, y in S,

7! = (zyz)(zyz) ™t
(3) S is completely regular and simple.

Proof (1) = (2). Let S be completely simple, and for each a in S, let

a~! be the unique inverse of a lying inside H,. Let 2,4 € S. Then by

Lemma 3.2.7, applied to the case where 0 is indecomposable, we deduce

that zyz H z, and it then follows that zz~! = (xyz)(zyz)~?, as required.
(2) = (3). Let a,b € S. Then

1

a =aa"ta = a.b.alaba) ta,

and so J, < Jp. By interchanging the roles of @ and b we may equally well
show that Jy, < J,. It follows that 7 = 5 x S, and so § is simple.

(3) = (1). Suppose that S is completely regular and simple. We shall
show that every idempotent of S is primitive, from which it will follow,
by Theorem 3.3.3, that S is completely simple. Accordingly, let e, f be
idempotents in S, and suppose that f < e, so that ef = fe = f. Then,
since S is simple, there exist z, ¢ in S such that e = zft. (See Corollary
3.1.2.) We now produce ‘improved’ versions of z and ¢ by defining x = ez f
and y = fte; we still have

afy = (ezf)f(fte) = e(zftle =€ =,

but now have the extra advantage that ex = zf = z and fy =ye =1y.

Now S is completely regular and so, by Proposition 4.1.1, the element z
belongs to H, for some idempotent g. Thus gz = 2g = z, and there exists
=1 in H, such that zz~' = 271z = g. As a consequence, gf =z 'zf =
z 'z = g. But we also have

gf =gef =gzfyf =afyf=ef =/,
and so g = f. Hence
f:fe:ge:gxfy:xfy:e

We have shown that f < e implies f = e for every pair of idempotents
in §. Thus every idempotent in the non-empty set of idempotents of S is
primitive, and so S is completely simple as required. a

Let S be a completely regular semigroup. Then a H a? for every a in

S, and so certainly
' aJ ad®. (4.1.2)

Hence, using equation (2.1.3), we see that for every a, bin S,

Jab = J(ab)2 = Jagva)p < Jba-



The Clifford decomposition 105

Since by the same token we have Jy, < Jgp, we conclude that

Jab = Joa- (4.1.3)

Next, if @ J b then b = zay, a = ubv for some z, y, u, vin S*. Ifc€ S
then

Jea = Jeubw £ Jeur by (2-1'3)
= Jubc by (4.1.3)
< Jbe = Jeb-

Similarly Jo < Jo and so ca J cb. By virtue of (4.1.3) we also have
ac J be, and so J is a congruence. It follows from (4.1.2) and (4.1.3) that
S/ is a semilattice.

Now consider a typical J-class J = J, of S. It is in fact a subsemigroup
of S, since the congruence property gives

(Jo)? C Jp2 = J,.

If a, b are elements of J then there exist z, y, u, v in S such that zay = b,
ubv = a. Now there exist idempotents e and f (in J) such that a € H,,
b e Hy. Hence

(fx)alyf) = fof =b, (eu)b(vf)=eae=a.

It is clear that
Itz 2 Jgayar) = Jb = J;

and we also have
Jre < Jp=J.

Hence fx € J, and similarly yf, eu, ve are all in J. By Theorem 3.1.6, the
subsemigroup J is simple, and since it is also completely regular it must
be completely simple.

At this point it pays to change both the notation and our point of
view. We denote the semilattice S/J by Y, and for each & in Y we denote
a(JH"! by S,. Each S, is a J-class of S and is a completely simple
subsemigroup. Thus S is the disjoint union of the completely simple semi-
groups S, (@ € Y), and the congruence property of J gives us that

SaSg C Sap. (4.1.4)
We say that S is a semilattice of completely simple semigroups. We have
proved

Theorem 4.1.3 Every completely regular semigroup is o semilattice of
completely simple semigroups. m|

At a first glance, perhaps, this does not look like progress at all, since
we already know that a completely regular semigroup is a disjoint union
of groups, and we have now expressed it as a disjoint union of completely
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simple semigroups, more complicated objects than groups. The progress
lies in the ‘gross’ multiplication formula (4.1.4). Previously we knew that

S=|JH.,

ecE

where I is the set of idempotents in S and each H, is a group, but we
had no idea at all about the location of the product of an element z in
H, and an element y in Hy, or even whether the product of H, and H 7
was contained in a single H-class. Now we know that the product of z
in 8, and y in Sg lies in Sug. On the other hand, what we have is not
entirely satisfactory, for if we know (in terms of the Rees Theorem, say)
the location of z and y within the completely simple semigroups S, and
Sp, we do not know the location of zy within S,5. We know the ‘gross’
structure of S but not its ‘fine’ structure.

One possible ‘fine structure’ is as follows. Suppose that we have a
semilattice Y and a set of completely simple semigroups S, indexed by Y,
and suppose that, for all & > 3 in Y there exists a morphism Pa,p: Sa —
Sp such that:

(81) (VaeY) doa =1s,;
(S2) for all o, B, v in Y such that a > 8 > 7,

¢aﬁ¢ﬁ,7 = fa,y-

Now define a multiplication in S = wey S, in terms of the multiplications
in the components S, and the morphisms ¢, g, by the rule that, for each
z in Sy and y in S,

Ty = (x¢a,aﬁ)(y¢ﬁ,aﬁ)' (4'1'5)

Ifz €Sy, y€ Spand z € S,, then by the morphism properties and by the
transitivity condition (S2),
(zy)z = (2da,a8)(ydp,08)-2
= [(#¢a,08)(y95,08) ap,apy](26y,0p7)
= (¥Pa,apy) (YD B,a07) (20,08+):
and similarly
z(yz) = (Pa,a8y)(YPp,a8v) (20y,a8v)-

Thus the multiplication (4.1.5) is associative. It follows that S is a par-
ticular type of completely regular semigroup, called a strong semilattice of
completely simple semigroups. We write

S =S8[Y;54; ba,gl-

We shall see that not every completely regular semigroup is of this kind.
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4.2 CLIFFORD SEMIGROUPS

A Clifford semigroup is defined as a completely regular semigroup (S, pt, 1)
in which, for all z, y in S

(zz™Yyy™) = (wy™ H(az ™). (4.2.1)

In an arbitrary semigroup S, let us say that an element ¢ is central if
cs = sc for every s in S. The set of central elements forms a subsemigroup
of S, called the centre of S.

The following theorem gives in effect several alternative definitions of a
Clifford semigroup:

Theorem 4.2.1 Let S be a semigroup with set E of idempotents. Then
the following statements are equivalent:

(1) S is a Clifford semigroup;

(2) S is a semilattice of groups;

(3) S is a strong semilattice of groups;

(4) S is regular, and the idempotents of S are central;
(5) S is reqular, and D% N (E x E) = 1g.

Proof (1) = (2). Let S be a Clifford semigroup. Then S is completely
regular, and so is a semilattice Y of completely simple semigroups S,,. Now
every idempotent e in S is expressible as xz™! for some z—the obvious
choice for z is e itself—and so the condition (4.2.1) in effect says that
idempotents commute. This happens within each of the components S,
and so each Sy, being a completely simple semigroup in which idempotents
commute, is a group. Thus S is a semilattice of groups.

(2) = (3). Foreach ain Y let e, be the identity element of S, (o € Y).
Suppose now that o > . Then for each a, in S, the product ega, belongs
to Sap = Sg, and so it makes sense to define a map ¢q g : So — Sp by the
rule that an¢a,pg = egaq. It is clear that ¢4 o is the identity map on S,.
Also ¢q,p is a morphism. To see this, notice that for every ag, by in Sy,

(@aa,6)(baba,s) = (€50a)(esba) = ((epaa)ep)ba-
Now ega, € Sg, and eg is the identity of Sz. So

(aada,p)(bada,p) = egaaba = (@aba)Pa,p,
as required.
Next, suppose that & > > v , and notice, by a standard property of
group morphisms, that, for all a, in S,,
(@afa,8)dp,y = €4(€p0a)
= (eyeg)aa = (esPp,y)0a
= €40y = aa¢o¢,’y§

thus ¢o gPs,y = Pa,~, 88 required.
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Finally, notice that, for arbitrary o and 8 in Y and for elements a,, in
S. and bg in Sp, the product aybg lies in S, where v = af. Hence

aabs = ey(aabs) = (eya4)bs

= ((ey@a)ey)bs (since eyaq € Sy)

= (eyaa)(eybp) = (@aBa,y ) (bsds,v),
and so S is indeed isomorphic to the strong semilattice of groups
SIY'; Sa; by

(3) = (4). Certainly every strong semilattice of groups S[Y'; Ga; @u,g]

is a regular semigroup. Its idempotents are the identity elements e, of the
groups G, and it is easy to calculate that, for all 3in Y and all gg in Gy,

€agp = (ea¢a,aﬁ)(gﬁ¢ﬂ,aﬁ) = eaﬁ(gﬂ(bﬁ,aﬁ) = gﬁ¢ﬁ,aﬂ,
gpea = (989,08 )(€ada,ap) = (959p,08)eas = 95Bp,08;

thus idempotents are central.

(4) = (5). Suppose that e DS f, where e and f are idempotents. Then,
by Theorem 2.3.4, there exists an element a and an inverse o’ of a such
that aa’ = e, a’a = f. Hence, using the centrality of the idempotents e
and f, we have

e=e? =a(d'a)d = afd = fad' = d'aad’
=ad'ae =ad'ea =d'ad'a = f* = f,

and we deduce that D° N (E x E) = 1.

(5) = (1). Each D-class contains a single idempotent, and so is a group.
Thus D = H, and so each element a has exactly one inverse a~!, with the
properties

(e l=a, ala=a, a'=a"la
Thus S is completely regular, and so is a semilattice ¥ of completely simple
semigroups S,. Now for all z, y in S, we have zy € Ry N Ly, and so
z D y. Thus each S, is contained in a single D-class, and so has a single
idempotent. Hence each S, is a group.

From (2) = (3) we now deduce that .S is a strong semilattice of groups
SlY; Sa; ¢a,p], and it then follows easily that for an arbitrary z in S, and

y in Sg,

1 1

.’L'x—lyy—l = €n€8 = €ap = €3€q = yy xxT.

Thus S is a Clifford semigroup. O

4.3 VARIETIES

Much of this section could be treated in a more general context, as part of
the theory of 2-algebras—see, for example, Cohn (1965) or Grétzer (1968).
Here it will be sufficient to consider the case of (2,1)-algebras, systems on
which a binary operation (z,y) + zy and a unary operation z — gz’ are
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defined. A subalgebra U of a (2,1)-algebra S is defined as a non-empty
subset U of S such that, for all z, y in S,

z,yelU = zycU, zeU = 2/ el.

If S and T are two such algebras, then a morphism from S into 7' is defined
in the obvious way as a map ¢ : S — T such that, for all z, y in 5,

(zy)¢ = (zd)(y4), (z')¢ = (z4)".
If ¢ is onto, we say that T is a morphic image of S.

Let S; (i € I) be a family of (2,1)-algebras, and let P be the cartesian
product of the sets S;. The elements of P are maps v: I — [J{S;: i€ I}
with the property that iy € S; for each ¢ in I. If we now define, for ~, ¢ in
Pandiin I,

i(y8) = (in)(i6), ' = (i),
we give P the structure of a (2, 1)-algebra, the direct product of the algebras
S;. We write P =[[{S;:¢ e I}.

Let X be a non-empty set, and consider the set Fy 1(X) of all formal
expressions in the alphabet X U {(,),’} defined by the rules:

(1) X C F31(X);

(2) if u € Fy 1{X) then (u) € T}

(3) if u,v € F5 1(X) then (u)(v) € Fp1(X).

Thus, if X = {z,y, 2z}, then a typical element of F5 ; (X) might be

(@ @) (N U E))))-

The set F51(X) can be made into a (2,1)-algebra in an obvious way by
defining
w = (u)(v), o =(u).

It is the free (2,1)-algebra (sometimes called the absolutely free (2,1)-
algebra) on the set X, which is to say that it has the properties:
(F1) there is a map 6 : X — Fy 1({X)—the obvious inclusion map;
(F2) for every (2,1)-algebra S and every map ¢ : X — S there is a
unique extension of ¢ to a morphism @ : Fy1(X) — S, that is to
say, the diagram

X R (X)
¢ f
S

commutes.

Let V be a non-empty class of (2, 1)-algebras, and suppose that ¥ has
the following properties:

(V1) if S € V and T is a subalgebra of S, then T € V;
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(V2) if S € V and T is a morphic image of S, then T' € V;
(V3) if S; € V (4 € I), then the direct product [[{S; : ¢ € I} also
belongs to V.
Then we say that V is a variety of (2,1)-algebras. To put it succinctly, a
variety is a class of algebras closed under the taking of subalgebras, morphic
images and direct products.

Let V¥ be a variety of (2, 1)-algebras, and let X be a non-empty set. We
now establish the existence of a ‘relatively free’, or V-free, (2,1)-algebra
Fy(X) in the variety V. Let S € V, and let S¥X denote the set of all maps
from X into S. For each ¢ in SX there is a unique extension ¢ : (X)) —
S, a (2, 1)-morphism whose image, being a subalgebra of S, is in V. Let us
denote the congruence ker ¢ on F,, 1 (X) by pg. Thus we see that each S in
V and each ¢ in S¥ determines a congruence pg on Fy 1(X). Let us denote
the set of all congruences on F; 1{X) obtained in this way by {p; : ¢ € I},

and define
p= ﬂ{pz ctel}. (4.3.1)

Then p C p; for all 4, and so for each S in V there exists a unique morphism

¢ : Fa1(X)/p — S such that the diagram

o
For(X) —— F21(X)/p

¢ ¢
S

comrnutes.
We now show that F»1(X)/p € V. By construction we know that
Fy1(X)/p; € V for every 4 in I. Hence P € V, where P is the direct

product
P=[[{Fe1(X)/pi i c I},
defined as in Section 1.1. This consists of all maps
6:1— U{FZ,I(X)/Pi i€ 1},
with the property that
6 F1(X)/pp (el

Define a morphism x : F3 1(X) — P by the rule that, for each u in F ; (X),
uy is the map from I into (J{F3,1(X)/p; : i € I} given by

i{ux) =up; (i €l).
Then, for all 4, v in Fy ;{X),

ux =vx <= {(uyx) =1i(vy) forall¢in I,
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<= up; =vp; foralliin I,
<= (u,v) € p.

Thus Fy 3 (X)/p ~ imx, a subalgebra of P, and so is in the variety V.
We denote the (2, 1)-algebra F5 1(X)/p by F\y(X), and call it the V-free
algebra generated by X. It is defined up to isomorphism by the properties:

(F1) there is a map 6 : X — Fy,(X), given by z6 = zp;

(F2) for every S in V and every map ¢ : X — S there is a unique
extension of ¢ to a morphism ¢ : F,(X) — S, that is to say, the
diagram

x—2 R (x)

¢ ¢

commutes.

Let u,v € F51(X), where X is a non-empty set, and let S be a (2,1)-
algebra. As we have seen, every map ¢ : X — S extends to a morphism
b : (X ) — S. We say that S satisfies the identical relation (or law)
u = v if up = v for every choice of ¢ : X — 5. Informally, a (2,1)-
algebra S satisfies a given law if we obtain equality in S for every possible
substitution of the variables in v and v by elements of S.

Let X be a countably infinite set, and let £ be a class of (2, 1)-algebras.
Suppose that there is a subset R of F51(X) x F51(X) such that S € & if
and only if S satisfies the identical relations u = v for every (u,v) in R.
Then we say that £ is an equational class, defined by the identical relations
u = v for (u,v) in R. The following theorem, a special case of a general
result due to Birkhoff (1935), is the key to the study of varieties:

Theorem 4.3.1 Let V be a class of (2,1)-algebras. Then V is an equa-
tional class if and only if it is a variety.

Proof It is a routine matter to verify that every equational class is a
variety. To show the converse, let V be a variety, let X be an infinite set,
and let Fy(X) be the V-free algebra generated by X. Thus, as in equation
(4.3.1), Fy(X) = F51(X)/p, where

p={{pi:iel}

Let S € V and let (u,v) € p. Then certainly {(u, v) € pg for every ¢ in SX
and so for every map ¢ : X — S we have u¢ = qu, where ¢> B (X)— S
is the unique extension of ¢. Thus u = v is an identical relation in S. We
have shown that every S in V satisfies the law u = v for every (u,v) in p.
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Conversely, suppose that S = (5, .,") satisfies the law u = v for every
(u,v) in p. Choose an infinite set Y such that {Y] > [S] and [V} > | X|, and
let Fp(Y) = F51(Y)/7 be the V-free algebra generated by Y. We shall
show that every morphism 1 from F; ;(Y) onto S factors through Fy(Y),
and from this it will follow that S € V.

Let (u,v) € m. We require to show that uy) = v¢p. Now the set C(u) U
C(v) of all letters in Y featuring in » or in v is a finite set Yy of Y, and
we may suppose that there exists a finite subset Xy of X and an injection
& : X — Y such that Xo& = Yp. Let 1y be a one-sided inverse of &,
that is, yno is the unique z such that x€; = y if y € im &, and ymo is an
arbitrary element of X otherwise. We can extend £ to a monomorphism
£: Fp1(X) — F21(Y), and there are uniquely defined elements up, vo in
Fy1(X) such that we€ = u, vo€ = v. By the same token, we can extend
N to a morphism 7 : F51(Y) — Fy1(X), and our mode of construction
ensures that un = ug, v = vg.

Now consider the map 7p" : Fy 1(Y) — Fy(X). Then, since Fyy(X) € V,
we must have that 7 C ker(np"). In particular, unp? = vnp®, and so
(u0,vg) € p.

Let us return now to our arbitrary morphism ¢ from F;1(Y) onto S,
and consider the morphism £¢ : F» 1(X) — §. Our assumption is that S
satisfies all of the identities from p, and so in particular S satisfies ug = vg.
Tt follows that ugfey = vg€yp, and hence that uy) = v, exactly as required.

O

We shall here be concerned solely with varieties of /-semigroups, that
is to say, with varieties of (2,1)-algebras contained in the variety of I-
semigroups. We shall accordingly take the identities

(zy)z = z(yz), ('Y =z and z2’z=2

as read, and we can list varieties of /-semigroups so far encountered, along
with their associated laws. All the varieties here listed are finitely based, in
the sense that the associated laws are all consequences of a finite collection
of laws. We cannot assume that every variety has this property—see, for
example, Austin {1966).

CR : completely regular semigroups : z2' = z'z;

CS : completely simple semigroups : xz’ = 2'z, zyz(zyz)’ = z2';

CL : Clifford semigroups czx' =2z, xx'yy = yy'zz’;
G : Groups cxx’ =y

(See equations (4.1.1) and (4.2.1), and Proposition 4.1.2(2).)

We shall also want to refer to certain varieties of semigroups. It is easy
to adapt——indeed to simplify—our analysis of (2, 1)-algebras so as to deal
with systems having just one binary operation, and so once again we can
specify varieties by means of laws. The law (zy)z = z(yz2) is of course taken
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as read, since we are concerned solely with semigroups. Familiar examples
of semigroup varieties are

C : commutative semigroups L TY = YT
Z . null semigroups Ty = zt;
B : bands (idempotent semigroups) : z? = z;
RZ : right zero semigroups AT TH
LZ : left zero semigroups Txy = T
RB : rectangular bands T XYT = T
SL : semilattices cx? =1, Ty = yx;
7T : trivial semigroups X =Y.

(See Theorem 1.1.3.)

We shall often want to denote the variety defined by laws wy = 21,
wo = 2g,... by [wy = 21, w2 = 2,...]. Thus C = [zy = yz|, B = [z? = 7],
etc.

Some further examples of varieties of semigroups and I-semigroups are
explored in Exercises 9 to 11, but for the rest of this chapter we shall be
concerned with the variety B of bands. This, as we have seen, is a variety of
semigroups, but it may also be regarded as a variety of completely regular
semigroups, for if we define ' = z then the laws

('Y =z, zz'z=2, 22’ =122
follow automatically.

4.4 BANDS

Let B be a band. Since B is completely regular, it decomposes by Theorem
4.1.3 into a semilattice Y of completely simple semigroups S, (o € Y).
Fach of these completely simple semigroups, being a subsemigroup of B, is
a band, and it is a band satifying the law (xyz){xzyz)’ = zz’, by Proposition
4.1.2. Since 2’ = z for every z in a band, this identity reduces to zyz = z,
and so we conclude that each S, is a rectangular band. We have shown

Theorem 4.4.1 Every band is o semilattice of rectangular bands. o

This is certainly a useful result, but it cannot be interpreted as a com-
plete solution to the problem of describing the structure of bands, for in
general we do not obtain a strong semilattice. We shall eventually identify
(in Proposition 4.6.14) the precise class of bands for which we do obtain a
strong semilattice, but in this section our aim will be to establish a general
structure theorem for bands.

From Theorem 1.1.3 we know that every rectangular band is isomorphic
to a cartesian product I x A, with multiplication given by

(i,)\)(j,/,b) = (i’U)'
In terms of this description, we now investigate the nature of morphisms
between rectangular bands.



114 Completely regular semigroups

Proposition 4.4.2 If ¢ is a morphism from a rectangular band I; x Ay
into a rectangular band I, x Ay, then there exist maps ¢' : Ii — I, and
@" : Ay — Ag such that, for all (z1,&) in I; X A,

(21,61)¢ = (21¢',&29"). (44.1)

Conversely, if ¢ : I — I and ¢" : Ay — Ay are arbitrary maps, then
the formula (4.4.1) defines o morphism from I1 x Ay into Ip X As.

Proof Let ¢: [ x Ay — I; x A; be a morphism. Choose a fixed A in
A1, and for every z; in I; define z;¢' by
(z1,M1)¢ = (z1¢', Aa).
Similarly, choose a fixed 41 in I, and for every & in A; define £&,¢" by
(i1,&1)¢ = (i2,&1¢").
Then for all (z1,&) in I} x Aq,

(#1,&1)0 = [(x1, \)(31,&)]0 = [(w1, A1) ) [(41, &1) B
= (319", A2) (i, &107) = (114", &14").

Conversely, if ¢ is defined by (4.4.1) then, for all (z1,&1), (y1,m) in
Il X Al,

[(z1, &)1, m)]¢ = (x1,m)¢ = (216", m¢") = (216", E16") (119", M 8")
= [(z1, &) ] [(y1,m)4)-

Thus ¢ is a morphism. (]

If, as in Theorem 1.1.3, we choose to regard a rectangular band I x A as
the direct product of the left zero semigroup I and the right zero semigroup
A, then we may interpret the maps ¢! : [} — I, and ¢” : A; — Ay as semi-
group morphisms. There is no extra information involved in this version,
since every map between left (or right) zero semigroups is a morphism. It
is, however, useful to state the alternative version as a corollary:

Corollary 4.4.3 Let Ly, Lo be left zero semigroups and let Ry, Ry be right
zero semigroups. If ¢ is a morphism from the rectangulor band Ly X Ry into
the rectangular band Ly x Ry, then there exist morphisms ¢' : L1 — Lo,
¢" : Ry — Rg such that

(li,m1)¢ = (¢!, 719") (4.4.2)

for all (I1,71) in Ly X Ry.
Conversely, for every pair of morphisms &' : Ly — Lo, ¢" : Ri — R,
the formula (4.4.2) defines a morphism from Ly x Ry into Ly x Rs. |



Bands 115

The key idea in the description of bands is that of a translation. We
have already come across the maps A, and p, associated with each element
a of a semigroup S:

AaS=as, Sp,=3sa (s€S).

Here, for convenience, we are writing A, as a left map and p, as a right
map. We refer to A, and p, as the inner left and right translations of S
associated with the element a. Because of associativity, we have

Aa(st) = (Mas)t,  (st)pa = 8(tpa), s(Aat) = (spa)t

for all a, s, t in S. These observations motivate the following definitions.
The left map A : S — S is called a left translation of S if

A(st) = (As)t
for all s, t in S; the right map p: S — T is called a right translation of S if

(st)p = s(tp)
for all s, t in S; the left translation A and the right translation p are said
to be linked if

s(At) = (sp)t
for all s, tin S. The set of all linked pairs (X, p) of left and right translations

is called the translational hull of S and is denoted by ©(.S). It is a semigroup
under the obvious multiplication

A )X, 0"y = (WX, pp),

where AX' denoted the composition of the left maps A and X (that is, first
X, then \), while pp’ denotes the composition of the right maps p and p’
{that is, first p, then p’). The proof of this assertion is routine.

Within Q(5) there is a linked pair (A4, p,) for each a in S, and it is
easy to verify that, for all @, bin 5,

(’\m pa)(/\by Pb) = ()‘a,by pab)-

Thus we have a morphism a — (A, po) from S into 2(S). In general this
is not a monomorphism—see Exercise 7—Dbut it is a monomorphism in the
cases that concern us:

Lemma 4.4.4 If a and b are elements in a regular semigroup S, then
Pe =X and p, = pp] = a=b.

Proof Suppose that A\, = A\, and p, = pp, and let o' € V(a), ¥ € V(b).
Then
a=ad'a=(Aa)a=(Ma)a=bda,

and so (by (2.1.4)) R, < R,. Similar arguments show that L, < L,
Ry < Ry, Ly, < L,, and so a H b. By Proposition 2.4.1 we may now
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suppose that ¢’ and & have been chosen so that aa’ = bb' and a’a = b'D,
and it then easily follows that a = ba’a = bb’b = b. m]

Consider now a completely regular semigroup S that has been expressed
as a semilattice Y of completely simple semigroups S, (e € Y'), and con-
sider two elements «, § in Y such that o > . Then 8,55 and SgS, are
both contained in S, = S, and so every element a in S, induces maps
Aay Po from Sg into Sg:

AT = ax, TP, = Za.

The associativity of S guarantees that A, and p, are linked left and right
translations, and hence a +— (A4, p,) defines a map (indeed a morphism)
from S, into Q(Ss), the translational hull of Sz.

In the case considered in Section 4.2, where S is a Clifford semigroup
and each S, is a group, the translational hull of Sg can be shown to be
isomorphic to Sg itself—see Exercise 6—and the morphism a — (Aq, pa)
essentially reduces to the morphism ¢4, : So — Sp already described.
In general, however, the translations A, and p, are not inner translations
of Sg.

The problem of describing the translational hull of a completely simple
semigroup has been tackled by Petrich (1968). The description is compli-
cated, and here we shall confine ourselves to the case of a rectangular band
E =1 x A. Let X be a left translation of E, let (¢, ) € E, and suppose
that A(4, u) = (4*, u*), an element of E. Then

A(iy 1) = A, w) (G, )] = MG w1, ) = (@, 1) (0, 0) = (6%, 1),

and so u* = u. Moreover, for every € in A,

A(3,8) = Al(4, 1)(4,€)] = [A(Z»ﬂ)](z’g) = (@, w)(i,€) = (i*,§).
Thus A determines a map ¢ : I — I {which we shall find it convenient to
write as a left map) such that, for all (1,£) in E,
AG,€) = (¢0,0). (4.4.3)
It is easy to verify the converse, that for every map ¢ : I — I the formula
(4.4.3) defines a left translation of E.
A closely similar argument establishes that every right translation p of
E determines and is determined by a right map 9 : A — A such that, for
all (z,u) in E,
(33,11:)/) = (iL', /”“/)) (444)
Now notice that if A, defined by (4.4.3), is a left translation, and p,
defined by (4.4.4), is a right translation, then, for all (i, ), (4,v) in E,

(& WG, V)] = (i p) (@5, v) = (i, v) = (4, w)(J,v) = [(& w)pl (4, v);
thus every pair (A, p) is linked. It is now easy to verify that the map
(A, p) — (¢, %) gives an isomorphism from the translational hull Q(I x A)
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onto the direct product 77 x 75 of the semigroup 7;* of all left maps from
I into I with the semigroup 7, of all right maps from A into A.

Consider now a general band B, and suppose that we have expressed it
as & semilattice Y of rectangular bands E, (o € Y). Write E, as I, X A,.
We have seen that for all @ > fin Y each a in F, induces a linked pair
(Aas pa) of left and right translations of Eg, and that the map a — (A, pg)
is a morphism from S, into Q(Sg). As a result of our investigations into
the translational hull of a rectangular band, we can now be a bit more
explicit and assert that a induces a left map ¢3 : Is — I and a right map
Y5 : Ag — Ap, in accordance with the formulae

a(zg, Ep) = (9528, 8p),  (zs,8p)a = (2, Ep¥)- (4.4.5)
To put the same thing more globally, we have, whenever a > (3, a morphism
$op: Eq — 7}’; X Ta,
given by
a®a,p = (85, 95) (a € Eq).

Consider now what happens when 8 = «, and when a = (i, u). From
the formula (4.4.5) we have

aa,€a) = (B5Tar8a),  (Tara)a = (Ta, Eath(H),

while from the rule for multiplication within E, we have
(iyﬂ)(«%aaga) = (i,&a), (:L‘a,fa)(i, M) = (xa,u).

Hence the map ¢(#) : I, — I, has the property that ¢£3 i )o:a =1 for all
¢ in I,—and similarly fawc(f ) w for all 4 in A. Thus, if we adopt a
notation whereby the constant value of a constant map x is written as (x),
we may write

() =i, (Pm) =p (4.4.6)

whenever (4, u) € E,.

We are now ready to consider a more general product in B. Let a € E,,
b € Eg, let aff = v, and let z = (x,,&,) be an arbitrary element of E,.
Then ab € E,; let us write ab = (i, y). Then

abz = (ab)z = (iy, 1y) (2, €) = (iy, &),
and
abz = alb(zy,&y)] = a(ﬁb:xmfv) = (¢§¢9,$~/7€w)
We deduce that the left map gbi‘/gb’; of I, has the property that
¢:¢:$"/ = Uy
for every z in I,. Thus ¢§¢g is a constant map, with constant value
1y. Dually, by considering zab in two different ways, we see that the right
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map 1/}21/)2 of A, has the constant value py. We thus obtain the product
ab = (i, ity) of @ and b in terms of the maps ¢3, f’y, b wi’/ as follows:

ab = ((¢2¢5), (Y2el)). (4.4.7)
If, then, we think of the morphisms ®, 4 as ‘known’, then formula
(4.4.7) shows how the product ab of two arbitrary elements of B is deter-
mined by these morphisms.
Consider now what happens when we multiply the product ab on the
right by an element d = (z4,&s) of Es, where § < af. On the one hand
abd = (ab)d = (¢¥xs,Es),

while on the other hand
abd = a(bd) = a(¢3zs,&s) = (¢58Ts, Es)-

We deduce that

¢§° = P35, (4.4.8)
and a similar argument based on the two computations of dab gives us the
corresponding formula

V3 = Y35 (4.4.9)

It is convenient now to state the theorem towards which we are working:

Theorem 4.4.5 Let Y be a semilattice and let {E, : o € Y} be a family
of pairwise disjoint rectangular bands indexed by Y. For each o, let By =
I, x Ay, and for each pair o, B of elements of Y such that a > (3 let
®a, 1 BEa = T7, x Tn, be a morphism, where

a®ap = (¢5,45) (a€ E,).
Suppose also that
(1) if (4, 1) € Ea, then ¢$" and $§&* are constant maps, and
(@4 =i, (W) = p;
(2) ifa € Sq, b € Sg and aff = v, then ¢%¢% and wgwg are constant
maps;

(3) if (¢2¢h) is denoted by j and (Y2yL) by v, then, for all § <+,

o9 = g3eh, 9P = gyl
Let B =|J{Es: a € Y} and define the product of a in Ey and b in Eg by

axb= ((¢5¢5), (W5¥3)),

where v = af. Then (B, *) is a band, whose J-classes are the rectangular
bands E,.

Conversely, every band is determined in this way by a semilattice Y, o
family of rectangular bands E, = I, X A, indezed by Y, and a family of
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morphisms ®a,5 : Eq — Ty x Ty, (o, € Y, a = f) satisfying (1), (2)
and (3).

Proof We have already established the more difficult converse half of this
result, by virtue of formulae (4.4.6) to (4.4.9). To prove the direct half we

begin by showing that the given multiplication is associative. Let a € E,,
be Eg and c € E,, with a8 = §, By =¢, and afy = (. Then

axb = ((8505), (W§¥5)) = (j,v), say,
and
bxc= ({$262), (W2yl)) = (k,7), say.

Hence
(axb)xe= ({69 ¢8), (I yg)) = (820208, (WEP2YE))

= ((¢2®™), (e ™)) = ax (bx o).

Next, note that if a = (4, ) and b = (4,v) both belong to E,, then the
multiplication formula gives

axb= ((gEMgGM)y (pEmydy) = (i,v),

by property (1) and by the properties of constant left and right maps. This
coincides exactly with the product of ¢ and b in the rectangular band E,.
In particular it follows that a x a = a, and so B is a band.

The multiplication formula implies that

EywEg C Eup,

and so two elements can be J-equivalent only if they fall in the same E,.
Since any two elements in E, are easily seen to be J-equivalent, we thus
conclude that the J-classes of B are the rectangular bands I,. O

4.5 FREE BANDS

From the general arguments given in Section 4.3 we know that (relatively)
free objects exist in every variety. The arguments do not, however, give
any clue as to how to obtain a usable description of the free objects, and
in practice this can be very difficult. For the variety of bands, however,
we do have a good (though far from trivial) description, due to Green and
Rees (1952).

In one sense it is easy to give a description of the free band B4 on a set
A of generators. If 3 is the congruence relation on the free semigroup A™
generated by the subset

B = {(v?w):wec AT}

of AT x AT, then it is a routine matter to verify that B4 = AT /8 has
precisely the properties that we require of the free band on A. On the
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other hand, this is for most purposes not a very useful description, for it is
not at all clear how to determine whether or not two words u and v in A*
are f-equivalent.

For each w in A™ we define the content C{w) to be the (necessarily
finite) set of elements of A appearing in w. By Proposition 1.5.9, two
distinct B-equivalent elements of A1 are connected by a sequence of ele-
mentary B-transitions, that is to say, by steps of one or other of the types

prq — pr’q, pr’q—prq (p,q€ A*, z e AT);

hence B-equivalent elements have the same content, and it is possible to
talk in an unambiguous way of the content C(wpg) of an element w3 of
B 4. For each non-empty finite subset P of A we denote by Up the set of
elements of B4 with content P. Each Up is fairly obviously a sub-band of
By, and UpNUp = if P # P/,

Suppose now that w, z in AT are such that w8 J 28 in By, so that
there exist z, y, u, v in A* such that

(zB)(wh)(yB) = 2B, (uf)(2B)(vp) = wp.
The first of these equations implies that C(wg) C C(z8), and the second
implies that C(z8) C C(wpg). Thus
wB J 28 = C(wp) = C(28).
In fact the converse implication is true also. For suppose that
C(wB) = C(28) = {a1,a2,...,an}.

Then, since B4, being a band, is completely regular, formulae (4.1.2)
and (4.1.3) apply, and imply that each of w8 and z8 is J-equivalent to
(a102...ay)B. Thus

wfh J zB if and only if C(wB) = C(20), (4.5.1)

and we conclude that each Up is a J-class of B4. The gross structure of
B4 is thus fairly clear, the semilattice involved being effectively the set of
finite subsets of A under the operation U.

By Theorem 4.4.1, each Up is a rectangular band, and so we have the
not altogether obvious result that if 28, y3 and 20 are elements of B4 with
the same content then

(@B)(yB)(2P) = (z6)(20)- (4.5.2)
This equality generalizes to the case where
Clyp) € C(zp) = C(2p),
for in this case C[(zB)(yB)(20)] = C(zf) = C(z3), and so
(zB)(yB)(2B) = (2B)[(zB)(yB)(28)](28) = (xB)(28).
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Formula (4.5.1) gives us a straightforward algorithm for determining
whether two elements of B4 are J-equivalent. We now describe the more
complicated algorithm by which we can determine whether or not they are
equal. Let u € A1, where |C(u)] = n > 1. We define %(0) to be the letter
in u that is last to make its first appearance, and 1(0) to be the subword of
u that precedes the first appearance of W(0). (Thus, for example, if n =4
and u = abacabedbebd, then 7(0) = d and 4(0) = abacabe.) Dually, we
define u(1) to be the letter in w that is first to make its last appearance,
and u(1) to be the subword that follows the last appearance of w(1). (In our
example, T(1) = a and u(1l) = bedbebd.) If |C(u)] = 1 then the meaning
of u{0) and w(1) is unclear: it is convenient to define u(0) = u{1) =1 (the
empty word) in this case.

In the terminology of Green and Rees (1952), w(0) is the initial mark,
1(0) is the nitial, TW(1) is the terminal mark, and u(l) is the ferminal.
Since we shall require to iterate the process, it is more convenient here to
adopt the general notation of Gerhard (1970).

Lemma 4.5.1 Let u,v € A*. Then (u,v) € 8 if and only if
(1) Clu) =C(v);

(2) 7(0) =2(0), @(1)="7(1);

(3) (u(0),v(0)) €8, (u(1),v(1)) € B.

Proof Suppose first that (1), (2) and (3) are given. Then
C’(U(OWO):C(U)=C(0) C(v(0)2(0)),

C(a(l)u(1)) = C(uw) = C(v) = C(T(L)v(1)).
Using (2), (3) and equation (4.5.2), we deduce that (modulo 3)

u = u(0)7(0)u = w(0)yz(0)uu(1)u(l) = u(0)T(0)u(1)u(l)
= v(0)(0)v(1)v(1) = v(0)T(0)vT(1)v(l) = v.
Conversely, suppose that (u,v) € 4, so that u and v are connected by a
finite sequence of elementary B-transitions. For simplicity, let us suppose

first that u and v are connected by a single elementary B-transition, and
suppose, without essential loss of generality, that

u=pug, v=pu’q (u€At, pgecA).

Then it is clear that @(0) = 7(0). If the first occurrence of %(0) is in pu
then we even have equality between w(0) and v(0); if @(0) occurs first in
¢ then all we can say is that u(0) — v(0) by an elementary B-transition.
This, however, is enough, for we certainly conclude in both cases that

%(0) =v(0) and (u(0),v(0)) € .
Similarly,

(1) =o(1) and (u(1),v(1)) € B.
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Clearly these results then extend to the case where v and v are connected by
a finite sequence of elementary B-transitions, and so the lemma is proved.
O

If the B-equivalent elements u and v considered in the lemma are such
that |C(u)] = |C(v)| = k, then the elements u(0), (1), v(0), v(1) featuring
in part (3) of the conditions all have contents of cardinality ¥ — 1. The
lemma, does therefore give useful information, particularly if we repeat the
process. Before we do this, however, it is helpful to have some further
notation. Let P; be the set of words of length j in the alphabet {0, 1}, and
let B = U{P; : 1 < j < k}. For each u in A* and each o in Iy we now
make recursive definitions of u(a) and u(«) as follows:

w(a0) = w(@)(0), u(ad) = u(e)(0),
glal) = u(a)(1), wul{al)=ula)(l).
(Thus, in the example u = abacabedbebd already considered,

w(00) = ¢, u(00) = aba, T(01) = a, u(01) = be,
(10} = d, u(10) =be, u(11)=c u(1l) = bd,

and it is a routine matter to go on to calculate T(a) and u{a) for words of
length 3 and 4.)

We now apply Lemma 4.5.1 repeatedly, recalling the convention that
w(0) = w(l) = 1 for every w for which |C(w)| = 1. We obtain

Theorem 4.5.2 Let A be a non-empty set, and let § be the congruence
B# on AT, where
B = {(w?w):we A"}

If u and v are elements of AY such that C(u) = C(v) = {a1,a2,...,a0x},
then (u,v) € B if and only if U(e) =T(B) for every v in Xy, O

One consequence of this analysis is that each Up is finite. First, it is
certainly the case that |Up| is determined only by |P|; so if |P| = k we
shall write |Up| = ¢;. An element uf in Up uniquely determines a quadru-
ple (w(0), (1), [u(0)}3, [u(1)]B), and every quadruple (a1, a1, wof, w1 3) for
which ag,a1 € P and wof € Up\(a0}, w18 € Up\{q,} determines an el-
ement (woagaiwi)f of Up. The number of elements in Up is thus the
number of quadruples of the kind described, and this leads to the recursion
formula

cp = k*ci_,.

Hence, observing that ¢; = 1, we obtain by iteration that

k-1
o =Kk -1k —2%... = [tk — i+ 17 (4.5.3)

=1
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If A is finite—say |A| = n—we now readily obtain a formula for the
number of elements of B4:

Theorem 4.5.3 The free band on o finite set A is finite. Specifically, if

|A| = n, then )
|Bal =" (Z)Ck,

k=1
where ¢y is given by (4.5.3). d

The number of elements in the free band on n generators increases with
great rapidity as n increases. If we denote the number by by, then by direct
calculation we obtain

C1 = 1 bl =1

Cy = 4 bg =6

c3 =144 bs = 159

ca = 331,776 by = 332,380

s = 2,751,882,854,400 by = 2, 751,884,514, 765,

while ¢g is approximately 2.7 x 1026,
Before we leave the topic of free bands, it is of interest to record that
our analysis enables us to characterize the Green equivalences R and L:

Proposition 4.5.4 Let z3,y0 € Ba. Then
(1) (zB,yB) € R if and only if

C(z) = C(y), (0) =5(0) and (x(0),y(0)) € §;
(2) (zB,yP) € L if and only if

C(z) = C(y), (1) =§(1) and (z(1),y(1)) € 4.

Proof It will be sufficient to prove the first assertion. Accordingly,
suppose first that (z83,y8) € R. Then certainly (z3,y8) € J and so,
by (4.5.1), C{x) = C(y). Moreover, there exist u, v in AT such that
(modulo 5)

TU=Y, Yv=2.

By Lemma 4.5.1{1) we deduce that C(x) = C(y) = C(zu), and so it
follows that C(u} C C(z). Hence any letter that is going to appear in zu
has already appeared in z, and so

7(0) = 7w(0) = Z(0), (0) = (ew)(0) = (0),

as required.
Conversely, suppose that z, ¥ in AT are such that Z(0) = 7(0) = a and

z(0) = y(0) = w (mod 3).

Then (modulo 3)
z = z{0)E(0)z = waz,
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where C{wa) = C(z). Hence, by (4.5.2),
rwa = wazwa = (wa)? = wa,

and so 8 R (wa)p in B4. A similar argument shows that y8 R (wa)g,
and so 2z R yf as required. 0

4.6 VARIETIES OF BANDS*

It is necessary to begin this section with some observations on varieties
further to those already made in Section 4.3. Since we are now concerned
solely with varieties of bands, and since these can be regarded either as
varieties of (2,1)-algebras or varieties of semigroups, we can pursue the
ideas in the simpler context of semigroups. It is not at all hard to modify
the ideas so as to cope with algebras of more complicated type.

We have seen that every variety V is determined by a set of identical
relations R, and we have decided to write V = [R]. If we have a family of
varieties V; = [R;|] (4 € I}, then it is clear from the definition of a variety
in Section 4.3 that V = ({V; : ¢ € I} is again a variety, and that the
set of identical relations defining V is | {R,; : ¢ € I}. So, for example, the
intersection BNC of the variety B of bands and the variety C of commutative
semigroups is the variety [z2 = z, zy = yz] of semilattices.

By contrast, the union of a family of varieties need not be a variety.
On the other hand, for any given family {V; : ¢ € I} there exists a join
U = V{V; : i € I}, namely the intersection of the collection of all varieties
containing | J{V; : ¢ € I'}. (The collection is non-empty, since the variety of
all semigroups necessarily contains every V;.) The determination of a set
of identities characterizing U/ is not a trivial process, and to get any idea
at all of how to proceed we need a new idea.

A congruence p on a semigroup S is called fully invariant if, for every
endomorphism « of S, and for all z, y in S,

(z.y) €p = (za,ya) € p.

It is a routine matter to verify that the intersection of a non-empty family
of fully invariant congruences is a fully invariant congruence.

Now let R be a set of identical relations. That is to say, let R be
a subset of AT x AT, where A is a countable set. Define R¥ to be the
smallest fully invariant congruence containing R, namely the intersection
of the collection of all fully invariant congruences containing R. (Since not
every congruence is fully invariant, R? is potentially larger than R#.)

For an arbitrary semigroup S, let I(.9) be the subset of AT x AT consist-
ing of all pairs (wy, ws) for which the identical relation w; = ws is satisfied
in S. Then we have

Proposition 4.6.1 The relation I(S) is a fully invariant congruence on
At IfV = [R] is a variety, then S €V if and only if I(S) D R".
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Proof It is obvious that I(S) is an equivalence. Suppose now that
(w1, ws),(#1,22) € I{(S).
Then w1¢ = we¢ and z1¢ = z2¢ for every morphism ¢ : AT — S, and so

(w121)¢ = (w1d)(219) = (w28)(22¢) = (w222)¢.

Thus (w121, wez2) € I(S), and so I(S) is a congruence.

To show that I(S) is fully invariant, consider an endomorphism « :
At — AT, and let ¢ : AT — S be an arbitrary morphism. Then a¢ :
AT — S is a morphism, and so wiad = waag for every (wy,ws) in I(S).
It follows that (w1, wea) € I(S), and hence that I(S) is fully invariant.

Consider now a variety V = [R], and suppose that § € V. Then
certainly R C I(S). Since I(S) is then a fully invariant congruence on
AT containing R, it must contain the smallest fully invariant congruence
containing R, that is, R¥ C I(5).

Conversely, if RY C I(S) then certainly R C I(S); hence the identical
relations in R are all satisfied in S, and so S € V. O

For a given S in a variety V = [R] it may well be the case that I(S)
properly contains RY, for we may have chosen an S in [R] that ‘accidentally’
satisfies more identical relations than are implied by the original set R.
For example, if R = {(zy, yz)}, we may happen to choose an S in [R] that
is a semilattice, and so contained in a variety strictly smaller than [R].
However, we can reasonably regard RY as providing us with the totality of
identical relations associated with the variety [R], since, as the next result
makes clear, there is always at least one semigroup S in [R] for which
I(S) = R":

Proposition 4.6.2 Let A be a countable set, let R C At x AT, and let
p =RY. Then At /p is the (relatively) free semigroup in the variety [R],
and I(A* /p) =RY

Proof We show first that A*/p € [R], which amounts to showing that
every (wi,ws) in R is satisfied identically in A% /p. So let (w1, ws) € R,
and let 6 : AT — At /p be a morphism. For each x in A, choose an element
in 26(p")~! and call it zy. Since A7 is free, the map = — v from A into
AT can be extended uniquely to a morphism 7 : At — A*, where
(122 20)T = (217)(@2Y) - . . (T0Y) (z172...2, € AT).

Now, for every w = z1Z3... %, in AT,
wd = (210)(26) ... (zn8) = (xwp“)(:vﬂp ) (@avp®)
= [@17)(z27) . . . (Tu)]P" = wyp".
Since p is fully invariant, (w17, ws7) € p. Hence

w10 = wiTp' = waFp® = wob,
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as required. We have shown that A% /p € [R], and so I{A*/p) D R".

To show equality, suppose that (w;,ws) € I(A%/p). Then wif = wyf
for every morphism 6 from A" into A*/p. This holds in particular for the
morphism p", and from this it follows that (wi,w2) € p=R".

To show that AT /p is the [R]-free semigroup on A, suppose that
S € [R], and consider an arbitrary map ¢ : A — S. There is a unique
extension of this map to a morphism q3 : AT — S, that is, if we denote the
inclusion map from A into A* by ¢, we have a commutative diagram

A L

AT

¢ ¢

S
Now I(S) D p, and so wy ¢ = wad for every (wr,ws) in p. It follows that the
map ¢ factors through A1 /p, in the sense that there is a unique morphism
¢: At /p — S such that ¢ = pfp. It follows that the diagram

i
¢
A= At )p
¢ $
commutes, and this is precisely the property we require. O

In a similar way we can obtain the [R]-free semigroup on a more general
infinite set A of generators, and also on a finite set A, provided A has
enough symbols to spell out the words in R. The free band B4 studied
in the previous section is an example of the phenomenon described in the
proposition, with R = {(z2,z)} and R¥ = 3.

Proposition 4.6.3 Let A be a countable set, and let Ry, Ro be subsets of
At x AT determining varieties [R1], [Ryg), respectively. Then

[Ri] C [Rel if and only if RY 2 RS,

Proof We use Propositions 4.6.1 and 4.6.2. If [R;] C [Rs], then AT/RY €
[Rz], and so
RY = (A" /RY) D R,

Conversely, if R} D RY, then
SeRi] = I{(S) DR} = I(S) 2Ry = S e [Ry].
Thus [R1] C [Ra]. m|

It is important to realise that two different sets R; and Rq of identical
relations may determine the same variety. We have already encountered
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such a situation in Theorem 1.1.3, which we can interpret as saying that
the variety of rectangular bands can be described either as [zyx = 2] or as
[z? = z, zyz = z2]. What we can deduce from Proposition 4.6.3 is that

Corollary 4.6.4 [R;] = [Rg] if and only if RY = RS. m

Suppose now that we have a family {V; : i € I} of varieties of semi-
groups, where V; = [R;] (i € I). Then R = (N{RY? : ¢ € I} is a fully
invariant congruence on A1, and the correspondence established in Propo-
sition 4.6.3 implies that [R] = V/{V; : i € I'}. In a sense we have solved
the problem of finding identical relations defining U = \/{V; : i € I}, but
in the case where the sets R; are all finite we might well be interested in
finding a finite set of relations defining #. There is no general method of
doing this, and indeed it may not be possible. (See Taylor (1979).)

With respect to the operations N and V, the set V(S) of varieties of
semigroups becomes a complete lattice with greatest element the variety
[z = z] of all semigroups and least element the variety [z = y] of trivial
semigroups. The set V(B) of varieties of bands, consisting of all varieties of
semigroups contained in the variety B, is a sublattice of V(S). Any logical
difficulty involved here in talking of a set of classes is only apparent, for
we can if we wish identify each variety with a fully invariant congruence
on a fixed AT, and talk instead of the lattice C of such congruences on A%
and the sublattice of C consisting of all fully invariant congruences
containing 3.

By an atom in a lattice (L, A, V) with least element 0 we mean a minimal
element ¢ in the set L\ {0}. We now proceed to identify the atoms of the
lattice V(B), and to this end we examine three very specific fully invariant
congruences on AT, namely

g = {(:Ity, y:c), (xQ,x)}v’ A= {(x%m)}v’ p= {(:L,y,y)}v (4'6'1)

These correspond to the varieties SL (semilattices), £LZ (left zero semi-
groups) and RZ (right zero semigroups), respectively. In each case we
have a useful alternative description. As before C(w) denotes the content
of w, the set of letters in A appearing in w; also, h{w) and ¢(w), the head
and the tail of w, respectively denote the first and the last letter in w.

Proposition 4.6.5 Let o, A and p be the fully invariant congruences on
AT given by (4.6.1). Then, for all w, z in AT,

(1) (w,z) € o if and only if C{w) = C(z);
(2) (w,z) € X if and only if h(w) = h(2);
(3) (w,2) € p if and only if t(w) = t(2).

Proof (1) Denote the relation {(w,z2) : C(w) = C(2)} on AT by &, and
let
S = {(uv,vu), (u?,u) : u,v € AT}
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Certainly & is a congruence on At. Tt is even fully invariant, since for every
endomorphism « on A, and every (w, 2) in &,

C(wa) = J{C(za) : 2 € C(w)} = | J{Clza) : x € C(2)} = C(za).

Since S C &, it is clear that ¢ C k. Conversely, it is clear that if
C(w) = C(z) = {z1,x2,...,2,}, then each of w and z can be connected to
1Ty ... 2T, by a sequence of elementary S-transitions, and so (w,z) € o.

(2) The approach is very similar. Denote the relation {(w, z) : h{w) =
h(z}} by n, and let

E= U{(uv,u) cu,v € AT)
Then 7 is a congruence, and is fully invariant since, for every endomorphism
a of AT and every (w, 2) in 7,
h(wa) = h(h{w)a) = h{h(z)a) = h(za).
Since E C n, it follows that A C 5. Conversely, if h{w) = h(z) = z, then,
modulo A,

w x z.

Thus 7 = A, as required.
(3) The proof is the exact left-right dual of the previous case. O

Theorem 4.6.6 The set of atoms in the lattice V(B) of varieties of bands
is {SC,LZ,REZ)}.

Proof To show that SL, £LZ and RZ are atoms we must show that
the corresponding congruences o, A and p are maximal among the non-
universal fully invariant congruences on A™. So let us suppose that 7 is a
fully invariant congruence on A1 properly containing o, so that there exists
{u,v) in 7 such that C(u) # C(v). Without loss of generality, suppose that
there exists z in A such that z € C(u), z ¢ C(v). Since o C 7, we may
assume that x appears just once in u, and at the beginning. Let o be an
endomorphism of AT mapping z to itself and all other elements of A to
some y (# z) in A. Then ua = xy*, va = y*, and so (modulo 7)

sy=azyf =yt =y
By the fully invariant property and from the assumption that ¢ C 7 it now
follows that, for all wy, we in AT,
w1 = wowy = wiws = wy {mod 7).

Thus 7 = AT x AT, and so ¢ is maximal, as required.

Next, suppose that u is a fully invariant congruence on A% properly
containing A. Then there exist elements u = zu’, v = yv' (z,y € 4; v, v’ €
A*) such that z # y and (u,v) € p. From p O A we then deduce that

z=zu =y =y (mod u),
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and from the fully invariant property it then follows that (w1, ws) € p for
all wy, wy in A*. Thus X is maximal. The proof that p is maximal is
effectively identical.

We have now established that SL, £LZ and RZ are atoms within the
lattice V(B). It remains to show that these are the only atoms in the
lattice. So suppose, by way of contradiction, that V is an atom in V(B)
and that V is distinct from each of S£, LZ and RZ. Then

VASL=VNLZ=VNRZ=T, (4.6.2)

where 7 is the class of trivial bands. Let B be a non-trivial band in
V. If B is not a rectangular band, then by Theorem 4.4.1 it has a non-
trivial semilattice morphic image Y. Then ¥ € VN SL, and we have a
contradiction. Hence B is a rectangular band, and V consists entirely of
rectangular bands. Now B ¢ £Z and B ¢ RZ. However, by Theorem
1.1.3, B is then expressible non-trivially as a direct product of a left zero
semigroup L and a right zero semigroup R. Since L and R are then morphic
images of B, both L and R belong to V, and we have a contradiction to
(4.6.2). |

It is natural now to seek to identify the varieties that constitute the
sublattice of V(B) generated by the atoms S£, LZ and RZ. Up to a
point it is possible to do this with informal, largely verbal arguments of
the following sort. The fully invariant congruence ¢ on A™ corresponding
to SL consists of all pairs (wy,wq) for which w; and w, have the same
content. Similarly, the fully invariant congruence A corresponding to LZ
consists of all pairs (w1, ws) such that wy and ws have the same first letter.
Hence o N A consists of all pairs (w;,ws) having the same content and the
same first letter. ‘Clearly’ oN\ = {(z2,x), (zyz, z2y)}?, and so SLVLZ =
[#? = x, Yz = z2y], the variety of left normal bands.

There is nothing fundamentally wrong with this argument, though the
use of ‘clearly’ involves the common, but ultimately disreputable, mathe-
matical practice of handwaving. More formal arguments are available, and
both the methods we shall use and the results that we shall obtain are
sufficiently interesting to justify the more lengthy procedure.

First, we shall require an alternative version of Birkhoff’s Theorem
(Theorem 4.3.1), involving the notion of a subdirect product. Again, this is
a concept belonging to general algebra, but (just as we proved Birkhoff’s
Theorem for (2,1)-algebras) we shall consider the alternative version only
for semigroups.

There are in fact several ways of approaching the idea of a subdirect
product. First, let P be the direct product of a family {S; : i € I} of
semigroups, consisting of maps ¢ : I — {J{S; : ¢ € I} such that i¢ € S; for
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each ¢ in I, with the ‘componentwise’ multiplication

i(g) = (ig)(i) (iel, ¢,9 € P).

For each i in I there is a projection morphism m; from P onto S;, given by

o =i (P € P).
A subsemigroup @ of P is called a subdirect product of the family {5, :
iel}if Qm; = 8; for every i in I.

Examples include P itself and (if each S; has an identity element 1) the
so-called weak direct product consisting of those ¢ in P for which all but
finitely many of the elements i¢ are equal to 1. If all of the semigroups S;
are equal to a single semigroup S, and if, for all s in S, we define (s} in P
by the rule that

i(s)=s (el (4.6.3)

then the diagonal
D= {{(s):s€ S}
is easily seen to be a subdirect product.
An alternative approach to subdirect products is given by

Theorem 4.6.7 Let {S; : i € I} be a family of semigroups, and let Q) be a
semigroup with the property that, for every i in I, there exists a morphism
A; from Q onto S;. If, for all z, y in @,

then S is isomorphic to a subdirect product of the family {S; : i € I'}.

Conversely, if Q is a subdirect product of {S; : ¢ € I}, then for each i
in I there is a morphism A; from Q onto S;, and the implication (4.6.4)
holds.

Proof Let P be the direct product of the family {5, : ¢ € I'}, and consider
the map A : Q@ — P given by

i(gA) =qh (1€, g€Q).
Then A is a morphism, since, for all q1, g2 in @ and all ¢ in 7,
i{(q1g2)A] = (192) X = (@1 A)(@2 i) = [i@M)][i(a2A)] = i[(q1A)(q2A)]-
Also, A is one-one, since, for all z, y in Q,
2A=yA = Mielzh =y\ = z=4y.

Thus @ is isomorphic to the subsemigroup QA of P. We show finally that
QM) is a subdirect product. Since each A\; maps onto S;, we can be sure
that for every s in S; there exists ¢ in ¢ such that ¢A; = s. Hence

(gN)m; = i(gA) = g\ = s,
and so (QN)m; = Sy, as required.
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Conversely, suppose that () is a subdirect product of the family {S; :
i € I}. Then all the projection maps ;g : Q@ — S; are onto. Moreover,
forall ¢, n in Q,

(Viel)ém=nm] = [(Viel)i{=1i] = {=n,
and so (4.6.4) is satisfied. O

From the correspondence between morphisms and congruences given by
Theorem 1.5.2 we have the following alternative version:

Theorem 4.6.8 If Q is a semigroup having a family of congruences {p; :
i € It such that N{p; : ¢ € I} = 1g, then Q is isomorphic to a subdirect
product of the family {Q/p; : i € I'}. O

All this is leading to the following result:
Theorem 4.6.9 A non-empty class V of semigroups is a variety if and
only if
(1) every morphic image of a semigroup in'Y is in V;
(2) every subdirect product of a family of semigroups in V is in V.

Proof It is clear that if V is a variety then both (1) and (2) hold.

Conversely, suppose that V is a non-empty class of semigroups satisfying
(1) and (2). Then it is clear that V is closed under the taking of morphic
images and direct products. To show that it is closed under the taking of
subsemigroups, let S € V and let U be a subsemigroup of S. Let I be a
countable set, and let P be the direct product S? of |I| copies of S. Let
Q be the set of ‘almost constant’ maps ¢ in S’ with the property that, for
some u in U, i¢p = u for all but finitely many ¢ in I. That is,

peQ ifandonlyif BuelU)|{iel:ip#£u} <oco.
Among the elements of Q are the constant maps (u) (u € U) given by
u)y=u (iel),
and also the maps ¢; 5, ((€1I,s€S, ueU)given by
Wisu =8, JPisu=u (J#1).

Since the projection map m; sends ¢; s, to s, we have Qm; = S for each i,
and so ¢}, being a subdirect product of copies of S, belongs to V.

Now define a map I' : @ — U by the rule that, for each ¢ in Q, ¢TI is
the unique element u in U such that {i € I : i¢ # u} is finite. Then it is
easy to verify that T is a morphism from @ onto U, and so U € V. O

The subdirect product is a very general construction, and we shall have
reason to consider a special case. Let § and T be semigroups having a
common morphic image H, and let ¢, 1 be morphisms from S onto H and
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from 7" onto H respectively. The spined product of S and T with respect to
H, ¢ and v is defined as

Y={(s,t) € S xT:3¢=t}.

This is the standard terminology in semigroup theory, but the idea oc-
curs elsewhere in mathematics under different titles. The semigroup Y is
the pullback, or fibre product—see, for example, Schubert (1972)—of the
diagram

S

¢
T“TH

It is a routine matter to verify that Y, as defined, is a subdirect product
of S and T'. It can usefully be thought of as a generalization of the diagonal,
and reduces to the diagonal if H = 8§ =T and ¢ = 9 = 1. At the other
extreme, if H is the trivial semigroup, then Y becomes the direct product
of § and T. For our purposes the important point to note is that if S and
T belong to some variety V then so does their spined product.

We now show that the strong semilattice construction exemplified in
Section 4.2 is relevant to the study of varieties. But first we must cope
with a detail concerning the adjunction of a zero to a semigroup. Let us
denote by S the semigroup obtained from S by adjoining a zero element
0 whether or not it already has a zero. (This carries the assumption that
if S does have a zero we are denoting it by a symbol other than 0.) In °S
we always have the implication

zy=0 = z=0o0ry=0.

Lemma 4.6.10 Let V be a variely of semigroups containing the variety
SL of semilattices. If S €V, then %S € V.

Proof The multiplicative semigroup {0,1}, being a semilattice, is in V,
and so T =8 x {0,1} € V. The subset I = {(z,0) : z € S} is an ideal of
T, and so the Rees quotient T'/I, being a morphic image of T, belongs to
V. But T/ is essentially {(s,1) : s € S} U{0}, and so is isomorphic to °S.

O

Proposition 4.6.11 Let V be a variety of semigroups containing the va-
riety of semilattices, and let S = S(Y';54; ¢a,p) be a strong semilattice of
semigroups Sq. If each Sy, is in the variety V, then S € V.

Proof Define 9, : S — 28, by the rule that

oy = TPp,e f € Sgand 8>«
TWa =1 ¢ otherwise.
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To see that this is a morphism, suppose that , y in .S are such that z € Sp,
y € Sy. Then either vy > a or By 2 o. If By > o then § > By > o and
v 2> By 2 a, and so

(@Y)be = [(266,64)(¥D1,6:)187,0 = (265,0)(Y$v.0) = (29a)(YPa)-

If By # « then (zy), = 0. Also, either 8 2 a or v 2 o, for § > a and
4 > « would imply that By > a, contrary to assumption. Hence one or
other of z1, and y®, is equal to 0, and so {zy)¥, = (29 ){y1,) in this
case also.

Next, notice that S1g D Satve = Su. In fact, unless 8 > a for every 3
in Y, we have S, = °S,. If there exists a unique minimum element w of
Y, then Sv, = S,.

Suppose now that z in Sg and y in S, are such that z¢, = yy, for
every o in Y. In particular z¢s = z¢s 3 = x # 0, and so yyy3 # 0. Hence
~v > . We can equally well show that 8 > v, and so 8 = v. Hence

T =ahp =yPs =y

It now follows from Theorem 4.6.7 that S is a subdirect product of the
semigroups %S, (a € Y \ {w}) and S,. Since S, € V and (by Lemma
4.6.10) 9S, € V for all a # w, we deduce that S € V. O

To the list of varieties in Section 4.3 we now add the following new

members:
LN :left normal bands : zyz = 22y,

RN : right normal bands : zyz = yzz,
N : normal bands D TYZT = T2YT,

where in each case the given identical relation characterizes the variety
within the variety of bands. The relation 22 = z is taken as read.
We already know that £LZ C RB, RZ C RB. Hence

LZVRZ CRB.

On the other hand, every rectangular band, by Theorem 1.1.3, is a direct
product of a left zero semigroup L and a right zero semigroup R. Since

LeLZCLZVRZ and RERZCLZVRZE,
it follows that L x R € LZ V RZ. We deduce that
LZVRZ =RB.

In considering normal bands, it is useful to establish first the following
alternative characterization:
Proposition 4.6.12 N = [2? = z, zyzt = z2yt)].

Proof It is clear that the identical relation xyzt = xzyt implies the iden-
tical relation zyzz = zzyz. What we require to prove is that 22 = z and
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xyzx = rzyx imply zyzt = xzyt. From the given identities we can deduce
that

xyzt = zyztzyzt = [zy(zt)zlyzt = xztyxyzt
= z|z{tyx)yz]t = z2ytyzst
= zzylty(z2)t] = zzytrayt
= zzyt.
0

Now let B be an arbitrary band, and let us express it in the usual way
as a semilattice Y of rectangular bands F, (o € Y). Within any band
there is a natural order relation—which we have already come across in
Chapter 3 in the context of primitive idempotents—given by

y <z ifand only if 2y =yz =1y.

It is clear from this definition that if x < y, where x € E, and y € Ejg,
then 8 < a in Y. It is also easy to see that if z is an arbitrary element of
E, and § < a, then, for every 2z in Eg, the element y = zzz is in Eg, and
is such that y < z. To put it formally, we have shown that

(VaeY)Vz € Ey) (VB8 < a)(Fy € Eg) y < z.

We now show that for B to be a normal band it is necessary and sufficient
that the element y be unigue:

Proposition 4.6.13 With the above definitions, a band B is normal if and
only if

(VaeY)Vz € E,)(VB<a)3ly € Eg) y <=z
Proof Suppose first that B is a normal band. On the face of it, the ele-
ment y = zzx described above depends on the choice of z in E3. However,
if ¢ is another element of Eg, then 2tz = z and tzt = ¢, since E3 is a
rectangular band, and

z2x = xztze = xtz’z  (by normality)
= gtzx = xtizr = xtzte = xtz.

Thus the value of zzz is independent of the choice of z.

Suppose now that y and y’ are elements of Eg such that y < z, z < z.
Then from the argument of the last paragraph, zyx = zy’z. But we also
have zy = yz =y, zy' = v’z = ¢/, and so

y=zyr=zy'z =y

Conversely, suppose that we have the given uniqueness condition, and
let a € E,, b€ Eg, c € E,. Then abea,acba € Es, where § = af3y. 1t is
clear that abca < a and acba < a, and so by the uniqueness assumption
abeca = acbha. |
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Proposition 4.6.14 A band B is normal if and only if it is a strong semi-
lattice of rectangular bands.

Proof Suppose first that B = S(Y; Eq; ¢a,p) is a strong semilattice of
rectangular bands, and let a, b, ¢ be arbitrary elements of B, with o € E,,,
b e Eg and ¢ € E,. Then, writing § for the product a5y in Y, we have

abca = (aa,5)(0¢p,5)(chy,5)(aPa,s)

= a¢q,s, since Fs is a rectangular band,

and similarly acba = adq,s. Thus B is a normal band.

Conversely, suppose that B is normal. For each pair o, 8 in Y such
that o > (3, and for each z in E,, define £¢, g to be the unique y in Ez
such that y < x. Then it is immediate that ¢ o is the identity map for
every o, and that ¢o g¢g, = ¢,y whenever a > § > . To show that each
¢o,p is a morphism, consider z, y in E, and let z be an arbitrary element
of E3. Then

(2y)ba,p = zyzey = xzeyy (by normality)
x(z.zzy)y = z(zzy.2z)y (again by normality)
(z2z)(y2y) = (20a,6) (Y%a,p)-

Finally, consider arbitrary elements o and SinY, and let x € E,, y € Eg.
Then zy € E,, where v = af, and, for an arbitrarily chosen z in E,,

I

zy = zyzzy = zzzy’?  (by normality)
= x(z.2zy)y = x(2xy.2)y (again by normality)
= (z22)(y2y) = (2ban) (UPp7)-

That, is, B is a strong semilattice of rectangular bands. O

An alternative approach to the proof of Proposition 4.6.14, based on
the structure theorem (Theorem 4.4.5) is outlined in Exercise 19.

Before proceeding with our discussion of varieties, it is convenient to
mention a corollary to Proposition 4.6.14. It is evident that every left nor-
mal band B is normal, and is therefore a strong semilattice of rectangular
bands E,. But each of the rectangular bands E,, being a sub-band of B,
is also left normal, and from the identical relations zyz = z and axyz = 2y
in E, we easily deduce that

TY = TTY = TYT = T;

thus FE, is a left zero semigroup.
We have shown half of

Corollary 4.6.15 A band is left normal if and only if it is o strong semi-
lattice of left zero semigroups.
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Proof Let B = S(Y; Es; ¢a,3) be a strong semilattice of left zero semi-
groups, and let a (in E,), b (in Eg), ¢ (in E,) be arbitrary elements of B.
Then

abe = (a¢a,5)(b¢p,6)(chr,5) = GPars,

where 6 = afy, since Es is a left zero semigroup. Since we may equally
well show that ach = a¢y,s, we deduce that B is a left normal band. O

Dually, we have

Corollary 4.6.16 A band is right normal if and only if it is a strong semi-
lattice of right zero semigroups. O

We record that in a strong semilattice S(Y'; Ly; ¢a,g) of left zero semi-
groups, the multiplication is given by

lalﬁ = la¢a,ag (la € Lg, lﬂ S L/j), (4.6.5)
while in a strong semilattice S(Y'; Ry; ¢ p) of right zero semigroups, the
multiplication is given by

ToTg = T'g¢ﬂ)a5 (T‘a € R,, rg € Rﬁ). (4.6.6)

Notice now that from S£ C N and RB C A we deduce that SCVRB C
N. Conversely, if B € N, then, by Proposition 4.6.14, B is a strong
semilattice of semigroups in the variety SL vV RB. Hence, by Proposition
4.6.11, B € SLV RB. We have shown that

SLVRB=N. (4.6.7)
Similar arguments, based on Corollaries 4.6.15 and 4.6.16, show that
SLVLZ=LN, SLVRZ=TRN. (4.6.8)
Since LN C AN and RN C N, it is clear that
LN VRN CN.

To show that this is in fact an equality we require the following result:

Proposition 4.6.17 Every normal band B is isomorphic to a spined prod-
uct of a left normal and o right normal band.

Proof Let B = S(Y; Ey; ¢a,p) be a normal band. Each of the rectangular
bands E, is a direct product L, X R, of a left zero semigroup L, and a right
zero semigroup R,. Moreover, as shown in Corollary 4.4.3, the morphism
¢, determines morphisms qbla’ﬁ : Lo — Lg, ¢}, 5 Ra — Rg such that

Loy Ta)¢a,,8 = (laqsiy,m Ta¢g,ﬁ)

for every (lo, 7o) in E,.
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Now, L = |J{Lqs : @ € Y} becomes a strong semilattice of left zero
semigroups if we define

laolg= laﬁbfx,aﬁ,
and similarly R = |J{R, : & € Y} becomes a strong semilattice of right
zero semigroups if we define

Ta ¥T = TP op-

(Compare these formulae with (4.6.5) and (4.6.6).) Thus L is a left normal
band and R is a right normal band.

Certainly the semigroups L and R have a common morphic image,
namely the semilattice Y. If ¢ and 1 are the obvious morphisms, given by

lop =0, 19 =0,

then the spined product of L and R, consisting of those pairs (I,7) for
which [¢ = i, coincides with

| J{Zax Ra:aeY}
Moreover, the multiplication in the spined product is given by
(layra)(lg,7g) = (la 0 1g, Ta % 75) = (ladh o T58p,ap)
= (la$t,ap: Ta®u,as) 1995,00:7605,0)
= [(las Ta)Paapl((ls 78) b8 0];

and so coincides with the multiplication in the normal band B. ]

It is now immediate that

LN VRN =N.
LN RN
LZ RZ
T

We can summarize what we have learned about the sublattice of V(B)
generated by the atoms by means of the diagram above. Not all of the
statements implied by the diagram have been proved, but it is easy to fill
in the gaps. For example, to show that LN V RB = N, note that from
RBCN and SL C LN C N we can deduce that

N=SLVRBC LN VRBCN.
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The various statements about intersections implied by the diagram are all
obvious. For example, it is clear that S£ C LA NRN, but, conversely, if
B e LN NRN then for all a, b in B

ab = aab = aba (by left normality)
= baa (by right normality)

= ba,

and so B € SL.

4.7 EXERCISES

1. Show that a semigroup S is completely regular if and only if for every
a in S there exists xz in S such that axza = a and az = za.

2. Let S, T be completely regular semigroups.
(a) Let ¢ : S — T be a map satisfying

(Va,b € §) (ab)¢ = (a)(bs).
Show that ¢ also has the property
(Va € 8) (ag)™! = (a™ )¢

(b) Show by an example that this deduction is invalid if § and T are
merely I-semigroups.

3. Let S be a commutative semigroup, and let a,b € S. Write a¢ | b
{a divides b) if there exists x in S such that ax = b. Define n as the
set of pairs (a,b) in S x S for which

(GmeN)a|b™ and (IneN)b|a™

(a) Show that 7 is a congruence on S.

{b) Show that S/7 is a semilattice.

(c) Show that 7 is the least semilattice congruence on S, in the sense
that if p is a congruence on S such that S/p is a semilattice, then

ncp.
A commutative semigroup A is called archimedean if
(Va,b e A)(Fm,n e N)a | b™ and b|a™

Show that each n-class of a commutative semigroup S is an archi-
medean subsemigroup of S. Deduce that every commutative semi-
group can be expressed as a semilattice of archimedean semigroups.

4. Let S be a completely regular semigroup, expressed as a semilattice Y
of completely simple semigroups S, (€ Y).
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10.

(a) Show that, if L is a left ideal of Sy, then
LU [ J{8s:8<a}]

is a left ideal of S.
(b) Suppose now that S = S(Y; Gy;da,p) is a strong semilattice of
groups and that L is a left ideal of S. Show that

LNGa#0 = | J{Gs:8<a} C L

{(c) Show that S is a Clifford semigroup if and only if it is regular
and every one-sided ideal is a two-sided ideal.

. Recall that a regular semigroup is called E-unitary if its idempotents

form a unitary subsemigroup. Show that a strong semilattice S =
S(Y; Gqo; ¢a,p) of groups is E-unitary if and only if ¢, s is one-one for
ala>pfinY.

. Let G be a group with identity element e. Show that every left trans-

lation A of G coincides with the inner left translation Ay.. Show sim-
ilarly that all right translations of G are inner, and deduce that G is
isomorphic to its translational hull Q(G).

. Let S be the two-element null semigroup. Show that the homomor-

phism a — (A4, po) from S into Q(S) is not one-one.

. A semigroup S is called a band of groups if there exists a congruence

B such that S/f is a band and each f-class is a group. Show that a
semigroup S is a band of groups if and only if it is completely regular
and H is a congruence.

A semigroup is called orthodoz if it is regular and the idempotents form
a subsemigroup. Let OCR denote the class of orthodox completely
regular semigroups and let OBG be the class of orthodox bands of
groups. Show that both these classes are varieties of completely regular
semigroups determined, respectively, by the laws

1 1 1

zy = zyy~'e " ey, and (sy)(zy)' =zzlyy
A semigroup S is called a rectangular group if it is isomorphic to the

direct product of a group and a rectangular band.

(a) Show that a semigroup is completely simple and orthodox if and
only if it is a rectangular group.

(b) Show that S is a rectangular group if and only if it is completely
regular and satisfies the law

x_lyy“lm =z 1z
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(c) Denote the class of rectangular groups by RG and the class of
groups by G. Show that, within the lattice of varieties of com-
pletely regular semigroups,

RG =GV RB.

11. Denote the class of bands of groups by BG.
(a) Show that every semigroup in BG satisfies the law

(z?yz")(2%y2?) 7! = (zyz)(zyz) "

(b) Suppose conversely that S is a completely regular semigroup sat-
isfying the above law. Let (a,b) € H, and let ¢ € S. By writing
ac = a*{a'c1)c?, show that (ac,bc) € H. Deduce from this
result and its dual that S is a band of groups.

12. Show that a band B is

rectangular if and only if D= B x B,
left zero if and only if £ =B x B,
right zero  if and only if R = B x B,
and trivial if and only if H =B x B.

13. Let B be a band. Show that, for all @, b in B,
ab L bab, ab R aba.

14. Give an example of a semigroup that satisfies the law xyz = zz but is
not a rectangular band.

15. The free band B, is expressed in the usual way as a semilattice of
rectangular bands. The underlying semilattice is the semilattice of
finite non-empty subsets of A, and the ‘product’ of two subsets P and
Q is their union. Thus, if < is defined in the usual way in a semilattice,

Q<P ifandonlyif @2 P.

The rectangular bands are the J-classes of B4. There is one such
J-class Up corresponding to each finite non-empty subset P of A, and
Up is the set of all elements of B4 with content P.

If |P| > 1, let

Ip = U{UP\{“} rac P},
and let o : Up — Ip X Ip be defined by
za = (z(0),z(1)) (z € Up).

Show that « is an isomorphism from Up onto the rectangular band
Ip X IP. Define Ip = {1} if |P] = 1.
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Now let Q@ D P, so that @ < P in the semilattice. Show that, for
each z in Up, the maps ¢3 : Ig — Ig and ¢ : Ig — Ig—see the
equations (4.4.5)—are given by

95u(0) = (zy)(0), y(1)¥g = (yz)(1) (y € Ug)-
16. Let A = {a,b,c}. Then the J-classes of the free band B4 are
Utay» Ugeys Ugeys Ugapdr Ugarelr Ugpelr Uas

For simplicity of notation, denote each fS-class by any chosen repre-
sentative of it in A*. Then
Utay = {0}, Ujapy = {ab, aba, ba, bab},
while U4 may be identified with the 12 x 12 rectangular band I4 % L4,
where
I4 = {ab, aba,ba, bab, ac, aca, ca, cac, be, beb, cb, cbe}.

(a) Determine the isomorphism a from U,y onto the retangular
band {a,b} x {a,b}. (See the previous exercise for the definition
of a.)

(b) Show that, in the notation of (4.4.5),

. _ [ab » _[ab
¢{a,b} = (aa>7 ¢{a,b} - (b b)a

and similarly compute ¥¢, ;1 and z/)?a,b}.
{c) Show that

& = ab aba ba bab ac aca ca cac be beb cb cbe
A7 \ ab aba aba ab ac aca aca ac ab ab ac ac |}’

and similarly compute ¢%, %%, ¥4, ¢%, ¥%.
(d) Verify that ¢9%¢ and ¢%’c are constant maps, and that

(6%°) = ab, (%) = be.
(e) Verify that ¢% = ¢%¢% (composed as left maps), and that 4% =
w;‘g@b‘/’, (composed as right maps).

17. Let S be a non-trivial semigroup with the property that no proper
subset of S generates S. Show that each J-class of § is either a left
zero semigroup or a right zero semigroup, and that the semilattice
S/J is a chain.

18. Show that a band B is normal if and only if the natural order relation,
defined by
z <y if and only if zy = yx = z,

is compatible.
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19. Let B be a band, expressed as a semilattice Y of rectangular bands
E,=1,xA,.
(a) Show that B is normal if and only if the maps ¢g and 93 are
constant maps for every « in Y, every a in E, and every 8 < a.
(b) Suppose that B is normal. For all @ > 3, define ¢ 5 : Ey —
Ep (= Ig x Ag) by

aga,p = ((83), (¥5) (a € Eq).

Show that ¢ g is & morphism.

(c) Show that B is a strong semilattice S(Y'; Eqa; ¢a,) of rectangular
bands. That is to say, show that ¢, = 1g, for every «, that
Ga,808,y = Pa,y Whenever @ > 3 > v, and that, for alla, fin Y
and all ¢ in E,, bin Eg,

ab = (a¢a,’y)(b¢ﬁf7)’
where v = af.

20. Let Na = A" /v be the (relatively) free normal band on the set A of
generators, where |A| > 3. Show that, for u,v € A, (u,v) € v if and
only if » and v have the same initial letter, the same final letter, and
the same content. Deduce that if |A| = n then

|N4| = zn: (Z) k% = 2" 2p(n + 1).

k=1

21. Describe the free semilattice, the free left zero semigroup and the free
left normal semigroup on a set A.

4.8 NOTES

The study of completely regular semigroups goes back to Clifford
(1941}, who proved the basic gross structure theorem (Theorem 4.1.3)
and the fine structure theorem (Theorem 4.2.1) for what we have called
Clifford semigroups. The term ‘completely regular’ was introduced by
Petrich (1973), and is now standard. The idea of regarding a com-
pletely regular semigroup explicitly as a (2, 1)-algebra dates also from
the 70s. It appears in Petrich (1975), and has been much developed, in
the context of varieties of U-semigroups, by Petrich (1977, 1982), Hall
and Jones (1980), Petrich and Reilly (1981a, 1982, 1983a,b,c, 1984a,b,
1988), Rasin (1979, 1981), Gerhard and Petrich (1983, 1985), Jones
(1983) and Polak (1985, 1987, 1988).

The study of bands was begun in the 50s. D. McLean (1954) proved
Theorem 4.4.1, and the general structure theorem (Theorem 4.4.5) is
due to Petrich (1971), who also classified all varieties of bands deter-
mined by identities in at most three letters, and related the identities
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to properties of the maps ¢, ¥ described in Section 4.4. (See, for
example, Exercise 19(a).) Petrich’s structure theorem is in effect a
specialization of an even more complicated result due to Lallement
(1967) on the fine structure of completely regular semigroups. The
results on free bands in Section 4.5 were obtained by Green and Rees
(1952).

Varieties of bands have been studied by Yamada and Kimura
(1958), who proved Proposition 4.6.14. Other references are Kimura
(1957a,b, 1958a,b,c) and Yamada (1958). Complete descriptions of the
lattice V(B) of all varieties of bands have been given independently
by Biryukov (1970), Fennemore (1971a,b) and Gerhard (1970), and
the smaller lattice of varieties of band monoids has been described by
Wismath (1986). These descriptions have been used very effectively
by Sezinando (1992a,b).

Useful survey articles on varieties of semigroups have been written
by Evans (1971), and by Shevrin and Volkov (1985).

Exercise 3 is from Tamura and Kimura (1954). In connection with
Exercise 4, we remark that many different characterizations of Clif-
ford semigroups have been given by Lajos (1969, 1970a,b,c, 1971a,b,
1972a,b). Exercises 8, 9, 10 and 11 are extracted from a very thorough
study of varieties of completely regular semigroups by Petrich (1975).
Exercise 17 is from Giraldes and Howie (1985).
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Inverse semigroups

In planning the chapter on inverse semigroups the main problem has been
one of selection. As long ago as 1961, Clifford and Preston offered the opin-
ion that inverse semigroups were the most promising class of semigroups for
future study, and the intervening years have amply justified their forecast.
It is inappropriate in a general introductory book to attempt a compre-
hensive updating of Petrich’s (1984) very complete account. Rather I shall
cover the basic ideas and attempt to explore one or two avenues in more
detail.

Inverse semigroups were studied first by Vagner (1952, 1953) and inde-
pendently by Preston (1954a,b,c). Vagner called them ‘generalized groups’,
and for many years this nomenclature was standard in the Russian litera-
ture. In both cases the origin of the idea was the study of semigroups of
partial one-one mappings of a set, and one of the earliest results was a rep-
resentation theorem (analogous to Cayley’s Theorem in group theory) to
the effect that every inverse semigroup has a faithful representation as an
inverse semigroup of partial one-one mappings. This important result has
become known as the Vagner—Preston Theorem, and is proved as Theorem
5.1.7 below.

The theory of inverse semigroups has many features in common with
the theory of groups, but there are some important differences. Among
the new features is the natural partial order that exists in each inverse
semigroup. This is discussed in Section 5.2.

Section 5.3 is devoted to congruences, and in particular to a descrip-
tion of congruences in terms of trace and kernel. Here group theory pro-
vides a strong motivation, but there are several new ideas. Two particular
congruences, namely the minimum group congruence and the maximum
idempotent-separating congruence, are discussed in detail. The existence
of fundamental inverse semigroups (those having no non-trivial idempotent-
separating congruences) is established.

Section 5.4 is devoted to a study of the Munn semigroup of a semilat-
tice, and in Sections 5.5, 5.6 and 5.7 this idea is used to investigate in-
verse semigroups whose semilattices of idempotents are anti-uniform, and
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to describe fundamental simple and bisimple inverse semigroups. If the re-
striction ‘fundamental’ is dropped then the problem becomes vastly more
complicated, and both in Section 5.6 and in Section 5.7 we confine ourselves
to the case of w-semigroups, where the semilattice is {eg, €1, e2,...}, with
g > €1 >€3 > -

In Section 5.8 the study of representations of inverse semigroups by
partial one-one mapping is resumed.

The theory of inverse semigroups entered a new phase with the work
of McAlister (1974a,b) and others on E-unitary inverse semigroups. In
Section 5.9 we give an account of some of this work, and in Section 5.10
we apply it to give a description of free inverse semigroups.

5.1 PRELIMINARIES

Recall that a completely regular semigroup is specified within the class of
I-semigroups by the property

and that a Clifford semigroup is similarly specified by the properties
zz = :c‘lw, :ca:‘lyy_l = yy‘la:x"l.

If we take the second of these properties but not the first, we get what is

called an inverse semigroup. 'To be precise, an inverse semigroup is an

I-semigroup S such that, for all z, y in 5,

1 1

zxlyy ! = yy~tazL. (5.1.1)

Then we have
Theorem 5.1.1 Let S be a semigroup. Then the following statements are
equivalent:
(1) S is an inverse semigroup;
(2) S is regular, and its idempotents commute;
(8) every L-class and every R-class contains exactly one idempotent;
(4) every element of S has a unique inverse.
Proof (1) = (2). This will follow if we show that every idempotent in
can be expressed in the form zz~!. Let e be an idempotent in S. Then
the I-semigroup property ensures that there is an element e~! in S such
that ee"le = ¢ and (e71)~! = e. Hence

el=e e ) lel = e lee ! = e lee!
= (e te)(ee™) = (ee7 V) (e7te).

It then follows that

e=-ce le=elee ) (e le)e = (eZe ) (e e?) = (ee 1) (e7te) = 7,

and hence that e = ee = ee™ L.
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(2) = (3). Suppose that S is regular, and that its idempotents com-
mute. From Proposition 2.3.2 we know that every £-class contains at least
one idempotent. If e, f are idempotents in a single £-class, then, by Propo-
sition 2.3.3, ef = e and fe = f. Hence, since idempotents commute, e = f.
A similar argument applies to R-classes.

(3) => (4). Let 2/, 2" be inverses of z in S. Then zz’,zz"” € R, and so
zx' = zz”. Similarly, z'z,z"z € L, and so 2’z = z"z. Hence

x/ — .’L',mx/ — m/xx/l — .'L'”CC.T” — xll’

and we conclude that inverses are unique.

(4) = (1). Denote the unique inverse of z by z~!. Then certainly we
have zz 1z for every z. We also have that z is the unique inverse of 1,
and so (z71)~! = z for every z. It remains to establish the identity (5.1.1).
Denote zz~! by e, yy~! by f, and let z be the unique inverse of ef. It
follows that

(ef)(fze)(ef) = ef?ze’f = efzef = ef,
(fze)(ef)(fze) = f(zefz)e = fze,

so that fze is also an inverse of ef. By uniqueness it follows that z = fze.
Hence z is idempotent, since

(fze)? = f(zef2)e = fze.

But now it follows, since both ef and z are inverses of z, that z = ef,
and so ef is idempotent. Thus ef is its own unique inverse. By a similar
argument, fe is idempotent also. Since we now have

(ef)(fe)ef) = (ef)? =ef and (fe)(ef)(fe) = (fe)* = fe,

both fe and ef are inverses of ef. Hence, by uniqueness, ef = fe. O

The set of idempotents of an inverse semigroup S is a commutative
subsemigroup of S. It is indeed a semilattice, as defined in Section 1.3.
We shall talk of the semilattice of idempotents of an inverse semigroup S,
and shall consistently denote it by Eg, or simply by E. We have already
observed that e! = e for every e in F. Some further elementary properties
of inverse semigroups are listed in the following theorem:

Proposition 5.1.2 Let S be an inverse semigroup with semilattice E of
idempotents. Then:

(1) (ab)~"t=b"a"! for everya, b in S;
(2) both aea™! and a~lea are idempotent for every a in A, e in E;
(3) a Lbif and only if a~'a = b1b; a R b if and only if aa™ = bb™};

(4) if e, f € E, then e D f if and only if there exists a in S such that
a t=e,ata=f.
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Proof (1) Notice that, since a'a and bb~! are idempotents,
(ab)(b"ra=)(ab) = a(bb™H(a " a)b = ala™1a)(bb~1)b = ab,
b taH(ab) (e = b e ta) (b e = b (B ) (e ta)a Y
— b—-la—l.

?

thus b~ 'a~! is the unique inverse of ab:

b=l = (ab)™?
2) Again by the commuting of idempotents,
Y
(aea™1)? = ae(a"ta)ea™! = aa"lae?a! = qea?,

and similarly (a7!ea)? = a~lea.

Part (3) is simply a specialization of Proposition 2.4.1 to the case where
inverses are unique. As for Part (4), if e D f then there exists a in S such
that e R @ and a £ f, that is, such that aa~! = e, a~la = f. O

Part (1) generalizes to more than two factors in the obvious way:

Corollary 5.1.3 Let a1,02,...,a, be elements of an inverse semigroup.
Then
-1 -1, -1 -1
(a102...0n) " =ay ar_y...a7 . O

In particular we have (a™)~! = (a™1)" for every element « in an inverse
semigroup, and so the notation ¢~" can be used unambiguously. On the
other hand, it is important to note that the index law a?a9 = aP*9? cannot
be assumed for all p, ¢ in Z.

Usually the best way to establish that a semigroup is an inverse semi-
group is to show that it is regular and that idempotents commute. For
example, we have

Theorem 5.1.4 Let S be an inverse semigroup, let T' be a semigroup and
let ¢ be a semigroup morphism from S onto T. Then T is an inverse
semigroup. Moreover, ¢ is an inverse semigroup morphism.

Proof By a semigroup morphism we mean a map that respects the binary
operation of multiplication. An inverse semigroup morphism has the addi-
tional property that s~1¢ = (s¢) L. It is part of the import of our theorem
that there is in fact no distinction between the two kinds of morphism.

Every ¢ in T is expressible (not necessarily uniquely) as s¢, where s € S.
If s~ is the inverse of s in S, then

(843)((8_1) ) (s) =
(™He) (s¢) ((s)9)

(s _18)¢=S¢,
(s7'ss™Hg = (s,

|
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and so (s71)¢ is an inverse of s¢ in T. Thus 7 is regular. Also, if g, h are
idempotents in T' then by Lemma 2.4.4 there exist idempotents e, f in §
such that e¢ = g, f¢ = h. Hence

gh = (ed)(f¢) = (ef)d = (fe)p = (f)(ed) = hy,

and so T is an inverse semigroup as required. Notice that we have also
shown that
(s¢)™' = (s"")¢

for each s in S, and so ¢ is indeed an inverse semigroup morphism. O

We have seen that there is an intimate relation between morphisms and
congruences. The result just proved implies that, for every semigroup con-
gruence p on an inverse semigroup S, the quotient S/p is again an inverse
semigroup. It implies moreover that p is an I-semigroup congruence, in the
sense that, for all s, ¢ in S,

(s,t)ep = (st ) ep (5.1.2)

So far we have encountered only groups, semilattices and Clifford semi-
groups as examples of inverse semigroups. We find a more representative
example in the so-called symmetric inverse semigroup. Given a non-empty
set X, we define Zx to consist of all partial one-one maps of X. This
becomes a semigroup under the standard operation o of composition of
relations : if o, 8 € Ix, then (z,y) € ao g if and only if there exists z in
X such that (z,2) € a and (z,y) € 8.

_

Thus z = za and y = 28, and so y = (za)B. It follows that, for all
z1,z2 € dom(a o g),

z1(ao f) = z2(e0 f) = (z10)0 = (z20)f3
= 10 = Ty = T = T2.

Notice also that x € dom(ca8) if and only if there exist z and y such that
(z,2) € a and (2z,y) € 8. Thus z € ima N dom S, and so

dom(af) = (imaNdomB)a~!, im(aB) = (imandomJ)8.
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Then we have the following theorem:

Theorem 5.1.5 Tx is an tnverse semigroup.

Proof We have seen that Zx is closed under the associative operation o.
From now on we shall write simply af rather than o 8. Each « in Tx is
a bijection from dom o onto im «, and so there is an inverse map a~?, also
an element of Tx, such that

dom(a™!) =ima, im(a~!)=domae,

1 1

oo™ = ldoma, @& Q@=lima.

1 1

Certainly ca™la = o and o laa™! = a7!, and so Ix is regular. We
complete the proof by showing that idempotents commute, which of course
requires us to be able to identify idempotents. If « is idempotent then

dom(a?) = (domanima)a™! = doma = (ima)a™t.

Since o~ ! is one-one it follows that domaNima = ime, i.e., that ima C

dom . Similarly,
im(a?) = (doma Nima)a = ima = (dom a)a,

and from this we deduce that doma C ima. Thus doma = ima = A
(say), and xa? = za for each = in A. Since a is one-one, it follows that
za =z for all x in A; thus a = 14, the identity map of the subset A.

It now easily follows that

lalp=1lanp (4A,BC X), (5.1.3)

and it is then automatic that 1415 = 1pls. Thus Zx is an inverse semi-
group, and the inverse o' exhibited above is in fact the unique inverse of
« in the inverse semigroup. O

We call Tx the symmetric inverse semigroup on the set X. We shall
see that in a real sense it is the appropriate analogue in inverse semigroup
theory of the symmetric group in group theory and the full transformation
semigroup in semigroup theory. If X = {1,2} it consists of the maps

=(12): 4= ()
p=(1). 7=(3) x=(3). v=(3).

together with the empty map, which we denote by 0. The multiplication
is easily computed.

If |X| = 3 then Tx contains 34 elements. For a general formula for
|Zx|, see Exercise 3.

Just as every group can be embedded up to isomorphism in a symmet-
ric group {Cayley’s Theorem) and every semigroup can be embedded up to
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isomorphism in a full transformation semigroup {(Theorem 1.1.2), so every
inverse semigroup can be embedded up to isomorphism in a symmetric in-
verse semigroup. The inverse semigroup result is proved in a way that is
certainly similar in spirit to the earlier proofs, but is a little more compli-
cated in detail. Before stating the theorem, it will be convenient to record
a fairly simple lemma. In fact, for future use, we shall prove something a
little more general than our immediate requirements warrant.

Lemma 5.1.6 Let V be a semigroup containing an inverse semigroup S
as a subsemigroup. Then:

(1) for every pair e, f of idempotents in S, Ve = Vf = e = f, and
eV=fV = e=f;

(2) for every paire, f of idempotents in S, VenV f =Vef, andeVNfV =
efV;

(3) for every a in S, Vaa™! = Va1, Vala = Va, aa™V =
aV, a~taV = o~ 1V.

Proof (1) If Ve = Vf, then e = ee = zf for some z in V, and so
ef = zf? = xf = e. Similarly fe = f, and so e = f, since idempotents
commute. The dual result is proved in a similar way.

(2) Certainly Vef C V[, Vef =V fe C Ve. Thus Vef C Ven V.
Also, if z = ze = yf € VenVf, then zef = ze®f = zef = z2f = yf? =
yf = z, and so z = zef € Vef. The dual result follows in a similar way

(3) We have

Vaa ' CVa l=Valaa"t C Vaa_l,
Va la CVa=Vaata C Va‘la,

and the required results follow. Once again, the proof of the dual result is
similar. O

Now we show the analogue of Cayley’s Theorem, a result due to Vagner
(1952) and (independently) to Preston (1954c):

Theorem 5.1.7 Let S be an inverse semigroup. Then there exists a sym-
metric inverse semigroup Lx and a monomorphism ¢ from S into Ix .

Proof Let X =5, and for each a in S define the partial map p, to have
domain Sa~! = Saa~! and to be such that

zp, = za (x € Sa™t).

The image of the map p, is Sa~'a = Sa, and the map is in fact one-one,
since if £ = sa~! and y = ta~! are in Sa~! = dom p,, then

o =ta ta

L=sa laa ! =ta taa™

Tpo = YPa = S5G
1 -1

= T =sa =t{a " =1y.

Thus p, € Is.
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Define the map ¢ : S — Zg by the rule that a¢p = p, for all a in S.
Certainly ¢ is one-one. For suppose that a¢ = b¢. Then in the first place
it follows that the domains of p, and pp are equal, and so Saa~! = Sbb~1.
By Lemma 5.1.6 we deduce that aa=! = bb~1, and hence

a=aa"ta = (aa"V)p, = (aa " )pp = (bb~1)pp = b.

To show that ¢ is a morphism we must show that p,p, = pgp for all a,
bin S. It is useful to establish first that the inverse (p,)~! of p, in Zs is
pa—1; for p,-1 has domain Sa = im p, and image Sa~! = dom p,, and

IPaPa-1pa = Taa ‘e =za =1p, (T € Sa™t),
TPg-1PapPa—1 = xa aa l =za !l =xp,—1 (z € Sa).
Now

dom(papp) = (Sa™tan Sbh™)(py) ™t = Satabb™ p,-1
= Sa~labb~'a! = Sab(ab)~! = dom pgs,
and

im(papp) = (Sa"ta N Sbb™)pp = Sa™rabb™ py
= Sa " labb™'b = Sab = im Pab-

Also, for all z in dom pgp,
z(papp) = (xa)b = z(ad) = zpap.

This completes the proof. We note finally that when S is a group the
above proof reduces to the proof of Cayley’s Theorem in group theory,
since Saa™! = Sa~'a = S in this case. 0

It is convenient at this stage to mention another important class of in-
verse semigroups. In Chapter 3 we investigated completely 0-simple semi-
groups, and showed that every such semigroup is isomorphic to a regular
Rees matrix semigroup MP°[G; I, A; P]. Completely O-simple semigroups
are certainly regular, and it is reasonable to ask under what circumstances
they are inverse semigroups. If we ask the same question of completely
simple semigroups (without zero) then the answer is relatively uninterest-
ing: the only completely simple inverse semigroups are groups. Where we
have a zero, however, we obtain a new class of inverse semigroups.

Accordingly, let S = MO[G;I,A; P] be a completely 0-simple inverse
semigroup. Since each R-class and each L-class contains just one idempo-
tent, there is exactly one non-zero entry in each row and each column of the
sandwich matrix P. There is thus a bijection from I onto A defined by the
rule that ¢ — X if and only if py; # 0. Hence |A] = [I{, and we may suppose
that A and I are ordered so that the non-zero entries occur on the main
diagonal. Since I and A are merely index sets we may in effect suppose
that A = I. Thus S = MO[G; I, I; P], where P is a diagonal matrix.
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Now let A = [6;;] be the I x I matrix given by

PR ifi=j,
W0 ifi £ 4
By Theorem 3.4.1 we see that S ~ MO[G; I, I; A], since there are elements
Ui = pi, v; =€ (i,5 € I) such that

Pij = v;bizu;

for all ¢, j in I.
We have thus proved the difficult half of

Theorem 5.1.8 A semigroup S is both completely simple and an inverse
semigroup if and only if S ~ MO[G;I,T;A] for some group G and some
index set I.
Proof It remains to verify that idempotents commute within the semi-
group S = MP[G;I,I; A]. The non-zero idempotents of S are the elements
(i, e,1), where e is the identity of G, and it is clear that if (¢, e,4) and (4, ¢, 7)
are distinct idempotents then
(i)eai)(j,e?j):(j76,j)(i,e,i):0- o
The semigroup MO[G;I,I;A] is called a Brandt semigroup. If I is a
finite set, with |I| = n, we usually denote the Brandt semigroup by B(G, n).

In particular, we write B({e},n), a semigroup of order 2n + 1, as B,. We
encountered the semigroup By in Section 1.6.

5.2 THE NATURAL ORDER RELATION

On an inverse semigroup S it is possible to define a partial order relation
in a very natural way: given a, b in S, we define g < b if there exists an
idempotent e in S such that ¢ = eb. The first thing to check, of course,
is that this relation is indeed a partial order. Certainly a < a for every a
in S, for we have a = (aa™1)a. Next, if a < b and b < a then a = eb and
b = fa, where e and f are idempotents, and it follows that

a=c¢eb=efa= fea= fe?b= feb= fa =>.

Finally, if @ < b and b < ¢ then there are idempotents e, f such that a = eb
and b = fe. It follows that a = (ef)c, where ef is idempotent, and hence
a < ¢ as required.

The order relation < is in fact compatible with the multiplication of 9,
in the sense that

a<bandce S = ac<bcand ca < cbh. (5.2.1)

The first implication is obvious, since a = eb implies that ac = e(bc). For
the second implication, notice that if ¢ = eb then

ca = ceb = c((c"'c)e)b = clec™ )b = (cec )ch,
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where cec™! is idempotent.
The order is also compatible with inversion, in the sense that

a<b = at<bh (5.2.2)
for a = eb implies that
at=b"le=b"tob"le = b tebb! = (b leb)b !,

and b~leb is idempotent.

If § is a group then it is clear that < reduces to equality. In the case
where S is a semilattice the order coincides with the order relation we
already have on a semilattice. This is defined by = < y if and only if
z = zy, and on a commutative semigroup E of idempotents it is easy to
see that this is equivalent to the statement that z = ey for some e in E.
In the case of the inverse semigroup Zx the interpretation of < is a very
natural one: o < 3 if and only if & C . Here we are thinking of o and 3
as subsets of X x X; if we want to think of them in a more intuitive way
we have that o < § if and only if « is a restriction of 3, i.e., if and only if
dom o C dom 3 and xa = zf for all z in dom . The verification of this is
straightforward.

It is perhaps already clear that the one-sidedness in the definition of <
is only apparent. The next result gathers together a number of different
characterizations of <. The list is by no means exhaustive.

Proposition 5.2.1 Let S be an inverse semigroup with semilattice E of
idempotents, and let a,b € S. The following statements are equivalent:

(1) a < b (2) (Fe € E) a = be;
(3) aa™t =ba" 1 (4) aa™! = ab™1;
(5) a7 ta =b"1ta; (6) a"ta=a"1y;
(7) a = ab™la; (8) a = aa'h.

Proof Only sample proofs are necessary. We shall show that (1) < (3)
< (7).
(1) = (3). Suppose that a = eb, where f is idempotent. Then

aa" ! =ebb le =bb7le = b(eb) ! = ba 1.

(3) = (7). Suppose that aa™! = ba~!. Then a™! = a laa~! =
a~'ba~1, and taking inverses of both sides we obtain a = ab™'a.

(7) = (1). Let a = ab~a. Then (ab~1)? = ab™!, and so a = eb, where
e = ab~! is idempotent. 0

Let S be an inverse semigroup, and let H be a subset of S. The upper
saturation or closure Hw of H in S is defined by

Hw={seS:(3he H)h <s}.
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The term ‘closure’ is justified by the following easily verified facts (where
H, K are subsets of S):

H C Ho, (5.2.3)
HCK = HwC Kuw, (5.2.4)
(Hw)w = Huw. (5.2.5)

The subset H will be called closed if Hw = H.

It is clear that not every subsemigroup of an inverse semigroup is an
inverse semigroup. A subsemigroup H of an inverse semigroup S is an
inverse semigroup if and only if

(VeeS)zeH = z7' € H

In such a case we say that H is an inverse subsemigroup of S.

Proposition 5.2.2 If H is an inverse subsemigroup of an inverse semi-
group S, then Hw is a closed inverse subsemigroup of S.

Proof That Hw is closed follows immediately from (5.2.5). To see that
Huw is a subsemigroup, consider two elements z, y in Hw. Then by defini-
tion there exist h, k in H such that x > h, y > k. By (5.2.1) it follows that
zy > hk € H, and so zy € Hw. To see that Hw is an inverse subsemigroup,
suppose that x € Hw. Then there exists A in H such that z > h, and it
follows by (5.2.2) that 27! > A~! € H. Thus 27! € Hw, and so Hw is an
inverse subsemigroup, as required. a

5.3 CONGRUENCES ON INVERSE SEMIGROUPS

Congruences are rarely mentioned explicitly in group theory, but they are
present in the background. Given a congruence p on a group G with identity
e, it is easy to verify that ep is a normal subgroup of G. If we denote ep
by N then we easily see that

(z,y) € pif and only ifzy~' € N.

For each z in G the p-class zp is simply the coset Nz (or equivalently N,
since N is normal). Since the congruence p is completely determined by
N, it is always sufficient to deal with N, and we write G/N rather than
G/p for the quotient group.

A similar situation arises in a ring R. If p is a congruence on R then
Op is a two-sided ideal of R. Denoting Op by I, we see that

(z,y) e pifand only ifx —y € 1.

The p-classes in this case are the residue classes x + I. Here again the
congruence is wholly determined by I, and the standard notation for the
quotient ring is R/I.
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In semigroup theory it is not possible to avoid the explicit study of
congruences. It is, however, possible in the context of inverse semigroups
to mimic to some extent the group-theoretical treatment of congruences.

Let p be a congruence on an inverse semigroup S with semilattice E of
idempotents. The restriction of p to E is a congruence on E, which we call
the trace of p and write as 7 = trp. Each 7-class er is equal to ep N E.
The congruence 7 is normal, in the sense that

et f = (Vae€S)ateaTa fa,

for we certainly have a~lea p a~!fa, and both a~'ea and o' fa are in E.
For future reference we note at this stage the following result:

Proposition 5.3.1 Let p be a congruence on an inverse semigroup S.
Then S/p is a group if and only iftrp=E x E.

Proof Suppose first that S/p is a group. Then every idempotent of S,
since it must map to an idempotent of S/p, maps to the identity of S/p.
It follows that trp = E x E. Conversely, suppose that trp = E x E. By
Lallement’s Lemma (Lemma 2.4.3) every idempotent in S/p is the image
under p" of an idempotent of S. It follows that S/p is an inverse semigroup
containing only one idempotent, and hence (as is easy to verify) S/p is a
group. a

Next, by analogy with the group-theoretic case, we define N = Ker p,
the kernel of p, to be the union of all the idempotent p-classes:

N =Kerp= U ep.
ecE
(We use a capital letter in order to distinguish this from the earlier and more
general notion of the kernel of a morphism.) The set N is a subsemigroup
of St if z € ep and y € fp then the congruence property gives us that
zy € (ef)p € N. It is even an inverse subsemigroup: if z € ep then
z pe;hence z7! pe! =e and so 27! € ep. Certainly N is a full inverse
subsemigroup, in the sense that it contains all the idempotents of S. Next,
N is self-conjugate, in the sense that

a€N = (VreS)z tax € N,

for a € ep implies that z7laz € (z7lex)p C N.

Let us decide to call a subsemigroup normal if it is a full and self-
conjugate inverse subsemigroup. Thus we have established that N = Ker p
is a normal subsemigroup. We might hope that the properties of a congru-
ence p could be completely described in terms of its kernel Ker p and its
trace tr p. This turns out to be the case, but before we can state a theorem
we observe two connections between the kernel and the trace. First, for all
ain S and e in F,

ae € Kerp and (e,a"'a) € trp = a € Kerp. (5.3.1)
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For suppose that ae p f, where f € E. Then
a=aa tapaep f,

and so a € Kerp. Also,

1

acKerp = (aa',a ta) €trp. (5.3.2)

For suppose that a € ep, where e € E. Then, as already observed, a=! € ep,

and it then follows that aa™1,a7la € ep. Thus (aa™',a"ta) € trp.

We now produce an abstract version of the kernel and trace. As usual,
S is an inverse semigroup with semilattice F of idempotents. Let N be a
normal subsemigroup of S and let 7 be a normal congruence on E. We
shall call the pair (N, 7) a congruence pair of S if (for all @ in S and e in
E)

(Cl) ae € N and (e,a"ta) €T = a € N;

(C2)ae N = (aa7l,a7la) €T

Before we state our main theorem, it pays to prove the following tech-
nical lemma:

Lemma 5.3.2 Let S be an inverse semigroup, let (N,T) be a congruence
pair, and let a,be S, e € F.
(1) Ifaebe N and e T a"la, then ab € N.
(2) If(a=la,b71b) € T and ab™! € N, then (atea,b™'eb) € T for every e
in E.
Proof (1) Suppose that aeb € N and that e 7 a~'a. Then
aeb = aebb™ b = ab.b~leb = ab.f,

where f = b~leb € E, and so (ab)f € N. Now from e 7 a~'a we deduce
that f 7 b~a"'ab = (ab)~lab, since T is normal. Hence by (C1) it follows
that ab € N.

(2) Suppose that (a7 'a,b7'b) € 7, ab~! € N and e € E. Then (modulo

7)

alea = (a7 ea)(a " a)(a" ea)
(a=Yea)(b'b)(a " ea) (since a~'a 7 b~1b and 7 is normal)
ate(ab N (ab™ ) lea
= a 'eba"tab ea (by (C2), since ab~' € N and 7 is normal)
atab~le) Hab " te)a
a tablebala (by (C2), since ab~'e € N and 7 is normal)
= b 1bb~lebb!b (since 7 is a congruence on E)
=b"leb.

Thus the lemma is proved. O

il

l

i
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‘We now have our main result:

Theorem 5.3.3 Let S be an inverse semigroup with semilattice E of idem-
potents. If p is a congruence on S then (Ker p,tr p) is a congruence pair.
Conversely, if (N,7) is a congruence pair, then the relation

pvey = {(a,b) €S xS:(ata,b7'b) €T, ab™t € N}

is a congruence on S. Moreover, Kerpn -y = N, trpow,. = 7, and
P(Ker p,tr p) = P-
Proof By virtue of (5.3.1) and (5.3.2) we have in fact already estab-
lished the first statement in the theorem. So suppose now that (N, 7)
is a congruence pair, and let p = p(n,r) be as defined. Then p is a
reflexive relation since N is full, and is a symmetric relation since 7 is
symmetric and N is an inverse subsemigroup. To show that p is tran-
sitive, let (a,b),(b,c) € p. Then (a=la,b7%),(b71b,c71c) € 7, and so
(e ta,c™c) € 7. Also ab~!,bc™! € N, from which we deduce that N
contains a(b~1b)c™! = aec™!, where e = b~1b. Since e 7 a~'a, we deduce
from Lemma 5.3.2(1) that ac™! € N. Hence (a,¢) € p, and we have now
established that p is an equivalence relation.

To show that p is a congruence, suppose that a p b and let ¢ € S. Then
a~la 7 b~ 1b and so, modulo 7,

(ac)™Hac) = cHara)e = 71 (b7 b)e = (be) "1 (be).
Also
(ac)(be)™! = alcc™ )b = a(cc™ (b7 100! = ab™(bec™ b)) € N.
Thus ac p be. Also, again modulo 7,
(ca) Hea) = a Hele)a= b1 (e e)b = (cb) " (ch),

by Lemma 5.3.2(2), and (ca)(ch)~! = c(ab~1)c™! € N, since N is normal.
Hence ca p cb.

We have shown that p = p(y -y is a congruence on S. It is now clear
that if @ € ep with e in E, then a=ta 7 ¢ and ae € N. By (C1) it follows
that a € N. Thus Kerp C N. Conversely, if a € N then ae™' € N with
e = a~la, and certainly a~'a 7 e e (since the two idempotents are in fact
equal); hence a € ep C Ker p. Hence Ker p(y,») = N.

Next, to show that tr p(y,-) = 7, let e, f € E and suppose that (e, f) €
P = P(N,7)- Then

e=eter fif =1

Hence trp C 7. Conversely, if e 7 f, then
ele=er f=f1f

and ef~! =ef € E C N;hence (e, f) € pn{E x E) = tr p. We have shown
that trp(n, ) = 7.
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To establish the final statement in the theorem, suppose first that
(a,b) € p. Then (a=*,b™1) € p, and so (a 'a,b71b) € p. Since a~la, b1
are idempotents, we in fact have (a~la,b~1b) € trp. Also (ab~!,bb71) € p,
and so ab~! € (bb~1)p C Ker p. We have shown that p C P(Ker ptr p)-

Conversely, suppose that (a,b) € p(ker p,tr p)> 50 that (a™1a,b71b) € trp
and ab~! € Ker p. Then (ab™!)p is an idempotent in S/p, and so

(ab™h)p = (((ab_l)_l)p) ((ab_l)p) = (ba"tab™!)p.
Then, modulo p,
a=aa 'a=ab"'b=ba"tab b = bb"lbb"1b = b.

That is, (a,b) € p, and this, together with the inclusion proved in the
previous paragraph, gives Us p = p(Ker p,tr p); 28 required. O

In looking at special cases it is helpful first to establish the following
result:

Proposition 5.3.4 Let S be an inverse semigroup with semilattice E of
idempotents, and let T be a normal congruence on E.” Then:

(1) the relation Tmin defined as
{(a,b) € Sx S:aa ™t 7bb" and (3e € E) (e T aa™! and ea = eb)}
is the smallest congruence on S with trace T;

(2) the relation
Tmax = 1(a,b) € Sx S : (Ve € E) o tear b_leb}

is the largest congruence on S with trace T.

Proof (1) We show first that Tmin is an equivalence. It is clear that Tyin
is reflexive and symmetric. To show that it is transitive, let (a,b), (b,¢) €
Tmin. Then aa™! 7 bb~! 7 cc™!, and there exist e, f in (aa"!)7 such that
ea = eb, fb = fc. Then ef € (aa™!)T and efa = efc, and so (a,¢) € Twmin
as required.

To show that Tmiy is & congruence, suppose that (a,b) € Timin and that
c € S. Thus aa™' 7 bb~! and there exists e in (aa™!)7 such that ea = eb.
It follows that (ca)(ca)~! = c(aa™ )c™! 7 c(bb~1)e™! = (cb)(cb) !, since 7
is normal, and we have cec™! in ((ca)(ca)™") such that (cec™')ca = cea =
ceb = (cec™1)ch. Thus (ca,cb) € Timin. To show that (ac, bc) € Tmin, notice
that (modulo 7)

(ac)(ac)™! = a(ccHa™t = aatalcc™Ha™?
= eacc la! = eacc 'a" e = ebec b7 e = ebec1b7!
= bb~ Y0t = (be)(be) ™.
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To complete the proof that 7., is a congruence, denote the idempotent
e(ac)(ac)~t by f. Then f 1 aa~t(ac)(ac)™ = (ac)(ac)™!, and

flac) = e(ac)(ac) " (ac) = (ac)(ac) ™ (ea)c = (ac)(ac) ' (eb)e
= e(ac)(ac) ™ (bc) = f(bc).

We now verify that trn, = 7. Suppose first that (e, f) € 7. Then
ee”! 7 ff~1, and there is an element ef in F with the property that
ef T ee”! and (ef)e = (ef)f. Hence (e, f) € tr Tmin. Conversely, suppose
that (e, f) € Tmin N (E X E). Thene=ee™ ' 7 ff~1 = f.

Finally, we show that 7, is the least congruence with trace equal to
7. Let p be a congruence on S with trace 7, and suppose that (a,b) € Tmin.
Then aa~! p bb~!, and there is an idempotent e such that e p aa™! and
ea = eb. It follows that (modulo p)

a=aa"'a=ea=eb=bb"1h=h.

(2) Turning now to Tmax, we easily see that this relation is an equiv-
alence. To show that it is a congruence, let (a,b) € Tmax and let ¢ € S.
Then, using the normality of 7 we have, for all e in E,

(ac)"re(ac) = ¢ Ha"tea)e = ¢~ (b7 teb)e = (be) "Le(be) (mod T)

and so (ac, bc) € Tax. Also, since ¢ lec € E for all e in E, we have, for all
ein F,

(ca)~le(ca) = a"t(ctec)a = b Hc tec)b = (cb) " te(ch);

thus (ca, eb) € Trmax-

To show that tr 7max = 7, suppose first that (e, f) € 7. Then, for every
iin E,

e~ lie=ie=if = flf (mod 1),

and so (e, f) € tr Tmax. Conversely, suppose that (e, f) € Tmax N (E X E).
Then ie 7 if for every i in E. In particular e = ee 7 ef and fer ff = f,
and so (e, f) € T as required.

Finally, we show that 7max is the greatest congruence with trace 7. Let
p be a congruence on S whose trace is 7 and suppose that (a,b) € p. Then
(a™1,b71) € p, and so it follows that, for all e in E,

(a™tea,bleb) e pN(E X E) =T.
Thus (a,b) € Tmax, and our proof is complete. O

Two congruences are of particular interest. First, let 7 = E x E, the
universal congruence on E. Then, recalling Proposition 5.3.1, we see that

Tmin = {(a,0) € S X 8 : (Ze € E) ea = eb} (5.3.3)

is the smallest congruence p on S such that S/p is a group. We shall
consistently denote this congruence by o and call it the minimum group
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congruence on S. Thus, to put the same thing another way, S/o is the
mazximum group morphic image of S, in the sense that for every congruence
v on S such that S/v is a group there is a morphism ¢ : S/¢ — S/ such
that the diagram

i
S-L»S/G

S/
commutes.
It is easy to determine the kernel of o:

Theorem 5.3.5 Let S be an inverse semigroup with semilattice B of idem-
potents and let o be the minimum group congruence on S. Then Kero =

Ew, and so
o={(a,b) e Sx S:ab~! € Ew}.

Proof Since ec = fo for all e, f in E, we deduce that Kero = 10 for
some arbitrarily chosen idempotent ¢ in K. Suppose now that a € Kero.
Then (a,i) € ¢ and so, by equation (5.3.3), ea = ei for some e in E. Thus
a>er=¢ei € F andsoac FEw.

Conversely, suppose that ¢ € Fw, so that a > e for some e in . Then
ea = e = ee, and so a ¢ e. Thus a € Kero. The remaining statement
follows from Theorem 5.3.3. |

The other special case of interest is the congruence lyax. A con-
gruence whose trace is the identical congruence 1 is called idempotent-
separating. We shall consistently denote lmax by g, and call it the mazi-
mum idempotent-separating congruence on S. It is given by

p=1{(a,b) € SxS:(Vec E)a tea =b"'eb}. (5.3.4)

To determine Ker 1 we need a definition. Let E(, the centralizer of E
in S, be given by

E¢(={ae€ S:(Ve€ E)ae=ea}. (5.3.5)
Then we have the following result:

Theorem 5.3.6 Let S be an inverse semigroup with semilattice E of idem-
potents, and let i be the mazimum idempotent-separating congruence on S.
Then Keru = E¢, and so

p={(a,b) € SxS:ata=b"1h and ab" € E¢}.
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Proof Suppose first that a € Ker u, so that a p ¢ for some ¢ in E. Hence
a =i '=4iandsoa tapui? =14 Thusa=ala, and so, for all e in E,
e lea =alaea"ta = a " lae.

Hence

1

ea =eaa ‘o =aa " lea = aa"lae = ae,

and so a € E(.
Conversely, suppose that a € E{. Then, for all e in F,

a"lea =a"tae = a"taea"ta = (a_la)_lea"la.

Thus @ 4 a~'a and so a € Ker u. The final statement follows from Theorem

5.3.3. (]

A further characterization of p is of interest:

Proposition 5.3.7 Let S be an inverse semigroup with semilattice E of
idempotents, and let p be the mazimum idempotent-separating congruence
on S. Then p=H®, the largest congruence on S contained in H.

Proof Let (a,b) € p. Then from Theorem 5.3.6 we see that a~'a = b~ 1b.
Since (a71,b7!) € pu we also have aa~! = bb™?, and so (a,b) € H.

We have shown that 4 C H. To see that u is the largest congruence
contained in H, consider a congruence p C H, and suppose that (a,d) € p.
Then (a=t,b71) € p, and so

(a™lea, b leb) e p CH

for all e in E. By Corollary 2.2.6 we deduce that a lea = b~leb for all e
in E, and hence that (a,b) € p. o

An inverse semigroup in which the maximum idempotent-separating
congruence is the identical congruence 1g is called fundamental.

Theorem 5.3.8 Let S be an inverse semigroup with semilattice E of idem-
potents, and let u be the maximum idempotent-separating congruence on S.
Then S/ is fundamental, and has semilattice of idempotents isomorphic
to E.

Proof Every idempotent in S/ has the form ey, where e € E. Suppose,
to use an obvious notation, that (au,bu) € pg/,. Then, for every e in E,

(ap) ™ (ep)(ap) = (bu) ™t (ep)(bp),

and so (alea,b"leb) € u. Since p is idempotent-separating, it follows
that a=tea = b~ leb, i.e., that ap = bu. Thus S/u is fundamental. Since
the morphism u! separates idempotents, the rest of the proposition is
immediate. 8]
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5.4 THE MUNN SEMIGROUP

The main aim of this section is to carry out a construction, due to Munn
{1966b), which produces from an arbitrary semilattice E a fundamental
inverse semigroup with an important universal property.

Let E be a semilattice. For each e in F theset Ee={i € E:1 <e}is
a principal ideal of E. The uniformity relation U on E is given by

U={(e,f)e ExE:Ee~Ef}. (5.4.1)

For each (e, f) in U we define T. s to be the set of all isomorphisms from
Ee onto Ef. Let

Tg = J{Tes : (e, f) € U}. (5.4.2)

We call Ty the Munn semigroup of the semilattice E.

This terminology presupposes that we can define an associative mul-
tiplication on 7. We now show that this is indeed possible. Clearly
Ty C I, since all the elements are partial one-one maps of E. We shall
show that Tg is in fact an inverse subsemigroup of Zg. Let a : Ee — Ef
and 8 : Eg — Eh be elements of Tg. The product of @ and 8 in Zg
maps (Ef N Eg)a™ = (Efg)a™! onto (Ef N Eg)B = (Efg)B. If we write
(ef)a™ as i and (ef)B as j, we see that

z€(Efgla! & za€ Efg & za< fg
& < (fgla™t & v€Ei,
and similarly (Efg)8 = Ej. Thus o maps the principal ideal Ei onto the
principal ideal Ej by the rule that z(af8) = (za)f for all z in Fi. Since
af is clearly an isomorphism, we deduce that a8 € Tg. It is clear that, for
every o : Fe — Ef in Ty, the inverse ! : Ef — Ee is also in Tx.
We have established part of the following result:

Theorem 5.4.1 For every semilattice E, the Munn semigroup Tr is an
inverse semigroup whose semilattice of idempotents is isomorphic to E.

Proof It remains to consider the semilattice of idempotents of 7. A
typical idempotent of T is the identical map 1g. of Ee onto itself. We
have a one-one map ¢ — 1g, from E onto the set of idempotents of Tg,
and since (by (5.1.3))
leelgyr = 1Eenef = lEeg,
the map e — 1g. is an isomorphism.
It is useful to note at this stage that, for each a : Fe — Ef in T},
aa”t = 1g., o la= lgs.

Hence, in Tg, a R 8 if and only if dom e = dom g3, and a £ 3 if and only
ifima =im 8.
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We shall very often want to identify 1z, with e and to think of Tg as
an inverse semigroup having E as semilattice of idempotents.

Before investigating the general consequences of this construction, we
pause to consider two examples.

Example 5.4.2 Let E = {0,1,2,...}, with the natural order, given by
0<1<2<--- Then, for each n,

En=1{0,1,...,n},

and so Em ~ En if and only if m = n. In this case Y = 1g and we say
that E is anti-uniform. The only isomorphism in T}, » is 15, and so

Tg = {lpo, 1p1,1p2,...} = E.
Example 5.4.3 Let E = C,, = {eg, 1, €2,...}, with
eg > €1 > €3> -
Then
FEen = {en,ent1,€nt2,- -}

and Ee,, ~ Ee, for every m, n in N°. Here Y = E x E and we say that £
is uniform. The only isomorphism from Ee,, onto Ee,, is amn, given by

CL0mn = €k—m+n (k 2 m)»
the inverse being u, m : Fe, — Eep,, defined by
€10nm = €l—n+m (l = TL)

If o and ap 4 are elements of Tg, then their product maps (Een, N
Eep)oy,!, onto (Ee, N Eey)ay, . 1f we write t = max(n, p), we can say that
Q. nOp g Maps Ee;_pim onto Eeyyp o That is,

Am,nCp,q = Om—n-tt,g—p+i- (5.4.3)

We can thus identify the Munn semigroup of the semilattice C, with the

bicyclic semigroup already encountered in (1.6.3), that is to say, with the
. 0 O . . . . . . .

semigroup N® x N°, in which multiplication is given by

(m,n)(p,q) = (m — n + max(n,p),q — p + max(n,p)). (5.4.4)
The importance of the Munn semigroup lies in the following result:

Theorem 5.4.4 For every inverse semigroup S with semilattice of idem-
potents E there is a morphism ¢ : S — Tg whose kernel is p, the mazimum
idempotent-separating congruence on S.

Proof Let a € S. We define a map o, : Eaa~! — Ea~la by the rule
that
za, =a tea (e € Baa™).
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Notice that the image of this map is certainly contained in Ea~la, since
a"lea = (a"lea)a=la. To show that «, is a bijection we note that the
map a,-1 : Ea"la — Eaa™! is a two-sided inverse of oyg:

teaa"laa"t = eaa—l,

laa la = ea la.

(eaa ™ agou-1 = aa”
(ea ta)ag-104 = a laea”
Suppose now that z = eaa™! and y = faa~! belong to Eaa~'. Then

1 1

(raq)(yaw) = e teaa taa faa ta = a7 (eaa " faa™Ha = (zy)ag;

hence a, is an isomorphism.
We have shown that o, € Ty for every a in S. Now define a map ¢
from S into Tg by the rule that
ap=0a, (a€S).

To see that ¢ is a morphism, suppose that a,b € S. Then by the multipli-
cation rule in Ty, the product oy is an isomorphism from FEi onto Ej,
where

i = (a"tabb ™o, = aatabbra! = (ab)(ab)7?,
§ = (a"tabb oy = b"la"tabb™ b = (ab) " }(ab).
Moreover, for every x in Ei,
(o) = b~ e zab = (ab) ™tz (ab),
and so agap = agp. This shows that ¢ is a morphism.
To determine the kernel of ¢, suppose first that {a,b) € p. Then (a,b) €
‘H by Theorem 5.3.6 and so
doma, = Eaa™! = Ebb™! = dom ay,
imag = Ea™la = Eb b = im ap.
Also, for all z = eaa™! in dom o, = Faa™!,

za, = a Heaa ™ Na =a"lea

=b"Teb = b~ {ebb™ )b = 20y,
and so a¢ = bp. Thus u C ker ¢. Conversely, suppose that a¢ = b¢. Then
Eaa™! = dom oy, = dom oy, = Ebb™ 1,
Eola=ima, =imap = Eb"lb,
and so aa~ ! = bb~1, o la = b~ 1b. Also, for all e in E,
e tea = a " (eaa™Va = (eaa Vo,
= (ebb™ 1)y = b Leb,

and so (a,b) € p. o
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In the case where the inverse semigroup S is fundamental, the morphism
¢ obtained in Theorem 5.4.4 is one-one. In general it is not onto, but its
image is in a certain sense a ‘large’ inverse subsemigroup of Tr. Recalling
from Section 5.3 that an inverse subsemigroup of an inverse semigroup S
is said to be full if it contains all the idempotents of S, we now have

Theorem 5.4.5 An inverse semigroup with semilattice of idempotents E
is fundamental if and only if it is isomorphic to a full inverse subsemigroup
Of TE.

Proof Suppose first that S is a fundamental inverse semigroup with semi-
lattice of idempotents E. Then, by Theorem 5.4.4, the image S¢ of the
map ¢ : S — Tg is an inverse subsemigroup of T and is isomorphic to S.
Moreover, for each idempotent e of E,

ep = . : Fee™! — Ee le,

where
ra, = e lze (x € Eee™?).

That is, ae maps Fe onto Fe, and za, = xe = x for all z in Fe. That is,
ae = 1g., and so ¢ maps the semilattice E of idempotents of S onto the
isomorphic semilattice {1z, : e € E} of idempotents of Tp. Thus S¢ is
full.

Conversely, suppose that S is a full inverse subsemigroup of Tx. We
must show that S is fundamental. Accordingly, suppose that «, [ are
elements of S and (in an obvious notation) that (&, 3) € us. Then a M 3
in S and so

ldoma = ac™! = ﬂﬂ_l = ldom 8>
1ima = a_la = ﬂ—lﬁ = 1im,6~

Thus doma = dom 8 = Fe (say), and ima =im 3 = Ef. Also, for every
z in E (since S is full),

a_llExa = ﬁ—lleﬂ-
In particular these maps have the same domain, and so
E((ze)a) = E((ze)p)

for every z in E. Hence (ze)a = (ze)8 for all ze in Fe, and so o = § as
required. a

In particular, we note that

Corollary 5.4.6 The inverse semigroup Tg is fundamental for every semi-
lattice E. |
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5.5 ANTI-UNIFORM SEMILATTICES

Recall that a semilattice is uniform if

(Ve, f € E) Ee ~ Ef,
and anti-uniform if, for all e, f in F,

EexEf = e=f.

Now, by Proposition 5.1.2(4), two idempotents e, f in an inverse semi-
group S are D-equivalent if and only if there exists a in S such that

aa”! = e, a”'a = f. In such a case it is easy to verify that the map

z + o~ lza (z € E) is an isomorphism from Ee onto Ef, and so (e, f) € U.
We have shown that

DN (E x E) CU. (5.5.1)

Among the inverse semigroups with semilattice of idempotents (isomorphic
to) F is the Munn semigroup Tx. In this semigroup (e, f) € U implies the
existence of an element « such that ao™! = 1g,, o la =1 gf. Hence (if
we agree to identify 15, with e for each e in E) e D f in Tg. We see that,
for every semilattice E, the Munn semigroup T's has the property that

DN (E x E)=U. (5.5.2)

Suppose now that § is an inverse semigroup whose semilattice of idem-
potents E is anti-uniform. Then, by (5.5.1),

DH(EXE):].E.

Now, by Theorem 4.2.1, we know that an inverse semigroup—indeed a reg-
ular semigroup—has this property if and only if it is a Clifford semigroup,
and so we have proved half of the following theorem:

Theorem 5.5.1 Let E be a semilattice. Then E has the property that
EVERY inverse semigroup with E as semilattice of idempotents is a Clifford
semigroup if and only if E is anti-uniform.

Proof If F is not anti-uniform, then, by (5.5.2), Tg is an inverse
semigroup with semilattice of idempotents E, and Tg is not a Clifford
semigroup. O

In view of Theorem 5.5.1 it is of interest to identify anti-uniform semi-
lattices. We have seen (Example 5.4.2) that a chain order-isomorphic to
the non-negative integers is anti-uniform. So is a finite chain. Indeed we
have

Proposition 5.5.2 Fuvery well-ordered chain is anti-uniform.

Proof Let E be a well-ordered chain and let ¢ : Fe — Ef be an isomor-
phism, where e, f € E. Without loss of generality we may suppose that
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e < f, from which it follows that Ee C Ef. It is clear that e¢ = f, since
maximum elements must correspond. Suppose now that the set

Y ={yeEe:yd#y}

is non-empty. By the well-ordered property there exists a least element x
in Y, that is, an element z with the property that z¢ # z and 2¢ = z for
all z < z.

Now either ¢ < z or ¢ > z. If z¢p < x then x¢ € Fe and (x¢)¢ = z9,
which contradicts the hypothesis that ¢ is one-one. If z¢ > z then, for each
y in Fe,

yzz = yo = x¢ >z,

while
y<z = yp=9y <z

It follows that there is no element y of Ee such that y¢ = z, and this
contradicts the assumption that ¢ maps onto Ef.

The assumption that Y # @ has led to a contradiction. Hence Y = §,
and so z¢ = x for every z in Fe. In particular, f = e¢ = e, and so F is
anti-uniform, as required. o

Schein (1964) effectively conjectured that the only anti-uniform semi-
lattices are the well-ordered chains. This proved over-optimistic, as we
shall see. However, we do have

Proposition 5.5.3 Let E be a semilattice with the minimal condition.
Then E is anti-uniform if and only if E is o well-ordered chain.

Proof We have already proved half of this. To prove the other half,
suppose that F satisfies the minimal condition and is anti-uniform. Thus
every non-empty subset of E contains a minimal element. If F is totally
ordered then it is a well-ordered chain. We shall show that if F is not
totally ordered then F is not anti-uniform. So suppose that E is not totally
ordered. Following the usual terminology for ordered sets, we say that a
and b are comparable if a < b or b < a; otherwise we say that a and b are
mcomparable.

We define a subset K of E by the rule that x € K if there exist elements
of F that are incomparable with z. Since E is not totally ordered, K # 0,
and so by the minimal condition there exists at least one minimal member
e of K. Then K., # {§, where K, is the set of elements of E that are
incomparable with e. Choose a minimal member f of K.. Then e and f
are incomparable, and so ef < e, ef < f.

In fact e covers ef, in the sense that there is no g in E such that
ef < g < e. To see this, suppose that ef < g < e. Now g, being less than
e, is comparable with every element of F, and in particular is comparable
with f. If f < g then

f<g<e
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and so e and f are comparable. This is a contradiction, and so g < f. But
then from g < e and g < f we deduce that g < ef. Hence g = ef.

We have shown that there is no g such that ef < g < e. Thus e covers
ef, and a closely similar argument shows that f covers ef. Hence

Ee=FEefU{e}, Ef=FefU{f},

where Eef is an ordered chain.

e\e/f.f

|

{
[
I

Now clearly (e, f) € U, an obvious isomorphism between Fe and Ef being
that which sends e to f and every other element to itself. Thus F is not
anti-uniform. O

It is not possible to remove all mention of the minimal condition in this
proposition. Consider, for example, the following semilattice, described by
Howie and Schein (1969). The set Q of rational numbers is known to be
countable: let € be a one-one map from Q onto the set N° = {0,1,2,...}
of non-negative integers, and let

E={J{(&0)(g1),- (20,99},
2€Q

with the lexicographic order: (g,m) < (r,n) if and only if either ¢ < r or
g=rand m < n.

The set of elements of F having no immediate predecessor is {{(g,0) :
g € Q}, and the set of elements having no immediate successor is {(g, ge) :
g € Q}. Suppose that E is not anti-uniform. Then there exist distinct
elements (g, m), (r,n) of F for which there is an isomorphism ¢ : E(g,m) —
E(r,n). Then

{g,m)p = {r,n), (g,n—1p=(r,n—1),...,

and if m # n then we reach a situation where the isomorphism ¢ links two
elements, one of which has an immediate successor and the other has not.
Hence m = n, and ¢ maps (g, k) to (r, k) for 0 < k < m.

Without loss of generality, suppose that ¢ > r, and choose s in Q
such that ¢ > s > r. Then (s,0) € E(g,m) and, having no immediate
predecessor, must map to some (¢,0) in E(r,m), where ¢ < r. Certainly
t < s and so te # se. But then

(s, )¢ = (t,1), (5,2)¢p = (£,2),...,
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and we reach a contradictory situation in which ¢ links two elements, one
of which has an immediate successor and the other does not. We conclude
that E is anti-uniform. It is certainly not well-ordered, since, for every ¢
in Q, the set {x € E: z > (q,q¢)} has no least element.

Anti-uniform semilattices need not be chains, as is shown in the follow-
ing example. A verbal description is tedious, and perhaps it is best to let
the diagram speak for itself.

ete.

5.6 BISIMPLE INVERSE SEMIGROUPS

If S is a bisimple inverse semigroup with semilattice of idempotents E, then
in particular all the idempotents are D-equivalent, and it follows by (5.5.1)
that Y = F x E. That is, E is uniform.

If, conversely, we start with a uniform semilattice F, then we cannot
expect that every inverse semigroup having F as semilattice of idempotents
will be bisimple: E itself is one such inverse semigroup, and is assuredly
not bisimple, since in E we have D = H = 1g. On the other hand, we
know that there is always at least one bisimple inverse semigroup having
E as its semilattice, for it follows from (5.5.2) that

Proposition 5.6.1 If E is a uniform semilattice, then the Munn semi-
group Ty is bistmple. a

This certainly gives a useful recipe for constructing bisimple inverse
semigroups. It is not of course a universal recipe, for we have seen that
Ty is fundamental, and we can easily produce a non-fundamental bisimple
inverse semigroup simply by taking the direct product of some bisimple
Tg with a non-trivial group. Recall, however, that we can embed any
fundamental inverse semigroup as a full subsemigroup S’ of the appropriate
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Tr (Theorem 5.4.5). In the bisimple case we can be somewhat more precise,
for if the subsemigroup S’ of T is itself to be bisimple, there must exist for
each e, f in F at least one element « contained in S’ for which doma = Ee
and ima = Ef. That is, for all e, f in E,

S'NTe s #0. (5.6.1)

If we decide to apply the term transitive to subsemigroups of T having
this property, it is easy to see that transitivity is not only a necessary but
also a sufficient condition for bisimplicity. Noting finally that a transitive
inverse subsemigroup of T is necessarily full, we deduce
Theorem 5.6.2 An inverse semigroup S with semilattice of idempotents E
is fundamental and bisimple if and only if E is uniform and S is isomorphic
to a transitive inverse subsemigroup of Tg. i
Let us apply this result to the uniform semlattice C,, (Example 5.4.3).
Here we have [T, ;| = 1 for every pair (e, f), and so the condition (5.6.1)
can be satisfied only if, for all pairs (e, f),

SN Te,f = Te,f,
that is, only if ' = Tr. We thus have

Corollary 5.6.3 Up to isomorphism, the only fundamental bisimple in-
verse semigroup having C, as semilattice of idempotents is the bicyclic
semigroup. O

A further observation that can be made fairly easily at this stage will
prove useful later.

Proposition 5.6.4 Let S be an inverse semigroup with semilattice of
idempotents E, and suppose that E has the property that |Te | = 1 for
all (e, f) in U. Then the semigroup S has the property that p = H, and
(consequently) H is a congruence.

Proof Since p = H® by Proposition 5.3.7, we certainly have y C H. To
show the opposite inclusion, suppose that a H b, so that aa=t = bb~1,
a~a = b~ 1b. Then, in the notation of the proof of Theorem 5.4.4,

domay, = Eaa™! = Ebb~"' = dom ay,
ima, = Fa"'a = Eb~1b = im ay.

By the given property of E, it now follows that a, = o4, and so a p b by

Theorem 5.4.4. I
Corollary 5.6.5 If S is an inverse semigroup with semilattice of idempo-
tents C,,, then H = p. O

We should not expect the simple situation indicated by Corollaries 5.6.3
and 5.6.5 to obtain for more general uniform semilattices, and indeed it does
not, as is illustrated by Exercise 23 below.
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It is, however, reasonable to think of a general bisimple inverse semi-
group as in some sense an ‘inflation’ of a fundamental bisimple inverse
semigroup. The Notes at the end of the chapter refer to various attempts
to make this vague notion precise. Here we shall home in on what are usu-
ally called w-semigroups: semigroups whose semilattices of idempotents
are isomorphic to C,,. Here we have the advantage of Corollaries 5.6.3 and
5.6.5, and we also have an ingenious ‘inflation’ method, first considered in
special cases by Bruck (1958) and Reilly (1966), and in general form by
Munn (1970c¢). This we now describe.

Let T' be a monoid with identity 1 and let 6 be a morphism from 7'
into Hq, the ‘group of units’ of T. Then we can make NO x 7' x N? into a
semigroup by defining

(m7 a, n)(pa ba Q) = (m -n+t, (agi—n)(bgt—p), qg—p+ t)> (562)

where ¢t = max(n,p) and where 6° is interpreted as the identity map of 7.
We must of course check that the given composition is associative. Observe
that, if we write

U = max(q — p+ max(n,p), 7}, (5.6.3)
w = max(n, p—q + max(q,7)),
then
(mv a, n)(p7 ba Q)) (T7 ¢, S)
= (m—n— g+ p+u, (@ TPY I (BT, s — 7 4 ),
while

(m,a,n)((p,b,q)(r,¢c,s))
— (m =1+ w, (a6 )b PY OV TP, s — 1 — p+ g+ w).

Now the outer coordinates in the multiplication (5.6.2) combine exactly as
in the bicyclic semigroup, which we know to be associative (for example,
because it is isomorphic to T, ). Hence, equating first coordinates (or
equivalently third coordinates) in the two products, we obtain

W=Uu+p—¢

a result that could of course be obtained directly (but tediously) from
the definitions (5.6.3). From this it now easily follows that the middle
coordinates in the two products are equal, and so the composition (5.6.2)
is indeed associative. We shall denote the semigroup obtained in this way
from T by BR(T, 6), and call it the Bruck—Reilly extension of T determined
by 6.

Proposition 5.6.6 Let T be a monoid with identity element 1, and let S
be the Bruck-Reilly extension of T determined by 8. Then:

(1) S is a simple semigroup with identity (0,1,0);
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(2) two elements (m,a,n) and (p,b,q) are D-equivalent in S if and only
if a and b are D-equivalent in T

(3) the element (m,a,n) of S is idempotent if and only if m = n and a is
idempotent in T';

(4) S is an inverse semigroup if and only if T is an inverse semigroup.

Proof (1) We show that if (m,a,n) and (p, b, ¢) are arbitrary elements of
S, then there exist (r,z, s) and (¢, y,u) such that
(r,z,s)(m,a,n)(¢t,y,u) = (p, b,9);
by Corollary 3.1.2 this is just what we require. If we take
(r,z,8) = (p,(af) "L ,m +1) and (t,y,u) = (n+1,b,q),

where (a8)~! is the inverse of af in the group Hj, then we obtain the
desired equality. The identity of S is easily seen to be (0,1,0).

(2) We begin by considering the relation R. Since there is some scope for
confusion here, we shall use superscripts to distinguish between the Green
equivalences on S and those on 7. Suppose first that (m,a,n) R® (p, b, q).
Then

(m,a,n)(r,z,8) = (p,b,q) (5.6.4)
for some (r,z,s) in .S, and so
p=m—n+max(n,r) > m.
But equally we may show that m > p. Hence m = p, and from
m =m —n + max(n,r)

it follows that n > r. Hence, equating the middle coordinates in (5.6.4),

we obtain
a(xf™" ") =b.

Thus R, < Rp in T. Since we can just as easily show that R, < R, we
deduce that @ RT b.
Suppose conversely that a RT b. Then az = b and bz’ = a for some z,
2 inT (=T"), and so, in S,
(m,a,n)(n,z,q) = (m,b,q), (m,b,q)(g,z',n) = (m,a,n).
We deduce that (m,a,n) R® (m,b,q).
We have shown in fact that
(m,a,n) RS (m,b,q) if and only if m = p and a R” b. (5.6.5)
A dual argument establishes that
(m,a,n) L3 (m,b,q) if and only if n = g and a LT b. (5.6.6)

Now suppose that (m,a,n) D (p,b,q), so that there exists (r,c, s) in
S such that (m,a,n) RS (r,c,s) and (r,¢,s) L% (p,b,q). By (5.6.5) and
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(5.6.6) it follows that @ RT c and ¢ LT b (and r = m, s = ¢). Hence
aDT b

Conversely, if a DT b then for some c in T we have a RY ¢ and ¢ £T b.
Hence, for all m, n, p, ¢ in N°,

(m,a,n) R® (m,c,q), (m,c,q) L (p,b,q),

and so (m,a,n) D (p,b,q), as required.
(3) Certainly every (m,e,m) (where e is an idempotent of T') is idem-
potent in S. For an arbitrary (m,a,n) in S, we have

(m,a,n)? = (m —n +1t,(ad")(ad"™),n -~ m +1t),

where ¢t = max{m,n). Hence (m,a,n) can be idempotent only if m = n.
Then, since (m,a,m)? = (m,a?,m), it follows that the only idempotents
in S are the elements (m,e,m) for which e is idempotent in T'.

(4) Suppose first that T is an inverse semigroup. Then it is easy to verify
that each (m,a,n) in S has an inverse (n,a~',m). Thus S is regular. If
(m,e,m) and (n, f,n) are two idempotents in S (with (say) m > n), then

(m, e,m)(n, f,n) = (m, e<f0m"">,m>»} (5.6.7)

(In” f7 n)(m7 e7m) = (m7 (fgm—n)e? m)'

Now f#™ ™ is an idempotent in T—indeed if m > n we must have
f6m 1 = 1. So certainly e(f0™ ") = (f8™ ")e, and we deduce that
idempotents commute in S.

Conversely, suppose that S is an inverse semigroup. Let (m,a,n)"! =
(p,b,g). Then

(m,a,n)(p,b,q) = (m —n +1t,(ab"™) (40" P),q —p +1)
(with t = max(n,p)) is an idempotent R3-equivalent to (m,a,n) and £5-
equivalent to (p, b,q). It follows that
m=m-n+t=q—p+t=gq,

and so n = p (=t) and m = ¢. The inverse property now gives

(m,a,n) = (m,a,n)(n,b,m){(m,a,n) = (m,aba,n),

(n,b,m) = (n,b,m)(m, a,n){n,b,m),
and so aba = a, bab = b in T. Hence T is regular. Finally, if e, f are
idempotents in T, then the commuting of the idempotents (0,e,0) and

(0, £,0) in S immediately implies that ef = fe. Hence T is an inverse
semigroup. 0

As a consequence of this theorem, if T is a group with identity e (so
that 6 is simply an endomorphism of T') then BR(T, §) becomes a bisimple
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inverse semigroup with idempotents (m,e,m) (m € N%). From (5.6.7) it
is easy to see, moreover, that

(0,6,0) > (17671) >(2,€,2) >y

thus BR(T,9) is a bisimple inverse w-semigroup.
In fact the converse also holds. We summarize the situation in a theorem
as follows:

Theorem 5.6.7 Let G be a group and let 8 be an endomorphism of G. Let
S = BR(G, 8) be the Bruck—Reilly extension of G determined by §. Then
S is a bisimple inverse w-semigroup. Conversely, every bisimple inverse
w-semigroup ts isomorphic to some BR(G,0).

Proof We have already shown the direct half. Let S be a bisimple inverse
semigroup whose semilattice of idempotents is

B = Cw = {60,61,62, . }

Then, by Example 5.4.3, T is isomorphic to the bicyclic semigroup first
encountered in Section 1.6. That is,

Tg = {amn : m,n € N},
where oy, p, is the unique isomorphism from FEe,, onto Fe, given by
€Lxm,n = €k—m4n (k > m)

and where
Am,nlp,q = Am—n+t,g—p+t>

with ¢ = max(n,p). By Theorem 5.4.4, there is a morphism ¢ : § — Txg
whose kernel is p. In fact, by Corollary 5.6.5, ker ¢ = H.
A typical H-class of S is

Hppn={aeS: aal =em, a"la = €nts
and each element a of Hp,, maps by ¢ to an element o, of Tp whose
domain is Faa~! = Ee,, and whose image is Ea~'a = Fe,. There is only
one such element, and so
Hm,n¢ = Om,n-
It follows that, within S,
Hipntlpg © Hm-ntt,g—ptt- (5.6.8)

Let us denote the group Hy, with identity ey, by G. Choose and fix
an element a in Hy1. Then a=! € Hjp, by the standard eggbox argu-
ment. (See Section 2.3.) Also a® € Hy o by (5.6.8), and more generally by
induction we find that

a” € Hom, 6 "E€Hpo (ne N9,
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(where a® is defined as eg). Notice also that, for all n in N°,

., —mn -n_n

a"a " =€y, a "a" =e,.
LO L1 e Ln
Ry g Q a”

Ryl gt €1

Rm a—m Hm,n

Lemma 5.6.8 The map
gr—aMga" (g€G)
is a bijection from G = Hy g onto Hy, p,, with inverse given by
z—amza™" (x € Hp,p).

Proof This is a simple application of Green’s Lemmas (Lemmas 2.2.1 and
2.2.2). We have epa™ = a™ and a™a™! = e, and so the map g — ga™ is a
bijection from G = Hy g onto Hy ,, with inverse y — ya~™. Also, a™™eg =
a”™ and a™a”"™ = ey, and so the map y — a~™y is a bijection from Hy ,
onto Hp, ,, with inverse  +— a™z. Combining these two bijections, we
obtain the required result. a

Returning now to the proof of Theorem 5.6.7, we see that, once a is
chosen, we have a bijection ¢ : § — N® x G x N° given by

(a~™gamyp = (m, g,m). (5.6.9)
For each g in G, using (5.6.8), we have
ag € Ho1Hop = Ho,,

and so, by Lemma 5.6.8, there is a unique expression a’¢’a’ = g’a for ag.
Accordingly, we define a map 8 : G — G by the rule

ag = (gh)a (g€ G). (5.6.10)
For all g1, g2 in G,
[(9192)0]a = a(g192) = (ag1)ga = [(910)alg2
= (910)(ag2) = (9109)[(920)a] = [(910)(g20)]a;

1 and noting that aa—! = eq, we find that

hence, postmultiplying by a™
(9192)8 = (916)(g20).

Thus 6 is an endomorphism of G.
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Notice next that
a’g = a(ag) = a(gf)a = (96%)a’;
indeed, by induction, we have
a"g = (g8")a" (ne€N’),

where 6 is interpreted as the identity map of G. Also, from (5.6.10) we

can deduce that
gl = a7 (g0)"!

for every g in G. Hence, changing notation, we deduce that
ga~t =a"l(g8) (g9€G),
and, more generally, we have
ga " =a""(gf") (g€G,neN°.

Lemma 5.6.8 yields a unique expression of the type a~™ga™ for every
element of S. We are now in a position to describe the manner in which
two such expressions multiply. If n > p, then

(a™™ga™)(a"Pha?) = a”™g(a™ Ph)a? = a~™g(h§"P)alTPT™,
while if n < p then
(a"™ga™)(a"Pha?) = a~™(ga P M ha? = o~ TP (P had,
We can summarize these two formulae as follows:
(a™™ga™)(a"Pha?) = a” ("7 (96" ) (RGP P )ad TP HY,

where ¢t = max(n,p). Thus the bijection ¢ : S — N® x G x N? given by
(5.6.9) is an isomorphism from S onto the Bruck-Reilly extension BR(G, 6).
|

5.7 SIMPLE INVERSE SEMIGROUPS

We now briefly describe a theory for simple inverse semigroups that paral-
lels in many respects the theory we have developed for the bisimple case.
In the bisimple case we were able to show that a semilattice £ can be the
semilattice of idempotents of a bisimple inverse semigroup if and only if it
is uniform. The first stage in generalizing the theory must be to give an
analogous result for simple inverse semigroups.

We begin with

Lemma 5.7.1 Let S be an inverse semigroup with semilattice of idempo-
tents E. Then S is simple if and only if

(Ve,fe EY3g€ E)[g< fandeDyg. (5.7.1)
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Proof Suppose first that S is a simple inverse semigroup with semilattice
of idempotents F, and consider two elements e, f of E. Since ¢ J f, there
exist z, ¥ in S such that e = xfy. If g is defined as fyex, then

g* = fye(zfy)er = fyedz = fyex = g,
and so g € E. It is clear that fg = g, and so g < f. Denoting z~'e by z,
we see that

1

zz=zxz le=zx lafy = cfy =e,

and so e £ z. Also

1 1.2

Zr = "er=1x "e‘xr = a:'lwfyea: = x_lxg

= gr 'z = fyexzTlz = fyex = g,
and

-1 1 1

gr =g ezt =z wge ! = 2 Y fyexa

=z terr =g ez le=2"te = z,

and so z R g. Hence e D g.

Conversely, suppose that we have the property (5.7.1), let S be an in-
verse semigroup with semilattice of idempotents E, and let e, f be arbitrary
elements of . Then there exists ¢ in F such that g < f and e D g, from
which we deduce that

Je = Jg < Jy.

Equally, by interchanging the réles of e and f, we have an idempotent h
such that
Jp=Jp < e

It follows that e J f for every pair e, f of idempotents in &, and hence
{since every element of S is J-equivalent—indeed R- or L£-equivalent—to
an idempotent) S is simple. O

This motivates the following definition: a semilattice E is said to be
subuniform if

(Ve,f € E)(3g € E) (g < f and Ee ~ Eg). (5.7.2)

It is clear that every uniform semilattice is subuniform: simply take g = f
in the definition. Exercise 26 demonstrates that there exist subuniform
semilattices that are not uniform.

Since e D g (for idempotents e, ¢ in an inverse semigroup) implies that
Fe ~ Eg, we have in fact proved half of the following result:

Proposition 5.7.2 A semilattice E is the semilattice of idempotents of a
simple inverse semigroup if and only if it is subuniform.

Proof To establish the other half, consider T, where E is subuniform.
If e, f € E then Fe ~ Eg for some g < f, and so e D g in T. It follows
that Tg is simple. 0
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If S (with semilattice of idempotents E) is a simple inverse semigroup
which is also fundamental, then, by Theorem 5.4.5, S is in effect a full
inverse subsemigroup of Tr. As in the bisimple case (Theorem 5.6.2), we
can be a little more precise than this. In effect we defined an inverse
subsemigroup S of T to be transitive if, for all e, f in E, there exists o
in S such that

doma = Fe, ima=FEf

We now define S to be subtransitive if, for all e, f in E, there exists « in
S such that
doma = Fe, imaC Ef.

Then we have

Theorem 5.7.3 If E is a subuniform semilattice, then every subtransitive
inverse subsemigroup of Tr is a fundamental inverse semigroup with semi-
lattice of idempotents isomorphic to E. Conversely, if S is a fundamental
simple inverse semigroup with (necessarily subuniform) semilattice of idem-
potents E, then S is isomorphic to a subtransitive inverse subsemigroup

Of Tg.

Proof Let S be a subtransitive inverse subsemigroup of T, where E is
subuniform. If e € E then by subtransitivity there exists a in S with
doma = Fe (and ima C Ee). Hence S contains the element aa™! = 1g,.
We have shown that S is full, and so, by Theorem 5.4.5, S is a fundamental
inverse semigroup with semilattice of idempotents isomorphic to E. To
show that S is simple, note that, for all e, f in E, there exists & in S such
that
doma = Fe, ima=FEgCEf.

Then g < f and, since aa™! = 1g, and o~ la = 1g,, it follows that e and
g (strictly 1g. and 1g,) are D-equivalent in S. By Lemma 5.7.1 we deduce
that S is simple.

Conversely, suppose that S is a fundamental simple inverse semigroup.
Then in the usual way—see Theorem 5.4.5—we have that S ~ 5’, where S’
is a full inverse subsemigroup of Tr. Now S’ is simple, and so, by Lemma
5.7.1, for all e, f in E there exists g in F such that ¢ < f and 1g. D 1g,

in S’. Hence there exists o in S’ such that aa™! = 1g. and o la = 1g,4.
Hence

doma = FEe, ima=EgC Ef,
and so S’ is subtransitive as required. O

In Corollary 5.6.3 we saw that, up to isomorphism, the only fundamental
bisimple inverse w-semigroup is the bicyclic semigroup. We can be just as
precise in describing fundamental simple inverse w-semigroups, but the
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answer is necessarily more complicated. Let us begin by defining, for d =
1,2,3,...,
By = {(m,n) € N° x N° : m = n (mod d)}.

We can regard B, as a subset of the bicyclic semigroup B = N% x N, and,
regarded in this way, it is in fact a subsemigroup of B, for it is clear that
from m = n (mod d) and p = ¢ (mod d) we can deduce that

m — n + max(n, p) = q¢ — p + max(n, p) (mod d).

By is even an inverse subsemigroup of B, since it is clear that if (m,n)
belongs to By then the inverse (n,m) of (m,n) in B also belongs to By.
It is also full, since, for every d, the idempotents (m,m) of B all belong
to Bd-

‘We shall see shortly that By is simple, but first we describe the Green
relations R and L:

Lemma 5.7.4 Let (m,n),(p,q) € Bq. Then
(m,n) R (p,q) if and only if m =p,

{(m,n) L (p,q) if and only if n =q.
Proof By Proposition 5.1.2, if (m,n) and (p,q) are in By, then
(m,n) R (p,q) if and only if
(m,n)(m,n) ™" = (p,q)(p,q) ™",
that is, if and only if (m,m) = (p,p), that is, if and only if m = p. The
result for £ is proved in exactly the same way. O

Two idempotents (m, m) and (n,n) in By are D-equivalent in By if and
only if there exists an element of By which is R-equivalent to (m, m) and
L-equivalent to (n,n). This element can only be (m,n), and belongs to By
if and only if m = n (mod d). We deduce that in By there are precisely d
D-classes, namely

D0y, D1,1ys---» D@g—1,a-1-

We can now prove the analogue of Corollary 5.6.3:

Proposition 5.7.5 Up to isomorphism, the only fundamental simple in-
verse w-semigroups are the semigroups By (d =1,2,3,...).

Proof By virtue of Theorem 5.7.3, what we have to show is that the
semigroups
Bl = {am,n : m = n (mod d)}

are the only subtransitive inverse subsemigroups of the Munn semigroup

Tc, = {amn:m,n € NO}.



180 Inverse semigroups

First, to show that B) is subtransitive, consider two idempotents e,
én in C,,. Certainly there exists p > n such that m = p (mod d). Hence
Om,p € Bjj, and

domayy, p = Fep, imomp, = Fep, C Eey.

Conversely, suppose that S is a subtransitive inverse subsemigroup of
Tc,,- Then there exists o in S such that

doma = Feg, imaC Fej,

that is, such that doma = Feg and im o = Fey for some d > 1. We deduce
that S contains ¢y 4 for some d > 1. Suppose that d is the least positive
integer for which this holds: thus ap, € § with 0 < r < d implies that
r=0.
The standard multiplication rule (5.4.3) in T, gives ag, 4 = 00,24; in-
deed
Ckg,d = Qp,kd (k>1).

Now, as remarked in the proof of Theorem 5.7.3, a subtransitive inverse
subsemigroup of T¢,, is necessarily full; hence for every m, &k > 0,

O, m@0,kd = Om,mtkd € S-

It follows that qumikd,m is also in S, and so in fact Bj € S. To show that
this is in fact an equality, suppose, by way of contradiction, that there
exists am,n in S for which m # n (mod d). Writing n as m + kd + r, with
0 < r < d, by the division algorithm, we deduce that S contains

O m+kd+r&m+kd,m = Em m+r-

If m = 0 we have already obtained our contradiction. If m > 0 we next
observe that S contains

Am—1,m—1+dO%mm+r¥m—1+dm—1 = Cm—1,m—1+r:

We can continue this argument until we reach the false statement that
ap,r € 9, and we are forced to conclude that S = Bj. O

In the last section we observed that the Bruck-Reilly extension
BR(T,6) of a group T is a bisimple w-semigroup. More generally, we now
take T to be a semilattice of groups—a Clifford semigroup—of a special
form. More precisely, let T' be the union of disjoint groups Go, G1,...,Ga—1
and, fors =0,1,...,d~2, let v; : G; — G;41 be a morphism. Then, for all
i, 7in {0,1,...,d — 1} such that ¢ < j there is a morphism a5 ; : G; — G
defined by

Q55 = YiYi+1 - Vi—1-
If, for each i in {0,1,...,d — 1}, we define «;; to be the identity map of
G, then we certainly have

Qi,j0k = Qik
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whenever ¢ < j < k, and so we have a Clifford semigroup T =
S(Y;Gi;,5), in which the semilattice Y is the chain {0,1,...,d — 1}.
We denote the idempotents of T’ by eg, €1, ..., eq4—1 (the identity elements
of Go,G1,...,Gq_1, respectively), and note that, in T,

ey >€e1 > > €4-1.

The element ey is the identity of G. We shall refer to 1" as a finite chain
of groups (of length d).

Let T' = S(Y;Gi; ;) be such a semigroup, and let S = BR(T,0),
where 6 is a morphism from T into Gg, the group of units of 7. By
Proposition 5.6.6, S is a simple inverse semigroup in which the D-classes
are the subsets N? x G; x NY (; = 0,1,...,d — 1). For two idempotents
(m,e;,m) and (m, e;,m) in S, it is clear that (m, e;,m) < (m, e;,m) if and
only if e; < e; in T, that is, if and only if ¢ > j. More generally, if we
consider two idempotents (m,e;,m) and (n,e;,n) for which m > n, then
e;0™"" = eg, the identity of T', and so

gm—n

(mv eivm)(na ej»n) = (m7 e'i(ej )7m) = (m’ ei?m)’

and so (m,e;,m) > (n,e;,n) irrespective of the values of i and j. In
summary, the idempotents of S form a chain

(0,€e9,0) > (0,e1,0) > --- > (0,€e4-1,0)
> (1,e0,1) > (1,e1,1) > --- > (1,e4-1,1)
> (2,€0,2) > (2,€1,2) > -+ > (2,e4-1,2)
> e

Thus S = BR(T,9) is a simple inverse w-semigroup.

More remarkably, we can show that every simple inverse w-semigroup
is of this form:

Theorem 5.7.6 Let T be a finite chain of groups of length d (> 1). If
6 is a morphism from T into the group of units of T then the Bruck-
Reilly extension BR(T,0) of T determined by 0 is a simple inverse w-
semigroup with d D-classes. Conversely, every simple inverse w-semigroup
is tsomorphic to one of this type.

Proof It remains to prove the converse half. Let S be a simple inverse
w-semigroup whose semilattice of idempotents is

E:Cw :{f07flaf27"'}'

(The change in notation from e to f is made in order to avoid confusion with
the notation used above in describing the chain of groups S(Y; G;; s 5).)

By Theorem 5.4.4 there is a morphism ¢ : S — T’y mapping each ¢ in
S to the element « : Faa~' — Ea~la of Tg, where

ta, =a ‘za (z € Eaa™').
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The kernel of ¢ is u, which in this case coincides with H, by Corollary 5.6.5.
The subsemigroup S¢ of Ty is a subtransitive inverse subsemigroup of T,
and so, as shown in the proof of Proposition 5.7.5, S¢ coincides with By
for some (d > 1). We write

S¢ = {ammn:m,n € N° m=n (modd)},
where o, p, ¢ Efm — Efy, is given as usual by

fkam,n = flc-m+n (k Z m))

and where
CmnQp,g = Cm-nttg-pte (L= max(n,p))‘

As in the bisimple case we define
Hpn={aes: aa"t = f, a"ta = I}

then either Hy, , = @ or Hy, ,, is an H-class of S. The essential difference
between this case and the bisimple case now appears, for the former situ-
ation can arise here. Indeed we can say precisely when it does arise, for
if Hpyp # 0 then Hy n¢p = oy € S¢; hence Hy, ,, # 0 if and only if
m = n {mod d). We easily deduce that the semigroup S has precisely d
D-classes

D° DY ... D%

where
Df = U{Hm” :m=n=1i{(modd)} = U{de+i,qd+i :p,q € N}

Lemma 5.7.7 Fori=0,1,...,d—1, the D-class D" is a bisimple inverse
w-semigroup with identity element f;.

Proof Since Hp, ¢ = 4pn (whenever m = n (mod d)), we can deduce
from the multiplication formula for the elements oy, ,, that

HpnHpg C Hpnitgpie (6= max(n,p)). (5.7.3)

¥ Hypny Hpy C D?, that is, if m = n =4 (mod d) and p = ¢ = ¢ (mod d),
then
m-n+t=q—-—p+t=t=i(modd)

and so Hy, nHpy C© D' Thus D' is a subsemigroup of S, and is even
an inverse subsemigroup, since it is clear that H,,, C D® if and only if
H, . C D

Of the H-classes

—1 -1
Hpitigiri ={a €S : 007" = fpari, a0 = feari}
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that make up D?, those that contain idempotents are precisely the ones for
which p = ¢. Indeed the H-class Hpgyi pa+s contains the idempotent fpq..i.
The idempotents of D¢ form an infinite chain

fi > fayi > foari >,

and so D! is an inverse w-semigroup.
Finally, all the idempotents D* are D-equivalent in D?, since for all p,
g in N° there exists an element a in D* (in fact in Hpgiigd+:) such that
aa™! = fpati, a ta = fya+i. Thus D? is a bisimple inverse w-semigroup.
O
Returning now to the proof of Theorem 5.7.6, we observe first that the
group of units of D* is H; ;, and for simplicity of notation we shall denote
this by G;. The identity of G; is the idempotent f;. Let

d-1
T={J6.

Ifi,7 € {0,1,...,d — 1}, with ¢ < j, then by (5.7.3) and by the fact that
H\ = Hym we have

GiG; CG;, G;G;CG;,
G;'=G,.

Hence T is an inverse subsemigroup of S. Since it is evidently also com-
pletely regular, T is in fact a Clifford semigroup in which the idempotents
form the finite chain

fo>fi>fa>- > fo1.

Thus T is a finite chain of groups.

In view of the result stated in Lemma 5.7.7, it would seem reasonable
to apply Theorem 5.6.7 to each D*, deducing that D¢ ~ BR(G;,6;), where
8; is an endomorphism of ;. This in fact is almost what we do. Our
method of proof in Theorem 5.6.7 suggests that we ought for each 4 to
choose an element a; in each H; 44, and then express each element of D? as
a; ™9:a7 (€ Humdtind+ri), with m,n € N® and g; € G;. It pays, however,
not to choose the elements a; independently, but to make them all depend
on the chosen element ag in Hop 4.

Simplifying the notation, let us choose and fix an element a in Hy 4.
Then a~! € Hyp, and

aa"t = fo, a~ta = fa
Fori=0,1,...,d -1,
fia € Hy;Hyg g = Hi gqg.
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Since f; is the identity of D* it follows that (f;a)f; = fia, from which we
easily deduce that (f;a)? = f;a?. Indeed, by induction, we have
(fia)" = fia"  (n€N),
and by taking inverses we easily deduce that
(fie) " =a™"fi (neN).
Using f;a for a; in the way indicated above, we express each element of
D? uniquely as
(fia) " gi(fia)" = o™ figi fia™ = a" Mg ™",
(since f; is the identity of G;), where m,n € N° and g; € G;. The element
a~™g;a™ belongs to the H-class Hyp44ing+i- (There is no difficulty about
zero values of m and n if we interpret a° formally as 1.)
We thus have a bijection ¥ from S onto N° x 7' x N, defined by
(a™™gia™)¥ = (m, gi,n).

It remains to find a morphism 6 : T — Gq such that ¥ becomes an isomor-
phism.
Again following the lead given by the bisimple case, we note that for
all g; in G; (i =0,1,...,d-1),
ag; € HoqH;; C Hyg;

hence ag; is uniquely expressible as gga, with gj € Go. We can regard the
resulting formula ag; = gfa as defining a map ¢; : G; — Go:

ag; = (gips)a. (5.7.4)

Since the groups Go,Gy,...,G4_1 are disjoint, we can use the maps
0, P1,-..,d4—1 thus obtained to piece together a map 8 : T — Gy:

t6 = to; (tEGi, iZO,l,...,d—l).

This 8 is the morphism we are looking for. To show the morphic prop-
erty, consider z, y in T', with x € Gy, y € G and i < j. Then zy € G, and
s0, by (5.7.4),

a(zy) = [(zy)$;la = [(zy)bla.
On the other hand,
a(zy) = (az)y = (x¢i)ay = (z¢:)(ye;)a = [(z0)(y0)]a.
Thus [(zy)fla = [(z8)(y#)]a, and so, since aa~! = fy, we deduce that
(zy)6 = (z0)(yH), as required.

Exactly as in the proof of Theorem 5.6.7 we have that, for every z in T

and every k in IN©,

a*r = (x)a®, za™F = a~F(z6"),

U is interpreted as fo and z6° as z.

where a
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Now let z,y € T and let m,n,p,q € N°. If n > p, then
(a~™za™)(a Pya?) = a" ™z (yf"P)a? TP,

while if n < p,
(a™™za™)(a Pya?) = a™ P (6P ™) yal.

If we write ¢ = max(n,p) then we can combine these two statements into
a single statement:

(a"™za™)(a Pya?) = a~ (M (264 77) (yh P eI P,

and it is now clear that ¥ is an isomorphism from S onto BR(T, 6). |

5.8 REPRESENTATIONS OF INVERSE SEMIGROUPS

In this section we describe an analysis of representations of inverse semi-
groups by partial one-one mappings. The idea is essentially the same as
in group theory, where one shows that every transitive representation of a
group by permutations is equivalent to a representation by permutations
of the cosets of a certain subgroup of the group. (See, for example, M. Hall
(1959).)

Let us begin by reminding ourselves that a representation of an inverse
semigroup S is a morphism ¢ of S into some symmetric inverse semigroup
Ix. If ¢ is one-one we call the representation faithful The particular
representation ¢ : S — Zg described in Theorem 5.1.7 we shall call the
Vagner—Preston representation of S.

Theorem 5.1.4 assures us that for every representation ¢ : S — Ix the
image S¢ is an inverse subsemigroup of Zx. Accordingly, let us turn our
attention to an arbitrarily chosen inverse subsemigroup H of ZTx, where X
is a non-empty set. Let 74 be the relation

{{a,b) e X x X : 3k € H) a € domk and ax = b}.

We call g the transitivity relation of H. Then we have

Lemma 5.8.1 If H is an inverse subsemigroup of a symmetric inverse
semigroup Ix, then Ty ts a symmetric and transitive relation on X.

Proof If (z,y) € 7 then zk = y for some k in H. Hence y € imk =
domk~! and yx~! = z. Since k! € H, we deduce that (y,z) € k.
Suppose now that (z,y),(y,2) € 7. Then zx = y, yA = 2 for some &,
Xin H. It follows that © € dom X and z(kA) = 2. Thus (z,2) € 7y as

required. ]

We cannot in general assert that 7y is an equivalence relation, since
there may exist elements z in X that are not in the domain of any  in
H. What this amounts to is that there exist elements z on X for which
(x,z) ¢ T, for if we had (z,y) € Ty for some y then by symmetry and
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transitivity we could deduce that (z,x) € 7. We define the domain of 7y
to be the set
Xy ={zeX:(z,2) €7},

and then we can conclude that 75 is an equivalence relation on its domain
X1y. We say that H is an effective inverse subsemigroup of Ty if X7y =
X; in this case 7 is an equivalence relation on X.

The 7y-classes in X7y are called the transitivity classes of H, and H is
called transitive if Ty is the universal relation on Xrg. Thus H is effective
and transitive if and only if for all a, b in X there exists « in H such that
ak = b. We say that ¢ : S — Tx is an effective [transitive] representation
if S¢ is an effective [transitive] inverse subsemigroup of Zx.

Let {X; : i € I} be a family of pairwise disjoint sets and let
x=Jx.
iel
Let S be an inverse semigroup, and suppose that for each ¢ in I we have a

representation ¢; : § — Ix,. For each s in S we may regard the one-one
partial map s¢; as a subset of X; x X;. Then

U 8¢

il
is a partial one-one map of X, whose domain is Uie ;dom ¢;; we denote
this map by ¢, and call it the sum of the representations ¢;. We write

¢ =EP e (5.8.1)
el
IfI={1,2,...,n} we write
P=¢p1DP2 @ D .

Because the definition (5.8.1) is in terms of set-theoretic union, the infinite
commutative and associative laws hold for @.

If g : S — Zx and ¢ : S — Iy are representations of an inverse
semigroup S, we say that ¢ and ¢ are equivalent if there exists a bijection
#: X — Y with the property that, for each s in S,

s = {(z8,2'0) € Y x Y : (z,2') € s¢}.
In other words, dom(sy) = (dom(s¢))6, and, for all = in dom(sé),
(x(59))0 = (20)(s9)).

This amounts in practice to saying that the two representations differ ‘in
name only’. It is important to be able to replace a representation by an
equivalent one when we want to form the sum ¢; @ ¢2 of representations
¢1: 8 — Ix, and ¢9 : S — Tx, in the case where X; and X3 are not
disjoint. We cannot do this under the rules of addition, but what we can do
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is to form a representation ¢1 @ e, where 1o : S — Iy, is a representation
equivalent to ¢ and where X; NYs = —and for most purposes this is just
as good.

The importance of effective and transitive representations lies in the
following result:
Theorem 5.8.2 Every effective representation of an inverse semigroup S
is the sum of a uniquely determined family of effective transitive represen-
tations of S.

Proof Let ¢ : S — Ix be an effective representation of S, and denote S¢
by H. The transitivity relation 7 is an equivalence relation on X; let us
denote the 7x-classes by X; (¢ € I). Then

mm = J(Xi x X;) and | JX; = X.
i€l i€l
We now define for each ¢ in I the representation ¢; by the rule that
SQZI).,; =S¢O(X',; XX@) (SE S)

That is, the partial map s¢; is the restriction to dom(s¢) N X; of the
partial map s¢. Since X; is a transitivity class of H it is then automatic
that im(s¢;) C X;; indeed
Im(S(f)z) = 1m(s¢) n Xi.
To show that ¢; is a representation, observe that for any choice of s and ¢
in S,
(st)p; = (st)p N (X; x X;) = (sd)(td) N (X; x X5).

Now (z,y) € (s¢)(t9) if and only if there exists z in X such that (z, 2) € s¢

and (z,y) € t¢. In fact, if z and y are in X; then it follows, since X is a
transitivity class of H = S¢, that z also belongs to X;. Hence

(s9)(t8) N (Xi x X;) = (s¢ N (X x X3)) (¢ N (X; x X)),

and so (st)¢; = (s¢;)(td;), as required.

Next, each ¢; is transitive and effective, since for each (z,y) in X; x X;
there exists, by definition of 7, an element s¢ such that (z,y) € s¢. Thus
(.’L‘,y) €spnN (Xl X Xz) = S¢;.

For each s in S,

Ulsdiriet = J{s¢n (Xix Xy) :i eI}
= (sp)nJ{Xix X;:ie T}
= 8¢, since s¢ C U{X“ x X;:iel}.

Hence ¢ is the sum of the representations ¢;.
Finally, to show that the family {¢; : ¢ € I} is unique, suppose that ¢
is the sum of a family {¢; : j € J} of effective transitive representations
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;1§ — Y, where X is the union of the pairwise disjoint sets Y;. The
transitivity classes of the sum ¢ = @j cs ¥; are the sets Y}, and, for each
sin S,

(s6) N (Y) X Y;) = s9;.

It thus follows that the sets Y; are just the sets X, in some order, and that
each 1); is equal to the appropriate ¢;. O

The next stage in the investigation is to discover more about effective
transitive representations. We begin by describing a particular kind of
representation of an inverse semigroup associated with an inverse subsemi-
group H that is closed, in the sense introduced in Section 5.2.

The first step in this process is to generalize the group-theoretic notion
of ‘right coset’. Let S be an inverse semigroup and let H be a (not nec-
essarily closed) inverse subsemigroup of S. If s € S then the subset Hs
may fail to contain s, but it certainly contains s if ss™! € H. We define a
right coset of H to be a set Hs (s € S) for which ss™* € H. Even if H is
closed, the right coset Hs may fail to be closed. The closure {Hs)w of a
right coset Hs will be called a right w-coset of H. Notice carefully that a
subset Hs is not deemed to be a right coset unless ss~! € H.

Among the right w-cosets of H is Hw itself, for, as is not hard to verify,
Hw = (Hh)w for every h in H. Let X denote the set of all right w-cosets
of H.

Proposition 5.8.3 Let H be an inverse subsemigroup of an inverse semi-
group S, and let (Ha)w, (Hb)w be right w-cosets of H. Then the following
statements are equivalent:

(1) (Ha)w = (Hb)w; (2) ab~! € Huw;
(3) a€ (Hbuw; (4) be (Haw.

Proof (1) = (2). Suppose that (Ha)w = (Hb)w. Then
a=aa"'a € Ha C (Ha)w = (Hb)w,
and so a > hb for some h in H. It follows that
ab™! > hbb~! € H,

and so ab™! € Hw.
(2) = (3). If ab~! € Hw then ab™! > h for some h in H, and so

a > ab b > hb.

Thus a € (Hb)w.

(3) = (1). Suppose that a € (Hb)w. Then a > hb for some h in
H. For all s in (Ha)w we have s > ka for some k in H, and it follows
that s > khb. Since kh € H, we have shown that s € (Hb)w, and hence
that (Ha)w C (Hb)w. To establish the reverse conclusion, suppose that
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t € (Hb)w, so that ¢ > kb for some & in H. From our assumption that
a > hb we deduce by Proposition 5.2.1(8) that

hb = hbb~ h~la,
and hence that
t>kb>kh 'hb=kh™1hbb"'h"1la € Ha.

Thus ¢t € (Ha)w, as required.
The incorporation of (4) into the list of equivalent statements follows
immediately when we observe that condition (1) is symmetrical in ¢ and b.
O

Now define, for each s in S, an element s¢g of Z¢ by
s¢r = {((Hz)w, (Hzs)w) : (Hz)w, (Hzs)w € C}. (5.8.2)
Thus the domain of s¢y is
{(Hx)w € C: (Hzs)w € C},
and, for each (Hs)w in this domain,
((Hx)w) (spr) = (Hzs)w.

To verify that s¢g does indeed belong to Z¢, notice first that it is a
well-defined partial mapping of C. For suppose that (Hz)w = (Hy)w, and
that (Hzs)w € C. Then zz~1,yy~1,zss7 'z~ € H. By Proposition 5.8.3,
zy~! € Hw, and so

(zs)(ys) P =zss ™yt = axlessTly T = zssT e eyt € Ho.

Thus, again by Proposition 5.8.3, (Hzs)w = (Hys)w.
Also, s¢m is one-one, for if (Hzs)w = (Hys)w, then

xy ! > zssTly™! € Hw.

Thus zy~* € (Hw)w = Hw, and so (Hz)w = (Hy)w, as required.
We have shown that s¢pg € Z¢. Indeed we have

Proposition 5.8.4 If H is a closed inverse subsemigroup of an inverse
semigroup S, then the mapping ¢g : S — I¢ defined by (5.8.2) is an
effective transitive representation of S.

Proof To show that ¢z is a representation, consider an element
((Hz)w, (Hzst)w)

of (st)¢g. Then zz~! and zstt~1s7 127! belong to H. Now zss~ 'zt >
zstt~1s~1z~1, and so xss~lz~! € Hw = H. Hence

(Hz)w, (Hzs)w) € s¢pp, ((Hzs)w,(Hzst)w) € topm,
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which gives that ((Hz)w, (Hzst)w) € (s¢u)(t¢wu). We have shown that
(st)pr < (s¢m)(tdm). To show the converse, suppose that

(Hz)w, (Hy)w) € (sdm)(tén),
so that there exists (Hz)w in C such that
(Hz)w, (Hz2)w) € s¢pr, ((Hz)w,(Hy)w) € tén.

Then (Hz)w = (Hzs)w and (Hy)w = (Hzst)w, and we deduce that
((Hz)w, (Hy)w) € (st)dm, as required. Thus ¢ is a representation.

To show that ¢ is effective and transitive, we establish that for any
(Hz)w, (Hy)w in C there exists s in S, namely s = z~'y, such that
((Hz)w, (Hy)w) € s¢pg. First, notice that

(zs)(xs)™' = zz~tyy~lzx~t € H,

1

since zz~! and yy~! are in H by assumption. Thus (Hzs)w € C. Then

observe that
1

(zs)y™ ! =z~ lyy™! € H = Huw,

and so, by Proposition 5.8.3, (Hy)w = (Hzs)w. ]

We now show that every effective transitive representation ¢ : S — T¢
of an inverse semigroup S is equivalent to one of type ¢

Proposition 5.8.5 Let X be a set, and let ¢ : S — Ix be an effective
transitive representation of the inverse semigroup S. Let z be an arbitrary
fized element of X and let

H={seS8:(z2z) € sy}

Then H s a closed inverse subsemigroup of S, and 1 is equivalent to the
representation ¢ defined by (5.8.2).

Proof Certainly H is a subsemigroup, since (z,z) € sy and (z,2) € ¢
implies that (z,2) € (s¢){typ) = (st)¢. Since ¢ is a morphism we have
s719 = (s¢p)~!; hence

scH = (z,2) €8 = (2,2)€8 'Y = s c H

Thus H is an inverse subsemigroup of S.

To show that H is closed, suppose that £ € Hw, so that k > h for some
h in H. Since the order relation is defined in terms of multiplication, it
follows that ki > he in Zx, and so, by the remarks preceding Proposition
5.2.1, kv D hyp (as subsets of X x X). Now (z, z) € htp, since h € H, and
it is then immediate that (z, 2) € ky. Thus k € H, and so H is closed.

To show that v is equivalent to ¢z we must begin by defining a bijection
8 from X into the set C of right w-cosets of H. If x € X, then, since ¥ is
effective and transitive, there exists a, in S such that (z,z) € az¥. The
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element a, of S then necessarily has the property that aza;! € H, for we
have
(z,z) € az®p and (z,2) € a4,

-1
f:

and so (2, z) € azaz 'y Thus (Hae,)w is a right w-coset of H, characterized

as follows:

(Hagz)w ={s € S:(z,z) € s¢}. (5.8.3)

To see this, suppose first that s € (Ha,)w. Then s > ha, for some h in
H, and so sy O (hp)(azy) (as subsets of X x X). Now (z,2) € hyy and
(z,2) € a9, and so it follows that (z,z) € sv, as required.

Conversely, if (z,z) € sy, then from (z,z) € a;!4 it follows that
sa;' € H. Hence s € (Ha,)w, by Proposition 5.8.3.

The element a,, is not uniquely determined by x. However, if b, also has
the property that (z,z) € by¢, then (5.8.3) assures us that b, € (Hay)w,
and hence, by Proposition 5.8.3,

(Hag)w = (Hby)w.

It is therefore correct to say that the right w-coset (Ha.)w is uniquely
determined by z.
We now define a map 8 : X — C by the rule that

20 = (Haz)w (z € X),

where a;, is any element of S such that (z,2) € ayy. The conclusion of the
previous paragraph implies that @ is well defined. Moreover, it is immediate
that § is one-one, for if 26 = 2’0 = (Ha)w then

(z,z) € ayy, (z,7) € arp,

from which it immediately follows that x = 2/, since a is a partial one-one
map of X. In fact € is also onto, for if (Ha)w is a right w-coset of H, then
by definition aa~! € H, and so

(z,2) € (aa™ 1)y = (a) (@™ ")

Hence there exists = in X such that (z,z) € av, (z,2) € a=11, and it
follows that z6 = (Ha)w.

Suppose finally that z, y in X and s in S are such that (z,y) € sy; we
must show that (z6,y0) € s¢y. Write 260 = (Ha)w, y6 = (Hb)w, so that
(2,z) € a®, (2,y) € bp. Then from

(z,2) € ay, (x,y) € s, (y,z) € s~ and (z,2) € a™ ¢

we deduce that (z,2z) € (ass~'a"')y, and hence that ass™'a™' € H.
Again, from (z,z) € ay and (z,y) € sy we deduce that (z,y) € (as)¥.
From (5.8.3) and Proposition 5.8.3 it now follows that (Hb)w = (H(as))w,
and hence

(z6,y0) = ((Ha)w, (Has)w) € s¢g.
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We have shown that sy C s¢g. Suppose now that
(z6,y0) = ((Ha)w, (Has)w) € spu.
By the definition of 8, we have (z,z) € av, (z,y) € (as)y. It follows that
(z,y) € (a” tas)y C sip. O
We summarize the results in a theorem as follows:

Theorem 5.8.6 Let S be an inverse semigroup. Then every effective rep-
resentation of S is uniquely expressible as a sum of effective, transitive
representations ¢; (i € I), each of which is equivalent to ¢p, for some
closed inverse subsemigroup H; of S. O

5.9 E-UNITARY INVERSE SEMIGROUPS

Let S be an inverse semigroup with semilattice F of idempotents. We say
that S is E-unitary if E is a unitary subsemigroup of E, that is, if, for all
ein F and sin S,

esc B = seF,
secE = sc k.

In fact to show that § is F-unitary we need only show one of these impli-
cations: if, for example, we assume the first implication, and if we suppose
that e, se € E, then ses™! and (ses™1)s (= se) both belong to E, and we
deduce that s € E.

Further characterizations of F-unitary inverse semigroups are available:

Proposition 5.9.1 Let S be an inverse semigroup with semilattice E of
idempotents. Let o be the minimum group congruence on S. The following
statements are equivalent:

(1) S is E-unitary;
(2) Ew(=Kero)=E;
(3) ocnNL=1g.

Proof (1) = (2). Suppose that S is E-unitary, and let ¢ € Ew. Then
e < a for some ¢ in F and so e = fa for some f in E. From f, fa € E we
deduce that a € E.

(2) = (3). Suppose that Ew = F, and let a, bin S be such that a o b
and a £ b. Thus a~*a = b~ by Proposition 5.1.2 and ab~! € Ew = E by
Theorem 5.3.5. Hence ab™! = (ab™1)"lab~! = ba~'ab™!. It now follows
that

a=aa"'a=ab" 'b=ba"tab b =bb bbb = b,

and so o N L = 1g.
(3) = (1). Suppose that ¢ N L = 1g, and suppose that e,ea € E.
Certainly (a,a"a) € £. Also a > ea € E and so a € Ew. From Theorem
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5.3.5 it follows that a o i for every i in E. In particular (a,a"'a) € o.
Thus (a,a7'a) € c N L, and so a = a"'a € E. 0

Remark The one-sided nature of condition (3) is only apparent. It is not
hard to show that the condition ¢ N R = 1g is equivalent.

We now describe a recipe, seemingly rather arbitrary, for constructing
E-unitary inverse semigroups. First, let X be a set furnished with a partial
order relation <, and let )} be a subset of X’ such that:

(P1) Y is a lower semilattice with respect to <, in the sense that for
every A and B in Y there is a greatest lower bound A A B, also
in Y;
(P2) Y is an order ideal, in the sense that, for all A, X in X,
AcYand X <A = Xe).

We shall say that a bijection o : X — X is an order automorphism if,
forall A, Bin X, A< B & oA < aB. (It is convenient at this stage to
write the mapping symbol on the left.) Let Aut X be the group of all order
automorphisms of X. Now let G be a group, and suppose that G acts on
X by order automorphisms. By this we mean that there is a morphism 8
from G into the group Aut X of order automorphisms of X. The fact that
8 is a morphism means that, for all g, h in G and for all 4 in X,

(99)((h8)A) = ((g0)(h8)) A = ((gh)f) A.

For the most part we can simplify the notation by suppressing any explicit
mention of §, and think of G itself as acting on X' (on the left). The fact
that it does so by means of order automorphisms is expressed by saying
that

gA=gB < A=B, (VBeX)(FA<c X)gA =B,

A<B & gA<gB,
and the morphism property becomes
g(hA) = (gh)A.

(Here g,h ¢ G, A,B € X.) It is precisely in this last property that the
difference between a left and a right action occurs: the action of gh results
from the action of h followed by the action of g. Were we to use a right
action then the two actions would be in the opposite order.

For each g in G the order automorphism property of the map A — gA
implies that if A and B are in X and if A A B exists then gA A gB exists,
and

gANgB = g(ANB).

Suppose finally that the triple (G, X,)) has the properties:
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(P3) GY = X; that is, for every X in X there exist g in G and Ain Y
such that gA = X;

(P4) forall gin G, gYyNY # 0.
Let us say that a triple (G, X,Y) having the properties (P1)-(P4) is a
McAlister triple. Given such a triple, let
S=MG,X,Y)={(A,9)cYxG:g7tAc Y}, (5.9.1)
and define a multiplication on S by the rule that
(4,9)(B, k) = (AAgB,gh).

We begin by verifying that S is closed under this operation. First, g"!AAB
exists, since both g7*A and B are in V. Hence g(¢g"1AAB) = AAgB
exists, and is in Y, since AAgB < A€ Y. Also

(gh)y Y (AAgB)=h"'g7'ANRTIB< K 'Be Y,

and so (gh)"1(AAgB) e Y.
Next, the operation is associative, for if (4, g), (B, h),{C,k) € S, then

(AAgB) A (gh)C = A A g(B A KC).

Thus S is a semigroup. It is even a regular semigroup, since for each (4, g)
in S the element (g7'A4,¢7!) is also in S, and

(Avg)(g—lA)g—l)(A’g) = (Av 1)(‘479) = (Ang),
(7" A, g N4, 9 g7 A g ) = (97 4,974, 1) = (97" 4,971).

Moreover, it is evident that (4, g) is idempotent if and only if ¢ = 1, and
for any two idempotents (A,1) and (B, 1), it is easy to see that

(4,1)(B,1) = (B,1)(4,1) = (AA B, 1).

Thus S is an inverse semigroup.
Finally, notice that in the inverse semigroup S the natural order relation
is given by

{4,9) < (B,h) if and only if A < B and g = h.

Consequently, (4, ¢) € Ew if and only if there exists an idempotent (B, 1)
such that (B,1) < (4,g). This can happen only if g = 1, that is, only if
(A,g) € E. Thus Ew = F, and so S is an E-unitary inverse semigroup, by
Proposition 5.9.1.
‘We have proved the easy half of the following result.

Theorem 5.9.2 Let (G, X,Y) be a McAlister triple. Then M(G,X,))
is an E-unitary inverse semigroup. Conversely, every E-unitary inverse
semigroup is isomorphic to one of this kind.

Proof Let S be an FE-unitary inverse semigroup. We must produce a
McAlister triple (G, X, Y) such that S ~ M(G, X,)).



E-unitary inverse semigroups 195

Let G = S/o, and for each s in S define s® in £ x G by

s0 = (s71s, s0).

Notice that, by Proposition 5.9.1(3) above,
SP=t = s=t.

If T is a subset of S, then T° will mean {t: ¢t € T}.

Let R be the set of all principal right ideals of S. Since every principal
right ideal of S can be written uniquely as €S, with e in E, the set R, is in
one-one correspondence with F, and so also is ), which we define by

Y={A: AcR}.

The correspondence is even a semilattice isomorphism between E and
(Y, N}, since
efS=eSNfS.

There is an obvious action of G on F X G given by

g(e, h) = (e, gh).
We define X to be G, by which we mean {gA® : g € G, A° € Y}. Both
Y and X are sets of subsets of £ x G, partially ordered by inclusion, and
ycx.
The action of G on Y extends naturally to X: for all g in G and all hA°
in X (with h in G and A° in ), we define
g(hA®) = (gh)A°.

Of course this definition conceals a difficulty, for in general the expression
of an element of X as hA® is not unique. However, if hA? = kB° then
within Y we have
A% = (h"')B® = ((gh)™")(gk)) B,

and so (gh)A° = (gk)B° as required.

Next we have a lemma:
Lemma 5.9.3 With the above definitions, YV is an order ideal of X.
Proof Let g(eS)° be a typical element of X', and suppose that g(eS)° C

(£S)° for some f in E. Among the elements of (eS)° is the element (e, 1),
where 1 is the identity of the group G; so in particular we have

0

(e,9) = g(e,1) = v’ = (u™"u, u0)

for some u in fS. Hence g = uo and e = v~ 'u, and so
9(e8)° = (uo)(w"us)°
= (uo){(v'us)? : s € S}
= (uo){(s" u" us, (u" us)o) : s € S}
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= {((us)"us, (us)o): s € S} = (uS)°.
Thus g(eS)° € Y, as required. o

In effect we have now verified that the triple (G, X, ) satisfies condi-
tions (P1) to (P3). To show that it is a McAlister triple we need to show
that it also satisfles (P4). Suppose therefore that ¢ € G. Let s in S be
such that so = g~'. Then

9(s8)° = (s0) " H{((st) 7 (st), (st)o) : t € S}
={((s7tst) (s st), (s st)o) 1 t € S}
=(s"1s8)0 e y.
Thus g¥ NY # @, and so (G, X,)) is a McAlister triple as required.

It remains to show that S ~ M(G,X,Y). A pair ((s9)%g) n Y x G
belongs to M(G, X,Y) if and only if g71(s5%) € V. From the argument
of the last paragraph this holds if ¢ = so. We now proceed to show that
these are in effect the only circumstances in which it holds: we show that if
g~ 1(s5)° € Y then there exists v in S such that ((s59)° g) = ((v9)°, vo).
So suppose that g~1(sS)° = (tS)° € V. Then in particular g=!(ss71)% =
u® for some w in ¢S. That is,

(ss7,g7h) =u’ = (u'u,w0),

and so ss~! = u"lu, g = (u~1)o. We have shown that
((s8)°,9) = (u™'9)° (u™)o);

hence u~! is the element v we have been looking for.
We now define a map ¢ : S — M(G,X,)) by

s¢ = ((s9)°,s0) (s €8);

the conclusion of the last paragraph in effect is that ¢ is onto. It is clear
that ¢ is also one-one, since (for all s, ¢t in §)

sp=tp = (s9)° = (t8)°, so =to
= 85 =15, so =to
= (s,t)eonR
= §=1,

by the remark following the proof of Proposition 5.9.1.
It remains to show that ¢ is a morphism. In M(G, X,)),

((55)°,50) ((¢8)°,to) = ((s8)° N (50).(tS)°, (st)o),
and so we must show that
(85)° N (s0)(t89)° = (stS5)°.
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Suppose first that (e, g) € (s9)° N (s0)(tS)°. Then
(e:9) = (su)® = (s0)(tv)°

for some u, v in S. Hence (s0)™1(su)® = (tv)? and so

(tv)°? = ((su)~(sw), (s 'su)o) = ((s™1su) (s su), (s su)o)
= (s 1su)?.

It follows that tv = s~'su. Hence su = stv and so (e, g) = (stv)? € (stS)°
as required.

Conversely, suppose that (e, g) € (stS)°. Then certainly (e, g) € (s9)°,
and (e,g) = (stu)? for some u in S. Let v = (st)~(st)u. Then vo = uo
and

(tv) " L(tv) = (stu) ™ (stu).

Hence
(e,9) = ((stu)™(stu), (stu)o) = ((tv) ™} (tv), (stv)o)
= (s0).((tv) "1 (tv), (tv)o) € (so)(tS)°.
Thus (e, g) € (s5)° N (s0)(tS)°, exactly as required. a

Before proceeding to consider the isomorphism theorem associated with
the McAlister structure theorem, we pause to make a formal record of some
easily verified facts about the semigroup M(G, X, Y):

Proposition 5.9.4 Let (A,g), (B,h) be elements of S = M(G,X,)).
Then

1) (A9t =(gt497");

(2) (A,9) R (B,h) if and only if A = B;

(3) (A,9) L (B,h) if and only if g7 A = h™'B;

(4) (A,9) D (B,h) if and only if there exists z in G such that zA = B;

(5) (A,9) J (B,h) if and only if there exist z, t in G such that zA < B,
tB < A:

(6) (A, g)<{(B,h)ifandonlyif A< B andg=nh

(7) (A,9) o(B,h) if and only if g = h

Proof Most of these statements are obvious. To prove (5), suppose that
(A,9) J (B,h). Then (A, g) = (C,z)(B, h)(D,y), so that

A=CAzBAzhD, g=zxhy.

Thus A < zB, and if we put z = z~! we obtain zA4 < B as required.
Similarly we find ¢ such that B < A.

Conversely, suppose that we have elements z, ¢ in G such that z4 < B,
tB < A. Then (4,271),(24,2) € S, and

(A1) = (A4, 27 1) (B, 1)(24, 2).
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Similarly
(B7 1) = (B’tﬂl)(A’ 1)(tBa t),
and so (4,1) J (B,1). Since (4, g) R (4,1) and (B, h) R(B,1), it follows
that (4, 9) J (B, h). O
‘We now have the following isomorphism theorem:

Theorem 5.9.5 Let (G, X,)), (G',X',Y’) be McAlister triples. Let 6 :
G — G' be a group isomorphism and let 4 : X — X' be an order-
isomorphism such that 1|y is an isomorphism from the semilattice Y onto
the semilattice '. Suppose also that, for all g in G and X in X,

(9X)¢ = (g0)(X). (5.9.2)
Then the map ¢ : M(G,X,Y) > M(G', X', Y’} defined by

(A4,9)0 = (A9,98) ((A,9) € M(G,X,)))
is am isomorphism. Conversely, every isomorphism from M(G,X,Y) onto
M(G', X', Y is of this type.
Proof The direct half of the proof is a matter of routine verification and
is omitted.

For brevity let us write M(G, X,Y) = M, M(G', X", V") = M’, and
let us suppose that there is an isomorphism ¢ : M — M’. Then ¢ maps
the idempotents of M isomorphically onto the idempotents of M’ and so
induces a semilattice isomorphism % : Y — ), given by

(A, )¢ = (A, 1) (Ae)).

Since G and G’ are, respectively, the maximum group morphic images of
M and M’, there is an isomorphism 8 : G — G’ such that the diagram

M M

ot o

G

i
7 G
commutes. If we write (4, 9)¢ as (4', ¢'), we see that
g =(4,9)0" = (4,9)¢0" = (A, g)0"0 = g6;

hence (A4, g)¢ = (4’, g8) for some A’ in Y'. Now (A,g) R (4,1) in M, and
so {A,9)p R (A, 1)¢ in M'. That is, (4',g6) R (A, 1), and so

(A,9)¢ = (AY, 98)
as required. If A,gA € Y then (g4, g) = (4,971)" . Hence
(94, 9)¢ = (4,97 1)¢) 7",
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and it follows that
(9A)Y = (98)(A¥) (5.9.3)

whenever A and gA are in Y.

The obvious way to extend 7 from Y to X is to use the property (P3)
to express each X in X in the form gA, with g in G and A in Y, and to
define

(gAY = (90)(A").

To see that this is well-defined, suppose that gA = hB. Then A = g~ 'hB
in ), and so

(A, 1)¢ = (g7'hB, 1)¢.
Hence, by (5.9.3),

Ap = (g7 h)0)(BY) = (96) 7  (h8)(BY),

and so (g8)(Ay) = (h8)(B) as required. It is now easy to verify that the
map ¥ : X — X' is a bijection, that it preserves order, and that, for all g
in G and X in X,

(9X)9 = (90)(X ). |

The remainder of this section is devoted to a proof of a universal prop-
erty of E-unitary inverse semigroups. Let S be an arbitrary inverse semi-
group, and let G be a group. We say that an E-unitary inverse semigroup
P is an E-unitary cover of S over G if

(1) Plo ~ G,
(2) there is an idempotent-separating morphism from P onto S.

We shall show shortly that there always exists an inverse semigroup P
with these properties. It is, however, useful to introduce another concept
at this stage. An inverse semigroup S with group of units G is said to be
factorizable if

(MaeS)Fge @) a<y.

(Notice that S = EG for such a semigroup.) Then we have

Proposition 5.9.6 Every inverse semigroup is embeddable in o factoriz-
able inverse semigroup.

Proof By the Vagner—Preston Theorem we may suppose that S is an
inverse subsemigroup of Zx for some X. Suppose first that X is finite
{(which will be the case if S is finite). Then for each « in Tx we can deduce
from |doma| = |ime| that | X \ domea| = |X \ ima, and so a can be
extended (usually not uniquely) to a permutation v of Tx. Thus a < 7,
and so Zyx is factorizable.
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If X is infinite, with cardinality k > g, then we define ¥ = X U X’,
where X N X’ = § and |X’] = k. It is a routine matter to show that the
subset T of Ty defined by

T={acly:(Fveby)a<n}

is a factorizable inverse semigroup. Also T contains Zx (and hence also
contains S), since for every « in Zx we have (within Zy)

Y \domea| =Y \imal =k,
and so « is extendable to a permutation of Y. i

We now have

Theorem 5.9.7 Let S be an inverse semigroup. Let F be a factorizable
inverse semigroup with group of units G and let 8 : S — F be ¢ monomor-
phism. Then the inverse subsemigroup P of S x G defined by

P={(s,9) € SxG:30 <g}

is an E-unitary cover of S over G.

Proof First, it is a routine matter to verify that P is an inverse subsemi-
group of the inverse semigroup S x G. The idempotents of S x G are of
the form (e, 1), where 1 is the identity of G and e is an idempotent in 5.
Indeed every element of this form is actually an idempotent of P, since ef,
being an idempotent in F', always has the property e < 1. We have shown
that Ep = Eg X {1}

To show that P is E-unitary, suppose that (s, g)(e,1) = (f,1) in the
semigroup P. Then g = 1 and so sf < 1. It follows that s is idempotent
in F, and hence (since 6 is one-one) that s is idempotent in S. We have
shown that (s,g) € Es x {1} = Ep, and it follows that P is E-unitary.

The minimum group congruence ¢ on P is now given by the rule that
(s,9) o (t,h) if and only if (st™*,gh™!) € Ep. (See Theorem 5.3.5.) This
happens if and only if g = h, for in such a case we have (st~1)8 < 1 and so
st™! € Eg. It follows that P/o ~ G.

The projection morphism 7 : P — S given by

(s,9)m=5 ((s,9) € P)

maps onto S, by the factorizable property of F. It separates idempotents,
since, for all ¢, f in Eg,

(e, )r=(f,)m = e=f. O

5.10 FREE INVERSE MONOIDS

By a free inverse monoid on a non-empty set X we mean an inverse monoid
FIx together with a map 4 : X — FIx with the property that, for every
inverse monoid S and every map « : X — 5, there is a unique morphism
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@: FIx — S such that 6a = a. A standard argument similar to that in
Section 1.6 shows that such an object is unique if it exists. In one sense
it is easy to see that the free inverse monoid exists for every X, and to
describe it. Let

X' ={z':reX}

be a set in one-one correspondence with X and disjoint from it. Let Y =
X U X' and let Y* be the free monoid on Y. Define formal inverses for
elements of Y* by the rules
171 =1,
—1y—1 _
(IL‘ ) =z (.73 € X),
vz-v) =y T (Y2 Un €Y).
Notice that (w™!)~! = w for all w in Y*.
Let 7 be the congruence on Y* generated by the set
T = {(ww 'w,w) : w € Y*}U {(ww™ 2z, zz7 lww ™) w, 2 € Y*}.

Then we have

Theorem 5.10.1 With the above definitions, Y*/T is the free inverse
monoid on X.

Proof To show that Y*/7 is an inverse monoid we use the original defi-
nition in (5.1.1). Certainly we have two operations on Y™*/r, given by

(wr)(27) = (w2)T, (wr) t=w 1.

The latter operation is in fact well-defined: from the nature of the relation
T generating 7 it is not hard to see that if a sequence of T-transitions
connects w and z then a modified series of T-transitions connects w~! and
271, Then, again from the nature of T, we easily see that, for all w7, 27
in Y*/r, '
(wr)(w ) (wr) = wr, ((wr)™) 7 = wr,
(wr)(wr) " (z1)(z7) ! = (21)(27) " HwT)(wT) L.

Hence Y* /7 is an inverse monoid, in which the inverse of a typical element
(g2 yn)7 s (i 'z DT

We have an obvious map 6 : z — z7 from X into Y*/7. Suppose now
that S is an inverse monoid and that there is a map o : X — 5. Then «
extends to Y = X U X’ in an obvious way if we define (z™1)a = (za)~* for

every x in X. Since Y* is the free monoid on Y we can define a monoid
morphism & : Y* — S by

1Yz - .- Yn)& = (Y10)(y20) . . . (Yno).
Then the inverse monoid property of S implies that

(ww™tw)éd = wa
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for all w in Y*, and

1

(ww™tzz" Y = (227 ww™Hé&

for all w, z in Y*. It follows that the morphism & factors through Y* /7,
in the sense that there exists a morphism @ : Y*/7 — S such that the
diagram

i
Y* T Y*/r
&

o
S

commutes. The morphism @ is given by
(192 y)7)@ = (110)(420) - .- (Ynx).

It is now clear that the diagram

X

Y*/r

Ql

g (5.10.1)

commutes, since (z7)@ = za for every z in X.

Finally, we show that the morphism @ is unique with respect to the
property of making the diagram (5.10.1) commute. If 5 is a morphism from
Y*/r to S such that 88 = «, then (z7)f = za and so, by the morphism

property of 3,
(z7'1)B = (ar) B = (@7)B) " = (wa) ™.

Hence
((n1y2 -+ ¥2)7) B = () (320) . . . (Yn )

for every (y192...yn)7 in Y*/7, and s0 § = @. O

Remark By using Y* rather than Y* throughout the above treatment
we obtain the free inverse semigroup on X.

The description we have obtained for a free inverse monoid is not in
practice very useful. We now give an alternative approach, based primar-
ily on the work of Scheiblich (1973a,b). The idea is to express FIx as
M(G, X, ) for a suitable McAlister triple (G, X,)).

Let X be a non-empty set, and let G = FGx be the free group on
the set X. The elements of G are ‘group-reduced’ words in the alphabet
Y = X U X', where a word is called group-reduced if, for each x in X, it
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contains no occurrences of zz ! or z7'z. (Among the group-reduced words

is the empty word 1.) The product in G of two such words is obtained by
taking their product in the free monoid ¥Y* and then excising (stage by
stage if necessary) any occurrences of the forbidden subwords. Thus, for
example, the product in FGx of xlxgmgl and xgxglxglxg is xlmglmz. We
shall sometimes want to think of words of this type as elements of G and
sometimes as ‘group-reduced words’ within Y™, and it will sometimes be
useful to make a notational distinction between the two. We shall denote
the set of group-reduced words in Y* by R.

We shall also attempt to avoid confusion by denoting the product in
FGx of two group-reduced words v and v by u - v, while denoting their
product in Y* by uv. The unique group-reduced word obtained from a
word w in Y* by the group-reduction process will be denoted by @. Notice
that W = w if and only if w is group-reduced, and that for all w, z in Y*,

WzZ=w-2Z.

To specify the set J we need a new concept. Let w = y192...y, be a
group-reduced word in Y*. Then we define

wl - {17 Y1, Y1y2,-- -y Y1y ... yn} (5102)

to be the set of all left factors of w (including 1 and w itself). A non-empty
set A of group-reduced words is called saturated if, for every w,

weA = w CA.

(Although we require A to be non-empty, the case A = {1} is a legitimate
one.) It is obvious that, for every pair w, z of elements of R,

(w-2)' CwtUuw- (24, (5.10.3)
and only slightly less obvious that
w™t e (wh) = (whH (5.10.4)
for every w in R. Let
Y ={A C R: Ais finite and saturated}. (5.10.5)

Notice that w! € Y for every w in R.
Somewhat perversely—but there is a good reason for it—we define an
order < on Y by the rule that

A< Bifand only if A D B.

Then Y is a lower semilattice. (In effect we are observing that if A,Be¢ Y
then AUB € ).) The action of G on ), by contrast, is exactly as expected:
for g in G and A in Y we define

g-A={g-w:we A}
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‘We define
X={g-A:geG Ac)}.

Then X is a partially ordered set, where, as in ), we define A < B to
mean A D B. It is a routine matter to verify that G acts on X by order
automorphisms.

We now show that (G, &,)) is a McAlister triple. We have already
observed that {P1) holds, and our construction of X ensures that (P3) also
is satisfied. To show that ) is an order ideal of X, let Z = g- A € X,
where ¢ € G and A € Y, and suppose that 7 < B, where B € Y. Thus
B C Z = ¢g-A. Since B is saturated, we have in particular that 1 € B C g-A.
Hence g~! € A and so, since A also is saturated, (g~1)} C A. We deduce
by (5.10.4) that

gt=g-(97") Cyg-A=2Z (5.10.6)

Now let v € Z. Then v = ¢ - u, where u € A. Since u! C A we may
conclude from (5.10.3) and (5.10.6) that

vt Cgtug-(u)Cg-ACZ

Thus Z is saturated and so Z € Y. We have verified (P2).
To verify (P4), consider g in G. Then, by (5.10.4),

g (g ) =gteg-yn.

The E-unitary semigroup M(G,X,Y) is given, in accordance with
(5.9.1}, by

MG, X, V) ={(A,9) €Y xG:g ' Ac Y}, (5.10.7)
and the multiplication is given by
(A,9)(B,h) =(AUg- B,gh). (5.10.8)
The condition g71- A € Y in (5.10.7) can be expressed more simply:
g l-AeYifandonlyif g € A. (5.10.9)
To see this, suppose first that ¢g~1 - A € V. Then every w = g~ ! - u in
g~1- A is such that wt C g~!- A. In particular, since 1 € w!, 1 =¢71-v

for some v in A. Hence g = v € A. Conversely, suppose that g € A. Then
g+ C A and so, by (5.10.3) and (5.10.4), for every w = g~' - u in g7 14,

w C(gTHtugT - (uh) =gt (gPunt) C gt A

Hence g1 - A, being saturated, is an element of ).
We may thus redefine the semigroup M{G, X, V), which for convenience
we shall call My, by

Mx = {{(4,9) €Y xG:ge€ A} (5.10.10)

At this point it is useful to consider the structure of a typical element
Aof Y. Given A in Y we define w in A to be mazximal if it is not a proper
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left factor of any element of A. Since A is finite there is no problem over
the existence of maximal elements. Indeed, if A has maximal elements
Wy, Wy, - . . , Wy, then

A:w%Uw%U...Uw}n.
The condition in (5.10.10) that ¢ € A means that g is a left factor of some
maximal w in A.

We now show that My is the free inverse semigroup on X. Certainly
there is a map 6 : X — Mx given by

= (z*,z) (z € X).

(Notice the ‘doublethink’ involved in the notation here: the first x appear-
ing on the right hand side is to be thought of as a group-reduced word in
Y™, while the second z (= ) is a member of the free group on X.) Suppose
now that S is an inverse semigroup and that thereisa mapa: X — S. We
extend a to Y by defining (z71)a = (za)~!, and then to Y* by defining

(1192 -+ Yn)o = (y10)(420) . . . (Yn¥).

Let A= w% U w% U...Uw}, be an element of Y. Define the idempotent
element e of S by

ea = ((wrwi ) (waws ) ... (wnwy!))a. (5.10.11)

Notice that e4 is independent of the order in which wy,ws, ..., w,, appear,

and depends only on the set A. We can alternatively write e4 as epr, where

M = {wi,we, ..., Wy} is the set of maximal elements in A, for e4 depends
only on the maximal elements. It is clear that, for all A, B in Y,

€AEB = €AUB- (5.10.12)

We can in fact define ez for any finite subset Z of Y*, simply by choosing

the maximal elements wq,ws,...,wy, in Z and using formula (5.10.11).

Notice now that for all 4 in Y and g in G,
(ga)ea = ega(gor). (5.10.13)

To see this, consider first a typical product (ga)(wa)(wa) ™!, where g and

w are group-reduced words in Y*, and suppose that g = hu, w = u™'v,

and ¢ - w = hv. Then
(o) (wa)(wa) ™! = (ha)(ua)(
= (ha)(va)(va) ™ (ua)
= [(he)(var) (ver) ™! (ha) ™) (her) (ua)
= ([(g- w)(g - w)~ ") (go)-

ua) " H(va) (va) ™ (uw)
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Suppose now that A has a set M = {wy,...,wy,} of maximal elements.
Then within the inverse semigroup S we have

(92)ea = (90) ((wra)(wy @) ... ((wma)(wy,'@))

= (g - wi)(g - w1) M) (g)equn,... wm}
(g -w1)(g-w1) @) (g w2)(g - wa)~']) (9Q)€fuwg,....10m}
- =eg.a(ga),

since the maximal elements of g - A are g-wy,..., 9 Wy,
Now let (4,9) € Mx, and define @: Mx — S by

(A4,9)a =ea(ga) ((4,9) € Mx). (5.10.14)
To see that this is a morphism, notice first that, by (5.10.12) and (5.10.14),

(4, 9)a][(B, h)a] = eal(g9)es](ha)
= eaegp(9a)(ha) = eauq-B[(gh)al.

I

Suppose now that g = ac, h = ¢~ 'b and g- h = ab. Since g € A, there is a
factor [(acd)(acd) e in eauq.B. Then

([(acd)(acd) ™ ]a) (gar)(ha) = [(acdd™ e Ta™)(acc™'b)]e
[(acdd™ c a1 (ab)]a
= ([(acd)(acd) a)l(g - Bl

I

It now follows easily that

[(A,9)al[(B, h)a] = eauq-8((g - h)a]
~ (AUg-B,g-hya=[(4,9)(B, h)a.

Certainly we have
20a = (z*, z)a = [(zz7 o) (za) = za (5.10.15)

for all z in X. It will follow that Mx is the free inverse monoid on X if
we show that @ is the only morphism from Mx into S satisfying (5.10.15).
This in turn will follow if we show that the elements z8 = (z', z) generate
My, for it will then follow that if some morphism §: Mx — S coincides
with @ on the elements 26 then it coincides with @ over the whole of Mx.

So let us denote by T'x the inverse submonoid of Mx generated by the
elements 28 = (z!,z) (x € X). Using Proposition 5.9.4(1) and equation
(5.10.4), we see that

(zt, )7t = ((z™Hl 27 e Ty
for each z, and so the products
(=4 2) (@~ 27 = (24, 1), (5.10.16)
(@ HYz Y (2t o) = (=714 1) (5.10.17)
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both belong to T'x.

We next show that (w!,1) € Tx for every group-reduced word w in
Y*, This we do by induction on the length |w| of w, it being clear from
(5.10.16) and (5.10.17) that the result holds if |w| = 1. f w = y1y2...yn
is of length n, then w = y12, where z = y5...y,, and the inductive step
depends on the observation that

(yia yl)(zl7 1)((y;1)l’ y_l) = ((ylz)l7 1)'

Next, we show that (w!,u) € Tx for every group-reduced word w in
Y* and every left factor v of w. Let w =y192...yn and let u = y192. .. 45,
where 0 < j < n. We prove the result by induction on j, it being clear
from the last paragraph that it holds if j = 0. The inductive step is clear
once we observe that

(wl,y1y2 . --yj) = (wl,y1y2 . --yj—l)(y§,yj)~

Finally, if we take an arbitrary A = w} Uw} U...Uw}, and (without
loss of generality) an arbitrary left factor u of wy,, then

(A, ) = (wi, )(wh, 1) ... (wh_y, 1) (wh,,u),

m—1

and so (4,u) € Tx.

‘We have now proved our main result:
Theorem 5.10.2 Let X be a non-empty set. Let X' = {z7 ' :z € X} be
a set disjoint from X and in one-one correspondence with X. Let G be the
free group on X. Let') be the set of finite saturated sets of group-reduced
words in (X UX')*, and let X = GY. Then (G,X,)) is a McAlister triple,
and M(G,X,Y) is the free inverse monoid on X. O

The uniqueness of the free inverse monoid on X implies that there is

an isomorphism between Mx and Y* /7. If we substitute Y*/7 for S in
(5.10.13) we see that the isomorphism ¢ : M(G,X,Y) — Y*/7 is given by

(wiu...uwh,u)é = [(wrw). .. (whw;Hulr.

In effect this gives us a canonical form for words in Y* modulo 7. To be
more specific, the existence of the isomorphism ¢ shows that every element
w of Y™ is equivalent to a word

(wiwTY) ... (wmw,Hu, (5.10.18)
where

(1) each w; is a group-reduced word in Y'T;
(2) no w; is a proper left factor of any w;
(3) uis a left factor of some w;, and u = .

The word (5.10.18) is in effect unique: only the order of the factors w;w;*
is open to variation.



208 Inverse semigroups

The isomorphism ¢ gives us little or no clue as to how to find the
canonical word (5.10.18) associated with a given element of Y*, and our
final task in this section will be to repair this defect. For a given word
W = Y1Y2... Y in Y* consider the set {1,y1,y1y2,...,Y1¥2...yn} of left
factors. Now compute the group-reduced word associated with each of
these left factors, and obtain the set A(w) of group-reduced left factors of
w. The set A(w) is saturated. We define M(w) as the set of mazimal
group-reduced left factors of w.

Example 5.10.3 Let X = {a,b,c} and let
w = ab”tbcaa b la " abe e
Then
A(w) = {a,ab™*, ac,aca, ach™, ach~ a1},
and M(w) = {ab™1 aca,ach~1a"'}.
It is easy to see that, for all wi, wg in Y™,
Alwywe) = Alwy) Uy - Alws). (5.10.19)

There is no comparably simple formula for M {(wyws).
For any set D = {d1,ds,...,dy} of group-reduced elements of Y*, let

ep = (didy*)(dady?) ... (didyt).

The element ep is not well-defined in Y™, since it depends on the order
of the elements dy,ds,...,dg, but it is well-defined modulo 7, and this is
what will matter. For an arbitrary word w in Y*, we have

Lemma 5.10.4 . With the above definitions,

eA(w) T 6M(w).
Proof This is clear once we observe that for two words v and v = uz,

(wu Y (wo™) = (wu " Y(uzz ') Tuzz T = wwT

1

That is, if u is a left factor of v, then uu™* is superfluous. 0

Theorem 5.10.5 Let w € Y* and let M(w) = {w1,w2,..., wn} Let @
be the group-reduced word associated with w. Then

WT epp(u)W-

Proof We shall show that w 7 e4(y)W. By Lemma 5.10.4 this is equiva-
lent. If w = 1, the empty word, then A(w) = {1}, W = 1, and the result
is clear. If w = z € X, then A(w) = {1,z}, T = =, and it is clear that
z 7 (1171 (zz~)z. The case where w = z~! is equally clear. So suppose
now that |w| > 1,and let u be the longest group-reduced left factor of w.
If v = w then the process is complete: w is already a canonical word. Oth-
erwise w = uv, with |u[,|v] > 1. From the choice of v it now follows that
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we have factorizations ¥ = uyz, v = 2z~ 'wy, where [z > 1, and we may
suppose that we have chosen z to be as long as possible. Then {(modulo 7)
w = (w22 Huzz" oy
= (u1zz~ w7 )uiv; by commuting idempotents
= (uu" Hugvy = (uu™Hw; (say).

Now from w = wujzz~'vy it is clear that w7 = w. By Lemma 5.10.4,
uu”t T eaqy). Now, by (5.10.19),

A(’U)l) = A(ul) Uy - A(’Ul),

while

A(w) = A(urzz" ") UTT - A(vy) = A(u) UTT - A(vs).
Since A(u1) € A(u) we deduce that
A(w) = A(u) U A(wy).

Now |w1] = |w| — 2|2] < |w|, and so we may suppose inductively that
W1 T €A(w,)W1. Hence (modulo 7)

w= (uu“l)wl = eAw)CA(w) UL = EA(w)UA(w) W = €A(w)W- O
Example 5.10.6 Look again at the word
w = ab tbcaa 0" Ta tabe e

considered in Example 5.10.3. Here u = ab~!, 2 = b~ !, uy = a, and so the
first stage in the reduction is

w — (ab~tba"Hwy,
where w; = acaa” b~ la"labc'c. Repeating this process on w; we obtain
w; — (acaa—lc_la‘l)wg,
where wy = acb~'a"labc~lc. Repeating the process on wsy, we obtain
wy — (acb~ta"tabe ta™Vac,
and the conclusion is that
w T (@b ba™ ) (acaa" e e ) (ach T a T abe T e ac.

Of course it is not necessary to go through this procedure: by virtue of
Theorem 5.10.5 we can simply observe that the three maximal reduced left
factors of w are ab~?, aca and acb~ e, and that W = ac.

There is a convenient graphical way of identifying the sets A(w) and
M (w) associated with a word w in Y*. We draw a labelled ‘word tree’ with
a labelled initial vertex o and a labelled final vertex 8 (possibly the same
as a). We shall do this inductively, first associating with the empty word
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1 the trivial word tree with one vertex and no edges. (Here § = «.) Less
trivially, the words x and z~! are associated with the word trees
x x
O—"—0 O—"e—0
a gl o« B
Suppose now that w = y1¥s ... Ym, and that we have constructed a word
tree for y1y2 ... Ym—1 With vertices a and g, respectively. To construct the
word tree for w we begin by ‘tacking on’ a new edge
x x
O———0 or ,o0———«—o0
54 g B 4
according as Yy, = € X oF Yy, = 27! € X'. If Y1 # ¥,,,! then our
task is complete. If y,,_1 = y,.! then we ‘fold over’ the new edge so as to
coincide with the edge corresponding to yy,-1:

ﬂ/
/ x
xr — X
B g'° —°p
or
ﬂ/
/ x
L — o—F o
B Jei g

In all cases the new final vertex is §'.

Example 5.10.7 Let us look yet again at the word
w = ab tbeaa b la"tabe e

we studied in Examples 5.10.3 and 5.10.6. The associated word tree is

By an o-walk in a word tree we mean a path (which need not respect the
arrows) beginning at o and visiting no vertex more than once. Each step

z
oO—"—0
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in an o-walk is labelled with z if it goes with the arrow and with =1 if it
goes against the arrow. The label of an c-walk is the product of the labels
of the edges traversed. It is not hard to see that the reduced left factors of
w are the labels of the a-walks in the word tree, that the maximal reduced
left factors of w are the labels of those a-walks that end in an extremal
vertex, and that the free group element associated with w is the label of
the a-walk terminating in £.

5.11 EXERCISES

1. Show that the D-classes in an inverse semigroup are ‘square’. More
precisely, show that there is a bijection from the set of L-classes in a
D-class D onto the set of R-classes in D, defined by the rule that L,
maps to Rg-1.

2. In the symmetric inverse semigroup, show that
(a) a L Bif and only if ima = im 3;
(b) @R 3 if and only if doma == dom 3;
(¢) aD B if and only if |doma| = |dom 8;
(d) D=J.

3. If |{X| = n, show that

1Zx| = i (Z) L

=0

4. Show that every ideal of an inverse semigroup S is an inverse sub-
semigroup of S, and deduce that the principal factors of an inverse
semigroup are all Brandt semigroups, except for the kernel, which is a
group.

Let I, be the symmetric inverse semigroup Zi12,..my,and, for 1 <r <
n let

K, ={acl,:|doma|<r}, L.={a€l,:|domal<r}.

Show that the principal factor K,./L, is isomorphic to the Brandt
semigroup B(S;, (7)).

5. If A is a subset of an inverse semigroup, the notation (A) is potentially
ambiguous, since it might mean the subsemigroup generated by A or
the inverse subsemigroup generated by A. Show, by considering A =
{(1,e,2)} in the Brandt semigroup Bg, that this is a real ambiguity.

6. It is known (Exercise 1(6)) that (for all n > 3) the symmetric group S,
consisting of all permutations of the set X = {1,2,...,n}, is generated
by the cycles

T=(12), ¢=(12...n).
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Forr=0,1,...,n, denote by J,. the set
{ael,:|doma| =r},
and let 8 be an arbitrarily chosen, but fixed member of J,_;.

(a) Let £ € J,.1 and let n be a permutation mapping dom£ onto
dom 3. Show that there exists a permutation ¢ such that & =
nB¢, and deduce that J,—1 C (1,¢, 8).

(b) Show that, for r =0,1,...,n — 2,

J'r g Jr+1Jn—1~
(c) Deduce that I, = {7,{, ).

7. In the finite symmetric group S, the decomposition of permutations
into products (compositions) of disjoint cycles is well known. Let o
be a member of the finite symmetric inverse semigroup I, and define
a relation E on X = {1,2,...,n} by the rule that

z Evy if and only if (3m,n € Z) za™ = ya™.

(Interpret za® as x, and notice that za® is defined even if z ¢ dom U
ima.)
(a) Show that E is an equivalence on X, and that the equivalence
class zE is the set xaz, defined by

zad = {za™ :n € Z}.

(b) Show that either zal C dom v, or there exists a unique z; in
zaZ \ im e and a unique z3 in zal \ dom . Show that z; =z
if and only if z ¢ doma Uima.

(c) Deduce that every « in I, can be expressed as a product (com-
position) of disjoint partial one-one maps of two types:

i cycles ¢ = (x1x2...Tm) (m > 1), where 2;( = zi41 (1 =
1,2,...,m—1) and ¢ = z1;

ii. chains x = (y1y2...Yp] (p = 2), where y; ¢ imx, yp ¢
domy, and y;x =941 ((=1,2,...,p—1).

8. Let G be a group, and let S be the set of all right cosets Ha in G.
Here H runs over all subgroups of G (including G itself and {e}) and
a over all elements of GG. Define a binary operation * on S by the rule
that
Ha * Kb=(HVaKa 1)ab.

Here H V aKa~! denotes the smallest subgroup of G containing both
H and aKa™!.
(a) Show that Ha * Kb is the smallest coset containing the product
HaKb.
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9.

10.

11.

12.

13.

(b) Show that the operation * is associative.

(c) Show that Ha has an inverse (¢ !Ha)a™! in the semigroup S.

(d) Show that the idempotents of S are the subgroups of G, and
deduce that S is an inverse semigroup.

(e) Show that the subgroup H is a central idempotent in S if and
only if it is a normal subgroup of G.

For every subset K of an inverse semigroup S, and for every s in S,
show that (Ks)w = ((Kw)s)w.

Let S be an inverse semigroup with semilattice of idempotents F, and
let ¢ be the minimum group congruence on S. Show that the following
statements are equivalent:

(a) z o y; (b) (Fe € E) ze = ye;
(¢) (Fa € S) az = ay; (d) (3a € S) za = ya,
() Be,fe B)ex=fy; (f) (e, f € E) ze =y f;
(2) 21y € Bu; () (Bz)w — (Ey)w;

() y € (Bz)w; () z € (By)w.

Let U be a subsemigroup of an inverse semigroup S.

(a) Show that if U is full and unitary then U is an inverse subsemi-
group of S.

(b) Show that if U is a left unitary inverse subsemigroup of S then
U is unitary.

(c¢) Show that an inverse subsemigroup of S is unitary if and only if
it is closed.

Let U be a closed inverse subsemigroup of 7', where T is a closed
inverse subsemigroup of the inverse semigroup S. Show that U is a
closed inverse subsemigroup of S.

Show that the assumption that 7 is closed is necessary. Specifically,
let S be the Clifford semigroup which is the disjoint union of two groups
U and V with identities e, f, respectively, where e < f, and with
connecting morphism ¢ : V — U. Show that, if H is a subgroup of U,
then H is a closed inverse subsemigroup of U, but that the closure of
Hin Sis HUH¢™ .

Let S be an inverse semigroup and let ¢ be the minimum group con-
gruence on 5. Show that, for every congruence € on S,
EVo=gofoo.

[Hint. The essential point is to show that the relation o o £ o & is
transitive. If

€a = €p, pgqa fq:fb7
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and
gb=gr, rés, hs=hc
where e, f, g, h are idempotents, show that
ia=1t, t&u, ju=jc
where i = efg, t = fgp and j = hfg.]

14. Let S be an inverse semigroup with semilattice of idempotents F, and
let 1 be the maximum idempotent-separating congruence on S.
(a) Show that

w=min{p € C(S) : §/p is fundamental}.
(b) Show that S/u ~ E' if and only if S is a Clifford semigroup.
15. Let S be an inverse semigroup with semilattice of idempotents £. A

congruence p on S is called idempotent-pure if Ker p = E. Show that
p is idempotent-pure if and only if pN L =1g.

In Proposition 5.3.4 we determined the smallest and the largest congruences
on an inverse semigroup S having a given trace 7. We can also describe the
smallest and the largest congruences on S having a given kernel K. The
next three exercises explore this idea.

16. A full inverse subsemigroup K of an inverse semigroup S is said to
have the kernel property if

(Va,be K)abe K = aKbC K.
Show that Ker p has the kernel property for every congruence p on S.

17. Let K be a full inverse subsemigroup of S having the kernel property,
and let ox be the syntactic congruence of K.
(a) Show that Kerogx C K.
(b) Show that if ¢ € K then, for all z, y in S,

zay € K if and only if zaa™'y € K,

and deduce that a € Kerog.

(c) Let 7 be a congruence on K such that Kery = K. Show that
vC oK.

(d) Deduce that

ox = max{p € C(S) : Kerp = K}.

18. Let K be a full inverse subsemigroup of S having the kernel property,
and let 7 = (o N L)*.
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19.

20.

21.

22,

23.

(a) Let v be a congruence on S such that Kero = K. Show that
o N L C~, and deduce that 7% C .

(b) Show that K C Ker7x.

(c) Deduce that

T = min{p € C(S) : Kerp = K}.

Let § be an inverse semigroup.

(a) Show that, if p is a congruence on S, then p is a semilattice
congruence (that is to say, S/p is a semilattice) if and only if
(a?,a) € p for every a in S. Deduce that the intersection of a
non-empty family {p; : ¢ € I} of semilattice congruences is a
semilattice congruence, and hence that there exists a minimum
semilattice congruence 7 on S.

(b) Show that J C 7 and that n C H#. Deduce that

H#:E#Z'R#ZD#ZJ#:n.

Show that the Clifford semigroup SL[Y; Gy; ¢4 ] is E-unitary if and
only if the morphisms ¢, g are all one-one.

Let T be an inverse semigroup with identity, and let 8 be a mor-
phism from T into the group of units H; of 7. Show that the Bruck—
Reilly extension BR(T,#) is E-unitary if and only if T is E-unitary
and ker § = ¢ (the minimum group congruence on T'). Deduce that the
bisimple inverse w-semigroup is F-unitary if and only if 6 is one-one.

Let S be an inverse semigroup, and let o, n be (respectively) the
minimum group congruence and the minimum semilattice congruence
on §. Show that o Ny = 1g if and only if S is an E-unitary Clifford
semigroup. Deduce that, on an arbitrary inverse semigroup S, c N7y
is the minimum congruence p such that S/p is an E-unitary Clifford
semigroup.

Let a and 8 be H-equivalent elements of the symmetric inverse semi-
group Zx. Suppose, in other words, that

doma=domfB = A4, ima=impf = B.
Show that, for every idempotent 1¢ in Ty,
o oo =Lancyar B e = Llano)s

Deduce that Tx is fundamental. Hence deduce that every inverse
semigroup is embeddable in a fundamental inverse semigroup.

Let X be a set and let £ = P(X) be the semilattice (under intersection)
of all subsets of X. Show that the Munn semigroup T is isomorphic
to Zx. (Notice that from this we can deduce the result of the previous
exercise, that Zx is fundamental.)
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24. Let E be the semilattice C,, x C,. Then E may be identified with
{€mn : m,n € N°}, where

€m,n€p,g = €max(m,p),max(n,q)-
(a) Show that the group of automorphisms of E is {1z,v}, where
emnY = enm (m,n € N°).

(b) Show that F is uniform and that, if e = e, , and f = e, 4, then
Te,; = {o, B}, where

€r,s0 = Er_mips—ntq (T 2 M, §>n),
er,sﬁ = €s—n+p,r—m+q (7' > m, 82> n)
{(c) Deduce that 4 # H in Tg.

25. By considering BR(S?,6), where § maps every element of S! to 1,
show that every semigroup S can be embedded up to isomorphism in
a simple monoid.

26. From Section 2.3 we know that a D-class in a semigroup cannot contain
both regular and irregular elements. Show that this does not apply
to J-classes. Specifically, consider the monoid T = {1,z,0}, where
22 =0, let § : T — H; be given by 16 = z6 = 00 = 1, and let
S = BR(T,9).

(a) Show that the D-classes of S are

D' = NOx {1} xN° D® = NOx {2} x N D® = N®x {0} x N°.

(b) Show that D! and D° are regular, but that D® is irregular.
(c¢) Deduce that the single J-class of the semigroup S contains both
regular and irregular elements.

27. Let 81 = BR(G1,61) and S3 = BR(G3,62) be bisimple w-semigroups,
and let @ : G1 — G2 be an isomorphism such that 81 = abs),,

where, for some z in Gy, A, is the inner automorphism go — zgoz~1.

Show that the map ¢ : S — 53, defined by
(m,g1,m)¢ = (1,271,0)™(0,90,0)(0,2,1)"  ((m,g1,n) € 81),

is an isomorphism. Show conversely that every isomorphism from S;
onto Sy is of this type.

28. Let A be the semilattice {a, b, z}, in which z is the minimum element
and ab = z. Let E = C,, x A, with the lexicographic ordering

{em,z) < (en,y) if and only if either m > n, or m =n and z < y.

Show that E (known as the ‘lazy tongs’ semilattice) is subuniform but
not uniform.
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29.

30.

31.

32.

33.

34.

More generally, if A is an arbitrary semilattice and U is a uniform
semilattice, let E be the ordinal product U o A (in the sense of Birkhoff
(1948)). That is, let £ = U x A, with the lexicographic ordering

(u,a) < (v,b) if and only if either v < v, or u =v and a <b.

Show that E is subuniform. (As the previous exercise shows, it need
not be uniform.)

Let T" be the Clifford semigroup consisting of the chain of groups Gy,
Gy, ..., Gq_1, with identity elements eg > €1 > -+ > e4..1 and with
structure morphisms v, : G; —» Gi1 (1 =0,1,...,d — 2). Let 8 be
an endomorphism of T with S8 C Gy (as in a Bruck—Reilly extension),
and let

ngd‘l =6: Gd_1 — G().

Show that
Olgi :'yi...yd_gé (i:O,l,...,d—z).

Conversely, let § : G4_1 — Gy be a morphism. Show that 8: S — G,
defined by

g

Gi=’yi...yd_15 (z:O,l,,d—2), 9Gd_1=6,

is an endomorphism of $ such that S# C Gy. (This enables one to
recover Munn’s original (1968) version of Theorem 5.7.6.)
Show that:
(a)y M(G, X,Y) is simple if and only if for each A, B in ) there exists
g in G such that gA > B;
(b) M(G,X,Y) is bisimple if and only if for each A, B in Y there ex-
ists g in G such that gA = B. (This property is usually described
by saying that G acts transitively on ).)

Let 4 be the maximum idempotent-separating congruence on
M(G, X,Y), and for each A in Y let

Ca={g9€G:¢gB =B forall B<A}.
Show that (A, g) p (B, h) if and only if A = B and gh™! € Cy4.

Let S = M(G,X,Y) be an E-unitary inverse semigroup. Since such
semigroups have been called ‘proper’, let us say that S is prim if it
has the additional property that £ oo = § x 5. Show that S is prim
if and only if Y = X.

Let S be the inverse subsemigroup of Z(; 5 3 45} generated by

1 2 3 4
o= .
2 3 15
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35.

36.

37.

38.

39.

40.

Inverse semigroups

(a) Show that |S| =7, |E| = 3.

(b) Show that S is E-unitary.

(c) Show that the o-classes of S are E, {a,a %}, {a71,a?}, and
that the L-classes are {a, o ta}, {a™ !, aa™1}, {a?,a72, 0?72}
Deduce that S is not prim.

(d) Show that,in S, LocoL=c0Looc=8x65.

Show that S = M(G, X,)) is a Clifford semigroup if and only if the
action of G on Y is trivial, in the sense that g4 = A for every ¢ in G
and A in V. (Note that X' = Y in this case.)

An inverse semigroup S is said to be an F-inverse semigroup if and
only if every o-class contains a greatest element. Let S be an F-inverse
semigroup. Show that S contains an identity element and that it is
E-unitary.

Show that S = M(G, X, )) is an F-inverse semigroup if and only if Y
is a principal ideal of X with greatest element F, and gE A E exists
for every g in G.

Show that S = M(G, X,)) is an F-inverse semigroup if and only if Y
is a principal ideal of X and & is a semilattice.

Let S be the set of all (finite) saturated sets of group-reduced words
in (X U X’)*. Show that the semilattice E of idempotents of FIx is
isomorphic to (S,U).

Let P(X) be the set of all subsets of X, and let FGx be the free
group on X, consisting of all group-reduced words in the alphabet
Y = X UX’. For each win Y* and z in X, say that z € C(w) (the
content of w) if w € Y*xY*UY*z~1Y*, that is, if the word w contains
z or 271, Then C(w) C X. For a subset A of Y*, define

c4) = | Cw).

wEA
Show that, for all w, w' in Y™,

Cluww') = C(w) U C(w').

(a) Let
Cx = {(Z,9) € P(X) x FGx : clg) C 2},

and define a multiplication on Cx by
(Z,9)(T,h) =(Z VT, gh).
Show that Cy is a Clifford semigroup.
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(b) Show that Cx is the free Clifford semigroup on the set X. Show
in fact that if 8 : X — Cx is given by

20 = ({z},z) (z€X),

then for every Clifford semigroup S and every map o : X — S

there is a unique morphism & : Cx — S such that f8a = a.

[Hint. In a Clifford semigroup, two products of elements and

their inverses are H-equivalent if they have the same content.]
(c) Show that Cx = Mx /x, where, for (4,g), (B,h) in Mx,

(4,9) & (B, h) if and only if g = h and ¢(A) = ¢(B).

41. Let A be a saturated set of group-reduced words in (X U X")* and let
g € A. Show that g7'A = A if and only if g = 1. Show also that:
(@) H=1;
by D=J.

42. In the case where X = {z} has cardinality 1, every saturated set has
the form (z”)! U (z=*)!. Show that FI{;} is isomorphic to

T={(r,s,k)eZ3:r>0,5>0, —s<k<r},
with multiplication given by
(ry8,k)(r', s’ k') = (max(r, + k), max(s, s’ — k), k + k).

Determine the inverse of (r, s,k) in T. Show that:
(a) (r,s, k)R (v, ¢, k') if and only if r =’ and s = §;
(b) (r,s,k) L (', s, KYifand only if r—k = r'— k' and s+k = s’ +&/;
(¢) (rs,k)D(r',¢,KYifand only if r + s =7"+ &/;
(d) (r,s,k) o (r',s',k") if and only if k = £’

5.12 NOTES

The origin of inverse semigroup theory is in papers by Vagner (1952) and
Preston (1954a,b,c), and Sections 5.1 and 5.2 are drawn from their fun-
damental work. Both Vagner and Preston considered the natural order
relation <, but the first substantial use of the closure operation w is in
Schein (1962).

The notion of what is now called a Brandt groupoid goes back to Brandt
(1927); a Brandt semigroup arises by adjoining a zero. Clifford and Preston
(1961) give a full account of the relationship between the two ideas.

The idea of the kernel and the trace goes back to Scheiblich (1974)
and was developed by D. G. Green (1975) and Petrich (1978). For an
application of the same idea to completely simple semigroups, see Petrich
and Reilly (1981b).

The congruence o was studied first by Munn (1961), who gave the
characterization (5.3.3). The alternative description of ¢ in Theorem 5.3.5
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is from Howie (1964c), a paper that also saw the first appearance of the
congruence p and of its characterizations in (5.3.4) and Theorem 5.3.6.
The observation that 4 = H’ is due to Lallement (1966).

The results of Section 5.4 are from (Munn 1970a). Section 5.5 is due
to Howie and Schein (1969), except for the final example, which was con-
tributed by Munn (private communication).

The Bruck—Reilly extension (Section 5.6) was devised in its general form
by Munn (1970b), having been invented in special cases by Bruck (1958)
and Reilly (1966). The Bruck case is described in Exercise 25; the Reilly
case is given in Theorem 5.6.7. See also Warne (1966). The results of
Section 5.7 are due to Munn (1968, 1970b) and Kochin (1968).

Reilly’s (1966) structure theorem for bisimple w-semigroups has been
the model for many subsequent generalizations. See, for example, Warne
(1968) and the PhD theses of Hickey (1970) and P. McLean (1973). As
long as the uniform semilattice F has the crucial property that |1, ;| =1
for all e, f in E then the difficulties of classifying the bisimple semigroups
appear to be manageable.

The isomorphism theorem associated with Reilly’s result is given as Ex-
ercise 27. Munn and Reilly (1966) and Munn (1966a) studied congruences
on a bisimple w-semigroup; and Baird (1972) extended this study to simple
w-semigroups.

The results of Section 5.8 are from Schein (1962).

The structure theorem for E-unitary inverse semigroups is due to McAl-
ister (1974a,b), but the proof we have given is essentially that of Schein
(1975b). Alternative proofs have been given by Munn (1976) and Wilkin-
son (1983). Another approach to the description of E-unitary semigroups
can be found in Petrich and Reilly (1979). The notion of a factorizable
inverse semigroup comes from Chen and Hsieh (1974), and the proof of
Theorem 5.9.7 comes from McAlister and Reilly (1977). A more thorough
study of E-unitary covers has been made by Petrich and Reilly (1983a).

The McAlister theorem (Theorem 5.9.2) has been generalized to R-
unipotent semigroups {regular semigroups in which efe = ef for all idem-
potents e and f) by Takizawa (1978).

The serious study of free inverse semigroups seems to have begun in the
early seventies, with papers by Reilly (1972, 1973) and Scheiblich (1973a,b).
We have presented Scheiblich’s approach as an application of McAlister’s
theorem. Historically, however, it happened the other way round: Scheib-
lich’s treatment of free inverse semigroups provided important motivation
for McAlister’s more general work. The canonical form (5.10.18) was de-
rived by Preston (1973) and Schein (1975a). For a survey of free inverse
semigroups, see Reilly (1979). The graphical approach briefly alluded to at
the end of Section 5.10 was pioneered by Munn (1974b), and put to use by
O’Carroll (1974). It has been greatly developed by later authors, such as
Margolis et al. (1990) and Stephen (1990). Jones (1981, 1982, 1984) and
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Jones et al. {1991) have used graphical techniques to study free products
within the category of inverse semigroups. Further information, and many
extra references, can be found in an excellent survey article by Meakin
(1993).

F-inverse semigroups were studied by McFadden and O’Carroll (1971)
and McAlister and McFadden (1974).

Free monogenic inverse semigroups (see Exercise 42) were studied first
by Gluskin (1957). Later authors gave alternative versions. For an exhaus-
tive study, see Petrich (1984).

Free objects for other varieties of U-semigroups have also been stud-
ied. Free objects in certain varieties of inverse semigroups were studied
by Trotter (1986a) and Reilly and Trotter (1986). Free completely regular
semigroups on two generators were described by Clifford (1979), and the
general case was treated by Gerhard (1983a,b) and Trotter (1988). Free
completely simple semigroups have been studied by Rasin (1979). For a de-
scription of free bands, free semilattices and free normal bands, see Chapter
4 (Section 4.5, Exercises 4(20) and 4(21)). For a survey of free objects in
varieties of inverse semigroups, see Reilly (1987).

The idea of chains and cycles in Exercise 7 was used by Gomes and
Howie (1987a,b). See also Lipscomb (1986, 1992a,b). Of the other exercises
not already mentioned, Exercise 13 is from Howie (1964c). Exercise 15 is
from D. G. Green {1973), and references for Exercises 16, 17 and 18 are
D. G. Green (1975) and Petrich and Reilly (1982). Exercise 19 is in Howie
and Lallement (1966), and Exercises 28 and 29 are from (Munn 1970b). A
description of free Clifford semigroups (see Exercise 40) was given by Liber
(1954). Exercise 41, concerning the Green relations in FIx, comes from
Reilly (1972).
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Other classes of regular semigroups

The success of inverse semigroup theory has naturally prompted the study
of more general regular semigroups, very often quite explicitly defined as
generalizations. In the Exercises and in the Notes at the end of the chapter
we make brief reference to one or two pieces of work of this kind, but in
the text we shall confine ourselves to three fairly natural types of regular
semigroup.

We may regard an inverse semigroup as a regular semigroup in which
the idempotents form a semilattice. What have been called R-unipotent
semigroups—see Exercise 6 for an explanation of the terminology—may be
defined as regular semigroups in which the idempotents form a right normal
band. More generally, several authors have studied regular semigroups in
which the idempotents form a normal band; these are usually, though in
the event somewhat confusingly, called generalized inverse semigroups.

A generalized inverse semigroup S has the property of being locally in-
verse, which is to say that eSe is an inverse semigroup for every idempotent
e, for if f = efe and g = ege are idempotents in eSe, then

fg=-efege=cegefe =gf.

However, not every locally inverse semigroup is a generalized inverse semi-
group: every completely simple semigroup is certainly locally inverse, but
its idempotents do not necessarily form a subsemigroup. The class of gen-
eralized inverse semigroups is in fact the intersection of the class of locally
inverse semigroups and the class of orthodoz semigroups, where a semigroup
is called orthodoz if it is regular and its idempotents form a subsemigroup.

In Sections 6.1 and 6.2 we study locally inverse semigroups and orthodox
semigroups, respectively. Both these types of semigroup do appear quite
naturally in the development of the theory. Orthodox semigroups make an
appearance in the study of congruences by Howie and Lallement (1966),
and have featured strongly in subsequent work on varieties of completely
regular semigroups. Locally inverse semigroups play a part in the work of
Nambooripad (1980) and McAlister (1983, 1985).
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The final section is devoted to a class of semigroups that are not in
any way a generalization of inverse semigroups. If S is a regular semigroup
with set E of idempotents, then S is orthodox if and only if (E) = E. The
opposite case, when S is regular and when (E) = S, is in some ways even
more natural; we call § a semiband in this case.

6.1 LOCALLY INVERSE SEMIGROUPS

In every regular semigroup S the subset eSe is clearly a subsemigroup for
every idempotent e. It is even a regular subsemigroup, since for every
z = ese in eSe and every inverse z’ of z,

z = zx't = (ze)x’ (ex) = z(ex'e)z.

A regular semigroup S with set E of idempotents will be called locally
inverse if eSe is an inverse semigroup for every e in F.

Before discussing these semigroups, we pause to examine an idea that
does not at first seem to be related. The order relation < that is such an
important tool in inverse semigroups can in fact be generalized to arbitrary
regular semigroups. If a, b are elements of a regular semigroup S with set
E of idempotents, then we define a < b if

R, <Rpand (3e€ ENR,) a=ceb. (6.1.1)
Then we have

Proposition 6.1.1 Let S be a regular semigroup with set E of idempo-
tents. Then the relation < defined by (6.1.1) is a partial order relation.
Within E the order coincides with the natural order among idempotents:

e < fifand only ifef = fe=e.

Proof It is clear that a < a for every a in S—simply choose e = aa’.
Suppose now that a < b and b < a. Then certainly a R b. Also, there exist
idempotents e, f in R, = R} such that a = eb and b = fa. Since e R f we
have fe = e, and it then easily follows that

a=¢eb= feb= fa=5b.

To show that < is transitive, suppose that a < b and b < ¢. Certainly
R, < Ry < R, and there exist e in EN R, and f in E N Ry such that
a=¢eband b= fc. Now R, = R, < Ry = Ry, and so fe =e. Hence

(ef)? = e(fe)f = &f = ef.
We now have a = (ef)c, and from

Ry =Repc <Ry <R, =R,
we have that ef € ENR,.



224 Other classes of reqular semigroups

To prove the final assertion, observe that, for all e, f in E, e < f if and
only if R, < Ry and there exists ¢ in E N R, such that e = if, that is, if
and only if fe = e and ef = e. O

The one-sided nature of the definition (6.1.1) is only apparent. The fol-
lowing result makes this clear, since conditions (3), (4) and (5) are left /right
symmetric.

Theorem 6.1.2 Let a, b be elements of a regular semigroup S with set E
of idempotents. Then the following statements are equivalent:

(1) a <b;

(2) a €bS and (3’ € V(a)) a = aa'b;

(3) (Be,f € E)ya=-¢eb=0bf;

(4) Ho < Hy and (V0 € V(b)) a = aba;

(5) Hy < Hy and (30’ € V(b)) a = ab'a.

Proof (1) = (2) is clear, since e € EN R, if and only if there exists a’ in
V(a) such that aad’ = e.

(2) = (3). We are supposing that a = bu for some v in S, and that
a = (aa’)b. Clearly we take e as aa’. Now notice that

(ua'b)? = ua’bua’b = ua'aa’b = ua’b.
So define f as ua’b, and observe that
bf = bua’b = aa’b = a.
(3) = (4). Suppose that a = eb = bf, with e, f € E. Then R, < R}
and L, < Ly, and so Hy < Hp. Also, for every b in V{b),
aba = ebb'bf = ebf = a.

(4) = (5) is clear.
(5) = (1). Suppose that H, < Hp, and that there exists an inverse b’ of
b for which a = ab’a. Certainly R, < Rp. For every inverse a’ of a we see
that
a(a’ab’)a = ab'a = a and (a’ab’)a(a’ab’) = a'(ab'a)a’ab’ = a'ab’;
hence a’al/ € V(a). Let e = ad’ab’; then e € EN R,. From L, < L we
deduce that a = ub for some » in S. Then

eb = aa’ab’b = ab’b = ubb’b = ub = qa. 0

Remarks It is a consequence of this theorem that the order < can be
defined also by the left/right duals of the one-sided definitions. Thus, for

example,
a <bifandonly if L, < Ly and (e € ENL,) a = be. (6.1.2)

It is clear that the order < reduces to the usual order defined in Section
5.2 in the case where S is an inverse semigroup.
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In an inverse semigroup S the order relation < is compatible with the
multiplication:

a<bandce€ S = ca<cbandac<be.
This is not the case for regular semigroups in general. Indeed we have the
following result:

Theorem 6.1.3 Let S be a reqular semigroup with set E of idempotents.
Then the following statements are equivalent:
(1) S is locally inverse;
(2) < is compatible;
(3) |S{e,f)| =1 foralle, fin E.
Proof (1)= (2). Leta <bandletc e S. Thus R, < Ry, and there exists
ein EN R, such that a = eb. Let o’ in V(a) be such that aa’ = e, choose
¢ in V{c), and let g be an element of the sandwich set S(a’a,cc’). (Thus
ga'a = ec’g = g and a’agec’ = d'acc’.) Also /ga’ € V(ac) by Proposition
2.5.3, and so the element f = acc’ga’ € EN R,,.. Also

f(be) = acc ga’be = aga’be = aga'aa’be = aga’ebe = aga’ac = age = ac.

We must now show that R,;. < Rp.. From R, < R; we deduce that
a = bu for some u in S. Hence for all & in V(b) we have

(Va)? = Vab'a = b'ebb'bu = bebu = b'ea = ba;
thus ¥’a € E. Moreover,
bb.b'a=">ba, babb="bebb'b="beb="a,

and so b'a < b'b.
From
a=bu=bb'bu = bb'a (6.1.3)

we deduce that a £ b a, and it follows that there exists an inverse a” of a
such that a’a = b’'a. To summarize, we now have

a"a=1ba <¥bb. (6.1.4)
Also, from (6.1.3) we deduce that
a = ba'a. (6.1.5)

As before, let ¢/ € V{c), and let h € S(a”a,cc’). Then from (6.1.4) we
have

(a"ah)? = a"a(ha”a)h = a"ah? = a"ah,
(b'bh)? = b'bha’ab'bh = b'bha” ah = b'bh% = b'bh,
and so a”’ah,b’bh ¢ E. In fact
a'ah = a aha’ a = b'ba" aha”ab’b € H'bSH'D,
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b'bh = b'bha’a = b'bha’ ab’b € b'bSH'D,

and so both ¢”ah and b'bh are idempotents within the inverse semigroup
b'bSb'b. We deduce that

a"ah = a"aha”ah = o’ aha"ab’bh = (a”ah)(V'bh) = (b'bh)(a” ah) = b'bh.

Finally, denoting the idempotent ¢’ha”ac by f, we conclude, using (6.1.5),
that
(be)f = bec' haac = bhe = bb'bhe = ba ahe = ahe = ac,

and 80 Ry, < Rp. as required.

(2) = (3). Let g,h € S(e, f), where e, f € E. Then in particular fg =g
and so (gf)? = g(fg)f = g*f = gf. Moreover,

flgf)=gf, (9f)f =491,

and so gf < f. Similarly eg € E and eg < e. By compatibility we deduce
that

gh=g(fh) =(gf)h < fh=h, hg= (he)g=h{eg) < he=h.

That is,
(gh)h = h(gh) = gh, (hg)h = h(hg) = hg,

and so gh = hg. However, by Proposition 2.5.3, S(e, f) is a rectangular
band. Hence

g = ghg = g*h = gh = hg = h(hg) = hgh = h.

We conclude that |S{e, f)| = 1.

(3) = (1). Let e € E, let a € eSe, and let o/ € V(a) NeSe. Then
d'a € S(d’a,e), for a’ad’a = d’a, ed’a = a’a and d’a(a’a)e = a’ae. Hence in
fact, by our assumption, a/a is the only element in S(a’a,e). By the same
token, if o’ is another inverse of a in eSe then S(a”a,e) = {a”a}. But, by
Proposition 2.5.2, S(a/a,e) = 5(a"a,e), and so it follows that a”a = a'a.
Similarly, by considering S(e, aa’) and S(e, aa”"), we deduce that aa” = ad’,
and it now follows that

a’ =d"a0” =ad'ad” = d'ad’ =d’.
Hence eSe is an inverse semigroup. a

6.2 ORTHODOX SEMIGROUPS

Recall from the introduction that a semigroup is called orthodoz if it is
regular and if its idempotents form a subsemigroup. Several alternative
definitions are available:

Theorem 6.2.1 Let S be a reqular semigroup with set E of idempotents.
Then the following statements are equivalent:

(1) S is orthodoz;
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(2) (Ve,f € E) fe € S(e, f);
(3) (Va,b € S) V(b)V(a) C V(ab);
(4) (Yec E)V(e) CE.

Proof (1) = (2). Suppose that S is orthodox, let e, f € E, and let
g = fe. Then

ge=fg=g, egf=/(ef)?=ef,

and so g = fe € S(e, f) by (2.5.2).

(2) = (3). Let a,b € S and let o/ € V(a), ¥ € V(b). Then, by
Proposition 2.5.3, b'ga’ € V(ab) for all g in S(a’a,bb’). From (2) it thus
follows that

b'a' = b (bb'a’'a)a’ € V(ab),

exactly as required.
(3) = (4). Let e € E and let = be an inverse of e:

rer =, exe = e.

Now ze and ex are both idempotent, and so each is an inverse of itself. By
(3) we deduce that (ex){ze) is an inverse of {ze){ex), that is to say, that
ex’?e is an inverse of ze?z = zex = x. Hence

¢ = z(ex?e)r = (zex)(zex) = (rex)? = 27,
and so z is idempotent as required.

(4) = (1). Let e,f € E. By Proposition 2.5.1 there exists an idem-
potent g in V{ef) (an element of the sandwich set S{e, f)). But then ef,
being an inverse of the idempotent g, must itself be idempotent. Hence S
is orthodox. |

The property (3), a generalization of the property
(ab) ! =b"lg1

possessed by inverse semigroups, enables us to produce in modified form
some of the key properties of inverse semigroups. Certainly the echo of
inverse semigroup theory is clear in the next result:

Proposition 6.2.2 Let S be an orthodox semigroup with set E of idem-
potents. For alla in S, e in E and o’ in V(a), the elements aea’ and da’ea
are idempotent.

Proof With the given notation,
(aea’)? = aed’aea’ = aed’aca’ad’ = a(ea’a)’a’ = aea’aa’ = aea’.
Thus aea’ is idempotent. The proof for a’ea is similar. 0

The set E of idempotents in an orthodox semigroup S forms a band
under multiplication, and this is, by Theorem 4.4.1, expressible as a semi-
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lattice Y of rectangular bands E, (o € Y). Certainly E4, N Eg = @ if
a #£ G, and we also have

E.Eg C Eqp (Oé,ﬂ eY). (6.2.1)

Each E, is a JF-class, and it will be consistent with our previous notation
to write JZ for the rectangular band E, containing e. The formula (6.2.1)
‘translates’ to

JEIF IS =JE (e, f€E). (6.2.2)

The equivalence J% is the minimum semilattice congruence on F.
From Theorem 6.2.1 we know that V(e) C E for every e in E. In fact,
if f € V{(e) then
efe=e, fef=/,
and it is clear that f € JZ. Conversely, if f belongs to the rectangular
band JZ then certainly f € V(e), since any two elements of a rectangular
band are mutually inverse. Hence

Vie)=JEF (ecE). (6.2.3)

Thus V(e) is determined solely by the nature of the band E.

We cannot expect the set V(a) of inverses of an arbitrary element of .S
to be solely determined by properties of F, but in fact the properties of E
are highly influential, in the sense that if we know a single inverse a’ of a
then V(a) is wholly determined by o’ and by E:

Proposition 6.2.3 Let a € S, an orthodox semigroup with band E of
idempotents. If a’ is an inverse of a, then

V(a)=JE o' JE,.
Proof Letee JE and fe JE, Then
a'aea’a = a'a, aa'fod' =ad,
and so
aled’ f)a = ad’aed’ad’ad’ fad'a = a(a'aed’a)a’(aa’ faa)a
= ad’ad’ad’a = a,
and
(ed’ f)a(ed' f) = ea’ad fad'aa’aea’ad’ f = ed’(ad’ faa')a(a'aea’a)d’ f
= ea'(ad')a(d'a)a’f = ed f.

Thus JZ o' JE, C V(a).

aa’

Conversely, suppose that a* € V{(a). Then

a* =a*aa* = a*ad’aa”. (6.2.4)
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Now, from
(a*a)(d'a)(a*a) = a*(ad’a)a*a = a*aa*a = a*a
and
(d'a)(a*a)(a’a) = d/(aa*a)a’a = d'ad’a = d'a

we deduce that a*a € JZ,. A similar argument shows that aa* € JZ,, and

it is now immediate from (6.2.4) that V(a) C JE o/JE O

aa’*

We can now give yet another characterization of orthodox semigroups:
Theorem 6.2.4 A regular semigroup S is orthodox if and only if
(Va,be S) [V(a)nV () #0 = V(a)=V(b)].

Proof Suppose first that S is orthodox, and that a, b in S are such
that z € V(a) N V(b). Then @ and b both belong to V(z) and so, by
Theorem 2.3.4, za R° zb and ax £° bx. Now za,zb,az,bz € E, and so,
by Proposition 2.4.2, za R” zb and ax L£L” bx. Certainly za J¥ zb and
az JE bz, and so

V(a) = JE2JE = JE2JE = v (b).

Conversely, suppose that S is regular and that we have the given impli-
cation. Let e, f € E and let g € S(e, f). Then from ge = g we may deduce
that eg is idempotent. Also

gleg)g = g, (eg)g(eg) = eg,

and so we have that g € V{g) N V(eg). From our assumption we deduce
that V(g) = V(eg). Hence in particular ef € V(eg), and so

ef = (ef)(eg)(ef) = (ef)(efg)(ef) = (ef)(efgef) = (ef)*.
Thus S is orthodox. |
The equivalence relation
v={lzy) € Sx5:V(z)=V(y)} (6.2.5)
on an orthodox semigroup S turns out to be a congruence. Indeed, we have

Theorem 6.2.5 Let S be an orthodox semigroup with set E of idempo-
tents. Then the equivalence v defined by (6.2.5) is the smallest inverse
semigroup congruence on S. Moreover, for each a in S and each o' in
V(a),

ay=JE aJE .

Proof To show that v is a congruence, consider (a,b) in yandlet c€ S.
Then, for every z in V(a) (= V(b)) and for every ¢’ in V(c), we have
zc € V(ea) N V(cb). Hence V(ca) = V(cb) by Theorem 6.2.4. A similar
argument shows that V(ac) = V(be), and so +y is a congruence.
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The quotient S/ is certainly regular. By Lallement’s Lemma (Lemma
2.4.3) each idempotent of S/v is of the form ey, where ¢ is an idempotent
of S. Now, for any two idempotents e, f in F,

Vief) = J5 = Jf, (by (6.2.2))
=V(fe),

and from this we deduce that (ev)(fv) = (fy)(ey) in S/y.

Finally, to show that 7 is the least inverse semigroup congruence, let p
be a congruence on S such that S/p is an inverse semigroup, let (a,b) € 7,
and let = € V(a) (= V(b)). Then both ap and bp are inverses of zp in the
inverse semigroup S/p, and so ap = bp. We have shown that v C p.

To prove the final statement of the theorem, suppose that b € ay. Then
V{a) = V(b), and so o' € V(b) for every a' in V(a). It now follows from
Proposition 6.2.3 that

beVid)=JE eIk,
Conversely, if b € JE,aJE, = V(a'), then V(a) NV (b) # 0, and so V(a) =

aQ

V(b) by Theorem 6.2.4. Thus b € a7y, as required. O

6.3 SEMIBANDS

A regular semigroup generated by its idempotents is called a semiband.
Semibands differ from locally inverse and orthodox semigroups in the sense
that they are not generalizations of inverse semigroups. A regular semi-
group is orthodox and a semiband if and only if it is a band, and it is both
an inverse semigroup and a semiband if and only if it is a semilattice. It
is, however, possible for a semigroup to be non-trivially both a semiband
and a locally inverse semigroup——see Exercise 11.

No substantial theory of semibands is available as yet. The justification
for this section lies in the frequency with which such semigroups occur ‘in
nature’, and in the universal property (Theorem 6.3.4) they possess.

Consider the set Sing,, of all singular maps from the set

[#] ={1,2,...,n}

into itself. (By a singular map we mean one that is not a bijection.) This
is a finite semigroup, of order n™ — n!. Then we have

Theorem 6.3.1 For all n > 2, the semigroup Sing,, is a semiband.

Proof To show that Sing, is regular, let a € Sing,,, and define £ : [n] —
[n] as follows: if j € ima, let j€ be an arbitrarily chosen element of jo™1;
if j ¢ ima, let j¢ be an arbitrarily chosen element of [n]. Then it is clear
that jafa = i for all ¢ in [n]. Of course £ may be a permutation, but

certainly n = £af is singular, and

ana = abafa = ofa = a.
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The semigroup Sing,, has n — 1 J-classes Ji,..., Jo—1, Where
Jr ={a €Sing, : |ima|=r} {(r=1,...,n—1).

Let E,,—1 denote the set of idempotents in J,_1. A typical element ¢ of
E,—1 has image [n] \ {i} of cardinality n — 1. The map ¢ acts identically
on [n]\ {#}, and sends i to some element j # i. We denote this map by (;),
it maps ¢ to j and all other elements identically. Notice that we can easily
deduce that |E,_1| = n{n —1).

Lemma 6.3.2 Let a € J,, where 1 <1 < n—1. Then there exist € in
E,_1 and B in J.41 such that a = ¢f.

Proof Writeima = {b;,b,...,b.},andletbja™! = 4; (i=1,2,...,7).

It is convenient to write
o= A1 Ay . A,
T\Nby by .. b )

in an obvious extension of a familiar notation. The sets A; form a partition
of [n]. Since not all of the sets A; are singletons, we may assume without
loss of generality that A; = {a1,a],...} has at least two elements. Then

let
€= ai ,32 A1\{a1}A2...AT{a1}
a’l ! bl b2 . br br+1 ’
where br11 ¢ im o, and verify that a = €. O

As a consequence of this lemma we easily deduce that Sing,, is generated
by Jn—1. The task remaining is to show that every element of J,_; is
expressible as a product of elements in E,_;.

The most illuminating way to prove this is to make use of the directed
graph I'(a) associated with any « : [n] — [n]. The vertices of I'(a) are
labelled 1,2,...,n, and there is a directed edge i — j if and only if
tor = j. The graph may fail to be connected: its connected components are
the w-classes, where w is the equivalence relation given by

w={(4,7) € [n] X [n] : (Ir,s > 0) ia” = jo°}.
Each w-class © has a kernel K(Q), defined by
KQy={ieQ:(3r>0)ia" =i}
To see that K(€2) is non-empty, consider an element ¢ in Q. The elements
i,ia, i’ ...

cannot all be distinct, and so there exist m > 0 and r > 1 such that
ia™*" = ia™. Thus ia™ € K(£).
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It is useful to distinguish four types of component €2

standard components : 2 < [K{(Q)] < |;
acyclic components : 1= |K(Q)] < |Q;
cyclic components : 2 < |[K(Q)| =19;
trivial components : 1= |K(Q)] =[Q].

Every component falls into exactly one of these categories, and all four
cases can arise: for example, the map

(12345678910
¥=123426689710

has components {1,2,3,4}, {5,6}, {7,8,9}, {10} which are, respectively,
standard, acyclic, cyclic and trivial. The associated digraph is
1e

|
AN TN

®4 6@« 8O

9 10 @«

e

Let a be an arbitrary element of Sing,,. Each standard or acyclic com-
ponent € contains at least one element not in im «. To see this, suppose by
way of contradiction that ia~! # @ for all i € 2, and consider an element
Join ©\ K (). Let

f1 €500, j2 € 1ot gt € Jna
The elements 51, jo, ... cannot all be distinct, and so there exist r, r + m
with m > 1 and jyyom = Jr. It follows that
Jo = jra’ = jram-w = joa™.

Thus 7 € K(2), contrary to assumption.

Now consider an element « in J,_1. Since |ima| = n — 1, all the
components of « are cyclic or trivial except one, which is either acyclic or
standard. Let us suppose first that the ‘rogue’ component is acyclic, so
that the components are

A; Zl, Zg, ey Zc; {ul}, {ZLQ}, ey {ut},

where A is acyclic, Z1, Za, ..., Z, are cyclic, and {u1},{uz2},..., {u:} are
trivial. Suppose also that |4| = a and |Z;| = z; for ¢ = 1,2,...,c. Thus

[
a+y zitt=n (6.3.1)

i=1
Let x; be the unique element in A\ im . Then

A={z1,72,...,%a}
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where z;41 = zja for j = 1,2,...,a — 1 and z,a = z,. Also, for i =
1,2,...,¢, let
Zs = {vi1, Y2y« - - Vi, }

where v; ;41 = v for j =1,2,...,2; — 1 and vi;,0 = vi3. Then

a=Bv1v2 .- Ve, (6.3.2)
where

o= () ) - ()

Tq Tg—1 Z2

and, fori =1,2,...,¢,

v = (””f) (”"’“‘1> (”i’zi‘z) (”“) (‘”1> (6.3.3)
z1 Viz; Vi,z;—1 Vi2 Vi1

Thus « is a product of idempotents in E,_1.
Suppose now that the components of o are

S; Zl? Z27 RIS ZC’ {u1}7 {UQ}, ey {ut}7
where S is now a standard component, and the other components are as
before. Again, let 1 be the unique element in S\ im &, and suppose that
T = T10™ "1 € K(S), with m chosen as small as possible. Then
S = {IEl,.’Ez, e ,$m+p},

with ;0 = 2441 for i =1,2,...,m+p—1, and pmype = p,. If we now
define

o)) ) () ) )
Tm—1 Tm+p Lm+4p—1 Im Tm—1 z2 ’

we can verify that

a=8v%... Y, (6.3.4)
where v1,¥2, . .., Ve are as in (6.3.3). Thus again « is expressed as a product
of idempotents from F,,_1. O

Remark The number of idempotents in the product (6.3.2) is

(a—1)+zc:(zi+1)=a—1+zc:zi+c

=1 =1

=n+4+c—t—1;
the number of idempotents in the product (6.3.4) is
m+p+Z(zi+1) =n+c—t
i=1
In both cases, the length of the product is

n+ cycl a — fix
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where cycl v is the number of cyclic components and
fixa = [{i € [n] : ia = 4}].

This has been shown by Iwahori (1977) (see also Howie (1980)) to be best
possible, in the sense that a cannot be expressed as a shorter product of
elements of B, _1.

Corollary 6.3.3 FEvery finite semigroup is embeddable in a finite
semiband.

Proof Let S be a finite semigroup and let X = S' U {y, 2}, where y,z ¢
S!. Define a map « : S — Tx by sa = p,, where

zps =8 if z e St

Yps = 2ps = .

It is a routine matter to verify that « is a monomorphism. Moreover, it is
clear that s is a singular element of Tx for every s in S, and so o embeds
S in the finite semiband Sing) x| O

The removal of ‘finite’ from Corollary 6.3.3 presents some difficulty, for
the fact that Sing x| is a semiband depends heavily on the finiteness of
X. Tt is possible to identify the idempotent-generated part (E) of Tx, and
then to use a modified regular representation along the lines of the proof of
Corollary 6.3.3—see Howie (1966). An alternative approach is given below.

Theorem 6.3.4 Every semigroup is embeddable in o semiband.

Proof Let S be asemigroup, and let 1" be a regular semigroup containing
S. It is always possible to find such a semigroup 7: for example, take
T = Ts1. Let I be a set containing a named element 1, and such that
[T\ {1}|2 > |T'|, and define B to be the Rees matrix semigroup
M[TY1,1; P,
where the matrix P = (p;;) over T has the properties that
pa=pu=1 (i€l
and
The elements (1,1,4) and (3,1,1) of B are evidently idempotent for all
values of i. Also, since each t in T is equal to some pg;, we have
(,t,5) = (4,1,1)(1,1,k)(1, 1, 1)(1, 1, 4),

a product of idempotents. Thus B is generated by its idempotents.
Next, B is regular, for if (4,t,5) € T and if ¢’ is an inverse of ¢ in the
regular semigroup 7', then

(6,6, 9)(Lt, )0, 8,5) = (4,88t 5) = (3,1, 5).
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Finally, it is clear that the map ¢t +— (1,¢,1) embeds T in B, and so S,
as required, is embedded in a semiband B. O

Remark The foregoing argument is of course available in the finite case,
and so we have an alternative proof of Corollary 6.3.3.

6.4 EXERCISES

1. The Lallement order X on a regular semigroup S is defined by the rule
that a A b if and only if, for all z, y in S,

xR xa = za=zb, y Lay = ay=by.

Show that ) is a partial order relation, and that it is compatible with
multiplication.

2. Given an order relation w on a semigroup S, define w® by the rule that
a w’ b if and only if zay w xby for all z, y in S. Show that W’ is the
largest compatible order relation contained in w.

3. On a regular semigroup S, show that A\ = ", where v is the Nam-
booripad order given by (6.1.1) and X is the Lallement order defined
in Exercise 1. Deduce that A = v if and only if S is locally inverse.

4. Let S be a regular semigroup with set E of idempotents, and let the
relation X’ be defined by the rule that a A’ b if and only if

(Va' € V(a))(Ve € ENnad' S)(Vf € ENSa’a) ea = eb, af = bf.
{(a) Show that A C X,
{(b) Suppose that (a,b) € N'. Show that R za implies that ga = gb,
where g is in the sandwich set S{z'z, aa’), and that y £ ay implies
that ah = bh, where h € S{a’a,yy’).

(c) Deduce that A = X',
(d) Show that, if S is orthodox, then A is equal to

{(a,b) € S x S: (Va' € V(a))(Ve € E) aea’ = bea’, a’ea = a’eb}.
5. On an arbitrary semigroup S the Mitsch order p is defined by the rule
that a u b if and only if
(3s,t € 8') sa = sb = a = at = bt.

Show that yu is an order relation. Show also that u coincides with v,
the Nambooripad order, when S is regular.

6. A semigroup S with set £ of idempotents is called R-unipotent if it is
regular and if

(Ve, f € E) efe =ef.

Show that the following statements about a regular semigroup S are
equivalent:
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{a) S is R-unipotent;

(b) each R-class of S contains exactly one idempotent;
(c) (Ve € E)(Ya € 5)(Va’' € V(a)) aed'a = ae;

(d) (Ya € S)(Vd',a"” € V{a)) ad’ = ad”.

7. Let v be the least inverse congruence on an orthodox semigroup S, as
described by (6.2.5). Show that yN'H = 1g.

8. Let S be an orthodox semigroup, with band F of idempotents. Show
that, for all ¢ in S and all o’ in V{a),

aV(a)=RE, V(aa=1LE,.

9. Let S be an orthodox semigroup, and let
T ={(a,a’) € SxS:ad €V(a)}
Show that, relative to the multiplication
(a,a’)(b,b") = (ab,b'a’),
T is an orthodox semigroup.

10. Let S be an orthodox semigroup, and suppose that E, the band of
idempotents of S, is a rectangular band. Show that § ~ G x E, where
G is a group. [Hint: show first that S is simple, and use Exercise 3(8).]

11. Consider a completely simple semigroup S = M|G; I, A; P}, where @
is a group with identity e, where 1 € INA and where the A x I matrix
P = (p,;) has the property that

pa=ps=1 (AeA, iel).

(See Theorem 3.4.2, where such a P is called normal.) Show that S is
generated by idempotents if and only if the entries py; (A # 1, ¢ # 1)
generate G.

Deduce that in such a case S is a locally inverse semiband.

12. Let S be a semiband. If
a=eies...ek,
a. product of idempotents in S, show that, for each o in V{a),
fi=eieii1...exa’erea. .. e
is idempotent, and that
a=fifa-. fk-

Deduce that every element a of S is expressible as a product of idem-
potents from within its own J-class J,.
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13. Show that if @ = eb in a regular semigroup, where e is idempotent,
then there exists an idempotent in R, such that a = fb. Deduce from
this and its dual that if a = eje5. . . €,, a product of idempotents, then
we may assume that e; R ¢ and e, £ a.

14. Let E be the set of idempotents in Sing,,. If j € im «, where o € Sing,,
we say that the (kera)-class ja=' is stationary if j € ja~!. Show
that o € E? if and only if every non-stationary (ker a)-class contains
an element of [n] \ im .

Deduce that o € E? implies that

rank a < (n + fix @) /2,

where rank o = |im ¢, fixa = |[{i € [n] : i = }].

6.5 NOTES

The main reference for Section 6.1 is Nambooripad (1980). For Section 6.2
the principal references are T. E. Hall (1969, 1970, 1971). Hall (1970) goes
on to generalize the Munn semigroup (see Section 5.4) to the orthodox case,
and to prove a quite detailed structure result for orthodox semigroups. See
also T. E. Hall (1989) for an associated isomorphism theorem. R-unipotent
semigroups (see Exercise 6), which are necessarily orthodox, have been
studied by various authors, including Edwards (1977), Feigenbaum (1979),
La Torre (1981) and Gomes (1985, 1986a,b).

References for Section 6.3 are Howie (1966, 1980) and Iwahori (1977).
The construction in the proof of Theorem 6.3.4 appears in Giraldes and
Howie (1984), where it is attributed to T. E. Hall.

The order A featuring in Exercises 1 to 4 is from Lallement (1966),
while v is from Nambooripad (1980), and u (see Exercise 5) is from Mitsch
(1986). See also Higgins (1994). Exercises 3 and 4 are from Gomes (1983),
and Exercise 6 is from Venkatesan (1974) and Edwards (1977). Exercises 7
and 8 are from T. E. Hall (1970), while Exercise 9 is from Newton (1993).

Exercise 11 is from Howie (1978), Exercises 12 and 13 are from T. E.
Hall (1973), and Exercise 14 is from Howie et al. (1988).
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Free semigroups

In Chapter 1 we came across the notion of the free semigroup A* and the
free monoid A* on a set A. While the emphasis of this book is unques-
tionably on the study of various classes of regular semigroups, it would
be wrong in a general introduction not to include a short chapter on free
semigroups, for in the wide and growing applications of semigroup theory
to automata, languages and machines it is the free semigroups that play
the major role.

This will be a fairly brief account of a large and vital area, the in-
tention being to convey the flavour and some of the methods. For more
information, the reader is referred to several more specialized texts, men-
tioned in the Notes at the end of the chapter The flavour and the methods
are certainly very different from those of the previous chapters, for the
Green equivalences that have been such an important tool in studying reg-
ular semigroups all reduce to the identity relation 1 in a free semigroup or
monoid.

Section 7.2 is devoted to a brief account of codes. The notion of a
(variable length) code is a natural one both for language theory and for
algebra, and codes of various kinds have been extensively studied in recent
years.

7.1 PROPERTIES OF FREE SEMIGROUPS

The importance in applications of free semigroups and monoids lies in
the fact that the elements are words in an alphabet. They are strings
of symbols, and such strings are encountered in a huge variety of contexts.
Any spoken statement, any written statement, any input to a computer is
a string of symbols. Every Shakespeare play is an element of AT, where A
is the set consisting of the 52 upper- and lower-case letters of the alphabet
together with various space and punctuation symbols. This is not to claim
that the study of A¥ includes the literary study of Shakespeare’s plays,
but it does indicate that in studying AT we are studying something both
general and ubiquitous.



Properties of free semigroups 239

From the fact that two words in the alphabet A represent the same
element of A* if and only if they are identical, we easily deduce that

Proposition 7.1.1 The free monoid A* is cancellative. |

A semigroup (or monoid) S is called equidivisible if, for all s, ¢, u, v in
S, st = uww implies either

(i) there exists z in ST such that s = uz and v = zt; or

(ii) there exists y in S* such that u = sy and t = yv.
Notice that every group is equidivisible: simply define z = »~'s in (i), or
y = s u in (ii). More generally, every completely simple semigroup is
equidivisible—see Exercise 1. From our point of view the important result
is

1

Proposition 7.1.2 The free monoid A* is equidivisible.

Proof Let st = uv = aias2...da,, wWhere a1,as,...,0, € A. Then, for
some k, [ in {0,1,...,m},

§=0102...0%, t = Qx4+1Qk+2...Qm, Y =0102...041, T = Q1110142 ... Q.

If k > I, then (i) holds, with = aj41...ax; if £ <[, then (ii) holds, with
Y= Qy1---Q1- O

A semigroup (or monoid) S is said to be a semigroup (or monoid) with
length if there is a map s — |s| from $ into N° such that, for all s, ¢t in S,

|st] = |s| + [¢]- (7.1.1)

Our notations are natural and useful, but notice the initially disconcerting
conclusion that in a monoid S it follows from (7.1.1) that |1| = 0. The map
s + |s| is a morphism from S into (N° +). We say that S is a monoid
with proper length if, for all s in S,

ls]=0 = s=1.

It is clear that every free monoid A* is a monoid with proper length:
simply define |w| = m for each w = a1a2...a, in A* (and |1| = 0). Since
it is clear that every subsemigroup of a semigroup with (proper) length is
a semigroup with (proper) length, it follows that every subsemigroup of A*
is a semigroup with proper length.

Another example of a monoid with length is provided by the multiplica-
tive monoid F[z] of all non-zero polynomials

f=ag+a1z+a2® + - +apz”

with coefficients in a field . Here we define |f] to be the degree of f.
The length is not proper unless F = Zy = {0,1}, but even in this case the
monoid F[z] is not free, for it is commutative, and a free monoid A* is
commutative only if |A| = 1.
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Proposition 7.1.3 Let U be a subsemigroup or submonoid of a free
monoid A*, and let V.= U \ {1}. Then V \ V? is the unique minimum
generating set of U.

Proof It is clear that every generating set of U must contain V \ V2. To
show that (V' \ V2) = U, suppose that | = min{|v|: v € V}. Let v € V. If
|v| =1, then v € V\ V2 C (V\V?2}. We complete the proof by induction on
|v]. If v € V' \ V2 then there is nothing to prove. Otherwise there exist vy,
vy in V such that v = vive. Now |vy|, |uz] > 0, since U has proper length,
and [vi|+|va] = |v|, by (7.1.1). Hence |v1], {ve] < |v|, and so we may assume
that vy, v € (V \ V2). It now follows immediately that v € (V' \ V2).

|

Corollary 7.1.4 The set A is the unique minimum set of generators of
AT (or A*), in the sense that every set of generators must contain A. [

This is in strong contrast to the situation in group theory. For example,
the free group generated by {z,y} is equally well generated freely by the
set {z, zy}.

The base of a submonoid or subsemigroup U of the free monoid A* is
defined to be V' \ V2, where V = U \ {1}. In particular, the base of A* (or
of A1) is A.

If |A] > 2, the free monoid is in fact as far from being commutative as
it is possible to be:

Proposition 7.1.5 Let |4 > 2, and let u,v € AT. Then uwv = vu if and
only if u and v are powers of the same element w.

Proof Actually this proposition is trivially true even if |A| = 1, but is of
interest only for larger A.

One way round the result is obvious. Suppose therefore that uv = vu,
where [uv| (= |vu|) = n, and suppose inductively that the proposition
is true whenever |uv] < n. There is no problem about anchoring this
induction: if Juv] = 2 then it is clear that uv = vu implies that u = v.
We may suppose, without loss of generality, that |u| > |v|, and so by
equidivisibility it follows from uv = vu that there exists z in A* such that
u =wvz, u=z2v. If z =1 then u = v. Otherwise, we have vz = zv, where
v,z € AT, and |vz| = |u| < |uv] = n. By the induction hypothesis, there
exists w such that v = wP, z = w?, and it now immediately follows that
u = wPt? and v = wP, exactly as required. m|

Proposition 7.1.5 says in essence that two elements of A* commute only
if they must. Another example of the same phenomenon is as follows:

Proposition 7.1.6 Let u, v be elements of a free semigroup A*. If u™ =
™ for some m,n > 1, then u and v are both expressible as powers of some
win AT,
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Proof If |A|=1or m =1 or n =1 the result is immediate. So suppose
that |A|,m,n > 2. Then

| = 5 (™ o) 2 5 (2l + 2fo]) = ful + ol (7.1.2)

1
2
Now

w =u™ pu™ ="t = ™,
and so uv™ and vu™ have a common initial segment of length at least |u™|.
From (7.1.2) we deduce that uv™ and vu™ have a common initial segment
of length at least |u| + |v|, and from this it follows that uv = vu. The

required result is now a consequence of Proposition 7.1.5. O

So far we have been listing properties of free semigroups and monoids.
It is reasonable to ask whether any of these properties, either singly or
in combination, actually characterize free semigroups. Our first result is
fairly superficial, but provides a useful step on the way to less transparent
characterizations.

Lemma 7.1.7 A semigroup S is free if and only if every element of S has
a unique ezpression as a product of elements of S\ S2.

Proof It is clear that if S = A%, a free semigroup, then S\ S? = A4,
and every element has a unique expression as a product of elements of A.
Conversely, suppose that S has the given property, and denote S\ S? by
A. We show that S has the defining property (1.6.1) of A*. Let T be a
semigroup, and let & : A — T be an arbitrary map. For each s in S consider
the unique expression s = aqas...a,, of s as a product of elements in A,
and define @ : § — T by the rule that

s@ = (a10)(aa) . .. (apma).
If t = ajah...a, € S, then it is clear that the unique expression for st

must be ajasy...analal...a’, and from this remark it follows that @ is
1%2 n

a morphism. It is clear that @ is the unique extension of a to S, and so
S ~ AT, the free semigroup on A. |

Proposition 7.1.8 Let S be an equidivisible monoid with proper length.
Then S is a free monoid.
Proof Let T =S\ {1} and let A =T\ T?. Notice that T is closed under
multiplication, for

zy=1 = |z|+|yl=0 = |z|/=|y/ =0 = z=y=1.

Let s € T2. Then s = uv, with u,v € T and 0 < |u] < [s], 0 < |v]| < |s].
If w € T? or v € T?, the process can be repeated, and since lengths cannot
diminish indefinitely we conclude that

S$=0a1a02...0m,
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where aj,ase,...,a, € A. To see that this expression is unique, suppose
that

1! 7
4102 ... Qm = Q105 . .. Qp,

where a1,a2,...,0m,0],a5,...,a, € A, and where m,n > 1. We proceed
by induction on m + n. If m + n = 2 then a; = af, and the result is clear.
So suppose that m + n > 3. By equidivisibility we may suppose without
loss of generality that there exists z in S such that

a1z=a} and az...ay = 205...a,.

Since a} € T\ T?, we must have z = 1; hence a; = @} and az...an, =
ah...al,. By the induction hypothesis we then deduce that m = n and

az = a,...,0, = a),. The result now follows by Lemma 7.1.7. O

Finally, let us define, for an element s of a monoid S, a non-trivial left
factor of s to be an element x # 1 in § for which there exists ¥ in S such
that xy = s. Then we have

Proposition 7.1.9 A free monoid S = A* has the properties:
(1) S has a trivial group of units;

(2) S is cancellative and equidivisible;

(3) every s in S has only finitely many non-trivial left factors.

Conversely, every monoid S satisfying (1), (2) and (3) is a free monoid.

Proof The direct half is clear. To prove the converse half, we begin by
showing that 7' = S\ {1} is a subsemigroup of S, which amounts to showing
that

(Vz,yeS)ey=1=>z=y=1

Accordingly, suppose that zy = 1. Then (yz)? = y(zy)z = yz, and so
yx = e, an idempotent. From ee = el we then deduce by cancellativity
that e = 1. Thus zy = yx = 1, and so z,y € Hi, the group of units of S.
By (1) it follows that x =y = 1.

Next, we show that 7\ T2 # . For suppose, by way of contradiction,
that T = T2. Then T™ =T for every n, and so every ¢ in 7" has arbitrarily
long factorizations

t=uiug...u, {u1,un,...,u, €7T). (7.1.3)

Now, by (3), t has only I(t) non-trivial left factors, where I(¢) is finite. If
in (7.1.3) we choose n > {(t) then we obtain left factors

UL, UIUQy o o« y UTU2 .. Uy,

which are all non-trivial, since T' is a subsemigroup. Moreover, they are
all distinct, for if uyus...up = w1y ... Uk, with 7 > 1, then by cancel-
lation we deduce that wgy1 ... ug4r = 1, which is not possible. From the
contradiction we have now obtained we conclude that A =T\ T2 +# §.



Codes 243

A very similar argument then shows that ({T™ : n > 1} = @, for other-
wise there would exist ¢ in 7" with arbitrarily long factorizations. Hence

ToT?>T3>..,

and every element ¢ of T is in T \ T™*! for some uniquely determined
m. Thus t has an expression = a14ay...a,, as a product of elements of
A. By the argument used in the previous proof we may conclude from
equidivisibility that the expression is unique, and the result now follows
from Lemma 7.1.7. |

7.2 CODES

One of the cornerstones of infinite group theory is the Nielsen—Schreier
Theorem, which states that every non-trivial subgroup of a free group is
free. (See, for example, M. Hall (1959).) It is not at all hard to see that
this is not true in general for semigroups or monoids. Even in the free
monoid a* generated by a single element a, the submonoid

S=a"\{a} = {1,a%,d%a%, ...}
is not free. It is generated by its base {a2,a}, but is certainly not freely
generated by those elements, since it is commutative. Relative to the gen-
erators = = a? and y = a3, it has presentation
{2,y |2y = yz, 2° = 7).
A somewhat more substantial example is provided by the subsemigroup
S = (ab, ba, aba, bab) of the free semigroup {a,b}*. Here again S is gener-
ated by its base {ab, ba, aba, bab}, but among the generators
T1 = ab, o = ba, x3 = aba, x4 = bab
there are the obvious relations
T1ZT3 = T3T2, T2Tyg = T4T1.
We have the following necessary and sufficient condition for a subsemi-
group to be free:
Proposition 7.2.1 Let A* be a free monoid and let U be a subsemigroup
or submonoid of A*. Then U is free if and only if
(Vwe AN [wUNU#0 and UwnU £ = wel. (7.2.1)

Proof Suppose first that U is free, and let w in A* be such that wu; = uo,
ugw = uq, where ui,ug,us, vy € U. Then

U3U2 = UgWUy = UqlUy,

and so, by equidivisibility in U, either there exists v in U such that ugv = u4
(and ug = vuy) or there exists z in U such that ugz = uz and zug = 4. In
the former case we deduce by cancellativity in AT that w = v € U. In the
latter case it follows that wzus = ug, and this cannot occur, since |w| > 1.
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Conversely, suppose that U has the property (7.2.1). Certainly every
element u of U is expressible as a product u = cjey...¢,, of elements
€1,€2,...,Cp in its base C = V' \ V2, where V = U \ {1}. It remains to
show that the expression is unique. So suppose that

€16y ... Cm =iy ... O,
with ¢1,¢9,...,6m,¢},¢h,...c), € C, and that we have chosen these ele-
ments so that m + n is as small as possible. Then, by equidivisibility in
A*, we may suppose, without loss of generality, that there exists z in A*
such that

ch=c1z, zcy...c, =cy...Cm.

If z # 1 then we conclude from (7.2.1) that z € V, and hence that ¢} € V2,
contrary to assumption. Hence z = 1, and so ¢; = ¢}. It then follows
by cancellation that ca...cp = ¢ ...c}, and hence, by the minimality of
m+n, that m =n and ¢; = ¢} for ¢ = 2,...,m. Thus U is freely generated
by C. O

It follows in particular that if U is a left or right unitary subsemigroup
or submonoid of A* then U is free.

By a code (or variable length code) in the alphabet A we mean a subset
C of A* with the property that C is a set of free generators for (C). The
idea is simple enough. We think of the elements c¢1,ca,... of C as being
encoded by their expressions as words in the alphabet A. The C is a code
if and only if no word in A* can be decoded in two different ways. In our
second example above, we would not know whether to decode ababab as z3$
or as T3T4.

In our definition of a code we have not insisted that C be finite, but we
shall mostly be interested in the finite case.

The celebrated Morse code, devised last century for use in the electric
telegraph, based on dots and dashes

A - D —..
B - - E . etc.,
C —-—. F .._—.

is not, as it stands, a code: the sequence - - — - could, for example, be read

as F or as EAE. But if an extra symbol | is included as a ‘space’ symbol,
and if we terminate each of the Morse letter codings with |, then we do
obtain a code, and a message such as

||_i___l]__ll
can be uniquely decoded as ‘HELP ME’.

We say that a non-empty subset C of AT has the prefiz property if
CA*T N C = ). Then we have
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Proposition 7.2.2 Let U be a submonoid of a free monoid A* and let
C = V\V? (where V.= U\ {1}) be its base. Then C has the prefiz
property if and only if U is a left unitary submonoid of A*.

Proof Suppose first that C has the prefix property, and suppose that
u,utw € U, where w # 1. That is,

C1Co ... CuW = CyCh .. . Chy,

where c¢1,¢2,...,6m, ¢}, Ch, ..., ¢, € C. By equidivisibility and the prefix
property we deduce that ¢; = ¢}, and then by cancellativity and by repeat-
ing the argument we deduce that either

Cnt1--Cpw=1 or w=d, . ...Cp,.

The former case cannot arise, since w # 1, and sow = ¢,y ...c, € U.
Conversely, suppose that U is left unitary, and suppose that cw = ¢
for some ¢, ¢/ in C and some w in AT. Then w € U by the left unitary

property, and so w = ¢1¢3. .. ¢y, for some m > 1 and some ¢y, ¢3,...,Cp in
C. Tt follows that ¢/ = ccica...cm € V™ C V2, which is a contradiction.
Thus C has the prefix property. a

It is an immediate consequence of the result, and of the remark following
the proof of Proposition 7.2.1, that a subset C with the prefix property is
a code. We call it a prefiz code. The modified Morse code described above
is a prefix code, since any element of CA* must contain the symbol | in a
non-terminal position, and so cannot lie in C. The advantage of a prefix
code is that there are no ‘false starts’ in the decoding process. By contrast,
with a code such as {c1,c2}, where ¢; = ab and ¢y = aba, which is clearly
not a prefix code, we do (for example) have a unique decoding of

ababababa

as cjcz, but we might, in reading from the left, have tried c2(?), or c?ca(?),
before hitting on the correct answer.

It is evident that suffiz codes C, with the property that C N ATC =0,
have the same advantage as prefix codes provided we are willing to read
from the right. A code, such as {ab, ba}, which is both a prefix and a suffix
code, is called a biprefiz code.

While it is easy to determine whether or not a finite set C has the prefix
property, it is not altogether clear how to discover whether or not a more
general finite set C' is a code. Various algorithms are available. We consider
only one, usually called the Sardinas—Patterson algorithm.

In describing this algorithm, it is convenient first to introduce a piece
of notation: if P, Q) are subsets of a semigroup S, then

PlQ={seS:PsnQ #0}.

As usual, if P or Q or both are singletons, we simplify the notation, writing
p'Q, P7q, p7g.
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Let C be a subset of a free monoid A*. Define subsets Dy, D1, ...
inductively by

Do=C, Dy=C7'C\{l}, D;=C"'DiyUD;\C (i>2).
Thus, for example, if C = {ab, ba, aba, bab}, then

Dy ={wec AT :CwnC # 0} = {a,b};
Dy ={weA* :CwnD; £0}U{we A* : DiwnC # 0}

= P U {a,b,ab,ba} = {a,b,ab,ba};
Dy={we A" :CwnDy#£PtU{we A : DownNC # §}

= {1} U {1,e,b,ab,ba} = {1,a,b,ab,ba};
Dy={weA*:CwnDs £ P}U{wec A*: Dswn C # ¢}

= {1} U {1, a,b,ab, ba,aba,bab} = {1, a,b, ab, ba, aba, bab};
Dy={we A" :CwnDs#0U{we A*: Dawn C # B}

= {1,a,b} U{1,a,b,ab,ba,aba,bab} = {1,a,b,ab, ba, aba, bab} = Dy,

and so D,, = Dy for all n > 4.

The fact that 1 € D3 is crucial here. The set D, gives the ‘remnants’
when we attempt a double factorization within C itself:

aba = (ab)a, bab = (ba)b.

Then Dy describes how we must multiply these remnants (a and b) to
obtain elements of C:

{aba)b = (ab)(ab), (aba)(ba) = (ab)(aba),
(bab)a = (ba){ba), (bab)(ab) = (ba)(bab).

The second and fourth of these equations give genuine double factorizations
within (C), and this is reflected in the fact that 1 € Dj.

The fact that, in our example, the sets Dy, D1, Ds, ... are not all distinct
is not an accident. If C' is a finite set, and if max{j¢c| : ¢ € C'} = m, then all
words in the sets Dy, Dy, Ds, ... are of length at most m, and so there are
at most 241" distinet sets D,,. Thus the theorem we are about to state
does give a genuine algorithm in the case where C is a finite subset. If C is
a prefix code, the algorithm determines the fact very quickly, since in this
case D1 = .

Theorem 7.2.3 Let C be a non-empty subset of a free monoid A*. Then
C is a code if and only if 1 ¢ D; for all i > 0.
Proof The key to the proof is the following lemma:

Lemma 7.2.4 Let C be a non-empty subset of A* and let n > 1 be an
integer. Then the following statements are equivalent:

(1) 1 € Dy;
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(2) for all k in {1,2,...,n} there exist i,j > O such that i +j +k = n,
and an element u of Dy, such that uC* N C7 # §;

(3) there exist k in {1,2,...,n} and i,j > 0 such that i+ j+k =n, and
an element u of Dy such that uC* N C? #£ .

Proof (1) = (2). Suppose that 1 € D,,. We prove (2) by induction on
n — k, the result being clear if n — k = 0: simply take ¢ = j =0 and u = 1.
Suppose therefore that n — & > 1, and suppose inductively that there exist
win Dy and integers i, > 0 such that i+j+k+1 = n and uC*NCY # .
Specifically, suppose that v € C*, w € C? and uv = w. Now

u € D1 = C 1Dy UDF'C,

and so either there exists ¢ in C such that cu € Dy, or there exists d in Dy,
such that du € C. In the former case,

cuv = cw € cuCt N CI T,

in the latter case, ) )
duv = dw € dC? N Y,

in either case we have found an element z (equal to cu or to d) in Dy and
integers 4/, 7 > 0 such that i + j' + k = n and 2C* N CY" # .

Since (2) = (3) is immediate, we now turn our attention to (3) =
(1). Suppose, therefore, that for some k in {1,2,...,n} there exist u in Dy
and integers 1,7 > 0 such that i + j + k = n and uC* N C7 # §. That is to
say,

ucicy ... ¢; = cich. ..
for some ¢y, ¢z, .., ¢4, €1, €, ..., ¢ in C. By equidivisibility in A*, either:
(i) u = cjv for some v in A*; or (ii) ¢} = wv for some v in A*. In case (i),
Ve O_le C Dgy1, and

VCICy .. ¢ = Ch.. . C

hence vC* N C¥~1 £ (. In case (ii), v € D;'C C Dgy1, and

C1Cz...C; = vCy. .. Cl;

hence vCI~1 N C; # §. Notice that i + (j — 1) + (k+ 1) = n.

We can repeat this argument as often as necessary, and eventually ob-
tain an element u in D,, and integers 4,4 > 0 such that i + 7 +n = n and
uC*NCI £§. Clearly i = 7 =0 and v = 1. Hence 1 € D,,, as required.

0O

Returning now to the proof of Theorem 7.2.3, suppose first that 1 € D,,.
Then, by the lemma, there exist v in Dy and integers 4,7 > 0 such that
i+J+1=nand uC*NC’ # Q. That is,

ucicy ... c; = cicy. ..
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for some c1,¢3,...,¢i, ¢}, ..., ¢; in C. Now u € Dy = C~'C'\ {1}, and
so there exist ¢, ¢/ in C such that ¢ # ¢’ and cu = ¢'. It follows that

ceicy...c; = ecich .. .cq,

and so C is not a code.
Conversely, suppose that C is not a code, so that we have distinct
factorizations within (C):
crep...ci=ccy. ..
We may assume that ¢; # ¢} and indeed that ¢; = ¢ u for some u # 1 in
A*. But then v € C~1C C Dy, and

!
UCy...C; =Cy...C

gives uC*~t N C7~1 # . Hence, by the lemma, 1 € D;y ;1. O

7.3 EXERCISES

1. Show that every completely simple semigroup is equidivisible.

2. Let at be the free monogenic semigroup. Let m,n > 0 be coprime
integers, and let U = (™, a™).
(a) Show that g™ ™ " ¢ U.
(b) Let k> mn —m —n, let s, t in Z be such that sm +¢n = 1, and
suppose, without loss of generality, that s > 0. Observing that

(ks —In)m + (kt +lm)n =k

for every 1, and choosing ! so that 0 < ks —In < n—1, show that
kt+1Im > 0.
(¢) Deduce that U contains the ideal {a* : £ > (m — 1)(n — 1)}.

3. Show, by induction on |w|, that if u, v, w in the free semigroup A*
are such that ww = wv then there exist z, £ in A* and an integer £ > 0
such that

w=2zt, v=tz, w=(zt)"z.

4. Let S be an equidivisible semigroup. Say that two elements v and v
of S are conjugate (and write u ~ v) if there exist z, y in S ! such that
u = zy and v = yz.

(a) Show that ~ is an equivalence relation.

(b) Show that, if S is a group, conjugacy has its usual meaning.

(¢) Show that, in the completely simple semigroup M[G;1,A; P],
(i,a,A) ~ (4,b, ) if and only if the elements apx; and bp,; are
conjugate in G.

(d) Show that, in the free monoid A*, u ~ v if and only if there exists
w in A* such that ww = wv.
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5.

10.

11.

12.

Let u,v € A*. Show that {u,v} is a code if and only if uv # vu. [Hint:
to prove <, let u, v {(with |u| < |v|) be such that uv # vu and {u,v}
is not a code, and suppose that v and v are chosen so that |u| + |v]
is as small as possible, and let w be a word of minimal length having
two different factorizations in (u,v).]

An element u of AT is called primitive if, for all v in AT,

u=v" = n=1and v =u.

(a) Show that every element of A™ is uniquely expressible as a power
of a primitive element.

(b) Show that every conjugate of a primitive element is primitive.

(c) Let w = uv (where u,v € AT) be a primitive word. Show that
{u,v} is a code.

Show that the free monoid {a,b}* contains prefix codes of arbitrary
finite or countably infinite cardinality.

Let C, D be prefix codes over A. Show that CD is a prefix code.

Determine whether or not the following subsets of {a,b}* are codes:
(a') {02, ab’ azb’ abz, b2};
(b) {ab?,ab,a?b,ab?a, ba?b};
(c) {ab,ab? ab?,...};
(d) {ab,a®v?,a3p%,...}.

A prefix code C is called marimal if there is no prefix code properly
containing C.
(a) Show that the ‘uniform’ code A" = {w € A* : |[w| = n} is a
maximal prefix code.
(b) Show that, if C is a maximal prefix code, then, for every w in
A*, either w has a left factor in C or some ¢ in C has w as a left
factor.

Show that a prefix code C over A is maximal if and only if

(Vw € A*) wA* N C* £ 0.

Consider the sequence (u, ) of words in {a,b}* defined by
ug=b, Us=0a, Upti = Uplp—1 (n>2).
{Thus the sequence |u,| is the Fibonacci sequence (f,):
1, 1,2 3 5,8, 13,...)

For n > 3, let v, be the left factor of u,, of length f, — 2.
(a) Show that, for all n > 4,

Un+t1 = UnUn—1.
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(b) Show, by induction on n, that, for all n > 5,
Unt1 = Ui_lvn—z-

74 NOTES

A much fuller account of free semigroups and codes can be found in Lalle-
ment (1979). See also Lothaire (1983), Berstel and Perrin (1985), and Shyr
(1991). Proposition 7.1.6 is from Lyndon and Schiitzenberger (1962), which
is also a reference for the notions of conjugacy and primitive words in Ex-
ercises 3, 4 and 6. Proposition 7.1.8 is from Levi (1944), and Proposition
7.1.9 is from Dubreil-Jacotin (1947).

Proposition 7.2.1 seems to have appeared first in Schiitzenberger (1956);
see also Shevrin (1960), Cohn (1962), and Blum (1965). The Sardinas—
Patterson algorithm (Theorem 7.2.3) appears in Sardinas and Patterson
(1953); see also Bandyopadhyay (1963), Levenshtein (1966), Riley (1967),
and de Luca (1976). An alternative algorithm, with the advantage of giving
a presentation of (C) as (C | R) when C is not a code, has been given by
Spehner (1975), and is described by Lallement (1979).

Exercise 1 is from MacKnight and Storey (1969), Exercise 5 is from
Shyr and Thierrin (1976), and Exercise 12 is from Lothaire (1983).
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Semigroup amalgams

The use of module theory in the study of rings is long established, but only
in relatively recent years has serious use been made in semigroup theory
of the non-additive analogue of a module. Perhaps surprisingly for such
a simple structure, what we shall call S-systems (where S is a monoid)
have proved a useful tool in the study of monoids and semigroups. The
particular use that we shall highlight in this chapter is the application to
amalgamation theory and related topics. The technique is available only
for monoids, but, as we shall see, it is usually possible to extend the results
to semigroups in a fairly straightforward way.

A (semigroup) amalgam will be defined more carefully below, but may
conveniently be thought of as an indexed family {S; : ¢ € I'} of semigroups
intersecting pairwise in a common subsemigroup U; thus S; N S; = U if
i # j. Effectively A = |J,c; S; is a partial semigroup: that is to say, if
z and y are members of the set then the product zy may or may not be
defined; and if z, y, 2 are in A then {zy)z = z(yz) whenever both products
are meaningful. The central question concerning a semigroup amalgam is
whether or not the partial semigroup A can be embedded in a semigroup,
that is, whether there exists a semigroup 7' containing A in which the
product of two elements is always defined and in which previously defined
multiplications within 4 take place as before. It was shown by Schreier
(1927) that a group amalgam is always embeddable in a group, but it
has long been known that a simple answer of this sort will not suffice
for monoids or semigroups. The situation is in fact much more similar
to that obtaining in ring theory, where important work by Cohn (1959)
established necessary conditions for an amalgam to be embeddable. Only
recently has the homological apparatus used by Cohn been developed in
the non-additive setting to the point where real comparisons could be made
between the ring and semigroup cases.
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8.1 SYSTEMS

Let S be a monoid with identity element 1 and let X be a non-empty set.
We say that X is a left S-system if there is an action (s,z) — sz from
S x X into X with the properties

(st)x = s(tz) (s,t €8, z € X),
le=2 (z€X).
Various alternative names have been used, such as S-act, S-set and S-
operand. We shall stick to the term ‘left S-system’, feeling free to drop one
or both of ‘left” and ‘S-’ if the context permits.

Dually, a non-empty set X is a right S-system if there is an action
(z,8) — xs from X x S into X such that

z(st) = (zs)}t {(s,t €S, z € X),
zl=z (zeX)

Also, if S and T are (not necessarily different) monoids we say that X is
an (S,T)-bisystem if it is a left S-system, a right T-system, and if

(sz)t = s(xt)

forall sin S, tin 7T and x in X.

These definitions are of course closely modelled on the definitions of
left modules, right modules and bimodules. We shall often find it useful to
express the statement that X is a left S-system by writing X € S-Ens. The
meanings to be attached to the statements X € Ens-S and X € S-Ens-T
are clear by analogy. (The use of E~s, an abbreviation of the French
ensemble, is fairly standard in this context.)

Remark If S is a commutative monoid then there is no distinction be-
tween a left and a right S-system. For if X € S-Ens we may define a right
action * of S on X by

zxs=szx (zeX, s&f).
Then certainly z = 1 =z for all z. Also, for all 5,¢in S,
z * (st) =z * (ts) = (ts)x =t(sz) = (x * s) * t.
Indeed we can regard X as an (5, 5)-bisystem, since for all z in X and s,
tin S,
(sz) * t =t(sz) = (L8)z = (st)x = s(tx) = s(z * t).

It is clear that any set X whatever can be regarded as a ({1}, {1})-
bisystem, where {1} is the trivial monoid. It will therefore occasionally be
convenient to state and prove results for {5, T')-bisystems, deducing results
regarding one-sided systems by taking either .S or 1" as the trivial monoid.
At other times it will be sufficient to consider the case of a left S-system,
since the analogous results for systems of other kinds will be obvious.
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Systems are algebras of a very rudimentary kind, but much of the stan-
dard apparatus of abstract algebra applies to them. We shall give the
merest sketch. A subsystem of a left S-system X is a subset Y of X with
the property that (in an obvious notation) SY C Y. By a morphism (or
S-morphism or S-map) from a left S-system X into a left S-system Y we
mean a map ¢ : X — Y with the property that

(sz)p = s(zg) (s€ S, zeX).

A congruence on a left S-system X is an equivalence on X with the property
that, for all z, y in X and all sin S,

Tpy = ST pSY.

The quotient X/p then inherits a left S-system structure by means of the
definition

s(xzp) = (sz)p,

and there is a morphism p! : S — S/p defined by the rule that zp? = zp
for every z in X.

Since the intersection of any non-empty collection of congruences is a
congruence, the notion of the congruence R# generated by a given relation
R is available here, just as in the theory of semigroup congruences (Section
1.5). If, by analogy with the definition in Section 1.5, we define R° to be

{(sa,sb): s € S, (a,b) € R},
then it is not hard to prove that, in the notation of that section,
R* = (R%)".
In more elementary terms, we have that (z,y) € R# if and only if either
x = y or for some n > 1 there is a sequence
T = s1a1 — S1b1 = 82a9 — S9be = s3a3 — -+ — S, = v,
in which each (a;,b;) belongs either to R or to R™1.

Example 8.1.1 Every monoid S is an (5, S)-bisystem, where the actions
of S on § are defined by means of the multiplication.

Example 8.1.2 If U is a submonoid of S then S is a (U, U)-bisystem in
the obvious way. ‘

Example 8.1.3 If ] is a left ideal of S then I € S-gns.

Example 8.1.4 If A is a left congruence on S then there is a well-defined
action of S on S/A given by s(zA) = (sz)A. With this definition, S/A &
S-ENS.

Example 8.1.5 Let U be a submonoid of a monoid 5. Then the Rees
quotient S/U (consisting of U, considered as a single element, and of the
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elements of S\ U) inherits the structure of a monoid if U is an ideal. If
U is not an ideal then this is not necessarily the case. What does always
happen is that S/U has the structure of a left U-system: we define, for u
inU and sin S\ U,

us, the product in S, if us ¢ U,
U otherwise,
ull =U.

By making analogous definitions for a right action one can show that S/U €
U-ens-U.

More generally, for every U-system X, and for every U-subsystem Y of
X, we can define X/Y as the quotient of X by the equivalence (Y xY)Ulx
and define an inherited U-system structure in a natural way.

Example 8.1.6 Let S = Tx, the full transformation semigroup on a non-
empty set X. Then we may regard each « in 7x as acting on elements
of X on the right. Denoting the identity element idx of Tx by 1, we see
that z(af) = (za) 8 for every z in X and for every a and § in S, and that
zl =z for every z in X. Thus X € Ens-S.

More generally, if T is any submonoid of Tx then in the same way X
may be regarded as a right T-system. There is, however, a distinction
between the statements ‘X is a right T-system’ and ‘7T’ is a monoid of
mappings from X into X, for in the latter case we have the implication

(Ve X)za=2zf] = oa=0

and this may fail to be the case for a T-system in general. See Exercise 1
for further comment on the relation between the two ideas.

It is clear that the cartesian product X x Y of a left S-system X and
a right T-system Y becomes an (S,T)-bisystem if we make the obvious
definitions

s(z,y) = (sz,y), (z,y)t = (z,yt).

Now we introduce a construction that is crucially important in homolog-
ical algebra (see Rotman (1979)) but which here appears in a non-additive
version. Let A € T-Ens-S, B € S-gns-U and C € T-ens-U. By the
remark in the last paragraph we may give A x B the structure of a (T, U)-
bisystem. A (T,U)-map 8 : A x B — C will be called a bimap if, for all a
in A, sin S and b in B,

(as,b)8 = (a, sb)p. (8.1.1)

A pair (P, ) consisting of a (7', U)-bisystem P and a bimap ¢ : AxB — P
will be called a tensor product of A and B over S if for every (T,U)-
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bisystem C' and every bimap §: A x B — C there exists a unique (7, U)-
map [ : P — C such that the diagram

Ax B P

5 /
B

c (8.1.2)

commutes. This holds in particular in the case where C' = P and 8 = v,
in which case the appropriate unique g is 1p:

Ax B

P

¥

1p

P (8.1.3)

This trivial remark will be useful in proving the following lemma:

Lemma 8.1.7 If a tensor product of A and B over S exists, then it is
unique up to isomorphism.
Proof Suppose that (P,), (P',') are tensor products of A and B. Then
by putting C = P’ in the diagram (8.1.2) we find a unique ¢’ : P — P’
such that ¢’ = ¢’. Then by substituting P’ for P in (8.1.2) and putting
C = P we find a unique % : P’ — P such that ¥/ = . Thus 99’y = 1,
and so the diagram

Ax B

P

(4

<
=Y

P

commutes. Hence, by the uniqueness property in the diagram (8.1.3),
Y'p = idp. By a similar argument, ¢’ = idp:, and so P ~ P’ as re-
quired.
jm|
We must now assure ourselves that a tensor product exists. Let us
define A ®g B to be (A x B)/7, where 7 is the equivalence on A x B
generated by the relation

T = {((as,b),(a,sb)) :a€ A, be B, s §}.

This is a non-additive modification of a classical construction in module
theory. (See Rotman (1979).) We denote a typical element (a, b)7 of A®s B
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by a ® b, and note that by the definition of 7 we immediately have that
as@b=a®sbforallain 4, sin S and bin B. Then we have

Proposition 8.1.8 Two elements a®b and c®d in AQgB are equal if and
only if either (a,b) = (¢, d) or there exist ai,...,an_1 M A, by,...,by_1 in
B, s1,...,8n, t1,...,tn—1 in S such that

a=aisy, 81b =110,
at; = azs2, 89by = taba, (8.1.4)
ait; = Gi418i+1, Sit1bi = tig1bit (2 =2,...,n—2), o
An—1tn—1 = CSn, Spbp—1 =d.

Proof Suppose first that we have the given sequence of equations. Then

a®@Rb=a15;b=a; ®s1b=a1 Q1

= a1t @by = 282 @ by = as @ s9b1 = ag @ taby

= p-1tn_1® b1 =8, ® bn——l =c® Snbn—l =cQ®d.

Conversely, suppose that a ® b = ¢ ® d. Then by Proposition 1.4.10 there
is a sequence

(avb) = (P17QI) - (p27Q2) e (pnyqn) = (C, d)

in which for each i € {1,...,n — 1} either ((ps, @), (Pit1,4¢i+1)) € T or
((Pi+1,di+1), (Pi, @) € T. At each transition, an element of S either moves
right, as in (as,b) — (a,sb), or moves left, as in (a,sb) — (as,b). Two
successive ‘move right’ transitions, such as

(as,b) — (a,sb) = (a's’, sb) — (a', s'sb),
can be combined into a single transition
(as,b) = (a's's,b) — (a', s'sb).

The same applies to two successive ‘move left’ transitions, and so we may
assume that the ‘move right’ and ‘move left’ transitions alternate. We
may also suppose that the sequence begins and ends with a ‘move right’
transition, since otherwise we can tack on ‘move right’ transitions in which
the moving element of S is the identity element. a

Recall now that we have assumed that A € T-Ens-S and B € S-Ens-U.
From the equations (8.1.4) it is clear that from ¢ ® b = c®d we can deduce
that ta @ b=tc® d for all ¢ in T, and that a ® bu = ¢ ® du for all u in U.
Hence we have
Corollary 8.1.9 The equivalence T is a (T',U)-congruence on A x B. O

Consequently A ®g B inherits the (T, U)-bisytem structure of A x B,

and
Ha®b)=(ta)®b, (a®@bu=a® (bu). (8.1.5)
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Next, we have
Proposition 8.1.10 Let A € T-Ens-S, B € S-Ens-U. Then (A®gB,T")
is a tensor product of A and B over S.

Proof It is clear that 77 is a bimap. Now let C € T-Ens-U, and let
£:Ax B — C be abimap. Define 8: AQg B — C by

(a®@b)g={(a,b)8 (a€ A, be B).

To prove that this is a well-defined map, suppose that a ® b = c® d. Then
we have a system of equations as in (8.1.4), and it follows that

(a,0)8 = (a151,b)8 = (a1,51b)8 = (a1,t101)
= (a1t1,b1)B = (@252,b1)8 = (a2, 52b1)0 = (a2, t2b2)B = (asts, b2)f
= (an—-ltn—l,bn—l)ﬁ = (csnybn—l)i@ = (C, Snbn——l)ﬂ = (C, d)ﬂ,

hence (a ® b)3 = (¢ ® d)f3 as required. It is now routine to establish that
G is a (T, U)-map, that the diagram

Th
AxB—— A®sB

B 4
B
C
commutes and that 3 is unique with respect to these properties. a

We shall often simply refer to A ® g B as ‘the tensor product of A and
B over §’, dropping explicit reference to the associated bimap 7%.

We can generalize the notion of tensor product to the case of three (or
indeed more) bisystems. Let A € S-ens-T, B € T-Ens-U, C € U-ENs-V
and D € S-Ens-V. An (S,V)-map v: Ax B x C — D is called a trimap
if,forallain 4, bin B,cin C,¢tin T and u in U,

(at? b? C)’y = (a'7 tb’ C)PY, (a? bu’ c)’y = (a', b’ uc)’)/'

Then a pair (P,v), where P € S-Ens-V and ¢ : A x B x C is a trimap,
is said to be a tensor product over T and U of A, B and C if for every
(S, V)-bisystem D and every trimap v : A x B x C' — D there is a unique
(S,V)-map 5 : P — D such that the diagram

Ax BxC

P
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commutes. An argument closely similar to that used in the proof of Lemma
8.1.7 establishes that the tensor product is unique up to isomorphism. One
candidate for such a tensor product is ((4 ®7 B) ®@u C,), where

(G,, b, CW = (a®b) ® c.

Using (8.1.5) one may easily verify that 1 is a trimap. Given a trimap
v:Ax B xC — D, we can attempt to define ¥: (A®r B) ®y C — D by

((a®b) ®c)¥ = (a,b,c)y. (8.1.6)

Fa®b)®@c=(a’ @) ®c then there is a sequence of transitions from
(a,b,c) to (a’,b',¢') based on moves of the types

(at,b,c) = {a,th,c), (a,bu,c} = (a,b,uc).

The trimap property of v means that each such move can be duplicated on
the right-hand side of (8.1.6); hence (a,b,c)y = (d/,¥,¢')y, and the map
given by (8.1.6) is therefore well-defined. It is now routine to show that
% is an (S, V)-map, that ¢ = v , and that ¥ is unique relative to these
properties.

A very similar argument shows that A ® ¢ (B ®p C), together with the
obvious trimap (a,b,¢) — a ® (b® ¢), is also a tensor product of A, B and
C. Hence we have

Proposition 8.1.11 Let A € S-Ens-T, B € T-ens-U, C € U-Ens-V.
Then (A®T B)Quy C ~ A®r (B®y C). o

Since the isomorphism sends (a®b) ®c to a @ (b® ¢), we may from now
on safely use notations such as AQr By C and a®b®c.

8.2 FREE PRODUCTS

Given an indexed family {S; : 1 € I} of pairwise disjoint semigroups, we
show how to form a semigroup F = II*{S; : i € I}, the free product of the
family {S; : ¢ € I'}. It is helpful first to introduce the following notational
device: if a € |J{S; : ¢ € I} then there is a unique k in I such that a € Sk;
we refer to k as the index of a and write k = o(a).

Now let I consist of all finite ‘strings’

(a’l,a'Qa e ’am)a

where m (> 1) is an integer, where a, € | J{S;: i€ I} forr=1,2,...,m
and where o(a,) # o(ary1) forr=1,...,m — 1. Let a = (a3,a2,...,0m)
and b = (b1, bs,...,b,) be elements of F. Then we define the product of a
and b in F by
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b1,ba,. .., by) if o(an) # o(b1)
b= (011’0'27 s Om, 01, 02, »Un . ™m 89.1
a {(al,az,...,ambl,bg,...,bn) if o(am,) = o(by). ( )
It is a routine matter to check that if
a=(a1,a2,...,8m), b=(b,ba,...,by), c={(c1,c2,...,¢p)

are in F', then (ab)e = a(bc). Four distinct cases arise, depending on
whether o(a,,) equals or does not equal ¢(b;) and whether o(b,,) equals
or does not equal o{c1), but no difficulties are encountered. Indeed it is
worth noting that the verification of associativity here is considerably easier
than in the corresponding group-theoretic construction—see, for example,
Kurosh (1956). It must be emphasized that if the semigroups S; are all
groups then the semigroup F = I1*{S; : ¢ € I'} we are describing here is not
the free product of the groups S; as normally understood in group theory.
Indeed, it is not even a group. This is because in the group free product
all the identity elements of the individual groups are identified, whereas in
the semigroup free product they remain distinct. For the same reason, F'
is not a monoid even if all the semigroups S; are monoids. We shall see
shortly how to derive the momnoid free product from F'.

We have established that F is a semigroup. Among the elements of F
are strings (s;) of length one, where s; € S;. In fact F is generated by
strings of length one, since

(al,ag, cen ,am) = (al)(a2) e (am)
for every (a1,0a2,...,an) in F. It is customary to leave out the brackets in
writing down a string of length one, and hence to regard F as consisting
of finite non-empty words in the alphabet [J{S; : i € I'}. Multiplication of
words a1as...am and bibs...b, is then simply a matter of juxtaposition

if o(am) # o(by):
(a1G2...am)(biba...by) = a1aa...Qmbiba.. by,
while if o(an,) = o(b1) = ¢ (say), then
(a1a2...am)(biba...by) = a102...am_1¢by ... by,

where ¢ is the product in S; of a,, and b;.

If the context ensures that no confusion will arise, we shall abbreviate
IT*{S, : i € I} to I1*S;. Also, if I is finite—say I = {1,2,...,n}—we shall
often prefer to write Sy * Sy % --- % .S, for the free product II*{S; : ¢ € I'}.
The crucial property of free products is contained in the following result:

Proposition 8.2.1 Let F =TI*{S; : i € I} be the free product of a family
{8; 1 i € I} of disjoint semigroups. Then for each i in I there exists a
monomorphism 8; : S; — F given by

8i0; = (s5) (85 € S4),
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associating the element s; of S; with the one-letter word (s;). If T is a
semigroup for which there is a morphism v; : S; — T for each i then there
s a unique morphism v : F — T with the property that the diagram

0;

S F

Yi

T (8.2.2)

commutes for every i in I.
Proof We shall frequently wish to drop the distinction between s; and
8;8; = (s;), and to regard S; as a subsemigroup of F.

If T and the morphisms v; (i € I} are given, we define v : F — T by

(ala2 cee @m)’Y = (alwo(al))(a2¢0(a2)) cee (amz/)a(am))~
Since the expression on the right is a product of elements of T, we conclude

that v maps F' into T. To show that v is a morphism, let a = a1a2...a,,
and b = b1by ... b, be elements of F. Then if o{an,) # o(b1),

a162 ... ambiba.. . by)y

(ab)y = (
(alwa(al)) (amd)o(am))(blwa(bl)) ce (bn’(/jo(bn))
=
= (

(a1%0(a1)) - - - (@mPo(am) | [(B1%0(61)) - - - (bnPo(s,))]
ay)(by),

while if o(a,,) = o(b1) = ¢ (say) and a,,b1 = ¢ in S;, then

(ab)y = (a1ag. .. Gm_1Cba. .. bp)Y

= (@1%s(a1)) - - - (Bm=1Yo(am—_1)) (W) (b2Vo(bs)) - - - (PnPo (b))

= (a1%0(ay)) - - - (@m-1¥o(am_1)) (@m¥s) (b19:) (b2¥o(sy)) - - - (OnPo(b,))
(since v; is a morphism)

= [(@1%0(a)) - - - (amWPo(@m))[(01%a(51)) - - - (Puo(b,0))]

= (am)(bY)-

To see that the diagram (8.2.2) commutes for every i, observe that the
definitions of 8; and ~ imply that

8:(0i7) = (8i0i)y = (8i)7 = ¥

for every s; in S;. Hence 8,y = v;, as required.

The uniqueness of v follows from the fact that F' is generated by words
of length one. If v is to make the diagram (8.2.2) commute then we must
have (s;)y = s;1; for every s; in S; and every i in I. Then, if v is to be a
morphism we must have

(a1a2...am)y = ((al)fy) ((ag)'y) ... ((am)'y)
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= (alwa(al))(azwa(az)) v (a'm":ba(am))

for every aias...an, in F. That is, v must be exactly as we defined it.
O
The property described in Proposition 8.2.1 does in fact characterize
the free product. More precisely, we have

Proposition 8.2.2 Let {S; : i € I} be a family of semigroups, and let H
be a semigroup such that

(1) there exists a monomorphism o; : S; — H for each i in I;

(2) if T is a semigroup and if there exists a morphism B; : S; — T for
every i in I, then there exists a unigue morphism 6 : H — T such that

the diagram
o

S; H

B

T

commutes for every ¢ in I.
Then H is isomorphic to F =II*{S; : i € I'}.

Proof From the property of F established in Proposition 8.2.1, applied
to the case when T' = F and 9; = 0; (i € I), there is a unique morphism
F — F making the diagram

0;

S; F

0;

F

commute for every ¢ in I. It is evident that the identity map 1 has this
property, and so by uniqueness it is the only morphism from F' into F'
having the property. By the same token, the identity map 1 is the only
morphism from H into H with the property that the diagram

Q;
S;

H

(&7
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commutes for every . Now we apply Proposition 8.2.1 with 7' = H and
¥; = o; (¢ € I) and obtain a morphism ~ : F — H such that the diagram

F

H (8.2.3)

commutes. Then by the assumed property of H, with T = F and
B; = 6; (i € I) we obtain a morphism § : H — F such that the dia-
gram

H

F (8.2.4)
commutes. It follows that
91")/6 = aié = 91', ai&y == 91")/ = ;.

That is, if we ‘tack together’ the diagams (8.2.3) and (8.2.4) in both of the
possible ways we obtain commutative diagrams

0i a;
S; F S — H
Gi (679
v6 b
H

for every ¢ in I. From our earlier remarks about uniqueness we now imme-
diately deduce that v6 = 1p, 6y = 1y. Thus v and é are mutually inverse
isomorphisms, and H ~ F' as required. a

The conclusions of Propositions 8.2.1 and 8.2.2 can be summarized by
saying that F = II*S; is the unique coproduct, in the sense of category
theory, of the objects S;. (See, for example, Mitchell (1965).)

We turn now to the more complex situation that faces us when we
consider a semigroup amalgam. The intuitive definition given in the in-
troduction is not now precise enough, and so we begin by giving a more
careful definition as follows. A (semigroup) amalgam

.AZ[U,{SIZGI},{¢ZZ€I}]
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consists of a semigroup U (called the core of the amalgam), a family {S; :
t € I} of semigroups disjoint from each other and from U, and a family of
monomorphisms ¢; : U — S; (i € I). We shall simplify the notation to
A = [U; S,; ¢;] when the context allows.

The amalgam A = [U; S;; ¢;] is said to be embedded in a semigroup
T if there exist a monomorphism A : U — T and, for each ¢ in I, a
monomorphism A; : S; — T such that

(a) ¢;A; = A for each i in T

(b) S;xiNS;A; = UM for all 4, j in I such that ¢ # j.

v % s

& s

Sj )\j r
The earlier intuitive definition differs from this only in that all the mono-
morphisms are regarded as inclusion maps.

The free product I1};S; of the amalgam A is defined as a quotient semi-
group of the ordinary free product II*S; in which for each i and 7 in I the
image u¢; of an element u of U in S; is identified with its image u¢; in
S;. More precisely, if as before we denote by §; the natural monomorphism
from S; into II*S;, then we define P = II};S; to be (II*S;)/p, where p is
the congruence on II*S; generated by the subset

R= {(uqﬁﬂz,u@ej) U € U} (8.2.5)

of (I1*S;) x (I1*S;).

It is clear that for each ¢ in I there is a morphism pu; = Qiph from S;
into P. It is also clear from the definition of p that we have a commutative
diagram

b

U

S;
&; s

S;

P

Hj
for every ¢ and j. So there exists a morphism p : U — P such that ¢;u; = p
for every ¢ in I. Since Uy C S;u; for every 4 in I, we necessarily have that
Up C S;u;NS;p; for all ¢ and j. Hence the amalgam A is embedded in its
free product P if and only if

each p; is one-one; (8.2.6)
Sips NSy € Up for all 4, j in I such that ¢ # j. (8.2.7)



264 Semigroup amalgams

If conditions (8.2.6) and (8.2.7) hold, we say that the amalgam A is
naturally embedded in its free product. We shall see shortly that if an
amalgam is embeddable at all then it is naturally embedded in its free
product. First, however, we have

Proposition 8.2.3 If A = [U;S;;¢;] is a semigroup amalgam, then the
free product P =11},S; is the ‘pushout’ of the diagram {U — S;}ier. That
18:

(1) there exists for each ¢ in I o morphism p; : S; — P such that the
diagram {U — S; — P}icr commutes, that is, such that ¢;p; = ¢;u;
foralli and j in I;

(2) if Q is a semigroup for which morphisms v; : S; — Q exist such that
iy = ¢v; for all i and j in I, then there exists a unique morphism
6 : P — Q such that the diagram

223

S P

(8.2.8)

commutes for each i n I.

Proof Property (1) has already been observed. To see that (2) holds,
notice that by Proposition 8.2.1 there is a unique morphism v : F — @Q
such that

is a commutative diagram for each ¢ in I. If 4, j € I then, for all u in U,
ug;biy = udiv; = ug;vy = ud;;7;

hence (u¢if;, ug;0;) € vo~y~ 1. Recalling formula (8.2.5), we deduce that
R C v o~ %; hence, since y o ¥~} is a congruence,

p=R# Cyoy~l.
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By Theorem 1.5.3 it follows that the morphism v : F' — @ factors through
P = F/p, that is, there is a unique morphism § : P — @ such that the
diagram

P
F

p

Q

commutes. It now follows from the definition of u; and from the commu-
tativity of these two diagrams that

1i6 = 6;p"6 = By = v;

for each ¢ in I; hence the diagram (8.2.8) commutes as required. O

From this we can readily deduce

Theorem 8.2.4 The semigroup amalgam
A=[U;{S;:iel};{¢;:iel}

is embeddable in o semigroup if and only if it is naturally embedded in its
free product.

Proof One way round this is obvious. Suppose therefore that 4 is em-
bedded in a semigroup T, so that there exist monomorphisms A : U — T,
Ai 0 S; = T (i € I) such that ¢;A; = A for every 4 in I and such that
SiAi N S;A; = UX whenever ¢ # j. By Proposition 8.2.3 there exists a
unique morphism 6§ : P — T such that

T

is a commutative diagram for each ¢ in I. It follows that each u; is a
monomorphism, since for all x, y in S;

Ty = Yy = TP = Ypib = X =yYA; = T =1,

Suppose now that i # j and that z = s;u; = s;u; € S;uiNSjp;. Then 26 =
Siﬂié = §;A; € S;A;, and similarly z6 € SjAj. Thus z6 € Si)\iﬂSjAj = U,
and so there exists u in U such that 6 = uX. That is,

SiAi = 87;[1@(5 =26 = u\ = ’u¢7)\7,
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Since A; is by assumption a monomorphism, it follows that s; = u¢;, and
SO & = sip; = udip; € Up. We have shown that both (8.2.6) and (8.2.7)
hold. Thus A is naturally embedded in P as required. O

One case of a free product II}; S; deserves special mention. If the semigroups
S; are all monoids with identity elements 1; and if U = {1} then II},S; is
the monoid free product of the monoids S;. This consists in effect of the
element 1 together with all words a;ay ... a4 in the free product II*S; for
which each a, belongs to some S; \ {1;}. Notice that the monoid free
product of a family of groups is the same as their group free product.

8.3 DOMINIONS AND ZIGZAGS

The ideas of tensor product and free product (with amalgamation) intro-
duced in the last two sections have no very obvious connection, but even-
tually we shall see that the two ideas are closely linked. In this section we
get the first hint of a connection, arising from an idea that seems at first
entirely different.

If U is a submonoid of a monoid S and d € S, then, following
Isbell (1966), we shall say that U dominates d if for all monoids T" and
all (monoid) morphisms 8,v: S5 — T,

[(Vue U)up =uy] = df =dy.

More informally, U dominates d if any two morphisms of S that coincide
on elements of U coincide also on d. The set of elements dominated by U
is called the dominion of U in S and is written Domg(U). It is clear that
U C Domg(U). Also, Domg{U) is a submonoid of S. For suppose that
d,d" € Domg(U) and that 8,7 :S — T are such that v8 = uy for all w in
U. Then df = dvy and d'8 = d'v, and so

(dd")B = (dp)(d'B) = (dy)(d'y) = (dd')y;

hence dd' € Domg(U).

Since the mapping U +— Domg(U) is a closure operation in the sense
that is usual in algebra — see Exercise 2—we say that U is a closed sub-
monoid of $ if Domg(U) = U, while if Domg{U) = S we say that U is
a dense submonoid of S. Both types of submonoid can arise, and it is

possible also to have
U C Domg(U) C S.

See Exercise 6.

The idea of a dominion is closely linked to that of an epimorphism.
According to the general theory of categories, a monoid morphism o : § —
T is an epimorphism if, for all monoids U and all morphisms 3,v: 7 — U,

af=ay = B=1.
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It is easy to see that if « is onto then « is an epimorphism, and in the
category of groups one has the converse result that every epimorphism is
onto. In the category of semigroups or of monoids, however, this is not the
case: indeed it is easy to see that o : S — T is an epimorphism if and only
if Domp(ima)=1T.

It is of course potentially very hard to discover whether or not a given
element belongs to the dominion of a submonoid, since the definition of
dominion involves phrases such as ‘for all monoids’ and ‘for all morphisms’.
For this reason it is important to characterize the notion of dominion in
some more accessible way. With this end in view, consider a monoid S
and a submonoid U of S, and let S’ be an isomorphic copy of .S, disjoint
from S. To be more specific, let @ : S — S5’ be an isomorphism, and
for each s in S let us write sa as s'. We now examine the amalgam
A =[U;{S,5}; {t,alp}], where ¢ is the inclusion map from U into S. We
show that this amalgam is weakly embeddable, which means precisely that
it satisfies (8.2.6) but not necessarily (8.2.7). More formally, we have the
following result, in which 8 : § — S+ S and ¢ : S’ — S % §' are the
standard inclusion maps, and the congruence p on S * S’ is generated by

{{(ub,uat’) : u € U}.

Proposition 8.3.1 Let S be a monoid and let U be o submonoid of S. Let
S’ be a monoid disjoint from S and let o : S — S’ be an isomorphism. Let
P=25xy S =(S%95")/p be the free product of the amalgam

A=1U;{S,9}; {t,alp},

where ¢ is the inclusion map of U into S. Then both the natural maps
w:S— P,y 8 — P defined by

su=(s8)p, s =(9)p (se8, se)

are monomorphisms.

Proof Certainly we have a commutative diagram

U S
aly Ju
s’ ; P (8.3.1)
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We also have a commutative diagram
L

U

a|U (04

S —
1
and so, by the pushout property of the first diagram (more precisely, by
Proposition 8.2.3) there is a unique morphism 6 : P — 8’ such that the
diagram

P S
I b o
§ =5 (8.3.2)

commutes. From this it readily follows that p and u’ are monomorphisms,
for if 51,589 € S then

S1l = Soft = S16 = Soud = s1x = Sax = 81 = S,
and if s}, s5 € S’ then
sip' = shy! = syp'd =shy's = s| = sbh. O
It is natural now to ask whether the amalgam A = [U; {S,5'}; {t, olv }]

has the second property (8.2.7) required for embeddability. In general it
does not. In fact Isbell (1966) proved the following result.

Theorem 8.3.2 Let S be a monoid and let U be a submonoid of S. Let
S’ be a monoid disjoint from S and let o : S — S’ be an isomorphism. Let
P =38 xy S’ be the free product of the emalgam

A=[U;{8,5}{s, alv}l,

where ¢ 18 the inclusion map of U into S, and let p, u' be the natural maps
from S, S, respectively, into P. Then

(Spn &t = Domg(U).
Proof The commutativity of the diagram (8.3.1) ensures that the mono-

morphisms g : S — P and oy’ : S — P have the property that up = uap’
for every v in U. Hence for every d in Domg(U) we have

du =dop' € SunS'y'.
Thus Domg(U) C (Sun Sy )u~t.
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To show the opposite inclusion, consider an element d in (SunS'w)u1.
Then there exists s’ in 7 such that du = s'y/, and from the commutativity

of the diagram (8.3.2) it follows that
s’ =&'y'6 = dué = da.

Now let T be a monoid and let §: § — T and v : S — T be morphisms
such that u8 = wy for all 4 in U. Then the diagram
L

U S
aly B
i T

-1
a Ty
commutes and so, by Proposition 8.2.3 there exists a unique £ : P — T
such that

p—t g
s ¢ B
§ —— T

v

commutes. Hence
dp = dué = sl'u,,g = da/},’& = daa“lﬂy = dr,
and so d € Domg(U). o

While Theorem 8.3.2 provides an interesting characterization of the
dominion, and an interesting connection with amalgamation theory, it may
still be very hard to determine whether or not a given element d of S belongs
to (SuN S )u~1. We proceed now to find a more usable characterization
of the dominion.

The following result is due in essence to Isbell (1966), but we present
it in a form due to Stenstrém (1971).

Theorem 8.3.3 Let U be a submonoid of a monoid S and letd € S. Then
d € Domg(U) if and only if d®1 = 1®d in the tensor product A = SQy S.

Proof Suppose first that d®1 = 1®d, and suppose that we have a monoid
T and morphisms 3,7 : S — T such that 48 = wy for all w in U. We may
regard T as a (U, U)-bisystem if we define

ut = (up)t(= (uy)t), tu=rt(up)(=tuy)).
Define ¢ : 8§ x S — T by the rule that
(5,8 = (sB)(s"y) ((s,5") € Sx ).
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Then ¢ is a (U, U)-map, and is even a bimap (in the sense of Section 8.1),
since, for all s, s’ in S and all u in U,

(su, ") = ((su)B)(s™y) = (s8)(uB)(s"7)
= (s8)(u)(s"y) = (s8)((us')) = (s,us')p.
It follows that the map 9 factors through the tensor product S®y S. That
is to say, there is a map ¢ : S ®y S — T such that
(s® s = (s,8)9 = (s8)(s7)
for all s® s’ in S ®y S’. Now, our assumption is that d® 1 = 1 ® d, and
it now follows that
df = (dB)(17) = (de@ 1)y = (1®d)¢ = (18)(dy) = dr.
Thus d € Domg(U) as required.
To prove the converse, notice first that we can regard A = SQ®y S as
an (5, S)-bisystem in an obvious way:
s(z@y) =s52Qy, (z@y)s=z®ys (z,y,5€5).
Let (Z{A),+) be the free abelian group on the set A, that is to say, the
set of all finite linear combinations Y z;a; of elements of A with integral
coefficients, and with the obvious addition. (More formally, we could regard
Z(A) as the set of all maps ¢ : A — Z such that a¢ = 0 for all but finitely
many ¢ in A, and define ( + 7, —( by
a((+7)=al+ar, a(()=-a{ (a€A))

The abelian group Z(A) inherits a natural (5, S)-bisystem structure from
A if we define, for s in S and > z;a; in Z(A),

S(Z 2i04) = Z zi(sa;), (Z 204) 8 = Z zi(a;s).
Indeed, Z(A) comes close to being a bimodule, since
sfz+y)=sr+sy and (z+y)s=zs5+ys (8.3.3)

for all s in S and all z, y in Z(A). (It is not actually a bimodule, since S
is not a ring.)
We now define a binary operation on S X Z(A4) by the rule that
(2, 2)(¢:y) = (g, py + 29)-
(Notice that this is in essence the rule for the addition of fractions z/p and
y/q.) Certainly the operation is associative, since from the bisystem laws
in Z(A) and from (8.3.3) we have that
[(p, 2)(q,9)](r, 2) = (pa, py + zq)(r, 2) = ((pQ)r, (P9)2 + (PY + z)7)
= (p(qr), p(az +yr) + z(ar)) = (p,z)(qr, gz +yr)
= (p,2)[(¢, ¥)(r, 2)]-
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In fact S x Z(A) is a monoid with identity (1,0).

Suppose now that d € Domg(U). We consider two morphisms £, v from
S into S x Z{A), and show that they coincide on elements of U. First, it
is easy to verify that 3, defined by

sf = (370) (S € S)»
is a morphism from S into S x Z({A). Less obviously, so is 7, where
sy=1(5s01-1Qs) (s€).

To see this, notice that we may write s® 1 -1®s as sa—as, wherea = 1®1.
Then observe that
(87)(ty) = (s,5a — as)(t, ta — at) = (st, s(ta — at) + (sa — as)t)
= (st, (st)a — a(st)) = (st)7.
fueUthenu®l =1Quin A = SQy S, and so u8 = wy. Since
d € Domg(U) it follows that d8 = dy, and so d® 1 = 1 ® d, as required.
O
Stenstrém’s version of the theorem has the advantage of showing the
strong analogy between the monoid result and the corresponding result
for rings. When it comes to applications of the result, however, it is the
original version due to Isbell that is the more useful. In effect we recover

Isbell’s (1966) version by applying Proposition 8.1.8. If U is a submonoid
of a monoid S, then a system of equalities

d = z1u1 U1 = V1Y
Ti—1Vi—1 = T3U4 UiYi—1 = VY4 (’& = 2, vy — 1) (834)
Tm—1Um—-1 = Um UmYm—1 =d
in which
ULye oy Uy Voo s Un—1 € U
and
T1,X2y -+ 3 Tm—1Y1, Y2y -+ -y Ym—1 € 57

is called a zigzag of length m in S over U with value d. By the spine of the
zigzag we mean the ordered (2m — 1)-tuple (u1,v1,u2,v2,...,U%n). Then
we have Isbell’s Zigzag Theorem for Monoids:

Theorem 8.3.4 IfU is a submonoid of a monoid S then d € Domg(U) if
and only if either d € U or there exists a zigzag in S over U with value d.
O

In fact Isbell’s theorem applies to semigroups as well as to monoids,
and we shall want to make use of it in that form. To obtain the semigroup
theorem we begin by adjoining an identity element 1 to S whether or not
it already has one. If we call the resulting monoid S* and write U U {1}
as U*, then we easily verify that an element d in S\ U is in Domg(U) if
and only if it is in Domg-{U*), and hence if and only if d®1 = 1®d
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in the tensor product S* ®y+ S*. Then to obtain the Isbell theorem we
simply observe that zigzags in which the extraneous element 1 appears can
be shortened. For example, if u; = 1, then the equalities

Ti—2VU;—2 = Ti—1Ui—1  Ui—1Y5—2 = Vi—1Yi—1
Ti—1Ui—1 = TiUy UiYi—1 = Vil
TV = Ti41Ui41 Uit 1Yi = Vit1Yit1
can be collapsed to

Ti—2Vi—2 = Tjm1Ui—1  Uj-1Yi—2 = Vi—1VsY5
Li1Vi—1V; = Tip1Ui41 Uit-1Yi = Vit1Yit+1-
Slightly less obviously, if some x; is equal to 1, suppose that xj is the
first such z;. If £ = 1 then d = xyu1 = u; € U. So suppose that k£ # 1, so
that z1,...,25x-1 are all in S. Then

d = ZT1u; = T1V1Y1 = TaUoY1 = TaValY2 = T3U3Y2
== TRUgYk—1 = UkYk-1, (8.3.5)
and so
d = Z1U1 Uy = N1y
T1V1 = TU2 UgYr = V2Y2

Th—1Vk—1 = Uk UkYk—1 = d

is a zigzag of length k with value d in which every z; is in S.

So we may suppose that in the zigzag (8.3.4) all the s and us are in
S. If some y; is equal to 1, then an argument very similar to the one just
employed, in which we consider y as the last occurrence of 1 among the
ys, leads to a zigzag in which all zs, ys and us are in S.

We thus have Isbell’s Zigzag Theorem for Semigroups:

Theorem 8.3.5 If U is a subsemigroup of a semigroup S then d €
Domg(U) if and only if either d € U or there exists a zigzag in S over
U with value d. O

We conclude this section with one application of the Zigzag Theorem.
This and other applications can be found in Howie and Isbell (1967). A
semigroup U is called absolutely closed if Domg(U) = U for every semi-
group S containing U.

Theorem 8.3.6 Inverse semigroups are absolutely closed.

Proof Let U be an inverse semigroup and let S be a semigroup containing
U as a subsemigroup. Let d be an element of Domg(U) \ U. Then there
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exists a zigzag (8.3.4) in S over U with value d. The method of proof is to
show that (8.3.4) can be replaced by a zigzag

d=z1u u1 = vity
Tj—1Vi—1 = T3U4 Usts—1 = ’Uiti (’L = 2, cre, M — 1) (836)
Tm—1Um-1 = Um Umlm-1=4d

which is right-inner, that is to say, is such that ¢1,t2,...,tm—1 € U. From
this it immediately follows that d = up,tpy-1 € U.

In defining the elements %1,%t9,...,t,n-1 it is convenient to begin by
defining elements wy, ws, ..., wy,_1 of U as follows:
wy =vrt,  w =v[1uiwi_1 (i=2,...,m—1).

Now define t; = wyuy (¢ = 1,2,...,m — 1). The elements ¢; evidently
belong to U. Also

-1 -1
Ul = VY1 = V10 V1Y = U1v Uy = vty

and so the top right-hand equality of (8.3.6) is satisfied. To show that the
other equalities hold, it is convenient first to prove by induction on ¢ that

ti=ww 'y, (6=1,2,...,m—1). (8.3.7)
This is obvious for 1 = 1. If we assume that it holds for ¢ = r — 1 then
tr = Wpuy = v;lurwr_lul
= v upt,_1 = vy w1 w Y1 (by hypothesis)
= v;1“?('“;1“7")(“)?—1“);—11)%—1
= vy fupwe_yw ur Yy (by commuting idempotents)

1urwr—1w;—11u;lvryr (by (8.3.4))

= 'UT_
= wow; Yy,
exactly as required. We now have that, for i =1,2,...,m —1,
Uitio1 = UWi— 1wl Yim1 = us(u; ) (Wim 1wy Yot
= wgwim1w; yuy g1 = vwi_ 1wy vy
= (wwi1wiyu ) (viv; vy
= vi(vi"1uiwi_1wi'_11ui_1vi)yi
= vi(waw; Yy = vits.
The final equality in (8.3.6) now follows easily, since
d = z1u1 = 101t = Toupty = ToValas = -+ = Ty 1Um—1tm—1 = Umbm—1.
]

We shall see in Section 8.5 that inverse semigroups have an even stronger
property.
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8.4 DIRECT LIMITS, FREE EXTENSIONS AND FREE PRODUCTS
Let (I,<) be a partially ordered set, let X; (i € I) be a collection of
(S, T)-bisystems indexed by I, and for all i, j in I such that i < j let
a5+ X; — X; be an (S, T)-morphism. Suppose also that
(1) ey =1x, forall ¢ in T;
(2) aijojr = as, whenever ¢ < j < k.
Then we say that (X, a;) is a direct system (of (S, T)-bisystems).

An (S,T)-bisystem X is called a direct limit of (X;, ;) if there exist
(S, T)-morphisms §; : X; — X such that:

(a) for all ¢ < j in I the diagram

Q5

Xi X;

Bi
B;

X (8.4.1)

commutes;
(b) if an (S,T)-bisystem Y has the property that there exist (S,T)-
morphisms v; : X; —» Y (i € I) for which the diagrams

Q5

X; X;

Yi
i

v (8.4.2)

(where i < j) all commute, then there is a unique (S, T)-morphism § : X —
Y such that the diagram

X, Bi

X
i

v (8.4.3)

commutes for every ¢ in I.

If a direct limit exists then it is unique up to isomorphism. To see this
we first remark that if we take Y = X and ; = §; in the above then the
unique § such that the diagram (8.4.3) commutes is the identity map 1x.
Suppose now that both X and Y are direct limits of (X;,a;;). Then we
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have the diagram (8.4.3) as before, and we also have a unique §' : ¥ — X
such that 8
k3

X, — X
Yi

Y
commutes. That is, 8;6 = Vi, 76’ = B;. Hence §;66' = B;, 76’6 = ;, and
so we have commutative diagrams

Bi Vi

X X X;

Y

Bs Vi
86’ &6

X Y
But then by the above remark 68’ = 1x, 6’6 = 1y, and so X ~ Y as
required.

The next thing to establish is that direct limits exist for (S,T)-
bisystems. Consider a direct system (X;,a;;). Then there is no loss of
generality in supposing that the sets X; (i € I) are pairwise disjoint. If we
define Z to be the union of all the sets X; then Z is an (5, T)-bisystem
in an obvious way. Let p be the (S, T)-congruence on Z generated by the
relation

R={(zi,zs045) 14, § €I, x; € X; and j > i}.
Then Z/p is the direct limit of (X;, a;;). To see this, notice first that we
have a morphism 3; : X; — Z/p for each i, defined by

zifi = zip (w4 € Xy).
Then z;04;8; = (xiau5)p = zip = x3f; for every x;, and so the diagram

aij
X

X;

Bi
B;
Z/p

commutes. Also, if Y, with associated morphisms y;, is such that we have a
commutative diagram (8.4.2) for each ¢, then certainly we have a morphism
¢ from Z = |J,¢; X; into YV given by

:L‘zC = Z;Y; (.’L‘Z S X,;, xS I)
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Now R C ker(, for
(mi045)¢ = zi0u577; = Tivi = T4
hence there exists a morphism é§ : Z/p — Y, defined by
(ip)b =zivi {(x;€ Xy, 1 €1).

Moreover,
zifi6 = (Tip)d = Ty

for all z; in X;, and so the diagram

X, Bi

Z/p
i

Y

commutes. Finally, the morphism 8 is unique, since if §’ is another mor-

phism with the same properties, then for all z; in X; and all ¢ in I
(xip)8’ = z:8:8" = zirys = (zip)6,

that is, &' = 6.

We deduce that Z/p is the direct limit (unique up to isomorphism) of
the direct system (X;, os;).

Two special cases of direct limits are worth mentioning. The first is
where I = N = {1,2,3,...}, with 1 < 2 < 3 < .- Here we need only
specify morphisms a, : X,, — X, 41, since for all m < n we can define
Qmn = QmQmt1 -« - Qn-1. We denote this direct system by (X, ).

We shall have occasion to make use of the following result:

Proposition 8.4.1 With the notation above, let Z/p be the direct limit of
the direct system (X, ). Then the maps B, (n > 1) are all one-one if
and only if the maps o, (n > 1) are all one-one.

Proof Suppose that all the maps o, : X, — X,4+1 are one-one, and
suppose that 0 = 5, 0m, where Tp,, 2, € Xp. Then 2z, p = 2, p, and
this is possible if and only if

T OmOmt1 - - - O = Ty OmOmil - - - Oty

for some n > m. Since all the ay are one-one, it follows that z,, = !,
and so G, is one-one. Conversely, suppose that some o, is not one-one,
so that Zyoun = 20,04y, for some T, # 2, in Xp,. Then zp,0m = @}m,
and so f,, is not one-one. O
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The other special case is where I = {0,1,2}, where 0 < 1, 0 < 2 and
1 and 2 are incomparable. Here the direct limit is an (S, T)-system Z for
which we have a commutative diagram

Go1

Xo X1
02 B
X5 e Z

This is what is called a pushout diagram, a notion we have already encoun-
tered in Proposition 8.2.3. Simplifying the notation, we define a commu-
tative diagram

A B
g K
C » P (8.4.4)
to be a pushout diagram if, whenever
A B B
v W
c e (8.4.5)

is commutative, there exists a unique é : P — P’ such that the diagram

B
V \ 3
s )
A P P’
v
N v
C

commutes.
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Notice that the pushout P of the diagram
B

A B

C

is equal to the quotient (AU B U C)/p of the disjoint union AUBUC of 4,
B and C, where p is the (S, T)-congruence generated by all pairs (a,af),
{a,a), where a € A. The maps p: B— P, v:C — P are given by

bu = bp, cv = cp.
We shall require to make repeated use of the following lemma:

Lemma 8.4.2 Consider the pushout diagram (8.4.4). Letbe B, c € C
and suppose that by = cv. Then b € im 3.

Proof We have (b,¢) € p, and so b is connected to ¢ by a sequence of
transitions based on the pairs {a,af), (a,av). Such a sequence cannot
even begin unless b € im 3. o

The other salient fact that we shall require later applies to direct limits
in general:

Proposition 8.4.3 Let D, with associated morphisms 3;, be the direct
limit of (X, au;) in S-Ens-T. Let A € U-ENs-S and let B € T-ENS-V.
Then A ®g D @1 B is the direct limit of (A ®s X; 1 B,1®@ a;; ® 1) in
U-ENns-V.

Proof Certainly the diagram

1Qa; ®1
A®X;®B Y A®X;®B
1@fi®l 18 ®1
A®D®B

commutes for all i < j in I. Suppose now that we have a (U, V)-bisystem @
and (U, V)-morphisms 7, : A® X; ® B — Q such that (1®a;; ® 1)y; = v
for all ¢ < j. Recall now that D = Z/p, where Z is the disjoint union
U{Xii € I} and p is the (S,T)-congruence generated by all the pairs
(wi,xi045) for z; in X; and ¢ < j in I. Recall also that z;8; = z;p for
all z; in X;. Now define 6 : A X Z x B — Q by

(a,xi,b)ég = (a Rz ® b)’)’i (xz < Xl)
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Since for all 7 > i we have
(a, iz, b)60 = (a ® Ti05 @ b)y;
= (a®z; ®b)(1 ® ayy ® 1)v;
= (6 ®z; ®b)y;
= (a, i, b)(So,

8o induces a map 61 : A x D x B — @ given by
(a,2;p,0)81 = (a ® z; @ b)v;.
Next, for all sin S and all £ in 7" we have
(as,z;p,b)61 = (as ® z; ® b)y; = (a ® sz; @ b)y; = (a, s(z:p),b) 61,

and similarly
(a,zip, th)61 = (a, (wip)t, b)b1;
hence 6; induces amap 6 : A® D® B — @ given by

It is now clear that 6 is a (U, V)-morphism and that (1® 8; ® 1)§ = ~; for
all 7. The uniqueness of § is clear from (8.4.6). O

Suppose now that U is a submonoid of a monoid S. Let Y € Ens-U
and let X be a sub-U-system of Y. Suppose in fact that X € Ens-S.
Informally, we have that Y is bigger whereas X is better (in that it is acted
upon by S rather than merely by U). We ask the question as to whether
we can find some Z in Ens-S which is bigger and better.

It pays in fact to ask a slightly different question, in which Y € Ens-U,
X € ENS-S and there exists a U-morphism ¢ : X — Y. (In the previous
paragraph ¢ is simply the inclusion map.} We wish to find Z in Eng-S
with the property that there exists a U-morphism « : Y — Z and an
S-morphism §: X — Z such that the diagram

¢

X Y

7 (8.4.7)

cominutes.

The required Z is not hard to find, the technique being a modification
of one used for rings and modules by Cohn (1959). Let T =Y ®y S, and
let o be the equivalence on T' generated by the relation

R={(z¢®s,2¢®s): 2,2’ € X, 5,5 €S, zs =2's'}. (8.4.8)
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Then, since zs = z’'s’ implies (zs)s” = (z's")s” for all s in S, it follows
that o is a right S-congruence on 7', and so Z = T/o is a right S-system.
Now define a:' Y — Z by

ya=(y®1l)e (yeY). (8.4.9)
Then forallyinY and uin U
(yu)a = (yu®l)e = (y®u)s = (y ® l)ou = (y)u,

and so « is a U-morphism. In essentially the same way we define 5: X — Z
by

zf=(z¢p®1l)oc (zxeX), (8.4.10)
but now we can show that 3 is a right S-morphism, since for all z in X
and s in S

(zs)B = ((zs)p ® 1)o
= (z¢ ® s)o (by (8.4.8), since (xs)1 = zs)
= (z¢p ® 1)o.s = (zff)s.
Finally, since it is clear that for all z in X
zpa = (z¢ @ 1)o = zf,

we see that the diagram (8.4.7) commutes.

The S-system Z = (Y ®y S)/o is in fact best possible, in the sense that
if Z' € Ens-S has the property that there exist a U-morphism o/ : Y — Z’
and an S-morphism £ : X — Z’ such that ¢a’ = [/, then there exists a
unique S-morphism % : Z — Z’ such that the diagram

v (8.4.11)
commutes. To see this, define a map ¥ : Y x § — Z' by
(y,8)9" = (yo)s.

It is easy to check that 9" is a right S-morphism. It is, moreover, a bimap,
sinceforall uinU,yinY and sin S

(yu, s)¥" = ((yu)e')s = (yo')(us) = (y,us)¥";
hence there is an S-morphism ¢’ : Y ®y S — Z’ given by
(y® )¢ = (yo')s.
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Again, let us suppose that z, 2’ in X and s, ¢’ in S are such that zs = z's’,
so that (r¢ ® s,2'¢ ® s’} € R. Then
(z¢ ® 8)y’ = ((z¢)a’)s = (z)s
= (z5)8 = (2's)f' = --- = ("¢ ® ');
thus o C ker ¢, and so %’ induces an S-morphism 1 : Z — Z' given by
(y®s)o)p = (ya')s (yeY,ses).

We now easily see that for all z in X

20y = ((z¢ ® 1))y = (z¢)e’ = 20,
and for all y in Y
yap = ((y ® o)y = yo';

thus the diagram (8.4.11) commutes.

To show the uniqueness of 1, suppose that we could substitute an al-
ternative S-morphism x : Z — Z’ in the diagram (8.4.11). Then for all
(y®@1l)oin Z

((y®V)o)x = yax = yo/ = yorb = ((y @ 1)o),
and so y = ¥.

The right S-system Z = (Y ®y S) /o is called the free S-extension of X
and Y and is denoted by F(S, X,Y). To summarize what we have learned,
Z = F(5,X,Y) is a right S-system and is characterized up to isomorphism
by the properties:

(E1) there exists a U-morphism « : Y — Z and an S-morphism 3 :
X — Z such that the diagram

¢

X Y

B

Z

commutes;
(E2) If Z’' € Ens-S is such that there exist a U-morphism o’ : Y — Z’
and an S-morphism 8’ : X — Z’ such that

x ¢

Y
Jil

Z/
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commutes, then there is a unique S-morphism v : Z — Z’ such

that the diagram
\\\WKA
B
7 Y
a///
al

The fact that these properties do indeed characterize F(S, X,Y") up to
isomorphism is proved by a standard argument, closely analogous to the
argument used to establish uniqueness of direct limits.

There is indeed a close connection between free extensions and direct
limits, as evidenced by the following result:

Proposition 8.4.4 Let U be a submonoid of a monoid S. Let X € Ens-S,
Y crens-U, andlet p: X — Y be a U-morphism. Let Z = (Y @y S) /o be
the free S-extension of X andY. Lety: X ® S — X be given by

X
o z'
Y

commutes.

(x@s)y=zs (zeX, sel).
Then the diagram

Xos—2®l ves

v ot

z
B

18 a pushout in ENS-S.

Proof It is clear from the definition of o that the diagram commutes.
Suppose now that Z’ is such that there exist 4’ and 7 such that the diagram

X®s Yes

Y T

X

g 7
commutes. Let (¢ ® s,2'¢ ® s’) be a typical element of the set R defined
by (8.4.8); thus zs = z’s’ in X. Then

(zp@s)r = (z@s)($® 1) = (z @ s)7p
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= (@)f = (@) = - = (@8
Tt follows that T induces a unique S-morphism 8 : Z — Z’ given by
[(y®$)0l6 = (y @ s)T.
The verification that for all z in X
w6 = [(zp @ 1)0]6 = (zp @ )7
=(z®1)(¢N)r = (z®1)yf =zf
completes the proof. O

We have seen in Section 8.2 how the free product P = 51 *y S of two
monoids 81, S» amalgamating a common submonoid U arises as a quotient
by a certain congruence p of the free product S; * S3. (Since the identity
elements are amalgamated in P it matters not at all whether we start with
the semigroup free product or the monoid free product.) Each element
of P is an equivalence class (z12a...2Z,)p, where z129...2, € S1 * Sa.
Following Renshaw (1986a) we shall write this as

(z1,22,...,Zn).

Notice that if we make the obvious definitions (in which y belongs to S;
or S3)

(31,25, 2n,y)  ifo(@a) £0(U) gy 0

(1,22, ., Tn)y = { (z1,Z2,. ., Tp-1,Zny) if o(zn) =o(y)

(with similar definitions for left multiplication), then P is an (S;,5;)-
bisystem for 4,7 € {1,2}. Our final aim in this section is to present an
alternative characterization of S1 * Sy as a direct limit of U-systems.

Let [U; S1, Sa; ¢1, ¢2] be a monoid amalgam. We now construct a direct
system (W,,ay). First, let Wy = S1, an (S, S1)-bisystem, let W, =
Sy ®u 2, an (S, S2)-bisystem, and let a1 be the (S, U)-morphism given
by

s101 =81®1 (81 €851).

Next, let
W3 = F(S1, W1, W) = (81 ®u S2 Qu S1)/o1,

where o1, in accordance with equations (8.4.8) and (8.4.9), is the congru-
ence on 51 ® Sy ® S generated by

Ri={(5121®¢t1, s} ®1Qt)): s1t; = st} }.
Let as : Wo — Ws3 be the (Sy, U)-morphism given by
(s1 ® s2)p = (51 ® 52 ® 1)o7y,
again in accordance with the standard map from Y into F (S, X,Y).
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In general, suppose that we have constructed a sequence

Koy, —
W, 25 W, 22 ... ;

— Wy,

and suppose that Wy belongs to S1-£Ens-S; if k is even, and to S1-ENS-S;
if k is odd. Suppose also that oy is an (S1,U)-map for k=1,2,...,n— 1.
Let ¢ = n 4+ 1 (mod 2) and let W,,,1 be the (Sy, S;)-bisystem

F(S;, Wy, W) = (W, ® Si) /o1,
where 0,1 is the congruence on W,, ® 5; generated by
Ry1 = {(wp_10pm_1 ® 84, Wh_10n_1 ® 8 : Wp_18; = w,,_,5,}.
Then oy, : W,, — W, 11 is given, as in (8.4.9), by
WeOp = (Wy ® Dop-1  (wn, € Wy),

and is an (S, U)-map.
A more explicit notation for elements of W, will in due course be helpful.
We have

W’n = ( ((Sl ®52 ®Sl>/0’1 ®S2)/0'2®... ®Si)/0n—2,
and we shall denote a typical element
(‘ t ((a1 Qa2 ®a3)o1 ® a4)02 ® - an)an_z

by [a1,a2,...,a,]. This, as we shall see, is not altogether unconnected
with the element (ay,as,...,a,) of S %y Sz, but it is important to note
that in the square brackets formula we must have ai,as,... € S; and
ag,a4,... € 2. If n =1 then [a1] is simply the element a; of Sy, and if
n = 2 then [a1,as] is the element a; ® ag of Wa = 51 ® S5. Notice that, for
all n > 3,

[a1,a2,...,an] = ([a1,02,...,8n-1] ® @y)0n-2. (8.4.13)

Our aim is to prove the following result:

Theorem 8.4.5 Let [U; 51, Sa; ¢1, 2] be a monoid amalgam. Then P =
S1 xy Sa is the direct limit in U-Ens-U of the direct system (W, )
defined above.

Proof Recall from Section 8.2 that there exist monoid morphisms
p1: 81 — P, pg: So — P, given in the Renshaw notation by
sipy = s1p = (81), Solip = S2p = (32).
We define maps 6,, : W,, — P inductively as follows. First 8; = u;, an
(81, 51)-map, and 83, an (S1, S2)-map, is given by
(81 @ 82)02 == (s1, 82).

Suppose now that n > 2 and that we have defined 8, : Wy — P for
k=1,...,n such that
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(a) O is an (S1,.S;)-map, where i = k (mod 2);
(b) Oék_lek = Hk_l (2 S k S n)
We then have a commutative diagram

On—1
Wpoy — W,

en— 1
On

P
in which 6,1 is an (S;,S;)-map and 6, is an (Si,U)-map (in fact an
(S1,9;)-map, where j # i. Here i = n—1 = n+ 1 (mod 2).) Since
Wiy1 = F(S;, Wa1, Wy,), it follows by (E2) that there is a unique (Sq, S;)-
map Orn+1 : Wye1 — P such that the diagram

Wn—l
M\
O
Qn—-1 Wi 24— p
Qnp,
Or

Wy
commutes.

We have in fact proved half of what we need, namely that there are
(U,U)-maps 0, : W, — P (n > 1) such that ap_16, = 8,1 for all n > 2.
It is, however, worth taking time at this point to describe the maps 6, in
a more explicit way. Let us suppose inductively that 8,1 : W,_1 — P is
given by

[a17a27 sy a’n—l]gn—l = (a’la az,..., an—-l)-
(We have already anchored our induction at n = 2 and n = 3.) Then, from
(8.4.13) and (8.4.12),

[a17a2, R 7an]9n = (([a17a21 cee aan—l] & an)gn—2>0n

((([al,@, ] ® 1)0n_2)9n)an

= ([a]_, ag, ... ,an_l]an_len)an
= ({al,az,...,an_l]é?n_l)an
= (a1,02,- -, 0n—1)0y

= (a1,02,-..,0n)-

‘We have proved that for all n > 1
[a1,09,...,0,)0n = (a1,a2,...,0n). (8.4.14)
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To complete the proof that P is the direct lmit of (W,,a,,) we must
show that it is ‘best possible’ relative to the given properties. More pre-
cisely, suppose that @ in U-Ens-U is such that there exist (U, U)-maps
Kn @ Wy — Q such that a,_ 16, = kp_1 for all n > 2. Then we must find
a unique ¥ : P — () such that the diagram

W, -fa P
Kn
(]
Q (8.4.15)
commutes for every n. Let us define 7 : P — Q by
[@1,a2,...,a.])6n ifa; € S
(a1,a9,...,00)0 =
1,a1,a0,...,0,)6n+1 ifag € S5

Supposing for the moment that ¢ is well-defined, we see that it is a (U, U)-
map, and certainly the diagrams (8.4.15) commute for every n. So the
crucial task is to show that 1 is well-defined.

Now P = (Sy * S3)/p, where p is the congruence generated by

{(up1,uds) :u € U}.

In fact, as pointed out in Howie (1962), two elements (a1, as,...,an) and
{b1,b2,...,b,) of P are equal if and only if they are identical or are con-
nected by a finite sequence of transformations of three main types:

1. E-steps (E for edge). There are six cases:

(a) (21,5 2iUy Zit1y - - -1 2n) — (21, o0, 25y UZik 1, - - -, Zn);
(b)Y (215 ey 2oy UZig 1y 9 Zn) = (B1y e v Zily Zi 1y e oo 5 20 )5
() (215 20u) = (21, .., Zn, U);
(d) (z1,-. . 2n,u) = (21,- .-, 200);
(e) (U2«'1,.-.,Zn)—-’('U;,Zl,...,zn);
(f) (u,21,. -+ 2n) = (W21,...,2n).

2. M-steps (M for middle):

(215 s 2uzl s o 2n) = (Z1h- s 20Uy 20 oy 20)-

3. S-steps (S for syllable):

(21, s 2w 2oy 2n) = (21, -, Ziuzl .o 2Zn).

There is a certain amount of abuse of notation here: for example, in case
1(a), if we assume that z; € Sy, then z;41 € S2 and we are transforming
(«..,zi(ud), zig1,...) into (..., 2, (ud2)2ziq1, .. .). What we therefore need
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to show is that if two elements of P = S gy S are linked by a step of any
of the above types then their images under 1) are equal. In cases 1(a) and
1(b) this is clear, since the defining property of tensor products certainly
gives

[Zl, ey RgUy Zig 1y e ,Zn] = [Zl, vy ZiyUZi41y e ,Zn],

in the case where 2z; € S1, and just as easily gives
(1,21, 0y 20Uy Zit1y--r 2n) = (1,21, ., 26, UZig1, - - -, Zn),

in the case where z; € S;. The remaining cases are less trivial, and the
following lemma is of assistance.

Lemma 8.4.6 For alln >3 and for alli in {2,...,n -1}

(@1, 18i—1, 1, 85415+, Qn) = [@1, .+, Bim1Gip 1+ -+, Oy 1, 1]
Proof Let us write [a1,...,a;—1] as w;. Then
la1,...,ai-1,1,0i11] = ((wz ®1)oi2® ai-}-l)ai—l

= (Witi—1 @ @i41)05-1
= (witip1)o-1 ® 1)os1
by definition of ¢;_1, since w;a; 11 = (Wia:41)1,
= (Wi0;41) Q104 = (@1, -« B 1Git1, L, 1]
‘What we have shown is the case k = 1 of the more general statement
that
[@1y- v y@im1,1, G015 oy Qipk] = [B15- -+ 3 Q18415 -+ Gitks 1, 1],

and we proceed now to prove the more general statement by induction. If
we assume the result for k, then

[(ll, [ 7 N 1,0,1;_;_1, . ,ai+k+1]
= ([0,1, ey Oim1, L, @i, Gk ® ai+k+1)0i+k_1
= (lat, ., Qi—10i41, - -+, Gitk, 1, 1] ® Gipkt1) Tih1
= ([a1,- -+, Bi=1Git1;- - - Aith, L]0itk—1 ® Gight1)Tith—1
= (([ah ey Qi1 Qig 1y - s iy LG ) Cik—1 ® 1)0'z'+k——1
(by definition of o45—1)
= [0,1, ey Bi—1Q54 1y - 0oy itk a¢+k+1]ai+k_1ai+k
= [al, vy Q1G4 1y oo s Qi y Bip k+15 1, 1].
This completes the proof of the lemma. O

Returning now to the main verification, we consider case 1(c), where
we have two elements

w=(21,...,2n—1,2nu) and W’ = (21,..., Zn—1, 2n, U)
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of P. If zy € S then

wyp = [zla <y Zp—1, Znulf""n - [Zl, sy Bl znu]anﬁn+1
=21, .y Zne1, ZnUy Ulnt1 = [21, ) Zn, WKnt1 = WP
The case where z; € S», and where w¢ = [1,21,...,2,u], is verified in

exactly the same way.
Case 1(d) is the inverse of 1(c). So suppose now that we have case 1(e),
where we have two elements

w = (uz1,22,...,2,) and w' = (u, 21,22, .,2n)
of P. If uz; € S; then in the second element u € S, and we have
wy = [uzy,...,uz)kn
= ['U'Zl, 22yt Zn]anan—*—lﬁ"n-i—? = [uzla 29,5205 1, l]ﬁn+2
= [u,1,21,22,...,2,] (by Lemma 8.4.6)
= [1,u,21,22,...,2,) = wp.
If uz; € S5 then
wp = [Lu, 21,22, ., Zn)Knt1 = [U, 21, 22y - - <y Zn)lint1 = WP,

Case 1(f) is the inverse of case 1(e).
Suppose now that we have case 2, where we are considering two elements

W={21,... %y, 2p) a0d W = (21,...,20,u,2) ..., 2p),

with z; = zjuz{. If z; € Sy then

WY = [21,- -, Ziy- oy Zn)lin
_ . _ ! 1" 1 1
=21, s iy e Zn)OnOn 18012 = (215« U214« s 20y 1, 1] Epo
7 11
=lz1,...,2u, 1,2, ..., Zn)knt2 (by Lemma 8.4.6)
7 ' 7
=21,y 21 Uy 2 ey Zn)Bnta = W,
The case where z1 € S2, and where wy) = [1,21,..., 24, ..., Zn]Rn+1, IS VEry
similar.

Case 3 is the inverse of case 2.
This completes the proof that the map 9 is well-defined. Hence Theo-
rem 8.4.5 is established. O

8.5 THE EXTENSION PROPERTY

Let U be a submonoid of a monoid §. We say that U has the eztension
property in S if for every X in Ens-U and every Y in U-ENS the map
X@uY - XQuS®uY defined by z®y — £ ®1®y is one-one. It follows
in particular (by putting ¥ = U) that the map z — 2 ® 1 from X into
X ®u S is one-one (the left extension property) and (by putting X = U)
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that the map y — 1®y from Y into S®u Y is one-one (the right extension
property).

A closely related and somewhat more general notion is that of purity.
A monomorphism ¢ : A — B in S-gns-T is called pure if for every X in
ENs-S and Y in T-£ENsS the induced map 1 ¢ ®1: X ®s A®rY —
X ®s B®rY is one-one. It is not hard to see that U has the extension
property in S if and only if the inclusion monomorphism from U into S is
pure.

A further related notion is that of flatness. If A € S-Ens then we say
that A is flat if for every monomorphism ¢ : X — Y of right S-systems
the induced map ¢ ®1: X ®s A — Y ®g A is one-one. Dually, a right
S-system A is flat if for every monomorphism ¢ : X — Y of left S-systems
the induced map 1 @ ¢ : A®s X — A®sY is one-one.

A monoid S is called absolutely extendable if it has the extension prop-
erty in every monoid T containing it as a submonoid. A monoid § is
called absolutely flat if all left and right S-systems are flat. It is clear
that the extension property and flatness are related in the sense that both
are concerned with the preservation of monomorphisms. A more precise
connection is given by the following result.

Proposition 8.5.1 FEvery absolutely flat monoid is absolutely extendable.

Proof Suppose that S is absolutely flat, and let 7" be a monoid containing
S as a submonoid. We must show that if X € Ens-S and Y € S5-Ens then
the map X ®sY - X ®sT ®sY given by r® y — z ® 1 ® y is one-one.
Now the map

X>2X®sS—>X®sT

induced by the inclusion monomorphism from S into T is one-one, since X
is flat, and it then follows by the flatness of Y that the map

X5V 2X®Rs50sY - X®sT®s7,

sending z®y to x ® 1 ® y, is one-one. Hence S has the extension property
in T O

Recall now our previous notation (introduced following the statement
of Theorem 8.3.4) that for a semigroup S the monoid S* is defined to be
SU{1}, with the obvious multiplication, where 1 is adjoined whether or not
S already has an identity. We say that a subsemigroup U of a semigroup
S has the semigroup extension property in S if the monoid U* has the
(monoid) extension property in S*. Now every monoid is also a semigroup,
and so we have a possible source of confusion. That this is not a serious
confusion follows from

Proposition 8.5.2 Let U be a submonoid of a monoid S. Then U has
the semigroup extension property in S if and only if U has the monoid
extension property in S.
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Proof Suppose first that U has the semigroup extension property in S.
Let X € Ens-U,Y € U-ens. Then we can make X and Y into U*-systems
by defining 2.1 =z (z € X) and 1.y =y (y € Y). Moreover X ®y- Y =
X ®y Y, for the identification of (2.1,y) with (x,1.y) within X ®py- Y
adds nothing to the identifications already present in X ®; Y. Denote the
identity of U (and of S) by e, and suppose that z® eQy=2'® e® ¥’ in
X®uS®yY. Then certainly @ e®y=2'®e®y in X Quy- S* Q- Y.
Indeed in X ®py+ S* ®py- Y we have
rR1Qy=2eR1Qyu=2Qel Ry
=rRe®y=2'Qe®y = =201y

Hence z @y =2'®y in X ®y+ Y = X Qy Y, and so U has the monoid
extension property in S.

Conversely, suppose that U has the monoid extension property in S.
Denote the identity element of S by e; then e € U since U is a submonoid.
Let X € gns-U*, Y € U*-ENs. We must show that the map z ® y —
z®1Q®y from X ®y+ Y into X Qu+ S* Qu+« Y is one-one.

We cannot assume that X € Ens-U, since we may have ze # x for
some z in X. Equally, we cannot assume that Y € U-gEns. However, we
do have X’ = Xe = XU € gns-U and Y/ = eY = UY € U-gns. Suppose
now that

T1Q1®Y1 =2201Qy2

in X ®u+ S* ®@y+ Y. Then
Tie®e®ey; = roe®e® ey
in X ®y S®u Y, for every transition
ZUQ@s®t « 2Qus®t or zQ@suR@t— 2QsQut
in X ®u+« * ®p» Y can be mirrored by a transition

(ze)lu@ese@et — ze®u(ese) @ et
or ze® (ese)u®et « ze® ese @ ulet)
in X @y S®y Y. By the monoid extension property we deduce that x;e ®
ey1 = e eys in XeQu eY.
Now if 1 ¢ XU and y; ¢ UY then
r1®1®Yy1 =22Q01Qy2 = 21 =122, Y1 = Yo,

for no non-trivial transition from 21 ® 1 ® y; is possible. Similar consid-
erations apply to £2 ® 1 ® y2, and so there are in essence three non-trivial
cases:
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(1) T1,T9 € XU;
(2) Y1, Y2 € UY,
(3) 21 € XU, y2 € UY.

In case (1) we have
T1 @Y1 =21 @Y1 = T1e R €Y1 = Tae @ eyy = T2€” QYo = T2 @ Yo
in X ®y- Y. Case (2) is similar, while in case (3) we have
1 QY1 =$1€2®y1 =T1eQey; = T2e @ eYa =w2®ezy2 =22 @Y
il’l X ®U* Y O
As a consequence of this result we do not need to be over-precise about
which of the extension properties we mean.
We have already come across the idea of a unitary subsemigroup, par-

ticularly in Chapter 7, but for convenience we repeat the definition here: a
subsemigroup U of a semigroup S is called unitary if

NVueU)(VseShHuselU = selUj
NVuelU)VseS)suelU = sel.

More generally, we say that U is a quasi-unitary subsemigroup of S if there
is a (U*, U*)-morphism ¢ : S* — 5* such that
¢ =9, 1p=1
Vu e U)VseShuselU = spelU;
VueU)VseS)suelU = spell.
Every unitary subsemigroup is quasi-unitary, with ¢ as the identity map

of S*. Notice that by the (U*, U*)-morphism property of ¢ it follows that
forallwin U

ugp = (ul)p = u{lg) = ul = u. (8.5.1)
Notice also that for all w in U and sin §
(us)p = u(sg), (su)p = (sp)u. (8.5.2)

If S is a monoid then a submonoid U of S is called quasi-unitary if there
exists a (U, U)-morphism ¢ : S — S such that
=9, lp=1
(Vu e UYVse SYuse U = s¢p U,
Vue U)VseS)suelU = s¢pelU.

Tt is not hard to verify that this ‘monoid quasi-unitary property’ is equiv-
alent to the semigroup property defined previously.
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The connection between this notion and the extension property given
earlier is as follows:

Proposition 8.5.3 If U is a quasi-unitary subsemigroup of a semigroup
S, then U* has the extension property in S*.

Proof Let U be a quasi-unitary subsemigroup of a semigroup S. Let
X € ens-U*, Y € U*-ENS, and suppose that

zRIQy=201y

in X @y« S* @u+ Y. We must show that zQy =2’ ® 3y in X ®py- Y. We
first establish a preliminary lemma:

Lemma 854 Ifr ®1 =2’ @ su in X Qu~ S*, then s¢ € U* and ¢ =
' (sd)u.

Proof Suppose that z ® 1 = 2’ ® su. Then by Proposition 8.1.8 we have
equations

T =TiUy U1 = V1Y1
1V = TaU2 UuU2y1 = V2Y2
L3V = Tit1Ui+1 Ui+1Y: = Vi+1¥Yi+1
(i=2,...,n-1)
Tp—1Un-1 = T'Up UnYn—1 = SU,
inwhichuq,...,up,v1,...,Up-1 €U 21,...; 21 € X, ¥1,..-,Yn—1 € Y.

By virtue of (8.5.1) and (8.5.2) the equalities on the right imply equal-
ities
ur = u1¢ = (v191)¢ = v1(y19),
u2(y19) = va(y29),
Uit 1(Yid) = vig1(Yis19) =1,...,n —2),
Un(Yn-19) = (sd)u,

and then from the definition of a quasi-unitary subsemigroup we deduce
successively that

y1¢€U*a y2¢€U*»"'ayn—1¢€U*v S¢EU*'
Also
T = z1uy = £1v1(%19) = Touz(y14)
= Tova(y2¢) = - = ' Up(Yn—19) = ' (s¢)u,

as required. O
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We return now to the proof of Proposition 8.5.3, interpreting z ® 1 ® y as
(z®1) ®y (as we may, by the remark following Proposition 8.1.11). We
may suppose that we have equations

T®1=1x1 Qsiuz Uy = v1Y1
T1 ® $1U1 = T2 @ Sal2 U2Y1 = V2Y2
T; ® 8V = Tit1 @ Si41Uit1 Ui 1Y = Vit1Yit1
(i=2,...,n—2)

o o
Lp_1Q8p—1Un-1 =2 QUnp UnYn-1 =Y

inwhichul,...,um’ul,...,vn_l eU* x1,...,%p_1 € X,yl,...,yn_l €Y,
and s1,...,8,_1 € S*. By Lemma 8.5.4 we have s1¢ € U* and z =
z1(816)u;. Also, by applying 1 ® ¢ to the equation z1 ® s1v; = T2 ® s2u2
we deduce that

z1(s19)v1 @ 1 = z1 ® (s19)v1 = T3 ® (s20)uz;

hence again by Lemma 8.5.4 we deduce that so¢p € U* and z1(s19)v1 =
$2(82¢)UQ.
Continuing in this way we show that s;¢ € U* (i = 1,...,n — 1) and
that
zi(siP)vi = Tip1(Si+19)uit1-

Hence
z = (z1(819))us ULY = U1yt
(z1(518))v1 = (22(520))u2 UsY1 = VaY2
(zi(5:0))vi = (Tir1(85410))Usr1  Ust1¥i = Vig1¥ig1
(i=2,...,n—2)
(mn—l(sn——l(ﬁ))vn—l = z'up UnYn—1 =71,
which gives us z ® y = 2’ ® ¢ as required. a

The connection between the extension property and subsemigroups of
‘unitary type’ is further exhibited by the next result. A subsemigroup U
of a semigroup S is called relatively unitary if, for all 4 in U and s in 5,

us €U = (Is' € U*) us = us/,

suelU = (3s' € U*) su=s'u.
Every quasi-unitary subsemigroup is relatively unitary (with s’ = s¢), but
the converse is not true. (See Exercise 18.)

Proposition 8.5.5 Let S be a semigroup and let U be a subsemigroup of
S having the extension property. Then U is relatively unitary.

Proof Suppose that us = v € U for some u in U and s in
S. Let z U*UxzyU*, a disjoint union, be the free right U*-system
on two generators—see Exercise 2 below—and let X be the quotient
of z1U*UxzoU* by the U*-congruence generated by the singleton set



294 Semigroup amalgams

{(z1u, z2u)}. In effect we identify zyw and zow if and only if w € uU*.
Notice now that in X ®p+ S*
TRl =21 QU= Qus =21u® S
=2URS=T3RUS =Ly RV = Tov R 1,
However, since U has the extension property, the map

X2 XU"—- XS5

induced by the inclusion U* C §* and given by z - z® 1 (x € X), is
one-one. We deduce that z1v = z9v in X, and hence v € uU*. We have
verified half of the relatively unitary property. The other half follows in a
similar manner. O

‘We shall see shortly that the extension property has a further connection
with previously encountered ideas. First we establish the following lemma.

Lemma 8.5.6 Let U be a submonoid of a monoid S, and suppose that U
has the extension property in S. Let A : X — Y be a morphism of right
U-sets, and let y®@ 1 =zA@sin Y @ 5. Then y € im .

Proof Consider the pushout diagram

A
X

Y

3 P

By Proposition 8.4.3 the diagram
Xes—28L .ygg

AR1 a®l

Y®S P®S

&1
is also a pushout. Suppose that y @1 =2A®sin Y ® S. Thenin P® S

ya®l=(yo{a®l)=(zA®s)(a®@l)=zla®s
=zARs=(zA®s)(B®1) = (y@)(B®1) =yBa L

By the extension property the map y — y® 1l fromY Y @U toY ® S is

one-one. Hence ya = yB, and it now follows by Lemma 8.4.2 that y € im A.
O

We are now in a position to prove the following result:
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Proposition 8.5.7 Let U be a submonoid of a monoid S. If U has the
extension property in S then U is closed.

Proof Inthelemma above, put X = U, Y = S and take A as the inclusion
map from U into S. If d € Domg(U) then by Theorem 8.3.3 we have
d®1=19d=12®din S® S. The lemma allows us to conclude that
d €imA. That is, d € U, and so U is closed. O

It is convenient to establish two further technical lemmas before stating
the main theorem of this section:

Lemma 8.5.8 Let U be a submonoid of a monoid S and suppose that U
has the extension property in S. Let X,Y € ens-U andlet A : X — Y be a
U-monomorphism. Let Z € U-ENS and suppose that AQ1 : XQ®Z - Y QZ
is also o monomorphism. If y@1®2z=2sAQs®2' inY ® S® Z, then
there exist x1 in X and z1 in Z such that y®@ 1 @2 =11 A Q1 Q® 21.

Proof Supposethat y® 1®2=2A®s®2' inY ® S ® Z, and consider
the pushout diagram

Y

Y

3 P

By Proposition 8.4.3 the diagram
Xoz-28L \ygz

AR a®l

Y®Z P®Z (8.5.3)

1
is also a pushout. We now have thatin P S® Z
yo®l®z=Ye102)(a®l®l)=(2A®s®22 ) (a®1®1)

=xXa®sR2 =x)fRsQ 7

:---:y,B®1®z.
By the extension property we deduce that ya® z = yf®z in PR Z. Hence
by the pushout property of the diagram (8.5.3) and by Lemma 8.4.2 there
exist 1 ® z1 in X ® Z such that

y®z=(21921)(AQ®1) =21 A ® 2.

Thus y®1® 2 = 21 A ® 1 ® 21 as required. O
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Recall now, from the beginning of the section, that a monomorphism = :
X — Y of (U,U)-bisystems is called pure if for every A in Ens-U and
every B in U-Ens the induced map 1@ 7R 1: AXQ®B - ARY ®B
is one-one.

Lemma 8.5.9 Let U be a submonoid of a monoid S and suppose that U
has the extension property in S. Let X € U-ENs-S,Y € U-Ens-U and let
¢: X =Y be a pure (U, U)-monomorphism. Let Z = F(S,X,Y) be the
free S-extension of X and Y. Then in the diagram

¢

X Y

Z
—see diagram (8.4.7)—both o and B are monomorphisms and o is pure.

Proof We have Z = (Y ®y S)/0, where o is the (U, S)-congruence gen-

erated by
R={(z¢p®s,7'¢p @) : x5 =2's'}.

It is easy to see that the relation R is symmetric, and that it is compatible
with the left action of U and the right action of S. With the assumptions
of the lemma we shall see that it is also transitive. Suppose in fact that

(16 ® 51,220 ® 52) € R,

that
T2 ® 82 = T3P ® S3,
and that
($3¢ ® 83, $4¢ & 84) € Ra
so that

T181 = L9892, X383 = X484. (8.5.4)

Then from 22¢ ® 32 = 3¢ ® 83 we deduce that x9 ® s9 = z3 ® 83, since ¢
is pure. Let 19 : X x § — X be given by

(.’If, 8)1/)0 = TS.
Then g, being a bimap (with respect to U) induces a (U, S)-morphism
1 : X ®y S — X, defined by

(z®8)Y =uzs.

Applying ¢ to the equality o ® so = 3 ® s3 now gives 989 = x3s3, which
together with (8.5.4) gives 181 = 2484. Thus (216 ® $1,24¢ ® 54) € R, as
required.
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We deduce that ¢ coincides with RU lygs.
Suppose now that 1, y2 in Y are such that yya = yoc. Then (y1;81)0 =
(y2 ® 1)o, and so either

(i) m1®l=9281o0r
(i) 11 ®1 =110 @ 51 and Y2 ® 1 = 229 @ s2, with z181 = z282.

In case (i) it follows by the extension property that y; = yo, for the map
Y~Y@yU — Y ®yS is one-one. In case (ii) we deduce from Lemma
8.5.6 that there exist zf, z5 in X such that y; = 21 ¢, y2 = z5¢. Thus

TRl =21 ®51, THO®L =120 ® 2,
and since ¢ ® 1 is one-one it follows that
TIR1l=71®81, TH®1=23Q ss.
Then applying the map 9 : z ® s — xs gives
T) = T181 = Tasy = Th,

and so y1 = ¥y as required.

We have shown that o is a monomorphism. Since 8 = ¢a it follows
that 8 too is a monomorphism,

It remains to show that « is pure. Let A € Ens-U and B € U-ENS.
We require to show that the map

10®1:A®Y®B—-A®Z®B

is one-one. From Propositions 8.4.3 and 8.4.4 we deduce that

AR(X®S)®B

A (Y ®S)®B

0

A®XQ®B

ARZ®B (8.5.5)

is a pushout diagram, where Z, as before, is (Y ® 5)/c. All tensor products
are over U, and the map 8 from AQ X ® S® B to A® X ® B is given by

(c®@r®s@b)f=a@zs®b.

We now show that A ® Z ® B is the quotient of AQ Y ® S ® B by the
equivalence p = T'U {1}, where 7" is the set of all pairs

(a1 @110 ® 51 ®@b1,02 ® 129 ® 52 ® ba) (8.5.6)
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for which ) ® 2151 ® b1 = a2 @ 2252 ® b2 in A ® X ® B. We do this by
verifying that

AX®S®B ARYQ®SQ®B
0
A®X®B T (ARY ®S®B)/p (8.5.7)

{where (a®z®b)x = (a®xPpR1®b)p) is a pushout diagram. The commuting
of the diagram presents no problems: f ez ®sQRbc ARX ®S® B,
then one way round the square gives (a ® z¢ ® s ® b)p while the other way
gives (a ® (z3)9p ® 1 ® b)p, and these are evidently equal. So suppose now
that we have a set () and maps A, u such that the diagram

A®X®S®B ARY ®S®B
6 A
A®X®B 7 Q

commutes. Then 7', as defined by (8.5.6), is contained in ker A, for if
a1 ®T1510b1 =aa ® T252 ®by in AR X ® B, then

(0121051 Qb)) =(01 921051011 RP Q1R 1)\
(a1 @z1 ® 81 ®b1)0
(a1 @ z151 @ by)p
(a2 ® z252 @ b))

= = (a2 ® T2p @ 52 @ ha) \.

Hence there is a unique map § : (A®Y ® S® B)/p — Q, defined by

(e@y®s@b)pld =(a®y®sDb)A.

Il

Moreover, the triangle

AR X®B Q
X f)

(AQY ® S® B)/p

commutes, since

(a®@z®b)x6 =[(c®xd®1QDb)pld
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=(a®zp 1R b)A
—@RrR10)1Q¢®1® 1)\
=(a®rx®1Qb)0u
=(aQz®bu.

Now from the fact that both (8.5.5) and (8.5.7) are pushout diagrams
we conclude that the map

a®(Y®s)oRb— (a®YRsRb)p
is a bijection. Hence we can focus attention on the map
a®yRb— (aR@y®1®b)p;

to show that « is pure we require to show that this map is one-one.
Suppose therefore that

(e@yYR1®bd Y 1) ecp\ {1} =T.
Then
aRYRLIRb=0a; 110 ® 51 Dby,
dRY LY =as @20 Q 52 ® by,

where a1 @ 2151 ® b1 = a2 ® L2852 ® bs in A Q® X ® B. Now if in Lemma
8.5.8 wereplace X by A X, Y by AQY, Aby 1® ¢ and Z by B we can
deduce that there exist 3 and x4 such that

eRY®1®b=10a3 T3¢0 ®1®bs,

dRYRIQY =110 01®by (8.5.8)
inARY ® S® B. We now have
01 QT1P®s1 @b =a3 QT3¢ Q1@ b,
A @ T2 R 32 @by = a4 T4 ® 1 ® by,
from which it follows, since ¢ is by assumption pure, that
1 RTIRs1 00 =a3 Q231 Q bs,
G ®T2® 8 Qb =a4 Q24 Q1R by.
Hence, by applying 8 to these equations, we deduce that
3QT3®bs = a1 ® 15 ® by
= a9 ® L2587 @ by (8.5.9)

=04 ® L4 by.
Now, by the extension property of U in S, we can deduce from (8.5.8) that

aRYRb=0a3@r30 b3
a1 R240Qbs=ad Ry V.
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Hence from (8.5.9) it follows finally that
a®yRb=d®y b
Thus « is pure. 1

We now state the main theorem of this section:
Theorem 8.5.10 Let A = [U, Sy, Ss] be a monoid amalgam. If U has the
extension property in S and Sy then A is embeddable. Moreover, U has
the eztension property in S *y Ss.
Proof We construct the direct system (W,,, a,) as in Section 8.4. Recall
that W1 = Sl, W2 = 51 ®SQ, and

W, = F(S; Wy_9, Wa_1) (n>3).

The map oy : W1 — Wy is one-one by the extension property of U in Ss.
Moreover o is pure, since if X € Ens-U and Y € U-gns the map

X5 - X515 1Y

is one-one, again by the extension property of U in S,. If we now suppose
inductively that of : Wy — Wyy, is one-one and pure for all & < n,
then by Lemma 8.5.9 it follows that a, is both one-one and pure. By
Proposition 8.4.1 and Theorem 8.4.5 it follows that if P = S; %y S, then
the maps 67 : 7 — P and 85 : S; ® S; — P are both one-one. Since the
map Sy — S1 ® Sy is one-one by the extension property of U in S; we
deduce that the composition 85 of this map with 8, embeds S5 in P. In
the notation developed in Section 8.4 we have

s161 = [s1], s205 =L, s3]

Suppose now that s16; = s205. Then from the commuting of the dia-
gram

S

51 ® S

1
0

P
we deduce that

(81 ® 1)02 = 5161 = 829; = (1 ® 82)92.

Since 64 is one-one we deduce that 5181 = 1®s; in S1®S3. Then, exactly
as in the proof of Proposition 8.5.7, we deduce that s; € U. Thus

1®s1=5101=18s9

in §1 ® S5 and so, again by the extension property of U in Sz, it follows
that so = 81 € U. Thus 5161 N S265 = U as required.
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To prove the final statement we must show that, for every X in Ens-U
and every YV in U-ENS, the map 2 Qy — 2 ® 1 ®y from X ® Y into
X ® (51 *y S2) ®Y is one-one. Now 51 =y Sy is the direct limit of
(Wy, o), and so, by Proposition 8.4.3, X ® (S; *y S2) ® Y is the direct
limit of the direct system (X @ W,, ® Y, 1 ® a,, ®1). Since each a, is pure
and one-one, it follows that each of the maps 1 ® a, ® 1 is one-one. Hence,
by Proposition 8.4.1, the map

1®(91®1X®W1®Y—>X®(Sl *r7 SQ)@Y

is one-one. Recall now that Wy = S;, and that, by the extension property
of U in 51, the map X ®Y — X ®S51®Y is one-one. Hence the composite
map

XY —-X®(S) v S2)®Y

is one-one, and the proof is complete. O

Remark Free products with amalgamation are known to be associative
{Howie 1968). The final sentence of Theorem 8.5.10 enables us to extend
the result to amalgams of more than two monoids. In fact one can show that
for an arbitrary index set I the amalgam [U; {S; : ¢ € I'}] is embeddable if
U has the extension property in each S;.

Theorem 8.5.10 applies to monoids, but we can fairly easily get a cor-
responding result for semigroups. Let A = [U;S],S3] be a semigroup
amalgam in which U has the extension property in Sy and S5, and con-
sider the monoid amalgam A* = [U*; S}, S5]. By Proposition 8.5.2, U* has
the extension property in ST and S5 and so we can embed A* in its free
product P. Now P contains S7 and S, and from

Uu{1} =U*=8{n5S;
= (S1U{1}) N (S U{1}) = (S1 N S2) U {1}

we deduce that S; N Sy = U. Hence we have the corresponding semigroup
result:

Theorem 8.5.11 Let A = [U; Sy, S2] be a semigroup amalgam. If U has
the extension property in Sy and Sz then A is embeddable. |

It is not reasonable to ask for precise converses to Theorems 8.5.10 and
8.5.11, since an amalgam [U; S;, S2] may be embeddable for a variety of
‘accidental’ reasons. We can, however, obtain a partial converse if we intro-
duce a new notion: a monoid or semigroup U is said to be an amalgamation
base if every amalgam [U; Sy, Sy} having U as core is embeddable. Then
we have the result:

Theorem 8.5.12 A monoid [semigroup] U is an amalgamation base if and
only if it is absolutely extendable.
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Proof We shall prove this for monoids. By means of the usual device we
can extend the proof to semigroups.

One way round this is a direct consequence of Theorem 8.5.10: if U is
absolutely extendable then U has the extension property in every S; and
S containing U, and hence the amalgam [U; S;, S3] is embeddable.

Conversely, suppose that U is an amalgamation base, and let S be a
monoid containing U as a submonoid. Let X € gns-U, Y € U-Ens; we
must show that the map X Y — X ® S® Y is one-one. We construct
a monoid 7" containing U, and use the fact that [U; S, 7] is embeddable.
To construct 7" we begin by defining W = XUY. Then W is a (U,U)-
bisystem in an obvious way if we define the left action of U on X and the
right action of U on Y trivially: ifu € U,z € X and y € Y, then

UL = T, yu = y.

Otherwise W inherits the given right action of U on X and the given left
action of U on Y.
Let

wO =y, wh=w, w=wr-bg, W (n>2).
Let T be the disjoint union of all the sets W (n > 0), and define a
multiplication on T' by
(’w1®"'®wr)(21®"'®2s) =R QU Q2 Q- ® 2,
(where r,s > 1) and
w1 @ Quw,) = (vw1) @ -+ @ wy,
(w1 ®- - Qwpu =w; ® & (Weu).
Then T is a monoid containing U as a submonoid.

The map X@uY — W@y W = W, C T is one-one, for if zQy = 2’ ®y'
in Wey W (with z,2' € X, y,y € Y) then the sequence of transitions
connecting z ® ¥y to ' ® 3’ in W @y W can never involve elements of y on
the left of ® or elements of X on the right of ®, and so may equally well

take place in X ®p Y.
Now consider the pushout diagram

U

T

5 P

and themap ¢: T ® S®T — P given by
(t®s®t)¢ = (tB)(sa)(t'B)-
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Suppose that 2 ®1®y = 2’ ®@1Q®y in X ® S®Y. Then certainly
z1R1Qy=2'91Qy nT®S®T, and so (zB)(yB) = ('B)(y¥'B) in
P. Now f is one-one since by assumption U is an amalgamation base.
Hence zy = z'y’ in T. By definition this means that z® y = 2’ ® ¢’ in
W @W, and we have already observed that this carries the implication that
r®y=12 ®y in X ®Y. Hence U has the extension property in S, and
since S was an arbitrary monoid containing U as a submonoid, it follows
that U is absolutely extendable. |

8.6 INVERSE SEMIGROUPS AND AMALGAMATION

It was shown by Howie (1962) that every group is an amalgamation base.
Much more generally, we have

Theorem 8.6.1 Every inverse monoid [semigroup] is an amalgamation
base.

Proof We shall confine ourselves to the monoid case. The semigroup case
can be tackled by the usual device of adjoining an identity. Let U be an
inverse monoid. We show that U is absolutely flat, from which it follows
by Proposition 8.5.1 and Theorem 8.5.12 that U is an amalgamation base.

The definition of flatness was given at the beginning of Section 8.5.
The first step in our proof is to establish a more easily verified criterion for
flatness:

Lemma 8.6.2 Let U be a monoid and let X € U-EnNs5. Then X is flat
if and only if, for all B in ENS-U and for all a, o’ in B and z, 3’ in
X, the equality a ® T = o’ @ 2’ in B @y X implies the same equality in
(aUU'U) @y X.

Proof It is clear from the definition of flatness that if X is flat then the
inclusion aU U ¢’U C B induces a monomorphism (aU U a'U) @y X —
Aoy X.

Conversely, suppose that we have the given property, and consider a
monomorphism A : A — B of right U-sets. We must show that A® 1 :
A®y X — B®y X is one-one. So suppose that a,a’ € A, z,&’ € X, and
that (in B® X)

(@) @z =(a'))®z.

By our assumption, this equality holds also in ((eA\)U U (¢/A)U) ® X, and
so we have equations

al = biug WL = Vix1
biv; = baus UpT|] = V2T
b2’02 = b3U3 UsTy = VU3T3

(8.6.1)

’
bp—1Un—1 = bplUn  UpZn_1 = UpZ

bpvn = a'X
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in which u1,...,Un,v1,...,0, € U, Z1,...,Zpn—1 € X, and in which each
of by,...,by is either in (@¢A)U or in (a/A\)U. Now any element b = (a))u
in (aA)U can be expressed as (au)A, where au € A. A similar observation
applies to elements of (a’A\)U, and so there exist elements a; in A such that
a;A =b; fori=1,2,...,n. Since A is a monomorphism of right U-systems,
we thus have a sequence of equalities

G = a1Uy, Q191 = G2U2, G2V2 = A3U3,...,nUn = al7
and these, together with the right hand column of equalities in (8.6.1),
imply that e@ z =0’ ®z' in A® X. o

Returning to the proof of Theorem 8.6.1, consider an inverse monoid U
and a left U-system X. We aim to show that X is flat. Accordingly, let
B € Ens-U and suppose that a ® z = o’ ® ' in B @y X. Then without
loss of generality we may suppose that there is a series of equalities

a = biug UL = V1T
bl’Ul = b2u2 U2T1 = V22
bovy = baus U3T2 = VU3T3

bon—1Van—1 = banlzn  UgnTan—1 = vond’
b2nv2n = d

where bq,...,b2, € B, Z1,...,Top_1 € X, and u1,...,%2p,01,...,02p € U.
There is no real loss of generality in supposing that the number of us is even,
for a scheme of this kind can always be extended trivially with equations
in which u and v are equal to 1. We aim to show that there is a sequence
of equalities demonstrating that ¢« ® z = ¢/ ® 2’ within (aU U d'U) @ X.
The sequence will be three times as long as the given one, and to describe
it we require some preliminaries. Define

20=1 2z =z_1u 'y {E=1,...,2n),
to=1, ¢t =14 ~1v2n1_1+1u2n_z+1 (1=1,...,2n).
Thus
2 = ul tvpuy o ouy tyy (32> 1),
ti = Uiy UgnVy_ 1 Usn—1 - Vap_iy1Uzn—i+1 (i > 1).
We now gather together some useful equalities into the following lemma.
Lemma 8.6.3 With the above definitions:

(1) 22n—it = = Zon = t5n1§

(2) az; = b Wz bz (1< <2n);

(3) ’t = bgn i+1U2n— H—lt ]t (1 S ) S 2n),

(4) a = autuy;

(5) (azi—1u; s = (azuiDuipr (1 <i<2n—1);
(6) (azon—1Ua, Jv2n = (aZ2n¥yy, JVan;
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(7) for1<i<n-1,

-1 -1 .
(azanti—1Vg, i1 ) Uon—it1 = (@ZantiVs,_;)Von—_i;

(8) (azantn- 1'Un+1)'“n+1 = (a’tonZn—1u5 " )Un;

(9) (a'tanziu Z+1)uz+1 = (a'tanzic1u; vy (1<i<n—1);
(10) (a’tanuyVus = (a'ten—1v7 u;
(11) (a'ton—i— 1v2+1)u,+1 = (a'ton—iv; )vz (1<i<2n—1)
(12) a'vylva, = o'

Proof (1) This is clear from the definitions.
(2) We prove this by induction. First, notice that

azy = blulul_lvl = blvlvl_lulul_lvl = blvlzflzl.
Then, inductively, we have
-1 -1
0z = az;_1u; V; = bi_1Vi12,_ 1zz_1u v;

1 -1 -1 -1
= bi(uizi_lzi_lui V(v v = bivvy Uz 1zZ 1%; Ui
= bivizi_lzi.

(3) The proof is similar to that of (2).
(4) This is immediate.

(5) Using standard techniques involving commuting idempotents, we
have

(azi—1u; v = az; = bz 'z (by (2))
= bip1Uit12; 2 = bip1Uig12]  ZUT Uit
= bq;vizi_lziu;rllm_,_wL = (aziu;_ll)ui.,_l.
(6) We have
(aZ2n—1Ugy YVan = GZan_1Ugy V2nVUs Van, = G220V Van.
(7) For 1 <i<n -1 we have
aZZnti—IUQ_nl_i.*.lu2n—i+l = azopl; = QZop— ’L t (by (1))
= b2n—iv2n—izznl_iz2n—it7; t; (by (2))
= bop_iVon—iZgyiZon—it; ‘tiVs 1 Van_;
= (aZZnti'Ug—nl_i)'U2n—i-
(8) Using (1) and (2) above, we have
(aZ2ntn—1Vp11)Unt1 = GZ2ntn = b2nVan2a, Zonts
= a' 25 zonty, = a'tpzy Lot Mty = a'tyz lay,

! ! -1
= a'tonzy = (@'ton2n_1U,, )Un.
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(9) Using (1) and (3) above, we have (for 1 < <n ~1)
(a"tonziu i1 = a'ton—sz; 27 Uit
= bip1Uir 1ty _ston—i%; | Zl Ui
= bip1Uit1tan ston—iZ; 'z
= a'topz; = (a’tgnz,_lui_l)vi.
(10) Since tgnul_lul = t9,, We have
(a'tgnul_l)ul =a'to, = (a'tgn_lvl_l)ul.
(11) Using (3) above, we have
(alt2n—ivi_1)'0i = bi+1u¢+1t2_,,}_it2n_wi_lvi = bi’vit;nl_itgn_i’vi_l’ui
= bivity ton—i = a'tan_; = (a/t2n—i—lv7;_+11)ui+1-

(12) This is immediate. O

With this information we can now fairly quickly show that a®z = o' ®2z’
in (aU Uad'U) ® X. For we have a system of equations

a = (aufl)ul UIT = V1T1
(auy 1)vl = (azlugl)uz UsT1 = Voo
(az1uy 1)1)2 = (GZQUS_I)U3 ULy = U3L3
(afZZn-—2u2_n1—1)'U2n—1 (az2n 1u2n)uzn UgnTon—1 = V2T’
(a’z2n——1u2_73)'u2n (a nvzn )/UZn v2nxl = U2nTon—1
(a22nV5, Yz, = (aZ2ntiVgn_1)V2n1 V2pn—1%2n—2 = Uzn—1T2n—2
(az2nt1v2_nl—1)u2n—1 (azzntzvznl 2)V2n—2  U2n—2Tap—2 = U2n—2T2n—3

-1
(QZZntn—lvn+1)un+1 (a tonZn—-1U, )'Un UnTp = UnTn-1
! ~1 — —
(0, tonZn—1Uy, )un = (a t2nzn—2un_1)vn—1 Un—1Tn—1 = Up-1Tp-2

(a/ t2nzlu21)u2 = (G'tznzoul_l)vl V1T] = UL
(a'tanzouy Duy = (a’tgn_lvl‘l)ul wWT = V1T
(a'ton— 11 1)111 = (a’tzn_gvgl)uz UsT] = ULy
(a’ ton_2vUy )Uz = (a't2n—3vg— 1)u3 ULy = U3T3
(a/tl?f;nl—ﬂwn—l = (a’tovgn])uzn UnLon—1 = UonT'

(a’to’l);nl)’l)gn = a'.
Since all the left factors of the left hand column of equations are visibly
in aU Ud'U it follows that a @z = o/ ® 2’ in (aU Ua'U) ®y X. Thus X
is flat, and since X was an arbitrary left U-system we deduce that all left
U-systems are flat. A similar argument shows that all right U-systems are
flat, and hence U, an arbitrary inverse monoid, is absolutely flat. o
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By an inverse semigroup amalgam we mean a semigroup amalgam
A=[U;{S;:iel};{¢;:iel}]

in which U and all of the semigroups S; are inverse semigroups. From
Theorem 8.6.1 we know that every inverse semigroup amalgam A is em-
beddable in a semigroup V. It is, however, more natural to seek to embed
A in an inverse semigroup. Let us say that a class C of semigroups has the
amalgamation property if every amalgam [U;{S; : i € I};{¢; : i € I'}| in
which U and S; (i € I) all belong to C is embeddable in a semigroup from
the class C. Then we have

Theorem 8.6.4 The class of inverse semigroups has the amalgamation
property.

Proof It will be sufficient to consider an inverse semigroup amalgam
A = [U;8,T], and by Theorem 8.6.1 we may suppose that S and T are
subsemigroups of a semigroup V intersecting in U.

For each s in S, let A\, be the map with domain s~!V defined by

A =sz (z s V).

The image of A, is clearly contained in sV. In fact im A, = sV, since, for
all sv in sV,
sv = ss"sv = (s71sv),.

1

The map A, : s~V — sV is one-one, since, for all z; = s~ ly; and z2 =

sy, in s71V,

TiAs = TaAs = ss—lyl :ss‘lyz

1

= ;= s‘lyl = s—lss_lyl =8 ss'lyz = Z9.

Thus A; € Zy.
Next, we show that the map s — A is one-one. Let s, € S and suppose
that A; = A;. Then, making use of Lemma 5.1.6, we see that

571V = s71V = dom A, = dom )\, =t~ 1tV
and so s's = t~'t. Hence
s=s5"ts=(s"1s)As = (s )\ = (t M)A =t = ¢

Tt is easy to see that the inverse of the bijection )\, : s71V — sV is
Ag—1, since for all z = s~ 1y in dom A,

TAAg-1 =8 1ss ly = sy =z,

and for all u = sv in dom A

UAg—1As = 58 LU = sv = u.
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The map s +— A, is a morphism, not into Zy, but into the dual semi-
group Zj;. In other words, for all 5, ¢ in S

AsAp = Ags.
To see this, notice (again using Lemma 5.1.6) that
dom(As)s) = (sV Nt V) A,-1
= (557 NtV ) Ao = (T HssTIV) A
= s tss™ IV = 571t sV = (t5) 7 (ts)V = dom Ags.
Also, for all z in dom(AsAs),
TAsAg = (8T) ¢ == t(sz) = (£8)T = TAs.

An exactly dual argument shows that for each s in S there is an element
ps of Ty with domain Vs~! and image Vs, given by

zps =xzs (xeVst,

and that s +— p; is a monomorphism from S into Zy. (No reversal of the
multiplication is required in this case.)
We thus have a monomorphism ¢ from S into the inverse semigroup
Iy x Iy, given by
s¢ = (Xs,ps) (s€5).

By the same token we have a monomorphism ¢ : T' — I3, X Zy, given by
W= (np) (teT).
It is clear that u¢ = uy for all u in U, and so
SenNTy 22U

To complete the proof of the theorem we need to show that this containment
is in fact an equality.
Suppose, therefore, that s¢ = ti, where s € Sand ¢t € 7". Then A, = A,
and so
$s7WV =im )\ = im A\ = tt71V;

hence ss™* R tt~! in V. Also, p; = p, and so
Vss™! = dom p,; = dom p; = Vit ™1;

thus ss~! £ #~! in V. Since H separates idempotents in any semigroup
(Corollary 2.2.6), it follows that ss™! = #~!, and from this we easily
deduce that

s=s5"ls=(ss"Vps = (tt7)p; =t.

Since S NT = U, this implies that s = ¢t € U, exactly as required. |

It follows from our method of proof that if an inverse semigroup amal-
gam is embeddable in a finite semigroup then it is embeddable in a finite
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inverse semigroup. Given the result from group theory (see B. H. Neu-
mann (1954)) that a finite group amalgam [U;S,T] is embeddable in a
finite group, it is reasonable to speculate that a finite inverse semigroup
amalgam is embeddable in a finite inverse semigroup. The following exam-
ple shows that this is not true in general.

Example 8.6.5 Let S = {0,¢, f,a,b}, T = {0,e, f,9,2,y} be the semi-
groups whose multiplication tables are

0 e f a b 0 e f g =z vy

0l 0 0 0 0 O 0y 0 0 0 0 0 O
el 0 e 0 a O el 0 e 0 0 =z O
fl o o0 f 0 b f1 0 0 f g 0 y
al 0 0 a 0 e gl 0 0 g g 0 y
by o b 0 f O z| 0 0 = =z 0 e
¥yl 0 y 0 0 g O

The first of these semigroups is the Brandt semigroup By already encoun-
tered in Section 1.6. The second can be seen to be a semigroup if we
represent it by matrices

[000] (1007 [000]
0=|000|,e=|000|,f=|010],
1000 1000] 001]
[000] [010] (0007
g=|010|,z=|000|,y=[100].
1000 1000 1000

In fact both S and T are inverse semigroups, and U = {0, e, f} is a common
inverse subsemigroup.

Suppose now that the inverse semigroup amalgam [U; S, T is embedded
in a semigroup Q. Thus @ contains subsemigroups S and T intersecting in
U. Since g < f in T we certainly have g < f in . On the other hand, in
@ we have

g=gfg, f=ba=bea=bxya = bxgya,

and so g J f in Q. The principal factor Jy U {0} of Q is certainly not
null, since it contains the idempotent f. Hence, by Theorem 3.1.6, it is
0-simple. If it were finite then it would be completely 0-simple, and all its
idempotents would be primitive. Since g < f in Jy U {0} this is not so;
hence J; U {0}, and so a fortiori Q, is infinite.
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This example of a finite semigroup amalgam that is embeddable but
not finitely embeddable incidentally answers negatively a question in Howie
(1964a).

8.7 EXERCISES
1. Let X be a right S-system. Define a relation p on .S by the rule that

a p b if and only if (Vz € X) za = zb.
Show that p is a congruence on S. Define a map ¢ : S — Tx by
z(ap) =za (€ X, a€S9).
Show that ¢ is a morphism whose kernel is the congruence A.

2. Let X = {z1,%2,...,Zn}, and let U be a monoid. Let F be the
cartesian product X x U. Verify that F' becomes a right U-system if
we define, for (z,%) in F and v in U,

(z,u)v = {x,uwv).
Show that F is the free right U-system on the set X. More precisely,
show that there is a map # : X — F such that for every right U-system
A and every map ¢ : X — A there is a unique right U-map ¢ : FF — A
such that 8¢ = ¢.

Notice that (z8)u = (z,u) for all z in X and v in U. If we identify
6 with z, we may regard F' as the disjoint union

3. Let § be a commutative monoid, let X, Y be S-systems and let
Mor(X,Y’) be the set of all morphisms from X into Y.

(a) Show that Mor(X,Y’) becomes an S-system if, for every mor-
phism o : X — Y and every s in S the morphism as is defined
by

z(as) = (za)s (z € X).
(b) Show that, if X, Y and Z are S-systems then
Mor(X ®sY,Z) ~ Mor(X, Mor(Y, Z))
This is connected with the idea of an ‘adjoint functor’. See, for exam-
ple, Schubert (1972).
4. Let
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be a pushout diagram in S-gns. Show that P = (BUC)/o, where
o = {(ac,af : a € A}¥. Show that if « is one-one then § is one-one,
and that if « is onto then 6 is onto. Show that in the latter case
P = C/p, where p = {(aB,0'B) : aa = a’a}¥.

5. Show that U — Domg{U) is a closure operation on the set of subsemi-
groups of a semigroup S. That is, show that

U C Domg(U),
UCV = Domg(U) C Domg{V),
Domg(Domg(U)) = Domg(U).
6. Let U = at, an infinite monogenic semigroup.
(a) If S is the infinite cyclic group generated by a, show that
U C Domg(U) = S.

(b) If S is the direct product at x b* of U = o™ with the free monoid
b*, show that
U = Domg(U) C 5.

(c) If P and @ are infinite cyclic groups generated by a, b, respec-
tively, and if S is the O-direct union of P® and Q°, show that

U C Domg(U) C S.
7. Show that left simple semigroups (semigroups S in which £ = 5 x 5)

are absolutely closed. [Hint: show that any zigzag in any T over S can
be replaced by a left-inner zigzag.]

8. Let S be a semigroup in which there exist elements a1, ag, a3 for which
a1SNayS = Say N Sas = 0.

(This is a property possessed in particular by the 2 x 2 rectangu-
lar band, with a; = (1,1), a2 = (2,1) and a3 = (1,2).) Let F =
{z1,72,91,y2} 7, and let T = (S * F)/R¥, where

R = {(a1,7101), (a191,02y2), (T102,T203), (a3y2,a3)}.

(a) Show by induction that any element of S * F' obtained from an
element s of S by elementary R-transitions is of the form

W1Z1W222 . . . Wp—12p—1Wn,

where:
: 1.
(1) wy,we,...,w, €S
(ii) each of z1,za,...,2zp—1 is either x; or ys;

(iii) if z; = 2y and w;41 # 1 then w;11 € 15
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(iv) if z; = yo and w; # 1 then w; € Sas;
(v} s=wiwy... wy,.

(b) Deduce that R#* N (S x S) = 1g, and hence that 7" contains S up
to isomorphism.

(c) Show that the element d = (a;y;)R# of T is such that d € S,
d € Domy(S), and deduce that S is not absolutely closed.

(This example shows that Theorem 8.3.6 cannot be generalized to
regular semigroups. Indeed it fails even for rectangular bands.)

9. Within the full transformation semigroup 7' = 7i; 234,56}, Write
(21 2 23 T4 T5 T6) to denote the map

123 45@6

T1 To T3 T4 Ts Tg |
Let ug = (223456), ug = (113446), ug =(111444), ug =
(224555), z =(333666), y =(323656), 2 =(313646).

Show that S = {u1, ua, us, U4, x,y, 2} is a subsemigroup of T', and that
U = {uq1,usg,us,us} is a right normal sub-band of S. Show that

T = TUy U1 = U1y
Tuy = Tz  UY = U3y
TUg = Ug Uy =&

is a zigzag over U with value z, and deduce that z € Domg(U).

10. Within the same full transformation semigroup 1" as in the previous
exercise, show that the 14 elements

uo=(446466), u; =(222456), up=(223436),
ug = (322426), us=(333333), us=(525456),
ug = (646466), u;=(555555), ug=(666666),
z=(111111), y=(444466), d=(444444),
z=(444446), t=(222222),

form a sub-band S of 7', and that U = {ug,us,...,ug} is a sub-band

of S. Show that
d= TUg Uy = U1y

TUL = TUz  UY = U3Y
TU3 = Ug ugy = d

is a zigzag over U with value d, and deduce that U is not closed in S.
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11. Let B be a band, let U be a proper sub-band of B, and suppose that
Domp(U) = B. Let d € B\ U, and suppose that

d = ruy Uy = vy
11 = TaU2 U2Yy1 = UV2Y2
Tm—1Ym—1 = Um UmYm—1 = d

is a zigzag of minimum length over U with value d. Thus y; and z,,—1
belong to B \ U, since otherwise the zigzag may be shortened.

(a) Using the fact that B is a band, show that d = duy = u,d.

(b) Show that

Jd S Ju1 S Jyl’ Jd S Jum S Jxm_1~

(c) Show that if J,, = Jgand J,,,_, = Jg then d = w1duy = v1um €
U.

(d) Deduce that B contains an infinite sequence of elements
dy,ds,ds, ... (where d; is either y; or ym—1) such that

Jd<Jd1 <Jd2 <Jd3 < vve

(e) Deduce that epimorphisms are onto within the class of finite
bands.

12. Let D be the infinite null semigroup {0, u1, ug,us,...}. Let S = DuUa*,
and define . _
a0 =0a =0, wu;d =a’u; =uiyj.

Show that S is a commutative semigroup, and that U = {0, uy, us} is
a subsemigroup of S. Write down a zigzag in S over U with value u;,
and deduce that Domg(U) = D.

13. Let G be the infinite cyclic group generated by a, and with identity
element e. Let S be the Brandt semigroup B(G,2), and let

U = {0’ i’j’x?y}’

where 1 = (1,e,1), 7 = (2,¢,2), z = (1,q,2) and y = (1,¢,2). Show
that z=%,y~! € Domg(U), and deduce that U is epimorphically em-
bedded in S.

14. Let U = {u,v,0} be a three element null semigroup. Let S = U U {a},
with au = ue = v and all other products equal to 0. Let T'= U U {b},
with bv = vb = u and all other products equal to 0. Show that S and T
are semigroups. If P is a semigroup containing the amalgam [U; S, T,
show that u = 0 in P, and deduce that [U; S, T] is not embeddable.

15. Let [U;S,T] be an amalgam. Let
N=UU(S\D)u(T\U)u{o},
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16.

17.

18.

Semigroup amalgams

where 0 ¢ SUT, and define a binary operation o on N by

roy=d %Y if z, y are both in S or both in T'
Y=10 otherwise.

Show that (N, o) is a semigroup if and only if N is consistent in S and
in T, that is, if and only if, in both S and T,

zyelU = zeUandyel.

Deduce that a (finite) amalgam [U;S,T] in which U is consistent in
both S and T is embeddable in a (finite) semigroup.

Show that a subsemigroup of a group is a subgroup if and only if it is
a (left) unitary subsemigroup.

A subsemigroup U of a semigroup S is said to be almost unitary if
there exist maps A, p: S —  such that

(a) N> =\, p? = p;
(b) A(st) = (As)t, (st)p = s(tp) for all s, t in S; that is, X is a left
translation and p is a right translation;
(c) A(sp) = (As)p for all s in S; that is, A and p commute, and the
notation Asp is unambiguous;
(d) s(At) = (sp)t for all s, £ in S; that is, A and p are linked;
(e) AMlv = plv = 1u;
(f) U is unitary in ASp.
Show that if U has an identity element e, then U is almost unitary if
and only if U is unitary in eSe.

It is clear that
unitary => almost unitary = quasi-unitary = relatively unitary.
All the implications are proper:

(a) Show that every subgroup of a semigroup is almost unitary. Let
S be a semigroup with zero element 0. Show that {0} is almost
unitary but not unitary.

{b) Let S be a Clifford semigroup with semilattice E of idempotents.
Show that E is quasi-unitary in S. Suppose now that S has an
identity and that S is not E-unitary. Deduce that F is not almost
unitary.

(c) Let U be a subsemigroup of a semigroup S, and suppose that
U is an inverse semigroup. Show that U is relatively unitary.
Now consider the subsemigroup Zx of PT x, where |X]| > 3.
Show that Zx is not quasi-unitary in P7 x. More particularly,



Notes 315

consider X = {1, 2,3}, and suppose that Zx is quasi-unitary in
PT x, with associated map ¢. Consider the elements

_(12) 4 (23 (123
*=\12) PT\23) 7T 232)"
note that oy and Sy belong to Zx, and attempt to find y¢.

19. Let U be a submonoid of a monoid S. Show that if the inclusion map
t: U — S splits in the category U-Ens-U (by which is meant that
there exists a (U,U)-map ¢ : S — U such that tp = 1), then U is
quasi-unitary in S.

20. Let [U;{S; : i € I'}] be an amalgam of monoids, let F' be a finite subset
of I and let Pr be the free product of the amalgam [U; {S; : i € F}]. It
is clear that if F', G are finite subsets of I such that ' C G, then there
is a canonical map ¢pg : Pr — Pg such that (Pr,¢rq) is a direct
system of monoids and monoid morphisms. Show that II*{S; : i € I'}
is the direct limit in the category of monoids of this system.

21. It is known (Neumann 1954) that if
A=[U;S,T)

is a group amalgam in which U C § and U C T (properly), then
the free product of A is infinite. Show that this is not the case for
semigroups. More precisely, let S be a finite semigroup with identity
element 1, let T be a finite semigroup with zero element 0, and form
the free product amalgamating the identity of S with the 0 of T'. Show
that the free product is a finite semigroup of order |S]+|T|—1. (Notice
that the amalgamated subsemigroup is a group, and so the amalgam
is naturally embedded in its free product.)

8.8 NOTES

We have given the merest sketch of the theory of S-systems. For fur-
ther information see {for example) Berthiaume (1967), Feller and Gantos
(1969), Knauer (1972, 1983), Kilp (1970, 1972, 1985), Kilp and Knauer
(1982, 1986), Knauer and Petrich (1981), Fleischer (1982), Normak (1987),
Bulman-Fleming and McDowell (1980a,b, 1983, 1984, 1985, 1987, 1988),
Bulman-Fleming and Gould (1990), and Bulman-Fleming et al. (1990).
The bibliography produced by Kilp and Knauer (1986) lists more than 200
items.

Isbell’s (1966) proof of the Zigzag Theorem (Theorems 8.3.4 and 8.3.5)
involves a degree of ‘handwaving’ that is (to use his own word) objection-
able. A successful amplification of his approach was provided by Philip
(1974), but we have preferred to give the proof due to Stenstréom (1971).
Much more recently Higgins (1990, 1992) has provided a different approach.
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In category theory, a morphism ¢ : A — B is an epimorphism if for all
objects C and all morphisms 3,v: B — C,

B=¢y = B=1.

As was pointed out by Isbell (1966), a semigroup (or monoid) morphism
¢ : S — T is an epimorphism if and only if Domr(im ¢) = T'. (In particular
this implies the existence of non-surjective epimorphisms in the categories
of semigroups and monoids.) The Zigzag Theorem has been extensively
used in the study of epimorphisms. See, for example, Scheiblich (1976},
Higgins (1981, 1983a,b,c, 1984a,b, 1985a,b, 1986a,b), Hall (1982), Hall and
Jones (1983), Khan (1982, 1985a,b), and Trotter (1986b). Some crucial
differences between ring and semigroup epimorphisms emerge from a paper
of Gardner (1975).

A number of interesting classes of semigroups have the property of being
absolutely closed, and several of these are correctly identified in Howie and
Isbell (1967). It is worth mentioning, however, that their proof that full
transformation semigroups are absolutely closed is incorrect. A correct
proof was given by Scheiblich and Moore (1973). See also Shoji (1980) and
Hall (1982).

The direct limit is a standard construction in universal algebra. See
Cohn (1965). The connection between direct limits and free products was
established for rings by Cohn (1959) and extended to semigroups by Ren-
shaw (1986a).

The systematic study of semigroup amalgams was initiated by Howie
(1962, 1963a,b,c, 1964a,b, 1968). His methods were combinatorial. Preston
(1976), Hall (1975, 1978, 1980) and Imaoka (1976) developed a representa-
tional approach. Renshaw {1986a,b) showed how this approach, expressed
in ‘homological’ terms, could be seen as similar to Cohn’s (1959) work on
amalgamation theory for rings, and it is Renshaw’s approach that we have
adopted in Sections 8.4 and 8.5. See also Howie (1985). More recently
Dekov (1991, 1993, 1994) has re-proved some of the early results using an
approach based on work of Baer (1949, 1950a,b). A survey article on amal-
gamations, with an extensive bibliography, has been written by Kiss et al.
(1983).

Theorem 8.6.1 was proved by Howie (1975) using a combinatorial argu-
ment, and later by Hall (1978) using representational techniques. Theorem
8.6.4 is due to Hall (1978). The proof that inverse semigroups are abso-
lutely flat is due to Bulman-Fleming and McDowell (1983).

Exercises 5 to 8 are from Howie and Isbell (1967), and Exercise 9 is
from Higgins (1983a). Exercises 10 and 11 are from Scheiblich (1976),
Exercises 12 and 13 from Hall (1982). Exercise 14 is based on Kimura
(1957a). Exercise 15 is from Howie (1964a).
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The concept ‘almost unitary’ appears in Howie (1962), where it is
proved that an amalgam [U;S,T] is embeddable if U is almost unitary
inSandT.
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List of symbols

a semigroup amalgam

the free semigroup on A

the free monoid on A

the free semigroup on {a}

the free monoid on {a}

a covers b

the meet of @ and b

the join of @ and b

the free band on A

a Brandt semigroup

the Brandt semigroup B({e},n)

the five element Brandt semigroup

the Bruck—Reilly extension

the semigroup of binary relations on X
the variety of bands

the variety of commutative semigroups
the variety of Clifford semigroups

the variety of completely regular semigroups
the variety of completely simple semigroups
the semilattice {eg > e1 > ex > -}
the contents of a word w

Green’s relation

Green’s relation in U

the D-class containing a

the DY-class containing a

the domain of ¢

the dominion of U/ in S

the set of idempotents of a semigroup S
the largest congruence contained in E
the class of right S-systems

the set {z: za = z}, where a € Tx
the free inverse monoid on X

the free S-extension of X and Y

the relatively free algebra on X

the variety of groups

the symmetric group on X

263
29
29
29
29
35
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13
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17
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112

111

111

111

163
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56
47
56
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237

200

281

110

111



List of symbols

a McAlister triple

the least inverse semigroup congruence
Green’s relation

Green’s relation in U

the H-class containing a

the HY-class containing a

the closure of H

the head (first letter) of w

the ideal {b € J(a): Jp < Jo}

the image of ¢

the symmetric inverse semigroup

Green’s relation

Green’s relation in U

the principal ideal generated by a

the principal factor containing a

the J-class containing a

the JY-class containing a

the kernel of an inverse semigroup congruence
the kernel of a map ¢

the kernel of a semigroup S

the kernel of a component of the function graph
Green’s relation

Green’s relation in U

the L£-class containing a

the £Y-class containing a

left translation by s

the variety of left normal bands

the variety of left zero semigroups

a monogenic semigroup

the maximum idempotent-separating congruence
the Rees matrix semigroup over G

the Rees matrix semigroup over G°

an F-unitary inverse semigroup

the variety of normal bands

the natural numbers {1,2,3,...}

the set {0,1,2,3,...}

a linked triple

the congruence determined by a linked triple
the translational hull of §

the diagonal relation (identity map) on X
an entry of the sandwich matrix

the semigroup of all partial maps of X
the free product of the semigroups S;

194
229
46
56
47
56
154
126
67
18
148
46
56
67
68
47
56
155
20
67
231
45
56
47
56
50
132
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12
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77
70
194
132
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114
15
69
17
256
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I3 S;
oY
Q

Qpij

poa

RN

RZ

]
S-ENS
S-gNs-T
o

SL

Sl

SO

S/I

Sl *p 52
S(e, f)
Slng]XI
S[Y; Sas d)oe,ﬁ]
S~T
SxT
SeuT
T

Te s
Tx
Tmax
Tmin
trp
t(w)
u

the free product of the amalgam [U; S
the sum of representations ¢ and ¢

the rational numbers

an extract from P = (p;)

Green’s relation

Green’s relation in U

the R-class containing a

the RY-class containing a

|im o}, where o € Tx

the variety of rectangular bands

the equivalence generated by R

the transitive closure of R

the converse of R

the congruence generated by R

the natural map from X onto X/p

the composition of p and ¢

right translation by s

the variety of right normal bands

the variety of right zero semigroups

the order of a semigroup S

the class of left S-systems

the class of S, T-bisystems

the minimum group congruence

the variety of semilattices

the semigroup S with adjoined identity
the semigroup S with adjoined zero
the Rees quotient of S by I

the free product of S7 and S, amalgamating U
the sandwich set

the semigroup of singular selfmaps of X
a strong semilattice of semigroups

S is isomorphic to T

the cartesian product of S and T'

the tensor product of S and 1" over U
the variety of trivial semigroups

the Munn semigroup

the set of isomorphisms from Fe onto E f
the full transformation semigroup on X
the greatest congruence with trace 7
the least congruence with trace 7

the trace of an inverse semigroup congruence
the tail (last letter) of w

the uniformity relation

343

263
186

84
45
56
47
56
237
112
21
21
16
25
20
16
49
132
112

252
252
160
112

33
263
58
234
105

255
112
162
162

158
158
155
126
162
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(U; Ss; ¢s)
u(0)
u(0)
u(1)
u(1)

List of symbols

a semigroup amalgam

the initial of u

the initial mark of u

the terminal of u

the terminal mark of u

the set of inverses of a

the variety of null semigroups
the length of a word

the set of left factors of w

the group-reduced word associated with w
a variety defined by laws

a direct system

a direct system

an element of a tensor product
the set of integers

263
120
120
120
120

52
112
239
203
203
112
273
276
255



Index

o-walk (in a word tree), 210
abelian semigroup, 2
absolutely closed semigroup, 272
absolutely extendable

monoid, 289

semigroup, 301
absolutely flat monoid, 289
absolutely free algebra, 109
acyclic component, 232
adjunction

of identity, 2

of zero, 2
almost unitary subsemigroup, 314
alphabet, 238
amalgamation base, 301, 303
amalgamation property, 307
anti-symmetric relation, 13
anti-uniform semilattice, 163, 166
archimedean semigroup, 138
associative law, 1
atom (in a lattice), 127
automaton, 238
automorphism, 5

Baer—Levi semigroup, 38, 61
band, 113
of groups, 139

base (of a submonoid of A*), 240

bicyclic semigroup, 32, 60, 100,
163, 170, 171

bimap, 254

binary operation, 1

binary relation, 16

biprefix code, 245

bisimple inverse semigroup, 169,
174, 217

bisystem, 252

Brandt groupoid, 219

Brandt semigroup, 152, 309
Bruck-Reilly extension, 171, 174,
215, 216

cancellative congruence, 62
cancellative semigroup, 60, 239
cartesian product, 254
central element of a semigroup,
107
centralizer, 160
centre of a semigroup, 107
chain, 212
Clifford semigroup, 107, 215, 217
closed
inverse subsemigroup, 188
set, 154
submonoid, 266
subsemigroup, 295
closure, 153
code, 244
codomain (of a map), 5
commutative semigroup, 2, 113
comparable elements, 167
compatible relation, 22, 152
complete
lattice, 14
lower semilattice, 14
upper semilattice, 14
completely 0-simple semigroup, 70
completely regular semigroup, 78,
103
completely simple semigroup, 77
component {of a digraph), 231
congruence, 22
on an inverse semigroup, 154
on an S-system, 253
pair, 156
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congruence-free semigroup, 93, 98,
101

conjugate elements, 248
consistent subsemigroup, 314
content of a word, 120
converse (of a relation), 17
coproduct, 262
core {of an amalgam), 263
covering relation, 35, 167
cross-section of an equivalence, 63
cycle, 38, 212
cyclic

component, 232

group, 10

semigroup, 9

defining relations, 31
degree (of a polynomial), 239
dense submonoid, 266
diagonal relation, 16
direct

limit, 274

product, 5, 6, 109

system, 274
0-direct union, 80
disjoint union, 278
division relation, 42
domain

of a map, 5

of a relation, 17
domination, 266
dominion, 266, 268

E-step, 286
FE-unitary

cover, 199

inverse semigroup, 192, 215,

217

regular semigroup, 64, 139
effective representation, 186, 192
element

of finite order, 10

of infinite order, 9
elementary R-transition, 27

Indezx

embedding of an amalgam, 263,
265
empty word, 29
endomorphism, 5
epimorphism, 266
equality relation, 16
equational class of algebras, 111
equidivisible semigroup, 239, 241
equivalence, 19
classes, 20
generated by a relation, 21
equivalent representations, 186
extended right regular represen-
tation, 7
extension (of a map), 17
extension property
for monoids, 288
for semigroups, 289, 292
extract (of a sandwich matrix),
85

F-inverse semigroup, 218
factorizable inverse semigroup, 199
faithful representation, 6, 185
Fibonacci sequence, 249
fibre product, 132
finite chain of groups, 181
finitely based variety, 112
finitely presented semigroup, 31
finite presentation, 31
flat S-system, 289, 303
four-spiral semigroup, 101
free
band, 119, 140
Clifford semigroup, 218
group, 202
inverse monoid, 200
inverse semigroup, 202
left normal semigroup, 142
left zero semigroup, 142
monoid, 29, 238
normal band, 142
product of an amalgam, 263
product (of groups), 259



Indez

product {of semigroups), 258
S-extension, 281, 296
S-system, 310
semigroup, 29, 238
semilattice, 142
full inverse subsemigroup, 155, 165
full transformation semigroup, 6,
39, 63, 96, 254
fully invariant congruence, 124
function, 19
fundamental inverse semigroup, 161

generalized inverse semigroup, 222
generating set, 9
generators, 9, 31
greatest lower bound, 14
Green’s equivalences, 45, 55, 59,
123, 172, 179, 238
Green’s Lemmas, 49, 54, 74, 175
Green’s Theorem, 50, 73
group, 3
amalgam, 251
as amalgamation base, 303
free product, 266
group-bound semigroup, 76
group-reduced word, 202
groupoid, 1
group-with-zero, 4

Hasse diagram, 15

head (of a word), 127
homological algebra, 254
homomorphism, 5

I-semigroup, 102

ideal, 4

idempotent, 4

idempotent semigroup, 113

idempotent-separating congruence,
160

idempotent-separating equivalence,
58

identical relation, 111

identity element, 2

347

image
of a map, 5
of a relation, 17
incomparable elements, 167
index
of an element, 10
of a factor in a free product,
258
infinite monogenic semigroup, 9
initial, 121
initial mark, 121
inner left and right translations,
115
inverse of an element, 51
inverse semigroup, 103, 145, 272,
303, 307
amalgam, 307
morphism, 147
inverse subsemigroup, 154, 211
irregular D-class, 51
Isbell’s Zigzag Theorem, 271, 272
isomorphic, 5
isomorphism, 5

join, 14

kernel, 10
of a component, 231
of a congruence, 155
of a map, 20
of a semigroup, 68
of a Rees morphism, 33

Lallement order, 235

Lallement’s Lemma, 57, 98, 230

languages, 238

lattice, 14

law, 111

lazy tongs semilattice, 216

least inverse semigroup congruence,
230, 236

least upper bound, 14
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left
cancellative semigroup, 61
compatible relation, 22
congruence, 22, 253

factor (of an element of a monoid),

242
ideal, 4
identity element, 37
normal band, 133
simple semigroup, 61
translation, 115
unitary subsemigroup, 63
zero element, 38
zero semigroup, 3, 113
lexicographic order, 168, 216
linked left and right translations,
115
linked triple, 86, 90
locally inverse semigroup, 222, 223,
225
lower bound, 13
lower semilattice, 14, 193

M-step, 286
McAlister triple, 194
map, 19
maximal
condition, 13
element, 13
prefix code, 249
maximum
element, 13

group morphic image, 160
idempotent-separating congru-
ence, 160, 217
meet, 14
0-minimal ideal, 67
minimal
condition, 13, 167
conditions on principal ide-
als, 48
element, 13
ideal, 68, 95
minimum

Index

element, 13
group congruence, 62, 160
ideal, 68
Mitsch order, 235
modular lattice, 34
monogenic semigroup, 9, 95
monoid, 2
extension property, 289
free product, 266
morphism, 5
monomorphism, 5
morphic image, 109
morphism, 5
of Q-algebras, 109
Morse code, 244
Munn semigroup, 162
Munn word tree, 210

Nambooripad order, 223, 235
natural embedding of an amalgam,
264, 265
natural order (on an inverse semi-
group), 152
nilpotent element, 70
normal
band, 133
congruence, 155
inverse subsemigroup, 155
sandwich matrix, 82, 83, 236
null semigroup, 3, 113, 139

Q-algebra, 108
w-semigroup, 171
order
of a semigroup, 1
order of an element, 9
automorphism, 193
ideal, 193
relation, 13
ordered set, 13
ordinal product, 216
orthodox band of groups, 139
orthodox semigroup, 58, 139, 222,
226
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partially ordered set, 13

partial map, 17

partial order relation, 13

partial transformation semigroup,
63

partition, 20

period (of an element), 10

periodic semigroup, 12

polynomial, 239

prefix code, 245

prefix property, 244

prim inverse semigroup, 217

primitive element, 249

primitive idempotent, 70

principal
factor, 69, 95, 98
ideal, 45

series of a semigroup, 95
proper

congruence, 83

ideal, 5

inverse semigroup, 217
pullback, 132
pure monomorphism, 289, 296
pushout, 264, 277

quasi-unitary
submonoid, 291
subsemigroup, 291, 292
quotient semigroup (by a congru-
ence), 23
quotient set (by an equivalence),
20

R-unipotent semigroup, 222, 235
range (of a map), 5
rectangular
0-band, 96
band, 7, 96, 113
group, 139
Rees
congruence, 33
Isomorphism Theorem, 81
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matrix semigroup, 71, 97, 99,
151, 234
morphism, 33
quotient, 69, 253
Theorem, 72
Theorem (normalized version),
82, 83
Rees-Suschkewitsch Theorem, 77
reflexive relation, 13
regular
D-class, 51, 216
element, 50
sandwich matrix, 70
semigroup, 50
relational morphism, 42
relatively free algebra, 110
relatively unitary subsemigroup,
293
representation, 6
representation (of an inverse semi-
group), 185
restriction (of a map), 17, 153
right
cancellative semigroup, 61
compatible relation, 22
congruence, 22
coset, 188, 212
group, 61, 98
ideal, 4
identity element, 37
normal band, 133
w-coset, 188
simple semigroup, 61, 98
translation, 115
unitary subsemigroup, 63
zero element, 38
zero semigroup, 3, 113
right-inner zigzag, 273

S-act, 252
S-morphism, 253
S-operand, 252
S-set, 252
S-step, 286
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S-system, 252
sandwich set, 59
Sardinas—Patterson algorithm, 245
saturated set of words, 203
self-conjugate inverse subsemigroup,
155
semiband, 223, 230
semigroup, 1
amalgam, 251, 262
of binary relations, 63
with involution, 102
with length, 239, 241
of linear maps, 63
morphism, 5, 147
Px of all partial maps, 18
Tx of all maps, 19
with zero, 2
semilattice, 113
of completely simple semigroups,
105
of idempotents, 146
semimodular lattice, 35
semisimple semigroup, 95
simple
inverse semigroup, 176, 178,
217
monoid, 216
semigroup, 66
O-simple semigroup, 66
spined product, 132
splitting monomorphism, 315
standard component, 232
Stirling number, 42, 96
strong semilattice of completely
simple semigroups, 106
subalgebra of an Q-algebra, 109
subdirect product, 130
subgroup, 4
sublattice (of a lattice), 14
subsemigroup, 4
subsystem, 253
subtransitive inverse subsemigroup,
178
subuniform semilattice, 177, 216

Index

suffix code, 245
sum (of representations), 186
symmetric
group, 6, 38
inverse semigroup, 149, 211,
215
relation, 19
syntactic congruence, 28
system, 252

tail (of a word), 127
tensor product, 254, 269
terminal, 121
terminal mark, 121
totally ordered set, 13
total order relation, 13
trace (of a congruence), 155
transformation semigroup, 6
transitive
closure (of a relation), 21
relation, 13
representation, 186, 192
subsemigroup, 170
transitivity relation, 185
translation, 115
translational hull, 115, 139
transposition, 39
transversal of an equivalence, 63
trimap, 257
trivial component, 232
trivial semigroup, 113

U-semigroup, 102

uniformity relation, 162

uniform semilattice, 163, 166, 169,
216

unitary subsemigroup, 63, 291

universal relation, 16

upper saturation, 154

upper semilattice, 14

Vagner—Preston representation, 185
variable length code, 244
variety of algebras, 110
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weak direct product, 130
weakly embeddable amalgam, 267
well-ordered set, 13, 167
word
in an alphabet, 238
in a free product, 259
tree, 210

zero divisors, 67
zigzag, 271
Zigzag Theorem, 271, 272
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