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Preface

This book is an elaboration of themes that I previously explored in my paper “Why
do mathematicians re-prove theorems?” (Dawson 2006). It addresses two basic
questions concerning mathematical practice:

1. What rationales are there for presenting new proofs of previously established
mathematical results?
and

2. How do mathematicians judge whether two proofs of a given result are essentially
different?

The discovery and presentation of new proofs of results already proven by other
means has been a salient feature of mathematical practice since ancient times.1 Yet
historians and philosophers of mathematics have paid surprisingly little attention to
that phenomenon, and mathematical logicians have so far made little progress in
developing formal criteria for distinguishing different proofs from one another, or
for recognizing when proofs are substantially the same.

A number of books and papers have compared alternative proofs of particular
theorems (see the references in succeeding chapters), but no extended general study
of the roles of alternative proofs in mathematical practice seems hitherto to have
been undertaken.

Consideration of particular case studies is, of course, a necessary prerequisite for
formulating more general conclusions, and that course will be followed here as well.
The aim is not, however, to arrive at any formal framework for analyzing differences
among proofs. It is rather

a) to suggest some pragmatic criteria for distinguishing among proofs, and
b) to enumerate reasons why new proofs of previously established results have so

long played a prominent and esteemed role in mathematical practice.

1Wilbur Knorr, e.g., noted that “multiple proofs were frequently characteristic of pre-Euclidean
studies” (Knorr 1975, p. 9).
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viii Preface

Chapter 1 addresses the first of those aims, following clarification of some perti-
nent logical issues. Chapter 2 then outlines various purposes that alternative proofs
may serve. The remaining chapters provide detailed case studies of alternative
proofs of particular theorems. The different proofs considered therein both illustrate
the motives for giving alternative proofs and serve as benchmarks for evaluating the
worth of the pragmatic criteria in terms of which they are analyzed.

York, PA, USA John W. Dawson, Jr.
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Chapter 1
Proofs in Mathematical Practice

Before proceeding to consider the questions posed in the Preface, it is necessary
to clarify some logical issues. Paramount among them is the question: What is
a proof?

The notion of what constitutes a proof in a formalized theory is perfectly precise:
It is a finite sequence of well-formed formulas, the last of which is the statement
to be proved and each of which is either an axiom, a hypothesis, or the result of
applying one of a specified list of rules of inference to previous formulas of the
sequence. That notion of proof, central to mathematical logic, has led to important
advances in the understanding of many foundational and metamathematical issues,
and it is widely believed that all current mathematical theories can be formalized
within the framework of first-order Zermelo-Fraenkel set theory. Nevertheless,
formal proofs are not the focus of the present inquiry.

One reason they are not is that formal proofs have not yet become the stuff of
mathematical practice:1 The notion of a formalized theory is of very recent origin,
and strictly formal proofs appear almost exclusively in texts on logic and computer
science, not in ordinary mathematical discourse. In addition, mathematicians do not
ordinarily resort to formalization in order to judge whether two (informal) proofs
that deduce the same conclusion from the same premises are essentially the same.
Rather, it is usually easy to tell, on informal grounds, whether such proofs are
essentially different or merely variants of one another. Intuitively, they are different
if they employ different concepts or tactics.

Furthermore, as Yehuda Rav has stressed, mere expressibility within the language
of set theory does not imply that “all . . . current conceptual proofs can be formalized
as derivations” within that theory (Rav 1999, p. 20, fn 20). That is so in part because
informal proofs often involve “topic-specific moves” that “have no independent

1That may well change soon, however, given that computer proofs of such major results as the
Four-color Theorem, the Prime Number Theorem, and the Jordan Curve Theorem have now been
obtained.

© Springer International Publishing Switzerland 2015
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2 1 Proofs in Mathematical Practice

logical justification,” but serve rather as conceptual “bridges between the initially
given data, or between some intermediate steps, and subsequent parts of the
argument” (Ibid., p. 26). And, as the logician Jon Barwise noted,

current formal models of proof are severely impoverished : : : . For example, . . . proofs
where one establishes one of several cases and then observes that the others follow by sym-
metry considerations [constitute] a perfectly valid (and ubiquitous) form of mathematical
reasoning, but I know of no system of formal deduction that admits of such a general rule.
(Barwise 1989, p. 849)

That is not to say, however, that formal methods are of no use in comparing
informal proofs. Indeed, formal methods may sometimes help to clarify whether
two proofs of a statement really establish the same result. For example, one primary
motive for presenting alternative proofs is to eliminate superfluous hypotheses (as
in Goursat’s improvement of Cauchy’s theorem on integrals of analytic functions)
or controversial assumptions (such as the Axiom of Choice). But should a proof
based on fewer or weaker hypotheses be regarded as establishing the same or
a stronger theorem?

Suppose, for example, that a theorem T is first proved from a set of hypotheses
H , but that later a proof of T is found that employs as hypotheses only some proper
subset P of H . Have we given two different proofs of T , or have we proved in
the first case the implication

V
H ) T (where

V
H denotes the conjunction of

all the hypotheses in H ) and in the second case the implication
V
P ) T (a

stronger result)? Formally, the distinction is merely a matter of perspective, since
the Deduction Theorem for first-order logic establishes the equivalence of A ` T
and `VA) T for any set A of non-logical axioms. To avoid confusion, however,
the first perspective will be adopted here, according to which it is the proof, rather
than the theorem, that has been strengthened; and for precision, all and only those
premises that are actually employed in a proof will be regarded as the hypotheses of
the deduction. It then follows that two proofs of the same theorem based on logically
inequivalent sets of premises must be regarded as different, since the totality of
contexts (models of the premises) in which one proof is valid is not the same as
those in which the other is.

In some cases, formal considerations may lead to conclusions that differ from
those arrived at informally. For example: If a statement S is known to imply
a statement T , should a proof of S ipso facto be regarded as a proof of T ?
Informally, the answer ought to be “no” in general, since the proof that S implies
T may itself be highly non-trivial.2 Formally speaking, however, it follows from
(the strong form of) Gödel’s completeness theorem for first-order logic that if S and
T are any two theorems provable from some first-order set of axioms A, then so is

2Nevertheless, as a colleague has rightly noted, if T is a statement whose proof has long been
sought and the implication S ) T has already been established, one who proves S is often said
to have proved T . For example, Andrew Wiles proved the Taniyama conjecture, but is often said
to have proved Fermat’s Last Theorem.



1 Proofs in Mathematical Practice 3

S ) T : For bothS and T , and therefore also the equivalenceS ” T , must hold
in every structure that satisfies the axioms, and so, by Gödel’s theorem, S ” T

must be provable from the axioms A. Thus, given a proof of S , applying modus
ponens to the proofs of S and of S ) T would yield a proof of T , even though,
from a semantic standpoint, S might be utterly irrelevant to T .

Such proofs do not occur in actual mathematical practice. But what if the
implication S ) T is more easily seen (especially if S is harder to prove than T )?
For example, should a proof that the series of reciprocals of the primes diverges,
or a proof of Bertrand’s Postulate, be deemed a proof of the infinitude of the
primes? Should a proof of the Pythagorean Theorem be deemed a proof of the
Law of Cosines? The answer is somewhat subjective, and it seems impossible to
draw a clear-cut boundary. In Aigner and Ziegler’s Proofs from the Book (Aigner
and Ziegler 2000), for example, a proof that the aforementioned series diverges is
included among proofs of the infinitude of the primes, but a proof of Bertrand’s
Postulate is given in a separate section. As for the Law of Cosines, a direct proof
of it — that is, one that does not employ the Pythagorean Theorem3 — certainly
establishes the Pythagorean Theorem as a special case. But in practice, as in Euclid,
the Pythagorean Theorem is proved first and then used as a tool to prove the Law
of Cosines — a proof which, though relatively straightforward, is not trivial. Thus,
although logically equivalent to the Law of Cosines, in practice the Pythagorean
Theorem exhibits a certain conceptual primacy. It does not seem proper, therefore,
to regard a direct proof of the Pythagorean Theorem as a proof per se of the Law of
Cosines; rather, one may distinguish proofs of the latter according to whether they
do or do not rely on the Pythagorean Theorem.

We do not, then, eschew the use of formal methods in the analyses to be
undertaken here. But the formal model of what constitutes a proof is an abstraction
designed to “provide an explanation of . . . [how] an informal proof is judged to
be correct [and] what it means for a [mathematical statement] to be a deductive
consequence” of certain other statements.4 For those purposes, the formal model of
proof serves very well. It seems ill suited, however, for dealing with the broader sort
of questions considered here.

Accordingly, the term ‘proof’ will here be taken to refer to an informal argument,
put forward to convince a certain audience that a particular mathematical statement
is true — and, ideally, to explain why it is true — an argument that is subsequently
accepted as valid by consensus of the mathematical community. As such, whether
a proof succeeds in producing conviction that the result it purports to prove is true

3It seems that only very recently has such a proof of the Law of Cosines been given. See
http://www.cut-the-knot.org/pythagoras/CosLawMolokach.shtml (discussed further in Chapter 5
below).
4Quoted from Avigad (2006), an article whose concerns overlap to some extent with those of the
present text. Avigad suggests that a more fruitful model for analyzing broader aspects of proofs
that occur in mathematical practice may be that employed by workers in the field of automated
deduction.

http://www.cut-the-knot.org/pythagoras/CosLawMolokach.shtml


4 1 Proofs in Mathematical Practice

depends not only on the formal correctness of the argument, but on the mathematical
knowledge and sophistication of the audience to which it is presented, as well as that
of the mathematical community at large.

The issue here is both a historical and a pedagogical one: On the one hand,
standards of rigor have not remained constant, so arguments that once were accepted
as convincing by the community of mathematicians of the time may no longer be
so regarded; and who is to say that a proof accepted as valid today will not some
day be found wanting?5 On the other hand, a rigorously correct proof may fail to be
convincing to those who lack the requisite background or mathematical maturity;
and some results (such as the Jordan Curve Theorem) may appear so obvious that
mathematical sophistication is required even to understand the need for them to be
proved.

Recognition of those facts is essential for any meaningful study of the role of
alternative proofs in mathematical practice. For to dismiss as proofs arguments that
once were, but are no longer, deemed to be correct or complete is to misrepresent
mathematical history, by attributing to proofs a permanence they do not possess; and
in the present context, it would also eliminate from consideration two of the primary
motives for seeking alternative proofs, namely, correcting errors or filling perceived
gaps in previous proofs (as, e.g., in Hilbert’s rigorization of Euclidean geometry),
and presenting arguments that, though perhaps less rigorous, are more perspicuous
or persuasive to a given audience.6

The primary aim in what follows will be to examine how alternative proofs of
various well-known theorems differ. In most cases it will be evident that the proofs
do differ, and that intuitive feeling can be justified in various ways. For example,
proofs that are direct, or are constructive, may be distinguished from those that
are not. A proof that employs a particular technique (mathematical induction, for
example, or a certain rule of inference) differs tactically from one that does not.
One proof may give greater information than another — for example, by providing
a method for finding a solution to an equation, rather than merely exhibiting one, or
by better indicating why a result is true. (Showing, e.g., that a convergent real power
series has a particular radius of convergence by showing that the corresponding
complex series has a singularity at a certain point is more informative than simply

5It is interesting to note, however, how many arguments later deemed to be ‘faulty’ have yielded
correct results — have contained a ‘germ’ of truth, so to speak. In some cases, the methods
originally used to prove such results have been discarded and the theorems reestablished by
other, quite different means, while in other instances the original approaches have subsequently
been revalidated in light of more sophisticated analyses. (One example is Laurent Schwartz’s
theory of distributions, which provided a rigorous foundation for arguments based on Dirac’s ‘ı-
function.’ Another is Abraham Robinson’s creation of non-standard analysis, in terms of which the
Newtonian concept of infinitesimal was made comprehensible and arguments based upon it were
seen to be correct.)
6Proofs may, for example, be crafted to serve the needs of a particular segment within or
outside of the mathematical community (students, for example, or lay persons with an interest
in mathematics).
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applying the ratio test to the given series.) Different proofs may yield different
numerical consequences, one yielding a better numerical bound, say, than another,
or a smaller number that exhibits a certain property. A result employed as a lemma
in one proof of a theorem may appear as a corollary of that theorem if it is proved by
other means. One proof of a theorem may be valid in a wider context than another.
Or one proof of a theorem may be comprehensible to a particular audience while
another is not.

Proofs may also differ in how primitive notions are organized into higher-level
concepts, reflecting an interplay between proofs and definitions.

Consider, for example, proving that det.AB/ D det.A/ det.B/. If, for n � n
matrices A; det.A/ is defined as

P
�2Sn sgn.�/ a1�1 : : : an�n , where Sn denotes the

set of all permutations of f1; : : : ; ng and aij denotes the entry in row i and column
j of A, one may compute directly that

det.AB/ D
X

�2Sn
sgn.�/

0

@
X

k1

a1k1bk1�1

1

A : : :

0

@
X

kn

anknbkn�n

1

A

D
X

k1;:::;kn

a1k1 : : : ankn

X

�2Sn
sgn.�/bk1�1 : : : bkn�n

D det.B/
X

k2Sn
sgn.k/a1k1 : : : ankn

D det.B/ det.A/ D det.A/ det.B/I

but the defining formula is complicated and the index chasing even more so.
Instead, with that same definition for det.A/, many linear algebra texts introduce

the elementary row operations and the corresponding elementary matrices E , show
how each row operation on A results in the matrix EA, and compute easily that
det.EA/ D det.E/ det.A/ for any n � n matrix A and any elementary matrix E .
If A is nonsingular, some sequence of m row operations reduces it to the n � n
identity matrix I , so Em : : : E1A D I . Noting that the inverse of any row operation
is itself a row operation, A D E�1

m : : : E�1
1 , so

det.AB/ D det.E�1
m : : : E�1

1 B/

D det.E�1
m / : : : det.E�1

1 / det.B/

D �det.E�1
m / : : : det.E�1

1 /
�

det.B/

D det.A/ det.B/:

On the other hand, if A is singular, then so is AB, for any n � n matrix B , so A and
AB each reduce to a matrix with one or more rows of zeros, whence det.AB/ D 0 D
det.A/ D det.A/ det.B/.
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The proof just given is much more perspicuous than the direct one. However,
because of its use of inverses, it presumes that the entries in the matrices are
elements of a field, whereas the direct proof applies in the wider context of matrices
whose entries are elements of a commutative ring.

A third alternative, adopted in texts such as Hoffman and Kunze (1961), is
to define a determinant function to be a function from n � n matrices over a
commutative ring R to elements of that ring which is linear as a function of each
row of the matrix, which assigns the value 0R to any matrix having two identical
rows, and which assigns the value 1R to the identity matrix. One then proves that
there is exactly one such function, which may be expressed in terms of the entries
of the matrix by the aforementioned formula. Without reference to that formula,
however, one can show that if D is any function from the n � n matrices over R to
R that is a linear function of each row of any such matrix and that is alternating (that
is, D.A/ D �D.A0/ whenever A0 is obtained from A by interchanging two of its
rows), then D.A/ D det.A/D.I /. Such a functionD is given by D.A/ D det.AB/,
for any fixed n � n matrix B . So

det.AB/ D D.A/ D det.A/D.I / D det.A/ det.IB/ D det.A/ det.B/:

In this example, changing the definition of det.A/ from one couched in terms of
the entries of the matrix to one that incorporates some of the desired properties of
the determinant function leads, without loss of generality, to a more abstract proof
that is both more perspicuous than the computational one and that explains why the
formula for det.A/ in terms of the entries of A is what it is.

In comparing different proofs, it must of course be recognized that differences
are often a matter of degree. The judgment whether two proofs are essentially
different or merely variants of one another (and similar judgments as to whether
one is ‘simpler’, or ‘more pure’, than another — notions discussed further in the
next chapter) is thus a subjective one to a certain extent. Chapter 3 provides a very
simple but illustrative example.

The next chapter enumerates some of the reasons why mathematicians have been
led to seek alternative proofs of known results. The remaining chapters then provide
detailed case studies of particular instances.
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Chapter 2
Motives for Finding Alternative Proofs

Even if we have succeeded in finding a satisfactory solution, we
may still be interested in finding another solution. We desire to
convince ourselves of the validity of a theoretical result by two
different derivations as we desire to perceive a material object
through two different senses. Having found a proof, we wish to
find another proof as we wish to touch an object after having
seen it.

— George Pólya, How to Solve It

Four motives for seeking new proofs of previously established results have already
been mentioned in Chapter 1: the desires

(1) to correct errors or fill perceived gaps in earlier arguments;
(2) to eliminate superfluous or controversial hypotheses;
(3) to extend a theorem’s range of validity; and
(4) to make proofs more perspicuous.

Euclid’s efforts to avoid, wherever possible, employing proofs involving super-
position of figures exemplify the first of those motives; the persistent attempts, prior
to the works of Bolyai and Lobachevsky, to deduce the parallel postulate from the
other axioms of Euclidean geometry, the second; Henkin’s completeness proof for
first-order logic, applicable to uncountable languages as well as to countable ones,
the third; and objections, by sixteenth- and seventeenth-century mathematicians, to
Archimedean proofs by the method of exhaustion, the fourth.

That Euclid employed the method of superposition when it appeared unavoid-
able, as in the proof of proposition I,4 (justifying the side-angle-side criterion for
congruence), suggests that the ancients considered superposition to be a perspicuous
principle, but one that rested on spatial intuition and so was not rigorously justified
by Euclid’s (planar) axioms. On the other hand, the rigor of Archimedes’s proofs
by exhaustion was never questioned. But such proofs seemed to many merely to
establish that a result was true, without providing understanding of why it was, or of
how the proof might have been discovered.1 Proofs by mathematical induction are
open to similar objections.

1There is a growing literature on the notion of explanatory proofs (those that convey understanding
as well as conviction). The article Mancosu (2001) and the book Mancosu (1996) provide useful
introductions to that subject.

© Springer International Publishing Switzerland 2015
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8 2 Motives for Finding Alternative Proofs

The desire to avoid employing superposition arguments in Euclidean proofs also
exemplifies another respect, separate from that of rigor, in which a proof may be
deemed deficient: that it fails to exhibit purity of method.

Concern for purity of method has arisen frequently in the history of mathematics.
Particular instances of such concern include the ancient Greek requirement that
geometric constructions be restricted to those performable with straightedge and
compass alone; the desires that synthetic proofs be found for results obtained
in analytic geometry, that intrinsic proofs be given for theorems in differential
geometry or topology, and that proofs of results in model theory not invoke syntactic
considerations; the preference for minimizing appeals to analytical or topological
methods in proving the Fundamental Theorem of Algebra (discussed further in
Chapter 8 below); the quest to find an ‘elementary’ proof of the Prime Number
Theorem2 (one not employing the methods of analytic number theory), whose
unexpected success was among the achievements that led to the award of a Fields
Medal to Atle Selberg; and Hilbert’s (failed) program to establish the consistency of
formalized Peano arithmetic using methods formalizable within that theory itself.
In a somewhat broader sense, concern for methodological propriety is reflected
in such aspects of mathematical practice as the desire to replace indirect or non-
constructive proofs by direct or constructive ones, or the debate over whether
theorems of analysis ought to be proved by ‘soft’ (functional-analytic) means
(which, though ‘slick,’ may obscure underlying conceptual motivations) or by ‘hard’
calculations involving inequalities (which may be lengthy and tedious).

In considering questions of purity, several caveats are in order. First, as remarked
in the preceding chapter, in many cases one should more properly speak of degrees
of purity. Second, it must be recognized that different notions of purity may conflict.
Consider, for example, Desargues’s Theorem in the Plane, which states that if two
triangles in the same plane are oriented so that the lines joining corresponding
vertices are concurrent, then the corresponding sides, if extended as lines, will
intersect in three collinear points. As a theorem of projective geometry, one might
in the name of purity seek a proof solely by projective means. But as a theorem of
plane geometry, one might equally well desire a purely planar proof. Those two aims
cannot be reconciled, however, since Hilbert showed that any planar proof of that
theorem must invoke the metric notion of similarity.3 In addition, it should be noted
that some proofs — for example, model-theoretic consistency proofs, in which basic
notions are given alternative semantic interpretations — inherently violate purity of
method.

Proofs that violate purity of method may, however, possess merits of their own.
The example given in the previous chapter of determining the radius of convergence

2In its simplest form, the Prime Number Theorem (the subject of Chapter 10 below) states that

limx!1 �.x/

�
x

lnx
D 1, where �.x/ denotes the number of primes less than x.

3See Chapter 9 below for a detailed discussion of Desargues’s Theorem. An illuminating discussion
of Hilbert’s proof is given on pp. 222–229 of Hallett (2008).
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of a real power series is a case in point: consideration of the singularities of the
corresponding complex series makes it clear why the radius of convergence is what
it is — an insight that could not be obtained without introducing the complex
perspective. The more general context here has greater explanatory power.

Concern for purity of method implies a restriction on means of proof, but
not conversely. Other reasons for restricting allowable means of proof include
reconstructing proofs employed in antiquity, given what we know about the
state of mathematical knowledge in particular ancient cultures,4 and benchmarking
(demonstrating the power of a given methodology by employing it to prove theorems
in areas where it might seem not to be applicable).5

Methodologically ‘pure’ proofs demand fewer conceptual prerequisites for their
understanding, since they employ no notions beyond those implicit in the statement
of the theorem to be proved. They may, however, be long and complex (as are
elementary proofs of the Prime Number Theorem), and thus lack elegance, an
aesthetic characteristic that is hard to define but is nonetheless readily perceived
and highly esteemed by mathematicians.

Proofs that are elegant may employ sophisticated concepts, but they are usually
short, often employ novel perspectives or strategies, and generally convey imme-
diate understanding and conviction (producing an Aha! reaction). Reading such
proofs yields deep intellectual enjoyment and satisfaction, akin to that experienced
in viewing fine works of art or listening to great music. Elegant proofs are, however,
often of limited generality, involving insights applicable only to a particular
problem.

Another aesthetic criterion according to which proofs may be compared is
simplicity. One proof may be simpler than another in various respects. For
example:

(1) It may be significantly shorter.
(2) It may involve fewer conceptual prerequisites.
(3) It may reduce the extent of computations to be performed or the number of

cases to be considered.

A well-known example of (3) is Hilbert’s basis theorem for invariants of
algebraic forms,6 whose non-constructive proof swept away in one stroke a tangle
of laborious calculations in invariant theory, including much of the life work of the
mathematician Paul Gordan.

4One example is discussed in Chapter 4.
5Such as using topological arguments to prove results in mathematical logic. Another example is
Errett Bishop’s text Foundations of Constructive Analysis (Bishop 1967), which Bishop himself
called “a piece of constructivist propaganda,” written to demonstrate how large a part of abstract
analysis can be developed within a constructive framework.
6In the form proved by Hilbert, the theorem states that every ideal in the ring of multivariate
polynomials over a field is finitely generated, so that for any set of polynomial equations, there is
a finite set of such equations that has the same set of solutions.
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Remarkably, Hilbert himself believed that among all proofs of a theorem there
must always be one that is simplest. He said so explicitly in the statement of
what he had intended would be the twenty-fourth problem in the list he drew up
for presentation in his famous address at the Second International Congress of
Mathematicians. Due to time constraints, however, he mentioned only ten of the
problems during the lecture itself. Thirteen more appeared in the version of his
address published in the Conference Proceedings, but the twenty-fourth problem
came to light only in the mid-1990s, when it was discovered in one of the notebooks
in Hilbert’s Nachlass.7 It asked for “Criteria of simplicity, or proof of the greatest
simplicity of certain proofs,” with the understanding that “under a given set of
conditions there can be but one simplest proof.” Hilbert never posed the problem
in public, perhaps because of the difficulty of making the notion of “simplicity”
formally precise.8 Accordingly, judgments of whether one proof is simpler than
another have up to now been based primarily on informal criteria like those above.

In addition to the practical and aesthetic rationales so far considered for
presenting new proofs of previously established theorems, there are also more
personal motives for doing so. For mathematics is, after all, a human endeavor. Skill
in proving theorems is best developed by attempting to prove results on one’s own,
and in the course of doing so, one may well devise an argument not previously given,
since people do not all think alike. In some cases, one may not be aware of other
proofs that have been given—different proofs, e.g., may arise in different cultures,
or a new result may be discovered, simultaneously and independently, by different
individuals using different arguments. Like all fields of scholarship, mathematics
is also a competitive enterprise, and having seen a proof presented by someone
else, one may be challenged to devise one’s own proof of it. Thus, apart from the
reasons already enumerated, alternative proofs may arise simply as expressions
of individual patterns of thought, perhaps reflecting personal predilections or
preferences for using particular tools.

Here an analogy may be made between mathematics and the sport of moun-
taineering. Mathematicians are driven to solve problems for the same reason that
mountaineers are driven to climb mountains: because they are there; and as in
mountaineering, pioneering a new route to a summit, perhaps using restricted
means, may be just as challenging and exciting (and be accorded just as much
respect by one’s peers) as being the first to make the ascent.9 Mascheroni’s work
showing that the compass alone suffices to carry out all straightedge and compass
constructions may, for example, be compared with ascents by climbers who disdain

7“Mathematisches Notizbuch” (Cod. ms. D. Hilbert 600), preserved in the Handschriftenabteilung
of the Niedersächische Staats- und Universitätsbibliothek, Göttingen.
8See Thiele and Wos (2002) for further details on the history of the twenty-fourth problem and on
results related to it found recently by those working in automated theorem proving.
9Jon Krakauer, e.g., in his book Into Thin Air, wrote: “Getting to the top of any given mountain
was considered much less important than how one got there: prestige was earned by tackling the
most unforgiving routes with minimal equipment, in the boldest style imaginable.”
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supplemental oxygen or mechanical aids. Some new proofs may thus be presented
purely as such, especially if they are deemed to involve particularly clever or unusual
insights, or to exhibit particular economy of means.

Apart from such specific motives for giving alternative proofs, there is also an
over-arching purpose, often overlooked, that multiple proofs serve — one analogous
to the role of confirmation in the natural sciences. Namely, just as agreement among
the results of different experiments heightens credence in scientific hypotheses (and
so also in the larger theories within which those hypotheses are framed), different
proofs of theorems bolster confidence not only in the particular results so proved,
but in the overall structure and coherence of mathematics itself. As Max Dehn
remarked in an address delivered 18 January 1928, “Most [mathematical] results are
so involved in the general web of theorems, they can be reached in so many ways,
that their incorrectness is simply unthinkable.” (Dehn 1983, p. 22) That is, trust in
mathematical results is based rather on the “multitude and variety” of the deductions
that lead to them than on “the conclusiveness of any one” of those deductions.
Mathematical reasoning is not “a chain, : : : no stronger than its weakest link, but
a cable,” whose fibers, though “ever so slender,” are “numerous and intimately
connected.”10
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Chapter 3
Sums of Integers

As a first, very simple case study of alternative proofs, consider the following four
proofs of the identity 1C 3C � � � C .2n � 1/ D n2 (a result known since antiquity,
and one that is readily conjectured from specific instances):

1. Proof via gnomons (Figure 3.1)
2. Proof by induction:

The result is true when n D 1, since 1 D 12. Assuming that it is true when
n D k, suppose n D k C 1. Then 1C 3C � � � C .2k � 1/C .2.k C 1/ � 1/ D
1C 3C � � � C .2k C 1/ D k2 C .2k C 1/ D .k C 1/2. By induction, the result
therefore holds for all n.

3. Proof via Gauss’s method (recalling the tale of his schoolboy summation of the
first hundred integers1):

1C 3C 5C � � � C .2n � 1/ D S
.2n � 1/C � � � C 5C 3C 1 D S

whence, adding the equations together column by column, 2n C 2n C � � � C
2n D 2S , where the left member of the equation has n equal summands. Thus
2n � n D 2S , or S D n2.

4. The stairstep proof (Figure 3.2)
Which of these proofs are to be regarded as essentially different, and on what
grounds?

1For an interesting commentary on the origin and evolution of that possibly apocryphal tale, see
Hayes (2006).
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Fig. 3.1 The addends form
gnomons

Fig. 3.2 The addends form a
staircase

3.1 Comparative analysis

At first glance, one might think that the gnomon proof is simply a geometric
representation of the inductive one. In several respects, however, it is not. In partic-
ular, it is more perspicuous and requires fewer prerequisites for its understanding:
Given a square with sides of any integral length, it is clear that to obtain a square
with sides one unit larger, it suffices to add unit squares along two adjacent edges
of the given square and then place one unit square in the corner between those
edges. It follows that if the original square has side length n, a gnomon composed
of 2n C 1 unit squares must be added to form a square of side length n C 1.
Starting with a single unit square and successively adjoining such gnomons thus
corresponds to starting with the number 1 and adding successive odd numbers.
The only prerequisites to understanding the proof are knowing what an odd number
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and a geometric square are, and how the area of a square is found.2 No knowledge
whatever of algebra is needed, in contrast to the rudimentary algebra employed in
the inductive proof.

In addition, arranging counters in the shape of gnomons3 readily suggests what
the sum of the first n successive odd numbers should be — a conjecture that must
be made before an inductive argument can be carried out. And as teachers of the
subject will readily attest, the very concept of mathematical induction is a difficult
one for many students to grasp.

For all these reasons, the gnomon and inductive proofs must be regarded as
distinct. But what of the other two proofs?

Both Gauss’s method (as described above4) and the stairstep proof involve
duplication and inversion, of an equation in one case and a figure in the other. Both
also seem equally perspicuous, since the recognition that the area of the n� .nC 1/
rectangle in the stairstep proof is given by n.n C 1/ involves essentially the same
insight as recognizing that that product gives the sum of n summands each equal
to n C 1. So it does seem reasonable to regard the stairstep proof merely as a
geometric representation of the Gaussian one.

That the Gaussian/stairstep proof is conceptually distinct from the other two
proofs also seems clear. The diagrams that constitute the gnomon and stairstep
proofs represent two different (both quite natural) ways of arranging successive odd
numbers of counters into patterns. One yields a square while the other yields an
n � .n C 1/ rectangle. One gives the result directly, the other requires division by
two. And no induction is involved in the Gaussian argument.

On those grounds alone, then, we may conclude that three of the four proofs
considered above are essentially different. To what extent can each of them be
generalized?

The method of mathematical induction is, of course, a very general one. It can be
employed in a great variety of contexts, once a result has been conjectured by other
means (including ordinary induction). It is not a method for discovering results, nor
(in general) for providing explanatory proofs; but it can be useful for validating a
result that is needed, when other means of proving it would require that a substantial
amount of background theory be developed.

2No wonder, then, that the gnomon proof has very ancient origins. See in particular the commentary
by Sir Thomas Heath on pp. 358–360 of vol. I of his translation of Euclid’s Elements (Heath 1956).
3The term originated in the ancient Greek theory of figured numbers, where it meant “a number
which, when added to a term in a given class of figured numbers, produces the next number in that
class” See Knorr (1975), pp. 135–154, for further examples and discussion.
4This qualification is necessary, because as Brian Hayes points out in the article cited in footnote 1
above, not all accounts of Gauss’s schoolboy triumph describe that same algorithm. Several, e.g.,
say that he folded the series 1C 2C 3C � � � C 100 in the middle and added corresponding entries
in the two rows — a method that yields the same numerical result without having to divide by two,
but which applies only to series with an even number of terms, and so does not yield the general
formula for an arbitrary number of summands.
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a b

Fig. 3.3 Stacked pyramids

The Gaussian/stairstep technique can obviously be applied to find the sum of any
finite arithmetic series — in particular, to show that

nX

iD1
i D n.nC 1/

2
:

With sufficient powers of three-dimensional visualization it can also be employed
to find

Pn
iD1 i2: Form a stepped pyramid by stacking square layers of sizes n �

n; .n � 1/� .n � 1/; : : : ; .2 � 2/; 1 � 1 atop one another, aligning all their “back”
corners (Figure 3.3(a)). Then note that three such stepped pyramids can be fitted
together to form a solid composed of an n � .n C 1/ rectangular parallelepiped
topped by half of an n � .nC 1/ layer of unit cubes (Figure 3.3(b)).5 Hence

3

nX

iD1
i2 D n.nC 1/.nC 1

2
/:

Likewise, the gnomon method is readily modified to find the sum of the first n
even numbers, by starting with two counters and using gnomons to form successive
rectangles of dimensions n� .nC1/, for each n (what the ancient Greeks called the
“oblong” numbers). Half that sum then again gives

5Figure 3.3 is based on that in Nelsen (1993), p. 77, where the construction is credited to
Man-Keung Siu. ©The Mathematical Association of America 2013. All right reserved.
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nX

iD1
i D n.nC 1/

2
:

Gnomons, too, can be applied in three dimensions to find the equation

.nC 1/3 � n3 D 3n2 C 3nC 1;
the three-dimensional analogue of the equation .nC1/2�n2 D 2nC1; and if those
two equations are added together, the resulting expression for .n C 1/3 in terms
of lower powers of n can be used, in conjunction with the formula for

Pn
iD1 i , to

provide an alternate derivation of
Pn

iD1 i2.
To carry out the construction, form an .n C 1/ � .n C 1/ � .n C 1/ cube from

a given n � n � n cube by placing a gnomon of 2nC 1 unit cubes around the base
of the latter (Figure 3.4(a)). Then stack n more of those gnomons atop the first one
(Figure 3.4(b)), and add a final n � n square layer of unit cubes above the original
cube. The resulting “gnomonic” shell around the given cube will thus be made up

a b

Fig. 3.4 Gnomonic shells. (a) First step. (b) Next-to-last step
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of n C 1 gnomons, each containing 2n C 1 unit cubes, plus a square “roof” of n2

unit cubes atop the starting cube. So

.nC 1/3 � n3 D .nC 1/.2nC 1/C n2 D 3n2 C 3nC 1:

These examples illustrate how the gnomon and stairstep methods can be used to
establish many of the same results via different routes.
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Chapter 4
Quadratic Surds

This chapter provides an example of how an alternative proof may be used to
provide a rational reconstruction of a historical practice. It concerns the following
well-known

Theorem:
p
n is rational if and only if it is integral, that is, if and only if n is a

perfect square.

That result is an almost immediate consequence of

Euclid’s proposition VII,20, which (in modern terminology) states: If a; b; c; d are
natural numbers and a is the least natural number for which a=b D c=d (that is,
a=b is in lowest terms), then a divides c and b divides d .1

For suppose
p
n D p=q, where p and q are relatively prime. Then p=q D nq=p.

By proposition VII,20, q must divide p, whence q D 1.
Note that this proof is a direct one, and the value of n plays no role in it. That

argument, however, was apparently not known at the time that the irrationality of
many such quadratic surds was first discovered. Evidence that it was not is provided
by an intriguing passage in Plato’s dialogue Theaetetus, cited by Sir Thomas Heath
in his introductory commentary to Book X of Euclid’s Elements (Heath 1956, vol.
III, p. 1–2). Theaetetus concerns the pre-Euclidean mathematician of that name, who
lived from about 415 to 368 BCE; and in the passage cited, Theaetetus says that his
teacher, Theodorus of Cyrene, “was proving for us via diagrams something about
roots, such as the roots of three or five, showing that they are incommensurable
by the unit. He selected other examples up to seventeen, where, for some reason,
he encountered difficulty.” The passage is vague concerning just how Theodorus
established the irrationality of

p
3,
p
5, etc., but it certainly suggests (as Heath goes

1As noted already in Zeuthen (1896), pp. 156–157, Euclid’s proof of that proposition is faulty.
Proposition VII,20 does, however, follow by reductio from the division algorithm and proposition
VII,17 (that b=c D ab=ac for any natural numbers a; b; c).

© Springer International Publishing Switzerland 2015
J.W. Dawson, Jr., Why Prove it Again?, DOI 10.1007/978-3-319-17368-9_4

19



20 4 Quadratic Surds

Fig. 4.1 A triangular tiling

on to note) that separate proofs were involved, which would not have been necessary
had Theodorus known the general proof given above.

Heath further notes that the passage makes no mention of Theodorus’s having
proved that

p
2 is incommensurable with the unit, “doubtless for the reason that its

incommensurability had been proved before.” As to when and how that was done,
Heath speculates that even without knowledge of the Pythagorean Theorem, the
ancient Greeks could easily have deduced from a diagram like that in Figure 4.1
that the hypotenuse of an isosceles right triangle whose legs are of unit length must
have length

p
2 (Heath 1956, vol. I, p. 352).

He then refers to Aristotle’s Prior Analytics (I,23) for an explanation of how
the discovery that

p
2 is incommensurable with the unit was made. According to

Aristotle,

[A]ll who effect an argument per impossibile infer syllogistically what is false and prove the
original conclusion hypothetically when something impossible results from the assumption
of its contradictory; e.g., that the diagonal of the square is incommensurable with the side,
because odd numbers are equal to evens if it is supposed to be commensurate.

That is, the original proof that
p
2 is irrational was an indirect one, based on

parity considerations. It presumably went as follows (a proof still often presented in
classrooms today):

Suppose that
p
2 is equal to the ratio of two integers, p and q. After canceling

any common factors, p and q may be assumed to be relatively prime, so one of
them must be odd. Now p2 D 2q2, so p2 is even. Hence p itself must be even, say
p D 2m. But then 4m2 D 2q2, or 2m2 D q2, so q must also be even, contradiction.
Hence

p
2 must be irrational.

Aristotle’s text says nothing, however, about the incommensurability of lengths
representing square roots of other integers. So the questions remain: How did
Theodorus obtain the results Theaetetus ascribed to him, and what problem arose
with
p
17?

A plausible answer to both those questions was first suggested by Jean Itard in his
book (Itard 1961). He pointed out that proofs based on parity considerations could
be used to establish the irrationality of each of the roots mentioned by Theaetetus,
but — tellingly — not the irrationality of

p
17. With the benefit of elementary

algebra, Itard’s claim can be justified as follows:
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Suppose that n is the least non-square positive integer whose square root is
rational, say

p
n D p=q, where p and q are relatively prime. Then p2 D nq2,

and q cannot be even, since if it were, p would be also. So q is odd. Then if p
were even, n would be also, say p D 2k and n D 2j . Replacing p and q by those
expressions yields 4k2 D 2jq2, or 2k2 D jq2. Thus j would have to be even, say
j D 2r . Hence 2k2 D 2rq2, or k2 D rq2, an equation which has the same form
as p2 D nq2. So

p
r D k=q, with r < 4r D n; and if r were a perfect square, n

would be too, contrary to assumption. Thus r is not a perfect square, but is a positive
integer less than n with a rational square root; and that contradicts the minimality
of n. The assumption that p could be even is thus untenable. Consequently, both p
and q must be odd. Therefore so are p2 and q2, which means n must be odd as well.
Writing p D 2kC1; q D 2j C1 and n D 2mC1, the equation p2 D nq2 becomes

.2k C 1/2 D n.2j C 1/2;
that is,

4k2 C 4k C 1 D n.4j 2 C 4j C 1/ D 4j 2nC 4jnC n;

which may be rearranged as

4.k2 C k � j 2n � jn/ D 4Œk.k C 1/� nj.j C 1/� D n � 1 D 2m:

Since the product of any two consecutive positive integers must be even, it follows
that the bracketed expression in the last equation above is an even number, say 2s,
so 8s D 2m. Hence, finally, n D 2mC 1 D 8sC 1.

Conclusion: If there is an integer n, not a perfect square, whose square root is
rational, then the least such n must be of the form 8sC 1 (that is, be congruent to 1
mod 8); and the least non-square integer of that form is 17.

Of course, the ancient Greeks could not have carried out a general algebraic
analysis like that just given. But Wilbur Knorr, in chapter VI of his book (Knorr
1975), showed how, in each individual case, geometric methods available to the
ancient Greeks could have been used to establish the parity-theoretic results needed
to prove that

p
n is irrational, for every non-square integer from n D 2 to n D 15.

He further showed that those methods would break down in the case n D 17, thus
justifying Theaetetus’s account of Theodorus’s works.

Could the geometric methods of the ancient Greeks have been employed to show
that
p
n is irrational for any integer n that is not a perfect square? The following

reductio proof by infinite descent, recently devised by Akihiro Kanamori, gives an
affirmative answer.

Kanamori’s geometric proof: Suppose that
p
n D a=b, where a and b have no

common factor and b ¤ 1. By the division algorithm, a D bqC r for some integers
q and r , with 0 < r < b. Construct a right triangle with hypotenuse of length a
and one leg of length bq, and let c denote the length of the other leg. Then draw an
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Fig. 4.2 A simple
reductio proof

arc of radius bq from the vertex at the right angle to the hypotenuse, and from the
point on the hypotenuse so determined, construct the perpendicular segment lying
inside the triangle (Figure 4.2). Call the length of that segment d , and note that
the segment from the vertex at the right angle to the point where the perpendicular
segment intersects the leg of length c must also be d , since those segments are
tangents to a circle from a common point. The right triangle with legs of length r
and d is then similar to the original triangle, so bq=c D d=r and a=c D .c � d/=r .
Therefore cd D bqr and a D .c2 � cd/=r . But also, by the Pythagorean theorem,
c2 D a2 � b2q2 D b2n � b2q2, since a D bpn. Hence

p
n D a

b
D b2n � b2q2 � bqr

br
D bn� q.bqC r/

r
D bn� qa

r
:

Thus
p
n has been represented as a ratio of two integers, with denominator r < b.

But that is absurd, since the construction could be repeated indefinitely to yield a
never-ending strictly decreasing sequence of positive integers less than r .

Note that the proof just given may be regarded as a geometrization of the one-line
algebraic proof

a

b
D a r

b

r
D a.

p
n � q/
r

D a
p
n � aq

r
D bn � aq

r
:
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Chapter 5
The Pythagorean Theorem

The Pythagorean Theorem is one of the oldest, best known, and most useful
theorems in all of mathematics, and it has also surely been proved in more different
ways than any other. Euclid gave two proofs of it in the Elements, as Proposition
I,47, and also as Proposition VI,31, a more general but less well-known formulation
concerning arbitrary ‘figures’ described on the sides of a right triangle. The first of
those demonstrations is based on a comparison of areas and the second on similarity
theory, a basic distinction that can be used as a first step in classifying many other
proofs of the theorem as well.

Since Euclid’s time hundreds of other proofs have been given — not because
the correctness of the result or the rigor of Euclid’s arguments have ever been
questioned, but principally because the theorem has fascinated generations of
individuals, not only professional mathematicians but students and amateurs, who
have felt challenged to apply their own ingenuity to prove it. The multitude of proofs
thus created stands as an exemplar par excellence of the desire to find a previously
undiscovered path to a goal.

Extensive compilations of proofs of the Pythagorean Theorem have appeared
in several publications. Sources in English include a series of twelve articles by
Benjamin F. Yanney and James A. Calderhead (Yanney and Calderhead 1896–9)
that appeared in vols. 3 through 6 of the American Mathematical Monthly, each
entitled “New and old proofs of the Pythagorean theorem”; the book (Loomis 1940)
by Elisha S. Loomis, first published in 1927 and reprinted in 1968 by the National
Council of Teachers of Mathematics; and the geometry web pages maintained by
Alexander Bogomolny (Bogomolny 2012).

The first of those references nominally presents 100 different proofs; the second,
367; and the third, 96; but the qualifier ‘nominally’ is important for several reasons.
First, as each of the compilers points out, some of the proofs admit numerous
variations (sometimes thousands in the case of similarity arguments, depending on
which particular sets of proportions are employed). Second, especially in Loomis’s
book, distinctions among proofs are often not clearly or carefully made, despite
his proclaimed intent to classify and arrange the proofs according to “method of
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proof and type of figure used.” Indeed, the very first of his ‘algebraic’ proofs
— those based on similarity relations, as opposed to ‘geometric’ proofs based
on area comparisons — appears to differ little, if at all, from his ‘algebraic’
proofs 38 and 93 (described as involving “the mean proportional principle” and
“the theory of limits,” respectively), or from ‘geometric’ proof 230; and it is also
similar to Euclid’s Proposition VI,31 — of which, incredibly, Loomis appears to
have been completely unaware! Third, not all of the proofs given in Yanney’s
and Calderhead’s articles or in Loomis’s book are correct! The most egregious
example is Loomis’s ‘algebraic’ proof 16, apparently taken over uncritically from
Yanney’s and Calderhead’s proof X. Ostensibly a proof by reductio, it assumes
the Pythagorean Theorem to be true, derives a true consequence from it, and then
declares the assumption to have been justified!1 Several other fallacious proofs from
those two earlier sources are also cited on Bogomolny’s web site.

Loomis’s book is problematical on other grounds as well. The very idea, for
example, of distinguishing proofs according to the diagrams used to represent them
seems fatally flawed, both because the same diagram, interpreted differently, may
be used to represent conceptually distinct arguments, and because, conversely, some
arguments can be represented by more than one distinct diagram. (See below for
further discussion of both points.) Loomis’s criteria for excluding some proofs
on the grounds that they are mere variants of ones given, while including others
that seem hardly distinguishable from them, are vague, to say the least; and in
several instances he also made categorical declarations with no, or with only weak,
attempts at justification. Thus, for example, he declared the first of the ‘algebraic’
proofs he listed (the third of the proofs considered below) to be “the shortest
proof possible,” without further discussion.2 He also claimed (pp. viii and 224)
that “no trigonometric proof [of the Pythagorean Theorem] is possible,” because
“all the fundamental formulae of trigonometry are themselves based upon [the
trigonometric form of] that theorem,” namely, the identity cos2 � C sin2 � D 1.
But that is simply false: A very simple derivation of that identity, based directly on
the ratio definitions for sine and cosine, is given below (proof 4).3

The purpose of the analyses that follow is not to duplicate the excellent
commentaries on Bogomolny’s site (though all the proofs considered below are to
be found there), nor to provide a critique of all, or even most, of the proofs collected
by Yanney and Calderhead or Loomis. Rather, the aim of the case study undertaken
in this chapter is the more modest one of examining and comparing seven proofs of

1It is reprehensible that such a blatantly invalid proof was reproduced without comment in the
NCTM reprint of Loomis’s book.
2Eli Maor, for one, has disagreed. In his book (Maor 2007) he proposes another candidate and
provides much other illuminating discussion of the Pythagorean Theorem and various proofs
thereof.
3Alternatively, in Zimba (2009) it is shown that the Pythagorean Theorem follows easily from the
identities for sin.˛ � ˇ/ and cos.˛ � ˇ/, each of which, as is well known, can be derived directly
from the ratio definitions (see, e.g., Nelsen 2000, pp. 40 and 46).
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Fig. 5.1 Euclid’s ‘windmill’
diagram
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the Pythagorean Theorem, selected as representative examples of distinct conceptual
approaches that have been taken over the centuries. The two proofs given by Euclid4

provide a natural starting point.

1. Elements, Book I, Proposition 47: In right-angled triangles, the [area of the]
square on the side subtending the right angle is equal to [the sum of the areas of]
the squares on the sides containing the right angle.

Proof summary: The proof is based on the well-known ‘windmill’ or ‘bride’s
chair’ diagram (Figure 5.1), constructed as follows:

Given the right triangle ABC with right angle BAC, erect squares on each of its
sides (as justified by the immediately preceding proposition I,46), and note that since
angles BAC, BAG, and CAH are all right angles, AH and AG are extensions of the
segments BA and CA, so that segments CG and BH are parallel to segments BF and
CK, respectively. Next, drop a perpendicular from A to segment DE, intersecting
BC at M and DE at L. The segment LM then divides the square on BC into two
rectangles, and the central idea of the proof is to show that the area of the square
on AB is equal to the area of the rectangle BDLM and the area of the square on
AC is equal to the area of the rectangle CELM. The principal tool for doing so is
Proposition I,41, which states, in essence, that all triangles with the same base and
altitude have the same area, or in other words, that the area of a triangle is invariant
under the action of any shear transformation parallel to its base. Accordingly, if
the segments AD, AE, CF, and BK are drawn, then triangles BCF and ABF have
the same area (half the area of the square on AB), as do triangles BCK and ACK
(half the area of the square on AC); and likewise, triangle ABD has half the area of
rectangle BDLM and triangle ACE half the area of rectangle CELM. But triangles
BCF and ABD are congruent, as are triangles BCK and ACE, by the side-angle-side

4Both due to Euclid himself, according to Proclus.
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criterion (Proposition I,4), since angles CBF and DBA are equal (each being a right
angle plus angle ABC), as are angles BCK and ACE (each being a right angle plus
angleACB). Hence half the area of the square on AB plus half the area of the square
on AC is equal to half the area of rectangle BDLM plus half the area of rectangle
CELM, from which the desired result follows by multiplying by two.

2. Elements, Book VI, Proposition 31: In right-angled triangles the figure on the
side subtending the right angle is equal to the similar and similarly described
figures on the sides containing the right angle. (See Figure 5.2.)

Overview of proof: Although its statement is much more general than that of
Proposition I,47, the proof of Proposition VI,31 is much simpler. Indeed, the
proof follows by inspection from Figure 5.3 below, once the following facts are
recognized:

(a) The statement of the proposition does not require that the figures described
on the sides of the triangle must be exterior to the triangle, nor that they not
overlap.

(b) Similar figures differ only in scale.
(c) If two figures are rescaled by the same factor, the ratio of their areas is

unchanged.

For in Figure 5.3 we may regard triangle ABD as described on sideAB of triangle
ABC, triangle ACD as described on side AC , and triangle ABC as described on
its own hypotenuse BC. (Alternatively, we may consider Figure 5.4, in which the
triangles ABD, ACD, and ABC of Figure 5.3 have been reflected around the lines

Fig. 5.2 Euclid’s
Proposition VI,31

Fig. 5.3 Three similar
triangles

A

CB D
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Fig. 5.4 Figure 5.3
“unfolded”

AB, AC and BC to form the triangles ABD0, ACD00, and A0BC.5) Triangles ABD,
ACD, and ABC are similar because their corresponding angles are equal, and since
triangles ABD and ACD exactly fill up triangle ABC,

area of ABDC area of ACD D area of ABC:

The proposition therefore holds for those triangles. But the general case then follows
from (b) and (c), since F1, F2, and F3 are similar by hypothesis and are scaled, like
triangles ABD, ACD, and ABC, in proportion to the lengths of AB, AC and AD. So,
for some constant k, we have

area of F1
area of ABD

D area of F2
area of ACD

D area of F3
area of ABC

D k:

Multiplying the first displayed equation above by k then gives

area of F1 C area of F2 D area of F3; q:e:d:

The generality of Proposition VI,31, coupled with the economy of means used
to prove it, is breathtaking. So why did Euclid give the less general Proposition
I,47 with its more involved proof? Presumably, as Heath says (Heath 1956, vol. I,
p. 355), because in the plan of exposition that Euclid adopted for the Elements,
the development of Eudoxus’s ingenious theory of proportions (needed in order
for similarity theory to apply to incommensurable as well as commensurable
magnitudes) was postponed to Book V, whereas the more restricted form of the
Pythagorean Theorem given in I,47 was needed early on. Alternatively, as Heath

5In Maor (2007) the argument based on Figure 5.4 is called the ‘folding bag’ proof.
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also suggests, it may be that a proof of the Pythagorean Theorem based on similarity
theory was first advanced prior to Eudoxus’s work, but was recognized to apply only
to commensurable magnitudes, so that an alternative proof independent of similarity
theory (such as that given for Proposition I,47) was desired and subsequently found.

Note that, despite its reliance on similarity theory, the proof of Proposition VI,31
also involves a comparison of areas, in contrast to the next proof (one commonly
given today):

3. The Pythagorean Theorem: Given any right triangle whose hypotenuse a D
jBC j, let b D jAC j and c D jABj. Then a2 D b2 C c2.

Proof: In Figure 5.3, let y D jBDj. Triangle ABC is similar both to triangle ABD
and to triangle ACD (because corresponding angles are equal), so their correspond-
ing sides are proportional. In particular, a=c D c=y and a=b D b=.a � y/. That is,
ay D c2 and a.a � y/ D a2 � ay D b2. So a2 � c2 D b2.

The proof above is based on the same diagram used to prove Proposition VI,31.
But neither the statement of the Pythagorean Theorem in 3. (the form in which it is
usually stated), nor the proof just given, makes any reference to areas; only length
relationships are involved. Thus both the meaning of the proposition stated in 3. and
the argument used to justify it are conceptually distinct from Euclid’s propositions
I,47 and VI,31. Nonetheless, it is worth noting in passing the connection between
Figure 5.3 and the bottom part of Euclid’s ‘windmill’ diagram (Figure 5.1). For if
we modify Figure 5.3 by erecting the square BCFE on BC and extending AD to
meet the opposite side of that square at G (Figure 5.5), then the rectangle BDGE
has height a and width y, and the first proportion used in the proof of 3. shows that
y D c2=a; so BDGE has area c2. Likewise, rectangle DCFG has area b2, since it
has height a and width a � y D b2=a.

The proof given for 3. is attractive from a pedagogical standpoint: It is concise,
the diagram is much simpler than that for Euclid’s proof of I,47, and the argument is
easy for students to follow (much more so than that for VI,31, because both the idea
of a special case implying the truth of a more general statement and the recognition
that the triangles in Figure 5.3 are an instance of the configuration described in
the statement of VI,31 are difficult for novices to grasp). However, even after being

Fig. 5.5 The base of the
‘windmill’ diagram
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Fig. 5.6 cos2 � C sin2 � D 1

given Figure 5.3 and told to invoke properties of similar triangles, students may have
difficulty discovering that proof, since they may have trouble finding the right set of
proportional relations to use (a difficulty that may nonetheless make the exercise
a valuable one for improving students’ appreciation of the effort and creativity
involved in finding proofs).

4. The trigonometric form of the Pythagorean Theorem: Let � be an acute angle
in a right triangle. Then cos2 � C sin2 � D 1.

Proof: Since ratios of sides are unaffected by scaling, it suffices to consider a
right triangle ABC with hypotenuse of length 1 and right angle at A. Let angle
� be at vertex C , place it (for convenience) in standard position on a rectangular
coordinate system, and erect the altitude jADj (Figure 5.6). In triangle ACD, cos � D
jCDj=jACj D jCDj= cos� , and in triangle BAD, sin � D jBDj=jABj D jBDj= sin � ,
since angle BAD D � . So 1 D jCDj C jBDj D cos2 � C sin2 � .

Apart from its orientation and scaling, Figure 5.6 is the same as Figure 5.3, and
if the labels a; b; c, and y are defined as in 3., then cos � D b=a and sin � D c=a,
whence ay D c2 and a.a � y/ D b2, as in the earlier proof. Should the proof of 4.
then be regarded merely as a variant of the proof of 3.?

The situation is similar to the relation between the gnomon and induction proofs
considered in Chapter 3. The trigonometric proof of statement 4. is computationally
simpler than the algebraic proof of 3., even though algebraically equivalent to it; and
the geometric representation of the expression cos2 � C sin2 � as the length of the
hypotenuse adds perspicuity to the proof of 4. as well. Conceptually, then, the two
arguments are distinct: an example of how a judicious choice of primitive concepts
(here, ratios of lengths rather than lengths themselves) can make a proof both easier
to carry out and easier to understand and remember.

5.1 Two dissection proofs

Dissection proofs, used to show the equality of areas, are of two kinds:
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Either (i) It is shown that two geometric figures of different shapes can be
decomposed into the same set of non-overlapping pieces, differently
arranged. (Such figures are said to be equidecomposable.)

or (ii) It is shown that the same figure can be decomposed into two
different sets of non-overlapping pieces, each set containing some
pieces congruent to pieces in the other, so that equal areas are left
after removal of different congruent pieces.

Such proofs have surprisingly wide applicability, in view of

The Bolyai-Gerwin Theorem: Any two polygons of equal area are equide-
composable.6

The two proofs that follow are of the second type.

5. A proof without words (See Figure 5.7.)

This ancient dissection proof compels immediate assent, even from young
students with no algebraic background, that the area of the square on the hypotenuse
of a right triangle is equal to the sum of the areas of the squares on the other two
sides. To understand it, all that is required is knowledge that the angles opposite the
legs in a right triangle are complementary (in order to confirm that the sides of the
large square in the left diagram are straight line segments).

The diagram on the right is in effect a geometric representation of the identity
.aCb/2 D a2Cb2C2ab, so given the latter, only the diagram on the left is needed
to carry out the proof. On the other hand, with a slight alteration, the two diagrams
in Figure 5.7 may be adapted to serve a quite different purpose: that of showing
that sin.˛ C ˇ/ D sin˛ cosˇ C sinˇ cos˛ (See Figure 5.8 below, taken from

Fig. 5.7 A simple dissection proof

6For a proof, see Boltyanskii (1963).
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Fig. 5.8 Sine of the sum of two angles

Nelsen 2000, p. 40, where the figure is credited to Volker Priebe and Edgar A.
Ramos. ©The Mathematical Association of America 2013. All rights reserved.)

A variation of dissection proof 5., due to the twelfth-century Indian mathemati-
cian Bhāskara, is also well-known, and a diagram much like that on the right side of
Figure 5.7 is used to illustrate proposition II,4 of Euclid’s Elements. So the question
again arises, could not Euclid have proved proposition I,47 more simply by using
those diagrams? Heath thought that the only objection to that idea was that such
dissection proofs had “no specifically Greek” character (Heath 1956, vol. I, p. 355).
Knorr, however, considered that objection “unjust” (Knorr 1975, p. 178 and fn 18
thereto, pp. 204–5). The idea that the passage from the left to the right diagram
in Figure 5.7 requires spatial translation of the constituent triangles, an operation
not justified by Euclid’s axioms, also does not hold up to scrutiny, for two reasons.
First, Euclid’s proof of I,47 relies on proposition I,4 (the side-angle-side criterion
for congruence), whose proof, as noted earlier, itself involves spatial displacement
of a figure. Second, the two diagrams in Figure 5.7 can be superimposed in a single
diagram that is constructible by Euclidean methods from a given right triangle ABC.
(See the remark following the next proof.)

6. A proof involving congruent pentagons: Given right triangle ABC with right
angle at C , construct squares on sides BC;AC, and AB and label them 2, 3, and
4, respectively. (See Figure 5.9.) Extend the side of square 2 opposite BC and the
side of square 3 opposite AC until they meet, and draw the diagonal from C to
that intersection point. Label the resulting triangles 5 and 6. Label the vertices
of square 4 diagonally opposite to A and B as D and E , respectively, and draw
the perpendicular from D to the extension of CB and the perpendicular from E

to the extension of CA. Label the resulting triangles on AE and BD as 7 and 8,
respectively. Regions 1, 2, 3, 5, and 6 together form a pentagon that is congruent to
the pentagon formed by regions 1, 4, 7, and 8; and since triangles 5, 6, 7, and 8 are
each congruent to triangle ABC, if triangles 1, 5, and 6 are removed from the first
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Fig. 5.9 Overlapping
congruent pentagons

of those pentagons and triangles 1, 7, and 8 from the second, the remaining areas
must be equal. That is, the area of square 4 equals the sum of the areas of squares
2 and 3. q.e.d.

Note that in both proofs 5. and 6. triangles congruent to the original are constructed
on the sides of the squares in question. But there are only five triangles in Figure 5.9,
while there are eight in the two diagrams of Figure 5.7.

As noted earlier, it is possible to combine the two diagrams of Figure 5.7 into
one figure and then carry out the dissection. In particular, if two further triangles
congruent to ABC are added to Figure 5.9, one (9) below AB oriented so as to form
a rectangle with ABC and the other (10) in the same orientation below DE, the
resulting Figure 5.10 may be viewed as the two squares of Figure 5.7 placed so as
to overlap in triangle ABC.

The last of the proofs to be considered here is another ‘proof without words’
(the forty-first of those on Bogomolny’s site, credited there to Geoffrey Margrave
of Lucent Technologies) which, like proof 5., requires only knowing that the angles
opposite the legs in a right triangle are complementary. Unlike the dissection proof,
however, it is based on scaling (an operation performable by Euclidean means
according to proposition VI,12 of the Elements). Like the ‘folding bag’ proof
in Figure 5.4, three triangles each similar to the original are employed, but the
conclusion results not from overlap of their areas, but from the equality of the
lengths of opposite sides of a rectangle.
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Fig. 5.10 The two parts of
Figure 5.7 combined

Fig. 5.11 Three scaled
copies fitted together

7. Proof by scaling: Given right triangle ABC with hypotenuse of length c and legs
of lengths a and b, make three copies of it, scaled, respectively, by the factors a; b,
and c, and assemble them to form a rectangle as in Figure 5.11.

Readers may judge for themselves which, if any, of the seven proofs above is
simplest or most perspicuous.

5.2 Further consequences and extensions

Euclid’s Proposition VI,31 extended Proposition I,47 to ‘arbitrary’ similar figures
described on the sides of a right triangle. In another direction, the Law of Cosines
provides an extension of I,47 to arbitrary triangles. It includes the Pythagorean
Theorem as a special case and also implies its converse.
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Fig. 5.12 The converse of
the Pythagorean Theorem

Fig. 5.13 The Law of
Cosines derived from the
Pythagorean Theorem

In Euclid’s treatment, the converse is established in Proposition I,48 (the last
in Book I) as an easy consequence of I,47. Specifically (see Figure 5.12), given a
triangle ABC in which the square on one of the sides (say BC) is equal to the sum
of the squares on the other two sides, construct a segment perpendicular to AC at A
of length c D jABj and join its terminal point D to C . Letting a D jBCj; b D jACj,
and d D jCDj, then a2 D b2 C c2 by assumption, and b2 C c2 D d2 by I,47. So
a D d and triangle ACD is congruent to triangle ABC by the side-side-side criterion
(I,8). Hence angle BAC is right.

The Law of Cosines is also a consequence of the Pythagorean Theorem. Today,
after extending the definition of the trigonometric functions to the interval Œ0; �=2�,
the proof is usually carried out by applying the distance formula to a triangle
positioned as in Figure 5.13 (which illustrates the obtuse-angled case). The Law
of Cosines in its trigonometric form of course does not appear in the Elements. But
geometric equivalents for the obtuse- and acute-angled cases are stated and proved
as propositions 12 and 13 in Book II. Their statements are:

Proposition II, 12: In obtuse-angled triangles the square on the side subtending
the obtuse angle is greater than the [sum of the] squares on the sides containing the
obtuse angle by twice the rectangle containing one of the sides, namely that on [the
extension of which] the perpendicular falls, and the straight line cut off [from that
extension] outside [the triangle] by [that] perpendicular. (Figure 5.14(a))

Proposition II, 13: In triangles [containing an acute angle], the square on the side
subtending [that] acute angle is less than the [sum of the] squares on the sides
containing [that] angle by twice the rectangle contained by one of the sides about
[that] acute angle, namely that on which the perpendicular falls, and the straight line
cut off [on that side] within [the triangle] by the perpendicular towards [that] acute
angle. (Figure 5.14(b))
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a b

Fig. 5.14 Euclid’s propositions II,12 and II,13

Euclid’s proofs of those propositions both rely on the Pythagorean Theorem,
together with geometric analogs (Propositions II,4 and II,7) of the algebraic
identities .a C b/2 D a2 C b2 C 2ab and .a � b/2 D a2 C b2 � 2ab. However,
in his commentaries on Propositions II,12 and II,13, Heath shows that each of
those results can alternatively be proved in the same manner as I,47, using variants
of the ‘windmill’ diagram (Heath 1956, vol. I, pp. 404–405 and 407–408. For
Proposition II,13 there are three cases to consider, depending on whether one of
the other angles is right, one is obtuse, or all are acute.) Thus, for triangles not
containing a right angle, the Law of Cosines can be proved independently of, but by
the same method as, Euclid’s first proof of the Pythagorean Theorem.

Very recently, a uniform proof of the Law of Cosines, valid for all angles and
independent of the Pythagorean Theorem, has been given by John Molokach (http://
www.cut-the-knot.org/pythagoras/CosLawMolokach.shtml). It is presented here as
a final example of a simple, conceptually distinct proof of a statement that implies
the Pythagorean Theorem.

8. Direct derivation of the Law of Cosines: Given any triangle ABC, let a; b, and
c denote the sides opposite angles A;B , and C , respectively. At least two of the
angles, say A and B , must be acute. Then (see Figure 5.15), regardless of whether
angle C is acute, right, or obtuse:

a D b cosC C c cosB;(1)

b D a cosC C c cosA;(2)

c D a cosB C b cosA:(3)

Multiplying (1) by a, (2) by b and (3) by c then gives

a2 D ab cosC C ac cosB;(4)

b2 D ab cosC C bc cosA;(5)

c2 D ac cosB C bc cosA:(6)

http://www.cut-the-knot.org/pythagoras/CosLawMolokach.shtml
http://www.cut-the-knot.org/pythagoras/CosLawMolokach.shtml
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a

c

b

Fig. 5.15 (a) The Law of Cosines: all angles acute. (b) The Law of Cosines: angle C right. (c) The
Law of Cosines: angle C obtuse

Subtracting any two of these equations from the third then gives one of the three
forms of the Law of Cosines; e.g., subtracting (4) and (5) from (6) yields that
c2 � a2 � b2 D �2ab cosC . q.e.d.
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Chapter 6
The Fundamental Theorem of Arithmetic

The Fundamental Theorem of Arithmetic (FTA) states that every integer greater than
1 has a factorization into primes that is unique up to the order of the factors. The
theorem is often credited to Euclid, but was apparently first stated in that generality
by Gauss.1 Note that the statement has two parts: First, every integer greater than 1
has a factorization into primes; second, any two factorizations of an integer greater
than 1 into primes must be identical except for the order of the factors. The proofs
of each of those parts will thus be considered separately.

The first part is the subject of propositions VII,31 and VII,32 of the Elements.
Proposition VII,31 states that any composite number (that is, any number that has a
proper divisor other than one) is divisible by some prime. Having established that,
Euclid then immediately concludes in proposition VII,32 that any number greater
than 1 is either prime or is divisible by some prime.

Euclid’s proof of VII,31: Let A be a composite number. By definition, A has a
proper divisor B other than one. If B is prime, we are done. If not, B has a proper
divisor C other than one, and then C is a proper divisor of A. If C is prime, we are
done. Otherwise, C has a proper divisor other than one. Continuing in this fashion,
one must eventually obtain a prime divisor of A, since otherwise there would be an
infinite sequence of divisorsB;C; : : : of A, each smaller than the one before, which
is impossible.

Second proof (of VII,31 and VII,32 together): By complete induction on the
integer A > 1. Suppose every integer greater than 1 and less than A is divisible
by some prime. Consider A. If A is prime, we are done. Otherwise, A D BC with
1 < B;C < A. By the inductive hypothesis, B is divisible by some prime, and that
prime divides A.

1In the Disquisitiones Arithmeticae (Gauss 1801, Bd. I, p. 15). (See Collison 1980, p. 98.) However,
the result was certainly known, if not explicitly stated, beforehand. For example, Euler used it
implicitly in his 1737 proof of the infinitude of the primes (via the divergence of the harmonic
series).

© Springer International Publishing Switzerland 2015
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Repeated application of VII,32 then establishes the existence of a prime factor-
ization for any integer greater than 1.

Note that the first of the proofs above is a reductio, while the second is a direct
proof that explicitly uses induction. Euclid takes for granted that there cannot be an
infinite strictly decreasing sequence of positive integers — a statement that nowa-
days would be deemed to require proof. The most direct proof is by means of the
well-ordering principle, which is equivalent to induction (or complete induction).
Indeed, the statement in question is itself logically equivalent to induction.

There is little more development of the first part of the FTA, since the second
argument above is so simple. (Some further remarks about the first part will,
however, be made at the end of the chapter). Consider then the second part of
the FTA.

A corollary of the FTA is Euclid’s Lemma, which asserts that if a prime divides
a product it must divide one of the factors. A strong form of Euclid’s Lemma, but
restricted to products of just two factors, was stated by Euclid as proposition VII,30
of the Elements. A consequence of that result is Euclid’s proposition IX,14 (‘If a
number be the least that is measured by [three distinct] prime numbers, it will not
be measured by any other prime number except those originally measuring it.’).

Euclid did not consider products of more than three primes, nor products
involving repeated factors. However, his proof of IX,14 can be applied to conclude
that the representation of a number as a product of distinct primes is unique except
for the order of the factors. To extend to products involving repeated factors one
can apply proposition IX,13 of the Elements (which states that the only divisors
of pk are the numbers 1; p; p2; : : : ; pk) in combination with VII,30. Alternatively,
one can argue, as Gauss later did, that if a prime p appears to the power j in one
factorization of a number n and to the power k in another, with j 6 k, then dividing
by pj will yield two factorizations of another number, at most one of which involves
the factor p. Applying VII,30 repeatedly then shows that p must in fact occur in
neither, so j D k. Any other repeated prime factors may be similarly eliminated, so
only products of distinct prime factors need be considered.

Consequently, Euclid’s Lemma also implies the second part of the FTA, and
it is useful to distinguish proofs of the second part of the FTA that do not first
prove Euclid’s Lemma from those that do. Proofs of the second part of the FTA
may also be distinguished according to what extent (if any) they use mathematical
induction, whether they are direct or indirect, whether they invoke the concepts of
least common multiple or greatest common divisor, and whether they employ the
division algorithm, the Euclidean algorithm, or neither.

6.1 Direct proofs of Euclid’s Lemma

The statement of proposition VII,30 in Euclid’s Elements is just that of Euclid’s
Lemma: ‘If two numbers by multiplying one another make some number, and
any prime number measure the product, it will also measure one of the original
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numbers.’ The proof , however, only uses the assumption that the number measuring
the product is prime to deduce that it is relatively prime to each of the original
factors. It thus establishes the following stronger result, stated earlier in Chapter 4.

Theorem: If a divides bc and is relatively prime to b, then a divides c.

Proof (a modern paraphrase of Euclid’s argument): Suppose a divides bc, say
bc D ad , and a is relatively prime to b. Then a must be the least natural number
that, when multiplied by d , yields a multiple of c; that is, ad must be the least
common multiple of c and d . For let f denote the least such number, and suppose
fd D ec. By the division algorithm, a D qf C r for some q; r with 0 � r < f ,
so bc D ad D qfd C rd D qecC rd. Hence rd D bc � qec D .b � qe/c. By the
minimality of f , r must equal 0, so a D qf and (since c ¤ 0) b D qe. q is thus a
common factor of a and b, which implies that q D 1. Therefore a D f , as claimed.

To finish the proof, Euclid appealed to his proposition VII,20 (whose proof,
however, was faulty; cf. footnote 1 in Chapter 4): a is the least natural number
for which a=b D c=d , so a divides c. Alternatively, one may apply the division
algorithm again to deduce that c D pa C s for some p; s with 0 � s < a. Then,
s D c � pa, so

sd D cd � pad D cd � pbc D .d � pb/c:

That is, sd is a multiple of c, so by the minimality of a, s D 0. Thus c D pa, so a
divides c. q.e.d.

Whichever method is used to complete the proof above, the argument as a
whole invokes the division algorithm twice, since (again as noted in footnote 1 of
Chapter 4) a correct proof of Euclid’s VII,20 employs the division algorithm.

By contrast, the next proof (from Rademacher and Toeplitz 1957, pp. 71–72)
of the weaker form of Euclid’s Lemma does so only once, to show that the least
common multiple of two numbers divides any common multiple of them, but it
makes use of an additional fact (displayed as (7) below) not employed in Euclid’s
argument.

Second proof: If m is the least common multiple of two numbers a and b and M
is any common multiple of them, then m dividesM ; for, by the division algorithm,
M D qm C r for some q and r with 0 � r < m, so the minimality of m implies
that r DM � qm must be 0. In particular,m must divide ab, saymd D ab, where

(7) d must divide both a and b.

(For if m D ka D lb, then md D kad D ab and md D lbd D ab, so kd D b

and ld D a.) Now suppose the prime p divides BC, and let L be the least common
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multiple of p and B . Since BC and pB are both common multiples of p and B , L
divides both of those products — say LE D BC and LF D pB. By (7) above, F
divides both p and B , and since p is prime, either F D 1 or F D p; that is, either
L D pB or L D B . In the former case, LE D pBE D BC, so pE D C , that is, p
divides C . In the latter case, p divides B , since L is a multiple of p. q.e.d.

That the quantity d in (7) is actually the greatest common divisor of a and
b is nowhere used in the proof above. However, Euclid’s Lemma is an almost
immediate consequence of the following well-known characterization of greatest
common divisors.

Linear representation theorem: If d is the greatest common divisor of a and
b, then there are integers m and n, exactly one of which is positive, for which
d D maC nb.

Proof of Euclid’s lemma from the linear representation theoremW Ifp is a prime
that divides bc but not b, then the greatest common divisor of p and b is 1. Therefore
1 D mpC nb for some integers m and n, so c D mpcC nbc. Since p divides each
summand on the right, p divides c. (Exactly the same argument holds if p is not
necessarily prime, but merely relatively prime to b.)

The argument just given forms the conclusion of two distinct proofs of Euclid’s
Lemma, which differ in how the linear representation theorem itself is derived.

Third proof (summarized from Courant and Robbins 1941, pp. 45–47): The
representation of the greatest common divisor of integers a and b as an integral
linear combination of them is obtained constructively by examining the proof of the
Euclidean algorithm (proposition VII,2 in Euclid’s Elements). That proof, and the
implementation of the algorithm to compute m and n explicitly, involves iterated
application of the division algorithm, in which the number of iterations required
is not fixed, as in the two proofs given earlier, but depends on the values of
a and b.2 q.e.d.

Alternatively, the linear representation of the greatest common divisor may be
demonstrated non-constructively as follows.

Fourth proof: The set I of all linear combinations maCnb, asm and n range over
all integers, is an ideal within the ring of integers. Let d be an element of I whose
absolute value is minimal. A single application of the division algorithm shows
that d must divide every element of I , so in particular it must divide a and b. But
any common divisor of a and b must also divide every element of I , including d .
Therefore d must be a greatest common divisor of a and b (as must �d , so d may
be taken to be positive without loss of generality). q.e.d.

2Of course, the division algorithm itself involves iterated subtraction, where the number of
iterations likewise depends on the values of the dividend and divisor.
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A priori, the greatest common divisor of a and b is just that, the common divisor
which is the largest. But one important consequence of the linear representation
theorem is the following property of the greatest common divisor.

Divisibility property of the gcd: The greatest common divisor of a and b is
divisible by every common divisor of a and b.

Proof. Let c be a common divisor of a and b. Express the greatest common divisor
d of a and b as d D ma C nb. Then, since c divides both a and b; c divides d
as well.

Weintraub (in Weintraub 2008) gave the following proof of Euclid’s lemma from
the divisibility property of the gcd (which itself may be proved in various ways).

Fifth proof: Consider ac and bc. They have a greatest common divisor d . Now c

divides both ac and bc, so by the divisibility property of the gcd, c divides d . Write
d D cz. Now d divides bc, that is, cz divides bc, so z divides b. Similarly, cz divides
ac, so z divides a. But a and b are assumed to be relatively prime, so z D 1 and
d D c. Now a certainly divides ac, and a divides bc by hypothesis, so a divides d
by the divisibility property of the gcd again; since c D d; a divides c.

6.2 Indirect proofs of the FTA and Euclid’s Lemma

The Fundamental Theorem of Arithmetic may also be proved outright, without
first proving Euclid’s Lemma, through inductive arguments by reductio. Two such
proofs, the first by Ernst Zermelo and the second by Gerhard Klappauf,3 are
reproduced in Scholz (1961). Both begin by presuming, contrary to the statement
of the FTA, that there are integers with distinct prime factorizations, among which
there must be some least integerm. Zermelo then argued as follows.

Sixth proof: Suppose m D p1p2 � � �pk D q1q2 � � �qs , with p1 � p2 � � � � � pk
and q1 � q2 � � � � � qs . By the minimality of m, p1 ¤ q1, so without loss of
generality we may suppose that p1 < q1. Then the number

n D m � p1q2 � � �qs D p1.p2 � � �pk � q2 � � �qs/ D .q1 � p1/.q2 � � �qs/

is less than m, and so must possess a unique prime factorization. Since p1 is less
than every qi , it must therefore divide q1 � p1. But then p1 would divide q1, which
is prime. Since 1 < p1 < q1, that is impossible. q.e.d.

In the paper in which he presented the proof just given, Zermelo stated that his
reason for doing so was to show that even in elementary number theory it was

3Published originally in Zermelo (1934) and Klappauf (1935), respectively.
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possible to simplify the proofs.4 His proof, in turn, then stimulated Klappauf to
show that the method Zermelo had used to produce the counterexample n could be
further simplified.

Seventh proof: Let m be as in Zermelo’s proof and consider the remainders ri ,
for i D 1; : : : ; s that are obtained when each qi is divided by p1. We have
qi D aip1 C ri , where each ri < p1. Since p1 < qi for each i , every ai must
be positive; and since each qi is a prime different from p1, every ri is also positive.
Hence m D q1q2 � � � qs can be written as m D Ap1 C R, where R D r1r2 � � � rs
and A and R are both positive. Since p1 divides m, it must also divide R. But p1
cannot divide any ri ; so factoring each ri into primes yields a factorization of R
that is distinct from the factorization involving p1. SinceR < m that contradicts the
minimality of m. q.e.d.

Unlike Zermelo’s proof, Klappauf’s employs the division algorithm. Moreover,
in Klappauf’s proof r1 D q1 � a1p1 � q1 � p1, and ri < qi for i > 2, so the
number R used therein to contradict the minimality of m is less than the number
n D .q1 � p1/q2 � � �qs used for that purpose in Zermelo’s proof.

Euclid’s Lemma may also be proved by reductio. Indeed, Gauss did so (for the
contrapositive statement) in his Disquisitiones Arithmeticae. His proof, presented
next below, is actually a double reductio that invokes the division algorithm thrice.

Eighth proof: Gauss first showed by reductio that no prime p can divide a product
of two smaller positive integers. For suppose to the contrary that p is a prime that
divides such a product, and let r < p be the least positive integer for which there
exists a positive integer s < p such that p divides rs. Then r ¤ 1 (since s < p), so
r does not divide the prime p. Hence by the division algorithm, p D qrC t , where
0 < t < r . But then ts D ps� qrs is divisible by p, contrary to the minimality of r .

To complete the proof of Euclid’s Lemma, suppose then (again by reductio)
that a prime p divides bc but neither b nor c. Then the division algorithm gives
b D q1pC r1 and c D q2pC r2, with 0 < r1; r2 < p. So bc can be expressed in the
form qpC r1r2. That is, r1r2 D qp � bc, which is a multiple of p if bc is; but that
contradicts Gauss’s earlier result. q.e.d.

Another reductio proof of Euclid’s Lemma, in the strong form stated by Euclid,
was given by Daniel Davis and Oved Shisha in a little-known article in Mathematics
Magazine (Davis and Shisha 1981).5 The last of the proofs to be considered here, it
is an elegant exemplar of purity of method.

4He noted that he had first communicated his proof around 1912, in correspondence with
A. Hurwitz, E. Landau and others, and was stimulated to publish it after reading the proof in
the German edition (1933) of Rademacher and Toeplitz’s book (the second proof given above),
unaware when he did so that a proof similar to his had been published six years earlier by Helmut
Hasse (Hasse 1928). In addition, F.A. Lindemann had published another similar, but somewhat
more complicated, proof just the year before (Lindemann 1933).
5Their paper actually gave five slightly variant proofs.
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Ninth proof: Assume that there is a triple .A;B; C / of positive integers for which
both of the following properties hold:

P1.A; B; C /. A divides BC but is relatively prime to B .
P2.A; B; C /. A divides BC but does not divide C .

Then for i D 1; 2, it follows directly that

.1: i/ If Pi.A;B;C / and B > A, then Pi.A;B �A;C /

and

.2: i/ If Pi.A;B;C /, say BC D AD, then Pi .B;A;D/.

Proof of (1.1): IfA divides BC andB > A, thenA divides .B�A/C D BC�AC;
and if A is relatively prime to B D .B � A/ C A it must also be relatively prime
to B �A.

Proof of (1.2): If A dividesBC but not C , then A divides .B �A/C D BC�AC
but not C .

Proof of (2.1): If BC D AD and A is relatively prime to B , then B divides AD
and is relatively prime to A.

Proof of (2.2): If BC D AD butA does not divide C , then B divides AD but does
not divideD.

Among all triples .A;B; C / satisfying P1 and P2 there is at least one, say
.A1; B1; C1/, that minimizes ACB CC . Then by P2, A1 ¤ 1, so by P1, A1 ¤ B1.
By (2.i ), the triple .A1; B1;D/ also satisfies P1 and P2, and B1C1 D A1D; so if
B1 < A1, then D < C1 and therefore A1 C B1 CD < A1 C B1 C C1, contrary to
the minimality property of .A1; B1; C1/. The only remaining possibility isB1 > A1.
Then by (1.i ), the triple .A1; B1�A1; C1/ also satisfiesP1 andP2; butB1�A1 < B1,
soA1C.B1�A1/CC1 D B1CC1 < A1CB1CC1, again contrary to the minimality
property of .A1; B1; C1/. Hence by reductio, no triple .A;B; C / satisfying both P1
and P2 exist. That is, if A divides BC but is relatively prime to B , then A must
divide C . q.e.d.

This proof of Davis and Shisha is distinguished above all by its economy of
means, for it employs nothing more than subtraction and the concepts involved in
the statement of Euclid’s Lemma (divisibility and relative primality).

6.3 Summary

It should be clear from the commentary above that the two proofs of the first
part of the FTA considered in this chapter, and the nine proofs of the second
part, are all structurally distinct. Moreover, they exemplify several of the rationales
for presenting alternative proofs enumerated in Chapter 2: the desires to simplify,
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to minimize conceptual prerequisites, to extend to broader contexts, to achieve
methodological purity, and to find new routes to a goal. As to proofs of the first part,
the second proof is direct while the first proof is a proof by reductio. As to the second
part, Gauss’s proof extended that of Euclid; the second, sixth and seventh proofs, and
especially the ninth, exhibit various forms of simplification; and the third and fourth
proofs introduce a concept (that of representing the greatest common divisor of two
integers as a linear combination of them) that is foreign to all the others, while the
fifth proof deliberately avoids using that concept.

It is enlightening to examine these proofs in the context of generalizations to
commutative ring theory. As to the proofs of the first part, the first proof leads
directly to the concept of a Noetherian ring, and directly generalizes to show
that every element in a Noetherian integral domain has a (that is, at least one)
factorization into primes. The second proof, while simpler, is one that is restricted
to the positive integers.

As to the proofs of the second part, again the most direct proofs, the sixth,
seventh, and ninth, are restricted to the positive integers.

The other proofs generalize to commutative rings of various kinds. By definition,
a Euclidean domain is one in which there is a division algorithm, properly
interpreted, and these proofs show that Euclid’s lemma holds in Euclidean domains,
and hence that these are unique factorization domains (that is, that the analog of
the FTA holds in them). By definition, a principal ideal domain is one in which
an appropriate generalization of the linear representation theorem holds, and so the
third and fourth proofs, which rely on that concept, show that every principal ideal
domain is a unique factorization domain. Since there are principal ideal domains
that are not Euclidean, this provides a further generalization. Furthermore, not
every unique factorization domain is a principal ideal domain, so the fifth proof
generalizes still further (though in this case one needs some other argument to show
that the divisibility property of the gcd holds). The second proof, which introduces
the concept of the least common multiple, is stated for the positive integers, and
directly generalizes to Euclidean domains. But that same concept is fruitful in the
more general contexts we have just described, and that proof can be modified to be
valid in them as well.
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Chapter 7
The Infinitude of the Primes

Euclid’s proof that the prime numbers are “more than any assigned multitude”
(Elements, proposition IX, 20) has long been hailed as a model of elegance and
simplicity. Yet, surprisingly, it has also been misrepresented in a great many
accounts: The article Hardy and Woodgold (2009) gives a detailed list of sources,
including many by eminent number theorists, that either erroneously describe the
structure of Euclid’s proof or make false historical claims about it. It is wise,
therefore, to begin by quoting Euclid’s argument directly, as it is given in Heath’s
translation (Heath 1956, vol. II, p. 412).

Proposition IX, 20: Prime numbers are more than any assigned multitude of prime
numbers.

Proof: Let A;B;C be the assigned prime numbers. I say that there are more prime
numbers thanA;B;C . For let the least number measured by them be taken and let it
be [represented by the line segment] DE; [then] let the unit [segment] DF be added
to DE. Then EF is either prime or not. First, let it be prime. Then A;B;C;EF have
been found which are more than A;B;C . Next, let EF not be prime; therefore [by
proposition VII,31] it is measured by some prime number. Let it be measured by the
prime numberG. I say thatG is not the same as any of the numbersA;B;C . For, if
possible, let it be so. Now A;B;C measure DE; therefore,G will also measure DE.
But it also measures EF. ThereforeG, being a number, will measure the remainder,
the unit DF, which is absurd. Therefore G is not the same as any of the numbers
A;B;C . And by hypothesis it is prime. Therefore the prime numbers A;B;C;G
have been found, which are more than the assigned multitude of A;B;C .

Commentary: It is to be noted, first of all, that Euclid speaks of exactly three
‘assigned’ prime numbers. But it is clear from the statement of the proposition that
that is merely by way of example, and it does not affect the validity of the argument.
The geometric form in which the argument is cast is also characteristic of ancient
Greek mathematics; but that, too, is an inessential detail. More importantly, Euclid
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52 7 The Infinitude of the Primes

does not assume anything about the ‘assigned’ numbers except that they are primes.
They need not be consecutive, nor even distinct, and there is certainly no assumption
that they constitute all the primes. Thus, Euclid’s proof is not indirect, as is often
claimed. It is true that at one point Euclid assumes, by reductio, that G is equal to
one of A;B , or C . But that reductio can easily be eliminated. Thus the argument
may be paraphrased in modern terms as follows:

Let p1; p2; : : : ; pk be any prime numbers, and let L be their least common
multiple. Then N D L C 1 is either a prime q itself or, by proposition VII,31,
is divisible by some prime q. In the first case, N D q is a prime distinct from
p1; p2; : : : ; pk , since it is larger than their least common multiple L (a justification
that Euclid neglects to give). In the second case, q cannot be equal to any of
p1; p2; : : : ; pk , since N , when divided by any one of those numbers, leaves a
remainder of 1.

The assumption that L is the least common multiple of p1; p2; : : : ; pk is
unnecessary; any common multiple ofp1; p2; : : : ; pk will do. That assumption does,
however, reduce the size of the upper bound for q. If p1; p2; : : : ; pk are all distinct,
then their least common multiple L is p1p2 � � �pk , and if p1 < p2 < � � � < pk
are all the primes up to pk , then pk < q. If the sequence p1 < p2 < � � � < pk
does not include all the primes up to pk, then in general one can only say that
q � p1p2 � � �pk C 1. For example, if k D 2; p1 D 3 and p2 D 5, then
N D 16 and q D 2; and even if p1; p2; : : : ; pk are all the primes up to pk ,
N D L C 1 need not be prime. The first counterexample occurs for k D 6, when
N D 2 � 3 � 5 � 7 � 11 � 13C 1 D 30; 031D 59 � 509.

A drawback to Euclid’s construction is that the number N D p1p2 � � �pk C 1
grows large rapidly, so that factoring it into primes to find a particular new prime q
may be very time-consuming.1 A generalization of Euclid’s method that produces
smaller values for q was given by Stieltjes in the first chapter of a projected text on
the theory of numbers (Stieltjes 1890, p. 14).2 His simple construction is based on
proposition VII,28 of the Elements, which states that ifA andB are relatively prime,
thenACB is relatively prime to bothA andB , and conversely, ifACB is relatively
prime to one of A;B it is relatively prime to the other too.3 Given that result
of Euclid, Stieltjes considers rewriting the product p1p2 � � �pk of distinct prime
numbers p1; p2; : : : ; pk as a product AB in any way whatever. By the Fundamental
Theorem of Arithmetic (proven by Stieltjes on the previous page),A and B must be
relatively prime, so no prime factor of A C B can equal any of the pi . Euclid’s
construction is the special case that results by taking either A or B equal to 1.
The advantage of Stieltjes’s method is readily apparent, even for k D 3. For then

1If p1; p2; : : : ; pk are the first k primes, then since p1p2 : : : pk C1 < 2 �p1p2 : : : pk , one can show
by induction that pkC1 � 2.2

k /.
2In 2008, essentially the same proof appeared in the American Mathematical Monthly (Cusumano
et al. 2008), without reference to Stieltjes.
3Euclid’s proof is by reductio, but the contrapositive, that if D divides any two of A;B;AC B it
must divide the third as well, is easily proven directly.
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AB D p1p2p3 D 2 � 3 � 5 D 30, so Euclid’s construction yields q D 31, whereas if
A is taken to be 2; 3 or 5, Stieltjes’s construction yields that AC B D 17; 13 or 11,
respectively.

The infinite sequence of numbers generated by Euclid’s construction can be
described recursively by the conditions s.1/ D 2 and snC1 D s1s2 � � � sn C 1. The
terms of that sequence are distinct integers greater than 1 that are pairwise relatively
prime, and those conditions suffice to demonstrate the infinitude of the primes. (For
if a1; a2; : : : is such a sequence, let pi be any prime factor of ai , for each integer
i � 1.) Alternatively, one may consider the sequence defined for each positive
integer n by pn D the least prime that divides nŠC1. Then clearly pn > n for every
n. The sequence so defined is not one-to-one (for example, p5 D p10 D 11), but
as noted in Narkiewicz (2000), it does contain all primes; for by Wilson’s Theorem,
for every prime q; .q � 1/Š � �1 .mod q/, so pq�1 D q.

The Fermat numbers 22
nC1 are an example of a sequence other than Euclid’s that

satisfies the aforementioned conditions. (A proof that they are pairwise relatively
prime is given in Aigner and Ziegler 2000, pp. 3–4.) But use of the Fermat numbers
to prove the infinitude of the primes seems ad hoc compared to Euclid’s very natural
construction, so that proof seems less desirable from a pedagogical standpoint.
A different argument involving powers of 2 does, however, yield a simple alternative
proof. For

Theorem: If p is a prime, then any prime factor q of 2p�1must be greater than p.

Proof: To say that q is a factor of 2p � 1 is equivalent to saying that 2p � 1

.mod q/. In particular, q ¤ 2, so if q is prime, 2q�1 � 1 .mod q/ also, by Fermat’s
Little Theorem. The division algorithm implies that if m is the least power of 2 for
which 2m � 1 .mod q/, then m must divide any n for which 2n � 1 .mod q/, so
since p is prime and 2p � 2q�1 � 1 .mod q/, p must divide q � 1. Therefore
q > p.

All the proofs considered so far are constructive, in the sense that they provide
an upper bound on the size of a prime distinct from those already known. A very
strong result of that form is Bertrand’s Postulate, which states that given any natural
number n � 1, there is a prime q satisfying n < q � 2n. Bertrand’s Postulate
obviously implies the infinitude of the primes, but it is so much more difficult to
prove that we do not consider it here as an alternative proof of the latter.4

Another approach to proving the infinitude of the primes is to use a counting
argument to obtain a lower bound on the number of primes less than or equal to an
integer N , and then show that that lower bound must approach infinity as N does.5

A simple example of that approach is the following proof from Hardy and Wright

4But see Aigner and Ziegler (2000) for the ingenious, relatively short proof of Bertrand’s Postulate
given in 1932 by Paul Erdős (his first publication).
5As noted above in footnote 1, Euclid’s proof can be analyzed to yield such a lower bound as well.
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(1938), which can be understood without knowledge of calculus; it suffices merely
to know that log2 x denotes the exponent to which 2 must be raised to yield x, since
it is clear that that exponent must grow arbitrarily large as x does.

Theorem: For N � 1, let k be the number of primes less than or equal to N . Then

k � 1

2
log2 N .

Proof: The strategy is to estimate how many positive integers n � N are divisible
only by primes less than or equal toN . By the Fundamental Theorem of Arithmetic,
the prime factorization of any such n is unique, say n D p

r1
1 p

r2
2 � � �prkk . Let s D

pi1pi2 � � �pij , where ri1 ; ri2 ; : : : ; rij are all the odd exponents in that factorization of
n, and let t be the product of all the remaining factors, so that n D st. The power of
each prime factor in t must be even, so t can be rewritten as u2. Therefore n D su2,
where s is square-free. Since, for each 1 � i � k, pi either does or does not occur in
s, there are 2k possible values for s; and since n D su2 � N , u2 � N , i.e., u � pN .
There are thus at most 2k

p
N integers less than or equal to N that are divisible by

the k primes less than or equal to N . But the prime factors of every n � N must
themselves be less than or equal to N , so 2k

p
N � N . That is, 2k � pN , or

k � 1

2
log2 N .

Another, more sophisticated way of establishing a lower bound for the number
�.x/ of primes less than or equal to x may be traced back to Euler, who in 1737, in
his Introductio in analysin infinitorum, claimed that

1X

iD1

1

n
D

Y

p prime

1

1 � 1=p :

Of course, either by invoking the integral test (Figure 7.1) or, more simply, by
observing that 1 C 1=2 C 1=3 C � � � C 1=2n � 1 C n=2, the harmonic series is
seen to diverge.

Fig. 7.1 Divergence of the
harmonic series
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But how is an ‘equation’ involving a divergent series to be interpreted? That
defect in the argument was repaired much later by Leopold Kronecker, who, in
the first volume of his Vorlesung über Zahlentheorie, gave a correct proof that the
Fundamental Theorem of Arithmetic can be expressed in terms of infinite sums and
products.6

Proof (adapted from that by Euler): Let P denote the set of primes and Nx denote
the set of natural numbers all of whose prime divisors are less than or equal to
x. Then by the Fundamental Theorem of Arithmetic, every m 2 Nx has a unique
representation as a product

Q
p
ri
i of powers of primes pi � x, so

X

m2Nx

1

m
D
Y

p2P
p�x

�X

k�0

1

pk

�

D
Y

p2P
p�x

1

1 � 1=p D
Y

p2P
p�x

p

p � 1 D
�.x/Y

iD1

pi

pi � 1 :

If there were a largest prime, say q D pk , then setting x D q would giveNx D N

and �.x/ D k, so the last equation would reduce to

1X

mD1

1

m
D

kY

iD1

pi

pi � 1 :

The right side would then be finite, contradicting the divergence of the harmonic
series. That suffices to show the infinitude of the primes, but the proof can be
extended to get a lower bound on �.x/ as follows:

If x D 2n, then f1; 2; : : : ; 2ng � Nx , so

1C n

2
�

2nX

iD1

1

i
�
X

m2Nx

1

m
D

�.2n/Y

iD1

pi

pi � 1 ;

and since pi � i C 1 for every i ,

pi

pi � 1 D 1C
1

pi � 1 � 1C
1

i
D i C 1

i
:

Therefore

1C n

2
�

�.2n/Y

iD1

i C 1
i
D �.2n/C 1 :

6Kronecker replaced n and p by nA and pA, respectively, with A > 1, thereby obtaining a
convergent series.
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That is, for any positive integer n there are at least n=2 primes less than or equal
to 2n. (Note that this estimate agrees with that given in footnote 1 and with that
given by the Hardy/Wright approach.)

The last proof to be considered here is an indirect one that uses topological
concepts. It is due to Harry (D Hillel) Furstenberg, who published it in 1955 while
an undergraduate student at Yeshiva University (Furstenberg 1955, reproduced in
Aigner and Ziegler 2000, p. 5).

Proof (Furstenberg): Let Z denote the set of all integers and let C.a; b/ denote the
congruence class fx 2 Z jx � a mod bg, whose members are the elements of the
arithmetic progression fa C nb jn 2 Zg. The classes C.a; b/ form a neighborhood
base for a topology on Z. That is, a set O of integers is defined to be open if it
is either empty or contains a neighborhood C.a; b/ of each point within it. Then
unions of open sets are open, and if a is a point inO1 \O2 with C.a; b1/ contained
in O1 and C.a; b2/ contained in O2, then C.a; b1b2/ is contained in O1 \ O2. Any
nonempty open set must be infinite, and eachC.a; b/ is closed as well as open, since
it is the complement in Z of

b�1[

iD1
C.aC i; b/:

Also, the complement in Z of f�1; 1g is
S
p2P C.0; p/, since very integer except

�1 and 1 must be divisible by some prime.
So if P is assumed to be finite,

f�1; 1g D
\

p2P
C.0; p/

is a finite intersection of open sets. As such, f�1; 1g must be a nonempty open set.
But as noted earlier, all such sets are infinite. Hence by reductio, P must be infinite.

At first glance, Furstenberg’s proof appears mysterious. Unlike the other proofs
presented here, it seems to be entirely nonconstructive, yielding neither an upper
nor lower bound on the size of �.x/; and the result seems to fall out unexpectedly.
But (tellingly) no topological theorems are invoked in the proof, only topological
notions; and when the topological terminology is unwound, the mystery is dispelled.
Indeed, when examined more closely, the equation

f�1; 1g D
\

p2P
C.0; p/

says that 1 must be divisible by each of the (only) finitely many primes that were
assumed to exist, when in fact it is divisible by none of them. The contradiction
is then just that of Euclid’s proof, when the latter is recast as a reductio: for since
every integer is divisible by some prime, if there were only finitely many primes
p1; p2; : : : ; pn, then p1p2 � � �pn and p1p2 � � �pn C 1 would necessarily share some
common prime factor, which would then divide their difference, 1.
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Furstenberg’s proof is then simply a reductio version of Euclid’s, cloaked in
topological terminology.7

7.1 Summary

Despite universal agreement that Euclid’s proof of the infinitude of the primes is an
exemplar of simplicity and beauty, many alternative proofs have been given. Why?

The answer has primarily to do with other applications of the techniques used in
the different proofs. Euclid’s method, e.g., is easily modified to show that there are
arbitrarily long gaps in the sequence of primes.8 It is not suited, however, to proving
Dirichlet’s theorem on the infinitude of primes in arithmetic progressions, whereas
Euler’s approach is. Indeed, Euler’s (attempted) proof of the infinitude of the primes
was but one of many remarkable results that he obtained in Chapter XV of his
Introductio, devoted to series that arise from products. Others include his proof
that the series of reciprocals of the primes diverges, and his startling discovery that
�.2/ DP1

nD1 1=n2 D �2=6. Generalizations of the techniques he introduced there
for manipulating series and products have become fundamental tools in analytic
number theory.

Fermat’s Little Theorem is another basic tool in number theory, applicable in
many contexts, including the theory underlying public-key cryptography, so vital to
today’s computerized communications and banking.

Likewise, the key idea in the Hardy/Wright approach, that of representing any
integer n � 2 in a unique way as a product st , where s is square-free, also has wider
applications. In particular, it too can be used as a tool in proving the divergence of
the series of prime reciprocals. (See Erdős 1938 and Niven 1971.)
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Chapter 8
The Fundamental Theorem of Algebra

The Fundamental Theorem of Algebra (stated below) provides an ideal case study
for illustrating the roles of alternative proofs in mathematical practice. Like the
Pythagorean Theorem, the Fundamental Theorem of Algebra has been proved in
many different ways since its enunciation by Euler in 1739. Unlike the Pythagorean
Theorem, however, early attempts to prove the Fundamental Theorem of Algebra
are not shrouded in the mists of antiquity, so we know how the adequacy of those
attempts was evaluated by mathematicians of the time. We can see how criticisms
of earlier efforts to prove the theorem led to alternative proof strategies, and we can
analyze why the proof given by Gauss in his 1799 inaugural dissertation was the
first to be accorded general acceptance, though it too would later be deemed not
fully rigorous.

As with the theorems considered in earlier chapters, besides questions of rigor
there have been other impetuses for devising alternative proofs of the Fundamental
Theorem of Algebra: issues of perspicuity, simplicity, generality, purity of method
and constructivity have also been matters of concern; and in a pedagogical context,
different proofs of the Fundamental Theorem have been employed as a vehicle
for introducing a variety of topics in higher-level mathematics (complex line
integrals, field extensions, Galois theory, and notions from algebraic topology) in
a text designed for a capstone course for senior mathematics majors (Fine and
Rosenberger 1997).

8.1 Alternative formulations of the theorem

In its earliest and simplest form, the Fundamental Theorem of Algebra was the
conjecture that every polynomial with real coefficients can be expressed as a product
of linear and quadratic polynomials with real coefficients. The question whether
that is so arose in connection with Leibniz’s attempts to integrate functions by the
method of partial fractions, and Leibniz himself believed the conjecture to be false.
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Euler, however, showed that putative counterexamples put forward by Leibniz and
by Nikolaus Bernoulli did, in fact, possess factorizations of the stated form, and it
was he, in a letter to Bernoulli of 1 October 1742, who first asserted the truth of
the statement. Two months later, however, in a letter of 15 December to his friend
Goldbach, he confessed that he was unable to produce a fully satisfactory proof of
the theorem.1

Today the Fundamental Theorem of Algebra is more often stated in the form
“Every polynomial p.X/ of degree n with complex coefficients possesses exactly n
complex roots, counting multiplicities.” The equivalence of that statement with the
one given above rests not only upon recognizing complex numbers as meaningful
entities, but upon the quadratic formula (which shows how to express any quadratic
polynomial as a product of two complex linear factors), upon the factor theorem of
Descartes (that a is a root of a polynomial p.X/ if and only if X � a is a factor
of p.X/), and upon the observation (made by Bombelli around 1560, and again
by Euler in his 1742 letter to Goldbach) that the complex roots of any polynomial
with real coefficients always occur in conjugate pairs, so that the product of the
corresponding linear factors guaranteed by Descartes’s theorem is a real quadratic
polynomial.

Consideration of the properties of complex conjugates shows that if p.X/
is a polynomial with complex coefficients and p.X/ is the polynomial whose
coefficients are the conjugates of those of p.X/, then the product p.X/p.X/ is
a polynomial with real coefficients. If z0 is a complex root of p.X/p.X/, then it
must either be a root of p.X/ or of p.X/; and in the latter case, again using the
overbar to denote complex conjugation, p.z0/ D p.z0/ D p.z0/ D 0, so z0 is a root
of p.X/. To prove the Fundamental Theorem it therefore suffices to establish it for
polynomials p.X/ whose coefficients are real numbers.

8.2 Early attempts to prove the theorem

The task of showing that every polynomial with real coefficients possesses at least
one complex root involves two separate aspects: showing (1) that a root of some
definite sort exists, and (2) that any such root must in fact be of the form a C bi
(in modern terms, proving the existence of a splitting field K over R for p.X/, and
then showing that K must be isomorphic to C). Before Gauss, however, those who
endeavored to prove the existence of complex roots either explicitly assumed (1)
to be true (in part, perhaps, because it was believed that formulas for the roots of
polynomials of degree� 5 similar to those obtained by Ferro, Tartaglia, Ferrari, and

1The dates given here for Euler’s letters are based on the account in Kline (1972), pp. 597–598.
They disagree with those given in Remmert (1990), which are inconsistent with one another.
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Bombelli for cubic and quartic polynomials would eventually be found2), or else
unwittingly employed arguments that smuggled in that assumption. Their efforts
focused instead on establishing (2). But, as Gauss trenchantly observed in the
critique of prior proof attempts that he gave in his dissertation, there was need not
only to justify the existence of roots, but, if algebraic operations were to be applied
to them, to characterize their structure; for it made no sense to attempt to manipulate
hypothetical quantities that were mere “shadows of shadows.”

The remainder of this section is devoted to outlining the strategies employed
by D’Alembert, Euler, Lagrange, and Laplace in their attempted proofs of the
Fundamental Theorem (published in 1746, 1749, 1772 and 1795, respectively) and
to analyzing the deficiencies in their arguments.

d’Alembert’s ‘proof’: In his memoir ‘Recherches sur le calcul intégral’
(d’Alembert 1746), Jean Le Rond d’Alembert is generally credited with having
made the first serious attempt to prove the Fundamental Theorem of Algebra.
The memoir was apparently hastily written, however, and is not notable for
its clarity. Indeed, there is marked disparity among the descriptions given by
modern commentators both of the mechanics of d’Alembert’s argument and
of the extent of its deficiencies. (My own reading of d’Alembert’s text is in
accord with the descriptions of it in Gilain (1991) and Baltus (2004), but at
variance with that in Remmert (1990).) d’Alembert began by noting that if
p.X/ D Xm C cm�1Xm�1 C � � � C c1X C c0 is a monic polynomial with real
coefficients of degree m � 1, then p.0/ D 0 if c0 D 0. He then replaced the
constant term c0 by the parameter z and set the resulting function F.X; z/ equal to
0, so that the Fundamental Theorem became the statement that for any real value of
z, there is a (possibly complex) value x for which F.x; z/ D 0. To establish that,
d’Alembert first claimed that for any real number z0, if .x0; z0/ is a point for which
F.x0; z0/ D 0— in particular, if x0 D z0 D 0— then for all real z sufficiently close
to z0, there is a complex value x for which F.x; z/ D 0. He then went on to claim
that for any real value z� of z, an overlapping chain of discs can be found, starting
at .0; 0/, yielding a sequence of points .xn; zn/ such that F.xn; zn/ D 0 for each n,
the values xn converge to a complex number x� and the (real) values zn to z�, with
F.x�; z�/ D 0.

To establish the first claim d’Alembert alleged, without proof, that if

F.x0; z0/ D 0;

then for all z sufficiently close to z0, there is a natural number q and a convergent
series of fractional powers of z � z0 such that

2The impossibility of expressing the roots of arbitrary polynomials of degree � 5 in terms of
radicals was finally established by Abel in 1826.
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x D x0 C
1X

iD1
ci .z � z0/

i=q

satisfies F.x; z0/ D 0. More than a century later that fact was finally proved by
Victor Puiseaux, as a consequence of the Fundamental Theorem (which by then had
been rigorously proved by other means); so d’Alembert’s argument was circular.
There were difficulties, too, with his second claim: What ensures that the radii of the
discs are such that the zn converge to z� ? And even if they do, why does the fact
that F.xn; zn/ D 0 for each n entail that F.x�; z�/ D 0 ? Those and other criticisms
were lodged against d’Alembert’s argument by Gauss, who nevertheless thought
that it might be possible to repair its defects. But he and others chose instead to seek
different ways to establish the Fundamental Theorem.3

Euler’s attack on the theorem: Three years after the appearance of d’Alembert’s
memoir, Euler attempted to prove the Fundamental Theorem in its original formula-
tion. By invoking the fact that a real polynomial of odd degree must have a real root
(a consequence of the intermediate-value theorem, a principle generally accepted
at the time, but first rigorously proved by Bolzano around 1816), he argued that a
real quintic polynomial must have at least one real linear factor, and then went on to
show how any real quartic polynomial could be expressed as a product of two real
quadratic factors. Having thus established the truth of the Fundamental Theorem
for polynomials of degree � 5, he attempted to extend the proof to polynomials of
higher degree, but was unable to do so.

At first glance it might appear that Euler had made but a minor advance beyond
the work of Ferrari and Bombelli two centuries earlier, since their explicit formulas
for the roots of real quartic polynomials, in which the complex roots occur in
conjugate pairs, immediately entail that all such quartics can be factored into a
product of real polynomials of degree at most 2. But in the formulas obtained
by the Italians for the roots of cubic and quartic polynomials, complex numbers
play an essential role. In its original form, however, the Fundamental Theorem
makes no reference to complex numbers, so, as noted in Remmert (1990), p. 117,
their employment in proofs thereof appears to invoke a deus ex machina. Euler’s
method of factoring quartics, however, made no use of complex numbers, so from
the standpoint of purity of method it was superior.

A detailed and very readable discussion of what Euler did in his paper Euler
(1749) is given in Dunham (1991). Following the lead of the Italian school, Euler
noted that any monic polynomial of degree 4 in the variable x with real coefficients
can be converted into an equivalent quartic in the variable y that lacks a cubic term
(via the substitution x D y � c3=4, where c3 is the coefficient of x3 in the original
polynomial). The factorization of the resulting quartic y4 C By2 C Cy C D then

3An attempt to repair d’Alembert’s proof is given in Baltus (2004), but that effort, too, appears to
be flawed.
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depends on the values of the coefficients B;C and D. If C D 0, the quartic is a
quadratic in y2, which, if B2 � 4D � 0, factors as

"

y2 C B CpB2 � 4D
2

#"

y2 C B �pB2 � 4D
2

#

:

On the other hand, if B2 � 4D < 0, then both
p
D > 0 and

p
2
p
D � B > 0, so

y4 C By2 CD D
h
y2 CpD

i2 �
�

y

q

2
p
D � B

�2
;

a difference of two squares that factors once again into the product of two quadratics.
If C ¤ 0, the absence of the y3 term in y4 C By2 C Cy C D implies that any
factorization of that quartic into quadratic factors must be of the form .y2 C uyC
˛/.y2 � uy C ˇ/ for some constants u; ˛ and ˇ. Expanding that product, setting
it equal to y4 C By2 C Cy C D and equating coefficients of like powers of y,
Euler obtained three equations in the unknowns u; ˛ and ˇ, from which after further
algebra he deduced the equation u6C 2Bu4 C .B2 � 4D/u2 �C2 D 0, in which all
the powers of u are even. The graph of Y D u6 C 2Bu4 C .B2 � 4D/u2 � C2

is therefore symmetric about the Y -axis, Y approaches C1 as u approaches
˙1, and Y.0/ < 0 (see Figure 8.1), so by the intermediate-value principle,
Y D u6C 2Bu4C .B2� 4D/u2�C2 must have real roots˙u0, either of which can
be substituted back into the earlier equations to find real values for ˛ and ˇ.

To extend to polynomials of arbitrary degree, Euler noted that by multiplying, if
necessary, by some positive integral power of X , any polynomial p.X/ of degree

Fig. 8.1 Graph of a
sixth-degree polynomial with
no odd powers
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d could be converted into a polynomial q.X/ of degree 2m, for some m > 0.
He then attempted to mimic the procedure he had employed for factoring quartics.
A direct approach led to systems of equations too complex to allow derivation of an
equation for u, but he showed that an alternative approach, avoiding the need to find
an explicit equation for u0, was also possible in the quartic case. However, to extend
that approach to polynomials of degree 2m for m > 2 it was necessary to assume
that 2m roots of some sort existed; and without specifying the nature of those
roots, Euler’s attempt to show that algebraic combinations of them would yield real
coefficients for the putative factors of q.X/ was doomed to failure (as Gauss was to
point out).

Lagrange’s improvement of Euler’s argument: In a long and important paper
that appeared in 1770/1771,4 Joseph Louis Lagrange investigated the properties of
symmetric polynomials and established the result now known as the fundamental
theorem about them: that any polynomial S.X1; : : : ; Xn/ symmetric in X1; : : : ; Xn
has a unique representation as a polynomial P.s1; : : : ; sn/, where s1; : : : ; sn are the
elementary symmetric polynomials in X1; : : : ; Xn. Using that result, and assuming
that a real polynomial p.X/ of degree 2m had 2m roots that could be manipulated
like ordinary real numbers (in modern terms, that p.X/ had roots in some field
extending R), Lagrange was able to establish (even to Gauss’s satisfaction) that the
factors Euler had sought for p.X/ would indeed have real coefficients. Only the
justification for the existence of such roots remained to be proven.

Laplace’s proof: Under the same basic assumptions that Euler and Lagrange
had made (the existence of a splitting field and the intermediate-value principle),
together with DeMoivre’s theorem on roots of complex numbers, proved earlier in
the eighteenth century, Pierre Simon de Laplace employed Lagrange’s theorem on
symmetric polynomials to prove the Fundamental Theorem of Algebra in its second
formulation. A version of his proof in modern terminology, as given in Remmert
(1990), pp. 120–122, goes as follows.5

Suppose a monic polynomial p.X/ of degree n � 1 with real coefficients has
roots r1; : : : ; rn in some splitting field F over R, and rewrite n as 2mq, where q is
odd. The proof proceeds by induction on m. If m D 0; p.X/ has a real root by the
intermediate-value principle. For m � 1, suppose that every polynomial of degree
n D 2kq with k < m has a complex root. Laplace then considered the symmetric
polynomials over F given by

Lt .X/ D
Y

1�i<j�n
.X � ri � rj � tri rj /;

4“Réflexions sur la résolution algébrique des équations,” reprinted in Oeuvres de Lagrange III,
205–421)
5Full background details can be found in Chapter 6 of Fine and Rosenberger (1997), where,
however, the strategy underlying the proof is not credited to Laplace.
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for each positive integer t . By the Fundamental Theorem on Symmetric Polynomi-
als, each Lt , when written as a polynomial in powers of X , has coefficients that
are elementary symmetric polynomials in the roots of the real polynomial p.X/.
But the coefficient of each power Xj in p.X/ is just .�1/j sj .r1; : : : ; rn/, where
sj .r1; : : : ; rn/ is the j th elementary symmetric polynomial in r1; : : : ; rn; so each
coefficient of Lt.X/ is a real number. Moreover, each Lt.X/ has degree

 
n

2

!

D
 
2mq

2

!

D 2m�1qŒ2mq � 1�;

where qŒ2mq � 1� is odd. By the induction hypothesis, each Lt.X/ thus has a
complex root ct , so for some pair .ri ; rj / with 1 � i < j � n; ct D ri C rj C tri rj ;
and since there are infinitely many integers t but only finitely many pairs .ri ; rj /
with 1 � i < j � n, there must be distinct integers t1 and t2 such that for the
same i and j , ct1 D ri C rj C t1ri rj and ct2 D ri C rj C t2ri rj are both complex
numbers. The difference ct1 � ct2 D .t1 � t2/ri rj is then also a complex number,
whence so is ri rj . Therefore ct1 � t1ri rj D ri C rj is a complex number as well.
So by DeMoivre’s theorem and the quadratic formula, the roots of the polynomial
X2 � .ri C rj /X C ri rj D .X � ri /.X � rj /, that is, the roots ri and rj of the
original polynomial p.X/, must be complex numbers. q.e.d.

8.3 Gauss’s first proof

Gauss’s doctoral dissertation, submitted to the University of Helmstedt in 1799 and
written in Latin, was entitled Demonstratio nova theorematis omnem functionem
algebraicam rationalem integram unius variabilis in factores reales primi vel
secundi gradus resolvi posse6 — that is, “New proof of the theorem that every
rational integral algebraic function [i.e, polynomial] of one variable can be resolved
into real factors of first or second degree.” Gauss thus stated the Fundamental
Theorem in its original formulation, and declared his aim to be that of giving “a
new and stronger proof” of that result. On the second page of the dissertation
he noted the equivalent formulation in terms of complex roots, but stated that he
would eschew the use of complex numbers in his demonstration. He went on to
criticize earlier proofs, all of which he faulted for presuming without justification
that a polynomial of degree m must possess m roots of some (unspecified) sort.
To avoid that presumption, he gave a geometric argument to establish the desired
factorization.

6Reprinted in Gauss’s Werke III, 1-30. The discussion here is based on the German translation by
E. Netto in Gauss (1890).
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Outline of proof: Gauss begins by proving two lemmas.

Lemma 1: If m is any positive integer, then x2 � 2r cos�x C r2 is a factor of
sin �xm � rm�1 sin.m�/x C rm sin.m � 1/�.

(The latter expression is 0 ifm D 1. Ifm D 2, the other factor is sin�, and ifm > 2,Pm�1
iD1 sin.i�/ri�1xm�i�1 is the other factor.)

Lemma 2: If r and � satisfy the equations

(8) rm cos.m�/C Arm�1 cos.m � 1/� C Brm�2 cos.m � 2/� C : : :
C Kr2 cos.2�/C Lr cos� CM D 0

and

(9) rm sin.m�/C Arm�1 sin.m � 1/� C Brm�2 sin.m � 2/� C : : :
C Kr2 sin.2�/C Lr sin� D 0;

then the expression xm C Axm�1 C Bxm�2 C � � � C Kx2 C Lx CM has the factor
x � r cos� if r sin � D 0 and the factor x2 � .2r cos�/x C r2 if r sin � ¤ 0.
(Gauss notes that complex numbers are usually invoked to prove Lemma 2, but he
gives an alternative proof that avoids them, based on Lemma 1.)

To prove the Fundamental Theorem it therefore suffices to show that r and � can be
found that satisfy the two equations of Lemma 2.7

Toward that end, Gauss considers the surfaces generated by the functions

T D rm sin.m�/C Arm�1 sin.m � 1/� C Brm�2 sin.m � 2/� C : : :
C Kr2 sin.2�/C Lr sin �

and

U D rm cos.m�/C Arm�1 cos.m � 1/� C Brm�2 cos.m � 2/� C : : :
C Kr2 cos.2�/C Lr cos� CM

7The connection with the complex formulation of the theorem is readily seen, since by DeMoivre’s
Theorem, if the variable X is written in polar form as X D r.cos �C i sin �/, the left members of
those equations are just the real and imaginary parts of the expression Xm C Axm�1 C Bxm�2 C
� � � C Kx2 C Lx CM .
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Fig. 8.2 Alternating T - and
U - arcs

above and below the .r; �/-plane and the traces in that plane where those surfaces
intersect it.8 The problem then becomes that of showing that there is at least one
point in the .r; �/-plane where the T -trace and the U -trace themselves intersect.

Further analysis shows that the T - andU -traces each contain 2m arcs that extend
to infinity. Two arcs of the T -trace join to form the horizontal axis. The other arcs
are each asymptotic to lines where sin.m�/ D 0, that is, to lines through the origin
that are inclined to the axis at one of the angles k�=m, for 0 < k < m. The arcs
of the U -trace are likewise asymptotic to lines where cos.m�/ D 0, that is, to lines
through the origin that are inclined to the axis at one of the angles .2k � 1/�=2m,
for 0 < k � m. Accordingly, those arcs will intersect a circle of sufficiently large
radius at 2m points, which divide its circumference into 2m intervals in which T is
alternately positive and negative. Moreover, those points are alternately one where
a T -arc intersects the circle and one where a U -arc does. (See Figure 8.2, based on
Gauss’s own illustration for the quartic polynomialX4�2X2C3XC10. The solid
curves there represent the T -arcs and the dotted ones the U -arcs.)

Assuming that for at least one k the arc of the T -trace that intersects the circle at
point k and the arc of the T -trace that intersects the circle at point k C 2 are both
part of the same continuous T -branch, and likewise that the arc of the U -trace that
intersects the circle at point kC1 and the arc of the U -trace that intersects the circle
at point k C 3 are both part of the same continuous U -branch, then that U -branch,

8Since the leading terms of T and U dominate the others and can be made positive or negative
by appropriate choice of the angle �, it is clear by continuity that both surfaces do intersect the
.r; �/-plane.
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Fig. 8.3 Intersecting T - and
U -branches

in passing from one intersection point where T is positive to another where it is
negative, must at some point within the circle cross that T -branch. (See Figure 8.3,
also taken from Gauss’s original text.) The theorem would thereby be proved.

Gauss declared that the assumption involved could be justified in “many different
ways,” one of which he endeavored to outline. But ultimately he had to rely on
his geometric intuition that “an algebraic curve can neither suddenly end abruptly
. . . nor lose itself, so to speak, . . . after an infinity of circuits (as in the case of
a logarithmic spiral)” — a fact that he believed could “be taken as [having been]
sufficiently securely established” (Gauss 1890, footnote to p. 33).

Gauss’s contemporaries evidently agreed, for they found no fault with his proof.
Only much later — long after Bolzano’s proof of the intermediate-value theorem,
and after Kronecker, Dedekind and others, by relatively straightforward means, had
shown how to construct splitting fields and thereby justified the earlier proofs of
the Fundamental Theorem that had relied on those facts — did mathematicians
come to regard the principle that Gauss had relied on (that a non-compact branch
of an algebraic curve that enters a bounded space must eventually emerge from
it) as a statement (like the Jordan Curve Theorem) that required more rigorous
demonstration. The principle was finally proved rigorously by Alexander Ostrowski
in 1920, using sophisticated topological notions. (See Ostrowski 1983.)

Fifty years after his receipt of the doctorate, Gauss gave another proof of the
Fundamental Theorem (his fourth) that was a minor variant of the one given in
his dissertation.9 Since (as he remarked) complex numbers had by then come to
be generally accepted by the mathematical community (in large part due to the
Fundamental Theorem itself), he felt free to employ them in the revised version of
his proof; and there he also allowed the polynomials to have complex coefficients.

9A detailed exposition of a modernized version of Gauss’s fourth proof is given in Fine and
Rosenberger (1997), pp. 182–186.
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8.4 Argand’s proof

The assertion that every nonconstant polynomial with complex coefficients must
have a complex root was first made not by Gauss, but by Jean Robert Argand, a
Paris bookkeeper who introduced the planar representation of complex numbers
now named after him;10 and in 1814 Argand gave his own, very different proof
of that result (Argand 1814), for whose understanding nothing beyond some basic
knowledge of advanced calculus is required.

Specifically, Argand’s proof depends on knowing (1) that polynomials are
continuous functions; (2) that every continuous function defined on a closed disc
jzj � R assumes a minimum in that disc; and (3) that every complex number
has a kth root for each integer k > 1 (an immediate consequence of DeMoivre’s
Theorem).11 The proof then proceeds as follows:

Given a polynomial p.z/ D anznCan�1zn�1C� � �Ca1zCa0 with n � 1, jp.z/j
approaches1 as jzj does, so for any positive constantC , there is anR > 0 such that
jp.z/j > C for jzj > R. Taking C D infz2C jp.z/j, it follows that infz2C jp.z/j D
infz�R jp.z/j, so by (2), jp..z/j assumes a minimum for some z0 with jz0j � R. That
p.z0/ D 0 then follows directly from

Argand’s inequality: For any polynomial p.z/ of degree n � 1, if p.z0/ ¤ 0 then
there is a z1 2 C for which jp.z1/j < jp.z0/j.

Sketch of proof: Since p.z0/ ¤ 0, we can divide p.z/ by jp.z0/j to obtain a
polynomial q.z/ of the same degree for which q.z0/ D 1; and if we define h.z/ D
q.zC z0/, then h.0/ D 1, so h.z/ may be written as

1C b1zC b2z2 C � � � C bnzn D 1C bkzk C bkC1zkC1 C � � � C bnzn

D 1C bkzk C zkŒbkC1zC � � � C bnzn�k�;

where k is the least index i for which bi ¤ 0. The expression in brackets is a
polynomial that has z D 0 as a root, so it is continuous at z D 0 and therefore can
be made arbitrarily small for z sufficiently close to 0. If r is any kth root of �1=bk,
the triangle inequality then shows that jh.rt/j < 1 for sufficiently small positive real
numbers t . For any such t , setting z1 D z0 C rt yields jp.z1/j < jp.z0/j.

10See the entry on Argand by Phillip Jones in the Dictionary of Scientific Biography, vol. 1,
pp. 237–240.
11Argand assumed fact (2), which was not proved rigorously until later.
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8.5 Gauss’s second proof

Despite the acceptance of his 1799 proof by other mathematicians of his time,
Gauss published a second proof in 181512 that was based on algebraic rather
than geometric principles. In his opening remarks, he maintained that his first
proof “probably [sic ] leaves nothing more to be desired with respect to rigor or
simplicity”.13 He deemed his new proof to be “no less rigorous” than the first, but
he did not claim it was simpler (as it certainly was not). Why then did he offer it?

Perhaps, as the qualifying wohl might be taken to suggest, he did after all harbor
some doubts about whether the geometric principles he had invoked in his first proof
had been rigorously established; but at least ostensibly, he was concerned about
purity of method.

Like the proofs of Laplace and Lagrange, Gauss’s 1815 proof was by induction
on the highest power of 2 dividing the degree of the polynomial Y.x/. But
Gauss avoided having to assume that Y.x/ had any roots by working in terms of
indeterminates a1; a2; : : : ; an. He defined various auxiliary polynomials symmetric
in those indeterminates, and applied the Fundamental Theorem on Symmetric
Polynomials to each.14

The very long proof is divided into twenty numbered sections. To make the
argument self-contained, Gauss first established a number of preliminary results:
Given two polynomials Y1.x/ and Y2.x/, whose coefficients might include other
indeterminates in addition to x, he defined their greatest common divisor and
used the Euclidean algorithm to show that the g.c.d. must be a linear combination
of Y1.x/ and Y2.x/, so that, in particular, if Y1.x/ and Y2.x/ have no common
divisor of positive degree, there must be polynomials Z1.x/ and Z2.x/ such that
Z1.x/Y1.x/ C Z2.x/Y2.x/ D 1, and conversely. In section 3, for any positive
integer m he defined the elementary symmetric polynomials in the indeterminates
a1; a2; : : : ; am and noted that any polynomial function of them (again, possibly
containing other indeterminates as well) must also be symmetric in a1; a2; : : : ; am.
Section 4 was devoted to proving the converse (the fundamental theorem), and
section 5 to establishing the uniqueness of that representation.

Then, for any integer m � 1, he defined �m to be the symmetric polynomial in
the indeterminates a1; a2; : : : ; am given by

(10) �m D
Y

1�i;j�m
i¤j

.ai � aj / D .�1/.m2/
Y

1�i;j�m
i<j

.ai � aj /2:

12Translated into German on pp. 37–60 of Gauss (1890).
13“in Anbetracht der Strenge wie der Einfachheit wohl nichts zu wünschen übrig lässt”
14In the description of Gauss’s proof given below we depart from his notation in some respects.
In particular, we use subscripts rather than primes or distinct letters to distinguish among different
objects of the same type. For an overview in English that retains Gauss’s notation, see Baltus
(2000).
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By the fundamental theorem, �m can be represented as a polynomial in the elemen-
tary symmetric polynomials s1; s2; : : : sm of the indeterminates a1; a2; : : : ; am. Let
pm be the polynomial in the indeterminates i1; i2; : : : ; im obtained from the latter
polynomial by replacing each occurrence of sj therein by ij , for 1 � j � m.15

Then, given a monic polynomial Y.x/ D xm � C1xm�1 C C2x
m�2 � � � � ˙ Cm

of degree m with real coefficients C1;�C2; : : : ;˙Cm, let PY be the real number
obtained by substituting for each ij in pm the value Cj from Y (that is, PY is the
value of pm.i1; i2; : : : ; im/ at .C1; C2; : : : ; Cm/).

Sections 6–9 of Gauss’s paper are devoted to proving

Lemma 1: If Y 0.x/ is the (formal) derivative of Y.x/, then Y.x/ And Y 0.x/ have
a nonconstant common factor if and only if PY D 0.

Gauss began by noting that if Y.x/ could be decomposed into (not necessarily
distinct) linear factors, say

Y.x/ D .x � A1/.x � A2/ � � � .x �Am/;

then

Y.x/ D xm � .
X

1�i�m
Ai /x

m�1 C .
X

1�i;j�m
i¤j

AiAj /x
m�2 � � � � ˙

Y

1�i�m
Ai I

that is, for each 1 � i � m, Ci D si .A1; A2; : : : ; Am/. Hence

PY D pm .s1.A1; A2; : : : ; Am/; s2.A1; A2; : : : ; Am/; : : : ; sm.A1; A2; : : : ; Am//
D

Y

1�i;j�m
i¤j

.Ai � Aj /;

so PY D 0 if and only if for some distinct i; j , Ai D Aj . It then follows directly
from the product rule, applied to the factored form of Y.x/, that the latter condition
holds if and only if Y.x/ and Y 0.x/ have some factor .x � Ai/ in common.

To avoid circularity in proving the Fundamental Theorem, however, it was
necessary to prove the Lemma without presuming that Y.x/ could be decomposed
into linear factors. To do so, Gauss noted that any monic polynomial

Y.x/ D xm � C1xm�1 C C2xm�2 � � � � ˙ Cm

15Gauss called pm the determinant of the polynomial y.x/ D xm � i1x
m�1 C i2x

m�2 � � � � ˙
im; today, it is called the discriminant. He described it as “that function of the indeterminates
i1; : : : ; im that is transformed into the product of every pair of differences of distinct indeterminates
a1; : : : ; am when each ik is replaced by sk .” Note that pm depends only on m.
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in the indeterminate x could be regarded as a substitution instance of the polynomial

(11) y.x; i1; : : : ; im/ D xm � i1xm�1 C i2xm�2 � � � � ˙ im;

in which the indeterminates i1; : : : ; im had been replaced by the real numbers
C1; : : : ; Cm. If, on the other hand, those indeterminates were replaced by the
elementary functions s1; : : : ; sm of the indeterminates a1; : : : ; am, the resulting
polymonial � could be written as

(12) � D
mY

iD1
.x � ai /:

As a tool for proving the ‘only if’ direction of the Lemma, Gauss considered
the polynomial in the indeterminates x; a1; a2; : : : ; am, symmetric in a1; a2; : : : ; am,
given by

	 D �m
mX

iD1

Y

1�j�m
j¤i

.x � aj /
.ai � aj /2

(That 	 is a polynomial in x; a1; a2; : : : ; am follows from the rightmost member of
equation (10), which shows that the denominator in each summand of 	 divides �m.)
If 1 � k � m and x D ak , then only one summand of 	 and one of the derivatives
�0 is non-zero (in each case, that for which i D k), and 	�0 D �m. Thus for each
integer k between 1 andm, x � ak is a factor of �m � 	�0 , so � divides �m � 	�0.

The quotient, � , is then another polynomial in x; a1; a2; : : : ; am symmetric in
all the ai . Applying the Fundamental Theorem on Symmetric Polynomials to each
term in the equation �m D �� C 	�0 and replacing each elementary symmetric
polynomial sj therein by the indeterminate ij produces the equation

(13) pm D s.x/y.x/C r.x/y0.x/;

where r.x/ and s.x/ are polynomials in x; i1; i2; : : : ; im, and y.x/ is the polynomial
defined in (11). Replacing each ij in (13) by the real number Cj then yields
PY D S.x/Y.x/ C R.x/Y 0.x/, whose left member is a real number and whose
right member is a polynomial in x. If PY ¤ 0, division by PY yields 1 D
SY .x/

PY
Y.x/CRY .x/

PY
Y 0.x/; so Y.x/ and Y 0.x/ have no nonconstant common factor

unless PY D 0.
Conversely, if Y.x/ and Y 0.x/ have a nonconstant common factor, there are

functions f .x/ and �.x/ such that f .x/Y.x/ C �.x/Y 0.x/ D 1. Moving the left
member of that equation to the right and adding f .x/� C �.x/�0 to both sides then
gives

(14) f .x/� C �.x/�0 D 1C f .x/.� � Y.x//C �.x/.� � Y.x//0:
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Gauss abbreviates the expression f .x/.y.x/ � Y.x// C �.x/.y.x/ � Y.x//0, a
polynomial in the indeterminates x; i1; : : : ; im, by F.x; i1; : : : ; im/, and the right
member of (14), regarded as a polynomial in x and the elementary symmetric
polynomials s1; : : : ; sm, by 1 C F.x; s1; : : : ; sm). Similarly, he uses F.x; C1; : : : ;
Cm/ to denote the result of replacing each ik in F.x; i1; : : : ; im/ by Ck ; and since
y.x/ is thereby transformed into Y.x/, it follows that for any value of x,

(15) F.x; C1; : : : ; Cm/ D 0:

Gauss next applies the product rule to �, which, for any j between 1 and m,
yields

(16) �0 D
Y

1�i�m
i¤j

.x � ai /C .x � aj /
� Y

1�i�m
i¤j

.x � ai /
�0
:

Replacing �0 in (14) by the expression on the right of (16) and setting x D aj
successively for each j between 1 and m then gives the sequence of equations

�.aj /
Y

1�i�m
i¤j

.x � ai / D 1C F.aj ; s1; : : : ; sm/ .1 � j � m/:

Since the expressions on either side of each equation in that sequence are
polynomials symmetric in the indeterminates a1; : : : ; am, the same is true of the
product of those equations:

(17) �m�.a1/�.a2/ : : : �.am/ D
mY

iD1
.1C F.ai ; s1; : : : ; sm//:

The Fundamental Theorem on Symmetric Polynomials thus ensures that there are
polynomials in the indeterminates i1; : : : ; im , say t and , such that t is transformed
into �.a1/�.a2/ : : : �.am/ and  into

Qm
iD1.1CF.ai ; s1; : : : ; sm// when each ij is

replaced by sj . From (17) it then follows that pm t D  .
Replacing each indeterminate ij in this last equation by the real number Cj , and

writing T for the resulting value of t , we conclude from (15) that PY T D 1. Hence
PY ¤ 0.

Lemma 1, just proved, implies that if PY D 0, then Y.x/ must have a nontrivial
factor; so repeating that argument, if need be, shows that it must in fact have a factor
Q for whichPQ ¤ 0. Hence without loss of generality we may assume thatPY ¤ 0.
Moreover, if Y.x/ has degree m D k2
, where k is odd, then at least one factor of
Y.x/ must be of degree l2� , where l is odd and � � 
, for otherwise the power of 2
in m would exceed 
.
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Gauss went on in section 12 to consider the polynomial

(18) �.u; x/ D
Y
Œu � .ai C aj /x C aiaj �;

where the product is taken over the m.m � 1/=2 unordered pairs fai ; aj g; i ¤ j of
the indeterminates a1; : : : ; am. Once again, � is symmetric in those indeterminates,
so there is a function z.u; x/ in the indeterminates i1; : : : ; im that transforms to �
when the latter indeterminates are replaced by s1; : : : ; sm, and a function Z.u; x/
that results from z.u; x/ when each si is replaced by Ci (the i th coefficient of Y ).
Regarded as functions of u alone, � and z are monic polynomials of degree
n D m.m � 1/=2, with coefficients that are polynomials in x; a1; : : : ; am and in
x; i1; : : : ; im, respectively, and Z is a monic polynomial of degree n in u whose
coefficients are polynomials in x, say c1.x/; : : : ; cn.x/. We may then consider the
discriminant PZ.x/ of Z, that, is, the function pn.c1.x/; : : : ; cn.x//. (See the last
footnote above.)

Gauss’s next task was to prove

Lemma 2: If PY ¤ 0, then PZ.x/ cannot be identically zero.

He noted that, once again, that would be straightforward if Y.x/ were a product
of linear factors. To establish the result without that assumption, he observed that the
discriminant of � is the product of all the n.n � 1/ non-zero differences of distinct
pairs of the n expressions .ai C aj /x � aiaj . Hence the discriminants of � and

of z, regarded as polynomials in x, each have degree d D n.n � 1/ D 1

4
m.m �

1/.m C 1/.m � 2/, while the discriminant PZ.x/ of Z may have lesser degree if
the particular values of the Ci cause the coefficient of xd in PZ.x/ to vanish. The
problem is to show that not all the coefficients of PZ.x/ will vanish.

Closer examination of the discriminant of � reveals that that product may be split
into two groups of factors, the first consisting of those differences of the form

Œ.ai C aj /x � aiaj � � Œ.ai C ak/x � aiak� D .aj � ak/.x � ai /;

for distinct i; j; k, and the second of those differences of the form

(19) Œ.aiCaj /x�aiaj ��Œ.akCal /x�akal � D .aiCaj�ak�al /x�aiajCakal ;

for distinct i; j; k; l . In the first group, each factor .aj � ak/ will occurm� 2 times
(once for each value of i distinct from j and k), whereas each factor .x � ai /
will occur .m � 1/.m � 2/ times (once for every ordered pair of distinct values
j; k different from i ). If the product of the second group of factors (a polynomial
symmetric in a1; : : : ; am) be denoted by �, then from (10) and (12), the discriminant
of � is �mm�2�.m�1/.m�2/�.

Likewise, if k.x; i1; : : : ; im/ is the function that transforms into � when each ij in
it is replaced by sj , and K.x/ is the result of replacing each such ij by Cj , then the
discriminant of z is pmm�2y.m�1/.m�2/k and that of Z, PZ , is PY m�2Y .m�1/.m�2/K .
Since PY ¤ 0 by assumption, it remains to show thatK is not identically zero.
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Toward that end Gauss introduced the function of the new indeterminate w
given by

(20)
Y
Œ.ai C aj � ak � al/wC .ai � ak/.ai � al /�;

where i; j; k; l are distinct integers between 1 and m and no factors are repeated.
(Note that each factor is invariant under the interchange of ak and al , and so
would appear twice in the product if repeated factors were allowed.) That product
is symmetric in the indeterminates a1; : : : ; am, so it is uniquely expressible as a
polynomial function f .w; s1; : : : ; sm/ of the elementary symmetric polynomials and

w. Since the number of factors in the product is
1

2
m.m�1/.m�2/.m�3/, the degree

of each substitution instance of f .w; s1; : : : ; sm/ is at most that. Also,

f .0; s1; : : : ; sm/ D �m.m�2/.m�3/;

f .0; i1; : : : ; im/ D pm.m�2/.m�3/; and

f .0; C1; : : : ; Cm/ D PY .m�2/.m�3/:

In particular, the last equation shows that the constant term of

f .w; C1; : : : ; Cm/

does not vanish.
Let the non-zero term of highest degree in f .w; C1; : : : ; Cm/ be Nw
 . Then for

each j between 1 and m, if w be replaced by x � aj , f .x � aj ; C1; : : : ; Cm/ may
be regarded as a polynomial in x whose leading term is Nx
 and whose other
coefficients depend upon aj . Consequently

(21)
mY

jD1
f .x � aj ; C1; : : : ; Cm/

is a polynomial in x with leading term Nmxm
 , in which the coefficients of the
remaining terms are functions of a1; : : : ; am.

Similarly,

mY

jD1
f .x � aj ; i1; : : : ; im/

is a polynomial function of x; a1; : : : ; am; i1; : : : ; im symmetric in a1; : : : ; am, which
by the Fundamental Theorem on Symmetric Polynomials may be rewritten as a
polynomial '.x; s1; : : : ; sm; i1; : : : ; im/. Replacing each ij by sj then yields

'.x; s1; : : : ; sm; s1; : : : ; sm/ D
mY

jD1
f .x � aj ; s1; : : : ; sm/:
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Now, for any fixed value of i , when w is replaced by x � ai , the factor

.ai C aj � ak � al/wC .ai � ak/.ai � al /

in (20) reduces after cancellation of like terms to

.ai C aj � ak � al /x � aiaj C akal ;

which is the same as the right member of (19). So each factor of � is also a factor
of '.x; s1; : : : ; sm; s1; : : : ; sm/; that is, � divides '.x; s1; : : : ; sm; s1; : : : ; sm/, say
'.x; s1; : : : ; sm; s1; : : : ; sm/ D ��.x; s1; : : : ; sm/. Therefore also

'.x; C1; : : : ; Cm; C1; : : : ; Cm/ D K�.x; C1; : : : ; Cm/:

But '.x; s1; : : : ; sm; C1; : : : ; Cm/ is the product in (21), which has leading term
Nmxm
 , not involving any of s1; : : : ; sm; so Nmxm
 must also be the leading term
of '.x; C1; : : : ; Cm; C1; : : : ; Cm/. In particular, '.x; C1; : : : ; Cm; C1; : : : ; Cm/ does
not vanish identically. Therefore neither doesK , as was to be shown.

Before beginning the induction that lay at the heart of his second proof, Gauss
stated and proved one final lemma.

Lemma 3: Let ˆ.u; x/ denote the product
Qk
iD1.˛i C ˇiuC 
ix/ of any number

of factors linear in the indeterminates u and x, and let v be another indeterminate.
Then the function

� D ˆ.uC v @ˆ
@x
; x � v @ˆ

@u
/

is divisible by ˆ.u; x/.

Proof: For each i between 1 and k, we have

ˆ.u; x/ D .˛i C ˇiuC 
ix/Qi ;

whereQi denotes the product of all the factors ˛j C ˇj uC 
j x with j ¤ i . (Each
Qi is thus a polynomial in u; x; ˛j ; ˇj ; 
j , for 1 � j � k; j ¤ i .) So

@ˆ

@x
D 
iQiC .˛iCˇiuC
ix/@Qi

@x
and

@ˆ

@u
D ˇiQiC .˛iCˇiuC
ix/@Qi

@u
:

Substituting the expressions on the right sides of those equations into the
corresponding factor

˛i C ˇiuC 
ix C ˇiv @ˆ
@x
� 
iv @ˆ

@u
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of ˆ yields

.˛i C ˇiuC 
ix/.1C ˇiv @Q
@x
� 
iv @Q

@u
/;

and consequently,

� D ˆ.u; x/
kY

iD1
.1C ˇiv @Q

@x
� 
iv @Q

@u
/: q.e.d.

When applied to �.u; x/ D z.u; x; s1; : : : ; sm/, Lemma 3 shows that � divides

z.uC v @�
@x
; x � v @�

@u
; s1; : : : ; sm/;

say with quotient‰.u; x; v; s1; : : : ; sm/. Likewise,

z.uC v @z

@x
; x � v @z

@u
; i1; : : : ; im/ D z.u; x/‰.u; x; v; i1; : : : ; im/

and

Z.uC v @Z
@x
; x � v @Z

@u
; C1; : : : ; Cm/ D Z.u; x/‰.u; x; v; C1; : : : ; Cm/:

Now, given definite values U and X for the indeterminates u and x, let U 0 and
X 0 denote

@Z

@u

ˇ
ˇ
ˇ
ˇ
.U;X/

and
@Z

@x

ˇ
ˇ
ˇ
ˇ
.U;X/

;

respectively. Then

Z.U C vX0; X � vU0/ D Z.U;X/‰.U;X; v; C1; : : : ; Cm/:

If U 0 ¤ 0, replacing v by
X � x
U 0 yields

(22) Z.U C XX0

U 0 �
xX0

U 0 ; x/ D Z.U;X/‰.U;X;
X � x
U 0 ; C1; : : : ; Cm/:

In other words, setting u D U C X � x
U 0 X 0 transformsZ.u; X/ into

Z.U;X/‰.U;X;
X � x
U 0 ; C1; : : : ; Cm/:



78 8 The Fundamental Theorem of Algebra

By Lemma 2, the assumption that PY ¤ 0 implies that the polynomial PZ does
not identically vanish. Therefore PZ.x/ D 0 for only finitely many values of x, so
a real number X may be chosen for which PZ.X/ ¤ 0; that is, the discriminant
of the function Z.u; X/ is non-zero. By Lemma 1, the polynomial Z.u; X/ and

its derivative
dZ

du
thus have no common factor. Also, as noted earlier, Z.u; X/ has

degree n D m.m� 1/=2 in u, wherem D k2
, k odd, is the degree of Y.x/. Hence
n D .k2
/.k2
 � 1/=2 D .k2/22
�1 � k2
�1 D Œk.k2
 � 1/�2
�1. The quantity
in brackets in the last member of that equation is odd, so the power of 2 in n is less
than the power of 2 in m. Therefore we may assume by induction that there is a real
or complex value U for which Z.U;X/ D 0.16 By the factor theorem, u � U must

then be a factor of Z.u; X/, but, ipso facto, not a factor of
dZ

du
. So U 0 ¤ 0, again by

the factor theorem.
For those particular values of X and U , the right-hand member of (22) is

identically zero, independent of the value of x. Thus Z.u; x/, regarded as a
polynomial in u with coefficients that are polynomials in x, vanishes when u D
U C X � x

U 0 X 0, and so has u�U � X � x
U 0 X 0 as a factor. If we then let u D x2, the

polynomialZ.x2; x/ must have the quadratic polynomial

x2 � U � X � x
U 0 X 0 D x2 C X 0

U 0 x � .U C
XX0

U 0 /

as a factor. The quadratic formula then provides a real or complex root of Z.x2; x/.
Finally, recall that z.x2; x; i1; : : : ; im/ is the unique polynomial that transforms

into �.x2; x/ when each ij is replaced by the elementary symmetric polynomial sj ,
and that Z.x2; x/ is obtained from z.x2; x; i1; : : : ; im/ by replacing each ij by the
coefficient Cj of Y.x/. But

�.x2; x/ D
Y
Œx2 � .ai C aj /x C aiaj � D

Y
.x � ai /.x � aj /

D
mY

iD1
.x � ai /m�1 D �m�1

(where the first two products are taken over all unordered pairs fai ; aj g; i ¤ j ;
cf. (18) and (12) above), and the unique polynomial in x; i1; : : : ; im that transforms
into �m�1 when each ij is replaced by sj is y.x/m�1 (cf. (11)). Therefore z.x2; x/ D
.y.x//m�1 and Z.x2; x/ D .Y.x//m�1, so the root found for Z.x2; x/ is also a root
of Y.x/, completing the proof of the theorem.

16Gauss observed that the coefficients of Z.u; X/ will be real numbers if X is real and all
coefficients of Y.x/ are real — a fact needed for the base case of the induction (that a real
polynomial of odd degree must have a real root).
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The proof just given is remarkable not only for purity of method but for its
economy of means. The principal tool invoked is the Fundamental Theorem on
Symmetric Polynomials, applied over and over again to a sequence of carefully
chosen polynomials, and the only non-algebraic principle used is the intermediate-
value theorem. As such it is a tour de force. Its length, however, is a pedagogical
deterrent, and the justifications for some of the definitions and substitutions
employed become apparent only with hindsight; it is thus less perspicuous than
Argand’s nearly contemporaneous argument.

8.6 Proofs based on integration

The proofs of the Fundamental Theorem of Algebra discussed above are all direct
proofs. There are indirect proofs as well, several of which are based on the theory
of integration. Among them is another by Gauss, published just one year after his
second.17

Gauss’s third proof: As in his first proof, given a monic polynomial

Y D xm C A1xm�1 C � � � CAm�1x C Am
with real coefficients, Gauss began by writing the variable x in polar form as
x D r.cos� C i sin �/ and considered the real and imaginary parts of Y , which
he denoted by t and u. Thus (replacing Gauss’s A;B; : : : ;M by A1; : : : ; Am)

t D
mX

jD0
Aj r

m�j cos.m � j /� and u D
mX

jD0
Aj r

m�j sin.m � j /�;

where A0 D 1 and, for 1 � j � m, the coefficients Aj are arbitrary real numbers.
He further defined

t 0 D
mX

jD0
.m � j /Aj rm�j cos.m� j /�;

u0 D
mX

jD0
.m � j /Aj rm�j sin.m � j /�;

t 00 D
mX

jD0
.m � j /2Aj rm�j cos.m � j /�;

17Translated into German on pp. 61–67 of Gauss (1890).
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u00 D
mX

jD0
.m � j /2Aj rm�j sin.m � j /�; and

y D .t2 C u2/.tt00 C uu00/C .tu0 � ut0/2 � .tt0 C uu0/2

r.t2 C u2/2
;

and stipulated thatR should be a real number greater than the largest of the numbers
.mjAj j

p
2/1=j , for 1 � j � m. He then claimed that setting r D R would ensure

that tt0 C uu0 was positive, for any angle �.

Proof of claim: Corresponding to the definitions of t; u; t 0 and u0, let

T D
mX

jD0
AjR

m�j cos.
�

4
C j�/;

U D
mX

jD0
AjR

m�j sin.
�

4
C j�/;

T 0 D
mX

jD0
.m � j /AjRm�j cos.

�

4
C j�/; and

U 0 D
mX

jD0
.m � j /AjRm�j sin.

�

4
C j�/:

Gauss observed that T could be rewritten as

mX

jD1

Rm�j

m
p
2
.Rj C mAj

p
2 cos.

�

4
C j�//;

and similarly for U; T 0 and U 0; so, by the stipulation on R, those four quantities,
and hence TT 0CUU0 must all be positive. But when r D R, tt0Cuu0 D TT 0CUU0.

To see that, note first that when r D R, the quantity t is equal to

(23) T cos.
�

4
Cm�/C U sin.

�

4
Cm�/:

For, by the definitions of T and U , each term of (23) is of the form

(24) AjR
m�j Œcos.

�

4
C j�/ cos.

�

4
Cm�/C sin.

�

4
C j�/ sin.

�

4
Cm�/�

D AjR
m�j

2
Œcos..m � j /�/C cos.

�

2
C .mC j /�/C cos..m � j /�/

� cos.
�

2
C .mC j /�/� D AjRm�j cos..m � j /�/;
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the corresponding term of t . Likewise, when r D R, the quantities u; t 0 and u0 are
equal to

T sin.
�

4
Cm�/� U cos.

�

4
Cm�/;

T 0 cos.
�

4
Cm�/C U 0 sin.

�

4
Cm�/; and

T 0 sin.
�

4
Cm�/ � U 0 cos.

�

4
Cm�/;

respectively. Then, letting A D �

4
Cm�, we have

tt0 D TT 0cos2AC T 0U sinA cosAC TU0 sinA cosACUU0sin2A and

uu0 D TT 0sin2A � T 0U sinA cosA� TU0 sinA cosAC UU0cos2A;

so tt0 C uu0 D TT 0 C UU0 > 0 when r D R, as claimed.

In addition, when r D R,

t2 D T 2cos2AC 2TU sinA cosAC U 2sin2A and

u2 D T 2sin2A � 2TU sinA cosAC U 2cos2A;

so t2 C u2 D T 2 C U 2. Consequently, for any r satisfying the stipulations on R,
t2 C u2 must be positive, whence t and u cannot simultaneously equal 0.

On the other hand, within the circle C of radius R centered at the origin there
must be a point .r; �/ where both t D 0 and u D 0 (and thus a point x D r.cos� C
i sin �/ where Y D 0, proving the theorem). For suppose not. Then let

� D
Z Z

C

y dA D
Z R

0

Z 2�

0

y d� dr D
Z 2�

0

Z R

0

y dr d�:

Note that
@t

@�
D �u0,

@u

@�
D t 0, @t

0

@�
D �u00 and

@u0

@�
D t 00. Using those relations,

one computes that

(25)
@

@�

�
tu0 � ut0

r.t2 C u2/

�

D y; that is,
Z

y d� D tu0 � ut0

r.t2 C u2/
:

Since u and u0 both equal 0 when � D 0 or � D 2� , the last expression above is
also zero for those values of �, whence

(26)
Z 2�

0

y d� D 0; and so � D
Z R

0

Z 2�

0

y d� dr D 0:
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Similarly, from r
@t

@r
D t 0, r @u

@r
D u0, r

@t 0

@r
D t 00, and r

@u0

@r
D u00, one computes

that

(27)
@

@r

�
tt0 C uu0

t2 C u2

�

D y; that is,
Z

y dr D tt0 C uu0

t2 C u2
:

Consequently,

Z R

0

y dr D tt0 C uu0

t2 C u2

ˇ
ˇ
ˇ
ˇ

R

0

D TT 0 C UU0

T 2 C U 2
> 0 by the claim proved earlier.

But then

� D
Z 2�

0

Z R

0

y dr d� D
Z 2�

0

TT 0 C UU0

T 2 C U 2
> 0; contrary to (26):

In his prefatory remarks, Gauss said merely that continued reflection on the
Fundamental Theorem had led him to this third proof, which, like the second, was
“purely analytic,” but was based on entirely different principles and far surpassed
the second in simplicity. And indeed, like Argand’s proof, nothing beyond advanced
calculus is needed for understanding the argument just given. However, several of
the functions used in the proof, especially y, are introduced seemingly out of the
blue, and it seems almost miraculous that the partial derivatives in (25) and (27)
turn out to equal y. Thus, though succinct and requiring minimal prerequisites, the
proof is not perspicuous: It provides convincing verification that the Fundamental
Theorem is true, but it is not explanatory, since it does not convey understanding of
why it is.

Other indirect proofs of the Fundamental Theorem are based on Cauchy’s theory
of complex contour integration. The best known is perhaps that based on Liouville’s
Theorem (that a bounded entire function must be constant): For if the polynomial

p.z/ had no zero in the complex plane, then
1

p.z/
would be an entire function;

and as in Argand’s proof, for any positive constant C there is an R > 0 such that

jp.z/j > C whenever jzj > R. Thus
1

p.z/
<

1

C
for jzj > R, and as a continuous

function,
1

p.z/
would also be bounded within the disc jzj � R. Thus

1

p.z/
would

be bounded throughout the complex plane, and hence a constant by Liouville’s
Theorem — a contradiction for any p.z/ of positive degree.

Liouville’s Theorem is itself a consequence of Cauchy’s integral formula,
which asserts that if f .z/ is any function analytic in a simply connected domain
containing the simple closed curve 
 , then for any point z0 inside 
 ,
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f .z0/ D 1

2�i

Z




f .z/

z � z0
dzI

and, as first noted in Zalcman (1978) (see also Lax and Zalcman 2012), Cauchy’s
formula may be applied directly to yield an even simpler proof of the Fundamental
Theorem of Algebra. For if jp.z/j ¤ 0 throughout the complex plane, then q.z/ D
1

p.z/
is entire and

1

p.0/
D q.0/ ¤ 0. Hence

q.0/ D 1

2�i

Z

jzjDR
q.z/

z
dz D 1

2�

Z 2�

0

q.Rei� / d�;

for any R > 0. But as R approaches1, the last integral approaches zero, contrary
to q.0/ ¤ 0.

Alternatively, a proof of the Fundamental Theorem may be couched in terms
of winding numbers, where the winding number of a continuously differentiable
closed curve 
 about the origin is given by

1

2�i

Z




dz

z
;

if 
 does not pass through the origin. That notion can, however, also be defined
without reference to line integrals: Less formally, and more generally, if f .z/ is
a continuous function that is never zero, the winding number of f .z/ around the
origin as z traces out a continuously differentiable closed curve 
 may be defined,
as in Courant and Robbins (1941), as “the net number of complete revolutions made
by a vector joining the origin to f .
.z// as z traces out 
 .” Courant and Robbins
then offer the following indirect proof of the Fundamental Theorem.

Suppose that the monic polynomial p.z/ D zn C an�1zn�1 C � � � C a0 of degree
n > 0 is never zero. Let Ct be the circle about the origin of radius t , given by the
equation z D tei� , and let �.t/ be the winding number of p.z/ around the origin as
z traces out Ct . Then � is a continuous, integer-valued function of t , and so must be
a constant; and since �.0/ D 0, we must have �.t/ D 0 for all t .

But

jzn � p.z/j � jan�1jjzjn�1 C � � � C ja0j D jzjn�1
�

jan�1 C � � � C ja0j
jzjn�1

�

;

so for values of t greater than ja0j C ja1j C � � � C jan�1j C 1; the length jzn � p.z/j
of the vector from p.z/ to zn will be less than or equal to

tn�1Œjan�1j C � � � C ja0j
tn�1 � < t

n D jznj; the distance from zn to the origin.

(See Figure 8.4.)
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Fig. 8.4 A winding-number
proof. Adapted from Figure
150, p. 270 in What is
Mathematics?, 2nd. ed.
(1996), by Richard Courant
and Herbert Robbins. By
permission of Oxford
University Press, U.S.A.

The segment joining p.z/ to zn thus cannot pass through the origin when z is
on Ct . Deforming the curve traced by p.z/ to the circle traced by zn by shrinking
each such line segment to zero will thus not alter the value of �.t/, which must be
the same as the winding number of zn around the origin as z traces out Ct .18 But that
number is n, which is greater than zero, contrary to what was found above.

The preface to the first edition of What is Mathematics? states that that book
“presupposes only knowledge that a good high school course could impart,” and
the proof just given is an excellent example of a perspicuous informal proof. By
dispensing with reference to line integrals, Courant and Robbins succeeded in
offering a proof of the Fundamental Theorem that should be both convincing and
understandable to mathematically inclined high school students — a remarkable
achievement from a pedagogical standpoint, since it is at that level that students
first encounter the Fundamental Theorem, and all other proofs known to this author
presume at least knowledge of advanced calculus.19

18The formal statement of that fact is Rouché’s Theorem.
19I vividly recall my own frustration on repeatedly reading, not only in high school, but throughout
my undergraduate courses at M.I.T., that a proof of the Fundamental Theorem was “beyond
the scope of this text.” Only when I took a graduate complex analysis course did I finally see
the theorem proved as a corollary to Liouville’s theorem — an experience I found distinctly
anticlimactic, given my long years of expectant waiting. (William Dunham, in his article Dunham
(1991), describes his own very similar experience.)
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8.7 Other modern proofs

As part of the development of field theory in the nineteenth century, Kronecker
proved the basic result needed to establish the existence of splitting fields: that
if p.x/ is an irreducible polynomial with coefficients in a field F , then there is
a field F 0 extending F , of finite degree over F , in which p.x/ has a root. The
earlier arguments put forward as proofs of the Fundamental Theorem of Algebra by
Lagrange and Laplace were thereby validated.

Later in the nineteenth century the work of Évariste Galois was belatedly
published, and in 1872 Peter Ludvig Sylow proved the theorem in group theory now
bearing his name, according to which for any prime number p, if pm is the largest
power of p dividing the order of a finite group G, then G must possess subgroups
of order pk for each k � m. In addition, the number of subgroups of G of order pm

divides the order ofG and is congruent to 1 modulo p. Emil Artin then gave a proof
of the Fundamental Theorem in terms of those concepts.

Proof via Galois theory:20 Let K be a splitting field for the polynomial p.x/, of
degree n > 1 with real coefficients.K is a finite extension of the real field R, say of
degree d D 2mq over R, where q is odd. Since R has characteristic 0,K is a simple
extension R.˛/ of R, where ˛ is a root of a unique monic irreducible polynomial
r.x/ of degree d with real coefficients. If m D 0, r.x/ must have degree q D 1,
since every real polynomial of odd degree has a real root. So in that case K D R.
If m D 1 and q D 0, r.x/ is a quadratic polynomial, whose roots must lie in C,
whence K D C. So suppose m > 0 and q ¤ 0, and let G be the Galois group of K
overR. By the fundamental theorem of Galois theory,G must have order d , and by
Sylow’s theorem,G therefore has a subgroup of order 2m and index q. Again by the
fundamental theorem of Galois theory, there must then be an extension field E of R
intermediate between R and K , having degree q over R. Then as above, since q is
odd, q D 1 and E D R. Accordingly,K must have degree 2m over R, so the order
of G is 2m. By Sylow’s Theorem, G has a subgroup H1 of order 2m�1. Let L1 be
the fixed field of H1. Then L1 is an extension of R of degree 2, so L1 is isomorphic
to C (since L1 is obtained from R by adjoining a root of a quadratic polynomial),
and K is an extension of L1 of degree 2m�1. If m > 1, let H2 be a subgroup of H1

of order 2m�2, and let L2 be the fixed field of H2. Then L2 is an extension of L1
(and so is isomorphic to an extension of C) of degree 2. But that is impossible, since
quadratic polynomials with complex coefficients always have complex roots. Thus
m D 1 and K has degree 20 D 1 over L1; that is, K ' L1 ' C, where ' denotes
isomorphism. q.e.d.

The prerequisites for understanding the proof just given are substantially greater
than those for the other proofs so far considered. In particular, few undergraduates
would be able to comprehend it. Nonetheless, since Galois theory was developed to

20For further background details, see chapter 7 of Fine and Rosenberger (1997).
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answer questions about the solvability of polynomials by radicals, it is appropriate
to use it to prove the Fundamental Theorem of Algebra; and like Gauss’s second
proof, it is as methodologically pure as possible, invoking nothing non-algebraic
except the intermediate-value theorem.

There are also proofs of the Fundamental Theorem based on sophisticated
notions from algebraic topology (Brouwer degree, homotopy theory, simplicial
complexes, homology theory), three of which are sketched in chapter 9 and
appendix D of Fine and Rosenberger (1997). They are not discussed further here,
since the means they employ were developed to address very different concerns and
go far beyond what is required to establish the Fundamental Theorem. Nevertheless,
they demonstrate the power of topological techniques (another example of bench-
marking) and illustrate the coherence of disparate mathematical theories.

A much simpler proof, based on notions from point-set topology, establishes
the Fundamental Theorem in the equivalent form: Every polynomial of non-zero
degree with complex coefficients, regarded as a mapping with domain C, has range
all of C.21

A topological proof:22 Let p.z/ be a polynomial of degree n > 1 with complex
coefficients. Since p is continuous and jp.z/j approaches infinity as jzj does,
the range R of p must be closed (by Weierstrass’s theorem that every bounded
sequence has a convergent subsequence). Consider then the set T of all points p.z/
where p0.z/ D 0. Since C � R is open, it suffices to show that R � T is open as
well. For if so, then .C � R/ [ .R � T / D C � T . Since T is finite, C � T is a
connected set, which cannot be the union of two disjoint nonempty open sets; and
since p�1.T / is finite and n > 1, R � T is nonempty. Thus C � R must be empty.

The proof is completed by noting that for every p.z0/ in R � T , p0.z0/ ¤ 0, so
the inverse function theorem implies that there are neighborhoodsU of z0 and V of
p.z0/ such that p maps U one-to-one onto V . Hence every point of R � T is an
interior point.

There remains the purity question broached earlier in connection with Euler’s
failed proof attempt: Can the original statement of the Fundamental Theorem, that
any non-constant polynomial with real coefficients can be expressed as a product of
real linear and quadratic factors, be proved without reference to complex numbers
or splitting fields?

Such a proof has been given, based on concepts from linear algebra. The proof
is by induction on the degree of the polynomial and uses properties of the so-
called Bezoutian resultant (the determinant of an n � n symmetric matrix defined
for any pair of polynomials p; q, where n is the maximum of the degrees of p
and q). Specifically, writing p as a function of the variable x and q as a function
of the variable w, the factor theorem implies that x � w must be a factor of the

21The intermediate-value theorem may similarly be cast as the assertion that the range of any
polynomial of odd degree with real coefficients, regarded as a mapping from R into R, is all of R.
22This is essentially the proof given in Sen (2000).
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polynomial P.x;w/ D p.x/q.w/ � p.w/q.x/, say P.x;w/ D .x � w/b.x;w/,
where b is a polynomial each of whose terms is of the form bijx

i�1wj�1, for
1 � i; j � n. The coefficients bij are the entries of the Bezoutian matrix B.p; q/,
which is nonsingular if and only if p and q have no common root.23

In outline, the proof then proceeds as follows: Given a real polynomial p.x/ D
anx

n C an�1xn�1 C � � � C a0 with a0 ¤ 0 and an ¤ 0, if n is odd, then p.x/ has
a real root x0 by the intermediate-value theorem, so p.x/ D .x � x0/q.x/, where
q.x/ has degree n � 1. By the induction hypothesis, q.x/ then is a product of real
linear and quadratic factors, whence so is p.x/. If n is even, say n D 2m, then let r
be a real parameter and define auxiliary polynomials p1.x/ and p2.x/ by

p1.x/ D p.rx/ D anrnx C an�1rn�1xn�1 D � � � C a0 and

p2.x/ D a0xn C a1rxn�1 C � � � C anrn :

The intermediate-value theorem, together with properties of principal minors,
can then be invoked to show that there must be a value r0 of r for which the
determinant of B.p1; p2/ D 0 ; so when r D r0, p1.x/ and p2.x/ will have
some maximal common factor f .x/. Writing p1.x/ D f .x/Q1.x/ and p2.x/ D
f .x/Q2.x/ yields p1.x/Q2.x/ D p2.x/Q1.x/, where Q1 and Q2 are relatively
prime polynomials of degree less than n. By the induction hypothesis, if Q2 is not
constant, it must be a product of linear and quadratic factors, all of which divide p1.
The quotient p1.x/=Q2.x/ then also has degree less than n, so it too must be a
product of linear and quadratic factors. Hence p1.x/ is a product of linear and
quadratic factors, and replacing x in each of those factors by x=r0 produces a similar
factorization of p.x/.

On the other hand, if Q2.x/ is a constant, then f .x/ has degree n, so Q1.x/ is
also a constant. Hence p1.x/ D cp2.x/ for some constant c, so for each i between 0
and n, the coefficient of xi inp1.x/must equal c times the coefficient of xi in p2.x/;
that is, ai ri0 D can�i rn�i

0 for each such i . In particular, for i D m, amrm0 D camrm0 ,
so c D 1 and aj r

j
0 D an�j rn�j

0 for 0 � j � n, which means that p1.x/ is a
palindromic (self-reciprocal) polynomial. But then either xC 1 is a factor of p1.x/,
or p1.x/ D xmq.X/, where q is a polynomial of degreem and X D x C x�1.

By the induction hypothesis, q is a product of real linear and quadratic polyno-
mials in X , so p1.x/ is a product of real linear, quadratic, and quartic polynomials
in x. Since quartics can always be factored (e.g., by Euler’s technique) into products
of real linear and quadratic expressions, so can p1.x/. The desired factorization of
p.x/ is then obtained once again by replacing x everywhere by x=r0.

The proof just given (published in Eaton 1960) employs very different techniques
than the others considered here. However, the idea of using the resultant of two
polynomials as a tool in proving the Fundamental Theorem of Algebra is not new.

23Indeed, the nullity of B.p; q/ equals the number of common zeroes of p and q, counting
multiplicities.
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Indeed, the British mathematician James Wood gave an incomplete proof of that
sort in 1798, the year before Gauss’s first proof.24 A full proof using resultants was
later published by Paul Gordan, who presented it as a simpler alternative to Gauss’s
second proof (Gordan 1876).

8.8 Constructive proofs

Although the foregoing proofs establish the existence of a root for any nonconstant
polynomial, they provide no means for actually finding one. One may therefore
wonder, as Weierstrass did in 1891, whether it is possible “for any given polynomial
f in C.Z/, to produce a sequence zn of complex numbers by an effectively
defined procedure, so that jf .zn/j is sufficiently small in relation to jf .zn�1/j that
it converges to a zero of f ?”25 Beyond that, one might ask whether the proof that
such a procedure converges can be done constructively, and how computationally
efficient the procedure is. The importance of such questions to mathematical practice
is indicated by the appearance in 1969 of a volume entitled Constructive Aspects
of the Fundamental Theorem of Algebra (Dejon and Henrici 1969), containing the
proceedings of a symposium on that topic held two years before at the IBM Research
Laboratory in Zürich.

In 1924 Hermann Weyl gave an intuitionistic proof of the Fundamental Theo-
rem of Algebra that invoked winding numbers (Weyl 1924, pp. 142–146). Later
Hellmuth Kneser presented a modification of Argand’s proof in which, given a
nonconstant polynomial p.x/, he defined a sequence of complex numbers and
proved, also by means acceptable to intuitionists, that it converged to a root of p (H.
Kneser 1940). Specifically, given a monic polynomial p.x/ D xn C an�1xn�1 C
� � � C a0 of degree n > 1 with complex coefficients, Kneser defined a sequence
of complex numbers xm designed to make the ratio jp.xmC1/j=jp.xm/j as small as
possible. Toward that end he expressed p.xm C y/ as p.xm/CPn

iD1 biyi , chose y
so that one of the terms in the sum would have the same argument as �p.xm/ and
would strongly dominate the other terms, and set xmC1 D xm C y. To find such a y
he employed a lemma whose proof was lengthy and delicate. Forty-one years later
his son Martin published a simplified version of the proof (M. Kneser 1981) based
on the following much simpler lemma:

Given a monic polynomial p.x/ of degree n > 1 with constant term a0, there is
a positive number q < 1, depending only on n, such that if ja0j � c, a complex
number y can be specified for which jyj � c1=n and jp.y/j � qc.

24Wood (1798), his only published mathematical paper. An analysis of Wood’s argument, as well
as a completion of it, has recently been given by Frank Smithies (Smithies 2000). I am indebted to
Peter Goddard for bringing both those papers to my attention.
25Quoted on p. 115 of Remmert (1990) from the third volume of Weierstrass’s Mathematische
Werke, pp. 251–269.
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The sequence fxmg may then be defined inductively, as follows, starting with
x0 D 0. Suppose that xm has already been defined and satisfies jp.xm/j � qmc.
Apply the lemma to f .x/ D p.xm C x/, which has constant term p.xm/, and set
xmC1 D xm C y. Then jxmC1 � xmj D jyj � .qmc/1=n and jp.xmC1/j � q.qmc/ D
qmC1c. The first of those inequalities shows that the sequence fxmg converges to
some value x and the second that the inductive hypothesis is satisfied by xmC1,
so that p.xm/ converges to 0. Since p is continuous, it follows that p.x/ D 0. The
proof of the lemma is constructive, and can be made to satisfy intuitionistic demands
as well.

Two years before Martin Kneser’s paper appeared, Steve Smale and Morris
Hirsch also defined a sequence of values guaranteed to converge to a root of any
given polynomial of degree n > 0 (Hirsch and Smale 1979, pp. 303–309). Their
procedure was based on a modification of Newton’s method, and again involved an
auxiliary proposition, namely:

For any positive integer n there exist real numbers �1; : : : ; �n with 0 < �k � 1 for
k D 1; : : : ; n and Kn satisfying 0 < Kn < 1, such that if hk D �ke

i�=k , then for
any n-tuple .�1; : : : ; �n/ in C

n � 0 there is anm for which
ˇ
ˇ
ˇ
ˇ
ˇ
1C

nX

kD1
.
�k

�m
hm/

k

ˇ
ˇ
ˇ
ˇ
ˇ
< Kn:

Suppose then that p.x/ is a polynomial of degree n > 0 and z is any complex
number. If p.z/ D 0, let z0 D z. Otherwise, for each positive integer k � n, let
�k be a kth root of p.k/.z/=kŠp.z/. Since n > 0, p.n/.z/ ¤ 0, so .�1; : : : ; �n/ is in
C
n � 0. The auxiliary proposition then yields a �m ¤ 0, whence z0 can be taken to

be zC hm=�m. Then by Taylor’s theorem,

jp.z0/j D
ˇ
ˇ
ˇ
ˇ
ˇ
p.z/C

nX

kD1

p.k/.z/

kŠ

�
hm

�m

�k
ˇ
ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ
ˇ
p.z/

"

1C
nX

kD1

p.k/.z/

p.z/kŠ

�
hm

�m

�k
#ˇ
ˇ
ˇ
ˇ
ˇ

D jp.z/j
ˇ
ˇ
ˇ
ˇ
ˇ
1C

nX

kD1

�
�k

�m
hm

�k
ˇ
ˇ
ˇ
ˇ
ˇ
< Knjp.z/j:

To prove the Fundamental Theorem of Algebra, let z0 be any complex number, and
assume by induction that z0; : : : ; zj have already been defined. If p.zj / D 0, then zj
is a root of p, so put zjC1 D zj . Otherwise define zjC1 to be zjChm0=�m0 , wherem0

is the least value ofm that satisfies the inequality given in the auxiliary proposition.
Then the equations and inequality displayed above show that jp.zjC1j < Knjp.zj /j.
So jp.zj /j < .Kn/

j jp.z0/j for every j . Since Kn < 1; p.zj / therefore converges
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to 0 as j approaches 1. The convergence may be very slow, however, since the
authors note that for large values of n;Kn is very close to 1.26

That a subsequence of fzj g must converge to a root of p follows by a
compactness argument:27 For since jp.z/j approaches 1 as z does, and since
jp.zj /j < Knjp.z0/j for all j , all the values zj must lie within some disc jzj � R.
If there are infinitely many distinct values zj , a subsequence of them must approach
some point within that disc, since otherwise for each point z with jzj � R some
disc Dz centered at z would contain at most one of the zj (namely zj if and only if
z D zj ). But since the disc jzj � R is compact, a finite number of those Dz would
cover it. Thus either the sequence fzj g is eventually constant, say zk D zj for all
k � j (which by construction implies that p.zj / D 0), or else every neighborhood
of some z� in C contains infinitely many of the zj . In the latter case, the continuity
of p implies that p.z�/ D 0, so z� is a root of p.

Further algorithms and constructive proofs of the Fundamental Theorem of
Algebra may be found in the volume (Dejon and Henrici 1969) cited earlier. See
in particular the article “A never failing fast convergent root-finding algorithm,” by
Bruno Dejon and Karl Nickel, pp. 1–35.
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Chapter 9
Desargues’s Theorem

The basic notions, and some of the fundamental theorems, of what would later
be called projective geometry were first established in the seventeenth century,
in response to questions that arose with regard to map projections and problems
of perspective encountered by artists in representing three-dimensional scenes on
planar canvases. Viewed then as theorems of Euclidean geometry, many of the
results obtained could not be expressed in full generality by a single statement, but
required consideration of various special cases.

An important example of such a result is Desargues’s Theorem in the Plane,
first stated and proved by Girard Desargues in a privately circulated manuscript in
1639.1 In Euclidean terms it may be expressed by the following set of statements:
Let A1B1C1 and A2B2C2 be two triangles in a plane, with A1 ¤ A2;B1 ¤ B2, and
C1 ¤ C2. If the lines through A1 and A2, B1 and B2 and C1 and C2 are all distinct
and either meet at a pointO or are all parallel, then:

(D1) If the extensions of each pair of corresponding sides of the two triangles intersect, the points
of intersection are collinear.

(D2) If two pairs of corresponding sides of the triangles are parallel, the third pair of correspond-
ing sides are also parallel.

(D3) If one pair of corresponding sides of the triangles are parallel and the extensions of the other
two pairs of corresponding sides intersect, the points of intersection lie on a line parallel to
the two parallel sides.

Figures 9.1–9.3 illustrate the various types of configurations that can arise. (See
also Crannell and Douglas 2012.) The three diagrams in Figure 9.1 all represent
configurations of type (D1) in which the lines through corresponding vertices
intersect atO . They differ in the position of the pointO relative to the two triangles:
between them in (a), outside both in the same direction in (b), and inside one

1For more on the history of Desargues’s Theorem, see section 14.3 in Kline (1972) and the
illuminating case study in Arana and Mancosu (2012).

© Springer International Publishing Switzerland 2015
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a b

c

Fig. 9.1 (a) Case (D1), O between both triangles. (b) Case (D1), O on the same side of both
triangles. (c) Case (D1), O inside one triangle

a b

Fig. 9.2 (a) Case (D2), O outside both triangles. (b) Case (D2), O inside both triangles
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a b

c d

Fig. 9.3 (a) Case (D1), parallel projection. (b) Case (D2), parallel projection. (c) Case (D3),
parallel projection. (d) Case (D3), projection from external point

triangle but outside the other in (c). Figure 9.2 likewise shows configurations of
type (D2) in which the lines through corresponding vertices intersect at O , located
outside both triangles in 9.2(a) and inside both in 9.2(b). Configurations in which the
lines through corresponding vertices are all parallel are shown in Figures 9.3(a)–(c).
Diagram 9.3(a) illustrates type (D1), diagram 9.3(b) type (D2), and diagram 9.3(c)
type (D3). Finally, diagram 9.3(d) illustrates type (D3) when the lines through
corresponding points intersect. (Note: In the configurations of types (D1) and (D3),

AiBi designates the point of intersection of lines
 �!
A1B1 and

 �!
A2B2, and similarly for

AiCi and BiCi .)
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9.1 Euclidean and Cartesian proofs of Desargues’s Theorem

Desargues derived (D1) from the result of classical antiquity known as Menelaus’s
Theorem, which gives a criterion for three points that lie either on the sides of a
triangle or on their extensions to be collinear.

Menelaus’s Theorem is most conveniently stated in terms of the lengths of
directed line segments. Accordingly, given points A and B on an (arbitrarily)

directed line L, let j�!ABj denote the directed distance along L from A to B . Then

j�!BAj D �j�!ABj, and if A;B , and C are three distinct points on L;
j�!ACj
j�!CBj

> 0 if and

only if C lies between A and B .

Menelaus’s Theorem: Given a triangle ABC, let D;E, and F be three points
distinct from the vertices, which lie, respectively, on the sides BC;AC, and AB or
their extensions, on each of which a positive direction has been arbitrarily assigned.
ThenD;E, and F are collinear if and only if

j�!AFj
j�!FBj

� j
�!
BDj
j�!DCj

� j
�!
CEj
j�!EAj

D �1:

Proof: Suppose first that D;E;F all lie on line L. Since a line that intersects one
side of a triangle but does not pass through a vertex must intersect exactly one other
side, either two ofD;E;F lie on sides (rather than their extensions), or none do. In
the first case, by relabeling the vertices if necessary, we may assume that D and F
are the points on sides. In either case, draw the line through A parallel to L, and let
P be its point of intersection with BC (Figure 9.4(a)) or its extension (Figure 9.4(b)).
Then (1) triangle ABP is similar to triangle FBD and (2) triangle ACP is similar to
triangle ECD, so

a b

Fig. 9.4 Proof of Menelaus’s Theorem
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j�!AFj
j�!FBj

D j
�!
DPj
j�!BDj

D �j
�!
PDj
j�!BDj

(by (1)) and
j�!CEj
j�!EAj

D �j
�!
CDj
j�!PDj

D j
�!
DCj
j�!PDj

(by (2)).

Therefore

j�!AFj
j�!FBj

� j
�!
BDj
j�!DCj

� j
�!
CEj
j�!EAj

D �j
�!
PDj
j�!BDj

� j
�!
BDj
j�!DCj

� j
�!
DCj
j�!PDj

D �1:

Conversely, suppose by reductio that

j�!AFj
j�!FBj

� j
�!
BDj
j�!DCj

� j
�!
CEj
j�!EAj

D �1;

but that D;E;F are not collinear. Then either all three factors in that product are
negative, or just one is; that is, either none of D;E;F are on the sides of triangle
ABC or exactly two of them are. In the latter case, we may assume as before that D
and F are the two on the sides. Since E is not between A and C , the line L through
D and E is not parallel to AB. Let G be its point of intersection with AB. Then
D;E , and G are collinear, so by the ‘only if ’ part of the theorem proved above,

j�!AGj
j�!GBj

� j
�!
BDj
j�!DCj

� j
�!
CEj
j�!EAj

D �1:

In particular,
j�!AGj
j�!GBj

> 0; so G must lie between A and B (Figure 9.5(a)). Compari-

son with the reductio assumption then shows that

j�!AGj
j�!GBj

D j
�!
AFj
j�!FBj

;

whence

j�!ABj
j�!GBj

D j
�!
AGj
j�!GBj

C j
�!
GBj
j�!GBj

D j
�!
AFj
j�!FBj

C j
�!
FBj
j�!FBj

D j
�!
ABj
j�!FBj

:

Therefore j�!GBj D j�!FBj, so G D F . ThusD;E;F must be collinear, contrary to
assumption.

If none of D;E;F lie on the sides of triangle ABC, the same proof works unless
DE is parallel to AB (Figure 9.5(b)). In that case, the line through E and F must
intersect the extension of AB, say at G, and we may argue similarly that
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a b

Fig. 9.5 Proof of the converse to Menelaus’s Theorem

j�!AFj
j�!FBj

� j
�!
BGj
j�!GCj

� j
�!
CEj
j�!EAj

D �1:

By the reductio assumption,

j�!BDj
j�!DCj

D � j
�!
DBj
j�!DCj

D � j
�!
GBj
j�!GCj

D j
�!
BGj
j�!GCj

; so

j�!BCj
j�!DCj

D j
�!
DCj
j�!DCj

� j
�!
DBj
j�!DCj

D j
�!
GCj
j�!GCj

� j
�!
GBj
j�!GCj

D j
�!
BCj
j�!GCj

:

Then j�!DCj D j�!GCj, so D D G, once again contradicting the assumption that
D;E;F are not collinear. q.e.d.

Using Menelaus’s Theorem, statement (D1) may now be proved as follows:
Consider any of the diagrams of Figure 9.1, and for notational convenience, let
P D BiCi ;Q D AiCi , and R D AiBi . Then triangle B1C1O and the line through
B2; C2 and P satisfy the hypotheses of Menelaus’s Theorem, as do triangle A1C1O
and the line throughA2; C2, andQ, and triangleA1B1O and the line throughA2;B2,
and R. Hence

j��!B1P j
j��!PC1j

� j
���!
C1C2j
j��!C2Oj

� j
��!
OB2j
j���!B2B1j

D �1;

j��!C1Qj
j��!QA1j

� j
���!
A1A2j
j��!A2Oj

� j
��!
OC2j
j���!C2C1j

D �1; and

j��!A1Rj
j��!RB1j

� j
���!
B1B2j
j��!B2Oj

� j
��!
OA2j
j���!A2A1j

D �1:

The product of these three equations (after canceling like terms, recalling that

j�!BAj D �j�!ABj ) reduces to
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j��!B1P j
j��!PC1j

� j
��!
C1Qj
j��!QA1j

� j
��!
A1Rj
j��!RB1j

D �1:

By the converse to Menelaus’s Theorem, P;Q and R are thus collinear.

To prove (D2), let sides A1B1 and A2B2 be parallel and sides A1C1 and A2C2 be
parallel. Suppose first that the lines through A1 and A2, B1 and B2, and C1 and C2
are concurrent at O (Figure 9.2(a)). Then

jOB1j
jB1B2j

D jOA1jjA1A2j
D jOC1jjC1C2j

;

where the first equality holds because A1B1 and A2B2 are parallel and the second
because A1C1 and A2C2 are parallel. The equality of the first and third terms shows
that the segmentsB1C1 andB2C2 divide the segmentsOB2 andOC2 proportionally.
Hence B1C1 and B2C2 are parallel.

If, on the other hand, the lines through A1 and A2, B1 and B2, and C1 and C2
are all parallel (Figure 9.3(b)), then A1A2B1B2 and A1A2C1C2 are parallelograms,
so jA1B1j D jA2B2j and jA1C1j D jA2C2j. Also, the angles B1A1C1 and B2A2C2
must be equal. Consequently the triangles A1B1C1 and A2B2C2 are congruent by
the side-angle-side criterion. Therefore sides B1C1 and B2C2 make equal angles
with the parallel sides A1B1 and A2B2, so they must also be parallel.

Statement (D3) for the case of parallel projection is readily proven by Cartesian
analytic means. Without loss of generality, we may presume that the projection
lines are horizontal, as in Figure 9.3(c), and that the y-axis passes through A1;

say the equations for
 �!
A1A2;

 �!
B1B2 and

 �!
C1C2 are y D 0; y D a and y D b,

respectively. Let A2 have coordinates .x3; 0/, B1 have coordinates .x1; a/, and C1
have coordinates .x2; b/. Then since B1C1 and B2C2 are parallel by hypothesis,
jB1B2j D jC1C2j D d , so B2 has coordinates .x1 C d; a/ and C2 has coordinates

.x2 C d; b/. The equations for lines
 �!
A1B1 and

 �!
A2B2 are then y D a

x1
x and

y D a

x1 � x3 C d , so their intersection AiBi has coordinates

�
x1x3

x3 � d ;
ax3

x3 � d
�

.

Similarly, the equations for
 �!
A1C1 and

 �!
A2C2 are y D b

x2
x and y D b

x2 � x3 C d ,

so they intersect at

�
x2x3

x3 � d ;
bx3

x3 � d
�

.

If x1 ¤ x2, the slope of line l is then
a � b
x1 � x2 , which is the same as that of lines

 �!
B1C1 and

 �!
B2C2. If x1 D x2, then

 �!
B1C1 and

 �!
B2C2 are vertical lines whose equations

are x D x1 and x D x1 C d , and the x-coordinates of both AiBi and AiCi satisfy

x D x1x3

x3 � d and so must be identical. Therefore line l is also vertical.

It remains to prove (D3) for the case of projection from a point in the plane. So, as
in Figure 9.3(d), suppose that triangles A1B1C1 and A2B2C2 are perspective from
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O , that sides B1C1 and B2C2 are parallel, and that lines
 �!
A1B1 and

 �!
A2B2 intersect at

AiBi and lines
 �!
A1C1 and

 �!
A2C2 at AiCi . It is to be shown that the line throughAiBi

and AiCi is parallel to B1C1. To simplify the notation, relabel AiBi as D. Invoking
the Parallel Postulate, let l be the line through D that is parallel to B1C1, and let l

intersect
 �!
A1C1 at E . Then it suffices to show that E coincides with AiCi .

Toward that end, note that triangles DB1B2 and EC1C2 are in parallel perspec-
tive (cf. Figure 9.3(a)). Hence by (D1), proven above using Menelaus’s Theorem, the
extensions of corresponding sides of those two triangles must intersect in collinear

points. Now
 �!
B1B2 and

 �!
C1C2 intersect at O and

 �!
DB1 and

 �!
EC1 intersect at A1, so �!

DB2 and
 �!
EC2 must intersect at a point on

 �!
OA1. But

 �!
DB2 intersects

 �!
OA1 atA2. Thus

A2 is on line
 �!
EC2. That is,

 �!
A2C2 passes through E , which lies on

 �!
A1C1. Therefore �!

A1C1 and
 �!
A2C2 must intersect at E . q.e.d.

9.2 Desargues’s Theorem in a projective context

Given such a plethora of different configurations satisfying the hypotheses of
(D1)—(D3), a concise, uniform statement of Desargues’s Theorem might seem
unattainable. But as first recognized by Johannes Kepler in 1604, and thirty-five
years later by Desargues himself, unification can be achieved by adjoining to each
set of parallel lines in the Euclidean plane an ideal point at infinity, the totality of
such points constituting the line at infinity. The points of that extended structure
constitute the (real) projective plane.

Any two distinct parallel lines in the Euclidean plane are regarded as concurrent
in the projective plane at the corresponding point at infinity. Consequently, in
the projective plane Desargues’s Theorem may be stated much more succinctly.
It is customary in that regard to say that two triangles in the Euclidean plane
whose three pairs of corresponding vertices lie on distinct concurrent lines in the
projective plane are perspective from a point, and that two triangles in the Euclidean
plane whose three pairs of corresponding sides intersect in collinear points of the
projective plane are perspective from a line. In those terms the statement of the
theorem then becomes

Desargues’s Theorem in the Projective Plane: If two triangles in the Euclidean
plane are perspective from a point in the projective plane, they are perspective from
a line in the projective plane.

Recasting Desargues’s Theorem in projective terms thus enables clauses (D1)–(D3)
of the Euclidean version to be unified into a single statement. More importantly,
however, it makes possible a uniform proof of the various cases described in those
clauses.
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Homogeneous coordinates in the projective plane

More formally, the projective plane may be defined as the set of all equivalence
classes of ordered triples .x; y; z/ of real numbers, excluding .0; 0; 0/, with respect
to the equivalence relation given by .x; y; z/ � .mx;my;mz/ for all real numbers
m ¤ 0. The equivalence classes may be regarded as providing homogeneous
coordinates for the points of the projective plane.

Such coordinates may be interpreted in more than one way. If the Euclidean plane
P is embedded in R

3 one Cartesian unit above the origin O (as, e.g., in Courant
and Robbins (1941), pp. 193–194), each point A of that plane may be identified
with the line OA through O and A and be given the homogeneous coordinates
.ma;mb;mc/;m ¤ 0, corresponding to the Cartesian direction vectors hma;mb;mci
of that line, while each ideal point I may be given coordinates .ma;mb; 0/;m ¤ 0

and be identified with the line through O parallel to P with Cartesian direction
vectors hma;mb; 0i. The points of the projective plane are thus placed in one-to-one
correspondence with the lines through the origin in R

3.
For the purpose of proving Desargues’s Theorem, however, it is more convenient

(as in Coxeter 1962, pp. 234–237) to adopt Möbius’s idea of interpreting .x; y; z/
as representing the point with barycentric coordinates .
Ax; 
By; 
C z/ relative to
a fixed Euclidean reference triangle A1B1C1 bearing non-zero weights 
A;
B; 
C
at its vertices. By definition, A1 D .1; 0; 0/; B1 D .0; 1; 0/, and C1 D .0; 0; 1/. The
weights 
A;
B; 
C serve as parameters; by adjusting their values, any point none
of whose coordinates are zero with respect to the reference triangle can be made to
have coordinates .1; 1; 1/.

In terms of such barycentric coordinates, every line is represented by a homo-
geneous linear equation. The barycentric equation for the line through two given
points .a; b; c/ and .d; e; f / is

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

a b c

d e f

x y z

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 0:

In particular, the lines extending the sides B1C1; A1C1, and A1B1 of the reference
triangle have the barycentric equations x D 0; y D 0, and z D 0.

The following argument2 then provides a direct, uniform proof of Desargues’s
Theorem.

Analytic Proof of Desargues’s Theorem in the Projective Plane:

Suppose trianglesA1B1C1 and A2B2C2 in the Euclidean plane are perspective from
a point O in the projective plane, as in any of figures 9.1–9.3. Take A1B1C1 to be
the reference triangle. Then none of the coordinates of O can be zero. (For if the
first coordinate were zero, O;B1 and C1 would all lie on the same line, and hence
so would B2 and C2. Therefore the lines extending sides B1C1 and B2C2 would

2A more detailed version of that given at http://planetmath.org/proofofdesarguestheorem.

http://planetmath.org/proofofdesarguestheorem


102 9 Desargues’s Theorem

coincide, contrary to hypothesis. Likewise, if the second coordinate ofO were zero,
the extensions of sides A1C1 and A2C2 would coincide, and if the third coordinate
of O were zero, the extensions of sides A1B1 and A2B2 would coincide.) So, as
noted above, the weights atA1;B1, and C1 may be chosen so thatO has coordinates
.1; 1; 1/.

The equations for the lines throughO and A1, O and B1, andO and C1 are then
given by

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1 1 1

1 0 0

x y z

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 0;

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1 1 1

0 1 0

x y z

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 0; and

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1 1 1

0 0 1

x y z

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 0;

which reduce to y D z, x D z and x D y, respectively. As points on those
lines, A2;B2, and C2 must then have coordinates of the forms .x; z; z/; .z; y; z/, and
.y; y; z/; and since the coordinates are homogeneous, there must be constants a; b; c
such that A2 D .1; a; a/; B2 D .b; 1; b/, and C2 D .c; c; 1/.

The equations for the lines through A2 and B2;B2 and C2;A2 and C2 are thus

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1 a a

b 1 b

x y z

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 0;

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

b 1 b

c c 1

x y z

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 0; and

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1 a a

c c 1

x y z

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 0I

that is,

.ab� a/x C .ab� b/y C .1 � ab/z D 0;
.1 � bc/x C .bc � b/y C .bc � c/z D 0; and

.a � ac/x C .ac � 1/y C .c � ac/z D 0:

The intersection point AiBi must satisfy the equations z D 0 and .ab � a/x C
.ab � b/y D 0; BiCi must satisfy x D 0 and .bc � b/y C .bc � c/z D 0; and
AiCi must satisfy y D 0 and .a � ac/x C .c � ac/z D 0. Since the coordinates
are homogeneous, the value of one of the variables in the second of each pair of
equations may be specified and the other be determined from the equation. Taking
y D ab � a in the first pair gives x D b � ab; taking z D bc � b in the second
pair gives y D c � bc; and taking z D a � ac in the third gives x D ac � c.
Coordinates forAiBi ; BiCi and AiCi are then .b�ab; ab�a; 0/; .0; c�bc; bc�b/
and .ac � c; 0; a � ac/. They will be collinear if and only if

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

b � ab ab� a 0

0 c � bc bc � b
ac � c 0 a � ac

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D 0:

A straightforward computation confirms that that is so.
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9.3 Desargues’s Theorem in three-dimensional space

In addition to proving the planar statement (D1) and its converse, Desargues also
proved the following result.

Desargues’s Theorem in R
3: If two triangles lying in different, non-parallel

Euclidean planes in R
3 are perspective from a point O in R

3, they are perspective
from a line in R

3.

Surprisingly, a Euclidean proof of the spatial correlate of statement (D1), in the
case of projection from a point not at infinity, is almost immediate. (See Figure 9.6.)

For if the line
 �!
A1B1 in plane P1 intersects the line

 �!
A2B2 in plane P2 at the point

AiBi , AiBi must lie on the line of intersection of those two planes, and similarly
for AiCi and BiCi .

The same argument also establishes the spatial correlate of (D3), since if, say,

line
 �!
A1B1 in plane P1 is parallel to line

 �!
A2B2 in P2, those two lines must each be

parallel to the line of intersection of P1 and P2. The spatial correlate of (D2), on
the other hand, is vacuously true, since if triangles A1B1C1 in P1 and A2B2C2 in
P2 have two pairs of corresponding sides parallel, the planes containing those two
triangles must be parallel.

Desargues’s Theorem in R
3 can then be employed (as in Gans (1969), pp. 258–

259) to give a spatial geometric proof of the corresponding planar statement (D1).
(See Figure 9.7.)

Thus, suppose triangles A1B1C1 and A2B2C2 lie in a plane E in R
3 and are

perspective from a point O in E . Suppose also that no pair of corresponding sides
of those triangles are parallel. It is to be shown that the three points of intersection
of those pairs of corresponding sides are collinear.

Fig. 9.6 Desargues’s Theorem in R
3 (adapted from Courant and Robbins (1941))
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Fig. 9.7 Desargues’s Theorem in the Plane as a corollary of Desargues’s Theorem in R
3

Toward that end, let P be a point in R
3 not in E , and let Q be any point beyond

P on the ray from O through P . Consider the line
 �!
A1P through A1 and P . Since

O lies on the line
 �!
A1A2 through A1 and A2, the ray through O and P , and hence

the point Q, lie in the plane determined by the lines
 �!
A1P and

 �!
A1A2. Consequently

the line throughA2 andQ also lies in that plane, and must intersect the non-parallel

line
 �!
A1P at some point A3. Similarly, lines

 �!
B1P and

 �!
B2Q must intersect at some

point B3, and lines
 �!
C1P and

 �!
C2Q must intersect at some point C3.

The pointsA3;B3 andC3 so determined project throughP onto the non-collinear
points A1;B1 and C1, and so are themselves non-collinear. That is, the triangles
A1B1C1 and A3B3C3 are perspective from point P . Likewise, the trianglesA2B2C2
and A3B3C3 are perspective from pointQ.

Since the line
 �!
A3C3 lies in the plane of triangle A1C1P and is not parallel to �!

A1C1, it must intersect
 �!
A1C1 at a point on the line of intersection ofE and the plane

of triangle A1C1P . Similarly,
 �!
A3C3 lies in the plane of triangle A2C2Q and is not

parallel to
 �!
A2C2, so it must intersect the latter at a point on the line of intersection
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of E and the plane of triangle A2C2Q. But the line
 �!
A3C3 cannot intersect the plane

E in more than one point. So the extensions of sides A1C1; A2C2, and A3C3 must
all intersect at a common point AiCi .

In the same way, the extensions of sides B1C1; B2C2 and B3C3 must all intersect
at BiCi , and the extensions of sides A1B1;A2B2, and A3B3 must all intersect at
AiBi . That is, the corresponding sides of the coplanar triangles A1B1C1 and
A2B2C2 intersect at the same three points as the corresponding sides of the triangles
A1B1C1 and A3B3C3, which lie in non-parallel planes. By Desargues’s Theorem in
R
3, the latter must be collinear.

Another spatial proof of Desargues’s Theorem in the Plane (outlined, e.g., in
Courant and Robbins (1941), pp. 187–188) proceeds from the same assumptions
— that two triangles in a plane E that is embedded in R

3 are perspective from a
pointO ofE not at infinity, and that P is a point of R3 not in E . But the conclusion
(that the triangles are perspective from a line in E) is deduced not from Desargues’s
Theorem in R

3, but by reducing statement (D1) to statement (D2), which was proved
above by an elementary synthetic argument.

To do so, the plane E containing the given Desarguesian configuration is
projected from P onto a plane H that is parallel to the plane determined by P
and two of the three points of intersection (say AiBi and BiCi ) of corresponding
sides of the given triangles. (See Figure 9.8, an orthographic projection of E onto
H , based on the configuration in Figure 9.1(a), in which the point P is taken to lie
on the line through AiBi that is parallel to H and perpendicular to line l .) In such
a projection, the line l through AiBi and BiCi is projected onto the line at infinity,
and for any point q on l , all the lines in E that pass through q are projected onto
lines in H that are parallel to the line through q and P .

In particular, A1 and B1 will be projected onto points A10 and B10 on a line in
H that is parallel to the line through P and AiBi , and A2 and B2 will be projected
onto points A20 and B20 on another such line. Likewise, B1 and C1 will be projected
onto points on a line in H parallel to the line through P and BiCi , and B2 and C2
onto another such line. And since projection preserves not only lines but incidence
relations, the triples of pointsA10B10C10 and A20B20C20 will be perspective from the
pointO 0 in H that is the image ofO under the projection from P .

Then if the segment A1B1 projects onto the segment A10B10, the segment
A2B2 onto A20B20, and similarly for all the other segments that form the sides of
triangles A1B1C1 and A2B2C2, the triangles A10B10C10 and A20B20C20 will have
two corresponding sides parallel. So by (D2), proven earlier,3 the third pair of

corresponding sides,
 ��!
A1

0C10 and
 ��!
A2

0C20, must also be parallel, which can only

happen if the point of intersection AiCi in E of
 �!
A1C1 and

 �!
A2C2 lies on line l .

q.e.d

3That proof referred to Figure 9.2(a), in which the pointO lay on the same side of trianglesA1B1C1
and A2B2C2. If O lies between those triangles, as in Figure 9.8, it is easy to check that the same
reasoning still applies.
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Fig. 9.8 Orthographic projection of Figure 9.1(a) onto a plane parallel to line l

Such will be the case so long as line l does not intersect any of the sides
of triangles A1B1C1 or A2B2C2. If it does, as in the configuration shown in
Figure 9.1(c), any side intersected by l , say A1B1, will project not onto the segment
A1

0B10 along some line in H , but onto the complement of that segment along that
line. The image of triangle A1B1C1 will then not be a triangle at all, but will consist
of two disjoint figures, each infinite in extent.4

The argument just given thus establishes statement (D1) whenever triangles
A1B1C1 and A2B2C2 both lie on the same side of the line l (as, for example, in
Figure 9.1(a)), or when l passes between them (as in Figure 9.1(b)). In the former

4That difficulty is passed over in silence in Courant and Robbins (1941) and other sources I have
seen that sketch this argument. It is discussed in detail in Crannell and Douglas (2012), which
illustrates how difficult such projections can be to visualize.
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case, their projections will be triangles that lie on the same side of the line of
intersection of planes E and H ; in the latter case, one of those triangles will lie
on each side of that line.

9.4 Comparative summary

The four proofs of Desargues’s Theorem in the Plane presented above differ in
their generality, reflect different strategies, and draw upon different methodologies:
The first proof employs synthetic methods (Menelaus’s Theorem and Euclidean
similarity theory) to establish statements (D1) and (D2), and Cartesian analytic
computations to deduce (D3) for the case of parallel projection. The proof in
terms of projective coordinates establishes all of statements (D1)–(D3) analytically,
without having to distinguish cases. The third proof establishes statement (D1),
for the case of projection from a point, by projecting a spatial Desarguesian
configuration onto a planar one. And the last proof establishes that same result (for
some but not all configurations) by transforming a point-projective Desarguesian
configuration of type (D1) into a corresponding parallel-projective configuration of
type (D2).

9.5 Axiomatics and questions of purity

Because the statement of Desargues’s Theorem in the Plane involves only the
projective notions of incidence, concurrence and collinearity, questions may be (and
historically, were) raised concerning the purity of the methods used to prove it. As
a geometric statement, one may prefer a synthetic proof to an analytic one. As a
planar theorem, one may object to employing spatial considerations in its proof.
Or, as a projective assertion, one may desire to prove it without introducing metric
notions such as lengths of segments or similarity of triangles. To what extent can
these various demands be reconciled?

That question only makes sense within the context of a specific axiomatic
framework. For in formalizing projective geometry one might, after all, take the
statement of Desargues’s Theorem in the Plane, or of some other purely projective
planar statement that implies it, to be an axiom.5 In Coxeter (1962), for example,
Desargues’s Theorem is derived by an argument first given in Hessenberg (1905),

5Such an axiomatization serves a two-fold purpose: it allows projective geometry to be developed
on a purely projective basis, and it demonstrates the primacy of particular theorems in that
development. As such, it exemplifies still another reason for giving an alternative proof: to
demonstrate dependencies among different mathematical statements and so determine what
principles are essential for the derivation of a given result (the central aim of the so-called ‘reverse
mathematics’ program in mathematical logic).
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as a consequence of five axioms for the general projective plane, the last of which
is what is known in Euclidean geometry as Pappus’s Theorem: that if the six
vertices of a hexagon lie alternately on two lines, the three points of intersection of
pairs of opposite sides are collinear.6 But of course, neither Desargues’s Theorem
nor Pappus’s Theorem is self-evident. So the question becomes: Can Desargues’s
Theorem in the Plane be proved in a more ‘natural’ axiomatization of projective
geometry?

One such axiomatization was given by Guiseppe Peano. In Peano (1894) he
gave fifteen postulates, all but the last of which were planar, and asserted that
“[Desargues’s Theorem] in the plane is : : : a consequence of postulate XV, and thus
: : : of solid geometry.” But from a theorem of Eugenio Beltrami he concluded that
Desargues’s Theorem in the Plane was not a consequence of his other postulates. For
Beltrami had proved that the only smooth surfaces capable of planar representations
in which each point of the surface corresponded to one of the plane and each
geodesic to a straight line were those of constant curvature; and Peano claimed that
although Desargues’s Theorem would hold on any surface of constant curvature that
satisfied the first fourteen of his postulates, it would not necessarily hold on a surface
of nonconstant curvature that satisfied them. He did not, however, give an explicit
example of such a surface.7

In his Grundlagen der Geometrie (Hilbert 1899), David Hilbert gave another
axiomatization for geometry, intended to remedy the gaps in Euclid’s presentation;
and in that system he showed definitively that any proof of Desargues’s Theorem
in the Plane must either invoke spatial axioms or metric notions. There were five
groups of axioms in Hilbert’s system: incidence axioms, the first two of which
were planar; order axioms; the parallel axiom; congruence axioms; and continuity
axioms. Hilbert noted that Desargues’s Theorem in the Plane could be proved from
either the spatial incidence axioms or from (all) the congruence axioms, but he gave
a model (illustrated in Figure 9.9, based on Figure 13 in Arana and Mancosu 2012)
that satisfied the planar incidence axioms, the parallel axiom, all of the order and
continuity axioms, and the first five of the congruence axioms, in which Desargues’s
Theorem in the Plane did not hold for some Desarguesian configurations.

Specifically, Hilbert considered an ellipse centered at the origin of the Euclidean
plane, with horizontal major axis of length one and vertical minor axis of length
one half. He imagined the ellipse as acting like a lens, refracting line segments that
crossed it into arcs of circles. In particular, the segment joining pointsp and q on the
ellipse would become the part of the circle passing through p; q and .3=2; 0/ that
lay within the ellipse. Lines in the model were then taken to be all Euclidean straight

6In Euclidean geometry, Pappus’s Theorem, like Desargues’s, is a consequence of Menelaus’s
Theorem. It implies but is not implied by Desargues’s Theorem.
7One example, an ellipsoid of revolution, has recently been given by Patrick Popescu-Pampu. It is
described in detail on pp. 318–320 of Arana and Mancosu (2012), an article that treats many of the
issues discussed in this section in much greater depth.
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a b

Fig. 9.9 (a) Incident lines before “refraction”. (b) The same lines after “refraction”

lines that did not intersect the ellipse, together with all the curves that resulted from
straight lines that did intersect the ellipse when the segment of them within the
ellipse was replaced by the corresponding ‘refracted’ arc.

Figure 9.9(a) shows three Euclidean lines that, before ‘refraction,’ are incident
at a point within the ellipse, while Figure 9.9(b) illustrates how the refracted lines
no longer intersect at a common point. It is this possibility that causes Desargues’s
Theorem to fail in the model.

Hilbert went further, however: for in Theorem 35 of the Grundlagen he also
showed that in any geometry that satisfies the planar incidence axioms, the order
axioms, the parallel axiom and Desargues’s Theorem in the Plane, it is possible to
construct an algebra of segments that forms an ordered skew field, from which in
turn a model of all the incidence axioms together with the order axioms and the
parallel axiom can be defined. Consequently, Desargues’s Theorem in the Plane
is both necessary and sufficient to ensure that a geometry that satisfies the planar
incidence axioms, the order axioms and the parallel axiom can be embedded in a
spatial geometry.

In that sense, Desargues’s Theorem in the Plane has been considered by some to
have “tacit spatial content” (see, e.g., Hallett 2008). For those who hold that view,
spatial proofs of Desargues’s Theorem in the Plane do not ipso facto violate purity of
method. One may nevertheless object that, to the extent that it rests upon algebraic
notions, Hilbert’s proof of Theorem 35 is still impure. However, an alternative proof
of Hilbert’s embedding theorem that uses only geometric notions was given by F.W.
Levy in 1939, and another, quite recently, by John Baldwin and William Howard.
(See Levy 1939 and Baldwin 2013.)

Hilbert gave his own assessment of the significance of his embedding theorem
in the notes for his lectures from 1898/99 (published in Hallett and Majer 2004):
Having shown that a geometric proof of the planar Desargues’s Theorem must
invoke spatial considerations, he believed he had “for the first time : : : put into
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practice a critique of means of proof ” that gave substance to the notion of purity of
method; for he had formally demonstrated that Desargues’s Theorem in the Plane is
a result that cannot be proved using just means “suggested by its content.”

In the next chapter the question of purity of method will arise again, in the context
of number theory rather than geometry. In either case, however, the question as to
what means of proof are “suggested by a theorem’s content” remains a vexing one.8
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Chapter 10
The Prime Number Theorem

In the wake of Euclid’s proof of the infinitude of the primes, the question of how
the primes were distributed among the integers became central — a question that
has intrigued and challenged mathematicians ever since. The sieve of Eratosthenes
provided a simple but very inefficient means of identifying which integers were
prime, but attempts to find explicit, closed formulas for the nth prime, or for the
number �.x/ of primes less than or equal to a given number x, proved fruitless.
Eventually extensive tables of integers and their least factors were compiled,
detailed examination of which suggested that the apparently unpredictable occur-
rence of primes in the sequence of integers nonetheless exhibited some statistical
regularity. In particular, in 1792 Euler asserted that for large values of x; �.x/

was approximately given by
x

ln x
; six years later, Legendre suggested

x

lnx � 1 and

(wrongly)
x

ln x � 1:0836 as better approximations; and in 1849, in a letter to his

student Encke (translated in the appendix to Goldstein 1973), Gauss mentioned his
apparently long-held belief that the logarithmic integral

li.x/ D
Z x

2

1

ln t
dt

gave a still better approximation.1 Using the notation f .x/ 	 g.x/ to denote

the equivalence relation defined by limx!1
f .x/

g.x/
D 1, those conjectures may be

expressed in asymptotic form by the statements

(PNT) �.x/ 	 x

ln x
; �.x/ 	 x

lnx � 1; and �.x/ 	 li.x/:

1Some texts instead define li.x/ as lim�!0

� R 1��

0 1= ln t dtCR x1C� 1= ln t dt
�
, which adds a constant

(approximately 1.04) to li.x/ as defined above, but does not affect asymptotic arguments.
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Clearly
x

lnx
	 x

lnx � 1 , and integration by parts can be used to show that
x

lnx
	 li.x/ as well. For

li.x/ D
Z x

2

1

ln t
dt D K C

Z x

e

1

ln t
dt D K C x

ln x
� e C

Z x

e

1

.ln t/2
dt

D .K � e/C x

lnx
C
"Z p

x

e

1

.ln t/2
dtC

Z x

p
x

1

.ln t/2
dt

#

;

whereK is a constant. Then since 1=.ln t/2 is less than or equal to 1 on the interval
Œe;
p
x� and less than or equal to 1=.ln

p
x/2 D 4=.ln x/2 on the interval Œ

p
x; x�,

li.x/ � .K � e/C x

ln x
Cpx C 4x

.ln x/2
:

But also, li.x/ � .x � 2/= ln x, since 1= ln t is decreasing on Œ2; x� . Hence

x � 2
x
� ln x

x
li.x/ � .K � e/ ln x

x
C 1C ln xp

x
C 4

ln x
:

It follows immediately by L’Hopital’s rule that limx!1
lnx

x
li.x/ D 1; that is,

li.x/ 	 x

ln x
.

The three statements (PNT) are thus logically equivalent. Ipso facto, however,
they do not capture the full strength of the conjectures made by Legendre and
Gauss, since they do not indicate how accurately each of the three formulas
approximates �.x/. For that, estimates of the absolute or relative errors involved
in those approximations are also needed.

The truth of those conjectures, together with error estimates, was finally estab-
lished in 1896, independently and nearly simultaneously, by Jacques Hadamard
and Charles de la Vallée Poussin, using techniques of complex contour integration
discussed further below. Their long and complicated proofs of what has ever since
been called the Prime Number Theorem were distinct, and have been analyzed
in detail in Narkiewicz (2000). Later, proofs were devised that avoided some of
the delicate issues involved in contour integration over infinite paths by invoking
Norbert Wiener’s Tauberian theory for Fourier integrals; but the arguments remained
complex. Eventually, more than 80 years after the original proofs, Donald Newman
found a short proof involving integration only over finite contours (Newman
1980); and in the meantime, against the expectation of most of the mathematical
community, Atle Selberg and Paul Erdős (partly independently and again nearly
simultaneously) published so-called ‘elementary’ proofs, involving no recourse to
complex-analytic methods (Erdős 1949; Selberg 1949).2

2In part for those proofs, Selberg was awarded a Fields Medal in 1950 and Erdős the 1951 Cole
Prize in Number Theory.
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Because of the length and complexity of all but Newman’s proof, the discussion
that follows, unlike that in the preceding chapters, does not give full details of
the various proofs, but rather focuses on their essential ideas and the differences
among them. Readers seeking further details may consult the recent monograph
(Jameson 2003), which provides a self-contained presentation of a descendant of the
original proofs, as well as Newman’s proof and an elementary proof based on that
given in Levinson (1969), all presented at a level accessible to students who have
had only basic courses in real and complex analysis. An overview of work on the
Prime Number Theorem in the century since its first proofs is given in Bateman and
Diamond (1996), while Diamond (1982) and Goldfeld (2004) discuss the history
of elementary proofs of the theorem. Narkiewicz (2000) provides a comprehensive
history of the overall development of prime number theory up to the time of Hardy
and Littlewood, including alternative proofs of many results.

10.1 Steps toward the goal: Prior results of Dirichlet,
Chebyshev, and Riemann

As noted in Narkiewicz (2000), p. 49, “the first use of analytic methods in number
theory was made by P.G. Dirichlet” during the years 1837–39. In particular,
Dirichlet proved that if k and l are relatively prime integers with k < l , then the
arithmetic progression fnk C lg, where n ranges over the positive integers, must
contain infinitely many primes. In doing so Dirichlet considered the series now

named after him

�

those of the form
P1

nD1
f .n/

ns

�

and gave an argument that could

be adapted to show that if f is a completely multiplicative complex-valued function
(that is, f is not identically zero and f .mn/ D f .m/f .n/ for all integersm and n)

and
P1

nD1
f .n/

ns
converges absolutely for some real value s0, then it converges

absolutely for all complex s with Re s � s0 and

(28)
1X

nD1

f .n/

ns
D

Y

p prime

1X

jD0

f .pj /

pjs
D

Y

p prime

1

1 � f .p/p�s :
3

With s restricted to real values, the special case f .n/ D 1 is Euler’s product formula
(cf. Chapter 7, footnote 6):

(29) �.s/ D
1X

nD1

1

ns
D

Y

p prime

1

1 � p�s

(from which it follows that �.s/ ¤ 0 for Re s > 1).

3In fact, for any absolutely convergent series
P

1

nD1 f .n/ of non-zero terms, if f .n/ is completely
multiplicative and no f .n/ D �1, then

P
1

nD1 f .n/ D Q
p prime.1� f .p//�1 .
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Nine years later, in the first of two papers on �.x/ (Chebyshev 1848), Pafnuty
Chebyshev proved that for all integers k > 1 and any constant C > 0, there are
infinitely many integersm and n for which

(30) �.m/ < li.m/C C m

lnk m
and �.n/ > li.n/ � C n

lnk n
:

(For further details, see Narkiewicz (2000), pp. 98–102.) Consequently,

�.m/
lnm

m
< li.m/

lnm

m
C C

lnk�1 m
and �.n/

ln n

n
> li.n/

ln n

n
� C

lnk�1 n

for arbitrarily large integers m and n. Therefore, since li.x/ 	 x

ln x
, if the

limx!1
�.x/ ln.x/

x
exists, then it must equal 1

	
that is, �.x/ 	 x

ln x



.

In proving (30), Chebyshev made use of the Gamma function, defined for
Re s > 0 by �.s/ D R1

0 e�t t s�1 dt. In his second paper (Chebyshev 1850), how-
ever, he introduced two number-theoretic functions related to �.x/, namely

�.x/ D
X

p prime
p�x

lnp and  .x/ D
X

p prime
pn�x

lnp D
mX

nD1
�.x1=n/;

where m is the largest integer for which 2m � x, and obtained important
bounds on their values using only elementary means. In particular, since lnx is
an increasing function, �.x/ � �.x/ ln x � x lnx and  .x/ � �.x/ ln x; and since
m � lnx= ln 2,

 .x/ � �.x/ D
mX

nD2
�.x1=n/ � �.x1=2/Cm�.x1=3/

� 1

2
x1=2 lnx C ln x

ln 2

1

3
x1=3 ln x

� 1

2
x1=2 lnx C ln x

ln 2

x1=2 lnx

x1=6

� 4x1=2 lnx;

because the maximum value of
lnx

ln 2

1

x1=6
occurs for x D e6 and is less than 3:2.

Thus  .x/ � 4px ln x � �.x/ �  .x/:
Hence if limx!1

 .x/

x
exists, then so does limx!1

�.x/

x
, and they are equal.

Furthermore, if limx!1
�.x/

x
exists, then so must limx!1

�.x/ ln.x/

x
, because for

0 < � < 1,

�.x/ �
X

x1���p�x
lnp � .�.x/��.x1��//.1� �/ ln x � .�.x/� x1��/.1� �/ ln xI
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so

�.x/

x
� �.x/ ln x

x
� 1

1 � �
�.x/

x
C lnx

x�
:

As already noted, limx!1
�.x/ ln.x/

x
must then equal 1. So to prove the Prime

Number Theorem it suffices to prove that either limx!1
 .x/

x
or limx!1

�.x/

x
exists.

The principal theorem of Chebyshev (1850) was that there exist constantsC1; C2,
and C3 such that for all x � 2,

(31) (i) C1x �  .x/ � C2x and (ii) C3x � �.x/ � C2x:
Indeed, Chebyshev’s methods (involving Stirling’s formula) showed that C2 can be
taken to be 1.1224 and, if x � 37, that C3 can be taken to be .73 (see Narkiewicz
2000, p. 111); and from the latter estimate Chebyshev deduced Bertrand’s postulate
(that for every x > 1 the interval .x; 2x� contains some prime) as an immediate
corollary. For direct calculation shows that Bertrand’s postulate holds for 1 � x <
37, and if it failed for some x � 37, the estimate would imply the contradiction that
1:46x � �.2x/ D �.x/ � 1:13x.

Without using Stirling’s formula, considerations involving binomial coefficients
yield the weaker inequality �.x/ � x ln 4 
 1:3863x. The argument, given in
Jameson (2003), p. 36, uses no number-theoretic facts beyond Euclid’s lemma and
its corollary that if distinct primes divide n, so does their product. Namely, for any
given n the expansion of .1C 1/2nC1 includes the two equal binomial coefficients�
2nC1
n

�
and

�
2nC1
nC1

�
, so

�
2nC1
n

�
< 22n D 4n. If pi ; : : : ; piCj are all the primes between

nC2 and 2nC1, inclusive, then none of those primes divides the denominator nŠ of�
2nC1
n

�
, but each of them, and hence the product of all of them, divides its numerator,

nŠ
�
2nC1
n

�
. Therefore that product must divide

�
2nC1
n

�
itself and so must be less than

�
2nC1
n

�
. Consequently,

�.2nC 1/� �.nC 1/ D
jX

kD0
lnpiCk D ln.pi � � �piCj / � ln

 
2nC 1
n

!

� n ln 4:

Then since �.n/ � n ln 4 for n D 2; 3; 4, we may assume by induction on m that
�.k/ � k ln 4 for k � 2m. The assumption holds for m D 2, and m C 1 < 2m

for m � 2. So �.mC 1/ � .m C 1/ ln 4, whence by the last displayed inequality,
�.2mC1/ � .2mC1/ ln 4; and since 2mC2 is not prime, �.2mC2/ D �.2mC1/.
Thus �.2mC 2/ � .2mC 1/ ln 4 < .2mC 2/ ln 4, finishing the induction.
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The inequality (31)(ii) also entails corresponding bounds on �.x/. For �.x/ can
be expressed as the sum

P
2�n�x.f .n/= ln n/, where f .n/ D ln n if n is prime and

0 otherwise, and Abel summation4 then gives

�.x/ D �.x/

ln x
C
Z x

2

�.t/

t.ln t/2
;

so (31)(ii)) yields

C3x

lnx
C C3

Z x

2

1

.ln t/2
dt � �.x/ � C2x

lnx
C C2

Z x

2

1

.ln t/2
dt:

On the other hand, integration by parts shows that

li.x/C 2

ln 2
D x

lnx
C
Z x

2

1

.ln t/2
dt:

Hence

C3

�

li.x/C 2

ln 2

�

� �.x/ � C2
�

li.x/C 2

ln 2

�

:

Similar arguments (see Jameson (2003), p. 35) show that for any � > 0, an x0
must exist such that .C3 � �/li.x/ � �.x/ � .C2 � �/li.x/ for all x > x0.
The Prime Number Theorem would follow if it could be shown that the bounds in
Chebyshev’s estimate can be taken to be C2 D C3 D 1. But Chebyshev’s methods
were inadequate for that task.

A key breakthrough came a decade later in Bernhard Riemann’s memoir “Ueber
die Anzahl der Primzahlen unter einer gegebener Größe” (Riemann 1860). Riemann
began by recalling Euler’s product formula (29), but took s therein to be a complex
number and initially defined �.s/ to be the function of s given by the expressions on
each side of Euler’s formula whenever both expressions converged — that is, when
Re s > 1. So defined, �.s/ is analytic on the half plane Re s > 1, but Riemann went
on immediately to extend it to a function analytic on all of C except s D 1. To do so
he employed the Gamma function (actually, the function….s/ D �.sC1/) together
with the substitution t D nx to obtain

�.s/

ns
D
Z 1

0

e�nxxs�1 dx

4The result of applying the formula

X

2�n�x

a.n/g.n/ D
hX

n�x

a.n/
i
g.x/�

Z x

2

hX

n�t

a.n/
i
g0.t / dt;

valid whenever a.1/ D 0 and g.x/ has a continuous derivative on Œ2; x�.
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as the nth term of the geometric series for �.s/�.s/. Then

�.s/�.s/ D
1X

nD1

Z 1

0

e�nxxs�1 dx D
Z 1

0

xs�1
1X

nD1
e�nx dx D

Z 1

0

xs�1

ex � 1 dx:

For s ¤ 1 he equated e��si � e�si times the latter integral to the contour integral

Z

C

.�x/s�1
ex � 1 dx;

“taken from C1 to C1 in a positive sense” around a region containing “in
its interior the point 0 but no other point of discontinuity of the integrand.” He
concluded that �.s/ could then be defined for all s ¤ 1 by the equation

(32) 2 sin.�s/�.s/�.s/ D i
Z

C

.�x/s�1
ex � 1 dx;

and that so defined �.s/ would be analytic except for a simple pole at s D 1; that is,
�.s/� 1=.s � 1/ would be an entire function.

Riemann noted that for Re s < 0 the same integral could be taken in the reverse
direction, surrounding the region exterior to the curveC . It would then be “infinitely
small for all s of infinitely large modulus,” and the integrand would be discontinuous
only at the points 2n�i . Its value would thus be

P1
nD1.�n2�i/s�1.�2�i/, whence

2 sin.�s/�.s/�.s/ D .2�/s
1X

nD1
ns�1..�i/s�1 C i s�1/ D .2�/s�.1� s/2 sin

�s

2
;

which reduces to the functional equation

�.1� s/ D 2

.2�/s
cos.

�s

2
/�.s/�.s/:

In the remainder of his memoir, Riemann made some assertions concerning�.x/
and the non-real zeros of the zeta function — assertions equivalent to the following
statements:

(i) The number N.T / of non-real roots 	 of �.s/ for which jIm 	j � T

(with multiple roots counted according to their multiplicity) is asymptotically
equal to

(33)
T

2�
ln

T

2�
� T

2�
:

(ii) It is “very likely” that all non-real zeros of �.s/ satisfy Re s D 1=2.
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(iii) If F.x/ D 1=2k CP1
nD1

�.x1=n/

n
whenever x D pk for some prime p and

F.x/ DP1
nD1

�.x1=n/

n
otherwise, then for x > 1,

F.x/ D li.x/ �
X

	

li.xp/C
Z 1

x

dx

.x2 � 1/x ln x
� ln 2;

where 	 ranges over all non-real roots of �.s/.

Assertions (i) and (iii) were later proved rigorously in von Mangoldt (1895), while
the conjecture that all non-real zeros of �.s/ satisfy Re s D 1=2 is the still unproven
Riemann Hypothesis.

Beyond the specific results it contained, three aspects of Riemann’s memoir
were seminal for the subsequent proofs of the Prime Number Theorem: the idea of
regarding the series

P1
nD1 n�s as a function of a complex argument; the extension

of that function to a function analytic in the region s ¤ 1, to which Cauchy’s theory
of contour integration could be applied; and the revelation that the distribution of
prime numbers was intimately related to the location of the non-real zeros of that
extended zeta function.5

10.2 Hadamard’s proof

Just a year after receiving his degree of Docteur ès Sciences, Jacques Hadamard
published the first of a series of papers concerning properties of the Riemann zeta
function. The series culminated in his paper Hadamard (1896b), in which he proved

the Prime Number Theorem in the form limx!1
�.x/

x
D 1.

Hadamard began that paper by noting that �.s/ was analytic except for a simple
pole at s D 1, and though it had infinitely many zeros with real part between 0 and
1 (a consequence of results in his earlier paper Hadamard 1893), it was non-zero for
all s with Re s > 1. His first goal was then to show that �.s/ was also non-zero for
all s with Re s D 1.

To establish that he considered ln.�.s//, which by Euler’s product theorem and

the Maclaurin series for ln.1� x/ is equal to
P1

kD1
P

p prime
1

kpks . He split that sum

into two parts, so that

(34) ln.�.s// D
X

p prime

1

ps
C

1X

kD2

X

p prime

1

kpks D S.s/C
1X

kD2

X

p prime

1

kpks ;

5A detailed commentary on developments stemming from Riemann’s classic paper is given in
Edwards (1974).
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and noted that since .s � 1/�.s/ is an entire function, it is bounded in any
closed neighborhood of s D 1. Thus in any such neighborhood the difference

ln.�.s// � ln
1

s � 1 D ln..s � 1/�.s// is a bounded function, so if s approaches

1 from the right along the real axis, ln.�.s// must approach C1. But by (34), in
any sufficiently small neighborhood of s D 1; ln.�.s// also differs from S.s/ by
a bounded expression, since the second term on the right of (34) is analytic for
Re s > 1=2. So S.s/ also approaches C1 as s approaches 1 from the right along
the real axis.

On the other hand, consider ln.j�.s/j/. By (34), for s D � C it, ln.j�.s/j/ D
Re ln.�.s// differs from

P.s/ D
X

p prime

Rep�s D
X

p prime

cos.t ln p/

p�

by a bounded function; and if �.1C it0/ D 0 for some t0 ¤ 0, then 1 C it0 must
be a simple root of �.s/, whence ln.j�.� C it/j/ must differ from ln.� � 1/ by a
bounded function. So ln.j�.� C it0/j/ and P.� C it0/ must both approach �1 as
� approaches 1 from the right, and P.� C it0/ must differ from �S.� C it0/ by a
bounded function.

Now suppose 0 < 	 D 1 � � < 1, 0 < ˛ < 1, and let Pn and Sn
denote the partial sums of P and S for p � n. Hadamard divided the set of
primes p � n into two subsets, according to whether or not, for some integer
k, the prime p satisfied the inequality jt0 lnp � .2k C 1/�j < ˛. Writing
Sn D S 0

n C S 00
n and Pn D P 0

n C P 00
n to correspond to that division, he used

elementary inequalities to conclude that there must exist an integerN	 such that for
all n � N	; 	n.�/ D S 0

n.� C it0/=Sn.� C it0/ > 	, since otherwise P.� C it0/ �
��S.�/, where � D 1 � � C � cos˛ < 1. Then, by the result of the previous
paragraph, for some function F bounded throughout the half-plane Re s > 1=2,
�S.� C it0/ C F.� C it0/ � ��S.�/ . That is, F.� C it0/ � .1 � �/S.�/, with
1 � � > 0. But as noted above, lim�!1C S.�/ D C1.

The argument just given, which rests on the assumption that �.1 C it0/ D 0,
applies to any 	 satisfying 0 < 	 < 1. If 	 is further required to satisfy

1

1C cos.2˛/
< 	 < 1, then similar manipulations of inequalities show that for

n � N	 and s D � C i.2t0/,

Pn.s/ � 	nSn.�/ cos.2˛/C .	n � 1/Sn.�/
> 	Sn.�/ cos.2˛/C .	 � 1/Sn.�/ D ‚Sn.�/;

with ‚ D 	Œ.1 C cos.2˛// � 1� > 0. Hence P.s/ D limn!C1Pn.s/ � ‚S.�/.
Once again, lim�!1 S.�/ D C1, so P.�Ci.2t0//, and thus also ln j�.�Ci.2t0//j,
must approachC1 as � approaches 1 from the right. But that cannot be, since �.s/
is analytic at the point 1 C i.2t0/. The assumption that �.1 C it0/ D 0 is thereby
refuted.



120 10 The Prime Number Theorem

For the rest of his proof Hadamard drew upon ideas of E. Cahen, who in his
doctoral dissertation at the École Normale Supérieure had unsuccessfully attempted
to prove the Prime Number Theorem.

Given real numbers a and x, with 0 < x ¤ 1, Cahen had considered the contour
integrals

1

2�i

Z aC1i

a�1i

xz

z
dz; for a > 0, and � 1

2�i

Z aC1i

a�1i

xz

z

� 0.z/
�.z/

dz; for a > 1.

Hadamard considered instead the integrals

1

2�i

Z aC1i

a�1i

xz

z

dz; for a > 0, and � 1

2�i

Z aC1i

a�1i

xz

z

� 0.z/
�.z/

dz; for a > 1;

where 
 > 0, which he denoted by J
 and  
, respectively.
In order to evaluate the integrals J
, Hadamard distinguished three cases: 
 D

an integer, n; 
 is non-integral and x < 1; or 
 is non-integral and x > 1. For
his proof of the Prime Number Theorem, however, only the first case was needed
(indeed, just the case n D 2), which he established by integrating by parts n � 1
times, using the identity 1=zn D .�1/n�1

.n � 1/Š
dn�1

dzn�1 .1=z/.6 That gave

Jn D 1

2�i

Z aC1i

a�1i

xz

zn
dz D 1

2�i

.ln x/n�1

.n � 1/Š
Z aC1i

a�1i

xz

z
dz;

whence

(35) Jn D

8
<̂

:̂

0 if x < 1,
.ln x/n�1

.n � 1/Š if x > 1,

since von Mangoldt had shown the year before that

(36)
1

2�i

Z aC1i

a�1i

xz

z
dz D

8
ˆ̂
<

ˆ̂
:

0 if x < 1;

1=2 if x D 1; (von Mangoldt 1895).

1 if x > 1;

6In the other cases Hadamard used the identity 1=z
 D .�1/
�1

�.
/

d
�1

dz
�1
.1=z/, together with

Cauchy’s integral theorem, to obtain the general formula

J
 D 1

2�i

Z aC1i

a�1i

xz

z

dz D

8
<̂

:̂

0 if x < 1,
.ln x/
�1

�.
/
if x > 1:
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To evaluate the integrals  
, Hadamard noted that by (29), ln.�.s// D
�Pp ln.1 � p�s/, so logarithmic differentiation gives

(37)
� 0.s/
�.s/

D �
X

p

.lnp/p�s

1 � p�s D �
X

p

lnp
1X

kD1

1

pks
D �

1X

kD1

ƒ.k/

ks
;

whereƒ denotes the von Mangoldt function, defined byƒ.k/ D lnp if k D pm for
some prime p and integerm and ƒ.k/ D 0 otherwise.

Then for 
 D 2,

 2.x/ D � 1

2�i

Z aC1i

a�1i

� 0.s/
�.s/

xs

s2
ds

D
X

p

lnp
1

2�i

Z aC1i

a�1i

1X

kD1

xs

pks

1

s2

D
X

p

ln p
1X

kD1

1

2�i

Z aC1i

a�1i

.x=pk/s

s2
;

where by (35) the integrals in the last member are equal to 0 if x=pk < 1 (that is, if

x1=k < p) and equal to ln

�
x

pk

�

otherwise. Hence

 2.x/ D
1X

kD1

X

p�x1=k
lnp ln

�
x

pk

�

D
X

p�x
lnp ln

�
x

p

�

C
1X

kD2

X

p�x1=k
lnp ln

�
x

pk

�

:

The double sum in the last term of the equation above is only apparently infinite,
since the inner sum is vacuous for k > ln x= ln 2. Thus finally

(38)  2.x/ D
X

p�x
lnp ln

�
x

p

�

C
Œ
lnx

ln 2
�

X

kD2

X

p�x1=k
lnp ln

�
x

pk

�

;

where the brackets above the penultimate summation symbol denote the greatest
integer function.

In the second term of (38) the first summation involves no more than ln x= ln 2
summands and the second summation no more than

p
x, the largest of which is that

for k D 2. Consequently,

 2.x/ �
X

p�x
lnp ln

�
x

p

�

Cpx ln x

ln 2
ln.
p
x/ lnx D

X

p�x
lnp ln

�
x

p

�

Cpx ln3 x

2 ln 2
:
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When divided by x, the last term above approaches 0 as x approaches 1.
Hadamard’s final goals were then to show

(i) that limx!1
1

x

P
p�x lnp ln

�
x

p

�

D 1

and

(ii) that (i) implies that limx!1
�.x/

x
D 1.

Hadamard established (ii) via elementary but rather involved ��ı computations,

showing that for every � > 0, x � 2�x � �.x/ � x C 5�

2
x. (For details, see

Narkiewicz 2000, pp. 202–204.) To prove (i) he showed that limx!1
 2.x/

x
D 1,

using Cauchy’s integral theorem, von Mangoldt’s theorem justifying Riemann’s
asymptotic estimate (33) of the number N.T / of non-real roots 	 of �.s/ for
which jIm 	j � T , and two results from his earlier paper Hadamard (1896a)—
in particular,

(A) If 	1; 	2; : : : are the non-real roots of �.s/ ordered according to increasing
absolute value, then

P
n 1=j	nj2 converges.

and

(B) If s ¤ 1 is not a root of �.s/, then for some constantK

(39)
� 0.s/
�.s/

D 1

1 � s C
X

	

�
1

s � 	 C
1

	

�

CK;

where 	 ranges over all roots of �.s/, ordered according to increasing absolute
value.

It follows from (A) that for any � > 0 there is an integer M such thatP
n>M 1=j	nj2 < �. Let I be the maximum of jIm 	nj for n � M and R the

maximum of jRe 	nj for n � M . Since �.s/ has no roots 	 with Re 	 � 1, R < 1.
Then, given a > 1, to compute

 2.x/ D � 1

2�i

Z aC1i

a�1i

� 0.s/
�.s/

xs

s2
ds

Hadamard considered the infinite family of polygons � D ABGECDFHA defined
in terms of a real parameter y as follows (see Figure 10.1): Choose d > I such that
no root of �.s/ lies on the line Im.s/ D d , take c to be a real number satisfying
R < c < 1, and let C be the point c C di and D the point c � di. For y > d , let
A be the point a � yi and B the point a C yi. Finally, fix e < 0, let E be the point
e C di and F the point e � di, and denote by G and H the points where the lines
Im.s/ D ˙y intersect the lines from the origin that pass through E and F.
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Fig. 10.1 Contour used
by Hadamard to evaluate
the integral
1

2�i

R aC1i

a�1i

�0.z/

�.z/

xz

z2
dz

Hadamard used (33) and (39) to show that the integral of
� 0.s/
�.s/

xs

s2
along each of

the segments BG and AH approaches 0 as y approaches1.
In particular, he concluded from (33) that for any A > 1 and any positive integer

� the number of roots 	 of �.s/ for which jIm	j lies between A3�C3 and A3� does
not exceed K�A3�, where K is a constant. The same bound applies a fortiori to
the number of roots Nr for which jIm 	j lies between 3� C 1 and 3� C 2. On the
other hand, the asymptotic expression for N.T / given in (33) approaches 1 as
� does, so for sufficiently large � there must be two consecutive roots 	j and 	jC1

whose imaginary parts ˇj and ˇjC1 differ by at least
A3�C2 � A3�C1

K�A3�
D A.A � 1/

K�
.

Consequently, for y� D .ˇj C ˇjC1/=2, any root of �.s/ must lie above or below

the line Im.s/ D y� by at least
A.A� 1/
2K�

.

That being so, if BG lies along Im .s/ D y�, the summation in (39) may
be estimated by splitting it into two parts, the first sum ranging over all roots 	
satisfying A3� � Im 	 � A3�C3 and the second over all other roots. The definition
of y� entails that the first sum is bounded by C1y� ln2 y� and the second by
C2y� ln y�, for some constants C1 and C2, so j� 0.s/=�.s/j is itself bounded by a
constant multiple of y� ln2 y�. Hence

ˇ
ˇ
ˇ
ˇ

Z

BG

� 0.s/
�.s/

xs

s2
ds

ˇ
ˇ
ˇ
ˇ � C3

y� ln2 y�
y2�

ˇ
ˇ
ˇ
ˇ

Z

BG
xs ds

ˇ
ˇ
ˇ
ˇ D C4

ln2 y�
y�

;
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which approaches 0 as y� approaches 1. Similar considerations show that the
integral along AH also approaches 0 as y� approaches1.

Cauchy’s integral theorem yields that

I� D 1

2�i

Z

�

� 0.s/
�.s/

xs

s2
ds

is equal to the sum of the residues at the poles of � 0.s/ and the roots of �.s/ that
lie within � . The only such pole occurs at s D 1, where the residue is �x, and by
construction, the sum of the residues of the roots inside � cannot exceed �x. Thus,
writing I� D IAB C IBG C IGE C IECDF C IFH C IHA and taking the limit as �
approaches1,

�x � � 2.x/C 0C lim
�!1 IGE C IECDF C lim

�!1 IFH C 0 � �x C �x:

The quantity IECDF is a constant, since the boundary segment ECDF is fixed
regardless of the value of �. So limx!1.IECDF=x/ D 0, and to show that
limx!1. 2.x/=x/ D 1, it remains only to show that

lim
x!1

lim�!1 IGE

x
D lim

x!1
lim�!1 IFH

x
D 0:

For that, Hadamard noted that for s on GE and FH (regardless of the value of �,

which determines the position of G and H) and any root 	 of �.s/, the ratio

ˇ
ˇ
ˇ
ˇ
s � 	
	

ˇ
ˇ
ˇ
ˇ

must be greater than a fixed constant, so by (39),

ˇ
ˇ
ˇ
ˇ
1

s

� 0.s/
�.s/

ˇ
ˇ
ˇ
ˇ is finite. Therefore for

some constant K , IGE is less than K
R

GE jxs j=jsj ds — a finite quantity — and

likewise for IFH. So
IGE

x
and

IFH

x
both approach 0 as x approaches1.

10.3 The proof of de la Vallée Poussin

In a note appended to the end of Hadamard (1896b), Hadamard remarked that while
correcting the proofs for that paper he had been notified of de la Vallée Poussin’s
paper on the same topic (de la Vallée Poussin 1896), and he acknowledged that
their proofs, found independently, had some points in common. In particular, both
involved showing that �.s/ had no roots on the line Re s D 1. But their methods
for doing so were entirely different, and Hadamard judged that his own method was
simpler.7

7In a statement quoted on page 198 of Narkiewicz (2000), de la Vallée Poussin agreed, but
nevertheless claimed priority for the proof of that result.
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Indeed, of the twenty-one pages in Hadamard (1896b), only two and a half are
devoted to his proof that �.s/ has no root of the form 1Cˇi ; and as Hadamard noted,
that proof rested on only two simple properties of �.s/: that its logarithm could be
expressed as a series of the form

P
ane

��ns , for some positive constants an and �n,
and that � itself was analytic on the limiting line of convergence of that series, with
the exception of a single simple pole.

In contrast, de la Vallée Poussin’s proof that �.s/ had no roots on the line
Re s D 1 was the subject of the third chapter of his paper de la Vallée Poussin
(1896), which took up 18 of its 74 pages. Like Hadamard’s proof, de la Vallée
Poussin’s was by contradiction and used the fact that any root s D 1C ˇi of �.s/
would have to be a simple root. But unlike Hadamard’s argument, which rested on
boundedness considerations, de la Vallée Poussin’s was based on the uniqueness
of certain Fourier series expansions. Specifically, he considered complex-valued
functions f .y/ of a real variable y that for y > 1 have the form L.y/ C P.y/,
where L.y/ denotes a function that approaches a finite limit A as y approaches1
and P.y/ denotes an infinite series of the form

1X

nD1
Œcn cos.˛n lny/C dn sin.˛n lny/� ;

in which the coefficients ˛n do not approach zero as n approaches1 and the seriesP
cn and

P
dn are absolutely convergent. He proved that in any such representation

the values A; cn; dn and ˛n are all uniquely determined by f .y/. On the other hand,
if 1 C ˇi were a root of �.s/, he showed by a long and delicate argument that the

function
1C cos.ˇ ln y/

y

P
p<y lnp, where p ranges over primes, would have two

distinct representations of the formL.y/CP.y/. Salient details of the computations
involved are given on pp. 208–214 of Narkiewicz (2000).

Two other differences between the tools used by Hadamard and those employed
by de la Vallée Poussin are worth noting.

First, although de la Vallée Poussin referred to Riemann’s functional equation for
the �-function and observed that it could be used to define �.s/ throughout C� f1g,
he did not make use of that extension in his proof of the Prime Number Theorem.
Instead, he noted that integration by parts yields

Z 1

0

dx

.nC x/s D
1

.nC 1/s C s
Z 1

0

xdx

.nC x/sC1 ;

from which it follows that for Re s > 1,

�.s/ D 1C
1X

nD1

�Z 1

0

dx

.nC x/s � s
Z 1

0

xdx

.nC x/sC1
�

:

But

1X

nD1

Z 1

0

dx

.nC x/s D
Z 1

1

dx

xs
D 1

s � 1;
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so

(40) �.s/ D 1C 1

s � 1 � s
1X

1

Z 1

0

xdx

.nC x/sC1 I

and since the sum on the right side of (40) converges absolutely for Re s > 0, that
equation may be used to define �.s/ in that half-plane, except for a simple pole at
s D 1 with residue 1.

Second, in place of the integral  2.x/ employed by Hadamard, both in his proof
that no s D 1Cˇi is a root of �.s/ and in his proof that �.x/ 	 x= ln x de la Vallée
Poussin made use of the integral

Iu;v.y/ D 1

2�i

Z aC1i

a�1i

� 0.s/
�.s/

ysds

.s � u/.s � v/ ;

in which neither u nor v are poles or zeros of �.s/, y is a real number greater than
1, and a is a real number greater than any of 1, Re u and Re v.

Replacing the fraction � 0.s/=�.s/ in the integrand of Iu;v by the expression on
the right side of (39) and integrating the result, de la Vallée Poussin obtained the
identity

(41) Iu;v.y/ D 1

u � v .y
u �

0.u/
�.u/

� yv �
0.v/
�.v/

/ � y

.u � 1/.v � 1/

C
X

	

y	

.u � 	/.v � 	/ C
1X

mD1

y�2m

.2mC u/.2mC v/ ;

where 	 ranges over the roots of �.s/, ordered according to increasing absolute
value.

On the other hand, using (37) and (36), de la Vallée Poussin found that

(42) Iu;v.y/ D � 1

u � v

 

yu
X

n<y

ƒ.n/

nu
� yv

X

n<y

ƒ.n/

nv

!

;

valid for all u; v whenever y > 1.
Equating those two expressions for Iu;v.y/, solving for the quantity in parenthe-

ses in (42), setting v D 0, dividing by yu and letting u approach 1 yields

(43)
X

n<y

ƒ.n/

n
� 1
y

X

n<y

ƒ.n/ D lny � lim
u!1

�
� 0.u/
�.u/

C u

u � 1
�

C 1

y

� 0.0/
�.0/

�
X

	

y	�1

	.	 � 1/ �
1X

mD1

y�2m�1

2m.2mC 1/ ;

where the term ln y is obtained by writing
u

1 � u
y1�u as

u

1 � u
Œ1C .y1�u � 1/� and

applying l’Hopital’s Rule to limu!1

y1�u � 1
1 � u

.
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Recalling the definition of ƒ.n/, the left member of (43) can be written as
P

pm<y

lnp

pm
� 1

y

P
pm<y lnp. In the right member the fraction

u

u � 1 can be split

up as
1

u � 1 C 1, and both summations there approach zero as y approaches1. (In

particular, since the real part of any root 	 of �.s/ has been shown to be less than
one, the real part of 	 � 1 must be negative. The terms of the first summation are

thus dominated by those of the absolutely convergent series
P

	

1

	.	 � 1/ , so that

sum must converge uniformly to zero as y increases without bound.) Consequently,
setting u D s, (43) takes the form

(44)
X

pm<y

lnp

pm
� 1
y

X

pm<y

lnp D ln y � 1 � lim
s!1

�
� 0.s/
�.s/

C 1

s � 1
�

C f .y/;

where f .y/ approaches 0 as y approaches1.

De la Vallée Poussin next noted that the difference
P

p<y

lnp

p � 1 �
P

pm<y

lnp

pm

approaches 0 as y approaches1, and proved that
1

y

P
pm<y lnp � 1

y

P
p<y lnp

does so as well. He also proved that

lim
s!1

�
� 0.s/
�.s/

C 1

s � 1
�

D Euler’s constant 
;

defined as 
 D limn!1.
Pn

kD1 1=k � lnn/.
Equation (44) can therefore be replaced by

(45)
X

p<y

lnp

p � 1 �
1

y

X

p<y

lnp D lny � 1 � 
 C g.y/;

where g.y/ approaches 0 as y approaches1.
Equation (45) is the key to the final two steps in de la Vallée Poussin’s derivation

of the prime number theorem, namely

(i) showing that

(46)
Z x

1

1

y

X

p<y

lnp dy D x.1C h.x//;where lim
x!1h.x/ D 0;

and

(ii) showing that (46) implies that limx!1
�.x/

x
D 1.

To establish (46) de la Vallée Poussin integrated (45) from 1 to x and then
multiplied each term by 1=x, thus obtaining

(47)
1

x

Z x

1

X

p<y

ln p

p � 1 dy� 1
x

Z x

1

1

y

X

p<y

ln p dy D 1

x

Z x

1

lny dy�
�1Cj.x/;
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where j.x/ approaches 0 as x approaches1. He then noted that the first term in
the left member of (47) can be rewritten as

1

x

Z x

1

X

p<y

lnp

p � 1 dy D 1

x

X

p<x

lnp

p � 1
Z x

p

dy(48)

D
X

p<x

lnp

p � 1 �
1

x

X

p<x

p

p � 1 lnp

D
X

p<x

lnp

p � 1 �
1

x

X

p<x

lnp C 1

x

X

p<x

lnp

p � 1:

The first two terms in the last member of (48) make up the left member of (45),
with x in place of y. Moreover, as Franz Mertens had shown in 1874, it follows from

Chebyshev’s upper bound (31) for  .x/ that
P

p<y

lnp

p � 1 is less than a constant

multiple of ln y. Consequently,

1

x

Z x

1

X

p<y

lnp

p � 1 dy D lnx � 
 � 1C k.x/;

where k.x/ approaches 0 as x approaches 1. Substituting the expression on the
right of this equation for the first integral in (47) and carrying out the integration in
the right member of (47) then yields

lnx � 
 � 1C k.x/ � 1
x

Z x

1

1

y

X

p<y

lnp dy D 1

x
Œx lnx � x� � 
 � 1C j.x/;

which after cancellation of terms common to both members is (i), with h.x/ D
k.x/ � j.x/.

To show that limx!1
�.x/

x
D 1, take � > 0, and use (46) to evaluate

Z .1C�/x

x

1

y

X

p<y

lnp dy D
Z .1C�/x

1

1

y

X

p<y

lnp dy �
Z x

1

1

y

X

p<y

lnp dy(49)

D .1C �/x Œ1C h..1C �/x/� � xŒ1C h.x/�
D �x � h.x/x C .1C �/xh..1C �/x/:

Dividing (49) by �x gives

1

�x

Z .1C�/x

x

1

y

X

p<y

lnp dy D 1C .1C �/h..1C �/x/ � h.x/
�

;
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and since �.y/ DPp�y lnp, upper and lower bounds on the integrand give

�.x/

x

ln.1C �/
�

� 1C .1C �/h..1C �/x/ � h.x/
�

� �..1C �/x/
x

ln.1C �/
�

;

that is,

(50)
�.x/

x
� �

ln.1C �/ C
.1C �/h..1C �/x/ � h.x/

ln.1C �/ � �..1C �/x
x

:

Since both h.x/ and h..1C �/x/ approach zero as x approaches1, (50) shows
that

lim sup
x!1

�.x/

x
� �

ln.1C �/ � lim inf
x!1

�..1C �/x/
x

I

and by replacing x in the latter inequality by
x

1C � , it follows that

�

ln.1C �/ � lim inf
x!1

�.x/

x
.1C �/:

By L’Hopital’s rule, lim�!0

�

ln.1C �/ D 1, so finally, limx!1
�.x/

x
D 1.

10.4 Later refinements

In the wake of Hadamard’s and de la Vallée Poussin’s proofs, various simplifica-
tions, generalizations, and improvements of their arguments were developed, by
Edmund Landau, Franz Mertens, de la Vallée Poussin himself (who in 1899 obtained
the error bound �.x/� li.x/ � Kxe�cpln x for some positive constantsK and c — a
result not bettered for a quarter of a century thereafter8), and others. Modern proofs
of the Prime Number Theorem that are descendants of the classical ones incorporate
many of those refinements and also make use of other tools such as the Riemann-
Lebesgue lemma, integral transforms, and Tauberian theorems (discussed further
below).

The proof of the Prime Number Theorem given in Jameson (2003) may be taken
as an exemplar of such proofs. Here, in outline, is its structure:

1. The comparison test is used to prove Dirichlet’s result that if

1X

nD1
jan=n˛j

8Cf. the discussion in Bateman and Diamond (1996), p. 736.
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converges for some real ˛, then the corresponding Dirichlet series
P1

nD1 an=ns
converges absolutely for all s D �C it with � � ˛. In particular, if janj � 1 for
all n, then

P1
nD1 an=ns converges absolutely when Re s > 1, so

P1
nD1 1=ns

can be used to define �.s/ in that region.
2. It is shown that if F.s/ D P1

nD1 an=ns converges whenever Re s > c, then
F.s/ is analytic at all points s with Re s > c and F 0.s/ D �P1

nD1 an ln n=ns .
In particular, � 0.s/ D �P1

nD1 ln n=ns for Res > 1.
3. After defining the Möbius function 
.n/ by 
.1/ D 1; 
.n/ D 0 if p2

divides n for some prime p; and 
.n/ D .�1/k if n D p1p2 : : : pk for distinct
primes p1; p2; : : : pk , the generalized Euler product identity (stated in footnote
3 above) is invoked and inverted to obtain

1
P1

nD1 f .n/
D

Y

p prime

.1 � f .p// D
1X

nD1

.n/f .n/:

Consequently
1

�.s/
DP1

nD1

.n/

ns
for Re s > 1.

4. It is verified that for jsj < 1 the series
P1

nD1 sn=n defines an analytic function

h.s/ that is a logarithm of
1

1 � s . The Euler product identity then implies

that the logarithm of �.s/ should be given by H.s/ D P
p prime h.p

�s/ D
P

p prime

P1
nD1

1

npns
. It is proved that that double series converges when Re s >

1 and that its sum is equal to that of the series
P1

nD1
c.n/

ns
, where c.n/ D 1=m

if n D pm for some prime p, and c.n/ D 0 otherwise.

5. Consequently, H 0.s/ D � 0.s/
�.s/

D �
1X

nD1

c.n/ ln n

ns
D �

1X

nD1

ƒ.n/

ns
, where ƒ.n/

is the von Mangoldt function.
6. Abel summation is used to show that for any sequence a.n/ and corresponding

summation function A.x/ DPn�x a.n/, if X > 1 then

X

n�X

a.n/

ns
D A.x/

Xs
C s

Z X

1

A.x/

xsC1
dx:

Furthermore, if s ¤ 0, A.x/=xs approaches 0 as x approaches 1 and the

Dirichlet series
P1

nD1
a.n/

ns
converges, then the Dirichlet integral

s

Z 1

1

A.x/

xsC1
dx

converges to the same value. Since  .x/ is the summation function for ƒ.n/
and  .x/=xs approaches 0 as x approaches1 if Re s > 1, it follows from 5
that
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(51)
� 0.s/
�.s/

D �s
Z 1

1

 .x/

xsC1
dx:

7. A simplification due to Edmund Landau is used to extend the domain of
definition of �.s/ without using the functional equation for �.s/.9 Specifically,
for Re s > 0, �.s/ may be defined by

(52) �.s/ D 1

s � 1 C 1 � s
Z 1

1

x � Œx�
xsC1

dx ;

where Œx� denotes the greatest integer not exceeding x, and differentiation under

the integral sign shows that �.s/ � 1

s � 1 is analytic at s D 1, so �.s/ has a

simple pole there. Furthermore,

lim
s!1

�

�.s/ � 1

s � 1
�

D 1 �
Z 1

1

x � Œx�
x2

dx D Euler’s constant 
:

8. Hence �.s/;
1

�.s/
and

� 0.s/
�.s/

are represented by Laurent series of the forms

�.s/ D 1

s � 1 C 
 C
1X

nD1
cn.s � 1/n

1

�.s/
D .s � 1/� 
.s � 1/2 C : : : and

� 0.s/
�.s/

D � 1

s � 1 C a0 C a1.s � 1/C : : : ;

all converging in some disk with center s D 1.
9. Since

ˇ
ˇ
ˇ
ˇ

Z 1

N

x � Œx�
xsC1

dx

ˇ
ˇ
ˇ
ˇ �

Z 1

N

1

x�C1 dx D 1

�N�
;

Euler’s summation formula for finite sums10 yields

�.s/ D
NX

nD1

1

ns
C N1�s

s � 1 � s
Z 1

N

x � Œx�
xsC1

dx �
NX

nD1

1

ns
C N1�s

s � 1 C
jsj
�N�

:

Straightforward calculations using the last inequality then show that when

� � 1 and t � 2, j�.� C it/j � ln t C 4 and j� 0.� C it/j � 1

2
.ln t C 3/2.

9According to Bateman and Diamond (1996), p. 737, Landau was the first to prove the PNT without
recourse to that functional equation.
10
PN

nD2 f .n/ D R N
1 f .x/ dx C R N

1 .x � Œx�/f 0.x/ dx.
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Those inequalities can in turn be used to show that 1=j�.�C it/j � 4.ln t C 5/7
for � > 1 and t � 2. (For details see Jameson 2003, pp. 108–109.)

10. The proof that �.s/ ¤ 0 when Re s D 1 is carried out by a simplified argument
based on Hadamard’s approach and later ideas of de la Vallée Poussin and Franz
Mertens. It rests on the trigonometric identity 0 � 2.1Ccos �/2 D 3C4 cos �C
cos.2�/. For if a Dirichlet series

P1
nD1

a.n/

ns
with positive real coefficients a.n/

converges for � > �0 to a function f .s/, then for such �

3f .�/C 4f .� C it/C f .� C 2it/ D
1X

nD1

a.n/

n�
.3C 4n�it C n�2it/

has real part

1X

nD1

a.n/

n�
Re.3C4n�itCn�2it/ D

1X

nD1

a.n/

n�
.3C4 cos.t ln n/Ccos.2t lnn/ � 0:

In particular, by 4. the Dirchlet series for ln.�.s// has positive coefficients and
converges when � > 1, so for such � and all t ,

3 ln.�.�//C 4Re �.� C it/C Re �.� C 2it/

D ln
�
�.�/3j�.� C it/j4j�.� C 2it/j� � 0

(because Re ln z D ln jzj), that is

(53) �.�/3j�.� C it/j4j�.� C 2it/j � 1:
Suppose then that �.1C it0/ D 0 for some t0 ¤ 0. Then

(54) �.�/3j�.� C it0/j4j�.� C 2it0/j

D Œ.� � 1/�.�/�3
� j�.� C it0/j

� � 1
�4
.� � 1/j�.� C 2it0/j:

But as � approaches 1C, .� � 1/�.�/ approaches 1, while
�.� C it0/

� � 1
approaches � 0.1C it0/ and �.� C 2it0/ approaches �.1C 2it0/. So by (54), the
product �.�/3j�.� C it0/j4j�.� C 2it0/j approaches 0, contrary to (53).

11. Cauchy’s integral theorem is used to evaluate three infinite contour integrals,
namely

1

2�i

Z cCi1

c�i1
xs

s2
ds D S.x/ ln x for x > 0 and c > 0(55)

1

2�i

Z cCi1

c�i1
xs

s.s � 1/ ds D .x � 1/S.x/ for x > 0 and c > 1(56)
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Fig. 10.2 Contour used to
evaluate the integrals (53)
through (55). Adapted from
The Prime Number Theorem,
p. 116, by G.J.O. Jameson.
Reprinted with the
permission of Cambridge
University Press

1

2�i

Z cCi1

c�i1
xs�1

s.s � 1/f .s/ ds D
Z x

1

A.y/

y2
dy for x > 1 and c > 1 ;

(57)

where S.x/ denotes the step-function equal to 0 for x < 1 and 1 for x � 1

andA.x/ DPn�x a.n/ is the summation function corresponding to a Dirichlet
series

P1
nD1 a.n/=ns that converges absolutely to f .s/ whenever Re s > 1.

In all three cases the infinite contour integrals are obtained as the limit,
as R approaches 1, of integrals taken along the paths �1 D C1 [ LR or
�2 D C2 [LR, where C1 and C2 are the arcs of the circle of radiusR centered
at s D 0 that lie, respectively, to the left and right of the vertical line segment
LR with endpoints c � tR and c C tR on the circle. (See Figure 10.2.)

The integrand of (55) may be rewritten as

xs

s2
D els

s2
D 1

s2

1X

nD0

lnsn

nŠ
;

where l D ln x. Since the exponential series converges uniformly on any closed
interval, the integration may then be carried out term by term. For x � 1 the
path �1 is taken, enclosing the pole at s D 0 of xs=s2, where the residue is l .
For 0 < x < 1 the path �2 is taken instead, which encloses no poles of xs=s2;
so that integral is 0. In the first case, jsj D R and jxsj D x� � xc on C1, so the

integral along C1 has absolute value less than or equal to
1

2�

xc

R2
2�R D xc

R
,

which approaches 0 as R approaches1. In the second case, x� � xc on C2 as
well, since for 0 < x < 1; x� decreases as � increases. The integral along C2
thus also approaches 0 as R approaches1. The proof of (56) is similar, using

js.s � 1j � R.R � 1/ and writing
xs

s.s � 1/ as
xs

s � 1 �
xs

s
.

To obtain (57), first note that xsf .s/DPn�x a.n/
	x

n


sCPn>x a.n/
	x

n


s
:

The first sum is finite, and so can be integrated term by term. By (56), the

result is
P

n�x S
	x

n


 	x

n
� 1



D P

n�x a.n/
	x

n
� 1



. The second term,
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on the other hand, is an analytic function of s that for Re s � c is bounded
by

P
n>x ja.n/j.x=n/c . By Cauchy’s theorem, its integral over �2 is zero,

and by the same reasoning as before, its integral over C2 tends to zero as R
approaches1. Consequently, after dividing by x,

1

2�i

Z cCi1

c�i1
xs�1

s.s � 1/f .s/ ds D
X

n�x
a.n/

�
1

n
� 1
x

�

:

By Abel summation applied to the function 1=y, the last sum is equal toR x
1
A.y/=y2 dy.

12. Finally, the Prime Number Theorem in the form limx!1
 .x/

x
D 1 is obtained

as a special case of the following much more general result.

Theorem: Suppose the function f .s/ is analytic throughout the region Re s � 1,
except perhaps at s D 1, and satisfies the following conditions:

(C1) f .s/ DP1
nD1

a.n/

ns
converges absolutely when Re s > 1.

(C2) f .s/ D ˛

s � 1 C ˛0 C .s � 1/h.s/, where h is differentiable at s D 1.

(C3) There is a functionP.t/ such that jf .�Cit/j � P.t/ for � � 1 and t � t0 � 1,
and

R1
1 P.t/=t2 dt is convergent.

Then
Z 1

1

A.x/ � ˛x
x2

dx converges to ˛0 � ˛ where A.x/ DPn�x a.n/:

If, furthermore,A.x/ is increasing and non-negative, then limx!1
A.x/

x
D ˛.

To prove the first claim, note that
1

s � 1 D
s

s � 1 � 1, so .s � 1/h.s/ D f .s/ �
˛

s

s � 1 � .˛0�˛/, and j.s� 1/h.s/j � P.t/Cj˛jC j˛0j when j� � 1 and jt j � t0.
Then for x > 1 and c > 1, (55), (56), and (57) give

1

2�i

Z cCi1

c�i1
xs�1h.s/

s
ds D 1

2�i

Z cCi1

c�i1
xs�1
s.s � 1/ f .s/ds

� ˛

2�i

Z cCi1

c�i1
xs�1
.s � 1/2 ds � ˛0 � ˛

2�i

Z cCi1

c�i1
xs�1
s.s � 1/ ds

D
Z x

1

A.y/

y2
dy � ˛ ln x � .˛0 � ˛/

�

1 � 1
x

�

D
Z x

1

A.y/� ˛y
y2

dy � .˛0 � ˛/
�

1 � 1
x

�

:

Careful examination (see Jameson 2003, p. 121) shows that the result just
obtained also holds for c D 1. That is,

1

2�i

Z 1Ci1

1�i1
xs�1h.s/

s
ds D

Z x

1

A.y/ � ˛y
y2

dy � .˛0 � ˛/
�

1 � 1
x

�

:
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The path of integration for the contour integral on the left is the vertical line
Re s D 1, where s D 1C it, so that integral may be rewritten as

1

2�

Z C1

�1
xith.1C it/

1C it
dt D 1

2�

Z C1

�1
eit ln xh.1C it/

1C it
dt

�

which converges absolutely since

ˇ
ˇ
ˇ
ˇ
h.s/

s

ˇ
ˇ
ˇ
ˇ �

P.t/C j˛j C j˛0j
t2

�

. That the latter

integral approaches 0 as x approaches1 then follows from the Riemann-Lebesgue
lemma, which states that

If �.t/ is a continuously differentiable function from R to C and
R C1

�1 j�.t/j dt
converges, then the integral

Z C1

�1
ei�t�.t/ dt

approaches 0 as � approaches1.
The convergence of

R1
1
.A.x/ � ˛x/=x2 dx implies the remaining claim (that

if A.x/ is increasing and non-negative, then limx!1
A.x/

x
D ˛). For such

convergence means that for any ı > 0, there is an R such that

ˇ
ˇ
ˇ
ˇ

Z x1

x0

A.x/ � x
x2

dx

ˇ
ˇ
ˇ
ˇ < ı whenever x1 > x0 > R:

Then for 0 < ı < 1=2, the assumption either that A.x0/ > .1 C ı/x0 for some
x0 > R (and hence for all x � x0, since A.x/ is increasing), or that A.x0/ <
.1 � ı/x0 for some x0 � 2R, leads to a contradiction. (See Jameson 2003, p. 131.)

The Prime Number Theorem follows from the Theorem by taking f .s/ D
��

0.s/
�.s/

: For the result of step 5. shows that f .s/ D P1
nD1

ƒ.n/

ns
(whence (C1)

is satisfied);  .x/ D P
n�x ƒ.n/ is increasing; (C2) holds by the third equation

in step 8., with ˛ D 1; and the inequalities found in step 9. show that jf .s/j D
jf .� C it/j < P.t/ D 2.ln t C 5/9. Since

R1
1
P.t/=t2 dt converges, (C3) is thus

also satisfied.

10.5 Tauberian theorems and Newman’s proof

The Theorem stated in the previous section is an example of a so-called Tauberian
theorem, broadly defined (as in Edwards 1974, p. 279) as a theorem that “permits
a conclusion about one kind of average [in this case, A.x/=x] given information
about another kind of average [here, the integral from 1 to1 of .A.x/� ˛x/=x2].”
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The Prime Number Theorem was first deduced from a Tauberian theorem
by Edmund Landau in his paper Landau (1908).11 Seven years later Hardy and
Littlewood gave another such proof (Hardy and Littlewood 1915), and in the 1930s
Tauberian theorems based on Norbert Wiener’s methods in the theory of Fourier
transforms were employed to deduce the Prime Number Theorem from the non-
vanishing of �.s/ on the line Re s D 1. In particular, the Prime Number Theorem
was so deduced using

The Wiener-Ikehara Theorem: Suppose that f is a non-decreasing real-valued
function on Œ1;1/ for which

R1
1
jf .u/ju���1 du converges for all real � > 1. If

in addition
R1
1
f .u/u�s�1 du D ˛=.s � 1/ C g.s/ for some real ˛, where g.s/

is the restriction to Re s > 1 of a function that is continuous on Re s � 1, then
limu!1 f .u/=u D ˛.

But proofs of the Wiener-Ikehara Theorem are themselves difficult.
In 1935 A.E. Ingham proved another Tauberian theorem that related the Laplace

transform
R1
0 f .t/e�zt dt of a function f .t/ defined on Œ0;1/ to the integral of f .t/

itself over that interval.12 But that proof, too, was complicated, and was also based
on results from Fourier analysis (Ingham 1935). In 1980, however, D.J. Newman
found a way to prove a variant of Ingham’s theorem and to derive the Prime Number
Theorem from it without resort either to Fourier techniques or to contour integrals
over infinite paths.

Newman’s original proof (Newman 1980) was couched in terms of Dirichlet
series: he proved that if

P1
nD1 ann�s converges to an analytic function f .s/ for all

s with Re s > 1, if janj � 1 for every n, and if f .s/ is also analytic when Re s D 1,
then

P1
nD1 ann�s converges for all s with Re s D 1. Subsequent refinements of that

proof, as given in Korevaar (1982), Zagier (1997), chapter 7 of Lax and Zalcman
(2012), and Jameson (2003), recast it as an alternative proof of Ingham’s Tauberian
theorem. The formulation of that result given in Lax and Zalcman (2012) reads:

Let f be a bounded measurable function on Œ0;1/. Suppose that the Laplace
transform

g.z/ D
Z 1

0

f .t/e�zt dt ;

which is defined and analytic on the open half plane fz W Re z > 0g, extends
analytically to an open set containing fz W Re z � 0g. Then the improper integral
R1
0
f .t/ dt D limT!1

R T
0
f .t/ dt converges and coincides with g.0/, the value of

the analytic extension of g at z D 0.

11Discussed in detail in Narkiewicz (2000), pp. 298–302.
12Ingham’s theorem may alternatively be stated in terms of the Mellin transform

R
1

1 f .t/t�s dt.
See, e.g., Korevaar (1982) or Jameson (2003), pp. 124–129.
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Fig. 10.3 Contours used in
Newman’s proof

The proof there proceeds as follows:
Say jf .t/j �M for all t � 0. For T > 0 let gT .z/ be the entire function defined

by
R T
0
f .t/e�zt dt. The theorem then asserts that limT!1 jg.0/� gT .0/j D 0.

To establish that, choose R > 0 and ı.R/ sufficiently small that g is analytic
throughout the regionD D fz W jzj � R and Re z � �ı.R/g. Let � be the boundary
of D (shown as the solid curve in Figure 10.3), traversed counterclockwise, and
consider

(58)
1

2�i

Z

�

Œg.z/ � gT .z/�ezT

�

1C z2

R2

�
1

z
dz:

By Cauchy’s theorem, the value of (58) is g.0/ � gT .0/. Writing � D Re z, if
� > 0 then

(59) jg.z/ � gT .z/j D
ˇ
ˇ
ˇ
ˇ

Z 1

T

f .t/e�zt dt

ˇ
ˇ
ˇ
ˇ �M

Z 1

T

e��t dt D Me��T

�
:

Also, when jzj D R,

(60)

ˇ
ˇ
ˇ
ˇe

zT

�

1C z2

R2

�
1

z

ˇ
ˇ
ˇ
ˇ D e�T

ˇ
ˇ
ˇ
ˇ

�
1

z
C z

jzj2
�ˇ
ˇ
ˇ
ˇ D e�T

ˇ
ˇ
ˇ
ˇ
1

z
C 1

z

ˇ
ˇ
ˇ
ˇ D e�T

2j� j
R2

:

Now let �C be the semicircle � \ fRe z > 0g, let �� denote � \ fRe z < 0g, and
let � 0� be the semicircle fz W jzj D R and Re z < 0g. By (59) and (60), for z 2 �C,
the absolute value of the integrand in (58) is bounded by 2M=R2, so

(61)

ˇ
ˇ
ˇ
ˇ
ˇ

1

2�i

Z

�C

Œg.z/ � gT .z/�ezT

�

1C z2

R2

�
1

z
dz

ˇ
ˇ
ˇ
ˇ
ˇ
� M

R
:
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For z 2 ��, first consider gT . As an entire function, its integral over �� is the
same as its integral over � 0�. Since for � < 0,

(62) jgT .z/j D
ˇ
ˇ
ˇ
ˇ

Z T

0

f .t/e�zt dt

ˇ
ˇ
ˇ
ˇ �M

Z T

�1
e��t dt D Me��T

j� j ;

it follows from (60) that

(63)

ˇ
ˇ
ˇ
ˇ
ˇ

1

2�i

Z

� 0

�

gT .z/e
zT

�

1C z2

R2

�
1

z
dz

ˇ
ˇ
ˇ
ˇ
ˇ
� M

R
:

Next consider g.z/. It is analytic on ��, so the quantity

ˇ
ˇ
ˇ
ˇg.z/

�

1C z2

R2

�
1

z

ˇ
ˇ
ˇ
ˇ

is bounded on �� by some constant K (whose value depends on ı and R).
Likewise, ezT is bounded on ��, and converges uniformly to 0 on compact subsets
of fRe z < 0g as T approaches1. Consequently,

(64) lim
T!1

ˇ
ˇ
ˇ
ˇ
1

2�i

Z

��

g.z/ezT

�

1C z2

R2

�
1

z
dz

ˇ
ˇ
ˇ
ˇ D 0 :

Recalling that g.0/�gT .0/ is given by the integral in (58), it follows from (61), (63),
and (64) that

lim sup
T!1

jg.0/� gT .0/j � 2M

R
:

Since that holds for arbitrarily large values of R; limT!1 jg.0/� gT .0/j D 0.
The Prime Number Theorem in the form limx!1 .x/=x D 1 is then deduced,

as in the previous section, from the convergence of the improper integral
R1
1
Œ .x/�

x�=x2 dx. That, in turn, follows from Ingham’s Tauberian theorem by setting x D et
and taking f .t/ D  .et /e�t � 1. For, by equation (51) above,

��
0.s/
�.s/

D s
Z 1

1

 .x/

xsC1
dx D s

Z 1

0

 .et /e�st dt;

so

g.s/ D
Z 1

0

f .t/e�st dt D
Z 1

0

Œ .et /e�t � 1�e�st dt

D
Z 1

0

 .et /e�.sC1/t dt �
Z 1

0

e�st dt

D 1

s C 1
�

��
0.s C 1/
�.s C 1/

�

� 1
s
D 1

s C 1
�

��
0.s C 1/
�.s C 1/ �

1

s
� 1

�

:
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Chebyshev’s upper bound for  .x/ shows that f .t/ is bounded, and the Laurent
series for � 0.s/=�.s/ given in step 8 of the previous section shows that the expression
in the last member of the equation above can be extended to an analytic function on
the half plane Re s � 0. Hence the hypotheses of Ingham’s theorem are satisfied.

10.6 Elementary proofs

In 1909 Edmund Landau published an influential handbook (Landau 1909) that
“presented in accessible form nearly everything that was then known about the
distribution of prime numbers” (Bateman and Diamond 1996, p. 737). It popularized
use of the O-notation13 in statements concerning growth rates of functions, and drew
attention to the power of complex-analytic methods in number theory.

In particular, in contrast to the elementary methods of Chebyshev, those of
complex analysis had yielded the Prime Number Theorem. The question thus arose:
Were such methods essential to the proof of that theorem?

Many leading number theorists came to believe that they were. G.H. Hardy,
for example, in an address to the Mathematical Society of Copenhagen in 1921,
declared

No elementary proof of the prime number theorem is known, and one may ask whether
it is reasonable to expect one. [For] . . . we know that . . . theorem is roughly equivalent to
. . . the theorem that Riemann’s zeta function has no roots on a certain line.14 A proof of
such a theorem, not fundamentally dependent on the theory of functions, [thus] seems to
me extraordinarily unlikely.” (Quoted from Goldfeld 2004.)

In 1948, however, Atle Selberg and Paul Erdős, independently but each using
results of the other, found ways to prove the Prime Number Theorem without
reference to the �-function or complex variables and without resort to methods of
Fourier analysis. Their proofs, however, were ‘elementary ’ only in that technical
sense. Indeed, in Edwards (1974) Harold Edwards expresses the widely shared
opinion that “Since 1949 many variations, extensions and refinements of [Selberg’s
and Erdős’s] elementary proof[s] have been given, but none of them seems very
straightforward or natural, nor does any of them give much insight into the theorem.”
Furthermore, as noted in Jameson (2003), p. 207, no elementary proof so far devised
has given error estimates for the approximation of �.x/ by li.x/] that are “as strong

13Whereby f .x/ D O.g.x// for x > x1 � x0 means that f is eventually dominated by g, that is,
that f and g are both defined for x > x0, g.x/ > 0 for x > x0, and there is a constant K such that
jf .x/j � Kg.x/ for all x > x1.
14For as noted in the preceding section, the Wiener-Ikehara Theorem implies that the Prime
Number Theorem follows from the absence of zeroes of the �-function on the line Re s D 1,
a fact that is also implied by the Prime Number Theorem. (See, for example, Diamond 1982,
pp. 572–573.)
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as that of de la Vallée Poussin.” The interest in such proofs would thus seem to stem
primarily from concern for purity of method.

The basis of most elementary proofs of the Prime Number Theorem is a growth
estimate for a logarithmic summation found by Selberg. In one form it states that
for x > 1

(65)
X

p�x
.lnp/2 C

X

pq�x
lnp ln q D 2x lnx CO.x/;

where p and q denote prime numbers. Other statements equivalent to (65), shown
to be so in Diamond (1982), p. 566 and Jameson (2003), pp. 214–215, are

�.x/ lnx C
X

p�x
�.x=p/ lnp D 2x lnx CO.x/(66)

X

n�x
Œƒ.n/ ln nC .ƒ �ƒ/.n/� D 2x ln x CO.x/(67)

 .x/ ln x C
X

n�x
ƒ.n/ .x=n/ D 2x ln x CO.x/ and(68)

R.x/ ln x C
X

n�x
ƒ.n/R.x=n/ D O.x/ (where R.x/ D  .x/ � x),(69)

in which the symbol � denotes the Dirichlet convolution operation on arithmetic
sequences, defined by a � b DPjkDn a.j /b.k/ D

P
j jn a.j /b.n=j /.

Selberg’s original proof derived the equation limx!1 �.x/=x D 1 from (66)
using a consequence of (66) discovered by Erdős. In particular, denoting
lim inf �.x/=x by a and lim sup �.x/=x by A, Selberg deduced from (66) that
a C A D 2. Meanwhile, unaware of that fact, Erdős used (66) to show that for any
ı > 0 there is a constant K.ı/ such that for sufficiently large values of x there are
more thanK.ı/x= ln x primes in the interval .x; xCK.ı/x/. Erdős communicated
his proof of that fact to Selberg, who then, via an intricate argument, used Erdős’s
result to prove that A � a. Consequently, A D a D 1: (See Erdős 1949 for details
of all those proofs. The proof given in Selberg 1949 is a later, more direct one that
does not use Erdős’s result.15)

The most accessible elementary proof of the Prime Number Theorem is probably
that in Levinson (1969), whose very title (“A motivated elementary proof of the
Prime Number Theorem") suggests that the strategies underlying elementary proofs

15Regrettably, the interaction between Erdős and Selberg in this matter was a source of lasting
bitterness between them. Goldfeld (2004) provides a balanced account of the dispute, based on
primary sources. As noted there, the issue was not one of priority of discovery, but “arose over
the question of whether a joint paper (on the entire proof) or separate papers (on each individual
contribution) should appear”.
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of that theorem are not perspicuous.16 Variants of Levinson’s proof are also given in
Edwards (1974) and Jameson (2003). Here, in outline, is the structure of the latter
version:

1. The goal is to show that limx!1  .x/=x D 1. Toward that end, three related
functions whose behavior is easier to study are defined, namely

R.x/ D
(
0 if x < 1

 .x/ � x if x � 1 ; S.x/ D
Z x

0

R.t/

t
dt and W.x/ D S.ex/

ex
:

Then limx!1  .x/=x D 1 if and only if limx!1R.x/=x D 0.
2. It follows from Chebyshev’s result  .x/ � 2x that jR.x/j � x for x > 0.

Furthermore,
R x
1
R.t/=t2 dt D R x

1
 .t/=t2 dt�ln x, and Abel summation yields

Z x

1

 .t/

t2
dt D

X

n�x

ƒ.n/

n
�  .x/

x
:

On the other hand, Mertens in 1874 applied Chebyshev’s bound to obtain thatP
n�x ƒ.n/=n D lnx C O.1/. (See Jameson 2003, p. 90 for details.) Conse-

quently, applying Chebyshev’s bound once more,
R x
1
R.t/=t2 dt is bounded for

x > 1.
3. Since, by 2., the absolute value of the integrand in the definition of S is

bounded by 1; S satisfies the Lipschitz condition jS.x2/ � S.x1/j � x2 � x1
for x2 > x1 > 0. That, in turn, together with the inequality e�x � 1� x, shows
thatW likewise satisfies the Lipschitz condition jW.x2/�W.x1j � 2.x2� x1/
for x2 > x1 > 0.

4. The Lipschitz condition on S gives jS.x/j � x for x > 0, that is, jS.x/=xj � 1
for x > 0. Then jW.x/j � 1 and

Z x

1

S.t/

t2
dt D

Z x

1

1

t2

Z t

1

R.u/

u
du dt

D
Z x

1

R.u/

u

Z x

u

1

t2
dt du

D
Z x

1

R.u/

u

�
1

u
� 1
x

�

du

D
Z x

1

R.u/

u2
du � S.x/

x
;

16Levinson’s paper won the Mathematical Association of America’s Chauvenet Prize for exposi-
tion in 1971. Nevertheless, after reading it, the number theorist Harold Stark commented “Well,
Norman tried, but the thing is as mysterious as ever.” (Quoted in Segal 2009, p. 99.)
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which is bounded for all x > 1 by the result of step 2. above. Consequently,R x
0
W.t/ dt is bounded for all x > 0.

5. Straightforward arguments with inequalities yield the following Tauberian
theorem:

If A.x/ � 0, A.x/ is increasing for x > 1, and
1

x

Z x

1

A.t/

t
dt! 1 as x !1,

then
A.x/

x
! 1 as x !1.

Then since S.x/=x D .1=x/
R x
1
 .t/=t dt � 1 � 1=x, taking A.x/ D  .x/ in

the Tauberian theorem shows that to prove that  .x/=x ! 1 as x ! 1 it
suffices to prove that S.x/=x ! 0 as x !1.

6. Equivalently, it suffices to show that W.x/ ! 0 as x ! 1. For that purpose,
let

˛ D lim sup
x!1

jW.x/j � 1 and ˇ D lim sup
x!1

1

x

Z x

0

jW.t/j dt:

Then ˇ � ˛. Crucially, however,

(70) ˇ D ˛ only if ˛ D 0I
so to prove the Prime Number Theorem it suffices to show that ˛ � ˇ.

To prove (70), assume ˛ > 0. Since
R x
0 W.t/ dt is bounded for all x > 0,

there is a constant B such that j R x2x1 W.t/ dtj � B for all x2 > x1 > 0. Also,
by the definition of ˛, for any a > ˛ there is some xa such that jW.x/j � a

for x > xa. So suppose ˛ < a � 2˛ and consider
R x1Ch
x1

jW.t/j dt, where
x1 � xa and h � 2˛ is to be determined. If W.x/ changes sign within the
interval Œx1; x1 C h�, the intermediate-value theorem yields the existence of a
point z in that interval where W.z/ D 0. The Lipschitz condition on W then

gives jW.x/j � 2jx � zj, and since h � a, at least one of the points z˙ a

2
lies

between x1 and x1Ch. So either the interval Œz; zCa=2� lies within Œx1; x1Ch�
or Œz � a=2; z� does. Whichever does, call it I . (If both do, pick one.) ThenR
I
jW.x/j dx � R

I
2jx � zj dx D a2=4. The part of Œx1; x1 C h� lying outside I

has length h � a=2, and there jW.x/j � a. So, finally,

(71)
Z x1Ch

x1

jW.x/j dx � a2

4
C a

	
h � a

2



D a

	
h � a

4



< a

	
h� ˛

4



:

By choosing h to be the greater of ˛ and B=˛ C ˛=4, (71) can be ensured to
hold as well if W.x/ does not change sign within Œx1; x1 C h�.

To complete the proof, note that for any x � x1 C h there is an integer n
such that xa C nh � x < xa C .nC 1/h. Then



10.6 Elementary proofs 143

Z x

0

jW.x/j dx �
Z xa

0

jW.x/j dxC .nC 1/
	
h � ˛

4



ah

D C C .nC 1/
	
h � ˛

4



ah;

where C is constant and n!1 as x does. Hence, since x > nh,

1

x

Z x

0

jW.x/j dx � C

x
C
�

1C 1

n

�	
1 � ˛

4h



a:

As x ! 1, the right member of that inequality approaches .1 � ˛=4h/a.
Consequentlyˇ � .1�˛=4h/a for any a > ˛. Thereforeˇ � .1�˛=4h/˛ < ˛.

7. It is at this point that Selberg’s inequality enters in. In Levinson (1969) and
Jameson (2003) that inequality, in the forms (68) and (69), is derived as a
corollary to the Tatuzawa-Iseki identity, which states that if F is a function
defined on the interval Œ1;1/ and G.x/ DPn�x F.x=n/, then for x � 1:

(72)
X

k�x

.k/ ln

x

k
G
	x

k



D F.x/ ln x C

X

n�x
ƒ.n/F

	x

n



;

where 
 denotes the Möbius function and ƒ the von Mangoldt function.
The Tatuzawa-Iseki identity is a variant of the Möbius inversion formula,

which states that under the same hypotheses, F.x/ D P
n�x 
.n/G.x=n/. It

is obtained by multiplying the Möbius formula by ln x to get the first term in
the right member of (72), rewriting the factor ln.x=k/ in the left member as

ln x � ln k, replacing G
	x

k



in
P

k�x 
.k/ ln k G
	x

k



by
P

j�x=k F
�
x

jk

�

,

interchanging the order of summation in the double sum, and expressing the
result in terms of ƒ.n/.17

To obtain inequality (68), the Tatuzawa-Iseki identity is applied with
F.x/ D R.x/ C 
 C 1, where 
 is Euler’s constant. One proves that then
jG.x/j � lnx C 2 for x � 1. The derivation is completed by invoking the
integral test for series together with Chebyshev’s upperbound for  .x/.

8. Inequality (67) is deduced as a corollary to (68), using Abel summation and
Chebyshev’s result that  .x/ � 2x. Since the integral test implies thatP

n�x ln n D x lnx C O.x), a further equivalent of Selberg’s formula isP
n�xŒƒ.n/ ln nC .ƒ �ƒ/.n/� � 2 lnn D O.x/.

9. Dividing (69) by t , where 1 � t � x, gives

R.t/
ln t

t
C 1

t

X

n�x
ƒ.n/R

�
t

n

�

D O.1/:

17The Möbius inversion formula by itself does not suffice to give the desired bound on R.x/, and
that, in Levinson’s opinion, accounts for “the long delay in the discovery of an elementary proof”
of the Prime Number Theorem. (Levinson 1969, p. 235)
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Integrating and using jS.t/=t j � 1 from step 4. then shows that for x � 1,

(73) S.x/ lnx C
X

n�x
ƒ.n/S.x=n/ D O.x/;

which is (69) with R replaced by S .
10. Three technical lemmas are now proved, using (68), (69) and the Lipschitz

condition on S , respectively. First, for all x � 1 there is a constantK1 such that

(74) jS.x/j.lnx/2 �
X

n�x
Œƒ.n/ ln nC .ƒ �ƒ/.n/�

ˇ
ˇ
ˇS
	x

n


ˇ
ˇ
ˇCK1x lnx:

Second,
(75)X

n�x
Œƒ.n/ ln nC .ƒ �ƒ/.n/�

ˇ
ˇ
ˇS
	x

n


ˇ
ˇ
ˇ D 2

X

n�x
ln n

ˇ
ˇ
ˇS
	x

n


ˇ
ˇ
ˇCO.x ln x/I

and third, for all x � 1 there is a constantK2 such that

(76)
X

n�x
ln n

ˇ
ˇ
ˇS
	x

n


ˇ
ˇ
ˇ �

Z x

1

ln t
ˇ
ˇ
ˇS
	x

t


ˇ
ˇ
ˇ dtCK2x :

11. Together, (74), (75), and (76) yield that for all x � 1 there is a constantK3 such
that

jS.x/j.lnx/2 � 2
Z x

1

ln t
ˇ
ˇ
ˇS
	x

t


ˇ
ˇ
ˇ dtCK3x ln x ; so that

(77) jW.x/j � 2

x2

Z x

0

.x � u/jW.u/j duC K3

x
:

12. Finally, for ˛ and ˇ as defined in step 6., (77) implies that ˛ � ˇ. For, by the
definition of ˇ, for every � > 0 there exists an x1 such that for every x � x1,R x
0 jW.t/j dt � .ˇC �/x . In order to apply (77), consider

R x
0 .x � u/jW.u/j du,

which may be rewritten as

Z x

0

jW.u/j
Z x

u
dt du D

Z x

0

Z t

0

jW.u/j du dt:

Then for x � x1,
Z x

x1

Z t

0

jW.u/j du dt �
Z x

x1

.ˇ C �/t dt D 1

2
.ˇ C �/.x2 � x21/:
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On the other hand, jW.u/j � 1 for all u by step 4. So

Z x1

0

Z t

0

jW.u/j du dt �
Z x1

0

t dt D 1

2
x21 :

Therefore
Z x

0

.x � u/jW.u/j duD
Z x1

0

.x � u/jW.u/j duC
Z x

x1

.x � u/jW.u/j du

� 1

2
.ˇ C �/x2 C 1

2
x21 :

Then by (77), jW.x/j � ˇ C � C x21
x2
C K3

x
. By definition of ˛, that means

˛ � ˇ C �; and since � can be chosen to be arbitrarily small, ˛ � ˇ. q.e.d.

10.7 Overview

The five proofs of the Prime Number Theorem considered here employ a wide range
of methodologies, including analytic continuation, Abel summation, Dirichlet con-
volution, contour integration, Fourier analysis, Laplace transforms, and Tauberian
theorems. They differ from one another in many respects, including the ways in
which the domain of definition of �.s/ is extended and whether or not recourse is
made to the functional equation for the �-function.

The proofs also exemplify several of the different motivations discussed in
Chapter 2. For example, Riemann’s program for proving the Prime Number The-
orem by examining the behavior of the complex �-function proposed bringing the
methods of complex analysis to bear on the seemingly remote field of number
theory; so the successful carrying out of that program by Hadamard and de la Vallée
Poussin may be deemed instances of benchmarking. And the marked differences
in the independent and nearly simultaneous proofs of the theorem that Hadamard
and de la Vallée Poussin gave — each of which was based upon the same corpus
of earlier work (especially Chebyshev’s results) and followed the same basic steps
in Riemann’s program (proving that �.s/ has no roots of the form 1 C it and then
applying complex contour integration to expressions involving � 0=�) — are surely
attributable to differences in their individual patterns of thought.

In the case of Hadamard, a further motive was that of correcting deficiencies in
Cahen’s earlier proof attempt. Indeed, at the beginning of section 12 of his memoir,
Hadamard noted explicitly that Cahen had claimed to have proved that �.x/ 	 x,
but that his demonstration was based on an unsubstantiated claim by Stieltjes (who
thought he had proved the Riemann Hypothesis). Nonetheless, Hadamard declared,
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“we will show that the same result can be obtained in a completely rigorous way”
via “an easy modification” of Cahen’s analysis.18

The modern descendants of those classical proofs illustrate how simplifications,
generalizations, and refinements of mathematical arguments gradually evolve and
are incorporated into later proofs. Examples include the proof that �.s/ has no
roots with real part equal to one, which was significantly shortened and simplified
through the use of a trigonometric identity; the deduction of the Prime Number
Theorem from a general Tauberian theorem, which showed it to be a particular
instance of a family of such theorems concerning Dirichlet series;19 and the use
in Newman’s proof of a contour integral that is much more easily evaluated than
the classical ones. Newman’s proof also exhibits economy of means with regard
to conceptual prerequisites, making it comprehensible to those having only a
rudimentary knowledge of complex analysis.

The ‘elementary’ proofs, on the other hand, are no simpler than the classical
analytic ones, are generally regarded as less perspicuous (giving little or no insight
into why the Prime Number Theorem is true), and do not yield as sharp error
bounds as those obtained by analytic means. The esteem nonetheless accorded
them by the mathematical community, as reflected in the prizes awarded to their
discoverers, may thus be taken as a quintessential manifestation of the high regard
mathematicians have for purity of method in and of itself.
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Chapter 11
The Irreducibility of the Cyclotomic
Polynomials

by
Steven H. Weintraub

The irreducibility of the cyclotomic polynomials is a fundamental result in algebraic
number theory that has been proved many times, by many different authors, in
varying degrees of generality and using a variety of approaches and methods of
proof. We examine these in the spirit of our inquiry here.

The cyclotomic polynomials were considered by Gauss, in the prime case, in
the seventh section of his Disquisitiones Mathematicae (Gauss 1801). This section
culminates in his famous result that a regular 17-gon, or, more generally, a regularp-
gon, where p is a Fermat prime (i.e., a prime of the form 22

mC1), is constructible by
ruler and compass. But he begins by considering these polynomials for an arbitrary
prime p. (Throughout this chapter p will denote a prime.) He does not name these
polynomials or introduce a notation for them, but we will use what is now standard
mathematical terminology and notation in our discussion.

We let �p D exp.2�i=p/ D cos.2�=p/ C i sin.2�=p/. Then for any positive
integer k, �kp D exp.2k�i=p/ D cos.2k�=p/ C i sin.2k�=p/. In particular, �kp ,
k D 0; : : : ; p � 1, are the p complex p-th roots of 1. (Of course, �0p D 1.) In other
words, they are all the complex roots of the polynomial xp � 1, whence xp � 1 D
.x � 1/.x � �p/ � � � .x � �p�1

p / and so .xp � 1/=.x � 1/ D .x � �p/ � � � .x � �p�1
p /.

By definition this is the p-th cyclotomic polynomial

ˆp.x/ D xp � 1
x � 1 D

p�1Y

kD1
.x � �kp/:

It is easy to write down ˆp.x/ explicitly. By elementary long division of
polynomials

ˆp.x/ D xp�1 C xp�2 C � � � C x C 1:
Gauss proves (Disquisitiones, article 341):

Theorem: For any prime p, the polynomial ˆp.x/ is irreducible, i.e., it is not the
product of two polynomials of lower degree with rational coefficients.

Let us remark now that in the course of his proof, Gauss uses a simplification of
the problem that is used by all his successors as well.

© Springer International Publishing Switzerland 2015
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Gauss had previously proved the following result, now universally known as
Gauss’s Lemma (Disquisitiones, article 42):

Lemma: Let f .x/ be a monic polynomial, i.e., a polynomial such that the coeffi-
cient of the highest power of x is 1, with integer coefficients. If f .x/ D g.x/h.x/

with g.x/ and h.x/ monic polynomials with rational coefficients, then g.x/ and
h.x/ have integer coefficients.

This lemma immediately implies that a monic polynomial f .x/ is irreducible
over the rationals if and only if it is irreducible over the integers (since if
f .x/ D g0.x/h0.x/ with g0.x/ and h0.x/ having rational coefficients, one could
multiply each of g0.x/ and h0.x/ by constants so that they become monic). Thus it
suffices to show that ˆp.x/ is not the product of two monic polynomials of lower
degree with integer coefficients.

We next see how to generalize the definition of the cyclotomic polynomials. To
do so, for an arbitrary positive integer n, we define � to be a primitive n-th root of 1
if n is the smallest positive integer such that �n D 1. Letting �n D exp.2�i=n/, it
is easy to see that the primitive n-th roots of 1 are the complex numbers �kn , where
k takes on all values between 0 and n � 1 that are relatively prime to n. Then we
define the n-th cyclotomic polynomial by

ˆn.x/ D
0Y

k

.x � �kn /

where the prime denotes that the product is taken over just those values of k.
In case n D p is prime, those are all values between 1 and n � 1, but for n

composite that is not the case. In general, there are '.n/ such values of k, where
'.n/ is the Euler totient function, so ˆn.x/ is a polynomial of degree '.n/.

If n D pr is a prime power, then an n-th root of 1 is either a primitive n-th root
of 1 or a (not necessarily primitive) pr�1-th root of 1, so in this case

ˆpr .x/ D xp
r � 1

xp
r�1 � 1 D x

pr�1 .p�1/ C xpr�1.p�2/ C � � � C xpr�1 C 1;

but for an arbitrary composite value of n, there is no simple formula for ˆn.x/.
However, there is an inductive way of finding ˆn.x/. Observe that if g is the

gcd of k and n, then �kn is a primitive n=g-th root of 1. Thus, letting d D n=g,
and observing that as g runs through the divisors of n, so does d , we see that every
n-th root of 1 is a primitive d -th root of 1 for some d dividing n. Once again, the
polynomial xn � 1 has as its roots all of the n-th roots of 1, so

xn � 1 D
n�1Y

kD0
.x � �kn /:
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Thus

xn � 1 D
Y

d dividing n

ˆd .x/

and so

ˆn.x/ D xn � 1
Q
d a proper divisor of n ˆd .x/

:

We then inductively see, from Gauss’s Lemma, that ˆn.x/ is a monic polynomial
with integer coefficients, for every positive integer n.

We make the following elementary observation, used without comment through-
out many of these proofs: If � is any n-th root of 1 other than 1 itself, then

1C � C �2 C � � � C �n�1 D �n � 1
� � 1 D 0

and of course, if � D 1, then

1C � C �2 C � � � C �n�1 D n:

The general theorem in this regard is then:

Theorem: For any positive integer n, the polynomialˆn.x/ is irreducible, i.e., it is
not the product of two polynomials of lower degree with rational coefficients.

Furthermore, again by Gauss’s Lemma, we observe that to prove this it suffices
to prove that ˆn.x/ is not the product of two monic polynomials of lower degree
with integer coefficients.

A second thread that runs through many of the proofs of this theorem is the use
of the Fundamental Theorem on Symmetric Polynomials.

Consider a monic polynomial f .x/ of degreem,

f .x/ D xm C am�1xm�1 C � � � C a1x C a0:

Let this polynomial have roots r1; : : : ; rm. Then

f .x/ D .x � r1/.x � r2/ � � � .x � rm/:
Then, expanding this polynomial, we see

xm C am�1xm�1 C � � � C a1x C a0 D xm � s1.r1; : : : ; rm/xm�1

C s2.r1; : : : ; rm/xm�2 � � � � C .�1/msm.r1; : : : ; rm/
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where sk.r1; : : : ; rm/ is the k-th elementary symmetric function in the roots
r1; : : : ; rm, that is, the sum of the k-fold products of distinct roots. (Thus
s1.r1; : : : ; rm/ D r1 C � � � C rm, s2.r1; : : : ; rm/ D r1r2 C � � � C rm�1rm, � � � ,
sm.r1; : : : ; rm/ D r1 � � � rm.) We see that the coefficients of f .x/ are up to sign
the values of the elementary symmetric polynomials in its roots; to be precise,
am�i D .�1/i si .r1; : : : ; rm/.

We call a polynomial in m variables symmetric if it is invariant under any
permutation of the variables. The second result we need is the Fundamental
Theorem on Symmetric Polynomials, which was first explicitly written down and
proved by Lagrange, but which certainly goes back much farther.

Theorem: Let f .x/ be a monic polynomial with rational (respectively, integer)
coefficients. Let g.x/ be any symmetric polynomial in the roots of f .x/ with rational
(respectively, integer) coefficients. Then g.x/ can be written as a polynomial in the
elementary symmetric polynomials of the roots of f .x/, and hence as a polynomial
in the coefficients of f .x/, with rational (respectively, integer) coefficients.

We now present Gauss’s proof that ˆp.x/ is irreducible (Gauss 1801,
article 341).

Gauss remarks that the result is trivial for p D 2 (since ˆ2.x/ D x C 1), so we
may assume p is odd.

Gauss begins with the following observation, which we shall single out as a
lemma. (Actually, he only observes it in the rational case, as he will use Gauss’s
Lemma to obtain the conclusion in the integral case for the polynomial he is
considering.)

Lemma: Let g.x/ be an arbitrary polynomial with rational (respectively, inte-
ger) coefficients. Let g.x/ have roots r1; : : : ; rm. For a positive integer k, set
gk.x/ D .x � rk1 / � � � .x � rkm/ (so that the roots of gk.x/ are the k-th powers of
the roots of g.x/). Then gk.x/ has rational (respectively, integer) coefficients.

To prove this, Gauss observes that the coefficients of gk.x/ are symmetric
functions in r1; : : : ; rm, so that this follows immediately from the Fundamental
Theorem on Symmetric Polynomials.

As the second step in his proof, Gauss makes the following observation. Let
'.x1; x2; x3; : : :/ be any polynomial with integer coefficients. Let � be any primitive
p-th root of 1. Then for any k1; k2; k3; : : :, writing the value

r1 D '.�k1; �k2 ; �k3 ; : : :/ D A0 C A1� CA2�2 C � � � C Ap�1�p�1

then for any integer t ,

rt D '.� tk1 ; � tk2 ; � tk3 ; : : :/ D A0 C A1�t C A2�2t C � � � C Ap�1�.p�1/t
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and also, in particular,

rp D '.�pk1 ; �pk2 ; �pk3 ; : : :/ D '.1; 1; 1; : : :/ D A0 C A1 C A2 C � � � C Ap�1

and so the sum r1 C r2 C � � � C rp D pA0 is divisible by p.
Now suppose that ˆp.x/ D f .x/g.x/ for nonconstant monic polynomials f .x/

and g.x/ with integer coefficients. Write

f .x/ D xd C ad�1xd�1 C � � � C a1x C a0:

Then f .x/ has d distinct roots, g.x/ has .p�1/�d distinct roots, and they have no
roots in common (as every root ofˆp.x/must be a root of one of these polynomials,

and the roots �p; �2p; : : : ; �
.p�1/
p of ˆp.x/ are all distinct).

Let F be the set of roots of f .x/ andG be the set of roots of g.x/. (Of course, we
are using anachronistic language here.) Let F 0 be the set of reciprocals of elements
of F , all of which are also primitive p-th roots of 1, and similarly for G0. Note that
for any primitive p-th root � of 1, its reciprocal is its complex conjugate. Also, since
p is odd, ��1 D � ¤ �.

We let f 0.x/ be the monic polynomial whose roots are the elements of F 0, and
observe that f 0.x/ D xd C .a1=a0/xd�1 C � � � C .ad�1=a0/x C .1=a0/.

Gauss distinguishes four cases.

Case 1: F D F 0. Then the roots of f .x/ occur in conjugate pairs, so f .x/ is a
product of d=2 factors each of the form

.x��/.x��/ D x2�.�C�/xC1 D x2�2x cos �C1 D .x�cos �/2Csin2 � > 0

for every real number x, where � D cos � C i sin � . Then q1 D f .1/ is a
positive integer. Set f1.x/ D f .x/ and let fk.x/ be the monic polynomial
whose roots are the k-th powers of the roots of f .x/, k D 1; : : : ; p � 1. By
the same argument, qk D fk.1/ is a positive integer for each k. Also, fp.x/ D
.x � 1/d so qp D fp.1/ D 0.

Denote the elements of F by �1; : : : ; �d . (Here the subscripts denote different
primitive p-th roots of 1.) Let '.x1; : : : ; xd / be the polynomial

'.x1; : : : ; xd / D .1 � x1/ � � � .1 � xd /:

Then qk D '.�k1 ; : : : ; �kd /, so by our previous observation

q1 C � � � C qp�1 D q1 C � � � C qp�1 C qp is divisible by p:

But also

f1.x/ � � �fp�1.x/ D ˆp.x/d
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as every primitive p-th root of 1 is a root of f1.x/ � � �fp�1.x/ of multiplicity d .
Hence, setting x D 1, we have

q1 � � �qp�1 D pd :

Since p is a prime, d < p � 1, and each qi is a positive integer, we must have
g of the integers q1; : : : ; qp�1 equal to 1 and the rest divisible by p, for some
g > 0, so

q1 C � � � C qp�1 � g 6� 0 .mod p/;

a contradiction.1

Case 2: F ¤ F 0 but T D F \ F 0 ¤ ;. Let t.x/ be the monic polynomial whose
roots are the elements of T . Then t.x/ is the greatest common divisor of f .x/
and f 0.x/. By the argument for case 1, t.x/ cannot have rational coefficients.
But f .x/ and g.x/ each have rational coefficients, hence so does their greatest
common divisor; contradiction.

Case 3: G \G0 ¤ ;. Applying the argument of case 1 or case 2 to the polynomial
g.x/ yields a contradiction.

Case 4: G D F 0 and F D G0. Then every primitive p-th root of 1 is a root of f .x/
or of f 0.x/, soˆp.x/ D f .x/f 0.x/. Setting x D 1 in the expressions for f .x/
and f 0.x/, and multipying through by a0, we obtain

a0p D .1C ad�1 C � � � C a0/2:

But f 0.x/ dividesˆp.x/, so has integer coefficients, and hence a0 D ˙1. This
gives that˙p is a perfect square, which is impossible. q.e.d.

There are two things to note about Gauss’s proof. First, it applies only to the
polynomialˆp.x/. Second, it is quite involved.

There matters stood for some time. But beginning in the 1840s, there was rapid
progress.

The next step was due to Kronecker (Kronecker 1845). As with Gauss, his proof
only applies to the polynomial ˆp.x/. But his explicit motivation was to give a
simpler proof of that important result.

Kronecker begins with the following lemma.

Lemma: Let f .x/ be an arbitrary polynomial with integer coefficients. Let �
be any primitive p-th root of 1. Then f .�/f .�2/ � � �f .�p�1/ is an integer and
f .�/ � � �f .�p�1/ � f .1/p�1 .mod p/.

1Since f .x/ is a polynomial with rational coefficients, if � is a root of f .x/, i.e., 0 D f .�/, then
0 D 0 D f .�/ D f .�/ D f .�/ D f .��1/, i.e., ��1 is also a root of f .x/. Thus Case 1 is the
only case that actually occurs. But Gauss does not make that observation.
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Proof: Observe that

f .�/f .�2/ � � �f .�p�1/

is a symmetric polynomial in �; : : : ; �p�1, so by the Fundamental Theorem on
Symmetric Polynomials it is a symmetric polynomial with integer coefficients in
the monic polynomial having �; : : : ; �p�1 as its roots. But that polynomial is just
ˆp.x/ D xp�1 C � � � C 1.

Now let e.x/ be the polynomial e.x/ D f .x/ � � �f .xp�1/ and consider
S DPp�1

iD0 e.�i /. On the one hand, we immediately see that

S D f .1/p�1 C .p � 1/f .�/f .�2/ � � �f .�p�1/:

On the other hand, write e.x/ DPn Anx
n. Since f .x/ has integer coefficients, e.x/

certainly has integer coefficients. Of course, �n D 1 whenever n is a multiple of p.
Also, whenever n is not a multiple of p, �n is a root of ˆp.x/ so 0 D ˆp.�

n/ D
.�n/p�1 C � � � C 1. Hence we see that S D P

n a multiple of p Anp. Thus f .1/p�1 C
.p � 1/f .�/f .�2/ � � �f .�p�1/ � 0 .mod p/ and the lemma follows.

Kronecker completes the proof as follows.
Suppose ˆp.x/ is not irreducible and write ˆp.x/ D f .x/g.x/, a product of

nonconstant polynomials. By Gauss’s lemma, f .x/ and g.x/ both have integer
coefficients. Then p D ˆp.1/ D f .1/g.1/. One of these factors must be ˙1,
so suppose f .1/ D ˙1. On the one hand, f .�k/ D 0 for some k that is nonzero
.mod p/ (as these are the roots ofˆp.x/), so f .�/ � � �f .�p�1/ D 0, but on the other
hand f .1/p�1 � 1 .mod p/, contradicting the above congruence.

The next step is due to Serret (Serret 1850), who proved the theorem in the prime
power case. The strategy of his proof is similar to that of Kronecker’s proof above,
and he begins with a lemma that generalizes Kronecker’s lemma.

Lemma: Let p be a prime and let f .x/ be a polynomial with integer coefficients
with f .1/ � 1 .mod p/. Then for any positive integer k,

Y
f .�/ � 1 .mod p/

where the product is taken over all primitive pk-th roots of 1.

Proof: Let Fn.x/ be the polynomial Fn.x/ D f .x/f .x2/ � � �f .xpn/. Let �k be

a (fixed but arbitrary) primitive pk-th root of 1. Then �k�j D �
pj

k is a primitive
pk�j -th root of 1 for j D 0; : : : ; k.
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On the one hand, writing Fk.x/ D A0 C A1x C � � � , we see just as before that

X
Fk.�/ � 0 .mod pk/;

where
P

denotes the sum over all the pk-th roots of 1.
On the other hand, since every pk-th root of 1 is a primitive pj -th root of 1 for

exactly one value of j between 0 and k,

X
Fk.�/ D

X

k

Fk.�/C
X

k�1
Fk.�/C � � � C

X

1

Fk.�/C
X

0

Fk.�/;

where
P

j denotes the sum over the primitive pj -th roots of 1. Now for any
j D 1; : : : ; k, there are exactly pj � pj�1 primitive pj -th roots of 1, so

X
Fk.�/ D .pk � pk�1/Fk.�k/C .pk�1 � pk�2/Fk�1.�k�1/p C � � �

C .p2 � p/F2.�2/pk�2 C .p � 1/F1.�1/pk�1 C f .1/pk :

Thus this sum is � 0 .mod pk/.
We now proceed by complete induction on k. For k D 1 this congruence is

.p � 1/F1.�1/C f .1/p � 0 .mod p/

which immediately gives

F1.�1/ � 1 .mod p/

and hence from the definition of the polynomial F1.x/,

Y
f .�/ � 1 .mod p/

in this case.
Now suppose F1.�1/ � 1 .mod p/; : : : ; Fk�1.�k�1/ � 1 .mod p/. Then the

above congruence yields the congruence

�pk�1Fk.�k/C.pk�1�pk�2/C.pk�2�pk�3/C� � �C.p�1/C1 � 0 .mod pk/:

(Here Serret uses without comment the following elementary fact, which is easy to
prove by induction: If a � 1 .mod p/ then ap

j � 1 .mod pjC1/ for every positive
integer j .) This sum telescopes, yielding the congruence

�pk�1Fk.�k/C pk�1 � 0 .mod pk/
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which immediately gives

Fk.�k/ � 1 .mod p/:

Now

Fk.�k/ D
Y

f .�/Fk�1.�k�1/

so

Y
f .�/ � 1 .mod p/

as claimed.

Given this lemma, the proof finishes as before. Supposeˆpk .x/ is not irreducible
and write ˆpk .x/ D f .x/g.x/, a product of nonconstant polynomials. By Gauss’s
lemma, f .x/ and g.x/ both have integer coefficients. Then p D ˆpk .1/ D
f .1/g.1/. One of these factors must be˙1, so suppose, multiplying f .x/ and g.x/
by�1 if necessary, that f .1/ D 1. Then

Q
f .�/ � 1 .mod p/, which is impossible

as f .x/ has some primitive pk-th root of 1 as a root, so this product is 0.

Kronecker proved the general case in 1854; we discuss it below. But he returned
to the prime case in 1856 and gave a proof that is even simpler than his 1845 proof.
The title of his paper (Kronecker 1856) only refers to the prime case, but the proof,
as he observed in the last sentence of the paper, extends without essential change to
the prime power case. For simplicity, we will follow him in just giving the proof in
the prime case.

Suppose then that ˆp.x/ is not irreducible and write ˆp.x/ D f .x/g.x/, a
product of nonconstant polynomials. By Gauss’s lemma, f .x/ and g.x/ both have
integer coefficients. Then p D ˆp.1/ D f .1/g.1/. One of these factors must be
˙1, so suppose f .1/ D ˙1.

For each k D 1; : : : ; p � 1, let mk be a positive integer with kmk � 1 .mod p/.
Let � be a root of f .x/. Then f .�kmk / D f .�/ D 0 so x D �k is a root of the
polynomial f .xmk /, i.e., x � �k divides f .xmk /. Hence the product

e.x/ D f .xm1/ � � �f .xmp�1 /

is divisible by

.x � �/ � � � .x � �p�1/ D ˆp.x/ D xp�1 C � � � C 1:

By Gauss’s Lemma, the quotient q.x/ D e.x/=ˆp.x/ is a polynomial with
integer coefficients. In particular q.1/ is an integer. But e.1/ D f .1/p�1 D .˙1/p�1
while ˆp.1/ D p, a contradiction.

(In case n D pr is a prime power, the argument goes through by letting k range
over the integers from 1 to n � 1 that are relatively prime to p, and using the fact
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that ˆpr .x/ D xp
r�1.p�1/ C xpr�1.p�2/ C � � � C xpr�1 C 1, from which once again

we see ˆpr .1/ D p.)
This is evidently both a simplification and a generalization of Kronecker’s earlier

argument, but it is in very much the same spirit. In particular, the polynomial we
have denoted e.x/ is the same polynomial in each of those proofs.

(Note that this proof cannot be generalized further, as if n is not a prime power
ˆn.1/ D 1, as is easy to show and as Kronecker undoubtedly knew.)

One can only suppose that Kronecker’s motivation for this 1856 proof was to give
as simple a proof as possible. For the prime case, it is indeed simpler than his earlier
proof, though not as simple as, and less general than, proofs given by Schönemann
(in 1846) and Eisenstein (in 1850). For the prime power case, it is simpler than
Serret’s argument, and much simpler than his own proof for the general composite
case.

As of 1846, only the prime case was known, by Gauss’s original proof and Kro-
necker’s simpler, but still complicated, proof. At that point Schönemann entered the
story. He wrote a long paper (Schönemann 1846) in which he investigated polynomi-
als with integer coefficients, and developed a simple and general criterion for such a
polynomialf .x/ to be irreducible when reduced .mod p2/, wherep is a prime. It is:

Lemma: Let f .x/ be a polynomial of degree k with integer coefficients. Suppose
that, for some prime p and some integer a,

f .x/ D .x � a/k C pg.x/

for some polynomial g.x/ with integer coefficients with g.a/ not divisible by p.
Then f .x/ is irreducible .mod p2/, (i.e., there do not exist polynomials with integer
coefficients h.x/ and k.x/ with f .x/ � h.x/k.x/ .mod p2/).

Schönemann explicitly states that he wants to show the power of his criterion (a
clear case of benchmarking), and to do so he observes that his criterion applies to
show that the .mod p2/ reduction of ˆp.x/ is irreducible: ˆp.x/ D .x � 1/p�1 C
pg.x/ for some polynomial g.x/ and, setting x D 1, p D ˆp.1/ D pg.1/ so
g.1/ D 1. (He makes the first claim without further comment, but the justification
for it is the observation that, by the binomial theorem, .x � 1/p D xp C
cp�1xp�1 � � � C � � � C c1x C .�1/p with all the coefficients cp�1; : : : ; c1 divisible
by p. Hence xp�1 D .x�1/pCpg0.x/ for some polynomial g0.x/. Setting x D 1
we see that g0.1/ D 0, so the polynomial g0.x/ is divisible by the polynomial x�1,
say g0.x/ D .x � 1/g.x/ for some polynomial g.x/. Then

ˆp.x/ D .xp � 1/=.x � 1/ D .x � 1/p�1 C pg.x/:

as claimed.) This immediately implies (as he observes), that ˆp.x/ is irreducible
over the integers, and hence, by Gauss’s Lemma, over the rationals as well.

In 1850, Eisenstein appeared on the scene. In his paper (Eisenstein 1850)
he investigated polynomials with coefficients in the “Gaussian integers” Z.i/
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rather than in the (ordinary) integers, and developed an irreducibility criterion.
He too stated that he wanted to show the power of his criterion (another case of
benchmarking), and so he applied it to the polynomialˆp.x/ over the integers. His
(well-known) criterion is:

Lemma: Let f .x/ D anxnC� � �Ca1xCa0 with integer coefficients. Suppose that,
for some prime p, an is not divisible by p, an�1; : : : ; a1 are all divisible by p, and
a0 is divisible by p but not by p2. Then f .x/ is irreducible over the integers.

Proof: Suppose that f .x/ D g.x/h.x/ where g.x/ and h.x/ have integer
coefficients. Let g.x/ D bkx

k C � � � C b0 and h.x/ D cmx
m C : : : C c0. Then

neither bk nor cm is divisible by p. Since a0 is divisible by p but not p2, exactly one
of b0 and c0 is divisible by p; suppose that one is b0. We proceed inductively. First,
a1 D b0c1 C c0b1. Since a1 and b0 are divisible by p, and c0 is not, b1 is divisible
by p. Next, a2 D b0c2 C b1c1 C b2c0. Since a2, b1, and b0 are divisible by p, and
c0 is not, b2 is divisible by p. Continuing in this fashion, we eventually conclude bk
is divisible by p, a contradiction.

The proof of this lemma could hardly be easier. It does not apply immediately
to ˆp.x/, but, as Eisenstein observed, it can be made to do so by a simple trick.
The polynomial f .x/ is irreducible if and only if the polynomial f .x C 1/ is. But

ˆp.x C 1/ D .x C 1/p � 1
.x C 1/� 1

D ..xp C pxp�1 C � � � C pxC 1/� 1/
x

D xp�1 C pxp�2 C � � � C p

where, by the binomial theorem, all the omitted coefficients are divisible by p.
Thus ˆp.x C 1/ is irreducible, and so ˆp.x/ is as well.

We have not given the proof of Schönemann’s irreducibility criterion, as it is
essentially the same as Eisenstein’s. In fact, the two criteria are equivalent—either
one may be easily derived from the other (and so they apply to exactly the same
polynomials). As to why Eisenstein published a result that was essentially the same
as Schönemann’s, it seems that he was simply unaware of Schönemann’s work and
independently (re)discovered the result.

Now we turn to the general case. Just as the first proof in the prime case, that of
Gauss, was quite complicated and was later simplified, the first proof in the general
case, that of Kronecker (1854), was also quite complicated and was later simplified.
We give that proof next.

Proof: Let n D pk11 pk22 pk33 � � � be the prime factorization of n. Write n D mpk with
m relatively prime to p. Kronecker proceeds inductively, first proving the following
claim.
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Theorem: The polynomial ˆpk .x/ D xp
k C x.p�1/pk�1 C � � � C xp C 1 cannot

be factored into two polynomials of lower degree whose coefficients are rational
functions of the m-th roots of 1, with rational coefficients, as long as m is relatively
prime to p.

Proof: For simplicity, let q D pk . Also, abbreviate polynomial with integer
coefficients by integer polynomial.

Let f .x/ D ˆq.x/ and let � be a primitive q-th root of 1. Suppose
f .x/ D '.x/ .x/ where '.x/ and  .x/ are polynomials with coefficients rational
functions of ˛, where ˛ is a primitive m-th root of 1 with p not dividing m. Since
f .x/ is monic we may assume that '.x/ and  .x/ are monic.

Write

'.x/ D .x � �h1 /.x � �h2/ � � � ;  .x/ D .x � �i1/.x � �i2/ � � � :

Write

'.1/ D a0 C a1˛ C � � � C ar�1˛r�1
M

D A.˛/

M
;

 .1/ D b0 C b1˛ C � � � C br�1˛r�1
N

D B.˛/

N
;

where r is the degree of 
.x/, the monic polynomial of lowest degree having ˛
as a root (in fact, by induction, 
.x/ D ˆm.x/, but Kronecker does not use, or
even mention, that fact), a0; : : : ; ar�1 and M are integers with M relatively prime
to a0; : : : ; ar�1, and b0; : : : ; br�1 and N are integers with N relatively prime to
b0; : : : ; br�1. Thus A.x/ and B.x/ are polynomials with integer coefficients.

(Here Kronecker uses without comment the fact that any rational function
p.˛/=q.˛/ is a polynomial in ˛. To see this, note that, since q.˛/ ¤ 0, the
polynomial q.x/ is relatively prime to the polynomial 
.x/ (since 
.x/, being
of lowest degree, is irreducible), so there are polynomials a.x/ and b.x/ with
1 D q.x/a.x/ C 
.x/b.x/. Setting x D ˛, we obtain 1=q.˛/ D a.˛/ and then
p.˛/=q.˛/ D p.˛/a.˛/ is a polynomial.)

Since f .1/ D p we have

A.˛/B.˛/ D pMN:

Consider the first factor '.x/. Setting x D 1 in the definition of '.x/ we have
'.1/ D .1 � �h1/.1 � �h2/ � � � . Then, by the binomial theorem, '.1/q D pY.�/
for some integer polynomial Y.x/. (The only terms in .1 � �h/p that do not have a
coefficient divisible by p are the first and the last, which give 1C .�1/q , which is 0
for p odd and 2 for p D 2.)
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Then the equation

.z� pY.�//.z� pY.�2// � � � .z� pY.�q// D 0

has z D '.1/q as a root. Expand the left-hand side in powers of z. The coefficient
of the highest power of z is 1. Every other term is symmetric in �; : : : ; �q , that is,
in the roots of xq � 1 D 0, multiplied by powers of p. Thus (by the Fundamental
Theorem on Symmetric Polynomials) the coefficients of that polynomial are integer
polynomials in the coefficients of xq�1, hence integers themselves. So the equation
takes the form

zq C pu1z
q�1 C p2u2zq�2 C � � � C pquq D 0

for some integers u1; : : : ; uq . Substitute in this equation the root z D '.1/q D
A.˛/q=Mq, solve for the high-order term and clear the denominator, to con-
clude that

A.˛/q
2 D pC.˛/

for some integer polynomial C.x/. Then, since A.˛/ D M'.1/, we see that there
is an expression of this form for A.˛/s for any s � q2. Choose j such that pj � q2
and pj � 1 .mod m/, which is certainly possible as p is relatively prime to m. We
thus obtain an expression of the form

A.˛/p
j D pD.˛/

for some integer polynomialD.x/. Referring to our expression for A.˛/, and using
the multinomial theorem, we have

A.˛/p
j D apj0 C ap

j

1 ˛
pj C apj2 ˛2p

j C � � � C apjr�1˛.r�1/p
j C pE.˛/

for some integer polynomial E.x/. But pj � 1 .mod m/, so ˛p
j D ˛. Thus this

expression becomes equal to

pD.˛/ D A.˛/pj D apj0 C ap
j

1 ˛ C ap
j

2 ˛
2 C � � � C apjr�1˛.r�1/ C pE.˛/

so

a
pj

0 C ap
j

1 ˛ C ap
j

2 ˛
2 C � � � C apjr�1˛.r�1/ D pE.˛/ � pD.˛/ D pG.˛/

for some integer polynomial G.x/. Now G.x/ is a polynomial of unknown degree.
But ˛ is a root of the polynomial xm � 1, and is a root of the irreducible monic
polynomial 
.x/, so 
.x/ divides xm � 1, and therefore, by Gauss’s Lemma, 
.x/
is an integer polynomial. This implies thatG.˛/ has a unique expression of the form
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G.˛/ D g0 C g1˛ C � � � C gr�1˛r�1:

(
.x/ is monic, so by the division algorithm G.x/ D 
.x/Q.x/ C R.x/ for
unique integer polynomials Q.x/ and R.x/ with R.x/ a polynomial of degree
less than r . Substitute x D ˛ to obtain G.˛/ D R.˛/. That shows existence;
uniqueness follows, for if we had two distinct expressions, their difference would be
a polynomial expression in ˛ of degree less than r whose value is 0, contradicting
the minimality of r .)

Comparing the two expressions we have derived, we see

a
pj

0 D pg0; a
pj

1 D pg1; ; : : : ; a
pj

r�1 D pgr�1:

Hence each of the integers a0; : : : ; ar�1 is divisible by p, and so A.x/=p is an
integer polynomial.

Applying the same argument to the second factor  .x/, we see that B.x/=p is
also an integer polynomial. Hence so is their productH.x/ D .A.x/=p/.B.x/=p/.
From the equation A.˛/B.˛/ D pMN we then conclude

pH.˛/ D MN:

As with G.˛/ above,H.˛/ has a unique expression in powers of ˛ less than r ,

H.˛/ D h0 C h1˛ C � � � C hr�1˛r�1

with h0; : : : ; hr�1 integers. Then, substituting,

p.h0 C h1˛ C � � � C hr�1˛r�1/ D MN:

By the uniqueness of the expression, we must have

ph0 D MN; h1 D � � � D hr�1 D 0:

In particular, at least one of M and N is divisible by p.
But, as we have seen, each of a0; : : : ; ar�1 and b0; : : : ; br�1 is divisible by p,

so either M is not relatively prime to a0; : : : ; ar�1 or N is not relatively prime to
b0; : : : ; br�1, a contradiction.2

2In general, if F is a field, then the degree ŒF.
/ W F� of the extension F.
/ of F is equal to
the degree of the (unique monic) polynomial of lowest degree with coefficients in F having 

as a root, or equivalently the (unique monic) irreducible polynomial over F having 
 as a root.
Thus if �n and �m denote primitive n-th and m-th roots of 1, respectively, this theorem shows that
ŒQ.�n/ W Q.�m/� D pr�1.p � 1/ D '.pr/. Using induction and the multiplicativity of degrees of
field extensions, this result immediately implies the irreducibility of ˆn.x/: ŒQ.�n/ W Q� D '.n/,
and since ˆn.�n/ D 0 and ˆn.x/ has degree '.n/, then ˆn.x/ must be irreducible. However,
Kronecker does not use this argument.
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Given this claim, Kronecker proceeds to show that ˆn.x/ is irreducible, as
follows:

Let the primitive n-th roots of 1 be �1; : : : ; �t , the primitive q-th roots of 1
be �1; : : : ; �s , and the primitive m-th roots of 1 be ˛1; : : : ; ˛r . Then for each k,
�k D �i˛j for some unique i; j (and t D sr). Thus

ˆn.x/ D
Y

k

.x � �k/ D
Y

.i;j /

.x � �i˛j / D
Y

j

 
Y

i

.x � �i˛j /
!

D f1.x/ � � �fr.x/:

Let f .x/ D Q
i .x � �i / D 1 C xp

k�1 C x2p
k�1 C : : : C x.p�1/pk�1

. Note that
the polynomial f .x=˛j / has the same roots as the polynomial fj .x/ (namely
�1˛j ; : : : ; �s˛j /, so they differ by a constant factor. Thus

ˆn.x/ is a constant multiple off .x=˛1/ � � �f .x=˛r /:
We will show that ˆn.x/, of degree t D sr , is irreducible by showing that any
nonconstant factor of it has degree t . Suppose that '.x/ is a factor of ˆn.x/.
As a factor of that product, it has a root in common with one of those polynomials.
Let the root be �1˛1. Then '.�1˛1/ D 0 and f .x=˛1/ D 0. Since the polynomials
'.x/ and f .x=˛1/ have a common root, those polynomials have a common factor
'.˛1; x/, a nonconstant monic polynomial in x with coefficients rational functions
of ˛1. Write f .x=˛1/ D '.˛1; x/ .˛1; x/ and substitute x D ˛1z to obtain

f .z/ D '.˛1; ˛1z/ .˛1; ˛1z/:

But by the first step in the proof, f .z/ cannot have a factor of this form of lower
degree. Hence '.˛1; x/ D f .x=˛1/ and so

'.x/ D f .x=˛1/ .˛1; x/:

But now, because ˛1; : : : ; ˛r are roots of the same polynomial 
.x/, which, by
the inductive hypothesis, is irreducible, we have that '.x/ D f .x=˛i / .˛i ; x/

for every i D 1; : : : ; r , i.e., that '.x/ is divisible by f .x=˛1/; : : : ; f .x=˛r /. (To
see this, observe that the equality '.x/ D f .x=˛1/ .˛1; x/ is equivalent to a
collection of identities of the form �.˛1/ D 0, with �.x/ a polynomial with rational
coefficients, one for each coefficient of '.x/. But �.˛1/ D 0 is equivalent to the
polynomial �.x/ being divisible by the polynomial 
.x/, which is equivalent, for
each i , to �.˛i / D 0.) These polynomials have no common root (since their roots
are roots of the polynomial xn � 1, which has no multiple roots), and consequently

'.x/ is divisible by the product f .x=˛1/ � � �f .x=˛r/

so '.x/ has degree t , as claimed.
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Finally, Kronecker remarks that, although this argument is for the inductive step,
it also starts the induction, as we may choosem D 1 (whence ˛ D 1).

(Of course, the argument simplifies quite a bit in this case. Examining this
simplification, we see it is an alternate to Kronecker’s 1856 proof. Roughly
speaking, the proofs have similar levels of difficulty—the key in each is to come
up with the right polynomial to consider.)

Evidently because of the importance of this result, Kronecker chose to prove it
separately. But in the same paper he showed how to generalize his argument further
to prove the following result: Let ˛ be a root of a monic polynomial with integer
coefficients whose determinant is relatively prime to n. Then ˆn.x/ is irreducible
over the field Q.˛/. (Nowadays this quantity is called the discriminant. It is, by
definition, the square of the product of the differences of the distinct roots of the
polynomial. For the polynomial xm � 1 it is, as Kronecker knew but did not bother
to remark, equal to ˙mm.)

Kronecker’s proof was simplified a few years later by his Berlin colleague Arndt,
who, in the introduction to his paper (Arndt 1859), entitled “Einfacher Beweis . . . ”
(Simple proof . . . ) wrote that that theorem was so important that it deserved another
proof.

Arndt began his proof with an observation similar to the one with which Gauss
began his. To be precise, he strengthened Gauss’s observation for the special case
he needed.

Lemma: Let g.x/ be an arbitrary polynomial with integer coefficients. Let g.x/
have roots r1; : : : ; rm. For a positive integer k, set gk.x/ D .x � rk1 / � � � .x � rkm/
(so that the roots of gk.x/ are the k-th powers of the roots of g.x/). Suppose that
k D pe is a power of the prime p. Then gk.x/ has integer coefficients and
furthermore gk.x/ � g.x/ .mod p/.

Proof: Suppose that k D p. The coefficients of g.x/ are, up to sign, si D
si .r1; : : : ; rm/, the elementary symmetric polynomials in the roots of g.x/. Simi-
larly, the coefficients of gp.x/ are, up to sign, Qsi D si .r

p
1 ; : : : ; r

p
m/, the elementary

symmetric polynomials in the roots of gp.x/. Thus we must show

Qsi � si .mod p/ for each i:

By the multinomial theorem,

s
p
i D Qsi C pq.r1; : : : ; rm/

for some polynomial q.r1; : : : ; rm/ with integer coefficients, hence some integer
polynomial in s1; s2; : : : . Hence spi � Qsi .mod p/. But by Fermat’s Little Theorem,
ap � a .mod p/ for every integer a, and so

si � spi � Qsi .mod p/

as claimed.



11 The Irreducibility of the Cyclotomic Polynomials 165

Now proceed inductively. If k D p2, then gp2.x/ � gp.x/ � g.x/

.mod p/, etc.

Arndt also proceeds by induction on the number of prime factors of n.
The first case is n D pe for some prime p. Suppose thatˆn.x/ is not irreducible.

Then ˆn.x/ D f .x/g.x/, a product of nonconstant monic polynomials of positive
degrees a and b.

Consider the polynomial fn.x/ (in the notation of the above lemma). On the
one hand, every root � of f .x/ is an (primitive) n-th root of 1, so directly from its
definition, fn.x/ D .x � 1/a. On the other hand, by that lemma, fn.x/ � f .x/

.mod p/. Thus

f .x/ D .x � 1/a C pq.x/

for some polynomial q.x/ with integer coefficients. By the same logic,

g.x/ D .x � 1/b C pr.x/

for some polynomial r.x/ with integer coefficients. Multiplying, we obtain

ˆn.x/ D .x � 1/aCb C pq.x/.x � 1/b C pr.x/.x � 1/a C p2q.x/r.x/:

Setting x D 1 and dividing the resulting equation by p, we obtain

1 D pq.1/r.1/;

which is impossible.
Now for the inductive step. Let n D pem with m relatively prime to p and

assume that ˆm.x/ is irreducible. Set h.x/ D ˆn.x/ and k.x/ D ˆm.x/, for
simplicity. Every root � of h.x/ is a primitive n-th root of 1, and so for any such
�, �p

e
is a primitive m-th root of 1, i.e., a root of k.x/, and all occur equally often.

Thus hpe .x/ D k.x/c for some c. (Counting degrees, we see c D pe .)
Suppose that h.x/ is not irreducible. Then h.x/ D f .x/g.x/, a product of

nonconstant monic polynomials of positive degrees. Then, by the same argument,
fpe .x/ and gpe .x/ both divide k.x/c . Since we are assuming that k.x/ is irreducible,
we must have fpe .x/ D k.x/a and gpe .x/ D k.x/b for some positive integers a and
b. Now, again by the above lemma, we have fpe .x/ � f .x/ .mod p/ and similarly
for gpe .x/. Thus

f .x/ D k.x/a C pq.x/

for some polynomial q.x/ with integer coefficients. By the same logic,

g.x/ D k.x/b C pr.x/
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for some polynomial r.x/ with integer coefficients. Multiplying, we obtain

ˆn.x/ D k.x/aCb C pq.x/ˆm.x/
b C pr.x/ˆm.x/

a C p2q.x/r.x/:

Letting x D � be an arbitrary (but fixed) primitivem-th root of ˆm.x/, we obtain

z D ˆn.�/ D p2q.�/r.�/:

To determine the value of z, observe that not only is the polynomial xn � 1 divisible
by the polynomials xn=p � 1 and ˆn.x/, but also by their product, since they have
no roots in common. Thus

xn � 1
xn=p � 1 D ˆn.x/s.x/

for some polynomial s.x/ with integer coefficients. Now .xn � 1/=.xn=p � 1/ D
.xn=p/p�1 C .xn=p/p�2 C � � � C xn=p C 1. Also, m divides n=p, so �n=p D 1. Thus,
setting x D � in the above equation we obtain

p D zs.�/

and then from the previous equation we obtain

1 D pq.�/r.�/s.�/:

Now, since ˆm.x/ is irreducible of degree d D '.m/, the product q.�/r.�/s.�/
can be expressed uniquely as c0 C c1� C � � � C cd�1�d�1 for some rational numbers
c0; : : : ; cd�1, and, becauseˆm.x/ is monic, c0; : : : ; cd�1 are integers. But this yields

0 D �1C pc0 C pc1� C � � � C pcd�1�d�1;

which (again by the uniqueness of the expression) yields 1 D pc0; which is
impossible.

The proofs given so far are quite different in detail, but follow common threads.
The next proof of the general case, due to Dedekind (1857), introduced a completely
new approach.

Before giving Dedekind’s proof, we remark that the proofs that follow all work
directly over the field of rational numbersQ (or, more precisely, over the integersZ).
Except for Landau’s, they proceed by showing that if f .x/ is any irreducible factor
of ˆn.x/, � is any root of f .x/, and p is any prime not dividing n, then �p is also
a root of f .x/ (since any primitive n-th root of 1 may be obtained from any given
one by successively taking prime powers). Landau shows that, in this situation, �k

is a root of f .x/ for any k relatively prime to n, but he does this in an indirect way,
actually showing that for any such k, �m is a root of f .x/ for somem � k .mod n/.

Here then is Dedekind’s proof.
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Proof: Let f .x/ be an irreducible factor of ˆn.x/ of positive degree, and suppose
that there is some � with f .�/ D 0, but f .�p/ ¤ 0 for some p not dividing n.
By Gauss’s Lemma, f .x/ has integer coefficients. Let f1.x/ D f .x/ D .x �
�1/ � � � .x � �k/, where �1 D �, and consider fp.x/ D .x � �p1 / � � � .x � �pk /. Then,
by the lemma above, g.x/ D fp.x/ is a polynomial with integer coefficients and
fp.x/ � f1.x/ .mod p/.

The polynomial g.x/ is also irreducible. To see this, suppose g.x/ has a proper
factor h.x/ of positive degree. Let q be an integer with pq � 1 .mod p/, and
observe that �pq D �. Then gq.x/ D fpq.x/ would be a polynomial of lower degree
than f .x/ having � as a root, contradicting the irreducibility of f .x/.

Also, g.x/ ¤ f .x/ as g.�p/ D 0 but f .�p/ ¤ 0.
Since f .x/ and g.x/ are distinct irreducible polynomials, each of which divides

m.x/ D xn � 1, their product f .x/g.x/ dividesm.x/.
Then f .x/g.x/ dividesm.x/, where the overline denotes the .mod p/ reduction.

But g.x/ D f .x/ so f .x/2 divides m.x/, which is impossible as m.x/ and its
formal derivativem 0.x/ D nxn�1 are relatively prime.

There is a simplification of this proof that uses exactly the same approach, but
avoids the use of symmetric functions. That proof can be found in van der Waerden’s
famous (and influential) algebra text (van der Waerden 1931).

Proof: Let f .x/ be as above and let g.x/ be an irreducible polynomial with
g.�p/ D 0. Then � is a root of the polynomial g.xp/. But f .x/ is irreducible,
which implies that f .x/ divides g.xp/. Reducing .mod p/, we have that f .x/
divides g.xp/. But by the multinomial theorem, g.xp/ � g.x/p .mod p/. Thus
f .x/ divides g.x/p , which implies that f .x/ and g.x/ have a common irreducible
factor h.x/. But then, by the same argument as above, h.x/2 dividesm.x/, which is
impossible for the same reason.

A proof along different lines was given by Landau in 1929 (Landau 1929). He
evidently wanted to give as simple a proof as possible, since his proof takes exactly
eight lines in the original. However, Landau’s style was famously terse, and to
explicate his proof takes quite a bit longer. Here is Landau’s proof.

Proof: While, strictly speaking, the degree of the 0 polynomial is undefined, we
adopt the convention in this proof that the 0 polynomial has degree less than d for
any positive integer d , to eliminate some cumbersome language.

Suppose that f .x/ is an irreducible polynomial with integer coefficients with
f .�/ D 0, where � is some n-th root of 1. Let f .x/ have degree d . By the division
algorithm for polynomials, for each j D 0; : : : ; n�1, f .xj / D f .x/qj .x/C rj .x/
for unique polynomials qj .x/ and rj .x/, where rj .x/ is a polynomial of degree less
than d . Since the value of �j only depends on j .mod n/, we have a finite set of
polynomials fr0.x/; : : : ; rn�1.x/g such that, for any integer j , f .�j / D r.�/ for
r.x/ some polynomial in this set. Also, if s.x/ is any polynomial of degree less than
d with s.�j / D 0, then we must have s.x/ D r.x/, as otherwise s.x/� r.x/ would
be a nonzero polynomial of degree less than d which has � as a root, and that would
contradict the irreducibility of f .x/.
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In particular, for any prime p,

f .�p/ D f .�p/ � 0 D f .�p/ � f .�/p D r.�/

for some polynomial r.x/ in this set (more precisely, for r.x/ D rj .x/

where j � p .mod n/, 0 � j � n � 1). By the multinomial theorem,
f .xp/ � f .x/p .mod p/, so f .xp/ � f .x/p D pg.x/ for some polynomial g.x/
with integer coefficients. There is a unique polynomial h.x/ of degree less than d
with h.�/ D g.�/, the polynomial obtained from the division algorithm, writing
g.x/ D f .x/u.x/Ch.x/ (where the uniqueness again comes from the irreducibility
of f .x/). Thus r.�/ D pg.�/ D ph.�/ so we must have r.x/ D ph.x/, again
because r.x/ and ph.x/ each have degree less than d . Thus all of the coefficients of
r.x/ are divisible by p, so in particular, each coefficient is either 0 or has absolute
value at least p. Hence if A is the largest absolute value of the coefficients of all
of the polynomials fr0.x/; : : : ; rn�1.x/g, we must have r.x/ D rj .x/ D 0 (the 0
polynomial), for any prime p > A, so f .�p/ D r.�/ D 0 for any such prime.
Applying this argument repeatedly, we conclude that f .�m/ D 0 for any integer m
all of whose prime factors are greater than A.

Now let k be any integer relatively prime to n. Set

m D k C n
Y

q ;

where the product is taken over all primes � A that do not divide k. We claim that
m is an integer of this form. To see this, let p be any prime with p � A. There are
two possibilities:

(1) If p divides k, then p is not one of the factors in the product, and p does not
divide n (since k and n are relatively prime), so p divides the first term in the
sum but not the second, and hence p does not dividem.

(2) If p does not divide k, then p is one of the factors in the product, so p divides
the second term in the sum but not the first, and hence p does not dividem.

Now m � k .mod p/, so

f .�k/ D f .�m/ D 0

for any integer k relatively prime to n; hence, f .x/ D ˆn.x/ and ˆn.x/ is
irreducible.

Schur (1929) countered Landau’s proof with a one-page proof that was almost as
simple, and which appeared on the next page of the same journal in which Landau’s
proof appeared. The idea of using the discriminant goes back to Kronecker, but
Schur used that idea in a much more effective way (making more use of algebraic
number theory).
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Proof: Let f .x/ be an irreducible factor of xn � 1 of positive degree, let �1 be
a root of f .x/, and let p be relatively prime to n. (Of course, f .x/ has integer
coefficients, by Gauss’s Lemma.) We claim that � D �

p
1 is also a root of f .x/.

Suppose not. Now f .z/ D .x � �1/ � � � .x � �k/ for some n-th roots �1; : : : �k of 1.
Then 0 ¤ f .�/ D .� � �1/ � � � .� � �k/, so f .�/ divides the discriminant˙nn of the
polynomialxn�1 (as the discriminant is the product of the squares of the differences
of all of the roots of xn � 1, and f .�/ is the product of the differences of some of
the roots). However, by the multinomial theorem, f .xp/ � f .x/p .mod p/, so
f .�p/ � f .�/p � 0 .mod p/, where this congruence is to be understood in the
algebraic integers. But this congruence means that p divides f .�/, so that would
imply that p divides nn (in the algebraic integers, and hence in the rational integers),
which it does not.

(To make this exposition self-contained, we shall calculate the discriminant �
of the polynomial xn � 1, up to sign. Let � D exp.2�i=n/. The polynomial
h.x/ D .xn � 1/=.x � 1/ D xn�1 C : : : C 1 has roots �; : : : ; �n�1, so
h.x/ D Qn�1

kD1.x � �k/ and so n D h.1/ D Qn�1
kD1.1 � �k/. Then

� D
Y

i<j

.�i � �j /2 D ˙
Y

i¤j
.�i � �j / D ˙

Y

i¤j
�i .1 � �j�i /

D ˙
Y

i

�i

 
n�1Y

kD1
.1 � �k/

!

D ˙
Y

i

�i .n/ D ˙nn:

Schur simply assumes his readers know this fact.)

11.1 Summary

In this chapter we can see many of the rationales for giving alternative proofs that
we have adduced. The theorem that the n-th cyclotomic polynomial is irreducible
was first proved in the prime case, then the prime power case, then in general.
Moreover, the latter is a very substantial generalization (not just the removal of
some technical hypothesis), and an important one, in that the result for general
n plays a foundational role in algebraic number theory and field theory. The first
proofs for the prime and general cases (Gauss’s and Kronecker’s) were both quite
involved, and so we see successors aiming to simplify those proofs and make them
more perspicuous. In the prime case, we have the Schönemann-Eisenstein criterion,
a criterion applicable to a large class of polynomials, not just to ˆ.x/ (for example,
it immediately shows that the polynomial xn � p is irreducible for any n and any
prime p), but we see Schönemann and Eisenstein each demonstrating the utility of
the criterion by applying it to give an easy derivation of the irreducibility of ˆp.x/.
Finally, in the later proofs of the irreducibility of ˆn.x/ in general, we see proofs
from a variety of quite different standpoints.
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Chapter 12
The Compactness of First-order Languages

12.1 Background

A first-order formal language L (with identity) is characterized by disjoint
(possibly empty) sets CL of constant symbols, Rn

L of n-place relation symbols
(n � 1) and FnL of n-place function symbols (n � 1) — collectively constituting
the non-logical symbols of the language — together with the following logical
symbols:

(i) a denumerable set VL of variable symbols
(ii) the unary connective : (denoting negation)

(iii) the binary connective _ (denoting disjunction)
(iv) the binary connective ^ (denoting conjunction)
(v) the existential quantifier 9

(vi) the universal quantifier 8
(vii) the binary relation symbolD (denoting identity).

The syntax of any such language is determined by the following stipulations: An
expression is any finite concatenation of symbols of the language. Constant symbols
and variable symbols are terms, as is any expression of the form f �1�2 : : : �n, where
f is an n-place function symbol and �1; �2; : : : ; �n are terms. Atomic formulas are
expressions of the form R�1�2 : : : �n or D �1�2, where R is an n-place relation
symbol and �1; �2; : : : ; �n are terms. An expression is a formula if and only if it
is either

(a) an atomic formula
(b) of the form :�, where � is a formula
(c) of the form _�1�2, where �1 and �2 are formulas
(d) of the form ^�1�2, where �1 and �2 are formulas
(e) of the formD �1�2, where �1 and �2 are formulas
(f) of the form 9v�, where v is a variable symbol and � is a formula, or
(g) of the form 8v�, where v is a variable symbol and � is a formula.

© Springer International Publishing Switzerland 2015
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(Informally, formulas such as _�1�2 or D �1�2 are usually written as �1 _ �2 or
�1 D �2, parentheses are used to enhance readability of more complex formulas,
� �!  is used to abbreviate the formula :� _  , and �  !  to abbreviate
.� �!  / ^ . �! �/.)1 Terms and formulas in a first-order language are given
semantic interpretations in terms of structures for that language and assignments to
its variable symbols. A structure A for L consists of a non-empty set A, over whose
elements the variables are understood to range,2 as well as

(1) for each constant symbol c in CL, a designated element cA of A;
(2) for each relation symbol R in Rn

L, an n-ary relation RA on A; and
(3) for each function symbol f in FnL, a function f A from An into A.

An assignment to the variable symbols of L is a function ˛ from VL into A.
Given a structure A for L and an assignment ˛, an element �A of A is then

denoted by each term � of L. Specifically, if � is a constant symbol c, then �A is cA;
if � is a variable symbol v; �A is ˛.v/; and if � is f �1 : : : �n; �A is defined recursively
as f A.�1

A; : : : ; �n
A/. In a similar fashion, formulas are given truth values relative

to A and ˛. Namely, R�1�2 : : : �n is true (or satisfied ) in A under the assignment ˛
if and only if RA.�1A; �2A; : : : ; �nA/; D �1�2 is true in A under the assignment ˛ if
and only if the elements �1A and �2A of A are identical; :� is true in A under the
assignment ˛ if and only if � is not true in A under the assignment ˛; _�1�2 is true
in A under the assignment ˛ if and only if �1 is true in A under the assignment ˛ or
�2 is true in A under the assignment ˛ or both are true in A under the assignment
˛; ^�1�2 is true in A under the assignment ˛ if and only if both �1 and �2 are
true in A under the assignment ˛; 9v� is true in A under the assignment ˛ if and
only if for some a in A; � is true in A under the assignment ˛0, where ˛0.v/ D a

and ˛0.u/ D ˛.u/ for each variable symbol u different from v; and 8v� is true
in A under the assignment ˛ if and only if for every a in A; � is true in A under
the assignment ˛0, where ˛0.v/ D a and ˛0.u/ D ˛.u/ for each variable symbol u
different from v.

A formula � of L is a sentence if each variable symbol in it (if any) is bound by
(lies within the scope of) a quantifier.3 For such formulas, satisfaction in a structure
A does not depend upon a particular assignment: a sentence � is satisfied in A with
the assignment ˛ if and only if it is satisfied in A with any assignment to the variable
symbols (in which case A is said to be a model for �). A set S of sentences of L
is then said to be satisfiable if there is a structure A that is a model for each of the
sentences in S (that is, one in which all of the sentences in S are satisfied). S is said

1In addition, in some treatments of first-order logic the symbols ^ and 8 are not taken as basic
logical symbols. Instead, �1 ^ �2 is introduced as an abbreviation for :.:�1 _ :�2/ and 8v� as
an abbreviation for :9v:�.
2That the variables range over the elements of A rather than subsets of A is what is indicated by
the adjective ‘first-order.’
3For a formal definition of the distinction between free and bound variables, see any modern logic
text.
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to be finitely satisfiable if every finite subset of S is satisfiable, and a sentence � is
said to be a logical consequence of the set of sentences S if � is satisfied in every
structure that is a model of S . A sentence of L that is a logical consequence of the
empty set of sentences (that is, one that is satisfied in every structure for L) is said
to be logically valid.

First-order languages arose as a means of formalizing mathematical deductions.
Such a language becomes a first-order logic when certain of its logically valid
sentences are designated as logical axioms and a finite, non-empty set of truth-
preserving rules of inference is specified. Particular mathematical theories, such as
Peano arithmetic, are then given first-order formalizations by designating certain
other sentences as non-logical axioms. As usual, a proof in such a logic is a finite
sequence of formulas, each of which is either an axiom or the result of applying one
of the rules of inference to previous formulas in the sequence, and the last of which
is the statement that is proved.

12.2 Completeness and compactness

In terms of the notions just defined, the compactness theorem states that for any
set S of sentences in a first-order language L, S is satisfiable if and only if S is
finitely satisfiable. Equivalently, for any sentence � and set of sentences S of L; �
is a logical consequence of S if and only if it is a logical consequence of some
finite subset of S . (Otherwise the set S [ f:�g of sentences of L would be finitely
satisfiable, and hence satisfiable.)

For languages containing only denumerably many non-logical symbols, the
compactness theorem was first proved by Gödel in his paper (Gödel 1930), a rewrit-
ten version of his doctoral dissertation (Gödel 1929) (in which the compactness
theorem did not appear). The principal result in Gödel (1930) is the (denumerable)
completeness theorem, which in its simplest form states that a sentence � in
a denumerable language L is logically valid if and only if it is provable from
the axioms and rules of inference adopted in Whitehead and Russell’s Principia
Mathematica (Whitehead and Russell 1910).4 Equivalently, every sentence of L

is either satisfiable or is formally refutable (that is, its negation is provable) in
Whitehead and Russell’s system. In the latter form, Gödel first established the
theorem for languages without the equality symbol and then extended it to languages
including it. He then further extended the result to denumerable sets S of sentences,
which he showed must either be satisfiable or must contain a finite subset whose
conjunction is refutable.

4Gödel’s proof is easily adapted to other well-known systems of logical axioms and rules of
inference, such as that in Hilbert and Ackermann (1928), where the question of completeness
for first-order logics was first posed.
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Today the compactness theorem is usually deduced as an immediate consequence
of the latter result (since any finite set of sentences whose conjunction is refutable
must be unsatisfiable). That argument, however, involves recourse to the syntactic
notion of refutability, whereas the compactness theorem refers only to the semantic
notion of satisfiability. And in Gödel (1930) the argument is the other way around:
completeness for a denumerable set of formulas f ng is obtained as an immediate
consequence of compactness.

Sketch of Gödel’s proof: To prove the completeness theorem for a single sentence
�, Gödel began by recalling that every first-order formula is provably equivalent to
one in prenex normal form (that is, one in which all quantifiers occur at the front,
followed by a quantifier-free matrix), and then further restricted attention to prenex
sentencesK beginning with a block of universal quantifiers and ending with a block
of existential quantifiers. He showed that if every such sentence is either refutable or
satisfiable, so is every formula. He then defined the degree ofK to be the number of
paired 89 quantifier blocks in its prefix, and proved by induction that every formula
K of degree 1 is either satisfiable or refutable and that if every K of degree k is
either satisfiable or refutable, so is everyK of degree k C 1.5

The proof of the base case k D 1 involves the construction of a sequence An
of formulas that are conjunctions of quantifier-free formulas obtained from the
matrix A of K by substituting sequences of new variables into it. To each An a
corresponding propositional formula6 Bn is then associated. Earlier, in his paper
(Bernays 1926), Paul Bernays had shown that every such formula is either satisfiable
by some assignment of truth values to its statement variables or is refutable on
the basis of axioms for the propositional calculus (which form a subset of the
logical axioms of first-order logic). Consequently, either some Bn is refutable in the
propositional calculus or every Bn is satisfiable. In the former case Gödel showed
that K is refutable from the logical axioms of Principia Mathematica; in the latter
case, he constructed a model (with domain the set of all non-negative integers) that
satisfied K .

It was in extending the completeness theorem to denumerable sets of formulas
that Gödel stated and proved the denumerable compactness theorem (designated
there simply as Satz X). Given a denumerable set S of first-order formulas, he noted
that one can specify a set S 0 of prenex formulas of degree 1 (as defined above) such
that the satisfiability of any subset of S 0 is equivalent to that of the corresponding
subset of S . He then constructed, for each integer n, a first-order formula Bn that
was a conjunction of the quantifier-free matrices A1; : : : ; An�1 of the first n � 1

5In passing from degree k to degree k C 1 a new relation symbol is adjoined to the language, a
device originally introduced by Thoralf Skolem in his paper (Skolem 1920).
6One built up by applying connectives to variables representing statements. Such propositional
variables were included in the formulations of first-order logic (then called the ‘restricted functional
calculus’) given in Whitehead and Russell (1910) and in Hilbert and Ackermann (1928). Since
Gödel adopted the former as the underlying system in Gödel (1930), his proof there thus also
established that the compactness property holds for denumerable sets of propositional formulas.
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formulas of S 0, with new, distinct sequences of free variables substituted into each
Ai . The existential closure of each such formulaBn7 is a logical consequence of the
first n formulas of S , so if every finite subset of S is satisfiable, so is every Bn; and
therefore, by an argument similar to that used to prove that every formula of degree
1 is either satisfiable or refutable, Gödel concluded that if every Bn is satisfiable, so
is every formula in S .

Two aspects of the proofs just sketched should be noted: they are not perspicuous,
because the details of the constructions are rather intricate; and that for compactness
depends on forming conjunctions of a finite number of formulas that constitute an
initial segment of an infinite list, and so does not extend to a non-denumerable
sequence of formulas (in languages containing a non-denumerable number of non-
logical symbols).

12.3 Compactness for non-denumerable languages

Perhaps in part because the compactness theorem was employed in Gödel (1930)
just as a lemma to prove completeness for denumerable sequences of first-order
formulas, its significance was overlooked for nearly two decades by all workers
in the field except A.I. Malcev, who, in his paper (Malcev 1936), first stated and
proved that compactness held for propositional logics with non-denumerably many
propositional variables.8

Malcev’s proof of that fact was straightforward: Given a language L containing
@˛ non-logical symbols, well-order the formulas of L (assuming the Axiom of
Choice) in a sequence of minimal order-type !˛ . Then for each initial segment
of that sequence there must, by the induction hypothesis, be some satisfying
truth-valuation. Again invoking the Axiom of Choice, suppose that one such has
been chosen for each � < ˛. Since each formula in the sequence contains only
finitely many new propositional variables, at least one of the finitely many distinct
assignments of truth values to those variables must be common to @˛ of the chosen
(total) valuations. So at each stage � < !˛ one may choose a total truth-valuation
that extends the partial truth-valuations already defined on all propositional variables
encountered at earlier stages and that satisfies all formulas of order-index less than
or equal to �.9

Nowhere in Malcev (1936) did Malcev state the corresponding extension of the
compactness theorem for first-order logic; he did, however, attempt to show that

7That is, the sentence 9vi1 : : :9vimBn, where vi1 ; : : : ; vim are all the variables free in Bn, which is
satisfied in a structure A if and only if there is an assignment ˛ under which Bn is satisfied in A.
8The history of the compactness theorem is a tangled one, described in detail for first-order logic
in Dawson (1993).
9For other proofs of the compactness of propositional logic, see Paseau (2010).
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for every set S of first-order formulas there was a corresponding set of formulas of
the propositional calculus that were ‘equivalent’ to those of S , since it was ‘well-
known’ that every first-order formula could be replaced by an ‘equivalent’ prenex
formula of the form 8vi1 : : :8vin9vj1 : : : 9vjm�. Then later, in his Russian-language
paper (Malcev 1941), he did state the compactness theorem for non-denumerable
sets of first-order formulas, for whose proof he referred readers to his 1936 paper.

The correctness of the argument in Malcev (1936) was subsequently disputed,
turning on the question of just what ‘equivalent’ was supposed to mean. In the end,
commentators concluded that the argument outlined there could be made to work,
using a strengthened form of a theorem proved in Skolem (1920) (cf. footnote 6
above), if by ‘equivalent’ formulas Malcev meant that the satisfiability of either one
followed from that of the other.10

A proof based on normal forms: Thirty years later, a proof of compactness for
non-denumerable sets of first-order formulas, similar to that outlined in Malcev
(1936) but involving a reduction to a different class of prenex formulas (a result
also due to Skolem), was published in the textbook (Kreisel and Krivine 1971).

Specifically, in Skolem (1920) it was shown that to every formula � in a first-
order language L there corresponds a purely universal formula11 O� with the same
free variables as �, in a language L0 obtained from L by adding new function
symbols, such that every structure A0 for L0 that satisfies O� also satisfies �, and
every structure A for L can be expanded to a structure A0 for L0 in such a way
that � is satisfied in A under an assignment ˛ if and only if O� is satisfied in A0
under that assignment. (The formula O� is called the Skolem normal form of �.) The
proof of the compactness theorem for non-denumerable first-order languages given
in Kreisel and Krivine (1971) then proceeds as follows:

(1) Compactness is first proved for non-denumerable sets of formulas in proposi-
tional logic, as above.

(2) It is shown that if a set S of purely universal first-order sentences has a model,
then it has a model in which the domain is the set of all terms in the language
whose function symbols are all those contained in the sentences of S , and in
which the interpretation of those function symbols is the obvious one (that is,
the value of the n-ary function symbol f at the n-tuple of terms �1; : : : ; �n is
the term f �1 : : : �n.) Such a model is called a canonical model.

(3) Given terms �1; : : : ; �n and a quantifier-free formula � with free variables
v1; : : : ; vn in a first-order language L, an easy argument shows that in any
canonical model A; �.�1; : : : ; �n/ holds in A if and only if �.�1; : : : ; �n/ is true
in the propositional language whose statement letters are the atomic formulas
of L when the atomic formulas in � are given the valuation ‘true.’

10See section 6 of Dawson (1993) for further details.
11That is, a prenex formula whose prefix contains no existential quantifiers.
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Suppose then that S is a set of sentences in a first-order language L, and that
every finite subset f�1; : : : ; �ng of S is satisfiable. Let OS be the set of all sentences
O� in L0, for � in S . By Skolem’s result, any model of f�1; : : : ; �ng can be expanded
to a model of f O�1; : : : ; O�ng, so OS is finitely satisfiable; and since (again by Skolem’s
result) any model of f O�1; : : : ; O�ng is a model of f�1; : : : ; �ng, it suffices to show that
OS is satisfiable.

Each sentence O� in OS is a purely universal sentence, with quantifier-free matrix
A� , so consider A D fA�.�1; : : : ; �n/j � is in OS and �1; : : : ; �n are terms of L0g: A
may be regarded as a set of propositional formulas in the propositional language
whose statement letters are the atomic formulas of L0. By (2), every finite subset of
OS has a canonical model. By (3), for every finite subset B of A there must therefore

be a propositional truth-valuation that makes every sentence in B true. Hence, by the
compactness theorem for propositional logic, there is a propositional truth-valuation
T that makes every sentence in A true. Again invoking (3), any canonical structure
corresponding to that truth-valuation12 is then a model for OS .

The proof just given involves only semantic notions. It is more perspicuous than
Gödel’s and applies to languages of any cardinality; and as noted above, whereas in
Gödel’s proof new relation and variable symbols are adjoined to the language L, in
Kreisel and Krivine’s proof new function symbols are adjoined instead.

A third approach, involving the adjunction of new constant symbols, was intro-
duced by Leon Henkin in his doctoral dissertation (Henkin 1947). Also applicable
to languages of any cardinality, it has become the standard technique for proving
the completeness of first-order logic, from which compactness is then deduced as
a corollary. But Henkin’s method can also be used to prove compactness directly,
without reference to completeness. (One text that does so is Hinman 2005). That
argument, in outline, is as follows.

Henkin’s proof: If L is a language whose set of non-logical symbols is of
cardinality �, then the set of all sentences of L is also of cardinality �. Let S be
any set of sentences of L that is finitely satisfiable. Then for any sentence � of L,
either S [ f�g or S [ f:�g is finitely satisfiable. The goal is to show that S can be
extended to a finitely satisfiable set of sentences H such that (i) for every sentence
� of L, either � is in H or :� is in H , but not both, and (ii) for every sentence
� of L of the form 9vi�, if � is in H , then there is a constant symbol c such that
the sentence �.c/ is in H . (Such a set H is said to be Henkin-complete, and c is
said to be a Henkin-witness for �.) If so, then to establish compactness it suffices
to show that any set of sentences that is finitely satisfiable and Henkin-complete is
satisfiable.

To achieve that goal, a set of new constant symbols fd� j � < � g is adjoined to
L to form the extended language L0. Using the Axiom of Choice, let f�� j � < � g

12That is, any canonical structure in which each relation symbol R that occurs in a formula in OS is
interpreted as the relation that holds of terms �1; : : : ; �n if and only if T assigns the value ‘true’ to
the atomic formula R�1�2 : : : �n.
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be a fixed enumeration of the sentences of L, and by transfinite recursion, for each
� < � define a set S� of formulas of L0 as follows: Let S0 D S , and let �0 be the
least ordinal such that the constant d�0 does not occur in �� nor in any formula in
S�. If S� [ f��g is satisfiable, let S0� be that set; otherwise, let it be S�. Then put
S�C1 equal to S0� [f�.d�0g if �� is in S0� and �� is 9vi�, and equal to S0� otherwise.
If � is a limit ordinal, put S� DS�<� S� . Finally, let H D S�<� S�.

Clearly H contains S , and it is readily shown that H is finitely satisfiable and
Henkin-complete. To construct a model for H , one defines an equivalence relation
on the set of all constant symbols of L0 by c 	 d if and only if the sentence c D d is
inH , and takes the set of all equivalence classes under that relation to be the domain
of a structure A for L0. If Qc denotes the equivalence class of c, the interpretation of
c in A is just Qc; the interpretation in A of an n-ary relation symbol R of L is the
set of n-tuples ec1; : : : ; ecn such that Rc1 : : : cn is in H ; and the interpretation in A
of an n-ary function symbol f of L is that f A.ec1; : : : ; ecn/ D Qd if and only if
fc1 : : : cn D d is in H . (To show that these interpretations are well-defined, one
checks that if c1 	 c1; : : : ; cn 	 dn, thenRc1 : : : cn is inH if and only if Rd1 : : : dn
is in H , and fc1 : : : cn D fd1 : : : dn is in H .) One can then prove by induction
on the formation of closed terms that for any closed term �; �A D Qd if and only if
� D d is in H , and by induction on the formation of sentences that a sentence �
holds in A if and only if � is in H .13 Hence A is a model of H .

In the wake of Henkin’s work, the idea of adding extra constant symbols to
a language and invoking the compactness theorem became a basic technique for
constructing models of first-order axiom systems. For example, add a single new
constant symbol c to the language of Peano arithmetic and take S to be the set of
sentences in that extended language obtained by adjoining to the first-order Peano
axioms the denumerably many axioms c > 0; c > s0; c > ss0; : : : (where the
function symbol s denotes the successor function). The compactness theorem then
implies that S has a model, which must be a non-standard model of arithmetic, since
the interpretation within it of the constant symbol c must be an element larger than
every integer.

12.4 Algebraic proofs

All the proofs in the previous section make use of some form of the Axiom of
Choice. The full strength of that axiom is not needed, but the compactness theorem
for non-denumerable first-order languages is provably equivalent to the Boolean
Prime Ideal Theorem, as well as to the Ultrafilter Theorem (stated and proved

13The completeness of propositional logic is invoked in showing that :� holds in A if and only if
� is not inH and that � _  holds in A if and only if � is in H or  is in H .
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below).14 The latter is the basis for another proof of compactness that constructs
a model for a finitely satisfiable set S of first-order sentences of any cardinality out
of models for each of its finite subsets.

To carry out that proof, recall that a (proper) filter over a set I is a non-empty
collection F of subsets of I which does not contain the null set and which is closed
under the formation of supersets and finite intersections. (That is, if X is in F and
X � Y , then Y is in F, and if Y and Z are both in F, then so is Y \ Z.) If, in
addition, for every subset X of I , either X or I �X is in F, then F is an ultrafilter
over I .

From these definitions it follows immediately that the intersection of any finite
number of elements of a filter is non-empty (that is, every filter has the finite
intersection property). Conversely, any collection C of subsets of I that has the
finite intersection property is contained within a filter over I , namely the filter
F D fY � I j for some X1; : : : ; Xn in C; X1 \ � � � \ Xn � Y g, called the
filter generated by C.

The Ultrafilter Theorem asserts that any such collection C is in fact contained
within an ultrafilter over I . For with respect to the inclusion relation, the non-empty
set of all filters over I that contain C satisfies the hypotheses of Zorn’s Lemma,
which asserts the existence of a maximal such filter, say M. Then M must be an
ultrafilter, since otherwise there would be a subsetX of I such that neitherX nor I�
X belonged to M. But then M [ fXg would satisfy the finite intersection property,
and so be contained in some filter over I , contrary to the maximality of M (because
if Z \ X were empty for some Z in M, then Z would be a subset of I � X , so
I � X would be in M).

Now suppose that S is a finitely satisfiable set of sentences in a first-order
language L. Let I be an index set for the collection FS of finite subsets of S , and
for each i 2 I choose a structure Ai , with domain Ai , in which the finite subset Si
of S is satisfied. For any ultrafilter U over I , let 	 be the equivalence relation onQ
i2I Ai defined by F 	 G if and only if fi j F.i/ D G.i/g 2 U. Let QF denote

the equivalence class of F , and define an L-structure AU (the ultraproduct of the
structures Ai with respect to U ) as follows:

(a) The domain AU of AU is f QF jF 2Qi2I Ai g.
(b) The interpretation cAU of a constant symbol c of L is QF , where F.i/ D cAi for

each i 2 I .
(c) The interpretationRAU of an n-ary relation symbol R of L holds of eF1; : : : ;fFn

if and only if fi jRAi .F1.i/; : : : ; Fn.i//g 2 U.
(d) For each n-ary function symbol f of L; f AU.eF1; : : : ;fFn/ D QG if and only if

f Ai .F1.i/; : : : ; Fn.i// D G.i/ for all i 2 I .

Finally, if, for each i 2 I; ˛i is an assignment of elements of Ai to the variable
symbols of L, define the assignment ˛ of elements of AU to the variable symbols
of L by ˛.v/ DfFv , where Fv.i/ D ˛i .v/.

14See Jech (1973), pp. 17–18, for the proofs of equivalence.



180 12 The Compactness of First-order Languages

The compactness theorem is an easy consequence of the following fundamental
theorem regarding ultraproducts.

Łoś’s Theorem: For any set of L-structures Ai indexed by a set I , any family f˛i}
of assignments to those structures, and any ultrafilter U on I , let the ultraproduct
AU and the associated assignment ˛ be defined as above. Then:

(1) For every term � of L, the value �AU assigned to � by ˛ is QF , where for every
i in I , F.i/ is the value assigned to � in Ai under the assignment ˛i .

(2) For every formula � of L; � is satisfied in AU under the assignment ˛ if and
only if fi 2 I j� is satisfied in Ai under the assignment ˛i g 2 U. In particular, a
sentence of L is satisfied in AU if and only if fi 2 I j� is satisfied in Aig 2 U.

The proof of (1) is by induction on the formation of terms, and that of (2)
by induction on the length of formulas. For details, see, e.g., Hinman (2005),
pp. 227–228.

To complete the proof of the compactness theorem, assume as above that for
each i , the finite subset Si of S is satisfied in Ai . For each L-sentence �, let
C� D fSi ji 2 I and � 2 Si g. Then the set C of all such C� is a collection
of subsets of FS that satisfies the finite intersection property, because the
intersection of C�1; : : : ; C�n must contain the set f�1; : : : ; �ng. Hence, by the
Ultrafilter Theorem, there is an ultrafilter U over FS that contains C. Now the set
M� D fSi j Ai is a model of �g contains C� , since every � in Si is satisfied in Ai .
Therefore each M� is in U, so by (2) of Łoś’s Theorem,15 each sentence � in S is
satisfied in AU.

Note that unlike all the proofs of compactness considered earlier, the ultraproduct
proof involves no expansion of the underlying language L. Nor does it involve any
reduction to the compactness of propositional logic, though that, too, can be proved
using ultraproducts, by an argument similar to but simpler than that given above.

Like Henkin’s method of constants, ultraproducts are a fundamental tool
for constructing models. In particular, Abraham Robinson employed them to
establish the consistency of non-standard analysis, thereby demonstrating that
the infinitesimal methods of Leibniz could be given a rigorous foundation, and thus
explain why those “ghosts of departed quantities” led to correct results. Beyond
such latter-day justification of a historical practice, proponents of the non-standard
approach also contend that arguments involving infinitesimals are more perspicuous
to students of calculus than are �� ı computations. In the Introduction to Henle and
Kleinberg (1979), for example, the authors declare “The power and beauty of [the
non-standard approach] is sometimes astonishing. As Leibniz knew, the method
of infinitesimals is the easy, natural way to attack . . . [the] problems [of calculus],
while the theory of limits represents the lengths to which mathematicians were
willing to go to avoid them.”

The role played by the finite intersection property in the ultraproduct proof of
compactness recalls the definition of a compact space in topology (one in which

15With i 2 I replaced by Si 2 FS , since U is an ultrafilter over FS rather than I .
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the intersection of a family of closed sets is empty if and only if the intersection of
some finite subfamily is), and it was with that in mind that Tarski introduced the
term ‘compactness’ as a name for the theorem that is the subject of this chapter.
Specifically, for each structure A for L, let Th.A/ (the theory of A) denote the set of
all sentences that are true in A, and consider the collection S of all such theories. As
noted in Keisler (1977), S can be made into a topological space (the Stone space of
L) by taking as basic closed sets those of the form Œ�� D fs 2 S j� 2 sg. A theory T
is then satisfiable if and only if \�2T Œ�� is non-empty, and the compactness theorem
becomes the statement that the Stone space of L is a compact topological space.

In the denumerable case, the compactness theorem for first-order logic can
also be established using ultrafilters on Boolean algebras, without resort to
ultraproducts. Following Sikorski (1969), we take a Boolean algebra B to be a
structure of the form < B;˚;˝; N >, where B is a non-empty set, ˚ and ˝ (join
and meet) are binary operations on the elements of B , and N (complement) is a
unary operation on the elements of B , such that join and meet are commutative
and associative; each is distributive over the other; and for all a and b in B ,

.a˝ b/˚ b D .a˚ b/˝ b D b;

(the so-called absorptive laws) and

.a˝ Na/˚ b D .a˚ Na/˝ b D b:

It follows from those properties that for all a and b inB , a˚a D a˝a D a; a˚Na D
b ˚ Nb and a ˝ Na D b ˝ Nb. Writing 0 for a ˝ Na and 1 for a ˚ Na, the last property
above then becomes 0˚ b D 1˝ b D b. If 0 D 1, then B D f0g and B is said to
be degenerate.

A partial ordering � may be defined on B by stipulating that a � b if and only
if a ˚ b D b, or equivalently, by the absorptive laws, if and only if a ˝ b D a.
With respect to �; a˚ b is then the supremum of a and b and a˝ b is the infimum
of a and b; hence, by induction and the associative laws for ˚ and ˝, any finite
set of elements b1; b2; : : : ; bn of B has supremum b1 ˚ b2 � � � ˚ bn and infimum
b1 ˝ b2 � � � ˝ bn.

In terms of the Boolean operations, a non-empty subset U of B is then an
ultrafilter on B if and only if for all a and b in B: 0 is not an element of U ;
if a is an element of U and a � b, then b is an element of U ; if a and b
are elements of U , then so is a ˝ b ; and Na is an element of U if and only if
a is not an element of U . Similarly, a subset A of B has the finite intersection
property if and only if a1 ˝ � � � ˝ an ¤ 0 for any finite number of elements
a1; : : : ; an of A.16 If A does have the finite intersection property, then the set

16That these definitions accord with those described above in the context of sets follows from the
Stone Representation Theorem, which asserts that every Boolean algebra is isomorphic to a field
of sets.
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fb 2 Bja1 ˝ � � � ˝ an � b for some a1; : : : ; an 2 Bg is a filter on B that contains
A. Any maximal such filter (under inclusion) is then an ultrafilter that contains A.

Given any set S of sentences of a first-order language L, there are associated
Boolean algebras whose elements are equivalence classes of formulas of L. For the
purpose of proving the compactness of L, the appropriate equivalence relation is
defined by � �  if and only if for some finite subset S0 of S the formula �  !  

is a logical consequence of S0; that is, �  !  is satisfied under every assignment
˛ in every structure A for L that satisfies each sentence in S0. Boolean operations
are then well-defined by the equations Œ��˚ Œ � D Œ� _  �; Œ�� ˝ Œ � D Œ� ^  �,
and Œ�� D Œ:��, where Œ�� denotes the equivalence class of the formula � of L. Let
BS denote the resulting Boolean algebra.

If some finite subset of S is unsatisfiable (has no models), then � �  holds
vacuously of all � and  , so BS is degenerate. Otherwise S is finitely satisfiable.
In that case, the equivalence classes Œ�� and Œ:�� must be distinct for any sentence
�, since no structure can satisfy both a sentence and its negation; so BS is non-
degenerate.

To relate Œ9x�� to Œ��, it is necessary to consider suprema of denumerably infinite
sets of elements of BS . In general, such suprema may or may not exist; when the
supremum of b1; b2; : : : does exist, it will be denoted by

W
bi ; the bi themselves will

be referred to as summands of such suprema. Similarly, if the infimum of b1; b2; : : :
exists, it will be denoted by

V
bi . Then

Lemma: For any a 2 BS ; a˚W bi DW.a˚ bi/ and a˝W bi DW.a˝ bi/.
Proof: Let c DW bi . Then for all i; bi � c, that is, bi ˚ c D c. So

.a˚ bi/˚ .a˚ c/ D .a˚ a/˚ .bi ˚ c/ D a˚ c;

that is, a˚ bi � a˚ c. Thus a˚ c is an upper bound for fa˚ bi g. Were it not the
least upper bound, there would be a d such that for all i; a˚bi � d , but a˚ c — d ,
that is, .a ˚ c/ ˚ d ¤ d . But by definition of c; c � d , so c ˚ d D d , whence
a˚ .c˚ d/ D a˚ d . Thus a˚ d ¤ d , that is a — d , contrary to a � a˚ bi � d .

To obtain the corresponding result for˝, note that the absorptive laws imply that
a � b is equivalent to a ˝ b D a (for if a ˚ b D b then a D .a ˚ b/ ˝ a D
b˝ a D a˝ b, and conversely if a˝ b D a then b D .a˝ b/˚ b D a˚ b). So if
c D W bi , then .a˝ bi /˝ .a˝ c/ D .a˝ a/˝ .bi ˝ c/ D a˝ bi for all i , that is,
a˝ bi � a˝ c for all i , whence a˝ c is an upper bound for fa˝ bi g.

To see that a˝ c is the least upper bound, note that a˝ b D a is also equivalent
to a ˝ Nb D 0. (For a ˝ .b ˚ Nb/ D a ˝ 1 D a D .a ˝ b/ ˚ .a ˝ Nb/, so if
a˝ Nb D 0 then a D a˝ b. Conversely, if a D a˝ b, then a˝ Nb D .a˝ b/˝ Nb D
a˝ .b ˝ Nb/ D a˝ 0 D 0.) Also, the distributive and commutative laws imply that
for all a and b, a˝ b D Na˚ Nb and a˚ b D Na˝ Nb . So if a˝ c were not the least
upper bound, there would be some upper bound d for fa˝ big such that a˝ c — d .

Hence .a ˝ c/ ˝ Nd D c ˝ .a ˝ Nd/ ¤ 0. That is, c — a˝ Nd , so a˝ Nd is not
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an upper bound for fa ˝ bi g. There must then be some bj for which bj — a˝ Nd .
Consequently bj ˝ .a ˝ Nd/ D .a˝ bj /˝ Nd ¤ 0, so a ˝ bj — d , contrary to the
choice of d .

A basic notion in logic is that of changing quantified variables in a formula �
so as to obtain a logically equivalent formula (called a variant of �) into which a
given term � may be substituted for one of the free variables without any of the
finitely many variables in � being ‘captured’ by one of the quantifiers. Since there
are denumerably many variable symbols, all finite sets of variables may be ordered
into a denumerable sequence. Then for each set fv1; : : : ; vkg of variables such a
formula �0 may be defined recursively on the structure of �.17

In particular, for variables x and y, let �0
x.y/ denote the formula obtained by

replacing all free occurrences of x by y in the first variant �0 of � (ordered according
to the ordering of finite sets of variables) in which y is freely substitutable for x.
Then if S is finitely satisfiable, for any formula � the value of Œ9x�� in BS isWfŒ�0

x.y/�jy 2 VLg.
Proof: Note first that in BS ; Œ�� � Œ � means Œ�� ˚ Œ � D Œ� _  � D Œ �, that
is, � _   !  is a logical consequence of some finite subset S0 of S . But
� �! � _  is logically valid for any formula  , so by modus ponens, Œ�� � Œ �
holds if and only if � �!  is a logical consequence of S0. Also, for any formula
� in which y is freely substitutable for x; �x.y/ �! 9x� is logically valid. Hence
Œ9x�� is an upper bound for fŒ�0

x.y/�jy 2 VLg. If Œ�� is any other upper bound for
fŒ�0

x.y/�jy 2 VLg, then for each variable y, �0
x.y/ �! � is a logical consequence of

some finite subset Sy of S (the subscript indicating dependence on y). In particular,
that holds for variables that do not occur in either � or �. If u is such a variable,
then since u does not occur in �; �0

x.u) is just �x.u/, the formula obtained from
� by replacing all free occurrences of x in � by u. So �x.u/ �! � must hold in
every structure A that satisfies Su (and since S is finitely satisfiable, such an A must
exist) under all assignments ˛. Now consider the formula 9x� �! �. If 9x� is
not satisfied in A under the assignment ˛, then 9x� �! � is vacuously satisfied
in A under ˛. If 9x� is satisfied in A under the assignment ˛, then � is satisfied
in A under some assignment ˛0 that differs from ˛ at most in the value assigned
to x (say a). So �x.u/ is satisfied in A under any assignment that differs from ˛0
at most in assigning the value a to u, and hence also under any assignment ˇ that
differs from ˛ at most in assigning the value a to u, because x does not occur free
in �x.u/. By modus ponens, � is therefore satisfied in A under ˇ, and so also under
˛, since u does not occur in �. Hence 9x� �! � is satisfied under ˛. Consequently
Œ9x�� � Œ��.

A model for a finitely consistent set S of formulas can be constructed from
any ultrafilter U on BS that preserves existential quantifiers: one such that for all
formulas � and variables x, Œ9x�� 2 U if and only if for some y; Œ�0

x.y/� 2 U ;

17For details, see e.g. Hinman (2005), p. 111.
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that is,
WfŒ�0

x.y/�jy 2 VLg 2 U if and only if Œ�0
x.y/� 2 U for some y. Since a

denumerable language has only denumerably many formulas, the existence of such
an ultrafilter is a consequence of the following result.

Theorem (Rasiowa-Sikorski): For any Boolean algebra and any denumerably
infinite set fsk D Wi bikjk 2 !g of denumerably infinite sups, there is an ultrafilter
U on B that preserves all of them (that is, sk 2 U if and only if some bik 2 U ).

Proof: It suffices, for each k 2 !, to find a summand bikk of sk such that
V
j<k.sj˚

bij j / ¤ 0. For then fsk ˚ bikkjk 2 !g will have the finite intersection property and
so be contained within an ultrafilter U . To see that any such U must preserve each
of the suprema sk , note first that bikk � sk for every k. So bikk 2 U implies sk 2 U .
Conversely, suppose sk 2 U . Then as in the proof of the Lemma above, bikk � sk is
equivalent both to sk ˝ bikk D bikk and to bikk ˚ sk D 1. Taking complements, the
latter is also equivalent to sk˝bikk D 0. Hence bikk D 0˚bikk D 0˚ .sk˝bikk/ D
.0˚ sk/˝ .0˚ bikk/ D sk ˝ Œ.sk ˚ bikk/˚ bikk� D sk ˝ Œsk ˚ bikk� 2 U .

The bikk are defined recursively. Having defined bij j for all j < k so that
ck D V

j<k.sj ˚ bij j / ¤ 0, suppose that ck ˝ .sk ˚ bik/ D 0 for every summand
bik of sk . Then by the Lemma,

ck D ck ˝ 1 D ck ˝ .sk ˚
_

i

bik/ D ck ˝
_

i

.sk ˚ bik/ D
_

i

ck ˝ .sk ˚ bik/ D 0;

which contradicts the induction assumption. Therefore a bikk as desired must exist.

To construct a model M for a finitely consistent set S of sentences of L, let U
be an ultrafilter on BS that preserves existential quantifiers. Define an equivalence
relation' on the variables of L by the condition x ' y if and only if Œx D y� 2 U .
Let < x > denote the equivalence class of x under ', and take the domain of M
to be the set of all such equivalence classes. The constant, relation and function
symbols are then interpreted in the obvious ways:

cM D< x > if and only if Œc D x� 2 U

RM.< x1 >; : : : ; < xn >/ if and only if ŒRx1 : : : xn� 2 U

fM.< x1 >; : : : ; < xn >/ D< y > if and only if Œf x1 : : : xn D y� 2 U:

In addition, let ˛ be the assignment defined by ˛.x/ D< x >. Then U coincides
with the filter fŒ��j� is satisfied in M under the assignment ˛g.

The proof that � is satisfied in M under the assignment ˛ if and only if Œ�� 2 U
is by induction on the length of formulas. The fact that U preserves existential
quantifiers is needed to show that 9x� is satisfied in M under ˛ if and only if
Œ9x�� 2 U . For 9x� is satisfied in M under ˛ if and only if for some y; � is
satisfied in M by an assignment that differs from ˛ at most in assigning < y > to
x, which holds if and only if �0

x.y/ is satisfied in M; and since the length of �0
x.y/

is less than that of 9x�, the latter holds if and only if Œ�0
x.y/� 2 U .
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Note that since a first-order language has only denumerably many variable
symbols, the domain of M is denumerable. Consequently, the Boolean proof cannot
be extended to non-denumerable languages, in which a finitely consistent set S of
sentences may have no denumerable models.

Like the method of constants and that of ultraproducts, Boolean algebras also
have wider applications in logic. In particular, Boolean methods can be used to
construct models of set theory that provide alternative proofs of independence
results first derived by Paul Cohen’s method of forcing.

12.5 Summary

This chapter has examined five proofs of the compactness theorem, which differ
methodologically in fundamental respects. All are direct; that is, they do not
derive compactness as a corollary of completeness. Two apply only to denumerable
languages; the others apply to languages of any cardinality. In constructing a model
for S , the algebraic proofs do not alter the language; the others do, in different
ways. The ultraproduct proof also makes no reference to syntactic notions, but
constructs a model for S directly from models for each of its finite subsets; and
since the statement of the compactness theorem refers only to the semantic notion
of satisfiability, the ultraproduct proof thus exhibits methodological purity.
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Chapter 13
Other Case Studies

I hope that the case studies in the preceding chapters have convinced the reader that
the comparative study of alternative proofs is a worthwhile endeavor and that the
informal criteria for distinguishing proofs described in Chapter 1 serve that purpose
well. I hope too that some of the proofs discussed in those chapters will have been
new to most readers, who will have found them to possess both intrinsic interest and
pedagogical value.

This final chapter highlights some other theorems whose proofs have been
the subject of comparative studies by other scholars. In addition, some theorems
whose alternative proofs appear to be worthy subjects for further investigation are
indicated.

13.1 Heron’s formula

Heron’s formula expresses the area of a triangle in terms of the lengths a; b; c of its

three sides. Letting s denote the semiperimeter
1

2
.aCbCc/ andA the area, it states

that A2 D s.s � a/.s � b/.s � c/. In his books Dunham (1990, 1999) and articles
Dunham (1985, 2011), William Dunham has presented five proofs of that formula,
due to Heron of Alexandria, Isaac Newton, Leonhard Euler, Dunham himself, and
Bernard Oliver. Here we do not give full details of all those proofs, but summarize
their basic structure and highlight the similarities and differences among them and
two proofs often found in textbooks, based, respectively, on the Law of Cosines and
the Pythagorean Theorem.

Of the seven proofs, Heron’s and Euler’s are geometric; Newton’s and both
textbook proofs are primarily algebraic; while Dunham’s and Oliver’s are primarily
trigonometric. Four of the proofs — those by Heron, Euler, Dunham, and Oliver —
start with the same geometric construction: finding the incenter of the given triangle
ABC (drawn so that its base is the longest side of the triangle). Specifically, since
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Fig. 13.1 Initial diagram for
Heron’s, Euler’s, Dunham’s,
and Oliver’s proofs

Fig. 13.2 Final diagram for
Heron’s proof

the bisector of any angle is the locus of points equidistant from the lines forming
that angle, the intersection of any two bisectors of the angles of a triangle must be
equidistant from all three sides of the triangle, and so must lie on the third angle
bisector as well. The point O of intersection of those bisectors is thus the center
of a circle inscribed within the triangle. Denoting the radius of that circle by r ,
the triangle is then seen to be composed of three pairs of congruent right triangles,
each having altitude r and bases (x; y; z) that sums to s. (See Figure 13.1.) Then
a D s � x; b D s � z; c D s � y and the area of the triangle is r.x C y C z/ D rs.

From that point on those four proofs diverge. Heron adds three auxiliary line
segments to the triangle: AE perpendicular to AC; OE perpendicular to OC, and CE
(with midpointM ) (Figure 13.2). Euler extends the segments CO and DO and then
constructs the segment through A perpendicular to the extension of CO, meeting it
at E and meeting the extension of DO at F (Figure 13.3). Dunham merely adds the
altitude from vertex B to the triangle, and Oliver adds nothing at all.

The purpose of the auxiliary lines in Heron’s diagram is not at all apparent at the
outset. In fact, Heron used them to show that the quadrilateral AOCE is inscribed
within a semicircle centered at M , and then concluded from Proposition III,22 of
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Fig. 13.3 Final diagram for
Euler’s proof

the Elements that angles AEC and AOC are supplementary. From that, in turn, he
deduced that three pairs of triangles in the diagram were similar, and used ratios of
their corresponding sides finally to conclude that r2s D xyz D .s�a/.s�c/.s�b/,
from which the formula bearing his name follows. His proof is ingenious, but as
Oliver says, it is circuitous and “exhibits none of the symmetry of the problem or of
the result,” which it serves to verify rather than explain (Oliver 1993, p. 162).

Euler’s argument is much more efficient and uses only basic facts about triangles.
For in Figure 13.3, angle AOE is exterior to triangle AOC and complementary
to angle EAO, so †AOE D ˛=2 C 
=2 D �=2 � ˇ=2 and †EAO D ˇ=2.
Consequently OAE and OBG are similar right triangles, as are FOE;FAD;CAE, and
COD. Combining ratios of their corresponding sides then leads to xyz D r2s, as in
Heron’s proof. Like that proof, Euler’s commands assent that the result is true. But
it still leaves the question: “What led him to draw those particular auxiliary lines?”

In Dunham’s proof, letting h denote the length of the altitude dropped from B ,
we have immediately

sin˛ D h

x C z
; sin.˛=2/ D rp

x2 C r2 and cos.˛=2/ D xp
x2 C r2 :

The double-angle identity for sine then gives
h

x C z
D 2rx

x2 C r2 . Solving for h and

substituting the result obtained into the usual area formula yields the expression

.x C y/.x C z/
rx

r2 C x2 for the area. Setting that equal to rs, the equation reduces

once again, after some algebraic simplification and replacement of x C y C z by s,
to r2s D xyz.

Oliver’s argument is even simpler. Since ˛ C ˇ C 
 D � , the angles ˛=2
and ˇ=2 C 
=2 are complementary. Hence tan.˛=2/ D cot.ˇ=2 C 
=2/, so
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tan.˛=2/ tan.ˇ=2C 
=2/ D 1. The summation identity for tangent then yields the
symmetric equation

tan.˛=2/ tan.ˇ=2/C tan.˛=2/ tan.
=2/C tan.ˇ=2/ tan.
=2/ D 1:

That is,
r

x

r

z
C r

x

r

y
C r

z

r

y
D 1. Multiplying both sides of that equation by

xyz; r2.y C zC x/ D r2s D xyz.
For economy of means, Oliver’s proof is unmatched. It uses no symbols except

those in the triangle with angle bisectors, and the final algebra step is trivial.
In contrast, the computations in the three algebraic proofs are much messier,
involving several factorizations of a difference of two squares.

Those three proofs are in fact only minor variants of one another. Newton’s,
published in his Arithmetica Universalis, began with the diagram in Figure 13.4,
in which the altitude h and a semicircle centered at A with radius c was added to
the triangle ABC, whose base was extended to meet that semicircle externally at F .
He then applied the Pythagorean Theorem to triangles ADB and CDB to obtain
two different expressions for h2. Equating them, and lettingM denote the midpoint
of the base b, he found that jMDj D .c2 � a2/=2b and jDEj D jMEj � jMDj D
Œ2bc � .b2 C c2 � a2/�=2b. He then noted that if F were joined to B and B to E ,
h would also be the altitude of the right triangle FBE , whence FBE is similar to
BDE. Equating ratios of their corresponding sides then gave

h2 D jDEjjFDj D Œ2bc � .b2 C c2 � a2/�Œ2bcC .b2 C c2 � a2/�
4b2

:

He completed the proof by substituting the resulting value for h into the area formula
bh=2, obtaining Œ4b2c2 � .b2 C c2 � a2/�1=2=4 for the area — which, after much
tedious algebra, reduces to Heron’s formula.

Fig. 13.4 Diagram for Newton’s proof
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But to obtain the equation displayed above, there is no need to introduce any
lines to the triangle except the altitude. Indeed, the first of the common textbook
proofs obtains two expressions for h2 by applying the Pythagorean Theorem to each
of the triangles ABD and BCD. Equating them yields an expression for jADj that,
when substituted back into one of the two Pythagorean equations, gives the same
equation.

The second of the common textbook proofs instead employs the Law of Cosines,
which gives cos˛ D .b2 C c2 � a2/=2bc. Since h D c sin ˛, solving for sin ˛ and
substituting into the area formula then again yields that the area is Œ4b2c2 � .b2 C
c2 � a2/�1=2=4.

One is left to wonder why few of today’s textbooks give the simpler proofs of
Dunham or Oliver. Perhaps it is merely because in most U.S. high-school curricula
algebra and geometry are taught before trigonometry.

13.2 Euler’s formula for polyhedra

As recounted in Cromwell (1997), it was in a letter to Christian Goldbach dated
November 1850 that Leonhard Euler announced his discovery of the formula
V � E C F D 2 relating the number of vertices, edges, and faces of certain
families of solids bounded by plane faces. He hoped to prove that the result held
for arbitrary polyhedra, and in a paper published the next year in the proceedings
of the St. Petersburg Academy he outlined a putative proof that it did. His idea was
to lop off pyramidal corners of a polyhedron one by one, at each stage deleting a
vertex together with all the edges and faces incident at that vertex. If there were n
such edges, the face left after lopping off the pyramid would be an n-sided polygon,
which could then be divided into n�2 triangular faces by joining one of the vertices
of the polygon to the n � 3 vertices not adjacent to it. The resulting polyhedron
would have one fewer vertices, three fewer edges, and 2 fewer faces than the original
polyhedron, leaving the value of V � E C F unaltered. Continuing in that way, he
argued that the number of vertices would eventually be reduced to four, thus leaving
a tetrahedron, for which V �ECF D 2. That reasoning, however, was flawed. For
if applied to the tetrahedron itself (or any pyramid), the procedure does not yield a
polyhedron, but a triangulated polygon, for which V � E C F D 1; and in other
cases the procedure can result in a degenerate polyhedron in which more than two
faces share an edge.

Subsequently many other proofs of Euler’s formula were given, in attempts not
only to rectify Euler’s error but to delineate more precisely which polyhedra satisfied
the formula and which did not (and indeed, to clarify the very notion of what
a polyhedron is). Two of those proofs, by Legendre and Cauchy, are presented
in Cromwell (1997) and reproduced below, while Lakatos (1976) provides a
detailed critical analysis of Cauchy’s proof, a much shorter discussion of Poincaré’s
abstraction and generalization of Euler’s result, and brief mention of Legendre’s
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proof as well as proofs by Joseph Gergonne, Camille Jordan, and Jakob Steiner.1

One other proof not mentioned in either of those sources is described below.
Legendre restricted consideration to convex solids whose surfaces are composed

of polygonal faces. Given such a solid, he mapped its network of edges, via radial
projection, onto a corresponding network of arcs of great circles on a unit sphere.
Each polygonal face of the original polyhedron then corresponded to a spherical
polygon of the same number of sides, and each vertex to a point of intersection
of arcs forming such sides, so that the quantities V;E , and F were preserved. He
then applied spherical trigonometry to compute the sum of the areas of each of the
spherical polygons and equated that to the surface area of the sphere. Specifically,
the area of a spherical polygon with n sides is given by its spherical excess, the sum
of its angles less .n�2/� . Summing over all the polygons, the total angle sum must
be 2�V , since the sum of the angles around each vertex is 2� , and the total number
of sides must be 2E , since each edge is shared by exactly two polygons. Hence

4� D 2�V � 2E� C 2�F D 2�.V �E C F /: 2

Cauchy’s proof, in contrast, introduced no metric or other notions foreign to
the statement of Euler’s theorem. Instead of projecting the network of edges of
the polyhedron onto the surface of a sphere, Cauchy imagined removing one face
of the polyhedron and deforming the rest of the polyhedron to produce a planar
network. Euler’s formula would then hold if and only if V � E C F D 1 held
for that planar configuration. To establish the latter equation, Cauchy triangulated
the network by adding diagonals to any non-triangular faces. Every added diagonal
increased each of E and F by one, and so left V � E C F invariant. He then
systematically described how to remove edges, and if necessary, a vertex, from
triangles on the boundary of the network so as to preserve the value of V �E C F .
If only one edge of such a triangle was on the boundary, he removed just that edge.
If two edges lay on the boundary, he removed both of them together with the
vertex where they met. In either case, one face was also eliminated. By judiciously3

1Lakatos (1976), published posthumously, is based on Lakatos’s still unpublished and not readily
accessible dissertation Lakatos (1961), which, in footnote 2, p. 65 of Lakatos (1976), is said to
contain “a detailed heuristic discussion of Euler’s, Jordan’s and Poincaré’s proofs.” Lakatos’s
aim, however, was very different from that of the present inquiry, for he maintained that the
tangled history of proofs of Euler’s formula and of examples restricting its domain of validity
was a paradigm for a general dialectic of “proofs and refutations” involved in the discovery and
refinement of all mathematical concepts and theorems. That grandiose claim has been cogently
criticized in Feferman (1998); nevertheless, Lakatos (1976) remains a landmark contribution to the
philosophy of mathematical practice.
2Later Gergonne, and independently, Steiner, derived the same equation by projecting a convex
polyhedron onto a plane rather than a sphere and computing the total angle sum of the polygons in
the resulting planar network. See Steiner (1826) for details.
3As noted in Cromwell (1997), if care is not taken in the order in which the removals are carried
out, degenerate networks can result.



13.2 Euler’s formula for polyhedra 193

repeating the procedure he eventually reduced the network to a single triangular
face, for which obviously V � E C F D 1.

A proof similar to but distinct from Cauchy’s is presented in a particularly
perspicuous way in chapter 12 of Rademacher and Toeplitz (1957), a text intended
for readers familiar only with high-school algebra and geometry. There the planar
network obtained as in Cauchy’s proof is regarded as a network of dikes (the edges)
protecting fields (the faces) on an island from being flooded by a surrounding sea
(representing the face removed at the first step in Cauchy’s procedure). To obtain
Euler’s formula, readers are told to imagine “breaking down one dike after another
until all the F �1 fields are under water,” taking care “only [to] break dikes that have
water on just one side.” The end result will then not be a triangle, but a connected
network of dikes in which there is a unique path along the dikes from each vertex
to any other vertex. (If the network were not connected, some dike surrounded by
water on both sides would have to have been destroyed, and if the network contained
any loop, the region inside it would not be flooded.) If any particular vertex s is then
designated as a starting point, a one-to-one correspondence between the other V �1
vertices and the remaining dikes is given by associating with each such vertex v
the last dike traversed along the unique path from s to v. Hence exactly V � 1
dikes remain. On the other hand, each time a dike was broken exactly one field was
flooded, so F � 1 dikes must have been destroyed. The total number E of dikes in
the original network must therefore have been .V � 1/C .F � 1/.4

Ultimately, through the work of Poincaré, Euler’s result was transformed into
a theorem of algebraic topology concerning simplicial complexes. A version of
Poincaré’s original proof of that theorem, preceded by definitions of all the
prerequisite topological notions, is given on pp. 26–27 of Croom (1978), where
the result is stated as

The Euler-Poincaré Theorem: Let K be an oriented [simplicial] complex of
dimension n, and for p D 0; 1; : : : ; n let ˛p denote the number of p-simplexes
of K . Then

nX

pD0
.�1/p˛p D

nX

pD0
.�1/pRp.K/ D �.K/;

where Rp.K/ denotes the pth Betti number of K and the integer �.K/ is the Euler
characteristic of K .

The Euler-Poincaré formula extends that of Euler in two respects: The alternating
sum on the left of the equation generalizes the expression V � E C F to higher
dimensions, while the Betti numbers on the right extend the result to polyhedra
containing “holes” of various dimensions. The proof is based on dimensional
considerations in linear algebra.

4Note that, in contrast to Cauchy’s proof, no triangulation is involved in this argument and no
vertices are removed from the network.
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13.3 A theorem on rectangular tilings

An article very much in the spirit of the present inquiry is Wagon (1987), which
presents and compares fourteen proofs of the following theorem of N.G. de Bruijn.

Theorem: If a rectangleR can be tiled by rectangles each of which has at least one
side of integral length, then R must itself have at least one side whose length is an
integer.

The proofs considered are based on a variety of different techniques, including
(a) double integration (de Bruijn’s original method), (b) mathematical induction,
(c) polynomials, (d) prime numbers, (e) Eulerian graphs, and (f) step functions. All
the proofs are short and are presented in full detail. Three of the proofs are variants
of the double integration approach, and two are variants of the inductive method.
The others are distinguished from one another not only methodologically, but by
whether or not they can be adapted to prove eleven different generalizations of de
Bruijn’s theorem. Among those generalizations are the following:

(i) Weakening the hypothesis of the theorem by assuming only that for R
in standard position (lower left corner at the origin and sides parallel to
the coordinate axes), any tiling rectangle that has one corner with integer
coordinates has at least one integer side.

(ii) Extending the theorem to n dimensions, to state that if an n-dimensional box
B can be filled with n-dimensional boxes each of which has at least one side
of integral length, then B must have at least one such side.

(iii) Further extending (ii) to state that if B can be filled with n-dimensional boxes
each of which has at least k sides of integral length, then B itself must have at
least k sides of integral length.

(iv) Extending the theorem from planar rectangles to rectilinear tilings on a
cylinder.

An appendix lists the eleven methodologically distinct proof procedures together
with the eleven generalizations of de Bruijn’s theorem, and indicates which of the
proof procedures can be used to prove each of the generalizations. In particular, of
the methods listed above, (c), (e), or (f) can be used to prove (i); any but (b) can
be used to prove (ii); any but (b) and (e) to prove (iii); and (b), (e), or (f) to prove
(iv). If, following Wagon, “one calls two proofs equivalent provided they work on
the same set of generalizations,” then, “unless new modifications are found,” of the
six methods (a)–(f) listed here, generalizations (i)–(iv) rule out the equivalence of
any pair except (a) and (d); and in fact, other generalizations show that none of the
methodologically distinct approaches are equivalent.
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13.4 The geometric-arithmetic mean inequality

For positive numbers a and b, the elementary inequality
p

ab � aC b
2

, with equal-

ity if and only if a D b, was known in antiquity. More generally, if a1; a2; : : : ; an
and w1;w2; : : : ;wn are two sequences of positive numbers, the weighted arithmetic
mean An.a;w/ of a1; a2; : : : ; an with respect to weights w1;w2; : : : ;wn is defined
to be

Pn
iD1 aiwiPn
iD1 wi

;

and the weighted geometric mean Gn.a;w/ of a1; a2; : : : ; an with respect to
w1;w2; : : : ;wn to be

 
nY

iD1
a

wi
i

!1=w

;

where w D w1 C � � � C wn. Then Gn.a;w/ � An.a;w/, with equality if and only if
a1 D � � � D an.5

Even for the elementary inequality there are many proofs, both algebraic and
geometric: Six such are given in Nelsen (1993), five more in Nelsen (2000), and
nine in the comprehensive monograph Bullen et al. (1988). In the latter source,
the justification given for presenting so many proofs of such a simple fact is that
“because the definition” of each of those means “is so elementary, there is a certain
point in using only the simplest tools to deduce [their] properties” — a concern for
purity — while “non-elementary proofs, besides having an interest in themselves,
suggest methods of generalization, and are often simpler than more elementary
approaches” (pp. 34–35, italics added). And indeed, three of the proofs of the
elementary inequality are later adapted to prove the general result. Before that,
however, six proofs are given for the case n D 2 and arbitrary weights, followed
by proofs that the general result for arbitrary weights follows from that for equal
weights and that if, for equal weights, the result holds for some n, then it also holds
for all k � n (another result due to Cauchy).

In section 2.4 of Bullen et al. (1988), fifty-two proofs of the general theorem are
given, “as far as is known, in order of their appearance,” beginning with a not fully
rigorous proof from 1729 due to Maclaurin6 and ending with a proof from 1982 by
D. Rüthing. In addition to Cauchy, the list includes proofs by such luminaries as
Liouville, Hurwitz, Harald Bohr, Richard Bellman, and D.J. Newman. The proofs

5According to Bullen et al. (1988), this general result “first appeared in print in the nineteenth
century,” in notes of a course that Cauchy gave at the Ecole Royale.
6Maclaurin assumed equal weights and varied the values of a1; : : : ; an while keeping An fixed. He
assumed without proof that some sequence of a’s would maximize the value of Gn.
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vary greatly in length. Many are inductive, but others are based on ideas from such
disparate branches of mathematics as convex functions, dynamical systems, and
even thermodynamics.

13.5 The Law of Quadratic Reciprocity

The Law of Quadratic Reciprocity is one of the cornerstones of algebraic number
theory. It concerns quadratic residues, whereby an integer n is said to be a quadratic
residue of a prime p if and only if there is an integer x such that n � x2 .mod p/.
In one version it states:

If p and q are distinct odd primes, then p is a quadratic residue of q if and only
if q is a quadratic residue of p, unless p � q � 3 .mod 4/, in which case p is a
quadratic residue of q if and only if q is not a quadratic residue of p.

A more precise statement was given by Legendre in 1788, for which purpose he
introduced the symbol

�
p
q

�
, taking the values ˙1, to denote the residue of p.q�1/=2

modulo q, where q is an odd prime. In that notation the Law says:

For distinct odd primes p and q;

�
p

q

�

D .�1/ p�1
2

q�1
2

�
q

p

�

:

Legendre’s attempted proof of that Law was incomplete. The first complete proof
was found by Gauss in 1796 and published in 1801. In the next seventeen years
he published five more proofs of it, and two more were discovered among his
unpublished papers.7 According to Lemmermayer (2000), Gauss was led to devise
those alternative proofs in an attempt to find arguments that would generalize so
as to yield “similar [laws] for reciprocity of higher powers.” Gauss gave his own
justification in a remark preceding one of his later proofs of the Law (Werke II,
159–160):

It is a peculiarity of number theory that so many of its most beautiful theorems can be
discovered inductively, yet whose proofs lie anything but near at hand, but rather are
found only after many fruitless attempts with the help of profound investigations and lucky
combinations [of ideas]. This curious phenomenon arises from the often marvelous linkage
of different theories in that part of mathematics; and for that very reason it frequently
happens that such theorems, a proof of which initially is sought in vain for years, may later
be proved in several different ways. As soon as a new theorem is discovered inductively,
one must of course regard the finding of any sort of proof to be the first necessity; but after
succeeding in that, in number theory one may never consider the investigation to be finished
and the tracking down of other proofs to be a superfluous luxury — in part, because one
does not usually arrive at first at the most beautiful and simplest proofs, and it is precisely

7The six published proofs, in German translation, are available online as part of the Univer-
sity of Michigan Historical Math Collection. See http://quod.lib.umich.edu/cgi/t/text/text-idx?c=
umhistmath;idno=ABV3158.

http://quod.lib.umich.edu/cgi/t/text/text-idx?c=umhistmath;idno=ABV3158.
http://quod.lib.umich.edu/cgi/t/text/text-idx?c=umhistmath;idno=ABV3158.
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the insight into the marvelous linkage of truth in number theory that is what constitutes a
principal attraction of that area of study, and that not infrequently leads once again to the
discovery of new truths. For these reasons the finding of new proofs for already known
truths is here often regarded as at least as important as the discovery of the truth itself.

In the succeeding two centuries the Law of Quadratic Reciprocity has been
generalized in many directions, and a multitude of proofs of it have been pub-
lished. A wide-ranging survey of such generalizations is given in Lemmermayer
(2000), together with details of some of the proofs, while an appendix provides a
chronological list of 196 published proofs of quadratic reciprocity (not including
those in textbooks), together with detailed bibliographic references and brief com-
ments on the methods used. Lemmermayer notes, however (p. 25), that “different
entries [therein] do not imply different proofs; some of the proofs are merely
reformulations of others. A thorough classification of the published proofs of
quadratic reciprocity is something that remains to be done”— a task far beyond the
present author’s ability to carry out. Readers seeking a challenge may thus wish to
consider that project. A place to start is Baumgart (1885). (For a more manageable
case study, see item 2. below.)

13.6 Divergence of the series of prime reciprocals

As noted in the summary to Chapter 7 above, it was Euler who first deduced
(as a consequence of his product formula) that the series

P
p prime.1=p/ diverges.

Subsequently many other proofs have been given, seven of which are compared in
the article Eynden (1980). Among them is a proof by Erdős “notable for its lack
of series manipulations,” which, though indirect, does not invoke the divergence
of the harmonic series, and two proofs by Eynden himself, the first of which is a
simple direct proof. Of the other four proofs discussed, three (by Richard Bellman,
Erich Dux, and James Clarkson) involve rearrangement of the terms of an infinite
series and the fourth (by Leo Moser) uses the theorem that a convergent series is
also Cesàro summable to the same limit. Still another proof, by Frank Gilfeather
and Gary Meisters, is noted but not discussed. Eynden’s article includes source
references for all the proofs mentioned therein.

13.7 The brachistochrone problem

In June 1696 Johann Bernoulli famously challenged other mathematicians to
determine, given two points A and B in a vertical plane, the curve in that plane
down which a frictionless bead would travel from A to B under the influence of
gravity in the least time (a curve he called the brachistochrone), and promised to
publish his own solution of the problem by the end of the year if no one else was
able to find the answer.
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That same month, however, within a week of becoming aware of the problem,
Leibniz wrote to Bernoulli with a sketch of his derivation of an equation for that
curve. Three months later Leibniz then wrote to Bernoulli’s older brother, Jakob,
urging him to work on the problem, and by early October Jakob, too, had found
the solution. Then in January of 1697 Isaac Newton published an anonymous, very
terse note in which he stated without proof that the brachistochrone is the arc of
the cycloid passing through A and B , and the following May Johann Bernoulli
published both his solution and that of his brother.8

The proofs of the two Bernoullis are excerpted in English translation in Struik
(1969). That by Johann is an ingenious physical argument: it proceeds by translating
the question into a corresponding problem in optics (finding the path followed by a
light ray in a laminar medium of continuously varying index of refraction), using
Fermat’s principle that light always travels along the path of least time, which
implies Snell’s law of refraction. Jakob’s derivation, on the other hand, was purely
analytic in character. Though less elegant than Johann’s, Jakob’s approach was more
widely applicable to other problems in the calculus of variations.

Chapter 1 of Goldstine (1980) includes a detailed comparison of the derivations
of Leibniz, Newton, and the two Bernoullis.9 They serve as exemplars of alternative
proofs arising from differences in individual patterns of thought, since each was
obtained in ignorance of the others.

Some further case studies worth pursuing

Theorems having only one known proof are very much the exception rather than
the rule. There is thus wide scope for comparative studies of alternative proofs.
The following brief list suggests a few among many possibilities for further
investigation.

1. Quadrature of the parabola. In Arana and Mancosu (2012), pp. 297–299,
it is mentioned that Evangelista Torricelli, in his 1644 treatise De quadratura
parabolae (part of the Opera Geometrica in Torricelli 1919–1944) gave no less
than twenty different derivations of the area of a parabolic segment bounded by
a parabolic arc and a chord of the parabola. The result (that the area is 4=3 that
of the triangle whose base is the chord and whose opposite vertex is the point
on the parabola where the tangent is parallel to the chord) was first obtained by
Archimedes in his own Quadrature of the Parabola, using geometric methods
and a double reductio argument. Torricelli’s proofs include some of that type,
and others based on Cavalieri’s method of indivisibles.

8These historical details are taken from the account in chapter 1 of Goldstine (1980).
9Further on in that chapter Goldstine also discusses a second solution of the brachistochrone
problem by Johann Bernoulli. Published in 1718, it was based on an idea that foreshadowed a
powerful technique in the calculus of variations later developed by Constantin Carathéodory.
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2. Fermat’s theorem on the sum of two squares. One of Fermat’s famous results
is that every prime of the form 4m C 1 (of which there are infinitely many)
is a sum of two squares. Section 3.1 of Weintraub (2008), entitled “Fermat’s
Theorem,” gives three different proofs of that theorem; Aigner and Ziegler (2000)
gives two different proofs of the result, the first due to Axel Thue and the second
to Roger Heath-Brown; three different proofs are also given in section 2.3 of
Avigad (2006), an article concerned with issues very similar to those considered
here; and Lemmermayer (2000), p. 12, refers to several more. The methods
employed vary widely, and include the theory of Euclidean rings, continued
fractions, and the geometry of numbers.

3. Morley’s Theorem. The theorem states that in any triangle the three points of
intersection of adjacent angle trisectors are the vertices of an equilateral triangle.
Coxeter (1961), pp. 24–25, presents one proof and gives references to several
others, both geometric and trigonometric; and very recently John Conway has
published what he calls “the indisputably simplest proof” (Conway 2014).

4. The Erdős-Mordell inequality. Let P be any point inside a triangle ABC , let
ra; rb, and rc be the perpendicular distances from P to each of the sides a; b; c
of the triangle, and let RA;RB , and RC be the distances from P to each of the
vertices A;B;C . Then RACRB CRC � 2.raC rb C rc/. The paper Komornik
(1997) gives a very elementary proof and cites a number of other earlier proofs.

5. The fundamental theorem of calculus. Proofs of the fundamental theorem of
calculus depend upon what notion of area or integral is considered and what the
underlying space is. The standard theorem in the context of Riemann integration
on the real line can, for example, be extended to the Lebesgue differentiation
theorem in one direction and to Stokes Theorem in another, and the latter can be
expressed in down-to-earth terms or in the abstract setting of differential forms.
There are many possibilities for investigation and many possible sources.

6. Sylow’s theorems in group theory. As noted in the Wikipedia entry on that
subject, “The Sylow theorems have been proved in a number of ways, and the
history of the proofs themselves are the subject of many papers.” In particular,
one may consult Casadio and Zappa (1990), Gow (1994), Waterhouse (1980),
and Wielandt (1959).

7. The fundamental theorem of Galois theory. There are at least two distinct
proofs of the fundamental theorem of Galois theory, one due to Emil Artin and
the other invoking the primitive element theorem. A comparison of their merits
(and those of other possible approaches) might be worthwhile.

I look forward to whatever further studies and discussion may be stimulated by
the examples and points of view I have presented in this book.
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E2 Erratum

p. 56, line 6, insert comma after 1955.

p. 99, lines �8 and �9, insert x in the numerators of the fractions in the equations
for the second of each pair of lines.

p. 101, line 19, A1B1C1 should be A1B1C1.

p. 156, lines 1, 2, 6, and 9, add the subscript k to each unsubscripted F .

p. 157, lines 8 through 10, the subscript on ˆ should be pk , not p.

p. 158, line 2, “D 1” should be “D p”.

p. 160, line 1, the leading term of the polynomial should be deleted and the
penultimate term should be x.p

k�1/, in agreement with the definition of ˆ.pk/.x/
on page 150.

p. 161, line 7, xn � 1 should be xq � 1.

p. 161, lines 13 and 15,m2 should be q2 in all three occurrences.

p. 162, line 9, pk should be pj in all three occurrences.

p. 166, line 15, ˆ.m/ should be '.m/, where ' denotes Euler’s totient function
(cf. p. 150).

p. 171, line �5, insert “of” before “the form”.

p. 188, line 7, replace “base ... sides.” by “bases (x; y; z) that sum to s”.
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http://dx.doi.org/10.1007/978-3-319-17368-9
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