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Abstract

This book is about monotone complete C*-algebras, their properties, and the new
classification theory (using spectroid invariants and a classification semigroup). A
basic account of generic dynamics is included because of its important connections
to these algebras. Each bounded, upward-directed net of real numbers has a limit.
Monotone complete algebras of operators have a similar property. In particular,
every von Neumann algebra is monotone complete, but the converse is false. The
small von Neumann factors can be labelled by the set of real numbers. But there
are many more (2%) small monotone complete C*-algebras which are factors. The
aim of this book is to give an account of monotone complete C*-algebras which
includes recent advances but also indicates the many mysteries and open problems
which remain.
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Chapter 1
Introduction

This book is about monotone complete C*-algebras, their properties and their
classification. We also give a basic account of generic dynamics because of its useful
connections to these algebras.

1.1 Monotone Complete Algebras of Operators

Fundamental to analysis is the completeness of the real numbers. Each bounded,
monotone increasing sequence of real numbers has a least upper bound. Monotone
complete algebras of operators have a similar property.

Let A be a C*-algebra. Its self-adjoint part, Ay, is a partially ordered, real Banach
space whose positive cone is {zz* : z € A}. If each upward directed, norm-bounded
subset of Ay, has a least upper bound then A is said to be monotone complete. Every
von Neumann algebra is monotone complete but the converse is false.

Recently there have been major advances in the theory of monotone complete
C*-algebras; for example the construction of classification semigroups [144]. This
followed an important breakthrough in [66], which introduced huge numbers of
new examples. But much remains to be discovered. The purpose of this book is to
expound the new theory. We want to take readers from the basics to the frontiers
of the subject. We hope they will be stimulated to work on the many fascinating
open problems. Our intention is to strive for clarity rather than maximal generality.
Our intended reader has a grounding in elementary functional analysis and point
set topology and some exposure to the fundamentals of C*-algebras, say, the first
chapters of [161]. But prior knowledge of von Neumann algebras or operator
systems is not essential. However, in this introduction, we may use terminology
with which some readers are unfamiliar. If so, we apologise and reassure them that
all necessary technicalities will be discussed later in the text.

© Springer-Verlag London 2015 1
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2 1 Introduction

Algebras of operators on Hilbert space, including C*-algebras, von Neumann
algebras and their generalisations, are the focus of intense research activity world-
wide. They are fundamental to non-commutative geometry and intimately related to
work on operator systems and operator spaces and have connections to many other
fields of mathematics and quantum physics. But the first to be investigated (with a
different name and a more “spatial” viewpoint) were the von Neumann algebras.

Monotone complete C*-algebras arise in several different areas. There are close
connections with operator systems, with operator spaces and with generic dynamics.
In the category of operator systems, with completely positive maps as morphisms,
each injective object can be given the structure of a monotone complete C*-algebra
in a canonical way. Injective operator spaces can be embedded as “corners” of
monotone complete C*-algebras, see Theorem 6.1.3 and Theorem 6.1.6 [38] and
[25, 59, 60]. When a monotone complete C*-algebra is commutative, its lattice
of projections is a complete Boolean algebra. Up to isomorphism, every complete
Boolean algebra arises in this way.

Let A be a monotone complete C*-algebra then A is a von Neumann algebra
precisely when it has a separating family of normal states. If a monotone complete
C*-algebra does not possess any normal states it is called wild.

The best known commutative example of a wild monotone complete C*-algebra
is straightforward to construct. Let B(R) be the commutative C*-algebra of all
bounded, complex valued Borel measurable functions on R. Let M(R) be the ideal
of all functions # in B(R) such that {r € R : h(f) # 0} is a meagre subset of R.
(Let us recall that a set is meagre if it is contained in the union of countably many
nowhere dense sets; a set is nowhere dense if its closure has empty interior.) Then
the quotient algebra B(R)/M(R) is a commutative monotone complete C*-algebra
which has no normal states and so is not a von Neumann algebra. It turns out that
if we replace R by any complete separable metric space, without isolated points,
and perform the same construction then we end up with the same commutative
monotone complete C*-algebra.

A monotone complete C*-algebra, like a von Neumann algebra, is said to be a
factor if its centre is trivial. In other words, factors are as far as possible from being
commutative. Just as for von Neumann algebras, monotone complete C*-factors
can be divided into Type I, Type II;,Type Il and Type III. It turns out that all
Type I factors are von Neumann algebras. So it is natural to ask: are all monotone
complete C*-factors, in fact, von Neumann algebras? The answer is “no” in general
but to clarify the situation, we need some extra notions. Let H be a separable Hilbert
space and L(H) the bounded operators on H. A C*-algebra A is said to be separably
representable if there exists a x-isomorphism 7 from A into L(H). It is known
that if A is a monotone complete C*-factor which is also a separably representable
C*-algebra then A must be a von Neumann algebra [179]. So where are the wild
factors?

A (unital) C*-algebra B is said to be small if there exists a unital complete
isometry from B onto an operator system in L(H), where H is separable. When
an algebra is separably representable then it is small but the converse is false. In
other words, there exist C*-algebras which can be regarded as operator systems
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on a separable Hilbert space but which can only be represented as x-algebras of
bounded operators on a larger Hilbert space. There do exist small Type III monotone
complete C*-factors which are not von Neumann algebras. In fact they exist in
huge abundance. There are 2¢, where c is the cardinality of the real numbers. By
contrast, there are only ¢ small von Neumann algebras. (Each small von Neumann
algebra is isomorphic to a x-subalgebra of L(H) where the subalgebra is closed
in the weak operator topology. In particular, each small von Neumann algebra is
separably representable. This follows from [1].) Incidentally, if a small C*-algebra
is a wild factor then it is always of Type III.

One way to find a wild monotone complete C*-factor is to start with a separable,
simple, unital C*-algebra and use a kind of “Dedekind cut” completion [173].
This approach will be discussed later. Another method is to associate a monotone
complete C*-algebra with a dynamical system. This “generic dynamics” approach
is outlined below.

Monotone complete C*-algebras are a generalisation of von Neumann algebras.
The theory of the latter is now very well advanced. But it took many years before
it was demonstrated that there were continuum many von Neumann factors of
Type III [126], Type II; [100] and Type Il [148]. Then the pioneering work
of Connes, Takesaki and other giants of the subject transformed our knowledge
of von Neumann algebras, see [8, 30, 96, 162]. By comparison, the theory of
monotone complete C*-algebras is in its infancy with many fundamental questions
unanswered. But great progress has been made in recent years. In the early study
of monotone complete C*-algebras the emphasis was on showing how similar they
were to von Neumann algebras. Nowadays we realise how different they can be.

In 2001 Hamana [66] made a major breakthrough which implied that there are
2¢ small monotone complete C*-factors. In 2007 [144] we found a way to classify
monotone complete C*-algebras. This is set out in Chap. 3.

In [144] we introduced a quasi-ordering between monotone complete
C*-algebras. From this quasi-ordering we defined an equivalence relation and used
this to construct, in particular, a classification semigroup ¥V for small monotone
complete C*-algebras. This semigroup is abelian, partially ordered, and has the
Riesz decomposition property. For each small monotone complete C*-algebra A we
assign a “normality weight”, w(A) € W. If A and B are algebras then w(A) = w(B),
precisely when these algebras are equivalent. It turns out that algebras which
are very different can be equivalent. In particular, the von Neumann algebras are
equivalent to each other and correspond to the zero element of the semigroup. It
might have turned out that W is very small and fails to distinguish between more
than a few algebras. This is not so; the cardinality of W is 2¢, where ¢ = 280,

A natural reaction by anyone familiar with K-theory, is to construct the
Grothendieck group of V. But this group is trivial because each element of the
semigroup is idempotent. However this implies that W has a natural structure as
a semi-lattice. Furthermore, the Riesz Decomposition Property for W ensures that
the semi- lattice is distributive.
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As we shall see later, one of the useful properties of W is that it can sometimes
be used to replace problems about factors by problems about commutative algebras
[144].

To each monotone complete C*-algebra we can associate a spectroid invariant,
0A [144]. Just as a spectrum is a set which encodes information about an operator, a
spectroid encodes information about a monotone complete C*-algebra. It turns out
that if wA = wB then A and B have the same spectroid. So the spectroid may be
used as a tool for classifying elements of W.

Kaplansky wished to capture the algebraic essence of von Neumann algebras
and to do it, introduced AW*-algebras [90-92]. An AW*-algebra may be defined
as a unital C*-algebra in which every maximal abelian *-subalgebra is monotone
complete [146]. Every monotone complete C*-algebra is easily seen to be an
AW*-algebra. Nobody has ever seen an AW*-algebra which is NOT monotone
complete. It is strongly suspected that EVERY AW*-algebra is monotone complete.
But in full generality this is a difficult open problem. But many positive results are
known. In particular, all “small” AW*-factors are known to be monotone complete.
Since our interest is strongly focused on small C*-algebras we shall postpone
a discussion of AW*-algebras until Chap. 8. (But this can be read now, without
working through all the earlier chapters.) They will appear on our list of open
problems, some of which have been unsolved for over 60 years. For a scholarly
account of the classical theory of AW*-algebras the reader may consult [13].

Generic dynamics is used in an essential way in this book but we shall not
introduce this tool until Chap. 6. So some readers may prefer to turn immediately to
Chap. 2 and postpone reading the introduction to generic dynamics.

1.2 Generic Dynamics

An elegant account of generic dynamics was given by Weiss [165]; the term
occurred earlier in [157]. In these articles, the underlying framework is a countable
group of homeomorphisms acting on a complete separable metric space with no
isolated points (a perfect Polish space). The key result of [157] was a strong
uniqueness theorem. As a consequence, the wild factor discovered by Dyer [36]
and the factor found by Takenouchi [159] were shown to be isomorphic.

We devote a chapter to aspects of generic dynamics useful for monotone
complete C*-algebra theory, including some recent discoveries [145]. This is an
elementary exposition. In this book, generic dynamics is only developed as far as we
need it for applications to C*-algebras. But this does require us to consider generic
dynamics on compact non-metrisable separable spaces; a topic which has been little
explored and gives rise to interesting open questions.

Let G be a countable group. Unless we specify otherwise, G will always be
assumed to be infinite. Let X be a Hausdorff topological space with no isolated
points. Further suppose that X is a Baire space i.e. such that the only meagre open
set is the empty set. In other words, the Baire Category Theorem holds for X. We
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shall also suppose that X is completely regular. (These conditions are satisfied if X is
compact or homeomorphic to a complete separable metric space or, more generally,
a Gs-subset of a compact Hausdorff space or is the extreme boundary of a compact
convex set in a locally convex Hausdorff topological vector space.) A subset Y of X
is said to be generic if X\Y is meagre.

Let ¢ be an action of G on X as homeomorphisms of X.

In classical dynamics we would require the existence of a Borel measure on
X which was G-invariant or quasi-invariant, and discard null sets. In topological
dynamics, no measure is required and no sets are discarded. In generic dynamics,
we discard meagre Borel sets.

We shall concentrate on the situation where, for some xy € X, the orbit {g,(xp) :
g € G} is dense in X. Of course this cannot happen unless X is separable. (A
topological space is separable if it has a countable dense subset. This is a weaker
property than having a countable base.) Let S be the Stone space of the (complete)
Boolean algebra of regular open sets of X. Then, see below, the action ¢ of G on
X induces an action & of G as homeomorphisms of S; which will also have a dense
orbit.

When, as in [165] and [157], X is a perfect Polish space, then S is unique; it can
be identified with the Stone space of the regular open sets of R. But if we let X range
over all separable compact subspaces of the separable space, 2%, then we obtain 2¢
essentially different S; where S is compact, separable and extremally disconnected.
For each such S, C(S) is a subalgebra of £°°.

Let E be the relation of orbit equivalence on S. That is, sEt, if, for some group
element g, £,(s) = 1. Then we can construct a monotone complete C*-algebra Mg
from the orbit equivalence relation. When there is a free dense orbit, the algebra
will be a factor with a maximal abelian *-subalgebra, A, which is isomorphic to
C(S). There is always a faithful, normal, conditional expectation from Mg onto A.
It can be shown that wMg = wA. So some classification questions about factors
can be replaced by questions about commutative algebras. When E and F are
orbit equivalence relations which coincide on a dense Gs-subset of S then Mg is
isomorphic to M.

For f € C(S), let y8(f) = f o &1. Then g + y# is an action of G as
automorphisms of C(S). Then we can associate a monotone complete C*-algebra
M(C(S), G), the monotone cross-product with this action (see Chap.7). When the
action ¢ is free, then M(C(S), G) is naturally isomorphic to Mg. In other words, the
monotone cross-product does not depend on the group, only on the orbit equivalence
relation.

In this book we shall consider 2¢ algebras C(S). Each is a subalgebra of £*°
and each takes different values in the weight semigroup W. (Here ¢ = 2%, the
cardinality of R.)

For general S there is no uniqueness theorem but we do show the following. Let
G be a countably infinite group. Let o be an action of G as homeomorphisms of S
and suppose this action has at least one orbit which is dense and free. Then, modulo
meagre sets, the orbit equivalence relation obtained can also be obtained by an action
of @ Z, as homeomorphisms of S. This should be contrasted with the situation in



6 1 Introduction

classical dynamics. (e.g. It is shown in [31] that any action by an amenable group is
orbit equivalent to an action of Z. But, in general, non-amenable groups give rise to
orbit equivalence relations which do not come from actions of Z.)

On each of 2¢, essentially different, compact extremally disconnected spaces
we construct a natural action of @ Z, with a free, dense orbit. Let A be a set of
cardinality 2¢, where ¢ = 2% Then by applying generic dynamics, as in [144],
we can find a family of monotone complete C*-algebras {By : A € A} with
the following properties. Each B) is a monotone complete factor of Type III, and
also a small C*-algebra. For A # u, By and B, have different spectroids and so
wB) # wB,, and, in particular, B) is not isomorphic to B,,. Furthermore each B}, is
generated by an increasing sequence of full matrix algebras.



Chapter 2
Order Fundamentals

This chapter presents basic material which will be needed later. Among the topics
discussed are order limits, monotone o-complete C*-algebras and commutative
algebras.

Our aim is to present an account of monotone complete C*-algebras which can
be followed without requiring the reader to constantly look up results elsewhere. So,
particularly in this first chapter, we give proofs of some basic results which appear
in standard texts. We shall also state a number of results without proof but with an
indication of where proofs can be found.

The books [161] and [121] are our sources for much of the canonical theory of
C*-algebras; we have used their guidance for some basic results. There are many
other excellent books in this area, an interesting recent example is [15] as well as
the classic [34]. An elegant succinct introduction to operator algebras is to be found
in [67].

In the 80 years of its development, operator algebra theory has woven together
the thoughts of many brilliant contributors. In such a vast subject it is no longer
practical to keep track of every individual contribution. If we fail to attribute results
to their original discoverers this is not a slight, not an insult, but evidence of how
fundamentally enmeshed in the general theory their work has become. In particular,
none of the results are claimed as our own unless we specifically say so.

The first three sections of this chapter are “Order structures and order conver-
gence”, “Monotone o-complete C*-algebras” and “Commutative algebras”. They
are basic to all that follows. The final section, “Matrix algebras over a monotone
complete C*-algebra”, is not needed until the later chapters.

© Springer-Verlag London 2015 7
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8 2 Order Fundamentals
2.1 Order Structures and Order Convergence

We are familiar with the fact that a bounded set of real numbers has a least upper
bound. Let P be a partially ordered set and S a subset of P. An upper bound for S
is an x € P such that a < x for each a € S. We call y a least upper bound for § if
y is an upper bound for S and, whenever x is an upper bound for S, then y < x. If
a least upper bound exists then it is unique. Lower bound and greatest lower bound
are defined analogously. We shall also use “supremum” and “least upper bound”
interchangeably; they mean the same. Similarly with “infimum” and “greatest lower
bound”. If, for each x, y in P the set {x, y} has a supremum and an infimum then P
is a lattice.

When S C P and S has a supremum s, we write s = supS or s = \/S. Both these
notations are in common use and we shall make use of both of them.

We recall that S is upward directed if a € S and b € S implies there exists ¢ € S
such that a < ¢ and b < c. (Downward directed is defined similarly.)

Let A be any C*-algebra (not necessarily with a unit element) and let Ay, be
the (real) Banach space of self-adjoint elements of A. We recall that the positive
elements of A are, by definition, those of the form zz*. Let A1 be the set of all
positive elements of A. Then At is a cone, that is, if x and y are in ATt and if A and
w are in RT then Ax + py is in A*. This cone A™ is closed in the norm topology.
Furthermore, At N —AT = {0} and A,, = AT — A™. So we can define a partial
ordering on A, by x > y precisely when x —y € AT, (We also use y < x to mean
x > y.) Then with this partial ordering, Ay, is a partially ordered Banach space with
the real numbers as scalars.

Let us put A = C(T), the algebra of complex valued continuous functions on a
compact Hausdorff space 7. Then Ay, can be identified with Cg(T), the real valued
continuous functions. Then f > g if f(¢) > g(¢) for each ¢ € T. It is easy to see that
this ordering makes A, into a lattice.

In fact this lattice property is equivalent to commutativity. Given a C*-algebra A,
Sherman’s Theorem [152] tells us that Ay, is a (vector) lattice if, and only if, A is
commutative. A striking theorem of Kadison [81] tells us that L(H) is an anti-lattice.
Thatis, given x, y € L(H),,, the pair {x, y} does not have a supremum unless x < y or
y < x. For these, and more general results, see [9, 29]. At first sight Kadison’s result
seems puzzling, since we know the projections in L(H) form a lattice, with respect
to the partial ordering induced by <. But this apparent paradox is easily resolved.
Given projections p and ¢ in L(H) the set of projections above both of them has a
smallest element; but, in general, the set of all self-adjoint elements above both of
them does not have a smallest element.

Whenever J is a closed ideal of A then JT is a hereditary cone in At in other
words, if x € A,0 < x < band b € J* then x € J*. (Our main reference for the
basic theory of C*-algebras is Takesaki [161] but see, also, Pedersen [121] for his
elegant account of order properties in C*-algebras.)
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Let U be a subset of Ay,. Then U is a norm bounded, upward directed set if and
only if —U = {—a : a € U} is anorm bounded, downward directed set. Furthermore
U has a least upper bound x if, and only if, x — U = {x — y : y € U} has infimum 0.

If (a,) is a monotone increasing sequence in Ay, then, clearly, {a, :n =1,2...}
is an upward directed set; when this directed set has a supremum a we say that
the sequence has supremum a. Similarly, a monotone decreasing sequence (b,) has
infimum b, when the downward directed set {b,, : n = 1,2 ...} has infimum b.

As well as sequences we shall also make use of nets, see below.

The set {r € R : t < 1} is an upper bounded set of real numbers but it is not
bounded. In general, given an upper bounded set U in A we can pick yo € U and
define Uy = {y € U : y > yo}. Then Uy is norm bounded.

If U is upward directed then U, has the same set of upper bounds as U. But if U
is not upward directed then this need not be true. (For a trivial example, recall that
L(H) is an anti-lattice. So we can find self-adjoint a and b for which {a, b} has no
supremum. Put U = {a,b} and Uy = {y € U : y > b} = {b}.)

Definition 2.1.1 A C*-algebra A is monotone complete if each norm bounded,
upward directed subset of Ay, has a least upper bound.

By using the map a — —a it is easy to see that A is monotone complete if each
norm bounded, downward directed subset of Ay, has a greatest lower bound.

Definition 2.1.2 A C*-algebra A is monotone a-complete if each norm bounded,
monotone increasing sequence has a least upper bound.

It is immediate that A is monotone o-complete if each norm bounded, monotone
decreasing sequence has a greatest lower bound.

We shall see, later, that all monotone complete C*-algebras have a unit element.
This is not true for monotone o-complete C*-algebras. However, suppose that A is
monotone o-complete and does not posses a unit. Then A! the algebra formed by
adjoining a unit, will be shown to be monotone o-complete.

When working with C*-algebras things go much more smoothly when they
possess a unit. But, particularly for dealing with ideals, we need to extend parts
of the theory to the non-unital situation. Most of the (minor) contortions which this
requires are dealt with in this chapter.

Let A be monotone (o-)complete and let 7 be a Hausdorff topology for A. Let us
call T sequentially order compatible if, whenever (a,) is a norm bounded, monotone
increasing sequence with least upper bound a, then a, — a in the T -topology. In
L(H) the strong operator topology is sequentially order compatible. When A is any
von Neumann algebra, with predual A, then the o (4, A, ) topology is (sequentially)
order compatible. Does every monotone complete C*-algebra have a Hausdorff,
locally convex vector space topology which is sequentially order compatible? If the
answer were “yes” we could replace order considerations by topological arguments.
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But the answer is “no”. There are commutative counter examples:
Example 2.1.3

(a) Let B[O, 1] be the space of all bounded Borel measurable, complex valued
functions on the unit interval. Let M be the set of all f in B0, 1] for which
{A €[0,1] : f(A) # 0} is a meagre set. Then, when the algebraic operations
are defined pointwise and B[O, 1] is equipped with the supremum norm, it is a
commutative C*-algebra. Also M is a closed ideal and the quotient B[O, 1]/M
will be shown to be monotone complete in Chap. 4. We have already remarked,
and will prove later, that this algebra has no normal states. It is known that if 7~
is a Hausdorff, locally convex vector space topology for B[0, 1]/M then 7T is not
sequentially order compatible. This follows from [44] because this work shows
that if B[O, 1]/M is equipped with a Hausdorff topology S which is sequentially
order compatible then the map (x,y) — x — y is not jointly continuous. Hence
such an S cannot be a locally convex vector topology. However, as we shall see
later, the Wright Representation Theorem [171] does show that each monotone
o-complete C*-algebra is the quotient of a monotone o-complete C*-algebra
which does posses a sequentially order compatible topology. This is illustrated
by the above example.

(b) Let Bnd(R) be the commutative C*-algebra of all bounded complex valued
functions on R. Let J be the ideal consisting of all f € Bnrd(R) for which
{r e R:f(r) # 0} is a countable set. Then J is monotone o-complete. It is not
monotone complete and does not possess a unit element.

(¢c) Let C[0, 1] be the C*-algebra of continuous complex valued functions on
the closed unit interval. Then this algebra is neither monotone complete nor
monotone o-complete. Now let U be the set of all f € CJ0, 1] such that f is
real valued, f(0) = 0 and 0 < f(A) < 1 for each A € [0, 1]. Then U is upward
directed and the function with the constant value 1 is the least upper bound of
U in C[0, 1]. We have ||f — 1|| = 1 for each f € U. So there does not exist a
sequence in U which converges in norm to the least upper bound of U.

When A is not assumed to be monotone complete it may still have some norm
bounded, downward directed subset which has a greatest lower bound e.g. in
Example 2.1.3(c) put D = {1 —f : f € U}. Then D has 0 as its greatest lower
bound.

When A is a C*-algebra without a unit, we define A! to be the algebra formed by
adjoining a unit. Then A is a maximal ideal of A'. When A does have a unit we put
Al = A.

In the rest of this section A is a C*-algebra which is not assumed to possess a
unit and is not required to be monotone complete, unless this is stated explicitly.

Notation 2.1.4 [n an algebra A we use: “(a,) 1 a” as an abbreviation for: (a,)
is a monotone increasing sequence in A, with least upper bound a in Ay,. We also
use (x,) | x to indicate that (x,) is a monotone decreasing sequence in Ay, with
infimum x in As,. When we write “(a,) 17 that will mean that the sequence is
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monotone increasing. We shall also use a similar notation for sequences in more
general partially ordered sets.

We shall sometimes find it convenient to abuse our notation, mildly, by referring
to a monotonic sequence or directed set as being “in A” when “in Ay,” would be
more correct; similarly we sometimes refer to a supremum or infimum as being
G‘in A,?.

Lemma 2.1.5 Let A be any C*-algebra. Let (a,) T aand (b,) 1 b. Then (a,+b,) 1
a+b.

Proof Let x be an upper bound for (a, + b,). Then
ar + by < argm + brym < x.

So a, < x — by,. Fix m. Then x — b, is an upper bound for (a,). Thus a < x — b,.
So, for all m, b,, < x — a. Hence b < x — a. It now follows that a + b is the least
upper bound of (a, + b,). O

Let A be a directed set. Let (ay : A € A) be a net in Ag,. Then the net is
increasing if A < p implies a) < a,. We say the net has least upper bound a when
itsrange {a) : A € A} has aleast upper bound a. It is clear that when (a; : A € A) is
increasing then {a, : A € A} is an upward directed subset of A,. Similarly the net is
decreasing if A < u implies ay > a, and it has infimum b if its range {a; : A € A}
has infimum b. When D is a downward directed set in Ay, then (d : d € D) is a
decreasing net.

Lemma 2.1.6

(i) Let (ay : A € A) be an increasing net in Ay, with least upper bound a and
(by : A € A) an increasing net in Ay, with least upper bound b. Then (a), + b;, :
A € A) is an increasing net in Ay, with least upper bound a + b.

(ii) Let (x) : A € A) be a decreasing net in Ay, with infimum x and (yy, : A € A) a
decreasing net in Ay, with infimumy. Then (x) + y) : A € A) is a decreasing
net in Ay, with infimum x + y.

Proof

(1) This is a straightforward modification of the proof of Lemma 2.1.5.
(i) Putxy = —a, and y, = —b; and apply (i). O

Lemma 2.1.7 Let A be any C*-algebra. Let (x,) be a monotone increasing
sequence in Ay,. Suppose this sequence converges in norm to x. Then the sequence
has a supremum and this supremum is Xx.

Proof For m > n, x,, — x, > 0. Because the positive cone is closed in the norm
topology,

X — Xy = limy—s o0 (X, — x,) = 0.
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Let b be an upper bound for the sequence. Then b — x = lim,—o0(b —x,) > 0. So x
is the least upper bound of the sequence. O

The converse of this lemma is, of course, false. To see this, first take a separable,
infinite dimensional, Hilbert space H. Then, in L(H), take a monotone increasing
sequence of finite rank projections converging to 1y (the identity operator on H)
in the strong operator topology. Then the sequence has 1y as its supremum but the
sequence is certainly not convergent in norm.

Corollary 2.1.8 Let T be a Hausdorff locally convex vector topology for Ay, such
that A% is closed in the T topology. Let (x; : A € A) be an increasing net in Ay,
such that (x) : A € A) converges in the T topology to x. Then x is the least upper
bound of {x) : A € A}.

Proof Straightforward modification of the proof of the preceding lemma. O

We shall see that if S is an upward directed set in A, with supremum s, then, for
any z in A, zSz* is upward directed with supremum zsz*. We also obtain a weaker,
but useful, result which can be used when § is not a directed set.

We call a subset S C Ay, order bounded in A if there exist a and b in Ay, such
that

a<x<b

for each x in S. Clearly an order bounded set is bounded in norm. When A is unital,
norm bounded sets are order bounded. But when A is not unital, norm bounded
sets need not be order bounded. For example, let A be the compact operators on
a separable, infinite dimensional Hilbert space and take S to be the self-adjoint
(compact) operators in the unit ball of A.

In the following lemma, there is no requirement that S be a directed set. Part of
the proof is based on [61].

Lemma 2.1.9 Let J be a (closed two sided) ideal in A. Let S be a norm bounded
subset of Js, with least upper bound s in J. If z € A' is invertible then zSz* is a norm
bounded subset of J with least upper bound zsz* in J. Furthermore, if S is order
bounded in Jy, and ¢ € JT then cSc has supremum csc in JT.

Proof We observe that J is a closed ideal of A!.

LetL=s5—S={s—y:yeS} Then L is a subset of J* which is bounded in
norm and has infimum 0. Since J is an ideal, zLz* is a subset of J. We show that, in
J, zLz* has an infimum and that this infimum is 0.

Since a + a* is an anti-automorphism of A', z* is invertible and @"H =
(z*)”". The map T, defined by T,(x) = zxz* for x € A is an order-isomorphism of
A, onto itself with 7,7! = T, and T,(J) = J. Hence zLz* has infimum O.

Now suppose S is order bounded in Jy,. Then there exists a € J, which is an
upper bound for L. Let d be any element of L. So, there exists a € Jy, such that
d<aforalld e L.

*
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Then
d* < ||d||d < ||d||a < ||al|a.

Let ¢ € J*. We shall show that cLc has an infimum in J and that this infimum is 0.
Let x € J be a lower bound for cLc and let d be any element of L. So x < cdc.
Let ¢ be a positive real number. Then

(c + el)d(c + €l) = cdc + e(cd + dc) + €2d
=cdc+e((c+d)(c +d)* = —d*) + &%d
> cdc — e(c? + d%)

> x—e(c” + |lalla) € Js.
Hence it follows that
d>(c+el) ' (x—ec® —¢alla)(c + el) " in Jy,
forall d € L. So, we have
0> x—ec® —¢lala

for all € and so 0 > x follows. So, csc = sup cSc in Jy,. O

Proposition 2.1.10 Let J be a (closed two sided) ideal in A. Let S be an upward
directed subset of Jy, with least upper bound s in J. Then, for any 7 € A, we have
787" is an upward directed subset of J with least upper bound zsz* in J.

Proof Letay € Sthen Sy = {a € S : a > ay} is upward directed, order bounded
and with supremum s. So, without loss of generality, we may assume that S is order
bounded in Jy,. We use the same notation as in the preceding lemma.

LetL=s—S5={s—y:ye S Then L is a subset of J* which is downward
directed with infimum O. It suffices to show that, in J, zLz* has an infimum and that
this infimum is 0.

We may assume that z # 0 for otherwise there is nothing to prove. Let x = z +
2||z|| and y = z—2]|z||. Then x and y are invertible elements of A'. By the preceding
lemma, xLx and yLy both have infimum 0. We shall show that (x +y)L (x 4+ y)* also
has infimum 0. To see this, we argue as follows.

For any f and g in A we find, by expanding (f — g)(f — g)*, that fg* + gf* <
I+ gg*

Letd € L. Put f = xd'/? and g = yd'/?. Then xdy* + ydx* < xdx* + ydy*. So
(x +y)d(x + y)* < 2xdx* + 2ydy*.

Let ¢ be any lower bound for (x 4+ y)L(x + y)*. Then ¢ < 2xdx™ + 2ydy* for
everyd € L.
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In Lemma 2.1.6 (i) put A = L and consider the nets (2xdx* : d € L) and
(2ydy* : d € L). Then (2xdx* + 2ydy* : d € L) has infimum 0. So ¢ < 0. Hence
zLz*has infimum 0 and so zSz* has supremum zsz*. ]

Suppose A does not possess a unit. Let S be an upward directed set with
supremum s. When S is regarded as a subset of A'does it still have a supremum
in Al and, if it does, is it s? Fortunately the answer is “yes”. See the proposition
below.

In contrast to this result, an upward directed set in Ay, may have a supremum in
Aia but fail to have a supremum in Ay,. To see this, let H be a separable, infinite-
dimensional, Hilbert space. Let A be the algebra of compact operators on H. Then
take an increasing sequence of finite rank projections converging (in the strong
operator topology) to 1, the identity operator on H. This sequence has no supremum

in A but, in A, it has 1 as its supremum.

Proposition 2.1.11 Let A be a C*-algebra without a unit element. Let S be an
upward directed set in As, with supremum s in Ag,. Then S has supremum s in Al

Proof Because A is a closed ideal in A' the quotient map ¢ : A' — Al'/Ais a
*-homomorphism and hence a positive map.

Let a + Al be any upper bound for S in A!, where a € A. Since ¢ maps each
element of A to zero, it follows that A > 0.

For any z € A, since A is an ideal of A!, z(a + A1)z* is an upper bound for zSz*
inA. So

257" < z(a + A)Z* < zaz* + Al|7|*1.

Now let (z,) be an approximate unit for A. Then zo52; < zo4azy + Al. Also ||zo(a —
5)z% — (a—s)|| — 0. Since the positive cone of A! is closed in the norm topology it
follows that 0 < a — s + Al. Thatis, s < a + Al. O

Corollary 2.1.12 Let A be monotone a-complete. Let (a,) 1 a. Let ||a,|| < 1 and
a, > 0 for eachn. Then ||a|| < 1.

Proof In A', the unit 1 is an upper bound for the sequence. So, from the proposition,
a<l. O

Lemma 2.1.13 Let ¢ be a positive linear functional on a C*-algebra A. Then ¢ is
a bounded linear functional.

Proof Let A} = {a € A" : [|a|| < 1}. It suffices to show ¢ is bounded on A} .
Suppose this is false. Then for each n there is a, in A?’ such that n2" < ¢(ay,).
Using norm convergence, let a = Zfo %an. Then, for each n,

1
n = ¢ am) = ¢la).

This is impossible. O
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Let ¢ be a positive linear functional on a C*-algebra. Then ¢ is said to be faithful
if x > 0 and ¢(x) = 0 implies x = 0.

Theorem 2.1.14 Let A be a monotone o-complete C*-algebra. Let ¢ be a faithful,
positive linear functional on A. Then A is monotone complete. In particular, let D be
an upward directed, norm bounded set in Ay,. Then there is a monotone increasing
sequence in D whose supremum is the supremum of D.

Proof Tt suffices to prove this when D is a subset of A, the intersection of the
closed unit ball with the cone of positive elements.

Let D be the set of all x € Af for which there is a monotone increasing sequence
in D with x as its supremum.

Since D is upward directed, it is easy to see that D is also upward directed. Let
(d,) be any sequence in D. Then, for each n we have (xi") ) 1 d, where each A s
in D. Since D is upward directed we can find a monotone increasing sequence in D,
(y,) such that y, > xﬁk) forn > kandn > r.

Let (y,) 1 d. Thend € D and d > x\* for all r and all k. So d > d, for all n.

By the preceding lemma, ¢ is bounded. Let A = sup{¢(y) : y € D}. For each n
let d, € D such that ¢(d,) > A — 1/n. Then there exists d € D with ¢(d) > A. So
b =1 _

Now let b € D. Then, because the set is upward directed, we can find ¢ € D such
that c > band ¢ > d. Thus A > ¢(c) = ¢(d) = 1. So ¢(c —d) = 0. Since ¢ is
faithful, ¢ = d. So d > b. So d is an upper bound for D. Since d is the least upper
bound of an increasing sequence from D, it is the least upper bound of D. O

Proposition 2.1.15 Let A be monotone complete. Then A has a unit element.

Proof LetT' = {a € AT : ||a|| < 1}. Then, see p.11 [121], T is upward directed
and an approximate unit. Since it is norm bounded it has a supremum e in A. Then
0 < e. By Proposition 2.1.11 ¢ < 1 in A'. So |le|| < 1. By spectral theory ¢*> < e.
So 7*e?7 < 7*ez < 7*zforall z € A.

Let x € Ay,. Since I is an approximate unit, and since

2
|1x* — xax|| < |x|[|lx — ax]|

it follows that the net (||x*> — xax|| : @ € ") converges to 0. So the net (xax : a € I')
converges in the norm topology to x*

But, by Proposition 2.1.10, xex is the least upper bound of xI'x. So, by
Lemma 2.1.7, xex = x2.

So we have

0 < (x — ex)*(x — ex) = x> — xex — xex + xe’x

= —x* + xe’x < x> +xex=0

which implies that ||x — ex||> = 0, that is, x = ex. Taking adjoints gives x = xe. So,
e is a unit element of A. O
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It is convenient to define an “order limit” for sequences which are not monotonic.
In fact, there are at least two useful notions of order limit. For our current purposes
we shall use the Kadison-Pedersen limit [86]. We shall use sequences but everything
can easily be generalised to nets.

To show that our definition makes sense we need the following lemma.

Lemma 2.1.16 Let A be any C*-algebra. Let (a,) 1 a, (b,) 1 b, (¢,) 1 ¢ and
(d,) 1 d. Suppose that a, — b, = ¢, —d,. Thena—b = c —d.

Proof We have a, +d, = ¢, + b,. By Lemma 2.1.5 we have (a, + d,) 1 a + d and
similarly (¢, + b,) 1 ¢+ b. Thusa +d = c + b. O

Definition 2.1.17 Let A be any C*-algebra. Let (x,) be a sequence in Ay,. If x, =
a, — b, where (a,) 1 a and (b,) 1 b, then we define LIMx, = a — b and say that
the order limit of (x,) is @ — b. When A is contained in a larger algebra we shall
sometimes say (x,) order converges to a — b in A and write

LIMyx, = a—b.

It follows from Example 2.1.3 (a) that, in general, order limits do not correspond
to convergence with respect to some locally convex vector topology for A. But part
(iv) of the following lemma does say that the positive cone of A is “closed” with
respect to order limits.

Lemma 2.1.18 Let A be any C*-algebra. Let (x,,) and (y,) be sequences in Ay, such
that LIMx,, = x and LIMy, = y. Let A be any real number. Then

(i) LIMAx, = ALIMx,.

(i) LIM(x, + y,) = LIMx, + LIMy,.
(iii) For any z € A' we have LIMzx,z* = z(LIMx,)z*.
@iv) Ifx, = 0 for each n then LIMx, > 0.

Proof Letx, = a, — b, where (a,) 1 a and (b,) 1 b.

(i) It is immediate that LIM(—x,) = b —a = —LIMx,. For A # 0 the map
Xx — |A|xis an order isomorphism of Ay,. So (|A|a,) 1 |A|laand (|A|b,) 1 |A|D.
Thus LIMAx, = ALIMx,.

(i) Lety, = ¢,—d, where (¢;) 1 cand (d,) 1 d. By Lemma2.1.5 (a,+c,) 1 a+c
and (b, +d,) 1 b+d.So LIM(x, + y,) = a+ ¢ —b —d = LIMx, + LIMy,.

(iii) We have zx,z* = za,z* — zb,z*. By Proposition 2.1.10 za,z* 1 zaz* and
zbnz* 1 zbz*. Since A is an ideal in A, zaz* and zbz* are in A. So LIMzx,z* =
zaz* — zbz* = z(LIMx,)z*.

(iv) Finally, if x,, > O then @, > b,. So a > b, for alln. So @ > b. Thus LIMx, =
a—b=>0. O

Lemma 2.1.19 Let A be any C*-algebra. Let (x,) be a sequence in Ay, which has
an order limit x, that is LIMx,, = x. If (x,,) also converges in the norm topology then
[|x = x,|| = O.



2.1 Order Structures and Order Convergence 17

Proof Let ¢ be the limit, in the norm topology, of (x,). Let y, = x, — c¢. Then ||y,]|
— 0. It follows from Lemma 2.1.18 (ii) that LIMy, = x — c.

Lety, = a, — b, where a, 1 a and b, 1 b. Then, for any real number ¢ > 0,
there is an m such that, when n > m,

||an_bn|| <é.

So, in A!, we have —el < a, — b, < ¢l. Thus a, < b + ¢l.

By applying Proposition 2.1.11, we find a < b + ¢1.

Since this holds for each positive ¢ it follows that a < b. Similarly we can show
b<a.SoLIMy,=a—b=0.S0x=c. O

In contrast to Lemma 2.1.7, we have NOT proved that ||x, — ¢|| — 0 implies
LIMx, = c. But if we take a subsequence (x,(;)) such that ||x, —c|| < % then this
subsequence is order convergent and LIM; ooX(j) = .

(Let aj = Xu(j+1) — Xn(j)- Then (O_F aj+) and (3_ a;") are monotone increasing
and norm convergent.)

Let us recall that for any z € A, z = x + iy where x and y are self-adjoint. In
particular, x = 1/2(z + z*) and y = 1/2i(z — z*). We call x the real part of z and y
the imaginary part of z.

Definition 2.1.20 Let A be any C*-algebra. Let (z,) be a sequence in A where x,
is the real part of z, and y, is the imaginary part of z,. We say that (z,) is order
convergent if LIMx, and LIMy, both exist. We define LIMz, to be LIMx,, + iLIMy,.

Lemma 2.1.21 Let A be any C*-algebra. Let (z,) and (wy) be sequences in A such
that LIMz,, and LIMw,, both exist. Then

(i) LIMz; = (LIMz,)*
(ii) LIM(z, + wy) = LIMz, + LIMw,,.
(iii) For any complex number o, LIMwz, = wLIMz,.
(iv) When LIMz, = 7z and (z,) converges in norm then ||z, — z|| — O.

Proof (i) is an immediate consequence of the definitions. So, also, is LIMiz, =
iLIMz,,.

Let = A + iu. Then, by applying (i) and (ii) from Lemma 2.1.18 we find
LiIMwz, = wLIMz,.

By applying Lemma 2.1.18 again we get (ii).

For (iv) we observe that (z}) is also convergent in norm. So we may apply
Lemma 2.1.19 to the sequences (%(zn +2})) and (%(zn —-27)). O

The following proposition is useful.

Proposition 2.1.22 Let A be any C*-algebra. Let (z,) be a sequence in A which is
order convergent to 7 € A, that is LIMz, = z. Letw € Al. Then LIMwz, = wLIMz,,,
where these order limits are in A.

Proof By linearity and Lemma 2.1.21, it suffices to prove this when (z,) is
monotone increasing (with supremum LIMz, in A).
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For any z we have the following polarisation identity:
13
i > Fw A+ FDzw + FD)* = wz
k=0

By Proposition 2.1.10
LIM(w + 1)z, (w + *1)* = (w + *1)(LIMz,) (w + i*1)*.

By using the polarisation identity and the linearity results of Lemma 2.1.21 we find
LIMwz, = wLIMz,,. O

Corollary 2.1.23 Let A and (z,,) be as in the preceding proposition. Let w and v be
in A'. Then LIM (wz,v*) = w(LIMz,)v*.

Proof We have vLIMz; = LIMvz). On taking adjoints (LIMz,)v* = LIM(z,v™).
Another application of the preceding proposition gives
w(LIMz,)v* = LIM(wz,v™*). O

Let A be any C*-algebra. Let A be a directed set. Let (x) : A € A) be a net in
Ay If x; = ay — b where (a), : A € A) is an increasing net with supremum a and
(by : A € A) is an increasing net with supremum b then (x; : A € A) is said to order
converge to a—b. We write LIMx; = a—b. Now consideranet (z) : A € A)inA. Let
Z) = x) + iy, where x; and y, are self-adjoint. We define the order limit LIMz, to
be LIMx;, + iLIMy, when LIMx, and LIMy, both exist. Then the preceding results
on order convergence of sequences are easily extended to nets. The results from
Lemma 2.1.16 to Corollary 2.1.23 were proved for sequences. From now onwards
we will make use of them for nets as freely as we do for sequences.

Incidentally, we may always suppose that an order convergent net is bounded in
norm. This follows from the observation that when (ay : A € A) is an increasing
net with supremum a we can fix A¢ and work instead with (a) : A > Ag), which is
bounded in norm by [|ay,|| + ||al|-

The following technical lemma is sometimes needed.

Lemma 2.1.24 Let A be any C*-algebra. Let (x) : A € A) be an increasing net
with supremum x. Let y € Ay, be such that x,yx) > 0 for each A. Then xyx > 0.

Proof We have
—xyx < xyx) —xyx = (x —x)y(x —x3) — (x — x3)yx — xy(x — x;).
We shall suppose the net to be bounded in norm by K. We have

(= x)y(x —x1) < |yl —x2) < [Iyll]1x = x2]|(x — x2).
So

—xyx < ([lxl] + K)[Iyl[(x = x2) = (x = x2)yx — xy(x — xp).
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Since LIM(x — x;) = 0 it follows that LIMw(x — x;)v* = 0 for any w and v in
A'. So, applying this to the above inequality, gives xyx > 0. O

The following inequality will be used in a later section.

Lemma 2.1.25 Let A be any C*-algebra. Let b, 7 and d be in A with d self-adjoint
and 7*z7 < b*b. Let 0 be a complex number of modulus 1. Then

(b + 02)d*(b + 02)*|| < 4||db*bd]|).

Proof We have
[|(b+02)d*(b+02)*|| = ||d(b+02)* (b+602)d|| < 2||d(b*b+z*2)d|| < 4||db*bd]).

|

2.1.1 Operator Monotone

Operator monotone functions are often useful. We recall some basic information but
for more details see [121]. Let f be a continuous real valued function defined on an
interval of R. Then f is said to be operator monotone (increasing) if, for x and y in
A, 0 < x < yimplies f(x) < f(y), whenever the spectra of x and y belong to the
interval of definition of f.

Fore > 0letf,(f) = (1 +e)~'t = 1(1 — (1 4 &)™) for ¢ in the open interval
(—1/&, 00). Then f; is operator monotone.

Let f(f) = t® for t > 0. Then f is operator monotone for 0 < 8 < 1. But NOT
operator monotone for 8 > 1. In particular, if A is a C*-algebra such that whenever
0 < x < y then x?> < y?, it can be proved that the algebra must be commutative.

When A is unital, if x is positive and invertible and

0<x=<y

then 0 < y~! < x~!. See [121].

2.1.2 Monotone Closed Subspaces

Let P be any partially ordered set and let C be a subset of P. Then C is a monotone
closed subset of P if it satisfies the following two conditions. First, whenever L is
an upward directed set in C which has a least upper bound b in P then b is in C.
Secondly, whenever D is a downward directed set in C which has an infimum b in
Pthenbisin C.
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We have a sequential version of this. We call C a monotone o -closed subset of P
if it satisfies the following conditions. First, whenever (b,) 1 in C and (b,) 1 b in
P, then b € C. Secondly, whenever (b,) | in C and (b,) | bin P, then b € C.

Now let S be any subset of P. The monotone closure of S in P is the
intersection of all monotone closed subsets of P which contain S. Similarly for
monotone o-closure.

Let A be any C*-algebra. Let us recall that a subset S C A is self-adjoint if
z € S implies z* € S. We call S a x-subspace of A (or equivalently, a self-adjoint
subspace) if it is a (complex) vector subspace of A and also self-adjoint. When S is
a x-subspace of A, let S5, = S N Ay, then S = S, + iS5,

Definition 2.1.26 Let A be any C*-algebra and let V be a x-subspace of A. Then V
is a monotone closed subspace of A if, V, is a monotone closed subspace of Ay,.

This definition makes sense for any A but if A is monotone complete then, clearly,
a monotone closed subalgebra will also be monotone complete.
The sequential version of this is as follows.

Definition 2.1.27 Let A be any C*-algebra and let V be a x-subspace of A. Then V
is a monotone o-closed subspace of A if, Vg, is a monotone o-closed subspace of
Agq.

The following exercises help clarify some points concerning monotone
(0-) closures. They also introduce a technique which is frequently useful. When
there is no risk of ambiguity, we abbreviate monotone o-closure to o-closure.

Exercise 2.1.28 Let B be a monotone o-complete algebra and A a self-adjoint
subspace of B. Show there exists a smallest o-closed subset of By, which contains
Agq. Let V be this set. Show that V is a (real) vector subspace of By,.

Hint:

(i) Let V be the intersection of all monotone o-closed subsets of By, which contain

Ag,. Show V is o-closed.

(ii) Fixa € Ay. Let W, = {x € V: a+x € V}. Show W, is o-closed and contains
Ag.

(iii) Deduce from (ii) that A;, + V C V.

(iv) Fixb € By,. Let W = {y € V : y + b € V}. Deduce from (iii) that A;, C W.

(v) From (i), deduce that V = V N (=V).

(vi) Let r be a strictly positive real number. Show rV is o-closed.

Exercise 2.1.29 Let B be a monotone complete algebra and A a self-adjoint
subspace of B. Show there exists a smallest monotone closed subset of By, which
contains Ay,. Let V be this set. Show that V is a (real) vector subspace of By,.

The notion of a commutant is familiar from von Neumann algebra theory. For
our purposes we proceed as follows. Let A be a C*-algebra. As usual, when A is not
unital, A' is the algebra formed by adjoining a unit; when A does have a unit we put
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A! = A. When S is a non-empty subset of A!, the commutant of S relative to A is
SNA={aecA: as=saforallsesS}

When there is no risk of ambiguity, we shall use S’ instead of S’ N A.

Proposition 2.1.30 Ler A be any C*-algebra and S a self-adjoint subset of A. Then
S N A is a monotone closed C*-subalgebra of A.

Proof Let B =8 NA. Then, because S is self-adjoint, it is straightforward to check
that B is a C*-subalgebra of A. Let C*(S, 1) be the C*-subalgebra of A! generated
by S and the unit element. Then

C*(S.1) NA =5 NA.

Let L be an upward directed set of self-adjoint elements of § N A which has
supremum b in Ag,. Let u be any unitary in C*(S, 1). Then every x € L commutes
with u. So uxu™® = x.

By Proposition 2.1.10, ubu™ is the supremum, in A,, of uLu*. But, ulu™ = L. So
ubu® = b. Thus ub = bu. Since each element of C*(S, 1) is the linear combination
of at most four unitaries, it follows that b € C*(S,1)) NA =S NA=B.SoBisa
monotone closed subalgebra of A. O

Corollary 2.1.31 We have S C S” and S” is a monotone closed subalgebra of A.

Corollary 2.1.32 When C is any abelian *-subalgebra of A then C" is abelian with
C C C". When C is a maximal abelian *-subalgebra of A then C = C” and C is a
monotone closed C*-subalgebra of A.

Proof Let y and z be in C”. Because C is abelian C C C’. So, for each x in C,
xy = yx. Hence y € C’. So y commutes with z. Thus C” is abelian.

If C is maximal abelian it follows that C = C”. By applying Proposition 2.1.30
to C’ we see that C is a monotone closed subalgebra of A. O

2.1.3 Regular Subalgebras and Subspaces

Let B be a C*-algebra and A a closed *-subalgebra. Also let D be a downward
directed set of positive elements of A. Since B has more elements than A it is possible
for D to have an infimum in B but fail to have an infimum in A. But even if D does
have an infimum in A it may be different from the infimum in B.

Example 2.1.33 LetA = C([0, 1]) and let B be the algebra of all bounded (complex
valued) functions on [0, 1]. Now let D be the set of continuous real functions f,
where 0 < f < 1 and f(1) = 1. Then D is downward directed and, in Ay, it has a
greatest lower bound; the function which takes the constant value 0. But in B, D has
a different greatest lower bound. It is d where d(1) = 1 and d(f) = 0for0 < < 1.
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We will be particularly interested in embeddings where this misbehaviour does
not occur.

Definition 2.1.34 Let W be a partially ordered (real) vector space and V a subspace.
Then V is a regular subspace of W if, for each b € W, the set

Lb)={aeV:a<b}

has least upper bound b in W. When this condition is satisfied, by multiplying by
—1 we find that for each b € W, the set

Ub)={aecV:Db<a}

has greatest lower bound b in W. When A and B are C*-algebras, with A a *-
subalgebra of B, and Ay, is a regular subspace of By, then we call A a regular
subalgebra of B.

Proposition 2.1.35 Let W be a partially ordered (real) vector space and V a
regular subspace. Let D be a subset of V with infinum d in V. Then D has infimum
dinW.

Proof Let b € W be a lower bound of D. When a € L(b) then a is a lower bound,
in V, for D. So a < d. Thus d is an upper bound of L(b). So b < d because V is a
regular subspace of W. Thus d is the greatest lower bound of D in W. O

The following technical lemma will be useful later. The proof is based on [61].

Lemma 2.1.36 Let B be a unital C*-algebra. Let A be a regular subalgebra of B
with the unit of B in A. For eachy € By, let L(y) = {a € Ay, : a < y}. Then L(y) is
not bounded below and cannot be assumed to be upward directed. But L(y) contains
a bounded subset which also has supremum y.

Proof Let us observe that, in any unital C*-algebra, z is positive and invertible if,
and only if, there is a positive real number ¢ such that z > 1. By spectral theory,
when this occurs 77! is positive.

First suppose that y is positive and invertible. Let

Ly = {a_l €Ay a> y_l}.

Since @ > y~! implies a=! <y, we see that Ly C L(y). Also Ly C A}. So Lo is
bounded. Let w € By, be an upper bound of Ly. Then w™! < a foreachain U(y™!).
Since A is a regular subalgebra of B, we have w™! < y~!. Thus y < w. So L has the
same least upper bound, in B, as L(y).

Now let x € By,. Then, for some real number A, x + Al is positive and invertible.
So there exists Ly C L(x + Al) where Ly is bounded and has supremum x + Al.
Then Ly — Al is a bounded subset of L(x) whose supremum is x. O
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Definition 2.1.37 Let A be a unital C*-algebra. A regular g-completion of A is a
pair (B,j) where B is a monotone g-complete unital C*-algebra and j is a unital
x-isomorphism of A into B with the following properties. First, j[A] is a regular
subalgebra of B. Secondly, B is o-generated by j[A] that is, B is the smallest
monotone o-closed subset of B which contains j[A].

In the above definition it would seem natural to put “o-closed subspace of B”
instead of “o-closed subset of B”. But, by Exercise 2.1.28, this would make no
difference.

If, in Definition 2.1.37, B is monotone complete and B is monotone generated by
JIA] then (j, B) is said to be a regular completion of A.

For commutative algebras, the existence of regular (o-)completions is discussed
in Chap. 4. In fact, we can construct the regular o-completion of every C*-algebra,
see Chap. 5. This implies, in particular, that each “small” C*-algebra has a regular
completion. (“Small” has a technical meaning. This class is large enough to contain
most of the examples of primary interest to us. It contains some algebras which
are too big to be represented as C*-algebras on separable Hilbert spaces. See the
discussion in Chap.5.) Hamana [61] extended the results of [173] by showing
that every C*-algebra has a regular completion by first constructing its injective
envelope. We shall discuss this in a later chapter. Incidentally, other o-completions
have been considered [172].

2.1.4 On £*-Summable Sequences

The following is straight forward, but will not be used until Sect. 5.8, so the reader
can postpone reading it until later. See also [92] and [63].

A family {aj}iea in A is ¢*>-summable if {ZAGF(A) a *ay : F e F(A)} is
bounded in Ay,, where F(A) is the class of all (non-empty) finite subsets of A.

Lemma 2.1.38 Let A be a monotone o -complete unital C*-algebra and let (a,,) and
(by) be ?-summable sequences in A. Then

LIM Z b,*a, does exist in A.

n>1

Proof Let {x,} and {y,} be £?-summable sequences in A. Note that for any x, y € A,
(x +y)*(x +y) < 2x*x 4+ 2y*y and 4y*x = Z;ZO i/(x 4+ i/y)*(x + i’y). Hence the
sequence {x, + i’y} is also £>-summable for each j and, since

3

43 wne= Y PO+ )+ i)
k=1

j=0 k=1
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on putting a,(j) = Y j—; (x + i/yx)* (xx + i/yy) for each n and j, each (a,(j))(n =
1,2,---) is a norm bounded increasing sequence in Ay, and so the sequence
O i=i ™ x)(n = 1,2,--+) converges to an order limit in A. The general case can
be shown similarly. O

We shall sometimes write this limit as LIM, o0 3 gy Yk Xk = 2 et Yn™ Xn.

Corollary 2.1.39 Let A be a monotone complete C*-algebra and let {a;, })ep and
{b)Yren be L2-summable families in A. Then

LIMFera) Z by *ay does exist in A.
AEF

Proof In the proof of Lemma 2.1.38, replace sequences by nets. O

2.2 Monotone o-Complete C*-Algebras

In this section we discuss some basic properties of monotone o-complete C*-
algebras. We shall begin by considering projections and use them to derive a polar
decomposition theorem and also to show that when A is monotone o-complete then
so, also, is A!. We shall consider homomorphisms and o-ideals and formulate a
fundamental representation theorem. Of course every monotone complete algebra
is o-complete. We saw in Sect. 2.1 that when a monotone o-complete algebra has a
faithful state then it is monotone complete.

We shall see later that the classical type theory of von Neumann algebras
can readily be extended to monotone complete algebras. We shall also give a
classification theory for monotone complete algebras which is totally different from
the von Neumann theory.

Recall that we can embed a non-unital C*-algebra A in the unification A! as
a closed two-sided ideal. When A is unital, we put Al = A. In this section, we
shall denote the unit of A? by 1. We also recall that for a, b in As,, a < b if, and
only if, @ < b in Al . Let us recall that, in any C*-algebra A, a projection is a
self-adjoint p such that p = p?. Obviously 0 and, if the algebra is unital, 1 are
projections but for some algebras these are the only ones. When there are non-
trivial projections they inherit a partial ordering from the partial ordering of the
self-adjoint elements. We shall show below that monotone o-complete algebras have
an abundance of projections and obtain a result which helps us to show that if A is
monotone o-complete then so, also, is A'. We shall denote the set of projections in
A by ProjA.

Lemma 2.2.1 Let p and q be projections in A. Then p < q if, and only if, pq = p.

Proof Letpgq = p. Then gp = (pgq)* = p. Also (p—q)* = p—pg—qp+q = q—p.
Sog=p.
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Conversely, let ¢ > p. Then,
0=(1-¢g)q(l-qg)>1-gp(l—q)=0.

S0 0 = [|(1 —g)p(1 —g)|| = lIp(1 — g)||*. Thus p = pq. O

Lemma 2.2.2 Let p and q be projections in A. Let p < Kq where K is a strictly
positive real number. Then p < q.

Proof We have (1 —q)p(1 —g) < 0. Then ||p(1 — g)|[* = ||[(1 — g)p(1 — g)|| = 0.
Sop = pq. O

Let us recall that when A is a C*-algebra without a unit and a € A, then o (a) is
defined to be the spectrum of @ in A'. The functional calculus for C*-algebras, see
[161], enables us to give a sensible meaning to f (a) when a is a normal element
of a C*-algebra A and f € C(a(a)). Suppose 0 < a < 1. So o(a) C [0, 1]. Then
the Gelfand transform gives an isometric *-isomorphism of C(o(a)) onto the norm
closed *-subalgebra of A! generated by a and 1. The image of f is denoted by f(a).
In particular, a is h(a) where h(t) = t for all t € o(a). In the future, when we wish
to indicate that the functional calculus gives a required result we shall often write
“by the functional calculus” or “by spectral theory”.

Letf € C({0} U o(a)) with f(0) = 0. Let f be real-valued. Then, by the Stone-
Weierstrass Theorem, there is a sequence of polynomials (¢,), with real coefficients,
such that || f — ¢,|| — 0. Then ¢,(0) — 0. Let ¥,(t) = ¢,(t) — ¢,(0). Then each
Y, is a polynomial with zero constant term and, as before, || f — v, || — 0. It follows
that || £(a) — Yu(@)|| = 0.

Let r be a positive real number. Let (f,) be a monotone increasing sequence in
C([0, r]) with £,,(0) = O for each n and, for 0 < ¢ < r, f,,(tf) — 1. We shall normally
use f,(t) = (%1 + 1)~'#. An alternative which is sometimes useful is f, () = /"
but this is only useable if » < 1. Now let g € C([0, r]) where g(0) = 0 and g > 0.
Then (gf,) is a monotone increasing sequence which converges pointwise to g. It
now follows from Dini’s Theorem that the sequence converges uniformly to g. Thus

llg(@)fn(a) — g(@)[| — 0.

Proposition 2.2.3 Let A be monotone o-complete. Then, for each z € A, there
is a smallest projection p such that pz = z. Furthermore, p is the supremum of
((%1 + 22%)7'2z%). Also, p is the smallest projection such that pzz* = zz* and the
smallest projection such that p(zz*)'/? = (zz*)"/2.

Proof Leta = zz*. Let f,,(t) = (%1 + 1)~'t. Then, by spectral theory, (f,(a)) is a
norm bounded, monotone increasing sequence in Ay,. So it has a least upper bound,
p,in A. By Proposition 2.1.11 p is also the least upper bound in A'. So p < 1.

Let g > 0 with g(0) = 0 and g € C([0, ||a||]). Then, see the remarks above,
(g(a)f,(a)) converges in norm to g(a). Also (g(a)'/?*f,(a)g(a)'/?) is monotone
increasing with least upper bound g(a)'/?pg(a)'/?. But this sequence has norm limit

g(a).
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So we have g(a)'/?(1 — p)g(a)'/> = 0. So ||(1 — p)'/?g(a)"/?|| = 0. Thus (1 —
p)'/*g(a) = 0.

For each n we may replace g by f,.. Then ((1—p)/2f,(a)(1—=p)"/>)(n = 1,2.. ) is
a sequence of zeroes with least upper bound (1 —p)'/?p(1—p)'/2. So (1—p)'/?p(1—
p)'/? = 0. Thatis, p = p?.

We have

g(a) —pg(a) = (1 —p)g(a) = (1 —p)"/?0 = 0.

On taking adjoints we also have g(a) = g(a)p.

In particular, by putting g(r) = t, we get a = pa = ap.

Now suppose that g is a projection such that a = ga. Then, whenever ¥ is a
polynomial with zero constant coefficient, gy (a) = ¥ (a).

Letf € C({0} U o(a)) with £(0) = 0 and f real-valued. Then f is the norm limit
of a sequence of real polynomials, each with zero constant coefficient.

So gf(a) = f(a). (In particular, ga'/?> = a'/2.) By taking adjoints, f(a) =
qf (a) = qf (a)q.

By Proposition 2.1.10, gpgq is the least upper bound of (gf,(a)q). So gpg = p.
Multiplying by (1 — g) gives 0 = p(1 —¢q) = p —pg.

So, by the preceding lemma, p < g.

Let e be a projection. Then z = ez if and only if (1 — €)zz* (1 — e) = 0. That is

(1—e)a(l —e) =0.

Equivalently (1 — e)a'/? = 0.

Now (1 — e)a'/? = 0 implies (1 — e)a = 0. Conversely, if ¢ = ea then, as
remarked above ea'/?

So z = ez if and only if ea = a and this holds if and only if ea'/? = a'/2. O

= a'l2,

Definition 2.2.4 Let A be a monotone o-complete C*-algebra and z € A. Then the
left projection of z is the smallest projection p such that pz = z. And we denote it
by LP(2).

Proposition 2.2.3 tells us that LP(z) = LP(zz*) = LP((zz*)"/?). We define the
right projection of z to be LP(z*) and denote it by RP(z). So, whenever x is self-
adjoint, LP(x) = RP(x); we also call this the range projection of x. For a self-adjoint

b the functional calculus gives meaning to |b|. But for a general 7 in A we define |z
to be (z*2)/2.

Corollary 2.2.5 Let A be monotone o-complete. Then, for each z € A, RP(z)
exists. Also RP(z) = RP(z*z) = RP(|z|). Furthermore RP(z) is the supremum of
(14227 12%2).

Proof Apply Proposition 2.2.3 to z*. O

Corollary 2.2.6 Let A be monotone o-complete. Each countable set of projections
has a least upper bound in ProjA; it also has a greatest lower bound in ProjA. In
other words, ProjA is a a-complete lattice.
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Proof Let (p,) be an enumeration of a countable set of projections in ProjA. Let
a =Y 1/2"p, where the sum converges in the norm topology.

Let p be a projection in ProjA such that (1 — p)a = 0. Since a < 1 we have
a = pap < p.

So p, < 2"p. So, by Lemma 2.2.2, p is an upper bound for {p, :n =1,2...}. In
particular, the range projection of a is an upper bound.

Now let g be any upper bound for {p, : n = 1,2...} in ProjA. Then

(I—ga=Y 1/2"(1 - g)p, = 0.

So the set of (projection) upper bounds of {p,, : n = 1,2...} is the same as the set
of p such that a = pa.
It now follows from the preceding proposition that there is a smallest projection
o0

which is greater than each p,. We denote this by \/ pn. Itis straightforward to verify

n=1

that

p— \/(p — py) is the greatest lower bound of (p,).
n=1
In particular, each finite collection of projections in A has a supremum in the set

of projections. So ProjA is a lattice. O

By Corollary 2.2.6, when A is monotone o-complete then ProjA is a lattice. But,
if A is not commutative, a pair of projections may fail to have a supremum in Ag,.
See the discussion below.

Proposition 2.2.7 Let (p,) be a monotone increasing sequence of projections in a
C*-algebra A. If LIMp,, exists in A it is a projection. If A is monotone o-complete
then

o0
LiMp, = \/pa.
n=1

Proof Letx = LIMp,,. Then xp,, = LIM( pupn) = Pm- SO
x*> = xLIMp,, = LIMxp,, = LIMp,, = x.

Then x is a projection and is the smallest projection which is greater than each p,. O
By a slight modification of the above argument we have:

Proposition 2.2.8 Let A be a monotone complete C*-algebra. If (pi : A € A) isan
upward directed net of projections then LIMp,, is the smallest projection in A which
is greater than each p,. Furthermore, ProjA is a complete lattice.
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Proof By adapting the above argument we can show that LIMp, is the smallest
projection in A which is greater than each p; .

Now let Q = {q; : t € T} be a non-empty collection of projections in A. Let A
be the collection of all finite, non-empty, subsets of 7. For each A € A, let

P = \/{q, 1tE A}

Then LIMp, is the supremum of Q in ProjA. O

Lemma 2.2.9 Let A be a monotone o-complete C*-algebra which does not possess
a unit. Let {a, : r = 1,2..}. be any countable subset of As,. Then there exists a
projection p such that pa, = a, = a,p for each r.

Proof Let p be the supremum in ProjA of the range projections of each a,. O

Proposition 2.2.10 Let A be a monotone o-complete C*-algebra. Then Al is
monotone o-complete.

Proof We shall suppose that A does not possess a unit. For, otherwise A! = A and
there is nothing to prove. Let 1 be the unit of A'.

Let (A,1+x,) be a norm-bounded monotone increasing sequence in (A'),, where
each x, isin Ag,.

By taking the quotient homomorphism onto A! /A we find that (A,) is a bounded
monotone increasing sequence in R.

Hence it converges to Ao, say.

Let g be a projection in A which is bigger than the range projections of each x,.
Then

Al 4+ x, = /\n(l _Q) +/\nq+xn-

Then A,q + x, = q(A,1 + x4)q. So (A,g + x,) is a norm-bounded monotone
increasing sequence in A. So it has a supremum a in Ay, and hence, by Proposi-
tion 2.1.11, supremum «a in AN 0.

We also have (A,(1 — g)) is a monotone increasing sequence in (A!),, with
supremum Ao (1 —g). (The sequence converges in the norm topology.) So (4,1 +x,)
has supremum Ao (1 — ¢) + a. It follows that A! is monotone o-complete. O

Let A be a C*-algebra. Consider a monotone increasing sequence, (x,) 1 in A.
Call the sequence upper bounded if there exists ¢ € Ay, such that x,, < ¢ for all n.
Then it is easy to check that every upper bounded monotone increasing sequence is
bounded in norm. For x,, — x; < ¢ — x; and so

1l < lxn = x|+ [l < e = x|+ [

What about the converse? When A is unital it is easy to see that each norm
bounded, monotone increasing sequence is upper bounded.
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Call a C*-algebra pseudo monotone o-complete if each upper bounded, mono-
tone increasing sequence has a least upper bound. Then, for unital algebras, it
follows from the remarks above that each pseudo monotone o-complete algebra
is monotone o-complete. But for non-unital algebras this breaks down.

Example 2.2.11 Let H be a separable, infinite dimensional Hilbert space and K(H)
the C*-algebra of compact operators on H. Let (c,) be a monotone increasing
sequence in K(H),, and suppose it has an upper bound ¢ in K(H). Then, in L(H),
(cy) has a least upper bound x and ¢, — x in the strong operator topology. Then
0 < x—c¢; < c—cy. Here ¢ — ¢; is a positive compact operator. Since K(H)
is a closed ideal of L(H), its self-adjoint part is an order ideal of L(H),,. So
x — c¢; is compact. So x is a least upper bound of (c,) in K(H). Thus K(H) is
pseudo monotone o-complete. But it is not monotone o-complete. To see this take
a projection p € L(H) such that the range of p is infinite dimensional. Let (p,)
be a monotone increasing sequence of finite rank projections such that p, — p in
the strong operator topology. Clearly this sequence is bounded in norm. If ¢ were a
compact operator which was an upper bound for this sequence then we would have
p < c. Then, as before, this would imply that p is compact. But this is absurd.

Proposition 2.2.12 Let A be a monotone o-complete C*-algebra. Let b € Ay,
and 7 € A be such that ¥z < b>. Then we can find ¢ € A such that 7 = cb.
Furthermore, c = LIMz(%l +b*) " 'band]||c|| < 1.

Proof By dividing by a suitable constant if necessary, we can suppose that ||b|]
< 1. Letx, = (%1 + b?)~!(e A'). Then, by Corollary 2.2.5 (x,b?) is a monotone
increasing sequence in A with supremum RP(b) = RP(b?). Let ¢, = zx,b. We have
the polarisation identity

3
1
=17 § : (b + *Z) %, (b + *2%).
k=0

By applying Lemma 2.1.25 with b self-adjoint and d = x,l/ * we find that each of the
monotone increasing sequences ((b + i¥z*)*x, (b + i¥z*))(n = 1,2...) is bounded
in norm by 4||xl/2 2 l/2|| 4||b2(%1 + b*)7!| < 4. Hence LIMc, exists. Let
¢ = LIMc,. Then

cb = LIMc,b = LIMzx,b* = zRP(b).
But
(1 — RP(b))z*z(1 — RP(b)) < (1 — RP(b))bb(1 — RP(b)) = 0.

So z(1 — RP(b)) = 0. Thus ch = z.
It remains to show ||c|| < 1. We observe that

¢RP(b) = (LIMc,)RP(b) = LIM(c,RP(b)) = LIMc, = c.
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We have bc*cb = 7*z < b%. So b(1 — ¢*c)b > 0. This implies
1 —1 * 1 -1
(=14+b)"b(1 =c*c)b(-14+b)" =0.
n n

We know that ((% 14+b)"'b) 1+ RP(b).So, by Lemma 2.1.24, RP(b)(1—c*c)RP(b) >
0. So RP(b) — c*c > 0. Thus ||c|| < 1. O

2.2.1 Open Problem

Let a € Ay, We showed that if A is monotone o-complete then a has a range
projection, that is a smallest projection p such that pa = a = ap. But an examination
of the proof shows that we could prove the same result under a weaker hypothesis
on A. It is sufficient to suppose that if (a,) is a norm bounded, monotone increasing
sequence in Ay, and the terms of the sequence are mutually commutative then (a,)
has a supremum in A;,. Why did we not use this weaker hypothesis? Because no
one has ever seen an algebra with this property which is not monotone o-complete.
Let A be a C*-algebra where each maximal abelian *-subalgebra is monotone o-
complete. Is A, itself, monotone o-complete? This is unknown.

We recently discovered [146] that if each maximal abelian *-subalgebra in A is
monotone o-complete and A is unital then A is a Rickart C*-algebra. (Definition 3.3
in [13]). See also [3, 5].

So the question reduces to: are all Rickart C*-algebras monotone o-complete?

2.2.2 Polar Decomposition

Let us recall that, in any C*-algebra, w is a partial isometry if ww™ is a projection.
Lemma 2.2.13 Let w be a partial isometry. Then w*w is also a projection.

Proof We observe that (W*w)3 = w*(ww*)>w = w*(ww*)w = (w*w)2. So, by
spectral theory, w*w is a projection. O

In any C*-algebra, a projection p is (Murray-von Neumann) equivalent to ¢ if
there exists a w in the algebra such that p = w*w and ¢ = ww™*. We shall write
p ~ q to indicate that two projections are equivalent. We shall show that when A
is monotone o-complete then, for any z, we can find a partial isometry u such that
7z = u|z| and u*u = LP(z) and uu™ = RP(z).

Let us recall [161] that in any C*-algebra A, for each x and y we have

o(xy) U {0} = o(yx) U {0}.
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Lemma 2.2.14 Let A be any C*-algebra and z € A. Then for any f € C(o(zz*) U
{0})

#f(Z%2) = f(z2")z

Proof By induction on n, this holds when f(f) = ¢". Hence, by linearity, it holds
for all polynomials. So, by Stone-Weierstrass, it holds when f is real valued. For the
general situation, split f into real and imaginary parts. O

Theorem 2.2.15 Let A be monotone o-complete. For any z € A there is a partial
isometry u such that 7 = u|z|. Also u*u = LP(z) and uu® = RP(z).

Proof Letu, = z(%l + 127z
In Proposition 2.2.12 put b = |z|. Then LIMu, = u where z = u|z].
So upuy = |2|(5; 1+ [21) 7 2* 2 1+ 12177zl
We recall that z*z = |z|? and, by Corollary 2.2.5, LIM(%I +12|*)7Yz|? = RP(2).
We have
w*u = LIMy— o0 (LIM, s 0ot 1,) = RP(z)* = RP(2).
Now consider
* 1 2\—1 1 2\—1_*
tntty, = 2(=1 4+ [2[) 7 [zllzl (=1 + [2[) "z
n m
1 * _\—1_x% 1 * _\—1_x%
=z2(=14+z2"2) (=1 +7"2)" 7"
n m
We now apply Lemma 2.2.14
* 1 *k\—1__*x 1 *\—1__*
gty = (=1 4+227) 22 (=1 +22")" 22"
n m
First keep m fixed and let n — oo. Then let m — oco. We find that

uu* = LP().

2.2.3 Sequentially Closed Subspaces

Let L be a vector subspace of a C*-algebra A. We recall that L is said to be a self-
adjoint subspace, or *-subspace if z € L implies z* € L. We defined (monotone)
o-subspaces in 2.1.27. When we refer to an ideal of a C*-algebra we always mean
a norm-closed, self-adjoint, two sided ideal, unless we specifically state otherwise.
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Definition 2.2.16 Let A be a monotone o-complete C*-algebra. Then a o-ideal is
an ideal of A which is a monotone o-subspace of A. Similarly, a o-subalgebra is a
*-subalgebra which is a monotone o-subspace of A.

When A is monotone o-complete and L is a closed *-subalgebra which is a
o-subspace then it is easy to check that for any a € L, the range projection of
a, obtained in A, is the same as its range projection constructed in L.

For the rest of this section, J is a closed ideal of a C*-algebra A and p is the
quotient homomorphism onto A/J. It is easy to see that each self-adjoint element
of the quotient is p(a) for some a € Ay,. That is (A/J)ss = p[As]- Let d be a
positive element of A/J then, since p is surjective, d'/?> = p(w) for some w. Hence
ww* € AT and p(ww*) = d. So p[AT] = (A/])T.

The following “intermediate value theorem” is a key technical result.

Lemma 2.2.17 Leta € AT. Let 0 < y < p(a). Then there exist z in AT such that
p(z) =yand0 <z <a.

Proof See Proposition 1.5.10 in [121]. For our purposes, we only need this result
for the special case where A is monotone o-complete. Making this assumption we
can argue as follows.

Since p(a) — y is positive, it is p(w) for some positive w. Let x = a — w. Then
x <aand p(x) = y.

By C*-algebra spectral theory, there exist unique positive x* and x~ such
that x = x — x~ and xtx~ = 0. Then p(x") and p(x~) provide the unique
decomposition for p(x) = y. So p(xT) = yand p(x~) = 0.

We have x* < x~ + a. So, by Proposition 2.2.12, there exists s, with ||s|| < 1,
such that (x)'/2 = s(x~ + a)'/2.

Put u = sa'/2. Then u*u = a'/%s*sa'/? < a.

Since p(a) = p(a + x~) we have p(a'/?) = p((a + x7)'/?). From this it follows
that

p(u*u) = p((a+x7)""*)p(s*s)p((a + x7)"?)
= p(xH)'2p(xH)? = p(x*t) = y.

Put z = u*u. O

Corollary 2.2.18 Let (b,) be a monotone increasing sequence of positive elements
of A/J which is bounded above by p(c), with ¢ > 0. Then there exists a monotone
increasing sequence, (x,) in AT such that c is an upper bound for this sequence and
o(x,) = b, for each n.

Proof By the lemma there exists x; in A" such that p(x;) = b; and x; < c.

Then 0 < by — by < p(c —x1) withc —x; > 0.

So we may apply the lemma again to find x € A™ such that p(x) = b, — by and
x <c—xj.
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Now let x, = x + x;. Then 0 < x; < x» < c and p(x) = b,. Proceeding
inductively, we obtain (x;,). O

Lemma 2.2.19 Let A be monotone o-complete. Let J be a o-ideal and p the
quotient homomorphism from A onto A/J. Let (x,) 1 x and (a,) 1 a. Let

p(x,) = p(ay,) for each n. Then p(x) = p(a).

Proof Since x,, — a, € J;, we have RP(x,, — a,,) € J. Let g be the supremum of these
range projections in ProjJ.

By Corollary 2.2.6 we can find a projection e in A such that it is greater than g,
RP(x), RP(a) and, also, greater than RP(x,) and RP(a,,) for each n and m.

Then (e — q@)x, = (e — q)ay.

But ((¢ — g)xu(e — q)) T (e — q)x(e —g) and (e — g)an(e — q) T (e —q)ale —q).

So p((e — g)x(e — q)) = p((e — g)ale — q)).

Since p is a homomorphism and p(g) = 0 it follows that p(exe) = p(eae). So
p(x) = p(a). See [27]. O

Definition 2.2.20 (i) Let A and B be monotone o-complete C*-algebras and ¢ :
A — B a positive linear map. Then ¢ is said to be o-normal if, whenever (a,) 1 a
in Ay, then ¢(a,) 1 ¢(a) in By,. If a o-normal map is a homomorphism we call it a
o-homomorphism. (ii) Let A and B be monotone complete. The map ¢ is said to be
normal if, whenever D C Ay, is a upward directed set with supremum a in A, then
¢[D] has supremum b in B.

Proposition 2.2.21 Let A be a monotone o-complete C*-algebra with a closed
ideal J. Let p : A +— A/J be the quotient homomorphism. Then A/J is monotone
o-complete and p is a o-homomorphism if, and only if, J is a o-ideal.

Proof LetJ be a o-ideal.

(i) Let (a,) 1 a. Clearly p(a) is an upper bound of (p(a,)). We shall show that
this is the least upper bound. It suffices to prove this when (a,) is a sequence
in AT; for, otherwise, we could work with (a, — a;).

Let d be any upper bound of (p(a,)). Then, see the remarks preceding
Lemma 2.2.17, d = p(c) for some ¢ > 0.

By Corollary 2.2.18 we can find (x,) 1 in AT such that p(x,) = p(a,) and
X, < c.

Let (x,) 1 x. Then by Lemma 2.2.19 we have p(a) = p(x) < p(c) = d.

This tells us that p is a 0-homomorphism provided we can show that A/J is
monotone o-complete.

(ii) First suppose that A is unital.

Let (¢,) be a monotone increasing sequence in A/J which is bounded in
norm. Since A/J has a unit, the sequence is bounded above by a multiple of
the unit element. Let b, = ¢, — c;. Then it follows from Corollary 2.2.18 that
there is (z,) 1 zin A™ such that p(z,) = b,. It now follows from the argument
above, that (b,) 1 p(z). So (¢,) 1 p(z)+c1. Thus A/J is monotone o-complete.

(iii) Now suppose that A is not unital. By Proposition 2.2.10, A! is monotone
o-complete. It is easy to see that J is a closed ideal of A!. By applying
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Proposition 2.1.11, it is straightforward to verify that J is a o-ideal of A'. It
now follows from the preceding paragraph that A' /J is monotone o-complete.
We abuse our notation by using p for the quotient homomorphism of A' onto
A'/J. Then p[A] = A/J.

Let (b,) be a norm bounded, monotone increasing sequence in A/J. We
wish to show it has a supremum in A/J. Without loss of generality, we assume
by > 0. Let d be the sequence’s supremum in A' /J. Then d = p(x) for some
positive x in A'. By Corollary 2.2.18 we can find (y,) 1 in A' such that p(y,) =
b, and y, < x. For each n, b, = p(a,) for some a, € A. Theny, —a, € J.
Since J C A it follows that y, € A.

The sequence (y,) is norm bounded and A is monotone o-complete. So
(yu) 1 y for some y in A. By Proposition 2.1.11, y is the supremum of the
sequence in A'. By applying part (i), we have p(y) = d. So d is in p[A] = A/J.
Thus A/J is monotone o-complete.

(iv) Conversely, let p be a 0-homomorphism onto a monotone o-complete algebra.
Then it is clear that the kernel of p is a o-ideal. O

Let H be a Hilbert space and L(H) the C*-algebra of all bounded operators on H.
Then L(H) is monotone complete. Let (aj : A € A) be a norm bounded, increasing
net in L(H)g,. Then this net converges in the strong operator topology to a € L(H),
that is, ay € — £ (in the norm topology of H) for each § € H. Equivalently,a; — a
in the weak operator topology. By Corollary 2.1.8 it follows that a is the least upper
bound of (a) : A € A).

Definition 2.2.22 Let B be a C*-subalgebra of L(H). The Pedersen envelope of B
in L(H) is the smallest o-subspace of L(H) which contains B. We shall denote it by
B°.

By a theorem of Pedersen [118] (see also Corollary 5.3.8), B? is a C*-algebra.
It is now clear that B° is a o-subalgebra of L(H). Then we can easily find a
sequentially order compatible, Hausdorff, locally convex topology for B?; either
the weak operator topology or the strong operator topology will do.

Let A be an “abstract” C*-algebra. For simplicity, let A have a unit element. Let us
recall that by taking the direct sum of all the Gelfand-Naimark-Segal representations
of A, we obtain the universal representation (7, H,). Then 1, is an (isometric) *-
isomorphism of A onto 7,[A]. Let A” be the closure of ,[A] in the strong operator
topology of L(H,); then A” is the double commutant of 7, [A] in L(H,). Then we can
identify A with 7, [A]. The second dual of A, as a Banach space, can be identified
with A”.

Definition 2.2.23 We define the Pedersen-Baire envelope of A to be the Pedersen
envelope of 7,[A] in L(H,). We shall denote it by A*°. So A* = m,[A]°.

Then A® is a o-subalgebra of L(H,). We shall return to this topic in Chap.5,
where we shall also consider other envelopes.

The Wright Representation Theorem [171] below tells us that each monotone
o-complete C*-algebra is the quotient of a g-subalgebra of some L(H).
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Theorem 2.2.24 Let A be a unital monotone o-complete C*-algebra. There exists
a o-homomorphism p : A% +— A such that p(a) = a for each a € A. Let J be the
kernel of p. Then J is a o-ideal of A*° and A% /J = A.

It can be extended to non-unital algebras. More importantly, by taking a larger
envelope than A% we get a representation which works well for general monotone
complete algebras. We shall postpone proofs until later, when we have more tools
at our disposal.

We have seen above that the quotient of a monotone o-complete algebra by a
o-ideal is always monotone o-complete. But sometimes the quotient may turn out to
be monotone complete. For example, in a later section, we shall show the following.
Let X be a compact Hausdorff space and B(X) the algebra of bounded Borel
measurable functions on X. Let J be the set of f € B(X) for which {x € X : f(x) # 0}
is a meagre set. Then B(X) is a commutative monotone o-complete algebra and J
is a o-ideal. So B(X)/J is, necessarily, monotone o-complete. But more is true, this
quotient algebra is monotone complete.

Another, very familiar, example occurs if we take X = [0, 1] and J to be those
£ in B([0, 1]) such that [ |f|du = 0. For then B([0, 1])/J is a (commutative) von
Neumann algebra and so monotone complete.

The following propositions will be used later.

Proposition 2.2.25 Let A be monotone o-complete and let e be a projection in A.
Then the map

X > exe
is o-normal from A onto eAe. Also eAe is monotone o-closed in A (and so the natural
inclusion map is o-normal from eAe into A).
Proof Suppose (a,) is a norm-bounded, monotone increasing sequence in eA;qe
with supremum a in Ay,. By Proposition 2.1.22,

(1—e)a=(1—-e)LIMa, = LIM(1 — e)a,.

But (1 —e)a, = 0 for all n. So (1 —e)a = 0. So a = ea. Taking adjoints
gives a = ae. Hence a € eAe. It follows that eAe is monotone o-complete and is a
o-subspace of A.

Now let (a,) be any norm-bounded, monotone increasing sequence in Ag,. Let
its supremum in A be a. Then (ea,e) is monotone increasing and its supremum in
Agq 1S

LiMeaye = e(LIMay)e = eae.

Since eAe is a o-subspace of A, eae is also the supremum of (eane) in eAe. O
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Proposition 2.2.26 When A is monotone complete the map x +— exe is normal. Also
eAe is monotone closed in A (and so the natural inclusion map is normal from eAe
intoA).

The proof is a straightforward generalisation of Proposition 2.2.25.

2.3 Basics for Commutative Algebras

Each maximal abelian *-subalgebra of a monotone complete C*-algebra is, itself, a
(commutative) monotone complete C*-algebra.

There is a duality between compact Hausdorff spaces and commutative (unital)
C*-algebras. i.e. for each compact Hausdorff space X, C(X) is a commutative C*-
algebra; conversely, given a commutative unital C*-algebra A it is isomorphic to
C(2) where Q is its spectrum.

What property of €2 corresponds to C(£2) being monotone complete? The answer
is that  must be extremally disconnected i.e. the closure of each open subset is
open.

Throughout this section, indeed throughout this book, we shall always suppose
that the topologies we use are Hausdorff unless we explicitly state the contrary. In
this section X is a compact (Hausdorff) space. Let Y be a topological space where
Y is not assumed to be compact. We use C,(Y) to denote the algebra of bounded
complex valued continuous functions on Y and Cj (Y)s, the (real) algebra of bounded
real valued continuous functions on Y.

We recall that in any topological space, a subset is clopen if it is both closed
and open. It is easy to see that f € C(X) is a projection if, and only if, it is the
characteristic function of a clopen set. Let us recall that a topological space is zero-
dimensional if its topology has a base of clopen sets.

Lemma 2.3.1 Let X be a compact space. For each pair of distinct points t| and t,,
let there exist a clopen K such that t| € K and t; ¢ K. Then X is zero-dimensional.
Furthermore given disjoint closed sets E and F, we can find a clopen K such that
ECKandF C X\K.

Proof

(i) Let fyp € X and F a closed subset of X with fy ¢ F. For each s € F there is a
clopen Qg with s € Qy and 7y ¢ Q,. By compactness, there are finitely many
points {sy, ..., s,} such that the corresponding clopen sets cover F. We now put
K = N{X\Q : k = s1,...,8,}. Then K is a clopen neighbourhood of #y and K
is disjoint from F. Hence the clopen subsets form a base for the topology.

(i) Foreacht e E there is a clopen K; with t € K; and F disjoint from K. Since E is
compact there are finitely many points {z,, ..., #,} such that the corresponding
clopensets cover E. Let K = K;, UK,, U...UK,,. O
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Proposition 2.3.2 Let X be a compact (Hausdorff) space such that C(X) is
o-complete. Then X is zero-dimensional.

Proof Suppose s and ¢ are distinct points. Then there exist disjoint open sets U and
V where s € U and ¢t € V. By Urysohn’s lemma, there exist continuous functions
a:Xr [0,1]and b : X — [0, 1] such that a(s) = 1 and a[X\U] = {0} and also
b(t) = 1 and b[X\V] = {0}.

Since U and V are disjoint ab = 0. Let p be the range projection of a. Then the
sequence ((%1 + a)~'a) is monotone increasing to p. So pb = 0.

Since 0 < a < 1 it follows that a = pa < p. Now let K be the clopen set such
that p = yk. Since a(s) = 1 it follows that yx(s) = 1. Thatis, s € K.

But pb = 0. So p(t)b(t) = 0. Since b(¢) = 1 we have p(¢t) = 0. Thatis ¢ ¢ K.

We can now apply the preceding lemma to deduce that X is zero-dimensional. O

Let X be a compact zero-dimensional space. We call s € C(X) simple if it takes
only finitely many values. This is equivalent to

§ = ZAiXKi
i=1

where {K|, K>, ... K,} is a finite collection of pairwise disjoint clopen sets; equiv-
alently s is a finite linear combination of orthogonal projections. A straightforward
application of the Stone-Weierstrass Theorem shows that the simple continuous
functions are norm-dense in C(X). In other words, each element of C(X) is the
limit in norm of a sequence of finite linear combinations of projections.

Let Y be any non-empty set and Bnd(Y) the set of all bounded complex valued
functions. Then with the natural pointwise operations of addition, multiplication
etc., it becomes a x-algebra. We define a norm by

11l = supilf(W)]| : y € Y}.

Then Bnd(Y) becomes a commutative C*-algebra. It is monotone complete, in fact
a von Neumann algebra. The self-adjoint part of Bnd(Y) consists of the bounded
real valued functions on Y. Given f, g in Bnd(Y),, we define f Vv g by

(f v &)y = max(f(y), g) = 1/2(f() + ) + |/ (V) — gO)D.

We define f A g in a similar way. Then Bnd(Y),, is a vector lattice.

When Y is a topological space and f, g are continuous real valued functions then
fV gandf A g are continuous functions.

Let X be compact and C(X) monotone o-complete. Let (f,) be a sequence in
C(X)y, which is bounded above. Let

gn=hVhLRV...V.



38 2 Order Fundamentals

Then (g,) is a monotone increasing sequence in C(X),, with the same set of
upper bounds as (f;,). So every upper bounded sequence has a least upper bound in
C(X)sa-

Clearly the supremum of (g,) in Bnd(X)s, is the function which is the pointwise
limit of the sequence i.e. g where g(x) = sup(g,(x)) for each x in X. But, in general,
g is not continuous; although it is always lower semicontinuous. So the supremum
of (gn) in C(X)4, is g, where g is the smallest continuous function in C(X),, for
which g > g.

For any topological space Y, a real valued function f : ¥ + R is lower
semicontinuous if {y € Y : f(y) > t} is open for each real number ¢. So each
(real valued) continuous function is also lower semicontinuous. The characteristic
function of U C Y is lower semicontinuous precisely when U is open. Clearly rf is
lower semicontinuous, when f is, whenever r is a positive real number.

We define u : Y — R to be upper semicontinuous if —u is lower semicontinuous.
This is equivalent to {y € Y : u(y) < t} is open for each real number ¢.

Lemma 2.3.3 Let {f,} be an upper bounded family of continuous, real-valued
functions on a topological space Y. Let f(y) = supfi(y) for eachy € Y. Then f
is lower semicontinuous.

Proof We observethat{y e Y : f(y) > t} = U{y eY:fily) >t} O

The same argument shows that if we weaken the hypotheses to each f; being
lower semicontinuous we still obtain the same conclusion.

When Y is completely regular then there is a converse to this lemma. Let us recall
that Y is completely regular if, whenever F is a closed subset of Y and yy € Y\ F then
there is a continuous function g : ¥ + [0, 1] with g(yo) = 1 and g[F] = 0. We are
only considering Hausdorff spaces; sometimes Hausdorff completely regular spaces
are referred to as Tychonov spaces. Any subset of a compact (Hausdorff) space is
completely regular in the relative topology. Conversely, it can be shown that every
(Hausdorff) completely regular space arises in this way.

Lemma 2.3.4 Let Y be a (Hausdorff) completely regular space. Let f : Y +— R be
a positive, upper bounded, lower semicontinuous function. Let

V(f) = {Cl € Cb(Y)sa :0 <a Ef}

Then, for eachy in'Y, f(y) = sup{a(y) : a € V(f)}.

Proof Let v(y) = sup{a(y) : a € V(f)}. Then, by the preceding lemma, v is lower
semicontinuous. Also v < f. We wish to show that v = f.

Suppose this is false. Then for some yy we can find a real number ¢ such that
v(yo) <1 <f(y)-

Let F = {y € Y :f(y) <t}. Then F is closed, because f is lower semicontinuous.
Also, yo ¢ F.

By complete regularity, there is a continuous g : Y - [0, 1] with g(y9) = 1 and
g vanishing on F.
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Let h = tg. Then h € V(f) and so v(yo) > h(yo) = t. But this is a contradiction.
Sov =f. O

Corollary 2.3.5 Let Y be a completely regular space. Let f, g be bounded, lower
semicontinuous functions. Then so, also, are f + g, f v gand f N g. If f and g are
positive and lower semicontinuous, so, also is fg.

Proof Let A(f) = inf{f(y) :y € Y}. Let
V(f) ={a € C(Y): A(f) < a(y) =f(y) foreachy € Y}.

Then, by applying Lemma 2.3.4 to f — A(f)1,

f) = supla(y) :a € V()}.

We define A(g) and V(g) similarly.
Consider {a Ab:a € V(f)and b € V(g)}. Itis straightforward to check that this
set is upward directed. Let

w(y) = sup{a(y) Ab(y) :a € V(f) and b € V(g)}.

Clearly w < f A g. By Lemma 2.3.3, w is lower semicontinuous.

Fix y € Y and fix b € V(g). Then w(y) > a(y) A b(y) for all a € V(f). So
w(y) = f(y) A b(y).

Sow(y) = sup{f(y) Ab(y) : b € V(g)} =f(y) Ag(y). Thenf A g = w and so
f A gis lower semicontinuous.

Similar arguments work for f + g and f Vv g. For fg we use positivity of f and g
to ensure that {ab : a € V(f), b € V(g)} is upward directed.

Let g > 0. Then A(g) > 0. So, for each y € Y, and each b € V(g) we have
b(y) > 0. Similarly, f > 0 implies a(y) > 0 for each a € V().

Consider ay, a; in V(f) with a; > a, and by, b, in V(g) with by > b,. Then

a1()b1(y) = a2 (y)b1(y) = a2 (y)b2(y).

So{ab:a € V(f),b e V(g)}is upward directed. The pointwise supremum is fg. So
fg is lower semicontinuous. O

Proposition 2.3.6 Let C(X) be monotone complete. Then X is extremally discon-
nected.

Proof Let U be an open subset of X. We wish to show that c/U is open. By
Proposition 2.3.2, X is zero-dimensional i.e. has a base of clopen sets. So U is the
union of its clopen subsets.

Let V = {y. : Lis a clopen subset of U}. Then V is an upward directed set of
projections. Since C(X) is monotone complete, V has a least upper bound in C(X)s,
which is a projection. So this least upper bound must be of the form yx where K is
clopen. Clearly U C K. Hence c/U C K.



40 2 Order Fundamentals

Then K\clU is an open set. Suppose it is not empty. Since X is zero-dimensional,
this implies there exists a non-empty clopen Q C K\c/U. Then K\Q is a clopen
set containing cIU. Then yx\o is an upper bound for V. This implies yx\o > xx-.
Hence K\Q D K. But this implies Q is empty, which is a contradiction. So clU is
the clopen set K. O

To show that C(X) is monotone complete if, and only if, X is extremally
disconnected we need the converse of the above proposition. See [33, 156]. We
give a proof here but later on, when we have some more machinery, we will give
another proof which may be more transparent.

Theorem 2.3.7 Let X be a compact Hausdorff space. Then C(X) is monotone
complete if, and only if, X is extremally disconnected.

Proof In one direction this is already proved. So we assume that X is extremally
disconnected and wish to show that C(X) is monotone complete.

Let V be a norm bounded, upward directed set in C(X),, we shall show that V
has a least upper bound in C(X),,. It suffices to prove this when V is bounded below
by 0.

Let f(x) = sup{a(x) : a € V}. Then f is a non-negative, bounded lower
semicontinuous function.

For each r € RT let F, = {x : f(x) < t}. Because f is lower semicontinuous,
each F; is closed.

Let C; be the interior of F;. Then F,;\C, is a closed nowhere dense set.

Since X is extremally disconnected, c/C; is clopen. But c¢/C, C clF; = F;. So C;
is clopen.

Let M be the union of F;\C, where 7 ranges over the (countable) set of all non-
negative rational numbers. So M is a meagre set.

Since f is bounded above, F;, = X for large enough . Also, s < t implies Fy C F,
and hence Cy C C;.

Let g(x) = inf{t € QT : x € C,} where Q7 is the set of non-negative rationals.

Then

xeX: gx)<s}t = U{C, .t € Q& t < s}, which is open;
{reX:g() <r} =[G :1eQF&t> r}, whichis closed.

So, whenever r < s, {x € X : r < g(x) < s} is open. Hence g is a continuous
function from X into R*.

Now fix xo in X and let g(xo) = r. Thenxy € C, fort > rand t € Q™. So
f(x0) < tfort> r.Hence f(xy) < g(x0).Sof < g.

Now let x € X\M. Let f(x) = r. Then x € F, for all rational f with # > r. Since
x ¢ M, in fact, x € C; for all rational # with ¢ > r. Hence g(x) < r = f(x).

In summary, g > f and g(x) = f(x) except on a meagre set.
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Lethe C(X)withh>f. Theng>gAnh>f.So{xeX:(g—gAh)(x)> 0}
is a meagre open set. It now follows from the Baire Category Theorem that this set
is empty. Thus g < h.

So g is the supremum of V. O

Exercise 2.3.8 Show that for any compact Hausdorff X, the construction of the
function g in the above proof gives an upper semicontinuous function with g > f
and g = f except on a meagre set.

2.3.1 Extension Theorems

Let A be a commutative monotone complete C*-algebra. Then it is sometimes
helpful to think of Ay, as an analogue of the real numbers. Both have a Dedekind
complete order structure, that is, bounded sets have a supremum. So we may regard
A as an infinite dimensional generalisation of the complex numbers. This viewpoint
is fruitful for a number of extension theorems. See below.

Proposition 2.3.9 Let A be a commutative monotone complete C*-algebra. Let
B be a unital C*-algebra and C a self-adjoint subspace of B with 1 € C. Let
¢o:C— A be a positive linear map. Then there exists a positive linear map
¢ : B+ A which is an extension of ¢y.

Proof The restriction of ¢ to Cy, is a real linear map from a real vector space into
Agq- It suffices to find a positive, real-linear extension y : By, — Ag,. (Because we
can then define ¢ on the whole of B by ¢ (a + ib) = u(a) + ip(b) whenever a and
b are self-adjoint. Then ¢ is complex linear.)

Let & be the collection of all pairs (V, ¥) where (i) V is a (real) vector subspace
of By, (i1) Cy, C 'V, (iil) Y : V > Ay, is a positive (real) linear map which coincides
with ¢ on Cy,.

Partially order £ by (Vi,¥1) < (Va,v2) when Vi C V, and v, extends ;.
Just as in the classical Hahn-Banach Theorem, a straightforward Zorn’s Lemma
argument shows that £ has a maximal element (M, 1).

Suppose there exists a positive b € By, \M. If x < b then x < ||b||1.

Then U = {u(x) € Ay, : x € M and x < b} is an upper bounded set in the
boundedly complete lattice A,,. So U has a supremum u. Since 0 € U it follows that
u>0.

Let L be the (real) linear span of M and b. Thatis L = {m + Ab : m € M and
A e R}

Let n(m + Ab) = pu(m) + Au. Then 7 is an extension of p to a real-linear map.
It remains to show that 7 is positive.

Letm + Ab > 0.

Case (i) A > 0. Then —%m < b. So, from the definition of U, p,(—%m) < u.

Hence 0 < pu(m) + Au = n(m + Au).
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Case (i) A < 0. So —%m > b. So p,(—%m) is an upper bound for U. Thus
p,(—%m) > u. Thus pu(m) + Au > 0.

So (L, n) is in &€, which is a contradiction. It follows that every positive element
of B must be in M. So, by linearity, B;, = M. O

Corollary 2.3.10 Let H be a Hilbert space of arbitrary dimension and let A be
a commutative, unital closed x-subalgebra of L(H). Suppose that A is monotone
complete. Then there exists a conditional expectation from L(H) onto A.

Proof In the proposition, let C = A and let ¢ be the identity map from C to A.
Then the extension ¢ is a positive linear idempotent map from L(H) onto A; hence
¢ is a conditional expectation from L(H) onto A. O

Proposition 2.3.11 Let A and B be commutative, unital C*-algebras with A
monotone complete. Let C be a (unital) x-subalgebra of B and let y : C — A
be a x-homomorphism mapping the unit of C to the unit of A. Then there exists a
x-homomorphism 8 : B — A whose restriction to C coincides with y.

Proof (Sketch) A proof of this can be found in [168]. When D is a self-adjoint,
unital subspace of B, let P(Dy,, Ay,) be the (convex) set of those positive, real-linear
maps from Dy, to Ay,, which map unit to unit. The key observation is that when Dy,
is a closed subalgebra of By,, then the extreme points of P(Dy,, Ay,) coincide with
the homomorphisms of Dy, to Ay, (see the exercise below). See [124]. We adapt the
method of proof of Proposition 2.3.9 but this time requiring our extensions to be
extremal.

The homomorphism y is an extreme point of P(Cy,, Ay, ). Let E* be the collection
of all pairs (V, ) in E such that ¥ is an extreme point of P(V,A,) and ¥ is an
extension of y. Again, by a Zorn’s Lemma argument, E* has a maximal element
(M, ). So here p is an extreme point of P(M, A,). If M = By, then p is an extreme
point of P(By,,As,). So o is an homomorphism and its “complexification” is a *-
homomorphism of B into A, which extends y.

Otherwise, there is a positive b € By,\M. We now define (L, 7) as in Propo-
sition 2.3.9. Suppose n = %(a + B) where o and B are in P(L,Ay,). Then
w= %(oc|M + Blm). Since u is extreme, u(m) = a(m) = B(m) forallm € M.

If m < b then, by positivity, «(b) > a(m) = u@m). So a(b) > u = n(b).
Similarly B(b) > n(b). So « = B. Thus (L,n) is in E*. But this contradicts
maximality. O

Exercise 2.3.12 Let B and A be commutative, unital C*-algebras. Let P(By,, Asy)
be the convex set of those positive linear maps from By, into Ay, which map the unit
element of A to the unit element of B. (i) Let & be an extreme point of P(Bj,, Ay,).
Show that 4 is an homomorphism. (ii) Let 2 be an homomorphism of By, to Ay,
where /(1) = 1. Show that 4 is an extreme point of P(Byg, Agq).
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Hint: (i) Fix b € Bwith 0 < b < 1. Let g(x) = h(xb) — h(x)h(b). Show h £ g are
in P(Bs,, Agq). Then use the extremality of & to show that g = 0. (ii) Reduce to the
situation where A = C. Suppose h = %(oc + B) where «, B are states. Show that «,
B both vanish on the maximal ideal which forms the kernel of .

These two propositions are “best possible” in the sense that the hypothesis that A
is monotone complete is essential. This follows from the following result.

Proposition 2.3.13 Let A be a unital C*-subalgebra of a monotone complete C*-
algebra B. Let I" : B — A be a positive linear map such that I'a = a for each a in
A. Then A is monotone complete.

Proof Let (a;, : A € A) be a norm bounded increasing net in A. Let x € A be any
upper bound of this net. Let b be the supremum of this net in B. Then, for each A,

x>b>a.
Hence, by applying I' to the above inequality,
x>Tb>a,.

So I'b is the least upper bound of (@) : A € A) in A. O

We note that there is no assumption here that A is commutative. We can weaken
the hypotheses by not requiring A to be a sub-algebra; merely a self-adjoint subspace
with 1 € A. Then the same argument shows that Ay, is monotone complete in
an obvious sense. This argument can easily be extended further to categories of
partially ordered sets (see Lemma 1 [168]).

When A is a commutative monotone complete C*-algebra, Vincent-Smith [164]
obtained far reaching generalisations of the Hahn-Banach Theorem, where vector
spaces are replaced by modules over A. See also [48, 109, 160].

2.4 Matrix Algebras over a Monotone Complete C*-Algebra

When considering completely positive maps, we shall need to know that matrix
algebras over monotone complete C*-algebras are, themselves, monotone complete.
The reader can accept this fact and move on, or else, read this section. For the
convenience of the reader, we begin by recalling some basic C*-algebra facts.

Definition 2.4.1 Let A be a unital C*-algebra. For any n € N, let M,,(A) be the set
of all n x n matrices X = (x;j)1<ij<n (We shall sometimes write (x;) if no confusion
is likely to occur) with elements from A in each position. Let M, (A) be given the
natural x-algebra operations: X +y = (x; + y;), AX = (Ax;), Xy = (w;;) with
wi = > gy Xayi(1 < ij < n) and X* = (z;) with z; = x;*(1 < i,j < n) for
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any X = (x;), y = (v;) in M,(A) and A € C, the field of complex numbers. When
equipped with these operations M, (A) becomes a x-algebra over C.

Let A be a unital C*-algebra. As was pointed out in [161], Chapter 4, Section 3,
we can suppose that A acts on a Hilbert space H; that is, we may identify A with
a unital subalgebra of L(H). Then M, (A) actson H = H & --- & H (n-times) as a
s-subalgebra of L(H) defined by

(Z a, -+ Zank&) for§ = (&, &) € H

k=1

for each a = (a;) € M, (A).

Then clearly, a is a bounded linear operator on H such that supr<ij<nllagll <
la]| < Zl<”<n laill. So M, (A) acts on H as a unital C*-algebra on H. Since any
x-isomorphism between C*-algebras is an isometry, M,,(A) has a unique C*-norm,
|| ||, defined by this operator norm of a for each a € M,,(A). It follows that || - || does
not depend on the choice of H. We call this norm, the matrix norm of a = (a;)1<ij<n
in M, (A). It is also clear that with this norm | - ||, M,(A) is a unital C*-algebra.

Definition 2.4.2 Let B be a unital C*-algebra or more generally a unital x-algebra.
A system {u; : 1 < i,j < n} of elements in B is said to be an n x n system of
matrix units for B if u;* = w;, ujjupe = 8jxuye for all i, j, k and £, where §; is the
Kronecker’s deltaand Y, u; = 1.

We note that {u; : 1 < i < n} is an orthogonal family of projections in B that is
also a homogeneous partition of 1, that is, u;; ~ u; via the partial isometry u;; for
each i.

Take any n € N and let egl) be the matrix with 1 (the unit of A) in the (i, j) position

and zero otherwise. Then the system {ef}” : 1 <i,j < n}isannxnsystem of matrix
units for M, (A). We call this system the standard (n x n) system of matrix units in
M, (A). If no confusion is likely, we shall sometimes write {e; : 1 <i,j < n}.

Let {e( Mol <i ,J < n} be the standard n x n system of matrix units in M, (C),
which we shall sometimes write {e;;} if no confusion is likely to occur. Then clearly
M, (C) = 3, j<, Cej which is an n? dimensional vector space over C.

Let us define the map

IT: Mn(A) >5t= (tij)lfi.jsn —> Z tij X ejj € A ®Mn((C)
ij=1
Then clearly IT is a *-isomorphism from M,,(A) onto A ® M,,(C) such that

[T(e;) = 1 @ ¢;; for every pair i, j with 1 < i,j < n.

We also have that for x € M,,(A), xe;; = e;x for all pairsiandjwith1 <i,j <n
if, and only if, x = (§;ja)1<ij<n for some a € A. This is easy to check by the map
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IT defined above. So,
My(A) N e ij=1.n) ={@a) acA}=A

Furthermore, for every b = (b;) € M,,(A) and for each pairiandj with 1 <i,j < n,

by 00
00---0
wehavee;;be;; = | . . . | and we have IT(e;1M,(A)e;;) = A ® e;;. Hence it
00---0
follows that
b 0 -+ 0

" 0b;--0
Zekibejkz Lo eM,A)N{es:1<rs<n).
part Do

00 .- by

I
l

In this section, instead of using
“+/—17; to avoid any possible confusion with the use of

for the square root of —1 we shall write
“i”” as an integer subscript.

Lemma 2.4.3 Let B be a unital C*-algebra or more generally, a x-algebra and let
{fi}1<ij<n be any n x n system of matrix units for B.

(1) Then, for any pair i and j with 1 < i, j < n, we have for every t € B, by
polarization

3
Uit = SN i+ V=T ) 1 + V=T )

k=0

and each term of the above equality belongs to fi1Bfi1. For each pair i and j
with 1 <1, j <nandk, put

1(i,ji k) = (fn + J—_lkﬁl)*t(fjl + «/—_lkfn).

Then 4fiitfyy = Y°o_o /=1 1(i.j: k) and the map B > t —> 1(i.j: k) € fi1Bf is
a positive normal linear map when B is a monotone complete C*-algebra.

(2) Let C = {f;j : 1 <i,j < n} NB. Take any x € B and put, for each k, | with
1<kl<nxy= Z:;lf,kxfl,. Then xy € C for all k and | and C is a unital
x-subalgebra of B. If B is a C*-algebra, then so is C and when B is monotone
(o-)complete, so is C. The map ® : B 3 x —> (Xj)1<ij<n € Mu(C) is a unital
*-isomorphism.

(3) The map ¥ : C 5 x —> f11x € f11Bf11 is a *-isomorphism.
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@ Let ¢ : B 3 x — (fixfi)i<ij<n € Mu(fu1Bf11). Then ¢ is also a *-
isomorphism from B onto M,(f11Bfi11) and we have the following commutative
diagram:

B —* . M(C)

| I

M, (f11Bfi1) N f11Bf11 ® M,,(C) W C ® M,(C),

where I1 is the canonical map from M, (f11Bf11) onto fi1Bfi1 ® M,(C) and T1¢
is the canonical map from M,,(C) onto C @ M,(C).

Proof By Propositions 2.1.10 and 2.2.26, (1) is clear.

Since the system {f;; : 1 < i,j < n} is self-adjoint, C is a unital C*-subalgebra
of B. Now take any x € B. Since x;; = Z'::l Jfxfir for each pair k and [ with 1 < &,
| < n, calculation shows

Six = fij (Zfrkxflr) = fuxfy and xyfy; = (Zfrkxflr) Jij = fuxfy
r=1

r=1

and so xy; € C follows.
Consider the map ® : B 3 x —> (xjj)1<ij<n € M,(C). It is clear that ® is an
injective *-linear map from B to M, (C). Moreover, for each x € B,

n n n n
x=) fixfy =) ( fk,-x,-k)f,;; =D xify
ij=1 ij=1 \k=1 ij=1
thatis, B = 3/, Cfj; and the map is surjective.
We also have that for every pair x and y in B and i and j with 1 < i,j < n,

PREACEDS (Zﬂixfrk) (Zﬁryfﬂ) =YD fudfifie = ()i
r=1 k=1 =1

=1 r=1 k=1

which implies that the map ® is a homomorphism. Hence it is a x-isomorphism.
This is (2).

Furthermore, the map ¥ : C 3 x —> fi1x € f11Bfi1 is a *-isomorphism. In fact,
for any x € C, xfi; = 0 implies fi;x = fi1fi;x = fuixfi; = 0 for all j. Hence fjx = 0

forall j and so x = Z]’.’:lfjjx = 0 follows, which implies that the map is injective.

Take any y € f1;Bfi1 and putz = Y __, fr13/1,- Then as was shown above, z € C
and zf1; = fi1yfir = y. So the map is surjective. Since it is clear that this map is a
x-homomorphism, it is a x-isomorphism. This is (3).
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Now take any x € B and as before put, for each pair i and j with 1 < i,j < n,
Xij = > p—y Juixfix, we have xyfi1 = fiixfyi € fi1Bfi1. Let us define the map ¢ : B —>
M, (fi1Bf11) by ¢(x) = (fiixfj)1<ij<n. Then, as before, ¢ is a *-isomorphism from
B onto M,,(f11Bfi1)- This comes from the fact that ¥ ® ¢, is a *-isomorphism from
C ® M,(C) onto fi1Bf;1 ® M, (C). Since the map ¢ = I1"! o (Y ® ,) o ¢ 0 D,
where IT is the canonical map from M,,(f11Bf11) onto f11Bf11 ® M,,(C) and I is the
canonical map from M,,(C) onto C ® M, (C), this induces a commutative diagram
in the statement of (4). O

Corollary 2.4.4
b0 ---0

00---0
(1) Foranybe A, b>0if,andonlyif, | . . .| =0inM,(A).

(2) Fora = (a;) € M,(A), ifa >0, then aix > 0 for each k with 1 < k < n.
a0---0
00---0
Proof SincethemapA 3 av+r— | . . .| € eiiM,(A)ey; is a x-isomorphism,
00---0
(1) follows.
a0 ---0
00---0
If a > 0, we have, as before, e ae;; = . .. .| =0, which means by (1)
00---0
that a;, > 0 for every k with 1 <k <n. O

More generally, we have the following:

Lemma 2.4.5 Let A be a unital C*-algebra and let n € N. Take any s =
(Si)1<ij<n € My(A). Then s is non-negative if, and only if,

n
Z xi"syx; > 0 for every {x1,--- ,x,} C A. *)
ij=1
Furthermore, for any n-family {a1,--- ,a,} C A, the matrix b = (a;"a;)1<ij<n is

non-negative.

See Lemma IV.3.1 and Lemma IV.3.2 in [161].

Now we come to the main result of this section, which was originally proved in
[61] by making use of the regular completion (see later arguments) of M,,(A). Here
we shall show this in an elementary way by applying Lemma 2.4.5. In [63], it was
treated in a more general setting where n = oo. We shall discus this more general
situation later.
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Theorem 2.4.6 Let the C*-algebra A be monotone complete (monotone o-
complete). Then for each n € N, the matrix algebra M,(A) is also monotone
complete (respectively, monotone o-complete).

Proof Suppose that A is monotone o-complete. Let (a,,) be any norm bounded
increasing sequence of elements in M, (A),, with a, = (a;(m))i<ij<, for some
aj(m) € A for each such m and i,j. Take any n-family {x;,---,x,} C A. By

Lemma 2.4.5, each sequence (Z;‘J=1x,~*ai,~(m)xj) in Ay, is norm bounded and
increasing. Since A is monotone o-complete, there exists an a(xy, - ,x,) € Ay
such that 3 7/ x;*a;(m)x; 1 a(xi, -+, x,) in Ay

As in Lemma 2.4.3 (1), by polarization, for any b we have:
’ k k k
4e15bej1 = Z V=1 (ejl + =1 eil)*b(ejl + /-1 eil)
k=0

where each term lies in e;;M,(A)e;;. This tells us that for each i,j and each k
with 1 < i,j < nand k = 0,1,2,3, there exist four norm bounded increasing
sequences(a;(m; k) : m = 1,2,---) of elements in Ay, such that

3
k
ag(m) =Y /=1 a;(m: k) for each i.j with 1 <i,j <nandm € N.
k=0

Since A is monotone o-complete, we have a;;(k) (k = 0,1,2,3;1 < i,j < n) such
that a;j(m; k) 1 a;(k) in Ay, as m — oo. Let a;; = Zi:o «/—lkaij(k) for each pair i
andjwith 1 <i,j <n.

We shall show Z?i=l xi*agx; = a(xi, -+, xy).

By our definition of order limit, LIM,,o0a;j(m) = Y3_, \/—lkaij(k) in A. By
Proposition 2.1.22, we also have LIMy—o0 3= Xi*ay(m)x; = 37, x*a;x; and
it follows that a(xy,--+ ,x,) = Z:‘l\/=1 xi*a;x;.

Hence we have 30, xi*a;(m)x; < 30 xi"ayx; for all {x,---,x,} C A
and m. As was noted before, a = (aj)i1<ij<n € M,(A) is self-adjoint. Since
> iim1 Xi* (@ — ag(m)x; > 0 for all {xi,---,x,} C A, we have a,, < a for all
m. Now take any b € M, (A),, and suppose that a,, < b for all m. Then for every
n-family {x1,---,x,} C A, we have } 7. x;*a;(m)x; < 37, x;*byx; for all m,
which implies that /.| x;*ayx; < Y°1_) x*byx;, because Y7, xi*ay(m)x; 1
Z?i:l xi*a;x; in Ay,. Hence it follows thata < b and so a,, 1 ain M, (4),. By a
similar argument, we can show M, (A) is monotone complete when A is monotone
complete. O



Chapter 3
Classification and Invariants

In this chapter we show how monotone complete C*-algebras, of bounded cardinal-
ity, can be classified by a semigroup which we construct. We introduce the spectroid
invariant for monotone o-complete C*-algebras and show how it can also be defined
for elements of the classification semigroup. In later chapters this theory will be
applied to exhibit huge numbers of examples. We also indicate how aspects of this
theory can be extended to more general classes of partially ordered set. We begin
with a brief discussion of C*-algebras which are not “too large” and cardinalities.

3.1 C*-Algebras of Small Size

Each monotone complete C*-algebra is unital. Also, adjoining a unit to a monotone
o-complete C*-algebras gives a unital monotone o-complete C*-algebra. In this
chapter we shall assume all C*-algebras considered are unital, unless we specifically
state otherwise. Let H be a Hilbert space and L(H) the (von Neumann) algebra of
all bounded operators on H.

We recall from Chap. | that if M is a von Neumann algebra with a separable
state space then, see [1], M is isomorphic to a von Neumann subalgebra of L(H),
where H is separable. But there do exist monotone complete C*-algebras which
have separable state spaces but which are NOT isomorphic to C*-subalgebras of
L(H) [178].

We need a few basic notions on complete positivity and complete isometry.

Let A and B be unital C*-algebras and let ® : A — B be a linear map. Let
®, : M,,(A) — M, (B) be defined by ®,((a;)) = [P(a;)].

Then @ is said to be completely positive if ®, is positive for every n. Similarly,
® is said to be a complete isometry if ®, is an isometry for each n. If ® maps the
unit of A to the unit of B then @ is said to be unital.

© Springer-Verlag London 2015 49
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Our standard reference for operator spaces and operator systems is [38]. There
are interesting and important connections between this theory and monotone
complete C*-algebras. But for the beginner, most of these considerations can be
postponed until later.

We recall that a C*-algebra A is said to be small if there exists a unital complete
isometry @ from A into L(H) where H is separable. It follows from Corollary 5.1.2
[38] that when such a ® exists, then ® is a completely positive isometry onto an
operator system in L(H), and its inverse is completely positive. Sait6’s Theorem
[137] tells us that A is a small C*-algebra if, and only if, the state space of M, (A) is
separable for each n.

A C*-algebra B is almost separably representable if the state space of B is
separable. This turns out to be equivalent to: there exists a separable H and a
completely positive unital

T: B L(H)

such that I" is an isometric order isomorphism of By, into L(H),, [178].

Clearly each small C*-algebra is almost separably representable. We conjecture
that the converse is true; it is certainly true in most cases of interest to us. But in full
generality this seems a delicate question. We shall discuss this later.

Lemma 3.1.1 Let A be a monotone o-complete C*-algebra with a separable state
space. Then A is monotone complete.

Proof Let (¢,) be a dense sequence of states. Then Y ;°1/2"¢, is a faithful state.
So, by Theorem 2.1.14, A is monotone complete. O

[TPR1]

We use #S or card(S) to denote the cardinality of a set S. We frequently use “c
to denote the cardinal of the continuum of real numbers, that is, ¢ = 280 — #R.

Proposition 3.1.2 Whenever A is a C*-algebra with a separable state space then
#A=#R =c.

Proof Let H be a separable Hilbert space. Because H has a countable orthonormal
basis, each operator on H can be represented by an infinite N x N matrix over the
complex numbers. So L(H) injects into C"*Y which has cardinality c. Since there
is a completely positive injection of A into L(H), A also has cardinality c. O

Proposition 3.1.3 Let A be any C*-algebra of cardinality c. Then it has a faithful
representation on a Hilbert space of dimension c.

Proof We may assume that the algebra is unital, if not we can adjoin a unit without
increasing the cardinality.

For each a € A\{0}, there is a pure state ¢, such that ¢,(aa*) # 0. By
the Gelfand-Naimark-Segal process and the fact that the state is pure, there is a
surjection from A onto the corresponding Gelfand-Naimark-Segal Hilbert space
H(¢,). So #H(¢p,) < #A = c. Let H be the Hilbert space direct sum of
{H(¢,) : a € A\{0}}. So H has an orthonormal basis of cardinality not exceeding
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¢ X ¢ = c. Since each element of the Hilbert space is orthogonal to all but countably
many basis elements, #H4 < ¢ X ™ = ¢. The natural representation of A on H is
faithful. O

3.2 Classification Semigroup

In this section we construct a classification semigroup, VV, for monotone complete
C*-algebras. We shall see that WV is abelian and equipped with a zero element. It is
partially ordered with O as its smallest element.

Each element of WV is idempotent, that is x +x = x. We show that the semigroup
has the Riesz Decomposition Property.

From these facts it follows that, in its natural partial ordering, WV is a distributive
semi-lattice.

To avoid some set theoretic difficulties we fix a large Hilbert space H* and, for
the rest of this section, only consider algebras which are isomorphic to subalgebras
of L(H*). For most of our applications it suffices to take an H* which has an
orthonormal basis of cardinality ¢ = 2% = #R. This ensures that each C*-algebra
of cardinality #R has a faithful representation in L(H*). In particular, all small
C*-algebras are included.

Many of these constructions can be generalised to other classes of partially
ordered sets. But for this section, we shall only discuss monotone complete
C*-algebras.

Let A and B be monotone complete C*-algebras and let ¢ : A — B be a positive
linear map. We recall that ¢ is faithful if x > 0 and ¢ (x) = 0 implies x = 0.

Let A and B be monotone complete C*-algebras and let ¢ : A — B be a positive
linear map. We also recall that the map ¢ is said to be normal if, whenever D is a
downward directed set of positive elements of Ay,, ¢ maps the infimum of D to the
infimum of {¢(d) : d € D} in By,. That is,

N¢):deDj=¢(N\d:deDj).

When defining the classification semigroup we shall use positive linear maps
which are faithful and normal. By varying the conditions on ¢ we would get
a slightly different theory. (For example we could, alternatively, require ¢ to be
completely positive or replace normality by a sequential condition.)

Let 2 be the class of all monotone complete C*-algebras which are isomorphic to
norm closed *-subalgebras of L(H"); and let Q be the set of all C*-subalgebras of
L(H*) which are monotone complete (in themselves) (They cannot be monotone
closed subalgebras of L(H*) unless they are von Neumann algebras.). So every
A € Q is isomorphic to an algebra in Q*.

Definition 3.2.1 We define a relation between algebras in 2 by A < B if there
exists a positive linear map ¢ : A — B which is faithful and normal.
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Let 7 be an isomorphism of A onto B. Then 7 and 7! are both normal so A <X B
and B X A. Now suppose 7 is an isomorphism of A onto a subalgebra of B. Then
7 need not be normal. It will only be normal if its range is a monotone closed
subalgebra of B. In particular, if A is a monotone closed subalgebra of B, then by
taking the natural injection as ¢, we see that A < B.

Lemma 3.2.2 LetA,B,Cbein Q2. IfA S Band B X CthenA 2 C. Also A X A.

Proof There exists a normal, faithful positive linear map ¢ : A — B and there exists
a normal, faithful positive linear map ¢ : B — C.

Then ¥ o ¢ : A — Cis a normal, faithful positive linear map.

The identity map from A to A is a surjective isomorphism and so, by the remarks
above, A < A. O

Lemma 3.2.3 Let A and B be in Q. Then A @ B is also in 2.

Proof Let (a, ® b, : n = 1,2,--+) be any norm bounded increasing sequence in
(A® B)y. Sinceforx®y e A® B, xdy > 0if, and only if, x > 0 and y > 0, (b,)
is norm bounded and increasing. Hence there exists b € By, such that b, 1 b in By,.
Similarly, we have a € Ay, such that a, 1 a in Ay,. By applying Lemma 2.1.5, it is
easy to check thata, @ b, 1 a @ b and so A @ B is monotone o-complete.

By replacing sequences by nets, the same argument will show A @ B is monotone
complete.

Since H* is an infinite dimensional Hilbert space it is isomorphic to the direct
sum of two isomorphic copies of itself, H; & H,. Then A is isomorphic to A; C
L(H;) and B is isomorphic to B, C L(H;). Then A @ B is isomorphic to A; & B,
and clearly A; @ B) can be identified with a subalgebra of L(H, & H,) = L(H"). So
A @ Bisin Q. O

It is clear that Lemma 3.2.3 implies that €2 is closed under the taking of finite
direct sums. In fact more is true. We can generalise to infinite sums. But, before
doing so, we shall clarify what “infinite sums” we have in mind. The infinite product
of a family of C*-algebras is defined in ([121], page 6, 1.2.4).

In particular, let (4,)52,be a sequence of C*-algebras. Then the direct product is

[ JAr = {(@) : an € Ay [[(@)| = supa|laa]| < oo}.

n=1
We recall that when the algebraic operations are defined in the obvious way,

o0 o0
HA" is a C*-algebra. Now consider x = (x,) andy = (y,) in HA"‘ Thenx >y

n=1 n=1
if, and only if, x, > y, for every n. Using this, a straightforward argument shows

that when each A,, is monotone complete then so, also, is their direct product.

Lemma 3.2.4 Let (A,) be a sequence of algebras in Q2. Then the (infinite) direct
product l—[A” is in Q.
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Proof The proof is essentially the same as in the preceding lemma, except we split
H* into a countable direct sum of isomorphic copies of itself. O

Provided H* has an orthonormal basis of cardinality ¢ or more, we can generalise
Lemma 3.2.4 and show that the infinite direct product of continuum many algebras
from €2, is in Q.

Lemma 3.2.5 Let Ay X By and Ay X By where A|,B,A, and B, are in 2. Then
A1 ® Ay X B ® By

Proof By hypothesis, there exist positive, faithful, normal linear maps ¢, : A; — B;
forj=1,2.

We define v : A; @ Ay — B} @ B, by (a1 @ az) = ¢i(ar) ® ¢a(az). Then it is
straightforward to verify that v is a positive, faithful, normal linear map. O

Definition 3.2.6 We now define a relation between algebras in 2 by A ~ B if
A XBand B X A.

Lemma 3.2.7 The relation ~ is an equivalence relation.

Proof By Lemma 3.2.2, A ~ A. Again by Lemma 3.2.2,if A ~ B and B ~ C then
A~ C. O

Lemma 3.2.8 IfA| ~ By and Ay ~ By then Ay ® A, ~ B @ B».
Proof This follows from Lemma 3.2.5. O

We adopt the following temporary notation. For each A € Q* we define [A] to be
the set of all B in Q¥ such that B ~ A.

Let W = {[A] : A is a norm closed *-subalgebra of L(H*), and A is a monotone
complete C*-algebra}.

For each B € 2, there is an isomorphism & from B onto A € Q*: we define
w(B) to be [A]. It is clear that w is well defined. In particular w(A) = w(B) if,
and only if, A ~ B. So, by Lemma 3.2.8, w(A;) = w(B;) and w(A2) = w(B,)
implies w(A; & Az) = w(B; @ By). It follows that we can define an operation +
on W by setting w(A) + w(B) = w(A & B). The associativity of taking direct sums
immediately implies that + is associative on W. So (W, +) is a semigroup; we shall
abuse our notation and use W for both the semigroup and the underlying set.

Proposition 3.2.9 The semigroup W is abelian and has a zero element. The zero
element is w(C), where C is the one dimensional algebra, the complex numbers.

Proof Consider w(A) and w(B). Define¢p :A@ B+> B@Aby p(adb) =b D a.
Then ¢ is a surjective *-isomorphism. Hence w(A & B) = w(B & A). So

w(A) + w(B) = w(B) + w(A).

Fix A. Let ¢ : A — A @ C be defined by ¢(a) = a & 0. Then ¢ is positive,
normal and faithful. SoA XA & C.
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Now consider ¥ : A @ C +— A defined by ¥ (a & A) = a + Al, where 1 is
the unit element of the algebra A. Then ¥ is positive and normal. Suppose that
V(aa* ® AX) = 0. Then aa* + |A|*1 = 0.Soa = 0 and A = 0. i.e. ¥ is faithful.
SoA @ C < A. Hence

w(A) = w(A & C) = w(4) + w(C).

We shall denote the zero element of W by 0.
Proposition 3.2.10 Each element of W is idempotent, that is, w(A) + w(A) =
w(A).

Proof Let ¢ : A ® A > A be defined by ¢(a @ b) = a + b. Then ¢ is a faithful,
normal positive linear map. SoA @ A < A.

Now consider ¢ : A > A @ A defined by ¥ (a) = a ® a. Then y is a faithful,
normal positive linear map. S0 A S A @ A. O

From Lemma 3.2.2, we see that if Ay ~ A, X By ~ B, thenA; X B;. So, without
ambiguity, we may define w(A) < w(B) if, and only if A < B.

Lemma 3.2.11 The relation < is a partial ordering of the semigroup WW. Then 0 <
w(A) for all elements of W. Also, w(A1) < w(B)) and w(A,) < w(By) implies

w(A1) + w(Az) < w(By) + w(By).

Proof For any A consider the positive linear map ¢ : C - A defined by ¢p(1) = Al.
Then ¢ is faithful and normal. So C < A hence 0 < w(A). The second part of the
lemma follows from Lemma 3.2.5. O

Corollary 3.2.12 In the partially ordered semigroup W, w(A) + w(B) is the least
upper bound of w(A) and w(B).

Proof Since w(A) < w(A) and 0 < w(B), we have w(4) + 0 < w(A) + w(B).
Similarly w(B) < w(A) + w(B).
Now suppose that w(X) is an upper bound for w(A) and w(B). Then

w(A) + w(B) < w(X) + wX) = w(X).

Corollary 3.2.13 We have w(A) < w(B) if and only if w(A) + w(B) = w(B).

Proof This is because w(A) < w(B) if and only if w(B) equals the least upper bound
of w(A) and w(B). O

Proposition 3.2.14 Let A be an algebra in Q2. Then w(A) = 0 if, and only if, A is a
von Neumann algebra with a faithful normal state.



3.2 Classification Semigroup 55

Proof Let 1 be the unit element of A. Then A — Al is a positive, faithful normal
map from C to A. Hence C X A. So A ~ C if, and only if, A < C. But this is
equivalent to the existence of a faithful normal state on A. By a well known theorem
of Kadison ([84] or Exercise 7.6.3 in [88]) the existence of a faithful normal state on
a monotone complete C*-algebra implies that A is a von Neumann algebra. Also, if
A is a von Neumann algebra with a faithful normal state, then A < C. O

Corollary 3.2.15 Let A be a von Neumann algebra which has a faithful state. Then
w(A) = 0.

Proof When a von Neumann algebra A possesses a faithful state, say ¢, then, by a
well known theorem of Takesaki, the state ¢ can be split into the sum of a positive
normal functional 7 and a completely singular positive functional o (see Theorem
II1.3.8 in [161]).

Suppose there exists a non-zero projection p such that n(p) = 0. Then, because o
is completely singular, there is a non-zero projection ¢ such that ¢ < p and o(q) =
0. But then ¢(g) = 0. Since ¢ is faithful this is a contradiction. So 7 is a faithful
normal positive functional on A. O

From the above we get:

Theorem 3.2.16 The semigroup W is a partially ordered, abelian semigroup with
zero. Each element of VV is idempotent. The natural partial ordering induced on VW
by X coincides with the partial ordering defined by:

x <yif,andonlyifx+y =y.

A join semi-lattice is a partially ordered set in which each pair of elements has a
least upper bound. See [55].

Corollary 3.2.17 The semigroup WV is a join semi-lattice with a least element 0.

Proposition 3.2.18 Ler (A,))(n = 1,2,...) be a sequence of algebras in Q. Let
their (infinite) direct product be [|A,. Then w([[A,) is the least upper bound of the
countable set {w(A,) :n = 1,2,...}. In other words, in W each countable set has
a supremum.

Proof Let w(X) be an upper bound for {w(A,) : n = 1,2...}. Then for each n there
exists a faithful positive normal linear map ¢, from A, into X. By multiplying by a
suitable constant, if necessary, we can suppose ||¢,|| < 1.
o
Foreachx € [[A, withx = (x,)(n = 1,2,---),let ®(x) = >_ 27"¢,(x,). Then
n=1
d(x*x) = 0 implies that ¢,(x;x,) = 0 which implies x, = 0, for all n. So & is
faithful.
Let (x*) be a downward directed net with infimum O in [ A, where x* < 1 for
all . Choose € > 0. Then for large enough N, and all «,

N 00 N
0 DX <Y 27¢u() + D 271 < Y 27"gu(x) + €l

n=1 n=N+1 n=1
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N

Hence A\ @(x%) < > ¢u(x®) 4+ €. Where o o2, . .., oy are arbitrary elements of
o n=1

the index set for the net. Hence /\ ®(x¥) < €l. Since € was arbitrary it follows that

® is normal. So w([[A4,) < w(X). It is easy to see that w(4,) < w(][A,) for each
g. The result follows. O

Lemma 3.2.19 Let ¢ : A — B be a positive linear map which is normal. Then there

exists a projection e € A such that ¢ vanishes on (1 — e)A(1 — e) and its restriction
to eAe is faithful.

Proof Let K be the hereditary cone {x € A1 : ¢(x) = 0}. Let Ky = {x € K :
||x|| < 1}. Then, see ([121] page 11) or ([161] pp25-27), Ky is an upward directed
set. Let p be the supremum of Kj in A. In fact, ([121], Theorem 1.4.2) or ([161],
Theorem 1.7.4) Ky is an increasing approximate unit for the hereditary subalgebra
B generated by K so its supremum, p, is a unit for this algebra. So p is a projection.
(See the proof of Proposition 2.1.15.)

Let z € (1 —p)A(1 — p) and ¢(zz*) = 0. Then zz* is in K. So zz* = pzz* =
p(1 —p)zz* = 0. So ¢ is faithful when restricted to (1 — p)A(1 — p). On putting
e = 1 — p the lemma follows. O

We call e the support projection of ¢.

Lemma 3.2.20 Let e be any projection in A. Then
eAe ® (1 —e)A(l —e) ~ A.

Proof If e = 0 or e = 1 then the statement is trivially true. So we suppose that
neither e nor 1 —eis zero. Let ¢ : A > eAe @ (1 — e)A(1 —e) be defined by ¢ (x) =
exe® (1—e)x(1—e). Then ¢ is positive, linear and normal. (Use Lemmas 2.1.9,2.1.5
and Proposition 2.2.26.)

Suppose ¢(zz*) = 0. Then ezz*e = 0 and (1 — e)zz*(1 —¢) = 0. So ez = 0 and
(1 —e)z =0.Thus z = 0. So ¢ is faithful.

Hence w(A) < w(ede @ (1 —e)A(1 —e)).

By Proposition 2.2.26, the natural embedding of eAe in A is an isomorphism onto
a monotone closed subalgebra. Hence w(eAe) < w(A). Similarly w((1 — e)A(1 —
e)) < w(A). Since w(A) +w(A) = w(A), we have w(eAe ® (1 —e)A(1—e)) < w(A).
The result is proved. O

The next result shows that the ordered semigroup W, has the Riesz Decom-
position Property. This will then imply that, regarded as a join semi-lattice, it is
distributive. This is useful because there is a well developed structure theory for
distributive join semi-lattices which can then be applied to W.

Theorem 3.2.21 Let a, b, c be elements of W suchthata < b+c. Thena = a;+a;
suchthat0 <a; <band0 < a, <c.
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Proof Leta = w(A), b = w(B), and ¢ = w(C). Then there exists a faithful normal
positive linearmap ¢ : A — B & C.

For each y in the algebra B and for each z in the algebra C, let 7, (y @ z) = y.
Then 7, is the canonical projection from B@ C onto the first component B. Similarly,
definem, : B C — C.

Let ¢; = mj o ¢ for j = 1,2. Then each ¢; is positive, linear and normal. Also
@ (x) = ¢1(x) @ ¢2(x) for each x € A. First let us suppose that ¢y = 0. Then a < c.
So, on putting a = a, and a; = 0, we are done.

Hence we shall now suppose that ¢; # 0. Then, by Lemma 3.2.19, it has a
non-zero support projection e. Then ¢|eAe is a faithful normal map into B. Also
¢(1 —e) = 0 ¢2(1 — e). If this vanishes then, since ¢ is faithful, e = 1. So ¢,
would be faithful on A, which implies a < b. On putting a = a; and a; = 0 we
would be finished. We now suppose that (1 —e) = 0 & ¢2(1 — e) # 0. Since ¢,
vanishes on (1 —e)A(1 —e), we have that 0 ¢, |(1 —e)A(1 —e) = ¢p|(1—e)A(1 —e)
which is faithful.

Hence eAe X B and (1 — e)A(1 —e) 2 C. On putting a; = w(eAe) and a; =
w((1 —e)A(l —e)),wefindthat 0 <a; <band0 < a, <c.

By appealing to Lemma 3.2.20 we have a; + a» = a. O

Corollary 3.2.22 Regarded as a join semi-lattice, VV is distributive.

Proof When we interpret ‘4’ as the lattice operation ‘V’ this is just a straightfor-
ward translation of the statement of the theorem. O

The well established theory of distributive join semi-lattices can now be applied
to W. See [55]. Since we wish to keep this chapter of reasonable length we shall not
pursue this here. But distributivity is a key property which, in particular, leads to an
elegant representation theory akin to the Stone representation for Boolean algebras.

The classification given here maps each small von Neumann algebra, equiva-
lently, each von Neumann algebra acting on a separable Hilbert space, to the zero
of the semigroup. It could turn out that ¥V is very small and fails to distinguish
between many algebras. We shall see later that this is far from true. Even when w
is restricted to special subclasses of algebras (e.g. subalgebras of £°°), we can show
that its range in WV is huge, 2¢, where ¢ = 2%0. In the next section we shall introduce
the spectroid of an algebra and show that it is, in fact, an invariant for elements of
W.

The following technical result will be useful to us later.

Lemma 3.2.23 Let A be a monotone complete C*-algebra. Let M be a maximal
abelian x-subalgebra of A. Let I' : A — M be a faithful, normal idempotent map
Jfrom A onto M. Then wA = wM.

Proof By Corollary 2.1.32, M is a monotone closed subalgebra of A. So the natural
embedding of M in A implies M < A. On the other hand, the map I' gives A < M.
S0 A ~ M. Thus w(A) = w(M). O
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3.3 Spectroid and Representing Functions

Although our main interest is focused on monotone complete C*-algebras, in this
section we shall also use the larger class of monotone o-complete C*-algebras.

Let A be a monotone o-complete C*-algebra. When {a; : k € K} is a countable,
lower bounded, downward directed subset of Ay,, we denote the infimum of {a; :
k€ K} by \ex ax-

For any non-empty set J we let F(J) be the collection of all finite subsets of J,
including the empty set. In particular we note that F(N), where N is the set of natural
numbers, is countable.

Definition 3.3.1 A representing function for a monotone o-complete C*-algebra,
A, is a functionf : F(N) — A" such that

(i) f(k) = 0 and f(k) # O for all k.
(i) f is downward directed, that is, when k,[ are finite subsets of N, then
FUD < f(k) and f(k U D) < £(0).
(i) /\kEF(N)f(k) =0inAy,.

Let T be a set of cardinality 2. Let N : T + P(N) be an injection and let N(7)
be infinite for each 7. We could, for example, take T to be the collection of all infinite
subsets of N and let N(7) = ¢ for each 7. But we do not demand that {N(z) : t € T}
contains every infinite subset of N. We shall regard T and the function N as fixed
until further notice.

Definition 3.3.2 Let A be a monotone o-complete C*-algebra and let f : F(N) —>
A be a representing function. Then let Rz ) (f) be the subset of T' defined by

{ter: N\ fly=0}.

kEF(N(1)

The set Rir ) (f) is said to be represented by f in A, modulo (7, N).
Any subset of T which can be represented in A is said to be a representing set of
A (modulo (7, N)).

Definition 3.3.3 Let A be a monotone o-complete C*-algebra. Then the spectroid
of A (modulo (7, N)), written d(r.n)A, is the collection of all sets which can be
represented in A, modulo (7, N), by some representing function f : F(N) > AT,
that is,

darmA = {RrN(f) : f1is arepresenting function for A}.
When it is clear from the context which (7', N) is being used, we shall sometimes

write 0A.
We use Card(S) or #S to denote the cardinality of a set S.



3.3 Spectroid and Representing Functions 59

Proposition 3.3.4 Let (T,N) be fixed and let A be any monotone o-complete C*-
algebra of cardinality c. Then d(rn)A is of cardinality not exceeding c.

Proof Each element of drn)A arises from a representing function for A. But the
cardinality of all functions from F(N) into A is Card(A"™) = M = ¢ So
Card(a(T,N)A) <ec. 0

Corollary 3.3.5 Let (T,N) be fixed and let A be a small monotone complete C*-
algebra of cardinality c. Then 07 N)A is of cardinality not exceeding c.

Lemma 3.3.6 Let (T,N) be fixed and let S be the set of all spectroids, modulo
(T,N), of monotone o-complete C*-algebras of cardinality c. Then Card(S) < 2¢.

Proof Each subset of cardinality < c is the range of a function from R into P (7).
So Card(S) < Card(P(R)®) < Card(P(R x R)) = 2¢. O

Suppose that A and B are monotone o-complete C*-algebras and ¢ : A +— B
is a faithful positive linear map. Let us recall that ¢ is o-normal if, whenever
(ay)(n = 1,2,...) is a monotone decreasing sequence in A with A\r— a, = 0
then A2, ¢(ay) = 0.

Lemma 3.3.7 Let A be monotone o-complete and D a downward directed subset
of Ay,, which is countable and bounded from below. Then there exists a monotone
decreasing sequence (a,)(n = 1,2,...) in D such that d € D implies d > a, for
some n. Furthermore \D = N\ a,.

Proof Since D is countable, we can write D = {b, : n = 1,2,---}. Let a; = by.
Since D is downward directed, we can find a, in D such that a, < a; and a, < b».
We can now find a3 in D such that a3 < a, and a3 < b3. Continuing in this way we
find a sequence (a,)(n = 1,2, ...) with the required properties. O

Corollary 3.3.8 Let A and B be monotone o -complete C*-algebras. Let ¢ : A +— B
be a positive, faithful o-normal linear map. Let D be a downward directed subset of
non-negative elements in A which is countable. Then /\{d : d € D} = 0 if, and only

if N¢(d) :d € D} = 0.

Definition 3.3.9 Let A and B be monotone o-complete C*-algebras. If there exists
a positive, faithful o-normal linear map ¢ : A — B we write A <X, B. Then the
relation X, is a quasi-ordering of the class of monotone o-complete C*-algebras.

When A 3, B and B 3, A we say that A and B are o-normal equivalent and
write A ~, B. This is an equivalence relation on the class of monotone o-complete
C*-algebras. Clearly, if A and B are monotone complete C*-algebras and A X B
then A =, B.Soif A ~ B it follows that A ~, B.

Proposition 3.3.10 Ler (T, N) be fixed and let A and B be monotone o-complete
C*-algebras. Let A S5 B. Then 07Ny (A) C 97Ny (B).

Proof Each element of A is of the form Ry n) (f) where f is a representing function
for A. It is straightforward to verify that ¢f is a representing function for B. Since
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¢ is faithful it follows from Corollary 3.3.8 that Rz n) (f) = R(r.n)(¢f). Thus 0A C
0B. O

It is clear that the spectroid is an isomorphism invariant but from Proposi-
tion 3.3.10 it is also invariant under o-normal equivalence.

Corollary 3.3.11 Let (T,N) be fixed and let A and B be monotone o-complete C*-
algebras. Let A ~, B. Then 97 n)(A) = d(7.N)(B).

Corollary 3.3.12 Let A and B be monotone complete C*-algebras with w(A) =
w(B). Then 07Ny (A) = d(rN)(B) for any given (T, N).

So the spectroid is an invariant for the semigroup ¥V and we may talk about the
spectroid of an element of the semigroup.

For the rest of this section we shall consider only monotone complete C*-
algebras, although some of the results (and proofs) are still valid for monotone
o-complete C*-algebras. Let C be the class of all monotone complete C*-algebras
of cardinality c. Let JV be the semigroup constructed in Sect.3.2. We shall now
assume that w has been restricted to the class of all monotone complete C*-algebras
of cardinality not exceeding ¢ and, from now on, use WV to denote the semigroup
{w(A) : A € C}. (So, in effect we are taking a sub-semigroup of the one constructed
in Sect. 3.2, and abusing our notation by giving it the same name.)

Theorem 3.3.13 Let (T, N) be fixed and consider only spectroids modulo (T, N).
Let {A) : A € A} be a collection of small monotone complete C*-algebras such
that the union of their spectroids has cardinality 2¢. Then there is a subcollection
{Ay : A € Ao} where A has cardinality 2¢ and 0(Ay) # 0(A,) whenever A and [
are distinct elements of A\y.

Proof Let us define an equivalence relation on A by A =~ p if, and only if,
9(Ay) = 0(A,). By using the Axiom of Choice we can pick one element from
each equivalence class to form Ay. Clearly 9(A;) # d(A,) whenever A and u are
distinct elements of Ag. Also | J{d(A,) : A € Ao} is equal to the union of all the
spectroids of the original collection. So

20— # (U{B(Ak) e Ao}) .

By Corollary 3.3.5, #9(A;) < c for each A € Ag. Hence 2 < ¢ x #(Ay). It
follows that we cannot have #(Ag) < c¢. So ¢ X #(Ag) = #(Ao). So 2° < #(Ay).
From Lemma 3.3.6, we get #A¢ < 2°. So #A(, = 2°. O

Corollary 3.3.14 Given the hypotheses of the theorem, whenever A and |1 are
distinct elements of Ao then wA), # wA,. So Ay is not equivalent to A,. In
particular, they cannot be isomorphic.

Proof Apply Corollary 3.3.12. O

We have seen that the small monotone complete C*-algebras can be classified by
elements of VV and also by their spectroids. Since w maps every small von Neumann
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algebra with a faithful state to the zero of the semigroup, this classification might be
very coarse, possibly V might be too small to distinguish between more than a few
classes of algebras. But we shall see later that this is far from the truth. By applying
Theorem 3.3.13 for appropriate (7, N) we shall see that #)V = 2°.

We can define the spectroid in much greater generality. In particular we can do
this for order feasible sets.

Definition 3.3.15 A partially ordered set M is said to be order feasible if it has
a smallest element 0 and each monotone decreasing sequence in M has a greatest
lower bound.

For example, the positive cone At of monotone (o-)complete C*-algebra and
more generally, the positive cone VT of a monotone (o-)complete operator system
V are order feasible.

Quasi-orderings of classes of order feasible sets can be defined and associated
weight semigroups can be constructed. However, the Riesz Decomposition property
may fail for these generalized weight semigroups unless extra conditions are
imposed.

We constructed the classification semigroup WV in [144]. Representing functions
for Boolean algebras were used by Monk and Solovay [104]; their definition was
extended to monotone complete C*-algebras by Hamana in [66]. See also [103].
The spectroid invariant was introduced by us in [144]. Its extension to order feasible
sets is outlined in [182].



Chapter 4
Commutative Algebras: Constructions
and Classifications

The second chapter gave the foundations of the theory of monotone complete C*-
algebras. We then introduced a classification semigroup and spectroid invariants.
But, up to now, we have seen few concrete examples of wild monotone complete C*-
algebras. A good place to start is by finding commutative examples. This is what we
shall do in this chapter. In Sect. 4.2 we give general constructions for commutative
algebras. In Sect. 4.3 we show that £>° has 2® subalgebras {A, : t € 28}, where each
A, is a (small) wild, commutative monotone complete C*-algebra. Furthermore,
when r # s, then A, and A, take different values in the semigroup W and have
different spectroids. In a later chapter we shall use group actions on commutative
algebras to construct huge numbers of small wild factors.

We have seen earlier that there is a natural correspondence between commutative
monotone complete C*-algebras and complete Boolean algebras. So it is not
surprising that we begin with Boolean algebras.

4.1 Boolean Algebra Preliminaries

Most readers will have come across Boolean algebras. This short section outlines
the few topics we need. Experts in this area should skip to the next section.

4.1.1 Basics

An elegant, lucid account of Boolean algebras, ample for our purposes, is given by
Halmos [57] but a vast literature exists, see [12, 95]. Complete Boolean algebras
are of importance in mathematical logic. As we mentioned earlier each complete
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Boolean algebra can be identified with the lattice of projections in a commutative
monotone complete C*-algebra.

Given a non-empty set X, a non-empty collection of subsets, F, is a field of sets
if i) A € F implies that its compliment A’ € F and (ii) A and B in F implies A U B
and A N B are in F. These properties imply that @ and X are also in F. Every field
of sets is an example of a Boolean algebra and the formal definition of a Boolean
algebra (which we shall give shortly) is an abstraction of the idea of a field of sets.
(In fact there are many equivalent lists of axioms for Boolean algebras.)

For E C X and F C X the symmetric difference EAF is defined to be (E N F') U
(E' N F). Tt turns out that this operation is associative (see below) and that we can
define a ring structure on F by putting:

0=gandl =X
E+ F =EAF
EF=ENF.

This ring is commutative, has a unit, and, for each E, E?> = E. Any unital ring
where e? = e for each element is said to be a Boolean ring. In a Boolean ring, by
expanding the identity (a + a)> = a + a, we find that a + a = 0. Every Boolean
ring is commutative. To see this we use

a+b=(a+b’=a*+ab+ba+b>=a+b+ab+ ba.

When X is a set with only one element then the collection of all subsets has
only two elements. So the corresponding Boolean ring contains just O and 1. The
two element Boolean ring is a field, in the algebraic sense, that is, each non-zero
element (there is only 1) has a multiplicative inverse. This use of “field” in two
completely different senses is unfortunate but should not cause confusion. Following
the notation of Halmos, we shall sometimes denote the two element Boolean ring
by 2.

Then 2% is the set of all functions from X to 2. When we add yz and yr pointwise
(where we regard them as taking their values in 2) we get yg + xr = year. (Hence
“A” is associative.) Similarly ygxr = xenr.

A Boolean algebra is a set B with two (distinct) distinguished elements 0 and 1, a
binary operation V, a binary operation A, and a unary operation’ with the following
properties. For a, b, cin B

(i) an(bvc)=(anb)v(anc)andaV (bAc) = (avb)A(aVc) (distributivity)
(ii) the operation Vv is commutative and associative

(iii) the operation A is commutative and associative

(iv) ana=aandava=a
v) an0=0andav0=a

i) d’ =a

(vii) 0/ =1



4.1 Boolean Algebra Preliminaries 65

(viii) @V by =d Al
(ix) and =0.

From these axioms we can deduce, for example I’ = 0”7 = 0. We also have
(anb)y =@vb) =dvbandavd =(@nad) =0=1.

The above axioms are clearly satisfied by a field of subsets of a set X, when V is
interpreted as union, A is interpreted as intersection and ’ as complimentation.

Given a Boolean algebra B we can give it the structure of a Boolean ring by
defining x +y = (x Ay) VvV (X Ay) and xy = x A y. This Boolean ring has,
appropriately, O as its zero element and 1 as its unit. Conversely, given any Boolean
ring we can give it the structure of a Boolean algebra by defining

xAy=xyandxVy=x+y+xyandx =1 +x.

This correspondence between Boolean algebras and Boolean rings is bijective
i.e. if we start with a Boolean algebra, construct the corresponding Boolean ring
and then construct a Boolean algebra from this ring, we recover the original Boolean
algebra.

Let B; and B, be Boolean algebras. A map H : By +— B, is a Boolean
homomorphism if it preserves the Boolean operations. That is, for all x, y in B;

H(xVvy) =HxV Hy
H(x Ay) = Hx AN Hy
Hx = (Hx) .

It can be deduced that H(0) = 0 and H(1) = 1. Furthermore, when these
Boolean algebras are given their canonical Boolean ring structures, H:B| +— B,
is a ring homomorphism (with H(1) = 1) precisely when H is a Boolean
homomorphism.

Let J be a subset of B. It is a (ring) ideal of B precisely when it is the kernel of
a (ring) homomorphism. But this is equivalent to J being the kernel of a Boolean
homomorphism. So we call J a Boolean ideal if (i) 0 € J, (i) a € Jand b € J
impliesa VvV b € Jand (iii) a € Jand b € Bimpliesa A b € J.

There is a third way of looking at Boolean algebras. We can partially order a
Boolean algebra B, by defining p < g to mean p A g = p. With this partial ordering,
each Boolean algebra becomes a distributive lattice where a and b have least upper
bound a Vv b and greatest lower bound a A b.

We define a Boolean algebra B to be o-complete if each countable subset of B
has a least upper bound. It is complete if every subset has a least upper bound.
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4.1.2 Regular Open Sets

Let X be a (non-empty) topological space. Throughout this book we consider only
Hausdorff spaces and so we shall suppose X to be Hausdorff even though this
assumption is not strictly necessary here.

We recall that an open subset of X is regular if it is the interior of its closure.

As usual we denote the compliment of P in X by P’. It is convenient, in this
section, to denote the closure of P by P~ and the interior of P by P°. Then P° = P'~’.
So Q is a regular open set precisely when Q = 0~ = Q~'~’. We now define P+ to
be P~'. So P is a regular open set if, and only if, P = P+,

Lemma 4.1.1

(i) Let R be any subset of X. Then R™° is a regular open set. When R is open then
R™° is the smallest regular open set which contains R.
(ii) Let P and Q be regular open sets. Then P N Q is a regular open set.
(iii) Ler {P) : A € A} be a (non-empty) collection of regular open sets. Let O =
UjxeaPa. Then O™ is the smallest regular open set containing each P;.

Proof

(i) Let V be the open set R™°. Then V- C R™.So V™? C R™? = V. But, since
V is an open subset of V=, V. C V7°. Thus V is a regular open set. When R is
openthen R C R™° = V.

Let W be any regular open set with R C W. Then R~ C W~ andso V =
R°CW'=w.

(ii)) Clearly (PN Q)~ C P~.So (PN Q)™° C P7° = P (because P is a regular
openset). So (PNQ)™* C PNQO.But,by (i), PNQ C(PNQ)°.SoPNQ =
PNO)™—.

(iii) By applying (i) to O we get (iii). O

Let RegX be the set of regular open subsets of X. By Lemma 4.1.1, RegX is a
complete Boolean algebra. But, in general, it is not a field of sets. One reason is the
union of two regular open sets need not be regular. For example, when X is the set
of real numbers with its usual topology, the intervals (0, 1) and (1, 2) are regular
open but their union is not. But if we put0 = g, 1 = X, PAQ = PN Q and
Pv Q = (PUQ)™° then, if we use P — Pl oas unary operation, we obtain a
complete Boolean algebra.

With no additional conditions on X, whenever O is an open subset, then O™\ O is
a closed set with empty interior. We recall that a set is nowhere dense if its closure
has empty interior. A set is meagre if it is the union of countably many nowhere
dense subsets. It follows that the union of countably many meagre sets is, again, the
union of countably many nowhere dense sets. Hence it is meagre.

Also any subset of a meagre subset is meagre. So the meagre subsets of X form
a Boolean o-ideal of P(X). But this ideal is only of interest if it is not too big. For
example, if X consists of all the rationals in R, with the topology induced by R, then
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every subset of X is meagre. For this reason we shall now focus our attention on
Baire spaces.

We recall that X is a Baire space if its only meagre open set is the empty set.
Equivalently, the intersection of a sequence of dense open subsets of X is a dense
subset of X.

Let X be a Baire space. Then E C X is said to have the Baire Property if there
exists an open set U such that EAU is meagre. Let BP(X) be the collection of
all subsets of X with the Baire Property. Clearly every open set is in BP(X). It is
straightforward to show that BP(X) is a o-field of subsets of X. Hence it contains
the Borel sets of X, because they are the smallest o-field of subsets which contains
the open sets.

Lemma 4.1.2 Let X be a Baire space. Then for each E € BP(X) there is a unique
regular open set U such that E A U is meagre.

Proof Let J be the ideal of meagre sets in BP(X). This is both a Boolean ideal and a
ring ideal when we regard BP(X) as a Boolean ring. Then A is addition in this ring.

By the definition of the Baire Property, there exists an open set O such that E A
O € J. Now let U = O™°. Then, by (i) in the preceding lemma, U is a regular
open set. Also O C O™° C O~. Since O~\O is nowhere dense, O A U € J. So
EAU=(EAO)A(OAU)whichisinJ.

Now let V be any regular open set suchthat EAV € J. ThenV AU = (V A
E) A (E A U) whichisinJ.

Then the open set (U U V)\(UN V)™ is contained in (UUV)\(UNV)=UAV
which is in J.

Because X is a Baire space, any open set which is meagre must be empty. So

uuvcnv) .

Since U U Visopen, UUV C (UN V).
Since U N V is a regular open set, it now follows that U UV C U N V. Hence
UCVandV CU.SoU=V. O

Let Bor(X) be the smallest o-field of subsets of X which contains all the open
sets. Then Bor(X) is the field of Borel subsets of X. When X is a Baire space, for
each Borel set E let rE be the unique regular open set such that £ A rE is meagre.

Theorem 4.1.3 (Birkhoff-Ulam) Let X be a Baire space. Let r be the map defined
above. Then r is a Boolean o-homomorphism of Bor(X) onto RegX. Furthermore
the kernel of this homomorphism is the ideal of meagre Borel sets.

Corollary 4.1.4 Let E and F be Borel sets whose intersection is meagre. Then rE
and rF are disjoint.

Proof Wehave rENrF =rEATF =r(ENF) = 3. O
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4.1.3 Structure Space

Let {0, 1} be equipped with the discrete topology. Then, for any index set I, the
product space {0, 1}/ is compact Hausdorff. From the definition of the product
topology, it has a base of clopen subsets. So it is zero-dimensional. (For compact
Hausdorff spaces, zero-dimensional and totally disconnected are synonymous.) Let
X be a closed subset of {0, 1}. Then X is compact and totally disconnected. Let
IC be the collection of clopen subsets of X. Then K is a Boolean algebra, in
fact a field of subsets of X. Given x € X we can define i, : £ — {0,1} by
h(K)is 1 if x € K and 0 if x ¢ K. Then h, may be regarded as a Boolean
homomorphism of K onto the two element Boolean algebra, or equivalently, as a
(unital) ring homomorphism of & onto the field with two elements. So each point of
X corresponds to a homomorphism onto 2.

The Stone Representation Theorem, see below, implies that every Boolean
algebra is isomorphic to the algebra of clopen subsets of some compact totally
disconnected space.

The only Boolean ring without any non-trivial ideals is the (algebraic) field 2.

Lemma 4.1.5 Let B be a Boolean algebra. Let p € B withp # 0 and p # 1. Then
there is a homomorphism h : B — 2 such that h(p) = 1 and h(p’) = 0.

Proof Consider the ideal (1 — p)B. By a Zorn’s Lemma argument, it is contained in
a maximal ideal M. Let & be the quotient homomorphism of B onto B/M.

Then B/M is a Boolean ring and a field. So we can identify it with 2.

Since 1 —p € M, we have 1 — h(p) = h(1 —p) = 0. O

Theorem 4.1.6 (Stone) Let B be a Boolean algebra. Let Sp be the set of all
homomorphisms of B onto 2. Then Sg is a closed subset of 2 and thus a totally dis-
connected compact Hausdorff space. For eachb € Blet H(b) = {h € Sg: h(b) =1}.
Then H is an isomorphism of B onto the Boolean algebra of all clopen subset of Sp.

Corollary 4.1.7 When X is a totally disconnected, compact Hausdorff space and K
is the Boolean algebra of clopen subsets of X, then X is homeomorphic to Sk.

Corollary 4.1.8 Let « be an infinite cardinal. Let X be a totally disconnected
compact Hausdorff space. Let k clopen subsets form a base for the topology of
X. Then X is homeomorphic to a subspace of 2~.

Proof Let K be the Boolean algebra of all clopen subsets of X. Then, by definition
of the Stone structure space of a Boolean algebra, S is a closed subset of 2.
Hence X is homeomorphic to a closed subspace of 2X. By compactness, each
clopen subset of X is the union of finitely many base elements. So #/C = k. Hence
2% is homeomorphic to 2. O

We know that there is a duality between the category of compact Hausdorff
spaces (with continuous maps as morphisms) and the category of commutative uni-
tal C*-algebras (with *x-homomorphisms as morphisms). Stone’s theorem implies
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a similar duality between totally disconnected, compact Hausdorff spaces and
Boolean algebras.

In particular, the Stone structure space of a Boolean algebra is extremally
disconnected precisely when the Boolean algebra is complete.

4.2 Commutative Algebras: General Constructions

Let us recall that if a monotone complete C*-algebra has a separating family of
normal states then it is a von Neumann algebra. If it has no normal states, then it
is said to be wild. In this chapter we give some constructions with commutative
algebras which will lead to huge numbers of examples of wild commutative
monotone complete C*-algebras. We shall make use of the classification semigroup
W and spectroid invariants discussed in Chap. 3. In subsequent chapters we shall
use group actions on wild commutative algebras to exhibit huge numbers of wild
factors.

4.2.1 Measurable Functions

Let Y be a non-empty set. Let us recall the following notation. Let Bnd(Y) be
the algebra of all bounded complex valued functions on Y, where multiplication,
addition, involution etc. are determined pointwise. When this algebra is given the
norm

11l = sup{|f(®)] : 2 € Y}

it becomes a commutative, unital C*-algebra; in fact, a von Neumann algebra. We
use Bnd(Y),, to denote the self-adjoint part of Bnd(Y). Then Bnd(Y);, is the (real)
commutative algebra of all bounded real-valued functions in Bnd(Y).

We saw, in Chap. 2, that Bnd(Y),, is a vector lattice as well as a commutative
algebra.

Let S be a o-algebra of subsets of Y, thatis, i) Y € S, (i) A € S implies
Y\A € &S, (iii) if A, € Sforn = 1,2... then U®A, € S. We call the pair
(Y, S) a measurable space. We recall that a real valued function f : ¥ + R is
S-measurable if {y € Y : f(y) > t} € S foreach r € R. A complex valued function
F on Y is measurable if F = f + ig where f and g are real valued measurable
functions. By standard measure theoretic arguments (see, for example, [127]) sums
and products of measurable functions are measurable. Also, if (f,) is a sequence
of measurable functions which converges pointwise to f then f is measurable. Let
B> (Y,S) be the algebra of all bounded, complex valued, S-measurable functions.
(We shall abbreviate this to B®°(Y) when it is clear which o-algebra is being used.)
It is a closed *-subalgebra of Bnd(Y).
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Let J be a (Boolean) o-ideal of S, thatis, (i) @ € J and Y ¢ J. (ii)) A € J and
B e SimpliesBNA € J (iii) A, € J forn = 1,2... implies U;’lilAn eJ.

Let J be the set of all f € B®°(Y) such that {y € Y : f(y) # 0} € J. Then
it is straightforward to show that J is a (C*-algebra) o-ideal of B*°(Y). So, see
Chap. 2, B*°(Y)/J is monotone o-complete. But sometimes this quotient algebra is
monotone complete. For a familiar example, let Y be the interval [0, 1] and S the
collection of Lebesgue measurable subsets. When 7 is the set of Lebesgue null
sets then B> (Y)/J is L* which is monotone complete. We shall find many other
examples.

Just as in classical measure theory, we shall say that a property holds almost
everywhere (with respect to J) if the subset of Y for which it does not hold is in
J. We shall abbreviate this to a.e.(J) or, when there is no risk of ambiguity, write
“a.e.”.

Let g : B*(Y) +— B*(Y)/J be the quotient homomorphism. Then, see Chap. 2,
q is a o-homomorphism.

Lemma 4.2.1 Let f and g be bounded, real-valued measurable functions on Y.
Then q(f) = 0 if, and only if, f > 0 almost everywhere. Furthermore, q(f) > q(g)
if, and only if, f > g almost everywhere.

Proof
(i) Letf =fT —f wheref* and f~ are positive and fTf~ = 0.
Then f > 0 a.e. precisely when f~ = 0 a.e. But this is equivalent to
q(f7) =0.

This is equivalent to g(f) = g(f™). This implies g(f) > 0.
Conversely, ¢(f) > 0 implies, on multiplying by ¢(f~), that g(f~) = 0.
(i) We have ¢(f) > ¢q(g) is equivalent to ¢(f — g) > 0 which is equivalent to
f—g=>0ae. O

We recall that a measurable function s is simple if it takes only finitely many
values. Equivalently, s = >} ¢, xg, where {E\, ..., E,} is a disjoint collection of
measurable sets. The simple functions in B*°(Y) are closed under addition and
multiplication by scalars. In other words, they form a vector subspace of B> (Y).
The following elementary lemma tells us this vector space is norm dense in B> (Y).

Lemma 4.2.2 Let f € B®(Y),,. Then there exists a monotone increasing sequence
of simple (measurable) functions which converges uniformly to f.

Proof It suffices to show this when 0 < f < 1 that is, when the range of f is in the
interval [0, 1].

LetA = f7'[0, 1) and B = f~'[1, 1]. We define sy = Oya+ 4 x5 then || f—s]| <

1

’ We split A into the disjoint union C U D where C = f~1[0, %) andD = f~! [}1 %)

We split B into the disjoint union E U F where E = f_l[%, % + %) and F =
S5+ g1l



4.2 Commutative Algebras: General Constructions 71

We define s, = Oyc + %){D + %){E + %XF- Then
s1<s2 <f

and || f — 2] < 5.
By repeating this process, splitting the range of f into smaller and smaller disjoint
pieces, we construct a monotone increasing sequence of simple functions (s,) such

1
that || f — su|| < 5. O

4.2.2 Baire Spaces and Category

We defined a Baire space to be a (Hausdorff) topological space T such that whenever
(0,) is a sequence of dense open sets then ()2, O, is dense in T. Equivalently, the
only meagre open subset of T is the empty set. Let us recall that a Gs-set is the
intersection of countably many open sets. When T is a Baire space and G is a dense
Gs-subset of T, then G is a Baire space in the relative topology. Since each closed
subspace of a compact space is compact, every Gs-subset of a compact space is a
Baire space; similarly for complete metric spaces.

As before, all topological spaces considered are required to be Hausdorff.

We  discussed semicontinuous, real-valued functions in  Chap.2
(see Lemma 2.3.3). On any topological space X, f : X — R is lower semicontinuous
if, for each real number ¢, the set {x € X : f(x) > t} is open.

Let Y be a completely regular space and f : ¥ +— R a bounded function. Let
U(f) be the set of all bounded, real-valued continuous functions, a € C(Y),,, such
that a > f. Then the upper envelope of f is defined to be

fo) = inflay) :a € U},
Then f is a bounded upper semicontinuous function. (Apply Lemma 2.3.3 with
Hho=—ay)

We can define the lower envelope of f to be the pointwise supremum of the
continuous functions below f or, equivalently,

f=-CD.

Proposition 4.2.3 Let Y be a completely regular space and f : Y +— R a bounded
lower semicontinuous function. Then

eY:fO) >fo)}

is a meagre set.
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Proof Since —f is lower semicontinuous, so also, is —f + f. Thus f — f is upper
semicontinuous. So for each n, {y € Y : f ) —f@) = %} is closed. Let O, be the
interior of this set.

Suppose, for some n, that O, is not empty. Fix yo € O,,. Since Y is completely
regular, there exists a continuous function 4 : Y + [0, %] such that A(yy) = % and h
takes the constant value O on the closed set Y\O,,.

For y € O,, we have f(y) — f(y) > 1 > h(y). For y € Y\O,, we have

n

FO)=F0) = 0=h().Sof = f+h=>f. A
Leta € U(f). Thena > f > f+h.Soa—h € U(f). Hence a(yo) —h(yo) = f (o).
Hence f(yo) — % > f (o). This is a contradiction so each O, is empty. Hence

{yeY: f (y) > f(y)} is the union of a sequence of closed nowhere dense sets. So it

is a meagre set. O

Corollary 4.2.4 Let Y be a completely regular space. Let u : Y +— R be a bounded
upper semicontinuous function and let u be its lower envelope. Then u is lower
semicontinuous and {y € Y : u(y) > u(y)} is meagre.

Proof In the proposition, put u = —f. O

Lemma 4.2.5 Let u be a bounded, upper semicontinuous function on a Baire space
Y. Let {y : u(y) < 0} be a meagre set. Then u > 0.

Proof Because u is upper semicontinuous, {y € Y : u(y) < 0} is open. But {y €
Y : u(y) < 0} is meagre. In a Baire space a meagre open set must be empty. So
u>0. O

Lemma 4.2.6 Let X be a completely regular space. Let D = {a, : A € A} be a
downward directed set in Cp(X)s,, where ay, > 0 for each A. Let

u(x) = inf{a,(x) : A € A}
for each x in X. If D has a greatest lower bound, 0, in Cp(X)s, then
M= {xeX:u(lx) >0}

is meagre. Conversely, if X is a Baire space and M is meagre then D has a greatest
lower bound, 0, in Cp(X)s,.

Proof First we observe that u is positive and upper semicontinuous. If D has a
greatest lower bound, a, in Cy(X),, then a = u, the lower envelope of u. Hence,
if D has infimum O in Cj(X),, then, by Corollary 4.2.4, M is meagre.

Conversely, let us suppose that M is meagre. Let ¢ € C,(X)s, such that c is a
lower bound for D. Then ¢ < u. So {x € X : ¢(x) > 0} is a meagre open set.
Because X is now required to be a Baire space, this set is empty. So ¢ < 0. O

In the following, Y is a (Hausdorff) completely regular Baire space and Bor(Y)
is the o-field of Borel subsets of Y, that is, the smallest o-field of subsets of Y
which contains the open sets. Then every lower semicontinuous function is Borel
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measurable. Let 91, be the set of all meagre Borel sets in Y’; this is a Boolean o-ideal
of the Borel sets. For the rest of this section, B(Y) is the algebra of bounded, Borel
measurable functions; that is, we abbreviate B>°(Y, Bor(Y)) by B(Y). Let M(Y) be
the set of all f in B(Y) such that {y € Y : f(y) # 0} is meagre. Then M(Y) is a
o-ideal and so the quotient map

q:B(Y) = B(Y)/M(Y)

is a 0-homomorphism.
For each Borel set E there is a unique regular open set rE such that the symmetric
difference, (E\rE) U (rE\E), is meagre. (See Sect.4.1.)

Lemma 4.2.7 Let g be a real-valued, bounded Borel measurable function on a
completely regular Baire space Y such that ol < g < B1 for real numbers a and B.
Then there exists a lower semicontinuous function f such that {y € Y : f(y) # g(»)}
is meagre and f satisfies al < f < Bl. Furthermore, there exists an upper
semicontinuous function u such that u = g a.e.(M,) and u satisfies al < u < BI.

Proof By adding an appropriate constant and then multiplying by a suitable
constant, it suffices to prove the result when 0 < g < 1.

By Lemma 4.2.2, there exists (s,), a monotone increasing sequence of positive,
Borel measurable, simple functions, such that s, — g uniformly.

For each n there exist pairwise disjoint Borel sets {Ej” cj=12,...,k(n)} and
non-negative constants (c;/)(j = 1,2, ..., k(n)) such that

— A n
Sp = CIXEY + “e. + Ck(n)XE;’(n).

Then, see Sect. 4.1, {rE]" :j=1,2,...,k(n)} is a set of pairwise disjoint, regular
open sets. Now let

fn = CrlerE’l’ +...+ CZ(n)X/”EZ(,,)'

Then f, is a lower semicontinuous function bounded above by max{c]’.‘ D j =

1,2,...,k(n)}. Since each E;’ only differs from rE;’ on a meagre set, s, = f;
a.e.(My).

Let f (y) = supf,(y). Then f is lower semicontinuous, 0 < f < land g = f
a.e.(My).

Put u =fA , the upper envelope of f. O

Let us recall that a topological space is extremally disconnected when the closure
of each open set is an open set. In such a space, each regular open set is a clopen set.

Corollary 4.2.8 Let Y be an extremally disconnected, completely regular Baire
space. Let g be a bounded Borel measurable function on Y. Then there is a bounded
continuous function f in Cp(Y) such that g = f a.e.(M,).
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Proof By taking real and imaginary parts, it suffices to prove this when g is real
valued. We use the same notation as in the proof of the lemma. But now, because
each regular open set is a clopen set, each f,, is a bounded continuous function.

For any m and n, we have | f,,(y) —f, )| = |sm () — s, ()| < ||$m — sn|| forall y
outside a meagre subset of Y. Because of continuity, the set

e Y [fu) =fO) > llsm — sall}

is open. But it is also meagre and so must be empty. It follows that (f,) is a
Cauchy sequence which converges uniformly to f. So f is a (bounded) continuous
function. O

Theorem 4.2.9 Let Y be a completely regular, Baire space. Then the commutative
algebra B(Y)/M(Y) is monotone complete.

Proof Let L = {q(ay) : A € A} be a set of self-adjoint elements which is bounded
in norm. It suffices to consider the situation where 0 < g(a;) < 1 for each A. Then,
by using Lemma 4.2.7, we can suppose that each a, is lower semicontinuous and
that 0 <a), < 1foreach A € A.

Let a(y) = sup{a,(y) : A € A}. Then a is lower semicontinuous. Clearly g(a) is
an upper bound for L. Let g(f) be any other upper bound for L.

For any A, we have ¢(f) > g(ay). So f > a; a.e.(M,). Now letf be the upper
semicontinuous envelope of f.

Then f — a) is upper semicontinuous and f —ay > 0 ae(My). So, by
Lemma 4.2.5,f > ay. Sof > a.

Since q(f) = ¢q(f) it follows that ¢(f) > g(a). Thus g(a) is the least upper bound
of L. O

Consider the quotient map ¢ from B(Y) onto B(Y)/M(Y). Let g be the restriction
of g to Cp(Y). Because Y is a Baire space, the only continuous function in M(Y) is
the constantly zero function. (See Lemma 4.2.5.) So gy is an injective map from
Cp(Y) into B(Y)/M(Y). But an injective *x-homomorphism from a C*-algebra into
another C*-algebra is an isometry, so go is an isometric embedding from C;(Y) into
B(Y)/M(Y). So we may identify C,,(Y) with its image in B(Y)/M(Y). We shall show
that, with this identification, C,(Y) is a regular subalgebra of B(Y)/M(Y).

Let Q be the spectrum of B(Y)/M(Y), that is, Q is the compact Hausdorff
space such that C(£2) is isomorphic to B(Y)/M(Y). Since this algebra is monotone
complete, 2 must be extremally disconnected.

Corollary 4.2.10 Let E be an extremally disconnected, completely regular, Baire
space. Then Cy(E) is monotone complete.

Proof By Corollary 4.2.8, for each g in B(E) there exists f € C,(E) such thatg(g) =
q(f). So qo is an isometric *-isomorphism from C,(E) onto B(E)/M(E). O



4.2 Commutative Algebras: General Constructions 75

The definition of a regular subalgebra was introduced in Sect.2.1. The intuitive
idea is that B(Y)/M(Y) may be thought of as a “Dedekind cut” completion of C,(Y),
analogous to the way the rational numbers embed in the reals.

Corollary 4.2.11 Let Y be a completely regular Baire space. The algebra Cy(Y) is
a regular subalgebra of B(Y)/M(Y) >~ C(R2).

Proof Each self-adjoint element of B(Y)/M(Y) is g(u) for some bounded upper
semicontinuous u.

Let L = {a € Cp(Y)sa @ q(a) < q(u)}.

Ifaisin Lthenu —a > 0 a.e. So, by Lemma 4.2.5, u > a.

So u(y) = sup{a(y) : a € L}.

Arguing as in the proof of the theorem, g(u) is the least upper bound of
{q(a) :a € L}.

By Corollary 4.2.4, g(u1) = q(u). O

Lemma 4.2.12 Let T be any (Hausdorff) completely regular space. Let RegT be
the complete Boolean algebra of regular open subsets of T. Then T has an isolated
point if, and only if RegT has an atom.

Proof Suppose s is an isolated point of 7. Then the closed set {s} is also open.
Hence it is in Reg(T). Clearly it is an atom.

Let U be a regular open set. Suppose there exist distinct points y; and y, in U.
Because Y is completely regular, each of these points has an open neighbourhood,
such that the closures of these neighbourhoods are disjoint. So U contains two
disjoint, non-empty, regular open sets. So U is not an atom.

So U is an atom of Reg(T) if, and only if, it contains exactly one point. O

Proposition 4.2.13 Let Y be a completely regular Baire space. The Boolean
algebra of projections in B(Y)/M(Y) ~ C(S2) is isomorphic to the Boolean algebra
of regular open subsets of Y.

Proof Let e be a projection in B(Y)/M(Y). Then there is a real-valued Borel
function f such that e = g(f) and 0 < f < 1. Then g(f") = e. Also the sequence
(f") is monotone decreasing and converges pointwise to a projection in B(Y). Since
q is a o-homomorphism it follows that ¢ = ¢g(p) for some projection p in B(Y).
Thus e = g(yp) where P is a Borel subset of Y. It is straightforward to verify that ¢
induces a Boolean homomorphism ¢* from Bor(Y) onto Proj(C(£2)). The kernel of
q" is the Boolean ideal of all meagre Borel sets, M,. So Proj(C(£2)) is isomorphic to
Bor(Y) /M, which is isomorphic to RegY, the complete Boolean algebra of regular
open subsets of Y. In particular, for each projection e € Proj(C(2)) there exists a
unique regular open set O C Y, such that g(yo) = e. O

Corollary 4.2.14 The space 2 has no isolated points if, and only if, Y has no
isolated points.

Proof We have Reg(2) >~ Proj(C(2)) >~ Reg(Y). So Reg(£2) has no atoms if, and
only if, Reg(Y) has no atoms. So 2 has no isolated points if, and only if, ¥ has no
isolated points. O
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4.2.3 Normal States and Wild Algebras

We are familiar with the notion of a normal state on a monotone complete C*-
algebra. But we can generalise this in a natural way to general C*-algebras.

Let W be a unital C*-algebra. Let D be any norm-bounded downward directed
set in W,. If D has a greatest lower bound, d, in W,, then we write A\ D = d.

Let ¢ be a positive linear functional on W. Then ¢ is said to be normal if,
whenever A\ D = 0, then inf{¢(x) : x € D} = 0.

Lemma 4.2.15 Let W be a regular subalgebra of a monotone complete C*-algebra
M. Let ¢ be a positive normal functional on M then the restriction of ¢ to W is also
normal.

Proof Let D be downward directed in W and have infimum 0 in W. Then, because
W is a regular subalgebra of M, Proposition 2.1.35 tells us that the infimum of D in
M is also 0. So inf{¢(x) : x € D} = 0. O

Proposition 4.2.16 Let X be a compact Hausdorff space and let ¢ be a positive
normal functional on C(X). Let u be the regular Borel measure on X which
corresponds to ¢. Then pnE = 0 whenever E is a meagre Borel subset of X. Also,
for any Borel set B,

uB = u(clB).

Proof Let F be a closed, nowhere dense subset of X. Let D = {f € C(X)sq : xr <
f < 1}. Then, because X is completely regular and yf is upper semicontinuous, D is
downward directed with pointwise infimum yg. It now follows from Lemma 4.2.6
that A\ D = 0.

Because ¢ is normal, inf{ [ fdj : f € D} = 0.

But uF = [ yrdp < [ fdu for each f in D. So uF = 0.

It now follows from countable additivity that each meagre Borel set has
measure 0.

Let B be any Borel set. Choose ¢ > 0. Because u is a regular Borel measure,
there is an open set O such that B C O and O < uB + €.

Then w(cIB) < u(clO). But clO\O is a closed nowhere dense set. So u(clO) =
nO < uB + €.

It follows that p(cIB) < uB. Since B C cIB the result follows. O

Theorem 4.2.17 Let X be a compact (Hausdorff) space. Let X have a dense meagre
subset. Then the monotone complete C*-algebra B(X)/M(X) >~ C(R2) is wild.

Proof Every meagre set is contained in the union of a sequence of closed nowhere
dense sets. So every meagre subset of X is contained in a meagre Borel set. Hence
X has a dense meagre Borel set.

Let ¢ be a normal, positive linear functional on C(2). Since C(X) is a regular
subalgebra of C(£2), by applying Proposition 2.1.35 we see that the restriction of ¢
to C(X) is normal. Let u be the corresponding regular Borel measure on X. Then,
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by Proposition 4.2.3, (X)) = 0. So ¢ (1) = 0 which, by positivity, implies ¢ = 0.
So C(£2) has no normal states. O

Corollary 4.2.18 Let X be a compact (Hausdorff) space with no isolated points.
Let X be separable. Then B(X)/M(X) is wild.

Proof Since there are no isolated points, each one-point set in X is nowhere dense.
So a countable dense set is a dense meagre set. O

It follows from Corollary 4.2.18 that B([0, 1])/M ([0, 1]) is wild.

It turns out that whenever Y is homeomorphic to a complete, separable metric
space with no isolated points (i.e. is a perfect Polish space) then B(Y)/M(Y) is
isomorphic to B([0, 1])/M([0, 1]). (This follows from the observation that each
perfect Polish space contains a dense Gs-set which is homeomorphic to NV, the
space of irrationals. See Chapter 3 Section 36 in [97]. So the Boolean algebras RegY
and RegN" are isomorphic.)

We call the algebra B(Y)/M(Y) the Dixmier algebra.

Corollary 4.2.19 Let u be Lebesgue measure on (—m, ). Let Si. be the spectrum
of L® (—m, ). Then Sy, is not separable.

Proof There are no minimal projections, because each set of strictly positive
Lebesgue measure can be split into two disjoint sets of strictly positive measure.
So Sy, has no isolated points. So if S; were separable the algebra would be wild. But
the map f +— % J fdu gives a normal state. O

4.2.4 Separable Spaces

Our aim is to construct large numbers of commutative examples of wild monotone
complete C*-algebras. We know from Corollary 4.2.18 that a wild algebra can be
obtained from any separable compact space which has no isolated points. So we
begin by considering separable spaces more carefully.

Lemma 4.2.20 Let X be a compact Hausdor{f space. Then X is separable if, and
only if, there is a (unital) x-isomorphism of C(X) into £°.

Proof Suppose {x, : n = 1,2,...} is a dense subset of X. For each f in C(X) let
7 (f) be the sequence (f(x,)). Then m is an isometric *-isomorphism of C(X) into
£°.

Conversely, let 7w be an injective *-homomorphism of C(X) into £°°. (Since
these are C*-algebras it follows that 7 is an isometric *-isomorphism onto a closed
subalgebra.) Let BN be the Stone-Czech compactification of N, the natural numbers
equipped with the discrete topology; this can be identified with the spectrum of £°°.
Then we may regard 7 as an injective x-homomorphism of C(X) into C(8N). So, by
the Gelfand-Naimark duality between compact Hausdorff spaces and commutative
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unital C*-algebras, there is a continuous surjective map o from SN onto X. But N
is a countable dense subset of BN. So ¢[N] is a countable subset of X.

Let U be any non-empty open subset of X. Then, because o is surjective, o~ ![U]
is a non-empty open set. So, for some n € N, n € o~ [U].

Thus o(n) € U. So ¢[N] is a dense subset of X. O

Corollary 4.2.21 Let Y be a separable (Hausdorff) completely regular space. Then
Cy(Y) has a faithful state and is a subalgebra of £°°.

Proof Since Y is dense in its Stone-Czech compactification, 8Y is separable.

By Lemma 4.2.20, C(BY) ~ C,(Y) can be regarded as a unital subalgebra of
£%° . For (x,) € £ let A((x,)) = Y o2, %xn. Then A is a faithful state on £°°. So its
restriction to Cp(Y) is a faithful state on Cp(Y). O
Proposition 4.2.22 Let Y be a separable, completely regular, Baire space. Let 2 be
the spectrum of B(Y)/M(Y). Then the extremally disconnected space Q2 is separable
and C(R2) has a faithful state.

Proof By Corollary 4.2.21 there exists a *-isomorphism 7 from Cj(Y) into £*°. It
now follows from Proposition 2.3.11 that = can be extended to a homomorphism 7
from B(Y)/M(Y) into £*°.

We shall show that 77 is injective. Let 77 (z) = 0. Now letb = zz*. Then 7(b) = 0.
Leta <banda € Cp(Y)s. Then w(a) <0.Soa < 0.

Since Cp(Y) is a regular subalgebra of B(Y)/M(Y), b is the least upper bound of
{a € Cyp(Y)sq : a < b}. But 0 is an upper bound for this set. So » < 0. Hence b = 0.
Soz=0.

So there is an isomorphism from C(2) =~ B(Y)/M(Y) into £*°. So, by
Lemma 4.2.20, 2 is separable. The existence of a faithful state now follows from
Corollary 4.2.21. O

Corollary 4.2.23 Let Y be a separable, completely regular (Hausdorff) Baire
space. Let f be any positive bounded lower semicontinuous function on Y. Then
there exists (a,), a monotone increasing sequence of continuous, positive real-
valued functions, such that ||a,|| < ||f|| and a lower semicontinuous function h

such thatf = ha.e. (M) and

h(x) = sup{a,(x) :n=1,2...}.

Proof Let D = {a € Cp(Y)sa : 0 < a < f}. Then g(f) is the least upper bound of
D in B(Y)/M(Y). Since this algebra has a faithful state, we can use Theorem 2.1.14
to find a monotone increasing sequence in D, (a,), such that this sequence has
supremum g(f).

Now let h(x) = sup{a,(x) : n = 1,2 ...} for each x. Then g(h) is the least upper
bound of (a,). Thus g(h) = q(f). So h = f (a.e.). O
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4.2.5 Baire Measurability

The name of Baire is associated with several different mathematical topics. This can
cause some confusion.

In any topological space an F,-set is one which is the union of countably
many closed sets. Let X be a completely regular (Hausdorff) Baire space. When
f : X — Ris continuous then the open set f~! (¢, 00) is the union of the closed sets
e+ %, 00). So f~!(t,00) is an open F, set. When X is normal, in particular,
when X is compact, every open F,-subset arises in this way from a continuous f.
But there exist completely regular spaces which are not normal.

So we define Baire(X) to be the smallest o-field of sets for which every
bounded continuous, real-valued, function on X is measurable. We shall abbreviate
B> (X, Baire(X)) by B°(X). Then B (X) is the o-envelope of C;(X) in B(X).

Then B*°(X) is the smallest o-subalgebra of B(X) which (i) contains C(X) and
(ii) is closed under pointwise sequential limits of bounded sequences. Then B*°(X)
is the algebra of bounded, Baire measurable functions on X.

Let My (X) = B*®(X)NM(X). Then My(X) is a o-ideal of B> (X). Clearly we may
regard B (X)/My(X) as a subalgebra of B(X)/M(X) and C»(X) as a subalgebra of
B> (X)/My(X). By Corollary 4.2.11, Cp(X) is a regular subalgebra of B(X)/M(X).
In other words, each self-adjoint element of B(X)/M(X) is the supremum of the
elements of C,(X) which lie below it. So, also, C,(X) is a regular subalgebra of
B> (X)/My(X). From this it follows that B (X)/M,(X) may be identified with the
regular o-completion of Cp(X). (See Definition 2.1.37.) In Chap. 5 we shall show
that every C*-algebra has a regular o-completion.

As an immediate consequence of Corollary 4.2.23 we have:

Corollary 4.2.24 Let Y be a separable, (Hausdorff) completely regular, Baire
space. Then B(Y)/M(Y) = B*°(Y)/My(Y).

Proof By Corollary 4.2.23 and Lemma 4.2.7, each real valued, bounded Borel
function coincides with a Baire measurable function, outside a meagre set. O

4.2.6 Cantor Product Spaces

Let {0, 1} be given the discrete topology. Then for any index set I, the space
{0, 1}!is a compact Hausdorff, totally disconnected space. When [ is infinite then
(see Sect. 4.1) the collection of clopen subsets of {0, 1}/ has cardinal #/. Following
the notation of Halmos, we shall usually abbreviate {0, 1}/ by 2.

We shall call 2V the Cantor space because it is homeomorphic to Cantor’s
“middle third” space. So it is metrisable and separable. It follows from the above,
that the collection of clopen subsets of 2 is countable. Each element of this space
is the characteristic function of a subset of N. So

#2N = #P(N) = #R.
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We shall call 2 the Big Cantor space. This space turns out to be separable but
not metrisable. (A separable metric space has at most #R elements. But #28 =
#P(R) > #R.)

Lemma 4.2.25 The Big Cantor space is separable.

Proof Separability follows from a more general theorem that says the product of
continuum many copies of a separable space is separable. See [78] or [167]. But the
following simple argument is all that is needed here.

Let T = 2N be the usual Cantor space. Because #T = #R, the Big Cantor space
can be identified with 27. Let

D = {xk : K C T is clopen}.

Then D is a countable set.

Let {s1,...,s,} and {f,...,t,} be disjoint finite subsets of 7. We can find a
clopen K such that {sy,...,s,} C K and {fy,...,t,} is disjoint from K. Then yg is
in the open set

{(xe2l :x(s,)=1forr=1,...,nand x(ty) =0 fork = 1,...,m}.

Since opens sets like this give a base for the topology of 27 it follows that the
countable set D is dense in the Big Cantor Space. O

Proposition 4.2.26 Let X be a separable, totally disconnected, compact Hausdorff
space. Then X is homeomorphic to a closed subspace of 2R.

Proof By Corollary 4.1.8, if X has a base of at most #R clopen sets, then it is
homeomorphic to a closed subspace of 2&.

Let C be a countable dense subset of X. For each clopen set K C X, K N C'is
a dense subset of K. So K — K N C is an injection of the collection of all clopen
subsets of X into the collection of all subsets of a countable set. So X has at most
#R clopen sets. So X is homeomorphic to a closed subspace of 2. O

4.3 Constructing and Classifying Wild Commutative
Algebras

We shall give explicit constructions of large numbers of wild commutative mono-
tone complete C*-algebras. The examples given here are all subalgebras of £°°.
We use spectroids to show that these examples take 2% distinct values in the
classification semigroup W.

Our strategy is to apply the results of Sect. 4.2 in the following way:

Let C be any infinite, countable subset of 2%. Let X be the closure of C in
2R Then X is compact Hausdorff, totally disconnected and separable. If X has an
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isolated point then, since C is dense in X, this point must be in C. So, unless C
has an isolated point in the relative topology, the commutative monotone complete
C*-algebra B®(X)/M(X) ~ C()?) is wild. By Proposition 4.2.22, Xis separable, so
C()?) is a subalgebra of £*°.

By varying the countable set C in a carefully controlled way we find 2% wild
commutative algebras, each of which takes different values in the classification
semigroup WW. We go on to show that 2% of these algebras can be represented as
quotients of B> (2Y) by “exotic” o-ideals. So we may use exotic spaces and ideals
of meagre subsets or, the Cantor metric space and exotic o-ideals.

In a later chapter we shall consider group actions on commutative algebras
constructed here and use them to find 2® small wild factors; each taking different
values in W.

We begin by recalling some elementary topological results which will be needed
later. In contrast to the notation in Sect. 4.1, we shall denote the closure of a set S by
clS and its interior by intS.

Lemma 4.3.1 Let K be a (Hausdorff) topological space and let X be a dense subset
of K. Let U be any open subset of K. Then clU = cl(X N U). In particular, when U
is a clopen subset of K, then we have U = cl(U N X).

Proof Lety € clU. Let V be an open subset of K such thaty € V. Then VN U is
not empty.

Since X is dense in K, (V N U) N X # @, which implies that VN (U N X) # &.
So, we have y € cl(U N X); thatis, c/lU C cl(U N X). The reverse inclusion is trivial
and it follows that c/U = cl(U N X). O

Corollary 4.3.2 Let LN X = M N F N X, where L, M are clopen subsets of K and
F is a closed subset of K. Then L = M N intF.

Proof Applying the preceding lemma, L = cl/(LNX) C cl(FNX) C F.SoL C intF.
Again, by the lemma, LN X C M N X implies L C M. Thus L C M N intF.
But (M NimtF)N X C MNFNX = LN X. By applying the lemma again,
cl(M NintF) C L. Hence L = M N intF. O

As before, we use the notation F'(S) to denote the collection of all finite subsets
(including the empty set) of a set S.

To carry out the strategy outlined above we shall need some technicalities. None
of them are difficult but they are mildly intricate. For a first reading, they may be
skimmed over.

We shall start with the following:

Definition 4.3.3 A pair (7, 0) is said to be feasible if it satisfies the following
conditions:

() T is a set of cardinality ¢ = 2%; O = (0,) (n = 1,2,...) is an infinite
sequence of non-empty subsets of 7, with O,, # O, whenever m # n.
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(ii) Let M be a finite subset of T and + € T\M. For each natural number m
there exists n > m such that r € O, and O, " M = . In other words
{neN:te€0,and O, N M = @} is an infinite set.

An example satisfying these conditions can be obtained by putting T = 2V,
the Cantor space, and letting O be an enumeration (without repetitions) of the
(countable) collection of all non-empty clopen subsets of 2%,

For the rest of this section (7, Q) will be a fixed but arbitrary feasible pair.

Definition 4.3.4 Let (T, O) be a feasible pair and let R be a subset of 7. Then R is
said to be admissible if

(i) Ris asubset of T, with #R = #(T\R) = ¢ = 2.
(i) O, is not a subset of R for any natural number n.

Return to the example where 7T is the Cantor space and O an enumeration of
the non-empty clopen subsets. Then, whenever R C 2" is nowhere dense and of
cardinality c, then R is admissible.

For example, let R = {y € 2 : y(2n) = 1 forall n € N}. Then clearly R is a
closed subset which has empty interior and #R = #(T \ R) = c.

Lemma 4.3.5 Let (T, O) be any feasible pair and let R be an admissible subset of
T. Then there are 2° subsets of R which are admissible.

Proof Let S C R where #S = c. Then S is admissible. O

Since F(N) x F(T) has cardinality ¢, we can identify the Big Cantor space with
2FMOXFT) For each k € F(N), let fi € 2F®>F(T) be the characteristic function of
the set

{(.,L):Le F(T\R),l Ckand O, N L = & whenevern € kand n ¢ [}.

Let Xg be the countable set {f; : k € F(N)}. Let K be the closure of Xg in the
Big Cantor space. Then K is a (separable) compact Hausdorff totally disconnected
space with respect to the relative topology induced by the product topology of the
Big Cantor space. Let Ag = B®(Kg)/Moy(Kr), the regular o-completion of C(Kg).
By the discussion in the previous section, Ag is monotone complete and is a (unital)
C*-subalgebra of £°°. Furthermore, the only way it could fail to be wild, is if one
of the points in Xz were an isolated point in K. We shall show that this does not
happen; so that the algebra must be wild.

The projections in Ag form a complete Boolean algebra which satisfies the
countable chain condition (because it embeds in £°° which supports a faithful state)
and which is Boolean isomorphic to Reg(Ky), the Boolean algebra of regular open
subsets of Kg.

For each (k,K) € F(N) x F(T) let Egx) = {x € Kz : x(k,K) = 1}. The
definition of the product topology of the Big Cantor space implies that E ) and
its compliment EZk K are clopen subsets of Kg. It also follows from the definition
of the product topology that finite intersections of such clopen sets form a base for
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the topology of K. Hence their intersections with X give a base for the relative
topology of Xz. We shall see that, in fact, {Eq x) N Xz : k € F(N),K € F(T\R)}isa
base for the topology of Xg. To establish this we first need to prove some preliminary
technical results. We shall then show that Reg(Kg) is generated as a Boolean o-
algebra by the countable set {E(y,) &) : n € N}. Using this we shall find a natural
representation of Ak in the form B®(2")/Jz where Ji is a o-ideal of the bounded
Baire measurable functions on the Cantor space with C(2Y) N Jz = {0}.

Lemma 4.3.6 We have E ) = @ unless K C T\R.

Proof Suppose K is not a subset of T\R. Then, for any & € F(N), it follows from
the definition of f,, that fi(k,K) = 0. So Xg C E{; x,- Then by Lemma 4.3.1,
Kr = clXp = E(Ck,K)‘ Thus E(k,K) =dJ. O

Lemma 4.3.7 Let x € Xg and (k,K) € F(N) x F(T). Let x € E, Then there

(k.K)*
exists (I,L) € F(N) x F(T\R) such thatx € Eq )y C EG k-

Proof First suppose that K N R # &. Then by the preceding lemma Kz = E
Forany h € F(N), f, € Eg,2). But Eh) C Kg = E
So we may now assume that K N R = &.

Letx = fj. Then f; € E{, y, <= not(k C h &(¥n(n € k= 0,NK = @)))
<= k\h # @ or An; € h\k such that 0,, N K # @.

L.
(kK)*
(&

(k.K)*

(1) First let us deal with the situation where k\h # @. Then there exists ny € k\A.
Since R is admissible, we can find 7, € T\R such that 1y € O,,. Then it is
straight forward to verify that f, € E (3. It remains to show that E, (1) N
E.x) = <. Suppose that this is false. Then we can find f; € E, ;1) N Ex)-
Soh C gand k C g. Thus ny € g\h. Then f, € E, ) implies to ¢ O,,. But
this is a contradiction. So fj, € E, (;,1) C Efqu).

(2) Now consider the case where In; € h\k such that O,, N K # @. Consider
E(n).2)- It is clear that f;, is an element of this set. We now wish to show that
Eny.2) N Eg k) = . Suppose this is false. Then we can find f; € E((n,},2) N
Ek). Then ny € g\k. So 0,, N K = @. This is a contradiction. So f; €
Eny.o) C Eg k) 0

Lemma 4.3.8 Let (I,L) and (k, K) be any elements of F(N) x F(T\R) such that
Eqr) N Egk) # . Then Eqry N Eg k) = Equiiuk).

Proof Since E 1y N E k) is not empty and X is dense in Kg, Eq 1) N Eg k) N Xg is
not empty. Letf, € Eqry N Eqx) N Xg. Then! C handk C h.SolU k C h.

Also i) O, NL = @ foralln € h\land O, N K = @ for all n € h\k.

Since k\! C h\l and I\k C h\k we have

(i) O,NL=gforallne ((Uk)\land 0, N K = @ foralln € (IUk)\k.

From (i) we have O, N (L U K) = @ whenevern € h\(l U k). So f, € Equk.r1uk)-
Thus (E(I,L) n E(k,K) NXg) C E(lUk,LUK) N Xg. Hence E(I,L) n E(k,K) C E(lUk,LUK)-

By the above, Euk,ruk) is not empty. So Equ ruk) N Xg is not empty. Let f; €
Equkruk). Then I U k C g. Also, forall n € g\(/ U k), we have O, N (LUK) = @.
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By (ii) we also have O, N L = @ for n € (I U k)\l. Hence f, € E ). Similarly

fg S E(k,K)-
It now follows that Eug ruky N Xg is a subset of E( 7y N E k). Taking closures
and applying Lemma 4.3.1, gives E(; 1) N Ex k) = Equk,Luk)- O

Lemma 4.3.9 Let U be an open subset of Kg and x € U N Xg. Then there exists
(k,K) € F(N) x F(T\R) such that x € Egx)y C U.

Proof It follows from the definition of the product topology on the Big Cantor space
q
and Lemma 4.3.7, that x € () Eng.ugy) C U where (h(j), H(j)) € F(N) x F(T\R)
J=1
forj=1,2,...,q.

q q

Let k = |Jh() and let K = |J H(j). Then, by repeated applications of
Jj=1 Jj=1

Lemma 4.3.8, we have x € E x) C U. O

Corollary 4.3.10 Let U be a non-empty regular open subset of Kg. Then there exists
a sequence (k(j),K(j))(Gj = 1,2,...) in F(N) x F(T\R) such that, in the complete
Boolean algebra of regular open subsets of Kg,
U=V Euwgxi
j=

Proof Since Xg N U is a countable set it can be enumerated by (x;)(j = 1,2,...).

By Lemma 4.3.9, for each j, we can find (k(j), K(j)) in F(N) x F(T\R) such that

Xj € Eqgykgy C U.SoXg N U C | Ew.kiy C U. On taking closures, we get
j=1

00
clU C cl U Eq)kqy C clU.
=1

Because U is a regular open set, U = int(clU). We recall that the supremum. of
a sequence of regular open sets in Reg(Kp) is formed by taking the closure of their
union, and then taking the interior of that set. So U = \/ Ej).(j))- O
j=1
The following technical lemma will not be needed in this section, but it seems
natural to prove it here.

Lemma 4.3.11 Let (I, L) and (k, K) be in F(N) X F(T\R). Let E(;1) = E ). Then
Il=kandL =K.

Proof Forh € F(N),f;, € Eqr) <= | C h,and whenevern € h\lthen O,NL = .

It follows that f; € E 1) and so f; € E ). Thus k C [. Similarly we can show
that! C k. Sol = k.

Suppose that L is not a subset of K. Then there exists t € L\K. Then, by
feasibility, there exists m such thatm ¢ k, t € O, and 0,,NK = @.Leth = kU{m}.
Hence f, € Euk). Sothen f, € Egyry. So O,, NL = @. Butt € O, N L. This
contradiction shows that L C K. Similarly K C L. O
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Corollary 4.3.12 Let (I, L) and (k,K) be in F(N) x F(T\R). If Eq1) C Eq k) then
k Cland K C L. Conversely, ifk C l and K C L then either Eq1y N Eg ) = & or
Eqr) C Ewx).

Proof First suppose E(I,L)CE(k,K)- Then E(I,L) = E(I,L) n E(k,K)- Since ﬁ(l, L) =1
this intersection is not empty. So, by Lemma 4.3.8, E;;y = Equrruk). By
Lemma4.3.11,/=/UkandL=LUK.i.e.k Cland K C L.

Conversely, let k C /and K C L. By Lemma 4.3.8, either E;;) N Eg x) = & or

Eqr NEwg) = Equriuk) = Eqr)- 0

Proposition 4.3.13 The algebraAg = B (Kg)/My(Kg) = C(I/{\R) is wild and non-
atomic.

Proof It follows from the work of the preceding Section that it suffices to show that
none of the elements of Xy is an isolated point in K.

Suppose this is false and f; is an isolated point. Then, by Lemma 4.3.9, for some
k e F(N) and K € F(T\R), E(k,K) = {fg}

Since K is a finite set and T\R is infinite, we can find 1, € (T\R)\K. It now
follows from the definition of feasibility that we can find ny ¢ g such that 7y € O,
and 0,, NK = @.Leth = gU {ng}. Then k C h and, forn € h\k,0, N K = @.
So fi, € Eq k). Hence fi, = f,. But f,({no} U k, K) = 0 whereas f,({no} U k,K) = 1.
This is a contradiction. So the proposition is proved. O

Lemma 4.3.14 For each k € F(N) and t € T\R we have

Ewiy = [ Emz Nint | () (Ke\Eq.2)
nek n¢k,1€0,

Proof By Corollary 4.3.2 it suffices to prove that

Xg N Egy =Xe N[ ) Eqo N () (Ke\Egy.2))- #)
n€k né¢k,t€0,

Let f, € Xg N Eg g13)- So fo(k, {t}) = 1. Thus (a) k C g and (b) for every n € g\k
we have t ¢ O,. So, by (a), f,({n}, ) = 1 for each n € k. Thus f, € E, o) for
every n € k.

Now considern ¢ k. If n € g thenn € g\k. So O, N {t} = @. Hence if n ¢ k and
t € O, thenn ¢ g. So f,({n}, @) = 0. Thus f, € Kr\E((,} ). It now follows that f,
is an element of the right hand side of (#).

Conversely, let us take f;, to be an element of the right hand side of (#). Then
fa({n}, @) = 1 foreachn € k. So k C h. Now fix n € h\k.

Then f,({n},@) = 1.If t € O, then f;, € (Xg\E(n} 2)) Which would imply
fa({n}, @) = 0. Hence t ¢ O,. It follows that f (k, {r}) = 1. So the equality (#) is
established. O
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Proposition 4.3.15 Let Reg(Kg) be the complete Boolean algebra of regular open
subsets of Kg; it is the smallest o-complete subalgebra of itself which contains the
countable set {E( &) :n =1,2,.. }.

Proof Let S be the o-subalgebra of Reg(Kr) generated by {E(y. ) :n = 1,2,...}.
Fix k € F(N)\{@} and consider E g). Then fi € Eq,) ) for each n € k.
So, by Lemma 4.3.8, E} o) = ﬂ E((n,2).- Hence E o) € S. We observe that

Ewo NXg=1{f;: gEF(N)}—XR So E(z,@) = Kk.

We now consider E gy where K # . If Eg k) # @ then K C T\R. So K =
{ti,t2, ..., t,} where each ¢ is in T\R. By Lemma 4.3.14, E¢ (3, € S for each
k € F(N) and t € T\R. Also fi € Eg . It now follows from Lemma 4.3.8 that
Eqx) € S. We can now apply Corollary 4.3.10 to deduce that Reg(Kg) C S. O

Corollary 4.3.16 Let gg be the canonical quotient homomorphism of B> (Kg) onto
B (Kg)/My(Kg). Let B be a Boolean o -subalgebra of the Baire subsets of Kg such
that E @) € B for each n € N. Then {qr(xs) : S € B} is the set of all projections
in B (Kg)/Mo(KR).

Proof This follows from Proposition 4.3.15 and the observation that the map
O + qr(xo) is a Boolean isomorphism from Reg(Ky) onto the Boolean algebra
of all projections in B (Kg)/My(Kg). O

Definition 4.3.17 Let
N: T+— PN)
be the map defined by
N(#)={neN : rte0,}

foreacht e T.

We remark that the definition of feasibility implies that N(7) is an infinite set
for every ¢t € T. Feasibility also implies that it is an injective map. Its definition is
independent of any choice of R.

Proposition 4.3.18 For eacht € T let C(t) be the closed set defined by

C) = [ Ke\Eqn.2))-

neN()

Then C(t) has empty interior if, and only if, t € R.

Proof We recall that f,({n}, @) = 0 if, and only if, n ¢ g. So f, € C() if, and only
if, g NN@) =2

First assume that 1 € T\R. Then fj, € E( () <= (n € himpliest ¢ 0,) <
hNN@) =3 < f, € C(t). Thusfz € Eg ) NXg = C(t) N Xg.
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By Corollary 4.3.2, given a closed set C in K and a clopen E in Ky, if Xg N C =
Xg N E, then E = intC. So the clopen set E g 13y = intC(t). This set is non-empty
because fg is an element.

Conversely, let us assume that C(f) has non-empty interior. So there exists
(k,K) € F(N) x F(T\R) such that @ # E gy C C(t). First suppose that ¢ ¢ K.
Since (T, O) is feasible we can find n ¢ k such thatr € O, and 0O, N K = @.
Let h = {n} U k. Then it follows from this that f, € Eyk). So fi, € C(t). Thus
h N N(t) = &. In particular, t ¢ O,.. This contradiction shows that we must have
te K CT\R

So C(t) has non-empty interior if, and only if, t € T\R. The required result
follows. O

We shall now see how to represent Ag = B (Kg)/My(Kg) = C()?) as a quotient
of the algebra of Baire functions on the (classical) Cantor space. The key fact which
makes this possible is the existence of a countable set of generators.

Let I' be a map from the Big Cantor space onto the small Cantor space, defined
as follows:

For x € 2FMXF(D et T'(x)(n) = x(({n}, @)) forn = 1,2,.... Then I is a map
from the Big Cantor space into 2V, the classical Cantor space.

Let J = {({n},D) : n € N}. Then, trivially, we may identify 2" with 2’. So
I' may be regarded as a restriction map and, by the definition of the topology for
product spaces, it is continuous.

Let ¥ = {y € 2V : y(n) = 0 for all but finitely many n}. Then X is a countable
dense subset of 2N such that I'[Xgz] = X. Let I'; be the restriction of ' to Kx.
Then I'g is a continuous map from the compact Hausdorff space K onto a compact
Hausdorff space. Since X is dense in K, it follows that ['g[Kg] = 2N, This map
I'r is never an open map, see the remarks at the end of this section.

Let E, = {y € 2V : y(n) = 1}. Then [y [E,] = E(gy.0) forn = 1,2, . ...

Since Tk is continuous, it follows that whenever f € B®(2Y) then f o Iy is in
B> (K). We define a o0-homomorphism y from B*®(2Y) to B®(Kz) by yr(f) =
f oIz Asin Corollary 4.3.16, we let gg be the canonical quotient homomorphism
of B (Kg) onto B*(Kg)/My(Kg).

Definition 4.3.19 Let Iz = {f € B®(2") : f o T € My(KR)}.

Theorem 4.3.20 We have Iy is a 0-ideal of B> 2Ny and B® (2V) /Iy is isomorphic
to B*®(Kg)/My(Kg) ~ C(Kg) = Ag. Also Iz N C(2Y) = {0}.

Proof The mapping gg o yr is a 0-homomorphism, so its kernel is a o-ideal.
But g 0 yr(f) = 0 <= (f) € Mo(Kr) <= f o T € Mo(Ke) <= f € I.
Thus I is a o-ideal and B®(2Y) /I is isomorphic to

qr © YrIB® (2")] C B®(Kg)/Mo(Kp).

We observe that yg maps the characteristic function of E, to the characteristic
function of E((,} ). It now follows from Corollary 4.3.16 that the range of gr o yr
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contains every projection in B*°(Kg)/Mo(Kg). Since the range of gg o yg is a closed
subalgebra of B> (Kg)/My(Kg) it must coincide with B (Kg)/My(Kg).

Finally, if f € Iz N C(2Y), then f o T'; is a continuous function in My(Kz). So

{y € Kg : f o 'r(y) # 0} is an open meagre set. So, by the Baire Category Theorem

for compact Hausdorff spaces, this set is empty i.e. f = 0. This completes the proof.

O

We denote the natural quotient homomorphism from B®(2Y) to B*(2Y) /I by
JTR.

To avoid “subscripts of subscripts” we shall denote the characteristic function of
aset S by x(S).

We now let D, = 2Y\E,. So yg maps x(D,) to )((EZ'{H} Q)). For each k €

FIN)\{@} letdr = x(N E{(,3 z))- Then yg maps x(( Dy) to di.
n€k '

n€k

Because yg is a o-homomorphism, it maps y( (| D,) to y(C(¢)). Then, by
neN(r)
Proposition 4.3.18, y(C(r)) € My(Kg) if and only if # € R. So y( () Dn) € I if
neN(r)

and only if r € R.
Proposition 4.3.21 When R # S then Ig # Is.

Proof Without loss of generality, we may suppose that there exists r € R\S. Then

X( ﬂ Dn) € I but X( ﬂ Dn) ¢IS SOIR#Is. O
neN(r) neN(r)

Corollary 4.3.22 There are 2¢ distinct ideals I.
Proof By Lemma 4.3.5 there are 2¢ admissible sets. O

Remark 4.3.23 When R # S then Iz # Is. But it does not necessarily follow that
B> (2Y) /I is not isomorphic to B> (2Y)/Is. To show that there are 2¢ algebras Ag
which are not equivalent and hence, in particular, not isomorphic, we make use of
the machinery of representing functions and spectroids, modulo (7, N), where N is
the map defined in Definition 4.3.17. We define a particular representing function

for B®(2M) /I by defining fz(k) = mr(x(() Dn)) for k # @, and putting fz(2)
n€k
=1.

Then we have:

Lemma 4.3.24 For each admissible R the function fr is a representing function
for B¥(2N) /1. Then R is represented by fz, modulo (T,N). In other words, R €
I (BX(2Y)/Iy).

Proof First we note that (] D, is a non-empty clopen set for each finite set k.
n€k
So x(( D) is a non-zero continuous function. Hence it is not in Ix. It is clear
n€k

o0
that fg is downward directed. Now consider /\;crq,fr(k) = 7r(x(( D»)). But
1

n=
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o0 o0
( D, is a single point set. So wg(x( () D»)) is zero or an atomic projection. Since
n=1 n=1
B> (2)/Iz ~ Ag which has no atoms, A, FayJR(K) = 0. Thus fg is a representing
function.

We now calculate Rirny(fr) = {t € T @ Nepoyfr(k) = 0}. We have

Nierova)fr(k) = 0 precisely when y( () D) € Ik
neN()

In the notation of Proposition 4.3.18, yr(x( [ D.)) = x(C(1). So, by
neN(r)
applying Proposition 4.3.18, we see that y(C(¢)) € I precisely when ¢t € R. Thus
R = RN (fr)-
So Ris in 8(T,N) (BOO(ZN)/IR) = 8(T,N) (AR). O

Corollary 4.3.25 Let R be the collection of all admissible subsets of T. Then there
exists Rog C R, with #R¢ = 2¢ and such that {Ag : R € Ry} is a set for which Ag
is not equivalent to Ag unless R = S. Also the spectroid of Ag, modulo (T, N), is not
equal to the spectroid of As, modulo (T,N), when R # S.

Proof By Lemma 4.3.5 #R = 2¢. From Lemma 4.3.24, for each R € R,R €
d(r.N)(Ar). The result now follows from Theorem 3.3.13 and Corollary 3.3.14. O

There are a number of interesting side issues which we have omitted. For
example, it can be proved that none of the algebras constructed above is isomorphic
to the Dixmier algebra. If, for a given R, the continuous map ' were open then this
would imply that B (2") /I is isomorphic to the Dixmier algebra. So Ik is never
open.

In the construction of commutative monotone complete algebras described in
this section we have assumed that #(T\R), the cardinality of the compliment of the
admissible set used, is c. If we replaced this assumption by requiring #(T\R) = Ry,
then the constructions would still work but it turns out that the algebras obtained
would all be isomorphic to the Dixmier algebra.

It can be shown that the spectroid of any small C*-algebra has cardinality c. In
particular the spectroid of C has cardinality c. This is not too surprising, since the
spectroid of C equals the spectroid of each small von Neumann algebra.

This section is taken from our paper [144]. The compact separable spaces
discussed here are modifications of spaces constructed by Hamana [66]. Our
indebtedness to his work is clear.



Chapter 5
Convexity and Representations

In this chapter we apply methods from convexity to representations of C*-algebras.
We construct regular o-completions and show that the regular o-completion of a
small C*-algebra is its regular completion.

We discuss small C*-algebras and completely positive maps.

5.1 Function Representations of Non-commutative Algebras

Unless we specifically state otherwise, the C*-algebras considered in this chapter
will be assumed to have a unit element. For most results this is not essential but it
permits a simpler and more straightforward exposition.

We shall need a few tools from the theory of compact convex sets and of partially
ordered Banach spaces. We shall remind the reader of some of the basics. For more
complete information an excellent source is [2]. See also [123]. We shall also need
to recall some standard results from C*-algebra theory.

When a C*-algebra is commutative it is isometrically isomorphic to C(£2), the
C*-algebra of all complex valued continuous functions on its spectrum £2. See [50,
89, 150]. But for non-commutative algebras the Gelfand-Naimark Theorem does not
apply.

Given a C*-algebra A, its self-adjoint part, Ay,, is a partially ordered Banach
space (over the real numbers). Let a € Ag,. Then, by spectral theory,

lla|] = inf{A : —Al < a < A1}

This implies that 1 is an order unit for the partially ordered Banach space Ag,. It also
shows that for any self-adjoint a, its norm ||a|| coincides with the order-unit norm
of a.

© Springer-Verlag London 2015 91
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Let K be the state space of A, that is, K is the set of states of A with the 6(A*, A)-
topology. Then K is a compact convex subset of the dual space A*, when A* is
equipped with the o(A*, A)-topology. Equivalently, K is a compact convex subset
of the (real) dual space AY, (of A,,), when A}, is equipped with the o (A}, As)-
topology. By a theorem of Kadison (see page 70 [121] and Theorem II.1.8 Page 74
[2]) the real, order unit normed, Banach space Ay, is isometrically order isomorphic
to A(K). Here A(K) is the Banach space of all continuous, real valued, affine
functions on K, equipped with the supremum norm.

This can be generalised from C*-algebras. Let V be a partially ordered vector
space which is Archimedean, possesses a distinguished order unit # and is a Banach
space with respect to the order-unit norm. We call V an order unit Banach space.
Let Q be the convex set of all ¢ € V* such that ¢ > 0 and ¢(u) = 1. Then Q is
compact in the o (V*, V)-topology. We call Q the state space of V. By Kadison’s
theorem, V is isometrically order isomorphic to A(Q). For details, see [2]. See also
[82].

When A is commutative with spectrum 2 then €2 can be identified with the
extreme points of the state space of A.

Let A be a unital C*-algebra. We recall some standard results. (See Section 12
[34], also Theorem 3.10.3 and Proposition 3.7.8 [121] and Section 2 of Chapter 3
[161]). For each state ¢ of A there is a corresponding Gelfand-Naimark-Segal repre-
sentation. The direct sum of all these representations is the universal representation
(ru, Hy,). We shall identify A with its image in L(H,), that is, with m,[A]. The von
Neumann envelope of A in L(H,,) is the double commutant 7, [A]”. By the Sherman-
Takeda Theorem, this von Neumann envelope can be identified with A**, the second
(Banach space) dual of A. See [87, 151, 158]. We shall make this identification
from now onward. The weak operator topology on 7, (A)” induces the o (A**, A*)-
topology on A**. (Observe that every positive functional ¢ € A* can be identified
with a vector state on 7, (A)”.) Similarly, A", (which s (7, (A)"”).) can be identified
with the second dual of the real Banach space Ay,. Also the o(A}", AY )-topology
corresponds to the weak operator topology.

We can extend the Kadison representation as follows. Let A”[K] be the space
of all bounded (real valued) affine functions on K, equipped with the supremum
norm. Then, see Lemma II1.6.7 page 161 of [161], the Kadison isomorphism of Ay,
onto A(K), can be extended to an isometric isomorphism of A** onto A”[K]. In this
isomorphism, a € m,[A]”, is mapped to @, where

¢(a) = a(¢) foreach ¢ € K.

Furthermore a (norm bounded) net a; in m,[A]”,, converges to a in the weak
operator topology if, and only if, (a;) is a (norm bounded) net which converges
pointwise to a.

We shall frequently find it convenient to write “a” instead of “a”. This minor
abuse helps us to avoid some cumbersome notation (“hats on tildes”).
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Incidentally, for any Hilbert space H, if a sequence in L(H) converges in the
weak operator topology then it is bounded in norm. This is just a consequence of
the Uniform Boundedness Theorem, see Exercise 5.3.2.

We shall discuss the Pedersen-Baire envelope of A, (see Definition 2.2.23),
and the Brown-Borel envelope of A in Sect.5.3. These are both C*-subalgebras
of A” and both of them contain A as a subalgebra. We shall make use of them
when proving representation theorems for monotone o-complete C*-algebras and
monotone complete C*-algebras.

We shall see, in Sect. 5.6, that for every monotone complete C*-algebra A there
exists a commutative monotone complete C*-algebra C and a faithful, normal,
positive linear map I' : A — C. So in the notation of Chap. 3,

AZC.

5.2 Compact Convex Sets: Preliminaries

When we apply convexity theory to C*-algebras, the compact convex sets we use,
will usually be the state spaces of the algebras. But many of the basic geometric
results can be proved much more generally with no extra effort. So in this section K
will be a compact convex subset of a Hausdorff, locally convex (real) vector space
V. In our applications, in later sections, K will usually be the state space of a C*-
algebra A and V will be the space A%, equipped with the o (A},. As,)-topology.

We shall denote the set of extreme points of K by dK. We recall that, by the
Krein-Milman Theorem, the convex hull of 9K is dense in K.

For any convex X C V, areal valued function f : X — R is convex if,

fAx+ (1 =21)y) = Af () + (1 = Df (»)

for A € [0, 1] and for any x and y in X. It is concave if —f is convex. Clearly f is
affine when it is both convex and concave. We use A(X) to denote the vector space
of all continuous (real-valued) affine functions on X.

All functions on K considered in this section are real valued.

Exercise 5.2.1 Letf € A()). Show that f — f(0)1 is a continuous linear functional
on.

Hint: When £(0) = 0, f(3x) = 1f(x). So

3 6+ 0 =1 (355 53) = 5700 + 500

In the following let A(K; V) = {f|x : f € A(V)}.
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Lemma 5.2.2 Let f be a lower semicontinuous convex function on K. Then, for
eachx € K,

f(x) = sup{a(x) :a € A(K; V) and a < f};

where a < f signifies a(x) < f(x) for each x € K.

Proof See Proposition 1.1.2 [2] or Lemma I11.6.1 [161]. By multiplying by —1 we
get a corresponding result for upper semicontinuous concave functions. O

Lemma 5.2.3 Let a be a lower semicontinuous (real valued) affine function on K.
Then there is an increasing net, (ay), in A(K; V) such that

a(x) = limay (x).

The set {f € A(K;V) : f < a} is upward directed.

Proof See Corollary 1.1.4 [2] or Lemma II1.6.2 [161]. By multiplying by —1 we get
a corresponding result for upper semicontinuous affine functions.
Both the preceding lemmas were obtained in [102]. O

Corollary 5.2.4 Let a be a continuous (real valued) affine function on K. Then there
is an increasing sequence in A(K; V) which converges to a in the uniform norm. In
particular, A(K; V) is dense in A(K).

Proof By Lemma 5.2.3 and Dini’s Theorem, there is a increasing net in A(K;))

which converges uniformly to a. That means ||a — a;, || — 0. It follows that we may

choose a monotone increasing sequence in A(K; V) which converges in norm to a.
0

Exercise 5.2.5 Suppose that the compact space K is a Polish space, that is,
homeomorphic to a complete separable metric space. Show that 0K is a Gs-set.

Hint: Take a complete metric d on K. Then consider the sets
1 .
F,={xeK:x= E(y + z) for some y and some z in K where d(y, z) > 1/n}.

Show that each F), is closed. Show also that if a point in K is not extreme then it
is in U, F,,.

Each Gs-subset of a Polish space is a Baire space. So Exercise 5.2.5 implies that
when K is Polish then 0K is a Baire space. A key theorem of Choquet says that for
every compact convex K, dK is a Baire space in the relative topology induced by K.
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Lemma 5.2.6 (Choquet) Let K be a compact convex subset of V and let e € 0K.
Then a fundamental system of open neighbourhoods of e is given by the family of
sets of the form

{x € 0K : a(x) > 0}

where a € A(K) and a(e) > 0.
Proof See 25.13 in [26] or page 355 [34]. For a generalisation see [37]. O

Theorem 5.2.7 (Choquet) Let K be a compact convex subset of V. Then 9K is a
Baire space in the relative topology.

Proof See 27.9 in [26] or B14 of [34]. O

Corollary 5.2.8 Let A be a unital C*-algebra and let K be its state space. Then 0K,
the set of all pure states of A, is a Baire space.

The following theorem is based on [170].

Theorem 5.2.9 Let F be a bounded subset of A(K) such that there exists g, a
greatest lower bound in A(K) for F. Let

g) = inf{f(x) : f € F}

for each x € K. Then g is a bounded, upper semicontinuous concave function on K
and the set

{x € 0K : g(x) > g(x)}

is a meagre subset of 0K in the relative topology. Furthermore, if F is downward
directed then g is affine.

Proof Clearly g is upper semicontinuous and concave. If, in addition, F is
downward directed then g is the pointwise limit of a directed set of affine functions,
and so affine.

Returning to the general situation, let

M, ={xeK:g(x)—g) = 1/n}
= ({xeK:f(x)—g(x) = 1/n}.

feF

Then M, is the intersection of a family of closed convex sets. So it is a closed convex
subset of K.
Suppose that there exists an open subset U of K such that

M,N 3K D UNJIK # @.
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Choose e € U N dK. By Lemma 5.2.6, there exists 1 € A(K) such that
O ={xeK:h(x) >0}

is an open neighbourhood of e and O N 9K C U N dK.
Since we can multiply z by 1/n||h|| we can assume, without loss of generality,
that 2(x) < 1/n for all x € K. For x € dK\O we have

h(x) <0 <g(x) —g(x).

For x € dK N O we have

h(x) < 1/n < g(x) —g(x)

because O N 0K C M,,.
So for all x € K and each f € F

0 =f(x) —g(x) — h(x).

When an affine continuous function is positive on dK then it is positive on the closed
convex hull of dK. So, by the Krein-Milman Theorem,

g+h=<f

forall f € F. Hence g + h < g. So h < 0. But this contradicts the existence of e.
So M,, N dK is a closed nowhere dense set in the relative topology of K.

Since the union of a sequence of nowhere dense sets is meagre, the theorem
follows. O

Corollary 5.2.10 Let U be a bounded subset of A(K) such that there exists g, a
least upper bound in A(K) for U. Let

g =sup{f(x) : f e U}

for each x € K. Then g is a bounded, lower semicontinuous convex function on K
and the set

{x € 9K : g(x) < g(x)}

is a meagre subset of 0K in the relative topology. Furthermore, if U is upward
directed then g is affine.

Proof Let F = {—h : h € U } and apply Theorem 5.2.9. O
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Definition 5.2.11 The Baire envelope, A*°(K), of A(K) is the smallest space of
bounded, Baire measurable functions which contains A(K) and which is closed
under pointwise limits of uniformly bounded, monotone increasing sequences.

Definition 5.2.12 The Borel envelope, A’(K), of A(K) is the smallest space of
bounded, Borel measurable functions which contains all bounded, lower semi-
continuous affine functions on K and which is closed under pointwise limits of
uniformly bounded, monotone increasing sequences.

Remark 5.2.13 We use A”(K) to denote the space of all bounded (real valued) affine
functions on K. Suppose K is the state space of a C*-algebra A. Then A”(K) can be
identified with A , the self-adjoint part of A”. In turn this can be identified with A**,
the second dual of the real Banach space Ay,. Also, by Kadison, Ay, is identified with
A(K). See Page 161 of [161]. Also, as will be discussed later, both A% (K) and A?(K)

are the self-adjoint parts of C*-algebras when K is the state space of a C*-algebra.

Definition 5.2.14 Let f and g be bounded functions on K. Then f = g if {x € K :
f(x) # g(x)} is meagre. When f = g we shall say f = g almost everywhere and
also write this as f = g a.e. More generally

f>gae.

when {x € K : f(x) < g(x)} is meagre.

Exercise 5.2.15 Let (f,) and (g,) be bounded sequences of bounded functions
on K.

Let f(x) = sup{fy(x) : n = 1,2...} and g(x) = sup{g,(x) : n = 1,2...}. If
fn > gn a.e. for each n show that f > g a.e.

Hint: The union of countably many meagre sets is meagre.

Show also that inff, > infg, a.e.

Let limf, (x) = inf,> 1(Sup,,>,, fn(x)). Show that limf, > limg, a.e. Deduce that
if f, = g, a.e. then limf, = limg, a.e.

We observed in Chapter 2, see [44], that even when C(S) is monotone complete,
it may fail to have a locally convex Hausdorff topology in which bounded, monotone
sequences converge to their order limits. The following representation theorems
[170] are useful when dealing with spaces which exhibit this “bad behaviour”. Just
as for C*-algebras, A(K) is monotone complete if each upper bounded, upward
directed subset has a least upper bounded in A(K). Monotone o-complete is defined
similarly.

Theorem 5.2.16 Let A(K) be monotone complete. Then corresponding to each f €
AP(K) there is a unique kf € A(K) such that kf = f. Furthermore, k is a positive
linear, idempotent map of A*(K) onto A(K) with the following properties.

(1) Let (f,) be a monotone increasing, upper bounded sequence in A*(K) with
pointwise limit supf,, and with \/v= k(f,) as the least upper bound of (kf,)
in A(K). Then k(supf,) = \/ oo 1 k(f,).
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(2) Let F be an upward directed, upper bounded subset of A(K) with pointwise
supremum f. Let \/ F be the least upper bound of F in A(K). Then

kf = \/F.
Proof Suppose that f = g and f = g, where g; and g; are in A(K). Then

{x € 0K : g1(x) # g2(x)}

is a meagre, open subset of dK. So, by Theorem 5.2.7, this set is empty. So when kf
exists it is unique. If f > 0 then

{x € 0K : kf(x) < 0}

is an open, meagre subset of dK and hence empty. So, by Krein-Milman, kf > 0.
Let

W = {f € A’(K) : 3kf € A(K) such that f = kf}.

When f and g are in W then f + ¢ = kf + kg. Since kf + kg is in A(K), we have
k(f + g) = kf + kg. So W is a vector subspace of A?(K) containing A(K). Also k is
a positive linear map of W onto A(K).

Let F be an upper bounded, upward directed subset of A(K). Let f be its
pointwise supremum then, by Corollary 5.2.10, f is a lower semicontinuous function
with f = \/F. So N

kf = \/F.

By Lemma 5.2.3, each bounded lower semicontinuous affine function on K is the
pointwise supremum of an upward directed set in A(K). Hence W contains all the
bounded lower semicontinuous affine functions on K.

Let (f,) be a monotone increasing sequence in W bounded above by a constant
m. Since k is a positive linear map, (kf,,) is a monotone increasing sequence in A(K)
bounded above by m.

So lim,— e kfy(x) = supkf,(x) exists for all x € K. By Corollary 5.2.10,
sup kf, = \/?Lilkf"'

By Exercise 5.2.15

supf, = supf;.

So k(supf,) = k(supkf,) = \/°2 kf,.. So supf, € W. Hence W contains A’(X). O

Theorem 5.2.17 Let A(K) be monotone o-complete. Then corresponding to each
f € A®®(K) there is a unique kf € A(K) such that kf = f. Furthermore, k is
a positive linear, idempotent map of A*°(K) onto A(K). Let (f,) be a monotone
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increasing, upper bounded sequence in A* (K) with pointwise limit sup f,, and with
\/ o2 \k(f,) as the least upper bound of (kf,) in A(K). Then

k(supfu) = /32 k().

Proof The proof is a simplified version of the proof of Theorem 5.2.16. O

Theorems 5.2.16 and 5.2.17 can be applied to obtain extension theorems for
A(K)-valued maps, see Proposition 5.4.7.

The following application of Choquet’s Lemma gives a well-known result which
will be needed later.

Proposition 5.2.18 Let H be a separable Hilbert space. Let L(H) be the algebra of
bounded operators on H. Let K be its state space. Then 0K is separable.

Proof Since H is a separable metric space, {§ € H : ||£]| = 1} has a countable
dense subset {£, : n = 1,2,...}. For each n, let y, be the normal pure state defined
by yu(a) =< abu. & >.

Let e € dK and let U be any open neighbourhood of ¢ in K. By Lemma 5.2.6,
there exists a self-adjoint @ € L(H) such that

ec{yedK :y(a) >0} CU.

Ify, ¢ {y € 0K : y(a) > 0} for any n then < d§,, §, > < 0 for all n. But this implies
a < 0, which is impossible. So dK has a countable dense subset.
It follows from the Krein-Milman Theorem that X is also separable. O

Proposition 5.2.19 Let A be a unital C*-algebra with a separable state space.
Then A possesses a faithful state. If A is monotone o-complete then it is monotone
complete.

Proof Let {x, : n = 1,2,...} be a dense set of states. Let y = anlzl,,xn. Then
y is a faithful state. If A is monotone o-complete, then by Theorem 2.1.14, it is

monotone complete. O

5.3 Envelopes of C*-Algebras

Let B be a closed *-subalgebra of L(H) for some Hilbert space H. Then there
are several interesting candidates for larger C*-subalgebras of L(H) which contain
B. The most familiar is the closure of B in the weak operator topology, the von
Neumann envelope of B in L(H).

Another natural construction is due to Davies [32]. When Y is a subset of L(H),
it is said to be sequentially closed in the weak operator topology if, whenever (7))
is a sequence in Y which converges in the weak operator topology to 7 then T € Y.
Given any Y C L(H) let X(Y) be the intersection of all subsets of L(H) which
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contain Y and are sequentially closed in the weak operator topology of L(H). Clearly
¥ (Y) is sequentially closed in the weak operator topology and is the smallest such
set containing Y.

Lemma 5.3.1 Let B be a closed *-subalgebra of L(H) for some Hilbert space H.
Then X(B) is a C*-algebra and is sequentially closed in the weak operator topology
of L(H). We do not require B to have a unit element.

Proof Take complex numbers A and p. Take @ € B. Now let W be the set of all
y € X (B) such that

(Aa + py) € T(B), y* € (B) and ay € Z(B).

Then W contains B and is sequentially closed in the weak operator topology. So
W = 2(B).
Now let V be the set of all x € L(H) such that, for every b € X (B),

(Ax + py) € X(B) and xb € X(B).

Then V contains B and is sequentially closed in the weak operator topology. So
V = ¥(B). Since a norm convergent sequence in L(H) is also convergent in the
weak operator topology, X (B) is a C*-subalgebra of L(H). O

Exercise 5.3.2 Let {T) : A € A} be a subset of L(H) such that, for each & and 7
in H,

sup{| < Tn€,n>|: 2 € A} < o0.

Prove that {||T,|| : A € A} is bounded.
Hint: Fix 7 and use the Uniform Boundedness Theorem to show that {||7} ]| :
A € A} is bounded.

As before, let A be a unital C*-algebra, with universal representation (7, Hy,).
We identify A with its embedding, 7, [A], in L(H,). Its second dual is identified with
.[A]”, its von Neumann envelope in L(H,,). Its state space is the compact convex
set K.

Definition 5.3.3 The Davies-Baire envelope of A is the smallest subset of L(H,,)
which contains A and is sequentially closed in the weak operator topology of L(H,,).
We denote it by A*. By Lemma 5.3.1, it is a C*-algebra. When A”, is identified
with A”(K) then AZ is identified with A¥(K); where A¥(K) is the smallest (real)
subspace of A”(K) which (i) contains A(K) and (ii) is closed under pointwise limits
of sequences (see Exercise 5.3.2).

Let H be any Hilbert space. Let (7,,) be a norm bounded, monotone increasing
sequence in L(H),,. Then this sequence converges in the weak operator topology
and also in the strong operator topology. Denote its limit by lim 7,,. Then lim 7}, is
the least upper bound of the sequence in L(H)q,.
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We defined the Pedersen-Baire envelope of A, A%, in Definition 2.2.23. Then
A is the smallest subspace of L(H,)s, which contains Ay, and is closed under
strong limits of bounded monotone increasing sequences. Comparison with
Definition 5.2.11, shows that ASS corresponds to A®(K). It is clear that A* is
a o-subspace of A¥ C L(H,). The fact that it is a o-subalgebra of A* and L(H,,)
follows from Theorem 4.5.4 in [121]. Using Pedersen’s methods and those of
Kadison [85] we shall obtain, in Theorem 5.3.7, a result which, for unital algebras,
is more general.

Remark 5.3.4

(i) Let B be anon-unital C*-algebra andletA = B'. Since B is a (maximal closed)
two-sided ideal of A, we can identify B” with a weakly closed two-sided ideal
of A”, where C” is the universal enveloping von Neumann algebra of a C*-
algebra of C.

Let BSS be the smallest o-closed subset of A”. Since B” is o-closed in A”,
it follows that BYy C B”. That is, By, is the smallest of all such in B,.

By Pedersen’s theorem, B* = B + iBS is a C*-subalgebra of B” and
so of A”. We note here that even when B is non-unital, his argument works to
show that B® is a C*-subalgebra of B”. That is, the Pedersen-Baire envelope
of B is obtained by taking the monotone o-closure in A” and so we have

BCB*® cCcB' cA”.
Hence it follows that
BCACB®+ClCA® cA”.

Since B*® + C1 is monotone o-closed in A”, it follows that A = B*® + CI.
Here 1 is the unit element of A”, where B” = A"z for a central projection z of
A",

(ii) Let A be a (unital) C*-algebra and let A*° be the Pedersen-Baire envelope
of A. Let {m,, H,} be the reduced atomic representation of A (see page 103,
4.3.7 [121]). Let 7, be the unique normal *-homomorphism, from A” into
L(H,), which extends 7, to A”. Then 7 |scc i8S injective (see page 114,
Corollary 4.5.13 [121]).

(iii) Let A = C(2) be the commutative C*-algebra of all complex valued
continuous functions on a compact Hausdorff space 2. Then A =~ B*°(Q2),
where B>°(2) is the monotone o-complete C*-algebra of all bounded Baire
measurable functions on 2. To see this, let 7, be the reduced atomic
representation of A. Note that 0K = Q, 7,(x) = {x(w)}weq (x € A) and
H, = (£2). We have a unique normal extension 7, of 7., as a unital o-normal
x-homomorphism 7, : A** +— Bnd(Q) C L({*()). Moreover, we have
T.(A%®) = B*®(Q). Since 7,|4c0 is injective, it follows that A% =~ B*®(Q)
via the map 7, |g00.
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5.3.1 Open Problem

It is clear that the Pedersen-Baire envelope of A is contained in the Davies-Baire
envelope of A, that is

A® C A%,

Do they coincide? Or is there an A where the Davies-Baire envelope is strictly
larger than the Pedersen-Baire envelope? This problem has been open for nearly
50 years. Pedersen succeeded in showing that the answer is positive for some classes
of A, see [121]. But, in general, this is a mystery. We shall refer to this question later.

Many of the results we prove using A°° could easily be extended to results using
AZ*. But there seems little point in doing so, unless we can find A where A® # A~ .

5.3.2 Monotone Envelopes and Homomorphisms

We recall the following. Let C be a self-adjoint (complex) subspace of a C*-algebra.
Then C = Cy, + iCy, where Cy, is the real vector space of self-adjoint elements of
C. This uses the elementary observation z = %(z +z*) + i%(z — 7).

Definition 5.3.5 Let B be a monotone complete C*-algebra. Let A be a unital C*-
subalgebra of B. Let M be the smallest monotone closed subset of By, containing
Asq. We recall from Sect. 2.1, that M is monotone closed if it satisfies the following:
whenever (x,) is an increasing net of elements of M with x, 1 x in By, for some
X € By, x € M and whenever (y,) is a decreasing net of elements in M with y, | y
in By, for some y € By,, y € M. Then, we shall call M + iM the monotone closure
of A in B and we denote it by M(A). If M(A) = B, then we say that B is monotone
generated by A or A monotone generates B. (Arguing as in Exercise 2.1.29, we find
that M is a (real) vector subspace of By,.)

Definition 5.3.6 Let C be a monotone o-complete C*-algebra and let B be a
unital C*-subalgebra of C. Let M, be the smallest monotone o-closed subset of C
containing Ag,. As in Sect. 2.1, M,; is monotone o-closed if it satisfies the following:
whenever (x,) is an increasing sequence of elements of M, with x,, 1 x in Cy, for
some x € Cy,, then x € M,; and whenever (y,) is a decreasing sequence of elements
of M, with y, | yin C, for some y € Cy,, theny € M,. Then, we call M, + iM,
the monotone o-closure of A and denote it by M, (A). If M;(A) = C then C is said
to be (monotone) o-generated by A. Equivalently, A is said to o-generate C. (By
Exercise 2.1.29, we find that M, is a (real) vector subspace of By,.)

The following theorem (and its sequential analogue) is a useful tool which the
reader should know about. But its proof may be postponed to a later reading.
Although the proof may seem intricate at first sight, it is based on repeated
applications of the same basic strategy used in Exercise 2.1.29.
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Let us recall that a function ® from one C*-algebra into another is a x-map if
®(z*) = P(z)*for all z. Clearly a *-map takes self-adjoint elements to self-adjoint
elements.

Theorem 5.3.7 Let By and B, be monotone complete C*-algebras and let A be a
unital C*-subalgebra of B. Let ® : B — B, be a unital, normal, positive linear
x-map. Suppose that O|s is a x-homomorphism from A into B,. Then, M(A) is
a monotone closed unital C*-subalgebra of By and the restricted map P|ya) is
a normal, unital x-homomorphism from the monotone complete C*-algebra M(A)
into B.

Proof See the proof of Theorem 4.5.4 Page 110 in [121] and see also [85]. Because
of our more complicated situation, we give a detailed argument.

Arguments used in Exercises 2.1.28 and 2.1.29 can also be used to show that
M is the smallest monotone closed subspace of (B),, which contains Ag,. Hence
M(A) is the smallest monotone closed *-subspace of B that contains A. Since P is
a positive linear unital map from B, to B, it is bounded in norm on B; and hence
on M.

The 1st step: We wish to show that M(A) is norm closed in B;. Let (x,) be
a sequence in M such that ||x, — x| —> O for an element x € (B;)s,. By taking
a subsequence, we may assume that ||x, — x| < 1/2""2 (n = 1,2,---). So
%001 —x,]| < 1/27F! From this it follows that (x,—27"1) is a monotone increasing
sequence in M which converges in norm to x. So by Lemma 2.1.7, (x,—27"1) 1 xin
(B1)sq- Since M is monotone closed, it follows that x € M. So M(A) is norm closed.

The 2nd step: Take any x € M. We shall show that x” € M and ®(x") = D(x)"
for all positive integers n. Let W be the set

{aeM:ad" e Mand ®(a") = P(a)" for all positive integers n}.

Clearly W, contains Ay,. We observe that, for any real number 7, and any a € W we
have ta € W;. This follows from M being a vector space and the linearity of @|y,.

We shall show that W; is monotone closed. It will then follow that W = M.
Since a € W if, and only if, —a € W, we need only consider increasing nets. Also,
see the remarks following Corollary 2.1.23, we only need to consider nets which are
bounded in norm. Take any norm bounded increasing net (x,) in W;. Then x,, 1 xin
(B1)yq for some x € (By)y,. Since M is monotone closed, x € M. We wish to show
that x € Wj.

Since W is stable under multiplication by positive scalars we only need to
consider nets where ||x, || < 1. So, we also have that —1 < x < 1, that s, |lx|| < L.
For every t € R with 0 < ¢ < 1, using norm convergence, we have the identity

(=) =14 Fx)h

k>1
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Since each t"(x),)k is in M and M is a norm closed subspace of a Banach space,
(1—1x,)"' e Mforally and r with0 <7 < 1.

Let us recall [121] that, in any C*-algebra, if 0 < ¢ < d and c is invertible, then
d is also invertible and d~' < ¢!,

Let (a,) be a norm bounded decreasing net of positive elements in (B;),, such
that a) | a for some a € (By)s. Suppose that a is invertible. Then each ay is
invertible and (a; ') is a norm bounded increasing net of positive elements such
thata,~' 1 a~ .

So(1—rx,)~' 4 (1— tx)~!in (B)),,. Since M is monotone closed, it follows that
(1 —tx)~" € M forall t with 0 < ¢ < 1. Since ® is a positive linear map, we have
[@(x,)|| <1and|®(x)|| <1 foreach y.Since ® is a bounded linear operator

O ((1—tx,)") =14 Fo((x)).

k>1

Because each x,, € W we have

O ((1—m)™") =1+ > K@) = (1 —1d(x,) "

k=1
Since ® is normal, we have ®(x,) 1 ®&(x) in (B),. Arguing as above
(1 =1®@(x,) " 1t (1= 1)~ in (B2)s.
Because @ is normal and (1 — tx),)_1 1+ (1 = tx)7! in (B))s, it follows that
D ((1—1x,)7") 1 @((1 —m)7") in (B2)sa- So, we have
(1-1dx) "' =@ ((1—m)7") forallz € Rwith0 < < 1.

The fact that % ((1 — 2x)~' — (1 + 1x)) € M and

tlz((l —) = (14 ) —x°

—0(— +0)
tells us that x> € M. Since @ is linear and norm continuous, it follows that
1 _ 1 -1
) 2 ((1 —m) =1+ tx)) =3 [(1 —tdx)) —(1+ tCIJ(x))] .

By letting r — 0 through positive values we find ®(x?) = (P(x)).
We observe that, for each natural number k,

tlk (- = (1 + x4+ @)H] =¥ — 01— +0).
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By induction on k we find x* € M and ®(x*) = ®(x)* for each k. So x € W;. Thus
W, is monotone closed. This implies that W; = (B;),,. Hence we have x* € M and
®d(x") = (®P(x))" for all n € N and for every x € M.

The 3rd step: We shall show that M(A) is a x-subalgebra and ® is a
multiplicative map.

To do this, first of all, note the following consequences of the 2nd Step.

Take any x and y in (Bj),. Let us recall that the Jordan product x o y is defined
to be %(xy + yx).

We have the following algebraic identities

20x0y) =xy+yx = (x 4+’ —x* =y #)

2xyx = (xy + y0)x 4+ x(xy + yx) — (% + x7y) (##)
=4(xoy)ox—2yox’

(x+ i) y(x + 1) = xyx + i(xy — yx) + y. (#t#)

Hence for every pair x and y in M, we have, by the 2nd step, xy + yx = (x + y)*> —
x> —y* € M and

P(xy + yx) = D((x +)*) — () — D)
= (P() + 2(1)* — D)’ — d(y)*
= O(xX)D(y) + D) P(x).

So M is closed under the Jordan product and, for each x and y in M
D(xoy) = P(x) o D(y).

Using this in (##) we see that xyx is in M and

D (xyx) = 2(P(x) 0 D(y)) 0 P (x) — P(y) 0 D(x)?
= d(xX)D(y)P(x).

We shall show that, for every pair x and y in M,
i(xy —yx) € M and i(P(x)@(y) — P(y)P(x)) = P(i(xy — yx)).

To do this, first fix x € Ag. Now let W, be the set of all y € M such that
(x+iD)*y(x +il) € M and

O((x + i) y(x + i1) = (P(x) + i1)*O()(P(x) + il).
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Clearly A, is a subset of W,. Since the maps y —> z*yz and ® are normal and
order preserving for any z € By, it follows that W, is monotone closed in B;. Hence
W, = M.

So, for all x € Ay, andy € M we have (x + il)*y(x + il) € M and

O((x + i)*y(x + i1)) = (®(x) + i)* O () (D(x) + il).
So, by (###) i(xy — yx) € M. By also applying (###) in ®[M] and M we find

O(i(xy —yx) = (P P(y) — DY) P(x)).

By multiplying this equation by —1, then interchanging x and y, we find that, for all
x€Mandally € Ay, i(xy — yx) € M and

(®(xy — yx) = (P P(y) — P(y) ().

Now let W; be the set of all y € M such that, forevery x € M, (x+il)*y(x+il) e M
and

O((x + i) y(x + i1) = (P(x) + i1)*P()(P(x) + il).

From the preceding paragraph, A;, C W3. Arguing as in the W, case above, W3 is
monotone closed. So W3 = M. Using (###) again, we have i(xy — yx) € M and

Dy — 1) = i(BX)D(y) — D)D)

for all x and y in M. We already have xy + yx € M and ®(xy + yx) = O (x)P(y) +
®(y)P(x). Since @ is linear on M(A) it follows that xy € M(A) and

P(xy) = () P(y).

From this it follows that ® is a x-homomorphism from M(A) to B,. O

By a minor modification of the above proof we can obtain the following
“sequential” analogue of the above theorem.

Corollary 5.3.8 Let By and B; be unital, monotone o-complete C*-algebras. Let
A be a unital C*-subalgebra of By. Let M, be the smallest monotone o-closed
subset containing Ag,. Then M, (A) = M, + iM, is a unital monotone o-closed
x-subalgebra of By. Let © : By — B, be a unital, o-normal, positive linear x-map
such that ®|4 is a *-homomorphism from A into B,. Then ® is a *-homomorphism
from My (A) into B,.

Fix a Hilbert space H and let By = B, = L(H). Let ® be the identity map from
B to B,. Then Corollary 5.3.8 gives Pedersen’s theorem for A unital, see [121].
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By a more careful argument, the validity of Pedersen’s result can be established
for non-unital algebras; see [121].

5.3.3 Borel Envelopes

We have discussed how Ay, can be identified with A(K) and A, ** with A”(K),
the bounded affine functions on K. We saw that ASY, the self adjoint part of the
Pedersen-Baire envelope of A, can be identified with A°°(K). We also observed
that when A = C(2) then A® can be identified with the algebra of bounded
Baire measurable functions on 2. We seek a non-commutative generalisation of
the algebra of bounded Borel measurable functions on . It is easy to identify a
plausible candidate but it has been very hard to show that it is a C*-algebra. This
has only recently been accomplished by Brown [19]. We will expound his proof
here.

First we define A, to be the set of those elements of A", which are limits,
in the weak operator topology, of increasing nets in Agy,. See 3.11.6 in [121]
and page 157 of [161]. Then each element of A}, corresponds to the pointwise
limit of an increasing net in Ay,. Hence it corresponds to a bounded lower
semicontinuous affine function on K. Conversely, by Lemma 5.2.3, each bounded
lower semicontinuous affine function on K corresponds to an element of AY,.

Let V = A7 — A7 and let V, be the norm closure of V. Then, by page 166,
Proposition 6.14 of [161], Vj is a norm closed Jordan subalgebra of Ay,. Let Afa be
the smallest subset of A”, that contains V = A" — A" and is a monotone o-closed
subset of A”,,.

We now define the Brown-Borel envelope of A.

Definition 5.3.9 Let A’ = A? + iA® where A?, is the smallest subset of A”,, that
contains V. = A” — A" and is a monotone o-closed subset of A”,. Then Ab s
the Brown-Borel envelope of A. When we identify A”(K) with A” we find that A?,
corresponds to A?(K), see Definition 5.2.12.

Lemma 5.3.10 The set A is a norm closed subspace of A" y,.

Proof Since V is a real vector space, it follows from Exercise 2.1.28 that A2 is a
monotone o-closed subspace of A”,. By applying the argument used in Step 1 of
the proof of Theorem 5.3.7 we find that A2 is a norm closed subspace of A”;,. O

Lemma 5.3.11 The set A®, is a norm closed Jordan subalgebra of A" y,.

Proof By Lemma 5.3.10, A%, contains the norm closure of V. This is V which is
a norm closed Jordan subalgebra of A”;,. We shall show x" € A’ for all x € A2 .
Let W = {x € A%, : ¥" € A’ foralln € N}. Since the norm closure of V is a
Jordan subalgebra, V) C W. By imitating the argument used in the 2nd Step of the
proof of Theorem 5.3.7, W is a monotone o-closed subspace of A, that contains V.
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Hence W = Afa, which implies that x*> € Afa forall x € Afa and so Afa is a Jordan

subalgebra of A”,. O
Corollary 5.3.12 The vector space A” is a norm closed Jordan x-subalgebra of A” .
Lemma 5.3.13 (Brown [19]) A’ is a two-sided A-submodule of A”.

Proof Take t € A and consider the map 6, : A” +— A” defined by 6,(s) = *st for
s € A**_ Clearly 6, is a normal positive linear map and satisfies §,(A™) C A™ C A’ ,

which means that 6,(V) C V. So, 6,(A%) C AL Take any 5,7 € A and x € A"y,
Since

3
4t xs = Z *(s + *1)*x(s + 1)
k=0

if x € A? | then it follows that r*xs € A®. Hence A? is a two-sided A-submodule of

sa’

A" i
Let us observe that under the canonical embedding of A into A”, the universal
enveloping von Neumann algebra (page 122 of [161]) M,(A)” of the C*-algebra
M3 (A), is x-isomorphic to M,(A”) in a canonical way. Indeed, note that M(A) =
A ® M(C) (see Sect.2.4) via a canonical isomorphism IT and A” ® M(C) is the
universal enveloping von Neumann algebra of A ® M»(C) (see page 203-204 of
[161]). So, A” ® M,(C), which is x-isomorphic to M(A”), is also *-isomorphic to
M3(A)” in a canonical way. Hence we may assume that M»(A)” = M»(A”). Let us
consider the map ¢ : A” > x > x0 € My(A”) and ¥ : Mr(A”) > Girdi),
00 arzy adx
a;; € A”. Then ¢ and ¥ are norm continuous, normal positive linear maps and so
we have
P(AS) C (M2(A))g, and ¥ ((M2(A))g,) C AS,

sa sa sa*

Lemma 5.3.14 (Brown [19]) Take any x € A”. Then x € AL ifand only if (g 8) €

M>(A)b. Also, for any y € My(A")(= Ma(A)"), y € Ma(A)’ if, and only if, on
Yir Y12

Y21 y22
Proof Let W, be the set of all y € M»(A")y, such that ¥(y) € A’ Since ¥ is
normal and positive, W is monotone o-closed and contains M(A)",. Hence we have
Wi D M,(A).. Let W, be the set of all x € A” such that ¢ (x) € M>(A)”.. Since ¢ is

sa* sa*
normal and positive, by a similar argument, W, is monotone o-closed and contains
Al . Hence W, D Afa. The first part of the statement follows.

puttingy = ( ) )i € AP for every pairiand jwith 1 <i,j < 2.

Xij

Since lei.jsz €l (O 8) e;; = x and ej;xe;; = ()3/ g) for each i, j and x, the

first statement and Lemma 5.3.13 can be applied to show Lemma 5.3.14. O
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Theorem 5.3.15 (Brown [19]) A’ is a C*-subalgebra of A” whose self-adjoint part
is A .

*
Proof Take any x € A%, + iA® . Then by Lemma 5.3.14,y = (0 XO) € My(A)L,.
X

Since M>(A)? is a Jordan subalgebra of M»(A")y,, it follows that y* € My(A)°,,
which implies that

0x*\ [0 x* x*x 0
M) 2" = (x o) (x o) N ( 0 xx*)'

Hence it follows that x*x € A? . Now take any pair x and y in A®. Since (x+y*)* (x+
¥*) = x*x + yy* + (yx +x*y*) € AL it follows that yx + x*y* € A2 . On the other
hand, also (x + iy*)* (x + iy*) = x*x +yy* —i(yx —x*y*) € A’ , which implies that
yx € A’. Hence A? is a C*-subalgebra of A”.

So the Brown-Borel envelope of A is a C*-algebra which is monotone o-closed
in A” and contains A% . Its self-adjoint part is Afa. So (A")m = Afa. We re-iterate
that when we make the usual identifications of A”, with A”(K) then

Al = AP (K). 0

5.4 Representation Theorems

Let C be a monotone o-complete algebra. Let us recall, see just before Exam-
ple 2.1.3, that a o-compatible topology is a Hausdorff locally convex vector
topology such that each bounded monotone increasing sequence converges to its
least upper bound in C. It would be very convenient if there always existed
a o-compatible topology for C. But this is not true in general. However the
representation theorems provide a substitute: The Pedersen-Baire envelope of C has
a o-compatible topology and C is the quotient of its Pedersen-Baire envelope by a o--
ideal. There exists a 0-homomorphism % from C* onto C such that & is idempotent.
Also, when (c,,) is a monotone increasing sequence in C whose least upper bound
in Cis ¢, then

h(limc,) = c.

Here lim ¢, is the limit of the sequence in C*°, with respect to the topology induced
on C* by the strong operator topology of C”. Since the sequence is monotonic, its
limit in the weak operator topology of C” is the same.

When C is monotone complete we can say more: There is an idempotent,
o-homomorphism 4 from its Brown-Borel envelope onto C with the following
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property. Let (c)) be an increasing net in C with least upper bound c in C. As
remarked in Chap.2, we may suppose that this net is bounded below and, hence
bounded in norm. Then, using the strong operator topology, lim ¢, exists in C* and

h(limcy) = c.

In Sect.5.2 we obtained representations of monotone (o-) complete order unit
spaces as quotients of their Baire (Borel) envelopes. By using “meagre ideals”, we
get corresponding representation theorems for monotone complete, and o-complete
C*-algebras.

We revert to our earlier notation where A is a unital C*-algebra with state
space K. As before, we regard A as embedded in L(H,). We let A” be the double
commutant of A which is also identified with the second dual of A. We also identify
Ay, with A(K) and A”;, with A”(K), the vector space of all bounded, real-valued,
affine functions on K.

Lemma 5.4.1 Let 0K be equipped with the relative topology induced by K. Let M
be the set of all z € A” such that {¢ € 0K : @(z) # 0} is a meagre subset of 0K.
Then M is a x-subspace of A” which is sequentially closed in the weak operator
topology of L(H,). For any unitary in A, uMu* = M. Also M N A = {0}.

Proof To show that M is a *-subset of A”, we first note that ¢(z*) = ¢(z) for all
@ € K and z € A”. Then, for each ¢ € 9K, ¢(z) # 0if, and only if, ¢(z*) # 0. So
z € M if, and only if, z* € M. For any pair x and y in A”, we have

lpedK: ox+y) #0} Clp €K : ¢(x) # 0} U{p € 9K : ¢(y) # 0}.

So it is clear that M is a subspace of A”.
Let (z,) be a sequence in M which converges in the weak operator topology to z.
Then for each ¢ € K

d(zn) — ¢(2).

We have

{p € 9K 1 9(2) # 0} C | J{g € 0K : 9(z,) # O}

n=1

Because the union of countably many meagre sets is meagre, it follows that z € M.
For each unitary u € A and any ¢ € K, define a map from K into K by

T,0(x) = @(uxu™) for x € A.
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Then T,,—1 T, is the identity operator because

(T Tu) (x) = Tugp (xu) = ¢ (uu™xuu™) = ¢ (x).

Interchanging u and u* we see that T, T, is also the identity. So T, is a bijection of
K onto K.

Let (¢, ) be any netin K such that ¢, —> ¢ withrespect to the 0 (A*, A)-topology
of K. Then

@y (uxu™) —> @(uxu™) for each x € A.

Hence T,¢, —> T, with respect to 6 (A*, A). So T, is continuous. Since (T,) ' =
T, it follows that T}, is a homeomorphism of K onto itself.

It is straightforward to check that 7, is an affine map of K onto K. From this it
is easy to see that 7, is a homeomorphism of dK onto dK. In particular 7, maps
meagre subsets of JK onto meagre subsets of JK.

For any x € A” there is, by the density theorem of Kaplansky, a bounded net (a;)
in A which converges to x in the weak operator topology. So for any unitary u and
any ¢ € 0K,

Tup(x) = limTup(an) = lim ¢ (uaru™) = ¢ (uxu™).

It follows that uxu™ € M if, and only if, x € M.

Finally, let z € M N A. Let z = a + ib where a and b are self-adjoint. Then
a = 1(z+z*) is in M N A. On identifying a with an affine continuous function on
K, the set

{$ € 0K :a(¢) # 0}

is both open and meagre. Since dK is a Baire space, this set must be empty. So
a = 0. A similar argument applies to b. So z = 0. O

Lemma 5.4.2 Let M+ = {z € M :z> 0} and let
N={zeA" 22" e MYandz*z € MT}.

Then N is a C*-algebra which is sequentially closed in the weak operator topology
of L(H,) and Nt = M™. Furthermore, for any a € A, aN C N and NaC N.
Also ANN = {0}.

Proof Since M™ is a norm closed hereditary subcone of (A”)™, the set L = {z €
A" : 7¥7 € M™T} is a norm closed left ideal of A”. Let ' = L N L*. Then N is a
C*-subalgebra of A”. (See page 15, Theorem 1.5.2 [121].) If a € N and a > 0, then
ar e Nt cLandsoa e M™. Conversely if b € MT, then b> € Land b € L*,
which implies » € N. Hence it follows that 't = M™. Since NV is the complex
linear span of N'*, A" C M. So, by Lemma 5.4.1 N'N A = {0}.
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Since M is sequentially closed in the weak operator topology, = (N) C M. By
Lemma 5.3.1, X () is a C*-algebra. Then

NtcEzW)t c MMt

It follows that X(N) = AN. So N is sequentially closed in the weak operator
topology of L(H,,).
For any unitary u € A and z € N, (zu)(zu)* = zz* € M™. Also

(zu)*(zu) = u*z*zu € u* M™u.

By Lemma 5.4.1, u* M*u = M™.So zu € N. Similarly uz € N. Since every
element of A is the linear combination of at most four unitaries, for each a € A and
eachz € N we have za € N and az € N. O

Lemma 5.4.3 Let W = N + A. Then W is a C*-subalgebra of A” such that N is a
closed two-sided ideal of W. Let k be the natural projection of W onto A. Then k is a
x-homomorphism whose kernel is the ideal N (of W). Let (c;) be a norm-bounded,
upward directed net in Ay,. Let lim ¢y, be the limit of this net in A”, with respect to
the weak operator topology of L(H,). If (c)) has a least upper bound, c, in A, then,

(c—limey) e NT
andlimc), € W. Also

k(limcy) = c.

Proof Let W be the C*-subalgebra of A” obtained by taking the norm closure of A +
N.By Lemma 5.4.2, \V is a closed two-sided ideal of W and A is a C*-subalgebra
of W. By Corollary 1.5.8 in [121], A + A is a C*-subalgebraof W.So W = A + N
Clearly k : W — A is a *-homomorphism with kernel AV

By Corollary 5.2.10, ¢ — lim ¢y € M*. But M+ = N'T.

Alsolimc;, = c—(c—limcy). Solimcy € W. Since k has kernel \V, k(limc;) =
k(c) = c. O

Corollary 5.4.4 Let A be monotone o-complete. Then W is a o-closed subalgebra
of A” and k is a 6-homomorphism.

Proof Let (w,) be any norm bounded increasing sequence in Wy,. Then w, = ¢, +
d,, where ¢, € Ay, and d, € N for each n.

We have k(w,) = c¢,. So (c,) is monotone increasing and norm bounded. So it
has a least upper bound ¢ in A. By Lemma 5.4.3, lim ¢, is in W and k(lim¢,) = c.
Since (w,) is monotone increasing and norm bounded, it converges in the weak
operator topology to limw, € A”. Since

dn:Wn_cn
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it follows that (d,) is a sequence in A/ which converges in the weak operator
topology to limw, — limc,. Since N is sequentially closed in the weak operator
topology and lim ¢, is in W, it follows that lim w,, is in W. So W is o-closed in A”.
Also, by Lemma 5.4.3,

k(limw,) = k(lime,) = ¢ = \/ 5 cx = \/ ;5 1k(Wn). O

We now come to the representation theorem for monotone o-complete C*-
algebras.

Theorem 5.4.5 Let A be monotone o-complete. There exists a o-homomorphism q
from A® onto A such that q(a) = a for each a € A. Then A N N is a o-ideal of
A% and is the kernel of q. So A is isomorphic to A% /(A® N N).

Proof The smallest o-closed subspace of A7, which contains Ay, is AS. So A% C
W. Let g be the restriction of k to A%°. The result follows from Corollary 5.4.4. O

We recall that the algebra AV is the complex linear span of M ™. We shall see
from the results of Sect. 5.6, that in Theorem 5.6.5, we may replace A N N by
A® N M.

When specialised to commutative algebras, Theorem 5.4.5 corresponds to the
Loomis-Sikorski theorem for Boolean o-algebras [153].

By applying results of Birkhoff-Ulam for complete Boolean algebras, see The-
orem 4.1.3, every commutative monotone complete C*-algebra can be represented
as follows. Let S be the spectrum of a commutative monotone complete C*-algebra
then C(S) is isomorphic to the quotient of the algebra of bounded Borel measurable
functions on S modulo the ideal of meagre Borel functions. This may be thought of
as a special case, for commutative algebras, of the following representation theorem.
See Theorem 4.2.9.

Theorem 5.4.6 Let A be monotone complete. There exists a o-homomorphism q
from A® onto A such that g(a) = a for each a € A. Then A> N\ N is a o-ideal of
AP and is the kernel of q. So A is isomorphic to A’ /(A® N N). Let (c)) be a norm
bounded increasing net in Ay, with least upper bound c in Ay,. Let limc, be its
strong (and so weak) operator limit in A" (and so is in A”), then

g(limc;) = c.

Furthermore, given f € A®, q(f) < 0 if and only if f < 0 a.e.. So q(f) = 0 if, and
onlyif,f = 0Oa.e.

Proof Let (c)) be a norm-bounded, upward directed net in Ag,. Then limc; is in
Ab. By Lemma 5.4.3 limc; is also in W. By definition, A, is the smallest o-closed
subspace of A” ¢, which contains all x that correspond to lower semicontinuous affine
functions on K. So A’ C W. Let g be the restriction of k to A”.
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For any g € A® we have g(g — g(g)) = 0.So g —¢q(g) isin V. So g = q(g) ae..
It now follows that if f € A> and f < 0 a.e. then ¢(f) < O a.e.. So

{p € 9K : q(f)(¢) > 0}

is an open meagre subset of the Baire space dK. Hence this set is empty. Thus
q(f) <0.

Conversely, let g(f) < 0. Since f = g(f) a.e. it follows that f < 0 a.e.

Finally, g(f) = 0 if, and only if, ¢(f) < 0 and g(—f) < 0. So ¢(f) = 0 if, and
only if, f = 0 a.e. In other words, A’ N N =A> N M. ]

We give a typical application of this Representation Theorem below. The
representation theorems obtained in Sect. 5.2 can be used in a similar way.

Proposition 5.4.7 Let A be monotone complete and let D be a unital C*-algebra.
Let T : D +— A be a positive x-linear map. Then T has a unique extension to a
positive, linear T : D — A with the following properties. First, if (x,) is a bounded,
monotone increasing sequence in D?, then

T(limx,) = \/nlexn.
Secondly, if (a))ren is a bounded, upward directed net in Dy,, then
T(lim aA) = \/AGA Tak.

Furthermore, if T is a *-homomorphism then so also is T.

Proof (Sketch) Given a bounded linear operator 7' from a Banach space X into a
Banach space Y, its second adjoint 7** : X** +— Y** is an extension of T. Also
T** is a continuous map from X**, equipped with the o (X**, X*) topology, to Y**,
equipped with the o (Y**, Y*) topology. Identify X with D and Y with A. Then T**
is an extension of 7" which is weak-operator topology continuous on bounded balls
of D". Let W = {x € D" : T**x € A’} and show D’ C W. Now let T be gT**
restricted to D?. Finally, if 7 : D + A is a *-homomorphism then 7** : D" > A”
is a *-homomorphism. See Theorem 5.3.7. O

Exercise 5.4.8 Show that if, in Proposition 5.4.7, A is only assumed to be monotone
o-complete and D’ is replaced by D™ then we can obtain a sequential version of
Proposition 5.4.7 by applying Theorem 5.4.5.

Remark 5.4.91 If, in Exercise 5.4.8 or in Proposition 5.4.7, we put D = C(X) we
may regard T as an “A-valued integral”. By using Theorem 5.2.16 and Proposi-
tion 5.4.7 we can replace Ay, by more general partially ordered vector spaces. See
[170].

The results of this section are mainly from [171] and [170] but with some
modifications of the original arguments. The recent achievement of Brown, see
Sect. 5.3, has allowed us to state Theorem 5.4.6 in a neater form than the original.
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For any C*-algebra A, it follows from Lemma 5.4.2 that A% N A is a o-ideal of
A®. So the algebra A% /(A% N N) is monotone o-complete by Proposition 2.2.21.
Since A N A = {0}, g|A is an injective *-homomorphism, and hence an isometric
*-isomorphism of A into A% /(A% N N). But a much stronger result is true. The
quotient algebra is a regular o-completion of A. We shall prove this in Sect.5.6. In
the final section of this chapter we shall show that when A is a small C*-algebra then
its regular o-completion is also small. So it has a faithful state and thus is monotone
complete. So when A is a small C*-algebra its regular o-completion is its regular
completion. See the discussion at the end of Sect. 5.6.

5.4.1 Open Problem

We know A® C A¥. This induces a natural embedding of A%®/(A® N N) into
A%/(A¥ N N). Are these algebras isomorphic? This could have a positive answer
evenif A® #£ A¥,

For which A is A?/(A? N \) the regular completion of A?

5.5 Compact Convex Sets: Semicontinuity
and Approximations

We shall need some more results on convexity. As before K is a compact convex
subset of a Hausdorff, locally convex topological vector space. Let Y be a subset of
K, with 0K C Y C K. For most applications Y = K or Y = dK. All functions are
real valued unless we specify otherwise.

Definition 5.5.1 Let f be a bounded real valued function on Y. For each x € K let

f(x) = sup{a(x) : a € A(K), a(¢) < f(¢) forevery ¢ € Y}

and

F(x) = inf{a(x) : a € A(K), a(¢) > f(¢) forevery ¢ € Y}.

Then it is clear that f is lower semicontinuous. It is straightforward to check that
f is a convex function which is bounded below by —||f||. Since each a € A(K)
attains its maximum on 9K, it follows that f is bounded above by || f||. We note that
f is defined on the whole of K. If g : Y + R is bounded and f < g on Y, then it is

easy to see that]: <gon K. Also j‘ < g. (See Proposition 1.1.6 [2].)

Similarly, f is a concave, upper semicontinuous function with

A< 7 < IIfN-
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By Lemma 5.2.2, when ¥ = K and f is lower semicontinuous and convex, then
f = f. Similarly, when f is a bounded, concave, upper semicontinuous function on

K, by applying Lemma 5.2.2 to —f, we have f = f

Lemma 5.5.2 Let u be a bounded upper semicontinuous concave function on K.
Let u> 0 a.e., that is, {x € 0K : u(x) < 0} is a meagre subset of K. Then u > 0.

Proof By upper semicontinuity, {x € 0K : u(x) < 0} is open. By hypothesis it is
also meagre. But any meagre open subset of a Baire space is empty. So u is non-
negative on dK. Thus the closed convex set {x € K : u(x) > 0} contains K. So, by
the Kréin-Milman theorem, u(x) > 0 for all x € K, thatis, u > 0. O

We have the following:

Lemma 5.5.3 Let u be a bounded upper semicontinuous function on K. Then
u(x) = u(x) for each x € oK.

Proof This is a theorem of Hervé [73]. It is proved in Proposition 1.4.1 [2]. O

Corollary 5.5.4 Let f be a bounded continuous, real-valued function on oK. Then

A

f(x) = f(x) = f(x) for each x € 0K.

Proof See Corollary 1.4.2 [2] or [125]. O

Lemma 5.5.3 has the following variant which starts with a bounded upper
semicontinuous function defined only on the extreme points of K.

Lemma 5.5.5 Let v be a bounded upper semicontinuous function on 0K. Then v
can be extended to a concave, upper semicontinuous, bounded function on K. In
particular,

v(x) = 0(x)
for each x € 0K. Furthermore, for all x € K,

=[] < v(x) <]l

Proof Since K is compact Hausdorff, 9K is completely regular. So, by Lemma 2.3.4,
there is a bounded, downward directed net, (fa : A € A), of bounded continuous
functions on dK such that

inf{fA(x) : L € A} =v(x)
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for each x € dK. We can assume, without loss of generality, that
—||v]| < /(x) < |[v|| forall x € K.

Let u be the pointwise infimum, on K, of {ﬁ : A € A}. Then u is bounded, upper
semicontinuous and concave. Also, by applying Corollary 5.5.4 to each f), we see
that u(x) = v(x) for each x € 0K.

Since f) > v on 0K, we have ﬁ > v on K. Hence u > 0. Thus

v(x) = 0(x) for each x € 0K. O

In general, 0K need not be a Borel subset of K. But we have the following.

Corollary 5.5.6 A bounded (real valued) function on 9K is a Borel function if, and
only if, it is the restriction of a bounded Borel function on K.

Proof Let V be the set of all F : K — R, where F is a bounded, Borel measurable
function on K and F|jx is a Borel function on 0K.

Then V is a real vector space and, for any F and G in V, FG is in V. Also, if u is
a bounded, upper semicontinuous function on K then u € V. Let (F,) be a bounded,
monotone increasing sequence in V with pointwise limit F. Then F is Borel on K
and F|sk is Borel on K. So F € V. Hence V contains all the bounded (real-valued)
Borel functions on K. So the restriction of a Borel function on K is a Borel function
on dK. We now prove the converse. Let W be the set of all f : 0K — R such that, f
is Borel measurable and f can be extended to a bounded Borel measurable function
on K. By Lemma 5.5.5, each bounded, upper semicontinuous function on 9K is in
W. Also W is a (real) subalgebra of B(dK).

Now let (f,,) be a bounded, monotone increasing sequence in W, with 0 < f, <'1
for each n. This sequence converges pointwise to a Borel function f.

For each n there is a bounded Borel function F,, on K such that F,, |jx = f,,. Since
F, A 1is a Borel function on K whose restriction to dK is f,, we may assume that
F, is bounded above by 1. Similarly we may suppose it is bounded below by 0. Let

F(x) = limsup F,(x).

Then F is a bounded Borel function on K. But Flsx = f. Sof € W. Hence W
contains all the bounded Borel functions on 0K. ]

Lemma 5.5.7 Let u be a bounded concave upper semicontinuous function on K.
Then u = u a.e., that is, {x € 0K : u(x) — u(x) # 0} is a meagre subset of 0K.

Proof First we observe that u|yk is upper semicontinuous. Since 9K is a Baire space,
we can apply Corollary 4.2.4 to u|sx. So we find a bounded lower semicontinuous
w : 0K — R such that u|yx > w and

{x € IK : u(x) —w(x) # 0}
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is a meagre subset of K. Applying Lemma 5.5.5 to —w we find that —(=w) = w is
a bounded, lower semicontinuous convex function on K with

w(x) = w(x) for all x € K.

By Lemma 5.5.2,u —w > 0. Hence u > w. Thusu = u a.e. O

Proposition 5.5.8 Let f be a (bounded) Borel function on K. Then there exists a
bounded, concave, upper semicontinuous u such thatf = u a.e.

Proof By Corollary 5.5.6, f |sx is a bounded Borel function on the completely
regular space K. By Lemma 4.2.7, there exists an upper semicontinuous v on 0K,
such that v = f a.e. and v has the same upper bound and lower bounds as f |k .
Then, using Lemma 5.5.5, v = 0 on dK. So, 0 = f a.e.. Putu = 0. O

5.6 Applications of Convexity to Completions

We now return to the situation where A is a unital C*-algebra with state space K. As
usual K is equipped with the compact topology induced by the o(A*, A) topology.

Exercise 5.6.1 For each invertible a € A and each ¢ € K, let

¢ (axa™)
$(aa*)

Show that (i) T, maps K into K; (ii) 7, : K — K is continuous; (iii) 7,7,-1 is the
identity map on K; (iv) 7,:0K + 0K is a homeomorphism.

Hint: For (ii) look at Lemma 5.4.1. For (iv) demonstrate that 7, maps extreme
points of K to extreme points.

Tap(x) =

Let A be a unital C*-algebra and let A°° be the Pedersen-Baire envelope of A, see
Definition 2.2.23. As before, we identify AS® with A°°(K) and A7, with A”(K). We
recall that M is the set of all z € A” such that

{p €K :p(2) # 0}

is meagre. Let A/ be the complex linear span of M ™. Then A is a *-subalgebra of
A" which is sequentially closed in the weak operator topology. See Lemma 5.4.2.
We saw in Sect. 5.4 that A N A is a o-ideal of A*°.

Lemma 5.6.2 Let g € A”(K) such that g < 0 a.e. Then aga® < 0 a.e. when a is an
invertible element of A. Also, for any positive b € AT, we have bgh < 0 a.e.

Proof First let a be an invertible element of A. Let T,, be the homeomorphism from
dK onto 0K defined in Exercise 5.6.1. Since {¢ € 0K : ¢(g) > 0} is a meagre subset
of 0K and {¢ € dK : p(aga™) > 0} = T,—1{p € 0K : ¢(g) > 0}. It follows that

aga® <0a.e.
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Let b € A% then b + 1 is invertible for each n. Let f, = (b + 1)g(b + 1). Then
{¢p € 0K : ¢(f,) > 0} is meagre for each n. Also (f,) converges in norm to bgb.
Hence

(¢ € 9K : ¢p(bgh) > 0}

is contained in the meagre set

Unz1{0 € 9K ¢(fa) > 0}

Sobgh <0a.e. O

As before g is the quotient homomorphism of A% onto A®/(A* N N). By
Proposition 2.2.21, A* /(A* N N) is monotone o-complete and q is o-normal.

Lemma 5.6.3 Let g € AS. Then g < 0 a.e. if, and only if, q(g) < 0.

Proof Let g = g™ — g~ where gTg~ = 0. Let e be the range projection of g™. So
ee€A.
Suppose g(g) < 0. Then

0 < q(g%) = q(eg) = qle)q(g)gq(e) < 0.

So gt isin A% N N.Thus g = —g~ a.e. So g < 0 a.e. Conversely, suppose g < 0
a.e. Let

V=1{xeA® g’ <0ael}.

By Lemma 5.6.2, A;, C V. Let (x,) be a monotone increasing sequence in V
which converges to x in AYY. Then x, — x in the strong operator topology. So
x2gx? — x%gx’ in the strong operator topology and hence in the weak operator
topology. So, regarded as a sequence in A”(K), it converges pointwise. It follows
from Exercise 5.2.15 that x>gx> < 0 a.e. So x € V. Thus A% C V. In particular

gt =ege<0ae.

So gt € M*.Thus gt isin A® N N. So
q(g) = q(gt) —q(g”) = —q(g7) < 0. o

Corollary 5.6.4 Let g € A®. Then q(g) = 0 if, and only if, g € M. That is
A NN =A% N M.

Proof Since g is a x-homomorphism it suffices to prove the result for g self-adjoint.
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Then g(g) = 0 if, and only if, g(g) > 0 and g(—g) > 0. That is if, and only if,
g=0a.e. O

In the next theorem we show that A has a regular o-completion.

Theorem 5.6.5 The algebra A /(A% NN) is a regular o-completion of A. If D C
Ayq has an infimum d in Ay, then q(d) is the infimum of q[D] in A® /(A® N N).

Proof As before, let g be the quotient homomorphism. We have seen that the
restriction of g to A is an isometric *-isomorphism of A into the o-algebra
A®/(A%® N N). As usual, we identify A” with A”(K), the bounded real-valued
affine functions on K.

Let W be the smallest monotone o-closed subset of g[ASS] containing g[A,,]. Let
V ={a € A : g(a) € W}. Then V is a monotone o-closed subset of AS® containing
Agq- Hence V = AS0. So A®/(A® N N) is monotone o-generated by g[A].

Next, we shall show that g[A] is a regular subalgebra of A% /(A% N N). To show
this, take any f € A®[K]. By Proposition 5.5.8 there exists a bounded, concave,
upper semicontinuous u such that u = f a.e.. Let

L = {a € A(K) : q(a) < q(f)}.

Then, by Lemma 5.6.3, a € L if, and only if, a < f a.e. This is equivalenttoa < u
a.e. By applying Lemma 5.5.2 to u —a we find that a € L if, and only if, @ < u. This
is equivalent, see Definition 5.5.1,to a < u.

Now let & € A®°[K] be such that g(h) is an upper bound for {g(a) : a € L}. Let

Ly ={a € A(K) : q(a) < q(h)}.

Then L C Lj.

By Proposition 5.5.8, there exists a bounded, concave, upper semicontinuous v
such that v = h a.e. Arguing as above, we find that a € L, if, and only if, a < v.
Since L C Ly, whenevera € L,a < v. Hence u < v.

By Lemma 5.5.7 u = u a.e. We know that u = fae.andv = hae. Sof < h
a.e. Hence, by Lemma 5.6.3, ¢(f) < q(h).

It now follows that g(f) is the least upper bound of

1q(a) : a € Aand q(a) < q(f)}.

It follows that g[A] is a regular subalgebra of A% /(A% N N).

So we have constructed a regular o-completion of A.

Finally, the fact that g preserves existing infima follows from Proposition 2.1.35,
because g[A] is a regular subalgebra of A® /(A% N N). O

For the moment we drop the requirement that A(K) be the self-adjoint part of a
C*-algebra. So K is an arbitrary compact convex set in a Hausdorff locally convex
vector space. To avoid cumbersome notation, in this chapter we shall use B(X) to
denote the bounded Borel measurable, real-valued, functions on a topological space
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X. For F in B(K) let R(F) = F|sk. By Corollary 5.5.6 the map R is a surjection of
B(K) onto B(3K).

Let M(K) be the bounded Borel functions f : K — R such that f = 0 a.e., that
is, {¢p € 0K : f(¢p) # 0} is a meagre subset of dK. (This conflicts slightly with
our earlier notation in Chap. 4 where M(Y) is used to denote the set of all bounded
Borel functions on Y, which vanish on a meagre subset of Y.) Then B(K)/M(K) is
clearly isomorphic to the quotient of B(dK) by the ideal of bounded meagre Borel
functions on dK. So, by Theorem 4.2.9 B(K)/M(K) is monotone complete.

For f € B(K) let [f] be the equivalence class in B(K)/M(K) which contains f. So
[f1 =f + M(K).

Let us observe that in [123] it is shown that every Archimedean partially ordered
vector space has an (essentially unique) Dedekind vector lattice completion. The
work of the following exercise shows that B(K)/M(K) may be regarded as the
Dedekind completion of A(K).

Exercise 5.6.6 Letf, g be in B(K) and let a, b be in A(K). Prove the following:

(i) [f] = Oifandonlyif,f > Oa.e. thatis {¢p € 0K : f(¢) < 0} is a meagre subset
of dK. Hint: This is easier than Lemma 5.6.3 because B(K) is a commutative
algebra.

(ii) [f] > [g] if, and only if, f > g a.e.

(iii) [a] > [b] if, and only if, a > b. Hint: Use Lemma 5.5.2.

(iv) Show that a + [a] is a bipositive isometry of A(K) into B(K)/M(K).

(v) Lety be in B(K)/M(K). By Proposition 5.5.8, y = [u] for some bounded
concave upper semicontinuous u. Let L = {a € A(K) : [a] < y}. Show that
a € L implies a < u. Hint: Use (iii) and Lemma 5.5.2.

(vi) Let z be an upper bound for {[a] : a € L}. Show that z > y. Hint: Let z = [w]
where w is bounded concave and upper semicontinuous. Arguing as in (v),
show that w > u.

(vii) Deduce that [w] is the least upper bound of {[d] : a € A, and [a] < [w]}.

(viii) Let D be a (non-empty) subset of A(K). Suppose that D has a least upper
bound, b, in A(K). Show that [b] is the least upper bound, in B(K)/M(K), of
{[d] : d € D}. Hint: Apply Proposition 2.1.35.

We now revert to assuming K is the state space of a (unital) C*-algebra.

Proposition 5.6.7 Let A be any unital C*-algebra. Then there exists a faithful
bipositive linear map T from A into a commutative monotone complete C*-algebra
C. If A is monotone complete, then 1" is normal. So, in the notation of Chap. 3,
A 2 C. If A is monotone o-complete, then T is o-normal.

Proof Tt suffices to define I on Ay, = A(K). We take for C the commutative algebra
whose self-adjoint part is B(K)/M(K). Using the notation of Exercise 5.6.6, let

I'a = [a] for a € A(K).
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Then Exercise 5.6.6 (iv) shows that I' is faithful and bipositive. By Exercise 5.6.6
(viii) I is normal. O

Lemma 5.6.8 Let Z be a partially ordered (real) vector space; Y a regular
subspace of Z; X a regular subspace of Y. Then X is a regular subspace of Z.

Proof For any z € Z, let

Ly(z) ={beY:b<z}
Lx(z) =X N Ly(z)
Uy(z) ={beY:z=<hb}

Now fix x € Z. We wish to show x is the least upper bound of Ly (x). Lety € Z be
an upper bound of Lx(x). Let u € Uy(y). So u € Y is an upper bound of Ly(x). Let
b € Ly(x). Then a € Lx(b) implies a € Ly(x). So a < u. Thus u € Y is an upper
bound of Lx(b). Since X is a regular subspace of Y it follows that b < u. So u is an
upper bound for Ly(x). Since Y is a regular subspace of Z this implies x < u. So x
is a lower bound for Uy(y). Since Y is a regular subspace of Z this implies x < y.
Thus x is the least upper bound of Ly (x). Hence X is a regular subspace of Z. O

Using the same notation as above, we have the following corollary.

Corollary 5.6.9 Let X, Y, Z be order unit Banach spaces with the same order unit.
Suppose that X is a regular subspace of Y. If Z is the Dedekind completion of Y then
it is also the Dedekind completion of X.

Proof Any upper bounded subset of X is also an upper bounded subset of Y. Hence
it has a least upper bound in Z.
Since X is a regular subspace of Z, for each ¢ € Z the least upper bound, in Z, of

Ly(c) ={aeX:a<c}

is c. |

Definition 5.6.10 An ordered pair (W, ) is a Dedekind completion of an order unit
vector space U if (1) W is the self-adjoint part of a commutative monotone complete
C*-algebra, (2) j is a unital linear bipositive map from U into W and (3) j(U) is a
regular subspace of W.

We have seen from Exercise 5.6.6 that when V = A(K) is an order unit Banach
space it posses a Dedekind completion, which we denote by V. Then this Dedekind
completion is unique. (See [123].) More precisely, if V¥ is an isomorphic copy of
V and « is a bipositive, linear, unital bijection of V onto V* then o has a unique
extension &, where & is a bipositive, linear, unital bijection of V onto V*. Further, &
preserves all infima and suprema that exist in V. In particular, & is normal. In fact,
if V* is a Dedekind completion L of V#, then by Proposition 2.3.9, there exist a linear
bipositive map @ from V into V* such that & |y = « and a linear bipositive map
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o~ from V* into V such that @' |y» = ™. Since V and V* are regular subspaces,

—_—

d@oa™' =randa™'o@ = 1. So, @ is a normal bipositive bijection of V onto V¥, See,

for an account of injectivity in Banach spaces, page 88 Corollary 2 and Chapter 3
Section 11 of [98]. (See also [54, 72, 94, 108, 149].)

The following theorem says that, given a C*-algebra A, its regular o-completion
is unique.

Theorem 5.6.11 Let A be a unital C*-algebra and w a *-isomorphism of A onto
A*. Let B be a regular o-completion of A and B* a regular o-completion of A*. Then
7 has an extension which is an isomorphism of B onto B*.

Proof Let « be the restriction of 7 to Ay,.

We have Ay, C By, C 1’3:, By Corollary 5.6.9, we may reRLace 1’3:, by A:, Then
By, is the o-completion of A;, inside A:; Then @ : A:; — Afa is normal and so is
its inverse. So it maps the o-completion of Ay, in A\;l to the o-completion of Afa in

Xf;. Thus it is a bipositive linear bijection of By, onto B . Now let 7 : B > B* be
defined by

7T (x 4 iy) = &(x) + ix(y) when x, y are in By,.

Finally, by applying Corollary 5.3.8, 7 is an isomorphism from B onto B*. O

Remark 5.6.12 A straight forward modification of this approach gives the unique-
ness of regular completions. We shall see in Sect.5.8, that for every small
C*-algebra its regular o-completion is monotone complete and hence is its regular
completion. This will suffice for most of our applications. However Hamana showed
[61] that for every C*-algebra A, its regular o-completion is embedded in a regular
completion. We give details in a later chapter.

Definition 5.6.13 For each unital C*-algebra A we denote its regular o-completion
by A and identify A with a subalgebra of A.

In the following theorem and its corollaries we may take B to be A but, of course,
they apply more generally.

Theorem 5.6.14 Let the unital C*-algebra A be a regular subalgebra of B. Let 1
be a closed proper (two sided) ideal of B. Then I N A is a closed proper (two sided)
ideal of A.

Proof Clearly I N A is a closed (two sided) ideal inA and 1 ¢ I N A.

Assume that I N A = {0}. Let h : B — B/I be the quotient homomorphism and
let /g be the restriction of & to A. Then Ay is a *-isomorphism of A into B/I. Hence
it is an isometry and its restriction to Ay, is a bipositive order isomorphism into B,.

Let b be any self-adjoint element of /. Whenever a € A, and a < b we have

ho(a) < h(b) = 0.
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So a < 0. But, by regularity, b is the least upper bound of the elements of Ay,
dominated by b. So b < 0. Similarly —b < 0 and so » = 0. Thus I = {0}, contrary
to hypothesis. O

Corollary 5.6.15 Let A be a simple unital C*-algebra and a regular subalgebra of
B. Then B is simple.

Proof If B is not a simple C*-algebra then it has a proper closed ideal 1. But then,
by Theorem 5.6.14, A is not simple. O

Corollary 5.6.16 Let m be a x-homomorphism of B into a C*-algebra C. Let mg
be the restriction of mw to A. If my is an isomorphism of A into C then m is an
isomorphism of B into C.

Proof The kernel of ) is the intersection of the kernel of 7 with A. O

Corollary 5.6.17 Let A have a non-trivial centre. Then there exist proper closed
ideals Iy and I of A such that I N I, = {0}.

Proof Since the centre of A is monotone o-complete and non-trivial it contains a
non-trivial projectione. Let I} = ANAeand , = ANA(l —e). O

Corollary 5.6.18 If A is prime, then A has trivial centre.

In a following section we shall consider the class of Small C*-algebras. Let
H be a separable, infinite dimensional Hilbert space. Then L(H) and all its
C*-subalgebras are small. But there are many small C*-algebras which are not
subalgebras of L(H). Each small C*-algebra has a separable state space and hence
has a faithful state.

We shall see in Sect.5.8 that when A is small its regular o-completion A is
also small. So this monotone o-complete algebra has a faithful state and hence is
monotone complete. It follows that the regular o-completion of A is also its regular
completion.

In particular, when A is simple or prime A is a monotone complete factor.

When A is a separable C*-algebra and Q the state space of A then dQ is separable
(in fact, “hyperseparable”) [177]. So when A is simple then A is a monotone
complete factor for which 0Q is separable. The only infinite dimensional von
Neumann factor whose pure state space is separable is L(H) [174]. But L(H) is
not simple. So when A is separable, simple and infinite dimensional then A is a wild
factor. (It can be shown to be of Type III.) This gives a method for constructing
examples of small wild factors. In particular if A is a UHF or Glimm algebra then A
is a wild factor.

5.6.1 Open Problem

Let A; and A, be separable, unital, infinite dimensional C*-algebras which are both
simple. Suppose their pure state spaces have no isolated points. Then, how different
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can A, and A; be? Do they take the same value in the weight semigroup? Do they
have the same spectroid? If so, is there any other invariant which distinguishes
between them? Or are they in fact isomorphic?

5.7 Separable State Spaces and Embeddings in L(H)

Let L(H) be the algebra of bounded operators on a separable (infinite dimensional)
Hilbert space. Let S(L(H)) be its state space; the set of all states, equipped with the
o(L(H)*, L(H))-topology. By Proposition 5.2.18 this state space has a countable
dense subset.

Akemann [1] showed that any von Neumann algebra with a separable state
space has a faithful normal representation on a separable Hilbert space. He posed
the question: if a C*-algebra has a separable state space, does it have a faithful
representation on a separable Hilbert space ?

The answer is “no’’. For a counter example, let A be the regular o-completion
of a UHF algebra; this has a separable state space. (So by Proposition 5.2.19 it is
monotone complete.) It was shown in [178], as a consequence of a more general
result, that A is a wild factor which cannot be realised as a subalgebra of L(H).

We observe that if a unital C*-algebra, A, has a separable state space then so does
A, and A is monotone complete. See Lemma 1.1 in [179]. In particular when A has
a separable state space then A is the regular completion of A.

But having a separable state space is equivalent to being realisable as a linear
subspace of L(H). More precisely:

The unital algebra A has a separable state space if, and only if, for some separable
Hilbert space H, there exists a linear order isomorphism ¢ from Ay, into L(H),, with
¢(1) =1.

We recall that, just like von Neumann algebras, monotone complete factors can
be divided into Types I, II and III. All the Type I factors are von Neumann. If a
Type II factor has a faithful state then it is von Neumann [175, 176]. So there are
NO wild factors of Type II which have a separable state space. What about Type III?
If a Type III factor can be realised as a subalgebra of L(H) (H separable) then it is a
von Neumann algebra [119]. (See also [130] and [39].) So a wild factor never has a
faithful representation on a separable Hilbert space.

More generally, let A be monotone complete and (as a C*-algebra) have a faithful
representation on a separable Hilbert space. Then A is a von Neumann algebra if,
and only if, its centre is von Neumann. See Corollary 3.6 in [179].

But we have seen above that wild Type III factors, with separable state spaces,
do exist. In fact we shall see that they exist in huge abundance.

It is convenient to work with the class of small C*-algebras [137, 144]. A unital
C*-algebra A is small if, and only if, it satisfies any one of the following:

(i) For each n, M, (A) has a separable state space.
(ii) There exists a unital complete isometry of A into L(H) (H separable).
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(iii) There exists a unital completely bipositive map of A into L(H) (H separable).

For more information on small algebras, where these three conditions are shown
to be equivalent, see below. But these sections can be omitted on a first reading.
However it is useful to be aware of the following points.

Obviously L(H), where H is separable, is small. Every closed *-subalgebra of a
small C*-algebra is, itself, small.

Let A be a wild factor with a separable state space. We have seen that it must be
of Type III. This implies that it is isomorphic to M,(A) for each n. So it must be
small by (i). It can never be a subalgebra of L(H) (H separable). But by (iii) it can
be realised as an operator system on a separable Hilbert space.

Proposition 5.7.1 Let A be a commutative unital C*-algebra with separable state
space S. Then A is small.

Proof Let{s, :n=1,2...} be adense subset of S. Let ¢ : A — £°° be defined by

o(f)=(fG)(n=12..).

Then ¢ is a unital bipositive linear map of A into £°°. Since A is commutative, it
follows from Theorem 5.1.5 [38] that ¢ is completely positive. Since the restriction
of ¢ to Ay, is an isometry, ¢[A] is an operator system. By Lemma 5.1.4 [38], since
A is commutative, ¢! is completely positive. So, by (iii), A is small. O

5.7.1 Open Problem

Let A be a unital C*-algebra with a separable state space. Is A small? If A is
commutative or a factor (monotone complete with trivial centre) the answer is “yes”.
But, in general, the answer is unknown. The problem can be reduced to the question:
does A ® M,(C) have a separable state space when A has a separable state space. A
key difficulty is that a closed subspace of a separable space may fail to be separable.

5.8 Small C*-Algebras and Completely Positive Maps

Small C*-algebras were defined above. In fact we gave three definitions! We adopt
(ii) as the official definition and show that this is equivalent to both (i) and (iii).

This Sects. 5.8 and 5.9 can be omitted on a first reading of this book. But in
Sect.5.9 we show that the regular o-completion of a small C*-algebra is small.
Hence it has a faithful state. So it is monotone complete. So the regular o-
completion of a small algebra is its monotone completion.

We introduced the notion of small C*-algebras in [144] (see also [66]).

We shall give a characterisation of small C*-algebras in Theorem 5.8.9 (see
[137]).
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Let ¢ be a linear map from a C*-algebra A into another C*-algebra B. Let us
recall that the linear map ¢, : M,,(A) — M, (B) is defined by

n(x) = Pu((Xi1<ij<n) = (X)) 1<ijcn (X = (Xj)i<ijn € Ma(A)).

See Sect.2.4. If ¢, is positive, then we call the map ¢, n-positive. The map ¢ is
called completely positive when ¢ is n-positive for all n € N. If the map ¢, is
an isometry for all n € N, then we call ¢ a complete isometry. If A and B are
unital and ¢(14) = 13, then ¢, is unital for every n € N. Furthermore, if ¢
is completely positive (respectively, a complete isometry) then we call ¢ a unital
completely positive map (respectively a unital complete isometry).

Lemma 5.8.1 Let A be a unital C*-algebra and let H be a Hilbert space. Let T :
A +— L(H) be a unital completely positive linear map.

(1) (Stinespring’s theorem [155]) There is a x-representation {m, K} of A, where K
is a Hilbert space, and a bounded linear operator v from H into K such that
7(x) = v*7m(x)v forall x € A. On noting that v is an isometry from H into K,
if we identify H with vH, we may assume that H C K. Let P be the projection
from K onto H. Then

T(x) = Pr(x) |y forallx € A. (*)

Conversely, any map of the above form (*) is always a completely positive linear
map from A into L(H).

(2) (The Schwarz-Kadison inequality [83]) We have t(x*)t(x) < t(x*x) for all
x €A

(3) (The Choi multiplicative domain theorem [24]) Let A and B be unital C*-
algebras and let T : A +— B be a unital completely positive linear map. Let
us define multiplicative domains by

Al =f{aeA:t(a*a) = t(a*)t(a)} and AT = {a € A : t(aa*) = t(a)t(a*)}.

Then we have AL = {a € A : t(xa) = t(x)t(a) forallx € A} and A” = {a €
A : t(ax) = t(a)t(x) for all x € A}, that is, AL and A" are closed subalgebras
of A.

Proof

(1) See for example, Theorem 3.6, page 194 [161].

(2) By (1), for every x € A, we have 7(x*)7(x) = Pr(x)*Pr(x)P < Pr(x*x)P =
T(x*x).

(3) We may assume that B acts on a Hilbert space H. By (1), there exists a
representation {m, K} of A such that K D H and t(a) = Pgn(a) |y for all
a € A. Take a € AL. Then, we have

Pym(a®)m(a) |n = Pum(a®a) |p = t(@*a) = t(a*)t(a) = Pyn(a*)Pym(a) |u .
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which implies that
Pyr(a®)(1 = Py)r(a) |n = (1 = Py)n(a)Py)* (1 — Py)m(a)Py) |n = 0.
Hence, for every a € A, n(a) |g = Pun(a) |g. So we have, for every a € A,
t(xa) = Pyr(xa) |p = Pu(0)7(a) |z = Ppr(x)Ppm(a) | = 1(x)7(a).

By similar reasoning, the claim for .A” also holds true. This completes the proof.
See [24]. O

Corollary 5.8.2 Let A and B be unital C*-algebras. Let t : A > B be a unital
completely positive linear map. Suppose that t is a Jordan homomorphism, that is,
1(a®) = t(a)? forall a € Ay,. Then, T is a x-homomorphism.

Proof Note first that 7 is a *-map. By our assumption, for any a € Ay, a € AL NA”.
So, we have A = AL = A”. O

The next technical lemma is useful later. It is cumbersome to state but its proof
is easy.

(m.n) .

Lemma 5.8.3 For a C*-algebra C and each pair m,n € N, the map 7
M,,,(M,,(C)) — M,,,(C) defined by deleting the inner parentheses, that is,

an . (n ()

t

Iyt 1m 1m
(nl) (nn) (nl) (nn)
Iy Hm " i
2™ (Ty)1<ijem F— : :
1 1 1 1
t;('nl) [fnl”) [fnm) [fmrr?
t’(:ll) - t::ln) tﬁr:lr}'l) - tfr:’rﬁ)

for all (Ty) € M,,,(M,,(C)), where each T;; = (tgd))lsk,lsn with ¥ ¢ ¢ 1=<i,j<

)

m; 1 < k,1 < n), is a x-isomorphism from M,,(M,(C)) onto M,,,(C).

Proposition 5.8.4 Let A be a unital C*-algebra with a system {e;}1<ij<n Of B X 1
matrix units and let B be a unital C*-algebra with a system of n X n matrix units
{fihi<ij<n- Let ¢ : eriAery —> fu1Bfi1 be a unital completely positive linear map.
Then

(1) There exists a unique unital completely positive linear map ® : A — B such
that @ o) 4e,, = ¢ and $(ey) = fij foralliand jwith1 <1i,j < n.
(2) If ¢ is a x-homomorphism (clearly ¢ is completely positive), then so is P.
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(3) If A and B are monotone (o-)complete and the map ¢ is a (o-)normal
completely positive map, then @ is also a completely positive (o -)normal map.

Proof Let us define the map ® : A — B by

d(x) = Zﬁlcﬁ(elixejl)flj for every x € A.

ij=1

Let mq : A — M, (e11Aeyy) and g : B — M, (f11Bf11) be canonical maps defined,
as before, by ma(x) = (eiixeji)i<ij<n for x € A and mp(y) = (fiiyfit)1<ij<n for
y € B. Then, as before, on noting that

w5 (bi<ijen) = Y _ fubiifij for every (by) € My(fu1Bfi).

ij=1

we have ® = 75! o, 0m4. We shall show that ¢, is completely positive (and so ® is

also completely positive). To do this, first of all, note that ng”’") o(P)m = ¢mnonf‘m’")
by Lemma 5.8.3. Since ¢, is positive, (¢,),, is positive, that is, ¢, is m positive for
all m. So, ¢, is completely positive, which implies that ® is also completely positive.
Since ¢ is unital, ® is also unital. Calculation shows

d(x) = Zﬁ1¢(€1i3€€jl)ﬁj

ij=1
= e ()fir = ¢(x) for every x € ej1Aey;.

Moreover, on noting that ¢(e;;) = f1; (because ¢ is unital), calculation shows that,
for any pair k and [ with 1 < k,l <n,

D(ew) = Y _ fud(erewey)fy

ij=1
= fud(er)fu = fu.

Hence & satisfies our requirements. Next, we shall show that ® is unique. Take any
completely positive map W satisfying W |, 4o, = ¢ and W(e;) = f; for all i,j
with 1 < i,j < n. Since \I'(e,j)*\l-’(elj) =fj‘tﬁj = fjj = \P(Ejj) = \P((EU)*EU), €jj is
in the multiplicative domain of W and so by Lemma 5.8.1(3), Choi’s multiplicative
domain theorem, we have W(xe;) = W(x)W(e;) and W(eyx) = W(e;)W(x) for all
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x € Aandi,jwith 1 <i,j < n.Hence we have

W) =) Wlenerxejen)

ij=1

— Zﬁl‘l—’(elixejl)flj

ij=1

= fadlerxe)fi;

ij=1

= P(x) forall x € A.

Suppose that ¢ is a *-homomorphism. Since ¢ is completely positive and linear, it
is clear that @ is also a *-linear map by the above argument. We show the map @ is
multiplicative. To do this, take x and y in A. Then we have

n
plerxyen) = Y dlerixenenyey)

k=1

= Z @ (erixer) P (erryejr)

k=1

=Y ¢lerxen)fifiad(enye;r) for each pairi.j € {1.--- .n}.
k=1

Hence it follows that

O(xy) = Y Y fud(ewen)fifud(enven)fyy = SE)D().

ij=1k=1

So @ is a *-homomorphism.

(Please note that, as usual, we use i for ~/—1. We also use i,j,k to represent
integer variables. This dual use of “i”” does not normally cause any difficulties.)

Suppose that A and B are monotone o-complete and the completely positive map
¢ : e1Aeq — f11Bf11 is o-normal. We shall show that ® is o-normal. To show this,
take any norm bounded increasing sequence (a,,) of elements in A such that a,, 1 a
inAg,.

For a C*-algebra C with a system of matrix units {p;;}, and for a pair i and j with
1 <1i,j <n,by Lemma 2.4.3(1), p1xp;1 = Siso *pj + i*pin)*x(pji + i*pir).

Hence, by Corollary 2.1.23, we have LIMejane;; = ejaej; in A and so, by
Propositions 2.2.25 or 2.2.26 we have the order limit is in e;;Ae;;. Since ¢ is o-
normal and positive, by Definition 2.2.20, LIM,,¢ (eriamej1) = ¢ (eviaej) in fi1Bfi1
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for each pair i and j. On the other hand, since @ is positive, (P (a,,)) is norm bounded
and increasing and there exists b € By, such that ®(a,) 1 b in B,,. By the same
reasoning as above, for each pair i and j, it follows that LIM,,¢ (e1;amej1) = fiibfit
in fi1Bfi1. Hence it follows that f1;bf;1 = f1;P(e1;ae;i)fj1 for every pair i and j and so
we have b = P(a).

We used sequences but everything can easily be generalised to nets. O

Definition 5.8.5 (See [38]) Let V be a complex vector space. Let M, (V) denotes
the linear space of all n x n matrices v = (v;)i<ij<s With v; € V. Take any ¢ €
L(V, W) where W is another complex vector space. We define a linear map from
M, (V) into M, (W) by ¢, (v) = (¢ (vj))1<ij<n (V = (vy) € Mu(V)).

Let H be a Hilbert space and let V be a unital *-subspace which is closed in L(H)
with respect to the norm topology. We call V an operator system on the Hilbert space
H.

We introduce the order “<” on the system V by the positive cone Vt = vV N
LH)T.

Take any n € N. As before, we define the canonical map = : M, (L(H)) —>
L(H) ® M, (C) defined by 7 ((a;)) = Z?.j:l a; ® e;j((a;) € M,(L(H))). Then the
map 7 |y : M,(V) — V ® M,(C) induces a topological isomorphism.

We can introduce an order on M, (V) by M, (V) N M,(L(H))" and the space
M, (V) is order isomorphic, as an ordered Banach space, with a unit 1, = (8;;1#),
to an operator system V ® M,,(C) on H ® C". For any v € M,(V),,, we have
v=(v+|v]-1,) —|v|] - 1, and so

M) = M,(V)T —M,(V)*,

where M, (V)" = M, (V) N M, (L(H))™.

Let H; and H, be Hilbert spaces and let V; C L(H;) be operator systems for
i = 1,2. Suppose ¢ : V| — V, is a linear map. We say that ¢ is n-positive if ¢,
is positive, that is, ¢, (v) > 0if v € M,(V)T. We call ¢ completely positive if ¢ is
n-positive for every n € N. The map ¢ is an n-isometry if ¢, is an isometry. We call
¢ a complete isometry if for every n € N, ¢ is an n-isometry.

The following technical lemma is borrowed from [38] and will be used to show
Lemma 5.8.7.

Lemma 5.8.6 Ler C be a unital C*-algebra and take any a € C and put a =

(0* g) € My(C)sa- Then ||al| = lall. Also llall < 1if, and only if, 1> < &, where
a

I, = ((1) (1)) is the unit of M»(C), that is, if, and only if, ( 1* Lll) > 0.
a

*
Proof Clearly a*a = (““ 0 ) So we have ||a||? = sup{||aa*|, [la*al]} = |a|?

0 a*a
and so ||a|| = ||| follows.
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Suppose that ||a|| < 1. Then ||a|| < 1 and so ( 1* Cll) =1, +a>0.
a

Conversely if 1, + a > 0. Then we have

ea= (7= 60 () (65) =0

Hence it follows that —1, < a < 1, that s, ||| = |la|] < 1. O

Lemma 5.8.7 If ¢ is a unital linear map from a unital C*-algebra A into a unital
C*-algebra B, then ¢ is a complete isometry if, and only if, ¢ is completely
bipositive.

Proof Suppose that ¢ is a (complete) isometry. Take any a € A with a > 0. We
shall show ¢ (a) > 0. To do this, we may assume ||a|| < 1. Then, |la — 1|| < 1 and
so fl¢p(a) — 1] < 1.
Take any o € Sp, the state space of B. Leto o ¢(a) = o + if witha, B € R.
Let a,, = a — al + imp1 for each positive integer m. Then we have ¢ o ¢ (a,) =
i(1 + m)B, which implies that

(A +m)Bl < p@nll = lanll < Vla—al|? +m2p2.

Hence it follows that (1 + 2m)B? < |la — al||? for all m and so B = 0 follows. So,
o(¢(a)) € Rforall 0 € Sg, that is, ¢(a) € By,. The fact that ||¢p(a) — 1|| < 1 now
tellsus that —1 < 1 — ¢ (a) < 1. So ¢(a) > 0 follows.

Let a € A such that ¢(a) > 0. To show that a > 0, we may assume that ||a| < 1.
Then a = a; + iay where a; and a, are self-adjoint. So ¢ (a) = ¢(a1) + ip(az).
Since ¢ (a), ¢(a1) and ¢(ay) are self-adjoint, it follows that ¢(az) = 0. So, 0 =
¢ (a2)|| = |laz||, that is, a; = 0, which implies a = a; € Ay,. Since 0 < ¢(a) < 1,
1> |1=¢@)| = |l¢(1 —a)|| = ||1 — al|. Hence it follows that |1 — a| < 1 and
a > 0 follows. So ¢ is a completely bipositive map.

Conversely suppose that ¢ is completely bipositive. We shall show that ¢ is a
complete isometry To do this, take any @ € A and take any positive real number ¢.

Puth = 4 € A. Then [[¢(b)]| = rI29L < 1, which implies that

()=o)
it |

1 $(@)
Y ||¢<al>||+s > 0.
Tot@l+e

1 e
Since ¢, is bipositive, we have ( * lo@li+e 1 > 0, that is, llall < ll@(a)| + &

TolTe
for all such &, which implies that ||a| < ||¢(a)||. A similar argument shows that
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a)l| < |lal|, by putting b = % and using the positivity of ¢,. Hence ¢ is an
yp g Tal g p y

isometry. By Lemma 5.8.3, n/gz,n) is a *-isomorphism of M,(M,(A)) onto M5, (A)
such that néz’") o ()2 = ¢on0 nf’") and so, (¢,)» is also bipositive for every n € N.
By making use of this and Lemma 5.8.6, the same reasoning as above also tells us
that ¢, is an isometry. Since 7 is arbitrarily chosen, it follows that ¢ is a complete

isometry. O

Let us recall that a C*-algebra A is small if there exists a separable Hilbert space
H and a unital complete isometry from A into L(H).

Next, we shall give a useful alternative characterisation of small C*-algebras. To
do this we need the following lemma (See Lemma 2 and Theorem 1 in [137].):

Lemma 5.8.8 Let B be a unital C*-algebra. Suppose that there exist a separable
Hilbert space H and a unital isometry W : B +> L(H). Then Sp is o(B*, B)-
separable.

Proof Since ¥ : B + L(H) is a unital isometry it is bipositive onto W[B]. So the
state space of B may be identified with the state space of W[B].

For each state ¢ of L(H) let R¢ be the restriction of ¢ to W[B]. Then R is a
continuous affine map of the state space of L(H) into the state space of W[B].

Let 1 be a state of W[B]. Then by the Hahn-Banach Theorem,n can be extended
to a self-adjoint ¢, where ||n]| = ||¢]|| = ¢(1) = 1 = n(1). So ¢ (Lemma II1.3.2
of [161] or Lemma 3.1.4 of [121]) is a state of L(H) such that Rp = n. So R is a
continuous map from the state space of L(H) onto the state space of W[B].

But, by Proposition 5.2.18, L(H) has a separable state space. So Sp is the
continuous image of a separable space. Hence Sp is separable. O

Theorem 5.8.9 Let A be a unital C*-algebra. Then A is small if, and only if, for
each n € N, the state space of M,,(A) is separable.

Proof If A is small, then for each n, there exists a unital isometry from M,,(A) into
L(K) for some separable Hilbert space K. By Lemma 5.8.8, the state space of M,,(A)
is separable.

Conversely, suppose the state space of M,(A) is separable for each n € N. We
shall show A is small. To do this, take any n € N. Note that M,(A) =~ A ® M,(C)
via the canonical map II defined, in Sect.2.4 (see the fourth paragraph after
Definition 2.4.2), by

I((#)) = Z ;i ® eg’) for (t;;) € M,(A).

ij=1

Note that for each map ® : A > B with a C*-algebra B, we have ®, = IT"! o
(® ® ty,(c)) o IT and so we may assume that M, (A) = A ® M,,(C). Since S(M,,(A)),
the state space of M, (A), is separable, there is a dense subset {¢( ) : p € N} in
S(M,(A)). Let {m(np), Honpy» Enp)} be the Gelfand-Naimark-Segal representation of
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M, (A) defined by ¢, ). Let us note that for all a € A and for all i and j,

(@®le)(L®e) = (Lh® ) a® le).

i

So for all (a;) € M,(A), 1 < i,j < n, we can write, on noting @, ) ((a;)) =

(7 p) (@) p) s Enp))s

P (@) = Y (Tup(@; ® eV Ewpm)

1<ij<n

Y G (@ ® 1e) 7 (14 ® €17V, Ty (1a @ €1 )e0p)-

1<ij<n

Let 0(,,) be the *-representation of A on H, ;) defined by
Onp) (@) = T(np)(a @ 1cn) foreach a € A.

Let {m, K} be the direct sum of {(0(. ), Hup)) : ,p € N}. Since {¢q,) : p €
N} is 6(A*, A)-dense in Sy, 7 is faithful. The closed subspace of K, generated by
()14 ® €f)Eup) t ij = 1.+ .n,n € N,p € N}, shall be denoted by H.
Then H is a separable Hilbert space. Let Q be the orthogonal projection on H and
let us define the map I" by I'(@) = Qn(a)Q |y for each a € A. Clearly I is a unital
completely positive linear map by Lemma 5.8.1 (1).

Take any n € N and suppose that (a;) € M,(A) satisfies I',((a;)) >
0, that is, (I'(a;)) > 0. We shall show (a;) > 0. To do this, take any
{x1,--+ ,x,} C L(H) and § € H. Then we have }_,_;._,(x;*T'(a;)x€,£) > 0,
that is, 3", <, (* Q7 (ay) QxE. §) > 0. Note that () (14 ® el VHup) € Hinp)

Y)H C Hforall i and j with 1 < i,j < n.Put§ = £y
and x; = ) (14 @ e(l;l)) l# G=1,---,n).Since

Ot (np) (14 ® e(l';))é(,,,p) = Tup(la ® e(l;.l))s(n,p) (j=1,--+,n) and so we have

and 50 (s ® €

Hup = O(np)s it follows that

Y Oun@)Tap(1a ® e T (1a ® €)é0p) 2 0,

1<ij<n

which implies that ¢, ,)((a;)) > 0 for all p € N. Since {¢@,) : p € N} is dense
in S(M,(A)), we also have that ¢((a;)) > 0 for all ¢ € S(M,(A)). So, we have
(aj) € M, (A)y and (a;) > 0. Therefore, T, is bipositive for every n € N. Hence by
Lemma 5.8.7, I is a complete isometry. O

The following technicalities will not be used in this chapter but since they are an
easy, “real variable”, analogue of Lemma 5.8.7 this is a convenient place for them.
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Proposition 5.8.10 Let A and B be partially ordered vector spaces with order units
and each equipped with the order unit norm. Let ¢ : A +— B be a linear map with
¢ (1) = 1. Then ¢ is positive if, and only if, ||¢|| < 1.

Proof First suppose ||¢|] < 1.Let0 <x < 1.Then0 < 1—x<1.So||1—-¢(x)|| <
1. Then

—-1<1-9¢kx < 1.

So ¢ (x) = 0. From this it follows that ¢ is positive.
Conversely, suppose that ¢ is positive. Let —1 < x < 1. Then —1 < ¢(x) < 1.
So[l¢]| = 1. o

Corollary 5.8.11 Let A and B be as above. Let ¢ : A — B be a positive linear map
with ¢(1) = 1. Let ¢ be an isometry. Then ¢~ is positive.

Proof Apply the proposition to ¢!, O

5.9 Small C*-Algebras and Regular o -Completions

In this section we shall see that the regular (o-)completion of a small C*-
algebra is also small. Since each small C*-algebra has a separable state space, by
Proposition 5.2.19, it has a faithful state. So if a small C*-algebra is monotone
o-complete then it must be monotone complete. In particular the regular o-
completion coincides with the regular completion.

First of all, we shall state and prove the following technical lemma and its
corollary which are based on [61].

Lemma 5.9.1 Let C be a unital C*-algebra and let C be the regular o-completion
of C. Take any non-zero projection d in C. Then dCd is a regular o-completion of
dCd.

Proof Clearly d Cd is monotone o-complete and is monotone o-generated by dCd.
To show that dCd is a regular subalgebra of dCd, take any y € (dé‘d)m. Then by
Lemma 2.1.36, one has a bounded subset L of L(y) C Cy, suchthaty = sup Lin Cj,.
Then by Lemma 2.1.9, y = dyd = supdLd in Cy,. Since dLd C L(dyd) N (dCd),,
it follows that y = sup{b € (dCd)s, : b < y} in (dé‘d)m. Hence dCd is a regular
o-completion of dCd. O

Corollary 5.9.2 Let B be a unital C*-algebra with the regular o-completion B. For
eachn € N, the algebra M, (B) is the regular o-completion of M, (B).

Proof Let us put C = M,(B) and let {e;}i<;j<, be the standard system of matrix
units for C. Then clearly {e;}1<; j<n is also a system of matrix units in C.On writing

the n x n matrix whose (1, 1) entry is b € B and other entries are all 0 by (?) g) and
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e;; = e € C, it follows that the reduced algebra eMn(fE)e = { (3 g) :be E} is a
c0
00
*-isomorphic to eCe by Lemma 5.9.1. Hence by the uniqueness of the regular o-

completions, there exists a *-isomorphism 7 : eCe > eMn(fE)e such that w(a) = a

foralla = (:; g) with a € B. Hence by Proposition 5.8.4, there exists a unique

x-isomorphism ® from C onto M, (B) such that @[, = 7 and O(e;) = e; for
every pair i and j with 1 < i,j < n. Since for eachx € C = M,(B), ejxe;; € eCe
with e = ey, it follows that

regular o-completion of the reduced algebra eCe = { ( ) i ce B} , that is also

n n n
@(x) = Z eiln(elixejl)elj = Z €;1€1,X€j1€1; = Z €;ixe; = X

ij=1 ij=1 ij=1

for every x € M,(B) and so ® |¢ = t¢. This implies that M,(B) is the regular o-
completion of M,,(B). O

Definition 5.9.3 (See, for example, Definition XV.1.2 (Volume III) of [162] and
[38]) A C*-algebra B is injective if every completely positive map ¢ from any unital
operator subsystem (norm closed self-adjoint subspace with the identity of D) C of
any unital C*-algebra D into B can be extended to a completely positive map qAﬁ from
D into B.

Lemma 5.9.4 Let H be a Hilbert space and let L(H) be the type I von Neumann
factor of all bounded linear operators on H. Then L(H) is injective.

Proof This is well-known. See, the proof of Theorem XV.1.1 (Volume III) of [162].
]

Theorem 5.9.5 Let A be a unital C*- -algebra. Suppose that A is small. Then the
regular o-completion A is also small and so A has a faithful state, which implies
that A is monotone complete and (A t) is the regular completion of A.

Proof Let ¢ : A — L(H) be any unital complete isometry, where H is a separable
Hilbert space. By Lemma 5.9.4, there exists a unital completely positive contractive
linear map ¢ from A into L(H) such that ¢ a4 = ¢. Take any n € N and consider
the map ¢n M, (A) — M,(L(H)).

We shall show that qbn is bipositive. To do this, take any a € M, (A)m with qbn (a) >
0. Note that qbn M,a) = ¢, and so ¢, is an isometry and so it is bipositive (see
Lemma 5.8.7). For every b € M,(A)s, with a < b, we have ¢,(b) > q;n(a) >0
and so ¢,(b) > 0. Since ¢, is bipositive, we have b > 0, that is, for every b with
b > aandb € M,(A),,. Note that a = inf{b € M, (A);, : b > a} in MH(A)S,, by
Corollary 5.9.2 and we have that a > 0. So, <;§n is bipositive for every n € N. Again
by Lemma 5.8.7, it follows that <;§ is a unital complete isometry. So, A is also small.
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This implies that the regular o-completion Ahasa faithful state. Hence, as remarked
in Lemma 3.1.1, A is monotone complete and so (A, ¢) is a regular completion of A.
This completes the proof. O

The next Corollary is a direct consequence of Theorem 5.9.5.

Corollary 5.9.6 Let A be a unital C*-algebra which has a faithful representation
on a separable Hilbert space, in particular, when A is norm separable. Then the
regular o-completion A is a small C*-algebra and so (A, () is a regular completion
of A.

We shall use £2-summable sequences in A (see Proposition 2.1.38) to state and
prove an infinite version, of Proposition 5.8.4, which is based on [63].

Proposition 5.9.7 Let A and B be monotone o-complete unital C*-algebras. Let
{ej 1 i,j € N} (respectively {f; : i,j € N}) be a system of matrix units for A
(respectively for B) such that (3__, i) 1 1a in Ay, (respectively, (3, fi) 1 1s
in By,). Suppose that there exists a unital completely positive linear map ¢ from
e11Aeqy into f11Bfi1. Then there exists a unique unital completely positive linear
map ® : A v~ B such that ® |4, = ¢ and ®(e;) = fij foralli,j € N. If ¢ is
a o-normal x-homomorphism, then so is ®. In particular, if ¢ is a *-isomorphism
from ey1Aeq onto f11Bf11, then ® is a *-isomorphism from A onto B.

Proof We shall prove Proposition 5.9.7 for a o-normal *-homomorphism ¢. By
working through Exercise 5.9.8, the reader will be able to prove the general result.
Letuspute, = Y ., e;andf, = Y ._, fi for each n. Then e,Ae, and f,Bf, satisfy
the conditions of Proposition 5.8.4 and so one finds a unique completely positive
linear map ®(n) from e,Ae, into f, Bf, such that ®(n) |¢,,4c,, = ¢ and ®(n)(e;) =
fijforalli,jwith 1 <i,j <n. If ¢ is a (o0-normal) *-homomorphism, then ®(n) is
also a o-normal *x-homomorphism from e,Ae, into f,Bf, which is defined by

O(n)(enxen) = Y fadlerxen)fi (#)

ij=1

for all x € A.

We shall show Y2, fu {Zfil qb(euxejl)flj} does exist in B for each x € A. To

do this, take x € A and first of all, for each i, we shall check that {¢ (e1;xe;1)*} 2,

is £2-summable in B. Since ¢ is a *-homomorphism, this is a direct consequence of
the following calculation

> plerxe)p(eriven)* = ¢ | Y erxejix*en | < ¢(erxx*e;r) forall n.

j=1 J=1
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On noting that {fj; f'il is also {?>-summable in B, Lemma 2.1.38 tells us that

LIM, o ]’.’:1 ¢ (erixejr)fij, say b(i), does exist in B. By Corollary 2.1.23,

b(i)fa = Y plerixep)fys

j=1

and

fub(i) = LIM,— oo Zﬁl¢(elixejl)flj

Jj=1

for each i and n. Next we shall show that {b(i)} is also £2-summable in B. In fact,
since ¢ is a x-homomorphism,

k k n
fr (Z b(i)*b(i))ﬁ = (Zfv1¢(€1SX*€i1)¢(€1ix€t1)flt)

i=1 i=1 \s;r=1

" k
= meﬁ (elsx* (Z Eii) x@tl)flt
i=1

s,t=1

= O(n)(enx*erxen) < ®(n)(enx*xey) < ||x|*f,

for all n, which implies, by Lemma 2.1.24, that Zle b(i)*b(i) < |x||*1 for all k
and so {b(i)} is £>-summable. By Lemma 2.1.38, LIM; o Zf;lfilb(i) does exist
in B. For each x € A, let

Q) =Y fu 1D $lewxen)fyy p €B.

i=1 j=1

Clearly for each n in N and for all x € A, ®(x) satisfies

LW =Y fu | D dleixen)fiy | = /20 (enxen)f. (##)
i=1 j=1

Since ®(n) is unital and linear by Lemma 2.1.24 and Proposition 2.1.22 and positive
by Lemma 2.1.24, ® is also unital, linear and positive. Moreover, as was noted in
Proposition 5.8.4, ®(n) is also a o-normal map from e,Ae, into f, Bf,,. To show that
® is o-normal, take any increasing norm bounded sequence (a,) such thata, 1 ain
Ay, for some a € Ay,. Recall that, by Propositions 2.1.10 and 2.2.25, for any fixed
m € N, epaze, 1T enae, in (epAen)sq. Since @ is positive and unital, (P(a,)) is
also norm bounded and increasing. Since B is monotone o-complete, ®(a,) 1 b in
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B;, for some b € By,. This implies, again by Propositions 2.1.10 and 2.2.25, that
Fn®(a)fin 1 finbfm in (finBfn)sa for each m € N. Since (##) for each x € A, we have
fe®@)fi = (k) (exxer) for all k, f, P(an)fm = ©(m)(emanen) T ©(m)(enaen) =
fn®(a)fsn in (fuBfm)sa for all m and so it follows that f,,bf,, = f,, ®(a)f,, for each m.
Hence we have, by Lemma 2.1.24, b = ®(a) and so & is o-normal.

We shall show that ®(xy) = ®(x)P(y) for all x,y € A. Indeed, take any m, n in
N with n < m. We have then, by (##),

fmqD(xeny)fm = cI3(’/’1)(emxem)fnqD(m)(emyem) :fmcD(x)fnq)(Y)frm

which implies that f,, (P (xe,y) — P(x)f,, P(y))fn = O for all m.

Put a = P(xe,y) — ®(x)f,P(y). Then, for all m, f,af,, = 0. Taking adjoints
gives fa*f, = 0. Hence it follows, by Lemma 2.1.24 a = 0, that is, (xe,y) =
®(x)f,, P(y) forall n. Since ® is o-normal, we have (xy) = ®(x)D(y). So, Pis a *-
homomorphism from A into B. The uniqueness can be shown as in Proposition 5.8.4.

For a general completely positive linear map ¢, see Exercise 5.9.8. O

Exercise 5.9.8 Suppose that ¢ is a completely positive unital linear map from
e11Aeq; into f11Bfi1.

(1) Prove that {¢(ejxe,1)*}2, is £2-summable in B. Use Lemma 5.8.1 (2).

(2) Let b(i) = Y o2, d(e1ixen)fin € B. Then {b(i)} is £>-summable in B. Use the
fact that fifyr = 8,11 and ¢ ()P () = P)fi1$ ().

(3) By making use of (1) and (2), define the map ® from A into B in a way which
makes sense and show that the map ® is completely positive. Here we may
assume that M,,(A) = A® M,,(C) and M,,,(B) = B® M,,(C). Show that ® ® 1,,
is positive by making use of (##) for ¢ ® .

Theorem 5.9.9 Let A be a unital monotone o -complete C*-algebra with an RoxRo-
system of matrix units {e; : i,j € N} such that ) ;_, ez T 1 in Ay, Suppose that
e11Aeq; has a faithful representation on a separable Hilbert space. Then A is small.

Proof We may assume that e;;Ae;; acts on a separable Hilbert space H. Let B
be the C*-subalgebra of L(H ® (*(N)) generated by e;;Ae;; ® L(£*(N)). Since
B acts faithfully on a separable Hilbert space H ® £*(N), it is small. We shall show
that the regular o-completion Bof Bis *-isomorphic to A, making use of ideas of
Hamana[63].

Let {g; : i,j € N} be the standard system of matrix units for L(£*(N)) and let
fii = 1u®g;; for each pair i and j. Then, clearly, f;; € Bforeachiandjand ) —, f; 1
1p in By,. Indeed, take any ¢ € B, such that ) ., f; < t for all n. Since Y\, f;
converges strongly to 1, it follows that 1 < ¢, which implies that ) i, f; 1 1 in Bi,.
Let C be the regular o-completion of B. Then, by a general property of the regular o--
completion, Y i, fi 1 1in Cy, and {f;;} is a system of matrix units for C. Moreover,
fuiBfit = enAeir ® fip tells us that f;Bfi; is monotone o-complete. Since, by
Lemma 5.9.1, f1;Cf1; is *-isomorphic to the regular o-completion of f;Bf}; and
f11Bf11 is monotone o-complete, it follows that fi; Cfi; is *-isomorphic to ej1Aey;.
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Hence by Proposition 5.9.7 C is x-isomorphic to A. Since B is small, C is also small,
which means that A is small. This completes the proof. O

We shall give here a non-commutative example. Let H = £? be the separable
infinite dimensional Hilbert space with canonical basis and let {e,,, } be the standard
system of matrix units for L(H).

Given any monotone complete C*-algebra D and any von Neumann algebra
E, Hamana [63] gives a construction of a corresponding monotone complete
tensor product algebra A = (D®E, ). See also [65]. Here the product is not
straightforward. But when D is commutative and E = L(H), for H separable,
this tensor product has an easy description as a quotient of a “‘conventional” tensor
product [140]. In fact this approach works even when D is not commutative.

Let D be commutative and A = (D®L(H), »), where D is a monotone complete
(commutative) C*-algebra acting on a separable Hilbert space, with the system
of matrix units {E,,} defined by E,, = 14 ® e,, for each pair m and n. Then
E|AE = D and {E,,,} satisfies the condition in Theorem 5.9.9. Hence A is small.
It will follow from this that all the factors we construct in Chap. 7 are small, although
these algebras never act on a separable Hilbert space. We shall discuss details of
these algebras later.



Chapter 6
Generic Dynamics

We gave an introduction to generic dynamics at the beginning of this book.
Here we shall give a brief account which emphasises orbit equivalence. This has
fruitful applications to monotone complete C*-algebras. Many open problems and
interesting possibilities for further development exist.

The important survey by Weiss [165], which is mainly concerned with generic
dynamics over complete metric spaces, includes topics not touched on here. See
also contributions by Goldets, Kulagin and Sinel’shchikov e.g. [53] and [52]. On
the other hand we include some of our recent results which are applicable to non-
metrisable, separable compact Hausdorff spaces [145]. As we saw in Chap. 4, there
is an abundance of such spaces. Generic dynamics can be developed in different
ways. Here, our approach to generic dynamics is intended to be elementary. It is
aimed at the applications to monotone complete C*-algebras.

6.1 Basics

Since no prior knowledge of dynamical systems is required, we start with routine
preliminaries and some illustrative examples.

Let G be a countable group. Let X be a non-empty set. Then an action of G on
X is a group homomorphism ¢ from G into the group of all bijections of X onto
X. We normally write &, instead of ¢(g). Then we shall call the triple (X, G, ¢) a
G-system. We also call ¢ the action of G on X. We call the system non-degenerate
if ¢ is injective; when ¢ is injective then ¢[G] is isomorphic to G. In this chapter, we
shall normally confine our attention to non-degenerate systems.

When xp € X the set {,(xo) : g € G} is the orbit of xy under the action of G; we
shall frequently denote it by G[xo].

A subset Z of X is G-invariant it €,[Z] = Z for each g € G. Clearly each orbit is
G-invariant.

© Springer-Verlag London 2015 141
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When there is no risk of ambiguity, we shall often simplify our notation by
writing “g” instead of “g,”.

Given F C X, the saturation of F by G is the smallest G-invariant subset of X
which contains F; this is Ugeceg[F]. We shall denote it by G[ F]. Given Y C X, the

largest subset of ¥ which is G-invariant is ﬂgecg[Y] = X\G[X\Y].

Exercise 6.1.1 Let G[xp] be an orbit such that e,(xo) 7# xo for each g € G, except
the identity element of G. Show that for g # ¢, &, leaves no point of the orbit fixed.
Deduce that the action ¢ is non-degenerate.

An orbit G[xg] is said to be free if e,(xg) # xo for each g € G, except the
identity .

If every point in X has a free orbit, then G is said to act freely on X.

As in the rest of this book, all topological spaces are required to be Hausdorlff,
but we sometimes emphasise this by stating that a space is Hausdorff.

When X is a (Hausdorff) topological space and ¢ is a homomorphism of G into
Homeo(S) (the group of all homeomorphisms of X onto itself) we shall call (X, G, €)
a dynamical system.

When we say “G acts as a group of homeomorphisms of X’, we mean
there is a non-degenerate dynamical system (X, G, &) where ¢[G] is a group of
homeomorphisms of X.

Example 6.1.2 Let X be the circle {z € C : |z] = 1} andlet p : X — X be
the operation of rotation through an angle 6. Clearly p is a homeomorphism. First
suppose 0 is a rational multiple of 7. Then after a finite number of rotations we get
back to our starting point; that is p” is the identity map for some n. Now suppose that
0 is an irrational multiple of 7. Let xo be any point on the circle. Then {p"(xo) : n €
Z} is a dense subset of the circle. (This is “Kronecker’s theorem in one dimension”.
See [71, Chapter 23].) So n +— p" is an action of Z with a dense orbit. On putting
e(n) = p" we see that (X, Z, ¢) is a dynamical system. This may be thought of as an
example of “topological dynamics”.

Example 6.1.3 To do “classical ergodic theory” observe that (the circumference
of) the circle X comes equipped with a Lebesgue measure, p, which is rotation
invariant. In particular, p maps pu-null sets to p-null sets. So p induces an
automorphism of L*(X, ) by h,([f]) = [f o p]. (Here [f] is the equivalence class
of bounded p.-measurable functions which differ from f only on a null set.) Let Sy be
the spectrum of the commutative algebra L*° (X, i). Since this algebra is monotone
complete, Sy is extremally disconnected and C(Sy) = L (X, u). Because of the
duality between compact Hausdorff spaces and unital commutative C*-algebras,
h, corresponds to a homeomorphism of Sz ; this homeomorphism we denote by p.
Then n + p" is an action of Z on the compact Hausdorff, extremally disconnected
space S;. But this action cannot have a dense orbit, because S;, is not separable; see
Corollary 4.2.19. We shall come back to this point later.

Let us recall that a Polish space is a topological space which is homeomorphic
to a complete separable metric space. For example (—z, ) is not a complete metric
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space when equipped with the usual metric of the real numbers. But (—m, ) is
homeomorphic to R (consider A +— tan%) which is a complete separable metric
space. So (—m, 7) is a Polish space. A Polish space is said to be perfect if it has no
isolated points.

For a topological space X, a subset Y, is a Gs-set if Y is the intersection
of countably many open subsets of X. Let A be a subspace of a Polish space
B. Then A is a Gs-subspace of B, if, and only if, A is a Polish space in the
relative topology induced by B. See [167, Theorem 24.12] or [161, Theorem A.1,
page 375 ]. Furthermore, each Polish space is a G5 subspace of its Stone-Czech
compactification. See the discussion in Sect. 6.5.

We discussed Baire spaces in Chap. 4. By the Baire Category Theorem, every
Polish space and every compact (Hausdorff) space is a Baire space. A dense, G;-
subset of a Baire space, is a Baire space. From this it follows that every Gs-subset
of a compact space is a Baire space.

We recall that the abelian group €DZ; is called the Dyadic Group.

Example 6.1.4 Let Z, be the two element field (integers mod 2), equipped with the
discrete topology. Then the product []° ,Z; is homeomorphic to the Cantor set. It
also has a natural (additive) group structure which turns it into a compact abelian
group. Let @Z, be the Dyadic Group embedded as a subgroup of [ ]2, Z,. So each
element of 1_[51122 is an infinite sequence of zeroes and ones; whereas the elements
of @Z, are those sequences which end in an infinite string of zeroes.

Fory € @Z; and x € [[,2,Z, let e,(x) = y + x. Then ([[o2,Z2, PZs, ¢) is a
dynamical system with a dense orbit. This is because the orbit {¢,(0) : y € Z,}
coincides with @)Z,, which is a dense subset of the Cantor space. Clearly the action
of the Dyadic Group is free.

There is a strong uniqueness theorem for countable group actions on perfect
Polish spaces. We shall make this precise later. But, roughly, it says the following.
Consider a non-degenerate dynamical system (X, G, €), where X is a perfect Polish
space and ¢[G] is an infinite countable group of homeomorphisms with a dense
orbit. Then, modulo meagre sets, this dynamical system is equivalent to the one in
Example 6.1.4. A consequence of this result is that Examples 6.1.2 and 6.1.4 are,
modulo meagre sets, equivalent. In particular, however complicated a group G may
be, (X, G, ¢) is equivalent to a canonical system arising from an action of Z.

Now suppose S is not Polish but is a compact (Hausdorff) extremally discon-
nected space which is separable and has no isolated points. Then there is no longer
a uniqueness theorem. But we can still show the following. Suppose we are given
a non-degenerate dynamical system (S, G, ¢), where ¢[G] is an infinite countable
group of homeomorphisms with at least one free dense orbit. Then this dynamical
system is equivalent (modulo meagre sets) to one arising from an action of the
Dyadic Group on S. Unlike the situation for perfect Polish spaces, it is NOT obvious
that this dynamical system is equivalent to a system coming from an action of Z.
However it is true. So we give a proof. But there remains an unanswered question
here (see Sect. 6.7).
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In contrast to the situation for Polish spaces, there are 2% “essentially differ-
ent” dynamical systems (S, Z, ¢) where the spaces S are compact, separable and
extremally disconnected and ¢[Z] has a dense orbit.

Given a dynamical system there is an associated relation of orbit equivalence.

Definition 6.1.5 Let (Y, G, ¢) be a non-degenerate dynamical system. Let x and y
be in Y. Then x is orbit equivalent to y if, for some g € G, g,(x) = y. It is clear
that this is an equivalence relation and that the corresponding equivalence classes
are just the orbits of ¢[G]. When it is clear which action of G is being considered,
we write

X~GYy

when x is orbit equivalent to y. We identify the relation ~gwith its graphin Y x Y.
This is {(x, &,(x)) : g € G}.

For a large collection of separable topological spaces, Y, there is a natural
method for constructing a monotone complete C*-algebra associated with (Y, G, ¢);
we shall discuss this in the next chapter. This construction depends only on the
orbit equivalence relation. Since different groups can give rise to the same orbit
equivalence relation, it is useful to know when this happens.

These methods give rise to 2% small factors each taking different values in the
classification semigroup. But, when Y is a perfect Polish space and ¢ is an ergodic
action of G we get a canonical monotone complete factor which does not depend on
the choice of Y or the choice of G.

6.2 Extending Continuous Functions

We gather together some useful topological results. For extremally disconnected
spaces, the most important of these is Theorem 6.2.7.

Throughout this section, K is a Hausdorff space and D is a dense subset of K,
equipped with the relative topology. It is easy to see that K has no isolated points if,
and only if D has no isolated points.

Let us recall that a Hausdorff topological space T is extremally disconnected if
the closure of each open subset is still an open set.

We shall see that when K is compact and extremally disconnected then, whenever
Z is a compact Hausdorff space and f : D — Z is continuous, there exists a unique
extension of f to a continuous function F' : K + Z. In other words, K is the Stone-
Czech compactification of D.

For any Hausdorff space K, the closed subsets of D, in the relative topology, are
all of the form F N D where F is a closed subset of K. For any A C K, we denote the
closure of A (in the topology of K) by c/(A). For A C D, we note that the closure
of this set in the relative topology of D is c/(A) N D. We denote this by clp(A). We
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normally use intA for the interior of A but, for clarity, sometimes use intgxA. When
A C D, its interior with respect to the relative topology is denoted by intpA.
The following lemmas are standard point-set topology.

Lemma 6.2.1 Let K be a Hausdorff space and D a dense subset of K.

(i) For any open subset U of K we have cl(U) = cl(U N D).
(ii) Let U,V be open subsets of K. Then V C cl(U) if, and only if,

VvADCc(UND)ND
=C1D(UﬂD).

(iii) Let U be an open subset of K. Then D N int(clU) = intp(clp(U N D)).

(iv) If U is a regular open subset of K then U N D is a regular open subset of D in
the relative topology of D. Conversely, if E is a regular open subset of D in the
relative topology, then E =V N D where V is a regular open subset of K.

(v) Let C be a clopen subset of D. Then there exists W, an open subset of K, with
D C W, and E a clopen subset of W, in the relative topology of W, such that
END=C

(vi) Let (Cy,) be a sequence of pairwise disjoint, clopen subsets of D. Then there
exists Y, a dense Gg-subset of K with D C Y. Furthermore there exists (F,), a
sequence of pairwise disjoint, clopen subsets of Y, in the relative topology of
Y, such that C,, = F, N D for each n.

Proof
(i) This follows from Lemma 4.3.1.
() fV Ccl(U)ythenVND C cl(U)yND.SoVND C cl(UN D) by (i).
Hence VN D C cl(UN D) N D.
Conversely, suppose that VN D C c¢/(U N D) N D. Then
VNDCc(U)yNnDC cl(U).
Since c/(V) = cl(V N D) it follows that c/(V) C cl(U). Hence V C cl(U).
(iii) intg(clU) = U{V : V C clU and V is open in K}.
So D Nintg(clU)y = U{VND:V C clU and V is open in K}.
By applying (ii) it follows that
D Nintg(clU) =U{VND:VNDCCI(UND)ND and V is open in K}.
But the right hand side of this equation is just

U{W : W C clp(U N D) and W is open in the relative topology of D}.

(iv) First suppose that U is a regular open set. Then U = intk(clU).
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By (iii), DN U = intp(clp(UND)). But this just says that DN U is a regular
open set in the relative topology of D.

Conversely, let us now suppose that E is a regular open set in the relative
topology of D. Then, from the definition of the relative topology, E = D N U
where U is an open subset of K.

Then DN U = intp(clp(U N D)). So applying (iii), DN U = DNintg(clU).

Let V = intg(clU). Then DN U =DNV.

By applying (ii), we find that V C clU and, also, U C clV. Hence clV =
clU.

But V = intg(clU). So V = intK(cle. Thus V is a regular open subset of
K.

Then V is a regular open subsetof Kand DNV =DNU = E.

(v) Since C and D\C are clopen subsets of D, there exist regular open subsets of
K,UandV,withC =UNDand D\C = VND.Then UNVND = @. Since
D is dense in K it follows that the open set U NV is empty. Let W = U U V.
PutE =U.

(vi) For each n, let W, and E,, correspond to C, as W and E correspond to C in
v).LetY = ﬂn>1Wn and let F,, = Y N E,. Then Y is a Gs-subset of K with
D C Y. Since each E, is a clopen subset of W, F,, is a clopen subset of Y, in
the relative topology of Y.

Form #n,F,NF,ND=C,NC,=.Since Disdensein Y, F,, N F,
is empty. O

For any topological space Y we recall that RegY denotes the Boolean algebra of
regular open subsets of Y.

LetH : P(K) — P(D) be defined by H(A) = AN D. Here P(X) is the collection
of all subsets of a set X.

Lemma 6.2.2 The function H, when restricted to RegK, becomes a Boolean
isomorphism of RegK onto RegD.

Proof By Lemma 6.2.1, part (iv), H maps RegK onto RegD.

Suppose that A is a homomorphism. If H(U) = @& then U N D = &. Since D is
dense in K and U is open, this implies that U = &. So H is a Boolean isomorphism.

It remains to show that H is, indeed, a homomorphism.

Let U, V be regular open sets. Then, trivially, H({U N V) = H(U) N H(V).

The least upper bound of U, V in RegK is intg(cI(U U V)). It now follows from
Lemma 6.2.1, part (iii), that H maps the least upper bound of U, V in RegK to the
least upper bound of H(U), H(V) in RegD. Since H(K) = D it now follows that H
is a Boolean homomorphism; so H is a Boolean isomorphism. O

Lemma 6.2.3 A Hausdorff topological space T is extremally disconnected if, and
only if, each regular open set is closed, and hence clopen.

Proof First suppose the space to be extremally disconnected and let U be an open
subset. Then c/U is open.
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So intg(clU) = clU. Hence, when U is a regular open set, U = cl/U. Thus each
regular open set is clopen.

Conversely, suppose that each regular open set is closed (and so clopen). Let U
be an open set. Let W = intgclU. Then W is an open set with U C W C clU. On
taking closure, we see that c/U = cIW. It follows that W = intg (cIW), that is, W is
a regular open set. So W is clopen. Hence W = cIW = clU. Thus T is extremally
disconnected. O

Corollary 6.2.4 Let D be a dense subset of a compact Hausdorff extremally
disconnected space S. Let D be equipped with the relative topology. Then D is an
extremally disconnected space.

Proof Let V be a regular open subset of D. Then, by Lemma 6.2.1, part (iv), there
exists U, a regular open subset of S, such that V = U N D. By Lemma 6.2.3 U is
a clopen subset of S. Hence V is a clopen subset of D in the relative topology. By
using Lemma 6.2.3, we see that D is an extremally disconnected space. O

Lemma 6.2.5 Let D be an extremally disconnected topological space. Also let D be
a completely regular (Hausdorff) space. Then BD, its Stone-Czech compactification,
is extremally disconnected.

Proof Let W be a regular open subset of BD. Then W N D is a regular open subset
of D, by Lemma 6.2.2.

So W N D is a clopen subset of D, in the relative topology. It follows that
the characteristic function of this set is a continuous map from D into the two
point compact space {0, 1}. So, by the fundamental property of the Stone-Czech
compactification, it has a unique extension to a continuous function from BD to
{0, 1}. Thus there exists a clopen set E in 8D such that E N D = W N D. By
Lemma 6.2.1 (i), this gives

clW =cl(WND)=cl(END) =clE=E.

So int(cIW) = E.
Since W is a regular open set this gives W = E. Hence, by Lemma 6.2.3, BX is
extremally disconnected. O

Lemma 6.2.6 Let D be a dense subspace of a compact Hausdorff extremally
disconnected space Z. When A is a clopen subset of D in the relative topology,
then clA is a clopen subset of Z. Let A and B be disjoint clopen subsets of D, in the
relative topology. Then clA and cIB are disjoint clopen subsets of Z.

Proof By Corollary 6.2.4, D is extremally disconnected. So, by Lemma 6.2.3 and
Lemma 6.2.2, there is a unique clopen subset of Z, say, U, such that A = U N D.
On applying Lemma 6.2.1 we find that c/U = ¢l(U N D) = clA. Since U is clopen,
U = clA.

Let V = ¢IB. Then U, V are clopen sets such that H(U) = A and H(V) = B. So
HUNYV)=ANB = @.ButH is a Boolean isomorphism, so U NV = &. In other
words, clA and c/B are disjoint clopen sets. O
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The following theorem was given by Gillman and Jerison [51] as a by-product of
other results. The argument given here may be slightly easier and more direct.

Theorem 6.2.7 Let D be a dense subspace of a compact Hausdorff extremally
disconnected space S. Then S is the Stone-Czech compactification of D. More
precisely, there exists a unique homeomorphism from BD onto S which restricts
to the identity homeomorphism on D.

Proof Since D is a subspace of the compact Hausdorff space, S, D is completely
regular and hence has a well defined Stone-Czech compactification. By the funda-
mental property of 8D, there exists a unique continuous surjection « from 8D onto
S, which restricts to the identity on D.

Let a and b be distinct points in BD. Then there exist disjoint clopen sets U and
Vsuchthata € Uand b € V.LetA = UNDand B =V NDthen U = clgpA
and V = clgpB. So a[U] C clsA and «[V] C clsB. By Lemma 6.2.6, clsA and clsB
are disjoint. Hence (@) and «(b) are distinct points of S. Thus « is injective. It now
follows from compactness, that « is a homeomorphism. O

Corollary 6.2.8 Let D be a dense subspace of a compact Hausdorff extremally
disconnected space S. Let ¢ be a homeomorphism of D onto itself. Then there exists
a unique homeomorphism ® of S onto itself which is an extension of ¢.

Proof Since S is the Stone-Czech compactification of D, there is a continuous
function @ : S — § which extends ¢. Since D is dense in S, the continuous function
® is uniquely determined. By compactness, the range of & is a closed subspace of
S. So the range of ® contains the closure of D, that is, ® maps S onto S. Similarly
we can extend ¢! to a continuous ¥ mapping S onto S. But W ®(d) = d for each d
in D. So, by continuity, ¥ ® is the identity map on S. Similarly, ®W is the identity
map on S. So ® is a homeomorphism. O

When working with Polish spaces we shall need a different extension theorem,
applicable to complete metric spaces.

Theorem 6.2.9 (Lavrentiev’s Theorem) Let X; and X, be complete metric spaces.
Let Ay be a dense subset of X and A, a dense subset of X>. Let 0 be a
homeomorphism of Ay onto A,. Then there exist Zy and Z, where, for j = 1,2,
Z; is a dense Gs-subset of X; and A; C Z;. Further, there exists an homeomorphism
cr#from Zy onto Z, which extends o.

For a proof see [97, Chapter 2, page 429] or [167, Theorem 24.9]

6.3 Ergodic Discrete Group Actions on Topological Spaces

In this section, Y is a Hausdorff topological space which has no isolated points.
In most of our applications of this section, ¥ will also be completely regular; for
example, a compact Hausdorff space with no isolated points, or a dense subset of
such a space. As before, G is a countable infinite group.
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Lemma 6.3.1 Let G be a group of homeomorphisms of Y.

(i) If there exists xo € Y such that the orbit G[xy] is dense in Y then every G-
invariant open subset of Y is either empty or dense.

(ii) If every non-empty open G-invariant subset of Y is dense then, for each x in 'Y,
the orbit G[x] is either dense or nowhere dense.

Proof

(i) Let U be a G-invariant open set which is not empty. Since G[x] is dense, for
some g € G, we have g(xp) € U. But U is G-invariant. So xo € U. Hence
Glxo] C U.So Uis denseinY.

(ii) Suppose y is an element of Y such that G[y] is not dense in Y. Then Y\cIG[y]
is a non-empty G-invariant open set. So it is dense in Y. So ¢/G[y] has empty
interior. O

Definition 6.3.2 When G is a group acting as homeomorphisms of Y, its action is
said to be ergodic if each G-invariant open subset of Y is either empty or dense in
Y.

Proposition 6.3.3 Let D be a dense subspace of Y. Let ¢ : G +— Homeo(Y) be an
injective homomorphism (so a non-degenerate action of G). Let D be G-invariant.
Let eP(g) be the restriction of £(g) to D. Then &P is an injective homomorphism of
G into Homeo(D), so a non-degenerate action of G on D. The action ¢ is ergodic on
Y if, and only if, € acts ergodically on D.

Proof By Lemma 6.2.1 (i), for any open U C Y, clU = cl(U N D).
Suppose that 2 acts ergodically on D. Let U be any non-empty, G-invariant open
subset of Y. Then U N D is a G-invariant, open subset of D. So

D = clp(UND)=DnNclU.

It now follows that U is dense in Y. So ¢ acts ergodically on Y.

Conversely, suppose that ¢ acts ergodically on Y. A non-empty G-invariant subset
of D which is open in the relative topology of D, is of the form U N D where U is
a non-empty open set. Suppose U N D is G-invariant. Then it is straight forward to
verify that U N D = G[U] N D. By hypotheses, each non-empty G-invariant open
subset of Y is dense in Y. So

Y = cIG[U] = cl(G[U] N D) = cl(U N D).

So & acts ergodically on D. O

Lemma 6.3.4 Let Y be an extremally disconnected space. Let G be a group acting
as homeomorphisms of Y. Then the action of G is ergodic, if, and only if, the only
G-invariant clopen subsets are Y and &.
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Proof Let U be a G-invariant open set. Then cIU and Y\clU are G-invariant clopen
sets. Then U is neither empty nor dense, if, and only if, c/U and Y\clU are non-
trivial clopen sets. O

In Example 6.1.3 it can be shown that the action n + p" is an ergodic action of
Z on S;. Since Sy is not separable, no orbit can be dense so, by Lemma 6.2.1 (ii),
every orbit is nowhere dense.

For the first time in this section, we now require Y to be a Baire space.

Proposition 6.3.5 Let Y be a Baire space and G a countable group of homeomor-
phisms of Y. Then the following properties are equivalent.

(i) The action of G on Y is ergodic.
(ii) When E is a G-invariant Borel subset of Y then either E is meagre or its
compliment is meagre.

Proof First suppose that (ii) holds. Let U be a G-invariant open subset of Y. By (ii)
either U is meagre or Y\ U is meagre. Since Y is a Baire space, meagre open subsets
are empty. So either U is empty or the closed set Y\U has empty interior. So U is
empty or it is dense in Y. Thus the action is ergodic.

Now suppose that (i) holds. Let E be a G-invariant Borel subset of Y. Each Borel
subset of Y has the Baire Property, see Chap. 4, Sect. 6.1. So there exists an open set
U and a meagre set M, such that

E=UAM = (U\M) U (M\U).
(The symmetric difference operation, A, was introduced in the section on Boolean
algebras in Chap.4.)
If U is empty then E is meagre, and we are done. So now suppose U is not empty.
We have
U=UAMMAM =EAM C EUM.

Since E is G-invariant, for each g € G, we have

glU] C E U g[M].
So

G[U] C EU G[M].
We know that G[U] is a non-empty, G-invariant open set and so, by (i), it is dense
in Y. So Y\G[U] is a closed nowhere dense set. Thus G[M] U (Y\G[U]) is a meagre
set, say, M. Also

Y = G[U] U (Y\G[U]) C E U M.

Hence the compliment of E in Y is meagre. O
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6.4 Induced Actions

Let K be a compact Hausdorff space. Then, see Lemma 4.2.20 in Chap.4, K is
separable if, and only if C(K) is isomorphic to a closed (unital) x-subalgebra of £*°.

Let X be a completely regular (Hausdorff) Baire space.

For the definition of the regular o-completion of an arbitrary C*-algebra see
Definition 2.1.37. In Sect. 4.2, we discussed Baire measurability and regular o-
completions of commutative algebras. We saw that the regular o-completion of
Cp(X) can be identified with the monotone o-complete C*-algebra B (X)/My(X),
where B (X) is the algebra of bounded Baire measurable functions on X and My (X)
is the ideal of all f in B®°(X) for which {x : f(x) # 0} is meagre. Let S; be the
spectrum (Gelfand-Naimark structure space) of B> (X)/My(X) i.e. this algebra can
be identified with C(S).

Letj : Cp(X) — B*®°(X)/My(X) be the natural embedding. This is an injective
(isometric) *-homomorphism.

Suppose that X is separable. Then, by Corollary 4.2.24, B®(X)/My(X) =
B(X)/M(X).So C(S;) is monotone complete and thus S is extremally disconnected.
It follows from Proposition 4.2.22 that S; is separable and C(S;) supports a
faithful state. Putting things another way, we can identify S; with the spectrum of
B(X)/M(X).

Let us recall that a Hausdorff space T is said to be topologically complete if it is
completely regular and is a Gs-subset of BT, its Stone-Czech compactification. In
particular all Polish spaces have this property. When T is topologically complete,
BT\T is a meagre, F,-subspace of BT So it s trivial to observe that B(T)/M(T) =
B(BT)/M(BT) whenever T is topologically complete; in particular when 7 is
Polish. More generally, if K is compact and T is a dense Gs-subset of K then
B(T)/M(T) = B(K)/M(K). (See the exercises at the end of this section.)

Now, without any separability restrictions on X , it follows from Corollary 4.2.11,
that B(X)/M(X) is monotone complete, with Cp(X) ~ C(BX) embedded as a
regular subalgebra. In the following, K is required to be compact (Hausdorff). But
the preceding remarks should make it clear that by replacing K by X, much of the
following work can be generalised to non-compact spaces.

Let S be the spectrum of B(K)/M(K). We can identify B(K)/M(K) with
C(S), where S is a compact (Hausdorff) extremally disconnected space. Then
j 1 C(K) — C(S) is an (isometric) injective *-homomorphism. By the usual duality
between compact Hausdorff spaces and commutative (unital) C*-algebras, there is
a continuous surjection p from S onto K such that j(f) = f o p for each f in C(K).

Since C(K) is embedded in C(S) as a regular subalgebra, for each self-adjoint b
in C(S), the set

{j(a) : a € C(K)y, and j(a) < b}
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has b as its least upper bound in C(S),,. (We recall that C(S),, = Cr(S) that is, the
self-adjoint part of C(S) can be identified with the algebra of real valued continuous
functions on S.)

Lemma 6.4.1 Let Z be a subset of S. Then p[Z] is dense in K if, and only if, Z is
dense in S.

Proof First let p[Z] be dense in K. Suppose Z is not dense in S. Then there exists a
non-empty clopen set E which is disjoint from clZ.

Let j(a) < xg. Then j(a)(s) < 0 for s € Z. So a(p(s)) < 0 for p(s) € p[Z].
Hence a < 0. But this implies yz < 0 which is a contradiction. So Z must be dense
in §S.

Conversely, let Z be dense in S. Suppose p[Z] is not dense in K. So there exists a
non-empty open set U C K, where U is disjoint from p[Z]. Since p is surjective,
p'[U] is a non-empty open subset of S. Since p~'[U] is disjoint from Z this
contradicts Z being dense in S. O

Let K be a compact (Hausdorff) space. Let Homeo(K) be the group of all
homeomorphisms from K onto K. Let AutC(K) be the group of all x-automorphisms
of C(K). For ¢ € Homeo(K) let hy(f) = f o ¢ for each f € C(K). Then ¢ — hy
is a bijection from the group Homeo(K) onto AutC(K) which switches the order of
multiplication. In other words it is a group anti-isomorphism.

Let 6 be a homeomorphism of K onto K. As above, let iy be the corresponding
s-automorphism of C(K). Also f +— f o 0 induces an automorphism fz?; of
B(K)/M(K). Since B(K)/M(K) can be identified with C(S), there exists 6 in
Homeo(S) corresponding to hy. Clearly, hy restricts to the automorphism, hg, of
C(K).

Lemma 6.4.2 The automorphism hy is the unique automorphism of C(S) which is
an extension of hg. Hence 0 is uniquely determined by 6. Furthermore, the map
0 — 0 is an injective group homomorphism from Homeo(K) into Homeo(S).

Proof Let H be an automorphism of B(K)/M(K) = C(S), which is an extension of
hgy. Let b be a self-adjoint element of B(K)/M(K). Then, for a € Cr(K), j(a) < b
if, and only if, Hj(a) < Hbi.e. j(hga) < Hb.

So Hb is the supremum of {j(hg(a)) : a € Cr(K), j(a) < b}. Hence H = he.
That is, /g is the unique extension of Ay to an automorphism of C(S).

Let A1 and h; be in AutC(K). Then for a € C(K), we have

hiha(j(@)) = j(hiha(a)) = j(ha(a)) = mha(j(a)).

By uniqueness, it now follows that h/l-ﬁz = hyhy. Hence h +— h is an injective group
homomorphism of AutC(K) into AutC(S). So the map 6 — 6 is the composition of
a group anti-isomorphism with an injective group homomorphism composed with a
group anti-isomorphism. So it is an injective group homomorphism. O

Corollary 6.4.3 Foreachs € S, 6(ps) = p(és).
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Proof Fora € C(K), s €S,

a o 0(ps) = he(a)(ps) = he(j(@))(s) = j(@)(@s) = a(p(s)).

Hence 6(ps) = p(és). O

Throughout this chapter, unless we specify otherwise, G is a countably infinite
group. Let ¢ : G — Homeo(K) be a homomorphism into the group of homeomor-
phisms of the compact space K. That is, ¢ is an action of G on K. For each g € G,
let &, be the homeomorphism of S onto S induced by ¢,. Then £ is the action of G
on § induced by e.

We shall normally assume that K has no isolated points. By Corollary 4.2.14, this
is equivalent to S having no isolated points.

Proposition 6.4.4 Let xo be a point in K. Let sy € S such that psy = xo. Then the
orbit {e4(x0) : g € G} is dense in K if, and only if, the orbit {€,(so) : g € G}is dense
in S.

Proof By Corollary 6.4.3, g,(x0) = p(€,(s0)). The proposition now follows from
Lemma 6.4.1. O

Proposition 6.4.5 Let G, K, S and ¢ be as above. Let & be the action of G on S
induced by the action € on K. Let so € S and let xo = pso. Let the orbit {e,(xo) : g €
G} be free then {€,(s0) : g € G} is a free orbit in S.

Proof By Corollary 6.4.3, g,(pso) = p(€450). That is, £4(x0) = p(Eg50).

Let i € G such that &,50 = sg. Then p(&,50) = p(s0). S0 €4(x0) = xo. Since the
orbit {e,(x0) : g € G} is free, h is the neutral element of G. So {&,(s9) : g € G}isa
free orbitin S. O

Corollary 6.4.6 Let the action of € on K have a dense orbit. Then the extremally
disconnected space S is separable and

B (K)/Mo(K) = B(K)/M(K).

Proof The countable set {€,(s0) : g € G} is dense in S. So S is separable. Since K
also has a dense orbit, the rest follows from Corollary 4.2.24. O

The following lemma does not require X to be compact; being a Baire space is
enough.

Lemma 6.4.7 Let X be a Baire space and G a countable group acting as home-
omorphisms of X. Let xo € X be such that the orbit Gxo] is both dense and free.
Then there exists a G-invariant Y, which is a dense Gg subset of X, such that, for
g # 1, & has no fixed point in Y. Also xy € Y.
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Proof Fix g # 1,let K, = {x € X : g(x) = x}. Then K,, the fix-point set of g, is
closed. Let U be the interior of K,. Then the orbit G[xo] is disjoint from K. So its
closure is disjoint from U. But since the orbit is dense, this means that K, has empty
interior.

Let Z = |J{K, : g € G,g # 1}. Then Z is the union of countably many, closed
nowhere dense sets. A calculation shows that

€h[Kg] - thh_l

and from this it follows that Z is G-invariant. Put Y = X\Z. Then Y has all the
required properties. O

Remark 6.4.8 Let D be a dense subset of a compact Hausdorff space K. Let «
be a homeomorphism of D onto D. Then, in general, @ need not extend to a
homeomorphism of K. But, from the fundamental properties of the Stone-Czech
compactification, & does extend to a unique homeomorphism of 8D, say 6,. Let S,
be the Gelfand-Naimark structure space of B(8D)/M(BD). Then, from the results
of this section, 6, induces a homeomorphism é; of S,. Let S be the structure space
of B(K)/M(K).

By Lemma 6.2.2, the Boolean algebra RegK is isomorphic to RegD. Again by
Lemma 6.2.2, RegBD is isomorphic to RegD. So, by Proposition 4.2.13, the Boolean
algebra of projections in B(D)/M(BD) is isomorphic to the Boolean algebra of
projections in B(K)/M(K). It follows that S;, is homeomorphic to S.

Hence each homeomorphism of D induces a canonical homeomorphism of S. So
each action of G, as homeomorphisms of D, induces, canonically, an action of G as
homeomorphisms of S.

Exercise 6.4.9

(a) Let X be a Baire space and Y a dense Gs-subset of X. For each f € B(X) let
Rf be the restriction of f to Y. Show that R maps B(X) onto B(Y) and Rf is
in M(Y) precisely when f € M(X). Deduce that R induces an isomorphism
of B(X)/M(X) onto B(Y)/M(Y) (so we may identify these algebras). As we
have seen earlier B(X)/M(X) is monotone complete and so isomorphic to C(S),
where S is compact and extremally disconnected. As remarked above S can be
identified with the Stone space of the (complete) Boolean algebra of regular
open subsets of X (or, equivalently, of ).

(b) Let 6 be a homeomorphism of Y onto itself. Show that the automorphism of
B(Y) defined by f + f o 8 induces an automorphism Hy of C(S). Now suppose
that 6 can be extended to a homeomorphism 6y of X onto itself. Show that Oy
induces the same automorphism of C(S) as is induced by 6.

(¢) Let Y and Y, be dense Gs-subsets of X. Let 6 be a homeomorphism of Y, onto
Y). Show that the map from B(Y;) to B(Y,), defined by f + f o 6, induces
an isomorphism of B(Y;)/M(Y;) onto B(Y,)/M(Y>). By (a) it follows that this
can be regarded as an isomorphism of B(X)/M(X) onto B(X)/M(X); hence it
induces an automorphism of C(S).
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(d) Let S be compact Hausdorff and extremally disconnected. Let & and 8 be
homeomorphisms of S. Let i, and hg be the corresponding automorphisms
of C(S).
Show that there is a clopen set K C S such that a|x = |k if, and only if,
there is a projection yx such that yxh, = yghg. Thatis for each f € C(S), we
have

xxha(f) = xxhp(f).

6.5 Ergodicity on Special Spaces

In generic dynamics we are especially interested in dense Gs-subspaces of separable
compact Hausdorff spaces. In particular each Polish space is of this form.

Lemma 6.5.1 Let X be a metrisable space. The following are equivalent:

(i) The space X is homeomorphic to a complete metric space.
(ii) The space X is a Gs-subspace of BX.
(iii) Whenever X is densely embedded in a (Hausdorff) Baire space, it is a Gs-
subspace.

Proof See [167, Theorem 24.13]. O

It is clear that if a topological space has a countable base then it is separable.
For metrisable spaces the converse is well-known but, in general, separability is a
weaker property than having a countable base. We shall make use of an intermediate
property — hyperseparability.

Definition 6.5.2 Let X be a (Hausdorff) topological space. Then X is hypersepara-
ble if there exists a sequence of open sets (V,) such that, whenever W is a non-empty
open subset of X, then, for somen, @ # V, C W.

By taking a point from each non-empty V,, we see that a hyperseparable space
is separable. It is easy to check that a dense subspace of a hyperseparable space
is, itself, hyperseparable. Obviously the existence of a countable base implies
hyperseparability.

Lemma 6.5.3 Let X be a Polish space. Then the Boolean algebra RegX has a
countable order dense set. Let Sx be the spectrum of B(X)/M(X). Then Sx is
hyperseparable. Furthermore, X has no isolated points if, and only if, Sx has no
isolated points.

Proof Let (U,) be a countable base for X. Put V,, = int(clU,). So V, is a regular
open set.
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Let W be a non-empty regular open subset of X. Then, for somen, @ # U, C W.
So

@ # V, = int(clU,) C int(cIlW) = W.

So RegX has a countable subset, (V,,) which is order dense.

By Proposition 4.2.13 RegX is isomorphic to the Boolean algebra of clopen
subsets of Sx. So the Boolean algebra of clopen subsets of Sx has a countable order
dense set, (K,). Let W C Sx be a non-empty open set. Then W contains a non-empty
clopen set. So, for some n, @ # K, C W. So Sy is hyperseparable.

Now Sx has an isolated point if, and only if, the Boolean algebra RegX has an
atom. Clearly RegX has an atom if, and only if, X has a minimal regular open set V.

Let V be a minimal regular open set. Suppose V is not a one point set. So it
contains distinct points a and b. Since X is metrisable we can find open sets A and
Bsuchthata € A C Vand b € B C V and also c/A is disjoint from c/B. But then
int(clA) is a non-empty regular open set, strictly smaller than V. It follows that X
can only have a minimal regular open set if X has an isolated point. O

Corollary 6.5.4 Let X be any perfect Polish space. Then Sx is homeomorphic to
Sk.

Proof By Corollary 4.2.14 Sx has no isolated points; equivalently RegSx has no
atoms.

But, see [153, page 155], there is exactly one Boolean algebra which is complete,
non-atomic and with a countable order dense subset. So Sy is homeomorphic to Sg.O

An alternative argument can be based on the following. By Lemma 6.5.3, RegSx
has a countable order dense set. This countable set generates a countable Boolean
subalgebra B. Let F be the Stone space of B.

Each countable Boolean algebra is a quotient of the free Boolean algebra on
countably many generators. So, by duality, F is a closed subspace of 2N

Any atom of B would be an atom of RegSx. So B has no atoms. Thus F is
a compact, zero-dimensional metric space with no isolated points. So by [167,
Corollary 30.4] F is homeomorphic to 2. From this and order-density we get
C(Sy) = B(2Y)/M(2"). This gives Sy == Spu.

The following result applies to perfect Polish spaces, to Sg and to dense Gs-
subsets of Sk.

Proposition 6.5.5 Let X be a hyperseparable (Hausdorff) Baire space with no
isolated points. Let G act as homeomorphisms of X. Then the following are
equivalent:

(i) Every G-invariant open subset of X is empty or dense.
(ii) Every G-invariant Borel subset of X is either meagre or is the compliment of a
meagre set.
(iii) There exists a dense, G-invariant, Gs subset Y of X such that Gly] is a dense
orbit for eachy € Y.
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(iv) There exists an xo € X such that {e,(xo) : g§ € G} is dense in X.

Proof By Proposition 6.3.5, (i) and (ii) are equivalent. Clearly (iii) implies (iv). By
Lemma 6.3.1, (iv) implies (i).

It now suffices to show (i) implies (iii). Let (V},) be a sequence of non-empty
open sets such that each non-empty open set, W, contains some V,,. Then

Ugecg_l[vn]

is a non-empty, G-invariant open set. So, by (i), it is dense in X. Since X is a Baire
space, the Gs-set

Y =21 Ugecs™ Vil

is a dense subset of X.
Let y be any element of Y and let O be any non-empty open subset of X. Then,
for some n, V,, C O. Then g(y) € V,, for some g € G. Hence GJy] is a dense orbit.O

6.5.1 Zero-Dimensional Spaces

Let us recall that a (Hausdorff) topological space is said to be zero-dimensional
if it has a base of clopen subsets. A topological space is totally disconnected if
its connected components consist of single points. Every zero-dimensional space
is totally disconnected. We proved in Lemma 2.3.1, that the converse holds for
compact Hausdorff spaces. But totally disconnected metric spaces which are not
zero-dimensional do exist [167, Examples 29.8]. But in the literature “totally
disconnected” is sometimes used where “zero-dimensional” is intended, see [157].
For our purposes these delicate distinctions do not matter. Roughly speaking, in
generic dynamics it is enough to work with zero-dimensional spaces.

Proposition 6.5.6 Let X be a perfect Polish space with G acting as homeomor-
phisms of X. Then there exists a dense Gs-subset Z C X such that Z is G-invariant,
zero-dimensional and a perfect Polish space. If the action of G on X is ergodic then
so, also, is its action on Z.

Proof Let (U,) be a base of open sets for the topology of X. Then clU,\U, is a
closed nowhere dense set for each n. Take their union M;. Now let M, be the G-
saturation of M. Put Z = X\M,. Then Z is a dense Gs-subset of X. So Z is a perfect
Polish space. Also U, N Z = clU, N Z. So Z has a base of clopen sets.

Suppose G acts ergodically on X. By Proposition 6.5.5 (iii), there exists ¥ C X,
where Y is a G-invariant, Gs-subset of X and, for each y in Y, the orbit G[y] is dense
in X. By the Baire Category Theorem, ¥ N Z is dense in X. So Z contains a dense
orbit. So, by Proposition 6.5.5, G acts ergodically on Z. O
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Exercise 6.5.7 Let X be a (Hausdorff) zero-dimensional space. Show that every
subspace is zero-dimensional in the relative topology.

We shall make use of a weaker property than free actions.
Definition 6.5.8 Let X be a Hausdorff space with G acting as homeomorphisms of
X. The action is said to be pseudo free if, for each g € G, the fixed point set
K, ={xeX:gx) =ux}
is clopen. In particular, if G[xo] is an orbit such that the action of G, restricted to this
orbit, is pseudo free then we say that the orbit is pseudo free.

Lemma 6.5.9 Let X be a Hausdorff space with G acting as homeomorphisms of X.
Let the action of G be pseudo free. Let G|xo] be a free, dense orbit in X. Then the
action of G on X is free.

Proof Let g € G such that g(c¢) = ¢ for some ¢ € X. Since the action is pseudo free,
the fixed point set K = {x € X : g(x) = x} is clopen.
Since K is not empty and is open, for some & € G, h(xp) is in K. So

8(h(xo)) = h(xo).
Hence
hgh(xo) = xo.
But the orbit G[xo] is free. So h~!gh = 1. Thus g = hth™! = 1. Hence the action

of G on X is free. O

If (X, G, ¢) is a dynamical system where the action is free then this action is also
pseudo free, because each fixed point set is empty or the whole of X.

Proposition 6.5.10 Let X be a (Hausdorff) Baire space with G acting as homeo-
morphisms of X. Then there exists a G-invariant, dense Gs subset Y such that, for
each g € G,

Fo={xeY:gx)=x}

is a clopen subset of Y. When X is zero-dimensional, so, also, is Y.

Proof For each g € G, let K, = {x € X : g(x) = x}. Then K, is closed. Then
K, \intK, is a closed, nowhere dense set. Then

UK, \intK,
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is a meagre F,; subset of Y. Let M be the saturation of this set by G. Then this is also
ameagre F;. Let Y = X\M. Then, since X is a Baire space, Y is a dense Gs-subset
of Y.

For each g € G,

Fo=YNK, =YnNink,.

So Fy is both open and closed in the relative topology of Y. O
We shall need the following lemma shortly:

Lemma 6.5.11 Let X be a Hausdorff space with no isolated points. Let Y be a dense
subset of X. Let O be a non-empty open subset of X. Then O NY is an infinite set. In
particular, every dense subset of X is infinite.

Proof Suppose O NY is a non-empty finite set, say, {p1,p2, -+, Pn}-

Then O \ {p1,p2,- -+ ,pn} is an open subset of X which is disjoint from Y. But ¥
is dense in X. Hence O = {py,p2,--- , pu}- So {p1} is an open subset of X. But X has
no isolated points. So this is a contradiction. So O N'Y is infinite. On putting O = X
it follows that Y is infinite. O

6.6 Orbit Equivalence: Zero-Dimensional Spaces

Let us recall, from Definition 6.1.5, that when a group acts on a space X, two points
of X are orbit equivalent if they are in the same orbit.

In this section we shall focus on group actions on zero-dimensional spaces and
prove a key technical result, Proposition 6.6.16. In Sect. 6.7, we shall apply it to
generic dynamics over extremally disconnected spaces. In Sect. 6.8, we shall use it
to show that when an infinite countable group of homeomorphisms acts ergodically
on a perfect Polish space then the orbit equivalence relation is unique (modulo
meagre sets).

For any perfect Polish space T, let Sy be the spectrum of B (T)/M(T). Then,
for every T, Sr is homeomorphic to Sg. When an infinite countable group of
homeomorphisms acts ergodically on Sy, then the orbit equivalence relation is
unique (modulo meagre sets).

Throughout this section X is a separable, zero-dimensional (Hausdorff) space
with no isolated points. Also G is a countably infinite group acting on X as
homeomorphisms, that is, there exists a non-degenerate action ¢ : G — Homeo(X).
Furthermore, let D be a dense G-invariant subset of X.

We shall be particularly interested in dynamical systems with a dense orbit. In
other words, when there exists ¢ € X, such that the orbit G[c] = {&,(c) : g € G}
is dense in X. Since X has no isolated points, it follows from Lemma 6.5.11 that a
dense orbit must be infinite.
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To simplify our notation, we often write “g” for &,. The restriction of &, to a
G-invariant subspace of X will also be denoted by “g”.
Looking at things another way, we are, in effect, identifying G with the

isomorphic group of homeomorphisms &[G].

Definition 6.6.1 Let Z be a G-invariant dense subset of X and let / be a bijection
of Z onto itself. Then 4 is said to be strongly G-decomposable over Z if there exists
a sequence of pairwise disjoint clopen subsets of Z, (A;) where Z = (JA;, and a
sequence (g;) in G such that

h(x) = gj(x) forx € A;.

When this occurs, & is a continuous map from Z into Z. Since each g; is a
homeomorphism of Z, each g[A;] is clopen. Since & is a bijection, (h[4)]) is a
sequence of pairwise disjoint clopen subsets of Z whose union is Z. Hence A™!
is strongly G-decomposable over Z. So h and A" are both continuous. Thus % is a
homeomorphism of Z onto Z.

We sometimes use a slightly weaker condition. Let /& be a homeomorphism of X
onto itself. Then & is G-decomposable (over X) if there exists a sequence of pairwise
disjoint clopen subsets of X, (K;) where | JK; is dense in X, and there exists a
sequence (g;) in G such that

h(x) = gj(x) forx € Kj.

When this holds, | K; is an open dense subset of X, hence its compliment is a
closed nowhere dense set.

Let I' be a countable group acting on X as homeomorphisms of X onto itself.
If every y € T is strongly G-decomposable over X and every g € G is strongly
I'-decomposable over X, then we say that the action of G on X and the action of I'
on X are strongly equivalent.

Exercise 6.6.2 Let G, G, and G3 be countable groups acting as homeomorphisms
of X. Let the action of G; on X be strongly equivalent to the action of G, on X. Let
the action of G, on X be strongly equivalent to the action of G3 on X. Show that the
action of Gon X is strongly equivalent to the action of G3 on X.

For a given dynamical system (X, G, ¢), the corresponding orbit equivalence
relation, ~g, is identified with its graph, Gr(e[G]) that is:

{(x,e0x) 1 x€X, g€ G} ={(x,gx) : x€ X, g € G} = Gr(e[G)).

When it is clear which action, €, of G is intended, we shall use Gr[G].

Lemma 6.6.3 Let G and I" be countably infinite groups acting on X as homeomor-
phisms of X onto itself. Suppose that the actions of G and I are strongly equivalent.
Then Gr(G) = Gr(I'). In other words, the orbit equivalence relations with respect
to G and I' coincide.
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Proof Each element of Gr(G) is of the form (x, gx). Since g is strongly I'-
decomposable over X, gx = yx for some y € I'. So Gr(G) C Gr(I"). Similarly
Gr(I') C Gr(G). O

The above lemma tells us that when G and T have strongly equivalent actions on
X then orbit equivalence with respect to G is the same relation as orbit equivalence
with respect to I'. When the actions of G and I" are free and X is a (Hausdorff) Baire
space, we have a converse, modulo meagre sets.

Lemma 6.6.4 Let X be a (Hausdor(f) Baire space. Let I" and G be countable groups
of homeomorphisms of X, both of which act freely on X. Suppose that the orbit
equivalence relations coincide, that is Gr(G) = Gr(I"). Then there exists Z, a dense
Gs subset of X which is invariant under the actions of both G and I, such that the
actions of the two groups are strongly equivalent over Z.

Proof Let I' v G be the countable group of homeomorphisms of X which is
generated by G and I'.

Take any g € G and fix it. Let F*(y) be the closed set {x € X : g(x) = y(x)}. Let
F°(y) be the interior of F*(y) so that F*(y)\F°(y) is a closed nowhere dense set.

Let M} = UyeF F*(y) \ F°(y). Then M, is a meagre F,-set. Let M, be the
I' v G-saturation of M; and let Y, = X \ M,. Because X is a Baire space Y, is a
dense Gs-subset of X, which is invariant under the actions of I" and G.

Foreachy € I', let F(y) = F*(y) N Y, = F°(y) N Y,. So F(y) is a clopen
subset of Y,. Lety € Y,, then g(y) = y(y) forsome y. Soy € F(y) forsomey € I'.
So Y, is the union of the clopen sets F(y).

Suppose, for y and o in I, there exists x € F(y) N F(o). Then we have y(x) =
g(x) = o(x). But since the action of I' is free on X, it follows that y = o. So
(F(y))yer is a clopen partition of Y,. So, g is strongly I"-decomposable over Y.
Now let Y| = ﬂgeG Y,. Then Y; is a Gs-subset of X, which is dense because X is
a Baire space. Each element of G is strongly I'-decomposable over Y;. Similarly,
we can construct a I' V G-invariant dense Gs-subset Y, such that each element of T’
is strongly G-decomposable over Y,. Put Z = Y; N Y,. Then G and I" are strongly
equivalent over Z and Z is a dense Gg, invariant subset of X. O

Definition 6.6.5 Let X and Y be Hausdorff spaces. Let G and I" be countable groups
acting as homeomorphisms on, respectively, X and Y. We say the action of G on
X and the action of I" on Y are (conjugately) strongly equivalent if there exists a
surjective homeomorphism 7 : X +— Y such that the group of homeomorphisms
{mgn~': g € G} = nGn~! is strongly equivalent to T

Definition 6.6.6 Let 7| and T, be Baire spaces. Let G| and G, be countable groups
acting as homeomorphisms of, respectively, 77 and 7,. We say the actions of G
and G, are generically equivalent if the following hold: There exists a G;-invariant,
dense Gs-subset X; C T; for j = 1,2. There exists a homeomorphism 7 from X;
onto X, such that the action of G| on X; and the action of G, on X, are (conjugately)
strongly equivalent.
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Exercise 6.6.7 Let G; be a countable group acting on a Baire space T; for j =
1,2, 3. Suppose the action of G| on T} is generically equivalent to the action of G,
on T, and suppose the action of G, on T, is generically equivalent to the action of
G3 on T3. Show that the action of G| on T is generically equivalent to the action of
G3 on T3.

In the special situation where X is extremally disconnected we have the following
useful result.

Lemma 6.6.8 Suppose that X is compact and extremally disconnected. Let D
be a dense subset of X. Let o be a homeomorphism of D onto D. Let a be
strongly G-decomposable over D. Then there exists &, a unique extension of « to
a homeomorphism of X onto itself. This & is G-decomposable over X.

Proof The existence and uniqueness of &, follows from Corollary 6.2.8, since X is
the Stone-Czech compactification of D.

Let (Aj) be a sequence of pairwise disjoint clopen subsets of D. Then, by
Lemma 6.2.6, (clA)) is a sequence of pairwise disjoint clopen subsets of X. Let
(gj) be a sequence in G such that a(x) = g;(x) for x € A;. Then, by continuity,
a(x) = gj(x) for x € clA;. Also the open set | clA; is dense in X (because it
contains D). O

Following our usual notation for each homeomorphism 6 of X onto itself, we
define a homomorphism of the algebra of bounded continuous (C—valued) functions
on X, by hg(f) =fo0.

Corollary 6.6.9 Let X be compact and extremally disconnected. Let a be a
homeomorphism of X onto itself. Then (i) there exists a sequence (g(j)) in G and
a sequence of orthogonal projections (pj) such that pihe;y = pjhq for each j, and

\/jzlpj = 1 if, and only if, (ii) « is G-decomposable over X.

Proof By Exercise 6.4.9 (d), pjhy(j) = pjhe is equivalent to p; = yg,and g(j)|x;, =
a|k; for a clopen K;. The projections (pj) are orthogonal if, and only if the clopen sets
(K;) are pairwise disjoint. Also \/ >1pj = 1 if, and only if, the open set |5 K; is
dense in X. So (i) implies « is strongly G—decomposable over a dense open subset of
X. This, in turn, implies (ii). The converse, (ii) implies (i), is equally straightforward
provided we use Lemma 6.2.6. O

Lemma 6.6.10 Let X be a separable, zero-dimensional space with no isolated
points. Let G and " be countable groups acting as homeomorphisms of X. Suppose
also that the action of G is pseudo free. Let each y € I be strongly G-decomposable
over X. Furthermore, let there exist a countable dense subset A C X which is G-
invariant, I -invariant and

A x A CGr(G)and A x A C Gr(T').
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Then there exists a dense Gs-subset Y of X such that A C Y C X, where Y is G-
and T -invariant and the action of G on Y and the action of I" on Y are strongly
equivalent.

Proof Let (dy,da, ...) be an enumeration, without repetitions, of A. Fix g € G. We
shall decompose g using elements of I". Let x; = d;. Since (x1,g(x1)) € A X A C
Gr(I'), there exists a y; € T such that g(x;) = y;(x;). Since y; is strongly G-
decomposable over X, there exists a clopen neighbourhood K of x| and a g; €
G such that y;(x) = gi(x) for all x € K. Since g(x;) = g1(x;), we have x; =
g 'g1(x1). Since the action of G on X is pseudo free, {y € X : g7 'gi(y) = y}
is clopen and contains x;. Therefore, there exists a clopen neighbourhood K of x;
with K; C K and g(x) = g1 (x) for all x € K. So, g(x) = y;(x) forall x € K.

If K; = X then g = y; and we stop. Otherwise K| # @&. Then, because A is
dense in X, we have K| N A # @. Let p be the smallest whole number such that
dp € ch N A.

Let x, = d,. By repeating the above argument, we find a clopen neighbourhood
K> of x5, and a y, € T such that x, € K; C K€ and g(x) = y»2(x) forall x € K.
By repeating these arguments, we find a sequence ( finite or infinite) (K,) of disjoint
clopen subsets of X and a sequence (y,) in I" such that A C | J,,~, K, and, for each
x € Ky, g(x) = ya ().

Let O, = (J,~ Ky Then clearly O, is a dense open subset of X such that O, D
A.LetYy = ﬂgE_G O,. Then A C Yj and so Yy is a dense Gs subsetof X. Let GV I
be the (countable) group generated by G and I'. (Here we are using “G” for the
isomorphic group of homeomorphisms £[G]; similarly for T'). Let Y = ({v(Yy) :
v € GV I} Thenclearly A C Y. Hence Y is a dense G5 subset of X containing A,
which is G-invariant and I'-invariant.

For each g € G, g|y is strongly I"-decomposable over Y and foreach y € T, y|y
is strongly G-decomposable over Y. Hence the actions of G and I" on Y are strongly
equivalent. O

The next two lemmas are easy technicalities. Unless we specify otherwise, we do
not assume anything about X, other than being a zero-dimensional (Hausdorff) space
with no isolated points. The countably infinite group G acts as homeomorphisms of
X. We shall soon require the existence of a dense orbit for the action of G. So X
must be separable.

Lemma 6.6.11 Let Y and W be G-invariant subsets of X with @ # W C Y. Let
o be a homeomorphism of Y onto itself, which is strongly G-decomposable over Y.
Let aw be the restriction of o to W. Then aw is a homeomorphism of W onto itself,
which is strongly G-decomposable over W.

Proof The homeomorphism « is strongly G-decomposableover Y. SoY = | J,. | Ax
where (A,) is a sequence of pairwise disjoint clopen subsets of Y; also, there exists
a sequence (g,) in G such that «(y) = g,(y) foreachy € A,,.

Letw € W. Thenw € A, N W for some n. Also a(w) = g,(w). Since W is
G-invariant, a(w) is in W. So ayy is an injection from W into W.

Now take v € W. Letx = o' (v). Then x € A,, for some m. Also a(x) = g,,(x).
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Thus x = g,'(v). Since W is G-invariant, x is in W. It follows that ayy is a
bijection from W onto W.

Since W = |J,-; W N4, it is now clear that ay is strongly G-decomposable
over W. So ayy is a homeomorphism of W onto W. O

Lemma 6.6.12 Let Y and Z be G-invariant subsets of X with Y N Z # @. Let o be
a homeomorphism of Y onto itself, with o strongly G-decomposable over Y. Let B
be a homeomorphism of Z onto itself, with 8 strongly G-decomposable over Z. Then
Ba restricted to Y N Z is a homeomorphism of Y N Z onto itself which is strongly
G-decomposable over Y N Z.

Proof By Lemma 6.6.11, o and 8 map Y N Z onto itself. Also by the lemma, the
restriction of @ to Y N Z is strongly G-decomposable; similarly for 8. So it suffices
to prove the result when ¥ = Z.

Let {A; : i € N} be a partition of Y into clopen sets and (g) a sequence in G
which gives the G-decomposition of «. Similarly, let {B; : j € N} be a partition of

Y into clopen sets and (g? ) a sequence in G which gives the G-decomposition of j.
Then {A; N« !'[B}] : i € N,j € N} is a partition of Y into clopen sets.
Lets € A; N~ [Bj]. Then Ba(s) = g ((s)) = g’ g% (s). O

The point of the following lemma is that whenever a homeomorphism of D is
G-decomposable over D then it can be extended to a homeomorphism of a Gs set
YCX.

Lemma 6.6.13 Let D be a G-invariant, dense subset of X. Let a be a homeomor-
phism of D onto itself, which is strongly G-decomposable over D. Then there exists
a G-invariant, Gs-set Y, with D C Y C X, and a homeomorphism ot of Y onto
itself. such that o is an extension of a and o is strongly G-decomposable over Y.

Proof There exists a sequence of pairwise disjoint clopen subsets of D, (C,) and a
sequence in G, (g,) such that D = | J,.,C, and

a(z) = gn(z) forz € C,.

By using Lemma 6.2.1 (vi) we can find a Gs-set Y1, D C Y; C X, and a sequence
of pairwise disjoint clopen subsets of Y;, (4,) such that C, = DN A,. Let Y, =
Un>1An C Y;. Then Y; is a relatively open subset of Y;. So Y, is a Gj subset of
X which contains D. and which is the union of the disjoint clopen (relative to Y;)
subsets A,,.

Since « is a homeomorphism of D onto D, («[C,]) is a sequence of pairwise
disjoint clopen subsets of D whose union is D.

Again, by using Lemma 6.2.1 (vi) we can find a Gs-set Y3, D C Y3 C X, and a
sequence of pairwise disjoint clopen subsets of Y3, (B,) such that DN B, = «[C,] =
gn[Ca]. We may assume, without loss of generality, that Y3 = [}, ; Bn.

Now let Y = ﬂgeGg[Yz N Y3]. Then Y is a G-invariant, Gs-subset of X, with
DCYCY,NYs.
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Let A* = Y N A, for each n. Then (A?) is a sequence of pairwise disjoint clopen
subsets of ¥ with C, = DN A*and Y = |, ,A%.

Let Bf = Y N B,. Then (B¥) is a sequence of pairwise disjoint clopen subsets of
Y with g,(C,) = a(C,) =DNBYandY = |, B

We now define 8 on Y by B(y) = g.(y) for y € A*. Since the clopen sets (A¥)
are pairwise disjoint, B is well-defined. Because Y is G-invariant, 8 maps Y into
Y. Clearly B is continuous. Similarly we now define y on Y by y(y) = g, !(y) for
y € B*. Then y is also a continuous map into Y. Then By(z) = z for all z in D. Since
D is dense in Y, it follows, by continuity, that By is the identity map on Y. Similarly
for yB. So B is a homeomorphism of Y onto Y. On putting ” = B we have the
required extension. O

Corollary 6.6.14 Let D be a G-invariant, dense subset of X. Let I" be a countable
group. Let 1 be a (non-degenerate) action of I' as homeomorphisms of D. Suppose
that n, is strongly G-decomposable over D for each y € T'. Then there exists a
G-invariant, Gs-set Y, with D C Y C X and an action n¥ of T' as homeomorphisms
of Y, with the following properties. For eachy € T, 77)),' is an extension of n,, and 77)):
is strongly G-decomposable over Y.

Proof For each y € T, apply Lemma 6.6.13 to find a G-invariant, Gs-set Y, with
D C Y, and a homeomorphism nf, of Y, onto itself, such that 77?, is strongly G-
decomposable over ¥, and is an extension of 7,. Let Y = () Y,. Clearly Y is a
G-invariant, Gs set.

By Lemma 6.6.11, each 77?, restricts to a homeomorphism of Y onto Y and is

yer

strongly G-decomposable over Y. Let 77)),’ be the restriction of nf, toY.
It nf, is the identity map on Y then 7,is the identity map on D. Since 7 is a
non-degenerate action y = . So the action 7* is non-degenerate. O

Lemma 6.6.15 Let X be a zero-dimensional space with no isolated points. Let G be
a countably infinite group which acts on X as homeomorphisms, with a dense orbit
D. Let A and B be disjoint clopen subsets of D. Let a € A and b € B. Then there
exists a homeomorphism h from D onto D with the following properties. First h is
strongly G-decomposable. Secondly h interchanges A and B and leaves each point
of D\(A U B) fixed. Thirdly, h(a) = b. Fourthly h = h™".

Proof Since D is a dense subset of X, D is zero-dimensional in the relative topology
and has no isolated points.

Since a and b are in the same orbit of G, there exists g; in G such that g;(a) = b.
Then A N 81_1 [B] is a clopen neighbourhood of a which is mapped by g into B. By
Lemma 6.5.11, each non-empty, open subset of D (in the relative topology) is an
infinite set. So we can find a strictly smaller clopen neighbourhood of a, say A;.
By dropping to a clopen sub-neighbourhood if necessary, we can also demand that
g1[A1] is a proper clopen subset of B. Let B; = g1[A1].

The open sets A and B are infinite sets. Since they are subsets of D, they are both
countably infinite. Enumerate them both. Let a; be the first term of the enumeration
of A which is not in A; and let b, be the first term of the enumeration of B which is
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not in By. Then there exists g, in G such that g>(a;) = b,. Now let A, be a clopen
neighbourhood of a,, such that A, is a proper subset of A \ A} and g>[A;] is a proper
subset of B \ Bj. Proceeding inductively, we obtain a sequence, (4,) of disjoint
clopen subsets of A; a sequence (B,) of disjoint clopen subsets of B and a sequence
(gn) from G such that g, maps A, onto B,. The first n points in the enumeration of
Barein | J_,B;. So B = | J;2, B,. Similarly A =  J,.»., A,. Let us define a function
hon D by:

gn(s) ifs €A,
h(s) = 3g,7'(s) ifseB,
s ifse D\ (AU B).

From its definition, # = h~!. So & is a bijection of D onto D. By its construction,
h is strongly G-decomposable over D and so is continuous from D onto D. Since
h = h~! and h maps D into D, it follows that / is a homeomorphism of D onto D. It
is now clear that £ has all the other required properties. O

The following proposition seems complicated to state. But the basic idea is
straightforward. We are manufacturing a copy of the Dyadic Group, PZ, from the
action of G and, at the same time splitting D into Dyadic pieces. In the following Z7
is {0, 1}", equipped with the natural (additive) group structure. So it can be identified
with the direct sum of n copies of Z,.

Proposition 6.6.16 Let X be a zero-dimensional Hausdorff space with no isolated
points. Let G be a countably infinite discrete group and let € : G — Homeo(X) be a
non-degenerate action of G on X. Let D = (so, 51, -+ ) be a dense orbit. Let (D,) be
a decreasing sequence of clopen neighbourhoods of sy such that s, ¢ D, for each
n € N. Then the following statements hold.

(a) There is a sequence (hi)(k = 1,2...) of homeomorphisms of D onto D where
h, = hk_l. For 1 < k < n, the hy are mutually commutative. Each hy is strongly
G-decomposable over D.

(b) For each positive integer n, there exists a finite family of pairwise disjoint,
clopen subsets of D,

{K"(ay,az,...,0) : (01, 00,...,0,) € Zy"}

whose union is D.

(¢) Let K%@) = D. For 0 < p < n — 1, KP(oy, o, ... ,00) =
Kp+l(0l1,0l2,...,0lp,0)UKP+1(O{1,Ol2,...,Olp, 1).

(d) Forl <p<n, K(0,0,...,0) C D, and sy € K*(0,0,...,0).

(e) Let (ay,a2,...,0p) € Z’ where 1 < p < n. Then the homeomor-

phism h{'h5* ... h," interchanges KP(B1. Pa. ..., By) with KP(a; + Pi, o2 +
ﬁ27---7ap +,Bp)
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(f) Foreachn,
{50,815 ... 80} C LAY RS .. By (s0) & (a1, o, ... o) € Zo"}.

(g) Foreachs € D,ifh{'hy* ... h%(s) = sthena; = oy = ... =, = 0.

Proof We give an inductive argument. First, let A = D, and let B = D\D;. By
applying Lemma 6.6.15, there exists a homeomorphism £, of D onto itself, where
h; interchanges Dy and D \ Dy, and maps sq to s1. (So (f) holds for n = 1.) Also
hy = h1_1 and A is strongly G-decomposable over D.

For any s € D, h;(s) and s are elements of disjoint clopen sets. Hence (g) holds
forn = 1.

Now let K'(0) = Dy and K'(1) = D\D;.

Let us now suppose that we have constructed the homeomorphisms 4y, 4, ..., k,
and the clopen sets

{KP (a1, 00, ..., 0p) 2 (0,000, ..., 0p) € ZoP Y forp =1,2,...,n.

We now need to make the (rn 4 1)th step of the inductive construction.

For some (oj,az,...,0,) € {0,1}", 5,41 € K'(ay,02,...,0,). Let ¢ =
hY'h5? .. h% (sy41). Then ¢ € K*(0,0,...,0).

If ¢ # so let b = c. If ¢ = s then let b be any other element of K" (0,0, ..., 0).
Now let A be a clopen subset of K"(0,0,...,0) N D,4+; such thats) € Aand b ¢ A.
Let B = K"(0,0,...,0) \ A. We apply Lemma 6.6.15 to find a homeomorphism &
of D onto itself, which interchanges A and B, leaves every point outside A U B fixed,
maps o to b, and 1 = h~!. Also, h is strongly G-decomposable over D.

Let K"t1(0,0,...,0) = Aand K"71(0,0, ..., 1) = B. By construction, (d) holds
forp=n+1.

Let K"y, 0, ..., 0,,0) = AT'RS? .. W% [A] and K" (o, 00, ... 00, 1) =
h{'h5* ... h%[B]. Then (b) holds for n + 1 and (c) holds for p = n.

We now define i, as follows. For s € K"(a, a2, ..., ®,),

Bug1(s) = KSR . WS hBS RS . (s).

Claim 1 h,4; commutes with h; for 1 <j < n.

To simplify our notation we shall take j = 1, but the calculation works in general,
since each of {h, : r = 1,2, ..., n} commutes with the others.

Lets € D. Then s € K"(vy, a2, . . . , @) for some (a1, az,...,a,) € Z".

So hi(s) € K"(a) + 1, @2, .., ay). Then

o1 (is) = BT RS  h kS T R LR (hys).



168 6 Generic Dynamics

So

hn+1h1(s) = hlh‘flhgz - h‘;”hh‘flhgz - hff”hlhl(s)
= hlhn_H(S).

From this we see that 4,4 commutes with /;. Similarly 4,+; commutes with A; for
2<j=n

Claim 2 /,4,is strongly G-decomposable over D.

By Lemma 6.6.12, A{'h5* ... k% hh{'h3* ... h%" is strongly G-decomposable over
D. So, on restricting to the clopen set K"(«, o, ..., ®,) this gives that 4,y is
strongly G-decomposable over each K" (o, oy, . .., «,). Hence h, 4 is strongly G-
decomposable over D.

So, by Claim 1 and Claim 2, (a) holds for n 4 1. It is straightforward to show that
(b),(c), (d) and (e) hold forn + 1.

Now consider (f). Either ¢ = s¢ in which case, so = h{'h3* ... h% (s,41) which
gives 5,41 = h{'h3> ... h%(so), or ¢ # so, in which case

hn+1(h?1hgz - hﬁ”(s,,_,_l)) = h(h‘flhgz - hﬁ”(sn_,_l)) = 50.

This gives 5,41 = h,,+1h(f‘h‘§2 ... h%"(so). Because the homeomorphisms commute,
this gives (f) forn + 1.

Finally consider (g). Let s € D with h{'h5> ... k' (s) = 5. If aty41 = O then (g)
impliesoy =y =... =a, =0.

So now suppose «,+1 = 1. Let hf‘hgz...hf”(s) € K"(0,0,...,0). Then,
since the A, all commute, we can suppose without loss of generality that s €
K"(0,0,...,0). Then h,41(s) = h{'h3*...h%(s). But h,41 maps K"(0,0,...,0)
to itself and A" A3 ... h% maps K"(0,0,...,0) to K" (a1, @2, . . ., ). SO hyt1(s) €
K"(0,0,...,0) N K"(ay, 02, ...,a,). But this intersection is only non-empty if

oy =ay = ... = o, = 0.8So0 hy41(s) = s. But h,4; acting on K*(0,0,...,0),
interchanges K"71(0,0, ..., 0) with K"*1(0,0,...,1).
Sos € K"1(0,0,...,1) N K"*1(0,0,...,0), which is impossible. O

Corollary 6.6.17 Let (o, 02, ... ,ap) € Z. Let T be the set:
T= {hf‘...hﬁ”(so) eD:n>p&Aj=uajforl <j<p}

Then T = KP(ay, az, ... ,ap) which is a clopen subset of D.

Proof Let (A1, ..,A,) € Z5. By Proposition 6.6.16 (d) so € K"(0,...,0). So, by
Proposition 6.6.16 (e), h?‘ hﬁ" (s0) € K"(Ay, .., Ay). By Proposition 6.6.16 (c),
K"(A1, .., Ay) CKP(A1, ., Ap) forn>p.SoT C KP(ay, 00, ..., 0).

Conversely, take any s € K”(ay, 00, ,p) and fix n > p. Then by Proposi-
tion 6.6.16 (f), s = hP" - - hf)" (s0) for some Bi.. .. B,.
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Since h’lg‘ ... hf" (50) € KP(ay, ... ) we have, as above,

W' hPr(so) € KP(Bi. ... By).

So KP(ay, .., a5) N KP(B1, .., Bp) is not empty. So, by Proposition 6.6.16 (b),

(alv "sap) = (ﬁls ) ﬁp)

Thus K (a1, ..,ap) C T. O

The countable group € Z, is a sub-group of the compact group [ ]2, Z,. We
emphasise that we give €D Z, the relative topology it inherits from the compact
space [[°2,Z,. Hitherto we have usually considered countable groups as being
equipped with the discrete topology.

Leto : @ Zy — D be defined by o'(A1, .., A,,0,0,0...) = i ... ki (so).

Corollary 6.6.18 The map o is a bijection from @ Z, onto D. Also o is an open
map.

Proof By Proposition 6.6.16 (f) 0 maps € Z, onto D. By Proposition 6.6.16 (g) o
is injective.

The product topology of [ 72, Z» induces the topology of €D Z,. It now follows,
by using Corollary 6.6.17, that the sets o~! [KP (a1, 2, .. ., 0p)] form a sub-base for
the topology of €D Z,. Since each K” (a1, o2, . .., ) is a clopen subset of D, ¢ is
an open map. O

Let us recall once more that @5 Z, is the direct sum of an infinite sequence
of copies of Z,. (So each element of the group is an infinite sequence of zeroes
and ones, with 1 occurring only finitely many times.) The natural action of & Z,
on [[°2,Z, gives rise to the dynamical system, ([]72,Z2, Z, €), described in
Example 6.1.4.

We observe that in the following there is no requirement that X be a Baire space.

Theorem 6.6.19 Let X be a zero-dimensional Hausdorff space with no isolated
points. Let G be a countably infinite discrete group and let € : G — Homeo(X) be
an action of G on X which is non-degenerate and pseudo free. Let sy be a point in X
such that the orbit {g4(so) : § € G} = D, is dense. Let (D,) be a strictly decreasing
sequence of clopen neighbourhoods of sy, in the relative topology of D such that

150} = Myz1 Do

Then there exist Z, a Gs subset of X with D C Z, and an action ¢ : P7Z, —
Homeo(Z) such that the following properties hold.

(1) The orbit {ps(so) : § € @ Zs} is free and coincides with the set D.
(2) The groups of homeomorphisms €[G| and ¢ [P Z,] are strongly equivalent over
Z, which is invariant under the action of both these groups.
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(3) The orbit equivalence relations corresponding, respectively, to ¢[G] and
P Z,] coincide on Z.

(4) The action ¢ is an isomorphism of @ Z, into Homeo(Z).

(5) For each n let e, be the element of @ Z, which has 1 in the nth place and
zero elsewhere. Let h, be the restriction to D of ¢.,. Then (h,) satisfies all the
conditions of Proposition 6.6.16. In particular,

so € KP(0) CD,forp=1,2....

Proof We use Proposition 6.6.16 to find a sequence (%,) of homeomorphisms of D
onto itself with the properties listed in that proposition.

For each &« € €P Z,, there exist a natural number n and (o, 2, ...,,) €
Z," such that e = (o1, a2, ... 2,,0,0,...). We define ¥ (a) = h{'h5* ... h%. Then
this is a homomorphism of € Z, into Homeo(D). By Proposition 6.6.16 (g) ¥ is
injective.

By Corollary 6.6.14 we can find a G-invariant, Gs-set V, with D C V C X and an
action ¥V of @ Z, as homeomorphisms of V with the following properties. For each
y € Py, ’W)Y is an extension of ¥, and ’W)Y is strongly G—decomposable over V.
Also the orbit {w)f/(so) 1y € DZs}y = {¥,(s0) : ¥y € @ Z»}. By Proposition 6.6.16
(g) this orbit is free. By Proposition 6.6.16 (f) the orbit coincides with D.

It is clear, from Definition 6.5.8, that the action of G, when restricted to V, is
still pseudo free. So, by putting X = V in Lemma 6.6.10, we find that there exists
a Gg-subset Z of V, with D C Z C V, such that Z is invariant under the actions of
G and @ 7Z,. Furthermore, these actions are strongly equivalent on Z. Let ¢, be the
restriction of ’W)Y to Z. So ¢ is an action of @ Z, as homeomorphisms of Z which
satisfies properties (1) and (2). It follows from Lemma 6.6.3 and (2) that (3) is also
satisfied.

The restriction of ¢, to D is . So, when ¢, is the identity on Z, then v, is the
identity on D. Since v is injective this implies y = 0. So (4) holds. Clearly, from
our construction, (5) holds. O

6.7 Orbit Equivalence: Extremally Disconnected Spaces

The main theorem looks very similar to the previous one but makes use of the fact
that compact (Hausdorff) spaces are Baire spaces and that a compact, extremally
disconnected space is the Stone-Czech compactification of any dense subspace.
In this section S is a compact (Hausdorff) extremally disconnected space with no
isolated points; in particular S is zero-dimensional. As before, G is a countably
infinite group and ¢ : G — Homeo(S) is a non-degenerate action.

Lemma 6.7.1 Let D be a G-invariant, dense subset of S. Let the action of G be
pseudo free over D. Then there exists a Gs-set Y, with D C Y C S, such that the
action is pseudo free overY.



6.7 Orbit Equivalence: Extremally Disconnected Spaces 171

Proof Since S is extremally disconnected, it now follows from Corollary 6.2.4, that
so also is the dense subset D. Let g € Gand let K, = {s € S : g(s) = s}. Since
g is continuous, K, is closed. By hypothesis, K, N D is a clopen subset of D. So,
by Lemma 6.2.6, cl(K, N D) is a clopen subset of S. Let Fy, = K,\cl(K, N D).
So F, is a closed set which is disjoint from D and so has empty interior. Let F =
U,ecFe- Then F is ameagre F,-set which is disjoint from D. Since D is G-invariant,
the saturation G[ F] is also disjoint from D. Let Y be the Gs-set S\G[ F]. We have
YN K, =Y Ncl(K, N D) which is clopen in Y for each g. O

Theorem 6.7.2 Let S be a compact Hausdorff extremally disconnected space with
no isolated points. Let G be a countably infinite group. Let ¢ : G — Homeo(S) be
a non-degenerate action of G as homeomorphisms of S. Let sy be a point in S such
that the orbit {g,(s0) : § € G} = D, is dense and pseudo free. Then there exist an
action 1 : @ Z, — Homeo(S) and Z, a dense Gs-subset of S with D C Z, such that
the following properties hold.

(1) The orbit {ns(so) : 8 € B Z,} is free and coincides with the set D.

(2) The groups of homeomorphisms £[G] and n[@D Z,] are strongly equivalent over
Z, which is invariant under the action of both these groups.

(3) The orbit equivalence relations corresponding, respectively, to e[G] and
nléP 7] coincide on Z.

(4) The action n is an isomorphism of @ Z, into Homeo(S).

(5) For each n let e, be the element of @ Z, which has 1 in the nth place and
zero elsewhere. Let h, be the restriction to D of ¢.,. Then (h,) satisfies all the
conditions of Proposition 6.6.16.

Proof By Lemma 6.7.1, there exists a G-invariant Y, such that the action of G is
pseudo free on Y. Also Y is a dense Gs-subset of S, and D C Y.

Since Y is zero-dimensional and has no isolated points we may apply Theo-
rem 6.6.19 with X replaced by Y. We find a G-invariant, Gs-set Z, with D C
Z C Y; also an action ¢ : €@ Z, — Homeo(Z) with the five properties listed in
Theorem 6.6.19.

By Corollary 6.2.8, each i in Homeo(Z) has a unique extension to hin Homeo(S).

We now define 7 : @ Z, — Homeo(S) by 15 = ;. ]

Suppose the action of G on S has a dense, pseudo free orbit D. The following
theorem says there exists a dense, G-invariant, Gs-subset Y, D C Y with the
following property. Orbit equivalence on Y with respect to the action of G, ~g,
is the same as orbit equivalence with respect to an action of Z. In other words G
orbit equivalence is generated by a single homeomorphism of S.

Theorem 6.7.3 Let S be a compact Hausdorff extremally disconnected space with
no isolated points. Let G be a countably infinite group. Let ¢ : G — Homeo(S) be
a non-degenerate action of G as homeomorphisms of S. Let sy be a point in S such
that the orbit {g,(s0) : § € G} = D, is dense and pseudo free. Then there exists
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a homeomorphism 0 from S onto itself such that the action n : 7 — Homeo(S)
defined by

n(n) = 0"

is generically equivalent to the action of G. There exists a dense Gs-set So C S,
where Sy is G-invariant and 0[Sy] = Sy, such that, on Sy, orbit equivalence with
respect to the G-action coincides with orbit equivalence with respect to the Z-action.

Proof Tt follows from the preceding theorem that we may replace G by P Z,.
There exists a sequence of homeomorphisms of D, (h.)(r = 1,2...), which
satisfies all the conditions of Proposition 6.6.16. Each A, has a unique extension
to a homeomorphism of S, which we shall again denote by A,. The action of P Z,
on S is:

n(o, ..., 0,0,...) =h{" .. K.

Then D = {h‘fl .. .hff”(So) . (Oll, . 00,0, .. ) [S @Zz}

Let E; = K'(0) and F; = K'(1). Let Ej+; = K/*'(1,0) where 1 € 7, and let
Fiy1 = KIT1(0,1) where 0 € 7.

We observe that if K"(oj,3,...,0,) has non-empty intersection with
K""P(B1, B2y ..., Butp) then &y = Bi,...,a, = P, From this it follows that
(Ex)(n = 1,2...) is a sequence of pairwise disjoint clopen subsets of D. Similarly,
(Fy)(n = 1,2...) is a sequence of pairwise disjoint clopen subsets of D. Let
E=J,-,E, and | J,_F, = F. We claim that E = D and D\{so} = F.

By Corollary 6.6.17 and Corollary 6.6.18, o' [K"(a,...,a,)] is the set of
all sequences in € Z, whose first n terms are (¢, ..., ®,). Sequences beginning
with zero correspond to K!(0) = Ej. Any other sequence in € Z, begins with p
successive ones followed by a zero. So they are in 6~ [E,41]. So E = D.

Now consider o~![F]. It contains any sequence beginning with one. But s,
corresponds to (0,0, . ...) and is not in any of the o~![ F;]. All remaining sequences
begin with a string of p zeroes with one in the (p + 1)th place. Such a sequence is
in o [Fpt1]. So F = D\{so}.

For s € E, let (s) = hihy...h,(s). Then 6 is a continuous map of E, onto
F,. From this it is straightforward to see that 6 is a continuous bijection of D onto
D\{so}. Similarly, 0! is a continuous bijection from D\{so} onto D.

Since S has no isolated points, D\{so} is dense in S. But, by Theorem 6.2.7,
S can be identified with the Stone-Czech compactification of any dense subset
of itself. Applying this to ~! and 6 we find continuous extensions which are
homeomorphisms of § onto S and which are inverses of each other. We abuse
notation and denote the extension of 6 to the whole of S by #. Then j +— & is
the Z-action considered here; let A be the subgroup of Homeo(S) generated by 6.

On applying Lemma 6.2.6, we see that (c/E,)(n = 1,2...) is a sequence of
pairwise disjoint clopen subsets of S. So its union is a dense open subset of S which
we shall denote by O;. By continuity, for s € clE, we have 0(s) = hlh} ... hl(s).
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Similarly,(clF,)(n = 1,2...) is a sequence of pairwise disjoint clopen subsets of §
whose union, O, is also dense in S.

Let I" be the countable subgroup of Homeo(S) generated by 6 and the homeo-
morphisms (4,). Let Sy be the intersection ﬂ{y[Ol NOz]:y €T'}. Then Sy is a
dense Gs-subset of S which is invariant under the action of I'. From the definition
of 6, it is clear that 0 is strongly G-decomposable over Sp. (Recall that we have
identified G with @ Z,.) Similarly, 6! is also strongly G-decomposable over S.
Hence each element of A is strongly G-decomposable over Sy.

Let H(A) be the group of all homeomorphisms /4, of S onto S, such that £ is
strongly A-decomposable with respect to a finite partition of S into clopen sets. We
shall show that 4; is in H(A).

For s € E; = K'(0) we have (s) = hy(s) and, fors € F| = K'(1), 07 '(s) =
h1(s). We observe that clE; and cl/F, are disjoint clopen sets whose union is S. But
h restricted to clE, coincides with 8 and A restricted to clF; coincides with 671,
So hy € H(A).

We now suppose that iy, hy, . .., h, are in H(A). We wish to show k| € H(A).
Let s € K"t (B,0) where B € Z. By Proposition 6.6.16 (¢) ' T .. hl"t'(s) €
K"1(1,0) = E, 1. So, from the definition of 6,

ORI TN(9) = hy g T RP(s).
Making use of commutativity of the &,,we get
hupr(s) = W0 hPnOR0 T Bt (),

Then, by using continuity, this holds for each s € c/K"T'(8,0). By a similar
argument, for s € cIK"t1(B, 1) we get h,1+1(s) = hf‘ . .hf”@‘%f‘“ CRETs).

Since {cIK"™ (&) : &t € Zg“} is a finite collection of disjoint clopen sets whose
union is S, it follows that /1,4, € H(A).

So, by induction, G C H(A).

It now follows that, on Sy, the G-action and the Z-action generated by 6 are
strongly equivalent. So the corresponding orbit equivalence relations coincide on
So. O

Remark 6.7.4 In the above, D is not a subset of Sy. It is not obvious that the Z-
action on Sy, implemented by 6, has any dense orbit in Sy. Is it possible to modify
the construction of 6 so that it becomes a bijection of D onto itself?

Exercise 6.7.5 Show that D is disjoint from Sy.

Hint: Show that O1 N O, N D = D\{so}. Deduce s9 ¢ O; N O,. Deduce
h{' ... h%(so) ¢ So forany (ay,...a,) € Zj.
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6.8 Orbit Equivalence: Perfect Polish Spaces

Let X be a perfect Polish space. So X is homeomorphic to a complete separable
metric space and X has no isolated points. Let G be a countably infinite group acting
ergodically on X. Then, given the results of Sects. 6.6 and 6.7, it is not surprising
that, modulo meagre sets, the orbit equivalence relation ~¢ arises from an action of
@PZ,. But much more is true. Modulo meagre sets, the orbit equivalence relation,
~a, 1S unique.

Theorem 6.8.1 Let X be a perfect Polish space, G a countably infinite group and
B : G — Homeo(X) a non-degenerate action which is ergodic. Then the action B is
generically equivalent to the natural action of the Dyadic Group, @Z, on [ |Z,.

Proof By Proposition 6.5.5 there exists a dense, G-invariant X; C X such that G[x]
is a dense orbit for each x € X; and X; is a Gs-subset of X.

By Proposition 6.5.6 there exists a dense, G-invariant X, C X such that X is
zero-dimensional and X5 is a Gs-subset of X.

By Proposition 6.5.10 there exists a dense, G-invariant X3 C X, where X3 is a
Gs-subset of X, such that, for each g € G,

Fo={xeX:glx)=x}

is a clopen subset of X3.

Since X is a Baire space, the Gs set T = X; N X, N X3 is dense in X. Clearly
it is also G-invariant. Since it is a dense Gs-subset of the Baire space X, it follows
from Lemma 6.5.1 that T is a Polish space. Since T is a dense subspace of X, which
has no isolated points, T does not have any isolated points, that is 7" is a perfect
Polish space. Since T is a subspace of the zero-dimensional space X», it too is zero-
dimensional.

Let €, be the restriction to T of 8, for each g € G. Since T is a dense subspace
of X and B is a non-degenerate action, it follows that € is also non-degenerate. For
each x € X the orbit G[x] is dense. The action of G on T is pseudo free because
T C X;. Fix 5o in T and let D = GJs].

Since T is a Polish space we can give it a complete metric p. We can now find
a decreasing sequence of clopen neighbourhoods of sp, (S,) with each S, contained
in a ball (centred on sp) of radius 1/2". Let D,, = S, N D for each n.

The dynamical system (7', G, ¢) satisfies the hypotheses of Theorem 6.6.19. So
there exists Z, where Z is a G-invariant, Gg-subset of T, and D C Z, and there exists
an action ¢ : €@ Z, > Homeo(Z) with the properties listed in Theorem 6.6.19.

Let o : @Z, + D be defined by o(A, .., 4,,0,0,0...) = k' .. K (s0).
Then, see Corollary 6.6.18, o is a bijection and an open map. We claim that o is
continuous.

Let (x,) be a sequence in @ Z, converging to x = (o, . .. ,p,0,0,..).

Fix N. Then for all large enough n, the first N terms of x,, and x coincide. It
follows from Corollary 6.6.17 that o (x,) € KV, ..., ap,0,...,0) for large n.
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Thus A{' ...hz”(cr(xn)) € KN0) c Dy for all large n. Hence
p(hS" ...y’ (0(x,)),50) < 1/2N for all large n. Thus i ...k (0(x,)) — so.
By applying the homeomorphism A{" . .. hz” to this convergent sequence we find

(0(Xy)) = B ..l (s0)-

It follows that ¢ is a homeomorphism of € Z, onto D.

By Lavrentiev’s Theorem, see Theorem 6.2.9, the homeomorphism o can be
extended to a homeomorphism o of V onto W, where V, W are dense Gs-subsets
of [[Z> and Z, respectively. Since we could replace W by [,c;8[W] we may
assume that W is G-invariant. Since the G-action on Z and the @ Z, action on
Z are strongly equivalent on Z, they are strongly equivalent on W. It now follows
from the properties of o that the 8 action of G on X is generically equivalent to the
canonical action of @ Z, on []Z,. ]

In Sect. 6.7 we showed that when a countably infinite group acts on a separable,
compact, extremally disconnected space with no isolated points, the corresponding
orbit equivalence relation is hyperfinite (the union of an increasing sequence of finite
equivalence relations) modulo meagre sets. But for perfect Polish spaces, we have a
stronger result — uniqueness.

6.9 Automorphisms and the Dixmier Algebra

We have made frequent references to the duality between compact Hausdorff spaces
and commutative unital C*-algebras. Let A be a commutative C*-algebra with
spectrum E; so A is isomorphic to C(E). We have seen that, for each 8 € HomeoE,
we can define a x-automorphism by /5 (f) = fo6. Moreover every *x-automorphism
of C(E) arises in this way. An action of G on A is a group homomorphism of G into
AutA, the group of all x-automorphisms.

When ¢ is an action of G as homeomorphisms of E, then we can define an action
¢’ as homomorphisms of A by &,(f) = fog,1 = foe,'. (Weuse g~ instead of g,
because we want ¢’ to be a group homomorphism, not an anti-homomorphism).
So 8; = he1 = h;l. It is straightforward to show that each action of G (as
automorphisms of A) arises in this way from an action of G on E.

We can set up a correspondence between properties of an action € on E, and of
the dual action ¢’ on A. For example, when E is extremally disconnected, the action
¢ is ergodic precisely when &’ has the following property: if p is a projection and
sfg(p) = pforeach g € G, thenp = 0 or p = 1. This follows from Lemma 6.3.4.

We shall see later that the action ¢ is free on some dense Gg-subset of (an
extremally disconnected) E precisely when &’ is “strictly outer”. That is, whenever
p is a non-zero projection and sfg leaves each point of pA fixed, then g = t. When A
is a von Neumann algebra, a strictly outer action on A is called a free action [162,
Definition X1.2.24].
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We have &, = ¢, if, and only if f(eg(x)) = f(x) for each f € C(E) and each
x € E, that is, g4(x) = &,(x) for every x. So the action ¢ is non-degenerate precisely
when its dual ¢’ is non-degenerate.

Now suppose that A is monotone complete or, equivalently E is extremally
disconnected. Let G and I'" be countably infinite groups with, respectively, non-
degenerate actions € and n on E. Let y € I'. We say that n; is G-decomposable over
E with respect to the action ¢’ when there exists a sequence of orthogonal projections
(pn) and a sequence (g(n)) in G, such that \/, . ,p, = 1 and pneé(n) = pu1, for each
n. By Exercise 6.4.9 (d) this holds precisely when 7, is G-decomposable over E.

Definition 6.9.1 Let A,E,G, T, ¢ and 7 be as above. The systems (A, G, ¢’) and
(A,T',n) are said to be equivalent if, for each y € T', 1, is G-decomposable and
for each g € G, 8;’, is I'-decomposable. It follows from the remarks above that this
holds precisely when the actions ¢ and 7 are equivalent over S.

Let X be a Polish space and RegX the complete Boolean algebra of regular open
subsets of X. Then, by Lemma 6.5.3, RegX has a countable order dense subset and
it can be identified with the Boolean algebra of projections in B(X)/M(X). Let Sx
be the Boolean structure space of RegX. By Lemma 6.5.3 Sy is hyperseparable and
B(X)/M(X) is isomorphic to C(Sx). Also by Lemma 6.5.3, X has no isolated points
if, and only if, Sx has no isolated points. By Corollary 6.5.4, whenever X is a perfect
Polish spaces, Sx is homeomorphic to Sg.

It follows that if 2V is the Cantor space and X is any perfect Polish space
then B(X)/M(X) is isomorphic to B(2")/M(2Y). We recall that this is the Dixmier
algebra (see Sect.4.2). Clearly its spectrum is homeomorphic to Sg. Let I" be the
Dyadic Group @Z,. Let ) be the natural action of I on 2V, that is, 7, (x) = y + x.
(Here we identify 2% with []Z,). Then, as in Sect. 6.4, there is a corresponding
action 7 on Sg. We shall call 7} the canonical action of ®Z, on Sg. Let p : Sg — 2N
be the continuous surjection such that f > f o p is the natural embedding of C(2")
into B(2Y)/M(2Y) = C(Sgr). Let sy be a point in Sk such that p(so) is the zero of
the group I' C 2. Then, by Propositions 6.4.4 and 6.4.5, the orbit {7}, (so) : y € T'}
is free and dense in Sg. So the action 7 is ergodic.

Let (Sr, G, €) be a dynamical system where the (countably infinite) group G has
a non-degenerate action as homeomorphism of Sg. Let this action be ergodic. We
claim that this action is generically equivalent to the action of I' described above.
We first show that the G-action is equivalent to some ergodic action of I', the Dyadic
Group, with a free, dense orbit I'[so].

Lemma 6.9.2 Let (Sg, G, €) be a dynamical system where the (countably infinite)
group G has a non-degenerate action as homeomorphisms of Sg. Let this action
be ergodic. Let T" be the Dyadic Group. Then the G-action is equivalent to some
ergodic action of T', with a free, dense orbit T'[so].

Proof Since Sr is hyperseparable and the G-action is ergodic, it follows from
Proposition 6.5.5 that there exists a G-invariant, dense Gs set Y1 C Sgr such that for
eachy € Y, the orbit G[y] is dense. By Proposition 6.5.10, there exists a G-invariant,
dense Gs-set Y» C Sg, such that the action of G on Y; is pseudo free. Since Sk is a
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Baire space, Y; N Y, is a dense Gy set. Let 5o be any point in Y; N Y. Then GJso] is
an orbit which is dense and pseudo free. It now follows from Theorem 6.7.2 that the
action of G on Sy is equivalent to an action of I" on Sg, where I'[so] is a free, dense
orbit. |

It follows from Lemma 6.9.2 and Exercise 6.6.7 that it suffices to prove our claim
when G is the Dyadic Group and the orbit G[s¢] is free and dense. So from now on
we make these assumptions. Incidentally, since g = g~ for each element of the
Dyadic Group, it follows that

EL(f) =f o =foeg = hy(f).

Let us recapitulate (see Corollary 6.5.4 some observations about ProjC(Sgr), the
complete Boolean algebra of projections in C(Sg). It contains a countable subalge-
bra By such that each element of ProjC(Sg) is the supremum of the (countable) set
of elements it dominates; that is By is order dense in ProjC(Sr). To see this, just
identify C(Sg) with B(2V)/M(2Y) and take By to be the countable Boolean algebra
whose elements are y, where K is a clopen subset of 2N Now let A be a countable
group of homomorphisms of C(Sg). Then the saturation of By by A is a countable
set which generates a countable Boolean algebra B; C ProjC(Sr) where Bj is A-
invariant. Clearly B is order dense in ProjC(Sr). If B} has an atom then this would
also be an atom of ProjC(Sg) so B; is non-atomic.

Since Bj is countably infinite, it is a quotient of the free Boolean algebra on X
generators. The structure space of this free algebra is 2. By the duality between
the category of Boolean algebras and the category of compact Hausdorff totally
disconnected spaces, it follows that the structure space of B} is homeomorphic to F,
a closed subspace of 2. Then F is a separable, compact, totally disconnected metric
space. Also, since B; has no atoms, F has no isolated points, that is, F' is perfect.
But the Cantor set is the unique totally disconnected, perfect compact metric space
[167, Corollary 30.5]. So F is homeomorphic to 2%,

Thus there is a Boolean isomorphism 7 from ProjC(2"Y) onto By C C(Sg). We
may think of 7 as a finitely additive measure which we extend, first to simple
functions then to a linear map I from C(2Y) into C(Sg). It is straightforward to
check that IT is a x-isomorphism whose range, Aj, is a closed *-subalgebra of
C(Sr). Since A; is the closed linear span of By, A; is invariant under the action
of A.

Alternatively we may establish directly that A; is a regular subalgebra of C(Sg)
and so C(Sg) is the regular completion of A;. Since A is generated by its projections
and is a separable Banach space, its spectrum F' is a zero-dimensional compact
metric space with no isolated points and so F is homeomorphic to 2%,

We shall make use of the results of Exercise 6.4.9.

Theorem 6.9.3 Let Sy be the spectrum of the Dixmier algebra. Let (Sg, G, €) be
a dynamical system where the (countably infinite) group G has a non-degenerate
action as homeomorphisms of Sg. Let the action ¢ be ergodic. Then this action is
generically equivalent to the canonical action of @Z, on Sg.
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Proof By Lemma 6.9.2 we can suppose that G is the Dyadic Group &Z, and
that its action on Sr has a free, dense orbit. Let ¢ be the dual action of G as
automorphisms of C(Sr). Using the observations made above, these automorphisms
act on a subalgebra Ay which is isomorphic to C(2") (and where B(2")/M(2") can
be identified with C(Sg)).

Let hg be the restriction of i, = ¢ to Ay = C(2Y). Then, by duality, there is
an action B : G +— Homeo(2") such that hg(a) = a o B, for each a in C(2Y). By
Lemma 6.4.2, hg has a unique extension to a homomorphism H, of B(2Y)/M(2).
It follows from this uniqueness that H, can be identified with 5;.

Let 7 be the quotient homomorphism of B(2") onto B(2")/M(2"). Then, by
Lemma 6.4.2, Hy(7(f)) = m(foB,). Thatis s;(n(f)) = 7(f o B,). In the notation

of that Lemma, B\g = &g.

It now follows from Proposition 6.4.4 that the action 8 has a dense orbit in the
perfect Polish space 2. We can now apply Theorem 6.8.1.

As above, we use 7 for the natural action of I on 2N, Then there exist dense Gj
sets X; € 2N and X, c 2N with a homeomorphism 6 : X, — X; with the following
properties. First, X; is invariant under the action of 8 and X, is invariant under the
action of 7. Secondly, the action S, restricted to X is strongly equivalent to the
action y +— 6n,07" on X;.

Fix y and put o, = 01, 07". Then, strong equivalence tells us that there exists a
sequence of disjoint Borel sets (K(j)), where each K () is a clopen subset of X in
the relative topology and

szlK(j) = Xi.

Also there exists a sequence (g(/j)) in G, such that, for each j, &, |x(j) = Be(j)|k())-

We saw in Exercise 6.4.9 that we may identify B(2Y)/M(2") with B(X,)/M(X).
When 7, is the quotient homomorphism of B(X;) onto B(X;)/M(X,) then we
can identify 7 (f) with m; (Rf) where Rf is the restriction of f to X;. To avoid
unnecessary complications of notation we shall usually blur the distinction between
f and Rf; and write & instead of 7. This is analogous to measure theory where we
do not distinguish between two functions which only differ on a set of measure zero,
indeed if the functions are only defined almost everywhere this does not bother us.
In the following we shall make free use of such identifications.

For each j and any f € B(X)),

XKk(HRF o ay = xx(if © Be(-
So
7(xx()TRf o ay) = w(xx(j))7(f © Be(j))

= (X)) He(j) (7 (f))
= ﬂ(XK(j))Sg,(‘,') (= (f)).
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For each j, m(yk(j) can be identified with a projection in C(Sg) and so with
xc(j where C(j) is a clopen set. Since & is a homomorphism it maps orthogonal
projections to orthogonal projections. So (C(j)) is a sequence of disjoint clopen
sets.

Since 7 is a 0-homomorphism onto C(Sg), and szlK (j) is a dense open subset
of X1, it follows that szlc(j) is a dense open subset of Sg.

From the above, we have ycn(foa,) = )(c(j)sé(j) @ (f) = xciym(f) o &q(j)-

Using Lemma 6.4.2, the action A +— «;, on X; induces an action A > @), on Sg
where 7(f o) = w(f) o .

S0y (f) 0 @ = YT (f) © &g()-

It now follows that @, is strongly decomposable over | J );>1C(Jj) with respect to

the action g — B,. Similar arguments show that each ,3; is decomposable over S
with respect to the action A — & . So the actions & and ,3 are equivalent over S.

If we can show that the action & is generically equivalent to the action 7 then we
are done.

By Exercise 6.4.9 (c) the map f + f o6 induces an isomorphism of B(X;)/M(X,)
onto B(X,)/M(X>). On identifying these algebras with C(Sg) we see that there is an
automorphism of C(Sg), V such that the &’ and 7’ actions on C(Sg) are conjugate.
Hence the actions & and 7) are conjugate. So they are generically equivalent. O

6.10 Summary and Preview

We claimed in Sect. 1.2 that when a countable group G acts as homeomorphisms of
a compact extremally disconnected space S then we can construct a corresponding
monotone complete C*-algebra Mg, where Mg is determined by the orbit equiv-
alence relation E for the G-action. We have seen that actions by different groups
can give rise (modulo meagre sets) to the same orbit equivalence relation; hence to
the same monotone complete C*-algebra. We shall show how to construct algebras
from orbit equivalence relations in the next chapter.

We shall see that ergodicity implies that the corresponding algebra is a factor,
that is, has one-dimensional centre. We know, from Lemma 6.3.1, that if G acts
ergodically on S, then each orbit is either dense or nowhere dense. It is possible
for every orbit to be nowhere dense. (In particular this must hold when E is not
separable). But the existence of a single (pseudo) free dense G-orbit in S has
major implications. In particular the corresponding algebra Mg will be shown to
be generated by an increasing sequence of finite dimensional matrix algebras i.e.
“hyperfinite”.

Because of their importance for constructing monotone complete C*-algebras
we shall, later on, give many examples of G-actions on compact extremally
disconnected spaces.

When the action of G has a pseudo free, dense orbit in S then we have shown that
the orbit equivalence relation (and hence the associated algebra) can be obtained
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(modulo meagre sets) from an action of PZ, with a free, dense orbit. So, for the
purpose of constructing monotone complete C*-algebras, it suffices to find free,
dense group actions when the group is @Z,. In essence, we shall show that such
an action exists on each of 2¢ compact, separable spaces. This gives rise to 2¢ small
hyperfinite factors, where each such factor has a different weight in the classification
semigroup.



Chapter 7
Constructing Monotone Complete C*-Algebras

We build monotone complete C*-algebras from equivalence relations on topological
spaces. This is applied to orbit equivalence relations associated with the action of
a countable group G. In general, these algebras may be identified with monotone
cross-product algebras arising from actions of G on commutative monotone com-
plete C*-algebras. Since different groups can give rise to the same orbit equivalence
relation, this can be used to show that, apparently different monotone cross-product
algebras, are in fact, isomorphic.

7.1 Monotone Complete C*-Algebra of an Equivalence
Relation

The idea of constructing a C*-algebra or a von Neumann algebra from a groupoid
has a long history and a vast literature; there is an excellent exposition in [162].
Here, instead of general groupoids, we use an equivalence relation with count-
able equivalence classes. Our aim is to construct monotone complete (monotone
o-complete) algebras by a modification of the approach used in [157]. We try to
balance conciseness with putting in enough detail to convince the reader that this is
an easy and transparent way to construct huge numbers of examples of monotone
complete C*-algebras which are factors. In other words these algebras have one-
dimensional centres.

We shall also give a sketch of the close connections with monotone cross-product
algebras.

In this section, X is a topological space which is homeomorphic to a Gs-subset
of a compact Hausdorff space. Every locally compact space and every Polish space
(see Lemma 6.5.1) satisfies this condition. Clearly X is a completely regular, Baire
space. We could work with more general topological spaces but this is not necessary
for our applications.

© Springer-Verlag London 2015 181
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As before, let B(X) be the set of all bounded complex valued Borel functions
on X. When equipped with the obvious algebraic operations and the supremum
norm, it becomes a commutative C*-algebra. Clearly B(X) is monotone o-complete.

In the following it would be easy to use a more general setting, where we do not
assume a topology for X, replace the field of Borel sets with a o-field 7, and use
T-measurable bijections instead of homeomorphisms. But we stick to a topological
setting which is what we need later.

Let G be a countable group of homeomorphisms of X and let

E ={(x,y) € X xX :3g € Gsuchthaty = g(x)}.

Then E is the graph of the orbit equivalence relation on X arising from the action
of G. We shall identify this equivalence relation with its graph. We know, from the
work of Chap. 6, that the same orbit equivalence relation can arise from actions by
different groups.

We see below that E is the union of countably many closed sets. Thus E is an
F,-subset of X x X. Each equivalence class for E is an orbit G[x] and so countable.

Let us recall that for A C X, the saturation of A (by E) is

E[A] = {y € X : 3 x € A such that xEy}
=U{slAl : g € G}

Since each g is a homeomorphism, it follows that the saturation of a Borel set is
also a Borel set.

A slightly different approach, which has many merits, is to “axiomatise”
equivalence relations. More precisely, take as fundamental object, an equivalence
relation E, whose graph is a Borel set and whose equivalence classes are countable.
(Countable Borel equivalence relations and their relationship with von Neumann
algebras were penetratingly analysed in [41] and [42].) See also the important
contributions of Hjorth and Kechris [80] and [79]. When X is a Polish space then, by
a theorem of Feldman and Moore [41] and [42], E is the orbit equivalence relation
arising from the action of a countable group of Borel bijections of X. How far the
Feldman-Moore theorem can be generalised when X is not a standard Borel space
is unknown. Instead of pursuing this issue, we shall only consider orbit equivalence
relations which arise from actions by countable groups of homeomorphisms. For all
our applications this will suffice.

Exercise 7.1.1 Show that the separable space {0, 1}* is not a standard Borel space.
Hint: When X is a standard Borel space, either it is countable or #X = ¢ = #R.

Definition 7.1.2 Let Z be a o-ideal of the Boolean algebra of Borel subsets of X
with X ¢ 7.

Definition 7.1.3 Let Bz be the set of all f in B(X) such that {x € X : f(x) # 0} is
inZ.
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Then Bz is a o-ideal of B(X). (See Sect.4.2.) Let ¢ be the quotient homomor-
phism from B(X) onto B(X)/Bz.

Lemma 7.1.4 Let A € Z. Then E[A] € I if, and only if, g[A] € Z for every g € G.

Proof For each g € G, g[A] C E[A]. Since Z is an ideal, if E[A] € Z then g[A] € Z.
Conversely, if g[A] € Z for each g, then E[A] is the union of countably many
elements of the o-ideal and hence in the ideal. O

In the following we require that the action of G maps the ideal Z into itself.
Equivalently, for any A € Z, its saturation by E is again in Z. This is automatically
satisfied if 7 is the ideal of meagre Borel sets but we do not wish to confine ourselves
to this situation.

We show how orbit equivalence relations on X give rise to monotone complete
C*-algebras. A key point (see the remarks above) is that these algebras are
constructed from the equivalence relation without explicit mention of G. But in
establishing the properties of these algebras, the existence of an underlying group is
assumed. This construction (similar to a groupoid C*-algebra) seems particularly
natural and transparent. When applied to examples of countable groups acting
ergodically on compact extremally disconnected spaces, this machinery produces
huge numbers of small factors; factors which take 2¢ different values in the
classification semigroup.

We shall consider monotone cross-products in Sect.7.2. We will indicate why,
for countable groups acting on commutative algebras, the corresponding monotone
cross-products are essentially the same as the algebras constructed from an equiva-
lence relation.

An account of monotone cross-products for a countable group I' acting as
homomorphisms of a commutative monotone complete C*-algebra A, was given
in [132]. This was generalised to the situation where A is not commutative in [64].

We could work in greater generality (for example we could weaken the condition
that the elements of G be homeomorphisms or consider more general groupoid
constructions) but for ease and simplicity we avoid this. We are mainly interested in
two situations. First, where X is an “exotic” space but Z is only the ideal of meagre
Borel subsets of X. Secondly, where X is just the Cantor space but 7 is an “exotic”
ideal of the Borel sets.

For each x € X let [x] be the equivalence class generated by x. Let [X] be the set
of all equivalence classes. Let £2([x]) be the Hilbert space of all square summable,
complex valued functions from [x] to C. For each y € [x] let §, € £3([x]) be
defined by

8y(z) = 0forz #y; §,(y) = 1.

Then {8, : y € [x]} is an orthonormal basis for £>([x]) which we shall call the
canonical basis for £>([x]). For each x € X, L(¢?>([x])) is the von Neumann algebra
of all bounded operators on £2([x]). (In the rest of the book we would denote the
bounded operators on £2([x]) by L(£?([x])) but because, in this section, we shall
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use “L” for something else, we use “L” to avoid confusion.) We now form a direct
product of these algebras by:

S=TI L@@

Hefx]

Remark 7.1.5 One possible source of confusion is a clash of terminology. The
“direct product” of von Neumann algebras is more usually called a “direct sum of
von Neumann algebras” [157, 161]. But, in order to be consistent with our Chap. 3,
we shall use “direct product”.

The direct product of a family of C*-algebras, as defined in [15] is

[T Aw = {(a0) : supllac|| < oo}

WEQR

We observed in Chap. 3, that when each A,, is monotone complete then so, also,

is ] Aw.- When the A,, are all von Neumann algebras then sois [] Ag.
WEQ 2139
We see that S is a Type I von Neumann algebra, being a direct product of such

algebras. It acts on the Hilbert space which is the direct sum of the spaces £>([x]).
It is of no independent interest but is a framework in which we embed an algebra
of “Borel matrices” and then take a quotient, obtaining monotone complete C*-
algebras. To each operator F in S we can associate, uniquely, a functionf : E + C
as follows. First we decompose F as:

F=]] Fy.
[x]e[x]

Here each Fyy is a bounded operator on ¢([x]). Then F acts on the direct sum of
these Hilbert spaces. Now recall that (x,y) € E precisely when y € [x]. We now
definef : E +— C by

f(x, y) =< F[X]Sy, SX > .

When f is restricted to [x] x [x] then it becomes the matrix representation of Fpy
with respect to the canonical orthonormal basis of £2([x]). It follows that there is a
bijection between operators in S and those functions f : E +— C for which there is
a constant k such that, for each [x] € [X], the restriction of f to [x] x [x] is the matrix
of a bounded operator on £2([x]) whose norm is bounded by k. Call such an f matrix
bounded. For each matrix bounded f let L(f) be the corresponding element of S.
Then f(x,y) =< L(f)dy, 8, > fory € [x].

For any £ € £2([x]) we have

€117 = Xyepl < &8> %
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So

LD 8P = Xyepl < LN 80,8y > P = X el F e )P

On applying the Cauchy-Schwarz inequality, it follows that when f and h are
matrix bounded functions from E to C, then Z},E[x]f(x, Yh(y,z) is absolutely
convergent.

Straightforward matrix manipulations give

L(f)L(h) = L(f o h)

where

foh(x,2) =" fx A, 2).
YE[]
Also L(f)* = L(f*), where f*(x,y) = f(y,x) for all (x,y) € E.
Furthermore f + h is matrix bounded and L(f + k) = L(f) + L(h).
Let [|f[| = [IL(H]-

Exercise 7.1.6 Give a detailed proof that the matrix bounded functions on E, when
equipped with the norm and algebraic operations described above, form a C*-
algebra and f + L(f) is an (isometric) *-isomorphism of this algebra onto S.

Let A be the diagonal set {(x, x) : x € X}. It is closed, because the topology of X
is Hausdorff. It is an easy calculation to show that L(y ) is the unit element of S.
We note that y is matrix bounded because it comes from the identity operator in
S.

For each g € G, the map (x,y) + (x, g(y)) is a homeomorphism of X x X onto
itself. So this homeomorphism maps A onto a closed set {(x, g(x)) : x € X}.

Let us recall that

E=U{(x.g(x):xeX}

g€G

So E is the union of countably many closed sets; it is an F- set. In particular, E
is a Borel subset of X x X.

Definition 7.1.7 Let M(E) be the set of all Borel measurable functions f : E > C
which are matrix bounded.

Exercise 7.1.8 Let Y and Z be Hausdorff spaces. Let f : Y +— Z be a Borel map.
Prove that f~![T] is a Borel subset of Y whenever T is a Borel subset of Z.

Hint: Let B = {T € BorZ : f~'[T] € BorY}. Show that 3 is a o-field containing
the open sets of Z.
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Exercise 7.1.9 Let Y, Z, W be Hausdorff spaces. Letf : Y+ Zand g : Z +— W be
Borel maps. Show that gf : Y +— W is a Borel map.

Lemma 7.1.10 The set M = {L(f) : f € M(E)} is a C*-subalgebra of S
which is sequentially closed with respect to the weak operator topology of S. When
equipped with the appropriate algebraic operations and norm, M(E) is a C*-
algebra isomorphic to M.

Proof Let f and h be in M(E). Clearly f + h is Borel measurable, and, as remarked
above, matrix bounded. So f + & is in M(E). Similarly, scalar multiples of f are in
M(E).

Let 6 be the homeomorphism of X x X onto itself defined by 0(x,y) = (v, x).
Then its restriction to E is a homeomorphism of E onto itself. So

(x,y) = f(6 (x.)

is a Borel function. But f* is the complex conjugate of this Borel function. So f* €
M(E).

We now wish to show that f o & is Borel measurable.

First let g1, g2,... be an enumeration of G, without repetitions. (When G is a
finite group the same arguments work, but with finite sums instead of infinite series.)
Let A, = {(x, g,x) : x € X}. Since, see above, A, is a closed subset of X x X it is a
Borel subset of E. Because G is not required to act freely, the sets (A,) (r =1,2...)
cannot be assumed to be pairwise disjoint. So we define D} = A and forr > 1,

Dry1 = A \UA).
Jj=1

Then each D, is a Borel subset of E; these Borel sets are pairwise disjoint and their
union is E. Let yp, be the characteristic function of D,..

Letf. = xp,f. Thenf, is a Borel function on E.

Fix x. Let y € [x], then yp,(x,y) = O unless y = g,x and g,x # g,x for any
r<n.

Absolute convergence of a series of complex numbers implies the order of
summation does not matter. So

foh(x.z) =) flx.y)h(.2)
vER]

=D 10, (x, &2} (x, gaX)h(gx, )

n=1
= 3" ol gu)h(8ax. 2).
n=1
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The pointwise limit of a sequence of Borel functions is a Borel function. So, to
show that f o i is Borel, it suffices to show that (x, z) + f,(x, g,x)h(g.x, z) is a Borel
function on E for each fixed n. But x — (x, g,x) is a homeomorphism from X onto
A,. So x — f(x, g,x) is a Borel function on X. Thus (x, z) + f,(x, g,x) is a Borel
function on E. Also the map (x,z) — (gxxX, 2) is a homeomorphism from E into E.
So (x,z) > h(gux, z) is a Borel function on E. The pointwise product of two scalar
valued Borel functions on FE is a Borel function. It now follows that f o & is Borel.
So M is a *-subalgebra of S.

Let (L(f,)) be a sequence in M which converges in the weak operator topology
of S to L(f). So, for any x € X and any y € [x],

< L(f)8y. 8, >—>< L(F)8). 8 > .

Thus f,(x,¥) — f(x,y). So f is a Borel function. Since it is also matrix bounded
(by the norm of L(f)),f € M(E) andso L(f) € M.

Since S is a von Neumann algebra, it is a Banach dual space. When the weak
operator topology of S, and the weak*-topology of S are restricted to the (norm
closed) unit ball of S, they coincide. O

Lemma 7.1.11 Let (f,) be a sequence in the unit ball of M(E) which converges
pointwise to f. Then f € M(E) and L(f,) converges to L(f) in the weak operator
topology of S. Also f is in the unit ball of M(E).

Proof The weak operator topology gives a compact Hausdorff topology on the norm
closed unit ball of S.
Let K, = {L(f;) : j = n} and let cIK, be its closure in the weak operator topology

of S. Then, by the finite intersection property, there exists 7 € (") clK,. If U is any
n€N
open neighbourhood of 7, then U N K, is non-empty for all n.

Fix (x,y) inE.Fixe > 0.LetU ={S € S :| < (S—T)é,,8: > | < &}. Then we
can find a subsequence (f»)(r = 1,2...) for which L(fy)) € U for each r. Thus
| faey (6, y)— < T8y, 6, > | < &. So|f(x,y)— < Tdy,8, > | < e. Since this holds for
all positive ¢, we have f(x,y) =< T8y,8, >. So T = L(f).

Let 7 be the locally convex topology of S generated by all seminorms of the
form V — | < V§,,8, > | as (x,y) ranges over E. This is a Hausdorff topology
which is weaker than the weak operator topology. Hence it coincides with the weak
operator topology on the unit ball, because the latter topology is compact. But
< L(f)8y, 6x >— f(x,y) =< L(f)d,, 8, > forall (x,y) € E.

It now follows that L(f,) — L(f) in the weak operator topology of S. Since f
is the pointwise limit of a sequence of Borel measurable functions, it too, is Borel
measurable. So f € M(E) and, since 7 is in the unit ball of S, f is in the unit ball
of M(E). O

Let p be the homeomorphism of A onto X, given by p(x,x) = x. So B(X), the
algebra of bounded Borel measurable functions on X, is isometrically *-isomorphic
to B(A) under the map i +— h o p.
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For each f € M(E) let Df be the function on E which vanishes off the
diagonal, A, and is such that, for each x € X,

Df(x,x) = f(x, x).

Then D is a linear idempotent map from M (E) onto an abelian subalgebra which
we can identify with B(A), which can, in turn, be identified with B(X). Let Df be
the function on X such that Df (x) = Df(x,x) for all x € X. We shall sometimes
abuse our notation by using Df instead of Df .

Let 7 : B(X) — M(E) be defined by n(h)(x,x) = h(x) for x € X and
w(h)(x,y) = 0 for x # y. Then 7 is a *-isomorphism of B(X) onto an abelian
*-subalgebra of M (E), which can be identified with the range of D.

We have nDf = Df for f € M(E). Also, for g € B(X), Dn(g) = g.

Lemma 7.1.12 The map D is positive.
Proof Each positive element of M(E) is of the form f o f*. But

D(fof*)(x.x) = Y f.y)f* (. %) #)

yel]

=Y fEf(xy)

YE[]

=Y IfyP =0 O

YE[]

Definition 7.1.13

Let I = {f € M(E) : qD(f o f*) = 0}
= {f € M(E) : 3A € T such that D(f o f*)(x) = 0 for x ¢ A}.

Lemma 7.1.14 The set I7 is a two-sided ideal of M(E).
Proof In any C*-algebra,

(a+ b)(a+ b)* < 2(aa™ + bb*).
So
D((f+8) o (f+8") <2D(fof") +2D(gog").

From this it follows that if f and g are both in /7 then so also is f + g.
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In any C*-algebra,

F(f2)* = fz2"F* < |zl

From this it follows that f € I7 and z € M(E) implies that f o z € I7.
Now suppose that f € I7. Then for some A € Z, D(f of*)(x) = 0 forx ¢ A.
Since E[A] € Z we can suppose that A = E[A]. Hence if x ¢ E[A] then [x] N
E[A] = @. For x ¢ E[A], we have

0=D(fof*)x) =Y Ifx.y.

YE[]

Thus f(x,y) = 0 for xEy and x ¢ A. Then, for z ¢ A, we have D(f* o f)(z) =
> vep 17 V= 2 ey 110, 2)|? = 0. Sof* € Ir. So I7 is a two-sided ideal of
M(E). O

Lemma 7.1.15 If'y € Iz then gD(y) = 0. Furthermore y € Iz if. and only if
gD(yoa) = 0foralla e M(E).

Proof Let T be the (compact Hausdorff) structure space of the algebra B(X)/Bz.
By applying the Cauchy-Schwarz inequality we see that for x, y in M(E) andt € T,

4D 0 y) (1) < gD(x* 0 x)(1)!/>qD(* 0 y)(1)'/>.

Let x = 1 and let y € Iz. Then y* € Iz. So qb(y* oy) = 0. From the above
inequality it follows that gD(y) = 0.

Because I7 is an ideal, if y € I7 then y o a is in the ideal for each a € M(E). It
now follows from the above that gD(y o a) = 0. Conversely, if gD(y o a) = 0 for all
a € M(E) then, on putting a = y* we see thaty € I7. O

Lemma 7.1.16 L[I1] is a (two-sided) ideal of LLM(E)] which is sequentially closed
in the weak operator topology of S.

Proof Let (f;) be a sequence in I7 such that (L(f,)) is a sequence which converges
in the weak operator topology to an element 7 of S. Then it follows from
the Uniform Boundedness Theorem that the sequence is bounded in norm. By
Lemma 7.1.10, there exists f € M(E) such that L(f) = T where L(f,) — L(f) in
the weak operator topology. So f, — f pointwise. Hence D( f.) = D(f) pointwise.
For each r there exists A, € Z such that x ¢ A, implies D(f,)(x) = 0. Since Z is a
Boolean o-ideal of the Boolean algebra of Borel subsets of X, U{A, : r = 1,2...}
is in Z. Hence gD(f) = 0.

For any a € M(E), (f; o a) is a sequence in I7 such that (L(f,; o a)) converges
in the weak operator topology to L(f)L(a). So, as in the preceding paragraph,
gD(f o a) = 0. By appealing to Lemma 7.1.15 we see that f € I7. Hence L[I1]
is sequentially closed in the weak operator topology of S. O
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Corollary 7.1.17 The algebra M(E) is monotone o-complete and Iz is a o-ideal.

Proof Each norm bounded monotone increasing sequence in L(M(E)) converges
in the strong operator topology to an element 7 of S. By Lemma 7.1.10, T €
L(M(E)). Then T = L(f) for some f € M(E). Hence L(M(E)) (and its isomor-
phic image, M(E)) are monotone o-complete. It now follows from Lemma 7.1.16,
that /7 is a o-ideal. O

Definition 7.1.18 Let Q be the quotient map from M (E) onto M(E)/I7.

Proposition 7.1.19 The algebra M(E) /It is monotone o-complete. There exists
a positive, faithful, o-normal, conditional expectation D Sfrom M(E)/Iz onto a
commutative o -subalgebra, which is isomorphic to B(X)/Bz. Furthermore, if there
exists a strictly positive linear functional on B(X)/Bz, then M(E)/Iz is monotone
complete and D is normal.

Proof By Proposition 2.2.21 and Corollary 7.1.17, the quotient algebra M(E)/Iz
is monotone o-complete.

Let g € B(X). Then, as remarked before Lemma 7.1.12, D (g) = g.

Now 7 (g) € Iz if, and only if, gD(7(g) o 7(g)*) = 0.

But gD((g) © 7(8)*) = ¢D(n(Ig]*) = q(Ig]*).

So (g) € I if and only if |g|> € Bz i.e. if and only if g vanishes off some set
A eZTie.ifandonlyif g € B7.

So 7 induces an isomorphism from B(X)/Bz onto DIM(E)]/Iz.

Leth € I7. Then by Lemma7.1.15,¢gD(h) = 0. Thatis, D(h) € Bz. So nD(h) €
I7.But xD(h) =

Sohelr implies ODh = 0. It now follows that we can define D on M(E)/Iz
by D (f + Iz) = QDf.

It is clear that D is a positive linear map which is faithful. Its range is an abelian
subalgebra of M(E)/Iz. This subalgebra is D[M(E)]/Iz which, as we have seen
above, is isomorphic to B(X)/Bz. We shall denote D[ M (E)]/Iz by A and call it the
diagonal algebra. Furthermore, Dis idempotent, so it is a conditional expectation.

Let (f,) be a sequence in M (E) such that (Qf,) is an upper bounded monotone
increasing sequence in M(E)/Iz. Then, by Corollary 2.2.18, we may assume that
(f) is an upper bounded, monotone increasing sequence in M (E). Let Lf be the
limit of (Lf,) in the weak operator topology. (Since the sequence is monotone, Lf
is also its limit in the strong operator topology.) By Lemma 7.1.10, f € M(E), and
fulx,x) = f(x,x) for all x € X. Thus Df, — Df pointwise on X. Also, since D is
positive, (Df,) is monotone increasing. Since Q is a o-homomorphism, ODf is the
least upper bound of (QDf,). Since D (f + Iz) = ODf it now follows that D is
o-normal.

If w is a strictly positive functional on B(X)/Bz then p,ﬁ is a strictly positive
linear functional on M(E)/Iz. It then follows from Theorem 2.1.14 that M(E)/Iz
is monotone complete. Furthermore, if A is a downward directed subset of the
self-adjoint part of M(E)/Iz, with 0 as its greatest lower bound, then there exists
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a monotone decreasing sequence (xn), with each x, in A, and Ax, = 0. It now
follows from the o-normality of D that 0 is the infimum of {D(x) x € A}. Hence
D is normal. ]

We now make additional assumptions about the action of G and use this to
construct a natural unitary representation of G. We give some technical results
which give an analogue of Mercer-Bures convergence, see [101] and [23]. This
will be useful later when we wish to approximate elements of M(E)/Iz by finite
dimensional subalgebras.

For the rest of this section we suppose that the action of G on X is free on each
orbit i.e. for each x € X, x is not a fixed point of g, where g € G, unless g is the
identity element of G.

For each g € G, let A, = {(x,gx) : x € X}. Then the A, are pairwise disjoint
and £ = UgegA,.

For each g € G, letu, : E + {0, 1} be the characteristic function of A,—1. As we
pointed out earlier, y ais the unit element of M(E), so, in this notation, ¥, is the unit
element of M (E).

The function u, on E is matrix bounded. To show this, we shall define an operator
T € S such that < T§,, 8, >= u,(x,y) for (x,y) € E.

For each x € X, let A,([x]) € L(¢?([x])) be defined by

Ae(BDE() = E(g7"y) foreach y € [x] and £ € €3([x]).

Then A, ([x]) is a unitary operator on £?([x]) for each g € G. Let V, € Sbe V, =
®Ag([x]). Clearly V, € S. For each (x,y) € E, we have

< V,oby, 8 >=< A,([x])d,, 6 >= XA (x, ).

So, u, is matrix bounded.
For each (x,y) € E we have:

g o up(x.y) = Y utg (x, kxuy (k. ).
keG

But u,(x, kx) # 0, only if k = ¢g~' and u; (g 'x,y) # Oonlyify = hlg7lx =
(gh)™'x. So ug o uy, = ug,.

Also u(x,y) = ug(y,X) = ug(y,x). But ug(y,x) # 0 only if x = gy, that
is, only if y = gx. So uy(x,y) = ug—1(x,y). It follows that g + u, is a unitary
representation of G in M(E).

Let f be any element of M (E). Then

fouge,y) =Y f(x,ug(z,y) = f(x. gy). @)

Z€[x]
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So, foreach x € X,

D(f oug)(x,x) = f(x,8x).

Then
D(f o ug) o ug—1(x,y) = Y D(f 0 1tg) (x, 2)ug—1(2.)
z€[N]
= D(f o ug)(x, X)Mg—l (x,y)
= f(x, 80) xa, (x,¥).

So

S, y) if (x,y) € Ay

DU o o5 = {7 ) £ 8
, g

(i)
The identity (#), used in Lemma 7.1.12, can be re-written as

D(fof*)(x.x) = Y |f(x g0l (iii)

g€G

= > ID(f o ug)(x. 1)

g€G

=Y ID(f o ug) ().

g€CG
Let F be any finite subset of G. Let fr = deF D(f oug) o uy—1. Then, using (ii),

0 if(x,y)eAgsandgeF

(f =fr)(x,y) = {f(x, y)if (x,y) € Agand g ¢ F.

We now replace f by f — fr in (iii) and get:

D((f —fr) o (f —fr)")@x) = Y ID(fou)(x.x) = > |D(f oug))|

g€G\F g€G\F
(iv)

Now let (F,,)(n = 1,2...) be any strictly increasing sequence of finite subsets
of G whose union is G. Write f, for fr,. Then

D((f —fn) o (f —f))(x, x) decreases monotonically to 0 as n — oo.

Since Q is a 0-homomorphism,

NOD((f —fu) o (f —fu)*) = 0. V)
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Foreach g € G,let U, = Qu,. Since Q is a ¥-homomorphism onto M(E)/Iz, U,
is a unitary and g — U, is a unitary representation of G in M(E)/Iz. On applying
the preceding paragraph we get:

Proposition 7.1.20 Let z € M(E)/Iz. Let (F(n))(n = 1,2...) be a strictly
increasing sequence of finite subsets of G whose union is G. Let z, =
> eer(ny D(@Ug)Ug—1. Then

AD((z — 20) (2 — 2)*) = 0.

Corollary 7.1.21 Let z € M(E)/Iz such that D(ng) = 0 foreach g. Thenz = 0.
Proof This follows from Proposition 7.1.20 because z,, = 0 for every n. O

Lemma 7.1.22 For eachf € M(E) and each g € G, uy o f o uz(x,y) = f(gx, gy).
In particular, f vanishes off A if, and only if, u; o f o ug vanishes off A.
Proof Let h € M(E). Then, applying identity (i) we get (u; o h)(a,b) = (h* o
ug)*(a,b) = (h* ouy)(b,a) = h*(b, ga) = h(ga,b).

Let h = f o u,. Then u; of oug(x,y) =f ouy(gx,y) = f(gx, gy). O

Corollary 7.1.23 For each a € A, the diagonal algebra, and for each g €
G, U,aUy is in A.

7.1.1 Induced Actions

Let K be a compact Hausdorff space. Let ¢ be a homeomorphism of K onto
itself. Then, see the discussion following Lemma 6.4.1 in Sect. 6.4, the induced
automorphism on C(K) is defined by

hs(f) = fo¢.

Every x-automorphism of C(K) arises in this way from a homeomorphism of K.

We recall that Homeo(K) is the group of homeomorphisms of K onto itself. Then
the map 6 +— hyg is a bijective map from HomeoK onto Aut(C(K)), the group of *-
automorphisms. In general this is not a group isomorphism but an anti-isomorphism.

Let us recall that for any group I', the opposite group, I'?, is the same underlying
set as I" but with a new group operation defined by x x y = yx. Also '”? and I" are
isomorphic groups, the map g — g~! gives an isomorphism. So, in the preceding
paragraph, g > h, is a group isomorphism of Homeo(K)? into Aut(C(K)). Since
Homeo(K)? is isomorphic to Homeo(K), this is not of major significance. But we
define h¥ = h,— for each g € Homeo(K). Then g > h® is a group isomorphism of
Homeo(K) onto the automorphism group of C(K).
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Let y + a, be an action of a group I' on K. Then the induced action of I" as
automorphisms of C(K) is y + «” where

& (f) =f oo,

Conversely, given an action y — «” of I' as automorphisms of C(K) this can be
identified with the dual of an action y + «,, of the group I' as homeomorphisms
of K.

There is a potential clash of terminology which arises as follows. Consider the
category whose objects are the compact Hausdorff spaces and whose arrows are
the continuous maps between them. By Gelfand-Naimark theory, this is dual to the
category whose objects are the commutative, unital C*-algebras and whose arrows
are the x-homomorphisms. Take a compact Hausdorff X and a homeomorphism 6
of X. It might seem natural to describe the automorphism of C(X) induced by 6
as “dual” to 6. But this could cause confusion. Because, when we consider actions
of abelian groups, we also refer to actions of the dual group. So we prefer to use
“induced”.

Lemma 7.1.24 Let T be a compact, totally disconnected space. Let 0 be a homeo-
morphism of T onto T. Let hy be the automorphism of C(T) induced by 0. Let K be
a non-empty clopen set such that, for each clopen Q C T, (h¢(x0) — x0)xx = 0.
Then 6(t) = t for each t € K. In other words, hg(f) = f for eachf € xxC(T).

Proof Let us assume that #o € K such that 6(ty) # fo. By total disconnectedness,
there exists a clopen set Q with 0(t)) € Q andty ¢ Q. We have hg(yg) = xg-1j¢]- SO

7' [Q]NK =QNK.

But 1, is an element of 7' [Q] N K and #, ¢ Q. This is a contradiction. O

Let C be a monotone (o-)complete C*-algebra. We call an automorphism «
(of C) properly outer if there does not exist a non-zero a-invariant projection e € C
such that o restricts to an inner automorphism of eCe. When C is commutative
and o is properly outer, then for an a-invariant projection e, if o restricts to the
identity on eCe, then e = 0. Let H be a group and let g — a, be an injective group
homomorphism o : H — AutC. That is, « is an action of H on C.

When, for each h € H \ {t}, o, is properly outer, we call « a free action.

We recall that, on putting A = D[M(E)/Iz], we have U,AU; = A for each
g € G. Then we can define the *-automorphism A, of A by A,(a) = UzaUy for
a € Aandg € G. Then g — A, is a group homomorphism of G into AutA.

Proposition 7.1.25 When the action A of G is free on A then DIM(E)/I1] is a
maximal abelian x-subalgebra of M(E)/I71.

Proof Let z commute with each element of D[M(E)/I7]. Let a = D(z). We shall
show that z = a. By Corollary 7.1.21 it will suffice to show that D((z — a)U,) = 0
for each g € G. We remark that b(aUg) = ab(Ug) = 0 for each g # .
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_ Soitis enough to show that if ¢ € G and g is not the identity element of G then
D(zU,) = 0.
We have, for each b € D[M(E)/Iz], bz = zb. So

bD(zU,) = D(bzU,) = D(zbU,)
= D(zU,U;bUy)
= D(zU,)U;bU,

= UrbU,D(Uy).

This implies that (A,—1(b) — b)If)(ng) = 0. For shortness put ¢ = b(ng).
Assume that ¢ # 0. Then, by spectral theory, there exists a non-zero projection e
and a strictly positive real number § such that §e < cc*. Then

0 < 8(Ag1(b) — b)e(Aym1(b) —b)*
< (Ag1(b) = b)ec* (A1 (b) — b)* = 0.

So, (Ag—1(b) — b)e = O for each b in the range of D. Tt now follows from
Lemma 7.1.24 that A,—1(ea) = ea for each a in the range of D. But this
contradicts the freeness of the action of G. So b(ng) = 0. It now follows that
z is in DJM(E)/Iz]. Hence D[M(E)/I7] is a maximal abelian x-subalgebra of
M(E)/I1. O

Exercise 7.1.26 Let G act as a group of homeomorphisms of a compact zero-
dimensional space Z. Then this induces a dual action g +— h¢ as automorphisms
of C(Z). Suppose that g +— h$ is a free action, that is, 4% is a properly outer
automorphism whenever g # «. Show that there exists a dense, Gs-subset X, where
X is G-invariant and {g(x) : g € G} is a free orbit for every x € X. (Hint see [157].)
Could we strengthen this by showing that G[z] is a free orbit for every point of Z?
To see that this is not always possible, put Z = 27 and let s be the shift operation on
2%, Now let Z act on 2% by n +> s". This action has a fixed point.

Remark 7.1.27 We have said nothing about the centre of M(E)/Iz. Clearly it is
contained in each maximal abelian *-subalgebra. Let ¢ be a central projection. Then

UecU; = ¢

for each g. From this it can be deduced that ¢ corresponds to a Borel subset of X,
C, where C is G-invariant. That is C = E[C]. It now follows that M(E)/Iz has
one-dimensional centre precisely when each G-invariant Borel subset of X is in 7
or is the compliment of a set in Z. Now specialise to the situation where Z is the
Boolean ideal of meagre Borel sets. Each Borel subset of X has the Baire property
i.e. differs from an open set only by a meagre set. It follows that when the action of
G on X is generically ergodic then M(E)/Iz has one-dimensional centre.
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A unitary w in a C*-algebra M is said to normalise a *-subalgebra A if
wAw* = A. For future reference we define the normaliser subalgebra of M(E) /I
to be the smallest monotone complete *-subalgebra of M(E)/Iz which contains
every unitary which normalises the diagonal subalgebra. It follows from Corol-
lary 7.1.23 that each U, is a normalising unitary for the diagonal algebra, A =
b[./\/l (E)/Iz]. Since each element of A is a finite linear combination of unitaries in
A, it follows immediately that A is contained in the normaliser subalgebra.

7.2 Introduction to Cross-Product Algebras

Cross-product constructions are of importance in C*-algebra theory and in the
theory of von Neumann algebras.

A detailed account of monotone cross-products for a countable group I' acting
as homomorphisms of a commutative monotone complete C*-algebra A is given in
Saitd [132]; they were considered earlier by Takenouchi [159]. Eventually this was
generalised to the situation where A is not commutative by Hamana [64], who gives
a meticulous exposition.

Here we shall give a brief outline and sketch connections with the algebras
constructed in Sect. 7.1.

First let us recall some familiar facts. Let A be a unital C*-algebra. Let o be an
automorphism of A. If there exists a unitary u € A such that, foreachz € A, «(z) =
uzu™ then « is said to be an inner automorphism. When no such unitary exists in A
then « is an outer automorphism.

Let G be a countable group and let g — B, be an homomorphism of G into
the group of all automorphisms of A. Intuitively, a cross-product algebra, for this
action of G, is a larger C*-algebra, B, in which A is embedded as a subalgebra
and where each B, is induced by a unitary in B. More precisely, there is an injective
*-homomorphism;j : A — B, and a group homomorphism g > U, (from G into the
group of unitaries in B), such that, for each z € A, jB,(z) = U,j(z)U; . So when we
identify A with its image j[A] in B, although 8, need not be an inner automorphism
of A it can be extended to an inner automorphism of the larger algebra B. We also
require that B is “in some sense” generated by j[A] and the collection of unitaries U,.
When A is a monotone complete C*-algebra, we can always construct a B which is
monotone complete.

For the purposes of this chapter we shall only consider the situation where A
is commutative. So for the rest of this section, A shall be a monotone complete
commutative C*-algebra. Hence A ~ C(S) where S is a compact, Hausdorff,
extremally disconnected space. We shall outline below properties of the monotone
cross-product of A by the action of countable groups. It turns out that they can be
identified with algebras already constructed in Sect.7.1. In fact the constructions
in Sect. 7.1 can be used to give an alternative definition of these cross-products.
Historically, cross-products came first. One advantage of the Sect. 7.1 construction
is that it makes clear why some, apparently different, cross-product algebras are, in
fact, isomorphic.
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We shall suppose for the rest of this section that S has no isolated points. Then,
as remarked in Sect. 6.2, any dense subset Y has no isolated points. We shall also
require that C(S) possesses a faithful state. We have seen that when S has a countable
dense set then C(S) has a faithful state. The converse is false (consider L*°[0, 1].)

We now use Sect.7.1 to relate monotone cross-products to the monotone
complete C*-algebra of an orbit equivalence relation.

Suppose that G is a countably infinite group of homeomorphisms of S, where the
action of G has a free, dense orbit. We shall show that the corresponding monotone
cross-product is isomorphic to one obtained by an action of P Z,.

For the convenience of the reader we recall some points from earlier chapters.

Let X be any dense subset of S. Then we recall that S can be identified with the
Stone-Czech compactification of X. So if f : X + C is a bounded continuous
function then it has a unique extension to a continuous function f‘ S —» C
It follows that f +— f‘ is an isometric *-isomorphism of Cp(X), the algebra of
bounded continuous functions on X, onto C(S). Similarly, as remarked earlier, any
homeomorphism 6 from X onto X has a unique extension to a homeomorphism
6 from S onto S. We may abuse our notation by using 6 instead of 0 ie. using
the same symbol for a homeomorphism of X and for its unique extension to a
homeomorphism of S. Slightly more generally, when X, and X, are dense subsets of
S, if there exists an homeomorphism of Xjonto X, then it has a unique extension to
a homeomorphism of S onto itself.

Following Corollary 7.1.23 we discussed induced actions. Let G be a countable
group and g — «, an action of G as homeomorphisms of § then g > «f is the dual
action of G as homomorphisms of C(S). Here a¥(f) = f o ap—1.

WARNING We also use g — A, to indicate an action of G as automorphisms of
an algebra. In other words, we prefer to indicate group actions by using subscripts
unless we wish to emphasise duality between a G-action on a space and the induced
action as automorphisms.

Let & be a x-automorphism of A. Recall that 4 is said to be properly outer if, for
each non-zero h-invariant projection p, the restriction of 4 to pA is not the identity.

Exercise 7.2.1 Let 6 be a homeomorphism of S onto itself. Let hg be the corre-
sponding automorphism of C(S). Let F be the fixed point set {s € S : 0(s) = s}.
Show that hy is properly outer if, and only if, the closed set F has empty interior.

Let T" be a subgroup of Auz(A) such that every element, except the identity, is
properly outer. Then recall that the action of I" on A is said to be free.

Let G be a countable group of homeomorphisms of S. Then, by applying
Exercise 7.2.1, if g — &8 is a free action of G on A then there exists a dense Gs-set
Y C S, where Y is G-invariant, such that, whenever g € G is not the identity, then
o, has no fixed points in Y. In other words, for each y € ¥, G[y] is a free orbit.

Conversely, we have:

Lemma 7.2.2 Let X be a dense subset of S, where X is G-invariant. Let g — g be
an action of G as homeomorphisms of S. Suppose G|x] is a free orbit for each x € X.
Then g — a8 is a free action of G on C(S).
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Proof Let g € G, such that, o is not properly outer. So, for some non-empty clopen
set K, and each f € C(S),

xxf = (xxf) = (ko8 N(fog™) = xam(fog™).

In particular, K = g[K]. Suppose that x; € K with g(x;) # x;. Then we can find
a continuous function f which takes the value 1 at g(x;) and O at x;. But, from the
equation above, this implies 0 = 1. So g(x) = x for each x € K. Because X is dense
in S and K is a non-empty open set, there exists y € X N K. So y is a fixed point of g
and GJy] is a free orbit. This is only possible if g is the identity element of G. Hence
the action g — «f is free. O

In the following, G is a countably infinite group of homeomorphisms of S and Y
is a dense Gs-subset of S, where Y is G-invariant. Let g — B¢ be the corresponding
action of G as automorphisms of A. We use M(C(S), G) to denote the associated
(Takenouchi) monotone cross-product. (A formal definition of the Takenouchi
cross-product can be found in Saitd [132] or [159].) We hope the discussion below
will make it clear why these algebras can be obtained in an alternative way by
using Sect. 7.1. We shall sketch a description of the monotone cross-product below.
We hope this “bird’s eye view” will be helpful.

The key fact is that, provided the G-action is free, the monotone cross-product
algebra can be identified with the monotone complete C*-algebra arising from the
G-orbit equivalence relation. The end part of Sect. 7.1 already makes this plausible.

Before saying more about the monotone cross-product, we outline some proper-
ties of monotone complete tensor products.

(Comment: An alternative, equivalent, approach avoiding the tensor product, is
to use the theory of Kaplansky-Hilbert modules [90-92, 166, 169].)

For the rest of this section, H is a separable Hilbert space and H; is an arbitrary
Hilbert space. Let us fix an orthonormal basis for H. Then, with respect to this basis,
each V € L(H,)®L(H) has a unique representation as a matrix (V;;), where each Vj;
is in L(H;). Let M be a von Neumann subalgebra of L(H,). Then the elements of
M®L(H) are those V for which each Vj; is in M. Let T be any set and Bnd(T)
the commutative von Neumann algebra of all bounded functions on 7. (It may be
thought of as acting on the Hilbert space £%(T).)

Then, it can be shown that Bnd(T)®L(H) is a von Neumann subalgebra of
L({*(T))®L(H). It can be identified with the algebra of all matrices [m;] over
Bnd(T) for which ¢ +— [m;;(#)] is a norm bounded function over T

We denote the commutative C*-algebra of bounded, complex valued Borel
measurable functions on ¥ by B(Y). Then the product B(Y)®L(H) may be defined
as the monotone o-closure of B(Y) ®uin L(H) inside Bnd(Y)®L( H). The elements
of B(Y)®L(H) correspond to the matrices [b;] where each b; € B(Y) and y +>
[b;;(y)] is a norm bounded function from Y into L(H). See also [120].

Let H be the Hilbert space ¢>(G) with the canonical orthonormal basis {5, :
g € G}, where §4(h) = 8,5 for g,h € G. Let M°(B(Y), G) be the subalgebra of
B(Y)®L(H), consisting of those elements of the tensor product which have a matrix
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representation over B(Y) of the form [a,,] (y € G,0 € G) where a,.4:(y) =
ayq(ty) forally € Y and all y, 0, 7 in G. Let E be the orbit equivalence relation on
Y arising from G, that is

E={(y,gy):y€ Y, geG}

Lemma 7.2.3 Assume that each g € G has no fixed points in Y unless g is the
identity element. Then M° (B(Y), G) is naturally isomorphic to M(E).

Proof (Sketch) The correspondence between these two algebras is given as follows.
Letf € M(E).Foreach o,y in G and, forally € Y, leta,,(y) = f(yy,oy).

Then a,, is in B(Y). Also the norm of [, ()] is uniformly bounded for y € Y.
So [ay,6] is in B(Y)®L(H). Also

Ayro:(Y) = f(yTy,01Y) = ay0(TY).

It now follows that [a, ;] is in M° (B(Y), G).

Conversely, let [a, ] be in M° (B(Y), G). We now use the hypothesis of freeness
for the action of G on Y, to deduce that ({(y,7y) : y € Y}(r € G) is a
countable family of pairwise disjoint closed subsets of E. So we can now define,
unambiguously, a function f : E + C by f(y,ty) = a,.(y). This is a bounded
Borel function on E. It follows from the definition of M° (B(Y), G) that a,,(y) =
a, 5,—1(yy) = f(yy,oy) forall o,y in G and all y in Y. From this it follows that f is
in M(E).

Since Y is a dense Gs-subset of S, S\Y is a meagre Borel subset of S. Let ; be
the canonical o-homomorphism of B(S) onto C(S) such that 71 (f) = f for each
f € C(S); the kernel of m; is the o-ideal of Borel functions which vanish off a
meagre set. Then, when 4 € B(S) and & vanishes on Y then 71 (h) = 0. Now, given
g in B(Y), it can be extended to a function g; € B(S). For example let g; take the
value 0 on S\Y. Let g, be any other extension. Then m;(g;) = m1(g2). So we can
define 7(g) = m1(g1)-

Then r is the canonical quotient homomorphism from B(Y) onto C(S), whose
kernel is the ideal of Borel functions which vanish off a meagre set. Also 7 is a o-
homomorphism satisfying 7w (f |y) = f for each f € C(S). In fact, Exercise 6.4.9 (a)
and (b) together with Corollary 4.2.8 tell us that there exists a surjective o-normal
x-homomorphism 7 from B(Y) onto C(S) such that 7 (f o y) = 7(f) o y for all
feBX)andy €G. O

We consider the monotone tensor product C(S)®L(H). For our purposes here, it
is enough to observe that each element of the monotone tensor product C(S)®QL(H)
has a representation as a matrix over C(S). (The product is not straightforward. But
it turns out that there exists a o-homomorphism IT from B(Y)®L(H), where the
product is straightforward, onto C(S)®L(H); with TI([b,+]) = [7(b,)].)
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The monotone cross-product can be defined to be the subalgebra of C(S)®L( H)
corresponding to matrices [a,,] over C(S) for which BT (ay6) = ayo 0 Br =
Ay o7 forall y, o, T in G. Equivalently, ay 5 (s) = a,,,(ts) forall y,0, 7 in G and
s € S. From this it can be shown that the homomorphism IT maps M° (B(Y), G) onto
M(C(S), G).

The diagonal subalgebra of M(C(S), G) consists of those matrices [a, ] which
vanish off the diagonali.e. a,, = Ofory # o. Also, ,3’71 (a,) = a, 0B, = a,, for
each 7 € G. It follows that we can define an isomorphism from A onto the diagonal
of M(C(S), G) by j(a) = Diag(..., ,Bfl (a),...). We find, see Proposition 7.1.25,
the freeness of the action of G implies that the diagonal algebra of M(C(S), G) is a
maximal abelian x-subalgebra of M(C(S), G).

Then, by Lemma 3.3 [157], we have:

Lemma 7.2.4 Let E be the graph of the relation of orbit equivalence given by
G acting on Y. Then there exists a o-normal homomorphism § from M(E) onto

M(C(S), B, G). The kernel of § is
J = {z € M(E) : D(zz*) vanishes off a meagre subset of Y}.

Furthermore, § maps the diagonal subalgebra of M(E) onto the diagonal subal-
gebra of M(C(S), B, G). In particular, § induces an isomorphism of M(E)/J onto
M(C(S), G).

(Comment: Instead of using tensor products to construct cross-products, as
above, we may use Kaplansky-Hilbert modules instead.)

Let C(S) xg G be the smallest monotone closed *-subalgebra of M(C(S), G)
which contains the diagonal and each unitary which implements the S-action of
G. It will sometimes be convenient to call C(S) xg G the “small” monotone
cross-product. It turns out that C(S) xg G does not depend on G, only on the
orbit equivalence relation. This is not at all obvious but this will be established
in Sect.7.3. We will show that when w is a unitary in M(C(S), G) such that w
normalises the diagonal then w is in C(S) xg G. So, the isomorphism of M(C(S), G)
onto M(E)/J maps C(S) xg G onto the normaliser subalgebra of M(E)/J.

Does the small monotone cross product equal the “big” monotone cross-product?
Equivalently, is M(E)/J equal to its normaliser subalgebra? This is unknown, but
we can approximate each element of M(C(S), G) by a sequence in C(S) xg G, in the
following precise sense:

Lemma 7.2.5 Let z € M(C(S), G). Then there exists a sequence (z,) in C(S) xg G
such that the sequence (D(z — z,)*(z — z,,)) is monotone decreasing and

KID((Z —z)*(@z—1z)) = 0.
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Proof This follows from Proposition 7.1.20. O

Theorem 7.2.6 Let G;(j = 1,2) be countable, infinite groups of homeomorphisms
of S. Let g — ,Bf be the corresponding action of G; as automorphisms of C(S). Let Y
be a dense Gs-subset of S such that G;[Y] = Y and G; acts freely on Y. Let E; be the
orbit equivalence relation on Y arising from the action of G;. Suppose that E\ = E,.
Then there exists an isomorphism of M(C(S), G1) onto M(C(S), G,) which maps the
diagonal algebra of M(C(S), G1) onto the diagonal algebra of M(C(S), G>).

Proof The first part is a straight forward application of Lemma 7.2.4. Let E = E| =
E,. Then both algebras are isomorphic to M(E)/J. O

As a consequence of a theorem which will be proved in Sect. 7.3, the isomor-
phism in Theorem 7.2.6 maps C(S) xg, G onto C(S) xg, G».
In the next result, we require S to be separable.

Corollary 7.2.7 Let G be a countable, infinite group of homeomorphisms of S.
Suppose, for some sy € S, Glso] is a free, dense orbit. Then there exists an
isomorphism ¢ of @ Z, into Homeo(S), such that there exists an isomorphism of
M(C(S), G) onto M(C(S), B Z,) which maps the diagonal algebra of M(C(S), G)
onto the diagonal algebra of M(C(S), P Z,).

Proof By Lemma 6.4.7 G acts freely on a dense Gs set containing G[so]. By
Theorem 6.7.2, there exists an isomorphism ¢ from € Z, into Homeo(S) such that
there exists a dense Gs set Y in § with the following properties. First, Y is invariant
under the action of both G and € Z,. Secondly the induced orbit equivalence
relations coincide on Y. Theorem 7.2.6 then gives the result. O

Remark 7.2.8 By Lemma 6.3.4, when G has a dense orbit in S then the action on
S is such that the only invariant clopen set is empty or the whole space. Then by
Remark 7.1.27, this implies that the algebra M(C(S), G) is a monotone complete
factor.

Lemma 7.2.9 Let B be a Boolean o-algebra. Let (p,) be a sequence in B which
o-generates B, that is, B is the smallest o-subalgebra of B which contains each
Du- Let T be a group of automorphisms of B. Let I' be the union of an increasing
sequence of finite subgroups (I'y). Then we can find an increasing sequence of finite
Boolean algebras (B,) where each B, is invariant under the action of T, and UB,
is a Boolean algebra which o-generates B.

Proof For any natural number k the free Boolean algebra on k generators has
2% elements. So a Boolean algebra with k generators, being a quotient of the
corresponding free algebra, has a finite number of elements.

We proceed inductively. Let 13, be the subalgebra generated by {g(p;) : g € I'1}.
Then B, is finite and I'j-invariant. Suppose we have constructed By, Bs, ..., B,.
Then B, U {p,+1} is a finite set. So its saturation by the finite group [',4, is again
a finite set. So the Boolean algebra this generates, call it 3,4, is finite. Clearly
B, C B,+1 and B, is invariant under the action of I',, 4. O
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A commutative monotone complete C*-algebra is countably o-generated if its
Boolean algebra of projections is o-generated by a countable subset.

Proposition 7.2.10 Let the Boolean algebra of projections in C(S) be countably
o-generated by (p,). Let T be a group of automorphisms of C(S). Let T be the
union of an increasing sequence of finite subgroups (I';). Let g — ug be the unitary
representation of T in M(C(S), ") which implements the action of T on the diagonal
algebra A. Let t be the canonical isomorphism of C(S) onto A. Then the C*-algebra
generated by {u, : g € '} U{n(p,) : n = 1,2,...} is the closure of an increasing
sequence of finite dimensional subalgebras.

Proof Let B be the complete Boolean algebra of all projections in A. By
Lemma 7.2.9, we can find an increasing sequence of finite Boolean algebras of
projections (B,) where B is o-generated by UB, and each B3, is invariant under the
action of I'},.

Let A, be the (complex) linear span of B,. Then A, is a finite dimensional
x-subalgebra of A. Also, for g € T, ugAnu; =A,.

Now let B,, be the linear span of {bu, : g € I', and b € A,}. Then B, is a finite
dimensional *-subalgebra. Clearly (B,,) is an increasing sequence and U;2 | B, is a
*-subalgebra generated by {u, : g € T} U {m(p,) :n=1,2,...}. O

7.3 The Normaliser Algebra

In this section M is a monotone complete C*-algebra with a maximal abelian
x-subalgebra A and D : M +— A a positive, linear, idempotent map of M
onto A. It follows from a theorem of Tomiyama [163], see Definition II1.3.3 and
Theorem II1.3.4 of [161] that D is a conditional expectation. That is,

D(azb) = a(Dz)b

for each z € M and every a, b in A.

The monotone complete algebras considered in Sects. 7.1 and 7.2 satisfy these
conditions when the diagonal algebra, A, is maximal abelian; and A is maximal
abelian when the action g > B¢ is free.

We recall that a unitary w in M is a normaliser of A if wAw* = A. It is
clear that the normalisers of A form a subgroup of the unitaries in M. We use
N(A, M) to denote this normaliser subgroup. Let M be the smallest monotone
closed *-subalgebra of M which contains N(A, M). Then My, is said to be the
normaliser subalgebra of M.

Let G be a countable group. Let g + u, be a unitary representation of G in
N(A,M). Let Ag(a) = ugaity .

Let o be an automorphism of A. We recall that « is properly outer if, for each
non-zero o-invariant projection e € A, the restriction of « to eA is not the identity
map. We further recall that the action g — A, is free provided, for each g other than
the identity, A, is properly outer.
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Theorem 7.3.1 Let My be the smallest monotone closed subalgebra of M which
contains A U {ugy : g € G}. We suppose that:

(i) The action g — A, is free.
(ii) For eachz € M, if D(zuy) = 0 for every g € G then z = 0.

Then My contains every unitary in M which normalises A, that is, My = M.

Proof Let w be a unitary in M which normalises A. Let o be the automorphism of
A induced by w. Then, for each a € A, we have waw* = a(a). So wa = o(a)w.
Hence, for each g, we have

D(waug) = D(0(a)wu,).

But D is a conditional expectation. So

D(wug)u;aug = D(wauy)
= D(o(a)wuy)
= o(a)D(wuy).

Because A is abelian, it follows that (o (a) — /\g_l(a))D(wug) = 0.
Let p, be the range projection of D(wu,)D(wug)* in A. Equivalently this is the
left projection of D(wuy). So, for every a € A,

(0(a) — A7 (@))pg = 0. #)

Fix g and i with g # h, and let e be the projection p,p;. Then we have, for each
a€A,

(A @) =2 (@)e = (0(a) = A7 (@)pepn — (0(a) = A5 (@)papg = 0.

Let b be any element of A and let a = A;4(b). Then (A,-1,(b) — b)e = 0.If e # 0,
then by (i) it follows that 4~ 'g is the identity element of G. But this implies g = A,
which is a contradiction. So 0 = e = pgpy. So {p, : g € G} is a (countable) family
of orthogonal projections.

Let g be a projection in A which is orthogonal to each p,. Then gD(wu,) =
gpeD(wug) = 0. So D(gwug) = 0 for each g € G. Hence, by applying hypothesis
(ii), gw = 0. Butww*™ = 1. So ¢ = 0. Thus ) p, = 1. This convergence is in A. But
since A is monotone (0-)closed in My this convergence is also in M, and so in M.

From (#) we see that

(Ago(a) —a)Ay(pg) = 0.
We define g, to be the projection A, (p,). Then

(a—Ago(a))ge = 0. (##)
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By arguing in a similar fashion to the above, we find that {g, : g € G} is a family of
orthogonal projections in A with ) g, = 1.
(Suppose that pg, = 0 for all g € G. Then we have

0= p/\g(pg)kg(D(Wug)) = p/\g(D(W”g))
= Ag(D(wug))p = Ag[D(wug)A; ' (p)] = Ag[D(wpuy)]

and so we have D(wpu,) = 0 for all g, which implies that wp = 0, that is, p = 0.)
For each g € G, let v, = u,p,. Then v, is in My and is a partial isometry with
UV = qg and vy Vg = py.
We wish to show that there exists a unitary v in M, such that

qoV = Vg and vpg = Vgpe = UgP,.

We could do this by applying the General Additivity of Equivalence for
AW*-algebras, see page 129 [13]. But we prefer to use the order convergence
results of Chap.2. Since {v,}eec and {gg}eec are £2-summable over G and M is
monotone (o-)complete, v = Y geG Vg eXists and satisfies the required conditions.
(See Lemma 2.1.38 and Proposition 8.3.3.) (We again note that M, is monotone
closed in M and so v is convergent in M and belongs to My.) From (#), for each
a€aA,

* *
0(a)pg = ugaugp, = pgv”avp,
= v*up,v*avp,

* *
= v ugp,tzavp,

= v*avp,.

So (0(a) —v*av)p, = 0.Lety = o(a) — v*av. Then y*yp, = 0.

So the range projection of y*y (the right projection of y) is orthogonal to p, for
each g.

Since A is monotone closed in M and deGl’g =1inA, deGPg = 11in My,.
Hence the right projection of y is 0. So y = 0. It now follows that waw* = vav*
for each a € A. Then v*w commutes with each element of A. Since A is maximal
abelian in M it follows that v*w is in A. Since v is in My, it now follows that w
is in M. O

We note that the above theorem does not require the action g = A, to be ergodic.
It is applicable to the algebras considered in Sects. 7.1 and 7.2.

Definition 7.3.2 Let C(S) xg G be the smallest monotone closed *-subalgebra of
M(C(S), G) which contains the diagonal and each unitary which implements the
B-action of G. It will sometimes be convenient to call C(S) xg G the “small”
monotone cross product.
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It follows from Theorem 7.3.1 that C(S) xg G is the normaliser subalgebra of
M(C(S), G).

It turns out that C(S) xg G does not depend on the group G, only on the
orbit equivalence relation. More precisely, using the same assumptions as in
Theorem 7.2.6, we have the following:

Corollary 7.3.3 Let Gi(j = 1,2) be countable, infinite groups of homeomorphisms
of S. Let Y be a dense Gs-subset of S such that G;[Y] = Y and G; acts freely on Y. Let
E; be the orbit equivalence relation on Y arising from the action B; of G;. Suppose
that E; = E,. Then there is an isomorphism of M(C(S), G1) onto M(C(S), G»)
which maps C(S) xg, Gy onto C(S) xg, Go>.

Proof This is a direct consequence of Theorems 7.2.6 and 7.3.1. More explicitly,
when w is a unitary in M(C(S), G;) such that w normalises the diagonal then w is in
C(S) xg; Gj. So, the isomorphism of M(C(S), G;) onto M(E;)/J maps C(S) x; G;
onto the normaliser subalgebra of M(E;)/J, where E; = E». O

7.4 Free Dense Actions of the Dyadic Group

We have said a great deal about G-actions with a free dense orbit and the algebras
associated with them. It is incumbent on us to provide examples. We do this in this
section. We have seen that when constructing monotone complete algebras from the
action of a countably infinite group G on an extremally disconnected space S, what
matters is the orbit equivalence relation induced on S. When the action of G has a
free, dense orbit in S then we have shown that the orbit equivalence relation (and
hence the associated algebras) can be obtained from an action of @Z, with a free,
dense orbit. So, when searching for free, dense group actions, it suffices to find them
when the group is PZ,.

In this section we construct such actions of @5Z,. As an application, we will find
2¢ hyperfinite factors which take 2¢ different values in the classification semigroup
that was constructed in Chap. 3.

We begin with some purely algebraic considerations before introducing topolo-
gies and continuity. We will end up with a huge number of examples.

We use F(S) to denote the collection of all finite subsets of a set S. Here we shall
regard the empty set, the set with no elements, as a finite set. We use N to be the set
of natural numbers, excluding 0.

Let C = {f : k € F(N)} be a countable set where k — f is a bijection. For each
n € N let g, be defined on C by

fk\{n} if n ek

on(fi) = feop ifn € k.
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Lemma 7.4.1 (i) Foreachn, o, is a bijection of C onto C, and 0,0, = id, where
id is the identity map on C.
(ii) When m # n then 6,0, = 0,0p,.

Proof (i) Itis clear that 0,0, = id and hence o, is a bijection.
(ii) Fix fx. Then we need to show 0,,0,,(fk) = 0,0, (fx). This is a straightforward
calculation, considering separately the four cases when k contains neither m nor
n, contains both m and n, contains m but not n and contains n but not m.
We recall that PZ,; = PnenZ,, the countable commutative discrete group
obtained by the countable restricted direct sum of Z,. For each n € N, let g,
be the element defined by g,(m) = §,,, forallm € N. Then {g, : n € N} is a
set of generators of @PZ,.
Take any g € @Z, then g has a unique representation as g = g,, +---+ 8&n,
where 1 < n; <--- < n, or g is the zero. Let us define

€ = OpOny - - - Op,-
Here we adopt the notational convention that 0,0, . . . 0, . denotes the identity
map of C onto itself when {n,,...,n,} = 0.

Then g — &, is a group homomorphism of @Z, into the group of bijections
of C onto C. It will follow from Lemma 7.4.2 (ii) that this homomorphism is
injective. O

Lemma 7.4.2 (i) The set C is an orbit. More precisely

C = {e;(fo) : g € DLy}
= {Unlanz cee O-np(f@) . {nlan ce vnp} € F(N)}

(ii) For eachk € F(N)

OnOpy - -« Un,,(fk) :fk

only if 0,04, . .. On, = id.

Proof (i) Letk = {ni,---,n,} where n; # n; fori # j. Then 0,04, ...0,,(fp) =
fi.

(i) Assume this is false. Then, for some k € F(N) we have 0,0y, . .. 0, (fk) = fk
where 0,0y, . .. On,y is not the identity map. So we may assume, without loss of
generality, that {n;,n,, ..., n,} = mis a non-empty set of p natural numbers.

First consider the case where Kk is the empty set. Then 0,0y, . .. 0, (fp) =
fo- So fm = fp. But this is not possible because the map k — f is injective.
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So k cannot be the empty set; let k = {my,ma,...,m,}. Then
Om Omy - - - amq(fg) = fx. Hence

O0nOny - - - OnpOmy Oy - - - Oy, (f@) = OmOm; - - - Umq(f@)'

On using the fact that the o; are idempotent and mutually commutative, we find
that 0y, 0y, - .. 04, (f) = fo. But, from the above argument, this is impossible.
So (ii) is proved. O

Let us recall that the “Big Cantor Space” {0, 1}¥, is compact, totally disconnected
and separable but not metrisable or second countable. Also each compact, separable,
totally disconnected space is homeomorphic to a subspace of {0, 1}*. Let C be
a countable subset of {0, 1}]R then cIC, the closure of C, is a compact separable,
totally disconnected space. This implies that C is completely regular and hence has
a Stone-Czech compactification SC.

We saw in Chap.4, that the regular o-completion of C(cIC) is monotone
complete and can be identified with B> (cIC)/M(cIC). Let cIC be the spectrum
(maximal ideal space) of B> (cIC)/M(cIC). Then this may be identified with the
Stone space of the complete Boolean algebra of regular open subsets of cIC.
By varying C in a carefully controlled way, we exhibited 2 essentially different
extremally disconnected spaces in the form cIC.

For each of these spaces c/C we shall construct an action of BZ, with a free
dense orbit.

We need to begin by recalling some notions from Chap. 4. A pair (7, O) is said
to be feasible if it satisfies the following conditions:

(i) T is aset of cardinality ¢ = 2%; 0 = (0,)(n = 1,2...) is an infinite sequence
of non-empty subsets of T, with O,, # O,, whenever m # n.

(ii) Let M be a finite subset of 7" and r € T\M. For each natural number m there
exists n > msuchthatt € O,and O, "M = @.

In other words {n € N : t € O, and O, N M = @} is an infinite set.

An example satisfying these conditions can be obtained by putting T = 2N,
the Cantor space and letting O be an enumeration (without repetitions) of the
(countable) collection of all non-empty clopen subsets.

For the rest of this section (7, Q) will be a fixed but arbitrary feasible pair.

Let (T, O) be a feasible pair and let R be a subset of 7. Then R is said to be
admissible if

(1) Ris asubsetof T, with #R = #(T\R) = c.
(i1) O, is not a subset of R for any natural number 7.

Return to the example where T is the Cantor space and O an enumeration of
the non-empty clopen subsets. Then, whenever R C 2 is nowhere dense and of
cardinality ¢, R is admissible.
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Throughout this section the feasible pair is kept fixed and the existence of at least
one admissible set is assumed. For the moment, R is a fixed admissible subset of 7.
Later on we shall vary R.

Since F(N) x F(T) has cardinality ¢, we can identify the Big Cantor space with
2F@OXFM) For each k € F(N), let fi, € 2F®*F() pe the characteristic function of
the set

{,L): Le F(T\R),1 Ckand O, N L = & whenevern € kand n ¢ 1}.

As in Chap. 4, let N(f) = {n € N : t € O,}. By feasibility, this set is infinite for
each r € T. It is immediate that f (1, L) = 1 precisely when

L e F(T\R),1 C kand, foreacht € L, N(r) N (k\l]) = @.

Let Xg be the countable set {fx : k € F(N)}. Let Kz be the closure of X in the
Big Cantor space. Then K is a (separable) compact Hausdorff totally disconnected
space with respect to the relative topology induced by the product topology of the
Big Cantor space. We always suppose Xg to be equipped with the relative topology
induced by Kk.

Let C = Xg. If the map k — fk is an injection then we can define 0, on X as
before.

Lemma 7.4.3 Let fx = fm. Then k = m.

Proof By definition, fx(1,d) = 1 precisely when 1 C k. Since fx(m,9) =
Jm(m, @) = 1 it follows that m C k. Similarly, k C m. Hence m = k. O

For each (k,K) € F(N) x F(T) let Exx)y = {x € Kg : x(k,K) = 1}. The
definition of the product topology of the Big Cantor space implies that E ) and
its compliment Ef, K are clopen subsets of K. It also follows from the definition
of the product topology that finite intersections of such clopen sets form a base for
the topology of K. Hence their intersections with X give a base for the relative
topology of Xg. But we saw in Chap. 4 that, in fact,

{E(k,K) NXg:ke F(N),K [S F(T\R)}

is a base for the topology of Xg. Also Eq k) = 9 unless K C T\R.

Since each E( k) is clopen, it follows from Lemma 6.2.1 that Ey k) is the closure
of E(k,K) N Xg.

To slightly simplify our notation, we shall write E(k, K) for Eq k) N Xz and E,
for E(,3,9) N Xg. Also Ej, is the compliment of E, in Xz, which is, Ef{n}’@) N Xg.
We shall see, below, that {f;, : n ¢ h} = E{, equivalently, E,, = {fy, : n € h}.

When G is a subset of Xz we denote its closure in BXg by c/G. When G is a
clopen subset of X then ¢/G is a clopen subset of SXg. So the closure of E, in fXg
is clE,, whereas its closure in Kg is E((,},g)-
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We need to show that each o, is continuous on Xz. Since g, is equal to its inverse,
this implies that o,, is a homeomorphism of Xk onto itself.
Our first step to establish continuity of g, is the following:

Lemma 7.4.4 We have E, = {fx : n € k} and E; = {fm : n ¢ m}. Also o,
interchanges E, and E. Furthermore, for m # n, o,, maps E, onto E, and E, onto
E:.

Proof By definition fi({n}, @) = 1if, and only if {n} C k. So fin € E|, precisely
when n ¢ m.

For fx € E, we have 0,(fk) = fi\{n}. S0 0,, maps E, onto E;. Similarly, it maps
E; onto E,,.

When m # n, consider fx € E,. Thenn € k. Son € kU {m} and n € k\{m}.
Thus 0,,(fx) is in E,,. i.e. o, [E,] C E,.

Since o,, is idempotent, we get 0,,[E,] = E,. Similarly o,,[E{] = E,. O

Lemma 7.4.5 The map o, : Xg — Xg is continuous.

Proof 1t suffices to show that o, ' [E(], L)] is open when L C T\R.

Let fp bein o, '[E(1, L)]. We shall find, U, an open neighbourhood of f, such that
0,[U] C E(,L).

We need to consider three possibilities.

(1) First suppose that n € h, that is fy, € E,. Then fi\(,y = 0,(/fn), which is in
E(1,L). Sol C h\{n} which implies n ¢ 1. Also N(¢) N ((h\{rn})\l) = @ for all
t € L. It follows that 1 U {n} C hand, forallz € L, N(¢) N (h\(1 U {n})) = @.
Hence fy, € E, N EQU {n},L).

Let fx € EQU {n},L). Then 1 U {n} C k. Also, for t € L, N() N (k\
(U {n})) = 0.

Hence 1 C k\{n} and, for t € L, N(r) N ((k\{n})\l) = @. This implies
ou(fx) = fistw € E(Q,L). Thus EQA U {n},L) is a clopen set, which is a
neighbourhood of f;, and a subset of o, ' [E(1, L)].

(2) Now suppose n ¢ h. Then fhugy = 0,(fa) which is in E(I,L). This gives
(a) h U {n} contains 1. (b) Forallt € L, N(¢) N ((h U {n})\D)=0. (c) f € E}.

Suppose, additionally, that n € 1. Then (h U {n})\l = h\(\{n}). So, for
allr € L, N(t) N (h\(I\{n}))=4. So fi, is in E(I\{n}, L). Hence, by (c) fy is in
ESNEM\{n},L).

Now let fy € E¢ N E(I\{n},L). Since fix € E, it follows that n ¢ k. So
Seufny = 0n(fid)-

Since fix € E(I\{n}, L), we have I\{n} C k. Sol C kU{n}. Also (kU{n})\l =
k\(I\{r}). So, for any t € L, N(¢) N ((k U {n})\l) = 9. Thus fxugy € E(,L).
That is, 0,,(fx) € E(1, L).

(3) We now suppose thatn ¢ hand n ¢ 1. As in (2), statements (a), (b) and (c) hold.

Note h\l = (h U {n})\(1 U {n}). It follows from (b) that N(r) N (h\l) = @
foreach r € L. Hence fi, € E(1,L) N ES.
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We also observe that, because n ¢ 1, (b) implies that
(d) {n} " N(t)= 0 foreacht € L.

Now let fi € E(1, L) N E;,. Then n ¢ k. So 0,(fx) = fxuin}-

Alsol C k and N(t) N (k\l) = @ for any r € L. It now follows from
(d) that ((k U {n})\I) N N(1)= @ whenever ¢ € L. Hence fxug,y € E(1, L). Thus
E(1, L) N E is a clopen neighbourhood of f;, and it is a subset of o, [E(1, L)].

It follows from (1), (2) and (3) that every point of o,[E(l, L)] has an open
neighbourhood contained in 0,[E(]l, L)]. In other words, the set is open. O

We recall that Xy is completely regular because it is a subspace of the compact
Hausdorff space Kg. Let fXg be its Stone-Czech compactification. Then each
continuous functionf : Xg — Xg has a unique extension to a continuous function ¥
from BXg to BXg. When f is a homeomorphism, then by considering the extension
of f~! it follows that F is a homeomorphism of BXg. In particular, each o, has
a unique extension to a homeomorphism of SXg. We abuse our notation by also
denoting this extension by o,,.

Let us recall from Sect. 6.4, that when 6 is in Homeo(BXg) then it induces a
homomorphism hy of C(BXg) by he(f) = f o 6. It also induces an automorphism
of B*®(BXg)/Mo(BXr) by Hy([F]) = [F o 0]. Then Hy is the unique automorphism
of B®(BXg)/My(BXr) which extends hy. Let Sk be the (extremally disconnected)
structure space of B (BXg)/Mo(BXg); this algebra can then be identified with
C(Sg). Then Hy corresponds to é, an homeomorphism of Sg. Then 6 — hy is a
group anti-isomorphism of Homeo(BXg) onto AutC(BXg); hg — Hp is an isomor-
phism of AutC(BXg) into AutC(Sg). Also Hy +— 6 is a group anti-isomorphism
of AutC(Sg) into Homeo(Sg). When G is an Abelian subgroup of Homeo(BXg) it
follows that 6 > Hy and 6 — 6 are group isomorphisms of G into AutC(Sg) and
Homeo(Sg), respectively.

We recall that ¢ — &, is an injective group homomorphism of €5Z, into the
group of bijections of C onto C. By taking the natural bijection from C onto
Xg, and by applying Lemmas 7.4.2 and 7.4.5, we may regard &, as an injective
group homomorphism of @Z, into Homeo(Xg). Since each homeomorphism of
X onto itself has a unique extension to a homeomorphism of fXy onto itself, we
may identify e, with an injective group homomorphism of @)Z, into the group
Homeo(B8Xg). This induces a group isomorphism, g > &% from @)Z, into AutC(Sg)
by putting & = H,,. The corresponding isomorphism, g +> &,, from PZ, into
Homeo(Sg), is defined by

&, = &, foreach g € P7Z,.
As in Sect. 6.4, p is the continuous surjection from Sg onto §Xg which is dual to

the natural injection from C(BXg) into B®(BXg)/Mo(BXr) >~ C(Sg). Let 5o € Sg
such that p(sg) = fp.
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Theorem 7.4.6 Let g — &, be the representation of @Z,, as homeomorphisms of
Sr. as defined above. Then the orbit {€,(so) : g € Z,} is a free, dense orbit in Sg.
Furthermore, there exists Y, a G-invariant, dense Gs-subset of Sg, with so € Y, such
that the action & is free on Y.

Proof By Lemma 7.4.2 (i), Xg = {,(fg) : ¢ € €DZ,}. By Proposition 6.4.4 this
implies the orbit {&,(so) : ¢ € PZ,} is dense in Sk.

By Lemma 7.4.2 (ii) {&,(fp) : ¢ € @Z,} is a free orbit. This theorem now
follows from Lemmas 6.7.1 and 6.5.9. O

Corollary 7.4.7 The group isomorphism, g — &8, from @Z, into AutC(Sg) is free
and ergodic.

We shall see below that we can now obtain some additional information about
this action of @Z, as automorphisms of C(Sg). This will enable us to construct
huge numbers of small wild factors which are hyperfinite, that is, generated by an
increasing sequence of matrix algebras.

We have seen that, for each natural number 7, 0, is a homeomorphism of Xp
onto itself with the following properties. First, 0, = o, . Secondly, 0,[E,] = E¢
and, for m # n, we have 0,[E,,] = E,. (This notation was introduced just before
Lemma 7.4.4, above.)

We have seen that o, has a unique extension to a homeomorphism of Xz, which
we again denote by o,,. Then

ou[clE,] = clE;, and, for m # n, we have o0,[clE,;] = clE,,.

We define e, € C(BXg) as the characteristic function of the clopen set
clE({n}, ) = clE,.

Using the above notation, £ is the *-automorphism of B®(8Xg)/Mo(BXr) =~
C(Sg) induced by o,,. We have

£%(e,) = 1 — e, and, for m # n, €% (ey) = e

Since Reg(BXgr) ~ Reg(Xr) ~ Reg(Kgr), we can apply Proposition 4.3.15
and Corollary 4.3.16 to show that the smallest monotone o-closed *-subalgebra
of B®(BXg)/My(BXg) which contains {e, : n = 1,2,...} is B®(BXg)/My(BXg)
itself. We shall see that the (norm-closed) *-algebra generated by {e,, : n = 1,2...}
is naturally isomorphic to C(2Y).

When S C N we use 75 to denote the element of 2 which takes the value 1 when
n € S and 0 otherwise. Let G, be the clopen set {5 € 2" : n € S}. These clopen sets
generate the (countable) Boolean algebra of clopen subsets of 2. An application of
the Stone-Weierstrass Theorem shows that the *-subalgebra of C(2Y), containing
each yg, is dense in C(2Y).

Lemma 7.4.8 There exists an isometric isomorphism, o, from C(2Y) into C(BXg)
such that mo(xg,) = en
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Proof As in Sect.4.3, we define a map I' from the Big Cantor space, 2F>*F(T)

onto the classical Cantor space, 2V, by I'(x)(n) = x(({n}.9)). Put J = {({n}.9) :
n = 1,2,...}. Then we identify 2" with 2’. So I" may be regarded as a restriction
map and, by definition of the topology for product spaces, it is continuous.

From the definition of fx, we see that fi({n},?) = 1 precisely when n € k.
So I'fx = nk. Hence

I'E,) = {nk :n e kand k € F(N)}.

By the basic property of the Stone-Czech compactification, the natural embed-
ding of X into Kg factors through SXg. So there exists a continuous surjection ¢
from BXg onto Kx which restricts to the identity map on Xg. Then I'¢p maps clE,
onto G, and clE¢ onto G¢. Forf € C(2Y) let o (f) = foT'¢. Then mg is the required
isometric isomorphism into C(8Xg) C B*(8Xr)/Mo(BXr). O

Let & be the action of the Dyadic Group on C(Sg) considered above. Let Mg be
the corresponding monotone cross-product algebra. So there exists an isomorphism
ng from C(Sg) onto the diagonal subalgebra of My and a group representation
g > ug of the Dyadic Group in the unitary group of My such that ungR(a)u; =
7r(€8(a)). Since each element of the Dyadic Group is its own inverse, we see that
each u, is self-adjoint. Since the Dyadic Group is abelian, ugu;, = uju, for each g
and h.

As before, let g, be the nth term in the standard sequence of generators of PZ,
that is, g, takes the value 1 in the nth coordinate and 0 elsewhere. We abuse our
notation by writing “u,,” for the unitary u,, and “e,” for the projection nz(e,) in the
diagonal subalgebra of Mg. We then have:

upenit, = 1 — e, and, form # n, uye,u, = ep.

Let Ag = mg[C(Sg)] be the diagonal algebra of M. We recall that the Boolean
o -subalgebra of the projections of Ag, generated by {e, : n = 1,2, ...}, contains all
the projections of Ag.

Let us also recall, see [121, p205], that the Fermion algebra is the most basic
of the uniformly hyperfinite C*-algebras (Glimm algebras). It is generated as a
C*-algebra by an increasing sequence of full matrix algebras of dimensions 2" x 2"
(n=1,2,...) and is unital and simple.

For any projection p we define p(© = p and pV) = 1 —p.

For each choice of n and for each choice of «, ..., o, from Z,, it follows from
Lemma 7.4.8 that the product e]'e3” ... e2" is neither 1 nor 0. In the terminology
of [180], (e,) is a sequence of (mutually commutative) independent projections.
The following Lemma follows from the proof of Proposition 2.1 [180]. But for the
reader’s convenience we give a different, self-contained argument. In particular, for
eachn, {u; : j = 1,2,...,n} U{e :j = 1,2,...,n} generates a subalgebra
isomorphic to the algebra of all 2" x 2" complex matrices.
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Lemma 7.4.9 Let F be the Fermion algebra. Then there exists an isomorphism I1
from F onto the smallest norm closed x-subalgebra of Mg which contains {u, : n =
1,2,...} and {e, : n = 1,2,...}. This isomorphism takes the diagonal of F onto
the smallest closed abelian *-subalgebra containing {e, :n =1,2,...}.

Proof Let B be the C*-subalgebra generated by {u, : n = 1,2,---} and {e, : n =
1,2,---}. Foreachn, let £ = e,, % = eqttn, fi} = une, and f2) = 1—e,. Then
(m) (n) __

M=

for each n, {fij(.") }1<ij<> 18 a system of 2 x 2 matrix units in B such that fij

A fij(.m) for all m,n in N and i,j, k,[ in {1, 2} and such that the commuting family
[{fi](.") 1i,j= 1,2} : n = 1,2,---] generates the norm closed subalgebra B. More

precisely, if B, is the C*-subalgebra of B generated by [{fl.g.") cLj=1,2}:n=
1,2,---,n] for each n, then we have ‘

BcB,C---CB,CB,41C---CB

such that B, = C*(uy, - ,up;e1,-++,e,), the C*-subalgebra generated by

{ug, -+ ,uys ey, -+, e,} for each n and B is the norm closure of the x-subalgebra

U,=1 Bn in Mg. Here we used the fact that u, = e,u, + uye, = 1(;) + fz(;’) for each n.

On the other hand, there exists an inductive system

TTn—1 Tn+1

JWQ SEGE SN ]Vfgz e ]Wgn n ]\/fgrwrl —_—

with the following properties. First Mon = M, (C)®- - - @M, (C) (n-times). Secondly,
Ty 2 Mo —> Mont

where for each n, and each a € Mo,
ma(a) = a ® ly, ).

Third, F is the C*-algebra obtained by the C*-completion of the inductive limit
x-subalgebra Foo = Unzl tn(May), where ¢, is the canonical *-isomorphism from
My into Foo. (When ay, - -+, a, € Mp(C) we sometimes write

ln(al®"'®an):al®"'®an®1®"'-

For details see [121, p205] or [162, p83, Vol III]. Let {e;j}1<; <> be the standard
system of matrix units for M,(C). Since each My is *-isomorphic to the simple
C*-algebra M (C), there exists a unique *-isomorphism 6, from M, onto B,
satisfying 0,(e;;, ® ---e;,,) = fl(ljl)f;f;z)z for each iy, jr € {1,2} with1 <k <n
and 0,41(x ® e;) = Gn(x)fis."ﬂ) for each x € My and 1 < i,j < 2, that is, we have
0,41 © m, = 6, for each n. Hence there exists a unique *-homomorphism 6 from

Foo onto |, By satisfying 6 o 1, = 6, for each n. Since each 6, is an isometry,
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0 extends uniquely to a x-isomorphism IT from F onto B which maps the diagonal
of F onto the smallest norm closed *-subalgebra containing {e, : n = 1,2,---}.
This completes the proof. O

Definition 7.4.10 Let Bg be the smallest monotone o-closed *-subalgebra of Mg
which contains TT[F].

Proposition 7.4.11 The algebra Bg is a monotone complete factor which contains
Ag as a maximal abelian x-subalgebra. There exists a faithful normal conditional
expectation from Bg onto Ag. The state space of Bg is separable. The factor By is
wild and of Type Ill. It is also a small C*-algebra.

Proof Let Dg be the faithful normal conditional expectation from My onto Ag. The
maximal ideal space of Ag can be identified with the separable space Sg. Then,
by Corollary 4.2.21, there exists a faithful state ¢ on Ag. Hence ¢ Dy, is a faithful
state on My and restricts to a faithful state on Bg. So, by Theorem 2.1.14, By is
monotone complete. Let D be the restriction of Dg to Bg then D is a faithful and
normal conditional expectation from Bg onto Ag.

Since each e, is in By it follows that Ar is a *-subalgebra of Bg. Since it is
maximal abelian in My it must be a maximal abelian *x-subalgebra of Bg. So the
centre of By is a subalgebra of Agz. Each u, is in Bg and so each central projection
of Bgr commutes with each u,. Since the action & of the Dyadic Group is ergodic
(see Corollary 7.4.7), it follows that the only projections in Ag which commute with
every u, are 0 and 1. So Bg is a (monotone complete) factor.

The state space of every unital C*-subalgebra of Mg is a surjective image of
the state space of Mg, which is separable. So the state space of Bg is separable.
Equivalently, By is almost separably representable.

Since By contains a maximal abelian *-subalgebra which is not a von Neumann
algebra it is a wild factor. Also Mg is almost separably representable, hence it
possesses a strictly positive state (see the proof of Lemma 3.1.1) and so is a Type
III factor [176], see also [131]. In Sects. 5.8 and 5.9, it is shown that a monotone
complete factor is a small C*-algebra whenever it has a separable state space. It now
follows immediately that the factor is a small C*-algebra. O

Alternatively we may use results from Theorem 5.9.9 on small C*-algebras to
argue as follows.

Since C(Sg) is small and (*(®Z,) is a separable Hilbert space,
C(Sp)®L({*(®7Z,)) is small. Any unital C*-subalgebra of a small C*-algebra is
also small. From the identification of My as a monotone cross product

Mg C C(SR)RL(*(D2,)).

So Mg and By, are both small. Hence they both possess a faithful state and, as above,
must be wild Type III factors.
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Proposition 7.4.12 The homomorphism I1 extends to a o-homomorphism I1%°
from F*°, the Pedersen-Baire envelope of the Fermion algebra, onto Bg. Let Jg
be the kernel of T1%° then F° /Jg is isomorphic to Bg.

Proof Let Il : F° > BY° be the canonical o-normal extension of IT (see [121,
p60]). By Theorem 5.4.5, there exists a surjective o-normal unital *-homomorphism
q : By — Bg. Let [1® = g o I1. Then this T satisfies our requirements. O

7.5 Approximately Finite Dimensional Algebras

We could proceed in greater generality, but for ease and simplicity, we shall only
consider monotone complete C*-algebra which possess a faithful state. Every
almost separably representable algebra has this property and hence so does every
small C*-algebra.

Ever since the pioneering work of Connes [30], the notion of a hyperfinite or
approximately finite dimensional von Neumann algebra has been well understood.
The situation for monotone complete C*-algebras is much more obscure, with many
questions unanswered. We have to make a number of delicate distinctions which are
unnecessary for von Neumann algebras.

Definition 7.5.1 Let B be a monotone complete C*-algebra with a faithful state.
Then B is said to be approximately finite dimensional if there exists an increasing
sequence of finite dimensional x-subalgebras (F,) such that the smallest monotone
closed subalgebra of B which contains US2 | F, is B itself.

Definition 7.5.2 Let B be approximately finite dimensional. If we can take each F,
to be a full matrix algebra, then B is said to be strongly hyperfinite.

Definition 7.5.3 Let M be a monotone complete C*-algebra with a faithful state.
We call M nearly approximately finite dimensional (with respect to B and D) if it
satisfies the following conditions:

(i) M contains a monotone closed subalgebra B, where B is approximately finite
dimensional.
(ii) There exists a linear map D : M +— B which is completely positive, unital,
faithful and normal.
(iii) For each z € M, there exists a sequence (z,)(n = 1,2...) in B, such that

D((Z —zn)(z— Zn)*) = D((Z - Zn+l)(Z - Zn+l)*)

for each n, and

AD(G=)E=2)") = 0.
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Suppose M, B and D satisfy the above conditions. In the notation of Chap. 3,
M =X B because D ] M +— B is faithful and normal. Also B <X M because B is
monotone closed in M. So B and M are equivalent.

Definition 7.5.4 Let M be a monotone complete C*-algebra with a faithful state.
We call M nearly hyperfinite if it contains a monotone closed subalgebra B such
that (i) M is nearly approximately finite dimensional with respect to B and (ii) B is
strongly hyperfinite.

Theorem 7.5.5 Let S be a compact Hausdorff extremally disconnected space. Let
G be a countably infinite group and g — 38 be a free action of G as automorphisms
of C(S). Let M(C(S), G) be the corresponding monotone cross-product; let w[C(S)]
be the diagonal subalgebra; let D : M(C(S), G) — mw[C(S)] be the diagonal map.
Let g — ug be a unitary representation of G in M(C(S), G) such that B¢ (a) = ugau;
for each a € w[C(S)]. Let B be the monotone closure of the x-algebra generated by
w[C(S)] U {u, : g € G}. If B is approximately finite dimensional then M(C(S), G)
is nearly approximately finite dimensional.

Proof By Theorem 7.3.1, B is the normaliser subalgebra of M(C(S), G).

By Lemma 7.2.5, M(C(S), G) satisfies condition (iii) of Definition 7.5, with
respect to B and the diagonal map D. It follows immediately that M(C(S), G)
is nearly approximately finite dimensional whenever B is approximately finite
dimensional. O

In Chap.3 we constructed a weight semigroup, W/, which classified monotone
complete C*-algebras (of bounded cardinality). In particular, given algebras C; and
C,, they are equivalent (as defined in Chap. 3) precisely when their values in the
weight semigroup, wC; and wC;,are the same.

Let (T, O) be a feasible pair, see Definition 4.3.3. Let R be the collection of all
admissible subsets of 7. For each R € R let Ax = C(Sg) = B (Kg)/My(Kg).
(See Remark 6.4.8 and Corollary 4.2.24.) Then, by Corollary 4.3.25, we can find
RoC R such that #R = 2¢, where ¢ = 2% with the following property. Whenever
Ry and R, are distinct elements of Ro then Ag, is not equivalent to Ag, that is,
WAR1 75 WARZ-

Theorem 7.5.6 There exists a family of monotone complete C*-algebras, (By, A €
A) with the following properties: Each By is a wild, strongly hyperfinite, Type 1]
factor. Each By, is a small C*-algebra. Each B, is a quotient of the Pedersen-Baire
envelope of the Fermion algebra. The cardinality of A is 2¢, where ¢ = 280, When
A # u then B; and B, take different values in the classification semigroup W, in
particular, they cannot be isomorphic.

Proof First we put A = Ry. For each R € Ry we have a faithful normal conditional
expectation from By onto the maximal abelian *-subalgebra Ag. We use the partial
ordering defined in Chap. 3. Since Ag is a monotone closed subalgebra of Bz and
Bpr is a monotone closed subalgebra of M we obtain Ag X Br X Mg. Since Dg
is a faithful normal positive map from My onto Ag, we have Mr < Ag. Hence



7.5 Approximately Finite Dimensional Algebras 217

Ar ~ Br ~ Mp. By using the classification weight semigroup W, we get wAgp =
wBr = wMg. Since, for R| # R, we have wAg, 7# WARg, this implies wBg, # wBg,.

The only item left to prove is that each factor B is strongly hyperfinite. But the
Fermion algebra is isomorphic to TI[F]. So TI[F] is the closure of an increasing
sequence of full matrix algebras. It now follows that B, is strongly hyperfinite. O

Corollary 7.5.7 For each orbit equivalence relation E(R), corresponding to R, the
orbit equivalence factor Mg ) is nearly hyperfinite.

Theorem 7.5.8 Let S be a separable compact Hausdorff extremally disconnected
space. Let G be a countably infinite group of homeomorphisms of S with a free, dense
orbit. Let E be the orbit equivalence engendered by G and Mg the corresponding
monotone complete factor. Suppose that the Boolean algebra of projections of C(S)
is countably generated. Then Mg is nearly approximately finite dimensional.

Proof By Corollary 7.2.7, we may identify Mg with M(C(S), @ Z>). In other words
we can assume that G = € Z,. We can further assume that g — f,, the action of
G as homeomorphisms of S, has a free dense orbit. Hence the corresponding action
g > %, as automorphisms of C(S), is free and ergodic. Let 7 be the isomorphism
from C(S) onto the diagonal. Let g > u, be a unitary representation of &P Z, such
that ugmr(a)uy = 7(B#(a)) for each a € C(S).

Let (p,) be a sequence of projections in C(S) which o-generate C(S). By
Proposition 7.2.10, the C*-algebra, By, generated by {p, :n =1,2,...} U{u, : n =
1,2, ...} is the closure of the union of an increasing sequence of finite dimensional
subalgebras. Let B be the smallest monotone o-closed subalgebra containing By. (B
is the normaliser subalgebra.) Then B is monotone closed (because M has a faithful
state) and approximately finite dimensional; B can be identified with C(S) x4 G.
Hence Mp is nearly approximately finite dimensional. O

Let B be a monotone complete factor which is almost separably representable
(or, equivalently, small). When B is a von Neumann algebra, being approximately
finite dimensional is equivalent to being injective. Surprisingly, this does not hold
for wild factors.

There exists a wild factor which is approximately finite dimensional but NOT
injective. This follows by applying a deep result of Hjorth and Kechris [80] (see also
[43, 79, 165]). We shall present details of this elsewhere.

This is very different from what the theory of von Neumann algebras would lead
us to expect.

Marczewski asked if the Banach-Tarski paradox could be strengthened so that
the paradoxical pieces had the Baire property. It was proved in [181] that either the
(hyperfinite) Takenouchi-Dyer factor was not injective or the Marczewski problem
had a positive solution. Using completely different methods, in a tour de force, a
positive solution to the Marczewski problem was established in [35].



218 7 Constructing Monotone Complete C*-Algebras
7.5.1 Open Problems

In Theorem 7.5.8, the hypotheses allow us to deduce that we can approximate factors
by increasing sequences of finite dimensional subalgebras but in the 2¢ examples
constructed in Sect. 7.4, we can do better. We can approximate by sequences of
full matrix algebras (strongly hyperfinite). Let M be a monotone complete factor
which is approximately finite dimensional. Is M strongly hyperfinite? Experience
with von Neumann algebras would suggest a positive answer but for wild factors
this is unknown.

Is Mg equal to its normaliser subalgebra? Equivalently is the “small” monotone
cross-product equal to the “big” monotone cross-product?

Are nearly approximately finite dimensional algebras, in fact, approximately
finite dimensional?



Chapter 8
Envelopes, Completions and AW*-Algebras

An AW*-algebra is a (unital) C*-algebra where each maximal abelian *-subalgebra
is monotone complete. We sketch a short introduction to AW*-algebras in Sects. 8.2
and 8.3. This does not depend on any results subsequent to Chap. 2. In Sect. 8.1 we
give a brief account of injective envelopes of C*-algebras and regular completions
of arbitrary C*-algebras.

8.1 Injective Envelopes and Regular Completions

Injective envelopes of commutative C*-algebras have been well understood for
many years. Hamana made the very important advance of showing that an arbitrary
C*-algebra always has an injective envelope and always has a regular completion.
See [59-61]. For “small” C*-algebras, the regular completion coincides with the
regular o-completion, discussed earlier.

8.1.1 Completely Positive Linear Maps and Choi-Effros
Algebras

The following proposition is in [38] (see Lemma 6.1.2, page 105).

Proposition 8.1.1 Let B be a C*-algebra and let ® : B —> B be any completely
positive idempotent linear map. Then, we have

P(PM)P(y) = P(P(x)y) = P(xD(y))
forallx, y € B.
© Springer-Verlag London 2015 219
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Corollary 8.1.2 For any a, b and c in ®(B),

D (D(ab)c) = P(ad(bc)).

Proof Because @ is idempotent, ®(a) = a and ®(c) = ¢. So we find that

O (D(ab)c) = O(P(ab)P(c))
= ®(abP(c))
= ®(abc)
= ®(D(a)bc)
= O(P(a)P(bc)) = P(ad(bc)). |

Next, we shall define a new multiplication o on ®(B) by x o y = ®(xy) for all
x, y € ®(B). Then Corollary 8.1.2 tells us that (xoy)oz = xo (yoz) forally, z €
®(B) and so (®(B), o) becomes an associative algebra with a *-operation.

Corollary 8.1.3 Let B be a unital C*-algebra and let ® be a unital completely
positive idempotent linear map from B into itself. Then (®(B), o) becomes a unital
C*-algebra with the unit 1 of B. Let A be a unital C*-subalgebra of B and
D |4 = ta. Then A is a unital C*-subalgebra of (®(B), o) with respect to the given
multiplication of A.

Proof Since @ is norm-continuous and idempotent, it is easy to check that ®(B) is a
norm-closed x-subspace of B. Since || ®|| = 1, ||xoy| < |x||-||y| forallx, y € ®(B).
We shall show that ||x||?> = ||x* ox|| for all x € ®(B). Note that ®(P(x)) = ®(x) for
all x € B. If x € ®(B), then by the Kadison-Schwarz inequality (see Lemma 5.8.1),

x*x = d(x*)D(x) < P(x*x) < ||x*x|| - 15 and so we have ||x||*> = |x* o x||. Since
lox =®(1-x) = ®(x) = x = xo 1 forall x € ®(B), 1 is a unit of O(B). If
a,be A, thenaob = ®(ab) = ab and so A is a x-subalgebra of (P(B), o). O

Corollary 8.1.4 For any x € ®(B)s,, x > 0in B if, and only if, x > 0 in (®(B), o).

Proof Let us recall that pg(x) is the resolvent set, that is, {1 € C : A ¢ op(x)}.

If x > 0in (®(B), o), then there is an a € ®(B) such thatx = a*oa = ®(a*a) >
0 in B. On the other hand, we know that when x € ®(B) and A € pg(x), one has
y € Bsuchthat (A-1 —x)y = y(A-1—x) = 1, which implies, by applying ®, that
P((A-1—=x)y) = O(y(A-1—x)) = 1 and so it follows that

1 =&(A-1-x)y)
=d(d(A-1—x)y)
=O(P(A-1—x)P(y))



8.1 Injective Envelopes and Regular Completions 221

=®((A-1=-02())
=(A-1—x)0d(y)

and similarly, we get that 1 = ®(y) o (A - 1 —x). So it follows that A € p(@ ) 0)(X).
Hence o(a(s),0)(x) C 0p(x), thatis, if x > 0 in B, then, x > 0 in (®(B), o). O

Corollary 8.1.5 If B is monotone complete, then ®(B) is also monotone complete
with respect to the order inherited from B. Moreover, the C*-algebra (®(B), o) is
monotone complete.

Proof If (a,) is any norm bounded increasing net in ®(B)y,, one has ap = supa, €
B in By,, because B is monotone complete. We shall show that ®(ag) = supa, in
®(B)sa = D(Bsy). Since ag > a,, for all y, ®(ap) > a, for all y in ®(B). On the
other hand, if ¢ € ®(B) satisfies that ¢ > a,, in ®(B), so is in B. Hence ¢ > ao in
Band ¢ = ®(c) = P(ag) in P(B) follows and so ®(ap) = supgg ay. Hence P(B)
is monotone complete. By Corollary 8.1.4, the above (a,) in (P(B), o)y, satisfies
ay 1 ®(ap) in (P(B), 0)a. O

Completely Positive Idempotent Maps on a C*-Algebra
Definition 8.1.6 Let B be a unital C*-algebra and A be a C*-subalgebra of B with
unit 15. A seminorm p on By, is called an A-seminorm if

@ px) = [|x[|if x € Ag,
(ii)) p(u*xu) = p(x) if x € By, and u € A is a unitary element,
(iii) p(x) <||x|| if x € By,.

We partially order the A-seminorms on Bg,, by
p1 < p> if, and only if, p; (x) < pa(x) for all x € By,.
An A-seminorm p on By, is said to be minimal if, whenever ¢ is an A-seminorm
on By, with g < p, then g = p.

Lemma 8.1.7 Let p be any A-seminorm on By, Then there exists a minimal A-
seminorm pg on By, such that py < p.

Proof Let P = {q : ¢ is an A-seminorm such that ¢ < p}. Since p € P, it follows
that P # (. We shall see that each chain in (P, <) has a lower bound in P and so,
by Zorn’s Lemma, P has a minimal element. Take any chain L of P. Let

qo(x) = inf{g(x) : g € L} for each x € By,.

Since ||x|| > p(x) > g(x) for all ¢ € L and for all x € B,, we get that ||x|| > go(x)
for all x € By,. If x € Ay, ||x|| = p(x) = g(x) for all g € L and so ||x|| = go(x) for
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all x € Ay,. When u € A with u a unitary and x € By,

go(uxu™) = inf{q(uxu™) : g € L}
= inf{g(x) : ¢ € L} = qo(x).

Since L is a chain, for any x, y € By, and forall ¢, ¢’ € L, go(x +y) < g(x) + ¢' ()
which implies that go(x + y) < go(x) + go(y) for all x, y € By,. Since it is easy to
get that go(ax) = |a|qo(x) for all @ € R, x € By,, qo is an A-seminorm such that
qo < p.So qo € P and gy is a lower bound of L in P. So P has a minimal element

Po-
It now follows that py is minimal in the set of all A-seminorms on Bg,. O

Let B be a unital C*-algebra and let A be a unital C*-subalgebra of B. Let p
be an A-seminorm on By,. Let us recall that when ¢ is a state of A then there is
a corresponding Gelfand-Naimark-Segal representation (my, Hg). Let ny be the
canonical embedding of A into Hy such that {n4(a) : a € A} is dense in Hy. By the
Hahn-Banach theorem, for each state ¢ of A, there exists a state ¥4 of B such that
Ye(x) < p(x) forallx € By, and ¥4 [4 = ¢.

Let S be a set of states of A. Let P e Hy be the (orthogonal) direct sum of the
Hilbert spaces Hy. Then let Zfes”d) be the representation of A defined for each
xeAand & € @ cgHy with § = Bpeséy by

(Cgess) (D€ = B yesms(X)és.

Now let K be the state space of A. Then dK, the set of extreme points of K, is the
set of pure states of A.

Let S be a subset of K, such that (7, H) = (Zfeang, @DyesHy) is an injective
representation of A. We may, for example, take S = dK.

Let (7, H) = (Zfes”% , DyesHy,), where we may assume that HDH.LetE
be the orthogonal projection onto H. Then, E € 7[A]'. Define a completely positive
map W from B into L(H) by W(x) = E7 (x)E for x € B. Then we assert:

Lemma 8.1.8 The set W(B) C EL(H)E and || ¥ (x)|| < p(x) for all x € By,

Proof We let E be the orthogonal projection from @¢eus¢ (= H) onto the
closed subspace @¢€SH¢ = H. Take any x € B,,. Since vectors of the form

& = @¢es’7w (ag) are norm dense in EH(= H), by the definition of the norm
of Eft(x)E, for every positive real number &, there exists £ = P peslvy (agp) with
€]l < 1 such that

W <&+ (7§, &)l

=+ | ) @O Byesig @), Byesnig (g))

pes
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= e+ | D (my, D1y, (a9), ny, (ap))
pes

=€+ | D@y, (@p). 1y, (@) | -

pes

Since 7 (A) acts irreducibly on 1y, (A), there exists, for each ¢, a unitary ug in A
(see [161] page 92, Theorem I1.4.18) such that

1

W . nlﬂqﬁ (a¢) = 771p¢ (I/l¢)(: ]de) (“¢)77w¢(1)).
¢

So, it follows that

@I < €+ D 1y, (@) 171Gy, )y, (itg), 1y, ()]

¢pEes
=c+ |y, (@) PV hrug)| < €+ |Iny, (ag)|*pujuy)
pES ¢pES
_ 2 2
=c+p@) Y _ |y, (@p)|” = p@IEI* + € < p(x) + ¢,
peS
that is, || ¥ (x)|| < p(x) for all x € By,. O

In the following, as before, A is a unital C*—subalgebra of B and p is an
A—seminorm on B.

Proposition 8.1.9 Let D be any injective C*-algebra . Let ® be any completely
positive contraction map from A into D. Then, there exists a completely positive
map qurom B into D such that ® la = ® and such that ||q>(x)|| < p(x) for all
X € By,.

Proof For each a € A, let ®(7(a)E) = ®(a). Then, ® is well defined, because
w(a)E = 0 implies that a = 0. Moreover, ®(1) = ®(1) and hence ||| < 1.
Since D is injective, there is a completely positive map @' from E(L(H))E into D
such that @' |74z = ®. Moreover, || = | (E)| = |®(E)| = [|®|| < 1. Let
d=0d oW, Then, ® satisfies all the requirements. O

Let us specialise Proposition 8.1.9 by requiring B to be injective and putting
B = D. Let i4 be the identity map of A into B. Put ® = i4. Let ® = W. Then Wis a
completely positive map from B into B such that

[W(x)|| < p(x) forall x € By,.

Also ¥(a) = afor all ain A.
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Lemma 8.1.10 Let A be a unital C*-algebra and let B be any injective C*-algebra
which contains A as a unital C*-subalgebra. (For example, when A acts on a Hilbert
space H as a unital C*-algebra, we may put B = L(H). In particular, we may let H
be the universal representation space.) Let py be a minimal A-seminorm on B. Then
there exists a completely positive map V from B into B, such that V|, = 14 and
¥ (x)|| < polx)forall x € By,. Then, V is an idempotent A-projection.

Proof Define ¢1(x) = ||¥(x)|| and ¢2(x) = limsup,_, o, || YD | for every
X € By,. Since A is in the multiplicative domain of ¥, we have ¥ (uxu™) = uW (x)u*
forx € By, and a unitary # in A by Lemma 5.8.1 (3). Then ¢ and ¢, are A-seminorms
on By, such that g; < po and ¢» < py. Since py is minimal, g; = py = ¢». So for
every x € By,

W+ +¥)x—¥(x)
n

W) — ) = [P~ )| = lim sup || Il =0.

So W2 = W follows. |

8.1.2 Constructing Regular Completions of Unital C*-Algebras

Let A be any unital C*-algebra. In this subsection we shall show that A has a regular
completion. As pointed out in Remark 5.6.12 the proof of Theorem 5.6.11 gives the
uniqueness of the regular completion.

Let (V,ja) be the Dedekind completion of the order unit vector space As,. Let
us recall that V is injective, by Proposition 2.3.9, and j4 is an isometric order
isomorphic embedding.

The strategy for constructing a regular completion, A, of A goes as follows.
Consider the monotone closure Am of ja(Ay,) in V and define a multiplication on
A= Am + iAm in such a way that A becomes a monotone complete C*-algebra
where A is embedded as an order dense unital C*-subalgebra.

To do this, take any injective C*-algebra B such that A is a unital C*-subalgebra
of B. Since V is injective as a real Banach space, there exists an extension ¢, a linear
map from By, into V, such that ||| = ||ja|| = 1 and ¢ |4,, = ja. So the set

S(Bsa, V) = {¢ € L(Bsa. V) = @1l = Wiall. ¢ |a, =Ja}

is not empty. (Here L(B,,, V) is the set of real linear maps from By, to V.) Since
each ¢ € S(By,, V) is of norm one and unital, ¢ is a positive map. (See the first two
paragraphs of the proof of Lemma 5.8.7.)

Let us define a seminorm p on By, by

p(x) = sup{llp ()| : ¢ € S(Bys, V)} for any x € By,
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Lemma 8.1.11 The seminorm p is an A-seminorm on Bg,.

Proof Since j, is an isometry, if x € Ay, then p(x) = ||x|. Recall that ||¢| =
lliall = 1 and p(x) < |x| follows for all x € B,,. We only have to show that
p(uxu™) = p(x) for all x € By, and for all unitaries u € A. Let T, be the isometric
map from By, onto By, defined by T,x = uxu™ for all x € By,. Then T,,(As,) = Asa.
Since (V,j4) is unique, j4 o T, o j;l can be extended to a linear isometry S, from
V onto V such that |[S,[| = |7,/[| and S, |jya) =JjaoTuoji'.SoSxopoT, €
S(Byq, V) for all unitaries u € A and ¢ € S(Byy, V). So ||¢(u*xu)| < p(x) forall ¢ €
S(Byq, V), whence p(u*xu) < p(x) for all unitaries u € A.

On replacing x by uxu® we have p(x) < p(uxu™*). On replacing u by u*, p(x) <
p(*xu). So p(u*xu) = p(x) for all x € B, and all unitaries u € A. O

Corollary 8.1.12 Let py be a minimal A-seminorm majorised by p. There is a
completely positive linear map V : B +—— B such that |V (x)|| < po(x) for all
X € Bygand WV |4, = ta,,. Also V is an idempotent A-projection on B satisfying

W[ = llx]l = sup{lig@)| : ¢ € S(By. V)] for all x € W(Bya).

Proof By Lemma 8.1.10 there is a completely positive linear map W : B — B such
that |W(x)|| < po(x) for all x € By, and W |4, = 4. Also W is an idempotent
A-projection on B satisfying
W) < sup{llp @) = ¢ € S(Bsa, V)} =< [Ix]l
for all x € By,. When W(By,) > x, we have x = ¥(x). So
W[ =[xl = supillg )] : ¢ € S(By, V) for all x € W(Bya). o
Lemma 8.1.13 Fix x € By,. Then{¢(x) : ¢ € S(By,,V)} =

{veV sup{ju(a):a €Ay a<x}<v< ir‘}f{jA(b) :b €Ay, b>x}}
\4

Proof When x € A this is trivial so we shall suppose that x ¢ A.
Let ¢ be any element of S(By,, V). Then, when @ < x < b, and a, b are in A,

Jja(a) = ¢(a) < ¢(x) <ja(b).
So

sup{ja(a) :a € Ay, a <x} < ¢p(x) < ir‘}f{jA(b) :beAy,b>x}.
v
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Conversely, keeping x fixed, let v € V such that

Sup{jA(a) ‘ac Asa, a= -x} =V = H‘},f{]A(b) tbe Asasb > -x}'
\4

We claim that there exists ¢ € S(By,, V) such that v = ¢ (x). First we observe, for
alla € Ay,

—|x+al|l-1—a<x=<|x+a|-1-a.
So
—llx+al-1<v+ja(@ < x+a| -1 (i)
Let r € R. For r > 0 it follows immediately from (i) that
—llx+all- 1 <rv+ja(a) < |rx+af - 1. (i)

In (ii) we replace a by —a, and observe that ||rx—a|| = ||(—r)x+a||. We multiply
the resulting inequality by —1. This gives (ii) with r replaced by —r. So (ii) is valid
for all real r.

So, without ambiguity, we can define ¢ : Ay, + Rx > V by ¥ (rx + a) =
rv + ja(a). From (ii) we have ||¥/|| < 1. So ¥ has a unique extension to a bounded
operator on Ay, + Rx. (Since ¢ is bounded it obviously extends to the norm closure
of this space in By,. In fact, because x ¢ A,,, it is straight forward to show that
Ays + Rx is a real Banach space.) Because A is unital, ¥(1) = 1. So ||¥| =
1 = |jall- Also ¥|a,, = ja. Since V is injective, ¥ has an extension to some ¢
in S(Bsg, V). O

Let W = {x € ¥(By,) : ¢(x) = ¥(x) for all ¢ and ¢ € S(B,,, V)}. Clearly W is
a norm-closed subspace of W(B,,) = (V(B), 0),, containing Ay,.

Lemma 8.1.14 The (real) Banach space W is monotone closed in (¥(B), o), and
Asq is a regular subspace of W.

Proof When x € W, by Lemma 8.1.13 and the definition of W, for each
¢ € S(Bsas V)’

sup{ja(a) :a € Ay, a <x} = ¢p(x) = ir‘}f{jA(a) ta €Ay, a>x}
1%

Recall that, for any z € W(By), |zl = sup{ll¢@)| : ¢ € S(Bsw, V)} by
Corollary 8.1.12. When y € W(By,), if ¢(y) > 0 for all ¢ € S(By,, V), then we
have y > 0. To show this, we may assume ||y|| < 1. Then we have 0 < ¢(y) < 1
and so ||[¢p(1 —y)|| = [l —¢ )| < 1 forall ¢ € S(By,V), whence |1 —y| < 1.
Hence it follows that y > 0. So, ¢ |w is a bipositive linear map from W into V.
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We shall now show that x = sup{a € Ay, : a < x} in W(By,). To see this, take y €
W(B;,) such that a <y for all a € A, with a < x. Since ¢ is positive, ji(a) < ¢ (y)
for all such a € Ay,. So, ¢p(x) < ¢(y) for all ¢ € S(Byy, V). Since x —y € W(By,),
x <y.Sox =sup{a € Ay, : a < x}in (¥(B), o)y, by Corollary 8.1.4.

Next we shall show that W is monotone closed in W(B,,). Let (x1) be any
increasing net in W with x; 1 x in W(By,) for some x € W(B,,). Take any
¢ € S(By, V). Since (¢(xy)) is increasing and bounded by ||x||1 in V, there exists
v € V such that ¢(x;) 1 v in V. Since ¢ (x)) < ¢(x) for all A, we have v < @ (x).
On the other hand, if we take a € Ay, with j4(a) > v, then we have ¢(x;) < ja(a),
which implies that ¢ (x; — a) < 0. So, the bipositivity of ¢ tells us that x, < a for
all A and so x < a, that is, ¢ (x) < ja(a) for all such a € Ay, with v < js(a). Since
v =inf{ja(a) : a € Ay, ja(a) > v}in V, it follows that ¢ (x) < v, thatis, v = ¢(x)
for all ¢ € S(By,, V). Since ¢p(x3) = ¥ (x;) for all A and ¢, ¥ € S(By,, V), we have
x € W. This also implies that (x3) 1 x in (¥(B), o) by Corollary 8.1.4 again. O

Theorem 8.1.15 Let A be a unital C*-algebra and let Am be the smallest mono-
tone_ closed subset of (V(B),0)sx(= W(By,)) that contains Ay, The subspace
A—Am+1Am is a monotone closed unital C*-subalgebra of (\II(B) o) that contains
A and (A t) is a regular completion of A. Moreover, for any x € Aga

X = Sup{a € Asa a =< X} in (‘-I—’(B), O)sa-

Proof By Corollary 8.1.3 A is a unital x-subalgebra of (¥ (B), o). By Corollary 8.1.5
(¥(B), o) is monotone complete. In Theorem 5.3.7 put By = B, = (¥(B),0)
and put ® = (. Then A is a unital monotone closed x-subalgebra that contains
A. Also A, is the self-adjoint part of A and is a subspace of W. So (A, t) is a regular
completion of A. In particular, for any x € Am,

x = sup{a € Ay, : a < x} in (V(B), o). |

InjectiveEnvelopes of Unital C*-Algebras

Let B be a unital C*-algebra which, for the moment, is not required to be injective.
Let © be a unital completely positive idempotent linear map from B into itself.
So, by Corollary 8.1.3, when ®(B) is equipped with the product ®(x) o ®(y) =
(D (x)P(y)), it is a unital C*-algebra.

Lemma 8.1.16 Let C be a unital C*-algebra or an operator system on some Hilbert
space and let T : C — (D(B), o) be a unital completely positive linear map. Then
I' : C +— B s also a unital completely positive map.

Proof Take any n € N and consider a map ®, : M,(B) — M,(B) defined by
®,((a;)) = (P(ay)) for each (a;) € M,(B). Then &, is a completely positive
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idempotent map and for any a = (a;;) and b = () in M,,(B), we have

aob = 9,(ab) = (Z q)(aikbkj)) = (Z ajk © bkj)
k=1 1<ij<n k=1 1<ij<n

and so M,,((®(B), o)) = (®,(M,(B)), o) which is an operator subsystem of M, (B).

So, using Definition 5.8.5, we only have to check that I' is a positive linear map
from C into B. Take any T € C and suppose that 7 > 0. Then I'(7) is positive in
(®(B), o) and so by Corollary 8.1.4, I'(T) is positive in B. So, I is a positive linear
map from C into B. O

Lemma 8.1.17 Let B be an injective C*-algebra and let ® be a completely positive
idempotent map from B into itself. Then the C*-algebra (®(B), o) is injective.

Proof Take any unital C*-algebra D and any operator subsystem C of D. Let ¥ be
any completely positive contractive map from C into (®(B), o).
For each n, consider the map

@, 1 My(B) — M,((®(B). 0))(= (1(M,(B)). 0)).

It is unital and positive and its range is an operator subsystem of M, (B). So the map
® : B+ (®(B),0) is completely positive and ¢ : (P(B), o) > B is a completely
positive embedding. See Corollary 8.1.4.

By Lemma 8.1.16, W is a completely positive contractive map from C into B.
Recall that B is injective. There is a completely positive contraction ¥’ from D into
Bsuch that W'|C = toW. Let W = ®o W/, then ¥ is a completely positive map from
D into (®(B), o) such that ¥ |¢ = W. Hence (®(B), o) is an injective C*-algebra.O]

Definition 8.1.18 Let A be a unital C*-algebra. An extension of A is a pair (C, k),
where C is a unital C*-algebra and  is a unital injective *x-homomorphism of A into
C. We call (C, k) an injective envelope of A if the following conditions are satisfied.
First C is an injective C*-algebra. Secondly, whenever W is a unital, completely
positive linear map from C into C such that W(k(a)) = k(a) for all a in A then
Y(c) =cforallc € C.

Lemma 8.1.19 Let A be a unital C*-algebra and let B be any injective C*-algebra
such that A is a unital x-subalgebra of B. Let p be any minimal A-seminorm on B,.
Let ® be any completely positive idempotent linear map from B into itself such that
Dy = 14 and | P(x)| < p(x) for all x € By,. Then ((O(B),0),t) is an injective
envelope of A. That is, if V is any completely positive map from (®(B), o) into itself
that satisfies W |o = 4, then V must be the identity map.

Proof Let ¥ be any completely positive mapping from (®(B), o) into (P(B), o)
such that W |4 = 14. We only have to show that ¥ = (¢(5),0)-



8.1 Injective Envelopes and Regular Completions 229

For x € By, let

p1(x) = [V o O(x)||
and

(W 4 -+ W) 0 D(x)
n

p2(x) = limsup

n—>oo

Then p; and p, are A-seminorms on By,. We claim that p; < p and p, < p. Indeed,
if a € Ay, then W(®(a)) = a and so pi(a) = ||a|| = p2(a). Next take any unitary u
in A and x € By,. Then, by Lemma 5.8.1 (3) we have
pi(uxu®) = | W (ud)u”)||
= [lu¥ o (x)u*|
= [[Wo d)|| = pi(x).
Similarly, we have p,(uxu®) = ps(x). So, p; and p, are A-seminorms such that

p1 = p = p2, because pj, p» < p by the properties of .
Then we have ||®(x)|| = ||V o (x)| and

[®()] = lim sup

n—>oo

‘(‘I‘+\I-’2+---+\I-’”)0<D(x)
n

for all x € B,. Hence, for all a € ®(B),, = P(By,), we have |a|| = ||¥(a)|| and
(V+ U2+ 0" (a)

lall = Tim sup, . |

Since a — W(a) € ®(B),, for all a € ®(B),,, we have

la — W(a)|| = limsup

(U + W2+ -+ W) (a — W(a) H

n—>o00 n
W(a) — W" 2
= lim sup —(a) @ < lim _||a|| =0
n—00 n n—oo n
which implies that a = W(a) if a € ®(B)s,. O

The key result of Hamana, which we shall prove below, is that each unital C*-
algebra has an injective envelope. But first we show that injective envelopes are
unique.

Lemma 8.1.20 Let (E,j) and (F,k) be two injective envelopes of A. Then there
exists a *-isomorphism o from E onto F such that o o j = k.

Proof Since F is injective and k o j~! maps j(A) into F, there exists a completely

positive linear map ® from E into F such that @ |‘,~(A) = k o j'. Similarly,
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there is a completely positive linear map W from F into E such that ¥ \k(A) =
jok™'. Then, ¥ o ® is a completely positive contractive linear map such that
Wod|ja=Pokoj ! =(jok o (koj ') = . Since (E,j) is an injective
envelope of A, it follows that ¥ o ® is the identity on E. Similarly ® o W is the
identity on F. So, @ is a completely bipositive unital linear isomorphism from E
onto F. Hence by Lemma 5.8.1 (2), we have ®(a?) = (®(a))? for all a € Ej,. So,
by Lemma 5.8.1 (3) ® is a homomorphism. Hence @ is a *-isomorphism from E
onto F such that ®oj = k. O

Theorem 8.1.21 Let A be a unital C*-algebra. Then there is a unique injective
envelope Inj(A) of A. The algebra Inj(A) is monotone complete and the mono-
tone closure A of A in Inj(A) is the regular completion of A. That is, A is
obtained by taking the monotone closure of A in Inj(A) and for every x € Aga,
x =supi{a € Ay, a < x}in Inj(A),. When A is wild, so is Inj(A).

Proof Let B be any injective C*-algebra such that ¢4 : A — B is an injective *-
homomorphism. For example, we could let B = L(H) where H is any Hilbert space
on which A has a faithful representation.

By Lemma 8.1.11 the seminorm p is an A-seminorm on By,.

By Lemma 8.1.7 there is a minimal A-seminorm pg on By, such that py < p.

By Lemma 8.1.10 there exists a completely positive map W from B onto A such
that ¥ is an idempotent A-projection and, for all x € By,

| < po(x).

It now follows from Lemma 8.1.17 that (¥(B), o) is injective. By Lemma 8.1.19
(W (B), o) is the injective envelope of A.

We now apply Theorem 8.1.15 to show that A is a regular completion of A. (As
pointed out at the beginning of this subsection, the regular completion is unique.)

If A is a normal state of InjA then its restriction to A = A is also a normal state.
If A is wild it has no normal states. So InjA has no normal states, in other words, it
is wild. O

Corollary 8.1.22 Let A be a unital C*-algebra with the injective envelope Inj(A).
Let C be a unital C*-algebra and suppose that ¥ : Inj(A) — C is a unital
completely positive linear map such that WV |4 is a complete isometry. Then, WV is
also a complete isometry.

Proof Since, by our assumption, (W |4)~! is a completely positive map from the
operator subsystem W(A), of C, into the injective algebra Inj(A), there exists a unital
completely positive linear map ¥’ : C +> Inj(A) such that ¥’ |q/(A) = (Y|4~
Then ¥’ o ¥ : Inj(A) — Inj(A) is a unital completely positive linear map such that
(W o W) |4 = ta. Since Inj(A) is the injective envelope of A, we must have that
VoW = Lmja)- Hence W is a complete isometry. O

Corollary 8.1.23 Let A be a unital C*-algebra and let w be a x-automorphism of
A. Then there exists a unique *-automorphism Inj(rr) of Inj(A) which extends  such
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that Inj(n)(ﬁ) = A. Hence there exists a unique *-automorphism 7 of A which is
the restriction of Inj(m) to A. Let AutA(A) be the automorphisms offl which restrict
to automorphisms of A. Then the map Aut(A) > w7 +— 7 € AutA(A) is a group
isomorphism

Proof Since Inj(A) is injective and 7 is a completely positive map, there exists a
completely positive extension 7’ of 7 to Inj(A). Since 7 is completely isometric,
by Corollary 8.1.22, 7’ is also completely isometric. By Lemma 5.8.1 (3), 7’ is an
injective *- homomorphism of Inj(A) into itself. By applying a similar argument to
7~!, we obtain that 7’ is surjective. Since Inj(A) is an 1nJect1ve envelope of A, 7’ is

unique. Moreover, the normality of 7’ tells us that 7’ A) = O

Corollary 8.1.24 Let A be a unital C*-algebra with the injective envelope Inj(A).
Then the centre Zpja) of Inj(A) is A’ N Inj(A).

Proof When u is any unitary element of A’ N Inj(A), Ad, is a *-automorphism of
Inj(A) satisfying Ad, |4 = t4. Since Inj(A) is an injective envelope of A, Ad, =
tinj(a) and so, ux = xu for all x € Inj(A), that is, u is in the centre of Inj(A). Since
every element of A’ N Inj(A) is a linear combination of at most four unitaries in
A" N Inj(A), A" N Inj(A) C Zjja)- Since the converse inclusion is clear, it follows
that A’ N Inj(A) = ZijA)- |

Exercise 8.1.25 Let B be an injective C*-algebra and let e be a projection in B.
Show that eBe is an injective C*-algebra.

Corollary 8.1.26 Let Zj be the centre of the regular completion of a unital C*-
algebra A. Then Z; = Zpyja).

Proof Since Z; C A’ N Inj(A) = Zpj(), we only need to check the converse.

Assertion 1 Let A be a unital C*-algebra. Then, for any f € Proj(Z)), we have
fInj(A) = Inj(fA) = Inj(fA).

Recall that fInj(A) is an injective C*-algebra which contains fA as a unital C*-
subalgebra. Take any completely positive linear map ® : fInj(A) — fInj(A) such
that @ ‘fA = 1. We shall show that ® = ). Let ¥ (x) = O(fx) + (1 — f)x
for x € Inj(A). Then, clearly W is a completely positive linear map from /nj(A) into
Inj(A). When x € A, ¥(x) = ®(fx) + (1 —f)x = fx + (1 —f)x = x, which implies
that W = 1554) and @ (fx) = f(P(fx) + (1 = f)x) = f(fx + (1 — f)x) = fx for all
x € Inj(A). So ® = ,ja). Hence fInj(A) is an injective envelope of fA (and so of
fA). .

Now take any projection f € Zj,ja). Let F = {e € Proj(A) : e > f}. Clearly
1 € Fandso F # 0. Since A is monotone closed in Inj(A), for any pair e¢; and
ez inF, e Ajea = e /\In/(A) e;. So F is a decreasing net in Proj(Inj(A)). Let

= A{e:eeF}in PVO](A) (and so in PrO](II’l](A))) Since for any unitary u in A
and e € F, we have ueu* > ufu* = f, and hence uFu* = F for all unitaries u in A.
So we have ufiu* = fi for all such u and it follows that f; € A" N Inj(A) = Zpja)

and fi > f.
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Let 7 : filnj(A) — fInj(A) be a (normal) x-homomorphism defined by 7 (x) =
fx for all x € f1Inj(A). Then we have the following.

Assertion 2 The restriction of 7 to ﬁA, T |14 SAYs 7’ is a x-isomorphism from flz:\
into fInj(A).

If the kernel 77'~'(0) # {0}, then there exists a non-zero projection ¢ in A such
thate < fi and ¢f = 7n'(e) = 7(e) = 0. Hence we have f < fj — e < fi. Since
fi — e € F, this is a contradiction. So 7’ is injective and it is a complete isometry.
By Assertion 1, fiInj(A) is the injective envelope of fiA (and so, of flA), 7 is also
completely isometric. So 7 is injective. Since 7 (fi —f) = f(fi —f) = 0, we have
f =fi.Hence f = fi € A. So it follows that Z; = Zp(a).- O

Until now we have been supposing A to be unital. We now drop that requirement.
Let us recall that A' is the unital C*-algebra obtained by adjoining a unit to A, when
A is not unital, and A! = A when A is unital. When A is not unital, we shall define
Inj(A) to be Inj(A') and A to be A'.

For any C*-algebra, the positive elements of norm strictly less than 1, form an
upward directed set which, following [121], we call the canonical approximate unit.

Compare the following result with Theorem 5.6.14.

Corollary 8.1.27 Let A be a C*-algebra and let I be any closed two-sided ideal of
A IfANT = {0}, then I = {0}. More generally let B be a unital C*-subalgebra
of Inj(A) = Inj(A') that contains A and let J be a closed ideal of B. Suppose that
ANJ={0}. ThenJ = {0}.

Proof First of all, we note that A is an essential ideal of A'. For, by making use of
the canonical approximate unit for A, we can easily check that if I is an ideal of A'
such that 7 N A = {0}, then I = {0}.

Let g : B — B/J be the quotient x-homomorphism.If JNA = {0}, JNA! = {0}
as well by the above argument and so then ¢ |41 is injective. Hence

(qla)™" gAY = A" C Inj(A)

is also an injective *-homomorphism. Since Inj(A) is injective, there exists a
completely positive linear map ¢ : B/J +— Inj(A) such that ¢ |q(A1) = (q|s1)"". So,
¢ o g is a completely positive (unital) linear map from B into Inj(A). Since Inj(A)
is injective, there is a completely positive linear map ® from Inj(A) into itself such
that ® |3 = pogq.Ifa € A', then

®(a) = ¢ oqg(a) = (¢ln) " (q(@) = a

and so ®|,1 = ¢ Since Inj(A) is the injective envelope of A!, ® =  and when
b € B, ¢(q(b)) = b. In particular if b € J, then g(b) = 0 and so b = 0 follows and
J = {0}. The above proof is based on an idea due to Hamana. O

Corollary 8.1.28 For any C*-algebra A, A is prime if, and only th is a factor.
Moreover, A is prime if, and only if, Inj(A) is a factor.
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Proof Suppose that A is prime and that A is not a factor. Then there exists a non-
trivial central projection z in A, thatis, 0 < z < 1.Let] = AN zA and J =
AN(l-— Z)A. Then both of them are non-zero closed two-sided ideals such that
IJ = {0}. But this is a contradiction, because A is prime.

Conversely, suppose that A is a factor. Take any closed two-sided ideals K; and
K, in A with KK, = {0}. Let {a,} be a bounded increasing approximate unit for
K, and {b,} be a bounded increasing approximate unit for K,. Then there exist two
central projections z; and z, such that a, 1 z; and b, 1 25 in Am. Since a, b, = 0
for all y and o, we have 71z, = 0. But Ais a factor, this implies that z; = 0 or
72 = 0, that is, K; = {0} or K, = {0}. Hence A is prime. By Corollary 8.1.24,
Z3 = Zjnja), which gives us the second statement. O

Let A be a unital C*-algebra and let I be a closed two-sided ideal of A. Let z be the
least upper bound of the canonical approximate unit for / in the regular completion
A. Then, clearly z is a central projection in A and Az is the regular completion of
C*(1, z) (which is *-isomorphic to I' when I is not unital and, when I is unital, then
z € I is the unit of ). See [133] and [134].

Suppose that A is a non-unital C*-algebra and let 91(A) be the multiplier algebra
of A (see [121]). Since A is an essential ideal of 91(A) (see again [121]), if we apply
the above result, we have:

Theorem 8.1.29 The regular completlon i)ﬁ(A) of M(A) is the regular completion
of A' and the idealiser of A in Sm(A) is the algebra 9M(A), that is,

{a € MA) : aA C A and Aa C A} = M(A).

Since z = 1 in the above argument, the first statement follows directly. The
second part is a well-known theorem of multiplier theory. Related bibliography can
be found in [122] and [14]. But, by making use of the argument in [122], this is
straightforward to prove. See also [133] for separable A.

When e is a projection in A, eAe = eAe by Lemma 5.9.1, it can also be shown
that Inj(eAe) = elnj(A)e. See [63], where Hamana showed a more general theorem:

Theorem 8.1.30 Let B be a hereditary C*-subalgebra (see [121]) of a unital C*-
algebra A. Let e be the least upper bound of the canonical approximate units for B
in A, then elnj(A)e is the injective envelope ofB1 and eAe is the regular completion
of B', that is, Inj(B) = elnj(A)e and B = éAe.

By Corollary 8.1.23, for each x-automorphism y of A, there exists a unique *-
automorphism Inj(y) of Inj(A) such that Inj(y)(A) =A

When A is non-unital, let us recall that y is inner if there exists a unitary element u
in 9(A) such that y(a) = uau™ forall a € A. We call y outer if y is not inner in this
sense. When A is unital, this definition coincides with the one already mentioned.

By making use of Theorems 8.1.29 and 8.1.30, we have



234 8 Envelopes, Completions and AW™-Algebras

Theorem 8.1.31 Let A be a simple C*-algebra and let o be a *-automorphism of
A. Then, a is outer if, and only if, Inj(c) is outer in Inj(A). Let & = Inj(a) |; which
is a *-automorphism ofA If & is outer in A, then so is o in A. As a corollary, the
regular completion F of the Fermion algebra F has an outer x-automorphism.

See [138, 139, 142, 143]. For other topics on regular completions, see [135, 136].

8.1.3 Open Problem

The group von Neumann factor A = M(IF,) associated with the free group on two
generators is monotone complete but is non-injective and so Inj(A) # A = A.

When A is nuclear, does it hold that Inj(A) = A

If A is GCR (equivalently postliminary, see [34] and [121]), then Aisa type
I monotone complete C*-algebra and so, it is injective. Hence it follows that A=
Inj(A). See for example, [10, 11,59, 61-63,92, 133, 137, 154]. See also [6, 7, 17, 45—
47, 49, 58]. -

We also note that for a unital C*-algebra A, A is postliminary if, and only if, A/J
is a type I monotone complete C*-algebra for every closed two-sided ideal J of A.

8.2 What Are AW*-Algebras?

Kaplansky introduced AW*-algebras as an algebraic generalisation of von Neumann
algebras [13, 90-93]. In particular, he showed that the Murray-von Neumann
classification of projections (in a von Neumann algebra) could be extended to these
more general C*-algebras.

For our purposes the most convenient characterisation is:

An AW*-algebra is a (unital) C*-algebra in which each maximal abelian *-
subalgebra is monotone complete.

We showed in [146] that this is equivalent to Kaplansky’s original definition.
Since this is not obvious, indeed this assertion has been doubted by some, we
shall give a proof here. Clearly this characterisation implies that every monotone
complete C*-algebra is an AW*-algebra. So any results on AW*-algebras can be
applied to monotone complete C*-algebras.

In this section, A will be a C*-algebra which is assumed to have a unit element
(unless we state otherwise). Let ProjA be the set of all projectionsin A. Let Ay, be the
self-adjoint part of A. We recall that the positive cone AT = {zz* : z € A} induces
a partial ordering on A. Since each projection is in AT, it follows that the partial
ordering of Ay, induces a partial ordering on ProjA. When p and g are projections
with p < g then, by Lemma 2.2.1 p = pq. This implies that p and ¢ commute. For

gp = (pq)* =p* =p =pq.

Kaplansky’s original definition is:
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Definition 8.2.1 The unital C*-algebra A is an AW*-algebra if (i) each maximal
abelian self-adjoint subalgebra is (norm) generated by its projections and (ii) each
family of orthogonal projections has a least upper bound in ProjA.

When A is an AW*-algebra it can be proved that the partially ordered set of
projections, ProjA, is a complete lattice.

Let B be a C*-algebra which is not assumed to have a unit. For every non-empty
subset S of B, the right annihilator of S is the set

{x e A:Sx = {0}}.

Kaplansky [13, 90] showed:

Proposition 8.2.2 A C*-algebra B is an AW*-algebra if, and only if, for every non-
empty subset S of B there is a projection e such that eB is the right annihilator of
S.

Let B be an AW™*-algebra. Put S = {0}. Then Proposition 8.2.2 implies the
existence of a projection e € B such that B = eB. So e is a unit of B. Hence B
is unital.

When A is an AW*-algebra it is straightforward to show that each maximal
abelian *-subalgebra of A is monotone complete [13]. Also, as noted above, ProjA
is a complete lattice.

Recent work by Hamhalter [68], Heunen and others, see [74, 77, 99] investigate
to what extent the abelian *-subalgebras of a C*-algebra determine its structure.
Also a number of interesting new results on AW*-algebras have been discovered
recently; for example [69] and [75, 76]. Also see [3—5] for more general algebras.

Lemma 8.2.3 Let A be a unital C*-algebra. Let every maximal abelian -
subalgebra of A be monotone complete. Let P be a family of commuting projections.
Let L be the set of all projections in A which are lower bounds for P. Then (i) L is
upward directed and (ii) P has a greatest lower bound in ProjA.

Proof

(i) Let p and ¢ be in L. Then each ¢ € P commutes with both p and ¢ and
hence with p + ¢. So P U {p + ¢} is a set of commuting elements. This
set is contained in a maximal abelian *-subalgebra M;. By spectral theory,
((’%)1/ "M)(n = 1,2...) is a monotone increasing sequence whose least upper
bound in M, is a projection f.

By operator monotonicity, see Sect. 2.1, for each positive integer n, and a, b
inAy, 0 <a<b<I1impliesa'/" < b'/",

Forany cin P,c > pandc > gq. So ¢ > ’%

So

1/n
s (m) .
2

Hence ¢ > f. Thus f € L.
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Also

Ptgq

2 p-

N —

f= >
So, by Lemma 2.2.2, f > p. Similarly, f > g. So L is upward directed.

(i) Let C be an increasing chain in L. Then C U P is a commuting family of
projections. This can be embedded in a maximal abelian *-subalgebra M;. Let
e be the least upper bound of C in M;. Clearly 1 > e > 0.

To see that e is a projection we argue as follows. Since e/~ is an upper
bound for C, e'/? > e. So, by spectral theory, e > ¢?. Since e commutes with
each element of C, by spectral theory, e is also an upper bound for C, so ¢ > e.
It follows that ¢ = e.

For eachp € P,p > e. So e € L. So every chain in L is upper bounded.
So, by Zorn’s Lemma, L has a maximal element. Since L is upward directed, a
maximal element is a greatest element. In other words, P has a greatest lower
bound in Proj(A). O

1/2

Proposition 8.2.4 Let A be a unital C*-algebra. Let every maximal abelian self-
adjoint x-subalgebra of A be monotone complete. Then A is an AW*-algebra.

Proof Let {e) }1en be a family of orthogonal projections. Let P = {1 —e) : A € A}.
Since this is a commuting family of projections, it has a greatest lower bound f
in Proj(A). Hence 1 — f is the least upper bound of {e;},eca in Proj(A). Then, by
Definition 8.2.1, A is an AW*-algebra. O

Theorem 8.2.5 Let A be a C*-algebra which is not assumed to be unital. Let each
maximal abelian *-subalgebra be monotone complete. Then A is a (unital) AW*-
algebra.

Proof All that is required is to show that A has a unit element. Then we can apply
Proposition 8.2.4.

Given any x € Ay, there is a maximal abelian x-subalgebra M which contains x.
Then the unit of M is a projection p such that px = x = xp. For any projection ¢,
with p < ¢, gx = gpx = px = x. Taking adjoints, xg = x.

Let us argue as in Lemma 8.2.3 but with L = ProjA, and P the empty set. Then
Proj(A) has a maximal element e and ProjA is upward directed. So e is a largest
projection. In particular, p < e. So ex = x = xe. O

No one has ever seen an AW*-algebra which is not monotone complete. Are all
AW*-algebras monotone complete? Nobody knows but a number of positive results
are known. We discuss this question in Sect.8.3. In view of Theorem 8.2.5, this
problem could be reformulated as: if every maximal abelian *x-subalgebra of a C*-
algebra A is monotone complete is A also monotone complete?

The following technical lemma is used below. It is usually applied with P =
ProjB or with P = By,.
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Lemma 8.2.6 Let B be a unital C*-algebra and let M be a maximal abelian *-
subalgebra in B. Let P be a subset of By, such that uPu* = P whenever u is a
unitary in B. Let Q be a subset of P N My, which has a least upper bound q in P.
Then q is in M.

Proof Let u be any unitary in M. Then for any x in Q,
uqu® > uxu® = x.

Then ugu* is in P and is an upper bound for Q. So ugu* > q. Similarly u*qu > ¢,
that is ¢ > uqu®. Thus ugu™ = g. So g commutes with each unitary in M. But each
element of M is a linear combination of at most four unitaries. So ¢ commutes with
each element of M. Hence, by maximality, g € M. O

Definition 8.2.7 Let A be an AW*-algebra and let B be a C*-subalgebra of A where
B contains the unit of A. Then B is an AW*-subalgebra of A if (i) B is an AW™-
algebra and (ii) whenever {e; : A € A} is a set of orthogonal projections in B then
its supremum in ProjB is the same as its supremum in ProjA.

By Lemma 1 in [130], or see Exercise 27A of Section 4 page 27 and page 277 in
[13], if B is an AW*-subalgebra of A and Q is an upward directed set in ProjB then
the supremum of Q in ProjB is the same as it is in ProjA.

In any C*-algebra, each abelian C*-subalgebra is contained in a maximal abelian
*-subalgebra.

Our point of view, in this section, is to study AW*-algebras in terms of their
maximal abelian *-subalgebras. So the following proposition has its natural place
here.

Proposition 8.2.8 Let A be an AW*-algebra. Let B be a C*-subalgebra of A
where B contains the unit of A. Suppose that whenever N is a maximal abelian
x-subalgebra in B, M is a maximal abelian x-subalgebra in A and N C M then N
is monotone closed in M. Then B is an AW*-subalgebra of A. The converse is also
true.

Proof Let N| be a maximal abelian *-subalgebra in B then it is a subalgebra of some
maximal abelian *-subalgebra M| of A. Then M, is monotone complete because A
is an AW*-algebra. By hypothesis N; is a monotone closed subalgebra of M;. So
N, is monotone complete. Hence B is an AW*-algebra.

Let C be a set of commuting projections in B such that C is upward directed. Let
p be the supremum of C in ProjA.

Let N, be a maximal abelian x-subalgebra of B which contains C. Let u# be any
unitary in N,. Then, for any ¢ € C,

upu™® > c.

So the projection upu™ is an upper bound for C in ProjA. Thus upu™ > p. On
replacing u by u*, we find that u*pu > p. So p > wupu*. Thus p = wupu*. So
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pu = up. Since each element of N, is the linear combination of four unitaries in N,,
it follows that p commutes with each element of N;. So N, U {p} is contained in a
maximal abelian x-subalgebra M, of A.

Let g be the supremum of C in M,. By spectral theory, ¢ is a projection. Since p
is the supremum of C in ProjA, g > p. But p € M,. So g = p. By hypothesis N, is
a monotone closed subalgebra of M,. So p € N, C B. So p is the supremum of C in
ProjB.

Now take {e; : A € A} to be a set of orthogonal projections in B. Let

C = {3 ,crex : F afinite, non-empty subset of A}.

It follows from the argument above that B is an AW*-subalgebra of A.

Conversely suppose that B is an AW*-subalgebra of A. Take any maximal abelian
*-subalgebra N in B and any maximal abelian *-subalgebra M in A with N C M.
We shall show that N is monotone closed in M.

Let (ay) be any norm bounded increasing net in Ny, such that a, 1 b in M,,.
We shall show b € N. Suppose that ||ay| < k for all . Since N is monotone
complete, there exists a € Ny, such that a, 1 a in Ny,. Clearly b < a. Suppose that
a—b # 0. By spectral theory, there exist a non-zero projection p in M and a positive
real number & such that ep < (a — b)p. Since a, 1 a in Ny,, by Lemma 1.1 in [166]
there exists an orthogonal family (e ) of projections in N with sup,, e, = 1 in ProjN
and a family {a(y)} such that ||(a — as)e, || < § forall @ > a(y) for each y.

Since B is AW*, ProjB is a complete lattice. So (e,) has a least upper bound
e in ProjB. By Lemma 8.2.6, ¢ € N. But sup, e, = 1 in ProjN. So e = 1. Thus
sup, e, = lin ProjB. Since Bis an AW*-subalgebra of A, it follows that sup, e, =1
in ProjA.

Then

ep < (a—Db)p < (a— au(y))eyp + (a — aay))p(l —ey)

&
< P+ 21—

that is, 2p < 2k(1 — ¢,) for all y. So
eype, = 0.

So ||pey||* = 0. Thus 1 — p > e, forall y. So, in ProjA, 1 —p > 1. Thus p = 0.
This is a contradiction. So b = a € N. ]

Remark 8.2.9 Von Neumann algebras: originally Murray and von Neumann studied
Rings of Operators. See [105-107, 110, 111, 117]. These were *-subalgebras of
L(H) which were closed in the weak operator topology or, equivalently, equal
to their double commutants in L(H). We use von Neumann algebra to mean an
(abstract) C*-algebra, A, which has a faithful *-representation 7 on a Hilbert space
H where 7[A] is closed in the weak operator topology. Then a C*-algebra, A, is a
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von Neumann algebra if, and only if, it is monotone complete and has a separating
family of normal states. Equivalently, A has a (unique) Banach space predual, A,.
See [84, 87, 88, 147, 161].

J. Feldman [40] showed that when a finite AW*-algebra (see Sect. 8.3 for “finite”)
has a separating set of completely additive states (states which are completely
additive on families of orthogonal projections) it is *-isomorphic to a von Neumann
algebra. Saitd [129] extended this to semi-finite AW*-algebras. This culminated in
Pedersen [119, 121] showing that every AW*-subalgebra of L(H) is closed in the
strong operator topology.

8.3 Projections and AW*-Algebras

In this section we give a brief survey avoiding proofs.

First let A be an arbitrary C*-algebra. Then ProjA is a partially ordered set, with
the partial ordering induced by A,,. In general, ProjA need not be a lattice. Given
projections p and ¢g in A we define

p~q

to mean there exists a partial isometry v € A such that v*v = p and vv* = gq.
Then ~ is an equivalence relation (Murray-von Neumann equivalence) on ProjA.
See Definition 11.3.3.3 [15, p73].

We define another relation on ProjA by

P34

meaning there exists a projection ¢g; such that p ~ g; and q; < g. In general it is
NOT true that p < g and g X p implies p ~ q. See [15, p73].

8.3.1 Projections in AW*-Algebras

For the rest of this section, unless we specify otherwise, A is an AW™*-algebra
with centre Z. Since every monotone complete C*-algebra is an AW*-algebra, all
results for AW*-algebras apply to monotone complete C*-algebras. Just as for von
Neumann algebras, A is a factor if its centre is one dimensional, that is, Z = C.

We pointed out in Sect. 8.2 that ProjA is a complete lattice. For any projection
p € ProjA, its central cover, z(p), is the smallest projection in

{z: z € ProjZ and 7 > p}.
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It can be seen that

2(p) =\ projatupu™ : uis a unitary in A}.

Kaplansky generalised a number of results of Murray and von Neumann to AW*-
algebras by using algebraic methods. Apart from the original papers of Kaplansky,
an excellent source is [ 13]. Three results are fundamental for classifying projections.

First the Schroeder-Bernstein property:

Proposition 8.3.1 Let p and q be projectionsinA. If p X qand q 3 p thenp ~ q.
Secondly, the generalised comparability of projections:

Proposition 8.3.2 Let p and q be projections in A. Then there exists a central
projection z € Z such that

and

q(1 —2) I p(1—2).

Thirdly, the complete additivity of projections:

Proposition 8.3.3 Let {¢;};c; and {f;}jcs be two orthogonal families of projections
in A. Suppose that there exists, for each j € J, v; € A such that v;*v; = e; and
vjv;* = fi. Then there exists v € A such that v*v = \/jej e, vV* = \/jejﬁ and
ve; = v; = fiv for all j € J. We sometimes write v = Zje] v;.

Proof The proof for general AW*-algebras is fairly complicated but for monotone
complete C*-algebras we have the following straightforward argument.

We have {v;}e; and {f;} are £>-summable over J and f;v; = v; for each j € J. We
apply Corollary 2.1.39. We put vy = ZJ.GF vj for each F' € F(J). Then {vr}rer() is
convergentin A, say

v = LIMperu)vj = Z vj
jeJ

J

Proposition 2.1.22, that ve; = v; for all j € J. Similarly we have f;v = v; for all
Jj € J.Since v*up = } cp;*v; = ) jcr €, by Proposition 2.1.22 again, we have
v*v = ¢, ¢;. Similarly, we have vv* = \/ ¢, f;. It is clear, by Lemma 2.1.24, that

such a v is uniquely determined. O

in A. The fact that (Z-EF v,-) ei, = vy, ifjo € Fand 0if jo ¢ F tells us, by

For a proof of the above result for arbitrary AW*-algebras see [13] or the original
papers by Kaplansky.
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These results are straightforward to prove for monotone complete C*-algebras by
adapting the classical Murray-von Neumann arguments. But since the AW*-results
are more general and easily accessible we do not need to spend time re-proving them
for monotone complete C*-algebras. We made an exception for Proposition 8.3.3
because the above argument is easy whereas the corresponding generalisation to
AW*-algebras is more intricate.

Types of AW*-Algebras

We give a very brief account of the decomposition of AW*-algebras into types. More
detailed information can be found in [13] or [90-93].

Definition 8.3.4 An AW*-algebra B is said to be finite if x*x = 1 implies xx* = 1.
If B is not finite, it is said to be infinite. A projection e € B is said to be finite
if eBe is finite and e is infinite if eBe is infinite. A projection e in B is said to be
abelian if eBe is abelian. The algebra B is said to be properly infinite if the only
finite central projection is 0. That is, the algebra B has no finite direct summand
other than {0}. The algebra B is said to be semi-finite if it has a finite projection e
such that z(e¢) = 1, where z(e) is the central cover of e (see the second paragraph
of the preceding subsection). The algebra is said to be purely infinite if it contains
no finite projections other than 0. The algebra B is said to be discrete if it has an
abelian projection e with z(¢) = 1. The algebra is said to be continuous if it has
no abelian projections other than 0. A central projection z in B is said to be finite
(respectively infinite, purely infinite) if the direct summand Bz is finite (respectively
infinite, purely infinite). The algebra B is said to be of Type I if it is discrete; Type
11, if it is continuous and finite; Type Il if it is continuous, semi-finite and properly
infinite and Type I1I if it is purely infinite. A central projection z of B is said to be of
type v (v = I, 11, I, III) if the direct summand Bz is of type v.

Remark 8.3.5 We see from the above that a projection p is finite if g < pand g ~ p
implies g = p.

Proposition 8.3.6 Let A be an AW*-algebra. There exist unique orthogonal central
projections zy, 2, » 2., and zyy in A such that z,A is of Type v (v = 1,11, I, III)
and z1 + zi, + 2, + 2z = 1.

When A is monotone complete, Proposition 8.3.6 is a straightforward generalisa-
tion of the analogous result for von Neumann algebras. For general AW*-algebras,
see [13] and [90].

Monotone Completeness
Is every AW*-algebra monotone complete? Kaplansky showed that all Type I factors

are von Neumann, and so monotone complete. See [112, 113] concerning the
complete classification of Type I algebras. In fact, all Type I AW*-algebras are



242 8 Envelopes, Completions and AW™-Algebras

monotone complete (see [92] and [166]). But, in general, this is a difficult question.
An impressive attack on it was made by Christensen and Pedersen [28] who showed
that if A is a properly infinite AW*-algebra then A is monotone o-complete. So when
A is properly infinite and has a faithful state then it is monotone complete. See also
[141].

Let A be an AW*-factor with a faithful state. Then, using Proposition 8.3.6 and
[28], it follows immediately that A is monotone complete unless it is of Type II;.
By [175] a Type 11I; factor with a faithful state is always a von Neumann algebra. So
any factor with a faithful state is monotone complete. In particular, all small factors
are monotone complete. Moreover, when A is an AW*-subalgebra of a type I AW*-
algebra with the centre Z, if A contains Z, then A must be monotone complete. See
Theorem 8.3.10 and [130].

Quasi-Linear Maps

Definition 8.3.7 Let B be a unital C*-algebra and Y a Banach space. A function
T : B — Y is quasi-linear if it has the following properties:

(i) {Tx:||x|| < 1}is bounded in norm;
(i) T(a + ib) = Ta + iTh whenever a and b are self-adjoint;
(iii) Whenever C is a commutative *-subalgebra of B then the restriction of 7' to C
is linear.

If we put B = M,(C) and ¥ = C there are many examples of quasi-linear 7'
which are not linear.

(But it is known that if B is a von Neumann algebra without a Type I-
direct summand then each quasi-linear 7' is linear. See [22]. This generalisation of
Gleason’s Theorem is the culmination of the work of many hands. See Hamhalter
[67, Ch5] for its lucid, scholarly exposition of those results and its extensive
bibliography.)

Finite AW*-algebras

Let us now suppose the AW*- algebra A to be finite that is, x*x = 1 implies xx* = 1.
Then, see [13, Ch6], there exists a (unique) dimension function d : ProjA — Z such
that

(i) e ~ f implies d(e) = d(f).
(ii) d(e) > 0andd(e) = Oonlyife = 0.
(iii) d(z) = zifz € ProjZ.
(iv) If e and f are orthogonal, then d(e + f) = d(e) + d(f).
(v) The dimension function is completely additive on orthogonal projections.
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In [16] there is a very lucid account of the “centre valued quasi-trace”. More
precisely, the dimension function d has a unique extension to a quasi-linear map
T : A — Z such that

(i) Tz = zforeachz € Z.
(ii) 0 < T(xx*) = T(x*x) for all x in A.
(iii) 7 is norm continuous, in particular, ||7(a) — T(b)| < |la — b|| fora, b € Ay,.

It is natural to ask: is T linear? When A is a von Neumann algebra the answer is
yes”. But, in general, this is unknown.

When A is a finite AW*-factor then, see [175], if it has a faithful state then it has
a faithful normal state. So it is a von Neumann algebra. (So then the quasi-trace,
T : A C, is linear).

Now suppose that A is a Type Il factor with a faithful state. Then, as remarked
above, it is monotone complete. Since A is monotone complete we can apply [176]
to show that A is a von Neumann algebra. See also [39, 128, 131, 132]. So, whenever
a Type II factor has a faithful state it is von Neumann. It follows that all small wild
factors are of Type III. Further more, in [39], it is shown that when A is an AW*-
algebra, if there exists a projection e with the central cover z(¢) = 1 such that eAe
is a von Neumann algebra, then A itself is a von Neumann algebra.

13

Embeddable Algebras

As before we suppose that A is an AW*-algebra with centre Z.

Definition 8.3.8 We call A embeddable if there is a Type | AW*-algebra, B, with
centre Z and a x-isomorphism 7 : A + B such that 7[A] equals its double
commutant in B.

Ozawa [114] used model theory to establish a transfer principle from von
Neumann algebras in Boolean-valued set theory to embeddable AW*-algebras. See
also [115]. Roughly speaking, he replaces the scalars by a commutative AW*-
algebra. This model theory approach makes the following generalisation of [175]
seem plausible.

Theorem 8.3.9 Ler A be a finite AW*-algebra with centre Z. Let T : A — Z be a
positive, faithful conditional expectation. Then A is embeddable in a type I AW*-
algebra B with the same centre Z.

However this result was proved by Ozawa and Sait6 [116] using only standard
set theory.
Earlier Sait6 [130] established the following:

Theorem 8.3.10 If B is an AW™*-algebra of Type I and if A is an AW™*-subalgebra
of B containing the centre of B, then A coincides with its bicommutant in B.
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A striking consequence of Theorems 8.3.9 and 8.3.10 is the following: When C
is a separable unital C*-algebra, its regular (o-)completion C has no type II direct
summand. See [116].

8.3.2 Open Problems

Let A be a Type II; AW*-factor. Is A a von Neumann algebra? Or equivalently, is
the quasi-trace T linear? This question has been unanswered for 60 years. By [175]
a necessary and sufficient condition for a Type II; AW*-factor to be von Neumann
is for it to have a faithful state. So, an equivalent question is: When A is a finite type
1T AW*-factor, does it have a faithful state ?

Since the quasi trace T restricts to a faithful normal state on each maximal abelian
*-subalgebra of A, each maximal abelian *-subalgebra of A is a von Neumann
algebra. So, this question can be reformulated: Let A be a C*-algebra where each
maximal abelian x-subalgebra is von Neumann (and so by Theorem 8.2.5 A is an
AW*-algebra). Suppose that A is simple, infinite dimensional and finite. Is A a von
Neumann algebra ?

Handelman [70] showed that every stably finite C*-algebra admits a -
homomorphism to a finite AW*-factor. (A C*-algebra B is stably finite, if M, (B)
is finite, that is, if xy = 1 implies yx = 1 for x,y € M,(B) for every n € N.)
Hence the AW*-problem becomes closely related to the following question in the
K-theory of C*-algebras. Does every stably finite C*-algebra have a trace? In
particular, Blackadar and Handelman [16] showed that the quasi-trace problem
for C*-algebras can be reduced to the AW*-problem. See Theorem V.2.1.15 and
Theorem V.2.2.15 in [15]. For a strong attack on this question see [56]. For a
different approach to quasi-traces see [21]. We make no attempt to survey the many
papers related to this problem. Instead we refer the reader to the excellent account
in [15] and its extensive bibliography.

For a more general problem, consider a unital C*-algebra B. Suppose there exists
a *-homomorphism 7 from B onto M>(C). Let u : M»(C) +— C be a quasi-linear
map which is not linear. Then s : B — C is a quasi-linear map which is not linear.
The most optimistic conjecture is:

Let B be a unital C*-algebra which does not have M,(C) as a quotient. Let T be
a quasi-linear map from B into a Banach space Y. Then T is linear.

This problem can be reduced to the situation where ¥ = C. It then turns out that
T is linear if, and only if, it is uniformly weakly continuous on the closed unit ball of
B, see [20]. When B is a von Neumann algebra, the Generalised Gleason Theorem,
see above, gives a positive answer. But for general B this is a mystery.
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8.4 Conclusions

There have been great advances in the investigation of monotone complete C*-
algebras. But many mysteries and challenges remain. The open problems listed
throughout this book, suggest pathways which could lead to further progress.

The classification semigroup and the spectroid invariants introduced in Chap. 3
are far from giving a complete classification but they do produce some order out of
chaos.

The following analogy may be helpful. Consider a vast city where each building
contains a small monotone complete C*-algebra. Suppose algebras in different
buildings are never isomorphic and each building contains only one algebra. Also
suppose each small monotone complete C*-algebra is isomorphic to an algebra in
one of the buildings. By Hamana’s pioneering work there are 2¢-buildings. Our
classification splits the whole city into parallel avenues, running west to east. At
the centre is the Oth avenue, housing all the small von Neumann algebras. There
are 2¢ avenues, each one labelled by an element of the semigroup. Intersecting the
avenues are streets running north to south. One of these streets is that where all
the small commutative algebras are to be found. Many other streets remain to be
explored before a complete map of the city can be made.
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